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Résumé

Ces trente dernières années, l’ensemble des pertes économiques engendrées par
les catastrophes naturelles a crû à un rythme plus soutenu que la richesse mon-
diale. Cette évolution s’explique par l’accroissement de la population dans les
régions exposées aux catastrophes naturelles, ainsi que par la faiblesse des ac-
tions de prévention mises en place dans ces régions. Le changement climatique
laisse présager une accélération de cette évolution avec des risques accrûs de tem-
pêtes, d’inondations et de sécheresses entre autres. Par ailleurs, les catastrophes
naturelles sont faiblement assurées puisque seulement un tiers environ des pertes
mondiales sont aujourd’hui couvertes. Bien que la part assurée ait augmenté au
cours des dernières décennies, le niveau moyen de couverture reste encore trop bas
pour limiter la variabilité de la richesse des populations concernées. C’est pourquoi
la réduction des pertes engendrées par les catastrophes naturelles et l’accroissement
des couvertures d’assurance sont des enjeux majeurs.

Les thèmes de cette thèse sont la prévention et l’assurance des catastrophes
naturelles dont les faibles niveaux actuels sont dus aux nombreuses imperfections
de marché mais aussi aux déficiences des politiques publiques, comme l’explique
le chapitre introductif de ce travail. En s’appuyant sur la modélisation des com-
portements individuels, des marchés et des politiques publiques, cette thèse a pour
objectif d’étudier quels sont les actions de prévention et les mécanismes d’assurance
qui permettraient de diminuer efficacement les pertes et aussi la variabilité de la
richesse pour les agents averses au risque.

Le chapitre 1 porte sur les choix de prévention dans le contexte du développe-
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Résumé

ment des villes. Il résulte du modèle d’économie urbaine développé dans ce chapitre
que les zones risquées sont plus développées près du centre-ville que loin du centre-
ville et que l’investissement dans la résilience des bâtiments mène à des villes plus
compactes. Ce modèle met aussi en évidence que subventionner les assurances
entraîne une exposition excessive aux risques en augmentant la densité dans les
zones les plus risquées et en abaissant les efforts de prévention. Cette analyse
illustre les effets pervers des subventions en ce domaine et le rôle que doivent jouer
les politiques publiques urbaines telles que les restrictions de densité ou les codes
de construction pour restreindre ces effets pervers.

Les chapitres suivants abordent la problématique des mécanismes d’assurance
lorsque les risques individuels ne sont pas indépendants. En effet, une des car-
actéristiques majeures des catastrophes naturelles est qu’elles affectent simultané-
ment de nombreux agents économiques.

Le chapitre 2 s’attache à développer un modèle d’équilibre général où les agents
économiques sont averses au risque et sont exposés à des risques individuels po-
tentiellement dépendants. Il y est établi que, sans imperfection de marché, une
allocation Pareto-optimale des risques est atteinte en présence d’un marché com-
pétitif de compagnies d’assurance et d’un nombre restreint d’actifs financiers. Ce
résultat est valide sous réserve que la responsabilité des agents économiques dans
leurs engagements soit illimitée. En pratique, leur responsabilité est limitée et les
politiques publiques requièrent que des réserves financières soient constituées pour
limiter les défauts de paiement dans les états catastrophiques. C’est pourquoi les
chapitres 3 et 4 abordent la question du coût des réserves financières et de leur
impact sur la demande de couverture et sur la forme optimale des contrats qui en
découle.

Le chapitre 3 étudie l’impact du coût des réserves financières sur le prix de
l’assurance et le taux de couverture demandé par des agents averses au risque. Si
le prix de l’assurance est composé d’une prime correspondant au risque individuel
et d’une surprime correspondant au coût des réserves financières (qui permettent à
l’assureur de faire face au risque agrégé des assurés), il apparaît qu’à risque collectif
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donné, le poids de la surprime est d’autant plus fort dans le prix de l’assurance
que la probabilité individuelle d’être sinistré est faible. Dans ces conditions, il est
établi qu’à risque collectif donné, le taux de couverture demandé par les agents
averses au risque décroît quand la probabilité individuelle décroît.

Le chapitre 4 analyse la forme optimale des contrats d’assurance pour une
communauté d’agents qui sont averses au risque et qui sont exposés à des risques
individuels corrélés. S’il n’est pas coûteux pour la communauté de constituer les
réserves nécessaires, le contrat optimal pour un risque individuel donné consiste
en une couverture totale, quelques soient les pertes collectives, à laquelle s’ajoute
un dividende qui permet de redistribuer le cas échéant les réserves non utilisées.
Dans le cas contraire, le contrat optimal pour un risque individuel donné consiste
en une couverture seulement partielle quand les pertes collectives sont élevées.
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Introduction

People and assets are exposed to natural risks which have weather, geological,
biological or spatial origin. For instance, weather1 processes can lead to storms,
floods, droughts and extreme temperatures; geological mechanisms can generate
volcanic eruptions and earthquakes with potential tsunamis; while biological risks
involve epidemics and spatial risks include asteroids. These natural phenomena
are called natural disasters when they have significant human or economic conse-
quences within affected regions.2 Depending on the socio-economic context, natu-
ral disasters may affect population from a few people to hundred millions of people
and generate a variety of economic damage, ranging from thousands to over hun-
dred billions of dollars. The worst natural disasters in terms of affected people are
weather-related in densely inhabited regions of Asia, in particular large droughts
in India and large floods in China. The worst natural disasters in terms of eco-
nomic losses have both geological and weather origins and are more widespread in
the world. The costliest event is the 2011 earthquake which generated the tsunami
hitting the Fukushima nuclear power plant in Japan (210 billion dollars of losses).
The second costliest is hurricane Katrina which stroke the region of New Orleans
in United States in 2005 (125 billion dollars of losses). Figure 1 illustrates the 15
worst natural disasters in terms of economic losses3, in the world up to now.

1"Weather" is used here in a wide sense which includes meteorological, hydrological and cli-
matological phenonema.

2Information and data on natural disasters in the world can be found on the EM-DAT website
of the International Disaster Database (http://www.emdat.be/).

3The economic losses shown on the different graphs include only direct losses, such as the
destruction of assets. Indirect losses, such as the loss of production due to the destruction of
productive assets, are not included.
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Introduction

Figure 1: Worst natural disasters in terms of economic losses (Source: EM-DAT
database).

World economic losses due to natural disasters have increased exponentially
in the last three decades and a major part of these losses are weather-related, as
shown by figure 2. For weather-related natural disasters, the real annual growth
rate of losses has been of 4.1% in average since 1980, which is 1.1% above the world
GDP growth rate (Aon Benfield, 2014). The fast increase of losses can be explained
by increasing population in risky areas and low prevention measures in those same
regions. In particular, nearly half of the world population lives nowadays within
150km of an ocean coastline and can be subject to floods, as it happened in 2005
with hurricane Katrina in New Orleans or more recently in 2012 with hurricane
Sandy in New York. Beyond relocation in safer areas, prevention actions can
consist for example for flooding risks in elevating or waterproofing structures or
in building dams or levees. With rising sea levels, more severe rainfall patterns
and higher temperature due to climate change, the trend of losses due to weather-
related natural disasters is even expected to worsen in the coming years (IPCC,
2014). In this perspective, reducing natural disaster losses through prevention
actions has become a main challenge for our societies.

2
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Figure 2: World total losses due to natural disasters (weather-related or not)
(Source: EM-DAT database)

Moreover, losses due to natural disasters are weakly insured in the world, as
illustrated by figure 3 for weather-related natural disasters. Even though insured
losses have increased faster than total losses with an average annual rate of 7.7%
since 1980, insured losses still represent only a third of total losses (Aon Benfield,
2014). In a highly developed country such as the USA, only 45% of households
currently have insurance for weather-related risks. The low penetration of insur-
ance can generate undesirable wealth fluctuation for affected population. In this
context, increasing insurance coverage for natural disaster risks is another main
challenge.

The present thesis addresses prevention and insurance issues relative to natural
disaster risks. Prevention and insurance are valuable when their costs of imple-
mentation are lower than their benefits obtained through the decrease of losses
and wealth variability for risk-averse agents. In an ideal decentralized world, the
optimal level of prevention would be set by agents (such as households and firms)
and the optimal level of insurance would be purchased by them through efficient
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Figure 3: World total and insured losses due to weather-related natural disasters
(Source: AON Benfield (2014)).

insurance markets, without public intervention.4 However, there are market im-
perfections for natural disaster risks and public intervention has a role to play in
this perspective (Gollier, 2005; Kunreuther & Michel-Kerjan, 2009). For instance,
some preventive actions can be done at an individual level, such as elevating houses
or making them waterproof, but others have to be done at a collective level, such
as building dams or levees. The public good nature of these prevention actions
or the externalities generated by them justify public intervention. There are also
information issues related to natural disaster risks. Agents can be poorly informed
about risks and public intervention can play a role to acquire and transfer infor-
mation to them in order to improve behaviors both in terms of prevention and
insurance. Agents can also lack information on the capacity of insurers to pay
claims and public intervention can play a role to constraint insurers to secure
capital and pay claims in catastrophic states. Beyond efficiency issues, public in-
tervention is concerned with redistribution issues. The lack of insurance coverage is

4The optimal level of prevention corresponds to the marginal cost-benefit tradeoff for a preven-
tion measure and the optimal level of insurance corresponds to the full elimination of individual
risks and the share of collective risks.
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Introduction

often partly compensated by insurance subsidization and public relief. In the end,
low current levels of prevention measures and insurance coverage can be explained
by numerous market imperfections and poorly-designed public policies. Through
modeling of individual behaviors, markets and public policies, this thesis aims at
characterizing prevention actions and insurance mechanisms that could mitigate
efficiently losses and wealth variability for risk averse agents. Because risk preven-
tion choices and risk sharing mechanisms interact, it is essential to analyze them
together (Dionne, 2013). Indeed, insurance prices affect the preventive behavior
of risk exposed agents and prevention measures affect the level of required capital
for insurance coverage.

The first part of my thesis, corresponding to chapter 1, deals with the impact of
risk sharing policies on preventive behaviors. The underestimation of risks and the
expectancy of public relief lead risk exposed agents to underinsure and underinvest
in prevention (Kunreuther, 1984, 1996; Raschky & Weck-Hannemann, 2007). In
this perspective, many governments have implemented public policies to increase
risk mutualisation and decrease distress after natural disasters. For instance, pub-
lic reliefs have been implemented in Canada and Germany, while public insurance
systems with subsidization have been implemented in the USA (National Flood In-
surance Program) and France (CatNat program) (Grislain-Letrémy & Peinturier,
2010; Michel-Kerjan, 2010). Even though these policies can partly improve risk
sharing, they lead to even less prevention measures because of the lack of incentives
(Courbage et al., 2013). This has been observed for example in the USA with the
NFIP (Bagstad et al., 2007; Browne & Hoyt, 2000). To increase insurance purchase
and prevention measures, more constraining policies can also be implemented. For
instance, the purchase of insurance can be made mandatory to have access to
credit and prevention measures can be enforced through urban policies such as
zoning restrictions and building codes. However, in the USA, insurance contracts
required for access to credit are withdrawn after a few years and constraining ur-
ban policies are still weakly implemented (Michel-Kerjan et al., 2012; Kunreuther
& Michel-Kerjan, 2013), which confirms that insurance and prevention policies
still have to be improved.
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Introduction

Chapter 1 of my thesis, entitled Risk prevention in cities prone to natural haz-
ards, analyzes how insurance policies affect preventive choices in terms of location
and resilience in the context of urban development in risk exposed regions. Cities
located in regions prone to natural hazards such as flooding are not uniformly ex-
posed to risks because of sub-city local characteristics. Spatial heterogeneity thus
raises the issue of how these cities have spread and should continue to develop.
Chapter 1 investigates these questions by featuring an urban model in which each
location is characterized by a transport cost to the city center and a risk expo-
sure. At market equilibrium, riskier areas are developed nearer to the city center
than further away and investment in building resilience leads to more compact
cities. At a given distance to the city center, riskier areas have lower land prices
and get lower household density and higher building resilience. Actuarially fair
insurance generates optimal density and resilience, while an increase of insurance
subsidization leads to an increase of density in the riskiest areas and a general
decrease of resilience. This analysis highlights the limits of insurance subsidiza-
tion in the development of cities and addresses the role of public policy in terms
of urban development, such as density restrictions or building codes, to limit risk
over-exposure.

The second part of my thesis, which includes chapters 2, 3 and 4, deals with
risk correlation issues and the ability of insurers to pay claims. Because natu-
ral disasters often have wide spatial impacts with tremendous losses, insurers are
themselves exposed to risks. To limit the default of insurers in paying claims in
catastrophic states, insurers are required to secure high levels of costly financial
reserve. For natural disaster risks, the main issue for the supply of insurance
thus rests on reinsurance and capital market imperfections (Froot, 2001; Jaffee
& Russell, 1997). Because insurers have to secure costly capital to face uncer-
tain catastrophic losses, insurance prices can be high and subject to fluctuations
through time (Bernard, 2013; Weiss, 2007; Winter, 1994). Following years with
high losses, private insurers increase their premiums to lower their liabilities and
rebuild their reserves because purchasing high level of external capital through
reinsurance or capital markets would be costlier. The premium increase was par-
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ticularly strong at the beginning of the nineties because of hurricane Andrew and
Northridge earthquake respectively hitting Florida in 1992 and California in 1994
(Kousky, 2010). In this context, market-based solutions have emerged through
insurance-linked securities such as Cat-bonds which give a better access to capi-
tal to insurers and reinsurers (Cummins, 2006; Cummins & Barrieu, 2013). Also,
public intervention can play a role to improve weak private insurance supply (Char-
pentier & Le Maux, 2014). For instance, after hurricane Andrew and Northridge
earthquake, Florida and California implemented public reinsurance through the
Florida Hurricane Catastrophe Fund and the California Earthquake Authority.

Chapter 2 of my thesis, entitled The role of insurance companies in a risky econ-
omy, analyzes the role of insurance companies when individual risks are potentially
correlated. In a classic Arrow-Debreu economy, complete financial markets consist
in one financial asset per state of nature, which allows a Pareto optimal allocation.
Yet this setting requires a prohibitive number of financial assets. This limit finds
its solution in the emergence of insurance companies. Chapter 2 analyzes their
role in a model with multiple commodities and agents having different preferences
and distributions of endowments, with potential risk dependence across agents. In
this chapter and in the following chapters, it is assumed that individuals are risk-
averse, rational and well-informed about risks. Pareto optimality is reached with
stock insurance companies in competition plus one financial asset for every state
of nature corresponding to the same aggregate endowments. In this case, agents
can fully cover their endowment risks thanks to fair multi-risk contracts supplied
by insurance companies. For a given endowment risk, the higher the correlation
with the aggregate risk, the higher the premium. Also, agents can choose their
share of the aggregate risk through the insurance stock shares and the financial
assets. The latter allow agents to hedge commodity price risks due to the aggre-
gate risk. In this setting without market imperfections, individual risks are fully
covered even though there might be risk correlation. However, because of liability
issues, insurers are required in practice to secure capital. In this case, if capital is
costly to secure, correlated individual risks are more difficult to insure, which is
analyzed in the following chapters.

7
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Chapter 3 of my thesis, entitled Insurability of low-probability catastrophic risks
and co-authored with Alexis Louaas, analyzes how the probability of a risk affects
the purchase of insurance by risk-exposed individuals. With standard insurance
costs and competitive pricing, agents are more inclined to insure for low-probability
risks than for high-probability risks. Yet, these observations are at odds with the
low insurance take-up rates for low-probability catastrophic risks. The explanation
is that the risks for which underinsurance is most prevalent display substantial
aggregate uncertainty. This uncertainty generates an additional fixed cost for
insurers due to required financial reserves, which increases the insurance loading
factor when the loss probability decreases and eventually discourages people from
purchasing coverage. The analysis thus explains why some low-probability risks
such as damages from lightnings are efficiently handled by the insurance sector
whereas others, such as earthquakes or floods, are not.

Chapter 4 of my thesis, entitled Pooling natural disaster risks in a community
and co-authored with Alexis Louaas, examines the optimal design of insurance
contracts when individual risks are correlated across risk-averse agents in a com-
munity. The community is equipped with a public insurer which supplies insur-
ance contracts to its members and has access to costly reinsurance outside the
community. Without transaction costs inside the community, risk-averse agents
fully insure against their individual risk and share collective risk by getting some
dividend in normal states. With premiums raised ex-ante and generating an op-
portunity cost, they only partially insure against their individual risk, getting a
lower indemnity in catastrophic states than in normal states, and potentially get
some dividend in normal states. We illustrate the emergence of the latter contracts
for the community of the Caribbean countries exposed to natural disaster risks.

8



Chapter 1

Risk prevention in cities prone to
natural hazards

Abstract: Cities located in regions prone to natural hazards such as flooding are
not uniformly exposed to risks because of sub-city local characteristics (e.g. topog-
raphy). Spatial heterogeneity thus raises the issue of how these cities have spread
and should continue to develop. The current paper investigates these questions
by using an urban model in which each location is characterized by a transport
cost to the city center and a risk exposure. Riskier areas are developed nearer to
the city center than further away. Investment in building resilience leads to more
compact cities. At a given distance to the city center, riskier areas have lower land
prices and get lower household density and higher building resilience. Actuarially
fair insurance generates optimal density and resilience. An increase of insurance
subsidization leads to an increase of density in the riskiest areas and a general
decrease of resilience. In this case density restrictions and building codes have to
be enforced to limit risk over-exposure.

Keywords: natural disaster risks, city development, insurance, prevention, ur-
ban density, building resilience.

JEL classification: Q54, O18, G22, R52, H23.
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Chapter 1. Risk prevention in cities prone to natural hazards

1.1 Introduction

In October 2012, hurricane Sandy hit the East Coast of the USA, killing 54 people
and generating more than 50 billion dollars of losses.1 The damage was tremendous
in Greater New York: 17% of the city was flooded and 150,000 homes were dam-
aged (The Economist, 2012, 2013). Insurance indemnities were paid to affected
households that were insured, and relief had to be organized for those that were
not covered. People whose houses were destroyed wondered if they should abandon
or rebuild them, and if so, how high they should elevate their new homes. Govern-
ments wondered if they should authorize development in risky areas like Oakwood
Beach on Staten Island, and if so, according to which building codes. Sandy is
only one example of extreme meteorological events that have caused large flood-
ing damages in the world in the recent years. Among those, Xynthia superstorm
affected the European coast in February 2010, hurricane Katrina struck the New
Orleans region in the USA in August 2005 and Maharashtra heavy rains flooded
the area of Mumbai in India in July 2005. Each time, these events and their
devastating losses have raised the same questions about the necessity of better
managing urban development in areas prone to natural hazards.

Most risk-prone regions were initially urbanized because of the many advan-
tages they offered to communities. In particular, many cities are located near
seas and/or rivers, as they can provide natural resources and transport facilities.
Nowadays, many industries and services rely on these specificities, and agglom-
eration forces continue to drive urbanization at these locations (Fujita & Thisse,
2002). However, these locations are often double-edged because of exposure to
flooding in the case of extreme meteorological events. Natural hazards coupled
with expanding urbanization have already increased losses in the last few decades,
and these are expected to escalate with the rising sea level and more severe rainfall
patterns due to climate change (IPCC, 2014). At a sub-urban scale in risk-prone
cities, locations are differentiated not only by their distance to valuable amenities
such as the city center but also by exposure to risk due to local characteristics

1http://www.emdat.be/
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(e.g. topography for flooding risks). The sub-city spatial heterogeneity raises the
essential question of how these cities have spread until now and how they should
continue to develop in the future.

The paper investigates these issues by using an urban model in which each
location is characterized by a transport cost to the city center (or to other valu-
able amenities) and a risk of natural hazard (such as flooding). It focuses on the
impacts of risk spatial variation and insurance subsidization on city development.2

My results are the following. Riskier areas are developed nearer to the city center
than further away. Investment in building resilience leads to more compact cities.
At a given distance to the city center, riskier areas have lower land prices and get
lower household density and higher building resilience. Actuarially fair insurance
promotes the optimal development of the city in terms of risk prevention, with
optimal household density and optimal building resilience. I analyze how an in-
crease of insurance subsidization affects the city development. If the subsidy is
financed by households in the city, it leads to an increase/decrease of density in
the riskiest/safest areas. If the subsidy is financed by households in the country,
it leads to a general increase of density in the city because it attracts households
from other cities. Moreover, in any case, an increase of insurance subsidization
leads to a general decrease of building resilience in the city. These results show
that density and zoning restrictions as well as building codes have to be enforced
in the city to limit risk over-exposure when insurance is subsidized.3

Academics in insurance economics have shown much interest in natural dis-
asters, in particular because of the numerous imperfections in natural disaster
insurance markets (Kunreuther, 1984; Kunreuther & Michel-Kerjan, 2009). On

2In the present framework, households deliberately purchase full insurance because they are
risk-averse and insurance is supplied at or below actuarially fair prices. The model does not
consider charity hazard or risk perception bias. Note however that the expectancy of assistance
or the under-estimation of risk should have effects similar to insurance subsidization on the city
development in terms of risk over-exposure.

3Density restriction at one location consists in limiting urban density while zoning restriction
at one location consists in completely forbidding urban development. Building codes consist in
imposing a minimal level of building resilience.
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the supply side (Charpentier & Le Maux, 2014; Jaffee & Russell, 1997), diver-
sification issues lead private insurers to supply contracts at prices largely above
actuarially fair rates. On the demand side (Botzen et al., 2015; Kunreuther et al.,
2007; Raschky & Weck-Hannemann, 2007), households under-insure even if in-
surance is fair, in particular because they under-estimate the risk or they expect
free assistance (charity hazard). In this context, policy makers have implemented
natural disaster public policies such as the National Flood Insurance Program
(NFIP) in the USA and various programs in Europe like the CatNat in France
(Bouwer et al., 2007; Kunreuther & Michel-Kerjan, 2009). To deal with diversifi-
cation issues, public insurance/relief can complement the weak private insurance
supply (e.g. in the USA) or public reinsurance can help private insurance to sup-
ply contracts at lower prices (e.g. in France). However, these policies cannot solve
the weak insurance demand issues without subsidizing insurance or/and making it
mandatory. For instance, the NFIP in the USA subsidizes contracts in risky areas
thanks to taxpayers, and insurance is requested for access to loans. Meanwhile,
the CatNat Program in France subsidizes contracts in risky areas with the other
contracts and insurance is mandatory to avoid adverse selection. If the advantage
of subsidization is to improve insurance demand and risk sharing (Browne & Hoyt,
2000; Grace et al., 2004), the disadvantage is to lead to risk over-exposure because
it does not provide the right incentives for individual risk prevention (Bagstad
et al., 2007; Courbage et al., 2013; Picard, 2008).

