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Chapter 1

Introduction

Operator Representation in Geometry Processing

A challenging issue in geometry processing is the wide range of data structures. Discrete
geometry is encoded in various ways mostly depending on the acquisition procedure
and the application domain. Raw data from a scanner are stored as noisy point-clouds;
physically-based simulation is typically done on simplicial complexes; animators and
architectural geometry practitioners traditionally work with quad meshes. However,
standard problems in geometry processing, such as shape matching, deformation transfer
and deformation analysis, should be solved regardless of the representation. Most of
the time each community provides their own solutions with respect to their native data
which often do not allow cross-data analysis. This leads to the necessity of defining a
framework agnostic to the underlying structure.

The basic idea of the functional representation framework, first introduced in [88],
is to reach for the most common denominator of geometry analysis, namely real-valued
functions. Functions have been historically used and well-studied in many contexts
providing a large literature to rely on. For example differential operators have been
defined on triangle and tetrahedral meshes (Finite Element Method [19], Discrete Exterior
Calculus [52]), polygonal surfaces [3] and point-clouds (meshfree methods based on Radial
Basis Functions or Moving Least Squares [46]) to name just a few. Moreover many of these
methods come with convergence and stability analysis. Consequently functional operators
can be implemented in many situations while studying a single continuous theory. As an
example in [34] the authors propose an algorithm to compute geodesic distances based
on the Laplace-Beltrami operator allowing them to exhibit results on radically different
data structures. This flexibility is also one key of the success of spectral methods and
global descriptors such as Global Point Signature [105], Heat Kernel Signature [119] and
Wave Kernel Signature [5].

The baseline idea developed in this thesis is to represent standard tools for deformable
surfaces (diffeomorphisms, intrinsic distortions, tangent and extrinsic vector fields) as
operators acting on functions, following the intuition that their discretizations have been
well-studied and are easily comparable across data structures. The starting point of the
thesis is the functional map representation for diffeomorphisms, and shape differences,
representing intrinsic distortions. We propose in Chapter 5 a novel method, robust to
noise and large deformations, to solve shape matching problems with functional maps.
Chapters 6, 7 and 8 are providing different answers to an open problem in this framework:
the conversion of operator-based representation to point-based representation. Namely,
given a functional map we propose an algorithm to convert it to a continuous vertex-to-
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vertex assignment or given shape difference operators we suggest solutions to find the
underlying deformed surfaces.

Functional Maps

The space of diffeomorphisms is challenging to handle in both continuous and discrete
settings. In the simple case of two triangle meshes, the simplest representation consists
of assigning a vertex on the first shape to a vertex on the second shape. However when
dealing with different number of vertices this makes, for example, the computation
of its inverse difficult. A more complete description is therefore needed. The most
straightforward answer is to consider a piecewise linear map with the possibility of
mapping vertices inside triangles. This way it is possible to compute the map and its
inverse consistently. Such a description of discrete diffeomorphism has been used in
practice [2, 1] but suffers some drawbacks as it cannot be stored compactly and often
leads to challenging optimization problems.

In this context representing the mapping ϕ as the linear composition operators
f 7→ f ◦ ϕ provides a flexible alternative globally agnostic to change of connectivity and
easily defined on various types of data. Functional maps are a simplified and compact
representation of correspondences as they are often computed between reduced function
bases. They can be stored as matrices and analyzed using standard linear algebra tools.
Follow-up works (e.g. [100, 101, 64, 96]) focus on computations of functional maps
between shapes with unknown correspondences by minimizing various kinds of distortion
with guiding functional constraints. However, functional constraints are often unreliable
in case of large or non-isometric deformation and do not fully describe the mapping. We
propose a supervised learning method to identify the most trustworthy set of constraints
and the part of the surface on which the functional map is accurate. Another challenge
of the operator representation is the problem of obtaining a point-to-point map from
a functional map. The current methods [88, 102] do not ensure that resulting map is
continuous and may lead to flaws in the map. To overcome this issue we restrict the
conversion to continuous maps by using an adequate representation of vector fields as
operators.

