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Advances in statistical signal processing for infrasound events

The core of this thesis is the infrasound signal processing and particularly the estimation and detection using a sensor array. The themes presented here are well-suited to experimentation and we tried, as much as possible, to illustrate the theoretical results with real data.

The first part describes the implications and difficulties of infrasonic detection. We review the state-of-the-art of detection techniques based on hypothesis testing and supplement them with the aim of automatic detection.

The second part of this thesis highlights the error on the angle of arrival estimation due to considering the arrays as planar (common approximation). In response to this problem, a new estimator considering the full geometry of the array and including an a priori on the speed of the infrasonic wave is derived and studied. We show that the described estimator significantly improve performance.

The third part introduces the modeling of infrasonic signal as autoregressive process. This modeling allows us to derived a sequential approach to detect infrasound based on the beamforming and the detection of abrupt changes.

The last part of this manuscript aims to propose an alternative "signal" model. We present new results highlighting a phenomenon of loss of coherence of the signals recorded by different sensors. This work leads to the generation of synthetic infrasonic signal in order to study the performance of the detection algorithms.

3.1 Sensor locations of IS18 in Greenland. . . . . . . . . . .

Résumé

Le coeur de cette thèse fait l'objet du traitement de signaux infrasonores et plus particulièrement de l'estimation et de la détection à l'aide d'un réseau de capteurs. Les thèmes abordés ici sont propices à l'expérimentation et nous avons essayé, autant que possible, d'illustrer les résultats théoriques obtenus à l'aide de données réelles.

La première partie vise à décrire les implications et les difficultés liées à la détection de sources infrasonores. La littérature offrent déjà de nombreuses techniques de détection basées sur le test d'hypothèses qui sont alors exposées et complétées dans une optique de détection automatique.

La seconde partie de cette thèse met en avant les erreurs de l'estimation de l'angle d'arrivée d'une onde lorsque les altitudes des capteurs d'une station sont ignorées (approximation courante). En réponse à ce problème, une estimation basée sur la géométrie complète de la station et comportant un a priori sur la vitesse de l'onde est dérivée et étudiée. L'estimation mentionnée ci-dessus permet de significativement améliorer les performances.

Dans la troisième partie, nous introduisons la modélisation du signal infrasonore par un processus stationnaire de type autoregressif. Cette modélisation permet ensuite de développer une approche séquentielle pour la détection infrasonore basée sur le beamforming et la détection de changement abrupte.

La dernière partie de ce manuscrit a pour but de proposer un modèle "signal" alternatif au modèle de retard pur. Il est présenté de nouveaux résultats mettant en avant un phénomène de perte de cohérence des signaux enregistrés par différents capteurs. Ces travaux aboutissent sur l'élaboration de méthodes de simulations de signaux synthétiques réalistes pour l'étude des performances des détecteurs infrasonores. .9 Estimation non-paramétrique de la cohérence pour le signal de la météorite de Chelyabinsk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.10 Illustration de la génération de la perte de cohérence . . . . . . . . . . . . 5.11 Analyse temps-fréquence du signal de la torchère enregistré par IS31. . . . 5.12 AUC en fonction de la variance du bruit pour 4 détecteurs . . . . . . . . . 5.13 AUC en fonction de la variance du bruit pour 4 détecteurs pour la Méthode.1168 5.14 Influence de l'amplitude de la perte de cohérence sur les performances des détecteurs 1/2. . Le son est une vibration se propageant sous la forme d'une onde mécanique dans les milieux solides ou fluides. Les êtres humains peuvent percevoir une certaine gamme de ces ondes acoustiques grâce à l'ouïe. Dans ce cas, on parle de son audible dont les fréquences sont comprises dans la bande de fréquence perceptible par l'oreille humaine soit [20 -20000] Hz. Ces fréquences audibles sont omniprésentes dans notre environnement et nous permettent notamment de communiquer. Cependant chez certains animaux, comme les éléphants, une partie de la communication s'effectue par le biais de son dont la fréquence est inférieure au seuil d'acuité auditive de l'homme [START_REF] Herbst | How low can you go ? physical production mechanism of elephant infrasonic vocalizations[END_REF]; [START_REF] Payne | Infrasonic calls of the asian elephant (elephas maximus)[END_REF]. Ces ondes acoustiques dont le contenu fréquentiel est inférieur à 20 Hz sont appelées infrasons. A cause de cette invisibilité pour l'oreille humaine, les infrasons font partie de la culture populaire qui lui prête des propriétés nocives pour l'homme [START_REF] French | The "haunt" project : An attempt to build a "haunted" room by manipulating complex electromagnetic fields and infrasound[END_REF] Pourtant les ondes infrasonores sont constamment présentes dans l'atmosphère et sont produites par des sources diverses. Ces sources peuvent être naturelles (météorites, éruptions volcaniques, aurore boréales...) ou anthropiques (explosions, exploitations de mines, avions...). Les signaux infrasonores ont la capacité de pouvoir se propager sur de grandes distances grâce à une faible absorption et à la formation de guides d'ondes naturels dans l'atmosphère [START_REF] Whitaker | Infrasound propagation[END_REF].

Table des matières

Historiquement le premier enregistrement de signaux infrasons remonte à la violente éruption du volcan Krakatoa en 1883 dont l'onde générée a réalisé 7 fois le tour de la 1 planète [Committee et al., 1888, pp. 58 -88]. L'évènement de la Toungouska survenu le 30 Juin 1908, présumant causé par une météorite, a lui aussi été enregistré [START_REF] Evers | The characteristics of infrasound, its propagation and some early history[END_REF] confirmant l'existence d'onde sonore pouvant se propager à des distances de plusieurs milliers de kilomètres. Ces évènements ont suscité l'attrait scientifique. L'attrait pour les infrasons a d'abord été entretenu par les forces militaires qui utilisèrent les ondes bases fréquences pour localiser les artilleries pendant la première guerre mondiale. Au début des années 1950, l'importance stratégique des infrasons s'amplifie grâce à la capacité à détecter les essais nucléaires atmosphériques [START_REF] Bedard | Atmospheric infrasound[END_REF].

Depuis lors le champ d'applications des infrasons s'est largement élargi permettant la découverte de nouvelles sources infrasonores.

Les sources infrasonores

Aujourd'hui des capteurs sensibles aux variations de pression atmosphérique appelés microbaromètres sont repartis autour de la Terre et enregistrent en continu des signaux infrasonores. Les sources de certains de ces signaux peuvent être identifiées grâce à l'appui de technologies supplémentaires comme les osmomètres. Les sources sont parfois associées à l'actualité et peuvent donc être facilement identifiées, (séismes, météorites, lancements de navette spatiale...). Cependant, de nombreuses sources infrasonores dont la nature est moins évidentes ont pourtant été détectées et étudiées dans la littérature.

Ces sources sont divisées en deux catégories : les sources naturelles et anthropiques. Parmi les sources naturelles, la houle océanique (microbaroms) est la plus répandue. Il est présumé que les microbaroms sont la conséquence de l'interaction non-linéaire entre des ondes de surface océaniques et l'atmosphère [START_REF] Arendt | Acoustic radiation by ocean surface waves[END_REF]; [START_REF] Posmentier | A theory of microbaroms*[END_REF]. Ces ondes infrasonores sont enregistrées presque constamment à n'importe quel lieu sur la Terre [START_REF] Landès | Explaining global patterns of microbarom observations with wave action models[END_REF]. La bande de fréquence des microbaroms est d'environ 0.12 à 0.35 Hz. Pendant les forts orages magnétiques, les aurores boréales sont génératrices d'infrasons en haute altitude allant de 0.008 à 20 Hz Wilson et al. [2005]. Les météorites sont une autre source d'infrason particulièrement intéressante puisque la fréquence dominante et l'amplitude du signal sont liées à l'énergie dégagée par le bolide lors de son entrée dans l'atmosphère [START_REF] Revelle | Global infrasonic monitoring of large bolides[END_REF].

Les infrasons peuvent aussi avoir pour cause l'activité humaine comme pour les avions subsoniques et supersoniques dont la trajectoire peut être déterminée grâce à l'étude des signaux [START_REF] Christie | Observations of infrasound in central australia[END_REF]; [START_REF] Evers | Infrasound monitoring in the netherlands[END_REF]. Plus généralement, les explosions font partie du catalogue des évènements détectables à de longues distances. Par exemple les tirs de carrières sont couramment détectés et peuvent être utilisés pour la calibration des instruments infrasons. Parmi les activités humaines, ce sont les explosions nucléaires qui génèrent les infrasons les plus puissants avec une amplitude proportionnelle à la puissance de la charge (souvent exprimée en termes de kilotonnes de TNT).

Une liste non exhaustive des principaux évènements susceptibles de générer des infrasons est résumée dans le tableau Tab. 1.1. Globalement on note qu'il existe peu d'informations a priori sur les évènements, notamment la date et le lieu de ces évènements sont la plupart du temps inconnus, tout comme leur énergie. On remarque aussi que le contenu fréquentiel est variable, certaines sources sont à bande étroite, comme les microbaroms, tandis que d'autres sont à bande large (séismes).

La grande diversité des sources infrasonores offre aux domaines académique et industriel une large gamme d'investigations. Tableau 1.1: Principales sources infrasonores et leur caractéristiques [START_REF] Campus | Worldwide observations of infrasonic waves[END_REF].

Motivations

On peut regrouper l'utilisation des infrasons dans deux types d'applications : civil et gouvernemental. Parmi les applications civiles, les infrasons sont employés pour la surveillance à distance des volcans [START_REF] Johnson | Volcano infrasound : A review[END_REF] et notamment la caractérisation du type d'éruption. Lorsqu'un avion traverse un nuage de cendre volcanique, ces poussières peuvent provoquer un arrêt des réacteurs. Les infrasons peuvent ainsi être utilisés dans le cadre d'un système d'alerte pour l'aviation civile dans une région volcanique dense. L'avalanche, par le biais de mouvement d'une masse importante de neige, génèrent des infrasons à partir desquels il est possible d'extraire des caractéristiques comme la vitesse [START_REF] Havens | Calculating the velocity of a fast-moving snow avalanche using an infrasound array[END_REF] ou l'énergie [START_REF] Bedard | Detection of avalanches using atmospheric infrasound[END_REF]. Les infrasons peuvent permettre d'alimenter une base de données contenant la date et le lieu des avalanches dans le but de réaliser des statistiques et potentiellement des modèles de prédictions.

La principale application des infrasons reste cependant gouvernementale. Le Traité d'Interdiction Complète des Essais nucléaire (TICE) a été signé le 24 Septembre 1996 par 71 pays et prévoit la mise en place d'un Système de Surveillance International (SSI) chargé de veiller au respect des accords. Le SSI repose sur des stations sismiques, hydroacoustiques, radionucléides et microbarométriques reparties dans le monde. L'Organisation du Traité d'Interdiction Complète des Essais nucléaires (OTICE) fait donc appel aux infrasons pour détecter et localiser en tout point du globe d'éventuelles tentatives de dissimulations d'essais nucléaires. Pour faire respecter les accords, un réseau global de stations infrasonores a été mis en place. Il est décrit plus en détails dans la section suivante §1.2.

La compréhension des infrasons est essentielle pour les applications décrites dans cette section. La recherche dans ce domaine se repartit autour de trois principaux axes.

-Le développement de capteurs microbarométriques permettant la mesure de fluctuations de pression atmosphérique issues des infrasons.

-La modélisation de la propagation des ondes infrasonores dans l'atmosphère.

-Enfin, il existe une volonté d'améliorer les méthodes existantes de traitements du signal et développer de nouvelles. L'objectif de cette thèse s'inscrit dans ce dernier axe.

Au vu de la diversité dans les signaux et des applications infrasonores, il est évident que le domaine requiert l'utilisation de traitements adaptés. Le traitement du signal pour les infrasons est principalement centré sur le traitement d'antennes déjà couramment utilisé dans d'autres domaines comme la sismologie ou les radars. Le traitement du signal offre aux analystes des informations essentielles pour l'identification des sources en permettant notamment d'obtenir une estimation de la région géographique où se situe un évènement. De plus, il émerge une forte volonté de faire appel à la théorie statistique pour quantifier la capacité des réseaux microbarométriques à détecter les ondes infrasonores.

Cette thèse est centrée sur l'amélioration et le développement d'outils de traitement statistique du signal pour l'estimation et la détection d'infrasons. Nous proposons ainsi dans le premier chapitre d'aborder l'état de l'art de la détection appliquée aux infrasons. Les algorithmes de détection sont décrits dans une optique de traitement automatique qui nécessite notamment le choix d'un seuil de détection adéquat. En revanche, de façon surprenante, il semble que le calcul de la p-valeur, ou, de façon équivalente, de l'erreur de première espèce de la statistique de Fisher maximisée n'ait pas été étudié de façon satisfaisante dans la littérature. Bien sûr, la statistique de Fisher a sous les hypothèses habituelles une loi connue (à échantillon fini sous hypothèse gaussienne) mais l'effet de maximisation semble négligé par la plupart des auteurs alors qu'il introduit une modification fondamentale du comportement de la statistique en induisant une transformation vers des grandeurs plus grandes. Si la maximisation avait lieu sur un ensemble de statistiques indépendantes, cette transformation serait aisée à déterminer. Mais la situation est bien plus complexe et nous apportons une solution asymptotique à ce problème en calculant de façon précise les corrélations entre les statistiques de Fisher calculées à des vecteurs lenteur donnés. Cette approche est détaillée dans ce chapitre. Actuellement, le seuil de détection est définie à partir de l'expérience acquise par les analystes. Alternativement on propose le choix du seuil de manière statistique dans le but de contrôler des probabilités comme le taux de fausses alarmes ou le taux de détections manquées.

Une fois l'onde détectée, l'apport d'une estimation de l'angle d'arrivée est crucial pour l'analyse des données. Une formulation rigoureuse des performances et notamment des erreurs et des incertitudes de l'estimation est essentielle. L'amélioration de l'estimation de l'angle d'arrivée de l'onde infrasonores a alors motivé la rédaction des chapitres 2 et 3. Une station est composée d'un ensemble de capteurs microbarométriques positionnés sur le sol et espacés d'une distance de l'ordre du kilomètre. Généralement, les capteurs sont contenus dans un plan horizontal. Cependant il est évident que de légères différences d'altitudes existent entre les capteurs. L'estimation actuelle ignore ces différences d'altitudes. Les chapitres 2 discutent du biais et de la variance de l'estimation de l'angle d'arrivée actuelle. Nous proposons dans le chapitre 3 la formulation d'un nouvel estimateur contenant un a priori dans le but d'améliorer la qualité de l'estimation en termes d'erreur quadratique moyenne. Des simulations numériques ont permis de confirmer les travaux théoriques réalisés. L'application sur des signaux réels présentée dans cette thèse prouve la faisabilité de notre approche au sein de la chaîne de traitement opérationnelle déjà existante.

Le chapitre 4 décrit les travaux réalisés dans l'optique d'une détection de signaux infrasonores en ligne basée sur l'algorithme du filtre de Kalman et de l'algorithme de détection de changement abrupt CUSUM. Les algorithmes de détection de l'état de l'art souffrent de limitations liées à la segmentation temporelle actuellement palliées par un post-traitement. L'approche en ligne a pour but de regrouper la détection et le post-traitement dans une seuil chaîne de traitement. Le chapitre 4 introduit aussi une modélisation stochastique des signaux infrasonores. Ce chapitre pose également le problème lié à un signal nuisible pouvant dégrader les performances de la détection.

Enfin, le chapitre 5 s'articule autour d'une modélisation plus réaliste du signal reçu par les microbaromètres. La détection actuelle est basée sur une modélisation idéaliste d'un signal parfaitement cohérent traversant un réseau de capteurs. Ce modèle est remis en question. Le modèle dit de perte de cohérence développé par [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] est étudié et approfondi. Le chapitre 5 propose alors l'estimation paramétrique de la cohérence entre les signaux d'une station. Un modèle alternatif de perte de cohérence est aussi dérivé à partir d'une modélisation aléatoire de la propagation de l'onde. Le modèle obtenu peut être vu comme une généralisation du modèle de l'état de l'art. Ce travail est motivé par la génération de signaux synthétiques plus réalistes dans le but d'évaluer les performances des différentes méthodes de détection.

1.2 Le Système International de Surveillance Infrasonore.

Un réseau mondial

La construction du réseau global du Système de Surveillance International Infrasonore (SSI) a été prévue en 1996 lors de la conférence sur le désarmement et sur l'interdiction des essais nucléaire à Genève. Ce réseau se traduit par une distribution uniforme de stations infrasonores autour de la planète figure Fig. 1.1. Les 60 stations finales qui doivent composer le SSI sont disposées dans le but d'optimiser la probabilité de détection d'une onde infrasonore, générée par une explosion nucléaire atmosphérique d'une charge de 1 kT, par au moins deux d'entre elles. Il était originellement prévu que les stations soient composés de 4 capteurs microbarométriques. La configuration à 4 éléments a depuis été modifiée pour inclure des capteurs supplémentaires dans le but de pallier aux problèmes liés au recouvrement spatial et de perte de cohérence (voir §1.2.2). Les stations sont positionnées dans une grande variété d'environnements parfois extrêmes comme en Antarctique ou sur des îles au milieu de l'océan Pacifique. Les stations sont généralement placées dans des forêts pour minimiser naturellement le bruit généré par le vent. Le vent étant la principale source de bruit. Le niveau de bruit est partiellement réduit par des systèmes de filtrage acoustique physique tels que présentés dans les études [START_REF] Alcoverro | Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance[END_REF]; [START_REF] Walker | Monitoring the earth's atmosphere with the global ims infrasound network[END_REF]. 

Considérations géométriques des stations

La conception de l'ensemble des stations du réseau SSI répond aux contraintes imposées par la physique et par le traité d'interdiction des essais. Le traité stipule notamment que le réseau global doit être capable de détecter en tout point sur la planète une explosion nucléaire atmosphérique avec une énergie d'environ 1 kT. Cette contrainte impose notamment une distance minimale entre les capteurs de manière à ce que le bruit généré par le vent soit incohérent entre les capteurs. En effet lorsque deux microbaromètres se retrouvent trop proches les ondes sonores issues de la perturbation sont cohérentes. De plus la disposition des capteurs doit aussi offrir une bonne résolution azimutale ce qui impose aussi un éloignement suffisant entre eux Fig. 1.2. Cette résolution est quantifiable par l'analyse de la réponse du beamforming [START_REF] Viberg | Chapter 11 -introduction to array processing[END_REF]. Elle permet d'obtenir visuellement la précision de l'estimation de l'angle d'arrivée qu'offre une station, mais aussi de mettre en avant de possibles repliements spatiaux. Un repliement spatial désigne une ambiguïté sur la détermination de l'angle d'arrivée.

La figure Fig. 1.3 est la réponse de la station fictive à 5 capteurs pour des ondes monochromatiques à {0.1, 0.5, 1, 2} Hz supposées arriver avec un azimut de 180 • , une élévation de 45 • et une vitesse de 0.34 m/s. La largeur du lobe central centré autour du vrai angle d'ar-rivée illustre la précision du réseau. Les lobes secondaires sont des ambiguïtés, chacun de ces lobes est susceptible de concentrer plus d'énergie que le lobe principal conduisant à une erreur dans l'estimation de l'angle d'arrivée. Le signal sera alors détecté pour de multiples azimuts et élévations. Pour une configuration de capteurs donnée, le repliement spatial s'aggrave lorsque la fréquence du signal augmente. Inversement le lobe central s'élargit, réduisant la précision, lorsque la fréquence du signal diminue. On remarque que la fréquence minimale qui peut être résolue par la station est fixée par son diamètre aussi appelé ouverture. Idéalement le lobe principal devrait être une fonction de Dirac, et la réponse de la station ne devrait pas contenir de lobes secondaires. Le problème de repliement spatial est généralement résolu par l'augmentation du nombre de capteurs. En effet, Fig. 1.4 représente la réponse d'une station fictive à 9 capteurs dont les repliements spatiaux ont été réduits par l'incorporation de nouveaux capteurs. Ainsi le nombre de capteurs et les distances inter-capteurs contrôlent la quantité de repliement spatial.

Il n'est cependant pas toujours possible d'installer la station avec la configuration idéale. Le budget limite d'abord le nombre de capteurs disponibles. Le terrain disponible, la topographie et la physique de l'onde sont aussi des facteurs qui influencent la configuration d'une station. La conception des stations se retrouve alors soumise aux deux autres contraintes. Une contrainte pratique impose aux différents capteurs d'être positionnés sur le sol conduisant généralement à la création d'une station dont les capteurs sont compris dans un plan horizontal. Cependant la topographie ne permet pas toujours d'obtenir une station parfaitement plane. Les méthodes de traitement d'antenne actuellement utilisées pour la détection et l'estimation de l'angle d'arrivée d'une onde infrasonore ignorent les différences d'altitudes qui peuvent exister entre les capteurs. C'est la motivation pour l'étude reportée aux chapitres 2 et 3 traitant de l'impact de l'approximation ignorant l'altitude des capteurs et de la solution proposée pour la prise en compte de l'altitude.

Une seconde contrainte impose aux capteurs d'être suffisamment proches pour que les signaux d'une onde d'intérêt traversant la station soient cohérents entre les différents capteurs. De nombreuses études, on montré qu'il existe un phénomène de perte de cohérence fonction de la fréquence et de la distance. Les traitements liés à la détection reposent sur la cohérence du signal d'intérêt entre les différents enregistrements. Ainsi si des capteurs sont trop éloignés un signal infrason ne se retrouvera pas suffisamment similaire entre les enregistrements ce qui impactera les performances de la détection. C'est la raison pour laquelle la distance inter-capteur n'excède généralement pas 2 km [START_REF] Blandford | Design of infrasonic arrays[END_REF]. Ce phénomène de perte de cohérence a motivé le chapitre 5. Sous ces contraintes, la géométrie recommandée par l'OTICE consiste en un petit réseau triangulaire avec un capteur central et un réseau secondaire de plus grande ouverture. Les capteurs proches permettent de réduire le repliement spectral, tandis que les capteurs éloignés améliorent la résolution azimutale. Fig. 1.6 illustre pour 4 fréquences la réponse de la station à 10 éléments IS37 en Norvège (dont la géométrie est donnée par la figure Fig. 1.5). q q q q q -1000 -500 0 500 1000 -1000 -500 0 500 1000
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En remplaçant c dans l'équation précédente, on obtient la valeur du nombre d'onde k = 2π/λ. La propagation d'une onde est souvent représentée en fonction du vecteur lenteur, indépendant de la fréquence, p = k/ω, u(r, t) = ae iω(t-r p) .

Le vecteur lenteur p est le vecteur perpendiculaire au front d'onde dont la norme est l'inverse de la vitesse de propagation c. Il est pratique de définir le vecteur lenteur dans le plan sphérique et de relier ses coordonnées dans le plan cartésien aux paramètres d'intérêt de l'angle d'arrivée,

p = c -1       -sin a sin i -cos a sin i cos i      
où a est le back-azimut (i.e l'angle calculé depuis la station et regardant la source dans le sens horaire par rapport au nord), i l'incidence (i.e l'angle par rapport à la verticale).

Approximation champ-lointain : Pour des sources dites en champ-lointain, la distance de propagation de l'onde traversant le réseau de capteurs est considérée très grande devant l'ouverture du réseau. Formellement on considère qu'une source est en champ-lointain si D > 2d 2 /λ, avec D la distance source-réseau, d l'ouverture du réseau et λ la longueur d'onde. Pour les infrasons, l'approximation champ-lointain devient valide pour une source dont la distance D est supérieure à 100 km. Dans ce cas, les paramètres de l'angle d'arrivée a et i sont approximativement les mêmes pour tous les capteurs et on dit que l'onde se propage selon le modèle d'onde plane.

Comme décrit dans le sous-section §1.2.2 les capteurs d'une station sont généralement positionnés dans un plan horizontal. Dans cette situation il devient difficile d'estimer les trois composantes du vecteur lenteur avec précision. En ignorant les différences d'altitudes entre les capteurs, l'estimation du vecteur lenteur se réduit à l'estimation de son projeté sur le plan horizontal en 2 dimensions. Dans ce cas le vecteur lenteur se caractérise par deux paramètres d'intérêt, le back-azimut et la vitesse horizontale v h = c/ sin i,

p 2D = -v -1 h   sin a cos a  
Les chapitres 2 et 3 discutent de l'impact de cette approximation.

Modèle signal

On considère une station formée de capteurs localisés en r m , m = {1, . . . , M } recevant un signal généré par une source infrasonore. Sous l'hypothèse de propagation selon le modèle d'onde plane, le capteur m reçoit le signal suivant Le déroulement d'un test d'hypothèse nécessite, dans un premier temps, de déterminer deux hypothèses. L'hypothèse nulle, traditionnellement appelée H 0 , suppose que les observations sont le résultat de l'aléatoire (chance). Dans notre cas, il s'agit de l'enregistrement par les capteurs de bruit uniquement. A l'inverse l'hypothèse alternative, H 1 , suppose que les observations sont influencées par un effet extérieur. En infrason, cet effet est l'enregistrement d'un signal cohérent traversant le réseau de capteur.

x m (t) = a m s(t -υ m ) + n m (t) , (1.3) avec x m (t)
Le test d'hypothèse est alors la démarche qui vise à savoir, pour un niveau de confiance donné, si l'on doit rejeter ou non l'hypothèse H 0 . Ne pas rejeter l'hypothèse H 0 ne signifie pas que H 0 est vérifiée, mais qu'aucune preuve statistiquement significative ne permet d'affirmer qu'un signal cohérent a influencé les observations. Plus formellement, les hypothèses pour la détection d'un unique signal d'intérêt pour le modèle (1.1) peuvent s'écrire de la manière suivante,

   H 0 : a m = 0 , ∀m ∈ {1, . . . , M } H 1 : a m > 0 , ∀m ∈ {1, . . . , M } (1.5)
où M est le nombre de capteurs d'un réseau, et a m est l'amplitude du signal d'intérêt (1.4). On cherche donc bien à rejeter ou non l'absence de signal d'intérêt.

Lorsque les hypothèses H 0 et H 1 sont définies, il est nécessaire de choisir une ou plusieurs statistiques de test adéquates qui permettent de discriminer les deux hypothèses. Différentes statistiques de test propres aux hypothèses (1.5) sont présentées dans les soussections suivantes §1.3.2.1, §1.3.2.2, §1.3.3.1, §1.3.3.2, §1.3.3.3) Lorsque l'on veut dresser une décision concernant le rejet ou non de l'hypothèse H 0 , il suffit de calculer la valeur de la statistique de test propre aux observations disponibles. Il est alors possible de calculer la p-valeur qui est la plus petite valeur du risque de première espèce (α) pour laquelle on rejette le test [Wasserman, 2004, pp.156]. Alternativement, on peut fixer un seuil à partir duquel l'hypothèse H 0 sera rejetée. Ce seuil est choisi en fonction de la probabilité de première espèce α ou de la probabilité de deuxième espèce β souhaitée (Fig. 1.7). En effet, le choix du seuil doit être basé sur les relatives conséquences des deux types d'erreurs.

La méthodologie d'un test statistique peut se résumer en 6 étapes.

(1) Définir l'hypothèse nulle H 0 , et l'hypothèse alternative H 1 .

(2) Définir une statistique de test pour contrôler H 0 .

(3) Définir la distribution de la statistique de test sous l'hypothèse H 0 , et éventuellement la distribution de la statistique de test sous l'hypothèse H 1 .

(4) Choisir un seuil ou un niveau de signification.

(5) A partir des observations, calculer la valeur de la statistique de test ou calculer la p-valeur.

(6) Prendre une décision en comparant la valeur de la statistique au seuil, ou en comparant la p-valeur au niveau de signification souhaité.

H [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF] a été développé au CEA pour l'analyse en temps réel de signaux sismiques et infrasonores enregistrés par un réseau de capteurs. La détection utilisée par PMCC se base sur les différences de temps d'arrivée. On rappelle que dans le cas idéal d'un signal non bruité traversant un réseau de capteurs, la différence de temps d'arrivée du signal entre le capteur m et s'écrit,

τ m, = τ m -τ = (r m -r ) pf s .
(1.6)

Il est alors facile de montrer que, x m,n+τ x ,n , où N est la taille de la fenêtre d'analyse. La formule de fermeture (1.7) appliquée aux estimées, τm, avec (m, ) ∈ C, donne une valeur "proche" de zéro lorsqu'un signal traverse le réseau. A l'inverse lorsque le réseau n'enregistre que du bruit, les différences de temps d'arrivée estimées sont aléatoires et la relation de fermeture (1.7) appliquée à τm, sera "éloignée" de zéro avec grande probabilité.

En pratique, PMCC ne considère la fermeture que pour un sous-ensemble formant un triangle. La statistique de détection s'écrit alors, pour un sous-ensemble de capteurs d'indices A ⊂ {1, . . . , M } de cardinal supérieur ou égal à 3,

c A = - T ⊂A   (m, )∈T τm,   2 ,
(1.8) où T parcourt l'ensemble des triangles définis par les sommets pris dans A.

La statistique de test (1.8), nommée consistance, évalue donc l'adéquation des différences de temps d'arrivée avec le modèle d'onde plane pour des sous-ensembles de capteurs formant un triangle. Le signe négatif permet d'obtenir une statistique de test ayant une valeur plus faible sous H 0 que sous H 1 .

Pour des raisons de temps de calcul, l'algorithme PMCC propose une intégration progressive des capteurs. PMCC calcule une valeur initiale de la consistance pour un sousréseau de 3 capteurs rapprochés. Cette valeur est ensuite comparée à la valeur de la consistance après intégration d'un nouveau capteur formant alors un sous-réseau de cardinal supérieur. Si cette valeur est supérieure à la valeur initiale, PMCC considère que le capteur nouvellement intégré améliore la détection. L'intégration de nouveaux capteurs est réalisée itérativement jusqu'à ce que la consistance cesse d'augmenter. Dans ce cas, la distribution sous H 0 de (1.8) est difficilement évaluable puisqu'elle dépend du choix de l'ensemble A initial et de son cardinal final.

MCCM : Mean of Cross-Correlation Maxima

La statistique de test MCCM est construite à partir des valeurs des maxima d'intercorrélations normalisées. L'inter-corrélation normalisée pour les signaux enregistrés aux capteurs m et est définie par,

ρ m, (τ ) = N n=1 x 2 m,n N n=1 x 2 ,n -1/2 N n=-N x m,n+τ x ,n .
La maximisation de ρ m, (τ ) permet d'obtenir le maximum de l'inter-corrélation normalisée,

ρ * m, = max -τmax≤τ ≤τmax ρ m, (τ ) .
(1.9) D'après l'inégalité de Cauchy-Schwarz, le maximum de l'inter-corrélation normalisée vérifie -1 ≤ ρ * m, ≤ 1. Une valeur de 1 pour |ρ * m, | implique que les signaux x m,n et x ,n sont identiques à une constante multiplicative et à un retard près. Inversement lorsque les signaux sont indépendants le maximum de l' inter-corrélation normalisée est égal à 0, il n'existe aucune corrélation entre les signaux. Sous l'hypothèse nulle, en présence de bruit seul, |ρ * m, | a donc une valeur faible. Une valeur importante de ρ * m, indique qu'un signal cohérent traverse le réseau de capteurs. On remarque que (1.9) maximise l'intercorrélation pour un retard borné |τ | ≤ τ max . La borne τ max correspond le retard maximum qui peut exister entre deux signaux enregistrés au sein de la station. Il s'agit du temps nécessaire à une onde sonore pour parcourir la distance séparant les capteurs les plus éloignés τ max = f s c -1 max i,j | r ir j | , ∀m ∈ {1, . . . , M } où r i est la position du capteur i, c la vitesse du son.

La statistique de test MCCM recherche des évidences de corrélation pour l'ensemble des couples de capteurs. Le MCCM calcule la valeur moyenne de l'ensemble des maxima de l'inter-corrélation des couples de capteurs, ainsi pour un réseau à M capteurs le MCCM est définie par

M CCM = 2 M (M -1) (m, )∈C ρ * m, , (1.10) 
où C est l'ensemble des M (M -1)/2 couples de capteurs possibles. Sous l'hypothèse qu'un des signaux x m,n et x ,n est un bruit blanc indépendants, on a asymptotiquement pour N/τ → ∞, on a N ρ * m, (τ ) distribuée selon la loi gaussienne centrée de variance 1 [Shumway and Stoffer, 2006, pp.30]. q q q qqqq q q q qq q q qq q q q q q q q qq q q qq q qq q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qqqq qq q q q q q q q qqq q qq q q q q 0.2 [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF]. La statistique de test MCCM est appliquée à ce signal pour illustrer son comportement en présence de signal cohérent. L'évolution des valeurs du MCCM au cours du temps est donnée en figure Fig. 1.9. La statistique de test est évaluée en appliquant un fenêtrage glissant de 512 échantillons avec un recouvrement de 50% sur les signaux préalablement blanchis [START_REF] Izquierdo | Signal-to-noise ratio enhancement based on the whitening transformation of colored structural noise[END_REF].

Détecteurs basés sur le beamforming

F-detecteur en temps

La statistique de test F-stat permet la détection d'une onde plane d'amplitude inconnue traversant un réseau de capteur en présence de bruit additif de variance inconnue [START_REF] Melton | Multiple signal correlators[END_REF]. La statistique F-stat suppose que le vecteur lenteur est connu, et sous l'hypothèse gaussienne du bruit additif, et sous l'hypothèse nulle, la F-stat est distribuée suivant une loi de Fisher [START_REF] Shumway | On detecting a signal in n stationarily correlated noise series[END_REF]. Or en géophysique, le vecteur lenteur est généralement inconnu et il faut construire une nouvelle statistique de test appelée F-detecteur et définie comme le maximum des F-stat sur l'ensemble des vecteurs lenteur possibles. Cette section décrit alors la statistique de test F-detecteur, largement utilisée en géophysique [START_REF] Arrowsmith | The f-detector revisited : An improved strategy for signal detection at seismic and infrasound arrays[END_REF]; [START_REF] Blandford | An automatic event detector at the tonto forest seismic observatory[END_REF]; [START_REF] Evers | The detectability of infrasound in the netherlands from the italian volcano mt. etna[END_REF], et sa distribution sous H 0 qui n'est pas une distribution de Fisher à cause de la maximisation.

Notations et hypothèses

On rappelle ici les notations pour une onde se propageant, selon le modèle d'onde plane, à travers un réseau de M capteurs. Le vecteur lenteur orthogonal au front d'onde p est directement relié au back-azimut a, l'incidence i, et la vitesse du son c (voir §1.3.1.1). Le signal d'intérêt reçu par le capteur m de position r m a un retard de r m p secondes. Pour un signal échantillonné, ce retard s'exprime en échantillons τ m = r m pf s avec f s la fréquence d'échantillonnage. De plus on note, le vecteur de retards τ = τ 1 , . . . , τ M , et

x n (τ ) = x 1,n-τ 1 , . . . , x M,n-τ M le vecteur obtenu après décalage des M composantes de x n par τ m .
Dans ce cas les hypothèses 1.5 se reformulent de la manière suivante, (1.11) avec 1 M le vecteur M colonnes de 1, (s n ) 1≤n≤N le signal d'intérêt déterministe et inconnu, et le bruit (n n ) 1≤n≤N i.i.d gaussien de covariance σ 2 I M . En pratique on teste la présence d'un signal d'intérêt pour une fenêtre de durée limitée à N échantillons. Cette fenêtre est ensuite successivement décalée avec un recouvrement de 50% le long du signal.

