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présentée et soutenue publiquement par

Asma REJEB SFAR

10/07/2014

Fine-Grained Object Categorization: Plant Species Identification
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Mme Françoise PRÉTEUX, Adjointe au directeur de la recherche, Mines ParisTech Examinateur
M. Benoı̂t POCHON, Responsable de l’équipe R&D en multimédia, Parrot Examinateur
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François Fleuret, Françoise Préteux, Benôıt Pochon and Hichem Sahbi, for their time

and insightful questions.

I would like to thank my parents, my sister and my brother for their love, emotional

support and eternal encouragements. To them, I dedicate this thesis. Also, words fail

me to express my gratitude to my husband Mohamed Riadh TRAD whose patience,

guidance and persistent confidence in me, have taken the load off my shoulder.

Finally, thanks are due to all my friends and everyone who was a member of the

IMedia Team.





ABSTRACT

Fine-Grained Object Categorization: Plant
Species Identification

We introduce models for fine-grained categorization, focusing on determining botan-

ical species from leaf images. Images with both uniform and cluttered background are

considered and several identification scenarios are presented, including different lev-

els of human participation. Both feature extraction and classification algorithms are

investigated.

We first leverage domain knowledge from botany to build a hierarchical represen-

tation of leaves based on IdKeys, which encode invariable characteristics, and refer

to geometric properties (i.e., landmarks) and groups of species (e.g., taxonomic cate-

gories). The main idea is to sequentially refine the object description and thus narrow

down the set of candidates during the identification task. We also introduce vantage

feature frames as a more generic object representation and a mechanism for focusing

attention around several vantage points (where to look) and learning dedicated features

(what to compute).

Based on an underlying coarse-to-fine hierarchy, categorization then proceeds from

coarse-grained to fine-grained using local classifiers which are based on likelihood ratios.

Motivated by applications, we also introduce on a new approach and performance crite-

rion: report a subset of species whose expected size is minimized subject to containing

the true species with high probability. The approach is model-based and outputs a

confidence set in analogy with confidence intervals in classical statistics. All methods

are illustrated on multiple leaf datasets with comparisons to existing methods.





Résumé

1 Introduction

La vision par ordinateur est la science permettant de doter les machines de la capacité à

”comprendre” et à interpréter le contenu d’une image au niveau sémantique. La vision

par ordinateur couvre les technologies de base de l’analyse automatique d’images qui

est utilisé dans de nombreux domaines. Les applications vont du traitement d’images

de bas niveau à l’annotation automatique d’images, l’interprétation de scènes et la

reconnaissance d’objets.

Dans le cadre de cette thèse, nous nous intéressons à la reconnaissance automa-

tique d’objets, plus précisément aux objets appartenant à un même concept de base

telle que la reconnaissance des différentes espèces de plantes via des images de feuilles.

Distinguer les sous-concepts d’objets, peut s’avérer extrêmement difficile pour un ”sim-

ple” utilisateur et nécessite souvent l’avis d’un expert, contrairement à la distinction

de concepts différents (voiture, piéton, animal). Cette problématique de reconnaissance

qui aborde l’espace sémantique dans une résolution très fine est un domaine d’étude

de plus en plus actif, guidé par les applications ainsi que le défi intellectuel. Nous

nous intéressons, en particulier, au domaine de la botanique. Nous étudions toute la

chaine d’identification, notamment la représentation et l’extraction des caractéristiques

discriminatives de l’objet, l’apprentissage et la recherche. Nous introduisons de nou-

veaux mécanismes de représentation de l’objet ainsi que de nouvelles méthodes de

classification. Plusieurs scénarios semi-automatiques sont proposés à l’utilisateur pour

l’identification d’espèces de plantes via différents types d’images de feuilles.
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2 Motivations

L’un des défis majeurs dans le domaine de l’intelligence artificielle et la vision par or-

dinateur est de pouvoir doter les systèmes informatiques de la capacité humaine à dis-

cerner des objets visuellement similaires. Cependant, contrairement à la reconnaissance

de concepts assez différents (tels que la reconnaissance des voitures ou des personnes

parmi d’autres objets), même les humains pourraient avoir des difficultés dans la recon-

naissance de (sous)catégories très similaires appartenant à un même concept de base

(telles que les espèces de plantes ou les races de chiens). En effet, de telles catégories

sont généralement reconnues par des spécialistes. Dans le cas des espèces botaniques, la

reconnaissance est d’autant plus difficile que les botanistes se servent souvent de guides

d’identification contenant différentes illustrations et propriétés végétales afin de faciliter

la tâche de l’identification.

Souvent, les taxonomistes présentent des descriptions écrites et organisées des espèces

similaires de sorte que d’autres biologistes peuvent identifier les spécimens inconnus. En

botanique, cette tâche implique des comparaisons entre les caractéristiques déjà enreg-

istrées et celles observées, puis l’attribution d’une plante à un rang taxonomique parti-

culier (ex. famille, genre), pour finalement arriver au niveau des espèces. Toutefois , en

raison de la grande variation des caractéristiques et le très grand nombre de catégories de

plantes actuellement connues dans le monde (plus de 200, 000 espèces), l’identification

des espèces botaniques peut être une tâche ardue et de longue haleine, même pour les

experts. Trouver une espèce assez rapidement nécessite souvent de connâıtre à l’avance

le nom de la famille ou du genre concerné. Cependant, un spécialiste dans un genre (ou

une famille) particulier(ère) peut ne pas être familier avec un(e) autre. La difficulté est

de plus en plus importante avec la pénurie actuelle de taxonomistes qualifiés.

Un système d’identification automatique (ou semi-automatique) pourrait donc être

d’une utilité particulière dans de nombreuses applications. Les outils automatisés peu-

vent accélérer la reconnaissance et ainsi aider les spécialistes à reconnâıtre ou découvrir

de nouvelles espèces. Dans le cas de la botanique, accélérer la collecte et la classification

des observations est une étape cruciale vers le développement durable de l’agriculture

et la conservation de la biodiversité.



3 Challenges

Dans ce qui suit, nous nous intéressons à des objets appartenant à un même concept,

notamment les feuilles de plantes. Bien que de tels objets, pour la plus part, sont

visuellement très similaires (même couleur, forme générale, système de nervures..), ils

peuvent néanmoins largement différer au sein d’une même catégorie (espèce). Pis en-

core, il peut même y avoir moins de variation d’aspect entre deux images de deux

catégories différentes qu’au sein d’une même catégorie. Et bien que la forme glob-

ale s’avère suffisamment discriminante entre certaines catégories, d’autres catégories

affichent des variations fines uniquement.

En particulier, les feuilles peuvent présenter des apparences totalement différentes

dues au contexte local, tels que l’emplacement et les conditions climatiques. Par exem-

ple, les feuilles ont souvent des couleurs et des formes plus ou moins différentes tout

au long des saisons. Une feuille morte a une texture très différente d’une en vie. Les

mêmes espèces peuvent présenter des caractéristiques assez différentes dans deux régions

différentes. Aussi, les feuilles d’une même tige, peuvent changer graduellement de forme

avec l’âge; un phénomène appelé développement hétéroblastique. Ainsi, les feuilles dites

juvéniles issues d’une jeune plante, sont presque toujours différentes des feuilles dites

adultes.

Le fond des images peut également représenter un problème clé pour un système

de reconnaissance automatique. Les images de feuilles sur fond naturel constituent,

par exemple, un véritable défi pour la reconnaissance automatique et des algorithmes

de segmentation. Le fait que lobjet d’intérêt soit situé au sein d’un environnement

composite, dans lequel on risque de retrouver des objets de couleurs très proches (feuil-

lage, autres plantes), rend par exemple totalement inopérantes les méthodes globales

comme le seuillage pour séparer l’objet d’intérêt du fond. Dans l’ensemble, les condi-

tions d’acquisitions sont peu mâıtrisées, ce qui peut produire des photographies difficiles

à traiter.

Dans la littérature, la plus part des travaux sur l’identification ou la classification

automatique des plantes, ont eu recours à des images avec fond uniforme. D’ailleurs,

plusieurs bases publiques sont constituées de scans de feuilles sur fond blanc. Cependant,

des bases plus récentes contiennent de plus en plus d’ images de feuilles avec fond naturel.



4 Positionnement par rapport à l’état-de-l’art

En raison des besoins et des défis mentionnés ci-dessus, de plus en plus de travaux

en vision se consacrent à la catégorisation dite ”fine”, notamment la classification de

(sous)catégories. Plusieurs méthodes ont été adaptées ou introduites pour discriminer

des objets similaires et plusieurs approches ont eu recours à l’intervention humaine

[13, 109, 33] pour améliorer les performances.

Généralement, le scénario standard était de fournir à l’utilisateur une estimation

unique de la catégorie recherchée [35, 45, 119, 68, 117, 78, 13, 2]. Plusieurs autres

travaux ont choisi de retourner les k premières catégories les plus similaires [7, 67, 75],

où k, généralement, varie de dix à vingt afin de garantir un niveau de précision élevé.

Bien sûr, on peut toujours retenir la bonne catégorie en retournant relativement un

large ensemble d’estimations; ce qui a peu de valeur dans les applications réelles. En

outre, se concentrer uniquement sur la liste des toutes premières estimations pourrait

être complètement inutile à l’utilisateur, surtout si on ne garantit pas que la bonne

réponse y figure.

Ici, nous nous concentrons sur (1) des stratégies hiérarchiques qui réduisent con-

sidérablement l’espace des candidats, (2) une description locale discriminante des diffé-

rentes (sous)catégories, (3) un nouveau critère de performance: retenir le plus petit sous-

ensemble possible d’espèces qui contiendrait le bonne estimation avec une probabilité

élevée. En particulier, nous avons pu surpasser les performances d’autres méthodes de

l’état-de-l’art et atteindre des taux de reconnaissance très élevés sur différents ensembles

de feuilles avec un fond uniforme.

En outre, la plupart des méthodes de l’état-de-l’art, dans le domaine de l’identification

des plantes, sont basées sur l’analyse des images de feuilles. Plus précisément, ces ap-

proches sont généralement basées sur des images d’une seule feuille sur un fond uniforme.

Seuls quelques travaux ont abordé le problème d’identification de feuille sur un fond na-

turel (complexe), ce qui est plus susceptible d’être le scénario réel. Les plus efficaces,

dans ce cas, étaient ceux qui ont procèdé à un processus de segmentation, que ce soit

manuel ou interactif [19, 20, 4]. Dans cette thèse, nous abordons, en plus des images

de feuilles avec fond uniforme, le cas des images avec fond non uniforme (naturel) dans

le but de proposer les scénarios les plus utiles et les plus informatifs à l’utilisateur.



Néanmoins, aucun processus de segmentation n’est utilisé dans ce cas.

5 Contributions

Dans le cadre de cette thèse, nous étudions dans quelle mesure l’automatisation du

processus d’identification des plantes peut-elle minimiser l’intervention humaine, tout en

assurant des taux de reconnaissance élevés. Pour cela, nous nous intéressons à différents

scénarios automatiques et semi-automatiques, pour atteindre le bon compromis entre

une identification erronée mais entièrement automatisée et une identification très précise

mais entièrement manuelle.

Nous utilisons des stratégies hiérarchiques, basées sur des caractéristiques discrimi-

natives de l’objet; le but étant de réduire considérablement l’espace des candidats. Le

résultat peut être une estimation unique ou un ensemble d’estimations. Le degré de

l’intervention de l’utilisateur peut alors varier d’inexistant à significatif dans des situa-

tions ambiguës. Il dépend aussi des données. Par exemple, pour des photos naturelles de

feuilles, le degré d’interaction entre l’utilisateur et le système peut être plus important

que pour les images sur fond uniforme.

Plus formellement, soit Y l’ensemble des catégories et Y (I) la bonne catégorie de

l’image I. Le but ultime est de prédire Y . Pour cela, nous étudions deux stratégies:

(i) proposer une liste ordonnée d’estimations. Seule la première estimation dans la liste

est considérée dans le cas de référence, le cas d’un scénario sans aucune intervention

humaine, (ii) proposer un ensemble de confiance (CS) qui dépend de I et tel que Y ∈ CS

avec une probabilité très élevée: P (Y ∈ CS) ≥ 1− ǫ. Si la performance de la première

stratégie peut être mesurée par la fréquence à laquelle la bonne catégorie figure parmi

les k meilleurs estimations, la performance de la deuxième, est essentiellement mesurée

par la taille du CS retourné.

Ces deux stratégies sont basées sur une représentation hiérarchique de Y. La

hiérarchie T permet de définir des vecteurs descripteurs ainsi que des scores (discrim-

inants) locaux Xt , t ∈ T . Nous étudions des approches utilisant de la connaissance

botanique ainsi que des approches plus génériques. Nous nous intéressons en particulier

à (1) de nouvelles représentations d’objet ainsi que (2) de nouveaux algorithmes de

classification.



5.1 Nouvelles représentations de l’objet

Une classification efficace est fortement liée à une description discriminative de l’objet.

Dans cette thèse, nous explorons la description et la représentation d’objets, plus par-

ticulièrement d’objets botaniques.

Nous introduisons, tout d’abord, une représentation hiérarchique de clés d’identification

botaniques IdKeys dans le but d’imiter le processus d’identification décrit par les botanistes

eux-mêmes. Une telle représentation est appliquée sur des images de feuilles sur fond

uniforme, où une feuille est représentée par un ensemble ordonné d’attributs correspon-

dants à des IdKeys. En particulier, ces clés codent des caractéristiques invariables -

indépendantes des espèces végétales ainsi que du contexte, comme l’endroit, les condi-

tions climatiques ou la saison. Ils peuvent représenter des propriétés géométriques qui

ne sont pas directement observables, telles que des points de repère, ou des groupes

d’espèces prédéterminés.

Ensuite, nous proposons une représentation plus générique basée sur ce nous avons

appelé des fenêtres de description, dont les caractéristiques clés sont l’emplacement,

l’orientation et la description locale. Alors que l’emplacement de ses fenêtres est le

même pour toutes les espèces, ce sont les caractéristiques locales qui permettent de

lever l’ambiguité entre les estimations candidates. Deux aspects importants sont étudiés

dans le cadre de cette description (1) où précisément chercher? (2) que devrions nous

calculer?

5.2 Classification

L’idée principale dans les scénarios d’identification proposés, est de profiter d’une repré-

sentation hiérarchique T des données.

Nous construisons, d’abord, des classifieurs locaux, en utilisant le rapport de vraisem-

blance et des fonctions discriminantes locales. La hiérarchie est ensuite parcourue en

largeur allant des classifieurs les plus ”grossiers” vers les plus ”fins”: à chaque niveau,

tous les enfants d’ un noeud t positif sont retenus et testés au niveau suivant. Alors

que les faux positifs peuvent être réduits successivement, si la bonne hypothèse est re-

jetée au niveau d’un certain noeud, alors elle ne peut plus être récupérée. Les espèces

positives (contenues dans les noeuds terminaux) sont finalement classées en fonction de



leurs rapports de vraisemblance .

Puis, par analogie avec les intervalles de confiance dans les statistiques classiques,

nous construisons un modèle probabiliste qui permet de sélectionner un ensemble de

la confiance (CS). La taille de cet ensemble joue le rôle de la largeur de l’intervalle

de confiance dans les statistiques standards et la probabilité à posteriori que la bonne

catégorie appartienne à l’ensemble de la confiance, joue le rôle du degré de confiance.

L’idée est de restreindre les ensembles candidats aux sous-ensembles {Ct, t ∈ T } et

d’intégrer tous les éléments de preuve à partir des scores des différents noeuds pour

calculer la probabilité à posteriori P (Y ∈ Ct|X = x), où X = {Xt, t ∈ T }. Pour cela,

nous utilisons la densité conditionnelle jointe p(x|c) des scores x = (xt, t ∈ T ), c ∈ Y.

(Nous supposons une distribution à priori p(c) uniforme des espèces c ∈ Y.) Notre

modèle est basé un réseau bayésien gaussien.

6 Résultats

Nous avons procédé à différents tests de performance afin d’évaluer les approches pro-

posées tout au long de cette thèse. Plusieurs bases de feuilles ont été utilisées. Les

feuilles considérées appartenaient à différentes régions dans le monde (exemples: Suisse

[104], France [50], Etats-Unis) et ont été numérisées de différentes manières. Des images

avec fond uniforme ainsi que des images avec fond naturel ont été considérées.

Nous avons, tout d’abord, comparer la première stratégie de classification, en util-

isant les deux descriptions proposées, avec différentes méthodes de l’état de l’art sous

les mêmes protocoles d’évaluation. Des taux de reconnaissance de plus de 95% ont été

atteints dès la première estimation pour la plus part des images de feuilles avec fond

uniforme. Plusieurs méthodes de l’état de l’art ont été surpassées.

Aussi, les ensembles de confiance retournés à l’utilisateur contenaient en général

moins de 3 espèces (avec un taux de reconnaissance très élevé) ce qui peut être d’une

énorme aide aux spécialistes lors de la classifications de nouvelles collections de feuilles.

Issus d’un clustering agglomératif, ces ensembles contiennent généralement des espèces

visuellement très similaires, ce qui peut ouvrir d’autres perspectives sur l’étude des

relations entre espèces.

Même si les taux de reconnaissance sont loin d’être parfaits pour les images avec



fond naturel, notre approche était meilleure que plusieurs méthodes, y compris celles

qui ont eu recours à la segmentation. Cependant, des pistes plus spécifiques à ce genre

de problématique sont encore à creuser. Le manque de protocole lors de l’acquisition

de la photo peut affecter l’apprentissage et l’efficacité des cassifieurs. Par exemple, des

photos de feuillage touffu ou de tout l’arbre ne peuvent guère aider pour identifier une

photo d’une seule feuille.

7 Conclusion et perspectives

Dans le cadre de cette thèse, nous avons étudié la problématique de classification

dite ”fine” en se concentrant sur la détermination des espèces botaniques à partir

d’images de feuilles. Le point fort de ce travail est le fait d’aborder l’ensemble de

la châıne d’identification. Nous nous sommes intéressés aussi bien à la description

et la représentation de l’objet qu’ aux algorithmes de classification et des scénarios

d’identification utiles à l’utilisateur.