Academics in urban economics have focused on natural disaster issues in the
context of city development. As modeled first by Alonso (1964), households spread
out in the space surrounding the city center to commute there for consumption or
work, and those settled further away incurring higher transport costs are compen-
sated by lower land rent, which explains the increasing housing lot sizes and the
decreasing density with distance to the city center. Polinsky & Shavell (1976) and
Scawthorn et al. (1982) add in their model the existence of a negative amenity
such as exposure to natural hazard. These models show that, at a given distance
from the city center, the land price decreases when the loss exposure increases.
Many empirical studies have confirmed this effect for natural disaster risks, as
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summarized in the meta-analysis by Daniel et al. (2009). Because households do
not want to incur too much transport cost or natural disaster cost, Frame (1998)
demonstrates that riskier areas are developed nearer to the city center than further
away, and some risky areas inside the city outer boundary may stay undeveloped.
The tradeoff between transport cost and natural disaster cost has been observed
empirically for instance by Smith (1993) and Atreya & Czajkowski (2014). Frame
(1998) also points out that insurance subsidization decreases the land price dif-
ference between risky areas and safe areas, as confirmed empirically by Shilling
et al. (1989). Furthermore, Frame (2001) shows theoretically that risk aversion
can lead households to under-develop risky areas. However, many empirical stud-
ies, such as Browne & Hoyt (2000), Harrison et al. (2001) and Michel-Kerjan et al.
(2012), suggest that households are more inclined to risk over-exposure because
of insurance subsidization, risk under-estimation or charity hazard, than to risk
under-exposure because of risk aversion.4 In this case, urban regulation should be
enforced to limit over-exposure, in particular in terms of zoning/density restrictions
and building codes (Bagstad et al., 2007; Kunreuther, 1996; Kunreuther & Michel-
Kerjan, 2013). In an urban theoretical model with risk exposure but no transport
costs, Grislain-Letrémy & Villeneuve (2014) show that zoning restrictions can be
Pareto improving in the case of full insurance subsidization. In empirical analy-
sis, Czajkowski & Simmons (2014) and McKenzie & Levendis (2010) respectively
observe that investments in building resilience reduce natural disaster losses and
increase housing values.

The present paper aims to further analyze the role of natural hazard exposure
and insurance subsidization in the development of risk-prone cities with transport
costs. Relative to the previously cited theoretical papers on urban economics, the
present paper adds building resilience modeling and analyzes how densities and

4Browne & Hoyt (2000) observe that households do not usually buy insurance at fair prices,
Harrison et al. (2001) notice that the housing rent difference between risky and safe areas is below
the expected loss difference and Michel-Kerjan et al. (2012) point out that insured households
let their insurance contract lapse after a few years even when those are below fair prices. All
this would not be possible if risk aversion was the dominating factor.
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resiliences are affected by natural hazard exposure and insurance subsidization.
This analysis is essential from the perspective of implementing efficient urban
regulation, in terms of zoning restrictions, density restrictions and building codes,
for cities with transport costs and natural disaster risks. The rest of the paper is
organized as follows. Section 2 sets up the model. Section 3 provides an analysis
of city development. Section 4 provides an analysis of the impact of a change in
insurance subsidization. Section 5 concludes.

1.2 Risk-prone city model

I consider a static model of a city with commuting transport costs and natural
hazard exposure, in the spirit of Frame (1998, 2001), Polinsky & Shavell (1976)
and Scawthorn et al. (1982). The city is inhabited by N identical households.5

The sub-city scale grid is modeled by a two-dimensional continuous space with the
coordinate system x = (x1, x2). Because of spatial heterogeneity due to transport
costs and natural hazards, all variables potentially depend on location x. Moreover,
each variable has a unique value at each location x because I consider identical
households and identical housing developers. The city has a pre-established center
located at x = (0, 0), also called the central business district where work and
consumption activities are concentrated.

Households compete to spread out in the space around the city center and
commute between their housing location and the city center. They choose their
housing location x and the quantity of goods purchased in the city center, aggre-
gated in a composite good denoted z(x). Besides composite good consumption,
households value their housing good consumption, characterized by lot size, mea-
sured in land area unit and denoted s(x).6 The utility function of each household,
denoted v(.), depends on z(x) and s(x) and is classically supposed to be twice con-

5I consider identical households in order to analyze the average development of the city.
Inequality or asymmetric information issues are not the purpose the analysis.

6The lot size for one household is the land area for this household. For example, for a building
occupying 400m2 of land and inhabited by 10 households, the lot size of one household is 40m2.
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tinuously differentiable, strictly increasing in each argument (with ∂zv(0, s) = ∞
and ∂sv(z, 0) = ∞) and globally concave. The composite good supplied in the city
center is considered as the numéraire (i.e. price equal to 1 for one unit of good)
and the housing good supplied by housing developers at location x has a housing
unit price denoted ph(x) (i.e. price for one land area unit with housing). The
composite good expenses and the housing rent for one household located at x are
thus respectively z(x) and ph(x)s(x).

Besides composite good expenses and housing rent, households incur commut-
ing transport costs and expenses related to natural hazards. One household settling
at location x incurs the given transport cost t(x) because of commuting between
its housing location and the city center (or potentially other valuable amenities).
For example, a city located next to an estuary is depicted in figure 1.1.7 On the
land, the darkness of the square units characterizes the commuting transport cost
t(x) for each household located at x. Darker areas represent locations further from
the city center with higher transport costs. In stylized models, transport costs are
often considered to be proportional to the distance to the city center. However,
real transport costs are more complex than this stylized form, in particular because
of transport system complexity. Moreover, other potential amenities (e.g. the pos-
itive amenities of being near the water-front) should be taken into account in the
transport costs. Note also that transport costs should include different costs, in
particular the direct transport cost but also the time opportunity cost.

One household settling at location x is also exposed to natural hazards (such as
flooding), with the given probability of impact π(x). The level of the loss in case
of impact, denoted l(.), depends on the housing lot size s(x) and on the building
resilience, denoted b(x). The loss function l(.) is assumed to be twice continuously
differentiable. It is decreasing with b at a decreasing rate because the most efficient
resilience investments are made first. Besides, if it is reasonably assumed that more
households on a land unit leads to more total losses on this land unit (for a given

7In figures 1.1 and 1.2, the space is represented by a discrete grid even if the model is contin-
uous.
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building resilience level), the loss function is such that l(s,b)
s

≥ ∂l
∂s

(s, b) for any
s and b.8 Note that losses should include direct and indirect losses. The city
depicted in figure 1.1 is also represented in figure 1.2 for natural hazard exposure.
On the land, the darkness of the square units characterizes the probability π(x)
of being affected by a natural hazard for each household located at x. The higher
the risk, the darker the location. For flooding risks, locations at lower altitude
are usually more subject to flooding and should be darker. The probability of
being affected by a natural hazard can correspond for example to the probability
that the water level reaches a threshold level that induces significant losses for
households. Besides, I consider that insurance is supplied to households at or
below fair prices because I do not consider any insurance transaction cost and
I consider potential insurance subsidy. As households are risk-averse (i.e. their
utility function is concave), they deliberately purchase full insurance coverage and
bear a certain cost related to natural disaster risks, which is the insurance premium.
With insurance subsidy corresponding to a fraction λ ∈ [0, 1] of expected losses,
the premium paid by a household located at x is (1 − λ)π(x)l(s(x), b(x)). The
higher λ, the higher the subsidy. The insurance subsidy can be financed either
by the city through a lump-sum tax on household wealth or by another party
outside the city. In the former case, the tax borne by each household in the city
is τ = λ

N

∫∫
π(x)l

(
s(x), b(x)

)
n(x)dx1dx2 (in which n(x) is the household density

at location x). In the latter case, the tax borne by each household in the city is
τ = 0.9 For one household located at x, transport cost, insurance premium and
tax are thus respectively t(x), (1 − λ)π(x)l(s(x), b(x)) and τ .

8With 1
s households on a developed land unit, each one having a lot size s, the total loss on

the land unit is 1
s l(s, b). If more households on a land unit leads to more total losses on this land

unit, the loss function is such that l(s1,b)
s1

≤ l(s2,b)
s2

for any 1
s1

≤ 1
s2

and b. In this case, for any
s and ds ≥ 0, l(s+ds,b)

s+ds ≤ l(s,b)
s , which leads to s

(
l(s, b) + ∂l

∂s (s, b)ds
)

≤ (s + ds)l(s, b) and then
∂l
∂s (s, b) ≤ l(s,b)

s with a first order development.
9The latter case is representative of an insurance subsidized by the country which is large

relative to the city. Besides, note that a natural disaster like flooding usually strikes many
locations of a city at the same time and thus has an aggregate risk component at the city level.
However, an insurance system organized at the country level enables to better diversify risk.
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Figure 1.1: Commuting transport costs in the city.

x2

x1

sea and river

city center

increasing
natural hazard risk

Figure 1.2: Natural hazard risks in the city.

As households are identical in terms of preferences and wealth, denoted y, they
reach the same utility level v at equilibrium. Otherwise, households with lower
utility levels at location x would have settled at location x′ where other households
reach a higher utility level, which would have decreased at x and increased at x′

housing unit price until the equilibrium with spatially uniform utility level had
been reached. Following Alonso (1964) and Fujita & Thisse (2002), competition
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between households over where to settle leads housing prices to be the solutions of
bid price problems: at each location x, the housing unit price ph(x) corresponds to
the highest price that can be afforded by households. The wealth minus expenses
except housing rent, divided by the lot size, is the maximal amount that can be
paid by one household for one land unit with housing. As households are free to
choose their composite good consumption and reach the utility level v, the housing
unit bid price problem at location x can then be expressed as follows:

ph(x) = max
z(x)

y − τ − z(x) − t(x) − (1 − λ)π(x)l
(
s(x), b(x)

)
s(x)

s.t. v
(
z(x), s(x)

)
= v.

(1.1)

Housing goods are supplied by identical housing developers in competition.
Housing developers observe the housing unit price (1.1) resulting from the com-
petition between households. They compete to acquire land from absentee land
owners at the land unit price denoted pl(x) at each location x (i.e. price for one
land area unit without housing). They choose the housing lot size s(x) and the
building resilience b(x) for urban development at each location x. Besides the
cost of land, they incur the cost of housing lot development, denoted c(s(x), b(x))
for lot size s(x) and resilience b(x) for one household. The cost function c(.) is
assumed to be twice continuously differentiable. It is increasing with b at an in-
creasing rate because the less costly resilience investments are made first. Besides,
if it is reasonably assumed that more households on a land unit leads to more
total housing development costs on this land unit (for a given building resilience
level), the cost function is such that c(s,b)

s
≥ ∂c

∂s
(s, b) for any s and b.10 At each

location, housing developers are constrained by the availability of one land area
unit. Similarly to the housing unit price, the land unit price pl(x) is determined
at each location x by the highest price that can be afforded by housing developers
because of competition. The housing rent per household minus the development
cost, multiplied by the household density denoted n(x), is the maximal amount
that can be paid by one housing developer for one land area unit. As housing

10The proof is similar to the one in the footnote 8 for the natural disaster loss function.
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developers are free to choose housing lot sizes and building resiliences, and they
observe the housing unit price (1.1) and face land constraints, the land unit bid
price problem at location x can then be expressed as follows:

pl(x) = max
s(x),b(x)

(
ph(x)s(x) − c

(
s(x), b(x)

))
n(x)

s.t. (1.1) and n(x)s(x) ≤ 1.

(1.2)

The boundaries of the city correspond to the locations where the land unit price
pl(x) is equal to the land opportunity rent denoted pa (e.g agricultural rent).

Finally, the city is characterized by its number of households:

N =
∫∫

n(x)dx1dx2. (1.3)

With a given number of households (i.e. N given), (1.3) indirectly determines
the welfare level v in the city. This characterizes in particular a "closed city" in
terms of population. With a given welfare level (i.e. v given), (1.3) determines
the number of households N in the city. This characterizes in particular an "open
city" in which the welfare level depends on the welfare level outside the city.

1.3 Risk-prone city development

Outside the boundaries of the city, housing development is not profitable (n(x) =
0 and pl(x) = pa). On the boundaries, land may be partly developed (0 ≤
s(x)n(x) ≤ 1) because housing development is equally profitable to agriculture
(pl(x) = pa). Inside the boundaries, land is fully developed because housing de-
velopment is more profitable than agriculture and thus the household density is:

n(x) = 1
s(x)

. (1.4)

As explained in the previous section, households settled in the city reach the
same welfare level v at equilibrium. As the utility function v(.) is strictly increasing
in z, z̃(s, v) can be defined such that v(z̃(s, v), s) = v and z̃(.) is decreasing with
s at a decreasing rate because v(.) is concave (proof in appendix 1.6.1). Thus, the
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composite good consumption z(x) purchased by one household settled at location
x can be expressed as a function of the housing lot size s(x) and the uniform
welfare level v:

z(x) = z̃
(
s(x), v

)
. (1.5)

With (1.5), the housing unit bid price problem (1.1) boils down to the housing
unit price:

ph(x) =
y − τ − z̃

(
s(x), v

)
− t(x) − (1 − λ)π(x)l

(
s(x), b(x)

)
s(x)

. (1.6)

With the housing unit price (1.6) and the household density (1.4), the land
unit bid price problem (1.2) boils down to:

pl(x) = max
s(x),b(x)

y − τ − z̃
(

s(x), v
)

− t(x) − (1 − λ)π(x)l
(

s(x), b(x)
)

− c
(

s(x), b(x)
)

s(x)
. (1.7)

The housing lot size s(x) and the building resilience b(x) chosen by housing devel-
opers at location x inside the boundaries of the city are the solutions of the first
order conditions of (1.7) (proof in appendix 1.6.1):

∂sv

∂zv

(
s(x), z̃(s(x), v)

)
= (1 − λ)π(x) ∂l

∂s

(
s(x), b(x)

)
+ ∂c

∂s

(
s(x), b(x)

)
+ pl(x), (1.8)

−(1 − λ)π(x) ∂l

∂b

(
s(x), b(x)

)
= ∂c

∂b

(
s(x), b(x)

)
. (1.9)

(1.8) states that the housing lot size s(x) for one household at location x is chosen
such that it equalizes the marginal rate of substitution to the marginal housing
unit cost (over the composite good price, i.e. the numéraire). The marginal rate of
substitution characterizes the marginal benefit of increasing the housing lot size for
the household, which decreases from +∞ to 0 when s(x) increases from 0 to +∞.
The marginal housing unit cost is composed of the marginal insurance premium
borne by the household, the marginal housing development cost and the land
unit price. (1.9) relates that the building resilience b(x) for housing at location
x is chosen such that it equalizes the marginal benefit of decreasing insurance
premium for the household to the marginal cost of increasing building resilience
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for the housing developer. Note that if −(1 − λ)π(x)∂bl(s(x), 0) ≤ ∂bc(s(x), 0),
b(x) is binding in 0. With s(x) and b(x) being determined by (1.8) and (1.9), (1.7)
then indirectly gives the land unit price:

pl(x) =
y − τ − z̃

(
s(x), v

)
− t(x) − (1 − λ)π(x)l

(
s(x), b(x)

)
− c
(
s(x), b(x)

)
s(x)

. (1.10)

Proposition 1 With null cross derivation for l(.) and c(.) relative to their two
arguments, the housing lot size s(x) and the building resilience b(x) vary in space
as follows:11

A1(x) ds

d
→
x

= 1
s(x)

dt

d
→
x

+ (1 − λ)
(

l
(
s(x), b(x)

)
s(x)

− ∂l

∂s

(
s(x), b(x)

)) dπ

d
→
x

, (1.11)

A2(x) db

d
→
x

= −(1 − λ) ∂l

∂b

(
s(x), b(x)

) dπ

d
→
x

, (1.12)

in which A1(x) and A2(x) are positive.

Proposition 1 is proved in appendix 1.6.1. (1.11) tells that, at a given risk
of natural hazard, the housing lot size s(x) increases while translating further
away from the city center. Thus, the household density n(x) (i.e. the inverse
of the housing lot size s(x)) decreases while translating further away from the
city center, as first explained by Alonso (1964). With the reasonable assumption
l(s,b)

s
≥ ∂l

∂s
(s, b) for any s and b, the coefficient in front of dπ

d
→
x

in (1.11) is positive
and (1.11) says that, at a given distance to the city center, the housing lot size s(x)
increases while translating towards riskier areas if insurance is not fully subsidized
(λ < 1). Thus, the household density n(x) decreases while translating towards
riskier areas in this case. As l(.) is decreasing with b, (1.12) points out that the
building resilience increases while translating towards riskier areas if insurance is
not fully subsidized (λ < 1).

Proposition 2 The housing unit price ph(x) and the land unit price pl(x) vary
in space as follows:

dph

d
→
x

= dpl

d
→
x

+
∂c
∂s(s(x), b(x)) − c(s(x),b(x))

s(x)
s(x)

ds

d
→
x

+
∂c
∂b(s(x), b(x))

s(x)
db

d
→
x

, (1.13)

11d
→
x corresponds to any small move in space: d

→
x = (dx1, dx2).
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dpl

d
→
x

= − 1
s(x)

dt

d
→
x

− (1 − λ)l(s(x), b(x))
s(x)

dπ

d
→
x

. (1.14)

In proposition 2, (1.14) is obtained by spatial derivation of (1.7) with the
envelop theorem, while (1.13) is obtained by spatial derivation of the combination
of (1.6) and (1.10). (1.14) relates firstly that, at a given risk of natural hazard, the
land unit price pl(x) decreases while translating further away from the city center,
as first explained by Alonso (1964). (1.14) tells secondly that, at a given distance
to the city center, the land unit price pl(x) decreases while translating towards
riskier areas if insurance is not fully subsidized (λ < 1). Moreover, the higher the
insurance subsidization (λ), the lower the land price difference between risky areas
and safe areas. These observations confirm the results of Frame (1998), Polinsky
& Shavell (1976) and Scawthorn et al. (1982) in a context including building
resilience. (1.13) indicates that the housing unit price ph(x) is modified through
three channels while moving in the city: the land unit price pl(x), the housing
lot size s(x) and the building resilience b(x). At a given risk of natural hazard,
the housing unit price ph(x) decreases while translating further away from the city
center because firstly the land unit price decreases, secondly the effect through
the housing lot size is negative (because ds/d

→
x ≥ 0 and with the reasonable

assumption c(s,b)
s

≥ ∂c
∂s

(s, b)) and thirdly the effect through the building resilience
is null. At a given distance to the city center, translating towards riskier areas
leads to the decrease of housing unit price ph(x) through the decrease of land unit
price pl(x) and the increase of housing lot size s(x) (as far as c(s,b)

s
≥ ∂c

∂s
(s, b)), while

on the other hand it leads to the increase of housing unit price ph(x) through the
increase of building resilience b(x). This differentiates slightly the spatial variation
of land unit price pl(x) and housing unit price ph(x), contrary to the previously
cited papers which do not consider building resilience. Moreover, it is coherent
with the empirical observation by McKenzie & Levendis (2010) that investments
in building resilience increase housing prices.

Proposition 3 If the probability of natural hazard is denoted π∗(t) on the city
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Figure 1.3: City boundaries and developed areas, as a function of transport cost t

and probability π of natural hazard.

boundaries, π∗(t) is such that:

dπ∗

dt
= − 1

(1 − λ)l(s(x), b(x))
. (1.15)

Proposition 3 is directly deduced from (1.14) because the land unit price pl(x)
is constant and equal to the opportunity rent pa on the city boundaries. (1.15)
expresses that riskier locations are developed near the city center because of lower
transport cost, which confirms the result of Frame (1998) in a context including
building resilience. A location x at a distance t from the city center is developed if
π(x) ≤ π∗(t). The outer boundary of the city corresponds to the developed area the
furthest away from the city center. The inner boundaries of the city correspond
to the riskiest developed area for each distance to the city center. Figure 1.3
illustrates on a graph, with transport and risk as coordinates, the city boundaries
and the developed areas. The slope of π∗ relative to t is steeper when building
resilience is implemented. Thus, more households are located near the city center
(i.e. the city is more compact) when building resilience is more affordable.
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1.4 The impact of insurance subsidization

With actuarially fair insurance (λ = 0), the allocation of resources is Pareto opti-
mal (proof in appendix 1.6.2). Actuarially fair insurance policy leads to the Pareto
optimal allocation of resources because it gives the right incentives to households
and housing developers in terms of density development and building resilience. In
practice, actuarially fair insurance is hardly ever implemented, and policy makers
usually implement insurance subsidy.

Proposition 4 With null cross derivation for l(.) and c(.) relative to their two
arguments, the increase of insurance subsidization has the following impact on
urban development at each location x of the city:

s(x)A1(x)ds(x)
dλ

= π(x)s(x)
(

∂l

∂s
(s(x), b(x)) − l(s(x), b(x))

s(x)

)
+ α(x) dv

dλ
+ dτ

dλ
, (1.16)

A2(x)db(x)
dλ

= π(x) ∂l

∂b
(s(x), b(x)), (1.17)

in which α(x) = ∂z̃
∂v

(s(x), v) − s(x) ∂2z̃
∂v∂s

(s(x), v) and A1(x) and A2(x) are positive.

Proposition 4 is proved in appendix 1.6.2. (1.16) characterizes how the increase
of insurance subsidy (λ) affects the housing lot size s(x) and thus the household
density n(x) at each location in the city. The direct impact corresponds to the first
term on the right-hand side of (1.16), which is negative with the reasonable as-
sumption l(s,b)

s
≥ ∂l

∂s
(s, b) for any s and b. A given increase of λ gives, through this

direct effect, a density increase which is proportional to the probability π(x). The
indirect impact through the levels of welfare v and tax τ corresponds to the second
and third terms. If the number N of households is fixed (which characterizes a
"closed city" with v endogenously determined), the density cannot increase every-
where in the city12 and the increase of insurance subsidy reallocates households
from safer areas to riskier areas because of the direct effect. If the welfare level v

12With N fixed, the population constraint (1.3) gives 0 =
∫∫ 1

s(x)2
ds(x)

dλ dx1dx2, which means
that ds(x)

dλ cannot be negative at all locations. Thus, α(x) dv
dλ + dτ

dλ in (1.16) cannot be negative
for all the location in the city.
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is fixed (which characterizes an "open city" with N endogenously determined), v is
not affected by an increase of λ while the impact on τ depends on who bears the
cost of insurance subsidization. If the households in the city bear this cost through
the lump-sum tax τ = λ

N

∫∫
π(x)l

(
s(x), b(x)

)
n(x)dx1dx2, an increase of τ due to

an increase of λ makes the city less attractive, which explains why it increases lot
sizes and decreases densities. Thus, in this case, the increase of insurance sub-
sidy leads to a density increase in strongly risky areas and a density decrease in
weakly risky areas. If the households in the city do not bear the cost of insurance
subsidization (i.e. τ = 0), an increase of λ does not have this negative effect on
the city attractiveness. Thus, in this case, the increase of insurance subsidy leads
to a general density increase in the city. These results explain in which direction
density policies should be enforced in risk-prone cities when insurance subsidy is
implemented. Besides, (1.17) points out how the increase of insurance subsidy
(λ) modifies the building resilience b(x) at each location in the city. The impact
is negative and proportional to the local probability π(x). A given increase of λ

leads to a higher building resilience decrease in risky areas than in safe areas. As
a consequence, whether with a closed city or an open city and whoever subsidizes
insurance, the increase of insurance subsidy leads to a general decrease in building
resilience in the city. Note that this decrease is null if the building resilience is al-
ready binding in zero (which is the case at a risk-free location). These results show
that resilience policies should be enforced when insurance subsidy is implemented.

