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Introduction

Context

Understanding the dynamics of matter is a major topic in contemporary science, and
observing chemical reactions or resolving the motion of atoms in a crystal are extremely
challenging because many processes occur on extremely rapid timescales. In a water
molecule, the OH bond stretch vibrations have a 10fs period (1fs = 107'°s), and
one would require a time resolution of a few femtoseconds to observe directly these
oscillations.

The study of ultrafast dynamics is achieved via pump-probe experiments, where
an ultrashort pump creates an excitation in the sample. The system evolves from this
out-of-equilibrium state down to an equilibrium state. This evolution is recorded using
another pulse, the probe, that measures the state of the sample some delay 7 after the
excitation by the pump. By repeating this experiment and scanning the pump-probe
delay 7, one can determine the evolution of the material towards the equilibrium state.
The time resolution is largely determined by the duration of the probe, and should be
in the femtosecond scale to resolve a large number of mechanisms like phonons [Ziman,
1960] or bond breaking.

When the sample is a crystal, the probe forms a diffraction pattern that depends on
the crystal state, which provides extremely rich information on the crystal dynamics.
In this case, the wavelength of the probe must be smaller than the typical distance
between two atoms in a crystal ~ 1A, so that a photon probe must be in the X-ray
range. Such X-ray pulses with a < 100 fs duration are available on the Linac Coherent
Light Source at Stanford [Emma et al., 2010], but they require extremely large and
expensive facilities. This justifies the current efforts to build cheaper sources, accessible
to a broader community.

Bunches of electrons provide a good alternative to X-ray pulses for several reasons:
(i) their De Broglie wavelength can be easily made smaller than 1A; (ii) the cross
section of electrons for elastic scattering is five orders of magnitude higher than the
one of X-ray photons, so that one requires a bunch with less particles; (iii) their cross
section for inelastic scattering is smaller, so they deposit less energy. The risk of
damaging the crystal is lowered; (iv) short electron bunches with ~ 100keV energy
and < 100 fs temporal resolution are currently available with electron guns, which are
table-top facilities.

Yet, electron guns have intrinsic limitations, and their time resolution cannot be
improved indefinitely. A reasonable alternative can be found in laser-plasma interac-
tion. The advent of chirped-pulse amplification [Strickland & Mourou, 1985] opened
the possibility to generate high-intensity (I ~ 10® W - cm™2) laser pulses with fem-
tosecond duration. When focused on any target, the material is rapidly ionized and
turned into a plasma, which can sustain huge electric and magnetic fields. The most
popular technique for plasma-based electron acceleration is the laser wakefield accel-
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eration method [Esarey et al., 2009; Faure et al., 2004; Geddes et al., 2004; Mangles
et al., 2004; Tajima & Dawson, 1979]. In this scheme, a laser pulse propagates through
a low-density plasma and creates a cavity in its wake where electric fields as high as
100 GV - m™! accelerate electrons up to relativistic energies within a few centimeters.
These extremely compact and efficient accelerators are commonly used for accelerating
electrons to very high energies (100 MeV — 1 GeV). Based on this technique, the APPLI
and PCO groups at LOA are developing an original system: the Salle Noire laser that
provides short electron bunches with a modest energy (1 — 10 MeV), more adapted to
ultrafast electron diffraction. The possibility to reach a temporal resolution of a few
femtoseconds is being investigated. Besides, it is the first system working at a kilohertz
rate, which is crucial to have good statistics in pump-probe experiments. Finally, note
that the laser pulse and the electron bunch are perfectly synchronized, which makes
them ideal candidates for the pump and the probe respectively.

While laser wakefield acceleration relies on the
propagation of a laser pulse into an underdense
(transparent) plasma, electron acceleration can
also occur during the reflection of a laser pulse
upon an overdense (opaque) plasma. The very
promising results obtained in reference [Tokita
et al., 2010] lead us to investigate this field. In
their experiment, an ultrashort laser pulse with
oblique incidence and p polarization reflects off a
very thin film, which surface is immediately ion-
ized and turned into an overdense plasma. A
bunch of electrons is accelerated at the surface and
propagates through the target, in the frontward di-
rection. This bunch is reshaped using permanent
magnets and sent onto a gold crystal, resulting
in a very clear diffraction pattern in a single-shot
regime, shown in figure 1. Besides, they measure
the bunch duration, which is ~ 500fs. Yet, this promising scheme suffers from an
intrinsic limitation: the electrons have to cross the target, where multiple collisions
with atoms result in the bunch elongation, so a better time resolution is unlikely. In
order to bypass this limit, we propose to investigate electron ejection in the backward
direction, namely in the half-space containing the incident and reflected pulses.

Figure 1: Electron diffraction pattern
in Tokita’s experiment.

This work is focused on the plasma mirror regime: an ultrashort (< 100 fs) ultrain-
tense (I ~ 10" W - cm™2) laser pulse is focused onto an overdense plasma. At the target
surface, the plasma density does not drop abruptly from the bulk density n ~ 10?3 cm =3
to zero outside the plasma, but rather decreases continuously in a density gradient, on
a distance L typically smaller than the laser wavelength A. The motivation for studying
this regime came from the idea of generating attosecond light pulses. While promising
results had been obtained in transparent plasmas [Cavalieri et al., 2007; Corkum, 1993;
Drescher et al., 2002; Uiberacker et al., 2007], one can expect to generate attosecond
pulses with higher intensity using opaque plasmas. When a laser pulse reflects off a
plasma mirror, non-linear effects result in the generation of a train of attosecond pulses
in the reflected field via two distinct mechanisms: coherent wake emission [Quéré et al.,
2006] and the relativistic oscillating mirror effect [Burnett et al., 1977]. Combined with
a smart method called attosecond lighthouse [Wheeler et al., 2012], this process lead to
the observation of isolated attosecond bunches, giving hope that this technique could



INTRODUCTION

lead to shorter and shorter pulses with higher and higher intensity.

Both mechanisms for the generation of attosecond bunches show high harmonics of
the laser frequency. While high harmonic generation in the plasma mirror regime is
well-understood, the backward electron ejection mechanism remains unclear, in spite
of a large amount of experimental results. Besides, the possibility to use this system as
a source of electron bunches has not been investigated at all. The opportunity to use
a plasma mirror as a unique source to generate simultaneously attosecond light pulses
and relativistic electron bunches was too intriguing to leave this question unanswered.

Objectives

I worked on the reflection of a laser pulse onto a plasma mirror in the relativistic
regime, and followed three lines of research. The first one is to understand the physics
of backward electron ejection, namely to identify the mechanism and highlight the role
of the main parameters: the laser intensity and, though it is often omitted, the density
gradient scale length L. After electrons are ejected from the plasma, they can be accel-
erated in vacuum by the electromagnetic fields in the reflected pulse. The possibility
to reach this unexplored regime, called vacuum laser acceleration [Haaland, 1995], is
the subject of my second topic. The third one is the link between the electron ejection
mechanism and the two well-identified mechanisms for high harmonic generation.

The experimental results presented in this manuscript were obtained on two cutting-
edge laser systems: the Salle Noire system at LOA operated by the PCO and APPLI
teams, and delivering pulses with 30fs duration and 3mJ energy at a kilohertz rate.
The second system is the UHI100 laser facility at CEA, operated by the LIDyL team
at CEA-Iramis, that delivers pulses with 30 fs duration and 1J energy in a single-shot
regime. I worked in close collaboration with these experimental teams, and my role was
to provide theory and interpretation of their results, so that both works could enrich
one another.

I extensively used numerical tools, in particular the particle-in-cell algorithm, so
that my thesis enters the general field of computational physics that consists in solving
equations with numerical methods when no analytical solution is (or can be) found.
This branch of science emerged in Los Alamos in the 1940’s and became popular
through essential contributions ranging from the field of molecular dynamics [Alder
& Wainwright, 1959] to the discovery of the butterfly effect [Lorenz, 1963]. Its contri-
bution to modern science was clearly stated in three Nobel Prizes in chemistry (1985,
1998 and 2013) as well as one in physics (1993). More practically, it provides an ex-
tremely powerful tool that considerably extends our understanding of the physics at
play in experiments.

Outline

The first chapter introduces basic considerations to study the reflection of a laser pulse
upon an overdense plasma. The high harmonic generation processes leading to attosec-
ond pulses are explained in details. The main mechanisms leading to electron ejection
from plasma mirrors are presented, and a review of experimental results highlights the
need for a better understanding of the backward ejection process.

Chapter 2 introduces the numerical tools I used all along this work: the particle-
in-cell method and its implementation in the open-source code EPOCH. A benchmark
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of numerical simulations relevant to my purpose is presented.

In the third chapter, the backward electron ejection process is identified, and the
role of the laser intensity and the gradient scale length are stated. It is shown that
there is an optimal gradient length, for which the ejection of electrons is maximum.

The fourth chapter is dedicated to vacuum laser acceleration. First, general consid-
erations regarding the dynamics of an electron in a laser pulse are given. Second, we
show how electrons ejected from the plasma mirror can be injected in the reflected laser
pulse, solving the long-standing issue of electron injection for vacuum laser acceleration.

The fifth and last chapter strongly relies on experimental results. We confirm theo-
retical predictions from chapter 3, in particular we observe the optimal density gradient
with the two laser systems operating in very distinct regimes, which consolidates our
theory. Then, we investigate the correlation between high harmonic generation and
electron ejection.

Toy models and studies in simplified conditions are presented all along this work. I
hope that this approach, where complex physical problems are reduced to their skeleton,
can provide a valuable understanding to the reader.
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CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

Introduction

When an intense laser pulse is focused onto a solid target, say a piece of glass, the
material is instantly ionized and forms a plasma with a density gradient on its front
side. The first section 1.1 is dedicated to the founding principles of this interaction:
how the plasma is ionized, how the gradient is formed and why the laser pulse does not
propagate through, but instead reflects off the plasma. An indispensable theoretical
tool, the Bourdier boosted frame, is presented in section 1.2.

Experiments performed in this regime showed electrons ejected from the target sur-
face. Section 1.3 gives a review of experimental results as well as the basic mechanisms
that can lead to electron acceleration during this interaction, depending on the config-
uration (angle of incidence, laser intensity, scale length of the density gradient). This
section serves several purposes: first, it shows the great variety of experimental results.
Second, it brings the essential tools frequenty invoked to explain these results. Third, it
shows how the mechanism for electrons accelerated in the backward direction remains
unclear.

The reflection off an overdense plasma differs from what happens on a perfect mirror:
the reflected field is distorted because of non-linear mechanisms at the plasma surface.
The last section 1.4 presents the two non-linear mechanisms that can occur, namely
the coherent wake emission and the relativistic oscillating mirror effect, and describes
how they lead to high harmonic generation in the reflected pulse.

More generally, this chapter aims at giving the basic tools to understand the reflec-
tion of a laser pulse upon a plasma mirror as well as a global intuition of the mechanisms
involved in this interaction.

1.1 Laser-generated overdense plasmas

1.1.1 Laser-plasma interaction
Electromagnetic wave in a non-relativistic plasma: fluid model

We present here the equations governing the propagation of an electromagnetic wave
in a plasma. The electric and magnetic fields are E and B respectively. The plasma
is characterized by the charge density p = en; — en, and the current density vector
J = en;v; — en v, with e the elementary charge and n and v the charge density and
velocity respectively. Index i is used for ion quantities, and e for electron quantities.
Let us derive the Helmholtz equation in a homogeneous plasma, assuming that:

e the plasma is cold, unmagnetized and non-relativistic;
e collisions are negligible;

e ions are immobile.

Using these assumptions, we can use a fluid model where the equations for the local
electron density n. and local electron speed v, are given by the continuity and the fluid
equations:

ag; +V - (neve) =0 (1.1)
ov,
MeNe <(3t + (ve - V)ve> =-VP —-enE —en.v. x B (1.2)
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where m, is the electron mass and P is the local pressure, which is zero in the non-
collisional regime. This system is completed by Maxwell’s equations

p

V-E = o Gauss’s law (1.3)
V-B = O0 Gauss’s law for magnetism (1.4)
VxE= —%? Faraday’s law (1.5)
V x B = py (J + 60%1;7> Ampere’s law (1.6)

Assuming a small plasma perturbation, we hereafter derive the Helmholtz equation
for a transverse electromagnetic wave with angular frequency w, such that E = Ee™t,
After linearization, equation 1.2 gives the Ohm’s law

2
w

J = —iiEOE (17)
w

where w,, is the electron plasma frequency, given by

Nee2
= . 1.8
“r \ meeo (1.8)

The electron plasma frequency only depends on physical constants and on the electron
density, and varies as x |/n.

Combining Faraday’s and Ampere’s laws and injecting Ohm’s law (equations 1.5, 1.6
and 1.7 respectively), we get the Helmholtz equation for a transverse electromagnetic
wave in a plasma

lA+§<L{ﬁﬂE:o. (1.9)

It is straightforward to define the relative permittivity of the plasma

6 =1—-2. (1.10)

Finally, for an electromagnetic mode (w,k) such that E = Ege 7 the dispersion

relation reads

K =w® —wl|. (1.11)

For a given electromagnetic angular frequency w, say the laser angular frequency, this
equation shows two distinct plasma regimes:

underdense plasma (w, < w): The dielectric constant verifies ¢, > 0. The plasma
is a transparent medium with a refractive index smaller than one

N(w) =\/€7=w/1—Z§- (1.12)
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overdense plasma (w, > w): The dielectric constant verifies ¢, < 0. The plasma
behaves as a reflective medium, with a skin depth

1 ¢ c

5= — = (1.13)

—€, W 2 _ 2"
r 1/(4]1) w

Given the angular frequency w, the plasma is reflective if n, > n. where the critical
density n. is given by

2
_ et (1.14)

nC

o2
which clarifies the terms underdense and overdense. For 800 nm Ti:Sapphire lasers,
ne =174 x 10*" cm 3.

Laser parameters

For a laser pulse with wavelength A, angular frequency wy and wave vector k = ke, =
wo/ ¢, linearly polarized along x, the electric field near the focus (z = 0) in the paraxial
approximation (see [Siegman, 1986]) reads

7,2 2 2
l e W@ e 77 gin [kz — wot + k’ri + atan <Z>] e, (1.15)
w(z)

2R(z) 2R
with Ej the peak electric field amplitude, wy the beam waist and 7 the pulse dura-
tion. The radial coordinate, Rayleigh length, beam width and radius of curvature are re-
spectively 7 = /22 + 42, 2 = kw? /2, w(z) = woy/1 + 22/2% and R(z2) = 2(1 + 2%/22).
For the sake of simplicity, we neglected the deformation of the temporal envelope along
propagation. More details can be found in chapter 2.

E(t,z,y,2) = Ey

Relativistic regime: The interaction regime is said to be relativistic when an elec-
tron driven by the laser fields reaches a relativistic velocity. We define the normalized
laser amplitude as

€E0

MewoC

(1.16)

ag =

This dimensionless parameter differentiates the non-relativistic regime ay < 1 and
the relativistic regime ay = 1. Note the dependence on the electron mass-to-charge
ratio and on the laser amplitude and angular frequency.

The normalized amplitude can be expressed in terms of the laser intensity as:

[T
ag = i with IoA? = 1.37 x 10® W - em™2 - pm?. (1.17)

For a A = 800nm Ti:sapphire laser, ap = 1 reads E; = 4.02 x 102V -m~! and
I =214 x10®W -cm~2. The terms low intensity, non-relativistic and sub-relativistic
refer to the ap < 1 regime.

Ponderomotive potential: The dynamics of an electron propagating in a laser pulse
can be fairly complex. In this paragraph, we derive the average ponderomotive force
and the associated potential in the non-relativistic regime, neglecting the magnetic

8
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theory/simulations experiments

wp half-width 1/e (amplitude) | spot size = y/2log 2wy ~ 0.78wy FWHM (intensity)

7 half-width 1/e (amplitude) | pulse duration = \/2log 27 ~ 0.787 FWHM (intensity)

1 laser period (A = 800nm) 2.671fs

field amplitude: ag = \/I/IO with IpA? = 1.37 x 10®¥ W - ecm =2 - um?

Ip=2.14 x 10'®®* W - cm~2 for A = 800 nm

pulse energy: £ = 23—\/;104107'10@%

Table 1.1: Conversion table between practical quantities for theory and experiments.

force. Another approach can be found in reference [Kibble, 1966]. The equation of
motion reads

v = —nieE(r) sin(wot) (1.18)

=0 (1.19)

During one laser period, we assume the electron oscillates around position ry with
small displacement d7 such that the pulse envelope does not vary much during one
oscillation:

P [E(rg) + 0TV - E(1g)] sin(wot) (1.20)

e

with |67V - E(rg)| < |E(7g)|. The dominating term in equation 1.20 gives the linear
velocity and displacement

e
= F t 1.21
v Mows (7o) cos(wot) ( )
€ .
or, = mew§E<r0) sin(wot) (1.22)
and the first-order non-linear term m.v,; = —edr,V - E(rg) sin(wyt) gives the pondero-

motive force when averaged over one laser period

LQVEQ(TO) (1.23)

F, =< m. v, >=—
b e 4mw?

Finally, F, = —V¢,, where ¢, is the ponderomotive potential:

e*E? 5 a3
_er 2% 1.24
dmwi Mec 7y (1.24)

Pp

This expression is valid in the non-relativistic regime only, where ay < 1. Note
that the ponderomotive potential grows as ag.

While equations are easily readable in the form of 1.15, experimentalists do not

deal directly with wgy, 7 or Ey. Table 1.1 helps with basic conversion with parameters

more practical for experimentalists in the case of Gaussian time and space envelopes.

9
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laser system UHI100 Salle Noire
wavelength 800 nm 800 nm
duration 30fs 251s
peak power 100 TW 0.2TW
repetition rate 1 Hz 1 kHz
spot size 5.5 pm 1.7 pm
peak intensity | 2- 10 W -cm=2 | 10®¥* W - cm 2
peak ag 3.1 0.7

Table 1.2: Description of the UHI100 laser at CEA and Salle Noire laser at LOA, with which
experiments described in this manuscript were performed.

Scope of the present work

The theoretical work described in this thesis is based on experiments performed with
two laser systems: the UHI100 laser at CEA and the Salle Noire laser at Labora-
toire d’Optique Appliquée (LOA). Both systems use the chirped-pulse amplification
technique and deliver ultrashort (few periods FWHM) and ultraintense (relativistic
intensity) pulses. Their respective features are summarized in table 1.2, along with
usual focusing conditions.

Let us assume the half space x > 0 is filled with a uniform, cold and unmagnetized
plasma with electron density n. and plasma frequency w,. An incident electromagnetic
wave with wave vector k; = (kis, kiy,0) such that k;; > 0, and angular frequency
w; < w, so that the plasma is overdense, is reflected by the plasma edge with 100%
reflectivity. In the linear regime, i.e. low-intensity regime, the reflected wave has
the same angular frequency as the incident one (w, = w;) and the wave vector is
k, = (_krm kryv O)'

In this section, we describe non-linear effects that occur when two of the previous
hypotheses are broken: (i) the incident wave intensity is high, and (ii) the plasma is not
homogeneous, with a density gradient from 0 to the bulk density ny, around z = 0.
Typical non-linear effects are

e plasma heating, resulting in a < 100% reflectivity;

e particle acceleration;

e harmonic generation in the reflected wave, and hence w, # w;;
e Excitation of plasma waves — collective effects.

We study the interaction of an ultrashort ultraintense laser pulse with an overdense
plasma with a density gradient on its front side. In common experiments, the density
gradient is created by sending a prepulse before the main pulse on an optically flat solid
target (usually fused silica SiO5) to ionize the target and create the plasma. The plasma
expands in vacuum, creating a density gradient; the gradient length is determined by
the delay between the prepulse and the main pulse. Note that an uncontrolled density
gradient can also appear after ionization by the nanosecond pedestal of the laser pulse
due to amplified spontaneous emission if the laser contrast is poor.

Figure 1.1 shows the general setup investigated in this thesis, namely the reflection
of an obliquely-incident p-polarized ultraintense laser pulse on a plasma mirror. The

10
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plasma is highly overdense (npu ~ 200n.) and the density gradient is usually smaller
than the wavelength of the incident wave. Details on the plasma formation and its
properties (maximum density, gradient length) are given in section 1.1.2. In this work,
the terms density gradient and preplasma will be synonymous.

Plasma mirror

P-polarized laser pulse I > 10 W.em ™2
// .
\ max
% N\ b

Ne

——Density gradient L, < A

——rt—Overdense plasma

Figure 1.1: Schematic of a plasma mirror. The laser pulse is obliquely-incident, p-polarized,
ultraintense (ag ~ 1) and ultrashort (7 ~ 25fs). The plasma is highly overdense (npux ~
200n.) and has an exponential density gradient on its front side, with a scale length smaller
than the wavelength of the incident wave. As will be described below, this interaction leads
to high harmonic generation (HHG) and electron acceleration.

In this thesis, we investigate the ultrashort (7 ~ few laser periods), tightly focused
(wp ~ few wavelengths), relativistic (ag 2 1) regime.

Plasma parameters

The plasma state is the seat of phenomena with extremely disparate space and time
scales (binary collisions between particles, collective magnetohydrodynamics effects in
stars). Depending on the conditions, different assumptions can be made, that lead to
different descriptions of the plasma state, as shown on diagram 1.2. Here, we show
characteristic plasma parameters that help understand which physics is at play in
a dense plasma, as well as which description of the plasma is relevant. Typically,
we should determine whether electron-ion collisions should be considered, and if the
plasma is dominated by short or long distance interactions.

Numerical values are given for the reflection of a laser pulse with intensity ag ~ 1
on a plasma with electron temperature 7, = 100 eV and density n, = 5 x 10**cm=3 to
give orders of magnitude of the main parameters in the preplasma.

Average distance between two electrons: This distance is related to the electron
density n,. via
d, =n;'3 (1.25)

In the regime we study, d. ~ 100 pm ~ \/10000.

Landau length: When an electron travels with very high velocity in a plasma, it is
hardly deviated by collisions with other particles. This remark can be extended to the
whole electron population: if the mean (thermal) kinetic energy kg7, is much higher
than the electron-electron Coulomb potential e?/4meyr, the effect of each collision is

11
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Mlcro-scc.>p|c <1000 particles Liouville’s equatlo.n,
description Molecular dynamics

W Boltzmann equation
Kinetic >>1000 particles:
description BBGKY hierarchy N
g‘fan e
& inte"actions Vlasov equation

. Average effects
Macroscopic \

description Fluid equations

Figure 1.2: Appropriate description depending on the plasma parameters. BBGKY stands
for Bogoliubov-Born-Green-Kirkwood-Yvon.

negligible (though multiple collisions might play a role in large systems). The Landau
length is defined as the length for which both quantities match:

62

Mg = ———.
L 47T€0]{73Te

(1.26)
If the mean distance between two electrons is much smaller than this distance (d, <
ALa), the mean Coulomb potential is much higher than the mean kinetic energy of
the electrons. In this case, the plasma dynamics is dominated by particle-particle
interaction, i.e. collisions. On the opposite, if d, > Ar,, the electrons travel without
seeing their closest neighbors, and collisions are negligible. In the preplasma case,
Ao =~ 10pm =~ A/100000, so that d./Ar, ~ 10. This ratio is far higher during the
reflection process, which typically takes place at lower densities and with suprathermal
electrons. As a consequence, collisions are negligible during the reflection process.

Debye length: When a single charge is added to a neutral plasma, the induced
potential is screened by the neighboring charges that surround it. This is a collective
effect, which involves many electrons instead of binary interactions. Assuming the elec-
tron population behaves like a fluid, the screened potential reads ¢p, = e?e’/ e /4reqr,
where Ap, is the characteristic screening (or shielding) length, called the Debye lenth,

and defined as
EOkBTe
ADe = . 1.2
Pe =\ nge? (1.27)

The Debye length is the first length that characterizes collective phenomena because
it involves the shielding of an electron by a collection of other electrons. Yet the fluid
hypothesis holds true only if there is a large number of electrons in a Debye sphere,
i.e. neAd, > 1. It is the case in the regime we study where Ap, ~ 10nm ~ /100, so
that n.A%, ~ 10°. In this condition, the plasma dynamics is governed by long-range
average interactions, which is best described by the Vlasov equation.

12
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regime Qo Ne T duration 7 Vei TV | collisions
prepulse | 0.01 50n,. 10eV 30 fs 20fs~' | 600 yes
expansion - 50n, 10eV 10 ps 20fs~' | 10° yes
main pulse 1 1 —10n, | 100 keV 30fs Ins! | 1070 no

Table 1.3: Collisions during the ionization, expansion and main pulse reflection processes.
The main pulse is reflected around the critical density n = n.. The electron temperature is
estimated via the ponderomotive potential.

Electron-ion collision frequency: Though the Landau length gives hints about
whether the plasma is dominated by collisions or kinetic effects, it does not take into ac-
count the duration and scale length of the processes we are interested in. The electron-
ion collision frequency gives a more precise tool to determine if collisions should or
should not be taken into account. As can be found in [Dendy, 1995; Kruer, 1988], it
reads

4(2m) 2 nZ*et
Vej = 3 — In A (1.28)
_ —6 *ne[cmig]
= 291X 107 s n (1.29)

with Z* the charge state, v the electron thermal velocity and In A the Coulomb
logarithm were A is the ratio between the largest and the smallest cross sections
A = bpaz/bmin, for example the Debye length and the distance of closest approach
respectively. The Coulomb logarithm is In A ~ 5 —15. As expected, collisions are more
likely when the density is higher. Furthermore, the higher the temperature, the lower
the effective cross section, and the lower the total collision frequency.

In the following section 1.1.2, three different regimes will be considered: (i) the
plasma ionization with a low-intensity prepulse, (ii) the plasma expansion in vacuum
and (iii) the reflection of the main pulse on the plasma mirror. Table 1.3 summarizes
the role of collisions in these three regimes. The double inequality is satisfied for
the reflection of the main laser pulse \;, < d. < Ap. and the collisionless kinetic
description is appropriate, see [Delcroix & Bers, 1994]. The heating by the prepulse
and the plasma expansion must be treated with different tools including collisions. This
is done in the following section.

1.1.2 Plasma mirror creation

As described in the previous section, the plasma mirror regime consists of an overdense
plasma with a density gradient on its front side, on which a laser pulse is reflected.
The role of the density gradient characteristic length is of paramount importance in
the physics involved and will be described in chapter 3. While creating an overdense
plasma proves rather simple in experiments (it consists in focusing an intense enough
laser pulse onto any solid material), controlling the preplasma characteristic length is
much more challenging.

In the experiments, the preplasma is created by picking off a tiny fraction of the
laser pulse and focusing it onto the target before the main pulse in order to ionize its
atoms/molecules and create the plasma. Then, the plasma expands in vacuum, forming
the density gradient with an exponential shape. The gradient characteristic length is
controlled by setting the delay between the prepulse and the main pulse.

13



CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

The prepulse intensity must be high enough to ionize the target. Its waist is gen-
erally much larger than that of the main pulse for the gradient length to be the same
over the whole focal spot. It typically has a sub-relativistic intensity and the same
duration as the main pulse (few tens of femtoseconds).

The following sections describe each of the steps that lead to the controlled gradient
length: ionization, heating and expansion. Finally, at the end of this section, table 1.5
shows the plasma density, temperature and expansion speed for the two laser systems
we used.

Ionization by the prepulse

The energy of laser photons is € = Aw ~ 1.5eV, far below the ionization energy of
electrons in the outermost occupied shell of common atoms. Possible ionization mech-
anisms induced by the laser field in this regime are (i) multiphoton ionization if the
atom binding potential is not significantly disturbed by electric field or (ii) tunnel ion-
ization and (iii) barrier-suppression ionization if the atom binding potential is strongly
distorted by the laser electric field. These mechanisms are illustrated in figure 1.3.

(a) Binding potential (b) Disturbed potential
AD AD

Multiphoton ionization T r \ r

—————— Barrier-suppression ionization

gi on

Tunnel ionization

Laser potential: &, = —eEpr

Figure 1.3: (a) The external electric field is weak, the atom binding potential is not distorted
and the prevailing mechanism is multiphoton ionization. (b) The strong external field dis-
turbs the binding potential, and ionization occurs via tunnel ionization or barrier-suppression
ionization.

The prepulse intensity is strong enough for barrier-suppression ionization to be
the dominant mechanism. The simplified 1D model described below can be found in
reference [Gibbon, 2004]. Let Er, > 0 be the amplitude of the x-polarized laser electric
field. The total electric potential for the electron reads

Z*e?

P = — — el 1.30
(x) dmegx chLt ( )

where Z* is the ionization degree (also called charge state) to take into account the effect
of the mean ion binding potential. As shown in figure 1.3, barrier-suppression ionization
(BSI) occurs when maxpq(®) < & where & is the ionization energy for the test-
electron. Hence, the threshold for the field amplitude is given by Epg; = meoE?/Z* €3,
and the intensity threshold is

Fop
Ipsiw.em-2) = 4 X 109%- (1.31)
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ionization state | ionization energy | intensity threshold

gi[eV} ]BSI[W-cm*Z]
Sit 8.15 1.76 x 10
Sitt 16.3 7.06 x 1013
Sitt 33.5 5.60 x 10
Sitt 45.1 1.03 x 10%
Si** 167 1.24 x 107
Si* 205 1.96 x 107
Sit 247 3.04 x 10%7
St 304 5.34 x 107
Si%t 351 7.50 x 1017
Sit0+ 401 1.03 x 10*®
Sittt 476 1.70 x 10
Sit2t 523 2.08 x 10'8
S 2440 8.35 x 10%°
O 13.6 1.37 x 10*
o+ 35.1 1.52 x 10
O3+ 54.9 4.04 x 10¥
O 77.4 8.97 x 10%
o5+ 114 2.70 x 10'6
o5+ 138 4.03 x 1016
o™ 739 2.43 x 10"

Table 1.4: Intensity threshold for barrier-suppression ionization for electrons in silicon and
oxygen.

As an example related to experiments, we consider a pure SiO, target. The ioniza-
tion energies for single atoms of silicon and oxygen are presented in table 1.4, along
with the corresponding intensity threshold.

The plasma density is the molecular density multiplied by the number of electrons
ionized in each atom of the molecule. For example, the 3.5 x 10'*'W - cm~2 prepulse
from the Salle Noire system ionizes two electrons of the silicon atom and one electron of
each oxygen atom, which gives a total of 4 electrons per SiOy molecule. The molecular
density n,e in fused silica is 1,0 = 2.2 x 10?2 cm ™3, which gives the maximum plasma
density npur = 8.8 x 102, or ngyy, = H0n..

