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Chapter 1

Introduction

In this Ph.D. thesis we study theoretically light scattering and emission by dense, disor-
dered, and resonant systems. More speci�cally, we study (1) light scattering by a dense
cloud of cold atoms, and (2) light emission by a dense �lm of quantum dots that is coupled
to a plasmonic metasurface. This Ph.D. project is part of a collaboration between the group
of prof. dr. Jean-Jacques Gre�et and the group of dr. Antoine Browaeys. Both groups are
part of Laboratoire Charles Fabry at Institut d'Optique in Palaiseau (France). The group
of Browaeys has conducted experimental research on resonant light scattering from clouds
of cold rubidium-87 atoms. This work concerns the same atomic systems, but the study is
theoretical.

In this �rst chapter we introduce the main topics of interest of this Ph.D. thesis.

1.1 Light scattering

Light scattering is the physical phenomenon of the de�ection of light due to the encounter
of an object. Some examples of everyday situations where light scattering occurs are: light
scattering by molecules in the sky, re�ection of light by a rough surface, and light scattering
by milk. These examples illustrate that the consequences of light scattering are experienced
by everyone on a daily basis.

Although light scattering is perceived by everyone and there exists extensive literature
of this topic, there is still a lot of research going on in the �eld of light scattering from
random media. When we consider light scattering from disordered media, we realize there
are actually many di�erent regimes of light scattering. Each regime is characterized by a
set of parameters. Examples of such parameters are: (1) resonant or non-resonant light
scattering, (2) the size of the scatterers, (3) the density of scatterers, (4) the size of the
ensemble of scatterers, (5) elastic or inelastic scattering, (6) the energy level structure
of the scatterers, (7) position correlations of scatterers, (8) the oscillator strength of the
electric dipole transition, and (9) the intensity of the incident beam. The large variety of
light scattering regimes makes it an interesting topic.

We are mainly interested in the interplay between light scattering and interactions
between scatterers. The adjective �dense� in this thesis is related to the strength of these
interactions. As will become clear in Chapter 2, a cloud is considered dense for resonant light
scattering when the average inter-scatterer distance 〈r〉 < λ/(2π), where λ is the resonant
wavelength. Under this condition, the interactions between the scatterers are signi�cant
compared to the coupling between the scatterers and the vacuum electromagnetic �eld.
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1.2 Interactions lead to collective modes

Since we are interested in the e�ect of strong interactions between resonant scatterers in a
disordered ensemble on light scattering, let us �rst consider some well-known situations en-
countered in solid state physics of ordered systems in which interactions have an important
in�uence on the modes of the system.

First, we consider a one dimensional periodic chain of N atoms, each atom being able
to move around its equilibrium position. When we assume there is no interaction between
the atoms, the atoms can be considered independent. This simple model corresponds
to the Einstein model of a solid where all atoms oscillate at the same frequency. Next,
we include interactions and we assume the atomic displacement to be small, so that the
coupling between adjacent atoms can be modeled by a harmonic spring. The introduction
of an interaction leads to normal modes. The mechanical normal modes that exist in
a solid state medium are called phonons, which are collective lattice vibrations. The N
degenerate energy levels become a phonon band structure due to the interaction. The
important message here is that a collective response of the system is due to the presence
of an interaction between the individual particles. This interaction changes the way the
ensemble of particles should be studied: not as an ensemble of independent particles, but
as an ensemble of collective modes.

Similarly, the Drude model of electric conductivity treats electrons as independent parti-
cles and the electric resistivity originates from collisions of electrons on any object that they
encounter during electronic transport. It is under the introduction of electron-electron in-
teractions (Coulomb interaction) that collective mechanical excitations are predicted, called
plasmons [1]. Plasmons are normal modes of the system. Close to the plasmon frequency
the response of electrons to an external excitations strongly deviates from the Drude model
that treats electrons as independent entities. It is again the presence of interactions between
individual particles that gives rise to collective modes.

1.3 Resonant light scattering from a dense cloud of cold

atoms

Similar to the two examples given in the previous section, there exists an interaction be-
tween atoms due to light induced dipoles. This interaction is the resonant dipole-dipole
interaction. We can modify the interaction strength between atoms in two ways: either by
varying the average inter-atomic distance or by changing the frequency of the incident wave
with respect to the resonant frequency of each atom. A disordered cloud of cold atoms is
therefore an interesting platform to study the interplay between light scattering and the
interaction between the scatterers.

However, creating a strongly interacting cloud of atoms is complicated. In order to have
a strongly interacting cloud of atoms, one needs to respect the following two conditions:
(1) all atoms need to have a large dipole moment, so they all need to be resonantly excited
at the same time. Therefore, they all need to have the same resonance frequency. The
presence of the Doppler e�ect in for example a hot atomic vapor leads to a spread of the
resonance frequencies, e�ectively reducing the resonant dipole-dipole interactions. Hence,
we need a cold atomic cloud. (2) The cold atomic cloud needs to be dense, i.e., many atoms
need to be present inside a volume of λ3.
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Experimentally, it turns out to be di�cult to satisfy both conditions. It is around the
time this Ph.D. project started, October 2013, that the group of Browaeys had demon-
strated that it is possible to load a wavelength-size dipole trap with a few hundred cold
atoms, so that the atomic cloud can be considered dense according to the de�nition of
dense in this work [2�4]. By both varying the number of atoms inside the trap and the
laser frequency, we are in the position to study the transition of independent light scattering
towards scattering mediated by collective modes.

1.4 Topics of this thesis

In order to have strong interactions between dipoles, we need an atomic system where all
dipoles have a large dipole moment. By studying light scattering from dense clouds of
cold atoms, we try to satisfy this condition. However, strong interactions are themselves
believed to prevent any coherence e�ects to occur for subwavelength-size atomic systems [5,
6]. The prevention of coherence e�ects can be understood by the fact that very strong
resonant dipole-dipole interactions between atoms can change their resonance frequency.
As the atoms are randomly placed in a trap, they all experience a di�erent interaction
with the other atoms, thereby leading to strong inhomogeneous broadening. On the other
hand, we might expect that interactions generate collective modes similar to phonons or
plasmons. While these modes, called polaritons, are introduced in ordered systems, we may
expect to observe delocalized modes for random systems. Such delocalized modes would
produce spatial coherence in a disordered system. Hence, we ask ouselves the question: does
collective light scattering occur in a dense and wavelength-size cloud of cold atoms? This
question can be formulated di�erently: should a dense and cold atomic cloud be modeled
as an ensemble of independent scatterers or in terms of collective modes, even though inter-
atomic interactions can be so strong that the resonance frequency of each atom changes?

The above question is related to the question if a dense cloud of cold atoms can optically
be described by a refractive index. If such a cloud can be described by a refractive index
of refraction, light di�raction, which is intrinsically a coherence e�ect, can take place for
a wavelength-size cloud. The amount of di�racted light depends non-linearly on the index
of refraction. Similarly, if the dipole moments of the atoms are aligned and the number
of atoms increases, it is expected that the ensemble emits more than an ensemble of inde-
pendent emitters would do, due to constructive interferences between the emitted electric
�elds. We will study how the refractive index emerges as the atomic density increases and
also how collective eigenmodes of the atomic system emerge (or not). By doing so, we
will be able to study the connection between a macroscopic model (refractive index) and a
microscopic model (atoms) of the atomic cloud.

When one studies a system for which the density gradually increases, a question that
arises is how the system moves from a few atoms present in the cloud that scatter light
in all directions, towards a homogeneous particle described by an e�ective refractive index
that di�racts light. Such a problem is called a homogenization problem. A question that
will be addressed in this work can be formulated as follows: is it possible to describe the
optical response of a dense atomic cloud for resonant light scattering uniquely by an e�ective
refractive index? Another question is: is it always possible to reach the homogenization
regime by increasing the density? Whereas this seems to be the case when moving from a
dilute gas to a liquid phase, we will see that subwavelength volumes of strongly interacting
cold atoms cannot be homogenized.
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Since we are interested in the e�ects of strong resonant dipole-dipole interactions on
the optical behavior of a dense ensemble of scatterers, we will also study a dense ensemble
of quantum dots. Motivated by recent experiments performed in the group of dr. Aloyse
Degiron at the Institut d'Électronique Fondamentale, Orsay (France), we will study light
emission from a dense ensemble of quantum dots embedded in a system that was studied
in that group. In this group, they study experimentally the application of quantum dots in
quantum-dot based light-emitting devices. An important question for the modeling of these
devices is if these quantum dots could be modeled as individual quantum dots or if they
should be modeled as an ensemble for which collective modes can be de�ned. The answer
to this question has a big in�uence on the way such a quantum-dot based light-emitting
device needs to be modeled.

1.5 Content

This thesis is organized as follows: Chapter 2 describes the theory that is needed to
understand light scattering as it is treated in what follows. At the end of the chapter the
relaxation of energy in an atomic system is treated quantum mechanically. This treatment
will allow to establish a connection between (classical) evanescent waves and (quantum)
virtual photons. In Chapter 3, we will use the notions as introduced in Chapter 2 to
study theoretically the experimental results obtained by the group of Browaeys [4,7] on light
scattering from a microscopic cloud of cold rubidium-87 atoms for which strong resonant
dipole-dipole interactions are expected. From that chapter it will follow that light scattering
from a microscopic cloud containing a few hundred cold atoms occurs partially as if the
cloud were a homogeneous medium described by a refractive index. In Chapter 4 we
introduce the concept of polaritonic modes in the microscopic description of an atomic
cloud and identify these polaritonic modes with Fabry-Perot-like modes of an e�ective
particle. It follows that light scattering is dominated by only a few modes out of all
the collective modes that exist, namely the polaritonic modes. This chapter complements
Refs. [8, 9] by studying both the eigenvalues and the eigenvectors at the same time and
proving the ideas that were presented in the aforementioned works, but this time also for
dense atomic systems. InChapter 5 we will treat another aspect of light scattering, namely
�uctuations in light scattering. We ask ourselves the question if a resonant atomic system
can be homogenized, i.e., is it possible to describe the optical response of an atomic cloud
uniquely by an e�ective refractive index? This question is important for the understanding
of recent experimental works on resonant light scattering. In the last chapter, Chapter 6,
we replace the atoms by inhomogeneously broadened colloidal quantum dots. We discuss
the optical description of a dense ensemble of quantum dots: can the quantum dots be seen
as independent entities or should they be considered as being dependent. The answer to
this question is needed to develop a model for the study of electroluminescence from a dense
�lm of colloidal quantum dots placed in near vicinity of plasmonic nanoantennas [10, 11].
We propose a model to describe the coupling between quantum dots and a two-dimensional
array of plasmonic nanoantennas. The presence of this plasmonic metasurface leads to a
modi�cation of the electroluminescence signal. The proposed model of electroluminescence
is an adapted version of the conventional theory of electroluminescence from a light-emitting
diode.



Chapter 2

Classical and quantum treatment of

light scattering

In this thesis we study light scattering from an ensemble of scatterers, e.g., atoms or quan-
tum dots. In Chapter 1 we noted that there exist many regimes of light scattering. We are
interested in light scattering from strongly interacting systems, where the interaction is the
resonant dipole-dipole interaction in this work. Strong interactions may occur when scat-
terers are in the near-�eld region of each other, i.e., when the inter-particle distance is much
smaller than the wavelength of the incident wave. Due to strong resonant dipole-dipole in-
teractions in the atomic systems we study, light typically gets scattered many times before
it leaves the atomic cloud. We therefore need to consider light scattering that goes beyond
the single scattering regime, which is called multiple scattering regime. In this chapter we
introduce the necessary concepts to understand multiple scattering theory. This chapter
supports the main results that are presented in this thesis.

In Chapter 6 we will discuss the interaction between light and an ensemble of quantum
dots. As opposed to cold atoms that all have the same resonance frequency, quantum dots
are inherently inhomogeneously broadened, i.e., each quantum dot has a di�erent resonance
frequency, which is due to fabrication. Inhomogeneous broadening leads to weaker resonant
dipole-dipole interactions. The discussion about multiple scattering will allow us to de�ne
a parameter that can quantitatively distinguish both regimes of strong and weak resonant
dipole-dipole interactions, both for atoms and quantum dots.

Light scattering is an example of a topic that is of interest for both the classical and
quantum optics communities. In this chapter, we will also discuss light scattering within
the quantum optics framework. It is expected that both theories give di�erent results
for light scattering, since an electric dipole transition in quantum optics can be saturated,
which is not possible for a classical dipole. Although a dipole in quantum optics is therefore
fundamentally di�erent than one in classical optics, we will show that there is a regime in
which both classical and quantum optics predict the same results for light scattering: the
weak-excitation regime. No saturation e�ects are present in the weak-excitation regime.

In strongly interacting systems, dipoles are within each other's near �eld. It is known
from classical optics that evanescent waves exist in the near-�eld region of any dipole and
that they have a major in�uence on the classical resonant dipole-dipole interaction when
two scatterers are in each other's near �eld. From a quantum optics point of view, systems
that are in each other's vicinity are interacting via both real and virtual photons. In the
last section of this chapter, we will discuss how (classical) evanescent waves are related to
(quantum) virtual photons.
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2.1 Polarizability and electric �eld of a resonant dipole

In this section we recall the electric �eld created by an electric dipole and the optical
response of a resonant dipole upon illumination. For this, we start with a more general sit-
uation which will be useful in Chapter 6 on quantum dots embedded in an inhomogeneous
electromagnetic environment. We assume to have a continuous electromagnetic environ-
ment described by a relative permittivity or dielectric constant εr, and the presence of some
electromagnetic sources (electric dipoles, quadrupoles etc.). The sources are represented by
the polarization density distribution P̃, where the tilde indicates that the quantity has been
Fourier transformed with respect to the time variable [12]:

(∇2¯̄
1−∇∇)Ẽ(r, ω) +

ω2

c2
εr(r, ω)Ẽ(r, ω) = −µ0ω

2P̃(r, ω), (2.1)

where ω is the angular frequency, c = 1/
√
ε0µ0 the speed of light in vacuum, ε0 the

permittivity, µ0 the permeability, and P̃(r, ω) is related to the current density J by
P̃(r, ω) = (−iω)−1J̃(r, ω). From now on, we will omit the tilde above the Fourier-
transformed quantities and also the frequency variable within brackets; both are implicit in
the notation E(r). We notice that we have an inhomogeneous di�erential equation, where
the polarization density is the source of an electromagnetic �eld. The particular solution
of the di�erential equation, Eq. 2.1, is

E(r) = µ0ω
2

˚
¯̄G(r, r′)P(r′)d3r′, (2.2)

where ¯̄G(r, r′) is the solution of Eq. 2.1 with −µ0ω
2P(r) being replaced by the Dirac distri-

bution −δ(r−r′)¯̄
1. The double bar indicates that the quantity is a matrix. ¯̄G(r, r′) is called

the Green's tensor or dyadic Green's function. The Green's tensor describes the electric
�eld produced by a pointlike source. In this thesis we mainly discuss light scattering by
an ensemble of scatterers in a homogeneous medium. For a homogeneous medium with
refractive index n, the Green's tensor for r 6= r′ reads

¯̄G(r, r′) =
(

¯̄
1 +

1

k2
∇∇

)
G(r, r′), (2.3)

where

G(r, r′) =
eik|r−r

′|

4π|r− r′|
(2.4)

is the scalar Green's function, with k = nω/c. Unless stated di�erently, the scatterers are
placed in vacuum, so n = 1.

Throughout this work we consider light scattering by an ensemble of scatterers. We
assume the scatterers to be very small compared to the optical wavelength and therefore
we use the electric dipole approximation. The polarization density in Eq. 2.1 can then be
replaced by the electric dipole moment p, according to P(r) =

∑
i

piδ(r − ri), where the

subscript i indicates to which particle the dipole moment belongs.
In linear optics, the dipole moment and the electric �eld are linearly related by the

polarizability matrix ¯̄α(ω):
pi = ε0 ¯̄α(ω)E(ri), (2.5)

where the electric �eld is the total electric �eld at the position of the dipole, apart from the
self �eld, i.e., the electric �eld produced by the dipole itself and evaluated at its own position.
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In this work, the scatterers are taken to be classical scatterers and therefore isotropic (in
atomic physics a classical resonant scatterer corresponds to a J = 0 → J = 1 transition,
where J is the total angular momentum and is the sum of the spin angular momentum
S and the orbital angular momentum L). For isotropic scatterers, the polarizability is a
scalar quantity [ ¯̄α(ω) = α(ω)¯̄

1]. The classical polarizability is

α(ω) =
6πc3Γ0

ω2
0(ω2

0 − ω2 − iωΓ0)
, (2.6)

where ω0 is the angular frequency corresponding to the energy di�erence between two
energy levels and Γ0 is the spontaneous emission rate. Classically, Γ0 is related to the power
emission of an oscillating dipole [12]. When near-resonance light scattering is studied, the
approximation ω + ω0 ≈ 2ω0 can be made, which gives a commonly used form of the
polarizability

α(ω) =
3πc3Γ0

ω3
0

(
ω0 − ω − iΓ0

2

) . (2.7)

The imaginary part of the polarizability is a Lorentzian function; a function which will
often return in the next chapters. For completeness, let us note that this polarizability is
also valid for a two-level system [13]. However, the optical response of a two-level system
depends on the polarization of the electric �eld. The diagonal elements of the polarizability
matrix are therefore not the same.

2.2 Light scattering from an ensemble of scatterers

We have now the tools to classically describe light scattering from an ensemble of electric
dipoles.

2.2.1 Light scattering from a single atom

First, let us discuss light scattering from a single atom placed at position r0 = (0, 0, 0)
in vacuum. A plane wave propagating along the z axis with angular frequency ω = ck
[E(r) = Einc exp(ikz)] is incident upon that atom. From Eq. 2.5 it is seen that the induced
dipole moment is given by p = ε0α(ω)Einc. According to Eq. 2.2, the oscillating dipole
creates an electric �eld

E(r) =
ω2

c2
α(ω) ¯̄G(r,0;ω)Einc, (2.8)

where r is the observation point. The total scattered power is given by

Psc(ω) =
ω4

c4

|α(ω)|2

6π

ε0c

2
|Einc|2. (2.9)

When ω � ω0, we obtain the well-known ω4 dependence of the scattered power for Rayleigh
scattering [14,15]. However, for near-resonance light scattering (ω ≈ ω0), the presence of a
resonance in the polarizability α(ω) dramatically alters light scattering.

From the total scattered power, we can deduce the e�ective scattering cross section,
which is de�ned as

Psc(ω) = σsc(ω)|S|, (2.10)
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where S is the Poynting vector of an incident plane wave. For a plane wave |S| = ε0c/2×
|Einc|2, so that the e�ective scattering cross section is given by

σsc(ω) =
ω4

c4

|α(ω)|2

6π
. (2.11)

We note that on resonance σsc = 3λ2
0/(2π), with λ0 being the resonance wavelength. The

e�ective scattering cross section is at resonance much larger than the geometrical cross
section of a single atom.

2.2.2 Light scattering from multiple atoms

The presence of more than one scatterer makes light scattering in general more complicated.
This can be seen by replacing

P(r) =
N∑
i

pjδ(r− ri) =
N∑
i

ε0α(ω)E(rj)δ(r− ri) (2.12)

in Eq. 2.1:

(∇2¯̄
1−∇∇)E(r) +

ω2

c2
E(r) = −ω

2

c2
α(ω)

N∑
i

E(r)δ(r− ri). (2.13)

The general solution of this di�erential equation is

E(r) = Einc(r) +
ω2

c2
α(ω)

N∑
i

¯̄G(r, ri)E(ri), (2.14)

where the incident �eld Einc is a homogeneous solution of Eq. 2.13. As opposed to the
scattered electric �eld of a single atom (see Eq. 2.8), it is seen that the general solution
given by Eq. 2.14 is in implicit form. There are at least three di�erent ways of solving
this set of equations. The �rst one is by solving Eq. 2.14 numerically. This is what will be
considered in the current section. Two other ways are based on a series expansion of the
electric �eld. One expansion is called the Born series expansion. With this expansion the
electric �eld is substituted recursively in Eq. 2.14. When the recursion is stopped after
applying it once, one has applied what is called the �rst-order Born approximation. More
generally, when the recursion is stopped after n iterations, one has applied the nth-order
Born approximation. In many cases, like for light scattering from the sky, the Born series
expansion is very convenient. However, when near-resonance light scattering is concerned,
the Born series expansion is less useful, since it is a divergent series near resonance [16]. The
other series expansion we mention in this thesis is a so-called diagrammatic expansion [17].
The diagrammatic expansion leads to a perturbative solution of the scattered electric �eld
in terms of the number density of scatterers. It is based on decomposing the electric �eld
in an ensemble-averaged electric �eld and a �uctuating electric �eld. The diagrammatic
expansion allows to calculate the e�ective dielectric constant of the random medium. It
turns out that the diagrammatic expansion and the decomposition of the electric �eld lead
to a more intuitive interpretation of light scattering than both the Born expansion and the
exact solution for systems that are in the multiple scattering regime. The advantage of a
series expansion as compared to numerically �nding the solution is that it helps to create
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some physical intuition. Yet, one should be careful to know to what extent the expansion
is valid, since otherwise wrong conclusions might be drawn.

We start with looking for the exact solution of Eq. 2.13. Instead of inverting Eq. 2.14
immediately, we will pass by a set of coupled-dipole equations, since they will be useful
later in this chapter. The electric �eld in Eq. 2.5 is given by

E(ri) =
N∑

j=1,j 6=i

µ0ω
2 ¯̄G(ri, rj)pj + Einc(ri), (2.15)

where the dipole moments are the unknowns. Substitution of Eq. 2.15 into Eq. 2.5 gives a
set of coupled-dipole equations in the presence of an incident �eld

pi =
ω2

c2

N∑
j=1,j 6=i

[
α(ω) ¯̄G(ri, rj)pj

]
+ ε0α(ω)Einc(ri). (2.16)

For classical dipoles, there are 3N unknowns (N dipoles, each one having three dipole
moment components) and 3N independent equations (each dipole moment component from
each dipole has its own equation). This set of equations can be written in matrix form:

¯̄A(ω)P = ε0
3πc3Γ0

ω3
0

Einc, (2.17)

where we have de�ned

P =


p1

p2
...
pN

 ,

which should not be confused with the polarization density vector,

Einc =


Einc(r1)
Einc(r2)

...
Einc(rN)

 ,

and the matrix

¯̄A(ω) =


(ω0 − ω − iΓ0

2
)¯̄1 −3πω2cΓ0

ω3
0

¯̄G(r1, r2;ω) . . .

−3πω2cΓ0

ω3
0

¯̄G(r2, r1;ω) (ω0 − ω − iΓ0

2
)¯̄1

...
. . .

 ,

of which all submatrices are of size 3× 3. This form of ¯̄A assumes the atomic polarizability
to be given by Eq. 2.7. From this matrix equation, the vector P, which contains all dipole
moments, can be obtained by inverting the matrix ¯̄A. By solving the set of coupled-dipole
equations, we �nd the dipole moments. Once the dipole moments pi are known, the total
electric �eld can be calculated:

E(r) = µ0ω
2

N∑
i=1

¯̄G(r, ri)pi + Einc(r), for all r di�erent from ri. (2.18)
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We stress that the hereby obtained electric �eld is exact and does not introduce new
approximations to the once already given in Section 2.1: classical dipole assumption,
electric dipole approximation, the dipoles have a single resonance frequency ω0. This is as
opposed to any truncated series expansion. When a series expansion is truncated, not all
resonant dipole-dipole interactions are properly taken into account. We will brie�y discuss
this in Section 2.2.4.

In this section we described an approximate way of calculating the scattered electric
�eld by means of a Born series expansion and an exact way of solving light scattering from
an ensemble of N scatterers. In the next section we will introduce the ensemble-averaged
and �uctuating electric �eld that are necessary within the diagrammatic expansion. The
introduction of these quantities will be particularly useful in Chapter 3.

2.2.3 Introduction of ensemble-averaged and �uctuating electric

�elds

Another way of studying light scattering from a random medium follows from realizing that
random media can be decomposed in a continuous part and a �uctuating part. This idea
has profound consequences on the way we understand light scattering.

Because of the random positions of the atoms in a cloud, there exist density �uctuations
inside the gas which give rise to �uctuations of the polarization density vector P(r). For
a single realization of the atomic positions ri, the polarization density can be decomposed
into an ensemble-averaged polarization density 〈P(r)〉 and a �uctuating polarization density
δP(r): P(r) = 〈P(r)〉 + δP(r), where 〈δP(r)〉 = 0. The ensemble average 〈· · · 〉, as used
throughout this work, is an averaging of quantities that are calculated for several realizations
of the atomic cloud. For each realization, the atomic positions are changed according to a
given probability distribution. An example of a probability distribution for each coordinate
of the atom is the Gaussian distribution in the case of atoms being trapped in an optical
trap. Similar as for the polarization density vector, the electric �eld can be decomposed
into an ensemble-averaged �eld 〈E〉 and a �uctuating �eld δE: E(r) = 〈E(r)〉 + δE(r). It
can be shown that the ensemble-averaged electric �eld satis�es Helmholtz' equation with
an e�ective dielectric constant [16�20]:

∇2〈E(r)〉+ εe�(r)
ω2

c2
〈E(r)〉 = −ω

2

c2
[εe�(r)− 1]Einc(r). (2.19)

From this equation it follows that the scattered ensemble-averaged electric �eld from a
�nite-size gas of randomly positioned atoms actually gets di�racted from that �nite-size
gas which is optically described by an e�ective dielectric constant εe�. From Eq. 2.19 it
is seen that the di�racted �eld keeps the same polarization as the incident �eld. This is
in contrast to the scattered �uctuating �eld which can lose its polarization after many
scattering events due to the randomly orientated dipole moments. The �uctuating �eld
is said to have forgotten its origin. For completeness, we mention that incoherent light
scattering is governed by what is called the radiative transfer equation. The radiative
transfer equation is similar to the Boltzmann transport equation and amounts basically
on a detailed balance of scattering and absorption in a small di�erential volume element.
Incoherent light scattering occurs in all directions as opposed to coherent light scattering
that follows a di�raction pattern.
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A quantity that is measured in the lab is the power. The measured power is the time-
averaged Poynting vector integrated in the far �eld over a �nite solid angle de�ned by the
optical axis of the detection system and its numerical aperture NA:

P =

ˆ
NA

ε0c

2
|E(r)|2r2dΩ =

ε0c

2

ˆ
NA

[
|〈E(r)〉|2 + 〈|δE(r)|2〉

]
r2dΩ

≡
ˆ
NA

[Icoh(θ, ϕ) + Iincoh(θ, ϕ)]r2dΩ. (2.20)

In this equation, we have de�ned the �coherent intensity� as the energy �ow from the
ensemble-averaged electric �eld, and the �incoherent intensity� as the energy �ow from the
�uctuating �eld. This separation of intensities is very important throughout this thesis. The
coherent intensity corresponds to light that gets di�racted from an e�ective homogeneous
medium, whereas the incoherent intensity comes from light scattering by �uctuations in
the sample. We will study both coherent and incoherent light scattering in Chapter 3.

Let us brie�y discuss some di�erent terminologies for the electric �eld, where the
antonyms are given at each line:

� average � �uctuating,

� coherent � incoherent,

� collimated � di�use.

The three words on the left are synonyms, like the three words on the right. The words
average and �uctuating can be understood from the mathematical notation: 〈E〉 (average)
and δE (�uctuating). The terms coherent and incoherent are borrowed from the microwave
community, where these terms are often used. The last terms: collimated and di�use, are
known in the �eld of optics. In optics it is known that the intensity of a collimated beam
incident upon a lossless and scattering medium decays exponentially during propagation,
according to Beer-Lambert law. The power that is lost from the collimated beam is scattered
away and forms di�use light.

The way we use the words coherent and incoherent might lead to confusion between
people from the classical and quantum optics communities. In Chapter 5 of the textbook
Atom-Photon Interactions: Basic Processes and Applications, coherent and incoherent light
scattering are explained from a quantum optics perspective [21]. In that chapter, the
scattered coherent power of an atom is proportional to the square of the expectation value
of the dipole moment operator, whereas the incoherent power is proportional to the square
of the �uctuations of the dipole moment operator. The calculation of the expectation value
is done in a quantum mechanical way where the dipole moment operator is traced over all
possible states of the dipole. For us, the average is an ensemble average (=estimator of
the expectation value) over the scatterer positions and therefore fundamentally di�erent.
This is why the terms coherent and incoherent intensity are not the same in classical and
quantum optics. However, we will use the terms coherent and incoherent light scattering
often in this thesis and they are related to the classical meaning of it.

At last, let us repeat that coherent and incoherent light scattering happens di�erently.
Coherent light scattering follows a di�raction pattern, whereas incoherent light scattering
occurs in all directions. Therefore, both forms of light scattering can be measured
separately. There are at least two ways for measuring the coherent and incoherent powers
individually. A �rst way is by means of the position of the detector with respect to the
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probe beam, since coherent and incoherent light scattering do not occur in the same
directions. A second way of separately measuring both powers is by using a polarizer, since
for a strong scattering system, the di�use �eld does not have the same polarization as
the incident �eld. It is the �rst way of separately measuring the coherent and incoherent
intensities that will be discussed in the next chapter, since two di�erent experiments have
been conducted in the group of Browaeys that are based on this idea. With this, we have
illustrated qualitatively the intuitive understanding of light scattering that comes with the
decomposition of the electric �eld.

2.2.4 Beyond the mean-�eld theory of optics

In the previous section we have introduced a decomposition of the electric �eld. We have
seen that, according to Eq. 2.19, the coherent electric �eld gets di�racted from a homoge-
neous medium described by an e�ective dielectric constant.

In general, the e�ective dielectric constant of a cloud of resonant dipoles that are de-
scribed by a polarizability α depends on both α and the atomic density distribution. This
dependence can be very complicated, but it turns out that in most cases it is not. The
simplest possible relationship is [22]

εe�(ω) = 1 + ρα(ω), (2.21)

where ρ is the number density of scatterers. From solid state physics it is known that for
dense systems one needs to take into account the local-�eld correction due to the screening
of a dipole by the other dipoles surrounding it [22,23]. The relationship εe�(ω) = 1 +ρα(ω)
then turns into the Lorentz-Lorenz relation

εLL(ω)− 1

εLL(ω) + 2
=
ρα(ω)

3
, (2.22)

where we used the subscript LL to indicate that it is the e�ective dielectric constant as
given by the Lorentz-Lorenz relation. We call the situation where an ensemble-averaged
electric �eld gets di�racted by an e�ective object for which the dielectric constant satis�es
the Lorentz-Lorenz formula mean-�eld theory. Beyond mean-�eld theory is de�ned as a
system for which the dielectric constant does not satisfy Eq. 2.22. The presence of strong
resonant dipole-dipole interactions would be a possible reason that light scattering from an
atomic system should be described by beyond mean-�eld theory. Strong resonant dipole-
dipole interactions lead to dependent light scattering, which is not included in Eq. 2.22 [24].
Equation 2.22 can be generalized by including light scattering processes that involve depen-
dent light scattering processes like recurrent scattering: multiple scattering events between
the same atoms.

More generally, the following relationship holds [17, 18,20, 25]:

εe�(ω)− 1

εe�(ω) + 2
=

Σ(ω,k)

3k2
, (2.23)

where Σ is the mass operator and is in general a complicated function. For the studies we
present in this thesis, we do not need the full machinery of multiple light scattering. We
are interested in an estimate of the importance of recurrent scattering that leads to beyond
mean-�eld theory behavior of the atomic cloud [16,26,27]. An estimate for the importance



21 2.3. RELATION BETWEEN MEAN FREE PATH AND SYSTEM SIZE

of recurrent scattering can be derived from Eq. 4.106 of Ref. [16]. Recurrent scattering
becomes important for resonant scattering by a cold cloud of resonant scatterers when

9πρ

2k3
> 1. (2.24)

Similarly, it can be shown that for systems which present strong inhomogeneous broadening
(∆ω � Γ0), the condition for having recurrent scattering becomes

9πρ

8k3

( Γ0

∆ω

)2

> 1. (2.25)

In this thesis we study mainly light scattering by a cold atomic cloud which is in the
regime where mean-�eld theory fails, because of the presence of recurrent light scattering.

2.3 Relation between mean free path and system size

So far we have been discussing macroscopic bulk properties of an ensemble of scatterers.
Next, we discuss the in�uence of the size of the system on light scattering. Systems with
typical size L can either be in the single or multiple scattering regime. In the former case,
the electric �eld gets on average only scattered once inside the cloud. In the latter case,
there are more than one scattering events inside the system. A physical quantity that is
needed to distinguish both regimes is the mean free path lmfp, which is the average distance
between two successive scattering events. A system is in the single scattering regime when
lmfp & L and in the multiple scattering regime when lmfp < L. This mean free path
corresponds in an e�ective medium to the decay length of collimated light, which is de�ned
in the Beer-Lambert law by: I(z) = I(0) exp(−z/lmfp). The mean free path can be related
to the index of refraction by noting that the intensity of a beam propagating in an extended
medium with index of refraction ne� decays as: I(z) = I(0) exp(−2kn′′e�z). By comparing
both expressions for the light intensity, we �nd the relationship

lmfp(ω) = 1/[2kn′′e�(ω)]. (2.26)

It is only in a system where both εe� = 1+ρα and ρα� 1, that one can �nd the expression:
lmfp(ω) = 1/[ρσsc(ω)]. This identity is expected not to be valid in the atomic systems that
we study. However, the Beer-Lambert law is always valid for the collimated beam in an
extended medium, so also in the presence of recurrent scattering.

2.4 Energy relaxation in quantum optics

As indicated at the beginning of this chapter, we will now treat light scattering by using
quantum optics. Although a classical system corresponds in atomic physics to a transition
between a J = 0 and J = 1 state, there is a big di�erence between the quantum optical
response and the classical response of such a transition under illumination. In quantum
optics, such a transition can be saturated, i.e., there are no electrons left in the ground
state after the atom has absorbed a photon. This makes the system response nonlinear,
since a second photon cannot be absorbed after the �rst one has been absorbed. This form
of nonlinear response does not exist in classical optics. In this section we show that under
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certain conditions both classical and quantum optics have the same set of coupled-dipole
equations, which form the basis of light scattering as we have seen in Section 2.2.

In the formalism treated in this section, we assume the system to be initially excited;
so there is no driving �eld throughout the derivation. We study how such a system re-
laxes under emission of a photon. To study the atomic relaxation, one often relies on the
Weisskopf-Wigner theory to recover the exponential decay in time of a single atomic exci-
tation [28]. An extension of the theory to a system of N interacting dipoles can be found
in the work of Svidzinsky et al. [29]. In that work both the dipole moments and the electric
�eld were taken to be scalar quantities. Since for dense atomic ensembles, the near-�eld
interactions are important and need to be included, one needs to take into account the
vectorial nature of the electric �eld. This has been done in Ref. [30]. In this section we will
describe this vectorial Weisskopf-Wigner theory, since it shows the connection of a quantum
optics and classical optics description of light emission from an ensemble of emitters [29].
It serves therefore as a bridge between classical and quantum optics.

Hamiltonian In order to calculate the time evolution of a given quantum state, the
Hamiltonian is needed. The Hamiltonian Ĥ = ĤA + ĤF + ĤI contains three operators
that are related to the atom energy (ĤA), the electromagnetic �eld energy (ĤF ), and the
interaction potential (ĤI) between the dipoles and the electric �eld of the vacuum. Under
the electric dipole approximation and in the interaction picture, the total Hamiltonian is
given by:

Ĥ =
N∑
j=1

~ω0π̂
†
j π̂j +

∑
k,λ

~ωkâ†k,λâk,λ

+
∑
k,λ

N∑
j=1

gk,λ,j

[
π̂je
−iω0t + π̂†je

iω0t
]
·
[
â†k,λe

i(ωkt−k·rj) + âk,λe
−i(ωkt−k·rj)

]
, (2.27)

where π̂j = |gj〉〈ej| (π̂†j = |ej〉〈gj|) is the lowering (raising) operator for atom j; âk,λ (â†k,λ)
is the annihilation (creation) operator for the electric �eld of a plane wave with wave vector
k; λ is the polarization of the plane wave; ω0 is the atomic frequency; and ωk is the photon
frequency. The coupling strength of the dipoles to the vacuum �eld

gk,λ,j = ω0

ek,λ · p̂jpj
~

√
~

2ε0ωkV
= gk,jek,λ · pj, (2.28)

where V is the quantization volume, ωk = ck, ek,λ the polarization of the electric �eld
and p̂ the unit dipole moment vector, i.e., the polarization direction of the dipole. Very
often, the terms containing the operators π̂â and π̂†â† are neglected in quantum optics. The
common justi�cation for this approximation is that these terms lead to integrals similar to´ t

0
exp[±i(ω0 + ωk)t′]dt′. The integrand of this integral oscillates rapidly under integration

and therefore gives zero. This is in contrast with the integrands of the form exp[±i(ω0 −
ωk)t′], when ωk ≈ ω0, which originate from the terms π̂†â and π̂â†. This approximation
where ωk ≈ ω0 and therefore the terms π̂â and π̂†â† are neglected in the Hamiltonian, is
called the rotating wave approximation (RWA). In this section we will see that the RWA
cannot be applied for systems where dipoles are in each other's near-�eld region. Since we
are precisely interested in this kind of systems, we do not apply the RWA in this thesis and
therefore keep the terms π̂â and π̂†â† in the Hamiltonian.
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Wave function and its time evolution - Beyond the rotating wave approximation
The next step in calculating the time evolution of N atoms that initially share a single
atomic excitation, is de�ning the wave function. By means of Weisskopf-Wigner theory, we
will be able to derive the time evolution of the system and show under which conditions
classical and quantum optics lead to the same set of coupled-dipole equations.

