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Résumé

La localisation de la déformation dans un milieu ductile déformé est le mécanisme d’instabilité

qui provoque la défaillance finale. Ce phénomène se produit sous chargement statique ainsi que

dynamique. Les exemples sont présentés pour le cas de chargement quasi-statique dans Fig. 1.1a,

montrant la localisation de la déformation sous la forme de bandes de cisaillement dans une bande

de métal en tension et pour le chargement dynamique en Fig. 1.1b, désignant l’apparition de la

striction dans un tube en aluminium en expansion électromagnétiques. Elle peut se trouver au sein

des matériaux et on parle alors d’instabilité matérielle, ou sur la structure entière et dans ce cas il

s’agit d’une instabilité géométrique. Les exemples sont présentés pour le cas de chargement quasi-

statique dans Fig. 1.1c, décrivant le pliage localisées dans des tubes carré de métal sous l’écrasement

axial et pour le chargement dynamique en Fig. 1.1d, montrant la localisation de la déformation dans

un anneau d’aluminium électromagnétiquement compressé. Cette thèse étudie le phénomène de

localisation de déformation dans des contextes matériaux ou géométriques et avec des conditions

de chargement statique ou dynamique. Dans tous les cas, un outil unifié est utilisé : l’évolution

de la perturbation à support localisé. La classification des sujets selon la condition de chargement

mécanique (statique vs. dynamique) et la mécanisme de l’instabilité (matièrielle vs. structurelle) est

présentée dans le tableau figurant dans la partie gauche de la Fig. 1.2, où chaque cellule contient un

expriment représentative. Le tableau donnant le chapitre correspondant dans cette thèse est donné

dans la partie droite de la Fig. 1.2.

L’instabilité du matériau dans des conditions de chargement quasi-statique et la connexion entre

la localisation de la déformation dans les solides microstructurés et la perte de leur ellipticité macro-

scopique est étudiée dans le chapitre 2. Un exemple d’un tel phénomène est donné sur la Fig. 1.1e,

décrivant la localisation macroscopique de la déformation sous la forme de kink-bands originaires

du flambement microstructural de la fibre en sein de bois de balsa. L’approche de modélisation en

milieu continu du phénomène de localisation étudie les conditions des lois constitutives conduisant à

la perte d’ellipticité des équations gouvernantes, propriété qui permet des solutions d’équilibre dis-

continues. Les modèles de micro-mécanique et les théories d’homogénéisation nonlinéaires nous

aident à comprendre les origines de ce comportement et l’on pense qu’une perte d’ellipticité macro-

scopique (homogénéisée) s’aboutit aux motifs de déformation localisés. Bien que cela soit le cas

dans de nombreuses applications d’ingénierie, il pose une question intéressante: existe-t-il toujours

un motif de déformation localisé apparaissant dans les solides quand le chargement critique est

dépassé et qu’il y a une perte d’ellipticité macroscopique?

Dans un souci de simplicité relative et de traçabilité analytique, nous répondons à cette question

dans le cadre restrictif d’un solide multicouche, nonlinear (hyperélastique) en déformation plane



et plus spécifiquement sous compression axiale le long de la direction de laminage. La clé de la

réponse se trouve dans la solution post-bifurquée homogénéisée du problème, qui pour certains

matériaux est supercritique (augmentation de la force et du déplacement), conduisant dans ces com-

posites à des chemins d’équilibre post-bifurqués qui ne présent pas de localisation de déformation

pour la contrainte macroscopique bien au-dessus de celui correspondant à la perte d’ellipticité.

L’instabilité du matériau en relation avec la striction avec les conditions de chargement dy-

namiques dans des plaques rapidement déformées, lorsque l’inertie est prise en compte, est présentée

dans le chapitre 3. Nous suivons l’évolution temporelle des perturbations spatialement localisées

et leurs interactions sur une plaque infiniment large sous tension biaxiale dont les lois constitutives

présentent une perte d’ellipticité à des niveaux de déformation adéquats. L’évolution temporelle non

linéaire d’une perturbation spatialement localisée est étudiée analytiquement et numériquement. La

méthode analytique, basée sur la linéarisation, est utilisée pour définir la taille de la zone d’influence

d’une perturbation ponctuelle et nous étudions sa dépendance à l’égard des lois constitutives et des

conditions de chargement. Les calculs numériques montrent comment la zone de déformation lo-

calisée se propage et explique l’augmentation apparente de la ductilité dans les plaques minces par

le temps requis par la zone de striction pour atteindre les bornes de la plaque. Les interactions de

défauts donnent également une idée des modes de défaillance observés expérimentalement.

L’instabilité structurale sous chargement dynamique est le sujet du chapitre 4 qui étudie la lo-

calisation des motifs de déformation apparaissant dans des anneaux élastiques et élastoplastiques

élastiques compressés électromagnétiquement. Contrairement à l’approche largement utilisée dans

la littérature pertinente, qui repose sur la méthode d’analyse modale pour déterminer le mode pro-

pre le plus rapide de la structure—éloquent seulement pour les cas où la vitesse de la structure

parfaite est significativement inférieure à l’onde caractéristique associée. Dans cette thèse, nous

analysons la réponse temps-dépendante d’un anneau rapidement et hydrostatiquement compressé à

des perturbations spatialement localisées de sa solution principale (radialement symétrique), afin de

comprendre l’initiation des mécanismes de défaillance correspondants. Il est montré que pour de

petites valeurs de la vitesse de chargement appliquée, la structure échoue par un mode global, alors

que pour de grandes valeurs de la vitesse de chargement appliquée, la structure échoue par un mode

localisé de déformation. Nous constatons également que les lois constitutives dépendant à la vitesse

ne sont pas nécessaires pour modéliser les phénomènes associés, conformément aux observations

expérimentales qui montrent qu’il n’y a pas d’augmentation de la ductilité dans les anneaux minces

lorsque les taux de charge augmentent et l’importance des défauts statistiquement distribués qui

expliquent l’absence d’une longueur d’onde dominante dans les modes de défaillance.
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Chapter 1

Introduction

Localization of deformation in finitely strained ductile solids is the instability mechanism leading

to their failure by rupture. This phenomenon occurs under static and dynamic loading conditions. It

can occur in bulk of solids, in which case it is referred to as a material instability phenomenon. Such

examples are shown for the case of quasistatic loading in Fig. 1.1a, depicting the localization of de-

formation in the form of shear bands in a metal strip in tension and for dynamic loading in Fig. 1.1b,

depicting the onset of necking in an electromagnetically expanding aluminum tube. Localization

of deformation can also occur in structures, in which case one talks about a structural instability

problem. Such examples are shown for the case of quasistatic loading in Fig. 1.1c, depicting the

localized folding in square plastic tubes under axial crushing and for dynamic loading in Fig. 1.1d,

depicting the localization of deformation in an electromagnetically compressed aluminum ring. The

thesis at hand studies localization in the material and structural context, both under static and dy-

namic conditions, using a common tool: the evolution of a geometrically localized perturbation.

The classification of topics according to loading condition (static vs. dynamic) and to instability

mechanism (material vs. structural) is presented in the table shown in the left part of Fig. 1.2, where

each box contains a representative experiment. The table giving the corresponding chapter in this

thesis is depicted in the right part of Fig. 1.2.

Material instability under quasistatic loading conditions and the connection between localiza-

tion of deformation in microstructured solids to the loss of their macroscopic ellipticity is presented

in Chapter 2. A example of to such phenomenon is shown in Fig. 1.1e, depicting the macroscopic

localization of deformation in the form of kink bands originated from the microstructural buckling

of fiber in bulk of balsa wood. The continuum modeling approach of the localization phenomenon

studies conditions on the constitutive laws leading to the loss of ellipticity in the governing equa-

tions, a property that allows for discontinuous equilibrium solutions. Micro-mechanics models and

1
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(a)

(b)

(c) (d)

(e)

Figure 1.1: Some examples of localization of deformation: a) local necking in form of shear bands

in a metal strip under quasistatic tension b) localized necking under high strain rate tension (electro-

magnetically expanding Al 6061-O tube test (Zhang and Ravi-Chandar, 2010)) c) localized folding

in square metal tubes under quasistatic axial crushing (Bodlani et al., 2009) d) overlay of sequential

images of a rapidly electromagnetically compressed ring showing localized failure patterns (Mainy,

2012). e) compressive failure of balsa wood under quasistatic loading showing a localized deforma-

tion in form of kink bands (Da Silva and Kyriakides, 2007).
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Figure 1.2: Left: a classification of topics with a representative experiment in each box; Right:

corresponding chapter in this thesis.

nonlinear homogenization theories help us understand the origins of this behavior and it is thought

that a loss of macroscopic (homogenized) ellipticity results in localized deformation patterns. Al-

though this is the case in many engineering applications, it raises an interesting question: is there

always a localized deformation pattern appearing in solids loosing macroscopic ellipticity when

loaded past their critical state?

In the interest of relative simplicity and analytical tractability, we answer this question here

in the restrictive framework of a layered, nonlinear (hyperelastic) solid in plane strain and more

specifically under axial compression along the lamination direction. The key to the answer is found

in the homogenized post-bifurcated solution of the problem, which for certain materials is super-

critical (increasing force and displacement), leading to post-bifurcated equilibrium paths in these

composites that show no localization of deformation for macroscopic strain well above the one

corresponding to loss of ellipticity.

Material instability under dynamic loading conditions in connection to necking in rapidly strained

plates, when inertia is taken into account, is presented in Chapter 3, We follow the time evolution of

spatially localized perturbations and their interactions in biaxially strained thin plates whose con-

stitutive laws exhibit loss of ellipticity at adequate strain levels. The nonlinear time evolution of

a spatially localized perturbation is studied analytically and numerically. The analytical method,

based on linearization, is used to define the size of the influence zone of a point-wise perturbation

and we study its dependence on constitutive laws and loading conditions. Numerical calculations

show how the localized deformation zone propagates and explain the apparent increase in ductility

in thin plates by the time needed by the necking zone to reach the boundaries of the plate. Defect
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interactions also give an idea of the failure patterns observed experimentally.

Structural instability under dynamic loading conditions is the object of Chapter 4 that studies

the localization of deformation patterns appearing in electromagnetically compressed thin elastic

and elastoplastic rings. In contrast to the widely used approach in the relevant literature, which is

based on the method of modal analysis to determine the structure’s fastest growing eigenmode—

meaningful only for cases where the velocity of the perfect structure is significantly lower than

the associated characteristic wave propagation speeds, in this thesis we analyze the time-dependent

response of a rapidly, hydrostatically compressed ring to spatially localized perturbations of its prin-

cipal (radially symmetric) solution, in order to understand the initiation of the corresponding failure

mechanisms. It is shown that for small values of the applied loading rate, the structure fails through

a global mode, while for large values of the applied loading rate the structure fails by a localized

mode of deformation. We also find that rate-sensitive constitutive laws are not necessary to model

the associated phenomena, in accordance with experimental observations that show no ductility in-

crease in thin rings when loading rates increase and the importance of statistically distributed defects

that explain the absence of a dominant wavelength in failure patterns.



Chapter 2

Localization of deformation and loss of

macroscopic ellipticity in

microstructured solids

2.1 Introduction

Localization of deformation in finitely strained ductile solids is the instability mechanism leading to

failure by rupture. The general principles were introduced for the study of this fascinating and im-

portant phenomenon in the context of continuum mechanics by Hadamard (1903) and subsequently

advanced in his spirit by Hill (1962), Mandel (1966) and Rice (1976). The underlying mathematical

concept in the continuum model is the loss of ellipticity in the governing equations, which allows

for discontinuous strain solutions. With the advent of homogenization theories since the 1960’s, a

vast amount of work has been dedicated to the bridging of scales and understanding how microme-

chanical features in solids lead to their macroscopic (homogenized) loss of ellipticity at adequate

levels of strain or stress. A plethora of applications for a wide range of solids has appeared in the

literature, covering rubber elasticity, various types of composites (porous, fiber-reinforced, particle-

reinforced, cellular solids etc.), metal plasticity, granular media, rocks, just to name a few. Since the

review of such a large and diverse body of work is unfortunately not possible, only key references

relevant to the points made in the present chapter will be cited.

To avoid difficulties related to microstructure geometry and the identification of associated scale

and representative volume, our attention is restricted to solids with a well defined scale, i.e. to archi-

tectured materials with periodic microsctructures. The role played by buckling at the microscopic

scale, as the onset of instability mechanism leading to macroscopic localization of deformation

5
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in these materials has been established and subsequently analyzed by a long series of investiga-

tions. For the case of fiber reinforced composites, the connection between local buckling and global

localization started with the work of Rosen (1965), who recognized microbuckling as the onset

of instability mechanism. Subsequent investigations of Budiansky (1983), Budiansky and Fleck

(1993), Kyriakides et al. (1995), Vogler et al. (2001) and many others showed, with progressively

more sophisticated experiments and detailed modeling, how the buckling instability evolves into a

localized deformation pattern (kink band formation) and studied in detail the characteristics of these

bands. The same basic mechanism, i.e. buckling initiated at the microstructural level, has been rec-

ognized in materials science as the cause for localization of deformation in cellular solids (crushing

zones) and the interested reader is referred to the comprehensive monograph by Gibson and Ashby

(1988). Detailed experimental and theoretical investigations followed in mechanics with a particu-

lar interest in studying the initiation and evolution towards localization of the deformation pattern

in cellular solids by Papka and Kyriakides (1994), Papka and Kyriakides (1998), Papka and Kyri-

akides (1999a), Papka and Kyriakides (1999b) for two-dimensional microstructures and Jang et al.

(2010), Wilbert et al. (2011) for three-dimensional microstructures and in establishing conditions

where local or global buckling is the critical mechanism at the onset of failure by Triantafyllidis and

Schraad (1998), Gong et al. (2005), Lopez-Jimenez and Triantafyllidis (2013).

Progressing in parallel, the nonlinear homogenization theories that appeared in mechanics first

addressed questions on macroscopic response in plasticity, viscoelasticity and nonlinear elasticity

with various microstructures (e.g. see Suquet (1983), Talbot and Willis (1985), Ponte Castañeda

(1991)) and subsequently explored localization of deformation issues (e.g. see Kailasam and Ponte

Castañeda (1998), Lopez-Pamies and Ponte Castañeda (2004)). For periodic solids the question

asked was the possibility of detecting instabilities at the microscopic level from their homogenized

properties, thus formally connecting buckling at the microscopic level to localization of deforma-

tion. For these composites it has been shown, initially for layered solids by Triantafyllidis and

Maker (1985) and subsequently for the general three-dimensional periodic case by Geymonat et al.

(1993), that microstructural bifurcation phenomena (micro-buckling) is the mechanism responsible

for macroscopic loss of ellipticity and that a long wavelength critical mode (based on Bloch wave

analysis of the perfect infinite composite) coincides with the loss of ellipticity in its homogenized

incremental moduli. Further work for porous elastomers by Michel et al. (2007) and for particle

reinforced elastomers by Michel et al. (2010) has been done to connect local buckling to the macro-

scopic loss of ellipticity and compare periodic to random isotropic media with the same volume

fractions.

Since loss of ellipticity is the property allowing for discontinuous equilibrium solutions, it is
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thought (and supported by micromechanical calculations in most of the known—to the best of our

knowledge—engineering applications), that a loss of macroscopic (homogenized) ellipticity results

in a localized deformation pattern in the post-bifurcated regime. However, two questions arise:

is there always a localized deformation appearing in the post-bifurcation of solids loosing macro-

scopic ellipticity and what are the necessary conditions in the homogenized response leading to

localization?

In the interest of relative simplicity and analytical tractability, the present chapter answers these

questions in the restrictive framework of an infinite, layered, nonlinear (hyperelastic) solid under

plane strain loading conditions and more specifically under axial compression along the lamination

direction. For this problem, one can find macroscopic loads where the homogenized moduli of

the principal solution loose ellipticity (and since the solid has an energy density, the corresponding

homogenized energy looses rank-one convexity). Moreover one can also ensure that the critical

(i.e. corresponding to the lowest applied load) bifurcation eigenmode of the infinite solid is global

(infinite wavelength eigenmode), a property that for this problem allows us to find a homogenized

solution for the post-bifurcated equilibrium path. The answer to the localization question posed lies

in the homogenized, initial post-bifurcation response of the perfect layered solid, as seen in Fig. 2.1;

it will be shown that for a composite with a monotonically increasing force (and displacement) post-

bifurcation response (Λ2 > 0, λ2 > 0), no localized deformation solution develops in spite of a

loss of ellipticity found at the macroscopic critical strain λc.

Increasing force & displacement  bifurcated path: !2 > 0 , !2 > 0   

! (force or stress) 

" (displacement or strain) 

!c 

!c"

principal solution 

Max. force bifurcated path:  !2 > 0 , !2 < 0   

Max. displacement bifurcated path: !2 < 0 , !2 < 0   

Figure 2.1: Different cases for the homogenized, initial post-bifurcation behavior of a perfect, non-

linear (hyperelastic) layered composite under plane strain loading conditions which is subjected to

axial compression along its lamination direction. Stable paths are marked by solid lines and unsta-

ble ones by broken lines. For a composite with a monotonically increasing force (and displacement)

post-bifurcation response (λ2 > 0, Λ2 > 0), no localized deformation solution develops in spite of

a loss of ellipticity found at the macroscopic critical strain λc.

The presentation is organized as follows: The model of the perfect, laminated, periodic compos-
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ite is presented in Section 2.2; more specifically the bifurcation load and corresponding eigenmode

and their nature (local or global) are discussed in Subsection 2.2.1. The exact solution for the post-

bifurcation equilibrium path corresponding to a global eigenmode is given in Subsection 2.2.2 while

the asymptotic analysis of the homogenized post-bifurcation equilibrium path and its connection to

the homogenized moduli of the composite is given in Subsection 2.2.3.

The results are presented in Section 2.3, starting with the choice of constitutive laws in Subsec-

tion 2.3.1 and continuing with the general homogenized solution for the post-bifurcated equilibrium

path for an infinite, perfect, incompressible hyperelastic layered solid in Subsection 2.3.2. This

model allows us to investigate all possible scenarios: cases under which this bifurcation involves

a maximum displacement, a maximum force or a bifurcation occurring under increasing force and

displacement (see Fig. 2.1). The case of neo-Hookean composites is presented in Subsection 2.3.3,

where it is shown that they always have a stable, homogenized post-bifurcation response under in-

creasing force and displacement. Composites with decreasing homogenized post-bifurcation force

or displacement are given next in Subsection 2.3.4. The important question of how an adequately

large, but finite-size volume of such a composite will behave is addressed next in Subsection 2.3.5.

It is shown, by means of introducing a small geometric imperfection at the middle of a large sample

that under these “soft” boundary conditions, the monotonically increasing force (and displacement)

composites will evolve towards a uniform shearing solution away from the macroscopic critical

load and show no localization of deformation pattern past the critical load, in spite of a macroscopic

loss of ellipticity; as expected the composites with the snap-through (i.e. maximum displacement)

macroscopic response will evolve into a solution with a single strong localized deformation zone.

Concluding remarks are presented in Section 2.4. Finally some complementary material of inter-

est is presented in the appendices: Details of the general bifurcation analysis of the infinite, perfect,

rate-independent, layered composite in 2.A, the post-bifurcation equilibrium of the compressible

neo-Hookean composite in 2.B and the influence of constitutive model choice on the critical load

(i.e. comparison of the hyperelastic model with its deformation theory counterpart using the same

uniaxial response) in 2.C.

2.2 Modeling

This section pertains to the modeling of the onset of bifurcation and post-bifurcation response of

the axially compressed hyperelastic layered solid. Finding the critical load (i.e. lowest macroscopic

compressive strain or stress) at the onset of bifurcation and the corresponding eigenmode is pre-

sented in Subsection 2.2.1. The exact solution of the post-bifurcation problem for the case of a
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global critical eigenmode is given in Subsection 2.2.2, followed by the corresponding asymptotic

solution of this problem near the critical load in Subsection 2.2.3.

2.2.1 Bifurcation of a layered solid in plane strain: local vs. global critical mode

The presentation starts with the solution for the plane strain bifurcation problem for an infinite,

perfectly periodic, layered, hyperelastic solid. The composite is subjected to uniaxial compression

along the fiber direction characterized by a monotonically increasing “load parameter” λ ≥ 0,

which designates the absolute value of the applied macroscopic strain under displacement control

(or its corresponding work-conjugate stress Λ ≥ 0, when force is controlled). The goal is to find the

lowest critical load λc (or Λc) and corresponding eigenmode as the load parameter increases away

from λ = 0 (or Λ = 0), which is the stress-free, reference configuration of the solid. Without loss

of generality, it is assumed in this section that the composite is loaded under displacement control.

local mode λ
c 

global mode λ
H
 

λ λ 

Hf 
Hm 

X1 

X2 

unit  cell
 

Reference configuration 

(stress-free)
 

(a) (b) 

Figure 2.2: Reference configuration with a unit cell in (a) and bifurcation eigenmode type (local or

global) in (b), for axially compressed layered solid deformed under plane strain conditions.

The infinite, weightless, perfectly periodic solid is composed of a self-repeating sequence of

two layers, as depicted in Fig. 2.2a. The two layers f (fiber) and m (matrix) have initial thickness

Hf and Hm in the stress-free reference configuration. The solid is deformed under finite, plane

strain conditions with perfect bonding between layers which guarantees traction and displacement

continuity across each interface for all possible deformations. A full Lagrangian formulation of the

problem is adopted with respect to a fixed Cartesian coordinate system X1 −X2, where X1 is the

lamination direction.
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The procedure for determining the onset of the first bifurcation hinges on finding a non-trivial

solution to the difference between principal and bifurcated equilibrium solutions at the onset of a

bifurcation:

∆Πji,j = 0; X1 ∈ R, X2 ∈ [0, H], 1 (2.2.1)

and interface conditions:

[[∆Π2i]] = 0, [[∆ui]] = 0; X1 ∈ R, X2 ∈ {0, Hm, H}, (2.2.2)

where ∆Π is the difference in the first Piola-Kirchhoff stress tensors of the principal and bifurcated

equilibrium solutions, ∆u is the corresponding displacement field difference and H = Hm + Hf

is the initial thickness of the unit cell. Moreover, [[g]] denotes a difference in the values of any field

quantity g when evaluated on both sides of an interface.

The constitutive response of the hyperelastic composite takes the form:

Πji =
∂W

Fij
, (2.2.3)

where W (F) is the strain energy density of the fiber or matrix layer and F is the corresponding

deformation gradient. Consequently, ∆Π from (2.2.1) can be expressed in terms of ∆u by:

∆Πji = Lijkl∆F kl; Lijkl =
∂2W

∂Fij∂Fkl
, ∆Fkl = ∆uk,l. (2.2.4)

The fourth rank tensor L is termed the “incremental moduli tensor” and is a function of the position

X and the load parameter λ. The above formulation pertains to the case of a compressible solid.