Finally, we can calculate the energy lost by the prepulse to ionize the target. We
assume that the volume of plasma reads V = §,w? where §, is the plasma skin depth
and wy is the prepulse waist. The total energy required to create the plasma reads

gionization = Z Z ea,inmoléswg (132)

atom level

where the first sum is performed on the atoms of each molecule and the second one on
the ionization levels of each atom. ¢,; is the ionization energy for atom a and level <.
This expression gives E;onization = 250nJ, namely 2.5% of the 10 uJ prepulse energy.
Collisional heating by the prepulse

The prepulse ionizes the target and heats electrons while ions remain immobile. This
process results in a two-fluid plasma: electrons with temperature 7, and ions with
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temperature T; = 0. We hereafter derive a rough estimate of the electron temperature
T..

An order of magnitude for the electron temperature can be obtained directly from
the absorption coefficient measured in experiments. As can be found in [Borot, 2012;
Chen et al., 2008; Gibbon, 1996; Vincenti et al., 2014] and in the experiments on the
UHI100 laser, the absorption for an ultrashort (7 < 1ps) laser pulse with intensity
I ~ 10"2"W.cm™2 on a largely overdense (n > n.) plasma with a step-like profile
is of the order of 5 — 30%. We take n, = 1/10 for the absorbed fraction.

Under these conditions, a simple description for the collisional plasma heating by
an ultrashort laser pulse is presented in reference [Gibbon, 2004]. The energy transport

equation reads

Oe
otV (et f)=0 (1.33)

where € is the energy density, h is the heat flow and f, is the absorbed laser flux. We
assume that the heat flow is negligible during the pulse reflection because the pulse
is ultrashort. Hence, the plasma is heated as a whole. Besides, we assume that the
characteristic length for the plasma heating is the plasma skin depth d; = ¢/w,. Noting
that 65 < wy where wy is the laser beam waist, the problem is reduced to a 1D geometry
along the target normal direction x. Hence, the absorbed laser flux reads f, = f.e.
and we approximate the spatial derivative as V - f, = —f,/ds. Writing the absorbed
laser flux as a fraction of the incident laser flux f, = n,fr and the energy density
€ = 3/2n.kpT,, the heating rate reads

d o fa|Weem ™
%kBTe B 4ne[cm—3]55[cm]

keV - fs~ 1. (1.34)

The final electron temperature is given by this heating rate times the pulse duration.
We apply this to the Salle Noire laser system, approximating the 25 fs Gaussian time
envelope by a 20 fs square envelope, with maximum intensity 3.5 x 10* W - cm~2. The
value for the plasma density was calculated in the previous paragraph n, = 50n., and
the related skin depth is d; ~ A/44, giving a temperature T, = 16¢V.

Expansion

After the prepulse reflection, the two-fluid plasma evolves freely. As shown in [Kruer,
1988], a fraction of the thermal electron energy is transferred to ions via collisions, and
the plasma expands in vacuum on a picosecond timescale. Neglecting the magnetic
force, the fluid equation of motion for the electron population reads

MeNe ({Ze + (ve - V)ve> =—-VP. —enE (1.35)

with P, the electron thermal pressure. We assume that this process is quasistatic and
neglect electron inertia. Hence, the LHS term in equation 1.35 is zero, which gives the
electric field as a function of the electron pressure en.E = —V P,.. The process is 1D
along x, so that the nabla operator simplifies to V ~ 0,.

Adding the following assumptions:

e Equation of state for the electrons P, = n.kgTy;

e Jon pressure negligible relative to the electron pressure;
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e The plasma is neutral on the mesoscopic scale n, = Z*n; with Z* the ion charge
state.

Using these assumptions, the ion continuity equation and force equation along z
read

Z Oz
Opv; + 0;0,0; = —eEx = —ci n (1.37)
m; n;

where ¢, is the ion sound velocity given by

ZkgT.,
s = Bre (1.38)
my

Kruer proposes a self-similar solution via the new parameter £ = z/t with n;(x,t)
N(¢) and v;(z,t) = V(€), so that for these new functions 9, = (t7')x and §; =
(—=&/t)x. The system 1.36 and 1.37 reads

(V=N +NV' =0 (1.39)
N/
(V =V +cl5 =0 (1.40)
from which one can show

V=E(+c¢, (1.41)

N’ 1
—_— = —— 1.42
N . (1.42)

where the second equation shows an exponential solution. Finally, this self-similar
solution reads

v; = Cs + % (1.43)
x

n; = ng exp(—a), (1.44)

which describes an exponential density gradient with a time-dependent characteristic
length
L = cgt. (1.45)

The gradient expands at the ion sound velocity, which can be calculated using the tem-
perature from the previous paragraphs. Numerical values for each step of the gradient
creation can be found in table 1.5 for the Salle Noire and the UHI100 laser systems.
The expansion velocity shows good agreement with experimental measurements.

Finally, the gradient length can be tuned by controlling the delay between the
prepulse and the main pulse. Note that the maximum density values presented above
stand between the plasma ionization by the prepulse and the end of the expansion
phase. When the front edge of the main pulse reaches the plasma, it ionizes additional
electrons from each ion without moving the ions themselves. This results in a density
gradient with the gradient length L calculated above, and a maximum plasma density
depending on the main pulse intensity. These values are typically n = 250n,. and
n = 300n. for the Salle Noire and the UHI100 lasers respectively.

In the following sections, we study the interaction of the main pulse with the plasma,
taking the laser intensity, the angle of incidence and the gradient scale length as free
parameters. The following section introduces an indispensable tool for this study: the
boosted frame.
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I 751729 n | 6, | T, S 9 P
units W-.cm™2 | - - | ne A ¢V | nm/ps | nm/ps | nm/ps
Salle Noire || 3.5 x 10 | 2 1 50 | 1/44 | 16 10 10 10.8
UHI100 10t 4 4 1150 | 1/80 | 300 65 90 70

Table 1.5: Numerical values for preplasma formation. The expansion speed is given for each
element, and can be compared with experimental measurements.

1.2 Bourdier boosted frame

The reflection of an obliquely-incident p-polarized laser pulse on a plane target is a 3D
phenomenon. If the laser pulse is approximated by a plane wave, the problem does not
depend on the z direction anymore, perpendicular to the plane of incidence x — y, and
the problem is reduced to a two-dimensional study. This is illustrated in figure 1.4 a),
where the notations are defined. In reference [Bourdier, 1983], the author proposed a
Lorentz transformation which reduces this problem to a 1D problem along the target
normal z.

This reduction has two major advantages: first, numerical simulations of a 1D
phenomenon requires much less computer resources (more details on particle-in-cell
simulations can be found in chapter 2). Second, the physics can be equivalently studied
in both frames of reference, and the Bourdier boosted frame can simplify the study of
some observables. This section introduces the basics of this transformation as well as
its relevance to study the reflection of a laser pulse.

a) laboratory frame b) boosted frame
4 u

k '
k> i

[vg = —csinfey x

X

Figure 1.4: a) Diagram for the reflection of an electromagnetic wave on a plasma mirror. The
incident wave is p-polarized and the angle of incidence is #. b) Same setup in the boosted
frame introduced by Bourdier. After a Lorentz transform, the incident wave is normally
incident on the plasma mirror which drifts with speed vy = —csin 6 in the y direction.

1.2.1 Lorentz transform

Let R be the laboratory frame and R’ the boosted frame, moving with normalized
speed B = Pe,. The associated Lorentz factor is v = 1/4/1 — 2. Let us derive the
appropriate drift velocity that turns the oblique incidence into normal incidence, as
well as the transformation for the electromagnetic fields and canonical momentum.

18



CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

Electromagnetic field transformation

The four-vector of the incident wave (wg/c,k) = wo/c(1,cos0,sin0,0) is transformed as

wp/c v 0 —p 0 wo/c (1 — Bsin)
k. | [ 0 1 0 0f[wo/ccosO| wo cos ¢ (1.46)
ky | |—=8 0 v O0f[w/esin®| ¢ | y(sind—p) | ’
k! o 0 0 1 0 0

Choosing 8 = sin ¢ (hence v = 1/ cos ) gives k, = 0, which results in the incident
wave to be normally-incident on the plane target in the boosted frame with angular
frequency wj = cos fwy. The result is shown in figure 1.4 b), and the problem becomes
one-dimensional in the x direction.

To get a better understanding on the boosted frame, let us look at the fields trans-
formation directly.

cos 0 —sin# 0
k=< |sinf | E=FEysing| cosf B = Bysing | 0 (1.47)
0 0 1

with k£ = wg/c and the phase ¢ = wot — k cos Ox — ksin fy. The space-time transforma-
tion reads

t'=~(t—pY) (1.48)
c

= (1.49)

y' =y —cht) (1.50)

2=z (1.51)

with 8 =sinf and v = 1/ cos . The phase ¢ is readily transformed as
0
¢ = wpcos O’ — HOCOST . (1.52)
c
The fields transformation reads

E/’/ =Ey (1.53)

B/’/ = By (1.54)

1
B =~y(B. - EB x E|) (1.56)

where the subscript // stands for the component parallel to the boost speed and L stands
for the orthogonal ones. The incident laser electric and magnetic fields are transformed
as

E' =0
E! = Eycosfsin ¢’

B! = Bycosfsin ¢
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These expressions, along with 1.52, are those of a plane wave propagating along the
x direction (normally incident onto the plasma), with angular frequency wj = wy cos 6
and amplitude E) = Ejcosf. Note that the normalized amplitude is unchanged after
the transformation: aj = ay.

The plasma density is a number of particles 2 N per unit volume. A given density
in the laboratory frame n is transformed in the boosted frame as n’ = 3N/ (52" x §y’ x
§2') = 03N/ (0x x cos 0oy x 0z). Finally, the plasma density is transformed as

n' =n/cosf. (1.63)

Canonical momentum transformation

The energy-momentum 4-vector is transformed via the boost matrix, which reads

& vy 0 =8 0\ (€ vE — Bypyx

phe 0 1 0 0f]pc PzC

PyC B 0 v Of|pye —ByE + ypyc (1.64)
‘¢ 0 0 0 1/ \p.c p.C

with & = /1 + (p/m.c)?m.c* the particle energy. The only component of the momen-
tum modified in this transformation is the one parallel to the boost speed p,. One can
easily check that an electron at rest in the laboratory frame travels with momentum
p; = — tan #m.c in the boosted frame. As a consequence, the plasma is not initially at
rest in the boosted frame: it drifts with speed 3, = —csin 6 instead.

Finally, the transformation of the main quantities upon this Lorentz transform are

summarized below:

ag = ag Wy = wp cos f n' =n/cosf (1.65)
dr' = dx dy' = dy cos 6 dz' = dz (1.66)
E, = Egcosf B} = Bycosf N = \/cosb (1.67)

1.2.2 Physics in the boosted frame

a) Laboratory frame b) Boosted frame

E
WB/L:csinHe_y) ]Z

<

g = —csin fe,f

A
]
I
I
I
I
I
I
I
I

X

Laser electric field along y
Plasma electric field along x
X Plasma magnetic field (ion drift)

Figure 1.5: Advantages and drawbacks of the Lorentz transformation introduced by Bourdier.
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Assuming the incident wave is a plane wave, the system is invariant along the y
direction in the boosted frame, and the problem moves from a 2D problem (z,y) in
the laboratory frame to a 1D problem () in the boosted frame. One can perform the
physical analysis in this frame, and the major changes are listed below:

e As shown in figure 1.5, the laser electric field is along y in this frame.

e Since the plasma density p(x,t) is independent of y, Gauss’s law shows that
plasma charge-separation fields are along = only. As a consequence, the electro-
magnetic and electrostatic contributions are separated along y and x respectively.

e As a counterpart, a charge separation p(z,t) # 0 results in a plasma current
density J /e, via Ampere’s law due to the ion and electron drift in the boosted
frame, which generates a plasma magnetic field.

magnetic field
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Figure 1.6: a) Magnetic field along time and space from a 1D PIC simulation performed in
the boosted frame with physical conditions (given in the laboratory frame) ag = 3, 7 = 25fs,
L = \/8, npyr = 100n.. The area x > 4.7\ is filled by the overdense plasma. b) Same
representation for the log-scale electron density. A bunch of electrons can be seen propagating
in vacuum towards the x < 0 direction, i.e. along the reflected pulse.

In this thesis, 1D PIC simulations and the physical description are performed in the
boosted frame. As a first illustration, figure 1.6 shows the magnetic field and electron
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density along time and space from a 1D PIC simulation in the boosted frame. On panel
a), one can see the 5 fs laser pulse propagating along the +x direction for ¢t < 67, where
Ty, is the laser period. It is reflected at x ~ 4.7\ when it reaches the plasma, and the
reflected pulse propagates in the —x direction. The bottom panel shows the electron
density. The plasma ripples during the laser pulse reflection. A bunch of electrons
then propagates in the —z direction, along the reflected pulse, while some electrons
also move back to the plasma.

1.3 Electron heating mechanisms

When the laser pulse is reflected on the plasma surface, electrons can be ejected and
propagate in vacuum. Taking a look at the literature on experimental results, I noticed
how striking the variety of experimental parameters is, in terms of incidence angle,
laser intensity or gradient scale length. This diversity leads to ejection of electron
bunches with extremely heterogeneous energies and directions. However, only three
mechanisms are usually invoked to explain these experimental results.

This section aims at (i) introducing three fundamental mechanisms: resonant ab-
sorption, vacuum heating and J x B heating; (ii) give intuition on the role of the main
parameters to help understand which mechanism is dominant in which conditions; (iii)
highlight how electron ejection in the backward direction, i.e. in the half-space x < 0
containing the incident and the reflected pulses, remains unclear.

Subsections 1.3.1-1.3.3 present a detailed description of the three above-mentioned
mechanisms. An overdense plasma lies in the half-space x > 0, and an electromagnetic
plane wave propagates in vacuum with angular frequency and wave vector (wp,k =
(ky, ky,0)) with k, > 0. The plasma is collisionless, ions are immobile and the thermal
pressure will be neglected compared to the laser pressure.

The last subsection 1.3.4 presents a large review of experiments performed in the last
twenty years. An analysis of these results shows how the role of the density gradient is
often underestimated, which makes it difficult to understand properly the mechanisms
responsible for electron acceleration.

1.3.1 Resonant absorption

A p-polarized electromagnetic wave with angular frequency wg impinges in oblique
incidence on an overdense plasma with a linear density gradient n(x) on its front side,
as shown in figure 1.7. We assume the incident wave has a non-relativistic intensity
(ap < 1) and use the notation E = Ee™?,

Mechanism
The Helmholtz equation (eq. 1.9) reads

62 F 1 _
— @ + 3 (W —w)|E=0. (1.68)
The system is translationally invariant along the y coordinate. As a consequence of
Noether’s theorem, the y component of the wave vector k, = ksin @ is conserved upon
the wave reflection: E(z,y) = E(z)e ™0sm0/c This allows us to write equation 1.68
as

LE(x) =0, (1.69)
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so that the wave reflection occurs for w, = wycos @ or, in terms of plasma density,

n = n.cos? 6. (1.70)

Reflection Resonance

Fvanescent wave

Figure 1.7: Diagram for resonance absorption. The p-polarized incident wave reflects under
oblique incidence on an overdense plasma (grey area) with a density gradient on its front
side. The density at the reflection point is n.cos? 6, where 6 is the angle of incidence. An
evanescent wave (orange) with angular frequency w sets up behind the reflection point, and
its normal component along = resonantly excites plasma waves at * = 0, where the evanescent
wave angular frequency and the electron plasma frequency match. This resonance is shown
in red.
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As shown in section 1.1.1, an evanescent wave with angular frequency wy penetrates
into the plasma within a skin depth d;.

Gauss’s law reads V - (¢,E) = 0. For a linear density gradient with characteristic
length L, n = n.(1 + 2/L) and ¢,(x) = —z/L for > —L. Thus:

_ 1/ 0E, -
V- (e.E)= 7 (x Ee + EI> =0 (1.71)
so that _
oF, E,
= —— 1.72
oz T (1.72)

which clearly shows a resonant response for z = 0, i.e. n = n, or w, = wy.
A scaling law for the absorbed fraction of a non-relativistic laser can be found
in references [Forslund et al., 1975; Kruer, 1988]. It only depends on the parameter

a = (%)1/3 sinf, and is optimal for a ~ 0.8. 6 = 45° gives an optimal length
Lopt = M/4.

Physically, the incident wave is reflected at * = —Lsinf where w, = wgcos¥b,
and an evanescent wave reaches x = (0 and resonantly excites plasma waves since
wp(x = 0) = wy. The energy transfer is due to the normal component of the electric
field. A laser beam can significantly heat the plasma via this mechanism, transfering
up to 70% of the laser pulse energy to the plasma.

The normalized amplitude of the plasma waves in the low-intensity ay < 1 regime
can be found in references [Denisov, 1957; Estabrook et al., 1975; Ginzburg, 1964], and
an upper bound is given by

ag (1.73)
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for a long density gradient.

Wavebreaking: The phase velocity of plasma waves is directed towards the lower
densities. In the low-intensity regime ag < 1, the plasma wave is carried by electrons
with the displacement § of an harmonic oscillator 6(xg, t) o< sin(w,t) with o the electron
initial position and w, the local plasma frequency. When the intensity increases, this
displacement becomes anharmonic. Wavebreaking occurs when electrons with different
initial positions are superimposed (see reference [Bergmann & Mulser, 1993]), which
reads

)

o0 1. (1.74)
This phenomenon is well-known for waves on the water’s surface, when smooth waves
turn into rollers when they reach the shore. In this case, condition 1.74 is satified when
the steepest part of the leading edge of the wave becomes vertical.

When wavebreaking occurs in the density gradient, electrons are trapped in the
wave and accelerated to suprathermal energies towards the lower density region. At
high intensity, this mechanism saturates when a high number of trapped electrons
load the plasma wave, which strongly decreases the wave amplitude with respect to
equation 1.73. Besides, for long laser pulses (1, > 1ps), the ponderomotive force
exerted by the electron plasma wave on the ions bores a hole in the density gradient and
prevents the electrons from being further accelerated, as shown in reference [Forslund
et al., 1975].

Electron jets: Trapped electrons are accelerated in the plasma wave and can leave
the plasma. In reference [Forslund et al., 1977], the authors show that the hot electrons
have a Maxwellian distribution and the temperature scales as Tjo o< (IA?)/3. The
energy of ejected electrons scales weakly with the laser intensity because of the loading
effect. These hot electrons travel in vacuum towards —z, and a fraction is recalled back
to the plasma due to charge-separation fields. This leads to wide electron jets centered
around the target-normal direction, both in the backward (z < 0) and in the forward
(x > 0) directions.

1.3.2 Vacuum heating

A p-polarized wave with non-relativistic intensity (ap < 1) impinges on an overdense
plasma with a step-like density profile n(x > 0) = ny > n. under oblique incidence.
Electrons from the surface circulate in vacuum during one laser period before returning
to the plasma with non-zero velocity. These electrons are called Brunel electrons. The
incident wave is screened in the plasma bulk x > 0, so Brunel electrons can travel
freely in the z > 0 half-space, where they deposit energy via collisions. This non-
resonant mechanism was initially studied to account for extra absorption of laser light
in overdense plasmas in reference [Brunel, 1987].

Brunel electrons: The incident wave is a monochromatic plane wave (wy,k;), with
amplitude E, and angle of incidence #. Brunel developed a simple model to describe
the electron dynamics, relying on the following hypotheses:
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The mechanism takes place in the low-intensity regime: relativistic effects are
neglected, as well as the magnetic force. The incident electric field reads

E;(r,t) = Eysin(wt — k; - r)[sin fe, + cos be,)] (1.75)
= Ei (r,t)e, + Eiy(r.t)e, (1.76)

where r = (z,y).

The plasma has a step-like density profile, which is equivalent to an infinitely
steep density gradient.

The plasma is assumed to behave as a perfect mirror. Hence, the interface con-
ditions read

E.(07,y,t) = 2E;,(0,y,t) (1.77)
E,(07,y,t) = 0. (1.78)

From equation 1.78, we can see that there is no motion along y: the problem
is purely 1D along x and the dependence in y will be skipped in what follows.
The charge density is a linear charge density with n(z) = ny©(z) where O is the
Heaviside step function defined by ©(z < 0) = 0 and ©(z > 0) = 1. Besides, the
perfect mirror hypothesis implies that all fields are zero in the plasma: E(x >
0,t) =0.

Electrons start at ¢ = 0 and travel in the x < 0 half-space during a laser pe-
riod. We assume their maximum excursion d in vacuum verifies d < A, which is
reasonable in the low-intensity regime. Hence, the electric field at an electron’s
position does not differ significantly from its value at the plasma border:

E.(xz,t) = E,(07,t) Yz <O0. (1.79)

(a) (b)
ﬁ Aky
: ~0.01}
iy Hot electrons
/ O
 —
> S 0.01
g
= 0.02
Normal oscillating
field E, 0.03
0 3

Figure 1.8: (a) Diagram for vacuum heating. An obliquely incident wave impinges on an
overdense plasma. The electric field normal to the target (orange) drives electrons (red
trajectories) from the surface towards vacuum and accelerates them back to the plasma,
where they deposit energy. (b) Surface electron trajectories. Black lines stand for electrons
released in vacuum later that red ones. The grey area stands for the plasma.
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When electrons move from the plasma to vacuum, the plasma becomes non-neutral
and creates an electrostatic field £, along x. This field is given by Gauss’s law for
electron j:

z n(x)

B,(z;) = / dz. (1.80)

—oco €

The electrostatic field on electron j located at x; depends on the total charge at x < z;.
We assume the electrons do not cross during their motion, so that the total charge on
the left of electron j is unchanged: V¢ > 0, E,(z;,t) = E,; with E,; < 0. Electron j is
immobile until its starting time ¢; when the total field at its position is zero:

E,(t;) = 2Eysinsinwot; + E,; = 0. (1.81)
Given the parameter ¢;, this equation gives the plasma’s restoring electrostatic field
E,; = —2FEsin 0 sin wyt;. (1.82)

Finally, the equation of motion for electron j reads

2€E0

Me

T = (sinwpt — sin wot;) (1.83)

for z <0 and #; = 0 for z > 0, giving

sin thj

(UJQt — Ldotj)Q .
(1.84)

Figure 1.8 b) shows the corresponding trajectories. An estimate of the absorption
coefficient can be found in [Brunel, 1987]. Vacuum heating is the dominant ab-
sorption mechanism upon the reflection of a low-intensity laser pulse on
an overdense plasma without, or with a very short, density gradient on its
front side.

eE
kx:(t) =2 sin wot — sinwot; — (wot — wot;) cos wot .
i (1) R 0 otj — (wo ot;) oty +—

This mechanism can lead to distinct populations of hot electrons, which we can
split in two parts:

Frontward electron jets: If the target is thin enough, Brunel electrons can travel
through the plasma and be detected behind. This jet of electrons is consistent with
Brunel’s model.

Backward electron jets: Brunel model relies on strong hypotheses:
e monochromatic plane incident wave, reduced to a 1D problem;
e no plasma effect except the recall force;
e small electron excursion in vacuum — uniform fields;
e magnetic force neglected;

e non-relativistic dynamics.
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In more realistic conditions, a fraction of the electrons travelling in vacuum never
return to the plasma and are ejected in the backward (z < 0) direction. We extended
Brunel’s model and added relativistic and magnetic effects, as well as non-uniform fields
that depend on the electron position (equations are given in appendix B). Electron
trajectories calculated via this model are shown in figure 1.9. The electron dynamics
is more complex than in Brunel’s model (see figure 1.8 on page 25). A jet of electrons
propagates towards vacuum (along —z). The model equations can be found in the
appendix.

|
—_
()]

position x/\

Electron jet

|
N

1 2 3 4 5
time t /717,

Figure 1.9: Electron trajectories calculated from the extended Brunel model including mag-
netic and relativistic effects. Note that some electron trajectories cross each other around
t/Tr, = 3, which breaks one of the hypotheses of the model. A jet of electrons propagates
towards vacuum.

In the literature, authors refer to Brunel electrons to interpret experimental results
on backward electron ejection. However, the dynamics of backward ejected electrons
strongly differs from Brunel electrons, especially because they never return to the
plasma. Besides, the extended model presented above shows severe restrictions: the
non-crossing hypothesis is broken within only three laser periods, and the role of the
plasma fields is completely neglected. Hence, the term Brunel electron is an abuse of
language suggesting that backward electron ejection remains a grey area. This trend
is emphasized in the review of experimental results presented in section 1.3.4.

1.3.3 J x B heating

A plane wave polarized along e,, with angular frequency wy and relativistic intensity
(ap 2 1) impinges on an overdense plasma under normal incidence. We assume the
density gradient is sharp (L < A). Electrons oscillate along the plasma surface /fe,,
driven by the electric field E//e,. The magnetic force drives them towards the plasma
bulk, where they deposit energy via collisions.

The model presented here can be found in reference [Kruer & Estabrook, 1985]. We
assume that the y component of the electric field close to the plasma surface (in the
skin depth 0, < \) reads E, = Ey(x) cos(wpt), and we derive the magnetic field using
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Figure 1.10: Diagram for J X B heating. A relativistically-intense electromagnetic wave hits
an overdense plasma under normal incidence. The incident electric field drives electrons to
relativistic speeds along the polarization direction, and the wave magnetic force pushes them
towards the plasma bulk where they deposit energy and heat the plasma.

Faraday’s law 1.5, which gives the final electric and magnetic fields

E = Ey(x) cos(wot)ey, (1.85)
1 dE

B = ———sin(wyt)e.. (1.86)
Wo axr

For the sake of simplicity, we consider the non-relativistic equations, and assume
v, < c. Neglecting the higher-order convective term in the time derivative, Euler’s
equation 1.2 at the first order reads

S

(9; = —ev, B, (1.87)

0{;1;, = —el,. (1.88)

Equation 1.88 gives v, = —ifzu(;), and then equation 1.87 gives the magnetic force
along x: , )

Fonag = —47;8 d%f) 11 — cos(2wot). (1.89)

Since % < 0 in the skin depth, F,,,, > 0 and drives electrons inside the plasma at an

angular frequency 2wgy. A more appropriate expression of this force is

_m, dvj(z)
4 dx

Frag = [1 — cos(2wpt)]. (1.90)

This is a magnetic second-order effect, as shown by the square dependence on the
light amplitude as well as the double frequency 2wy. Hence, it is perceptible only for
ag 2 1. Ruhl ([Ruhl, 1996]) presented a model describing the transition from J x B
heating to vacuum heating when increasing the angle of incidence, and highlighted the
transition from a first-order to a second-order phenomenon.

Electron jets: Electrons acquire energy by oscillating along the target surface and
propagate towards the normal direction because of the magnetic force. Their energy is
easily derived via the canonical momentum conservation (see [Wilks, 1993]) and reads

E = (\/1+ a§ — 1)mcc®, where we assumed p? < p;. Hot electrons generated via this
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Vacuum/Brunel heating
Resonant absorption
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by g

Figure 1.11: Angular distribution of ejected electrons due to the main heating mechanisms.
The length of the jets are an indication of typical electron energies.

mecanism escape the plasma forming a very broad angle around the target normal in
the frontward direction (x > 0).

An overview of the three mechanisms described here is shown in figure 1.11. Elec-
tron jets due to resonant absorption, J x B heating and Brunel electrons are expected to
be observed along the target normal direction. The mechanism for backward electrons
away from the target normal direction is not well understood yet, though frequenty
associated with Brunel electrons.

1.3.4 Review of experimental results
Introduction

In this section, we present a large review of experiments performed during the last
twenty years. These experiments all investigate electron ejection during the reflection
of a short and intense linearly-polarized (p-polarized in the case of oblique incidence)
laser pulse, off an overdense plasma. The experimental conditions show a great diversity
(orders of magnitude in laser intensity, normal/oblique incidence, thin/thick target,
long /short gradient) and result in extremely diverse electron bunches in terms of charge,
energy and ejection angle. The goals of this study are (i) to pinpoint the lack of
understanding of the backward electron ejection and (ii) to show that the role of the
density gradient length is often underestimated.

Backward electron ejection in experiments

Figure 1.12 shows experimental results from references [Mordovanakis et al., 2009] (a
and b) and [Li et al., 2006b] (c, d and e). Figure 1.12 a) shows electrons ejected around
the specular direction, with relativistic energy. By changing the angle of incidence,
Li et al. switched the emission angle from nearly normal for § = 45° (¢) to grazing
direction for 6 = 70° (d), by simply tilting the target. Besides, the corresponding
electron spectra plotted in figures 1.12 b) and e) show that electrons have an energy
centered around the relativistic value £ = 0.8 MeV in Mordovanakis’ experiment, while
the bottom spectrum has a typical thermal shape, with a Maxwellian distribution
corresponding to a temperature of 300 keV.
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Figure 1.12: [Panels a) and b) are from reference [Mordovanakis et al., 2009]] a) Schematic
of the experiment, showing the electron jet direction. The laser parameters are I = 1.4 x
108 W.cm™2, § = 45°, wg = 1.5um, 7 = 30fs. b) Electron spectrum in the specular
direction. [Panels c¢), d) and e) are from reference [Li et al., 2006b]] c¢) Electron angular
distribution. The parameters are I = 1.4 x 10®¥ W .cm™2, § = 45°, wg = 10 um, 7 = 30 fs.
The gradient scale length is not known because of the poor laser contrast. d) Same setup,
with & = 70°. The electron jet switched from normal direction to grazing direction. e)
Electron spectrum along target for 6 = 70°.
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These results clearly show backward electron jets, away from the target normal
direction, which cannot be explained by the three above-mentioned mechanisms. The
authors develop phenomenological models to explain their results. Yet the apparent
similarity between these examples suggests that there is a unique mechanism underlying
the process of electron ejection.

Table 1.6 shows an extensive review of experimental results obtained during the
last twenty years. This table allows a more systematic study. Electrons accelerated
via resonance absorption (RA) show similar distributions: they are ejected along the
target normal direction in the frontward or backward direction, with an energy of a
few 100keV. Few articles report directly on J x B heating, but references [Malka &
Miquel, 1996] and [Santala et al., 2000] show similar results, with electrons of a few
MeV energy ejected along the target normal in the frontward direction.

Other published experiments, where electron acceleration was claimed to be due to
vacuum heating or other mechanisms may result in extremely different ejection angles
(backward and frontward normal, specular direction, between normal and specular
direction and even along the target surface). Whether all these distributions result
from a similar mechanism is not clear, and such a mechanism is not proposed.

Density gradient length in experiments

References [Cai et al., 2003] and [Li et al., 2006a] show electron ejection for similar
parameters. However, their final results differ significantly. This observation holds
for several experiments shown in table 1.6. Experimental results for backward
electron ejection are extremely diverse because the density gradient length,
which is a key parameter, is either poorly controlled or not measured, if
not totally omitted in the analysis.