In their original work, Weisskopf and Wigner studied the relaxation of a single atom
in vacuum [28]. The wave function for a single atom was chosen, within the Schrödinger
picture, to be: |Ψ(t)〉 = β(t) exp(−iω0t)|e〉|0〉 +

∑
k,λ

γk,λ(t) exp(−iωkt)|g〉|1k,λ〉, where λ in-

dicates the polarization of the plane wave with wave vector k. When the RWA is applied,
the number of excitations inside the system cannot vary in time. This wave function spans
therefore the entire vector space of functions containing a single excitation initially. In the
case of N atoms and by applying the RWA, we could similarly write the wave function as

|Ψ(t)〉 =
N∑
j=1

βj(t)|g1, · · · , ej, · · · gN〉|0〉

+
∑
k,λ

γk,λ(t)|g1, · · · , gN〉|1k,λ〉, (2.29)

where we assumed that the system has been excited initially by a single excitation. However,
we will not apply the RWA. We assume the wave function to be of the following form:

|Ψ(t)〉 =
N∑
j=1

βj(t)e
−iω0t|g1, · · · , ej, · · · gN〉|0〉

+
∑
k,λ

γk,λ(t)e
−iωkt|g1, · · · , gN〉|1k,λ〉

+
∑
m<n

∑
k,λ

αmn,k,λ(t)e
−i(2ω0+ωk)t|g1, · · · , em, · · · , en, · · · , gN〉|1k,λ〉. (2.30)

These additional states with coe�cients α are the only di�erence with the wave function
of Eq. 2.29, where the RWA has been applied. It is because of these states that we will
arrive at a di�erent solution then a derivation for which the RWA is applied. These states
are therefore important, as we will observe during the derivation of the time evolution of
the wave function. During the mathematical derivation of the time evolution of the wave
function, we will pinpoint on places where the result di�ers from a derivation that applies
the RWA.

In order to �nd the unknown coe�cients of Eq. 2.30, the Schrödinger equation is written
for the wave function given by Eq. 2.30:

Ĥ|Ψ(t)〉 = i~
d|Ψ(t)〉
dt

. (2.31)

The following step is to project the Schrödinger equation three times by di�erent wave
functions. The �rst projection is done with |g1, · · · , ej′ , · · · gN〉|0〉, the second with
|g1, · · · , gN〉|1k′,λ′〉, and the third projection with the wave function
|g1, · · · , em′ , · · · , en′ , · · · , gN〉|1k′,λ′〉. By comparing the coe�cients of the same states on
both the left- and right-hand side of Eq. 2.31, the following three di�erential equations can
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be obtained for the coe�cients:

β̇j(t) = −i
∑
k,λ

gk,λ,jγk,λ(t)e
−i(ωk−ω0)teik·rj

−i
∑
k,λ

N∑
j′=1,j′ 6=j

gk,j′αjj′,k,λ(t)e
−i(ωk+ω0)teik·r

′
j , (2.32)

γ̇k,λ(t) = −i
N∑
j=1

gk,λ,jβj(t)e
i(ωk−ω0)te−ik·rj , (2.33)

α̇mn,k,λ(t) = −igk,λ,mβn(t)ei(ωk+ω0)te−ik·rm − igk,λ,nβm(t)ei(ωk+ω0)te−ik·rn . (2.34)

Both γk(t) and αmn,k(t) are found by integrating their di�erential equations and using
the fact that there is initially only a single excitation which is in the atomic part of the
wavefunction [so γk,λ(0) = 0 and αmn,k,λ(0) = 0]

γk,λ(t) = −i
ˆ t

0

N∑
j=1

gk,λ,jβj(t
′)ei(ωk−ω0)t′e−ik·rjdt′, (2.35)

αmn,k,λ(t) = −igk,λ,n
ˆ t

0

βn(t′)ei(ωk+ω0)t′e−ik·rmdt′

−igk,λ,n
ˆ t

0

βm(t′)ei(ωk+ω0)t′e−ik·rndt′. (2.36)

Now, γ and α can be substituted in the di�erential equation for βj(t):

β̇j(t) = −
∑
k,λ

∑
j′

ˆ t

0

gk,λ,jgk,λ,j′βj′(t
′)ei(ωk−ω0)(t′−t)eik·(rj−rj′ )dt′

−
∑
k,λ

N∑
j′=1,j′ 6=j

ˆ t

0

gk,λ,jgk,λ,j′βj′(t
′)ei(ωk+ω0)(t′−t)e−ik·(rj−rj′ )dt′. (2.37)

We continue the derivation by interchanging the sum over k with the integral over time.
We will assume to have a large volume so that the discrete sum over all modes k can be
replaced by integrals (

∑
k

7→ V/(2π)3 ×
´
d3k). In our situation of atoms inside vacuum,

this is a reasonable assumption. The integrals over k becomes:
ˆ
gk,λ,jgk,λ,j′e

ick(t′−t)±ik·(rj−rj′ )d3k. (2.38)

This integral is not equal, but can be approximated by the form δ{t′ − [t− (|rj − rj′ |)/c]}.
The typical distance between atoms is chosen to be the size of the cloud R. The time
integral in Eq. 2.37 will lead to terms like βj′(t − R/c). When we assume that the decay
time of the excitation is larger than the time of �ight of a photon through the atomic cloud
(R/c), then we can assume βj′(t−R/c) 7→ βj′(t). This approximation is called the Markov
approximation. A Markovian system is said to be a memoryless system. Since the atomic
clouds that we will study have a size which is on the order of a micrometer (so R/c ∼ 10
fs), and the typical decay time is on the order of 100 ns, we have justi�ed the substitution
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βj′(t
′) 7→ βj′(t). We go back to the di�erential equation for β and make the substitution

βj′(t
′) 7→ βj′(t):

β̇j(t) = −
∑
k,λ

∑
j′

ˆ t

0

gk,λ,jgk,λ,j′e
i(ωk−ω0)(t′−t)eik·(rj−rj′ )dt′βj′(t)

−
∑
k,λ

N∑
j′=1,j′ 6=j

ˆ t

0

gk,λ,jgk,λ,j′e
i(ωk+ω0)(t′−t)e−ik·(rj−rj′ )dt′βj′(t). (2.39)

The time integral is now analytical and results in

β̇j(t) = i
∑
k,λ

∑
j′

gk,λ,jgk,λ,j′
1− e−i(ωk−ω0)t

ωk − ω0

βj′(t)e
ik·(rj−rj′ )

+i
∑
k,λ

N∑
j′=1,j′ 6=j

gk,λ,jgk,λ,j′
1− e−i(ωk+ω0)t

ωk + ω0

βj′(t)e
−ik·(rj−rj′ ). (2.40)

As an intermezzo we will discuss about the form of the di�erential equation. This form of
the di�erential equation can be rewritten in a more general form (apart from some factors)

β̇j(t) ∝
∑
m

∑
j′

〈0|〈g1, · · · , ej, · · · , gN |HI |m〉〈m|HI |g1, · · · , ej′ , · · · , gN〉|0〉
Ei − Em

, (2.41)

where Ei is the energy of the state |g1, · · · , ej′ , · · · , gN〉|0〉, and Em is the energy of the
�intermediate� state |m〉. The sum over the intermediate states |m〉 runs over all possible
states within the wave function 2.30. The �rst term of Eq. 2.40 originates from intermediate
states having the coe�cient γ, whereas the second term comes from states having the coef-
�cient α. Examples of the associated processes for which the intermediate states intervene
have been visualized in Fig. 2.1 for a system of two atoms. In that �gure we observe that
there are two types of intermediate states. One intermediate state (|m1〉) is a state where
the initially excited atom relaxes under emission of a photon and the second intermediate
state (|m2〉) is a state where before the excited atom relaxes, the atom in the ground state
gets excited and emits a photon. If we did not include the wave functions with coe�cient
α, we would not have the second term in Eq. 2.40 and the result would be the same as
when the RWA would be applied. From the wave function as given in Eq. 2.30, it can be
seen that both the states with coe�cients γ and α do not necessarily have the same energy
as the system had initially. Including these so-called virtual states, by not applying the
RWA so that we are not restricted to ωk ≈ ω0, is important when the atoms are spatially
close to each other. We will see that this quantum optics treatment results in the same set
of coupled-dipole equations as we have found by means of classical optics.

We go back to the derivation of β(t). The next step will be splitting up the �rst sum in
the self contribution and the contribution of other atoms:

β̇j(t) = i
∑
k,λ

gk,λ,jgk,λ,j′
1− e−i(ωk−ω0)t

ωk − ω0

βj(t) + i
∑
k,λ

N∑
j′=1,j′ 6=j

gk,λ,jgk,λ,j′

·
(1− e−i(ωk−ω0)t

ωk − ω0

· eik·(rj−rj′ ) +
1− e−i(ωk+ω0)t

ωk + ω0

e−ik·(rj−rj′ )
)
βj′(t).

(2.42)
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Figure 2.1: All possible second-order processes are shown between two two-level systems.
The intermediate states |m1〉 correspond to the wave functions having γ as coe�cient, and
|m2〉 to the wave functions having α as coe�cient. Therefore, |m1〉 = |g1, g2〉|1k,λ〉, and
|m2〉 = |e1, e2〉|1k,λ〉.

After this, we assume to have a large volume so that the discrete sum over all modes k can
be replaced by integrals and we also neglect the time-dependent oscillation terms, as they
oscillate fast under integration over k and can be neglected compared to the constant term
in the numerator:

β̇j(t) =
iV

(2π)3c

˚
d3k

∑
λ

gk,λ,jgk,λ,j′
1

k − k0

βj(t)

+
iV

(2π)3c

˚
d3k

∑
λ

N∑
j′=1,j′ 6=j

gk,λ,jgk,λ,j′
( 1

k − k0

eik·(rj−rj′ )

+
1

k + k0

e−ik·(rj−rj′ )
)
βj′(t). (2.43)

We write: gk,λ,jgk,λ,j′ = g2
kp̂j ·ek,λek,λ ·p̂j′ . The summation over all polarization components

leads to: ∑
λ

ek,λek,λ = ¯̄
1− k̂k̂. (2.44)

Having this and replacing k0 by k0 + i0, we can rewrite the di�erential equation for βj as:

β̇j(t) =
iV

(2π)3c

˚
d3kg2

kp̂j ·
(

¯̄
1− k̂k̂

)
p̂j′

1

k − k0 − i0
βj(t)

+
iV

(2π)3c

˚
d3k

N∑
j′=1,j′ 6=j

g2
kp̂j ·

(
¯̄
1− k̂k̂

)
p̂j′
( 1

k − k0 − i0
eik·(rj−rj′ )

+
1

k + k0 + i0
e−ik·(rj−rj′ )

)
βj′(t). (2.45)

We will evaluate each integral separately. In the �rst integral we note that the only angular
dependence is in the projection operator ¯̄

1− k̂k̂. Without loss of generality, we can assume
the dipole moment to be pointed along the z axis. Then, one can readily show:¨

ẑ ·
(

¯̄
1− k̂k̂

)
ẑdΩ = 4π − 4π

3
=

8π

3
. (2.46)
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For the radial part of the integral, we make use of the identity:

1

x∓ i0
= PV

1

x
± iπδ(x), (2.47)

where PV stands for principal value. The principal value part only corresponds to a fre-
quency shift of the same value for all βj (Lamb shift) and will be ignored. The �rst integral
then becomes:

β̇j(t)
∣∣∣
First integral

= −Γ0

2
βj(t), (2.48)

with Γ0 = ω3
0p

2/(3πε0~c3) being the individual spontaneous decay rate. The second integral
reads:

β̇j(t)
∣∣∣
Second integral

=
−iV

(2π)3c

N∑
j′=1,j′ 6=j

p̂j ·
(
∇2¯̄

1−∇∇
)
p̂j′

˚
d3k

1

k2
g2
k( 1

k − k0 − i0
eik·(rj−rj′ ) +

1

k + k0 + i0
e−ik·(rj−rj′ )

)
βj′(t)

=
−iV
2π2c

N∑
j′=1,j′ 6=j

p̂j ·
(
∇2¯̄

1−∇∇
)
p̂j′

ˆ ∞
0

dkg2
k

( 1

k − k0 − i0

+
1

k + k0 + i0

)sin(k|rj − rj′ |)
k|rj − rj′ |

βj′(t). (2.49)

The integral over k can be extended from −∞ to +∞. This would not be possible, if the
RWA were applied. As the wave functions with the coe�cient α would not be there, the
term 1/(k+ k0 + i0) would not be there. Furthermore, if the integral had not been applied
at all, since strictly ωk ≈ ω0 when the RWA is applied, the consequences would be even
more important. These consequences of removing all virtual states have been discussed in
the work of Svidzinsky et al. [29]. Since we do not apply the RWA, we can extend the
integral

β̇j(t)
∣∣∣
Second integral

=
−ik2

0p
2

2π2ε0~

N∑
j′=1,j′ 6=j

p̂j ·
(
∇2¯̄

1−∇∇
)
p̂j′

·
ˆ ∞
−∞

dk
1

k2

sin(k|rj − rj′ |)
(k − k0 − i0)|rj − rj′|

βj′(t). (2.50)

The sine function can be written in terms of complex exponentials, so that the residue
theorem can be applied on

β̇j(t)
∣∣∣
Second integral

=
−k2

0p
2

4π2ε0~

N∑
j′=1,j′ 6=j

p̂j ·
(
∇2¯̄

1−∇∇
)
p̂j′

·
ˆ ∞
−∞

dk
1

k2

[ eik|rj−rj′ |

(k − k0 − i0)|rj − rj′ |
− e−ik|rj−rj′ |

(k − k0 − i0)|rj − rj′|

]
βj′(t).

(2.51)

Note that there seem to be 2 poles. However, we realize that the pole at k = 0 is a removable
singularity when we look at the original expression in Eq. 2.45. The integral of the second
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term vanishes, since the contour in the lower half plane does not have a pole inside. The
�rst integral does not vanish. After the evaluation of the integral, we �nd:

β̇j(t)
∣∣∣
Second integral

=
−ip2

2πε0~

N∑
j′=1,j′ 6=j

p̂j ·
(
∇2¯̄

1−∇∇
)
p̂j′

eik0|rj−rj′ |

|rj − rj′ |
βj′(t)

= −i3Γ0

2k3
0

N∑
j′=1,j′ 6=j

p̂j ·
(
∇2¯̄

1−∇∇
)
p̂j′

eik0|rj−rj′ |

|rj − rj′|
βj′(t).

(2.52)

We write the di�erential equation slightly di�erently by using the identity ∇2G(r, r′) +
k2

0G(r, r′) = −δ(r− r′). We make the following substitution:

∇2 eik0|r−r′|

4π|r− r′|
= −δ(r− r′)− k2

0

eik0|r−r′|

4π|r− r′|
, (2.53)

where we use the fact that we only sum over non-identical dipoles, which means that the
delta function vanishes in the identity and we can rewrite the second integral as follows:

β̇j(t)
∣∣∣
Second integral

= i
3Γ0

2

N∑
j′=1,j′ 6=j

p̂j ·
(

¯̄
1 +

1

k2
0

∇∇
)
p̂j′

eik0|rj−rj′ |

k0|rj − rj′|
βj′(t)

= i
3Γ0

2

N∑
j′=1,j′ 6=j

p̂j · ¯̄G(rj, rj′)p̂j′βj′(t). (2.54)

In the last equation we have introduced the Green's tensor. Note that we would not arrive
at the Green's tensor if we had removed the states corresponding to the coe�cient α, since
the integral of Eq. 2.49 could not be extended. Finally, we have found the di�erential
equation for βj:

β̇j(t) = −Γ0

2
βj(t) + i

3Γ0

2

N∑
j′=1,j′ 6=j

p̂j · ¯̄G(rj, rj′)p̂j′βj′(t). (2.55)

We then assume the coe�cients β to be of the form: βj(t) = βj exp(−iωjt). Substituting
this form of βj(t) into Eq. 2.55 gives us the equation

ωjβj = −iΓ0

2
βj −

3πΓ0

k0

N∑
j′=1,j′ 6=j

p̂j · ¯̄G(rj, rj′ ;ω0)p̂j′βj′ . (2.56)

When transforming this equation back to the Schrödinger picture and after putting the
terms proportional to βj together, the equation becomes

(
ω0 − ωj − i

Γ0

2

)
βj −

3πΓ0

k0

N∑
j′=1,j′ 6=j

p̂j · ¯̄G(rj, rj′ ;ω0)p̂j′βj′ = 0. (2.57)

In the absence of any interaction between the dipoles, we recover the expected result, where

βj(t) = βj(0)e−iω0te−
Γ0
2
t. (2.58)
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Equation 2.57 should be compared with Eq. 2.17 when we remove the incident �eld (our
system has been excited initially), which is exactly the same result. With this we have seen
that in the low-excitation limit, classical and quantum optics describe in the same way the
interactions between classical dipoles. Although the intermediate states do not have the
same energy as the initial state, they turned out to be important in order to arrive at the
classical result. These intermediate states are allowed to exist during a �nite time interval
∆t, because of the Heisenberg's uncertainty relation: ∆E∆t ≥ ~/2. The virtual states
borrow or lend some energy from the vacuum.

As a �nal remark, we observe that dipole-dipole interactions show up at the end, al-
though they have not been included explicitly in the Hamiltonian. The reason for this is
that dipole-dipole interactions are actually mediated by the electromagnetic modes of the
vacuum [31]. In the next section we will describe these electromagnetic modes in more
detail.

2.5 Virtual photons from a classical perspective

In the previous section we have encountered intermediate states which were called virtual
states. The photons that are the elementary excitation of the associated electromagnetic
waves are called virtual photons. These intermediate states, which should be discarded
when applying the RWA, are however the reason of having the 1/(k0r)

3 term in the
dipole-dipole interactions. It is precisely these near-�eld interactions that are important
in this thesis, since we study systems where the inter-scatterer distance is small compared
to the optical wavelength. From classical electromagnetism it is known that in this dense
regime evanescent waves are important for the interaction. Therefore, there should be a
connection between evanescent waves and virtual photons. In this section, we study this
connection.

The system with which we will study this connection is a system where energy transfer
takes place from an excited two-level system to a two-level system in its ground state
by using a quantum optics formalism. This quantum treatment is based on the work of
Andrews et al. [32]. It can be shown from second-order time-dependent perturbation theory
that the energy transfer rate from atom A (initially excited) to atom B (initially in ground
state) is given by

Γ =
2π

~
|M |2δ(Ef − Ei), (2.59)

with M given by

M =
∑
m

〈f |HI |m〉〈m|HI |i〉
Ei − Em

, (2.60)

where |i〉 is the initial state, |f〉 the �nal state, |m〉 any intermediate state, and E stands
for the energy of a particular state. As illustrated in Fig. 2.1, there are two possible kinds
of intermediate processes:

� |m1〉: The initially excited atom relaxes under emission of a photon with energy ~ω
which is not necessarily equal to the transition energy of the atom,

� |m2〉: The initially relaxed atom gets excited, under emission of a photon with energy
~ω. All processes of this kind are necessarily virtual, since even without taking the
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photon in consideration, both atoms are excited and there is therefore more energy
present in the intermediate system than in the initial system.

By following the same mathematical steps as in the former section, Andrews et al. found
that the quantum amplitude M can be written as [32]

M = pA · ¯̄V (k0,R)pB, (2.61)

where the coupling tensor is the Green's tensor:

¯̄V (k0,R) = −k2
0

eik0R

4πε0R

[(
1 +

ik0R− 1

k2
0R

2

)
¯̄
1 +

3− 3ik0R− (k0R)2

(k0R)2

RR

R2

]
= −µ0ω

2 ¯̄G(R).

(2.62)
What we then observe is that we recover the classical dipole-dipole interaction potential,
by including all possible intermediate states in second-order time-dependent perturbation
theory. From classical electrodynamics we know that evanescent waves are present in this
Green's tensor and that they are crucial for near-�eld interactions.

We will explain by means of classical electrodynamics how evanescent waves and virtual
photons are related. From classical electrodynamics we know that the Green's function in
vacuum can be presented in di�erent forms:

G(r;ω) =
ei
ω
c
r

4πr
(2.63)

=

˚
d3k

(2π)3

1

k2 − ω2

c2

eik·r (2.64)

=

¨
dkxdky
(2π)2

iπ

γ
eiγzei(kxx+kyy), (2.65)

Figure 2.2: (a) Schematic of reciprocal space (kx, ky, kz). The states on shell, i.e.√
k2
x + k2

y + k2
z = ω2/c2, are indicated by a blue dashed circle. The red line corresponds

to the collection of o�-shell states that form together the evanescent wave which is indicated
by a red dot in (b). (b) Schematic view of (kx, ky; z) space. Propagating waves lie in the
band within

√
k2
x + k2

y < ω2/c2. Evanescent waves lie outside this band. One evanescent
wave is indicated by a red dot.
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with γ =
√
ω2/c2 − k2

x − k2
y. The form of the Green's function as given by Eq. 2.64 shows

that the �eld of a dipole is given by a weighted sum over electromagnetic states de�ned in
reciprocal space (kx, ky, kz). A schematic view of reciprocal space is given in Fig. 2.2(a). The
on-shell states, which are states for which k = ω/c, are most important, since the weighting
factor 1/(k2 − ω2/c2) is the largest for these states. All states for which k 6= ω/c are called
o�-shell states. Another representation of the Green's tensor is the Weyl's representation
in (kx, ky; z) space, as given by Eq. 2.65. This representation is obtained after integration
of the integrand of Eq. 2.64 with respect to kz:

iπ

γ
eiγzei(kxx+kyy) =

ˆ
dkz
2π

1

k2 − ω2

c2

eik·r. (2.66)

Let us consider an evanescent wave that is characterized by k′x and k′z such that: (k′x)
2 +

(k′y)
2 > ω2/c2 [see the red dot in Fig. 2.2(b)]. According to Eq. 2.66, this evanescent wave

is constructed out of all possible states (k′x, k
′
y, kz), each state having a di�erent weighting

factor. The integration path is indicated by the red line in Fig. 2.2(a). An evanescent wave
is therefore built up of uniquely o�-shell states (k 6= ω/c).

In Appendix A, we have assigned a quantum operator (annihilation operator) to evanes-
cent �elds. There we formally show that the elementary excitation of an evanescent wave
is a superposition of virtual photons. Virtual photons correspond to elementary excitations
of o�-shell states. Hereby, we have shown the relationship between evanescent waves and
virtual photons.

Finally, let us note that there have already several works been published on the con-
nection between virtual photons and classical electrodynamics [33�35], but the approach
presented in this section is di�erent as compared to the others.

2.6 Summary

In this chapter we have summarized the basic elements needed to interpret the results
outlined in this thesis. We have recalled some notions of multiple scattering theory. This
discussion allowed us to de�ne light scattering that is beyond the mean-�eld theory of
optics. Furthermore, we have discussed light scattering from both a classical and quantum
optics perspective. This allowed us to show the equivalence between quantum optics and
classical optics in the low-excitation regime, where only a single atomic excitation is present
in a system of N atoms. Finally, we gave an original way of comparing virtual photons
with evanescent waves. From nanophotonics we know very well that when the inter-atomic
distance is small as compared to the optical wavelength, the interactions are dominated
by evanescent waves. Similarly, the contribution of virtual photons are important in that
situation. Indeed, both evanescent waves and virtual photons are related to each other.





Chapter 3

Light scattering from a dense cloud of

cold atoms

3.1 Motivation

We start with a discussion of two speci�c examples of resonant light scattering. In the �rst
situation, a plane wave is incident upon 5 atoms that are positioned randomly, following a
homogeneous distribution, and are distributed inside a box with dimensions 10 × 10 × 10
µm3, so that the average inter-atomic distance is 3 × 102λ0. The total electric �eld is
calculated for a single realization of the atomic cloud with the procedure that has been
outlined in Section 2.2.2. The total electric �eld E is decomposed as:

E(r) = Einc(r) + Esc(r), (3.1)

where Einc is the incident electric �eld and Esc the scattered electric �eld. The Poynting
vector in the far �eld is given by

S(r) =
ε0c

2

{
|Einc(r)|2 + |Esc(r)|2 + 2Re[Einc(r) · E∗sc(r)]

}
r̂, (3.2)

where the last interference term leads to extinction. We calculate the scattering cross
section, by following the same procedure as outlined in Section 2.2.1. The scattering cross
section is normalized by dividing the scattering cross section by the on-resonance single-
atom scattering cross section. Figure 3.1(a) shows the normalized scattering cross section
as a function of the laser detuning δωL = ωL − ω0 in units of Γ0, where ω0 = 2πc/λ0, with
λ0 = 780 nm. It is seen that 5 particles scatter 5 times as much as a single particle and
that the scattering spectrum is Lorentzian, like it is for resonant light scattering by a single
atom. Furthermore, the full width at half maximum (FWHM) of the scattering spectrum
is equal to the single-atom spontaneous decay rate Γ0 and the resonance is centered around
the single-atom resonance frequency. Figure 3.1(b) shows the ensemble-averaged far-�eld
scattering pattern of only the scattered �eld, so this pattern is proportional to 〈|Esc|2〉.
This scattering pattern has a doughnut shape, which is the same scattering pattern as
for light scattering from a single dipole: light scattering takes place in many directions,
except along the polarization direction. Scattering by a very dilute cloud as the one we
study here con�rms what we know from light scattering in the atmosphere: the sky is
blue in all directions. In the forward direction we also observe a peak. This peak is
characteristic for the single-scattering regime, since in that regime all scattered �elds have
the same phase in the forward direction and therefore interfere constructively. Next, we
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Figure 3.1: (a) The normalized scattering cross section for a system of 5 homogenously
distributed atoms inside a rectangular box with dimensions 10×10×10 (µm)3 is Lorentzian.
The double arrow indicates the FWHM of the spectrum which is equal to the single atom
spontaneous emission rate Γ0. (b) The scattering pattern (〈|Esc|2〉) after an ensemble av-
erage over 10 000 realizations for a resonant linearly polarized incident plane wave. Light
gets scattered in many directions. (c) The normalized scattering cross section for a system
of 100 homogeneously distributed atoms inside a rectangular box with dimensions 1× 1× 1
µm3 is not Lorentzian. (d) The scattering pattern (〈|Esc|2〉) after an ensemble average over
1 000 realizations for a linearly polarized incident plane wave with δωL = 0. The scattering
pattern has changed into a di�raction pattern.

do the same calculations, but for N = 100 atoms in a box with dimensions 1 × 1 × 1
µm3, so that the atomic density is 4 orders of magnitude higher and the average inter-
atomic distance is ∼ λ0/4. Because of the much smaller average inter-atomic distance,
the resonant dipole-dipole interactions are much stronger in this con�guration than in the
previous con�guration with 5 atoms. The numerical results are presented in Fig. 3.1(c)
and Fig. 3.1(d). Figure 3.1(c) shows the normalized scattering cross section for a single
realization of the atomic cloud. It is seen that the spectrum for this example is very
di�erent from the light scattering spectrum of the previous dilute con�guration. Multiple
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peaks in the scattering spectrum appear and they are distributed over several single-atom
linewidths Γ0. Figure 3.1(d) shows the ensemble-averaged total scattering pattern (〈|Esc|2〉).
Also the scattering pattern has changed drastically. As opposed to being similar to a
scattering pattern from a single atom, which is doughnut like, it is this time very similar
to a di�raction pattern. From Fig. 3.1 it is clear that we observe the appearance of new
physics when resonant dipole-dipole interactions are strong. It is in this regime that we are
mainly interested.

3.2 State of the art

In the last section we have seen that the scattering pattern for wavelength-size, dense, and
resonant atomic clouds is very di�erent from what is expected for Rayleigh scattering.
Being interested by resonant light scattering from dense atomic clouds, let us discuss
several experiments that have been conducted on light scattering from atomic clouds. This
discussion will allow us to see what has already been done in the �eld and to what extent
the light scattering regime in which we are interested, is still original.

The �rst example goes back to Fa�in who realized for the �rst time, in 1959, that apart
from line broadening of the spectrum of interacting systems, there is also a change of
the eigenfrequencies that should occur, nowadays known as the cooperative Lamb shift
(CLS) [36]. The change of eigenfrequencies re�ects itself in a change of both the emission
and absorption spectra and it was in 1973 that Friedberg, Hartmann, and Manassah the-
oretically studied in detail the �frequency shifts in emission and absorption by resonant
systems of two-level atoms� [37]. The �rst experiment where the cooperative Lamb shift
was observed from the absorption spectrum, has recently been reported by Keaveney et
al. for a thin slab loaded with a hot atomic vapor [38]. The experimentally observed CLS
has been obtained for di�erent layer thicknesses and coincides with a mean-�eld theory
calculation [37].

Another observation done by Keaveney et al. for a hot atomic vapor is superluminal
pulse propagation [39]. They measured an optical pulse advance of > 100 ps over a propa-
gation distance of only 390 nm. From this, they deduced a group index ng = −1.0 × 105,
which was at that time the largest negative group index ever measured.

Experimental works on light scattering from cold atomic systems are essentially per-
formed on large (compared to the resonant wavelength), dilute, but optically thick cloud
of cold atoms [40�42]. Reference [40] shows an indirect observation of cooperative Mie
scattering from a cold atomic cloud by measuring the center-of-mass positions. The idea
behind this indirect observation is that the collective radiation pressure force should be
larger than a radiation pressure force based on independent atoms, thereby being a sig-
nature of collective scattering by the cloud which behaves as a particle with an index of
refraction.

Near-resonance light scattering experiments were performed on a big cloud of cold atoms
in Ref. [42]. In that work, both the temporal and spectral properties of the scattered light
were studied. A very small Lorentz-Lorenz shift was measured (δω = −0.07Γ0), that is of
the order of magnitude predicted by Lorentz-Lorenz theory for the atomic density studied
in the cloud. For a formal proof, the shift should be larger and for that a denser cloud of
atoms would have been needed.

Kwong et al. shone a continuous wave laser on an optically thick cloud of strontium-88
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atoms and studied the time evolution of the scattered light after the incident laser was
switched o� abruptly [43]. They have shown that for non-resonant light scattering from
a cloud with a large optical thickness, a coherent super�ash of light emerges from the
cloud. This coherent super�ash is special for at least two reasons: (1) its peak intensity
is higher than the incident intensity, and (2) the pulse duration is shorter than the single-
atom spontaneous emission rate. They understood that with such a system, it would be
interesting to create pulse trains. It is one year later that they succeeded in creating a pulse
train with both high repetition rates and high intensity [44]. Inspired by this work, Araújo
et al. have also studied the time evolution of light scattering after the laser got switched
o�. However, the main di�erence with the work of Kwong et al. is the fact that Araújo et
al. collected light at a 35◦ angle from the optical axis. By doing so, they did not detect
coherent scattered �eld, but incoherent scattered light, so that, as they claimed, �light
emission at di�erent angles cannot be explained by a phase-matching condition imposed by
the initial laser �eld or a continuous-medium description�. By doing so, they have observed
both single-photon superradiance [45] and single-photon subradiance [46]. Similarly, Roof
et al. have reported the observation of both single-photon superradiance, and the CLS [47].

At last, let us mention a recent work on optical atomic clocks. The stability and
accuracy of current atomic clocks are ultimately limited by Doppler e�ect and recoil
frequency shifts. One way to suppress both e�ects is by creating an optical lattice clock,
where atoms are loaded in a lattice of strongly con�ned potentials [48]. However, as was
mentioned in Ref. [48], not each electronic state experiences the same con�nement and
therefore the same perturbation. This leads to a reduction in accuracy of the atomic lattice
clock. It is therefore interesting to study motional e�ects on coherent light scattering
from a weakly con�ned, dense gas of atoms. This has recently be done by Bromley et al.
They have shown �clear signatures of motional e�ects on coherent scattering and dipolar
coupling� [49]. It was shown that the linewidth is determined by the optical depth of the
cloud only, which is in contrast with the frequency shift that seems to depend signi�cantly
on motional e�ects for frequencies with an extremely small linewidth (in Ref. [49]: Γ0 = 7.5
kHz).

The systems used to achieve the aforementioned goals have all in common that resonant
dipole-dipole interactions are weak, since the dipoles are on average not in each other's
near-�eld region. When resonant dipole-dipole interactions are weak, the experimental
results agree with mean-�eld theory. The �rst four lines of Table 3.1 summarize some

Reference (Peak) Density Inhomog. broad. [Γ0] C

[42] 5 · 1013 0.04 1.4
[49] 2 · 1012 2 · 10−3 10−2

[43] 4.6 · 1011 3.4 10−2

[38] 4 · 1016 ∼ 103 10−4

[7] 2·1014 0.06 5

Table 3.1: The (peak) density in [at/cm3], inhomogeneous broadening and the parameter C
are given for the densest reported systems of di�erent research groups. References [7,38,42]
study Rb-87 atoms, and Refs. [43, 49] used Sr-88 atoms. The last row is bold, since this is
the system of interest in this thesis.



37 3.2. STATE OF THE ART

characteristics that are important for the strength of the resonant dipole-dipole interactions
of the densest clouds that have been studied by most of the previously cited research groups.
We have listed the (peak) atomic density, inhomogeneous broadening, and the parameter
that indicates if resonant dipole-dipole interactions are strong, as we have de�ned in Eqs 2.24
and 2.25. We assign to this parameter the symbol C, as it is related to the cooperativity,
and recall for convenience the expression of this parameter:

homogeneously broadened system : C =
9πρ

2k3
, (3.3)

inhomogeneously broadened system : C =
9πρ

8k3

( Γ0

∆ω

)2

, (3.4)

where ∆ω is the inhomogeneous broadening. Resonant dipole-dipole interactions are strong
when C > 1, see Chapter 2. Let us study this parameter for di�erent experimental setups
that have been described in literature. From columns three and four, we see that the system
reported in Ref. [38] has a huge inhomogeneous broadening, and is not in the strong resonant
dipole-dipole interaction regime. The strong inhomogeneous broadening is in the cloud
studied in Ref. [38] due to the Doppler e�ect that cannot be neglected for hot atomic vapors.
The Doppler e�ect e�ectively reduces the resonant dipole-dipole interactions. Although
the density of the atomic cloud is high, it is not su�cient to overcome inhomogeneous
broadening. From the last column we can observe that there are no strong resonant dipole-
dipole interactions in the clouds that are reported in Refs [43, 49] either. The reason that
resonant dipole-dipole interactions are not strong in these clouds is that the density of the
clouds is not su�ciently high to have strong resonant dipole-dipole interactions, i.e., the
near-�eld terms of the resonant dipole-dipole interactions are not important. The cloud
studied in Ref. [42] satis�es the criterion for strong resonant dipole-dipole interactions,
however it is satis�ed only slightly at the center of the cloud: the position distribution of
the atoms follows a Gaussian distribution, since the atoms are loaded in a dipole trap.

So far we have been discussing atomic systems that were used to successfully observe
several physical phenomena like single-photon superradiance and the CLS. As we have seen,
these systems have all in common that they are not in the regime of light scattering where
strong resonant dipole-dipole interactions exist. An experimentally largely unexplored
system is an atomic system where resonant dipole-dipole interactions are strong. It is
in this kind of systems that we are interested. Let us stress that the strong resonant
dipole-dipole interactions in the atomic cloud that we refer to are near-�eld interactions in
free space, for which the interaction potential varies as 1/r3, where r is the inter-atomic
distance. We do not consider a modi�ed electromagnetic environment for the atomic
cloud. By engineering the electromagnetic environment it is for example possible to induce
strong dipole-dipole interactions between atoms that are not in each other's near �eld. An
example is the use of a waveguide along which atoms are placed [50]. Table 3.1 shows in
bold the characteristics of the atomic cloud studied by the group of Browaeys. It is seen
that the cloud is in the strong resonant dipole-dipole interactions regime, so that recurrent
scattering e�ects are expected from the classical dipole model.

In this chapter we will study theoretically light scattering from cold atomic clouds that
have experimentally been studied by the group of Browaeys. The clouds are di�erent from
other reported clouds in the sense that resonant dipole-dipole interactions are expected to
be stronger. We will compare the experimentally obtained spectral and temporal responses
of the atomic clouds with numerical calculations. Some key experimental observations that
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are discussed are a negligible CLS [7, 51], suppression of light scattering in the direction
orthogonal to the incident light beam [51], and superluminal pulse propagation through the
atomic cloud [52].

3.3 Experimental setup

In this section we describe two experimental con�gurations studied by Joseph Pellegrino [4]
and his successor Stephan Jennewein [7]. Figure 3.2 shows a schematic of both setups. Both
Pellegrino and Jennewein study near-resonance light scattering from an optically trapped
cloud of cold rubidium-87 atoms.
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Figure 3.2: A wavelength-size cloud of cold Rb-87 atoms is loaded in a dipole trap. (a)
Experimental setup of Ref. [51]. A wide laser beam gets scattered by the atomic cloud. The
light scattered at a 90◦ angle is collected by means of an NA = 0.5 aspheric lens, after
which it passes through a polarizer and a focusing lens. Courtesy of Joseph Pellegrino. (b)
Experimental setup of Ref. [7]. A Gaussian probe beam gets focussed by an aspheric lens on
the atomic cloud. The light scattered in the forward direction is collected by passing through
a NA = 0.5 aspheric lens, polarizer and focusing lens. Courtesy of Stephan Jennewein.

