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“There are three kinds of lies: lies, damned lies, and statistics.”

Mark Twain
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Il serait difficile de ne pas en oublier et donc je tiens à remercier sans les citer tous mes
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Abstract

Learning from multiple genomic information in cancer for diagnosis and

prognosis

by Matahi Moarii

De nombreuses initiatives ont été mises en places pour charactériser d’un point de vue

moléculaire de grandes cohortes de cancers à partir de diverses sources biologiques dans

l’espoir de comprendre les altérations majeures impliquées durant la tumorogénèse. Les

données mesurées incluent l’expression des gènes, les mutations et variations de copy-

number, ainsi que des signaux épigénétiques tel que la méthylation de l’ADN. De grands

consortium tels que “The Cancer Genome Atlas” (TCGA) ont déjà permis de rassem-

bler plusieurs milliers d’échantillons cancéreux mis à la disposition du public. Nous

contribuons dans cette thèse à analyser d’un point de vue mathématique les relations ex-

istant entre les différentes sources biologiques, valider et/ou généraliser des phénomènes

biologiques à grande échelle par une analyse intégrative de données épigénétiques et

génétiques.

En effet, nous avons montré dans un premier temps que la méthylation de l’ADN était

un marqueur substitutif intéressant pour jauger du caractère clonal entre deux cellules

et permettait ainsi de mettre en place un outil clinique des récurrences de cancer du sein

plus précis et plus stable que les outils actuels, afin de permettre une meilleure prise en

charge des patients.

D’autre part, nous avons dans un second temps permis de quantifier d’un point de vue

statistique l’impact de la méthylation sur la transcription. Nous montrons l’importance

d’incorporer des hypothèses biologiques afin de pallier au faible nombre d’échantillons

par rapport aux nombre de variables.

Enfin, nous montrons l’existence d’un phénomène biologique lié à l’apparition d’un

phénotype d’hyperméthylation dans plusieurs cancers. Pour cela, nous adaptons des

méthodes de régression en utilisant la similarité entre les différentes tâches de prédictions

afin d’obtenir des signatures génétiques communes prédictives du phénotypes plus précises.

En conclusion, nous montrons l’importance d’une collaboration biologique et statistique

afin d’établir des méthodes adaptées aux problématiques actuelles en bioinformatique.



Abstract

Learning from multiple genomic information in cancer for diagnosis and

prognosis

by Matahi Moarii

Several initiatives have been launched recently to investigate the molecular characteri-

sation of large cohorts of human cancers with various high-throughput technologies in

order to understanding the major biological alterations related to tumorogenesis. The

information measured include gene expression, mutations, copy-number variations, as

well as epigenetic signals such as DNA methylation. Large consortiums such as “The

Cancer Genome Atlas” (TCGA) have already gathered publicly thousands of cancer-

ous and non-cancerous samples. We contribute in this thesis in the statistical analysis

of the relationship between the different biological sources, the validation and/or large

scale generalisation of biological phenomenon using an integrative analysis of genetic

and epigenetic data.

Firstly, we show the role of DNA methylation as a surrogate biomarker of clonality

between cells which would allow for a powerful clinical tool for to elaborate appropriate

treatments for specific patients with breast cancer relapses.

In addition, we developed systematic statistical analyses to assess the significance of

DNA methylation variations on gene expression regulation. We highlight the importance

of adding prior knowledge to tackle the small number of samples in comparison with

the number of variables. In return, we show the potential of bioinformatics to infer new

interesting biological hypotheses.

Finally, we tackle the existence of the universal biological phenomenon related to the

hypermethylator phenotype. Here, we adapt regression techniques using the similarity

between the different prediction tasks to obtain robust genetic predictive signatures

common to all cancers and that allow for a better prediction accuracy.

In conclusion, we highlight the importance of a biological and computational collabo-

ration in order to establish appropriate methods to the current issues in bioinformatics

that will in turn provide new biological insights.
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Chapter 1

Introduction

1.1 Préambule

La complétion du “Human Genome Project” a accéléré le développement de nouvelles

technologies de mesures liées au génome humain. Ce flux d’information biologique et

clinique a considérablement impacté notre manière d’aborder une hypothèse biologique.

Nous nous intéressons en particulier dans cette thèse au développement de méthodes

statistiques pour l’analyse de données génomiques spécifiques, les données épigénétiques,

et leur lien dans le diagnostic et pronostic du cancer. Dans ce chapitre, nous introduisons

les principales notions biologiques abordées dans cette thèse. La section 1.3 s’attache

à introduire les perspectives actuelles liées à la thérapie du cancer. Le cancer du sein,

principale pathologie traitée à l’Institut Curie, sera en particulier abordé. Dans la section

1.4, nous présentons des données épigénétiques et plus spécifiquement de la méthylation

de l’ADN.

1.2 Preamble

After the completion of the human genome project more than ten years ago, DNA mea-

surement technologies have witnessed dramatic progress in scope and throughput at

constantly decreasing cost. This led to a flood of clinical and biological information rou-

tinely collected in hospitals and research laboratories, which impacted our fundamental

understanding of biological systems, but which also required new approaches based on

statistical analysis to extract biological information from large collections of data.

We focus in this thesis on a particular type of molecular data that can be measured

genome-wide, namely, epigenetic data describing the methylation status of particular

1
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bases in DNA, and their relevance for cancer diagnosis and prognosis. In this chapter,

we provide a general introduction to the main biological notions used throughout this

thesis, and highlight the clinical context motivating the work. In particular, we give

in section 1.3 a general introduction to cancer and the current perspectives in cancer

therapy. We focus on breast cancer, the main cancer treated at the Institut Curie where

I worked during my PhD. In section 1.4, we touch upon epigenetics as “heritable changes

not affecting the DNA coding sequence but that affect gene function” [Riggs and Porter,

1996], with a particular focus on DNA methylation. In section 1.5, finally, we summarize

the main contributions of this thesis.

1.3 From a macroscopic to a molecular characterization of

cancer

Cancer is a major cause of morbidity and mortality worldwide, accounting for 8.2 million

deaths in 2012. It occurs when a single cell acquires the ability to reproduce aggressively

and to invade other tissues. This phenomenon usually results from successive modifica-

tions that alter the function of normal cells and give them specific advantages in favor

of uncontrolled proliferation and ability to spread out of the tissue of origin [Knudson,

1971,Hanahan and Weinberg, 2000,Weinberg, 2007,Hanahan and Weinberg, 2011]. Al-

though our understanding of when and where these specific aberrations appear during

tumorogenesis has greatly improved over the years, many mechanisms remain elusive.

A difficulty in cancer research is the diversity of diseases it encompasses. Physicians

recognize at least 200 types of cancer, with very diverse aspects and clinical implications.

Not only does cancer occur in various types of tissues, which greatly affects the patient

prognosis (e.g, overall survival of breast cancer patients after 5 years is around 90%, but

only around 10% for lung cancer patients), but even tumors originating from the same

type of tissue can present different characteristics under a microscope and in terms of

prognosis and response to treatments.

Understanding and delineating the diversity of cancer is increasingly recognized as a

critical issue to improve its treatment. On the one hand, understanding which biolog-

ical processes are involved during carcinogenesis for a particular subtype of cancer can

improve our understanding of the disease at a molecular level, and suggest new drugs

targeting new targets. On the other hand, it may also contribute, from a clinical point

of view, to give a better characterization of which cancer subtypes can be associated

with which specific outcome and respond to which treatment. This should help develop

more personalized therapeutic strategies that could be more efficient to a subgroup of

patients than the current, still largely ”one-size-fits-all”-based approach.
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1.3.1 Histopathology of cancer: the premisces of personalized medicine.

A focus on breast cancer.

Let us focus more precisely on breast cancer, the most common cancer in women world-

wide, which by itself is a very heterogeneous disease. Like most cancers, breast cancer

can be divided into different categories based on different criteria, serving different pur-

pose. A very important classification scheme is based on the histopathology of the

tumor, that is, how biopsy specimens look like under the microscope. The World Health

Organization (WHO) approved in 2003 a histopathological classification of breast can-

cers into more than 20 major tumor types and subtypes, a few of them being shown in

figure 1.1. However, two classes, invasive ductal carcinomas (IDC) and invasive lobular

carcinomas (ILC), account for approximately 80% of all breast cancers [Li et al., 2005],

suggesting that this classification is not very fine-grained. In fact, the histopathological

classification of breast cancer has limited prognostic and predictive value, except for

some rare subtypes with clear positive (adenoid-cystic carcinomas [Arpino et al., 2002])

or negative prognosis (metaplastic carcinomas [Colleoni et al., 2012]). Patients within

the major subtypes can have very diverse prognostics, while the difference between ILCs

and IDCs in terms of positive or negative clinical impact is still subject to debate [Viale

et al., 2009].

Overall, the histopathology of cancer therefore fails to grasp the full diversity of breast

cancer and has a limited clinical impact in itself, except for a few specific subtypes.

Yet it is a first, useful step towards unraveling the complexity and the heterogeneity of

cancer.

Figure 1.1: Histopathology of tumors can distinguish tumors following [Ellis et al.,
1992]. Source: Dr. Anne-Vincent Salomon (Institut Curie).
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1.3.2 Molecular classifications of cancers: the dawn of personalized

medicine

The recent progress in cancer treatments and therapies, such as breast conserving thera-

pies or hormonotherapies, has led to rethink cancer classification in terms of risk assess-

ment (including risk of relapse, progression, metastasis, or survival) and responsiveness

to treatments, instead of the classical histopathological classification. The presence or

absence of molecular markers such as the presence of estrogen (ER), progesterone (PR)

and human epidermal growth factor (HER2) receptors which condition the response to

targeted therapies (e.g tamoxifen for ER+/PR+ patients and trastuzumab for HER2+

patients) has reorganized the breast cancer groups in terms of treatments. Similarly, the

beneficial impact of chemotherapy, which is a very toxic therapy that can often be spared

to patient with very good prognosis, can be evaluated from markers of the tumor aggres-

sivity such as the grade, its size and the level of proliferation as measured by molecular

markers like Ki67. These markers are routinely assessed by immunohistochemistry on

biopsy samples, and the resulting classification of cancers is therefore referred to as the

immunohistochemical (IHC) classification. General guidelines and recommendations to

specify the IHC classification were assessed and standardized by the American Society

of Clinical Oncology (ASCO) in 2007 [Harris et al., 2007].

While of clinical use, several drawbacks to the IHC classification still remain unanswered.

First, the clinical impact of these classifications could certainly still be improved with

a finer classification. In particular, patients outcome still vary greatly within each IHC

tumor groups. Second, the triple-negative breast cancers (ER-/PR-/HER2-) lack all

molecular components that could make them benefit from existing targeted therapies

for breast cancers. Extending the features used to classify tumors is therefore necessary

to assess the effect of new therapies.

1.3.3 The overflow of -omics data and the necessity of a statistical

framework

In the last 15 years, new technologies to measure thousands or millions of molecular

characteristics on each given sample have emerged. Based on microarray or sequenc-

ing technologies, they have slowly but steadily transitioned cancer classification from a

macroscopic to a molecular level. Being able to measure simultaneously the expression of

thousands of genes has paved the way to a better understanding of cancer heterogeneity

and to a new molecular classification of breast cancers [Perou et al., 2000, Sørlie et al.,

2001,Van’t Veer et al., 2002,van de Vijver et al., 2002,Wang et al., 2005]. This classifica-

tion has already impacted the patients treatments with the recent development of gene
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expression profiling platforms (e.g MammaPrint, OncotypeDX), which predict the risk

of relapse or of treatment response of a patient by combining the expression level of a

panel of genes known as a molecular signature to aid in the therapeutic strategies [Paik

et al., 2004,Parker et al., 2009,Nielsen et al., 2010].

Yet, several statistical and biological issues remain unanswered and question the validity

of such methods. Reyal et al. [Reyal et al., 2008] have shown that while of similar

performances, different gene-based predictors do not share the same prognostic group

assignment. Venet et al. [Venet et al., 2011] demonstrated that most random panels of

genes are significantly associated with breast cancer outcome, questioning the biological

implications of existing panels. From a statistical point of view, the analysis of such data

is usually hindered by the small number of samples available, generally a few hundreds,

compared to the thousands of gene expression measurements. This statistical issue

commonly referred to as the “small n, big p” issue in the statistical community (where

n refers to the sample size and p to the number of features) raises important challenges

such as stability and reproducibility of the results [Haury et al., 2011], which we will

discuss in more detail in chapter 2.

In summary, the heterogeneity of cancer, while adding a supplementary layer of com-

plexity to the already difficult understanding of the biology of the disease, provides great

opportunities for the specific tayloring of therapeutic strategies to the patient, and raises

important methodological challenges. While a “perfect” classification from a biological

and clinical point of view still remain elusive, we can expect important progress in the

coming years in our ability to classify tumors and stratify patients, as we collect more

data and improve our methodological approaches to analyze them. In the next chapter,

we discuss the clinical and biological interest of specific biological markers, namely DNA

methylation markers.

1.4 Epigenetics

The behavior of a cell mostly depends on the proteins it synthesizes, which are themselves

governed by the specific regulations of gene expression. While the genome sequence of all

somatic cells in an individual is virtually the same, functional variations are therefore

controlled by determinants of the gene expression. Transcription factors are proteins

that promote or repress gene activity by binding to promoter regions in DNA [Vaquer-

izas et al., 2009]. Yet, several studies have underlined the insufficiency of a “transcription

factors only” model to control gene expression [Itzkovitz et al., 2006,Werner, 2013]. In
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particular, recent research has highlighted the crucial role played by epigenetic mecha-

nisms in many cellular process including cell differentiation during development [Lau-

rent et al., 2010, Smith and Meissner, 2013] but also in tumorogenesis [Rountree et al.,

2001,Ehrlich, 2002,Das and Singal, 2004,Kulis and Esteller, 2010]. The current defini-

tion of epigenetics is “the study of mitotically and/or meiotically heritable changes in

gene function that cannot be explained by changes in DNA sequence” [Riggs and Porter,

1996]. The main epigenetic landmarks in mammals are histone modifications and DNA

methylation, the latter being the subject of this thesis. The following subsections will

therefore give an introductory description to the biological concepts of DNA methyla-

tion, and to its role in gene expression regulation particularly during tumorogenesis.

We will also discuss the clinical interest in DNA methylation as an early biomarker in

cancer but also as a potential source for treatments. Finally, we will discuss the analysis

of DNA methylation data from a statistical point of view.

1.4.1 DNA methylation

DNA methylation refers to the addition of a methyl (CH3) group to a nucleotide in the

DNA sequence (figure 1.2). For mammals, this reaction, which is catalyzed by DNA

methyltransferases (DNMTs), mostly occurs in the sequence context of a cytosine which

is followed by a guanine noted as 5’CG3’ or CpG. Three DNMTs have been identified

in mammals: DNMT1 guarantees the maintenance of methylation from the methylated

parental strand to the unmethylated daughter strand during cell division [Kho et al.,

1997], while DNMT3a and DNMT3b trigger de novo methylation or demethylation and

are specifically important during embryonic development for the establishment of the

epigenome [Okano et al., 1999].

Figure 1.2: DNA Methylation of a cytosine by DNMT. SAM: S-adenosylmethionine is
a metabolite present in cells and used as a coenzyme in the transfer of the methyl-group.

Source: Alice Pinheiro (Institut Curie).
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1.4.2 DNA Methylation in gene regulation

CpG sequences are greatly under-represented on average across the genome, but are

specifically over-represented in condensed regions of 1 to 5 kb known as CpG Islands

(CGIs) [Gardiner-Garden and Frommer, 1987]. The original definition of CGIs based

on somehow arbitrary thresholds has been followed to several redefinitions based on

either biological or statistical considerations [Takai and Jones, 2002,Wang and Leung,

2004,Wu et al., 2010,Bock et al., 2007]. A particular interest for these regions is due to

the fact that 60 to 90% of all genes are associated to CGIs, specifically in their promoter

regions, [Saxonov et al., 2006]. The methylation or demethylation of a CGI is known to

be related to the initiation of the transcription process of the associated gene, as shown

by many studies for specific genes such as housekeeping genes [Deaton and Bird, 2011],

imprinted genes [Li et al., 1993], and tissue specific genes [Laurent et al., 2010]. One

famous example of gene expression regulation by DNA methylation is the inactivation

of one of the two copies of the X-chromosome by DNA methylation [Pollex and Heard,

2012].

Still, the precise mechanism of DNA methylation and its role in gene transcription

remains largely unclear. DNA methyltransferases (DNMTs) are responsible for de novo

methylation and for the maintenance of methylation after cell division [Bird, 2002].

Yet, the signals that govern the pattern of methylation accross the genome is unknown.

Moreover, methylation is tightly linked with gene expression but how it clearly regulates

expression is still being debated and several hypotheses have been proposed [Klose and

Bird, 2006,Bogdanović and Veenstra, 2009,Deaton and Bird, 2011]. A first model is that

DNA methylation physically blocks the access of promoter binding sites in particular for

specific transcription factors that bind preferably to unmethylated sequences [Rodriguez

et al., 2010] 1.3. A second model considers DNA methylation as the initiating mechanism

for the establishment of an inactive chromatin state also known as heterochromatin.

In this case, specific proteins known as methyl-CpG binding domain proteins (MBDs)

bind to region of high methylation. These MBDs, in turn, recrute histone deacetylases

(HDACs) which compact the chromatin and enforce a inactive state which results in

gene silencing (figure 1.3).

While gene promoter methylation has been quite extensively studied, little is known

on the role of methylation outside of these regions. Gene body methylation has been

positively correlated with gene expression contrary to promoter methylation [Kulis et al.,

2013] and has also been associated with alternative splicing [Maunakea et al., 2013]. The

role of orphan CGIs, that is CGIs far from any known genes, is yet to be elucidated but

could be linked to long range epigenetic regulation [Bert et al., 2013] or be located in

actual promoter regions of ancestral genes [Illingworth et al., 2010].
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Figure 1.3: Panel A. DNA methylation physically blocks the access of promoter
binding sites and prevent the binding of transcription factors. Panel B. Methyl-CpG
binding domain proteins (MBDs) bind to region of high methylation which in turn,
recruit histone deacetylases (HDACs) which compact the chromatin into an inactive

state. Source: [Ling and Groop, 2009] (Copyright: CC BY-NC-ND 3.0)

1.4.3 An early biomarker in cancer and a source for potential treat-

ments

DNA methylation is essential in cell development and differentiation [Smith and Meiss-

ner, 2013]. Therefore, abnormalities can lead to several diseases. Disruption of genomic

imprinting where one of the paternal or maternal allele is not expressed (e.g Prader-

Willi Syndrome: deletion of the paternal contribution of seven genes on chromosome

15, Angelman Syndrome: deletion of the same region for the maternal copy, Beckwith-

Wiedmann: aberrant parental imprinting on chromosome 11) are strong evidence of the

causal link between methylation aberrations and human diseases [Robertson, 2005].

Cancer is the epitome of those methylation-associated diseases. Our current understand-

ing of the role of methylation aberrations in cancer points out to at least two mechanisms.

On the one hand, localized hypermethylation of promoter regions of specific genes such

as tumor suppressor genes or tissue-specific genes can lead to their inactivation and lead

to tumorogenesis [Baylin and Herman, 2000,Esteller et al., 2001]. On the other hand, an

overall global hypomethylation can lead to genetic instability and in some cases to the

activation of silenced oncogenes [Ehrlich, 2002,Ehrlich, 2009,Hon et al., 2012]. In both

cases, abnormal methylation is considered a driver event for abnormal gene expression

in cancer, and could therefore potentially be detected before any significant change in

gene expression. Thus, understanding the general pattern of a cancer methylomes could

pave the way to new schemes for early detection of cancer. This may in turn impact can-

cer treatment, knowing that time of diagnosis is a crucial factor in prognosis [Richards,

2009].

Several advantages of epigenetic markers over genetic markers place DNA methylation as

one of the major interest in cancer research. Current measurement technologies allow for
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non-ambiguous mapping of methylation at well defined position on the genome contrary

to, e.g, mutations of genes. In addition, the fact that DNA can be released from tumor

tissues in peripheral tissues and in particular fluids [Garćıa-Closas et al., 2013] such as

serum, urine or plasma could allow for non-invasive early detection procedures. The

reversibility of the methylation marker is also of potential interest for new treatments.

Already, demethylant agents such as the 5-aza-2’-deoxycytidine or the 5-azacytidine

have already been tested and approved by the FDA to treat myelodysplastic syndromes

(MDS) and chronic myelomonocytic leukemia (CML) [Silverman et al., 2002].

1.4.4 Statistical challenges in DNA methylation analysis

Epigenome-wide analyses have become accessible with the development of microarray

measurement technologies, and more recently sequencing technologies. We focus in this

thesis on bisulphite-based methods such as the illumina HumanMethylation platform,

which measures the methylation level of up to 450,000 CpG dinucleotides. Although

the methylation of a given CpG in a given cell is a binary attribute, measurements are

often issued from a mixture of cell populations with heterogeneous DNA methylation

profiles. Therefore, the resulting measurements usually reflect a ratio of methylation

for one specific probe as M/(M + U) in which M represents the signal for methylated

molecules and U the signal for unmethylation molecules.