The reason is that the gradient is extremely difficult to measure and can appear
because of unwanted prepulses or a nanosecond pedestal before the main pulse, if the
laser contrast is not high enough. To play with this parameter, several groups have
developed a specific diagnostic, as presented in [Bocoum et al., 2015; Geindre et al.,
1994; Kahaly et al., 2013], to tackle the issue of laser contrast and control the prepulse—
main pulse delay.
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Outcome of the review

In spite of these numerous experimental results, the ejection process remains unclear.
Reference [Ruhl et al., 1999] shows a model based on the conservation of the transverse
canonical momentum, and is probably the most advanced predictive tool for the direc-
tion of backward ejected electrons. Nevertheless, it works for a step-like density profile
and does not aim at describing the ejection mechanism and the plasma dynamics. Be-
sides, this model fails to describe results from experiments with a controlled gradient.
For example, in the experiment presented in reference [Mordovanakis et al., 2009],
electrons were detected around 6,,, = 40° whereas Ruhl’s model predicted 60,,; = 23°.

In this thesis, we have used experimental results obtained in very clean experiments
with well-controlled density gradients in order to establish the phenomenology of back-
ward electron ejection. This has been the basis of the models we have developed, and
that are presented in the next chapters. Besides, we show that the dynamics in vac-
uum in the electromagnetic fields can change dramatically the distribution of ejected
electrons.

Backward electrons originate from the surface, which is known to be the source of
intense high harmonic generation. There is a vast literature on this subject and the
processes are relatively well-understood. Thus, one of the goals of this thesis is to
determine if there is a link between harmonic generation and electron ejection. The
following section presents the mechanisms for harmonic generation on plasma mirrors.

1.4 High harmonic generation on plasma mirrors

We hereafter discuss the high harmonics generated when an intense laser pulse (ag ~ 1)
reflects under oblique incidence off an overdense plasma (250n,.) with a sub-wavelength
density gradient scale length (L < ), and describe two possible mechanisms in sec-
tions 1.4.2 and 1.4.3. In both cases, a non-linear process takes place during each optical
cycle that generates a single attosecond bunch with a broad spectrum. This periodic
mechanism leads to a train of attosecond bunches in the time domain, equivalent to a
harmonic spectrum showing multiples of the fundamental frequency wy. This equiva-
lence is stated in section 1.4.1.

1.4.1 Train of ultrashort pulses and high harmonic generation

A train of attosecond pulses in the time domain S and its Fourier transform S are
shown in figure 1.13 a) and e) respectively, for harmonics generated by a laser with
angular frequency wg and Ty, = 27 /wy. The spectrum consists of peaks for multiples of
wp, called harmonics. The pulse train in the temporal domain is given by

S=Ax[H x E] (1.91)

where * stands for the convolution operator, A is the short pulse signal, H is the
temporal Dirac comb and FE is the large global train envelope. They are shown in
figures 1.13 b), ¢) and d) respectively.

Figures 1.13 f), g) and h) show the Fourier transforms of functions A, H and F,
noted with tilde symbols. The final spectrum is given by

S=Ax[HxE]. (1.92)
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a) Pulse train b) Attosecond pulse c¢) Dirac comb d) Train envelope
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Figure 1.13: First line: train of attosecond pulses in the time domain (a) as a combination of a
single attosecond pulse (b), a Dirac comb (c) to stand for the T}, periodicity of the mechanism
and the train envelope (d) representing the finite duration of the main femtosecond pulse.
Second line: same as the first one in the Fourier domain.

A signal with duration At in the time domain results in a spectrum with width
Aw o 1/At in the Fourier domain. The wider the global train envelope E, the thinner
the harmonics E. Equivalently, the shorter the attosecond pulse A, the wider the
spectral envelope A.

1.4.2 Coherent Wake Emission

Mechanism

For a sub-relativistic laser intensity ag < 1 and a very sharp density gradient L ~ \/40,
the dominant mechanism is Coherent Wake Emission (CWE, see [Malvache, 2011;
Quéré et al., 2006; Thaury & Quéré, 2010; Thaury et al., 2007]). The basic mechanism
is shown in figure 1.14, and relies on Brunel electrons (see 1.3.2 on page 24). The
plasma density has an exponential shape with electron density n.(x) = n.exp(xz/L)
were n. is the plasma critical density in the laboratory frame of reference and 6 is the
incident angle. The CWE mechanism occurs at each laser period, and can be split up
in three steps:

e Brunel electrons are pulled towards vacuum for 0 < ¢ < T7,/2 and sent back to the
plasma for T}, /2 < t < Ty,. They cross each other in the density gradient, forming
a local density peak of electrons propagating along +x. Electron trajectories are
shown as grey lines in figure 1.14. The black dashed line stands for the density
peak trajectory. Note that this peak exists because electron trajectories cross in
the plasma. This crossing requires electrons to have different speeds when they
return to the plasma, with the slowest first and the fastest last.

e When the density peak goes through position z, it excites plasma waves at the
local plasma frequency w,(x) = wp\/n(z)/n.. The deeper inside the density gra-
dient, the faster the plasma oscillations. The quantity (n.—n;)/n. is shown in fig-
ure 1.14 as the blue-red colourmap. The frequency of plasma oscillations increases
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Figure 1.14: Illustration of the CWE mechanism during one laser period. Brunel electrons
(grey solid lines) travel in vacuum and return to the plasma, where they form a density peak
(black dashed line) propagating towards = > 0. The colourmap shows the plasma density.
The density peak excites plasma oscillations at the local plasma frequency. These oscillations
radiate an attosecond bunch in the reflected field. HHG stands for High Harmonic Generation.

with  up to z = 0.024)\, which corresponds to the end of the density gradient
(black solid line). The region z > 0.024\ is occupied by the plasma bulk, where
the local plasma frequency does not depend on z. Plasma oscillations around po-
sition g involve electron oscillating with x(t) = x¢ + dz cos [w,(xo)(t — to(x0))],
where ty(zo) is the time at which the density peak reaches xy. This is valid as
long as the electron sees the same plasma frequency along its oscillations, which
reads 0z < L.

e These plasma oscillations coherently radiate an attosecond bunch in the re-
flected field, with frequencies up to the maximum plasma frequency. Usually
max(w,) < 20wp. This emission occurs via linear mode conversion, and relies
on the presence of the density gradient, as described in the following box. This
periodic mechanism results in a train of attosecond bunches in the reflected field,
hence a spectrum with harmonics of the laser frequency in the Fourier domain.

Figure 1.15 shows the electron density map from particle-in-cell (PIC) simulation
these_cwe2 with ap = 0.3 and L = A/60, as well as CWE attosecond bunches propa-
gating in the —x direction. These bunches are generated deeper than the critical point
z. = 0 where n.(z.) = n.. More details on PIC simulations can be found in chapter 2.

Finally, the repetition of this process over the full laser pulse duration leads to a
train of attosecond pulses in the specular direction. The highest frequency generated is
the maximum plasma frequency in the plasma bulk, so there is a cutoff at the maximum
plasma frequency w;'*® in the harmonic spectrum. A typical harmonics spectrum for
CWE emission is shown in figure 1.16. The plasma maximum density was 250n., which

gives a maximum plasma frequency of w;"** = 15wy. The cutoff is clearly visible.
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Electrostatic to electromagnetic wave conversion in CWE

An electrostatic plane wave in a homogeneous plasma is longitudinal: the wave
vector and the electric field are parallel k//E. In this case, the electron motion also
occurs in the same direction: J // k.

An electromagnetic plane wave in a homogeneous plasma is transverse: the wave
vector and the electric field are orthogonal k 1. E. Using V = —ikx and k- E = 0,
Helmholtz equation reads

<k2 - 6162> E = ”0‘1‘]. (1.93)

This equation shows that the source term on the RHS can generate an electro-
magnetic wave only if J has a component normal to k (parallel to E). As a
consequence, electrostatic waves in a homogeneous plasma cannot be converted
into electromagnetic waves.

In a heterogeneous plasma, namely in the sharp density gradient, plasma oscilla-
tions can be converted into electromagnetic waves. The image in the box [from
reference [Thaury, 2008]] shows a snapshot of the component of the electric field
normal to the plasma F, from a 2D simulation of CWE in the laboratory frame.
Brunel electrons are shown in yellow. Each electron travels along +x, and the front
is inclined by 13.5° with respect to the y axis because of the oblique incidence.

The front of Brunel electrons triggers plasma oscillations in the direction perpen-
dicular to this front (1), so that the electron motion J (purple arrow) and the
wave vector k (black arrow) are parallel. Zone (2) shows vectors J and k at the
same depth x, where approximately half a laser period has passed after the trigger.
The direction of electron oscillations J remains the same whereas the wave fronts
have curved because the plasma frequency is space-dependent. The consequence is
straightforward: J xk # 0: J has a component normal to k, and electrostatic waves
can be transformed into electromagnetic waves. More information can be found in
reference [Thaury et al., 2007].

36



CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

b)
100/
]
0.01l
7 7. . 1 1
5 8 915L 9 9.5 00 nE}qu 00

Figure 1.15: Attosecond bunches from the CWE mechanism from 1D PIC simulation these_-
cwe2 with ag = 0.3, L = \/60, npyx = 100n. and 7, = 4T, FWHM with a sin? envelope.
a) The grey scale shows the electron density, and the yellow-red scale shows the envelope of
the attosecond reflected pulses. A Fourier filter was applied to keep harmonics order above
8, propagating in the —x direction. The critical density n = n. is located at x = OA. One
CWE attosecond bunch is generated during each laser period deep inside the plasma where
the electron density is high, due to plasma oscillations in the overdense region. b) Initial
plasma density.

10 0 5 10 15 20

Figure 1.16: Reflected field spectrum from a 1D PIC simulation performed with the code
EPOCH for ap = 0.4, npur = 250n, and L = A/40. wp is the incident laser frequency. The

cutoff at the maximum plasma frequency w,"** = V250w >~ 15.8wy is clearly visible.
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CWE in 1D PIC simulations

The result of 1D PIC simulation these_cwe for CWE is shown in figure 1.17. The
simulation parameters are, in the laboratory frame, 6 = 45°, A = 0.8 um, ag = 0.1,
L = \/50 and np, = 250n.. The electron initial temperature is zero, and the pulse
has a square temporal envelope. The ions are immobile. The numerical conditions
were Az = A/5000 and we used 500 particles per cell (see chapter 2).

Figure 1.17 a) shows electron trajectories (grey lines) as well as the driving field B,.
They are driven toward vacuum for 0.7 < ¢/77, < 1.2 and are accelerated back to the
plasma starting from ¢ /77, = 1.2. Their trajectories cross in the density gradient, where
they excite plasma waves. This is shown in figure 1.17 b), where the plasma electric
field E, is shown is the same (z,t) representation. The image is strongly saturated, so
that one can clearly see plasma oscillations even in the plasma bulk, which occupies the
region z > (.11 in this simulation. Note that the oscillations start when the electron
trajectories cross in the plasma.

I0.05

0.1f

'—0.05

Figure 1.17: a) Time-space map of the magnetic field B, at the plasma surface from 1D PIC
simulation these_cwe in the boosted frame. The critical density n = n. is located at x = O\.
Trajectories of Brunel electrons are shown as grey lines. b) Electric field E, at the plasma
surface. The map is saturated to highlight plasma oscillations.
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Optimal conditions

This paragraph presents the global trends for the CWE harmonic efficiency. It aims
at introducing the role of the main parameters ay and L, rather than presenting an
extensive study of the mechanism. A thorough qualitative and quantitative analysis for
coherent wake emission can be found in references [Thaury & Quéré, 2010] and [Mal-
vache, 2011].

Figure 1.18 shows the electron density peak propagating in the plasma from simu-
lation these_cwe. Snapshots of the quantity n. — n; are shown along x for successive
times. The time interval is the same between consecutive snapshots. The following
observations may be drawn from:

e The density peak width and height are not constant along its propagation in
the plasma. In this particular case, its amplitude becomes lower and its width
becomes larger.
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Figure 1.18: Quantity (n. — n;)/n. along x for different times, separated by At = 0.0677,
intervals. The peak propagates towards +z with mean velocity v ~ 0.1¢, and its speed, height
and width change along its propagation. The dashed line stands for the ion density.

e The distance between two consecutive positions of the peak increases: the peak
speed increases. Note that the peak is due to trajectory crossing. As a result, its
velocity can increase along its propagation even though it involves electrons with
constant speed.

Dependence on ay: When aq is too small, electrons travelling in vacuum return
to the plasma with an extremely large velocity distribution. They cross before the
critical surface z. defined by n(z.) = n.. There is no sharp density peak for x > z.
and no high-frequency plasma waves are excited. Thaury and Quéré show that CWE
could be generated provided ag > 3.4L/\. On the opposite, when aq is too large, the
plasma dynamics can be strongly distorted. The amplitude of plasma oscillation is so
large that dx ~ L, and the mechanism breaks. Coherent Wake Emission typically
occurs for 0.01 < ag < 1.

Dependence on L: Linear mode conversion occurs in an inhomogeneous plasma
only, so no harmonics are generated when L = 0. When the peak propagates towards
x > 0 in the density gradient, it gets broader and broader. On the opposite, the
plasma wavelength \,(x) decreases with . For too long a gradient, the density peak
width Opeqr(z) becomes larger than the local plasma wavelength dpeqr(z) > Ay(z) and
no longer triggers plasma waves. Besides, electrons originate from different initial
positions, which makes the peak broader and smaller. Hence, the harmonic efficiency
decreases for long gradients. CWE is efficient when L ~ \/100 approximately.

Shape of the harmonic spectrum: Harmonic spectra from CWE are characterized

by a cutoff at the maximum plasma frequency Wy = wo/Nbulk /n.. Figure 1.19 shows

CWE spectra from PIC simulations were ag = 0.2, nyr = 110n, and L = /15 and
A/100 respectively. Both cases show a cutoff at /110wy ~ 10wp. In figure 1.19 a),
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the harmonic power decreases with the harmonic order whereas in figure 1.19 b), the
harmonic power peaks for w = 4wy. Thaury and Quéré showed that the shape of the
harmonic spectrum depends on the peak dynamics: if the electron peak height N(x)
reaches a maximum for & = %,,4,, the highest power is generated for w = wy(Tmaz)-
For example, in figure 1.18, the peak height decreases along its propagation, so the
resulting spectrum should be similar to that shown in 1.19 a).

ey L=A,/100

Power spectrum (arb. u.)
&
(9,1

0 5 10 0 5 10
Harmonic order Harmonic order

Figure 1.19: [Image from [Thaury & Quéré, 2010]] a) CWE spectrum from a 1D PIC simula-
tion with 6 = 45°, ag = 0.2, npy = 110n, and L = A/15. b) shows the same for L = \/100.

1.4.3 Relativistic Oscillating Mirror

For relativistic intensities ag > 1, the dominant mechanism for high harmonic gener-
ation is the Relativistic Oscillating Mirror [Burnett et al., 1977; Dromey et al., 2006;
Thaury et al., 2007]. The laser intensity is high enough for the oscillations of electrons
at the plasma surface to be nonlinear. This is shown in figure 1.20. Once per laser
period, electrons from the plasma surface acquire a relativistic speed directed toward
vacuum f3, ~ —1 where 3, = v, /c is the normalized velocity, and radiate an attosecond
bunch. This mechanism leads to a train of attosecond bunches in the reflected field,
hence harmonics of the laser frequency in the spectral domain. Note that, contrary to
coherent wake emission, these harmonics are generated indifferently at z < . = 0\ or
x > x. because they do not rely on plasma waves.

A representative spectrum for ROM emission is shown in figure 1.21. The plasma
maximum density is 250n., which gives a maximum plasma frequency of 15wy, and no
cutoff can be observed. Contrary to coherent wake emission, this mechanism does not
rely on a density gradient, and the simplest study involves a homogeneous overdense
plasma with a density slightly higher than the critical density, typically ng ~ 5n.
However, studying the mechanism in presence of a density gradient is nevertheless
important because (i) experimentally, it is much easier to make a very dense plasma
bulk with a density gradient on its front side rather than a plasma with density ~ 5n,
and sharp plasma-vacuum transition, (ii) a gradient exists in most experiments because
of uncontrolled laser prepulses, and (iii) it can lead to an enhancement of the ROM
harmonic generation.

Three references provide milestones of the theory of high harmonic generation via
the ROM mechanism: [Lichters et al., 1996], [Baeva et al., 2006] and [Gonoskov et al.,
2011]. The two first models are given in this section to provide insight into the mech-
anism. The third one is developed in chapter 3 within the scope of electron ejection.
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X/A

Figure 1.20: Attosecond bunches from ROM mechanism from 1D PIC simulation these_-
rom2 with ag = 5, L = \/8, nyur = 50n. and 7, = 4T, FWHM with a sin? envelope. The
grey scale stands for electron density, and the yellow-red scale stands for the envelope of the
attosecond reflected field. A Fourier-filter was applied to keep harmonics order above 9. The
critical density n = n. is located at x = 0A. One ROM attosecond bunch is generated during
each laser period when electrons are accelerated to a relativistic speed towards —zx.
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Figure 1.21: Reflected field spectrum from a PIC simulation for ag = 10, np, = 2500, and
L = )\/8. wy is the incident laser frequency.
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Doppler harmonics

The first models for ROM harmonics relied on the Doppler effect (see reference [Bulanov
et al., 1994]), which is why ROM harmonics are equivalently called Doppler harmonics.
We assume that the plasma has a step-like density profile, and that ions are immobile.
The electron surface forms a moving mirror, that reflects the incident field. The shape
of the reflected field is modified by the Doppler effect, which changes the frequency of
the reflected wave with respect to the incident wave.

v = —Bce_gg>

w / N\

Figure 1.22: Doppler effect. The incident wave (blue) impinges under normal incidence onto a
mirror moving with constant speed along —x. The frequency of the reflected wave is strongly
shifted.

Consider an electromagnetic wave with angular frequency w incident on a mirror
moving with constant speed v = —ve, = —fce,. This is illustrated in figure 1.22. The
incident and reflected waves read a priori

Y(x,t) = 1o cos [w(t —x/c)] (1.94)
Yrep(x,t) = o coslwyer(t + x/c)]. (1.95)

The boundary condition on the perfect mirror reads
Y(r = —vt, t) = £pep(x = —0vt, t) (1.96)

with + if ¢ is the magnetic field and — if 4 is the electric field. This has no consequence
on the Doppler effect, so we take + in the following discussion. The incident field on the
moving mirror is given by Unirrer(t) = ¥(x = —vt, t) = 1 cosw't with ' = w(1 + 3).
The moving mirror acts as a light source, with position x = —vt and local frequency
W'

In order to calculate the frequency of the reflected wave, we introduce the concept
of retarded time that will be used in the next section. Consider the signal v,.¢, prop-
agating with speed c in the —z direction, is emitted at position y. The signal received

by an observer located at position x and time ¢ was emitted earlier, at time ¢,..:

¢ref<x7t) = wref(thret) (197)

with e =t + X, (1.98)
C
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We define t) and ¢2

Wres(tV +2/c) =0 (1.99)
Wres(t® +x/c) = 21 (1.100)

so that the period of the reflected wave received by an observer located at x reads

Tre = t® — ¢+ These signals were emitted by the moving mirror at times tﬁ; and

tf,e% respectively, given by

(1

— 4m tre
0 — 40 4 W (1.101)

()

— 4tm tre
12 _ g 4 &= Tmltra) (1.102)

c
where x,,(t) = —ft stands for the mirror position. Note that t% — tge% = T’ where
T" = 2m /w' is the period of the wave emitted on the moving mirror. We get
() (1)
m tre - m tre
12 48 = 40— o) Znllrr) = () (1.103
c
t( ) — 1) + /6( ret - tiﬁ) <1104)
and T,.p = (1 — 8)T" (1.105)
wl
e f = , 1.106
O Wres = T3 (1.106)
Finally, the frequency shift after reflection reads (see references [Einstein, 1905a,b])
Wref 1+ 6

= — 1.107

Assuming the mirror travels with highly relativistic speed 5 ~ 1, the frequency shift

reads
wref

~ 4~? 1.108
» Y ( )

with v = (1 — %)~/

This expression gives the cutoff for ROM harmonics (see reference [Bulanov et al.,
1994]). We consider that the electron surface oscillates as a whole, with a maximum
Lorentz factor 7,,.,, and generates harmonics in the reflected field via the Doppler
effect. The maximum harmonic order, i.e. the cutoff in the reflected field spectrum,
reads

Yrel g2 (1.109)

However, this results gives the cutoff in the reflected spectrum as a function of the
parameter 7,4, which is all but reachable in experiments or theory.
Liénard-Wiechert potentials

Though the Doppler effect is a convenient model to understand ROM emission, the
underlying physics relies on the radiation of electromagnetic waves by moving electrons,
described by the Liénard-Wiechert potentials. Consider an observer located at » = 0.

43



CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

The electric field radiated by an electron with position r and normalized speed B at
the observer’s position reads (see reference [Jackson, 1999]):

_e{_ u+tp +ux[<u+ﬂ>xﬁ]}

E (1.110)

" dre, V(1 +u-B)>r? c(1+wu-pB)3r

where w is the unit vector defined by w = r/r and ¢, is the retarded time. The first
term is the static term, and does not depend on particle acceleration. It decreases as
1/r? and will be neglected in this discussion, as in reference [Thaury, 2008]. Let us
consider the second term, which is proportional to the charge acceleration B.

To apply this formula to the ROM emission on plasma mirrors, we describe this
system in the boosted frame (see section 1.2). The target normal is x, and the incident
pulse propagates along = and is polarized along y. The electrons at the plasma surface
move along x and y only, and we consider the reflected field, i.e. the emission along
—x:

1 Be
u=1|0| g=151. (1.111)
0 0
giving
e 5 By B
E _ Y . Yy e,. ].1].2
{471'6067’ [(1 + Bx)2 (1 + 61)3] }tret ’ ( )
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Figure 1.23: Surface dynamics in simulation these_rom1. a) Log-scale electron density. One
electron jet travels towards vacuum once per laser period. Colours stand for attosecond
bunches. A Fourier filter was applied to the magnetic field to keep only high frequencies. b)
Magnetic field. ¢) Transverse current .J,. d) Longitudinal current J,,.

In the ROM mechanism, an attosecond bunch is generated when a large amount
of electrons are accelerated towards vacuum. This is shown in figure 1.23 a), where
the electron density from the 1D PIC simulation these_rom1 is represented along with
attosecond bunches in the reflected field. In this image, the first attosecond bunch is

44



CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

generated around t/77, = 7. The total magnetic field is shown in panel b): attosecond
bunches correspond to a discontinuity in the reflected field.

Such a bunch is generated when E diverges, i.e. [, — —1 in equation 1.112. At
this time, electrons travel with relativistic speed towards vacuum. This is depicted in
figure 1.23 ¢), where the density current normal to the target .J, is represented. It
peaks when attosecond bunches are generated.

Also, B, — —1 implies 8, = 0: the transverse density current is zero during the
attosecond bunch generation. This can be seen in figure 1.23 d), where the trans-
verse density current switches from positive to negative upon the attosecond bunch
generation. We define the ROM emission time t. as B,(t.) = 0.

Finally, the second term in equation 1.112 vanishes at the emission time t., and the
electric field radiated by an electron in the layer reduces to

e s
FE ~ Y 1.113
{47‘(’60(37” (1 + 5:)0)2 }tret v ( )

showing that high frequencies are emitted when 8, — —1, hence 3, = 0, and By is max-
imum. Therefore, high harmonic generation is clearly related to electron acceleration
at the plasma surface.

The ROM model by Lichters

In reference [Lichters et al., 1996], the authors derive an elegant model that gives the
temporal shape of the reflected field. We hereafter describe the basics of this model.
We assume that the x > 0 area is filled with a plasma with uniform density ng > n..
The angle of incidence is # and we choose to work in the boosted frame. The ions are
immobile, and the electrons move as a bulk, as shown in figure 1.24.

n
A

e ————— Electron density

Ion density

>

Xz

Figure 1.24: Electron and ion density in the boosted frame, in Lichters’ model. The ion
density forms a background with J = —engcsinfe,. The electron density is n. = no©(z —
X(t)) where © is the Heaviside function, with ©(z > 0) = 1 and O(z < 0) = 0. Only
electrons within [X (¢), X (t) 4 5] are affected by the laser. Electrons located at z > X (t) + I
are unperturbed, and create a density current J = +engcsin fe,, so that the total current in
this area is zero.

As in reference [Thaury & Quéré, 2010], we can first calculate the radiated field as
a function of the transverse current J, defined by V - J, = 0. J, is responsible for
the electromagnetic component of the electric field, and verifies J, € (y, z) in our 1D
case. The wave equation in the Coulomb gauge V - A = 0 reads

1
PA— gafA = —poJ 1 (1.114)
or LA = —pgJ, (1.115)
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where L = 3% — 407 is a linear operator. A Green’s function for this operator, defined

by LG[(z,1), (x,7)] = 6(z — y,t — 7) is

N (1116
c
where © is the Heaviside function. Note that the Green’s function depends on (z —
X) and (t — 7) instead of the four variables independently because L has constant
coeflicients.

Finally,
Alat) = =poe [ [ Gllant), (v ITL 0 iy (1.117)
= _MOC/_—oo /__OO [ _ ; X‘] J1 (x, 7)drdy. (1.118)

The support of the integrand is shown in figure 1.25. We restrict ourselves to the
X > x area to account for light propagating in the —z direction (the reflected light)
and perform the integral along the red lines.

t

A

to

v
8
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Figure 1.25: Integration area in equation 1.118 (grey area). The integration is performed
along t for a given z, as illustrated by the red arrows. Only the x > 0 region is considered,
where electromagnetic waves propagate along —z.

Hence, equation 1.118 for the reflected light reads

400 pt—(x—x) c
A'(x,t) = —uoc/ / ,T)dTdx. (1.119)

=—0Q

Using equation E" = —0,; A", the reflected electric field is finally given by

+o0 X—Z
E"(z,t) = +poc Jy (X,t - > dy. (1.120)

C

This formal derivation involves the retarded time t,.; =t — (x — x)/c. This result
has a physical meaning: the total field at (x,t) is the field radiated at (x, t,e;), sSummed
over all ¥ > x. Let us now apply this general formula to our specific case.

The transverse current reads

J, = —en.v. +env;| (1.121)

46



CHAPTER 1. BASICS OF LASER-OVERDENSE PLASMA INTERACTION

where n, is the electron density and v, is the electron transverse speed (orthogonal to
x). Subscripts ¢ stand for ion quantities. In the boosted frame, the ions drift with speed
v;| = —csinfe,, and the ion density equals the initial density at all time: n; = ny.

Let us derive the electron contribution, starting from the conservation of canonical
momentum

Pei — €A = peio— €Ag (1.122)
sin 6

= —MmcC e 1.123

1 —sin?6 * ( )

= —mcctanfe,. (1.124)

This gives

J(x,t) = —ec{ze((j’f))

where a; = eA | /m.c and 7 is the electron Lorentz factor. The (x,t) dependence will
be skipped when possible, in order to avoid heavy notations.
We can rewrite the Lorentz factor v as

la, (z,t) — tanfe,] + no(x,t) sin Qey} (1.125)

7:\/1+<p“>2+763// (1.126)

mecC

1+ (a, — tanfey)?
=By

giving v = J (1.127)

Finally, we assume that the electron surface is located at position X (¢) as shown
in figure 1.24, and that the transverse current differs from the drift current —csin fe,
only in the skin layer [,. Besides, we assume that the plasma is highly overdense, so

that
b e (1.128)
A\ ne ' '

In this case, equation 1.120 gives the field radiated by the electron distribution

EZ(%, t) = /VLOClsJeJ_ (X<tret)7 tret) (1129)
X _
with £, =t — 2 (bre) =T (1.130)
C

And the ion radiation reads, assuming V¢ X (t) < A,

E(x,t) = poc[ X (trer) + I5)(—en;ctan fey). (1.131)
The reflected field reads

e lsne\/l - )‘(2(757’675)/02
€0 \/1 + (a, —tanfe,)?

E"(z,t) = (a; —tanfey) + [X (tret) + l5|nisin be,

(1.132)
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where a, =ag (X(tret)a tret)-
At this point, a; and X(t) are still unknown. We assume that a, is due to the
incident field only (so that the reflected field is neglected):

a; = ap(z,t)sin(wet — kx)ey, (1.133)

where ag(x,t) stands for the temporal envelope. Let us assume that X(¢) is a
harmonic motion due to the incident field. This reads

X(t) = X1 cos(wgt+gz51) (1134)
c 2ap(z,t)siné

w0 \/1+ 2ao(a, £) sin 6

cos(wot + ¢1) (1.135)

with ¢; = 0 for an electron in a plane wave.

This is the strongest approximation of the model: the dynamics of the elec-
tron surface is imposed a priori, though one can clearly see in figure 1.20 that the dy-
namics is far from harmonic, and rather complex. Lichters et al. allow a non-harmonic
surface dynamics via oscillations at frequencies 2wy, 3wy etc. Still, the amplitude and
phase of these higher harmonics X5, ¢o and X3, ¢3 must be chosen.

Finally, one has to find %, in equation 1.132 to determine the reflected field. Yet
t,e; 18 defined by the recursive equation 1.130, and cannot be calculated analytically.
X (trer) is the fixed point of the contraction mapping f : x — X(t — (x — z)/c), it can
be calculated for a given ¢ as the limit of the sequence:

Xo = X(t) (1.136)
X,—x
c

Xpi1 = X(t— ). (1.137)

As a confirmation, this model was applied to a pulse with duration 8 fs and ay = 5.
As is done in Lichters’ article, we assume the reflection takes place at the critical
density, hence ng = n.. Yet the skin depth is still [y < A. We took I; = A/200. The
loop for t,.; converges after ~ 1000 iterations.

Figure 1.26 a) shows the full incident field. Functions X (¢) and X (¢,.;) are plotted
in figure 1.26 b). The second one clearly differs from a pure sine wave, the only cause
being the retarded time. The dynamics becomes anharmonic because of the relativistic
time-dependent Doppler effect. The reflected field is shown in figure 1.26 c¢). A filter
was applied to only keep harmonics above 10, shown as the black line. Finally, the
reflected field spectrum is shown in figure 1.26 d). The harmonic efficiency decreases
as n~ 193 where n is the harmonic order.

This models embraces the electron dynamics, the relativistic Doppler effect and pro-
vides the temporal shape of the reflected field. However, it relies on strong hypotheses
(the electron dynamics is imposed), and does not give scaling laws for the harmonic
efficiency decrease and cutoff.

The BGP model

The next important milestone for modeling harmonic generation via the ROM mecha-
nism is presented in reference [Baeva et al., 2006], where the authors extend the idea
of the oscillating mirror. They assume that a perfectly reflecting mirror is located
at X (t), where the sum of the incident and reflected fields is zero. As for Lichters’
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Figure 1.26: Example of Lichters’ model. a) incident field (ag = 5, 8 = 45°, 71, = 8fs with a
Gaussian time-envelope). b) Surface position X (¢) and X (t,e), where the deformation from
a pure sine wave is a signature for Doppler effect and high harmonic generation. c¢) Full
reflected field (red). A filter was applied to keep only harmonic orders > 10 (black line). d)
Spectrum of the reflected field.

model, high harmonics are generated in the reflected field because the mirror moves
with relativistic velocity. Yet they do not link X (¢) with any physical quantity.