   H 0 : x n (τ ) = n n , H 1 : x n (τ ) = 1 M s n + n n ,
La statistique de test F-stat pour un ensemble fini de retards Lorsque le vecteur lenteur d'un front onde est inconnu, il est nécessaire d'évaluer la statistique F-stat en retardant le signal selon un ensemble possible et fini de vecteurs lenteur. Pour un ensemble de vecteurs lenteurs de taille Q, on obtient un ensemble fini, noté Q ∈ Z M , de vecteurs de retards de taille Q également. L'ensemble Q ne dépend pas de la taille N de la fenêtre d'analyse. En effet, pour N suffisamment grand, l'ensemble des retards ne depend pas de la taille de la fenêtre. En particulier, les retards possibles sont bornés

|τ m | ≤ f s c -1 max i,j | r i -r j | , ∀m ∈ {1, . . . , M }.
Ainsi, la statistique nommée F-detecteur maximise Q F-stat, notée f N (τ ), sur un ensemble possible de vecteurs de retards,

f * N = max τ ∈Q f N (τ ) .
(1.12)

La statistique (1.12) permet alors la détection d'un signal d'intérêt dont l'angle d'arrivée et par conséquent le vecteur lenteur sont inconnus. On montre dans la sous-section §1.4.0.2 que la statistique F-detecteur est équivalente au rapport de vraisemblance généralisée et hérite donc de ses bonnes performances sous des conditions générales [START_REF] Zeitouni | When is the generalized likelihood ratio test optimal ?[END_REF].

Le choix de l'ensemble Q est motivé par la physique du vecteur lenteur. Dans le cas d'une station plane, on a vu que le vecteur lenteur peut être défini par le biais de deux paramètres d'intérêt : le back-azimut et la vitesse horizontale. La grille de vecteurs lenteur parcourue pendant l'évaluation du F-detecteur (1.12) peut se résumer à une recherche du couple back-azimut, vitesse horizontale maximisant le F-stat. Il est naturel de choisir de sélectionner linéairement les back-azimuts entre 0 La suite de cette section s'attarde sur la formulation de la statistique F-stat et sur sa distribution sous l'hypothèse H 0 . On pose les vecteurs u N = u N (τ )

τ ∈Q et v n = v n (τ ) τ ∈Q avec, u N (τ ) = 1 N N n=1 v 2 n (τ ) , v n (τ ) = 1 √ M M m=1 x m,n (τ m ) , où x m,n (τ m ) =
x m,n-τm est l'échantillon à l'instant nτ m enregistré par le capteur m. Sous H 0 et pour un vecteur de retard fixe, on a v n (τ ) ∼ N (0, σ 2 ). De plus, comme la somme des carrés de n ∈ N variables aléatoires gaussiennes centrées réduites et indépendante suit la loi du χ 2 à n degrés de liberté, on en déduit que σ -2 N u N (τ ) est distribué selon la loi du χ 2 à N degrés de liberté. La quantité u N (τ ) mesure la variation global du signal pour un vecteur lenteur donné (signal d'intérêt et bruit).

La statistique F-stat est normalisée par,

w N (τ ) = 1 N N n=1 M m=1 x m,n (τ m ) 2 -u N (τ ) , = 1 N N n=1 M m=1 x m,n (τ m ) - 1 M M m=1 x m,n (τ m ) 2 .
On note la concaténation des w N (τ ) par le vecteur

w N = w N (τ ) τ ∈Q
. En conséquence du théorème de Cochran, sous H 0 , on a σ -2 N w N (τ ) distribué selon la loi du χ 2 à N (M -1) degrés de liberté. On remarque que w N (τ ) mesure la puissance du bruit pour un vecteur lenteur donné. La statistique F-stat est définie par le rapport des deux variables u N (τ ) et w N (τ ) ; et peut-être vu comme le ratio de la variance induite par le signal d'intérêt et le bruit et de la variance induite par le bruit uniquement,

f N (τ ) = u N (τ )/N w N (τ )/(N (M -1)) , = (M -1)u N (τ ) w N (τ ) . (1.13)
Comme pour chaque τ les variables u N (τ ) et w N (τ ) sont indépendantes et distribuées selon des lois du χ 2 , la statistique F-stat est alors distribuée selon la loi de Fisher à (N, N (M -1)) degrés de liberté.

On discute maintenant les principaux avantages de la statistique (1.13) qui d'abord, comme on l'a montré, possède une distribution sous l'hypothèse nulle bien connue. De plus, cette distribution sous H 0 est indépendante de la variance du bruit ce qui permet de fixer un seuil pour un niveau de fausses alarmes indépendant des conditions de bruits.

La distribution sous H 1 est elle aussi connue. Dans l'hypothèse d'un signal d'intérêt, bruité et de vecteur lenteur connu, traversant le réseau de capteurs la statistique (1.13) suit alors une loi de Fisher non centrée de paramètres λ = N M ρ et de degrés de liberté (N, N (M -1)) où ρ dénote le rapport signal à bruit [START_REF] Heyburn | The relative amplitude method : exploiting f-statistics from array seismograms[END_REF].

Ces résultats sont illustrés par la figure Fig. 1.10 qui confronte les distributions théoriques à des simulations numériques. Des signaux sous H 0 et H 1 sont simulés à partir du modèle (1.11). Sous H 0 , 256 échantillons de bruit n n sont simulés suivant une loi gaussienne de moyenne nulle et de covariance I 4 . Sous H 1 , on additionne au bruit n n 256 échantillons correspondant au signal d'intérêt simulé suivant une loi gaussienne de moyenne nulle et de variance 0.12. Sous H 1 le rapport signal à bruit ρ est alors égal à 0.12. Le vecteurs de retards τ est supposé connu et donc seuls les F-stat sous H 0 et H 1 , correspondant à ce vecteur de retards sont calculés. Les simulations sont répétées 2000 fois pour déduire les histogrammes des F-stat sous H 0 et H 1 . Les lignes continues correspondent aux distributions théoriques. Sous H 1 , le rapport signal à bruit ρ est pris égal à 0.12. La ligne vertical noire correspond au seuil de fausse alarme fixé à 1%.

Même si la distribution sous H 0 de (1.13) est accessible, on ne peut pas en déduire facilement la distribution sous H 0 de la statistique F-detecteur (1.12). En effet, la dépendance de deux F-stat pour des vecteurs de retards distincts (f N (τ ) et f N (τ )) n'est pas triviale et est traitée dans le paragraphe suivant.

Loi asymptotique du F-detecteur sous H 0 On note la concaténation de l'ensemble des F-stat par le vecteur

f N = f N (τ ) τ ∈Q . Théorème 1. Sous H 0 , lorsque N → ∞, on a le théorème de la limite centrale suivant, √ N (f N -1 Q ) → d N (0, Γ) où, pour tout τ , τ ∈ Q Γ τ ,τ = 4 (M -1) 2 1≤m<m ≤M 1 {τm-τ m =τ m -τ m } . (1.14) où N -1 Γ τ ,τ dénote la covariance des F-stat f N (τ ) et f N (τ ), et 1 {•=•} est la fonction indicatrice, 1 {a=b} =    1 si a = b 0 sinon
La preuve du théorème 1 est reportée en sous-section §1.4.0.1. La théorème 1 se base sur l'approximation gaussienne de la loi de Fisher. En effet bien que la distribution de Fisher soit asymétrique elle devient symétrique lorsque les degrés de liberté augmentent. La matrice Γ n'est pas diagonale ce qui implique qu'il existe des corrélations entre les F-stat calculées pour deux vecteurs lenteur distincts. Cette corrélation est causée par l'échantillonnage du signal qui impose de retarder les signaux par un nombre entier d'échantillons. Elle est aussi due à la qualité du filtrage spatial, il existe des couples de vecteurs lenteur pour lesquels des couples de capteurs ont les mêmes différences de retards.

On remarque que les valeurs de la diagonale de la matrice Γ sont égales à 2M/(M -1). Lorsque N → ∞, le théorème 1 implique que pour chaque τ on a,

√ N (f N (τ ) -1) → d N (0, 2M/(M -1)) .
(1.15)

Le résultat (1.15) est en adéquation avec la vraie distribution sous H 0 des F-stat. En effet, pour des degrés de liberté (ν 1 , ν 2 ) la loi de Fisher a les propriétés suivantes [Kay, 1998, pp.28] :

-la moyenne est égale à m F = ν 2 /(ν 2 -2) pour ν 2 > 2 -la variance est égale à σ 2 F = 2ν 2 2 (ν 1 +ν 2 -2) ν 1 (ν 2 -2) 2 (ν 2 -4) . Lorsque les degrés de liberté deviennent grands, m F → 1 et σ 2 F → 2(ν 1 + ν 2 )/(ν 1 ν 2 ).
Ainsi, sous H 0 , (1.15) est cohérent avec le fait que f N (τ ) soit distribuée selon la loi de Fisher à (N, N (M -1)) degrés de liberté.

La distribution asymptotique, sous H 0 , du F-detecteur f * N est celle du maximum de Q variables gaussiennes dépendantes. Cette distribution n'est pas connue analytiquement, mais le résultat (1.14) permet de l'estimer à l'aide de simulations.

On se propose de comparer l'expression de la matrice de covariance Γ (1.14) à celle obtenue par la méthode de Monte-Carlo sur des données synthétiques. Q = 50 vecteurs de retards sont calculés à partir de la station IS31 (table 1.3), en sélectionnant des azimuts linéairement répartis entre 0 et 2π radians, une vitesse du son c = 340 m/s, et une élévation nulle. Pour chacun des 50 vecteurs de retards, 1000 F-stat sont ensuite évaluées par le biais de l'équation (1.13) afin d'obtenir empiriquement la matrice de covariance Γ. La figure Fig. 1.11 compare la matrice de corrélation théorique avec celle obtenue par la méthode de Monte-Carlo. On observe deux symétries, la première s'expliquant par définition puisque Γ = Γ en tant que matrice de covariance. La symétrie de translation Γ τ q+Q/2 ,τ q +Q/2 = Γ τq,τ q le long de la diagonale s'explique par la grille de vecteurs lenteur choisie. Cette grille n'est définie que par un ensemble d'azimuts a = a 1 , . . . , a Q de 0 à 2π avec un pas constant.

Dans ce cas, en notant R = r 1 , . . . , r M , on a pour une station plane (en négligeant l'effet de la partie entière et en supposant l'incidence nulle)

τ q = -c -1 f s R   sin a q cos a q   , τ q+Q/2 = c -1 f s R   sin(a q + π) cos(a q + π)   = -τ q ,
Il suffit ensuite de remarquer que Γ τ ,τ = Γ -τ ,-τ . 

X et F Y (Y ≤ x) la fonction de répartition de Y = max{X 1 , . . . , X Q } on a, F Y (x) = P(X 1 ≤ x, . . . , X Q ≤ x) = Π Q i=1 P(X ≤ x) , = F X (x) Q . (1.16) La densité f Y (x) = QF X (x) Q-1 f X (x) du maximum de Q variables i.i.d selon la loi f X (x) s'obtient en dérivant (1.16).
Les densités obtenues par les trois méthodes sont représentées en figure Fig. 1.12, la Méthode.1 donne la courbe rouge, la Méthode.2 la courbe bleue, et la Méthode.3 la courbe verte. On rappelle que la Méthode.1 est la plus coûteuse en calcul et est utilisée comme référence. L'influence de la taille de la fenêtre d'analyse N et du nombre de F-stat maximisées Q sur la qualité des estimations de la densité par la Méthode.2 et la Méthode.3 est étudiée. Pour une taille de fenêtre faible N = 128 points, on observe la limitation de l'approximation de la distribution de Fisher par une gaussienne. La distribution de Fisher est asymétrique, et comme la maximisation fait intervenir les observations de la queue de la distribution il est normal que l'approximation gaussienne soit responsable d'une erreur. Cette erreur diminue cependant lorsque les degrés de liberté de la distribution augmentent réduisant le coefficient de dissymétrie. En effet lorsque N devient grand (N = 2048), l'approximation gaussienne devient raisonnable et l'estimation de la densité par la Méthode.2 réduit son biais par rapport à l'estimation de référence. 

F-detecteur en fréquence

La sous-section précédente §1.3.3.1 décrit la statistique de test permettant la détection d'une onde plane traversant un réseau à partir des enregistrements des capteurs dans le domaine temporel. La formulation dans le domaine fréquentiel du F-detecteur est l'objet de cette sous-section.

On rappelle la définition de la transformée de Fourier discrète pour un signal reçu par le capteur m,

x m,k = N -1/2 N n=1
x m,n e -2iπkn/N , pour 0 < k < N On note x k = x 1,k , . . . , x M,k le vecteur colonne de dimension M contenant les transformées de Fourier discrètes à la fréquence k de chacun des M capteurs.

Les hypothèses pour la détection d'une onde plane traversant une station dans le domaine fréquentiel s'écrivent alors,

   H 0 : x k = b k , H 1 : x k = A k (τ )s k + b k , (1.17) avec b k ∼ CN (0, I M γ k ), et A(τ ) = A 1 (τ ) . . . A N (τ ) la matrice de dimension M × N contenant la transformée de Fourier des retards soit A k (τ ) = e -2jπτ 1 k/N . . . e -2jπτ M k/N
Sous H 0 , la transformée de Fourier discrète x k , est asymptotiquement (pour N large) distribuée selon la loi normale complexe de moyenne nulle et de covariance I M γ k . De plus, pour k = k on a x k indépendant de x k [Shumway and Stoffer, 2006, pp.214-215]. [START_REF] Shumway | On detecting a signal in n stationarily correlated noise series[END_REF] a montré que le rapport de vraisemblance est une fonction monotone du rapport de la puissance globale du signal et de la puissance de l'erreur x k -A k ŝk (τ ). On note ŝk (τ ) l'estimateur du maximum de vraisemblance du signal d'intérêt pour le modèle linéaire sous H 1 (1.17),

ŝk (τ ) = A k (τ ) H A k (τ ) -1 A k (τ ) H x k , = M -1 A k (τ ) H x k
La statistique de Fisher dans le domaine fréquentiel prend la forme suivante,

f k (τ ) = x H k x k (x k -A k (τ )ŝ k (τ )) H (x k -A k (τ )ŝ k (τ )) × 2(M -1) 2 , = x H k x k x H k x k -M -1 x H k A k (τ )A k (τ ) H x k × 2(M -1) 2 (1.18) Sous H 0 le numérateur 2γ -1 k x H k x k et le dénominateur 2γ -1 k (x k -A k (τ )ŝ k (τ )) H (x k - A k (τ )ŝ k (τ )
) sont distribués selon des lois du χ 2 à respectivement 2 et 2(M -1) degrés de liberté. Ainsi (1.18) suit une loi de Fisher à (2, 2(M -1)) degrés de liberté. Sous H 1 , (1.18) est distribué selon la loi de Fisher non centrée à (2, 2(M -1)) degrés de liberté et de paramètre de décentralisation λ,

λ = M s H k s k γ k /2 .
On note par la suite l'estimateur de la puissance du bruit plus signal d'intérêt

P s+b k = x H k x k , et de la puissance du signal d'intérêt par P s k = M -1 x H k A k (τ )A k (τ ) H x k .
Les périodogrammes P s k et P s+b k ne sont pas des estimateurs consistants [START_REF] Stoica | Spectral Analysis of Signals[END_REF] il est donc nécessaire de leur appliquer un lissage à l'aide d'une fenêtre glissante.

Dans le cas d'une fenêtre de lissage carrée de taille L = 2t + 1, on a deux nouveaux estimateurs pouvant être remplacés dans l'expression (1.18),

P s k = L -1 t l=-t P s k-l , P s+b k = L -1 t l=-t P s+b k-l .
D'après la propriété d'additivité de variables indépendantes du χ 2 Lancaster and Seneta [2005], la statistique de Fisher fréquentielle lissée est alors distribuée selon la loi de Fisher à (2L, 2L(M -1)) degrés de liberté sous H 0 . De plus, puisque la somme de variables indépendantes du χ 2 non centrée est aussi une variable du χ 2 non centrée dont le paramètre de décentralisation est égal à la somme des paramètres de décentralisation des variables sommées. Sous H 1 la statistique lissée est distribuée selon la loi de Fisher à (2L, 2L(M -1)) avec λ = Lλ pour paramètre de décentralisation. En résumé, la statistique de Fisher peut être utilisée pour la détection d'une onde cohérente dans le domaine fréquentielle dont le vecteur de lenteur est connu.

A l'instar du F-detecteur en temps §1.3.3.1, le vecteurs de retards τ est inconnu en pratique, il est alors nécessaire de maximiser la statistique (1.18) sur un ensemble fini Q ∈ Z M de vecteurs de retards possibles. Enfin le F-detecteur fréquentiel s'écrit, [START_REF] Ottersten | Analysis of subspace fitting and ml techniques for parameter estimation from sensor array data[END_REF]. En somme, l'approximation gaussienne du signal d'intérêt et du bruit permet de facilement aborder le maximum de vraisemblance tout en présentant de bonnes performances.

f * k = max τ ∈Q f k (τ ) . ( 1 
Comme précédemment, les différents capteurs reçoivent une copie décalée du signal d'intérêt perturbée par un bruit blanc de variance inconnue σ 2 b . Le bruit et le signal d'intérêt sont supposés indépendants. Sous ces conditions, les hypothèses peuvent s'écrivent de la manière,

   H 0 : x n (τ ) ∼ N (0, I M σ 2 b ) , H 1 : x n (τ ) ∼ N (0, I M σ 2 b + 1 M 1 M σ 2 s ) ,
(1.20) où les notations pour le vecteur colonne 1 M , le vecteur de retards τ et la matrice diagonale I M sont identiques à la sous-section §1.4.0.2. L'espace des paramètres θ 0 , θ 1 respectivement sous l'hypothèse

H 0 et H 1 sont, -θ 0 = (τ , σ 2 b ) ∈ Z M × R + -θ 1 = (τ , σ 2 b , σ 2 s ) ∈ Z M × R + × R + La log vraisemblance des observations X N sous l'hypothèse nulle est, 2L 0 (X N ; τ , σ 2 b ) = -M N log 2π - N n=1 det(I M σ 2 b ) -σ -2 b N n=1 x n (τ )x n (τ ) , (1.21) = -M N log 2π -σ 2 b M N -σ 2 b N n=1
x n (τ )x n (τ ) .

(1.22)

σ 2 b peut-être remplacé par son estimateur du maximum de vraisemblance,

σ2 b = (M N ) -1 N n=1 x t (τ )x t (τ ), on a alors, 2L 0 * (X N ; τ ) = M N (log M N -log 2π -1) -M N log N n=1
x n (τ )x n (τ ) .

(1.23)

En notant, ρ = σ 2 s /σ 2 b , la log vraisemblance sous H 1 s'écrit, 2L 1 (X N ; τ , σ 2 b , ρ) = -M N log 2π - N n=1 log det σ 2 b (I M + 1 M 1 M ρ) -σ -2 b N n=1 x n (τ )(I M + 1 M 1 M ρ) -1 x n (τ ) (1.24)
On a besoin du lemme suivant dont la preuve est donnée par [START_REF] Miller | On the inverse of the sum of matrices[END_REF] pour l'optimisation analytique des paramètres σ 2 b et ρ, Lemme 1. Si les matrices A et (A + B) sont inversibles, et B est de rang 1, alors,

(A + B) -1 = A -1 - 1 1 + g A -1 BA -1 , avec g = Tr (BA -1
).

On peut simplifier (1.24) grâce aux deux formules suivantes.

det σ 2 b (I M + ρ 2 1 M 1 M ) = σ 2M b (1 + M ρ) (1.25)
Et d'après le lemme 1 on a,

(I M + 1 M 1 M ρ) -1 = I M - ρ 1 + M ρ 1 M 1 M (1.26) On note T N (τ ) = N n=1 x n (τ )1 M 1 M x n (τ ), et S N (τ ) = N n=1 x n (τ )
x n (τ ). De plus, en remplaçant (1.25, 1.26) dans (1.24) on obtient,

2L 1 (X N ; τ , σ 2 b , ρ) = -M N log 2π -M N log σ 2 b -N log(1 + M ρ) -σ -2 b S N (τ ) + σ -2 b ρ 1 + M ρ T N (τ ) . (1.27)
Les paramètres ρ et σ 2 b dans l'expression (1.27) s'éliminent et en les remplaçant par leurs estimateurs du maximum de vraisemblance on a,

ρ = T N (τ ) -S N (τ ) M S N (τ ) -T N (τ ) , σ2 b = M S N (τ ) -T N (τ ) N M (M -1) .
Ainsi (1.27) devient,

2L * 1 (X N ; τ ) = M N (log M N -log 2π -1) -M N log M S N (τ ) -T N (τ ) M -1 -N log (M -1)T N (τ ) M S N (τ ) -T N (τ ) (1.28) -2∆ * (X; τ ) = 2L * 1 (X N ; τ ) -2L * 0 (X N ; τ ) , = M N log (M -1)S N (τ ) M S N (τ ) -T N (τ ) + N log M S N (τ ) -T N (τ ) (M -1)T N (τ ) . (1.29) avec S N (τ ) = Tr (X N (τ ) X N (τ )) , T N (τ ) = 1 M X N (τ ) X N (τ )1 M .
Le principal inconvénient de la statistique (1.29) provient de l'hypothèse forte pour la modélisation du signal. On suppose que le signal d'intérêt est un processus gaussien stationnaire ce qui semble peu réaliste pour des signaux de type impulsif (explosions).

Cependant, la modélisation du signal d'intérêt par une loi gaussienne permet de grandement réduire le nombre de paramètres à estimer lors de la détection. En effet, dans le cas où (s t ) 1≤n≤N est vu comme déterministe (sous-section §1.3.3.1) le nombre de paramètres à estimer croît sans limite lorsque le nombre d'observations augmente ce qui implique qu'ils ne peuvent pas être estimer de manière consistante [START_REF] Van Trees | Detection, estimation, and modulation theory[END_REF]. A l'inverse, grâce à la modélisation gaussienne du signal d'intérêt le nombre de paramètres à estimer est indépendant de N conduisant ainsi à une estimation consistante. De ce fait, la statistique de test donnée par l'expression, sous réserve que la taille des échantillons M N soit suffisamment grande, la statistique de test (1.29) a une distribution sous H 0 indépendante de la puissance du bruit, de la taille de la fenêtre d'analyse et du nombre de capteurs. Plus précisément, (1.29) est asymptotiquement (pour M N large) distribuée, sous H 0 , selon la loi χ 2 avec pour degré de liberté la différence des dimensions de l'espace des paramètres θ 1 et de l'espace des paramètres θ 0 soit 1. Cependant le maximum de (1.29) sur un ensemble de vecteurs de retards est difficilement accessible, du fait de la corrélation qui existe entre l'évaluation de la statistique (1.29) pour deux vecteurs de retards distincts. Ce problème a déjà été soulevé en sous-section §1.3.3.1 qui préconise l'utilisation de la méthode de Monte Carlo pour l'estimation de la distribution sous H 0 de (1.29) lorsque le vecteur lenteur est inconnu. 

Démonstrations

2. Soit A et B deux M × M projecteurs. Alors, sous H 0 , n∈Z Cov Ax 0 (τ ) 2 , Bx n (τ ) 2 = 2σ 4 M m,m =1 A m,m L m,m (τ m -τ m ) B m,m , où, pour tout h = h 1 . . . h M la matrice L de dimension M × M est définie par L m,m (h) = 1(h m = h m ), m, m ∈ {1, . . . , M } .
(1.30)

Preuve du théorème 1. On suppose, sous H 0 , que

√ N (f N -1 Q ) = √ N (u N -σ 2 1 Q ) - √ N (w N /(M -1) -σ 2 1 Q ) w N /(M -1) . Comme σ -2 N w N (τ ) est distribué selon une distribution χ 2 à N (M -1) degrés de liberté, on a lorsque N → ∞, w N (τ )/(M -1) P → σ 2 .
D'après le lemme de Slutsky, il reste à montrer que, lorsque N → ∞,

√ N u N -σ 2 1 Q - √ N w N /(M -1) -σ 2 1 Q d → N 0, σ 4 Γ . (1.31)
On rappelle que,

u N (τ ) = N -1 N n=1 Πx n (τ ) 2 et w N (τ ) = N -1 N n=1 Π ⊥ x n (τ ) 2 , où Π, Π ⊥ sont deux M × M projecteurs sur le sous-espace engendré par le vecteur 1 M et son orthogonal, respectivement. Ainsi Π = M -1 1 M 1 M et Π ⊥ = I M -Π.
De plus le processus stationnaire gaussien {[x s (τ )] τ ∈Q } s∈Z est un processus m-dependant pour m suffisamment large. Le TCL (1.31) est alors une conséquence du TCL de processus m-dépendants [START_REF] Brockwell | Time Series : Theory and Methods[END_REF]. Pour un retard τ donné, u N (τ ) et w N (τ ) sont indépendants, cependant pour τ = τ , u N (τ ) et w N (τ ) ne sont pas forcément indépendants. Néanmoins, la convergence jointe de

√ N (u N -σ 2 1 Q ) et √ N (w N /(M -1) -σ 2 1 Q ) a lieu pour N → ∞, implicant (1.31) avec σ 4 Γ τ ,τ = n∈Z Cov Πx 0 (τ ) 2 , Πx n (τ ) 2 + (M -1) -2 n∈Z Cov Π ⊥ x 0 (τ ) 2 , Π ⊥ x n (τ ) 2 - 2(M -1) -1 n∈Z Cov Πx 0 (τ ) 2 , Π ⊥ x n (τ ) 2 ,
D'après le Lemme 2, on obtient, avec L est défini par (1.30),

1 2 Γ τ ,τ = M m=1 M m =1 L m,m (τ m -τ m ) Π 2 m,m + Π ⊥ 2 m,m (M -1) 2 -2 Π m,m Π ⊥ m,m M -1 = M m=1 M m =1 L m,m (τ m -τ m )Ω m,m Le calcul explicite de Π m,m et Π ⊥ m,m conduit à, Ω m,m =      1 (M -1) 2 if m = m , 0 if m = m
De plus, comme L et Ω sont symétriques par construction, on a,

Γ τ ,τ = 4 (M -1) 2 M -1 m=1 M m =m+1 L m,m (τ m -τ m ) .
(1.32)

Ce qui conclut la preuve du théorème 1.

1.4.0.2 F-Détecteur : équivalent au rapport de vraisemblance généralisé pour un signal d'intérêt déterministe inconnu

Cette sous-section a pour but de montrer que le F-detecteur décrit en sous-section §1.3.3.1 est équivalent au rapport de vraisemblance généralisée formulé à partir des hypothèses suivantes,

   H 0 : x n (τ ) = n n , H 1 : x n (τ ) = 1 M s n + n n , (1.33)
Les notations de (1.33) sont les mêmes que pour la sous-section §1.3.3.1. On note ici que l'amplititude de la source d'intérêt est réduite à 1. Cette approximation est justifiable par le fait que le rapport de vraisemblance généralisé est indépendant de l'amplitude du signal d'intérêt. L'hypothèse H 1 suppose que l'amplitude du signal d'intérêt est identique entre les différents capteurs.

La vraisemblance des paramètres θ au vu des observations X N = (x 1 , . . . , x N ) indépendantes s'écrit

L h (X N ; θ) = N n=1 f h (x n ; θ) ,
(1.34) où f h (x n ; θ) est la probabilité discrète de x n sous l'hypothèse H h avec h ∈ {0, 1}. Sous les conditions exigées par les hypothèses

H 0 et H 1 , on a respectivement f 0 (x n ; θ) = N (0, 1 M σ 2 ) et f 1 (x n ; θ) = N (1 M s n , 1 M σ 2 ). L'espace des paramètres θ sous H 0 et H 1 sont différents et énumérés, -Sous H 0 , θ = (τ , σ 2 ) ∈ Z M × R + × R , -Sous H 1 , θ = (τ , s, σ 2 ) ∈ Z M × R N × R + × R.
avec s = (s 1 , . . . , s N ) le vecteur contenant le signal d'intérêt pour les instants 1 ≤ n ≤ N . La statistique de test du rapport de vraisemblance compare le maximum de vraisemblance sous les deux hypothèses,

Λ(X N ; θ) = sup θ∈H 0 L 0 (X N ; θ) sup θ∈H 1 L 1 (X N ; θ) .
(1.35) D'après (1.35), on cherche à maximiser les vraisemblances L 0 et L 1 pour que les probabilités des observations soient maximales sous chaque hypothèse. On note que les vraisemblances sont toujours positives et que le logarithme népérien est une fonction croissante, il est alors équivalent et généralement plus simple de maximiser le logarithme du rapport de vraisemblance. En effet dans le cas gaussien, le logarithme transforme le produit en somme ce qui rend la maximisation de chacune des vraisemblances plus simple.

La statistique de test devient alors,

∆(X N ; θ) = sup θ∈H 0 L 0 (X N ; θ) -sup θ∈H 1 L 1 (X N ; θ) , (1.36) où L h (X N ; θ) = log L h (X N ; θ).
La fonction de log vraisemblance sous H 1 s'exprime de la manière suivante,

2L 1 (X N ; τ , σ 2 , s) = -M N (log 2π + log σ 2 ) -σ -2 N n=1 (x n (τ ) -1 M s n ) (x n (τ ) -1 M s n ) (1.37)
Les paramètres s et σ 2 peuvent être maximisés analytiquement et remplacés par leur estimateur du maximum de vraisemblance. Dans un premier temps, on cherche à annuler les dérivées partielles de (1.37) par à rapport à s en s'assurant que les dérivées secondes soient négatives.

La maximisation de (1.37) par rapport à s = (s 1 , . . . , s N ) conduit à s * n = (aM ) -1 1 M x n (τ ). En remplaçant s n par son estimation s * n dans (1.37) on obtient,

2L 1 * (X N ; τ , σ 2 ) = -M N (log 2π + log σ 2 ) -σ -2 N n=1
x n (τ )Π ⊥ x n (τ ) , (1.38) où Π et Π ⊥ sont deux M × M projecteurs sur le sous-espace engendré par le vecteur

1 M et son orthogonal, respectivement. Ainsi, on a, Π = 1 M 1 M 1 M 1 M = 1 M 1 M 1 M , Π ⊥ = I M -Π .
De manière similaire, la maximisation de (1.38) par rapport à σ 2 permet d'obtenir,

2L 1 * * (X N ; τ ) = M N (log M N -log 2π -1) -M N log N n=1 x n (τ ) Π ⊥ x n (τ ) (1.39)
Sous l'hypothèse H 0 , la fonction de log vraisemblance peut aussi se maximiser analytiquement par rapport à σ 2 conduisant à,

2L 0 * (X N ; τ ) = M N (log M N -log 2π -1) -M N log N n=1
x n (τ ) x n (τ )

(1.40)

(1.39, 1.40) permettent de réécrire le rapport de vraisemblance,

-2∆ * (X N ; τ ) = 2L 1 * * (X N ; τ ) -2L 0 * (X N ; τ ) , = M N log N n=1 x n (τ ) x n (τ ) N n=1 x n (τ ) Π ⊥ x n (τ ) , = M N log 1 + N n=1 x n (τ ) Πx n (τ ) N n=1 x n (τ ) Π ⊥ x n (τ ) , = M N log 1 + N u N (τ ) N w N (τ ) , = M N log 1 + 1 M -1 f N (τ ) .
(1.41)

u N (τ ), w N (τ ), f N (τ ) sont respectivement le numérateur, dénominateur de la statistique F-stat, et la statistique F-stat §1.3.3.1. L'expression (1.41) montre que -2∆ * (X N ; τ ) est une fonction croissante de la statistique F-stat. Ainsi pour chaque retard τ donné, la statistique f N (τ ) peut être utilisée pour définir le rapport de vraisemblance généralisée pour tester de la présence d'une onde plane traversant un réseau de capteurs en présence de bruit additif gaussien. Il est intéressant de remarquer que d'après le théorème de Wilks [START_REF] Wilks | The large-sample distribution of the likelihood ratio for testing composite hypotheses[END_REF]), pour M N , -2∆ * (X N ; τ ) est asymptotiquement distribué selon un χ 2 à N degrés de liberté. Malheureusement, en pratique l'asymptotique M N n'est jamais rencontrée. De plus, ce résultat ne prend pas en compte le retard τ qui est inconnu et à déterminer.

En effet, pour déterminer le retard τ il est nécessaire de maximiser la statistique (1.41) par rapport à τ . Il est pourtant important de noter que L 0 * (X N ; τ ) est l'énergie total du signal pour l'ensemble des lignes et colonnes de X N . L 0 * (X N ; τ ) est alors déterministe et ne dépend pas de τ si N est suffisamment grand. Ainsi le rapport de vraisemblance généralisée pour un retard inconnu -2∆ * * (X N ) = sup τ ∈Z M -2∆ * (X N ; τ ) est équivalent à la statistique F-stat maximisée sur l'ensemble possible des retard (i.e la statistique F-detecteur ).

1.5 Résumé chapitre estimation angle d'arrivée à partir des retards

Motivations

Le réseau SSI est construit de manière à efficacement détecter une explosion de plus de 1 kilotonne par au minimum deux stations parmi les 60. Lorsqu'une station détecte un signal infrason, le vecteur lenteur p, perpendiculaire au front d'onde, peut être estimé à l'aide des différences de temps d'arrivée (TDOA) et de la géométrie des capteurs. L'estimation de l'angle d'arrivée (DOA) décrit par le back-azimut, l'incidence et la vitesse de l'onde s'obtient ensuite à partir de l'estimation du vecteur de lenteur. La localisation de l'évènement responsable de l'onde infrasonore est ensuite réalisée par triangulation des directions d'arrivée estimées au niveau de chaque station ayant détecté le signal. Il est donc important d'avoir une estimation de l'angle d'arrivée au niveau de chaque station la plus fiable possible.

Les stations du SSI sont constituées de 4 à 10 capteurs et ont une ouverture entre 1 et 3 kilomètres. Ces stations infrasons sont construites pour que leurs capteurs soient compris dans un plan horizontal. Cependant les distances importantes séparant les différents capteurs ainsi que la topographie ne permettent généralement pas de pouvoir disposer les capteurs sans créer de légères différences d'altitudes entre ceux-ci (voir Fig. 1.18). Les traitements actuels [START_REF] Arrowsmith | The f-detector revisited : An improved strategy for signal detection at seismic and infrasound arrays[END_REF]; [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF] ignorent les altitudes en supposant leurs différences négligeables.

Dans la suite, on nomme ce parti pris : l'approximation 2D puisque les capteurs sont supposés être compris dans un plan 2D. L'estimation du vecteur lenteur basé sur l'approximation 2D est appelée estimateur 2D. L'approximation 2D introduit un biais systématique dans l'estimation du vecteur de lenteur et donc dans l'estimation des paramètres d'intérêt comme le back-azimut, l'incidence et la vitesse de l'onde. L'impact de l'approximation 2D a été mis en avant par [START_REF] Wang | Signal detection and estimation at the new ims array at mina[END_REF] en sismique et par [START_REF] Brown | Infrasonic processing at the prototype international data center[END_REF] en infrason. [START_REF] Brown | Automatic infrasonic signal detection using the hough transform[END_REF] est le premier à recommander la prise en compte de la géométrie 3D pour l'estimation du vecteur lenteur. Plus récemment, [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF] a montré que l'erreur de l'estimation du back-azimut, induit en négligeant les différences d'altitudes des capteurs, dépend du back-azimut et de l'incidence. Cependant à notre connaissance, il n'existe pas dans la littérature une expression explicite du biais introduit par l'approximation 2D.

Il est possible de prendre en compte la géométrie 3D complète de la station pour l'estimation du vecteur de lenteur. L'estimateur qui en découle est appelé estimateur 3D. On montre dans le chapitre 2 que l'estimateur 3D est non biaisé mais possède une variance supérieure à l'estimateur 2D. Sous certaines conditions, le biais de l'estimateur 2D ne compense pas la forte variance de l'estimateur 3D et inversement. Ainsi le chapitre 2 décrit les estimateurs et propose une étude basée sur le compromis biais-variance pour comparer les estimateurs. On propose alors l'expression explicite de la frontière permettant, suivant les conditions, de sélectionner l'estimateur ayant la plus faible erreur quadratique moyenne.