Proposition 5 The increase of insurance subsidization has the following impact
on housing and land prices at each location x in the city:

dph(x)
dλ

= dpl(x)
dλ

+
∂c
∂s (s(x), b(x)) − c(s(x),b(x))

s(x)

s(x)
ds(x)

dλ
+

∂c
∂b (s(x), b(x))

s(x)
db(x)

dλ
, (1.18)

dpl(x)
dλ

= 1
s(x)

(
π(x)l(s(x), b(x)) − β(x) dv

dλ
− dτ

dλ

)
, (1.19)

in which β(x) = ∂z̃
∂v

(
s(x), v

)
is positive.

In proposition 5, (1.19) is obtained at a given location by derivation of (1.7)
relative to λ with the envelop theorem, while (1.18) is obtained at a given location

25



Chapter 1. Risk prevention in cities prone to natural hazards

by derivation of the combination of (1.6) and (1.10) relative to λ. (1.19) relates
how the increase of insurance subsidy (λ) affects the land price pl(x) at each
location in the city. The direct impact corresponds to the first term on the right-
hand side which is positive and proportional to the local probability π(x). For
a given increase of λ, the riskier the location, the higher the land price increase
through this direct effect. The indirect impact through the levels of welfare v and
tax τ corresponds to the second and third terms. If the welfare level v is fixed
(which characterizes an "open city" with N endogenously determined), v is not
affected by an increase of λ while the impact on τ depends on who bears the cost
of insurance subsidization. If the households in the city bear this cost through
the lump-sum tax τ = λ

N

∫∫
π(x)l

(
s(x), b(x)

)
n(x)dx1dx2, an increase of τ due to

an increase of λ decreases their wealth and thus land prices. Thus, in this case,
the increase of insurance subsidy leads to a land price increase in strongly risky
areas and a land price decrease in weakly risky areas. If the households in the
city do not bear the cost of insurance subsidization (i.e. τ = 0), an increase of λ

does not have this negative effect on land prices. Thus, in this case, the increase
of insurance subsidy leads to a general land price increase in the city because the
increase of attractiveness of the city is not lowered by a tax on households in the
city. Figure 1.4 illustrates the impact of a subsidy increase on the city boundaries
for an "open city" in the case where the subsidy is borne by households in the city
and in the case where the subsidy is not borne by households in the city. Besides,
(1.18) states that the housing price ph(x) is modified through three channels while
increasing insurance subsidy (λ): the land unit price pl(x), the housing lot size s(x)
and the building resilience b(x). The direction of the impacts through the land
unit price and the housing lot size depends on the location, similarly to these two
variables. The impact through the building resilience decreases the housing unit
price because the increase of insurance subsidy decreases the building resilience
and thus its cost.
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Figure 1.4: City boundaries and developed areas, as a function of transport cost t

and probability π of natural hazard.

1.5 Conclusion

The paper has analyzed urban development choices in a city prone to natural
disasters. It complements previous studies, in particular by including building
resilience choices. Riskier areas are developed nearer to the city center than fur-
ther away. Investment in building resilience leads to more compact cities. At
a given distance to the city center, riskier areas have lower land prices and get
lower household density and higher building resilience if insurance is not fully sub-
sidized. Actuarially fair insurance leads households to optimally settle in space
in terms of density and resilience. An increase of insurance subsidization leads
to an increase of density in the riskiest areas of the city, in particular displacing
inner boundaries towards riskier areas near the city center. Moreover an increase
of insurance subsidization leads to a general decrease of building resilience in the
city. To avoid excessive exposure to risk in the case of insurance subsidization,
policy makers have to complement their policies by enforcing density and zoning
restrictions as well as building codes. In this perspective, the present paper tells
that, in the case of insurance subsidization, density and zoning restrictions have
to be enforced at least in the riskiest areas of the city, in particular near the city
center where land is attractive because of low transport costs. It also tells that,
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in the case of insurance subsidization, building codes should be generally enforced
in the city for Pareto improvement.

1.6 Appendix

1.6.1 Risk-prone city development

Characteristics of z̃(.)

The derivation of v(z̃(s, v), s) = v relative to s gives:

∂v

∂z

∂z̃

∂s
+ ∂v

∂s
= 0, (1.20)

which can be rewritten:
∂z̃

∂s
= −∂sv

∂zv
. (1.21)

Because v(.) is increasing with z and s, z̃(.) is decreasing with s. Besides, the
derivation of (1.20) relative to s gives:

∂2v

∂z2

(
∂z̃

∂s

)2

+ ∂v

∂z

∂2z̃

∂s2 + 2 ∂2v

∂z∂s

∂z̃

∂s
+ ∂2v

∂s2 = 0, (1.22)

which can be rewritten with (1.21):

∂v

∂z

∂2z̃

∂s2 = −∂2v

∂z2

(
∂sv

∂zv

)2

+ 2 ∂2v

∂z∂s

∂sv

∂zv
− ∂2v

∂s2 . (1.23)

The term on the right-hand side of (1.23) is positive because v(.) is concave and
the determinant of the Hessian matrix of v(.) is positive. Thus, ∂2z̃

∂s2 is positive and
z̃(.) is decreasing with s at a decreasing rate.

Derivation of (1.8) and (1.9)

With (1.21) and the expression (1.7) of pl(x), the first order conditions of (1.7)
relative to s(x) and b(x) are respectively:

∂sv
∂zv

(
s(x), z̃(s(x), v)

)
− (1 − λ)π(x) ∂l

∂s

(
s(x), b(x)

)
− ∂c

∂s

(
s(x), b(x)

)
s(x)

− pl(x)
s(x)

= 0, (1.24)
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−(1 − λ)π(x) ∂l

∂b

(
s(x), b(x)

)
− ∂c

∂b

(
s(x), b(x)

)
= 0, (1.25)

which respectively give (1.8) and (1.9).

Proof of proposition 1

As the first order conditions of (1.7) correspond to a maximum, the second order
conditions of (1.7) are negative at the solutions s(x) and b(x). Thus, the following
expressions which are called A1(x) and A2(x) are positive:

A1(x) = ∂2z̃

∂s2

(
s(x), v

)
+ (1 − λ)π(x) ∂2l

∂s2

(
s(x), b(x)

)
+ ∂2c

∂s2

(
s(x), b(x)

)
≥ 0, (1.26)

A2(x) = (1 − λ)π(x) ∂2l

∂b2

(
s(x), b(x)

)
+ ∂2c

∂b2

(
s(x), b(x)

)
≥ 0. (1.27)

With null cross derivation for l(.) and c(.) relative to their two arguments, the
spatial derivation of (1.8) and (1.9) respectively gives:

A1(x) ds

d
→
x

= 1
s(x)

dt

d
→
x

+ (1 − λ)
(

l
(
s(x), b(x)

)
s(x)

− ∂l

∂s

(
s(x), b(x)

)) dπ

d
→
x

, (1.28)

A2(x) db

d
→
x

= −(1 − λ) ∂l

∂b

(
s(x), b(x)

) dπ

d
→
x

, (1.29)

which gives proposition 1.

1.6.2 The impact of insurance subsidization

Optimal allocation

The first welfare theorem predicts the Pareto optimality with λ = 0 because effi-
cient insurance markets would lead to actuarially fair insurance. For the formal
proof, the optimal allocation with uniform welfare level v is obtained by minimizing
the total expenditure of the city with N households:

min
s(.),b(.),n(.)

∫∫ (
z̃
(
s(x), v

)
+ t(x) + π(x)l

(
s(x), b(x)

)
+ c
(
s(x), b(x)

))
n(x)dx1dx2

s.t. n(x)s(x) ≤ 1, ∀x

N =
∫∫

n(x)dx1dx2.

(1.30)
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The first order conditions give similar equations to the decentralized economy with
λ = 0. Thus, the actuarially fair insurance policy (i.e. with λ = 0) implements
the Pareto optimal allocation of resources.

Proof of proposition 4

The proof of proposition 4 is similar to the proof of proposition 1. The positive
A1(x) and A2(x) are defined by (1.26) and (1.27). Contrary to proposition 1, the
derivation of (1.8) and (1.9) relative to λ at a given location x do not have terms
with derivatives of t(x) and π(x) but have terms with derivatives of v and τ . With
null cross derivation for l(.) and c(.) relative to their two arguments, the derivation
of (1.8) and (1.9) relative to λ at a given location x respectively gives:

s(x)A1(x)ds(x)
dλ

= π(x)s(x)
(

∂l

∂s
(s(x), b(x)) − l(s(x), b(x))

s(x)

)
+ α(x) dv

dλ
+ dτ

dλ
, (1.31)

A2(x)db(x)
dλ

= π(x) ∂l

∂b
(s(x), b(x)), (1.32)

in which α(x) = ∂z̃
∂v

(s(x), v) − s(x) ∂2z̃
∂v∂s

(s(x), v). This gives proposition 4.
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Chapter 2

The role of insurance companies
in a risky economy

Abstract: I consider an exchange economy with multiple commodities and agents
having different preferences and distributions of endowments. In an Arrow-Debreu
setting, complete financial markets consist in one financial asset per state of na-
ture and allow to reach a Pareto optimal allocation. Yet, this setting requires a
prohibitive number of financial assets. With a competitive insurance market, it is
sufficient to have only one financial asset for all the states of nature correspond-
ing to the same aggregate endowments. In this case, agents can fully cover their
endowment risks thanks to fair multi-risk contracts supplied by stock insurance
companies. For a given endowment risk, the higher the correlation with the ag-
gregate risk, the higher the premium. Besides, financial assets allow agents to
hedge commodity price risks due to the aggregate risk and to choose a share of
the aggregate risk.

Keywords: individual risk, aggregate risk, complete markets, general equilib-
rium, securities, insurance.

JEL classification: D53, D86, G10.
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2.1 Introduction

The combination of risk exposure and risk aversion creates the demand for risk
sharing and the emergence of risk sharing mechanisms in a decentralized economy.
In this context, complete financial markets can lead to a Pareto optimal allocation
of risks, as firstly shown by Arrow (1953) and Debreu (1959). In a classic Arrow-
Debreu economy, complete financial markets consist in having one financial asset
(also called security) per state of nature, in which a state of nature is characterized
by a full specification of the individual endowments obtained by all the agents in
the economy. Yet, in the real world, this setting requires a tremendous amount of
assets and necessitates to make public the realized individual state of each agent to
know the realized state of nature. These limits find their solution in the emergence
of insurance companies. The present paper shows that markets are complete for
risk sharing with only one financial asset for all the states of nature corresponding
to the same aggregate endowments, when there are in addition competitive insur-
ance companies supplying standard insurance contracts and owned through stock
markets.

I consider a static exchange economy with multiple commodities and multi-
ple heterogeneous agents facing heterogeneous risks, in the sense that agents have
different preferences and different distributions of endowments. I define an "Arrow-
Debreu" state of nature as a full specification of the individual endowments in this
state obtained by all the agents in the economy. With a financial asset asso-
ciated to each Arrow-Debreu state and a spot market for each commodity, the
economy reaches a Pareto optimal allocation. The collection of all the "Arrow-
Debreu" states displaying the same aggregate endowments in the economy defines
a "fundamental" state of nature. I consider that the agents have only access to a
financial asset for each fundamental state and to a spot market for each commod-
ity. Besides, there are M insurance companies in competition. They supply fair
multi-risk insurance contracts to agents, with an indemnity compensating for the
individual commodity losses in exchange for a premium corresponding to the ex-
pected indemnity. Insurance contracts are standard in the sense that they do not
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include participation on the insurer profits.1 The insurance companies are owned
by agents in the economy through stock markets. With frictionless markets, I show
that this economy reaches a Pareto optimal allocation.

In the general case, agents are exposed to commodity price risks in addition to
individual endowment risks because individual endowment risks generate aggre-
gate endowment risks. Insurance contracts with insurance companies enable agents
to eliminate their individual endowment risks and security markets enable agents
to eliminate their exposure to price risks. Besides, agents purchase a share of
aggregate risks through insurance stock markets and security markets. Thanks to
insurance companies, the number of financial assets can be tremendously reduced
relative to the classic Arrow-Debreu economy. For illustration, we can consider
a simple setting with 1 commodity, 3 identical agents, 10 individual states, with
individual endowment from 1 to 10 commodity units and probability 1/10 for each
state. In this case, the number of Arrow-Debreu states is 103 and the number of
fundamental states is 28 (total endowment reaching potentially each integer be-
tween 3 and 30). While Pareto optimality is reached in the Arrow-Debreu economy
with 1000 financial assets, it is also reached in an economy with 28 financial assets
and 2 insurance companies which compete to supply to each of the 3 agents an in-
surance contract for individual endowment risks. Besides, while the Arrow-Debreu
economy requires to make public the realized individual endowments of each agent
to determine the Arrow-Debreu state and allow transactions, the reduced number
of financial assets requires to make public only the realized aggregate endowments
in the economy (which are indirectly known trough the spot prices because one
vector of spot prices correspond to one vector of aggregate endowments).

Insurance companies serve as intermediaries that pool individual endowment
risks. Because of competition, they sell fair contracts to be able to catch policy-
holders on one side and shareholders on the other side. A fair premium for an
insured risk is equal to the expected indemnity, in which the indemnity in each

1Standard contracts are from stock companies by opposition to mutual contracts from mutual
companies, in which there is a participation on the insurer profits.
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state of nature depends on the commodity losses and on the commodity prices.
For a given endowment risk, the higher the correlation with the aggregate risk (i.e.
with the commodity price risk), the higher the expected indemnity and thus the
premium. That is why a fair contract includes an aggregate risk loading factor
in the premium.2 The loading factor is potentially different from one agent to
another for the same individual risk and can be positive or negative. As insurance
contracts are fairly priced relative to individual risks and their correlation with
the aggregate risk, agents purchase full coverage for their individual risks. Share-
holders of an insurance company are exposed to the risk resulting from the pool of
individual risks insured by the company. The higher the correlation between these
risks and the aggregate risk, the higher the raised premiums, which compensates
shareholders for bearing a less diversifiable risk.

The economics literature on risk has already addressed the role played by insur-
ance companies for risk sharing. In an exchange economy with one commodity and
agents having different preferences and distributions of endowments, Kihlstrom &
Pauly (1971) and Ellickson & Penalva-Zuasti (1997) show that the economy can
reach a Pareto optimal allocation with one contract per agent or per risk and with-
out any financial assets, but they cannot explain who supplies these contracts. To
go beyond this supply issue, Marshall (1974a,b) explains that agents have to sign
mutual contracts which enable to eliminate individual risks and share aggregate
risks. Malinvaud (1973) and Cass et al. (1996) consider an exchange economy
with one commodity and groups of agents having identical preferences and facing
independently and identically distributed risks. They show that Pareto optimal-
ity is reached with mutual insurance contracts within each group of agents and a
limited number of financial assets (i.e. all the Arrow-Debreu states correspond-
ing to rearrangements between identical agents necessitates only one financial as-
set). Besides, Doherty & Dionne (1993) and Doherty & Schlesinger (2002) explain
that mutual insurance contracts can be replaced by "homemade mutualization",

2Contrary to an insurance contract based on a financial loss, an insurance contract based
on commodity losses naturally includes an aggregate risk loading factor through the product
between commodity losses and commodity prices for the value of the expected indemnity.
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in which agents purchase standard contracts from stock insurance companies to
eliminate individual risks and invest in insurance companies through stock mar-
kets to share aggregate risks. Penalva-Zuasti (2001, 2008), as well as the present
paper, relaxes the condition of mutual contracts thanks to insurance companies
shared on the stock markets. Penalva-Zuasti (2008) considers an exchange econ-
omy with one commodity and agents having different preferences and different
initial wealth but facing independently and identically distributed risks. He shows
that Pareto optimality is reached with standard insurance contracts supplied by
stock insurance companies and a limited number of financial assets (i.e. all the
Arrow-Debreu states corresponding to the same aggregate endowment necessitates
only one financial asset).3 Relative to Penalva-Zuasti (2008), the present paper
relaxes the hypothesis of independently and identically distributed risks.4

The main contribution of the present paper is to extend the analysis of the
role played by insurance companies to an economy with multiple commodities and
agents having different preferences and different risks with potential risk depen-
dence across agents (i.e. the present model is not restricted to independently and
identically distributed risks). The analysis highlights in particular that individual

3Penalva-Zuasti (2008) considers actually a dynamic economy with uncertainty resolving
nicely through time and continuous trading on financial markets. In this context, it is even
sufficient to have only two financial assets, a risk-free one and a risky one relative to the ag-
gregate risk. Note that the dynamic approach does not change the role of insurance because
insurance contracts are not traded continuously, that is why I remain in a static model in the
present paper.

4Another part of the economics literature has focused on the role of financial intermediaries
when market frictions are considered. Gorton & Winton (2003) reviews the literature on the
role of financial intermediaries when there are transaction costs or asymmetric information be-
tween agents. This topic has been particularly developed for bank-like intermediaries which play
an intermediary role between borrowers and lenders (Freixas & Rochet (1997)). With transac-
tion costs due to asymmetric information, contracts through financial intermediaries can Pareto
dominate direct contracts if financial intermediaries are able to diversify. Indeed, even though
financial intermediaries increase the number of transactions, diversification decreases the uncer-
tainty and thus the asymmetric information issue for the less informed agents. As a consequence,
with market imperfections, risk correlation represents a limit for financial intermediaries.

35



Chapter 2. The role of insurance companies in a risky economy

risks do not have to be identical or independent to be insured by insurance compa-
nies (in a context without market frictions, similarly to the quoted papers). Even
insurance companies weakly diversified are able to sell contracts at fair prices,
because the shareholders diversify their risk thanks to other markets. Besides,
because risks are not independently and identically distributed, the insurance pre-
mium for an individual risk is specific to the individual risk and includes an aggre-
gate risk loading factor characterizing the correlation between the individual risk
and the aggregate risk in the economy. For a given risk, the higher the risk cor-
relation with the aggregate risk, the higher the premium. The paper is organized
as follows. Section 2 sets up the model. Section 3 reminds the classic results of
Borch, Arrow and Debreu. Section 4 analyzes the decentralized equilibrium with
insurance companies. The last section concludes.

2.2 The model of the risky economy

I consider a static pure exchange economy with N agents (i = 1, .., N) and C

commodities (c = 1, .., C). Agents have uncertain endowment, are risk-averse
and have objective probabilities over the risks. I denote ei

5 the vector with C

components characterizing the highest possible endowment of each commodity for
agent i. Agent i can face Si individual states (si = 1, .., Si). The endowment loss in
state si relative to ei is denoted li(si). The endowment ei is thus a random variable
with ei(si) = ei − li(si) in state si. The preferences satisfy the von Neumann-
Morgenstern axioms with vi(.) : RC

+ → R the corresponding utility function which
is strictly increasing in each argument, globally concave and twice continuously
differentiable.

Definition 1 An "Arrow-Debreu" state is a full specification of the individual en-
dowments obtained by all the agents in the economy.

The number of Arrow-Debreu states in the economy depends on the num-
ber of agents, the number of individual states for each agent and on the risk

5The vectors are denoted in bold letters in the paper. In mathematic formula, the product of
two vectors correspond to the scalar product.
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dependences between agents. In the absence of full dependence between individ-
ual risks, the number of Arrow-Debreu states in the economy is: Z = ∏

i Si (i.e.
Z = SN with identical Si), because each combination of individual states has a
positive probability to occur. I denote by z = 1, .., Z the Arrow-Debreu states and
π(z) ≥ 0 the probability of obtaining the Arrow-Debreu state z (with π(z) > 0 and∑

z π(z) = 1). With objective probabilities over the risks, all the agents consider
this probability π(z) for the Arrow-Debreu state z to occur. For any agent i, I de-
note by si(.) : [1, Z] → [1, Si] the function which gives the individual state of agent
i associated to each Arrow-Debreu state. I denote by xi(z) the commodity con-
sumption plan of agent i in the Arrow-Debreu state z. Thus, xi = (xi(1), .., xi(Z))
is the commodity consumption plan of agent i in all the Arrow-Debreu states,
x(z) = (x1(z), .., xN (z)) is the commodity consumption plan of all the agents in
the Arrow-Debreu state z and x = ((x1(1), .., x1(Z)), .., (xN (1), .., xN (Z))) is the
commodity consumption plan of all the agents in all the Arrow-Debreu states.

Definition 2 A "fundamental" state is a full specification of the aggregate endow-
ments in the economy.

All the Arrow-Debreu states, which have the same aggregate endowments for
the C commodities, correspond to the same fundamental state. I denote by t =
1, .., T the fundamental states in the economy (with T the number of fundamental
states) and E(t) the total endowment vector in the fundamental state t. The set
of Arrow-Debreu states included in the fundamental state t is denoted Ft (with∑

t #Ft = Z and ∀z ∈ Ft,
∑

i ei(si(z)) = E(t)). I denote by t(.) : [1, Z] → [1, T ]
the function which gives the fundamental state associated to each Arrow-Debreu
state. The probability of obtaining the fundamental state t is denoted π̃(t) (we
have π̃(t) = ∑

z∈Ft
π(z) and ∑t π̃(t) = 1). The probability of obtaining the Arrow-

Debreu state z conditioned on being in the fundamental state t is denoted π(z|t)
(we have π(z) = π(z|t)π̃(t) and ∑z∈Ft

π(z|t) = 1).
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2.3 Pareto optimality and Arrow-Debreu econ-
omy

This section aims at reminding the classic results of Borch, Arrow and Debreu.
Firstly, in the spirit of Borch, the characteristics of the Pareto optimal allocations
are analyzed. Secondly, in the spirit of Arrow and Debreu, it is shown that the
decentralized economy with a complete set of financial assets allows to reach a
Pareto optimal allocation. This section is useful to understand in the following
section the functioning of a decentralized economy with insurance companies and
a reduced number of financial assets.

2.3.1 Borch Mutuality Principle

The Pareto optimal allocations in an economy are by definition the ones that
maximize a weighted sum of the welfare of all the agents under the constraints
of the economy. In the present economy, the only feasibility constraints that an
allocation must satisfy are the aggregate endowment constraints for all the Arrow-
Debreu states: ∑

i

xi(z) ≤ E(t(z)), ∀ z. (2.1)

Definition 3 A feasible allocation x is Pareto optimal if there exists a positive µi

for each agent i such that the allocation is the solution of the following concave
programming problem with Z inequality constraints:

max
x

∑
i

µi

∑
z

π(z)vi(xi(z))

s.t.
∑

i

xi(z) ≤ E(t(z)), ∀ z.
(2.2)

Proposition 6 A feasible allocation x is Pareto optimal if and only if there exist
a positive µi for each agent i and a positive vector λ(z) of dimension C for each
Arrow-Debreu state z such that:

µi∇vi(xi(z)) = λ(z), ∀ i, z, (2.3)
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∑
i

xi(z) = E(t(z)), ∀ z, (2.4)

in which ∇vi(xi(z)) is the vector of the C derivatives of vi(xi(z)) relative to each
commodity.

