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Sur la dynamique d’équations des ondes
avec non-linéarité énergie critique focalisante

Résumé. Cette these est consacrée a I'étude du comportement global des solutions de
I’équation des ondes énergie-critique focalisante. On s’intéresse tout spécialement & la des-
cription de la dynamique du systéeme dans ’espace d’énergie. Nous développons une variante
de la méthode d’énergie qui permet de construire des solutions explosives de type II, in-
stables. Ensuite, par une démarche similaire, nous donnons le premier exemple d’une solu-
tion radiale de ’équation des ondes énergie-critique qui converge dans ’espace d’énergie vers
une superposition de deux états stationnaires (bulles). En appliquant notre méthode au cas
de I’équation des ondes des applications harmoniques (wave map), nous obtenons des solu-
tions de type bulle-antibulle, en toute classe d’équivariance k > 2. Pour ’équation des ondes
énergie-critique radiale, nous étudions également le lien entre la vitesse de ’explosion de type
IT et la limite faible de la solution au moment de I’explosion. Finalement, nous montrons qu’il
est impossible qu’'une solution radiale converge vers une superposition de deux bulles ayant
les signes opposés.

Mots-clés : Equation des ondes, non linéarité énergie-critique, explosion, multi-soliton

On the dynamics of energy-critical focusing wave equations

Abstract. In this thesis we study the global behavior of solutions of the energy-critical
focusing nonlinear wave equation, with a special emphasis on the description of the dynamics
in the energy space. We develop a new approach, based on the energy method, to constructing
unstable type II blow-up solutions. Next, we give the first example of a radial two-bubble
solution of the energy-critical wave equation. By implementing this construction in the case
of the equivariant wave map equation, we obtain bubble-antibubble solutions in equivariance
classes kK > 2. We also study the relationship between the speed of a type II blow-up and
the weak limit of the solution at the blow-up time. Finally, we prove that there are no pure
radial two-bubbles with opposite signs for the energy-critical wave equation.

Keywords. Wave equation, energy-critical nonlinearity, blow-up, multisoliton
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Chapitre 1

Introduction (version francgaise)

1 Généralités sur des équations des ondes

L’objet de ce mémoire est d’étudier certains phénomenes non linéaires dans le comporte-
ment dynamique de solutions d’équations des ondes. On considere des solutions radiales de
I’équation des ondes avec la non-linéarité focalisante énergie critique en dimension N > 3 :
4
Otu(t, x) = Au(t, ) + |u(t, z)| ¥—2u(t, z), (t,z) e R x RY, (NLW)
et des solutions k-équivariantes de I’équation des ondes des applications harmoniques (wave
map) de R!*2 dans la sphere S? :
9 9 1 k2
Ofu(t,r) = Ozu(t,r) + ;aru(t,r) ~ 53 sin(2u(t,r)), (t,r) € R x (0,400). (WM)

Avant de commenter les principaux résultats de la thése, placons brievement le sujet de
la théorie globale des équations des ondes dans une perspective historique.

1.1 Préliminaires

Les équations des ondes non linéaires les plus simples s’écrivent sous la forme

Otu(t,z) = Au(t,z) + f(z,u(t,z)), (t,z) € R x RY, 4

u(to, ©) = ug(z), du(ty,z) =uo(x), xRV, '
ou A est le laplacien en N variables spatiales et f est une fonction scalaire suffisamment
réguliere de 2 variables réelles telle que f(x,0) = 0. Cette équation possede une structure
hamiltonienne naturelle. Pour le voir, posons F(xz,u) := [;' f(z,v)dv et définissons la fonc-
tionnelle d’énergie :

E:CPRY) x CRY) 3 u = (u, 1) — E(u) €R,
1 1
Emy:/ Li@)? + 21vu@)2 - F(e, u(z)) de.
RN 2 2
L’équation (1.1) peut étre écrite de maniere équivalente sous la forme

ou = JoDE(u),
{ ulto) = o, (1.2)

0
—I1d 0
sur C° x Cg° et u = (u, ) est un élément de 'espace des phases C§° x C§°.

ol D est la dérivée de Fréchet, J := < ) représente la forme symplectique naturelle
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2 CHAPITRE I. INTRODUCTION (VERSION FRANCAISE)

On note (u,v) := [pn u- v+ - dz. Soit u(t) une solution classique de 'équation (1.2)
sur lintervalle (t1,t2). D’apres la régle de dérivation d’une fonction composée on a
d

3 Z(u(®) = (DE(u(t)), du(t)) = (DE(u(t)), J o DE(u(t)) = 0, (1.3)

donc E(u(t)) est une loi de conservation.

1.2 Remarques historiques

L’histoire de la résolution locale en temps du probleme de Cauchy remonte au moins jusqu’au
théoreme de Cauchy-Kowalevski, qui garantit, dans le cas d’une non-linéarité analytique,
I’existence d’une unique solution analytique pour toute donnée initiale analytique. Cependant,
la résolution globale en temps est essentielle du point de vue physique, et le premier résultat
dans cette direction a été obtenu par Jorgens [43], suivi par des versions plus abstraites de
Browder [7] et Segal [83]. Enoncons le résultat dans le cas le plus simple de équation de
Klein-Gordon cubique, défocalisante, en dimension 1+ 3, autrement dit I’équation (1.1) avec
flz,u) = —u—u?:

Qtu(t,x) = Au(t, ) —u(t,z) — u(t, z)3, (t,z) € R x R3. (1.4)

Théoréme 1.1 (Jérgens, Browder, Segal). Pour toute donnée initiale u(to) = ug € H*(R3) x
L?(R3), il existe une unique solution globale u(t) de (1.4). De plus, si ug € H**' x H* avec
k € N, alors u € C(R; H*1 x HF).

Remarque 1.2. Plus loin dans cette section nous clarifions la notion de solution dans le
cadre non lisse.

La partie essentielle de la preuve consiste a établir le résultat suivant d’existence locale :

Proposition 1.3. Pour toute donnée initiale u(to) = ug € H'(R3) x L?(R3), il existe une
unique solution mazimale w(t) : (T_,Ty) — H'xL? de (1.4). De plus, si ug € H*1 x H* avec
k€N, alors u € C((T_,T}); H**1 x H*). Si Ty < 400, alors limy_7, ||u(t)||gixre = +00
(de méme pour T_ > —o0). Enfin, sur les intervalles de temps compacts, la solution dépend
continiment de la donnée initiale dans la topologie H*' x H* pour tout k € N.

Par (1.3) et argument habituel d’approximation, on voit que si u(t) est la solution donnée
par la Proposition 1.3, alors I’énergie

1. . 1 1 1
B(u(t)) = /R Sl @) + S Vult, ) + St 2)P + ()| da

a une valeur constante. Mais cela implique que la norme ||w(t)||g1xz2 reste bornée, ce qui
démontre le Théoreme 1.1.

Comme la non-linéarité est défocalisante, on peut conjecturer que les solutions doivent
décroitre ponctuellement au moins comme les solutions de ’équation linéaire, rendant ainsi
les effets non linéaires négligeables. Par conséquent, le comportement asymptotique de toute
solution serait celui d’une solution de 1’équation de Klein-Gordon libre. Ce probléeme s’est
avéré difficile et a été résolu dans les années 80 par Brenner [6], avec des contributions
importantes de Morawetz et Strauss [70].

Théoréme 1.4 (Brenner, Morawetz, Strauss). Soit u(t) une solution de (1.4) et soit Uy(t)
le propagateur de Klein-Gordon linéaire. Alors Up(—t)u(t) a une limite forte dans l’espace
H' x L? quand t — +o0.



1. GENERALITES SUR DES EQUATIONS DES ONDES 3

Remarque 1.5. L’exsitence de la limite faible est relativement élémentaire et est connue
depuis les années 60.

Pour ainsi dire, le comportement dynamique des solutions de 1’équation (1.4) n’est pas
tres différent de la dynamique de I’équation linéaire, au moins dans ’espace d’énergie. Dans
la justification de ce résultat, le caractere défocalisant de la non-linéarité ainsi que sa crois-
sance en 400 (u?) jouent un réle décisif. Il est naturel d’examiner le cas d'une non-linéarité
focalisante ou avec une croissance plus rapide en 0o (par exemple u®), et c’est précisément
ce qui va nous occuper dans les deux prochains paragraphes.

1.3 Effets de la non-linéarité focalisante

Considérons 'équation (1.1) avec f(z,u) = —u+u3 (dite 'équation de Klein-Gordon cubique
focalisante), en dimension N = 3 :

Dtu(t, x) = Au(t, ) — u(t,z) + u(t, z)3, (t,x) € R x R3. (1.5)

Quant a le théorie de Cauchy locale, rien ne change et la Proposition 1.3 reste vraie. Pourtant,
la fonctionnelle d’énergie dans le cas focalisant s’écrit :

1 1 1 1
P(u) = [ | HP + 5Vl + 5lul? = flul do

donc, & cause du “mauvais” signe devant le terme |u|*, elle ne permet plus de controler pour
tout temps la norme H! x L2. Keller [45] a été le premier & observer que le Théoreme 1.1 n’est
plus valable dans le cas focalisant. Une maniere simple de s’en convaincre est d’analyser les
solutions constantes en espace, donc les solutions de ’équation ordinaire u” (t) = —u(t)+u(t)3.
On voit que la solution associée a une donnée initiale constante en espace et suffisamment
grande devient 400 en temps fini. En utilisant la propriété de la vitesse finie de propagation,
on peut construire une donnée initiale dans C§°, pour laquelle la solution forme une singularité
en temps fini.

Une autre conséquence de la non-linéarité focalisante est I'existence d’états stationnaires
W, qui sont les solutions du probleme elliptique

AW (z) — W(z) + W (z)* =0, r € R3. (1.6)

La donnée initiale ug := W := (W, 0) conduit & une solution de (1.5) constante en temps.
Parmi toutes les solutions stationnaires, [’état fondamental est particulierement important.
Il peut étre caractérisé comme 'unique (& une translation pres) solution positive de (1.6), ou
comme la solution qui minimise I'énergie potentielle E(u) := [ps 3|Vul? + 1[u|? — F|ul* dz.
Dans le langage du calcul des variations, E(u) crée un puits de potentiel (appelé aussi cuvette)
pour u suffisamment petit dans l'espace d’énergie, et W est le point col. Payne et Sattinger
[75] ont montré que cette structure variationnelle est liée au role de E(WW) comme seuil
d’énergie pour les différents types du comportement dynamique : si une solution d’énergie
E(ug) < E(W) est a 'intérieur de la cuvette (||ug||g1 < ||[W]|g1), elle y reste pour toujours,
et si elle est a Uextérieur (||uol|gr > ||W] g1), elle subit une explosion en temps fini.

Puisque les solutions dans le puits de potentiel sont globales, il est naturel d’étudier si elles
ont le comportement linéaire quand ¢ — 400, comme dans le cas défocalisant. Une approche
générale de ce probleme, appelé Conjecture de I’état fondamental ou Conjecture du seuil, a
été développée par Kenig et Merle [46, 47] pour I’équation des ondes énergie critique et pour
I’équation de Schrédinger énergie critique radiale. Dans le cas de ’équation de Klein-Gordon
cubique, le preuve est due a Ibrahim, Masmoudi et Nakanishi [38].
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Théoréme 1.6 (Ibrahim, Masmoudi, Nakanishi). Soit u(t) une solution de (1.5) telle que
E(ug) < E(W) et |luo||gixrz < [|W||g1. Alors Up(—t)u(t) a une limite forte dans l’espace
H' x L? quand t — +o0.

Apres avoir classifié les solutions en-dessous du seuil d’énergie E(W), I'objectif suivant
devrait étre de comprendre le comportement dynamique légerement au-dessus de ce seuil.
Une solution particulierement élégante a ce probleme, exhibant un lien avec la théorie des
variétés invariantes, a été proposée par Nakanishi et Schlag [71, 72].

1.4 Non-linéarités énergie critiques

Revenons pour un instant a ’équation générale (1.1). On a vu que la structure du probléme
permet de contréler, peut-étre de maniere indirecte comme dans le cas focalisant, la norme
homogene d’énergie

I3 2 = /RN [Out, 2)* + [Vu(t,z)|* dz,

ce qui nous donne une certaine information sur la régularité de la solution (dans le cas de
Klein-Gordon on peut contrdler également ||u||;2, mais ¢’est moins intéressant du point de vue
de la régularité). En fonction de la croissance de |f(x,u)| quand |u| — 400, cette information
peut étre ou ne pas étre suffisante pour exclure I’explosion de la solution. On va étudier
maintenant de maniere heuristique la possibilité de formation d’une singularité telle que la
norme d’énergie reste bornée. Une singularité de ce type est appelée explosion de type II ou
explosion géométrique, le terme explosion de type I désignant quant a lui la situation ou la
norme d’énergie tend vers 400 en temps fini.
Pour u(z) = (u(x),u(x)) et A > 0, on définit le changement d’échelle énergie critique

1 T 1 €T 1 .z
UNT) = —ul7), UNT) = ( —ul~/, —U\ — )
Une intégration par changement de variables montre que ||wx|| g1, ;2 = |[wl| 1, 2. Pourtant,

la norme d’énergie se concentre prés de x = 0 quand A — 0. Supposons pour simplifier que
f(z,u) = f(u) ne dépend pas de = et que N > 3. Si |f(u)] < |ulP quand |u| — +oo, on
obtient

1 .
|flun)] < W’(\UI”)/\ , pour \ petit,
2 2
alors que
1

Si w — % <2 p< %, on voit que l'effet de la non-linéarité est négligeable par

rapport au laplacien quand A — 0. Intuitivement, la concentration de la norme d’énergie
rend négligeables les effets non linéaires, en particulier ne peut pas conduire a la formation
d’une singularité. Par conséquent, la seule maniére de former une singularité est I’explosion
de la norme d’énergie, ce qui fait partie de ’énoncé de la Proposition 1.3. On appelle ce
type de non-linéarité énergie sous-critique. En revanche, si p > %, alors la non-linéarité
constitue la partie dominante quand A — 0. Cela signifie qu'une concentration d’une quantité
arbitrairement petite de la norme énergétique pourrait potentiellement rendre les effets non
linéaires décisifs, conduisant ainsi & une formation d’une singularité. On appelle une telle
non-linéarité énergie sur-critique. Le cas limite, p = %, est dit énergie critique. Dans cette
derniere situation, la non-linéarité agit avec la méme force que le laplacien, a priori formant
une singularité de type II en temps fini.



1. GENERALITES SUR DES EQUATIONS DES ONDES 5

L’équation des ondes énergie critique la plus simple est probablement ’équation semi-
linéaire avec la non-linéarité défocalisante de type puissance :

4

OPu(t,x) = Au(t,z) — |u(t, z)| ¥—2u(t, z), (t,z) € R x RV, (1.7)

Le caractére bien posé dans l'espace d’énergie H' x L? a été démontré par Shatah et Struwe
[84], avec des contributions importantes de Kapitanski [44], et Ginibre, Soffer et Velo [32].
Observons que pour tout w = (u,%) € H' x L?, Dénergie E(u) = Jen 3lul? + 3 Vul? +
%M% dx est bien définie grace a l'injection de Sobolev critique. De plus, on vérifie
facilement que E(uy) = E(u). Enfin, '’équation est invariante par le changement d’échelle
énergie critique : si (u(t,z),u(t,z)) est une solution de (1.7) sur un intervalle I > ¢y, alors
pour tout A > 0 on peut former une autre solution (u(to + %, %)), définie sur un intervalle
de temps qui contient ¢ = 0.

Il s’avere que pour les solutions de (1.7), la norme d’énergie ne peut pas se concentrer,
et qu'un équivalent du Théoréme 1.1 est vrai, comme l'ont démontré Struwe [88] dans le cas
radial et Grillakis [34] sans ’hypotheése de symétrie. En outre, les solutions convergent vers
des ondes linéaires quand ¢ — +oo. Dans le livre [91, Chapter 5] on peut trouver les détails
historiques concernant la résolution de ce probleme.

Dans cette thése nous nous concentrerons principalement sur ’équation (NLW), ’analogue
focalisant de (1.7). L’énergie est donnée par

1 1 N -2 2N
E(u) = —|a? + = |Vul|* - N-2 dz.
)= [l +5IVul? = G P ar

Le caractére bien posé se démontre en modifiant les preuves pour le cas défocalisant, cf. [46].
On obtient le résultat suivant.

Proposition 1.7. Pour toute donnée initiale ug € H'(RY) x L*(RN), il existe une unique
solution mazimale u(t) : (T_,Ty) — H'x L? de (NLW). Si ||wol| 1 ;2 est suffisamment petit,
alors T— = —oo, T = 400 et u(t) converge vers une onde linéaire dans les deux directions
du temps. La solution est continue par rapport a la donnée initiale dans la topologie H' % [2.

Il faut noter une différence majeure par rapport au cas sous-critique traité ci-dessus. Si
T, < 400, il n'est plus garanti que lim;_,7, ||w| ;1,2 = +00, ce dont la raison heuristique a
été présentée au début de ce paragraphe. On a tout de méme le critére abstrait d’explosion :
si T4 < 400 et K est un sous-ensemble compact de H' x L2, alors il existe 7 > 0 tel que
u(t) ¢ K pour t € [T —7,T4).

Le probleme elliptique

AW (z) + W (2)| 72 W(z) =0, zeRY (1.8)

(appelé I’équation de Yamabe) possede la solution positive explicite suivante :

W)= (14 )T

(“")_< +N(N—2)) ‘

En raison de I'invariance de I’équation par rapport au changement d’échelle énergie-critique,
pour tout A > 0, la fonction W) (x) est également une solution de (1.8). Il est connu que ce
sont toutes les solutions a symétrie radiale d’énergie finie et, & une translation pres, toutes
les solutions positives de (1.8). Cependant, le probleme non radial est difficile, cf. [73]. On
obtient les solutions stationnaires & symétrie radiale de (NLW) W = (W), 0). Le role de Wy
comme le point col pour I'énergie potentielle E(u) = [ 1[Vul?> — %W\Niﬁ? dz résulte des
travaux d’Aubin [1] et de Talenti [90].
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La Conjecture de I’état fondamental pour ’équation des ondes focalisante énergie-critique
a été démontrée dans les travaux de Kenig et Merle [46] pour N € {3,4,5}. Pour N = 3,
Krieger, Schlag et Tataru [53] ont construit des solutions qui développent une singularité en
temps fini, et qui restent pendant tout le temps d’existence dans un voisinage arbitrairement
petit (dans 'espace d’énergie) de la famille des états fondamentaux W y. En particulier, cette
construction a donné le premier exemple d’une explosion de type II. Duyckaerts, Kenig et
Merle [23, 25] ont montré que toute solution de (NLW) qui explose dans un voisinage de
I'ensemble {W) }, se décompose asymptotiquement dans ’espace d’énergie en une somme de
I’état fondamental, aprés un changement d’échelle et une transformée de Lorentz, et d’un
profil asymptotique. Plus précisément, dans le cas d’une symétrie radiale, si Ty < 400, alors
il existe une fonction positive A\(t) < Ty —t et ujy € H' x L2 tels que

lim ||u(t) —uy— W : =0.
Jim (6) = w5 = W
En dimension N = 3, pour les solutions a symétrie radiale, les mémes auteurs [26] ont donné
une classification complete du comportement dynamique des solutions de (NLW) dans ’espace
d’énergie. Ils ont montré que si T, = 400, alors il existe J € N, des fonctions strictement
positives A\ (t) < A2(t) < ... As(t) < t et une solution u*(t) de I’équation des ondes linéaire
tels que

J
tlg-noo Hu(t) —uwi(t) - E:l iW}‘j(t)HHleQ =0 (19)
]:
Si Ty < +oo0, alors soit limy_,7, ||u(t)|| g1, 2 = 400, soit il existe J € N, des fonctions

strictement positives A\ (t) < Aa(t) < ... \j(t) < Ty —t et ul € H x L? tels que

lim
t*)T_Q,

J
ul(t) —uS—ZiW,\j(t)HHleQ ~0. (1.10)
j=1

Krieger, Nakanishi et Schlag [49] ont étudié la dynamique dans un voisinage des états
fondamentaux d’un point de vue différent, en relation avec la théorie des variétés invariantes.
En particulier, ils ont construit la variété centre-stable, qui est une hypersurface de classe C*
qui contient {W )}, et ils ont montré que cette hypersurface sépare ’ensemble des solutions
ayant le comportement asymptotiquement linéaire pour les temps positifs de ’ensemble des
solutions qui développent une singularité de type I. Les solutions sur la variété sont celles qui
restent dans un voisinage de {W,} jusqu’a la fin de leur temps d’existence.

Remarque 1.8. Une théorie globale des équations des ondes super-critiques pour de grandes
données initiales, méme dans le cas défocalisant, semble actuellement inaccessible. Ala
connaissance de I’auteur, on dispose uniquement de résultats conditionnels sur la dynamique
des solutions (aussi bien dans le cas focalisant que défocalisant), cf. Kenig et Merle [48]. Dans
le cas ou la non-linéarité défocalisante est une puissance, Krieger et Schlag [51] ont montré
I’existence de grandes données initiales telles que la solution existe pour tout temps.

1.5 Autres modeles critiques

Historiquement, le modeéle énergie critique le plus étudié est le flot de la chaleur des applica-
tions harmoniques entre deux surfaces, surtout entre deux spheres de dimension 2. Pour I’état
de l'art dans ce domaine, le lecteur peut consulter Topping [94], ainsi que les références citées
dans cet article. En particulier, c’est dans ce cas-la que les premiers résultats de classification
du comportement & I'explosion (bubbling) ont été obtenus.
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Les termes “une explosion de type I” et “une explosion de type II” proviennent des travaux
sur I’équation de la chaleur sur-critique dyu = Au + |u|Pu, cf. [63].

L’équation de Schrédinger masse critique (ou L? critique) a été étudiée dans de nombreux
travaux, aussi en vue des applications physiques. Sous certains aspects, elle ressemble a
’équation de Korteweg-de Vries généralisée L? critique. L’article de revue [61] présente les
avancées majeures récentes dans la compréhension de ces deux modeles.

Parmi les équations hamiltoniennes énergie critique, notons I’équation de Schrédinger
semi-linéaire : i0yu + Au + ]u\ﬁu = 0 sur RY, et ’équation de Schrodinger des applications
harmoniques (Schrédinger maps) de R? dans la sphere S € R? : dyu = u A Au, ol A est le
produit vectoriel dans R3. Par la suite, on évoquera parfois ces deux modeles, par souci de
comparaison avec les équations des ondes.

Remarque 1.9. Les solutions des équations énergie critiques ont souvent un comportement
dynamique compliqué, mais d’un autre coté elles possedent une structure supplémentaire
d’invariance par rapport au changement d’échelle énergie critique, ce qui est essentiel pour
beaucoup de résultats de classification.

1.6 Eléments de la théorie de Cauchy

Dans ce paragraphe on donne quelques commentaires sur la notion de solution et de caractere
bien posé. Il sera commode de noter X*® := H**' N H' pour s > 0.

Définition 1.10. Soit ¢y € (tl,tg) C R, ug = (ug,u9) € X* x H et h € Ll((tl,tg);HS).
Pour t € (t1,t2) posons
sin ((t — to)vV—A) |
U
V—A 0

u(t) == cos ((t — to)\/I)uo +

tsin ((t — s)vV—A)
e
a(t) == —sin ((t — to)V—A)V—Aug + cos ((t — to)V—A) g

+ /t cos ((t — s)V/—A)h(s) ds.

0

h(s)ds,

On appelle u(t) := (u(t),u(t)) la solution du probléme

{ O*u = Au+ h,
(u7atu)t=t0 — (u07u0)'
Notons qu'’il s’ensuit directement que uw € C((t1,t2),X® x H®) (on dit souvent que

“Iéquation des ondes fait gagner une dérivée”). Une version quantitative de ce fait est donnée
par 'inégalité fondamentale suivante :

(1.11)

t
a6 e < oo +| [ ()= s (1.12)
to

que l'on appelle l’estimée d’énergie. L’existence et I'unicité des solutions faibles du probleme
linéaire (1.11), ainsi que l'estimée d’énergie (dans un cadre plus général des systemes symétriques)
ont été démontrées par Friedrichs [30].

Définition 1.11. Supposons que 9, f(z,0) = 0. On dit que ’équation (1.1) est localement
bien posée dans X° x H? si
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e pour tout ug € X*® x H® et typ € R il existe un intervalle du temps (t1,t2) 3 tp et une
unique fonction w(t) = (u(t),u(t)) telle que

f(x,u(t,x)) S Ll((tlatQ);Hs) (113)
et u(t) est une solution de (1.11) avec h(t,z) = f(x,u(t,x)),
e u(t) dépend de uy de facon continue dans la topologie X*® x H®.

Remarque 1.12. Pour des fonctions lisses, cette définition coincide avec la définition habi-
tuelle d’une solution classique d’une équation différentielle.

Remarque 1.13. En général, au lieu de —A, on devrait considérer 'opérateur 7' := —A —

Ouf(z,0). Sous des hypotheses naturelles sur T, on peut définir la notion de solution de
maniére similaire, en remplagant partout H® par (1 + T%)_lL2 et X* par (T% LT )~LL2.

Remarque 1.14. Dans des situations typiques, la condition (1.13) est équivalente au fait
que u(t) appartient & un espace fonctionnel naturel, par exemple un espace de Lebesgue sur
I’espace-temps. La Définition 1.11 formule un probleme de point fixe. La partie principale
de sa résolution consiste & trouver des bornes de | f(z,u(t,®))||lp1((t, to):m) €n termes de
At )| L1 (2 ,20);E75)> OU u(t, ) est la solution de (1.11). Pour cela, on utilise des inégalités
de type Sobolev ou Strichartz.

Remarque 1.15. Supposons que (1.1) est localement bien posée dans X*x H® et que u(t) est
une solution avec temps maximal d’existence Ty < +oo. Alors || f(z,u(t, )| L1(jto, 1, ;) =
+oo. Si ce n’était pas le cas, alors (1.12) impliquerait que la solution w(t) est pré-compacte
dans X* x H® quand t — Ty, ce qui est impossible.

Dans la méme veine, si T4 = +o0 et ||f(z, u(t, )| L1(jty,400);rs) < +00, alors u(t) a le
comportement asymptotiquement linéaire dans X°® x H® quand ¢ — +o0.
Remarque 1.16. Dans certains cas “pathologiques”, comme par exemple (NLW) en grande
dimension, cette définition générale n’est pas nécessairement la bonne, et il faut remplacer la
condition f(x,u(t,z)) € L*((t1,t2); H®) par une autre restriction garantissant que la solution
est unique et qu’elle dépend d’une maniere continue de la donnée initiale.

2 Résultats

Dans cette these on considere ’équation (NLW) pour les données initiales a symétrie radiale,
sauf dans le Chapitre 2, ol on traite également de I’équation (WM).

Dans le prolongement des travaux cités ci-dessus, on étudie le systeme dynamique défini
par I’équation (NLW), au voisinage de ’ensemble {W )} dans l'espace d’énergie, c’est-a-dire
les solutions w(t) de (NLW) telles que

)I\I;f(‘) Hu’(t) - W)\HHlXLQ < m, Vta

ou 17 > 0 est une petite constante. Les Chapitres 1 et 3 sont consacrés au phénomene de
I’explosion de type II.

Dans les Chapitres 2 et 4, on étudie le comportement local au voisinage d’une superposi-
tion de deux bulles & des échelles différentes, c’est-a-dire les solutions u(t) de (NLW) telles
que

inf H’U,(t) - (Wﬂ + W)\)HHl x L2 < UR Vt’

o< <a*u
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oll 7 > 0 est une petite constante. La motivation de ce travail vient bien évidemment des
résultats de classification de [26] mentionnés plus haut, cf. (1.9) et (1.10).
Cette thése est composée des quatre articles suivants :

e Chapitre 1 — Jendrej, J. Construction of type II blow-up solutions for the energy-critical
wave equation in dimension 5. Prépublication, arXiv:1503.05024, 2015.

e Chapitre 2 — Jendrej, J. Construction of two-bubble solutions for energy-critical wave
equations. Prépublication, arXiv:1602.06524, 2016.

e Chapitre 3 — Jendrej, J. Bounds on the speed of type II blow-up for the energy critical
wave equation in the radial case. Int. Math. Res. Not., doi : 10.1093 /imrn/rnv365, 2015.

e Chapitre 4 — Jendrej, J. Nonexistence of radial two-bubbles with opposite signs for the
energy-critical wave equation. Prépublication, arXiv:1510.03965, 2015.

2.1 Construction de solutions explosives de type II

Dans cet article nous développons une nouvelle approche de la construction de solutions
explosives de type II pour I’équation des ondes énergie critique. De telles solutions ont été
d’abord construites pour 1’équation (NLW) en dimension N = 3 et pour I’équation (WM) en
classe d’équivariance k = 1 par Krieger, Schlag et Tataru [52, 53].

Ici, on considere I’équation (NLW) en dimension N = 5. On démontre les résultats sui-
vants.

Théoréme 2.1. Soit ul = (ul, ) € (H> N H') x H* une paire de fonctions & symétrie

radiale avec u§(0) > 0. Il existe une solution u(t) de (NLW), définie sur l'intervalle du temps
(0,Tp), telle que

lim Jw(t) = ug — Wi || g1z =0, (2.1)
ot A(t) = (522)% (u*(0,0)) ¢4,

Théoréme 2.2. Soit v > 8. Il existe une solution u(t) de (NLW), définie sur l'intervalle du
temps (0,Ty), telle que
lim {|u(t) — uf — W[ 1,2 = 0.

ou A\(t) = t**1 et u} est explicite.

Le fait d’obtenir un continuum de vitesses d’explosion possibles indique que le compor-
tement dynamique de nos solutions est fortement instable par rapport aux variations de la
donnée initiale. Un peu plus précisément, on peut s’attendre a ce que ’ensemble des solu-
tions ayant les mémes caractéristiques dynamiques (par exemple la méme vitesse d’explosion)
soit de codimension infinie. On pourrait dire que 1’on obtient des solutions de type Krieger-
Schlag-Tataru, par opposition aux solutions stables construites par Hillairet et Raphaél [36]
en dimension N = 4, qui peuvent exploser seulement avec des vitesses bien spécifiques. De
telles solutions ont été aussi construites pour I’équation (WM) par Rodnianski et Sterbenz
[80], et par Raphaél et Rodnianski [79].

Remarque 2.3. Dans ce deuxieme cas, la possibilité d’une formation de singularités avait
été suggérée par des expériences numériques, voir par exemple [4]. C’est I'explosion stable
que 'on observe numériquement. Les auteurs de [4] suggerent que l’ensemble des données
initiales donnant lieu a une explosion est énorme. Cependant, ’existence d’un sous-ensemble
ouvert de 'espace d’énergie, tel que toute donnée initiale dans ce sous-ensemble développe
une singularité, reste inconnu.
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Présentons maintenant les idées de la preuve du Théoreme 2.1, sans nous préoccuper de
tous les détails techniques.

Etape 1. Supposons que w(t) = (u(t),u(t)) vérifie (2.1). Soit w*(t) = (u*(t),a*(t)) la

solution de (NLW) pour la donnée initiale u*(0) = ug. Notons AW := —%W,\| A=1. Par la
régle de dérivation d’une fonction composée on a ;W) = —%AWA@), donc on s’attend a
ce que
: * . N(t
(u(0)00)) = (u(0) 4 Wa () = 0 AW (22)

Il semble naturel de travailler dans '’espace d’énergie. Par un changement de variable, on
obtient

H%AW)\@)HLQ ~ X (t) (la solution explose en ¢t = 0, d’ott A'(¢) > 0). Si l'on introduit
le petit parametre b(t) ~ N(t), on peut voir (2.2) comme le début d’un développement
asymptotique de u(t) dans 'espace d’énergie en puissances de b(t).

Il s’avere que si

W(t) = %u*(t) NG} (2.3)

alors on peut calculer le terme suivant de ce développement et définir ainsi une solution
approchée (que l'on appelle aussi ansatz)

* 0 1 2 3

(1) = (1) + U, + b(H)U ) + 20U, + 03 (UL,

ou U® = (W,0) et UMD = (0,—AW). Les définitions précises de U®? et de U®) ne

sont pas essentielles. Observons que I’équation (2.3) avec X' = b donne la valeur A,pp(t) =
(%)Q(U* (0, 0))2t4, qui est celle de I'énoncé du théoréme.

Remarque 2.4. Dans nos définitions de U® et de U®), la décroissance en |z| — +o00
de W(z) joue un réle important, et c’est la raison pour laquelle on doit se restreindre aux

4
dimensions N > 5. En grande dimension la non-linéarité |u|¥—2u devient assez singuliere en
u = 0, ce qui introduit des difficultés techniques supplémentaires. On a choisi le cas le plus
simple N = 5.

Etape 2. On considére une suite de solutions u,,(t) de (NLW) ayant comme donnée initiale

_ M’Lpp(t")AW(tn)) ,

() = (4 ) Wy 8 (0n) = 22055
app\‘n

ol ty, > 0 et limy, 400 t, = 0 (un ajustement est a faire a cause de I'instabilité exponentielle
au voisinage de W, mais ce n’est pas une grave difficulté). En utilisant une condition d’or-
thogonalité adaptée, on décompose u,(t) = @(t) + g,,(t), le but étant de controler la taille
de g,,(t), uniformément en n, sur un intervalle de temps (¢, to], to > 0.

Pour cela, on introduit une fonctionnelle mixte énergie-viriel Hy,(t), qui est une petite
perturbation de la fonctionnelle d’énergie E(@(t) + g,(t)) — E(p(t)) — (DE(¢(t)),g,(t)).
Cette fonctionnelle a la propriété de coercitivité suivante :

||gn(t)HfL~pr2 < Hp(t) (modulo les modes instables).
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De plus, en utilisant le fait que ¢(t) est un ansatz raffiné, on peut montrer qu’il existe une
grande constante Cj telle que

9
lgn ()l friyre < Cotz = H(t) < co- Cot®,

avec une petite constante c¢g. Un argument de continuité classique implique la borne uniforme
gl g1y pe < Cot2. De cette estimation, on déduit par des techniques d’analyse des équations
ordinaires que le parametre de modulation Ay (t) est proche de Aapp(t).

La conclusion de la deuxieme étape est que

leen (8) = (" (8) + Wi, (0, 0" (@)l 1 12 S 17,

uniformément par rapport a n.

Etape 3. En utilisant la décomposition en profils de Bahouri et Gérard [3], on démontre
une version de la continuité faible séquentielle du flot, ce qui permet d’obtenir notre solution
u(t) comme un point d’adhérence faible de la suite u,(t) dans I'espace d’énergie.

L’idée de construire une suite de solutions controlée uniformément, convergeant vers une
solution singuliere, a été introduite par Merle [64]. Fusionner cette technique avec la méthode
d’énergie est une idée de Martel [56]. Raphaél et Szeftel [78] ont utilisé une correction par
un viriel de la fonctionnelle d’énergie dans un contexte similaire, dans leur étude de solu-
tions explosives de masse minimale pour I’équation de Schrédinger non linéaire. La premiere
étape de notre preuve est aussi inspirée par les travaux de Martel, Merle et Raphaél [60] sur
I'explosion exotique pour 1’équation de Korteweg-de Vries L?-critique. Ils ont observé que la
vitesse d’explosion est reliée a la taille de I'interaction de la bulle avec le “fond”, ce qui est a
la base de notre construction de la solution approchée.

En réalité, la taille de cette interaction apparait explicitement dans (2.3), ce qui sera
expliqué en détail dans le Chapitre 1. Nous trouvons que le fait de mettre en lumiére un
lien direct entre le comportement asymptotique de u*(t) en x = 0 et 'asymptotique de la
fonction A(t) est un avantage majeur de notre méthode. Par exemple, dans le Théoréme 2.2
on a uf =0 et uj(z) ~ ]a:|VTi3 dans un voisinage de = = 0.

Un point délicat, que 'on n’aborde pas dans notre travail, serait de mieux comprendre
la régularité des solutions construites. On ne dispose d’aucune information sur la régularité
de la solution outre le fait qu’elle appartient a ’espace d’énergie. En méme temps, on s’at-
tend généralement a ce que ces solutions aient des singularités, et travailler au niveau de la
régularité H! x L? permet d’éviter de les traiter directement. Observons également que, pour
construire des objets aussi instables que les notres, il semble naturel d’utiliser des estimées
d’énergie en inversant la direction du temps, & savoir dans le sens de la défocalisation de la
solution. La méthode d’énergie “dans le sens de I'explosion” implique typiquement une sorte
de stabilité de codimension finie.

Dans des travaux a venir, nous espérons réaliser une construction similaire pour I’équation
(WM), ainsi que dans le cas de u, singulier.

Remarque 2.5. A cause d’un lien avec le Chapitre 3, on signale que 1’on peut aussi déterminer
formellement la vitesse de 1’explosion en résolvant pour X\ (t) I’équation

* .k )\/(t) *
Remarque 2.6. Certaines notations du Chapitre 1 sont différentes de celles employées ici.
Nous avons choisi d’utiliser des notations cohérentes dans toutes les sections de ce chapitre
introductif.
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2.2 Construction de 2-bulles

Dans le Chapitre 2 nous construisons une solution a symétrie radiale de (NLW) qui existe
globalement pour les temps négatifs et qui se décompose en deux bulles d’énergie dans le
cone de lumiere passé. A la connaissance de I’auteur, c’est le premier exemple d’une solution
de ce genre.

Théoréme 2.7. Il existe une solution u : (—oo,Ty] — H' x L? de (NLW) en dimension
N =6 telle que

. 5
1tl}lr_moo |lu(t) — (W + Wée—n\tl)Hyleg =0, avec k=4[ 7.

Il est & noter que w(t) est un exemple d’une solution de (NLW) autre que I’état fondamen-
tal qui est globale dans une direction du temps et qui ne contient pas de terme de radiation
dans I'espace d’énergie, plus précisément

VA >0, limsup/ [a(t, z)|? + |[Vu(t,z)|? dz = 0.
t=r—00 J|z|>[t|-A

Pour souligner le fait que I’énergie de nos solutions est exactement égale au double de I’énergie

de W, sans énergie diffusée comme une onde libre, on dit qu’elles sont des 2-bulles pures.

Donnons quelques commentaires sur la preuve. On observe que dans Théoréme 2.1 on peut
prendre u§ = (W, 0), ce qui produit une solution qui explose en temps fini avec (W, 0) comme
profil asymptotique. C’est “presque” ce que ’on désire, sauf que la bulle se concentre et explose
en temps fini au lieu d’exister et de se concentrer pour tout temps. Une maniere naturelle
d’obtenir un tel comportement est d’augmenter la dimension de I’espace. En dimension N = 6
I'interaction entre les deux bulles est plus faible, ce qui produit l'effet voulu. Pour N > 7
on devrait arriver & une conclusion similaire, avec une vitesse de concentration de la bulle
A~ |t 5,

La principale difficulté technique par rapport au Théoreme 2.1 vient du fait que W a une
taille fixe dans ’espace d’énergie, alors qu’auparavant, grace a la vitesse finie de propagation,
on a pu supposer que ||ug|| ;1,2 €tait petit. Afin d’obtenir des bornes sur la norme d’énergie,
il est maintenant nécessaire d’étudier la coercitivité de la fonctionnelle d’énergie au voisinage
d’une somme de deux bulles.

On modifie aussi notre construction pour couvrir le cas de ’équation (WM) avec k > 3.
On obtient le résultat suivant.

Théoréme 2.8. Soit k > 2. Il existe une solution u : (—oo,Ty] — & de (WM) telle que

lim ful)— (-W+W,, 2 )le=0,  avec ni= "= (S sin (7).

t——o00 B2 (wlt)

Ici, W désigne I'état fondamental de degré topologique k et £ est 'espace de I’énergie.
Enfin, on démontre un résultat similaire pour ’équation de Yang-Mills critique :

Q2ult,r) = D2u(t,r) + %&nu(t, r) — ;ﬂu(t,r)(l ot )1 - %u(t,r)).

Des résultats de classification montrant la validité de décompositions de type (1.10) ou (1.9)
pour une suite de temps ¢, — Ty ont été obtenus par Cote [14] pour I’équation (WM) avec
k =1, et par Jia et Kenig [42] en plus grande généralité, y compris dans tous les cas considérés
ici.
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2.3 Bornes sur la vitesse d’explosion de type II

Les résultats du Chapitre 1 incitent & se pencher davantage sur la relation entre la dynamique
de I'explosion et les propriétés du profil asymptotique ug. Dans le Chapitre 3, on démontre
deux résultats qui vont dans cette direction.

Théoreme 2.9. Soit N € {3,4,5} et s > 872 s > 1. Soit ufy = (uj,uf) € HTL x H® 4
symétrie radiale. Supposons que u(t) est une solution radiale de (NLW) telle que

t—Ty =Ty
Il existe une constante C > 0, qui dépend de u, telle que :

e si N € {4,5}, alors pour T4 — t suffisamment petit

A(t) < O(T — t)&w.

o si N =3, alors il existe une suite t, — T telle que

)‘(tn) < C(T-i- - tn)ﬁ'

Théoréme 2.10. Soit N € {3,4,5}. Soit ul, = (uj, 1) € H®> x H? a symétrie radiale avec
ug(0) < 0.
Il n’existe pas de solution u(t) de (NLW) telle que

tgr:%r lw(®) = Wiw)y — ugllgr 2 =0, tgrﬁ A(t) =0, T, < +o0. (2.5)

L’idée principale des preuves, esquissées dans le Paragraphe 1.4 du Chapitre 3, est de
borner le terme d’erreur par l'interaction (énergétique) de la bulle avec le reste de la solution,
le principe auquel on a fait allusion dans la Remarque 2.5.

L’image générale qui émerge des Théoremes 2.1, 2.2 et 2.9 est que la vitesse d’explosion
des solutions de type Kriger-Schlag-Tataru est reliée a la régularité du profil asymptotique,
plutdt qu’a la régularité de la solution elle-méme (méme si des solutions qui explosent plus
vite ont tendance & étre plus régulieres, comme indiqué dans [52, 53]). Il faut noter que, méme
si pour des raisons techniques on demande une régularité supplémentaire de ug, dans (2.4)
et (2.5) la convergence a lieu seulement dans ’espace d’énergie.

Il est raisonnable de se demander si le profil asymptotique détermine de fagon unique la
solution qui explose dans un voisinage de { W) }. Si ¢’était le cas, alors en associant a toute so-
lution explosive son profil asymptotique, et réciproquement, on obtiendrait une classification
naturelle des solutions explosives au voisinage de {W,} dans 'espace d’énergie. H. Koch,
D. Tataru et le rapporteur anonyme de l'article constituant le Chapitre 3 ont indiqué a
lauteur que ce schéma général ressemble au probleme classique de la diffusion (scattering).
Evidemment on devrait identifier les éléments de I’espace d’énergie qui sont les profils asymp-
totiques d’une certaine solution explosive. Le contenu du Théoreme 2.10 est de montrer des
exemples de profils qui doivent étre exclus.

Meéme s’il serait judicieux de regarder le programme décrit ci-dessus avec une certaine
réserve, il permet néanmoins de formuler des questions qui semblent plus accessibles. Par
exemple, le profil asymptotique détermine-t-il la vitesse de I’explosion 7
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2.4 Non existence de 2-bulles de signes opposés

Le Chapitre 4 est consacré a une preuve du résultat suivant :

Théoréme 2.11. Soit N > 3. Il n'existe pas de solution radiale w : [to, Ty) — H' x L? de
(NLW) telle que
Hm [Ju(t) = Wie + Wiz =0

t—Ty

et
e dans le cas T < 400, A(t) < p(t) < Ty —t quand t — T,
o dans le cas Ty = 400, A(t) < pu(t) <t quand t — +oo.

Comme dans le contexte du Théoreme 2.7, on travaille ici au niveau énergétique 2E(W),
qui est le seuil d’énergie pour une formation d’une multi-bulle. La motivation principale
provient de I’équation (WM), ou les 2-bulles peuvent soit avoir les orientations contraires,
auquel cas le degré topologique de la solution vaut 0, soit avoir la méme orientation, ce qui
impliquerait que le degré topologique de la solution vaut +2k. La premiere situation est
I'objet du Théoreme 2.8, et 'on sait qu’une deux-bulle peut se former, au moins dans le cas
k > 3. D’un autre co6té, par des arguments variationnels bien connus, 1’énergie potentielle de
toute application k-équivariante de degré topologique 2k excede 2E(W'), donc la conservation
de I’énergie implique qu’il n’y a pas de 2-bulles pures dans ce dernier cas.

Notre preuve du Théoreme 2.11 est de nature variationnelle, tout comme la preuve dans
le cas des applications harmoniques décrite ci-dessus. Le contenu dynamique y est réduit a
I’étude de la dynamique hyperbolique induite par la présence d’une direction stable et d’une
direction instable du flot au voisinage de W, ce qui constitue une différence majeure par
rapport a ’équation (WM). La partie la plus difficile est d’exclure Iexistence de solutions
globales qui se comporteraient asymptotiquement comme une superposition d’une bulle po-
sitive a ’échelle 1 et d’une bulle négative qui se concentre. A cette fin, en utilisant la variété
stable construite par Duyckaerts et Merle [27], nous définissons des directions d’instabilité
raffinées (non linéaires), qui permettent d’obtenir des propriétés de coercitivité de la fonc-
tionnelle d’énergie suffisamment précises et robustes. Ce schéma de preuve est influencé par
les résultats de Krieger, Nakanishi et Schlag [49], que 'on a déja mentionnés dans le Para-
graphe 1.4.



Chapter 11

Introduction (english version)

1 Generalities on nonlinear wave equations

The subject of this thesis is to study some nonlinear phenomena in the dynamical behavior
of radial solutions of the focusing wave equation with the energy-critical power nonlinearity
in dimension N > 3:
4
Otu(t, x) = Au(t,z) + |u(t, z)| ¥—2u(t, z), (t,z) e R x RY, (NLW)
and of k-equivariant solutions of the wave map equation from R!'*2 to the two-dimensional
sphere S?:
) 5 1 k2
Ofu(t,r) = 0zu(t,r) + =Opu(t,r) — 22 sin(2u(t,r)), (t,r) € R x (0,400). (WM)
r r

Before stating the main results, let us briefly present the subject of the global theory of
nonlinear wave equations from a historical perspective.
1.1 Preliminaries
The simplest nonlinear wave equations are of the form
{ Ofu(t,z) = Au(t,z) + f(z,u(t,z)),  (t,z) e Rx R, 1)

u(to, z) = ug(z), Ou(ty,x) = up(x), T € RN,

where A is the Laplacian in the N space variables and f is a (smooth enough) function of
2 real variables such that f(x,0) = 0. This equation has a natural Hamiltonian structure.
Indeed, let F(z,u) := [, f(z,v)dv and define the energy functional

E:CPRY) x CPRY) 5 u = (u, 1) — E(u) €R,
1 1
Blw) = [ @) + 5[Vu(e)? - Fa,u(a) da.
RN 2 2
Equation (1.1) can be written in the form

{ Ou = J o DE(u), (1.2)

U(to) = Uy,
0 1Id

—Id 0
C° x C3° and u = (u, ) is an element of the phase space C§° x C§°.

where D is the Fréchet derivative, J := ( > defines the natural symplectic form on

15
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Denote (u,v) := [pnu-v+@-0dz. Let u(t) be a classical solution of (1.2) on a time
interval (¢1,t2). The chain rule yields
d

3 Z(u(®) = (DE(u(t)), du(t)) = (DE(u(t)), J o DE(u(t)) = 0, (1.3)

hence E(u(t)) is a conserved quantity.

1.2 A few historical remarks

The history of the local Cauchy problem for the wave equations goes back at least to the
Cauchy-Kowalevski theorem, which, for analytic nonlinearities, yields local existence and
uniqueness of an analytic solution for analytic initial data. However, from the physical point
of view the question of global existence is highly relevant, and the first result in this direction
is due to Jorgens [43], followed by more abstract works of Browder [7] and Segal [83]. Let us
state the result in the simplest case of the cubic defocusing Klein-Gordon equation in R x R3,
that is equation (1.1) with f(z,u) = —u — u:

Otu(t, x) = Au(t, ) — u(t,z) — u(t, z)3, (t,z) € R x R3. (1.4)

Theorem 1.1 (Jérgens, Browder, Segal). For any initial data u(ty) = ug € H'(R?)x L?(R?),
there exists a unique global solution w(t) of (1.4). Moreover, if ug € H**' x H* with k € N,
then u € C(R; H* x HF).

Remark 1.2. Later in this section we will clarify the notion of a solution in the non-smooth
setting.

The main ingredient of the proof is the following local existence result.

Proposition 1.3. For any initial data u(to) = ug € H'(R3) x L*(R3), there evists a unique
mazimal solution w(t) : (T_,Ty) — H' x L? of (1.4). Moreover, if ug € H*' x H* with
k€N, thenu € C((T-,Ty); H¥Y x HF). If T < 400, then limy_yp, ||u(t)||gixzz = +00
(analogously if T— > —o0). Finally, on compact time intervals the solution is continuous
with respect to the initial data in the topology H*' x H* for all k € N.

By (1.3) and a standard approximation procedure one obtains that if w(t) is a solution
given by Proposition 1.3, then the energy

1 . 1 1 1
B(u(t) = [ 3lilt. o) + 5 Valt.a) + glu(t. o) + flut.a)|*da

is constant. But this implies that ||w(t)||g1x 2 is bounded, thus proving Theorem 1.1.

Since the nonlinearity is defocusing, it was conjectured that the solution has to decay
as t — Foo at least like the free solutions, causing the nonlinear effects to become negligi-
ble. Thus, any solution should behave asymptotically like a solution of a free Klein-Gordon
equation (it scatters), in other words one expects asymptotic completeness in an appropriate
space. This problem turned out to be quite challenging and was solved in the '80 by Brenner
[6], with essential earlier contributions of Morawetz and Strauss [70].

Theorem 1.4 (Brenner, Morawetz, Strauss). Let u(t) be a solution of (1.4) and let Uy(t)
be the linear Klein-Gordon propagator. Then Uy(—t)u(t) has a strong limit in H* x L? as
t — £o0.

Remark 1.5. Existence of a weak limit is relatively elementary and was already known
in the ’60.
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Oversimplifying, one could say that the dynamical behavior of the solutions of (1.4) does
not differ much from the free dynamics, at least in the energy space. In establishing these
results, the sign of the nonlinearity (repulsive) and its growth at 400 (u?) are decisive. It is
natural to examine the case of a focusing nonlinearity or of a faster growth of the nonlinearity
(for example u°), which will be briefly discussed in the next two paragraphs.

1.3 Effects of a focusing nonlinearity

Consider equation (1.1) with f(z,u) = —u+u® (the focusing cubic Klein-Gordon equation),
in dimension N = 3:

Otu(t,r) = Au(t,z) — u(t,z) + u(t, )3, (t,r) € R x R3. (1.5)

Nothing changes as far as the local Cauchy theory is concerned (Proposition 1.3 remains
valid). However, the energy functional corresponding to the focusing case is

1 1 1 1
B(u) = [ |Gl + 5IVuP + Sluf = Jlul'da,

hence it no longer allows to control the H! x L? norm for large times. The fact that Theo-
rem 1.1 fails in the focusing case was first observed by Keller [45]. We see that sufficiently
large constant in space initial data lead to solutions tending to +oc in finite time. Using the
finite speed of propagation, this produces initial data in C§° which lead to a blow-up in finite
time.