The slightly simpler formulation for the incompressible case has already been presented by (Tri-

antafyllidis and Maker, 1985). The compressible version for the onset of bifurcation in the axially

compressed, hyperelastic layered solid under plane strain is given in (Geymonat et al., 1993), where

the interested reader can find the complete derivations. However, for reasons of completeness of the

presentation, the main results are outlined in this section and detailed derivations are given in 2.A.

The critical load λc, corresponding to the onset of the first (as load parameter increases away

from zero) bifurcation is found to be:

λc := inf
ω1H>0

λ̂(ω1H), (2.2.5)

where λ̂(ω1H) is a function of the dimensionless wavenumber ω1H of the eigenmode along the X1

direction, as defined in (2.A.14), and depends on the two layer thicknesses and their incremental
1Here and subsequently in this chapter, Latin indexes range from 1 to 2, unless indicated differently. Einstein’s sum-

mation convention is implied over repeated indexes. Repeated indexes in parentheses are not summed, unless indicated

explicitly.
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moduli Lm(λ) and Lf (λ). When the wavelength L1 of the critical mode is commensurate with the

layer thickness H , i.e. (L1/H)c = 2π/(ω1H)c 6= 0, the critical mode is termed “local”, and when

this is not the case, i.e. (L1/H)c = 2π/(ω1H)c → ∞ ⇐⇒ (ω1H)c → 0, the critical mode is

termed “global” (see Fig. 2.2b). The case (ω1H)c = 0 corresponds to an X1-independent solution,

which is excluded by the local rank-one convexity condition for each layer, as shown in 2.A, thus

explaining the use of infimum in (2.2.5).

For the present chapter it is important to ensure that the bifurcation occurring at λc is global, i.e.

(ω1H)c → 0. In this case it can be shown that the critical load λc = λH , where λH is the lowest

load corresponding to the first loss of rank-one convexity of the homogenized moduli LH(λ) of the

composite defined by:

λH := min
‖n‖=1

{
λ > 0 det

[
LHijkl(λ)njnl

]
= 0
}
, (2.2.6)

where the expressions for the components of the homogenized moduli LH(λ) tensor are given in

(2.A.21).

For all the layered composites considered here it is shown that (2.2.6) is satisfied along the

critical direction (n1, n2)c = (1, 0) and hence:

LH2121(λc) = 0, (2.2.7)

which implies a vanishing shear stiffness of the composite at that load, perpendicular to the lamina-

tion direction.

2.2.2 Post-bifurcation equilibrium for global critical mode: exact solution

By ignoring the influence of boundary conditions, the onset and evolution of the long wavelength bi-

furcated solution emerging from λc = λH is depicted in Figure 2.3, according to which the initially

parallel and straight layers in the principal solution in Figure 2.3a evolve in a long-wavelength wavy

pattern shown in Figure 2.3b. The post-bifurcation equilibrium solution is idealized in Figure 2.3c,

according to which all layers rotate by the same angle, while each layer experiences a uniform state

of strain (and stress). All fiber layers share the same strain Ff and all the matrix layers share Fm,

but Ff 6= Fm.

More specifically, the idealized post-buckling equilibrium is a periodic solution with a unit cell

depicted in Figure 2.4. This post-bifurcated equilibrium path is found as follows:
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f= -Λ
 

δ = λ

(a) (b) (c) 

δ = λ

f= -Λ
 f= -Λ

 f= -Λ
 

Figure 2.3: Post-buckling mechanism for the case of a global critical mode in axially compressed

layered media subjected to a macroscopic compressive stress f = −Λ with a corresponding macro-

scopic strain δ = −λ.

(f) fiber 

(m) matrix 

δ = λ

γ

ζ
f 

ζ
m 

f = Λ

force control  

displacement control  

Figure 2.4: Unit cell for the post-buckling equilibrium solution of an axially compressed composite

with a global critical mode.

From the kinematics of deformation one has the following relations2:

〈F11〉 = F f11 = Fm11 = 1− λ,

〈F21〉 = F f21 = Fm21 = γ,

〈F12〉 = ζf F
f
12 + ζm F

m
12 = 0,

〈F22〉 = ζf F
f
22 + ζm F

m
22 ,

(2.2.8)

2Henceforth 〈g〉 := ζfg
f + ζmg

m denotes the weighted average of a function g with different values of the fiber and

matrix part of the composite.
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where ζf := Hf/H and ζm := Hm/H are respectively the volume fractions of the fiber and matrix.

From equilibrium we obtain the following relations for 〈Πji〉, the average first Piola-Kirchhoff

stresses which are work-conjugate to 〈Fij〉:

〈Π11〉 = ζf Πf
11 + ζm Πm

11 = −Λ,

〈Π12〉 = ζf Πf
12 + ζm Πm

12 = 0,

〈Π21〉 = Πf
21 = Πm

21,

〈Π22〉 = Πf
22 = Πm

22 = 0.

(2.2.9)

The above relations reflect the fact that the bifurcated configuration is subjected to an average

compressive axial stress (〈Π11〉 = −Λ < 0) along the X1 direction, zero average shear stress

(〈Π12〉 = 0) and zero lateral normal stress (〈Π22〉 = 0). To complete the above system of equa-

tions (2.2.8) and (2.2.9), one has to add the constitutive response of the fiber and matrix, given by

(2.2.3). A closed-form analytical solution is possible only for simple constitutive laws, as detailed

in Section 2.3.

2.2.3 Post-bifurcation equilibrium for global critical mode: asymptotics near critical

point

The bifurcated equilibrium path can be obtained from its homogenized energy density, defined by:

WH(λ, γ) = 〈W 〉 := ζfW
f + ζmW

m. (2.2.10)

By extremizing the homogenized potential energy 〈W 〉 − Λλ with respect to the displacement

parameters λ, γ introduced in Section 2.2.2, we show that the onset of bifurcation coincides with

the vanishing of the homogenized moduli LH2121(λc) in (2.2.7). Indeed, a slightly stronger result is

available by showing that along the principal equilibrium path (γ = 0):

〈W 〉0,γγ = LH2121(λ), (2.2.11)

where the 0 superscript or 0 subscript denotes evaluation on the principal equilibrium path. Indeed

from (2.2.10) and the definitions of the first Piola-Kirchhoff stress and the incremental moduli in

(2.2.3) and (2.2.4) one obtains:

〈W 〉0,γγ =

〈
L0
ijkl

[
∂Fij
∂γ

]
γ=0

[
∂Fkl
∂γ

]
γ=0

+ Π0
ji

[
∂2Fij
∂γ2

]
γ=0

〉
. (2.2.12)
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Notice first that in view of the kinematics (2.2.8)1, (2.2.8)2 that
(
∂2F11/∂γ

2
)
γ=0

=
(
∂2F21/∂γ

2
)
γ=0

=

0. Moreover the absence of lateral stresses ∂Wm/∂Fm22 = ∂W f/∂F f22 = 0 in (2.2.9)4 and the van-

ishing of the average shear 〈F12〉 according to (2.2.8)3 lead to the vanishing of the
〈

Π0
ji

(
∂2Fij/∂γ

2
)
γ=0

〉
term of 〈W 〉0,γγ in (2.2.12). Consequently and since from kinematics ∂F11/∂γ = 0, ∂F21/∂γ = 1

according to (2.2.8)1 and (2.2.8)2 respectively, (2.2.12) can be rewritten as:

〈W 〉0,γγ =

〈
L0

2121 +
(
L0

2112 + L0
1221

) [∂F12

∂γ

]
γ=0

+ L0
1212

[
∂F12

∂γ

]2

γ=0

〉
. (2.2.13)

In the derivation of (2.2.13) use is made of the fact that in view of the orthotropy of the principal

solution L0
1211 = L0

1222 = L0
2111 = L0

2122 = 0 (plus all the principal symmetry related moduli)

vanish, plus the fact (∂F22/∂γ)γ=0 = 0, which follows from the principal solution’s orthotropy

and the vanishing of the lateral stress Πm
22 = Πf

22 = 0.

The last remaining ingredient to prove (2.2.11) is the calculation of (∂F12/∂γ)γ=0 for the matrix

and fiber layers respectively. Indeed from taking the γ-derivatives of (2.2.8)3 and (2.2.9)3 one has:

ζm

[
∂Fm12

∂γ

]
γ=0

+ ζf

[
∂F f12

∂γ

]
γ=0

= 0,

L0m
1212

[
∂Fm12

∂γ

]
γ=0

+ L0m
1221 = L0f

1212

[
∂F f12

∂γ

]
γ=0

+ L0f
1221.

(2.2.14)

From the above linear system one can calculate (∂Fm12/∂γ)γ=0 and
(
∂F f12/∂γ

)
γ=0

, which upon

substitution into (2.2.13) and recalling the definition of LH2121(λ) in (2.A.21)4, gives (2.2.11).

For the case of a hyperelastic layered composite of arbitrary energy density and volume frac-

tions where a closed-form analytical solution is not possible, the initial stability of the bifurcated

equilibrium path near the critical load can be found asymptotically. The bifurcation amplitude pa-

rameter of the system is the shear γ (principal solution γ = 0). Due to the symmetry of the problem,

one has near the critical point the following asymptotic expressions for the applied average stress

(Λ) or average strain (λ):

Λ = Λc + Λ2
γ2

2
+O(γ4), λ = λc + λ2

γ2

2
+O(γ4). (2.2.15)

The goal of the asymptotic analysis is to obtain Λ2 and λ2 as functions of geometry and material

properties of the composite. Consequently, according to the general theory of stability of an elastic

system with a simple eigenmode at criticality (the homogenized perfect composite has a finite en-

ergy given in (2.2.10)), for displacement control, the stability of the bifurcated path near the critical

point requires λ2 > 0 (or equivalently Λ2 > 0) for force control.
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2.3 Results

Following the presentation of the constitutive laws for the composite in Subsection 2.3.1, we pro-

ceed to the general formulation of the post-bifurcated equilibrium path for infinite, incompressible,

hyperelastic layered composites in Subsection 2.3.2. It is subsequently shown in Subsection 2.3.3,

that all perfect neo-Hookean composites irrespectively of fiber-to-matrix thickness ratio, have an

initial post-bifurcation response with increasing load and displacement. We then present in Subsec-

tion 2.3.4 a more general layered composite, consisting of an equal thickness neo-Hookean layer

and a softer nonlinear matrix, that can exhibit all possible post-critical responses. It is worth noticing

that all these different post-bifurcation responses can be achieved with composites made of locally

stable, i.e. strongly elliptic layers. Numerical (FEM) calculations for boundary value problems

showing the absence or presence of localized deformation zones in these composites, in accordance

with the predicted initial post-bifurcation response of their perfect counterparts, are presented in

Subsection 2.3.5.

2.3.1 Constitutive laws

Two different versions of a rank-one convex, plane strain, isotropic, hyperelastic constitutive law

are employed. The incompressible version—used for its analytical tractability—of any isotropic

hyperelastic solid subjected to plane strain can be written in terms of a one variable scalar function

g(z):3

W (F) =
µ

2
g(z); z := I1 − 2, I2 = 1, g(0) = 0, g′(0) = 1, (2.3.1)

where µ > 0 is the initial shear modulus of the material and Ii (i = 1, 2) are the two invariants of

the right Cauchy-Green tensor C, (related to the deformation gradient tensor F by Cij = FkiFkj),

namely:

I1 = tr C, I2 =
1

2

[
(tr C)2 − tr C2

]
= det(C). (2.3.2)

Rank-one convexity is guaranteed when g′ > 0 and g′′ ≥ 0 (rank-one convexity requires a weaker

condition: g′ + 2zg′′ > 0, since z ≥ 0).

A compressible version of (2.3.1) will also be used:

W (F) =
µ

2
g(y) +

κ

2
(I

1/2
2 − 1)2; y := I1 − 2I

1/2
2 , (2.3.3)

where µ and κ � µ are the initial shear and bulk moduli of the solid. This material’s rank-one

convexity follows from its polyconvexity (see Ball (1977)) which is guaranteed, since y ≥ 0, by:

g′ > 0 and g′′ ≥ 0.
3Here and subsequently in this chapter g′, g′′ etc. denote first and second derivatives of g with respect to its argument.
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2.3.2 Post-bifurcation equilibrium: general setting

As previously mentioned, a closed-form analytical solution of the post-bifurcation equilibrium path

described in Subsection 2.2.2. is not in general possible, thus motivating the need for the asymptotic

analysis presented in Subsection 2.2.3. However, for the special case of incompressibility or of the

case of compressible neo-Hookean composites one can find analytically tractable expressions for

the post-bifurcation equilibrium paths.

For the incompressible composite in (2.3.1), the constitutive law of (2.2.3) a takes the form:

Πji =
∂W

Fij
− p ∂

∂Fij
(det F− 1) ,

det F = (I2)1/2 = F11 F22 − F12 F21 = 1,

(2.3.4)

where p is the Lagrange multiplier associated to the incompressibility constraint (the undefined part

of the hydrostatic pressure).

Recalling from the kinematics in (2.2.8)1, (2.2.8)2 that F11 = 1 − λ and F21 = γ one obtains

that:

Π11 = µ g′

[
1− λ− (1 + γ F12)2

(1− λ)3

]
,

Π22 = 0 ⇒ p = µ g′
(1 + γ F12)

(1− λ)2 ,

Π21 = µ g′
[
F12 + γ

(1 + γ F12)

(1− λ)2

]
,

Π12 = µ g′
[
γ +

F12 (1 + γ F12)

(1− λ)2

]
.

(2.3.5)

From shear traction continuity Πf
21 = Πm

21 from (2.2.9)3 and the kinematic constraint that

〈F12〉 = 0 from (2.2.8)3 one has the following system for the two unknowns F f12 and Fm12 :

[
1 +

γ2

(1− λ)2

] [
mf F

f
12 −mm F

m
12

]
+

γ

(1− λ)2 (mf −mm) = 0,

ζf F
f
12 + ζm F

m
12 = 0,

mf := µf g
′
f , mm := µm g

′
m.

(2.3.6)
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Solving the above linear system for F f12, Fm12 yields:

F f12 =
γ

(1− λ)2 + γ2

(mm −mf ) ζm
ζf mm + ζmmf

,

Fm12 =
γ

(1− λ)2 + γ2

(mf −mm) ζf
ζf mm + ζmmf

.

(2.3.7)

The λ-γ relationship along the bifurcated equilibrium path can now be obtained by combining

〈Π12〉 = 0 from (2.2.9)2 with the expressions for Πf,m
12 and F f,m12 in (2.3.5)4 and (2.3.7):

〈Π12〉 = γ

mG −
(∆m)2

mH

1[
(1− λ)2 + γ2

]2

 ,

∆m := mf −mm, mG := ζf mf + ζmmm, mH :=
mf

ζf
+
mm

ζm
.

(2.3.8)

Thus the sought-after λ-γ relationship takes the form:

(1− λ)2 + γ2 =
∆m

(mGmH)1/2
, (2.3.9)

where without loss of generality we have tacitly assumed ∆m > 0 i.e. mf > mm.

One important remark about (2.3.9) is in order at this point, namely that this is an implicit

equation for λ and γ, given the fact that mf and mm are functions of If1 and Im1 which in turn

depend on λ and γ by:

I1 = FijFij = (1− λ)2 +

(
1 + γ F12

1− λ

)2

+ (F12)2 + γ2, (2.3.10)

where the expressions for F12 in the fiber and matrix layers are given in (2.3.7). The critical axial

strain λc is found from (2.3.9) for γ = 0.

2.3.3 Neo-Hookean composites

As it turns out, the simplest case of a neo-Hookean composite is always stable under either force

of displacement control with monotonically increasing forces and displacements as functions of the

shear γ. Moreover, a closed-form solution is possible in this case, since mf = µf and mm = µm

are now constants:

(1− λ)2 + γ2 =
∆µ

(µG µH)1/2
=⇒ λ = 1−

[
∆µ

(µG µH)1/2
− γ2

]1/2

,

∆µ := µf − µm, µG := ζf µf + ζm µm, µH :=

(
µf
ζf

)
+

(
µm
ζm

)
,

(2.3.11)
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where it is tacitly assumed that the shear strain satisfies: 0 ≤ γ < (∆µ)1/2/(µG µH)1/4.

Using (2.3.11), we calculate Λ, the absolute value of the average compressive stress 〈Π11〉:

Λ = −〈Π11〉 =
µG

(1− λ)3

{
1−

[
(1− λ)2 + γ2

]2}
= µG


1− (∆µ)2

(µG µH)(
∆µ

(µG µH)1/2
− γ2

)3/2

 . (2.3.12)

µ
f
/µ

m
 = 10 µ

f
/µ

m
 = 100 

Figure 2.5: Dimensionless macroscopic axial stress Λ/µG vs. its work-conjugate strain λ for the

principal and bifurcated equilibrium path of perfect neo-Hookean composites with µf/µm = 10

(left) and µf/µm = 100 (right) calculated for four different volume fractions.

The absolute value of the dimensionless axial stress Λ/µG vs. its work-conjugate strain λ is

depicted in Fig. 2.5, which shows the stable equilibrium paths of four different volume fraction

neo-Hookean composites for two different values of fiber-to-matrix stiffness ratios µf/µm = 10,

100. As expected, increasing the fiber-to-matrix stiffness ratio, leads to a sharp decrease in the

slope of the bifurcated equilibrium path, in view of an increasingly softening matrix response in the

post-bifurcated path. From (2.3.11) one obtains, by setting γ = 0, the following simple expression

for the critical load λc under displacement control for the neo-Hookean composite:

λc = 1−
(

(∆µ)2

µG µH

)1/4

. (2.3.13)

The influence of fiber volume fraction and stiffness contrast on the critical strain λc is depicted

in Fig. 2.6. The reference critical strain λref used for calculating the influence of fiber volume frac-

tion under fixed stiffness contrast corresponds to ζf = 0.5 (and changes according to the stiffness

contrast), while the reference critical strain λref used for calculating the influence of stiffness con-

trast under fixed fiber volume fraction corresponds to µf/µm = 2 (and changes according to the
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fiber volume fraction). As expected the critical strain increases monotonically with increasing fiber

volume fraction, while for a fixed fiber volume fraction, the critical strain decreases monotonically

with increasing fiber-to-matrix stiffness ratio.

2 10 100 1000
0

1

Μ f �Μm

Λc

Λ ref

Figure 2.6: Influence of fiber volume fraction on the critical strain for two different fiber-to-matrix

stiffness ratios (left) and influence of the fiber-to-matrix stiffness contrast on the critical strain for

four different volume fractions (right).

The influence of fiber volume fraction and stiffness contrast on the critical stress Λc is depicted

in Fig. 2.7. The reference critical stress Λref used for calculating the influence of fiber volume frac-

tion under fixed stiffness contrast corresponds to ζf = 0.5 (and changes according to the stiffness

contrast), while the reference critical stress Λref used for calculating the influence of stiffness con-

trast under fixed fiber volume fraction corresponds to µf/µm = 2 (and changes according to the

fiber volume fraction). As expected the critical stress increases monotonically with increasing fiber

volume fraction, while for a fixed fiber volume fraction, the critical stress after a steep initial de-

crease with increasing fiber-to-matrix stiffness ratio, reaches a plateau after about µf/µm = 10 but

not in a monotonic fashion, as seen in particular for ζf = 0.95. Since an analytic form is available

for the entire homogenized, post-bifurcated equilibrium path in a perfect neo-Hookean composite

according to (2.3.11) and (2.3.12), one can find the stability of this equilibrium path by checking

the positive definiteness of the homogenized energy. For algebraic simplicity, we calculate here the

initial curvatures at criticality λ2 and Λ2, whose positivity implies stability, according to the general

theory, at least in a neighborhood of the critical point.

At criticality, the strain curvature λ2 of the neo-Hookean composite’s bifurcated equilibrium
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2 10 100 1000
0
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Μ f �Μm
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� ref

Figure 2.7: Influence of fiber volume fraction on the critical stress for two different fiber-to-matrix

stiffness ratios (left) and influence of the fiber-to-matrix stiffness contrast on the critical stress for

four different volume fractions (right).

path is found from (2.3.11):

λ2 =
1

1− λc
=⇒ λ2

λc
=

1

λc(1− λc)
(2.3.14)

The corresponding curvature Λ2 is obtained by evaluating
(
d2Λ/dγ2

)
γ=0

from (2.3.12):

Λ2 =
3µG

1− λc

[
1

(1− λc)4 − 1

]
=⇒ Λ2

Λc
=

3

(1− λc)2
. (2.3.15)

We have thus shown that for the perfect, incompressible neo-Hookean composite, its homogenized

post-bifurcation path has monotonically increasing displacements and forces; it is thus stable near

the critical point and even beyond.

This result is not surprising; in contrast to classical fiber reinforced composites where the much

stiffer fiber is linearly elastic while the soft matrix has a low hardening which favors shearing of the

matrix and unloading of the fiber leading to a decreasing displacement (snap-back), here each layer

of the composite stiffens at the same rate, resulting in an increasing force and displacement at the

bifurcated equilibrium path.

It is worth checking if this strong post-bifurcation stability result found for arbitrary neo-Hookean

composites is influenced by compressibility; it turns out that it is not and the corresponding calcu-

lations are in 2.B.
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2.3.4 Rank-one convex composites exhibiting all possible cases of post-bifurcation

response

We have proved that the homogenized, post-bifurcation equilibrium path of a perfect layered com-

posite consisting of two neo-Hookean layers of arbitrary shear moduli and volume fractions is sta-

ble (near the critical load), under either force (Λ2 > 0) or displacement (λ2 > 0) control. An

even stronger result holds: the homogenized, post-bifurcation equilibrium paths of the perfect neo-

Hookean composite have a monotonically increasing macroscopic stress and strain as the bifurca-

tion amplitude γ increases (dΛ/dγ > 0 and dλ/dγ > 0), as one can easily show from (2.3.11) and

(2.3.12).

The question that naturally arises is whether a different choice of a locally stable (i.e. rank-one

convex) constitutive laws, i.e. a nonlinear g(z) in (2.3.1), can lead to an unstable post-bifurcation

response. The answer to this question is affirmative and we present below composites that exhibit

unstable post-bifurcated equilibrium paths even under displacement control, i.e. λ2 < 0.