This ratio lies in [0; 1] and the finite scale of DNA methylation greatly differ from the

larger scale of, e.g., gene expression data. Also, DNA methylation measurements are

not normally distributed and variance is greatly biased by the mean value of the probe

(probes with mean methylation of 0.5 can have variance much larger than probes with

mean methylation near 0 or 1). Therefore, the use of standard methods in microarray

data analysis such as filtering signal with high standard deviation becomes bias-inducing

in DNA methylation analysis. Such observations underly the importance of understand-

ing the data at hand and the underlying technology to build data-driven statistical

methods.

1.5 Personal contribution and organization of the thesis

This chapter presented a short overview of some of the current problematics in cancer

research. Given the heterogeneity and complexity of the data now available to investigate

the diversity of cancers, we chose to focus on the specific role of DNA methylation in

tumorogenesis. Each of the following chapters aim at tackling a particular issue in cancer

described below.
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Chapter 2 introduces the different methods used in this thesis to analyse data. In

particular, we discuss the use of supervised and unsupervised learning in a setting where

the number n of observations is much smaller than the number p of variables studied p

also known as n ! p, the challenges it raises and how to overcome them.

Chapter 3 tackles the issue of relapses in breast cancer. When early breast tumor are

detected, an alternative to aggressive treatments such as mastectomy is tumorectomy

where only the tumor is removed instead of the whole breast. Although patients survival

rates are not significantly different for both therapies, tumorectomy increases the rates

of tumor relapse. In case of relapse, being able to characterize the relapse as either a true

recurrence or an independent tumor is essential for the treatment of the patient. A true

recurrence is often synonym of an aggressive cancer and requires aggressive treatments,

while an independent tumor could potentially be treated with less invasive treatments.

The monoclonality of cancer [Weinberg, 2007] suggests that being able to characterize

the clonality between a primary tumor and its relapse could help tackle this issue. A

clinical classification based on the concordance of the histopathological features (stage,

grade, ER status, PR status, HER2 status) is used in practice but yields the same

drawbacks as the clinical classification of breast cancer subtypes (see section 1.3.1).

While a few studies have investigated the use of pangenomic data to tackle breast cancer

relapse classification, no method is based on DNA methylation profiles. As methylation

is highly conserved in cell division, we hypothesize that it may be a good marker to

assess lineage between samples. We therefore investigate the similarity of methylation

profiles in different cancer samples, and propose a method based on pairwise analysis of

methylation profiles to characterize clonality between samples taken at diagnosis and at

relapse.

Chapter 4 tackles the role of genome-wide variations of methylation in gene expres-

sion regulations. Aberrant promoter hypermethylation has frequently been observed in

cancer but its precise role in tumorogenesis has always been elusive. Epigenetic modifica-

tions have been widely studied and have been shown to be associated to gene expression

repression in tumour suppressor genes. The high-coverage methylome profiles of hun-

dreds of patients, as well as their matched gene expression and copy number profiles,

now available publicly in the cancer genome atlas (TCGA) provides a comprehensive

dataset to assess the extent of epigenome-wide regulation of gene expression variations.

Chapter 5 studies the existence of a methylome-based cancer classification. The CpG

island methylator phenotype (CIMP), first identified in colorectal cancer, has recently

become a major subject of interest and has been observed in several tissues. Yet, these

characterizations of CIMP have been tissue-specific and the existence of a biological phe-

nomenon causing the CIMP in cancer is still elusive. In addition, the clinical importance



Chapter 1. Introduction 11

of CIMP as a predictive factor for prognosis and patients response to treatments is still

being validated. We develop a pancancer genome and epigenome-wide CIMP analysis

using the large TCGA datasets and demonstrate the existence of a common epigenetic

signature of CIMP. Genetic profiling show that CIMP might be linked with a universal

genetic signature well-documented in several CIMPs. However, clinical impact of CIMP

is still lacking on the TCGA database.





Chapter 2

Methods

Résumé

Ce chapitre présente les méthodes et algorithmes généraux utilisés au cours de cette

thèse. Ces éléments sont disponibles dans la littérature mais sont rappelés ici pour

rappel et pour permettre une discussion sur les méthodes employées pour l’analyse de

données réelles. Ce chapitre est essentiellement composé de 2 sections.

La première section traitera de méthodes d’analyses supervisées particulièrement dans le

cadre où le nombre d’échantillons disponibles est beaucoup plus faible que le nombre de

variables observées. Nous discuterons particulièrement du problème d’interprétabilité

dans un contexte biologique où la compréhension du phénomène biologique est aussi

importante que la performance prédictive d’un modèle.

Dans une seconde partie, nous discuterons de méthodes d’analyses non supervisées. Nous

décrirons les méthodes de clustering ainsi que de réduction de la dimensionalité. En

particulier, nous montrerons la difficulté de sélectionner efficacement et objectivement

un modèle (e.g nombre de clusters ou nombre de dimensions) dans le cadre de données

réelles. Enfin, nous verrons que dans le cadre de données biologiques où le bruit ainsi que

le cadre statistique (n ! p) rendent difficiles la détection de clusters robustes, l’impact

clinique d’un point de vue pronostic peux jauger de l’importance du modèle.

Abstract

In this chapter, we introduce the statistical methods related to the work present in this

manuscript. Most of the methods described here are well discussed in the literature.

13
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Our focus will be on their practical use for biological data analysis. This chapter is

essentially composed of 2 sections.

The first section will present a few methods used in this thesis for supervised learning

in the context where the number of samples is a lot smaller than the number of features

also known as n ! p. We will focus in particular on the interpretability of the data

especially in a biological context where the understanding of the underlying biological

phenomenon is as important as the prediction performance of a model.

In the second section, we will discuss unsupervised learning methods. We will describe

cluster analysis as well as dimensionality reduction techniques. We will show in partic-

ular how difficult the task of selecting objectively a model (e.g, number of clusters or

optimal number of dimensions) can be in the case of real data. Finally, we will see that

model selection in a biological setting, where the data are intrinsically noisy and the

statistical power is usually poor (n ! p), generally leads to non-robust clustering. In

this case, clinical significance of the method in particular for clustering to distinguish

classes of different prognosis can be used to measure the importance of the model.

2.1 Supervised learning

Supervised learning refers to a set of statistical methods which try is to make sense

out of a series of observations by inferring a relation between an input and an output.

The observations can usually be summarized by a set of variables also known as inputs

represented by X which are usually measured (e.g the level of expression of genes), and

by an outcome also known as output represented by Y which is a feature of interest.

Outputs can either be qualitative (e.g., whether or not a relapse will occur with 5 years),

or quantitative (e.g, toxicity of a drug). We usually refer to a supervised learning problem

with qualitative outputs as a classification problem compared to a regression problem

for quantitative outputs. To summarize, the objective is to learn a model that will

allow to predict Y given X only. Such a setting can be beneficial for example when

measuring Y can be a lot more costly than measuring X (e.g annotating each picture

on the internet is harder to obtain than the summary of a picture as a set of pixels), or

more importantly when Y refers to a future event that we would like to predict in order

to adapt our present strategy. Another reason to infer a predictive model is when we

are interested in how the input influences the output, e.g how the genes influence the

state of a patient as healthy or cancerous.

In the following, we will give the general mathematical framework of statistical super-

vised learning as well as the general set of notations used throughout this thesis. In
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particular, we will discuss the issue of learning when the number of observations is small

compared to the number of training samples.

2.1.1 Risk minimization problem

Let’s suppose that the couple (X,Y ) ∈ X × Y follow a joint probability distribution

P(X,Y ). Being able to predict Y given X can be formulated as the problem of finding

a function f : X → Y living in a certain space F such that Ŷ := f(X) is a good

enough approximation of Y . For that, we first define a loss function l : Y × Y → R+ to

quantify the loss l(ŷ, y) incurred by a prediction ŷ when the true output is y . The risk

R : F → R of a function f is defined as the expected loss incurred by the predictions

made by function on future samples under the distribution P, i.e;

R(f) = EP [l(f(X), Y )] . (2.1)

If P was known, then arguably we should make predictions with the function that will

incur the smallest loss, i.e., the one with the smallest risk:

f∗ = argmin
f∈F

R(f). (2.2)

For example, a common loss function used in regression is the squared loss l(ŷ, y) =

(ŷ − y)2, in which case the optimal predictor is

f∗ = argmin
f∈F

E(X,Y )

[

(Y − f(X))2
]

= argmin
f∈F

EXEY |X

[

(Y − f(X))2|X
]

(2.3)

which can be solved point wisely by

∀x, f∗(x) = argmin
c∈R

EY |X

[

(Y − c)2|X = x
]

= E [Y |X = x] .
(2.4)

2.1.2 The curse of dimensionality

Let’s describe with an example the different problematics that we might encounter when

trying to solve 2.2.

Suppose we are given a training set n of observations (xi, yi)i=1,...,n where the input

variable xi are p-dimensional vectors in R
p and the output variable yi is a real scalar

in R. Our objective is to estimate a function f̂ that is a good approximation of f∗. A
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standard procedure known as the k-nearest neighbours to estimate f∗(x) at a point x

consists in averaging the observed outputs yis for the k closest xis in a neighboorhood

of x, that is:

f̂(x) =
1

k

∑

i:xi∈Nk(x)

yi, (2.5)

where Nk(x) is the set of the k closest observations from x.

In the low-dimensional setting, when the number n of observations is very large then

Nk(x) tend to be very close to x, making or the k-NN estimator (2.5) a good local

estimator of f∗(x) particularly when k is large enough to average out the noise from

sufficient local neighbors. When the dimension of the input space p is large, however,

observations tend to be far away from each other. To see this, suppose we have n points

uniformly distributed in a unit ball in R
p; then the median distance between the origin

and the closest point is given by:

d(n, p) =

(

1−
1

2

1/n
)1/p

, (2.6)

which increases to 1 as p increases. Therefore, in large dimension data points tend to

be very far from each other (Figure 2.1). Another way to see this phenomenon is to

notice that the volume of a ball of radius R is proportional to Rp and therefore the

density is proportional to n1/p, which means that to obtain the same density of points,

the number of observed points needs to grow exponentially with the dimension. This

problem, usually referred to as the curse of dimensionality [Bellman, 1961], entails that

estimators like k-NN can become arbitrarily bad since k (and therefore n) should increase

exponentially with p to have a good representation of the neighborhood of x.

Yet in several biological problems, the number of observed points n is generally ∼ 100

(e.g number of patients in a study) while the dimension of the input space p can be of

the order of 104 (e.g number of genes) to 106 (e.g SNP data). In the following, we will

discuss the different strategies to tackle the problem of learning when the dimension p

is much larger than the number of samples n also known as n ! p.

2.1.3 Model selection

Let’s suppose that the output Y is related to the input X by

Y = f(X) + ε, (2.7)

where ε is a normally distributed random variable with zero mean and variance σ2

independent of X. The expected squared prediction error of a given estimate function
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Figure 2.1: Median distance between the origin and the closest data point as a
function of the dimension of the space (n = 5) when samples are uniformly distributed

in the unit ball.

f̂ at a given x0 is given by:

Err(x0) = E

[

(Y − f̂(x0))
2|X = x0

]

, (2.8)

which can be decomposed as:

Err(x0) =
(

f∗(x)− E[f̂(x)]
)2

+ E

[

f̂(x)− E[f̂(x)]
]2

+ σ2

= Bias2 + V ariance+ Irreducible Error.
(2.9)

Amongst the three terms in the right-hand side of (2.9), two can be controlled by the

choice of f̂ , that is, the choice of the modelisation of the relationship between X and Y :

the bias and the variance terms. To have a small bias, one typically needs to have a good

local estimator, like a k-NN with small k. To have a small variance, one needs to have a

procedure that is not too sensitive to individual observations, like k-NN with a large k.

As suggested by the k-NN examples, bias and variance generally move in opposite way,

and learning in high dimension often boils down to controlling the trade-off between bias

and variance.

More generally, if we had an infinite number of observations, then we might be able to

reduce both the variance and the bias terms to 0. When the number of sample n is

finite, however, we do not have access to the prediction error. An intuitive estimate to

estimate the risk of a candidate function f is then to take the training error, namely
1
n

∑

i(yi − f(xi))
2. However, simply minimizing the training error over f is not a good

idea because it does not account for the complexity of the model f . As the model gets
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more and more complex, the training error can decrease and even tend to zero if one

finds a function f̂ that perfectly reproduces the training examples, i.e., yi = f̂(xi) for

all i = 1, . . . , n. Yet, a too complicated model might not give the best output for a new

observation x, since it may have large bias. On the other hand, a model too simple, with

small variance, might be too biased and might also not be able to give a good prediction

for a new observation. At the end, a balance between the complexity of the model and

its ability fo capture robust information from the training data must be found (figure

2.2).
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Figure 2.2: Bias-Variance Tradeoff.. A too simple model might be less sensitive to
the noise but is too simplistic to predict Y given X. On the other side, a complicated
model, while being a good estimation of Y on the observations, might not be able to

give a good prediction on new data points.

2.1.4 Assessing the performance of a model

In the last part, we illustrated the issue of estimating the prediction error by the training

error which leads to overfitting. One of the most commonly used method for estimating

the prediction error is cross-validation [Stone, 1974,Allen, 1974]. Cross-validation ran-

domly splits the data into K folds of even sizes. A model is trained on K − 1 folds and

an estimate of the prediction error is then obtained by taking the average error on the

Kth fold.

For a given fold J , let’s define :
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CVJ(f̂) =
1

|J |

∑

i∈J

L(yi, f̂
−J(xi)) (2.10)

where |J | is the cardinal of fold J and f̂−J is the fitted function computed on the dataset

where the observations belonging to the J th fold are removed.

Finally, the cross validation estimate of the prediction error is given by :

CV (f̂) =
1

n

∑

J∈[1;K]

|J |CVJ(f̂) (2.11)

A set of models f usually involves a tuning parameter α that controls the complexity.

A common model selection procedure is given by finding α that minimizes the cross

validation estimate:

f̂CV = argmin
α

CV (f̂α) (2.12)

An issue that arises in cross-validation is the choice of K. Choosing K small might

give a better estimation of the expected error as the training sets in each fold are very

different (when K = 2 the training sets do not overlap), contrary to choosing K very

large where the training sets tend to be very similar (for leave-one-out cross-validation,

that is K = n the training sets in each fold differ by one observation). However, in a

biological context, one also has to take into account the size n of the observations that

can be relatively small. In this case, we usually choose K large to reduce the variance

of the estimate.

2.1.5 Interpreting the data

In the following, we restrict the set of functions F to the set of affine functions that is:

f(x) = x⊤ω + ω0, (2.13)

with (ω,ω0) ∈ R
p+1. To simplify (2.13), we usually “integrate” the constant ω0 in x

by defining artificially the new set of features x := [1;x]T ∈ R
p+1. Optimizing in f is

therefore equivalent to finding the vector of coefficients ω.

Ordinary Least Squares. Given a training set (x1, y1), · · · , (xn, yn), a popular

estimate of the vector of coefficients ω is given by the ordinary least squares methods
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that is the vector of coefficients that minimizes the residual sum of squares:

RSS(ω) = ∥y −Xω∥2, (2.14)

where X is the matrix containing all the observations X = [x1; · · · ;xn]
T and y is the

vector of outputs y = (y1; · · · ; yn)
T .

Minimizing in ω in the case where XTX is non-singular is given by the unique solution:

ωOLS = (XTX)−1XTy. (2.15)

Ridge Regression. This estimate is not always an option. In a biological setting,

the number of observations p is usually bigger than the number of samples n and thus

XTX is singular and the number of solutions is a vector space.

One solution is to modify (2.14) by adding a penalty constraint based on the Euclidean

norm of the vector ω, also known as the ridge regression [Hoerl and Kennard, 2000]:

Ridge(ω) = ∥y −Xω∥2 + λ∥ω∥2, (2.16)

for λ > 0. The solution of (2.16) is given by:

ωRidge = (XTX+ λI)−1XTy. (2.17)

Ridge regression has thus the interesting property to get rid of the non-singularity issue

on XTX by replacing it with XTX+ λI. In addition, the penalty term λ∥ω∥2 enforces

smoothness that is the coefficients to be not too large.

Sparsity-inducing penalties. Another important issue in a biological setting is

the interpretability of the results given by the method. Suppose for example that we

are interested in predicting the status of a patient (e.g, healthy or cancerous) given

the expression level of all the genes. A ridge regression estimate on a training set of

data containing healthy and cancerous patients might perform well on a new set of

data, but may not give particular information about the biological pathways involved

in tumorogenesis. The underlying assumption is that amongst the whole set of genes

(∼ 25000), not all genes might be involved in defining the status of the patient. In

addition, it would take too long to verify biologically all the genes one by one.

An alternative is thus to seek a good model ω with many zero coefficients, entailing

that only a subset of features is used in the decision making. This would allow us,

for example, to target specifically a small set of genes that can be more easily tested.
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Moreover, reducing the number of features used by the model is a way to control the

bias-variance trade-off and improve the generalization ability of the model. Such an

approach could for example be carried out by penalizing 2.14 by the number of non-zero

coefficients instead of the ridge penalty:

l0(ω) = ∥y −Xω∥2 + λ∥ω∥0, (2.18)

where ∥ω∥0 = #{i : ωi ̸= 0}. However, solving (2.18) requires an exhaustive search

over all possible combinations of p features, a combinatorial problem which becomes

quickly intractable for p larger than a few tens. A popular approach to overcome this

computational issue is to replace the l0 regularization term by the convex l1-norm,

leading to the Lasso estimate:

Lasso(ω) = argmin ∥y −Xω∥2 + λ∥ω∥1, (2.19)

where ∥ω∥1 =
∑p

i=1 |ωi|. (2.19) can be efficiently solved by a variety of algorithms, and

leads to sparse models where the number of non-zero entries in ω is controlled by λ.

Feature selection and multiple-testing. Another common method to select a

small list of genes that should be retained in a predictive model is to assess the signifi-

cance of each feature given an outcome. This is commonly done by performing univariate

tests that compute a p-value representing the likeliness of a feature j to have the same

distribution under different assumptions. These tests can either be parametric or non-

parametric, depending on whether we have some assumptions about the distribution of

the features.

The Student t-test is a popular parametric test where we suppose the data to be

distributed according to a Gaussian mixture model for each features, that is, for a given

feature j and an output ε ∈ {−1;+1}:

Xε
j ∼ N (µε

j ,σ
ε
j). (2.20)

For each feature j, a t-statistic is calculated as follows:

tj =
x̄+1
j − x̄−1

j
√

(σ+1

j )2

N+1
+

(σ−1

j )2

N
−1

. (2.21)

Under the null hypothesis H0 that “the feature j follows the same distribution indepen-

dently of the output”, tj follows a Student distribution and one can derive the p-value
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given by:

pright−tailed = Pr(X ≥ tj |H0)

pleft−tailed = Pr(X ≤ tj |H0)

ptwo−tailed = 2min

{

Pr(X ≥ tj |H0), P r(X ≤ tj |H0)

}

(2.22)

In the case when the data are not normally distributed, one can instead use a non-

parametric test such as the Wilcoxon rank sum test also known as the Mann-

Whitney U test. The idea is to compare the ranking of the samples given the output.

Define:

R+1
j =

∑

i∈C+1

rij , (2.23)

where C+1 is the subset of samples with positive output and rij is the rank of the

observation xji , that is, the value of feature j for patient i. The Uj-statistic is then given

by:

Uj = R+1
j −

n+1(n+1 + 1)

2
, (2.24)

where n+1 is the size of C+1. Under the null hypothesis H0, the distribution of Uj is

known [Wilcoxon, 1945,Mann and Whitney, 1947] and a p-value can be computed in a

similar fashion as (2.22).

Applying either of the statistical tests returns a list of p-values that naturally gives a

ranking of the association between each feature and the output. For a single feature,

one generally applies a significance level (usually 5%). However, when the number of

features is large, applying such a significance level would lead to several falsely detected

features. In this case, one has to correct the p-values for multiple testing [Benjamini and

Hochberg, 1995,Dudoit and Fridlyand, 2002].

Adding prior knowledge. While sparsity-inducing methods are useful as they allow

to reduce the effective number of features, they are not always sufficient to overcome the

problem of n ! p. For example, correlated variables can produce unstable signatures

using lasso. Similarly, univariate tests do not take into account the joint distribution of

features.

In a biological setting, one usually has access to additional information about the data

such as the existence of biological pathways that can relate genes working together. One

method to incorporate this prior knowledge into a model is to generalize the ridge and
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lasso regressions as follow:

Penalized(ω) = ∥y −Xω∥2 + λΩ(ω), (2.25)

where Ω : Rp → R
+ is a penalty function.