Another consequence of the focusing sign is the existence of stationary solutions W, that
is solutions of the elliptic problem

AW (z) = W(z)+W(z)> =0, zcR3 (1.6)

The initial data ug := W := (W,0) lead to a constant in time solution of (1.5). Among the
stationary solutions, the ground state plays a distinguished role. It can be characterized as
the unique (up to translations) positive solution of (1.6), or as the solution minimizing the
potential energy E(u) := [ps 3|Vul? + 3|ul> — $|u[* dz. The variational picture is that for
w small in the energy norm FE(u) creates a potential well and W acts as the mountain pass.
Payne and Sattinger [75] exhibited the role of E(W) as the threshold energy. Namely, if a
solution of energy F(ug) < E(W) is inside the potential well (||ug| g1 < [|[W]|g1), it stays
there forever, and if it is outside (||uo||z1 > ||W|51), it blows up in finite time.

Since the solutions in the potential well are global, it is natural to study if they converge
to linear solutions in the energy space, as in the defocusing case. A general approach to this
problem, called the Ground State Conjecture or the Threshold Conjecture, was developed by
Kenig and Merle [46, 47| for the energy-critical wave equation and the energy-critial radial
Schrédinger equation. In the case of the cubic Klein-Gordon equation, the proof was carried
out by Ibrahim, Masmoudi and Nakanishi [38].

Theorem 1.6 (Ibrahim, Masmoudi, Nakanishi). Let u(t) be a solution of (1.5) such that
E(ug) < EW) and ||uol|gixrz < [|W]g1. Then Ug(—t)u(t) has a strong limit in H' x L?
as t — too.

The next crucial issue is to understand the dynamical behavior slightly above the ground
state energy. A very elegant solution of this problem, showing a link with the theory of
invariant manifolds, was given by Nakanishi and Schlag [71, 72].
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1.4 Energy-critical nonlinearities

Let us return for a moment to the general equation (1.1). We have seen that the structure
of the problem often allows to control directly or indirectly the homogeneous energy norm

) o = [ 0t ) + [Vu(t, ) .

giving some information on the regularity of a solution (in the Klein-Gordon case we can
control also ||ul| 2, but this is less interesting from the point of view of regularity). Whether
this is enough to preclude a breakdown of a solution will depend on the nonlinearity, and
more specifically on the growth of |f(z,u)| as |u| = +o0o. We will study heuristically the
possibility of a singularity formation such that the energy norm remains bounded. This type
of singularity is referred to as a type II blow-up or a geometric blow-up (in opposition to a
type I blow-up, referring to a situation where the energy norm tends to +oo in finite time).
For u(x) = (u(z),u(z)) and A > 0 we define the energy-critical scale change

1 T 1 zy 1 .=
A straightforward change of variables shows that ||w)|| 1,2 = ||| 1, 2. At the same time,

the energy norm concentrates at the origin as A\ — 0. Suppose to simplify that f(z,u) = f(u)
does not depend on x and that N > 3. If we assume that |f(u)| < |ulP as |u| — 400, then

1

|flun)] S w‘(]u\p))\ , for small A,
2 2

whereas

1
Auy = 2 (Au) K
If w — # <2&p< %, then the effect of the nonlinearity is negligible as compared
to the laplacian as A — 0. Intuitively, concentration of the energy norm causes the nonlinear
effects to become negligible, in particular cannot result in a breakdown of the solution. The
only way of forming a singularity is thus the growth of the energy norm, which is a part of
Proposition 1.3. This type of nonlinearity is called energy-subcritical. If, on the contrary, p >
%, then the nonlinearity is the dominant part as A — 0. This means that a concentration of
an arbitrarily small amount of energy could potentially cause the nonlinear effects to prevail,
resulting in a singularity. Such a nonlinearity is called energy-supercritical. The borderline
case, p = %, is called energy-critical. In this last situation, as the data concentrates, the
nonlinearity acts with the same force as the laplacian, a priori leading to a finite-energy
singularity.
Probably the simplest energy-critical wave equation is the semilinear defocusing wave
equation with the energy-critical power nonlinearity:

4

Otu(t, x) = Au(t, ) — |u(t, z)| ¥—2u(t, z), (t,z) e R x RV, (1.7)

The local well-posedness in the energy space H x L? is due to Shatah and Struwe [84], with
important contributions of Kapitanski [44] and Ginibre, Soffer and Velo [32]. Note that for
u = (u,1) € H' x L? the energy E(u) = [pn 2[0> + 3[Vul? + %M% dz is well defined
due to the critical Sobolev embedding. We also have F(uy) = E(u), because the nonlinearity
has the same scaling as the linear part. Finally, the equation is invariant by the energy-critical
change of scale: if (u(t,z),u(t,z)) is a solution of (1.7) on an interval I > tp, then for any
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A > 0 we can build another solution (u (to + %, %)), defined on some time interval containing
t=0.

It turns out that, for the solutions of (1.7), the energy norm cannot concentrate, and
that an analog of Theorem 1.1 holds, which was proved by Struwe [88] in the radial case
and by Grillakis [34] without the symmetry assumption. Also, the solutions scatter, i.e.
asymptotically approach linear waves in the energy space as t — £oo. In [91, Chapter 5] one
can find some details about the history of the resolution of this problem.

Most of this thesis is concerned with equation (NLW), which is the focusing counterpart
of (1.7). The energy is given by

1 1 N -2
E(u) = —Jaf 4 < |Vul? —
)= [l + 5Vl - 55

|u|% dz.

The local well-posedness can be established by modifying the proofs in the defocusing case,
see [46]. One obtains the following result.

Proposition 1.7. For any initial data ug € H (RN)x L2(RN), there exists a unique mazimal
solution w(t) : (T_,Ty) — H' x L? of (NLW). If |woll g1y g2 35 sufficiently small, then
T_ = —o0, T4 = 400 and u(t) scatters in both time directions. The solution is continuous
with respect to the initial data in the topology H' x L2

Note an important difference with respect to the sub-critical case discussed above. If
T, < +o00, it is no longer guaranteed that lim; 7, ||| ;1,2 = +00. The reason for this was
heuristically described at the beginning of this paragraph. We have however the standard
abstract blow-up criterion: if T}, < 400 and K is a compact subset of H' x L?, then there
exists 7 > 0 such that u(t) ¢ K for t € [Ty — 7,T}).

The elliptic problem

AW (2) + [W(2)| "= W(z) =0, zeRY (1.8)

(called the Yamabe equation) has an explicit positive solution

W)= (1+ il )_N;Q
x) = —_ .

N(N —2)
Because of the energy-critical scaling invariance, for all A > 0, W (x) is also a solution of (1.8).
It is known that these are the only finite-energy radially symmetric and, up to translations,
the only positive solutions of (1.8). However, the nonradial problem is complicated, see [73].

We obtain the radially symmetric stationary solutions of (NLW) Wy = (W, 0). The role of

2N
W) as the mountain passes for the potential energy E(u) = [ 1|Vu|?> — &2 |u|¥=2 dz follows

from the works of Aubin [1] and Talenti [90].

The Ground State Conjecture for the energy-critical focusing wave equation was proved
in the work of Kenig and Merle [46] for N € {3,4,5}. For N = 3, Krieger, Schlag and
Tataru [53] constructed solutions developing a singularity in finite time, while staying in an
arbitrarily small neighborhood (in the energy space) of the family of the ground states W .
In particular, this construction gave the first example of a type II blow-up. Duyckaerts,
Kenig and Merle [23, 25] proved that any solution of (NLW) blowing up in a neighborhood
of the set {W,} asymptotically decomposes in the energy space as a sum of a ground state,
rescaled and Lorentz-transformed, and an asymptotic profile. More precisely, in the case of
radial data, if T, < +o00, then there exists a positive function A\(t) < T} —t and u, € H'x L2
such that

Jim (lu(t) — ug = Wil = 0.
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In dimension N = 3 for radially symmetric data, the same authors [26] gave a complete
classification of the dynamical behavior of solutions of (NLW) in the energy space. They
proved that if 7} = +oo, then there exists J € N, positive functions A\; (1) < A2(t) <
... AJ(t) < t and a solution u*(t) of the linear wave equation such that

J
tginooHu(t)—u*(t)—;iw)\j(t)HHleQ —0. (1.9)
]:

If Ty < +oo, then either limy_,7, ||w(t)| g1, ,2 = +oo, or there exists J € N, positive
functions Ai () < Aa(t) < ... A\j(t) < Ty —t and u§ € H x L? such that

lim
t—Ty

J
u(t) —up -y iWAj(t)HHleQ — 0. (1.10)
j=1

Krieger, Nakanishi and Schlag [49] studied the dynamics in a neighborhood of the ground
states from a different perspective, establishing a connection with the theory of invariant
manifolds. In particular, they construct a C! hypersurface containing {W}, the center-
stable manifold, and show that it separates the set of solutions which scatter forward in time
from the solutions which develop a type I singularity. The solutions on the manifold are the
ones which stay close to {W,} as long as they exist.

Remark 1.8. A global theory of energy-supercritical wave equations for large data, even
in the defocusing case, currently seems to be out of reach. To the author’s knowledge, only
conditional results about the dynamics of solutions are available (both in the focusing and
defocusing case), see Kenig and Merle [48]. In the case of a defocusing power nonlinearity,
Krieger and Schlag [51] proved existence of sets of large initial data leading to global, regular
solutions.

1.5 Other critical models

Historically, the most intensively studied energy-critical model is the harmonic map heat flow
between surfaces, especially between two-dimensional spheres. For a state of the art in this
domain, see Topping [94] and the references therein. In particular, the first results classifying
the blow-up behavior (bubbling) were obtained in this case.

The terminology “type I blow-up” and “type II blow-up” originates in the works on
energy-supercritical heat equation dyu = Au + |ulPu, see [63].

An intensively studied model, relevant from the physical point of view, is the mass-critical
(or L%-critical) focusing Schrédinger equation. In some aspects it resembles the L?-critical
generalized Korteweg-de Vries equation. The expository article [61] presents the recent major
advances in the understanding of these two equations.

Important energy-critical Hamiltonian equations include the nonlinear Schrodinger equa-
tion: 0w + Au + |ulﬁu = 0 on RY, and the Schrédinger map equation from R? to the
sphere S? € R3: 9,u = u A Au, where A is the vector product in R3. In the sequel we
will occasionally mention these models, for the sake of comparison with the nonlinear wave
equations.

Remark 1.9. Energy critical equations usually generate complicated dynamical behavior,
but they also come with a special additional structure of the invariance with respect to the
energy-critical rescaling, which is crucial in many arguments.
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1.6 Rudiments of the Cauchy theory

For the sake of completeness, in this paragraph we comment on the notion of a solution and
of well-posedness. It will be convenient to denote X*® := H**1 0 H' pour s > 0.

Definition 1.10. Let ¢y € (tl,tg) C R, ug = (’LL(],’[L()) € X°x H% and h € Ll((tl,tg);Hs).
For t € (tl,tg) set

sin ((t — to)vV—A) |

u(t) := cos ((t —to)V—A)ug + )
(t) = cos ((t — to)V=B)uo i

tsin ((t — s)vV—A)
+ /to A h(s)ds,
a(t) == —sin ((t — to)V—A)V—Aug + cos ((t — to)V—A) g

+ / cos ((t — s)V/—A)h(s) ds.

to

We call u(t) := (u(t),u(t)) the solution of the problem
{ O*u = Au+h,
(u, Op) =, = (uo, o).

Note that it follows directly from the formulas that w € C((t1,t2), X® x H®) (which is
commonly expressed by saying that “the wave equation gains one derivative”). A quantitative
version of this fact is the following fundamental energy estimate:

(1.11)

t
a0l xexre < Juollxese +| [ Il as] (112)
to
Existence and uniqueness of weak solutions of the linear problem (1.11), as well as the energy
estimate (in the setting of more general symmetric systems) are due to Friedrichs [30].

Definition 1.11. Suppose that 9, f(z,0) = 0. We say that (1.1) is locally well-posed in
X% x H® if

e for any ug € X*° x H® and ¢y € R there exists a time interval (¢1,t2) 5 ¢y and a unique
u(t) = (u(t),u(t)) such that

f(x,u(t,x)) € Ll((tlatQ);HS) (113)
and wu(t) is the solution of (1.11) with h(t,xz) = f(x, u(t, z)),
e u(t) depends continuously in X* x H*® on uyg.

Remark 1.12. For smooth functions, this definition agrees with the usual definition of a
classical solution of a differential equation.

Remark 1.13. In general one should consider the operator T := —A — 9, f(z,0) instead of

—A. Under some natural assumptions on 7', we can define a solution in the same manner,
s+1

replacing everywhere H*® by (14 72)"'L? and X*® by (T% + T2 )72

Remark 1.14. In typical situations the condition (1.13) is equivalent to u(t) being in some
natural function space, for example a Lebesgue space on a slab of the space-time. Defini-
tion 1.11 describes a fixed-point problem. The main part of its resolution is to obtain bounds
of || f(z,ut, )| L1((t),t0); 1) In terms of [|(¢, )| L1 ((¢, t);: 1), Where u(t, ) is the solution of
(1.11). To this end, one uses Sobolev, Strichartz and other inequalities of this type.
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Remark 1.15. Suppose that (1.1) is locally well-posed in X® x H® and that u(t) is a
solution with maximal time of existence T < +oco. Then || f(z, u(t, z))| 11 (o, );15) = +00-
Otherwise, as follows from (1.12), the solution w(¢) would be precompact in X*® x H® as
t — T, which is impossible.

In the same vain, if T = +oo and || f(z, u(t, 2))|| L1 (jtg,4+-00);5) < +00, then u(t) scatters
in X° x H® ast = +o0.

Remark 1.16. In some more “pathological” cases, such as (NLW) for large N, this general
definition might not be the correct one, and it should be settled in each individual case what
additional condition on w, instead of f(x,u(t,=)) € L*((t1,t2); H®), ensures that the solution
is unique and continuously dependent on the initial data.

2 Main results

In this thesis we consider equation (NLW) for radially symmetric initial data, except in
Chapter 2, where we deal also with equation (WM).

Following the works mentioned above, we undertake the study of the local behavior of the
dynamical system defined by (NLW) in a small neighborhood of {W'} in the energy space,
that is the solutions w(t) of (NLW) such that

it [[u(t) = Wallju,ge <m

where 1 > 0 is a small constant. Chapters 1 and 3 are devoted to the phenomenon of the type
1T blow-up.

In Chapters 2 and 4 we study the local behavior in a neighborhood of a superposition of
two bubbles at different scales, that is solutions w(t) of (NLW) such that

. B . <
O<>1\I%f(.x*u Hu(t) (W/'L :t W)\)HHl x[2 = m, \V/t,

where 17 > 0 is a small constant. The main motivation for this work are of course the classi-
fication results of [26] mentioned above, see (1.9) and (1.10).

This thesis is composed of the following four articles:

e Chapter 1 — Jendrej, J. Construction of type II blow-up solutions for the energy-critical
wave equation in dimension 5. Preprint, arXiv:1503.05024, 2015.

e Chapter 2 — Jendrej, J. Construction of two-bubble solutions for energy-critical wave
equations. Preprint, arXiv:1602.06524, 2016.

e Chapter 3 — Jendrej, J. Bounds on the speed of type II blow-up for the energy critical
wave equation in the radial case. Int. Math. Res. Not., doi: 10.1093/imrn/rnv365,
2015.

e Chapter 4 — Jendrej, J. Nonexistence of radial two-bubbles with opposite signs for the
energy-critical wave equation. Preprint, arXiv:1510.03965, 2015.

2.1 Construction of type II blow-up solutions

In this article we propose a new approach to constructing type II blow-up solutions for the
energy-critical wave equation. Such solutions were first constructed for the energy-critical
wave equation in dimension N = 3 and for the energy-critical wave map equation in equiv-
ariance class k = 1 by Krieger, Schlag and Tataru [52, 53].

Here, we consider (NLW) in dimension N = 5. We prove the following results.
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Theorem 2.1. Let w) = (u}, u) € (H> N H') x H* be any pair of radial functions such that
u$(0) > 0. There exists a solution u(t) of (NLW) defined on a time interval (0,Ty) such that

%g% Hu(t) —ug — W/\(t)HH1><L2 =0, (2.1)

where A\(t) = (%)2(11*(0,0))2154.

Theorem 2.2. Let v > 8. There exists a solution u(t) of (NLW) defined on the time interval
(0,Ty) such that

lim Hu(t) —uy — W

=0 )HH1><L2:O’

where A(t) = t'T1 and ) is explicit.

The fact that we obtain a continuous range of blow-up speeds leads us to believe that
the dynamical behavior of our solutions is highly unstable with respect to variations of the
initial data. A bit more precisely, we can expect that the set of solutions having the same
dynamical characteristics (for example the same blow-up rate) has infinite codimension. We
could say that we obtain solutions of Krieger-Schlag-Tataru type, in contrast with the stable
solutions constructed by Hillairet and Raphaél [36] in dimension N = 4, which can blow up
only at specific rates. Such solutions were also constructed for (WM) by Rodnianski and
Sterbenz [80], and Raphaél and Rodnianski [79].

Remark 2.3. In this second case numerical experiments suggested the possibility of a for-
mation of singularities, see for instance [4]. The blow-up observed numerically is the stable
one. The authors of [4] suggest that the set of initial data leading to a singularity is huge.
However, existence of an open subset of the energy space such that any initial data in this
subset develops a singularity, remains unknown.

Let us present the main ideas of the proof of Theorem 2.1, ignoring all the technical issues.

Step 1. Suppose that u(t) = (u(t),u(t)) satisfies (2.1). Let w*(t) = (u*(¢),u*(t)) be the

solution of (NLW) with the initial data u*(0) = u. Denote AW := _%W)\b\:l' The chain
rule yields 9;W) ) = —%AWA@), hence we should have
, ; . X (1)
(ut), @(t)) = (w*(£) + Wage, i (t) - X AWy). (2.2)

We find that it is a natural choice to work in the energy space. By a change of variable
‘ %AW)\(OHLQ ~ XN(t) (the solution explodes at t = 0, thus A'(¢) > 0). If we introduce a
small parameter b(t) ~ X (t), (2.2) can be seen as a beginning of an asymptotic expansion of
u(t) in the energy space in powers of b(t).

It turns out that if

V() = %u*(t} D), (2.3)

then we can compute the next term of the expansion and define an approrimate solution
(which we will also call an ansatz)

o0 =) U + UL + PO PO,

where U® = (W,0) and UM = (0,—AW). The precise definitions of U® and U®) are
not essential. Note that equation (2.3) together with A = b yields the value Anpp(t) =

(%)2 (u*(0, 0))2154 given in the formulation of the theorem.
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Remark 2.4. In our definitions of U®?) and U®), the decay at |z| — 400 of W (x) plays an
important role, which is why we need N > 5. In large dimensions the nonlinearity |ulﬁu
becomes quite singular at v = 0, which causes some technical difficulties. We chose the easiest
dimension N = 5.

Step 2. We consider a sequence of solutions u,(t) of (NLW) with the initial data

)‘/app (tn)
)\app (tn)

where t, > 0 and lim,, 4~ t, = 0 (an adjustment has to be made because of the exponential
instability near W, but this is not a major difficulty). Using a suitable orthogonality condition
we decompose u,(t) = ¢(t) + g,,(t) and the goal is to control the size of g,,(t), uniformly in
n, on a time interval (¢, to], to > 0.

To this end, we introduce a mized energy-virial functional H,(t), which is a small pertur-
bation of the energy functional E(p(t)+g,(t))—E(@(t))—(DE(e(t)),g,(t)). This functional
has the following coercivity property:

n(tn) = (W () + Wapy 00), 0 (tn) — AW (t)),

Hgn(t)||§-{le2 < Hy(t) (modulo the unstable modes).

Moreover, the fact that ¢(t) is a refined ansatz can be used to show that for some large
constant Cy we have

9
”gn(t)HH1><L2 < CotQ = H’;L(t) < Co - Cgtga

with a small constant ¢y. A classical continuity argument yields the uniform control ||g|| e <

C’ot% From this estimate we deduce by standard ODE techniques that the modulation pa-
rameter Ay (t) is close to Aapp(%).
The conclusion of the second step is that

e (t) = (u” () + Wi,y (8), @ ()l a2 S,

uniformly with respect to n.

Step 3. Using the profile decomposition of Bahouri and Gérard [3], we prove a version of
sequential weak continuity of the flow, which allows to obtain our solution u(t) as a weak
limit of a subsequence of the sequence u,(t) in the energy space.

The idea of constructing a uniformly controlled sequence of solutions converging to a sin-
gular solution was introduced by Merle [64]. Combining this technique with energy estimates
was an idea of Martel [56]. Raphaél and Szeftel [78] used a virial correction of the energy
functional in a similar context in their study of minimal mass blow-up solutions for the non-
linear Schrédinger equation. The first step of the proof is also inspired by the work of Martel,
Merle and Raphaél [60] on exotic blow-up for the L2-critical generalized Korteweg-de Vries
equation. They observed that blow-up rate is directly related to the size of interaction of
the bubble with the “background”, which is the heart of our construction of the approximate
solution.

In fact, the size of this interaction appears explicitly in (2.3), which will be explained in
Chapter 1. We find that the main advantage of our method is to demonstrate a direct link
between the asymptotic behavior of u*(¢) at x = 0 and the asymptotics of A(¢). For example,

in Theorem 2.2 we have 4§ = 0 and u(z) ~ |x\VT_3 in a neighborhood of x = 0.
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A delicate point, left open by our approach, is to understand better the regularity of
the constructed solutions. We have no information on the regularity of the solution besides
the fact that it belongs to the energy space. At the same time, it is expected that these
solutions have singularities, and working at the energy level allows to avoid dealing with
them directly. Note also that using “backward energy estimates” seems to be a natural
method of constructing unstable objects. Energy estimates “in the direction of the blow-up”
typically yield some sort of stability (modulo a finite codimension), which we do not expect
here.

In later works, we hope to carry out a similar construction for equation (WM) and in the
case of a singular .

Remark 2.5. Because of a link with Chapter 3, we would like to point out that the rate of
the blow-up can also be formally predicted by solving for X (¢) the equation

* .k )\/(t) *
Remark 2.6. Some of the notation in Chapter 1 differ from the ones used above. We
preferred to use coherent notation in all the sections of this introductory chapter.

2.2 Construction of two-bubble solutions

In Chapter 2 we construct a radially symmetric solution of (NLW) which exists globally for
negative times and decomposes into more that one bubble of energy inside the backward light
cone. To the author’s knowledge, this is the first example of a solution of this kind.

Theorem 2.7. There exists a solution u : (—oo,Ty] — H' x L? of (NLW) in dimension
N =6 such that

: ) 5
lim [ju(t) — (W + W;ew\t\)HHleg =0, with K ;= /[ —.

t——o0 r 4

Note that u(t) is an example of a solution of (NLW) other than the ground state which is
global in one time direction and does not contain a radiation term in the energy space, more
precisely

VA >0, limsup/ lu(t, 2)|? + |Vu(t,z)[* dz = 0.
t=—o0 Jiz|>|t|-A
If we want to emphasize the fact that the energy of our solutions is exactly equal to twice the
energy of W with no energy radiated as a free wave, we say that they are pure two-bubbles.

Let us say a few words about the proof. Observe that in Theorem 2.1 we can take
u§ = (W,0), which produces a blow-up in finite time with (I¥,0) as the asymptotic profile.
This is “almost” what we desire, except that we need a concentration of the bubble in infinite
time rather than a blow-up. A natural way to achieve this is to increase the dimension of
the space. In dimension N = 6 the interaction between the two bubbles is weaker, which
produces the required effect. For NV > 7 one should be able to obtain a similar conclusion,

with the speed of concentration of the bubble A ~ |t|_ﬁ.

The main technical differences with respect to Theorem 2.1 come from the fact that W
has a fixed size in the energy space, whereas before, using the finite speed of propagation,
it could be assumed that ||ug|| ;1,2 is small. In order to obtain the bounds of the energy
norm, we need to study the coercivity of the energy functional in a neighborhood of a sum
of two bubbles.
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We also extend our construction to the context of equation (WM) with & > 3. We obtain
the following result.

Theorem 2.8. Fiz k > 2. There ezists a solution w : (—oo, To] — € of (WM) such that

lim ||u(t)— (-W+W 2 )|le =0, with Kk = g(% sin (f))%

t——o00 G R 2 T k

Here, W denotes the ground state of topological degree k and £ is the natural energy
space.
Finally, we prove a similar result for the critical Yang-Mills equation:

OFu(t,r) = %u(t,r) + %&u(t, r)— ;?u(t,r)(l —u(t,r)(1— %u(t,r)).

Classification results proving that decompositions of type (1.10) and (1.9) hold for a sequence
of times t,, — T} were obtained by Cote [14] for equation (WM) with k& = 1, and by Jia and
Kenig [42] in greater generality, including all the cases considered here.

2.3 Bounds on the speed of type II blow-up

The results of Chapter 1 encourage to further investigate the relationship between the dy-
namics of the blow-up and the properties of the asymptotic profile ug. In Chapter 3, we
prove the following two results in this direction.

Theorem 2.9. Let N € {3,4,5} and s > Y52, s > 1. Let uf = (uf,u) € HTL x H* be

radially symmetric. Suppose that u(t) is a radial solution of (NLW) such that

Jim fult) = W)~ will e =0, lm AH=0,  To<ioo  (24)

There exists a constant C > 0 depending on ug such that:

e if N € {4,5}, then for Ty — t sufficiently small there holds

At) < O(Ty — )~

o if N =3, then there exists a sequence t, — Ty such that

)‘(tn) < C(T-i- - tn)ﬁ'

Theorem 2.10. Let N € {3,4,5}. Let u}y = (uj,u) € H3 x H? be radially symmetric and
uy(0) < 0.
There exist no radial solutions of (NLW) such that

Jim ) = W~ wille =0 i MO =0, Ty<doe (29
The main idea of the proofs, sketched in Paragraph 1.4 of Chapter 3, is to bound the error

term by the (energetic) interaction of the bubble with the remainder, which was alluded to
in Remark 2.5.
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The general picture emerging from Theorems 2.1, 2.2 and 2.9 is that the speed of the blow-
up of solutions of Krieger-Schlag-Tataru type is related to the regularity of the asymptotic
profile rather than the regularity of the solution itself (although the solutions which blow
up faster tend to be more regular, as indicated in [52, 53]). Note that, even if for technical
reasons we require additional regularity of wf, in (2.4) and (2.5) we require convergence just
in the energy space.

A natural question is whether the asymptotic profile uniquely determines the solution
which blows up in a neighborhood of {Wy}. If it was the case, then assigning to each
blow-up solution its asymptotic profile and vice versa would yield a classification of the
blow-up solutions in a neighborhood of {W,} in the energy space. This general scheme, as
pointed out to the author by H. Koch, D. Tataru and the anonymous referee of the article
constituting Chapter 3, resembles the classical scattering problem. Of course one should
identify the elements of the energy space which can act as the asymptotic profile of some
blow-up solution, and the content of Theorem 2.10 is to show that at least certain profiles
have to be excluded.

Even if we should probably be rather dubious about the program described above, it raises
questions which seem more accessible. For example, does the asymptotic profile determine
the speed of the blow-up?

2.4 Nonexistence of two-bubbles with opposite signs
Chapter 4 is devoted to a proof of the following fact.

Theorem 2.11. Let N > 3. There exist no radial solutions w : [to,Ty) — H' x L? of
(NLW) such that
Tim () = W + W12 = 0

+

and
e in the case Ty < 400, \(t) < pu(t) < Ty —t ast — Ty,
e in the case Ty = +oo, \(t) < p(t) €t ast — +o0.

An in the setting of Theorem 2.7, we work here at the energy 2E(W), the threshold
energy for a formation of a multi-bubble. The main motivation for this work comes from
equation (WM), where the two bubbles can either have opposite orientations, in which case
the topological degree of the solution is 0, or have the same orientation, which would imply
that the topological degree of the solution is +2k. This first situation was considered in
Theorem 2.8, and we know that a two-bubble can form at least for £k > 3. On the other
hand, by well known variational arguments, any k-equivariant map of topological degree
2k has energy > 2FE(W), hence the conservation of energy implies that there are no pure
two-bubbles in this case.

Our proof of Theorem 2.11 is variational in nature, just like the proof for the wave maps
described above. The dynamical content is reduced to the study of the hyperbolic dynamics
induced by the presence of the linear stable and unstable modes in a neighborhood of W,
which is an important difference with respect to equation (WM). The most difficult part
is to exclude global solutions which behave asymptotically as a superposition of a positive
bubble at scale 1 and a negative concentrating bubble. To this end, using the stable man-
ifold constructed by Duyckaerts and Merle [27], we introduce refined (nonlinear) instability
directions, which allow to obtain sharp coercivity properties of the energy functional. The
scheme of the proof is influenced by the results of Krieger, Nakanishi and Schlag [49], which
we already mentioned in Paragraph 1.4.






Chapter 1

Construction of type II blow-up
solutions for the energy-critical
wave equation in dimension 5

Abstract

We consider the semilinear wave equation with focusing energy-critical nonlinearity
in space dimension N =5
O = Au+ ul*u,

with radial data. It is known [25] that a solution (u,d;u) which blows up at ¢ = 0 in
a neighborhood (in the energy norm) of the family of solitons Wy, decomposes in the

energy space as
(u(t), Oru(t)) = (W) + ug, uy) + o(1),

where limy_,o A(t)/t = 0 and (ug,u}) € H' x L?. We construct a blow-up solution of this
type such that the asymptotic profile (ug,u}) is any pair of sufficiently regular functions
with u(0) > 0. For these solutions the concentration rate is A(t) ~ t*. We also provide
examples of solutions with concentration rate A(t) ~ t*T! for v > 8, related to the
behaviour of the asymptotic profile near the origin.

29
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1 Introduction

1.1 General setting

We are interested in the problem of constructing type II blow-up solutions for the energy-
critical wave equation in space dimension N = 5:

Auu = Au+ |u|*3u, (t,z) € R x RS.

Denote f(u) := |u[*3u. It will be convenient to write the wave equation as a first-order in

time system:
g u\ Orut
ot \oww)  \Au+ f(u))’

(409 ) = () etz

This equation is locally well-posed in the energy space H' x L2 (see for example [47] and
the references therein). In particular, for any initial data (ug,u;) there exists a maximal
interval of existence (T_,T4), —oo < T_ <ty < Ty < +00, and a unique solution (u,du) €
C((T-,Ty); H' x L?). This solution conserves the energy:

(NLW)

E(u(t), Owu(t)) = ;/|8tu]2dx + % / |Vul|? dz — /F(u) dz = E(ug, u1),

where F(u) = [ f(u)du = 3|u|'%? (notice that [ F(u)dz is finite by the Sobolev imbed-
ding).
For a function v : R> = R and A > 0, we denote

1 T

vy (x) = WU(X)’ uy(z) == WU(X)
A change of variables shows that

E((UO))\, (ul)A) = E(UO, ul).

Equation (NLW) is invariant under the same scaling. If (u,dyu) is a solution of (NLW) and

A > 0, then
t—to t—to

te (u(=50)y du(=),)
is also a solution with initial data ((uo)a, (u1)x) at time ¢ = 0. This is why equation (NLW)
is called energy-critical.
We introduce also the infinitesimal generators of scale change:

3

Av = —8)\1))\’/\:1 = (5 + - V)v,
5

Agv := —0Avy s (5 +x- V)v.

A fundamental object in the study of (NLW) is the family of solutions (u, dyu) = (Wj,0),

where e )
T —3/2
W(z) = (1 —) .
The functions W), are called ground states. In this paper we are interested in radial solutions

(u, Opu) of (NLW) such that infy [|(u — W), Oyu)|| g1 ;2 remains small for T_ < ¢t < ty. In
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the case N = 3 it was proved by Krieger, Nakanishi and Schlag [49] that such solutions form
a codimension one manifold in a neighbourhood of the family {W)}. This is expected to
hold also for N = 5. The asymptotic behaviour of such (not necessarily radial) solutions as
t — T_ was described by Duyckaerts, Kenig and Merle in [25], both in the case T = —oc0
and T_ > —oo. In the second case, which is relevant for us, they obtain the following result.

Theorem. [25, Theorem 2] Let (u,0wu) be a solution of (NLW) such that T = 0 and
inf) ||(uw — Wy, 0|l 1, 2 remains small for T < t < Ty. Then there exists a C° function
A(t) : (0,Tp) — (0,400), such that

lim (u(t) — Wy, Ou(t)) = (ug, uj) € H' x L2,

t—0t

and the convergence is strong in H* x L2. In addition, At) < tast—0F.

In this context, W) is called the bubble of energy and (uy,uj) is called the asymptotic
profile.

Solutions of this type were first constructed by Krieger, Schlag and Tataru [53] in space
dimension N = 3, where it is shown that for any v > 1/2 there exists a solution such that
the concentration speed is A(t) ~ t!™ (later Krieger and Schlag [50] improved this to v > 0).
Similar results where obtained for energy-critical wave maps by the same authors [52], for
energy-critical NLS in dimension N = 3 by Ortoleva and Perelman [74] and for energy-critical
Schrodinger maps by Perelman [76]. Using a different approach, Hillairet and Raphaél [36]
obtained C'*° blow-up solutions for energy-critical wave equation in dimension N = 4 with
blow-up rate A(t) = texp (— v/—log#(1 + o(1))). Collot [13] obtained a related result for
supercritical wave equation in large dimension.

It follows from the classification of solutions with energy E(W) by Duyckaerts and Merle
[27] that necessarily (uj,u}) # 0. In other words, we have non-existence of minimal energy
blow-up solutions. Analogous result is true also for energy-critical wave maps, energy-critical
Schrodinger maps and energy-critical NLS.

This is in contrast with the L2-critical NLS where the conformal invariance produces
explicit solutions concentrating a bubble of mass and tending weakly to 0 at blow-up. Exis-
tence of blow-up solutions with a non-zero smooth asymptotic profile was first observed by
Bourgain and Wang [5]. Blow-up solutions close to the ground state in the case of L2-critical
NLS were extensively studied in a series of papers by Merle and Raphaél. They examined
in particular the relationship between regularity of the asymptotic profile and the blow-up
speed. One can consult a survey [61] for an account of these results in a proper perspective
and a presentation of recent developpements in the case of L?-critical gKdV.

1.2 Main results

The aim of this paper is to construct solutions which blow up by concentration of one bubble
of energy in space dimension N = 5. Our approach differs substantially from [53] in that it
produces a blow-up solution with a given asymptotic profile. This profile is seen as a source
term which permits concentration of the bubble. This point of view is close to a recent
construction by Martel, Merle and Raphaél [60] in the case of L2-critical gKdV.

Denote X5 := H51 0 H'. We prove the following two results.

Theorem 1. Let (uf,ul) € X*x H* be any radial functions with ufj(0) > 0. Let (u*(t), Opu*(t))
be the solution of (NLW) for the initial data (u*(0),0,u*(0)) = (uy, uj). There exists a solu-
tion (u,Oyu) of (NLW) defined on a time interval (0,Ty) and a C1 function A(t) : (0,Tp) —
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(0, +00) such that

1 (u(t) = Wiy =u’(8), Qu(t)+N (O)(AW) s =0 (0) | g1 2 = O(Y?)  as t =07, (1.1)

and A(t) = (532)%(u*(0,0))*t* + o(t4).
Theorem 2. Let v > 8. There exists a solution (u,0wu) of (NLW) defined on the time
interval (0,Ty) such that

lim | (u(t) = Wiy = ug, du(t) —ui) g, 2 =0,

t—0t

where A(t) = V1, and (uf,u}) is an explicit radial C* function.

We will refer to the situation of Theorem 1 as the non-degenerate case and to the situation
of Theorem 2 as the degenerate case. Note that in Theorem 1 we allow any regular (ug, uj)
with u;(0) > 0. Our result might be seen as a first step in a possible classification of all
blow-up solutions with a non-degenerate asymptotic profile. Theorem 2 demonstrates how
the asymptotic behaviour of (uf,u}) at z = 0 influences the blow-up speed. The condition
v > 8 is imposed by our method. It could be improved at the cost of some technical details,
but we are far from obtaining the whole range v > 0 as in [53] for N = 3.

Let us mention that radiality is only a simplifying assumption. All the estimates used
here are true also in the non-radial situation.

In Theorem 2, the function u is given explicitely by (4.1) and uj = 0. It follows from our
proof that there exists a C'! function A(¢) : (0,Tp) — (0, +00) such that A(t) = t*+! + o(t*+1)
and the solution (u, dyu) satisfies

H(u(t) - W

S — ), dau(t) + N (@) (AW)5,

— Opu*(t))

HHle2 =

1.3 Structure of the proof

In Section 2 we present a formal computation which explains the relation between the asymp-
totic behaviour of (uj, u}) and the blow-up speed, as well as the relevance of the condition
ug(0) > 0.

In Section 3 we specify an ansatz (¢o(t), ¢1(t)) in the non-degenerate case and prove
appropriate bounds on the error of this approximate solution.

In Section 4 we choose (u(0), uj(0)) such that the same procedure leads to an approximate
solution with A(t) ~ t1*¥ and we prove appropriate bounds on the error in this situation.

Section 5 covers both the non-degenerate and the degenerate case. We use a well-known
compactness argument introduced by Merle [64] and used by several authors starting with
the work of Martel [56] for constructions of multi-solitons. We take a decreasing sequence
tn, — 07 and we define (uy,, dyuy,) as the solution of (NLW) such that (uy,(ty,), Opun (t,)) is close
to the approximate solution at time ¢t = ¢,,. The heart of the analysis is to obtain uniform
energy bounds for this sequence. That is to say, there exists Ty > 0 such that (u,(t), Orun(t))
stays close to (¢o(t), p1(t)) for t, <t < Ty, with bounds independent of n. Note that the
exponential instability of W) causes an additional difficulty in the argument. We use the
shooting method to eliminate the unstable mode. The blow-up solution (u,d;u) is obtained
as a weak limit of a subsequence of (uy, Oyuy,). To obtain the crucial uniform energy bounds,
we use a mixed energy-virial functional. This method was introduced by Raphaél and Szeftel
[78] for a construction of minimal mass blow-up solutions for NLS.



2. FORMAL PICTURE AND CONSTRUCTION OF BLOW-UP PROFILES 33

In Appendix A we prove sequential weak continuity of the dynamical system (NLW)
under some natural (non-optimal) condition, which is an adaptation of an analogous result
of Bahouri and Gérard in the defocusing case [3, Corollary 1]. This result is required in order
to extract a weak limit of the sequence (uy,, dyuy,).

In Appendix B we provide for reader’s convenience some well-known estimates of the
X! x H' norm of solutions of (NLW). The persistence of X! x H! regularity is used in
Section 5. The energy estimates are used in Section 4. They are non-optimal, but sufficient
for our purposes. We prove also propagation of regularity in a neighbourhood of the origin
in the non-degenerate case, which is used in Section 3.

1.4 Notation

For v,w € L? we denote

(v, w) ::/ v-wdx.
R5

We use the same notation for the duality pairing when v € H—* and w € H?*.
Linearizing —AV — f(V) around V = W) we obtain a self-adjoint operator

Lah = —Ah — f/(Wy)h.
Differentiating —AW) — f(W)) = 0 with respect to A we find
Ly(AW), = 0.

We denote L := L1 = —A — f/(W).
We will also use the notation v(t) := (v(t), v(t)).
We denote Z a fixed radial C§° function such that (AW, Z) > 0.
Finally, x is a fixed standard C*° cut-off function (x(r) =1 for r < 1, x(r) =0 for r > 2,

X'(r) <0).

2 Formal picture and construction of blow-up profiles

2.1 Inverting the operator L

We define
(AW, f'(W)) 128

(AW, AW) ~ 1057

Proposition 2.1. There exist radial functions A, B € C*°(R®) such that
LA=rAW + f'(W), LB =—AgAW. (2.1)

In addition, A(r) ~ =1, A'(r) ~ =2, A"(r) ~ 173 and B(r) ~ 171, B'(r) ~ 172, B"(r) ~
r3 asr — —+00.

Proof. In the proof we will use some standard facts from the theory of Sturm-Liouville equa-
tions, see for example [92, Chapter 5.
Solving equation (2.1) is equivalent to solving the following ODE:

—(p(r)y) +q(r)y = g(r), (2.2)

with 7 € (0,+00), p(r) =1, q(r) = —r'f'(W) and g(r) = ga(r) = r (kAW (r) + f(W(r)))
or g(r) = gp(r) = —r*AgAW (r). Notice that |g(r)| < r* for small r.
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We know that AW (r) is a solution of (2.2) with g(r) = 0. Let I'(r) be a second solution
normalized in such a way that

WAW,T) = rH(AW - T/ — (AW) -T) =1

(W is the modified wronskian, in particular its value is independent of r).
Take 1 < V15, 19 > /15 (recall that r = /15 is the unique point where AW vanishes)
and define

yi(r) == AW(r) - /r: 54(/“(:/1‘/8(5))27 for 7 < /15,

ya(r) .= AW(r) - /T M, for r > V/15.

T2

It can be easily checked that y; and ys are solutions of the homogeneous equation and verify
W(AW,y1) = W(AW,y2) = 1. Hence, we have y; = a;AW +I' for some scalar coeflicients
a1, as. Directly from the formulas defining y; and y» we obtain the asymptotic behaviour of
y1 as r — 07 and of yg as r — oo :

™ ds 1
I e N
T 3

(1) _1/r ds 1 -+
r)~ — —_ ~ = r Q.
y2 TS v 84'8_6 )

As adding a constant multiple of AW does not change these asymptotics, we obtain that
L(r) ~—r=3asr— 0" and I'(r) ~ —1 as r — +o0. From the relation W(AW,T) = 1 we get

r~ 4+ (AW -T

I =
AW ’

which immediately gives IV(r) ~ r~% as » — 0 and I'(r) ~ £r~! as 7 — 400 (it can be
checked that the sign is ” + 7, but we will not use this fact).
For ro,r € (0,+00) we define

s(r,ro) := AW (ro)T'(r) — T'(ro) AW (r). (2.3)
We see that s(rg,79) = 0 and ré%s(r, 70)|r=r, = 1, which means that s(r,rp) is the second

fundamental solution of (2.2). Now using the Duhamel formula we obtain a solution of the
non-homogeneous equation (2.2):

Aw) = [ strraat) o
B(r) = /Ors(r, gp(r')dr'.

Fix r > 0 and let |h| < %r. In the estimates which follow, all the constants may depend

on r. We have
A(r+h) — A(r) B /
7T/) -

" d
ATy gt o]
S /

" d
PRSI ) fga)]

r+h
/ ls(r 4 hy1")] - lga()| dr'.

IN

==

+
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Formula (2.3) implies that |s(7,rg)| S h when |7 —7r| < h and |r — 7| < h. Hence, the second
term above converges to 0 as h — 0. For 0 < rp < r and |[F—r| < %7“ we have the bound

’;7:25(?7 ro)| S 7“0_3. This implies

2 _
sup |5 s(7, )| - [h] S ()72 - [hl,

s(r+h,r")y—=s(r,7") d 1
2 [r—r|<h dr?

_ /
h drs(r’r)‘

so the first term above also converges to 0 as h — 0. This shows that A(r) (and similarly
B(r)) is continuously differentiable and

A’(r)-/rf s(r.1")ga(r)

/d s(r,r)gp(r') dr'.

It is clear from these formulas that lim,_ o+ A'(r) = lim,_,o+ B'(r) = 0.

It follows from above considerations that A and B, seen as functions on R®, are C!, so
they are C*° by elliptic regularity.

Now we consider the behaviour of A(r) and B(r) as r — +o0o. From the crucial orthogo-
nality relation [, FOAW (1) ga(r') dr’ = 0 we deduce that

’/ AW (g (') dr

From this and the asymptotics of I and g4 it follows that |A(r)| < r~! and similarly |B(r)| <
r—!. Using the asymptotics of I” we obtain also |A'(r)] < r=2 and |B'(r)| < r~2. The fact
that [A”(r)| < r~3 and |B"(r)| < r~3 follows from the differential equation. O

“+o0
/ AW () g(r")dr'| < r1

We define A and B as the solutions of (2.1) satisfying the orthogonality condition

Z.-Ade= | Z-Bdz=0. (2.4)
R5 R5

2.2 Determination of blow-up speeds

Let u*(t,x) be the solution of (NLW) for initial data (u*(0), d:u*(0)) = (uo, u1). At a formal
level, while computing the interaction of u* with the soliton, we will treat u* as a function
constant in space and C? in time, u*(t,z) ~ v*(t). (In the non-degenerate case we will
take v*(t) = u*(,0) and in the degenerate case v*(t) = qt?, where ¢ and /3 are appropriate
constants.) We will construct a solution which blows up at ¢ = 0 and is defined for small
positive . This means that in our situation the caracteristic length A will increase in time.
The usual method of performing a formal analysis of blow-up solutions in the case of the
wave equation consists in defining b := A\; and searching a solution in the form of a power
series in b. Following this scheme, we write

u =Wy + u*(t) + b*T) + lot
Oru = —b(AW) ) + Opu™ + lot.

Here, the profile T' is undetermined, and we search a convenient blow up speed. Neglecting
irrelevant terms and replacing \; := %/\(t) by b, we compute

2

b
Gttu = *bt(AW)A + -

b\ (AoAW)A + attu* + lot.
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On the other hand,
1
Au+ f(u) = —XbZ(LT)A + f/(Wy)v* + Au* + f(u*) + lot.

We discover that, formally at least, we should have

A "
LT = —MoAW + S5 [0 AW + v OV (W)]. (2.5)
Proposition 2.1 shows that if
by = kvt (H)AY2, (2.6)
then equation (2.5) has a decaying regular solution 7' = B + v*(tb)i;\SQA. We call equation

(2.6) together with the equation A\, = b formal parameter equations. In the non-degenerate
case v*(t) = u*(t,0) is close to u*(0,0), so we expect that there exists a solution of the formal
parameter equations which is close to

HQU* 2 IQQ’LL* 2
(), b)) = (OO 00 5y (2.7

This is indeed the case, as follows from our analysis in Section 5.
In the degenerate case we have v*(t) = qt?, and the formal parameter equations have a
solution

(A(t),b(t)) = (t1, (1 + v)t¥) (2.8)

if we choose g = @ and 8 = %3

3 Approximate solution in the non-degenerate case

3.1 Bounds on the profile (P, P)

The functions A and B from the previous section do not belong to the space H'. We will
place a cut-off at the light cone, that is at distance ¢ from the center. Given modulation
parameters (A(t),b(t)), we define:

Po(t) == x(5) (A(0)* 20" (£) Ax(py + b(8)* Bxn)- (3.1)

t
Recall that in the non-degenerate case v*(t) = u*(¢,0) € C? by Proposition B.6 and Schauder
estimates.

Remark 3.1. Because of the finite speed of propagation, without loss of generality we can
replace (ug, u}) by (x(;)ua, x(;)u{), where p is a strictly positive constant to be chosen later.
Thus, without loss of generality we can assume that the support of (u, u}) is contained in a
small ball and that ||(uy, u])||x1x gt is small.

Remark 3.2. The fact that the profile (P, Py) is cut at 7 = ¢t = t! can be considered as a
coincidence. The power of ¢ has been chosen in order to optimize the estimates. This is the
only power for which we can obtain the estimate of the error term which has asymptotically
the same size as the profile Py. Also, for this choice, || P;| ;2 (the forth term of the asymptotic
expansion which will be defined in a moment) is asymptotically the same as || Fo|| ;1. However,
the angle of the cone has no significance for us.
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Remark 3.3. Notice that the orthogonality condition which we choose to define A and B has
little significance due to a relatively fast decay of AW. We will use the same orthogonality
condition as for the error term, as this choice simplifies slightly the computation. Observe
that the fact that Z has compact support implies that if A(t) < ¢, then [ Py(t)Zydz = 0 for
small ¢.

In the error estimates which will follow, on the right hand side we will always replace A(t)
by t* and b(t) by 3, as this is the regime that we are going to consider later in the bootstrap
argument. In this section, all the constants may depend on u*.

Lemma 3.4. Assume that \(t) ~ t* and b(t) ~ t3. Then
IPo()ll 1 S /2. (3-2)

Proof. Tt is sufficient to show that HX(Z>A/\H12L11 < t73 (the computation for B, is the same).
We have
Heo Ar

G > [ () ar= [ (Caw) ) ar

oo Ar / 2 oo A ’ AT 2
<[ aGHa s [T GV A ar

2t/ A 1 )\2 2t/ A 1 t
5/ 7“4—4d7"—i—f2 T4—2dr§—~t*3.
0 r 2 Jia r A

Lemma 3.5. Assume that \(t) ~ t* and b(t) ~ t3. Then
|LaPo — N*/20* () LyAy — b* LBy |2 S t7/2.

Proof. We will do the computation only for the terms with A. The terms with B are asymp-
totically the same. We need to check that

[ =X F A + [ AL = x(5) AN |2 S 72

For the first term we have even some margin since

T , Ar ,
10 =X (DI WA = 510 =) F )4
+oo
S 1\</t//\ (e N dr)lﬂ - % ' (%)5/2 ~ 172,

For the second term, we have a few possibilities. Recall that A = 0, + %. Either the
laplacian hits directly A:

r AT Feo / A
10X AU = 510 -x()) 84 2 5 i</w rhar) i\ﬂw 512,

either one derivative hits y:

1, ,,r.d 1, ,,A\r L (RN /2 t
;HX'(g)g(AA)HLz :{HX/(T)A/(T)HLQ St 1</t/A (r 2)27’4d7‘) ~t 1'\£~t 52,
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and analogously the term 1||x/(2)2(A,)||,,), or two derivatives hit x, and we get
t t/r L

A A A 2 At )
t2HX (DAl = x5 (1) Al 52(//A (~)rtar) ~ ()~
O

We define P;(t) as a formal time derivative of Py(t), which means that we replace A; by b
and b; by kv*(t)A\/2, see (2.6), and we do not differentiate the cut-off function. Explicitely,
set

Pit) = x() [0 () (A% Ay — N/2B(AA),)

(3.3)
+ A290% (£) Ay + 260" (£)A3/?0B) — B} (AB),].

Notice that in the regime (2.7) the coefficient A%/ is smaller than the other coefficients (all
of which are, asymptotically, of the same size). However, we prefer to keep the corresponding
term in the definition of P;.

Lemma 3.6. Assume that \(t) ~ t* and b(t) ~ t3. Then
1P (D)2 S £ (3.4)

Proof. All the terms except for the one mentioned above have the same asymptotics, so we
will do the computation only for the first one. It is sufficient to show that ||x(;) A2, S ¢7°.
We have

Ar
HX( )Ax7 ~ HX(T)A(T)H%%MT)

Our ansatz ¢(t) = (¢o(t), ¢i1(t)) is defined as follows:

eo(t) =
pr(t

where Py and P; are given by
The error term e(t) = (go(t

~—

W) + Po(t) +u*(t),
= —b(t)(AW)r) + Pi(t) + O™ (t),

3.1) and (3.3).
,e1(t)) is defined by the formula:

~—

N

u(t) = o(t) +eo(t),
du(t) = p1(t) +e1(t).

We shall impose the orthogonality condition

/802)\(11' = 0.