Nous nous sommes inspirés du processus manuel des botanistes pour introduire une

nouvelle représentation hiérarchique des feuilles. Nous avons aussi proposé un nouveau

mécanisme permettant d’attirer l’attention au tour de certains points caractéristiques

de l’objet et d’apprendre des signatures spécifiques à chaque catégorie.

Nous avons adopté une stratégie de classification hiérarchique utilisant une série de

classifieurs locaux allant des plus grossiers vers les plus fins; la classification locale étant

basée sur des rapports de vraisemblance. L’algorithme fournit une liste d’estimations

ordonnées selon leurs rapports de vraisemblance. Motivés par les applications, nous

avons introduit un autre scénario proposant à l’utilisateur un ensemble de confiance

contenant la bonne espèce avec une probabilité très élevée. Un nouveau critère de per-

formance a été donc considéré, la taille de l’ensemble retourné. Nous avons proposé un

modèle probabiliste permettant de produire de tels ensembles de confiance et démontré

l’efficacité de cette stratégie sur plusieurs bases de feuilles.

Différents scénarios semi-automatiques ont été proposés à l’utilisateur pour l’aide

à la décision et à l’identification d’espèces de plantes via différents types d’images de

feuilles. Des performances très élevées ont été atteintes pour la reconnaissance des

feuilles sur fond uniforme et des améliorations sont encore à faire pour celles avec fond



naturel. Notons que notre méthode basée sur les ensembles de confiance et l’intervention

de l’utilisateur a réalisé le meilleur score sur les photos de ImageClef2011 en surpassant

même celles qui ont eu recours à la segmentation.

Une interaction encore plus importante avec l’utilisateur peut améliorer les per-

formances des systèmes de reconnaissance des photos de feuilles, en particulier celles

prises sans aucun protocole pré-défini. Aussi, traiter chaque type de photos (photos

d’une feuille, d’une branche, d’un feuillage, ou de tout l’arbre) différemment peut être

une piste intéressante.

Etendre notre travail en utilisant les différentes stratégies proposées dans le cadre

de la classification des requêtes définies par de multiple images d’organes botaniques

tels que fleurs et fruits peut améliorer le processus d’identification et de classification

des collections de plantes. Aussi, nous serons intéressés de tester le mécanisme basé sur

les ensembles de confiance afin d’organiser la recherche d’autres objets non-botaniques.

8 Organisation de la thèse

Cette thèse est organisée comme suit:

• Chapitre 2 dresse l’état-de-l’art en relation avec les problématiques abordées

dans cette thèse.

• Chapitre 3 présente deux nouvelles représentations d’objets, notamment la repré-

sentation hiérarchique de clés d’identification, basée sur des caractéristiques bota-

niques et les fenêtres de description permettant de discriminer des classes très

simaires.

• Chapitre 4 introduit deux autres contributions qui concerne le domaine de la

classification, la première étant basée sur une première catégorisation grossière

puis un raffinement séquentiel qui réduit à chaque fois l’espace des estimations

potentielles. La deuxième étant un modèle probabiliste basé sur une analogie avec

les intervalles de confiance en statistique.

• Chapitre 5 détaille les différents scénarios d’identification que nous proposons,

notamment l’identification entièrement automatique et semi-automatique en util-



isant une seule image ou des images multiples.

• Chapitre 6 présente les bases de données et les expériences utilisées pour évaluer

les techniques et les scénarios proposés. Des comparaisons et des analyses critiques

sont fournis.

• Chapitre 7 présente le bilan des contributions ainsi que les différentes perspec-

tives.
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Chapter 1

Introduction

Computer vision is the science of endowing machines with vision, or the ability to

”see”, to interpret and represent image content on semantic level. Computer vision

covers the core technology of automated image analysis which is used in many fields.

Applications range from low-level image processing to automated image annotation,

scene interpretation and object recognition.

More specifically, automated object recognition, the focus of this dissertation, aims

to address the issue of how to replicate or emulate human ability of recognizing and dis-

criminating a multitude of object categories in images. Research in automated object

recognition is currently very active, driven by applications as well as the intellectual

challenge, and there have been notable recent advances using both discriminative learn-

ing and object modeling for detecting and localizing instances of generic object classes

such as cars, cats and people appearing in digital images [10, 23, 28, 44, 49, 108, 120].

Motivated by applications in areas such as botany, agriculture, medicine and forestry,

there has also recently been considerable interest in more fine-grained discrimination,

such as species or breed recognition; see Figure 1.1. Unlike the socalled basic-level recog-

nition, which refers to recognizing and distinguishing between generic object classes,

fine-grained recognition works within a single base-level category and aims to distin-

guish among its (sub)categories. In other words, fine-grained recognition deals with

the semantic space in a much higher resolution, that is, containing a large number of

closely-related categories, and distinguishes itself from traditional object recognition
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Figure 1.1: Examples of different recognition tasks. (1) Predict bounding boxes of
instances of objects (top row). (2) Predict the presence/absence of a specific class with
providing a detailed description of the pose of each detected instance (middle row). (3)
Predict fine-grained categories of the same basic class (bottom row).

that studies a much coarser sampling of the semantic space.

Fine-grained recognition is generally more difficult than the basic-level recognition

for both humans and computers. Differences between (sub)categories are often very

fine and not noticeable to the common eye. This thesis deals with the problem of

fine-grained recognition for determining botanical species from leaf images, but using a

generic framework.

1 Motivations

One major challenge in artificial intelligence and computer vision research is endowing

machines with human ability to discriminate among similar objects. However, unlike

basic-level recognition, even humans might have difficulty with fine-grained categoriza-

tion. (Sub)categories (e.g., species of plants, breeds of dogs) are usually recognized by

experts, while one can recognize immediately basic categories. In the case of botani-

cal species recognition, usually only a trained human expert (e.g., a botanist) can do

the task, and usually not without following a complex identification procedure, using



Figure 1.2: Illustrations from some filed guides.

further filed guides [40]; see Figure 1.2.

Taxonomists often present organized written descriptions of the characteristics of

similar species so that other biologists can identify unknown specimens. In botany, this

task implies comparisons among stored and observed characteristics and then assigning

a particular plant to a known taxonomic group, ultimately arriving at a species. How-

ever, due to the large variation of patterns among fundamental features and the very

large number of biologically relevant plant categories (more than 200,000 [99]), identi-

fying botanical species can be an onerous and time-consuming task even for experts.

Generally, the situation is the same in other domains of fine-grained categorization.

Finding a species quickly often requires knowing in advance the name of the family or

the genus involved, and an expert on one genus or family may be unfamiliar with an-

other. The difficulty is further increased by the ongoing shortage of skilled taxonomists

(known as the taxonomic impediment [18]).

Since very few people can successfully distinguish among a large number of species,

an automated (or a semi-automated) visual system for this task could be valuable in

many applications for both experts and non-experts. Automated tools can accelerate

recognition and thus help botanists in recognizing plant species or conjecturing new

ones. Speeding up the collection and classification of botanical observation data is a

crucial step towards a sustainable development of agriculture and the conservation of

biodiversity. Other possible uses of such automated systems include developing edu-

cational tools, combating the illegal trade in endangered species and building accurate

knowledge of, for example, poisonous plants.



2 Challenges

In this section, we discuss the challenges of fine-grained categorization, especially in

the botanical field. In particular, we focus on the key ingredients: data, intra-species

variability versus inter-species similarity, and the problem of cluttered images.

2.1 Lack of data

Unlike traditional datasets devoted to basic-level classification tasks and which contain

different concepts such as animals, plants, and cars, a fine-grained image collection typ-

ically contains hundreds of categories sharing the same basic concept. For example,

the Stanford Dogs dataset [66] contains 120 kinds of dogs and there are more than

200 plant species in the Smithsonian leaf dataset [7]. To find the small-variations be-

tween categories that share similar semantics, extra annotation is usually needed, such

as taxonomic labels (e.g., family, genus, species), bounding boxes and part locations.

Annotated data are generally a critical component for machine learning problems and

especially for fine-grained problems.

Another crucial issue in machine learning and pattern recognition is the class im-

balance problem [62], when the class distribution is highly imbalanced due to the lack

of data. In particular, in datasets which deal with taxonomic categories (e.g., species),

the number of samples per category often depends on the rarity and the interest of the

species. Collecting and integrating botanical observation data could be very challenging

since it needs specialized social network and expert botanist validation [65]. However,

the size of the data set obviously has an important role in building a good classifier. For

unbalanced data sets, the decision boundary established by standard machine learning

algorithms tends to be biased towards the majority class; therefore, minority class in-

stances are more likely to be misclassified. Indeed, lack of examples makes it difficult

to uncover regularities within small classes.

2.2 Diversity of morphological characteristics

Fine-grained categories are by definition very similar since they belong to the same

basic concept. Another problematic issue is then the large intra-class variability in



Figure 1.3: Intra-class similarity and inter-class variation for leaves. Displayed are two
samples of Quercus ilex species on the top row and of Ilex aquifolium species on the
bottom row.

addition to the inter-class similarity. Taxonomic categories (e.g., genus or species) are

often determined by subtle differences in shape and texture. In fact, there can even be

less variation in appearance between two images from two different (sub)categories than

within a single one, as illustrated in Figure 1.3. And whereas the overall shapes may

be sufficiently different to distinguish between some species, other species may display

only subtle differences.

In particular, plants may exhibit different shape characteristics due to local context,

such as location, climatic conditions and age. For example, leaves often have different

colors and shapes throughout the seasons. A dead leaf have a very different texture than

a living one. The same species could exhibit very different characteristics in two different

regions. Figures 1.4 to 1.10 illustrate the intra-class variability over several criteria

including global shape, margin, texture, color, number of lobes as well as number,

shape and relative positions of leaflets.

Leaves may also vary continuously or discretely even along a single stem as they

develop (known as leaf heteroblasty); for example, leaves in Figure 1.11 come from the

same plant.



Figure 1.4: Leaf global shape variation of Acer saccharinum species.

Figure 1.5: Leaf margin variation of Quercus ilex species.

2.3 Image background complexity

The background can also represent a key issue specific to an automatic recognition

system. Cluttered background can serve as a challenging distractor, especially when

the system assumes it is part of the object.

Most of the publicly available datasets used for plant species identification consist of

leaf images on a uniform (white) background; examples include the Swedish [104], the

Flavia [119] and the Smithsonian [7] datasets. However, the identification problem is far

more challenging using cluttered images, which is the case of unconstrained photographs

(e.g., branch and foliage photos, other plants in the background, or other objects such

as fingers, yardsticks, grass, etc.). Such images were recently published in ImageClef

benchmarks 12 and are accumulating at a staggering rate due to mobile devices and

applications3; see Figure 1.12.

1http://www.imageclef.org/2011/Plants
2http://www.imageclef.org/2012/Plants
3https://itunes.apple.com/en/app/plantnet/id600547573



Figure 1.6: Leaf texture variation of Diospyros kaki (top row) and Laurus nobilis (bot-
tom row) species.

3 Positioning in the literature

Due to the aforementioned needs and challenges, there is now a body of literature in

computational vision devoted to fine-grained recognition, including identifying botanical

species, and designed for both experts and non-experts. A variety of methods were

adapted or introduced to discriminate similar objects and several approaches have made

use of human input to improve accuracy. Most of this work is summarized in Chapter

2.

Generally, the baseline scenario was to provide the user with a single estimate;

examples include [35, 45, 119, 68, 117, 78, 13, 2]. Other researchers chose to report

the k most similar classes [7, 67, 75], where k usually ranges from ten to twenty in

order to make it likely the true species is among the k reported ones. Many of the

most efficient approaches for fine-grained recognition achieved about 70% accuracy on

the first estimate and about 90% on the top-10 estimates while considering challenging

and relatively large datasets, i.e., containing more than one hundred species with high

inter-class similarity and intra-class variability; examples include [74, 7, 67, 75]. Of

course, retaining the true species while returning a relatively large set of estimates has

limited value in real-world applications. Also, focusing only on the few first estimates

without achieving near-perfect (human-level) performances could be essentially useless



Figure 1.7: Leaf color variation of Diospyros kaki (top row) and Ginkgo biloba (bottom
row) species.

Figure 1.8: Number of lobes variation of Ficus carica species.

and uninformative for the user. Here, we focus on (1) hierarchical strategies, based

on discriminative features, in order to drastically reduce the space of candidate sets

of estimates and (2) a new performance criterion: report a subset of species whose

expected size is minimized subject to containing the true species with high probability.

In particular, we outperform previous methods and achieve near-perfect recognition

rates on several leaf images with uniform background; see Chapter 6.

Most state-of-the-art methods in plant identification are obviously based on leaf

image analysis and in few cases on flowers [90, 29]. More specifically, such approaches

are generally based on images of a single leaf with uniform background [26, 114, 112,

104, 36, 34, 79, 45, 74, 117, 67, 85, 81, 83]. Only a few papers addressed the problem

of identifying leaf images on cluttered backgrounds [113, 19, 20, 4] which is the more

likely real-world scenario. In this case, the most efficient approaches were those based



Figure 1.9: Leaflet shape and number variation of Sambucus canadensis species.

Figure 1.10: Leaflet relative position variation of Parthenocissus quinquefolia species.

on a segmentation process, either manual or interactive; more details can be found in

§2.3. In this work, we also investigate leaf images with natural cluttered background (in

addition to those with uniform background) with the aim of proposing the most useful

and informative identification scenario to the user. However, no segmentation process

is required.

4 Contributions

We investigate to what extent automated plant identification can minimize human in-

tervention while ensuring high recognition rates. To this end, we focus on different

scenarios, with a human in the loop, to achieve something sensible between the two

extremes of an inaccurate but fully automated identification and a very accurate but

fully manual identification.

We use hierarchical strategies, based on discriminative features, in order to drasti-

cally reduce the space of candidates. The output can be either a single estimate or a set

of estimates. The degree of the user intervention can then range from non-existent to

significant in ambiguous situations. It is also data-dependent. For example for natural

photos of leaves, the degree of interaction between the user and the system may be more



Figure 1.11: Illustration of leaf heteroblasty for Gleditsia triacanthos species, i.e., pro-
nounced changes in leaf morphology during plant development.

important than for images on uniform background. A brief summary of the different

proposed scenarios (detailed in Chapter 5) is displayed in Figure 1.13.

More formally, let Y denote the complete set of (fine-grained) categories and let

Y (I) denote the true category of image I. Our task is to predict Y . To this end, we

investigate two strategies: the first is providing a ranked list of categories (the top-

1 estimate is considered for the baseline case, i.e., without human intervention), the

second is providing a confidence set (CS) which depends on I and such that Y ∈ CS

with high probability, say P (Y ∈ CS) ≥ 1 − ǫ. While performance in the former is

measured by the rate at which the true category appears among the top k estimates,

performance in the latter is essentially measured by the expected size of CS.

Both strategies are anchored by a hierarchical representation of Y. The hierarchy T

serves as a platform for defining features and local discriminant scores Xt, t ∈ T . We

investigate both botanical-based and more generic approaches. In particular, we focus

on (1) novel object representations (see Chapter 3) as well as (2) novel classification

methods, especially a novel framework for organizing the search; see Chapter 4.

4.1 Object representations

Efficient classification is related to discriminating object description. In this disser-

tation, we explore improvements in object representation based on specific knowledge

domain, and investigate both category-independent and category-dependent features.



Figure 1.12: Examples of unconstrained photographs. One can photograph a picked
leaf (top row), a branch (middle row) or a foliage (bottom row).

First, we focus on a hierarchical representation of botanical identification keys (Id-

Keys) with the aim of mimicking the process of identification described by botanists.

Such a representation was applied on uncluttered leaf images where a leaf is represented

by an ordered set of attributes corresponding to IdKeys; see §3. In particular, these

keys encode invariable characteristics, i.e., are independent of the plant species as well

as the context, such as geography, climatic conditions, season and instantiation. They

could refer to geometric properties not directly observable, such as landmarks, or to

predetermined groups of species.

Second, we investigate a more generic representation based on vantage feature frames

and in which landmarks are considered more like ”vantage points” in that orientation

plays a role as well; in other words, where the landmarks are in relation to one another.

And, whereas these landmarks are the same for each species, it is the local features

which permit disambiguation. The vantage feature frames deal with two important

aspects: where to look and what to compute; see §4.

Both representations serve to induce local discriminant functions and classifiers for

an efficient identification.



Figure 1.13: We consider three levels of user interaction in identifying the species of leaf
images with either uniform and cluttered background: none (the baseline case of a fully
automated system returning a point estimate); final disambiguation (the user receives
a set of estimates); initialization and final disambiguation (the user also initializes the
process by identifying landmarks). The checks indicate the level we require to obtain
useful/satisfactory results.

4.2 Classification algorithms

The main idea behind our classification methods in the proposed identification scenar-

ios is to take advantage of a hierarchical representation T of the data. Examples of

hierarchies of leaves are shown in Figure 1.14.

We first build local classifiers using likelihood ratio and local discriminant functions.

The hierarchy is then processed breadth-first coarse-to-fine: at each level, all the children

of a positive node t are retained and tested at the next level. Whereas false positives

can be successively pruned, if the true hypothesis is rejected at a node containing it

then it cannot be recovered. The positive species (i.e., terminal nodes) are finally sorted

according to their likelihood ratios.

Then, in analogy with confidence intervals in classical statistics, we build a prob-

abilistic model which enables confidence set (CS) selection. The expected size of the

confidence set plays the role of the width of the confidence interval in standard statistics

and the posterior probability that the true category belongs to the confidence set plays

the role of the confidence level. The idea is to restrict CS candidates to the subsets

{Ct, t ∈ T } and integrate all the evidence from the node scores to compute the posterior

probability P (Y ∈ Ct|X = x), where X = {Xt, t ∈ T }. To this end, we require the joint

conditional density p(x|c) of the scores x = (xt, t ∈ T ), c ∈ Y. (We assume the prior

distribution p(c) is uniform over species c ∈ Y.) We use a Gaussian Bayesian network.

More details about the motivation and the modeling can be found in Chapter 4.