They show that the harmonic generation efficiency decreases as n=%/3 where n is the
harmonic order. Furthermore, they demonstrate that the maximum harmonic order
(the cutoff) varies as 2., where 7,4, is the maximum Lorentz factor of the oscillating
mirror. This result seems to contradict the cutoff derived form the Doppler effect in
equation 1.109, which varies as 4v2_.. The reason for this discrepancy is that the
mirror does not move with constant speed v, but rather emits high harmonics during
a very short time 0t o< 1/7,,42. The cutoff varies as 6t/472,,. o< 1/73 ...

Figure 1.27 a) shows the reflected field as a function of time for the simulation
named these_roml. The n~8/3 scaling was added to the spectrum as a comparison. In
this case, this prediction from the BGP model is well verified. Yet their model suffers
two essential weaknesses: first, as it relies on the Doppler effect, the peak amplitude of
the reflected field cannot exceed the amplitude of the incident field. In figure 1.27 a),
the peak amplitude of the reflected field is much higher than the peak amplitude of the
incident field ay = 5. The second limit to their model is that X (¢) does not correspond
to any physical quantity. Indeed, for a given time ¢, one cannot always find a point
where the total field cancels. As a consequence, ¥,,q. is not easy to determine. Besides,
the n=%3 law is not absolutely universal, as shown in reference [Boyd & Ondarza-
Rovira, 2008].

Conclusion: This chapter introduced the main theoretical tools for the reflection of
a laser pulse upon an overdense plasma. First, this interaction can lead to electron
ejection via three distinct mechanisms: resonance absorption, vacuum heating and
J X B heating. Second, harmonics can be generated in the reflected field via two
processes: coherent wake emission and the relativistic oscillating mirror effect. Both
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ITF(B)I?

10 12 14 16 0 10 20 30
vT w/w

L 0
Figure 1.27: a) Reflected field from PIC simulation these_roml. 6 = 45° ag = 5, npyx =
50n., L = A/8. The ions are immobile. The numerical parameters are Az = A\/1000 with
500 particles per cell. b) shows the spectrum of the reflected field. The harmonic decrease

predicted by the BGP model is shown as a red dashed line.

harmonic generation and electron emission are observable in experiments, and a better
understanding of the surface dynamics provides significant help to analyse experimental
results.

Yet a review of many experimental results shows that the mechanism for backward
electron ejection remains unclear, and is not compatible with any of the three effects
mentioned above. In particular, the role of the density gradient is often omitted since
it is badly controlled in experiments. The mechanism for backward electron ejection is
studied in chapter 3, and the gradient length is shown to play a major role. chapter 2
introduces the indispensable numerical tools that were intensively used within the scope
of this work.
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Chapter 2

Numerical tools
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CHAPTER 2. NUMERICAL TOOLS

2.1 Particle-in-cell simulations for laser-plasma in-
teraction

Only a limited number of plasma phenomena can be described via an analytical ap-
proach. Even restricting ourselves to the case of kinetic plasmas, the first difficulty lies
in the equation of dynamics itself, the Vlasov equation, which belongs to the general
class of partial differential equations. The mathematical difficulty inherent to these
equations is the main motivation for developing numerical tools.

Besides, in a large variety of regimes ranging from stellar plasmas to laboratory
plasmas, relativistic phenomena must be taken into account, when the particle speed
approaches the speed of light. The relativistic plasma regime leads to strongly non-
linear dynamics, which adds further difficulty on top of that instrinsic to the Vlasov
equation.

These issues led to the development of a new field, computational plasma physics,
in which basic plasma equations are solved numerically to study the temporal evolution
of a plasma with given initial conditions. The power of this tool is that it allows an
unlimited range of new observables, which can absolutely not be reached in experiments.
Yet, just like any model, these numerical tools rely on hypotheses, they have a limited
domain of validity, and they can lead to misinterpretations. One of the most widespread
numerical method for plasma physics is the particle-in-cell method, which solves the
Vlasov-Maxwell system governing plasma dynamics.

We hereafter present the set of equations governing kinetic plasmas, and detail the
particle-in-cell method that we used extensively in this work. Finally, we show a set of
typical numerical simulations performed in the scope of this thesis.

2.1.1 The Vlasov-Maxwell system

The Vlasov equation describes the plasma dynamics in the collisionless regime, where
the plasma dynamics is due to average collective fields. Let f, be the distribution
function of species s, with particle mass m, and charge g;. The number of particles d N
in the 6-dimensional volume drdp at time ¢ is given by 6N = N, fs(t,r, p)drdp where
N, is the total number of particles. The distribution function is a general tool thanks
to which one can derive the usual quantities: charge density p and current density J
as the 0" and 1*® moments of the distribution function

po=a, [ fudp (2.1)

Js = (s /OO stdp (22)
—00 V 1+ p2

The total charge and current density are the sum on the ensemble of species S in the

plasma

pP= Zps (2'3)

seS

J=> J. (2.4)
ses
Typically, the simplest case for a neutral plasma is S={electrons,ions}.
The Vlasov equation reads

8fs+dr ofs dp Of,

at op (25)

ot dt or
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The first term is the time evolution of the function. The second term is the advection
term, and the third term stands for the application of forces:
dp

i q¢s(E+v x B) (2.6)

with p = myyv and v = (1 — v?/c?)

A plasma involves displacements of charges that modify the electric and magnetic
fields, so E and B have to be included in the plasma dynamics. This is done by adding
Maxwell’s equation to the Vlasov equation:

-1/2

p 0B
E = E=-—— 2.
\Y o V x p (2.7)
E

This non-linear system of partial differential equations can seldom be solved analyt-
ically, and one often has to resort to numerical resolution. We hereafter introduce two
equivalent ways of expressing the Vlasov equation, the Fulerian and the Lagrangian
approaches, each of which results in a numerical method for solving the Vlasov-Maxwell
system. Finally, both methods are exposed, and much more detail is given on the one
based on the Lagrangian approach for particles, called the particle-in-cell method, that
we used extensively in this work.

Eulerian approach:  The observer is fixed at position r and considers the flow of
the plasma fluid. f(r,p,t)drdp is the number of particles of species s in a volume
element drdp around position 7 and momentum p. This formulation is relevant when
dealing with average plasma quantities, and reduces to the plasma Euler equations
involving the plasma density p and current density J when only moments with order
smaller than two or three are considered.

Lagrangian approach: This approach consists in following the motion of each
single particle along its trajectory. Then, fs(¢,71,...,*N, D1, ..., PN)dT1...d7 NdD1...dDN
is the probability for each particle ¢ to be in a volume element dr;dp; around position
r; and momentum p;. This formulation is well-adapted to solve the equation of motion
for single particles.

Maxwell’s equations use the Eulerian approach. The Vlasov-Maxwell system can be
solved numerically using the two approaches described above for the plasma dynamics:
the Eulerian approach leads to the so-called Vlasov numerical method and is explained
in section 2.1.2, and the Lagrangian approach leads to the particle-in-cell numerical
method that we used in this work, and which is detailed starting from section 2.1.3.

2.1.2 Vlasov numerical method

Vlasov codes rely on a discretization of the (7, p) phase space. For a 2D simulation
in phase space z,p,, f is discretized on a grid ({z;, 0 < i < ny} {pak, 0 < k < n,})
and along time using a time-step At, such that f = f(zi, pex, nAt). The resolution
uses the Finite-Difference Time Domain (FDTD) [Yee et al., 1966] method to calculate
quantities at time iteration n using their values at iteration n—1. Figure 2.1 illustrates
very schematically the iteration performed at every time-step for a Vlasov code to
calculate fZ”,j ! knowing .- This diagram provides a simplified picture of the core loop
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of the algorithm. The implementation relies on leapfrog methods, and involves more
elaborate resolution schemes for solving the Vlasov equation like the time-splitting
scheme developed in reference [Cheng & Knorr, 1976] as well as the positive and flux
conservation method developed in [Filbet et al., 2001]. More details can be found
in [Grassi et al., 2016].

n+1 f:k

Pz

S B

79

Figure 2.1: Diagram for a 2D (z,p,) Vlasov simulation. Consider that the distribution
function f/ at iteration n is known on the whole grid. (i) p! and J* are calculated as
moments of the distribution, summing on the p, grid direction. (ii) E}* and B} are determined
solving Maxwell’s equations. (iii) The Vlasov equation is solved using these fields to get fz”,j L

Pros: Since they involve no particles, there is no problem of lack of statistics and
there is no particle fluctuation. Consequently, simulation results show relatively little
noise.

Cons: They require up to 6D (7, p) grids for full 3D simulations, and their compu-
tational cost can be notably high. In specific conditions, this issue can be solved via
the Vlasov-Fokker-Plank method [Thomas et al., 2012] to reduce the problem to a 3D

grid.

2.1.3 Particle-in-cell method

The particle-in-cell (PIC) approach relies on the Eulerian approach for Maxwell’s equa-
tions and the Lagrangian approach for the Vlasov equation. Space is discretized to solve
Maxwell’s equations. The distribution function is a sum of N elementary functions,
called macroparticles. Each macroparticle p is characterized by its charge, mass and
shape, and has position r, and momentum p,. In the ideal case, each macroparticle
would stand for a single physical particle, say an electron, with charge —e, mass m, and
a Dirac shape §(r —r,). In the particle-in-cell method, each particle usually stands for
a large number of physical particles of the same species, and shows a non-Dirac shape
function. For example, macroelectron p has charge g, and mass m,,, verifying the ratio
¢p/my, = e/m.. This is described in a following paragraph.

A PIC simulation consists of (i) a grid on which the fields are calculated solving
the discretized Maxwell’s equations and (ii) particles moving freely in space and con-
tributing to the local charge and current density. The equation of motion is solved
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to move every particle, and their contribution to p and J is calculated on the neigh-
boring grid nodes. As a consequence, interpolations between particle variables {r,,
pp} and grid variables (E,B,p,J) are required. The core loop for the PIC method is
depicted in figure 2.2. Fundamental properties of macroparticles are detailed in the
next paragraph.

:01,,] 3
Deposrhon/ \

— —
—n+1 ,_ntl n n
Ey E’. B.

o
Particle p:% = = Arpoloﬂom

E), B,

Figure 2.2: Diagram for a 2D (z,y) PIC simulation. Starting from the charge density and
density current on every grid point at iteration n, each loop iteration proceeds in four steps:
(i) Maxwell’s equations are solved to calculate the electric and magnetic fields at every grid
point. (ii) The fields are interpolated at the position of each particle. (iii) The equation of
motion is solved for each particle with the fields calculated in the previous step to determine
the position and speed at iteration n+ 1. (iv) Each particle contributes to the charge density
and current density through its charge and chargexspeed respectively. Its contribution is
deposited on the neighboring grid points. The blue and red colors stand for grid and particle
processing respectively. Transition steps are shown in purple.

Macroparticles: Assuming that the volume of a particle is zero (i.e. neglecting
quantum effects), the distribution function for a finite number of particles N reads

N

F(tm,p) = 5 X 8(r = 1)3(p — By). (2.9)

p=1

A simulation with a real number of physical particles is far above the computational
power available today, so each macroparticle should stand for a high number of physical
particles. This is performed by giving each particle p a weight s,, that stands for the
number of physical particles it represents. Besides, the contribution of each particle
to J is calculated on the neighboring grid points during the deposition phase. The
simplest method consists in depositing the particle current to the nearest grid point
(NGP method). Yet, when a particle travels through the grid, its contribution suddenly
shifts from one grid point to its neighbor, which results in a large field noise. This
effect is smoothed by giving each particle a finite size in space via a weight function
W, through which the particle contribution is assigned to several neighbors. Hence,
the discretized distribution function for N macroparticles reads

fa(r,p,t) Z spWp(r —1,)0(p — pp)- (2.10)
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0—2 -1 0 1 2 0—2 -1 0 1 2 0—2 -1 0 1 2
X X X

Figure 2.3: Particles weight functions in direction z, in units of grid cells. a) is the top-hat
function. b) is the convolution of the top-hat function with itself once. c) is the fourth-order
spline, the convolution of the top-hat function with itself three times. They are normalized
so that the integral is 1. The higher the order, the wider the support of the function.

Common weighting functions are depicted in figure 2.3. They are spline functions,
and can be calculated via n convolutions of the top-hat function with itself.

The simulations presented in this work were performed with the open-source PIC
code EPOCH, developed in the University of Warwick. In section 2.1.4, we give more
details on the four steps of the PIC loop, as well as the method used in EPOCH for
each of them, which is always the most widespread method. More details can be found
in [Arber et al., 2015]. The full equations are given for 2D simulation. We use the
following notations:
ro=Q(iAx, j Ay, nAt) (2.11)

.3

for any quantity Q.

2.1.4 Steps of a PIC code

Maxwell solver

Gauss’s law and Gauss’s law for magnetism are not explicitly time-dependent. As a
consequence, they will be verified all along the simulation, provided they are verified
at initialization and provided their conservation is ensured in numerical methods. The
time evolution of the system is therefore determined by Ampere’s and Faraday’s laws.
Starting from J on the grid nodes, these two equations are solved with an explicit
solver using the finite-difference time domain (FDTD) method presented in [Yee et al.,
1966).

Space discretization: The electric and magnetic fields are discretized on a staggered
grid, so the fields at the grid point (i, j) are defined at half space-steps around this
point (¢ & 1/2,5 £ 1/2). This scheme increases the order of convergence to 2 without
increasing the computational cost significantly, provided the fields are defined at the
appropriate position. It is designed so that all the spatial derivatives are centered. The
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scalar equations are

0B, = 0.E, — 0,F, (
8,5By - 8wEZ - 82Ex (
0B, =0,k, — 0, E, (2.14
OE, = *0,B, — c*0.B, — 1/eyJ, (
o E, = 20,B, — *9,B, — 1/eody (
OE, = *0,B, — ¢*0,B, — 1/eyJ.. (2.17
As an illustration, equation 2.12 is centered in space if E, is defined with a Az/2
offset along z with respect to B,. The Yee staggered grid allows this condition to be

verified for all components of E and B. The 2D grid is shown in figure 2.4, along with
position of fields relevant for our purpose.

Yy
i
E, IB.
j+1/2¢ -]
|
¥R
(i, 5) z'+.1/2 v

Figure 2.4: Yee staggered grid for cell (¢, 7) and location of the relevant electric and magnetic
fields.

Time discretization: Since the time derivatives of the magnetic field B only involve
the electric field E, the system of equations is perfectly fitted for a leapfrog scheme, for
which the time derivatives are centered, with B defined at iteration n and E defined
at n + 1/2. Yet the coupling with the macroparticles via the source term J has to be
dealt with, and both fields are calculated for all half-time-steps. Hence, equation 2.15 is
solved as follows, removing E., B,, B, from these equations, for simplicity and because
they are zero in our 2D case:

witl/25 — Puit1/2, Zil/2,+1/2 — Privieg-12 1 o

At /2 Ay € Tt 2

En+1/2 n B

(2.18)

The other components of the electric field are calculated similarly, giving E™+1/2.
This value is used to calculate B"t1/2. At this stage, the particle pusher is invoked
(see 2.1.4) to get J,11, and the second half-time-step is performed in the same way
with the new value J,.

Interpolation

The fields defined at the grid points must be interpolated at each particle position to
solve the equation of motion. This is performed using the same particle weight function
(see figure 2.3) as for the current deposition. Hence, the electric field E, on particle p
is
Ey, =Y Er, Wz, —iAz,y) — jAy) (2.19)
(

Z)-])
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where we ignored half-indices due to the Yee grid for the sake of simplicity. All com-
ponents of E and B are processed this way.
Particle pusher

Knowing the fields at particle positions, the equations of motion can be solved to update
the particles’ position and speed. A leapfrog method can be applied again to move from

(rn=12 ol) to (rpt/2 v2 ) with the field values at 7+ 1/2. This is performed using

the quick and accurate Boris pusher, taking place in three steps:
1. Half-step acceleration by the electric field — p;
2. Full rotation due to the magnetic field — p;

3. Second half-step acceleration by the electric field — p;“rl.

We also use © = p//1+ p? and v =p/+/1 + p*

Step 1 is
P=p,+4 E /2 (2.20)
Step 2 is a rotation involving the following substeps:
At
h =T = g1/ (2.21)
m, 2
2 (2.22)
§s=—— :
1+ h?
T=0+ 0+ (vxh))xs (2.23)
Step 3 reads
n+1 = At n+1/2
p, =P+ qp7E : (2.24)

Current deposition

After the particle pusher is applied, resulting in the new position x;+3/ 2 and speed
vt for particles, each particle contribution to J at the neighboring grid points (p
does not appear in the time-dependent Maxwell’s equations) has to be processed.

As already mentioned in the paragraph regarding the Maxwell solver, only the time-
dependent Maxwell-Ampere and Maxwell-Faraday laws are solved at every time-step,
while the Maxwell-Gauss and Maxwell-Thomson equations are only used during the
simulation initialization. Since the Maxwell-Thomson equation does not involve any
source term, it will be verified all along the simulation using the FDTD scheme.

The Maxwell-Gauss equation is also verified along the simulation provided the
charge conservation equation Op + V - J = 0 is verified (This is shown by deriving
Maxwell-Gauss equation with respect to ¢ and injecting the charge conservation equa-
tion). Verifying the charge conservation equation is of paramount importance, and is
easier than verifying the Maxwell-Gauss equation because it only involves p and J.
This is taken care of in the current deposition step, where J is updated.

In reference [Villasenor & Buneman, 1992], the authors develop a method for current
deposition assuming a top-hat shape function for particles. When a particle travels in
cell (4, 7), its current contribution is based on the particle charge that crossed the (i, 7)
cell borders. This is shown in figure 2.5, where the contribution of the particle to the
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Y a

i i1 o

Figure 2.5: Villasenor and Buneman current deposition. Blue squares stand for the particle
at iterations n and n + 1, the blue arrow shows the displacement vector. The dots show
the grid points, and the black line stand for their borders. We did not take effects of the
staggered grid in consideration for the sake of simplicity. The particle contribution to current
on cell (4,7) is jp, = spov, with s, and v, the particle weight and speed respectively, and o
is the area crossed by the particle in one time-step, represented with red hatchings.

bottom border of cell (4, j) is j, = s,0v, with s, and v, the particle weight and speed
respectively, and o is the area crossed by the particle in one time-step through the
bottom border of cell (i, 7), represented with red hatchings.

In figure 2.5, the particle travels through four cell borders. This scheme is extended
by the authors to the case when the particle travels through seven and ten borders,
and is demonstrated to be charge-conserving.

Finally, this method was extended in reference [Esirkepov, 2001] to any particle
shape function. In this reference, the author demonstrates that, assuming the particles
travels linearly from 7 to r;‘“, there is only one way to deposit current on neighbor
grid nodes that allows charge conservation, and give its general form as a function of

the particle shape W),. Esirkepov’s method is the one implemented in most modern
PIC codes, including EPOCH.

2.1.5 PIC: limits, noise and errors

The full grid in a basic PIC simulation can contain hundreds of million nodes, with as
many particles in the simulation box. A simulation in these conditions requires hun-
dreds of Gigabytes memory and takes tens of thousand hours to run. As a consequence,
the whole simulation cannot be performed on a single processor. PIC simulations run
on several processors, and are consequently part of the high-performance computing
(HPC) field. The parallelization is performed as follows: the full grid of the simulation
box is divided in sub-domains. A single computer core is assigned to a single sub-
domain, and performs the PIC loop on the sub-domain (including solving Maxwell’s
equations on the sub-domain and pushing particles that are in the sub-domain). At
the end of every time-step, each computer core exchanges information with its nearest
neighbors to deal with particles flowing from one sub-domain to another, as well as
Maxwell’s equation on the sub-domain borders. Communications between computer
cores are performed via the Message Passing Interface (MPI) protocol. This allows to
perform simulations that require much more memory than what is available on a single
core, and run much faster.

For PIC simulations to reproduce physical dynamics, numerical instabilities should
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be avoided, numerical noise should be kept as small as possible and the relevant dy-
namics should be resolved. Here are the main relevant numerical conditions that should
be satisfied in our PIC simulation:

CFL condition: The Courant-Friedrichs-Lewy condition, or simply Courant condi-

tion, relates the time-step and space-step for the explicit finite-difference Yee method
with At < Az/c in 1D and

1 1

AtV |+ <1 2.25
(g + 53) .29
in the 2D case. In practice, we set the space-step Ax, and the time-step At is set as:

A
At =0.957C in 1D (2.26)

c

1 AzA

At =095~ ———2Y__ iy 9D, (2.27)

¢\ Ax? + Ay?

Highest harmonic resolved: The n'* harmonic is resolved in the simulation pro-
vided the Shannon condition is verified, giving Az < \/2n.

Plasma wavelength: The plasma dynamics require the smallest plasma wavelength
to be resolved in the simulations. This reads Az < A7 /2 with X" = 27c/w*** the
plasma wavelength at the maximum density. This condition is more easily given as a
function of the maximum plasma density n™** with Az < A/y/n™® /n,. with n. the
critical density.

Debye length: As stated in [Langdon & Birdsall, 1970] and [Birdsall & Langdon,
2004], a numerical instability can grow because of space discretization if the Debye
length is not resolved. This effect leads to numerical heating, which may drastically
change the physics involved, and should be kept below 1%. In practical units more
adapted to numerical simulations, the Debye length is given by

T.[keV]

Ape =7 x 1073
NN

A. (2.28)

As an illustration, for our physical conditions (7, [keV] = 0.01 and n¢ ;maz[nc] = 250),
Ape = A/23000. Fortunately, this condition can be made more flexible using a higher-
order shape function. For the 4*-order spline shown in figure 2.3c), Ar ~ 10Ap. is
a satisfying condition for a limited numerical heating (for a given simulation time).
Besides, the Debye length can be increased using a higher plasma temperature in the
simulations. Doing so, one must verify that the plasma dynamics is not substantially
changed.

In our simulations, the last condition is by far the most stringent. More details are
given in the following sections 2.1.6 and 2.1.7.

2.1.6 Study on numerical parameters

We performed a scan of 2D PIC simulations using the code EPOCH to show the role
of the space step and the plasma electron temperature. It was done as follows:
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agp T wo Nulk L Te T;
v2 | 3 25 fs 3.6 ym 100n, A16— X | 0eV 0eV
v3 | 3 251s 3.6 pm 1007, A/16 — X | 100eV 10eV
vd | 3 25 fs 3.6 pm 1007, A/16 — A | 100eV 10eV
ppc | box size Ax particle shape Nomin width cells
v2 | 10 | 35A x 70X | A/200 b-spine 3 ne/5 4\ 7000 x 14000
v3 | 10 | 35A x TOA | A/200 b-spine 3 ne/5 4\ 7000 x 14000
v4d | 10 | 35A x 70X | A/300 b-spine 3 ne/b 4\ 11000 x 21000

Table 2.1: Scan conditions. the number of particles per cell is given in the ppc column,
and column "width” shows the width of the plasma bulk. The plasma is initialized where
n > n™" and the plasma density is artificially dropped to zero for n < n™™",

For a given set of numerical parameters, we studied the influence of the gradient
length on electron ejection and harmonic generation. This study was repeated changing
the numerical conditions, to determine the influence of numerical parameters on (i) the
harmonic generation efficiency and (ii) the ejected electric charge. Besides, we also
checked if the numerical parameters influenced the dependence of these two physical
variables on the density gradient length.

Three sets (versions) of simulations were performed, which conditions are listed in
table 2.1. Three simulations were performed for each version, named injectorv2_L1s16,
injectorv2_L1s8, injectorv2_L1isl for v2, with gradient scale length respectively
A/16, A\/8 and A. The same set was performed for v3 and v4. The angle of inci-
dence is 6 = 45° in all simulations. Basically, the difference between injectorv2 and
injectorv3 is the plasma temperature, and the difference between injectorv3 and
injectorv4 is the space step Ax.

The bottom of the simulation box (x 2 31\) is filled with an overdense plasma
with density ny,r = 100n., and the area before is filled with the exponential density
gradient. The simulation box is adjusted so that the critical density n = n. is always
located at z = 25\. A longer gradient length results in a longer box. In order to avoid
filling the whole box with an extremely underdense plasma, we artificially drop the
plasma density to zero where the density is below a threshold n < n™" = 0.2n,.

For T, = 100eV, the Debye length reads Ap. = A/4500, and the two space-steps
we used read, in units of Debye lengths, Ax = 23\p. and Az = 15Ap.. The simula-
tions were run on the Curie supercomputer, hosted in the CCRT (Centre de Calcul
Recherche et Technologie) center, at CEA Bruyeres-le-Chatel. The computational cost
is depicted on table 2.2. It depends on the space step Az as well as the density gradient
L: alonger density gradient results in a larger area verifying n > n,,;,, hence a higher
number of macroparticles at initialization.

The result of the scan is presented in figure 2.6. The harmonics in the reflected
field are due to the relativistic oscillating mirror mechanism. Figure 2.6 a) brings the
following comments: first, the harmonic spectra significantly depend on the electron
temperature and space step in this range. Increasing the temperature reduces the
harmonic efficiency. A smaller Az highly increases the harmonic signal. Besides, a
large bump in the three spectra is observed around w = 20wy. These results are
illustrated in figure 2.6 b), which shows the efficiency of the fifth harmonic.

Figure 2.6 ¢) shows that the fifteenth harmonic efficiency weakly depends on the
gradient length, because the noise level at this frequency is high. Finally, the harmonic
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simulation L Neells Nparticies | walltime cost
injectorv2_L1s8 | \/8 108 1.3 x 108 1h20 1400h
injectorv2_Lis1 | A | 1.1 x10% | 2.7 x 10® 4h15 4000h
injectorv3_L1s8 | \/8 10® 1.3 x 108 1h20 1400h
injectorv3_Lisl | A | 1.1 x 108 | 2.7 x 108 4h15 4000h
injectorv4_L1s8 | A\/8 | 2.3 x 10% | 2.9 x 10° 6h 6100h
injectorv4_Lisl | A |26 x10° | 6 x 10° 17h40 | 18000h

Table 2.2: Computational cost of numerical simulations. Simulations were performed on 1024
processing units on the Curie machine at CCRT. The ions are immobile. Walltime stands for
the actual time that the run took: a 10-hours-walltime run performed on 8 processing units
costs 80 hours.

8
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Figure 2.6: Scan result. Red: injectorv2, blue: injectorv3, green: injectorvé4. a)
Harmonic spectra in the reflected field for L = \/8. The squared norm of the magnetic field
Fourier transform |F(B)|? is plotted along w/wy where wy is the laser angular frequency. b)
Fifth harmonic efficiency. It is the integral of the harmonic spectrum between w = 4.5wg and
w = 5.5wp. ¢) Fifteenth harmonic efficiency. d) Absolute value of the total electric charge
(solid line) and the charge of electron verifying an angular condition (dashed line). Electrons
were considered ejected when they crossed a line parallel to the plasma surface, 20\ away
from the reflection point, or when they crossed a line perpendicular to the plasma surface,
20\ away from the reflection point, to record electrons ejected along the target surface.
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A ag Wo TL Npulk L
800 nm 3 3.6\ 25fs | 100n. | \/4
0 T. T; Ax ppc
45° 100eV | 10eV | A\/300 10

Table 2.3: Physical and numerical parameters for the 2D PIC simulation injectorv4_L1s4

signal strongly depends on Az in the range we study. Yet the three scans show the
same trends for harmonic generation as a function of the density gradient scale length
L. On the opposite, the ejected charge shown in figure 2.6 d) is extremely stable. In
particular, the total ejected charge follows exactly the same line for Az = A\/200 and
Ax = \/300.

This study shows that harmonic generation is much more sensitive to the electron
initial temperature and space step than the electron ejection signal. The trends for
harmonic generation are similar for the three scans, but the efficiency shows significant
variations. On the opposite, the electron signal is mostly independent on the plasma
temperature and the space step in the range we studied. We conclude that Az = A\/300
is a satisfying space step to study electron ejection in 2D PIC simulations with T, =
100€V.

2.1.7 Typical 2D PIC simulation

A typical numerical simulation (injectorv4_L1s4) is shown in figure 2.7. The obliquely-
incident laser pulse enters the simuation domain via the = border and reflects off the
plasma target located close to the ™ border. We are interested in electrons ejected
in the —z direction, as well as high harmonic generation in the reflected field. This
scheme will be used in most numerical simulations in this thesis.

Electron ejection: Electrons are considered to be ejected if they travel far enough
from the plasma border in the —x direction. Ideally, they should be detected at a dis-
tance much greater than the Rayleigh length, after which the laser fields have strongly
decreased.

Harmonics generation: Harmonics generated in the reflected field are detected
using a field streak, a line onto which the electric and magnetic fields are recorded
as a function of time, represented as a grey dashed line in figure 2.7. Harmonics are
very sensitive to numerical noise and should ideally be performed with Az ~ Ap., and
> 100 particles per cell (ppc), but do not require a large box.

Satisfying numerical conditions for both electron ejection and harmonics generation
proves extremely computer intensive. Simulation injectorv4_L1s4 was processed with
mitigated conditions (box size ~ zgr, Ar = 15Ap. and 10ppc). A comparison with
injectorv3_L1s4, where all the conditions are identical except the space-step Ax =
A/200 gave identical results for the ejected charge and different results for high harmonic
generation. The trends are the same in all cases. Numerical and physical parameters
shown on table 2.3.

This set of parameters give Ap. = A/900, so the simulation space-step verifies
Az~ 3X\pe, Ax = A" /30 and the highest harmonic resolved is the 150". These
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Figure 2.7: Snapshot of the magnetic field (blue-red colourmap) and electron density
(greyscale) in a 2D PIC simulation with numerical and physical conditions given in table 2.3.

The electric and magnetic fields are recorded along the streak line, represented as a grey
dashed line.

simulation parameters will be used in order to obtain physical results in chapter 3 to
study the influence of the gradient length on the electron ejection process.
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2.2 Electron in a laser pulse in vacuum

The previous section was dedicated to numerical simulation of plasma dynamics. In the
next chapters, we will see that, upon the reflection of a laser pulse on a plasma mirror,
the dynamics of electrons ejected from the plasma can be strongly affected by the laser
fields far away from the plasma. This chapter focuses on the dynamics of an electron
in an electromagnetic wave in different conditions. First, the equations of motion
for an electron in a monochromatic plane wave with relativistic intensity are derived.
Then, we give the expressions for the magnetic and electric field in a tightly-focused
Gaussian pulse, beyond the paraxial approximation. Finally, we present the relativistic
ponderomotive force that acts on an electron propagating in an electromagnetic wave
with time- or space-dependent envelope.