Lemma 3.7. If A ~t*, b~ t3 and t is small enough, then

A =l < lell gy g2 (3.5)
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Proof. To find the formula for )\, first we write

— b(AW)A + &gu* + P1 (t) + El(t) = 8tu = _)\t(AW)A + Btu* + 8tP()(t) + atE[) =
8t€0 = (At — b)(AW)A—F (P1 - 8tP()) +é£1.

Notice that for small ¢t and \ ~ t* we have
/(Pl(t) — 0 Py(t))Zydx = (A — b) [)\3/21;*(t)(AA, 22 + bQ(AB,Z>L2].

This follows from (2.4) and the fact that supp(Z)) is contained in the light cone for small ¢.
This gives

1
0 EoZ)\dl‘:/8,5802)\(1:17—)\15/60)\(1\02))\(11'

~ @
- / (\c = B)(AW, 2) + (A — D)X/20" (1) (AA, 2) 2 + B2(AB, ) 1]

1
+ <51aZA>L2 — )\t/é‘oA(AQZ))\dZC,

and we obtain

1

(A = D)[(AW, 2) + X20* () (AA, Z) + b (AB, Z)] = —(e1, 22) + Mi(e0, 3 (A0 2)y).
Rearranging the terms we get
by :(1 - (c0: 3 (A0Z),) )‘1.
(AW, Z) 12 + X3/20%(t)(AA, Z) + b2(AB, Z) (3.6)
. <b _ <61’ ZA> ) ‘
(AW, Z) 4+ X3/20*(t)(AA, Z) + b2(AB, Z) /"
For ¢ small enough, (3.5) follows. O

Remark 3.8. To be precise, our rigourous argument goes the other way round — we use
(3.6) and (2.6) to define the local evolution of the modulation parameters, and then by
doing exactly the same computation as above, but in the opposite direction, we find that the
orthogonality condition (g9, 3 Zx)z2 = 0 is preserved if it is verified at the initial time (which
will be the case). Notice also that using (2.4) we obtain

<u - W)\ - u*, ZA) = 0. (37)

Differentiating this condition we find

1

N (AW, 2) + (60,

(AoZ)y) = —(Oru — dyu*, Zy). (3.8)
We need to estimate the error between the formal and the actual time derivative of Py:
Lemma 3.9. Assume that \(t) ~ t* and b(t) ~ t3. Then

0Py — Pl g S VEE + €]l ga s p2)-
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Proof. The error has two parts — one comes from differentiating in time the cut off function
and the other one from |\, — b|.

Py — P, = —ﬁx( DYO20%(£) Ay + b2By)
(D) O = B () (542 4y~ W2 (AA)y) ~ B(AB),].

Using Proposition 2.1, we can write:

r r Ar
I ) Al =l ) Al

)\T A AT Ary 1
SNl + S () - Hm*H”X(t)'ﬁHLz
)\7“ A Ar )

SIVED - Flles + I G ~ () ~ 2,

The same computation is valid also for A replaced by B. Now we have
r b\ B -
X (N2 Ay S 5AY/2 47902 s 2457002 = 4712,

and the same for the second term.
The computation for the second line is similar:

IIX( ) AN g = (& )AHH1

Ary 1
< S R ZHv(Z2) - Zllre ~ SE/N ~ 732
< llx( t) T2”L2+ tHX( t) 74HL2 t/A ~ T
Multiplying by \f)\()\t — b) and using Lemma 3.7 we get the desired estimate. The last two

terms are exactly the same. O

Finally, the following estimate allows to stop the asymptotic expansion of the solution at
Py.

Lemma 3.10. Assume that \(t) ~ t* and b(t) ~ t>. Then

10:P1 || 2 S VEE + el gy 12)-

Proof. Consider first the terms coming from differentiating the cut-off function. Like in the
proof of the previous lemma, we have

15 () Axllie I Gz ~ (5)2

I

which gives
/Y N A
Htigxl(g)’l) (t)A3/2l)AA”L2 5 t—2
The term Ht%x’(%))ﬁmatv* (t)Ax|| L2 is even smaller.
Consider now the other terms. They are of one of the following six types:

A3/2p . (E

)\)5/2 ~ 1772,

X (5)MAY20T)y,

* X(%))‘t§TA7
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MO

o X(§)beb?T,
X(F)MAY2dgv* (1) T,
X(5)A2dyv* ()T,

where T' € {A, B,AA,AB,AgA, Ao B, A\gAA, A¢AB}. In all the situations T is regular and
decays like =1 (see Proposition 2.1), so we can write

2t/ A 1 1/2 t
||X( )Tallze S (/ (,)2r4dr> < (X)3/2Nf9/2.

t/\ r

Using the fact that A ~ %, b~ 3 A\, <b+ |e||, b < VA and that v*(t) is C? we obtain
b
AMAY2h 4 A~ h + b A2 4 byb? + N2 Aot | + X2 dgt] S O+ |el]),
which finishes the proof. O

The last lemma shows that ¢ is “almost constant” after rescaling.

Lemma 3.11. Let ¢y > 0. If Ty is sufficiently small, then for t € (0,Tp] there holds

C
loneo)rall s < 5

Proof. By the definition of ¢g and Py we get

(o)ix = W+X()\)P\3/2A+b2] + (u")1/a-

The terms with A and B are similar, so we only consider the first one. We observe that
]%] < 1 for small ¢, with an explicit numerical constant. Now

A 3X Ar )\r S A

"\ \3/2 3/2 T\ \3/2
8t(x(7)>\/A) Sax (o IN2A — (t)A/A.
The size of the first term is acceptable by Lemma 3.4. For the second one, it is sufficient
to notice that \ A < £ on the support of x. The conclusion follows again from Lemma 3.4.

(Notice that we have a large margin for these two terms.)
Next, we have

A
00y ll e < 90| e+ 5 12|y

By Proposition B.2 the first term is bounded for small ¢t. Choosing p small enough (see
Remark 3.1), we can guarantee that |[Au*(t)||z: will stay small for small ¢, which is exactly
what we need. O
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3.2 Error of the ansatz

Our next objective is to estimate the error of the approximate solution, defined as

b(t) = <¢0(t)> - <3t¢0(t)> _ < ¢1(t) ) '
Y1(t) 1 (t) Apo(t) + f(po(t))
In order to do this we first need to extract the principal terms of the nonlinear term, which
is based on the following pointwise estimate:

Lemma 3.12.
|f(k+1+m) = [f(k)+ f(m) + f'(R)l+ f'(R)m]| S [f(O]+ F' Ok + f (m)[k]+ £ (m)[1]. (3.9)

Proof. The inequality is homogeneous, so we can suppose that k% + 12 + m? = 1. The
right hand side vanishes only for (k,l,m) € {(£1,0,0), (0,0,+£1)}, so it suffices to prove the
inequality in a neighborhood of these 4 points, where it is an easy consequence of the Taylor
expansion of f. O

Lemma 3.13. If \(t) ~ t*, b~ t3 and t is small, then

17 (o (1)) = LfF (W) + () + F' (W) Po(t) + f'(Wa)u* ()]l 2 S ¢

Proof. We put in the preceding lemma k = Wy, | = Po(t), m = u*(t), and we estimate
the L? norm of the 4 terms on the right hand side of (3.9). When Py(t) appears, we split
it into two parts. We sometimes forget x, as its presence here can only help (there are no
derivatives).
Term “|f(1)]”:
(X(%))\S/QAA)W?) < X(%) ) (%)_7/37

and 7~1%/3 is integrable near 0, so ||((X(%))\3/2A,\)7/3HL2 S >\7/3||X(%)7°_7/3||L2 <t Ina

similar way, || (X(%)bQB,\)7/3HL2 < th
Term “f’(1)|k|”: By a change of variables we get

ION2AN 2 Wl g2 = A AW 2 ~ £

(exponent of A on the left = (3/2 — 3/2) - (4/3) — 3/2 = —3/2, and the L? scaling is —5/2).

In a similar way,
1B B2 Wall 2 = A3 BYAW | 2 ~ 1.
Term “f'(m)|k|”: We use once again the L bound of u* and the fact that |[W)|z2 ~ A.

Term “f’(m)|l|”: Using (3.2) and the fact that u*(¢) is bounded in L?*/3 for small ¢ (by
Proposition B.2), we have

1/ W) Poll 2 < [1F ()l s - [1Pollpross < ¢772.

We can now estimate (t).
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Proposition 3.14. Assume that A(t) ~ t* and b(t) ~ t3. Then
1
[$o(t) + (e = 0) 3 (AWl g S VENle@ll 2 + 1), (3.10)
b
[91(t) = e = ) 3 (AoAW a2 S VEle®ll g pz +1)- (3.11)

Proof. The first inequality is just a reformulation of Lemma 3.9.
For the second inequality, we divide the error into several parts:

Y1 = Otpr — (Ao + f(¢o))
b

— (AW + APy + Au™)
= (fWa) + f(u™) + f(Wa)Po(t) + f/(Wa)u™),

where we have used Lemma 3.13 in order to raplace f(g) by the sum of its principal terms.
Rearranging the terms and using (2.6), we can rewrite the sum above as follows:

b= (= 5) 2 (AT,

A
— (AW + f(W))) + (Ouu” — Au™ — f(u"))
— 0 (OVA(=LA + kAW + f'(W))) + bj(LB + AoAW) )

L (AR — FW)R) — v (OVA(LA) — L (LB),

A
+ (07 (1) = w ()AL (W))a
+ 8P, + O(t/?).

Now we proceed line by line.

Line 1. This is the correction that we substract in (3.11).
Line 2. Both terms equal 0.

Line 3. Both terms equal 0 by the definition of A and B.

Line 4. This error is due to the presence of the cut-off function in (3.1), and Lemma 3.5
tells us that it is acceptable.

Line 5. This error is due to the fact that we replace the interaction with w*(¢) by the
interaction with the constant in space function v*(¢). It follows from Proposition B.6 that
|v*(t) — w*(¢,r)| < r uniformly in time when r < ¢ and ¢ is small. Hence,

(0™ (#) = w* () (W)l 2 <ty S TPV (W)allz ~ AY? ~ 10,
(We have used the fact that »f/(W) € L2.) In the zone r > t first we use the fact that v* is
bounded and
1 (W)l 2>t = \/XHf/(W)HLQ(TZt/\*l) S VAP ~ 1372,

As for u*, we know from Proposition B.2 that it is bounded in L!°. By Hoélder |ju* -
FWllezerzey < llutllpo - (1 (Wx)ll 52>y, and a routine computation shows that the
last term is bounded by (\/t)? ~ 5.
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Line 6. This error is small by Lemma 3.10. O

4 Approximate solution in the degenerate case

4.1 Bounds on the profile (7, P;)

This section is very similar to the previous one. Formula (3.1) is still valid but recall that

in the present case we take v*(t) = qt® where ¢ = @ and 8 = . The function v is
defined as follows:

3q
(B+1)(B+3)

(by the finite speed of propagation the cut-off does not affect the behaviour at zero for small
times, cf. Remark 3.1). We take uj = 0.

In the error estimates which will follow, on the right hand side we will always replace A(t)
by t'*¥ and b(t) by t”, since this is the regime considered later in the bootstrap argument.

ug(x) == X(;) -plz|?, p= , p> 0 small. (4.1)

Lemma 4.1. Assume that \(t) ~ t'*V and b(t) ~ t*. Then
[Po(t)]l g S 772, (4.2)

Proof. Recall that v*(t) ~ t# = t=3)/2 50 \3/20*(t) ~ b? ~ t*. Hence, it is sufficient to
show that [|x(; )A,\H + IIx(; )B,\||H1 < t7%. The computation in the proof of Lemma 3.4
gives

t _
and similarly for the second term. O

Lemma 4.2. Assume that \(t) ~ t'*V and b(t) ~ t. Then
| LxPo — )\3/2y*(t)L)\A)\ _ bQL)\B)\HLz < $3v/2-1

Proof. We will do the computation only for the terms with A. The terms with B are asymp-
totically the same. We need to check that

10X PO AN+ 1A (1 x(0) A2 6772

The computations in the proof of Lemma 3.5 imply that the first term is bounded by

%(7)5/2 3v/2=1 and the second by

\/7 \/* 3/2 ~ (- )\)_1/2 ~ V271

In the degenerate case the profile Pj(t) is defined by the same formula (3.3).

Lemma 4.3. Assume that \(t) ~ t'*V and b(t) ~ t. Then

1Py ()] 2 S £33 (4.3)
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Proof. Notice that %v* (t) ~ t8=1 ~ t*=5)/2 This implies that
* 3/2 d * 5/2 3 3v
V() - AV Eb ~ =0 () - NE ~ b7~ Y
dt
so all the terms in the definition of Pj(¢) have asymptotically the same size and it suffices to

show that [|x(;)Ax|2, < ¢73 (the other terms are similar). The computation in the proof

of Lemma 3.6 gives

NOENFE

)3 ~U t—?)V'
Estimate (3.5) and its proof are valid in the degenerate case.
Lemma 4.4. Assume that \(t) ~ t'*V and b(t) ~ t*. Then

10:Po = Pull o S 727 + llell gy 2)-

~

Proof. As in the proof of Lemma 3.9, we write

OP) — P = —tgx’(;)()ﬁ/%*(t)AA +12B,))
()0 = B (OGN 4y — N2 (AA)y) ~ P(AB)).

The computation in the proof of Lemma 3.9 implies

T T t 3y
15X (DAl £ (5)7% ~ 7272,

Multiplying by t%)\?’/ 2v*(t) ~ t3~1 we obtain the required bound on the first term. The
second term of the first line is similar.
The second line is bounded exactly as in the proof of Lemma 3.9. 0

Lemma 4.5. Assume that \(t) ~ t'*V and b(t) ~ t*. Then

10:P1 2 S 7271 + Nlell gaere)-

Proof. We indicate only the modifications with respect to the proof of Lemma 3.10. The
term coming from differentiating the cut-off function is estimated as before by

%v*(t))\3/2b- (%)5/2 ~ 3v/2-1

For the other terms, we get

t
)Tl 5 (L)Y2 ~ o,
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4.2 Error of the ansatz

This subsection differs from the non-degenerate case, because we work here only with X!
regularity and some more effort is required in order to estimate the terms involving u*.

Lemma 4.6. If \(t) ~ t'T7, b~ ", v > 8 and t is small, then

17o0(0) = [F (W) + F(@) + £ (Wa) Po(e) + £ (W) ()] 2 < 155,

Proof. As in the proof of Lemma 3.13 we use Lemma 3.12 with k = W), [ = Py(t) and
m = u*(t). We obtain that the L? norm of the term “|f(I)|” is bounded by

* r —
(0" N7+ 63) [x () s

which is better than required. For the term “f’(1)|k|” we obtain the bound (v*)*3 . X +
bA/3N"L ~ t9/3-1 which is again better than required.

Term “f'(m)|k|”: Let (up, Orund) be the solution of the free wave equation for the initial
data (uw (0), Oruns (0)) = (uh, uy). We write

||f/(U*)'W>\”L2 S Hf/(ULn\T)'W/\||L2(|x|§%t)+||f,(U**ULH\T)‘W>\"L2(|x|§%t)+||f/(U*)'W>\HL2(|x|2%t)

and we examine separately the three terms on the right hand side. It follows from Propo-
v—3

sition B.7 that for |z| < 3t we have the bound |uyg(t, )| < t° = ¢t 2, which implies

I G ()22 < £5¢), hence

£ ) - Wil gy S 83072 NWallz2 ~ 8307084 < =5,
From Proposition B.8 we infer

T, T
Hu* — uLH\?”LQO/B(W\S%t) ,S te? 3,

hence
28

14
Hf,(u* _ uLH\}k)HL5(‘JJ|S%t) 5 t?l’_j’
which leads to

14, 28
”f,(u* — ULII\T) : W/\||L2(|z|§%t) < ||f/(u* - ULU\T)HL‘“(\rIS%t) : ||W>\||L10/3(|a:|§%t) ,S to¥ "o ,

which is more than sufficient for v > 8.
For |z| > %t, we know from Proposition B.2 that || f/(u*)||;s is bounded for small ¢. By a
change of variables we obtain

3

too A\ 3/2 7,1
Wil S ([ 0798t ar) ™ ~ (3)7 < il
2 t/2X

Term “f’(m)|l|”: Using (4.2) we have

T, 7
£ (w*) - Pollgz < I/ (w)llps - | Poll e S 372 < 677 3.

We can now estimate (t).
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Proposition 4.7. Assume that \(t) ~ t'*V and b(t) ~ t. Then

7

[90(6) + (e = )3 (ATl S 68775+ 22 (0o (44)

\1

b 77 y
l1() = (Ae = b) T (AoAW)l L2 S ¢5775 +1 P el gy pe-

Proof. The first inequality follows from Lemma 4.4.
For the second inequality, as in the proof of Proposition 3.14, using Lemma 4.6 and
rearranging the terms, we get:

v = (v = )3 (AoAW)

— (AW, + F(Wa)) + (Opu* — Au* — f(u*))
— 0 (OVA(=LA + kAW + f/(W))s + bj(LB + AgAT )y

(AR~ FW)Ry) — 0" (VLA - S (LB)s

+ (U () — wF (E)VAS (W))a
4 O,Py + O(t5V3).

Lines 1, 2, 3, 4 and 6 are treated exactly as in the proof of Proposition 3.14, using Lemmas
4.2 and 4.5 instead of Lemmas 3.5 and 3.10. We estimate line 5 as follows:

1" = u") V)2 S 1" = uind) £ WA g2 ag< 20
VWl 2 (i< 2o

+ HU : (W/\)HL2 (Jz|>31)

™ VI L2 (a2 20)-

+ [[(ufy —u

From Proposition B.7 it follows in particular that [v*(t) — uf(t,7)| < 7 when r < 1¢, hence
the proof of Proposition 3.14 gives the bound

* * Ty 1T
H(U - uLIN) ’ f,(WA)HL2(|x|§%t) S )‘3/2 L1673,

From Proposition B.8 and the fact that || f' (W) 52 = || f'(W)]| ;52 we get

77
[

(™ = i) - ' W)l a2y S 83740 =t

We have 5
A 2,-3/2
Hf,(W/\)HLz(\x\Z%t) N HWHLZ(\OEIZ%@ ~ X278/
and
, A 2,-2
1f (W)\)||L5/2(|x\2%t) S HWHLWZ(Mz%t) ~ AT

Using boundedness of v* in L, boundedness of v* in L'° and Holder inequality we obtain
the required bounds, which terminates the proof. ]

Lemma 3.11 is still valid in the degenerate case, as well as its proof (we use Lemma 4.1
instead of Lemma 3.4).
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5 Evolution of the error term
The evolution of the error term & is governed by the following system of differential equations:

_ €1 — Yo

o <?1)> B (Aso + [f (o + £0) — f(w0)] — ¢1'> ’

coupled with the equations (3.6) and (2.6) for the modulation parameters Mod := (A, b). We
denote (T-,T) the maximal interval of existence of u.
We introduce the energy functional adapted to our ansatz:

(5.1)

10) = [ Sl + 510 = [F(n +20) = Flg) = Flon)eoldo

Essentially we will perform a bootstrap argument in order to control this functional just
by integrating in time its time derivative. We need a virial correction term which is defined
as follows:

J(t) == b / - (% - %(Aa)A +(Va)y -V )eods,

where ay(r) = a(%), (Va)x(r) = Va(%), (Aa)r(r) = Aa(%) and

1

—p? Irl <R
a(r) = %5 5 5 1

gR'I“ — §R2 + ZR3T‘_1 — §R5T_3 |’r'| Z R

(R is a big radius to be chosen later, see Proposition 5.2).

Lemma 5.1. The function a(r) defined above, viewed as a function on R>, has the following
properties:

e acC3,

e q is strictly convex,
o la()| S, ()| <1, |a"(r)| S vt when r — +oo (the constant depends on R),
o — 5 S A%(r) <0.

Proof. 1t is apparent from the formula defining a that a is regular except for r = R. A
computation shows that a(r), a’(r), a”(r) and a’’(r) are Lipschitz near r = R. For r > R we

have a”(r) = g(%)s — %(%)5 > 0, which proves strict convexity. For » > R one can compute
A2a(r) = —i—? . % (where A = 0, + %& is the laplacian in dimension N = 5). O

We define the mixed energy-virial functional:
H(t)=1(t) + J(t).

The proof of the following result, which will occupy most of this section, is valid both in
the non-degenerate and the degenerate case. The non-degenerate case is obtained for v = 3.
We denote also:
in the non-degenerate case,

ESENTEN]

7= {6 — % in the degenerate case,

which is the exponent of ¢ in the error estimates in Proposition 3.14 and Proposition 4.7
respectively.
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We will use the notation:

IVarollZe = / S (0i0)xdicodco da.
,J

Proposition 5.2. Let v = 3 or v > 8. Suppose that A\ ~ t'7, b~ t" and let ¢ > 0. If R
1s chosen large enough, then there exist strictly positive constants Ty and C1 such that for
[T1,T5] C (0,To] N (T-,T4) there holds

T
H(TQ) < H(Tl) + /T < - §<Hva7,\€oH%z - / (f<<,00 + Eo) - f(goo))&“o dx)
1 (5.2)

C
# (Sl g+ € Dellssz) ) .

The proof of this result is going to be an algebraic computation which is not justified
in the space H' x L?. However, we do not need any uniform control of the regularity or
the decay, so we can use the following density argument. We can approximate a given e
in H' x L? in such a way that the initial data (u(77),d;u(T1)) will be in X' x H' and of
compact support. Then locally the evolution will have the same proprieties by Proposition
B.5, and will be close to the original one in H' x L? for all ¢ € [T, T3] by local well-posedness
in H' x L?. The new e has sufficient regularity and decay to justify all the computations.
Since the estimate (5.2) depends continuously (in H' x L?) on e, we are done.

We shall split the proof of Proposition 5.2 into several Lemmas. We always work under
the hypotheses of Proposition 5.2, that is A ~ ¢!, b ~ ¢ and ||| 1, ;2 < t7T'. Notice
that v+ 1 > v. In the non-degenerate case v+ 1 = % > 3 = v and in the degenerate case
v+ 1=Iv—2%> v because v > 8. This means that ||| 51, ;2 < b and |[e]| g1, 2 < % for
small £. In what follows ¢ stands for any small strictly positive constant.

We use the method introduced in [78], which consists in differentiating the nonlinear term
in self-similar variables. The resulting error will be corrected by the virial term J. Concretely,
we have:

% [F'(¢0 +£0) = F(00) — f(0)e0] d

d

=3 [F((¢0)1/x + (£0)1/2) — F((®0)1/2) — f((w0)1/2)(€0)1/2] da

= /[f((‘PO)l/)\ + (20)1/0) — F((@0)1/x) — F'((©0)1/2)(€0)1/A10% ((@0)1/5) da

+ [0+ (o) = Flendy(Gooun + 5 (Ao)i) do

The first term can be neglected, as shown by Lemma 3.11. Scaling back the second term we
obtain

5 [0 +20) = Flen) = fonaldo = [ 1o+ 20) = ool (e + Feo) do. (53

Here and later the sign ~ means that the difference of the two sides has size at most
el + C1tY - |le|l 1y 2. Also, when we say that a term is “negligible”, it always

Hx L2
means that its absolute value is bounded by ¢|le]| + C1t7 - el gy 2

2.
Hlx L2
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Using the equations (5.1), (5.3) and integrating by parts, we obtain standard cancellations:

%I(t) ~ /61€1t dx — /[ASO + f(po +€0) — f(wo)leot d
=2 [ 1fg0 +20) — Fleo)Acpda
(5.4)
== [ewrido+ 1+ feo+20) — flgolbods
2 [0 +20) - f(elAzodo.
Consider now the virial term J(¢).
Lemma 5.3.
d b A
aJ(t) < /511/11 dr — X”va,AEOH%? + Xt /[f(SOO +€0) — f(¥0)]Aogo dx (55)

C
Nl e + Crt” - lell e

Notice the cancellation of [e19;dz in (5.4) and (5.5). This is important because the
bound on ||| given by Proposition 3.14 and Proposition 4.7 is only |||, which is border-
line but not sufficient to close the bootstrap. Moreover, Ay — A = Id, so J eliminates the
unbounded part of the operator A acting on &g.

Proof of Lemma 5.3. We compute

d 1 1
&J(t) :bt/El . (X '§(AG))\+(VCL))\'V)50dZL'
bA 1 1
- Tt €1 - (X : §(A3/2Aa)>\ + (As/2Va)y - V)eo da

1 1
+b/51t~()\~2(Aa)>\+(Va)A-V)5oda:
11
—i—b/el . (X~§(Aa)>\+(Va),\-V)€0tdm.

Consider the first two lines. From Lemma 5.1 and Hardy inequality it follows that

(Aa),\ + (Va))\ -V (5.6)

> =
N =

and
1 1
X : §(A3/2ACL>/\ — (A5/2VCL>)\ -V

are uniformly bounded as operators H' — L? (the bound depends on R). Moreover, it is
clear that |b;| + ‘%‘ < t~1. Hence, the first two lines are negligible.
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Using again (5.1) we get
11
b/Elt . (X . i(Aa))‘ + (Va)y - V)€0 dr

—l—b/sl-(/l\ ;(Aa)x—i—(Va) - V)eor dz

= b/(A50 + f(po +€0) — f(¥o)) - (i 2(ACL)A + (Va)y - V)eoda
(5.7)
+ b/al : (% : E(Aa)A + (Va)y - V)er da

—b/wl —-%(Aa),\+(Va),\-V)sodx

/E1 (A : 1(AG)A+(VCL)>\-V)¢0dx.

Proposition 3.14 and Proposition 4.7 imply that |[¢1]|72 < $ll€l g1, 2 +17. Using once again
uniform boundedness of the operator (5.6), we obtain that the first term of the last line is
negligible. Consider now the second term. We will show that

11 c
|b/51-()\-Q(Aa),\+(Va))\-V)quodzn+/51@Z)1 dz| < gﬂsHélez%—C&t”||€||H1xL2. (5.8)

It follows from Proposition 3.14 and Proposition 4.7 that in (5.8) 1y can be replaced by
—(A¢ —b)5(AW), and ¢y by (A — b)%(AOAW)A. Hence, using (3.5), it suffices to prove that
[AAW — [1Aa + Va - V]AW||2 is arbitrarily small when R is large enough. But this is
clear, since [§Aa+ Va- V|AW (r) = AgAW (r) for r < R and |[3Aa+ Va - V]AW (r)| S r 73
for all r, with a constant independent of R.

The second line of (5.7) is 0 by integration by parts and we are left with the first line.
The term with Aegg is computed via a classical Pohozaev identity:

1 1 1
/[}\ 2(Aa)>\ + (Va)y - V]epAgg da = —vaa A€ol32 + e /(AQQ)A&?% dz. (5.9)

By Lemma 5.1, the last term is finite and < 0.
The nonlinear part is calculated in the following lemma.

Lemma 5.4.
\l/ 5B + (Vo) - V]eo - [f(po +20) = f(0)] da

- mw+@>fwmm%mﬁ_wmwp

We will admit for a moment that this is true and recapitulate in order to finish the proof
of Lemma 5.3. Identity (5.9) implies that the term with Aeg in the first line of (5.7) is smaller
than —%HVG,AeoH%z- Lemma 5.4 implies that the difference between the other term of the
first line of (5.7) and % [f (0 + €0) — f(vo)]Aoeo dz is negligible. The second line of (5.7)
is 0, and the difference between the last line and [ €19 dz is negligible, as follows from the
computation above. This proves (5.5). O

In order to prove Lemma 5.4, we need two auxiliary facts:
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Lemma 5.5.

[f(k+1) = f(k) = f'(k)l - %f”(k)ZQI S D)

[F(k+1) = F(k) — f(k)l = %f’(k)ﬁl SIE@]+ (k).

Proof. For |I| < 1|k| this follows from the Taylor expansion and for |I| > %|k| this is obvious
by the triangle inequality. O

Lemma 5.6. There exists a constant Cy independent of R such that for small t,

] - [V@olll ross < Ca, (5.10)
[IAVa)al - Vol L1oss < Co. (5.11)

Moreover,
[(z = M(Va)x) - Vol s < ¢ (5.12)

if R is large enough and p small enough.

Proof. Recall that po(t) = Wy + Po(t) + u*(t), and we can estimate the three terms sepa-
rately. The third one gives |||z|-|Vu*|||;10/3, which is bounded by Proposition B.2 and the fact
that u* has compact support. It is easy to check that |||z|-|[V(W)\)||[ 10/ = |||z] - [VW]|| L10/3,
which gives the boundedness of the first term. Finally, we compute

VRPN @)] = V(A = {(T0(DARG) + 5x()TAG).

and it is sufficient to use the inequalities |A(z/\)| < A/|z| and |[VA(z/N)| < A2/|z|2. The
second term of Py is bounded in the same way. Notice that we obtain in fact that |||z] -
|V Py(t)|]| L1075 is small when ¢ is small.

Clearly |A(Va)y| < |z| uniformly in R, so (5.11) follows from (5.10).

The proof of (5.12) is similar. The terms |||z| - |[Vu*||| 105 and [A(Va)y| - [Vu*||| f10/3 are
small when p is small. By rescaling we get

(@ = A(Va)x) - [VWalll pros = [l (@ = Va) - [VW]| paoys.
By definition Va = z for |z| < R, so
H(w - Va) . |VW|||L10/3 ,S |||$| . |VW|||L10/3(|Q:|2R) —0 when R — +oo0.

Smallness of |[|(z — A(Va)y)| - [VPy(t)|]| 105 for small ¢ follows from smallness of |||z] -
[V P ()]l p1oss- O

Proof of Lemma 5.4. First, as for the linear terms, using integration by parts we transform
the integral so that the unbounded operator Ag (and its approximation %Aa + Va - V) no
longer acts on €q:

1 1 1
/ 3 Veof(po +eo)da = / 3 V(w0 +¢€0)f(po + €0) dz — / 3 Vo f(eo +eo) dx

1 1
= -5 / XF(QOO +¢eo)dx — / X$ -Vof(eo + €o)dx
(5.13)
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and analogously

/(Va))\ -Veof(po +eo)de = — / %(AG)AF(QOO + &) dx — /(Va)A Vo f(eo + eo) dz.

Using Lemma 5.5 we see that
/}F(@o +e0) — (F(po) + f(wo)eo + f wo)eg)|dz S llelln, o < FUllell gy ge)
Similarly, from Lemma 5.5 and Lemma 5.6 we get
/ |z - Voo f (w0 +e0) —x - Voo (f(eo) + f'(w0)eo + %f”(%)&g)\ dz S fllell gixr2)-

Notice that %f(||€||H1 w2) < %HEH?{1 so the above two inequalities together with (5.13)

x L2’
imply that
)\t )\t 1 / 2
N Veof(wo +eo)dr =~ — 5X (F(0) + f(po)eo + §f (po)eg) da
\ X (5.14)
; - Vo (f(eo) + f'(vo)eo + §f”(‘/70)5%) dz.

Integrating by parts we find

/ﬂf'vsﬁof(soo)diITZ/% VE(po)d =—5/F900
and
/w-Vgoof'(goo)egd:U:/x-Vf(goo)eod:U: —5/f(g00)50d:v—/x-Veof(cpo)dx

Thus, (5.14) simplifies to

At

2 [ Veo(floo+e0) — flon) de = 3 [ (=2 (@0)eh — 5o Vool (@0)ed) da. (515)

A

Using just a pointwise estimate and Holder we obtain

2 [eoltteo+ o)~ sl do =3 [ £po)ias.

Combining with (5.15) we have

);/Aoéo(f(@OvL&o) — flgo)) da ~ — 2l Vo " (wo)eg da

sz (5.16)
~—y [ @ Vo f"(wo)ed dz,
where the last almost-equality follows from the fact that [\, — b < ||€] g1y 72
Analogously, we obtain
1 1
b ][5 50+ (Vals - Vleo( o+ 20) = Fl0)
(5.17)

~ b/(Va) -V(pof"(gpo)eg dz.
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Comparing (5.16) and (5.17), we see that in order to finish the proof, we need to check
that

/ (& = A(Va)y) - Vo (go)ed| di < cllel3

when R is sufficiently large. Using Sobolev and Holder inequalities this boils down to

I(z = A(Va)x) - Voo " (wo)ll sz < c,
and this follows from (5.12) and boundedness of f”(yg) in L. O
Proof of Proposition 5.2. From (5.4), (5.5) and the fact that Ag — A = Id, we have

d d

d
Ch=trid< / (Aco+ f(o + 20) — f(po)) o da

b A c
= I¥ancoll + 5 [ (o -+ 20) = Flon)eada + el o + Cot el e

Notice that
1 (po +e0) = f(wo)ll -1 < lleoll -
This follows from the inequality |f(k+1)— f(k)| < |I|+]f(1)| and the fact that ¢¢ is bounded

in H'. If we recall that |’\t>\_ bl S e H; xL? & %, we see that in the second line we can replace
A+ by b, hence to finish the proof we only have to prove that

C
(Aco + f(w0 +e0) — f(o))vodz < —lell%, o + Crtllell gy -
¢

Inequalities (3.10) and (4.4) show that it is sufficient to check that

At — b c
| [ (@c0-+ oo+ 20) = £on) 5 (AW da] < Sl pa + Cotlel o

which in turn will follow from (3.5) and
cA -
‘ (Ao + f(0 +e0) = f(00)) (AW)x dw‘ < S llellgcpe + CiAt.
From pointwise bounds (for example the first inequality in Lemma 5.5) one deduces

A
£ (00 +€0) — flo) — f'(v0)eoll -1 S llellzn < S lellizsrs,

hence it suffices to show that
| [ (@c0+ Feoen@Wda] = | [0 18+ 7AW de| < el o e + CN.
Observe that [A + f/(W))](AW)y = 0, so we are left with proving that
| [0 (7 ten) = F VAW da| < el o, + CO

By Holder inequality it suffices to show that

H (f/(wo) - f,(WA))(AW)AHLm/? < % (5.18)
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The inequality |f'(k+1) — f'(k)| S |f/(O)] + |f"(k)| - 1] for k = Wy and | = u*(t) + FPo(t)
reduces (5.18) to checking that

1) AW e < (519)
1P o < 5 (5.20)
o P AW o < 2, (5.21)
I1Po- £ (AW )) | gaorr < & (5.22)

Again using Holder we get [|Fy - f/((AW)\)lpiosr < [|Boll pross [ f/(AW) M)l s2 S (| Poll -

From Lemma 3.4 (or the degenerate version Lemma 4.1) we have || Py||; < 7! < 2. This
proves (5.22) and (5.20) is very similar.
From Proposition B.2 we know that ||u*||z10 is bounded. Hence |[u* - f/((AW))| 107 S

~

lu*|| 1o - I f/ ((AW)A)| 75/ < A. This proves (5.21) and (5.19) is similar. O

6 Construction of a uniformly controlled sequence and
conclusion

In this section we will analyse finite dimensional phenomena of our dynamical system —
modulation equations and eigendirections of the linearized operator L. We will also define
precisely the bootstrap assumptions and finish the proof of the main theorems.

It is known that the operator L = —A — f/(W) has a unique simple strictly negative
eigenvalue —eg (by convention ey > 0), with a unique positive eigenfunction ) such that
|IV||r2 = 1. This function Y is radial, smooth and decays exponentially. This follows from
classical results of spectral theory and theory of elliptic equations, see [27, Proposition 5.5],
where it is also shown that there exists a constant ¢; > 0 such that

g€ Hyg, (9:Y)=(Vg.VAW)=0 = (g.Lg) > c1|[VygllZ.. (6.1)
We need here a slight modification of this coercivity lemma.

Lemma 6.1. For any ¢ > 0 there exist c,,C > 0 such that
(9. Lg) = c1l|Vg]* = C{g, V) — elg, 2)*. (6.2)
Proof. We first show that
g€ Hha, (9,Y)=1(9.2)=0 = (g,Lg) > c2l|Vgl7a- (6.3)

To prove (6.3), decompose g = aAW + h, (h, AAW) = 0. Notice that (AW,Y) = 0, thus
(h,Y) =0 and (6.1) implies

(9.Lg) = (h+aAW,Lh) = (h, Lh) > c1||VAl|Z.
Let AW be the orthogonal projection of AAW on 2+ in H~'. We have

IVh|3, = [|[Vg — aVAW |2, = | Vg|32 — 2a(Vg, VAW) + a?|| VAW |3,
= |Vgl22 + 2a{g, AW) + a*|| VAW |[2..
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The functions AAW and Z are not perpendicular in H~!, so H/TI/I//HH_l < ||VAW|| 12, and
(6.3) follows from Cauchy-Schwarz inequality.
In order to prove (6.2), we decompose

g=ay+bAW +g,  (3,Y)=(3,2)=0. (6.4)
Projecting (6.4) on )V and Z we have

a* < (9. 9)%,
2 2, 2 2 2 2 (6.5)
b5 {9, 2)" +a”(2,))7 5 (9,2)" + {9, ))".

From (6.3) we obtain N
<§7 Lf> Z CQHV§H%27
thus
(9, Lg) = (aY + bAW + g, —e%ay + Lg) = —e%aQ + (g, Lg) > 02||V§H%2 — e%aQ.
From the inequality (z —y)? > %xQ — 2 we have

~ 1
IV3li: = 511Vg = bVAWI[Z: — a?[[ VY.

2

From the inequality (z —y)? > ~%-22 — cy? we have

1+4c

c
[V = bVAWI[Z2 2 1= [ VgllZz — B[ VAW ..

If we choose ¢ small enough and put everything together using (6.5), we obtain (6.2). O

From now on we will denote

1
olg) = (9.).  oal9) = (9.301).
We prove a version of the coercivity lemma with a localized gradient term.

Lemma 6.2. Let ¢ > 0. If R is large enough, then there exists a constant C such that
[ 1¥ePde= [ F0)gde = e VglE: - Cla(o).
|z|<R R5

In the proof we assume that g is radial, which is justified because later we use it for g = €.
Notice however that the non-radial case follows by considering the radial rearrangement.

Proof. Define the projection U : H — H?' by the formula:
9(r) —9(R) if r <R,
)\ =
Rg(r) {0 if r > R.
By (6.2) applied to Wrg we have

(1+ g)/ Vgl2de = (1+ ;)/ IV (W Rg)[? do
lo|<R RS

C

> (14 5) [ FOV)|URgP ds = C(Wig. Y~ §(¥ro,2)"
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Recall that, by the Strauss Lemma [87], in dimension N = 5 for a radial function g we
have |g(R)| < CoR™ 2 IVgl|| 2 with a universal constant Cp, so we have a pointwise estimate

2
91 < Co(1+ )R 2|[Vgl72 + (1+ 5) | ¥rgl”

Now we notice that

[ _ s~k
l2|<R

so for any § > 0 the first term above gives a small contribution to the quadratic form for R
large. Similarly,

_3 _3
(g — Trg, V)| S R™2||Vygll2 +/||>R 91V dz < (B2 + |Vl p1o/7 (a5 1)) I V9l 2
which is small when R is large. As (Ugg,V)? < 2(g, V)% + 2(g — ¥Ry, V)?, the proof is
finished. O

We are ready to state coercivity properties of the functional H from the previous section.

Proposition 6.3. Under the assumptions of Proposition 5.2, there exist Ty, cgr, ag, Co > 0
such that for t € (0,To] N (T-,Ty) there holds

laa(eo)l < aolleollyn = H(t) > cllelF, o

If [Th, Tx]) € (0,To] N (T-,T4) and |ax(go)] < %t”“ for all t € [Ty, T5], then

T>

c 1

H(Ty) < H(TY) + 113/ el e+ ot (6.6)
T

The constants % and % have no special signification, but this formulation will be con-
venient later.

Proof. Let
1 1 1
() i= [ Slerf? + 5[Vl = 3/ (W) da.

Recall that (g9, Z) = 0. Lemma 6.1 implies (after rescaling) that if we take o small enough,
then there exists a constant ¢ > 0 such that Ijx(t) > cHsH%leQ.

We can assume that ||u*||x1. g1 is as small as we like, so by pointwise estimates we get
[I(t) — Iun(t)| < %cHsgﬂzleg. Moreover, it is clear from the definition of J that for small ¢
we have |J(t)| < %CHEH%IXLQ. This proves the result with ¢y = 1c.

In order to prove (6.6), notice first that, by pointwise estimates and smallness of ||pg —
Wil g1, in (5.2) we can replace [ (f(po+e0) — f(po))eodz by [ f/(Wy)ed dz. Convexity of
a (see Lemma 5.1) implies that

[Vancl2s > / IR
z|<RA

so from (5.2) and Lemma 6.2 (after rescaling) we obtain

2CH

T
H(Ty) < H(T)) +/T Seclleln g + Crt? - llell e + Cladeo)|? dt
1

T:
<H(T1)+m/21HsH2~l o dt + Cot 12,
- 10 Jq " HIXE

where (5 is a constant. ]
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In order to close the bootstrap, it is necessary to control the stable and unstable directions.
More precisely, it is necessary to eliminate the unstable mode.
Define

a;(s) = /ym — e—;)ﬂgeo dzx

and
+ €0
Qy = /y)\El + XyAE() dx.

Notice that —f\—é is the unique strictly negative eigenvalue of L.

We will define an auxiliary function [(¢) which measures the distance of the modulation
parameters from the approximate trajectory (2.7) or (2.8). This function has a slightly
different form in the non-degenerate and degenerate cases. In the non-degenerate case we
define

It = 5

t3 + t4 24

2

l(b 2\ /12u*(0,0)2>2 l(tl; ?Zi\ /<c27ﬁigl(zl,0)2>27

and in the degenerate case

b

~ T+ D)) (- (T 1)% ~ (v -9)%

(

N
o~

where 7 := —1 + 2/12 + (v + 1)%.

We will write a™(t) and o (¢) instead of oy () and «; (¢). In the next few propositions
we describe the evolution of Mod(t) := (A(t),b(t),a™(t),a™(¢)) in the “modulation cylinder”
defined as:

E(t) :={(\ba",a"): I(t) < O and — T < a0t < t”“}.
In the non-degenerate case we denote

w2u*(0, 0)2754

)‘app(t) = 144 ’ bapp(t) = 36

and in the degenerate case
Xapp() =T bapp(t) == (v + 1)t".

Solving a 2 x 2 linear system we check easily that

b

I(t) < O = | — 1] S0 | | S O, (6.7)
app bapp
with constants which depend only on v.
We have a)(g9) = ﬁ(oﬁ —a7), so
1
Mod(t) € €(t) = |ar(eo)] < —t7T1 (6.8)
€0

Remark 6.4. The formula for [ is found by linearizing the parameter equations near (Aapp, bapp)
and diagonalizing the resulting system.

We can finally state a result on uniform in time energy bounds.
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Proposition 6.5. Let Cy > 0 be a fized constant. There exist Cy > 0 and Ty > 0 having the
following property. Let 0 <11 < Ty. Suppose that

le(T) gy p2 < CyTy ™, (6.9)
Mod(Th) € Int(€'(T1)).

Then, either there exists a time t, T1 < t < Ty, such that Mod(t) € 0% (t), or the solution
exists on [T1,To] and for all t € [Ty, Tpy] there holds

el g1y pe < Cot?™ (6.10)

Proof. Let Ty be the time provided by Proposition 6.3. Let T4 be the maximal time of
existence of the solution and let 75 := min(7p, 7). Suppose that Mod(t) ¢ 0%€'(t) for T1 <
t < T5. By continuity of Mod(t) this means that Mod(¢) € Int(%(t)) for T} <t < Ty. We will
show first that if Cj is large enough, then (6.10) holds for ¢ € [T}, T5]. Argue by contradiction,
assuming that there exists 73 < T, such that [|e(13)| 1,2 = COT37+1. At t =T3 (6.8) gives
lax(eo)| < %t”“. In particular, if Cy is large, we will have |ax(eo)| < aolleo|| g1, so by
Proposition 6.3 we obtain

H(T3) > egC2T 2. (6.11)

On the other hand, for ¢ € [Ty, T3] we have [|e]|%, ,, < C§t*7* and |ax(go)| < 71, s0
from (6.6) we deduce that

2
H(T3) < H(Ty) + _cnCo o CoTy 2,

10(2y+2) 3
Notice that H(T1) < [le(T1)[1%,, ,» < C3T T < C2T77F2. Returning to (6.11) we deduce
<cis % g
c __CHY0
PO ="T 1002y +2)

which is impossible if Cy is large enough.
Hence, T35 = T. To prove that 15 = T, notice that by the Cauchy theory in the critical
space there exists § > 0 such that

the solution w(t) with w(0) = (ug, u1)

)
uy — W,u . <§=
I (uo Dllrre < exists at least for t € (—1,1).

After rescaling we obtain

the solution w(t) with w(0) = (ug, uq)

ug — Wy, u1)|| ¢ <d0=>
(o x )l < exists at least for t € (=, \).

(6.12)

If [|w*|| ;1 ;2 is sufficiently small and Tj is chosen sufficiently small, (3.2) and (3.4) show that
our solution verifies the sufficient condition in (6.12) for any ¢t < T with A = A(¢). Taking ¢
close to T5 we obtain that the solution cannot blow up at 75, hence Ts = Tj. ]

The crucial element of the preceding result is that the constant Cj is independent of T7.
From now, Cj has a fixed value given by Proposition 6.5, and the constants which appear
later are allowed to depend on Cj. In particular, when we use the notation < or O, the
constant may depend on Cj.

We examine now the evolution of the eigenvectors o~ and a™.
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Lemma 6.6. If ||| 71,2 S 7T, A~ "1 and b~ ¥, then

~

d €o
d ey _
[ Ty S (6.14)

Proof. We will do the computation for (6.13), because the one for (6.14) is exactly the same.

d
TN =

+/ /\t((Aoy),\€1+ /\( ~1Y)a0) dz

/(yA (—Lxeo) + @3@81)(136

/y/\ f wo +¢€0) — flpo) — f’(gpo)go) dz
+ [0 () = )z e
+ [ ne (o + %yA- () d

The first line is e/\oa)\ and it suffices to estimate the remaining ones. For the last line we
use Proposition 3.14 and L2-orthogonality of AW and Y. Using A\; ~ t¥, A ~ t**! and
lell g2 < Ct7T the second line is seen to be bounded by Ct. The proof of (5.18) shows
that |Vx - (F/(v0) = F/ (W)l 1or < €, so using |[eo| 105 S €71 we obtain the required

bound for the fourth line. Finally, ||f(¢o + c0) — f(p0) — f'(vo)eoll7—1 < C?t*7F2 and
IVall g S % ~ t7"~1 so by Cauchy-Schwarz the third line is bounded by C*t?7=*+1 <« 7. O

We know from Proposition 6.5 that if we start at ¢ = T with € small enough, then ¢ is
controlled in H' x L? unless Mod leaves the cylinder 4. It turns out that it can happen only
because of a™. The other parameters are trapped in the cylinder for small times:

Lemma 6.7. Under the assumptions of Propositon 6.5, suppose that Mod(t) leaves Int(%'(t))
before t = Ty. If Ty < Ty is the first time for which Mod(Ty) € € (Ty), then |at (Ty)| = Tyt
In addition, suppose that at time T3, T < T3 < T, we have o™ (T3) > %Tngl. Then
ot (Ty) = Ty Analogously, if o (Ty) < —%T;H, then o (Ty) = =15 .

Ty In particular

Proof. Suppose, for the sake of contradiction, that for example [(T3) =
this implies %l (t1) > 0, and we will show that it is impossible.
We start with the degenerate case. Using (6.7) and /z = 3£ + O(|1 — z|%) we obtain

V= — () 4 a0y 4 o@rtaey),

l\.')\»—\

Recall that by = (v + 1)Vt%(”_3)ﬁ, so we get

A

by v+ 1
t”+1)

tufl = 2 (1 +

+ o). (6.15)

From Lemma 3.7 and (6.10) we have

Mo b

v ewt o). (6.16)
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Using (6.15) and (6.16) we can compute dtl( ):

d b _ A ~ by A\ b A
dtl( ) (tl/ +l/tu+1 B (V+V+1))(t7 +Vt1/+1 _Z/W - (l/+ 1)t1/+2)

b A bs At b - A
(o =+ — =) (5 - T+ D)gg — v — T+ D+ 1) 755)
10 A 51y (e (g b 1
_g(t7+ytu+1_(y+y+ ))( 2 ( +tv+1)+’/*_”t7_y(”+ )tv+1)

b - ~ v+1)v
(o = 0+ Doy = =) (5 1+ 1) = 0+ D = v = 0+ D+ D)

OB *1).

If we use the definition of v, this simplifies to

d
dt

~ ~ b A ~
7+yﬁ—(y—|—y—|—1)) (1/—1—1/—1—1)(——(I/—I—l)tl_i_y—(y_,/))2
1

- 9)(
% (VIO = 2 (= (v = D) + OO,

() =

At time ¢ = Ty by assumption I(Ty) = T5 '™, so for Ty small enough the formula above

implies 47(73) < 0, which is impossible.
In the non-degenerate case the computation is similar, but we must take into account

that in this case

by = ru*(t,0)VA = ku*(0,0)VA(L + O(t)),
which leads to

—2 3
5t +Ku*(070)>\t )+ O(t?).

1 12
b = Ku*(0,0) - ("’”“ 0,0)

Then, the computation is the same as before:

0= (- T e R )
e e[ B B
2, % 2
S e T (G R
EICRE e (e N O
< %( —20(t) + O(t"/4)).

Sincey+1—-v = % < %, we are done.
Now suppose that |~ (Ty)| = Ty, As ? ~ 77V > 17, (6.14) implies that S} and
a, have opposite signs, which is impossible.

Again by contradiction, suppose that o) (T3) > %Tg“ and o) (Th) = —1yt. By
continuity, there exists the smallest Ty > T3 such that Ozj\r(T4) = %TZH. Necessarily
Laf(1y) < X7, which is in contradiction with (6.13). O

Proposition 6.8. There exist strictly positive constants Cy and Ty such that for all T7 €
(0,Tp) there exists a solution w defined on [T1,To| which for all t € [Ty, Ty] verifies

(= W — u*, O+ A(AW) 5 — Q)| 1, 2 < Cot' L, (6.17)
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A

)\app

— 1| < Cota0r 1), (6.18)

Proof. We consider the degenerate case. The proof in the non-degenerate case is similar.

Let A = Aapp(T1), b = bapp(T1). For a € [-2T771 217%), let eo(Th) = £V —
gii (Z23,0)), and consider the corresponding evolution. Of course (6.9) is verified for a uni-
versal constant Cy. Let Cy be the constant provided by Proposition 6.5. We will show that
there exists a parameter a for which the solution exists until ¢ = Ty and satisfies (6.10). Sup-
pose this is not the case. Let At = {a: a™(Ty) = Ty "'} and A~ = {a: o (Ty) = -1y},
where T5 is the exit time given by Lemma 6.7. By the second part of Lemma 6.7 we know
that —%Tf“ e A, %T;’H € AT, and that A~ and AT are open sets. Indeed, let a € AT.
This means in particular that for 71 <t < Ty we have a*(t) > —17*! and o (T3) = Ty .
By continuity of the flow, for close enough initial data we will still have a™(¢) > —t7*! for
Ty <t < Ty and o™ (Ty) > 375 1 By Lemma 6.7 the corresponding solutions escape from
the cylinder by positive values of a*. Thus AT U.A~ would be a partition of [—%Tf“, %Tf“]
into two disjoint open sets, which is impossible.