Figure 1.14: Simple hierarchical representations of four species. (a) A semantic hier-
archy: the second level represents leaf genera and the third level the species. (b) A
hierarchy based on morphological leaf characteristics: the second level represents the
leaf type (simple or compound) and the third level the species. A thumbnail from each
species is displayed.

4.3 Publications

Following is the list of publications related to our work:

• A. Rejeb Sfar, N. Boujemaa and D. Geman. Identification of Plants from Mul-

tiple Images and Botanical IdKeys. In Proceedings of the ACM International

Conference on Multimedia Retrieval, 2013.

• A. Rejeb Sfar, N. Boujemaa and D. Geman. Vantage Feature Frames For Fine-

Grained Categorization. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2013.

• A. Rejeb Sfar, N. Boujemaa and D. Geman. Vantage Feature Frames For Botan-

ical Species Identification. In the second workshop on Fine-Grained Visual Cate-

gorization, in conjunction with CVPR 2013 conference.

• A. Rejeb Sfar, N. Boujemaa and D. Geman. Confidence Sets for Fine-grained Cat-

egorization and Plant Species Identification. In International Journal of Computer

Vision (accepted to be published).



5 Outline of the thesis

In this first chapter, we have informally introduced the different issues investigated in

this thesis. The remaining part of this dissertation is structured as follows:

• Chapter 2 reviews the literature that is relevant to the fine-grained categoriza-

tion, especially the plant species identification, and place our work in the context

of related research.

• Chapter 3 presents two novel object representations. The first representation

refers to the IdKey hierarchy which is driven by specific knowledge domain. The

second representation is the concept of vantage feature frames for fine-grained

discrimination.

• Chapter 4 describes two novel classification frameworks, including the CTF

search within the likelihood framework and the model-based approach using a

statistical analogy.

• Chapter 5 details the different identification scenarios that we propose, includ-

ing fully-automated and semi-automated identifications using either a single or

multiple samples.

• Chapter 6 presents data and experiments used to evaluate proposed techniques

and scenarios. Comparisons and critical analyses are provided.

• Chapter 7 concludes the thesis with a summary of our contributions and some

directions for further research.



Chapter 2

Related Work

Our work is related to existing work on fine-grained categorization [37, 78, 75, 90],

especially work on plant species identification from leaf images [26, 118, 7, 67, 50].

Different approaches, described in this dissertation, relate to hierarchical classification

and classification with class-selective rejection.

This chapter reviews the literature that is relevant to our work. Section 1 provides an

overview of related research on fine-grained categorization, especially on some animal

species categorization, including birds, insects and dogs. Previous approaches were

divided into fully-automated methods (see §1.1) and those using human input (see §1.2).

Section 2 describes stat-of-the-art methods on plant identification from leaf images. We

discuss both generic (see §2.1) and botanical-based approaches (see §2.2). We also

address the problem of cluttered leaf images in previous work in §2.3. Section 3 and

Section 4 respectively, present the hierarchical classification and classification with class-

selective rejection.

1 About fine-grained categorization

There is a growing body of work investigating identification of birds [37, 109, 123],

insects [68, 78], dogs [97, 76, 75], flowers [90, 3] and leaves. Both images and sounds

were studied, especially for birds.
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1.1 No human intervention

Several fully-automated approaches have been used for fine-grained categorization. Lar-

ios et al. [69] describes an automated identification system of stonefly larvae using con-

catenated histograms of local appearance features. Such histograms involves both region

detection and local representation. Shape-based methods, including boundary analyses,

have been especially adapted for leaf images using an automatic segmentation [7, 16, 74].

Often, performance is sensitive to the quality of the contour resulting from the segmen-

tation process, which naturally complicates distinguishing between categories with very

similar shapes as well as identifying species from cluttered images. Other methods

adapt systems for detecting instances of generic object classes [70, 110] by encoding an

image as a bag of discrete visual codewords and basing classification on histograms of

codeword occurrences; examples include [90, 69]. Some work [126] explore variations

such as learning multiple non-redundant codebooks. Other [81, 83] adopt hashing tech-

niques [94] for efficient embedding and matching of high-dimensional feature vectors

or [123] use continuous template matching instead of discrete visual codewords for im-

age representation. Again, however, the distinctions among fine-grained categories are

sometimes too refined to be captured by variations in bags of visual words, hash tables

or random templates.

1.2 Human intervention

To account for such distinctions, an increasing number of studies make use of human

input in the identification task. In [13, 109], interactive systems are proposed wherein

humans click on bird parts and answer questions about attributes (e.g., ”white belly”,

”red-orange beak”, ”sharp crown”). The main goal was to efficiently select the most

informative questions to pose to the user in order to identify the unknown species as

quickly as possible. While [13] incorporates only one type of user input (i.e., binary

questions) and uses non-localized computer vision methods based on bag-of-words fea-

tures, [109] allows heterogenous forms of inputs and incorporates a part-based model.

The authors of [65] propose an interactive mobile application for plant identification

which is based on social images of different plant organs. The application provides to

the user an easy access to a rich botanical knowledge which was collected and revised by



amateur and expert botanists of a social network. In other recent work [33], an online

game Bubbles is introduced to reveal discriminative features humans use to distinguish

between bird species. During the game, the player can choose to reveal full details of

circular regions, with a certain penalty. The human selected regions are then used to

learn classifiers for closely-related categories.

In [75, 43, 125] annotated training data (e.g., key points and objects parts) are

obtained from experts. [75] deals with dog classification and focuses on the dog face

location, allowing for a part-based approach and [43, 125] deals with bird classification.

In [43], classifiers based on poselets [12], i.e., parts of the object from a given viewpoint,

are employed to extract part and shape information for building fine-grained models.

However, this approach requires 3-D pose annotation, which is based on volumetric

primitives that are costly to obtain manually and present other difficulties; instead, the

authors of [125] advocate a 2-D rather than 3-D representation in order to reduce the

level of annotation required to generate the poselets.

Our work on leaves is somewhat similar in that we also make use of specific-domain

knowledge and human input; however, we propose novel representations, based on id-

Keys or vantage frames, as well as different identification scenarios based on a pre-

defined hierarchical structure. Of course animals and leaves present different kinds of

challenges; the former exhibit higher intra-species variation (e.g., birds may be flying,

swimming or perched), whereas the latter exhibit more inter-species similarity (e.g., in

color, overall shape and internal structure). Note that, for example, bird calls could be

also a key point for species identification; so that acoustic classification [1, 14] could be

combined to image classification.

2 About leaves

In computational vision, work on plant identification is relatively recent, largely confined

to leaves and in a few other cases to flowers [90, 29]. More specifically, most state-of-

the-art methods are based on a single leaf analysis with uniform background, including

leaf shape, texture, venation and morphological characteristic analyses. Many of these

methods were



2.1 Generic approaches

In several previous work, leaves were described using standard computer vision descrip-

tors which can refer to either global or local characteristics.

Global approaches generally represent the whole leaf shape [80, 112, 114], texture

[25, 5] or color [6]. For instance, Wang et al. [114] combined different features based

on a centroid-contour distance curve to propose a two-stage filtering approach for leaf

image retrieval, allowing for reducing the search space. Felzenszwalb and Schwartz [45]

proposed a hierarchical shape representation based on a hierarchical description of an

object’s boundary that performed well on a publicly available leaf dataset (15 Swedish

species [104]). This representation is captured by a tree, which they term the shape-tree

of an object. Wu and Rehg [117] introduced sPACT (spatial Principal component Anal-

ysis of Census Transform histograms), a new representation for recognizing instances

and categories of places or scenes, which performed even better than shape-tree on the

Swedish leaves [104].

Moreover, Yahiaoui et al. [121] presented a leaf-boundary based approach that at-

tempts to outline foliar properties and achieved good results using the ImageCLEF20111

plant identification framework. Yanikoglu et al. [122] employed a variety of shape, tex-

ture and color descriptors (117 features in total) to describe a leaf and obtained the

best results on the ImageCLEF20122 benchmark.

Multi-scale approaches [34, 79, 67] have been also introduced to especially enrich

the shape description and make it more robust to contour deformations. For instance,

Kumar et al. [67] proposed computing curvature histograms along the contour of the

leaf at multiple scales to classify 184 tree species in the Northeastern U.S (not yet

publicly available) while introducing the first mobile app Leafsnap3 for identifying plant

species. This popular iPhone application which now allows a fair identification of several

american plant species by shooting a single picked leaf on an uniform background.

Local approaches compute local features at some landmark points [74, 81, 83] or

some regions [27, 96] of a leaf. Landmarks can be either boundary points [8, 74] or

salient points [81] of the shape. For example, Ling and Jacobs [74] introduced shape

1http://www.imageclef.org/2011/plant
2http://www.imageclef.org/2012/plant
3http://leafsnap.com



descriptions based on the Inner Distance, which they combined with shape contexts

[8] (IDSC) to outperform many other approaches on two different leaf datasets. The

inner-distance is defined as the length of the shortest path between landmark points

within the shape silhouette and was used as a replacement for the Euclidean distance to

build accurate descriptors for complex shapes like leaves. More specifically, the IDSC

represents histograms of distances and angles from sample points in the contour to all

other points, along the shortest path inside the leaf shape. The authors of [7] made

use of the IDSC to classify larger leaf datasets (more than 150 species) collected in the

context of the Smithsonian project (Electronic Field Guide, 2008) and also incorporated

it in an earlier version of the mobile app Leafsnap.

Mouine et al. extended the shape context method in [81] and presented different

methods for plant species identification based on boundary points and Harris points

[57]. The key point was to introduce two different sets of points that play different roles

in the shape context scheme. They distinguish the voting points, which is the set of

points used to build the shape context histograms from the computing points on where

the shape contexts are computed. In [83], the same authors presented a multi-scale

shape-based approach, in which they introduced two triangle representations based on

local descriptors associated with boundary points (TSLA and TOA) and outperformed

previous ImageCLEF2011 results on leaf images with uniform background. The first

representation refers to triangles which are described using two side lengths and an

angle. The second representation refers to triangles which are described using oriented

angles.

2.2 Botanical-based approaches

Domain-specific knowledge is also used to distinguish between similar botanical species.

For example, the vein structure could be very interesting to characterize leaves, but the

main challenge is to be able to extract it accurately [73] which generally requires high

quality of data. Some previous work combined shape with venation features [93, 87]

while other work made use of other morphological leaf information. The authors of [60]

investigated local detailed shape of the leaf margin. Typically, they focused on detecting

the leaf teeth (on the leaf boundary). Du et al. [36] extracted other properties of the



leaf boundary, including aspect ratio, rectangularity, area ratio of convexity, perimeter

ratio of convexity, sphericity, circularity and form factor, in order to classify 20 species

of plant leaves. Some prior knowledge on simple leaf shape was used to construct a para-

metric polygonal leaf template in [22]. Ten models representing classes of leaf shapes

were retained and used for classification. Caballero and Aranda [17] used geometric

features, including eccentricity and area to reduce the search space while introducing

a novel shape-based leaf descriptor. The authors of [4] obtained good results in the

ImageCLEF2012 Plant Identification Task 4 by addressing simple and compound leaves

separately using many morphological features and a single leaflet analysis for compound

leaves. Also, several approaches have exploited specific well-known landmarks and some

measurements for leaf retrieval and plant identification. In [64], landmarks were man-

ually captured and linear and angular measures were derived from the landmark con-

figuration in order to examine relationships between three species of Acer genus. One

difficulty in such approaches is the automatic extraction of the landmarks. Recently,

Mzoughi et al. [84] introduced an automatic method for detecting different leaf parts

and used it in [85] to identify scanned leaf images on white background.

Our work is somewhat similar to these morphological approaches in that we also

propose to exploit domain knowledge about taxonomy and landmarks in order to build

meaningful representation of the object.

2.3 Segmentation and cluttered background

Work on botanical species identification, including most of those mentioned above, gen-

erally deals with leaf images on uniform backgrounds. Often, the Otsu thresholding

method [91] was used to extract leaf boundary since the image background is homoge-

neous [114, 36, 16, 81, 83, 104]. However, some methods have used more sophisticated

algorithms on images with uniform backgrounds such as Expectation-Maximization with

post-processing to remove false positive regions [67].

Only few work addressed the problem of identifying leaf images on cluttered back-

grounds which is more likely to be the real-world scenario. To tackle this problem,

most of them have designed novel segmentation algorithms to overcome the difficulties

4http://www.imageclef.org/2012/plant



posed by a natural background. Obviously, isolating green leaves in an overall not less

green environment seems like an other more difficult issue. The authors of [112], consid-

ered prior shape information and proposed an automatic marker-controlled watershed

segmentation method combined with pre-segmentation and morphological operation to

segment leaf images with complicated background. Teng et al. [105] proposed to re-

cover the 3D position of a leaf from different cluttered images with close viewpoints.

Then they performed a 2D/3D joint segmentation using 3D distances and color sim-

ilarity. In [113], an automatic marker-controlled watershed segmentation method is

combined with pre-segmentation and morphological operation to segment leaf images

with cluttered background based on the prior shape information. Cerutti et al. [21]

proposed a two-step active contour segmentation algorithm based on a polygonal leaf

model processes the image to retrieve the contour of only simple and palmately lobed

leaves. In the case of weed leaves, deformable templates have been used in [77] to seg-

ment one single species Setaria viridis, providing promising results even with occlusions

and overlaps.

Dalcimar et al. achieved the best results on natural leaf photo classification either

at ImageClef2011 or ImageClef2012 plant identification tasks [50, 51]. At both tasks,

they proposed a shape boundary analysis based on a prior leaf segmentation. To this

end, a manual segmentation was performed at the first task [19] while a semi-automatic

segmentation was performed at the second task [20]. In the semi-automatic approach,

the photo is first automatically segmented by the Mean Shift algorithm. Then, the

user needs to mark the location of the leaf and the background on automatically de-

tected regions to guide a merging process. The authors of [4] also achieved good results

on natural photos in the ImageClef2012 benchmark. They proposed a feedback-based

segmentation scheme using the GrabCut algorithm [98], in which the user makes cor-

rections to the segmented image. Note that all the participants at the ImageClef2012

benchmark who did not use segmentation processes on cluttered images (i.e., photo

category) achieved less than s = 0.2 as evaluation score5; the best score for photo cat-

egory was s = 0.51. One exception is the work of [92] in which no segmentation was

performed with all images, including photos, and which achieved a score of s = 0.32 for

5http://www.imageclef.org/2012/plant



photo category. They used multiple descriptors and visual-patches encoder. More they

combined the descriptors, more they obtained better performances.

In this work, we have not attempt segmentation process in the case of leaf images

with cluttered background. Instead, we suggest to manually mark some landmarks. We

will demonstrate the efficiency of our approach on several kind of leaves.

3 Hierarchical representation and search

Hierarchy is a powerful organizing principle for both representation and search [72,

15, 41, 103]. The idea is to decompose the original problem into more tractable sub-

problems sharing more homogenous properties. One monolithic classifier could be then

replaced by a hierarchy of classifiers which gather increasingly detailed information

about the object under investigation. Many real-world classification problems, are nat-

urally cast as hierarchical classification problems, where the classes to be predicted are

organized into a class hierarchy, typically a tree or a Direct Acyclic Graph (DAG).

Many of them utilize semantic class hierarchy, including the sharing of training exam-

ples across semantically similar categories [47] or combining information from different

levels of the semantic hierarchy [127]. Deng et al. [31] consider exploiting the semantic

hierarchy in the context of more than 10, 000 categories. More recently, the authors of

[32] use hierarchical structures, in large scale recognition, to maximize the information

gain while maintaining a relatively small error rate.

In the fine-grained field, only few previous work has taken advantage of a hierarchical

structure for categorization or identification tasks. For example, the authors of [60]

introduce a hierarchical representation and recognition method of plant species which

reflects structural properties of the leaf margin. They detect leaf teeth and consider

three hierarchies. The first hierarchy is a representation of global shapes of leaves; the

second is of local detailed shapes and the third of teeth. In [86] botanical description are

investigated, focusing on leaf arrangement to distinguish between four kinds of leaves

(i.e., simple, pinnately compound, palmately compound and compound trifoliate). A

hierarchical strategy is followed in order to reduce ambiguity starting from the most

different shapes to the closest ones. Both of these methods involve detailed analysis but

still be limited in efficiency. The former can not be applied to all kind of leaves. For



example, it does not consider the case of similar simple untoothed species. The latter

needs further processing till arriving to the species categories, which is the ultimate

target in the identification process. Both of them need a high-quality contour.

Other kind of hierarchies is used in [42] for species identification, i.e., the natural

semantic hierarchy which is based on taxonomic groups (such as family and genus).

Of course, using such a hierarchy needs specialized domain knowledge about species

and taxonomy. In this dissertation, we investigate several hierarchical representation

and search strategy. We build a hierarchical representation of leaves based on botan-

ical knowledge, we use pre-defined taxonomic groups, which are defined according to

both shared physical and genetic characteristics and finally, we consider purely visual

characteristics to automatically build a hierarchy, using an agglomerative clustering on

training data.

4 Class-selective rejection

Class-selective rejection [56, 52, 30] is an extension of basic simple rejection [124, 38]

in the multi-class case. That is, when an input pattern cannot be reliably assigned

to one of the pre-defined classes in a multi-class problem, it is assigned to a subset of

classes that are most likely to fit the pattern, instead of simple rejection. Selecting the

most promising classes allows to reduce the error rate and to propose a reduced set

to another classifier or an expert, which is of great interest in many decision making

systems. Examples of class-selective rejection rules include those defined in [55, 56,

59]. The simplest and the most used rule is the top-n ranking, in which n takes its

values between one and the total number of classes considered. Another popular one

is the constant risk [55] rule which consists of selecting, for each pattern, the minimum

number of best classes so that the accumulated posterior probability exceeds a pre-

defined threshold. In [56], Ha defined a new optimality criterion to be the best tradeoff

between error rate and average number of classes. An optimum class-selective rejection

rule was then obtained by solving a discrete convex minimization problem. The authors

of [52] addressed the problem of multi-class decision with class-selective rejection and

performance constraints. The problem was defined using three kind of criteria: the label

sets, the performance constraints, and the average expected loss. More recently, Deng



et al. [32] connected class-selective rejection with hierarchical classification, to restrict

the subset of selected classes to internal nodes of a predefined hierarchy. In our work, we

also focus on providing the best subset of classes, i.e., the smallest set which contains the

true species with high probability. To this end, we use a predefined hierarchy but within

a novel probabilistic model-based framework in which internal nodes are considered as

confidence set candidates.