For analytical tractability, we consider composites of two equal thickness layers (ζf = ζm =

0.5) but different energy densities, defined by (2.3.1):

gf (z) =
1

2
z, gm(z) =

α

2
zn; 1 ≥ α > 0, 1 ≥ n > 0.5. (2.3.16)

Since the material is isotropic, incompressible and under plane strain conditions, it is best described

by its response in simple shear γ. Recalling that under simple shear (γ)2 = z (:= I1 − 2) and

that its shear stress τ = dW/dγ, we record in Fig. 2.8 the response of the fiber and matrix layers.

The response of the neo-Hookean fiber is linear (µf = 1) and always stiffer than the response of

the matrix, which exhibits softening under increasing applied strain. The singularity of the matrix

material at the origin can be removed4 and the shear strain γm where the matrix response starts

differing from the fiber’s is adjusted by the parameter α as seen in Fig. 2.8. The equal layer thickness

neo-Hookean composite is recovered for a matrix with n = 1 and α = µm/µf .

For the case ζf = ζm = 0.5 one obtains from (2.3.7):

F f12 = −γ, Fm12 = γ, (2.3.17)

thus yielding with the help of (2.3.10) the following expressions for the strain invariant I1 in each

4We set gf (z) = gm(z) for 0 ≤ z ≤ zm and gm(z) = 0.5αzn for z ≥ zm, where zm = (γm)2 with γm the shear

strain that marks the onset of the matrix nonlinear response. Continuity of shear stress at γm dictates that: nα = z
(1−n)
m .

Note that the matrix material is always strongly rank-one convex since d2W/dγ2 > 0.
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layer:

If1 = (1− λ)2 +
1

(1− λ)2
+ 2γ2

[
1− 1

(1− λ)2

]
+

γ4

(1− λ)2
= zf + 2,

Im1 = (1− λ)2 +
1

(1− λ)2
+ 2γ2

[
1 +

1

(1− λ)2

]
+

γ4

(1− λ)2
= zm + 2.

(2.3.18)

Consequently the λ-γ relationship along the bifurcated equilibrium path in (2.3.9) takes the form

(after recalling also the definitions for mf , mm in (2.3.6)3):

(1− λ)2 + γ2 =
1− nα(zm)n−1

1 + nα(zm)n−1
. (2.3.19)

The corresponding expression for the macroscopic stress along the bifurcated equilibrium path is

found to be:

Λ = −〈Π11〉 =
1 + nα(zm)n−1

2(1− λ)3

{
1−

[
(1− λ)2 + γ2

]2}
. (2.3.20)

Solving equation (2.3.19) for γ = 0 yields the following implicit equation for the critical strain λc:

nα

[
(1− λc)2 +

1

(1− λc)2
− 2

](n−1)

=
1− (1− λc)2

1 + (1− λc)2
, (2.3.21)

where the bifurcation occurs at the lowest positive root λc of the implicit equation (2.3.21).

Of interest is the initial post-bifurcation behavior of this composite, i.e. the curvatures λ2 and

Λ2 of the bifurcated equilibrium path at critical load. To this end, by taking into account (2.3.18),

we differentiate (2.3.19) with respect to γ at γ = 0 to find:

λ2 =
(1− λc)

1− (1− λc)2

1− (1− λc)2 − (1− n)
[
1 + (1− λc)2

]2
(1− λc)2 +

1− n
2

[
1 + (1− λc)2

]2
 . (2.3.22)

Initial post-bifurcation stability of this composite under displacement control requires λ2 > 0, i.e.

that the numerator in the above expression for λ2 be positive:

1− (1− λc)2 − (1− n)
[
1 + (1− λc)2

]2
> 0. (2.3.23)

To find the initial stability under force control, by taking into account (2.3.21), we differentiate

(2.3.20) with respect to γ at γ = 0 to find Λ2:

Λ2 =
(1− λc)−3

1− (1− λc)2

3
[
1− (1− λc)2

]2 − 2(1− n)
[
2− (1− λc)2

] [
1 + (1− λc)2

]2
(1− λc)2 +

1− n
2

[
1 + (1− λc)2

]2
 .

(2.3.24)
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n = 1 (linear matrix)

n = 0.75

n = 0.55

2n − 1

1

α = 0.23

α = 0.3
3

α = 0.08

α = 0.14

α

n = 1 (�ber)

LOCAL MODE

BEFORE GLOBAL

Figure 2.8: Left: Uniaxial response in simple shear (τ -γ) of the neo-Hookean fiber (linear, in black)

and of the matrix (in color, for different values of the hardening exponent n) of a composite contain-

ing two equal thickness layers. Right: Initial post-bifurcation stability behavior of this composite

at a given critical load (λc, in solid black lines) as a function of matrix constitutive parameters α,

n. Area shaded red: Λ2 > 0, λ2 > 0, area shaded green: Λ2 < 0, λ2 > 0, remaining non-shaded

area: Λ2 < 0, λ2 < 0. The blue shaded area at the bottom of the graph indicates composites where

a local bucking mode precedes the global one.

Initial post-bifurcation stability of this composite under force control requires Λ2 > 0, i.e. that the

numerator in the above expression for Λ2 be positive:

3
[
1− (1− λc)2

]2 − 2(1− n)
[
2− (1− λc)2

] [
1 + (1− λc)2

]2
> 0. (2.3.25)

The range of matrix constitutive parameters (α, n, see definition in (2.3.16)), for which the

homogenized, post-bifurcated solution is initially stable under either force or displacement control

(Λ2 > 0, λ2 > 0, red-shaded area), is initially stable only under displacement control (Λ2 < 0,

λ2 > 0, green-shaded area) and initially unstable under either force or displacement control (Λ2 <

0, λ2 < 0, non-shaded area), is given in Fig. 2.8. The same figure also records contours of equal

critical strain λc as a function of the matrix constitutive parameters α, n. Notice that for large

critical strains (approximately λc > 0.5) the composite is initially stable, while for small strains

(depending on the value of n) the composite exhibits a snap-back (λ2 < 0). A word of caution: for

the post-bifurcation results to be meaningful, one should select matrix parameters α, n for which the

critical mode is global in nature, i.e. exclude composites with matrix parameters in the blue-shaded



CHAPTER 2. LOCALIZATION IN MICROSTRUCTURED SOLIDS 24

area of Fig. 2.8 (see discussion in Section 2.2). The results obtained in Fig. 2.8 are important in

selecting composites for the numerical calculations of the boundary value problems reported in the

next section.

2.3.5 Boundary value problem calculations

Thus far we have established the homogenized post-bifurcation behavior of an infinite, perfect, fiber-

reinforced, hyperelastic composite compressed axially along the direction of its fibers. We want

to find out the response in the bulk of such a composite (i.e. away from boundaries) by solving an

appropriate boundary value problem, in order to establish whether a localized pattern of deformation

will actually emerge or not, once the critical load is approached, given that the energy density of the

homogenized principal solution looses its rank-one convexity once a critical macroscopic strain (λc)

or stress (Λc) has been reached. We seek the equilibrium path of a “realistic” such composite, i.e.

one with the inevitable small imperfections and finite boundaries; in the interest of avoiding edge

effects, an adequately large sample should be considered and the perturbation should vanish on the

sample edges. No analytical solution being possible (to the best of our knowledge) for a finite-size,

imperfect composite, a numerical one is sought based on FEM discretization of the corresponding

boundary value problem. It should be mentioned at this point that there is a vast amount of work

dedicated to the problem of multiscale calculations, i.e. how to find the response of a microstructured

solid which is prone to localization by selecting an appropriate representative volume element,

consistent boundary conditions and an efficient computational strategy. Our main concern for the

FEM calculations is the avoidance of boundary strain concentrations and this is achieved by the

procedure described below. However, the reader interested in this aspect of the problem is referred

to the recent article by Coenen et al. (2012), who propose an interesting computational strategy for

arbitrary microstructures and also present a very comprehensive literature review.

To this end we seek the solution of a finite-size, initially square segment of the composite (of

dimensions L×L), subjected to a macroscopic (average) deformation gradient with 〈F11〉 = 1−λ,

〈F12〉 = 0 and a macroscopic (average) first Piola-Kirchhoff stress with 〈Π12〉 = 〈Π22〉 = 0, in

agreement with (2.2.8). Moreover, periodic boundary conditions are imposed on opposite faces of

this square segment, so that the perfect, finite-size composite can exhibit both the perfect principal

and perfect bifurcated solutions presented in Subsection 2.2.2, thus avoiding the development of

large deviations from the perfect solution at the boundaries.

Several such finite-size composites are investigated; the results presented here correspond to

an initially square segment containing 40 unit cells, with each such cell consisting of a fiber layer

(initial dimension L/80× L and a matrix layer (initial dimension L/80× L; only composites with
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equal matrix and fiber volume fractions (ζm = ζf = 0.5) are modeled. Each fiber and matrix

layer are discretized using a Cartesian grid of 4 quadrilateral elements through the thickness and

320 elements along their length for a grid consisting of a total of 102,400 such elements. The FEM

calculations are performed using ABAQUS by implementing the constitutive relations in (2.3.16)

into the incompressible element CPE4H.

The reference configuration of the sample has a small geometric imperfection with respect to its

perfect counterpart, which is necessary to trigger the bifurcated solution. Accordingly the following

initial imperfection which is designed to have a maximum amplitude at the middle of the finite-size

composite and vanish at its boundaries:

∆X1 = 0, ∆X2 = ξ sin(πX2/L) arctan[β(X1/L− 1/2)], (2.3.26)

where the parameter ξ = 10−3 controls the maximum X2-amplitude of the perturbation and the

parameter β = 8 controls its X1-range. The origin of the coordinate system is taken at the bottom

left corner of the domain. The control parameter is the macroscopic axial strain λ and a Riks

continuation method is employed to bypass the limit loads which are associated to snapbacks.

The FEM calculations presented correspond to three different composites, described in Subsec-

tion 2.3.4; the material parameters of their matrix layers are indicated by a dot in Fig. 2.8, which

gives the initial post-bifurcation of the homogenized response for the corresponding perfect com-

posite (the n = 1 axis corresponds to the fully neo-Hookean composite with α = µm/µf , as

described in Subsection 2.3.3).

The response of a neo-Hookean composite with ζf = ζm = 0.5 and α = µm/µf = 0.22,

whose perfect configuration exhibits a stable post-bifurcation behavior (Λ2 > 0, λ2 > 0), is shown

in Fig. 2.9. The composite has two equal thickness neo-Hookean (n = 1) layers (see point A in

Fig. 2.8). On the left is the macroscopic stress-strain response of the homogenized perfect composite

(in red) and of its finite-size imperfect counterpart, based on FEM computations using 40 unit cells

(in black). On the middle and right are depicted the deformed configurations at points a and b,

showing also contours of the Lagrangian shear strain componentE12. The macroscopic stress-strain

curve of the imperfect composite is almost indistinguishable from its perfect counterpart. When the

critical strain λc is reached at point a, the imperfect composite shows a higher strain zone in the

middle, as seen in the middle picture of Fig. 2.9. Upon further increase of the applied macroscopic

strain, the composite reaches at point b a uniform solution corresponding to the bifurcated state

of its perfect counterpart, as shown in the right picture of Fig. 2.9. In contrast to what is known

in typical engineering composites, the present example shows a case where in spite of loosing its

macroscopic rank-one convexity, the composite exhibits no localized zone of deformation in its

post-critical response.
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a b

Figure 2.9: Response of a neo-Hookean composite, exhibiting a stable homogenized post-

bifurcation behavior (Λ2 > 0, λ2 > 0). The composite consists of two equal thickness neo-Hookean

(n = 1) layers with a stiffness ratio α = µm/µf = 0.22, see point A in Fig. 2.8. On the left is the

macroscopic stress-strain response of the homogenized perfect composite (in red) and of its finite-

size imperfect counterpart computed by FEM (in black). On the middle and right are deformed

configurations at points a and b, showing also contours of the Lagrangian shear strain component

E12. Undeformed configuration is shown by its bounding square.

The response of a locally stable (i.e. locally rank-one convex) ζf = ζm = 0.5 composite

which has a neo-Hookean fiber and a nonlinear matrix with n = 0.75, α = 1.0, whose perfect

configuration exhibits an initially stable post-bifurcation behavior (Λ2 > 0, λ2 > 0 and identified

by point B in Fig. 2.8), is shown in Fig. 2.10. On the left is the macroscopic stress-strain response

of the homogenized perfect composite (in red) and of its finite-size imperfect counterpart based

on FEM computations using 40 unit cells (in black). On the middle and right are depicted the

deformed configurations at points a and b, showing also contours of the Lagrangian shear strain

component E12. Similarly to the neo-Hookean case presented in Fig. 2.9, the macroscopic stress-

strain curve of the imperfect composite is almost indistinguishable from its perfect counterpart.

When the critical strain λc is reached at point a, the imperfect composite is covered by alternating

higher and lower strain zones (a mix of principal and bifurcated solutions of the corresponding

infinite, perfect composite), as shown in the middle picture of Fig. 2.10. Upon further increase of
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a b

Figure 2.10: Response of a composite with a stable homogenized post-bifurcation behavior Λ2 > 0,

λ2 > 0. The composite consists of two equal thickness layers: a neo-Hookean (n = 1) and a softer

layer (n = 0.75, α = 1.0, see point B in Fig. 2.8). On the left is the macroscopic stress-strain

response of the homogenized perfect composite (in red) and of its finite-size imperfect counterpart

computed by FEM (in black). On the middle and right are depicted the deformed configurations at

points a and b, showing also contours of the Lagrangian shear strain component E12. Undeformed

configuration is shown by its bounding square.

the applied macroscopic strain, the composite reaches at point b a uniform solution corresponding

to the bifurcated state of the perfect composite, as seen in the right picture of Fig. 2.10.

The response of a locally stable (i.e. locally rank-one convex) composite with a neo-Hookean

fiber and a matrix with n = 0.55, α = 0.22, whose perfect configuration exhibits a homogenized

post-bifurcation behavior with an initial snap-back (Λ2 < 0, λ2 < 0 and identified by point C

in Fig. 2.8), is shown in Fig. 2.11. On the left is the macroscopic stress-strain response of the

homogenized perfect composite (in red) and of its finite-size imperfect counterpart based on FEM

computations using 40 unit cells (in black). Due to structural effects, the post-bifurcation snap-back
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a b

Figure 2.11: Response of a composite with a snap-back homogenized initial post-bifurcation behav-

ior Λ2 < 0, λ2 < 0. The composite consists of two equal thickness layers: a neo-Hookean (n = 1)

and a softer layer (n = 0.55, α = 0.22, see point C in Fig. 2.8). On the left is the macroscopic

stress-strain response of the homogenized perfect composite (in red) and of its finite-size imperfect

counterpart computed by FEM (in black). On the middle and right are depicted the deformed con-

figurations at points a and b, showing also contours of the Lagrangian shear strain component E12.

Undeformed configuration is shown by its bounding square.

of the imperfect, finite-sized composite is significantly more severe than the one of its homogenized,

perfect counterpart, resulting in a reversal of the macroscopic stress-strain path. It is practically

impossible to distinguish in Fig. 2.11 between the forward loading path, which ends at point a

(maximum macroscopic strain and stress) and the return path, which ends at b. The corresponding

deformed configurations at points a and b, as well as the contours of the Lagrangian shear strain

component E12 are depicted in the middle and right of Fig. 2.11.

When the maximum macroscopic strain and stress is reached (point a) one can see in the middle

picture of Fig. 2.11 the beginning of the formation of a localized deformation zone at the middle

of the imperfect composite, where the amplitude of the imperfection is maximized. When the

structure has snapped back and reached point b, one can see in the right picture of Fig. 2.11 a very

pronounced localized deformation zone, while the rest of the composite relaxes and tries to return

to its principal equilibrium path. This behavior is also typical in many elastoplastic composites

studied in the literature, where the localization of deformation mechanism and details of the kink

band formation have been studied in detail.

All the above calculations pertain to locally stable (i.e. locally rank-one convex) hyperelastic

composites that share the same feature: a critical (i.e. occurring at lowest applied macroscopic load)
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long wavelength bifurcation mode which corresponds to a loss of ellipticity in the homogenized

principal solution. Our calculations show that a localization of deformation in these composites

does not always appear in the neighborhood of critical load and beyond; the result depends on the

post-bifurcation behavior of the homogenized, perfect composite. In contrast to the widely studied

cases of elastoplastic composites, with high stiffness contrast between fiber and matrix that exhibit

kink band solutions, we have shown here the existence of composites that have stable, homogenized

post-bifurcated solutions with increasing macroscopic stresses and strains. These composites do not

exhibit localized deformation post-bifurcated solutions, in spite of the fact that their homogenized

energy looses its rank-one convexity as the applied loading increases.

2.4 Conclusion

Localization of deformation in solids is the instability mechanism leading to failure by rupture.

In the framework of continuum modeling, this phenomenon is captured by the loss of ellipticity

in the governing equations, may lead to discontinuous strain solutions. To better understand the

origins of continuum models that exhibit loss of ellipticity at adequate levels of strain or stress, a

substantial amount of work has been dedicated to the nonlinear homogenization of microstructured

solids to study how geometry and constitutive laws at the microscopic level lead to a macroscopic

loss of ellipticity. Since a loss of ellipticity is the property allowing for discontinuous equilibrium

solutions, it is thought that a loss of macroscopic (homogenized) ellipticity results in a localized

deformation pattern in the post-bifurcated regime. Although this is the case in many engineering

applications, it raises interesting questions: is there always a localized deformation appearing in the

post-critical equilibrium path of solids loosing macroscopic ellipticity and what are the sufficient

conditions in the homogenized response that lead to localization?

The present chapter answers these questions in the framework of a simple, but analytically

tractable microstructure, namely an infinite, layered, locally stable (i.e. point-wise rank-one con-

vex) nonlinear (hyperelastic) solid under plane strain loading conditions and more specifically un-

der axial compression along the lamination direction. For this problem, one can find macroscopic

loads where the moduli of the homogenized principal solution loose ellipticity (and since the solid

has an energy density, the corresponding homogenized energy looses rank-one convexity). More-

over we can ensure that the critical (i.e. corresponding to the lowest applied load) buckling mode

of the infinite, perfect solid is global in nature (infinite wavelength eigenmode), a property that al-

lows us to find a homogenized solution for the bifurcated equilibrium path of the infinite, perfect

structure. Within this homogenized framework, we prove that perfect, neo-Hookean composites
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(incompressible or compressible) of arbitrary fiber/matrix volume fraction, always have a stable

initial post-bifurcation response with increasing force and displacement (Λ2 > 0, λ2 > 0). We also

construct a more general composite, consisting of a neo-Hookean fiber and a softer matrix of equal

thicknesses which, depending on the constitutive details of the matrix, can exhibit all possible initial

post-bifurcation responses: a snap-back (Λ2 < 0, λ2 < 0), a maximum force (Λ2 < 0, λ2 > 0) or a

stable bifurcation occurring under increasing force and displacement (Λ2 > 0, λ2 > 0).

The important question addressed next is how a finite-size volume of such a composite will

behave in the bulk, i.e. away from its boundaries where strain concentration can easily appear. To

this end, we consider a square sample (containing 40 unit cells and using a refined FEM mesh for

the corresponding calculations) of the composite with periodic boundary conditions that can capture

the homogeneous principal and bifurcated equilibrium paths of the perfect structure. We show,

by means of introducing a small geometric imperfection at the middle of the sample, that under

these boundary conditions composites with a monotonically increasing force (and displacement)

homogenized initial post-bifurcation response (Λ2 > 0, λ2 > 0) will evolve towards a uniform

shearing solution away from the macroscopic critical load and show no localization of deformation

pattern past the critical load, in spite of a macroscopic loss of ellipticity of the principal solution. As

expected, composites exhibiting a the snap-back (i.e. maximum displacement) in their macroscopic

response (Λ2 < 0, λ2 < 0), will evolve into a solution with a single strong localized deformation

zone.

The key concept for finding whether loss of macroscopic ellipticity leads to localization of de-

formation lies in the post-bifurcation behavior of the solid under investigation. Providing consistent

criteria based on homogenization ideas, for the absence or presence of localized deformation zones

in the post-critical regime of finitely strained solids, is possible, as the current layered composite

model shows, for cases when the critical bifurcation mode is also global in nature and well separated

from other eigenmodes. For more complex problems, such as solids with two- or three-dimensional

periodic microstructures, the presence or absence of localized deformation patterns cannot be an-

swered by using homogenization ideas, because of the local nature of the bifurcated solutions (finite

number of unit cells involved). Instead efficient numerical calculations of their equilibrium paths

that take into account the symmetry groups of these structures (both point and space) are needed in

order to find their solutions well past the onset of a first instability (see Combescure et al. (2016)).
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2.A Critical load of an axially compressed layered solid

2.A.1 Finite wavelength (local) bifurcation eigenmodes

To find conditions for a non-trivial solution to the system (2.2.1), (2.2.2) and (2.2.3), one can take

advantage of its X1 translational invariance by considering a Fourier transform with respect to X1.

This linear system of partial differential equations and interface conditions with piecewise constant

coefficients that governs the onset of bifurcation of the layered solid is thus reduced to the following

linear system of ordinary differential equations and interface conditions in X2:

ω2
1Li1k1v̂k − iω1(Li2k1 + Li1k2)v̂k,2 − Li2k2v̂k,22 = 0, (2.A.1)

[[iω1Li2k1v̂k + Li2k2v̂k,2]] = 0, [[v̂i]] = 0, (2.A.2)

where v̂(ω1, X2) is the Fourier transform of ∆u(X1, X2) and the real number ω1 is the Fourier

transform variable corresponding to X1. It is assumed that the field ∆u is uniformly bounded and

has adequate continuity, in which case its Fourier transform v̂ exists in the sense of distributions.

To determine a non-trivial solution v̂ (up to a multiplicative constant), for the periodic system

of ordinary differential equations in (2.A.1) and (2.A.2), the system is solved on just one unit cell

together with some additional boundary conditions at its ends X2 = 0+ and X2 = H+. These

conditions are provided by Floquet theory, which applies to linear systems of ordinary differential

equations in X2, with periodic coefficients (period is the unit cell thickness H), according to which:

v̂i(ω1, H
+) = exp (iω2H) v̂i(ω1, 0

+), (2.A.3)

where the real number ω2 (ω2H ∈ [0, 2π)) is the Floquet parameter of the solution.