3.3.1 Atomic density

As a �rst step, both Pellegrino and Jennewein loaded the atoms in a magneto-optical trap
(MOT). However, with such a trap one can typically reach a density of only ρ = 1011

at/cm3, or equivalently ρ/k3 = 10−4, which is not su�cient to have strong resonant dipole-
dipole interactions. In order to reach a higher density, the atoms are eventually trapped in
a far-o�-resonance dipole trap (FORT) [53]. Atomic clouds in these traps can reach higher
densities. The atomic density of the clouds studied by Pellegrino and Jennewein follows the
same distribution as the Gaussian intensity pro�le of the trapping beam. From literature
it is known that the peak density at the center of a FORT is given by [54, 55]

ρpeak =
2Nλtrap
πw4

0

( U0

πkBT

) 3
2
, (3.5)
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where N is the total number of atoms inside the trap, w0 the waist of the trap laser,
U0 the trap depth, T the temperature of the ensemble of atoms and kB the Boltzmann
constant. In the experiment presented in Fig. 3.2(b), the waist of the trap beam is 1.2 µm
and after �lling in the experimental parameters (λtrap = 940 nm, U0/kB = 1 mK, T = 120
µK), the peak density can be found to be 2 × 1014 at/cm3 for N = 180 atoms in a cigar
shaped wavelength-size atomic cloud. We have seen in Table 3.1 that this atomic density
(ρ/k3 = 0.38) is enough for the atomic cloud to be in the strong resonant dipole-dipole
interaction regime.

From the atomic density we can estimate the on-resonance scattering mean free path.
This parameter tells us if the wavelength-size cloud is in the single scattering or multiple
scattering regime. With a peak atomic density of ρ/k3 = 0.38 we obtain for the mean free
path:

lmfp =
1

ρσext(ω0)
=

k2

6πρ
= 17 nm. (3.6)

Given the size of the atomic cloud that is on the order of the optical wavelength, this atomic
cloud is clearly in the multiple scattering regime.

3.3.2 Doppler e�ect

To have strong resonant dipole-dipole interactions, the atoms need to have all the same
resonance frequency. The presence of a signi�cant Doppler broadening (∆ω > Γ0) would
spread out the resonance frequencies, thereby reducing resonant dipole-dipole interactions.
To avoid strong Doppler broadening, the atomic clouds studied by both Pellegrino and
Jennewein are at very low temperatures of about 100 µK. The corresponding Doppler
broadening is ∼100 kHz, which is small compared to the 6 MHz natural linewidth of the
investigated transition. Hence, inhomogeneous broadening due to Doppler e�ect is negli-
gible. It is both the absence of inhomogeneous broadening and the high atomic density
that make the atomic systems as presented in Fig. 3.2 interesting to study the in�uence of
resonant dipole-dipole interactions on light scattering from an ensemble of atoms.

3.3.3 Probe beam and atomic transition

After having discussed the atomic systems, let us give some information on the probe
beam. In both setups, the Gaussian laser beam has a wavelength λL = 780 nm, corre-
sponding to the transition wavelength of the D2 transition between the (5S1/2, F = 2) and
(5P3/2, F = 3) levels in rubidium-871, and spectral width ∼ 0.3Γ0. From this transition it
is understood that the Rb-87 atoms studied here are not classical dipoles, since a classical
dipole corresponds to a transition between a J = 0 and J = 1 state which is a four-level sys-
tem with equal Clebsch-Gordan coe�cients. The atoms we study here are 12-level systems2,
with non-equal Clebsch-Gordan coe�cients. Yet, unless stated di�erently, all calculations

1In atomic physics, this notation for the atomic energy levels is very common. The di�erent symbols in
the notation (nLJ , F ) stand for the principal quantum number (n); the orbital angular momentum (L),
where L is given as a letter (S corresponds to L = 0, P to L = 1); the total angular momentum, taking
into account the spin angular momentum of the electron (J); and the total atomic angular momentum,
where the total angular momentum of the nucleus has been taken into account (F ).

2For the experiment of Jennewein, there are 5 degenerate states for (5S1/2, F = 2), and 7 degenerate
states for (5P3/2, F = 3). They are degenerate, since no external magnetic �eld is applied that lifts the
degeneracy.
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that have been done in this thesis do assume the atoms to be classical dipoles, since it
allows to understand some interesting general notions for resonant light scattering from
dense samples.

Concerning the waist of the probe beams, for the setup of Pellegrino we can consider
the incident �eld to be a plane wave as its waist w0 is 1 mm and therefore very large
compared to the size of the cloud. The Gaussian beam in the setup of Jennewein is strongly
focused to a waist w0 = 1.2 µm. In both setups, the laser intensity is small compared to
the saturation intensity of the D2 transition of a single Rb-87 atom (setup of Pellegrino:
I/Is ≈ 0.1, where Is = 1.67 mW/cm2 for a circularly polarized probe, and for the setup
of Jennewein: I/Is ≈ 0.02, where Is = 3.05 mW/cm2 for a linearly polarized probe). The
frequency of the laser is tuned by the use of an acousto-optic modulator (AOM) over a
frequency range of 72 MHz (= 12Γ0: −6Γ0 < δωL < 6Γ0), in order to observe the spectral
response of the atomic cloud.

3.3.4 Measured signal

At last, we discuss the signal that is measured. For Pellegrino's experiment, an I-CCD with
a polarizer in front was used, so they measured the power corresponding to the electric �eld
components along the polarizer its direction. In the case of Jennewein's experiment, they
used a single-mode �ber to collect the signal. Hence, the signal obtained by Jennewein is
not the total energy �ow integrated over a given solid angle, but it is the projection of the
total �eld on the �ber mode. The electric �eld inside the single-mode �ber is given by

E�ber(r) =
[ ˆ

Etot(r
′) · g∗(r′)dS

]
g(r), (3.7)

where g is the normalized electric �eld distribution of the �ber mode, Etot = Einc+Esc, and
dS is a di�erential area element perpendicular to the optical axis. The integral in front of
the electric �eld distribution inside the �ber determines how well the �ber mode is excited;
it is an overlap integral. In the absence of the atoms, we have Etot = Einc, the electric �eld
inside the �ber is then

E�ber,0(r) =
[ ˆ

Einc(r
′) · g∗(r′)dS

]
g(r), (3.8)

What is actually measured are powers. It can be shown that

P

P0

=
|
´
Etot(r

′) · g∗(r′)dS|2

|
´
Einc(r′) · g∗(r′)dS|2

, (3.9)

where P is the measured power in the presence of the atoms, and P0 the measured power in
the absence of the atoms. Without atoms, a mode matching of the incident laser beam and
the single-mode �ber has been established experimentally, so that g ∝ Einc (the direction
of both g and Einc are the same due to the polarizer in front of the �ber). Experimentally,
there is less than one photon detected per incident pulse. In order to have a good signal-to-
noise ratio (SNR), a detection cycle is repeated a thousand times. The precise procedure
can be found in Ref. [7]. Because of these many cycles, the measured quantities can be
considered to be ensemble averaged. So what can be derived from the experiments is

〈P 〉
P0

=
〈|
´
Etot(r

′) · E∗inc(r′)dS|2〉
|
´
|Einc(r′)|2dS|2

, (3.10)
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of the position of the atomic clouds to be z2 − z1 = 2.5± 0.3 µm, which is small compared
to the Rayleigh distance. The intensity of the beam on the cloud has therefore changed
negligibly. However, it is seen from Fig. 3.3 that although the clouds contain about the
same number of atoms, and the intensity of the probe beam did not change signi�cantly,
both spectra are not the same. Notably, the asymmetry of the spectra is not the same.
Let us mention that similar results were obtained in the group of Havey. In that group,
it was observed that the transmission spectrum of a big cloud of atoms is asymmetric in
frequency and the asymmetry of the transmission spectrum �ips sign when the focus of
the beam crosses the atomic cloud [56]. The observed asymmetric transmission spectrum
was published in the work of Roof et al., entitled �Microscopic lensing by a dense, cold
atomic sample� [56]. The �ip of the asymmetry in the frequency response was attributed
to focusing and defocusing e�ects; thereby attributing the asymmetry to a lensing e�ect
of their cloud. Both focusing and defocusing exist in the studied cloud, since the atomic
cloud is big (255 × 3.5 × 3.5 µm3), and the calculated refractive index of the cloud can
attain values smaller and larger than one for di�erent frequencies. A refractive index that
is smaller than one gives rise to defocusing and a refractive index larger than one leads to
focusing. The atomic system studied by Jennewein et al. is di�erent, since that cloud is
very small and therefore geometrical optics is not valid. In this section, we propose an
alternative explanation of the observed dependence of the spectrum on the longitudinal
position of the beam focus with respect to the cloud.

3.4.1 Toy model for light scattering

To explain the di�erent spectra for clouds that were very similar in size and number of
atoms, see Fig. 3.3, we study a toy model which only contains essential properties to under-
stand the physics. This toy model is a single atom, which position is varied. A horizontally
polarized incident Gaussian beam, propagating along the z axis, has its focus at position
(xf , yf , zf ) = (0, 0, 0), while the atom is moved along the optical axis and has position
(0, 0, zatom). The electric �eld of the beam, within the paraxial beam approximation, is
given by

EL(ρ, z) = E0
w0

w(z)
e
− ρ2

w(z)2 ei[kz+k
ρ2

2R(z)
−ψ(z)], (3.11)

where ρ =
√
x2 + y2 is the distance to the optical axis, w(z) = w0

√
1 + (z/zR)2 the distance

to the optical axis over which the intensity drops by a factor 1/e2, R(z) = z[1 + (zR/z)2] is
the radius of curvature, and ψ(z) = arctan(z/zR) is the Gouy phase. On axis (ρ = 0) it is
seen from Eq. 3.11 that the phase does not evolve the same as the phase of a plane wave.
There is an additional phase term, called the Gouy phase. This Gouy phase is precisely
the phase di�erence a Gaussian beam acquires during propagation as compared to a plane
wave propagating along the z axis. The origin of the Gouy phase is the fact that around
focus, �the average propagation constant� is smaller for a Gaussian beam than for a plane
wave. For a plane wave propagating along the z axis, the propagation constant kz = k0.
As a Gaussian beam has a smaller average propagation constant around focus, its phase
evolves slower during propagation as compared to the phase of a plane wave propagating
along the optical axis. It is this di�erence in the acquired phase that is called the Gouy
phase. The Gouy phase is the key element of this section.
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The beam induces an electric dipole moment p = ε0α(ω)EL(0, 0, zatom), where α(ω) is
the atomic polarizability of a single atom, given by

α(ω) =
3πΓ0/k

3

ω0 − ω − iΓ0

2

. (3.12)

The induced dipole creates an electric �eld which is given by the Green's tensor. As we
measure far away from the atom, i.e., kzD � 1, and zD � zatom, where the subscript D
stands for detector, we only need to consider the far-�eld term of the Green's tensor. The
scattered �eld along the optical axis is then given by

Esc = µ0ω
2 eik|zD−zatom|

4π|zD − zatom|
p ≈ µ0ω

2 e
ik|zD−zatom|

4π|zD|
p. (3.13)

The position of observation is taken to be positive: zD > 0 and the scattered �eld is then

Esc(0, 0, zD) =
ω2

c2
α(ω)

eik(zD−zatom)

4πzD
EL(0, 0, zatom). (3.14)

The incident electric �eld is simply EL(0, 0, zD) at the observation position. When we add
the scattered electric �eld to the incident electric �eld, we obtain the total electric �eld at
the position of the detector:

Etot = −iE0
zR
zD
eikzD +

ω2

4πc2
α(ω)E0

1√
1 +

(
zatom
zR

)2
e−iψ(zatom) e

ikzD

zD
(3.15)

= −iE0
zR
zD
eikzD

[
1 + i

ω2

4πc2zR
α(ω)

1√
1 +

(
zatom
zR

)2
e−iψ(zatom)

]
. (3.16)

From the total electric �eld, one can readily obtain the normalized total power on axis

P (ω)

P0

=
∣∣∣1 + i

ω2

4πc2zR
α(ω)

1√
1 +

(
zatom
zR

)2
e−iψ(zatom)

∣∣∣2, (3.17)

where P0 is the incident power in the forward direction when no atoms are present. When
we assume ω ≈ ω0, we can �nd from this formula, and the expression for the polarizability
(see Eq. 3.12), the �t function y = |1− c2

1−2i(x−c3)/c4
eic5|2, which is used in Fig. 3.3 to �t the

experimental results3. All parameters are free parameters. The coe�cient c3 corresponds
to a possible frequency shift of the scatterer, c4 is the linewidth of the transition, and c5 is
the Gouy phase.

Although this model for the spectrum follows from light scattering from a single atom,
it also correctly models light scattering from a sphere with a resonant dielectric constant
ε(ω), that mathematically has a similar resonance as a single atom, and radius a much
smaller than the wavelength if the electric �eld inside is uniform. The reason this model
also works for small resonant spheres is that in that case the optical response can also be
described by a polarizability α(ω) = 4πa3[ε(ω) − 1]/[ε(ω) + 2] [14]. As we have seen in
Fig. 3.3, the same �t function works also well for the elongated cloud of atoms.

3Because of the way the measured data points were normalized in Fig. 3.3 (the maximum value of
|S(ω)|2 is set to 1), we need to leave the �rst term also as a free parameter: y = |c1 − c2

1−2i(x−c3)/c4
eic5 |2,

where all parameters are real.
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3.4.2 Explanation of asymmetric spectrum

Let us develop the expression given in Eq. 3.17. It can be written in the form

P (ω)

P0

= 1 + A|α(ω)|2 +B
[
(ω0 − ω) sinψ(zatom)− Γ0

2
cosψ(zatom)

]
, (3.18)

where A and B are both real and positive. The third term, which is proportional to the
parameter B, originates from interferences between the incident �eld and the scattered
�eld. This is a very important notion as it follows from this interference term that what is
measured with a spectroscopic measurement are interferences between the incident beam
and the scattered �eld. It is precisely the interference term that introduces a dependence
of the measured power on the atomic position. When the atom is positioned in the focus,
ψ(zatom) = 0. Since |α(ω)|2 is symmetric around the resonance frequency, P (ω)/P0 is also
symmetric around the resonance frequency for this special case. Contrarily, when the atom
is placed out of focus, ψ(zatom) 6= 0 and thus the spectrum becomes asymmetric. It is
observed from the term (ω0−ω) sinψ(zatom) that the asymmetry of the spectrum �ips sign
when the atom crosses the focus. As an illustration, we have numerically calculated the
on-axis scattering spectrum for a Gaussian beam with waist w0 = 1.2 µm incident upon
a single atom that is put in the focus, and both 1 µm before and after the focus. The
spectrum is given in Fig. 3.4. Figure 3.4 shows that the asymmetry of the spectrum indeed
�ips sign when the atom crosses the focus.

From the previous discussion it follows that what is measured are interferences between
the incident and scattered �elds. This means that the spectrum does not only contain
intrinsic properties of the atom (here its polarizability and in the work of Roof et al. [56]
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Figure 3.4: Numerically obtained on-axis spectrum from a single atom being positioned at
three di�erent places: before, in and after the beam focus. Input �eld is a Gaussian beam
with waist w0 = 1.2 µm.
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the index of refraction). The spectrum therefore re�ects both the intrinsic properties of
the atom and the geometrical con�guration. It is important to realize that when we would
have detected all the scattered light around the atom, the relative power P/P0 would be
one for all frequency detunings, since we consider elastic light scattering for which all
incident light is scattered. The interferences between the incident and scattered �eld are
responsible for a redistribution of the energy. Furthermore, for �nite apertures, where the
numerical aperture is smaller than the beam spreading, it is possible to have a frequency
range in which the transmission is superior to one. In the words of Roof et al. this
originates from a lensing e�ect [56]. Apart from the asymmetric spectrum which arises
due to a displacement of the atom, the dip also shifts in frequency, which �nds its origin
again in interferences. When the atom is positioned in the focal point, the dip frequency
corresponds to the atomic frequency. This is not anymore true when the atom gets
displaced. The dip position therefore does not necessarily re�ect the resonance frequency.

Now that we have discussed the in�uence of the Gouy phase on the asymmetric
spectrum, we come back to the experimental results that are shown in Fig. 3.3. Although
the two clouds were of the same size and contained more or less the same number of
atoms, the asymmetry is not the same. When we �tted the experimental data with the
function: y = |c1 − c2

1−2i(x−c3)/c4
eic5|2, we deduced that the distance between the centers of

the two di�erent clouds was 2.0 ± 0.6 µm. Experimentally this distance was measured to
be 2.5± 0.3 µm, by which we con�rm that the Gouy phase is indeed a possible explanation
for the observed di�erence in spectra between two similar clouds. Furthermore, it has
experimentally been veri�ed that the �tted Gouy phase (c5 in the �t function) was
independent of the number of atoms in the cloud. This rules out the possibility of a lensing
e�ect in our cloud, since the acquired phase during propagation would depend on the
index of refraction, and therefore on the atomic density. Hence, the retrieved phase would
depend on the atomic density, if Jennewein et al. observed a lensing e�ect [7].

In this section we have shown that the results of Fig. 3.3 are an experimental demon-
stration of the in�uence of the Gouy phase on the measured spectrum. A simple model
that takes into account the Gouy phase is able to determine the distance between the focal
points of di�erent experimental realizations; therefore showing the ability to facilitate the
focusing of the laser beam. Although this notion is already known in for example the �eld
of Coherent anti-Stokes Raman scattering (CARS), the Gouy phase is known for giving rise
to asymmetric spectra [57], it is not to the best of our knowledge in the �eld of cold atoms.

3.5 Scattering suppression

We now study the experimental results obtained by Joseph Pellegrino [51] and Stephan
Jennewein [7]. We follow the chronological order in which the experiments were done and
therefore start discussing the experimental results of Pellegrino.

3.5.1 Experimental results of Pellegrino et al.

In the setup as shown in Fig. 3.2(a), Pellegrino collected the scattered light at 90◦ with
respect to the optical axis. Figure 3.5(a) shows the ensemble-averaged scattered power as a
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function of the number of atoms inside the cloud. Experimentally, an ensemble average cor-
responds to the measurement of a given quantity over several experimental runs. The power
measured by an NA = 0.5 optical system is normalized to the measured scattered power for
a single atom under illumination with the same frequency detuning. The quantity 〈P 〉/P0,∆

can therefore be understood as the average number of atoms e�ectively scattering light. The
experiments were done for the frequency detunings ∆ωL = {−2.5,−1, 0, 1, 2.5}×Γ0, which
are represented by di�erent markers in Fig. 3.5(a). From Fig. 3.5(a) it can be seen that the
closer the laser frequency is to the resonance frequency, the smaller the e�ective number
of atoms scattering light at 90◦ is. Away from atomic resonance, the scattered power
seems to tend towards the dashed line. The dashed line represents Rayleigh scattering,
for which the observed scattered power would increase linearly with the number of atoms.
Compared to a gas of non-interacting atoms, Pellegrino has therefore observed suppression
of light scattering. The largest suppression of light scattering occurs on resonance, where
resonant dipole-dipole interactions are the strongest. It is therefore the resonant nature
of the interactions that dramatically alters the optical response of the ensemble of atoms.
This observation is remarkable, since light scattering is clearly very di�erent in the
Rb-87 cloud as compared to Rayleigh scattering from the sky; knowing that the sky is
�ve orders of magnitude denser than the cloud of rubidium atoms. We now proceed to
numerical calculations on a similar system where the atoms are modeled as classical dipoles.

3.5.2 Numerical calculations on suppression of light scattering

An advantage of numerical calculations over experiments in this particular case is that we
have access to the full scattering pattern and that we can separate coherent and incoherent
light scattering easily, as was explained in Section 2.2.3. For an on-resonance circularly
polarized incident plane wave, we calculate the scattered power at 90◦ with respect to
the propagation direction of the plane wave and with a numerical aperature NA = 0.5.
Figure 3.5(b) shows the same quantity as has been measured experimentally: the total
scattered power relative to the scattered power from a single atom. The dashed line repre-
sents again Rayleigh scattering. It is seen that as the number of scatterers augments, the
scattered power at 90◦ increases, but the increase declines. So, numerically we also �nd a
suppression of light scattering, but it is stronger than was found experimentally. In order
to understand why light scattering gets suppressed, we have calculated the on-resonance
ensemble-averaged scattering pattern for a cloud containing N = 300 atoms. The result is
presented in Fig. 3.5(c). As can be seen, there is a big lobe in the forward direction, rem-
inescent of di�raction from the atomic cloud. Apart from the di�raction pattern, there is
also light that gets scattered quasi isotropically, as can be seen in the �gure at the height of
the arrow indicating 90◦. It is seen that di�raction is an important part of light scattering.
This means that the e�ective refractive index is very di�erent from 1. The density �uctu-
ations inside the atomic cloud get illuminated by a smaller electric �eld than the incident
�eld, due to which incoherent light scattering stops growing linearly with the number of
atoms; it gets suppressed. From di�raction theory it is known that the di�raction pattern
of such a cloud is directional and peaks in the forward direction. However, at 90◦ there is
no di�raction, and it is incoherent light scattering that dominates. When the density of
the atomic cloud increases, we observe that di�raction starts playing an important role for
light scattering, whereas the importance of incoherent light scattering gets smaller. Going
from the regime where incoherent light scattering dominates to a regime where coherent
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Figure 3.5: (a) Experimental results of Pellegrino, published in Ref. [51]. The normalized
scattered power as a function of the number of atoms inside the cloud (horizontal axis) and
for di�erent detunings of the laser beam (markers): ∆ωL = 0Γ0 (red circles), ∆ωL = ±Γ0

(up or down open triangles), and ∆ωL = ±2.5Γ0 (up or down �lled triangles). The power
has been normalized to the power that would be detected for a single atom in the cloud
being illuminated with the same detuning. Dashed line: case of non-interacting atoms. (b)
Theoretical results. The red dots represent the total scattered power at 90◦ normalized by
the power that a single atom would scatter in the same solid angle as a function of the
number of atoms in the cloud. The dashed line corresponds to the line y = x, which would
be the result in the single-scattering regime. Scattering suppression can be observed when
the number of atoms increases. (c) On-resonance ensemble-averaged scattering pattern for
a cloud containing N = 300 atoms. The big lobe in the forward direction is reminescent of
di�raction from the atomic cloud. Incoherent light scattering occurs quasi isotropically, as
can be seen at the height of the arrow indicating 90◦.

light scattering dominates forms a homogenization problem. In Chapter 5 we will discuss
the homogenization problem for resonant light scattering from a dense cloud of cold atoms.
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3.5.3 Towards coherent light scattering

We are particularly interested in the coherent response of the atomic cloud, since we can
compare this form of light scattering to the macroscopic Maxwell equations where the cloud
is modeled by an e�ective refractive index. From di�raction theory it is known that in the
forward direction constructive interferences exist, due to which enhanced light scattering
can be observed. Jennewein et al. have studied the coherent optical response by putting
the detector along the optical axis. For the remaining part of this chapter, we will thus also
discuss the experimental results obtained by Jennewein. In particular, we will discuss the
frequency response of both the clouds studied by Pellegrino and Jennewein in Section 3.6.

3.6 Spectral response of the atomic cloud

In the last section we were mainly interested in what happens to light scattering when
the number of atoms increases. We have seen that suppression of light scattering occurs.
In this section, we focus on the study of the spectral response of both the atomic clouds
of Pellegrino (detection at 90◦ from optical axis) and Jennewein (detection in the forward
direction). The former will be refered to as �incoherent spectral response� and the latter to
�coherent spectral response� for reasons that have been explained in Section 3.5.

3.6.1 Incoherent spectral response

The experimentally obtained powers by Pellegrino have been plotted in Fig. 3.6(a), where
the color of the dots and the corresponding Lorentzian �ts corresponds to a given number of
atoms in the cloud. We consider clouds with N = {1, 5, 20, 50, 200, 325, 450} atoms inside.
The measured power has been normalized to the measured scattered power from a single
atom in the cloud illuminated on resonance. For all frequency detunings it is observed
that as the number of atoms augments (bottom to top), the scattered power increases
as well, but saturates; an observation that we have already made in Section 3.5. Some
other observations are spectral broadening and a very small red frequency shift. A spectral
broadening is in general expected. To �rst order, this can be understood by the fact that
resonant dipole-dipole interactions slightly move the energy levels. This e�ectively increases
the linewidth of the ensemble of atoms. With regard to the small frequency shift: this seems
to be in qualitative agreement with a recently published work where the authors claim that
�no overt Lorentz-Lorenz local �eld shift of the resonance, nor a cooperative Lamb shift
exist in homogeneously broadened atomic samples� [58].

We have also calculated the normalized optical response at 90◦. Figure 3.6(b) shows the
theoretical results, where the vertical axis has a log scale. The conditions of the calculations
are the same as described in the previous section. It is observed that the theoretically
obtained spectra are Lorentzian for clouds with a small number of atoms. As the number
of atoms increases, the spectra start to deviate from a Lorentzian; an observation that
is in disagreement with the experimental results. The origin of the change of shape of
the spectrum for increasing atomic density is the increase of the resonant dipole-dipole
interactions that e�ectively reduce the scattering mean free path and thereby take the
wavelength-size cloud out of the single scattering regime. This observation does not question
the validity of the argument used to explain suppression of light scattering, but it does
provoke the following question: why does Pellegrino not measure a spectrum that is di�erent
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Figure 3.6: (a) Experimental data, obtained by Pellegrino et al.. Normalized scattered
power at a 90◦ angle with respect to the optical axis as a function of the laser detun-
ing ∆ for di�erent number of atoms inside the cloud, the latter being the color that
makes the distinction between di�erent number of atoms. From bottom to top we have
N = {1, 5, 20, 50, 200, 325, 450}. (b) For the same values of N , we have calculated the
normalized scattered light at 90◦ for a circularly polarized incident plane wave.

from a Lorentzian? It is most likely that the resonant dipole-dipole interactions in the actual
experiments are weaker than in our model. Some possible reasons for this are the fact that
Rb-87 has in reality a multilevel structure, and that dipole-dipole forces might hinder the
atoms to approach each other, thereby e�ectively reducing the interaction.



CHAPTER 3. LIGHT SCATTERING FROM A DENSE CLOUD OF COLD ATOMS50

3.6.2 Coherent spectral response

In the experiments done by Jennewein et al., light is detected in the forward direction.
From Section 3.5, it is understood that in that experiment the coherent optical response
of the cloud is measured. Figure 3.7 shows schematically a linearly polarized focussed
Gaussian beam (red) that is incident upon the (blue) cloud of Rb-87 atoms. Note that
the atomic cloud of Jennewein does not have the same size as the atomic cloud studied by
Pellegrino, see Fig. 3.2. On the right of Fig. 3.7, the di�raction pattern (|〈E〉|2) of a cloud
with N = 180 atoms on atomic resonance has been shown. The numerical aperture of the
optical system corresponds to a full angle of 60◦ and is indicated by the bold dashed lines.
It is observed that essentially all the coherently scattered light in the forward direction
reaches the lens. Figure 3.8(a) shows the measured normalized powers that were obtained
by Jennewein for di�erent laser detunings. The normalization amounts to dividing the
measured power by the measured power in the absence of the atoms. The �lled markers are
the experimental data points that belong to the cloud of Jennewein with N = {10, 83, 180}
atoms (top to bottom). We observe similar characteristics for the spectrum as we have
previously seen for the setup of Pellegrino in Fig. 3.6: spectral broadening [see Fig. 3.8(d),
where the spectral width has been plotted as a function of the number of atoms N in the
cloud], very small frequency shift of the dip [see Fig. 3.8(c)], and a minimum value of
the dip of the normalized power which saturates [see Fig. 3.8(b)]. When we look at the
spectral shift in Fig. 3.8(c), we note that it is a bit larger than the actual position of the
dip in Fig. 3.8(a). A likely reason for this is that the laser was not perfectly focused on the
center of the cloud, giving rise to a change in the spectrum due to the Gouy phase.

Now, we compare the experimental results from Jennewein to numerical calculations.
The negligible frequency shift that has been observed agrees qualitatively with the
prediction of Javanainen et al.: the Lorentz-Lorenz shift and cooperative Lamb shift
are absent in homogeneously broadened, dense atomic samples [58]. In the same work,
it was explained that inhomogeneous broadening recovers the predictions of mean-�eld

30
o

60
o

Figure 3.7: Numerical results of coherent light scattering with a Gaussian beam (red)
incident on a cloud of N = 180 atoms (blue) with zero detuning. The right part of the
�gure shows the numerically obtained di�raction pattern, where the detection system can
measure the light over a full angle of 60◦ (NA = 0.5). The schematic view of the incident
light does not have the same scale as the numerical results at the right.
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Figure 3.8: (a) Both experimental (�lled markers) and theoretical spectra (open markers).
The theoretical spectra are obtained by using the coupled-dipole equations and assuming
the atoms to be classical dipoles. The experimental data have been �tted with the function
y = |1 − c2

1−2i(x−c3)/c4
eic5|2 and the theoretical data have been interpolated with the function

y = |1 − c2
1−2i(x−c3)/c4

eic5 − c6
1−2i(x−c7)/c8

eic9 |2. The number of atoms inside the cloud are

N = {10, 83, 180} (from top to bottom). (b) The experimentally obtained minimal value
of the spectrum as a function of the number of atoms in the cloud. This value seems
to saturate to the value indicated by the dashed line. The interpolation is done with the
function: c2(N) = 1 −

√
a+ (a− a)e−bN . (c) The shift of the resonance as a function of

the number of atoms deduced from the experimental data. It has been linearly �tted (solid
line). (d) The linewidth derived from the experiment plotted as a function of the number of
atoms. It has been �tted with a linear function.

theory, because resonant dipole-dipole interactions become weaker [58]. Indeed, for the
hot atomic vapor of Keaveney et al., a cooperative Lamb shift was observed and agreed
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with the prediction of mean-�eld theory [38]. Similarly, Ref. [47] discusses light scattering
from a cloud of cold Rb-87 atoms with a peak density varying up to ρpeak = 6 × 1012

at/cm3, which corresponds to ρ/k3 = 0.01, and they have also observed a frequency shift
that agrees with mean-�eld theory [37, 59]. The measured frequency shift is substantial:
2Γ0 [47], although the system is more dilute than the system studied by Jennewein et al.
Because of weak resonant dipole-dipole interactions, the atomic cloud is not in the regime as
described in Ref. [58] and mean-�eld theory predictions are therefore expected to be correct.

From the qualitative agreement of Jennewein's results with the predictions of Javanainen
et al., it seems that light scattering from the cloud of Jennewein indeed needs to be described
by a beyond mean-�eld theory. We will therefore check if we can reproduce similar results
with an exact calculation of the scattered power by means of the set of coupled-dipole
equations. The incident �eld is taken to be a Gaussian beam, which has an angular spread
of sin(θ) = λL/(πw0) = 0.21. Since it is a strongly focused beam (waist of 1.2 µm), we
do not use the paraxial beam approximation. The electric �eld is written as a plane wave
decomposition [60]:

EL(r‖, z) =
w2

0k
2

4π

¨
e−

w2
0k

2
s
2

4 us/p(ν)eiks·r‖+ikczd2s, (3.19)

where k = ωL
c
, ν = 〈s,

√
1− s2〉, s =

k‖
k
, and the polarization us = z×ν

|z×ν| or up = ν × us (s
standing for a TE-polarized beam and p for a TM-polarized beam). In our con�guration
there is not a big di�erence between TE and TM polarization, because of the rotational
symmetry of the problem after the ensemble averaging. The integral is rewritten in polar
coordinates (|s| and θ), where the angular integral is done analytically. By doing so, there is
only a single integral to be evaluated numerically. We have calculated the power for several
detunings and like for the experiment we calculated light scattering for N = {10, 83, 180}
atoms, while taking into account the presence of the single-mode �ber. The results of
the calculations are shown in Fig. 3.8(a) by the open markers, where the dashed lines are
used to guide the eye. It is observed that these numerical results do not agree with the
experimental results. Notably, a second resonance dip appears for both the N = 83 and
N = 180 clouds. This second resonance is not a single-atom resonance, but a resonance
of the shape of the cloud. Experimentally, the presence of a second resonance has never
been observed by Jennewein. A question which remains open is why this second resonance
has not been observed. For a more thorough discussion, refer to Jennewein et al. in Ref. [7].

3.7 Superluminal pulse propagation through an atomic

cloud

In this section we discuss the temporal properties of a pulse propagating through the
atomic cloud. It is known that pulse propagation in a resonant medium can lead to �fast�
or �slow� light, due to the dispersive response of such a resonant medium [61�64]. Fast
(slow) light corresponds to a situation where the peak of the outcoming pulse could be
detected earlier (later) than the peak of a pulse which would travel through vacuum. Fast
light corresponds therefore to a situation where the peak of the pulse travels faster than
the speed of light in vacuum. An interesting application for slow light would be an optical



53 3.7. SUPERLUMINAL PULSE PROPAGATION THROUGH AN ATOMIC CLOUD

delay line. Fast light also �nds interest in the �eld of quantum information processing,
since it is accompanied with an imprinted phase shift on the laser �eld, which is strongly
frequency dependent. Although there have been several examples of superluminal pulse
propagation in an atomic cloud [65,66], we highlight the pulse advancement that has been
reported in a hot vapor of Rb-87 by the group of Adams. Keaveney et al. measured an
advance of an optical pulse of more than 100 ps over a propagation distance of 390 nm [39].

Jennewein has done an experiment where the temporal properties of pulse propagation
through the cold atomic cloud were studied. He measured the group delay for N = 170
atoms in the cloud and for di�erent laser detunings. The group delay is de�ned by the
delay of the peak of the pulse. Figure 3.9 shows the measured group delay as a function
of the frequency detuning. The solid curve follows from a �t, as explained in Jennewein
et al. [52]. In the same work, one can �nd a discussion about the asymmetry visible in
this curve. For our discussion, this aspect is irrelevant. Jennewein has measured negative
group delays, which means a group advance. He measured a group advance as large as 10
ns, which is two orders of magnitude larger than observed by Keaveney et al., although the
cloud is only one order of magnitude longer.
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Figure 3.9: The group delay for N = 170 atoms inside the cloud, measured by Jennewein.
The data points have been �tted. For an explanation of this �t, refer to Ref. [52]. Group
delays as large as -10 ns have been measured.

Next, we calculate the group delay inside the atomic cloud of Jennewein by means
of a classical electrodynamics calculation. The calculation is a steady-state calculation,
where a monochromatic Gaussian beam is incident on the cloud. It is essentially the same
calculation which led to Fig. 3.7. The phase φ of the electric �eld in the forward direction
(far �eld, z � zR, L, where L is the typical size of the cloud) is calculated as a function of
the normalized laser detuning ∆/Γ = (ωL − ω0)/Γ. From this, the group delay τ can be
calculated with the formula [61]

τ =
dφ

dω
. (3.20)

Since the phase φ varies strongly over a frequency range on the order of Γ0, this equality
is understood to be valid only when the bandwidth of the optical pulse is very small
compared to the single-atom spontaneous decay rate. Remember that the bandwidth of
the optical pulse is 0.3× Γ in the experiments. This might reduce the observed time delay
during experiments.
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An example of the phase φ for N = 12 atoms inside the cloud of Jennewein as a
function of the detuning is given in Fig. 3.10(a) (black circles), where the blue solid line is
a phenomenological �t. It is observed that the phase of the total �eld varies close to atomic
resonance. For a denser cloud of atoms, e.g. a cloud with N = 170, the phase has also been
plotted in Fig. 3.8(a) (red dots). The small step visible for N = 170 is reminescent of the
presence of a second resonance in the system. From φ(ω), we can derive the group delay.
In order to calculate the derivative, we made use of the phenomenological �t for N = 170
[see Fig. 3.10(b)]. We observe in Fig. 3.10(b) that numerically the same order of magnitude
for the group delay is found as was found experimentally, yet a big di�erence is seen: there
are two dips, as opposed to only one for the experimental results given in Fig. 3.9. This is
consistent with the spectral data of Fig. 3.8(a), where a second resonance was also absent
in the experiment. This shows that we systematically do not observe experimentally the
presence of a second resonance, a resonance that is predicted by classical theory. Next,
we de�ne the maximum advance by the value of τ at the dip. In the case of two dips, we
take the left dip, as indicated by the dashed line in Fig. 3.10(b). The calculation has been
done for several numbers of atoms inside the cloud. Figure 3.10(c) shows that the largest
advance ranges from a few nanoseconds to the order of ten nanoseconds, depending on the
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Figure 3.10: (a) The phase of the total electric �eld in the far �eld as a function of
the laser detuning for N = 12 atoms (black circles) and N = 170 atoms (red dots). To
interpolate, for N = 12 the �t function: y = −|c1 − c2

1−2i
x−c3
c4

eic5|2 has been used. For

N = 170, the �t function is: y = −|c1 − c2
1−2i

x−c3
c4

eic5 − c6
1−2i

x−c7
c8

eic9|2 (both are blue solid

curves). (b) The derivative τ = dφ
dω

has been calculated from the �t in Fig. 3.10(a) for
N = 170 atoms only. The dashed line indicates what we de�ne to be τmax in Fig. 3.10(c).
(c) The maximum delay has been plotted as a function of the number of atoms inside the
cloud.



55 3.8. SUMMARY

number of atoms inside the cloud. It is observed that the maximum time advance reduces
For N > 50. The reason for this is the spectral broadening of the system, which makes
the slope of the φ(ω)-curve smoother. In the experiment, a reduction of the time advance
when the number of atoms increases has never been observed, since one cannot load an
arbitrarily large number of atoms in the cloud.

3.8 Summary

In this chapter we have described and analyzed the experiments that have been conducted
by Pellegrino and Jennewein. The atomic clouds are both dense and cold, making it there-
fore interesting to study the in�uence of resonant dipole-dipole interaction on light scat-
tering. The way the laser beam was focused on the cloud, was based on the experimental
fact that the asymmetry of the spectrum �ips sign when the focus crosses the center of the
cloud. In this chapter we have proposed a physical explanation of this phenomenon that is
based on the Gouy phase.