Several studies have investigated the choice of Ω such that optimal solution ω∗ has some

specific properties:

ω∗ = argmin ∥y −Xω∥2 + λΩ(ω). (2.26)

We have already seen that the solution of the lasso ωLasso has the property of being

sparse. As discussed above, this allows to select a subset of genes but sometimes fails to

provide a stable signature as genes are often correlated. Knowing biological pathways,

one can add this prior information by using a “group-lasso” penalty [Yuan and Lin,

2006,Jacob et al., 2009]:

Ω(ω) =
∑

g∈G

∥ωg∥, (2.27)

where G is a subset of P({1; · · · ; p}). For copy-number or methylation profile analysis,

fused-penalties can be used as biological evidence suggest a strong correlation between

close features on the genome. In addition, as profiles usually share well-defined biological

traits, a joint regularization of signals can improve the detection of breakpoints [Vert

and Bleakley, 2010], see an illustration in figure 2.3

Figure 2.3: Joint Regularization of methylation profiles of chromosome 1 using a
total-variation penalty show similar breakpoints of hyper and hypo-methylated blocks

but different levels for healthy patients (blue) and breast cancer patients (red).
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2.2 Unsupervised learning

Unsupervised learning, similarly to its supervised counterpart, also seeks to make sense of

a series of observations. However in this case, there is no output Y and the observations

are therefore summarized by an input X. The two most common objectives are: cluster

analysis and dimensionality reduction.

Cluster analysis tries to summarize the set of observations by a small number of modes

from which the observations are drawn. In other words, the main assumption is that

the set of observations is a mixture drawn from a few (generally simple) densities.

Dimensionality reduction can be associated with supervised methods. As seen previ-

ously, when the number p of features is high, the number of samples needed n needs to

be very high in order to estimate Pr(X,Y ). However, while p can sometimes be large,

the effective dimension can be much smaller. This is the case for example when most

of the data lies in a low-dimensional manifold. In addition, this provides information

about the associations between the different features.

The main issue in unsupervised learning is assessing the adequacy of the model. Contrary

to supervised learning where one could assess the effectiveness of a method by comparing

Y and Ŷ , the quality of the results in the unsupervised case is often subjective.

In the following, we will discuss a few methods employed in unsupervised analysis for

both cluster analysis and dimensionality reduction and illustrate them with specific

examples in biology. We will in particular discuss the clinical importance of unsupervised

learning despite not having clear model assessment techniques.

2.2.1 Cluster analysis

The main objective behind cluster analysis is to partition the set of observations into

K subsets or “clusters”. A natural partition is such that observations from a same

cluster are more similar than observations from different clusters. These considerations

naturally necessitate to introduce a similarity (or dissimilarity) measure over the set of

observations.

Choosing a similarity between samples. In general, the set of observations

(x1, · · · , xn) lie in a p-dimensional space and one natural dissimilarity measure between

two observations is the Euclidean distance between the two vectors in R
p. However

other dissimilarity measures exist and can lead to very different clustering results. For
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example, one can define a distance using the Pearson correlation r as:

dPearson(xi, xj) =
1− r(xi, xj)

2
, (2.28)

with

r(xi, xj) =

∑p
k=1(x

k
i − x̄i)(x

k
j − x̄j)

√

∑p
k=1(x

k
i − x̄i)2

∑p
k=1(x

k
j − x̄j)

(2.29)

can yield significantly different results as illustrated in figure 2.4.
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Figure 2.4: Similarity between samples is subjective and therefore the clustering
procedure might differ. This is a toy example representing 4 samples (red,green,
blue,purple) in 5 dimension. A clustering algorithm using the euclidean distance would
cluster samples 1 and 2 on one side and 3 and 4 on the other since they are close from
a spatial point of view. However using a Pearson distance would cluster samples 1 and
3 on one side and 2 and 4 on the other since their variations are more coordinated
(e.g the similarity in term of response to a treatment between two proteins can be
better explained by the correlation of their abundance over time than by the absolute

deviation between abundance over time).

K-means. K-means is a popular clustering methods of the class of partitioning

methods which, given a numberK, partition the set of samples intoK groups or clusters.

The goal is therefore to optimize over the set of partitions, a criterion such that the in-

cluster similarity is large while the between-cluster similarity is small. In the case of

K-means, one seeks a partition S = {S1, · · · , Sk} that minimizes:

K
∑

i=1

∑

x∈Si

∥x− µi∥
2, (2.30)

where µi is the barycenter of the samples in partition Si. Figure 2.5 illustrate an example

of K-means on a toy dataset.
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Figure 2.5: K-means clustering (k=5) on simulated data sampled following 5 normal
distributions. Different colors represent the cluster assignment of each observations

while the triangles represents the center of each cluster.

Hierachical clustering: an alternative with several advantages. Partitioning

algorithms, such as K-means discussed previously, depend on a choice of the number of

clustersK but also have optimization issues (initialization, convergence). At the expense

of adding a similarity measurement between groups also known as linkage, another type

of clustering methods called hierarchical clustering does not have the same requirements.

Two main paradigms exists in hierarchical clustering:

• bottom-up approaches, where each sample first belongs to its own cluster, and

where clusters are merged together iteratively until all samples belong to a unique

cluster.

• top-down approaches, conversely, start with all samples in a unique cluster and

iteratively shatters clusters into two new clusters at each step until all samples are

separated.

This particular set of methods yield interesting properties. In particular, visualization

can be done using dendrogram, which is a representation of a binary tree where each leaf

is a sample and each internal node represents the agglomerative procedure of merging

two clusters together. In addition, cutting the dendrogram at a given height yields a

clustering of the dataset in K clusters. A particular application in bioinformatics is to

perform a clustering on the samples as well as on the features to identify a group of

features (e.g genes) associated with a group of samples (e.g different clusters) (see an

example in figure 2.6).
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Figure 2.6: Hierarchical clustering of breast samples (columns) using CpG methy-
lation as features (rows). The column color panel gives a distinction of the breast
samples considered (red=normal tissue, cyan= cell line, dark blue= ductal carcinoma
in situ, green= infiltrating ductal carcinoma). The row color panel gives information
about the CpGs measured (blue= belonging to a CGI, yellow=outside of a CGI). This
bi-clustering is able to distinguish the different types of tissues but also the types of

CpGs measured.

2.2.2 Dimensionality reduction

Another important family of unsupervised methods are dimensionality reduction tech-

niques. Previously, we mentioned the curse of dimensionality as one important issue

that constrains the number of observations to be large enough to be able to learn. In

specific cases, although the samples are represented by a d-dimensional vector, the data

actually lies in a much smaller space.

Principal Component Analysis (PCA). This is a method to find a sequence of

orthogonal vectors that captures the most information about the data by solving :

ek = arg max
∥ek∥=1,ek⊥{e1,...,ek−1}

eTk X̂
T

k X̂kek, (2.31)

with

X̂k = X −
k−1
∑

i=1

Xeie
T

i . (2.32)
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PCA, like many other dimension reduction methods, is often use to visualize high-

dimensional data in 2D, like for example in figure 2.7.
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Figure 2.7: Projection of breast methylation profiles on the first two prin-
cipal components (31% of the total variance explained). This representation
shows that normal tissues are clustered together. Other methylation profiles come from
breast primary tumors (Set 1) and are linked with their matched locoregional recur-
rence (Set2) given the localization (AH= axillary metastasis, RL= ipsilateral relapse,

CL= controlateral relapse). See chapter 3 for more information about the data.

Model selection in unsupervised learning. We discussed previously that one

particular specificity in partitioning algorithms is the choice of the parameter K. As

illustrated in 2.8, an inappropriate choice in K can result in a ill-representation of the

data at hand. We showed that hierarchical clustering could circumvent this problem.

But even in this case, one generally has to choose a fixed representation (i.e, cut the

dendrogram at a specific height). In dimensionality reduction, one also has to make a

trade-off between the number of components and how well a projection on this subspace

still retain enough information about the data (figure 2.9).

Given specific hypotheses about the data (e.g, Gaussian distribution), several criteria

have been proposed such as the Akaike Information Criterion (AIC) [Akaike, 1973]

or the Bayesian Information Criterion (BIC) [Schwarz, 1978] to assess an optimal K.

However, these hypotheses rarely apply to real data and various heuristics have therefore
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Figure 2.8: K-means clustering when K is not well suited for the data (K=3).
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Figure 2.9: Cumulative percentage of variance explained as a function of
the number of principal components considered. A common heuristic to choose
a number of principal components is to look at a kink in the cumulative percentage of
variance explained. Here on a toy dataset (n=200, p=1000), K=10 allows to explain

70% of the total variance while drastically reducing the number of dimensions.
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been proposed too. In particular, looking at the stability of the clustering solutions

obtained by perturbing the original dataset [Dudoit and Fridlyand, 2002,Ben-Hur et al.,

2002a,Monti et al., 2003] is usually the preferred choice for biological data.

Clinical impact of unsupervised learning. For clinical purposes, assessing statis-

tically the number of clusters (e.g, the number of breast cancer subclasses) is often not

the primary objective. The clinical importance of the clustering, such as the discovery of

subclasses with a significantly worse or better prognosis presenting a particular genomic

or epigenomic profile, can help clinicians in proposing the most appropriate therapies to

every single patients instead of a generic therapy to all patients.

2.3 Conclusion

In this chapter, we presented a brief overview of relevant statistical methods used

throughout the remaining of this thesis in a particular biological context:

• Poor statistical power (n ! p) leans toward simpler (linear) methods incorporating

prior biological knowledge.

• A biological interpretation of the results at the cost of accuracy can sometimes be

preferred as post-experimental validations can be undertaken to assess definitely

the validity of the biological phenomenon.

• The performance of unsupervised methods can be assessed based on their clinical

impact instead of mathematical criteria.
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Epigenomic alterations in breast

carcinoma from primary tumor to

locoregional recurrences

Some content from this chapter has been published as part of a peer-reviewed article in

PLoS One [Moarii et al., 2014].

Keywords: Breast cancer, recurrence, metastasis, methylation, clonality, true recurrence.

3.1 Résumé

Les modifications épigénétiques telles que les variations abnormales de la méthylation

de l’ADN sont associées à l’apparition de cancers. Comment ce mécanisme influt sur

la progression tumorale est cependant encore floue. En comparant le méthylome initial

de cancer du sein au méthylome des récidives de cancer chez ces mêmes patients, nous

cherchons à déterminer des marqueurs de la progression tumorale dans le cancer du sein.

Pour cela, nous disposons du profils de méthylation de 48 tumeurs primaires ainsi que du

profil de méthylation de leur métastase axillaire associée (20 cas), de leur récidive locale

i.e dans le même sein (17 cas) ou de leur récidive contralatérale i.e dans le sein opposé

(11 cas). Dans un premier temps, des méthodes d’analyses univariées et multivariées

ont permises de determiner des sondes significativement différentiellement méthylées et

marqueurs de la progression tumorale. Dans un second temps, nous établissons à partir

des profils de méthylation un score de similarité entre deux échantillons, ce qui nous

permet d’établir le caractère clonal entre une tumeur primaire et sa récidive locale,

primordial dans la stratégie thérapeutique à employer.

31
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Nos résultats montrent qu’un nombre restreint de sondes (49 sondes sur 27000) semblent

être caractéristiques de la progression tumorale vers une métastase axillaire. Toutefois,

aucune différence consistente n’a observée entre tumeurs primaires et récidive locale ou

contralatérale, ce qui témoigne d’un lien moins marqué voire absent entre ces groupes.

Dans un second temps, nous observons que les tumeurs primaires sont associées dans

la majorités des cas à leur métastase respective (75%) alors que les tumeurs primaires

et les récidives contralatérales ne montrent pas plus de similarité que deux tumeurs

indépendantes. Ce résultat valide l’utilisation de la méthylation comme marqueur de

clonalité entre deux échantillons et nous élaborons un score pour classifier les récidives

locales. Cette classification valide la tendance (non-significative) des vraies récidives à

être de moins bon pronostic et apporte un intérêt clinique dans l’apport décisionnel pour

le traitement des patients.

3.2 Abstract

Epigenetic modifications such as aberrant DNA methylation has long been associated

with tumorogenesis. Little is known, however, about how these modifications appear in

cancer progres- sion. Comparing the methylome of breast carcinomas and locoregional

evolutions could shed light on this process.

We propose to analyze the methylome profiles of 48 primary breast carcinomas (PT) and

their matched axillary metastases (PT/AM pairs, 20 cases), local recurrences (PT/LR

pairs, 17 cases) or contralateral breast carcinomas (PT/CL pairs, 11 cases) were ana-

lyzed. Univariate and multivariate analyzes were performed to determine differentially

methylated probes (DMPs), and a similarity score was defined to compare methylation

profiles. Correlation with copy-number based score was calculated and metastatic-free

survival was compared between methods.

49 DMPs were found for the PT/AM set, but none for the others (FDR < 5%). Hier-

archical clustering clustered 75% of the PT/AM, 47% of the PT/LR, and none of the

PT/CL pairs together. A methylation-based score (MS) was defined as a clonality mea-

sure. The PT/AM set contained a high proportion of clonal pairs while PT/LR pairs

were evenly split between high and low MS score, suggesting two groups : true recur-

rences (TR) and new primary tumors (NP). CL were classified as new tumors. MS score

was significantly correlated with copy-number based scores. There was no significant

difference between the metastatic-free survival of groups of patients based on different

classifications.
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Epigenomic alterations are well suited to study clonality and track cancer progression.

Methylation-based classification of TR and NP performed as well as clinical and copy-

number based methods suggesting that these phenomenons are tightly linked.

3.3 Introduction

Breast conservative therapy, consisting in a partial mastectomy followed by whole breast

irradiation, is the standard treatment for patients with early stage breast cancer. Over-

all survival is not significantly different from more physically and psychologically ag-

gressive treatments such as mastectomy [Van Dongen et al., 2000]. However, patients

relapse within 10 years in the same breast as the primary tumor (PT) in approximately

6% of cases [Bartelink et al., 2007], and within 5 years in the contralateral breast in

approximately 3.5% of cases [Vichapat et al., 2012] or more in BRCA1/2 mutation

carriers [Metcalfe et al., 2004]. Moreover, at the time of diagnosis, early stage breast

cancers have already spread to axillary lymph nodes in roughly 30% of cases [Jatoi, 1999].

These different types of locoregional evolutions have different implications in terms of

survival and treatments. Axillary metastases (AM) is usually predictive of poor sur-

vival [Carter et al., 1989] and is considerably worsen in triple negative breast can-

cers [Borg et al., 1990]. Local recurrences (LR) have been tightly linked with a greater

risk of distant metastasis [Haffty et al., 1996]. Veronesi et al. [Veronesi et al., 1995] dis-

tinguished two categories of local recurrences : true recurrences (TR), corresponding to

re-growth of resistant cells after initial treatment, and new primary tumors (NP), corre-

sponding to de novo cancer. This classification is of potential interest to define adapted

treatment scheme, as NP are considered to have an improved survival compared to

TR [Smith et al., 1999]. Contralateral breast cancers (CL) are also an heterogeneous

entity depending on the synchronism with the primary tumor. Synchronous bilateral

breast cancers are developed at the same time, with the same genetic, environmental

and hormonal background as the PT. Metachronous CL are usually treated as new can-

cers [Dawson et al., 1998] although a rare portion are considered as metastases. Overall,

CL are still associated with a greater risk of metastasis compared to patients without

CL [Healey et al., 1993].

Differences between the PT and either the AM, the LR or the CL have been stud-

ied at the genomic, transcriptomic and proteomic levels. Ellsworth et al. [Ellsworth

et al., 2005] showed an overall frequency of allelic imbalance greater in PT than in AM.

Weigelt et al. [Weigelt et al., 2005] explored the gene expression profile of PT and their
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matched AM but were not able to identify a subset of genes to discriminate them, while

Feng et al. [Feng et al., 2007] identified a set of 79 genes able to differentiate PT from

matched AM. Studies between PT and LR have mainly focused on distinguishing TR

and NP. A criterion based on clinical and pathological features was first established but

judged insufficiently robust for most clinical applications. Several studies investigated

the difference between TR and NP based on pangenomic analyzes of DNA copy number

alterations (CNA) [Bollet et al., 2008, Ostrovnaya et al., 2010], intratumoral immune

responses [West et al., 2011], loss of heterozigosity [Vicini et al., 2007], to p53 anal-

ysis [Van Der Sijp et al., 2002], or X-chromosome inactivation [Shibata et al., 1996].

Finally, studies of PT and CL highlighted the role of synchronism of the CL. Similar-

ity measures based on DNA copy number profiles [Brommesson et al., 2008] or allelic

imbalance [Imyanitov et al., 2002] showed a higher level of similarity between PT and

synchronous CL compared to PT and metachronous CL.

Epigenetic modifications in cancer has recently been the topic of many studies. In

particular the link between hypermethylation and gene silencing is well known [Razin

and Riggs, 1980,Tate and Bird, 1993,Bird, 2002]. Several studies have then focused to

describe cancer as an epigenetic disease. Baylin et al. [Baylin et al., 2001] have shown

that aberrant hypermethylation of specific regions, dominantly CpG islands, are linked

with the silencing of tumor suppressor genes and that this phenomenon is present in

most cancers. Laird [Laird and Jaenisch, 1994], Ehrlich [Ehrlich, 2002] and Das [Das and

Singal, 2004] suggested that a global hypomethylation phenomenon was also linked with

tumorogenesis. Jones [Jones and Baylin, 2007] made a complete review of the hallmarks

of epigenomics associated with cancer. Moreover, DNA methylation is conserved during

cell division [Bird, 2002, Schermelleh et al., 2007] and could serve as a measure for

clonality between cells in the classification of LR as either TR or NP.

In this study, epigenetic differences as well as similarities between PTs and either their

AMs, LRs or CLs are analyzed. In the first part, univariate and multivariate analyzes

are performed between the methylome profiles of primary tumors and their matched

recurrences to observe recurrent patterns in cancer progression. Then in the second

part, epigenome-wide similarity analyzes on the same samples is performed to observe

clonality between tumor cells.
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3.4 Materials and Methods

3.4.1 Patients Selection

The patients selected for the study were 49 years old or younger at diagnosis of the

initial tumor; all patients were premenopausal; and had no previous history of can-

cer, except for one nonmelanoma skin cancer. The patients’ PT was either ductal or

lobular invasive breast carcinoma. However, both types of tumors did not display sig-

nificantly differentially methylated probes and were thus all included in this study (data

not shown).

Specimens from patients with primary breast cancers and breast cancer recurrences

were selected from freshly frozen samples of the Institut Curie tissue bank according

to the following criteria: all patients had been treated at the Institut Curie by breast-

conserving surgery, including dissection of the axillary lymph nodes in most patients,

followed by radiotherapy to the breast with or without a boost to the tumor bed (external

beam radiotherapy or brachytherapy) and/or to the regional lymph node-bearing areas

if indicated and, when required, systemic treatment as part of their initial management.

Tumor size did not correlate with the overall methylation rate (data not shown).

To ensure that the data would be informative, genomic analyzes were restricted to tumors

(primary and recurrences) in which at least 50% of cancer cells had been assessed by

hematoxylin, eosin, and saffron staining of sections from snap-frozen samples. All the

therapies were performed posterior to the biopsies of the primary tumors. Therefore, the

studied methylation profiles are not modified by any potential effect of the treatments.

The 22 healthy breast tissues are taken from healthy women who underwent cosmetic

plastic surgery at the Institut Curie. Part of the PT/AM cohort is identical to the

cohort studied by Bollet et al. [Bollet et al., 2008].

All experiments were performed retrospectively and in accordance with the French

Bioethics Law 2004-800, the French National Institute of Cancer (INCa) Ethics Charter

and after approval by the Institut Curie review board and ethics committee (Comité de

Pilotage of the Groupe Sein). In the French legal context, our institutional review board

waived the need for written informed consent from the participants. Moreover, women

were informed of the research use of their tissues and did not declare any opposition for

such researches. Data were analyzed anonymously.
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3.4.2 Methylation profiling

For each sample the methylation status at 27,578 positions in the genome was measured

with the HumanMethylation27 BeadChip of Infinium technology [Weisenberger et al.,

2008] using the standard Illumina protocol. Quality control was assessed using in-built

Illumina technology.

3.4.3 Clinical Classification.

Histopathologic characteristics were reviewed by a single pathologist. The histological

and biological properties of each sample was determined by subjecting tissue sections

to immunohistochemical analysis for the estrogen receptor (clone 6F11, 1:200 dilution;

Novocastra, Newcastle Upon Tyne, England) and progesterone receptor (clone 1A6,

1 : 200 dilution; Novocastra) antibodies. Tumors were considered to be positive for

these receptors if at least 10% of the invasive tumor cells in a section showed nuclear

staining [Balaton et al., 1995,Balaton et al., 1996]. The HER2 analysis was performed

using the standard ASCO guidelines [Wolff et al., 2013]. In accordance with theories

of the clonal evolution of tumor cell populations, LR were clinically defined as TR if

they had the same histologic subtype (ductal or lobular) and a similar or increased

growth rate, similar estradiol, progesterone and HER2 receptor statuses, and similar

or decreased differentiation as the initial tumor [Smith et al., 1999]. TR also had to

share with their PT the same breast quadrant. Thus, new PT were clinically defined as

such when the LR had occurred in a different location, had a distinct histologic type, or

had less aggressiveness features (lower grade, presence of hormonal receptors) than the

initial tumor.

3.4.4 Data analysis

A spatial normalization process was applied to all profiles [Sabbah et al., 2011]. Among

the 27,578 probes measured on each sample, 5 probes were removed due to missing

values for some individuals, and all subsequent analysis was performed on the 27,573

remaining probes.