Using (6.10), (4.2), (4.3) and (3.5) we obtain (6.17).

Estimate (6.18) follows from (6.7) and the fact that Mod(t) € €(t). O

Proof of Theorem 1. Let t,, be a decreasing sequence such that ¢, > 0 and t,, — 0. Let u,

be the solution given by Proposition 6.8 for 71 = t,, and let A, : [t,, To] — (0,+00) be the

corresponding modulation parameter. The sequence u,(7p) is bounded in H' x L2, After

extracting a subsequence, it converges weakly to some function (ug,u;). Let u(t) be the

solution of (NLW) for the Cauchy data w(Ty) = (up, u1). We will show that u satisfies (1.1).
Let 0 < Ty < Tp and Ty < t < Tpy. Using (6.17), (6.18) and |\;| < 2 we get

3
[ (un — W,y — ", Oty — O™ || g1y 2 < Cota.

This shows that if T is sufficiently small, then the sequence w,, satisfies the conditions of
Proposition A.1 on the time interval [T7, Ty, hence

un(Tl) — u(Tl).

Weak lower semi-continuity of the norm implies that at time ¢ = 77 we have

(u— Wi, — ", 0 — 0| 1, o < CoTi ™

This bound holds for all 77 such that 0 < 77 < 7. In particular, the orthogonality condition:
<u - W)\ - u*, ZA> =0. (619)

defines uniquely a continuous function A(71) : (0,7p) — (0,400). We will prove that
)\n(Tl) — )\(Tl).

Using (3.7) for the solution w, at time 77 and passing to a limit n — oo we obtain
that all the accumulation points of A, (7}) verify the orthogonality condition (6.19). Hence
An(T1) = M(Ty). Passing to a limit in (3.8) we get S A, (T1) — $LA(T1). Passing to a limit in
(6.17) and (6.18) finishes the proof. O

The proof of Theorem 2 follows the same lines, so we will skip it.
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A Weak continuity of the flow near a fixed path

Proposition A.1. Letv:[0,1] — H' x L2 be a continuous path in the energy space. There
exist a constant § > 0 with the following property. Let u, be a sequence of radial solutions
of (NLW) defined on the interval [0, 1], such that

sup [|un — v|| g1, 2 <6 (A.1)
t€0,1]

Suppose that u,(0) — (ug,u1) in H' x L? and let u be the solution of (NLW) for the initial
data uw(0) = (ug,u1). Then w is defined on [0,1] and for all t € [0, 1] we have

wn(t) = w(t)  in H' x L2 (A.2)

Remark A.2. Notice that without the assumption (A.1) the result is false. More generally,
existence of type II blow-up solutions in some space excludes weak continuity of the flow in
this space, and existence of type II blowup solutions in our case follows from Theorems 1 and
2. One might search weaker conditions than (A.1); we have chosen a simple condition which
is sufficient for our needs.

Proof.

Step 1. Suppose that u is not defined on [0, 1] and let T < 1 be its final time of existence.
In Step 2. we will prove (A.2) for all t < T'y. In particular, by the lower weak semi-continuity
of the norm, this shows that

sup lup — | g1y 2 <0
te[0,T)
By local well-posedness in the energy space and compactness of {v(t) : t € [0,1]},if § > 0
is small enough, there exists 7 > 0 such that the solution corresponding to the initial data
u,(t) is defined at least on the interval (—7, 7). This means that w cannot blow up at T,
and so it is defined for ¢t € [0, 1].
If 0 is chosen small enough, depending on v(1), then by the Cauchy theory the solutions
u, exist on an interval (1 —¢',1 4 t') for some ¢’ > 0. By eventually choosing ¢’ smaller, we
can assume that u also exists on (1 — ;14 t’). Hence, by repeating the same procedure we
obtain weak convergence also for ¢ = 1.

Step 2. Let t < T.. In order to prove (A.2), it is sufficient to show that any subsequence of
u,, (which we will still denote u,,) admits a subsequence such that the required convergence
takes place. By the result of Bahouri-Gérard a subsequence of u,(0) admits a profile de-
composition such that the first profile is U (¢) = S(t)(uo, 1) (corresponding to parameters
tin = 0, A1, = 1). By the triangle inequality ||w, — (uo,u1)|| g1, 2 < 26, so all the other
profiles are small, in particular they are global and disperse. By definition of T the as-
sumptions of Proposition 2.8 in [23] (which is a version of [3, Main Theorem]| for the focusing
equation) are satisfied for #,, = ¢, in particular formula (2.22) from [23] yields:

J
wn(t) = w(t) + > UL(t) +w)(t) +7)(t).
j=2

Here, w; (t) = S(t)w;(0) = 0 as n — 400 (indeed, w; (0) — 0 for J > 1 by definition of the
profiles, and S(t) is a bounded linear operator). By Lemma A.3 below also Uj () — 0 when
j > 1, which finishes the proof.

O]
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Lemma A.3. Let U be a solution of equation (NLW) such that ||U| z1, 2 is small. Let
tn, \n be a sequence of parameters such that one of the following holds:

1. t, =0 and A\, — 0,
2. t, =0 and N\, = +00,
3. tn/ A\ — +00,

4. tn/ Ay = —00.

Fiz t € R and define

1 t—t, x 1 S t—t
- L W, J n
o)

Then U,, — 0 in H' x L2.

Proof. Again it is sufficient to show this for a subsequence of any subsequence. Thus we can
assume that t;fl" — to € [—00, +00].
Suppose first that ¢y is a finite number. Extracting again a subsequence we can assume
that A, = Ao € [0,+00]. If \g was a strictly positive finite number, we would obtain that
also t,, has a finite limit, which is impossible. Thus A, — 0 or A, — +00, and in both cases
we get our conclusion.
In the case % — Fo00 we have dispersion, so ||[Uy, — (S(70) V), |l g1y 2 — 0, and it is

well known that (S(7,)V')y, — 0 when 7,, — +oo and )\, is any sequence (in the case of
space dimension N = 5 this follows for example from the strong Huyghens principle). O

B Local theory in higher regularity

In this section we use the energy method to prove two results about preservation of regularity.

B.1 Energy estimates in X! x H!

Recall that we denote X° := H5t1 N H'. We have classical energy estimates for the linear
wave equation:

Lemma B.1. Let s € N. Let I = [0,Tp] be a time interval, g € C(I,H?®) and (up,u1) €
X% x H®. Then the Cauchy problem

{attu —Au =g,
(u(0), 0yu(0)) = (uo, u1)

has a unique solution (u,0wu) € C(I,X* x H®) and for allt € I there holds
t
[(u, ) || xo s < [ (w0, ua) || xoxas +/ lg(T) || zs dr. (B.1)
0
For a proof of a more general result one can consult for example [2, Theorem 4.4]. Using

finite speed of propagation and Sobolev Extension Theorem on each time slice we get a
localised version of the energy estimate:

t
| (u, atu)”XSXHS(B((Lp)) S H(UOaUI)HXSXHS(B(O,/J-H)) +/0 Hg(T)”HS(B(O,p-i—T) dr (B.2)

Now we use the case s = 1 to prove energy estimates in X! x H! for (NLW).
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Proposition B.2. For all My > 0 there exists Ty = To(Moy) > 0 such that the following is
true. Let (ug,ui) € X' x H' with ||(ug,u1)|| x1xz1 < Mg. Then the Cauchy problem.:

{attu — Au = f(u),
(u(0), 0ru(0)) = (uo, u1)

has a unique solution (u,dyu) € C([0,Ty], X' x H') and this solution verifies

sup ||(w(t), Opu(t))ll x5 < 2[[ (o, ua)l| x5
te[0,To]

Moreover, let upy denote the solution of the free wave equation for the same initial data
(ug,u1). Then

o 1(u(t), Oru()) — (i (8), Qi L)) [xran S f (w0, ua) | x1xar1)- (B.3)

This will follow easily from the following lemma.

Lemma B.3. Let u,v € X'. Then

1f @)l < CF(llullx1), :
1F () = f)lmr < Cllw = vlixr - (F (lullx) + £ (vllx0)- (B.5)

Proof. We have ||f(u)|| 2 = Hu||z/1i/3 S f(JJullx1) from the Sobolev imbedding. By Holder
inequality,

IV F (@)l = 1V F @)z S IVl pogs - 17 (@)ls S Ml - ull e S Fllullx),

again by Sobolev imbedding. This proves (B.4).
To prove (B.5), we write | f(u) — f(v)] < |u—v[(f'(u) + f'(v)), hence

4/3 4/3
1£ () = F@)llzz S = vl aga - 1L () + F @) 7z S M=ol gaga - (lull i + 10]752)

Sl =vlxr - (F Ul x) + £ (lvllx0)-
Finally,
IV (u) = V)] $ [Vu = Vol (f (u) + £'(0) + [u = ol (V] + VO (Lf ()] + [ ()]),

and it suffices to notice that

IV = Vol (f'(u) + f(0)lz S 1V = Vol pos - [[1f'(w) + f/(0)]]s
S llu = vllxr - (F'(lullx1) + £/ (ol x1))
and
([lu = ol (IVul + Vo) (Lf" ()] + | (@) .2
Sllu = vllzio - (IVull grogs + 1Vl gross) - (I (@)l 1o + 1" (v)] o)
Sllu—=vllxr - (f (lullx2) + (vl x1))-
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Proof of Proposition B.2. Let B denote the ball of centre 0 and radius 2||(ug, u1)| x1x gt in
the space X! x H!'. Given (u,0u) € C([0,T], B), let & = ®(u) denote the solution of the
Cauchy problem

{attﬂ — AT = f(u),
(u(0), 9, (0)) = (uo, u1)

It follows from Lemma (B.4) and (B.1) that if T' < %, then (u,dyu) € C([0,T], B). It
follows from (B.5) and (B.1) that if T < ;71 , then ® is a contraction, so it has a unique

4C f"(2Mo)
fixed point, which is the desired solution.

The function v := u — upy solves the Cauchy problem

{&tv — Av = f(u),
(v(0), 0w (0)) =0,

o (B.3) follows from (B.1). O

B.2 Persistence of X! x H'! regularity

We recall the classical Strichartz inequality:

Lemma B.4. [33] Let I = [0,Ty] be a time interval, g € C(I, L?) and (ug,u1) € H x L.
Let u be the solution of the Cauchy problem

{&ttu — Au =g,
(u(0), Opu(0)) = (ug, uy).

Then
lull prrsrypiarsy S Mwo, w)ll oy re + 9l zerzey,

with a constant independent of I.

From the local theory of (NLW) in the critical space we know that if u € C((T_, T} ); H! x
L?) is a solution of (NLW) and I = [Ty, Ty] C (T, T} ), then

lwll p7/s(r,p1ar8y < +o00. (B.6)

Proposition B.5. Suppose that 0 € I = [T1,T5] C (T, Ty) and that (ug,u1) € X x H.
Then uw € O(I, X' x HY).

Proof. The proof is classical, see for example [9, Chapter 5] for more general results in the
case of NLS.

We consider positive times. The proof for negative times is the same. Let T, be the
maximal time of existence of w in X' x H'. Suppose that T, < T. From Proposition B.2 it
follows that

lim ||u||x1yg = +o0. (B.7)
t—Ts

Consider the time interval I = [T} — 7, T}]. Derivating (NLW) once and using Lemma B.4 we
get

IVul| s 10143y < Cll(u(T = 7), Opu(T = 7)) [ x1cm + CIVf (@)lri02), (B.8)
with C' independent of 7. From Holder inequality we have

IV ey < INVullprsrpaarsy - f ([ull g, pas)) -
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By (B.6), the last term is arbitrarily small when 7 — 0T, so for 7 small enough the second
term on the right hand side of (B.8) can be absorbed by the left hand side, which implies
IVull p7/3(g,p1assy < +oo and [[V(f(w))|r(r,r2) < +oo. This is in contradiction with (B.7),
because of the energy estimate (B.1). O

B.3 Propagation of regularity around a non-degenerate point

Proposition B.6. Let (ug,u1) € X* x H* such that ug(0) > 0. Let (u, Oyu) € C([0, Tp]; X! x
H'Y) be the solution of the Cauchy problem:

{&ttu — Au = f(u),
(u(0), 9u(0)) = (uo, u1),

constructed in Proposition B.2. There exists T,p > 0 such that (u,0yu) satisfies:
(X(;)u,x(;)&gu) e C([o,7); X* x HY)

(where x is a standard regular cut-off function).

Proof. Denote vy := up(0) > 0 and introduce an auxiliary function f € C*, f(u) = f(u)
when u > vg/2, f(u) =0 when u < 0. Using Faa di Bruno formula one can prove an analog
of Lemma B.1:

L ()]l gs < C(llullx4),

1f(w) = f)lla < flu=vllxa - Cllullxs + [0l x4),

where C' : Ry — R, is a continuous function. The same procedure as in the proof of
Proposition B.2 leads to the conlusion that there exists 7 > 0 such that the Cauchy problem:

Ol — AT = f (1),

(@(0), 0;u(0)) = (uo, u1)
has a solution (u, dyu) € C([0,7], X* x H*). By continuity and Schauder estimates, if we take
7 and p sufficiently small, we have u(t, z) > Jv for |z| < 4p and 0 < ¢ < 7. We may assume

that 7 < 2p. Consider v = u — u. We will prove that v = 0 when 0 < ¢ < 7 and |z| < 2p,
which will finish the proof. The function v solves the Cauchy problem:

{attv —Av = f(u) - J?(ﬁ),
(v(0), 9v(0)) = 0.

We run the localized energy estimate (B.2) for || < 2p 4+ [t — 7|. We suppose that 7 < 2p,
so |z| < 4p, which means that ||f(u) — f(u)||mn = [|f(u) — f(@)| g1 < |Jlu— @l x1 (the norm
is taken in the ball B(0,2p + |t — 7|). From (B.2) and Gronwall inequality we deduce that
w=u when |z| < 2p+ |t — 7|, in particular when |z| < 2p. O
B.4 Short-time asymptotics in the case (ug,u;) = (p|z|?,0).

Let (u,O0pu) denote the solution of (NLW) corresponding to the intial data
(w0, ) = (x(2)plel”,0).

where p,p > 0 and 8 > % are constants and x is a standard cut-off function. Let (uyy, Optrix)
denote the solution of the free wave equation corresponding to the same initial data.
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Proposition B.7. Let ¢ = Wp. There exist Ty > 0 and a constant C > 0 such that
for 0 <t <Tp and |z| < %t there holds

lur (8, ) — qt?| < CtP~ 2|z |2
Proof. Define

1 1

. B i
wy.—][ plw 4+ ye1]” do(w), <y< )
() 0B(0,1) ’ 1‘ () \/5 ﬁ

where B(0,1) denote the unit ball in R%, do is the surface measure on the unit sphere and
e1 = (1,0,0,0,0). Notice that

2wy )ﬁ/2

wtyerl” = (1 =i+ (y+0))?? = 1+ )2 (1L y=—
1

can be developped in a power series in y which converges uniformly for —% <y < %

Hence, w is an analytic function. It is also symetric, so it is in fact analytic in 32,

- ~ 1
w(y) = w(y?), w(z) analytic for |z| < 3

We have w(0) = w(0) = p.
The representation formula for solutions of the free wave equation, see for example [29,

p. 77|, yields
_19y10,\ s 8
unn(t, z) = 3 (315) (t at) (t ]éB(z,t) plyl da(y)).

A change of variables shows that for |z| < %t and t sufficiently small we have

jz/?

T
)

where w;(z) is analytic for |z| < 1. It is easily seen that w;(0) = Wp = ¢ (all the
terms coming from differentiating w vanish at z = 0). Hence, there exists a constant C' such
that @1 (z) — g| < C|z] for |2| < %, and the conclusion follows. O

1,0,,10 _|x)? .
wa(tw) = 3 (5.) (55,) (0 70 (550)) = i

Proposition B.8. Fort small enough there holds

[SNEN

<3G,

||U — uLIN||X1(|x|§%t)
Proof. From (B.3) and finite speed of propagation we obtain
= vl o<1y S F o wn) 1) 11 aj< 30
We have )
3¢
2
- 4
H(U07U1)H_2X1le(|x|§%t) N/O (=22 dr ~ 2041,

and the conclusion follows. O



Chapter 2

Construction of two-bubble
solutions for energy-critical wave
equations

Abstract

We construct pure two-bubbles for some energy-critical wave equations, that is solu-
tions which in one time direction approach a superposition of two stationary states both
centered at the origin, but asymptotically decoupled in scale. Our solution exists globally,
with one bubble at a fixed scale and the other concentrating in infinite time, with an error
tending to 0 in the energy space. We treat the cases of the power nonlinearity in space
dimension 6, the radial Yang-Mills equation and the equivariant wave map equation with
equivariance class k > 3. The concentrating speed of the second bubble is exponential
for the first two models and a power function in the last case.

69
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1 Introduction

1.1 Energy critical NLW

We consider the energy critical wave equation in space dimension N = 6:

(07 — Au(t,z) = u(t,x)| - u(t,z),  (t,z) € R xRS, 1)
(u(to, ), Dyu(to, z)) = (uo(z), io(x)). '
The energy functional associated with this equation is defined for uy = (ug, %) € &€ =

H'(RS) x L?(RC) by the formula
1 . 2 1 2
E(ug) := §|u0| + §|Vu0| — F(up) dz,

where F(ug) := z|ug|>. Note that E(ug) is well-defined due to the Sobolev Embedding

Theorem. The differential of E is DE(ug) = (—Aug — f(uop), up), where f(ug) = |ug| - uo,

hence we can rewrite equation (1.1) as

Oru(t) = J o DE(uf(t)),

{2t = oDE0) .
u(to) =ug € €.

0 Id
—I1d 0
Equation (1.1) is locally well-posed in the space &£, see for example Ginibre, Soffer and
Velo [32], Shatah and Struwe [84] (the defocusing case), as well as a complete review of the
Cauchy theory in Kenig and Merle [47] (for N € {3,4,5}) and Bulut, Czubak, Li, Pavlovi¢
and Zhang [8] (for N > 6). By “well-posed” we mean that for any initial data ug € £ there
exists 7 > 0 and a unique solution in some subspace of C([tg — 7,to + 7];E), and that this
solution is continuous with respect to the inital data. By standard arguments, there exists
a maximal time of existence (7,7} ), —oo < T_ <ty < T} < +o00, and a unique solution
ue C((T-,Ty);E). If Ty < +oo, then u(t) leaves every compact subset of £ as t approaches
T.. A crucial property of the solutions of (1.1) is that the energy F is a conservation law.

Here, J := < > is the natural symplectic structure.

In this paper we always assume that the initial data are radially symmetric. This sym-
metry is preserved by the flow.
For functions v € H', v € L?, v = (v,%) € £ and A > 0, we denote

ua(x) = %v(%), Oy (x) == %v(%), v(z) == (va, 0)).

A change of variables shows that
E((’u,()))\) = E(UO)

Equation (1.1) is invariant under the same scaling: if w(t) = (u(t),4(t)) is a solution of (1.1)
and X > 0, then ¢ — w((t — to)/)), is also a solution with initial data (ug)x at time ¢ = 0.
This is why equation (1.1) is called energy-critical.

A fundamental object in the study of (1.1) is the family of stationary solutions wu(t) =
+W ) = (£W),0), where

Wi = (1+25)7
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The functions W), are called ground states or bubbles (of energy). They are the only radially
symmetric solutions and, up to translation, the only positive solutions of the critical elliptic
problem

—Au — f(u) =0.

The ground states achieve the optimal constant in the critical Sobolev inequality, which was
proved by Aubin [1] and Talenti [90]. They are the “mountain passes” for the potential
energy.

Kenig and Merle [47] exhibited the special role of the ground states Wy as the threshold
elements for nonlinear dynamics of the solutions of (1.1) in space dimensions N = 3,4, 5,
which is believed to be a general feature of dispersive equations (the so-called Threshold
Conjecture). Another major problem in the field is the Soliton Resolution Conjecture, which
predicts that a bounded (in an appropriate sense) solution decomposes asymptotically into
a sum of energy bubbles at different scales and a radiation term (a solution of the linear
wave equation). This was proved for the radial energy-critical wave equation in dimension
N = 3 by Duyckaerts, Kenig and Merle [26], following the earlier work of the same authors
[24], where such a decomposition was proved only for a sequence of times (this last result was
generalized to any odd dimension by Rodriguez [81]).

It is natural to examine the dynamics of the solutions of (1.1) in a neighborhood (in
the energy space) of the family of the ground states. In dimension N = 3 the was done by
Krieger, Schlag and Tataru [53], who showed that such solutions can blow up in finite time
(by concentration of the bubble), see also [20], [50], [19], [36], [40] for related results.

In view of the rich dynamics in a neighborhood of one bubble, it was expected that
solutions behaving asymptotically as a superposition of many (at least two) bubbles exist, in
other words that the result of [26] is essentially optimal. We prove that it is the case when
N =6:

Theorem 1. There exists a solution u : (—oo, Tyl — € of (1.1) such that

. , 5
t_l)lgloo |lu(t) — (W + W%efnm)Hg =0, with Kk := 7
Remark 1.1. More precisely, we will prove that
Hu(t) — (W + Wit —e_ﬁltIAWLQ—nm) Hg <Ci- e_%ﬁltla

where AW := —%WA and C'1 > 0 is a constant.

e
Remark 1.2. We construct here pure two-bubbles, that is the solution approaches a super-
position of two stationary states, with no energy transformed into radiation. By the conserva-
tion of energy and the decoupling of the two bubbles, we necessarily have E(u(t)) = 2E(W).
Pure one-bubbles cannot concentrate and are completely classified, see [27].

Remark 1.3. It was proved in [41], in any dimension N > 3, that there exist no solutions
u(t) : [to,Ty) — & of (1.1) such that [[u(t) — (W ) — Wip)lle — 0 with A(t) < u(t) as

Remark 1.4. In any dimension N > 6 one can expect an analogous result with concentration
4
rate A(t) ~ [t|” V-6,
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Remark 1.5. In the context of the harmonic map heat flow, Topping [93] proved the existence
of towers of bubbles for a well chosen target manifold, see also a non-existence result of van
der Hout [37].

Let us resume the overall strategy of the proof, which is based on the previous paper of
the author [40].

In Section 2 we construct an appropriate approximate solution ¢(t). We present first a
formal computation which allows to predict the concentration rate and explains why the proof
fails in dimension N € {3,4,5}. It highlights also the role of the strong interaction between
the two bubbles (by “strong” we mean “significantly altering the dynamics”; [62] provides an
example of this phenomenon in a different context). Then we give a precise definition of the
approximate solution and prove bounds on its error.

In Section 3 we build a sequence wy, : [tn, To] — € of solutions of (1.1) with ¢,, - —oo and
uy,(t) close to a two-bubble solution for ¢ € [t,,Tp]. Taking a weak limit finishes the proof.
This type of argument goes back to the works of Merle [64] and Martel [56]. The heart of
the analysis is to obtain uniform energy bounds for the sequence u,. To this end we follow
the approach of Raphaél and Szeftel [78], that is we prove bootstrap estimates involving an
energy functional with a virial-type correction term. This correction is designed to cancel
some terms related to the concentration of the bubble Wy;). It has to be localized in an
appropriate way, so that it does not “see” the other bubble. Finally, in order to deal with
the linear instabilities of the flow, we use a classical topological (“shooting”) argument.

1.2 Critical wave maps

We consider the wave map equation from the 2+ 1-dimensional Minkowski space (the energy-
critical case) to S2. We will consider solutions with k-equivariant symmetry, in which case
the problem is reduced to the following scalar equation:

2

1 k=
Otu(t,r) = O%u(t,r) + ;&u(t,r) ~ 53 sin(2u(t,r)),

(u(to,r), Opu(to,r)) = (up(r), ap(r)), t,to € R, r € (0,+00).

(1.3)

For a presentation of the geometric content of this equation, one can consult [85]. Here we
will regard (1.3) as a scalar semilinear problem.
We define the space H as the completion of C§°((0,+400)) for the norm

+o00 k
loll3, := 2m / (10:0()[2 + |~ () ?) rdv.
0

We will work in the energy space £ := H x L?. Equation (1.3) can be written in the form
(1.2) with the energy functional E defined for ug = (uo, i) € £ by the formula

+oo 2
E(ug) == 7['/0 ((u0)2 + (0rug)? + ]:—Q(Sin(u))Q) rdr.

The Cauchy theory in the energy space has been established by Shatah and Tahvildar-Zadeh
[86]. Note that ug € H forces lim,_, 4~ up(r) = 0, but we could just as well consider states
of finite energy such that lim,_, 4 uo(r) = 7, see [17, 16] for details.

The stationary solutions W) (r) := 2 arctan ((%)k) play a fundamental role in the study of
(1.3). They are the harmonic maps of topological degree k. We will write W (r) := Wi (r) =
2 arctan(r®) and AW (r) := _%W/\|>\:1 = $ Note that W ¢ H precisely because of the
fact that W(r) — m as r — +o0.
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The possibility of concentration of a harmonic map at the origin was first observed nu-
merically by Bizon, Chmaj and Tabor [4]. Struwe [89] proved that if the blow-up occurs, then
W is the blow-up profile (for a sequence of times). The dynamics in a neighborhood of a
harmonic map was studied by Krieger, Schlag and Tataru [52], who constructed blow-up so-
lutions in the energy space with the concentration rate A(t) ~ (T — )™ for all v > % This
behavior is expected to be highly unstable. Rodnianski and Sterbenz [80] constructed stable
blow-up solutions, giving the first (partial) rigorous explanation of the surprising numerical
results mentioned above. In the case k = 1, Cote [14] proved that any solution decomposes,
for a sequence of times tending to the final (finite or inifinite) time of existence, as a sum of
a finite number of harmonic maps at different scales and a radiation term. A generalization
of this result, including all the cases considered in this paper, was recently obtained by Jia
and Kenig [42]. Motivated by these works, we prove the following result.

Theorem 2. Fiz k > 2. There ezists a solution u : (—oo, Tyl — & of (1.3) such that

. ) k—2 8k . ,m\1
Jm ) = WA Wy ez llle =00 with wi= =5= (S0 sin ().
Remark 1.6. More precisely, we will prove that
“T3A -

where AW := —%WA}AZI and C7 > 0 is a constant.

Remark 1.7. The constructed solution is a pure two-bubble, hence by the conservation of
energy E(u(t)) = 2E(W), and it is clear that it has the homotopy degree 0. In the case
of equivariant class k = 1, Cote, Kenig, Lawrie and Schlag [16] showed that any degree 0
initial data of energy < 2E(W) leads to dispersion (the proof is expected to generalize to all
equivariance classes). Theorem 2 gives the first example of a non-dispersive solution at the
threshold energy.

Note that pure two-bubbles of homotopy degree 2k (hence of type bubble-bubble and not
bubble-antibubble) do not exist because the energy of such a map has to be > 2E(W). This
is similar to the case of opposite signs for (1.1), see Remark 1.3.

Remark 1.8. I believe that the proof can by adapted to deal with a more general equa-
tion 0?u = 0%u + %&u — T%(gg’)(u) with ¢ satisfying the assumptions of [17] and ¢'(0) €
{3,4,5,...}.

1.3 Critical Yang-Mills

Finally, we consider the radial Yang-Mills equation in dimension 4 (which is the energy-critical
case):

OFu(t,r) = %u(t,r) + %&u(t,r) - 7%u(t,r)(l —u(t,r))(1 - %u(t,r)),
(u(to,r), Opu(to,r)) = (uo(r), uo(r)), t,to € R, r € (0,400).

(1.4)

For a derivation of this equation and further comments, see for instance [10]. Equation (1.4)
can be written in the form (1.2) with the energy functional E defined for ug = (ug, ug) € €
by the formula

+0o0o
E(up) := 71'/0 ((0)? + (druo)® + %(Uo(Z — up))?) rdr.



74 CHAPTER 2. CONSTRUCTION OF TWO-BUBBLE SOLUTIONS

The stationary solutions of (1.4) are W (r) := 2r’  We denote W(r) = Wi(r) = 2r2

A2 4r2e 1472
and AW (r) := —%W,\}Azl = 7(”;{1)2.

Theorem 3. There exists a solution u : (—oo, Tyl — € of (1.4) such that

lim [lu(t) = (W + Wi _)lle =0,  withx:=2V3.

t——o00

Remark 1.9. More precisely, we will prove that

Hu(t) — ( 4 + W;ef,gm, —eil{'t‘AWleme) S Cl . eigﬁm,

le

where AW := —%W,\}/\Zl and C7 > 0 is a constant.
Remark 1.10. The case of wave maps in the equivariance class k = 2 should be very similar.

Remark 1.11. The energy 2E(W) is the threshold energy for a non-dispersive behavior for
solutions with topological degree 0, see [54].

1.4 Structure of the paper

In Sections 2 and 3 we give a detailed proof of Theorem 1. In Section 4 we treat the case of the
Yang-Mills equation. We skip these parts of the proof where the arguments of Sections 2 and 3
are directly applicable. Section 5 is devoted to the wave maps equation. The main difference
with respect to Section 4 is that the characteristic length of the concentrating bubble is
now a power of |t| and not an exponential. Nevertheless, large parts of the previous proofs
extend to this case and are skipped. It is conceivable that one could propose a unified, more
general framework of the proof, encompassing all the cases under consideration. Appendix A
is devoted to some elements of the local Cauchy theory needed in the proofs.

1.5 Notation

The bracket (-,-) denotes the distributional pairing and the scalar product in the spaces L?
and L? x L?.

For positive quantities m; and me we write m1 < mo if m; < Cmg for some constant
C > 0 and my ~ mg if m; < me < my.

We denote x a standard C° cut-off function, that is x(z) = 1 for || < 1, x(x) = 0 for
|z] > 2 and 0 < x(z) <1 for 1< |z| <2.

2 Construction of an approximate solution — the NLW case
2.1 Inverting the linearized operator

Linearizing (1.1) around W, u = W + h, one obtains

Oth = JoD?E(W)h = <_OL 10d> h,

where L is the Schrédinger operator

Lh:=(=A — f{(W)h = (—A — 2W)h.
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We introduce the following notation for the generators of the H!-critical and the L?-critical

scale change:
A:=242-V, Ap:=3+4+z-V.

This is coherent with the definition of AT. Notice that L(AW) = & |)\:1 (—AWN—f(W))) =
0.
We fix Z € C§° such that

(Z,AW) >0, (2,9)=0.

We will use this function to define appropriate orthogonality conditions.
We denote also

A l 1
:<_M)2: § (2.1)
(AW, AW) 4
Lemma 2.1. There exist radial rational functions P(z),Q(z) € C*°(R) such that
LP = &*AW + f/(W), LQ = —AoAW, (2.2)
(Z,P)=(Z,Q) =0,
P(z) ~ |z|72, Q(x) ~ |z| 2 as |z| — +oo. (2.4)
Proof. By a direct computation one checks that the functions
Blr) 2\ -5 |22 2?12
P(z):=(1+5) " (1=10- 5 =3-(50)"),
5 2%\ -3 |z |22
satisfy (2.2). Adding suitable multiples of AW to both functions we obtain P and @ satisfying
(2.3). The formulas defining P and @ directly imply (2.4). O

Remark 2.2. Note that (2.4) is closely related to the Fredholm conditions (AW, k2AW +
/W)y = 0 and (AW, —AgAW) = 0, see Lemma 5.1 or [40, Proposition 2.1] for a more
systematic presentation.

2.2 Formal computation

The usual method of performing a formal analysis of blow-up solutions is to search a series
expansion with respect to a small scalar parameter depending on time and converging to
0 at blow-up. In our case the blow-up time is —oo. If u(t) ~ W + Wy, then Gyu(t) ~
=N (t)AW)y(), hence

w(t) = (W + W), 0) = X (1) - (0, AWy ) = W+ U\, +b(t) - Ul

with b(t) := N(t), U® := (W,0) and UM := (0, —AW). This suggests considering b(t) =
XN (t) as the small parameter with respect to which the formal expansion should be sought.
Hence, we make the ansatz

u(t) =W+ U, +b(t) - UL +b(1)? - U,

and try to find the conditions under which a satisfactory candidate for U® = (U® U®)

can be proposed. Neglecting irrelevant terms and replacing X (¢) by b(t), we compute

OFu(t) = —b () (AW )z + b(t)2(A AWz + lot
t U = & )\(t) 0 & ot.
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On the other hand, using the fact that f(W + Wy) = f(W) + f(Wy) + /(W)W ~ f(W) +
FWy) + /(W) for A < 1 and f/(Wy) = Af'(W),, we get
b(t)?

Au(t) + f(u(®)) = =55 (LU + AOF (W) + lot.

We discover that, formally at least, we should have

At)

LU® = _AgA
U 0 W+b(t)2

(V' (£) - AW + A(E) - f/(W)). (2.5)

Lemma 2.1 shows that if &'(t) = x?A(t), then equation (2.5) has a decaying regular solution
2
U® =Q+ 2‘((:))2 P. The formal parameter equations

have a solution
(Aapp (t); bapp(t)) = (%eﬂ{m, ef'iltl), t<Tp<O.

In any space dimension N, ignoring the problems related to slow decay of W, a similar
analysis would yield ¥/ (t) = /<c2/\(t)¥. For N < 6 this leads to a finite time blow-up, which
was studied in [40] for N = 5. For N > 6, we obtain a global solution A(t) ~ |t|_ﬁ, see
Remark 1.4.

2.3 Bounds on the error of the ansatz

Let I = [T, Tp] be a time interval, with T < Ty < 0 and |Tp| large. Let A(t) and p(t) be C*
functions on [T, Tp] such that

MT) = e u(r) = 1, (26)
K
8 9 8 9
2 ehltl < < Zenltl < <z, .
We define the approzimate solution @(t) = (p(t),p(t)) : [T, To] — € by the formula
o(t) = Wyu) + Wiy + S(),
G(t) := —b(t) AWy p),
where
t
b(t) := e Tl 4 42 / A(T)z dr, for t € [T, Ty), (2.8)
7 1(7)
A(t)?
S(t) =X (ugt;ZP)\(t) + b(t)2Q>\(t)>, for t € [T, To}.

From (2.7) we get (g)?ge_“m < M)~ (%)3%e_“|’f|. Integrating we get the following bound
for b(t), t € [T, Tp]:

(%)%ww <o nITl | (g)g(ewtl _ enITl)

<b(t) <e Tl 4 <§>3(e—n|t\ _eHITly < (2)355'“,

(2.9)
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From (2.4) we obtain

1
X - PAHHl >~ [0 (x - PA)HLQ r5 dr) S ||PA||L2(0§r§2) + ||X(8TP)AHL2(O§T§2)

= ”P||L5(0§r< HE) Pllr2(0<r <2) (2.10)
2/ 1 1 2/ 1 1

< (/ (1+r2)_2r5 dr)2 + —- (/ (1—1—7“3)_21"5 dr)2 f|log)\|
0 A 0

>

and analogously ||x - Qall ;1 < %|log /\| hence

z3 1 _
SOl < T IxPallin + M@l < e -5 L log A} S /JH] - o2
Thus for any ¢ > 0 there exists Ty such that if T' < Ty then
IS < c-e 281 for t € [T, T). (2.11)

Note also that | Py||re + [|@Qx]|zee < A72, hence S(t) is bounded in L.
Since Z has compact support, for sufficiently small A, (2.3) implies

(Zxp), (1)) = 0. (2.12)

We denote )
P(t) = (¥(t),1(t)) = Owp(t) — DE(p(t))
= (Oep(t) — (1), 0p(t) — (A(t) + [ (1))
This function describes how much ¢(¢) fails to be an exact solution of (1.1). Before we

prove bounds on (t), we gather in the next elementary lemma pointwise inequalities used
in various places in the text.

(2.13)

Lemma 2.3. Let k,I,m € R. Then

|f'(k+1) = f'(R) < f'(D), (2.14)
[f(k+1) = f(k) = f' ()| < 5F(D)], (2.15)
\F(k +1) — F(k) — f(k)l — % "(k)2| < 5F(1). (2.16)

Proof. Inequality (2.14) is well-known. Bounds (2.15) holds for & = 0, hence (by homogene-
ity) we may assume that k = 1. For |I| < 1 we have | f(1+0)—f(1)—f' (1)l = |(1+1)>2—1-2I| =
212 < 5|f(1)| and for || > 1 we find |f(1+1) — f(1) — f/ (DI < (1 +D?+1+2)I] <5[£(1)].

Bound (2.16) follows by integrating (2.15). O
Lemma 2.4. Suppose that for t € [T,Tpy] there holds |N(t)| < e U and |p/(t)] < e *l,
Then
1
[ () + ﬂ/(t)mAWu(t) +(N(t) - b(t))A( )AW/\ ol S ez, (2.17)
t 3,
600 = OV = M)A 2 S o3, (218)

1(=A = F' (o)) g1 S e 2. (2.19)
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Proof. Using the definitions of ¢ and ¥ we find

Y+ AW, + (N = b)) AWy = Do — @ + AW, + (X' — b)AWy
= —p' AW, — NAWy + 9,S + bAW) + (X — b)AW)

A3 A2 A2
—x- (- QM'EPA + 2/\’M Py — X SAPy +20'bAQ) — ND°AQ)).

Since AP and AQ are rational functions decaying like r=2, we have ||x - APy||zn S V¢ el
and HX AQx|l g S VIt - el see (2.10). This implies (2.17) because ||, |b], [N'|, o], [¢/| S
e H'/

In order to prove (2.18), we consider separately the regions |z| < v/ and |z| > v/A. The
first step is to treat the nonlinearity, that is to show that

1£(0) = F(Wy) = fF(WV) = f (W)W,

AQ s, (2.20)
(W)\) N\ — b2f (W}\)Q)\HLQ(‘xlgﬁ) S e 2 |t‘

Applying (2.15) with k = W) and [ = W, + S we get
(@) = FOWVN) = F/ (W) Wy + X272 Py 4+ 6% Q)| S [FW)| + [ f(XNu 2Py + b2Q))|,

which is bounded in L*°, hence bounded by A2 ~ e 3hlthin L*(|z| < v/A). This proves (2.20).
Now we check that )
gff
| £ VW = 5 (W] S ez (2:21)

Indeed, for || < v/A we have |W,,(z) — %| = [Wy(z) — W,(0)] < |22 < A ~ e "It hence

1 1 —K —3k
17OV = T W aurcvm S Wi = lleguisvm 1WAl S €A < o2t
From (2.20) and (2.21) we obtain

1£(@) = F(W,) = FOWA) = 2 (W) = X2 2 f/ (W) Py — B £ (W) Qa2 S e 2711, (2.22)

Since x = 1 in the region |z| < v/A, we have Ap = A(W,,) + A(W)) +A2u"2A(Py) +02A(Q)).
From this and (2.22), using the fact that A(W,) + f(W,) = A(W)) + f(Wy) =0, we get
[0 + f(p) = 2 (AP + N (W) Py + /(W)

3 2.23
A I ey S

But formula (2.2) gives

NA(P) + M2/ (Wa)Py = (—LP)y = —k*AWy — f/(Wy) = —k2AAW) — f/(W)),
2 2
PAQ) + B (W)@ = S5(~LQ)x = - AoAW,

hence we can rewrite (2.23) as

K2\ b? 3,
|Ae + (e )+—AWA AW 2 ycm S €2 1, (2.24)
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We have 0y = —V/AW) + /\TII’AOAWA, thus

. b b\ b
—t+ (N = D) AoAWy = Ap + f(p) + VAW — == AAW, + (N = b) Ao ATy
=Ap+ flp) + 7AW>\ — S AoAWy,
so (2.24) yields (2.18) in the region |z| < V/A.
Consider now the region |z| > v/A. First we show that
W
| Ap — A(Wu)HmeEﬁ) Se 2 I, (2.26)

To this end, we compute

1
||A(W>\)‘|L2(|x|2ﬁ) = Hf(W/\)HLz(mzﬁ) = XHf(W)HL?(sz\fA)

< 1(/+°° “16,50r) 7 < 1ok g et
~ I\ s VR
We need to show that ”A(X'PA)HLQOI‘Z\/X) S ezl and HA(X-QA)HLQMZf) < e27ltl We will
prove the first bound (the second is exactly the same). Notice that |Py(x)| < )\12 : |;C\|22 = |z|72
and similarly |[V(Py)(2)| < 2|73, [V2(Py)(2)| < |z|~%, hence we have a pointwise bound

AP S V2P VXV (P VAP S VXl 72V 2] 72

1 .
Of course ||| V2y]- ‘$|72HL2(|1\2\/X) +|IVx|- |'T|73HL2(|1\2\/X) <1 < ez and we are left with
the last term. We compute

2 1
- -8 5 2 _1 1
H’X’ || 4||L2(|x\2ﬁ) N (/\67’ T dr) <A 2 < earltl

This finishes the proof of (2.26).
Applying (2.15) with k = W, and | = W) + S we get
[£(@) = FW)l < £/ (W) - (WAl + [S]) + [F (W) + [£(S)] S WAl + 18],
where the last estimate follows from the fact that ||[Wy||ze + |||z~ < 1 for |z > V.
We have [|x - Pallz2 < (fo 2)2 5dr> : ~ AL, and similarly [|x - Qallz2 < A7L, which
implies ||.S]z. < e~ 2%/l There holds also

00 1
_ 2 34
WAl z2(ap= vy = MW llz2gaz1/vm) S A(/1/\f dr)t o aE s e @)

hence || f(¢) — f(“)HL?(\xQﬁ) S e snltl, Together with (2.26) this yields

Skt

| Ap + f(@)”mux\zﬁ) Se?

The same computation as in (2.27) gives

1
—3nlt

HAW/\HL2 (Jz|>v) + HAOAWAHLz (Jz|>VX) Se?

hence (2.25) implies that (2.18) holds also in the region |z| > v/
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We are left with (2.19). From (2.17) it follows that it suffices to check that
1
|ca-rEn —vp5am|, | s e (2.28)

and .
Ja-stomam] e o

We start with (2.28). Since |\ — b < e It < X, we need to show that
|4 = F (@D AWA| s S o720, (2.30)

By Holder inequality

3
2

I
L WA g < L (Wllre - AW 1z S A7 Sem 2l (2.31)

Since |f'(Wy +W,) — f/(Wy)| < f/(W,), we obtain
[P Wy A+ W) = FOVIDAWA 1 S I (W + W) = FW))AW| g S e 2l
As noted earlier (—A — f/(W)))AW) = 0, hence
[(=2 = /(W + W) AW |0 S 020

From (2.11) we have || f'(¢) — f/(Wx + W) | s S e~ 3%l This implies (2.30).
The proof of (2.29) is similar. It suffices to check that || f/(Wx)AW,||5-1 < e 27l and

in fact we even have the bound < 67%““', with the same proof as in (2.31). O

3 Bootstrap control of the error term — the NLW case

In the preceding section we defined approximate solutions of (1.1). In the present section we
consider ezact solutions of (1.1), with some specific initial data prescribed at t = T, with
T — —oo. Our goal is to control the evolution of this solution up to a time Ty independent
of T.

For technical reasons we will require the initial data to belong to the space X' x H!,
where X! := H?2 N H'. This regularity is preserved by the flow, see Proposition A.1.

3.1 Set-up of the bootstrap

It is known that L = —A — f/(W) has exactly one strictly negative simple eigenvalue which
we denote —1? (we take v > 0). We denote the corresponding positive eigenfunction ),
normalized so that ||Y|;2 = 1. By elliptic regularity ) is smooth and by Agmon estimates
it decays exponentially. Self-adjointness of L implies that

(V,AW) = 0.

Note that
v <l (3.1)

Indeed, it is well-known that —A — W > 0, with a one-dimensional kernel generated by W.
Since 1 — W (x) > 0 almost everywhere, for any h # 0 we have

(h, Lh) + (b, h) = ((=A — 2W + 1)h, h) > ((=A — W)h, h) > 0.
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We define ) .
y_ = (73}7_:)))7 y+ = (*)),y),
v v
-Vt Loy o V-t
o = 2Jy = 2(Vy, V), al = 2Jy = 2(1/)),)/).
9 0 Id .
We have JoD*E(W) = | I o) A short computation shows that

JoD?E(W)Y~ = —v)~, JoD?E(W)YyT = v+
and
(=, JoD?E(W)h) = —v(a™, h), (o™, JoD?E(W)h) =v(at,h), Vhek&.
We will think of ™ and o™ as linear forms on €. Notice that (o=, Y7) = (at, Y1) = 1 and

(o=, Y1) = {a™,Y7) =0.

The rescaled versions of these objects are

1 1
Yy = (;yx, W), Vi = (;3&,3@),

—_
>| R

1
oy = oy =5 (W), ali= g =5 (GN). (B)

2 2
The scaling is chosen so that (o), Yy ) = (af, YY) = 1. We have
v v
JoD?’E(W )Yy = — JoD?E(W )Y = ij (3.3)
and

(ay,J oD’ E(W)h) = —§<a;, h),  (af,JoD*E(W,)h) = §<aj,h>, VheE.
(3.4)
We will need the following simple lemma in order to properly choose the initial data.

Lemma 3.1. There exist universal constants n,C > 0 such that if 0 < X\ < n-u, then for all
ap € R there exists hg € X1 x H! satisfying the orthogonality conditions (Z,,, ho) = (Zx, ho) =
0 and such that <a;‘;,h0> =0, <a;,h0> =0, <oz)+\,h0> = ag, (o, ,hg) =0, ||holle < Clag|.
Proof. We consider functions of the form:

ho:=a3 V) + a3, + AW, +ai Vi + a7V, + iAW, a3 ,a5,by,af a7, by €R.
Consider the linear map ® : R6 — RS defined as follows:

1 1

®(az, a3, by, af,al,b) := ({ogf, ho), (o, , o), <pzﬁ, ho) (s ho), (03 o), (5 2, ho))

It is easy to check that the matrix of ® is strictly diagonally dominant if n is small enough. [
We consider the solution u(t) = u(ag;t) : [T,T}) — & of (1.1) with the initial data

w(T) = (Wi wr + W+ ho, =AW qr(), (3.5)
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where hg is the function given by Lemma 3.1 with A\ = %e_"m, u =1 and some ag chosen
later, satisfying

lag| < e 2nITl,

Note that the initial data depends continuously on ag.
For t > T we define the functions A(t) and u(t) as the solutions of the following system

of ordinary differential equations with the initial data x(7") = 1 and M(T') = Le=*I7l:
(23, AWy) = (3A02, ) (22, AW,) (NN _ [(—(2x 0w) (3.6)
(2, AW (Zu AW, — (002 h) | ) T\ —(Zom)) @

where

h= hit) = {u(t) - W;;(t) - Wi ?f [w(t) = Wawy = Wagllgn <0,
o= =T () = Wawy = W) i 1) = Waa = Wapllg 21

with a small constant > 0. Notice that (Z),AW)) = (Z,,AW,) = (Z,AW) > 0,

[($A0Zy, B + [(2M0Zy, k)| S IRl g and [(Zy, AW,)| + (2, AWY)| S A For t < Ty

bounds (2.7) imply that A/u is small, hence equation (3.6) defines a unique solution as long
as (2.7) holds.

Remark 3.2. Actually the second case in the definition of h(¢) will never occur in our
analysis, since the bootstrap assumptions imply that ||h(t)|| ;1 is small.

Suppose that A\(¢) and p(t) are well defined and satisfy (2.7) for ¢ € [T,T1], where T <
Ty < Tp. Suppose also that ||h(t)||;1 < n for t € [T,T1], which implies that h(t) = u(t).
Using (3.6) we find %(Zu(t),h(t)) = 0 and %(Z)\(t),h(t» = 0. Since (Z,(7), h(T)) = 0 and
(Zx(r), M(T)) = 0, we obtain o o

(Zuy, M) = (Z&,h(t» =0, for t € [T, T1]. (3.7)

We denote h(t) := (h(t), Oru(t)), so that

{ Oth = h+ /AW, + NAW),, 58)

Qb = Ah + f(W,, + Wy +h) = f(W,) = f(Wy).
We define the function b(t) : [T, T1] — R by formula (2.8) and decompose
u(t) = () +g(t),  te[l\T].
By the definitions of g(t) and v (t), g(t) satisfies the differential equation
9rg(t) = J o DE(p(t) +g(t)) — J o DE(p(t)) — (1) (3.9)
Finally, we denote

af (1) = (a0 ay (1) = (05.9(),
N +

N
1 9
af (1) == (o g(0),  ay (1) = (o, g(t)).

-

The rest of this section is devoted to the proof of the following bootstrap estimate, which
is the heart of the whole construction.
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Proposition 3.3. There ezist constants Co > 0 and Ty < 0 (Cy and |Toy| large) with the
following property. LetT < Ty < Ty and suppose that u(t) = p(t)+g(t) € C([T, T1]; X' x H')
is a solution of (1.1) with initial data (3.5) such that fort € [T,T1] condition (2.7) is satisfied
and

lg()lle < Co - o271, (3.10)
jaf ()] < 72"l (3.11)
Then for t € [T,T1] there holds
1 3,

lg®lle < 5Coe="1, (3.12)

1
IN(E) = —e 1] 4 |u(t) — 1] S Coe 271, (3.13)

K

Remark 3.4. Notice that (3.12) and (3.13) are strictly stronger than (3.10) and (2.7) re-
spectively, which will be crucial for closing the bootstrap in Subsection 3.6.

Remark 3.5. The same conclusion should be true without the assumption of X' x H*
regularity, by means of a standard approximation procedure (both the assumptions and the
conclusion are continuous for the topology || - ||¢).

3.2 Modulation

Lemma 3.6. Under assumptions (2.7) and (3.10), for t € [T,T1] there holds
1 1 3,14
<m2&’9(t)> =0, ’<m 0 9(0)] S el (3.14)
X (8) = ()] + 1 ()] S lg(t)le + - ™20, (3.15)
with a constant ¢ arbitrarily small.

Proof. We have g(t) = h(t) — S(t). Since Z has compact support, (2.12) and (3.7) yield
(Zx,9) = 0. From ||[£2,[|z <1 and ||x- AQPA||L1 < NPl uj<2) S A% ~ e~ 27l (analo-

gously [[x - b*Qullz1 S e *I') we obtain [(}Z,, g)| S e V.
From (2.11) we have
lg(t) —h(t)| g <c-e 2"“' with a small constant c, (3.16)
Using this, (3.6) yields
Z,\7AW,\ (3A0Zx, 9) (Zx, AWy) _ ()\’ — b>
AW>\> <Zga AWE> - <5A02ﬁ7 g> M,
Z)\, owu + bAW,\> 3 ¢
= < (2,0, 0u + bAW) ) T =220
Since by definition dyu + bAW) = ¢, inverting the matrix we get (3.15). O

Lemma 3.7. Under assumptions (2.7) and (3.10), for t € [T,Ti] the functions a=(t) and
az (t) satisfy
d v

‘aal (t) - maf(t)} <c-e 2”'“ with a small constant c (3.17)
jag (£)] < e~ 2" (3.18)
jaz (1)) < e~ 2" (3.19)
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Proof. Using the definition of af (t) we compute

d d
&ai_@) = a<0&j(t),g(t>>
N (3.20)
= (-2 (Ae-a®)r.g) + (. o DE(p + g) ~ ] o DE(p) ).
where Ag<a™ = —%a;\rb\:l. We have
((Ag+a)x, )] < llgll < eI, (3.21)
Since (ay, (AW),0)) = 0, using (2.18) we obtain
+ N —b fl/{|t|
(X, )| S |9 = = — (AW, 0)]|; < o2, (3.22)

From (2.15) we obtain || f(¢ + g) — f(¥) — f'(¢ )g||L2 S HgH . From (2.14) and (2.11) we

3, .
have [|(f'(¢) = f'(Wy) = F'Va)gll 3 S lle = Wi = Wills - lgllrs S e 2 H\gll 2. Taking
the sum we obtain

1£(p+9) = £&) = (W) + F Vgl g S gl +e 3 gl (3:23)
But |0 F'(Wu)a)| S 1Dl - 17 (Wa) = - gllzs S Al hence
s, fo+9) = 1) = P00} S 5 (gl + e~ 3 gl ) < 3 3.24)

Combining (3.20) with (3.21), (3.22) and (3.24) we obtain

glt ]L(t) = <aj,JoD2E(W>\) ) +o(e” gnlt\) %a*‘( )+ o(e” 2n|t\)

where in the last step we use (3.4). This proves (3.17).
Similarly, we have

55T 0+ e ()] < coeH, (3.25)

Inequality (3.16) implies that (3.18) holds for ¢ in a neighborhood of T'. Suppose that T, €
(T, T1) is the last time such that (3.18) holds for t € [T',T5]. But (3.25) implies that $a; (7%)
and a; (T3) have opposite signs. Hence (3.18) cannot break down at ¢t = T5. The contradiction
shows that (3.18) holds for ¢ € [T, T3].