2.2.1 Electron in a monochromatic plane wave

We consider the motion of an electron in a linearly polarized monochromatic plane
wave, and derive the conservation of canonical momentum as well as the electron orbits
in the relativistic regime ag ~ 1.

Canonical momentum conservation

An electromagnetic wave propagates along z and is polarized along =, k = 27/)\e..
The electric and magnetic fields, and the vector potential read

E = Eysin(wot — kz)e, (2.29)
B = Bjsin(wpt — kz)e, (2.30)
A = A cos(wot — kz)e, (2.31)

with By = Ey/c and Ay = Ey/wy, where we use the Coulomb gauge V - A = 0.

The system is invariant along the x and y directions. As a consequence of Noether’s
theorem, the transverse components of the canonical momentum for an electron in a
plane wave are conserved along its trajectory, reading

P, = Py. (2.33)
The electron hamiltonian reads
D \2
H= |1+ ( ) (2.34)
MeC
_ J m [Py + €Ay cos(thQ—ka)P + P35+ pg. (2.35)
m2c

As an illustration, we can also derive the canonical momentum conservation in a
straightforward way. The equation of motion for an electron in electromagnetic fields
reads
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p

i —eFE —evx B (2.36)
_ . (_w - %;‘) L x (V x A) (2.37)
= —¢ (—qu — %;1) +¢q[V(v.A) — (v.V)A]. (2.38)

Rearranging these terms, the time derivative of the canonical momentum can be
calculated as

dlp—eA) dp O0A

pr = eﬁ —e(v.V)A (2.39)
— eV —eV(v.A) (2.40)
= —eV(—¢ +v.A). (2.41)

Finally, assuming that A and ¢ only depend on z, the x and y coordinates of this
equation read

d(p, — eAy) 0

o = —e%(—qb +v.A)=0 (2.42)
d(py, — eAy) _ Q . _
— = _68y< d+v.A)=0 (2.43)

so the quantities p, — eA, and p, — eA, are conserved along the electron motion.

Relativistic orbits in a plane wave ag 2> 1

Here, we follow the presentation found in [Hartemann et al., 1995] and derive the rela-
tivistic orbits for an electron propagating in a monochromatic plane wave in vacuum.
The full set of equations reads

d

d—’; — ¢E—cvx B (2.44)

dry e

A . 2.4

dt mGCQU B (245)

E = Ejsin ¢e, (2.46)

B = Ey/csin ¢e, (2.47)
with ¢ = wot — kz(t) (2.48)

where z is the electron position at time ¢. We use the standard notations 8 = v/c;y =
(1 —B*)~Y%p = ym.cB. The initial conditions read B(t = 0) = B.0e, and vy =
(1—B%)7Y? and z = 0 at t = 0. The scalar equations of motion read

—€E0

dt(’yﬁx) = m.c (1 - ﬁz) Sin¢ (249)

dy(vBy) =0 (2.50)
—eky .

di(v8.) = B sin ¢ (2.51)

dyy = %Bx sin @, (2.52)
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so B, = 0 since we assumed (,(t = 0) = 0, and equations 2.49 and 2.52 give one
constant of motion:

7(1 - 62’) = /70(1 - 620)~ (253)
We start from the definition of v to get one useful equation:
1
Lo (250
2
1= 1= 2 ) (259

reordering: v = [1 +73(1 — Bao)* + 7255} (2.56)

-
270(1 - 6,20)

1+ 3,
Y= % [1 + 726§2ﬁ O] (2.57)

where we used 1
1—040)= ————. 2.58
70( ﬂO) 70(1+620) ( )

This formula comes directly from the definition of the Lorentz factor. Now, let us use
¢ as the new parameter, and use d;¢ = wo(1 — §,) from the definition. Equation 2.49
can be integrated with respect to ¢, and reads, allowing a non-zero initial phase ¢q

VB = ao(cos ¢ — cos ), (2.59)

so we can calculate v from equation 2.57, then S, from equation 2.59 and [, from
equation 2.53:

Y(¢) = Yo |1 + a3(cos ¢ — cos (bO)QHQBZO (2.60)
1 2a0(cos ¢ — cos ¢p)

Bale) = Y02 + ad(1+ B.o0)(cos ¢ — cos ¢g)? (2.61)

Bu(¢) = 1 41 Pa) (2.62)

24 ad(1+ B.o)(cos ¢ — cos ¢g)?

Finally, we note that dz/d¢ = (dz/dt)(dt/d¢), and straightforward integrations
give the electron position as a function of ¢,

ka(9) = m—5> [sin & — sin g — cos do(6 — do)] (2.63)
ko(9) = 2<1—15>{ 2610+ a1+ Buo)(cos? 60+ 5)] (6 - )

—2a3(1 4 fB.0) cos ¢o(sin ¢ — sin ¢p)

+ Cf(l + B.0)(sin 2¢ — sin 2¢0)}. (2.64)

Electron trajectories are shown in figure 2.8 for different values of ag with ¢y = 7/2
and (3,0 = 0, for ¢ € [¢g, Po+27]. Note that ¢g = m/2 corresponds to E,(¢g) = Ep: the
field is maximum. In the non-relativistic case (ag = 0.01), the electron motion is mostly
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along x, namely in the polarization direction, while it is mostly in the propagation
direction (along z) in the ultrarelativistic case. Note that the x — z trajectories look
like homothetic transformations of each other. This is not valid for 5.9 # 0.

Let us consider the ag = 100 case. The electron travels a distance far longer than
the wavelength during a 27 phase shift (a single laser period). Besides, £, < 1 in the
non-relativistic regime (ap = 0.01) whereas 3, ~ 1 in the relativistic case (ag = 100).
The electron travels around the speed of light along z because of the v x B force, which
is the only force with a z component.

The transverse excursion of the electron in the x direction reaches tens of A in the
relativistic case. In a more realistic case, the electron travels in a finite-width pulse
and may exit the pulse in these conditions.

a) a,=0.01 b) a =1 c) a,=100
0.01 1 1
0.005 0.5 0.5
= 0 = 0 = 0
-0.005 -0.5 -05
-0.01 -1 1
0 5 0 02 0.4 0 %5 1
BZ x107° z z
d) <107 e) f)
0 0 0
1 -0.1 -10
< < g2 P
x x x
-3 -0.3 -30
-4 -0.4 —40
0 2 4 0 0.2 0.4 0 2000 4000
Z() 107 z () z (\)

Figure 2.8: a) Trajectory of an electron in the 3, — 3, phase space from equations 2.61 and
2.62. The conditions are ay = 0.01, ¢pg = 7/2 and 5,0 = 0. d) shows the x — z phase space
for the same electron. b) & e) and c¢) & f) show the same plots as a) & d) for ap = 1 and
ao = 100 respectively.

Finally, these equations give the maximum ~ factor for an electron oscillating in a
plane wave as

TYmaz = 70 {1 + 2(1 + 520)a3] . (265)

This is the maximum value an electron can gain when propagating into an electromag-
netic wave.

In equation 2.63, one can see that if cos ¢y # 0, the electron position averaged upon
one period drifts as

—ag CoS @

70(1 - 5z0)

< T >¢el0,20]=

0. (2.66)

Choosing ¢g = /2, the electron oscillates around position x = 0, with maximum
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quiver velocity and amplitude in the polarization direction

11— BzO
ﬁquw - 92 Yo

kT quiv = aoY0(1 + Bz0)- (2.68)

(2.67)

2.2.2 Gaussian pulse and paraxial approximation

To study the electron dynamics in a realistic laser pulse, the plane wave approximation
is no longer satisfactory and one should describe the more realistic fields in a laser beam.
The pulse properties are established in the laser cavity, see reference [Siegman, 1986].
Putting aside considerations about the pulse finite duration, the study usually relies on
two approximations: (i) the scalar approximation states that the electric and magnetic
fields can be described by a single scalar quantity U; for example, in the plane wave
described above, E = Ue, and B = U/ce,. (ii) the paraxial approximation when
the laser cavity is much longer than any transverse dimension. Assuming the long
direction is z and U = ¢(x,y, 2)e™**, this approximation reads |0°/02%| < k|ow/0z|.
Equivalently, the angle between the k vector and the z axis is small in the cavity.

The spatial profile of the laser beam can be decomposed in cylindrical modes. The
lowest-order, and consequently the most stable and more common one, is the Gaussian
mode, which reads

eikz 7“2/?1)(2)
_ _ _ 9.
Ule,y,2) 1+1iz/2R P [ 1+iz/zp (2.69)
2 2
wo r ‘ o _ z
_ _ _ 2 9.
o(2) exp [ wQ(Z)] exp [Zk’z + ZkZR(z) iatan (ZR)] (2.70)

with the radial coordinate r? = z? + 22, the Rayleigh length zr = kw3/2, the beam

width w(z) = wey/1 + 22/2% and the radius of curvature R(z) = z + 2%/z. wy is the
beam waist, i.e. the beam size at focus z = 0. Figure 2.9 shows the intensity profile of
a Gaussian mode.

Wo

AL

A4

ZR

Figure 2.9: squared amplitude of the electric field for a monochromatic Gaussian mode with
beam waist kwg = 10.

The maximum angle « of the k vector in the beam reached for r = w(z), and is
given by

2
222 — T when z — oo. (2.71)

tana =

The paraxial approximation holds as long as a < 7, i.e. kwy > 1.
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2.2.3 Non-paraxial corrections in the tightly-focused regime

One can easily show that the previous equation verifies Maxwell’s equations only in
the paraxial limit, for instance the Maxwell-Gauss equation in vacuum is not verified
OU/0x # 0 (with U = E,). When the laser beam is tightly focused wqy 2 A, this error
becomes manifest, and corrections to the paraxial expressions must be added.

An approach developed in references [Cicchitelli et al., 1990] and [Quesnel & Mora,
1998] consists in expanding Maxwell’s equations near the paraxial solution given in 2.70
as a power series of the small parameter ¢ = 1/kwy. Refer to Brice Quesnel’s PhD
thesis [Quesnel, 1998] or references mentioned above for a full proof as well as a more
detailed analysis. Calculation of higher orders in e are performed using the angular
spectrum method from references [Agrawal & Pattanayak, 1979; Carter, 1970]:

1. Start from U(x,y,0), the scalar field in the plane z = 0, and its Fourier-transform

in the x — y plane Uy(p, ¢). They are linked via
Ul(z,y,0) = / / Uo(p, q)e" P+ dpdg;

2. Propagate the Helmholtz equation along z in the p — ¢ Fourier space;

3. U(z,y, z) is given by
U(z,y,2) = / / Uo(p, q)e' "+ =) dpdg

withm=vI—-p2—@ifpP?+@ <lorm=iVp?+@—Lif p? +¢° > 1.

This method was applied to a Gaussian laser pulse to calculate the corrected ex-
pressions as a power series in €. For our purpose, we restrict ourselves to the first-order
terms €', since they are sufficient to describe the ponderomotive force (see below). The
0"-order E, and B, fields are unchanged while 1%*-order longitudinal components E,
and B, are added. One can verify that these expressions satisfy Maxwell’s equations
to first order.

B, = Ey—2 e - sin ¢ (2.72)
.= Ey——exp |— .
"z e ]
E, =0 (2.73)
2
wo r
E, =2F - 2.74
iy || oo =
B, =0 (2.75)
B, = E,/c (2.76)
E, wyx r?
B, = 276102(2) exp l— wQ(z)] oS ¢ (2.77)
with
b0 = wol — kz — k" 4+ ata (z) (2.78)
0 — Wo z 2R<Z) 11 Zn .
¢1 = wot —kz — k - +2atan<z> (2.79)
P 2R(z) zr/ '
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Test-particle code: As explained below, these corrections are essential, at least to
the first order, to properly describe the dynamics of an electron in a Gaussian pulse
and have been implemented in the test-particle code. This code, parallelized with
OpenMP, solves the equations of motion for electrons in the analytical fields described
above, using the Boris particle pusher presented in 2.1.4. The original C++ code was
written by Olle Lundh. The role of the main parameters of this interaction, the laser
parameters (wg, duration 77, peak amplitude ag) and the initial conditions for electrons
(momentum, position and phase in the pulse), will be studied in chapter 4.

2.2.4 Ponderomotive force

An electron oscillating in an electromagnetic wave undergoes an average force de-
pending on the wave envelope only, and directed towards the low-intensity regions: the
ponderomotive force. While the non-relativistic expression is well-known, its gener-
alization to the relativistic case was performed in reference [Quesnel & Mora, 1998].
Besides, the authors prove that corrections in € to an order > 1 are necessary to describe
properly ponderomotive effects.

This description relies on a timescale separation, where every quantity ¢ is written
as ¢ = q + q with g varying slowly and ¢ varying rapidly. An analogy can be made
with a boat moored in a harbour in an ocean. If ¢ is the height of the center of mass
of the boat, then § shows slow oscillations (one or two per day) because of the tide
while ¢ shows fast oscillations due to the waves, and the final height is the sum of
these two contributions. Similarly, a particle with charge ¢ in an electromagnetic wave
undergoes slow oscillations due to pulse envelope changes on the particle position and
fast oscillations due to the sin(wot — kz) term.

45 .
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Figure 2.10: [This image was taken from [Quesnel & Mora, 1998]]ag = 0.3, 7 = 200fs, wy =
10 pm, p,o = 0.1mec, zg = 150 um. Upper lines show the electron trajectory using the first-
order development and the theoretical expression for the ponderomotive force respectively.
The line in the lower part shows the electron trajectory in the zeroth-order fields. It is
confined in the polarization plane.

The ponderomotive force takes place on the slow timescale, which means it affects
p and not p, and reads
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dp 1 Y
— = - All? 2.80
1 = " VleA (2:80)
with 7% = 1+ —— ||[B.[* + 72 + [¢AL 2| . (2.81)
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Figure 2.11: Final distribution for electrons interacting with a Gaussian pulse, without first-
order correction (a) and with first-order correction (b). The laser pulse propagates in the z
direction, is polarized along the x direction, ag = 0.5, wg = 15 um, 7 = 100fs, A = 800 nm.
It is focused at z = 0 and ¢ = 0, and starts at ¢ < 7. 10° electrons are initialized with a
Gaussian distribution in space with standard deviation o = wg/2 centered around the origin,
and a uniform Maxwellian temperature T, = 300eV. The dashed black line shows 8 = 90°.

This force does not depend on the laser polarization and acts on particles provided
they oscillate in many laser periods. It is the main reason for which additional terms in
¢! are added in the test-particle code. As an example, the trajectory of an electron
in a long laser pulse is shown in figure 2.10. It is calculated with the fields with first-
order corrections. It shows fast oscillations in the x direction and a slow drift in the y
direction. The second line in the upper part shows the dynamics of the same electron
driven by the ponderomotive force only. It reproduces perfectly the electron motion on
the slow time scale. For comparison, the electron dynamics in 0** order fields is also
shown in this figure. The electron remains in the same z — x plane.

The importance of these fields is shown in figure 2.11, where the final distribution of
electrons interacting with a Gaussian laser pulse was calculated using a solver without
(a) and with (b) first-order corrections. The pulse envelope is axisymmetric, and so
must the final electron distribution be. One can see that this is absolutely not verified
when first-order corrections are not taken into account.

2.2.5 Finite-duration correction

In the development above, the pulse finite duration was not mentioned for the sake of
simplicity. When adding a time envelope to the laser pulse, the paraxial electric field

is modified as
2

exp [—w;ﬂ(z)] sin ¢o f(t — z/c) (2.82)

Wo
E,=F
"w(z)
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where f accounts for the finite pulse duration and reads, for a Gaussian temporal
profile, f,(7) = exp(—7?/7}) where 7, is the pulse duration. This expression relies
on the slowly-varying envelope approximation (similar to the WKB approximation in
mathematics), which states that the envelope does not change significantly during one
laser period. For the Gaussian example f,, it is valid when 7, > T}, where 77, is the
laser period.

When this condition is not verified, the expression given above does not verify
Maxwell’s equations and should be corrected, just like the paraxial approximation.
The same method can be applied, based on the development in power series of the
small parameter v = 1/wyr. Yet, in our conditions, 77, /t; ~ 10, and the corrections
are extremely small. Besides, temporal corrections were shown to have much less effect
than spatial corrections in reference [Varin et al., 2005]. As a consequence, they were
not included in the test-particle code.
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Introduction

The reflection of an ultrashort ultraintense laser pulse upon an overdense plasma leads
to the acceleration of electrons. The main parameters of this interaction are the laser
pulse intensity I, its duration 77, the polarization angle, the incidence angle # and the
shape of the plasma profile. A wide range of experimental conditions has been explored
(see synthetic review in chapter 1 page 32), and in most cases the backward electron
ejection mechanisms remain unknown.

In this chapter, we focus on the plasma mirror regime, where the p-polarized laser
has a relativistic intensity IA\? > 10" W - cm™2 um?, 7, ~ 25fs, and impinges under
oblique incidence (with 6 ~ 45°) on an overdense plasma with a sharp density gradient
on its front side. This set of parameters is typical of current laser facilities, and an
application is shown in chapter 4.

Using 1D and 2D PIC simulations (see chapter 2), we describe and model the
backward electron ejection mechanism at the plasma surface. We show that it is a
periodic push-pull mechanism, which takes place at every laser period.

The state of the art of the field is presented in section 3.1, where the main theo-
retical results are shown. Section 3.2 describes the electron ejection mechanism in a
simplified configuration with a top-hat laser pulse envelope and step-like plasma den-
sity profile. Section 3.3 extends this study to the case of an exponential plasma density
gradient, which is much more relevant to experiments. A model of the ejection process
is proposed.

3.1 Theoretical studies on electron ejection

3.1.1 Electron ejection in PIC simulations

The ejection of electrons during the reflection of an obliquely incident ultrashort ul-
traintense laser pulse on an overdense plasma was first observed in PIC simulations
in reference [Naumova et al., 2004a]. The laser pulse parameters are A = 800 nm,
T = 1518, ag = 10. It is focused down to a spot size wy = 1 um with angle of incidence
6 = 70° with p-polarization on a step-like overdense plasma with density ng = 25n..

Snapshots of this interaction are shown in figure 3.1. Extremely short bunches
(attosecond duration, much shorter than the laser period 77, = 2.66fs) of relativistic
electrons (25 — 30 MeV) are ejected from the plasma during the pulse reflection and
propagate in vacuum. One electron bunch per laser period is generated. The authors
show that up to ~ 15% of the electromagnetic energy within one laser period is trans-
ferred to the attosecond electron bunch, which is a very high efficiency compared to
other plasma-based electron accelerators (maximum a few percents for laser wakefield
accelerators, see reference [Esarey et al., 2009]).

This article brought new results which motivated this field of research: (i) the re-
flection of an ultraintense laser pulse can generate attosecond bunches of fast electrons;
(ii) one attosecond bunch is generated at each laser period; (iii) this process is highly
efficient for an obliquely-incident p-polarized laser pulse because of the component of
the electric field normal to the target.

Yet the authors only present observations from PIC simulations with a qualitative
explanation, and some important questions remained unaddressed. First, very little
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Figure 3.1: [Image from reference [Naumova et al., 2004a]] Reflection of a laser pulse (ag =
10, 7 = 15fs) on an overdense plasma (nyg = 25n.) and generation of attosecond electron
bunches. a) Electromagnetic energy density at t = —377,. b) Electromagnetic energy density
at t = +377,. Black dots indicate 25 — 30 MeV electrons.

of the study is dedicated to the plasma surface dynamics, for example the strength of
plasma fields is not shown. The authors provide a qualitative explanation for the role
of the incident and reflected fields, but do not show whether plasma fields play a role
or not. Second, the study focuses on a plasma with uniform density ny = 25n,., which
is extremely difficult to produce using a laser pulse as intense as ag = 10. Experiments
usually involve strongly (> 200n.) overdense plasmas, for which plasma effects can
be radically different. Besides, many experiments involve a density gradient that can
play a major role, which is not described in this study. Finally, this article motivated
the research field and gave a picture of electron ejection, but further investigation is
required.

3.1.2 Density gradient scale length

Another milestone was provided by [Geindre et al., 2010], where the authors demon-
strate that, during the reflection of an ultrashort ultraintense laser pulse on a highly-
overdense plasma with a density gradient on its front side, the gradient scale length
could play a role on the electron ejection process.

Using 1D PIC simulations in the Bourdier boosted frame (see section 1.2), the
authors study the reflection of a laser beam with A = 1 um, 7 = 121fs, ag = 5 on an
overdense plasma with bulk density ny = 80n. and an exponential density gradient on
its front side. The density gradient scale length is typically L = 0 — 0.2\.

The space-time electron density for L = A\/13, L = 0 and L = A/7 is shown
in figure 3.2. In the L = A\/7 case, one ultrashort bunch of electrons propagates in
vacuum along —x per laser period. This observation corroborates the results obtained
by [Naumova et al., 2004a]. The L = 0 case (figure 3.2b) shows no ejected electrons,
which illustrates the importance of the density gradient length.

The result of their study is summarized in table 3.1. Using an optimal gradient
length L = A/7 can result in a tenfold increase in electron energy with respect to
the L = 0 case. The authors assume that adding a density gradient inhibits the
gyromagnetic effect (see section 3.1.4).

The authors demonstrate that the backward acceleration of attosecond electron
bunches could result in a significant increase in laser absorption. When increasing the
gradient length, the regime transitions from almost no absorption (L = 0), through
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Figure 3.2: [Image from reference [Geindre et al., 2010]] a) electron density in units of n.
along time and space for an initial gradient scale length L = A/13. b) and c) show the same
representation for L = 0\ and L = \/7.

case mechanism | absorption % Eron

L=\/13 Brunel 22% 3.5 MeV
L =0\ - 3% 2.2 MeV
L =)\/7 | fast electrons 32% 20 MeV

Table 3.1: Dominant absorption mechanism, ratio of the incident energy absorbed by the
plasma and maximum electron energy in the three cases shown in figure 3.2.

Brunel-type absorption (L = A/13) to a regime where most of the absorbed laser energy
is transferred to backward electron bunches (L = A\/7).

Finally, the ejected electrons are accelerated in vacuum by the laser fields after
they leave the plasma. This is illustrated in figure 3.3, where (x,p,) phase diagrams
are plotted at different times. The electron momentum p, reaches strongly relativistic
values during the propagation in vacuum.

Their study brings two conclusions: (i) the gradient length plays a role on the
electron ejection efficiency, and (ii) ejected electrons can gain energy in vacuum.

However, no clear description of the mechanism is provided, and the role of the
gradient is not investigated in detail. Also, the electron maximum energy decreases for
very long gradients, showing that the role of the gradient length is not straightforward.
Finally, the acceleration of electrons in vacuum is described by 1D simulations (i.e.
for a plane wave). It allows the authors to describe the basic principles, but a more
realistic description should be performed if we wish to compare theoretical predictions
with experimental results.

3.1.3 Electron ejection angle

In reference [Ruhl et al., 1999], the authors investigate the reflection of a laser pulse on
a step-like overdense plasma with n = ng > n, for x > 0 where x is the target-normal
direction. They assume the region x < 0 is filled with an underdense plasma called the
plasma corona, with density n(z < 0) = n./10 on a distance of several wavelengths.

Starting from the Vlasov equation, the authors derive the final angle of backward
ejected electrons. Their study relies on the following hypotheses:
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Figure 3.3: [Image from reference [Geindre et al., 2010]] (z, p,) electron phase space from a 1D
PIC simulation with a single-cycle laser pulse (duration 4fs, agp = 5). The gradient length is
L = )\/7. Each line stands for a (x, p,) phase space at a different time with three-laser-cycles
intervals.

code ‘ frame ‘ 0 ‘ ao ‘ wo ‘ Npulk ‘ 0
PIC lab 30°| 1.2 | 8um | 4n,. | 17°
Vlasov | boosted | 45° | 0.27 | bum | 8n. | 14°

Table 3.2: Simulation parameters in [Ruhl et al., 1999]. In both cases, the wavelength is
A = 1pum and the pulse duration is 100fs. The PIC simulation was run with 100 particles
per cell. # is the angle of the outgoing electron stream.

e the ions are immobile;
e The initial electron distribution is Maxwellian;

e The incident wave is approximated by a plane wave, so the transverse canonical
momentum is conserved;

e The average p, of the outgoing electrons is proportional to the laser amplitude
< pe >= YomecV alX? with 4, = 1/ cosf the y-factor of the Lorentz transform.

Under these assumptions, the ejected electron stream direction 6" in the laboratory

frame is given by
V1 I —1
tang/ = Y- & tan 0 (3.1)

vVall?

where « is a calibration parameter. This parameter is derived from two 2D sim-
ulations, one using a PIC code and the other using a Vlasov code in the boosted
frame, which parameters are summarized in table 3.2. Both simulations give a~
8 x 101" W - ecm™2 pum?. This expression is in good agreement with experimental re-
sults(see references [Cai et al., 2003; Li et al., 2006b]), provided the plane wave ap-
proximation is acceptable.

T~

3.1.4 Gyromagnetic effect

High harmonic generation during the reflection of a laser pulse on a plasma mirror
is a non-linear phenomenon. As a consequence, it was believed that the higher the
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intensity, the more efficient the harmonic generation. This idea was tempered in ref-
erence [Geindre et al., 2006], where the authors show that the dynamics of surface
electrons could be inhibited by the strong magnetic field of extremely intense light,
leading to a decrease in the harmonic generation efficiency. This mechanism, called
gyromagnetic effect, involves important considerations on the electron dynamics, and
is detailed below.

Consider the reflection of a p-polarized obliquely incident laser pulse on an overdense
plasma with a step-like density profile filling the = > 0 half-space. The laser pulse is
approximated by a plane wave with wave vector k = cos fle, + sin e, where 0 is the
angle of incidence. We assume the plasma is highly overdense, so that it behaves like
a perfect conductor. The boundary conditions give the following amplitudes for the
electric and magnetic fields close to the surface:

E, =2Fysinf (3.2)
E,=E.=0 (3.3)
B,=B,=0 (3.4)
B, = 2E,/c (3.5)

where Fj is the maximum amplitude of the incident electric field and c is the speed of
light in vacuum.

On the one hand, the magnetic force can often be neglected in the non-relativistic
regime ay < 1, and the electron dynamics is governed by the electric force, as described
in reference [Brunel, 1987]. When the intensity increases (ag ~ 1), the magnetic force
becomes comparable to the electric force, and magnetic effects should be considered.
On the other hand, equation 3.2 shows that, when 6 = 0, the electric field cancels on the
boundary and the magnetic field should play a dominant role for any laser intensity.
Magnetic effects are important when w. ~ wy, where w. = eB/m, is the cyclotron
frequency. This condition is nevertheless too crude because the angle of incidence is
not taken into account. Indeed, the cyclotron frequency is relevant for an electron in
a magnetostatic field only, while there can be a non-zero electric field in the case we
consider. To solve this issue, we hereafter move to a frame of reference where the fields
are purely magnetostatic, and where this approximation holds.

As proposed in reference [Geindre et al., 2006], let us do a quasistatic approxima-
tion and assume that the fields at the plasma surface are frozen to their peak value
given by equations 3.2-3.5, and do not depend on the position. We hereafter apply a
general method that moves this problem to a pure magnetostatic problem via a Lorentz
transformation. This method is valid for uniform and orthogonal electrostatic £ and
magnetostatic B fields, with amplitudes verifying B > F/c. Here, E //e, and B//e,.

We consider a Lorentz transformation with normalized velocity Se, (see section 1.2
page 18). Let R and R’ be the laboratory and boosted frames respectively. In what
follows, the prime symbol stands for quantities in the boosted frame. The fields in R’
are transformed via equations 1.53-1.56, and read

E. = y(E + ¢8B) (3.6)
E/ =E. =0 (3.7)
B.=B,=0 (3.8)
B, =~(B - iE) (3.9)
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where v = (1 — $%)7'/2. The problem is reduced to a magnetostatic problem by
canceling the electrostatic field, i.e. choosing § = —FE/cB = —sinf. An electron at
rest in the laboratory frame drifts in the boosted frame, and its Lorentz factor is ~.
The magnetostatic field amplitude in R’ and the relativistic cyclotron frequency are
given by

1
B'=-B (3.10)
g
, eB" B

= = . 3.11
== (311)

Finally, the cyclotron angular frequency backtransformed to the laboratory frame R is
given by:

/
B
%:?:;m. (3.12)

We apply these general expressions to the electric and magnetic fields at the boundary
of a perfect conductor given in equations 3.2-3.5. They read f = —sinf, v = 1/ cos 6,
and the electron cyclotron frequency in the laboratory frame is given by

_ 2cos® feE

MeC

(3.13)

We

Magnetic effects become manifest when w, ~ wg. We define the gyromagnetic param-

eter w
G =" =2agcos® 0. (3.14)
Wo
The gyromagnetic effect plays a role when G 2 1. Note that this expression comes
from the E/B ratio, and differentiates the electric-dominated regime G < 1 from the
magnetic-dominated regime G 2 1. The electric field pulls electrons from the plasma
towards vacuum, whereas the magnetic field makes them rotate, and brings them back
to the plasma.

When ay becomes very large, w. > wy and an electron circles in the magnetic field
much faster than it moves in the electric field; magnetic effects are thus dominant, and
G increases with ag. When 6 is very small, the electric force drops and the electron
dynamics is governed by magnetic effects, which is expressed as G o cos® 6.

Figure 3.4 shows electron dynamics for G = 0.3, 0.4 and 1 respectively. The dif-
ferent colors show trajectories for electrons with different starting time ¢;. They were
calculated by solving the relativistic equation of motion for electron number 7, starting
at time ¢;, in the boosted frame:

dp;, 2eE
% — C(e)sg sin(wyt;)e, — 2e By cos O sin(w(t)v; X e, (3.15)

with w) = cosfwy. This is equivalent to Brunel’s model presented in section 1.3.2,
with two differences: first, magnetic and relativistic effects are added; second, these
equations are solved in the boosted frame, the laser force asin(w(t) thus acts via the
magnetic field. When G gets close to 1, the electron trajectories are strongly curved
and confined close to the plasma surface.

This mechanism plays a major role for electron ejection: we anticipate that it
prevents electrons from escaping the plasma for high intensities when the plasma is
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Figure 3.4: [Image from reference [Geindre et al., 2006]] a) Electron trajectories z(t) (top
panel) and x — y (bottom panel) for § = 45° and ag = 0.4. Different trajectories, with
different starting time, are superimposed. b) and c¢) show the same quantities for ag = 0.7
and ag = 1.5 respectively.

highly overdense with a step-like density profile. In section 3.2, we show how electrons
can be ejected in the low-density step-like regime thanks to strong plasma fields.
When the plasma profile shows a relatively long density gradient, a strong plasma
electrostatic field E,//e, appears, which may drastically increase the £/ B ratio. Hence,
this field helps pulling electrons towards vacuum and favors electron ejection. When
decreasing the gradient scale length, we observe that the electron ejection is strongly
inhibited because of the gyromagnetic effect. A detailed analysis is presented in 3.3.