Proposition 6 is the classic equivalence for the characterization of Pareto op-
timal allocations, obtained with the first order conditions of (2.2) (with π(z)λ(z)
the positive Lagrangian multiplier of constraint z) and the binding constraints of
(2.2) (because vi is strictly increasing in each argument). With this notation, λ(z)
and π(z)λ(z) can also be called the vector of shadow spot prices and the vector
of shadow contingent prices. (2.3) tells that, in a Pareto optimal allocation, the
marginal rate of substitution between any two Arrow-Debreu states for one com-
modity is equal for each agent to the ratio of Lagrangian multipliers of the two
Arrow-Debreu states for this commodity, which means that it is identical across
agents.

Besides, one can note that the optimal allocation obtained from problem (2.2)
consists actually in separated optimal allocation problems for the different Arrow-
Debreu states. It is thus separable in Z programming problems which are for
z = 1, .., Z:

max
x(z)

∑
i

µivi(xi(z))

s.t.
∑

i

xi(z) = E(t(z)).
(2.5)

Proposition 7 (Borch (1960, 1962))6 In a Pareto optimal allocation, the con-
sumption plans x(z) and the shadow spot prices λ(z) are identical across Arrow-
Debreu states z corresponding to the same fundamental state t.

6Borch (1960, 1962) demonstrates in a model with one commodity that individual risks are
eliminated and the aggregate risk is shared in a Pareto optimal allocation. Arrow (1996) confirms
in the case of many commodities that "the allocation of consumption in any given state (i.e. in
any Arrow-Debreu state) depends only on the total in that state (i.e. on the fundamental state)".
Gollier (2004) has some more insight on this mutuality principle in Chapter 21 of his book.
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Proposition 7 is due to the fact that the programming problem (2.5) is iden-
tical for all the Arrow-Debreu states z corresponding to the same fundamental
state t because they have the same aggregate endowments E(t(z)). That is why
the consumption plans x(z) are identical for all the Arrow-Debreu states z cor-
responding to the same fundamental state t and can be denoted x̃(t). Moreover,
thanks to (2.3), the vectors λ(z) are identical for all the Arrow-Debreu states z

corresponding to the same fundamental state t and can be denoted λ̃(t). Propo-
sition 7 states that the individual risks are fully eliminated in each fundamental
state (i.e. one agent gets the same quantity of commodity in two Arrow-Debreu
states corresponding to the same fundamental state). This result firstly shown by
(Borch (1960, 1962)) is usually called the Borch mutuality principle. Besides, (2.3)
tells that the increase of a component of λ̃(t) leads to the decrease of consumption
of the corresponding commodity by all the agents because vi(.) is concave. This
means that, if two fundamental states have identical λ̃(t) except for one commod-
ity, the fundamental state that has a higher shadow spot price for this commodity
necessarily has a lower aggregate endowment of this commodity. Thus, aggregate
endowment and shadow spot price for each commodity are inversely related and
aggregate endowment uncertainty is translated into shadow spot price uncertainty.

2.3.2 Decentralized equilibrium à la Arrow-Debreu

I now consider a decentralized economy equipped with a contingent market for each
commodity and each Arrow-Debreu state (i.e. a financial asset for each commodity
in each Arrow-Debreu state). A contingent market for one commodity and one
Arrow-Debreu state corresponds to the market for this commodity contingent on
this Arrow-Debreu state before the Arrow-Debreu state has been revealed. Mar-
kets are considered frictionless. In this economy, all the deals are made before the
Arrow-Debreu state has been revealed. The price vector for commodities contin-
gent on the Arrow-Debreu state z is denoted π(z)p(z). At equilibrium, each agent
i maximizes her utility level under her (binding) budget constraint and the market
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conditions clear:

max
xi

∑
z

π(z)vi(xi(z))

s.t.
∑

z

π(z)p(z)xi(z) =
∑

z

π(z)p(z)ei(si(z)),
(2.6)

∑
i

xi(z) = E(t(z)), ∀ z. (2.7)

Proposition 8 (Arrow (1953, 1964) and Debreu (1959))7 In the decentralized
economy with a contingent market for each commodity and each Arrow-Debreu
state (C ∗ Z contingent markets), the allocation is Pareto optimal at equilibrium.

Proposition 8 is obtained with proposition 6. By denoting 1
νi

the positive
Lagrangian multiplier of the constraint in problem (2.6), the consumption plan xi

is such that the first order conditions of (2.6) are verified:

νi∇vi(xi(z)) = p(z), ∀ z. (2.8)

Thus, at equilibrium, there exist a positive µi for each i (i.e. νi) and a positive
vector λ(z) for each z (i.e. p(z)) such that (2.3) and (2.4) are verified, which gives
proposition 8. Proposition 8 is an application of the first welfare theorem, firstly
shown by Arrow and Debreu. They have also shown that Pareto optimality is
reached with a spot market for each commodity and a security market for each
Arrow-Debreu state (i.e. a financial asset for each Arrow-Debreu state) (C + Z

markets), instead C ∗Z contingent markets.8 Thanks to proposition 7, proposition
(8) tells that the consumption plans x(z) and the spot prices p(z) are identical
across Arrow-Debreu states corresponding to the same fundamental state. Either
with C ∗ Z contingent markets or with C spot markets and Z security markets,

7Arrow (1953, 1964) and Debreu (1959) have firstly shown this result. Gollier (2004) has
some more insight on the decentralized equilibrium with these types of markets in Chapter 22
of his book.

8A spot market for one commodity corresponds to the commodity market once the Arrow-
Debreu state has been revealed and in this case the spot market prices correspond to p(z). A
security associated to one Arrow-Debreu state enables to get 1 money unit if this Arrow-Debreu
state is revealed in exchange for π(z) money unit ex-ante.
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the Arrow-Debreu economy requires at least one financial asset for each state of
nature, characterized by a full specification of the individual endowments obtained
by all the agents in the economy, which is an unrealistic setting. The first limit is
that it supposes an incommensurable number of financial assets (C ∗ Z or C + Z)
in the real world to hedge all the individual risks. Indeed, in an economy with
N = 7∗109 people, each one facing S = 10 individual states, the required number of
financial assets is prohibitive with Z = 107∗109 . The second limit is that it requires
to make public the realized individual endowments of each agent in the economy.
Indeed, exchanges made on these markets aim at securing transfers ex-post which
are contingent on the realized Arrow-Debreu state and thus necessitate to make
public the realized individual state of each agent in the economy. Besides, as
explained by Arrow (1996), agents buy risk sharing contracts to insure against the
uncertainty of their individual endowments and not against the uncertainty of other
agent endowments. This corresponds to more usual insurance contracts between
two agents, in which one exposed agent buys coverage against her individual risk
from another agent playing the role of an insurance company, as introduced in the
following section.

2.4 Decentralized equilibrium with insurance com-
panies

2.4.1 The setting

I now consider a decentralized economy equipped with a spot market for each
commodity and a security market for each fundamental state (i.e. a financial asset
for each fundamental state). Moreover, there are M insurance companies in com-
petition, which supply standard insurance contracts and are shared through stock
markets. All markets are frictionless. Spot markets correspond to the commodity
markets once the Arrow-Debreu state has been revealed. In the Arrow-Debreu
state z, the price vector for the C commodities is denoted p(z). With these spot
markets, agents cannot transfer wealth from one Arrow-Debreu state to another
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because the deals are made after the Arrow-Debreu state has been revealed. Sells
and purchases of securities, as well as purchases of insurance contracts and in-
surer shares, enable these transfers. I consider a security market for each of the
T fundamental states. The security associated to the fundamental state t gives
1 money unit in all the Arrow-Debreu states z corresponding to t, in exchange
for ∑z∈Ft

π(z) = π̃(t) money unit before the state of nature z is revealed. The
quantity of securities "purchased" by agent i is denoted ai = (ai(1), .., ai(T )).9

I consider M insurance companies in competition. They supply fair multi-risk
standard insurance contracts. The insurance contract supplied to agent i con-
sists in compensating her in any state si for her loss li(si) (i.e. an indemnity
τi(p(z), si(z)) = p(z)li(si(z)) in any state z ∈ Z), in exchange for a premium αi

paid before the state of nature z has been revealed. The quantity of insurance pur-
chased by agent i is denoted ni.10 This is an insurance contract in the sense that
the contract for one agent does not depend on the individual states of other agents
(i.e. on the Arrow-Debreu state) but on her individual state si and on aggregate
data (i.e. commodity price vector p(z)). Thanks to competition and no transac-
tion costs, the insurance contract is fair in the sense that the premium denoted αi

is equal to the expected indemnity (αi = ∑
z′ π(z′)p(z′)li(si(z′))). The insurance

contract is multi-risk in the sense that it covers for the different individual risks to
which the agent is exposed.11 The insurance contract is standard and not mutual in
the sense that the premium is paid ex-ante and there is no participation on the in-
surer profit in the contract. Each insurance company k ∈ M invests the premiums
raised ∑j∈Nk

αjnj in financial assets, in which Nk is the group of agents purchasing
a contract from the insurance company k. The quantity of securities purchased by
insurer k is denoted bk = (bk(1), .., bk(T )) and thus ∑t π̃(t)bk(t) = ∑

j∈Nk
αjnj. In-

surance companies are owned through stock markets. The profit of insurer k ∈ M

9ai(t) can be either positive or negative. A positive ai(t) corresponds to a security purchase.
A negative ai(t) corresponds to a security sell.

10ni can take any positive value. For instance, ni = 0 corresponds to zero coverage, ni = 1
corresponds to full coverage and a value strictly between 0 and 1 corresponds to partial coverage.

11Different contracts for different risks could also be offered to each agent, but one multi-risk
contract per agent is sufficient.
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in state z for the shareholders is rk(z) = bk(t(z)) − ∑
j∈Nk

τj(p(z), sj(z))nj. The
share of the insurance company k purchased by agent i is denoted mki.12

2.4.2 The equilibrium

At equilibrium, each agent i maximizes her utility level under her (binding) budget
constraints (before and after the state of nature is revealed), plus the clearing
market conditions (for spot markets, security markets and stock markets):

max
xi,ni,mki,ai

∑
z

π(z)vi(xi(z))

s.t. p(z)xi(z) = p(z)ei(si(z)) + τi(p(z), si(z))ni +
∑

k

rk(z)mki + ai(t(z)), ∀ z

αini +
∑

t

π̃(t)ai(t) = 0

(2.9)

∑
i

xi(z) = E(t(z)), ∀ z ∈ Z (2.10)

∑
i

ai(t) +
∑

k

bk(t) = 0, ∀ t ∈ T (2.11)

∑
i

mki = 1, ∀ k ∈ M (2.12)

Proposition 9 In the decentralized economy with C spot markets for commodities,
T financial assets associated to fundamental states and stock insurance companies
in competition, the allocation is Pareto optimal at equilibrium.

Proof We show the equivalence in the consumption plan x between the Arrow-
Debreu economy as given by (2.6) and (2.7) and the economy with insurance
companies:

12I do not model the managers of insurance companies because, with multiple insurance com-
panies in competition and frictionless markets, they cannot extract any rent. Besides, note that
mki cannot be negative.
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(i) Suppose first that x and p are the solutions of (2.6) and (2.7). Thus, (2.10)
is verified. By choosing ni = 1, mki = 1

N
, bk(t) = ∑

j∈Nk
αjnj and ai(t(z)) =

p(z)(xi(z) − ei) − 1
N

∑
k rk(z) (which is possible for ai(t(z)) because p(z),

xi(z) and ∑k rk(z) are identical across z corresponding to the same t in this
case), the first constraint in (2.9) is verified and (2.12) is verified. Then, the
first constraint in (2.9) with the constraint in (2.6) implies that the second
constraint in (2.9) is verified. Finally, the first constraint in (2.9) with (2.10)
and (2.12) implies that (2.11) is verified.

(ii) Suppose now that x and p are the solutions of (2.9), (2.10), (2.11) and
(2.12). Thus, (2.7) is verified and the constraint in (2.6) is verified thanks to
the constraints in (2.9).

The equivalence between the two economies finally tells us that the allocation in
the economy with insurance companies is Pareto optimal at equilibrium, just as
in the Arrow-Debreu economy.

2.4.3 The role of insurance companies and financial assets

Proposition 9 tells us that the decentralized economy with insurance companies in
competition allows to reach a Pareto optimal allocation. The proof of proposition
9 shows that the consumption plan xi chosen by each agent i is the same as the
one that is chosen in the Arrow-Debreu economy. It also tells that one way to
reach this consumption plan for each agent i is to purchase full insurance cover-
age (ni = 1), an ownership share of insurance companies (mki = 1

N
) and some

amount of securities (ai(t) = p(z)(xi(z) − ei) − 1
N

∑
k rk(z) which may be positive

(i.e. purchase) or negative (i.e. sell)), if the insurers invest safely the premiums
raised (bk(t) = ∑

j∈Nk
αjnj independent from t). The purchase of full insurance

coverage (ni = 1) enables agent i to get in the Arrow-Debreu state z the wealth
p(z)ei−

∑
z′ π(z′)p(z′)li(si(z′)) instead of the endowment value p(z)(ei−li(si(z))).

Contrary to the endowment value, the wealth with full insurance coverage depends
only on the fundamental state (because p(z) is identical across z corresponding to
the same fundamental state t). Thus, insurance allows each agent to fully elim-
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inate individual risks within each fundamental state. Besides, individual endow-
ment risks generate aggregate endowment risk characterized by the multiplicity
of fundamental states. The aggregate risk materializes for agents through com-
modity price risk, which affects the agent wealth with full insurance coverage
(p(z)ei − ∑

z′ π(z′)p(z′)li(si(z′))). For instance, the wealth of an agent, who is
endowed with only one type of commodity, is very dependent on the price of this
commodity. This agent may want to protect against price risk to be able to con-
sume other commodities when the commodity price and thus her wealth are low.
By buying or selling some securities (p(z)(xi(z)−ei) in ai(t)), agent i is protected
against the price risk in order to reach the targeted consumption plan xi. Thus,
securities allow each agent to hedge the price risk.13 In her targeted consumption
plan, each agent chooses a fraction of the aggregate risk thanks to shares in stock
insurance companies and sells/purchases of securities. The share of the aggregate
risk targeted by agent i depend on her risk aversion relative to others: the higher
the risk aversion relative to others, the lower the purchased share of the aggregate
risk.

2.4.4 Insurance prices

Insurance companies have to sell fair contracts to catch policyholders on one side
and shareholders on the other side because of competition. On the one hand, com-
petition between insurance companies lead them to decrease their prices at least
until fair prices to catch some policyholders. On the other hand, they cannot de-
crease them below fair prices, otherwise they would not have enough shareholders
for the insurance stock market to be at equilibrium. As insurance for individual
risks is fairly priced, agents have incentives to purchase full coverage for their indi-
vidual endowment losses (ni = 1). For agent i, a full coverage insurance contract
gives an indemnity corresponding to the individual loss in any state z ∈ Z, in ex-
change for a premium equal to the expected indemnity before the state of nature
has been revealed. The insurance premium αi = ∑

z′ π(z′)p(z′)li(si(z′)) for agent
13The price risk could also be hedged with other security derivative financial products such as

options.
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i can also be written:

αi = (1 + γi)p
∑
z′

π(z′)li(si(z′)), (2.13)

in which p = ∑
z′ π(z′)p(z′) is the average commodity price vector and γi is an

aggregate risk loading factor such that:

γi = 1
p
∑

z′ π(z′)li(si(z′))
∑
z′

π(z′)(p(z′) − p)li(si(z′)). (2.14)

(2.13) gives an expression for the insurance premium, in which the loading factor γi

expressed in (2.14) captures the correlation between the individual risk (expressed
in the uncertainty of li(si(z′))) and the aggregate risk (expressed in the uncer-
tainty of p(z′) − p). For a given loading factor, the higher the individual risk, the
higher the premium. For a given individual risk, the higher the correlation with
the aggregate risk, the higher the correlation with the commodity price risk and
the higher the premium.14 Contrary to the cases with independently and identi-
cally distributed risks, the premium and the loading factor are not uniform across
agents. Bad fundamental states with high aggregate losses are characterized by
higher prices than good fundamental states with low aggregate losses. The loading
factor is positive (respectively negative) if the agent individual risk is positively
(respectively negatively) correlated with the price risk. With some aggregate risk,
the factor is positive for the agents facing higher losses in bad fundamental states
than in good fundamental states, whereas it is negative for the agents facing the
opposite. Without any aggregate risk, the factor is null for any agent because
p(z′) = p for any z′. Shareholders of an insurance company are exposed to the
risk resulting from the pool of individual risks insured by the company. The higher
the correlation between these risks and the aggregate risk, the higher the raised
premiums. Shareholders raise higher premiums in this case at equilibrium because
they cannot diversify a higher part of the company risk. Lastly, as the aggregate

14If agents were able to reduce their risk through prevention expenses, they would have in-
centives through insurance premiums to reduce both their individual risks and their correlation
with the aggregate risk. In other words, insurance premiums would give individual incentives to
reduce both the aggregate endowment losses and the aggregate endowment uncertainty.
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risk results from the aggregation of individual risks, there are globally more indi-
vidual endowment risks positively correlated with the aggregate risk, which means
that the average loading factor in the economy is positive.

2.5 Conclusion

I extend the analysis of the role played by insurance companies to an economy
with multiple commodities and agents having heterogeneous preferences and facing
heterogeneous risks. With competitive insurance companies that supply fair multi-
risk insurance contracts and are owned through stock markets, Pareto optimality
is reached with a reduced number of financial assets relative to the Arrow-Debreu
setting. Instead of one financial asset per Arrow-Debreu state (characterized by a
full specification of the individual endowments of all the agents in the economy), it
is sufficient to have only one financial asset per fundamental state (characterized by
the aggregate endowments in the economy). The higher the risk faced by one agent
or the higher the correlation between her risk and the aggregate risk, the higher
her premium. Correlation between individual risks does not prevent individual
risks to be fully insured, even though it can generate aggregate risk which is not
insurable. Even insurance companies weakly diversified are able to sell contracts
at fair prices, because the shareholders diversify their risk with other insurance
stocks and securities. However, this result is valid only without market failures.
In particular, agents have to be liable for insurance company shares they purchase
and securities they sell, which means that they have to bear insurance company
deficits if some occur and to pay amounts of securities they owe in any state of
nature. In the case of asymmetric information on the capacity of agents to honor
these transactions, public policies require agents to build financial reserve in order
to limit default. Yet financial reserves are costly to build for instance because of
the opportunity cost. In this case, risk correlation becomes an issue for insurance
companies because it leads to more variability on total claims and thus requires
more financial reserves, as it appears for natural disaster risks.
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Chapter 3

Insurability of low-probability
catastrophic risks

This chapter is co-authored with Alexis Louaas.

Abstract: We analyze how the risk probability affects the insurance purchase
of rational and well-informed risk-averse individuals. With standard insurance
costs and competitive pricing, we show that agents are more inclined to insure
for low-probability risks than for high-probability risks. Yet, these observations
are at odds with the low insurance take-up rates for low-probability catastrophic
risks (e.g. earthquakes and floods). Our explanation is that the risks for which
underinsurance is most prevalent display substantial aggregate uncertainty. This
uncertainty generates an additional fixed cost for insurers, which increases the
insurance loading factor when the loss probability decreases and eventually dis-
courages people from purchasing coverage.

Keywords: low-probability risks, catastrophic risks, insurance, reserve.

JEL classification: D86, G22, G28, Q54.
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3.1 Introduction

Why are catastrophic events so difficult to insure? Natural and man-made catas-
trophes such as earthquakes, floods, nuclear accidents and terrorists attacks have
severe consequences at the individual level, affect large numbers of people at the
same time, but have small individual probabilities of occurrence. The extreme
severity of these risks advocates for a wide-spread use of prevention and insur-
ance. Yet, they are typically excluded from US homeowner policies.1 Private
insurance markets are often non-existant and even when specific contracts bene-
fiting from public subsidies are available, relatively few people purchase them.2 It
is also puzzling to notice that some low-probability risks such as damages from
lightnings are efficiently handled by the insurance sector and covered under the US
standard homeowner policies whereas others, such as earthquakes or floods, are
not. Our model explains this puzzle by showing that the effect of aggregate un-
certainty, a well-known threat to insurability, is amplified when the individual loss
probability is low. Low-probability risks characterized by aggregate uncertainty,
such as earthquakes and floods, are therefore predicted to feature lower take-up
rates than low-probability risks without aggregate uncertainty.

We begin by examining the case without aggregate uncertainty. In this frame-
work, we show that low-probability risks are actually easier to insure than high-
probability risks. It is known since Mossin (1968) that expected utility maximizing
agents optimally purchase partial coverage when insurance is sold above actuari-
ally fair price. In this case, a decrease in the loss probability has two effects on
the demand for coverage. On the one hand, the cost of providing insurance dimin-
ishes, which translates into lower premiums for policyholders. On the other hand,
the likelihood of receiving the indemnity declines as well. Our contribution in
this framework is to show that the cost-reduction effect dominates the likelihood-
reduction effect under risk aversion. As the loss probability declines, the ratio of

1http://www.iii.org/article/which-disasters-are-covered-by-homeowners-insurance
2Kousky & Kunreuther (2014) document low take-up rates for catastrophe insurance while

Cole et al. (2014) try to explain low rates in the micro-insurance industry.
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willingness to pay to cost of coverage always increases. In a population heteroge-
neous in wealth or preferences, take-up rates are therefore predicted to increase as
the loss probability decreases.3 In addition, we show that given the opportunity to
do so, people optimally choose higher levels of coverage for low-probability risks if
their index of absolute risk aversion does not decrease too fast with wealth. These
results are in line with Laury et al. (2009), who experiment in the laboratory the
effect of a change in the loss probability. A previous experiment by McClelland
et al. (1993) also found a decreasing mean ratio of willingness to pay to expected
indemnity, indicating that people tend to be willing to pay higher loadings for
low-probability risks than for high-probability risks.

These observations, however, are at odds with the low insurance take-up rates
for low-probability catastrophic risks. Our explanation is that the risks for which
underinsurance is most prevalent display substantial aggregate uncertainty. Natu-
ral and man-made catastrophes feature geographically correlated individual losses
which translates into aggregate loss uncertainty, even within very large pools of
policyholders. In order to remain solvent, the insurance provider must either raise
prohibitively high levels of premiums or more realistically, it must have access to
capital to fill the gap between the premiums raised and the amount of claims due
in case of catastrophe. The cost of allocating this capital to a specific line of busi-
ness4 depends on the size of the potential worst case aggregate loss. This fixed cost
causes the loading to increase when the loss probability decreases and eventually
discourages people from purchasing coverage. In a world where agents are hetero-
geneous in wealth or preferences, a decrease in probability may therefore induce
lower take-up rates. This prediction is much more in line with the observations of
the take-up rates in various settings.