From theoretical considerations it was understood that Pellegrino studied incoherent
light scattering. Jennewein has changed the experiment in order to also measure coherent
light scattering in the forward direction. The experimentally obtained spectra from Pelle-
grino and Jennewein show a very small shift of the transmission dip. By solving the set of
coupled-dipole equations, we also found a a very small frequency shift. However for both
the spectrum and the group delay we observe in the numerical simulations the presence of a
second resonance, as opposed to what has been observed experimentally. So far it remains
an open question why the experimental results do not show a second resonance. From a
literature study, it follows that weakly interacting atomic systems are properly described
with mean-�eld theory. As opposed to these systems, the systems studied by Pellegrino and
Jennewein, where interactions are stronger, cannot be understood from mean-�eld theory.
No theoretical model, that we are familiar with, exists so far that is able to reproduce the
experimental results.





Chapter 4

Polaritonic modes in a dense cloud of

cold atoms

4.1 Motivation

In the previous chapter we studied light scattering from a cloud of cold atoms. Although
the atomic cloud we study is much more dilute than the sky, we have seen that resonant
light scattering from a cold wavelength-size atomic cloud is very di�erent from Rayleigh
scattering. We have discussed in the last two chapters that the reason for this lies in the
presence of strong resonant dipole-dipole interactions in the system under study. We have
seen that as the atomic density increases, light scattering changes from a purely di�usive
to a partially di�usive and partially di�ractive regime. In the latter regime, light scattering
from the cloud occurs as if the cloud were an object that is described by an e�ective
refractive index. When a �nite-size object is described by an index of refraction that is
di�erent from its optical environment, the object is known to di�ract light. Apart from this
�macroscopic point of view� of light scattering, we can also interpret di�raction in another
way: what happens at a microscopic level that makes the atomic cloud di�racting light? A
similar question would be: what is the physical origin at the microscopic level of the index of
refraction, which is a macroscopic notion, and makes an object di�racting light? It is in this
chapter that we study the connection between a microscopic and macroscopic description
of an ensemble of homogeneously broadened scatterers. However, the conclusions drawn
in this chapter are expected to be correct as well for inhomogeneously broadened systems
like a dense ensemble of quantum dots. Apart from Section 4.8, this chapter has been
adapted from our recently published paper, called �Polaritonic modes in a dense cloud of
cold atoms� [67].

4.2 Introduction

In Chapter 2 we have seen that resonant light scattering from an atomic cloud can be
modeled in two ways. On one hand it can be described with a microscopic theory for
which a set of coupled-dipole equations is solved, and on the other hand by means of a
macroscopic theory where the atomic cloud is replaced by a homogeneous medium described
by a dielectric constant, or equivalently by a refractive index. Sokolov et al. [68] used both
ways of modeling light scattering and analyzed the response of an ensemble of cold resonant
scatterers in a spherical volume and they compared a modal microscopic description with
a macroscopic description based on the e�ective dielectric constant under the mean-�eld
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approximation; both approaches are in good agreement for low densities. When the density
increases, deviations between both approaches occur. In contexts such as random lasing,
light localization, and subradiance, microscopic modes of a system of interacting atoms in
the scalar approximation have been studied [8, 9, 29, 69�72]. As opposed to the previously
mentioned works, we study dense (ρ/k3 & 1), disordered and homogeneously broadened
systems consisting of N resonant dipoles in a small volume with dimensions comparable
to the resonant wavelength. We study light scattering by this system using, on one hand,
a microscopic model accounting for all interactions between atoms [see Fig. 4.1(a)] and,
on the other hand, a macroscopic model based on a homogeneous system with an e�ective
dielectric constant εe� [see Fig. 4.1(b)]. The e�ective dielectric constant is then derived
numerically by �tting the scattered intensity averaged over an ensemble of 300 di�erent
realizations of the system. This allows us to compare both the eigenfrequencies and spatial
structure of the eigenmodes of both microscopic and macroscopic systems.

As we will see, mainly superradiant modes are responsible for coherent light scatter-
ing. In this chapter, we observe that some of them have the following properties: (i) all
atoms contribute to the mode, (ii) the frequency and the spatial structure of the mode
are independent of the realization but depend on the geometry and density of the system
so that they are very robust against disorder. Hence, despite the fact that the system is
disordered, these modes are analogous to the polaritons introduced by Hop�eld to analyze
collective excitations in condensed matter for ordered systems [73]. We thus refer to these
superradiant modes as polaritonic modes. We further observe that the spatial structure of
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Figure 4.1: (a) System under study: N = 450 atoms uniformly distributed in a rectangular
box. The atomic density is ρ/k3 = 1. The incoming light excites the collective eigenmodes
of the system (visualized by the blue sinusoid), which gives rise to a scattering pattern in,
essentially, the forward direction. Here, we have plotted the modulus square of the electric
�eld radiated in the far �eld at resonance, averaged over 1 500 realizations, 〈|E|2〉. (b)
Homogeneous medium described by an e�ective dielectric constant εe� exhibiting optical
resonances. The scattering pattern, |E|2, is found to be similar to (a) except for the di�use
light, which is by de�nition null in (b).
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these modes coincides with the spatial structure of the modes of the e�ective homogeneous
particle with e�ective dielectric constant. We thus conclude that there is a one-to-one cor-
respondence between modes of a particle with e�ective dielectric constant and polaritonic
modes in an atomic system.

The analysis developed in this chapter is not limited to cold-atom systems but is also
applicable to condensed-matter systems acting like coupled oscillators such as an ensemble
of quantum dots and layers of organic molecules with electronic transitions or vibrations in
a crystal. Let us give two examples where the polaritonic behavior survives the introduction
of disorder and can be described in the framework of an e�ective dielectric constant. As
a �rst example, we consider surface phonon polaritons (SPhPs). A phonon is a collective
excitation which results from the interaction potential between neighbors. It is a normal
mode of a lattice, i.e., a periodically arranged set of atoms or ions. For optical phonons,
these collective mechanical excitations are coupled to the electromagnetic �eld, resulting in
a polariton [74]. The presence of a polaritonic mode results in a dielectric constant that
takes negative values within a frequency window. The concept of polaritons can be applied
to many di�erent crystals such as SiC or quartz. It is now interesting to consider amorphous
glass. There, the concept of phonon disappears as there is no periodicity of the system.
However, it turns out that the dielectric constant still has a negative real part so that
SPhPs are still predicted by classical electrodynamics and indeed observed experimentally.
Since phonons formally do not exist, this raises the question how it is possible that SPhPs
still exist, despite of the randomness of the underlying microscopic structure. The concepts
that are introduced in this chapter in the context of atoms that are coupled via resonant
dipole-dipole interactions, allow to understand the phenomenon of SPhPs in amorphous
glass as well, since the underlying mechanisms are comparable.

The second example is the optical behavior of a disordered ensemble of densely packed
quantum dots or organic molecules such as J aggregates. It has been observed that layers
of these resonant materials deposited on metallic �lms display strong coupling with surface
plasmons [75�82]. The experimental results can be explained using a resonant e�ective
dielectric constant for the ensemble of scatterers. It has further been observed that the
modes are spatially coherent. The previous examples share the basic physical ingredients
with our model consisting of N cold atoms in a cloud. They are dense and disordered
systems of N resonant scatterers.

The chapter is organized as follows. First, using a microscopic model, we study the
collective eigenmodes of the system consisting of N cold atoms in a small volume as de-
picted in Fig. 4.1(a). We �nd that some of them, called hereafter polaritonic modes, are
robust against disorder, involve all atoms, and are superradiant. We then analyze light
scattering by the system using this model and compare it with an e�ective dielectric con-
stant as sketched in Fig. 4.1(b). We show that polaritonic modes can be identi�ed with
the macroscopic optical modes of that system. We also discuss the origin of losses in the
e�ective dielectric constant. Finally, we will discuss the in�uence of polaritonic modes on
light scattering.

4.3 Model

In this chapter, we consider a cloud of atoms uniformly distributed in a rectangular box [see
Fig. 4.1(a)]. The main di�erences between this system and the atomic clouds studied in the
previous chapter are the fact that the atoms are uniformly distributed instead of normally
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distributed and the density is slightly higher: ρ/k3 = 1. The uniform distribution has been
chosen to facilitate the comparison with a macroscopic theory based on a dielectric constant.
The dipoles, being cold atoms in vacuum, do not experience nonradiative losses and have
a negligible Doppler shift with respect to the radiative linewidth Γ0 of the atoms. In the
numerical simulations presented below, we have taken rubidium-87 atoms, λ0 = 780 nm,
and Γ0 = 2π × (6 MHz). The number of atoms, N = 450, and the dimensions of the
box, 4.8λ0× 0.6λ0× 0.6λ0, correspond to typical experimental conditions obtained by laser
cooling and trapping techniques in wavelength-size optical dipole traps [51]. With such
parameters, ρ/k3 ∼ 1, so recurrent scattering has to play a signi�cant role. We also show
some results for a rectangular cloud with dimensions 2.1λ0 × 0.4λ0 × 0.4λ0 and density
ρ/k3 ∼ 5. Like in the experiment, the cloud is investigated in the weak-excitation limit,
where its optical properties can be described by classical optics [29, 72].

The microscopic eigenmodes of the atomic cloud are obtained by searching for a self-
consistent solution of the coupled-dipole equations (see Eq. 2.16) in the absence of a driving
electric �eld

pi =
ω2

c2

N∑
j=1,j 6=i

[
α(ω) ¯̄G(ri, rj;ω)pj

]
. (4.1)

This set of equations can be put in the form ¯̄A(ω)P = ωP, which is a nonlinear eigenvalue
problem, since the ω dependence of the equations is not linear. In order to arrive at
the standard form of an eigenvalue problem, we assume ω2 ¯̄G(rj, ri, ω) ≈ ω2

0
¯̄G(rj, ri, ω0).

Because of the narrow atomic linewidth and the nonresonant character of the free-space
Green tensor, this is an accurate assumption. The eigenvalue problem can then be put in
the standard form of an eigenvalue problem: ¯̄A(ω0)Pβ = ωβPβ, where the matrix

¯̄A(ω0) =


(ω0 − iΓ0

2
)¯̄
1

−3πcΓ0

ω0

¯̄G2→1 . . .

−3πcΓ0

ω0

¯̄G1→2 (ω0 − iΓ0

2
)¯̄1

...
. . .

 ,

of which all submatrices are of size 3 × 3. Since the matrix ¯̄A contains complex diagonal
elements and ¯̄G†i→j 6= ¯̄Gj→i, it is a non-Hermitian matrix. Because the system loses energy
by the radiation in the far �eld of the dipoles, and there are resonant dipole-dipole inter-
actions, the problem is mathematically non Hermitian. Therefore, the eigenfrequencies ωβ
are complex, and we write the eigenfrequencies as

ωβ = (ω0 + Ωβ)− iΓβ
2
, (4.2)

where Ω is the collective frequency shift and Γβ the collective linewidth. When we substitute
this expression for ωβ into the eigenvalue problem, the eigenvalue problem becomes

¯̄A(ω0)Pβ = (ωβ − i
Γβ
2

)Pβ. (4.3)

This eigenvalue problem has 3N eigenvalues as each dipole has three dipole moment com-
ponents. The corresponding eigenvectors Pβ are composed of the vector components of all
N dipole moments, Pβ = [pβ1x, p

β
1y, p

β
1z, · · · p

β
Nx, p

β
Ny, p

β
Nz]

ᵀ. They are normalized such that
|Pβ|2 =

∑
j |p

β
j |2 = 1. It is observed that the (complex) eigenfrequencies are the same
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as the atomic eigenfrequencies in the absence of resonant dipole-dipole interactions, which
corresponds to ¯̄A being a diagonal matrix. These resonant dipole-dipole interactions give
rise to collective eigenmodes. Each eigenvalue has both a collective frequency shift and a
collective linewidth that can be di�erent than the single-atom frequency shift and linewidth.
In the next section, we will analyze the spectrum of the matrix ¯̄A.

4.4 Eigenspectrum analysis

Figure 4.2 shows all 405 000 eigenfrequencies in the complex plane obtained from 300 real-
izations of the clouds (300× 3N = 300× 3× 450 = 405 000 eigenfrequencies). We observe
three families of modes, each de�ned in terms of their collective linewidth and their col-
lective frequency shift: (1) Γβ ∈ {0, 2Γ0} and |Ωβ| � Γ0, (2) Γβ � Γ0, and (3) others.
Type 1 eigenmodes have a collective linewidth of either Γ ≈ 2Γ0 or Γ � Γ0 and a large
frequency shift. Figure 4.3(a) shows a typical eigenmode of type 1. It contains only two
excited atoms, so we call it a dimer mode. When two dipoles oscillate in phase and are
very close together, the electric �elds of both dipoles interfere constructively. Therefore,

Figure 4.2: The three types of eigenmodes are indicated by the numbers (1) through (3).
The inset shows a closeup of the boxed part of the main �gure, where the polaritonic modes
(a), (b), (c) and (d) for both (A) ρ/k3 = 1 and (B) ρ/k3 = 5 are visualized in Fig. 4.7.
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❤♦✇❤✐ ♣❛✐❛❧♣❡✐♦❞✐❝✐②❛❧♦♥❣❤❡③❛①✐♥♦✐♥✈♦❧✈❡❛❧❧❤❡❞✐♣♦❧❡ ✐♠✉❧❛♥❡♦✉❧②✳

❋✐❣✉❡✹✳✹✿✭❛✮❙♣❛✐❛❧ ✉❝✉❡♦❢❛②♣✐❝❛❧♠✐❝♦❝♦♣✐❝❡✐❣❡♥♠♦❞❡♦❢②♣❡✷❢♦ρ/k3=1✳
❚❤❡❞✐♣♦❧❡♠♦♠❡♥ ✉❛❡❞|♣j|

2♦❢❡❛❝❤❛♦♠j❤❛❜❡❡♥♣❧♦❡❞✱✇✐❤❤❡❛♦♠❜❡✐♥❣♦❡❞
❜②❤❡✐③❝♦♦❞✐♥❛❡✳✭❜✮❆✈❡❛❣❡❞✐♣♦❧❡♠♦♠❡♥ ✉❛❡❞|♣|2 ✭❡❞❞♦✮✳❚❤❡❡♥❡♠❜❧❡
❛✈❡❛❣❡✐♣❡❢♦♠❡❞♦✈❡ ❤❡♣♦❧❛✐♦♥✐❝♠♦❞❡✐♥✐❞❡❤❡❜❧❛❝❦♦❧✐❞❡❝❛♥❣❧❡✭❛✮✐♥❤❡
✐♥❡♦❢❋✐❣✳✹✳✷✭❆✮✳❚❤❡♠❛❝♦❝♦♣✐❝♠♦❞❡♦❢❤❡❤♦♠♦❣❡♥❡♦✉ ❝❧♦✉❞✭❜❧✉❡ ♦❧✐❞❧✐♥❡✮
❝♦✐♥❝✐❞❡✈❡②✇❡❧❧✇✐❤❤❡❛✈❡❛❣❡♣♦❧❛✐♦♥✐❝♠♦❞❡✱❛❦✐♥❣✐♥♦❛❝❝♦✉♥❛ ♠❛❧❧♦✛❡
❞✉❡♦❤❡✢✉❝✉❛✐♦♥♦❢❤❡❞✐♣♦❧❡❛♠♣❧✐✉❞❡❢♦♠♦♥❡❡❛❧✐③❛✐♦♥♦❛♥♦❤❡✳❘❡❢❡ ♦
❤❡♠❛✐♥❡①❢♦❛❞✐❝✉✐♦♥❛❜♦✉❤✐♦✛❡✳

❆❧❧♠♦❞❡ ✇❡❤❛✈❡♥♦ ❞✐❝✉❡❞♦❢❛❜❡❧♦♥❣ ♦②♣❡✸✳❚❤❡❡♠♦❞❡✐♥✈♦❧✈❡❡✐❤❡
♠❛♥②❞✐♣♦❧❡ ❞✐ ✐❜✉❡❞❤♦✉❣❤♦✉ ❤❡✇❤♦❧❡✈♦❧✉♠❡❜✉✇✐❤♦✉❛❡❣✉❧❛ ♣❛✐❛❧ ✉❝✲
✉❡❬❋✐❣✳✹✳✸✭❞✮❪❛ ❤❡♦♥❡♦❜❡✈❡❞✐♥❋✐❣✳✹✳✸✭❜✮✱♦❛❧♦❝❛❧✐③❡❞♠♦❞❡✐♥✈♦❧✈✐♥❣♦♥❧②❛
✉❜❡♦❢❞✐♣♦❧❡❬❋✐❣✳✹✳✸✭❝✮❪✳■♥♦❞❡ ♦❞❡♠♦♥ ❛❡❤❛♥❡✐❤❡ ②♣❡✶♥♦ ②♣❡✸♠♦❞❡
❤❛✈❡❛♣❛✐❛❧ ✉❝✉❡✱❛♦♣♣♦❡❞♦♣♦❧❛✐♦♥✐❝♠♦❞❡✱✇❡❤❛✈❡❝❛❧❝✉❧❛❡❞❤❡❛✈❡❛❣❡
❞✐♣♦❧❡♠♦♠❡♥ ✉❛❡❛❧♦♥❣❤❡❧♦♥❣❛①✐♦❢❤❡❜♦①❢♦ ❤❡❡♠♦❞❡✳■✐ ❡❡♥✐♥❋✐❣✳✹✳✺
❤❛ ❤❡❡♠♦❞❡❞♦♥♦♣♦ ❡ ❤❡♦❝✐❧❧❛♦② ✉❝✉❡♦❜❡✈❡❞❢♦ ②♣❡✷♠♦❞❡✳

❚❤❡♣❡✐♦❞✐❝❛❛♥❣❡♠❡♥ ♦❢ ❤❡❞✐♣♦❧❡♠♦♠❡♥✱✇❤✐❝❤♦♥❧②❡①✐ ❢♦ ❤❡ ②♣❡✷
❡✐❣❡♥♠♦❞❡✱❛❧❧♦✇♣❤❛❡♠❛❝❤✐♥❣♦❢❤❡ ❛❞✐❛✐♦♥❜②❤❡❞✐♣♦❧❡ ❛♥❞❤❡❡❢♦❡✐♥❣❧❡✲
♣❤♦♦♥✉♣❡ ❛❞✐❛♥❝❡❛❧♦♥❣❤❡❛①✐ ♦❢❤❡♦❜❥❡❝✳ ◆♦❡❤❛ ❤✐ ♣❤❛❡♠❛❝❤✐♥❣♦♥❧②
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❋✐❣✉❡✹✳✺✿❚❤❡❛✈❡❛❣❡❞✐♣♦❧❡♠♦♠❡♥ ✉❛❡♦❢②♣❡✶✭❛✮❛♥❞②♣❡✸✭❜✮❡✐❣❡♥♠♦❞❡
❛❧♦♥❣❤❡❧♦♥❣❛①✐♦❢❤❡❜♦①❞♦♥♦ ❤♦✇❛♥②♣❛✐❛❧ ✉❝✉❡✱❧✐❦❡②♣❡✷❞♦❡✳✭❛✮❆❧❧
❡✐❣❡♥♠♦❞❡✇✐❤|Ωβ|>150Γ0❤❛✈❡❜❡❡♥❛❦❡♥✐♥♦❛❝❝♦✉♥❢♦ ❤❡❛✈❡❛❣✐♥❣✳✭❜✮❆❧❧♠♦❞❡
✇✐❤✐♥❤❡❡❣✐♦♥❞❡✜♥❡❞❜②|Ωβ|<19❛♥❞Γβ<3Γ0❤❛✈❡❜❡❡♥❛❦❡♥✐♥♦❛❝❝♦✉♥❢♦ ❤❡
❛✈❡❛❣✐♥❣✳

♦❝❝✉ ✇✐❤✐♥❛❛❤❡❧✐♠✐❡❞♦❧✐❞❛♥❣❧❡✭∆Ω∼2π/15✮✳❚❤✐✐✇❤② ❤❡❧✐♥❡✇✐❞❤✐♥♦
❡♥❤❛♥❝❡❞❜②❛❢❛❝♦N❛✐ ❤❡❝❛❡❢♦ ✐♥❣❧❡✲♣❤♦♦♥✉♣❡ ❛❞✐❛♥❝❡❜②N❡♠✐❡ ✐♥❛
✉❜✇❛✈❡❧❡♥❣❤✈♦❧✉♠❡✱❜✉❧♦✇❡❡❞❜②❛❢❛❝♦♦❢♦✉❣❤❧②∆Ω/(4π)✳

✹✳✺ ▲✐❣❤ ❝❛ ❡✐♥❣

❲❡♥♦✇ ✉❞②❧✐❣❤ ❝❛❡✐♥❣❜②❤❡❝❧♦✉❞♦❢❛♦♠✳❙♦❧✈✐♥❣❤❡❝♦✉♣❧❡❞✲❞✐♣♦❧❡❡✉❛✐♦♥
✉✐♥❣❤❡❧❛❡✜❡❧❞❛❛♥❡①❡♥❛❧❞✐✈✐♥❣♦✉❝❡❛❧❧♦✇✉ ♦❝❛❧❝✉❧❛❡❤❡❝❛❡❡❞✜❡❧❞❊
✐♥❤❡❢❛✜❡❧❞❢♦❛❣✐✈❡♥❡❛❧✐③❛✐♦♥♦❢❤❡❝❧♦✉❞✇❤❡♥✐✐✐❧❧✉♠✐♥❛❡❞❜②❛♥①✲♣♦❧❛✐③❡❞
♣❧❛♥❡✇❛✈❡✱❛ ✐❞♦♥❡✐♥ ❤❡✇♦❦♦❢❈❤❛♣❡✸✳ ❆❢❡❛✈❡❛❣✐♥❣♦✈❡1500❡❛❧✐③❛✐♦♥✱
❤❡❝❛❡✐♥❣♣❛❡♥♦❜❛✐♥❡❞♥❡❛ ❡♦♥❛♥❝❡✭ω=ω0✮❡①❤✐❜✐ ♦♥❡❧♦❜❡✐♥❤❡❢♦✇❛❞
❞✐❡❝✐♦♥❬❡❡❋✐❣✳✹✳✶✭❛✮❪❛♥❞♦♠❡❞✐✛✉❡❧✐❣❤✇❤✐❝❤✐ ♦♥❛✈❡❛❣❡✉❛✐✲✐♦♦♣✐❝❛♥❞❤❛❛
♠❛❧❧❡ ❛♠♣❧✐✉❞❡✳❍♦✇❡✈❡✱✇❡✜♥❞❤❛ ❤❡❡✇♦❢❡❛✉❡❤❛✈❡❝♦♠♣❛❛❜❧❡❝♦♥✐❜✉✐♦♥
✇❤❡♥✐♥❡❣❛❡❞♦✈❡ ❤❡❢✉❧❧ ♦❧✐❞❛♥❣❧❡✇✐❤54%❛♥❞46%♦❢❤❡ ♦❛❧❝❛❡❡❞❧✐❣❤✱
❡♣❡❝✐✈❡❧②✳ ❚❤❡❧♦❜❡✐♥❤❡❢♦✇❛❞❞✐❡❝✐♦♥✐✈❡② ✐♠✐❧❛ ♦❤❡❞✐✛❛❝✐♦♥♣❛❡♥
♦✐❣✐♥❛✐♥❣❢♦♠❛❤♦♠♦❣❡♥❡♦✉♣❛ ✐❝❧❡✱✉❣❣❡ ✐♥❣❤❛♦♥❡❝♦✉❧❞❡♣❧❛❝❡❤❡❝❧♦✉❞✱✇✐❤
✐ ❛♥❞♦♠❣❛✐♥✐♥❡✱❜②❛❤♦♠♦❣❡♥❡♦✉❝❧♦✉❞✇✐❤❤❡❛♠❡❤❛♣❡❛♥❞❡① ❛❝❛♥❡✛❡❝✐✈❡
❞✐❡❧❡❝ ✐❝❝♦♥❛♥✳
❚❤❡❡♦❜❡✈❛✐♦♥❝❛♥❜❡✉♥❞❡ ♦♦❞✇✐❤ ❤❡❢♦♠❛❧✐♠♦✉❧✐♥❡❞✐♥❙❡❝✐♦♥✷✳✷✳✸✳

❲❡❞❡❝♦♠♣♦ ❡❤❡❡❧❡❝ ✐❝✜❡❧❞❊ ❝❛❡❡❞❜②❤❡ ❛♥❞♦♠♠❡❞✐✉♠✐♥♦❛♥❡♥❡♠❜❧❡✲
❛✈❡❛❣❡❞✜❡❧❞❊ ❛♥❞❛✢✉❝✉❛✐♥❣✜❡❧❞δ❊✳■✐❦♥♦✇♥❤❛ ❊ ✐ ❤❡✜❡❧❞❞✐✛❛❝❡❞
❜②❛♥❡✛❡❝✐✈❡♠❡❞✐✉♠✇✐❤❡✛❡❝✐✈❡❞✐❡❧❡❝✐❝❝♦♥❛♥ε❡✛❛♥❞✇✐❤ ❤❡ ❛♠❡❤❛♣❡❛
❤❡❝❧♦✉❞✳ ❚❤❡ ❝❛❡❡❞✐♥❡♥✐②❝❛♥❛❧♦❜❡❞❡❝♦♠♣♦❡❞✐♥❛❝♦❤❡❡♥❛♥❞✐♥❝♦❤❡❡♥
❝♦♥✐❜✉✐♦♥|❊|2 =|❊|2+|δ❊|2 ∝I❝♦❤+I✐♥❝♦❤✳❚❤❡✜ ❡♠❝♦ ❡♣♦♥❞ ♦❤❡❧♦❜❡
✐♥❤❡❢♦✇❛❞❞✐❡❝✐♦♥✐♥❋✐❣✳✹✳✶✭❛✮✱✇❤✐❧❡❤❡❡❝♦♥❞❡♠✐ ❤❡ ✉❛✐✲✐♦♦♣✐❝❞✐✛✉❡
❧✐❣❤✳



65 4.6. EFFECTIVE DIELECTRIC CONSTANT

4.6 E�ective dielectric constant

We now proceed to the extraction of the e�ective dielectric constant of the cloud as a
function of frequency. In textbooks such as Jackson [83], the index of refraction of dense
media is well reproduced by the Lorentz-Lorenz relation between the macroscopic dielectric
constant of the media and the polarizability of the scatterers:

εLL(ω)− 1

εLL(ω) + 2
=
ρα(ω)

3
. (4.4)

This formula takes only partially resonant dipole-dipole interactions into account by the
local-�eld correction [23, 24]. Recurrent scattering is not included, while its impact on the
e�ective refractive index is expected to be of importance for the dense systems of cold
atoms studied here [16, 27, 84].

In order to derive the e�ective dielectric constant by accounting for all multiple scatter-
ing events, we solve an inverse problem. We compare the coherent contribution |〈E〉|2 of
the far-�eld scattering pattern of the atomic cloud with that of an e�ective homogeneous
particle with a dielectric constant εe� and the same geometry as the cloud. The latter is
numerically calculated with an aperiodic Fourier modal method (a-FMM) [85] mainly de-
veloped by Philippe Lalanne and Jean-Paul Hugonin, using εe� as a �tting parameter. The
use of a Fourier modal method for light scattering of a rectangular box seems contradictory.
The main idea of using an aperiodic Fourier modal method is that the structure, in this
case a rectangular box, is periodized in the two transverse directions x and y. By doing so,
one can use the rigorous coupled wave analysis (RCWA). Each cell needs to be optically
isolated. This can be done by for example putting perfectly matched layers (PML) at the
borders of the cell, or by using complex coordinate transformations at the borders of each
cell [86]. It is the latter that is used in this work. We �nd that the far-�eld scattering
pattern computed using either the e�ective homogeneous particle or the ensemble average
microscopic cloud agree within ∼ 1% for each angle [compare Figs. 4.1(a) and (b)], showing
that the e�ective dielectric constant approach is valid. We conclude that this macroscopic
approach captures both the recurrent scattering and the collective e�ects of the microscopic
picture. By repeating this procedure for di�erent frequency detunings δω = ω − ω0, we
obtain the spectrum of the e�ective dielectric constant (see Fig. 4.6). The numerically
retrieved values of the dielectric constant have been �tted with the function

ε(ω) = 1 +
c1

c2 − ω − ic3

, (4.5)

where all coe�cients are taken real. Hence, both the real and imaginary part of the dielectric
constant were �tted simultaneously. It is noteworthy that at resonance the gas is described
by a dielectric constant with a negative real part and thus optically behaves as a metal.
The numerically retrieved dielectric constant is found to be signi�cantly di�erent from the
prediction by Eq. (4.4). Our results evidence that the Lorentz-Lorenz formula is not valid
for a dense cloud of resonant scatterers; the discrepancy between the simulation and the
Lorentz-Lorenz theory increases with the density, re�ecting that the resonant dipole-dipole
interactions become stronger [27,87]. As we described in Chapter 3, this result has recently
been studied experimentally by Jennewein et al. by using a cloud of cold atoms with similar
shape and density [7]. They have shown that for light scattering from a dense cloud of cold
atoms mean-�eld theory becomes invalid, as expected. Although it was expected, since
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4.7. CONNECTION BETWEEN POLARITONIC MODES AND MACROSCOPIC

MODES

a polaritonic mode is on the order of 20Γ0, whereas the typical spacing between polaritonic
modes is on the order of 5Γ0. The Thouless criterion is thus not satis�ed and Anderson
localization is not expected to be observed. This observation is consistent with a recent
theoretical work in which the absence of Anderson localization for a random ensemble of
classical dipoles is predicted [91].

4.7 Connection between polaritonic modes and macro-

scopic modes

We have seen that the far-�eld scattering pattern of the atomic cloud is very similar to that
of an e�ective homogeneous particle with an e�ective dielectric constant. We now make
explicit the relation between the (macroscopic) modes of the homogeneous particle and the
(microscopic) polaritonic modes. To do that, we use the �tted e�ective dielectric constant
εe�(ω) (see solid lines in Fig. 4.6) and calculate the macroscopic modes of the homogeneous
particle, which are poles of the scattering matrix, by iteratively solving Maxwell's equations
in the complex frequency plane [92]. Remarkably, we �nd that the complex eigenfrequencies
of the macroscopic modes coincide, within error bars, with the complex eigenfrequences of
the above-mentioned polaritonic modes (see Fig. 4.2). The reason that error bars are given
in this theoretical calculation is the fact that the the coe�cients of the Lorentzian �t of
the dielectric constant have uncertainties. The coe�cient c1 of the �t function given by
Eq. 4.5 has been varied within the 95% con�dence bounds. As the imaginary part of some
resonance frequencies of macroscopic modes falls outside the domain de�ned by the black
boxes, we have indicated by the errorbars in Fig. 4.2 how much the imaginary part of the
resonance frequencies changes while varying c1.

Despite the fact that the geometrical length of the cloud is �xed and the frequency
of the laser is almost �xed (close to ω0), it is possible to �nd several longitudinal modes
because of the strong dispersion of the medium close to resonance. This provides a physical
explanation of the results reported by Li et al. [72], in which they studied the spontaneous
emission spectrum of both Dicke (|D〉) and timed-Dicke (|Tk,I〉) states from a spherical
cloud of uniformly distributed two-level systems. These two states are de�ned as

|D〉 =
1√
N

∑
j

|ej, 0〉, (4.6)

and
|Tk,I〉 =

1√
N

∑
j

eikI ·rj |ej, 0〉, (4.7)

where kI is the wave vector of the single-photon �eld which prepared the state, |ej, 0〉
is a combined state of N atoms, where only atom j is excited and all the others are in
their ground state, and zero photons are present. They observed numerically that the
spontaneous emission spectrum of these states were strongly dependent on both geometry
and density. Notably, they observed that the sign of the cooperative Lamb shift can be
reversed by suitably modifying the ensemble properties. Both the Dicke and timed-Dicke
states are not eigenmodes of the set of coupled-dipole equations and therefore they can be
written as a linear superposition of eigenmodes of the system. Hence, they partially overlap
with polaritonic modes of the system. The frequency position of these polaritonic modes
depends indeed strongly on both the density and the geometry.



CHAPTER 4. POLARITONIC MODES IN A DENSE CLOUD OF COLD ATOMS 68

Figure 4.4(b) shows that the frequency coincidence between the macroscopic and micro-
scopic modes is not accidental: the microscopic and macroscopic modes have not only the
same frequency and linewidth, but also the same spatial structure along the z axis. Before
we continue with the analysis of the other macroscopic modes, we make a remark about
how |E|2 for the macroscopic mode is superposed on 〈|p|2〉. Let us note that the dipole
moment square for a single realization [see Fig. 4.4(a)] corresponds to a single eigenmode.
The procedure of obtaining these eigenmodes has been explained in Section 4.3. From the
derivation, it follows that these modes are calculated in the absence of an external driving
�eld, so the dipole moments are known apart from a multiplication factor. This multipli-
cation factor is obtained by normalizing the modes, which has been done as explained in
the main text by imposing

∑
j |p

β
j |2 = 1. Obviously, the normalization issue also arises for

the electric �eld of the macroscopic modes. The latter has been normalized such that the
intensity pro�le coincides well with the average dipole moment square. This way of com-
paring macroscopic and microscopic modes is consistent with the fact that p ∝ E, which
is the underlying assumption of the model as we study the low-excitation limit. Lastly, we
note that 〈|p|2〉 = |〈p〉|2 + 〈|δp|2〉. As a consequence, 〈|p|2〉 exhibits an o�set, which is due
to dipole moment �uctuations. This explains the fact that a signi�cant o�set as for 〈|p|2〉
is not present for |E|2 of the macroscopic mode. In order to superimpose them, we have
added a constant o�set to the macroscopic |E|2.

Now, we come back to the analysis of the other macroscopic modes. We note that
the spatial agreement as seen in Fig. 4.4(b) is not unique. Figure 4.7 shows the spatial
agreement for all polaritonic modes for both ρ/k3 = 1 and ρ/k3 = 5, except for the mode
(b) of ρ/k3 = 5, since we could not �nd this macroscopic mode numerically. That does not
mean this mode does not exist. A possible reason that we could not �nd the mode is that the
�t of εe�(ω) in that frequency region is actually not very good, and mode (b) lies very close
to (a) and (c). The coincidence of most polaritonic modes illustrates that the coincidence
is not restricted to a particular value of the interaction strength parameter ρ/k3. The same
agreement holds for the transverse dimensions of the box. Figure 4.8 shows an example
of this agreement. Since we have found both a frequence and mode pro�le coincidence
between the macroscopic and microscopic modes, our analysis esthablished the connection
between the microscopic and macroscopic approaches of light scattering.

Let us remark that the modes inside the homogeneous rectangular box are Fabry-Perot
resonances. For atoms distributed inside a spherical volume, the modes would be Mie
resonances [9], and in the case of a trapped atomic cloud with normally distributed atoms,
polaritonic modes also exist, but they are localized in the high density region, like for guided
modes in a graded-index �ber.

4.8 Light scattering from polaritonic modes

In this section, we discuss light scattering from the cloud of particles. As observed ex-
perimentally, and extensively discussed in Chapter 3, when the density increases, the con-
tribution of coherent light scattering increases. Given the identi�cation of the coherent
macroscopic modes with the polaritonic modes, this suggests that polaritonic modes are
mostly responsible for the scattering of the cloud. This is expected as they are superradiant.
In this section, we study directly their contribution to scattering. More generally, we need
to calculate the scattered electric �eld from a subset of eigenmodes. According to Eq. 2.16,
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the set of coupled-dipole equations are given by

pj(rj) = ε0α(ω)
[∑
j′ 6=j

µ0ω
2 ¯̄G(rj, rj′ ;ω)pj′ + Einc(rj)

]
.

(4.8)

The dipole moments can be calculated by solving this set of equations. The obtained dipole
moments are then written in terms of the eigenvectors Pβ, which are de�ned in Eq. 4.3:

p1,x

p1,y

p1,z
...

pN,x
pN,y
pN,z


=
∑
β

cβPβ. (4.9)

By inverting this linear system of equations, one can deduce the coe�cients cβ. In order to
calculate the scattering pattern which originates from a subset of eigenmodes, it is su�cient
to calculate all the dipole moments p̃i due to the excitation of the wanted polaritonic modes
S, S ∈ β: 

p̃1,x

p̃1,y

p̃1,z
...

p̃N,x
p̃N,y
p̃N,z


=
∑
S

cSPS. (4.10)

The scattered electric �eld due to these dipoles can be calculated

Esc,S(r) = µ0ω
2
∑
j

¯̄G(r, rj;ω)p̃j. (4.11)

Although the di�erent eigenmodes Pβ are not orthogonal, since the matrix ¯̄A which de�nes
them is non-Hermitian, the scattered electric �eld due to a single eigenmode or a subset of
eigenmodes can always be calculated. It is understood that the total scattered electric �eld
is a sum of both the �elds calculated from the subset S ∈ β and the remainder of states:
Esc = Esc,S +Esc, not S. When we calculate the scattering pattern that is due to the modes
S only, it is understood that the interferences between Esc,S and Esc, not S are not included.
We now apply this formalism to light scattering from the atomic cloud de�ned in Fig. 4.1(a).
We have calculated light scattering from the eigenmodes inside the rectangles de�ned in
Fig. 4.2(A); the polaritonic modes. The result is presented in Fig. 4.9 by the blue curve,
together with the coherent scattering pattern of all the modes together. It is seen that light
scattering from the modes within the rectangles, the number of modes within the rectangles
is only 0.54% of all the modes, reproduces an important part of the total scattering pattern.
However, it is also seen that in the backwards direction, the polaritonic modes give rise to a
too large intensity. The fact that the backward scattering is so dominant can be explained
by symmetry arguments. Polaritonic modes are modes of the average system and radiate
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Polaritonic modes

All modes

z

x

Figure 4.9: Scattering pattern of an x-polarized plane wave incident on the atomic cloud
(schematically indicated by the purple box) with density ρ/k3 = 1 and with ω = ω0. The
arrow indicates the incident wavevector, and the double-arrow its polarization. The red
curve corresponds to the coherent scattered intensity from all modes. The blue curve comes
from coherent light scattering from the polaritonic modes as de�ned by the rectangles in
Fig. 4.2(A). Only 0.54% of all collective eigenmodes are within the black rectangles. A
signi�cant part of the scattering pattern can be attributed to only a very few modes, which
are called polaritonic modes.

thereby symmetrically. All modes are needed to recover the precise scattering pattern.
Notably, nonpolaritonic modes are needed to interfere destructively with the backwards
scattered �elds of the polaritonic modes. The fact that such a small amount of modes is
able to reproduce a signi�cant part of the scattering pattern is remarkable. However, we
know from classical electrodynamics that light scattering at a frequency close to a resonance
is dominated by the resonances of the system. This notion seems to be con�rmed by the
fact that light scattering is dominated by only a few modes: the polaritonic modes.