Differentially methylated probes between PT and their matched AM, LR and CL are

obtained using two-sided paired and unpaired Wilcoxon tests, correcting the p-values for

multiple testing with the methods of Benjamini and Hochberg [Benjamini and Hochberg,

1995]. Multivariate analysis was performed using a linear support vector machine

(SVM) multidimensional classifier on either the complete methylation profile or after
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dimensional reduction by considering only the most significant probes based on the

Wilcoxon test. A p-value was calculated to assess the significance of the predictor ac-

curacy compared to a predictor that would predict classes randomly. Unsupervised

classifications were performed with complete linkage agglomerative clustering using the

MATLAB R© bioinformatics toolbox, while the support vector machine implemented in

LIBSVM [Chang and Lin, 2011] was computed with a linear kernel and nested leave-

one-out cross validation for parameter selection for supervised classification.

The similarity between two copy number profiles is assessed with the partial identity

score (PIS) as defined by Bollet et al. [Bollet et al., 2008], which is based on the quantity

of shared breakpoints between the two profiles and their frequencies. Following [Bol-

let et al., 2008], a recurrence from a matched PT/LR pair was considered TR based

on copy numbers when the PIS between the PT and LR profiles was above the 95%

quantile of the empirical PIS distribution between unrelated sample pairs. Similarly,

a Methylation-Similarity score (MS) is defined based on the methylation profiles of a

PT and its matched LR as the inverse of the Manhattan distance between their methy-

lation profiles considered as 27,573-dimensional vectors. LR are then classified as TR

of its matched PT when the MS score is above the 95% quantile of the empirical MS

distribution between unrelated pairs. As a baseline, these results were compared to the

Manhattan distance between unrelated normal breast tissues.

Metastasis-free survival was estimated by the Kaplan-Meier Method [Kaplan and Meier,

1958] and compared between the group of patients who were diagnosed as TR and

the group diagnosed as NP using the log-rank test. The confidence interval of the

hazard ratio was obtained using a semi-parametric Cox model [Cox and Oakes, 1984].

Computation was done using MATLAB R© packages Logrank [Cardillo, b] and KMPlot

[Cardillo, a].

3.5 Results

3.5.1 Methylation differences between PT and their matched metas-

tasis or recurrence

A collection of 17 PT/LR pairs, 11 PT/CL pairs, and 20 PT/AM pairs was analyzed.

The methylation data are available in the GEO database record number : GSE44870.

Tables 3.1, 3.2 and 3.3 detail the clinico-histopathological properties of each sample.

Some of the PT/LR samples match in part the cohort studied by Bollet et al. [Bollet
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et al., 2008], and the corresponding sample numbers from both studies are provided in

table 3.1.

Within each of the three cohorts, pairs of tumors including a PT and a metastatic or

relapse sample can be used to investigate whether particular patterns in methylation

profiles can serve as marker for cancer progression.

Table 3.1: PT/LR clinical and histological features.

PT Local Recurrence

Pair Cor Age Type Grade ER PR HER2 Type Grade ER PR HER2 Loc

1 1 23.3 D 3 0 40 0 D 2 90 15 0 1
2 3 42.9 D 3 30 80 0 D 3 60 90 0 1
3 11 49.3 L 3 0 0 0 D 3 0 0 1 1
4 16 48.8 D 2 80 30 0 D 1 20 70 0 1
5 12 49.3 L 2 90 50 0 L 2 90 0 0 0
6 13 45.4 D 2 20 85 0 D 2 95 20 0 1
7 15 46.5 D 2 100 80 0 D 2 70 100 0 1
8 2 42.4 D 2 90 40 0 L 1 90 70 NA 1
9 4 48.6 L 1 90 80 0 L 2 90 80 0 1
10 14 44 L 2 90 60 0 L 2 0 100 0 1
11 18 NA D 3 0 0 NA D 2 80 50 NA 1
12 20 47.5 D 3 0 0 1 D 3 0 0 1 0
13 21 46.7 D 2 80 0 NA D 3 70 0 0 1
14 23 31 D 2 0 0 0 D 3 0 0 0 1
15 24 48.1 D 3 0 0 0 D 3 0 0 0 1
16 25 43.3 D 3 75 70 0 D 3 70 15 0 1
17 26 30.8 D 3 0 0 0 D 3 0 0 0 1

Cor (Correspondence): correspondence number with the Bollet/Servant cohort
from [Bollet et al., 2008], Type : histological type of the tumor (D= ductal, L=
lobular), Grade : Aggressiveness of the tumor (1 to 3), ER : percentage of estrogen
receptor present in the sample, PR : percentage of progesterone receptor present in the
sample, Loc (Location): 1 if the recurrence was located less than 4cm from the PT.

Within each cohort, investigations were made to detect differences at the methylome

level between PT and the corresponding matched metastasis (AM) or relapse samples

(LR or CL) . Using a paired Wilcoxon test, 49 probes significantly differentially methy-

lated were found between PT and AM samples (at a 5% FDR level). The top 10 probes

(ranked by p-value) and the corresponding genes are listed in table 3.4. This suggests

that a general signal characteristic of cancer progression from PT to AM might exist.

However, no probe was found significantly differentially methylated between PT and

LR, and between PT and CL. This may be due to the lack of cancer progression marker

at the methylation level between PT and relapse, to the fact that most relapses may
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Table 3.2: PT/CL clinical and histological features.

PT Contralateral Recurrence

Pair Age Type Grade ER PR HER2 Type Grade ER PR HER2

1 46.6 L 3 80 80 0 NA NA 90 20 0
2 46.9 D 2 60 100 0 D 2 30 100 0
3 48.4 D 3 70 60 0 D 3 100 10 0
4 42.6 D 2 0 0 0 D-L 2 100 70 0
5 48.5 D 2 70 20 0 D 3 10 20 0
6 44.5 D 2 ≥10 ≥10 0 Med 2 0 0 0
7 46 D 2 80 30 0 D 1 40 95 0
8 48.9 D 3 90 20 0 Meta 3 0 0 0
9 38.9 D 3 0 0 0 D 3 100 40 0
10 31 D 3 0 0 0 D 3 0 0 0
11 36.3 D 3 10 5 0 D 3 0 0 0

Type : histological type of the tumor (D= ductal, L= lobular, Med=Medullary,
Meta=Metaplasic), Grade : Aggressiveness of the tumor (1 to 3), ER : percentage of
estrogen receptor present in the sample, PR : percentage of progesterone receptor
present in the sample.

Table 3.3: PT/AM clinical and histological features.

Pair Age Type Grade ER PR HER2

1 45.9 D 3 70 70 0
2 NA D 3 90 20 0
3 NA NA NA 95 30 0
4 48.8 D 1 60 90 0
5 43.6 D 3 0 0 0
6 35.3 D 2 20 70 0
7 45.1 D 3 10 25 0
8 41.9 D 2 70 40 NA
9 43.5 D 1 ≥ 10 ≥ 10 0
10 43.7 D 3 80 50 NA
11 44.9 D 2 0 0 0
12 43.6 D 1 ≥ 10 0 0
13 40.2 D 3 0 0 1
14 32.5 L 3 40 60 1
15 38.5 D 2 0 10 0
16 37.5 D 3 40 50 0
17 39.3 D 3 80 90 0
18 37.6 D 3 0 0 0
19 36.6 D 3 10 50 1
20 35.4 D 3 0 30 0

Age: Age of the patient at diagnosis of the primary tumor in years, Type :
histological type of the tumor (D= ductal, L= lobular, Meta=Metaplasia), Grade :
Aggressiveness of the tumor (1 to 3), ER : percentage of estrogen receptor present in
the sample, PR : percentage of progesterone receptor present in the sample.
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not be biologically related to the PT, or to the small size of the cohort which limits the

power of statistical tests.

On the PT/AM cohort, the SVM model correctly identified the PT and AM in 18 out

of 20 held-out pairs (90% success rate, P-value=2.0 ∗ 10−4) when considering the whole

methylation profile probes. The SVM model obtained after dimensionality reduction

by filtering the 22 most significant probes selected according to a Wilcoxon test gave a

100% accuracy. As illustrated in 3.1, good accuracy was still achieved when considering

an increasing number of probes (Accuracy ∼ 90%). On the PT/LR and PT/CL cohorts,

however, the success rate was respectively 58% (10 out of 17 pairs, P-value=0.31) and

27% (3 out of 11 pairs, P-value=0.11) when taking all probes into account. Note that

these values are not significantly different from random guess.

Table 3.4: Most significantly differentially methylated genes between PT
and AM samples (Top 10).

CpG Gene Pvalue Methylation Variation

cg04619381 LOC222171 0.013 -0.048
cg18140857 RDHE2 0.013 0.102
cg23698969 SLC22A18 0.013 0.042
cg20161089 IFI27 0.013 0.238
cg24959428 GBP6 0.02 0.126
cg22630748 INHBE 0.02 0.1
cg03623878 MCF2L 0.02 -0.05
cg16179125 CTSZ 0.02 0.182
cg25115460 TP73 0.022 0.109
cg11946165 CTSK 0.022 0.098

CpG: CpG probe name. Gene: Associated gene. Pvalue: FDR corrected p-value.
Methylation Variation: Mean variation of methylation from the primary tumor to
the axillary metastasis.

3.5.2 Methylation conservation between PT and their matched metas-

tasis or recurrence

Instead of searching for differences between PT and their matched metastasis or recur-

rence, which may characterize markers for cancer progression, the study also focuses

on similarities between methylation profiles, which may be useful for example to char-

acterize clonality between a PT and a recurrence. A hierarchical clustering was first

performed for all samples within each cohort to characterize the similarities between

real matched pairs compared to unrelated samples. The resulting dendrograms are pre-

sented in 3.2. Interestingly we see that matched pairs of PT and metastasis/recurrence
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Figure 3.1: Accuracy of the paired-SVM classifier as a function of the num-
ber of probes selected obtained through leave-one-out cross-validation for

each dataset (orange= PT/AM, blue= PT/LR, pink=PT/CL) .

samples are usually closer to each other than to any unrelated tissues in the PT/AM

cohort (15 out of 20, 75%), less often in the PT/LR cohort (8 out of 17, 41%), and never

in the PT/CL cohort. This observation is consistent with decreasing proportions of real

clonal pairs from the PT/AM to the PT/CL set.

Another way to see this phenomenon is to assess statistically, within each cohort, how

the methylation distances between matched pairs differ from the methylation distances

between unmatched pairs. We displays the distributions of methylation distances for

different sets of sample pairs in 3.3. We also display in 3.4 the boxplot of methylation

distances by groups. Real matched pairs between a PT and its corresponding metastasis

or recurrence are significantly closer in terms of global methylation than a random

pair of samples taken from two different individuals, both in the PT/AM cohort (P-

value=3.5 ∗ 10−7) and in the PT/LR cohort (P-value=1.6 ∗ 10−6). This is however

not true in the PT/CL cohort, where we detect no differences between correctly and

randomly matched pairs (P-value=0.44). In addition, we calculated the distribution
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of distances between the CL tumors. We performed the same analysis between the

PT tumors. We observed that the distribution were not significantly different (data not

shown), as expected. This is in agreement with the assumption we made that CL tumors

could be considered as new primary tumors. Finally, we also compared the distribution

of distances between the healthy breast tissue i and all the other healthy breast tissues

from the cohort to assess the heterogeneity between normal breast tissues.

3.5.3 Clonality detection based on methylation profiles

The above results suggests that methylation profiles tend to be conserved during clonal

expansion (such as samples in the PT/AM cohort), but strongly differ between unrelated

tumors in a given person (such as samples in the PT/CL cohort). Moreover, methylation

seems to be a stable mechanism in normal tissues compared to cancerous ones. It is

therefore tempting to use methylation distance as a tool to discriminate true recurrences

from new tumors in ambiguous cases, that is, for samples in the PT/LR cohort.

As shown in Figure 3, 9 out of 17 PT/LR pairs (52%) have a MS score higher than

the threshold given by the 95% percentile of the MS score between unrelated pairs

(MSThreshold = 6.6∗10−4); they are therefore considered as clonal pairs from the methy-

lation point of view. The remaining 8 pairs are considered as non-clonal, meaning that

the LR may correspond to a new primary tumor.

Comparison between the methylation-based similarity measure MS score with the copy-

number-based similarity measure (PIS) developed by [Bollet et al., 2008] show a good

correlation overall (ρ = 0.55, P-value=3.7 ∗ 10−5, see figure 4). Table 5 gives a com-

parison of the outcomes given by methylation-based, copy-number based and clinical-

based classification of LR as TR or NP. The methylation-based classification method

agreed with the copy-number based PIS classification method on 14 out of 17 pairs

(concordance=82%, P-value=6.3 ∗ 10−3) and agreed with the clinical-based classifica-

tion on 14 out of 17 pairs (concordance=82%, P-value=6.3 ∗ 10−3).

Finally, the different classifications of LR as TR or NP were correlated with time-to-

recurrence and metastasis-free survivals. The differences in time-to-recurrence for the

two groups defined by methylation-based classification or the clinical and histological

classification were not statistically significant (P-value=0.83 and P-value=0.12). It was

however significant using the partial identity score (P-value=0.03). This is interesting

in the sense that one of the main criteria to distinguish TR and NP is the time-to-

recurrence. Therefore, methylation-based classification is based on more information

than time only.
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Figure 3.2: Study of similarity between matched primary tumors and recur-
rences by hierarchical clustering. Hierarchical clustering based on the manhattan
distance between methylome profiles with complete linkage was performed. Real pairs
that are closer to each other than to any other samples are underlined. Panel A (resp.

B, resp. C) represents the PT/AM (resp. PT/LR, resp. PT/CL) set.
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Figure 3.3: Pairwise methylome distance for each samples. Each boxplot
represents the Manhattan distance between primary tumor i and an unrelated locore-
gional evolution, or the Manhattan distance between locoregional evolution i and an
unrelated primary tumor. The black square represent the Manhattan distance between
the matched primary tumor and locoregional evolution from sample i. The yellow (resp.
blue, resp. pink) panel represents the PT/AM (resp. PT/LR, resp. PT/CL) set. The
last panel represents the distribution of distances between the healthy breast tissue i

and all the other healthy breast tissues from the cohort.
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Figure 3.4: Distribution of methylation similiarity between samples given
the type of pairs. Each boxplot represents the distribution of Manhattan distance
between matched primary and locoregional evolution (“Real”), between non-matched
primary and locoregional evolution (“Artificial”), between two primary tumors (“Pri-

mary”) or between two locoregional evolution (“Recurrence”) for each dataset.

The difference in metastasis-free survival of patients with TR and NP was not sig-

nificant based on methylation (P-value=0.52, Hazard-Ratio=3.7, 5 year metastasis-

free survival=75% for NP), copy-number (P-value=0.15, Hazard-Ratio=16.9, 5 year

metastasis-free survival=86% for NP) or clinical features (P-value=0.17, Hazard-Ratio=6.3,

5 year metastasis-free survival=86% for NP) (figure 5).

3.6 Discussion

We studied alterations of methylation profiles from primary breast carcinomas and differ-

ent types of recurrences, namely, axillary metastases, local recurrences and contralateral

breast carcinomas. For this particular dataset, we observed significant methylation dif-

ferences for 49 CpG probes, which characterizes the progression between a PT and its

AM. Consistent with this result, a multivariate analysis with a linear SVM classifier
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Figure 3.5: Histogram of the distribution of methylome-similarity score
(MS) between unrelated PT/LR pairs. MS score for matched pairs is represented
by circles. The vertical dashed line corresponds to the 94% quantile of the distribution
of the MS scores for the unrelated pairs, used as a threshold to define clonal pairs

(MSThreshold = 6.6 ∗ 10−4).
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Figure 3.6: Correlation between methylation and copy-number scores. The
horizontal red line (resp. vertical dashed blue line) corresponds to the 95% quantile
of the distribution of the methylation-scores (resp. partial identity scores) for the
unrelated pairs : MSThreshold = 6.6∗10−4 (resp. PISThreshold = 0.12). PT/AM (resp.
PT/LR, resp. PT/CL) pairs are colored in yellow (resp. blue, resp. pink). The black
line corresponds to the linear regression between methylation and copy-number scores

for all the datasets.

using a small subset of probes perfectly distinguished PTs from AMs with a 100% accu-

racy. Several significantly differentially methylated probes correspond to genes involved

in cancer-related mechanisms such as cell death (MCF2L, RASSF5, RASSF6, CASZ1,

SLC22A18, IFI27 ), tumorogenesis (CTSZ, TP73, CTSK, PIK3R1 ), KLK11, cell cycle

(PPM1G, RANBP5, VAMP8 ) and cell differentiation (SMAF1, PAX6, PAX8 ). On the

contrary, for the PT/LR and PT/CL sets, univariate analyzes were not able to find sig-

nificantly differentially methylated probes. This absence of specific epigenetic alterations

between the primary tumors and the local recurrences or the contralateral breast recur-

rences was confirmed by the poor performances of linear classifiers, unable to separate

PT from LR nor PT from CL significantly better than random guesses. Nevertheless,

the absence of methylation markers in the PT/LR and the PT/CL groups does not nec-

essarily mean that the primary tumor and the recurrence are independent. We cannot

rule out the possibility that the recurrence arises from a specific subclone which does

not match the major subclone of the primary tumor. One could for example analyze the

methylation profiles of several microdissections samples of the primary tumor to study
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Figure 3.7: Kaplan-Meier estimates of the metastasis-free survival between
TR and NP for the different classification methods. The full black (resp. green)
line corresponds to the survival for samples classified as TR (resp. NP) and the corre-
sponding dashed lines correspond to upper and lower 95% CI. The red crosses represent
censored data. Panel A (resp. B, resp. C) represent the methylation-based (resp. copy-

number based, resp. clinical based) classification.
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Table 3.5: Comparison of classification methods for clonality between pairs
in the PT/LR cohort.

Panel A

Scores Classification

Pair Cor PIS MS Time PIS MS Clinical Divergence
(×10−4) ( Years)

1 1 0.019 4.42 6.5 NP NP NP
2 3 0.435 7.82 3.2 TR TR TR
3 11 0.018 3.95 6.4 NP NP NP
4 16 0.303 5.59 3.8 TR NP NP PIS
5 12 0.113 6.11 3.4 NP NP NP
6 13 0.214 9.29 4.6 TR TR TR
7 15 0.105 5.36 3.2 NP NP TR Clinical
8 2 0 7.57 5.2 NP TR NP MS
9 4 0.203 9.76 3.5 TR TR TR
10 14 0.321 6.64 2.4 TR TR TR
11 18 0.003 5.44 2.2 NP NP NP
12 20 0.103 5.60 1.4 NP NP NP
13 21 0.356 6.82 4.2 TR TR TR
14 23 0.328 5.37 0.9 TR NP TR MS
15 24 0.312 6.69 1.4 TR TR TR
16 25 0.357 9.09 2.7 TR TR TR
17 26 0.493 8.69 2.0 TR TR TR

Cor (Correspondence): correspondence number with the Bollet/Servant cohort.
scores: scores obtained with partial identity (PIS) or methylation (MS). Time: time
elapsed between diagnosis of the PT and diagnosis of the recurrence. Classification:
classification of the recurrence based on copy number (PIS), methylation (MS) or
clinical features (clinical). Divergence: which method deviated from the others.

potential heterogeneity.

The second part of the study focused on observing stability in methylation profiles. It is

interesting to note that although PTs and AMs were significantly differentiable using a

subset of probes, they also have overall very similar methylation profiles indicating that

the tumors might actually be clones with specific alterations characteristic of the lymph

node status. The subset of genes determined in the first part, if confirmed, could be

associated with bad prognosis. On the other part, although the LRs and the CLs were

not significantly different from their primary tumors, they tend to have overall different

methylome profiles especially for the CLs. The overall different methylome profiles for

the PT/CL set was expected since CLs are usually considered to be independent tumors.

The results above suggested to use global methylation analysis as a measure of clonality

to tackle the subclonal populations in the local recurrences as proposed by Veronesi et
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al. [Veronesi et al., 1995]. A methylation-based classification was proposed to distin-

guish LRs as either true recurrences of the first PT or new PT [Smith et al., 1999].

A comparison with both clinical and copy-number based classifications on the same

cohorts agreed on 14 out of 17 samples (82% concordance, P-value=6.410−3) for both

methods, although comparisons on larger cohorts are needed to assess the performance of

methylation-based classification. Moreover, a good correlation between the methylation-

based similarity score and the copy-number based similarity score seems to indicate a

link between modifications at the genomic and epigenomic levels. Although the role of

methylation in gene expression has thoroughly been studied [Bird, 2002,Razin and Riggs,

1980,Tate and Bird, 1993], the relationship between methylation and copy-number still

remains unclear. Houseman et al. [Houseman et al., 2009] showed no clear relationship

between methylation and copy-number. On the other hand, Lauss et al. [Lauss et al.,

2012b] observed associations between the two mechanisms in urothelial carcinoma, while

a short report by Kwee et al. [Kwee et al., 2011] tries to build copy number profiles from

methylation profiles alone. Our study seems to validate the second hypothesis that

methylation and copy-number are well connected mechanisms.