Several literatures have attempted to explain the low insurance take-up rates
for low-probability catastrophic risks. Kunreuther & Slovic (1978) and Kunreuther
et al. (2001) rely on departures from the expected utility paradigm, arguing that

3With the exception of the pathological case of Giffen behaviors which, to our knowledge have
never been observed in an insurance market.

4See Zanjani (2002) and Froot (2001).
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low-probabilities are more difficult to process than high probabilities. In the ex-
pected utility framework, Kunreuther et al. (2001) show that search costs may
generate a probability threshold below which coverage is not purchased while
Coate (1995) shows how government relief can crowd-out the demand for insur-
ance. Raschky et al. (2013) and Kousky et al. (2013) find empirical support for this
hypothesis in various countries. In the context of micro-insurance markets, Cole
et al. (2014) suggests that learning is an important determinant of the demand for
insurance. Overall, much less attention has been devoted to the supply side of the
market. Kunreuther et al. (1995) explain that ambiguity may provide a rationale
for high disaster insurance premiums. In the context of micro-insurance markets,
Mobarak & Rosenzweig (2013) argue that basis risk can explain low take-up rates.
Finally, Jaffee & Russell (1997) and Kousky & Cooke (2012) suggest that the low
take-up rates are due to the high premiums required by insurers that have to secure
costly capital for catastrophic events.

Our contribution to the literature is twofold. First, we provide a simple, yet
general framework, that provides an alternative explanation to the observed low
take-up rates for disaster risks.5 Second, we explain this apparently puzzling
observation that some low-probability events are well insured while others are not.
It is in fact the combination of aggregate loss uncertainty with low-probability
that makes earthquakes, floods and terrorism risks difficult to insure.

3.2 A model with aggregate loss uncertainty

This section lays out the framework for the analysis of the insurability of low-
probability events. Our model permits the analysis of correlated risks and encom-
passes the standard independent losses model as a particular case.

We consider a population of unit mass, in which each individual may or may

5Jaffee & Russell (1997) discuss the problem of capital allocation cost but provide no for-
mal model while Kousky & Cooke (2012) have a simulated model, calibrated to analyze flood
insurance coverage in Broward County, Florida.
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not be affected by a loss of size L. Similarly to Charpentier & Le Maux (2014), the
share of the population affected by a loss is a random variable q̃. It is distributed
with cumulative distribution function F (.) defined and increasing on [0, 1], with
expected value p and variance σ2. From the insurer’s standpoint, there is therefore
a continuum of states of the world, that we call aggregate states, characterized by
a fraction q of the population being affected by a loss. Notice that almost all
lines in the insurance business feature some kind of aggregate loss uncertainty.
Finding the distribution of the number of claims and therefore of the fraction of
the policyholders who will file a claim, constitutes an important task of actuaries.

Conditionally on the occurrence of a particular aggregate state of the world,
losses are independently distributed across people. Calling x̃i the random loss
of agent i, the probability that an individual faces a loss is therefore p.6 The
individual loss is therefore a Bernouilli random variable with parameter p equal to
the expected value of q̃. Individual losses are in general not independent random
variables. We show in Appendix (3.6.1) that the coefficient of correlation between
two individual risks can be written δ = σ2

p(1−p) ≤ 1. Given a fixed expected value
p, increasing the variance of the distribution F always increases the correlation
coefficient. For a given σ2, a decrease in p results in an increase in δ if p < 1/2.

This model of loss exposure nests the usual independent losses model as a spe-
cific case in which the fraction q is known. In this case, the probability cumulative
distribution function F (.) is such that F (x) = 0 for x ≤ q and F (x) = 1 for x ≥ q.
Individual losses are usual Bernoulli random variables with parameter p = q and
since σ2 = 0, the coefficient of correlation δ is null.

Finally, we consider that agents are risk-averse with a twice continuously dif-
ferentiable and concave utility function u(x) and initial wealth w. A(x) = −u′′(x)

u′(x)

denotes the Arrow-Pratt index of absolute risk aversion.

6The probability that an individual faces a loss is
∫ 1

0 P(x̃i = L|q̃ = q)dF (q) =
∫ 1

0 qdF (q) = p.
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3.3 Insurability without aggregate uncertainty

In this section, we show that in the baseline insurance framework with independent
losses, low-probability events are in fact more likely to be insured than higher
probability events. The intuition behind this result is that individual’s willingness
to pay is concave in the probability, while the cheapest feasible contract is linear.
Therefore, if a risk is insurable somewhere over the parameter space, there is a
probability threshold below which it is insurable and above which it is not.

The insurance provider can be private or public. It is represented by a risk-
neutral agents that sells an amount of coverage τ ∈ [0, L] at a premium α. Fol-
lowing Raviv (1979) we assume that, in addition to the payment of the indemnity
τ , the insurance provider faces a cost c(τ) with:

c(0) = 0, c′(0) = b > 0, c′(τ) > 0 and c′′(τ) ≥ 0,

which represents the various expenses associated with the payment of an indemnity
τ to all affected agents. It can be interpreted as an administrative cost, as a
cost of expertise, or more broadly as a dead-weight loss, resulting either from an
asymmetry of information between the insurance company and the policy holder,
or by imperfect competition. The actuarial and insurance literatures often make
the simplifying assumption that the marginal cost c′(τ) is equal to a constant λ

called the loading factor. In this case, the dead-weight cost is simply a fraction
of the indemnity. We call loading the ratio α/pτ premium to expected indemnity.
If c′(τ) = λ, the loading is 1 + λ and we have c′′(τ) = 0, which is indeed a
particular case of our model. A necessary condition for the insurance to provide
such a contract is that its expected profit is positive. This motivates the following
definition.

Definition 4 A contract is called feasible if and only if the insurance provider can
realize at least a zero expected profit.

In the absence of aggregate loss uncertainty, a contract is therefore feasible if and
only if:

α ≥ pτ + pc(τ).
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3.3.1 Strong insurability

The first notion of insurability that we develop is the following.

Definition 5 A risk is strongly insurable at a level τ if and only if individuals are
willing to purchase the proposed level of coverage τ of some feasible contract.

In order to know whether a risk is strongly insurable or not, it is sufficient to
verify that individuals are willing to purchase the zero expected profit contract,
for which the insurer breaks even. If they reject the zero expected profit feasible
contract, agents will also reject all the other more expansive contracts, and if they
accept the zero expected profit feasible contract, then the risk is insurable. In the
remaining of the paper, we use the word contract to mean zero expected profit
contract.

Independently of the supply side constraints, the highest price C(p, τ) that an
individual would pay for a level of coverage τ is given by:

pu(w − L + τ − C) + (1 − p)u(w − C) = pu(w − L) + (1 − p)u(w). (3.1)

First notice that C(0, τ) = 0 and C(1, τ) = τ . The willingness to pay for the
coverage of a a zero probability event is zero and the willingness to pay for the
coverage of a sure event is just the coverage itself. Total differentiation of (3.1)
gives:

C ′
p(p, τ) = u(w) − u(w − L) − [u(w − C) − u(w − L + τ − C)]

pu′(w − L + τ − C) + (1 − p)u′(w − C)
≥ 0 ∀τ ≤ L,

C ′′
pp(p, τ) = − 2C ′

p

u′(w − L + τ − C) − u′(w − C)
pu′(w − L + τ − C) + (1 − p)u′(w − C)

+ (C ′

p)2 pu′′(w − L + τ − C) + (1 − p)u′′(w − C)
pu′(w − L + τ − C) + (1 − p)u′(w − C)

≤ 0 ∀τ ≤ L,

where C ′
p and C ′′

pp represent the first and second order partial derivatives with
respect to p. The agent’s willingness to pay C is therefore increasing and concave
in the probability of loss p.
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Figure 3.1: Coverage without aggregate loss uncertainty

Figure 3.1a represents the agent’s willingness to pay and the cost of coverage as
a function of the loss probability p for the case c(τ) = 0. When coverage is sold at
an actuarially fair price, the agent is always willing to purchase it. The surplus she
derives from the transaction however, may vary with the loss probability. Figure
3.1b represents the case where coverage is available at a cost higher than the
actuarially fair price. For values of p lower than a threshold p∗, willingness to pay
is above the price of coverage. An insurance market should therefore emerge in
this case. For values of p higher than p∗, willingness to pay is below the price of
the zero expected profit contract, resulting in the absence of any market.

Proposition 10 In the absence of aggregate loss uncertainty, a risk is strongly
insurable at level τ if and only if the individual probability of loss p is below a
threshold p∗, where p∗ is such that:

C(p∗, τ) = p∗τ + p∗c(τ).

For a given level of coverage, low-probability events are therefore more likely
to be covered than high-probability events. Laury et al. (2009) investigate in
an experiment how insurance purchase decisions evolve with p. They observe
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that the fraction of their sample that purchases full-coverage decreases with the
probability of loss p, given a constant expected loss and loading. Proposition
10 confirms that this should indeed be the case but delivers an even stronger
prediction: the fraction of a population that purchases coverage should increase as
p decreases even when the loss L is fixed. To see this, assume that the population
is heterogeneous in wealth and preferences. An agent i endowed with wealth wi

and utility function ui purchases a feasible contract providing coverage τ if and
only if Ci(p, τ) ≥ pτ +pc(τ). Each individual therefore has a probability threshold
p∗

i above which she stops purchasing insurance. The distribution of wealth and
preferences generates a distribution G over the thresholds p∗

i . The fraction of the
population that purchases insurance is P(p∗

i ≥ p) = 1 − G(p∗
i ), which is decreasing

in p.

An insurance contract providing a level of coverage τ is therefore more likely to
be purchased when the probability of loss p is smaller. In this sense, low-probability
events are more insurable than higher-probability events. However, the exogeneity
of the level of coverage τ may appear as a limit to this analysis. If people have
control over the level of coverage, the decision is not a take-it-or-leave-it problem
anymore. With this idea in mind, we propose the following notion of insurability.

3.3.2 Weak insurability

The second notion of insurability that we develop is the following.

Definition 6 A risk is weakly insurable if and only if individuals are willing to
purchase a positive amount of coverage of some feasible contract.

This notion of insurability is weaker in the sense that a strongly insurable risk is
necessarily weakly insurable. If a person agrees to purchase a level of coverage τ

rather than no insurance when the loss probability is p, she would never optimally
choose τ = 0. However, she may select a level of coverage lower than τ to reduce
the cost of insurance.
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With endogenous coverage, the agent solves:

max
τ

pu(w − L + τ − α) + (1 − p)u(w − α)

s.t. α = pτ + pc(τ), τ ≥ 0. (3.2)

The first order condition of this problem is:

[1 − (1 + c′(τ))p)]u′(w1) = (1 − p)(1 + c′(τ))u′(w2), (3.3)

in which w1 = w − L + τ − pτ − pc(τ) and w2 = w − pτ − pc(τ) are the levels
of wealth in the loss and no-loss states. It is easy to check that c′(τ) > 0 implies
that the agent chooses partial coverage, so that τ < L at any interior solution.
Individuals purchase a positive amount of coverage if and only if:

(1 − p)(1 + b)u′(w) < [1 − (1 + b)p]u′(w − L). (3.4)

Re-arranging the terms of (3.4) yields the following Proposition.

Proposition 11 In the absence of aggregate loss uncertainty, a risk is weakly
insurable if and only if its probability p is such that:

p <
1

1 + b
− b

1 + b

u′(w)
u′(w − L) − u′(w)

. (3.5)

For a given p, an event is uninsurable when the marginal cost of coverage
b = c′(0) is too high or the size of the loss L is not sufficiently large to generate
a significant difference between marginal utility in the loss state u′(w − L) and
marginal utility in the no-loss state u′(w). Proposition 11 stresses once more that,
in the absence of aggregate loss uncertainty, low-probability events are easier to
insure than high-probability events. In addition, proposition 12 and its corollary
give conditions under which a strictly positive optimal coverage increases when
the probability p decreases. When the loss probability diminishes, two effects
interact. On the one hand, the risk of experiencing the loss L diminishes, lowering
the incentive to pay the dead-weight cost. On the other hand, the dead-weight
marginal cost pc′(τ) diminishes, making insurance more attractive at the margin.
The total effect on optimal coverage cannot be signed for any utility function, but
the following proposition and corollary enables to identify some interesting and
realistic cases.
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Proposition 12 In the absence of aggregate loss uncertainty, the optimal coverage
τ of a weakly insurable risk is strictly decreasing in p if and only if:

A(w1) − A(w2) <
c′(τ)

[τ + c(τ)](1 − p)[1 − (1 + c′(τ))p]
.

The proof of proposition 12 is given in Appendix 3.6.2. Note that the right-
hand side of the inequality in proposition 12 is positive when 1 − (1 + c′(τ))p > 0,
which is necessary to have an interior solution. Since w1 < w2, the condition
in proposition 12 is trivially satisfied for any increasing or constant absolute risk
aversion functions (IARA or CARA). For the class of decreasing absolute risk
aversion (DARA), the condition puts an upper bound on the variation of risk
aversion between the loss and the no-loss state. The empirical literature most often
fails to reject DARA as a realistic hypothesis such as in Guiso & Paiella (2008) and
Levy (1994). We would therefore like to know whether classical utility functions,
satisfying the DARA property, also feature an optimal coverage decreasing in the
probability p. This is the purpose of Corollary 12.1 that deals with the case of
Harmonic Absolute Risk Aversion (HARA) functions. We define a HARA utility
function as in Gollier (2004):

u(x) = ζ
(
η + x

γ

)1−γ
,

whose domain is such that η + x
γ

> 0 and the condition ζ 1−γ
γ

> 0 guarantees
that the function is indeed increasing and concave. The coefficient of absolute risk
aversion is:

A(x) =
(
η + x

γ

)−1
. (3.6)

Except for the limit case γ → +∞, the HARA functions satisfy the DARA prop-
erty when γ > 0, which makes them appealing with respect to the literature
discussed previously.

Corollary 12.1 If a risk-averse agent has preferences represented by a HARA
utility function with γ ≥ 1, then the optimal coverage τ of a weakly insurable risk
is strictly decreasing in p in the absence of aggregate loss uncertainty.
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The proof of corollary 12.1 is given in Appendix 3.6.3. The HARA class nests
two of the most widely used classes of utility functions. The Constant Absolute
Risk Aversion (CARA) is obtained when γ → +∞. Solving the differential equa-
tion (3.6) yields the specification of this function:

u(x) = −η exp (−1
η

x). (3.7)

The second class of functions within the HARA class is the set of Constant Relative
Risk Aversion (CRRA) which is obtained for η = 0. Solving (3.6) in this case yields:

u(x) = x1−γ

1 − γ
. (3.8)

If people’s preferences can be represented by a CARA or by a CRRA utility func-
tion with γ ≥ 1, then their optimal coverage is always a decreasing function of p.
For the CRRA case, Szpiro (1986) and Barsky et al. (1997) find values of relative
risk aversion respectively between 1.2 and 1.8 for the first and 4.17 for the second.
According to Gollier (2004) (p.69), the “range of acceptable values of relative risk
aversion [is] [1, 4]”. A complete survey of the literature on risk preferences elicita-
tion would reveal some estimates below one, such as Chetty (2006), but overall our
(sufficient but not necessary) condition γ ≥ 1 seems a very plausible assumption.

Besides, Louaas & Picard (2014) have shown the following proposition.

Proposition 13 In the absence of aggregate loss uncertainty and if u′(w − L) >

(1+ b)u′(w), the optimal coverage converges, as p goes to 0, toward a positive limit
τ such that:

u′(w − L + τ) = (1 + c′(τ))u′(w).

It may sound surprising that the agent is willing to pay a positive loading factor
for a risk whose probability tends to zero, but the pricing rule α = pτ + pc(τ)
implies that the premium tends to zero with the probability. The agent therefore
receives an indemnity with an infinitesimal probability whose price also becomes
infinitesimal.

Finally, figure 3.2 gives an illustration of the previous results in the (w1, w2)
space. Point A represents the optimal lottery at the highest probability p for which
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the insured chooses a positive amount of coverage. The thick curve represents
the locus of optimal lotteries as p diminishes and Point B is the limit optimal
lottery when p → 0. In agreement with proposition 12, the optimal lottery gets
closer from the 45 degree line as p decreases, until it (almost) reaches point B
when p → 0. Our theoretical results indicate that under reasonable assumption
on individual’s preferences, low-probability events should be more insured than
higher probability events. Gollier (1997) shows that the deductible chosen by
a risk averse agent is increasing in p when the agent’s utility function features
IARA and p is sufficiently small, which is equivalent7 to purchase more insurance
when the probability decreases. Our results are more general since they apply
everywhere on the domain of p where the agent purchases a positive amount of
coverage. In addition, we are able to accommodate some of the more realistic
DARA utility functions.

Note that low-probability and high-stake risks are usually characterized by a
large potential loss L. In order to compare insurance choice for these risks to
choices concerning more traditional risks, it may be useful to fix the expected loss,
as in Laury et al. (2009), so that the loss increases as its probability diminishes. In
this case and independently of any assumption on individual’s preferences, agents
purchase more coverage as the probability of loss decreases.

Proposition 14 In the absence of aggregate loss uncertainty, and if the expected
loss pL remains constant, the optimal coverage is a decreasing function of the
probability p for any risk averse individual.

The proof of proposition 14 is given in Appendix 3.6.4. The requirement that
expected loss be fixed makes it easier for the condition of proposition 12 to hold.
Indeed as p diminishes, the loss becomes larger, providing agents with additional
incentives to purchase insurance. This in turn reduces the gap between wealth in
the non loss state w1 and wealth in the loss state w2.

7In a model where agents only face two states: loss or no loss, deductible and partial coverage
are strictly equivalent.
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Figure 3.2: w = 10000, L = 5000, u(x) = x−3

3

This section has shown that in the absence of aggregate loss uncertainty, low-
probability risks are easier to insure than high-probability risks. This may explain
why typical homeowners insurance cover perils as unlikely as lightening strikes.
In contrast, low-probability correlated risks such as earthquakes, flooding, wind-
storms, nuclear hazards and acts of wars are typically excluded from homeowner
policies. The next section provides an explanation as to why low-probability cor-
related risks are also difficult to insure.

3.4 Insurability with aggregate uncertainty

This section considers the case of dependent risks. We relax the assumption that
the fraction q of the population affected by the loss is known. Instead, q̃ is a
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random variable with cumulative distribution function F (q), expected value p and
variance σ2. Because the insurance company raises the premiums ex-ante, the total
amount of premium raised is unlikely to match the amount required to pay-off all
claims. When it raises a premium α, it must therefore have access to an amount
of capital per policy k such that:

k = q̄[τ + c(τ)] − α, (3.9)

where q̄ is the highest fraction of affected policyholders with a non-zero measure.
This capital can be financed with an internal reserve of liquidities, with some
form of reinsurance contract8 or by borrowing.9 In any case, the availability of
this capital comes at a cost per monetary unit called r. When k is a reserve, r

represents the foregone investment opportunities associated with having to keep
the reserve. If the insurance company is private, r can be measured as the internal
rate of return of the insurance company. If the insurance provider is public, r can
be seen as the cost of public funds. When k is a reinsurance or an alternative risk
transfer contract, r is simply the rate of return paid to the seller of the contract.
The zero expected profit feasible contract is therefore such that:

α − (τ + c(τ))
∫ 1

0
qdF (q) − kr = 0.

Replacing k by its expression (3.9) yields the price of the contract:

α = τ + c(τ)
1 + r

(p + rq̄).

In the absence of aggregate loss uncertainty, q̄ = p and we find a lower premium
α = pτ + pc(τ) which corresponds to the premium derived in the previous section.
Aggregate loss uncertainty therefore generates an additional cost determined by
the cost of capital allocation and by the tail of the distribution.10

8Insurance providers traditionally rely on reinsurance companies to transfer the layers of risk
they do not wish to retain. The past two decades have also seen the emergence of Insurance
Linked Security (ILS) markets, enabling insurance and reinsurance providers to transfer layers
of risk to the financial markets.

9This is particularly true for public insurance providers, who have greater access to capital
through fiscal policy.

10We assume here that the insurance company is not allowed to default. In practice, insurance
companies are subject to regulatory solvency constraints that impose a probability of default
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3.4.1 Strong insurability

Figure 3.3b displays the highest price that an agent is willing to pay C(p, τ) and
the price of the zero expected profit feasible contract in the presence of aggregate
loss uncertainty. The two curves intersect at p and p, hence defining three zones on
the [0, 1] interval. Coverage is purchased on the domain [p, p]. Below p, willingness
to pay falls below the cost of insurance, which explains the failure to insure low-
probability correlated risks.

Proposition 15 If a risk is strongly insurable at some probability level, then in
the presence of aggregate loss uncertainty, there exist a probability threshold p,
below which the risk becomes uninsurable (in the strong sense), with p such that:

p = min{p|C(p, τ) = τ + c(τ)
1 + r

(p + rq̄)}.

This result underlies the fact that in the presence of aggregate loss uncertainty,
low-probability risks are indeed more difficult to insure because of the cost of the
reserve.

3.4.2 Weak insurability

As in the section without aggregate uncertainty, we now proceed to endogenize the
level of coverage τ . People are now able to lower the coverage as the probability
decreases, hence mitigating the increase in the loading α/pτ . The agent’s program
is:

max
τ

pu(w + τ − α − L) + (1 − p)u(w − α)

s.t. α = τ+c(τ)
1+r

(p + rq̄), τ ≥ 0,

lower than an exogenously defined level η. On the one hand, it would require the insurance
provider to have access to a lower level of capital k = F −1(1 − η)[τ + c(τ)] − α, which would
translate in a lower premium α = τ+c(τ)

1+r (
∫ F −1(1−η)

0 qdF (q) + rF −1(1 − η)). On the other hand,
policyholders would have weaker coverage because of the default risk and default could generate
additional costs. Thus, the optimal default risk depends on the tradeoff between benefit and
costs but is not the focus of the present paper.
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Figure 3.3: Coverage without and with aggregate loss uncertainty

and the associated first order condition is:

p[1 − 1 + c′(τ)
1 + r

(p + rq̄)]u′(w1) = (1 − p)1 + c′(τ)
1 + r

(p + rq̄)u′(w2).

The problem has an interior solution if and only if:11 Q(p) = −p2[u′(w − L) −
u′(w)]+p[ 1+b

1+r
u′(w−L)+rq̄(u′(w)−u′(w−L))−u′(w)]−rq̄u′(w) > 0. Remark that

the left-hand side of this last inequality is quadratic in p with a negative intercept.
Figure 3.4 represents an example of this quadratic form. There may or may not
exist an interval of p where the inequality is satisfied (where the agent purchases a
positive amount of coverage), depending on the relative values of the parameters,
but when such an interval exists, it is delimited downward by a lower bound p∗∗.