The general solution to the system of ordinary differential equations with piecewise constant

coefficients (2.A.1) is found in each layer to be the sum of four linearly independent partial solu-

tions:

v̂k(ω1, X2) =
∑4

j=1

m
C

(j)

k exp

(
iω1

m
Z(j)X2

)
; X2 ∈ (0, Hm),

v̂k(ω1, X2) =
∑4

j=1

f

C

(j)

k exp

(
iω1

f

Z(j)X2

)
; X2 ∈ (Hm, H),

v̂k(ω1, X2) =
∑4

j=1

m
C
∗(j)

k exp

(
iω1

m
Z(j)X2

)
; X2 ∈ (H,H +Hm),

(2.A.4)

where Z(j) (j = 1, 4) are the four complex roots of the following fourth order, biquadratic polyno-

mial in Z:

det
[
Li2k2Z

2 + (Li2k1 + Li1k2)Z + Li1k1

]
= 0, (2.A.5)
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and C(j) is the eigenvector of the 2× 2 matrix shown in brackets in (2.A.5) associated with the root

Z(j). The eigenvector components C(j)
1 and C(j)

2 are related by:5

C
(j)
2 = D(j)C

(j)
1 ; D(j) := −

L1212Z
2
(j) + L1111

(L1221 + L1122)Z(j)
, (2.A.6)

Note that equations (2.A.5) and (2.A.6) are valid for each of the two layers and that superscripts

m and f are omitted from these equations in the interest of notational simplicity. The requirement

that the roots Z(j) are complex for the loading parameter λ of interest, stems from the assumed

strong rank-one convexity of each layer, which implies the absence of any discontinuous deforma-

tion gradients in each layer for all loading paths considered here.

The Fourier transform of the interface conditions (2.A.2), after substituting equations (2.A.4)

and (2.A.6), gives the following equations for the coefficients
m
C1,

f

C1 and
m
C
∗

1 in matrix form:

m
V exp

(
iω1

m
ZHm

)
m
C1 =

f

V exp

(
iω1

f

ZHm

)
f

C1,

f

V exp

(
iω1

f

ZH

)
f

C1 =
m
V exp

(
iω1

m
ZH

)
m
C
∗

1,

(2.A.7)

for the interfaces X2 = Hm and X2 = Hm +Hf = H , respectively. The components of the 4× 4

matrices V and Z are defined by:

V1j = 1,

V2j = D(j),

V3j = L1212Z(j) + L1221D(j),

V4j = L2211 + L2222Z(j)D(j),

Zij = δijZ(j).

(2.A.8)

The components of the vector C1 are the four constants C(j)
1 introduced in (2.A.4). Here again,

the superscripts m and f are omitted from (2.A.8) in the interest of notational simplicity since the

components of V, Z and C1 are evaluated on the corresponding layer. Substituting equation (2.A.4)

into the Floquet conditions (2.A.3) results in the additional relation:

m
C
∗

1 = exp (iω2H) exp

(
−iω1

m
ZH

)
m
C1. (2.A.9)

5Repeated indexes in parentheses are not summed, unless explicitly indicated by a summation symbol.



33 2.A. CRITICAL LOAD OF AN AXIALLY COMPRESSED LAYERED SOLID

Finally, after employing the above result (2.A.9) into equations (2.A.7), a non-trivial solution

v̂(ω1, X2) 6= 0 (or equivalently
m
C1 6= 0) exists if the matrix with constant coefficients K has

unimodular eigenvalues:

det [K(λ, ω1H)− exp (iω2H) I] = 0;

K :=
f

K
m
K,

l
K :=

l
V exp

(
iω1

l
ZHl

)
l

V
−1

; l = m, f,

(2.A.10)

where I is the 4 × 4 identity matrix. It should be noted here that the 4 × 4 matrix K(λ, ω1H)

satisfies:

det[K] = 1, K−1(λ, ω1H) = K(λ,−ω1H), (2.A.11)

and that has real invariants IKi ∈ R, (i = 1, . . . , 4). Thus, the critical load parameter λc, which

represents the first occurrence of a bifurcation in the layered solid during a monotonically increasing

loading history, corresponds to the first occurrence of a singular matrix in (2.A.10)1, as the loading

parameter λ increases from zero, over all possible pairs of dimensionless wavenumbers ω1H and

ω2H .

The calculation works as follows: At criticality yc := exp (i(ω2H)c) is an eigenvalue of matrix

K, and in view of the fact that |yc| = 1), it corresponds to the first occurrence of a unimodular root

of the following fourth order equation:

y4 − y3IK1 (λ, ω1H) + y2IK2 (λ, ω1H)− yIK1 (λ, ω1H) + 1 = 0, (2.A.12)

where the two real invariants IKj of matrix K, satisfy in view of (2.A.11)3:

IK1 := tr K, IK2 :=
1

2

[
(tr K)2 − tr K2

]
, IKj (λ, ω1H) = IKj (λ,−ω1H). (2.A.13)

For a fixed dimensionless wavenumber ω1H , λ̂(ω1H) is the lowest value of λ for which the

characteristic equation (2.A.12) admits a unimodular solution for y and corresponds to the first

bifurcation load with a dimensionless wavelength ω1H along the X1 direction. It is given by the

lowest positive λ root of one of three equations:

λ̂(ω1H) = min


λ > 0

2IK1 − IK2 − 2 = 0, (ω2H)c = 0,

2IK1 + IK2 + 2 = 0, (ω2H)c = π,

1

4
(IK1 )2 − IK2 + 2 = 0, (ω2H)c = cos−1(IK1 /4).


. (2.A.14)

The critical load parameter λc is then found by a numerical search as the lowest value of

λ̂(ω1H), when the infimum is taken over an adequately large interval ω1H ∈ R, in the process
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also giving the corresponding critical dimensionless wavenumber (ω1H)c, as defined in (2.2.5).

Notice that in view of (2.A.13)3 only positive wavenumbers (ω1H > 0) need to be considered, thus

explaining the definition of the critical load in (2.2.5).
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Figure 2.12: Different types of bifurcation modes in axially compressed layered media.

Some additional comments are in line at this point. Depending on whether the infimum in

(2.A.14) occurs at the first, second or third equation, one can determine the nature of the criti-

cal eigenmode. More specifically, when the infimum occurs for (ω2H)c = 0, the corresponding

eigenmode is H-periodic, as shown in Fig. 2.12d, when the infimum occurs for (ω2H)c = π, the

corresponding eigenmode is H-antiperiodic, as shown in Fig. 2.12e, while for an infimum reached

at (ω2H)c = cos−1(IK1 /4), the corresponding eigenmode is shown in Fig. 2.12f.

2.A.2 Long wavelength (global) bifurcation eigenmodes

It should be noted here, that in all the previous calculations it was tacitly assumed that the di-

mensionless wavenumber ω1H 6= 0. The function λ̂(ω1H) has a singular point at the origin, i.e.

λ̂(0) 6= λ̂(0+) := limω1H→0+ λ̂(ω1H), since two physically different types of modes can ex-

ist in the neighborhood of ω1H = 0: an X2-periodic, X1-independent eigenmode v̂(0, X2) for

ω1H = 0 and a long wavelength eigenmode with dimensionless wavelength along the X1 direction

2π/(ω1H) = L1/H → ∞ when ω1H → 0+. For the latter case it has been shown by (Triantafyl-

lidis and Maker, 1985), that the limit value of λ̂(ω1H), as ω1H → 0+, is λH which corresponds to

the loss of rank-one convexity of the homogenized incremental moduli LH . Although the proof of
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this assertion for the general case of periodic composites is detailed in (Geymonat et al., 1993), for

reasons of completeness a brief outline for layered composites in plane strain is presented here.

Starting point for the proof of the above assertion is (2.A.10), where the asymptotic expansion

of K(λ, ω1H) with respect to ω1H gives to first order:

det [G(λ)− (ω2/ω1) I] = 0;

G11(λ) = G22(λ) = G33(λ) = G44(λ) = 0,

G12(λ) = −〈L1221(L1212)−1〉, G21(λ) = −〈L1122(L2222)−1〉,

G13(λ) = 〈(L1212)−1〉, G31(λ) = −〈L1111 − (L1122)2(L2222)−1〉,

G24(λ) = −〈(L2222)−1〉, G42(λ) = 〈L2121 − (L1221)2(L1212)−1〉,

G34(λ) = 〈L1122(L2222)−1〉, G43(λ) = 〈L1221(L1212)−1〉,

G14(λ) = G41(λ) = G23(λ) = G32(λ) = 0.

(2.A.15)

Hence (ω2/ω1) is an eigenvalue of the matrix G, and must satisfy the following biquadratic

equation:

(ω2/ω1)4 + (ω2/ω1)2 IG2 (λ) + IG4 (λ) = 0, (2.A.16)

where the invariants of G are real and given in terms of its components by:

IG2 (λ) = −(G12G21 +G13G31 +G24G42 +G34G43),

IG4 (λ) = (G12G43 −G13G42)(G21G34 −G31G24).

(2.A.17)

The critical load parameter corresponding to the long wavelength λ̂(0+) := limω1H→0+ λ̂(ω1H)

is then found as the lowest value of λ for which the biquadratic (2.A.16) admits real solutions in

(ω2/ω1), namely the lowest λ root of one of two equations:

λ̂(0+) = min

λ > 0

IG4 = 0, (ω2/ω1)c = 0,

1

4
(IG2 )2 − IG4 = 0, (ω2/ω1)c =

[
−(IG2 /2)

]1/2
.

 . (2.A.18)

The proof that λ̂(0+) coincides with λH , the lowest load parameter corresponding to the loss of
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the rank-one convexity of the homogenized moduli LH(λ) follows from (2.A.15) and (2.A.16) and

the expressions for the homogenized moduli, which are presented next.

For the orthotropic layered medium at hand subjected to axial loading the determination of

LH(λ) starts with the following definition:

LHijkl(λ) =
1

H

H∫
0

Lmnpq

(
δimδjn +

ij
ϕ
m,n

)(
δkpδlq +

kl
ϕ
p,q

)
dX2, (2.A.19)

where δij is the Kronecker delta. The characteristic field
ij
ϕ(X2) is the unit cell’s response to the

ij-th component of the unit macroscopic deformation and is a periodic function in X2, with period

the unit cell thickness H . It is calculated by solving the following boundary value problem given in

its variational form:
H∫

0

Lmnpq

(
δkpδlq +

kl
ϕ
p,q

)
δϕm,n dX2 = 0. (2.A.20)

From (2.A.19)–(2.A.20), and recalling the orthotropy of the principal solution, one obtains the

following expressions for the nonzero components of the homogenized moduli tensor:

LH1111(λ) = 〈L1111 − (L1122)2(L2222)−1〉+ 〈L1122(L2222)−1〉2〈(L2222)−1〉−1,

LH1122(λ) = 〈L1122(L2222)−1〉〈(L2222)−1〉 = LH2211(λ),

LH2222(λ) = 〈(L2222)−1〉−1,

LH2121(λ) = 〈L2121 − (L1221)2(L1212)−1〉+ 〈L1221(L1212)−1〉2〈(L1212)−1〉−1,

LH1221(λ) = 〈L1221(L1212)−1〉〈(L1212)−1〉 = LH2112(λ),

LH1212(λ) = 〈(L1212)−1〉−1.

(2.A.21)

The first, as the load parameter increases, loss of ellipticity for the homogenized, layered solid,

corresponds to the lowest load parameter λH for which the homogenized incremental moduli LH(λ)

loose rank-one convexity, i.e. λH is the lowest λ-root of (2.2.4). From the orthotropy of the homoge-

nized incremental moduli LH(λ), the determinant of the homogenized acoustic tensor LHijkl(λ)njnl

in (2.2.6) is the following biquadratic equation:

(n2/n1)4 + (n2/n1)2 IH2 (λ) + IH4 (λ) = 0, (2.A.22)
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where the coefficients IH2 and IH4 are expressed in terms of the components of the homogenized

moduli tensor by:

IH2 (λ) = (LH1111L
H
2222 + LH1212L

H
2121)− (LH1122) + LH2222)2(LH1212L

H
2222)−1,

IH4 (λ) = (LH1111L
H
2121)(LH1212L

H
2222)−1.

(2.A.23)

However, from the expressions for the invariants of G in (2.A.15) and the expressions for the

components of the homogenized moduli tensor in (2.A.21) one can show that:

IG2 (λ) = IH2 (λ), IG4 (λ) = IH4 (λ), (2.A.24)

thus proving our assertion that λ̂(0+) = λH and moreover, since the biquadratics in (2.A.16) and

(2.A.22) coincide, that (ω2/ω1)c = (n2/n1)c.

2.A.3 Periodic (X1-independent) bifurcation eigenmodes

The last case remaining to be checked is ω1H = 0, i.e. when the eigenmode is independent on

X1. The corresponding critical load parameter λ̂(0) is also found from the transformed governing

equations (2.A.1) and (2.A.2). In this case it can be seen from (2.A.1), that v̂1(0, X2) and v̂2(0, X2)

are piecewise linear functions in X2 within each layer. A non-trivial solution v̂i(0, X2) exists when

L1212(λ) = 0 or L2222(λ) = 0 in either the fiber or the matrix layer, thus giving the critical stretch

ratio as the lowest λ root of one of the four equations:

λ̂(0) = min
{
λ > 0 Lf1212(λ) = 0, Lf2222(λ) = 0, Lm1212(λ) = 0, Lm2222(λ) = 0

}
. (2.A.25)

For the hyperelastic solids investigated here, their rank-one convexity guarantees thatL1212(λ) >

0 and L2222(λ) > 0 for both fiber and matrix. Even for rate-independent solids that might loose

ellipticity, one can see that λ̂(0) from (2.A.25) is strictly larger than λ̂(0+) from (2.A.18), itself

being by definition larger than λc, the lowest λ-root of (2.2.5), namely:

λ̂(0) > λ̂(0+) = λH ≥ λc (2.A.26)

Note that the existence of a singularity at λ̂ at ωH1 = 0 explains the use of the infimum in the

definition of (2.2.5).



CHAPTER 2. LOCALIZATION IN MICROSTRUCTURED SOLIDS 38

2.B Post-bifurcation asymptotics for a compressible neo-Hookean com-

posite

It is now of interest to see if the stability result for the neo-Hookean composite is influenced by

compressibility. To this end we now consider the compressible neo-Hookean composite in (2.3.3)

a which also admits a closed form solution. Recalling again from the kinematics in (2.2.8) that

F11 = 1 − λ and F21 = γ one obtains from (2.2.9) the following expressions for the first Piola-

Kirchhoff stresses:

Π11 = (1− λ)

[
µ− p 2

µ

]
,

Π22 = 0 ⇒ p := µ− k
[
(I2)1/2 − 1

]
=

µ

1− λ F22,

Π21 = µF12 + p γ,

Π12 = µγ + pF12,

(I2)1/2 = (1− λ) F22 − γ F12 = (1− λ)2 p

µ
− γ F12.

(2.B.1)

Again recalling shear traction continuity Πf
21 = Πm

21 from (2.2.9)3 and the kinematic constraint

〈F12〉 = 0 from (2.2.8)3 one obtains the following linear system for the two unknowns F f12 and Fm12 :

µf F
f
12 − µm Fm12 + (pf − pm) γ = 0,

ζf F
f
12 + ζm F

m
12 = 0.

(2.B.2)

The solution of the above linear system for F f12, Fm12 gives:

F f12 =
γ (pm − pf )

ζf µH
, Fm12 =

γ (pf − pm)

ζm µH
, (2.B.3)

where µH := (µf/ζf )+(µm/ζm) as defined in (2.3.11). Using (2.B.1)5 in combination with (2.B.3)
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COMPOSITE

one obtains the following expressions for pf and pm:

pf =
cm (1 + rf ) + γ2 [(1 + rf ) /ζm + (1 + rm) /ζf ] /µH

cf cm + γ2 [cm/ζf + cf/ζm] /µH
,

pm =
cf (1 + rm) + γ2 [(1 + rm) /ζm + (1 + rm) /ζf ] /µH

cf cm + γ2 [cm/ζf + cf/ζm] /µH
,

cf :=
[
(1− λ)2 + rf

]
/µf , rf := µf/kf ,

cm :=
[
(1− λ)2 + rm

]
/µm, rm := µm/km.

(2.B.4)

The δ-γ relationship along the bifurcated equilibrium path is obtained from the requirement

〈Π12〉 = 0 in (2.2.9)2, and the help of (2.B.1), (2.B.3) giving:

〈Π12〉 = γ

[
µG −

(pf − pm)2

µH

]
= 0. (2.B.5)

Consequently, with the help of (2.B.4) the sought δ-γ relationship is:

cm (1 + rf )− cf (1 + rm) = (µG µH)1/2

[
cf cm +

γ2

µH

(
cm
ζf

+
cf
ζm

)]
, (2.B.6)

where without loss of generality it was tacitly assumed that pf > pm or equivalently from (2.B.4)

that cm (1 + rf ) > cf (1 + rm). Notice that at the incompressible limit rf = rm = 0, in which

case (2.B.6) reduces to (2.3.11)1 as expected.

From (2.B.6) at bifurcation, i.e. for γ = 0, recalling also the definitions of cf , cm, rf , rm in

(2.B.4)3 which give an additional relation between cf and cm:

cm µm − cf µf = rm − rf := ∆r, (2.B.7)

one obtains the following result for the critical load λc under displacement control (λ = −δ):

λc = 1−
{

1

2

[
∆M

(µG µH)1/2
+D − (rf + rm)

]}1/2

,

∆M := µf (1 + rf )− µm (1 + rm) ,

D :=

{
(∆M)2

µG µH
+ (∆r)2 + 2

∆r

(µG µH)1/2
[µf (1 + rf ) + µm (1 + rm)]

}1/2

.

(2.B.8)

As expected, at the incompressible limit rf = rm = 0, the above expression reduces to (2.3.13).

The expression for the curvature λ2 (λ2 = −δ2) of the bifurcated equilibrium path at the critical
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point is found by taking the second γ-derivative of (2.B.6) at γ = 0, giving after some straightfor-

ward by lengthy algebra:

λ2 =
1

(1− λc) D

[
(1− λc)2 +

1

µH

(
rf
µm
ζm

+ rm
µf
ζf

)]
, (2.B.9)

which reduces, as expected, to its incompressible limit (2.3.14) as rf = rm = 0. Notice that λ2 > 0,

showing that the compressible neo-Hookean composite has like its incompressible counterpart a

stable post-bifurcation response under displacement control.
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2.C Influence of constitutive law choice on critical load

In all calculations presented in this chapter, the response of each layer of the composite is described

by a hyperelastic constitutive law, which cannot take into account the presence of a possible un-

loading in the bifurcated solution. Since unloading will occur in the stiffer layer (matrix), the neo-

Hookean model is adequate for this case, due to its linear τ -γ (shear stress-shear strain) response.

Hence, to make connections with elastoplasticity, one can compare the predictions of the hyperelas-

tic composites to models where the softer (matrix) layer follows a deformation theory constitutive

law, for this layer will continue loading in the homogenized post-bifurcated solution. However, only

the onset of bifurcation can be compared for the two different models; post-bifurcation calculations

for deformation theory of plasticity would require integrating the corresponding rate-independent

(hypoelastic) model, unlike the hyperelastic case where no such integrations are needed.

For comparison purposes we revisit below the composite investigated in Subsection 2.3.4, con-

sisting of two equal thickness layers, the stiffer (fiber) being neo-Hookean with energy density

Wf = (1/2)(I1 − 2) and the softer (matrix) being in turn a) hyperelastic, b) deformation the-

ory elastoplastic, both sharing the same uniaxial stress-strain law derived from the matrix energy

density. For incompressible plane strain conditions, the incremental form of a rate-independent,

pressure-insensitive, initially orthotropic material, as first noted by Biot (1965), takes the general

form:
∇
σ11 = 2µ?D11 − ṗ,

∇
σ22 = 2µ?D22 − ṗ,

∇
σ12 = 2µD12 =

∇
σ21, (2.C.1)

where
∇
σ denotes the Jaumann rate of the Cauchy stress, D the strain rate tensor, ṗ the hydrostatic

pressure rate and the quantities µ and µ? are the incremental moduli associated with an infinitesimal

simple shear, superposed on a homogeneous deformation, parallel to the principal axes and at π/4

respectively. It can be shown, (e.g. see Abeyaratne and Triantafyllidis (1981a)), that for the defor-

mation theory model proposed by Stören and Rice (1975a), which has the same uniaxial stress-strain

law as the hyperelastic model (energy density W = (α/2)g(I1−2)), only the incremental modulus

µ is different between the hyperelastic and deformation theory under loading condition:

µ =
α

2

[
(1− λ)2 +

1

(1− λ)2

]
g′(z), hyperelastic model,

µ =
α

4 ln(1− λ)

[
(1− λ)2 − 1

(1− λ)2

]
g′(z), deformation theory model,

(2.C.2)

where z := I1 − 2 = (1− λ)2 + (1− λ)−2)− 2.

Using the matrix energy density from (2.3.16) in conjunction with (2.C.2), one obtains the
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following expressions for the critical load under displacement control λc:

nα

[
(1− λc)2 +

1

(1− λc)2
− 2

](n−1)

=
1− (1− λc)2

1 + (1− λc)2
, hyperelastic model,

nα

[
(1− λc)2 +

1

(1− λc)2
− 2

](n−1)

= − ln(1− λc)2 1 + (1− λc)4

[1 + (1− λc)2]2
, deformation theory model.

(2.C.3)

Comparing the critical strain λc of the composite using the two different matrix models is pre-

sented in Fig. 2.13. As expected from (2.C.2), since for a given axial strain λ the shear moduli µ are

larger for the hyperelastic matrix (while remaining unchanged for the fiber), the stiffness contrast

between the two layers is greater for the deformation theory version of the matrix and hence result

in a lower critical strain for the corresponding composite.

Figure 2.13: Critical load (λc, in solid black lines) as a function of matrix constitutive parameters

for a composite containing two equal thickness layers: a stiff neo-Hookean fiber and a soft nonlinear

matrix. On the left figure the matrix is hyperelastic while on the right figure the matrix is based on

a deformation theory model of elastoplasticity, with both models sharing the same uniaxial stress-

strain response. The blue shaded area in each graph indicates composites where a local bucking

mode precedes the global one.

It is also worth noticing by comparing the shaded areas of the two different composites in

Fig. 2.13, that there is a larger range of material parameters where a local instability precedes the

onset of a global one. The bottom shaded area corresponds to antisymmetric local modes (where

(ω2H)c = π in (2.A.14)), while the right shaded area in the deformation theory case corresponds to

symmetric local modes (where (ω2H)c = 0 in (2.A.14)).
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LOCAL MODE

BEFORE GLOBAL

hyperelastic

deformation th.

Figure 2.14: Influence of constitutive law choice on the critical strain λc as a function of the initial

matrix-to-fiber stiffness ratio α for the hyperelastic (red line) and the hypoelastic (deformation the-

ory, blue line) matrix models presented in Fig. 2.13, for three different matrix hardening exponents:

n = 0.55, 0.57, 1. A solid line indicates a global critical (lowest strain) mode and a dotted line

indicates a local one.