The discordances between the methylation-based classification method and the usual

clinical method are discussed here for the samples 7, 8 and 14, although no actual method

is a gold standard for classifying TR from NP. Sample 8 filled almost all the requirements

for clinical classification as TR (location, receptor status) but failed in aggressiveness

and type of tumor (PT was ductal type 2 and LR was lobular type 1). A decrease of

aggressiveness of the recurrence could be explained by the use of neoadjuvant therapies.

For the change of type, Fisher et al. showed that a mixing of ductal and lobular breast

carcinoma was a possibility in 6% of the patients [Fisher et al., 1975] which could explain

the change in type. Sample 7 was classified as TR by clinical classification and as NP by

both methylation and copy-number based classifications. This suggests some limitations

to methods based only on clinical features.

An interesting question for clinical applications would have been to predict whether a

primary tumor would relapse (either as AM, LR or CL) or not. However, the patient

cohort used in this study does not allow to address this question. Indeed, one would

require to compare the methylation profiles of patients who did not display any relapse

(AM, LR and CL) to those of the current study.
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4.1 Résumé

La méthylation de régions à forte densité en CpGs, communément appelées ilôts CpGs,

est un mécanisme associé à la régulation du niveau d’expression des gènes dans des

cas bien précis. Certaines altérations spécifiques telles que l’hyperméthylation de tels

ilôts proches de certains gènes suppresseurs de tumeurs, entrainant leur inactivation, ou

encore l’hypométhylation d’ilôts associés à certains oncogènes particuliers, entrainant

leur réactivation, sont fréquemment observées dans plusieurs types de cancer. Cepen-

dant, le rôle de la méthylation dans la régulation de la transcription de l’ensemble du

génôme est encore très peu connue. En particulier, de récentes études ont montré que

l’hyperméthylation de certains ilôts CpG n’était pas causal à la répression des gènes

mais agissait comme un verrou supplémentaire.

L’analyse des données publiques à grandes échelles disponibles sur “The Cancer Genome

Atlas” (TCGA) nous permet aujourd’hui de combiner les données d’expressions de gènes,

de méthylation à haute densité, mais également de copy-number pour 672 échantillons

sains et cancéreux dans 3 types de cancers différents. A l’aide de diverses méthodes
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statistiques, nous analysons le lien entre les variations de méthylation des ilôts CpG et les

variations d’expression des gènes associés pour comprendre l’ampleur de la méthylation

dans le mécanisme de régulation des gènes.

Nous montrons dans ce chapitre que les profils de méthylation des ilôts CpG chez les pa-

tients sains peuvent se résumer par 2 profils caractéristiques : le premier est associé à un

ilôt CpG hypométhylé dont les régions voisines (“shores” et “shelves”) sont généralement

hyperméthylées et le second est associé à une région globalement hyperméthylée. De

plus, l’assignation d’un ilôt à un profil caractéristique est globalement conservée entre

les différents tissus, ce qui met en évidence la stabilité d’un profil de méthylation associé

à un gène donné. Nous observons par ailleurs chez les patients cancéreux l’existence d’un

profil caractéristique supplémentaire associé à une région globalement hémi-méthylée.

La distribution de l’expression des gènes en fonction de l’appartenance de l’ilôt CpG

correspondant à un profil caractéristique montre que de manière générale, le caractère

hypo- ou hyperméthylé de l’ilôt CpG n’est pas associé à un niveau plus ou moins élevé de

l’expression des gènes. L’expression des gènes associés aux ilôts hémi-méthylés observés

uniquement, bien que très fortement réprimés dans les tissus cancéreux, sont également

réprimés dans les tissus sains, ce qui remet en question le rôle causal de la méthylation

dans la régulation de l’expression. Bien que les profils précédemment décrits, basés sur

le niveau moyen de méthylation par sonde à l’échelle d’un sous-groupe de patients n’ai

pas montré d’association avec le niveau d’expression, une analyse à l’échelle de chaque

individu montre que certaines variations - localisées spécifiquement dans les régions

périphériques de l’ilôt CpG (CGI shores) - sont fortement négativement corrélées à la

régulation de l’expression du gène associé. Ces gènes, pour lesquels une forte associ-

ation existe entre la méthylation et l’expression, semblent différer d’un tissu à l’autre

mais surtout, entre un tissu sain et un même tissu cancéreux. Une forte association est

observée entre ces gènes fortement régulés par la méthylation et les facteurs de transcrip-

tions, ce qui souligne le rôle majeur de la méthylation dans le mécanisme de régulation.

Enfin, nous observons un lien complémentaire entre la méthylation et le copy-number

dans la prédiction de l’expression des gènes.

Nos résultats suggèrent que durant la tumorogénèse, un mécanisme de reprogrammation

épigénétique s’effectue. Ce mécanisme n’a pas un impact direct sur l’expression des gènes

associés, mais agit sur la régulation de la transcription en affectant la susceptibilité des

gènes aux variations épigénétiques.
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4.2 Abstract

Methylation of high-density CpG regions known as CpG Islands (CGIs) has been widely

described as a mechanism associated with gene expression regulation. Aberrant pro-

moter methylation is considered a hallmark of cancer involved in silencing of tumor sup-

pressor genes and activation of oncogenes. However, recent studies have also challenged

the simple model of gene expression control by promoter methylation in cancer, and the

precise mechanism of and role played by changes in DNA methylation in carcinogenesis

remains elusive.

Using a large dataset of 672 matched methylomes, gene expression, and copy number

profiles accross 3 types of tissues issued from healthy and cancerous patients from The

Cancer Genome Atlas (TCGA), we perform a detailed meta-analysis to clarify mecha-

nisms of gene expression control by changes in DNA methylation in normal and cancer

tissues. While most genes have their promoter region hypo-methylated in normal sam-

ples, we show that a small fraction of genes are hyper-methylated, but not significantly

less expressed. This classification is robust across tissues and is also present in some

cancer tissues, although in other cancer tissues a significant fraction of genes witness

changes in their promoter’s methylation. These changes in cancer tissues are not di-

rectly accompanied by changes in gene expression levels, since most genes that become

hyper-methylated in cancer tissues are already lowly expressed in normal tissues, how-

ever large changes in CGI methylation has a prognostic value. A finer analysis of the link

between CGI methylation and gene expression in the different types of tissues highlights

the presence of many genes whose expression is under control of CGI methylation, par-

ticularly through changes in methylation of CpG in the flanking regions of CGIs. These

genes are not the same in different tissues, and not the same in normal and cancerous

tissues, but are overall enriched in transcription factors.

Our results suggest that epigenetic reprogramming in cancer does not contribute to

cancer development via direct gene expression regulation. It may instead modify how

some genes are under control of DNA methylation variations, particularly transcription

factors, in a cancer-dependent manner.

4.3 Introduction

DNA methylation is one of the main epigenetic mechanisms, alongside histone modifi-

cations, that plays a significant role in gene silencing [Newell-Price et al., 2000], tissue

differentiation [Laurent et al., 2010], cellular development [Smith and Meissner, 2013],

X-chromosome inactivation [Pollex and Heard, 2012], or genetic imprinting [Li et al.,
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1993]. Aberrant hyper-methylation of high-density CpG regions known as CpG Islands

(CGIs) [Esteller, 2002] and genome-wide hypo-methylation [Ehrlich, 2002] have often

been associated with cancer and there has been an increasing effort to understand the

specific epigenetic modifications that contribute to carcinogenesis [Laird and Jaenisch,

1994,Das and Singal, 2004,Kulis and Esteller, 2010].

The possibility to measure DNA methylation genome-wide on normal and cancer tissues,

with microarray or sequencing technologies, has triggered a lot of data-driven research

to clarify the role of methylation in gene regulation and cancer. Several studies have

highlighted a correlation between differentially methylated regions near promoter re-

gions and gene expression changes [Meissner et al., 2008,Lister et al., 2009,Zhang et al.,

2011,Hansen et al., 2012,Varley et al., 2013]. However, it has also been reported that

aberrant over-methylation occurs mostly in normally down-regulated genes, question-

ing the role of methylation as a causal mechanism for gene repression [Keshet et al.,

2006, Sproul et al., 2011, Sproul et al., 2012, Sproul and Meehan, 2013]. More recently,

Timp et al. have proposed a model where epigenetic aberrations contribute to car-

cinogenesis by dysregulating the functions of specific genes that regulate the epigenome

itself [Timp and Feinberg, 2013, Timp et al., 2014]. Reddington et al. speculate that

epigenetic reprogramming might lead to an altered Polycomb binding landscape which

could potential impact genome regulation [Reddington et al., 2014].

To gain further insight into the role of DNA methylation in cancer, we perform a large-

scale meta-analysis of methylation profiles of normal and cancerous tissues from The

Cancer Genome Atlas (TCGA), focusing for each CGI on (i) how, on average, their

methylation level differs between normal and cancer samples and between different tis-

sues, and (ii) how their association with gene expression level, as estimated from inter-

individual variability within each sample category, differs. We show in particular that

in normal tissues, most CGIs tend to be either hypo- or hyper-methylated, and that the

classification is stable across tissues of origin; on cancer samples, on the other hand, a

stable subset of the CGIs witness a change in their methylation status in a subset of

patients. While this change in methylation has a prognostic value for patient survival

in breast cancer, we did not find evidence that it directly impacts gene expression level,

as most of the genes concerned are already lowly expressed both in normal and in can-

cerous tissues. Similar findings were already reported in [Sproul et al., 2011]. A finer

analysis of the link between CGI methylation and gene expression in the different types

of tissues highlights the presence of many genes whose expression is under control of

CGI methylation, particularly through changes in methylation of CpG in the flanking

regions of CGIs. These genes are not the same in different tissues, and not the same

in normal and cancerous tissues, but are overall enriched in transcription factors. This
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suggests that epigenetic reprogramming might contribute to carcinogenesis in part by

modifying gene expression susceptibility to changes in DNA methylation.

4.4 Materials and Methods

4.4.1 Patients Selection

All data are issued from TCGA data portal. Cancer types selected are breast, colon

and lung adenocarcinomas as consequent matched datasets were available for methyla-

tion, gene expression and copy number profiles. The datasets are detailed in 4.1 and

the different institutions that released the data are mentioned in the acknowledgement

section.

Table 4.1: Patients Dataset. Original dataset sizes for methylation (Meth), gene
expression (GE) and CNV profiles for normal (N) or cancerous (C) tissues. The
“Matched” column represents the final dataset containing samples with matched methy-

lation, gene expression and copy number profiles.

Meth GE CNV Matched

N C N C N C N C

Breast 97 626 100 778 1073 1041 70 474
Colon 38 291 0 193 0 470 0 33
Lung 32 452 37 125 568 516 13 82

Total 167 1370 137 1096 1641 1981 83 589

4.4.2 Methylation profiling

Methylation profiles were retrieved from level 2 TCGA data obtained the Illumina Hu-

manMethylation450K DNA Analysis BeadChip assay, which is based on genotyping

of bisulfite-converted genomic DNA at individual CpG-sites to provide a quantitative

measure of DNA methylation [Bibikova et al., 2011]. Following hybridization, the methy-

lation value for a specific probe was calculated as the ratio M/(M +U) where M is the

methylated signal intensity and U is the unmethylated signal intensity. 485,577 CpG

methylation levels, associated with 27,176 CGIs and 21,231 genes, were measured as

such accross the genome.

Following [Irizarry et al., 2009], we considered not only the CGI methylation profile but

also included in the analysis proximal regions in the near vicinity (up to 4kb), namely

the CGI Shores and Shelves regions in a general CGI+SS methylation profile. As we

were interested in the coordinated variations of methylation, we restricted the analysis
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to CGI+SS profiles containing at least 20 probes which reduced the analysis to 1827

CGI+SS associated with 2374 genes from the original dataset.

4.4.3 Gene expression profiling

Gene expression profiles were retrieved from level 3 TCGA data, that is obtained from

the Illumina HiSeq RNASeq technology and processed following [Mortazavi et al., 2008].

4.4.4 Copy number variations processing

Copy number variations were retrieved from the level 3 TCGA data infered from Affymetrix

SNP6.0 data files in GenePattern following [Reich et al., 2006]. For each gene, we then

obtained the log ratio copy number score as the segmented log ratio score for the interval

containing its transcription start site.

4.4.5 Combined CpG island, shores and shelves pattern analysis using

dynamic time warping

CGI+SS patterns were compared using dynamic time warping (DTW) [Rabiner and

Juang, 1993] as it is less sensitive to small variations than the Fréchet distance [Efrat

et al., 2006] used in [Vanderkraats et al., 2013]. Dynamic time warping was originally

applied as a speech signal similarity measure and has been applied with success in sev-

eral other fields including computer vision [Serra and Berthod, 1994], protein structure

matching [Wu et al., 1998] and time series analysis [Keogh and Pazzani, 1999].

A CGI+SS profile i can be represented as a couple of vector (Xi, Y i) = ((xi1, y
i
1), . . . , (x

i
n, y

i
n))

where xik represents the position of the kth CpG associated with the CGI+SS and

yik ∈ [0; 1] represents the mean methylation level for this probe accross a given dataset.

Given two vectors of size m and n respectively. A path w is a vector (wk
1 , w

k
2)(k∈[1:K]) in

[1;m]× [1;n] that verifies:

• w1 ∈ {1}× [1;n] ∪ [1;m]× {1} (partial initialization)

• ∀i ∈ {1; 2}, wk+1
i = wk

i or wk+1
i = wk

i + 1 (monotonicity and continuity)

• wK ∈ {n}× [1;n] ∪ [1;m]× {n} (partial boundary condition)
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For two CGI+SS profiles, we thus compute the DTW distance as:

DTW (CGI1, CGI2) = min
w∈Path

length(w)
∑

k=1

|y1
wk

1

− y2
wk

2

|2 (4.1)

The main differences between euclidean and dynamic time warping distance that is the

pairing system between two signals are illustrated in 4.2. Moreover, the algorithm for

DTW is described in 1.
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Figure 4.1: Standard pairing between two signals.
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Figure 4.2: Dynamic time warping pairing between two signals.
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Data: x = x1, . . . , xn and y = y1, . . . , ym

Initialization: distMat = matrix(0, nrow = n+ 1, ncol = m+ 1) ;

distMat(0, 0) = 0

for i in 1:n do
distMat(i, 0) = ∞

end

for j in 1:m do
distMat(0, j) = ∞

end

for i in 1:n do

for j in 1:m do
distMat(i+ 1, j + 1) =

∥xi+1 − yi+1∥+min(distMat(i, j + 1), distMat(i, j), distMat(i+ 1, j))

end

end

Result: DTW (x, y) := distMat(n,m)
Algorithm 1: DTW algorithm
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Figure 4.3: Distance matrix between signal 1 and signal 2. The dark line
represents the path that minimizes the total distance between the two signals.

DTW is then applied for each pair of CGI+SS patterns to obtain a dissimilarity matrix

that assesses the similarity in shapes between all the CGI+SS methylation profiles.

Ward hierarchical clustering is then performed to assess the existence of characteristic

patterns amongst the different datasets.



Chapter 4. Changes in gene expression control by DNA methylation in cancer 59

The number of significant clusters is assessed through bootstrapping (nrepeats = 100) on

a random subset of CGI+SS of the initial dataset (ratio = 80% of the total number of

CGI+SS) following Ben-Hur et al [Ben-Hur et al., 2002b].

4.4.6 Survival analysis

Overall survival was estimated using the Kaplan-Meier method [Kaplan and Meier, 1958]

to compare the survival between the group of patients with a lower level of methylation

in the hemi-methylated CGI+SS compared to the group of patients with a higher level

of methylation. A multivariate Cox proportional hazards regression model [Cox and

Oakes, 1984] was also fitted to estimate the additional value of this classification as a

predictive factor for survival compared to other clinical parameters such as age, tumor

size, lymph node status, receptor status and HER2/NEU status.

4.4.7 Computing the predictive power of methylation

We apply ridge [Hoerl et al., 1970] and LASSO [Tibshirani, 1996] multivariate regression

methods to predict gene expression using the full CGI+SS methylation profiles as well

as univariate least square regression when using only the averaged methylation from the

whole CGI+SS profile. Following Acharjee et al. [Acharjee, 2013], we assess the predic-

tive power of the methylation using the predictive goodness of fit R2 which represents

the squared Pearson correlation between observed and fitted values on an independent

dataset. The estimation of the predictive power for each gene is obtained through 3-fold

cross-validation averaged over 100 repeats. Parameters for both lasso and ridge regres-

sion methods were obtained by minimizing the mean squared error function using nested

3-fold cross-validation on the training dataset. The use of the predictive goodness of

fit instead of the classic mean squared error as a score allows to compute a comparable

score between different predictions. In particular, the mean squared error is highly af-

fected by the absolute level of gene expression while the R2 is invariant to scaling. It is

also important to note that in this case the R2 computed for least square regression is a

prediction R2 and not just a goodness-of-fit of the given dataset and therefore provides

confidence on the generalization of the score on independent datasets.
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4.5 Results

4.5.1 Classification of genes based on their CGI methylation profiles

in normal and cancerous tissues

We first assess how promoter methylation profiles differ between genes, when for each

gene we consider the average methylation profile across normal or cancerous samples.

For that purpose, we collected high-density methylation datasets from the cancer genome

atlas (TCGA) data portal providing more than 485K CpG methylation levels for 672

normal and cancerous samples from three tissues of origin: breast, colon and lung (4.2).

For each CGI, we combine the probes in the CGI and in the shore and shelves of the

CGI, defined as the regions up to 4kb outside of the CGI [Irizarry et al., 2009], in a

unique CGI, shores and shelves (CGI+SS) methylation profile. We restrict our analysis

to the 1827 CGI+SS where at least 20 CpG probes are measured by the technology in

order to have high enough coverage to measure the methylation variation within each

CGI+SS. For each of the three tissue of origin, and each normal or cancerous set of

tissues, we compute the average methylation profile of each CGI+SS by averaging the

methylation values of each CpG across the samples. Hence we compute 3×2 = 6 average

profile for each CGI+SS, with we refer to below as CGI+SS signatures.

Table 4.2: Concordance analysis of CGI+SS patterns clusters between nor-
mal tissues.

Clusters Colon

Breast 1 2

1 1560 9

2 113 145

Clusters Lung

Colon 1 2

1 1610 7

2 63 147

Clusters Breast

Lung 1 2

1 1549 20

2 68 190

To assess the diversity of CGI+SS signatures across genes, we perform an unsupervised

classification of all signatures for each of the 6 types of samples, using Ward hierarchical

clustering. Since different CGI+SS may contain a different number of GpG probes, we

use a specific distance based on dynamic time warping to compare signatures of different

lengths. 4.4 (panel A/C/E) shows the CGI+SS clustering obtained for signatures mea-

sured on normal samples from breast (resp. lung and colon) samples. We observe two
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stable clusters, which are largely conserved across the 3 tissues of origin (Table 2). To

clarify the types of signatures captured by each cluster, we represent on a standardized

CGI+SS x-axis the 10 medoid CGI+SS signatures for each cluster and each tissue (4.4).

We clearly observe that the large cluster 1, which contains about 90% of all CGI+SS,

corresponds to hypo-methylated islands with hemi-methylated CGI shores and hyper-

methylated CGI shelves, while the smaller cluster 2 contains about 10% of CGI+SS

which are fully hyper-methylated. A closer look at cluster 1 shows that, in some cases,

the variation of methylation between islands and shores is unclear, in the sense that

some shores are fully hypo-methylated. As CGIs, shores and shelves regions are delim-

ited based on somehow arbitrary criteria, a systematic analysis of these signatures could

lead to a refinement of currently accepted boundaries.

Performing the same unsupervised classification independently on signatures obtained

from the three types of cancerous tissues leads to different results, with the apparition

of a third stable cluster (4.4 panel B/D/F ). Comparing the clusters of normal and

cancerous tissues shows that, for all types of tissues, the first two clusters found in can-

cerous tissues are mostly composed of CGI+SS of the corresponding clusters in normal

tissues, while the CGI+SS in the third cluster, specifically found in cancerous tissues,

tend to come evenly from both clusters in normal tissues (4.3). A look at representative

signatures of each cluster (4.5,4.6,4.7) confirms that clusters 1 and 2 contain respectively

hypo- and hyper-methylated profiles, just like the respective clusters in normal tissues,

while cluster 3 contains CGI+SS signatures which are partly methylated. Separating

the CGI+SS in cluster 3 into sub-clusters ”3up” and ”3down”, depending on whether

they are in cluster 1 or 2 in normal tissues, we further see that the level of methyla-

tion of CGI+SS signatures in the ”3up” sub-cluster tends to be lower than the level of

methylation of CGI+SS signatures in the ”3down” sub-cluster. Interestingly, cluster 3

is mostly conserved between tissues (4.11), suggesting that these epigenetic variations

might be associated with a tissue-independent carcinogenesis process.