In order to prove (3.19), it is more convenient to work with h(t), which was defined right
before (3.8), than with g(t). We will prove the bound for aj (). The proof for a; () is exactly
the same. Let a(t) := (a:(t), h(t)). We have

|(Vps AWM S NAWA 21 (jzj<1) + 1AW Los (12> 1)

1
X 1 1,4 (3.26)
< A3 Pdr+—- (=) <A
~ /0 T+)\3 ()\) ~

Together with (2.11) this yields

~ 1 s,
laz (¢) = a(t)] = e, g(t) = R(O)] S OV, AW + ISl < 572 1,
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hence it suffices to show that

a(t)] < ze2nll, (3.27)

As in the case of af (t), using (3.8) we obtain

l\D\H

d._ w
&a(t) = <—;(A6*0¢+)uv h) + (), Jo D*E(W,)h) (3.28)

+ <a;r7 (MIAWﬁ—i- NAWy, f(W, + Wy + h) — fF(W,) — F(Wy) — f/(W,)h))
But
[V, AW S eI, see (3.26),
(D S W W 1) = F(Wo o+ Wa) = S Wyt WaR S 1l S >
[(Vs f (W + W) = fF(W) = FWaD)] = 20V, W - W)
=2[(Vu - Wi, WA S e~ 2nlt see (3.26),
(Vs (F (W + W) = W)W S 1l - 1Wall2 - 1Rl zs S AllRll g S e,

~

hence (3.28) yields
T —a(t)| £ e 2l < ¢ e_%“m,
with a constant ¢ arbitrarily small. Using (2.7), we get
d .. v
Al < §V|a(t)\ +e-emanl, (3.29)
As in the proof of (3.25), suppose that T» € (T',T1) is the last time such that (3.27) holds for
t € [T,T5]. This implies that [a(Ty)| = le™ 272 and |$G(Ty)| > 3k - e 2772l thus (3.29)

yields

3/1 e 2rITel < 7 v —gl Tl 4 oL o aHITel,
16°

But (2.1) and (3.1) give 3x > 2% Since c is arbitrarily small, we obtain a contradiction. [J

3.3 Coercivity
Recall that we denote L := —A — f/(W).

Lemma 3.8. There exist constants c¢,C' > 0 such that

o forallge H? radially symmetric there holds
(9, Lg) = / |V9|2d$—/ F'W)lgl da > 0/ IVg|*dae — C((2,9)* + (¥, 9)%),
e if r1 > 0 is large enough, then for all g € Hrlad there holds

(1—20)/|< \Vg|2da?—|—c/|> |Vg]2d:c / fw |g|2dm> C((Z g> <y,g>2),
- - (3.30)
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o if ro > 0 is small enough, then for all g € Hlad there holds

T

1-2) [ VoPdese[ [VPdo— [ pOVIgPdez -C((2.9)° + 907,
|z|>r2 || <ro R6

(3.31)

Proof. This is exactly Lemma 2.1 in [41], see also [58, Lemma 2.1]. O

Lemma 3.9. There exists a constant n > 0 such that if% <nand |[U—- (W, ,+W))|e <n,
then for all g € € there holds

1
2

1
A
Proof. We will repeat with minor changes the proof of [41, Lemma 3.5].

(D*E(U)g,g)+2((ay.9)*+ (af . g)*+( Zx,g>2+<a;,g>2+<04Z,9>2+<;ng>2) > lgllz-

Step 1 Without loss of generality we can assume that @ = 1. Consider the operator L)
defined by the following formula:

L= (‘A = f'(W) = f'(W) 0> '

0 Id
From the fact that ||f/(U) — f/(W) — f/(W)llrz S NJU — (W + W)y)||13 we obtain
(D’EU)g.9) - (Lrg.g)| < clglé,  Vge&, (3.32)

with ¢ > 0 small when n and Ag are small.

Step 2. In view of (3.32), it suffices to prove that if A < \g, then

1
220+ (2,9 2 Il

Let a] := (o ,9), aT = <04:\F,g>, ay == (a~,g), a; = (at,g), by := (Z,AW)~ L. <%ZA,g),
be := (Z,AW)~1.(Z, g) and decompose

g=a7 Yy +af Vi +a3 Y + a3Vt + b AW + b AW + k.
Using the fact that

1 - B
5{Irg,9) +2((a3,,9)" + (a3, 9)" + (o}, )" + (o}, 9) +

1
(o™, V) + (a3, Y+ (520 V) + (2 D) S X,
lar |+ lay | + Jag | + lag ] + [br] + [bo] S llg e,
(07, 7) = (", 97) = (2,)) = (¥, AW) =0
we obtain
_ 1
(07 k) + (0t k) + (a5, B)* + (o, K)? + (2, k)" + (20, 1) S AT [lgllE. (3:33)

Since L) is self-adjoint, we can write

1 1
5(Ing,9) = 5{Lak, k)
+ (Lx(a5 Y™ + ag VT + bAW), k) + (La(ay Yy + af Vi + biAW ), k)

1
+ 5<LA(a;y— +af VT +0oAW), a5 V™ +ag VT + by AW) (3.34)

1 o -
+ §<LA(a1 Yy +af Y + 01 AW L), a7 Yy +af V¥ + iAW)
+(La(a3 Y™ + a3 YT + b AW), a7 Yy + af Vi + 01 AW)).
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It is easy to see that Hf’(W)yAHL% — 0, Hf,(W)AWA”L% — 0, Hf’(WA)yHL% — 0 and
||f/(W>\)AWHL% — 0 as A — 0. This and (3.2), (3.3) imply

ILAY ™ 420 ||gx + | LAY + 207 |-
HIZAYY + 205 e + LX) + 203 [lex + [ LaAW s le+ — 0.

Plugging this into (3.34) and using (3.33) we obtain
<L,\g 9) = —2a;a; — 2ajaj + <L/\k’ k) —cllgll?, (3.35)

where ¢ — 0 as A — 0. )
Applying (3.30) with 71 = A~ 2, rescaling and using (3.33) we get, for A small enough,

(1-— 2c)/ IVE|? dz +c/ |VE|? dz — / F/W)|E? dz > —2||g||?. (3.36)
jz|<VA |z|> VA
From (3.31) with 79 = v/ we have
(1-— 2c)/ |VE|? dz + c/ |VE|? dx —/ FO)|k*dz > —2¢) g2 (3.37)
21>V || < VX
Taking the sum of (3.36) and (3.37), and using (3.35), we obtain

1 _ _
5(Lrg,9) > —2a; a5 — 2ay af + c|[kl[z — 2¢] g

The conclusion follows if we take ¢ small enough. O

3.4 Definition of the mixed energy-virial functional

Lemma 3.10. For any ¢ > 0 and R > 0 there exists a radial function q(x) = q.r(x) €
C3L(RY) with the following properties:

(P1) q(z) = 5lzf* for 2| < R,

(P2) there exists R > 0 (depending on ¢ and R) such that q(z) = const for |z| > R,

(P3) |Vq(z)| < |z| and |Aq(x)| <1 for all x € RS, with constants independent of ¢ and R,
(P4) Zlgmg (8xiqu(:c))vzv] CZZ 1 v?, for all z € RS v; € R,

(P5) A%q(x) < c-|x|72, for all z € RS,

Remark 3.11. We require C%! regularity in order not to worry about boundary terms in
Pohozaev identities, see the proof of (3.41).

Proof. Tt suffices to prove the result for R = 1 since the function gr(z) := R?q(%) satisfies
the listed properties if and only if g(x) does.
Let r denote the radial coordinate. Define go(z) by the formula

1,2
. 5T r<1
qo(r) = 8 3 -2 1,4

5772 ’ 10 ° :
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A direct computation shows that for r > 1 we have qj(r) = 2 —r=3 + 2r7=5, ¢f(r) =

3r=4—2r=6 >0 (s0 go(z) is convex), ¢ (r) = 12(—r~5+r~7) and A2gg(r) = —24r~3. Hence
qo satisfies all the listed properties except for (P2). We correct it as follows.
Let e;(r) := %rj -x(r) for j € {1,2,3} and let Ry > 1. We define

") {CIO(T) r < Ry
q(r) == . .
q0(Ro) +X2_, 4§ (Ro) - R} - e;(—1+ Ry'r) r > R

Note that ¢)(Ro) ~ 1, ¢4(Ro) ~ Ry* and ¢ (Ro) ~ Ry°. Tt is clear that ¢(x) € C*1(RY).
Property (P1) holds since Ry > 1. By the definition of the functions e; we have ¢(r) =
qo(Ro) = const for 7 > 3Ry, hence (P2) holds with R = 3Ry. From the definition of ¢(r) we
get [0rq(r)| < 1 and [92¢(r)] < Ry* for r > Ry, with a constant independent of Rp, which
implies (P3). Similarly, |0z,2,9()| S Ry ! for |x| > Ry, which implies (P4) if Ry is large
enough. Finally |A2g(z)| < Ry? for |z| > Ry and A%q(x) = 0 for |x| > 3Ry. This proves
(P5) if Ry is large enough. O

In the sequel ¢(z) always denotes a function of class C*!(RS) verifying (P1)-(P5) with
sufficiently small ¢ and sufficiently large R.
For A > 0 we define the operators A(A) and Ag(\) as follows:

ANA() = 35 2a(5)R(@) + Va(5) - Th(z),
[Ao(MAl(@) = o5 Aq(5)h(z) + Va(5) - Th(a). (3.38)

Combining these definitions with the fact that ¢(z) is an approximation of 3|z|? we see that
A(X) and Ag(\) are approximations (in a sense not yet precised) of +A and 5 A respectively.
We will write A and Ao instead of A(1) and Ap(1) respectively. Note the following scale-
change formulas, which follow directly from the definitions:

Vhe H':  AN)(h) = (Ah)y,  Ao(A)(hr) = (Aoh),. (3-39)
Lemma 3.12. The operators A(\) and Ag(\) have the following properties:

o the families {A(X) : A > 0}, {Ao(A) : A > 0}, {AONA(N) : A > 0} and {AdrAo(A) : A >
0} are bounded in £ (H'; L?), with the bound depending on the choice of the function
q(x),

e for all hi,hs € X' and X\ > 0 there holds
(AN, f(h 4 he) = f(h1) — f/(R1)h2) = —(A(Nha, f(h1 + h2) — f(h1)),  (3.40)

e for any co > 0, if we choose ¢ in Lemma 3.10 small enough, then for all h € X' x H'

there holds )

(Ag(N\)h, AR) < %Ouhuip - A/MRA |Vh(z)|* dz. (3.41)
e assuming (2.7) and (3.10), for any co > 0 there holds
[AoAW 1) = Ao (A1) AWy (3l 22 < co, (3.42)
[o(t) + b(t) - AA@) ()l s < co, (3.43)
| [ §24) 0o +9) ~ Flngda— [ FWg da| < oo (349

provided that the constant R in the definition of q(x) is chosen large enough.
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Proof. Since Vq(z) and V?q(z) are continuous and of compact support, it is clear that A
and Ay are bounded operators H' — L2. From the invariance (3.39) we see that A(\) and
Ap(A) have the same norms as A and Ay respectively. For A\dyA(X) and AdyAo(\) the proof
is similar. We compute

1

b 1
3A2

)\2

T

HAN) = — :

Aq(5) ~ g7 Vg(5)

3\3 \ z-Vq(

). V.

Since Vq(x), V2q(x) and V3¢(z) are continuous and of compact support, boundedness follows.

In (3.40) both sides are continuous for the X' topology, hence we may assume that
hi,he € Cg°. We may also assume without loss of generality that A = 1. Observe that for
any h € Cg° there holds h - f(h) =3 - F(h) and Vh - f(h) = VF(h), hence

(Af%f(h»:/(;Aq'thVq‘Vh)f(h)dx:/Aq'F(h)+Vq-VF(h)da::O.

Using this for h = hy + hy and for h = hy, (3.40) is seen to be equivalent to
(Ahg, f(h1)) + (Ahy, f'(hi)he) = 0. (3.45)

Expanding the left side using the definition of A we obtain

(A, £(1)) + (A, ()b = [ 58q-ha - f(ln) + V- Vh - f(bn) da

1
+ / gAq -hy - f/(hl) ~ho +Vq-Vhy - fl(hl) -hodx

Integrating by parts the term containing Vhy and using the formulas hy - f'(h1) = 2f(h1)
and Vhy - f'(h1) = V f(h1), this can be rewritten as

(hay 58+ f() = Aq- f(hn) = Va5 () + S Aq- f(hn) + V- Vf () =0,

which proves (3.45).

Inequality (3.41) follows easily from (P1), (P4) and (P5), once we check the following
identity (valid in any dimension N, and used here for N = 6):

[ Ah@) - (580(5)he) + a(5) - Vh(z) da
1 - 1 N . (3.46)
= _ﬁ (AQq)(X)h({L’)2 dz — X /zJZZI 8”q(X)8Zh(x)8]h(x) dx.

Without loss of generality we can assume that A = 1 (it suffices to replace ¢ by its rescaled
version). By a density argument, we can also assume that ¢, h € C§° (we use here the fact
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that ¢ € C*!), and (3.46) follows from integration by parts:

/ “Ah-Aq-h+Ah-Vq- Vhd:c—/z (0uh - 0jjq - h+ 93h - 9jq - Ojh) da
5,j=1

1
= / —5 > 0:ih(5q0h + Dijiq - h) + Y iai((aih)Q)aiq
i i

1
+ Z ( — §8j(8ih)28jq — &-jqaihajh) dx
i#]

1 1 1
= /—2 Z (975a(8ih)? + 59iiia- h?) — 3 > Ouq(0ih)’

+5 Zaﬂq 0ih)* = " 0;;q0:hd;h dx
Z#J i#£]

1
= /—4 Z&iijjq : h2 - Z@ijq(‘)ihajh dx.
1,J 1,J

Estimate (3.42) is invariant by rescaling, hence we can assume that A = 1. For |z| < R we
have AgAW (z) = AgAW (z). From (P3) in Lemma 3.10 we get |AgAW (z)| + |[AgAW (z)| <
|z|=* for |z| > R, with a constant independent of R. Thus [|[AgAW — AgAW |2 < co if R is
large enough.

A similar reasoning yields [[AW) — A(NW,|[zs < A1 as R — +oo. Since b(t) ~ A(t),
this gives

|+ bANW s < %, if R is large enough. (3.47)

From (P2) in Lemma 3.10 it follows that supp(A(X\)W,,) C B(0, R-)\). Since AN W, ree S

~4q
%, we have

IBANW, || 15 < %0 if [Ty| is large enough. (3.48)

To finish the proof, we have to check that

6AN) (x - (At )2 Py + b(t )2 Qxt ))HL3 < 0—30, if |To| is large enough. (3.49)
We have the bound ||(x + |Vx|)Pallzz < fo 67"5 dr < |logA| (similarly with @,), hence
(X + VX)) (N2 Py +02Q))| 13 < ()\2—|—b2)] log\| < 1 as |T0| — 400. We have also ||[V(\2Py +
v?Q))| s S $(A2+b?) < 1. Since g is smooth and constant at infinity, we have |b- (1 Aq (%) +
Vq(%)) ’ < 1. The constant depends on the choice of the function ¢, but this is not a concern
here. We obtain

1A (- (A0 Py + 500 Qu) 115 S [b- (58a(5) + V()]
(IO + VXD Py + 0Q)I s + V(NP + 0°Q)) |l s) < 1,

hence (3.49)
Putting together (3.47), (3.48) and (3.49) we get (3.43).
In order to prove (3.44), note first that boundedness of Ag and (3.23) yield

| [ §24G) Ut +9) -~ FeDgde— [ GAa() W) + F/(W2)g da] < o750
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Since Vq is of compact support, we have ’f %Aq(%)Wqu dx’ < HgH?{1 As in the proof of

(3.43), on can show that ||Aq(%)f (W) — f'(Wa)|| s — 0 as R — +oo. This finishes the
proof. O

For t € [T, Tp] we define:

e the nonlinear energy functional

16) = [ SlaOF + 5IVaOF = (Flo(t) + 9(6) ~ Fle(®) - F(e(®)g(0) da
= Blg(t) + 9(t) — E(e(t)) — (DE(#(t),9(1)),

e the localized virial functional

From (2.16) we have

|1() — %<D2E(<P(t))g(t)vg(t)>\ < lg@)liz.

Note that H(t) depends on the function ¢(x) used in the definition of Ag(\), see (3.38). From
the first statement in Lemma 3.12 we deduce that

[T <q lg@)II3.
where the constant in the inequality depends on the choice of the function ¢(x). Thus (2.9)
and (3.10) imply that for ¢t < Ty with |Tp| large enough there holds

[H(1) — 3 (D*E(e(1)a(0) 9(1))| < cllg(t)] (350)

with ¢ > 0 as small as we wish.

3.5 Energy estimates via the mixed energy-virial functional

Lemma 3.13. Let ¢; > 0. If Cy is sufficiently large, then there exists a function q(x) and
To < 0 with the following property. If Ty < Ty and (2.7), (3.10), (3.11) hold for t € [T, T1],
then fort € [T, T1] there holds

H'(t) < ¢ - C3 7380, (3.51)

This lemma is the key step in proving Proposition 3.3. We will postpone its slightly
technical proof.

Proof of Proposition 3.3 assuming Lemma 3.13. We first show (3.13). From (3.15) and (3.10)

we obtain .

nmww:m@—wmﬁf Co- o2 dr < Gy -2l (3.52)

—0o0
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Again from (3.15) and (3.10) we have [N (¢) — b(t)| < Cp - e~ kIt Multiplying by b'(t) =

K2 - /j‘(%)Q ~ e fltl cf. (2.8) and (2.7), we obtain ‘éit( H2 _ k2. /\(t)2)‘ < Q- o3kt Qince

b(T) = k- MT) and p(T) = 1, this yields [b(t)% — x2- W) 2| S Co-em S'fltl But b(t) + k- 2 ~
eIt see (2.7) and (2.9), hence

A
u(t)

Bound (3.52) implies that ‘)‘(t AMt)| < e 3%l thus (3.53) yields | N (t)—r-A(t)| S Coe 2wl
Integrating and using A\(T) = e Lo=#ITl we obtain (3.13).

We turn to the proof of (3.12). The initial data at ¢t = T satisty ||g(T)|le < e_%“m, thus
(3.50) implies that H(T) < e 347l If Cj is large enough, then integrating (3.51) we get
H(t) < c-C3-e 3 with a small constant c. Now (3.50) implies

b(t) — & | < Cp-e 2l (3.53)

(D2E(p(t)g(t), g(t)) < c- CF. e 3l with ¢ small. (3.54)

Since [[¢p(t) — Wy lle is small, Lemma 3.9 together with (3.14), (3.11), (3.18) and (3.19)
yields

lgll < (cCF + 1)e M,
Eventually enlarging Cy, we obtain (3.12), if ¢ in (3.54) is taken sufficiently small. O
Proof of Lemma 3.13. In this proof we say that a term is negligible if its contribution is
<ec- C’g e 30t We write Value; ~ Valuey if |Value; — Valuey| < c¢- C’g e 35t The order of

choosing the parameters is the following: we will first choose ¢(x) independently of Cj, then
Co, which may depend on ¢(x), and finally |Tp].

Step 1 (Derivative of the energy functional) Using the definition of I(t), the conser-
vation of energy, formulas (2.13), (3.9) and self-adjointness of D?E(¢p) we compute:

I'(t) = 0 — (DE(¢), dip) — (D*E()dip, g) — (DE(¢), d:g)
= —(DE(y),J o DE(p) + %) — (J o DE(y) + ¥, D’E(¢)g)
—(DE(¢),J o (DE(¢ +g) —DE(p)) — )
—(D*E(p)h, g) — (DE(y),J o (DE(¢ + g) — DE(¢) — D*E(9)g))
= (A + (), g) — (¥, ) — (&, flo+9) — f) = [ (9)g).

The first term is < Coe ?#! due to (2.19) and (3.10), hence it is negligible (by enlarging
Cy if necessary). Inequality (2.18) implies that the second term can be replaced by —%(X —
b)(AgAW)y, g), which in turn can be replaced by —b(X — b)(Ao(A)AW), g), thanks to (3.42).
From (3.43) we infer that the third term can be replaced by b-(A(X)p, f(o+9)—f(@)—f'(¢)g).
Using formula (3.40) with h; = ¢ and he = g we obtain

I'(t) = =b(X = b) - (Ag(\) AWy, g) — b (A(N)g, f(e + 9) — f(e))- (3.59)
Step 2 (Derivative of the virial functional) We compute:
(b)Y (t) = b’/g'-Ao()\)gderb/\’/g-8,\A0()\)gdx

. (3.56)
+b/g-Ao<A><gw> dx+b/<Ag+ o+ 9)— F(@) — ) - Ao(N)gda.
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The first two terms are negligible thanks to Lemma 3.12. Consider the third term on the
right in (3.56). An integration by parts yields [ ¢- Ag(A)gdz = 0. Since Ag(N) : H — L? is
a bounded operator, from (2.17) we see that

b [ 9+ Ao do = <bY =) (Aa()AW), ).

Consider the forth term on the right in (3.56). The term b [ - Ag(N\)g dz is negligible. Using
(3.41) and the fact that Ag(A) = A(X) + 5xAq(5) we get

b / (Bg+ (o +9) — £(2) - AN dz < b- (AN)g, F(o + ) — F(9))

b

D) /| |<RA \Vg|2 dz+ g / éAq(X)(f(90 +9) — flp))gde + cCge—z”"vltl’

with a small constant c. Putting everything back together and using (3.44) we get
(b7)'(t) < =b(X' =) - (Ao(N)AW, g) +b- (A(N)g, f(¢ + 9) — f())
b
+ —( — / Vg|* da + /]“"(W,\)g2 dx) + cCRe 30l
AN Jlel<Rra

Step 3 (Localized coercivity) Taking the sum of (3.55) and (3.56) we obtain
b
H'(t) < 7< - / |Vg|*dz + / ' (Wy)g? dw) + cCZe3xlt,
A | <RA

Recall that |($Vx, 9)| < |af|+]a; |, hence (3.30) (after rescaling) together with (3.14), (3.11)
and (3.18) imply that

—/ Vg|2dx+/f/(W>\)92 dz < (cC2 + 1)e 340,
|z|<RA

with ¢ > 0 as small as we wish (by taking R large enough). Enlarging Cj if necessary we
arrive at (3.51). O

3.6 Shooting argument and passing to a limit

We are ready to give a proof of the main result of the paper, following a well-known scheme
introduced in [64] and [56].

Proof of Theorem 1.

Step 1 Let ¢, be a decreasing sequence converging to —oo. For n large and

ag € A:= [— %e*%"d'Tn‘, %ef%’gmﬁ],
let uo(t) : [tn,T4) — & denote the solution of (1.1) with initial data (3.5). We will prove
that there exists ag such that Ty > Tp and for u = uf° inequalities (3.12), (3.13) hold for
tc [tn, To]
Suppose that this is not the case. For each ag € A, let T} = T1(ap) be the last time such
that (3.12) and (3.13) hold for ¢ € [t,, T1). Since {p(t) : t € [tn, T1]} is a compact set, Corol-
lary A.3 implies that T, > Ty. Suppose that |a] (T1)] < e 3Tl Then Proposition 3.3 would
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imply that (3.12) and (3.13) hold on some neighborhood of 77, contradicting its definition.
Thus a (T1) = e 21Tl op af (Th) = —e 2Tl Let Ay C A be the set of ag € A which lead
to af (Th) = e 3471l and let A C A be the set of ag € A which lead to af (Th) = —e~3nITl,
We have proved that A = AL UA_. We will show that A4 and A_ are open sets, which will
lead to a contradiction since A is connected.

Let ag € A,. This implies that there exists the first 75 such that af(T 9) > %e_%”“'TQ‘.
Hence for a solution wu(t) corresponding to ap close to ay we will have (by continuity of
the flow) af (Tz) > %efg’“lm and |a; (t)] < e 28l for ¢ € [tn, T5]. Suppose that ap € A_.
Hence there exists the first 73 > Tb such that af (T3) = %e_%"m”‘. Estimate (3.17) yields
af (T3) 2 e 2 T3l > e_%’“‘le“, which is a contradiction. Hence A4 is open and analogously
A_ is open.

Step 2 Call u,, the solution found in Step 1. From (3.12), (3.13) and (2.11) we deduce that
there exists a constant C; > 0 independent of n such that

[t () = Wy — W, —e SHAWL )lle < Ch-e 271 fort € [t,, To].  (3.57)

The sequence uy,(Tp) is bounded in £, hence its subsequence (which we still denote u,,) has a
weak limit ug. Let w(t) we the solution of (1.1) with the initial data w(7Tp) = uwg. Let T' < T.
In view of (3.57), for large n the sequence u,, satisfies the assumptions of Corollary A.4 on
the time interval [T, Tp], hence u,(T) — w(7T). Passing to the weak limit in (3.57) finishes
the proof. O

Remark 3.14. Note that only the instability component a] (t) is treated via a topological

argument, whereas a (t) is estimated directly. This depends heavily on the (incidental) fact

that the bootstrap bound e 3t i asymptotically smaller than eI, Were it not the case,
we would have to use a topological argument based on the Brouwer fixed point theorem, as

in the work of Cote, Martel and Merle [18].

4 Bubble-antibubble for the radial critical Yang-Mills
equation

4.1 Notation

In this section we denote ||1)H%2(r1<r<rz) =27 f:f |v(r)|? rdr. If 71 or ro is not precised, then
it should be understood that r; = 0, resp. ro = 400. The corresponding scalar product is
denoted (v,w) := 27 [["v(r) - w(r) rdr.

Recall that [[v[|%, := 2 f0+°° (|0rv(r)|? + |2v(r)[*) rdr. A change of variables shows that
v(r) € H < v(e®) € HY(R), in particular ||v| e < ||v]|% (this change of variables, very helpful
in proving coercivity lemmas, can be found in [35]). Another useful way of understanding the
space H is to consider the transformation ¥(er) := €2y (r), which is an isometric embedding
of # in H'(R?;R?), whose image is given by 2-equivariant functions in H'(R?;R?). Let H*
be the dual space of H for the pairing (-,-). The embedding just described identifies H* with
the 2-equivariant distributions in H~(R?;R?).

We denote X0 := L?NH and X' := {v € H : O,v € H and 2v € H}. The generators
of the H-critical and the L?-critical scale change will be denoted respectively A := 78, and
AO =1+ ?"87«.
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4.2 Linearized equation and formal computation

Linearizing —92u — 19,u + %u(l —u)(1 — Lu) around u = W we obtain the operator

1

1 1 1
L:i=-02—20,— =(2-6(W(r)—1)%) = —-82— =0, + — (4 — 6AW).
0F = ~0, = (2= 6(W(r) = 1)?) = =0 = 0, + — (4 — 6AW)

We study solutions behaving like u(t) >~ —W + W) with A(f) — 0 as ¢ — —oco. As in
Subsection 2.2, we expand

u(t) = -W + Uy,

Sy b0 - U, +b(e)? - U,

A®) At)

with b(¢) = N(t), U® := (W,0) and UW := (0, —AW). This gives

Ofu(t) = —b' () (AW) xp) + O (AoAW)5(s) + lot. (4.1)

Let us restrict our attention to the region r < \/A(t). We will see that the region r > /A(t)
will not have much influence on the dynamics of our system. For r < v/X we have W < W,
hence

1 1
du(l —u)(1 — §u) ~ AW (1 —Wy)(1 — §WA) + (=44 6AW,)W + lot.
Since OZ2W + 10, W ~ %W +lot for r < VA, we get

02u+ Lo — (1 — w1ty = L rr®), - Lews W+ 10t
Ut O — —gu u 5% =~ A= 56 .

We can further simplify this using the fact that W (r) ~ 2r2:

1 4 1 b?
O*u + —0pu — —u(l—u)(l - iu) = —X(LU(Z))A — 12AW), + lot,
r r 2

thus (4.1) yields
LU® = —AgAW + b%(b’ — 120\)AW.

As in Subsection 2.2, we find that the best choice of the formal parameter equations is

Nt =bt), V() =r>At),  with x:=2V3.

Remark 4.1. The main term of the interaction is ezactly cancelled by the term —b' AW, for
our choice of the parameters. We have seen that it is not the case for the power nonlinearity
and in the next section we will see that it is not the case either for the critical equivariant
wave map equation.

4.3 Bounds on the error of the ansatz

Fix Z € C3°((0, +00)) such that

+oo dr
/ 20 AW ()Y >0, (4.2)
0

T



96 CHAPTER 2. CONSTRUCTION OF TWO-BUBBLE SOLUTIONS

By a direct computation we find L( a +4 772 ) = Tgﬁ;%? = —ApAW. Adding a suitable multiple

of AW (r), we obtain a rational function Q(r) such that

LQ = —AoAW, /Z(r) : Q(r)g =0, Q(r)~r*asr —0, Q(r) ~1asr — 4oo.
T
(4.3)
For \, i satisfying (2.6) and (2.7) (naturally with x = 21/3) we define the approximate
solution by the formula
(p(t) = _Wp,(t) + W)\(t) + S(t)7

@(t) = —b(t) AWy,

where

' AT)
2

bt) = e T 4 /@2/

7 1(7)
S(t) == x - b(t)*Qx)s for t € [T, Ty).

dr, for t € [T, Ty),

From (4.3) we obtain

he-@uibes ([ 1 rar)+

which implies that

D=

i.(/ow((ur) rd'r) < V- e,

1 (t)l2 < e 3%,

Since Z has compact support, (2.3) 1mphes for sufficiently small A,

/ZA =0.

We denote f(u) := —4u(l —u)(1 — $u) and
(1) = (5(1), $(t)) = Ap(t) — DE((1))
= (Bup(t) — p(0), (1) — (O (t) + L Drp(t) + 5 T (1)).
We have f/(u) =2 — 6(u — 1)%.

Remark 4.2. By a direct computation, f'(W) = —4 + 6AW. Thus the potential term of
the linearized operator contains a non-localized part —4 and a localized part 6AW. These
terms need to be treated in different ways. This is a known issue coming from the fact that
f(u) is not really the nonlinearity, as it “hides” the linear part near the stable equilibria:
f(u) ~ —4u near v = 0 and f(u) ~ 4(2 — u) near u = 2. Sometimes it is convenient to
subtract the linear part from f, but here we work simultaneously near v = 0 and near u = 2,
so probably it will be simpler to keep f as it is. A similar remark could be made in the case
of the equivariant wave map equation.

Lemma 4.3. Suppose that for t € [T, Ty] there holds [N (t)| < e * and |/ (t)] < e #lH.
Then

l[4(¢) — u’(t)ﬂ(lt)AW#(t) +(N(t) - b(t))A(lt)AWm)IIH S e anll (4.4)
[db(t) — b((?)()\'( ) = b)) AoAWy [l 22 S e 2, (4.5)
1 1 3]

I(=07 ~ o VA CON QIR (4.6)
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Proof. The proof of (4.4) is the same as the proof of (2.17).
In order to prove (4.5), we treat separately the regions r < v/A and r > V. We will
show that

H 3 (F() = F(W) + 27]‘ (Wa) = BF (WNQ) | p2remy S €271, (4.7)
Since f is a polynomial of degree 3, we have
F@) = FWA) + F/ (W) (Wi 4 8) /(W) (= Wy +8)° + ¢ (W) (- W, + S)°.

We treat all the terms one by one. We have |W,(r) — 2%5| < 7% Since [f/(W))| < 1, this
implies
1

1 \/X 2 3
”rjf/(W’\)(Wﬂ =22 S </ rt. rdr) < e M,
0

Since r is small, we have S(r) = b>Qx(r), and the corresponding term is subtracted in (4.7).
Next, notice that |W,| +|S| < 72 Since |f”(Wy)| < 1, this implies

1

1 i s
|2/ W)Wt 8)llee 5 (/0 (= 'T4)2rdr>

The last term is estimated in a similar way. This finishes the proof of (4.7).

By a direct computation ‘(83 + %&)Wu - %| < 72, hence

3 3
5 —gnltl
~ )\2 S 2

1 8 _3,
(07 + ;ar)wu — EHLQ(TSM < e~ 2l (4.8)

From (4.7), (4.8) and the definition of ¢(t) we have

1 1 2, b2 8 3,
1@+ o0+ 576D = (= 58/ W) = S EQa = 5) [ 2peym S e

Using (4.3) and the relation 4 + f/(W) = 6AW we can rewrite this as

5 1 1 12 b? < —3aly
H ((8r =+ ;&)90 + ﬁf(‘ﬂ)) - (_ EAWA + XAOAWA)HL%@\&) ~€e 2,

which is equivalent to (4.5), restricted to the region r < v/\.
Consider the region r > v/A. Developping f at 2 — W, we get

£(0) = FQ=Wy ) f = W,) (Wy=2+8)+ 5 £ (2= W) (Wa—2-8)* < 1/ (2= W,) (W3 —2+5)°.

From this and the relations f(2—W,,) = —f(W,,), f'(2—W,,) = f'(W,), we obtain a pointwise
bound

() + F(W) + f(W) (2 = W)l S |S] + (2 = Wi[*. (4.9)
Since |S(r)| < b%, we have
1 +oo 3 1 5,
”ﬁS“LQ(Qﬁ) §b2</ﬁ r 4rdr)2 <e 2 It (4.10)

There holds |2 — Wy (r)|* < 4, hence

1 _ 3 3,
1512 = WA Pl 2 v gx*(/ﬁ r 127"dr>2 Seanl, (4.11)
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Since |W,, — 2| < r?, there holds |f'(W,) + 4| < % We also have |2 — W,| < i‘—; and

(2 —Wy) — 2’\2 A—4, hence

‘ ~

1 8\ 2
|57 W)@ = W) + 5l aesvm S 155 + Sollizesvn

+o00 % +o00 % 3 (4'12)
< A2 (/ r4 rdr) + A4 (/ r12 rdr) < e zlnlt
VA VA
Inserting (4.10), (4.11) and (4.12) into (4.9) we obtain
82 _3,
Hf(%") + f(W,) — ’I”THLZ(TZ‘A) Se 2 14, (4.13)
A direct computation shows that (02 + 20,)Wy(r) = 8/\42 + O(;\—é + ;\%), hence
1 82 3,
H(a?’ + ;aT)WA + TTHLQ(TZ\A) 5 e lt" (4'14)

We have 0,5 = x'b? - Qx+ xb? - (@) and 925 = "b?- Qx + 2x'b? - (Qx
holds |Q| < 1, |Q’ and |Q" which implies |Qx] S 1, [(Q))]
This gives

) —I—Xb2 Q)" There
rand (@) S 5.

|f\J7‘ |NT2’

1 +oo Lo s
2 " o2 . / <12 —4 2 < < oa—5nlt
30 (@) Lz + 535 - (@ a2 /ﬁ )t S o= el

1 3,
I8 (@3 2z vmy + XD Qalizaymy + XY @l agaym) S 87 <2,
(4.15)
hence ||(8? + %&)SHLQ(D\&) S e 3l Together with (4.13) and (4.14) this proves that

1 1 2
2 — 5K
107 + ~0r) e + 5 () 2oy S €72 g

Since ||AW>\||L2(T>\[ +||A0AW>\||L2(T>\[) f VAT Lordr) 2 < W/, the other terms appearing

in (4.5) are Se” 37!l This finishes the proof of (4.5).

The proof of (4.6) is very similar to the proof of (2.19), hence we will just indicate the
differences. Since [|[W)||zee + |[Wyllze < 1, we have |f/(=W, + Wy) — f/(W))] S W, and
(=W +Wy) = W) =1 (W + (2—=Wy)|— f(W,)] < 2—W,. Next, we check that
||T%WH AWy S e~ 2nlt (recall that H C L*, hence L'(R?) ¢ H*). To do this, we consider
separately r < 1 and r > 1:

1 _3,
Hfgw ‘AW/\||L1(7~§1) S HAW/\HLl(rgl) = )\2HAW||L1(T<1/)\ S )\2|log A <em2 |t|7

H Wy AWl sy S AW poo(rs1) = |Aw( )\~A2<<e 3hltl,

Finally, we check that HT%(Q — W) - AW, |1 S e~2%ll again dividing into r < 1 and r > 1:

1 o 1
= Hmuﬁ(rgl) =A HWHLl(TSI/A)
2

2 _3
H2 - W)\HLl(TZI) = 1 +)\2 <e 25\t|.

_3
12 = Wall 1<) ~ N?|log \| < e 2",

This allows to conclude, since ||f'(¢) — f/(=Wy + W)l S 1S|ee S e~ 3hltl, O
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4.4 Modulation

Having defined the approximate solution ¢(t), we will now analyse exact solutions close to
@(t). The initial data are

u(T) = ( -W+ W%e—;ﬂT\ , —e_’ilT'AW%e_,im)

(there is no linear instability in the case of the Yang-Mills equation).
Similarly as in Subsection 3.2, we choose the modulation parameters A(t) and p(¢) which
verify

dr

dr
0, /ZA' (u(t) = (=W + Wx(t)))7 =0.

r

[ 2 00 = (Wi = W)
We define g(t) by
u(t) = () + g(t).

It satisfies, cf. (3.14),

1
BP0 =0 g

The functions A(t) and pu(t) are C* and
N (&) = b(O)] + [ (1)) S lg(t)]|? + c- e 2

with ¢ > 0 arbitrarily small, cf. (3.15).

4.5 Coercivity

Recall that f/(W) = —4 4+ 6AW. In the next lemma, it is useful to separate these two terms,
see Remark 4.2.

Lemma 4.4. There exist constants c¢,C' > 0 such that

o for all g € H there holds

(4.16)
+oo 4 Foo dry2
> n2 | % 2 _ o ar
_c/o ((g)+r29)rdr C(O Zgr>,
e if r1 > 0 is large enough, then for all g € H there holds
T2 Ao oo e 4 o,
(1—20)/ ((¢") +r29)rdr+c/ ((¢) +T—29)rdr
0 1
4.1
400 6 5 400 dr\ 2 ( 7)
—/ —AWg"rdr > —C’( Z- g—) ,
0 r 0 r

e if ro > 0 is small enough, then for all g € H there holds

+00 4 72 4
(1—2¢) / ((g')2 + T—292) rdr 4 c/ ((g')2 + T—2g2) rdr
2 0 (4.18)
teo 6 9 too dry2
— —AWgrdr > —C’( Z- g—) ,
0 r 0 r
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Proof. Let §(z) := g(e®) and Z(z) := Z(e”). One computes that f/(W(e?)) = —446 sech?(x),
hence (4.16) is equivalent to

/(Zj’)2 + (4 — 6sech?)g? dx > c/ ((Z}")2 —1—52) de — C(/ g-ﬁdx)z. (4.19)
R R R

This quadratic form corresponds to the classical operator —% +(4—6 sech2), for which 0 is a
simple discrete eigenvalue, with the eigenspace spanned by sech?. Decompose § = a sech? +g¢1,
with [ sech? -g; dz = 0. From the Sturm-Liouville theory we obtain

/R (@)% + (4 — 6sech?)g? dz = /

(9’1)2 + (4 - 6sech2)g% dr > /g% rdr.
R

Let sech? = bZ + (sech?): with [ Z - (sech?)* dz = 0. Since [ Z -sech? dz > 0, see (4.2), we
have [, ((sech2)L)2 dz < [ (sech?)? dz, hence

/g% dz = a? /(sechQ)2 dz — 2a/sech2 -de—i—/ﬁQ dz
= a? /(Sech2)2 dz — 2ab/§-§dx - 2a/(sech2)l -ﬁdx—i—/ﬁadx
Zc/ﬁde—C(/g-ﬁdx)2,
R

which implies (4.19).
With the same change of variable, (4.17) and (4.18) will follow once we prove that

(1—2c¢) / o ((¢")? +4¢%) dz + c/ ((¢")? + 4¢%) dz

|z|>R

~ 2
—/6sech292d$2—(](/2'gdx> ,
R R
2x

provided that R is large enough. To this end, take y(z) := X(F) and h = X - g- Since

(4.20)

Z has compact support and R is large, we have ng hdz = f]RZ~ -gdz. By a standard
integration by parts we get fR(%’)Q dz = [ X*(7)*dz + [ 3((X)? — XX")g* dz. We notice
that |[(X')? — XX”| S R™? is small, in particular for any ¢ > 0 there holds [; x*(¢)?dz >
fR(%/)2 dz — § [ ((¢)? + 4¢%)xz dz, if R is large enough. Applying (4.19) with I instead of §
and 3c instead of ¢ we obtain

(1-3c) /ng ((9)* +4g%) dz — /RGSech2 X°3* dx

> (1-— 30)/RX2((§')2 + 4?2) dzr — /I[%Gsech2 X2 dz

> (1—30)4((%’)2+4ﬁ2) dx—;/R((ﬁ/)z—f-4§2) dx—/Ressecthx

> —;/R ()% + 452) da — C(/'Z.de)Q > —;/R ()% + 432) da: — C(/Ré’gdxf.

But 6sech? < 6sech? X2 + 2c¢ if R is large enough, and (4.20) follows. O

Lemma 4.5. There exists a constant n > 0 such that zf% <nand |U—(=W,+W,))|e <,
then for all g € € there holds

1 dry\2 1 dry\2
O E@g.0) + ([ 52097) + ([ 420 05) 2 0l
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The proof is a modification of the proof of Lemma 3.9 and will be skipped.

4.6 Definition of the mixed energy-virial functional

Lemma 4.6. For any c > 0 and R > 0 there ezists a function q(r) = g r(r) € C>1((0,+o0))
with the following properties:

(P1) q(r) = %TQ forr <R,

(P2) there exists R > 0 (depending on ¢ and R) such that q(r) = const for r > R,
(P3) | (r)| S and |¢"(r)| S 1 for all v > 0, with constants independent of ¢ and R,
(P4) ¢"(r) > —c and 1¢'(r) > —c, for all v > 0,

(P5) (;—:2 + li)Qq(r) <c-r72, forallr >0,

(P6) |r(@)/‘ <e¢, for allr > 0.

Proof. 1t suffices to prove the result for R = 1 since the function qr(r) := R?q(%) satisfies
the listed properties if and only if ¢(r) does.
First we define go(r) by the formula

ol
qo\T) ‘=
2+ (3(r—1)2 - log(r)rtl) r>1,

with ¢; small. A direct computation shows that for » > 1 we have

cilogr 3 1
go(r) =r(1 - 5 )—}—01(17“—1-1-@),
ci1logr 1 1
qo(r) = (1= ) +al;-52)
2 4 Ar
(4.21)
r?—1
q0 (r) = —e1— 5~
2r3 7
d2 1 d 2 C1
(G2 *va) o0 =5

In particular go(1) = %, gh(1) =1, ¢f(1) =1 and ¢}'(1) = 0, hence gy € C>1.

Let Ry := €%/, From (4.21) it follows that go(r) verifies all the listed properties except
for (P2) for r < Ry. Let ej(r) := %rj -x(r) for j € {1,2,3}, where x is a standard cut-off
function. We define

") {qo(r) r < Ry
q(r) = . } B
Q()(R()) + Zj’:l q(()J)(R()) . Ré : €j(—1 + RO 17“) T Z Ro.
We will show that ¢(r) has all the required properties if ¢; is small enough. It is clear that

q(x) € C3Y(RY). Indeed, it follows from (4.21) that ]q[()j)(Ro)\ < cle_j for j € {1,2,3}. For
r > Rp and k € {1,2,3,4} we have

3
@) =3 g (Ro) R e (-1 4+ Ryr) = |q®()| S B2,
7=1

Since ¢(r) = const for r > 3Ry, we obtain (P1)—(P6). O
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We define the operators A(A) and Ag(A) as follows:

AA(r) = d'(5) - W (r),
(AoA(r) = (55" (5) + 50 (DAY +4/(5) - (),

Lemma 4.7. The operators A(X) and Ag(A\) have the following properties:

o the families {A(X) : A > 0}, {Ao(A) : A > 0}, {AAAN) : A > 0} and {AOrAp(A\) : A > 0}
are bounded in £ (H; L?), with the bound depending on the choice of the function q(r),

e for all A >0 and h1,he € X' there holds
[(A(A)ha, T%(f(fu + ha) = f(l) = f'(h1)h2)) + (A(A)hg, %(f(fu + ha) = f(h1) + 4h2))|

co
< X((th\ﬁ{ + Dllh2ll3; + [1h2ll%),

(4.22)
with a constant cy arbitrarily small,
e for all h € X' there holds
or (B 4
(Ao(\h, (92 + ) ) < 0||h||§[ - 7” ((0:h)? + —h*) rdr, (4.23)
0

e assuming (2.7), for any co > 0 there holds
”A[)AW&— Ag ()\( ))AW/\ HL2 < ¢p, (4.24)
16(8) + b(t) - A(A(E))p(t)]| L~ < co, (4.25)

teol o A1

‘ / ~(d"(3)+=d(3) 5 (fle+9) — flp) +4g)grdr

0o 2 A ro AN (4.26)

+oo 1
_ / 2 (f’(W)\) + 4)92 rdr‘ < Cnge*:”'ﬂt\?
0

provided that the constant R in the definition of q(r) is chosen large enough.

Remark 4.8. The condition 0,h1, %hl,&hg, %hg € H is required only to ensure that the
left hand side of (3.40) is well defined, but it does not appear on the right hand side of the
estimate. Note also that in (4.22), (4.23) and (4.26) we extract the linear part of f, see
Remark 4.2.

Proof. The proof of the first point is the same as in Lemma 3.12.
In (4.22), without loss of generality we may assume that h, he € C§°((0,+00)) and that
A = 1. From the definition of A(\) we have

(A, 5 (F O + o) — () = £/ (o)) + <A<A>h2, 3 (7 h) = f(n) + 4h))
= /0+°° qlhll . T—lz(f(fn + ha) — f(hy) — f/(h1)) +4q h/ (f(hl + ha) — f(h1) + 4h2) rdr

—+o0o ./
-/ %(%F(hﬁm—%F(hn—hz-@ﬂm)—f(hl) Ly 28 ) ar

—+00 /

— [y %(F(hl +hy) = F(hy) — f(ha) - hy + 2h3) rdr.
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Using (P6) in Lemma 4.6 and the elementary inequality |F(hy 4+ ha) — F(h1) — f(h1)ha| <
|h1|2’h2|2 + |h1‘4 we get (4.22).
Note that as a part of this computation, we obtain

1

+oo
\(A()\)h,ﬁhﬂ < CO/ r%h?rdr. (4.27)
0

A

F;or”r TS R)\l tl/lel;e holdsc %q”(%) + 2—1Tq'(§) = % and for all r, thanks to (P4), there holds
axd" (%) + 274 (5) = — hence

1, 1, 1 27T/R>\12 co [T°1 ,
—¢"(3)+ —¢(5))h, Sh) > == S R T—— = h%rdr. 4.28
UG )+ gpd G gh) 2 57 | hirdr =20 [0 Sghrdr (4.28)
Taking the sum of (4.27) and (4.28) we obtain
1 co [T°1 , on [Fr 1,

(co has changed, but is still small).
Using identity (3.46) with N = 2 we obtain, cf. the proof of (3.41),

—+00
(Ao(N\)h, (92 + 1ar)h> < CO/ (Orh)? rdr — 277/ (0,h)? rdr. (4.30)
r A Jo A Jr<ra

Taking the difference of (4.30) and (4.29) we obtain (3.41).

The proofs of (4.24) and (4.25) are similar to the proofs of (3.42) and (3.43) respectively.
Instead of (3.48) we prove that ||[bA(N)W, |z~ < %, which follows from (P2) and (P3). We
skip the details.

The proof of (4.26) is close to the proof of (3.44). Note that it is crucial that f'(W)) + 4
vanishes at infinity. O

For t € [T, Tp| we define:

e the nonlinear energy functional

16) = [ SlaOF + 5IVaOF = 5 (Fle(t) + 9(0) ~ Flolt) = Flel)a() da

= E(p(t) +9(1)) — E(p(t)) — (DE(p(t), g(1))),

e the localized virial functional
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4.7 Energy estimates via the mixed energy-virial functional

The remaining part of the proof is almost identical to Subsection 3.5. We will indicate the
few differences.
Instead of (3.55), we obtain now

I(#) = ~b(X — ) (A(NAT, §) — b+ (AN)g, 5 (F(o -+ 9) — F(0) + 49)).
As in the proof of Lemma 3.13, we have
1025 [ 5 40— vyrar+ b [ (3 +10)g
S(fle+9) = F(9)) =) - Ao(N)grdr
:b/gu%ng—¢wm4w/X&ﬁ+i@—

+ L (Fo+0) = F(0) +40) — 1) - A(N)grdr,

where we recognize the terms appearing in (4.23) and (4.26). The rest of the proof applies
without change. Theorem 3 follows from the argument given in Subsection 3.6.

+
4

12)9

5 Bubble-antibubble for the equivariant critical wave map
equation

5.1 Notation

We use similar notation as in Section 4, with a slight modification in the definition of the
norm H:

+oo k
leli3 = 2 / (10r0(r) + | —o(r) ) rdr.
0

The transformation v(e’r) := e¥¥y(r) is an isometric embedding of # in H'(R?;R?), whose
image is given by k-equivariant functions in H!(R?;R?).

5.2 Linearized equation and formal computation
Linearizing —0%u — 78 u+ 2 = sm(Qu) around u© = W we obtain the operator
k2 1 k2 8
— 2 _ 2
=-0r — 8 + 5 cos(4 arctan(r M) =-92 - ;8,, + T—Q(l - m)
It has a one-dimensional kernel spanned by AW. We fix Z € C§°((0,400)) such that

+o00
2(r)- AW(r)% >0,
0

Lemma 5.1. For all V(r) € C((0,+00)) such that ["°° AW (r) -V (r)rdr =0, [V(r)] < r*
for small v and |V (r)| < v7% for large r, then there exists a function U(r) € C*((0, +0c0))
such that

LU=V, (5.1)
|U ()| < rk, 10, U(r)| < rk_l, ]83U('r)| < ph=2 for r small, (5.2)

~ ~
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|U(r)| < rik, 10,U(1)| < Tﬁk*l, |8T2U(7“)| < ph=2 for r large, (5.3)
/Z(r) : U(r)% = 0. (5.4)

Proof. 1t is easy to check that the operator L factorizes as follows:

L=—0t =10+ fj(l - (k+8k>2) =(-or— - j/\\II/I/[///((:))> (or - %8) (5:5)

hence we can invert it explicitely using twice the variation of constants formula. Define
Uy € C*((0,+00)) by

Ur(r) = Avlv() /0 V(AW (0)pdp.