Le chapitre 3 présente un troisième estimateur qui repose aussi sur la géométrie 3D de la station ainsi qu'un a priori sur la vitesse du son dans l'air. Cet estimateur est appelé estimateur 3D contraint. L'a priori, vu comme une contrainte lors de l'estimation du vecteur lenteur, permet de réduire significativement la variance de l'estimateur 3D contraint en comparaison avec l'estimation 3D. L'estimateur 3D contraint est biaisé si la vitesse du son dans le milieu dans lequel il se propage est mal connue. Cependant, on montre que ce biais est négligeable en pratique. Une étude du comportement asymptotique par approximation gaussienne permet d'aboutir à une formulation analytique du biais et de la variance de l'estimation 3D contrainte. Ces résultats montrent que dans des conditions opérationnelles (erreur faible sur la vitesse du son), l'estimation 3D contrainte surpasse les deux autres méthodes d'estimations. On montre la faisabilité d'une implémentation dans une chaîne de traitement opérationnelle.

Cette section a pour but de résumer les résultats importants décrient dans les chapitres (2, 3) rédigés en anglais à des fins de publications. 

Modèles

w ,m = (r -r m ) p + ,m , 1 ≤ l < m ≤ M ,
(1.42) où (rr m ) p est la vraie différence des temps d'arrivées et ,m est une séquence de variables gaussiennes de moyenne nulle et de covariance dépendante du contenu spectral du bruit, du signal d'intérêt et de la taille de la fenêtre d'observations. On définit les vecteurs à C colonnes w et dont les composantes sont respectivement w ,m et ,m (pour

1 ≤ < m ≤ M ). La matrice R = r x
r y r z de dimension C × 3 est formée à partir de la différence des positions des couples de capteurs (rr m ). Les vecteurs r x , r y et r z sont les projetés des différences de positions des couples de capteurs sur l'axe x, y et z du plan cartésien. On définie également la matrice des différences de position des capteurs soumise à l'approximation 2D, G = r x r y construite avec les deux premières colonnes de R. Reportant ces notations dans l'équation (1.42), le modèle d'observations des différences de temps d'arrivée peut s'écrire sous forme matricielle, w = Rp + .

L'utilisation du maximum d'inter-corrélation pour l'estimation des différences de temps d'arrivée induit une corrélation entre les composantes du bruit d'observations . est gaussien de moyenne nulle et de covariance σ 2 Γ, avec σ 2 fonction de la taille de la fenêtre d'observations et du contenu fréquentiel du signal d'intérêt. La matrice Γ dépend des rapports signal à bruit de chacun des capteurs (voir Appendice 2.7.1).

Lorsque M ≥ 3, la matrice R est de rang plein. En ce basant sur l'approche des moindres carrés généralisés [Kay, 1993, pp.223 -226], les estimateurs q 2D (2D), p 3D (3D), et p 3Dc (3D contraint) du vecteur lenteur s'obtiennent en minimisant l'erreur quadratique,

q 2D = arg min u∈R 2 (w -Gu) T Γ -1 (w -Gu) ,
(1.43)

p 3D = arg min u∈R 3 (w -Ru) T Γ -1 (w -Ru) ,
(1.44)

p 3Dc = arg min u∈R 3 (w -Ru)Γ -1 (w -Ru) s.c. u T u = s 2 , (1.45)
avec u une variable muette, s.c signifiant sous contrainte et s = c -1 l'inverse de la vitesse du son. L'approximation 2D se ramène à l'estimation des deux premières composantes du vecteur lenteur q = p 1 p 2 . Les minimisations (1.43, 1.44) ont des solutions analytiques,

q 2D = (G Γ -1 G) -1 G Γ -1 w , (1.46) et p 3Dc = (R Γ -1 R) -1 R Γ -1 w , (1.47)
La minimisation sous contrainte (1.45) ne débouche pas sur une solution analytique et requiert un algorithme de minimisation pour aboutir numériquement à l'estimateur p 3Dc .

Résultats principaux

Cette sous-section est dédiée à la description des performances des trois estimateurs q 2D , p 3D et p 3Dc . Ces performances sont évaluées par le biais de l'erreur quadratique moyenne. Cette métrique est utile pour comparer plusieurs estimateurs, notamment dans le cas où l'un d'eux est biaisé. L'erreur quadratique moyenne d'un estimateur θ de θ peut s'exprimer en fonction de son biais biais( θ|θ) = E θθ et de sa variance V ar( θ) =

E ( θ -E θ ) ( θ -E θ ) , M SE( θ|θ) = E ( θ -θ) ( θ -θ) , = biais( θ|θ) 2 + V ar( θ) .
On montre dans le chapitre 2 que l'estimateur 2D est systématiquement biaisé s'il existe des différences d'altitudes entre les capteurs. Ce biais est fonction de l'incidence de l'onde, de la géométrie 2D de la station, et des différences d'altitudes ignorées. Pour une station donnée, on remarque que plus une onde arrive verticalement plus le biais augmente. Il est aussi important de noter que pour une onde arrivant avec une incidence nulle (horizontalement) ce biais disparaît. A l'inverse l'estimateur 3D est le meilleur estimateur linéaire non biaisé mais possède une variance forcément supérieure à l'estimateur 2D. La différence de variance entre l'estimateur 2D et 3D est amplifiée par le rapport signal à bruit. Plus le rapport signal à bruit est faible plus cette différence de variance s'intensifie.

Au vu de ces résultats, on remarque que l'estimateur 3D ne présente pas toujours de meilleurs performances par rapport à l'estimateur 2D. Le choix de l'estimateur donnant l'erreur quadratique moyenne s'exprime sous la forme d'un compromis biais-variance dont la frontière a été définie. Le choix du meilleur estimateur est donné en fonction de l'incidence, de la vitesse, et de la variance des différences de temps d'arrivée σ 2 .

Le chapitre 3 étudie l'impact d'une contrainte sur la norme du vecteur lenteur lors de son estimation. Le vecteur lenteur a une norme directement reliée à la vitesse du son. La norme du vecteur lenteur est égale à l'inverse de la vitesse du son. Cette donnée physique est utilisée comme information a priori pour estimer le vecteur lenteur sous contrainte. La contrainte permet de réduire la variance de l'estimateur 3D. L'estimateur 3D contraint possède alors une variance comparable à celle de l'estimateur 2D. On note cependant que lorsque l'a priori sur la vitesse du son est mal choisi, l'estimateur 3D contraint est biaisé. Le biais et la variance de l'estimation 3D sont approchés à l'aide d'une étude du comportement asymptotique par approximation gaussienne (théorème 2). Les formulations analytiques du biais et de la variance sont difficilement interprétables. La vérification des formules et les conclusions sur la qualité de l'estimateur 3D contraint (dont la contrainte est erronée) sont dressées à partir de simulations numériques. Il a été montré que le biais de l'estimateur 3D contraint a un comportement opposé au biais de l'estimateur 2D. En effet pour une géométrie et une erreur sur la vitesse données, plus une onde arrive horizontalement plus le biais de l'estimateur 3D contraint est important. A l'aide de simulations, on a montré que ce biais est négligeable dans le cas où l'erreur sur la vitesse n'est pas trop importante. La vitesse des ondes infrasonores est principalement fonction de la température de l'air dans lequel l'onde se propage. Une mesure de la température au sein de chacune des stations du réseau SSI est disponible permettant en pratique de calculer la vitesse des ondes avec peu d'erreur.

Les simulations et des expérimentations sur données réelles ont montré que l'approximation 2D utilisée dans les traitements automatiques actuels peut aboutir à une erreur de l'estimation du back-azimut de 8 • . L'utilisation de la géométrie complète et d'une contrainte sur la vitesse du son permet alors de corriger cette erreur.

Discussions

L'a priori utilisé dans le chapitre 3 est fort. Il suppose une connaissance parfaite de la vitesse l'infrason dans l'air. Cet a priori offre de bons résultats, mais il nous semble intéressant d'explorer un a priori qui prendrait en compte les incertitudes sur la vitesse du son. Nous proposons donc d'incorporer un a priori plus réaliste pour l'estimation du vecteur lenteur. La vitesse du son peut être décrite par une distribution gaussienne centrée autour de c = f (T ) (avec T la température voir (3.4)), et de variance σ 2 c . La variance σ 2 c prend en compte les incertitudes sur les vents et la pression au niveau de la station.

On note A, I, C des variables aléatoires pouvant prendre toutes les valeurs possibles du back-azimut variable par,

           P A (•) = U[0, 2π] P I (•) = U[0, π] P C (•) = N (c, σ 2 c )
Les variables aléatoires A, I, C sont physiquement indépendantes, on peut donc écrire la densité jointe a priori de Θ = (A, I, C) dont les lois sont données par

p Θ (x) = p A (a)p I (i)p C (c) = 1 2π 1 [0,2π] (a) 2 π 1 [π/2,π] (i) 1 σ c √ 2π e 1 2 σ -2 (c-c) 2
On note que les a priori portant sur le back-azimut et l'incidence sont non-informative. L'information a priori est définie dans le domaine sphérique mais l'estimation du vecteur lenteur est réalisé dans le domaine cartésien. On note donc X, Y , Z les variables aléatoires pouvant prendre toutes les valeurs possibles des composantes du vecteur lenteur.

On s'intéresse maintenant à la probabilité a priori de P = (X, Y, Z), avec

P = f -1 (Θ) où f : D → R 3 , D = [0; 2π]×[0; π]×R + .
La fonction f est la transformation des coordonnées cartésiennes en coordonnées sphériques donnée par 2.7.2. f est bijective sur D sur son image f (D), et dérivable donc [START_REF] Miller | 6 -multiple random variables[END_REF],

p P (p) = | det J f -1 |p Θ (f -1 (Θ)) , ∝ p 4 sin i p c ( 1 p )
La probabilité jointe de P = (X, Y, Z) est alors proportionnelle à, 

p P (p) ∝ 1 2πσ 2 c 1 p 3 p z e -1 σ 2 c (1/ p -c

Abstract

To estimate the slowness vector of infrasound waves propagating across an infrasound array, it is often considered that the sensors are located in a perfectly horizontal plane (2D approximation). However, the arrays are not planar and differences between sensor altitudes cannot be neglected without introducing biases when estimating the parameters of interest (back-azimuth and incidence). A closed-formula of this error depending on the geometry of the array and the wave incidence is presented. Since the unbiased 3D estimation of the slowness parameters results in a significant alteration of the variance, a metric based on the mean square error is proposed. We found it useful to compare the 3D to the 2D processed results. We show the 3D estimator does not always give the best estimates. We propose also a formulation of the boundary that allow us to choose between these two estimators depending on the situation (arrays, incidence, and SNR). Finally we compare these two approaches (2D/3D) to all IMS arrays with synthetic data, and perform a comparative estimation of back-azimuth for real data.

Introduction

The infrasound network of the International Monitoring System (IMS) relies on 60 arrays deployed all over the World by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The IMS has been designed to reliably detect, at least by two arrays, an atmospheric explosion greater than 1 kiloton located anywhere on Earth [START_REF] Christie | The ims infrasound netwrok : design and establishment of infrasound stations[END_REF]. Each array is an array of at least 4 microbarometers with an aperture of 1 to 3 km. The estimation of the Direction Of Arrival (DOA), described by the back-azimuth and the incidence, is derived from the estimation of the slowness vector. This task is usually performed on a time window and in a frequency band, and by assuming that there is only one source in the considered time/frequency window.

Following topography constraints, the sensors of a given array are located at different altitudes. However, the altitude differences of all sensor pairs are small and usually neglected, leading to an estimation of the only two horizontal components of the slowness, and thus to the estimates of the back-azimuth and the apparent horizontal velocity. This case is referred to as 2D estimation, leaving the term 3D estimation for the full estimation of the slowness.

The impact of the differences of altitudes for large aperture array in seismology was first reported by [START_REF] Wang | Signal detection and estimation at the new ims array at mina[END_REF] who found systematic errors in the back-azimuth evaluation for the Mina seismic array (NVAR). [START_REF] Brown | Infrasonic processing at the prototype international data center[END_REF] observed that estimation errors arise when neglecting the sensor altitudes of the DLIAR array in New Mexico. Furthermore, the altitudes are taken into account for the detection of infrasound sources [START_REF] Brown | Automatic infrasonic signal detection using the hough transform[END_REF]. More recently [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF] showed that the errors in back-azimuth estimation, induced by neglecting the relative altitudes of the sensors, depend on the backazimuth and incidence. They also demonstrated that the error increases when the mean slope of the sensor array with respect to the horizon increases. However these studies only consider the bias and do not take into account the variance of the estimate.

Among the different approaches to estimate the slowness, the following two-step method is widely used : firstly the Time Differences Of Arrivals (TDOA) are estimated for all sensor pairs and secondly the slowness vector is deduced by a least square minimization. The main advantage of this method is that the TDOA are linearly related to the slowness, leading to a closed form expression for the mean square estimator [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF]; [START_REF] Olson | The least squares estimation of the azimuth and velocity of plane waves[END_REF]. It is important to note that the TDOAs are currently estimated by cross-correlation maximization which does not depend on the sensor locations.

In the present study, we investigate how the estimation of the slowness can be improved or deteriorated by neglecting (2D estimation) or not (3D estimation) the sensor altitude differences. Note that this issue only arises during the phase of the least square minimization, but not during the phase of cross-correlation maximization. We will not assume, as it is commonly done, that the additive noises affecting the TDOA estimates are uncorrelated, leading to the so-called ordinary least square (OLS) estimator. This assumption is not verified since many sensor pairs share a common sensor. Therefore the best linear unbiased estimator must take into account the noise correlation matrix, leading to the socalled generalized least square (GLS) estimate. Under conditions which are widely verified in practice, this noise correlation matrix has a closed form expression depending on the different Signal-to-Noise Ratios (SNR) on the sensors, see [START_REF] Cheung | Closed-form formulae for time-differenceof-arrival estimation[END_REF] and below for details. These SNRs can be estimated during the phase of cross-correlation maximization.

Our main contribution is to highlight the problem of choosing between 2D and 3D estimation, viewed as a bias/variance compromise. The objective is to determine how this compromise can be achieved in practice according to the characteristics of the array. For this purpose, the estimation performances are based on the Mean Squared Error (MSE). We observed that, for a given array, the best choice is determined by the incidence angle, the sound velocity and the SNRs. We illustrate this by defining the corresponding 2D/3D boundaries in the incidence/SNR plane for two particular IMS arrays. Additional empirical and theoretical results are also provided and compared for all the IMS arrays.

Finally a real data set, namely the Kasatochi eruption which occurred on 2008 August 8 and observed at the IS18 IMS array in Greenland is examined.

This paper is organized as follows. In Section §2.3, we recall how the correlation maximization, under the plane wave propagation assumption, leads to a linear model of the TDOA with respect to the slowness. A generalized least square approach is then considered, omitting or not the altitudes of the sensors. The two obtained estimators are referred to as 2D or 3D. In Section §2.4, the biases and covariance matrices of these two estimators are performed. The MSE of the associated back-azimuth estimates are derived, providing a theoretical way to compare these approaches. In Section §2.5 numerical experiments are presented for all IMS arrays. Finally conclusions and perspectives are drawn in Section §2.6.

Signal and TDOA Models

Let us consider a array with M sensors. The infrasound source is supposed to be far enough from the sensors to assume a plane sound wave propagation model characterized by the slowness p = p x p y p z , defined in a given cartesian coordinate system. We denote by r m the 3D coordinates of the location of the sensor m ∈ {1, . . . , M }. It follows that the signal received at the sensor m, assuming no attenuation, is given by

x m (t) = s(t -υ m (p)) + n m (t) , (2.1)
where s(t) is the signal of interest (SOI) and n m (t) is an additive zero-mean white gaussian noise. The delay υ m = r m p is the time of arrival of the SOI at the sensor m up to an additive unidentifiable constant.

As previously mentioned, the estimation of p, as shown in Fig. 2.1, is derived from the estimates of the TDOA sequence (ττ m ) 1≤ <m≤M performed, for each sensor pair in the time window of length T , by the following correlation maximization

w ,m = arg max u T x (t)x m (t -u)dt (2.2)
The two-steps TDOA approach to estimate the slowness enjoys the following two main advantages in comparison to one-step methods such as the maximum likelihood estimation :

-faster computation : in the TDOA approach, a numerical maximization is performed over a finite range of delays for each sensor pair, whereas in the likelihood approach the numerical maximization is required over the higher dimensional slowness space.

-in the TDOA approach, it is easier to take into account the different SNRs at the sensors by using a Generalized Least Square (GLS) approach.

In [START_REF] Cheung | Closed-form formulae for time-differenceof-arrival estimation[END_REF] it is shown that, under stationarity conditions, the TDOA estimates of the sensor pairs can be written as where (rr m ) p is the true TDOA and where ,m is a sequence of zero-mean random variables whose covariances depend on the spectral contents of the noise and the SOI, and on the observation time T .

w ,m = (r -r m ) p + ,m , 1 ≤ l < m ≤ M , ( 2 
Let us denote C = M (M -1)/2 the number of pairs, w and the C-dimensional column vectors whose entries are respectively w ,m and ,m (for 1 ≤ < m ≤ M ) and R the C × 3 matrix whose rows are (rr m ) . Carrying these notations in the equation 2.3, we get the following TDOA observation model :

w = Rp + .
(2.4)

Note that this model is linear with respect to the unknown slowness parameter p.

The use of expression (2.2) for TDOA estimation induces correlation between the components of the error process . As reported in appendix 2.7.1, the covariance matrix of can be written Cov ( ) = σ 2 Γ where the term σ 2 depends on the observation time and on the frequency bandwidth of the SOI, and where Γ depends on the different sensor SNRs. Practically, these SNR estimates can be performed during the cross-correlation maximization phase. To compute least-square estimates of p, Cov ( ) has to be known, up to the multiplicative positive constant σ 2 , which may remain undetermined. It will be needed, however, to evaluate the performance of the estimation procedure.

To have a full rank regression matrix R in (2.4), which is assumed from now on, there must be at least M ≥ 3 sensors.

Based on the least square approach, the 3D estimator of the slowness is defined by

p = arg min u∈R 3 (w -Ru) Γ -1 (w -Ru)
(2.5)

A common approach, in infrasonic array processing, consists to omit the sensor altitude differences, see [START_REF] Arrowsmith | The f-detector revisited : An improved strategy for signal detection at seismic and infrasound arrays[END_REF]; [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF]; [START_REF] Evers | The detectability of infrasound in the netherlands from the italian volcano mt. etna[END_REF]; [START_REF] Gibbons | Detection and analysis of near-surface explosions on the kola peninsula[END_REF]; [START_REF] Kozick | Source localization with distributed sensor arrays and partial spatial coherence[END_REF]. The main reason is that, in this context, the parameter of interest is the back-azimuth of the source which only depends on the two first components of p. That leads to the 2D estimate of q = p x p y defined by

q 2D = arg min u∈R 2 (w -Gu) Γ -1 (w -Gu) , (2.6)
where G is the C × 2 matrix built with the two first columns of R = r x r y r z that writes,

G = r x r y = RJ with J =   1 0 0 0 1 0   .
Another estimator of q can also be obtained by taking into account only the first two components of p that writes

q 3D = J p (2.7)
Further analysis is necessary to select between these two estimators. Indeed, if p z = 0, q 2D is biased, whereas q 3D is not, but this bias can be balanced by a lower variance.

Performance analysis

Bias and covariance of least square estimators

The algebraic solutions of minimizations (2.5) and (2.6) are respectively given by

p = (R Γ -1 R) -1 R Γ -1 w = R + w , (2.8) 
and

q 2D = (G Γ -1 G) -1 G Γ -1 w = G + w , (2.9) 
where R + and G + , denote the Moore-Penrose pseudoinverse matrices which verify R + R = I 3 and G + G = I 2 . Note that p is the best linear unbiased estimator (BLUE) of p for the linear model (2.4). Inserting (2.8) in (2.4), we get that

p = p + R + .
(2.10)

Then the estimator is unbiased and its covariance matrix writes

Cov ( p) = σ 2 (R Γ -1 R) -1 . (2.11) It follows from (2.7) that Cov ( q 3D ) = σ 2 J(R Γ -1 R) -1 J .
(2.12)

On the other hand, using (2.4) and (2.9), we obtain

q 2D = G + Rp + G + = q + p z G + r z bias +G + . (2.13)
Therefore, the bias is equal to p z G + r z and the covariance is related to the term G + , namely,

Cov ( q 2D ) = σ 2 G + ΓG +T = σ 2 (G Γ -1 G) -1 . (2.14)
Let us comment on these bias and covariance formulas.

1. The bias term p z × G + r z in expression (2.13) is the product of the slowness vertical component p z with G + r z , which only depends on the geometry of the array. For the term G + r z , since G only depends on the horizontal location coordinates, we see that the absolute value of the bias increases when the sensor altitude differences increase.

Concerning the term p z = c -1 cos(i), where c denotes the sound velocity and i denotes the incidence angle (see paragraph 2.7.2), we observe that, for a given value of the sound velocity c, the absolute value of the bias increases as the incidence i moves away from 90 • , reaching its maximum when i = 180 • . In particular the bias vanishes whenever the sensors are all located around the same altitudes or when the wave propagation is horizontal.

2. The covariance matrix of the 3D estimator in in (2.11) is always larger than the one of the 2D estimator in (2.14) (in the sense of symmetric matrices, see paragraph 2.7.4).

In particular, if R is ill-conditioned while G is not, this discrepancy can be very large. This will typically happen when r z is close to 0, that is, when the array has all its sensors approximately in the same horizontal plane.

3. It is worth noting that q 2D has been obtained by arbitrarily removing a particular dimension, namely the vertical one. Trying to optimally choose the dimension(s) that should be removed is an interesting question. It was suggested by C. Szuberla in the ITW-2013 conference to investigate this question by using a principal component analysis (PCA) of the matrix R.

Comparisons of performances : 2D vs 3D

In this section we analyze the bias/variance compromise in order to determine the best estimator, that is, the one with the lowest MSE. It turns out that this compromise is slightly different when considering the problem of estimating q and the problem of estimating the back-azimuth, denoted by a, see paragraph 2.7.2. The analysis of the latter is of primary importance since the back-azimuth estimations of several arrays are used for triangulation-based localization of the infrasound source.

Bias/variance compromise for the estimation of q

The first comparison is related to the estimation of q, i.e. the two first components of the slowness. Following the results of the previous section we consider the two following estimators of q : q 2D given by (2.13) and q 3D derived from (2.7) and (2.8). Our comparison is based on the ratio R of the respective mean square errors (MSE) of these estimators. Recall that for an estimator q of q, the MSE is defined by

MSE( q) = E q -q 2 = E [( q -q) ( q -q)] .
Applying (2.12)-(2.14), we get the ratio

R = MSE( q 2D ) MSE( q 3D ) (2.15) = σ 2 Tr (G Γ -1 G) -1 + c -2 cos 2 (i)Tr G + r z r z G +T σ 2 Tr J(R Γ -1 R) -1 J , (2.16)
where Tr (A) denotes the trace of the matrix A. If R > 1, we say that the estimate via the 3D method is better than the estimate from the 2D method. The ratio R depends on 1. the geometry of the array through G, R and r z , 2. the SNRs through σ 2 and Γ, 3. the signal DOA through the celerity c and incidence i.

We also note that R is a decreasing function of σ 2 . It is shown in Appendix 2.7.4 that

(G Γ -1 G) -1 < J(R Γ -1 R) -1
J in the sense of non-negative definite matrices. Therefore the traces of these matrices satisfy the same inequality and, for large values of σ 2 or small values of cos(i), we always have R < 1, which implies that the 2D estimator is better than the 3D one. Finally, as expected, for a fixed geometry of the array, the ratio R increases (and thus 3D estimation tends to be better) as the incidence gets closer to 180, that is to a vertical propagation.

Bias/variance compromise for the azimuth estimation

The angle of arrival in the horizontal plan which is the back-azimuth is related to the slowness by the expression a = arg(-p yjp x ), see appendix 2.7.2. Therefore, given an estimator q = px py , the natural estimator of a is defined by â = arg(-p yj px ) .

Since the mapping (p x , p y ) → a is not linear, the MSE of â cannot be derived exactly from that of q. Its exact expression would require the complete distribution of q and would not be closed-form. Nevertheless, using the so called δ-method, it can be approximated as

MSE(â) ≈ ∂ q a × (Cov ( q) + bb ) × ∂ q a ,
where b = E [ q]q is the bias of the estimator q and we used the gradient

∂ q a = - c sin(i) cos(a) -sin(a) .
(2.17)

Using this formula for a 2D and a 3D respectively obtained with q defined as in (2.6) and

(2.7), we now consider the ratio

R = MSE( a 2D ) MSE( a 3D ) (2.18) ≈ σ 2 k (G Γ -1 G) -1 k σ 2 k J(R Γ -1 R) -1 J k + • • • (2.19) c -2 cos 2 (i) |k (G Γ -1 G) -1 G Γ -1 r z | 2 σ 2 k J(R Γ -1 R) -1 J k
where k = cos(a)sin(a) .

Again, if R > 1 then the 3D method is said to be better than the 2D one. Ratio R depends on the same physical parameters as R, namely, the array geometry, the SNRs and the DOA's celerity and incidence, but, in contrast with R, R also depends on the DOA's back-azimuth a itself through the vector k. This dependence is confirmed in the numerical experiments (see Fig. 2.5). However, we show in Appendix 2.7.4 that the boundary defined by R = 1 does not depend on a, since it actually coincides with the boundary defined by the equation R = 1.

Numerical experiments

Ratios R and R and their 2D/3D boundaries

Let us first illustrate the results of Section §2.4.2. We consider the array IS22 located in New Caledonia. Sensors location are reported in Tab.2.1 and the array IS31 in Kazakhstan sensors location are reported in Tab. 2.2.

Here we assumed that the sound velocity is 340 m/s and all the sensor SNRs are equal, so that the GLS estimator coincides with the OLS estimator, see appendix 2.7.1.

In Fig. 2.2, we display the values of log R for array IS22 as a function of σ given in ms and the incidence i given in degrees. The boundary which separates the region where the 2D approach is better than the 3D one, corresponds to the equation log R = 0. expected, it can be seen in these two figures that, the lower the standard deviation σ and the closer the incidence is to the vertical (i ≈ 180), then the better the 3D estimator in comparison with the 2D estimator. Fig. 2.3 is the same as Fig. 2.2, but for array IS31 and Fig. 2.4 displays the σ/i boundaries of both arrays on the same plot.

Simulated data

We simulate signals x m for m = 1, . . . , M according to the model (2.1) with the SOI s given by a record of a gasflare observed on one of the sensors of IS31, see [START_REF] Smirnov | Infrasound propagation from gasflares[END_REF]. Gaussian noise is simulated and added on each sensor in order to have a constant SNR of -6 dB. The slowness and sensor locations can be set arbitrarily. Numerical experiments are performed on a simulated signal of 3 hours, using a sliding window of around 200 seconds (4096 samples) with 50% of overlap. On each of the 108 windows, the cross-correlation maximization provides the vectors w l,m , which are used to obtain 2D and 3D estimates of the back-azimuth.

In a first set of simulations, we used the geometry of array IS22 in New Caledonia whose sensor locations are reported Tab. 2.1. The slowness vector is set to a back-azimuth of -140 • , a propagation velocity of 340 m/s. We consider two values of the incidence angle 100 • and 140 • . Fig. 2.4 shows boxplots of the 2D and 3D back-azimuth estimates. As expected, the bias of the 2D estimator is larger for the incidence of 140 • and the 2D estimator always enjoys a smaller dispersion/variance.

In a new set of simulations, we investigate the behavior of the root-mean-square-error (RMSE) of the 2D (black lines) and 3D (red lines) back-azimuth estimators as a function of the true back-azimuth a. We run simulations for a between 0 and 360 with a 4 • step size and again consider the two different values 100 • and 140 • for the incidence i. Empirical RMSE is evaluated from observed errors (continuous line in Fig. 2.5) over the 108 windows and compared with theoretical RMSEs MSE( a 2D ) and MSE( a 3D ) (in dashed lines). We note that, although the MSE does depend on the back-azimuth a, the choice of the method does not (since the boundary R = 1 does not). In the present example, if i = 100 • , one always should use the 2D method, independently of a and, if i = 140 • , one always should use the 3D method. Finally, Fig. 2.6 displays the RMSE for estimating the back-azimuth with the 2D (in black) and 3D (in red) estimators for all IMS arrays, with a fixed incidence i = 140 • slowness vector. We also display the RMSE of a plugin adaptive estimator (in green) and of a 3D constrained estimator (in purple). The plugin adaptive estimator is defined in three steps as follows 1. Compute the 3D estimator p defined in (2.8) and deduce the natural estimator p 3 .

2. Use this estimator, the geometry of the array and an estimator of the SNRs to compute an estimator R of R.

3. Select the 3D estimator a 3D of a if R > 1 or the 2D estimator a 2D otherwise.

The 3D constrained estimator relies on an a priori on the speed order of magnitude. This approach is detailed in [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF]; [START_REF] Nouvellet | Constraint on speed of sound for tdoa based estimator[END_REF] in the context of beamforming and TDOA estimation, respectively. The a priori consists in constraining the speed of sound to a precise value or a range of values. The 3D constrained estimator (in purple) used for the simulations is the one described in [START_REF] Nouvellet | Constraint on speed of sound for tdoa based estimator[END_REF] with a fixed a priori value of the speed.

Since the MSE depends on the back-azimuth, we chose to average the RMSE over the same range of back-azimuths as previously. The errors for all IMS arrays are reported except for arrays which lies on an horizontal plane (i.e IS43 and IS52). arrays are sorted according to the error made by the 2D estimator. array IS08 has particularly bad 3D back-azimuth estimation because of the inversion of the ill-conditioned matrix R Γ -1 R (the sensors are close to be included in the same horizontal plane).

The observed RMSEs of the 2D estimator are consistent with the results of Edward and [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF]. Neglecting altitude of the sensors introduces errors of several degrees, particularly for IS42, IS59, IS49, IS18 and IS14 that misestimate the back-azimuth with more than 3 • of bias. 3D estimator globally perform better than 2D except for few arrays which suffer from large variances (eg. IS08, IS46, IS45, IS02, IS59, IS49). These RMSEs are computed from oberved errors on the simulations. We compare these results with the theoretical RMSEs. In particular, we check whether the choice of the 2D vs 3D estimator as indicated by the theoretical boundary R = 1 is confirmed by the empirical RMSEs. It turns out that only for array IS11 the empirical 2D and 3D RMSEs are different : the 2D estimator slightly performs better than the 3D ones on this set of simulations while R > 1. As the plugin estimator takes its value either from the 2D or 3D estimator, it cannot perform better than both of them for a given geometry and experimental setting. In our experiments, in general the plugin estimator performs similarly to the best one, although not as well. It may happen, as in array IS59, that the high variance suffered by the estimator p 3 leads to a wrong choice between 2D and 3D estimators.

The 3D constrained estimator (in purple) always outperforms all the others. This is no surprise since, in the case of simulated data, the sound speed is perfectly known. As a result, this estimator enjoys a variance of the same order as the 2D estimator (since one dimension less has to be estimated) without suffering a high bias (since the constraint is exact). Therefore, the performance of the constrained estimator is provided here mainly for comparing the 2D, 3D and plugin estimators to some ideal oracle estimator. In practice an adequate range of values should be used for the constraint, relying on a precise model depending on the physical environment (temperature, wind speed, pressure...). A fair analysis of such a constrained estimator is of high interest but is left for future work.

Real data

array IS18 consists of height sensors arranged as one small rectangle with one center sensor within a larger triangle. It is a clear example of the impact of neglecting or considering the heights of the arrays for the estimation of the back-azimuth as the differences of elevation between sensors are important. 2D estimation could have a significative bias if the wave's incidence is far from the horizontal. We Ground truth parameters (in particular, the true incidence of the wave) are not precisely known in this experiment. However, because the recorded event has a long duration which can be precisely identified, we can provide a precise estimate of the slowness vector by considering the whole observation window (i.e from 2500 to 8000 seconds after 02 : 00), as long as an unbiased estimator (that is, the 3D one) is used for this purpose. We estimated an incidence of 91.3 • , hence the wave is closed to the horizontal. The 3D estimator over the whole period further provides an back-azimuth of 303.23 • . Over the same period, the 2D estimator gives an estimated back-azimuth equal to 303.37 • . The corresponding bias of 0.15 • is consistent with the bias which can be evaluated to 0.14 • by using the second term of the numerator in (2.16). On the other hand, on smaller windows of observation, such a small bias in 2D estimation is negligible with respect to the larger variance suffered by the 3D estimator. This is well noticeable in the top part of Fig. 2.7 where the oscillations of the 3D estimator account for the variance over the sliding window.

Conclusion

In this paper, we have studied the bias/variance compromise from the 2D versus 3D estimation of the back-azimuth of a plane wave based on TDOAs. 2D estimation is biased if the array is non planar. For the back-azimuth estimation a bias up to 8 degrees can be observed on IS18 for an incidence of 140 degrees. On the other hand, 3D estimation is unbiased but suffers a higher variance. Choosing between 2D and 3D estimation thus corresponds to a bias/variance trade-off. We have derived a closed form expression of the boundary in the incidence-SNR plane that separates the two regions where one of these two estimators is preferable to the other. We used this analysis to propose a plugin adaptive estimator, and studied its behavior for all IMS arrays. A real data set has also been considered, for which our analysis provides a meaningful explanation of the behavior of the 2D and 3D estimators.

Based on the numerical results, we have observed that having an a priori on one parameter such as the sound speed yields significantly better estimates of the back-azimuth. However further study has to be conducted to understand the precise impact of this approach on the variance.

Finally, we should mention that other uncertainties may affect the estimation of the DOA. For instance, it would be interesting to incorporate the bias/variance analysis proposed in this contribution in the evaluation of more sophisticated propagation models.

Appendix

Covariance matrix of the TDOA noise model

The linear regression model (2.4) can be found in [START_REF] Cheung | Closed-form formulae for time-differenceof-arrival estimation[END_REF], see also [START_REF] Charbit | Doa estimation based on tdoa estimates[END_REF] for a more general and detailed presentation. Using standard assumptions on the noise, Cov ( ) can be shown to be positive definite. Moreover, it can be explicitly expressed using the SNR k s measured at the sensors k = 1, . . . , M .

One obtains for two given pairs k < m and k < m of sensors,

E( k,m k ,m ) =                                  σ 2 SNR k + σ 2 SNRm + σ 2 SNR k SNRm if k = k and m = m σ 2 SNR k if (k = k and m = m ) or (k = k and m = m -σ 2 SNR k if (k = m and m = k ) or (m = k and k = m 0 otherwise with σ 2 = 3 8π 2 B 3 T .
where B is the SOI frequency bandwidth B in Hz and T the window length in seconds .

Let us remark that σ 2 is expressed in square seconds. In the GLS approach, one needs to compute the covariance matrix Cov ( ) up to a multiplicative constant. So we only need to estimate the SNR's in order to determine the (positive definite) matrix Γ defined by

Cov ( ) = σ 2 Γ .
Finally, it is interesting to note that, when the SNR is the same at all sensors, then Γ satisfies

(R Γ -1 R) -1 R Γ -1 = (R R) -1 R
Therefore, in this particular case, OLS and GLS approaches yield identical estimates.

Relation between cartesian and spherical representation

The slowness p in cartesian coordinates is related to the back-azimuth a, the incidence i and the sound velocity c by the one-to-one mapping :

           p x = -c -1 sin(a) sin(i) ∈ R p y = -c -1 cos(a) sin(i) ∈ R p z = c -1 cos(i) ∈ R (2.20) ⇔            c = 1/ p ∈ R + i = arg cos(cp z ) ∈ (0, π) a = arg(-p y -jp x ) ∈ (0, 2π)
Recall that the azimuth angle is measure clockwise from North, see [START_REF] Havelock | Handbook of Signal Processing in Acoustics[END_REF]pp.1655-

1656).