Chapter 3

Object representation

1 Introduction

Many of the most accurate approaches for fine-grained recognition are based on both

specific-domain knowledge and detecting and extracting features from specific part lo-

cations of the object. For instance, [43] uses the poselet framework [12] and annotated

data, obtained from experts, to localize the head and the body of birds, allowing for

part-based location-specific feature extraction. The authors of [9] propose a method to

build a large set of part-based one-vs-one features for fine-grained categorization based

on a dataset of images labeled by class and as well as part locations. In dog breed clas-

sification, one may focus only on the dog face and its parts, e.g., eyes and nose [75, 97].

In fact, part-based approaches are naturally suited to fine-grained recognition since the

differences between (sub)categories are very fine and objects within the same basic-level

category often share the same part structure [106]. In contrast, objects from different

basic-level categories, like a car and a person, lack such natural part correspondence.

In this chapter we propose two object representations of a leaf based on domain

knowledge about botany and part locations. In Section 2, we first define the leaf parts

as in botany. Section 3 introduces a hierarchical approach in which some attributes and

well-defined landmarks are found sequentially and adaptively, while section 4 describes

a more generic part-based approach using both category-independent and category-

dependent features which we also apply on orchid flowers.
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2 Leaf definition

In botany, a leaf is defined as a colored, usually green, expansion growing from the side

of a stem, in which the sap for the use of the plant is elaborated under the influence

of light. The leaf is one of the parts of a plant which collectively constitute its foliage.

Usually, a leaf consists of a blade (i.e., the flat part of a leaf), supported upon a petiole

(i.e., the small stalk attaching the leaf blade to the stem) which, continued through the

blade as the midrib, gives off woody ribs and veins that support the cellular texture.

The petiole may be absent in some cases; the leaves are then called ”sessile” (i.e., the

blade attaches directly to the stem). According to the leaf architecture manual [39],

the internal shape of the blade is characterized by the presence of vascular tissue called

veins, while the global shape can be divided into three main parts: (1) The basal part,

usually the lower 25% of the blade; the base, which connects the blade to the petiole,

is situated at its center. (2) The apical part, usually the upper 25% of the blade and

centered by a sharp point called the apex (or the tip). (3) The margin is the border or

edge of the leaf; see Figure 3.1.

Figure 3.1: The main parts of a leaf.

The blade can be one part or divided into several parts which are called leaflets,

and are connected to an extension of the petiole (the rachis). Depending on the blade

division, the leaf can be called either ”simple” or ”compound”. However, the ”simple”

leaf shape may be also formed of lobes, but the gaps between lobes do not reach to the

midrib. Also, different ”compound” leaves exist in the nature. Figure 3.2 illustrates

different kinds of blade divisions (e.g., lobed, palmate, trifoliate, pinnate, etc.).



Figure 3.2: Examples for blade divisions. Simple leaves are displayed in the top row
and compound leaves in the bottom row.

Such botanical ingredients might give an interesting alternative for efficient rep-

resentation of the leaf. However, its shape diversity makes it particularly difficult to

characterize all leaves in a unique way (i.e., using a unique basic model) especially for

identification purposes. Leaves from the same species can undergo different shape trans-

formations due to local context, such as location, climatic conditions and age, as shown

in Chapter 1. Sometimes, only subtle local features in some meaningful regions, such

as the basal or the apical parts, can distinguish between similar species.

3 IdKeys

In the manual process, botanists generally select one or several plant organs (e.g., leaves,

flowers or fruits) from a single plant and use identification keys (IdKeys) [40] which are

examined sequentially and adaptively to identify the unknown species. In essence,

one is posing and answering a series of questions about plant attributes (e.g, shape,

color, distinguishing landmarks, internal structure) with the aim of focusing on the

most discriminating features and narrowing down the set of possible species, much

like a game of twenty questions. In this section, we focus on leaves and introduce a

novel representation based on a hierarchy of botanical IdKeys. The bulk of this section

appeared in [100].



3.1 Motivation

Exploiting domain-specific knowledge enables automatic systems to capture subtle char-

acteristics, structure the search and mimic the process of identification described by

botanists. More specifically, a large amount of information about the taxonomic iden-

tity of a plant is contained in its leaves. This is due to the fact that leaves are present on

the plants for at least several months, which is not generally the case for other organs

such as fruits or flowers. This is why most of plant identification work based on image

data, including ours, uses leaf image databases.

Moreover, the motivation behind the specific idea of using IdKeys to represent the

leaf characteristics, specifically a hierarchical representation of IdKeys, is the analogy

with the game of twenty questions where the keys are the attributes we query before

making a final guess about the species.

3.2 Hierarchical representation

We represent a leaf by an ordered set of attributes corresponding to IdKeys. In particu-

lar, these keys must encode invariable characteristics, i.e., be independent of the context,

such as geography, climatic conditions, season and instantiation. They could refer to

geometric properties not directly observable, such as landmarks, or to pre-determined

groups of species, such as families and genera. More formally, they can be seen as aux-

iliary hidden variables which facilitate estimating the primary hidden variable, namely

the species itself.

We apply the strategy to leaves, but it could be adapted to other botanical organs

such as flowers or fruits and even more general biological entities given an appropri-

ate taxonomy and well-defined IdKeys. Note that all organisms present a hierarchical

taxonomy (family-genus-species) as well as natural well-defined and named key points.

Let K = {K1, · · · ,KN} denote the set of keys with Ki assuming values in Θi, and

hence K ∈ Θ =
N∏

i=1
Θi. We assume every instance I (a leaf image) of every class

Y (the species of I) has a well-defined set of keys K(I), and that determining Y (I) is

facilitated by knowing these keys. In fact, estimating the keys at full resolution may not

be feasible and even narrowing down the possible values of key Ki to a subset Θ0
i ⊂ Θi

still simplifies estimating Y . The ordering of the keys determines the search sequence.



Hence the key hierarchy has N levels Li, i = 1, ..., N , and estimation of the plausible

values Θ0
i of key Ki is conditioned on the previously retained values {Θ0

1, · · · ,Θ
0
i−1}.

Finally, we build a classifier for Y itself dedicated to estimated keys.

The search strategy is breadth-first, coarse-to-fine: starting from the root, classifiers

are executed sequentially and adaptively, and any node classifier is applied if and only

if all ancestor classifiers have been performed and are positive. All details about the

classification process will be explained in Chapter 4.

In our case, depending on the leaf type Θ2 (i.e., simple or compound), we consider

five or six IdKeys to simplify the species identification. Three landmarks are considered

for simple leaves (centroid, base and apex) and four landmarks for compound leaves

(centroid, base, terminal apex and second apex); see Figure 3.1. These landmarks are

combined with both the leaf type and the leaf genus to construct the IdKey hierarchy.

The full ”simple” tree then has six (resp. seven for the ”compound” tree) levels, five

(resp. six) corresponding to the five (resp. six) keys and the sixth (resp. seventh) to

the species. For Θi, i = 3, . . . , N , the possible values are discretized; e.g., the landmark

locations have a resolution of 5 × 5 and are restricted to the boundary points. The

number of leaf types is actually two (simple and compound) and the number of genera,

|ΘN |, depends on the dataset.

Let Γ =
N∏

l=1

Θl ×Y, which is the complete set of possible leaf hypotheses or descrip-

tions (θ1, ..., θN , y), namely IdKey instantiation and species. Let T denote the full tree

graph; see Figure 3.3. Associated with every t ∈ T we have:

• Γt: The set of interpretations (or hypotheses) Γt ⊂ Γ entertained at node t,

ranging from very coarse cells near the root (e.g., restricting only the centroid) to

fine cells at the terminal nodes (fully specified descriptions).

• Ht: The hypothesis I ∈ Γt, where I is an image to be classified. The alternative

is H(t) : I ∈ Γ \ Γt.

• ft: A classifier mapping images to {0, 1}, where ft(I) = 1 (respectively, ft(I) = 0)

indicates acceptance (resp., rejection) of Ht.

Each of these ingredients will be explained in more detail in the remainder of this

section and the next chapter. Level one corresponds to the centroid of the blade (resp.
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Figure 3.3: Tree-structured hierarchical representation of IdKeys

of the leaflets in the case of a compound leaf), which can be directly calculated from the

raw image data once the leaf petiole is removed using the Otsu segmentation algorithm

[91] and straightforward post-processing; see Figure 3.4. It should be noted here that

we are not concerned by imperfect contours or incomplete petiole removal since our

method is robust to such problems. Figure 3.5 illustrates some failure cases.

Each Γt at level one is a singleton representing the computed centroid and no test is

required. In contrast, the leaf type (level two), the base (level three) and the apex(es)

(level four or four and five depending of the results of level two) are all estimated using

learned classifiers (which will be defined in Chapter 4). Each landmark detected reduces

the number of candidate points for the next detection by excluding its neighborhood

from the list of candidates. The whole process is illustrated in Figure 3.6.

Due to the use of pose-indexed features (see §3.3 for more details), only one classifier

ft needs to be learned for each of the (N−1) first levels. In our experiments, we maintain

one path through the hierarchy through level (N − 1), i.e., we only entertain a single

candidate for leaf type and landmarks. For each genus (level N), we learn a dedicated

classifier conditioned on the accumulated information. The features are computed in

multiple local coordinate systems. Several candidate genera are kept in estimating the



Figure 3.4: Segmentation results with successful petiole removal. Displayed (from the
top to the bottom) are an input image, initial segmentation using Otsu algorithm, result
after petiole removal.

species, for which we again utilize the same coordinate systems as those used for the

genera.

3.3 Feature extraction

As indicated above, the features provided to the learning algorithm are defined in one or

more local coordinate systems. We do not use the same frames (i.e., coordinate systems)

to estimate the different IdKeys. The motivation is to focus attention around each

landmark (which is the strategy reported by botanists) and directly extract local features

which are invariant to pose, orientation and scale variations, thereby avoiding any need

for global image transforms, e.g., geometric normalization. For the leaf type, we use a

reference frame which is determined by the estimated centroid and the estimated width

of the leaf (radius of the excircle). The axes are parallel to the image borders. For the

base and the apex(es), the x-axis is directed towards the centroid of the leaf without



Figure 3.5: Segmentation results with unsuccessful petiole removal. Displayed (from
the top to the bottom) are an input image, initial segmentation using Otsu algorithm,
result after petiole removal.

the petiole (i.e., centroid of the blade or the leaflets, depending on the leaf type); see

Figure 3.7. However, for both the genera and the species, multiple frames are used: two

frames for simple leaves, one centered on the apex and the other on the base, and three

frames for compound leaves, one centered on the terminal apex, another on the second

apex and the last one on the base.

Focusing of this nature is enabled by ”pose-indexed” (or ”frame-indexed”) features

Z, introduced in [49] for detecting cats. Although we have many categories of de-

formable objects, the class of features we use is essentially the same and we refer to

[49] for details. Basically, given a frame consisting of two distinguished points and a

distinguished scale, there is a candidate feature Z = Z(w, j) for each (local) window w

and for each local image property j: the feature Z is just the property histogram in w.

Figure 3.8 illustrates (local) windows which were used to extract features for respec-

tively leaf type, base and apex estimation. We use only shape and texture as properties;



Figure 3.6: Botanical idKeys estimation for species identification.

Figure 3.7: Local coordinate systems used for respectively (from left to right) leaf type,
base and apex estimations.

specifically, we used Hough, EOH and Fourier histograms [46] as base features. We will

see in the next chapter how such features were used to induce classifiers.

4 Vantage feature frames

In this section, another novel object representation, vantage feature frames, is intro-

duced for botanical species identification, in particular, and fine-grained recognition, in

general. We first discuss the interest and the motivation behind this idea in §4.1. Then,

we explain the concept of vantage feature frame in §4.2. We apply this representation

on both leaves and orchid flowers. The bulk of this section appeared in [101].

4.1 Motivation

Even if idKeys could be generalized and adapted to other objects, it could take consider-

able effort to define an ordered, coherent set that permits accurate identification. That

is why we focus on more generic representation, but still motivated by the strategy used

by botanists. Unlike the idKey representation, here we only focus on specific landmarks

(i.e., geometric properties) with the aim to learn best frames and best features for each



Figure 3.8: Multi-scale (local) windows defined relative to local coordinate systems.
Displayed are those used to extract features for respectively leaf type (in red), base (in
blue) and apex (in green) estimation. s refers to the approximative width of the leaf.

frame. The idea is to focus attention on visual properties of the object in the vicinity

of a small number of distinguished points and whereas these landmarks are the same

for each species, it is the local features which permit disambiguation. Both aspects are

important: where to look and what to compute. The vehicle for translating this into a

computer vision algorithm is the notion of a vantage feature frame.

4.2 Definition

Let {C1, ..., Cn} denote n categories, where a category can refer to a single species

or a group of species. In the botanical applications, which motivate this work, there

is often useful domain knowledge, typically named landmarks L = {l1, ..., lK} around

which botanists focus in order to separate one species from another (see Figure 3.9).

Such landmarks are more like vantage points in that orientation plays a role as well,

in other words, where the landmarks are in relation to one another. Naturally, species

(or some groups of species) tend to have certain signature appearance properties and

consequently what to look for in the neighborhood of the landmarks may be species-



dependent. Put differently, the conditional distribution over any large family of generic

local features may depend strongly on the species or groups of species. This aspect

of the identification process can be encoded by allowing the set of features associated

with each landmark to depend on the category. We also want to ensure that the local

appearance properties are largely invariant to the orientation and scale of the object.

Figure 3.9: Candidate frames for orchids and leaves.

With these considerations in mind, a vantage feature frame F has two components.

One, Ω, is geometric and the other, Z, is appearance-based. The geometric component

Ω is category-independent and simply a local coordinate system centered at one of the

landmarks l. Since we are dealing with images of single objects (e.g., images of leaves)

we declare the orientation to be determined by the centroid of the object, that is, the

landmark points to the centroid, and the unit distance to be the approximate scale of

the object.

The appearance component is a family of pose-indexed features, one element of the

family for each category: Z = {Z1, . . . ,ZN}, where Zt is the set of local features to

compute in frame F for a specific category. Again, the reason for dedicated features is

that there is so much variability in the presentation of leaves in the neighborhood of

landmarks that some features are far more discriminating than others, and the discrim-

inating ones can depend as well on the vantage point. For example, the discriminating

features around the leaf base for estimating a particular group of species might be dif-

ferent from those around the apex for estimating another group. Obviously, to be useful

the frame must be reliably detected and the features must be discriminating. As will

be seen in ensuing sections, we provide algorithms for learning discriminating ones, de-



tecting them online and pooling the features computed in these frames to identify the

categories.

4.3 Learning the frames

Learning the most discriminating frames from scratch would evidently be a major chal-

lenge, and we do not attempt this. As indicated above, by leveraging domain knowledge,

we begin with a list of candidate frame origins l1, ..., lK . There will be frames associated

with a subset of these. Moreover, since we are dealing with images of single objects (e.g.,

scanned images of leaves) we declare the orientation of the frame to be determined by

the centroid of the object, that is, the landmark points to the centroid, and the unit

distance to be the approximate scale of the object. The choice of landmarks or vantage

points is performance-based. Assume we are given a classifier for each set of vantage

feature frames; our particular choice for leaves is described in §4.6 and for orchid flow-

ers in §4.7. Given |L| = K candidate landmarks, there are then 2K−1 possible set of

coordinate systems. Evaluating them one-by-one might be infeasible, in which case one

might adopt a greedy strategy: the efficiency of each candidate could be measured by

the improvement in the overall classification rate obtained by adding the corresponding

frame to the existing list of frames.

For leaves and orchids only three ”universal” landmarks L = {l1, l2, l3} have been

suggested by botanists; they are described in §4.6 and §4.7 and illustrated in Figure

3.9. For each of the 23 − 1 = 7 combinations of frames, we estimated the classification

accuracy using cross-validation. Feature extraction and classification are described in

§4.5 and chapter 4 respectively. It should be noted that for this learning process the

locations of the landmarks were determined by manually annotating the training data.

As a result, the errors that are inevitably made in automatically detecting the landmarks

are not taken into account in choosing the best set of frames. One might expect that the

more frames the better the performance, and hence using all three would be optimal.

However, this was not the case; Table 3.1 shows the recognition rates for the seven

possible combinations of frames used for simple leaves. The best performance is obtained

with two frames corresponding to l1 and l3.



Set of coordinate systems l1 l2 l3 l1, l2 l1, l3 l2, l3 l1, l2, l3

Recognition rate 0.75 0.72 0.73 0.76 0.8 0.77 0.78

Table 3.1: Cross-validated recognition rates for leaves (Smithsonian data §1) for each
of seven possible sets of frames sets with centers l1, l2, l3. The best result (in bold) is
obtained with two frames centered at the base l1 and apex l3.

4.4 Detecting the frames

The first step in classifying an image is to estimate the location, orientation and scale

of each frame. As indicated above, the orientation is determined by the centroid, which

is directly computed from the raw image data after a segmentation process using the

Otsu algorithm [91]. The scale is taken to be the radius of the bounding circle. The

landmarks are detected by dedicated classifiers trained on manually annotated images.

Since we are only using landmarks on the object boundaries (as determined by the

segmentation process), we restrict the search to a sample of boundary points to minimize

the computation. In addition, after detecting each landmark, we exclude the boundary

points in its neighborhood from the list of candidates; see Figure 3.10.

In order to detect each vantage point, a classifier (see Chapter 4) based on SVM

scores is built from positive and negative training examples. Positive images are anno-

tated by the landmark considered and negative images are randomly annotated. The

features for SVM learning are defined in the local coordinate system centered on the can-

didate landmarks (i.e., the x-axis is directed towards the centroid as described above).