4.9 Absorption

In the macroscopic model, the appearance of an imaginary part of the e�ective dielectric
constant (see Fig. 4.6) accounts for losses. In our situation of elastic light scattering,
absorption corresponds to energy transfer from the coherent �eld to the incoherent �eld.
Here, we demonstrate that the total absorption in the system is equal to the total amount
of incoherent light scattering. First, we discuss the microscopic system. From an energy
balance, we know that for a system without absorption Pmicro

s,coh +Pmicro
s,incoh−Pmicro

ext = 0, where
Pmicro
s,coh is the coherent scattered power and Pmicro

s,incoh the incoherent scattered power [15]. In the
macroscopic system, there is both absorption and light scattering: Pmacro

ext = Pmacro
s +Pmacro

abs .
As the ensemble-averaged electric �eld follows the Helmholtz equation with an e�ective
dielectric constant, Pmicro

s,coh = Pmacro
s . Because of the equivalence between the microscopic

and macroscopic systems, their extinction is the same. From this simple reasoning, it follows
that

Pmicro
s,incoh = Pmacro

abs . (4.12)

While losses are generally considered as being irreversible as a result of dephasing processes,
e.g., coupling to phonons, we note that this cannot be the case here, as there is no loss
mechanism in the microscopic model. Before averaging, the �eld scattered by a single
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realization of the cloud can be time reversed, provided that the scatterers' positions have
not changed. After averaging, only the coherent �eld has a well-de�ned phase and can be
time reversed. In summary, in the presence of dephasing processes, or when the positions
of the atoms are changed randomly from one realization to another (as is the case when
we ensemble average), the coupling of the incident light to dipole �uctuations leads to an
irreversible radiation of incoherent light.

We are now able to explicitly address the question at the beginning of this chapter:
what is the physical origin at the microsopic level of the index of refraction? Since the
index of refraction includes both the di�ractive properties of an object and the absorption
of light, it is understood that the polaritonic modes give an important contribution to
it, but not the unique contribution. The subradiant modes that give rise to incoherent
light scattering, which corresponds to absorption in the homogeneous medium, due to the
random orientation of the dipole moments have also an important contribution to the index
of refraction. This means that all modes are important, but the polaritonic modes dominate
the di�ractive properties of the homogeneous object.

4.10 Conclusion

In conclusion, in this chapter we have shown the existence of polaritonic modes in a dense
atomic system. These polaritonic modes do not depend on the atomic positions but only on
the shape, and size of the cloud, and on the atomic density; they are spatially delocalized
and strongly superradiant. We have shown that they can be identi�ed to the macroscopic
modes of a homogeneous object with an e�ective dielectric constant. These results apply
not only to cold atomic clouds but also to any dense system of resonant scatterers such as
molecules or quantum dots. This chapter thus provides a uni�ed vision of scattering by
dense systems of resonant scatterers.



Chapter 5

Revisiting homogenization for

interacting resonant scatterers

5.1 Motivation

When light impinges on a liquid or a solid, it gets refracted: the optical response is uniquely
given by the index of refraction. This is as opposed to light scattering from a gas, for which
incoherent light scattering due to density �uctuations dominates. One way to homogenize
the system is to increase the density: moving from a water vapor, for which incoherent light
scattering dominates, towards liquid water, where coherent light scattering dominates.

In Chapter 3 we studied the experimental results obtained by Pellegrino and Jennewein.
They studied near-resonance light scattering from a dense cloud of resonant, cold atoms.
Pellegrino measured incoherent light scattering. As the number of atoms augmented, the
amount of incoherent light scattering increased untill it saturated. For a similar atomic
density, Jennewein has also observed saturation of coherent light scattering. It seems that
even though the cloud becomes denser, incoherent light scattering keeps being a signi�cant
part of light scattering. This is as opposed to what we know from light scattering by liquids
and solids, where despite the fact they are denser than a cloud of cold atoms, there is no
incoherent light scattering. This raises the question if resonant atomic systems, such as
those studied in the group of Browaeys, can actually reach the �homogenization regime�, a
regime in which the optical response is uniquely determined by an e�ective refractive index
and thus not by �uctuations. We will see that resonant light scattering from a cloud of
cold atoms is more subtle than light scattering from liquids and solids. We will show that
incoherent light scattering cannot be eliminated close to atomic resonance.

5.2 Introduction

In this section, we describe what homogenization amounts to. After giving some examples
of homogenization problems for non-resonant light scattering, we will pose the problem of
homogenization for near-resonance light scattering.

5.2.1 What is homogenization?

Let us consider a system that is composed of small constituents, for example a cloud of
atoms, a cloud containing microdroplets, or a solid that has a crystalline structure with an
atomic lattice. One way of calculating the response of a compound system to an external
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excitation is by rigorously calculating the response by means of a microscopic theory that
takes each constituent into account. Another way of calculating the response of a compound
system is by approximating the system as a homogeneous medium, and by studying the
response of the system for an external excitation. The former approach is often used for light
scattering from the sky, whereas the latter approach is very common for light scattering by
a liquid.

Let us consider some examples of the latter approach where the compound system is de-
scribed as a homogeneous medium. The relation between excitation and response is in many
situations given by a linear response function. Some examples of linear response functions
are the electric susceptibility χe, the electrical conductivity σ, the thermal conductivity k,
and Young's modulus E. Within the framework of linear response theory, the following
linear relations are some examples of the relation between an excitation (right-hand side)
and the response (left-hand side):

Jp = ε0χeE, (5.1)

Jq = σE, (5.2)

Jφ = −k∇T, (5.3)
∆L

L0

= Eσstrain, (5.4)

where Jp is the polarization current density, χe = ε − 1, with ε being the dielectric
constant, Jq being the free-charge current density, Jφ being the heat �ux, T being the
temperature, and L0 being the original length of an object that varies by an amount
∆L under the application of an extensional strain σstrain. Typically, these macroscopic
linear response functions can be obtained by an e�ective medium theory. In the case of
electromagnetism, there are several models which relate microscopic properties like the
atomic polarizability [17] or the dielectric constants of spherical particles in a composite
dielectric random medium [93�95] to the macroscopic dielectric constant.

When we stick to the example of light scattering from a system containing dielectric
particles dispersed in a host medium, we realize that there are two di�erent points of view
to assess if a medium can be homogenized:

1. One may be interested in the propagation of the ensemble-averaged �eld in the
homogeneous e�ective medium. Here, the question is whether the e�ective refractive
index describes accurately the behavior of the medium,

2. The second possible point of view is to require that there is no incoherent light scat-
tering. This is a more strict formulation of homogenization than the �rst formulation,
since the �rst formulation allows to have incoherent light, although its �eld needs to
be small compared to the coherent �eld.

The �rst point of view is generally used in many research �elds. For example, when an
electrical current �ows through an electrical conductor and one measures the total current,
the experimental results can be �tted by Ohm's law (Eq. 5.2). One does not have separately
access to a �uctuating current due to possible inhomogeneities of the medium. However
in optics, incoherent scattered light is an obvious manifestation of the �uctuations of the
medium. The ability of separately measuring the average response of a system and its
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�uctuating response is a particular property of optics [7, 51]. Since we have separately
access to both coherent and incoherent light, we will adopt the more stringent formulation of
homogenization: there should be no incoherent light. In other words, we adopt a de�nition
which requires that not only the e�ective dielectric constant exists, but its imaginary part
associated to scattering losses has to be negligible.

5.2.2 Homogenization in optics

For the case of di�raction from periodic media, the second formulation of homogenization
(Pincoh = 0) can be used. The zeroth-order di�racted mode continues propagating in the
same direction as the incident �eld, whereas higher order di�racted modes get di�racted
under an angle. When the period Λ of the periodic medium is smaller than λ, where λ
is the wavelength, only the zeroth-order di�racted mode is propagative; all higher-order
modes are evanescent and therefore do not reach the far �eld. It is only under the condition
Λ < λ that the optical response of the periodic medium can be described by an e�ective
refractive index, since no propagating modes exist with angles di�erent than the angle
of incidence. In this simple case, the homogenization validity condition is thus given by
the requirement that the wavelength should be larger than a length scale given by the
period [96]. It is often assumed that this condition can be extended to random media [18].
If we consider for example incident light on a random dilute medium like a gas, there are
density �uctuations on the wavelength scale which give rise to incoherent light scattering.
When the system typical length scale l is chosen as the mean inter-particle distance
〈r〉 = ρ−

1
3 , where ρ is the number density, and 〈r〉 � λ, the medium is expected to be self

averaged and incoherent scattering is expected to be negligible [18]. This is certainly the
case for dense media. As an example, consider light incident on pure water or amorphous
silica. These media only refract, re�ect and/or di�ract light; they do not di�use light.
However, many observations for near-resonance light scattering from optically thick clouds
of cold atoms [40, 42, 46, 51] do show that incoherent light scattering continues being
signi�cant, even though the atomic density of the clouds increases. This result is surprising
because the e�ective dielectric constant can be as large as 5, as we have seen in Fig. 4.6,
so that the medium optically behaves as a dense medium, but nevertheless exhibits a
lot of incoherent light scattering [51]. It is because of this experimental result that we
want to revisit the concept of homogenization in light scattering from dense, resonant and
cold atomic systems, since the condition 〈r〉 � λ seems to be insu�cient for this kind
of systems. Although homogenization in light scattering is textbook material, there are
few reports regarding the particular case of resonant light scattering from dense and cold
atomic gases.

5.2.3 Contents

This chapter is organized as follows. First, we describe the system that has been modeled
and we formally introduce the quantities of interest. We then summarize the known mecha-
nisms of scattering suppression for non-resonant light scattering. This summary will enable
us to pinpoint the di�erences with resonant light scattering by dense atomic systems which
is treated thereafter. After the summary on non-resonant light scattering, we will consider
resonant light scattering for which we study the relative importance of coherent and inco-
herent light scattering. Finally, we study a particular class of small systems composed of
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many atoms, which, surprisingly, scatter less light than a single atom and which can never
be homogenized, although it satis�es the condition 〈r〉 � λ.

5.3 System description

We study light scattering from a disordered wavelength-size cloud of cold atoms, as il-
lustrated in Fig. 5.1. As in Chapter 4, we take a cuboid-shape cloud with dimensions
4.8λ0 × 0.6λ0 × 0.6λ0, where λ0 = 780 nm is the resonance wavelength of the studied
transition of rubidium-87 atoms. The atoms are uniformly distributed and are modeled as
classical dipoles. Classical dipoles are modeled by an isotropic electric polarizability matrix
¯̄α(ω) = α(ω)¯̄

1, where

α(ω) =
3πΓr/k

3

ω0 − ω − iΓr+Γnr+Γ∗

2

, (5.5)

with ω0 = 2πc/λ0 the transition frequency, c the speed of light in vacuum, Γr, Γnr and
Γ∗ respectively the radiative, nonradiative and dephasing rate. When Γnr = Γ∗ = 0, this
polarizability model corresponds to a classical J = 0→ J = 1 atom, as used in the previous
chapter. This model can also include nonradiative decay channels (Γnr) and dephasing
processes (Γ∗). Unless stated di�erently, we assume elastic scattering and no dephasing
processes to occur, i.e., Γnr = Γ∗ = 0, which is a good model for a cold gas of identical
classical dipoles, where no collisions take place. We take Γr = Γ0 = 2π × 6 MHz. As
we discuss dense atomic systems, i.e. k〈r〉 . 1, the full Green's tensor is used to describe
resonant dipole-dipole interactions, including the terms proportional to 1/(kr)2 and 1/(kr)3

which cannot be neglected in this dense regime [12, 29, 97]. The scattered electric �eld Esc

can be calculated from the set of coupled-dipole equations (see Eq. 2.15 and Eq. 2.16). The
far-�eld scattering pattern is proportional to |Esc|2. After several realizations, the ensemble-
averaged scattering pattern is obtained and decomposed in a coherent and incoherent part
respectively: 〈|Esc|2〉 = |〈Esc〉|2 + 〈|δEsc|2〉. The coherent scattering pattern corresponds
to the di�raction pattern of a homogeneous object described by a dielectric constant and
the incoherent scattering pattern is quasi isotropic. Figure 5.1 shows the scattering pattern
for a single realization. It is seen that there is one big lobe in the forward direction and in

4.8 0

0.6 0

|<Esc>|
2

|δEsc|
2

Figure 5.1: Angular scattering pattern for a single realization of a cloud illuminated by a
plane wave. The volume has dimensions 4.8λ0 × 0.6λ0 × 0.6λ0. Several peaks are visible.
A big lobe in the forward direction indicates that the optical response is dominated by a
coherent contribution of all scatterers. |δEsc|2 and |〈Esc〉|2 indicate what are the main
contributions to the scattering pattern.



77 5.4. NON-RESONANT LIGHT SCATTERING

the other directions there are many spikes visible. The big lobe in the forward direction
indicates that light scattering is indeed dominated by the ensemble-averaged electric �eld,
even for a single realization. The presence of several peaks in the other directions indicates
incoherent light scattering. In order to quantitatively characterize homogenization, we will
compare the scattered powers of both coherent and incoherent light scattering that are
calculated after averaged over many realizations. The powers that will enable us to discuss
homogenization are de�ned as

Pcoh =
ε0c

2

‹
|〈Esc,far �eld〉|2dS, (5.6)

and

Pincoh =
ε0c

2

‹
〈|δEsc,far �eld|2〉dS, (5.7)

where the integral is evaluated over a closed spherical surface in the far-�eld region, as
is indicated by the subscripts �far �eld�. We de�ne the total scattered power as Ptot =
Pcoh + Pincoh, which is de�ned in this chapter after the ensemble averaging.

5.4 Non-resonant light scattering

In this section we summarize well-known physics about non-resonant light scattering by
dilute ensembles of particles [17, 98]. In particular, we illustrate the factors leading to
suppression of light scattering. In other words, we review the usual conditions to obtain
homogenization in the non-resonant light scattering regime. We illustrate these conditions
by keeping the same system of cold atoms and the same geometry as described in Section 5.3.

The illuminating frequency is far detuned from atomic resonance (−104Γ0), so that we
consider non-resonant light scattering. We calculate the coherent and incoherent scattered
powers, as we de�ned them in the previous section. The powers are calculated as a function
of the number of atoms inside the cloud, and normalized by the scattered power of a single
atom. Figure 5.2 shows the numerical results in a log�log scale. We see that incoherent light
scattering scales linearly with the number of atoms inside the �xed volume: Pincoh ∝ N , and
that coherent light scattering scales quadratically with the number of atoms: Pcoh ∝ N2,
where N is the number of atoms in the cloud. This result is in agreement with theory on
single light scattering (Born approximation), as we will demonstrate next. The wavelength-
size atomic cloud is within the single scattering regime, since the scattering mean free path,
which is given by lsc = 1/[ρσsc(ω)] = 3 m for N = 450 atoms inside the cloud, is much
larger than the size of the atomic cloud. It is the small scattering cross section far from
resonance that leads to a large scattering mean free path. Light scatters therefore at most
once inside the cloud. In the single scattering regime, each scatterer is uniquely illuminated
by the incident electric �eld [99]. When a linearly polarized plane wave, E(r) = E0,ince

ikL·r,
is incident upon such a system, the total scattered �eld in the far �eld is given by

Esc(r) =
ω2

c2
α(ω)

eikr

4πr
[E0,inc − (E0,inc · u)u]

N∑
j

eiq·rj , (5.8)

where we de�ne q = kL − ω
c
u, with u being the direction of observation, and kL the wave

vector of the incident plane wave. From Eq. 5.6 and Eq. 5.7, we know that the scattering
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Figure 5.2: Scattered power calculated for a linearly polarized incident plane wave propa-
gating along the long axis of the cloud with a frequency detuning δωL = ωL−ω0 = −104Γ0.
All powers are normalized by the scattered power for a single atom at the same detuning and
plotted on a log�log scale. The fraction of coherently scattered light increases as a function
of the number of atoms. The red dashed line is a quadratic �t and the black solid line a
linear �t.

pattern, i.e., the integrand of the surface integrals, is proportional to |Esc|2 in the far �eld.
From Eq. 5.8, it follows that the scattering pattern is therefore given by

|Esc|2 =
ω4

c4
|α(ω)|2 |E0,inc|2

(4πr)2
sin2(θ)S(q), (5.9)

where θ is the angle between the observation direction and the polarization direction, and
S(q) is given by the so-called structure factor

S(q) = |
N∑
j=1

eiq·rj |2. (5.10)

We see that in the single scattering regime, the scattering pattern is determined by the
structure factor. The structure factor can be decomposed as follows

S(q) =
N∑
j=1

eiq·(rj−rj) +
N∑

j,l,j 6=l

eiq·(rj−rl) = N +
N∑

j,l,j 6=l

eiq·(rj−rl). (5.11)

The ensemble-averaged structure factor gives the ensemble-averaged scattering pattern:

〈S(q)〉 = N +N(N − 1)〈eiq·(r−r′)〉, (5.12)

which can be rewritten as

〈S(q)〉 = N [1− 〈eiq·(r−r′)〉] +N2〈eiq·(r−r′)〉, (5.13)

where the average of the exponential function is this time given by

〈eiq·(r−r′)〉 =

¨
P(r, r′)eiq·(r−r

′)d3rd3r′, (5.14)
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with P(r, r′) being the joint probability distribution of �nding one atom at position r and
one atom at position r′, so that

˜
P(r, r′)d3rd3r′ = 1. From Eq. 5.9, and Eq. 5.13 it

follows that for systems that are much smaller than the scattering mean free path and
therefore in the single scattering regime, the incoherent scattering spectrum scales linearly
with N . The coherent scattering spectrum is the second term in the structure factor
and scales quadratically with N . We observe that the fraction Pincoh/Pcoh ∝ 1/N → 0
for increasing number of atoms in a �xed volume. Yet, incoherent light scattering keeps
increasing linearly when N increases. In view of our strict formulation of homogenization
(number 2: Pincoh = 0), the result that Pincoh ∝ N has as a consequence that far from
resonance, dense clouds of atoms are not in the homogenization regime. The �nding that
a system which is illuminated far from resonance cannot be homogenized is indeed what
is observed in the sky, where Rayleigh scattering occurs. The molecular number density
of the sky is 107 molecules/µm3. Although the air is very dense for visible wavelengths
(k〈r〉 ∼ 0.003), the sky appears blue in all observation directions. It is incoherent light
scattering that we observe in the sky1. The strong condition that Pincoh should be negligible
is thus not satis�ed. The condition to reach homogenization: 〈r〉 � λ, is clearly not
su�cient for this system.

5.4.1 E�ect of position correlations on non-resonant light scatter-

ing

Next, we introduce position correlations in the cloud of scatterers. When position corre-
lations are present, the joint probability density function P(r1, r2) of having scatterer 1
at position r1 and scatterer 2 at position r2 cannot be factorized as P(r1)P(r2) anymore.
Instead, the joint probability density can be written as

P(r1, r2) =
1

V 2
[1 + g(r1 − r2)], (5.15)

where V is the volume of the system and g is the pair correlation function, for which an
example (hard sphere approximation) is given in Fig. 5.3. This is numerically implemented
by introducing a spherical exclusion volume with diameter d around each scatterer. This
diameter sets the minimum distance between nearest-neighbor scatterers: d = rnn,min, so
they cannot approach one another within a distance d. The exclusion volume is illustrated
in Fig. 5.4(a), where the dashed circles correspond to the virtual boundaries. Figure 5.4(b)
shows again the normalized coherent and incoherent scattered power, but this time as
a function of the nearest-neighbor distance. Figure 5.4(b) shows that incoherent light
scattering gets reduced by introducing order in the system. An evaluation of the integral
given in Eq. 5.14 for an in�nite volume leads to

〈S(q)〉 ≈ N
[
1− fV

]
+N(N − 1)δ(q), (5.16)

where fV is the volume fraction that is occupied by the exclusion volumes. We observe that
as the exclusion volume of each scatterer increases, incoherent light scattering diminishes.
More generally, i.e., beyond the single scattering regime, it can can be understood that cre-
ating order in a system reduces density �uctuations. The reduction of density �uctuations

1This is not true when one looks towards the sun, since in that direction we observe �coherent� light
scattering, where �coherent� should be interpreted in our way as an ensemble average.
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reduces �uctuations in the polarization density when the system is illuminated, and thereby
incoherent light scattering gets reduced. Hence, it is possible to reach homogenization when
introducing spatial correlations. This illustrates what we know about light scattering from
a pure liquid: it scatters less light than a gas, although there are more scatterers. This
e�ect where incoherent light scattering gets reduced by correlations is also responsible for
the transparency of the cornea despite its heterogeneous structure [100].

|r1-r2|

g

-1

1

d

Figure 5.3: An example of the pair correlation function for the case of the hard sphere
approximation. The atoms cannot approach each other within a distance d.

0 0.1 0.2 0.3
10

1

10
2

10
3

r
nn,min

/λ
0

P
coh

/P
1 atom

P
incoh

/P
1 atom

(b)

rnn,min

(a)

Figure 5.4: Correlations reduce incoherent scattering. The scattered power has been cal-
culated for a linearly polarized incident plane wave propagating along the long axis of the
cloud with a frequency detuning δωL = −104Γ0 and 100 atoms in the cloud. All powers are
normalized by the scattered power for a single atom at the same detuning. Atomic positions
are uniformly distributed, while taking into account a spherical exclusion volume around
each atom with a diameter d = rnn,min which corresponds to the minimum nearest-neighbor
distance. Suppression of incoherent light scattering is observed.
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Elastic mean free path The regime of suppression of light scattering can be charac-
terized by an elastic mean free path lmfp which can be connected to the imaginary part of
the e�ective refractive index 1/lsc = 4πIm(ne�)/λ, as we have seen in Section 2.2.3. The
condition for suppressing scattering is given by L � lsc where L stands for a typical size
of the system, so that photons do not scatter multiple times. Position correlations can
increase the elastic mean free path and thereby bring a system of a given size and a given
number of atoms into the homogenization regime.

5.4.2 E�ect of nonradiative decay on non-resonant light scattering

Finally, we note that another mechanism which leads to homogenization is losses in a
system. If each scatterer has an absorption cross section σabs that is much larger than
its scattering cross section σsc, the scatterers do not scatter a lot of light. Incoherent
light scattering is said to be suppressed, since light absorption is preferable. However,
an ensemble of absorbing scatterers can still scatter light coherently. An example is a
droplet of Indian ink (also known as China ink in British English), which consists of a
suspension of colloidal carbon nanoparticles. While each nanoparticle absorbs light, the
droplet containing the nanoparticles scatters light coherently: light that is incident upon
a droplet of Indian ink gets for example re�ected. The ink droplet can be described as
a homogeneous droplet with a complex refractive index to account for the role of the
nanoparticles. Such a system is in the homogenization regime as the incoherent component
vanishes. The condition for this regime can be written in terms of decay length lsc/abs =
1/(ρσsc/abs). The homogenization condition is thus lsc � labs to ensure that absorption is
the leading contribution to extinction.

5.5 Resonant light scattering

We now turn to the resonant scattering case. For the atomic systems we study here,
it is possible to �nd a dielectric constant with values similar to the ones encountered in
condensed matter physics. In Chapter 4, we have found that a cloud with a density of
ρk3 = 1 has an e�ective permittivity with a real part varying in the range [−2, 2] close to
atomic resonance. Although the system is more dilute than air, it is the resonant nature of
excitation that leads to this large value.

Figure 5.5(a) shows the coherent and incoherent scattered power as a function of the
number of atoms in a cloud with �xed volume, for an incident plane wave on atomic
resonance. In stark contrast with the o�-resonance case (dashed lines), both coherent and
incoherent powers do not keep increasing with the number of atoms. The saturation of the
incoherent power when N increases has been observed experimentally by Pellegrino et al. in
Ref. [51] and the saturation of the coherent power has been observed by Jennewein et al. in
Ref. [7]; both experiments have been discussed in Chapter 3 of this thesis. Whereas coherent
light scattering (di�raction) gives rise to a large peak in the forward direction, incoherent
light scattering occurs in all directions. After an angular integration over the full solid
angle, the coherent and incoherent contributions turn out to be of similar importance, as
can be seen in Fig. 5.5(a)2. This is as opposed to what is expected for light scattering from

2If a detector is placed in the forward direction, with a polarizer and a small collecting aperture in
front of the detector, one can reduce signi�cantly the amount of detected incoherent light. This situation
corresponds to the experiments of Jennewein.
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a system for which the inter-atomic distance is small: coherent light scattering might be
expected to dominate. According to the second formulation of homogenization, Pincoh = 0,
this atomic system can therefore not reach the homogenization regime. Importantly, this
system cannot reach the homogenization regime according to the �rst formulation either,
as incoherent light scattering is as important as coherent light scattering.
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Figure 5.5: (a) Scattered power has been calculated for a resonant (δωL = 0) linearly
polarized incident plane wave propagating along the long axis of the cloud. All powers
are normalized by the scattered power for a single atom on resonance. The black arrow
indicates for which number of atoms the spectrum has been plotted in Fig. 5.5(b). (b) For
N = 450 atoms, the scattered power for a single realization has been plotted, together with
the ensemble averaged coherent, incoherent and total scattered powers. All quantities are
normalized by the single atom scattered power on resonance.

5.5.1 Scattering spectra for coherent and incoherent light

In order to further analyze the resonant scattering regime, we study the spectrum of the
scattered light, i.e., the amount of light scattered coherently or incoherently as a function
of the detuning of the laser. We plot in Fig. 5.5(b) four spectra of: (1) ensemble-averaged
coherent scattered light, (2) ensemble-averaged incoherent scattered light, (3) the sum of
the ensemble-averaged coherent and incoherent scattered light, and (4) the scattered light
for a single realization. One feature is that the spectrum is signi�cantly di�erent from
a Lorentzian spectrum. The peaks that are visible for a single realization correspond to
excited collective modes, which were introduced in Chapter 4. Furthermore, it is observed
that the coherent and incoherent spectra show some similarities, notable both seem to have
a second peak for a negative detuning.

Next, we will interpret the observed coherent and incoherent spectra from both a mi-
croscopic and macroscopic perspective. We start with the microscopic point of view.

Microscopic view on spectrum Following the idea developed in Chapter 4, we adopt
the collective modes point of view to analyze the spectra. It was shown that there exist a few
polaritonic modes, which have two key features: (i) they are robust against disorder (i.e.,
they depend on density and geometry but not on the detailed position of the scatterers),
and (ii) they are superradiant and therefore responsible for most of the coupling between
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the incident �eld and the system. Here, the term superradiant is used to de�ne states with
a decay rate larger than 8Γ0, and these modes can be found in the closeup of Fig. 4.2(A).
We limit the study to the low-excitation regime where a classical model is valid. These
collective modes were shown to be identical to the Fabry-Perot-like modes of the e�ective
homogeneous particle (see Chapter 4). It was expected that the light scattered by these
modes accounts for a large part of coherent light scattering. This is indeed what has been
observed in Fig. 4.9 where a comparison of the the overall coherent scattering pattern with
the scattering pattern of a subset of modes (polaritonic modes) is given. The spectrum of
coherent light scattering is therefore expected to be a�ected by polaritonic modes. Notably,
the second peak at red detuning can be attributed to polaritonic modes. We have shown
that the position of this peak changes according to the size of the cloud; indeed polaritonic
modes depend on the size of the cloud as well.

Next we explain why the incoherent light scattering spectrum shows similarities with the
coherent light scattering spectrum. Incoherent light scattering is due to the modes which
are not superradiant. They are the majority of the modes. These modes are excited via the
coupling with polaritonic modes, because the modes are not orthogonal. Indeed, when the
set of coupled-dipole equations is put in the form of an eigenvalue problem, we can see in
Section 2.2 that the corresponding matrix is not Hermitian. Therefore, the eigenvectors are
not orthogonal. Together with the fact that subradiant modes exist over a large frequency
range, as we have seen in Chapter 4, the coupling between polaritonic modes and subradiant
modes lies at the origin of the similarities between the coherent (∼polaritonic modes) and
incoherent (∼subradiant modes) light scattering spectra.

Macroscopic view on spectrum The similarities between both spectra can be under-
stood from a macroscopic view from the fact that the e�ective homogeneous medium has
an imaginary dielectric constant accounting for losses (see Chapter 4). In the absence of
�real� losses (conversion into heat), these losses account for the energy transfer from the
coherent (average) �eld to the incoherent (�uctuating) �eld. As the excitation of the system
is mediated by the resonances of the homogeneous system, both coherent and incoherent
power are expected to have a similar spectrum.

5.5.2 E�ect of nonradiative decay and dephasing on resonant light

scattering

The fact that close to resonance a lossless system consisting of cold atoms cannot reach the
homogenization regime makes us wonder if there exists any system of resonant scatterers
that can reach the homogenization regime. In Section 5.4.2 we have mentioned the role of
losses for nonresonant scatterers. We report in Fig. 5.6 the results obtained for resonant
light scattering from atoms, when adding nonradiative losses and/or dephasing following
Eq. 5.5. Nonradiative losses exist in quantum dots and dephasing might exist in the case
of an atomic system due to motional e�ects. From Fig. 5.6 it is seen that the incoherent
power gets signi�cantly reduced whereas the coherent power is only weakly a�ected. This
can easily be understood by using the mode picture to analyze scattering. It can be seen
from Eq. 4.3 that the only change of the (complex) eigenfrequency of a collective eigenmode
β by introducing nonradiative and dephasing rates is: ω̃β = ω0− iΓr

2
7→ ω̃β − iΓnr+Γ∗

2
. This

formula gives a clear picture of the competition between radiative and nonradiative decay
for each mode: it follows that light which gets scattered by subradiant modes is �ltered
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interaction, all modes are degenerate. It is the resonant dipole-dipole interaction that lifts
the degeneracy of these modes.

To explain why on average the system scatters much less than a single atom, as we
can see from the main panel of Fig. 5.7, we use the spectrum as presented in the inset of
Fig. 5.7, in which the modes are spectrally separated. Let us denote δω the typical spacing
between two peaks and take Γ0 as the average width of each peak. The probability that
a given laser line excites a mode is thus Γ0/δω. As δω > Γ0, most of the realizations the
system does not get excited. Therefore, the average scattered power is smaller than that
of a single atom. This is con�rmed in the main panel of Fig. 5.7.

5.6.2 Average mode spacing

In an actual experiment, atoms are moving so that the spectral positions of the modes
will �uctuate over time. For a monochromatic incident laser, it follows that the scattering
signal is expected to display giant �uctuations in time. This will be a clear signature of
this interaction regime. Let us discuss the conditions for observation of this particular
scattering regime with a low average scattering cross section and giant �uctuations. We
use as a de�nition of this scattering regime a system where the scattering peaks are well
separated as displayed in the inset of Fig. 5.7. The condition to be in this regime is given
by δω > Γ0. Next, we study this condition for the observation of giant �uctuations and see
under which experimental conditions this regime can be attained. Instead of calculating
the scattering spectra, let us calculate the eigenfrequencies of the system. The total spread
of the eigenfrequencies ∆Ω is divided by the total number of modes, so that we obtain
the average distance between modes δω. In order to determine ∆Ω, we arbitrarily select
90% of the modes. We repeat this procedure for cubes with varying volume and varying
number of atoms inside. Figure 5.8(a) shows the typical spacing δω/Γ0 of the modes as a
function of the volume for N = {20, 40, 80} atoms. The results are �tted with the function:
δω/Γ0 = c1{V/[λ0/(2π)]}c2 , where c1 and c2 are the free �t parameters. It is observed that
the mode spacing is independent of the number of atoms and that it is inversely proportional
to the volume. These results are consistent with a back-of-the-envelope calculation. In order
to estimate the average spacing between two modes δω, we �rst estimate the total spread
∆Ω. For this estimate, we assume the frequency spread is bounded by the shift which is due
to the interaction between two atoms that are in each other's near-�eld region: Γ0/(kr)

3,
where we take r to be the typical inter-atomic distance. For r we have the relationship
Nr3 = V , where V is the volume of the atomic cloud. The typical spacing between modes
is estimated by dividing the total frequency spread by the total number of modes (3N). It
follows that the typical spacing

δω/Γ0 ∝
1

V k3
Full Green's tensor. (5.17)

(5.18)

The average mode spacing is therefore indeed independent of the number of atoms and
inversely proportional to the volume. This explains what we have seen in Fig. 5.7, where
the total scattered power is independent of the number of atoms inside the cloud.

Importance of near-�eld interaction We now assess the importance of the near-�eld
interaction which varies as 1/r3. For this, we assume that only the far-�eld interaction
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Figure 5.9: The �t parameter used in Fig. 5.8(b) is plotted as a function of the number
of atoms inside the cloud. The �t function of c1(N) scales as N−α, where α = 0.68± 0.07
with 95% con�dence bounds.

This shows that for systems that do not strongly interact, i.e., only the far-�eld term
is present in the Green's tensor, one cannot reasonably reach the regime where single-
photon superradiance is absent, as it would require V < λ3/[(2π)3N2], which is hard to
achieve experimentally in the visible regime. Yet, for systems where near-�eld dipole-
dipole interactions are included (Eq. 5.20), this regime can be reached for any number of
atoms. In other words, in the regime of N atoms in a subwavelength-size volume and
the full Green's tensor is considered, the system is driven by collective modes spectrally
separated and displays giant �uctuations. As soon as the volume increases beyond λ/(2π)3,
the modes start overlapping spectrally thereby allowing single-photon superradiance to
show up; an example is given in Fig. 5.5(b), where we observe that the scattering pattern
reaches values that are superior to 1. In summary, the condition V k3 < 1, which is a
condition for single-photon superradiance for noninteracting scatterers, becomes a condition
of nonobservation of single-photon superradiance for interacting resonant scatterers. We
explain the nonobservation of single-photon superradiance in terms of modes repulsion.

5.6.4 Thouless criterion for Anderson localization

Finally, we make a small remark on Anderson localization. A criterion to observe Anderson
localization is that all modes are spectrally separated, so that δω > Γ0 [89, 90]. This
condition is known as the Thouless criterion for Anderson localization. We have seen that
a subwavelength-size atomic cloud satis�es the Thouless criterion. An interpretation of the
Thouless criterion is that an excited localized mode cannot hop to another localized mode
and eventually to the other side of the system, since the modes do not overlap spectrally,
thus assuring the localization of light. However, the subwavelength-size cloud is very small.
Note however that to observe Anderson localization, the system should be smaller than
the localization length, a condition that may not be veri�ed for the very small systems we
have studied here. Since we do not know the localization length of this system, we cannot
conclude on the possibility of observing Anderson localization in these small clouds.
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We note that Skipetrov and Sokolov have theoretically studied Anderson localization in
random ensembles of resonant point scatterers [91]. In that work, the Thouless criterion is
never met under the vectorial description of the resonant dipole-dipole interactions. The
observation that the Thouless criterion is met for a subwavelength-size cloud is not in
contradiction with Ref. [91], since Ref. [91] only considers atomic clouds that are larger
than [λ/(2π)]3.

5.7 Superradiance from ordered, dense atomic clouds

The conclusions we have drawn so far are based on disordered systems. For completeness,
we brie�y discuss how the image of collective modes can be used to show that it might
be possible to observe superradiance in ordered, not moving, subwavelength-size clouds.
An ordered system of N particles has, like a disordered system, also 3N collective eigen-
modes. However, due to the order of the system, it is expected that there is a certain
level of degeneracy of the collective modes. When several modes spectrally overlap, an in-
cident continuous-wave laser will excite several modes at the same time, as opposed to the
case of disordered, subwavelength clouds, thereby making the observation of superradiance
possible.

A particular ordered, �nite-size system is one for which a primitive unit cell can be
de�ned. An example of a situation for which this is possible is one where atoms are
regularly placed on a subwavelength circle (see Ref. [6]). Such a system has a high level of
degeneracy, since there are only 3Nunit cell di�erent collective eigenmodes, where Nunit cell is
the number of atoms inside the primitive unit cell. It would be interesting to experimentally
study superradiance from these kind of systems, although it is a complicated task due to
geometrical constraints.

5.8 Conclusion

The initial motivation of this study was the numerical observation that incoherent light
scattering by an ensemble of atoms does not decrease as the number density increases for
a system with a �xed volume. Motivated by this numerical observation, we have revisited
the conditions of homogenization. We adopt a strict formulation of homogenization: the
power associated to the �uctuating �eld should be negligible. According to this de�nition,
it is understood that for non-resonant light scattering the condition 〈r〉 � λ, where r is
a typical length scale of the problem, is not a su�cient condition. Yet, by introducing
local order or losses in a system, the incoherent power can become negligible. The former
increases the typical scattering length, and when L < lsc, the criterium of homogenization
is satis�ed; for the latter lsc � labs needs to be reached.