Letting α = (a, i, c) and f (p) ∈ R 3 → α ∈ (0, 2π)×(0, π)×R + the one-to-one mapping (2.20). Then the Jacobian matrix can be computed as

∂ p f (p) =       -c -1 cos a sin i -c -1 sin a cos i c -2 sin a sin i c -1 sin a sin i -c -1 cos a cos i c -2 cos a sin i 0 -c -1 sin i -c -2 cos i       -1
where (a, e, c) = f (p).

SNR estimation

Let us briefly explain how to estimate the SNRs appearing in matrix Γ. At first, we realign in time the M signals in accordance with the time delay estimates, derived from cross-correlation maximization. That gives, in discrete time, the sequence of M -ary vectors

x, where the m-th component is given at time t by xm (t) = x m (t/f + τm ), with f denoting the sampling frequency. By consistency of the estimates τm we can approximate x as x(t) = s(t) g + b(t) where the vector sequence b is centered, i.i.d., with diagonal covariance matrix, whose entries are denoted σ 2 1 , . . . , σ 2 M , and g is a M -dimensional vector of SOI's levels at the sensors. The SOI s is modeled as a centered, i.i.d. sequence with unit variance and independent of b. Therefore, we can build estimators ĝ, σ2 1 , . . . , σ2 M based on the empirical covariance matrix calculated from a sample x(t), t = 1, . . . , T ,

R = 1 T t=1 x(t)x(t) .
Then we derive the SNR on the sensor m by SNR m = ĝ2 m /σ 2 m .

MSE comparisons

In this section we determine the boundaries defined by R = 1 and R = 1 i.e., using (2.15) and (2.18), when MSE( q 2D ) = MSE( q 3D ) and MSE( a 2D ) = MSE( a 3D ), respectively. We will also prove the following property.

1. Cov ( q 3D ) -Cov ( q 2D ) is a non-negative definite matrix of rank at most one.

Let us denote

C( q 2D ) = E [( q 2D -q)( q 2D -q) ] = bb + Cov ( q 2D ) = p 2 z (G Γ -1 G) -1 G Γ -1 r z r z G(G Γ -1 G) -1 + σ 2 (G Γ -1 G) -1
and

C( q 3D ) = E [( q 3D -q)( q 3D -q) ] = Cov ( q 3D ) = σ 2 J(R Γ -1 R) -1 J A block-matrix computation yields (R Γ -1 R) =   G Γ -1 G G Γ -1 r z r z Γ -1 G r z Γ -1 r z   Since G Γ -1
G is invertible, we can use the blockwise inversion formula, which gives that

J(R Γ -1 R) -1 J = (G Γ -1 G) -1 + γ -1 (G Γ -1 G) -1 G Γ -1 r z r z Γ -1 G(G Γ -1 G) -1
where γ is a positive number given by

γ = r z Γ -1 r z -r z Γ -1 G(G Γ -1 G) -1 G Γ -1 r z = r z Γ -1/2 I -Γ -1/2 G(G Γ -1 G) -1 G Γ -1/2 A:projector Γ -1/2 r z Therefore, we get C( q 3D ) = σ 2 (G Γ -1 G) -1 + σ 2 γ -1 uu (2.21) with u = (G Γ -1 G) -1 G Γ -1 r z Since Cov ( q 3D ) = C( q 3D ) and Cov ( q 2D ) = σ 2 (G Γ -1 G) -1 , we immediately obtain Pro- perty 1. Denote now D = C( q 2D ) -C( q 3D ), then D = (c -2 cos 2 (i) -σ 2 γ -1 )uu (2.22)
Therefore D has rank at most 1 and the only possibly non null eigenvalue is given by

(c -2 cos 2 (i) -σ 2 γ -1 )u u.
It is also worth noting that D does depend on the slowness only through the term c -2 cos 2 (i).

That leads to the following property. For any function f : q ∈ R 2 → R, if we denote ∂ q f the gradient of f we have

∂ q f × D × ∂ q f = (c -2 cos 2 (i) -σ 2 γ -1 )|u ∂ q f | 2 (2.23)
It follows that the region ∂ q f D ∂ q f > 0 (the 2D estimator performs better) is included in the region defined by the equation

c -2 cos 2 (i) -σ 2 γ -1 > 0 ,
and the region ∂ q f D ∂ q f ≤ 0 (the 3D estimator performs better than or as well as the 2D estimator) is included in the region defined by the equation

c -2 cos 2 (i) -σ 2 γ -1 ≤ 0 .
Hence the boundary defined by c -2 cos 2 (i)σ 2 γ -1 = 0 allows one to choose between 2D and 3D estimation, independently of the choice of f . This applies in particular to the choice between a 2D and a 3D .

We now prove that this region precisely corresponds to the equation R = 1, where R is defined in (2.15). Recall that we have respectively MSE( q 2D ) = Tr (C( q 2D )) and MSE( q 3D ) = Tr (C( q 3D )). Therefore, from (2.22) we derive that boundary between 2D and 3D estimator corresponds in this case to the equation ∆ = 0, where

∆ = MSE( q 2D ) -MSE( q 3D ) = (c -2 cos 2 (i) -σ 2 γ -1 )u u
We conclude similarly as above.
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Local propagation speed constrained estimation of the slowness vector from non-planar array observations 

Abstract

The estimation of the slowness vector of infrasound waves propagating across an array is a critical process leading to the determination of parameters of interest such as the direction of arrival. The sensors of an array are often considered to be located in a horizontal plane. However due to topography, the altitudes of the sensors are not identical and introduce a bias on the estimate if neglected. However, the unbiased 3D estimation procedure, while suppressing the bias, leads to an increase of the variance. Accounting for an a priori on the slowness vector significantly reduces the variance and could therefore improve the performance of the estimation if the introduced bias by an incorrect a priori remains negligible. This study focuses on measuring the benefits of this approach with a thorough investigation of the bias and variance of the constrained 3D estimator which is not available in the existing literature. This contribution provides such computations based on an asymptotic Gaussian approximation. Simulations are carried out to assess the theoretical results both with synthetic and real data. Thus, it is proposed a constrained 3D estimator yielding to the best bias/variance compromise if a good knowledge of the propagation wave speed is accessible.

Introduction

Interest in infrasound technology and research was revived after the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was adopted and opened for signature in 1996. In order to monitor compliance with the CTBT, an International Monitoring System (IMS) has been designed and is in the process of being deployed. The IMS network will include sixty infrasound arrays designed to detect atmospheric nuclear tests. The design goal of this monitoring system is to detect and locate explosions with a yield equivalent to one kiloton TNT equivalent anywhere in the world with at least two arrays [START_REF] Christie | Detection of atmospheric nuclear explosions : the infrasound component of the international monitoring system[END_REF]. Even though the 60 arrays network is not yet fully established, it now provides a global coverage of infrasound generated by natural phenomena. Numerous studies have demonstrated the capability of the IMS network to detect and locate large infrasound events [START_REF] Campus | Worldwide observations of infrasonic waves[END_REF].

To reliably detect and characterize infrasound sources, it is essential to determine the statistical confidence in the estimates of the slowness vector of the detected signal depending on the geometry of the array and the wave incidence. It is usually assumed that the source is far enough to allow plane-wave approximation with time delays of signal arrivals between sensor pairs only corrupted by Gaussian noise [START_REF] Olson | The least squares estimation of the azimuth and velocity of plane waves[END_REF]. To estimate the direction-of-arrival (DOA) and the horizontal phase velocity of infrasound waves propagating across an array, it is also often considered that the sensors are located in a perfectly horizontal plan [START_REF] Brown | Infrasonic signal detection and source location at the prototype international data centre[END_REF]; [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF]. The Time Delay of Arrivals (TDOAs) can be estimated by cross-correlation maximization which are linearly related to the slowness vector, leading to a closed form expression for the least squares estimator. Although beamforming methods are known to provide accurate slowness estimates at low SNR (see [START_REF] Gibbons | The european arctic : A laboratory for seismoacoustic studies[END_REF] for a recent study), we focus here on the TDOA estimation approach. Even when the altitude differences between sensor pairs are small compared to the horizontal aperture of the array, neglecting the elevation for non-planar arrays can lead to significant biases when estimating the 2D horizontal components of the slowness vector [START_REF] Brown | Automatic infrasonic signal detection using the hough transform[END_REF]; [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF]. [START_REF] Nouvellet | Slowness estimation from noisy time delays observed on non-planar arrays[END_REF] have developed a theoretical formulation of the bias/variance of the 2D and 3D estimators. For nearly planar arrays, it was shown that the unbiased 3D estimation of the slowness parameters results in a significant alteration of the variance which could exceed the 2D estimation ones. By applying this new formulation, numerical experiments have been carried out to quantify mean squared errors in the calculated backazimuths for all operating IMS arrays. For some IMS arrays, neglecting the altitudes of the sensors introduces biases larger than 3 • in the back-azimuth leading to large errors in the source location. From these experiments, it was shown that the 3D estimator globally performs better than 2D, except for few arrays which suffer from large variances. Consistent results were obtained for both 2D and unbiased 3D estimators when applied to real dataset. Following this study, a closed form expression of the bias/variance compromise allowing to choose the most suitable 2D/3D estimator taking into account the array geometry has been proposed.

In order to reduce the variance in the back-azimuth estimates, adding a constraint on the norm of the slowness vector can outperform the 2D/3D estimators for nearly all planar arrays. This approach has been detailed by in the context of beamforming [START_REF] Edwards | Effect of interarray elevation differences on infrasound beamforming[END_REF] and TDOA estimation [START_REF] Nouvellet | Constraint on speed of sound for tdoa based estimator[END_REF]. If the horizontal wave speed can easily be related to the speed of sound, it is important to evaluate the effects of speed of sound misestimates on the wave parameter optimization. A misestimation of the speed of sound results in a biased estimate of the slowness vector and thus a biased estimate of the parameters of interest such as the back-azimuth and the horizontal speed.

In this study, we propose a quantification of both bias and variance of the constrained 3D estimator based on asymptotical analysis leading to an analytical expression for the root mean square (RMSE). A comparison between the RMSE of the 3 different estimators allow us to choose the best estimator depending on the situation. This paper is organized as follows. In Section §3.3, we recall the TDOA least-square linear model to estimate the slowness vector in both two and three dimensions. In order to reduce the variance of the 3D estimator for nearly-planar arrays, we present in Section §3.4 the least-square problem which introduces an a priori constraint on the norm of the slowness vector. In Section §3.5, controlled numerical experiments are carried out in order to quantify the sensitivity of the slowness vector constraint on the root-mean-square error on the back-azimuth estimates as a function of the angle of arrival of the incoming signal. The theoretical results of the 2D and constrained 3D estimators are compared with the results of long time series of processed IMS infrasound recordings. Finally, conclusions and perspectives are drawn in Section §3.6.

Notation and model

Under the plane wave propagation model, the time of arrival of the wave at a sensor m is linearly related to the position of the sensor r m = r m,x r m,y r m,z and the slowness vector,

p = 1 c       -sin a sin i -cos a sin i cos i      
, where a is the back-azimuth angle measured clockwise from the North, i is the incidence angle measured from the vertical, and c the speed of sound. It is possible to reformulate the problem using the time difference of arrival (TDOA) w = w 1 , . . . , w C of each of the C = M (M -1)/2 pairs of sensors, leading to the following set of linear equations w = Rp, where R is the C ×3 matrix, each row of which corresponds to a 3-dimensional vector (rr m ) for a given pair of sensors { , m}, 1 ≤ < m ≤ M . The TDOA is estimated by finding the extremum of the cross-correlation function in which the signal received at one sensor is correlated with the received signal at another sensor [START_REF] Azaria | Time delay estimation by generalized cross correlation methods[END_REF]. The infrasound signal that impinges on the sensor array is usually perturbed by noise which corrupt the estimation of the TDOA. Thus [START_REF] Cheung | Closed-form formulae for time-differenceof-arrival estimation[END_REF] show that the TDOA observation model can be written as

w = Rp + , (3.1)
where is distributed according to a Gaussian distribution with a zero mean and covariance

Cov ( ) = σ 2 Γ where the C × C matrix Γ depends on several parameters [START_REF] Carter | Coherence and time delay estimation[END_REF] (the length of the signal, the SNRs, and the bandwidth). In order to estimate the slowness vector from the TDOA, one only has to know Cov ( ) up to a multiplicative constant.

Based on the least squares approach, the 3D estimator of the slowness vector is

p3D = arg min u∈R 3 (w -Ru)Γ -1 (w -Ru) (3.2)
An overview of all of the IMS arrays points out that the arrays are globally planar. The mean value over IMS arrays of the ratio between the maximum difference of heights and the horizontal aperture is 2.6%. Thus, the altitude differences of all sensors are commonly neglected during the estimation [START_REF] Arrowsmith | The f-detector revisited : An improved strategy for signal detection at seismic and infrasound arrays[END_REF]; [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF]; [START_REF] Gibbons | Detection and analysis of near-surface explosions on the kola peninsula[END_REF], leading to the 2D estimator defined as

p2D = arg min u∈R 2 (w -Gu)Γ -1 (w -Gu) (3.3)
where G is the first two columns of R.

A extensive comparison of (3.2) and (3.3) has been conducted in [START_REF] Nouvellet | Slowness estimation from noisy time delays observed on non-planar arrays[END_REF]. For non-planar arrays, it has been showed that (3.3) is a biased estimator. The bias depends on the altitude differences and on the incidence of the wave. The absolute value of the bias increases with the sensor altitude differences. Similarly, the absolute value of the bias increases as the vertical component of the slowness increase. The bias vanishes if the sensors belong to the same horizontal plane, or if the wave travels through the array horizontally (incidence of 90 • ). The estimator p3D in (3.2) is unbiased, however due to the estimation of a third component, its covariance is always larger than the covariance of p2D defined in (3.3) [see Nouvellet et al., 2014, Appendix D]. Thus (3.2) does not always give better results due to the low ratio between the vertical and horizontal differences between the sensor locations. In order to determine the best estimator, a bias/variance compromise has to been performed.

In the next section, a constrained estimator introduced by [START_REF] Brown | Automatic infrasonic signal detection using the hough transform[END_REF] is studied. This estimator carries an a priori information on the slowness which can allow it to outperform the two unconstrained estimator given by (3.3, 3.2).

The least squares problem with a quadratic constraint

In this section, we assess the impact of adding a constraint on the least squares solution. As mentioned, the difference of altitudes between the sensors of an array are usually small compared to the horizontal aperture of the array. Such a situation leads to an ill-conditioned least squares problem as a small TDOA noise yields a significant change in the solution of p. This problem is often solved using regularization methods involving a constraint on the parameters to estimate. One can introduce an a priori information on the solution p3D . In the case of acoustic propagation, the slowness vector is directly related to the speed of sound c, |p| = 1/c 2 . For the ideal gas approximation, the speed of sound in dry air is proportional to the square root of the absolute temperature [Pierce, 1989, Chapter 1],

c = γkT M (3.4)
where c is the speed of sound in dry air, γ is the absolute temperature in kelvin, k is the Boltzmann constant, and m is the mass of a single molecule in kilogram.

In the infrasound context, the air is well describe by the ideal gas approximation and (3.4) gives a precise enough estimation of the speed of sound [START_REF] Dean | Atmospheric effects on the speed of sound[END_REF]. In compliance with our applications, humidity and wind speed are the only parameters which can has a significative effect on the speed of sound. Humidity can lead to an increase of the speed of sound by ∼ 1 m/s in case of high humidity [START_REF] Cramer | The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and co2 concentration[END_REF]. Local wind speed directly affects the speed of sound, however the noise induced by a wind speed larger than 3 m/s reduces the station detection capability [START_REF] Hedlin | Evaluation of rosette infrasonic noise-reducing spatial filters[END_REF].

The addition of a constraint on the 3D estimator (3.2) leads to the formulation of the constrained 3D estimator of the slowness vector as

p3Dc = arg min u∈R 3 (w -Ru)Γ -1 (w -Ru) u.c. |u| = s (3.5)
where u.c. means under constraint and s is the a priori value of the slowness norm.

The next result provides an asymptotic Gaussian approximation for p3Dc . Mean square estimators under quadratic constraints are wide spread in statistics, see [START_REF] Albers | Quadratic minimisation problems in statistics[END_REF] for a recent contribution. However, to our best knowledge, asymptotic results are not directly available in this context.

Theorem 2. Consider the linear model (3.1), with ∼ (0, σ 2 Γ). Define p3Dc by the constrained minimization (3.5) and suppose the following asymptotic behavior as n → ∞,

R Γ -1 R ∼ nσ 2 A , (3.6) s -|p| ∼ n -1/2 δ , (3.7)
where A is an invertible matrix and δ is a real constant. Let Q be a 3 × 2 full rank matrix with image space orthogonal to p.

Define b = δ |p| I 3 -Q(Q AQ) -1 Q A p Ω = Q(Q AQ) -1 Q Then p3Dc is asymptotically normal with rate n -1/2 , namely, √ n(p 3Dc -p) d → N (b, Ω) , (3.8) 
where d → denotes the convergence in distribution.

The proof is postponed to Appendix §3.7. Let us comment this result and explain how to use it in practice.

1. The Gaussian approximation holds as n → ∞, where n corresponds to any positive integer such that (3.6) and (3.7) hold for some invertible matrix A and some δ ≥ 0.

In other words, the Gaussian approximation holds if one can find a large n such that n -1 σ -2 R Γ -1 R is a well conditioned matrix and n 1/2 (s -|p|) is not too large. Typically, this happens if σ is not too large and if the speed constrained s is not far away from the true slowness norm |p|.

2. In practice, one can use this result as follows. We rewrite the limit (3.8) as the approximation

p3Dc = p + N n -1/2 b, n -1 Ω .
Note however that by definition of b and Ω, and using (3.6) (3.7), we have

n -1/2 b = s -|p| |p| I 3 -Q(Q R Γ -1 RQ) -1 Q R Γ -1 R p n -1 Ω = σ 2 Q(Q R Γ -1 RQ) -1 Q .
We see here that n is just an instrumental quantity to derive the assumptions under which the theorem holds and is not required to apply the approximation in practice. See also the following point.

3. In the following, we use this result to approximate the RMSE for estimating the true back-azimuth a = arg(-p yjp x ) by,

â3Dc = 1 0 0 J f -1 p3Dc , = kp 3Dc ,
where the vector k = -c cos a sin i c sin a sin i 0 is the first row of J f -1 , and J f -1 is the Jacobian matrix for the coordinate change between p = (p x , p y , p z ) and α = (a, i, c) (see 2.7.2). Thus, (3.8) implies

√ n(â 3Dc -a) d → N (n -1/2 kb, n -1 kΩk ) .
Or as we did previously,

â3Dc ≈ a + N b 3Dc , σ 2 3Dc ,
where

b 3Dc = s -|p| |p| k I 3 -Q(Q R Γ -1 RQ) -1 Q R Γ -1 R p , (3.9) σ 2 3Dc = σ 2 kQ(Q R Γ -1 RQ) -1 Q k . (3.10)
In particular in the following, we use the following approximation for the RMSE :

RMSE(â 3Dc ) = b 2 3Dc + σ 2 3Dc . (3.11)
The asymptotic bias (3.9) depends on the geometry of the array (through R), the angle of arrival of the wave (through Q and k), and on the relative error (s -|p|)/|p| on the speed of sound constraint. As expected the bias on the constrained estimator increases as the error on the speed of sound c increases. The variance in (3.10) depends not only on the geometry but also the noise through σ 2 and Γ.

In order to assess this result and to better interpret the impact of the parameters on the bias and the variance we provides numerical experiments in the next section.

Numerical Experiments

Simulated Data

We first illustrate the results of Section §3.4 with synthetic data. The simulations consist of computing the delays according to the model defined by (3.1) where the covariance matrix of the noise Γ = I M is diagonal (SNRs for all the sensors are assumed to be equal, which yields an identity matrix for Γ [see Nouvellet et al., 2014, Appendix A]). In these experiments the variance of the TDOA noise is set arbitrarily to σ = 0.01 and R is set according to the sensors location of the array IS18 reported in Tab. 4.1.

In the first simulation the slowness vector is set with a back-azimuth of 280 • , where the bias is maximum for IS18, and the propagation velocity of 340 m/s. The unconstrained 3D estimator, the constrained 3D estimator with the correct speed of sound (340 m/s), and the constrained 3D estimator with an incorrect a priori on the speed of sound (345 m/s, error of 5 m/s) are then compared. Fig. 3.1 is a boxplot representation of the three estimated back-azimuth for 1000 noisy TDOA at two different incidences 135 • and 105 • .

As expected, the box of the unconstrained 3D estimates is larger which suggests that this estimator suffers a larger dispersion. Thus, the advantage of constraining the slowness is clearly visible in Fig. 3.1 where the variances of the constrained estimators are significantly reduced compared with the unconstrained 3D estimator.
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Back-azimuth estimate at 135° of incidence for a fixed back-azimuth of 280° 
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Back-azimuth estimate at 105° of incidence for a fixed back-azimuth of 280°F igure 3.1: Boxplot of the back-azimuth estimates for an incidence of 135 • (left) and 105 • (right). The horizontal line represents the true back-azimuth. Geometry : IS18 in Greenland whose sensor locations are reported in Tab. 4.1. Fig. 3.1 also exhibits the bias of the 3D incorrectly constrained estimator. It is worth noting the incidence of the wave has an impact on the bias of the constraint estimator â3Dc opposite to its impact on the 2D estimator â2D : the closer is the incidence to the horizontal (90 • ), the smaller is the bias of â2D (as explained in [START_REF] Nouvellet | Slowness estimation from noisy time delays observed on non-planar arrays[END_REF]) and the larger is the bias of â3Dc . Indeed, as the distance between sensors traveled by a horizontally propagating wave becomes larger than the one for a vertically propagating wave, the bias introduced by a mis-estimation of c is larger. Fig. 3.1 clearly shows that the bias becomes larger as the wave becomes more vertical (i.e the incidence moves away from 90 • ). In this particular example, an error of 5 m/s on the speed of sound induces a bias of ∼ 0.2 • and ∼ 0.4 • in the azimuth estimation for incidences of respectively 135 • and 105 • . In contrast the correctly constrained estimator is unbiased and thus outperforms the others.

A second simulation, Fig. 3.2, is conducted to investigate the behavior of the root-meansquare error (RMSE) of back-azimuth estimates as a function of the true back-azimuth for a fixed incidence of 120 • . The RMSE is estimated for 1000 runs at each of the 90 azimuths linearly distributed between 0 • and 360 • . We observe that RMSE of the unconstrained backazimuth estimates is the highest due to the large variance which does not compensate the bias of the incorrectly constrained back-azimuth estimates. This is no surprise to see that the RMSE of the incorrectly constrained back-azimuth estimates is the significantly higher than the correctly constrained estimates due to the bias. Fig. 3.2 exhibits a smaller RMSE for the correctly constrained estimates due to the absence of bias and a smaller variance. Theoretical RMSE of the estimators has also been added to Consequently a good knowledge of the speed of sound leads to a significant improvement of the back-azimuth estimates. The knowledge of the temperature at the array is easily accessible as a meteorological station is co-located with each IMS array. This information should be used to calculate the speed of sound (3.4) to improve the back-azimuth estimation. However it must be noted that in the case of a wrong constraint, due for example to a malfunction of the temperature probe, the back-azimuth estimation will be biased. 
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Real data

IS66 in Tunisia

IS66 was an experimental infrasound portable array deployed in the northwest of Tunisia for 6 months from May 2013 to November 2013 [START_REF] Kallel | Pts infrasound portable array in tunisia : Deployment and results[END_REF]. The 4 elements array was installed near Aïn Draham on the slope of Djebel Bir montain. Due to the local topography, the differences of elevation between sensors cannot be neglected (up to 248 m for an aperture of around 1 km). Under those circumstances, IS66 is an ideal experimental setting for assessing the impact of the elevations for the slowness vector estimation.

To illustrate the compromise bias/variance, a fixed source has been isolated and studied. Infrasound signal with a constant back-azimuth of ∼ 270 • has been detected for 2 consecutive nights of July 2013. The frequency content of the source lies between 0.5 Hz and 4 Hz, suggesting an industrial origin, however the origin of the source remains unknown.

As no temperature probe was co-located with the array, we have taken the mean temperature at night at Aïn Draham during the period of recording of ∼ 24 • C National Climatic Data Center, NESIS, NOAA, U.S. Department of Commerce [1997] results are summed up in the more appropriate boxplot representation showing in Fig. 3.4. Tab. 3.2 reports the mean value and standard deviation of the three estimators. Even if ground truth information about the source is unknown, the unconstrained 3D estimator is unbiased and the value of its mean over a long period of time is considered as the true backazimuth incorporating the propagation effect. The bias for the 2D azimuth is estimated to be ∼ 3.2 • , whereas the variance of the unconstrained 3D azimuth is estimated to be more than 80% higher compared with the other variances.

IS18 in Greenland

IS18 in Quaanaaq, Greenland is a permanent height element array of the IMS infrasound network. The array is located on the mountainous coast and the sensors have significant altitude differences (up to 110 m for an aperture of around 1 km). This array is another ideal case to compare the different estimators. We focus our experiment on microbarom back-azimuths over 6 months. Microbaroms are generated by non-linear interactions of ocean waves [START_REF] Landès | Explaining global patterns of microbarom observations with wave action models[END_REF]; [START_REF] Waxler | The radiation of atmospheric microbaroms by ocean waves[END_REF], and are quasi-permanently recorded at IS18. Two microbarom source regions are known to be recorded at IS18 [START_REF] Kedar | The origin of deep ocean microseisms in the north atlantic ocean[END_REF], and are exhibited on the density of back-azimuth detections Fig. 3.6. A dominant peak at ∼ 120 • corresponds to microbarom arriving from Atlantic Ocean, whereas the smaller peak at ∼ 280 • points toward the Pacific Ocean.

6 months in 2014 of continuous recordings have been processed using The Progressive Multi-Channel Correlation algorithm PMCC [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF] with a focus on the microbarom frequency band (0.1-0.5 Hz). About 72000 back-azimuths are estimated using both 2D and constrained 3D estimators. The temperature probe at the array is used to compute the speed of sound for each detection. Fig. 3.5 exhibits the high variability of the temperature at IS18 during the period of analysis and illustrates the importance of using the information given by the temperature probe. During the processing period, temperature varies from -31 • in February to 8 • by the end of June. The intraday variations are also important, as for example, the temperature jumps from -20 • the 9 th to -5 • the 10 th of January. Fig. 3.6 illustrates the differences between the 2D and constrained 3D back-azimuth estimations as a function of the back-azimuth and the incidence angle. The incidence is estimated with the constrained 3D estimator î = acos(p 3Dc,z /|p 3Dc |), where p 3Dc,z is the third component of p 3Dc . Fig. 3.6 shows the dependence of the bias with the angle of arrival and as expected the bias increases when the incidence moves away from 90 • . The theoretical biases of the 2D estimator for 3 incidences are also added to the Fig. 3.6 showing good agreement between theoretical and experimental results. The bias introduces by the 2D approximation could lead to ∼ 10 • error in the back-azimuth estimation.
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Conclusion

In this paper, we have studied the effect of incorporating the speed of sound as a means to constrain the 3D estimation of the slowness vector. This estimator has been shown to be asymptotically unbiased under the assumption that the speed of sound is perfectly known at the array. However, a bias appears as soon as an error is made on the speed of sound. This bias increases as the incidence is getting closer to 90 • . Even if the bias introduced by a wrongly picked constraint is small compared to the bias introduced by the 2D approximation, it is important to understand and quantify the error introduced by using an a priori.

Numerical experiments show a good agreement with the asymptotic performance of the constrained 3D estimator, and suggests this estimator can greatly improve the estimate of the parameters of interests such as the back-azimuth and the horizontal speed. Applications on real data set confirm the need to account for the difference of altitudes between the sensors and to incorporate an a priori based on the speed of sound. At the experimental infrasound array IS66, the 2D estimation of the azimuth is biased, whereas the unconstrained 3D estimation exhibits a larger variance. Finally the analysis of the back-azimuth of the microbaroms over a long period at IS18 shows that the 2D estimation could lead to a significant bias of ∼ 10 • .

This study shows that accounting for the sensor elevations of nearly planar arrays together with a well constrained 3D estimation of the slowness vector will improve the performance of the infrasound technique as an operational monitoring tool for the verification of the CTBT. It is expected that more studies on improving slowness parameters estimation will help optimizing atmospheric remote sensing methods using ground based infrasound observations [START_REF] Assink | Evaluation of wind and temperature profiles from ecmwf analysis on two hemispheres using volcanic infrasound[END_REF]; [START_REF] Garcés | Traveltimes for infrasonic waves propagating in a stratified atmosphere[END_REF]. 
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Postponed proof of theorem 2

Inserting the model (3.1) equation into the definition (3.5) of the estimator and developing, we obtain

p3Dc = arg min u∈R 3 ((p -u) R Γ -1 R(p -u) + 2 Γ -1 R(p -u)) u.c. |u| = s ,
where we removed the quadratic term Γ -1 inside the argmin, since it does not depend on u. The idea now is to express √ n(p 3Dcp) as a constrained argmin. So we need to express the constraint on √ n(p 3Dcp) instead of u. We have

|u| 2 = s 2 ⇐⇒ |(p -u) -p| 2 = s 2 ⇐⇒ 2(u -p) p + |(p -u)| 2 = (s 2 -|p| 2 ) ⇐⇒ 2 √ n(u -p) p + n -1/2 | √ n(p -u)| 2 = √ n(s 2 -|p| 2 ) .
Using this expression of the constraint, setting v = √ n(up), we thus get that

√ n(p 3Dc -p) = arg min v∈R 3 v n -1 R Γ -1 R v -2n -1/2 Γ -1 Rv u.c. 2v p + n -1/2 |v| 2 = √ n(s 2 -|p| 2 ) .
By (3.6) and (3.7) the matrix n -1 R Γ -1 R and the scalar √ n(s 2 -|p| 2 ) respectively converge to σ 2 A and 2δ|p|. Note also that, using that ∼ N (0, σ 2 Γ), we have

n -1/2 Γ -1 R ∼ N 0, n -1 σ 2 R Γ -1 R d → N 0, σ 4 A .
One can deduced that √ n(p 3Dcp) is bounded in probability, and using [van der Vaart and Wellner, 1996, Theorem 3.2.2], we can conclude that

√ n(p 3Dc -p) d → arg min v∈R 3 σ 2 v Av -2U v u.c. 2v p = 2δ|p| , (3.12)
where U ∼ N (0, σ 4 A). Hence it only remains to determine the distribution of the limit constrained minimization problem

V = arg min v∈R 3 σ 2 v Av -2U v u.c. v p = δ|p| .
To this end, we rely on the definition of the matrix Q. Namely, any element of v ∈ R 3 can be written uniquely as v = αp + Qṽ with α ∈ R and ṽ ∈ R 2 . In this decomposition the constraint simply reads as α = δ/|p|. Inserting v so expressed in the minimization, we get

V = δ p |p| + Q Ṽ (3.13) with Ṽ = arg min ṽ∈R 3 σ 2 δ p |p| + Qṽ A δ p |p| + Qṽ -2U δ p |p| + Qṽ . A direct computation yields Ṽ = (Q AQ) -1 Q σ -2 U - δ |p| Ap .
Using that U ∼ N (0, σ 4 A) and (3.13), we get (3.8), which concludes the proof.

Chapitre 4

Sequential hypothesis testing approach for infrasound detection

Résumé

À notre connaissance, les méthodes de l'état de l'art dans ce domaine (voir section §1.3) sont toutes basées sur une segmentation temporelle du signal. Une segmentation fréquentielle peut aussi être utilisée afin d'améliorer le rapport signal à bruit (SNR pour signal/noise ratio) en regardant des bandes de fréquence diverses dans lesquelles le signal d'intérêt se concentre potentiellement ou bien, alternativement, le bruit est moins présent. La segmentation temporelle est réalisée en appliquant une fenêtre glissante le long du signal enregistré par les différents capteurs. Une statistique de test est ensuite calculée indépendemment pour chaque segment puis comparée à un seuil pour en déduire une décision à propos de la détection. Cependant, il nous semble que cette segmentation temporelle présente certaine limitation. En premier lieu, le choix de la taille de la fenêtre est problématique. En effet, si un signal d'intérêt de longue durée est présent, une fenêtre de taille importante permet d'obtenir de meilleures performances qu'une fenêtre de petite taille. Inversement, si le signal est de courte durée, une fenêtre de petite taille est préférable pour ne pas inclure les parties d'enregistrement ne comprenant que du bruit.

Nous proposons alors dans le chapitre §4, une représentation d'état des signaux infrasonores à l'aide de modélisations de type autoregressive (AR) et autoregressive et moyennemobile (ARMA). Ces modélisations nous permettent de nous affranchir de la segmentation temporelle tout en gardant la segmentation fréquentielle. Des algorithmes de Kalman en parallèle sont ensuite utilisés pour le calcul d'une version CUSUM (CUmulated SUM) de la statistique du rapport de vraisemblance pour la détection d'un signal cohérent issu d'une onde plane traversant un réseau de capteurs. La détection en ligne proposée repose sur le calcul itératif de la statistique de test.

Introduction and motivations

Usual detection algorithms are based on a temporal segmentation and aim to detect a coherent signal buried in noise. This temporal segmentation is performed by applying a sliding window along the signal recorded by the M sensors of the infrasound array. A test statistic is then calculated for each independent window of signal. A binary test is then derived from the test statistic and performed by comparing the test statistic to a given threshold. Several test statistics commonly used to detect infrasound are given in the section §1.3 of Chapter §1.

However, the temporal segmentation has limitations. Indeed, the size and the sliding step of the window can be problematic. If a long duration coherent signal is present within the recordings a long window will allows to discriminate a less powerful signal from the ambient noise in comparison with a small window. On the contrary, if the coherent signal is of short duration, one has to choose a small enough window in order to minimize the part of the recording where only noise is present. A second limitation arises when one needs a precise time of apparition of a signal. Detection algorithms based on temporal segmentation only give a binary decision concerning the whole window. Thus it is not possible to determine when the signal appears within this window.

This paper presents a new algorithm to detect infrasonic waves using a statistical test based on beamforming. A computation of a likelihood ratio at each new observation is performed by mean of Kalman Filters. The detection of an abrupt change in the likelihood ratio is then performed with the CUSUM algorithm. The main advantage of this online approach is that the statistic test relies on the entire signal, and does not require to specify a window size. The iterative integration of new observations allow to discriminate a signal of interest from noise for low SNR provided that the angle of arrival remains constant. Such a consideration was proposed by [START_REF] Brown | Automatic infrasonic signal detection using the hough transform[END_REF] who used the Hough transform as a detector supposing that a constant angle of arrival is an indicator of infrasonic events.

The algorithm is built on either an autoregressive (AR) or an autoregressive moving average (ARMA) modelling of the signals. Commonly the noise is supposed to be spatially and temporally uncorrelated, however real world noises are often temporally correlated. An AR or ARMA modelling allows one to describe the frequency content of the noise. A similar approach has been proposed by [START_REF] Frazier | Application of generalized autoregressive conditionally heteroskedastic modeling to wind noise for enhancing detection of transient infrasound[END_REF] that also use ARMA/GARCH to model the wind noise in order to improve the performance of transient infrasound within a window. Infrasound signal denoising by AR method and Kalman Filter has also been considered by [START_REF] Arai | Approaches to the infrasound signal denoising by using ar method[END_REF]. AR method and Kalman Filter has been extensively used in seismic context. [START_REF] Kitagawa | State space approach to signal extraction problems in seismology[END_REF] used AR to estimate the precise arrival time of a seismic signal based on the maximum of the approximate likelihood given a window of signal where an arrival occurred. [START_REF] Basseville | Detection of abrupt changes : theory and application[END_REF]; [START_REF] Der | Phase onset time estimation at regional distances using the CUSUM algorithm[END_REF] uses the CUSUM in a geophysical context to detect a change in the absolute amplitude of the signal recorded by a seismograph in order to estimate the onsets time of seismic phases. However the methods does not a multi-sensors approach (beamforming) and treat each sensor individually. [START_REF] Yardim | Geophysical signal processing using sequential bayesian techniques[END_REF] use beamforming based sequential Bayesian techniques for the tracking of the angle of arrival of seismic tremors. However this last reference does not treat of the detection and supposes that a coherent signal is already present.