More specifically, the feature extraction follows the same process described earlier for

IdKeys (see §3.3).

4.5 Learning the features

The appearance-based component is category-dependent. Whereas we use the same

class of features to learn landmark detectors, we construct a separate binary classifier

for each category Ct for distinguishing that category from all others and which employs

a learned subset of features Zt. Hence, we select a category-dependent subset of features

Xt and only these are used to train classifiers.

Specifically, we first estimate the probability distribution of each feature Z under



Figure 3.10: A test leaf image is first segmented. Then the petiole is removed in order
to compute the centroid (red point) as well as the approximate bounding circle of the
leaf blade (red dashed circle). The base (blue point) and the apex (green point) are
estimated using learned classifiers (f1, f2). The proposed locations for both landmarks
are restricted to the boundary points. The neighborhood of the first landmark detected
is excluded from the list of candidate points for the next detection (blue dashed circle).

both hypotheses Y ∈ Ct and Y /∈ Ct (where Y is the actual species of the image be

classified) from the positive and negative examples. For each distinct category, images

belonging to that category are positive and all others negative. For feature Z(w, j),

denote the two distributions by p+w,j and p
−

w,j and let dw,j = |p+w,j−p
−

w,j | be the difference

in the L1 norm. Then Zt consists of the features with the M largest differences. Figure

3.11 illustrates the recognition rate for leaf genera for various M . Selecting category-

dependent features increases recognition performance and decreases computation. For

instance, we achieve over 75% recognition rate of leaf genus while considering only the

first genus returned and using between about 500 and 2500 category-dependent features

against only 67% without any selection i.e, M = 5808 (see Figure 3.11).
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Figure 3.11: Recognition rates for leaf genera from the Smithsonian data (see §1) while
considering only the first genus returned and using M selected features.

4.6 Case of leaves

To analyze leaves, experts usually focus on the apex, the base and the leaf margin.

These are illustrated in Figure 3.9. Let l1 denote the leaf apex (respectively, the central

sepal for orchids), l2 the first intersection point between the perpendicular to the apex-

base line throughout the centroid of the blade and the leaf boundary and l3 the leaf

base as shown in Figure 3.9. The centroid of a leaf corresponds to the center of mass

of the blade (resp. of the leaflets in the case of a compound leaf); the leaf petiole

is removed before computing the centroid (see Figure 3.10). As for the segmentation

process, again, we are not concerned by imperfect contours or incomplete petiole removal

since our method is robust to such problems. Figure 3.10 illustrates the vantage point

detection process for a leaf image, namely the leaf base and the leaf apex detection.

Random sample of test images with the estimated vantage points for different type

of leaves (e.g., toothed, lobed, concave, convex, symmetric, asymmetric) and different

datasets are displayed in Figure 3.12. More details about such datasets as well as more

qualitative and quantitative results will be shown in Chapter 6.

Figure 3.13 illustrates examples from the most discriminating local windows w for

four species. The original set of w used for the selection represents all windows defined

earlier for landmark detection, i.e., those which were illustrated in Figure 3.8 for apex

and base estimation.



Figure 3.12: Random sample of test images with the estimated vantage points for four
different leaf datasets. False detections are framed with a red box. Note that the entire
detection process is considered erroneous if any vantage point is not accurately detected.

4.7 Case of orchid flowers

An orchid specialist generally focuses on the sepals, petals and the labellum. These are

illustrated in Figure 3.9. As with leaves, let l1 denote the central sepal for orchids, l2

the petal on the right of l1 and l3 the bottom of the orchid labellum as shown in Figure

3.9. Again, we are not concerned by imperfect contours after the segmentation process.

Figure 3.15 illustrates examples from the most discriminating local windows w for four

orchid species. As with leaves, quantitative results will be shown in Chapter 6.

5 Summary

The different object representations described through this chapter are designed to sep-

arate species using their most discriminating characteristics. The hierarchy of IdKeys,

introduced above, focuses on botanical properties. It is dedicated to leaves but could

be extended to other objects using the same principle. The Vantage Feature Frame is

a more generic representation which investigates both aspects, category-independent



Figure 3.13: Examples of the five most discriminating local windows for different species.
Blue boxes refer to local windows relative to the coordinate system centered in the leaf
base and green ones refers to those relative to the coordinate system centered in the
leaf apex.

Figure 3.14: Random sample of test images with the estimated vantage points for orchid
flowers. False detections are framed with a red box. Note that the entire detection
process is considered erroneous if any vantage point is not accurately detected.

and category-dependent description. The large inter-class similarity as well as the

large intra-class variability between fine-grained categories, especially botanical species,

makes such a local detailed image description very important in order to induce efficient

classifiers.



Figure 3.15: Examples of the five most discriminating local windows for different species.
Blue boxes refer to local windows relative to the coordinate system centered in the
bottom of the orchid labellum and green ones refers to those relative to the coordinate
system centered in the central sepal.



Chapter 4

Classification

1 Introduction

Multi-class classification is one of the core problems in many applications. It refers to

assigning each of the observations into one of possibly many categories. In this work

we investigate two ways to address this problem. We first focus on a coarse-to-fine

approach using a likelihood ratio framework; see §4. Second, we introduce a model-

based approach, focusing on selecting a confidence set (CS), i.e., a variable-length list

of categories which contains the true one with high probability (e.g., 99% CS); see §5.

Both approaches are based on a hierarchical representation of the full set of categories.

This tree of subsets indexes a graded family of categories of varying sizes as well as

local discriminant functions for deciding between each subset and all others combined.

These ingredients are described respectively in §2 and §3.

Figure 4.1: Biological classification. There are seven main taxonomic ranks defined by
the international nomenclature codes: kingdom, phylum/division, class, order, family,
genus, species.
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Figure 4.2: Leaves of (a) Laurus nobilis, L. and (b) Viburnum tinus, L. species and (c)
their respective positions in the APG classification. Note the visual similarity between
the two leaf shapes despite the large distance between the species in the hierarchy (the
first common ancestor of the two species is the root node).

2 Hierarchy construction

Botanical species are naturally organized in a hierarchical taxonomy; see Figure 4.1.

Different taxonomic systems are used for different kind of plants. For instance, the

APG III system [53] is currently recognized by most botanists for flowering plant (an-

giosperms) classification and is mostly a molecular-based system of plant taxonomy, as

shown in Figure 4.2. Hierarchical representation can allow for classification algorithms

or cost metrics that penalize misclassification errors according to ”closeness” in the hi-

erarchy. For example, it may not be as problematic which fir tree it is as long as we

do not confuse it with other non-related trees. Hierarchical representation is hardly

unique; there are a great many ways to recursively decompose the data. For instance,

the hierarchy can be manually designed using pre-defined biological groups or auto-

matically built using morphological characteristics; see Figure 1.14. While the former

is defined according to both shared physical and genetic characteristics and should be

provided by experts, the latter is based on purely visual characteristics and can result

from a hierarchical clustering on training data. We use both kinds of hierarchies for

classification.



More specifically, we first use a pre-defined two-level taxonomic hierarchy, especially

with IdKeys: the first level represents the genera and the second represents the species.

Then we apply an agglomerative clustering principle to automatically generate a visual-

based hierarchy.

Agglomerative procedures are probably the most widely used of the hierarchical

clustering techniques (a useful review of the standard techniques has been given in

[61]). They produce a series of partitions of the data: the finest consists of single-

member ’clusters’ and the coarsest consists of a single group containing all individuals.

Variations are based on domain knowledge about botanical species and landmarks, but

the principle is quite general: a tree-structured hierarchy is recursively constructed

bottom-up by successively merging similar groups. We treat each species as a singleton

cluster at the outset and then successively merge (or agglomerate) pairs of clusters until

all the clusters have been merged into a single cluster that contains all species using

Ward’s criterion [115] and the Euclidean norm. The dissimilarity between two clusters

is given by

dissim(r, s) =
nr ∗ ns
nr + ns

× ||Z̄r − Z̄s||
2, (4.1)

where r and s denote two specific clusters, nr and ns denote the sizes of the two

clusters, Z̄r and Z̄s denote the centers of gravity of the clusters and ||.|| is the Euclidean

norm. Local features are used to compute the centers of gravity of the clusters. More

specifically, texture and shape-based features are used to characterize each leaf image

and are defined in two local coordinate systems, one centered on the leaf base and

the other on the leaf apex. Thus, we use, the same local features described in §3.3 to

characterize species.

Visualizing this tree-structured hierarchy provides a useful summary of the data, i.e.,

an overview of the visual similarities and relationships among species based on both the

basal and the apical parts. Figure 4.3 represents a dendrogram [48] that illustrates the

nested grouping of the species produced by a hierarchical clustering on 50 botanical

species. Note that many clusters obtained could be matched with morphological classes

defined by botanists themselves. In particular, two large, natural clusters are formed at

the first level of the hierarchy: one cluster consists of compound and lobed leaves (on

the left) and the other cluster of simple leaves (on the right). Species with lobed leaves



Figure 4.3: A dendrogram representing a hierarchical clustering of 50 species of Smith-
sonian leaves. Displayed are the nested groupings of species, similarity levels at which
groupings change, and a thumbnail from each species. Many clusters match morpho-
logical classes.

(with 3 lobes) merge with those with trifoliate leaves (with 3 leaflets) while species with

compound leaves containing more leaflets are grouped together. Also, toothed leaves

are separated from non-toothed leaves. Therefore, such a hierarchical clustering could

even help botanists in classifying large amounts of newly collected leaves by suggesting

coarse morphological categories.

3 Discriminant functions

The hierarchical representation will serve as a platform for the classification algorithm.

To this end, we learn local discriminant functions at each node t ∈ T . The framework is

largely classifier-independent in that any learning algorithm could be chosen to induce

such discriminant functions from the training data. We have chosen to train a Support

Vector Machine (SVM) classifier for Y ∈ Ct versus Y /∈ Ct. The SVM is a widely used

classification method, introduced in [11], which belongs to the general category of kernel

methods [102]. SVMs can be either linear or nonlinear. Some nonlinear kernels include



polynomial, radial basis function (RBF) and sigmoid. We use RBF kernel

K(x, x′) = exp(−γ||x− x′||2).

Let Xt be the SVM score associated with the node t and learned from training data. We

approximate the probability distribution of Xt by a Gaussian density Φt using estimated

mean µ and variance σ2. Figure 4.4 shows examples of the empirical distributions of

Xt (i.e., histograms obtained from real data) for different nodes and categories. Clearly

the shape varies considerably and certainly has higher variation or entropy than a

Gaussian. We use the Gaussian nonetheless since we have sufficient data to reliably

estimate the mean and variance and the Gaussian has maximum entropy for a fixed

mean and variance.

4 Coarse-to-fine search and likelihood framework

Coarse-to-fine (CTF) classification is an efficient way of organizing object recognition

in order to systematically exploit shared attributes and the hierarchical nature of the

data. Here, we apply CTF search within a likelihood framework.

4.1 Coarse-to-fine search

The basic structure of a CTF search is a nested representation of the space of hypotheses

and a corresponding hierarchy of (binary) classifiers with a steady progression from very

general classifiers with low resolution in coarse-grained categories to those dedicated to

fine-grained categories. When properly designed, the fine classifiers are rarely evaluated.

We use breadth-first, CTF strategy. That is, starting from the root, the classifiers

are executed sequentially and adaptively, and a classifier is executed if and only if all

ancestor classifiers are performed and are positive. This promotes extremely efficient

computation since, generally, large subsets of hypotheses are simultaneously pruned. It

should be emphasized that a CTF hierarchy is not a decision tree. In fact, unlike a

decision tree, during a CTF search a data point may traverse many branches and may

reach no leaves, i.e., a tested image may arrive at no leaves or more than one leaf in the

tree.



Figure 4.4: The empirical distributions of local SVM scores of different hierarchical
nodes of Figure 4.3. Each distribution is approximated by a Gaussian density (in red)
with the estimated means and variances.



Figure 4.5: Example of a three-level hierarchy using three IdKeys. Two of the possible
values of the first key are kept (full nodes at the first level). Then we keep three possible
values for the second key. Note that we are not keeping here all the combinations
of these two and three values. However, we are keeping exactly three combinations
(corresponding to the paths formed by the full nodes except the root). Finally we keep
only two paths which correspond to two triplets (each triplet corresponds to the retained
values of the full nodes that form the path). Only these paths are considered for the
species identification task.

For example, Figure 4.5 illustrates the search based on three Idkeys. At the end

of the search, only two paths, i.e., two elements of the full Idkey space, are considered

for the species identification task. At each node t of the hierarchy, let ft = ft(I) be

the binary classifier which is designed to separate each node t and all others combined

based on the features extracted from I. At each level, all the children of a positive node

t (i.e., one for which ft(I) = 1) are retained and tested at the next level. Whereas

false positives can be successively pruned, if the true hypothesis is rejected at a node

containing it then it cannot be recovered. In the case of the IdKey representation,

described in the previous chapter, only the classifiers for species which belong to the

retained genera are performed. Finally, those species for which ft(I) = 1 are then sorted

according to their likelihood ratios (see 4.2).

4.2 Likelihood ratios

In order to induce ft from the training data at node t, we consider a likelihood framework

using local discriminant functions, i.e., SVM scores Xt. Let Φt(xt) be the (Gaussian)

density of Xt. The corresponding classifier ft is then based on the likelihood ratio as

follows:

Lt(I) =
Φt(Xt(I)|Y ∈ Ct)

Φt(Xt(I)|Y /∈ Ct)
(4.2)



Table 4.1: Example of 5-fold cross validation to set ρt for an internal node. All of
ρt = {−3.5,−3,−2.5} achieve the highest true positive rate. The largest value is kept,
i.e., ρt = −2.5.

ρt -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 2 3

Fold 1 1.0 1.0 0.98 0.98 0.98 0.96 0.94 0.94 0.91 0.91 0.89

Fold 2 1.0 1.0 1.0 1.0 0.98 0.98 0.98 0.98 0.98 0.98 0.96

Fold 3 1.0 1.0 1.0 1.0 0.97 0.97 0.94 0.88 0.85 0.79 0.66

Fold 4 1.0 1.0 0.98 0.98 0.97 0.95 0.94 0.93 0.9 0.9 0.88

Fold 5 1.0 1.0 0.99 0.98 0.96 0.96 0.94 0.94 0.91 0.91 0.91

Average 1.0 1.0 0.99 0.99 0.97 0.96 0.95 0.93 0.91 0.9 0.86

Given Lt(I), let

ft(I) =







1 if log(Lt(I)) > ρt

0 else
(4.3)

Here, ρt is a learned node-dependent threshold used to control the false negative rate,

that is to allow only a very small number of instances in which Y ∈ Ct but ft(I) =

0 (missed detections). This can be accomplished at the expense of (temporary) low

specificity (i.e., a high false positive rate), but this is a favorable tradeoff in our context.

In our setting, k-fold cross-validation is used during the training stage to set ρt

for each node of the hierarchy. The training set is randomly partitioned into k equal

size subsets. Of the k subsets, a single subset is retained as the validation data for

testing, and the remaining k− 1 subsets are used as training data. The cross-validation

process is then repeated k times, with each of the k subsets used exactly once as the

validation data. Each time, the true positive rate is computed on the validation data

using different values for ρt. For each node, we retain the largest value that permits the

highest true positive rate in average. The candidates for ρ range from −5 to 5 by step

of 0.5, and k ranges from three to five depending on the dataset sizes. Table 4.1 shows

an example of the true positive rates for different values of ρt. In this case, we retain

ρt = −2.5. Negative values promotes low missed detection rates.

The same likelihood framework is used for IdKey estimation. In this case, we just

have to consider Γt instead of Ct while defining the likelihood ratio Lt. However, for

l = 1, ..., (N − 1) (i.e., the leaf type and landmark levels) all the nodes t at level l

share the same classifier fl. Also, only a single estimate is retained, namely the one



corresponding to the node t at which the likelihood ratio Lt is maximized. In contrast,

for the genera and species, the classifier is in fact node-dependent. All the estimated

genera (fg(I) = 1) are considered for species identification.

Figure 4.6: SVM score ranges for twenty different species. Often scores are on different
scales.

Several work in the literature used SVMs to produce probabilities either for posterior

probability-based decision making [58, 95] or likelihood-based decision-making [88, 107].

Here, the motivation behind using likelihood ratios based on SVM scores instead of

simply SVM scores alone is that SVM scores which are associated to different Ct might

naturally occur on different scales and thus comparisons among them could be arbitrary.

For example, figure 4.6 illustrates the SVM score ranges for a random set of species.

Note that score ranges could be very different. Also, the mapping of SVM score to a

likelihood ratio takes into account the distribution under both hypotheses. In particular,

this mapping is not monotone, i.e, does not preserve the ordering of SVM scores across

a level. This is illustrated in Figure 4.7, which shows two pairs of distributions for two

categories C1 and C2. The dashed red and blue lines correspond respectively to the



SVM score distribution of images in C1 and in the complement of C1. The solid red

and blue lines correspond respectively to the SVM score distribution of images in C2

and in the complement of C2. For a test image I, we show in black the SVM score

X1(I) associated to C1 as well as the densities of X1(I) under both hypothesis: Y ∈ C1

and Y /∈ C1 (i.e., Φ1(X1(I)|Y ∈ C1) and Φ1(X1(I)|Y /∈ C1)). Likewise, we show in

green the SVM score X2(I) associated to C2 as well as the densities of X2(I) under

both hypothesis: Y ∈ C2 and Y /∈ C2 (i.e., Φ2(X2(I)|Y ∈ C2) and Φ2(X2(I)|Y /∈ C2)).

I would be classified as C1 using SVM scores, since X1(I) ≥ X2(I) (see the black and

the green point at the x-axis), but as C2 using likelihood ratios.
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Figure 4.7: Comparison between the SVM score distributions of two different categories.
Both distributions are approximated by Gaussians.