An alternative way of comparing the critical strain λc of the composite as a function of the

initial matrix-to-fiber stiffness ratio α for the two different matrix models for a given hardening

exponent (n = 0.55, 0.57, 1) is presented in Fig. 2.14. As explained above, for a given set of

material parameters (α, n), the hyperelastic model has a critical load which is consistently higher

than its hypoelastic counterpart. However, for small values of α, i.e. large differences between the

initial stiffness of the two layers, there is practically no difference between the predictions of the two

different matrix models, which means almost identical critical strains in the range 0 ≤ λc < 0.2, as

seen in Fig. 2.14.





Chapter 3

Dynamic stability of biaxially strained

thin sheets under high strain rates

3.1 Introduction

The issue of dynamic stability of structures is an important engineering problem and as such has

drawn considerable attention. The first investigation in this area appears to be the work of Koning

and Taub (1933), who investigated the influence of inertia in a simply supported imperfect column

subjected to a sudden axial load. A substantial amount of work followed that investigated the re-

sponse of, mainly elastic, structures to impulse or time-dependent loads. As a result, and due to

the many possible definitions for the stability of time-dependent systems, the term dynamic stability

encompasses many classes of problems and different physical phenomena and has many interpreta-

tions, with inertia being the only common denominator.

In the absence of inertia, the processes of failure by a bifurcation instability mode in elastic

solids and structures is well understood (e.g. Brush and Almroth (1975)) and a general asymptotic

analysis, termed Lyapunov-Schmidt-Koiter (LSK), has been developed for their study. The first

effort to use the LSK general analysis for the dynamic stability problem of an elastic structure

appears to be Budiansky and Hutchinson (1964), where the authors proposed an asymptotic analysis

of the time-dependent problem using the eigenmodes of the static problem.

Another idea, popular in fluid mechanics, has also been adopted for the dynamic stability anal-

ysis of solids with more general constitutive laws under high rates of loading, according to which

one seeks the solid’s fastest growing eigenmode, or the wavelength associated with lowest necking

strain. This method has been repeatedly applied in the study of dynamic stability of various elasto-

plastic structures (bars, rings, plates, shells etc.) under high loading rates where the failure pattern

45
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Figure 3.1: Unfolded conical mirror image for an electromagnetically expanding Al 6061-O tube

test (from Zhang and Ravi-Chandar (2010)), showing the onset and evolution of necks under high

strain rate loading; notice the absence of a dominant wavelength in the failure pattern.

and size of fragments is of interest (e.g. see Guduru and Freund (2002); Jouve (2015); Mercier et al.

(2010); Mercier and Molinari (2003); Shenoy and Freund (1999); Sorensen and Freund (2000); Xue

et al. (2008); Zhou et al. (2006)).

However, recent experimental evidence from rapidly expanding electromagnetically loaded metal-

lic rings by Zhang and Ravi-Chandar (2006, 2008) finds no evidence of a dominant wavelength at

the necked pattern of the rings. Moreover, they find no experimental evidence of influence of strain

rate on the necking strains, which are consistent with maximum force criterion of a rate-independent

constitutive law (Considère criterion).

As explained by these authors, using the fastest growing eigenmode to predict the onset of failure

is physically meaningful provided that some characteristic velocity of the principal solution—e.g.

ring/tube expansion rate—is much slower than the speed of propagation of perturbations in the

solid or structure at hand. For high loading rates, commensurate with some characteristic wave

propagation speed in the structure, a novel approach to the stability analysis is required, namely the

study of evolution of localized perturbations.

We are motivated by the experimental studies of Zhang and Ravi-Chandar (2006, 2010) on the

high strain rate expansion of thin rings and tubes, that show no evidence of a dominant wavelength

in their failure mode and no influence of strain rate sensitivity on the necking strains—the onset

of failure of an electromagnetically loaded, dynamically expanding tube is shown in Figure 3.1,

where one can observe a rather random failure mode. Recently, Ravi-Chandar and Triantafyllidis

(2015) studied the dynamic stability of an incompressible, nonlinearly elastic bar at different strain

rates by following the evolution of localized small perturbations introduced at different times. The

same approach is followed here for the biaxial stretching of thin plates, where we follow the time

evolution of spatially localized perturbations and their interactions. Following this introduction, in

Section 3.1, the formulation of the problem (definition of influence zones and algorithm for the
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λ1

λ2

REF

current

Figure 3.2: A schematic diagram of a biaxially strained plate.

nonlinear FEM calculations) is presented in Section 3.2. Results are given in Section 3.3, start-

ing with the description of the constitutive models and following with the numerical study of the

nonlinear time evolution of a such a perturbation showing that these structures are stable until the

time when the condition for the loss of ellipticity is reached. In the same section we present an

analytical method, based on linearization, to define the size of the influence zone of a point-wise

perturbation and we study its dependence on constitutive laws and loading conditions. The presen-

tation is concluded in Section 3.4, while details on the constitutive models used are presented in the

appendix.

3.2 Problem Formulation

This section starts with the presentation of the model for the propagation of perturbation about

a point defect on a biaxially strained, rate-independent, flat plate of infinite extent by studying

the evolution of influence zones (linearized approach). The setting of the corresponding nonlinear

problem, which is treated numerically, is presented subsequently.

3.2.1 The influence zones of a biaxially strained elastoplastic plate

We consider a two-dimensional thin, flat plate (idealized as a membrane) of infinite extent and

uniform initial thickness H subjected to a biaxial stretching as shown in Figure 3.2. To avoid in-

plane acceleration terms in the unperturbed solution of the perfect plate, the following stretch ratios

are being imposed at infinity:

λ1 = 1 + (c cosψ)t, λ2 = 1 + (c sinψ)t. (3.2.1)

Hence a uniaxial straining corresponds to tanψ = 0, balanced biaxial straining to tanψ = 1,

while a uniaxial stressing is approximated by tanψ = −1/2 (assuming incompressibility and valid
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only initially for small strains. A more accurate value for finite strains depends on constitutive

response).

In the absence of body forces the equations of motion of the thin plate can be put in the form1:

∂Nαβ

∂Xβ
= ρ0

∂2uα
∂t2

, (3.2.2)

whereNαβ is the nominal (force/reference thickness) stress resultant, ρ0 the reference mass density,

Xα the reference geometric coordinates and uα(X, t) the corresponding displacement of a material

point initially at X in the Lagrangian description. For simplicity the reference configuration is

identified with the stress-free configuration of the plate.

The plate’s constitutive equation is assumed to be rate-independent with the following relation

between the time derivative of the stress measure Ṅαβ and rate of deformation gradient Ḟαβ2:

Ṅαβ = LαβγδḞγδ; Fεζ = δεζ +
∂uε
∂Xζ

, (3.2.3)

where Lαβγδ are the plane stress incremental moduli of the plate, which in general depend on the

current state of stress plus the deformation history represented by a set of internal variables. This

moduli obtained from the three-dimensional version of the constitutive equation Ṅij = LijklḞkl

(relating the rate of the norminal stress Ṅij to its work-conjugate quantity Ḟkl) plus the plane stress

condition Ṅi3 = 0 and the orthotropy of the plate with respect to the thickness direction. For the case

of a hyperelastic material the stress measures are derivable from a potential i.e. Nαβ = ∂W/∂Fαβ

in which case Lαβγδ = ∂2W/∂Fαβ∂Fγδ where W (F) is the two-dimensional strain energy density

of the plate.

Of interest here is the propagation of the localized perturbation about X = 0. Using ∆f to

denote the difference between the perturbed and unperturbed values respectively of a field quantity

f and exploiting the fact that the principal solution is homogeneous (i.e. independent of X), one

obtains the following systems governing the evolution of perturbation3:

Lαβγδ
∂2∆uγ
∂Xδ∂Xβ

= ρ0
∂2∆uα
∂t2

. (3.2.4)

We follow the propagation of the perturbation in all directions n and for this purpose we consider

solutions of the form:

∆uα(X, t) = Uαf (V t− nαXα) , (3.2.5)

1Note: Here and subsequently in this chapter Greek indexes range from 1 to 2 while Latin indexes range from 1 to 3.
2Note: Here and subsequently superimposed dot denotes time differentiation ḟ := ∂f(X, t)/∂t
3For hyperelastic material, a linearization of perturbation yields ∆Nαβ = Lαβγδ∆Fγδ . To avoid algebraic compli-

cations we further assume that the same holds true for a rate-independent material.
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where f(z) is an arbitrary function of z ∈ R, Uα is the perturbation amplitude and V its speed of

propagation.

Introducing (3.2.5) into (3.2.4) one finds that (V )2 is one of the two eigenvalues ofLαβγδnβnδ :=

Aαγ(n) which is the acoustic tensor along n:

[
Lαβγδnβnδ − ρ0(V )2δαγ

]
Uγ = 0. (3.2.6)

The absence of any characteristic length ratio in the infinite flat plate, leads to the following non-

dimensionalization of perturbation velocity (ν), distance (χ), and time (τ ) for this problem

ν := V [G/ρ0]−1/2 ; χ := Xc [G/ρ0]−1/2 ; τ := ct, (3.2.7)

where [G/ρ0]−1/2 is the shear wave propagation speed at zero strain (G being the corresponding

shear modulus of the plate at zero strain) and c the straining speed introduced in (3.2.1).

We are now in a position to estimate the extent of the zone influenced by a point-wise per-

turbation introduced at the onset of deformation (τ = 0) in the plate until the onset of a necking

localization, characterized by the loss of ellipticity in the perfect thin plate. We also call this pertur-

bation an initial defect, since the introduction of the spatially localized perturbation at the beginning

of the loading process is equivalent to the presence of a defect in the plate. To this end we define

the lowest and highest dimensionless wave propagation speeds ν− and ν+ which are the lowest and

highest eigenvalues of the acoustic tensor according to (3.2.6) appropriately non-dimensionalized

with the help of (3.2.7).

For a given time τ , one can thus define the influence zones χ− and χ+ determined by:

χ−(φ, τ) :=

∫ τ

0
ν−
(
φ, τ ′

)
dτ ′, χ+(φ, τ) :=

∫ τ

0
ν+

(
φ, τ ′

)
dτ ′, (3.2.8)

which are the distances travelled at time τ by the slow and fast wave fronts respectively along

direction φ (recall n1 = cosφ, n2 = sinφ).

The perturbation can no longer propagate along a direction φ once its lowest speed reaches

ν− = 0, which occurs at time τe(φ) (subscript e standing for loss of ellipticity in the incremental

equilibrium equations):

ν− (φ, τe(φ)) = 0 (ν−(φ, τ) > 0 for 0 ≤ τ < τe(φ)) . (3.2.9)

The locus of points reached by the wave propagating along a given direction φ until ν− = 0 is given

by:

χe(φ) :=

∫ τe(φ)

0
ν−
(
φ, τ ′

)
dτ ′, (3.2.10)
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Figure 3.3: Typical influence cone of an intial (τ = 0) perturbation at X = 0 showing the evolution

of the influence zones χ− (red), χ+ (blue) of the slow (ν−) and fast (ν+) wave speeds as a function

of time τ .

as shown in Figure 3.4. Two particular values of τe(φ) are of interest: the ones corresponding to the

lowest (τm) and highest (τM ) values of τe(φ) with respect to φ, namely:

τm = min
φ
τe(φ) = τe(φm); τM = max

φ
τe(φ) = τe(φM ). (3.2.11)

At time τm the plate reaches for the first time conditions of loss of ellipticity of its incremental

equilibrium equations. The influence zone corresponding to the lowest speed ν− is χ− (φ, τm)

as seen in Figure 3.4. One can thus define δ− the radius of the minimum disc influenced by the

perturbation at X = 0 at the onset of loss of ellipticity:

δ− = χ−(φm, τm) =

∫ τm

0
ν−
(
φm, τ

′) dτ ′. (3.2.12)

In a similar way we are interested in the maximum size disc, centered at X = 0, that the

perturbation can reach. At time τM the plate has already lost ellipticity for all possible directions

of wave propagation φ and the zone influenced by the perturbation at X = 0 is χ+ (φ, τM ) as seen

in Figure 3.4. In analogy to δ−, one can also define δ+ the radius of the maximum disc covering

entirely the range of influence of the perturbation at X = 0 when the plate has lost ellipticity along

all possible directions φ, namely:

δ+ = χ+ (φM , τM ) =

∫ τM

0
ν+

(
φM , τ

′) dτ ′. (3.2.13)

It should be noted here that δ− exists as long as the model looses ellipticity for the loading

considered. Moreover even if a δ− exists, a δ+ might not.
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δ−

δ+

χ−(φ, τm)

χ+(φ, τM )

χe(φ)

χ1

χ2

Figure 3.4: Influence zones of an initial (τ = 0) perturbation at X = 0 for biaxially stretched

thin, flat plates: χ− (φ, τm), χ+ (φ, τM ) in solid lines. The minimum δ− and maximum δ+ discs of

influence are depicted in dotted line. Also plotted in dashed line is χe(φ), the locus of points reached

by the wave propagating along a given direction φ until loss of ellipticity occurs. Results correspond

to uniaxial strain ψ = 0 of a power-law type material with hardening exponent n = 0.22.
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3.2.2 Proof of linearized stability

In order to get an analytically tractable way to investigate the stability of the plate’s uniform stretch-

ing solution (3.2.1), we start by studying the linearized system of the evolution of a perturbation in

(3.2.2). By defining the displacement and particle velocity perturbations as:

δuα(X, t) := uα(X, t)− u0
α(t), δvα(X, t) := vα(X, t)− v0

α(t), (3.2.14)

and introducing them to the time derivative of (3.2.2), one obtains upon linearization about the

uniform stretching solution the following equation:

∂Lαβεζ
∂Fγδ

∣∣∣∣
0

Ḟ 0
εζ δuγ,δβ + L0

αβγδ δvγ,δβ = ρ δv̈α (3.2.15)

using the constitutive relation of the principal solution

L0
αβγδ δuγ,δβ = ρ δv̇α. (3.2.16)

We can write down the the Fourier transform of (3.2.15) and (3.2.16) using the mapping of

notations of δu 7→ ∆u and X −→ ω:

−ωδωβ
(
∂Lαβεζ
∂Fγδ

∣∣∣∣
0

Ḟ 0
εζ

)
∆uγ − ωδωβL0

αβγδ ∆vγ = ρ∆v̈α (3.2.17)

−ωδωβL0
αβγδ ∆uγ = ρ∆v̇α (3.2.18)

By replacing ∆u terms in (3.2.17) using (3.2.18), we obtains an equation expressed in particle

velocity ∆v

ρ
∂Lαβεζ
∂Fγδ

∣∣∣∣
0

Ḟ 0
εζ ωδωβ [Lγηξθ ωηωθ]

−1 ∆v̇ξ − ωβωδL0
αβγδ ∆vγ = ρ∆v̈α (3.2.19)

We now define the wavenumber ω :=
√
ω2

1 + ω2
2 and the polarization unit vector (n1, n2)

satisfying ω1 = ω n1, ω2 = ω n2, and n2
1 + n2

2 = 1. (3.2.19) can thus be rewritten as:

−M (n)
αγ ∆v̇γ + ω2A(n)

αγ ∆vγ + δαγ ∆v̈γ = 0 (3.2.20)

with acoustic tensor A(n) and damping tensor M(n) defined by

A(n)
αγ := (1/ρ)Lαβγδ nβnδ (3.2.21)

M
(n)
αξ := (1/ρ)

∂Lαβεζ
∂Fγδ

∣∣∣∣
0

Ḟ 0
εζ nβnδ A

−1
γξ (3.2.22)



53 3.2. PROBLEM FORMULATION

We assume that the tangential moduliLαβγδ is derived from an internal energy, namelyLαβγδ =

∂2W/∂Fαβ∂Fγδ. With this assumption, (3.2.22) can be considerably simplified in form:

M
(n)
αξ = (1/ρ)

∂3W

∂Fαβ∂Fγδ∂Fεξ

∣∣∣∣
0

Ḟ 0
εζ nβnδ A

−1
γξ

=
D

Dt

(
(1/ρ)Lαβγδ nβnδ

)
A−1
γξ

= Ȧαγ A
−1
γξ (3.2.23)

Using the method of frozen coefficients, i.e. assuming that the rate of growth/decay of the per-

turbation is much higher than the loading rate, (3.2.20) is considered as a constant coefficient equa-

tion, which admits solutions of form ∆v =
∑

I exp (sIt) VI where sI are the 4 roots of eigenvalue

equation:

det
[
−sMαγ + ω2Aαγ + δαγs

2
]

= 0 (3.2.24)

Our next step is to prove that the real parts of all sI are negative. This relies on that fact that

A is derived from real-world material behavior, and has special properties. Before the material

loses ellipticity, A(n) is for all polarization unit vectors n a positive-definite matrix admitting two

positive eigenvalues, noted as α+(n) = ν2
+(n) and α−(n) = ν2

−(n), along with their orthogonal

eigenvectors, noted as e+ and e−:

A = α+e+e+ + α−e−e− (3.2.25)

Since e+ and e− are orthogonal, one can define a real value β such that

ė+ = βe−, ė− = −βe+ (3.2.26)

and the time derivative of A can be given accordingly:

Ȧ = α̇+e+e+ + α̇−e−e− + β (α+ − α−) (e+e− + e−e+) . (3.2.27)

Using α+, α−, and β and their time derivatives, we can transform (3.2.24) into a equivalent yet

more explicit form:−
α̇+

α+
s+ ω2α+ + s2 −βα+ − α−

α−
s

−βα+ − α−
α+

s − α̇−
α−

s+ ω2α− + s2


V +

V −

 = 0 (3.2.28)

which is a fourth-order polynomial equation

s4 + a3s
3 + a2s

2 + a1s+ a0 = 0 (3.2.29)
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with coefficients

a3 = − α̇+

α+
− α̇−
α−

, a2 =
det Ȧ

α+α−
+ (α+ + α−)ω2, (3.2.30)

a1 = −
(
α+

α̇−
α−

+ α−
α̇+

α+

)
ω2, a0 = α+α− ω

4. (3.2.31)

The weakening behavior of the metallic material in plastic regime grants two more properties:

1) det Ȧ > 0 and 2) α̇+ < 0, α̇− < 0, with which we can define five positive real values

A = − (α̇+/α+ + α̇−/α−) , B = det Ȧ, Σ = (α+ + α−) ,

Γ = − (α̇−α+/α− + α̇+α−/α+) , ∆ = α+α−. (3.2.32)

and express (3.2.31) with them:

a3 = A, a2 = B + Σω2, a1 = Γω2, a0 = ∆ω4. (3.2.33)

We recall the special case of the Routh-Hurwitz theorem: the neccessary and sufficient condi-

tions for the fourth order equation a4s
4 + a3s

3 + a2s
2 + a1s + a0 = 0 to have all four roots with

negative real parts are: 
a1 > 0, a2 > 0, a3 > 0, a4 > 0

a3a2 − a4a1 > 0

a3a2a1 − a4a
2
1 − a2

3a0 > 0

. (3.2.34)

It is evident that (3.2.34)1 is satisfied. For (3.2.34)2 we have

a3a2 − a4a1 = AB − (Γ−AΣ)ω2

= AB − (α̇+ + α̇−)ω2 > 0 (3.2.35)

and for (3.2.34)3 we have (after some algebra):

a3a2a1 − a4a
2
1 − a2

3a0 = ABΓω2 +
(
AΓΣ−A2∆− Γ2

)
ω4

= ABΓω2 +
[
α̇+α̇− (α+ − α−)2 / (α+α−)

]
ω4 > 0 (3.2.36)

The conditions are hence satisfied, and we can prove that all four sI have negative real parts,

this is to say for all wavenumbers ω, the corresponding solution ∆v =
∑

I exp (sIt) VI decays in

time. Now we want to characterize the dependence of sI on ω when ω tends to infinity and 0 by

partially solving (3.2.29). Using Ferrai-Cardano formula, one can express the roots of the fourth

order polynomial s4 + a3s
3 + a2s

2 + a1s+ a0 = 0 as:

s = −a3

2

(1)
± γ

2

(2)
± 1

2

(
a2

3

2
− 4a2

3
− ζ

(1)
± η

4γ

)1/2

(3.2.37)
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with some new notations

γ =
(
a2

3/4− 2a2/3 + ζ
)1/2

, η = −a3
3 + 4a3a2 − 8a1,

ζ =
[
g(k/2)1/3 + (2/k)1/3

]
/ 3, g = a2

2 − 3a3a1 + 12a0,

k = h+
(
h2 − 4g3

)1/2
, h = 2a3

2 − 9a2 (a3a1 + 8a0) + 27
(
a2

1 + a2
3a0

)
. (3.2.38)

By investigating high order terms of these parameters, we have for ω →∞:

η ∼ (4AΣ− 8Σ)ω2, g ∼
(
12∆ + Σ2

)
ω4, h ∼ 2Σ

(
Σ2 − 36∆

)
ω6,

γ ∼ ζ̄1/2, ζ ∼ ζ̄, k ∼ 2
(

Σ + 2
√

3i∆1/2
)3
ω6 (3.2.39)

where ζ̄ := (1/3)
(
12∆ + Σ2

) (
Σ + 2

√
3i∆1/2

)
ω6. We conclude that s have the same order as

ζ̄1/2 = O
(
ω3
)

when ω tends to infinity. By investigating the constant terms of these parameters,

we have for ω → 0:

η ∼ A
(
4B −A2

)
, g ∼ B2, h ∼ 2B3,

γ ∼ γ̄, ζ ∼
(
B3 + 1/B

)
/ 3, k ∼ 2B3 (3.2.40)

with γ̄ :=
(
A2/4− 2B/3 +B3/3 + 1/(3B)

)1/2 and

sI ∼ −
A

2

(1)
± γ̄

2

(2)
± 1

2

(
A2

2
− 4B

3
− B3

3
− 1

3B

(1)
± A

(
4B −A2

)
4γ̄

)1/2

(3.2.41)

We also need the initial conditions to complete our proof of linearized stability. Note
(
V̂ +
I , V̂

−
I

)
as
(
β(α+ − α−)/α−,−sI α̇+/α+ + ω2α+ + s2

I

)
, the solutons of (3.2.20) can be written as

∆v =
∑
I

λI exp (sIt)
(
V̂ +
I e+ + V̂ −I e−

)
(3.2.42)

where λI is real valued function of ω and should be determined by initial conditions. Without loss

of generality, let’s consider a localized initial condition with the help of δD(x) the Dirac function

located at the origin

δv (X; 0) = δD (x) e+, δv̇ (X; 0) = 0. (3.2.43)

With these initial conditions, λI are solutons of the following system:∑
I

λI V̂
+
I = 1/

√
2π,

∑
I

λI V̂
−
I =

∑
I

λIsI V̂
+
I =

∑
I

λIsI V̂
−
I = 0 (3.2.44)

and are of order O
(
ω−3

)
when ω tends to infinity. The inverse of Fourier transform of ∆v is hence

given by

δv (X; t) =

∫ +∞

0

∫ 2π

0
λI exp (sIt+ iωn ·X)

(
V +
I e+ + V −I e−

)
dn dω. (3.2.45)
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Figure 3.5: Influence of the time of perturbation introduction on the subsequent growth/decay of

the perturbation. The vertical (blue) line indicates the localization time τm, which for the parameter

values used here is τm = 0.52.

sI have negative real parts and are of order ω3 when ω tends to infinity and tends to constant

when ω tends to zero, λI and VI are all of polynomial order in ω on the open boundaries of

R+, hence there is always a large Ω ∈ R+ that the before-mentioned integral is well defined on

R2/{ω < Ω}. It is also defined on the compact {X
∣∣ω < Ω}, so the inverse of Fourier transform

exists and decays to zero when the time t tends to infinite. Thus is proven the linearized stability

before the material loses its ellipticity.