It solves the equation ( — 0, —1- /}\‘;VV/((:)))UI(r) =V (r). Since |V (r)| < r¥ and AW (r) ~ rk

for small r, we have
UL(r)| S S small 7. (5.6)
From the crucial assumption f0+oo V(p)AW (p)pdp = 0 we get

1

400
001 = | / VAW ()pdp| S+ larger (5.7)

From the differential equation we get also |9, U1 (r)| < r* for small r and [0,Uy(r)| < r~* for
large r. Now we define U € C*°((0, +00)) by the formula

" Ui(p)
o AW(p)

U(r) == AW (r)

It solves (8r - //\\VV[‘/,/((:))>U(T) = Ui (r), hence (5.5) yields (5.1). Using (5.6) and (5.7), one

can check that |U(r)| < 752 for small r and |U(r)| < %2 for large ». The differential
equations yield |0,U(r)| < r**1 and 92U (r)| < r* for small r, as well as |9,U(r)| < r—F+!
and [02U(r)| < v~ for large 7. Adding to U a suitable multiple of AW we obtain (5.4).
Since AW (r)| < 7%, |0, AW (r)| < r*=1 |02AW (r)| < r*72 for small 7 and [AW (r)| < r~F,

~

10, AW ()| < r7 k=1 102AW (r)| < r~%=2 for large r, (5.2) and (5.3) still hold. O

We study solutions behaving like u(t) ~ —W + Wy with A(t) — 0 as t — —oo. We
expand

+o(t)?-U)

u(t) = —W + U, +b(t)- U, e

1
(t)

with b(t) = XN (t), U := (W,0) and UD := (0, —AW). As in Subsection 4.2, in the region
r < v\ we arrive at

O%u + 18 u— k—Q sin(2u) = —b—2(LU(2)) 1 8k” W + lot
I BEED A2 (e AF (N2 '
Using the fact that W (r) ~ 2r* for small 7 we obtain
1 k? b? 16k%rh—2
204+ 0 — —— s — 2 (LU®@)y, —
. 2u) = — (L lot,
8ru+rt9u 52 sin(2u) )\( UY¥)\ ((r//\)’f+(r/)\)—k)2+ 0
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thus, after rescaling,

16k2rh—2

VAW — \e=1. 70 ),
(T‘k +T'_k)2)

A
LU® = —AgAW + o (

It is not difficult to check (using for example the residue theorem) that

oo 16k2rh—2 Ak
o AW(T) . m rdr = — Sln /AW T‘dT

hence the correct choice (that is, such that Lemma 5.1 allows to invert L) of the formal
parameter equations is

4k? T 1 kg2 NEL
N() =), V(t) = —sin(D)MB = §(k . 2) YOk
1
where k := % . (% sin (%))E This system has a solution

Crarp ()b (8)) = (2 le) 7%, (i) 72), ¢ < Ty <.

5.3 Bounds on the error of the ansatz

Let I = [T, Ty] be the time interval, T' < Ty < 0, |Tp| large. Let A(t) and p(t) be C* functions
on [T, Tp] such that

M) = B2 gy, ) =1,

£ 2 ety <o) < 202 e

1
Let P(r) and Q(r) by the functions obtained in Lemma 5.1 for V(r) = %(—) AW (r) —

% and V(r) = —AgAW (r) respectively. We define the approximate solution by the

formula
Lp(t) = _W,u(t) + WA(t) + S(t),
o(t) == —b(t)AW&.
where
__k_ 26 \k [P A(r)kF!
= (s|T - f T, T .
0= (6T 7+ (25) [ S orte [T, (59)
A()* 2
S(t) := M(t)kpk(t) + b(t) Q)\(t), for t € [T, Tp).

The definition of b(¢) and (5.8) yield
blt) ~ [t 72,

with a constant depending only on k.
Since P,Q € H, there holds

_ 2k
1S < 1] F-2. (5.10)
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/ZA-S(t)ir 0,

We denote f(u) := —% sin(2u) (hence f’(u) = —k?cos(2u)) and

Note also that

(1) = (6(1), 9(1)) = Dp(t) ~ DE((1)
= (Ap(t) — $(0), Bp(t) — (2plt) + - 0rp(t) + 5 F(9(1)))):

We point out that usually, in the context of equivariant wave maps, f(u) has the opposite
sign. We chose the sign which is more coherent with the traditional notation for (1.1).

Lemma 5.2. Suppose that for t € [T, Ty] there holds | N (t)] < \trﬁ and |/ (t)] < |t\7ﬁ.

Then
|W@—M@M;Mnm+ww—mmM)mwm 1)~
nwrﬁgwm wmmm@msw%%, (5.11)
(=82 = 200 — 5 POl S 174 (5.12)
Proof. From the definition of ¥ we get
AP A AP

k
b+ AW, + (N — b)AW) = Rt 'Py + ko NPy — kXAPA +2XDY'Qy — PNAQ,.

The first term has size < [t|” = P [t|™ %2 in #. The other terms have size < ]t! <
2k—1
||~ 7 in A
In order to prove (5.11), we treat separately the regions 7 < v/X and 7 > v/A. First we
will show that

k
Fe Ww+27f@%) PN EN PPN T s SCRE)

We have an elementary pointwise inequality
[f(0) = F(W) = f'(W) (=W + 8)| S [-W, + SI%, (5.14)

with a constant depending only on k. We have [W,| < r* and |S| < (b2 + AF) - (%)k <k
hence

k—1

(NI

VA
1 1
Izl Wot 5P semy < ([ e ryPrar)” ~

which means that the right hand side in (5.14) is negligible. From the well-known fact that
|arctan(z) — z| < |z|? for small z we get |W,(r) — 2(r/u)¥| < r3*. This implies

k VA 1 . _ _
| () (W, ;wps<4 ) AT S TR < e

This proves (5.13) (see the definition of S).
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We have |[W/(r) — 2’“;#‘ S tand (W) (r) — %‘ < 732 for small r, which
implies ‘(83 + %OT) W,(r) — thﬁ‘ < 132 hence

ka k—2 v 1 B
HL2 (r<v/A) ~ (/ k=4 T’dr>2 < \t\_%. (5.15)
0

Since WY (r) + W{(r) + 5 f(Wx(r)) = 0, from (5.13), (5.15) and the definition of ¢(t) we
have

1
|32+ La)w, -

1 1 2k2 k—2 e k—2 )\k 1
1(@F + one+ 57(0)) = (- == = =1 (W) = = = (LP)y -
b2 3 '
§H\t|

- X(LQ)A) HL2(rgﬁ)
By the definition of P there holds LP = — 1050 4 k(2 AW = —2k2ph2_apk=2 pr () 4
E(25)"AW and by the definition of Q there holds LQ = —AgAW, hence we can rewrite
(5.16) as

k, 25 \gAF1 v?
5(13—2) uk AW>‘+)\

o 2hltl
)

1 1
1007+~ 0000 + 5 £(9) — (- AAT) [l ey S

which is precisely (5.11) restricted to 7 < V/A, cf. (2.25).
Consider the region r > v/A. We have ¢ = (1 — W),) + (W, — 7) + S, hence elementary
pointwise inequalities yield

(@) = f(m = W) = f/(m = W) (W =+ 8)| S Wi — 7 + S,

From this and the relations f(m — W) = —f(W,), f'(m — W,) = f'(W,), we obtain a
pointwise bound

() + F(Wy) + f'(Wy) (m = W) S 18] + |m — Wi (5.17)

2k
Since |S(r)| < b2 + 2—’,: ~ [t|”*=2, we have

k
1 _ 2k tooo 3 |t|_% _2k-1
1550 2> vmy S 1 M(/ﬁ r 4rdr)2 < 7 < |t 7w (5.18)

There holds | — Wy (r)|? = |7 — 2arctan((r/\))|> = [2arctan((A/r)F) |2 < )‘Qk, hence

_2k—1
~ETEEL (5.19)

1 —-W )\Qk oo —4k—4 d
Izl = W) Py S ([ e

Recall that f/(W,) = —k2(1 — 8((r/w)* + (r/u)~%)~2), hence |f'(W,) + k?| < r*. We also

have (by a standard asymptotic expansion of arctan) |7 — W) | < ;\—k and [T —W)y — 2)‘k | < )‘;Z,
hence
1 2k2 \k X T
Hfzf (W) (m = Wy) + rEt2 HL2 (r>vX) ~ Sz r2 7n31~z+2 ||L2(r2ﬁ) SIS (5.20)

Inserting (5.18), (5.19) and (5.20) into (5.17) we obtain

1 1 2k2\F 26-1
||ﬁf(<p) + ﬁf(Wu) Ry lr2svay Itl . (5.21)
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A direct computation shows that for > /X there holds (83+%GT)W/\(T) =— 2;2?‘; +0 (rS)\k%)’
hence -
2k=)\ 3k—1 _2k—1
(92 + a W+ g lepsvn SATT <52 (5.22)

k—1

The same computation as in (4.15) yields ||(0? + %&)SHLQ(D\&) \l? f |t|_7.
Together with (5.21) and (5.22) this proves that

5 1 1 < -2t
|(0% + ;8T)S0 + ﬁf(@)”]}(rzﬁ) SR

Since ||AW)\||L2(r>f) + HAOAWAHLQ(DI f/f =7 rdr)? 2 < )\%, the other terms ap-

pearing in (5.11) are < |t|” < |t|” ®=2". This finishes the proof of (5.11).

The proof of (5. 12) is very snrmlar to the proof of (2.19), so we will not give all the
details. We have |>‘ b‘ < Jtt =(f'(p) =
J1(Wx)AW,| e St 22 and | = ( ) f’( ))AW,,| S |t| = , which boﬂs down to

H AWAHLl St 2 and Hr% =Wy - AW, St = , see the proof of (4.6). I
both cases we treat separately » <1 and r > 1:

I =

k—2 k k — k4l
l 2W AW AWillpir<ry = A IAW [ picayny S AT log Al < [t #2,

HLl(rgl)Hr

1 k S5
175 Wi AW 1 o) AW o1y S A" < 7522,

F=2arctan (\/r)¥)

(r<1) < lr HLl(rgl)

1
Hﬁ(7r —Wi)- AWNHLl
= N2 arctan(r) | et xS A log A << 1752,

1 —_—1l
Hﬁ(ﬂ = W) - AW WillLoo@r>1) S W< |t =3

(=1 S T =

5.4 Modulation

As in Subsection 3.2, we define g(t) := u(t) — ¢(t) with modulation parameters \(¢) and u(t)
which satisfy

</\(1t)Z)\(t)7g(t)>:()7 ’< g) >| <c|t| k 2
V() = (O] + 1 O] S lg(®)lle + el 72, (5.23)

with a constant c¢ arbitrarily small. The initial data are

u(T) = (—W+W%(N|t‘),k32,—(ﬁ|t|) = 2AW e () 2 (5.24)

The equivalent of Proposition 3.3 can by formulated as follows.

Proposition 5.3. There exist constants Cy > 0 and Ty < 0 with the following property Let
T < Ty < Ty and suppose that u(t) = o(t) + g(t) € C([T, T1]; X' x XY) is a solution of (1.3)
with initial data (5.24) such that for t € [T, T1] condition (5.8) is satisfied and

_ktl
lg(t)lle < Colt|”+==. (5.25)
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Then for t € [T,T1] there holds

1 _ k1
lg(@®lle < 5 Colt]™ =2, (5.26)

k—2
2K

INE) = = (wle]) 2| + () — 1] S Colt| 7. (5.27)

The rest of this section is devoted to the proof of this bootstrap estimate. Proposition 5.3

allows to construct a uniformly controlled sequence of solutions close to the ansatz and pass
to a weak limit, thereby proving Theorem 2, see Subsection 3.6.

5.5 Coercivity

Recall that f/(W) = —k:2<1 - (u%w)
Lemma 5.4. There exist constants ¢,C' > 0 such that

o for all g € H there holds

+oo "o k‘2 ) +o0o kZ 8 )
; ((g) —i—T—Zg )rdr— ; 7"72‘7(7"’“+r*k)29 rdr
+o0 k:2 +o0 dry\ 2
> ne , koo B . ar
_c/o ((g)+r2g)rdr C<0 Zgr>,

e if ri > 0 is large enough, then for all g € H there holds

e K oo e K
(120)/ ((g) +r29)rdr+c/ ((g) +r—29)rdr
0 1
B /+oo ku L 2rdr - _C< +ooZ g)z (5.28)
0 7’2 (Tk + T_k)Qg - 0 g r ’
e if ro > 0 is small enough, then for all g € H there holds
2

+o0o T2 2
(1-— 20)/ ((g')2 + %92) rdr + C/o ((g’)2 + %92) rdr

T2

+oo .2 8 5 +00 dr\ 2
[TE S s o [Tz YY)
/0 72 (r’“—i—r—k)Qg rar= 0 975

Proof. A change of variable §(z) := g(e*/%), Z(z) := Z(e*/*) reduces the problem to the
study of the quadratic form associated with the classical operator —(f—;g + (1 — 2sech?) and
it suffices to repeat the proof of Lemma 4.4. ]

Lemma 4.5 applies verbatim to the case under consideration.

5.6 Bootstrap

We use the operators A(X\) and Ag(A) from Subsection 4.6. We define I(t), J(¢) and H(t) by
the same formulas as in Subsection 4.6.

Lemma 5.5. The operators A(\) and Ag(\) have the following properties:
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o for all A >0 and hi,hy € X' there holds

(AW, 5 (F(r + o) — F(h) = f()ha))

(5.29)
1 c
+ (A(A)ha, ﬁ(f(/h + ho) — f(h1) + k?hg))| < XO 23,
with a constant cg arbitrarily small,
e for all h € X' there holds
1 k? 2 k?
{Ao(N)h, (82 + 0 = 7) ) < HhHH -5, ((8rh)2 + 72h2) rdr,  (5.30)
e assuming (2.7), for any cy > 0 there holds
[AoAW ) — Ao(A(E)) AWy [l 2 < co, (5.31)
l(t) + ( ) - AQA®) @)L < colt] (5.32)
teo1, 1 5
[ 2@ )+ 24(0) % (Fe +9) — 1e) + Rg)grdr
0 " 5.33)
+oo 1 ( ’
—/D () 4 K)g rdr‘ < O E2
provided that the constant R in the definition of q(r) is chosen large enough.
O

The proof is almost identical to the proof of Lemma 4.7 and we will skip it.

Lemma 5.6. Let ¢; > 0. If Cy is sufficiently large, then there exists a function q(x) and
Ty < 0 with the following property. If Ty < Ty and (5.8), (5.25) hold for t € [T,T1], then for
t € [T, T1] there holds

! 2 —%
H'(t) < ¢1 - C2Jt] F-2. (5.34)

Proof. We follow the lines of the proof of Lemma 3.13. We have
1 1 . 1
I'(t) = (07 + ~0- + 5 f(2)¥9) = (,9) = (& 5 (Flp + 9) = F(#) = F()9))-

The first term is < C’O|t|_%, hence negligible (by enlarging Cj if necessary). Inequality
(5.11) implies that the second term can be replaced by —%(X — b)(AgAWy, g), which in
turn can be replaced by —b(\ — b)(Ag(A)AW), g), thanks to (5.31). From (5.32) we infer
that the third term can be replaced by b - <A()\)90, L(fle+9) = flo) — ['(9)g)) (indeed,

H flo+g)—fle)—f'(e HLl f+oo Lg?rdr <||g||%,). Using formula (5.29) with hy =
and ho = g we obtain

I'(t) = =b(X = b) - (Ag(\) AW, g) — b~ (A(N)g, rlz(f(so +9) = f(o) +K29)).
As in the proof of Lemma 3.13, we obtain
(bJ)'(t) = b(N = b) - (Ao (A AWy, §)

2
b/ (07 + %&n - %)g + T%(f(so+g) — flp) + Kg)) - Ag(N)grdr,
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hence

1 k?
H'(t) ~ b/((@? + ;& - T—Q)g) < Ap(N)grdr
b [tT>®1,, r A, a1 9
2 (Y + 2 (5N S - dr.
35+ 2N E e+ ) - o)+ e)grar
and the conclusion follows from (5.30), (5.33) and (5.28). O
Proof of Proposition 5.3. We first show (5.27). From (5.23) and (5.25) we obtain
t e s
u(®) = 11 = |ut) - 1)) 5 [ ol F ae S ol 7. (53)
—o0
Again from (5.23) and (5.25) we have | N (t) —b(¢)| < Coltr% Multiplying by V' (t) = g
K k k—1 _ 2k—2 . k 3k—1
() .ALt()t)k ~ [t|” %2, cf. (5.9) and (5.8), we obtain ‘%(b(t 2—(25) At t)k } S Colt|”*2
k
Since b(T) = (%)5 “A(T) and u(T) = 1, this yields |b(t)2 — (%)’“2&32\ < Colt| *2 . But
b(t) + (25) 2 Aitif |72, see (2.7) and (2.9), hence
n(t)2
k
26 (EA(t)2
o) — (22 ) S5 < . (5.36)
F=20 )2

. k _k+1 A , 9 k k
Bound (5.35) t)2 } < [t|7#=2, thus (5.36) yields [N (¢) — (25) 2 () 2| S

C’0|t|_%. Integrating this differential inequality is standard. Dividing by )\(t)% ~ |t|_£
we get
k=2 k—2, 2k |k k-2 2K | k=2 1
‘()\ 2)/+ 5 (k_2)2‘:‘()\ 2)/+(k_2) ZH}§C()|t| 2.
Using \(T) = %2 (x[T|)~ 722 we obtain |A(t) - (k2“2) z /f\tH < Co\t\”z =2, from which

(5.27) follows.
We turn to the proof of (5.26). From (5 10) the initial data at t = T satisfy ||g(T)|le <

k k
]t]_% < |t\_TJ—r;, thus H(T) < \t\_ . If Cp is large enough, then integrating (5.34) we
2k+2
get H(t) <c-C2|t|” = , with a small constant c. Eventually Cj if necessary and using the
coercivity of H, we obtain (5.26). O

A Cauchy theory

A.1 Persistence of regularity

Proposition A.1. Let uw : (T_,T}) — & be the solution of (1.1) with the initial condition
u(ty) = ug. Ifupg € X' x HY, thenu € C((T_,Ty); X' x HYNCH(T_,Ty);E). O

The proof is classical, see [9, Chapter 5] for more general results in the case of the nonlinear
Schrodinger equation. Analogous results hold in the case of equations (1.4) and (1.3).

A.2 Profile decomposition and consequences

For details about the nonlinear profile decomposition for the critical wave equation we refer to
[3] (the defocusing case), [23] (dimension N = 3) and [81] (any dimension). For the reader’s
convenience we recall the following result [81, Proposition 2.3]. We denote S(I) the Strichartz
norm on the interval I.
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Proposition A.2. Let ug, be a bounded sequence in £ admitting a profile decomposition
with profiles Ul and parameters Ajns> tjn. Let U’ be the corresponding nonlinear profiles
and let 0, be a sequence of positive numbers. Assume

0, —t

Vi>1,n>1 22 <« T (U)) and limsup|U7|| i Ot < +OO.
N notoo | 8(SEm )

J,n J,n

Let w,, be the solution of (1.1) with the initial data w,(0) = ug,. Then for n sufficiently
large w,, is defined on [0,0,] and

u,(t) = Z Ul(t) +wl(t) +rl(t), for all J € N and t € 0,6,],

j=1

with m j—, 4 oo M SUp,, _,, o SUPsc[0.9,.] |7|le = 0. An analogous statement holds for 6 < 0.

For a corresponding result for the Yang-Mills equation and the equivariant wave maps,
see [42].

Corollary A.3. There exists a constant 7 > 0 such that the following holds. Let w :
[to,T+) — &€ be a mazimal solution of (1.1) with Ty < +oo. Then for any compact set
K C & there exists T < T+ such that dist(u(t), K) > n fort € [1,T4).

Proof. Suppose for the sake of contradiction that there exists a sequence t,, — T such that
for woy, := u(t,) there holds dist(ugp, K) < n, hence ug, = k, + b, with k, € K and
|bnlle < n. By taking a subsequence we can assume that k, — ko € K and that the
sequence b,, admits a profile decomposition, in particular b, — by € £. This implies that
uo, admits a profile decomposition with the first profile kg + by and all the other profiles
small in the energy norm. Proposition A.2 leads to a contradiction. O

Corollary A.4. There exists a constant n > 0 such that the following holds. Let K C £ be
a compact set and let uy, : [11,T2] — & be a sequence of solutions of (1.1) such that
dist(u,(t), K) <, for alln € N and t € [T1,T3].

Suppose that w,(T1) — ug € €. Then the solution u(t) of (1.1) with the initial condition
u(T1) = ug is defined for t € [T1,Ts] and

wn(t) — u(t), for all t € [Ty, T3]. (A1)

Proof. Tt suffices to prove (A.1) for a subsequence of any subsequence. Hence, we may assume
that ugy := w,(71) admits a profile decomposition. As in the previous proof, we show that
all the profiles except for the weak limit of wg , are small in the energy norm. Proposition A.2
implies (A.1). O

Remark A.5. Corollaries A.3 and A.4 hold for the Yang-Mills and wave map equations,
with the same proofs.

Remark A.6. An important point of both results is that 7 is independent of K. Corol-
lary A.3 states that a blow-up cannot happen at a small distance from a compact set. Corol-
lary A.4 establishes sequential weak continuity of the flow in a neighbourhood of any compact
set. Without this additional condition weak continuity is expected to fail, a counterexample
being provided by type II blow-up solutions.
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Remark A.7. Corollaries A.3 and A.4 are crucial ingredients of the arguments in Subsec-
tion 3.6. Using the nonlinear profile decomposition of Bahouri and Gérard [3] is nowadays a
well-established method of attacking this type of questions in critical spaces. Note that [3]
gave the first proof of the sequential weak continuity of the flow for the defocusing energy-
critical wave equation.



Chapter 3

Bounds on the speed of type 11
blow-up for the energy critical wave
equation in the radial case

Abstract

We consider the focusing energy-critical wave equation in space dimension N €&
{3,4,5} for radial data. We study type II blow-up solutions which concentrate one bubble
of energy. It is known that such solutions decompose in the energy space as a sum of the
bubble and an asymptotic profile. We prove bounds on the blow-up speed in the case
when the asymptotic profile is sufficiently regular. These bounds are optimal in dimen-
sion N = 5. We also prove that if the asymptotic profile is sufficiently regular, then it
cannot be strictly negative at the origin.

115
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1 Introduction

1.1 Setting of the problem

Let N € {3,4,5} be the dimension of the space. For ug = (ug, tig) € £ := H'(RV) x L>(RN),
define the energy functional

I
B (o) = /2|u0|2 + Va0l = F(uo) da,

where F'(ug) := %\uol% Note that F(ug) is well-defined due to the Sobolev Embedding

Theorem. The differential of E is DE(ug) = (—Aug — f(uo), %), where f(ug) = ]udﬁuo.
We consider the Cauchy problem for the energy critical wave equation:

{&gu(t) = J o DE(u(t)), (NLW)

u(to) =ug € €.

0 Id

Here, J := <—Id 0

) is the natural symplectic structure. This equation is often written in

the form

8ttu = Au+ f(u)

Equation (NLW) is locally well-posed in the space &, see for example [32] and [84] (the
defocusing case), as well as a complete review of the Cauchy theory in [47]. In particular,
for any initial data ug € £ there exists a maximal time of existence (7,7} ), —oo < T_ <
to < T4 < 400, and a unique solution w € C((T-,T4);E). In addition, the energy E is a
conservation law. In this paper we always assume that the initial data is radially symmetric.
This symmetry is preserved by the flow.

For functions v € H*, v € L?, v = (v,0) € € and A > 0, we denote

n@ = gl e = il e = (i)

A change of variables shows that
E((’u,()))\) = E(UO)

Equation (NLW) is invariant under the same scaling. If uw = (u,u) is a solution of (NLW)
and A > 0, then ¢t — u((t — tg)/)\))\ is also a solution with initial data (ug)y at time ¢ = 0.
This is why equation (NLW) is called energy-critical.

A fundamental object in the study of (NLW) is the family of stationary solutions (u, dyu) =
+W ) = (£W),0), where

|| )-(1\7—2)/2

W(z) = (1+7N(N_2)

The functions Wy are called ground states.

In general the energy E does not control the norm || - ||¢, and indeed this norm can tend
to 400 in finite time, which is referred to as type I blow-up. In odd space dimensions and
for superconformal nonlinearities (which includes the energy-critical case) Donninger and
Schorkhuber [21], [22] described large sets of initial data leading to this kind of blow-up.

It can also happen that in finite time the solution leaves every compact set of £, the norm
| - |l¢ staying bounded, which is referred to as type II blow-up. In dimension N = 3 in the
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radial case one of the consequences of the classification result of Duyckaerts, Kenig and Merle
[26] is that any blow-up solution is either of type I or of type II. This is unknown in other
cases.

A particular type of type II blow-up occurs when the solution w(t) stays close to the family
of ground states W and A — 0. In this situation we call Wy the bubble of energy and we
say that w(t) blows up by concentration of one bubble of energy. We have the following
fundamental result proved first by Duyckaerts, Kenig and Merle [23] for N = 3, by the same
authors [25] for N =5 and by Cote, Kenig, Lawrie and Schlag [15] for N = 4:

Theorem ([23], [25], [15]). Let u(t) be a radial solution of (NLW) which blows up att =T by
concentration of one bubble of energy. Then there exist ul € € and X € C([to, T+ ), (0,400))
such that

Hm [lu(t) — Wy — uglle =0, lim (T, —t)"*A\(t) = 0. (1.1)

t—Ty t—Ty

O]

In this context the function g is called the asymptotic profile. Note that in [25] a more
general, non-radial version of the above theorem was proved for N € {3,5}.

Solutions verifying (1.1) were first constructed in dimension N = 3 by Krieger, Schlag and
Tataru [53], who obtained all possible polynomial blow-up rates A(t) ~ (T — )", v > 0.
For N = 4 smooth solutions blowing up at a particular rate were constructed by Hillairet and
Raphaél [36]. For N = 5 the author proved in [40] that for any radially symmetric asymptotic
profile u € H* x H? such that u(0) > 0, there exists a solution u(t) such that (1.1) holds.
For these solutions the concentration speed of the bubble is

A(t) ~ u(0)2(Ty — D)™ (1.2)

In the same article, solutions with blow-up rate (T'y —t)!*” for v > 8 were constructed, with
v explicitely related to the asymptotic behaviour of uj at = = 0.

1.2 Statement of the results

In the present paper we continue the investigation of the relationship between the behaviour
of ugy at x = 0 and possible blow-up speeds, still in the special case when the asymptotic
profile ug is sufficiently regular. We prove the following result.

Theorem 1. Let N € {3,4,5} and s > Y32, s > 1. Let ujy = (uf,4)) € HT! x H® be a

radial function. Suppose that w is a radial solution of (NLW) such that

li t)— Wiyp —ujlle =0 lim A(t) =0 T . 1.3
Jim [[u(t) ) — uplle =0, Jim (t) =0, < +oo (1.3)
There exists a constant C > 0 depending on ug such that:
e if N € {4,5}, then for Ty — t sufficiently small there holds
At) < C(Ty — t)&F. (1.4)
o if N =3, then there exists a sequence t, — Ty such that

Atn) < C(Ty — tn)& . (1.5)
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Remark 1.1. Let u* = (u*,4*) be the solution of (NLW) such that w*(7) = u{ and
suppose that 0 € supp ;. We will prove that there exists a universal constant Cy such that
in the above theorem one can take

_2
C = Collu*ll 7=z, —pr 1% BOp))

where p > 0 is arbitrary and B(0, p) is the ball of centre 0 and radius p in R". Notice that
u* € L®((Ty — p, Ty) x RY) by Appendix A and the Sobolev Embedding Theorem.

If 0 ¢ suppug, then blow-up cannot occur, as follows from the classification of solutions
of (NLW) at energy level E(W') by Duyckaerts and Merle [27].

Remark 1.2. In the case N = 3 we will prove that for T} — t small enough there holds

moar
¢ A1) VO
which immediately implies (1.5).

If we assume that u* € H3 x H?, then (1.4) holds also in the case N = 3, see Remark 2.13.
I believe that the proof of (1.5) given here could be adapted to cover the case 1 > s > %

Wl

(T4 — )3, (L6)

Remark 1.3. In dimension N = 5 the bound (1.4) is optimal, see (1.2). It is not clear if the
bounds are optimal for N € {3,4}, due to slow decay of the bubble.

Remark 1.4. A natural problem is to determine sharp bounds for the blow-up speed in the
case of less regular uj. The method used in this paper allows to obtain some bounds for
example in the case 1 < s < % in dimension N = 5, but they are not optimal and I will not
pursue this direction here.

In the case u;(0) = 0 one could obtain various bounds depending on the asymptotics of
uy at « = 0, but this will not be considered in the present paper. Along the same line, one
can ask if the sign of u{(0) is relevant in the case when u(0) # 0. It turns out that it is, but
unfortunately our method requires the additional assumption uj; € H? x H?:

Theorem 2. Let N € {3,4,5}. Let u} = (u,u}) € H3 x H? be a radial function such that
uy(0) < 0.
There exist no radial solutions of (NLW) such that

lim [Ju(t) — Wxe — uglle =0, lim A(¢) =0, Ty < 4o0.
t—Ty

t*)T_'.

Remark 1.5. I expect that Theorems 1 and 2 could be proved by similar methods without
the assumption of u( being radial.

1.3 Related results

The problem of existence of an asymptotic profile at blow-up might be seen as a version of
the classical question of asymptotic stability of solitons in the case when finite-time blow-up
occurs. Decompositions of type (1.1) in suitable topologies are believed to hold for many
models, but establishing this rigourously is a challenging problem. Historically, the study of
finite type blow-up in the Hamiltonian setting received the most attention probably in the case
of nonlinear Schrodinger equations (NLS). For the mass-critical NLS the conformal invariance
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leads to explicit blow-up solutions S(¢) with the asymptotic profile u* = 0. Bourgain and
Wang [5] constructed examples of blow-up solutions with u* regular and non-zero, the speed
of blow-up however being the same as for S(¢). This is not a coincidence, as shown by a
classification result of Merle and Raphaél [65].

For the critical gKdV equation Martel, Merle and Raphaél [59] proved that if the initial
data decays sufficiently fast, then there is only one possible blow-up speed, given by the
minimal mass blow-up solution. However, without the decay assumption other blow-up speeds
are possible, as shown by the same authors in [60].

These are the main two examples of the heuristic principle that the size of the interaction
of the bubble with the rest of the solution influences or even determines the speed of blow-
up. In the present paper we try to investigate this phenomenon in the energy-critical setting.
The same problem could be considered for other energy-critical models for which bubble
concentration phenomenon has been observed (see results of Krieger, Schlag and Tataru [52],
Ortoleva and Perelman [74], Perelman [76], Merle, Rodnianski and Raphaél [66], Schweyer
[82]). It seems that the question of relationship between the asymptotic profile and the speed
of blow-up has not been addressed.

Finally, let us mention that the problem of understanding the possible blow-up speeds is
not limited to type II blow-up for critical equations, see for instance Merle and Zaag [67], [68]
for the subconformal and conformal NLW, and Giga and Kohn [31], Mizoguchi [69], Matano
and Merle [63] for the semilinear heat equation.

1.4 Outline of the proof

Our proofs of Theorems 1 and 2 are based on the following computation that we present here
formally.

Let w : [to;T}) — & be a solution of (NLW) which satisfies (1.1). At blow-up time, the
energy of the bubble is completely decoupled from the energy of the asymptotic profile, hence

E(u) = E(ul) + E(W) = E(ul) + E(W). (1.7)

Let u* be the solution of (NLW) with the initial data w*(T}) = u§. Decompose u(t) =
Wi +u*(t) +g(t) (in fact we use a suitable localisation of Wy; we will ignore here this
technical point). The modulation parameter X\ is determined by a suitable orthogonality
condition, and a standard procedure shows that [N (¢)| < ||g(t)]|e-

From the Taylor formula we obtain

E(u) = E(u” + W) + (DE(u” + W), g) + %<D2E(U* +Wi)g.g) + O(lgll?)-

Step 1. An explicit key computation shows that

—2

E(u* + Wy) — E(u*) — E(W) > —u(0)\ "z .

It is clear that the sign of u(0) is decisive.

Step 2. Near blow-up time u* weakly interacts with W and DE(W)) = 0. This allows
to replace (DE(u* + W), g) by (DE(u*),g). Using the Hamiltonian structure it is seen
that this quantity is, at first order in g, a conservation law. Estimating some error terms we
conclude that this term can be neglected.
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Step 3. Let us suppose for a moment that D?E(W) is a coercive functional in the sense
that (D2E(u* + Wy)g,g) 2 |lgl%. Using (1.7) and the two preceding steps we find |N|? <
lgllz < uS(O))\¥. In the case uj(0) < 0 this is contradictory, and in the case ug(0) > 0 the
conclusion follows by integrating the differential inequality for .

Strictly speaking, D2 E(W) is not a coercive functional, and much of the proof is devoted
to controlling the negative directions, which are related to the eigendirections of the flow
linearized around W. Clarifying the second step above is another major technical difficulty
of this paper.

1.5 Notation

We introduce the inifinitesimal generators of scale change

N
A = (5—s)+m-v.
For s = 1 we omit the subscript and write A = A;. We denote Ag, Ar and Ag« the
inifinitesimal generators of the scaling which is critical for a given norm, that is

Ae = (A No), Agr = (A1, Ao).

The dimension of the space will be denoted N. The domain of the function spaces is
always RY. We introduce the following notation for some frequently used function spaces:
X* = HV'n A for s > 0, £ := H' x L?, F := L? x H~'. The bracket (-,-) denotes
the distributional pairing and the scalar product in the spaces L?, L? x L?. Notice that
£* ~ H~' x L? through the natural isomorphism induced by (-, -).

For a function space A, O4(m) denotes any a € A such that [ja||l4 < Cm for some
constant C' > 0. For positive quantities m; and mgy we write m; < mgy for m; = O(mz) and
my ~ mg for my < mo < my. We denote By(xo,d) the open ball of center xy and radius ¢
in the space A. If A is not specified, it means that A4 = R.

2 The proofs

2.1 Properties of the linearized operator

Linearizing —Au — f(u) around W, u = W + ¢, we obtain a Schrédinger operator

Lg=(=A—f(W))g.

Notice that L(AW) = d%!/\:l( — AWy — f(Wy)) = 0. It is known that L has exactly one
strictly negative simple eigenvalue which we denote —v? (we take v > 0). We denote the
corresponding positive eigenfunction ), normalized so that ||)||;2 = 1. By elliptic regularity
Y is smooth and by Agmon estimates it decays exponentially. Self-adjointness of L implies
that

(Y, AW) = 0. (2.1)

We define

1 1 1 1
y*::(;y’_y)v y+::(;y7y)a O[ijzi(yy’—y)7 Oé+::§(l/y’y).
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0 Id

We have J o D2E(W) = (_L 0

>. A short computation shows that

JoD?’E(W)Y™ = —vY~,  JoD*E(W)YT =v)*
and
(=, JoD?*E(W)g) = —v{a",g), (o™, JoD*E(W)g) =v(aT,g), Vge& (22)

Notice that (o™, Y7) = (a™,YT) =1 and (o=, YT) = (a™,Y7) = 0.
The rescaled versions of these objects are

(%3@ Vx).

N

_ 1 1 _ 1, v
Yy = (=D =M), V= (=Vu), oy = =(r, =), af =
v v 2
The scaling is chosen so that (o), Yy ) = (o), YY) = 1. We have
JoD2E(W,\)V;y = =Yy,  JoD’E(W)Vf = 2y
° (W)Y __)\y)\a ° (W)Y = /\yA
and

_ v, _ 1%
<05)\7JOD2E(W)\)9> = _X<04)\ 7g>7 <C¥;\‘F,JOD2E(W/\)Q> = 7<ajag>a Vg eé.

Let Z be a C§° function such that

>

(Z,AW) >0, (Z,)=0

(the first condition is the essential one and the second allows to simplify some computations).
We recall the following result.

Proposition 2.1 ([40, Lemma 6.1], [27, Proposition 5.5]). There exists a constant c, > 0
such that

. 1
ve H radial, (Y,v)=(Z,0)=0 = §<U,L’U> > CL||U||§;1-
Ul

Lemma 2.2. There ezists a constant ¢ > 0 such that if |V — W \||e < ¢, then for all g € €
such that (Zy,g) = 0 there holds

LD’E(V)g.g) +2((03.,9)” + (0. 0)?) Z
Proof. We have
(D*E(V)g.9) = (°E(W)g.g) + [ (F(V) = £/(72)lgf da.

By Holder, the last integral is < c||g||%, hence it suffices to prove the lemma with V = W .
Without loss of generality we can assume that A = 1. We will show the following stronger
inequality:

%(DQE(W)9,9> +2(a,g) (of,g) >crllg— (0,9 Y — (T, )V T|E.  (2.3)
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Let a= = (a7, g), at = (o™, g) and decompose g = a~ Y~ +at YT + k, so that (o™, k) =
(a™,k) = 0. From (Z,Y) = 0 we deduce (Z,k) = 0. We have g = @y + k and
g= ( a” +at)Y + k, hence

1,a+a*

%<D2E(W)ga g) = 2 ——Y+k—(a+a Y+ Lk:>

- 5 (—a‘ +a")Y+k (—a” +a")Y+k)

= 3@+ YY)~ (@ +a V) + 3 LE)

—~

e, o)

N =

1

2

+=(—a” +a" )V, + (—a” +at )V, k) + %
_l’_

= —2a"a" (Y, y> —2a"{at, k) — 2a" (o™, k) + = ((k, Lk) + (k, k)

N | =

=—-2a"a" + = (D E(W)k, k).
Invoking Proposition 2.1 finishes the proof of (2.3). O

2.2 Modulation

Recall that X* := H*t'"NH'. Let u € X*x H*, Ty € R and let u* be the solution of (NLW)
with initial data w*(7T%) = u(. Without loss of generality we will assume that % <s<2.
For fixed p > 0 we denote

¢ = ([l Lo (14 —p,1) x B(0,0)) -
We can assume that ¢* > 0 (otherwise there is no blow-up, cf. Remark 1.1). Note that
because of finite speed of propagation, we can also assume that |u*(¢)||¢ is smaller than any
fixed strictly positive constant and that ||u*(¢)||r < 2¢* for t close to T}.

Because of a slow decay of W, we will introduce compactly supported approximations of
Wy. Let

R := (co - c*)*J\}H, (2.4)
where ¢g > 0 is a small universal constant to be chosen later.
We denote
Wi(z) = ¢(A)  for |z < RV/X,
V(A (x) =
0 for |z| > RV,
where
1 R? ~2 R2 -2
() = Wa(RVA) = ( TNV = 2)>\) ( TN - 2))

We will also denote

Notice that
S

Lemma 2.3. Let s > % and s > 1. The following estimates are true with universal

constants:

V) =Willgn SR72 A+, (2.5)
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IV(A) = Whllpee S RTVF?, (2.6)
103V (N) + AWl e o<y S B, (2.7)
[V ay, SRZ AT (2:8)
1OV (Mg < AT as A — 0. (2.9)
Proof. To prove (2.5), we write
o -wlg = [ gmpde= [ WP
|z[>RVA |z[>R/VA

“+o0o
5/ T_2N+2-TN_1d’I“N (R/\f)\)_N+2.
R/VA
We see that ((A\) ~ R~V=2) and ¢/(\) ~ R~ when X is small, which proves (2.6) and
(2.7).
On the support of 9\V'(\) there holds |0\V (A)(z)] < /\¥|x]*N+2, hence

2N RV _
oAV (M) V5 S/ A 24'%7“(71\]%)1\2’7527"]\[_1 dr
LN+2 0

N2_4N /Rﬁ —N245N—2 N(6-=N) N(N-2)

=\ N+2 r~ N+2  dr = R N¥z )\2(vt2) .
0

This proves (2.8).

We will check (2.9) separately in each dimension. For N = 3 we have |0 \V (\)(z)| S

1
A2 |z|7! and H]a;|_1HL2(|x|§Rﬁ) < 1. For N = 4 we have |0,V ()\)(z)] < |z|~2. We suppose
s > 1, hence there exists ¢ € (1,2) such that L9 C H'™* and it is easy to check that
|Hx|_2HLq(|x\<Rﬁ) < 1. Finally for N = 5 we have |O\V(\)(z)| < )\%|x\_3. There exists
g € (1,3) such that L9 C H'~* and it is easy to check that |||x]_3||Lq(‘x|§Rﬁ) < 1. O

Note that ((\) ~ coc*, which means that the cut-off is made at a radius » = Rv/A such
that W (r) ~ cou*(t,r).
For the next lemma we will need the following version of the Implicit Function Theorem.

It is obtained directly from standard proofs of the usual version, see for example [11, Section
2.2].

Lemma 2.4. Suppose that X, Y and Z are Banach spaces, xo € X, yo € Y, p,n > 0
and ® : B(xo,p) x B(yo,n) — Z is continuous in x and continuously differentiable in y,
O (z0,y0) = 0 and Dy®(x0,y0) =: Lo has a bounded inverse. Suppose that

|
10 = Dy®(z, )iz < 5l Lo N2y forlz—zollx <o, lly —wolly <,
My v 11—
12(2, yo)llz < S llLo NZizyy  Jorllz—ollx <p.

Then there exists y € C(B(xo,p), B(yo,n)) such that for x € B(xo,p), y(x) is the unique
solution of the equation ®(x,y(x)) =0 in B(yo,n). O

Lemma 2.5. There exists dg > 0 and Ao > 0 such that for any 0 < § < dg and t1 < to, if
w: (t1,t2) = € is a solution of (NLW) satisfying for allt € (t1,t2):

lu(t) — () = Wiy lle <6, 0<A®) < Ao, (2.10)
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then there exists a unique function \(t) € C*((t1,t2), (0,+00)) such that
9(t) = u(t) — w(t) — VA(®) (2.11)

satisfies for all t € (t1,t2):

(Zx)>9(t)) =0, (2.12)
lg(t)le S 6+ AH) T, (2.13)

) /AE) — 1] S 6, (2.14)
NS Ig(®)]e. (2.15)

Proof. We will first show that for ¢y € (t1,t2) fixed there exists a unique A(tg) such that (2.12),
(2.13) and (2.14) hold at ¢ = ¢o. The proof is standard, see for example [57, Proposition 1].

Denote vg := u(tg) — u*(to) and lo == log(A(t 0)) (it will be convenient to consider )\(to)
and A(tp) in the logarithmic scale). We define the following functional:

®:ExR >R, O(v;l) := <e_lZi,v —V(eY).

We have
Q0(v;1) = —(Zy, 00V (e")) — (e "A_1 24, v — V(e)).

We apply Lemma 2.4 with 29 = V/(X(to)) and yo = lp. It is easily checked that the
assumptions hold if § is small and n = C4§, with a large constant C. Take A(ty) = €', where
lp is the solution of ®(vo;lo) = 0 given by Lemma 2.4. Directly from the definition of ® we
obtain (2.12). The inequality |lo —lo| < n = CJ is equivalent to (2.14), which in turn implies

W5

Ato) — Wil S 6. (2.16)

From the definition of g and (2.10) we have
lgll <8+ W5y — Wageollin + [Wage) = VO 1

o0 (2.13) follows from (2.16) and (2.5).

For each ty € (t1,t2) we have defined A(tg). It remains to show that A(¢) is a C'! function
and that (2.15) holds. One way is to use a regularization procedure as in [57]. Here we give
a different argument, which might be simpler in some cases.

Take to € (t1,t2) and let lp := log(A(¢p)). Denote v(t) = u(t) — u*(t) and define
l:(to —e,to + ) — R as the solution of the differential equation

I'(t) = —(8;2) " (Dp®)dsv(t)

with the initial condition [(¢y) = lp. Notice that D,® is a continuous functional on F, so we
can apply it to d:v(t).

Using the chain rule we get %@(v(t};l(t)) =0 for t € (to — e,tp + ). By continuity,
I1(t) — lo] < m = C6 in some neighbourhood of ¢t = ¢y3. Hence, by the uniqueness part of
Lemma 2.4, we get [(t) = log A\(¢) in some neighbourhood of ¢ = . In particular, A(¢) is of
class C'! in some neighbourhood of tg.

From (2.11) we obtain the following differential equation for the error term g:

og=Jo(DE(V(\)+u*+g) —DE(u")) — No\V(N), (2.17)
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which can also be written in the expanded form

0 =Ag+ (W +V(N) +g) = f(w) = F(VN)) + (AV(AN) + F(V(N)).
Differentiating (2.12) and using the first equation in (2.18) we get
d N RV
0= &<ZA7 g) = _X<A02Aa g> + <ZAag —A 8)\V()‘)>
1 .
= )‘/(<ZaAW> - <ZAa AWA_‘_ a)\V()\)> - <XAOZA79>) + <ZA7 g>'
We assumed that (Z, AW) > 0. When ||g||¢ and A are small enough, then
1 1

(we use (2.7) in order to estimate the first term). This proves (2.15). O

If u(t) is a solution of (NLW) satisfying (1.3), then there exists t( such that (2.10) holds for
t € [to,T4). It follows from (2.14) that, while proving Theorem 1, without loss of generality
we can assume that A(f) is the function given by Lemma 2.5. From (2.13) we obtain that
llglle — 0 as t — T, which is the only information about g used in the sequel. The precise
form of the right hand side of (2.13) has no importance. We will prove that (1.4) holds on
some interval [tg,T}) with tog < T, with no information about the length of this interval.
Each time we state something for ¢ € [tg, T} ) it should be understood that ty is sufficiently
close to T}.

In the rest of this paper A(t) always stands for the modulation parameter obtained in
Lemma 2.5 and g(t) is the function defined by (2.11). We introduce the following notation
for the joint size of the error and the interaction:

N-—2
n(g,\) = /llgllz + A=

We will now analyze the stable and unstable directions of the linearized flow. The stable
coefficient @™ (t) and the unstable coefficient a*(t) are defined as follows:

0™ () = oy 0(0),  at(0) = (af,.0(0).
Note that [~ (£)] < lglle and |a*(t)] < llg]le-

Lemma 2.6. The functions a™ (t) and a™(t) satisfy

d v
G0+ 5 (0] £ 5l A1)
G0 = 5750 (0] S 5mle0.20) (219)

Proof. We will only prove (2.19); the other estimate can be shown analogously.
Let us rewrite equation (2.18) in the following manner:

0ig = JoD’E(Wy)g + h,

h— <h> _ ( —NOWV (), )
)~ \(f@ + V) +9) = fw) = FVN) = F(Wa)g) + (AVN) + F(VN) )
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Using (2.2) we get

d d v
70 () + 50" (0) = Lloy.g) + 1 (05.9)
_X<

/
% {Ae-aig) + (a3 B,

_ _ v, _ _
Ag*Oé/\,g> + <O¢)\,JOD2E(W/\)Q> + X<Oz)\ 7g> + (Oé)\vh>

The first term is negligible due to (2.15). In order to bound the second term it suffices to
check the following inequalities:

[(Vn: AV (V)] < g, A
[(Vn, (AV) + F(V(V))] S nlg, A2, (2.20)
(D, (fu* + VA +9) = f(u*) = F(VN) = F(Wa)g))| S nlg, V), (2.21)

The first inequality follows from (2.7) and (2.1), since the region |z| > Rv/ is negligible due
to exponential decay of ).

Notice that [f(Wy) — f(VN)] S f/(Wa)] - [Wa — V(N)| S f/(Wa)coc®, where the last
inequality follows from (2.5) and (2.4). Together with the fact that A(Wy) + f(W,) = 0 this
implies

|(Dr, (AVO) + FVODD] S [ AWa = VOO + [, FW3) = FIVO))]

N—-2
(IAYAzx + 17 (W) Pallzr)coc™ S A2,

IZANRZAN

which proves (2.20).
We will check (2.21) in three small steps. As before, we do not have to worry about the
region || > Rv/\ thanks to the fast decay of Y. First, we have a pointwise bound

[f(W" +V(N) = fw) = f(V) S F(WA) - "+ f(c), (2.22)

which implies
[(Dao f(u" +V(N) = f(u™) = F(VN))| S nlg, V) (2.23)

Next, we have

[fu" + V(A +g) = flu + V) = f'(w +VN))gl S (" + V)| -9 + f(lgl), (2.24)

which implies

[(Dao f(u" +V(A) +9) = f(u* +V(N) = f'(u* + V(N)g)| < nlg, N> (2.25)

Finally, [f/(V(A) +u*) — f'W)] S (1" W)+ [f/(V(A) + ])V|) V(A +u™ = Wil S
|f”(Wy)|c*. Using Holder and the fact that || - f”(WA)H 12 5 A"z this implies

[, (F/ (W + V(N) = F1(Wh)g)| < n(g, M) (2.26)

Now (2.21) follows from (2.23), (2.25) and (2.26) and the triangle inequality. O
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2.3 Coercivity

By the conservation of energy, for all t € [tg, T ) there holds
E(VA)4+u"+g)=EW)+ E(u"). (2.27)

On the other hand, using the pointwise inequality

[F'(k +1) = F(k) = f(k)l = %f’(k)lzl S NP +IFQ)], Yk IeR

we deduce that
B(V() +u +9) = E(V(A) +u) + (DE(V(N) +u), )
+ DRV + u')g,9) + Olllgl2).
Using (2.27) we obtain

(E(V(\) +u*) — E(W) — E(u")) + (DE(V(\) + u*), g)

1, 5 . 3 (2.28)
+5(DE(V(A) +u’)g.g) = O(lgliz)-
We start by computing the size of the first term on the left hand side.
Lemma 2.7. For T} —t small there holds
IE(V(\) +u*) — E(W) — E(u)| <Xz
In addition, if u*(0) < 0, then
E(V(\) +u*) — E(W) — E(u*) > A7 . (2.29)

Proof. Integrating by parts we obtain

/VV()\) -Vu*der = / V(Wy) - Vu* dz
B(0,RVX)

= —/ A(Wy) - v de + / Or(Wy) -u*do
B(0,RV\) S(0,RV/X)

:/ f(WA)-u*der/ 0, (W) - " do.
B(0,RVX) S(0,RvV/X)

Developping the energy gives
EVAN)4+u")—EW)—-EUu") = /VV()\) -Vu*de + % / IVV(N)|? = |[V(Wy)[]? dz
- / F(V(\) +u*) — F(W)) — F(u*) da
— cutdo 1 2 2 T
-/ s, ) J A
— /F(V(A) +u*) = F(Wy) — F(u") — f(V(N) -u" dx

4 /B ey OV = S0/00) -
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We will show that all the terms on the right hand side except for the first one are < coc*)\¥,

where cg is the small constant in (2.4).

The fact that [ |[VV(A)[2 — [VW,[2dz < coe*A 2 = R-N+2)
the proof of (2.5).