Moreover, the Progressive Multi-Channel Correlator (PMCC ) performs the detection in two steps. First it looks for a signal of interest by windowing and filtering the signal. It results in detection pixels that attests the presence of coherent signal for a specific time and frequency band. Then a post-processing step groups the similar pixels according to a metric accounting for the distance in time and frequency. [START_REF] Brachet | Monitoring the earth's atmosphere with the global ims infrasound network[END_REF] give an in-depth description of the overall processing. Our algorithm is an alternative to this two step approach and directly performs both. The frequency segmentation is done by the choice of the AR/ARMA models while the association might be done directly with the use of both CUSUMs to respectively detect the appearance and the disappearance of the coherent signal.

In this chapter, we derived the state space of a plane wave traveling through an array of sensors based on a AR/ARMA modelling. The AR/ARMA model, and the angle of arrival of the wave is unknown which lead to unique state spaces for each set of unknowns. Section §4.3 is dedicated to the description of a plane wave appearance and the AR/ARMA models. In sections §4.4 and §4.5, we present the online detection algorithm for the appearance of a coherent plane wave buried in stationary noise. Section §4.4 consider a basic scenario where the noise is spatially and temporally uncorrelated. It allows us to introduce the CUSUM algorithm. Section §4.5 consider a more realistic scenario with temporally correlated noise and contains an application with real infrasound data generated by the launch of the Space shuttle Discovery. In section §4.5 we present an extension of the previous scenarii in order to deals with the problem of the online detection in presence of an interference called nuisance signal. Finally section §4.6 is dedicated to the removal of both noise and nuisance signal from the recording leading to an improvement of the more classic and temporally segmented detectors.

Models

The detection of infrasound events rests on arrays that are almost uniformly distributed around the Earth. Each array has M sensors that continuously record ambient and spatially uncorrelated infrasound noise until a source generates an infrasound wave that will ultimately cross the array. The infrasound sources are supposed to be far enough from the array to be under the plane wave assumption. The m th sensor received the following sample signal,

y m,k = κ k s k-τm + n m,k . (4.1) 
We note n m,k the noise at time k recorded by sensor m. The coherent wave, referred as s k , is called signal of interest (SOI). While crossing the array, the SOI will be successively recorded by the spatially distant sensors with a delays. s k-τm is the delayed version of s k by the delay τ m specific to the m th sensor. The SOI is supposed to be perfectly coherent between the sensors whereas the noise is spatially uncorrelated. The binary number, common to all the sensor of an array, κ k ∈ {0, 1} characterizes the absence or the presence of the SOI.

If the SOI is a plane wave propagating through the array, the sample delay τ m is related to its slowness vector and we have τ m = r T m p s f s with r m the position of the m th sensors relative to the center of the array, • • • the integer part and f s the sampling rate. The slowness vector p is the vector perpendicular to the wavefront with a norm equal to the inverse of the wave speed. The slowness vector is linear to the delay in the Cartesian coordinates however it is often easy to defined its components as a function of parameters of interest such as the back-azimuth i.e the angle source-array calculated clockwise from the north.

In the next sections both s k , n k will be modeled either by white noise, or by autoregressive (AR) or as autoregressive moving average (ARMA) processes. Thus this paragraph is dedicated to a brief description of these models that are widely used in geophysical applications [START_REF] Kozin | Autoregressive moving average models of earthquake records[END_REF]; [START_REF] Leonard | Multi-component autoregressive techniques for the analysis of seismograms[END_REF]; [START_REF] Nassery | Real time seismic signal processing using the arma model coefficients and an intelligent monitoring system[END_REF]; [START_REF] Robinson | Geophysical Signal Analysis[END_REF],

The notation AR(p) refers to the autoregressive model of order p. An autoregressive process is defined as,

e k = p i=1 α k e k-i + k ,
with α 1 , . . . , α p are the coefficients of the autoregressive process e k . This representation allows to introduce a temporal correlation as the conditional means of e k is a linear function of its past values. The innovation k ∼ N (0, σ 2 e ) takes into account for unpredictable deviations from what is it expected given the past. The AR(p) model is a particular case of the ARMA(p, q) that refers to a model with p autoregressive and q moving averages terms,

e k = p i=1 α i e k-i + q j=1 θ j k-j + k .
These two representations of stationary time series allow one to describe the noise and the SOI with few parameters. AR/ARMA models is of interest because it is easy to translate them into a state space representation while allowing to account for the signal spectral properties [START_REF] Rao | Ar and arma spectral estimation[END_REF].

Case 1 : Autoregressive SOI buried in white noise

In this section the SOI, (s k ) k≥1 , is modelled as a AR(p) process whereas the noise n m,k is modelled as white, for all m ∈ {1, . . . , M }. The ambient infrasound noise is not necessary temporally uncorrelated, however the digitized sensor time series can be pre-whitened. The noise vector n 1,k . . . n M,k can realistically be assumed to be Gaussian white with zero mean and a covariance proportional to I M .

This basic scenario will illustrate the state space representation and the Kalman Filter algorithm. According to the assumed models for the SOI and the noise, one can transform the observations equation (4.1) by applying a delay of -τ m on both side of (4.1). This leads to the following multi-channel models for the sensors data,

y k (τ ) = κ k 1 M s k + n k (τ ) , (4.2) s k = p i=1 α k s k-i + ε s k . (4.3)
The time series at time k recorded by the M sensors are concatenated into the vector

y k = y 1,k . . . y M,k . y k (τ )
is the column vector built by applying the delays of the m th component of τ = τ 1 , . . . , τ M to the m th component of the observations (i.e y k (τ ) = y 1,k+τ 1 , . . . , y M,k+τ M ). 1 M is the M column vector filled with 1. (4.2) is the sum and delay beamforming, the observation are delayed in order to align the SOI between the recordings. The successive values of the SOI are defined as the weighted sum of its previous p values plus an innovations ε s k ∼ N (0, σ 2 s ). The multivariate noise n k is a white Gaussian process with zeros mean and covariance equal to I M σ 2 n . Let us notice we assumed the noise to be stationary and independent between sensors which implies that the delays applied to the noise vector could be omitted in (4.2).

State Space Representation

A state space representation is a mathematical model that describes the dependence between an unobserved state variable and an observed measurement. (4.2) is reformulated to get the following linear state space representation,

x k = Fx k-1 + ρσ n v k (4.4) y k (τ ) = H κ x k + σ n w k . (4.5)
The unobserved state vector x k = s k . . . s k-p is a vector whose components are the signal of interest at time k and its past value (its size is given by the order of the autoregressive model). The state equation (4.4) is a VAR(1) (vector autoregressive) representation of the AR(p) representation of the SOI given by (4.3). The state x k is generated from its past value x k-1 plus a noise ρσ n v k . The vectorial state noise v k ∼ N (0, Q). originated from the innovation s k of the SOI. We have

ρσ n v k ∼ N (0, σ 2 s Q), where ρ 2 = σ 2 s /σ 2 n
is the signal to noise innovation ratio (SNIR). The observation noise w k ∼ N (0, I M ) is associated to a physical variable as it represents the noise n k recorded by the sensors. w k and v k are assumed to be independent. The state transition F given by (4.6) also called companion matrix is defined by the coefficients of the autoregressive models of the SOI. The delayed observations y k (τ ) depend on the state vector by the observation matrix H κ given by (4.7). H κ is a M ×p time varying matrix function of κ k ∈ {0, 1}.

F =             α 1 . . . α p 1 0 . . . 0 0 1 . . . . . . . . . 0 1 0             , (4.6) H κ =       κ k 0 . . . 0 . . . . . . . . . . . . κ k 0 . . . 0       . (4.7)
We recall the well known prediction and update equations of the Kalman Filter algorithm for one step,

x k|k-1 = Fx k-1|k-1 , (4.8) 
P k|k-1 = FP k-1|k-1 F + ρ 2 σ 2 n Q , (4.9) z k (τ ) = y k (τ ) -H κ x k|k-1 , (4.10) 
x k|k = x k|k-1 + K k z k (τ ) , (4.11) 
P k|k = (I -K k H κ )P k|k-1 , (4.12) 
K k = P k|k-1 H κ (H κ P k|k-1 H κ + σ 2 n R) -1 , (4.13) 
S k = H κ P k|k-1 H κ + σ 2 n R . (4.14)
The Kalman Filter calculates the mean x k|k and the covariance P k|k of the unobserved state given the observations up to k. The Kalman Filter recursively updates the current best estimates whenever a new observation is obtained. The Kalman gain K k control the influence of the newly available observation on the new estimate. We note that the stability of the system (4.4, 4.5) requires that all the eigenvalues of F lie inside the unit circle [Hamilton, 1994, pp. 3043]. Thus the stability of the system is assessed if any value λ that verified (4.15) has a magnitude less than 1. It is equivalent of having selected a stable and causal AR(p) for the SOI which will be assumed.

∆(Y K (τ )) = max 1≤k 0 ≤K L 1 (Y 1:K (τ ); k 0 ) L 0 (Y 1:K (τ )) , = max 1≤k 0 ≤K log p 1 (Y k 0 :K (τ )) -log p 0 (Y k 0 :K (τ )) . (4.18)
If the K observations are available the maximization given by (4.18) can be computed numerically. It is also possible to compute iteratively this generalized likelihood ratio by means of the Kalman Filter. Then to reject H 0 , one has to compare ∆(Y K (τ )) to a threshold that is set by the user. However, in both cases the computation becomes more and more expensive as the number of samples K grows (the number of maximization at time K grows to infinity with K), and the threshold will depend on K.

This problem can be overcome with an equivalent recursive procedure derived by [START_REF] Page | Continuous inspection schemes[END_REF]. The key idea is to recurcivelly compute the difference of the two quantites log p 0 (Y

1:K (τ )), log p 1 (Y 1:K (τ )) as a form a of sum S K (τ ) = K k=1 l k (τ ). We let l k (τ ) = l 1 k (τ ) -l 0 k (τ ) where l 1 k = log p 1 (y k (τ )|Y 1:k-1 (τ )) and l 0 k = log p 0 (y k (τ )|Y 1:k-1 (τ )
). We note that in our current case, log p 0 (y k (τ )|Y 1:k-1 (τ )) = log p 0 (y k (τ )). With the help of the state space representation given in section §4.4.1, the Kalman Filter algorithm will be used to compute the quantity l k (τ ) at each new sample. Thus we have :

l 1 k (τ ) = -log det S k -σ -2 n (y k (τ ) -H 1 x k|k-1 ) S -1 k (y k (τ ) -H 1 x k|k-1 ) , l 0 k (τ ) = σ -2 n y k (τ ) y k (τ ) .
We note that only l 1 (y k (τ )) requires the use of the Kalman Filter algorithm to be computed, whereas l 0 (y(τ )) is directly calculated from the available observations. The generalized likelihood ratio (4.18) is equivalently reformulated as,

∆(Y K (τ )) = S K (τ ) -min 1≤k 0 ≤K S k 0 -1 (τ ) . (4.19)
The name CUSUM is due to the recursive calculation of the generalized likelihood ratio with the current value of the cumulative sum S k (τ ) minus its minimum value. At each new sample, the cumulative sum is easily updated S k (τ ) = S k-1 (τ ) + l k (τ ). Finally [START_REF] Basseville | Detection of abrupt changes : theory and application[END_REF] elegantly shows that as the statistic test is compared to a threshold, (4.19) can be reformulated as, (4.20) where {x} + = sup(0, x) and Y 0 (τ ) = 0. The formula (4.20) can be seen as an integration of the observations over windows with variable size where this size depends on the behaviour of the entire past observations.

∆(Y K (τ )) = {∆(Y K-1 (τ )) + l k (τ )} + .
The test statistic based on the CUSUM algorithm (4.20) is applicable to online approach for the detection of the apparition of a coherent wave.

The idea behind the CUSUM is to detect as quickly as possible the time when the likelihood ratio test (4.20) exceeds a certain threshold h. Graphically, the recursive form (4.20) remains close to 0 as E 0 [l k (τ )] ≤ 0 before a change occurres. Resetting the CUSUM to 0 instead of allowing it to fall below zero has the same effect as forgetting the past observations. After a change, (4.20) starts growing with a positive slope of E 0 [l k (τ )] until it crosses the threshold h. The threshold is chosen according to a trade-off between the time to detect the change and the false-alarm rate. Having a low threshold allows to quickly detect the abrupt change, however it will result a high frequency of false alarms. On the other hand, if the threshold is too high the detection delay might become to important to detector a short duration SOI.

Until now we have supposed that the θ 0 , θ 1 are known which is not the case for infrasound detection. To be optimal, the algorithm needs to replace the unknown θ 0 and θ 1 by their maximum likelihood estimate. The generalized likelihood ratio test becomes,

∆ * (Y K (τ )) = max 1≤k 0 ≤K sup θ 1 ∈Θ 1 log p 1 (Y k 0 :K (τ )) -sup θ 0 ∈Θ 0 p 0 (Y k 0 :K (τ )) (4.21)
The generalized likelihood ratio (4.21) can not longer be computed as a cumulative sum. [START_REF] Nikiforov | A suboptimal quadratic change detection scheme[END_REF] propose to reduce the parameters space Θ 1 . The goal is to maximize θ 1 over a finite range of values that is important for the detection. It leads to a suboptimal detection algorithm with a trade-off between the computation complexity and the efficiency.

We recall that our unknown in the parameters θ 0 and θ 1 are the noise variance, the innovation of the SOI to noise ratio ρ, the autoregressive coefficients of the SOI model. In this case, the detection algorithm needs to perform T parallel CUSUMs. T is the number of possible subsets of selected parameters in θ 1 . [START_REF] Oskiper | Quickest detection of a random signal in background noise using a sensor array[END_REF] shown that a similar sub-optimal method to detect a narrow-band signal of interest had performance close to the optimal algorithm (with perfect knowledge of the parameters).

We propose the following scheme for the selection of the parameters to tune, -The unknown noise variance σ 2 n is replaced by its maximum likelihood given past observations where only noise is present.

-A reduce number of ρ chosen on a logarithm scale.

-A reduce number of SOI models.

The possible SOI models can be built with a database of known signals. Alternatively, the models can describe several generic frequency contents (low, pass-band, high frequency contents).

We note that the CUSUMs depend on the delays (τ ), and thus allow one to test for the presence of an abrupt change for each possible delays. We propose to test for an abrupt change in a finite set of physically possible delays given by a finite number of possible slowness vectors. This approach is similar to the F-detecteur.

If one needs to have a more precise estimate of the signal parameters, a procedure to estimate the parameters of the state space (4.4, 4.5) can be performed on a window of signals where the CUSUM is higher than the threshold. Such a procedure based on maximum likelihood or expectation maximization has been proposed by [Shumway and Stoffer, 2006, pp.335-349].

Case 2 : Autoregressive moving average SOI buried in autoregressive moving average noise

The principle of online detection have been presented in the previous section. However, the noise model does not fit real world observations. As shown by Bowman et al. [2005] with a systematic estimation noise power spectral density, the noise at the array is approximately pink (the power spectral density on a log-log plot displays an approximate linear relationship between the log frequency and the log power spectral density). Thus we propose to modify the observations model (4.1) by considering the noise and the SOI as ARMA processes. It will allow us to describe the colored properties of the noise directly in the state space representation. This section is dedicated to the adaptation of the previously presented state space model (4.4, 4.5) to a SOI modelled as an ARMA process buried in an ARMA low frequency noise. We have,

y k (τ ) = κ k 1 M s k + n k , with , (4.22) s k = p i=1 α s i s k-i + q j=1 β s j ε s k-q + ε s k , (4.23 
)

n k = p i=1 α n i n k-i + q j=1 β n j ε n k-q + ε n k , (4.24) 
When κ k = 1, the delayed observations recorded by the sensors is as previously a spatially coherent SOI perturbed by a spatially uncorrelated noise. However, the noise is no longer assumed to be temporally uncorrelated. The AR coefficients, the MA coefficients and the innovation process describing the SOI are respectively (α s i ) 1≤i≤p , (β s j ) 1≤j≤q and ε s k ∼ N (0, σ 2 s ). Without loss of generality, the order and the coefficients of the noise,

n k = n 1,k . . . n M,k , (α n i ) 1≤i≤p
and (β n j ) 1≤j≤q are supposed to be identical for all the sensors. Let us note that their innovations

ε n k = ε n 1 k . . . ε n M k
are spatially independent and i.i.d as Gaussian with zero mean and a covariance matrix I M σ 2 n . We see that in contrast with (4.2), the measurement noise in (4.22) is correlated over time.

The colored noise can be directly included into the state space with an augmentation of the state vector [START_REF] Simon | Optimal State Estimation : Kalman, H Infinity, and Nonlinear Approaches[END_REF]. The following procedure, leading to the state space for an ARMA SOI and ARMA noise, is described in the next subsection.

State Space Representation

Similarly to an AR model, an ARMA model can be translated into a state space representation. Let us consider an ARMA process y * k of order (p * , q * ) with innovation noted ε * k . Then its equivalent state space representation is given by,

x * k = F * x * k-1 + q * ε * k , (4.25) y * k = h * x * k . (4.26)
We let r * = max(p * , q * + 1). The unobserved state x * k is an r * column vector, F * given by (4.27) is the r * × r * transition matrix, q * = 1 θ 1 . . . θ r * -1 and h * = 1 0 1,r * -1 are vectors with respective dimensions of r * × 1 and 1 × r * . The notation 0 E,F refers to the E × F null matrix.

F * =             α * 1 1 0 . . . 0 α * 2 0 1 . . . 0 . . . α * r * -1 0 0 . . . 1 α * r * 0 0 . . . 0             . (4.27)
The derivation of this state space for the ARMA is not trivial. The proof of (4.25, 4.26) capturing the ARMA process is given in Appendix 4.8. Let us note that the state space representation for an ARMA can take many forms and is not unique [START_REF] Akaike | Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes[END_REF]; [START_REF] Hamilton | Chapter 50 state-space models[END_REF]; [START_REF] Pearlman | An algorithm for the exact likelihood of a high-order autoregressive-moving average process[END_REF].

The observations models given by (4.22, 4.23, 4.24) includes 1 ARMA process for the SOI and M distinct ARMA process for the noise. Multiple ARMA processes can be put into an equivalent VARMA form leading to,

x s+n k = Fx s+n k-1 + Q s+n ε k s+n , (4.28) y k (τ ) = H s+n κ x s+n k , (4.29) 
with, F s+n = diag F s F n . . . F n the block diagonal matrix filled with the transition matrix of the SOI and M times the transition matrix of the noise. F s and F n are given by pluging the AR coefficients of respectively the SOI and the noise in (4.27). The state vector x s+n k is a concatenation of the SOI state vector, and each of the noise state vector. The eigenvalues of a block diagonal matrix are given by the eigenvalues of each matrices on its diagonals. Thus the stability of the state space representation (4.25, 4.26) is ensured if the AR part of the ARMA models are stable.

x s+n k =          x s k x n 1 k . . . x n M k          , Q s+n =          A 0 (q s ) A 1 (q n ) . . . A M (q n )          .
The matrix Q s+n is build with the help of

q s = 1 β s 1 . . . β s q , q n = 1 β n 1 . . . β n p ,
and the matrix A i (q) = 0 r,i q 0 r,M -i with r the size of the input vector q. The vector

ε s+n k = ε s ε n 1 . . . ε n M
, filled with the innovations, is Gaussian with zero mean and a diagonal covariance of size (1 + M ) × (1 + M ) loaded with the variance of the innovations. We recall that the signal and noises innovations are temporally uncorrelated thus

E ε s+n k , ε s+n k is null for k = k .
The observation matrix is designed to add the estimated noises processes to the estimated SOI at time k. We let r = max(p, q + 1) and r = max(p , q + 1), we have

H s+n κ =       κ k 0 1,r-1 1 0 M r -1 . . . 0 1,r-1+r 1 0 1,(M -1)r -1 κ k 0 1,r-1+(M -1)r 1 0 r -1      
We summarize the dimensions of each vectors and matrices of (4.28,4.29), in the following table.

Name

Size Description

x s+n k (r + M r ) × 1
Concatenation of the state vector of the signal of interest and of the M state vectors of the noise.

F s+n (r + M r ) × (r + M r ) A block diagonal matrix whose diagonals are filled with the transition matrices of the signal of interest and noises state spaces.

Q s+n (r + M r ) × (M + 1)
Concatenation of the MA coefficients of the signal of interest and the noises.

ε s+n k (M + 1) × 1
Column vector filled with the signal of interest and the noises innovations.

y k (τ ) s+n M × 1
Delayed version of the signal received by the sensors

H s+n κ M × (r + M r )
Observation matrix selecting the first components of the signal of interest and the noises state vectors to add them.

From (4.28), we see that

         x s k x n 1 k . . . x n M k          =          F s x s k-1 F n 1 x n 1 k-1 . . . F n M x n M k-1          +          q s ε s k q n 1 ε n 1 k . . . q n M ε n M k         
Using the demonstration of 4.8, we can show that the first component of x s k , x s 1,k , is an equivalent representation of (4.23) and that x n 1 1,k , . . . , x n M 1,k also represent the ARMA noises given by (4.24).

Finally, according to the definition of H s+n κ , we have

y k (τ ) =       y 1,k+τ 1 . . . y M,k+τ M       =       x s 1,k + x n 1 1,k . . . x s 1,k + x n M 1,k       =       κ k s k + n 1,k . . . κ k s k + n M,k       (4.30)

CUSUM algorithm for the detection of an abrupt change

This subsection describes the computation of the CUSUM algorithm for the detection of an autoregressive moving average SOI buried into a autoregressive moving average noise. Similarly to the case 1 §4.4.2, we aim to detect an abrupt change in the distribution of the observations.

When κ k = 0, the delays observation y k (τ ) has a distribution parameterized by the parameters θ 0 , p(y k (τ ), θ 0 ). After the change occurred, k ≥ k 0 the observation has a distribution parameterized by the parameters θ 1 , p(y k (τ ), θ 1 ). We recall the parameters in each situation.

θ 0 = {α n 1 , . . . , α n p , β n 1 , . . . , β n q , σ n } θ 1 = {θ 0 , α s 1 , . . . , α s p , β s 1 , . . . , β s q , ρ}.

The parameter θ 0 is only defined by the noise. Even if the ARMA model of the noise is unknown, it is possible to replace θ 0 by its estimate on a window where no SOI is present. An algorithm to estimate the maximum likelihood estimation of the autoregressive moving average models is described in [START_REF] Gardner | Algorithm as154. an algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of kalman filtering[END_REF] and is used in the simulations carried out in the next parts of this study.

The ARMA model of the SOI is a priori unknown however a reduce subset of θ 1 can be selected. It will result, as previously, on the computation of CUSUMs based on parallel Kalman Filter. Each situations require its own Kalman iterations to compute the cumulative sums S k (τ ).

Application to the launch of Space Shuttle Discovery

Space shuttle Discovery launch on 5 April 2010 at 6 : 21 am from Cap Canaveral in Florida. The generated infrasound has been recorded, ∼ 9 hours after the launch, by IS18 (table 4.1) in Greenland. The signal for each of the 8 sensors is given in figure 4.2. The signals are detrended with a high pass butterworth filter of order 3 with a cut off frequency of 0.01 Hz. The noise model is estimated from 12 : 20 to 12 : 30 using only sensor 1. The resulting ARMA(2,1) and its spectral content are given by the green curve in figure 4.1. As exposed earlier, the power of the noise is mainly contained within the low frequencies.

Two candidate models for the SOI are selected, the model 1 and 2 respectively describing a low and high frequency content for the SOI (red and blue curves in figure 4.1). CUSUMs are computed for 4 signal to noise innovation ratios (10 log 10 (ρ)) between 0 dB to 100 dB. In addition, a small set of possible slowness vectors has been selected corresponding to a fixed speed of sound of c = 330 m/s, an horizontal incidence, and 8 back-azimuths between 0 • and 360 • . It results in 2 × 4 × 8 parallel CUSUMs that are represented in figures (4.3, 4.4). A figure is dedicated for each set of signal to noise innovation ratio and model. In each figure, 8 curves allow to represent the evolution of the CUSUMs specific to the set of back-azimuth. Focusing on the low frequency model 1 (figure 4.3), we first see that the CUSUMs corresponding to a back-azimuth of 190 start growing at ∼ 15 : 45. It means that a SOI appears on the array with a back-azimuth of ∼ 190 • . For ρ between 0 and 40 dB, the CUSUMs start decaying at ∼ 15 : 50 meaning that the SOI vanished. The CUSUMs for model 2 (figure 4.9 do not significantly rises above 0 meaning that the SOI does not have power in the high frequencies. We conclude that a relatively low frequency SOI has crosses the array with a back-azimuth of around 190 • for ∼ 5 minutes.

Extension of case 2 with a persistent nuisance signal

In this subsection, we propose to take into account a persistent nuisance signal (NS). We define a nuisance signal as a persistent, stationary and coherent signal that is considered unwanted. Due to its spatial correlation, a NS can therefore interfere with the detection of a SOI. A nuisance signal arises from a source that almost consistently generates infrasound and is recorded by the infrasound arrays. Some example exists in the literature such as the ocean waves interaction [START_REF] Ardhuin | Noise generation in the solid earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth[END_REF]; [START_REF] Waxler | The radiation of atmospheric microbaroms by ocean waves[END_REF], called microbaroms, the gas flare at oil fields [START_REF] Smirnov | Infrasound propagation from gasflares[END_REF], or wind farms. When a nuisance signal is powerful, it can interfere with the detection of the SOI and especially the detection of explosive events [START_REF] Evers | Listening to sounds from an exploding meteor and oceanic waves[END_REF]; [START_REF] Stevens | Constraints on infrasound scaling and attenuation relations from soviet explosion data[END_REF]. Consequently being able to take into account these NS is of interest for the Comprehensive Nuclear-Test-Ban treaty verification.

We propose an extension of the previous state space §4.5.1 that includes a nuisance signal. The nuisance signal u k is supposed to be a stationary AR process with known parameters and with a known slowness vector. The models associated with the SOI, and the noise remain the same as in the previous section (i.e ARMA).

Under those assumptions, the delayed observations with respect to the slowness vector of the SOI is,

y k (τ ) = κ k s k + u k (τ -ζ) + n k , with, (4.31) 
s k = p i=1 α s i s k-i + q j=1 β s j ε s k-q + ε s k , (4.32) n k = p i=1 α n i n k-i + q j=1 β n j ε n t-q + ε n k , (4.33) u k (τ -ζ) = u k-ζ 1 +τ 1 . . . u k-ζ M +τ M , (4.34) u k = p i=1 α u i u k-i + ε u k . (4.35)
The equivalent state space for the observations (4.31) -(4.35) is 

x s+u+n k = F s+u+n x s+u+n k-1 + Q s+u+n ε s+u+n k , ( 4 
, F u , Q u , ε k u )
come from the state space representation of an AR given in section §4.4.1. The AR model for the NS is motivated by its state space representation that directly includes the process and its past values in the state vector x u k (which is not the case of the ARMA state space Appendix 4.8). The idea is to artificially enlarge the state vector in order to include all the possible delayed versions of the NS that is required by the observation model (4.34).

We let

d max = max 1≤m≤M (ζ m -τ m ), d min = min 1≤m≤M (ζ m -τ m ) and d = d max -d min + 1.
H u is a M × d matrix almost fully null except for row m and j that satisfied j = ζ mτ md min + 1.

x u k =          u k-d min u k-d min -1 . . . u k-dmax          , Q u =   1 0 d-1,1   . F u =             α u 1 . . . α u d 1 0 . . . 0 0 1 . . . . . . . . . 0 1 0             , ε k u =   u k-d min 0 d-1,1  
We note that the autoregressive coefficient are allowed, and will often be null which is the case for (α u i ) i>p .

Application to semi-real data

We propose to illustrate the algorithm considering a NS with a scenario built with real data (figure 4.5). The SOI is a short impulsive signal generated by the industrial explosion located on the Kamchatka peninsula and recorded by IS31 in 2009 with a backazimuth estimated at ∼ 72 • . The noise is extracted from the recordings 1 minutes before the explosion. The signal generated by a meteorite in Hungary is considered as the nuisance signal and was also recorded by IS31 the 29 February 2010 with a back-azimuth estimated at 279 • .

Both the SOI and the NS are real signals with high signal to noise ratio from the IRED database Comprehensive Nuclear Test Ban Treaty Organization [2009]. The goal is to run simulations with a good knowledge on these signals (slowness vectors and frequency contents).

The AR(8) model of the NS is estimated from 450 samples not used during the simulations. The ARMA(1,2) model of the noise is estimated with the recordings of sensor 1. The NS and the noise are amplified by multiplication with a scalar. It allows to create a scenario where a powerful NS interferes with the detection of a less powerful SOI.

Two ARMA(2,1) candidate models for the SOI are selected. The frequency content of the model 1 is close to the one of the real SOI whereas the model 2 aims to describe a high frequency SOI. The non parametric estimation of the spectral density of the NS, the noise, and the SOI after multiplication with a scalar are given in figure 4.7. The spectral densities associated with the AR/ARMA models of the NS and the noise are given in figure 4.6 along with the spectral density associated with the candidate models for a signal to noise innovation ratio (ρ = 10 log 10(σ 2 s /σ 2 n )) of -10 dB. CUSUMs are computed for 4 signal to noise innovations ratios between -30 dB to 0 dB. In addition, a set of possible slowness has been selected corresponding to a fixed speed of sound of c = 340 m/s, an horizontal incidence, and 5 back-azimuths between 0 • and 360 • . It results in 2 × 4 × 5 parallel CUSUMs that are represented in figures 4.8 and 4.9. 4.6 Case 3 : Gaussian SOI buried in autoregressive moving average noise in presence of a Nuisance Signal

State Space Representation

The previous section §4.5 introduces the detection in presence of a nuisance signal. However the proposed algorithm can be computationally expensive as various parameters has to be gridded.

An alternative approach is proposed to filter the noise and the nuisance signal from the observed signal. In this section, we investigate the effect of the subtraction of the estimated noise and nuisance signal with the observations. The remaining signal, called residuals, could then be used as an input for a more classical detection algorithm. This approach aims to reduce the computational burden as it is no longer needed to grid over a range of angle of arrival. The NS and the noise are supposed to be ARMA processes with known parameters. The delays ζ of the nuisance signal is also supposed to be known. The SOI is considered as Gaussian noise with variance σ 2 s . The model in time domain associated is

y k (ζ) = 1 M u k + n k + s k (ζ) , with, (4.38 
)

u k = p i=1 α u i u k-i + q j=1 β u j ε u k-j + ε u k , n k = p i=1 α n i n k-i + q j=1 β n j ε n t-q + ε n k , s k (ζ) = s 1,k+ζ 1 . . . s M,k+ζ 1 .
The resulting equivalent state space representation is

x u+n k = F u+n x u+n k-1 + Q u+n ε u+n k , (4.39) y k (ζ) = H u+n x u+n k + s k (ζ) . (4.40)
The definition of the several matrices and vectors for the state space of a coherent signal buried into a ARMA noise are given in the previous section §4.5.1. We note that (4.39, 4.40) is defined such as the SOI s k (ζ) is seen as the measurement noise of the state space. We aim to run the Kalman Filter by considering the SOI as an uncorrelated white Gaussian noise. It is obvious that this consideration is false, however it is of interest to characterized the behaviour of the Kalman Filter residuals in presence of a mismodelling of the measurement noise.

Detection based on residuals

We are interested in retrieving the SOI from (4.40) at time k given the observations up to time k, ŝk = y k (ζ) -H u+n x u+n k|k . For sake of readability, the upper indices u+n are omitted in the next part. Using (4.40), we have ŝk (ζ) = s k (ζ) + H(x kx k|k ). Thus the retrieved SOI is the true SOI perturbed by the error in the current estimated state given the current and past observations.

In order to compute the error in the current estimated state x kx k|k , we supposed that the covariances P k|k and P k|k-1 converge towards steady-state values implying that the gain of the filter K k also converges towards a steady-state value K. For the timeinvariant linear systems (4.39, 4.40), the gain of the Kalman Filter converges if the rank of the observability matrix (given by (4.41)) is equal to the size of the state space p + M p [Anderson and Moore, 1979, chapter 4] (with respectively p and p the order of the AR part of the nuisance and noise model), which will be assumed.

O =          H HF . . . HF M p +p -1         
, with,

F i = FF . . . F i times (4.41)
We recall the state prediction and update equations under the steady-state conditions are

x k|k-1 = Fx k-1|k-1 , (4.42)

x k|k = x k|k-1 + K(y k (ζ) -Hx k|k-1 ) .

(4.43)

Plugin (4.42) into (4.43) we have

x k|k = x k|k-1 + K(y(ζ) -Hx k|k-1 ) = Fx k-1|k-1 + K(y k (ζ) -Hx k|k-1 ) = Fx k-1|k-1 + K(y k (ζ) -HFx k-1|k-1 ) = Fx k-1|k-1 + K(Hx k + s k (ζ) -HFx k-1|k-1 ) = Fx k-1|k-1 + K(HFx k-1 + HQε k + s k (ζ) -HFx k-1|k-1 ) (4.44)
Using (4.39 , 4.44) we have the following error on the current estimated state

x k -x k|k = (F -KHF)(x k-1 -x k-1|k-1 ) + (I -KH)Qε k -Ks k (ζ) (4.45)
We suppose that the spectral radius of (F -KHF) is less than 1 meaning that all its eigenvalues are less than 1 (i.e lim i→∞ (F -KHF) i converges to the null matrix). It allows us to write the error (4.45) equivalently as

x k -x k|k = i≥0 (F -KHF) i (I -KH)Qε k-i - i≥0 (F -KHF) i Ks k-i (ζ).
The current error multiplied by H, To study the autocovariance of (a k ) k≥1 , we need the following lemma.

δ k = H(x k -x k|k ) is δ k = i≥0 H(F -KHF) i (I -KH)Qε k-i a k -HKs k (ζ) - i≥1 H(F -KHF) i Ks k-i (ζ)
Lemma 1. Let A be a n × n matrix with all its eigenvalues in the unit circle. Then for any matrices C and W with appropriate size and any positive integer k, the following matrix series

i≥0 CA i W(A k+i ) C , converges.
Proof. We consider the matrix diagonalization A = PΛP -1 , with Λ = diag (λ 1 , . . . , λ n ) the matrix whose diagonal entries are filled with the eigenvalues of A. We let D = CP, we have

i≥0 CA i B(A k+i ) C = D i≥0 Λ i WΛ k+i D , = DED , with E defines as (E) rc = λ k c 1-λrλc (W) rc .
The notation (•) rc is the value at the r th row and and c th column of the matrix •.

For k ≤ k we have,

Cov (a k , a k ) = i,j≥0 H(F -KHF) i (I -KH)Q Cov (ε k-i , ε k -j ) H(F -KHF) j (I -KH)Q (4.46)
By definition, the observations state noise is a white Gaussian noise consequently,

Cov (ε k-i , ε k -j ) =    W = diag (σ 2 u , σ 2 n , . . . , σ 2 n ) if j = k -k + i 0 else
By letting j = kk + i ≥ 0, Lemma 1 shows a k is stable with an autocovariance sequence that decay geometrically if all the eigenvalues of (F -KHF) are bounded by unity modulus. The same conclusion can be drawn for the covariance of (b k ) k≥1 , however as Cov (s k (ζ), s k (ζ)) is not necessary null for k = k no simple expression for the covariance of (b k ) k≥1 can be derived.

Finally, we reformulate the residuals of the Kalman Filter as

ŝk (ζ) = (I + HK)s k (ζ) + i≥1 H(F -KHF) i Ks k-i (ζ) -a k . (4.47)
The residuals is thus a linear combinations of the true SOI perturbed by a noise a k with a known autocovariance function.