Fig. 3.5 shows a verification of the linearized stability of perturbation before the material loses

ellipticity using a set of interconnected numerical simulations. In these calculations, instead of

introducing an imperfection in the material at the beginning of the simulation, a small axisymmetric

perturbation in displacement is directly introduced into the perfect solution at a chosen time of the

simulation. The axisymmetric perturbation in displacement takes the following form, which always

gives finite deformation measure over its domain of definition:

∆ur = A(r/R) exp (−r/R) , ∆uθ = 0; A < Re2 (3.2.46)

The condition on A (used as amplitude parameter here, definition different from (3.2.32)) and

R (size parameter) should be ensured in order to prevent inversion of the space orientation. In the

Fig. 3.5, the perturbations introduced before τm first rapidly decay, and then eventually localize after

time passes τm (lines in black to orange color). On the other hand, the perturbations introduced after

τm localize directly without decaying (lines in light orange or yellow color).
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3.2.3 Numerical Calculations

Nonlinear dynamics calculations for the evolution of a spatially localized initial perturbation are

done using the finite element method using the simplest constitutive law, namely a hyperelastic,

finite (logarithmic) strain model fitted a uniaxial power law. The use of this model for elastoplastic

materials is justified by the absence of unloading in the calculations (of interest is the response of

the plate up to the loss of ellipticity). A brief description of the algorithm used is presented here.

The starting point of the calculations is the weak formulation of equilibrium equations (3.2.2)

in Lagrangian (reference) configuration:

∫
A

[Nαβδuα,β + ρ0
∂2uα
∂t2

δuα]dA = 0, (3.2.47)

with δu as the test function. A spatial FEM discretization leads to the solution of the following

system of equations:

M ·A(t) + F(U(t)) = 0; A(t) := ∂V(t)/∂t, V(t) := ∂U(t)/∂t (3.2.48)

where F is the force vector, M the mass matrix and U(t), V(t) and A(t) respectively vector of

nodal displacements, velocities and accelerations.

The time marching algorithm chosen for the solution of (3.2.48) is the HHT-α method (see

Hilber et al. (1977) which uses the following updating scheme for the displacement and velocity

vectors:

Ut+∆t = Ut + ∆tVt +
(∆t)2

2

(
(1− 2β)At + 2βAt+∆t

)
,

Vt+∆t = Vt + ∆t
(
(1− γ)At + γAt+∆t

)
,

(3.2.49)

which are in turn used for the iterative solution of (3.2.48) by driving its residual vector R at each

time step to zero according to:

0 = Rt+∆t = M ·At+∆t + (1 + α)F(Ut+∆t)− αF(Ut). (3.2.50)

In the above expressions, the constants α, β and γ govern the stability and numerical dissipation of

the algorithm and are related by β = (1 − α)2/4 and γ = 1/2 − α (see Hilber et al. (1977)). For

the calculations reported here we choose α = −0.05. The remainder Rt+∆t
i at iteration i at time

step t+ ∆t is updated using the tangent stiffness matrix Kt+∆t
i of the algorithm:

Rt+∆t
i = Kt+∆t

i · (Ut+∆t
i+1 −Ut+∆t

i ), Kt+∆t
i :=

∂R

∂Ut+∆t
i

=
1

β∆t2
M + (1 + α)

∂F

∂U
(Ut+∆t

i ),

(3.2.51)

until convergence in the displacement is reached, i.e. ‖Ut+∆t
i+1 −Ut+∆t

i ‖ ≤ ε‖Ut+∆t
i ‖, where ε is a

conveniently chosen tolerance parameter.
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The spatial discretization of the plate uses standard two-dimensional isoparametric quadrilateral

elements. The boundary conditions imposed at any time are the displacements and velocities of

the principal (perfect) solution given in (3.2.1). The reference configuration rectangular domain

used in the calculations covers completely a disc of radius δ+, thus ensuring that no perturbation

wave ever reaches any boundary. The initial conditions are the displacements and velocities of the

principal solution. Instead of prescribing a slightly perturbed initial displacement or velocity field,

we chose the equivalent approach of using an initial imperfection through a central element with

a slightly lower shear modulus, as detailed in the results section. A special element incorporating

the constitutive law and time solution algorithm described here is then introduced in a commercial

FEM code (ABAQUS) to calculate the results for this chapter.

3.3 Results

This section starts with the constitutive models chosen. It continues with the study of the evolution

of a single spatially localized perturbation with different amplitudes, followed by the study on in-

teractions of such perturbations. These results show the stability of the biaxially strained plate, as

long as none of its points has reached the loss of ellipticity condition and determine the actual (non-

linear) zone of influence of the perturbation. The section concludes by investigating the influence

of constitutive law and load orientation on the size of the minimum and maximum influence zones.

3.3.1 Constitutive laws

The analysis presented in Section 3.2 is general; any rate-independent constitutive law (which can

be put in the form of (3.2.3)) can be accommodated, provided that its membrane (plane stress)

version looses ellipticity at some strain level. Results presented here correspond to the three such

models: a hyperelastic (deformation theory) type model of plasticity, the J2 deformation theory

model of Stören and Rice (1975b) and a finite strain generalization of the J2 flow theory. All

models are fitted to the same power law uniaxial stress-strain curve and share the same principal

solution. Since no unloading occurs in the perturbed plate prior to reaching a loss of ellipticity, the

use of deformation theory type constitutive models is adequate for analyzing its stability.

We start with the hyperelastic constitutive model, which is described by a strain energy W , a

function of the equivalent logarithmic strain εe as follows:

W = E
(
εy
)2[ 1

1 + χ

( εe
εy

)χ+1
+

1

2

(χ− 1

χ+ 1

)]
,

χ = 1 for εe ≤ εy,

χ = n for εe > εy,
(3.3.1)
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where the equivalent strain εe is given in terms of the principal logarithmic strain components εα:

εe =
2√
3

[
ε21 + ε22 + ε1ε2

]1/2
; εα = lnλα, (3.3.2)

with λi the stretch ratios of the deformation (principal values of the stretch tensor U, the rotationless

part of the deformation gradient F = R ·U; U =
(
FT · F

)1/2).

The above isotropic model is fitted with a piecewise power law uniaxial stress-strain curve4:

σe
σy

=
( εe
εy

)χ
, (3.3.3)

where the exponent χ is given in (3.3.1) and the equivalent stress σe is the Von-Mises stress given

in terms of the principal Cauchy stress σα by:

σe =
(
σ2

1 + σ2
2 − σ1σ2

)1/2
. (3.3.4)

Since the principal solution is biaxial straining, the principal stresses are related to the principal

logarithmic strains by:

σα =
∂W

∂εα
; σ1 =

2

3
Es
(
2ε1 + ε2

)
, σ2 =

2

3
Es
(
ε1 + 2ε2

)
, (3.3.5)

where Es = σe/εe is the secant modulus, Et = dσe/dεe is the tangent modulus of the equivalent

uniaxial stress-strain curve in which the equivalent stress and strain are related by: σe = dW/dεe.

When we are no longer along the principal axes of deformation (as is the case of numerical FEM

calculations) the stress measures and incremental moduli of this model (see (3.2.3)) are found by:

Nαβ =
∂W

∂Fαβ
, Lαβγδ =

∂2W

∂FαβFγδ
. (3.3.6)

In addition to the above-presented hyperelastic constitutive model used in numerical calcula-

tions, for comparison purposes two more constitutive models will be employed for the calculation

of influence zones under different loading orientations: the J2 deformation theory model by Stören

and Rice (1975b) and the J2 flow theory model, both in their finite strain version. Details on the

incremental moduli derivations of these models from the initial three-dimensional formulation to

the two-dimensional plane stress version are presented in the appendix.

As previously mentioned, all three constitutive models share the same uniaxial stress-strain

curve and are so constructed as to have the same response when loaded with fixed principal axes of

deformation. Since the calculation of δ− and δ+ (the minimum and maximum) influence disc sizes

for the different constitutive laws requires the principal solution, the evaluation of the corresponding

incremental moduli are presented below along the fixed principal axes.
4Note: for a uniaxial stress state ε2 = −ε1/2 and εe = ε; Moreover εy and σy = Eεy are the yield strain and stress

respectively in a uniaxial loading path.
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The non-zero components of the plane stress moduli in (3.2.3) are given below in two groups;

the normal moduli components are:

L1111 =
1

λ2
1

[4

3
E∗ +

(
Et − E∗

)(σ1

σe

)2
− σ1

]
,

L1122 =
1

λ1λ2

[2

3
E∗ +

(
Et − E∗

)σ1σ2

σ2
e

]
,

L2222 =
1

λ2
2

[4

3
E∗ +

(
Et − E∗

)(σ2

σe

)2
− σ2

]
,

(3.3.7)

where for the J2 deformation theory model as well as the hyperelastic model in (3.3.1), (3.3.2) the

normal incremental moduli are the same with E∗ = Es = σe/εe while for the J2 flow theory model

E∗ = E.

The shear moduli components are given by:

L1212 =
1

λ2
2

[E∗
3

+
σ2 − σ1

2

]
,

L2121 =
1

λ2
1

[E∗
3

+
σ1 − σ2

2

]
,

L1221 = L2112 =
1

λ1λ2

[E∗
3
− σ1 + σ2

2

]
,

(3.3.8)

where for the J2 flow theory E∗ = E, for the J2 deformation theory E∗ = Es while for the

hyperelasitc model E∗ = Es[(λ
2
1 + λ2

2)/(λ2
1− λ2

2)](lnλ1− lnλ2). The principal stresses σα for all

three models are identical and given by (3.3.5).

The hyperelastic and J2 deformation theory models loose ellipicity at realistic strain levels for all

load path orientations ψ (see definition (3.2.1)) while the J2 flow theory gives unrealistic results for

load orientations ψ > 0 (and hence the need for the deformation theory models used). Moreover,

only values of ψ for which both principal stresses σi are tensile (σα = ∂W/∂εα > 0) will be

investigated, since a compressible membrane stress is unsustainable (thin plate will immediately

buckle).

3.3.2 Evolution at a spatially localized perturbation

We start by analyzing the influence of an initial imperfection, located at the origin, in the form

of a square domain of size ∆χ = 6× 10−5 whose shear modulus is G(1 + ξ), where ξ = 4

is the imperfection amplitude. Equivalently, one could have taken a perturbation in the principal

solution (dimensionless) displacement field u1(χ, 0) = χ1τ cosψ, u2(χ, 0) = χ2τ sinψ or in the

principal solution (dimensionless) velocity field ν1(χ, 0) = χ1 cosψ, ν2(χ, 0) = χ2 sinψ. The

shear modulus imperfection used here is equivalent to an isotropic displacement or velocity field

perturbation that would have resulted from a sudden isotropic dilation/contraction of the perturbed

domain at τ = 0. Hence we use the terms initial imperfection or perturbation indistinguishably.
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To better visualize the influence of the initial perturbation on the dymamic behavior of the

biaxially strained plate, we plot two different measures of the perturbations: the perturbation in the

total Green-Lagrange strain:

∆E :=
∥∥E(χ, τ)−E0(χ, τ)

∥∥ =
[(
Eαβ − E0

αβ

)(
Eαβ − E0

αβ

)]1/2
> 0,

Eαβ =
1

2

(
FγαFγβ − δαβ

)
; E0

αβ = diag
[1

2

((
λγ
)2 − 1

)]
,

(3.3.9)

and the perturbation in the shear component of the Green-Lagrange strain, which in view of the

absence of a shear strain component in the principal solution, is the shear strain component of the

perturbed solution:

∆E12 :=
∣∣E12(χ, τ)− E0

12(χ, τ)
∣∣ =

∣∣E12

∣∣ > 0. (3.3.10)

The influence of the initial perturbation is shown in Figure 3.6 and Figure 3.7 which depict the

evolution of contours of ∆E and ∆E12 in
[
χ1, χ2

]
space (only the positive quadrant is shown here

due to symmetry). More specifically, the evolution of the strain perturbation due to an initial imper-

fection of amplitude ξ = 4 (contours of perturbations with magnitudes below 10−3 are not plotted,

for visual enhancement of the evolution of the initial perturbation) for three different dimensionless

times τ (0.17, 0.35 and 0.52 = τm) are depicted in these figures. Results correspond to a hypere-

lastic material with n = 0.22 and εy = 10−3, strained along a loading path with ψ = −1/2, which

corresponds to uniaxial stressing for small strains.

For the lowest value of τ = 0.17, only a small region near the origin χ = 0 is affected, while for

τ = 0.35 the emergence of a localized band of deformation in the direction of the loss of ellipticity

of the material (π/2 − φm) is obvious. At the time of onset of loss of ellipticity, τm the localized

deformation band in the direction π/2 − φm is more pronounced. What is worth mentioning is

that the localized deformation appears to propagate in three tongues. This phenomenon can be

explained by the square shape of the initial perturbation domain, where each corner acts as a source.

A static analogue of this phenomenon has been found in Abeyaratne and Triantafyllidis (1981b).

Moreover the width of the localized deformation zone is considerably larger than the size of the

initial perturbation due to propagation of the signal.

Notice that results in Figure 3.6 are similar to those of Figure 3.7, save for the lower values of the

perturbation in the latter compared to the former figure—compared for the same time—due to the

different norm used (the norm used in Figure 3.6 contains perturbations of all strain components).

A different way to depict the propagation of perturbation initiated at χ = 0 is presented in

polar coordinates in Figure 3.8 and Figure 3.9 which shows respectively ∆E and ∆E12 as function

of the polar angle θ at different positions ρ incremented by ∆ρ = 1.5 × 10−3 from the center

(χ1 = ρ cosψ, χ2 = ρ sinψ), for the same material and loading path and at the same three times
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Figure 3.6: Green-Lagrange strain perturbation contours ∆E(χ, τ) at three different dimensionless

times a) τ = 0.17, b) τ = 0.35 and c) τ = 0.52 = τm, where only contours of ∆E ≥ 10−3 are

shown in color. The extent of the influence zones χ−(φ, τ) and χ+(φ, τ) for the slowest and fastest

wave speeds ν− and ν+ respectively, are also shown in these figures. Results calculated correspond

to a hyperelastic constitutive law with a piecewise power law uniaxial curve (εy = 0.002, n = 0.22)

and a loading angle tanψ = −1/2.
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Figure 3.7: Shear strain perturbation contours ∆E12(χ, τ) at three different dimensionless times a)

τ = 0.17, b) τ = 0.35 and c) τ = 0.52 = τm, where only contours of ∆E ≥ 10−3 are shown

in color. The extent of the influence zones χ−(φ, τ) and χ+(φ, τ) for the slowest and fastest wave

speeds ν− and ν+ respectively, are also shown in these figures. Results calculated correspond to a

hyperelastic constitutive law with a piecewise power law uniaxial curve (εy = 0.002, n = 0.22) and

a loading angle tanψ = −1/2.
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Figure 3.8: Green-Lagrange strain perturbation ∆E plotted in polar coordinates (χ1, χ2) =

(ρ cos θ, ρ sin θ) for θ ∈ [0, π/2] and at different distances ρ from the origin (distance is increasing

by constant ∆ρ = 1.5×10−3 and ρ+∆E(ρ, θ) is plotted in the y-axis). Results are shown for three

different dimensionless times a) τ = 0.17, b) τ = 0.35 and c) τ = 0.52 = τm. The extent of the

influence zones χ−(τ) and χ+(τ) for the slowest and fastest wave speeds ν− and ν+ respectively

are also shown in these figures. Result calculated correspond to a hyperelastic constitutive law with

a piecewise power law uniaxial curve (εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2.



CHAPTER 3. LOCALIZATION IN BIAXIALLY STRAINED THIN SHEETS 64

0 φm π/2−φm π/2

θ

0

2

4

6

ρ
+
E

12

χ−

χ+

τ=0.17×10−2

(a)

0 φm π/2−φm π/2

θ

0

2

4

6

ρ
+
E

12

χ−

χ+

τ=0.35×10−2

(b)

0 φm π/2−φm π/2

θ

0

2

4

6

ρ
+
E

12

χ−

τ=0.52×10−2

(c)

Figure 3.9: Shear strain perturbation ∆E12 plotted in polar coordinates (χ1, χ2) = (ρ cos θ, ρ sin θ)

for θ ∈ [0, π/2] and at different distances ρ from the origin (distance is increasing by constant

∆ρ = 1.5× 10−3 and ρ+ ∆E(ρ, θ) is plotted in the y-axis). Results are shown for three different

dimensionless times a) τ = 0.17, b) τ = 0.35 and c) τ = 0.52 = τm. The extent of the influ-

ence zones χ−(τ) and χ+(τ) for the slowest and fastest wave speeds ν− and ν+ respectively are

also shown in these figures. Result calculated correspond to a hyperelastic constitutive law with a

piecewise power law uniaxial curve (εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2.

as in Figure 3.6 and Figure 3.7. Notice that as time approaches the critical value τm a localized

deformation pattern appears with maximum at about θ = π/2− φm (the strain discontinuity at the

loss of ellipticity appears in a line perpendicular to the critical direction n, which forms an angle

φm with the χ1 axis).

A better way to visualize the size of the localized deformation zone is by plotting the time

evolution 0 ≤ τ ≤ τm of perturbation as a function of dimensionless distance from the origin for

two different values of θ: 29◦ = π/2 − φm and 61◦ = φm. The results for ∆E and ∆E12 are

depicted, respectively in Figure 3.10 and Figure 3.11. The blue lines give the influence cone of ν+

while the red lines give the influence cone of ν−. Notice the pattern of the different tongues of the

localization zone evolving with time, as expected from Figure 3.6 and Figure 3.7.

These results show that, due to wave propagation, the width of the localized deformation zones

are considerable larger than the width of the initial imperfection, but also a fraction of the linearized

estimate χ− (influence zone for the slower wave) for the same time, a phenomenon also observed for

the growth of a localized perturbation in the nonlinear bar model of Ravi-Chandar and Triantafyllidis

(2015).

To study the stability of the structure under a spatially localized perturbation, we follow the time
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Figure 3.10: Profile of Green-Lagrange strain perturbation ∆E plotted at different dimensionless

times 0 ≤ τ ≤ τm (in increments of ∆τ = 0.02 ) at a distance ρ from the origin and for two

different values of polar angle a) θ = φm and b) θ = π/2− φm. The extent of the influence zones

χ−(τ) and χ+(τ) for the slowest and fastest wave speeds ν− and ν+ respectively are also shown

in these figures. Result calculated correspond to a hyperelastic constitutive law with a piecewise

power law uniaxial curve (εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2.
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Figure 3.11: Profile of shear strain perturbation ∆E12 plotted at different dimensionless times 0 ≤
τ ≤ τm (in increments of ∆τ = 0.02 ) at a distance ρ from the origin and for two different values of

polar angle a) θ = φm and b) θ = π/2−φm. The extent of the influence zones χ−(τ) and χ+(τ) for

the slowest and fastest wave speeds ν− and ν+ respectively are also shown in these figures. Result

calculated correspond to a hyperelastic constitutive law with a piecewise power law uniaxial curve

(εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2.
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Figure 3.12: Influence of the initial amplitude ξ of a localized perturbation at χ = 0. Notice that the

magnitude of the perturbation (measured by its maximum, at a given time τ , over the entire plate,

i.e. ∆Emax(τ) := maxχ∈R2 ∆E(χ, τ) in (a) and ∆Emax
12 (τ) := maxχ∈R2 ∆E12(χ, τ) in (b))

decreases, for each value of τ < τm, with decreasing ξ, thus showing the stability of the structure

as long as it stays in the elliptic domain (non-shaded area τ < τm in the graphs).

evolution of the maximum (over the entire domain R2) perturbations ∆Emax(τ) := maxχ∈R2 ∆E(χ, τ)

and ∆Emax
12 (τ) := maxχ∈R2 ∆E12(χ, τ) in Figure 3.12.

Notice that for τ < τm the two perturbation norms decrease as a function of time with decreas-

ing initial amplitude, showing the stability of the structure for times prior to the loss of ellipticity

(the ellipticity domain τ > τm is indicated by the shaded area in the above figures). A similar result

has been obtained for the one-dimensional nonlinear bar model by Ravi-Chandar and Triantafyllidis

(2015), who find stability of spatially localized perturbations at all times prior to reaching the bar’s

Considère point (maximum force).

The physical meaning of the minimum δ− and maximum δ+ influence disc sizes is illustrated in

Figure 3.13 that shows contours of strain perturbation ∆E ≥ 10−3 at the time of loss of ellipticity

τm in a plate with two localized imperfections of the same size and initial amplitude spaced at a

distance smaller than δ− in a) and at distance larger than δ− in b).

It appears from Figure 3.13a, that when the localized deformation zones of the two perturbations

meet and interact, the width of the resulting localized deformation zone is bigger than the width of

the single localized imperfection. The failure pattern for the stretched plate can be explained as

resulting from interaction of statistically distributed such localized defects—inevitable in reality—

as observed experimentally in the tube expansion experiments of Zhang and Ravi-Chandar (2010)
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(a) (b)

Figure 3.13: Interaction of same amplitude perturbations initially at a distance a) h < δ− and b)

h > δ+. Results show contours of strain perturbation ∆E ≥ 10−3 calculated at the time of loss

of ellipticity τm = 0.52 and corresponding to a hyperelastic constitutive model with a piecewise

power law uniaxial curve (εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2.