We will now show that

2 follows directly from

IR0 +0) = BV ) = Fut) = SV () de A7

To this end, notice first that the integrand equals 0 for |z| > Rv/A. In the region |z| < RVA
we use the pointwise estimate

[F(VA) +u™) = F(V(N) = F(u) = f(VODU'[ S F (VD P+ F ().

The term F(u*) can be neglected (it is bounded in L, so its contribution is at most AT <
A#) As for the first term, it is easily checked that

/ F (W) dz = AV 2 / FW)yde < X7, (2.31)
|z[<RVX |z|<R/vVX

Next, we show that if R is large enough, then
/\F(WA) — F(V(\)|dz S ez .

In the region |z| > Rv/A from (2.5) and Sobolev embedding we obtain that the contribution
is at most A2 < A"z . In the region |z| < RV we use the bound

[E(Wx) = E(VA)IS CA) - [F(WA)] + F(C(A)-

The second term is in L, so its integral is at most O()\%) < M™%, As for the first term, it is

easily seen that [ |f(W))|dz < )\¥, and we get the conclusion if we recall that (\) ~ coc*.
Finally, from (2.31) and the pointwise bound |f(V (X)) —f(Wx)| S [CA) F/(W) |+ £(C(N)]
it follows that

[ W) = S0 de < X
B(0,RVX)

Now consider the first term on the right hand side of (2.30). We have 9,(Wy)(RvV\) ~
—)\¥(Rﬁ)_N+1 and |u*| < ¢* near the origin, so we get

‘/ 8, (W) - u* do| < A5
5(0,RVX)

In the case u(0) < 0, by continuity if in the definition of ¢* we choose p small enough, then
u*(t,z) < —ic* for (t,z) € [to, T4) x B(0, p). In particular,

/ Or(Wy) -u*do 2 c*)\¥,
5(0,RvVX)

where the constant in this estimate is independent of ¢y. The conclusion follows from (2.30)
if ¢ is chosen small enough. O

We will focus at present on the second term on the left hand side of (2.28). In Lemma 2.8
we treat the simpler case uj € X 2 x H? and in Lemma 2.9 we prove a weaker estimate in
thecaseu*eszHS,s>¥,$21.
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Lemma 2.8. Suppose that ug € X2 x H%. Then fort € [to,T) there holds

[(DE(V (A(#)) +u*(8),g(t)] S Veo - sup n(g(r), A(7))?,

t<r<T4
where ¢y is the small constant in (2.4).

Proof. The proof has two steps. First we will show that

[(DE(V(A() + u*(t)) — DE(u* (1)), g(t))| S veo - n(g(t), A(1)) (2.32)
and then we will check that

4 DB (1)), 9)| <

N S nlg(®), A1) (233)

Clearly, integrating (2.33) and using (2.32), we obtain the conclusion for ¢y sufficiently close
to T'+. Note that the constant in (2.33) is allowed to depend on R (because T — to can also
be chosen depending on R).

In order to prove (2.32), we begin by verifying that

[(DE(V(A) +u"),g) — (DE(V(N),g) — (DE(u"), g)| < n(g,\)*. (2.34)

This is equivalent to

J1H )+ 00) = (V) = £ gl do < nlg, N
By Holder and Sobolev inequalities, it suffices to show that

IF (V) 4+u*) = F(VA) = f(u®)]| en <A T .

LN+2

Using (2.22) we obtain easily that the left hand side is < AT
Recall that R~V 12 = ¢yc*, hence (2.5) gives [|[Wy — V(A)||;n < Veoc™. Using AW, +
f(Wy) = 0 and the pointwise bound |f(Wy) — f(V(N)| S f/(Wy) - [Wx — V(N)| one gets

IAV) + VO g S TAWN =Vl 1 + 1FW2) = FVODI 2z, S Veoe™,

LN+2

hence
[(DE(V(N),9)] S veo - n(g, V). (2.35)
Estimate (2.32) follows from (2.34) and (2.35). Notice that until now the assumption uf, €
X? x H? has not been used, thus (2.32) holds also in the case ufj € X* x H*, s > 82,
We move on to the proof of (2.33). Until the end of this proof all the constants are allowed
to depend on R. From (2.17) we get
d * 2 * *
C(DE(),g) = (D*B(u)d g)
+(DE(u*),Jo (DE(V()\) +u* 4+ g) — DE(u*)) — No,V ().

Notice that
(D?E(u*)0yu*, g) = —(DE(u*),J o D*E(u*)g),

hence it suffices to verify that

|(DE(u*),J o (DE(V(A) +u* +g) — DE(u*) — D*E(u*)g) — NV (\))| < n(g, ).
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Considering separately the first and the second component, cf. (2.18), we obtain that it is
sufficient to verify the following bounds:

[(Au” + f(u), OV (N)] S (g, A)?, (2.36)
(@, F(V(N) + "+ g) = f(Va) = f(u") = f'(u")g)] < nlg, \)?, (2.37)
(@, AV(A) + F(VA))] S nlg. \)* (2.38)

We know from Appendix A that u*(¢) is bounded in X?2, hence Au* + f(u*) is bounded
2N
in LN-2 by the Sobolev embedding. From (2.8) and Hoélder inequality it follows that

(Au® + f(u), V() S AT

and (2.36) follows from (2.15).

Since w*(t) is bounded in L%, in order to prove (2.37) it suffices (by Holder) to check
that

IF V) +u” +9) = F(V(N) = f(w) = f/(VN) +u)gll | px, S nlg, A)? (2.39)
and
i - (£ V) +w®) = FD e, S AT (2.40)

We first prove (2.40). For |z| > Rv/A the integrand equals 0, and in the region |z| < RvV/\
there holds |f/(V(X))| + [ f'(u*)| S f/(Wy).

o For N =34" € H> C L and || f/(W))] ¢ S AZ.
o For N =44* € H> C L' and || f/(Wy)] 3 S A3
e For N=5u* € H? C L'Y and LF W5 S A

In all three cases (2.40) follows from Holder inequality.
By a pointwise bound we have

FVA) +u™) = FVA) = FW) any S - VDN an, + /() - VO e, -

L N+2 LN+2 LN+2

It is easy to check that

L VODI 2, < IF WA 20 SA2

LN+2 LN+2

Together with (2.8) this yields
FVA) +u®) = F(VA) = Fu)ll e S A2,

and (2.39) follows from (2.24) and the Holder inequality.
In order to prove (2.38), we write:

[(@*, AVA) + SV < (@™, AV A) = Wa) |+ [(@, f(VA) = F(W)]- (2.41)

Consider the first term of (2.41). Integrating twice by parts we find

/ @t AV = Wy) da = / VAR (UALE

= / u* - ar(W)\) do — / u* - A(W)\) dx.
5(0,RVN) |z|>RvVA
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As for the first term, recall that [0,(Wy(RV))| < )\¥, so it suffices to notice that by the
Trace Theorem [ |[0*|do < 1 for A < 1. In order to bound the second term, we compute

LFOVI, 2% o

N+2

N-2
w ~ATE AT
AV, a3y oy ~ AT <A

and use Holder.
Consider the second term of (2.41). From (2.6) we have |f(V (X)) — f(W)| < f/(W)),
hence:

| [ (v - sy da] £ [ 1) 5107 da

and the required bound follows from Holder and the fact that || f/(Wy)|| v SA72 . O

LN+2
Lemma 2.9. Suppose that uy € X° x H®, s > T_ and s > 1. There exists a decomposition
(DE(V(A®) +u* (1)), g()) = bi (1) + ba(t)

such that fort € [to,T+) there holds:

BL(6)] < A6 [glle. (2.42)
()] S Vo s nlg(r) A(r)* (2.43)

Proof. We take
bi(t) := (DE(u" (1)), g(1)),
ba(t) := (DE(V(A()) + u"(t)) — DE(u*(t)),g(t)).
Estimate (2.43) is exactly (2.32).
Repeating the computation in the proof of Lemma 2.8, we see that we need to check
inequalities (2.36), (2.37) and (2.38), with “ < n(g, A\)? ” replaced by “ < )\¥Hg|] ",
We know that Au* is bounded in H*~!, hence from (2.9) we obtain [(Au*, 0,V ()\))] <
A"z . Since Il f(w )H 2w is bounded and N2 s N from (2.8) we get | (f(u*), WV (N)| <

N—

AT Using (2.15), 1t follows that
(AW + F(u), VoV (A < A= ||g]l-

The proof of (2.37) applies almost without changes, but instead of (2.40) we need to check
that ||a* - (f/(V(A) +u*) — f/(u*)]| 2x < A2, which will follow from

LN+2

—4

[ - f{WA an, < A2 (2.44)

LN+2

We check (2.44) separately for N = 3,4,5. Recall that 4* is bounded in H*. If N = 3, then
||@*|| e and ||f’(W>\)HL3 are bounded, hence (2.44) follows from Hélder. If N = 4, then (by

Sobolev) there exists ¢ > 4 such that ||[4*|| £« is bounded. It can be checked that for 1 < p < 2,
Il f'(Wx)||» < 1, hence (2.44) follows. If N = 5, then there exists ¢ > 5 such that ||4*||Le is
bounded. It can be checked that for 2 < p < 2, || f'(Wy)|r < VA, hence (2.44) follows.

In the proof of (2.38) we have only used the boundedness of @* in H', hence it remains
valid and gives the bound

N 2

i*, AV + F(VO)] S AT < AT
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Remark 2.10. It is not excluded that Lemma 2.8 holds under the assumption u; € X*x H?,
5> %, but I was unable to prove it because of possible oscillations of A(¢). Note also that
Lemma 2.9 could be proved for less regular u if we had some control of g(¢) in suitable (for
example Strichartz) norms.

Lemma 2.8 implies that if u} € X? x H?, then Lemma 2.9 holds with by (t) = 0.

For tyo <t < T we define

N—

o(t) == Cie*A(t) T —bi(t) +2(a (1) + a* (1)?) (2.45)
(Ct is a constant to be chosen shortly). From (2.28) we have
2

©(t) := Crc*A(t)

+ %(DQE(V(/\) +u’)g,g) +2(a” (1) + a (1)) + ba(t) + O(llgll2)-

+(E(V(A) +u’) — E(W) — E(u"))
(2.46)

We will consider the maximal function:

om(t) == sup (7).
t§T<T+

Note that ou : [to, T4) — R is decreasing, limy—,7, @M (t) = 0 and 0 > ¢}, (t) > min(0, ¢'(t))
almost everywhere.
Corollary 2.11. Let s > % and s > 1. Forty <t < Ty there holds

2

om(t) ~ S n(g(7), A(1))".

Proof. Lemma 2.7 and (2.28) yield (DE(V ()\) + u*), g)| < n(g,\)?, hence from Lemma 2.9
we have

i) S sup n(g(t), A(1)*. (2.47)

tST<T+

Let t € [to,T+) and let t; € [t,T) be such that ¢y () = ¢(t1) (such ¢ exists by the definition
of ¢m). Using (2.47) we obtain

pult) = olt) S s n(g(r),A(1))* < Sup n(g(1),\(1))>.

Now let to € [t,T}) be such that sup,<,.r, n(g(7),\(1))? = n(g(t2), \(t2))?>. From
Lemma 2.2 and the fact that ||V (\) + u* — W) ||¢ is small we obtain
1 N _
3 (DPE(V(A(t2) + w"(t2))g(t2), g(t2)) + 2(a” (t2)* + 0™ (2)*) 2 lg(t2)- (2.48)
From Lemma 2.7, if we choose Cp large enough, then Cre A"z + EVA)+u*)—-EW)—
E(u*) 2 *A"7", hence (2.46) and (2.48) yield
p(t2) = ba(t2) 2 n(g(t2), A(t2))*.

From Lemma 2.9 we have [ba(t2)| < \/co - supy, <, <7, n(g(7), MN7))? = \feo - nl(g(ta), M(t2))?,
hence we obtain

om(t) > o(t2) 2 n(g(ta), A(ta2))* =  Sup. n(g(r),A(1))?,

provided that cg is small enough. O



2. THE PROOFS 133

2.4 Differential inequalities and conclusion

Lemma 2.12. There exists a constant C, such that for Ty —t small enough there holds

o™ (1) < Ca- S n(g(r),A(1)%  la™ ()] < Ca- S n(g(7), A(T))%.

Proof. It follows from (2.19) that there exists C7 > 0 such that

la* ()] > C1-n(g(t), A®)* = —la*(t)] > la™ (#)]- (2.49)

Suppose that

o™ (t)] > 20, - S n(g(t), M7))?

and suppose that t; € [t, ) is the smallest time such that

et (t)| < Ci- sup  n(g(r),A(7))%.
t1<7<Ty

Clearly t; > t. The function on the right hand side is decreasing with respect to ¢, hence
%|a+(t)|t:t1 < 0. This contradicts (2.49), hence for all ¢ € [t,T;) we have

la™(#)] = C1 - n(g(t'), A(t)*. (2.50)

T Tl
/t /\(r)de/t o) dr = +o0. (2.51)

From (2.50), (2.49) and (2.51) we obtain |a™(t)] — 400 as t — T, a contradiction.
We will now consider a™(t), which is less straightforward. It follows from (2.19) that
there exists Cy > 0 such that

Observe that

la” (1) > Ca - nlg(®), M) = i|a<t>|s—2;’@\a<t>\. (2:52)

From Corollary 2.11 we obtain existence of a constant C'5 > 0 such that
a” ()] = Cs-om(t) = la™ ()] = Ca-nl(g(t), A(1))? (2.53)
and a constant C4 > 0 such that

!a_(t)\204-t<su<pT n(g(t),A(t)> = |a(t)] >2Cs - om(t).

Suppose that ¢ € [tg, T} ) is such that

la”(t)] > Ca- sup n(g(r), (7))’ (2.54)

t<T<Ty
and let t1 € [to, t] be the smallest time such that for ¢’ € [t1,¢] there holds
la=(t')] > Cs - pm(t). (2.55)
Of course t1 < t. Suppose that t; > tg. This implies

_ Cov
A(t1)

nlg(t), M) 2 — 52l ()] = Sa™(Blims, > s plutt)

2A(t1)
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(we use respectively (2.53), (2.52) and the definition of ¢;).

However, |py(t1)] < |¢'(t1)] < ﬁtl)n(g(tl),)\(tl))z, as is easily seen from (2.45). The
contradiction shows that ¢, = to, hence (2.55) holds for ¢’ € [to,¢]. This means that if there
exist times ¢ arbitrarily close to T such that (2.54) holds, then (2.55) is true for t’ € [to, T} ).
From (2.52) and (2.53) we deduce that for ¢ € [y, T ) there holds

0 (1)] < |a_(t0)'eXP<—/t: o)

By (2.53) and (2.15), this implies

) S e (- [ t 2.

Dividing both sides by A(t) and integrating we get a contradiction.
We have proved the lemma with C, := max(2C1, Cy). O

By modifying ¢ty we can assume that Lemma 2.12 holds for ¢ € [tg, T%).

Proof of Theorem 1. We define

~ * N-2 ~ ~
o(t) == Crc*A(t) 2 —bi(t), om(t) := sup (7).
t<r<T4
From Lemma 2.12 and Corrolary 2.11, it is clear that
pu(t) ~ sup n(g(r), A(1))%. (2.56)

t<rt<T4
We will consider first the case N € {4,5}. Using (2.42) and (2.56) we obtain the following
differential inequality for ¢ € [tg, T4 ):

2 3N-10

B < IZ O] S AT lg®)le S ()72 Gr(t) 252, (2.57)

Integrating this inequality we find

4 2(N—2)

pm(t) S ()N (T —t) o
To finish the proof, recall that c*)\(t)¥ < ¢m(t) by Corollary 2.11.

Consider now the case N = 3. The problem is that N —4 < 0, hence we cannot write
N—4

(c*)\(t))% S om Y, as we did in the previous proof. Instead, we just have
~ T R
[Pu)] S A2 - VAm(t).

Integrating between ¢t and T} we obtain

T dr
V) < ﬁ/t ol

This is again a differential inequality. It yields (1.6). O

Remark 2.13. In the case N = 3 and u* € X? x H?, we can prove (1.4) for continuous
time, not only for a sequence. Indeed, in this case one can take b;(t) = 0 (see Remark 2.10),
hence Pni(t) = Cre*\/A(t). If t € [to, T4 ) is such that A(t) < sup,<,.p, A(7), then obviously
Pmt) = 0. If AM(t) = supy<,<p, A(7), then c*\/A(t) ~ Pm(t), hence the proof of (2.57)
applies. The end of the proof is the same as in the case N € {4,5}.
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Proof of Theorem 2. Let t € [to,Ty) be such that n(g(t), \(t)) = sup,<,<p, n(g(7), A(7))-
From (2.29) and Lemma 2.2 we get

(E(V(N) +u") — BE(W) - E(u")) + %(DQE(V(A) +u)g.g) +2((a”)* + (a¥)?) 2 n(g, M)

But due to Lemma 2.12, the last term on the right hand side can be omitted. This is in
contradiction with (2.28) and Lemma 2.8. O

A Cauchy theory in higher regularity

In this section we prove some facts about propagation of regularity for (NLW), which are
applied to w*(t) in the main text. As in [40, Appendix B], the proofs rely on the classical
energy estimates:

Proposition. Let s > 0, to € [T1,Ts], g € L'(I, H®) and ug € X* x H*. Then the solution

of the linear wave equation (Oy — A)u = g with initial data u(ty) = wo satifies

t
Ja@ese < lunllxesar +| [ o@llear|. Vo€ (73,7
to

O

Proposition A.1. Let N € {3,4}, s > % and ug € X° x H%. There exist t1 < tg < 1y
such that the solution u(t) of (NLW) satisfies

(TS C([tl,tg],Xs X HS)

Proof. This is a standard application of the energy estimates and the Fixed Point Theorem,
using the fact that f(u) is a monomial and X*® < L. We skip the details. O

In the rest of this section we consider (NLW) in dimension N = 5. In this case the
nonlinearity f(u) = \u|§u is not smooth. We will use the following regularization:

fa(u) := (1—X(nu))f(u), ne{l,2,3,...},
where
x € C*, x(—u)=x(), x(u)=1foruel[-1,1], suppx C [-2,2].

In the proof of the next result we will use the Fractional Leibniz Rule and the Fractional
Chain Rule in the form given in [12, Propositions 3.1, 3.3]:

Proposition A.2.

e IfU cC',0<a<1andl < p,pi,ps are such that % = 1%14—],%, then
V" (w)||ze S 1 ()| Les - |||V [*ul e
e I[f0<a<1andl < p,pi1,p2,D1,p2 are such that % = p% + p% = ﬁ% + 1%2, then

VI o)lle S IVITulles - lollzee + llull gz - V0]l g7 -
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Remark A.3. In [12], the Leibniz Rule and the Chain Rule are proved in the case of one
space dimension, and necessary changes in order to carry out a proof in arbitrary dimension
are indicated. In the present paper we use this result in dimension 5, but only for radial
functions, and it can be verified that the Leibniz Rule and the Chain Rule for radial functions
is a consequence of the one-dimensional result.

Lemma A.4. Let N =5 and 1 < s < 2. The following estimates hold (with constants which
may depend on s):

1f(w) = fa(Wlg < en(14 F(lullx1)), with ¢, — 0 as n — +oo0, (A1)
1f(w) = fF@)lar S llu—vllxr - (F (Jullxr) + £/ (o]l x1)), (A.2)
[ fa(u) = fa()lar S llu—vllxr - (F (Jullx) + £ (vllx), (A.3)
[f ()= < f(llullxs), (A.4)
[ fr()llms < f(llullxs), (A.5)
1 fa(w) = fa()las < Callu = vllxs - (L+ f'(Jullxs) + f'([ollxs)),  Ca>0, (A.6)
where the sign < means that the constant is independent of n.
Proof. A simple computation shows that
)| < [f@)], (@] S @], @] S (Wl
fo— [ in C*(R), (A7)
FAQIREE (A8)

We have
IV(f(u) = fu(w)ll2 = [[(f'(w) = fo(u)Vaullg2 < [If" = fullze - ull

which is acceptable due to (A.7).
In order to bound || f(u) — fn(u)|| 2, we interpolate between ||f — fy||~ and

1 (w) = fr(u)ll 0 S flJull, 0) S Flulg)-

This proves (A.1).

Estimate (A.2) is a part of [40, Lemma B.3] and the proof of (A.3) is analogous.

From the Sobolev inequality we get ||fu(u)lz2 < [[f(w)llz2 < f(llull, 14) < flullxs),
hence in order to prove (A.4) and (A.5) it suffices to check that

VIl S Fllullxs), V@)l S F(lullxs)-

For s € {1,2} this is an easy algebraic computation which we will skip. For 1 < s < 2 we use
Proposition A.2:

IV EFDlize = IIVETV @)z = 1V (@) V) 2
SIVETYal a0 - I1F @llzs + IV @)llzs - 1Vl 10
SIVETYullg - £l 20) + 1 ()l o - VI ull o - [Vl

S flllullxs)-

The second inequality in (A.9) is proved analogously.

(A.9)
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In order to prove (A.6) it suffices to check that
I1V1*(fa(u) = fu(@))llz2 < Callu = vllxs - (1+ f'(Jullxs) + f/(I]lx2))

(the estimate of || fr,(u) — frn(v)||12 is a part of (A.3)). We write

1
o) = folv) = —(v — u)/o £ = Bu+ to) dt,

hence by the triangle inequality

1
IV (Fn(w) = fa(0))llz2 < /O [IV1* ((w = 0) £,((1 = tu+ ) || - dt.
We will estimate the integrand for fixed ¢ € [0, 1]. We have

V] ((u =) f1((1 = hu+t0)) || 1o = VIV ((w = 0) (1 = t)u+tv)) ||
=1V (V(u =) - (1= t)u+t)) || 2
+ H|V\571((u —0) - (1 =t)Vu +tVo) - f/((1 —t)u+ tv)) HLQ.

The first term is estimated exactly as in (A.9), so we will only consider the second one. From
the Leibniz Rule we obtain

[V ((w—v) - (1 = ) Vu + Vo) - f1((1 = t)u + tv)) 2
SV = o) g - 11— t)u + tv]| 1o - £ (1 = t)u + tv)| o
Hlu = vl g [[VTHA = )V + V) 10 - 17 (1 = t)u + tv)] o
Hlu = vllzer - |1 = 1) Vu+ V0l ze2 - [V = B+ t) | 2s,

where the exponents p1, p2,p3 € (1,+00) are chosen such that p; > 10, py > %, p3 < 10,
X c L nWhP2 and % = p% + % + p%. Estimating the first two lines is straightforward and
for the last line we use the Chain Rule together with (A.8). O

Proposition A.5. Let N =5,1 <5 <2 and uy € X° x H®. There exist t; < tg < to such
that the solution u(t) of (NLW) satisfies

(TS C([tl,tg],Xs X Hs).

Proof. Using (A.4) for s = 1 and (A.2) one obtains by a standard procedure that there exists
a unique maximal solution

UEC([Tl,TQ],Xlel), T <ty <Th
and

T > —o0o = lim |uy||x1xgr = +00, Ty < 400 = lim |yl xixpyr = +00,
t—T1 t—T5

see [40, Proposition B.2] for details.
Consider the regularized problem for n € {1,2,3,...}:

{ (Bs — A)un = fn(un),
(Un(to), atun(to)) = Uup.
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Using (A.5) and (A.6) one can show that there exists a unique maximal solution
wy, € C([Thn, Topn), X° x H?), T <to<Toy
and

Tip > —00 = lm ||uy|xsxms = +00, Ton < 400 = lm ||uy| xsxmgs = +00.
t—=T t—1T:

1,n 2,n

From (A.5) and the energy estimate we have
t
e (®)llxocars S Nuollxcoscrrs + | | F(lu(m)llxocas) d .
to

with a constant independent of n. This implies that there exist Tl < to, fg > tg and a
constant (' independent of n such that

()| xoxms < C1 Vn, Yt € [Ty, Ty (A.10)

(in particular T > sup,, 11, and T, < inf, Top).
Now we need to verify that

lim [Jwn(t) —w(t)|xixm =0 Vi e [Ty, T). (A.11)

n—-+00
To this end, we notice that u,, — u solves the Cauchy problem:
{ (O — A)(un — u) = fu(un) — f(u),
(un(to), Orun(to)) = 0.

Since ||w(t)||x1x g is bounded and ||, (t)||x1x g are uniformly bounded for ¢ € [T1, Tb),
(A.1) and (A.3) imply that for ¢ € [T1, T3] there holds

[ (i (8)) = F (@) 1 < ] frn (i (8)) = (ulO) | g | fr (0 (@) = f(wO) L1 S N () —u(®) ] x1 40,

which yields (A.11) by the energy estimate and the Gronwall inequality.
From (A.10) and (A.11) we deduce

|w(t)|| xsxms < Ch, vVt € [Tl,fg].

The function w : [T}, Th] — X®x H* is weakly measurable (since it is measurable as a function

to X' x H'), hence it is measurable and w € L>([T1,To], X* x H*). Using once again the

energy estimate together with (A.4) it is easy to see that in fact u € C([T1,Ts], X° x H?).
O



Chapter 4

Nonexistence of radial two-bubbles
with opposite signs for the
energy-critical wave equation

Abstract

We consider the focusing energy-critical wave equation in space dimension N > 3
for radial data. We study two-bubble solutions, that is solutions which behave as a
superposition of two decoupled radial ground states (called bubbles) asymptotically for
large positive times. We prove that in this case these two bubbles must have the same
sign. The main tool is a sharp coercivity property of the energy functional near the family
of ground states.
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1 Introduction

1.1 Setting of the problem and the main result

Let N > 3 be the dimension of the space. For ug = (ug, ) € £ := H'(RY) x L2(RY), define
the energy functional

L. 1
E(UO):/2”LL()|2+ZIVU()’Q—F(U())dq;

where F(ug) := %Wo]% Note that F(ug) is well-defined due to the Sobolev Embedding

Theorem. The differential of E is DE(ug) = (—Aug — f(uo), o), where f(up) = ]udﬁuo.
We consider the Cauchy problem for the energy critical wave equation:

{&u(t) = J o DE(u(t)), (NLW)

u(to) =ug € €.

0 Id

Here, J := (—Id 0

the form

) is the natural symplectic structure. This equation is often written in

Opu = Au+ f(u).

Equation (NLW) is locally well-posed in the space &, see for example Ginibre, Soffer and
Velo [32], Shatah and Struwe [84] (the defocusing case), as well as a complete review of the
Cauchy theory in Kenig and Merle [47] (for N € {3,4,5}), as well as Bulut, Czubak, Li,
Pavlovi¢ and Zhang [8] (for N > 6). In particular, for any initial data up € £ there exists
a maximal time of existence (T_,T%), —co < T_ < ty < T} < +00, and a unique solution
u € C((T-,T4);E). In addition, the energy F is a conservation law. In this paper we always
assume that the initial data is radially symmetric. This symmetry is preserved by the flow.

For functions v € H', v € L?, v = (v,0) € £ and X > 0, we denote

1 x . 1 T
)

ua(x) = WU(X)’ Ox(z) == WU(X , va(z) := (v, 0).

A change of variables shows that
E((’u,o))\) = E(UO)

Equation (NLW) is invariant under the same scaling: if w(t) = (u(t),u(t)) is a solution of
(NLW) and A > 0, then ¢ — w((t — to)/)\))\ is also a solution with initial data (ug), at time
t = 0. This is why equation (NLW) is called energy-critical.

A fundamental object in the study of (NLW) is the family of stationary solutions u(t) =
+W ) = (£W),0), where

|z >*(N*2)/2

The functions W) are called ground states. They are the only radially symmetric solutions
and, up to translation, the only positive solutions of the critical elliptic problem

—Au — f(u) = 0. (1.1)

Note however that classification of nonradial solutions of (1.1) is an open problem (see for
example [73] for details).
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Recall that the Soliton Resolution Conjecture predicts that a generic bounded (in a suit-
able sense) solution of a hamiltonian system asymptotically decomposes as a sum of decoupled
solitons and a dispersion. This belief is based mainly on the analysis of completely integrable
systems, for instance Eckhaus and Schuur [28]. The only complete classification of the dy-
namical behaviour of a non-integrable hamiltonian system is the result of Duyckaerts, Kenig
and Merle [26], which we recall here for the reader’s convenience:

Theorem ([26]). Let N =3 and let u(t) : [to,T+) — & be a radial solution of (NLW). Then
one of the following holds:

o Type I blow-up: Ty < oo and

li t)|e = .
Jim [[u(t) | = +o0

e Type II blow-up: Ty < oo and there exist vy € &, an integer n € N\ {0}, and for all
je{l,...,n}, asign; € {£1}, and a positive function \;(t) defined fort close to T
such that

M) € Aot) € .. < M(t) < Ty —t ast — T

n
tgr’}i Hu(t)— (’Uo-f-Z;LjW)\j(t))Hg =0. (12)
]:
e Global solution: T, = 400 and there exist a solution v, of the linear wave equation,
an integer n € N, and for all j € {1,...,n}, a sign ¢; € {1}, and a positive function
Aj(t) defined for large t such that

M) K Xo(t) € ... < \(t) €t ast — 400

Jimu(t) = (0,..(6) + Z LWoam)|le = 0. (13)

O

Of special interest are the solutions which are bounded in £ and which exhibit no disper-
sion (that is, vo = 0 or vy = 0) in one or both time directions. One of the consequences of
the energy channel estimates in [26] is that in the case N = 3 the only solutions without any
dispersion in both time directions are the stationary states W y. This is in contrast with the
case of completely integrable systems.

In the present paper we are interested in solutions with no dispersion in one time direction,
say for positive times. According to Theorem 1.1, for N = 3 such a solution has to behave
asymptotically as a decoupled superposition of stationary states. Such solutions are called
(pure) multi-bubbles (or n-bubbles, where n is the number of bubbles). By conservation of
energy, if u(t) is an n-bubble, then

The case n = 1 in dimension N € {3,4,5} was treated by Duyckaerts and Merle [27], who
obtained a complete classification of solutions of (NLW) at energy level E(u(t)) = E(W). In
particular, the only 1-bubbles are W), W and W;f, where W~ and W™ are some special
solutions converging exponentially to W. The authors solve also the reconnection problem
by showing that for negative times W™ scatters and W blows up in norm & in finite time.
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Solutions of (NLW) satisfying (1.2) or (1.3) with vg # 0 or v v # 0 can exhibit non-trivial
dynamical behaviour, see the results of Krieger, Schlag and Tataru [53], Hillairet and Raphaél
[36], Donninger and Krieger [20], Donninger, Huang, Krieger and Schlag [19] and the author
[40].

In the present paper we address the case n = 2, and more specifically the situation when
the two bubbles have opposite signs.

Theorem 1. Let N > 3. There exists no radial solutions w : [to,T1) — £ of (NLW) such
that
lim flu(t) = Wi ) + Wimlle =0 (1.4)

t—>T+

and
e in the case T’y < 400, A\(t) < Xo(t) KTy —tast — Ty,
o in the case Ty = +o00, A\ (t) < Aa2(t) <t as t — +oo.

Remark 1.1. There exist no examples of solutions of (NLW) such that expansion (1.2) or
(1.3) holds with n > 1 (with or without dispersion). Note however that spatially decoupled
non-radial multi-bubbles were recently constructed by Martel and Merle [58] using the Lorentz
transform. In their setting, the choice of signs seems to have little importance.

On the other side, Theorem 1 is, to my knowledge, the only result proving non-existence
of solutions of type multi-bubble for (NLW) in some specific cases. Existence of pure two-
bubbles with the same sign is an open problem.

Remark 1.2. In the case of corotational wave maps existence of pure two-bubbles with the
same orientation is easily excluded for variational reasons. Our proof might be seen as an
adaptation of this argument to the case where the energy functional is not coercive.

Note that for corotational wave maps existence of pure two-bubbles with opposite orien-
tations is an open problem, related to the threshold conjecture for degree 0 equivariant wave
maps, see Cote, Kenig, Lawrie and Schlag [16].

Remark 1.3. For the corresponding slightly sub-critical elliptic problem positive multi-
bubbles cannot form, whereas multi-bubbles with alternating signs exist, see Li [55], Pistoia
and Weth [77].

1.2 Outline of the proof

Step 1. The linearization of (NLW) around Wy has a stable direction ), . We construct
stable manifolds U which are forward invariant sets tangent to Y, at W . They have good
regularity and decay properties. They allow to define the refined unstable mode 8§ € £* with
the following crucial property.

Decompose any initial data close to the family of stationary states as ug = U + g, with
g satisfying natural orthogonality conditions by an appropriate choice of A and a. We have
the alternative:

o (Coercivity) (53, g)| < llgll#, which implies E(uo) — E(W) 2 lgllZ,
e (Destabilization) |(8%,g)| > ||g||%, which implies the exponential growth of (3¢, g)|.

In other words, 3% provides an explicit way of controlling how solutions which violate the
coercivity of energy leave a neighbourhood of the stationary states for positive times.
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Step 2. Let u(t) : [to;T+) — & be a solution of (NLW) which satisfies (1.4). As already
mentioned, this implies that
E(u) =2E(W). (1.5)

We decompose for any ¢ € [tg, T4 ):
u(t) = U Wi +a(t),  lt) < Xafb),

with g(t) satisfying natural orthogonality conditions (in fact we use a suitable localization of
W (1)) From the Taylor formula we obtain

a a 1 a
E(u) = E(UY; —Wy,) + (DEUY;, — Wi, 9) + §<D2E(UA§ - Wy)9,9) +o(lgll?)- (1.6)
An explicit key computation shows that
@ N-2
EUY —Wy,) —2E(W) 2 (AM/X2) 2

It is at this point that the sign condition is decisive.

Step 3. We prove that the assumption that wu(t) stays close to a 2-bubble implies that
(B2 )] S lgllZ + (A 1/)\2) 7%, This allows to show that the second term in the expansion

(1.6) is < [lg|2 + (\1/22) 2.

Finally, by an elementary analysis of the linear stable and unstable modes we can prove
that, at least along a sequence of times, the third term of the expansion (1.6) is coercive,
that is > ||g||%. Inserted in (1.6), this leads to E(u) > 2E(W), contradicting (1.5).

1.3 Notation

We introduce the infinitesimal generators of the scale change

N
A = (5—3)—1—x-v.
For s = 1 we omit the subscript and write A = A;. We denote Ag, Ar and Ag« the
infinitesimal generators of the scaling which is critical for a given norm, that is

Asg = (A Ng), Ar= (Ao, A1), Ag=(A_1,Ap).

We use the subscript -y to denote rescaling with characteristic length A, critical for a norm
which will be known from the context.

We introduce the following notation for some frequently used function spaces: X° :=
Hf;ilﬂHldfors>0 Yk = HF(1 + |z|F) for k €N, £ := HL x L2, F = LfadxH;ad
Notice that £* ~ Hrad x L2 , through the natural isomorphlsm given by the distributional
pairing. In the sequel we will omit the subscript and write H! for H ! ~q etc. We denote

0 Id .
J = (—Id 0), note that JE* = F.

For a function space A, O4(m) denotes any a € A such that ||a||l4 < Cm for some
constant C' > 0. We denote B 4(xo,n) an open ball of center 2y and radius 7 in the space A.
If A is not specified, it means that A = R.

For a radial function g : RV — R and r > 0 we denote g(r) the value of g(z) for |z| = r.
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2 Sharp coercivity properties near W)

2.1 Properties of the linearized operator

Linearizing (NLW) around W, u = W + g, one obtains
Ohg = J o D2E(W)g = (_OL Ig‘) g

where L is the Schrédinger operator

Lg:=(-A— f'(W))g.

Notice that L(AW) = %‘)\:1( — AW, — f(Wy)) = 0. It is known that L has exactly one
strictly negative simple eigenvalue which we denote —v? (we take v > 0). We denote the
corresponding positive eigenfunction ), normalized so that ||)||;2 = 1. By elliptic regularity
Y is smooth and by Agmon estimates it decays exponentially. Self-adjointness of L implies
that

(V,AW) = 0.

Fix Z € C§° such that
(Z,AW) >0, (Z,))=0.

We have the following linear (localized) coercivity result, similar to [58, Lemma 2.1].
Lemma 2.1. There exist constants ¢,C' > 0 such that
e for all g € H' radially symmetric there holds
a.Lg) = [ [Valar— [ pO0lgParze [ (VgPde-C((2.0+ (0.
(2.1)

e if r1 > 0 is large enough, then for all g € Hl}ad there holds

— ZC 2 X C 2 xr — 2 X 2
(1-20) /| V2 + /lzm Vgl2d / FW)glPde > —C((Z, )2+ (V.0)%),
(2.2)

o if ro > 0 is small enough, then for all g € H}ad there holds

— zC 2 X C 2 T — 2 X 2 .
(1-20) /M’Vg’ dz + /lxlww d / )92 dz > ~C((Z,g)? <y,?> ))
2.3

Proof. We will prove (2.2) and (2.3). For a proof of (2.1) we refer to [40, Lemma 6.1], see
also [27, Proposition 5.5] for a different formulation.
We define the projections II,, ¥, : H' — H!:

{g(r) if |z <7,

{g(w) —g(r) iffz| <
glx)  iffz| >,

0 if |[x| >7r

(Irg)(x) := (U, 9)(z) =

(thus IT, + ¥, = Id).
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Applying (2.1) to ¥,, g with ¢ replaced by 3¢ and C' replaced by % we get

(1 20) /| Vg = (129 / V(W0 da

C
(1+¢) / POV, g dr — 5 (12,000 + (¥, 0r,0)%).

(2.4)
By Sobolev and Holder inequalities we have

/ S V) lgP da = / W), gf? da

|| >7r1 || >7r1
SNy Ml <5 [ 1VoPds
~ L2 (lzfzr) TN T4 s

if r; is large enough.
In the region |z| < r; we apply the pointwise inequality

lg(@)P? < (1 +)|(Pr,g)(@)]* + (1 +c Dlg(r)l?, o] <1 (2.6)

Recall that by the Strauss Lemma [87], for a radial function g there holds

N-2

9Dl S 1rgllgn-my 2

Since f/(W(r)) ~r~* as r — +o0, we have
/ FW)de < r) 72, as ry — 400,
|$‘<7’1

hence

/|$I<r1 FW) - (14 Hlglr) P dz < 4/ Vg|* dx (2.7)

|z|>71

if r1 is large enough.
Estimates (2.5), (2.6) and (2.7) yield

/ f'W)|gl*dz < ( +c/ ffow Tlg)(x)\de—i-;/ |Vg|? dz. (2.8)

|z|>71

2N
Using the fact that Y € L' N L¥+2 we obtain

[ e )| S I gll g -y 2 +/ Vigldr < (ry 7+ I 2, ) gll g1
|z|>r1 (|z|>71)

hence

C
S 00,9)? S OW,g)? + O, IL,9)* < CV,9)* + 7 / Vgl dw,  (2.9)

|z|>r1

provided that r; is chosen large enough. Similarly,

C c
5 (& 009" <C(2,9)" + C(2,11,,9)" < C(Z,9)" + | / Vgl* da. (2.10)

lz[>71

Estimate (2.2) follows from (2.4), (2.8), (2.9) and (2.10).
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We turn to the proof of (2.3). Applying (2.1) to II,,g with ¢ replaced by 3c and C' replaced
by ¢ t
y 5 we ge

(1-3¢) / Vgl?dz = (1 - 3¢) / V(1) da
|z|>72 RN

. (2.11)
> [ PO de = (2000 + (0T,
By Sobolev and Hoélder inequalities we have for 2 small enough
[ rwgPac<s [ 9oPas, (2.12)
|z|<ra 2 Jrw

By definition of II,. there holds

/|> |g|2dx</ (W)L, g/% da,
ZE_"'2

hence (2.11) and (2.12) imply

c C
(20 [ oldeeg [ Vodrz [ FO0I6P e G (2 0 0119,
| 212 TIXT2

(2.13)
2N
Using the fact that ) € L~¥+2 we obtain
< <
Ol S [ Ve SV, g Il
hence
c c
5 W Ia0)" < C(Y,9)° + O, Wrg)® < O,9)" + 4 / o, Vol de (2.14)
T|ST2
provided that r9 is chosen small enough. Similarly,
c
5 (& M0)" < C(2,9)" + C(2,0,,9)° < C(2,9)" + fl/ Vgl? da. (2.15)
|z|<r2
Estimate (2.3) follows from (2.13), (2.14) and (2.15).
O
We define ) )
Vo= (50,-Y), V= (=DY),
v v
Ve 1L _ .o VgL
a” = 2Jy = 2(1/y, V), a’ = 2,];)/ = Q(Vy,y).
9 0 Id .
We have JoD*E(W) = | L o) A short computation shows that
JoD’E(W)Y™ = —vY~,  JoD*E(W)YT =vYT
and

(o=, JoD?’E(W)g) = —v(a™,g), (o™, JoD?E(W)g) = v(a™, g), Vg € £. (2.16)
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We will think of @~ and o™ as linear forms on £. Notice that (a=,Y~) = (at,Y*) =1 and
{(a=, YTy = {(at,Y7) =0.

The rescaled versions of these objects are

1 1
Yy = (;y)\, ), V= (;3&3@),

S Yy oLy oo Vgy- Ly
ay = JYN = Q(Ay& AZVE ay =5 VN = 2()\3@3@)‘ (2.17)
The scaling is chosen so that (o), Yy ) = (af, YY) = 1. We have
v v
JoD?’E(W )Y, = e Jo D?E(W )Yy = Xy; (2.18)
and
_ v, _ v
<a)\7JOD2E(W)\)g> = _X<O[)\ 7g>7 <O£;\"_,JOD2E(W)\)Q> = X<a;\i_79>7 Vg €.

(2.19)
As a standard consequence of (2.1), we obtain the following:

Lemma 2.2. There exists a constant n > 0 such that if ||V — W|le < n, then for allg € €
such that (Zy, g) = 0 there holds

LD’E(V)g.g) +2((03.9)” + (0. 0)?) Z -

Proof. For N € {3,4,5} see [39, Lemma 2.2]. For N > 6 the same proof is valid, once we
notice that [ f'(V) = f/(Wi)ll y < f'(IV = Willg)- 0

We now turn to the proofs of various energy estimates for the linear group generated by

A:=JoD?’E(W) = <—OL I(()i) .

on its invariant subspaces, which will be needed in Subsection 2.2. This is much in the spirit
of [5, Section 2.

It follows from (2.16) that the centre-stable subspace X.s := kera™, the centre-unstable
subspace X, := ker o™ and the centre subspace X. := X5 N Xey are invariant subspaces of
the operator A. Notice that (o=, Y7) = (o, V") =1, & = X ® {aY T} = Xew ® {a) 7},
Xes = X @ {ay,}’ Xew = & @ {ay+}'

We define X :={v = (v,0) € X | (Z,v) = 0}.

Lemma 2.3. Let k € N. There exist constants 1 = ag > a1 > ... > ap > 0 such that the
norm || - ||ax defined by the following formula:

k

ol =" a; (v, LT0) + (6, L))
7=0

satisfies ||| xkx gr ~ [|[V]|ak for all v = (v,9) € (X* x H*) N X

Proof. We proceed by induction. For k = 0 we have

lvllao = v/{v, Lv) + (0,0) = /(D2E(W)v, v).

By Lemma 2.2, this norm is equivalent to || - ||¢ on & N X.
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To check the induction step, one should show that for any k > 0 there exist a;,as > 0
such that
k
[0]IF = [0l %s—1 + a1 (v, L¥ o) 2 [0 (2.20)

and
19113 == 10[1F-1 + az(0, L*6) Z [[6][5- (2.21)
To prove (2.21) notice that
LF = (=A)* 4 (terms with at most 2k — 2 derivatives).
Integrating by parts all the terms except for the first one we arrive at expressions of the form

[V 0" - 0vdx where V is bounded and i,5 < k — 1. All these expressions are controlled

by [ [ 71

The proof of (2.20) is almost the same. The only problem are the terms of the form
[V -Vv-vdz and [V - |v]*dz. As the potential decreases at least as f/(W), by Hardy
inequality these terms are controlled by ||v]| ;1. O

We will denote (-, )4 the scalar product associated with the norm || - || 4.
We define the projections:

U = (o, v)) ", Ty = 1d —s.

We denote 7. the projection of X. on X, in the direction A¢W. These projections are
continuous linear operators on £ as well as on X* x H* for k > 0.

Proposition 2.4. The operator A generates a strongly continuous group on X* x H* denoted
et4. Moreover, the following bounds are true for t > 0:

voe (XFx HOYNx, = e xrsmr < e H|voll e pr (2.22)
vo € (XPx H*) N Xy = Jle o]l ximr S (1+)]|voll xkx ks (2.23)
voe XFx HY = |le ol xrsxmr < e|vollxrs e (2.24)

Proof. 1t suffices to analyse the restriction to the invariant subspace X.. Take vy € &, and
decompose v = lpAs W + wyq, wy € X (notice that AeW € X* x HF). Tt can be checked
that the operator B := m..0A is skew-adjoint for the scalar product (-, -) 4 %, hence it generates
a unitary group w(t) = e'Pwq by the Stone theorem. Let I(¢) be defined by the formula

' {(2,u(t))
I(t)=1 - dt. 2.25
m=b+ [ G (225)
Set v(t) = w(t) + I(t)Ae¢W. This defines a linear group and
o1 B , B (Z,10) B
%E;I(l) g(’v(t) — ’UO) = B'LUO =+ l (O)AgW = B'UO + mAgW = A'UO,

hence v(t) = etwvy.

Estimate (2.22) follows immediately from the fact that J~ is an eigenfunction of A with
eigenvalue —v. Analogously, in (2.23) we can assume that vy € A, (the unstable mode
decreases exponentially for negative times). By the equivalence of norms and the fact that
the group generated by B is unitary for the norm || - || 4,

lw(@)lxexmr S llvollxsxps  for all ¢, (2.26)

hence it suffices to bound [(t). Using (2.26) and the fact that |lp| < ||vo||xrx g+ We get from
(2.25) that [[(t)] S (1 + [t])[[vollxr e
Estimate (2.24) follows easily from (2.23). O
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Remark 2.5. The factor [¢| in (2.23) is necessary, for example in dimension N = 5 we have
a solution v(t) = (tAW, AW).

It is possible to finish the construction for example in the space X! x H'. However, later
we will need some information on the spatial decay of the constructed functions, which forces
us to use weighted spaces. We define

k
[ollys = (1 + |z[*)v] .
One may check by induction on j =0,1,...,k that
k k j
1L+ |2[*)olFs ~ /(1 + ) (Jvf? + [V70]?) da,

in particular

Joll2 ~ / (14 2P (Jol? + VFol?) da.

Lemma 2.6. Let k € Z,k > 0. The following bounds are true for t > 0:

Vg € (Yk+l X Yk) nxy, = HetA’UoHkaka < e_ytH’UoHkaka, (2.27)
_ k(k+1)

Vg € (Yk'H X Yk) NXew = e tA’U()||yk+1><yk S+t 2 +1)”’U0Hyk+1xyk, (2.28)

Vo € Yk+1 X Yk = HeftA’Uo”kaka S eytH’Uouyk-Hka. (2.29)

Proof. The proof of (2.27) and (2.29) is the same as in Proposition 2.4, once we recall that
Y~ € YL x Yk In order to prove (2.28), write v(t) = e *wg, so that dv = —Av =
(=0, —Av — f'(W)v), hence

%% /(1 + |2 (o + Vo) de = — /(1 +|2) ((Av + ' (W)v) - 0+ Vo - Vo) de

:/V(]x\%)-Vv-@—ir(lJr 25 (F (W) - 0 da

(we have integrated by parts between the first and the second line). Notice that = f'(W) € LV,
hence by Holder and Sobolev ||z f'(W)v||z2 < H’UHL% < V|2, thus

‘jt/(l + ’x‘%)(‘y’? + ‘VQ}P) dx’ < /(1 + ’m‘%—l)(w’Q + ‘VU’Q) da. (2'30)

Analogously, from
Ld
2dt

=_ /(1 + [z ) (VF(Av + f/(W)v) - VEO + VL - VL) da

(1 + |z (|VF0]2 + |VF o) da

:/V(W’f) VR Ly VG 4 (14 |22V (W) - Vo de
we deduce

d
‘dt/(1+|x]2k)(Vki)|2+\vk+lv|2)dx‘ < /(1+:E|2k_1)(|2'1\2+|Vk1'z|2+|Vv|2+|Vk+1v|2)dx.
(2.31)
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Using (2.30), (2.31) and Holder we obtain
d . .
’& /(1 + 222 (|92 + [VF0|2 + |[Vo]? 4 |V L)) dx‘
1

2k—1
S [ PRI + V95 + [0 + [V 0Py dz) ol

which gives, using (2.23) and integrating,
/(1 + [2F) ([0 + [VF0)* + Vo + [VE o) de S (1 4+ FED) uolFrer yn

Now we can easily bound the L? term by Schwarz inequality:

d 1 . 1
‘dt/(1+|x|2k)]v|2dm‘ < (/(1+|x2k)|v|2da:>2 . (/(1+]a:|2k)v|2d9:>2,
which leads to
1+ 2o do < (1 4+ *ETDT2) log 1200y
0

We fix k € N large enough. For 7 > 0 the space BCj is defined as the space of continuous
functions v : [0, +00) — Y*! x Y* with the norm

HUHBCa ‘= sup em”v(t)”YkaYk'
te[0,+00)

Lemma 2.7. Ifv € (0,v), then for any w € BC5 the equation
Ov(t) = Av(t) + w(t) (2.32)

has a unique solution v = Kw € BCy such that (o, v(0)) = 0.
In addition, K is a bounded linear operator on BCj.

Proof. Suppose that v € BCj; verifies (2.32). Denote vy = v(0). From the Duhamel formula
we obtain

t t
v(t) = ey + / e Aw(r)dr = e Mru(t) = mevo + / e Arqw(r)dr.  (2.33)
0 0

By assumption, ||v(t)||yrr1xyr < e, hence from (2.23) we infer e *Ara,v(t) < (1 +tF)e ™7,
k= 3k(k+ 1) + 1. Passing to the limit ¢ — +oo yields

“+o00
Ty = —/ e_Tchuw(T) dr.
0

If we require (a~,vg) = 0, this determines uniquely vy = m¢,vg, hence, using (2.33),

+00 t
v(t) = Kw(t) = —/ e(t*T)Aﬂw'w(T) dr + / e(th)Aﬁsw(T) dr.
t 0

From (2.22) and (2.23) we obtain

+oo _ t _
1K)y S lwle,- ([ 0+ =0%)e 7 drt [ e ar)

< wllse, e,

so K is a bounded operator. ]

Remark 2.8. By linearity the unique solution of (2.32) such that (o=, v(0))) = a is v(¢) =
(Kw)(t) + e ta) ™.



2. SHARP COERCIVITY PROPERTIES 151

2.2 Construction of U

As noted earlier, the functions U§ were constructed in [27, Section 6]. However, the con-
struction given there does not give the additional regularity or decay, which is required in
the present paper. For this reason, we provide here a different construction, which is an
adaptation of a classical ODE proof, see for instance [11, Chapter 3.6].
We denote
R(v) i= [(W +v) — (W) f'(W)o.

Lemma 2.9. Let v € (0,v). There exist n > 0 such that for every b € R, |b| < n there is a
unique solution v = v® € BCy of the equation
oo (t) = Av(t) + R(v(t)) (2.34)

b

such that (o, v(0)) = b and ||v||pc, <n. Moreover, v’ is analytic with respect to b.