In summary, this global analysis of methylation signatures suggests the existence of four

types of CGI+SS largely conserved across tissues: the majority of them remains hypo-

methylated on the CGI and hyper-methylated on the shores and shelve in normal and

cancerous tissues (cluster 1); a minority is hyper-methylated in normal and cancerous

tissues (cluster 2); finally, a fraction of CGI+SS signatures is hypo-methylated in normal

tissues and partly methylated in cancerous tissues (cluster 3up), while another fraction

is hyper-methylated in normal tissues and partly methylated in cancerous ones (cluster

3down). To clarify whether these four categories or CGI+SS are associated to particular

biological functions, we performed a gene functional enrichment analysis [Yu et al.,

2012] of the genes associated to the CGI+SS in each of the four categories, for each

tissue. Results are shown in 4.8, 4.9, 4.10. Restricting ourselves to Gene Ontology (GO)
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Table 4.3: Concordance analysis of CGI+SS patterns clusters from normal
to cancerous tissues. Each table represents the concordance of clusters between
normal and cancerous clustering analysis. Bold numbers in the diagonal shows the

stability of clusters between normal and cancerous tissues.

Breast Normal

Cancerous 1 2

1 1231 21

2 9 109

3 329 128

Lung Normal

Cancerous 1 2

1 1128 12

2 18 168

3 471 30

Colon Normal

Cancerous 1 2

1 1112 11

2 13 106

3 548 37

biological processes associated to at least 20 genes, we found that the large cluster 1

is mostly enriched in genes involved in metabolic processes, while the cancer-specific

cluster 3up is enriched in genes involved in developmental processes. There was no

significant functional enrichment for genes in cluster 2 and 3down.

4.5.2 Cancer-specific methylation does not repress gene expression but

instead targets genes lowly expressed in normal tissues

CGI methylation is often associated with gene expression silencing. We therefore assess

whether the CGI+SS clusters defined above, corresponding roughly to lowly methylated

(clusters 1), highly methylated (cluster 2) or partially methylated in cancer (cluster

3) CGI+SS, are associated with different mean levels of gene expression. In normal

breast tissues, we indeed observe that genes near hypo-methylated islands in cluster 1

are slightly but significantly less expressed than genes near an hyper-methylated islands

in cluster 2 (4.12, PBreast = 0.02). There is however no significant difference between

the two clusters in normal lung tissues (4.12, PLung = 0.39), and we could not test

the hypothesis on normal colon tissues since we have none with both methylation and

expression data (4.1). In cancerous samples, we observe that genes near a CGI+SS

in the cancer-specific cluster 3 have a significantly lower expression than other genes

(4.12, PBreast, PLung, PColon < 10−16), particularly for the genes near a CGI+SS in the

”3up” cluster. As genes in the ”3up” cluster are hypo-methylated in normal tissues, this

could suggest that their cancer-specific methylation is a way to repress their expression
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Figure 4.4: CGI+SS patterns in breast tissues. Hierarchical clustering of
CGI+SS DNA methylation patterns for breast normal tissues (panel A) and breast
cancerous tissues (panel B) using DTW as a distance metric and a “Ward” linkage.
The colorbar represents the clusters association (blue for hypomethylated cluster 1,

yellow for cluster 2, dark green for cluster 3down, light green for cluster 3down).
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Figure 4.5: Characteristic profiles for each clusters. Visualization of the
CGI+SS DNA methylation signatures as condensed profiles from the 10 medoids pro-
files for each clusters in breast normal (panel A) or cancerous (panel B) tissues. The
two orange dashed lines represent the normalized 1kb long CGI region while the two

blue lines represent the 2kb limit between shores and shelves regions.

Cluster 1 Cluster 2

Cluster 3up Cluster 3down

0.0

0.5

1.0

0.0

0.5

1.0

−4kb −2kb 2kb 4kb −4kb −2kb 2kb 4kb

M
et

hy
la

tio
n

A.

B.

Figure 4.6: Characteristic profiles for each clusters. Visualization of the
CGI+SS DNA methylation signatures as condensed profiles from the 10 medoids pro-
files for each clusters in colon normal (panel A) or cancerous (panel B) tissues. The
two orange dashed lines represent the normalized 1kb long CGI region while the two

blue lines represent the 2kb limit between shores and shelves regions.
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Figure 4.7: Characteristic profiles for each clusters. Visualization of the
CGI+SS DNA methylation signatures as condensed profiles from the 10 medoids pro-
files for each clusters in lung normal (panel A) or cancerous (panel B) tissues. The two
orange dashed lines represent the normalized 1kb long CGI region while the two blue

lines represent the 2kb limit between shores and shelves regions.

Figure 4.8: Gene Ontology analysis given the cluster assignment for cancer-
ous breast tissues. Cluster: Cluster assignment of a gene the CGI+SS methylation
pattern . Description: Description of the biological processes enriched (top 10 ranked
by cluster ratio). Cluster ratio (A/B): Ratio between the number of genes (A) asso-
ciated with the biological process and the total number of genes (B) in a given cluster.

P-val: Fisher’s exact test p-value adjusted for multiple testing.
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Figure 4.9: Gene Ontology analysis given the cluster assignment for cancer-
ous colon tissues. Cluster: Cluster assignment of a gene the CGI+SS methylation
pattern . Description: Description of the biological processes enriched (top 10 ranked
by cluster ratio). Cluster ratio (A/B): Ratio between the number of genes (A) asso-
ciated with the biological process and the total number of genes (B) in a given cluster.

P-val: Fisher’s exact test p-value adjusted for multiple testing.

Figure 4.10: Gene Ontology analysis given the cluster assignment for can-
cerous lung tissues. Cluster: Cluster assignment of a gene the CGI+SS methylation
pattern . Description: Description of the biological processes enriched (top 10 ranked
by cluster ratio). Cluster ratio (A/B): Ratio between the number of genes (A) asso-
ciated with the biological process and the total number of genes (B) in a given cluster.

P-val: Fisher’s exact test p-value adjusted for multiple testing.
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Figure 4.11: Inter-tissue stability of the cancerous-specific cluster. Venn
diagram representing the stability of the cancer-specific CGI+SS cluster 3 between

cancerous tissues.

in cancer. However, a closer look at the expression of these genes in normal tissues

(4.12) shows that they are already lowly expressed in normal tissues. This suggests that

instead of activating CGI methylation to silence to genes, cancer cells instead activates

CGI methylation of hypo-methylated genes which are already lowly expressed in normal

tissues.

4.5.3 Cancer-specific methylation is an independent predictor of pa-

tient survival in breast cancer

Our analysis so far compares CGI+SS in terms of their mean methylation across a

set of samples and does not take into account between-sample variations. CGI+SS

associated with cluster 1 (resp. 3) are hypo- (resp. hyper-)methylated on average, which

indicates that there is little to no variations between samples. However, signatures

of CGIs in the cancer-specific cluster 3 are partly methylated, which can either hide

the fact that they are hemi-methylated for most cancerous samples, or that they are

highly variable between samples. We therefore assess whether the partial methylation

of CGI+SS signatures in cluster 3 is related to an overall increase (for cluster 3up) or

decrease (for cluster 3down) in methylation for all or most of the patients, or if this it

is caused by a subset of patients that become hyper- (resp. hypo-)methylated for these

CGI+SS.

For that purpose, we first summarize the methylation of each CGI+SS on each breast

cancer sample by a single value, the average methylation of the probes in the CGI+SS.
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Figure 4.12: cluster characteristics analysis in breast tissues. Gene expres-
sion distribution for genes based on the cluster assignment of their associated CGI+SS.
Panel A/D.Gene expression distribution in normal tissues shows a slight repression for
genes associated with cluster 2 (hypermethylated CGI+SS profiles). “Ref” represents
the genome-wide gene expression distribution (Panel A=breast, Panel D=lung) Panel
B/E. Gene expression profiles in cancerous tissues shows high repression for genes
associated with cluster 3 and specifically cluster “3up” (hemi-methylated CGI+SS pro-
files) (Panel B=breast, Panel E=lung). Panel C/F. Gene expression profiles in both
normal and cancerous tissues using the cluster assignement in cancerous tissues shows
that genes associated with cluster “3up” in cancerous tissues define a cluster of genes

already repressed in normal tissues (Panel C=breast, Panel F=lung).

We then represent each sample by the vector of methylation values of the CGI+SS in

cluster 3up, and perform a Ward hierarchical clustering of the cancerous samples based

on this representation. The resulting clustering is shown in 4.13, where in addition we

indicate the ER+, HER2 and survival information for each patient. We observe that

the distribution methylation values is very bimodal, and that the hyper-methylation

of a given CGI+SS from cluster 3up generally happens in a subset of patients only.

Interestingly, we see that the same subset of patients tends to be simultaneously hyper-

methylated for all CGI+SS from cluster 3up, suggesting that hyper-methylation of these

islands is a characteristics of a subset of the tumors. This allows us to divide the set of

breast cancer patients in three clusters given the level of methylation in cluster 3up as

either “low”, “intermediate”, or “high” 4.13. Interestingly, distinguishing patients given

the level of methylation from the CGI+SS in cluster 3up is significantly predictive of

the patient survival (4.13, log-rank, p = 0.01). Surprisingly, the cluster with the lowest

survival is the “intermediate” cluster encompassing a portion but not all of the triple
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negative breast cancers (65% in cluster 3up “low”, 32% in cluster 3up “intermediate”

and only 3% in cluster 3up “high”). A multivariate Cox proportional hazards regression

model fitted with available clinical parameters (tumor size, lymph node status, hormone

receptor status, HER2/NEU status and patient’s age) further shows that this stratifica-

tion of patients based on the methylation level of genes in cluster 3up adds prognostic

value independently of other clinical features 4.4. These results support the existence

of a CpG island methylator phenotype (CIMP) as introduced by Toyota et al. [Toyota

et al., 1999a] that is clinically relevant to assess the survival of patients. More impor-

tantly, they suggest that low survival might not be associated with a positive or negative

CIMP, but with an intermediate phenotype termed as CIMP-low [Hughes et al., 2013].

A)

Figure 4.13: Cluster 3up methylation is a predictive factor for survival of
patients in breast cancer patients. Panel A. Hierarchical clustering of breast
cancer patients given the average methylation level of all the CGI+SS associated with
cluster 3up. The row color bar represents the average methylation level for the same
CGI+SS in healthy breast tissues. The column color bar gives clinical information
about the patients such as ER and HER2 statuses (grey for negative and white for
positive), survival information (white for positive overall survival within 5 years and
red for death within 5 years). The top row of the column color bar represents the
three classes distinguished by methylation profiles in cluster 3up (blue for cluster 3up
“low”, green for cluster 3up “intermediate” and pink for cluster 3up “high”). Panel
B. Kaplan-Meier estimate of breast cancer patient survival given the cluster 3up class
(blue for cluster 3up “low”, green for cluster 3up “intermediate” and pink for cluster
3up “high”) shows that cluster 3up “intermediate” patients have a significantly higher
risk of death within 5 years than either cluster 3up “low” or “high” patients (Log-rank,

p= 0.01).

A similar analysis on CGI+SS associated with cluster 3down is less conclusive, and does

not clearly cluster patients in separate clusters (4.14). A lack of sufficient survival data

for colon and lung tissues prevented a similar analysis for these tissues.
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Table 4.4: Multivariate Cox regression analysis including the level of methylation in
the cancer-specific cluster “3up” in addition to significant clinical variables for breast

cancer.

Clinical variable (Reference) HR (95% CI) p-value

Cluster 3up (Low vs intermediate) 3.44 (1.44-8.23) 0.007
Cluster 3up (Low vs high) 1.92 (0.50-7.34) 0.34
(ER,HER2) (-/- vs +/-) 0.37 (0.15-0.88) 0.026
(ER,HER2) (-/- vs -/+) 1× 10−8 (0-Inf) 1
(ER,HER2) (-/- vs +/+) 0.53 (0.09-2.94) 0.46
Lymph Node (Negative) 4.51 (1.63-12.44) 0.004

Survival
Cluster 3up

0.2 0.6

Methylation

Color Key

Figure 4.14: Hierarchical clustering of breast cancer patients based on the
average methylation level of CGI+SS associated with cluster 3down.
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4.5.4 Methylation of CpG in CGI shores is negatively correlated with

gene expression.

Our analysis so far compares CGI+SS to one another, by looking at their average methy-

lation profiles across collections of samples. We found no clear evidence for a correlation

between mean methylation level of a CGI and mean expression level of the corresponding

genes, but this may be due to the fact that many other factors impact the expression

level of a gene, including biological and technical ones. Another way to assess how

methylation impacts expression is to look, for each given gene, how variations in expres-

sion across samples correlates with variations in methylation of nearby CGIs. For each

set of samples (split by tissue of origin and normal/cancerous state), we measure the

strength of association between methylation and expression for each gene by computing

a predictive goodness of fit R2 which represents the level of gene expression variation

explained by CGI+SS methylation variation. This coefficient is calculated either when

the CGI+SS methylation status is summarized by the mean methylation values of all

the probes, or by using the full CGI+SS methylation information of each probe.

We observe that the full CGI+SS methylation profile is predictive of gene expression for

a subset of genes in each dataset, and that this predictive power is significantly higher

than using only the average CGI+SS methylation (4.15, PBreast < 10−16, PLung =

1.3 × 10−16, PColon = 3.2 × 10−5). We provide in 4.5 the list of the top 50 genes

based on their predictive score in cancerous breast, colon and lung tissues. Among the

2374 genes studied, 139 genes are associated with more than one CGI+SS. For these

genes, the predictive power is computed using the CGI+SS closest to the TSS. Using

all the CGI+SS for these genes do not yield significant improvement over taking only

the CGI+SS closest to the TSS except for breast tissues (PBreast = 0.003, PLung = 0.15,

PColon = 0.62). We also observe no association between the predictive goodness of fit R2

and the CGI+SS clusters described above (PBreast = 0.48, PLung = 0.47, PColon = 0.44).

Since the predictive power of multivariate models based on all CpG probes in a CGI+SS

is larger than the predictive power of the mean methylation value only, we now investi-

gate which CpG in a CGI+SS are particularly important predictors of expression. For

that purpose, we measure the correlation between the methylation of individual CpG

and gene expression for the 50 genes with the largest predictive R2, and summarize

the correlation values based on the position of the probe in the CGI+SS in 4.16. As

expected, we observe overall a negative correlation between methylation and gene ex-

pression, and notice that this association is stronger in CGI shores than in the CGI

itself. This is coherent with results in [Irizarry et al., 2009] stating that variations in

the CGI are less critical than variations in proximity regions of the CGI. Performing the
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Table 4.5: Genes regulated by methylation in different cancerous tissues.
Gene: Top scoring genes ranked by the predictive power of methylation to predict gene

expression variation. Score: R2 score associated.

Breast Colon Lung
Gene Score Gene Score Gene Score
DQX1 0.699 C11orf93 0.786 PTPRCAP 0.639
IRS2 0.692 FAM24B 0.695 HOXB2 0.620

GPSM3 0.669 SCAND3 0.679 LOC254559 0.606
FOXC1 0.642 CLIC6 0.667 KLC4 0.598
PSMB9 0.624 TBX18 0.639 SEMA4G 0.597
HOXC10 0.623 C11orf92 0.617 COL25A1 0.596
NDRG2 0.623 FOXD2 0.601 HOXC13 0.591
MAPT 0.607 ACSF3 0.586 SOX9 0.580
STC2 0.606 FKBP10 0.583 DUSP4 0.579

ZNF502 † 0.585 TACSTD2 0.576 HOXA10 0.578
PTPRCAP 0.583 TMEM176B 0.573 SIM2 0.574
SCAND3 0.583 TMEM176A 0.568 FKBP10 0.568
SLC1A4 0.580 FAM50B 0.563 VAX2 0.563
TAP1 0.576 SC65 0.563 FAM50B 0.563

DBNDD2 0.565 ZIC5 0.555 TPD52L1 0.560
OTX1 0.564 EFNA3 0.535 DQX1 0.554
TCF7 0.561 SYS1-DBNDD2 0.532 FAM24B 0.547

LY6G6C 0.561 DLX6AS 0.528 ZNF502 0.539
FERMT3 0.560 HOXB6 0.525 CSNK1E 0.531
ZIC4 0.559 C5orf38 0.523 IRX2 0.528
HLA-B 0.556 H19 0.515 KCTD1 0.527
GDF9 0.551 PCDHGA5 0.512 ENO3 0.524
SOX9 0.551 ME3 0.502 ISL2 0.506

CELSR1 0.550 CHFR 0.501 STMN1 0.503
SYS1-DBNDD2 0.549 GPR120 0.499 TRIM15 0.501

HLA-E 0.549 SLC35C1 0.497 HLTF 0.500
CYP1B1 0.541 SLC5A6 0.487 DMRTA2 0.497
RUNX3 0.540 RGL2 0.481 ZIC4 0.497

KIAA1949 0.537 HOXB2 0.481 ALX3 0.496
RIPK4 0.531 MGMT 0.477 IRS2 0.494
TPPP2 0.530 TAP1 0.474 SC65 0.488
HLA-F 0.530 ETV4 0.474 DCLRE1A 0.485

PPP1R3C 0.529 PCDHGA12 0.466 LIME1 0.482
HOXB5 0.528 HOXD9 0.461 H2AFY2 0.469
CELSR3 0.527 DBNDD2 0.458 KIAA1949 0.468
B3GNT5 0.525 GPSM3 0.456 ZIC5 0.456
ME3 0.524 KLC4 0.454 BMI1 0.453
TMC8 0.523 FARP1 0.452 IRX4 0.448
AIF1 0.522 FTH1 0.450 C11orf93 0.443

SLC39A6 0.521 HSPA1L 0.443 DNTTIP1 0.442
HOXC11 0.512 FSCN1 0.441 GATA6 0.440
ERBB2 0.505 MUC12 0.441 HIST3H2A 0.434

TBC1D10C 0.503 WIT1 0.440 PIK3R3 0.433
SIM2 0.503 SS18L1 0.439 PIM3 0.431

CAMK2N1 0.502 HOXA1 0.439 FAT1 0.431
RGMA 0.499 AMH 0.438 HOXC9 0.430

LOC100132215 0.497 HOXA5 0.433 SOCS2 0.429
PAX6 0.497 ZNF518B 0.430 MGC29506 0.426

VANGL2 0.496 EMX1 0.430 RDH5 0.425
DDHD2 0.487 PDX1 0.429 CHST11 0.424
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A. B. C.

Figure 4.15: Impact of DNA methylation in gene expression prediction.
Predictive power distribution of DNA methylation for gene expression using either the
average CGI methylation and least squares (orange) or the full CGI+SS profile and
lasso regression (purple) shows that a more complex model allows to better predict
gene expression variations in both normal and cancerous tissues (panel A= breast,

panel B= colon, panel C=lung).

same analysis by varying the number of genes selected to compute correlations from 20

to 100 gave similar results.

4.5.5 Regulation of gene expression by DNA methylation is tissue-

specific and the process is altered in cancer tissues but overall

targets transcription factors.

Results in the previous section suggest that for a subset of genes, a regulation of gene

expression by methylation of CpG in CGI+SS is likely. To assess whether this regulation

is conserved across tissues, we compare the predictive powers of methylation for each

genes when it is computed on normal or cancerous samples from different tissues. As

shown in 4.17, however, we observe little correlation between the predictive power across

tissues in normal and in cancer samples, suggesting that methylation regulates the ex-

pression of genes in a tissue-specific manner (R2,Normal
Breast/Lung = 0.04, R2,Cancerous

Breast/Lung = 0.17,

R2,Cancerous
Lung/Colon = 0.07, R2,Cancerous

Colon/Breast = 0.06). We also observe very little correlation be-

tween predictive powers in normal and cancerous tissues, which could suggests a shift of

the epigenetic regulation mechanism during cancer development (4.18, R2
Breast = 0.04,

R2
Lung = 6× 10−7).

Many mechanisms besides DNA methylation are involved in gene expression regulation.

In particular, transcription factors (TF) play a critical role in the recruitment of RNA

polymerase that allows gene transcription [Struhl, 1999]. We noticed that the list of

the 50 genes with the largest predictive R2 score in each tissue is significantly enriched

in TFs as collected from [Zhang et al., 2012], suggesting that methylation plays an
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A

C

E

Figure 4.16: Methylation association with gene expression by regions. Dis-
tribution of the correlation between individual probes and gene expression variation for
breast top 50 genes ranked by their predictive score by regions related to the CGI ex-
hibits a stronger association for probes located outside of the CGI particularly in shores
regions (panel A= normal breast tissues, panel B= cancerous breast tissues, panel C=
cancerous colon tissues, panel D= lung normal tissues, panel E= lung cancerous tis-

sues).
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important role in the gene regulatory process of transcription factors (PBreast = 0.03,

PLung = 3 × 10−4, PColon = 0.02). Using the TF list obtained from [Vaquerizas et al.,

2009] yields similar conclusions, as well as varying the number of genes selected from 20

to 100.

A) B)

C) D)

Figure 4.17: Tissue-specificity of epigenetic regulation. Scatterplot between
the predictive power of DNA methylation for gene expression in normal and cancerous
between different tissues (R2,Normal

Breast/Lung = 0.04, R2,Cancerous
Breast/Lung = 0.17, R2,Cancerous

Lung/Colon =

0.07, R2,Cancerous
Colon/Breast = 0.06).

4.5.6 Copy number variations in cancer is an independent factor in

gene expression regulation.

In cancer, aberrant DNA copy number variations (CNVs) can have an important impact

on gene expression phenotypes [Stranger et al., 2007]. Since genome-wide DNA copy

number information is available for all samples analyzed in this study, we now perform
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Figure 4.18: Shift of epigenetic regulation in cancer. Scatterplot between the
predictive power of DNA methylation for gene expression in normal and cancerous for

breast lung tissues (left: R2

breast = 0.04, right: R2

Lung = 6× 10−7)

an integrated analysis combining methylation, DNA copy number and gene expression.