3.3.3 Size of influence zones for various constitutive laws and loading orientations

The following three figures give the minimum δ− and maximum δ+ influence disc sizes as functions

of the load orientation angle ψ for the three different plasticity models considered and for three

different power-law hardening exponents, Figure 3.14 for n = 0.1, Figure 3.15 for n = 0.22

(typical of Al alloys) and Figure 3.16 for n = 0.40 (typical of steel alloys). Curves in the ψ < 0

range are terminated when one of the stresses becomes compressive (σ2 < 0) (applicable for the

calculation of δ−) or when a finite value of the influence disc cannot be found (applicable for the

calculation of δ+).

As expected, for a given material and load orientation ψ, both δ− and δ+ are increasing functions

of the hardening exponent n. There is practically no difference for the minimum influence disc

size δ− between the J2 deformation and hyperelastic theory models over the entire range of load

orientations of interest. However the maximum influence disc size δ+ predictions for the same two

constitutive models coincide only for a certain range of ψ > 0. As the uniaxial strain is approached

ψ = 0, the stiffer hyperelastic theory predicts no finite maximum influence disc size δ+, in contrast

to the J2 deformation theory that predicts finite δ+ for a significant range of ψ < 0.

There is however a significant difference in the predictions of the much stiffer J2 flow theory

that considerably overestimates δ− over the other two constitutive models (the difference increasing

with increasing hardening exponent n) for the range that a reasonable loss of ellipticity strain can
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Figure 3.14: Minimum δ− and maximum δ+ influence disc sizes, in dashed and solid lines re-

spectively, as functions of the load orientation angle ψ for the three different constitutive models

considered, all sharing the same uniaxial stress-strain curve with εy = 0.002, n = 0.1

be found (essentially in the range ψ ≤ 0) and which does not have a δ− for strain paths with ψ ≤ 0,

given that the J2 flow theory model does not predict loss of ellipticity for these loadings. Also notice

that the J2 flow theory has no finite δ+ for any loading.

The difference in the minimum δ− and maximum δ+ influence disc sizes predicted by the dif-

ferent constitutive models (in particular between deformation and flow theories) is indicative of

the difficulty in predicting failure patterns in these structures and their extreme sensitivity to the

constitutive model chosen.

3.4 Conclusion

This chapter pertains to the influence of loading rate on the stability of structures when inertia plays a

dominant role. The currently established approach to study these stability problems is the method of

modal analysis, which determines the structure’s fastest growing eigenmode. This method supposes

that all points in the structure can be perturbed simultaneously, an assumption that is not appropriate

for cases when the velocity of material points in the structure are comparable to the associated wave

propagation speeds.

The novel idea here is to analyze the evolution of spatially localized perturbations of the time-

dependent, high strain rates states of these structures, in order to understand the initiation of the cor-

responding failure mechanisms. Following the recent analysis by Ravi-Chandar and Triantafyllidis

(2015) in one-dimensional bars, we study the high strain extension of a two-dimensional, incom-
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Figure 3.15: Minimum δ− and maximum δ+ influence disc sizes, in dashed and solid lines re-

spectively, as functions of the load orientation angle ψ for the three different constitutive models

considered, all sharing the same uniaxial stress-strain curve with εy = 0.002, n = 0.22

δ−[flow]
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Figure 3.16: Minimum δ− and maximum δ+ influence disc sizes, in dashed and solid lines re-

spectively, as functions of the load orientation angle ψ for the three different constitutive models

considered, all sharing the same uniaxial stress-strain curve with εy = 0.002, n = 0.40
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pressible, elastoplastic (rate-independent) plate. Using a nonlinear constitutive law makes sense for

real structures since no unloading occurs until a point in the structure reaches the loss of ellipticity

condition, at which point our calculations are terminated.

Using a finite strain deformation theory of plasticity (based on logarithmic strain), we follow the

time evolution of spatially localized perturbations and their interactions. The nonlinear time evolu-

tion of such a perturbation is studied numerically using FEM and it is shown that these structures are

stable until the time when the condition for the loss of ellipticity is reached. An analytical method,

based on linearization, is used to define the size of the influence zone of a point-wise perturbation

and we study its dependence on constitutive laws and loading conditions.

The above approach is useful for the stability analysis of more realistic structures under high

strain rates. As one such example we cite the recent work by Putelat and Triantafyllidis (2014)

on the stability of a pressurized thin ring at high rates, where it is shown that for small values of

the applied loading rate, the structure fails through a global mode, while for large values of the

applied loading rate the structure fails by a localized mode of deformation, as also found recently

in the experiments of Mainy (2012). Our study also shows the sensitivity of the size of minimum

and maximum influence zones with respect to the constitutive model used, and hence the caution

needed in using such calculations to predict failure patterns.
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3.A. PLANE STRESS INCREMENTAL MODULI FOR THE CONSTITUTIVE MODELS

USED

3.A Plane stress incremental moduli for the constitutive models used

Three different nonlinear constitutive models are used in this chapter; all adapted for finite strains:

J2 deformation theory model, J2 flow theory model and a hyperelastic model, all sharing the same

uniaxial stress strain curve, which can be arbitrary and fit to experimental data. The J2 deforma-

tion/flow theory models are incompressible rate-independent (hypoelastic) models that can be put

in the from:
O
σ = C : D − ṗI, (3.A.1)

where
O

( ) denotes the Jaumann rate of the Cauchy stress tensor (
O
σ = σ̇ −Ω · σ + σ ·Ω with Ω

the spin tensor),D is the strain rate tensor and ṗ the hydrostatic pressure rate.

For the case of finite strains, the above current configuration relation can be transformed into its

reference configuration counterpart:

Ṡij = LijklĖkl − ṗC−1
ij ; Eij =

1

2

(
Cij − δij

)
, (3.A.2)

where S is the second Piola-Kirchhoff stress, E its work-conjugate Green-Lagrange strain and the

reference configuration components of moduli tensor L are:

Lijkl :=
2

3
E∗
[1

2

(
C−1
ik C

−1
jl + C−1

il C
−1
jk

)
− 3

2

(
1− Et

E∗

)S′ijS′kl
σ2
e

]
− 1

2

[
C−1
ik Sjl + C−1

jk Sil + C−1
il Sjk + C−1

jl Sik

]
,

(3.A.3)

where S′ is the deviatoric part of the stress tensor S and σe the Mises equivalent stress, namely:

S′ij = Sij −
1

3
C−1
ij CklSkl, σ2

e =
3

2
CikCjlS

′
ijS
′
kl. (3.A.4)

In the above expressions E∗ = E for the J2 flow theory while for the J2 deformation theory of

Stören and Rice (1975b)E∗ = Es = σe/εe is the secant modulus of the uniaxial stress-strain curve.

In both models Et is the tangent modulus of the uniaxial stress-strain curve Et = dσe/dεe.

The principal axes expressions in three dimensions for the equivalent stress σe and the equivalent

strain εe, which are useful in (3.3.7), (3.3.8) in the sequel in view of the biaxial loading of the plate

are:
σe =

(
σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ2σ3 − σ3σ1

)1/2
,

εe =
2

3

(
ε21 + ε22 + ε23 − ε1ε2 − ε2ε3 − ε3ε1

)1/2
.

(3.A.5)

Due to plane stress loading conditions:

Ṡ3i = 0, Ėα3 = 0, Ė33 = −C33C
−1
γδ Ėγδ, (3.A.6)
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which substituted in (3.A.2) give the following relation between Ṡαβ and its work conjugate Ėαβ:

Ṡαβ = MαβγδĖγδ,

Mαβγδ = Lαβγδ − C33

(
Lαβ33C

−1
γδ + C−1

αβL33γδ

)
+ C−1

αβC
−1
γδ C

2
33L3333.

(3.A.7)

The above result, combined with (3.A.3) gives the following expression for Mαβγδ:

Mαβγδ =
2

3
E∗
[1

2

(
C−1
αγC

−1
βδ + C−1

αδ C
−1
βγ

)
+ C−1

αβC
−1
γδ −

3

2

(
1− Et

E∗

)S′αβS′γδ
σ2
e

]
− 1

2

[
C−1
αγ Sβδ + C−1

βγ Sαδ + C−1
αδ Sβγ + C−1

βδ Sαγ

]
.

(3.A.8)

Recalling the relations between S &N and E & F , the moduli L in (3.2.3) are found to be:

Lαβγδ = MεβζδFαεFγζ + Sδβδαγ . (3.A.9)

For the case of biaxial loading of interest here Fαβ = diag
(
λγ
)

and thus:

C11 = λ2
1, C22 = λ2

2, C12 = 0,

S11 = σ1/λ
2
1, S22 = σ2/λ

2
2, S12 = 0,

(3.A.10)

which upon substitution into (3.A.8), (3.A.9) gives the incremental moduli expressions in (3.3.7),

(3.3.8) for J2 flow & J2 deformation theories.

Calculations of the moduli for the hyperelastic model also use (3.A.9) & (3.A.10) but M is

derived from the strain energy potential W through:

Mαβγδ =
∂2W

∂Eαβ∂Eγδ
= 4

∂2W

∂Cαβ∂Cγδ
, (3.A.11)

and are based on successive application of chain rule of differentiation using W (εe) where the

equivalent strain εe = εe(I1, I2) is expressed in terms of the invariants of C, which in turn depend

on the principal stretch ratios λα by:

I1 = trC = λ2
1 + λ2

2, I2 = detC =
(
λ1λ2

)2
. (3.A.12)

After some lengthy aglebra we end in expression in the expressions given in section 3.3.1.



Chapter 4

Localization of deformation of metallic

rings under high loading rate

compression

4.1 Introduction

As expounded in the previous chapter (Chapter 3), for high loading rates that are commensurate

with some characteristic wave propagation speed in the solid/structure, a new approach to analyzing

the dynamic stability is needed, namely to study the time evolution of localized perturbation intro-

duced onto the principal solution of the system. In this chapter, in contrast to a solid under rapid

extension, of particular interest here is the influence of loading rate on the stability of structures

under compression that exhibits an instability even under quasistatic loading. As a model structure

to illustrate these ideas, we select an elastoplastic ring subjected to external hydrostatic pressure

which is applied at different rates ε (appropriately non-dimensionalized with respect to elastic axial

wave speed). Of course such a classical topic has been treated repeatedly in the mechanics lit-

erature; following the work of Carrier (1945), different linear and nonlinear versions of the ring

dynamical equations of increasing complexity have been proposed (e.g. Boresi and Reichenbach,

1967; Dempsey, 1996; Goodier and McIvor, 1964; Graff, 1971; Morley, 1961; Simmonds, 1979;

Wah, 1970) to study their vibrations. The stability of rings subjected to impulsive or step loadings

has also been repeatedly studied (e.g. Amabili and Paidoussis, 2003; Anderson and Lindberg, 1968;

Florence, 1968; Goodier and McIvor, 1964; Lindberg, 1964, 1974; Lindberg and Florence, 1987;

Simmonds, 1979). These studies rely on modal analysis using Fourier series whose truncation leads

nonlinear amplitude equations and showed that dynamic buckling is triggered by flexural modes.

73
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At leading order, the dynamics of flexural modes are governed by Mathieu-Hill equations whose

characteristic curves of associated Mathieu functions delineate boundaries of instability domains

within the control parameter plane of load versus ring’s slenderness.

All the above-mentioned works were concerned with the stability of ring vibrations and not

with their stability at high loading rates as is the case of interest here. Our investigation is further

motivated by work involving rings with high strain rate using electromagnetic loading—since this

method avoids propagating waves—under tension that study the influence of high loading rate on

metal ductility (Gourdin, 1989; Triantafyllidis and Waldenmyer, 2004; Zhang and Ravi-Chandar,

2006, 2008), and in particular by experiments in ring and cylinder under electromagnetic com-

pression by Anderson and Lindberg (1968) and Jones and Okawa (1976), since these experiments

combine structural instability with rapid loading. It is the most recent experimental work of Mainy

(2012) that serves as the starting point for this investigation, and in particular, the localized failure

patterns observed (see Fig. 4.1), which are in remarkable contrast to global buckling modes of ex-

ternally pressurized rings under quasistatic loading rates. In order to keep essential features such

as buckling under static loading and finite wave speeds for all wavenumbers, we concentrate on the

dynamics of an elastic ring following a von Karman-Timoshenko theory allowing for small strains,

moderate rotations, transverse shear and rotational inertia. The ring’s stability is studied by follow-

ing the evolution of a localized small perturbation. It is shown that for small values of the applied

loading rate the structure fails through a global mode, while for large values of the applied loading

rate the structure fails by a localized mode of deformation. Following Section 4.1 the presentation of

the work continues with Section 4.2, where we derive the equations of motion, outline the numerical

scheme for the principal solution of these equations, and present the linearized analysis of the initial

growth/decay of a perturbation. The results are given in Section 4.3 where we conduct numerical

calculations of the evolution of different types of spatially localized imperfection/perturbation and

a discussion in Section 4.4 concludes this chapter.

4.2 Theory

In the first subsection, we derive the equations of motion from Hamilton’s variational principle, from

which we deduce the structure’s Euler-Lagrange equations. In the second subsection, we study the

behavior of the principle solution when dynamic loading condition with different loading rates are

applied onto the ring. In the third subsection, we carry out linearized analysis on the problem to

study the initial growth/decay of a perturbation introduced at a finite moment t = t0 to the system.
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Figure 4.1: Overlay of sequential images of a radially compressed ring electromagnetically com-

pressed with a charge level of 3 kV. Images are captured between t̃ = 0 and 91.8µs (Mainy, 2012).

Courtesy of Prof. K. Ravi-Chandar, University of Texas Austin.

4.2.1 Problem setting

We consider a homogeneous elastoplastic ring of rectangular section with thickness h, width a and

cross-sectional area A = h× a. The ring has a mid-line radius r and follows small strain–moderate

rotation Timoshenko kinematics described by ṽ(θ), w̃(θ), and ψ̃(θ) respectively the tangential and

normal displacements of the ring’s reference mid-line at point θ and the rotation of the section

perpendicular to the mid-line, initially at θ.

Before deriving the governing equations for the system, we would want to introduce a set of

useful dimensionless variables and physically relevant parameters. Length, time, and stress are non-

dimensionalized by r, r/c and G where r is the radius of the ring in initial reposed configuration,

c =
√
G/ρ is proportional to the ring’s longitudinal wave speed. In addition, the slenderness

parameter η and the dimensionless pressure λ are also proven to be expressive and listed below:

η := I/
(
Ar2

)
= (h/r)2 /12;

λ := λ̃ra/ (GA) =
(
λ̃/G

)
(r/h) .

(4.2.1)

To find the system’s Lagrangian, We need to determine its potential and kinetic energies P and

K respectively. The potential energy P consists of two parts: the stored strain energy Pint plus

Pext the work potential of the externally applied uniform pressure lambda. All the quantities are

expressed with before-mentioned non-dimensionlization in length, time, and stress.

The stored strain energy Pint is

Pint =

∫ 2π

0

[∫ h/2

−h/2

(
W̃ (εθθ) +

1

2
Gχγ2

rθ

)
dz

]
ar dθ (4.2.2)
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where the axial and shear strains εθθ and γrθ are given by

εθθ = v′ + w +
1

2

(
v − w′

)2
+ ψ′

z

r
, γrθ = v − w′ − ψ (4.2.3)

with f ′ denoting the θ-derivative of the corresponding function, W̃ the axial strain energy, χ the

shear correction factor (χ = 2/3 for a rectangular section) and G the material’s shear modulus.

By reformulating the integration in thickness and collecting all the dimensional terms, the fol-

lowing expression is obtained for the internal energy

Pint = Garh

∫ 2π

0

[∫ 1/2

−1/2
W
(
e′ +

φ2

2
+ ζ

h

r
ψ′
)

dζ +
1

2
χ(φ− ψ)2

]
dθ (4.2.4)

where e := v′+w, φ := v−w′, andW := W̃/G denote respectively the dimensionless axial strain,

rotation of the ring’s mid-line, and the dimensionless strain energy.

The work potential Pext of the external pressure loading λ̃ applied on the ring equals λ̃∆S

where ∆S is the change of area due to deformation (ṽ, w̃) enclosed by the ring’s mid-line, which is

given by (e.g. Brush and Almroth, 1975)

Pext = Garhλ

∫ 2π

0
w +

1

2

(
v2 − vw′ + w′v + w2

)
dθ

= Garhλ

∫ 2π

0
w +

1

2
(vφ+ we) dθ

(4.2.5)

where λ is taken positive when acting inwards (resulting in compressive hoop stress σθθ < 0) in the

ring.

Using the same kinematic assumptions as for the derivation of (4.2.3), the kinetic energy of the

ring is

K = Garh

∫ 2π

0

1

2

[
v̇2 + ẇ2 + ηψ̇2

]
dθ (4.2.6)

where η is defined in (4.2.1) and also served as slenderness parameter.

The system’s Lagrangian is now determined by (4.2.4), (4.2.5), and (4.2.6)

L = K − P = K − (Pint + Pint) . (4.2.7)

Using now Hamilton’s principle, i.e. by extremizing the action integral
∫ T

0 L dt over time paths

with fixed initial and final time values of the independent variables v, w, and ψ, we deduce the

following Euler-Lagrange equations governing respectively the axial, normal and rotational motion

of the ring 
v̈ = σ′ − σφ+ χ(ψ − φ)− λφ,

ẅ = −σ + χ
(
ψ′ − φ′

)
− λ (1 + e)− (σφ)′,

η ψ̈ =
h

r
τ ′ − χ(ψ − φ)

(4.2.8)
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where σ and τ denote respectively the dimensionless axial force and the dimensionless bending

moment defined by

σ :=

∫ 1/2

−1/2

dW
dε

dζ, τ :=

∫ 1/2

−1/2
ζ

dW
dε

dζ, (4.2.9)

To the above equations initial conditions for v, w, ψ and v̇, ẇ, ψ̇ must be added.

4.2.2 Principal solution

Of particular interest here now is the perfect structure’s principal solution (v0 = 0, w0, ψ0 = 0), i.e.

the response of the perfect ring to a uniform pressure loading at constant rate ε (starting at t = 0):

λ = −εt. Due to axisymmetry, there is zero tangential displacement and zero rotation of section,

the governing equation of axial displacement w0(t) is simplified to:

ẅ = −σ − λ(1 + w), (4.2.10)

with inital conditions w0(0) = ẇ0(0) = 0.

For the quasistatic case with elastic material, we have σ = kw and w � 1 with k = 2(1 + ν).

By using the fact that dt2 = ε−2 dλ2, the previous equation can be written as

ε2
d2w

dλ2
= kw − λ (4.2.11)

with corresponding initial conditions, which admits solution (Putelat and Triantafyllidis, 2014)

w(λ) =

(
ε√
k

sin
(√k
ε
λ
)
− λ
)/

k (4.2.12)

For the case where inertia effect is taken into account, we have w ∼ 1, and the force σ could

present substantial nonlinearity regarding w. Due to these high nonlinearities, a numerical approach

is adopted to calculate its solution using given initial conditions. By virtue of the axisymmetry of the

principal solution, this numerical simulation could be very computationally light-weighted by using

axisymmetric elements to mesh only the ring’s rectangular cross-section. The same set of numerical

results, used for computation of the principal solutions, will also serve in numerical stability analysis

reported in Section 4.3.

4.2.3 Linearized stability analysis

Assuming a perturbation (∆v, ∆w, ∆ψ) superposed on the principal solution (0, w0, 0), the lin-

earized perturbation equations obtained from (4.2.8) are
∆v̈ = E0

t ∆v′′ + (E0
t + σ0 + χ+ λ)∆w′ − (λ+ σ0 + χ)∆v + χ∆ψ,

∆ẅ = −(E0
t + σ0 + χ+ λ)∆v′ + (χ+ σ0)∆w′′ − (E0

t + λ)∆w + χ∆ψ′,

η∆ψ̈ = ηE0
t ∆ψ′′ − χ(∆ψ −∆v + ∆w′)

(4.2.13)
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(a) Elastic (b) Bilinear Et/E = 0.22 (c) Power-law n = 0.22

Figure 4.2: Radial displacement versus external load for principal solutions with different loading

rates. Color red, green, and blue represent respectively different loading rate ε = 10−3, 10−2, and

10−1.

where σ0 and E0
t denote respectively the axial force and the tangential modulus, both computed

with the principal solution:

σ0 :=

∫ 1/2

−1/2

dW
dε

∣∣∣∣
0

dζ, E0
t :=

∫ 1/2

−1/2

d2W

dε2

∣∣∣∣
0

dζ. (4.2.14)

The equation (4.2.13) is completed by the initial conditions for (∆v, ∆w, ∆ψ) and their time

derivatives at the time of the onset of perturbation t = t0.

Using the method of frozen coefficients, i.e. assuming that the rate of growth/decay of the pertur-

bation is much higher than the loading rate, (4.2.13) is considered as a constant coefficient equation,

which admits a base of solutions of form

(∆v,∆w,∆ψ) = (v̂(k), ŵ(k), ψ̂(k)) exp
[
i(ωt+ kθ)

]
; ω ∈ R, k ∈ N, k ≥ 2. (4.2.15)

By combining (4.2.13) and (4.2.15) and ignoring the time dependence of λ and w0 we obtain

the following implicit dispersion relation between ω and k

det



χ+ λ+ σ0 + E0
t k

2 − ω2 −ik
(
E0

t + σ0 + χ+ λ
)

−χ

ik
(
E0

t + σ0 + χ+ λ
)

E0
t + λ+ (χ+ σ0)k2 − ω2 −ikχ

−χ ikχ χ+ η
(
E0

t k
2 − ω2

)


= 0

(4.2.16)

which yields the following bi-cubic polynomial in ω2

a0 + a2ω
2 + a4ω

4 + a6ω
6 = 0, (4.2.17)
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with coefficients

a0 =
[
− χ(E0

t + λ)(λ+ σ0) +
(
σ0χ− η(E0

t + λ)(λ+ σ0 + χ)
)
E0

t k
2

+ η(σ0 + χ)
(
E0

t

)2
k4
](
k2 − 1

)

a2 = −χ(E0
t + 2λ+ σ0)− η(E0

t + λ)(λ+ σ0 + χ)

+
(
ηλ2 − η(E0

t + λ)(E0
t − σ0 − χ)− χ(E0

t + σ0)
)
k2

− ηE0
t (E0

t + 2σ0 + 2χ) k4

a4 = χ+ η(E0
t + 2λ+ σ0 + χ) + η(2E0

t + σ0 + χ) k2

a6 = −η

(4.2.18)

It should be noted that for k = 1 the dispersion equation has a zero root ω2 = 0, reflecting the

fact that k = 1 corresponds to a rigid body mode of the ring, easily verified since the corresponding

strain measure vanishes.