Proposition 16 If a risk is weakly insurable at some probability level, then in
the presence of aggregate loss uncertainty, there exists a probability threshold p∗∗,

11From the first order condition, we obtain p[1− 1+b
1+r (p+rq̄)]u′(w−L)−(1−p) 1+b

1+r (p+rq̄)u′(w) >

0.
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below which the risk becomes uninsurable (in the weak sense), with p∗∗ such that:

p∗∗ = min{p|Q(p) = 0}.

This results emphasizes that even when the agent is free to choose the level of
coverage τ , there is a probability threshold p∗∗ below which she will stop purchasing
insurance. This also implies the following corollary.

Corollary 16.1 In the presence of aggregate loss uncertainty, the optimal cover-
age tends to zero as the probability p goes to 0.

This contrasts with proposition 13 of the previous section. In the presence of
aggregate loss uncertainty, the premium α has a component that does not vary
with p. As p becomes very small the cost-reduction effect of a decrease in p vanishes
but the likelihood-reduction effect remains and eventually dominates completely,
leading the agent to stop purchasing insurance.

Finally, figure 3.5 shows a calibrated example in the simple case where q̃ takes
value q = 0.5 with probability π and 0 with probability 1 − π. The individual
probability of loss is p = πq. The locus of optimal lotteries as the probability π

varies is represented by the set of dark dots. When π = 1, p = 0.5 is too large for
the agent to purchase any coverage. The optimal lottery is therefore (w, w − L),
which is located at the extreme south-east part of the graph. As π diminishes,
the cost-reduction effect dominates, driving the optimal lottery closer from the 45
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degree line. At a certain point however, the cost-reduction effect becomes weaker
and the likelihood-reduction effect dominates, leading coverage down to zero in
the limit. The optimal lottery returns to its original (w, w − L) position.

Figure 3.5: w = 10000, L = 5000, u(x) = x−3

3 , r = 0.05, λ = 0.3, q = 0.5

The actuarial and insurance literatures often use the loading α/pτ as a measure
of the cost of insurance. Apart from the case of Giffen behaviors, the higher the
loading, the lower the demand for insurance coverage.12

Proposition 17 In the presence of aggregate loss uncertainty, the loading τ+c(τ)
τ(1+r)(1+

rq̄
p

) is a decreasing function of p and diverges to +∞ as p goes to 0.
12Some DARA utility functions generate Giffen behaviors as shown by Briys et al. (1989).

However, to our knowledge, empirical analysis on the purchase of natural disaster insurance
have not observed such behaviors. For instance, Browne & Hoyt (2000) and Grace et al. (2004)
observe that when insurance price increases, the demand for insurance decreases.
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In the absence of aggregate loss uncertainty, or if the cost of capital allocation
is null, the loading 1 + c(τ)/τ does not depend on the probability p. In this case,
the simplifying assumption c′(τ) = λ gives an accurate and useful approximation
of the price of insurance. However, it becomes less accurate when, holding other
factors constant, the loss probability p becomes small. Empirical studies on the
demand for insurance should therefore take this effect into account. Although
we have little doubt that the traditional explanations of low take-up rates have
a significant importance in the decision to purchase insurance, their effects would
be overestimated should one omit to control for variations in the loading factor
induced by changes in the loss probability.

3.5 Conclusion

We have shown that the low take-up rates for low-probability event coverage can-
not be explained by rational behaviors in the absence of aggregate loss uncertainty.
In the presence of aggregate loss uncertainty however, the cost of capital alloca-
tion may represent a significant obstacle for the insurability of low-probability
events. The fact that uncorrelated low-probability events such as lightning strikes
do not posit any insurability issue while correlated low-probability events such as
hurricanes and nuclear accidents do, supports our theory. It is also interesting
to remark that acts of terrorism were included in standard US homeowner poli-
cies until early 2002. One month after the 9/11 attacks, the Insurance Services
Office filed a request to exclude acts of terrorism from standard US homeowner
policies (Kunreuther & Michel-Kerjan (2005)). In a very similar way, the sup-
ply of coverage against losses due to earthquakes dramatically dropped after the
1994 Northridge earthquake that devastated California and generated more than
$24 billions in insured losses. These facts suggest that supply side explanations
account for a great share of the insurability problem for low-probability events.
The explanation we propose is that the occurrence of large catastrophes changes
the way actors of the insurance industry perceive the risks they insure. The 9/11
attacks and the Northridge earthquake made insurers realize that the worst case
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scenario was even worst than what they had imagined so far. The impact on the
insurability of low-probability events is particularly salient because even small pre-
mium increase may generate important changes on the implied loading factor that
people have to pay for coverage. Public-Private Partnership insurance structures,
such as the Californian Earthquake Authority, were often created in the aftermath
of large catastrophes to face the unavailability of insurance policies at reasonable
prices. Their goal is precisely to reduce the cost of capital allocation by aggre-
gating the risk at the highest possible level and by smoothing the shocks across
time.

3.6 Appendix

3.6.1 Correlation

The coefficient of correlation δ between two individual losses writes for individuals
i and j:

δ = Cov(x̃i, x̃j)
(Var(x̃i)Var(x̃j))0.5 .

Since we have an infinite number of agents:13

x̃ix̃j =

 L2 with probability
∫ 1

0 q2dF (q)
0 with probability 1 −

∫ 1
0 q2dF (q),

the covariance between two individual losses can be written as:

Cov(x̃i, x̃j) = E(x̃ix̃j) − E(x̃i)E(x̃j)

= L2
∫ 1

0
q2dF (q) − (L

∫ 1

0
qdF (q))2.

Remark that:

L2
∫ 1

0
q2dF (q) = L2

∫ 1

0

(
(q − p)2 − p2 + 2pq

)
dF (q)

= L2[σ2 − p2 + 2p2]

= L2[σ2 + p2].
13An infinite number of agents enables us to find a simple expression for the coefficient of

correlation since it implies that all the aggregate uncertainty comes from the dependence between
the individual losses. But none of our results relies on this assumption.
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Thus, we have:

Cov(x̃i, x̃j) = L2[σ2 + p2] − p2L2

= L2σ2.

Since x̃i and x̃j have the same variance equal to p(1 − p)L2, the coefficient of
correlation between two individual losses writes:

δ = σ2

p(1 − p)
.

To show that δ ≤ 1, remark that:

σ2 =
∫ 1

0
(q − p)2dF (q)

=
∫ 1

0
q2dF (q) − p2

≤ p − p2.

3.6.2 Proposition 12

We consider the case of an interior solution. From the first order condition (3.3),
we obtain:

dτ

dp
= (1 + c′(τ))[u′(w1) − u′(w2)]

(1 − p)p(1 + c′(τ))2u′′(w2) + [1 − (1 + c′(τ))p]2u′′(w1) − c′′(τ)[pu′(w1) + (1 − p)u′(w2)]

+
[τ + c(τ)]

(
[1 − (1 + c′(τ))p]u′′(w1) − (1 − p)(1 + c′(τ))u′′(w2)

)
(1 − p)p(1 + c′(τ))2u′′(w2) + [1 − (1 + c′(τ))p]2u′′(w1) − c′′(τ)[pu′(w1) + (1 − p)u′(w2)]

.

Since u(.) is concave and c(.) convex, we have:

dτ
dp

< 0

⇔

u′(w1) + τ+c(τ)
1+c′(τ)(1 − (1 + c′(τ))p)u′′(w1) > u′(w2) + τ+c(τ)

1+c′(τ)(1 − p)(1 + c′(τ))u′′(w2)

⇔ (3.10)

u′(w1)[1 − τ+c(τ)
1+c′(τ)(1 − (1 + c′(τ))p)A(w1)] > u′(w2)[1 − τ+c(τ)

1+c′(τ)(1 − p)(1 + c′(τ))A(w2)].
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Using the first order condition (3.3), this last inequality holds if and only if:

1− τ + c(τ)
1 + c′(τ)

(1−(1+c′(τ))p)A(w1) >
1 − (1 + c′(τ))p

(1 − p)(1 + c′(τ))
[1− τ + c(τ)

1 + c′(τ)
(1−p)(1+c′(τ))A(w2)],

which can be written as:

c′(τ)
(1 − p)(1 + c′(τ))

>
τ + c(τ)
1 + c′(τ)

[A(w1) − A(w2)][1 − (1 + c′(τ))p].

3.6.3 Corollary 12.1

Since u(.) is a concave function and τ < L we know that u′(w1) > u′(w2). A
sufficient condition for inequality (3.10) to be satisfied is:

1 − [1 − (1 + c′(τ))p] τ + c(τ)
1 + c′(τ)

A(w1) > 1 − (1 − p)(1 + c′(τ)) τ + c(τ)
1 + c′(τ)

A(w2).

This can also be written as:

(1 − p)(1 + c′(τ))A(w2) > [1 − (1 + c′(τ))p]A(w1).

Using the expression (3.6) of the coefficient of relative risk aversion for a HARA
function, we obtain:

(1 − p)(1 + c′(τ))
1 − (1 + c′(τ))p

>
η + w2

γ

η + w1
γ

. (3.11)

At an interior solution, the first order condition (3.3) yields:

(1 − p)(1 + c′(τ))
1 − (1 + c′(τ))p

=
(η + w2

γ

η + w1
γ

)γ
.

So for any γ > 1, this implies that (3.11) is verified and optimal coverage is indeed
decreasing in p.

3.6.4 Proposition 14

Assume that L is now a function of p such that a change in p is compensated by
a change in L that maintains pL constant, i.e.:

L′(p) = −L(p)
p

. (3.12)

71



Chapter 3. Insurability of low-probability catastrophic risks

Let τ ∗, w∗
1 and w∗

2 be the optimal values of coverage, loss state wealth and no-loss
state wealth. The first order condition now writes:

[1−(1+c′(τ ∗))p]u′(w+τ ∗−pτ ∗−pc(τ ∗)−L(p)) = (1−p)(1+c′(τ ∗))u′(w−pτ ∗−pc(τ ∗)).
(3.13)

Proceeding as in the proof of proposition 12, we find the necessary and sufficient
condition for dτ∗

dp
< 0:

c′(τ ∗)
(1 − p)[1 − (1 + c′(τ ∗))p]

> [τ ∗ + c(τ ∗)][A(w∗
1) − A(w∗

2)] + A(w∗
1)L′(p). (3.14)

Using equation (3.12) gives:

[τ ∗ + c(τ ∗)][A(w∗
1) − A(w∗

2)] + A(w∗
1)L′(p) = [τ ∗ + c(τ ∗)][A(w∗

1) − A(w∗
2)] − A(w∗

1)L

p

= [τ ∗ + c(τ ∗)]
(
A(w∗

1) − A(w∗
2) − A(w∗

1) L

[τ ∗ + c(τ ∗)]p
)

= [τ ∗ + c(τ ∗)]A(w∗
1)[τ ∗ + c(τ ∗)]p − A(w∗

2)[τ ∗ + c(τ ∗)]p − A(w∗
1)L

[τ ∗ + c(τ ∗)]p

= [τ ∗ + c(τ ∗)]A(w∗
1){[τ ∗ + c(τ ∗)]p − L} − A(w∗

2)
[τ ∗ + c(τ ∗)]p

. (3.15)

At any interior solution, the left-hand side of (3.13) must be positive. Therefore,
it must be the case that p(1 + c′(τ ∗)) < 1. By convexity of c(τ), we have:

p(1 + c′(τ)) < p(1 + c′(τ ∗)) < 1 ∀τ < τ ∗.

Hence: ∫ τ∗

0
p(1 + c′(τ))dτ <

∫ τ∗

0
dτ .

Or equivalently, using c(0) = 0, we have:

p(τ ∗ + c(τ ∗)) < τ ∗ < L.

Therefore:
A(w∗

1)
(
[τ ∗ + c(τ ∗)]p − L

)
< 0,

which implies with (3.15):

[τ ∗ + c(τ ∗)][A(w∗
1) − A(w∗

2)] + A(w∗
1)L′(p) < 0.

The necessary and sufficient condition (3.14) is therefore always satisfied.
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Chapter 4

Pooling natural disaster risks in a
community

This chapter is co-authored with Alexis Louaas.

Abstract: We analyze the design of contracts when individual risks are corre-
lated across risk-averse agents in a community. The community is equipped with
a public insurer which supplies insurance contracts to its members and has access
to costly reinsurance outside the community. Without transaction costs inside the
community, risk-averse agents fully insure against their individual risk and share
collective risk by getting some dividend in normal states. With premiums raised
ex-ante and generating an opportunity cost, they only partially insure against their
individual risk, getting a lower indemnity in catastrophic states than in normal
states, and potentially get some dividend in normal states. We illustrate the emer-
gence of the latter contracts for the community of the Caribbean countries exposed
to natural disaster risks.

Keywords: individual risk, collective risk, insurance contracts, mutual insur-
ance.

JEL classification: D86, G22, G28, Q54.
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4.1 Introduction

The Caribbean countries are located in a region of the world widely exposed to
large natural disaster risks, such as earthquakes, hurricanes and flooding events.
Even though aggregate damages are usually lower than 1 billion dollars per year
in this region, the hurricane season in 2004 affected many countries with more
than 6 billion dollars of aggregate losses and a large earthquake in January 2010
caused in Haiti more than 8 billion dollars of damages.1 In this context, the non-
for-profit Caribbean Catastrophe Risk Insurance Facility (CCRIF) is designed to
supply insurance contracts to the Caribbean countries (CCRIF SPC (2014)). To
deal with the high collective risks due to the spatial correlation of losses, the
CCRIF purchases reinsurance outside the community. As reinsurance companies
or other investors on financial markets supply reinsurance contracts2 above fair
prices (Jaffee & Russell (1997), Cummins (2006) and Froot (2001)), the CCRIF
only partially reinsures the collective risks and supplies to its members insurance
contracts which are mutual in the sense that they depend on collective losses. The
indemnities for given individual losses are lower when collective losses are high
than when collective losses are low. Moreover, dividends are given to the insureds
when collective losses are low.3 The CCRIF, created in 2007, is one example
of such facilities that have emerged in different regions of the world exposed to
natural disasters in the last twenty years. The Florida Hurricane Catastrophe Fund
(FHCF) and the California Earthquake Authority (CEA) respectively created in
1993 and 1996 are other examples (Kousky (2010) and Kunreuther & Michel-
Kerjan (2009)).

The present paper analyzes the optimal design of insurance contracts by a

1Information on natural disaster losses in the Caribbean countries can be found on the EM-
DAT International Disaster Database (http://www.emdat.be/).

2Investors on financial markets supply insurance-linked securities such as cat-bonds, which
are similar for insurers to standard reinsurance contracts supplied by reinsurance companies.
However, insurance-linked securities have emerged in the nineties because financial markets have
larger financial capacities to supply contracts for very large risks.

3Dividends are given through premium discounts after a year with low collective losses.
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pooling insurance facility when the collective risks are not negligible and reinsur-
ance is above fair prices. We consider a community of identical risk-averse agents
(representing for instance the Caribbean countries). Each agent faces two indi-
vidual states: she can either suffer a loss or not. At the collective level, there
are two states of nature, the normal one and the catastrophic one, respectively
characterized by low and high fraction of the agents affected.4 We consider a non-
for-profit pooling insurance facility for the community (representing for instance
the CCRIF for the Caribbean countries). The insurance facility supplies mutual
insurance contracts to the agents in the community. For one contract, it charges
a premium and pays an indemnity to the insured if affected. The indemnity level
in the normal state may differ from the indemnity level in the catastrophic state.
The insurance contract may also include a dividend if the normal state occurs.
Besides, the insurance facility has access to reinsurance outside the community.
We analyze the characteristics of the optimal insurance and reinsurance contracts
for the community, when reinsurance is above fair prices.

Without any transaction costs inside the community, the optimal insurance
contract consists in full coverage for individual losses in both the normal state and
the catastrophic state. Moreover, it includes a strictly positive dividend in the
normal state because reinsurance is above fair prices. The higher the cost of rein-
surance, the higher the premium and the dividend because the insurer substitutes
reinsurance by a higher reserve from the agents to pay the high total indemnities
of the catastrophic state. However, requiring high amount of premiums ex-ante5

can generate an opportunity cost for the agents in the community. Indeed, this
capital cannot be used for other purpose (i.e consumption or investment) which
thus may require the agents to borrow more costly external capital. In this case, it
is Pareto improving to implement a contract with a lower indemnity for individual

4We consider only two individual states to keep the model tractable. At the collective level,
we consider two and only two states of nature respectively to model collective risks and to keep
the model tractable.

5Premiums are required ex-ante to pay reinsurance premiums and to secure a reserve which
avoids participation default. Moreover, raising the premiums ex-ante enables to transfer indem-
nities quickly to affected agents.
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loss in the catastrophic state than in the normal state. Moreover, the optimal
contract still has full coverage and dividend in the normal state if and only if the
marginal opportunity cost is low enough relative to the marginal reinsurance cost.

The economics literature has already addressed the question of optimal in-
surance contract when there are collective risks in a community. Doherty &
Schlesinger (1990), Hau (1999), Cummins & Mahul (2004) and Mahul & Wright
(2004, 2007) consider the case where the indemnity level in normal states increases
with the premium level but the indemnity level in catastrophic states is null what-
ever the premium level. In this case, the optimal contract consists in partial
coverage for individual losses in normal states in order to preserve their welfare
level in catastrophic states. However, these papers do not address the issue of the
insurer financial capacity which would explain why indemnities cannot be paid
in catastrophic states.6 Charpentier & Le Maux (2014) focuses on the issue by
considering an insurer with an exogenously given amount of reserve besides premi-
ums. In this case, the indemnity level increases with the premium level in normal
states and in catastrophic states because raised premiums increase the financial
capacity. However, the optimal insurance contract consists in full coverage for
individual losses in normal states but not in catastrophic states because of insurer
limited reserve. Relative to Charpentier & Le Maux (2014), we relax the assump-
tion of partially exogenous financial capacity by introducing reinsurance outside
the community. Moreover, we allow a better participation of the insureds in the
reserve by introducing dividends in the contracts, which gives more flexibility in
the design of contracts for risk sharing. Indeed, as explained by Borch (1962)
and (Marshall, 1974b), in a community where agents are exposed to individual
risks with collective components, it is Pareto optimal to eliminate individual risks
and to share collective risks (mutuality principle). Malinvaud (1973) and Cass
et al. (1996) show that a mutual contract with dividend supplied by the insur-
ance company enables to reach the mutuality principle. Penalva-Zuasti (2001)

6This contingency can be seen as contractual or as a "default risk" with right perception by
insureds and no cost of default. In the quoted theoretical papers, "default risk" is used in this
sense.
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and Penalva-Zuasti (2008) show that it is also reached with agents purchasing
a standard contract from the insurance company and investing in the insurance
company through stock market. When reinsurance outside a community is costly,
Doherty & Dionne (1993) and Doherty & Schlesinger (2002) show that the optimal
contract consists in the full elimination of individual risks in each state of nature,
plus partial coverage of the collective risks. Relative to Doherty & Dionne (1993)
and Doherty & Schlesinger (2002), we analyze how the cost of reinsurance and
the correlation between individual risks affect the optimal contract. Moreover, we
introduce and analyze the impact of the opportunity cost of capital potentially
generated by raising premiums ex-ante.

The first contribution of the present paper is to develop a simple and tractable
model to analyze the optimal design of insurance contracts by a pooling insurance
facility to manage individual and collective risks. The second contribution is to
study the impact of reinsurance costs and risk correlation on the optimal insurance
contract further than previous works. The third contribution is to consider the
opportunity cost of capital potentially generated by raising premiums ex-ante. The
paper is organized as follows. Section 2 presents the example of the Caribbean
countries and their insurance facility. Section 3 sets up the model of a community
with individual and collective risks and the insurance and reinsurance contracts.
Section 4 provides an analysis of the optimal insurance and reinsurance contracts.
Section 5 concludes.

4.2 Caribbean countries and natural disasters in-
surance

The Caribbean countries are located in a region of the world exposed to important
natural disaster risks. Figure 4.17 exhibits natural disaster losses in this region in
the last fifty years. Collective losses are widely variable from one year to another
because natural disasters in the region can have large spatial impacts. Year 2010

7EMDAT International Disaster Database (http://www.emdat.be/)
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corresponds to the highest losses with a large earthquake affecting Haiti in Jan-
uary with more than 8 billion dollars of damages. Year 2004 corresponds to the
second highest losses with a particularly dramatic hurricane season affecting many
countries such as the Bahamas, the Cayman Islands, Grenada and Jamaica.

Figure 4.1: Natural disaster losses in the Caribbean countries.

In this context, the Caribbean Catastrophe Risk Insurance Facility (CCRIF)
is a non-for-profit multi-country insurance pool. Created in 2007, it currently
offers disaster-relief insurance policies covering public losses of sixteen Caribbean
countries, protecting them against earthquake, hurricane and excess rainfall losses.
Its effectiveness during the five first years of existence has conducted the program to
be extended to Central American countries, starting from 2016. The facility aims
at pooling the risks faced by its members and reduce the cost the members would
individually face if they directly insured on the reinsurance market. The annual
reports of the CCRIF are publicly available8 and provide useful information about
the catastrophe insurance contracts proposed to the sixteen members. The CCRIF
reports a stable number of 29 or 30 sold policies each year since its inception.9 The

8http://www.ccrif.org/content/publications/reports/annual
9The CCRIF can sell more than one policy per country per year because insurance policies
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collective risk faced by the CCRIF has remained rather stable as well. Figure 4.2a
displays the cumulative density function of the aggregation of the risks covered by
the CCRIF and reported in its annual reports since year 2007-2008. The darker
lines represent the cumulative distribution of this aggregate risk faced by the pool
in the earlier periods of its existence.10 Using the cumulative distribution functions
with the information about the structure of the reinsurance scheme bought by the
CCRIF, we can compute an estimated loading factor paid by the organization as :
λR = αR

E(L) −1, where αR is the premium paid by the CCRIF to reinsurers and E(L)
is the expected loss reinsured. Figure 4.2b displays its evolution through the years
and shows that the CCRIF faces a significant loading factor on reinsurance, which
clearly explains why it only partially reinsures the collective risk. The figure shows
that reinsurers increased their prices a lot in 2010, following the large earthquake
affecting Haiti.