3.1.5 Electron ejection in 1D PIC simulations

Figure 3.5¢) shows the magnetic field vs. time and space in a 1D simulation with
physical conditions (given in the laboratory frame) ag = 3, 7 = 5fs, L = A/8, and a
Gaussian time envelope. The overdense plasma fills the region x > 4.7\. The incident
and reflected fields are recorded as a function of time at = 0.5\ and plotted in
figure 3.5 a) and b). The incident field shows a simple sine profile with an exponential
envelope, while the reflected field is much distorted, which is a clear signature of high
harmonic generation (see chapter 1).

The electron density is shown in figure 3.5d), using the same representation as the
magnetic field. When the laser pulse reaches the target, the plasma surface oscillates
at the laser frequency. Starting from ¢ ~ 8.57, and x ~ 4.5\, an electron jet escapes
the plasma and propagates in the —x direction along the reflected field. We hereafter
focus on a single oscillation of the plasma surface during one laser period.
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Figure 3.5: a) Magnetic field along time and space from a 1D PIC simulation performed in
the boosted frame with physical conditions (given in the laboratory frame) ag = 3, 7 = 515,
L = )\/8. The area x > 4.7 is filled with the overdense plasma. b) Same representation for
the electron density. A bunch of electrons propagates in vacuum towards the z < 0 direction,
i.e. along the reflected pulse.
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3.2 Electron ejection with a step-like density profile

In order to single-out the basic mechanism of backward electron ejection from plasma
mirrors, this section focuses on a simplified configuration: a plane wave reflects off
an overdense plasma with a step-like density profile, and the bulk density ng is an
adjustable parameter. This approach was used in several articles (see section 3.1) and
gives helpful insight into the underlying mechanisms.

We consider the relativistic regime, and study the role of two fundamental parame-
ters: the laser amplitude ay and the plasma density ng, in the typical range ag = 2 —20
and ng = 4 — 40n.. Low-density step-like plasma profiles are not very relevant in ex-
periments because typical experiments involve a highly overdense plasma (ng > 200n,)
with a density gradient on its front side (see chapter 1). Yet the mechanisms are
somewhat similar in both conditions.

As will be seen in this section and the following one, the laser pulse penetrates
inside the density gradient during reflection. For a very sharp gradient (L < \),
the laser fields interact with high-density regions of the gradient (n > n.). On the
opposite, if the gradient is very smooth (L ~ \), the electromagnetic fields are confined
in the n 2 n. region, and the reflection process occurs in a low-density region. Hence,
a highly overdense plasma behaves in a similar way as a very sharp gradient, and a
slightly overdense plasma resembles a very smooth gradient.

All the 1D PIC simulations are performed in the boosted frame, and all the physical
quantities are given in the boosted frame from now on, unless otherwise specified. We
use the following normalizations throughout this chapter:

t = wpt v=w/c r = kx (3.16)
y=ky p = p/mec n = n/nk (3.17)
E B
p=_°¢ B=° (3.18)
MeWoC meWo

Note that the plasma density is normalized with nl, the critical density in the labora-
tory frame. For the sake of simplicity, nZ will be noted n. throughout this chapter.

3.2.1 Phenomenology of electron ejection
Electric and magnetic fields

We performed a 1D simulation in the boosted frame with a monochromatic incident
wave where the laser amplitude is ay = 14 (step-like laser envelope) and the plasma
density is ng = 10 in the plasma bulk x > 0. We focus on the plasma dynamics during
the first laser period. The electron density is shown as a function of time and space in
figure 3.6 a) along with the magnetic field (b), the electric field along the target surface
direction (c) and the electric field normal to the target (d). The ions are mobile in the
simulation, but their motion is negligible on the scale of one laser period.

When the laser pulse reaches the plasma, it pushes the electron surface inside the
plasma, up to a maximum distance of z ~ 0.5\. This creates a charge separation in
the plasma because the ions are immobile, which results in plasma static fields that we
discuss below. Afterwards, electrons travel along the —x direction and some electrons
propagate in vacuum.

In the boosted frame, as seen in section 1.2, the plasma electric field is along x
whereas the laser electric fields is along y. The electrostatic (denoted with p for plasma)
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Figure 3.6: a) Electron density as a function of time and space in the 1D PIC simulation
these_step. The incident wave is a monochromatic wave that reaches the plasma around
t = 2.277 with ag = 14 and 0 = 45°, the plasma has a step-like density profile with n = 10 for

x > 0. Az = /2000, ppc=1000. b), c¢) and d) are the magnetic field B, and the tangential
E, and normal E, electric fields respectively.
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and electromagnetic (denoted with ¢ for incident and r for reflected) contributions are
decoupled in the electric field, while they are coupled in the magnetic field, which reads:

Eions Ep
E = Eelectromag = E; + E, (319)
0 0
0 0
B= 0 - 0 . (3.20)
Belectroma,g + Bions Bz + Br + Bp

These considerations help us understand the main fields: E, in figure 3.6¢) is the
superposition of the incident and reflected fields, propagating in the +x and —x direc-
tions respectively. Figure 3.6d) shows the plasma electric fiels £,. When the laser
pushes electrons, it builds a positive electrostatic field, as can be seen in figure
d) for 2.57, < t < 3Ty. Afterwards, some electrons travel in vacuum and create a neg-
ative electrostatic field, as can be seen at t ~ 47T} for x < 0. Finally, both contributions
are superimposed in the B, component of the magnetic field, shown in figure 3.6b).

Low density vs. high density

Even though this general process occurs for any ng 2 n. and ag > 1 (and 6 > 0), it
does not always lead to electron ejection. As an example, figure 3.7 shows the electron
density along time and space from a PIC simulation with an initial density ny = 10
(a) and ng = 30 (b). One can clearly see a jet of electrons traveling in vacuum in
the low-density case, whereas all electrons remain in the plasma for high-density. This

section aims at understanding this difference in behavior.

a)ag = 14,n9 =10 b)ag = 14,n9 = 30
2.5r
S S
> > G/
3 4 3 4

t/TL t/TL

Figure 3.7: a) Log-scale electron density as a function of time and space for a step-like density
profile and step-like temporal profile for the incident wave from a 1D PIC simulation (ag = 14
and ng = 10). b) Same representation for ng = 30.

3.2.2 Push-pull mechanism
Description of the mechanism

The plasma dynamics occurs as a push-pull mechanism. This is illustrated with the
1D PIC simulation these_step with a top-hat temporal shape for the incident wave.
The incident driving fields read

E;, = qpsin(t —z)e, B; =aqpsin(t —z)e,
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and the initial electron/ion speed is 8 = B, = —sinfe,. For E; > 0, the electric force
accelerates electrons in the —y direction, allowing them to reach speed 8, 2 —1 as
soon as ag > 1 (see [Gonoskov et al., 2011]). The B x B; force is then directed towards
the 4+ direction, so that it pushes electrons which are bundled-up into a sharp density
peak into the plasma.

Laser force
- Plasma force

-0.8 2 n(t=t,.x)
a) 200 \ \
-0.6;  PUSH PULL 15 b)
-0.4} 1 150
-0.2}
SR 0.5E 100t
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Figure 3.8: Illustration of the push-pull mechanism in a 1D PIC simulation. a) Electron
density logg(ne) in a 1D PIC simulation with ap = 14 and ng = 10. The maximum depth
x = x )y is reached at t = tp7. b) Density profile n.(x) at t = tj;. The sharp peak, with width
< A/100, is located at © = x ;.

(i) Push phase: During the first half-period, the incident laser field pushes electrons
inside the plasma while the ions are not displaced, which builds up an electrostatic
plasma field E, = E,e,. Because the ions are drifting, this charge separation also
induces plasma currents which are the source of magnetostatic plasma field B, = Bye..

At t = tyy, the peak reaches a maximum position with p, = 0. At this point,
the forces due to the incident wave, the reflected wave and the plasma fields cancel
out along the z direction. We hereafter derive the maximum peak position from the
balance of forces as is done in [Gonoskov et al., 2011]. Assuming all electrons have
position x such that x > x,;, Gauss’s and Ampere’s laws read

oL, n; o

— — 21
or (z>0) cos2f  cos3d (3.21)
0B, _ —nvy  nosind
ox (v>0)= cos2f  cos3H (3.22)

where the cos? § factor is due to the normalization with n. and the additional cos@
factor is due to the Lorentz transform of the charge density. The sinf term is the ion
drift velocity in the boosted frame. Hence, the electrostatic and magnetostatic fields
at position z are given by

1
E,(z) = o3 g0v (3.23)
sin 6
B,(x) = o3 g% (3.24)
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We assume that the maximum peak depth x,; is an equilibrium position where the
total force along z (incident and reflected waves plus plasma fields) is zero:

By(Bi+ B, + B,) + E, = 0. (3.25)

Let us further assume that the electron velocity at s is (8, 8,) = (0, —1). The laser
reflects off the surface at x;; and we assume that the boundary conditions of a perfect
conductor can be applied for the incident and reflected laser fields, giving B, = 2ay,

hence,
sin 6 1

noTpy —
0s3 6 cos> 0

noxy =0, (3.26)
which gives the maximum depth

2a cos® 0
Ty =—-. 3.27
M (1 = sin6) (3:27)
This expression gives a very good approximation within less than 10% error in a wide
range of parameters 3 < ag < 20 and 5 < ng < 40. At t = tj;, the target surface
is similar to a plasma capacitor where electrons are gathered in the density peak at
x = x)r and the half-space x < x,, is filled with ions only.

(ii) Pull phase: During the following half-period, the incident field changes sign
so that the 3,B; force pulls electrons towards vacuum, breaking the force balance
along x. The electron peak is accelerated towards vacuum (z < 0), and radiates an
attosecond electromagnetic bunch via the Relativistic Oscillating Mirror mechanism
(see chapter 1). A small fraction (< 1%) of electrons in the density peak escapes the
plasma and travels along the reflected pulse, as can be seen in figure 3.8.

Peak dynamics

The dynamics of the electron density peak can be determined in a PIC simulation.
Figure 3.9 a) shows the magnetic and electric forces on the density peak along time in
the x direction, from a 1D PIC simulation. It starts around ¢t = 37}, when the laser
wave reaches the plasma and forms the density peak. One can see that the total force
is almost zero during most of the laser period and becomes strongly negative right after
the peak reaches its maximum depth. As can be seen on this image, the electric and
magnetic forces components have similar amplitudes.

Figure 3.9b) shows the peak velocity § as a function of time. The first striking
result is that the peak travels with relativistic speed g ~ 1 along its motion. The
initial electron velocity is due to the drift in the boosted frame: (5., 8,) = (0, —siné).
When the incident wave reaches the surface, the magnetic force pushes electrons inside
the plasma (5, > 0). The electric field E, > 0 accelerates the bundled electrons towards
y < 0. This phase lasts until the incident field sign changes and the peak reaches its
maximum position at ¢ = tp;. Then, E, = 0 and (8,, 5,) = (0, —1). Afterwards, the
—B,B. < 0 magnetic force strongly pulls the electron peak towards —z. Meanwhile,
the electric field is now directed towards +y, and this phase stops at the emission time,
when (3, 8,) = (—1,0).

The emission time is defined by (,(t.) = 0. Here, t. >~ 3.77;,. At this time,
(Bz(te), By(te)) = (—1,0) and the electron peak reaches its maximum speed towards
vacuum. As a consequence, the Doppler effect is maximum, and an attosecond elec-
tromagnetic pulse is generated at time t.. More details on the emission time can be
found in section 1.4.3.
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Figure 3.9: a) Forces along the density peak in 1D PIC simulation (ag = 10, ng = 10n.). A
balance builds up between the electric and magnetic forces as long as 8, ~ —1, and breaks
when 3, = 0 where the total force becomes negative, accelerating electrons towards vacuum.
b) Speed of the density peak from the same simulation. Note that the velocity is only defined
for t 2 377, because the peak is not formed before.

This periodic mechanism results in high harmonic generation via the relativistic
oscillating mirror (see 1.4.3). At this time, the electron peak has almost left the plasma.

The analysis mentioned above relies on the electron density peak dynamics. Nonethe-
less, the peak breaks during the pull phase because electrons inside the peak no longer
have the same dynamics. This is shown in figure 3.10, which shows the electron density
peak profile at several times during the peak acceleration towards vacuum, with a half-
laser-period time-step (0 is the plasma border). After half a laser period, the number
of electrons in the peak has dramatically decreased, and the distribution is strongly
flattened. Moreover, at time t;; + T, a new peak is created deeper inside the plasma,
which corresponds to the same mechanism at the following laser period. Note that this
peak is not as sharp as the previous one, showing the complexity of the phenomenon
with strong cycle-to-cycle memory effects.

Finally, the front edge of the density peak escapes the plasma and propagates in
vacuum towards —x. The ejected electrons are part of the density peak along its
acceleration towards vacuum. Finally, at the end of the pull phase, electrons in the
density peak have strongly inhomogeneous velocities: the peak bursts.

3.2.3 Relativistic Electronic Spring by Gonoskov

Reference [Gonoskov et al., 2011] presents a model for the surface dynamics, which
aims at describing the temporal profile of the reflected field via a precise description of
the density peak motion. The authors assume that the electron peak is defined at all
time and derive its dynamics in an elegant way to calculate the reflected field.

Hypotheses of the model

Consider a plane wave that impinges on a homogeneous overdense plasma with initial
density ng. The target normal is along x and the plasma occupies the half-space = > 0.
The incident wave is assumed to be ultrarelativistic (ag > 1) and the ions are immobile.
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Figure 3.10: Propagation of the density peak towards vacuum (—z) during the acceleration
phase from 1D PIC simulation these_step. The electron density is plotted in linear units
along z in half-a-period timesteps, starting from the maximum depth tp;. At ¢t =ty + 17,
the peak amplitude has strongly decreased. Besides, a second peak has formed inside the
plasma, which shows the repetition of the same mechanism during the following laser period.
The peak travels with speed 5 ~ —1. The dashed line shows the peak position at the emission
time t = ..

The study is performed in the Bourdier boosted frame, where the physical quantities
are modified according to the Lorentz transformation presented in 1.2.

When the laser reaches the target, the electrons are gathered in a high-density peak
inside the plasma. This is shown in figure 3.8. The very sharp electron peak (width
d < A) oscillates in the plasma and radiates the reflected field.

The electron peak is characterized by its position z,(f) and normalized speed
Bx(t), By(t). The hypotheses of the model are:

e H1: All electrons between the plasma edge and z,(t) are gathered in the density
peak, so that its total charge is nox,(t). The peak is approximated by a Dirac
distribution.

e H2: The peak velocity is ultrarelativistic at all time: |8] = 1. This hypothesis
is justified in our simulations (see figure 3.9). Note that it implies that the peak
has infinite kinetic energy, so this model cannot rely on the equations of motion.

e H3: The total electric and magnetic fields inside the plasma behind the peak are
zero, so that the plasma is neutral and unperturbed behind the density peak.
Practically, this hypothesis can be written right behind the peak at x} (¢) for any
t >0, and reads E(z; (t),t) = 0 and B(x}(t),t) = 0.

Peak dynamics

Let us derive the equation governing the peak dynamics using H3. The total magnetic
field at position xf(¢) right behind the peak is the sum of the laser and plasma contri-
butions. The laser contribution is agsin(t — z,(t)), and the ions contribution at time
t is calculated through Maxwell-Ampere’s equation 1.6, as done in equation 3.24. It
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reads

sin 6

By(xf(t),t) = noz,(t). (3.28)

cos? 6
According to H1, the electron distribution is approximated to a Dirac distribution at
position x,(t). At this point, we should remark that this statement is valid because
we consider a unidimensional space. In a realistic 3D space, this means that electrons
are gathered in a plane foil with surface charge nox,(t) and speed 3,, 5,. The radiated
field emitted by this foil in the +x direction is

By(a(t),t) = 1"fﬁﬁyxxp(t). (3.29)

This electron foil screens the incident fields. Its dynamics is given by hypothesis H3,
assuming that the sum of laser, ion and electron contributions behind the peak is zero:

Bi+ B, + B, = 0. (3.30)

This is shown in figure 3.11.
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Figure 3.11: Illustration of the screening hypothesis (H3) in Gonoskov’s model. The electron
(red) and ion (blue) densities are plotted as a function of the position, for a given time. The
total field in the plasma behind the density peak is assumed to be zero.

This gives equation 3.31 which, combined with hypothesis H2 and the definition of
B, gives the following system

; o o Ly By
sin(z, —t) = 24y cos? 0 (st T— &) (3.31)
B4+ 8 =1 (3.32)
dz,
L= B (3.33)

The system of three equations 3.31-3.33 involves three variables (z,, £,, 5,) and
can be solved numerically to determine the dynamics of the electron peak.

91



CHAPTER 3. BACKWARD ELECTRON ACCELERATION FROM PLASMA
MIRRORS

Reflected field

At this point, the three variables z,(t), 8,(t) and 3,(f) are known at all times. The
fields radiated in vacuum x < 0, 7.e. the reflected field B,, can be calculated as the
sum of the ion fields and the radiation emitted by the moving electron peak. The field
on the left of the density peak z, (t) reads

no :L.p By .
B(z,(t),t) = — 0. 3.34
(1), QCO839<1+5x+s1n> (3.34)

Equation 3.34 gives the reflected field on the peak position, which moves along time.
A more practical observable is the reflected field at a given position, say x = 0, that
can be calculated using the retarded time:

B(0,t + z,(t)) = By (z,(t), t). (3.35)

Comparison with a PIC simulation

Hence, the model gives the electron peak position as well as the temporal profile of
the reflected field. For very high laser intensities ay > 10, this model predicts very
well the surface motion as well as the reflected field. Figure 3.12 shows a colormap of
the magnetic field from a PIC simulation, compared with the magnetic field calculated
from the model. The agreement is striking. Note that the total field behind the density
peak is zero on the model, according to H3.

a) PIC b) Gonoskov’s model Bz
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Figure 3.12: a) 2D map for the magnetic field along time and space for a 1D particle-in-cell
simulation in the boosted frame. A step-like density profile was used, with a bulk density
ng = b for x > 0. The laser amplitude is ap = 10. The reflected wave is created around
t = 0.87, at x = 0.7\ and propagates as a very sharp burst along the x < 0 direction. The
black line shows the electron density peak position. It stops after time ¢t > 1.177, because the
density peak bursts at this time before it is formed again around time ¢ = 1.577. b) Same
as a), calculated via Gonoskov’s model. The attosecond bunch emission time and the surface
dynamics are remarkably well reproduced.

Note that the system of equations 3.31-3.33 giving the peak dynamics does not
depend independently on ag and ng, but rather varies as a function of the parameter

_ Mo
S= (3.36)

All the equations can be written as a function of this parameter (it also appears in
equation 3.34 through z,). As a consequence, a simulation with 2ny and 2aq gives
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exactly the same result as a run with ny and ag (this is in agreement with the similarity
theory developed in reference [Gordienko & Pukhov, 2005]).

Finally, the relativistic electronic spring model describes very well the peak dynam-
ics as well as the temporal shape of the reflected field in spite of three major limitations:
first, it works for very high intensities. Second, it assumes that the electron peak exists
during the whole interaction, and remains in the plasma x > 0, which is debatable (see
figure 3.10). Third, since the electron peak travels at the light velocity, its energy is
infinite. As a consequence, there exists at least one instant at which the reflected field
diverges (see equation 3.34), and the harmonic spectrum is not very well reproduced.

In spite of these rough assumptions, this provides an unprecedented description
of the surface dynamics and the electric and magnetic fields. Yet it cannot be used
directly for electron ejection because the peak is assumed to remain in the plasma at
all time. Relying on this model, we derive a semi-analytical model for electron ejection
in section 3.2.4.

As a summary, the maximum peak position z,; and the electrostatic field and
electrostatic potential at this position read respectively

2a cos® 0
= 3.37
M no(1 — sin 6) (3:37)

2a cos? 0
E = — .

p(am) = T (3.38)

2a3 cos® 0
=_-9 = 3.39
Pp(Tu) no(1 — sin 6)2 (3:39)
where the electrostatic potential is calculated via its definition F, = —0,¢, and nor-

malized by ¢, = ep,/m.c?.

3.2.4 Model for electron ejection with a step-like profile

The model described above provides the peak dynamics assuming it travels with con-
stant speed [ = 1, hence infinite kinetic energy, so we cannot write the equations of
motion on the density peak. Besides, as shown in section 3.2.2, the ejected electrons
are part of the density peak during the acceleration phase. However, Gonoskov’s model
assumes that the density peak remains in the plasma, while ejected electrons do have
to travel in vacuum (x < 0). As a consequence, one step should be added to model
electron ejection.

Model hypotheses

Our model consists in solving the equations of motion for an electron propagating
in the fields calculated by Gonoskov’s model. Following our observations from PIC
simulations, we assume that the electron belongs to the density peak until the emission
time t.. At t =t., a test-particle is released, and its dynamics is calculated by solving
the equations of motion in the fields derived from Gonoskov’s model.

In principle, we could choose any time as the release time, provided the density
peak is well defined (for example, ¢t < t5;+ T}, in figure 3.10). Yet the initial conditions
of the test-particle at the release time must be determined. Its position is given by the
peak position, but its momentum components p, and p, are unknown, since the peak
travels with infinite energy. This can be reduced to one single unknown at two specific
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times: the time for maximum depth, where p,(t)/) = 0, and the emission time, where

py(te) = 0. We choose the emission time as the release time, and determine p,(t.).
The attosecond pulse is emitted at ¢, around the middle of the electron peak. As a

consequence, the electromagnetic fields are extremely inhomogeneous inside the peak

after t. and the peak bursts after t.. It is only well defined until the emission time.
The ion background forms an electrostatic potential (E, = —V¢,) that reads

2

14

15
10 5 10

n 0/nC nO/nC

Ng X
= S A
On(2) cos® 6 2 (3-40)
We define ¢, = ¢,(x.), and assume the initial electron momentum at t. is given by
Pe
pw(te) = ? (341)
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Figure 3.13: a) Half electrostatic potential ¢./2 at emission time t. measured in a scan of
PIC simulations as a function of ag and ng. The incident wave has a top-hat temporal profile
and the plasma has a step-like density profile, with bulk density ng given in units if n.. The
value was measured during the first plasma oscillation. b) p, at emission time for the same
set of simulations.

To verify this hypothesis, we measured p,(t.) in the peak from a set of 1D simula-
tions, and compared it to ¢./2. The result is shown in figure 3.13, which shows that
hypothesis 3.41 is verified within < 10% error.

We finally get the maximum density ny above which no electron is ejected with the
following procedure:

e For a given (ag,ng), calculate S = ngy/ao;

e Compute the peak dynamics z,, 3, and 3, via Gonoskov’s model;

e Calculate the total electric and magnetic field via Gonoskov’s model;
e Find the emission time t. defined by §,(t.) = 0;

e Inject an electron at t. with initial conditions x = z,(t.), p» = ¢/2, which
reads p, = nox,(t.)*/4cos®§ and p, = 0 and solve the equation of motion in the
space-time dependant electric and magnetic fields;

e An electron is considered to be ejected if p, < 0 for any time ¢, <t <t.+ T};
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Validation of the model

This sequence was applied for ag = 10 with ng = 5 and ny = 15. The results are shown
in figures 3.14 a) and b) respectively, where the solid line shows the peak position and
the dashed line shows the electron position as a function of time, superimposed to the
magnetic field map. The electron is only ejected in the low-density case, in agreement
with figure 3.7.

a) Ejection 08 b) No ejection 5
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Figure 3.14: a) Time-space map of the magnetic field for ag = 10 and ng = 5 calculated
from Gonoskov’s model. The line shows the electron trajectory: It coincides with the peak
trajectory (solid black line) until the emission time t.. For ¢ > t., the electron propagates
away from the peak position (black dashed line), and escapes the plasma. b) shows the same
representation for ng = 15. The electron is sent back to the plasma bulk.

Ejected charge

=°10

nO/

12

14

Figure 3.15: Ejected charge in pC/urrf2 as a function of ap and ng from a scan of 1D PIC
simulations. The incident wave had a 3-laser-period duration with a step-like envelope, and
electrons were detected 1A away from the plasma surface. The white dashed line shows the
threshold ng = f(ag) = 0.8ag (i.e. S = 0.8) above which no electron can escape, according
to the model. It agrees fairly well with the PIC scan results.

We finally ran our model for different values of S, and observed that there is no
ejected electrons for S > Sy, where Sy, is the threshold value. We measured this value
as Sy, = 0.8. These predictions were confronted to a set of 1D PIC simulations, with
4 < ayp < 15 and 7 < ng < 14. The ejected charge from PIC simulation is shown in
figure 3.15. As expected, the ejected charge depends on S = ng/aq instead of ay and
no independently. As we could conjecture from figure 3.7, the ejected charge drops to
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zero when S increases because of the gyromagnetic effect. Sy, was measured in this
set of simulations, and reads Sy, = 0.85, which is very close to the value given by our
model. The white dashed line in figure 3.15 stands for the threshold Sy, = 0.8 given
by our model, showing very good agreement with PIC results.

3.2.5 Discussion

Physical picture: For a given value of ag, the ejected charge drops to zero when
increasing ny above a threshold. We hereafter propose two physical explanations for
this behavior.

Electrostatic

field

} High density Low density

Maximum depth

Figure 3.16: Illustration of the electrostatic potential formation for a low-density and a high-
density step-like plasma. In both cases, the maximum electrostatic field reaches the same
value that screens the incident field. In the low-density case, the electron density peak is
pushed further, so the electrostatic potential is higher and the plasma provides more energy
to the electrons in the peak.

The first one relies on the energy provided to the electron by the plasma field E,
in the ion capacitor (see 3.8). As can be seen from equation 3.27, the maximum depth
varies as xpr o 1/ng. The electrostatic field and potential read

Ey(xy)  2cos®6

= 42
ag 1 —sinf (342)
bp(Tar) 2a cos® 0
— , 4
Ao ng(l — sin (9)2 (3 3)

The maximum electrostatic field, at = x,; does not depend on the plasma density,
while the potential ¢,(zy) o< 1/ng. As a consequence, the plasma capacitor provides
more energy to the electrons for a low plasma density, and helps electron ejection. This
is illustrated in figure 3.16.

The second explanation is more phenomenological. The temporal profile of the
reflected pulse depends on the plasma density, as shown in image 3.17. When the
density is high, the magnetic field is strongly negative at the rear of the pulse. This
field bends the trajectories of ejected electrons travelling in this zone and brings them
back to the plasma. There is no such zone in the low-density cases, which also favors
electron ejection.

Gyromagnetic effect: In the limit ng — 400, ¢,(xy) — 0 and the plasma fields
have negligible effect. As a consequence, the gyromagnetic effect is dominant and
prevents electron ejection. Note that electron ejection in this section is made possible
because of the presence of strong plasma fields when the density is sufficiently low,
breaking the picture of the gyromagnetic effect given in section 3.1.4.
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Figure 3.17: a) Magnetic field in the reflected wave as a function of time during a single laser
period, in a low-density case. Other panels show the same data for increasing plasma density.
A large area with negative magnetic field that efficiently brings ejected electrons back to the
plasma appears for higher initial densities.

Conclusion: As a conclusion, during the wave reflection, the electrons are gathered
in a sharp density peak that oscillates in the plasma. The Relativistic Electronic Spring
model describes the peak dynamics as a function of the single parameter S = ng/ay.
During each laser period, when the density peak is accelerated towards vacuum, a small
fraction escapes and can propagate far away from the plasma.

Above a certain threshold S > Sy, no electrons are ejected from the plasma. We
presented a model that reproduces this trend, and found a value Sy, = 0.8, close to that
extracted from PIC simulations Sy, = 0.85. This behavior has two causes: the energy
that electrons can acquire from the plasma, and the temporal shape of the reflected
field.

However, this model relies on one hypothesis, p,(t.) = ¢./2, which is verified in
PIC simulations but is not justified physically, and is a phenomenological observation,
which is not satisfying. The next section is dedicated to the plasma mirror regime with
a density gradient.

3.3 Electron ejection with an exponential density
gradient

As described in section 1.1, most experiments consist in the reflection of a laser pulse
on a highly overdense plasma with a density gradient on its front side. This section
is dedicated to this plasma profile, shown in figure 3.18. The bulk density is typically
in the range ny = 100 — 300n,., and the exponential density gradient scale length is

= 0.01 — 1A\. This study involves the same mechanisms as for a step-like density
profile presented in previous section 3.2.

The model presented in the case of a step-like profile and based on Gonoskov’s model
reproduces the whole surface dynamics. As a consequence, we initially intended to
extend it to the case of a density gradient. Yet, it relies on a strong unproved hypothesis
which, furthermore, is no longer valid in presence of a density gradient. Strong efforts
were done to extend this model nonetheless, which still remains unsuccessful.

As a consequence, we used a different approach which led us to a simpler, trimmed
model which, though showing less precision on the description of the surface dynamics,
still yields a correct picture of the electron trajectories. This model is presented in the
following section.
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X

Figure 3.18: Exponential density gradient n = n.exp(z/L) in the gradient, and n = nyq, in
the plasma bulk. Typically L = A/10 and nq,; = 200n..

3.3.1 Swurface dynamics
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Figure 3.19: a) Electron density log;q(ne/n.) as a function of time and space from the 1D PIC
simulation these_grad1s64. The magnetic field is shown in red-blue colors. The conditions of
the simulation are: ag = 5, 7 = 477}, sine-square temporal envelope (277, FWHM), L = \/64,
Nmaz = 200n. (lab frame). The ions are immobile. Numerical conditions are 500 ppc and
Az = X /2000. The critical density is located at & = 3X; b) is the same for L = A\/8, in
simulation these_gradls8.

Figure 3.19 a) shows a time-space map of the electron density and magnetic field
from a 1D PIC simulation in the boosted frame for a two-laser-period FWHM incident
wave with ag = 5 and 6 = 45° on an overdense plasma with n,,,, = 100n. and a
density gradient of scale length L = \/64 on its front side. During each laser period,
the plasma surface shows many fast oscillations, and finally no electron escapes the
plasma. This is a consequence of the gyromagnetic effect (see section 3.1.4).

Figure 3.19b) shows the result of a similar simulation for L = A/8. The surface
oscillates once per laser period, and two strong jets of ejected electrons can be seen
escaping the plasma and propagating in vacuum. This section aims at explaining this
difference, and describes quantitatively the role of the density gradient length.
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Train of attosecond electron bunches

The simulations shown in figure 3.19 shows the reflection of a few-cycle laser pulse
(1, = 5.2fs FWHM), with only two electron jets ejected in the long-gradient case. For
a longer pulse duration (77, = 25fs FWHM), an electron bunch is ejected during each
laser period, resulting in a train of attosecond bunches. This is shown in figure 3.20,
where the reflected field and the density of ejected electrons are plotted along time at
the plasma edge (at a distance d,.ope = 0.03) from the critical density). The simulation
conditions are the same as in the few-cycle case. Each electron bunch is emitted at a
node of the reflected field, when B, = 0 and £, = 0. Note that the reflected magnetic
field is extremely distorted, and the sharp peaks indicate a rich harmonic content, as
expected from high harmonic generation by the ROM mechanism (see section 1.4.3 and
reference [Thaury & Quéré, 2010]). Besides, the charge contained in each attosecond
electron bunch can vary strongly between two consecutive periods, showing that the
ejection during one period may affect subsequent periods.