Numerical Experiments

A first numerical experiment is carried out to illustrate the behaviour of the crosscorrelation computed from the Kalman Filter residuals. A time series is simulated according to (4.38). The model of the NS is chosen as an ARMA(2,1) with AR coefficients (.9, -.7) and MA coefficients (.4), the variance of its innovation is set at .5. The noise is an ARMA(1,1) with AR coefficients (.6) and MA coefficients (-.1) with variance of its innovation set at 1. The SOI is generated according to an ARMA model with AR coefficients (.9, -.4), MA coefficients (.6) with variance of the innovation set at 0.4. The spectral density of the noise, NS and SOI are reported in figure 4.10. The slowness vector of the NS is set for a backazimuth of 180 • , an incidence of 90 • (horizontal wave) and a speed of 330 m/s. Similarly the slowness vector of the SOI is set for a back-azimuth of 270 • . In figure 4.11 the cross-correlations have two distinct peaks. The peaks at lag 0 correspond to the nuisance signal. The second peaks correspond to the SOI as its lags correspond to the peaks of the true SOI given in figure 4.13. Figure 4.12 shows the cross-correlations based on the residuals of the Kalman Filter. As expected the nuisance signal peaks at lag 0 has disappeared leaving only the peaks corresponding to the SOI. Let us notice that a k has an impact on the residuals based cross-correlations. However the covariance of the error (a k ) 1≤k≤L translates to a peak at lag 0 in the cross-correlations. Due to the spectral radius of (F -KHF) this peak is not visible in figure 4.12. The absence of peak at lag 0 is not guaranteed and could appear for different parameters in the simulation.

In this simulations, we investigate the impact of a nuisance signal on the performance of a state of the art detector MCCM (described in paragraph §1.3.2.2). We recall briefly the formulation of this detector. Let r * m, be the maximum of the cross-correlation between the signal received by the sensors m and . The MCCM is defined as the mean of the maximum of the cross-correlation for all the possible pairs of sensors,

M CCM = 2 M (M -1) (m, )∈C r * m, , (4.48) 
with C the ensemble of possible pairs of sensors.

In presence of both spatially coherent waves, the cross-correlations have 2 distinct peaks located at lags given by the delays for the two propagating signal across the array. If the SOI is more powerful than the nuisance signal, the peaks corresponding to the SOI will be greater than the nuisance signal. Thus, the presence of a weak nuisance signal does not significantly reduces the performance of the MCCM. However when the SOI is less powerful, the MCCM is not able to detect it. It is still possible to look for the second maxima in the cross-correlations. Nevertheless, in critical situations where the nuisance completely cover the SOI, the cross-correlation is strongly affected and only has one peaks corresponding to the nuisance signal.

In the next simulation, we propose to compare the performance of the MCCM using the observations (y k (ζ)) 1≤k≤L , called classic MCCM, with the MCCM using the residuals (ŝ k (ζ)) 1≤k≤L) , called Kalman MCCM. The performance are quantified with the AUC (Area Under the Curve) which is the area under the ROC curve (Receiver Operating Characteristic) [START_REF] Hanley | The meaning and use of the area under a receiver operating characteristic (roc) curve[END_REF]. We wish to evaluate the performance of both classic MCCM and Kalman MCCM for the following hypothesis, -H 0 : Both NS and noise are present.

-H 1 : SOI, NS and noise are present.

The NS and the noise are simulated using the same ARMA models (coefficients and variance of the innovations) described earlier in this subsection. The SOI is also simulated using the coefficients of the ARMA(2,1) given earlier. However, the variance of the innovation of the SOI varies in order to quantified the performance of the MCCM for several signal to noise innovation ratios. We note that the signal to nuisance innovation ratios is also impacted.

The size of the windows used to compute the cross-correlations L is fixed at 512 samples. The variance of the innovation of the SOI varies between 0.001 and 1. The AUC for each variance is computed with 500 runs under H 0 and H 1 . Figure 4.14 shows the evolution of the AUC for the classic MCCM and the Kalman MCCM. It is clear that both detectors are impacted by the variance of the SOI. The lower the variance is, the lower the performances of the detectors are. The classic MCCM is computed with the knowledge of the nuisance signal. We perform a spatial filtering on the classic MCCM by not looking for a maximum at the lag corresponding to the nuisance signal. For a low variance, the AUC of the classic MCCM are around 0.5 meaning that it fails to discriminate the two hypothesis. Its AUC then grows up to 1 for a variance above ∼ 0.2. An AUC of 1 means that the detector perfectly discriminates the two hypothesis, and has the best possible performance. The behaviour of the AUC for the Kalman MCCM is similar : the performance of the detector increases with the variance of the SOI. However, the AUC of the Kalman MCCM reaches 1 for a lower variance in comparison with the AUC of the classic MCCM. This result shows that using the residuals of the Kalman Filter as an input for the MCCM can improve its performance in case of a weak SOI.

Conclusion

This chapter derives several state space representations for a plane wave travelling through an array of sensors. The state spaces depends on the choice of the SOI and noise models. Based on the generalized likelihood ratio test, a CUSUM detector is proposed. It leads to a suboptimal detector that however enjoys good performance. The presented algorithm does not aim to give a precise estimation of the SOI and of its angle of arrival. The detector scheme aim to be fully online and no longer relies on a temporal segmentation in contrast with usual detectors. The detector integrates the whole signal and can be used to estimate the times of appearance and disappearance of a SOI. This online approach has been applied to the signal generated by the space Shuttle Discovery and was able to detect it with both an inaccurate SOI model and angle of arrival. If the parameters such as the angle of arrival and the SOI spectral content are needed, a second offline procedure can estimate the parameters of the state space leading to the maximum likelihood estimates of the SOI models, its angle of arrival, and the noise model.

An extension including an interference (nuisance signal) is also presented, and illustrates with semi-real data. Finally, another approach is proposed in order to reduce the computational burden of the algorithm. It aims to subtract the nuisance signal and the noise from the observations. The residuals of the Kalman Filter is then used as an input for more usual detectors. Numerical simulation has shown that this approach can significantly improve the performance of the usual detectors when the nuisance signal is more powerful than the SOI.

This chapter has not addressed the use of CUSUM as an automatic signal detector. Few elements needs to be studied. First the computation of the threshold remains a critical question. The threshold for CUSUM are generally fixed according to a given average run length to false alarm [START_REF] Basseville | Detection of abrupt changes : theory and application[END_REF] that has not been studied here. The signal of interest is considered as stationary which is not always the case in the context of infrasound (especially for explosion). However, the online detection showed in this chapter is mostly built upon the spatial correlation of the SOI and is still able to perform the detection even if the spectral content of the SOI varies along the time.

Proof state space representation for ARMA

We consider y k an ARMA(p,q) process with AR coefficients (α 1 , . . . , α p ), MA coefficients (β 1 , . . . , β q ) an innovation ε k . We define r = max(p, q + 1), and the following state space,

            x 1,k x 2,k . . . x r-1,k x r,k             =             α 1 1 0 . . . 0 α 2 0 1 . . . 0 . . . α r-1 0 0 . . . 1 α r 0 0 . . . 0                         x 1,k-1 x 2,k-1 . . . x r-1,k-1 x r,k-1             +             1 β 1 . . . β r-2 β r-1             ε k , (4.49) y k = 1 0 1,r-1 x k . (4.50)
We recall the definition of the lag operator L n for any integer n, useful for the demonstration.

L n y k = y k-n
To prove that the state space representation (4.49, 4.50) captures the ARMA process, let us first write the last two rows of the transition equation (4.49),

x r,k = α r x 1,k-1 + β r-1 ε k .

(4.51)

x r-1,k = α r-1 x 1,k-1 + x r,k-1 + β r-2 ε k . (4.52)
Lagging (4.51, 4.52) equations by r -1 and r -2 respectively we have,

x r,k-r+1 = α r L r-1 x 1,k-1 + β r-1 L r-1 ε k , (4.53) x r-1,k-r+2 = α r-1 L r-2 x 1,k-1 + x r,k-r+1 + β r-2 L r-2 ε k . (4.54)
Plugin (4.53) into (4.54) leads to,

x r-1,k-r+2 = α r-1 L r-2 x 1,k-1 + α r L r-1 x 1,k-1 + β r-2 L r-2 ε k + β r-1 L r-1 ε k , = (α r-1 L r-2 + α r L r-1 )x 1,k-1 + (β r-1 L r-1 + β r-2 L r-2 )ε k
One has to perform this similar iteration with the r -2, r -3, . . . rows of (4.49) in order to finally obtain,

x 1,k = (α 1 + α 2 L 1 + . . . + α r L r-1 )x 1,k-1 + (β r-1 L r-1 + β r-1 L r-2 + . . . + 1)ε k , or (1 -α 1 L -α 2 L 2 -. . . -α r L r )x 1,k = (β r-1 L r-1 + β r-1 L r-2 + . . . + 1)ε k (4.55)
Following the observation equation (4.50), we have

y k = x 1,k implying, (1 -α 1 L -α 2 L 2 -. . . -α r L r )y k = (β r-1 L r-1 + β r-1 L r-2 + . . . + 1)ε k
which proves that the system (4.25, 4.26) is a valid representation for an ARMA process.

Let us note that the component of the state vector x k is a concatenation of several linear combination of y k and its past values (y k-1 , . . . , y k-p ),

x k =          y k α 2 y k-1 + . . . + α r y k-r+1 + β 1 ε k + . . . + β m-1 ε k-m+2 . . . α m y k-1 + β m ε k          (4.56)
Chapitre 5

Phénomène de perte de cohérence

Introduction

Nous présentons dans ce chapitre des nouveaux résultats sur la modélisation du phénomène de perte de cohérence entre les signaux infrasonores recueillis par des capteurs d'une même station. Lorsqu'un même signal est capté à travers différents filtres linéaires, les différents signaux obtenus restent cohérents. Si une source infrasonore se propage selon le modèle d'onde plane, les signaux recueillis aux capteurs sont obtenus par simples retards et devraient donc être parfaitement cohérents. La cohérence peut être mesurée empiriquement et s'il s'avère que les données réelles indiquent que les signaux ne sont pas parfaitement cohérent, on parle de perte de cohérence. La présence de bruit additif entraîne bien sûr une perte de cohérence mais celle-ci est aussi observée à des taux élevés de rapport signal à bruit et la compréhension de ce phénomène a été et reste un champ d'investigation pour les chercheurs et les praticiens. Diverses approches ont été proposées pour comprendre et modéliser la perte de cohérence observée à fort rapport signal à bruit. L'étape de modélisation est particulièrement cruciale pour les raisons suivantes :

1. Elle peut permettre la synthèse de signaux étiquetés plus réalistes que ceux habituellement utilisés qui sont généralement obtenus par des retards purs d'un signal d'intérêt réel ou synthétique.

2. Si le modèle est suffisamment précis, il est envisageable d'améliorer les techniques de détection et d'estimation en prenant en compte la perte de cohérence dans le modèle "signal". En effet toutes les méthodes actuelles reposent sur l'hypothèse d'un retard pur entre les signaux captés.

Ce chapitre est construit de la manière suivante. Le section §5.3 donne un état de l'art sur la modélisation de la perte de cohérence. Les approches les plus référencées sont dues à [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] et [START_REF] Gossard | The effect of bandwidth on the interpretation of the cross spectra of wave recordings from spatially separated sites[END_REF]. Nous l'introduisons sous une forme légèrement mise à jour pour en faciliter la compréhension et l'exploitation aboutissant à un modèle paramétrique de la perte de cohérence. Deux méthodes d'estimation des paramètres du modèle sont proposées et appliquées sur des données réelles afin d'illustrer le phénomène de perte de cohérence.

Il apparaît que le modèle de Mack and Flinn [1971] donne des résultats intéressants mais difficiles à exploiter pour la simulation de données synthétiques à partir de signaux réels. Il peut donc être intéressant, plutôt que d'exploiter directement ce modèle pour la synthèse ou l'amélioration des techniques de détection, de proposer une extension raisonnable du modèle de perte de cohérence. Nous proposons donc un nouveau modèle de perte de cohérence alternatif présentée dans la section §5.4.

Enfin, la section §5.5 introduit un protocole pour l'évaluation des détecteurs. Les effets du rapport signal à bruit et de la perte de cohérence sur les performances des détecteurs de l'état de l'art sont alors étudiés.

Problématique

La fonction de cohérence entre deux processus aléatoires x m (t) et x (t) nous renseigne sur les fréquences où les deux signaux sont corrélés. Elle est définie comme le rapport entre l'interspectre γ m, (f ) et le produit des deux racines carrées des densités spectrales γ m (f ), γ (f ) [START_REF] Carter | Coherence and time delay estimation[END_REF]. La cohérence est donc la normalisation de l'interspectre et s'écrit

ξ m, (f ) = γ m, (f ) γ m (f )γ (f ) . (5.1)
Dans cette formule γ m (f ), γ (f ) et γ m, (f ) sont les densités spectrales et l'interspectre de x m (t) et x (t) définies comme la transformée de Fourier de la fonction de corrélation et d'inter-corrélation. Elles sont caractérisées par les relations :

E [x m (t)x m (t + τ )] = e 2iπf τ γ m (f ) df E [x (t)x (t + τ )] = e 2iπf τ γ (f ) df E [x m (t)x (t + τ )] = e 2iπf τ γ m, (f ) df .
La cohérence (5.1) est une fonction complexe contenant une amplitude et une phase. Seule l'amplitude donne une indication sur la corrélation des fréquences de deux signaux. On préfère donc ne garder que le module de la cohérence (5.1),

C m, (f ) = |ξ m, (f )| .
(5.2)

Dans la suite du chapitre, le terme cohérence fera référence à la métrique (5.2). Une conséquence (non-triviale) de l'inégalité de Cauchy-Schwartz implique que, pour toute fréquence f , on a Il est facile de montrer que la cohérence entre deux signaux reçus par les capteurs m et avec pour rapport signal à bruit (SNR) :

ρ(f ) = γ s (f )/γ n (f ) et vérifiant (5.3) s'écrit C m, (f ) = ρ(f ) ρ(f ) + 1
(5.4)

Dans le cas particulier de forts SNRs, la cohérence devrait être très proche de 1 sur toute la bande de fréquence du signal d'intérêt. Or les observations que l'on peut faire indiquent au contraire que la cohérence peut rester très faible sur certaines plages fréquentielles, on dit qu'il y a perte de cohérence.

Modèle Mack & Flinn

Gossard [1969]; [START_REF] Gossard | Dispersion bandwidth deduced from coherency of wave recordings from spatially separated sites[END_REF] sont les premières références à interpréter cette perte de cohérence et proposent quatre explications physiques.

1. Une fréquence arrive avec plusieurs directions (azimuthal beamwidth).

2. Une fréquence arrive avec une vitesse de propagation variable (velocity bandwidth).

3. Fluctuations locales.

Apparition d'un changement de phase (réflexion, réfraction).

La référence la plus répandue dans la littérature, [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF], proposent une explication physique de la perte de cohérence similaire.

1. La perte de cohérence pour les paires de capteurs alignées avec la propagation de l'onde est due à une inhomogénéité de l'air qui fait varier l'azimut de l'onde.

2. La perte de cohérence pour les paires de capteurs perpendiculaires à la propagation est due à la présence de signaux issus de modes normaux se propageant avec des vitesses de phase différentes. [START_REF] Gossard | The effect of bandwidth on the interpretation of the cross spectra of wave recordings from spatially separated sites[END_REF]; [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] supposent que plusieurs ondes sont captées par la station au même instant. L'ensemble des ondes arrivent avec un azimuts moyen a et une vitesse moyenne v. Il est supposé que les différentes arrivées sont comprises dans un segment circulaire avec des azimut compris entre aδ a et a + δ a (azimuthal beamwidth) et des vitesses comprises entre vδ v et v + δ v (velocity bandwidth). Lorsque les paires de capteurs sont alignées dans la direction moyenne de propagation des ondes, la perte de cohérence est associée à δ v . Inversement lorsque les paires de capteurs sont perpendiculaires à la direction de propagation moyenne, la perte de cohérence est due à δ a . Dans cette étude, la géométrie 3D de la station n'est pas considérée rapportant le vecteur perpendiculaire à la propagation d'une onde à sa version 2D (voir sous-section §1.3.1.1). Ainsi pour [START_REF] Gossard | The effect of bandwidth on the interpretation of the cross spectra of wave recordings from spatially separated sites[END_REF]; [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] la vitesse correspond implicitement à la vitesse horizontale. δ v inclu conjointement les variations en incidence et en vitesse.

La différence de phase à une fréquence réduite 2πf entre deux capteurs m et à azimut

a + δ a et une vitesse v + δ v est donnée par 2πf υ m,l (δ a , δ v ) = 2πf v + δ v (r v cos(δ a ) + r a sin(δ a )) ,
où r v et r a sont respectivement les composantes parallèle et perpendiculaire du vecteur séparant les deux capteurs (r mr ) par rapport au vecteur décrivant la propagation moyenne des ondes p 0 .

En supposant δ a et δ v petits, on a le développement,

2πf υ m,l (δ a , δ v ) ≈ 2πf v r v (1 -δ 2 a /2) -r v (δ v /v) + r a δ a -r a (δ v /v)δ a + r v (δ v /v) 2
(5.5) [START_REF] Gossard | The effect of bandwidth on the interpretation of the cross spectra of wave recordings from spatially separated sites[END_REF]; [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] font l'hypothèse que le calcul de l'interspectre requiert un moyennage sur un ensemble de valeurs de δ a et δ v (implicitement uniforme sur [-∆a, ∆a] × [-∆v, ∆v]). Ainsi en supposant la densité spectrale γ s du signal d'intérêt indépendante de la fréquence, de δ v , et de δ a , on a γ m, (f ) = γ s ∆a -∆a ∆v -∆v e 2iπf υ m,l (δa,δv) dδ a dδ v 4∆a∆v , (5.6) où ont été fixés a et v, les azimut et vitesse moyenne, et fait dépendre le retard υ m,l (δ a , δ v ) des perturbations δ a et δ v , dont l'équation (5.5) donne une approximation explicite. En négligeant les termes du second ordre et en supposant δ a et δ v indépendants [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] proposent la cohérence suivante

C m, (f ) = |sinc2πf r a /vδ a ||sinc2πf δ v r v | (5.7)
Le modèle paramétrique (5.7) implique donc que la cohérence décroît en fonction de la fréquence et de la distance séparant les couples de capteurs. Plus les capteurs sont éloignés, plus le phénomène de perte de cohérence est important.

L'expression (5.7) considère une densité spectrale indépendantes de δ a et δ v pour toutes les ondes. [START_REF] Gossard | The effect of bandwidth on the interpretation of the cross spectra of wave recordings from spatially separated sites[END_REF]; [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] proposent comme alternative à la distribution uniforme, une distribution gaussienne pour les densités spectrales γ s (δ a , δ v ) de la forme e -(δa/σa) 2 -(δv/σv) 2 qui permet d'aboutir à l'expression de la cohérence suivante

C m, (f ) = e -2π 2 f 2 (σ 2 a r 2 a + σ 2 v v 2 r 2 v ) .
(5.8)

On retrouvera une extension de la formule (5.8) dans le développement du modèle de perte de cohérence présenté dans la section §5.4. Il est a noté que [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] a construit et appliqué leur modèle sur des ondes de gravité dont la fréquence est très faible (< 0.1 Hz).

Dans [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF], les auteurs cherchent à valider le modèle (5.7) à partir de données empiriques récoltées lors de deux événements (suspectées être des essais nucléaires pratiqués en Chine au cours de l'année 1968). La cohérence C m, est estimée empiriquement par des estimateurs non-paramétriques des densités spectrales et des interspectres à deux fréquences particulières (environ 1/43 et 1/86 Hz pour la première expérience, et 1/51 Hz pour la seconde). Pour comparer les cohérences estimées avec celles du modèle (5.7), les auteurs ont séparé les paires de capteurs formant une ligne perpendiculaire au front d'onde et de celles qui sont parallèles à 20 • près. Des valeurs de ∆ a et ∆v sont déduites en "alignant" les courbes théoriques correspondantes aux points empiriques Fig. 5.1. Des valeurs variant de 4 • à 5 • pour ∆a et de 10 m/s à 15 m/s pour ∆v sont obtenues. [START_REF] Blandford | Design of infrasonic arrays[END_REF] est le premier à étendre les études précédentes aux hautes fréquences (> 0.1 Hz) dans le but d'étudier le positionnement optimal des capteurs d'une station pour la détection de signaux d'explosions nucléaires. Il estime que les valeurs des paramètres de perturbation du modèle de Mack & Flinn (5.7) correspondant le mieux à ses observations sont ∆a = 5 • et ∆v = 15 m/s. En raison de ces paramètres [START_REF] Blandford | Design of infrasonic arrays[END_REF] conclue donc sur l'importance d'avoir une ouverture de station n'excédant pas 2 km (ouverture à partir de laquelle la cohérence est trop affectée pour assurer la détection d'explosion nucléaire d'une énergie de 1 kT).

Les résultats sont intéressants mais indiquent aussi une difficulté manifeste à expliquer précisément les cohérences empiriques par le modèle. Cette difficulté peut provenir du manque de précision des estimations non-paramétriques des spectres et des interspectres mais aussi de la rigidité du modèle Fig. 5.1.

Figure 5.1: Illustration de la perte de cohérence pour des sources très basses fréquences En haut à gauche : cohérence en fonction de la distance entre les capteurs pour l'évènement 1 pour une fréquence de 1/42.8 Hz. En haut à droite : Cohérence en fonction de la distance entre les capteurs pour l'évènement 1 pour une fréquence de 1/85.7 Hz. En bas à gauche : Cohérence en fonction de la distance entre les capteurs pour l'évènement 1 pour une fréquence de 1/51.3 Hz. Le modèle paramétrique (5.7) est ajouté pour des couples de capteurs supposés parfaitement parallèles ou perpendiculaires avec les valeurs de ∆ a et ∆ v correspondants. Source : [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] Les versions du modèle de perte de cohérence (5.8,5.7) sont élaborées dans le référentiel sphérique en projetant la différence de positions des capteurs (r mr ) sur la direction de propagation. De plus les variations en azimut et en vitesse sont supposées indépendantes. On propose dans la suite, une formulation de la perte de cohérence moins restrictive et dans le domaine cartésien.

On reprend l'hypothèse selon laquelle les capteurs reçoivent plusieurs ondes. Dans le cas d'une propagation en onde plane, ces ondes auront donc aussi des vecteur lenteurs centrés en p 0 et compris entre p 0p ε et p 0 + p ε . On note γ s (p, f ) leur densité paramétrée par le vecteur lenteur. La moyenne pondérée des interspectres responsable de la perte de cohérence est

γ m, (f ) = γ s (p 0 , f ) u(f ) e -2iπf (rm-r ) p 0 × R 2 g(p ε , f )e -2iπf (rm-r ) pε dp ε , (5.9) où g(p ε , f ) = u(f )γ s (p 0 + p ε , f ) γ s (p 0 , f ) ,
avec pour terme de normalisation u(f ) choisi de sorte que l'intégrale g(p ε , f )dp ε soit égale à 1. En considérant g(p ε , f ) comme une densité de probabilité, on remarque alors que le deuxième terme de (5.9) peut être vu comme la fonction caractéristique de la variable aléatoire p ε . On peut alors facilement en déduire un modèle paramétrique spécifique au choix de la distribution de p ε . Le choix de la distribution de p ε est motivé par l'aspect physique de l'onde. [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] postulent qu'il est plus probable que l'amplitude g(p ε , f ) décroisse graduellement en fonction de p ε . Il est donc naturel de choisir une distribution normale pour p ε ∼ N (0, Σ) conduisant à l'interspectre suivant γ m, (f ) = γ s (p 0 , f ) e -2iπf (rm-r ) p 0 retard pur e -2π 2 f 2 (rm-r ) Σ(rm-r ) perte de cohérence (5.10) L'expression de l'interspectre (5.10) est d'abord composée d'un terme de retard pur par le biais de l'exponentielle complexe qui n'affecte pas la cohérence puisque son module est toujours égal à 1. A l'inverse le deuxième terme a un module qui décroît en fonction de la fréquence au carré, de la position des capteurs, et de la matrice Σ. La cohérence entre le signal x m (t) et x (t) s'écrit C m, (f ) = e -2π 2 f 2 (rm-r ) Σ(rm-r )

(5.11)

On note aussi que si p ε est supposé uniforme alors la perte de cohérence s'exprime en fonction d'un sinus cardinal similaire à (5.7). La formule explicite de la cohérence (5.11) dépend de la direction relative du vecteur (r m -r ) et des vecteurs propres de Σ. On remarque que la perte de cohérence est fonction de la fréquence. Par conséquent, la cohérence pour les hautes fréquences est significativement plus impactée que pour les fréquences faibles. La matrice Σ décrit les valeurs des variances des vecteurs lenteur des multiples ondes dans le plan cartésien. Il est possible de retranscrire approximativement les paramètres Σ en fonction des paramètres σ a et σ v de (5.8) grâce à la formule du développement limité d'ordre 1.

Estimation des paramètres de perte de cohérence par la méthode des moindres carrés

On propose dans les deux sous-sections suivantes deux méthodes permettant d'estimer les paramètres de perte de cohérence Σ. La première méthode est basée sur la méthode des moindres carrés. On cherche alors à minimiser l'écart quadratique entre une estimation non paramétrique et le modèle (5.11). La cohérence non paramétrique Ĉ(f ) est estimée par la méthode de Welch [1967]

, où Ĉ(f ) = C 1,2 (f ) C 1,3 (f ) . . . C M -2,M (f ) C M -1,M ( 
f ) est la concaténation des cohérences pour les M (M -1)/2 couples de capteurs.

On rappelle que la cohérence paramétrique entre les signaux captés par les capteurs m et est donnée par

C m,l (f, Σ) = e -2π 2 f 2 (rm-r l ) Σ(rm-r l ) .
(5.12)

On note Ĉ(f ) et C(f, Σ) la matrice contenant respectivement les cohérences empiriques (estimées de manière non-paramétrique par des spectres et inter-spectres lissés), et les cohérences paramétriques pour l'ensemble des paires. Les paramètres de perte de cohérence contenu dans Σ sont estimés en minimisant l'écart quadratique entre le cohérence nonparamétrique et le modèle paramétrique, (5.13) avec Θ l'ensemble des matrices définies positives symétriques de R 2×2 . L'estimation de Σ à partir de (5.13) peut s'obtenir par optimisation numérique.

Σ = arg min Π∈Θ f | Ĉ(f ) -C(f, Π)| 2 ,
Pour obtenir un estimateur avec une formulation explicite, il a aussi été proposé dans [START_REF] Nouvellet | Coherence parameters estimation from noisy observations[END_REF] de définir un estimateur des moindres carrés sur les log-cohérences :

Σ = arg min Π∈Θ f | log Ĉ(f ) -log C(f, Π)| 2 .
(5.14) L'expression (5.12) montre que log C(f, Σ) est linéairement relié au 3 composantes de Σ (matrice 2 × 2 symétrique) avec pour contrainte Σ ≥ 0. Dans le cas où la contrainte est omise, un estimateur des moindres carrés explicite ne nécessitant pas d'optimisation numérique s'obtient.

5.3.2 Estimation des paramètres de perte de cohérence par maximum de vraisemblance

Cette sous-section est dédiée à l'estimation des paramètres de perte de cohérence par l'approximation de Whittle du maximum de vraisemblance à partir d'enregistrements échantillonnés. Le signal échantillonné à la fréquence f s par le capteur m à l'échantillon n est noté x m,n . On note aussi x n = x 1,n . . . x M,n la concaténation des échantillons des M capteurs à l'instant n. On considère la transformée de Fourier discrète du signal [START_REF] Brillinger | Asymptotic normality of finite fourier transforms of stationary generalized processes[END_REF], si le signal est stationnaire alors la distribution x k peut être approchée pour N grand par une loi gaussienne complexe circulaire centrée de covariance 

(x m,n ) 1≤n≤N , xm,k = N -1/2 N n=1 x m,n e -2iπnfsk/N , et le vecteur colonne xk = x 1,k . . . x M,k D'après
Γ k (θ) paramétrée par θ = {p 0 , γ s , Σ}, Γ k (θ) = γ s D k (p 0 )G k (Σ)D k (p 0 ) H ,
D k (p 0 ) = diag e -2iπf k υ 1 . . . e -2iπf k υ M , avec υ m = f k r m p 0 et • la partie entière.
Les densités spectrales Γ k (θ) peuvent être estimées via la vraisemblance de Whittle [Shumway and Stoffer, 2006, pp.214-215] en utilisant les propriétés approchées de la transformée discrète de Fourier (les transformées discrètes de Fourier aux fréquences k et k sont décorrélées). Les propriétés de la transformée discrète de Fourier implique la log vraisemblance approchée pour les observations X

= xk . . . xK suivant L( X; θ) = - K k=1 log det |Γ k (θ)| + xH k Γ -1 k (θ)x k (5.15)
En maximisant (5.15) par rapport à γ s , on obtient l'estimateur du maximum de vraisemblance de la densité spectrale du signal d'intérêt,

γs = 1 M K K k=1 xH k D k (p 0 )G -1 k (Σ)D k (p 0 ) H xk .
En remplaçant γ s par son estimateur dans (5.15), on a la log vraisemblance réduite 

L * ( X; θ) = -M K log( K k=1 xH k D k (p 0 )G -1 k (Σ)D k (p 0 ) H xk ) + log det |G k (Σ)| ( 

Simulations de données à partir du modèle Mack & Flinn

Cette sous-section est dédiée à la simulation de signaux dont la cohérence spatiale est donnée par le modèle Mack & Flinn (5.11). Les deux méthodes proposées ont été élaborées dans l'optique de création de signaux synthétiques étiquetés pour l'évaluation des détecteurs.

Simulations dans le domaine fréquentiel

On considère le signal d'intérêt comme un bruit blanc échantillonné à la fréquence f s ,

s n = s 1,n . . . s M,n avec pour covariance, R τ = γ s I M δ τ =0 ,
où δ τ =0 est la fonction Dirac. La transformée discrète de Fourier de s n , sk possède alors une covariance Γk = γ s (qui est aussi la densité spectrale de s n ) constante pour toutes les fréquences k. On souhaite créer un signal dont la transformée de Fourier discrète xk ait une covariance égale à γ 

s W k , avec W k = γ s D k (p 0 )G k (Σ)D k (p 0 ) H .

Simulations dans le domaine temporel

Cette méthode est directement basée sur l'hypothèse proposée par [START_REF] Gossard | The effect of bandwidth on the interpretation of the cross spectra of wave recordings from spatially separated sites[END_REF]; [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF]. Plusieurs ondes avec des vecteurs lenteur aléatoires centrés en p 0 sont captées par la station. On considère donc que les capteurs reçoivent E signaux d'intérêts notés (s e,n ) 1≤e≤E de densité spectrale identique. Les signaux d'intérêt possèdent un vecteur lenteur qui leur est propre, on a alors,

x m,n = E -1/2 E e=1 s e,n-w e m , (5.17) 
avec s e,n-w e m le signal s e,n décalé de w e m = p e r m f s échantillons. Avec p e le vecteur lenteur du signal d'intérêt s e,n . Les vecteurs lenteur (p e ) 1≤e≤E sont tirés indépendamment selon la distribution normale de moyenne p 0 et de covariance Σ. Cette méthode approche l'intégration spatiale de multiples vecteurs lenteur par la sommation de plusieurs signaux.

On remarque que ces deux méthodes de synthèse sont basées sur l'utilisation de bruit blanc synthétique. Ces méthodes ne sont pas adaptées pour la synthèse à partir de signaux réels. Il est alors difficile de retranscrire des informations telles que le contenu spectral où une variabilité de l'amplitude des signaux à partir de ces méthodes. La valeur moyenne du vecteur lenteur p 0 est choisie pour un azimut de 0 • et une vitesse de 340 m/s. Le vecteur p 0 est alors perpendiculaire aux couples de capteurs 1 -2 et 3 -4, et parallèle aux couples 1 -4 et 2 -3. La matrice Σ est choisie de manière à avoir un écart type de σ v = 10 m/s pour la vitesse, et σ a = 0.2 • pour l'azimut. En coordonnées cartésiennes, la matrice Σ est alors égale à (5.18) avec σ x = 3.02 × 10 -5 s/km, σ y = 8.65 × 10 -5 s/km, ρ = 0 s/km. On note que si l'azimut du vecteur lenteur moyen p 0 est pris égal à 90 • les valeurs de σ x et σ y s'interchangent. La perte de cohérence pour les couples parallèles à p 0 est due aux différentes vitesses des ondes, alors que la perte de cohérence pour les couples perpendiculaires à p 0 est causée par les différents azimuts. Comme Σ est diagonale la cohérence entre deux capteurs m et se simplifie en, e -4π 2 f 2 r x,m σ 2 x +r y,m σ 2 y avec r x,m la composante selon l'axe x du vecteur (r m -r ), et r y,m la composante selon l'axe y. Cette simplification permet d'illustrer la dépendance de la direction moyenne des ondes par rapport au vecteur séparant les couples de capteurs. On voit ainsi dans la figure Fig. 5.2 que la perte de cohérence est moins importante pour les couples 1 -2 et 3 -4 s'expliquant par une faible valeur de σ x par rapport à σ y .

Σ =   σ 2 x ρσ x σ y ρσ x σ y σ 2 y   ,

Expérimentations données réelles : Météorite de Chelyabinsk

Représentation temps-cohérence Le 15 Février 2013, un astéroïde d'environ 19 m de diamètre [START_REF] Brown | A 500-kiloton airburst over chelyabinsk and an enhanced hazard from small impactors[END_REF] est entrée dans l'atmosphère terrestre près de Chelyabinsk en Russie. Cet évènement rare a généré les infrasons les plus puissants jamais enregistrés par les stations de l'OTICE. Les infrasons ont été détectés par 20 stations du réseau infrason du SSI Le Pichon et al. [2013] et particulièrement par la station IS31 au Kazakhstan (Fig. 5.4) située à environ 500 km de Chelyabinsk. Le signal enregistré par le capteur 1 de la station IS31 est donné en figure q q q q q q q q 1 2 3 4 5 Le signal généré par la météorite, est un exemple idéal pour la perte de cohérence. Les signaux pour les différents capteurs ont un très grand rapport signal à bruit sur toute la bande de fréquence. Grâce à ce grand rapport signal à bruit, le bruit a alors un impact négligeable sur la cohérence. Sans le phénomène de perte de cohérence décrite, il serait attendu d'avoir des signaux dont la cohérence est très proche de 1 pour toutes les paires de capteurs.

La perte de cohérence est définie dans le cadre de signaux stationnaires au second ordre, puisqu'elle repose sur le comportement spectral des signaux captés. En particulier le signal d'intérêt s(t) est supposé stationnaire. Les signaux réels peuvent être non-stationnaires, et il paraît intéressant de comprendre si la non-stationnarité peut résulter en une perte de cohérence fortuite. Pour cela, considérons un signal s(t) localement stationnaire au sens de [START_REF] Dahlhaus | Fitting time series models to non-stationary processes[END_REF]. Dans ce cas, la densité spectral γ s (f ) est remplacée par la notion de densité spectrale locale γ s (f, t), que l'on peut estimer à partir d'une représentation temps-fréquence similaire au spectrogramme. Cela signifie que sur une fenêtre de temps assez courte autour d'un temps de référence t, le signal (s(t + u)) -l≤u≤l se comporte comme un signal stationnaire de densité spectrale f → γ s (f, t). En étendant ces définitions aux spectres et interspectres de x m , m ∈ {1, . . . , M }, on en déduit la définition de la cohérence locale

C m, (f, t) = γ m, (f, t) γ m (f, t)γ (f, t) . (5.19)
Une représentation de la cohérence dans le plan temps-fréquence pour une sélection de paires est donnée par les figures Fig. 5.6 (paires de capteurs rapprochés), Fig. 5.7 (paires de capteurs moyennement rapprochés), Fig. 5.8 (paires de capteurs éloignés). La cohérence est estimée à l'aide de deux fenêtres glissantes de 1024 et 512 échantillons pour décrire l'évolution de la cohérence au cours du temps. Comme attendu la résolution spectrale s'améliore pour les fenêtres de taille 1024 et la résolution temporelle est en revanche meilleure pour les fenêtres de taille 512.