We compute a predictive goodness of fit R2 to represents the power of DNA copy number

information alone to predict gene expression, on the one hand, and a multidimensional

regression model combining both the full CGI+SS DNA methylation information and

the DNA copy number information, on the other hand. We observe that combining

methylation and copy number information leads to significantly better results in pre-

dicting gene expression than taking each information separately (4.19, PBreast < 10−16,

PLung < 10−9,PColon < 10−8). Moreover, correlation analysis between predictive scores

using DNA methylation only, on the one hand, and predictive scores using CNVs only, on

the other hand, shows very little correlation (4.19, R2
Breast = 7×10−4, R2

Lung = 1×10−4,

R2
Colon = 1×10−3). This suggests that both methylation and DNA CNVs are important

and non-redundant predictors of gene expression variations.

4.6 Discussion

DNA methylation is a well-described process in normal development and is critical in

specific gene expression regulations such as X-chromosome inactivation, genomic im-

printing and tissue developpment [Laurent et al., 2010,Smith and Meissner, 2013,Pollex

and Heard, 2012, Li et al., 1993]. Since aberrant hyper- and hypo-methylation have

also been frequently observed in cancer, it has been often argued that activation of

oncogenes or repression of tumor suppressor genes could be caused by these epigenetic

variations [Esteller, 2002].
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Figure 4.19: Association between predictive power of methylation and copy-
number variations. Panels A/C/E. Predictive power distribution using either CNV
data only with least squares, DNA methylation data only with lasso regression or both
CNV and DNA methylation data with lasso regression. Combined methylation and
CNV information yield significantly higher predictive power (panel A=breast cancerous
tissues, panel C= colon cancerous tissues, panel E= lung cancerous tissues). Panels
B/D/F. Scatterplot of predictive power using DNA methylation only and copy-number
information only shows that both regulation mechanisms operate exclusively on genes
(panel B= breast cancerous tissues, panel D=colon cancerous tissues, panel E= lung

cancerous tissues).
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In the present study, we assessed the existence of characteristic CGI+SS DNA methy-

lation signatures in normal tissues and showed a weak association between the hyper-

methylated signature and gene expression repression. A similar study in cancerous tis-

sues showed the existence of a cancer-specific signature highly associated with repressed

genes. However, the corresponding genes are already highly repressed in normal tissues,

questioning the causal impact of methylation in gene expression regulation, as already

noticed in [Keshet et al., 2006,Sproul et al., 2011,Sproul and Meehan, 2013].

Using regression methods we analyzed whether differences between CGI+SS methylation

across samples - independently of signatures - are predictive of gene expression varia-

tions. We showed that for certain genes, expression variations across samples can be

well predicted from DNA methylation variations and that these genes are not associated

with cancer-specific methylation patterns. We also showed that using the full CGI+SS

methylation profiles in a multidimensional regression framework yields better predictive

power than summarizing the methylation of a CpG island by one mean value, as done

in previous studies [Vanderkraats et al., 2013]. Looking at probewise methylation cor-

relation with gene expression for the top scoring genes, we observed that the impact of

a CpG methylation on gene expression is largely dependent on its location in or near

the island, and that CpGs located outside of CGIs have a bigger impact on gene expres-

sion variations than CpG located within the CGI, supporting results from [Irizarry et al.,

2009,van Vlodrop et al., 2011]. The impact of CGIs located outside of promoter regions,

such as intragenic CGIs is still unclear as it does not seem to contribute significantly to

global gene expression regulation. Yet, a few studies point at their potential role in mod-

ulating alternative promoters [Maunakea et al., 2013] or in long-range regulation [Kulis

et al., 2013].

Reproducing this methodology on different datasets allowed us to compare the variations

of gene expression regulation by methylation in normal and cancerous tissues but also

between different types of tissues. Our results suggest that genes targeted by methyla-

tion are not only very different between different normal tissues, but more importantly

that they are very different between normal and cancerous samples of a given tissue sug-

gesting a shift of epigenetic regulation between normal and cancerous tissues. Recently,

hydroxymethylation of cytosines (hmC) has been shown to be significantly present in

mammalians cells [Kriaucionis and Heintz, 2009] and methylation data generated with

Illumina arrays, as done here, are not able to distinguish methylation (mC) from hydrox-

ymethylation [Nestor et al., 2010]. However, hmC are significantly less present in cancer

tissues [Haffner et al., 2011, Jin et al., 2011]. It is therefore likely that the epigenetic

information measured here is indeed cytosine methylation.
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In addition, the association between DNA methylation and other important regulation

mechanisms widens our understanding of the role of methylation in the whole gene

expression regulation process. While TFs are centric in controlling gene expression,

we showed that their activation itself is significantly associated with DNA methylation

markers, highlighting the critical role of methylation in the regulatory process. CNVs

have been widely analyzed as a source of genetic variation that plays an important role

in complex phenotypes such as cancer [Stranger et al., 2007, Henrichsen et al., 2009].

While CNV contribution has been characterized on a genome-wide scale, the link with

other regulation mechanisms, particularly DNA methylation, is still unclear [Houseman

et al., 2009,Lauss et al., 2012a]. We showed that the impact of both processes in gene

expression regulation seems to be non-redundant. The relatively large dataset size gives

us confidence in the statistical validity of the results, which are however limited to

a fraction of the total genes because of uneven coverage. Methylome sequencing has

already been performed and also supports the complexity of methylation patterns but

is still limited to very small datasets [Vanderkraats et al., 2013]. Undoubtedly, larger

methylome datasets available in the near future will further improve our understanding

of the role of DNA methylation in gene expression regulation.
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5.1 Résumé

Le CpG island methylator phenotype (CIMP) a été introduit par Toyota et al. dans

le cancer du colon, pour caractériser une sous-population de cancers avec desprofils

épigénétiques particuliers marqués par une hyperméthylation coordonnée d’un certains

nombres d’ilôts CpG. Depuis, ce phénotype a été étendu à différents profils de tumeurs

dont, entre autres, le sein, la vessie, le poumon ou encore l’estomac. Le CIMP a un

intérêt clinique majeur car il est associé à un niveau de réponse au traitement différent

mais également à un pronostic de survie particulier. Cependant, l’absence d’une base

moléculaire au CIMP, commune à tous les cancers pose toujours des questions: est-ce

que le CIMP est associé à un phénomène biologique réel ou est-ce qu’il s’agit simplement

d’aberrations épigénétiques propres à chaque cancer?

Nous avons analysé de manière systématique les profils de méthylations pangénomique

issus d’une technologie unique (Illumina HumanMethylation450K) sur plus de 2000

81
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échantillons tumoraux dans 5 tissus différents et nous montrons l’existence d’une signa-

ture épigénétique commune à tous les cancers déterminant du phénotype CIMP. De plus,

une analyse intégrative des profils d’expression révèle qu’une signature transcriptomique

est également en mesure de prédire ce phénotype avec une très grande précision.

Nos résultats soutiennent l’existence d’un phénomène biologique commun associé au

CIMP marqué par la présence d’une signature épigénétique et génétique commune à

tous les cancers.

5.2 Abstract

The CpG island methylator phenotype (CIMP) was first characterized in colorectal

cancer but since, has been extensively studied in several other tumor types such as

breast, bladder, lung, gastric. CIMP is of clinical importance as it has been reported to

be associated with prognosis or response to treatment. However, the identification of a

universal molecular basis to define CIMP across tumors has remained elusive.

We perform a genome-wide methylation analysis of over 2,000 tumor samples from 5

cancer sites to assess the existence of a CIMP with common molecular basis across can-

cers. We then show that the CIMP phenotype is associated with specific gene expression

variations. However, we do not find a common genetic signature in all tissues associated

with CIMP.

Our results suggest the existence of a universal epigenetic and transcriptomic signature

that defines the CIMP across several tumor types but does not indicate the existence of

a common genetic signature of CIMP.

5.3 Introduction

Epigenetic modifications have been recognized as important players in cancer etiology

and development, and constitute promising therapeutic targets for diagnosis or treat-

ment due to their possible reversibility [Jones and Baylin, 2007,Esteller, 2008,Rodriguez–

Paredes and Esteller, 2011]. In particular, aberrant methylation of CpG islands (CGIs)

located in promoter regions of tumor suppressor and DNA repair genes, leading to their

silencing, is now considered a hallmark of cancer playing an important role in neopla-

sia [Jones, 1986,Baylin and Herman, 2000,Esteller et al., 2001,Esteller, 2008,Jones and

Baylin, 2007,Rodriguez-Paredes and Esteller, 2011].
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The CpG Island Methylator Phenotype (CIMP) was first defined and observed by [Toy-

ota et al., 1999a] in a subset of colorectal cancers as the joint methylation of several

promoter regions, leading to the inactivation of the corresponding genes. The stratifi-

cation of patients based on CIMP was shown to be clinically relevant, as CIMP positive

patients had better prognosis than CIMP negative ones, and could lead to personal-

ized treatments. Since the identification of CIMP in colorectal cancers, many studies

have tried to replicate the analysis to find CIMP in different types of cancers includ-

ing but not limited to colon [Issa et al., 2005,Weisenberger et al., 2006, Estécio et al.,

2007, Curtin et al., 2011,Hinoue et al., 2012], breast [Auwera et al., 2010, Fang et al.,

2011], lung [Suzuki et al., 2006], stomach [Chen et al., 2012] and glioblastoma [Noush-

mehr et al., 2010,Baysan et al., 2012,Yilmaz et al., 2012]. While most of these works

concluded in the existence of a CIMP in different cancers, other studies did not yield the

same conclusions [Bae et al., 2004,Anacleto et al., 2005], and the genes whose promoter

CGI methylation are considered to define the CIMP differ between studies. This raises

the question of whether the CIMP is tissue specific or is a universal phenomenon with

common biological causes affecting common genes across cancers. A recent review of

CIMP-related studies across different cancers pointed out the diversity of methods and

measurement technologies used to define CIMP, which hinders the establishment of a

molecular basis for CIMP in spite of growing evidence linking mutations in specific genes

and CIMP in several cancers [Hughes et al., 2013].

In the present study, we investigate the existence and universality of CIMP by performing

a systematic genome-wide methylation analyse on several large datasets of different

cancer types simultaneously. We propose a simple methodology to assess the existence

of a CIMP phenotype in each cancer, and to identify a set of genes whose promoter

methylation is a marker for the CIMP. This allows us to compare the different cancer

types in search for a cross-cancer CIMP signature, and to analyze the link between

CIMP and gene expression in different cancers. Finally, we assess the clinical relevance

of CIMP on the overall survival.

5.4 Material and Methods

5.4.1 Patients Selection

All data were retrieved from the TCGA data portal. We selected samples from bladder,

breast, colon, lung and gastric adenocarcinomas because large matched datasets were

available for methylation, gene expression and mutation profiles. Moreover, all these

tissues were previously reported to exhibit a methylator phenotype. The datasets are
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detailed in 5.1 and the different institutions that released the data are mentioned in the

acknowledgement section.

Table 5.1: Patients Dataset. Original dataset sizes for methylation (Meth), gene
expression (GE) and mutation profiles for cancerous tissues. The “Matched” column
represents the number of available samples both methylation and gene expression pro-

files.

Meth GE Meth/GE Meth/Mutations

Bladder 373 56 43 28
Breast 626 778 478 468
Colon 291 193 34 219
Lung 452 125 82 411

Stomach 338 373 309 199

Overall 2090 1525 941 1325

5.4.2 Methylation profiling

Methylation profiles were retrieved from level 2 TCGA data. They were obtained with

the Illumina HumanMethylation450K DNA Analysis BeadChip assay, which is based

on genotyping of bisulfite-converted genomic DNA at individual CpG-sites to provide a

quantitative measure of DNA methylation [Bibikova et al., 2011]. Following hybridiza-

tion, the methylation value for a specific probe was calculated as the ratio M/(M + U)

where M is the methylated signal intensity and U is the unmethylated signal intensity.

485,577 CpG methylation levels, associated with 27,176 CGIs and 21,231 genes, were

measured as such accross the genome.

Following [Irizarry et al., 2009], we considered not only the CGI methylation profile but

also included in the analysis proximal regions in the near vicinity (up to 4kb), namely

the CGI Shores and Shelves regions in a general CGI+SS methylation profile.

5.4.3 Gene expression profiling

Gene expression profiles were retrieved from level 3 TCGA data. They were obtained

from the Illumina HiSeq RNASeq technology and processed following [Mortazavi et al.,

2008].

5.4.4 Mutation profiling

Mutations profiles were retrieved from somatic mutations profiles from level 2 TCGA

data obtained through whole exome sequencing.
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5.4.5 CIMP analysis

To assess the existence of CIMP, we performed Ward hierarchical clustering using eu-

clidean distance. Robustness of the clustering was obtained through consensus cluster-

ing [Monti et al., 2003].

Table 5.2: CIMP Proportion.

Negative Positive Ratio

Bladder 262 111 30%
Breast 509 117 19%
Colon 232 59 20%
Lung 136 316 70%

Stomach 144 194 57%

Overall 1283 797 38%

5.4.6 Predicting CIMP status from gene expression profiles

To predict CIMP using gene expression profiles, we perform logistic regression using a

lasso penalty [Tibshirani, 1996] with different settings.

5.4.7 Tissue-specific lasso

We first perform standard logistic regression using lasso to predict CIMP status using

a small list of gene expression profiles for each tissue separately. Accuracy is calculated

through 3-fold cross-validation averaged over 100 repeats.

5.4.8 Combined Lasso

For the “Combined Lasso”, we pool all the samples into a single dataset independently

of their tissue of origin. For cross-validation, we separate samples into training and

testing by keeping a balanced proportion of samples from each tissues.

5.4.9 Group Lasso

For the “Group Lasso”, we predict the CIMP as described below. For sample i belonging

to tissue k, we assume that the conditional probability pβk
(xi) = Pβ(Y = 1|xi) follows

5.1.

ηβk
(xi) = β0

k + (xki )
Tβk (5.1)
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with

ηβk
(xi) = log

(

pβk
(xi)

1− pβk
(xi)

)

(5.2)

The logistic lasso estimator β̂k
λ verifies 5.3:

β̂k
λ = argmin {−l(β) + λ∥β∥1} (5.3)

where l is the log-likelihood function:

l(β) =
∑

yi ∗ ηβk
(xi)− log[1 + exp(ηβk

(xi))] (5.4)

To increase the statistical power and given the similarity of the different prediction tasks,

we combine the different datasets into a single prediction task as follow:

The vector of output y ∈ R
p is given by:

yT = (y11, · · · , y
1
n1
, · · · · · · , yk1 , · · · , y

k
nk
)T (5.5)

where yki is the CIMP status for patient i in tissue k.

And the combined design matrix X is given by:

X =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

X1 0 · · · 0

0 X2 · · · 0
... · · ·

...

0 0 · · · Xn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5.6)

where Xi ∈ R
ni×pK is the gene expression profile matrix of the p genes for the ith tissue

dataset of size ni and K is the number of tissues considered.

We performed group-lasso logistic regression following [Meier et al., 2008] with the groups

defined as the set of features corresponding to a given gene for each tissue that is we

optimize

β̂
group
λ = argmin

⎧

⎨

⎩

−l(β) + λ

G
∑

g=1

∥βg∥2

⎫

⎬

⎭

(5.7)
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where

G :=

{

gi = (ei, ei+p, · · · , ei+(K−1)p) ∀i ∈ [1; p]

}

(5.8)

and (ei) ∈ R
pK is the vector of zeros except for feature i.

Given the imbalanced proportion of CIMP in each datasets, we defined the “random”

predictor as a predictor that always predicts the majority class. The statistical signifi-

cance of a gene expression based predictor over the “random” predictor was calculated

using a Student t-test.

To determine the genetic predictive signature, genes were ranked in their frequency in

appearing in the optimal lasso estimator signature averaged over the different folds and

repeats [Meinshausen and Bühlmann, 2008]. Genes which frequency was superior to

50% were selected.

5.4.10 Survival analysis

Overall survival was estimated using the Kaplan-Meier method [Kaplan and Meier,

1958] to compare the survival between CIMP positive and CIMP negative tumors. A

multivariate Cox proportional hazards regression model [Cox and Oakes, 1984] was also

fitted.

5.5 Results

A cross-cancer CIMP signature

We first assess with a common methodology whether a CIMP can be detected on different

cancers, and whether CIMP in different cancers share a common signature in terms of

which gene promoters are hypermethylated in CIMP positive patients. For that purpose,

we collected high-density methylation datasets from the cancer genome atlas (TCGA)

data portal providing more than 485,000 CpG methylation levels for more than 2,000

samples from five tissues of origin: bladder, breast, colon, lung and stomach (Table 5.1).

For each sample, we aggregate the methylation levels of CpG probes by CGI, including

the CGI itself and its shores and shelves, resulting in a single methylation level for each

of 21,176 CGIs in each sample.
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A CIMP corresponds to the joint hypermethylation of a subset of CGIs in a subset

of samples [Toyota et al., 1999a]. To characterize from whole-genome methylation data

whether a CIMP exists for a cancer, and which CGIs characterize it, we follow a standard

methodology: (i) select the 5% most variant CGIs in the set of samples, which we call

the CIMP signature, and (ii) check by unsupervised classification whether the samples

cluster into two main clusters (CIMP positive and negative clusters) when we restrict

them to the methylation values they take on the CGIs in the CIMP signature.

We apply this methodology to each of the five families of tumors, cutting the tree

obtained by hierarchical clustering to two clusters in order to enforce a classification of

all samples into two subgroups based on the methylation of CGIs in the CIMP signature.

Interestingly, in all five cases, one of the two clusters is clearly characterized by an

overall hypermethylation of most CGIs in the signature compared to the second cluster,

allowing us to characterize it as the CIMP positive cluster, the second one being the

CIMP negative cluster (5.1). The proportion of CIMP positive samples according to this

definition varies from about 20% for breast and colon cancers to 30% for bladder and

about 60% and 70% for stomach and lung cancers respectively (Table 5.2). Proportion of

the CIMP-positive group in each tissue is similar to previously reported studies [Hughes

et al., 2013]. Varying the size of the CIMP signature from 1% to 10% of all CGIs had a

small impact on the clustering stability (5.2).

Comparing the epigenetic signatures that defines CIMP for each tissue, we find a com-

mon set of 89 CGIs associated with 51 genes (Figure 5.3, panel B). If the signatures were

random subsets of 5% of all CGIs independent from each other, the overlap would con-

tain on average (5%)5 ≃ 3.10−5% of all CGIs, namely 0.006 CGI. This provides a strong

evidence that a common set of genes is involved in CIMP in different cancers. We call

these 89 CGIs the cross-cancer CIMP signature (Table 5.3). A hierarchical clustering

on all samples restricted to this cross-cancer CIMP signature is able to cluster CIMP-

positive and CIMP-negative patients independently of the tissue of origin (Figure 5.3,

panel A), suggesting that CIMP observed in each individual cancer share in common a

significant proportion of genes whose promoter CGIs are hypermethylated in all CIMP

positive cancers. A functional enrichment analysis of the cross-cancer CIMP signature

reveals that it is significantly enriched in genes involved in cell differentiation, neuronal

developmental and immune response processes (Figure 5.3, panel C).

5.5.1 Are there 2 or 3 CIMP classes?

Several studies suggest the existence of a third class in CIMP phenotype that corresponds

to an intermediate level of methylation [Ogino et al., 2006, Shen et al., 2007, Hinoue
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Figure 5.1: Methylation profiles hierarchical clustering for each tissue based
on the most variant probes. Heatmaps range from hypomethylated (blue) to hyper-
methylated (yellow). The column colorbar represents the CIMP assignment (yellow=
CIMP-positive, blue= CIMP-negative). Panel A. Bladder Panel B. Breast Panel C.

Colon Panel D. Lung Panel E. Stomach.
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Figure 5.2: Stability of CIMP clusters given the proportion of variant CGIs.
Robustness of cluster assignment for each sample (columns) as a function of the pro-
portion of variant CGIs considered from 1 to 10 % (rows) and given the number of
CIMP clusters considered (left panels: K=2, right panels: K=3, yellow=CIMP-positive,
blue=CIMP-negative, black=CIMP-low) for bladder (panel A/B), breast (panel C/D),
colon (panel E/F), lung (panel G/H), stomach (panel I/J). Panel K. Table summa-
rizing the stability of the cluster assignments for each tissue and different number of

CIMP clusters considered.
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Figure 5.3: Universal epigenetic signature for CIMP.
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Table 5.3: List of genes associated with the common set of CGIs that define
CIMP in each tissue.