28 30 32 34 36 38 40

t/TL

Figure 3.20: 1D PIC simulation result for ag = 5 and L = A/8. Red line: reflected magnetic
field at the initial plasma edge as a function of time (a Fourier filter was applied to remove
the incident field). Blue line: density of ejected electrons as a function of time at the same
position.

Push-pull mechanism and maximum peak depth xj,

We hereafter follow the same steps as in previous section 3.2 and focus on the mech-
anism that takes place during a single laser period. To this purpose, we performed a
1D PIC simulation with a top-hat temporal shape for the incident wave. The incident
driving fields read

E; = qpsin(t —x)e, B; =apsin(t — x)e,

and the initial electron/ion speed is 8 = —sinfe,. The same push-pull mechanism
occurs as in the case of a step-like density profile:

(i) Push phase: During the first half-period, the incident laser field pushes electrons
inside the plasma while the ions are not displaced, which builds up an electrostatic
plasma field E, along x and a magnetostatic plasma field By, along z.

At t = tj, the peak reaches a maximum position with p, = 0. We hereafter
derive the maximum peak position from this balance as is done in previous section (see
also [Gonoskov et al., 2011; Vincenti et al., 2014]). Assuming all electrons are located
at x > x)7, Gauss’s and Ampere’s laws give the electrostatic and magnetostatic fields
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Figure 3.21: a) Density and fields at maximal depth (¢ = tp; = 2.371) from a 1D PIC
simulation with ag = 5 and L = A/8. The black and dashed grey line stand for the electron
and ion densities respectively. Color lines are magnetic field B, (blue), electrostatic field E,
(red) and electric field E, (green). b) & c) Phase space (z,p,) at t = tj; and ¢t = tps + 0.477,
respectively.

at position x:

1
_ z/L
E,(z) = cos3€L€ (3.44)
sinf
By(x) = —Le /L, (3.45)

The equilibrium equation 3.26 becomes, in the case of a density gradient,

sin 6 1
2 Letm/l — _—__[erm/l — ), 3.46
do+ cos3 0 ¢ cos> 0 ¢ ( )
Solving for z,;, we obtain
2a cos® 0
=Ll — . 3.47
M o8 [L(l —sinﬁ)] ( )

This equation gives an estimate for the surface position at maximum depth that fits
within less than 20% error in the worst case in the whole parameter range (0.5 < ag <
10, 0.01\ < L < \) when compared with PIC simulations.

As a summary, the maximum peak position z,; and the ion density, the electrostatic
field and the electrostatic potential at the maximum peak position read respectively

B 2a cos> 0 B 2a0
T = Llog <L<1_ne)> o) = T e (348)
. 2&0 . 2CL(]L
Bvloa) = 1509 ooloa) = T 50p (349)
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Note that E,(xy) has exactly the same expression as in the case of a step-like
density profile.

(ii) Pull phase: During the following half-period, the v,B; force pulls electrons
towards vacuum, breaking the force balance along x. The electron peak is accelerated
towards vacuum (z < 0), and radiates an attosecond electromagnetic bunch via the
Relativistic Oscillating Mirror mechanism. A small fraction (< 1%) of electrons in the
density peak escapes the plasma and travels along the reflected pulse. This is shown
in figure 3.21b) and c), where the phase space is represented at t = t5; and t > ¢y,
respectively. For ¢ > t,,, one can see a jet of electrons travelling towards vacuum with
xr <0 and p, <O0.
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Figure 3.22: Dynamics of an ejected electron for parameters ag = 5, L = \/8 a) Greyscale:
electron density n.(z,t). Color scale: magnetic field B,(z,t). The yellow dashed line repre-
sents the trajectory of an ejected electron. b) Velocity components of the ejected electron.
c) Electric fields experienced by the ejected electron along its trajectory.

Dynamics of an ejected electron

The orbit of such an electron is shown in figure 3.22. Panel a) shows the magnetic field
B, (color scale) and the electron density n. (grey scale) versus time and space. The
electron trajectory is plotted as a dashed yellow line in figure 3.22 a). It originates
from deep inside the plasma around x = x,;, and is released in the plasma capacitor
at t = 1yy.

The electron starts with speed (5,, 5,) = (0, —sinf) (see figure 3.22b)) because of
the plasma drift, and is accelerated in the —y direction until ¢ = ¢y, where (5, 8,) ~
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(0,—1).

At t = t), represented by the vertical black dashed line in figure 3.22, the electron
is part of the density peak, and is released in the ion plasma capacitor. This can be seen
in figure 3.22¢), where the red line stands for the plasma electric field E, at the electron
position along time. F, increases for t < t;; while the charge separation is built, and
reaches a maximum value at t = t,;. For t > t,;, the electron propagates towards —zx,
converting the electrostatic potential of the ion capacitor into kinetic energy. At time
t ~ 2.617, the electron leaves the plasma and F, ~ 0.

After leaving the plasma, the electron propagates in vacuum where the incident
wave (k; // e;) and the reflected wave (k, // —e;) are superimposed. Its speed is close
to (B, By) ~ (—1,0), so its motion is the superposition of fast oscillations around
Welee ™ 2wg due to the incident field with slower variations wee. << wo in the reflected
field. This is shown in figure 3.22c¢), where the blue dashed line shows the reflected
electric field along the electron trajectory. It varies very smoothly, indicating that the
electron slowly dephases with respect to the reflected field.

Note that figure 3.22 shows the general case of an electron in the density peak. It is
quite clear that after t = ¢y, (see t = 3.577), there are electrons before the test-electron
shown in yellow: the plasma in the x > z¢..(t) area is non-neutral and exerts a recall
force on the test electron.

Plasma fields vs. electromagnetic fields

Finally, the acceleration after t = t;; occurs as follows: first, the plasma capacitor
discharges, and its potential energy is transferred to electrons in the density peak
as kinetic energy, giving the electron a relativistic speed (£, ~ —1 towards vacuum.
Afterwards, the electron propagates and oscillates in the incident + reflected fields.
To confirm that this scenario is valid for all ejected electrons, we compute the work
of the electric fields along the trajectories of ejected electrons. The total electric field
reads E = E,e, + (E; + E,)e, where E,, E; and E, stand for the plasma, incident and
reflected electric fields respectively. The work in x and y yields

t
In=— / B, f.dt (3.50)
0
t
r, = —/0 (E; + E,)B,dt (3.51)
where I, are normalized by I}, = vay/mec? I, is the energy gain due to the

plasma fields while I, is due to electromagnetic fields. These works are shown for a
large number of ejected electrons in figure 3.23 from a PIC simulation with ag = 10 and
gradient length L = \/8. At the plasma edge (a), the work is along z, so electrons are
accelerated by the plasma electrostatic field. Further away from the plasma (b), the
dominant work is along ¥, due to laser fields. At a distance of 2\ away from the plasma
edge (c), the mean plasma work I, decreases. This is because electrons are slowed down
by the non-neutral plasma restoring force. This effect is probably enhanced in 1D PIC
simulations.

3.3.2 Scan ay— L with 1D PIC simulations

The main parameters affecting the emission of backward electrons are (i) the laser
amplitude ag, (ii) the plasma density gradient length L, (iii) the angle of incidence 6
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Figure 3.23: Electric force work from a 1D PIC simulation with ap = 10 and L = A/8. The
work is calculated when electrons reach x = 0, x = —\ and © = —2\ respectively. I} is due
to plasma fields while the I, is due to the transverse laser field.

and (iv) the pulse duration. In this study, we restrict ourselves to the case of femtosec-
ond pulse durations, typically 20 — 30 fs, as used in current high-intensity experiments.
In order to study the role of the main parameters ag and L, we performed a set of
one hundred 1D Particle-In-Cell (PIC) simulations, each requiring little computer re-
sources. The scan name is PARAM_harmv9, and simulations in this scan are named
harmv9_ax*_L1s*, for example harmv9_a80_L1s32 uses ag = 8 and L = \/32.

In the laboratory frame, a 800nm, 25fs laser pulse impinges on a solid-density
plasma with angle of incidence 6 = 45°. Its amplitude is varied from ay = 0.2 to
ag = 10. The plasma bulk density is 250n,, corresponding to an ionized SiO, target,
and the gradient length is varied from \/100 to A. We assume that the density gradient
has an exponential shape ng(x) = n.e” %, so that ng(x = 0) = n.. The density gradient
is artificially cut at the plasma boundary z; defined as ng(z;) = 0.2n,, to avoid filling
the whole box with particles. This cutoff verifies ng(z;) < cos? On,., where cos? On,
is the density at which the obliquely incident laser is reflected in the low-intensity
regime (see section 1.3.1 on page 22). The simulations were performed in the boosted
frame, hence numerical conditions are given in this frame: the numerical space-step was
dxr = A/4000, and we used 1000 particles-per-cell for good statistics. The simulation
box was Az = 20\ large. Tons were mobile (we took oxygen ions as the lightest ions in
a Silica target) but simulations with immobile ions yielded very similar results.

When simulating the ejection of electrons with 1D simulations, two effects must
be considered. First, the laser does not diffract, so that the laser intensity is greatly
overestimated as soon as the propagation distance is larger than a Rayleigh length.
Second, charged particles are represented by charged surfaces. Therefore, the electro-
static force between two charged particles does not depend on the distance r between
them, while it decreases in 1/r? in a 3D geometry. As electrons leave the target, the
plasma surface becomes positively charged and exerts a restoring force that does not
depend on the electron position. If one runs a 1D simulation long enough, all electrons
eventually return to the plasma and the ejected charge tends towards zero. In order
to obtain realistic results, we chose to consider electrons to be ejected if they cross a
plane located at a distance d = 7\ from the plasma edge. This distance was chosen
to be (i) much smaller than the Rayleigh length of most current experiments, so that
the 1D approximation remains valid, and (ii) much larger than the gradient lengths we
studied, for electrons to be detected far from the plasma surface. This point is crucial
as detecting electrons too close to the plasma surface considerably overestimates the
ejected charge, while detecting them too far leads to wrong results due to the invalidity
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Figure 3.24: Results of a 1D PIC simulation scan (ag,L) with n,,4, = 250n,. — a) Ejected
charge. Particles were detected at a distance d = 7A from the target, and the charge was
integrated all along the simulation. — b) Mean energy of the ejected electrons — ¢) Electron
spectra from 3 simulations with parameters indicated by the color circles in panel a).

Figure 3.24 a) shows the ejected charge as a function of ag and L. First, it is clear
from figure 3.24 that there are no ejected electrons when the gradient scale length is
L = 0A. This was explained by the gyromagnetic effect (see section 3.1.4). This effect is
neutralized with longer gradients. For a given value of ag, the ejected charge increases
with L, reaches a maximum for L = L, ~ A/10, and then slowly decreases. We
find that the value of the optimum gradient L,,,, depends little on ag in this range.
The increase in ejected charge with L for L < L., is due to the increase in the
maximum electrostatic potential ¢,(xy) o apL in the ion capacitor, as described in
section 3.2 Evidently, the results also show that the ejected charge increases with the
laser amplitude ag.

In figure 3.24b), the mean energy of ejected electrons is plotted in the same param-
eter space. It varies in a similar fashion as the ejected charge: the higher the ejected
charge, the more energetic the electrons. The electron spectrum is plotted on panel c),
for three different simulations represented by the color circles in figure 3.24 a). The
red and green curve stand for agp = 10 and a gradient length respectively L ~ L.,
and L > L,,... The electron spectra are quite broad and electron energies are in the
few-MeV to 10 MeV range.

Ejected charge drop for very long gradient

The PIC scan shows that the ejected charge drops significantly for very long gradients.
When the hypothesis kL < 1 (L < A/2m) is broken, in particular when kL > 1,
this ejection scenario is not valid anymore. Indeed, the formation of a large density
peak does not occur for larger gradients, as shown in figures 3.25 a) and b), where the
electron density profile is plotted at ¢ = t,; for a short and a long gradient respectively.
It is readily seen that for the long gradient case, the density in the peak is ten times
lower and the width of the peak is also much larger. Consequently, the plasma capacitor
does not form and electrons cannot be accelerated efficiently by the plasma field. The

limit kL = 1 reads L = A\/27 in units of laser wavelengths, which is comparable to
Lnaz = A/10.
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Figure 3.25: a) Electron density at ¢ = 0 (black) and ¢ = tj; for ap = 8 and L = A\/16. b)
Same as a) for L = \.

3.3.3 Toy model for the electron ejection

In the previous discussion, we found that the energy gain in the plasma capacitor
scaled as o< aglL, explaining qualitatively why the ejected charge increases with L
and ag, in the limit of small gradients. However, a more quantitative model would
be useful to estimate the ejected charge and typical ejected energy. Several models
have been developed for high harmonic generation [Baeva et al., 2006; Lichters et al.,
1996], surface motion [Debayle et al., 2015; Gonoskov et al., 2011; Sanz et al., 2012]
or electron jets inside the plasma [Ruhl, 1996]. However, reference [Baeva et al., 2006]
does not describe electron dynamics and reference [Lichters et al., 1996] assumes that
all electrons are gathered on an oscillating surface which cannot escape the plasma
border. The model developed in reference [Debayle et al., 2015] assumes a high density
step n. > n., which is not compatible with a density gradient. Hence, none of them
is suitable for describing backward electron acceleration under oblique incidence with
a density gradient.

The model developed by Gonoskov in reference [Gonoskov et al., 2011] describes
very well the peak dynamics at very large intensity (ag > 1) under oblique incidence
and for a step-like density profile. However, the density peak is assumed to always
travel at the speed of light |3| = 1, i.e. infinite energy, so the model cannot be used
to solve the equations of motion. We tried to follow the same procedure as we did in
the case of a step-like density profile, but it was not conclusive.

We now propose a simple numerical model to illustrate the ejection process during
one optical cycle. The incident laser wave is approximated by a monochromatic plane
wave with ap > 1. Ions are immobile. We assume kL < 1 so that electrons are
gathered in a density peak of width d < L. In the boosted frame, the ion density
profile reads n;(x) = ng(z) = n.e**/cosf. We consider an electron in the density
peak, and describe its motion starting from t = t,;:

e first, the equations of motion for an electron in the density peak are derived;
e second, we find the appropriate initial conditions;

e third, this set of equations is solved numerically and compared with results of
PIC simulations.

Electrons are driven by (i) electromagnetic fields and (ii) plasma fields. We describe
the motion of electrons in the density peak during the pull phase, during which the
reflected field is generated. The incident laser electric field is written E; = +agsin(t —
T + ¢pri)ey, where the phase ¢nr; = xpy — ta + 7 is chosen so that the laser field
changes sign at (fp,xpr). For the reflected field, we neglect the harmonic content of
the field and simply write E, = agsin(t + x + ¢arr)ey with ¢ar, = —ar — tas.
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Concerning the plasma field, it is crucial to include electron screening in the density
peak in order to model the ejected charge. Indeed, when an electron j is located on
the front edge of the peak (x; = w)), it experiences the full plasma field E, (see
figure 3.26). On the contrary, an electron located at x; > xj; experiences a screened
plasma field E, — E,, where E, = E e, stands for the electronic screening field, and
is less likely to escape the plasma. As seen before, the plasma fields amplitude at the
position of electron j, x;(¢) can be obtained by integrating Maxwell-Gauss’s equation,

giving
1 a;(t) 210
E,—FEy=—— </ n;(z)dr — / ne(x)dx> . (3.52)

cos? 0 \J- NS

The first term E, is the unscreened plasma electric field already calculated in equa-
tion 3.44, while the second term is the screening electric field coming from electrons in
the density peak.

Since the shape of the density peak cannot be calculated analytically, the second
integral cannot be evaluated easily. Therefore, the screening field F, is derived by
assuming that there is no trajectory crossing, as in [Brunel, 1987]: if electrons j and
k in the density peak verify x;(ty) < x(tar), then z;(t) < x(t) at any time ¢ > ty.
With this assumption, the number of electrons on the left of electron j, i.e. at x < x;(t),
is constant along time, see figure 3.26.
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Figure 3.26: a) Sketch of the electron density at t = tj;. The black dotted line stands for
xjo, the position of electron j at ¢t = t)/, the initial time for our model. The red area shows
the initial charge on the left of electron j. b) Same as a) for ¢ > t);. In agreement with the
hypothesis of no trajectory crossing, the charge on the left of electron j is conserved along
time: the surface of the red area is the same for all ¢ > t,,.

Hence, the integral of the electron contribution in the Maxwell-Gauss equation is
conserved,

zj(t) n(x,t
E, = / de

—o0 C0s20
zi(t) ne(z, tar)
= — 7
\/700 cos2 0 v
= O'j (353)

where o; is the initial surface charge on the left of electron j. Therefore, the screening
field E; is simply determined by the surface charge o;, and there is no need to know
the details of the shape of the density peak. This electronic surface charge screens the
plasma field £, and reduces the acceleration of electrons. Note that this screening field
is constant in time and therefore has a considerable effect on the electron trajectories.
As the electron peak moves along z and y, it radiates a magnetic field B, through
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Ampere’s law, which is responsible for the reflected field. Neglecting the high harmon-
ics, this radiation comes down to a monochromatic plane wave that we include in the
equation of motion. Finally, taking these effects into account, the equation of motion
for electron j reads

dp;
dt

—agsin(t — x;(t) + o) |€y + B;(t) X e,

—agsin(t + x;(t) + éaryr)

L
Y, e, +sindf,;(t) x e

+0jex. (354)

ey — ,Bj(t) X e,

=i O/L

The first and second lines on the RHS express the incident and reflected waves, the
third line is for the plasma capacitor fields and the last line is the screening field. The
initial conditions are taken at t, = t,;, when electrons in the density peak are located
at )y < x < ) + 0. Since 0, < L, we assume that all electrons start at © = x, and
use the expression of x,; given above.

The initial momentum of electrons is: p,o = 0 because at tj; the peak position
is maximum. The transverse momentum p, is derived from the conservation of the
canonical momentum P, = p, — a, = Py. The density peak reaches its maximum
depth when the incident field changes sign, i.e. a(ty, xp) = ap. The initial conditions
are the same for all electrons and read

To = Tm
Pzo = 0
Py = —tanf —ag

Finally, the only difference between electrons j and £ is the initial charge on
the left side of the electron, i.c. the term o; in equation 3.54. These equations are
solved numerically for different values of o;. The ejected charge can be determined by
increasing o; until a threshold value o,,q, above which the electron is not ejected; the
ejected charge is then simply 0,4, An example is given in figure 3.27, where electron
trajectories are plotted for ag = 8 and L = /8, from a PIC simulation (a) and using
the model (b). There is no trajectory crossing in the PIC simulation before t = 1.5T7,
which validates our hypothesis. The global dynamics is very well reproduced.

The following ejection criterion was adopted in the model: an electron is considered
to be ejected if p, is negative during 3 periods. This criterion is different from the one
we adopted for PIC simulations because we assumed that electrons do not cross, which
is wrong for large timescales.

Figures 3.27¢) and d) show the ejected charge plotted versus L and ag respectively.
The model reproduces the global trends: the charge increases with ag and L. It over-
estimates the ejected charge because the ejection criterion is much more stringent for
the PIC simulation than for the model. The linear scaling of ejected charge with ag
is well reproduced. The scaling with the density gradient does not fit as well, which
can be explained by the fact that as kL approaches 1, the plasma capacitor model
collapses. Besides, for very large intensities, the ion motion becomes significant and
may affect the interaction. Remarkably, our simple model also reproduces the trends
and the order of magnitude of the mean energy of ejected electrons. This is shown in
figure 3.27¢) and f).
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Figure 3.27: a) Electron trajectories from PIC simulation with ag =8 L = A/8. b) Electron
trajectories from the model, with the same parameters. In both cases, ¢t = 0 stands for ¢;;. ¢)
Ejected charge versus L for ap = 8 from PIC simulations and our model. d) Ejected charge
versus ag for L = A/12 from PIC simulations and our model. e) Same comparisons between
the PIC simulations and the model but for the average energy of the ejected electrons.
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To illustrate the role of plasma effects, the model was run with no ion plasma fields
(removing the third line in equation 3.54), in the same conditions as figure 3.27¢). The
ejected charge never exceeded 1 pC/um?, which clearly validates the plasma capacitor
model for electron ejection. When we run the model with no reflected field, we find
that the ejected charge increases linearly with the gradient scale length L instead of
saturating at longer gradients. This shows that the reflected field also plays a role in
the details of the ejection.

3.3.4 Comparison with 2D PIC simulations

We now show the results of 2D PIC simulations in order to confirm the validity of the
1D study in the laboratory frame. Simulations are named injectorv4_L1sx*.

A 800nm, laser pulse impinges on the solid-density plasma with a # = 45° inci-
dence angle. The pulse duration is 25fs, its spot size is 3.4 um FWHM and its am-
plitude is ag = 3. We performed simulations for the following gradient scale lengths:
L = \/32,\/8,A\/4,\/2, \. Ejected electrons are detected with two electron probes.
The first one is parallel to the plasma surface and located 25\ away from the plasma
surface to record electrons emitted around the specular direction. The second one is
perpendicular to the plasma surface and 25\ away from the reflection point, to record
electrons ejected along the plasma surface.
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Figure 3.28: Snapshot of a 2D PIC simulation with ap = 3 and L = A\/8 during the pulse
reflection. Electron jets propagate in vacuum.

Figure 3.28 shows a snapshot of a 2D PIC simulation. Jets of electrons are ejected
at precise phases of the reflected laser field (at zeros of the electric field) and further
propagate in the interference pattern and afterwards in the reflected field. The 2D
simulations reproduce the main phenomena depicted in the 1D PIC simulations: at
each laser period, electrons are pushed and form a sharp density peak. This gives rise
to a plasma capacitor in which electrons gain energy and are ejected.

More qualitative results are shown in figure 3.29. The black line shows the total
ejected charge (i.e. on both electron probes) as a function of the gradient length. As
previously, the ejected charge increases with the gradient scale length until it reaches a
maximum for L ~ \/4. This qualitatively confirms the observations from the 1D PIC
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Figure 3.29: Results of 2D PIC simulations for ap = 3 and various gradient lengths. Ejected
charge as a function of the gradient length. Electrons are sorted depending on their final
emission angle: @4 is the charge for electrons with 6 > 45° and @Q_ is the charge for
electrons with 6§ < 45°, so that Q = Q_ + Q+

simulations, although the optimal gradient length L,,,, is longer: L, ~ A/4 instead
of Lpae >~ A/10 in 1D.
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Figure 3.30: Final angle-energy distribution for a)L. = A/8 and b)L = \. The vertical dashed
black line shows the specular direction. )— and ()1 are shown as the total charge on the left
and on the right of the dashed line.

Previous experiments showed that for short gradients, electrons are emitted between
the normal and specular direction, so that the electron beam is not symmetric around
the specular direction. This asymmetry can be explained by the dynamics of electrons
in the reflected field while they undergo vacuum laser acceleration, as explained in
chapter 4.

To take into account this asymmetric emission, the ejected electrons are sorted as
a function of their final emission angle. We define ()_, the ejected charge of electrons
with angles < 45° (i.e. between the normal and specular direction) and @, as the
charge for electrons emitted with angles > 45° (i.e. between the specular and grazing
directions). This is shown in figure 3.29, where @)_ decreases for gradients above
L ~ \/4, while Q4 increases for long gradients. The behaviour of )_ is consistent
with the plasma capacitor scenario while the opposite behaviour of (), indicates a
different ejection mechanism which dominates for longer gradients. These two regimes
give rise to significantly different angular distributions, as seen in figure 3.30 a) and b).
Panel c) shows the angle-energy distribution in the case of a short gradient (L = \/8)
for which the majority of electrons are ejected with angle 6 < 45°. In this case, the
ponderomotive force bores a hole close to the specular direction as it pushes electrons
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away from the laser pulse, see chapter 4. Panel d) shows the case of a longer gradient
(L = \): more electrons are ejected along the target, indicating a different emission
process.

Conclusion: This chapter presents a description of the backward electron ejection
mechanism in the relativistic regime. Plasma fields are shown to play a major role.
This periodic emission leads to a train of attosecond electron bunches injected in the
reflected field.

In the case of a step-like density profile, the ejection mechanism is described as
a push-pull mechanism occurring at each laser period, where electrons are gathered
in a sharp density peak that oscillates around the plasma surface. A small fraction
of the electrons contained in the peak escape the plasma along the reflected field. A
numerical study was performed using 1D PIC simulations in the range 1 < a¢ < 20 and
5 < ng/n. < 15. The ejected charge depends on the S = ng/ag parameter, and PIC
simulations showed that no electrons are ejected above a threshold value St[qu ~ 0.85.
We developed a model, based on Gonoskov’s relativistic electronic spring model, that
reproduces this threshold SI™* = 0.8. Above this threshold, plasma effects are not
strong enough to counter the gyromagnetic effect, which inhibits electron ejection.

This analysis is extended to the case of a largely overdense plasma ny,; ~ 2000,
with an exponential density gradient on its front side, which is the configuration of
most experiments. The ejection process is similar to the case of a step-like density
gradient. A scan of 1D PIC simulations is performed as a function of two major
parameters, ag and the gradient length L, showing an optimal value for the gradient
length L, ~ A/8. The regime L < A shows no ejection of electrons because it is
dominated by the gyromagnetic effect. On the opposite, L > \/27 shows a drop in
ejected charge because the density peak description breaks.

Finally, ion fields due to charge-separation in the plasma are shown to play a dom-
inant role for electron ejection. The electron density peak is pushed inside the plasma,
creating an ion capacitor. The maximum depth z,; is derived for the step-like pro-
file and the gradient profile assuming L < A/27, and the corresponding electrostatic
potentials, normalized by the incident wave amplitude, read

¢step (-CEM) o 2 COS5 9 ¢gradient (ajM) o 2L

ag S(1 —sinf)? ao 1 —sinf’

(3.55)

The higher this potential, the more energy is transferred from the plasma to the elec-
trons, and the higher the ejected charge. While ¢gep/ao depends on ay and ng via the
S parameter, @guadient/@o 1S simply proportional to the gradient length, showing the
importance of this parameter.
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Introduction

As shown in chapter 3, the reflection of an ultraintense laser pulse off a plasma mirror
leads to injection of attosecond electron bunches in the reflected field. In this chap-
ter, we demonstrate that these electron bunches can afterwards be accelerated in the
reflected field via vacuum laser acceleration (VLA), as illustrated in figure 4.1.

Over the past decades, direct acceleration of electrons by light in vacuum has at-
tracted considerable interest and has been extensively studied theoretically, see refer-
ences [Dodin & Fisch, 2003; Esarey et al., 1995; Hartemann et al., 1995; Maltsev &
Ditmire, 2003; Pang et al., 2002; Salamin & Keitel, 2002; Stupakov & Zolotorev, 2001;
Varin & Piché, 2006; Yu et al., 2000]. The underlying idea is to inject free electrons
into an ultraintense laser field so that they always remain within a given half optical
cycle of the field, where they constantly gain energy until they leave the focal volume.
During this process, the Lorentz factor y can be increased by 4a2v, for electrons with
relativistic initial energy in a monochromatic plane wave.

Yet very few experiments were performed in this regime because VLA occurs effi-
ciently only for electrons injected in the laser field with specific initial conditions that
are extremely challenging to fulfill experimentally (see [Dodin & Fisch, 2003]). Indeed,
in order to stay in phase with the laser field, electrons need to have initial velocities close
to ¢ along the laser propagation axis. In addition, they should start interacting with
the intense laser beam already close to its spatial and temporal maxima, and even be
injected at appropriate phases of this field. Electrons that do not satisfy these stringent
requirements tend to explore many different optical cycles and undergo ponderomotive
scattering, resulting in a low energy gain (see section 2.2.4).

In this chapter, we show how plasma mirrors can be used as electron injectors in the
reflected laser field, providing a simple experimental solution to study the interaction
of free electrons with intense lasers in vacuum. This chapter is organized as follows:
section 4.1 describes the basic mechanisms for vacuum laser acceleration. The fun-
damental Lawson-Woodward theorem is demonstrated, and its limits are pointed out.
Section 4.2 describes the two typical dynamics for an electron travelling in a laser pulse:
ponderomotive when electrons oscillate many times before leaving the laser pulse, and
VLA when electrons undergo sub-cycle acceleration before escaping the pulse in the
polarization plane. Finally, the use of plasma mirror injectors for vacuum laser acceler-
ation is presented in section 4.3. We present experimental results backed with a model,
showing that the use of a plasma mirror allows for a considerable amount of electrons
to undergo vacuum laser acceleration.
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Figure 4.1: Injection of relativistic electrons in ultraintense laser fields using plasma mirrors.
a) Injection of electron bunches from the plasma mirror in the reflected field. b) Electron
trajectories in the reflected field (blue lines). The pulse on the right is an aid to the eye.

4.1 Basics of vacuum laser acceleration

4.1.1 Particle acceleration

Conventional Wakefield Laser field
50 MV/m 100 GV/m 10 TV/m

Figure 4.2: Picture of the Large Hadron Collider at CERN, schematic of a laser wakefield
accelerator and electric field in a laser pulse, with the corresponding typical electric fields.

In a particle accelerator, charged particles are accelerated by an electric field £
over a certain distance D. In the case of a static homogeneous field, the final particle
energy varies as £ o« E x D. Conventional accelerators rely on a weak electric field
E ~ MV/m and a long accelerating distance D ~ km, making them extremely large
facilities. The most famous of its kind, the Large Hadron Collider at CERN, has the
shape of a ring with a perimeter of 27 km.

The cost of these facilities led physicists to search for more compact accelerators.
Plasma-based accelerators allow the generation of much higher electrostatic fields £ ~
100 GV /m that accelerate particles to relativistic energies within a short distance D =
100 pm — 1 m. This is summarized in figure 4.2. To go further, the highest electrostatic
fields one can make in a laboratory are those inside a laser pulse, where they can reach
E ~10TV/m. The conversion with normalized units reads

E =4ay TV/m. (4.1)
This is the underlying idea of vacuum laser acceleration, which was studied in refer-

ences [Esarey et al., 1995; Hartemann et al., 1995]. Note that the energy gain via VLA

scales as AE[MeV] ~ 35,/P[TW| where P is the power of the laser beam, as shown
in reference [Mori & Katsouleas, 1995]. The maximum energy gain is much higher for
laser wakefield accelerators, so VLA does not compete with these accelerators when
the aim is to get the fastest electrons.
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Figure 4.3: a) Electron dynamics in a monochromatic plane wave with ag = 0.1. The electron
starts with speed v = 0 at a field node z = 0. Note that there is no time-envelope, so the
electron starts inside the wave. c) Forces on the electron. b) and d) shows the same quantities
for ap = 10. There is no motion along ¥ in these cases.