When studying a system of interacting resonant atoms, we cannot analyze the results
with the same concepts as we are used to for noninteracting particles. The spectral analysis
of the scattered light demonstrates the onset of collective modes with spectral signatures
that are markedly di�erent from the atomic Lorentzian pro�les. For large systems, we found
in Chapter 4 that incoherent light scattering is mostly due to the nonpolaritonic modes
whereas the coherent scattered power associated to the ensemble-averaged �eld is due to
polaritonic modes. It is found in this chapter that when the number of atoms increases,
incoherent light scattering does not vanish and is actually equally important as coherent
light scattering, so that this is a class of system that cannot reach the homogenization
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regime. We �nd that here again, the introduction of losses or dephasing mechanisms such
as motion of the scatterers, may be used to suppress incoherent light scattering.

Finally, we have observed a particular class of systems: ensembles of atoms in a volume
V smaller than 1/k3. When this condition is ful�lled, the collective modes are spectrally
separated. It is found that when increasing the number of atoms, the collective modes
stay spectrally separated and scatter less than a single atom. However, after an ensemble
average, the system scatters less than a single atom does. These systems cannot reach
the homogenization regime by increasing the number of atoms. Finally, we �nd that for
interacting resonant atoms, the condition V < 1/k3 is a condition that ensures that no
single-photon superradiance is observed.



Chapter 6

Theory of electroluminescence by

quantum-dots based metasurface

light-emitting devices

6.1 Introduction

In the previous chapters, we discussed collective e�ects in light scattering from dense atomic
systems. We have seen that the coherent optical response is determined by the e�ective
index of refraction which is found to be beyond the Lorentz-Lorenz model for the e�ective
index of refraction, and that �uctuations in either density or spectrum are responsible
for incoherent light scattering. The coherent optical response is dominated by polaritonic
modes (Chapter 4). The incoherent optical response stays important as compared to the
coherent optical response as the density increases (Chapter 5). In this chapter we study the
emission properties of a dense ensemble of emitters close to resonant nanostructures. More
speci�cally, we study the emission properties of a dense ensemble of PbS colloidal quantum
dots (cQDs) close to plasmonic nanoantennas. The interest in the emission properties of
a dense ensemble of cQDs within this thesis comes from the fact that quantum dots have
very similar properties as atoms. Some examples of similarities are

� the presence of quantized energy levels, thereby making them resonant entities,

� resonant dipole-dipole interactions exist between the individual particles of which the
ensemble is composed,

� a dense ensemble can be created, which is especially true for colloidal quantum dots.

Quantum dots are considered to be very important for many industrial applications, an
example being quantum-dot based light-emitting sources [102]. A key property for lighting
applications is their tunable bandgap. By slightly varying the size of the quantum dot,
the bandgap and thereby the wavelength of the emitted light can be chosen. However, as
quantum dots cannot be perfectly identical due to the fabrication, they all have slightly
di�erent emission and absorption spectra. This inhomogeneous broadening is a big
di�erence between cold atoms and quantum dots.

In this chapter we study the electroluminescence (EL) properties of a dense ensemble
of PbS cQDs. In the next section, we will explain the physical mechanism of electrolu-
minescence and see what is the state of the art in the �eld of quantum-dot based electro-
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luminescence. In Section 6.3 we describe the experimental results obtained in the group
of dr. Aloyse Degiron at Institut d'Électronique Fondamentale (IEF) in Université Paris
Sud. This will allow us to consider if the quantum dots in their experiments should be
modeled as independent entities or as an ensemble. Based on this section, we will discuss
in Section 6.4 the standard electroluminescence model for a LED. The electroluminescence
model for a LED will be generalized to the situation of quantum dots in the near vicinity of
nanostructures in Section 6.5. In Section 6.6 we will apply the proposed generalized elec-
troluminescence model to experiments that have been conducted in the group of Degiron
on two di�erent nanoantennas.

6.2 Electroluminescence from quantum dots

After we introduced the idea of electroluminescence from quantum dots, we will summarize
what has already been done on electroluminescence from quantum dots.

6.2.1 Quantum-dot based electroluminescence

To explain electroluminescence from quantum dots, we use the schematic presented in
Fig. 6.1. In order to observe an electroluminescence signal, a voltage is applied across
a multilayer system that contains cQDs. The applied voltage will make that holes and
electrons move towards the light-emitting layer, which is in this drawing a single layer
of cQDs. Holes are transported via a so-called hole transport layer (HTL) and electrons
via an electron transport layer (ETL) towards the cQD layer. There are three possible
combinations of the charge transport layers: (1) all inorganic, (2) all organic, or (3) hybrid,
where typically the ETL is chosen to be inorganic and the HTL to be organic. The device
that is treated in particular in this chapter has an all-inorganic architecture, with the ETL
being TiO2 and the HTL being MoOx. The electron and hole form an exciton that can
recombine at the level of the quantum dots under emission of a photon. The energy of the
photon is de�ned by the bandgap energy of the cQD. The photon that is created needs to

Figure 6.1: Simpli�ed vision of a quantum-dot based light-emitting device. Electrons
leaving the cathode are transported via an electron transport layer (ETL) towards the light-
emitting layer that is composed of colloidal quantum dots. From the anode there are holes
which are transported via a hole transport layer (HTL) towards the colloidal quantum dots.
Inside the quantum dots, the hole and electron form an exciton that can recombine under
emission of a photon. The anode is chosen to be optically transparent, so that light can
escape.



93 6.3. QUANTUM-DOT BASED METASURFACE LIGHT-EMITTING DEVICE

escape the device. This is why in practice one of the electrodes is chosen to be optically
transparent.

6.2.2 History of quantum-dot based light-emitting devices

We give here a short, non-exhaustive, historical outline of the development of quantum-dot
based light-emitting devices (QD-LED). It was in 1994 that a similar idea as presented in
Fig. 6.1 was used to create the �rst quantum-dot based light-emitting device [103]. For
this, Colvin et al. used a CdSe colloidal quantum dot �lm of a few tens of nanometers.
This layer of cQDs served both as ETL and emissive layer. For the transport of holes,
they used an organic layer. A very important parameter for light-emitting diodes (LEDs)
is the external quantum e�ciency (EQE), which is de�ned as the number of photons that
escape from the device per electron that passes through the device. The very �rst device of
Colvin et al. had EQE = 0.01% and a turn-on voltage of 4 V [103]. This EQE was at that
time three orders of magnitude smaller than the EQE that was reached for conventional
p�n junction based LEDs: there, by texturing the surface in order to extract more light,
EQE = 30% was reached in 1993 [104]. The next important improvement for QD-LEDs was
by creating organically capped CdSe/CdS core-shell cQDs. This allowed to improve the
EQE by a factor 22 to EQE = 0.22%, while keeping the same turn-on voltage of 4 V [105].
It was in 2002 that Coe et al. realized that by using a single monolayer of cQDs instead
of a multilayer, the poor conduction through the multilayer cQDs could be avoided. They
used an organic layer as an ETL, thereby increasing the performance of the device [106].
They reported an EQE of 0.52% and a 25-fold improvement in luminescent power e�ciency
which corresponds to the luminous intensity per unit of surface [106]. Three years later,
it was realized that by placing the cQDs inside a GaN p�n junction, thereby creating an
all in-organic device, the electrical injection of carriers could be improved [107]. However,
the EQE of this system was only 0.01%. Another type of QD-LED was introduced soon
after for which the ETL was an inorganic layer and the HTL an organic layer. QD Vision
has worked on such kind of QD-LED and reported in 2012 an 18%-EQE QD-LED [108]; an
EQE that was much higher than all previously published external quantum e�ciencies [102].
Although there is a lot of progress for QD-LEDs, their EQE is still far behind the EQE of
conventional LEDs for which there exist devices with EQE > 60%. In order to improve the
EQE, attention was not uniquely drawn on optimizing the electrical injection of carriers
anymore. It was understood that it is very important to optimize the optics of the device
as well. Two challenges are for example to extract most of the emitted light from the device
and to enhance the radiative recombination rate of excitons. It is only very recently that
one introduced metals in the vicinity of the cQDs so that plasmonic modes are used to
enhance the radiative decay rate [109�112].

6.3 Quantum-dot based metasurface light-emitting de-

vice

Recently, a new class of QD-LEDs has been introduced by the group of Degiron: quantum-
dot based metasurface light-emitting devices (QD-MLED) [10, 11]. An example of such
a device is shown in Fig. 6.2. We will introduce the idea behind the introduction of a
metasurface and discuss qualitatively the experimental results obtained by Le-Van et al.
The main objective of this chapter is to propose a model to describe electroluminescence
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from QD-MLED devices where the quantum dots are densely packed. We believe that the
model will be important for future design of QD-MLEDs.

Figure 6.2: Schematic view of the device used by Le-Van et al. in Ref. [11]. cQDs are
densely packed and put close to metallic nanorings which form a periodic lattice. Courtesy
of Quynh Le-Van.

6.3.1 Introduction

The group of Degiron implemented a plasmonic metasurface inside a QD-LED, together
forming a QD-MLED. The plasmonic metasurface consists of a subwavelength array of gold
nanorings, see Fig. 6.2. Quantum dots have been placed in the near vicinity of the plasmonic
metasurface. Each nanoring can be seen as a nanoantenna. Nanoantennas are typically
used to make the bridge between the nanometer scale of the quantum dots and the much
larger wavelength of the emitted light [113], thereby typically increasing the spontaneous
emission rate of an emitter. Another property of an antenna is the ability of directing the
emission pattern [113]. For the kind of nanorings that are studied by Le-Van et al., it was
theoretically shown that spontaneous emission enhancement as high as 60 can be expected,
and also a higher directivity of the emission pattern [114]. The presence of nanoantennas
in QD-LEDs can therefore improve the system from an optics point of view.

6.3.2 Experimental results

Le-Van et al. performed electroluminescence experiments on several devices. Here, we will
show some experimental results that will motivate the study of electroluminescence from
this kind of devices.

Figure 6.3(a) shows the EL intensity as a function of the applied voltage for three
di�erent devices. The presence of the gold nanorings reduces the turn-on voltage from 6 V
to only 1.3 V. One mechanism behind the reduction of the turn-on voltage is the presence
of a path of least resistance that facilitates the electrical injection [11]. This result of a
reduction of the turn-on voltage is in itself very promising for QD-MLEDs as candidate in
the market of light-emitting devices.

Figure 6.3(b) shows the electroluminescence signal that comes from the system where
the cQDs touch the gold nanorings. It is seen that light only appears from the region
where nanorings are present. The system presented in Fig. 6.3(c) contains a 5-nm-thick
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dielectric spacer between the cQDs and the gold nanorings. For this con�guration, it seems
that the electroluminescence signal is not enhanced by the gold nanorings. The presence
of a dielectric spacer of only 5 nm prevents electroluminescence to occur. This result
is surprising, as one typically introduces a thin dielectric spacer in order to prevent for
�uorescence quenching, i.e., nonradiative energy transfer from the emitter to the metal,
thereby reducing the radiation e�ciency of the quantum dots.

(a) (b) (c)

Figure 6.3: (a) The EL intensity in arbitrary units is given as a function of the applied
voltage for di�erent devices. From left to right: �small� rings, �large rings�, and no gold
nanoantennas. The �small� and �large� rings have been visualized in the graph. The turn-on
voltage goes down from 6 V to 1.3 V when gold nanorings are introduced. (b,c) A schematic
view of experiments without (b) and with (c) a 5-nm-thick TiOx spacer between the PbS
cQDs and the nanorings are presented in the upper parts of Fig. 6.3(b) and Fig. 6.3(c).
Below the electroluminescence signals are shown. The applied voltage was (b) 5 V and
(c) 10.5 V. The yellow rectangles indicate the regions in which gold nanorings are present.
In (c), no electroluminescence is observed from these regions. The di�erences between the
patches and the symbols M8 and M9 are irrelevant for this thesis. Courtesy of Quynh
Le-Van.

6.3.3 Description of a dense ensemble of colloidal quantum dots

From the experimental results presented in Fig. 6.3(b,c), it follows that cQDs touching
plasmonic nanoantennas is favorable for the electroluminescence signal. However, it is
known that individual quantum emitters close to a metallic object containing a plasmonic
resonance have a reduced radiation e�ciency due to �uorescence quenching [115�121]. In
order to prevent �uorescence quenching to take place, a spacer was introduced between
the emitters and the metal in electroluminescence experiments [109�112]. Similar to
them, Le-Van et al. did the same thing, but the experimental results show that enhanced
electroluminescence is only visible in the absence of a dielectric spacer [10]. This result
challenges a description of the ensemble of cQDs as a collection of individual entities.
In this section, we theoretically study if the ensemble of cQDs should be considered as
an ensemble of independent emitters or as an ensemble of collective modes. The latter
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case has been thoroughly discussed for a dense cloud of cold atoms in Chapter 4. The
answer to this problem will have an important consequence on the way electrolumince
from QD-MLEDs should be modeled.

Quantum dots: are they independent or not? The question of whether quantum
dots can be considered to be dependent or independent entities comes down to the question
of the resonant dipole-dipole interactions between the cQDs being strong or not, i.e., is
energy transfer between cQDs a faster process than the radiative decay?

To address this question, we show an SEM image of the PbS QD �lm used by Le-Van et
al. is displayed in Fig. 6.4(a). It shows that the cQDs are almost touching each other. When
emitters are so close to each other, nonradiative energy transfer can take place between an
excited cQD and a cQD in its ground state. This process is called Förster resonance energy
transfer (FRET). A schematic of a FRET process is given in Fig. 6.4(b). FRET takes place
due to resonant dipole-dipole interactions. FRET being a pure near-�eld e�ect, the rate of
the energy transfer scales as ΓD→A ∝ 1/r6, where D and A stand for donor and acceptor,
respectively, and r is the inter-particle distance [12]. This transfer rate can be compared
to the single particle spontaneous emission rate and it can be shown (Ref. [12]) that within
the electric dipole approximation

ΓD→A
Γr

=
(r0

r

)6

=
1

r6
× 3c4

4π

ˆ ∞
0

fD(ω)σA(ω)

n4(ω)ω4
dω, (6.1)

where c is the speed of light in vacuum, n is the refractive index of the host medium, r0 is

cQD 1 cQD 2
FRET

r

(a) (b)

Figure 6.4: (a) An SEM image of the PbS QD �lm that is used for the electroluminescence
experiments of Le-Van. Courtesy of Quynh Le-Van. It is seen that the quantum dots are
touching each other. (b) An exciton in cQD 1 can either decay radiatively within a time
1/Γr, or nonradiatively be exchanged with cQD 2 by means of Förster resonance energy
transfer (FRET) within a typical timescale 1/ΓD→A, where D stands for donor and A for
acceptor. The diameter of each quantum dot is 9 nm.
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the Förster radius, that can be calculated as follows:

r6
0 =

3c4

4π

ˆ ∞
0

fD(ω)σA(ω)

n4(ω)ω4
dω. (6.2)

The variables σA and fD stand respectively for: the absorption cross section of the acceptor
and fD for the normalized emission spectrum of the donor. The normalization of fD is
de�ned by ˆ ∞

0

fD(ω)dω = 1. (6.3)

The absorption cross section is related to the polarizabillity of the exciton by the equation

σA(ω) = kIm[αexciton(ω)], (6.4)

where the exciton is modeled as a classical dipole:

αexciton(ω) =
6πc3Γr

ω2
0(ω2

0 − ω2 − iω(Γr + Γnr + Γ∗)
, (6.5)

with ω0 being the resonance frequency and Γ∗ being the pure dephasing rate. From Eq. 6.4
and Eq. 6.5 it follows that the absorption cross section of the exciton is Lorentzian. In
order to obtain fD(ω), we have taken the same function as the absorption cross section,
but with a di�erent resonance frequency ω0 and we normalized this function according to
Eq. 6.3. Therefore, in our calculations we assume fD(ω) to be Lorentzian as well.

We proceed to the calculation of the Förster radius of the PbS colloidal quantum dots
in a homogeneous medium within the electric dipole approximation. For this, we assume
the host medium to have an index n = 1. The full width at half maximum (FWHM) of the
frequency spread due to inhomogeneous broadening is 160 meV (∼ 180 nm) for the PbS
cQDs studied by Le-Van et al. at room temperature [122]. Figure 6.5(a) shows the two
absorption spectra together of two quantum dots for a situation where the quantum dots
have resonance wavelengths λ1 = 1.11 µm and λ2 = 1.29 µm. The result of the calculation
of the Förster radius r0 is presented in Fig. 6.5(b), where ∆λ = λ2 − λ1 and indicates the
distance between the two resonant wavelengths which are symmetrically positioned around
λ = 1.2 µm. The black (red) curve corresponds to the situation that QD 1 (2) is the
acceptor and QD 2 (1) the donor. The black dashed lines correspond to the Förster radius
for two cQDs that are spectrally separated by the FWHM of the inhomogeneous broadening,
which is 180 nm. It is seen that the typical Förster radius is about 8�10 nm. Since the
inter-particle distance dependence of FRET is inversely proportional to r6, nonradiative
energy transfer dominates radiative decay as soon as the inter-particle distance is smaller
than the Förster radius.

Mork et al. have recently shown that the actual Förster radius of densely packed
CdSe/CdZnS core-shell colloidal quantum dots is larger than the Förster radius that is
predicted under the electric dipole approximation [123]. From experiments they derived
that the CdSe/CdZnS quantum dots under study, having a resonance wavelength around
570 nm, show a Förster radius of 8�9 nm instead of the predicted 5�6 nm. In Ref. [123] it
is reported that one of the possible reasons for the larger Förster radius is the presence of
dipole�quadrupole interactions that are nonnegligible when the surface-to-surface distance
is small compared to the center-to-center distance between cQDs. Similarly, Bose et al.
have infered a Förster radius of 12�13 nm at room temperature for PbS colloidal quantum
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6.4 Electroluminescence model for a LED

We have suggested that the ensemble of cQDs can be modeled as a bulk semiconductor. The
standard model of electroluminescence by a semiconductor at thermodynamic equilibrium
predicts that the emitted power of a LED scales exponentially with the applied voltage.
This model is based on a modi�ed theory of thermal radiation. We will describe the model
used to calculate the emitted power of a LED and emphasize the hypotheses that are done
and are not valid for QD-MLEDs. It is in the next section that this discussion will allow
us to generalize the LED model to QD-MLEDs.

The emitted power of a LED is calculated by a model that is derived from Kirchho�'s
law. This law, which was published in 1860 by Kirchho�, states that any material at
thermodynamic equilibrium, absorbs as much of energy as it emits:

Ie(ω, T ) = ε(ω, T )IBB(ω, T ), (6.6)

Ia(ω, T ) = α(ω, T )IBB(ω, T ), (6.7)

where Ie=Ia, and where both Ie and Ia have units W·m−2·Hz−1·sr−1. From this it follows
that the emissivity ε and absorptivity α are the same: ε = α. They are both unitless and
cannot exceed 1. The spectral irradiance of a black body follows from Planck's law2:

IBB(ω, T ) =
ω2

4π2c2

~ω
exp[~ω/(kBT )− 1]

. (6.8)

Kirchho�'s law applies to thermal radiation. This law was generalized to electrolumines-
cence from semiconductor materials, electroluminescence being an example of nonthermal
radiation, by Shockley et al. in 1961 [126]. In order to do so, Planck's law needs to be
modi�ed under the introduction of an electrochemical potential in Planck's function [127].
For a LED, this generalization of Planck's law reads

IBB(ω, T ) =
ω2

4π2c2

~ω
exp[~ω/(kBT )]− 1

7→ ω2

4π2c2

~ω
exp[(~ω − eφ)/(kBT )]− 1

, (6.9)

where e = |q|, where q is the charge of an electron, and φ is the voltage. When we assume
the voltage drop in the center of the LED to be smaller than the gap energy of the LED,
and exp[(~ω − eφ)/(kBT )]� 1, we can simplify the generalized Kirchho�'s law:

Ie(ω, T, φ) = α(ω)IBB(ω, T ) exp[eφ/(kBT )]. (6.10)

2For historical reasons, we note that Kirchho�'s law can be written in a similar notation as was in-
troduced by Kirchho� [125]: Ie(ω, T )/α(ω) = IBB(ω, T ). As an interesting side note to put Kirchho�'s
discovery in historical context, let us mention that when Kirchho� published his seminal work on the re-
lationship between emission and absorption in 1860, Planck's function was not known yet, but Kirchho�
knew it should be independent of the properties of the object and only depend on the wavelength and
temperature [125]. He wrote: �Es ist eine Aufgabe von hoher Wichtigkeit, diese Function zu �nden�, which
means �It is of very high importance to �nd this function�. He continued: �Trotzdem scheint die Ho�nung
gegründet, sie durch Versuche ermitteln zu können, da sie unzweifelhaft von einfacher Form ist, wie alle
Functionen es sind, die nicht von den Eigenschaften einzelner Körper abhängen, und die man bisher kennen
gelernt hat�, which can be translated by �Nevertheless, it appears that there is foundation for the hope,
that it can be determined by research, as it is undoubtedly of a simple form, like all functions, that are not
dependent of the characteristics of a single body, and which are known sofar�. Kirchho� was right and it
was Max Planck who correctly described black-body radiation in 1901 by quantizing radiation. Planck's
law was the birth of quantum mechanics.
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We recover the exponential dependence of the emitted power from a LED on the applied
voltage. It is observed that the electroluminescence spectrum is the same as that of a ther-
mal source composed of the same materials. However, the intensity increases exponentially
with the applied voltage. The physical origin lies in the fact that by applying a voltage the
number of electrons in the conduction band increases, thereby also increasing the number of
holes in the valence band. The consequence of this is that the electrochemical potential of
electrons in the conduction band and holes in the valence band are not the same anymore.
The system is out of equilibrium and the increased number of electron-hole pairs makes
the system radiating more. Since at room temperature kBT = 26 meV, a change of voltage
across the p�n junction will drastically change the emitted power. We anticipate that this
e�ect explains the observation of electroluminescence from the sample without a dielectric
spacer between the cQDs and gold, see Fig. 6.3(b,c). From an electrical perspective, the
cQDs, spacer and gold form a series circuit. An additional spacer will reduce the voltage
drop across the cQDs �lm, because of the �voltage divider� property of a series circuit.

6.5 Electroluminescence model in the presence of

nanoantennas

For a p�n junction LED, both the absorptivity and electrochemical potentials are uniform
in the light-emitting region. Therefore, the generalized Kirchho�'s law as given in Eq. 6.10
models electroluminescence correctly. However in QD-MLEDs, the colloidal quantum dots
are put in both a non-uniform electromagnetic environment and a non-uniform electrical
environment, due to the presence of plasmonic nanoantennas. The non-uniform electro-
magnetic environment of the cQDs is expected to make light absorption not uniform inside
the cQD �lm and the non-uniform electrical environment is expected to give rise to a
non-uniform electrochemical potential.

Non-uniform light absorption To illustrate the nonuniform light absorption, we have
calculated the electric �eld distribution close to the metallic nanoring for an x-polarized
(horizontally polarized) incident plane wave. The in-house numerical code has been devel-
oped by Jean-Paul Hugonin at the Institut d'Optique. The method was �rst introduced by
Bonod et al. [128]. The electric �eld is calculated by means of a modal method for which
the electric �eld is written in the Fourier-Bessel basis, respecting in this way the cylindrical
symmetry of the problem. The angular dependence of the electric �eld is written in the
Fourier basis and the radial dependence is expanded in Bessel functions. Figure 6.6(b)
shows the real part of the z component of the electric �eld, which originates from di�raction
of light by the nanostructure. The contours of the di�erent materials that are displayed in
Fig. 6.6(a) are drawn by dashed lines. Note that the scales of Fig. 6.6(a) and Fig. 6.6(b)
are the same. It is observed in Fig. 6.6(b) that the z component of the electric �eld is
the strongest above and below the metallic nanoring. Therefore, the quantum dots that
are positioned above the gold nanorings have the highest absorption cross section for a
plane wave that is incident from above. Quantum dots that are positioned in the inside
of the nanoring or outside the nanoring have a smaller absorption cross section for the
same incident plane wave. From this calculation, we conclude that the absorptivity of a
QD-MLED system is not uniform and the standard theory of electroluminescence from
conventional LEDs is therefore not valid for this kind of systems.
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Figure 6.6: (a) Schematic of a single gold nanoring embedded in a QD-MLED system.
The stripes indicate where the absorption has been calculated. The dashed line corresponds
to the symmetry axis of the cylindrically symmetric system. (b) Map of the real part of
Ez for a linearly polarized plane wave incident along the z axis from above (λ = 1.2 µm).
Color scale from blue to red: negative to positive values. The contours are indicated by the
dashed lines. Compare the structure with the structure given in (a). It is observed that the
QDs above gold absorb most of the incident light.

Non-uniform electrochemical potential Because of the non-uniform electrical envi-
ronment, the electrochemical potential is expected to change locally. This di�erence lies
in the fact that the voltage drop φ is not uniform in the cQDs layer. A voltage is applied
across ITO and aluminium, as indicated in Fig. 6.6(a). We consider the multilayer as a
series circuit. As gold is a good electrical conductor, the local current density is higher in
the region vertical to the gold nanoring. Because the current density close to gold is higher
than outside the gold region, the voltage drop at the level of the quantum dots above the
gold nanorings is higher than for the once that are placed outside the nanoring region.

Since both the absorptivity (optics) and the voltage drop (electronics) is the highest for
the cQDs right above the gold nanorings, and according to Eq. 6.10 both are relevant for
the electroluminescence signal, it is expected that most of the electroluminescence signal
comes from the region above gold. This is con�rmed by Fig. 6.3(b) which shows that
electroluminescence signal comes only from the regions with gold nanorings.

6.5.1 Generalized model for QD-MLED-based electroluminescence

experiments

After having discussed electroluminescence from conventional LEDs, we propose a model
for electroluminescence from QD-MLEDs. Very recently, it has been shown by Gre�et et
al. that Kirchho�'s law can be generalized to a system that is at local thermodynamic
equilibrium [129�131]. We have seen in Section 6.3.3 that due to the near-�eld interactions
between the cQDs, our system is at thermodynamic equilibrium: we can de�ne locally
the absorptivity and the electrochemical potential. Hence, we can use the extension of
Kirchho�'s law. In Ref. [129], the authors have shown that in order to calculate the total
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emitted power Pe under the application of a voltage, the absorbed power needs to be
calculated locally at the position r′ for a plane wave incident along the direction u and
with angular frequency ω:

P (l)
e =

ˆ ∞
0

dω

ˆ
Vobj

ˆ
4π

α(l)(u, r′, ω) exp
[ eφ(r′)

kBT (r′)

]IBB[ω, T (r′)]

2
d3r′dΩ, (6.11)

where

σ
(l)
abs(u, ω) =

ˆ
Vobj

α(l)(u, r′, ω)d3r′, (6.12)

so that α(u, r′, ω) can be considered an absorption cross section density; not to be confused
with the absorptivity as introduced in Section 6.3, Vobj is the volume of the object that
radiates, and l indicates the polarization. Since there are two polarizations possible, the
black-body spectral irradiance has been divided by two. It is important to highlight that
the local absorption is represented by the absorption cross section density α. Electrolumi-
nescence originates predominantly from the excitons inside the layer of cQDs, which limits
the spatial extent of the volume integral Vobj to the cQD �lm only. In QD-MLEDs at room
temperature, we can assume that all parts of the sample are at the same temperature. Since
the cQD �lm is very thin, we can assume the voltage to be constant inside the �lm, so that
after the volume integral we end up with

P (l)
e = exp

[ eφ
kBT

] ˆ ∞
0

dω

ˆ
4π

σ
(l)
abs(u, ω)

IBB[ω, T ]

2
dΩ, (6.13)

for which it is important to remind that φ is the voltage drop at the level of the cQDs,
which is not equal to the applied voltage. In order to calculate the absorption cross section
of the quantum dots that are inside the region indicated by the stripes in Fig. 6.6(a) (as
explained before, electroluminescence originates from this region), we calculate the electric
�eld inside the structure for an incident plane wave along the u direction. The reason the
electric �eld is needed is because the absorbed power can be calculated from it according
to

Pabs(ω) =
1

2

ˆ
Im[ε(ω)]|E(r)|2d3r. (6.14)

From the absorbed power, we can derive the absorption cross section by means of the
following de�nition of the absorption cross section:

Pabs(ω) = σabs(u, ω)
cε0|Einc|2

2
. (6.15)

With this generalization of Kirchho�'s law, we have a model that allows to calculate
the electroluminescence signal of systems as the one presented by Le-Van et al. in Ref. [11].

6.5.2 E�ective refractive index calculation

From now on, we will present numerical results of calculations that are based on the system
that is schematically presented in Fig. 6.6. To do so, we need to explain how we calculated
the absorption cross section. The layer of cQDs is optically modeled by an e�ective refrac-
tive index, according to the results presented in Section 6.3.3. In this section we discuss
how to calculate the e�ective refractive index.
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Lorentz-Lorenz formula One model to calculate the e�ective refractive index is the
Lorentz-Lorenz formula. As we have seen in Chapter 2, we need to verify the validity of
this formula for our system, since we will calculate resonant light absorption by a dense
ensemble of resonant scatterers. We know from Eq. 2.25 that in order to have a break down
of the Lorentz-Lorenz formula for inhomogeneously broadened system, the system needs to
satisfy the condition

C =
9π

8

ρ

k3

( Γr
∆ω

)2

> 1. (6.16)

In the particular case of the system of Le-Van, one can show that C = 9π
8

ρ
k3

(
Γr
∆ω

)2

∼ 10−10,

by using the parameters: ~∆ω = 160 meV, τr = 2π/Γr = 0.5 µs, ρ = 1018 QDs/cm3,
and λ = 2π/k = 1.2 µm. As C � 1, the Lorentz-Lorenz formula is expected to be valid;
recurrent scattering is not an important process due to the very strong inhomogeneous
broadening present in this system.

Lorentz-Lorenz formula for a core-shell quantum dot Each quantum dot of Le-Van
is modeled as a core-shell particle with inner radius b and outer radius a. The core is made
of PbS with dielectric constant εc and the shell is a ligand with dielectric constant εs. The
quantum dots are embedded in a host medium with dielectric constant εh. We decompose
the total polarizability α(ω) of a quantum dot in a core-shell part and an exciton part,
according to α(ω) = αcore-shell(ω) + αexciton(ω), which is based on the fact that the dipole
moment and the incident electric �eld are linearly related: p = εα(ω)E. By taking into
account the inhomogeneous broadening for the excitonic part, the Lorentz-Lorenz formula
becomes:

εLL(ω)− εh
εLL(ω) + 2εh

=
1

3

ˆ
ρ(ω′)αexciton(ω;ω′)dω′ +

ρ0αcore-shell(ω)

3
, (6.17)

where ρ0 is the homogeneous cQD density. The inhomogeneous broadening ρ(ω′) is assumed
to follow a Gaussian distribution, and

´∞
0
ρ(ω′)dω′ = ρ0. The polarizability of the exciton

is given by

αexciton(ω;ω′) =
6πc3Γr

ω′2(ω′2 − ω2 − iω(Γr + Γnr + Γ∗)
, (6.18)

and the polarizability of the core-shell is given by [132]

αcore-shell(ω) = 4πa3 a
3(εc + 2εs)(εs − εh) + b3(εc − εs)(2εs + εh)

2b3(εc − εs)(εs − εh) + a3(εc + 2εs)(εs + 2εh)
. (6.19)

For the parameters of the Gaussian distribution of resonance frequencies, we have taken
the central wavelength λcentral = 1.2 µm, and a FWHM inhomogeneous broadening of 160
meV (∼ 180 nm). The other parameters are taken as follows: Γr = 2π

0.5 µs
, Γ∗ = 2π

300 fs

(which corresponds to 16 nm), a = 4.3 nm, and b = 2.3 nm. For a cQD density ρ =
1 × 1020 cQDs/cm3, we have found the dielectric constant that is shown in Fig. 6.7 which
shows in a semilog scale both the real (red dashed curve) and imaginary (blue solid curve)
part of the dielectric constant of the cQD �lm. We assume PbS to be lossless itself, so that
the absorption that is calculated uniquely originates from the absorption by the excitons.
We only want to know the absorption by the exciton, since we are only interested in emission
from the excitons. It is due to reciprocity that both quantities are related. The Lorentz-
Lorenz formula is hereafter used in order to calculate the absorption cross section of the
excitons above the gold nanoring.
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❞♦ ❤❛❛❜♦♣✐♦♥❣❡ ❡♥❤❛♥❝❡❞✉♣♦❛❢❛❝♦✺✵✇❤❡♥❤❡❝◗❉ ♦✉❝❤❣♦❧❞✳❊♥❤❛♥❝❡❞
❛❜♦♣✐♦♥✐❛ ✐❜✉❡❞♦❤❡❧♦❝❛❧❡❧❡❝ ✐❝✜❡❧❞❡♥❤❛♥❝❡♠❡♥❤❛✇❛ ❤♦✇♥✐♥❋✐❣✳✻✳✻✭❜✮✳
❚❤❡♣❡❡♥❝❡♦❢❛✺✲♥♠✲❤✐❝❦ ♣❛❝❡ ❡❞✉❝❡ ❤❡❝❛❧❝✉❧❛❡❞❛❜♦♣✐♦♥❡♥❤❛♥❝❡♠❡♥❜②
❛❜♦✉25%✳ ❋✐❣✉❡✻✳✸✭❜✮❛♥❞❋✐❣✳✻✳✸✭❝✮❤♦✇✐♠❛❣❡ ♦❢❤❡❡❧❡❝ ♦❧✉♠✐♥❡❝❡♥❝❡✐❣♥❛❧
❢♦ ❤❡②❡♠✇✐❤❛♥❞✇✐❤♦✉❛✺✲♥♠✲❤✐❝❦♣❛❝❡✳❋♦♠❋✐❣✳✻✳✸✭❜✮❛♥❞❋✐❣✳✻✳✸✭❝✮✐
❡❡♠ ❡❛♦♥❛❜❧❡♦❛②❤❛ ❤❡❡❞✉❝✐♦♥♦❢❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡✐❣♥❛❧✐♠♦❡❤❛♥25%✳
❋♦♠❋✐❣✳✻✳✽✇❡❤❛✈❡♦❜❡✈❡❞ ❤❛ ❤❡♣❡❡♥❝❡♦❢❚✐❖x ♣❛❝❡ ❤❛ ❛♥❡✛❡❝ ♦♥

❤❡❡❧❡❝ ♦❧✉♠✐♥❡❝❡♥❝❡✐❣♥❛❧✱❜✉♦♥❧②✇❡❛❦❧②✳❆♦♣♣♦❡❞♦❤✐♥✉♠❡✐❝❛❧♦❜❡✈❛✐♦♥✱
❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡❡❡♠ ♦❜❡ ♦♥❣❧②❛♠♣❧✐✜❡❞✐♥❋✐❣✳✻✳✸✭❜✮❛❝♦♠♣❛❡❞♦❋✐❣✳✻✳✸✭❝✮✱
❛❧❤♦✉❣❤♥♦✉❛♥✐❛✐✈❡❝♦♠♣❛✐♦♥❝❛♥❜❡❞♦♥❡✳ ❲❡❜❡❧✐❡✈❡❤❡❡❢♦❡❤❛ ❤❡♦❜❡✈❛✐♦♥
♦❢❛❜✐❣❡♥❤❛♥❝❡♠❡♥♦❢❤❡❡❧❡❝ ♦❧✉♠✐♥❡❝❡♥❝❡✐❣♥❛❧✐♥❤❡❡①♣❡✐♠❡♥✇✐❤♦✉ ❤❡♣❛❝❡
✐♠❛✐♥❧②❞✉❡ ♦❛❤✐❣❤❡❡❧❡❝✐❝❛❧✈♦❧❛❣❡❞♦♣❛❝♦ ❤❡❝◗❉✜❧♠✐♥❤❡❛❜❡♥❝❡♦❢❤❡
♣❛❝❡✳
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❋✐❣✉❡✻✳✽✿❋♦ ❛♥♦♠❛❧✐♥❝✐❞❡♥❝❡♣❧❛♥❡✇❛✈❡✱ ❤❡❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡❡♥❤❛♥❝❡♠❡♥❞✉❡
♦❤❡♣❡❡♥❝❡♦❢❣♦❧❞♥❛♥♦✐♥❣❤❛❜❡❡♥❝❛❧❝✉❧❛❡❞❢♦❞✐✛❡❡♥✇❛✈❡❧❡♥❣❤✳❚❤❡❡❞❞♦
❝♦❡♣♦♥❞♦❤❡✐✉❛✐♦♥✇❤❡❡❤❡❝◗❉ ♦✉❝❤❤❡❣♦❧❞♥❛♥♦✐♥❣✳❚❤❡❡❧❡❝♦❧✉♠✐♥❡✲
❝❡♥❝❡❡♥❤❛♥❝❡♠❡♥❝❛♥❡❛❝❤✈❛❧✉❡✉♣♦✺✵✳❚❤❡❜❧✉❡ ❛ ❝♦❡♣♦♥❞♦❤❡✐✉❛✐♦♥
♣❡❡♥❡❞✐♥❋✐❣✳✻✳✸✭❝✮✱✇❤❡❡❛❧❛②❡ ♦❢✺♥♠❚✐❖①✐♣✉❜❡✇❡❡♥ ❤❡❝◗❉ ❛♥❞❤❡
♥❛♥♦✐♥❣✳❚❤❡❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡❡♥❤❛♥❝❡♠❡♥❞♦♣ ❧✐❣❤❧②✳