We can find out the time corresponding to the onset of static buckling by calculating the lowest

time tb required for a zero root ω2, i.e. solving a0 = 0 in (4.2.18). Using the fact that up to static

buckling the thin ring always has λ� 1, σ0 � 1, and λ ≈ −σ0, a0 = 0 can be simplified into

λ = η E0
t
(
k2 − 1

)
(4.2.19)

which corresponds to the buckling pressure of a quasistatically loaded ring, achieved for the lowest

integer value of k = 2 (Brush and Almroth, 1975).

For finite loading rates inertia effects are important and perturbations travel at finite speeds. For

such cases, failure occurs by a localized deformation mode, which correspond to short wavelength

k � 1. The time corresponding to their onset of instability can be found by investigating the

behavior of the dispersion relation (4.2.17) for different values of k, when the lowest root ω2 = 0,

which is equivalent to a0 = 0.

4.3 Numerical simulations

4.3.1 FEM modeling

A model of J2 plasticity associated with power-law isotropic hardening is chosen to match the

mechanical properties of annealed Al 6061-O and will be used in all following calculations. The
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plastic response of Al 6061-O was investigated by Zhang and Ravi-Chandar (2006) through uniaxial

tensile tests and is formulated here as:

σ := σ̃/G = 2(1 + ν)εy
(
1 + βεp

)n (4.3.1)

expressed in measured quantities: Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.25, yield

strain εy = 3.57× 10−4, β = 14165, and hardening power n = 0.22.

Under stability theory framework, all types of infinitesimal deviation from the ideal system

are “equivalent” in the sense that they can equally trigger instability (if there is any) under the

same loading condition intrinsic to the ideal system and then draw corresponding bifurcated so-

lutions. In the real experiments of ring compression, they can be incarnated into various forms:

voids/inclusions inside aluminum, machining error, non-uniformity of the external fields, etc. In

numerical simulations, these can be modeled by imperfections manually introduced on the level

of elements (“imperfection”), or direct modification of the converged solution between any two

consecutive time-integration iterations (“perturbation”). In all the following calculations, both the

“imperfection” type and “perturbation” type of modification are used for the ring compression sys-

tem. More precisely, for the “imperfection” type, small radial shifts ∆w (θ) is introduced onto the

mid-plane of the ring as part of the reposed configuration, and boundary surfaces are defined as

in/outward equidistant offset of the mid-plane by h/2 (Figure 4.3b), where h is the thickness of

the ring used in (4.2.1). Such geometric imperfection imitates roughly the machining error of the

ring. For the “perturbation” type, small radial velocity ∆ẇ(θ, t0) is added to the principal solution

at a chosen time t = t0. Such fluctuation of the solution imitates roughly the inhomogeneity of the

external fields. When no confusion is possible, we refer both types of “small modification” of the

system as imperfections and specify the first type as “geometrical imperfection” when individual

clarification is needed.

Imperfections of various shapes can be implemented by different amplitudes a (θ), of interest

here is two specific kinds of imperfection, namely the spatially isolated imperfection and randomly

distributed imperfections, as illustrated in Figure 4.4. With the spatially isolated imperfection, only

one narrowly spreading radial shift/velocity is added to the ring, characterized by a Gaussian func-

tion a
(
θ̄ + θ

)
= A exp

(
− (κθ)2

)
with adjustable amplitude A, width parameter κ and position

θ̄. The information send from this isolated imperfection propagates at a finite speed and will not

interfere with others or itself until it is disseminated over the totality of the ring after some finite

time. The other kind, randomly distributed imperfections, is by its name the arithmetic sum of

random instances of the first kind. Since the randomness introduces extra arbitrarity and obscurity

into the analysis, and yet there is no practical way to match the parameter set
(
Ai, κi, θ̄i

)
from the

real specimen, a fixed set of parameters is used throughout this study in the hope of ensuring result



81 4.3. NUMERICAL SIMULATIONS

(a) Mesh without imperfection intro-

duced

(b) Mesh with imperfection introduced

Figure 4.3: A zoom-in of two exemplary meshes for thin rings (η = 10−4). Red lines represent

the mid-plane of rings and hold constant distance r to the origin in the unperturbed configuration.

Blues lines represent the inner/outer surfaces of the rings which always retain a constant distance

h between themselves. On the right-hand side, an additional radial shifts ∆w (θ) in the form of a

Gaussian function is added onto the mid-plane, producing a highly localized bump on the original

perfect ring.

consistency across different calculations. The parameters in this set are generated regarding to the

following distributions:

A ∼ N
(
0, 10−4

)
, κ ∼ Γ (4, 1) , θ̄ ∼ U (0, 2π) . (4.3.2)

As read from Figure 4.4b, the result of discrete Fourier transform shows that the imperfection

amplitude a (θ) introduced by these randomly distributed imperfections blend in a wide range of

periodic shapes without promoting a significant dominant wavelength, i.e. it cannot be directly

approximated by a sinusoidal function. One could expect that this random profile is free from bias

for any unstable periodic mode.

4.3.2 Results

In the case of linearly time-varying loading case, the external surface of the ring is subject to a

uniform pressure field, with time-varying amplitude λ = εt where ε is the dimensionless loading

rate. By the dimensionless loading rate alone one can freely parameterize the system around the

quasistatic regime and the highly dynamic regime. This freedom marks a great difference with the

case of two-dimensional extension of metallic sheets, as in the latter case the “free” parameter—the

extent of the sheet—can be treated as infinite in the context of spatially localized perturbation. ε is
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(a) spatially isolated imperfection (b) randomly distributed imperfections

Figure 4.4: Schematic graphs showing the two kinds of imperfections used in the study, along with

their wave components’ renormalized amplitudes plotted versus wavenumbers. In both figures,

dashed lines indicate the reference circle of unity radius; red lines indicate the perturbed reposed

configurations with exaggeration. For the spatially isolated imperfection, the tuple of parameters

A = 10−2, κ = 10, and θ̄ = π is used, and the red line is 10 times exaggerated. For the randomly

distributed imperfections, the discussed set of parameters is used, and the red line is 100 times

exaggerated.

linked to its dimensional counterpart ε̃ by the following formula:

ε = ε̃
(
r2ρ1/2

)/(
hG3/2

)
. (4.3.3)

Before showing the results of the localization time tl, it worths mentioning another time point

to compare with, namely the time tb corresponding to the onset of quasistatic buckling instability,

which can be deduced from (4.2.19):

tb = 3Etη/ε. (4.3.4)

An interesting empirical practice is proposed by Putelat and Triantafyllidis (2014). In these

numerical experiments, they observed that the axial component (as opposed to bending and shearing

components) of internal energy stored in the elastic ring first increased with the load, then followed

by a steep drop once the absolute maximum has been reached. And more importantly, this maximum

point is proven to be a robust indicator to detect the onset of instability for both the local and global

modes. Inspired by this observation, we propose a similar approach to serve as an indicator of the

onset of instability for elastoplastic rings by averaging εmid the axial strain along the mid-plane (i.e.

the red lines highlighted in Figure 4.3) and calculating its minimum within time.
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(a) ε = 10−1 (b) ε = 10−2

(c) ε = 10−3 (d) ε = 10−4

(e) ε = 10−5 (f) ε = 10−6

Figure 4.5: Time evolution of the average axial strain of rings with geometrical imperfections. The

horizontal axes represent the dimensionless time t; the vertical axes represent the average axial

strain 〈εmid〉 calculated on the mid-plane of the ring at every time increment. The dotted thin (black)

data line represents the principal solution. The solid (blue) data line and dashed (red) data line

represent calculations respectively with predefined isolated imperfection and randomly distributed

imperfections. The dotted-dashed (green) line represents tb the time at which a quasistatic buckling

instability would have occurred. The figures are ordered from high loading rate to low loading rate.

Suppose there are N nodes on the mid-plane indexed by i, then the tl is calculated as:

tl = arg min
t
〈εmid〉 (t) = arg min

t

(
1

2π

∑
i

‖xi+1(t)− xi(t)‖ − 1

)
. (4.3.5)

The relations between time and 〈εmid〉 are plotted in Figure 4.5 for a product combination of (iso-

lated imperfection, randomly distributed imperfections) and ε ∈
(
10−1, 10−2, 10−3, 10−4, 10−5, 10−6

)
for geometrically imperfect rings. All time increments after 〈εmid〉 > 1 are cut off on purpose, as

this kind of axial tension in a real compression experiment is quite unphysical. Numerically, this
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is due to the fact that no collision detection is set up for these calculations, and some segments of

the ring eventually intersect themselves which ends in an inversion of inner/outer surfaces. One

can roughly divide the figures of six different loading rate ε into two groups according to the ratio

between tl the time of onset of general instability and tb the time of the onset of quasistatic buckling

instability, with 4.5a, 4.5b, and 4.5c in the first group for tl/tb � 1, 4.5e and 4.5f in the second

group for tl ∼ tb, and 4.5d entering into either group as a transitional element. As expected, the

imperfect ring loaded at a high rate is initially stable for pressures well above the static buckling,

which is calculated by ignoring the speed of propagation of the perturbation. To further illustrate

the connections between finite propagation speed of signals and delay of onset of instability, one

can calculate ts, a lower bound of time taken by the axial wave to propagation through the entire

ring:

ts := lim
k→∞

2π/cg(k) = 2π/
√

2(1 + ν) ≈ 3.16π. (4.3.6)

The rings in 4.5a and 4.5b have their tl strictly less than than this lower bound, which implies

that the influence generated by their isolated/distributed imperfection(s) never has enough time to

affect the whole structure. Whereas for 4.5e and 4.5f, the influence would have totally disseminated

over the whole structure.

For all the six figures, especially in the first four: 4.5a, 4.5b, 4.5c, and 4.5d where local effect

overwhelms global effect, The tl and the corresponding strain 〈εmid〉 (tl) all have a good match be-

tween two extensively different imperfection shapes (isolated/distributed). This proves reciprocally

the robustness of this indicator, i.e. using the axial strain limit to predict the onset of instability, for

both quasistatic and high loading rate cases.

The influence of the time t0 at the introduction of isolated perturbation in velocity and the

meaning of the localization time tl introduced in (4.3.5) is illustrated in Fig. 4.6 for two case of

high loading rate (ε = 10−2 and 10−4) for a ring with slenderness η = 10−4. We plot the norm

of the perturbation ‖∆ẇ‖ as a function of time for perturbations with different introduction time

t0. Notice that tl is an upper bound for the real time of onset of localization. The perturbation

amplitude first decreases provided that the time of perturbation introduction is less than tl, which is

a direct consequence of the stability of the perturbed solution before onset of localization.

Once the tl is well defined through the results of calculations, it’s possible to investigate the

shape and patterns formed by the metallic ring in post-bifurcation phase. In Figure 4.7, the visual

representations of the time evolution of the ring’s profile are shown for rings with isolated imper-

fection and for different loading rate ε. The influence of loading rate ε is clear shown in the figures.

We first observe that independently of the loading rate, the initial disturbance caused by the intro-

duced imperfection splits in two. As the loading rate ε ranges from the smallest ε = 10−6 to the
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(a) ε = 10−4 (b) ε = 10−2

Figure 4.6: Influence of the time of perturbation introduction on the subsequent growth/decay of the

perturbation. The vertical dashed lines delimitated the localization time tl, which for the parameter

values used here is a) tl ≈ 37 b) tl ≈ 8.8. Imperfections used here are velocity perturbation with

isolated extent.

highest ε = 10−1, the instability mode also varies gradually from a global buckling mode, as seen

in Figure 4.7f, to a localization of deformation, as seen in Figure 4.7a.

In the regime where localization of deformation is in favor, we observe a stationary wave packet

whose maximum amplitude of its envelope grows with time, and that compared to elastic ring

case (Putelat and Triantafyllidis, 2014), the localizations on the elastoplastic ring has a much faster

spatial decay outside of the two principal localizations. For the latter one, an interesting analog can

be made with the calculation of stretching of a two-dimensional elastoplastic sheet reported in the

previous chapter.

In Figure 4.8, similar information are shown for the time evolution of the ring’s profile. The

influence of loading rate ε is shown in the figures in a more subtle way. We can observe that

independently of the loading rate, the initial disturbance caused by the introduced imperfection is

distributed over the totality of the ring, which, however, should not be systematically categorized

as global buckling mode. For loading rate ε ≥ 10−3, namely in Figure 4.8a, Figure 4.8b, and

Figure 4.8c, no dominant wavelength can be spotted. For the irregular spacing pattern showing in

these three figures, we shall adopt a rationalization based on the local interaction between localized

imperfection present in the structure.

In Figures 4.8a and 4.8b, the post-bifurcation patterns have similar shapes up to amplitude

ratio difference. Recall the previous discussion related to ts (defined in (4.3.6)), that the rings in

Figures 4.8a and 4.8b have their time of onset of localization tl strictly less than the lower bound
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tl = 4. 1

(a) ε = 10−1

tl = 8. 9

(b) ε = 10−2

tl = 20. 0

(c) ε = 10−3

tl = 40. 0

(d) ε = 10−4

tl = 165. 0

(e) ε = 10−5

tl = 910. 0

(f) ε = 10−6

Figure 4.7: Time evolution of the ring’s profile. The slenderness parameter is η = 10−4. The

isolated geometrical imperfection depicted in Figure 4.4a is applied. In each figure, the ring’s

profile is traced according to its mid-plane, evolving from outmost (the pure blue line) inwardly

(purple lines than the pure red line). Green lines correspond to the onset of localization tl. The

figures are ordered from high loading rate to low loading rate.

ts. In Figure 4.8, it could imply that the strong short-range effect has somehow “locked” distributed

imperfections’ information and force them to express “in place”.

4.4 Conclusion

As a model structure to study the influence of inertia and loading rates on the stability of a structure

that becomes unstable even at static loads (structures with buckling modes), we study an elasto-

plastic ring subjected to external hydrostatic pressure applied at different rates ε (appropriately

non-dimensionalized with respect to elastic axial wave speed). Unlike existing analyses of this
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tl = 4. 1

(a) ε = 10−1

tl = 8. 0

(b) ε = 10−2

tl = 16. 0

(c) ε = 10−3

tl = 42. 0

(d) ε = 10−4

tl = 197. 0

(e) ε = 10−5

tl = 1050. 0

(f) ε = 10−6

Figure 4.8: Time evolution of the ring’s profile. The slenderness parameter is η = 10−4. The

randomly distributed geometrical imperfection depicted in Figure 4.4b is applied. In each figure,

the ring’s profile is traced according to its mid-plane, evolving from outmost (the pure blue line)

inwardly (purple lines than the pure red line). Green lines correspond to the onset of localization tl.

The figures are ordered from high loading rate to low loading rate.

phenomenon that are based on modal analysis to find the fastest growth rate—a method that is only

meaningful for slow loading rates in view of characteristic wave speeds present in the structure—the

ring’s stability is studied by following the evolution of a localized small perturbation. It is shown

that for small values of the applied loading rate the structure fails through a global (buckling-type)

deformation mode, while for large values of the applied loading rate the structure fails by a local-

ized mode of deformation, and these two regimes are bridged by a continous spectrum of different

failure patterns. With the help of numerical simulations, we proposed a practical manner to define

the onset of localization time tl that determines when a localized mode of instability can occur in

the structure as time evolves. More precisely, we show that the onset of instability is triggered when



CHAPTER 4. LOCALIZATION IN DYNAMICALLY COMPRESSED RINGS 88

the extremum of the average axial strain is reached. This chapter presents a new approach for inves-

tigating the dynamic stability of structures that exhibit instabilities even under static loadings. For a

future perspective, the influence of different types of dynamic loading (i.e. step, pulse) needs to be

considered as well as a more realistic modeling of the electromagnetic loading conditions.



Chapter 5

Concluding remarks

This thesis pertains to the study of localization of deformation in bulk of solids and in structures

under quasistatic and dynamic loading conditions. The novel approach of this work consists of

introducing geometrically localized perturbations and investigating their time evolution to study

failure by localization of deformation in the corresponding problems. Analytical as well as numer-

ical (FEM) tools are used and the results are interpreted in light of experiments available in the

literature.

Following the brief introduction, the problem of localization of deformation in microstructured

solids under static loading condition is examined in Chapter 2. The specific problem discussed is

the stability of uniform compressive deformation in a unidirectionally oriented fiber reinforced com-

posite. This thesis refutes the common belief that there is always a localized deformation appearing

in the post-critical equilibrium path of solids loosing macroscopic ellipticity. It’s proposed in this

Chapter that the key concept for finding whether loss of macroscopic ellipticity leads to localiza-

tion of deformation lies in the post-bifurcation behavior of the solid under investigation. A phase

diagram has been created that outlines the various kinds of instabilities that arise in this problem

for cases when the critical bifurcation mode is also global in nature and well separated from other

eigenmodes.

In Chapter 3 and Chapter 4, two problems involving dynamic instability are presented. The

main objective is to explore the influence of high rate of background deformation on the growth of

a perturbation arising from a point defect. This thesis refutes the prevalent approach of using the

method of modal analysis, which determines the structure’s fastest growing eigenmode, to study its

stability. Modal analysis method supposes that all points in the structure can be perturbed simul-

taneously, an assumption that is not appropriate for cases when the velocity of material points in

the structure are comparable to the associated wave propagation speeds. The novel idea proposed

89
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in these two Chapters is to analyze the evolution of spatially localized perturbations of the time-

dependent, high strain rates states of these structures, in order to understand the initiation of the

corresponding localization of deformation.

In Chapter 3 where biaxial tension incorporating dynamics/inertial effects is considered, it is

shown that the deformation under biaxial tension is dynamically stable until loss of ellipticity of

material is reached. Moreover, we found that under high strain rates the plate has not shown any

localized deformation mode for strains well above the ones corresponding to the static loss of ellip-

ticity of material, thus provides explanation for ductility increase observed in experiments.

In Chapter 4 where an analysis of localization of deformation in thin metallic rings under high

strain-rate compression is presented, it is demonstrated that for high strain rates the failure pattern

involves highly localized deformation zones and a resulting “irregular flower pattern” indicates

interactions of randomly existing imperfections on structures as observed in experiments.
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/ Rhéologie et Mécanique des Sols, International Union of Theoretical and Applied Mechanics,

pages 58–68. Springer Berlin Heidelberg.

Mercier, S., Granier, N., Molinari, A., Liorca, F., and Buy, F. (2010). Multiple necking duringt

hedynamic expansion of hemispherical metallic shells, from experiments to modelling. J. Mech.

Phys. Solids, 58:955–982.

Mercier, S. and Molinari, A. (2003). Predictions of bifurcation and instabilities during dynamic

extension. Int. J. Solids Struct., 40:1995–2016.
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Titre : Stabilité et localisation des déformations dans les solides et les structures en déformations finies: 
Aspects statique et dynamique 
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Titre : Stability and Localization of Deformation in Finitely Strained Solids and Structures: Static and High 
Strain Rate Dynamic Aspects 

Mots clés : localization of deformation, stability, inertia 

 

Résumé : Localization of deformation in finitely 
strained ductile solids is the instability mechanism 
leading to their failure by rupture. This phenomenon 
occurs under static and dynamic loading conditions. It 
can appear in the bulk of solids, in which case it is 
referred to as a material instability phenomenon or in 
a structure, in which case one talks about a structural 
instability problem. The thesis at hand studies 
localization in the material and structural context, both 
under static and dynamic conditions, using a common 
tool: the evolution of a geometrically localized 
perturbation. 

An introduction to the localization of deformation 
problem in solid mechanics is presented in Chapter 1. 
The material instability aspect of localization of 
deformation in microstructured solids under quasi-
static loading and its connection to macroscopic 
ellipticity–the continuum criterion for the presence of 
a discontinuous strain field–are addressed in Chapter 

2. In this part we show the connection of the 
homogenized post-bifurcation response to the 
presence or absence of a localized deformation field in 
an infinite, fiber-reinforced composite under plane 
strain compression. The material instability aspect of 
localization of deformation under dynamic loading, 
i.e.  where inertia becomes important, is addressed in 
Chapter 3. In this part we study the influence cones for 
the wave propagation emerging from a point 
perturbation in an infinite, biaxially strained plate 
whose constitutive response loses ellipticity at finite 
level of strain. The structural instability aspect of 
localization of deformation is investigated under 
dynamic loading conditions in Chapter 4 by studying 
the dynamic compression on an electromagnetically 
loaded metallic ring. In contrast to the quasistatic case, 
where a global failure mode is observed, the failure 
pattern for the rapidly compressed ring shows highly 
localized deformation areas. 
 

Résumé : La localisation de la déformation dans 
un milieu ductile déformé est le mécanisme 
d’instabilité qui provoque la défaillance finale. Ce 
phénomène se produit sous chargement statique ainsi 
que dynamique. Elle peut se trouver au sein des 
matériaux et on parle alors d’instabilité matérielle, ou 
sur la structure entière et dans ce cas il s'agit d'une 
instabilité géométrique. Cette thèse étudie le 
phénomène de localisation de déformation dans des 
contextes matériaux ou géométriques et avec des 
conditions de chargement statique ou dynamique. 
Dans tous les cas, un outil unifié est utilisé : 
l’évolution de la perturbation à support localisé. 

Le premier chapitre sert d'introduction au 
problème de localisation de déformation en 
mécanique des solides. Le deuxième chapitre quant à 
lui, porte sur l’instabilité matérielle de la localisation 
de déformation dans des milieux à microstructure 
sous compression quasi-statique, ainsi que son lien à 
l’ellipticité macroscopique (qui n'est autre que le 
critère continue de la présence d’un champ de 

déformation discontinue). Dans ce chapitre nous 
démontrons la relation entre la solution de post-
bifurcation homogénéisée et la présence ou l’absence 
d’un champ de déformation localisé dans un domaine 
de composites renforcées de fibres infiniment large 
sous compression. Le troisième chapitre est consacré 
à l’aspect de l’instabilité matérielle de la localisation 
de déformation sous chargement dynamique, où 
l’effet d’inertie devient non négligeable. Dans ce 
chapitre nous étudions une perturbation singulière sur 
une plaque infiniment large sous tension biaxiale et 
ses cônes d’influence, avec une loi de comportement 
qui perd l’ellipticité. Le quatrième chapitre étudie 
l’instabilité géométrique de la localisation de 
déformation sous chargement dynamique et pour ceci 
nous nous intéressons à la compression dynamique 
d’un anneau métallique sous chargement électro-
magnétique. Contrairement au cas quasi-statique, des 
domaines de déformation localisée sont observés 
dans le mode de défaillance de l’anneau. 
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