5 Confidence sets

In classical (frequentist) statistics, a confidence interval CI [89] is a data-dependent

interval estimate of a single population parameter. For example, the CI provides an

indication of the precision of a point estimate such as maximum likelihood. Precision

corresponds to the length of the CI and the confidence level can be interpreted as the

fraction of times in repeated experiments that this random interval would contain the



true parameter. A confidence set (CS) refers to an extension of confidence intervals to

a multidimensional parameter [24]. Bayesian CI’s and CS’s [71] extend these notions to

Bayesian statistics wherein a prior distribution over parameters combined with a data

model leads to a posterior distribution over parameters given the observations, inter-

preting the confidence level as a posterior probability. In analogy with these classical

tools, we propose a semi-automated system which outputs a CS, a variable-length list

of categories which contains the true one with high probability, rather than providing

a point estimate or ranking all candidates.

One straightforward way to generate a CS is model-based: delineate a feature vector

Z = Z(I) and model for the joint distribution p(z, c) of Z and Y . Provided with this,

and given an image I (and hence z) the natural recipe for assembling Ĉ(z) would be

to compute the posterior distribution p(c|z) over categories and aggregate the masses

starting from the largest one, say p(c1|z) ≥ p(c2|z) ≥ · · · , until the cumulative proba-

bility passes 1− ǫ. That is, Ĉ = {c1, ..., ck} where p(c1|z) + · · ·+ p(ck−1|z) < 1− ǫ and

p(c1|z)+ · · ·+p(ck|z) ≥ 1− ǫ. In principle, the CS can then be any subset of categories.

We propose a different strategy which is anchored by a hierarchical representation of Y

and which drastically reduces the space of candidate CS’s.

5.1 Statistical model

In this framework, the hierarchy considered is a binary tree which consists of a recursive

partitioning of Y. The hierarchy serves as a platform for defining features and for

selecting confidence sets. The construction of the hierarchy is based on hierarchical

clustering of training data as described in §2. This structure provides a natural family

of (visually) closely-related categories with diverse sizes. This argues for restricting Ĉ

to the subsets {Ct, t ∈ T }. In the standard case of returning a single estimate, the

selection is restricted to the terminal nodes which are individual species. As before, the

data for selecting Ĉ is a discriminant function on T . Since the choice of Ĉ depends

only on the scores X = {Xt, t ∈ T }, we will sometimes write Ĉ(X) to emphasize the

dependence on the data.

The modeling is naturally done at the level of X and Y , thereby integrating all

the evidence from the node scores. Let p(x, c) be a model for the joint distribution



P (X = x, Y = c). In order to specify p(x, c) we fix a prior p(c) over categories (usually

uniform); hence the key ingredient is the conditional data distribution p(x|c), c ∈ Y.

(Note that the score at the root is meaningless since all categories belong to Croot and

consequently this node can be ignored in what follows.) The components of x are real-

valued and indexed by the tree T ; hence the dimension of x is basically twice the number

of categories. The model we use for p(x|c) in our application is a Bayesian network over

Gaussian variables and will be described in detail in §5.2. In brief, the two children t1

and t2 of troot serve as roots of the BN, which then has the form:

p(x|c) = f(x1|c)f(x2|c)
∏

t∈T \{t1,t2}

ft(xt|xt-, c) (4.4)

Here t- denotes the parent of t; f(x1|c) and f(x2|c) are the marginal densities of scores

Xt1 , Xt2 given Y = c, both assumed univariate normal; and ft(xt|xt-, c) is the conditional

density of Xt given {Xt- = xt-, Y = c}. Since we are assuming (Xt, Xt-) is bivariate

Gaussian given Y = c, the form of the conditional density follows immediately. Again,

the details for our application to plants, including parameter estimation, appear in §5.2.

5.2 Bayesian network

A Bayesian network (BN) [63] is a graphical structure that encodes probabilistic re-

lationships among a set of random variables via a directed acyclic graph (DAG). The

structure of a DAG is defined by two sets: (1) the set of vertices (nodes) V which

represent random variables, (2) the set of directed edges (arcs) E which connect pairs

of nodes, representing direct dependence among the variables. Figure 4.8 illustrates un

example of a DAG.

A BN enables an effective representation and computation of the joint probability

distribution over a set of random variables. It reflects a simple conditional independence

statement based on the Markov property. Namely that the conditional probability

distribution at a node given all non-descendants depends only on parents. That is,

there are no direct dependencies in the system being modeled which are not already

explicitly shown via arcs.

More formally, given a directed acyclic graph G = (V,E) and X = (Xv)v∈V , a set



Figure 4.8: Example of a directed acyclic graph (DAG).

of random variables indexed by V . X is a BN with respect to G if its joint probability

distribution can be written as a product of the individual distributions, conditional on

their parent variables:

p(x) =
∏

v∈V

p(xv|xp(v)),

where p(v) is the set of parents of v (i.e., those vertices pointing directly to v via a

single edge). For example, a BN associated to the DAG of Figure 4.8 would define a

unique joint probability distribution over its nodes {t1, t2, t3}:

p(x1, x2, x3) = p(x3|x1, x2)p(x2|x1)p(x1),

where {X1, X2, X3} is the set of random variables respectively indexed by {t1, t2, t3}.

In our setting, we are modeling X as a BN given each species Y = c. The underlying

DAG (directed acyclic graph) is the binary tree T , with arrows from parents to children.

This structure enables modeling a relatively simple BN in which each node has a single

parent (except the root) and two children (except terminal nodes). For example, in the

simple BN of Figure 4.9, t and p(t) are respectively the parent and the grand parent

node of both c1(t) and c2(t). Let {Xt, Xp(t), Xc1(t), Xc2(t)} be the random variables

respectively indexed by {t, p(t), c1(t), c2(t)}. Xt should then separate Xp(t) and Xc1(t)

(resp. Xc2(t)), meaning that the grand parent and the child should be conditionally

independent given the parent Xt.

Here, using a Gaussian Bayesian network is motivated by several observations. First,

we have already considered the individual SVM scores Xt as Gaussians: see §3. Second,

whereas there are significant (conditional) correlations among many pairs of variables



Figure 4.9: Illustration of the Markov property on a tree structure. The tree encodes
independence assumptions, by which each variable is independent of its non-descendants
given its parent in the tree. There are no direct dependencies which are not already
explicitly shown via arcs: (i) the grand parent Xp(t) and the child Xc1(t) (resp. Xc2(t))
are conditionally independent given the parent Xt. (ii) The children Xc1(t) and Xc2(t)

are conditionally independent given Xt. {Xt, Xp(t), Xc1(t), Xc2(t)} are random variables
corresponding to nodes {t, p(t), c1(t), c2(t)}.

Xt, Xs given the species Y , clearly we must control the complexity of the joint dis-

tribution since we do not have sufficient data to reliably estimate all the order |T |2

parameters involved in a full multivariate Gaussian parameterization. The motivation

for the Bayesian network is that the largest of the (absolute) correlations tend to be

between parents and children; see Figure 4.10.

Also, while BN assumes that there is conditional independence between grand par-

ent and children, as well as between children, given the parent (given a species), un-

conditionally, the (absolute) correlation could be significant. We have first compared

corr(Xp(t), Xc(t)|Y ), a measure of independence between grand parent p(t) and child

c(t) (given a species Y ) and corr(Xp(t), Xc(t)|Xt, Y ), a measure of independence be-

tween the grand parent and the child given the parent (given a species); an example is

shown in Figure 4.11. Second, we have compared corr(Xc1(t), Xc2(t)|Y ), a measure of

independence between children (given a species) and corr(Xc1(t), Xc2(t)|Xt, Y ), a mea-

sure of independence between children given their parent (given a species). As shown

in both Figures 4.11 and Figure 4.12, the difference between correlations is generally

large, i.e., corr(Xp(t), Xc(t)|Y ) ≫ corr(Xp(t), Xc(t)|Xt, Y ) and corr(Xc1(t), Xc2(t)|Y ) ≫

corr(Xc1(t), Xc2(t)|Xt, Y ) which further motivated the use of BN.

It should be emphasized, here, that all the measures of independence, given above,



Figure 4.10: Histograms of correlation coefficients between differently situated pairs
of nodes in the hierarchy for three different species. Top row: correlation coefficients
between a node and its parent. Middle row: between siblings (nodes of a same parent
node). Bottom row: between nodes from different halves of the hierarchy (no common
ancestor except the root). Note that the largest of the (absolute) correlations tend to
be between parents and children.



Figure 4.11: Example of correlation coefficients between a grand parent Xp(t) and a
child Xc(t) for different species. In red are conditional correlations given the parent
Xt and in blue are the (absolute) correlations, unconditionally to Xt. Note that the
difference between both kinds of correlations is generally very large.

have been given by correlation since we assume normal random variables. In general,

random variables may be uncorrelated but highly dependent. Generally, the correlation

coefficient detects only linear dependencies between two variables (X,Y ). However, in

the special case of a multivariate normal distribution (i.e, the pair (X,Y ) has multi-

variate normal distribution), any two or more of its components that are uncorrelated

are independent.

With this Gaussian Bayesian network we must estimate three parameter (mean,

variance, correlation with parent) for each non-root node and two parameters (mean

and variance) for nodes t1 and t2. Consequently, the densities f(x1|c) and f(x2|c) in

Equation (4.4) are univariate normal. The densities ft(xt|xt−, c) are obtained by recall-

ing that if U1, U2 are jointly normal with means and standard deviations µ1, µ2,σ1,σ2

and correlation coefficient ρ, then f(u1|u2) is normal with mean µ1 + ρ
σ1
σ2
(x2 − µ2) and

variance (1− ρ
2)σ2

1. Hence

ft(xt|xt-, c) =
1

σ
c
t
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Figure 4.12: Example of correlation coefficients between two children Xc1(t) and Xc2(t)

for different species. In red are conditional correlations given the parent Xt and in blue
are the (absolute) correlations, unconditionally to Xt. Note that the difference between
both kinds of correlations is generally very large.

where the superscripts indicate the dependence on the species c. Computing p(x|c) and

thus P (Y ∈ Ct|X = x) is then straightforward.

5.3 Constructing the confidence set

The first step in CS selection is to compute the posterior probabilities P (Y ∈ Ct|X = x)

for each t ∈ T . This is straightforward given our model:

P (Y ∈ Ct|X = x) =
∑

c∈Ct

P (Y = c|X = x) (4.5)

=

∑
c∈Ct

p(x|c)∑
c∈Y p(x|c)

(4.6)

Now define

B(x) = {t ∈ T : P (Y ∈ Ct|X = x) ≥ 1− ǫ}.

Obviously we can assume ǫ < 0.5; in practice, we take values such as 0.05 and 0.01. It

is then easy to see that for every x, the set of nodes B(x) is a non-empty path in T

originating at one of the two roots t1, t2 and generally terminating before a terminal

node is reached. The natural definition of Ĉ is then the smallest set Ct in the tree which



Figure 4.13: Example of T illustrating the key objects for 8 categories (c1, ..., c8). T
contains 14 nodes (not counting the root troot), labeled (t1, ..., t14). Associated with each
node t is a set of categories Ct, e.g., Ct1 = {c1, c2, c3, c4}. Here, the true category is
Y = c3, B(x) = {t1, t4}, (red circles) which are on the true path (in red). So, T (x) = t4
and Ĉ(x) = {c3, c4}.

satisfies the constraint. Specifically,

Ĉ(x)
.
= CT (x), T (x) = arg min

t∈B(x)
|Ct|.

Equivalently, T (x) is the deepest node in B(x). The corresponding confidence level for

the given data is then

p(x) = P (Y ∈ Ĉ(x)|X = x)

and the average confidence level is

Ep(X) = P (Y ∈ Ĉ(X)).

Given the definition of B(x), it follows that Ep(X) ≥ 1− ǫ.

Figure 4.13 illustrates the concepts above for a simplified hierarchical structure T

of 8 categories (c1, ..., c8). Here T (x) = t4 is the deepest node in B(x) = {t1, t4}, and

the resulting confidence set is the Ĉ = {c3, c4}.

The efficiency of this algorithm will be demonstrated in a variety of experiments in

Chapter 6, both in terms of comparing with other methods as well as generating high

confidence sets.



5.4 Relationship to non-Bayesian confidence sets

In classical (frequentist) statistics, there is no r.v. Y , only a family of probability

distributions {p(x|c)} indexed by a parameter c ∈ Y. A 100(1 − ǫ)% confidence set

for the true parameter c0 is a random set (i.e., data-dependent) which contains c0 with

probability 1− ǫ. For a continuous real-valued parameter, an interval is often centered

at a point estimate ĉ such as the maximum likelihood estimator ĉML = arg supc p(x|c).

Following this recipe we would begin with the maximum likelihood estimator ĉML,

which coincides with the MAP estimator argmaxc P (Y = c|X = x) in the Bayesian

case when the prior is uniform. The tree provides a neighborhood structure: a natural

way to “center” the CS at ĉML is to consider the subsets of categories along the path

from ĉML to the root. However, given such a set Ĉ(x) of categories containing ĉML(x),

computing P (c0 ∈ Ĉ(X)) would require knowing the distribution of the ML estimator

under c0, which appears difficult. The Bayesian argument gives this in an average sense.

(Note, however, that the CS constructed in the previous section does not necessarily

contain the MAP estimator, but nearly always does in practice.)

6 Summary

In this chapter, we have presented two classification methods, both based on a hierarchi-

cal structure of the data. The first method adopts a CTF strategy, where classification

proceeds systematically from coarse-grained to fine-grained characterizations, to finally

output the set of ”positive” leaf nodes. It uses a likelihood ratio framework based

on local (SVM) scores. The second considers all hierarchical nodes (internal and leaf

nodes) as potential candidates , i.e., confidence set candidates, and aims to output the

one whose expected size is minimized subject to containing the true estimate with high

probability. To this end, an analogy with confidence intervals in classical statistics is

considered and a model-based strategy is used.





Chapter 5

Identification scenarios

1 Introduction

Different levels of interactive identification can be considered depending on the difficulty

of the leaf data. The particular scenarios we consider were previously introduced in

Figure 1.13. Here, section 2 describes an automated system while sections 3 and 4

introduce semi-automated alternatives. All of these scenarios consider a single leaf

image. In section 5, we propose an identification process based on multiple images.

2 Baseline scenario

The baseline scenario is the standard one with no human intervention: given an image

of a leaf, usually scanned against a flat background, the system automatically provides a

single estimate of the true species. Given the different ingredients introduced previously,

we propose to use either the IdKey representation or the vantage feature frames within

a coarse-to-fine search. In such a framework, a tested image may arrive at no leaves, one

or more than one leaf in the tree. In the last case, the species returned by the system

is the one which gives the highest likelihood ratio Lt. The whole scenario is illustrated

in the top row of Figure 5.1. There is no human intervention neither at the beginning

nor at the end of the task. As shown in Figure 1.13, we apply this fully-automated

scenario only on scanned leaves, in order to be able to ensure a fair automatic IdKey or

vantage point detection. However, even with scanned leaves, the utility of this approach
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Figure 5.1: Given an input leaf image, three scenarios are proposed. A fully-automated
identification, i.e., baseline case (top row) and a semi-automated identification with
human intervention only at the end of the process, i.e., final disambiguation (middle
row) or at both the beginning and the end for initialization and final disambiguation
(bottom row).



Figure 5.2: A sample of test scanned leaves with non-singleton confidence sets (CS) of
species while a hierarchical clustering was used to get the CS candidates. For each CS,
a training image from each species is displayed. For each test image, the red species is
the true one. The CS are visually coherent.

is questionable due to relatively high error rates with large databases which contain very

similar species and display high variability within the same species. This motivates a

design of semi-automated systems.

3 Final disambiguation

Given a leaf image, vantage feature frames are first automatically detected and category-

dependent features are extracted as described in §4. Then, given the scores x for the leaf

image being processed, the Bayesian network model and fixing ǫ, we compute the sub-

path B(x) of T and finally provide Ĉ(x) to the user. The type of user intervention will

then depend on the needs and skills of the user. The novice user may simply accept Ĉ as

it stands or use reference material to narrow it down. A more skilled user may be able

to identify it if it resides in the set or recognize that it does not. Of course, the smaller



Figure 5.3: Examples of leaf photographs manually marked. For each image, displayed
are the leaf base (blue point), the leaf apex (red point) and a third boundary point
(yellow point). The approximate width (marked as s at each image) of the leaf is
defined as the distance between the yellow point and the apex-base line.

the confidence set, the more informative and useful it is. When a clustering principle

is used to build the hierarchy of CS candidates, we guarantee a visually coherent set

to the user; examples are shown in Figure 5.2. Several experiments in Chapter 6 will

demonstrate the efficiency of such a scenario on leaf images with uniform background

(e.g. scanned leaves).

Using a corse-to-fine classification within a likelihood framework, we can also provide

a set of estimates with the top k highest likelihood ratio Lt. However, in this case, we

can not ensure with a high probability that the true species is among the estimates. Of

course, the higher is k, the higher is the probability but the less useful is the system.



4 Initialization

For leaf images with a cluttered background, automatic detection of vantage points

requires a very efficient segmentation algorithm (robust to background noise and tex-

ture), which is not the case for the algorithm we use (Otsu) or any we are aware of. In

particular, it could be exceedingly difficult to automatically (and accurately) extract a

single leaf boundary from a branch or foliage image; see Figures 5.3 (middle and bottom

rows). Moreover, returning a P%CS is of little value in applications if either |CS| is

very large or P ≪ 100. The minimal intervention we can imagine is asking the user to

mark several landmarks; providing a faithful segmentation is another possibility but we

are able to obtain good results without this level of intervention.

We ask the user to mark the two terminals of the main vein of the leaf, the base

and the apex, as well as a third boundary point which will be used to approximate the

width of the leaf (see Figure 5.3). The centroid of the leaf is defined as the mid-point

of the apex-base line. Local features are then extracted in two coordinate systems, one

centered on the base and the other on the apex as described in Chapter 3. The same

classification process as in the previous scenario §3 is used to provide the user with a

CS. A summary of this scenario is provided in Figure 5.1 (bottom row). Some examples

of the CS returned are shown in Figure 5.4.

5 Multiple images

In a botanical field scenario where the basic unit of observation is a plant, botanists

can examine different samples of leaves from the same plant in order to determine the

species. In fact, one sample alone might not capture sufficient information for accurate

identification.