✻✳✻✳✷ ♦❧❛✐③❡❞❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡

■♥❤✐ ❡❝✐♦♥✇❡✇✐❧❧ ✉❞② ♦♠❡❡①♣❡✐♠❡♥ ❤❛ ❤❛✈❡❜❡❡♥❝♦♥❞✉❝❡❞❜②▲❡✲❱❛♥❡
❛❧✳❢♦✇❤✐❝❤ ❤❡❣♦❧❞♥❛♥♦✐♥❣✇❡❡❡♣❧❛❝❡❞❜②❣♦❧❞♥❛♥♦♦❞ ❤❛ ❤❛✈❡❞✐♠❡♥✐♦♥
150×70×70♥♠3✳ ◆❛♥♦♦❞❜❡❛❦❤❡❝②❧✐♥❞✐❝❛❧②♠♠❡②❛♥❞❤❡❡❢♦❡❝❡❛❡❛♣♦✲
❧❛✐③❛✐♦♥❞❡♣❡♥❞❡♥❝❡♦❢❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡✱❛✇❛ ♣❡❡♥❡❞✐♥❘❡❢✳❬✶✶❪✳ ❚❤❡✐♥❡♦❢
❋✐❣✳✻✳✾✭❛✮❤♦✇ ❤❡♣❡✐♦❞✐❝❛❛②♦❢♥❛♥♦♦❞❛♥❞❤❡♠❛✐♥♣❛♥❡❧❤♦✇ ❤❡❡①♣❡✐♠❡♥❛❧
❡✉❧ ✳❚❤❡❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡✐♥❡♥✐②❤❛❜❡❡♥❤♦✇♥❢♦ ✇♦❞✐✛❡❡♥♣♦❧❛✐③❛✐♦♥♦❢
❧✐❣❤✳❚❤❡❤✐❣❤❡ ❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡✐♥❡♥✐②❝♦♠❡❢♦♠❧✐❣❤✇❤✐❝❤✐ ♣♦❧❛✐③❡❞❛❧♦♥❣
❤❡❧♦♥❣❛①✐ ♦❢❤❡♥❛♥♦♦❞✳ ❚❤❡♣❧❛♠♦♥✐❝ ❡♦♥❛♥❝❡❜❡✐♥❣ ♦♥❣❧②❛♥✐♦♦♣✐❝✱ ❤❡
❡❧❡❝♦❧✉♠✐♥❡❝❡♥❝❡✐❣♥❛❧❢♦❧✐❣❤♣♦❧❛✐③❡❞❛❧♦♥❣❤❡ ❤♦ ❛①✐✐♠✉❝❤ ♠❛❧❧❡✳ ❚❤❡
❡①♣❡✐♠❡♥❛❧❞❛❛❤❛ ♦♠❡❛♣✐❞✢✉❝✉❛✐♦♥❛♦✉♥❞❤❡♠❛①✐♠✉♠❡❧❡❝ ♦❧✉♠✐♥❡❝❡♥❝❡
✐♥❡♥✐②✳❙✐♥❝❡✇❛❡✈❛♣♦❤❛❛♥❛❜♦♣✐♦♥❜❛♥❞❛♦✉♥❞λ=1.38µ♠✱✐ ✐❧✐❦❡❧②❤❛
❤❡♥♦✐❡✐♥❤❡ ♣❡❝ ✉♠✐ ❞✉❡ ♦❤❡♣❡❡♥❝❡♦❢✇❛❡♠♦❧❡❝✉❧❡ ✐♥❤❡❡♥✈✐♦♥♠❡♥
✇❤❡❡❤❡❛♦♠❛❡♣❧❛❝❡❞✳

❙✐♠✐❧❛ ❛❜❡❢♦❡✱✇❡❝❛❧❝✉❧❛❡❤❡❛❜♦♣✐♦♥❜②❤❡❡①❝✐♦♥✱❜✉ ❤✐ ✐♠❡❢♦ ✇♦
❞✐✛❡❡♥♣♦❧❛✐③❛✐♦♥♦❢❤❡✐♥❝✐❞❡♥ ♣❧❛♥❡✇❛✈❡✳ ❲❡♦♥❧②❝♦♥✐❞❡❛✐♥❣❧❡✉♥✐❝❡❧❧♦❢
❤❡♣❧❛♠♦♥✐❝♠❡❛✉❢❛❝❡✳■♥♦❞❡ ♦❝❛❧❝✉❧❛❡❤❡❡❧❡❝ ✐❝✜❡❧❞✐♥✐❞❡❤❡ ✉❝✉❡✱❛♥
❛♣❡✐♦❞✐❝✲❋♦✉✐❡♠♦❞❛❧♠❡❤♦❞✐✉❡❞✳❚❤❡❡❛❡❛❧❡❛ ✇♦❞✐✛❡❡♥✇❛② ♦✐♦❧❛❡❡❛❝❤
❝❡❧❧♦♣✐❝❛❧❧②✳❚❤❡✐♦❧❛✐♦♥❝❛♥❡✐❤❡❜❡❞♦♥❡❜②❢♦❡①❛♠♣❧❡♣✉✐♥❣♣❡❢❡❝❧②♠❛❝❤❡❞
❧❛②❡ ✭▼▲✮❛ ❤❡❜♦❞❡ ♦❢❤❡❝❡❧❧✱♦❜②✉✐♥❣❝♦♠♣❧❡①❝♦♦❞✐♥❛❡ ❛♥❢♦♠❛✐♦♥
❛ ❤❡❜♦❞❡ ♦❢❡❛❝❤❝❡❧❧❬✽✻❪✳■✐ ❤❡❧❛ ❡ ❤❛✐✉❡❞✐♥❤✐✇♦❦✳

❋✐❣✉❡✻✳✾✭❜✮❤♦✇ ❤❡❝❛❧❝✉❧❛❡❞❛❜♦♣✐♦♥❝♦ ❡❝✐♦♥❢♦✇♦✐♥❝✐❞❡♥♣♦❧❛✐③❛✐♦♥
✭♦❛♥❣❡♦❧✐❞❝✉✈❡✿♣❛❛❧❧❡❧♦❧♦♥❣❛①✐♦❢♥❛♥♦♦❞✱❛♥❞❜❧❛❝❦❞❛❤❡❞❝✉✈❡✿♣❡♣❡♥❞✐❝✉❧❛
♦❧♦♥❣❛①✐♦❢♥❛♥♦♦❞✮✳❋♦♠❤❡♥✉♠❡✐❝❛❧❝❛❧❝✉❧❛✐♦♥✇❡❝❛♥♦❜❡✈❡❤❛ ❤❡❛❜♦♣✐♦♥
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cross section is polarization dependent. Based on this result we can infer that light emission
is polarization dependent, as was observed experimentally by Le-Van et al. [11].

At the end we should mention that a formal validation of the used model is not possible
for time reasons. It would be very interesting in the future to do a systematic study where
the proposed model for electroluminescence in the presence of nanoantennas can be veri�ed.
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Figure 6.9: (a) The experimental electroluminescence results are presented for both light
polarizations as a function of the wavelength for a setup with nanorods. Light polarized
along the long axis of the nanorods gives more electroluminescence signal than light polarized
along the short axis. Courtesy of Quynh Le-Van. (b) Numerical results of the calculation of
the absorption cross section for quantum dots on top of a single nanorod with dimensions
170× 50× 50 nm3.

6.7 Conclusion

Based on what we have discussed in this chapter, we believe that densely-packed PbS cQDs
in the near vicinity of metallic nanostructures cannot be modeled as independent entities.
Due to strong near-�eld interactions, any excitation of the system would be delocalized
throughout the cQD �lm. Instead of studying electroluminescence by considering the cQDs
as being independent, we believe that the ensemble forms a homogeneous system that
consists of electronic bands, like a bulk semiconductor does. Therefore, the cQD �lm
is optically described by an e�ective refractive index. Electroluminescence from a cQD
�lm close to a plasmonic nanostructure does however not occur in the same way as it
does for a conventional p�n junction LED. The origin of this lies in the fact that the
electron-hole pair density is not uniform throughout the cQD �lm and also light emission
does not occur homogeneously due to the presence of the gold nanostructure. We have
therefore proposed to model electroluminescence from this kind of systems by means of the
generalized Kirchho� that has recently been reported in Ref. [129]. We have seen that the
model qualitatively succeeds in modeling electroluminescence from the QD-MLEDs, but a
more quantitative study needs to be done in order to check the validity of the proposed
generalized Kirchho� law.
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We have also studied collective e�ects in electroluminescence. By modeling the cQD
layer as an e�ective medium, we did not observe enhanced absorption by the �lm, since
the absorption increases linearly with the cQD density. From the generalized Kirchho� law
we can conclude that the electroluminescence signal is therefore linearly dependent on the
cQD density.





Chapter 7

Conclusion and outlook

In this Ph.D. thesis we have studied theoretically light scattering and light emission by
dense ensembles of resonant dipoles. The majority of this manuscript concerns light
scattering from dense clouds of cold atoms. In the last chapter, Chapter 6, we studied
electroluminescence from a dense �lm of colloidal quantum dots placed in the near vicinity
of a plasmonic metamaterial.

Chapter 2
We have shown that in the weak-excitation regime, i.e., the incident intensity is so low that
at most one atom is excited, classical and quantum models of light scattering lead to the
same set of coupled-dipole equations. This set of coupled-dipole equations describes the
resonant dipole-dipole interactions between the dipoles. Since both models are equivalent
in the regime we are interested in, which is the regime that is relevant for the experiments
conducted in the group of Browaeys, we studied light scattering from a dense cloud of cold
atoms classically.

In this chapter we have tried to make a link between the terminology used by various
communities. Finally, we studied the relationship between evanescent waves and virtual
photons. It follows that an evanescent wave is built up of many virtual photons.

Chapter 3
When the number of scatterers in a dilute gas increases, the amount of scattered light
increases accordingly. However, recently it has experimentally been observed that the
incoherent power scattered orthogonally to the incident beam from a dense, wavelength-size
cloud of cold atoms does not increase linearly with the number of atoms [51]. We attribute
the observation of this suppression to strong resonant dipole-dipole interactions between
the atoms. Because of the strong resonant dipole-dipole interactions, the cloud also
partially di�racts light in the forward direction. We understood that Pellegrino et al. were
studying incoherent light scattering [51]. In order to study coherent scattering, we also
stuied light scattering in the forward direction. Theoretically and experimentally obtained
spectra do not agree. The precise nature of this disagreement is not fully understood
yet. The combined experimental and theoretical work of coherent scattering, where the
experimental results were compared to results from the coupled-dipole equations, has
recently been published by Jennewein et al. in the journal Physical Review Letters [7].

Chapter 4
We have shown that strong resonant dipole-dipole interactions in a wavelength-size cloud
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of cold atoms give rise to the onset of collective modes that are extended throughout the
cloud. These modes, which are superradiant and therefore couple very e�ciently to light,
are sensitive to the shape of the object and to the atomic density distribution; not to the
precise position of the atoms. As these modes are similar to polaritons that were introduced
by Hop�eld to analyze collective excitations in ordered condensed matter systems, we call
the superradiant modes that are extended throughout the sample polaritonic modes.

We have numerically retrieved the e�ective refractive index, which does not follow
Lorentz-Lorenz theory due to the strong resonant dipole-dipole interactions. The spec-
trum of the e�ective refractive index allowed us to calculate the modes of the macroscopic
Maxwell equations for an object with the same shape as the atomic cloud and an e�ective
refractive index. It turns out that the modes of the macroscopic Maxwell equations are
identical to the polaritonic modes found in the atomic cloud. Similar to the importance
of the modes of a homogeneous object on light di�raction, the few polaritonic modes that
exist have a signi�cant impact on coherent light scattering by the atomic cloud. The fact
that polaritonic modes are important for light scattering illustrates that we cannot consider
the atoms in a dense, wavelength-size cloud of cold atoms as being independent entities:
we need to consider the atomic cloud as being an ensemble of collective eigenmodes.

This work on polaritonic modes in a dense cloud of cold atoms has been published in
the journal Physical Review A [67].

Chapter 5
The coherent response of the atomic cloud is determined by its refractive index, which
naturally takes the polaritonic modes from microscopic theory into account. However,
there are many other modes present in the atomic cloud that are not necessarily taken
into account by the refractive index. The question whether the optical response is uniquely
determined by the index of refraction, belongs to a homogenization problem. We have shown
that the amount of incoherent light scattering is comparable to the amount of coherent light
scattering for a dense, wavelength-size cloud. This observation has shown that the criterion
for homogenization which is based on an inter-atomic distance that should be small as
compared to the wavelength is invalid. This brings us to revision homogenization in resonant
atomic systems. Strikingly, we have numerically shown that a resonant random medium
cannot reach the homogenization regime. We show that as is the case of light scattering
from non-resonant systems, the presence of nonradiative losses and pure dephasing are
e�ective means to arrive at a homogeneous medium.

Furthermore, we have demonstrated by means of a collective mode point of view
that a subwavelength-size cloud of resonant atoms always scatters less light than a single
atom due to collective modes that are spectrally separated. The Dicke regime for the
observation of superradiance: a subwavelength-size cloud, is shown to be the condition for
nonobservation of single-photon superradiance e�ects.

Chapter 6
In this chapter we studied the emission of light by a dense ensemble of quantum dots. The
dense �lm of colloidal quantum dots (cQDs) was placed in near vicinity of a plasmonic
metasurface and emitted light under the application of a voltage (electroluminescence).
The theoretical study is based upon experimental research conducted in the team of Aloyse
Degiron at Institut d'Électronique Fondamentale [11]. In Chapter 6 we propose a model to
understand the physics of electroluminescence from a dense �lm of colloidal quantum dots
in the near vicinity of metallic metasurfaces. We propose a model for electroluminescence
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from this kind of system that is based upon a generalized model for light emission from
a p�n junction LED. The model of a conventional LED has been adapted to systems
where the emission of light is strongly position dependent. This is done by invoking the
generalized Kirchho� law of thermal radiation that was introduced in Ref. [129].

Outlook
Superradiant pulse in strongly interacting atomic system
In 1968, Ernst and Stehle have theoretically shown that light emission from an ensemble
of excited atoms is characterized by the emission of a superradiant pulse [133]. The
pulse duration ∆t ∝ 1/(NΓ), where N is the number of atoms and Γ is the single-atom
spontaneous emission rate [6, 133, 134]. This conclusion follows from a model where the
atoms do not interact with each other. However, we have understood that a dense cloud
of cold atoms, in which resonant dipole-dipole are very strong, needs to be studied from
a collective modes point of view. It would be interesting to study both theoretically and
experimentally how the emergence of collective modes modi�es the superradiant pulse
formation for an initally fully inverted dense cloud of cold atoms.

Observing superradiance from ordered ensemble of Rydberg atoms
No superradiance is expected from disordered and subwavelength-size atomic clouds, as we
have seen in Chapter 5 and as it was proposed with a di�erent point of view by Gross and
Haroche [6]. From a modal perspective, we drew the conclusion that superradiance could
be expected for ordered systems, like regularly placed atoms on a subwavelength circle.
The geometrical constraint being strong for optical transitions, this constraint would be
strongly relaxed by using Rydberg atoms that have transitions in the microwave regime.
With the ability of positioning individual Rydberg atoms by means of optical microtraps,
it is now experimentally possible to study superradiance from regularly placed atoms on a
subwavelength-size circle [135].

Validation of proposed generalized electroluminescence model
We propose a model for electroluminescence experiments that are based on a dense ensemble
of quantum dots in the near vicinity of a plasmonic metasurface. The study presented
in this work stays very qualitative. It would be interesting to quantitatively compare the
electroluminescence signal as a function of the wavelength, in order to validate the proposed
model.
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Appendix A

Quantization of evanescent waves in

absorbing media

We present the quantization of evanescent waves in absorbing media. The goal of this chap-
ter is to formally show the correspondance between evanescent waves and virtual photons.

Evanescent waves exist in several situations. A few of them are: (1) a point source with
evanescent waves surrounding it, (2) an incident wave incident beyond the critical angle
at an interface between two dielectrics, and (3) �uctuations in current densities in lossy
media. We have tried to quantize the evanescent �eld for situation (1), but we did not
succeed as the electric �eld has a singularity at the position of the source, by which the
electric �eld contains an in�nite amount of energy. The second situation is the situation
that has been considered by Carniglia and Mandel [33]. The inconvenience of this situation
is that one cannot describe the evanescent wave independently of the incident and re�ected
�elds. Here, we consider the quantization of evanescent waves in a lossy dielectric.

Quantization of electromagnetic modes in free space can be found in many textbooks,
like Refs [13, 136]. In free space, one typically quantizes plane waves. Something that is
less known is the quantization of evanescent waves. Let us discuss what has been done on
this topic in the past.

In 1971, Carniglia and Mandel published the work �Quantization of evanescent elec-
tromagnetic waves� [33]. In their work, they considered a single interface between two
dielectric materials. When an incident �eld is incident with an angle beyond the critical
angle, there is re�ection of light and an evanescent tail in the other dielectric. The triplets
of incident, re�ected and transmitted waves form orthogonal modes and it is these modes
that have successfully been quantized.

In 1973, Twareque Ali has published the paper called �Evanescent waves in quantum
electrodynamics with unquantized sources� [34]. By using classical sources, he has shown
that evanescent waves are related to virtual photons. However, the evanescent waves were
pure c-numbers and therefore not written in a quantum optics formalism.

To the best of our knowledge, no theory exists so far that quantizes evanescent �elds
only. Here, we propose a scheme to quantize evanescent waves. This quantization will
allow us to show the relationship between evanescent waves and virtual photons in a more
formal setting than was done in Chapter 1 of this thesis.
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A.1 Quantization of the electromagnetic �eld in disper-

sive and absorbing media

Huttner and Barnett were the �rst to quantize radiation in dispersive and absorptive linear
bulk dielectrics [137]. Gruner and Welsch generalized the quantization scheme [138]. One
element of this generalization was that the system did not need to be a bulk medium.
Gruner and Welsch realized that the introduction of a noise current operator in the Maxwell
equations was necessary to account for the dissipation-assisted quantum noise in a lossy
system. When a source term is added in the Maxwell equations, the Green's tensor naturally
arises when the electric �eld is calculated. It is the introduction of the Green's tensor that
led to the generalization of the quantization scheme to non-uniform media. The electric
�eld was shown to be:

E+(r) = i

ˆ ∞
0

dω
~
πε0

ω2

c2

ˆ
d3r
√
ε′′(r′, ω) ¯̄G(r, r′;ω)̂f(r′, ω), (A.1)

where ε′′ is the imaginary part of the dielectric constant, and f̂(r, ω) is called in the words
of Gruner and Welsch the �operator basic �eld� and is a linear superposition of operators
for the electric �eld and matter �eld. This operator is such that the Hamiltonian of the
problem is

Ĥ =

ˆ
d3r

ˆ ∞
0

dω~ωf̂
†
(r, ω) · f̂(r, ω). (A.2)

With the expression of the electric �eld as given in Eq. A.1, we have a means for quantizing
evanescent waves that exist due to the presence of quantum noise currents.

A.2 Evanescent wave operator

In this section we de�ne the evanescent wave operator. We consider a homogeneous, ab-
sorbing medium, so that ε′′(r, ω) = ε′′(ω) and ¯̄G(r, r′;ω) = ¯̄G(r− r′;ω). We recognize that
the spatial integral in Eq. A.1 is a convolution integral. Thanks to the convolution theorem
we can rewrite the electric �eld in terms of an inverse Fourier transform over the wavevector
k:

E+(r) = i

ˆ ∞
0

dω
~
πε0

ω2

c2

√
ε′′(ω)

ˆ
d3k ¯̄G(k;ω)̂f(k, ω)eik·r (A.3)

with
¯̄G(k;ω) =

¯̄
1− kk

k2

k2 − εω2

c2

. (A.4)

As a next step we write the noise operator f̂ in its two polarization states

f̂(k, ω) =
2∑

λ=1

eλ(k)Ĉλ(k, ω), (A.5)

where Ĉλ(k, ω) is a linear combination of the bosonic destruction and creation operators
of the matter �elds and the photon destruction and creation operators and for which the
following commutation relations hold [139]:

[Ĉλ(k, ω), Ĉ†λ′(k
′, ω′) = δλ,λ′δ(k− k′)δ(ω − ω′), (A.6)
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and
[Ĉλ(k, ω), Ĉλ′(k

′, ω′) = 0. (A.7)

By substituting both the expression of the Green's tensor and the noise operator, the electric
�eld turns into the following form

E+(r) = i

ˆ ∞
0

dω
~
πε0

ω2

c2

√
ε′′(ω)

2∑
λ=1

ˆ
d3k

¯̄
1− kk

k2

k2 − εω2

c2

eik·reλ(k)Ĉλ(k, ω). (A.8)

The key step of this section follows now. We de�ne the quantum operator for evanescent
waves:

â(k‖, z;ω) =
2∑

λ=1

ˆ̄̄aλ(k‖, z;ω)eλ(k), (A.9)

where ˆ̄̄aλ(k‖, z;ω) is a matrix:

ˆ̄̄aλ(k‖, z;ω) =

√
ε′′ω

c

ˆ ∞
−∞

dkz
2π

¯̄
1− kk

k2

k2
z −

(
εω

2

c2
− k2

‖

)eikzzĈλ(k, ω). (A.10)

It is at this moment that we see the formal relation between evanescent waves and virtual
photons. Let us consider for the moment a system for which ε is real. Modes with k‖ <
(
√
ε)ω/c are propagative modes. We observe that modes for which k2

z = εω
2

c2
− k2

‖ are
dominating. This is as opposed for modes with k‖ >

√
εω/c, which are evanescent waves.

For these modes, there is no resonance in kz and therefore all modes are important: both
modes for which k2

x + k2
y + k2

z = εω/c and k2
x + k2

y + k2
z 6= εω/c. The latter modes are

modes that can be excited by virtual photons. From this observation, and from Eq. A.10,
it follows that an evanescent wave is built up of many modes that are described quantum
optically by the operator Ĉλ(k, ω), which is an operator that annihilates a virtual photon.

Under the introduction of this operator, the electric �eld operator reduces to

E+(r) = i

ˆ ∞
0

dω

√
~
πε0

ω

c

ˆ
d2k‖
(2π)2

â(k‖, z;ω
′)eik‖·r

′
‖ . (A.11)

We proceed with the calculation of the commutation relation [ˆ̄̄aλ(k‖, z;ω), ˆ̄̄a†λ′(k
′
‖, z
′;ω′)],

since this quantity is closely related to the correlation function of the electric �eld operators,
and thereby closely related to the power spectral density function [139].

A.3 Commutation relation for evanescent wave opera-

tors

The commutation relation for the evanescent wave operators is derived mathematically. As
a �rst step, we �ll in the expression of the quantum operators and use the commutation
relation for the Ĉ operator:

[ˆ̄̄aλ(k‖, z;ω), ˆ̄̄a†λ′(k
′
‖, z
′;ω′)] =

ε′′ω2

c2

ˆ ∞
−∞

dkz
2π

ˆ ∞
−∞

dk′z
2π

¯̄
1− kk

k2

k2 − εω2

c2

×
¯̄
1− k′k′

k′2

k′2 − ε∗ ω2

c2

ei(kzz−k
′
zz
′)

×δλ,λ′δ(k− k′)δ(ω − ω′). (A.12)
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The integral over k′z is straightforward to evaluate, because of the delta function δ(k− k′).
After the integration we obtain:

[ˆ̄̄aλ(k‖, z;ω), ˆ̄̄a†λ′(k
′
‖, z
′;ω′)] =

ε′′ω2

c2

ˆ ∞
−∞

dkz
2π

¯̄
1− kk

k2

|k2 − εω2

c2
|2
eikz(z−z′)

×δλ,λ′δ(k‖ − k′‖)δ(ω − ω′). (A.13)

The integral can be evaluated by means of a complex contour integral and the residue
theory. This results in

[âλ(k‖, z;ω), â†λ′(k
′
‖, z
′;ω′)] =

π

2

[1

γ

(
¯̄
1− k1k1

k2
1

)
eiγ|z−z

′| +
1

γ∗

(
¯̄
1− k2k2

k2
2

)
e−iγ

∗|z−z′|
]

×δλ,λ′δ(ω − ω′)δ(k‖ − k′‖), (A.14)

where we have de�ned the parameters

γ2 = ε
ω2

c2
− k2

‖, (A.15)

k1 = 〈kx, ky, sign(z − z′)γ〉, (A.16)

k2 = 〈kx, ky, sign(z − z′)×−γ∗〉. (A.17)

From this commutation relation we observe that the commutator decays exponentially
with the distance between z and z′.

Next, we take the limit of a nonabsorbing medium, i.e., ε′′ = 0, and assume that
k‖ �

√
εω/c. We de�ne γ = iκ, so that κ > 0. The commutation relation simpli�es to

[âλ(k‖, z;ω), â†λ′(k
′
‖, z
′;ω′)] = 0. (A.18)

Evanescent waves are bosonic of nature, and therefore this commutation relationship should
not be strictly zero. The observation that this commutator is zero, leads therefore to the
conclusion that the operator belongs to a �eld that physically does not exist. Indeed, from
classical optics we know that evanescent waves do not exist in a uniform, nonabsorbing
medium without an electric source.

When we take a propagating wave, i.e., k‖ �
√
εω/c the commutator becomes

[âλ(k‖, z;ω), â†λ′(k
′
‖, z
′;ω′)] =

π

2γ

[(
1− k1k1

k2
1

)
eiγ(z−z′) +

(
1− k2k2

k2
2

)
e−iγ(z−z′)

]
×δλ,λ′δ(ω − ω′)δ(k‖ − k′‖), (A.19)

where

k1 = 〈kx, ky, γ〉, (A.20)

k2 = 〈kx, ky,−γ〉, (A.21)

with γ ∈ R. This commutator is not strictly zero. Indeed, propagating modes are physically
allowed in a uniform, nonabsorbing medium without an electric source.

A.4 Conclusion

We presented the quantization of evanescent waves in an absorbing medium. We have
formally established the relationship between evanescent �elds and virtual photons. The
creation and annihilation operators for evanescent waves can be expressed as a linear su-
perposition of creation and annihilation operators of photonic modes that do virtual.



Appendix B

Numerical calculations on o�-axis

source in a cylindrically symmetric

nanostructure

We present an improvement of an aperiodic-Fourier modal method (aperiodic FMM) that
has been developed by Bigourdan et al. [140]. This code enables to calculate the electric
�eld produced by a point source inside any cylindrically symmetric system. When the point
source is positioned away from the symmetry axis, the calculation becomes numerically more
demanding, since the symmetry of the problem is broken. Here, we present a numerical
trick to improve both convergence and convergence time of this numerical method for a
source that is positioned o� axis.

B.1 System description

The system that was studied with the aperiodic FMM, and was used to improve the con-
vergence of the numerical calculation, has two InAs/GaAs quantum dots that are spatialy
separated by roughly 300 nm. They are embedded in a multilayer system. This multilayer
system contains a distributed Bragg re�ector (DBR) and on top there is a gold disk, see
Fig. B.1. This gold disk has a diameter of 2.6 µm and is positioned such that the quantum
dots are symmetrically positioned around the center of the gold disk. The quantum dots
are 44 nm underneath the gold. For the other system parameters, refer to the caption of
Fig. B.1. In order to obtain the Green's tensor of the problem, we need to calculate the
electric �eld for a pointlike electrical dipole. In the next section we brie�y discuss the idea
behind the numerical method that is used.

B.2 Numerical method

B.2.1 Electric �eld decomposition

There are several numerical methods possible to model a cylindrically symmetric system.
In this Appendix, we study an aperiodic-Fourier modal method (aperiodic FMM) that is
developed by Bigourdan et al. [140]. In the current section, we brie�y discuss their method.
For a more thorough discussion, refer to Ref. [140]. For this aperiodic FMM, the aperiodic
structure [an example is given in Fig. B.2(a)] is periodically repeated in the z direction as
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Figure B.1: Schematic of the structure. All dimensions, apart the dimensions of the
quantum dots and the substrate, are on scale. The diameter of the gold disk is 2.6 µm.
The materials, in order and per layer are: Au, Au, GaAs, Al0.1Ga0.9As, GaAs,QDs,GaAs,
Ga0.05Al0.95As, {GaAs, Ga0.05Al0.95As} nm (between curly brackets: repeated 40 times),
GaAs. The heights are from top to bottom: 45, 5, 10, 10, 24, QDs, 19, 74, {60, 72}
(between curly brackets: repeated 40 times). The z position where the QDs are found is
indicated by zQD and is 44 nm underneath gold.

illustrated in Fig. B.2(b), so that a Fourier modal method can be used. Next, each cell
should be optically isolated. This can be done by for example putting perfectly matched
layers (PML) at the borders of the cell along the z direction, or by using complex coordi-
nate transformations at the borders of each cell [86]. It is the latter that is used in this work.

(a) (b) (c)

Figure B.2: (a) Example of a rotationally invariant nanostructure with the presence of a
ring source. (b) The aperiodic nanostructure is periodized with period d along the symmetry
axis. The cells are separated by either a PML or, in our calculations, by complex coordinate
transforms. (c) In the radial direction, the structure is divided in slabs for which the optical
properties are invariant along the radial direction. Figure has been extracted from Ref. [140].
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In our case, we study a rotationally invariant nanostructure. Because of the symmetry,
the electric and magnetic �eld are written in cylindrical coordinates and decomposed in an
appropriate basis:

F(r, z, θ) =
+∞∑

L=−∞

+∞∑
m=−∞

eiLθeiβmzF̃
L

m(r), (B.1)

where F can stand for both the electric and magnetic �eld and βm = β0 + m2π
d
, d being

the arti�cial period that has been introduced while periodically repeating the aperiodic
structure. Each basis element is characterized by the the azimuthal number L and the
order m of a Floquet mode. The azimuthal number L is natural to the physical problem,
which is in contrast with the order m, that is purely mathematical and does not have
any physical meaning, as we have arti�cially created a periodicity along the z axis. For a
numerical analysis, not all terms of the sums can be included. Therefore the sums over L
and m are truncated:

Ft(r, z, θ) =
Lmax∑

L=−Lmax

mmax∑
m=−mmax

eiLθeiβmzF̃
L

m(r), (B.2)

so that we keep 2Lmax + 1 and 2mmax + 1 terms of each sum. The subscript t indicates
that the solution follows from a truncation of the sums. Bigourdan et al. have shown that
for each mode de�ned by the pair (m,L), the tangential �eld components [F̃θ(r) and F̃z(r)]
at the borders of each slice [see Fig. B.2(c) for the de�nition of a slice] are related by a so
called scattering matrix (S matrix) [140]

Ẽz(rj)

Ẽθ(rj)

H̃z(ri)

H̃θ(ri)

 = ¯̄S(rj − ri, ri)


Ẽz(ri)

Ẽθ(ri)

H̃z(rj)

H̃θ(rj)

 . (B.3)

The S-matrix formalism is typically used for multilayer systems in cartesian coordinates;
here this formalism is used for a multilayer system along the radial direction. Apart from
calculating the electric and magnetic �elds at the border of each slices, the same formalism
allows to calculate the electric and magnetic �elds at any position inside and outside the
nanostructure.

B.2.2 Source decomposition

So far we have only discussed the electric and magnetic �elds. They need to be excited,
which is numerically done by a point source. This point source at position r0: Jδ(r− r0),
needs to be written in the same basis as the electromagnetic �elds. After periodically
repeating the point source, the source term is

+∞∑
m=−∞

Jδ[r− (r0 +m · dẑ)] =
J

2πr0d

+∞∑
L=−∞

+∞∑
m=−∞

eiL(θ−θ0)eiβm(z−zs)δ(r− r0)δ(z − z0). (B.4)

A point source is therefore expanded as a sum of ring sources [see Fig. B.2(a)], so that
each term respects the symmetry of the problem. A linear superposition of ring sources,
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with appropriate (complex) coe�cients in front of each term, approaches a point source by
summing over all values of L. Let us brie�y discuss two distinct situations: (1) A point
source is located at the center (r0 = 0), and (2) a point source is located o� center (r0 6= 0).
It can be shown that for a point source at the center, the sum over L is limited to only a
few terms. If the source is polarized along the z axis, only L = 0 should be considered, and
for any rectilinear polarization only L = {−1, 1} are needed. As soon as the source is o�
centered, one theoretically needs to take all terms into account. Similarly as for the electric
�eld, this is not possible and we therefore truncate this sum to the same order as the �elds.
The consequence of this truncature of the source is that we do not have a true point source:
the source is spread out on a ring. An example of this is given in Fig. B.3(a), where we
calculated the electric �eld in the plane zQD (see Fig. B.1). The truncature parameters
are: mmax = 100 and Lmax = 3. One can readily see that determining the electric �eld
somewhere close to the ring is problematic and therefore also the calculation of the total
emitted power, since we calculate the total emitted power by

P =
1

2
Re
[
J · E∗(rQD)

]
. (B.5)

This e�ect has potentially a big in�uence on our calculations in particular. Since each
quantum dot is positioned about 150 nm from the center, they lie on �each other's ring�.
Therefore, the convergence for the electric �eld at the position of QD 2 is therefore very
bad.
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Figure B.3: A map of the electric �eld in the plane of an x-polarized quantum dot po-
sitioned at (x, y) = (50 nm, 0). m = {−100 · · · 100} and L = {−3 · · · 3}. (a) log10 |Ex|2
obtained without a plane wave expansion (PWE). The source is indicated by QD 1. QD 2
indicates the place where the other quantum dot could be positioned. (b) log10 |Ex|2 obtained
with a PWE. (c) Im(Ez) obtained without a PWE. (d) Im(Ez) obtained with a PWE.

B.2.3 Improving electric �eld calculation

We came up with a technique to improve the �eld calculation. This technique is illustrated
in Fig. B.4. From the electric �eld calculated with the aperiodic FMM, we substract the
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electric �eld calculated with the same method but with the gold disk that has been made
spatially extended. The strong electric �eld on the circle which is due to the source, as shown
in Fig. B.3(a), is e�ectively removed in this way. Next, the electric �eld corresponding to
an emitter in a multilayer system needs to be added. For this, another numerical method is
used that is more appropriate to such a multilayer system and converges much faster. This
method consists of expanding the electric �eld in plane waves, a natural basis of the system.
The solution, based on a plane wave expansion (PWE), is added to the �eld calculated by
means of the aperiodic FMM and we end up with an electric �eld that does not have the
problem of a source that is spread out over a circle. The improvement of Fig. B.3(a) is
depicted in Fig. B.3(b). As can be visually observed, the solution of Fig. B.3(b) is indeed
much better converged than the solution of Fig. B.3(a). Similarly, we see an improvement
of the imaginary part of Ez when comparing Fig. B.3(d) with Fig. B.3(c).

Figure B.4: A schematic view of the method used to improve the convergence of the electric
�eld calculation in the vicinity of the quantum dot. From the electric �eld calculated by
means of the aperiodic FMM as explained in the main text, we subtract the electric �eld
calculated by the same aperiodic FMM, but with the gold disk extended in two dimensions,
e�ectively making it a multilayer system. The electric �eld created by a point source in this
multilayer system is calculated by a plane wave expansion and added.

B.2.4 Convergence

Next, we study the convergence quantitatively. Both methods (with and without PWE)
have been used to calculate the total emitted power P for an x-polarized point source
located at (x, y, z) = (150 nm, 0, zQD). For the moment we truncate the sum over L to
Lmax = 3. Figure B.5(a) shows the total emitted power as a function of the truncature of
the sum over the order of the Floquet modes. It is seen that the method which makes use
of the PWE converges with 2.5 times less modes. Figure B.5(b) shows the computational
time for a single value of L as a function of the truncature mmax for both methods. It
is seen that convergence is reached 8.3 times faster with PWE than without, eventhough
we perform two aperiodic FMM calculations, as can be seen in Fig. B.41. Apart from the
faster convergence in terms of m, there is also a faster convergence for L when the PWE is
applied. Table B.1 shows the emitted power per azimuthal number L relative to the total
emitted power, where we de�ne total emitted power in this table as the total emitted power

1 In principle it should be possible to combine both calculations in only a single calculation, because of
the linearity of the electric �elds. This improvement of the calculation has not been implemented yet.
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Figure B.5: (a) The total emitted power has been calculated for an x polarized point source
at (x, y, z) = (150 nm, 0, zQD) and Lmax = 3. The dashed lines indicate the regions for which
the calculated power deviates by 1% of the value obtained when mmax = 500. PWE stands
for plane wave expansion and is used to improve the convergence. (b) The computation
time as a function of the truncature on m. This calculation is done for L = 0.

for L = {−9 · · · 9}. This calculation has been done for the same situation as described for
the results of Fig. B.5. We note that with only L = {−2 · · · 2}, the solution that uses the
PWE is su�ciently well converged, as opposed to the solution where the PWE has not
been used. The reason for this di�erence is simple. When a PWE is used, the emission
which is due to a source in the multilayer is calculated very accurately without the use of
an expansion based on L. The aperiodic FMM is only used for the part which is due to the
fact that the gold disk has a �nite radius. We have therefore included this contribution to
L = 0 in the table and it shows that 94.7% of the total emitted power is already accounted
for. For the method where the PWE is not applied, the source needs to be approximated by
adding up ring sources. Depending on the position of the source, many azimuthal numbers
L are needed to approximate the ring source correctly. From the table we �nd that at
least L = {−5 · · · 5} are needed for this method. Note that the computational time grows
linearly with Lmax.

We see that the trick as illustrated by Fig. B.4 dramatically improves the calculation.
Due to this improvement, we have now access to the electric �eld at the height of the
quantum dots; a parameter that is important to evaluate the dipole-dipole interactions
between two quantum dots.

L 0 1 2 3 4
PLno PWE

Ptotal
0.129 0.473 0.258 0.095 0.028

PLPWE

Ptotal
0.947 0.089 −0.037 0.003 −0.003

L 5 6 7 8 9
PLno PWE

Ptotal
0.024 0.005 −0.001 −0.003 −0.007

PLPWE

Ptotal
0.003 −0.001 −3 · 10−4 1 · 10−4 −1 · 10−5
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Table B.1: The fraction of power emitted by the mode with azimuthal number L is given
for both methods where either the PWE is applied or not. It is seen that the method that
uses a PWE converges faster than the method without.





Bibliography

[1] D. Pines, Elementary Excitations in Solids, (Benjamin, New York, 1964).