We consider an electron propagating in a linearly-polarized laser pulse. The wave
propagates along z and is polarized along x. In the monochromatic plane wave approx-
imation, the electric and magnetic fields and the equation of motion for an electron are
given in chapter 2 on page 66 and read

E = Eysin(wot — k2)e, (4.2)
E

B = ?0 sin(wot — kz)e, (4.3)

d

d—IZ:—e(E+va) (4.4)

so that the electron oscillates in the x direction because of the electric field and its
velocity direction is bent towards the propagation direction z by the v, B, magnetic
force. Figure 4.3 shows the electron momentum along time for ag = 0.1 and ag = 10.
The electron is initially immobile at ¢ = 0 and z = 0.

In the non-relativistic case — panels a) and ¢) — the magnetic force is negligible and
F, < F, where F, and F, are the z and  components of the total force respectively.
The electron is driven by the electric field and oscillates almost exclusively in the
polarization direction x. The displacement along z is negligible (Az < ), so that
the electron oscillates at the laser period (Tie. ~ Tp). In this regime, |p|/mec ~
|pz|/mec =~ ag, and very little acceleration occurs.

On the contrary, in the highly relativistic case ay = 10 — panels b) and d) — the
electron momentum is mostly directed towards the propagation direction z because of
the magnetic force and the z component of the total force is dominant: F, > F,. The
displacement along z is very large Az > A, and the electron dephases very slowly in
the laser field. Hence, the period of its oscillations is much longer (T, ~ 807). In
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this regime, |p|/mec =~ |p.|/mec > ag, and one can expect very high energy gain if the
electron can escape the pulse when its energy is maximum. This is the regime we
call vacuum laser acceleration.

In this regime, the electron remains for a long time in the same phase of the laser
field, so that the electric field effectively transfers energy to the electron. The magnetic
force does no work, but instead bends the electron trajectory towards the propagation
direction. Assuming 3, — 1, the equation of motion gives

dpx €E0

~ 9 4.5
dt 272 (45)
dp.
CZ ~ —cEy (4.6)

so that the total force along z is much higher than that along x when the electron has
a relativistic speed along z, hence v > 1. In what follows, we derive the conditions
under which the electron effectively gains energy.

4.1.2 Lawson-Woodward theorem

The most famous theorem dealing with particle acceleration by electromagnetic fields
in vacuum is the Lawson-Woodward theorem [Lawson et al., 1979; Woodward, 1946]
(see also [Esarey et al., 1995]), which states that in a 3D configuration, under some
hypotheses, a particle cannot gain energy from an electromagnetic wave. It is massively
invoked as a deadly argument against particle acceleration in vacuum by a laser pulse,
though its scope of validity is, at the least, limited. In this paragraph, we present the
theorem, its proof and its limits.

Theorem

Consider an electron propagating in an electromagnetic wave with propagation and
polarization directions both in the x — z plane, for example a laser pulse propagating
along z (respectively x) and polarized along = (respectively z). Let us assume

(H1) no boundaries: The wave is in vacuum, there are no boundaries;

(H2) no external field: There is no electrostatic or magnetostatic external field;

(H3) electron travels at the speed of light: The electron propagates with veloc-
ity v = ce,, hence infinite energy;

(H4) infinite interaction region: The interaction takes place from ¢t = —oco0 —
400, and z = —00 — 400.

(H5) no non-linear forces: The vx B force, ponderomotive force etc. are neglected.

Result: An electron interacting with an electromagnetic wave under these conditions
does not gain energy between ¢t = —oo and ¢ = 4-00.

Proof

We consider the field component with angular frequency w. The Helmholtz equation —
using (H1) and (H2) — and the subsequent dispersion relation read
2

w
w? 2 2 2
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Starting from the definition of the Fourier transform in space E of E and injecting the
dispersion relation, we get, for the E, component:

B = [ [ Bulle by )eerthorttsetap, (4.9)
where we used
w? 2 2
k, = = k2 l{;y (4.10)

for convenience. Gauss’s law in vacuum reads V - E = 0, giving the relation between
the Fourier-transformed components of the electric field:

k.E, + k,E, = 0. (4.11)

According to (H3), the electron velocity is along z, so only the electric force —eF,
can work. This shows how strong the hypothesis v = ce, is: no oscillation due to the
electromagnetic wave is allowed. Besides, we can set x(t) = 0 and y(t) = 0 for the
electron at any time, and z(t) = ct. The final energy gain for the electron is given by
the work of the force due to E., proportional to

r=cf :° AL (x(t), y(t), 2(¢)) (HA) (4.12)
- / " 42E.(0,0, 2) (4.13)

_ _/ dz//dk dk By, k) tk=e/)2 (4.14)
_ / / dk, dk: B, (ks K, ) / el (4.15)

- - / / k—zdkzdkyEm(kx,ky)é(kz —w/o), (4.16)

by virtue of 2r [T e*®dy = §(a). Let us finally switch to cylindrical coordinates

ky = ki cos¢ and k, = k sin ¢:
I, — / / ML o8 0B, (k1 cos ¢, k. sin d)d(k, — w/c)dodk . (4.17)

The integration is not trivial because the integrand diverges for k, = \/w?/c2 — k% =0,

i.e. ki =w/e. Yetit varies as 1/1/%(k; —w/c), and is integrable. Hence, we can apply
the Dirac function which is non-zero for k; = 0, giving the final result

I.=0. (4.18)

Limits
In spite of its presumed general scope of application, this theorem shows severe limits.

While there is little restrictive condition on the electromagnetic wave (provided it is
linearly polarized), there are strong assumptions on the electron dynamics:

(H3) electron travels at the speed of light This hypothesis assumes v, = ¢ dur-
ing the whole interaction. It has the following consequences: first, the electron
has infinite energy. Second, only E, can do non-zero work. Yet in the plane
wave approximation (see figure 4.3 a) for example), the electron travels essen-
tially along 2z and the only field with non-zero work is E,. Besides, it obviously
states that the laser field does not perturb the electron trajectory.
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(H5) no non-linear forces The v x B force is neglected. Figure 4.3b) and equa-
tions 4.6 show that the dynamics of a relativistic electron can be mostly driven
by the magnetic force, especially when the electron travels along the propagation
direction.

These are general limits to the Lawson-Woodward theorem. Besides, our setup
brings specific limits:

Boundaries In our case, we will set an external boundary and external fields using a
plasma mirror, hence breaking hypotheses (H1) and (H2) — and (H4).

Electron driven by electromagnetic fields The electron travels in the laser pulse
with initial speed smaller than ¢, and its dynamics is strongly deteriorated by
these fields, breaking hypotheses (H3) and (H5) in the relativistic regime.

When trying to accelerate electrons in a laser wave, one has to justify that at least
one hypothesis is broken. In our case, at least four hypotheses are violated, and the
results are presented in section 4.3.3.

Plettner’s experiment

A remarkable experimental work was performed in reference [Plettner et al., 2005].
Though the authors claim a new acceleration mechanism, they bring even more note-
worthy results on the Lawson-Woodward theorem and its limits.

a) b)

30} + laseron ot

w3 30F + laseron = T
og| © laseroff 47

~29\ © laser off —_—
S

I\
N

21}

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
280 285 290 295 300 305 370 315 320 20580 585 560 595 300 305 390 315
laser timing (psec) laser timing (psec)

Figure 4.4: [Image from reference [Plettner et al., 2005]] a) Final energy spread of the electron
beam as a function of delay between electron beam and laser pulse, in presence of a boundary.
The experimental configuration is shown in the inset, where the electron beam propagates
along the blue line and the laser pulse is represented by the yellow area. b) shows the same
as a) with no boundary.

A 30MeV electron bunch propagates in the z direction, and meets a laser pulse
at focus (z = 0), with a small angle to the z direction. The laser pulse is 4 ps-long
with energy of 2 uJ, giving a peak field strength ay < 0.1. Note that the normalized
initial electron momentum pg/mec ~ 60 is much higher than the laser peak amplitude
po/mec > ayp, so that the electrons are expected to show little deviation by the laser
— (H3) and (H4) are verified. The authors measure the energy spread of the electron
bunch after the interaction. In these conditions, all the hypotheses (H1-H5) are verified,
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and the final energy spread is the same with and without the laser pulse, as shown in
figure 4.4b).

Then, a boundary parallel to the z — y plane at z = 0 was added. This boundary
is a thin tape that reflects the laser pulse without troubling significantly the electron
bunch, hence breaking hypothesis (H1). They observe that the energy spread of the
electron beam is increased during this interaction, as shown in figure 4.4b). Some
electrons in the beam gain or lose energy during this interaction.

This experiment shows an illustration of the Lawson-Woodward theorem when all
its hypotheses are verified, as well as the possibility to break (H1) to accelerate elec-
trons. Yet their setup is not meant for electron acceleration, since it finally degrades
an externally-generated high-quality 30 MeV monoenergetic electron beam.

4.2 Electron in a laser pulse: typical behaviors

4.2.1 Introduction

The dynamics of electrons in a laser pulse can be extremely diverse and strongly de-
pend on their initial position and momentum. Yet any trajectory can be compared
with two archetypal orbits. First, ponderomotive dynamics stands for electrons that
see many oscillations in the laser field and undergo the average ponderomotive force
(see chapter 2) until they leave the pulse. Second, VLA dynamics designates electrons
travelling close to the speed of light along the propagation direction z, which remain
in the same phase of the laser pulse. They are accelerated in the polarization plane
z — x until they escape the pulse. The laser field at the electron position remains posi-
tive (respectively negative) while the electron is in the laser pulse, so that the electron
finally escapes the pulse with p, < 0 (respectively p, > 0).

We consider the dynamics of an electron in a linearly polarized laser pulse with
Gaussian space and time profiles, in the relativistic regime. The laser parameters are
A= 0.8um, ay = 4, wyg = Hpum = 6.25), pulse duration 7, = 30fs and the pulse is
focused in the plane z = 0 at t = 0. All the simulations in this chapter are performed
with the test-particle code, using first-order field corrections (see section 2.2.3,
page 70). The laser phase is such that, around x = 0,y = 0, the electric field reads

E x +sin(kz — wot)e,. (4.19)

Note that, with this notation, the electric and magnetic fields are zero at t = 0 and
z = 0. The electron is characterized by its position R = (z,y,2) and momentum
P = (p.,py,p.). The simulation starting time is called ;.

The ponderomotive and VLA dynamics are studied in sections 4.2.2 and 4.2.3 re-
spectively. As an illustration, a typical ponderomotive trajectory is plotted in figure 4.6
(page 122), and a typical VLA trajectory is shown in figure 4.9 (page 124). Both were
obtained using the laser parameters described above, for an electron starting with
P, = (0,0,1)mec, i.e. with kinetic energy & =~ 200keV. The only difference is the
initial electron position with respect to the laser pulse.

Figure 4.5 a) shows the configuration for the ponderomotive dynamics. The electron
starts outside the pulse with t5; < 0, and is overtaken by the laser pulse around ¢t = 0
and z = 0. This configuration leads to a ponderomotive electron trajectory.

Figure 4.5b) illustrates the configuration we use to investigate the VLA dynam-
ics. The electron starts inside the pulse around the focal spot with ¢, = 0. This
configuration gave the VLA electron trajectory.
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Figure 4.5: Two initial configurations for electron dynamics. In configuration a), the electron
motion starts before the laser pulse, where the pulse envelope is zero, and is overtaken at
t = 0 and z = 0. This disposition mostly leads to ponderomotive scattering. In configuration
b), the electron starts at focus in the center of the pulse with initial speed along z. With
ultraintense tightly-focused laser beams, this can lead to vacuum laser acceleration.

The Lawson-Woodward theorem does not apply to these configurations because the
electron shows strong oscillations in the laser polarization directions — (H3) and (H5)
are violated. Besides, the second configuration — figure 4.5b) — also breaks hypothesis
(H4) because the electron motion starts at ¢t = 0 inside the laser pulse, and may result
in a high energy gain.

A major difference between these two cases is the initial transverse
canonical momentum. When the electron starts before the laser pulse, the laser
vector potential is zero, so that the transverse canonical momentum P,y = p,o = 0.
On the opposite, an electron inside the laser pulse at t,; = 0 with z,; = 0 starts at a field
node (see equation 4.19), i.e. with a maximum vector potential, and P, y/m.c = ape,.

4.2.2 Ponderomotive behaviour

Electron trajectory

The electron starts with Ry = (—1.5,1.1,—68.4)A and P,; = (0,0,1)m.c and the
simulation starts at t5; = —987, so that both the maximum of the pulse envelope and
the electron reach z =0 at t = 0.

The result of this run (these_traj_1) is shown in figure 4.6 a). When the electron
is overtaken by the laser pulse, it oscillates in the laser field — see panel ¢) — and is
ejected with little energy gain (v = 3 at the end). The electron undergoes the average
ponderomotive force, as discussed in section 2.2.4 page 71, and is ejected transversely
— see panel a).
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Figure 4.6: a~c) Dynamics of a ponderomotive electron. The electron starts with p, = 1 before
the laser pulse, and is overtaken around ¢t = 0. Its transverse position x, Lorentz factor ~
and the electric field at the electron position are plotted as a function of time in a), b) and
c) respectively.

Axisymmetric hole

A simulation in this configuration was run with 100 000 electrons, with the same laser
parameters. The initial electron distribution is Rg+or = (0,0, —68.4)£(3.1,3.1,0.1) A
and Py +0p = (0,0,1) £+ (0.1,0.1, 1)mec. o stands for the standard deviation of the
initial Gaussian distribution for both quantities. The simulation starts at t;; = —98T7,.
The run name is these_compvlapond_1.
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Figure 4.7: Final electron distribution for run these_compvlapond_1 in the first configuration
~figure 4.5 a)— far after all electrons have left the pulse. a) angular distribution. (0,0) is the
propagation direction. b) Angle-energy distribution. ¢) Final spectrum for the total electron
population.

The final angular distribution is shown in figure 4.7 a), where one can see a clear
hole in the laser propagation direction. Besides, the distribution is axisymmetric,
even though the laser fields are not because of the linear polarization. This is a clear
signature of ponderomotive scattering. The final energy remains below 1 — 2 MeV, as
shown in figure 4.7b) and c).

The initial energy is &€ ~ 200keV, so the electrons show little energy gain. Note
that the maximum energy gain is comparable with the ponderomotive potential ¢, =
mec?ad /4 = 2MeV for ag = 4.

122



CHAPTER 4. VACUUM LASER ACCELERATION

Scaling laws: angle-energy correlation

Relying on Hartemann’s calculations presented in chapter 2, we derive a general formula
that links the final propagation angle § = atan 3./3. (with 32 = 32 + ﬁz) and the
Lorentz factor of the electrons. This derivation is done in reference [Hartemann et al.,
1995].

Consider an electron propagating in a monochromatic plane wave, starting with
initial phase ¢ = 0 and speed v/c = (0,0, 5.9), as in section 2.2.1 (page 66). The
definition of the Lorentz factor gives

B:  A*—1-+%52

B (4.20)

and the conservation equation 2.53 reads
(L = B:) =01 = Bz0)- (4.21)
Using again vo(1 — B.0) = 1/70(1 + 5.0) and the conservation equation, we remark that
P =1=722 = =14+ 2v(1 = B0) — 75(1 = Bz0)? (4.22)
- - +25zo (30 - 1) , (4.23)

and equation 4.20 gives the following equation between the electron propagation direc-
tion @ and its Lorentz factor

oo () (3 -1)
() = T B 42

This relation was also derived by Brice Quesnel in reference [Quesnel & Mora, 1998]
relying on the ponderomotive force.

This result was confronted with a scan of simulations with the test-particle
code. The laser pulse parameters are ag = 4, wg = 5 um, pulse duration 30fs, A =
0.8 um, focused on z = 0 at ¢ = 0. The initial conditions for the electron distribution
are Ry = (0+3,0+£3,20+ 1)\ and Py, = (0,0, p.o). The electron bunch starts before
the main pulse, and z; is set as a function of p.g, so that the electron bunch and the
laser pulse meet at focus at ¢t = 0.

The scan consists in five simulations these_pond_thetagamma_(1-5) with p.o/m.c =
0,1,2,3,4. Figure 4.8 shows the final angular distribution for these simulations. The
distribution is axisymmetric and shows a clear hole in the propagation direction, which
are characteristic features of the ponderomotive force. The black dashed line was cal-
culated using equation 4.24, and shows excellent agreement with the simulation results.

Note that the final distribution in figure 4.8 a) (p,o = 1) is perfectly axisymmetric
while figures 4.8d) and e) show a slight asymmetry: two bulbs can be seen in the
polarization direction z, on the left and on the right of the central hole. When p.q is
higher, the quiver velocity of the electrons increases, and few electrons escape the pulse
via the VLA mechanism.

4.2.3 VLA behaviour

Electron trajectory

In the configuration shown in figure 4.5b), the electron starts inside the laser pulse.
Simulation these_traj_2 was run with ¢4 = 0 and Ry = (0.6,0, —0.1)\. The phase
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Figure 4.8: Final electron angular distributions in the first configuration shown in figure 4.5 a).
The doughnut-shaped axisymmetric profile is a signature of ponderomotive scattering. The
black dashed circle stands for the application of equation 4.24. The initial electron momentum
pz/mec for each image is a) 0; b) 1; ¢) 2; d) 3; e) 4.

is ¢g/2m = —0.1 (with E, = Eysin ¢, see equation 4.19), so that the electron starts
close to a field node. All other parameters are the same as in figure 4.6, in particular
P, = (0,0, 1)mec.

0 50 100 150 200
t (laser period)

Figure 4.9: a-c) Dynamics of a VLA electron. The electron starts with p,/m.c = 1 inside the
laser pulse, at t = 0 and z = 0. Its transverse position x, Lorentz factor v and the electric
field at the electron position are plotted along time in a), b) and c¢) respectively.

The electron trajectory is shown in figure 4.9, and is dramatically different from
the ponderomotive case. The electron does not oscillate in the laser pulse, but rather
remains in the same phase of the laser field: E, < 0 all along its trajectory, as shown
in panel c¢). Hence, it is accelerated all along its propagation by the electric field in
the polarization direction, and escapes with a high energy (v = 100). This satisfies our
previous definition of VLA.
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Spot in the polarization plane

As for the ponderomotive case, a simulation in the second configuration — figure 4.5b) —
was run with 100 000 electrons, with the same laser parameters. The initial electron dis-
tribution is Rgtor = (0,0,0)+(3.1,3.1,0.1)A and Py+op = (0,0,1)%(0.1,0.1, 1)m.c.
This gives ¢g/2m = 0+ 0.1 (see equation 4.19). The simulation starts at t5; = 0 The
run name is these_compvlapond_2.

a b c
) ) v 9 0
-20
0 N 3150
> S 20 p
[0} (O] -~
S 0 s w 100
> 20 w20 10 > 50
20 \ ©
0 0 0 0
20 0 20 20 0 20 0 50
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Figure 4.10: Final electron distribution for run these_compvlapond_2 in the second configu-
ration — figure 4.5b) — far after all electrons have left the pulse. a) angular distribution. (0, 0)
is the propagation direction. b) Angle-energy distribution. c¢) Final spectrum for the total
electron population.

The final angular distribution is shown in figure 4.10 a), where there is an electron
spot in the polarization direction. In figure 4.10b) one can see a clear correlation be-
tween the final angle and energy of the electrons. The closer from the propagation axis,
the higher the energy. The spectrum shown in figure 4.10c) extends up to tens of MeV,
so the final energy of fast electrons has been multiplied by a factor of approximately
100.

Scaling laws: angle and energy

In this section, we derive an estimate of the ejection angle and energy of electrons
that start moving inside a laser pulse and undergo vacuum laser acceleration. We first
consider the dynamics of an electron in a plane wave.

The dynamics of an electron in a low-intensity (ap = 0.1) plane wave is shown in
figure 4.11 a). The electron oscillates mostly in the polarization direction x at the laser
frequency. The electron displacement along z is negligible (< p, >;< mcc), so the field
phase at the electron position varies linearly ¢ ~ wpt, as shown in figure 4.11c). p(¢)
is plotted in figure 4.11¢), and shows no difference with p(t), see figure 4.11 a).

The dynamics differs significantly when the wave intensity becomes largely rela-
tivistic ag = 10, as shown in panel b). < p, >;>> m.c, so the electron experiences a
very slow phase shift, as can be seen on panel d). The electron experiences a 27 phase
shift within ~ 80 laser periods.

In both cases, E, = Eysin ¢ = Ejsin(wot — kz), so the electric and magnetic fields
are positive for 0 < ¢ < 7 and negative for 7 < ¢ < 2m. The electron starts with
¢st = 0 and is accelerated towards —x until ¢ = 7 and then decelerated, where the
electron gets dephased.

Dephasing length: When ¢ > m, the electron starts being decelerated, so its max-
imum energy is reached for ¢ = m. The dephasing length is given by z(¢ = 7) for an
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Figure 4.11: Dynamics of an electron in a plane wave in the non-relativistic (ag = 0.1)
and relativistic (ap = 10) cases. a) Momentum components along the polarization (p,) and
propagation (p,) directions as a function of time. ¢) Phase ¢ = wot — kz(t) of the wave at the
electron position as a function of time. ¢ ~ wpt. €) Momentum as a function of the electron
phase in the wave. b), d) and f) are the same as a), ¢) and e) for ap = 10. ¢ # wpt. In both
cases, the electron starts at rest at a field node, and the time span correspond to a 87 phase

shift in the wave.
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electron starting at z = 0 with ¢4 = 0 and vy = (0,0, 5.0c). It is readily obtained
from equation 2.64 (page 67), and reads

BzO + %G(Z)(l + BzO)
1- 620 '

This estimate is valid as long as Lgeyn S 2gr, otherwise the plane wave approximation
does not hold. The limits around .9 = 0 and 1 read

deeph =T (425)

3
k Loy, — fag when .9 — 0 (4.26)
3
kLgepn, — 2708 (1 + Qag) when .0 — 1 (4.27)
| a) Gauésian enveiope | | 5l b) Squére envelobe
= 4 ||"|||§’H o [l
x
5 . 5}
0 10 20 0 10 20
z(n) z(n)

Figure 4.12: Model for side ejection: the Gaussian pulse (a) is approximated by a square-
envelope plane wave.

A Gaussian pulse is approximated by a plane wave with a square envelope, as shown
in figure 4.12. This is a 2D extension to the plane wave approximation, so that we can
use Hartemann’s analytical results and model the electron ejection.

Side ejection: A Gaussian pulse with peak amplitude aq is approximated by a
square-envelope pulse with total width 2w constant amplitude ags. We assume the
energy in the volume 0 < z < zp is the same for both envelopes, giving ags =~ ag/2,
and study the dynamics of an electron in this square-envelope pulse. Vacuum laser
acceleration is optimal if the electron is accelerated all along its propagation until it
leaves the pulse. In other words, the electron undergoes VLA if it escapes the pulse
(x = twy) before it gets dephased (¢ = 7). Using equation 2.63, this condition reads

Taps

kx(¢p=7) = ———— > kuwy, 4.28
(@ ) Yo(1 = Bzo) " ( )
giving the following condition for VLA:
211)0
Yo(1 + Bz0)aos > ——- (4.29)

A

Estimate for angle and energy at ejection: Let us assume z(¢ = m) = wy, so that
the electron escapes the pulse with its highest energy. Equations 2.60-2.62 (page 67)
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simulation ag wo P20 | 0(p20)
a)these_enervla_1 | 4 | 6.25A=5um | 4 2
b)these_enervla 3 | 4 | 125A=10pum | 8.4 | 4.2
c)these_enervla_4 | 2 | 6.25A=5pum | 3.5 | 1.75

Table 4.1: Simulation conditions in the scan for VLA scaling laws. All simulations were run
with the test-particle code, with 10 000 electrons, 7, = 30fs. The electrons started in the
pulse center, at a field node, with ¢ = 0 and Gaussian distribution (zg,yp) = (0+5,0+5)\
and (pz0,pz0) = (0£1,0 £ 1)mec.

give the following estimates for the ejection angle and energy, expressed directly as a
function of ag, (not ags):

Yej = Yo [1 4 2a0(1 + Bz0)] (4.30)
2&0
Yo [Be0 + 2a3(1 + B0)] |

f.; = atan (4.31)

A set of simulations was performed with the test-particle code where the condi-
tion Lgepn, = zr was always satisfied. The simulation parameters and results are shown
in Table 4.1, and the results can be found in figure 4.13. The final energy-angle dis-
tribution is shown, along with the estimate values from equations 4.30 and 4.31. This
simple extended 1D model reproduces remarkably the trends observed in numerical
simulations.
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Figure 4.13: Angle-energy electron distribution from a test-scan for in the second configura-
tion — figure 4.5b). The simulation parameters are given in table 4.1. The black ring stands
for theoretical values from equations 4.30 and 4.31.

4.2.4 VLA/ponderomotive ratio

The previous sections illustrated how electrons starting before the laser pulse could
be scattered by the ponderomotive force, and how electrons starting inside the laser
pulse could undergo vacuum laser acceleration. Yet the dynamics can be fairly more
complex, and both configurations can lead to both dynamics.

First, when an electron is overtaken by the laser pulse, it oscillates in the polariza-
tion direction. If the amplitude of this quiver motion is higher than the beam waist,
the electron can escape in the polarization direction, with a higher energy gain. As an
example, this occurs for some electrons in figure 4.8e), forming the two bright spots
along z, on both sides of the propagation direction.
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Second, an electron starting in the laser pulse may oscillate in the laser fields
and be scattered by the ponderomotive force. For an electron starting with velocity
v // e, ponderomotive scattering occurs preferably when the electron starts at a field
maximum, where its transverse canonical momentum is zero Py = po + a9 = 0,
whereas VLA happens when the electron starts with a maximum canonical momentum
P o=pio+a,y=ape,. A detailed example can be found in section 4.3.5.

This section is dedicated to general trends of electron dynamics in a laser pulse.
Starting with a large initial electron distribution, we focus on average effects and find
a criterion that discriminates VLA and ponderomotive behaviours. The electron dis-
tribution starts inside the laser pulse because it is more relevant for section 4.3. The
ratio of VLA electrons is shown to depend on a single parameter I1.

Because the number of free parameters for the electron distribution is extremely
large, we restrict ourselves to Ry = (0,0,0) and Py = (0,0,p.0 £ 0,). The role
of the laser parameters and p.y, which we consider to be the dominant parameters,
are identified. The probability density function for the electron Lorentz factor f., is
Gaussian with mean value p and standard deviation Iy, with g > 1.

2
fro(z) = _t exp (—M) : (4.32)
\/ 27TF02 QFO

Let us rely once again on the square-envelope approximation used before: the laser

pulse has a square envelope with total width 2w, and amplitude ags = ag/2. The

escape time t.g. is defined as x(t.s.) = Fwp. Consider an electron with initial velocity

v/c = [,0e, and associated Lorentz factor 7y starting with ¢y = 0 in a laser pulse.
The quiver amplitude x4, for an electron is calculated in section 2.2.1 and reads

kx guiv = a0s70(1 + Bo). (4.33)

The electron undergoes VLA provided @4, > wy. For the initial distribution given in
equation 4.32, the probability for an electron to satisfy this condition is given by

k
P[VLA] =P [70(1 + B:0) > ;;JO] (4.34)
k
=P |y > 2w0] , assuming o > 1 (4.35)
Qos

After integration, this probability reads, as a function of aq,

1

PVLA| = Eerfc(l_[) (4.36)
B —
where [T = % (4.37)
and erfc is the complementary error function defined on R as
fo(z) = — /+°° gy (4.38)
erfe(z) = — e : .
VT Ja

This function is depicted in figure 4.14.
The smaller 11, the higher the VLA ratio. The global trends are intuitive: VLA is
favored by a higher mean Lorentz factor y or a smaller beam waist wy.
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Figure 4.14: Complementary error function erfc.

simulation | ag Wo I 17 %VLA
these_vla_1 | 8 8 um = 10\ 8 0 ™%
these_vla_2 | 8 | 5:3um=6.6\ | 8 | —1/2| 8%
these_vla_ 3| 8 | 1lum=138\| 8 | +1/2| 66%
these_vla_4 | 12 | 8pum = 10\ 8 | —1/2| 86%
these_vla_5 | 5.8 | 8um = 10\ 8 | +1/2 | 68%
these_vla_6 | 8 8um =10\ | 10.7 | —=1/2 || 83%
these_vla_ 7 | 8 8 pm = 10\ 5 | +1/2| 5%

Table 4.2: Simulation condition for a scan in II parameter. All simulations were run with the
test-particle code, with 10 000 electrons, Iy = 4, 71, = 30fs. The electrons start in the
pulse center, at a field node, with ¢y = 0 and Gaussian distribution (zg, yo) = (0 £ wp/2,0+
wo/2) and (pzo,pz0) = (0£ 1,0 £ 1)mec.

We performed a set of numerical runs to illustrate this result. The simulation condi-
tions are shown on table 4.2. Simulation these_vla_1 was run for I/ = 0. Simulations
these_vla_2,4,6 were run with /] = —1/2 varying wy, ag and p respectively. Simu-
lations these_vla_3,5,7 were run with IT = +1/2 varying wy, ag and p respectively.
The result is shown in figure 4.15, where the ratio of VLA electrons is plotted as a
function of the II parameter.

The simulations run until all electrons have left the pulse. Electrons are considered
to have a VLA dynamics if they remain in the same optical cycle (see < 1 sign change
of the electric field) until they leave the pulse. An electron is considered out of the
pulse if the laser amplitude at the electron position is smaller than aq/100.

Expression 4.36 gives P[VLA|(II = 0) = 50%, P[VLA|(II = —1/2) = 76% and
P[VLA|(IT = +1/2) = 24%. The absolute values do not match the simulation results
because of the rough approximations we have made (plane wave, o0, = o, = 0 and
Ope = 0py = 0 for the initial distributions in the derivation), but the trends are very
well reproduced, and I appears to be the relevant parameter. Note that, for u = 5,
hypothesis 79 > 1 is a bit weak because vy = 5 + 4.

In this section, for a given initial electron distribution inside a laser pulse, we derived
a parameter I/ that discriminates whether vacuum laser acceleration or ponderomotive
scattering is the dominant mechanism. We showed that VLA was dominant for IT < 0.
On the opposite, when IT > 1, most electrons have ponderomotive dynamics.
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Figure 4.15: Ratio of VLA electrons as a function of the IT parameter. Simulations were run
with 10000 particles. The laser parameters are described in table 4.2.

4.3 Vacuum laser acceleration using a plasma mir-
ror injector
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