Using multiple-image queries rather than a single leaf image can then improve the

identification accuracy by taking advantage of the added information and the comple-

mentaries of different leaf appearances

First, we apply one of the identification scenarios described above to ensure both

quick and effective species estimation for each image query Qj . The set of estimates is

then ranked (depending on the strategy chosen, we can use likelihood ratios or posterior



Figure 5.4: A sample of test leaf photos (cluttered background) with non-singleton
confidence sets (CS) of species. For each CS, a training image from each species is
displayed. For each test image, the red species is the true one.



masses for ranking). Then, the individual ranked estimates are collated into a single set

of estimated species for Q. More specifically, they are combined by scoring each species

by the number of its occurrences at the first r ranks.

Let Ŷr denote the combined set of estimates at rank r for all the images of Q. The

rth species returned for Q, denoted ŷr, is then defined recursively as the most frequent

species in the union of {Ŷ1, ..., Ŷr} other than ŷ1, ..., ŷr−1. An illustrative example using

a hierarchical estimation of IdKeys is shown in Figure 5.5. This aggregation of results

improves the identification accuracy, as confirmed on several leaf datasets as described

in Chapter 6. It is also independent of the process used to estimate the species of each

query image. The same framework could then be used on other applications such as

using multiple organ queries.

For educational and decision-support purposes, one can also imagine to illustrate

each estimated species by a varied set of representative images in order to provide useful

information about the unknown plant (represented by Q) and its most closely related

species. In our setting, we illustrate each returned species with both the most similar

and the most different training leaf on average to the query. These additional images

illustrate both the intra-class variability and inter-class similarity (e.g., see the two first

estimated species for the first query, i.e., plant ID = 212, in Figure 5.6) and consequently

could be useful in studying similar species, for instance helping botanists discover new

relations or distinctions between or within different taxonomic groups.

Let MQ denote the feature vector obtained by averaging the individual feature

vectors over all Qj , so MQ represents the compound query Q. For each rank r, let ZIT

denote the feature vector of the training image IT from the same species as ŷr. Let

dQ,IT = ||MQ − ZIT ||

be the difference in L2 norm between Q and IT . Then, the most similar and the most

different training images toQ consist of those which respectively minimize and maximize

dQ,IT . Some examples are illustrated in Figure 5.6.



Figure 5.5: Species identification using botanical IdKeys and multiple image queries.



Figure 5.6: Examples of plant identification with multiple scanned leaf images, using
a hierarchical estimation of IdKeys within a likelihood framework. Each column shows
one example. For each example the top row shows the query plant which is represented
by three images, while rows 2-5 show the top four species returned (when they exist).
Each species returned is displayed with both the most similar (on the left) and the most
different (on the right) training image on average to the query and which belong to that
species. Correct species are framed with a green box.



6 Summary

This chapter presented different identification scenarios (i.e., both fully-automatic and

semi-automatic scenarios) using the different descriptions and classification processes

introduced in previous chapters. In each scenario, a complete identification process

is detailed. Educational and decision-support applications could then be considered.

Either a single or multiple leaf samples could be used. Here, an example of a natural

result aggregation is presented. Other state-of-the art methods could also be adopted.



Chapter 6

Experiments

1 Datasets

We considered five challenging leaf datasets from different geographical areas. Four of

them consist of images of single leaves on a white background (Swedish [104], Flavia

[119], ImageClef 2011 [50] and Smithsonian [7] datasets). The last one consists of

unconstrained photographs of leaves (ImageClef 2011 photo category [50]). We also

apply our approaches on a dataset of orchid flowers1.

1.1 Swedish leaves

This has 1125 scanned leaf images containing 75 images from each of 15 different Swedish

plant species; see Figure 6.1. This dataset was the first publicly available leaf data,

introduced by the authors of [104] for research. Although it contains relatively few

varieties of species (e.g., a single palmate leaf and only two compound species), we chose

it in order to be able to compare our work with various approaches, including generic

shape classification approaches [117, 45, 74] which were applied on leaves. Following all

previous work on this dataset, we randomly select 25 training images from each species

and test on the remaining images in order to evaluate our performance.

1Courtesy of Roland Martin and Errol Vela
2http://www.imageclef.org/2011/Plants
3http://www.tela-botanica.org/site:botanique
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Figure 6.1: Samples from the Swedish dataset. One image from each species is shown.

Figure 6.2: Samples from the Flavia dataset. One image from each species is shown.

1.2 Flavia leaves

The Flavia dataset is composed of 1907 scans of leaves. It consists of 32 species with

50-60 observations in each species. As we can see in Figure 6.2, this dataset contains

only simple leaves. It was introduced in [119] and was used to evaluate some leaf

classification algorithms [111, 35, 54]. Following [119], we used 10 leaves from each of

32 species to evaluate our performance, so that a total of 320 leaves are used for testing

the algorithms and the remaining leaves for training.

1.3 Smithsonian leaves

This leaf database has 6717 scanned leaf images containing 202 different species (148

simple species and 54 compound ones) from the Northeastern U.S area. The number

of exemplars per species varies from 2 to 63. These images were provided by the

Smithsonian botanical institution within the framework of the US National Herbarium.



Figure 6.3: Samples from the Smithsonian dataset. One image from each species is
shown.

One particularity of these data is that the images present various poses and orientations

of leaves as well as different structures of basal and apical parts as shown in Figure

6.3. Thus, good performance on such a dataset suggests robust and effective landmark

estimation. We use two-thirds of the images for training and one-third for testing.

1.4 ImageClef leaves

Used in the ImageCLEF2011 plant identification task2, this dataset contains three cate-

gories of images: scans of leaves acquired using a flat-bed scanner, scan-like leaf images

acquired using a digital camera and free natural photos. The complete leaf collection

consists of 71 species from the French Mediterranean and was constructed through a

citizen science initiative conducted by Telabotanica3, a French social network of ama-

teur and expert botanists (more details can be found in [50]). As a result, the task it

represents is quite close to the conditions encountered in a real-world application. Here,

we focus on both scans and photos; see Figure 6.4 and 6.5.

1. Scanned leaf subset : This category has 3070 scanned leaves. We consider the same

training and test sets as in the ImageCLEF2011 benchmark, i.e., 2349 images for

training and 721 test images. In particular, the training leaves were collected from

151 plants and those of the test set from other 55 plants.

2. Natural photo subset : This category has 1469 unconstrained photographs of leaves.

Again, the same training and test sets as in the benchmark are considered, i.e.,



Figure 6.4: Samples from the ImageClef2011 leaf scans. One image from each species
is shown.

930 images for training and 539 test images. Each image can represent either a

single leaf, a branch or a foliage as shown in Figure 1.12 (see the first Chapter).

In particular, the training leaves were collected from 269 plants and those of the

test set from 99 other plants. Not all the species were considered for testing. Only

samples from 26 species were available for testing using 40 training species.

1.5 Orchid flowers

There are 1610 images representing 23 species of a relatively rare orchid flower family

provided by the ”Mediterranean Orchid Society” (Société Méditerranéenne d’Orchidologie).1

2 Experiments and analyses

In this section, we evaluate the proposed approaches on the different datasets. Also, we

compare our results with previous work on plant identification.

2.1 IdKey estimation

As previously described, the IdKey estimation is hierarchical. First, we estimate the leaf

type, i.e., simple or compound. Depending on this first key value, we compute either



Figure 6.5: Samples from the ImageClef2011 leaf photos. One image from each species
is shown.

Table 6.1: Accuracy of IdKey estimation on several leaf datasets.

IdKeys Leaf type (simple or compound) Botanical points

Smithsonian leaves 98.4% 90.4%

Swedish leaves 99.2% 95%

ImagClef2011 leaves 95.8% 92.4%

three or four landmarks. Three landmarks are considered for simple leaves (centroid,

base and apex) and four landmarks for compound leaves (centroid, base, terminal apex

and second apex).

We achieve over 95% accuracy for leaf type estimation on different leaf datasets and

over 90% for botanical landmark detection as shown in Table 6.1, and thereby con-

firm efficient discrimination between simple and compound leaves as well as reasonable

invariance to shape and structure. The euclidian distance was used to evaluate the

landmark detection Dl = d(l̂ − l) where l̂ is the estimated landmark location, l is the

true landmark and d is the euclidian distance. The entire detection process is considered

erroneous if any point is not accurately detected, i.e., Dl ≥ 10 pixels for any landmark

l.

In each histogram in Figure 6.7, each bin i represents the percentage of tested images,



Figure 6.6: Samples from the Orchids dataset. One image from each species is shown.
Note that the color is not a discriminative feature; many differently colored orchids
could belong to the same genus or species.

from the Swedish dataset, in which Dl ∈ [xi, xi+1[, where {xi} goes from 0 pixels to 100

pixels by steps of 10 pixels. It should be noted that 10 pixels represents 2.5% of the

average width of the tested images. In fact, the tested images have different sizes: the

average width is about 400 pixels and the average height is about 380 pixels. We notice

that for both the terminal apex and the base, the distance Dl between the estimated

point and the actual point is fewer than 10 pixels about 95% of the time. The few cases

in which Dl ≥ 100 pixels (last bin), often correspond to a confusion between the two

points, i.e., the actual base is identified as the terminal apex and the actual terminal

apex is identified as the base.

2.2 Vantage point detection

We evaluate vantage point detection for both leaves and orchid flowers. We recall that

vantage points refer to the apex and the base points for leaves and to the tip of the

central sepal and the bottom of the labellum for orchid flowers. We achieve over 90%

accuracy for vantage point detection either for leaves or Orchid flowers as shown in

Table 6.2. Figure 6.8 shows vantage point detection results for orchids and different

type of leaves (e.g., toothed, lobed, concave, convex, symmetric, asymmetric). We used

the same metric described above to evaluate the detection accuracy.

An accurate point detection is important for a correct identification. Over 80% of



Figure 6.7: Botanical landmark estimation on the Swedish dataset. (a) Histogram of
the distances between the estimated terminal apex and the actual one. (b) Histogram
of the distances between the estimated base and the actual one.

Dataset Detection Rate

Smithsonian leaves 92%

Swedish leaves 96%

ImageCLEF leaves 93%

Orchids 95%

Table 6.2: Accuracy of vantage point detection on several leaf datasets.

leaf images in which point detection was considered erroneous were incorrectly identified,

especially those in which the system mixes up the base and the apex; examples include

those of Figure 6.9.

2.3 Coarse-To-Fine (CTF) classification

Here, we evaluate the CTF strategy within the likelihood framework. We use both the

IdKey representation and the Vantage Feature Frames (VFF).

We provide the rate on the holdout test data at which the true species coincides

with our top estimate (”top-1”) and appears among our top five estimates (”top-5”)

using both single and multiple-image queries.

For both the Smithsonian and Swedish subsets, a multiple-image query represents

random images from the same species since there is no information about the plants

used in these datasets. However, for ImageCLEF2011, we re-organized the testing data



Figure 6.8: Random sample of test images with the estimated vantage points for both
Smithsonian leaves and orchids. False detections are framed with a red box. Note that
the entire detection process is considered erroneous if any vantage point is not accurately
detected.

to extract the different testing plants and to be able to evaluate the efficiency of our

approach in the conditions of a real-world application. Note that there is no plant used

in both the testing and training sets. Rather than using all the test images, we consider

only random images of different plants, i.e., we compute the recognition rate for the 55

plants of this dataset. Each query represents a single or multiple image(s) of the same

plant.

Swedish Data: We first compare our results with the state-of-the-art results on this

dataset, including those of the IDSC [74], the Shape-Tree [45] and sPACT [116] meth-

ods which all use single image queries. We achieve the best performances using the

IdKeys approach (also using single image queries) with over 98% accuracy for the top-1

estimate using either IdKey or VFF representation; see Table 6.3. However, a ”flat

classification” using one-vs-all SVM’s and VFF representation (F-SVM in Table 6.3)

yields only 93.3% accuracy while only considering the species with the highest SVM

score. Using a hierarchical model is clearly of value for this dataset.

Smithsonian Data: Table 6.4 reports the recognition rates for both the top-1 and

the top-5 responses with CTF classification using the IdKey representation as well as

different numbers of images per query. The correct species appears in the top-5 over



Figure 6.9: Example of leaves for which the system mixes up the base and the apex.
Note that those leaves have either a very small or no petiole and reveal a very similar
shape in their both extremities.

Table 6.3: Results of different methods on the Swedish data.

Methods Perf. (top-1)

IdKeys + 5 images/Query 100%

IdKeys 98.4%

VFF 98.4%

sPACT [116] 97.92%

TSLA [82] 96.53%

Shape-Tree [45] 96.28%

SPTC+DP [74] 95.33%

IDSC+DP [74] 94.13%

F-SVM 93.3%

SC+DP [74] 88.12%

Söderkvist [104] 82.40%

95% of the time considering multiple-image queries. In particular, we achieve 78.5%

accuracy for the top-ranked species using a single image per query and over 90% using

10 images.

Table 6.5 reports the recognition rates for both the top-1 and the top-5 responses

while considering a CTF classification using the Vantage Feature Frames. The VFF

representation improves the performance of the CTF search by achieving 92% of accu-

racy (instead of 88.4% using IdKeys) while considering the top-5 estimates for a single

test image. VFF are not only more generic but could also be more efficient than the

hierarchical representation of IdKeys which was dedicated only to leaves.

Orchid Data: To the best of our knowledge, there is no previous work on this family of



Table 6.4: Performance of our CTF classification using IdKeys on the Smithsonian data.

Nb images/Query 1 3 5 10

Perf. (top-1) 78.5% 85.3% 89.1% 90.6%

Perf. (top-5) 88.4% 95.3% 96.7% 95.1%

Table 6.5: Performance of our CTF classification using VFF on the Smithsonian data

Nb images/Query 1 3 5 10

Perf. (top-1) 79.6% 86.2% 89.7% 90.2%

Perf. (top-5) 92% 94.6% 95.2% 94.8%

flowers. We applied the Vantage Feature Frame approach within a CTF search on this

data to demonstrate how it could be readily applied to a different type of closely-related

botanical species. We achieve 81% accuracy for the top-ranked species (n = 1) and 97%

for n = 5 as shown Table 6.6.

ImageCLEF2011 Data: Finally, we apply our approach in a real-world context using

a set of leaf images from the same plant for each query thanks to the additional infor-

mation provided with this dataset. Table 6.7 shows our performance when considering

different numbers of images per query for both the top-1 and the top-5 responses. In

particular, using multiple-image queries improves the identification performance, reach-

ing over 95% accuracy for the top-5 estimates. The results on a random sample of test

plants is shown in Figure 5.6. Of particular note is first the high similarity between

leaves of some species and the variation in appearance of leaves within others; for exam-

ple, note the visual difference between the leaf images of the first plant (plant ID=212)

and those from the training set. This is essentially due to the use of different plants

and conditions to collect training and test data.

n 1 2 3 4 5

Orchid data 81% 92% 94% 96% 97%

Table 6.6: Recognition rates using Vantage Feature Frames on Orchid flowers.



Table 6.7: Performance of CTF classification using IdKeys on the ImageClef2011 data

Nb images/Query 1 3 5 10

Perf. (top-1) 61.8% 65.5% 74.5% 78.2%

Perf. (top-5) 83.6% 98.2% 96.4% 96.4%

2.4 Confidence sets

We evaluate the confidence set based classification. For ease of notation, we label three

scenarios:

• CS0: The confidence set CS is generated by ranking the posterior probabilities

and accumulating species until the total mass exceeds 1− ǫ; see §5.

• CS1: The process is automatically initialized and the Ĉ used is described in §3.

Note that the size of Ĉ is necessarily at least as large as the CS returned by CS0.

• CS2: The process is manually initialized and the Ĉ used is described in §4.

We will also refer to the baseline cases where the confidence set is restricted to a

singleton by considering only the species in CS with the highest posterior mass.

To evaluate the performance of the proposed framework, we first provide the rate

on the holdout test data at which the true species appears among the list of estimates,

and second analyze the size of the response.

In order to be able to compare our performance with that of other methods, we will

also adopt other evaluation metrics: (1) the accuracy rate among the top k estimates

for the Swedish, Flavia, and Smithsonian datasets, (2) the evaluation metric1 used for

the ImageCLEF2011 plant identification task, for the ImageCLEF photo subset, which

allows us to compare our performance with that of all the task participants. Such a

metric refers to a normalized classification rate evaluated on the first species returned

for each test image while taking into account the individual plant and the author (more

details about the metric definition and the participants can be found in [50]). In all the

following experiments , we use ǫ = 0.01.

Before focusing on the identification results, we recall that the CS classification

approach leverages certain sets of species from a predefined hierarchy based on a hierar-

chical clustering as described in §2. Two hierarchies are illustrated in Figures 6.10 and



Table 6.8: Comparison between CS0 and CS1 on the Swedish dataset.

Scenario Accuracy Average size of the response

CS0 99.2% 1.2

CS1 99.5% 1.3

6.11 for the Swedish and the Flavia datasets, respectively. Note the visual similarity of

the grouped species which makes the confidence sets visually coherent.

Figure 6.10: A dendrogram representing a hierarchical clustering of Swedish species.
Displayed are the nested groupings of species, similarity levels at which groupings
change, and a thumbnail from each species.

Swedish Data: We use this dataset to evaluate CS1. As shown in Table 6.8, the

correct species belongs to the CS returned at 99.5% of the time while applying the CS1

scenario and at 99.2% while applying CS0. Figure 6.12 illustrates the distribution of

the size of the CS while applying both scenarios. The average size is less than 1.5; see

Table 6.8. Both of CS1 and CS0 do achieve near-perfect results while returning a single

estimate at most of the time. By construction, both strategies are equivalent when only

one estimate is returned. Note that one advantage of the proposed approach compared

with CS0 is that CS1provides visually coherent sets for the user; see Figure 5.2. An

additional advantage will be demonstrated on the Smithsonian and the ImageClef data.

In order to be able to compare CS1 with previous work using the same evaluation

framework, we use the baseline strategy. That is, we provide only the species in CS



Figure 6.11: A dendrogram representing a hierarchical clustering of Flavia species.

Table 6.9: Comparison between CS0 and CS1 on the Flavia dataset.