[2] A. Fuhrmanek, Ph.D. thesis, Institut d'Optique, 2011.

[3] R. Bourgain, Ph.D. thesis, Institut d'Optique, 2014.

[4] J. Pellegrino, Ph.D. thesis, Institut d'Optique, 2014.

[5] R. Friedberg, S.R. Hartmann, and J.T. Manassah, Limited superradiant damping of
small samples, Phys. Lett. 40A, 365-366 (1972).

[6] M. Gross and S. Haroche, Superradiance: An essay on the theory of collective sponta-
neous emission, Phys. Rep. 93, 301-396 (1982).

[7] S. Jennewein, M. Besbes, N.J. Schilder, S.D. Jenkins, C. Sauvan, J. Ruostekoski, J.-
J. Gre�et, Y.R.P. Sortais, and A. Browaeys, Coherent scattering of near-resonant light
by a dense microscopic cold atomic cloud, Phys. Rev. Lett. 116, 233601 (2016).

[8] A. Goetschy and S.E. Skipetrov, Non-Hermitian Euclidean random matrix theory,
Phys. Rev. E 84, 011150 (2011).

[9] R. Bachelard, Ph.W. Courteille, R. Kaiser, and N. Piovella, Resonances in Mie scat-
tering by an inhomogeneous atomic cloud, Eur. Phys. Lett. 97, 14004 (2012).

[10] Q. Le-Van, Ph.D. thesis, Institut d'Électronique Fondamentale, 2016.

[11] Q. Le-Van, X. Le Roux, A. Aasime, and A. Degiron, Electrically driven optical meta-
materials, Nat. Comm. 7, 12017 (2016).

[12] L. Novotny and B. Hecht, Principles of Nano-optics, (Cambridge University Press,
Cambridge, UK, 2006).

[13] G. Grynberg, A. Aspect, and C. Fabre, Introduction to quantum optics: from the semi-
classical approach to quantized light, (Cambridge University Press, New York, 2010).

[14] C.F. Bohren and D.R. Hu�man, Absorption and scattering of light by small particles
(John Wiley & Sons, New York, 2008).

[15] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press,
Cambridge, UK, 1999).

[16] A. Lagendijk and B. van Tiggelen, Resonant multiple scattering of light, Physics Re-
ports 270, 143 (1996).

http://dx.doi.org/10.1016/0375-9601(72)90533-6
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1103/PhysRevLett.116.233601
http://dx.doi.org/10.1103/PhysRevE.84.011150
http://dx.doi.org/10.1209/0295-5075/97/14004
http://dx.doi.org/10.1038/ncomms12017
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1016/0370-1573(95)00065-8


BIBLIOGRAPHY 128

[17] U. Frisch, in Probabilistic methods in applied mathematics, edited by A.A. Bharuch-
Reid (Academic, New York, 1968), Vols. I and II.

[18] P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena,
(Academic Press, New York, 1995).

[19] L. Apresyan and Y. Kravtsov, Radiation transfer: statistical and wave aspects, (Gordon
and Breach, 1996)

[20] S. Durant, O. Calvo-Perez, N. Vukadinovic, and J.-J. Gre�et, Light scattering by a
random distribution of particles embedded in absorbing media: diagrammatic expansion
of the extinction coe�cient, J. Opt. Soc. Am. A, 24, 2943-2952 (2007).

[21] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions:
Basic Processes and Applications (John Wiley & Sons, New York, 1992).

[22] R.P. Feynman, R.B. Leighton, and M.L. Sands, The Feynman lectures on physics II,
(Addison-Wesley, 1963).

[23] N.W. Ashcroft and N.D. Mermin, Solid state physics, (Saunders College, Philadelphia,
1976).

[24] A. Lagendijk, B. Nienhuis, B.A. van Tiggelen, and P. de Vries, Microscopic approach
to the Lorentz cavity in dielectrics, Phys. Rev. Lett. 79, 657 (1997).

[25] L. Tsang and J.A. Kong, Scattering of Electromagnetic Waves, Volume III: Advanced
Topics (Wiley, 2001).

[26] O. Morice, Y. Castin, and J. Dalibard, Refractive index of a dilute Bose gas, Phys.
Rev. A 51, 3896 (1995).

[27] J. Javanainen and J. Ruostekoski, Light propagation beyond the mean-�eld theory of
standard optics, Opt. Express 24, 993-1001 (2016).

[28] V. Weisskopf and E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der
Diracschen Lichttheorie, Z. Physik 63, 54-73 (1930).

[29] A.A. Svidzinsky, J.-T. Chang, and M.O. Scully, Cooperative spontaneous emission of
N atoms: many-body eigenstates, the e�ect of virtual Lamb shift processes, and analogy
with radiation of N classical oscillators, Phys. Rev. A 81, 053821 (2010).

[30] I.M. Sokolov, D.V. Kupriyanov, and M.D. Havey, Microscopic theory of scattering of
weak electromagnetic radiation by a dense ensemble of ultracold atoms, J. Exp. Theor.
Phys. 112, 246-260 (2011).

[31] M. Ki�ner, M. Macovei, J. Evers, and C.H. Keitel, Vacuum-induced processes in mul-
tilevel atoms, Prog. Opt. 55, 85-197 (2010).

[32] D.L. Andrews and D.S. Bradshaw, Virtual photons, dipole �elds and energy transfer:
a quantum electrodynamical approach, Eur. J. Phys. 25, 845 (2004).

[33] C.K. Carniglia and L. Mandel, Quantization of evanescent electromagnetic waves,
Phys. Rev. D 3, 280 (1971).

http://dx.doi.org/10.1364/JOSAA.24.002943
http://dx.doi.org/10.1103/PhysRevLett.79.657
http://dx.doi.org/10.1103/PhysRevA.51.3896
http://dx.doi.org/10.1103/PhysRevA.51.3896
http://dx.doi.org/10.1364/OE.24.000993
http://dx.doi.org/10.1007/BF01336768
http://dx.doi.org/10.1103/PhysRevA.81.053821
http://dx.doi.org/10.1134/S106377611101016X
http://dx.doi.org/10.1134/S106377611101016X
http://dx.doi.org/10.1016/B978-0-444-53705-8.00003-5
http://dx.doi.org/10.1088/0143-0807/25/6/017
http://dx.doi.org/10.1103/PhysRevD.3.280


129 BIBLIOGRAPHY

[34] S. Twareque Ali, Evanescent waves in quantum electrodynamics with unquantized
sources, Phys. Rev. D 7, 1668 (1973).

[35] A.A. Stahlhofen and G. Nimtz, Evanescent modes are virtual photons, Europhys. Lett.
76, 189 (2006).

[36] V.M. Fa�in, On the theory of the coherent spontaneous emission, Soviet Phys. JETP
(U.S.S.R.) 36, 798 (1959).

[37] R. Friedberg, S.R. Hartmann, and J.T. Manassah, Frequency shifts in emission and
absorption by resonant systems of two-level atoms, Phys. Rep. 7, 101�179 (1973).

[38] J. Keaveney, A. Sargsyan, U. Krohn, I.G. Hughes, D. Sarkisyan, and C.S. Adams,
Cooperative Lamb shift in an atomic vapor layer of nanometer thickness, Phys. Rev.
Lett. 108, 173601 (2012).

[39] J. Keaveney, I.G. Hughes, A. Sargsyan, D. Sarkisyan, and C.S. Adams, Maximal re-
fraction and superluminal propagation in a gaseous nanolayer, Phys. Rev. Lett. 109,
233001 (2012).

[40] H. Bender, C. Stehle, S. Slama, R. Kaiser, N. Piovella, C. Zimmermann, and
Ph.W. Courteille, Observation of cooperative Mie scattering from an ultracold atomic
cloud, Phys. Rev. A 82, 011404(R) (2010).

[41] M. Chalony, R. Pierrat, D. Delande, and D. Wilkowski, Coherent �ash of light emitted
by a cold atomic cloud, Phys. Rev. A 84, 011301(R) (2011).

[42] S. Balik, A.L. Win, M.D. Havey, I.M. Sokolov, and D.V. Kupriyanov, Near-resonance
light scattering from a high-density ultracold atomic 87Rb gas, Phys. Rev. A 87, 053817
(2013).

[43] C.C. Kwong, T. Yang, M.S. Pramod, K. Pandey, D. Delande, R. Pierrat, and
D. Wilkowski, Cooperative emission of a coherent super�ash of light, Phys. Rev. Lett.
113, 223601 (2014).

[44] C.C. Kwong, T. Yang, D. Delande, R. Pierrat, and D. Wilkowski, Cooperative emission
of a pulse train in an optically thick scattering medium, Phys. Rev. Lett. 115, 223601
(2015).

[45] M.O. Araújo, I. Kre²i¢, R. Kaiser, and W. Guerin, Superradiance in a large cloud of
cold atoms in the linear-optics regime, Phys. Rev. Lett. 117, 073002 (2016).

[46] W. Guerin, M.O. Araújo, and R. Kaiser, Subradiance in a large cloud of cold atoms,
Phys. Rev. Lett. 116, 083601 (2016).

[47] S.J. Roof, K. Kemp, M.D. Havey, and I.M. Sokolov, Observation of single-photon
superradiance and the cooperative Lamb shift in an extended sample of cold atoms,
Phys. Rev. Lett. 117, 073003 (2016).

[48] A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, and P.O. Schmidt, Optical atomic clocks,
Rev. Mod. Phys. 87, 637�701 (2015).

http://dx.doi.org/ 10.1103/PhysRevD.7.1668
http://dx.doi.org/10.1209/epl/i2006-10271-9
http://dx.doi.org/10.1209/epl/i2006-10271-9
http://www.jetp.ac.ru/cgi-bin/dn/e_009_03_0562.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_009_03_0562.pdf
http://dx.doi.org/10.1016/0370-1573(73)90001-X
http://dx.doi.org/10.1103/PhysRevLett.108.173601
http://dx.doi.org/10.1103/PhysRevLett.108.173601
http://dx.doi.org/10.1103/PhysRevLett.109.233001
http://dx.doi.org/10.1103/PhysRevLett.109.233001
http://dx.doi.org/10.1103/PhysRevA.82.011404
http://dx.doi.org/10.1103/PhysRevA.84.011401
http://dx.doi.org/10.1103/PhysRevA.87.053817
http://dx.doi.org/10.1103/PhysRevA.87.053817
http://dx.doi.org/10.1103/PhysRevLett.113.223601
http://dx.doi.org/10.1103/PhysRevLett.113.223601
http://dx.doi.org/10.1103/PhysRevLett.115.223601
http://dx.doi.org/10.1103/PhysRevLett.115.223601
http://dx.doi.org/10.1103/PhysRevLett.117.073002
http://dx.doi.org/10.1103/PhysRevLett.116.083601
http://dx.doi.org/10.1103/PhysRevLett.117.073003
http://dx.doi.org/10.1103/RevModPhys.87.637


BIBLIOGRAPHY 130

[49] S.L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer,
T.L. Nicholson, R. Kaiser, S.F. Yelin, M.D. Lukin, A.M. Rey, and J. Ye, Collective
atomic scattering and motional e�ects in a dense coherent medium, Nature Comm. 7,
11039 (2016).

[50] A. Goban, C.-L. Hung, J.D. Hood, S.-P. Yu, J.A. Muniz, O. Painter, and H.J. Kimble,
Superradiance for atoms trapped along a photonic crystal waveguide, Phys. Rev. Lett.
115, 063601 (2015).

[51] J. Pellegrino, R. Bourgain, S. Jennewein, Y.R.P. Sortais, A. Browaeys, S.D. Jenkins,
and J. Ruostekoski, Observation of suppression of light scattering induced by dipole-
dipole interactions in a cold-atom ensemble, Phys. Rev. Lett. 113, 133602 (2014).

[52] S. Jennewein, Y.R.P. Sortais, J.-J. Gre�et, and A. Browaeys, Propagation of light
through small clouds of cold interacting atoms, arXiv:1511.08527 (unpublished).

[53] R. Bourgain, J. Pellegrino, A. Fuhrmanek, Y.R.P. Sortais, and A. Browaeys, Evapora-
tive cooling of a small number of atoms in a single-beam microscopic dipole trap, Phys.
Rev. A 88, 023428 (2013).

[54] J.D. Miller, R.A. Cline, and D.J. Heinzen, Far-o�-resonance optical trapping of atoms,
Phys. Rev. A 47, R4567 (1993).

[55] R. Newell, J. Sebby, and T.G. Walker, Dense atom clouds in a holographic atom trap,
Opt. Lett. 28, 1266�1268 (2003).

[56] S. Roof, K. Kemp, M. Havey, I.M. Sokolov, and D.V. Kupriyanov, Microscopic lensing
by a dense, cold atomic sample, Opt. Lett. 40, 1137�1140 (2015).

[57] K.I. Popov, A.F. Pegoraro, A. Stolow, and L. Ramunno, Image formation in CARS
microscopy: e�ect of the Gouy phase shift, Opt. Express 19, 5902�5911 (2011).

[58] J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, Shifts of a resonance line in a
dense atomic sample, Phys. Rev. Lett. 112, 113603 (2014).

[59] J.T. Manassah, Cooperative radiation from atoms in di�erent geometries: decay rate
and frequency shift, Adv. Opt. Photon. 4, 108�156 (2012).

[60] J.-J. Gre�et and C. Baylard, Nonspecular astigmatic re�ection of a 3D Gaussian beam
on an interface, Opt. Comm. 93, 271�276 (1992).

[61] L. Brillouin, Wave propagation and group velocity, (Academy Press, New York, 1960).

[62] L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, Light speed reduction to 17
metres per second in an ultracold atomic gas, Nature 397, 597�598 (1999).

[63] R.W. Boyd and D.J. Gauthier, �Slow� and �fast� light, Progress in Optics 43, 497�530
(2002).

[64] W. Withayachumnankul, B.M. Fischer, B. Ferguson, B.R. Davis, and D. Abbott, A
systemized view of superluminal wave propagation, Proceedings of the IEEE 98, 1775�
1786 (2010).

http://dx.doi.org/10.1038/ncomms11039
http://dx.doi.org/10.1038/ncomms11039
http://dx.doi.org/10.1103/PhysRevLett.115.063601
http://dx.doi.org/10.1103/PhysRevLett.115.063601
http://dx.doi.org/10.1103/PhysRevLett.113.133602
http://dx.doi.org/10.1103/PhysRevA.88.023428
http://dx.doi.org/10.1103/PhysRevA.88.023428
http://dx.doi.org/10.1103/PhysRevA.47.R4567
http://dx.doi.org/10.1364/OL.28.001266
http://dx.doi.org/10.1364/OL.40.001137
http://dx.doi.org/10.1364/OE.19.005902
http://dx.doi.org/10.1103/PhysRevLett.112.113603
http://dx.doi.org/10.1364/AOP.4.000108
http://dx.doi.org/10.1016/0030-4018(92)90184-S
http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1016/S0079-6638(02)80030-0
http://dx.doi.org/10.1016/S0079-6638(02)80030-0
http://dx.doi.org/10.1109/JPROC.2010.2052910
http://dx.doi.org/10.1109/JPROC.2010.2052910


131 BIBLIOGRAPHY

[65] L.J. Wang, A. Kuzmich, and A. Dogariu, Gain-assisted superluminal light propagation,
Nature 406, 277�279 (2000).

[66] G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R.W. Boyd, Observation
of backward pulse propagation through a medium with a negative group velocity, Science
312, 895�897 (2006).

[67] N.J. Schilder, C. Sauvan, J.-P. Hugonin, S. Jennewein, Y.R.P. Sortais, A. Browaeys,
and J.-J. Gre�et, Polaritonic modes in a dense cloud of cold atoms, Phys. Rev. A 93,
063835 (2016).

[68] I.M. Sokolov, M.D. Kupriyanova, D.V. Kupriyanov, and M.D. Havey, Light scattering
from a dense and ultracold atomic gas, Phys. Rev. A 79, 053405 (2009).

[69] T. Bienaimé, R. Bachelard, N. Piovella, and R. Kaiser, Cooperativity in light scattering
by cold atoms, Fortschr. Phys. 61, 2 (2013).

[70] S.E. Skipetrov, and A. Goetschy, Eigenvalue distributions of large Euclidean random
matrices for waves in random media, J. Phys. A: Math. Theor. 44, 065102 (2011).

[71] A. Goetschy, and S.E. Skipetrov, Euclidean matrix theory of random lasing in a cloud
of cold atoms, Europhys. Lett. 96, 34005 (2011).

[72] Y. Li, J. Evers, W. Feng, and S.-Y. Zhu, Spectrum of collective spontaneous emission
beyond the rotating-wave approximation, Phys. Rev. A 87, 053837 (2013).

[73] J.J. Hop�eld, Theory of the contribution of excitons to the complex dielectric constant
of crystals, Phys. Rev. 112, 1555 (1958).

[74] A.S. Davydov, in Theory of Solids, (Nauka, Moscow, 1980).

[75] J. Bellessa, C. Bonnand, J.C. Plenet, and J. Mugnier, Strong coupling between sur-
face plasmons and excitons in an organic semiconductor, Phys. Rev. Lett. 93, 036404
(2004).

[76] J. Dintinger, S. Klein, F. Bustos, W.L. Barnes, and T.W. Ebbesen, Strong coupling
between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,
Phys. Rev. B71, 035424 (2005).

[77] T.K. Hakala, J.J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and
P. Törmä, Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon
polaritons and rhodamine 6G molecules, Phys. Rev. Lett. 103, 053602 (2009).

[78] S. Aberra Guebrou, C. Symonds, E. Homeyer, J.C. Plenet, Yu. N. Gartstein,
V.M. Agranovich, and J. Bellessa, Coherent emission from a disordered organic semi-
conductor induced by strong coupling with surface plasmons, Phys. Rev. Lett. 108,
066401 (2012).

[79] D.E. Gómez, K.C. Vernon, P. Mulvaney, and T.J. Davis, Surface plasmon mediated
strong exciton-photon coupling in semiconductor nanocrystals, Nano Lett. 10, 274-278
(2010).

http://dx.doi.org/10.1038/35018520
http://dx.doi.org/10.1126/science.1124524
http://dx.doi.org/10.1126/science.1124524
http://dx.doi.org/10.1103/PhysRevA.93.063835
http://dx.doi.org/10.1103/PhysRevA.93.063835
http://dx.doi.org/10.1103/PhysRevA.79.053405
http://dx.doi.org/10.1002/prop.201200089
http://dx.doi.org/10.1088/1751-8113/44/6/065102
http://dx.doi.org/10.1209/0295-5075/96/34005
http://dx.doi.org/10.1103/PhysRevA.87.053837
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevLett.93.036404
http://dx.doi.org/10.1103/PhysRevB.71.035424
http://dx.doi.org/10.1103/PhysRevLett.103.053602
http://dx.doi.org/10.1103/PhysRevLett.108.066401
http://dx.doi.org/10.1103/PhysRevLett.108.066401
http://dx.doi.org/10.1021/nl903455z
http://dx.doi.org/10.1021/nl903455z


BIBLIOGRAPHY 132

[80] L. Shi, T.K. Hakala, H.T. Rekola, J.-P. Martikainen, R.J. Moerland, and P. Törmä,
Spatial coherence properties of organic molecules coupled to plasmonic surface lattice
resonances in the weak and strong coupling regimes, Phys. Rev. Lett. 112, 153002
(2014).

[81] H. Fidder, J. Knoester, and D.A. Wiersma, Superradiant emission and optical dephas-
ing in J-aggregates, Chem. Phys. Lett. 171, 529 (1990).

[82] D.E. Gómez, S.S. Lo, T.J. Davis, and G.V. Hartland, Picosecond kinetics of strongly
coupled excitons and surface plasmon polaritons, J. Phys. Chem. B 117, 4340-4346
(2012).

[83] D.J. Jackson, Classical Electrodynamics, (John Wiley and Sons, New York, 1998).

[84] L. Chomaz, L. Corman, T. Yefsah, R. Desbuquois, and J. Dalibard, Absorption imaging
of a quasi-two-dimensional gas: A multiple scattering analysis, New Journal of Physics
14, 055001 (2012).

[85] E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, Use of grating theories in
integrated optics, J. Opt. Soc. Am. A, 18, 2865 (2001).

[86] J.-P. Hugonin and P. Lalanne, Perfectly matched layers as non-linear coordinate trans-
forms: A generalized formalization, J. Opt. Soc. Am. A 22, 1844-1849 (2005).

[87] R. Pierrat and R. Carminati, Spontaneous decay rate of a dipole emitter in a strongly
scattering disordered environment, Phys. Rev. A 81, 063802 (2010).

[88] S.E. Skipetrov, I.M. Sokolov, and M.D. Havey, Control of light trapping in a large
atomic system by a static magnetic �eld, arXiv:1603.02968 (unpublished).

[89] D.J. Thouless, Electrons in disordered systems and the theory of localization, Phys.
Rep. 13, 93-142 (1974).

[90] A. Lagendijk, B. van Tiggelen, and D.S. Wiersma, Fifty years of Anderson localization,
Physics Today 62, 24-29 (2009).

[91] S.E. Skipetrov and I.M. Sokolov, Absence of Anderson localization of light in a random
ensemble of point scatterers, Phys. Rev. Lett. 112, 023905 (2014).

[92] Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, E�cient and intuitive
method for the analysis of light scattering by a resonant nanostructure, Opt. Express,
21, 27371 (2013).

[93] J.C. Maxwell-Garnett, Colors in metal glasses and in metallic �lms, Phil. Trans. R.
Soc. London A 203, 385 (1904).

[94] D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von hetero-
genen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus
isotropen Substanzen, Ann. Phys. 24, 7 (1935).

[95] P. Mallet, C.A. Guérin, and A. Sentenac, Maxwell-Garnett mixing rule in the presence
of multiple scattering: derivation and accuracy, Phys. Rev. B 72, 014205 (2005).

http://dx.doi.org/10.1103/PhysRevLett.112.153002
http://dx.doi.org/10.1103/PhysRevLett.112.153002
http://dx.doi.org/10.1016/0009-2614(90)85258-E
http://dx.doi.org/10.1021/jp306830s
http://dx.doi.org/10.1021/jp306830s
http://dx.doi.org/10.1088/1367-2630/14/5/055001
http://dx.doi.org/10.1088/1367-2630/14/5/055001
http://dx.doi.org/10.1364/JOSAA.18.002865
http://dx.doi.org/10.1364/JOSAA.22.001844
http://dx.doi.org/10.1103/PhysRevA.81.063802
https://arxiv.org/abs/1410.2497
http://dx.doi.org/10.1016/0370-1573(74)90029-5
http://dx.doi.org/10.1016/0370-1573(74)90029-5
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1364/OE.21.027371
http://dx.doi.org/10.1364/OE.21.027371
http://dx.doi.org/10.1098/rsta.1904.0024
http://dx.doi.org/10.1098/rsta.1904.0024
http://dx.doi.org/10.1002/andp.19354160705
http://dx.doi.org/10.1103/PhysRevB.72.014205


133 BIBLIOGRAPHY

[96] R.G. Driggers, Encyclopedia of Optical Engineering, (CRC Press, New York, 2003),
Vol. 1, p. 65.

[97] L. Bellando, A. Gero, E. Akkermans, and R. Kaiser, Cooperative e�ects and disorder:
a scaling analysis of the spectrum of the e�ective atomic Hamiltonian, Phys. Rev. A
90, 063822 (2014).

[98] F.S. Crawford, Waves: Berkeley physics course, (McGraw-Hill, 1968), Vol. 3, p. 559.

[99] L.D. Landau and E.M. Lifshits, Electrodynamics of continuous media, (Pergamon
Press, Oxford, 1981).

[100] R.W. Hart and R.A. Farrell, Light scattering in the cornea, J. Opt. Soc. Am. 59, 6
(1969).

[101] R.H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954).

[102] Y. Shirasaki, G.J. Supran, M.G. Bawendi, and V. Bulovi¢, Emergence of colloidal
quantum-dot light-emitting technologies, Nat. Photon. 7, 13-23 (2013).

[103] V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Light-emitting diodes made from
cadmium selenide nanocrystals and a semiconducting polymer, Nature 370, 354-357
(1994).

[104] I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, and A. Scherer, 30% external
quantum e�ciency from surface textured, thin-�lm light-emitting diodes, Appl. Phys.
Lett. 63, 2174 (1993).

[105] M.C. Schlamp, X. Peng, and A.P. Alivisatos, Improved e�ciencies in light emitting
diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting poly-
mer, J. Appl. Phys. 82, 5837 (1997).

[106] S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi¢, Electroluminescence from single
monolayers of nanocrystals in molecular organic devices, Nature 480, 800-803 (2002).

[107] A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov,
D.D. Koleske, M.A. Ho�bauer, and V.I. Klimov, Multicolor light-emitting diodes based
on semiconductor nanocrystals encapsulated in GaN charge injection layers, Nano Lett.
5, 1039-1044 (2005).

[108] S. Coe-Sullivan, Nanotechnology for displays: a potential breakthrough for OLED
displays and LCDs, SID Display Week 2012 (2012).

[109] X. Wu, L. Liu, W.C.H. Choy, T. Yu, P. Cai, Y. Gu, Z. Xie, Y. Zhang, L Du, Y. Mo,
S. Xu, and Y. Ma, Substantial performance improvement in inverted polymer light-
emitting diodes via surface plasmon resonance induced electrode quenching control,
ACS Appl. Mater. Interfaces 6, 11001-11006 (2014).

[110] N.-Y. Kim, S.-H. Hong, J.-W. Kang, N. Myoung, S.-Y. Yim, S. Jung, K. Lee, C.W. Tu,
and S.-J. Park, Localized surface plasmon-enhanced green quantum dot light-emitting
diodes using gold nanoparticles, RSC Adv. 5, 19624-19629 (2015).

http://dx.doi.org/10.1103/PhysRevA.90.063822
http://dx.doi.org/10.1103/PhysRevA.90.063822
http://dx.doi.org/10.1364/JOSA.59.000766
http://dx.doi.org/10.1364/JOSA.59.000766
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1038/nphoton.2012.328
http://dx.doi.org/10.1038/370354a0
http://dx.doi.org/10.1038/370354a0
http://dx.doi.org/10.1063/1.110575
http://dx.doi.org/10.1063/1.110575
http://dx.doi.org/10.1063/1.366452
http://dx.doi.org/10.1038/nature01217
http://dx.doi.org/10.1021/nl050384x
http://dx.doi.org/10.1021/nl050384x
http://dx.doi.org/10.1021/am5033764
http://dx.doi.org/10.1039/C4RA15585H


BIBLIOGRAPHY 134

[111] X. Yang, P.L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H.V. Demir,
and X.W. Sun, Electroluminescence e�ciency enhancement in quantum dot light-
emitting diodes by embedding a silver nanoisland layer, Adv. Opt. Mater. 3, 1439-1445
(2015).

[112] J. Pan, J. Chen, D. Zhao, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, and
W. Lei, Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating
gold nanoparticles, Opt. Express 24, A33-A43 (2016).

[113] P. Biagioni, J.-S. Huang, and B. Hecht, Nanoantennas for visible and infrared radia-
tion, Rep. Prog. Phys. 75, 024402 (2012).

[114] T.V. Teperik and A. Degiron, Numerical analysis of an optical toroidal antenna cou-
pled to a dipolar emitter, Phys. Rev. B 83, 245408 (2011).

[115] J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, Quenching and enhancement of
single-molecule �uorescence under metallic and dielectric tips, Europhys. Lett. 51, 374
(2000).

[116] M. Thomas, J.-J. Gre�et, R. Carminati, and J.R. Arias-Gonzalez, Single-molecule
spontaneous emission close to absorbing nanostructures, Appl. Phys. Lett. 85, 3863
(2004).

[117] Y.-P. Hsieh, C.-T. Liang, Y.-F. Chen, C.-W. Lai, and P.-T. Chou, Mechanism of
giant enhancement of light emission from Au/CdSe nanocomposites, Nanotechnology
18, 415707 (2007).

[118] K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, Direct and
stepwise energy transfer from excitons to plasmons in close-packed metal and semicon-
ductor nanoparticle monolayer �lms, Phys. Rev. Lett. 100, 207404 (2008).

[119] M. Haridas, L.N. Tripathi, and J.K. Basu, Photoluminescence enhancement and
quenching in metal-semiconductor quantum dot hybrid arrays, App. Phys. Lett. 98,
063305 (2011).

[120] A.E. Ragab, A.-S. Gadallah, T. Da Ros, M.B. Mohamed, and I.M. Azzouz, Ag surface
plasmon enhances luminescence of CdTe QDs, Opt. Comm. 314, 86-89 (2014).

[121] L.N. Tripathi, T. Kang, Y.-M. Bahk, S. Han, G. Choi, J. Rhie, J. Jeong, and D.-
S. Kim, Quantum dots-nanogap metamaterials fabrication by self-assembly lithography
and photoluminescence studies, Opt. Express 23, 14937-14945 (2015).

[122] Q. Le-Van, X. Le Roux, T.V. Teperik, B. Habert, F. Marquier, J.-J. Gre�et, and
A. Degiron, Temperature dependence of quantum dot �uorescence assisted by plasmonic
nanoantennas, Phys. Rev. B 91, 085412 (2015).

[123] A.J. Mork, M.C. Weidman, F. Prins, and W.A. Tisdale, Magnitude of the Förster
radius in colloidal quantum dot solids, J. Phys. Chem. C 118, 13920-13928 (2014).

[124] R. Bose, J.F. McMillan, J. Gao, K.M. Rickey, C.J. Chen, D.V. Talapin, C.B. Murray,
and C.W. Wong, Temperature-tuning of near-infrared monodisperse quantum dot solids
at 1.5 µm for controllable Förster energy transfer, Nano Lett. 8, 2006-2011 (2008).

http://dx.doi.org/10.1002/adom.201500172
http://dx.doi.org/10.1002/adom.201500172
http://dx.doi.org/10.1364/OE.24.000A33
http://dx.doi.org/10.1088/0034-4885/75/2/024402
http://dx.doi.org/10.1103/PhysRevB.83.245408
http://dx.doi.org/10.1209/epl/i2000-00504-y
http://dx.doi.org/10.1209/epl/i2000-00504-y
http://dx.doi.org/10.1063/1.1812592
http://dx.doi.org/10.1063/1.1812592
http://dx.doi.org/10.1088/0957-4484/18/41/415707
http://dx.doi.org/10.1088/0957-4484/18/41/415707
http://dx.doi.org/10.1103/PhysRevLett.100.207404
http://dx.doi.org/10.1063/1.3553766
http://dx.doi.org/10.1063/1.3553766
http://dx.doi.org/10.1016/j.optcom.2013.10.013
http://dx.doi.org/10.1364/OE.23.014937
http://dx.doi.org/10.1103/PhysRevB.91.085412
http://dx.doi.org/10.1021/jp502123n
http://dx.doi.org/10.1021/nl8011243


135 BIBLIOGRAPHY

[125] G. Kirchho�, Ueber das Verhältniÿ zwischen dem Emissionsvermögen und dem Ab-
sorptionsvermögen der Körper für Wärme und Licht, Ann. Phys. 185, 275-301 (1860).

[126] W. Shockley and H.J. Queisser, Detailed balance limit of e�ciency of p− n junction
solar cells, J. Appl. Phys. 32, 510 (1961).

[127] P. Würfel, The chemical potential of radiation, J. Phys. C: Solid State Phys., 15,
3967-3985 (1982).

[128] N. Bonod, E. Popov, and M. Nevière, Di�erential theory of di�raction by �nite cylin-
drical objects, J. Opt. Soc. Am. A 22, 481-490 (2005).

[129] J.-J. Gre�et, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, Generalized Kirch-
ho� law, arXiv:1601.00312v1 (unpublished).

[130] C.H. Henry and R.F. Kazarinov, Quantum noise in photonics, Rev. Mod. Phys. 68,
801-853 (1996).

[131] C. Otey and S. Fan, Numerically exact calculation of electromagnetic heat transfer
between a dielectric sphere and plate, Phys. Rev. B 84, 245431 (2011).

[132] U.K. Chettiar and N. Engheta, Internal homogenization: E�ective permittivity of a
coated sphere, Opt. Express 20, 22976-22986 (2012).

[133] V. Ernst and P. Stehle, Emission of radiation from a system of many excited atoms,
Phys. Rev. 176, 1456 (1968).

[134] N.E. Rehler and J.H. Eberly, Superradiance, Phys. Rev. A 3, 1735 (1971).

[135] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and
A. Browaeys, Tunable two-dimensional arrays of single Rydberg atoms for realizing
quantum Ising models, Nature 534, 667-670 (2016).

[136] R. Loudon, The Quantum Theory of Light, (Clarendon Press, Oxford, UK, 1986).

[137] B. Huttner and S.M. Barnett, Quantization of the electromagnetic �eld in dielectrics,
Phys. Rev. A 46, 7 (1992).

[138] T. Gruner and D.-G. Welsch, Green-function approach to the radiation-�eld quanti-
zation for homogeneous and inhomogeneous Kramers-Kronig dielectrics, Phys. Rev. A
53, 3 (1996).

[139] T. Gruner and D.-G. Welsch, Correlation of radiation-�eld ground-state �uctuations
in a dispersive and lossy dielectric , Phys. Rev. A 51, 4 (1995).

[140] F. Bigourdan, J.-P. Hugonin, and P. Lalanne, Aperiodic-Fourier modal method for
analysis of body-of-revolution photonic structures, J. Opt. Soc. Am. A 31, 1303-1311
(2014).

http://dx.doi.org/10.1002/andp.18601850205
http://dx.doi.org/10.1063/1.1736034
http://dx.doi.org/10.1088/0022-3719/15/18/012
http://dx.doi.org/10.1088/0022-3719/15/18/012
http://dx.doi.org/10.1364/JOSAA.22.000481
http://dx.doi.org/10.1103/RevModPhys.68.801
http://dx.doi.org/10.1103/RevModPhys.68.801
http://dx.doi.org/10.1103/PhysRevB.84.245431
http://dx.doi.org/10.1364/OE.20.022976
http://dx.doi.org/10.1103/PhysRev.176.1456
http://dx.doi.org/10.1103/PhysRevA.3.1735
http://dx.doi.org/10.1038/nature18274
http://dx.doi.org/10.1103/PhysRevA.46.4306
http://dx.doi.org/10.1103/PhysRevA.53.1818
http://dx.doi.org/10.1103/PhysRevA.53.1818
http://dx.doi.org/10.1103/PhysRevA.51.3246
http://dx.doi.org/10.1364/JOSAA.31.001303
http://dx.doi.org/10.1364/JOSAA.31.001303







	Introduction
	Light scattering
	Interactions lead to collective modes
	Resonant light scattering from a dense cloud of cold atoms
	Topics of this thesis
	Content

	Classical and quantum treatment of light scattering
	Polarizability and electric field of a resonant dipole
	Light scattering from an ensemble of scatterers
	Light scattering from a single atom
	Light scattering from multiple atoms
	Introduction of ensemble-averaged and fluctuating electric fields
	Beyond the mean-field theory of optics

	Relation between mean free path and system size
	Energy relaxation in quantum optics
	Virtual photons from a classical perspective
	Summary

	Light scattering from a dense cloud of cold atoms
	Motivation
	State of the art
	Experimental setup
	Atomic density
	Doppler effect
	Probe beam and atomic transition
	Measured signal

	Spectral change while crossing the focal region: Gouy phase
	Toy model for light scattering
	Explanation of asymmetric spectrum

	Scattering suppression
	Experimental results of Pellegrino et al.
	Numerical calculations on suppression of light scattering
	Towards coherent light scattering

	Spectral response of the atomic cloud
	Incoherent spectral response
	Coherent spectral response

	Superluminal pulse propagation through an atomic cloud
	Summary

	Polaritonic modes in a dense cloud of cold atoms
	Motivation
	Introduction
	Model
	Eigenspectrum analysis
	Light scattering
	Effective dielectric constant
	Anderson localization

	Connection between polaritonic modes and macroscopic modes
	Light scattering from polaritonic modes
	Absorption
	Conclusion

	Revisiting homogenization for interacting resonant scatterers
	Motivation
	Introduction
	What is homogenization?
	Homogenization in optics
	Contents

	System description
	Non-resonant light scattering
	Effect of position correlations on non-resonant light scattering
	Effect of nonradiative decay on non-resonant light scattering

	Resonant light scattering
	Scattering spectra for coherent and incoherent light
	Effect of nonradiative decay and dephasing on resonant light scattering

	Giant fluctuations of the scattered power by resonant atoms in a subwavelength volume
	Scattering spectrum for subwavelength-size atomic cloud
	Average mode spacing
	Condition for nonobservation of single-photon superradiance
	Thouless criterion for Anderson localization

	Superradiance from ordered, dense atomic clouds
	Conclusion

	Theory of electroluminescence by quantum-dots based metasurface light-emitting devices
	Introduction
	Electroluminescence from quantum dots
	Quantum-dot based electroluminescence
	History of quantum-dot based light-emitting devices

	Quantum-dot based metasurface light-emitting device
	Introduction
	Experimental results
	Description of a dense ensemble of colloidal quantum dots

	Electroluminescence model for a LED
	Electroluminescence model in the presence of nanoantennas
	Generalized model for QD-MLED-based electroluminescence experiments
	Effective refractive index calculation

	Application of electroluminescence model to experiments
	Electroluminescence enhancement by nanorings
	Polarized electroluminescence

	Conclusion

	Conclusion and outlook
	Appendices
	Quantization of evanescent waves in absorbing media
	Quantization of the electromagnetic field in dispersive and absorbing media
	Evanescent wave operator
	Commutation relation for evanescent wave operators
	Conclusion

	Numerical calculations on off-axis source in a cylindrically symmetric nanostructure
	System description
	Numerical method
	Electric field decomposition
	Source decomposition
	Improving electric field calculation
	Convergence