(a) Aggregate risks faced by the CCRIF (b) Reinsurance loading factor

Figure 4.2: Aggregate risks resulting from risk pooling by the CCRIF and esti-
mated reinsurance loading factor faced by the CCRIF.

for the different types of natural disasters are separated.
10Insured losses in figure 4.2a are much lower than total losses due to natural disasters in figure

4.1. This is due to the fact that the CCRIF covers only public losses which represent only a
small fraction of the total losses incurred in a country when a natural disaster occurs. It is also
due to the fact that the Caribbean countries purchase from the CCRIF only partial insurance
for natural disaster risks.
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As the CCRIF only partially reinsures the collective risk, it supplies to its
members insurance contracts which are mutual in the sense that they depend
on collective losses. In addition to the regular insurance premiums, the facility
requires its members to pay an up-front participation fee. Audited financial state-
ments report that "it is Managements intent that participation fee deposits are
available to fund losses in the event that funds from retained earnings, reinsurers
and the Donor Trust are insufficient. If deposits are used to fund losses, it is also
Managements intent that any subsequent earnings generated by the Group will be
used to reinstate the deposits to their original carrying value". Figure 4.3 shows
that the total amount of premiums was effectively much higher the first year than
the following years. It has not been necessary to raise high premiums the follow-
ing years because no extremely large claims had to be paid during these years. In
terms of claims to be paid, the worth year is 2010, during which the CRIFF had to
transfer a bit less than 8 million dollars to Haiti for the large earthquake affecting
the country. The yearly insurance contract is similar to a contract with a high
premium requested at the beginning of the year in exchange for an indemnity if the
insured is affected during the year and a dividend at the end of the year if collective
losses are not too catastrophic. In the present case, the dividend is given through
a premium discount at the beginning of the following year. Besides, the CCRIF
acknowledges the possibility of lowered indemnities in catastrophic states: "The
CCRIF can currently survive a series of loss events with a less than 1 in 10,000
chance of occurring in any given year. Due to planned premium reductions, the
safety level drops somewhat through the course of our 10-year forward modeling.
However, the lowest projected survivability for the CCRIF in the 10-year modeled
period is about 1 in 3000 chance of claims exceeding capacity in any one year." In
other words, the CCRIF acknowledges to supply contracts such that the indemnity
for one individual loss level is lower in highly catastrophic states than in the other
states of nature.
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Figure 4.3: Premiums raised and claims paid by the CCRIF.

4.3 The model

4.3.1 The community of agents

We consider a community of N agents identical in terms of preferences, initial
wealth and exposure to risk.11 The preferences of the representative agent satisfy
the von Neumann-Morgenstern axioms, with u(.) the corresponding utility function
which is strictly increasing, globally concave and twice continuously differentiable.
The representative agent has an initial wealth w and is exposed to a potential loss
l. The individual risks can generate a significant collective risk either because N is
not large enough or because individual risks are correlated. To model the collective
risks, we consider two states of nature, one catastrophic and one normal. Ex-ante,
the representative agent knows that with a probability p (such that 0 < p < 1), a
catastrophe occurs and the fraction of agents enduring a loss of size l is qc. In the

11Heterogeneity of individuals raises questions related to asymmetric information that are out
of the scope of our analysis.
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normal state, the fraction of agents enduring the same loss l is qn < qc.12 In this
template, the individual probability of enduring a loss l is qc in the catastrophic
state and qn in the normal state, and the unconditional individual probability of
enduring a loss l is: q = (1−p)qn +pqc. The individual random wealth without risk
sharing scheme is characterized in figure 4.4. Besides, the collective random wealth
of the N agents is characterized in figure 4.5. With N large, the coefficient δ of
correlation between individual risks is well approximated by: δ = p(1−p)

q(1−q) (qc − qn)2

(proof in appendix 4.6.1). The higher the difference between the fraction qc of
affected agents in the catastrophic state and the fraction qn of affected agents in
the normal state, the higher the risk correlation between agents.13 Finally, qn and
qc can be expressed as functions of the individual probability q of being affected,
the correlation δ between individual risks and the probability p of catastrophe:
qn = q − p( q(1−q)

p(1−p)δ)0.5 and qc = q + (1 − p)( q(1−q)
p(1−p)δ)0.5.

..
1 − p

.

normal state

.

p

.

catastrophic state

.

1 − qn

.

w

.

not affected

.
qn

.
w − l

.
affected

.
1 − qc

.
w

.
not affected

.

qc

.

w − l

.

affected

Figure 4.4: individual random wealth of the representative agent

In this template, average individual loss depends on the state of nature, its value
is qnl in the normal state and qcl in the catastrophic state. Thus, the expected value
of the average individual loss is ql and its variance is q(1−q)δl2 (proof in appendix
4.6.1). The higher the individual probability q of being affected, the higher the
expected average loss. The more correlated the individual risks, the more volatile

12As pointed out by Malinvaud (1973) and Cass et al. (1996), considering two different in-
dividual loss levels in the normal and catastrophic states could be considered as two different
risks.

13The fully correlated case (δ = 1) is characterized by qn = 0, qc = 1 and 0 < p < 1, in which
everyone endures a loss or no one. The no-correlated case (δ = 0) would correspond to qn = qc,
p = 1 or p = 0, in which there is only one collective state.
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..
1 − p
.

Nw − qnNl

.
p

.
Nw − qcNl

Figure 4.5: collective random wealth of the N agents

the average loss.14 Figure 4.6 illustrates for two different sets of parameters the
cumulative distribution functions for the individual loss (thick bars) and for the
average individual loss (thin bars). The spread between qn and qc is smaller in 4.6a
than in 4.6b, while in both cases p = 0.2 and q = 0.3. The individual probability
of being affected q is similar for the two sets of parameters, whereas the correlation
across individual risks δ is smaller in 4.6a than in 4.6b, which makes a difference
for risk sharing mechanism as detailed in the paper.

.. loss.
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qcl
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l
.

probability
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1 − q

.
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.

1

(a) p = 0.20, qn = 0.25, qc = 0.50,
q = 0.3, δ = 0.048

.. loss.
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1 − q
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1 − p
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(b) p = 0.20, qn = 0.20, qc = 0.70,
q = 0.3, δ = 0.190

Figure 4.6: Cumulative distribution functions for individual loss (thick bars) and
average individual loss (thin bars) for two different sets of parameters in 4.6a and
4.6b.

14Cummins (2006) and Cummins & Trainar (2009) have more insights on the relation between
the risk correlation and the average loss volatility.
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4.3.2 Insurance and reinsurance contracts

We consider that the community is equipped with a pooling insurance facility, also
called the insurer. The insurer faces two states of nature, the normal one and the
catastrophic one, in which it respectively has a fraction qn and a fraction qc of
its insureds that have to be indemnified. A standard-type insurance contract is
a couple (α, τ). In this case, α is the premium paid by the agent and τ ≥ 0 is
the indemnity received by the agent if the latter endures a loss l. A mutual-type
insurance contract is a quadruple (α, τ, ϵ, π). In this case, α is the premium paid
by the agent, τ ≥ 0 is the indemnity received by the agent in the normal state if
the latter endures a loss l, τ − ϵ ≥ 0 is the indemnity received by the agent in the
catastrophic state if the latter endures a loss l and π ≥ 0 is the dividend received by
the agent in the normal state. This contract is called mutual-type contract because
each agent shares a fraction of the collective risk of the community. Indeed, ϵ and
π make the insurance contract directly depend on the collective losses, contrary
to the standard contract. The standard contract is a specific case of the mutual
contract with ϵ = 0 and π = 0.15 Besides, we consider that the contract can
generate an opportunity cost for the insured. When premiums are raised ex-ante
while indemnities and dividends are given ex-post, the secured capital cannot be
used for other purpose (i.e. consumption or investment). Thus, the agents may
have to raise more costly external capital instead of using this capital, which
generates an opportunity cost for the agents. The higher the required premium
α, the higher should be the marginal opportunity cost because the costlier should
be the marginal external capital. We denote λl(α) the opportunity cost function
which is increasing and convex relative to the premium α. The agent wealth profile
with a mutual-type contract is represented in figure 4.7.

The insurer has to manage the collective risks generated by the aggregation of

15The mutual contract defined here is in the spirit of the contracts supplied by the CCRIF to
the Caribbean countries. The premium α corresponds to the regular premium plus the up-front
participation fee in the contracts supplied by the CCRIF. The dividend π corresponds to the
premium discount of the following year if losses are not too catastrophic. The indemnity gap ϵ

between normal state and catastrophic state is also acknowledged by the CCRIF.
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Figure 4.7: agent wealth profile with an insurance contract

the insured individual risks. It can purchase reinsurance outside the community,
to be able to pay the higher total claims of the catastrophic state. Purchasing a
reinsurance contract, with an indemnity τR ≥ 0 in the catastrophic state occuring
with a probability p, costs (1+λR)pτR, in which λR ≥ 0 is the reinsurance loading
factor.16 For reinsurance to be relevant, we need to have (1+λR)p < 1.17 With the
insurance contracts supplied to the agents and the reinsurance contract purchased
outside the community, the insurer wealth profile is detailed in figure 4.8.

..
1 − p
.

Nα − Nqnτ − (1 + λR)pτR − Nπ

.
p

.
Nα − Nqc(τ − ϵ) − (1 + λR)pτR + τR

Figure 4.8: insurer profit profile

4.4 Optimal insurance and reinsurance

The optimal insurance and reinsurance contracts for the community consist in
maximizing the expected utility of the representative agent under the budget con-
straints.

16λ corresponds to frictional costs with reinsurers or investors, as detailed in Froot (2001).
17If (1+λR)p ≥ 1, purchasing reinsurance would have no sense for the CCRIF because it would

lose money in both the normal state and the catastrophic state with the reinsurance contract.
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4.4.1 Budget constraints

The mutual insurance facility cannot pay claims unless it has secured the funds
either through raised premiums or purchased reinsurance. With the budget con-
straints in both the normal state and the catastrophic state (budget expressions in
figure 4.8), the optimal insurance and reinsurance contracts are thus the solution
of the following maximization problem:

max
α,τ,ϵ,π,τR

E(u(w̃))

s.t. Nα − Nqnτ − (1 + λR)pτR − Nπ ≥ 0

Nα − Nqc(τ − ϵ) − (1 + λR)pτR + τR ≥ 0

τ ≥ 0, τ − ϵ ≥ 0, π ≥ 0, τR ≥ 0.

(4.1)

Because utility is increasing with wealth, the budget constraints are binding in the
two states of nature, the catastrophic one and the normal one. The subtraction
of the two binding budget constraints gives the purchased reinsurance indemnity
τR:

τR = Nqc(τ − ϵ) − Nqnτ − Nπ ≥ 0. (4.2)

The insurance facility has to purchase a reinsurance indemnity in order to cover
the difference between the amount due in the catastrophic state (Nqc(τ − ϵ)) and
the amount due in the normal state (Nqnτ + Nπ). With (4.2), the binding budget
constraints give the required premium:

α =
(

1 + p(qc − qn)
q

λR

)
qτ +

(
1 − p

1 − p
λR

)
(1 − p)π −

(
1 + λR

)
pqcϵ, (4.3)

which simplifies, if reinsurance is binding (τR = 0), to:

α = qc(τ − ϵ). (4.4)

To be able to pay indemnities and dividends, the insurance facility requires the
premium (4.3) (if τR > 0) or (4.4) (if τR = 0) for the contract (α, τ, ϵ, π). If it is
not valuable to purchase reinsurance, the insurance facility has to raise premiums
(4.4) in order to be able to pay all the indemnities in the catastrophic state. If it
is valuable to purchase reinsurance, the insurance facility has to pass on the cost
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of reinsurance to insureds, which explains the loading factor p(qc−qn)
q

λR in front of
τ in (4.3). As shown by (4.2), allowing a dividend in the normal state (π > 0) or
a lower indemnity in the catastrophic state (ϵ > 0) enables to lower the purchase
of reinsurance. With a dividend in the normal state (π > 0), the premium is
affected in two opposite directions. The first channel is straightforward: a higher
dividend implies a higher premium. The second channel is due to the fact that the
insurer has to purchase less reinsurance thanks to the reserve from the insureds
and appears through λR in the coefficient in front of π in (4.3). Note that the
factor in front of π in (4.3) is globally positive because (1 + λR)p < 1. With a
lower indemnity in the catastrophic state (ϵ > 0), the premium is reduced through
two channels. The first channel is straightforward: a lower indemnity implies a
lower premium. The second channel is due to the fact that the insurer has to
purchase less reinsurance and appears through λR in the coefficient in front of ϵ

in (4.3). If the agents in the community can have direct access to reinsurance
with the same loading factor λR, it is valuable to insure through the insurance
facility because: 1 + p(qc−qn)

q
λR < 1 + λR, thanks to partial diversification done

by the insurance facility. This is true with standard insurance contracts and thus
also true with mutual contracts. The higher the cost of reinsurance, the more
valuable the facility. The lower the correlation between participants, the more
efficient the pooling and thus the more valuable the facility. This could explain
why the Caribbean countries would like to extend their facility to South American
Countries in 2016. However, we have assumed that there are no management costs
for the insurance facility. If there are, the pooling insurance facility is valuable
if the cost of implementing the facility generates a loading factor λi such that:
1 + λi + p(qc−qn)

q
λR < 1 + λR. In the case of the Caribbean countries, extending

the insurance facility to South American Countries will be valuable if it does not
add too much management costs.
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4.4.2 Insurance and reinsurance contracts

With the binding budget constraints, the maximization problem (4.1) for the op-
timal contracts boils down to:18

max
τ,ϵ,π

E(u(w̃))

s.t. α =
(

1 + p(qc − qn)
q

λR

)
qτ +

(
1 − p

1 − p
λR

)
(1 − p)π −

(
1 + λR

)
pqcϵ

τ ≥ 0, π ≥ 0, (qc − qn)τ − π − qcϵ ≥ 0.

(4.5)

Note that, with standard insurance contracts (π = 0 and ϵ = 0), the maximization
problem (4.5) corresponds to the standard Mossin problem, in which the optimal
coverage level is obtained by the marginal tradeoff between the aversion to risk
and the cost due to reinsurance (p(qc−qn)

q
λR).

Without opportunity cost (λl(α) = 0)

We first consider the case in which raising premiums ex-ante does not generate
an opportunity cost for the insured (λl(α) = 0). The first order conditions of
(4.5) are derived in appendix 4.6.2. If it is valuable to purchase reinsurance (i.e.
τR

N
= (qc − qn)τ −π − qcϵ ≥ 0 is not binding), the optimal contract has indemnities

τ and τ − ϵ and dividend π such that:

u′(w2)
u′(w1)

= u′(w − α − l + τ + π)
u′(w − α + π)

= 1, (4.6)

u′(w4)
u′(w3)

= u′(w − α − l + τ − ϵ)
u′(w − α)

= 1, (4.7)

u′(w3)
u′(w1)

= u′(w − α)
u′(w − α + π)

= 1 + λR

1 − p
1−p

λR
. (4.8)

18The last inequality constraint in (4.5) corresponds to τR ≥ 0. The inequality constraint
τ − ϵ ≥ 0 is not written because it is necessarily verified with the other inequality constraints.
Indeed, we have at least as much money for indemnities in the catastrophic state as the amount
of money for indemnities and dividends in the normal state.
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If it is not valuable to purchase reinsurance (i.e. τR

N
= (qc − qn)τ − π − qcϵ ≥ 0 is

binding), the optimal contract has indemnities τ and τ − ϵ plus dividend π such
that:

u′(w2)
u′(w1)

= u′(w − α − l + τ + π)
u′(w − α + π)

= 1, (4.9)

u′(w4)
u′(w3)

= u′(w − α − l + τ − ϵ)
u′(w − α)

= 1, (4.10)

π = (qc − qn)τ − qcϵ. (4.11)

Whether reinsurance is purchased or not, the optimal insurance contract is such
that: w1 = w2 and w3 = w4 (thanks to (4.6) and (4.7) or (4.9) and (4.10)), which
means that τ = l and ϵ = 0. Besides, when λR = 0, (4.8) tells that π = 0, (4.3)
gives α = ql and (4.2) gives τR = N(qc − qn)l. When 0 < λR < λR∗, (4.8) tells
that π > 0, (4.3) gives α = (q + p(qc − qn)λR)l + (1 − p − pλR)π and (4.2) gives
τR = N(qc − qn)l − Nπ > 0. λR∗ is determined with (4.8) and the additional
constraint τR

N
= (qc − qn)l − π = 0, which tells that π = (qc − qn)l and α = qcl.

When λR∗ ≤ λR, (4.11) tells that π = (qc−qn)l, (4.4) gives α = qcl and reinsurance
is not purchased τR = 0.

Proposition 18 The optimal insurance and reinsurance contracts are such that:

(i) when λR = 0: τ = l, ϵ = 0, π = 0, α = ql, τR = N(qc − qn)l;

(ii) when 0 < λR < λR∗: τ = l, ϵ = 0, π > 0, α = (q + p(qc − qn)λR)l + (1 − p −
pλR)π, τR = N(qc − qn)l − Nπ > 0;

(iii) when λR∗ ≤ λR: τ = l, ϵ = 0, π = (qc − qn)l, α = qcl, τR = 0;

in which λR∗ is such that u′(w−qcl)
u′(w−qnl) = 1+λR∗

1− p
1−p

λR∗ .

Proposition 18 states that the optimal insurance contract has full coverage for
a given individual loss in both normal and catastrophic states (τ = l and ϵ = 0)
whatever the cost of reinsurance (λR). The optimal contract eliminates individual
risks, which is in line with Borch mutuality principle. Besides, proposition 18 states
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that the optimal contract has dividend (π > 0) in the normal state if and only if
reinsurance is supplied above fair prices (λR > 0). If reinsurance is fair (λR = 0),
the insurance facility fully reinsures the collective risk (τR = N(qc − qn)l) and the
optimal insurance contract is standard, i.e. without any dividend in the normal
state (π = 0). If reinsurance is not fair (λR > 0), a mutual contract (i.e. with
π > 0) is better than a standard contract because it enables the risk-averse agent
to bear a part of the collective risk contrary to the standard contract, which is
valuable because reinsurance is costly. If reinsurance is excessively above fair prices
(λR∗ ≤ λR), the insurance facility does not purchase reinsurance (τR = 0) and the
optimal insurance contract is with dividend in the normal state corresponding
to the indemnity difference between the catastrophic state and the normal state
(π = (qc − qn)l). If reinsurance is reasonably above fair prices (0 < λR < λR∗), the
insurance facility partially reinsures the collective risk (τR > 0) and the optimal
insurance contract is with dividend in the normal state (π > 0).

Proposition 19 With 0 < λR < λR∗ (and a CARA utility function19), we have
for the optimal insurance and reinsurance contracts: dπ

dλR > 0, dα
dλR > 0, dτR

dλR < 0.

Proposition 19 is proved in appendix 4.6.2. It states that the higher the reinsur-
ance cost (i.e. λR), the lower the reinsurance purchase and the higher the premium
and the dividend in the normal state. Indeed, to be able to cover individual losses
in the catastrophic state when reinsurance purchase is decreased, the insurance
facility has to increase the reserve financed by the insureds through higher premi-
ums. Moreover, it has higher dividends to give to the insureds if the catastrophic

19The coefficient of absolute risk aversion of a utility function u(.) is by definition A(.) =
− u′′(.)

u′(.) . We consider here a utility function with a constant absolute risk aversion A (also called
CARA utility function). If the utility function is not CARA, there is an additional wealth effect.
However, as long as this effect is of secondary order, it does not change the results. Note that
if this effect was not of secondary order, it would have been observed that insurance can be a
Giffen good (i.e. a higher premium leading to a higher purchase of insurance). To our knowledge,
empirical analysis on the purchase of natural disaster insurance have not observed such behaviors.
For instance, Browne & Hoyt (2000) and Grace et al. (2004) observe that when insurance price
increases, the demand for insurance decreases.
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state does not occur. In the extreme case where λR reaches λR∗, reinsurance is
not purchased (τR = 0) and the premium and the dividend respectively reach the
highest levels α = qcl and π = (qc − qn)l.

Proposition 20 We have for the optimal insurance and reinsurance contracts:

(i) when λR = 0: dπ
dδ

= 0, dα
dδ

= 0, dτR

dδ
> 0;

(ii) when 0 < λR < λR∗ (with a CARA utility function): dπ
dδ

= 0, dα
dδ

> 0,
dτR

dδ
> 0;

(iii) when λR∗ ≤ λR: dπ
dδ

> 0, dα
dδ

> 0, dτR

dδ
= 0.

Proposition 20 is obtained thanks to proposition 18, recalling that qn = q −
p( q(1−q)

p(1−p)δ)0.5 and qc = q + (1 − p)( q(1−q)
p(1−p)δ)0.5 ((i) and (iii) are obvious and (ii) is

proved in appendix 4.6.2). Firstly, it states that the insurance contract is affected
by a change of correlation δ if and only if reinsurance is not fair (λR > 0). If rein-
surance is fair, only the average probability q and the loss l affects the insurance
contract because the collective risk is fully reinsured without any cost. If reinsur-
ance is not fair, the higher the correlation δ, the larger the collective risk and the
more expensive its coverage. If reinsurance is not too costly (0 < λR < λR∗), an
increase of δ is managed by an increase of reinsurance purchase to be able to cover
the higher total indemnities in the catastrophic state and the insurance facility has
to translate the cost of reinsurance to insureds through higher premiums. If rein-
surance is too costly (λR∗ ≤ λR), an increase of δ is managed by an increase of the
reserve through higher premiums and the insurance facility has higher dividends
to distribute if the catastrophe does not occur. In both cases, higher correlation δ

leads to higher premiums.

To sum up, the premium α increases from ql to qcl when λR increases from 0
to high values and it also increases when risk correlation δ increases. Thus, with
costly reinsurance and significant risk correlation, the required premiums can reach
high levels for insureds if the individual loss l is significant. In this case, which
is relevant for natural disaster risks, raising such levels of premiums ex-ante can
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generate an opportunity cost for insureds, which are considered in the following
section.

With opportunity cost (λl(α) ≥ 0)

We now consider the case in which raising premiums ex-ante generate an oppor-
tunity cost for the insureds (λl(α) ≥ 0). As explained in section 4.3.2, we assume
that the opportunity cost function λl(.) is increasing and convex relative to the
premium α. We analyze how the marginal opportunity cost λl′(α) affects the op-
timal insurance and reinsurance contracts. We consider λR ≤ λR∗, which means
that purchasing some reinsurance is valuable. The first order conditions of (4.5)
are derived in appendix 4.6.3. If it is valuable to have dividend in the normal state
π ≥ 0, the optimal contract has indemnities τ and τ − ϵ and dividend π such that:

u′(w2)
u′(w1)

= u′(w − α − λl(α) − l + τ + π)
u′(w − α − λl(α) + π)

= 1, (4.12)

u′(w4)
u′(w3)

= u′(w − α − λl(α) − l + τ − ϵ)
u′(w − α − λl(α))

= (1 + λl′(α))(1 + λR)
(1 + λl′(α))(1 + λR) − λl′(α)

p(1−qc)

, (4.13)

u′(w3)
u′(w1)

= u′(w − α − λl(α))
u′(w − α − λl(α) + π)

=
(1 + λl′(α))(1 + λR) − λl′(α)

p(1−qc)

(1 + λl′(α))(1 − p
1−p

λR)
. (4.14)

If it is not valuable to have dividend in the normal state (i.e. π ≥ 0 is binding),
the optimal contract has indemnities τ and τ − ϵ and dividend π such that:

π = 0, (4.15)

u′(w2)
u′(w1)

= u′(w − α − λl(α) − l + τ)
u′(w − α − λl(α))

=
(1 + λl′(α))(1 − p

1−p
λR)

(1 + λl′(α))(1 − p(qc−qn)
1−q

λR) − λl′(α)
1−q

,

(4.16)

u′(w4)
u′(w3)

= u′(w − α − λl(α) − l + τ − ϵ)
u′(w − α − λl(α))

= (1 + λl′(α))(1 + λR)
(1 + λl′(α))(1 − p(qc−qn)

1−q
λR) − λl′(α)

1−q

.