Scenario Accuracy Average size of the response

CS0 97.1% 1.6

CS1 98.1% 2.2

with the highest posterior mass. We achieve better performance than CTF classification

while considering the top-1 estimate (98.7% vs. 98.4% as described in Table 6.3).

Flavia Data: As with the Swedish leaves, we do achieve near-perfect results: using

CS1, the average size of the response is 2.2 for an accuracy rate of 98.1% as shown

in Table 6.9. Figure 6.13 illustrates the distribution of Ĉ while applying both CS0

and CS1. We have |Ĉ| = 1 87.5% of the time. Also, we notice from Table 6.9 that

CS1 outperforms CS0 in accuracy. It does so at the expense of providing slightly more

estimates on average.

Finally, we use the same evaluation framework as in [119] to enable a direct com-

parison with some previous methods. We consider only a single estimate. As shown

in Table 6.10, we outperform other methods, including the SVM-based flat classifier

(F-SVM), by returning the species in Ĉ with the highest posterior mass.

Smithsonian Data: With CS1, we achieve 92% accuracy while returning about 5

estimates on average; the accuracy with CS0 is 90%. As shown in Figure 6.14, we do

return a single estimate about 93.2% of the time. In order to be able to compare CS1



Figure 6.12: The distribution of |Ĉ|, the size of the CS returned, for both methods of
constructing the CS when testing on the Swedish leaves.

Table 6.10: Different results on the Flavia data while considering a single estimate
(top-1).

Methods Accuracy

CS1 - baseline case 97%

F-SVM 94%

RBFNN [35] 94%

MLNN [35] 94%

1-NN [54] 93%

MMC [111] 92%

BPNN [111] 92%

RBPNN [54] 91%

PNN [119] 90%



Figure 6.13: The distribution of |Ĉ|, the size of the CS returned, while testing on the
Flavia leaves.

with CTF classification on such a dataset, we rank the list of species in Ĉ for each test

image, using their posterior masses. In this case, we also achieve about 90% accuracy

for the top response compared with 79.6% for using CTF strategy within the VFF

description where achieving about 90% accuracy required using the top five responses.

Whereas using both strategies, the CS is estimated by the model to capture the true

species with very high probability, this of course does not necessarily occur in practice

due to errors in estimating the true posterior distribution. To illustrate this, Figure 6.15

shows the distribution of the posterior masses of the true species on the Smithsonian

leaves. Note the high value (at least 0.9) for the majority of the tested images; in

this special case, CS0 is equivalent to CS1 as both achieve perfect results. However,

CS1 is more efficient when the true species has low mass under the model; the CS1

strategy can recover from such a catastrophic error in estimation due to the way the

CS is constructed as long as there are species with non-trivial posterior masses which

are visually similar to the true one. In Figure 6.15, 10.4% of the images for which the

posterior probability of the true species is less than 0.1 were missed by CS0 but not by

CS1, but never vice-versa.

ImageCLEF Data: Finally, we apply our approach in a real-world context using

unconstrained photographs. For this subset, we focus on CS2, using human input

to mark some landmarks at the beginning of the process as explained in §4. First, we



Figure 6.14: The distribution of |Ĉ|, the size of the CS returned, while testing on the
Smithsonian leaves.

Figure 6.15: The histogram (in blue) of the posterior masses on the true species for the
leaves in the Smithsonian dataset. The two tables compare the performance of CS1 and
CS0 at the two extremes, i.e., when the posterior mass on the true species is very low
and very high. In the former case (drastic estimation error), the CS1 strategy is able to
recover (generate a CS with the true species) but CS0 does not for 10.4% of the images,
but there are no images for which the opposite occurs, i.e., CS0 succeeds but CS1 does
not.



Figure 6.16: Classification scores on the leaf photos of the ImageCLEF2011 dataset. In
red are the scores of the methods which use segmentation and in blue are the scores of
those which do not use segmentation.

compare our method with the entries to the ImageCLEF2011 plant identification task on

the photo category. (Again, we rank the list of species in Ĉ using their posterior masses.)

In this task, each entry was assigned a normalized classification score s1 as explained

in §1. Figure 6.16 shows the scores of all the submitted runs of the eight participants;

details about the participants can be found in [50]. We achieve the best score: s = 0.525.

More specifically, two groups can be formed among the participants: the methods which

use segmentation process (in red) and those which do not use segmentation (in blue).

One can notice a relatively big gap between these two groups in terms of performance,

i.e., there is a difference of about ±0.3 between the best scores of the two groups; see

Figure 6.16. We outperform all the previous work on such data, including segmentation-

based methods. Note that the best score (s = 0.523 for ”IFSC UPS run2”) among the

participants was obtained using amanual segmentation which is not feasible in real-word

application.

Figure 6.17 illustrates the distribution of |Ĉ] while applying CS2 to the Image-

CLEF2011 photos. About 50% of the time we find |Ĉ| ≤ 10. However, we only achieve

58.4% accuracy due to the difficulty of this task compared with identifying leaves on an

uniform background; evidently, the posterior probabilities are poorly estimated. Figure



Figure 6.17: The distribution of |Ĉ|, the size of the CS returned, while testing on
ImageCLEF2011 leaf photos. The blue histogram is CS2 and the red is CS0, both with
manual landmark identification.

6.18 shows the distribution of the posterior masses of the true species on the Image-

Clef2011 photos. In contrast with Figure 6.15, note the low value (less than 0.1) of this

mass for the majority of the tested images, which accounts for the even lower accuracy

of CS0 strategy, namely 38.4%. The superior performance of CS2 occurs because for

32.5% of the images for which the posterior mass on the true species is less than 0.1,

the CS generated by CS0 does not contain the true species but the one generated by

CS2 does.

Moreover, additional issues are revealed from a more detailed analysis and which

would explain the relatively low accuracy rate (comparing to other data). Figure 6.19

illustrates the different accuracies obtained per species. We completely fail to recognize

those which have only few training samples (between zero and six); see the red boxes in

Figure 6.19. Note that four tested species do not appear among the training species and

these represent about 12% of the test images. Also, using different image types (i.e.,

leaf, branch and foliage photos) has made the task more challenging, especially since the

number of samples per image type is not balanced. For example, one has only very few

foliage images to predict a picked leaf image from the same species. However, we man-

age to recognize species from different image types with approximatively ”equivalent”

performance, especially for branch and foliage photos as shown in Table 6.11.



Figure 6.18: The histogram (in blue) of the posterior masses on the true species for the
ImageClef2011 photos. The two tables compare the performance of CS2 and CS0 at
the two extremes, i.e., when the posterior mass on the true species is very low and very
high. Among the low ones, the the CS2 strategy succeeds and the CS0 strategy does
not in 32.5% of the cases, but never the opposite.

Figure 6.19: Illustration of the performance per species on the ImageCLEF photo subset.
Each bin is labeled by two numbers separated by a slash. The first one refers to the
number of training samples in the species considered and the second one refers to the
number of testing samples.



Table 6.11: Performance of CS2 on different image types of ImageCLEF2011 photos.

Image type Accuracy

Leaf 53.4%

Branch 60.3%

Foliage 61.5%

Figure 6.20: Random sample of incorrectly identified imageCLEF2011 leaf photos.

More generally, the quality of the photographs affects the performance. Of course, a

well-photographed leaf would be easier to identify and also well-photographed training

samples would lead to a better learning algorithm. For example, a close-up photo where

the leaf covers a large part of the picture is sharp whereas the background is optically

blurred due to a short deep-of-field would provide more useful visual content than a

picture which is globally blurred or in which the leaf is out of focus, too damaged (e.g.,

dry leaves), too small or/and the background is predominant with a sharp visual content

like grass or foliage of other plants, etc. Figure 6.20 illustrates some cases of failure.

Finally, experiments on the ImageCLEF photo subset demonstrate the efficiency of

the proposed scenarios using multiple leaf images of an unknown plant. Note that we

use here only the imageCLEF data since they are the only leaf images for which we know

the plant identity thanks to the additional annotation provided with this dataset; see §1.



We improved to 74.5% accuracy (a gain of 16.1%) and the normalized ImageCLEF2011

score reaches s = 0.626 (a gain of about 0.01).

3 Summary

This chapter describes the performance of different identification scenarios using several

leaf databases of differing difficulty. We have compared and analyzed different results.

We have outperformed several state-of-the art methods and baselines, including a flat

classification based on one-vs-all SVM’s. The key point is that we have investigated

both description and classification algorithms. We believe that both of these ingredi-

ents should be efficient to achieve near-perfect results, especially for fine-grained cate-

gorization. Each of the proposed algorithms could also be used in different applications.

Extensions focus on experiments on larger datasets or other kind of images, in order to

test, for example, the performance of the confidence set based classification.





Chapter 7

Conclusion

1 Summary of contributions

Stored images of biological objects are accumulating at a staggering rate due to new sen-

sor technologies, their expanding use in web-based search engines and growing demands

for web-based services in traditional sciences such as botany. These developments have

been accompanied by an increasing demand for the automated analysis and more fine-

grained discrimination of these data. In this dissertation, we investigated fine-grained

issues, focusing on determining botanical species from leaf images, and considered the

whole chain of an identification process, including object description and representation

as well as classification algorithms and identification scenarios.

In Chapter 3, we introduced a novel object representation which is derived from

domain knowledge in the form of IdKeys, and built a hierarchical representation of

botanical keys which is dedicated to leaves. The keys are determined sequentially and

prime the identification of the species. The main point is to refine the leaf descrip-

tion and thus narrow down the set of possible estimates. To obtain higher efficiency

and a generic representation, we also investigated discriminating feature frames which

are centered on botanical vantage points. The different characteristics of these frames,

namely, the geometric and the appearance-based components, combine to provide the

cues needed to distinguish between closely-related objects such as leaves or orchid flow-

ers.
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Using such descriptions, we began with a baseline identification scenarios, i.e., pro-

viding the user with a single estimate or a ranked list of the top-k estimates. For

this, we have adopted a coarse-to-fine classification strategy based on a likelihood ratio

framework using local (SVM) scores. The key point was to be able to exploit shared

attributes and the hierarchical nature of the data (see §4).

In order to improve the accuracy and thus the utility of our identification system,

we introduced in §5 the concept of confidence sets in analogy with confidence sets in

classical statistics. The idea was to output a set of categories which contains the true

one with high probability, rather than a point estimate (or a ranked list). Our approach

was model-based and Bayesian. The expected size of the confidence set plays the role of

the width of the confidence interval in standard statistics and the posterior probability

that the true category belongs to the confidence set plays the role of the confidence

level. We have also investigated the use of multiple leaf images to identify a plant in

order to take advantage of the complementaries of different leaf appearances, there by

further improves the recognition rates.

Both fully-automated and semi-automated identifications have been explored as de-

scribed in Chapter 5. We have shown that different levels of interactive identification

could be considered depending on the difficulty of the data. The user could participate

either at the end or the beginning of the process in order to ensure an accurate and

useful system, especially for the most difficult cases. For example, we proposed manual

initialization of the process by asking the user to mark some well-defined landmarks

in order even attempt to identify leaves against cluttered backgrounds (i.e., natural

photos) without a burdensome and error-prone segmentation process. Also, providing

the user with a visually coherent confidence set of categories makes the system usable

by either an amateur or a botanist. While the amateur may simply accept the system

output or use reference material to narrow it down, the botanist may be able to identify

the correct species if it resides in the set or recognize that it does not. In both cases,

such an automated system can dramatically speed up identification and classification.



2 Future work

Automatic landmark definition

Either for defining IdKeys or vantage points, we have taken advantage of the specific

domain knowledge in botany. So far, landmark definition has been manual. The IdKey

hierarchy has been manually crafted and the vantage point candidates have been pro-

vided by experts. Automatically determining candidate landmarks for constructing the

vantage feature frames would make our object representation system more generic and

practical for fine-grained categories other than botanical species, removing the need of

expert intervention which could be expensive in some fields. Learning such landmarks

of interest from scratch would evidently be a major challenge that we would like to

attempt.

Cluttered photos

We believe that an important contribution of our work was to reveal the efficiency

of our approach on natural leaf photos compared with the state-of-the-art methods.

However, while applying our methods on photos, we have realized that, unlike scans,

different types of images can be taken for a single organ. In the case of leaves, one

can photograph a picked leaf, a branch or foliage, which can add further challenges to

automated systems. As shown in Chapter 6, even if we outperformed the current state-

of-the-art, we did not reach very high accuracy as with scans. Further improvements

are necessary to increase the recognition rates on unconstrained photographs of leaves.

An interesting idea might be to separate the different types of photos and process them

independently (and maybe differently). For example, it is obvious that it could be

extremely difficult to identify an image of a single leaf using images of dense foliage.

Multiple organs

Using multiple leaf images per plant can, obviously, improve the recognition rates.

Also, considering images of different organs as well as leaves (e.g., flowers and fruits)

could potentially improve recognition and render fine-grained categorization of plants

of further interest to amateurs and botanists alike. One perspective is to extend our



framework to support other organs and design a procedure for resolving ambiguities by

a form of improvised, on-line learning.

Non-botanical objects

So far, we have only considered botanical objects, especially leaves. Further work re-

mains to be carried out towards extending our framework to support other kinds of

biological objects. A short-term extension of this work is to test our classification frame-

work on other fine-grained categories but using appropriate features and hierarchical

representations of the data.
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[51] H. Goëau, P. Bonnet, A. Joly, I. Yahiaoui, D. Barthelemy, N. Boujemaa, and J.-F.

Molino. The imageclef 2012 plant identification task. In CLEF (Online Working

Notes/Labs/Workshop), 2012.

[52] E. Grall-Maes and P. Beauseroy. Optimal decision rule with class-selective rejec-

tion and performance constraints. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 31(11):2073–2082, 2009.

[53] T. A. P. GROUP. An update of the angiosperm phylogeny group classification

for the orders and families of flowering plants: Apg iii. Botanical Journal of the

Linnean Society, 161(2):105–121, 2009.

[54] X. Gu, J.-X. Du, and X.-F. Wang. Leaf recognition based on the combination of

wavelet transform and gaussian interpolation. In Advances In Intelligent Com-

puting, pages 253–262. Springer, 2005.

[55] S. S. Gupta. On some multiple decision (selection and ranking) rules. Techno-

metrics, 7(2):225–245, 1965.

[56] T. M. Ha. The optimum class-selective rejection rule. IEEE Trans. Pattern Anal.

Mach. Intell., 19(6):608–615, 1997.

[57] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision

conference, volume 15, page 50. Manchester, UK, 1988.

[58] T. Hastie and R. Tibshirani. Classification by pairwise coupling, 1998.

[59] T. HORIUCHI. class-selective rejection rules to minimize the maximum distance

between selected classes. Pattern Recognition, 31(10):1579 – 1588, 1998.

[60] C. Im, H. Nishida, and T. L. Kunii. A hierarchical method of recognizing plant

species by leaf shapes. In MVA, pages 158–161, 1998.

[61] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Comput. Surv., 31(3):264–323, Sept. 1999.

[62] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study.

Intelligent data analysis, 6(5):429–449, 2002.

[63] F. V. Jensen. An introduction to Bayesian networks, volume 210. UCL press

London, 1996.



[64] R. Jensen, K. Ciofani, and L. Miramont. Lines, outlines, and landmarks: Mor-

phometric analyses of leaves of acer rubrum, acer saccharinum (aceraceae) and

their hybrid. Taxon, 2002.
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Fine-Grained Object Categorization: Plant Species
Identification

Asma REJEB SFAR

RESUME : Nous étudions la problématique de classification dite fine en se concentrant sur la détermination
des espèces botaniques à partir d’images de feuilles. Nous nous intéressons aussi bien à la description et la
représentation de l’objet qu’aux algorithmes de classification et des scénarios d’identification utiles à l’utilisateur.
Nous nous inspirons du processus manuel des botanistes pour introduire une nouvelle représentation hiérarchique
des feuilles. Nous proposons aussi un nouveau mécanisme permettant d’attirer l’attention au tour de certains
points caractéristiques de l’objet et d’apprendre des signatures spécifiques à chaque catégorie.
Nous adoptons une stratégie de classification hiérarchique utilisant une série de classifieurs locaux allant des plus
grossiers vers les plus fins; la classification locale étant basée sur des rapports de vraisemblance. L’algorithme
fournit une liste d’estimations ordonnées selon leurs rapports de vraisemblance. Motivés par les applications,
nous introduisons un autre scénario proposant à l’utilisateur un ensemble de confiance contenant la bonne espèce
avec une probabilité très élevée. Un nouveau critère de performance est donc considéré: la taille de l’ensemble
retourné. Nous proposons un modèle probabiliste permettant de produire de tels ensembles de confiance. Toutes
les méthodes sont illustrées sur plusieurs bases de feuilles ainsi que des comparaisons avec les méthodes existantes.

MOTS-CLEFS: Classification fine, représentation hiérarchique, ensemble de confiance, identification de
plantes

ABSTRACT: We introduce models for fine-grained categorization, focusing on determining
botanical species from leaf images. Images with both uniform and cluttered background are considered
and several identification scenarios are presented, including different levels of human participation.
Both feature extraction and classification algorithms are investigated.
We first leverage domain knowledge from botany to build a hierarchical representation of leaves based
on IdKeys, which encode invariable characteristics, and refer to geometric properties (i.e., landmarks)
and groups of species (e.g., taxonomic categories). The main idea is to sequentially refine the object
description and thus narrow down the set of candidates during the identification task. We also
introduce vantage feature frames as a more generic object representation and a mechanism for focusing
attention around several vantage points (where to look) and learning dedicated features (what to
compute).
Based on an underlying coarse-to-fine hierarchy, categorization then proceeds from coarse-grained to
fine-grained using local classifiers which are based on likelihood ratios. Motivated by applications,
we also introduce on a new approach and performance criterion: report a subset of species whose
expected size is minimized subject to containing the true species with high probability. The approach
is model-based and outputs a confidence set in analogy with confidence intervals in classical statistics.
All methods are illustrated on multiple leaf datasets with comparisons to existing methods.

KEY-WORDS: Fine-grained categorization, hierarchical representation, confidence set, plant
identification.