Examinons la perte de cohérence éventuellement induite par un cadre localement stationnaire, pour une propagation parfaitement plane de vecteur d'onde p 0 conduit à des spectres et interspectres locaux de la forme (nous nous plaçons ici dans le cas d'un bruit additif stationnaire) : 

γ m (f, t) = γ s (f, t) + γ n (f ) m = 1, . . . , M γ m, (f, t) = γ s (f, t)e 2iπf p T 0 (rm-r ) m = = 1, . . . ,
, (f, t) = γm, (f, t) γm (f, t)γ (f, t) 2 , avec, pour m = = 1, . . . , M , γm, (f, t) ≈ t+l u=t-l h ,t-u (f -ξ)γ m, (ξ, v) dξ = t+l u=t-l h l,t-u (f -ξ)γ s (ξ, t)e 2iπξp T 0 (rm-r l ) dξ et pour m = = 1, . . . , M , γm (f, t) ≈ t+l u=t-l h ,t-u (f -ξ)γ s (ξ, t) dξ + t+l u=t-l h ,t-u (ξ) γ n (ξ) dξ .
Dans le cadre d'une estimation très bien résolue en fréquence les poids (h l,k (ξ)) k=-l,...,l,ξ∈[-1/2,1/2] sont très concentrés autour de zéro et l'intégrable en ξ revient à évaluer l'argument en ξ = f . En conséquence dans une situation de fort rapport signal à bruit, la cohérence estimée est de nouveau proche de 1. En revanche si la résolution en fréquence est faible, l'estimation introduit une perte de cohérence fortuite : le terme e 2iπξp T 0 (rm-r l ) n'est plus factorisable en dehors de l'intégrale et conduit à une estimée de Ĉm, (f, t) plus faible.

Pour des représentations temps-fréquence de la cohérence, il est donc plus prudent d'utiliser des tailles de fenêtres différentes afin de contrôler l'effet de la perte de résolution en fréquence sous la forme d'un biais négatif éventuel de la perte de cohérence. Les figures Fig. 5.6 (paires de capteurs rapprochés), Fig. 5.7 (paires de capteurs moyennement rapprochés), Fig. 5.8 (paires de capteurs éloignés), pour lesquelles les deux tailles de fenêtre 1024 (bonne résolution fréquentielle) et 512 (moins bonne résolution fréquentielle) sont utilisées, indiquent bien ici que la perte de cohérence observée dans le plan temps-fréquence est réelle et non due à un manque de résolution spectrale. 

Estimation des paramètres de perte de cohérence

Nous proposons d'estimer les paramètres du modèle de cohérence du modèle (5.11) pour l'évènement de Chelyabinsk. L'estimation des paramètres, Σ est réalisée à l'aide de la méthode du maximum de vraisemblance approchée décrite au paragraphe §5.3.2.

La figure Fig. 5.9 représente la cohérence pour l'ensemble des 28 couples de capteurs. L'estimation non paramétrique est donnée par la courbe bleue. La courbe rouge correspond à la cohérence paramétrique estimée par la méthode du maximum de vraisemblance approchée. Le vecteur lenteur moyen p 0 a été estimé et correspond à un back-azimut de ∼ 27 • et une vitesse horizontale de ∼ 330 m/s. La matrice de covariance estimée Σ correspond à σ a ∼ 5 • , et σ v = 13 m/s. L'hypothèse avancée par [START_REF] Mack | Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere[END_REF] puis vérifiée par les expérimentations pour une fréquence donnée est ici étendue à un signal à large bande. La perte de cohérence est plus importante pour les couples de capteurs perpendiculaires au vecteur lenteur moyen p 0 en comparaison avec les couples de capteurs parallèles. En effet, pour le cas du signal de météorite ce phénomène est visible entre les couples 2 -3 (parallèle à la propagation) et 3 -4 (perpendiculaire) qui sont séparés respectivement de 310 m et de 273 m. Malgré une sépa-ration inférieure, le couple 3 -4 subit plus fortement le phénomène de perte de cohérence. L'effet de l'orientation du couple par rapport à la direction moyenne de la propagation est aussi illustrée par les couples 1 -2 et 2 -3, ainsi que les couples 1 -2 et 1 -4. Même si ce résultat est en accord avec les expérimentations de la littérature, il n'existe cependant pas assez de couples de capteurs pour permettre d'affirmer que le phénomène de perte de cohérence est réellement moins marqué pour les couples dans le sens de la propagation moyenne.

Figure 5.9: Estimation non paramétrique (courbes bleues) de la cohérence du signal de la météorite de Chelyabinsk pour les 28 paires de capteurs. La courbe correspond à la cohérence paramétrique estimée à partir du maximum de vraisemblance §5.3.2.

Interprétation du modèle alternatif

Afin de mieux comprendre et interpréter la forme de cohérence obtenue, faisons l'approximation

Σ(τ ) ≈ Σ(0)1 [-η 0 ,η 0 ] (τ )
qui approche Σ(τ ) par une matrice constante dans un voisinage de 0 pour une durée η 0 puis par une matrice nulle. η 0 représente la persistance de la propagation (η 0 → ∞ est équivalent à un vecteur lenteur constant).

Il s'en suit que

g m,l (f, τ ) ≈ (e 4π 2 f 2 r m Σ(0)r -1)1 [-η 0 ,η 0 ] (τ ) puis gm,l (f, f ) ≈ (e 4π 2 f 2 r m Σ(0)r -1)2η 0 sinc(2πf η 0 ) Alors B m,l (ξ) prend la forme d'un simple produit de convolution B m,l (ξ) = +∞ -∞ A m,l (f )(e 4π 2 f 2 r m Σ(0)r -1)2η 0 sinc(2πη 0 (f -ξ))df = +∞ -∞ A m,l (f )(e 4π 2 f 2 r m Σ(0)r -1)2η 0 sinc(2πη 0 (ξ -f ))df
On pose γ M m, (f ) = γ s (f )e -2π 2 f 2 (rm-r ) Σ(0)(rm-r ) e -2iπf (υm-υ l ) avec l'indice exposant M en référence au modèle de Mack & Flinn (5.10) Il est intéressant d'observer que dans le cas particulier où η 0 → +∞ le modèle (5.27) est équivalent au modèle (5.10). Ce résultat est facile à interpréter : quand l'aléa du vecteur lenteur peut être vu comme constant au cours du temps, il peut être interprété comme dû à un moyennage spatial de vecteurs lenteur constants au cours du temps. Ce résultat donne une piste pour la génération de signaux comprenant une perte de cohérence à partir de la génération d'un vecteur lenteur aléatoire suivant le modèle (5.20). La simulation pose un paradoxe puisque pour générer des signaux selon le modèle de perte de cohérence de Mack & Flinn, il est nécessaire d'avoir un aléa du vecteur lenteur constant et donc nécessite de générer un signal de taille infini pour pouvoir observer une perte de cohérence. Cependant, générer des signaux avec une perte de cohérence selon le modèle proposé dans cette sous-section, (5.27), est possible et est l'objet de la sous-section suivante.

et κ(f ) = 2η 0 sinc(2πη 0 f ). Finalement l'interspectre entre x m et x s'écrit γ m, (f ) = (γ M m, κ)(f ) 1 + A m,l (f ) -(A m,l κ)(f ) 2 , ( 5 

Simulations de données synthétiques à partir du modèle alternatif

La simulation de signaux synthétiques à partir du modèle (5.27) repose sur l'hypothèse selon laquelle une seule onde est reçue par les capteurs avec un vecteur lenteur aléatoire. A l'inverse du modèle de Mack & Flinn (5.11), le modèle alternatif (5.27) ne suppose pas une densité spectrale indépendante de la fréquence. Ce modèle possède donc un atout important nous permettant de faire appel à un signal d'intérêt s n pouvant être issu d'un enregistrement réel.

La simulation de signaux dont la cohérence est donnée par le modèle nécessite d'abord la génération d'un vecteur lenteur aléatoire en temps discret de la forme p n = p 0 +ν n . Ensuite à partir d'un signal d'intérêt échantillonné, s n , à la fréquence f s , il suffit de construire le signal reçu par le capteur m selon le simple modèle x m,n = s n-τm,n , avec τ m,n = r m p n f s . On note que le vecteur lenteur p n varie au cours du temps mais reste commun aux M capteurs.

Il est intéressant de proposer une formulation de la perturbation du vecteur lenteur ν n dont la corrélation temporelle est décroissante, et donc d'avoir une autocovariance Σ τ = Cov (ν n , ν n+τ ) décroissante en fonction de τ . Le modèle autoregressif d'ordre 1 est un bon candidat pour obtenir une covariance qui décroît avec un taux que l'on peut contrôler. En fixant l'autocovariance au lag 0, Cov (ν n ) = Σ 0 , ν n = αν n-1 +Aε n avec ε n un bruit blanc de covariance I 2 , et |α| < 1, le processus ν n est stationnaire et on a l'approximation suivante

ν n = A k>0 α k ε n .
(5.28)

A partir (5.28), on déduit alors l'expression de l'autocovariance au lag 0

Cov (ν n ) = A k>0 α 2k I 2 A , = AA 1 -α 2
On souhaite, pour une variance de la perturbation fixée, contrôler sa décorrélation temporelle. La décorrélation temporelle est définie par la valeur que l'on choisi pour α. Le choix du paramètre α permet ensuite de fixer la matrice A = Σ 1/2 0 √ 1α 2 de manière à obtenir la variance de ν n souhaitée. Lorsque α → 0, on a A → Σ 1/2 0 . Inversement lorsque α → 1, A tend vers la matrice nulle, et la perturbation est alors constante au cours du temps. Aucune valeur de Σ 0 n'a été estimée et reste donc inconnue. Cependant, il est naturel de faire l'analogie avec le modèle Mack & Flinn (5.11) et de considérer les valeurs de la matrice Σ 0 égale à la matrice de covariance du modèle Mack & Flinn. Dans ce cas, pour générer des signaux dont la perte de cohérence est proche du modèle Mack & Flinn (5.10), il a été montré en sous-section §5.4.3 que pour α proche de 1 et une matrice Σ 0 contenant les paramètres de perte de cohérence du modèle de Mack & Flinn, le modèle alternatif est approximativement équivalent au modèle de Mack & Flinn. Une solution a été proposée par [START_REF] Park | Seasonal variations of infrasound detections and their characteristics in the western us[END_REF]; [START_REF] Stump | Performance assessment of multi-array processing with ground truth for infrasonic, seismic and seismo-acoustic events[END_REF] en confrontant deux systèmes de détections automatiques (PMCC [START_REF] Cansi | An automatic seismic event processing for detection and location : The p.m.c.c. method[END_REF] et le F-detecteur Arrowsmith et al. [2009]) à des analystes pour une source identifiée et répétitive avec des différents rapports signal à bruit. Comme attendu, l'étude montre que les performances se dégradent lorsque le SNR diminue. Plus étonnant, [START_REF] Stump | Performance assessment of multi-array processing with ground truth for infrasonic, seismic and seismo-acoustic events[END_REF] ont montré que le nombre de détections correctes des analystes est toujours supérieur aux détecteurs automatiques, et ce quel que soit le rapport signal à bruit. Ces études ne font pas intervenir la cohérence et les performances sont seulement quantifiées en fonction du rapport signal à bruit. Comme les détecteurs automatiques sont basés sur le modèle de retard pur, cet écart entre les analystes et les détecteurs peut s'expliquer par le phénomène de perte de cohérence.

Nous proposons alors dans cette sous-section d'évaluer les détecteurs de l'état de l'art avec des signaux synthétiques sujet à une perte de cohérence contrôlée. La synthèse de signaux permet de contrôler à la fois la puissance du bruit, et l'amplitude de la perte de cohérence. Ces signaux synthétiques nous permettent d'évaluer l'effet conjoint du rapport signal à bruit et du phénomène de perte de cohérence sur les performances des détecteurs, ce qui n'a à notre connaissance pas encore fait l'objet d'études dans le domaine des infrasons.

Protocole d'évaluation

On propose d'évaluer les performances de 4 détecteurs de l'état de l'art qui sont rapidement présentés ici (pour plus de détails voir section §1.3).

-La consistance (sous-section §1.3.2.1) est basée sur les inter-corrélations. La statistique de test vérifie que les différences de temps d'arrivée entre les capteurs sont en adéquation avec le modèle d'onde plane.

-Le MCCM (sous-section §1.3.2.2) est basé sur les inter-corrélations. Le MCCM calcule la moyenne du maximum des inter-corrélations entre les M (M -1)/2 possibles paires d'une station à M capteurs.

-Le F-detecteur (sous-section §1.3.3.1) est basé sur le beamforming. Le F-detecteur est équivalent au rapport de vraisemblance généralisé d'un signal d'intérêt déterministe traversant un réseau de capteurs en présence de bruit additif de variance inconnue.

-Le RVGG (sous-section §1.3.3.3) est basé sur le beamforming. Le RVGG est le rapport de vraisemblance généralisé d'un signal d'intérêt gaussien de variance inconnue traversant un réseau de capteurs en présence de bruit additif de variance inconnue.

La métrique utilisée pour l'évaluation des performances repose sur la fonction d'efficacité du récepteur [START_REF] Fawcett | An introduction to roc analysis[END_REF] plus fréquemment désignée sous le terme de courbe ROC (de l'anglais Receiver Operating Characteristic) qui permet de -se donner une idée des performances en déploiement des détecteurs, et notamment de connaître sa fiabilité.

-comparer plusieurs détecteurs grâce à un indicatif aisément interprétable, et de connaître lequel parmi plusieurs détecteurs sera le plus performant.

La courbe ROC est une représentation graphique qui donne le taux de vrais positifs en fonction du taux de faux positifs. La courbe ROC peut alors être utilisée pour le choix du seuil des détecteurs pour contrôler le taux de fausses alarmes ou le taux de détections manquées. Une représentation de la courbe ROC est donnée en figure Fig. 5.14. Cependant, dans cette section, on préfère faire appel à la métrique donnée par l'AUC [START_REF] Andrew | The use of the area under the roc curve in the evaluation of machine learning algorithms[END_REF] (Area Under the Curve) pour l'évaluation des détecteurs (calculée à partir de la courbe ROC ). L'AUC indique la probabilité pour que le détecteur place un signal sous l'hypothèse H 1 devant un signal sous l'hypothèse H 0 [START_REF] Hanley | The meaning and use of the area under a receiver operating characteristic (roc) curve[END_REF]. Un détecteur prenant aléatoirement des décisions aura une AUC égale à 0.5, et inversement un détecteur idéal aura une AUC de 1.

L'AUC théorique n'est pas calculable par une formule close. L'obtention de la courbe ROC et de l'AUC nécessite alors une base de données étiquetées. On propose de simuler une base de données synthétiques. Les simulations conduites dans la suite du chapitre sont basées sur un signal réel enregistré par le station IS31 (Fig. 5.4). Une exploitation de gaz naturel à 160 km au sud de la station émet des infrasons par le biais d'une torchère durant la période considérée. L'analyse à l'aide du détecteur F-detecteur en fréquence §1.3.3.2 est donnée en figure Fig. 5.11. Le signal cohérent de la torchère est majoritairement compris entre 0.6 Hz et 3 Hz. L'angle d'arrivée moyen de la torchère est estimé avec un back-azimut de ∼ 189 • , et une vitesse horizontale de ∼ 340 m/s. Même si aucune vérité terrain n'existe pour ce signal, on supposera à partir de maintenant qu'un signal cohérent issu de la torchère est continuellement présent pendant l'enregistrement. Comme décrit précédemment l'estimation de la courbe ROC nécessite la simulation -d'un grand nombre de signaux sous l'hypothèse H 1 (à partir du signal de la torchère Fig. 5.11).

-d'un grand nombre de signaux sous l'hypothèse H 0 .

Sous l'hypothèse H 0 les signaux sont simulés par du bruit blanc spatialement décorrélé pour chacun des capteurs. Il est maintenant discuté de trois méthodes pour la simulation des signaux sous l'hypothèse H 1 .

Méthode.1 Utilisation du signal réel, filtré dans la bande 0.4 -10 Hz, des M capteurs où la torchère est enregistrée par les M capteurs en continu. La puissance du bruit est contrôlée par l'ajout d'un bruit blanc spatialement non corrélé de variance σ 2 sur chacun des capteurs. Le chapitre 4 discute du caractère coloré du bruit infrasonore. Cependant, dans la bande de fréquence considérée (0.4 -10 Hz) l'approximation du bruit par un bruit blanc est raisonnable.

Méthode.2 Utilisation du signal réel, filtré dans la bande 0.4 -10 Hz, du capteur 5 où la torchère est enregistrée en continu. A partir du capteur 5, les signaux reçus par les différents capteurs sont simulés à l'aide de la méthode présentée en sous-section §5.4.4 et correspondent donc au modèle alternatif. Les paramètres du modèle de perte de cohérence ont été estimés de manière à obtenir des cohérences entre les capteurs similaires aux cohérences observées sur le signal réel. La puissance du bruit est contrôlée par l'ajout d'un bruit blanc spatialement non corrélé de variance σ 2 sur chacun des capteurs.

Méthode.3 Utilisation du signal réel, filtré dans la bande 0.4 -10 Hz, du capteur 5 où la torchère est enregistrée en continu. A partir du capteur 5, les signaux reçus par les différents capteurs sont simulés en appliquant des retards purs (sans perte de cohérence). La puissance du bruit est ensuite contrôlée par l'ajout d'un bruit blanc spatialement non corrélé de variance σ 2 sur chacun des capteurs. 10 5 échantillons pour chacune des méthodes sont générés soit environ ∼ 83 minutes de signal. Pour calculer, l'AUC 500 fenêtres de 512 échantillons sont sélectionnées aléatoirement parmi les ∼ 83 minutes de signaux synthétiques. Les plages de temps pour les fenêtres sont identiques pour les 3 méthodes. Fig. 5.12 représente l'évolution de l'AUC en fonction de la variance du bruit pour 4 détecteurs de l'état de l'art. La performance de chaque détecteur est évaluée pour les 3 méthodes de simulation de signaux. Les courbes rouges sont associées aux AUC dont les signaux sous l'hypothèse H 1 sont issus des signaux réels de la torchère avec l'ajout d'un bruit blanc (Méthode.1). Les courbes bleues sont associées aux AUC dont les signaux sous l'hypothèse H 1 sont issus de la simulation de données par la Méthode.2. Les courbes vertes sont associées aux AUC dont les signaux sous l'hypothèse H 1 sont issus de la simulation de données selon le modèle idéal (sans perte de cohérence) de retard pur (Méthode.3). La figure Fig. 5.12 montre que la simulation de signaux selon le modèle idéal Méthode.3 surestime les performances pour l'ensemble des détecteurs. L'utilisation de données réelles et synthétiques simulées selon le modèle alternatif (5.27) offre des performances comparables pour l'ensemble des détecteurs. Ce résultat permet de confirmer le bien-fondé de l'utilisation d'un modèle de perte de cohérence pour l'évaluation des détecteurs.

Pour les trois méthodes, les détecteurs voient leurs performances diminuées avec l'augmentation de la puissance du bruit ajouté. Ce résultat est sans surprise et indique simplement que plus le rapport signal à bruit est faible, plus les détecteurs ont des difficultés à détecter le signal cohérent. performances en comparaison avec les détecteurs basés sur l'inter-corrélation (MCCM et consistance). Le F-detecteur et le RVGG sont basés sur le beamforming en alignant les signaux dans la direction du signal cohérent ce qui a pour effet d'augmenter artificiellement le rapport signal à bruit de M avec M le nombre de capteurs de la station [START_REF] Van Veen | Beamforming : A versatile approach to spatial filtering[END_REF]. On note aussi que ces détecteurs recherchent la présence d'un signal cohérent pour une sélection finie d'angles d'arrivée physiquement possibles. Cette sélection finie constitue un a priori que la consistance et le MCCM n'utilisent pas ce qui explique en partie les différences de performances. Les détecteurs basés sur le beamforming se retrouvent alors moins affectés par le rapport signal à bruit au prix d'un coût de calcul plus important (dû à la recherche en grille). Les performances du détecteur basé sur la consistance sont à discuter. Dans le cadre des simulations, la consistance a été calculée pour la totalité des M capteurs. Cependant, la consistance est souvent associée à une étape d'intégration progressive des capteurs. Une valeur de consistance initiale est calculée à partir de 3 capteurs proches, l'intégration de nouveaux capteurs s'effectue ensuite de manière progressive sous réserve que la nouvelle valeur de la consistance augmente. Cette "progressivité" est discutée et justifiée dans la section suivante §5.5.2. 5.5.2 Impact de la perte de cohérence sur les performances des détecteurs Suite aux résultats de la sous-section précédente, on propose maintenant d'étudier l'impact de l'amplitude de la perte de cohérence sur les différents détecteurs. En l'absence d'une base de signaux dont la cohérence est connue, on propose de simuler des signaux dont la perte de cohérence est artificiellement aggravée. L'amplitude de la perte de cohérence est contrôlée par le biais de la multiplication de la matrice de covariance du modèle Σ 0 précédemment utilisée par un scalaire. Le scalaire, appelé ici facteur d'amplification, varie entre 1 et 13. Un facteur d'amplification de 1 correspond alors aux paramètres de perte de cohérence utilisés dans la sous-section précédente §5.5.1. Pour un facteur d'amplification supérieur à 1, la perte de cohérence est aggravée mais conserve un comportement similaire (certains couples de capteurs sont moins impactés par la perte de cohérence grâce à l'angle entre le vecteur séparant les capteurs du couple avec la direction de propagation de l'onde). Les études [START_REF] Green | Towards a coherence model for infrasound signals recorded at international monitoring system arrays[END_REF]; [START_REF] Green | The spatial coherence structure of infrasonic waves : implications for infrasound signal analysis[END_REF] ont montré expérimentalement que le phénomène de perte de cohérence est variable entre les stations et les évènements. Il nous semble intéressant d'étudier le comportement des détecteurs face à différentes amplitudes de perte de cohérence. Ce résultat est confirmé par Fig. 5.15 qui illustre l'impact du facteur d'amplification sur les performances de l'ensemble des détecteurs. On remarque que l'amplitude de la perte de cohérence a le même impact pour les 4 détecteurs : pour des rapports signal à bruit faibles, plus l'amplitude de la perte de cohérence est importante plus les performances se dégradent. On note aussi que pour de forts rapports signal à bruit, la perte de cohérence ne réduit pas significativement les performances. Malgré un facteur d'amplification élevé (13), 3 détecteurs voient leur AUC à 1 signifiant une performance idéale pour des plages de SNR élevé.

Parmi les 4 détecteurs, le détecteur basé sur la consistance est celui qui possède les moins bonnes performances. Or en pratique la détection basée sur la consistance est réalisée avec une intégration progressive des capteurs. Cependant, la progressivité a été développée par les analystes et experts pour le traitement opérationnel des sources infrasonores. Bien que non justifiée dans le cas idéal du modèle de retard pur, sans perte de cohérence, la consistance couplée avec l'intégration progressive des capteurs est aujourd'hui un standard en terme de détection. L'algorithme PMCC (qui inclue la consistance couplée à la "progressivité") calcule d'abord une valeur de la consistance pour un sous-réseau de 3 capteurs rapprochés. Cette valeur initiale est ensuite comparée à la valeur de la consistance après intégration d'un nouveau capteur formant alors sous-réseaux de cardinal supérieur. Si cette valeur est supérieure à la valeur initiale, PMCC considère que le capteur nouvellement intégré améliore la détection. L'intégration de nouveaux capteurs est réalisée itérativement jusqu'à ce que la consistance cesse d'augmenter. Le gain lié à l'heuristique de "progressivité" est difficilement quantifiable. On propose néanmoins de contourner le problème en proposant une simulation visant l'évaluation exhaustive des AUC de la consistance pour l'ensemble des sous capteurs de cardinal supérieur à 3 possibles.
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1. Faible bruit, faible perte de cohérence : (σ 2 = 1×10 -6 , facteur d'amplification = 0.5) Les AUC sont proches de 1 indiquant un faible taux de fausses alarmes et un fort taux de vrais positifs. Les performances sont bonnes quel que soit le nombre de capteurs et leur distance quadratique moyenne. Dans ce cas, il est recommandé de considérer le maximum de capteurs ce qui permettra d'avoir une estimation de l'angle d'arrivée la plus précise possible.

2. Fort bruit, faible perte de cohérence :(σ 2 = 7 × 10 -4 , facteur d'amplification = 0.5) Les AUC augmentent avec le nombre de capteurs utilisés pour la détection. L'AUC la plus élevée est donnée par l'utilisation des 8 capteurs. Parmi les sous-ensembles de même cardinal, l'influence de la perte de cohérence est visible : plus les capteurs sont éloignés plus les performances se dégradent. Néanmoins il y a un fort étalement des performances pour des distances entre capteurs faibles indiquant que la distance quadratique moyenne n'est pas un indicateur très précis dans ce cas. A distance moyenne équivalente, il est préférable de faire appel au plus de capteurs possibles pour la détection.

3. Faible bruit, forte perte de cohérence : (σ 2 = 1 × 10 -6 , facteur d'amplification = 11) Il apparaît dans ce cas qu'il faut le plus de capteurs rapprochés possibles mais que, étant donné la configuration de la station, les groupes de trois capteurs rapprochés donnent les meilleurs résultats à peu près à égalité avec les groupes de 4 ou 5 capteurs ayant des distances quadratiques moyennes du même ordre. 4. Fort bruit, forte perte de cohérence : (σ 2 = 7 × 10 -4 , facteur d'amplification = 11) Le résultat ressemble au cas précédent mais le nombre de capteurs devient beaucoup plus déterminant. Le faible SNR donne de mauvaises performances lorsque l'on fait appel à peu de capteurs pour la détection. Dans ce cas les ensembles de trois capteurs ne donnent plus le meilleur résultat.

Cette simulation apporte donc une justification à la "progressivité". Lorsque la perte de cohérence est importante les capteurs éloignés (dont les signaux se retrouvent faiblement cohérent) dégradent les performances. Il est alors intéressant de se restreindre à un sousréseau de faible ouverture et d'ignorer les capteurs éloignés.

Conclusion

Ce chapitre traite du phénomène de perte de cohérence des infrasons. Sous l'hypothèse d'une propagation selon le modèle d'onde plane, la perte de cohérence peut se justifier au premier abord par la présence de bruit. Or l'analyse de signaux à très forts rapports signal à bruit montrent toujours des cohérences s'éloignant de la valeur attendue : 1 pour toutes les fréquences. Les cohérences entre les signaux enregistrés par les capteurs d'une station décroît en fonction de la fréquence et de la distance séparant les capteurs. Basée sur l'hypothèse que les capteurs reçoivent plusieurs ondes au même instant, une formulation du modèle dit de Mack & Flinn a été proposée. Ce modèle implique que la perte de cohérence est aussi dépendante de l'angle qui existe entre le vecteur reliant deux capteurs et la direction de propagation moyenne des ondes. Deux méthodes d'estimation paramétrique de la cohérence ont été développées, et appliquées sur le signal réel de la météorite de Chelyabinsk. Cet exemple confirme la dépendance non triviale de la direction de propagation moyenne des ondes sur la perte de cohérence. Les couples de capteurs parallèles à la propagation moyenne sont significativement moins impactés par le phénomène de perte de cohérence que les couples perpendiculaires à la propagation.

Le modèle Mack & Flinn suppose une intégration spatiale de plusieurs ondes possédant des vecteurs lenteur déterministes. Alternativement, nous avons dérivé un modèle supposant une seule onde dont le vecteur lenteur est aléatoire. Le modèle alternatif obtenu permet sous certaines conditions d'être équivalent au modèle de Mack & Flinn. Notre approche permet notamment la simulation de signaux dont la cohérence est proche du modèle de Mack & Flinn à partir d'un signal réel. La simulation de tels signaux est motivée par l'évaluation des détecteurs. En l'absence d'une base de signaux réels et étiquetés, l'évaluation des détecteurs est difficile. La simulation de signaux synthétiques par les méthodes proposées dans ce chapitre a alors permis de construire une base de données étiquetées réaliste. La base de données synthétiques nous a ensuite permis de quantifier et de comparer les performances des détecteurs de l'état de l'art. Plus particulièrement, l'impact du phénomène de perte de cohérence a été décrit. Son impact est similaire au rapport signal à bruit sur les performances des détecteurs : plus le phénomène de perte de cohérence est important, plus les performances sont réduites. De plus, pour un rapport signal à bruit fixe les performances diminuent proportionnellement avec l'amplitude de la perte de cohérence.

Même si les modèles de perte de cohérence n'ont pas été validés statistiquement par le biais d'une étude systématique d'un ensemble important de signaux, ces modèles pourraient être intégrés dans la formulation des détecteurs. Cette piste est justifiée par l'étude de la "progressivité" utilisée dans l'algorithme de détection automatique de PMCC. PMCC intègre progressivement de nouveaux capteurs pour la détection. Dans le cas d'une perte de cohérence trop importante, cette approche permet de ne pas considérer les signaux peu ou pas cohérents pour la détection et donc d'améliorer les performances. Plus généralement, si un modèle de perte de cohérence est validé, un détecteur peut-être dérivé. Les signaux des différents capteurs seraient alors pondérés de manière à ce que les signaux des capteurs éloignés aient un poids moins important pour la détection. Aux vues des nombreuses inconnues liées aux infrasons comme le contenu spectral, l'angle d'arrivée, le rapport signal à bruit du signal d'intérêt, le domaine possède déjà une littérature importante centrée sur la détection. Cette thèse formalise alors dans un premier temps l'état de l'art de la détection infrasonore. Puis le problème du choix d'un seuil permettant de contrôler le taux de fausses alarmes ou le taux de vraies détections a été abordé dans le chapitre 1. Ce travail a abouti à l'estimation de la vraie distribution du F-detecteur en présence de bruit uniquement qui constitue une contribution novatrice pour le domaine.

Une fois l'onde infrasonore détectée, l'estimation de l'angle d'arrivée de l'onde est ensuite une étape cruciale pour l'identification de la source. L'estimation de l'angle d'arrivée est basée sur les différences de retards et les positions des capteurs spatialement espacés. Les capteurs d'une station infrason sont généralement positionnés sur le sol. Pour des raisons topographiques, les capteurs peuvent présenter de légères différences d'altitudes. Lors de l'estimation de l'angle d'arrivée, ces différences d'altitudes sont soient considérées aboutissant à une grande variance dans l'estimation de l'angle d'arrivée ou ignorées aboutissant à une variance réduite au prix de l'apparition d'un biais systématique. Le chapitre 2 développe les expressions analytiques du biais et de la variance des deux estimations. Grâce à ces résultats, une stratégie basée sur le compromis biais/variance est proposée permettant de choisir l'estimation offrant les meilleurs performances. Nous proposons de compléter les travaux avec la formulation d'un estimateur contenant un a priori sur la vitesse de propagation des infrasons. Le chapitre 3 discute des performances de ce nouvel estimateur et quantifie son biais et sa variance. Sous réserve d'une bonne connaissance de la vitesse de propagation, l'estimateur décrit dans le chapitre 3 améliore les performances des estimateurs précédents dans la majorité des situations. Ce travail a permis de corriger un biais de l'estimation de l'angle d'arrivée de l'ordre du degré tout en conservant une variance raisonnable. Cet estimateur est actuellement implémenté dans l'algorithme de détection et d'estimation (PMCC ) utilisé par le CEA et l'OTICE pour l'étude automatique des sources infrasonores. Une piste d'amélioration portant sur la formulation d'un a priori plus réaliste est envisageable et discutée dans le paragraphe 1.5.4. Au lieu de choisir un a priori déterministe, il est proposé de modéliser la vitesse du son par une distribution gaussienne.

Dans le chapitre 4 nous avons proposé un algorithme de détection se démarquant de l'état de l'art. Les algorithmes classiques de détection segmentent temporellement le signal et dressent une décision pour chaque fenêtre de temps. Or comme aucune information sur la durée exacte du signal n'existe, les algorithmes complètent généralement la détection par une étape de post-traitement qui agrège l'ensemble des détections. De cet agrégat il ressort une heure exacte du début et de fin d'un signal infrasonore. Nous avons donc proposé un algorithme qui s'affranchit de la segmentation temporelle et repose sur l'ensemble du signal. L'algorithme est basé sur une modélisation stochastique de type autoregressif des signaux infrasonores. Cette modélisation conduit à un algorithme basé sur l'utilisation de filtres de Kalman en parallèles et de la détection de changement abrupt appelée CUSUM. L'application sur données réelles montrent des résultats encourageants. Nous avons aussi montré que l'algorithme peut aussi être utilisé pour améliorer les performances des détecteurs classiques en présence d'un signal nuisible susceptible de compromettre la détection d'un signal d'intérêt. L'algorithme de détection repose sur une modélisation stationnaire du signal d'intérêt qui peut être remise en cause dans le cas d'un signal issu d'une explosion. Dans ce cas il serait intéressant d'étendre les travaux réalisés à des signaux non-stationnaires.

Enfin le chapitre 5 met en avant les limitations du modèle "signal". Les traitements utilisés pour l'exploitation des infrasons reposent sur le modèle de retards purs entre les différents signaux reçus par les capteurs. Des observations de la cohérence exposent un phénomène de perte de cohérence en désaccord avec le modèle de retards purs. Le phénomène de perte de cohérence a été décrit et formalisé permettant notamment d'aboutir à une estimation paramétrique de la cohérence. Un modèle alternatif a été dérivé en modélisant le vecteur lenteur comme aléatoire. Le modèle obtenu permet notamment la simulation de signaux réalistes. La simulation de tels signaux est motivée par l'évaluation des performances des détecteurs qui conclut alors ce chapitre. Le travail présenté dans ce chapitre est sujet à de nombreuses pistes d'études supplémentaires. Le modèle de perte de cohérence est visuellement en accord avec les observations, cependant aucune étude statistique n'a été conduite pour conclure quant à validité du modèle. De plus, il semblerait intéressant de relier les paramètres de la perte de cohérence à des variables physiques comme le type de source, le vent ou la température. Dans le cas où le modèle serait validé, une nouvelle formulation des détecteurs et estimateurs est alors envisageable. 
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Figure 1

 1 Figure 1.1: Réseau global du SSI. 45 stations (diamants noirs) sont certifiées. 5 stations additionnelles (carrés blancs) sont en constructions. Les 10 stations restantes (cercles blancs) sont en constructions. Sur les 10 stations seules 9 sont représentées, la localisation de la dernière restant à déterminer. (Source : Hedlin and Walker [2013])

Figure 1 . 3 :Figure 1 . 4 :

 1314 Figure 1.2: Géométries des stations fictives à 4 capteurs (gauche) et 9 capteurs (droite) .

Figure 1 Figure 1 . 6 :

 116 Figure 1.5: Géométries de la station IS37 en Norvège..

  .1) avec c la vitesse de propagation de l'onde dans le milieu. Lorsque c est indépendante de la position, une solution particulière de (1.1) prend la forme d'une fonction exponentielle, u(r, t) = ae i(ωt-r k) , (1.2) où ω = 2πf la fréquence angulaire, f la fréquence, et k = k x k y k z le vecteur d'onde. L'analogie entre la fréquence f et le nombre d'onde k débouche sur l'appellation de fréquence spatiale pour le nombre d'onde. Les deux quantités sont notamment reliées, en remplaçant (1.2) dans (1.1), par l'équation suivante,

  n'importe quelle courbe fermée (m 0 , m 1 ), (m 1 , m 2 ), . . . , (m a , m 0 ) formée à partir d'un sous-ensemble de capteurs d'indices vérifiant 1 ≤ m 0 ≤ . . . ≤ m a ≤ M . La relation de fermeture (1.7) est valide pour tout C de cardinal supérieur ou égal à 3. En pratique, les différences de temps d'arrivée sont estimées par maximisation de la covariance empirique,

Figure 1

 1 Figure 1.8: Signaux générés par le décollage de la navette spatiale Discovery (STS-131) reçus par les capteurs de la station IS18.