Proof. Let T : BCy; x R — BC} be defined by the formula
T(v,b) := e V'bY™ + K(R(v)),

where K is the operator from Lemma 2.7. Then v is a solution of (2.34) if and only if
T(v,b) = v (see Remark 2.8).

It follows from Lemma A.3 that on some neighbourhood of the origin 7' is analytic and
a uniform contraction with respect to v, hence the conclusion follows from the Uniform
Contraction Principle, cf. [11, Theorem 2.2]. O

Proposition 2.10. For any k € N there exists n > 0 and an analytic function

(=) 2a— U~ W e YR x y*

such that
U’=w, (2.35)
8CL[IOL|a:0 — y_7 (236)
—vad,U® = JoDE(U?). (2.37)

Proof. Evaluation at ¢t = 0 is a bounded linear operator from BC35 to Y*+1 x Y*_ hence
{v%(0) : b € (—n,n)} defines an analytic curve in Y*™1 x Y*. We have ||v°|gc, < b, so
[R(v")| e, < |bJ?. By construction, v satisfies the equation

v’ =be 'Y + K(R(v")),
hence [|[v® — be ™Y~ ||pc, < |b]?, in particular
[0°(0) = bY ™ llyksr,ye S [

Because of uniqueness in Lemma 2.9, the set {v°(0) : b € (—n,7n)} is forward invariant if 7 is
small enough, hence for all b € (—1,7) there exists a function b(t) such that v®(t) = v*®)(0).
The value of b(t) is determined by the condition

(a™,v"(t)) = b(t).
Differentiating in time this condition we find

Y (t) = %@r, vb(t)) = (o, J o DE(W +4°(t))) = (™, J o DE(W + "1 (0))) = ¢(b(t)),
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where 1 is an analytic function, (0) = 0 and ¢/(0) = —v. By Lemma A.1l, there exists
an analytic change of variable a = a(b) which transforms the equation ¥'(t) = ¢ (b(t)) into
a'(t) = —va(t) and such that a(0) = 0, a’(0) = 1. We define

U® .= W + %9)(0).

U
We will denote U§ := (U?),. Rescaling (2.35), (2.36) and (2.37) we obtain
US =W,
0aUS|a=0 = V) »
%U“:—7%JODE@K) (2.38)

Remark 2.11. Note that (2.38) implies that u(t) = Uf =3 is a solution of (NLW) for
large t. These are precisely the solutions W?\E mentioned in the Introduction.

2.3 Modulation near the stable manifold

The results of this subsection will not be directly used in the proof of Theorem 1. We include
them in the paper for their own interest and because the proofs introduce in a simple setting
the main technical ideas required in Section 3.

It is well known since the work of Payne and Sattinger [75] that solutions of energy
< E(W) leave a neighbourhood of the family of stationary states. The aim of this subsection
is to describe an explicit local mechanism leading to this phenomenon, which is robust enough
not to be significantly altered by the presence of the second bubble (as will be the case in
Section 3).

Note that nothing specific to the wave equation has been used so far, hence one might
expect that all the proofs of Section 2 should apply to similar (not necessarily critical) models
in the presence of one instability direction near a stationary state.

Lemma 2.12. Let &g > 0 be sufficiently small. For any 0 < § < §g there exists 0 < n =
n(0) 0 0 such that if w: (t1,t2) — & is a solution of (NLW) satisfying for all t € (t1,t2)
ﬁ

Jult) - W lle <6, At >0,

then there exist unique functions \(t) € C1((t1,t2), (0,+00)) and a(t) € C1((t1,t2),R) such
that for

gt) == u(t) — U‘;((?) (2.39)

the following holds for all t € (t1,t2):
<Z&79(t)> = <O‘)_\(t)ag(t)> = 07 (240)
lg(®)lle <, (2.41)
IME/AE) = 1]+ [a(t)] < . (2.42)

In addition,

NI S lg@®)le, (2.43)
|d/(t) + ﬁa(t)\ S )\(125)(|a(7f)| llg@®lle + lg®)12)- (2.44)

Proof. We follow a standard procedure, see for instance [57, Proposition 1].
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Step 1. We will first show that for fixed to € (¢1,%2) there exist unique A(#p) and a(tp) such
that (2.40), (2.41) and (2.42) hold for ¢ = t¢. Without loss of generality we can assume that
X(to) = 1 (it suffices to rescale everything).

We consider @ : £ x R? — R? defined as

®(uo; lo, a0) = (P1(uo; lo, ao), P2(uo; lo, ao))
= ((e_ZOZ@, Uy — U§g>, <a;0,uo - UZ{)O}).

One easily computes:

8,01 (W:0,0) = (Z,AW) > 0,
8,P2(W:0,0) = 0,
9a®1(W30,0) = 0,
0a®2(W30,0) = —(a™, V") = —1.

Applying the Implicit Function Theorem with wg := u(ty) we obtain existence of parameters
ap =: a(tp) and Ao = e =: \(tg).

Step 2. We will show that A(t) (equivalently, [(t) := log(\(¢))) and a(t) are C* functions
of t.

Take to € (t1,t2) and let ag := a(to), lo := log(A(to)). Define (1,@) : (to — e, to + ) — R2
as the solution of the differential equation

< ([(0).30)) = ~(2140)” (Du)Dulr)

with the initial condition T(to) = lp, a(tp) = ap. Notice that D,® is a continuous functional
on F, so we can apply it to dyu(t).

Using the chain rule we get %@(u(t);?(t),'d(t)) =0 for t € (ty —¢e,to + ¢). By continuity,
]lN(t) —lp| < 1 in some neighbourhood of ¢ = ¢y. Hence, by the uniqueness part of the Implicit
Function Theorem, we get [(t) = log A(t) and a(t) = a(t) in some neighbourhood of t = t.
In particular, A\(t) and a(t) are of class C! in some neighbourhood of tg.

Step 3. From (2.39) we obtain the following differential equation of the error term g:
g =0(u—US) =Jo (DE(u) —DE(UY)) — (8,U4 — J o DE(UY)).

We have .
KU = NoWUS +d'9,Us = -\ - XAgUi +d' 0,U%, (2.45)
so using (2.38) we get
a o , 1 a ,  va “
09 = J o (DE(US +g) ~ DE(UY)) + X - 1AUS (a + 7>8GUA. (2.46)

The first component reads:

/

. Ad'y -
8tg =g + )\IAUX + (1 + E)UX,
hence differentiating in time the first orthogonality relation (%ZA, g) = 0 we obtain

d 1 N 1 N 1 d

0= (5200 = = 55020, 0) + 320 4) + S5 (E0 AUD) + (5 + ) (22, U). (247)
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Differentiating the second orthogonality relation () ,g) = 0 and using (2.46) we obtain

0= %@‘;u‘” = —§/<As*ak,g> +(ay,J o (DE(U$ + g) — DE(UY)))

/

N a va _ "
+ X(a)\,AgU/\) — (a’ + 7) <a>\,8aUA>.

Together with (2.47) this yields the following linear system for X" and )\(a/ + %)

(i 32) Gis ) = (Cagas o omot oy - DR
where

1 1
My = X<ZA» AUY) — X<A713A,g>,

1 .
My = — (2, U
12 ya< A Ux)s (2.48)

Ms = —(Ag-ary, g) + (), AgUS),

My = —(a, ,0,UY).
Since $(Z), AW)) 2 1, (o, AeW) =0, (o, V) = 1, [AsUS—AeWi|le < |a| and [|0,U —
Yy lle < lal, we see that

| M| ~ L |Mp|S 1,

(M| S llglle +lal, [Mao| ~ 1.

My Mo

Hence, ‘ det
<M21 Moo

> ‘ 2 1 and we obtain

NS [ Maa| - [(2x, 9)| + [ M| - [Meyy, J o (DE(US + g) — DE(UY)))|,

Ad/ _ B (2.49)
|a+ —=| < [Mar| - [(2x, )] + [Mu] - [May, J o (DEUS + g) — DE(UY)))!.
Since (ay,J o D2E(Wy)g) = —X(ay,g) = 0, Lemma A.4 implies that
_ . . 1
[{ax; J o (DE(US +9g) = DE(UX)))| S 1 llglle - (lal + [lglle)- (2.50)
Now (2.43) and (2.44) follow from (2.48), (2.49) and (2.50).
U

In the rest of this section A(t) and a(t) denote the modulation parameters obtained in
Lemma 2.12 and g(¢) is the function defined by (2.39).
For given modulation parameters A and a we define:

v
BY = —5J8QU§. (2.51)
We see that ﬁ?\ =—5xJY, = a;\r, and indeed it turns out that g is a refined version of oz;f,

adapted to the situation when |a| > [|h||¢.
Proposition 2.13. The function
b(t) := (B3, 9(1))
satisfies
590 = 3750 S 5 - oI

Proof.
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Step 1. We check that

(8% — X, )l < lal - llglle, (2.52)

. 1
(8% — X, 0g)| S S lal - llglle, (2.53)
[(0aB%; @) + [(AOABL, 9)| < llgle- (2.54)

From Proposition 2.10 we have ||8¢ — a™|lyexyrr S |al, and (2.52) follows by rescaling.
Analogously one gets (2.54).
Similarly one obtains

a a a 1
(8% — X, J o (DE(US +g) = DEUL))| S {lal - llglle, (2.55)
(B — o0, AeUS)| + (85 — a3, dUR)| < lal, (2.56)

hence (2.53) follows from (2.43) and (2.44).
Note that (2.52) implies in particular that [(5,g)| < ||g|le with a universal constant.
Estimates (2.54) follow from the fact that ||0,5%]|e+ + | AOxBS ||+ S 1.

Step 2. Consider the case
la(t)] < [lg(@)lle- (2.57)

We have d
300 = (B30, g (1)) + XN (1) (9831}, 9(1)) + o' (1) (BB} 9)- (2.58)

From Lemma 2.12 we know that |N| < [|g|le and |a/| £ }|lgle. Hence from (2.54) it follows
that the last two terms of (2.58) are negligible.
Using (2.57), (2.52) and (2.53) we see that it is sufficient to show that

v 1
(X, 01g) = S (o, 9)| = [, Dug — T o D*E(W)g)| < 1 llgll*. (2.59)
This follows easily from (2.46). Indeed, from Lemma A.4 we deduce that

(af. T o (DE(US + g) — DE(US) — DE(W2)g))| < ~[all?-

To see that the contribution of the last two terms in (2.46) is negligible, it suffices to use
(2.43), (2.44), [{af, AcU$)| < |a| and [{af, 8,U%)| < 1.

Step 3. Now consider the case
lg(®)lle < la(t)]- (2.60)
We can assume that a # 0 (otherwise u(t) = W and the conclusion is obvious).
Using Proposition 2.10 we get

1 1 a(t)
¢ — ___DE(U¢ b(t) = ——— - (DE t)).
/8/\ 2 (U/\) = ( ) 2a(t) < (U)\(t))7g( )>
The idea of the proof is that the first factor grows exponentially, while the second does not
change much. From (2.44) and (2.60) we obtain ‘Z(—(tt)) + ﬁ‘ < ﬁ”g(t)”, hence

d _d(1) 1 d a(t)
v 1 d 1
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We compute the second term using (2.46):

%(DE(UK)@ — (D’ E(US)0,US, g)

1
+ (DE(US), J o (DE(US +g) — DE(UY)) + N - TAUS - (a’ + %)aaU@.

Observe that
(DE(UY),AsUY) = —0\E(UY) =0,

(DE(US),8,U%) = 9, E(U?) = 0. (2.61)

Since DE(U$) € Y* x Y**+1 by Proposition 2.10, Lemma A.4 implies that
a
|(DE(USY), J o (DE(US +g) —DEUS) - D*E(UY)g))| < XHgH?,

hence using self-adjointness of D?E (U$) and anti-self-adjointness of J we get

CDEWS),g) = (D?BWUL)(OUS ~ o DEWUS)). g) + L0(g])

The following estimates hold:

ID*EUS)AUS e < lal,

) (2.62)
ID°E(U3)0.UYle- S 1

(the first one follows from D2E(W ,)A¢W, = 0). Using (2.45) and (2.62) together with
(2.43) and (2.44) concludes the proof. O

As an application of the preceding proposition, we now show that the stable manifold U
is the only source of the lack of coercivity of the energy functional restricted to the trajectories
staying close to the family of stationary states.

Given ug € &, let u(t) : [0,74) — £ denote the maximal solution of (NLW) with initial
data u(0) = ug. For n > 0 sufficiently small we define the centre-stable set M as

Mes :={uo: sup inf |u(t) — Wylle <n}.
0<t<T, A>0

Remark 2.14. In the case N = 3 it was proved by Krieger, Nakanishi and Schlag [49] that
M is a local C! manifold tangent at ug = W to X.

Remark 2.15. It is not difficult to see that if Mg is a regular hypersurface, then necessarily
its tangent space at U$ is given by

US +ker g = {U3 +g: (5%,9) = 0}
Hence b(t) is a natural candidate to measure how a trajectory moves away from M.
Corollary 2.16. If n > 0 is small enough, then there exists a constant Cg > 0 such that

ug € Mcs = )\>ior’1£€R HU() — i”% < CE(E(’LL()) — E(W))

Proof.
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Step 1 — Coercivity. We will prove that if ||g||¢ is small enough and (Z), g) = (o, ,g) =0,
then

E(US +g) — E(W) +2a(55, g) + 2|(65. 9)|* ~ llgl[Z- (2.63)
We have 2a(8$,g9) = (DE(UY),g), hence Lemma A.5 implies

a a a 1 a
E(US +g) = E(U}) + (DE(UY),9) + 5 (D*E(U%)g.9) + o(lg]lz)
a 1 a
= E(W) - 2a(3},9) + 5 (D*E(U%)g.9) + o(llg]l?)-
By (2.52) we have |(8%,9)% — (a3, 9)% < |a| - [|g||*, hence Lemma 2.2 yields

1 a a
§<D2E(Ux)g,g> +2[(8%, 9)1* ~ |lglI7,

which implies (2.63).

Step 2 — Differential inequalities. Let g(t), A(t) and a(t) be given by Lemma 2.12.
Observe that

(A
/0 G dt = +oo. (2.64)

Indeed, if | log A(t)| is unbounded, then

-1 " g (®)lle TN
A R M ey Al

If |log A(t)| is bounded, then by the Cauchy theory Ty = 400 and (2.64) follows.
From Proposition 2.13 it follows that there exists a constant C; such that

v

d
| > 2 —|b(t)| > t t T,). 2.
b= Cilla®llz = @)= 2)\(t)!b( )N, Vtel[0,T4) (2.65)
We will show that there exists a constant C5 such that
b(t)| > Ca(E(uo) — E(W)) = [b(t)] > Cillg(1)]|2- (2.66)
Indeed, we can rewrite (2.63) as
E(ug) — E(W) + 2a(t)b(t) + 2b(t)* ~ ||g||2, (2.67)

hence if |b(t)| > Ca, then
[b()] - (61*2 +2a(t)] +2/b(1)]) = E(uo) — E(W) + 2a(t)b(t) + 2b(t)* 2 |lgllz,

which implies (2.66) since |a(t)| and |b(t)| are small.
Suppose for the sake of contradiction that b(0) # 0 and [b(0)| > 2Cs(E(ug) — E(W)).
Let t; < T be maximal such that

b(t) £ 0, [b(t)] > Co(E(uo) — E(W)),  Vte[0,t). (2.68)

Of course t; > 0. Suppose that t; < T. But (2.66) and (2.65) imply that [b(t)] > 0
for ¢ € [0,¢1]. In particular, (2.68) cannot break down at ¢ = t;. Thus t; = Ty and (2.66)
implies that for ¢ € [0,74) there holds |b(t)] > Ci||g|ls. By (2.65) and (2.64), this would
imply |B(t)] E +00, which is absurd.

As a result, [b(0)| < 2C2(E(ug) — E(W)). Since |a(0)| and ||g(0)||¢ may be assumed as
small as we wish, the conclusion follows from (2.67) applied at ¢ = 0. ]
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Remark 2.17. It follows quite easily from Lemma 2.2 that
1
gEX .= ER : [|g—bAsW|}; < 5<1)2E(vV)g,g>, (2.69)
1
geEXs= JabeR : [l|g—bAW —aY [z S 5<D2E(W)g,g>. (2.70)

Corollary 2.16 provides a nonlinear version of (2.70). By similar methods (analyzing just the
linear stability and instability components ozj\r and o, ) one can prove a nonlinear analogue
of (2.69), that is

ug € MC = )1\2% HUO — W,\H% < CE(E(U()) — E(W)),
where

M= M N Mgy = {uo : sup inf [|u(t) — Wyle < 17}.
T_<t<Ty >0

3 Nonexistence of pure two-bubbles with opposite signs

3.1 Modulation near the sum of two bubbles

Because of a slow decay of W, we will introduce compactly supported approximations of W).
Let R > 0 be a large constant to be chosen later.

We denote

%% — (A A h < RV A
VO o) (@) 1= A () — C(A1, A2)  when |z] < Ry, (3.1)
0 when |z| > Rv/ A1),
where

1 R\ \ "5 R*X \—"5°

A, A2) i= Wy, (R M g) = 1 =Mt v oo

C(A1,A2) n (RV A1) )\1N2—2< JrN(N—2))\1> ( 1+N(N—2))

_N=2 _N
We have ¢(A1, X2) ~ RTV=20, 79y (A1, A2) ~ R™NVA, 2 and 9y, (A1, A2) ~ RV,
We will also denote

N
2

VR(Al, )\2) = (VR()\L /\2), 0) eé.
It is straightforward to check that Vi(A1, A2) has weak derivatives 0y, Vgr(A1, A2) and
Ox, VR(A1, A2), which are given by the formulas:

O VrR(A1, A2)(x) = {_(AW)/\l(x) — 0\, C(A1,A2) when |z| < RVA1Ag,

0 when |z] > Rv/ A1\,
—0\,C(A1, A h < RV

8)\2VR()\1,)\2>(.%') = >\2€( b 2) when ’33| 12 (3.2)
0 when |z] > Ryv/Aja.

Notice that 9y, Vg(A1, A2) € L? and 0, Vr(A1, A2) ¢ HL.
3 ; A 2 N=2
In the whole section we will denote A := 5= and N(g, ) :==1/[lg[[z + A = .

Lemma 3.1. For R > 1 and A < 1 the following estimates are true with constants depending
only on the dimension:

_N-2 N-2

IVR(A1, A2) = Wi lljn S B2 A, (3.3)
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[V Aa) = Way e S RTVF20, 2 (3.4)

105 VR(A1, A2) + AW [l oo (21 < RyATRg) S RﬁN}\;% (3.5)
IVaOw M)l S B2 A%, (3.6)

108, VO, Aol 1 < R2AZ A72, (3.7)

Proof. The proof of (3.3), (3.4) and (3.5) is straightforward, see [39, Lemma 2.3]; (3.6) and
_N-2 _ _N _

(3.7) follow from the fact that |Vr(z)| S Ay % - (l)\il‘) N+2, |Ox\, VR(z)| S A 2 - (%) N2

and supp (V(z)) = supp (9x,V(z)) = B(0, RV A1 As). O

We will omit the subscript and write V' (A1, A2) instead of V g(A1, \2). The approximate
solution we will consider is defined as follows:

U()\l,)\Q,CLQ) = Uiz — V(/\l,)\g).

Observe that

8)\1U()\1,/\2,a2) = —8A1V(/\1,)\2), (3.8)
1 a
UM, A2, a2) = —)\—QAgU)\z — 0,V (M1, \2), (3.9)
A
02, U (M1, N2, a2) = 0,U2 = =2 J o DE(U). (3.10)
ras

Remark 3.2. The following version of the Implicit Function Theorem has the advantage of
providing a lower bound on the size of a ball where it can be applied:

Suppose that X, Y and Z are Banach spaces, xg € X, yo € Y, p,n > 0 and ® :
B(xo,p) x B(yo,n) — Z is continuous in x and continuously differentiable in y, ®(xg,yo) =0
and Dy ®(zo,yo) =: Lo has a bounded inverse. Suppose that

1, _q,—

1Zo = Dy@(@,9)l 2 < S1Lo g2y for Iz = wollx < pilly = goly <m. (3.11)
My —1—

12, y0)llz < 316 I zzyy  for llz = zollx <p. (3.12)

Then there exists y € C(B(xo, p), B(yo,n)) such that for x € B(xg,p), y = y(x) is the unique
solution of the equation ®(x,y(x)) =0 in B(yo,n). O
The proof is the same as standard proofs of IFT, see for instance [11, Section 2.2].

Lemma 3.3. Let 5o > 0 and Ao > 0 be sufficiently small. For any0 < 4§ < g and 0 < h\ < Ao

there exists 0 < n = n(6,\) —— 0 such that if u : (t1,t2) — &€ is a solution of (NLW)
5,A—0
satisfying for all t € (t1,t2)

A (t ~
fu(t) = (~Wy, o + Wil <6 0< 2D <3

A2(t)
then there exist unique functions A\1(t) € CY((t1,t2), (0, +00)), Xa(t) € CH((t1,t2), (0, +00))
and as(t) € C1((t1,t2),R) such that for

IA

g(t) :=u(t) — U\, A2, a2) (3.13)
the following holds for all t € (t1,t2):

(Zn),9(8) = (Zx,00,9(1)) = (ay, 4 9(1)) =0,
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lg@)lle <,
(/X (1) = 1 + () Aat) = 1] + |az(t)] < .
In addition,
M@+ X)) S N(g(t), A®)), (3.14)

(1) + 5] 5 s (ea0)]- Vg A0) + Mg AOF).  (.15)

with constants which may depend on R.

Proof. We will follow the same scheme as in the proof of Lemma 2.12. One additional
difficulty is that we cannot reduce by rescaling to modulation near one specific function as
we did before.

Step 1. We consider ® : £ x R? — R3 defined as
®(wo; 11, Iz, a2) = (P1(uo; 11, 12, az), Pa(uo; 11, 2, az), 3(wo; 11, Iz, az))

1 1
;:(<>le£, up — U(A1, A2, a2)), (=

)\2 Zz\ig7 ug — U()\la )\27 a2)>7 <a;27u0 - U()\17 )\25 a2)>)a

where we have already written A; instead of eli in order to simplify the notation. We will
verify that the assumptions (3.11) and (3.12) are satisfied for zg = U (A1, A2, 0), yo = (I1,12,0)
(where [; :=1log \;), p small and n = Cp with C' a universal constant. We define:

1 1
Mi1(g; A1, A2, a2) = (/\TZ,\N A0y V (A1, A2)) — (XA—IZ/\ip 9),
1 a
Miz(g; A1, A2, a2) == <)\712/\*1’ AUR? 4+ X205,V (A1, A2)),
1
Mi3(g; A1, Az, a2) = — (= 2z, 0aUy2),

A1
1
A2
1
Ao

M21(g; A1, Az, a2) == (—2x,, A0y, V (A1, A2)),

@ 1
M2a(g; A1, A2, a2) 1= (= 2x,, AU + X205,V (A1, A2)) — <)\72A—12)\727 9),

1
= _<)\722)\727 8(1U)C\L22>7
= <CY)\2, )\18)\1‘/()\1, >\2)>7
1= —(Agran,, g) + (any, AeUY2 + X205,V (A1, A2)),

= —(an,, 0UY),

Ma3(g; M1, A2, a2
M31(g; M1, A2, a2
M32(g; A1, A2, a2
Ms3(g; M1, A2, a2

~— ~— ~—  ~—

A straightforward computation yields
My~ 1, [Mia| S L M| S 1,
M| S A7, [Mao] LMyl S 1, (3.16)
Mat| S A%, |Mso| S N(g,A) +lazl, [Mas| ~ 1.
Using (3.8), (3.9), (3.10) and the fact that 0;, = \;0); we see that

M (uo — U (A1, A2, a2); A1, A2, a2) = 0, @ (uo; 11, l2, az), Jje€{1,2,3}, k e {1,2},
Mjz(ug — U (A1, A2, a2); A1, A2, a2) = 0o, @ (uo; U1, l2, a), Jj€{1,2,3},
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hence (3.16) implies that the jacobian matrix of ® with respect to the modulation parameters
is uniformly non-degenerate in a neighbourhood of U(A1, A2, a2). This yields parameters
A1(t0), A2(to) and as(to), see Remark 3.2.

Step 2. The argument from the proof of Lemma 2.12 shows that A1(t), A\2(t) and ag(t) are
C! functions of t € (t1,t2).

Step 3. From (3.13) we obtain the following differential equation of the error term g:
ﬁtg = &g(u — U()\l, )\2, az)) =Jo DE(U()\l, )\2, (Iz)) — 8tU§i'
Using (3.8), (3.9) and (3.10) this can rewritten as

8:g = J o (DE(U(A1, A2, a2) + g) — DE(US?))
L
A2

/ / a2 / 1% as (317)
N V(AL ) + N, ( AeUL + 0,V (A1, AQ)) ~ (6 + - a2) U,

The first component reads:
Ohg = g+ MNOxV (A1, A2) + My (AU + 03,V (M1, ) — (ah + %az)aanj,
= 2

hence differentiating in time the first orthogonality relation (/\%Z)\l ,g) = 0 we obtain

d Y 1 PV
0=—(Z =LA,z —(Z3,,0) + (2,00, V(AL A

dt< A5 9) )\%< 1 ,\71,9>+/\1< A7179>+)\1< A O V(AL A2))

)\/2 a2 1 / v a2
+ 2202, AU® + 05,V (M, Ag)) — — (a2 + —ag) (Zy,,0.U%),
A1 & A2 A Ao = 2
which can also be written as
Miq - )\,1 + AMis - )\/2 + AMi3 - Ao (CL,Q + /\Lag) = *<Z/\1,g>, (318)
B AL

where for simplicity we write M}, instead of M;(g; A1, A2, a2). Similarly, differentiating the
second orthogonality relation <)%QZ,\72 ,g) = 0 we obtain

d A 1 A

=—(2 =-22(A,2 2y, 0) +2(Z A1, A
0 dt< >\7279> )\%< 1 )\727g>+)\2< )\7279>+)\2< )\7278>\1V( 1, 2)>
! 1
+ S22, AU + 00,V (01, 00)) = 1= (0 + 102 ) (20, 0U32),
Ay &= A2 A9 Ao = 2
which can also be written as
1 v .
XMQl A1+ Mag - Ny + Moz - Ay (alg + )\*2(12) = —(2x:9)- (3.19)

Finally, differentiating the third orthogonality relation <a;2, g) = 0 we obtain

d, _ X _ _ a
0= (a9 = —72<A5*01A279> + (a3, J o (DEU (A1, A2, a2) + g) — DE(UYY)))

N Ay “ va _ “
+ N (ay,, 00 V (A1, Aa)) + )\—z(aAQ,AgU/\Z 00y, V(AL ) — (ag n T;) (ay,, 0.U),
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which can also be written as
1
A

14 _ a
M1+ N+ Msa- Mo+ Mss - Ao (Glz—i‘*az) = —X2(a,,, Jo(DE(U (A1, A2, a2) +9) —DE(UY?)).

A2
(3.20)
Equations (3.18), (3.19) and (3.20) form a linear system for A}, A} and Ao (a’2 + /\%ag):

Miy AMio AMi3 )‘il —(Zx59)
My My Mo Ay = —(2x2:9)

My Mz M, Aza
N M31 32 33 az + —+=

v

We will check that
[{ay,,J o (DEU (A1, A2, a2) +g) = DEUS)))| < )\121\/(9, A)(laz| +N(g. A). (3.21)
By (2.50), it suffices to show that
[{ay,,J o (DEU (A1, A2,a2) +9) —DE(UY; +9)))| < )\12/\/(9, N2, (3.22)

Without loss of generality we can assume that Ao = 1 and A\ = A, hence (3.22) is equivalent
to

(Y, —AV(A 1) + f(=V(A 1) + U™ +g) — f(U” + g))| S N (g, V). (3.23)
We have

N-2

[V, AVA D) = [(AY, VA ) S A=

because of (3.7). For the other term we use the bound
f(=VALD)+T® +9) = fU +9)| S (FU) + F(9)VA D + f(V(A1)).

From (3.6) we obtain [(Y, f(U*2)V(X, 1)) < [[VN D)2 < NM(g,\)?. Using Hélder we
compute

[ f(g) - VI S 1 (9) S llglly ™ - ATF [log Al S N (g, V)2,

N
N-2

Iy VoI

Finally, [(), fF(V(A D)) < [IF(Wa)|lz: < A"z . This finishes the proof of (3.23), hence we
have shown (3.21).
Consider the inverse matrix

—1
Py P2 Pi3 My AMia AMis
Py Py Py |:=|(31Mxn My Mg :

P31 Py Pss TMz1  Msy  Mss
From (3.16) we obtain

1P| < L [P S L [Pl 1,

[P < 1, [Pl L, P3| S 1,

1P| S N(g,A) + azl, P2l S N(g,A) +laz|, P33 S 1,
hence (3.21) yields (3.14) and (3.15).

—Az(ay,, J o (DE(U (A, A2, a2) +g) — DE(UY?)))

) |
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We finish this subsection by analyzing the stability and instability components at both
scales A1(t) and Aa(t). At the scale \a(t) we use the refined component 3y introduced in
Section 2, see (2.51).

Proposition 3.4. The functions

a1 (1) = (05,4, 9(0),  af (1) := (o, 00, balt) == (A7) 9(1))

satisfy
5o 0+ e O] S 5N @M 0) (3:24)
G (0 = Tt (0] £ 5N (0. A0 (3.25)
0 = )] S 5 a0, ) (3.26)

with constants eventually depending on R.

Proof.

Step 1. Directly from the definition of a] (t) we obtain

d _ o N@
ay (t) = — )\1()

a 1
The first term is negligible due to (3.14). We compute the second term using (3.17). We begin
by treating the terms in the second line of (3.17). Since |||+ [A5] < 1 and |af + /\%ag‘ < é
(of course Lemma 3.3 provides better estimates, but we do not need it here), it suffices to

check that
(O V (A, A2))| + (a5 0x, V(A1 A2))|
1 1 1 A =2
e, 3 AU+ es, - 0uUS) S - ()
The estimate is invariant by rescaling both A1 and Ae, hence we can assume that Ay = 1 and
A1 = A. For the first term we use (3.5) and rapid decay of ). Estimating the other terms is
straightforward.
Now consider the first line of (3.17). It follows from (2.19) that it suffices to show that

(Aeway, - 9(0)) + (o, . Drg (1),

(a3, © (DEU O, Aev ) + g) — DEWUS) ~ DPE(WA,)g))| £ 1N (.02

~ A
which is equivalent to
[(Vas FU M, Ay a2) + 9) = FURZ) = AV (A1, A2) = f/(Wa,)g)| S N (g, N

We can assume that Ao = 1 and A; = A. By the triangle inequality, it suffices to check that

[V AVA D+ F(VIA DD S N(g, A7, (3.27)

[V fUN L a2) + 9) = (U L,a2)) = f(UN Laz))g)| SN (g, 2)?,  (3.28)
[(Dx, FUN 1, a2)) = f(U) + F(VL D) SN (g, M2, (3.29)

[(x, (F(UN1,a2))) = /(W) g)l SN (g, M2 (3.30)
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Notice that [f(Wy) — f(V(A 1) S f/(WH)] - Wy = V(AN)| < f(W)), where the last
inequality follows from (3.4). Together with the fact that A(Wy) + f(W)) = 0 this implies

[(Dx, (AVOL D) + FVO D)) S VAW = VD)) + (D, FW) = F(V(A L))
SIAYAllLs + 1 (W)l SAT,

which proves (3.27).

To fix ideas, notice that while proving the remaining inequalities we can restrict our
attention to the region |z| < ¢v/A where ¢ > 0 is a small constant (the region |z| > cv/\ is
negligible thanks to the rapid decay of ))). In this region we have W) > V(A,1) 2 1 and
[U(X, 1,a2) + Wy| < $W, pointwise.

Inequality (3.29) follows immediately from

IFUN1,a2)) = fFU™) + F(V(X D) = [fU” = V(A1) = F(U2) + F(VN D) S F(WN).
We have the bound
If'(UN La2)) = FW) S (L W)+ /(U 1,a2)]) - U 1, a2) + Wil S [f7(Wh)]

(even in the case N > 6 when f” is a negative power). Using Holder and the fact that

93 "Wl e, S A" this implies (3.30)

For (3.28), we consider separately the cases N € {3,4,5} and N > 6. In the first case,
(3.28) follows from the pointwise bound

IFUN 1, a2) +9) — fF(UN1,a2)) = f (U 1,a2)g] S [/ (UN 1,a2)] - 91> + f(lg)-
In the case N > 6 we still have

[F(UN L a2) +9) = FUN Laz)) = (U L a2))g] S |F"(UN 1,a2))] - 9],

even if f” is a negative power. This yields (3.28).
This finishes the proof of (3.24) and the proof of (3.25) is almost the same.

Step 2. The proof of (3.26) is close to the proof of Proposition 2.13, but there will be more
error terms to estimate. First we need to show that

(852 — af, 9] S 5 loal - N(g. V). (3:31)
Since ||87? — a™||feox o < |ag|, the proof of (3.22) gives
(8% —ax,, Jo(DE(U (M, A2, a2)+9) —DE(US; +9)))| < )\12|a2'/\/(9,/\)2 < )\12!a2|‘/\f(97/\)-
Using (2.55), we obtain
(832 — af,. 7 0 (DEU (. \as2) + 9) ~ DEUR)) £ o lazl- Mg, ).
Similarly one obtains
(852 — a0 VO A | + (852 = af, 00,V O M) | < -l

hence (3.31) follows from (2.56), (3.14) and (3.15).
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Step 3. Suppose that
|az(t)] < N(g(t), At)). (3.32)

We have

d

3020 = (B2 2 (1)) + X5 (1)(0AB32(1) 9(1)) + a5 (1) (0uBr(r) 9)-

From Lemma 3.3 we know that |[\)| < N(g,\) and |a}] < )\%N(g, A). Hence from (2.54) it
follows that the last two terms of (3.26) are negligible.
Using (3.32), (2.52) and (3.31) we see that it is sufficient to show that

v 1
‘<0‘§27at9> - )\*2<0‘>+\279>‘ = |<04§278t9 —Jo D2E(W/\2)g>| S )\*2/\/’(% A2

We develop 0,g using (3.17). Consider first the terms in the second line of (3.17). From (3.7)
and (3.14) we have

LN 02

(o, X106 V (A1, M) S "

N

Since [0y, V (A1, A2)] S Ay 2, see (3.2), using (3.14) we get

1
[(af,, X003, V (A1, A2))| S )TQN(Q, A2

The other two terms have already appeared in the proof of Proposition 2.13, see (2.59).
Consider now the first line of (3.17). From Lemma A.4 we deduce that

. 1
(af,,J o (DE(US? + g) - DE(US2) - D*E(W1,)9))| < YQN(Q, 22,

hence it suffices to check that

a 1
(af,,J o DEU (A1, A2, a2) +9) — DE(US + g)))| < )\*2/\/(9, A2,

whose proof is the same as the proof of (3.22).

Step 4. Now we consider the case
N(g(t), A1) < laz(t)]; (3.33)

in particular ag # 0.
Recall that (see Proposition 2.10)

1 as B 1
3PS = halt) = —g s (DB, 9(1).

From (3.15) and (3.33) we obtain ’ + /\Q(t)| S % )N(g(t),)\(t)), hence

B =5

/
1
d _ _a2(t)b

d az(t
T 2ay(h) di <DE(U}\(§)))79(75)>
12 1 1

= W 2 - M(t)(i‘CDE(U;z(( > + )\Q(t) O(N(g(t), )\(t))Q)
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We compute the second term using (3.17) and (2.61):

d a a a a
a<DE(UA§),g> = (D*E(U)0,US, g) + (DE(UY),

Jo (DE(U()\l, Aa, CLQ) + g) — DE(U(/@)) + )\/16)\1‘/()\1, )\2) + )\/28)\2‘/()\1, )\2)>

(3.34)

We have to prove that |%(DE(U§§), g) ‘ < %N(g, A\)2. Until the end of this proof “negligible”
means < 2N (g, A)?.
2
From (3.7) and (3.2) it follows that

a 1\ N2 a 1\~
(DY) 00 VAL A S A2 [(DUY), 00, V(AL M) S -4

By (3.14) and (3.33), the contribution of the last two terms in (3.34) is negligible.
Next, we will show that

(D(US2), ] o (DEU (M, A, a2) + g) — DE(UL +g)))| < %N(g, N2,

We can assume that Ay = 1 and A\; = A, hence we have to prove that
(U, fUN 1, a2) + g) = f(URL +9))] S a2 (g, M), (3.35)

In the region |z| > Rv/) the integrand equals 0. In the region |z| < Rv/A we have a pointwise
bound

[F(UN L a2) +9) = fU +g)| S f (U™ + )W+ F(Wa) S (F(U™) + f'(9))Wa+ fF(W),
Recall that ||U%| 1 < |ag| and ||[U% || < 1. Thus

a a N-2
(T2, £/ (U)W S laz] - [Wall o o< mym) ~ lazlA T,
(U2, £ (@Wa)l < lazl - £ @,y - Wl

5 N2 (|| <RV/A)
_4 N-2
Slaal-llgll - A2 [log Al S las| N (g, A)?,
. N-2
U2, fV) S laz| - [[f (W)l 1 ~ |az|A 2.

This proves (3.35).
In order to finish the proof, it suffices to check that

a a a a a az
((D’E(U2)8:US2, g) + (DE(US2),J o (DE(US + g) - DE(US2)))| < )TQN(Q, N2
which is achieved exactly as in the last part of the proof of Proposition 2.13. O

3.2 Coercivity near the sum of two bubbles

We have the following analogue of Lemma 2.2:

Lemma 3.5. There exist constants Ao, > 0 such that if A\ = % < Ao and |[U — (W), —
Wi )lle <n, then for all g € & such that (2, g) = (Z),,9) = 0 there holds

1 _ _
§<D2E(U)g,g> +2((a,,9)° +(af,.9)° + (ay,.9)% + (af,.9)%) Z gz

Proof.
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Step 1. Without loss of generality we can assume that Ay = 1 and A\; = A. Consider the
operator H) defined by the following formula:

Hy = <—A - f’(V[gA) — ') 1(21) '

We will show that for any ¢ > 0 there holds
(D’E(U)g,g) — (Hxg,9)| < cllglz,  Vge&, (3.36)

provided that 7 and Ao are small enough. By Hélder and Sobolev, it suffices (eventually
changing c) to check that

1£@) = /(W) = f (W)l

Since (by pointwise estimates)

1LF/@) = f(W =Wy < max(n, f'(n)),

this will in turn follow from

LF'(W = W) = f(Wa) = W)l y <c. (3.37)

N
L2

We consider separately the regions |z| < v/A and |z| > v/A. In both cases we will use the fact
that

STk = |f(k+D)—f(k)—f O
Sk = |f(k+1) = f'(k)— )]

(0, for N > 6,

o (3.38)
| ,  for N €{3,4,5).
In the region |z| < v/A we have W < W), hence by (3.38)

|f'(W = W) = f(Wy) — f(W)] £ 1,

In the region |:1:\ > VA we have Wy, < W. If N > 6, then

|f (W = W) = f'(Wx) = f/(W)| S f/(Wa).

It is easy to check that Hf/(WA)HL%}(‘ 1>V
=

~ X\ If N €{3,4,5}, we obtain
|f'(W =Wy) = f'(Wy) = f'W)| S (W) - WA,

hence

e 1 Y o < || £ I N2
£V = W3) = 00 = POy oz S WOV, I g, o~

This finishes the proof of (3.37).
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Step 2. In view of (3.36), it suffices to prove that if A < X\g and (Z,g) = (Z),9) = 0, then

S (g, 9) +2((ay,, 0 + (05,9 + (0,.9)° + (0}, 0)%) 2 gl
Let a = (ay,g), af := (a),g), ay := (@™, g), ag := (@™, g) and decompose
g=a; Yy +afVf +a; V5 +ai Yt +k.
Using the fact that
et D)+ It )+ L5 20, D)+ 2, 0] S AT

lay | + laf'| + lag |+ lag | < llglle,
<Oz77y+>_< 7y >_<Zvy>_0

we obtain
_ _ 1 _
(07 k) + (ot k) + (o, B)* + (oK) + (2, 0)" + (20, 1) S AV glle. (3:39)
Since H) is self-adjoint, we can write

1
5<Iaug,g> (Hyk, )+ (H\(a3 Y™ + af V), k) + (Ha(a7 D5 +af V). k)

l\DM—‘w\r—t

(Ha(a Y™ + a3 V") a Y™ +az V) (3.40)
+ §<HA(CL1_3’A_ +ai Yy) a Yy +aly)
+ (HA(a3 V™ + a3 V7). ar Yy +af YY)
It is easy to see that | f/(W )yA|| 2, =0 and || f'(Wx)Y|| I — 0 as A — 0. This and
(2.17), (2.18) imply

IELY™ + 207 e + VYT + 207 v + [[ENYy + 20l + [HNYY + 20 [lew —— 0.
Plugging this into (3.40) and using (3.39) we obtain
1 _ _ 1 ~
5(Hg.9) 2 20y a5 —2ay af + S{H)k,k) —2lg]z, (341)

where ¢ — 0 as A — 0. )
Applying (2.2) with 7 = A™2, rescaling and using (3.39) we get, for A small enough,

(1_20)/ |Vk:|2dx+c/ |Vk:|2da:—/ POV E2dz > —dllgl2. (3.42)
ISP |21>v/X
From (2.3) with 75 = v/X we have
(1— 20)/ |VE|? dz + c/ |VE|? dx — / f'W)|k*dz > —2) g2 (3.43)
|z|> VA lz|< VA
Taking the sum of (3.42) and (3.43), and using (3.41) we obtain
1 _ _ ~
5{Hxg,9) > =205 a5 —2a; af +c|[klfz — 2] g]f2.

The conclusion follows if we take ¢ small enough. O
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Recall that R > 0 is the constant used in the definition of the localized bubble V' (A1, A2),
see (3.1).

Lemma 3.6. There exist constants \g,n, Ro,c > 0 such that if A = ;‘—; < Ao, |a2] < n and
R > Ry, then
N—-2
E(U(/\l, Aa, ag)) > 2E(W) +ecATz .

Proof. Without loss of generality we can assume that Ay = 1, A\ = X (it suffices to rescale).
The conclusion follows from [39, Lemma 2.7] applied for u* = —U?? (the proof given there
is valid for N > 3). O

Remark 3.7. In Lemma 3.5 the fact that the bubbles have opposite signs has no importance,

but it is crucial in Lemma 3.6.

3.3 Conclusion of the proof

Proof of Theorem 1. Suppose by contradiction that w(t) : [0,7) — & is a solution of (NLW)
such that (1.4) holds. Formula (1.5) and Lemma A.5 imply

QE(W) = E(U()\l, Aa, ag) + g) = E(U()\l, Aa, ag)) + (DE(U()\l, Aa, az)),g)

1, ) (3.44)
+ 5 (D EU (M A2, a2))g. 9) + olllgll¢)-
Step 1 — Coercivity. We will prove that for all ¢ there holds
2a2(1)b2(t) + 2(ay (1)* + af (1) + b2(1)?) 2 N (g(t), A(t))? (3.45)

(the functions af, a; and by are defined in Proposition 3.4).
From (2.52) we have |ba(t)? — (aL(t),g(t)>2| < laz| - |lg]|?>. Since <a;2(t),g(t)> = 0,
Lemma 3.5 and Lemma 3.6 yield

E(U(A(t), Aa(t), a2(t)) — 2BE(W) + %<D2E(U(>\1(t)7 Aa(t),a2(t)))g(t), g(t))
+2(ay () +af (1) + b2(6)?) > - N(g(1), A(1))?,

for R > Ry, with a constant ¢ > 0 independent of R.
Recall that 2a2(t)ba(t) = —(DE(UYZ,g). In view of (3.44), in order to prove (3.45) it
suffices to verify that

{(DE(U (A, Ao, az)) — DE(US), g)| < = - N(g. )2 (3.46)

N O

provided that R is large enough. Without loss of generality we can assume that Ay = 1 and
A1 = \. First we show that

[((DE(U(\1,a2)),9) + (DE(V (A1), g) — (DE(U®), g)| < N(g, ). (3.47)

This is equivalent to
/\f(U“"’ =~V D) + F(VA D) = f(U®)] gl dz < N (g, ).
By Holder and Sobolev inequalities, it suffices to check that

[F=VAD) +U%) + fF(VA L) = FUP)] an <A,

LN+2
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which follows from the inequality
IF (VD +T™) + (VA1) = fU)] S f(Wa) +1
Next, we prove that if R is large enough, then
IDE(V (A 1))||er < % AT (3.48)

From (3.3), if R is large then

& N—=2
IA0F VO )0 S £ A (3.49)
We will prove that
N—-2
1FW) ~ SV D) g, < A, (3.50)
In the region |z| > RvV/A we have V(\,1) = 0 and
N+2 N—2
IOV s = O ~ AT A

In the region |z| < RVA we use the pointwise bound |f(Wy) — f(V(A, 1) < f/(Wy) - [Wy —
V (A, 1)|, the fact that Wy — V(A, 1) is bounded in L* and the bound

N2
LF (W] LB aicrvm) S °

Now (3.48) follows from (3.49), (3.50) and AWy + f(W)) = 0.
Estimate (3.46) follows from (3.47) and (3.48).

Step 2 — Differential inequalities. Observe that

T, 4 . T, 4 |
t= t = +o00. 3.51
/0 MO R0 (3:51)

The proof is the same as the proof of (2.64).

For m € N, m > myg, let t = t,, be the last time such that N (g(¢),\(¢)) = 27™. By
continuity, t,, is well defined if my is large enough.

By Proposition 3.4, there exists a constant C7 such that

01> C-NaWA0) = Glef0)]> ghoslaf O Ve.T).  (352)

Suppose that |a] (tm)| > 2C1-N(g(tm), A(tm)). Since, by the definition of t,,,, N'(g(t), A(t)) <
N(g(tm), M(tm)) for t > t,,, a simple continuity argument yields |a] (t,,)| > 2C1-N(g(t), \(t))

for all ¢ > t,,. By (3.52) and (3.51), this implies |a; ()] — +oo as t — T, which is absurd.
The same reasoning applies to b(t), hence we get

jaf (tn)| S N (g(tm)s At ))?, [b(tm)] S N (g(tm), Altm))?.
Thus (3.45) forces

|ay (tm)] 2 N (g(tm), Atm)) > N(g(tm), Altm))*. (3.53)
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Consider the evolution on the time interval [t,,—1,%,,]. By definition of ¢,,—; and t,, for
t € [tm—1,tm] there holds N'(g(t), A(t)) < 2-N(g(tm), A(tm)), hence (3.53) and Proposition 3.4
allow to conclude that

d v
Slar ) < =2 a7t Vit € [tm1s bl
dt‘al()‘— 2)\1(t)’a1()’7 e[ 1 ]

Since this holds for all m sufficiently large, we deduce that there exists ¢ty < T such that

toyd
ver ) Vit > to.

i ()] < Jar o) -exn (= [ 32T

Let t € [tm—1,tm]. At time t,, all the terms of (3.45) except for the term 2a; ()? are absorbed
by the right hand side, hence N (g(tm), A(tm)) S |aj (tm)]- Using the definition of ¢,,—1 we
obtain

t

By (3.14), this implies

X0+ 0l ew (- [ 25

t
Dividing both sides by Ai(t) and integrating we obtain that log A1(t) converges as t — T..
Dividing both sides by A2(t), using the fact that \y(t) > A1 (¢) for ¢t > to and integrating we
obtain that log A2(t) converges as t — T',. Hence log A(t) converges, which is impossible. [

Vit > 1.

Remark 3.8. An analogous proof using the linear stability and instability components a;;

and a instead of the refined modulation and instability component 832 would yield A2(0) —
Ao € (0,400) (hence Ty = +o00) and [logAi(t)] 2 t as t — +oo, but would not (at least
directly) lead to a contradiction.

A Elementary lemmas

Lemma A.1. Let ¢ : R — R be an analytic function such that (0) = 0 and ¢'(0) # 0.
Then there exists a local analytic diffeomorphism y = p(z) near x = 0 such that ¢(0) = 0,
¢'(0) =1 and

¢'(z)  ¥(@) = ¢(z) - ¥(0). (A.1)
Remark A.2. Equation (A.l) expresses the fact that the change of variable y = ¢(x)
transforms the differential equation & = ¥ (z) into y = ¢'(0)y.

Proof. Without loss of generality we can assume that ¢'(0) = 1. We set:

p(a)i=via) - oxp ([ ’ 1;b(i')(z)dz)

and it suffices to verify that ¢ has the required properties. O

Recall that we denote f(u) := |u\ﬁu and R(v) := f(W 4+v) — f(W) — f'(W)v. Notice
that f’ is not Lipshitz for N > 6.
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Lemma A.3. The mapping R is analytic from By« (0,n) to itself if k > ko and n is small.
Its derivative is given by

ZY*) 3 D,R = (h (f(W +v) — f/(W))h).
The same conclusion holds if we replace Y* by BCy for v > 0.
Proof. We have an isomorphism
d:YF 5 HY  d0w) =1+ |z]f),
so it suffices to show that ® o R o @~ ! is analytic from By« (0,7) to itself. Let w € Byx (0, 7).

Let f(1+2)=]1+ z\%(l +2) = > a,z". The series converges for |z| < 1. We have
a series expansion:

- P 1wy & 1 na
R(e w)_ganwjv S SRR TR BN P g ;2“"<W.(1+|xyk)> w
6—N
We see that % € H* if k is large enough and that the last series converges strongly in
H* if n is small.
In the case of the space BC5 the proof is the same. O

Lemma A.4. There exists k = k(N) € N and n =n(N) > 0 such that if { € Y* and |a| <,
then for all g € H' such that ||g|| ;1 < n there holds
(W, f(U* +9) = FU*) = F'(U)g)| S llall 7
|, (f'U) = F W) gl < lal - llgll g (A.2)
with a constant depending on .

Proof. For N € {3,4,5} this follows directly from the Sobolev and Hélder inequalities (even
for ¢ € H').
For N > 6 we use the pointwise bound
|f(U+g) = fU) = F(Ug S 1" (U)] - gl
Here, f” is a negative power. Since U® has slow decay, ¢ - |f"(U%)| € L7 if Y eYFand k is

large enough. The conclusion follows from the Holder inequlity.
The proof of (A.2) is similar. O

Lemma A.5. Let v := min (3,%). For any M > 0 there exists C > 0 and n > 0 such
that if |v|le < M and ||glle <, then

|E(v+g) — E(v) — (DE(v),g) — 5 (D*E(v)g,9)| < Clg|2

_ 1
2
Proof. In dimension N € {3,4,5} this follows from the pointwise inequality
1
[F(k+1) = F(k) = fR)L = S P WP S IR+ IFQ)] ki IER, (A-3)
whereas for N > 6 from

|F(k+1)— F(k)— f(k)l — %f’(k)lQ‘ S |F()], k,leR. (A.4)

In order to prove bounds (A.3) and (A.4), notice that they are homogeneous and invariant by
changing signs of both k£ and [, hence it can be assumed that k£ = 1 (for £ = 0 the inequalities
are obvious). Now for |I| < % the conclusion follows from the asymptotic expansion of F/(1+1)
and for |I| > 3 the bounds are evident. O
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