(4.17)
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Proposition 21 The optimal insurance and reinsurance contracts are such that:

(i) when 0 < λl′(α) < λl∗: τ = l, ϵ > 0, π > 0, α = (q + p(qc − qn)λR)l + (1 −
p − pλR)π − (1 + λR)pqcϵ, τR = N(qc − qn)l − Nπ − Nqcϵ > 0;

(ii) when λl′(α) = λl∗: τ = l, ϵ > 0, π = 0, α = (q+p(qc −qn)λR)l−(1+λR)pqcϵ,
τR = N(qc − qn)l − Nqcϵ > 0;

(iii) when λl′(α) > λl∗: τ < l, ϵ > 0, π = 0, α = (q+p(qc−qn)λR)τ −(1+λR)pqcϵ,
τR = N(qc − qn)τ − Nqcϵ > 0;

in which λl∗ = p(1−qc)
1−p−p(1−qc)λR λR.

Proposition 21 is derived from the first order conditions of (4.5) written above
plus (4.2), (4.3) and (4.4).20 Firstly, it states that the optimal insurance contract
has lower coverage for a given individual loss in the catastrophic state than in the
normal state (ϵ > 0) when increasing the premium α generates an opportunity
cost (λl′(α) > 0). In this case, it is not valuable to cover fully individual losses
in the catastrophic state, which means that the optimal contract does not fully
eliminate individual risks and does not fulfill the Borch mutuality principle. This
is a second-best insurance contract when insurance premiums have to be raised
ex-ante and generate an opportunity cost. Besides, relative to the case without an
opportunity cost, proposition 21 states that the optimal contract may not always
have dividend in the normal state. If the marginal opportunity cost is too high
relative to the reinsurance cost (λl′(α) ≥ p(1−qc)

1−p−p(1−qc)λR λR), it is not valuable to
have dividend in the normal state, which means that it is more valuable to spend
all the premiums to reinsure rather than to keep some reserves which would be
given back through dividends in the normal state. In this case, it is even valuable
to lower the indemnity in the normal state relative to full coverage (τ < l) to
increase reinsurance and the indemnity in the catastrophic state. We consider in
the following a constant marginal opportunity cost λl′(α) = λl.

20λl∗ is obtained with (4.14) equal to 1. Besides, λl′(α) > p(1−qc)
1−p−p(1−qc)λR λR tells that (4.16)

is strictly greater than 1 and τ < l.
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Proposition 22 With 0 < λl < λl∗ (and a CARA utility function), we have
for the optimal insurance and reinsurance contracts: dϵ

dλl > 0, dπ
dλl < 0, dα

dλl < 0,
dτR

dλl > 0.

Proposition 22 is proved in appendix 4.6.3. It states that an increase of the
marginal opportunity cost (λl) leads to a decrease of the premium to limit the
opportunity cost for the insured. Thus, it leads to a decrease of the indemnity in
the catastrophic state and a decrease of the dividend in the normal state. However,
to limit the indemnity decrease in the catastrophic state, reinsurance purchase is
increased in this case.

Proposition 23 With 0 < λl < λl∗ (and a CARA utility function), we have for
the optimal insurance and reinsurance contracts: dϵ

dδ
> 0, dπ

dδ
< 0, dα

dδ
ambiguous

and dτR

dδ
> 0.

Proposition 23 is proved in appendix 4.6.3. It states that an increase of the
correlation δ leads to an increase of reinsurance purchase because the collective
risk increases with δ. On the one hand, the premium has to increase because
reinsurance is costly. On the other hand, increasing the premium generates an
additional opportunity cost. That is why the indemnity in the catastrophic state
and the dividend in the normal state are lowered and finally the variation of the
premium is ambiguous.

4.5 Conclusion

In the present paper, we have built a simple model to analyze the type of insur-
ance contracts that emerge when risks are correlated across risk-averse agents in
a community. For the sake of realism, we have considered that the community
simultaneously chooses the type of contract sold to its members and the level of
reinsurance it purchases, given that reinsurance is available at a cost higher than
fair price. In this scheme, the insurer of the community supplies mutual contracts
which are contingent on the state of nature. Without transaction costs in the
community, risk-averse agents fully insure against their individual risk and share
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collective risk by getting some dividend in normal states of nature. Our model
highlights the tradeoff between reinsurance and mutual types contracts. If rein-
surance is costly, the promise of dividends in normal states enables the community
to raise high premiums that are used as reserves to better indemnify in catas-
trophic states. With premiums raised ex-ante and generating an opportunity cost,
risk-averse agents only partially insure against their individual risk, getting a lower
indemnity in catastrophic states than in normal states, and get some dividend in
normal states if the marginal cost of the reserve is low relative to the marginal
cost of reinsurance. This analysis helps to understand the limits that risk correla-
tion, costly reinsurance and costly reserve represent for risk sharing and how the
contracts in a community can be improved through higher flexibility. Indeed, con-
tracts with contingent indemnity and dividend enable to share better individual
risks and collective risks. We have illustrated these mechanisms with the exam-
ple of the Caribbean Catastrophe Risk Insurance Facility (CCRIF) that combines
reinsurance and mutual contracts with indemnity and dividend contingent on the
collective state.

4.6 Appendix

4.6.1 Risk correlation

With the loss represented by the random variable x̃i for individual i and the
probability q = (1 − p)qn + pqc of having a loss l, we have:

x̃i =

 −l with probability q

0 with probability 1 − q

In the normal state, the probability that individual i is affected is qn. Besides, in
the normal state, if individual i is affected, agent j is affected with a probability
qnN−1

N
, which is well approximated by qn when N is large. In the catastrophic

state, this is similar with qc instead of qn. Thus, when N is large, we have with a
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good approximation:

x̃ix̃j =

 l2 with probability (1 − p)q2
n + pq2

c

0 with probability 1 − (1 − p)q2
n − pq2

c

The correlation between individual risks is:

δ = COV (x̃i, x̃j)
(V AR(x̃i)V AR(x̃j))0.5 .

We have:

COV(x̃i, x̃j) = E(x̃ix̃j) − E(x̃i)E(x̃j)

= l2((1 − p)q2
n + pq2

c ) − (−lq)2

= l2((1 − p)q2
n + pq2

c − q2),

VAR(x̃i) = E((x̃i)2) − E(x̃i)2

= l2q − (−lq)2

= l2q(1 − q).

Then, when N is large, the coefficient of correlation is with a good approximation:

δ = (1 − p)q2
n + pq2

c − q2

q(1 − q)

= p(1 − p)
q(1 − q)

(qc − qn)2.

With the average individual loss represented by the random variable X̃, we
have:

X̃ =

 qcl with probability p

qnl with probability 1 − p

This can also be written as X̃ = q̃l where:

q̃ =

 qc with probability p

qn with probability 1 − p
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Hence, the variance of the average individual loss is: Var(X̃) = Var(q̃)l2, with:

q̃2 =

 q2
c with probability p

q2
n with probability 1 − p

Var(q̃) = E(q̃2) − (E(q̃))2

= (1 − p)q2
n + pq2

c − q2.

The variance of the average individual loss is then:

Var(X̃) = δq(1 − q)l2.

4.6.2 Without opportunity cost (λl(α) = 0)

Derivation of the FOC of (4.5)

If the inequality constraints are not strictly binding in (4.5), the first
order conditions of (4.5) relative to τ , ϵ and π are respectively:

−(1 + p(qc − qn)
q

λR)qE(u′(w̃)) + (1 − p)qnu′(w2) + pqcu
′(w4) = 0, (4.18)

(1 + λR)pqcE(u′(w̃)) − pqcu
′(w4) = 0, (4.19)

−(1− p

1 − p
λR)(1−p)E(u′(w̃))+(1−p)(1−qn)u′(w1)+(1−p)qnu′(w2) = 0. (4.20)

Firstly, (4.19) gives:
u′(w4) = (1 + λR)E(u′(w̃)). (4.21)

Secondly, with q = (1 − p)qn + pqc, the combination of (4.18) and (4.19) gives:

u′(w2) = (1 − p

1 − p
λR)E(u′(w̃)). (4.22)

Thirdly, (4.20) gives with the latter equation:

u′(w1) = (1 − p

1 − p
λR)E(u′(w̃)). (4.23)
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Fourthly, with (4.21), (4.22), (4.23) and the definition of E(u′(w̃)), we get:

u′(w3) = (1 + λR)E(u′(w̃)). (4.24)

If the inequality constraints are not strictly binding in (4.5) except
(qc − qn)τ − π − qcϵ ≥ 0, we have then π = (qc − qn)τ − qcϵ and (4.5) boils
down to:

max
τ,ϵ

E(u(w̃))

s.t. α = qc(τ − ϵ)

π = (qc − qn)τ − qcϵ.

(4.25)

The first order conditions of (4.25) relative to τ and ϵ are respectively:

−qcE(u′(w̃))+(qc−qn)(1−p)((1−qn)u′(w1)+qnu′(w2))+(1−p)qnu′(w2)+pqcu
′(w4) = 0,

(4.26)

qcE(u′(w̃)) − qc(1 − p)((1 − qn)u′(w1) + qnu′(w2)) − pqcu
′(w4) = 0. (4.27)

Firstly, the sum of (4.26) and (4.27) gives:

u′(w2) = u′(w1). (4.28)

Secondly, (4.27) gives with the latter equation:

u′(w4) = u′(w3). (4.29)

Comparative statics

We consider a CARA utility function u(.), i.e. with A = −u′′(.)
u′(.) > 0 constant.

With 0 < λR < λR∗, (4.8) gives:

(1 − p

1 − p
λR)u′′(w3)dw3 − p

1 − p
u′(w3)dλR = (1 + λR)u′′(w1)dw1 + u′(w1)dλR.

(4.30)
With (4.8), (4.30) can be rewritten:

−A(dw3 − dw1) = ( p

1 − p − pλR
+ 1

1 + λR
)dλR, (4.31)
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which finally gives with π = w1 − w3:

dπ

dλR
= 1

A(1 − p − pλR)(1 + λR)
. (4.32)

dπ
dλR > 0 because (1 + λR)p < 1. Besides, α = (q + p(qc − qn)λR)l + (1 − p − pλR)π
and τR = N(qc − qn)l − Nπ > 0 respectively give with (4.32):

dα

dλR
= p((qc − qn)l − π) + 1

A(1 + λR)
, (4.33)

dτR

dλR
= − N

A(1 − p − pλR)(1 + λR)
. (4.34)

dα
dλR > 0 because τR

N
= (qc − qn)l − π > 0. dτR

dλR < 0 because (1 + λR)p < 1.

With 0 < λR < λR∗, (4.8) gives similarly:

dπ

dδ
= 0. (4.35)

Besides, α = (q + p(qc − qn)λR)l + (1 − p − pλR)π and τR = N(qc − qn)l − Nπ > 0
respectively give with (4.35):

dα

dδ
= p

d(qc − qn)
dδ

λRl, (4.36)

dτR

dδ
= N

d(qc − qn)
dδ

l. (4.37)

Because d(qc−qn)
dδ

> 0, dα
dδ

> 0 and dτR

dδ
> 0.

4.6.3 With opportunity cost (λl(α) ≥ 0)

Derivation of the FOC of (4.5)

If the inequality constraints are not strictly binding in (4.5), the first
order conditions of (4.5) relative to τ , ϵ and π are respectively:

−(1+λl′(α))(1+ p(qc − qn)
q

λR)qE(u′(w̃))+(1−p)qnu′(w2)+pqcu
′(w4) = 0, (4.38)
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(1 + λl′(α))(1 + λR)pqcE(u′(w̃)) − pqcu
′(w4) = 0, (4.39)

−(1+λl′(α))(1− p

1 − p
λR)(1−p)E(u′(w̃))+(1−p)(1−qn)u′(w1)+(1−p)qnu′(w2) = 0.

(4.40)
Firstly, (4.39) gives:

u′(w4) = (1 + λl′(α))(1 + λR)E(u′(w̃)). (4.41)

Secondly, with q = (1 − p)qn + pqc, the combination of (4.38) and (4.39) gives:

u′(w2) = (1 + λl′(α))(1 − p

1 − p
λR)E(u′(w̃)). (4.42)

Thirdly, (4.40) gives with the latter equation:

u′(w1) = (1 + λl′(α))(1 − p

1 − p
λR)E(u′(w̃)). (4.43)

Fourthly, with (4.41), (4.42), (4.43) and the definition of E(u′(w̃)), we get:

u′(w3) =
(

(1 + λl′(α))(1 + λR) − λl′(α)
p(1 − qc)

)
E(u′(w̃)). (4.44)

If the inequality constraints are not strictly binding in (4.5) except
π ≥ 0, we have π = 0 (which states u′(w1) = u′(w3)) and the first order conditions
of (4.5) relative to τ and ϵ are respectively:

−(1+λl′(α))(1+ p(qc − qn)
q

λR)qE(u′(w̃))+(1−p)qnu′(w2)+pqcu
′(w4) = 0, (4.45)

(1 + λl′(α))(1 + λR)pqcE(u′(w̃)) − pqcu
′(w4) = 0. (4.46)

Firstly, (4.46) gives:

u′(w4) = (1 + λl′(α))(1 + λR)E(u′(w̃)). (4.47)

Secondly, with q = (1 − p)qn + pqc, the combination of (4.45) and (4.46) gives:

u′(w2) = (1 + λl′(α))(1 − p

1 − p
λR)E(u′(w̃)). (4.48)
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Thirdly, with (4.47), (4.48) and the definition of E(u′(w̃)), we get:

u′(w1) = u′(w3) =
(

(1 + λl′(α))(1 − p(qc − qn)
1 − q

λR) − λl′(α)
1 − q

)
E(u′(w̃)). (4.49)

Comparative statics

We consider a CARA utility function function u(.), i.e. with A = −u′′(.)
u′(.) > 0

constant.

With 0 < λl < λl∗, (4.13) gives:

(1− λl

p(1 − qc)(1 + λR)(1 + λl)
)u′′(w4)dw4−

1
(1+λl)2

p(1 − qc)(1 + λR)
u′(w4)dλl = u′′(w3)dw3.

(4.50)
With (4.13), (4.50) can be rewritten:

−A(dw4 − dw3) = 1
p(1 − qc)(1 + λR)(1 + λl)2 − λl(1 + λl)

dλl, (4.51)

which finally gives with ϵ = w3 − w4:

dϵ

dλl
= 1

A(p(1 − qc)(1 + λR)(1 + λl)2 − λl(1 + λl))
. (4.52)

Similarly, (4.14) gives:

dπ

dλl
= − 1

A(p(1 − qc)(1 + λR)(1 + λl)2 − λl(1 + λl))
. (4.53)

Besides, α = (q + p(qc − qn)λR)l + (1 − p − pλR)π − (1 + λR)pqcϵ and τR =
N(qc − qn)l − Nπ − Nqcϵ > 0 respectively give with (4.52) and (4.53):

dα

dλl
= −(1 − p(1 − qc)(1 + λR)) dϵ

dλl
, (4.54)

dτR

dλl
= N(1 − qc)

dϵ

dλl
. (4.55)

Note that λl < p(1−qc)
1−p−p(1−qc)λR λR and (1 + λR)p < 1 give: p(1 − qc)(1 + λR)(1 + λl) −

λl > 0, which tells the sign of the four latter equations.
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With 0 < λl < λl∗, (4.13) and (4.14) give similarly:

dϵ

dqc

= λl

A(p(1 − qc)2(1 + λR)(1 + λl) − λl(1 − qc))
, (4.56)

dπ

dqc

= − λl

A(p(1 − qc)2(1 + λR)(1 + λl) − λl(1 − qc))
. (4.57)

Note that λl < p(1−qc)
1−p−p(1−qc)λR λR and (1 + λR)p < 1 give: p(1 − qc)(1 + λR)(1 + λl) −

λl > 0. Thus, dϵ
dqc

> 0 and dπ
dqc

< 0. Because dϵ
dqn

= 0 and dπ
dqn

= 0, we thus have:
dϵ
dδ

> 0 and dπ
dδ

< 0. Besides, α = (q +p(qc −qn)λR)l +(1−p−pλR)π − (1+λR)pqcϵ

and τR = N(qc − qn)l − Nπ − Nqcϵ > 0 respectively give with (4.56) and (4.57):

dα

dδ
= p

d(qc − qn)
dδ

λRl −
(

(1 − p(1 − qc)(1 + λR)) dϵ

dqc

+ (1 + λR)pϵ

)
dqc

dδ
, (4.58)

dτR

dδ
=
(

N(l − ϵ) + N(1 − qc)
dϵ

dqc

)
dqc

dδ
− Nl

dqn

dδ
. (4.59)

Thus, dα
dδ

is ambiguous and dτR

dδ
> 0.
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Conclusion

This thesis addresses prevention and insurance issues relative to natural disaster
risks. It tackles sub-efficient current levels of prevention measures and insurance
coverage caused by market imperfections and poorly-designed public policies.

The first part of the thesis deals with the limits of public policies such as
insurance subsidy or public relief. Even though they can improve risk sharing,
these public policies do not give the right incentives in terms of risk exposure.
Chapter 1 highlights that insurance subsidy leads to excessive population density
and insufficient resilience investment in risky areas. To avoid risk over-exposure,
this chapter recommends that public policies should focus on making agents aware
of the risk and liable for their choice of risk exposure. Furthermore, if public
policies have to manage inequality issues, they should not favor public aids based
on risk exposure.

The second part of the thesis focuses on risk dependence and costs of financial
reserves. Because insurers have to secure costly capital to face uncertain catas-
trophic claims, insurance prices can be high for natural disaster risks. Chapter 3
points out that the cost of securing capital limits the insurability of natural disaster
risks, while chapter 4 shows that the design of insurance contracts can be improved
with indemnities and dividends contingent on the collective states. To further im-
prove the insurability of natural disaster risks, we advocate that public policies
should promote international diversification with the development of competitive
reinsurance markets and insurance-linked securities such as Cat-bonds.

Lastly, both the time and ambiguity dimensions of natural disaster risks should
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Conclusion

be further investigated. The time dimension is central in particular because natu-
ral disaster preventive actions consist usually in long-term investments and natural
disaster insurance markets can be subject to fluctuations through time. The ambi-
guity dimension relates to the lack of information about risks which has proven to
be a major obstacle for prevention and insurance of natural disaster risks. These
two dimensions are all the more critical in the perspective of climate change which
affects the patterns of natural hazards and our knowledge of them.
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Title: Prevention and insurance of natural disasters

Keywords: natural disasters, risks, insurance, prevention

This thesis deals with prevention and insurance of natural disasters. Low current levels of prevention measures and
insurance coverage are explained by numerous market failures and poorly-designed public policies. Modeling individual
behaviors, markets and public policies, this thesis aims at characterizing prevention actions and insurance mechanisms
that could mitigate efficiently losses and wealth variability for risk averse agents. Chapter 1 investigates preventive
behaviors in the context of city development. It shows that risky areas are more developed nearer to the city center than
further away and that investment in building resilience leads to more compact cities. This chapter also highlights the
perverse effects of insurance subsidies leading to risk over-exposure and the role that can be played by urban policies
such as density restrictions and building codes. The following chapters focus on insurance mechanisms when individual
risks are not independent, a main feature of natural disaster risks. Chapter 2 shows that, without market failures,
Pareto optimal allocation of risks is reached thanks to stock insurance companies in competition and a reduced number
of financial assets. In practice, agents have limited liability and public policies require agents to secure financial reserves
to limit payment defaults in catastrophic states. That is why chapters 3 and 4 investigate the issue of the cost of
financial reserves. Chapter 3 analyzes how the cost of financial reserves affects the insurance demand of agents exposed
to correlated risks. If the financial reserves for the collective risk leads to an additional premium in the price of insurance
for one agent, it appears that for a given collective risk, the purchased coverage rate decreases when the individual
probability of being affected decreases. Chapter 4 examines the optimal design of insurance contracts when individual
risks are correlated in a community. If it is not costly for the community to build reserves, the optimal contract for a
given individual risk consists in full coverage, whatever the collective losses, plus a dividend if necessary to redistribute
the remaining part of the reserves. Otherwise, the optimal contract for a given individual risk consists in partial coverage
when collective losses are high.
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Cette thèse porte sur la prévention et l’assurance des catastrophes naturelles dont les faibles niveaux actuels sont
dus aux nombreuses imperfections de marché mais aussi aux déficiences des politiques publiques. En s’appuyant sur la
modélisation des comportements individuels, des marchés et des politiques publiques, cette thèse a pour objectif d’étudier
quels sont les actions de prévention et les mécanismes d’assurance qui permettraient de diminuer efficacement les pertes
et aussi la variabilité de la richesse pour les agents averses au risque. Le chapitre 1 porte sur les choix de prévention
dans le contexte du développement des villes. Il montre que les zones risquées sont plus développées près du centre-
ville que loin du centre-ville et que l’investissement dans la résilience des bâtiments mène à des villes plus compactes.
Ce chapitre met aussi en évidence les effets pervers des subventions à l’assurance qui entrainent une surexposition au
risque et le rôle que doivent jouer les politiques publiques urbaines telles que les restrictions de densité ou les codes de
construction. Les chapitres suivants abordent la problématique des mécanismes d’assurance lorsque les risques individuels
ne sont pas indépendants, ce qui est une des caractéristiques majeures des catastrophes naturelles. Dans le chapitre 2,
il est établi que, sans imperfection de marché, une allocation Pareto-optimale des risques est atteinte en présence d’un
marché compétitif de compagnies d’assurance et d’un nombre restreint d’actifs financiers. En pratique, la responsabilité
des agents économiques est limitée et les politiques publiques requièrent que des réserves financières soient constituées
pour limiter les défauts de paiement dans les états catastrophiques. C’est pourquoi les chapitres 3 et 4 abordent la
question du coût des réserves financières. Le chapitre 3 étudie l’impact du coût des réserves financières sur le taux de
couverture demandé par les agents exposés à des risques individuels corrélés. Si les réserves financières pour le risque
collectif génèrent une surprime dans le prix de l’assurance individuelle, il apparaît qu’à risque collectif donné, le taux
de couverture demandé décroît quand la probabilité individuelle d’être sinistré décroît. Le chapitre 4 analyse la forme
optimale des contrats d’assurance pour une communauté d’agents qui sont exposés à des risques individuels corrélés. S’il
n’est pas coûteux pour la communauté de constituer les réserves nécessaires, le contrat optimal pour un risque individuel
donné consiste en une couverture totale, quelques soient les pertes collectives, à laquelle s’ajoute un dividende qui permet
de redistribuer le cas échéant les réserves non utilisées. Dans le cas contraire, le contrat optimal pour un risque individuel
donné consiste en une couverture seulement partielle quand les pertes collectives sont élevées.
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