Figure 1

 1 Figure1.10: Distributions sous H 0 et H 1 de la statistique F-stat pour un vecteur de retard connu τ . Les lignes continues décrivent les distributions théoriques. Un réseau à M = 4 capteurs et une taille de fenêtre de N = 256 ont été utilisés pour les simulations. Sous H 1 , le rapport signal à bruit ρ est pris égal à 0.12. La ligne vertical noire correspond au seuil de fausse alarme fixé à 1%.

Figure 1 .

 1 Figure 1.11: Comparaison de la matrice de corrélation théorique et empirique des F-stat pour Q = 60 retards.

  du théorème 1 de la sous-section §1.3.3.1On aura besoin du lemme élémentaire suivant Lemme

Figure 1

 1 Figure 1.18: Réseau IS18 à M = 8 capteurs au Groenland.

) 2 ,

 2 avec p z la composante verticale du vecteur lenteur p. Sachant les observations τ , on souhaite maximiser la distribution a posteriori du vecteur de lenteur p P (p|w) pour obtenir l'estimateur du maximum a posteriori pMAP = arg max u p P (u|w) = arg max u L(u; w)p P (u) avec L(p; w) la vraisemblance de p au vu des observations w. Numériquement, il est plus simple de maximiser le logarithme aboutissant à, pMAP = arg max u∈R 3 log p P (u|w) w -Ru) T (w -Ru)] + log p P (u) Chapitre 2 Slowness estimation from noisy time delays observed on non-planar arrays Slowness estimation from noisy time delays observed on nonplanar arrays Nouvellet A., Roueff F., Charbit M. and Le Pichon A. Publication in Geophysical Journal International, May 2014 Volume 198, Number 2, Pages 1199-1207, doi :10.1093/gji/ggu197.

Figure 2

 2 Figure 2.1: Slowness estimation via Time Difference Of Arrivals (TDOA). Slowness estimation via Time Difference Of Arrivals (TDOA). The TDOAs are performed by correlation maximization.

Figure 2 Figure 2

 22 Figure 2.2: Ratio of the MSEs in dB for IS22 Ratio of the MSEs in dB. The black line indicates the boundary of the two regions for different couples of incidence and TDOA standard deviation. Sensor locations of IS22 with M = 4 sensors (see Tab. 2.1). c = 340 m/s.

  estimate at 140° of incidence for a fixed back-azimuth of -140°F igure 2.4: Comparison boxplots of back-azimuth estimation for incidences of 100 • and 140 • . Boxplots of the back-azimuth estimations for an incidence of 100 • (left) and 140 • (right). The horizontal lines represents the true back-azimuth.

  Figure 2.5: RMSE of the back-azimuth in polar coordinates for 2D/3D estimators RMSE of the back-azimuth in polar coordinates with 2D/3D estimators for an backazimuth range of (0 -360) • and two incidence values 100 • and 140 • . Number of runs 100. Geometry : IS22 in New Caledonia whose sensor locations are reported Tab. 2.1.

Figure 2

 2 Figure 2.6: Average RMSE of the back-azimuth for 2D/3D estimators for all IMS stations RMSE of back-azimuth 2D and 3D estimation for all IMS arrays and a fixed incidence of 140 • . Black : 2D estimation, Red : 3D estimation, Green : plugin adaptive estimator, Purple : 3D constrained estimation.

  Figure 2.7: Comparison of back-azimuth estimation for Kasatochi eruption signal Top : back-azimuth estimation with 2D (blue) and 3D (red) estimators. Middle : Incidence of the wave in degrees. Bottom : MCCM output.

  Fig. 3.2, represented by the rmse Back-azimuth RMSE in polar coordinates for azimuth range of (0 -360) • at an incidence of 120 • . Continuous lines are numerical RMSE using 500 runs, dashed lines are the theoretical RMSE using (3.11). Geometry : IS18 in Greenland whose sensor locations are reported in Tab. 4.1. dashed lines, showing good agreement with the synthetic experiments.

Figure 3

 3 Figure 3.3: Back-azimuth estimation at IS66 with 2D (red), unconstrained 3D (blue), and constrained 3D (green) estimators.

Figure 3

 3 Figure 3.4: Boxplot of IS66 back-azimuth estimates for two nights of signals in July 2013.

Figure 3

 3 Figure 3.5: Temperature at IS18 for a period of 6 month in 2014.

Figure 3

 3 Figure 3.6: Top : Differences of back-azimuth between the 2D and constrained 3D estimators as a function of the back-azimuth for ∼ 6 months of data at IS18. The continuous lines represents the theoretical bias of the 2D estimator for the incidences of 125 • , 105 • and 95 • . Bottom : Density of the back-azimuth for 6 months of microbarom signals recorded at IS18 filtered between 0.1 and 0.5 Hz.
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 41 Figure 4.1: The green curve is the spectral content of the estimated ARMA model of the noise. The red and blue curve are the spectral content of the two candidate ARMA models for the SOI (for a signal to noise innovation ratio of 0 dB).

Figure 4 . 2 :

 42 Figure 4.2: 25 minutes of signals recorded by the 8 sensors of the array IS18 4.1 in Greenland.

Figure 4 . 3 :

 43 Figure 4.3: CUSUMs for model 1 (low frequency) applied to the signal 4.2 from the at IS18 4.1. The CUSUMs are computed for a set of azimuth and signal to noise innovation ratios.

Figure 4 . 4 :

 44 Figure 4.4: CUSUMs for model 2 (high frequency) applied to the signal 4.2 from the at IS18 4.1. The CUSUMs are computed for a set of azimuth and signal to noise innovation ratios.

  matrices of the state space (4.36, 4.37) are easily built from matrices described in the previous sections. The block diagonal transition matrix F s+u+n = diag (F s+n , F u ) allows to generate the state at time k, the previous state at time k-1. The process noise is defined by the matrix Q s+u+n = diag (Q s+n , Q u ) and the concatenation of innovations ε the true state space into the observed space. The matrices and vectors (x u k

Figure 4 . 6 :

 46 Figure 4.6: Red and blue curves are respectively the spectral density of the estimated noise and NS models. Green and purple curves are the spectral density of the candidate models for the SOI for signal to noise innovations of -10 dB. The model 1 (green) is the expected model for the SOI.

Figure 4 . 7 :

 47 Figure 4.7: Curves are the non parametric spectral density estimation of the noise (red), the NS (blue) and the SOI (green) used for the simulation (after amplifications).

Figure 4 . 8 :

 48 Figure 4.8: CUSUMs for model 1 (low frequency) applied to the semi-real signal. The CUSUMs are computed for a set of azimuth and signal to noise innovation ratios.

Figure 4 . 9 :

 49 Figure 4.9: CUSUMs for model 2 (high frequency) applied to the semi-real signal. The CUSUMs are computed for a set of azimuth and signal to noise innovation ratios.

  n k δ k is a linear combination of the SOI s k (ζ) perturbed by a linear combination of the process noise Qε k . a k and b k are independent which implies that the autocovariance the error is Cov (δ k , δ k ) = Cov (a k , a k ) + Cov (b k , b k ).

Figure 4

 4 Figure 4.10: Spectral densities of the chosen models for the simulation. Red, blue and green curve are respectively the model of the noise, the NS, and the SOI.

Figure 4

 4 Figure 4.11: Crosscorrelation functions for the 3 possible pairs Cross-correlation functions for the 3 possible pairs (y 2,k+ζ 2 ) 1≤k≤L , (y 3,k+ζ 3 ) 1≤k≤L , (y 4,k+ζ 4 ) 1≤k≤L

Figure 4

 4 Figure 4.12: Crosscorrelation functions for the 3 possible pairs of the residuals Cross-correlation functions for the 3 possible pairs of the residuals (ŝ 2,k+ζ 2 ) 1≤k≤L , (ŝ 3,k+ζ 3 ) 1≤k≤L , (ŝ 4,k+ζ 4 ) 1≤k≤L .

Figure 4

 4 Figure 4.13: Crosscorrelation functions for the 3 possible pairs of the true SOI Cross-correlation functions for the 3 possible pairs of the true SOI (s k+ζ 2 ) 1≤k≤L , (s k+ζ 3 ) 1≤k≤L , (s k+ζ 4 ) 1≤k≤L
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 4 Figure 4.14: Evolution of the AUC as a function of the variance of the innovation of the SOI.

0

  ≤ C m, (f ) ≤ 1 . Dans le cadre des infrasons, le modèle de propagation d'onde plane est utilisé pour décrire le signal x m (t) reçu par le capteur m d'une station à l'instant t, x m (t) = s(tυ m ) + n m (t) , (5.3) où s(t) est le signal d'intérêt reçu de manière retardée par tous les capteurs, et n m (t) est le bruit supposé indépendant s(t). Le retard υ m = r m p 0 est linéairement relié à la position du capteur r m et au vecteur lenteur p 0 (vecteur perpendiculaire au front d'onde voir paragraphe §1.3.1.1).

  avec γ s la densité spectrale du signal d'intérêt supposée constante pour toutes les fréquences k, G k (Σ) la matrice M × M dont les éléments à la ligne m et la colonne sont donnés par e -2π 2 f 2 k (rm-r ) Σ(rm-r ) avec f k = (kf s /N ). La matrice diagonale D k (p 0 ) de dimension M × M est remplie par les retards purs :

  5.16) L'estimation des paramètres de cohérence est obtenue en minimisant la log vraisemblance négative : θ = arg min θ∈Θ -L * ( X; θ) avec Θ l'ensemble des matrices définies positives symétriques de R 2×2
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 52 Figure 5.2: Cohérences des 6 couples de capteurs de la station fictive (Fig. 5.3). La courbe rouge correspond à la cohérence paramétrique (5.11). Les courbes bleues et vertes sont les estimations non paramétriques des signaux simulées dans le domaine fréquentiel (méthode 1), et dans le domaine temporel (méthode 2).
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 5 Figure 5.3: Station fictive 4 éléments.
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 5 Figure 5.4: Géométrie de la station IS31 au Kazakhstan
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 55 Figure 5.5: Signal généré par l'astéroïde de Chelyabinsk et enregistré par le capteur 1 de la station IS31 au Kazakhstan.

Figure 5 . 6 :

 56 Figure 5.6: Cohérence en fonction du temps pour les paires 1 -2 et 1 -4 de IS31 et pour des fenêtres glissantes de 1024 et 512 points. Signal : Explosion de la météorite de Chelyabinsk Fig.5.5

Fig. 5 .

 5 10 compare les cohérences obtenues par la simulation de signaux de synthèse avec la cohérence paramétrique du modèle de Mack & Flinn. La courbe rouge décrit les cohérences du modèle de Mack & Flinn pour une matrice de covariance Σ choisie de manière à avoir un écart type de σ v = 10 m/s pour la vitesse, et σ a = 0.2 • pour l'azimut (valeurs identiques aux simulations conduites en sous-section §5.3.3. La station considérée est identique aux simulation conduite en sous-section §5.3.3. Les positions des capteurs de la station sont données par Fig. 5.3. Pour la simulation de signaux de synthèse la matrice Σ 0 est fixée et égale à Σ. La variation temporelle du vecteur lenteur est contrôlée par le paramètre α que l'on fait varier entre 0.1 et 0.999. Pour une valeur faible (0.1), l'aléa du vecteur lenteur est important au cours du temps. Inversement, pour une valeur élevée 0.999, le vecteur lenteur varie lentement (presque constant) au cours du temps. Les cohérences générées à partir de α = 0.999 (bleue) sont proches du modèle Mack & Flinn (rouge). Ce résultat confirme l'équivalence entre le modèle (5.27) avec le modèle Mack & Flinn pour un aléa du vecteur lenteur constant. Les cohérence générées à partir de α = .1 sont biaisées en comparaison avec le modèle Mack & Flinn. Ce biais est causé par le moyennage du modèle Mack & Flinn et est prédit par le résultat obtenu en sous-section §5.4.3.
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 5 Figure 5.10: Comparaison de la cohérence paramétrique du modèle Mack & Flinn (5.11) (rouge) et de la cohérence de signaux simulés pour différents paramètres α contrôlant la variabilité du vecteur lenteur.
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 5 Figure 5.11: Analyse temps-fréquence du signal de la torchère enregistré par IS31. Analyse temps-fréquence du signal de la torchère utilisé pour la simulation enregistré par IS31.

Figure 5 .

 5 Figure 5.12: Comparaison des AUC en fonction de la variance du bruit pour les 4 détecteurs de l'état de l'art. Chaque courbe correspond à une méthode de simulation de signaux sous H 1 rouge (Méthode.1), bleue (Méthode.2), verte (Méthode.3)

Figure 5

 5 Figure 5.13: Comparaison des AUC en fonction de la variance pour les 4 détecteurs de l'état de l'art pour des signaux sous H 1 générés par la Méthode.1.

Figure 5

 5 Figure5.14: Influence de l'amplification de la perte de cohérence sur les courbes ROC du F-detecteur pour une variance fixe du bruit égale à 0.002.

Figure 5 .

 5 Figure 5.15: Comparaison AUC en fonction de la variance du bruit pour les 4 détecteurs de l'état de l'art. Chaque courbe correspond à un facteur d'amplification utilisé pour la génération des signaux sous H 1 par la Méthode.2

Figure 5

 5 Figure5.16: AUC de la consistance pour tous les ensembles de capteurs possibles en fonction de la distance au carré moyenne entre les couples de capteurs. Chaque point est associé à un ensemble de capteurs dont la couleur est donnée par son cardinal.

  infrasonore, principalement utilisée pour faire respecter le Traité d'Interdiction Complète des Essais Nucléaires, voit aujourd'hui son champ d'application s'élargir à des applications civiles. Par exemple, dans certaines régions du globe (Indonésie et Kamchatka) les infrasons présentent un potentiel pour surveiller à distance des volcans dangereux et non instrumentés. Les infrasons peuvent alors prévenir d'éventuelles évidences d'éruptions compromettantes pour l'aviation civile. Quelle que soit l'application, le traitement du signal est une discipline essentielle pour l'exploitation des infrasons et donc fournir une détection et une estimation optimales des paramètres de l'onde.

Glossaire

  azimut angle dans le plan horizontal entre la direction d'un objet et une direction de référence calculé dans le sens horaire par rapport au nord.back-azimut angle dans le plan horizontal une direction de référence et entre la direction d'un objet. La back-azimut correspond au modulo 2π de l'azimut plus π.beamforming technique de traitement du signal utilisée dans les réseaux de capteurs pour la transmission ou la réception directionnelle de signaux. La terme beamforming se traduit en français par formation en voies. incidence angle par rapport à la verticale. microbarom Onde infrasonore générée par l'intéraction non-linéaire entre des ondes de surface océaniques et l'atmosphère. torchère Dispositif d'une installation pétrolière utilisé à des fins de sécurité pour brûler les gaz en plein air. vecteur lenteur vecteur perpendiculaire au front d'onde et de norme égale à l'inverse de la vitesse de l'onde.. vitesse horizontale projection de la vitesse sur le plan horizontal.
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  Pour numériser le signal, il faut le découper en échantillons. La fréquence d'échantillonnage f s correspond au nombre d'échantillons par seconde. Les microbaromètres du SSI numérisent le signal avec une fréquence d'échantillonnage de 20 Hz permettant ainsi l'obtention d'un signal numérique dont la fréquence de coupure est 10 Hz. Le modèle du signal numérique, pour l'échantillon n, enregistré par le capteur m est, x m,n = a m s n-τm + n m,n , (1.4) où le décalage en échantillons τ m = r m pf s est la partie entière de la multiplication du retard en temps ξ

le signal reçu par le capteur m à l'instant t. n m (t) est le bruit du capteur m. n m (t) inclut le bruit instrumental, et le bruit environnemental principalement généré par le vent. s(t) est appelé signal d'intérêt. Il s'agit d'un signal qui est reçu par chacun des capteurs de manière retardée, ce qui constitue un signal cohérent spatialement. Le scalaire a m ∈ R + correspond à l'amplitude du signal d'intérêt. Lorsqu'aucun signal cohérent ne traverse pas le réseau on a a m = 0 pour tout m. Le retard υ m = r m p est directement relié à la géométrie de la station, et au vecteur lenteur p. Pour enregistrer le signal analogique du son, les capteurs discrétisent l'information en numérisant le signal. m avec la fréquence d'échantillonnage f s . On néglige alors l'évolution de s(t) pour t entre n/f s et (n + 1)/f s et on lui attribue la valeur s n . Il s'agit d'une approximation dont on négligera les effets dans la suite. Ceci est justifié par le fait que la fréquence d'échantillonnage est suffisamment élevée pour les fréquences que l'on observe. 1.3.1.3 Généralités sur le test d'hypothèses pour la détection Une hypothèse statistique est une hypothèse concernant un paramètre ou la distribution d'une variable aléatoire. Le test d'hypothèse est un procédé consistant à vérifier qu'une hypothèse statistique est vraie en fonction d'un jeu de données (observations).

  . Pendant le déroulement d'un test d'hypothèse se tromper est inévitable. Il existe deux types d'erreurs lors du test, 1. Erreur de première espèce (type I) : on rejette l'hypothèse H 0 , alors qu'elle est vraie. 2. Erreur de deuxième espèce (type II) : on accepte l'hypothèse H 0 , alors qu'elle est fausse. Il est aussi important d'évaluer les probabilités de ces deux erreurs appelées risque de première espèce et risque de deuxième espèce. On les note respectivement α et β. Pour définir ces deux probabilités, il est nécessaire d'étudier les distributions sous H 0 et H 1 . Les notions de niveau et de puissance permettent de quantifier la capacité de la statistique de test à correctement accepter et rejeter l'hypothèse nulle. Les 4 cas de figure et leurs probabilités d'un test d'hypothèse pour la détection sont résumés dans la table 1.2.

  Figure 1.7: Choix du seuil (verticale noire) pour le test d'hypothèse en fonction des distributions sous H 0 (courbe rouge) et sous H 1 (courbe bleue). L'aire verte sous la courbe H 0 après le seuil représente le risque de première espèce α. L'aire violette sous la courbe H 1 avant le seuil représente le risque de seconde espèce β.

		0 vraie		H 1 vraie	
	Décision : H 0 acceptée correct, niveau du test 1 -α manque de puissance, risque de seconde espèce β
	Décision : H 0 rejetée	fausse alarme, risque de pre-mière espèce α	correct, puissance du test 1 -β
	Tableau 1.2: Résumé des erreurs pour le test d'hypothèse.	
	0.8				H 0
					H 1
	0.6				
	0.4	1-α	1-β	
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1.3.2 Détecteurs basés sur l'inter-corrélation 1.3.2.1 PMCC : consistance L'algorithme PMCC (Progressive Multi-Channel Correlation)

  Les signaux sont filtrés avec un filtre passe-haut de Butterworth du troisième ordre avec pour fréquence de coupure 0.01 Hz dans l'optique de supprimer les très basses fréquences. Un signal cohérent entre les voies apparaît entre 15 : 45 et 15 : 50 et est issue du décalage de la navette spatiale Discovery (STS-131) depuis Cape Canaveral en Floride

		0.5				
		0.4				
	MCCM	0.3				
		15:35	15:40	15:45	15:50	15:55	16:00
				5 Avril 2010 (UTC)	
	Figure 1.9: MCCM appliqué aux signaux de la Space Shuttle Discovery STS-131
	La figure Fig. 1.8 reporte les signaux infrasonores enregistrés par la station IS18 au
	Groenland.					

  • et 360 • et les vitesses horizontales entre 250 m/s et 600 m/s. Ces valeurs couvrant les valeurs physiquement possibles du vecteur lenteur d'une onde infrasonore.

  Lorsque les F-stat sont calculées à partir d'une grille grossière de Q = 50 (50 azimuts) vecteurs lenteur il existe un bon accord entre la Méthode.1 et la Méthode.3. Cette adéquation s'explique par la faible corrélation qui existe entre les différents F-stat. Inver-sement pour une grille fine Q = 7200 (360 azimuts, 20 vitesse horizontale), les corrélations ne peuvent plus être négligées et la Méthode.3 surestime les valeurs du F-detecteur sous H 0 (la densité verte est décalée vers la droite sur la figure Fig. 1.12).
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	Figure 1.12: Comparaison des méthodes pour l'estimation de la densité de probabilité du F-detecteur (1.12) sous H 0 . 100
	Le F-detecteur est appliqué aux signaux du 22 Avril 2013 enregistrés par la station IS31
	(tableau 1.3). Une grille de Q = 7200 (360 azimuts, et 20 vitesses horizontales) vecteurs 0
	05:00 lenteur fixe les vecteurs de retards à partir desquels les F-stat sont calculés. Une fenêtre 07:00 09:00 11:00 13:00 15:00 glissante de N = 512 points sans recouvrement permet de représenter, Fig. 1.13, l'évolution 22 Avril 2013 (UTC)
	temporelle du F-detecteur et du back-azimut associés au vecteur de retards maximisant les Figure 1.13: F-detecteur et back-azimut correspondant au vecteur de retards maximisant
	les F-stat. Seuil de fausses alarmes à 5% Méthode.1 : 1.31, Méthode.2 : 1.28, Mé-F-stat. Le signal émergeant à ∼ 09 : 00 est celui de torchères (combustion des rejets de gaz thode.3 : 1.32. La couleur rouge est utilisée lorsque le F-detecteur dépasse le seuil de naturel lors de l'exploitation du pétrole et du gaz naturel) à 160 km au sud de la station. fausses alarmes à 5% obtenu par Méthode.1. N = 512, M = 8, Q = 7200.

est calculée pour des fenêtres de 512 points glissantes avec un recouvrement de 75%. Les vecteurs de retards de l'ensemble Q ont été fixés pour un ensemble de 180 azimuts linéairement compris entre 0 • et 360 • , et un ensemble de 30 vitesses horizontales comprises entre 200 m/s et 600 m/s. Le seuil de détection

  . La source continue comprise entre 1 et 3 Hz pointe ∼ 190 • vers l'exploitation de gaz au sud de la station (torchères). Enfin le signal impulsif à 9 : 39 est la conséquence d'une source ponctuelle inconnue à ∼ 147 • . Les différentes origines des sources de ce signal sont issue de la base de données IRED (Infrasound Reference Event Database) d'évènements passés en revue par les analystes de l'OTICE.

	.19) La distribution sous H 0 de (1.19) est difficilement accessible au vu de la maximisation. Pour deux vecteurs de retards τ = τ , f k (τ ) et f k (τ ) ne sont pas indépendants. La corrélation qui peut exister est directement liée à la réponse du réseau de capteurs qui est fonction de la fréquence (sous-section §1.2.2). Ainsi pour deux fréquences k et k , les distributions sous H 0 de f * k et f * k sont différentes. Il est cependant possible d'estimer ces distributions à l'aide de simulations de Monte-Carlo similaires aux simulations utilisées pour estimer la distribution du F-detecteur en temps (sous-section §1.3.3.1). L'avantage de (1.19) est la détection au niveau de chaque fréquence aboutissant à la description du contenu fréquentiel d'un signal d'intérêt. De plus, le F-detecteur en fré-quence permet la détection de plusieurs signaux cohérents sous réserve que leurs contenus Signaux pour les differents capteurs
	fréquentiels soient distincts. Le F-detecteur en fréquence est illustré à partir des signaux non filtrés reçus par la station IS31 Fig. 1.14. La statistique (1.19) est fixé dans l'optique de contrôler le risque de deuxième espèce à 5% pour un rapport signal à bruit de 1. Ce choix de seuil permet de filtrer les détections de signaux cohérents à faible rapport signal à bruit améliorant ainsi la lisibilité des figures Figs. 1.15, 1.16, 1.17. Les figures Figs. 1.15, 1.16, 1.17 sont des représentations temps-fréquence du F-detecteur, du back-azimut et de la vitesses horizontales. Seules les cases du plan temps-fréquence dont le F-detecteur est supérieur au seuil sont colorées. L'analyse des signaux permet d'extraire trois sources dont les contenus fréquentiels et les angles d'arrivées sont différents. La source basse fréquence (∼ 0.1 -1.3) est associée aux activités minières avec un back-azimut de 09:25 09:30 09:35 09:40 28 Octobre 2005 (UTC) ∼ 290 • 09:20 Figure 1.14:

Signaux reçus par les 8 capteurs de la station IS31 au cours de la journée du 28 Octobre 2005. Les signaux ont été filtrés entre 0.5 et 2 Hz.

  

	1.3.3.3 Rapport de vraisemblance généralisé pour un signal d'intérêt gaussien
	de variance inconnue			fstat	100
	La sous-section §1.3.3.1 décrit la statistique F-detecteur qui permet la détection d'un signal d'intérêt déterministe et inconnu en présence d'un bruit additif de variance incon-Frequence 30 nue. Dans cette sous-section, nous proposons la dérivation du rapport de vraisemblance
	10 généralisé pour un signal d'intérêt aléatoire gaussien de variance inconnue en présence d'un
	bruit additif de variance inconnue. Cette approche permet d'introduire la modélisation sto-
	09:20 chastique pour le signal d'intérêt qui sera reprise et approfondie dans le chapitre 4. Ici, on 09:25 09:30 09:35 09:40
	suppose que le signal d'intérêt s n est un processus gaussien stationnaire de moyenne nulle
	Figure 1.15: Représentation temps-fréquence du F-detecteur. et de variance inconnue σ 2 s . Il est important de noter que ce modèle est aussi applicable
	dans le cas où le signal d'intérêt n'est pas gaussien. Il a été montré que, la précision des
	estimations des paramètres du signal ne dépend que des propriétés du second ordre
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	Figure 1.16: Représentation temps-fréquence du back-azimut associé à la détection
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	Figure 1.17: Représentation temps-fréquence de la vitesse horizontale associée à la dé-
	tection				

  leading to a speed of sound of ∼ 346 m/s. Fig.3.3 is the back-azimuth of the infrasound source as a function of time. These

		2D	3D	constrained 3D
	mean (deg)	273.93	270.70	270.32
	standard deviation (deg) 1.31	2.39	1
	Tableau 3.2: Mean and standard deviation of the estimators.

  Les différentes matrices de cette covariance sont connues et sont données dans la sous-section précédente §5.3.2. On note que W k = W H k est hermitienne. Il est facile de montrer que W = x 1,n . . . x 1,M dont la cohérence est donnée par le modèle (5.11).

				-1/2 k	sk a la covariance
	désirée, avec W	1/2 k	la racine carrée de W k .
	La transformée discrète de Fourier inverse de W	-1/2 k	sk permet d'obtenir les signaux
	x n		

  M .Néanmoins, les spectres et interspectres locaux sont difficiles à estimer en pratique car les représentations de type temps-fréquence nécessitent un fenêtrage minimal pour éviter de trop dégrader la résolution spectrale. L'utilisation d'une fenêtre de temps v ∈ [[tl, t + l]] introduit un moyennage du spectre local autour du point temps fréquence (t, f ) de la forme où les poids (h l,k (ξ)) k=-l,...,l,ξ∈[-1/2,1/2] somment et intègrent à 1. Dans cette formule γ correspond à γ m ou γ m, . Autrement dit, en pratique, une représentation temps-fréquence conduit à une cohérence estimée de la forme

	conduit à une cohérence parfaite,	
		C m, (f, t) ≈ 1 .
	t+l	
	u=t-l	h l,t-u (f -ξ)γ(ξ, v)dξ ,
	Ĉm	
	Dans le cas localement stationnaire comme dans le cas stationnaire, en l'absence de bruit,
	ou pour un rapport signal à bruit très favorable γ n (f ) << γ s (f, t), cette propagation

  Une deuxième partie dépendante de la distance absolue source-station. Ce terme est négligeable pour des distances source-station importantes. (> 100 km).

	de Mack & Flinn
	2.
	.27)
	avec le produit de convolution.
	Le modèle de cohérence proposé est alors décomposé en
	1. Une convolution du modèle Mack & Flinn γ M m, (f ) avec un sinus cardinal ce qui revient
	à voir le premier terme du modèle de cohérence comme une version lissée du modèle

: 00 UTC. For this analysis signals are filtered between 0.03 and 0.5 Hz where most of the power lies, and we apply a sliding window of 200 seconds with 90% of overlap. The top of Fig.2.7 shows a comparison of the back-azimuth estimation using the 2D (in blue) and the

3D (red) estimators. In the middle of Fig.2.7, the estimated incidence is displayed, while in the bottom, one can observe the corresponding MCCM detector output, see[START_REF] Wilson | High-latitude observations of infrasound from alaska and antarctica : Mountain associated waves and geomagnetic/auroral infrasonic signals[END_REF]. Recall that the MCCM consists of computing the mean of the normalized cross-correlation maxima of the 28 pairs of microphone at each time window. The higher the value of MCCM is, the higher the signals are coherent through the sensors.

λ pα 1 λ p-1 -. . .α p-1 λα p = 0 . 

CUSUM algorithm for the detection

Our detection algorithm, based on the model (4.2), follows the idea that the sensors record only noise during an unknown amount of time before a possible appearance of a coherent wave crossing the array. The apparition of the SOI creates an abrupt change in (4.2) at time k 0 which is summarized by, (4.16)

(4.17) (4.16, 4.17) can be interpreted as a change in the distribution of the observations. We let the following notation Y n:N (τ ) = y n (τ ), . . . , y N (τ ) be the delayed observations from time n up to time N (with n < N ).

Before the change occurred k ≤ k 0 -1, the delayed observations Y 1:k (τ ) follows a probability density function p 0 (Y 1:k (τ )) only parameterized by the variance σ 2 n of the noise. After the appearance of the SOI, at times k > k 0 -1, the probability density function of the observations changes and will be noted p 1 (Y k:K (τ )) parametrized by θ 1 = {α 1 , . . . , α p , σ 2 s , σ 2 n }). In this section θ 0 and θ 1 are supposed to be known meaning that the two probabilities are also known.

Under those assumptions, the statistical hypothesis testing slightly differs from the classic detector based on time segmentation, we have -H 0 : no abrupt change occurred, the observations up to time K only contains noise.

-H 1 : an abrupt change occurred, the observations up to time k 0 -1 contains only noise, then from time k 0 to K the sensors record both noise and a coherent signal.

The log-likelihood of the observations up to time K for each hypothesis are,

As k 0 is unknown, [START_REF] Lorden | Procedures for reacting to a change in distribution[END_REF] proposes to replace this unknown with its maximum likelihood leading to the following generalized likelihood ratio, 

Modèle alternatif

Hypothèse : vecteur lenteur aléatoire

Le modèle du paragraphe §5.3 suppose que la perte de cohérence est issue d'une intégration spatiale de vecteurs lenteur sur un espace donné par un ensemble d'azimuts et de vitesses. Il nous semble intéressant d'étudier la perte de cohérence que produirait une variation temporelle du vecteur lenteur. Le vecteur lenteur aléatoire p(t) est alors donné par,

(5.20) où p ε (t) est un processus gaussien stationnaire de moyenne nulle et de covariance

On rappelle que dans le contexte d'absence de bruit, le signal reçu par le capteur m est alors une version retardée du signal d'intérêt. Le retard se décompose aussi en une partie déterministe υ m = r m p 0 et une partie aléatoire (t) = r m p (t).

x m (t) = s(tυ mm (t)) .

Interspectre pour un vecteur lenteur aléatoire

Pour un processus stochastique stationnaire au sens large, la fonction d'inter-corrélation

(5.21)

En incorporant l'équation (5.20) et en supposant que s est statistiquement indépendant de p, on obtient :

On rappelle que la fonction caractéristique d'une variable aléatoire normale X ∼ N (µ, σ 2 ) est la fonction à valeurs dans C définie sur R par

(5.23)

La variable aléatoire p ε (t) est gaussienne de moyenne nulle, donc (u)m (t) est aussi gaussienne de moyenne nulle et de variance

On en déduit à partir de (5.23), E e 2iπf ( (u)-m(t)) = e -2π 2 f 2 (rm-r ) Σ(0)(rm-r ) e -4π 2 f 2 r m (Σ(0)-Σ(t-u))r .

(5.24)

En insérant (5.24) dans (5.22), la covariance se réécrit,

]e -2iπf (υm-υ ) e -2iπf (u-t) df . (5.25)

On définit la fonction g m,l (f, τ ) et sa transformée inverse de Fourier g(f, f ),

On peut alors décomposer (5.25) en deux intégrales

On pose le changement de variable suivant ξ = ff . On peut alors identifier

L'interspectre γ m, (f ) sous l'hypothèse d'un vecteur d'onde aléatoire,

RVGG rapport de vraisemblance généralisé d'un signal d'intérêt gaussien de variance inconnue traversant un réseau de capteurs en présence de bruit additif de variance inconnue.. SNR Rapport signal à bruit ou signal to noise ratio.

SOI signal d'intérêt ou signal of interest.

SSI système de surveillance international.

TDOA différence de temps d'arrivée ou time difference of arrival. Notation suivie du numéro de la station pour la désigner.. TICE traité d'interdiction complète des essais nucléaires.

Avancées récentes en traitement statistique du signal appliquées à l'estimation et la détection d'ondes infrasonores

Adrien NOUVELLET RESUME : Le coeur de cette thèse fait l'objet du traitement de signaux infrasonores et plus particulièrement de l'estimation et de la détection à l'aide d'un réseau de capteurs. Les thèmes abordés ici sont propices à l'expérimentation et nous avons essayé, autant que possible, d'illustrer les résultats théoriques obtenus à l'aide de données réelles. La première partie vise à décrire les implications et les difficultés liées à la détection de sources infrasonores. La littérature offrent déjà de nombreuses techniques de détection basées sur le test d'hypothèses qui sont alors exposées et complétées dans une optique de détection automatique. La seconde partie de cette thèse met en avant les erreurs de l'estimation de l'angle d'arrivée d'une onde lorsque les altitudes des capteurs d'une station sont ignorées (approximation courante). En réponse à ce problème, une estimation basée sur la géométrie complète de la station et comportant un a priori sur la vitesse de l'onde est dérivée et étudiée. L'estimation mentionnée ci-dessus permet de significativement améliorer les performances. Dans la troisième partie, nous introduisons la modélisation du signal infrasonore par un processus stationnaire de type autoregressif. Cette modélisation permet ensuite de développer une approche séquentielle pour la détection infrasonore basée sur le beamforming et la détection de changement abrupte. La dernière partie de ce manuscrit a pour but de proposer un modèle "signal" alternatif au modèle de retard pur. Il est présenté de nouveaux résultats mettant en avant un phénomène de perte de cohérence des signaux enregistrés par différents capteurs. Ces travaux aboutissent sur l'élaboration de méthodes de simulations de signaux synthétiques réalistes pour l'étude des performances des détecteurs infrasonores.

MOTS-CLEFS : statistique, estimation, detection, signal, infrason

ABSTRACT : The core of this thesis is the infrasound signal processing and particularly the estimation and detection using a sensor array. The themes presented here are well-suited to experimentation and we tried, as much as possible, to illustrate the theoretical results with real data. The first part describes the implications and difficulties of infrasonic detection. We review the state-of-the-art of detection techniques based on hypothesis testing and supplement them with the aim of automatic detection. The second part of this thesis highlights the error on the angle of arrival estimation due to considering the arrays as planar (common approximation). In response to this problem, a new estimator considering the full geometry of the array and including an a priori on the speed of the infrasonic wave is derived and studied. We show that the described estimator significantly improve performance. The third part introduces the modeling of infrasonic signal as autoregressive process. This modeling allows us to derived a sequential approach to detect infrasound based on the beamforming and the detection of abrupt changes. The last part of this manuscript aims to propose an alternative "signal" model. We present new results highlighting a phenomenon of loss of coherence of the signals recorded by different sensors. This work leads to the generation of synthetic infrasonic signal in order to study the performance of the detection algorithms. KEY-WORDS : statistique, estimation, detection, signal, infrasound