LOC339524, GSTM1, CD1D, LMX1A
CACNA1E ,NR5A2, WNT3A, GNG4
EMX1, CTNNA2 ,LRRTM1, DLX1
EVX2, HOXD13, GBX2, SYN2
HAND2, NBLA00301, EBF1, HIST1H2BB

Epigenetic HIST1H3C, HLA-DRB1, C6orf186, IKZF1
Signature p16, HMX3, KNDC1, KLHL35

HOTAIR, SLC6A15, ALX1, RFX4
CLDN10, ADCY4, RIPK3, NID2
OTX2, OTX2OS1, GSC, KIF26A
GREM1, SEC14L5, HS3ST3B1, IGF2BP1
HOOK2, NFIX, ZNF577, ZNF649
CPXM1, CDH22, CHRNA4

et al., 2012]. While we enforced an analysis with 2 classes to define the CIMP of each

sample as positive or negative in the previous section, we now examine whether the

data call for a third class. Following [Monti et al., 2003], we assess the existence of an

intermediate CIMP phenotype for each tissue by comparing the increase in empirical

cumulative distributive distribution ∆(K) for different values of K = 2, . . . , 5 where K

is the number of clusters considered for CIMP.

Figure 5.4 shows how ∆(K) varies as a function of K for each cancer, suggesting how

many clusters exist in each case. We observe that the existence of a third class is not

clear-cut. While colon and breast tissues show a significant increase in ∆(K) for K = 3

suggesting a possible third cluster in CIMP, bladder is flat between 2 and 3 clusters,

while lung and gastric cancers do not support the presence of 3 classes. In addition,

we assess the stability of 3 clusters by varying the number of CGIs that define CIMP

and observed that while CIMP clusters are highly robust for K = 2, there is some high

variability in the cluster definitions for K = 3 (5.2). In summary, the presence of 2

clusters is well supported by the data in all cancers, while the third cluster is much more

debatable.

5.5.2 Similar gene expression variations are predictive of CIMP.

To shed light on the relationship between methylation and transcription, we now assess

to what extent a transcriptomic signature can classify the samples as CIMP positive or

negative. For that purpose, we collected for each family of cancer samples with both

methylation and gene expression data available, leading to a subset of samples with an

overall proportion of CIMP positive samples comparable to that of the original dataset
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Figure 5.4: Stability of CIMP given the number of clusters.

(Table 5.4). We measure by cross-validation how well expression data alone can recover

the two CIMP classes.

Table 5.4: Matched Meth/GE samples CIMP Proportion.

Negative Positive Ratio

Bladder 27 16 37%
Breast 385 93 20%
Colon 27 7 20%
Lung 22 60 75%

Stomach 131 178 58%

Overall 592 354 37%

We first perform a multivariate regression analysis using the lasso technique to assess

whether gene expression of a few genes can be predictive of the CIMP status for each

tissue separately. The cross-validation accuracies for each family of cancer are shown

in Table 5.5. We observe that while a classifier based on gene expression performs sig-

nificantly better than random to recover CIMP positive samples in breast, lung and

stomach cancers, the performance on bladder and colon is not different from a random

classifier. Moreover, we compare the lists of genes selected in the transcriptomic signa-

ture after bootstrap resampling of the samples in order to assess their robustness and

potential biological significance (Figure 5.5, panel C). We observe that very few genes

are robustly selected in the signatures, and in particular that no gene is associated with
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BLCA-CIMP and COAD-CIMP prediction in more than 15% of the bootstrap resam-

pling. In addition, the transcriptomic signatures of different cancers are very diverse,

and no gene is present in all of them (Figure 5.5, panel B). Overall, these results suggest

that there is information in the transcriptome related to the CIMP status, but that a

robust signature across cancers is difficult to obtain.

BLCA BRCA COAD LUAD STAD sso
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Figure 5.5: Gene expression variations predictive of CIMP. Panel A. Distri-
bution of the accuracy of the CIMP-phenotype prediction task given the patient gene
expression profile using n = 100 bootstrap and 3-fold cross-validation for several meth-
ods (pink= “tissue-specific” lasso, green= “Combined-Lasso”, blue= “Group-Lasso”,
red star= random prediction). Panel B. Venn diagram of the tissue-specific gene sig-
natures using lasso for each tissue separately. Panel C. Venn diagram representing
the intersection between the “Combined” and “Group” lasso gene signatures. Panel
D. Stability of each gene signature for each tissue-specific CIMP prediction as well
as the “Combined-Lasso” and the “Group-Lasso” CIMP prediction task obtained and
ranked by frequency of appearance using bootstrap (n = 100 repeats). For bladder
and colon CIMP prediction task, the signature was non robust (frequency of the most
redundant gene inferior to 10%). The combined prediction task signature outperforms

the tissue-specific signatures in robustness.
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Table 5.5: Accuracy of CIMP prediction using gene expression profiles.

Accuracy

Random Lasso Group Lasso

Bladder 62.8 62.9 (p=1) 72.1 (p≤ 2.10−16)
Breast 80.5 83.9 (p≤ 2.10−16) 85.5 (p≤ 2.10−16)
Colon 79.4 79.5 (p=1) 94.2 (p≤ 2.10−16)
Lung 73.2 84.2 (p≤ 2.10−16) 86.6 (p≤ 2.10−16)

Stomach 57.6 81.2 (p≤ 2.10−16) 84.8 (p≤ 2.10−16)

Overall 71.9 82.4 85

However, the poor accuracy as well as the non-robustness of genetic signatures to predict

CIMP may be due to the small size of some datasets (nBLCA = 43, nCOAD = 34). To

overcome the lack of statistical power due to small sample size, we combine in a second

analysis the different datasets into a single multivariate regression analysis, based on the

assumption that the CIMP signatures of different cancers may share the same genes. We

train classifiers to predict CIMP status from gene expression data jointly across cancers

using two methods, based on two different assumptions: (i) assuming that all tissues

share the same gene signature and coefficients for the prediction task, we run a single

Lasso classification on the combined datasets (“Combined-Lasso” prediction) or (ii)

assuming that all tissues share the same gene signature but with different coefficients, we

jointly train several models with a group Lasso approach to constrain the selected genes

to be the same across cancers without imposing their coefficients to coincide (“Group-

Lasso” prediction). The rationale for the group lasso approach is that while CIMP may

be caused by a common subset of genes, but their impact may vary between tissues. Our

results show that both methods significantly outperforms the tissue-specific predictions

(P ≤ 2.10−16, Figure 5.5 panel A, 5.6) in particular for bladder and colon where the

size of the initial datasets could not give sufficient statistical power to predict CIMP

accurately. There is overall little difference between both methods, with the notable

exception of lung cancer where the combined lasso approach is significantly worse than

the group lasso (and even the single lasso) model, suggesting that in that case the weights

of the genes in the CIMP signature may differ from other cancers. More importantly,

each method allows to identify a common genetic signature (51 genes for the “Combined”

prediction and 58 genes for the “Group-Lasso” prediction) that distinguishes CIMP-

positive and CIMP-negative class for each tumors which is more robust than all the

tissue-specific signatures (Figure 5.5 panel C). In addition, these signatures share a

large common set of genes (25 common genes). We perform gene ontology analysis on

the intersection of the two predictive gene signatures and find specific enrichment only

for genetic regulatory processes.
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Table 5.6: Intersection of the genetic signatures for “Combined-Lasso” and
“Group-Lasso” predictive of CIMP ranked by decreasing level of robustness.

ZIC2, AMH, ZNF300,LHX1,
MLF1, ZIC3, XKR9,TNNT1,

Over expressed TNNT1, CAMK2N2,PCDHB9, RAET1K,
HIST1H2AB, C2CD4C, FBXL20, FBXL20,
TFCP2L1, LDHC

MAGEC2, ZNF300,SLC15A1,TSPYL5,
MLF1, ZIC3, GATA2, MAGEA12,

Under expressed LOC441666, MAGEA2, LOC389493, H2AFY2,
FBXL20, TFCP2L1, LDHC, TFCP2L1,
LDHC

5.5.3 A genetic signature is associated to CIMP only for colon and

gastric cancers

Several somatic mutations have been found to be tightly associated with epigenetic aber-

rations in CIMP. Recent studies have pointed out the causal role of IDH1 mutations in

Glioblastoma-CIMP [Noushmehr et al., 2010,Yilmaz et al., 2012] and tight associations

between IDH2 and TET2 mutations with other CIMPs (leukemia [Figueroa et al., 2010],

enchondroma and spindle cell hemangioma [Amary et al., 2011,Pansuriya et al., 2011]).

In colon, BRAF and KRAS mutations are associated with microsatellite instability and

COAD-CIMP [Weisenberger et al., 2006].

We re-assess the association between mutations in these genes and CIMP in the different

types of cancers (Figure 5.6, panel A). We recover a strong association between BRAF

mutation and CIMP-positive colon tumors but no specific association with other tumor

types. We also find no coordinated association between IDH1, IDH2, KRAS, BRAF

or TET2 mutations and CIMP phenotypes for all tissues. In addition we perform

genome-wide mutation analysis to assess whether specific gene mutations are associated

with CIMP. We find no significant gene mutation association for bladder, breast nor

lung CIMPs. For colon and gastric cancer, we find respectively 459 and 1070 gene

mutations associated with CIMP with a common intersection of 195 genes (5.7). Gene

ontology analysis of this set of genes shows significant enrichment for extracellular matrix

organization and cell adhesion but also neuronal developmental processes (5.7).

Finally, we also look at the rate of mutations in each tissue given the CIMP phenotype.

We observe a significant association between the number of mutations and the CIMP

status for colon and gastric cancer (Figure 5.6 panel B), in accordance with the tight

association between CIMP and microsatellite instability for these two tissues [Herman

et al., 1998,Weisenberger et al., 2006,Jones et al., 2012,Zang et al., 2012]. However, the

same observation could not be made for bladder, breast and lung.
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A.

B.

Figure 5.6: Analysis of a genetic signature associated with CIMP. Panel
A. Association between specific mutations (IDH1, IDH2, BRAF and KRAS ) with the
CIMP phenotype for all tissues Panel B. Significantly higher mutation rate for CIMP
positive tumors is observed for colon and gastric cancers only and is concordant with

CIMP association with microsatellite instability for these tissues.
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A.

B.

Figure 5.7: Comparison of genetic signatures associated with CIMP for
colon and gastric cancers. Panel A. Venn diagram showing the intersection be-
tween the list of genetic mutations significantly associated with CIMP for colon and
gastric cancers. Panel B. Gene ontology analysis of the common genetic signature

associated with CIMP.
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5.5.4 Clinical impact of CIMP.

Survival analysis in several CIMP studies has often shown distinct outcome between

CIMP positive and negative tumors. However, there is no consensus in the general sur-

vival associated with CIMP: while CIMP has been associated with improved survival

and lower risk of metastasis in breast [Fang et al., 2011], colorectal [Weisenberger et al.,

2006], leukemia [Toyota et al., 2001,Garcia-Manero et al., 2002, Roman-Gomez et al.,

2005,Roman-Gomez et al., 2006] or gliomas [Noushmehr et al., 2010], it has also been re-

portedly associated with poor survival for bladder [Maruyama et al., 2001], lung [Suzuki

et al., 2006,Liu et al., 2008] or prostate cancers [Maruyama et al., 2002], and prognosis

even remains unclear for gastric cancers [Toyota et al., 1999b,Oue et al., 2003,Kim et al.,

2003,Etoh et al., 2004,Kusano et al., 2006].

We perform a systematic survival analysis on the different tissues to assess the clinical

impact of CIMP. However, we observe no significant association between CIMP and

survival, in any of the tissues (Table 5.7 and 5.8).

Table 5.7: Clinical impact of CIMP. Overall survival proportion given the CIMP
phenotype and the p-value associated with the survival analysis (logrank test).

Tissue Event P-value
CIMP- CIMP+

BLCA 47/214 21/96 0.74
BRCA 29/495 9/114 0.20
COAD 28/218 6/54 0.57
LUAD 24/127 67/295 0.49
STAD 26/141 20/193 0.29

5.6 Discussion

CIMP has been thoroughly studied over the past few years in several tissue types but the

heterogeneity of the methods and measurement technologies has hindered the assessment

of a common epigenetic and genetic signature predictive of CIMP across all cancer

sites [Hughes et al., 2013]. In the present study, we analyze a large dataset of over 2,000

tumor methylation profiles measured with a single technology from 5 different tissues

types. We observe a universal epigenetic signature that defines CIMP independently

from the tissue of origin, which might suggest a common molecular basis to CIMP across

tissues. Genes associated with these CGIs are enriched in several biological pathways

linked to organ development, and include several interesting genes such as CDKN2A

coding for p16, a well-characterized tumor suppressor protein [Nobori et al., 1994], which

is aberrantly hypermethylated in CIMP positive tumors and might contribute to tumor
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A. B.

C. D.

E.

Figure 5.8: Clinical impact of CIMP on the patient survival. Panel A.
Bladder Panel B. Breast Panel C. Colon Panel D. Lung Panel E. Stomach.
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development. Other genes present in the cross-cancer CIMP signature such as HOTAIR,

which is known to reprogram the chromatin state and is associated with breast cancer

metastasis [Gupta et al., 2010], might on the contrary be repressed in CIMP tumors and

be linked with a better prognosis for breast cancerous patients. GREM1 is another gene

present in the CIMP signature and is associated with tumor cell proliferation [Sneddon

et al., 2006]. Less documented genes present in the CIMP signature could potentially

be investigated for a biological validation of their role in tumor development.

Recent studies have pointed out that epigenetic aberrations could be derived from ge-

netic aberrations [Reddington et al., 2014]. By combining the different datasets into a

single prediction task, we are able to identify a common set of genes whose expression

levels can predict the CIMP status for each tissue. This gene list is enriched mostly

in genetic regulatory pathways, suggesting that the epigenetic reprogramming and thus

CIMP might be an intermediate step in the regulatory mechanism. Among the genes

contained in the signature, ZIC2, which is robustly selected in each bootstrap of the

CIMP prediction task and is significantly more expressed in CIMP positive tumors for

each tissue, has been known to act as a Wnt/β-catenin signalling inhibitor [Pourebrahim

et al., 2011] which is usually upregulated in several cancers. Another interesting charac-

teristic of this genetic predictive signature from a clinical point of view is the recurrence

of cancer/testis antigens (CTAs) such as MAGEC2 [von Boehmer et al., 2011, Yang

et al., 2014,Reinhard et al., 2014], MAGEA12 [Heidecker et al., 2000,Mollaoglu et al.,

2008], MAGEA2 [Peche et al., 2012], LDHC [Tang and Goldberg, 2009], which are in-

teresting targets for cancer immunotherapy [Scanlan et al., 2002] and are consistently

under-expressed in CIMP positive tumors. Recently Gevaert et al. [Gevaert, 2015] also

showed a strong association between MAGEA4 hypomethylation and CIMP positive

tumors which further supports the link between CTAs and the absence of a methylator

phenotype.

Mutation analyses are not very conclusive in defining a set of specific somatic mutations

significantly associated with CIMP. In particular, lowly mutated cancer sites such as

bladder, breast or even lung do not show any mutations significantly associated with

CIMP. For highly mutated cancer sites such as colon or stomach, our results confirm

a strong association between BRAF mutation and COAD-CIMP [Weisenberger et al.,

2006] but do not show any particular associations with IDH1/2, which have been re-

ported to be causal in gliomas and leukemia [Yilmaz et al., 2012,Figueroa et al., 2010].

There is a strong association between COAD and STAD-CIMP, and the specific mu-

tations of genes related with extracellular matrix and cell adhesion, both reported to

be strongly associated with metastasis [Gilkes et al., 2014, Lu et al., 2012,Bendas and

Borsig, 2012,Okegawa et al., 2004]. Interestingly, neuronal developmental processes are

highly enriched but affecting different genes from the universal epigenetic signature.
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Associations with neuronal development were already mentioned in [Noushmehr et al.,

2010].

Studies have often reported a clear distinct clinical prognosis associated with CIMP

[Fang et al., 2011,Weisenberger et al., 2006,Toyota et al., 2001,Noushmehr et al., 2010].

This reiterates that a main reason for defining CIMP in each tissue site is its potential

use as a prognosis marker. However, CIMP could be associated with a good or bad

prognosis depending on the type of tumors. In the current study, we do not observe a

significant association with any good nor bad prognosis linked with CIMP.

5.7 Conclusion

This meta-analysis of more than 2,000 samples sheds new light on CIMP across cancers,

its link with gene expression, and its clinical relevance. We found strong evidence that a

panel of genes, which we call the pan-cancer CIMP signature, is involved simultaneously

in the establishment of the CIMP in various cancer sites, which might be an indicator

of a universal biological process behind CIMP. We found that differences in the CIMP

status of a sample is associated to differences in the transcriptome, and also found a core

set of genes whose expression levels differentiates CIMP positive and negative samples,

in all cancers studied. Finally, we found little evidence of association between CIMP and

mutations, except for the well-known BRAF mutation in colon cancer, and also little

association with patient survival.





Chapter 6

Discussion

The main objective of the projects developed in this thesis is the use of computational

tools to describe a biological phenomenon. We focused on the role of epigenetics, more

precisely DNA methylation, and its entanglement with other biological sources such as

gene expression, copy-number or mutations. For that, the use of prior information is

critical to conform to the current biological knowledge but also to reduce the complexity

of the problem. Rigourous approaches thus allow to formalize the extent of the validity

of a biological hypothesis but also to generalize to the whole genome a gene-specific

observation.

6.1 “DNA methylation in cancer: too much, but also too

little” . . . and more.

The initial observation from Gardiner-Garden and Frommer [Gardiner-Garden and From-

mer, 1987] on the role of DNA methylation in mammals has brought a lot of attention

on the study of CpG Islands. The study showed that these small regions with high G+C

content and generally located close to the promoter region of genes, could be linked with

transcriptional and post-transcriptional repression of gene expression.

Ten years ago, Ehrlich [Ehrlich, 2002] reviewed in “DNA methylation in cancer: too

much, but also too little” the role of DNA methylation in cancer. She brought the

attention in particular on the fact that researchers were at that time too focused on

aberrant targeted hypermethylation of CpG Islands in cancer and were probably missing

out on the critical role of global hypomethylation in cancer.

More recently, Irizarry et al. [Irizarry et al., 2009] confronted the original assumption that

CpG Island methylation was the most important epigenetic feature in gene regulation
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and identified neighboring but non-CGI regions for which DNA methylation had an even

higher association with transcription.

Finally, Sproul et al. [Sproul et al., 2011] revisited the role of DNA methylation in gene

transcriptional regulation and suggested that the initial postulate might not always be

true.

The evolution of the scientific community knowledge regarding epigenetics, reviewed

here, is characteristic of the subtle trade-off between introducing bias and aiding the

computational task.

6.2 “All models are wrong but are some of them actually

useful?”.

As previously discussed, the technological breakthroughs in biology have accelerated the

acquisition of large datasets. Yet, although we can have access to millions of genomic

features about a patient, we are still limited by the small number of patients. From a

statistical point of view, it is important to make specific assumptions about the data in

order to reduce the complexity of the problem. Here, we discuss how relevant it is to

make valid biological assumptions about the data and how this can actually affect our

results.

In Chapter 3, we used biological properties of DNA methylation, that is the robustness

of DNA measurements, in comparison to RNA, and its stability over time, to develop

a surrogate marker of the clonality between cells. This straightforward analysis has

potentially important implications in the patients therapeutic strategies and illustrate

the direct impact of computational tools to the clinic.

However, the other chapters do not share the same straightforwardness in the results.

In Chapter 4, we confront the original postulate regarding the causal role of methylation

challenged by Sproul et al. [Sproul et al., 2011]. Our results support the original postulate

to some extent:

• The relationship between methylation and gene expression is more complex than

originally stipulated.

• There is a poor generalization to the whole-genome.

In addition, we can quickly check for new hypotheses:
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• How does genome-wide methylation impacts a single gene expression instead of

simply its promoter methylation?

• How related is the level of regulation between normal and cancerous tissues?

Chapter 5 is also related to the validation of a biological observation. The hyperme-

thylator phenotype was observed in several cancer but there was no causal biological

phenomenon common to tissue specific phenotypes. We showed that adapted regres-

sion techniques using similarity between datasets could circumvent the instability of

predictive signatures.

While bioinformatics will not replace biological validation, there is an important contri-

bution related to guiding the focus of future experiments. In return, biological knowledge

allows to adapt generic models to tackle the n ! p issue.

6.3 Perspectives in the use of computational tools for epi-

genetics and biology.

In this last section, we discuss the relevant perspectives to computational analysis in

particular for epigenetics. During this thesis, we focused on the validation and general-

ization of biological phenomena using statistical methods. The recent problematics that

arose in biology provide future directions to our results:

Tumor heterogeneity. Clonality between cells as discussed in Chapter 3 do not take

into account the existence of several subclones. New methods to combine a deconvolution

problem with clonality assessment could allow to discuss the evolution of tumor cells

from its diagnosis to its relapse and help characterize the patients response to specific

treatments.

Alternative splicing. The existence of orphan CGIs and more generally of non-CGI

DNA methylation could be related to more subtle transcriptional regulatory mechanisms

than those discussed in Chapter 4. Alternative splicing is an ongoing research subject

that could benefit from methylation information.

Long Range epigenetic regulation. Several studies suggest the importance of

DNA methylation for long range activation or repression of genes. This could relate
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to the 3D structure of the DNA generally not taken into account in longitudinal stud-

ies. While the 3D structure reconstruction of the DNA is still an ongoing topic, the

integration of such knowledge into further epigenetic analyses could prove useful.
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