Shape Differences

Representing metric distortion can be challenging when dealing with heterogeneous data.
The shape difference operators [106] take advantage of the functional map representation
to provide a coordinate free encoding of the metric distortion up to isometric deformation.
Those operators act linearly on functions and separate local area change and angle
modification, even if those changes are noisy and not easy to define directly across
different data structures, function correspondences induce a notion of smoothness up to a
certain level-of-details.

Shape difference operators were originally presented as analysis tools since they can
be used for comparison and composition of deformations across shapes. Interestingly
the space of shape differences seems “flat" and well behaved. For instance in Figures 7.7
and 7.9 (see also Figure 3 in [106]) a collection of surfaces, represented as a collection
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of operators, is mapped to a low dimensional space with a simple Principal Component
Analysis. Yet the embedding accurately depicts the degrees of freedom of the deformation.
This remark along with interesting algebraic properties lead to the intuition that operators
are more convenient to describe deformations than Euclidean embeddings.

In this thesis we attempt to use the shape difference operators for deformation
synthesis and for exploring the space of deformable surfaces. This only prior work by
Boscaini and al. in [15] reconstructs an embedded surface from an operator representing
the intrinsic structure of the shape. However, this approach is limited as it does not
take into accounts extrinsic information. We explore different ways of encoding extrinsic
curvature information as operators with theoretical guarantees of completeness.

Thesis Summary

This thesis focuses on processing deformable surfaces in the operator representation
framework. The study is split in two parts coinciding with the analysis of two types of
operators: functional maps and shape differences.

Shape to Deformation

The goal of this part is to find a mapping between two given shapes. We are in
particular interested in finding correspondences between intrinsic structures. To make the
problem more tractable we will assume a restrictive deformation model of nearly-isometric
deformations. This question is closely related to the shape matching problem using only
intrinsic features.

The shape matching problem for nearly-isometric deformation has been presented
as the first application of the functional representation in [88] and is still the most
active research direction in this field. One reason of this success is the description of a
challenging problem as a least squares system. The initial formulation takes into account
the isometric distortion and some given functional correspondences often obtained from
descriptors (HKS, WKS) stable under mild deformation. However, the resulting map can
suffer artifacts due to false or noisy correspondences and misleading spectral interpolation.
Many variations have been proposed to improve the quality of the results [100, 64, 96]),
to allow partial matching [101] and to exploit the cycle consistency in map networks [54]

In Chapter 5 we take a slightly different approach: instead of modifying the original
formulation we aspire to obtain the best results with respect to the input. The possibly
unreliable functional constraints imply that the correspondences need to be sorted and
weighted and that the resulting functional map is reliable only on a subspace of functions.
Our main contribution is a supervised learning algorithm able to compute a set of weights
jointly assessing the utility of each descriptor and identify the most accurately mapped
functions.

Once a reliable functional map is computed, another challenge is to convert it to a
classical point-to-point map used in most applications. The original article suggested a
procedure that can be described as an Iterative Closest Point algorithm in the spectral
domain. Although it has been improved upon by some follow-up work [102], major issues
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remain: the existence of internal symmetries and the absence of global constraints linking
nearby points lead to discontinuities in the resulting map. In Chapter 6 we provide
a method to restrict the conversion process to continuous maps. While this problem
is challenging with standard analysis tools, it becomes much more tractable with the
operator representation. The outcome is a provably smooth conversion of a functional
map using vector field flow.

Overall, the main contribution of this first part is a complete pipeline for shape
matching problems in the functional map framework: from the computation of reliable
maps to a final point-to-point correspondence.

While the first part is aimed at finding similarities across near-isometric shapes,
in the second part, our goal is to quantify and manipulate differences in the form of
non-isometric distortion. In particular we are interested in a complete representation of
surfaces as operators.

Deformation to Shape

Shape differences enjoy many interesting algebraic properties. In particular they allow
the transfer, composition and addition (in special cases) of deformations. Thus, exploring
and creating new intrinsic deformation is relatively easy in this representation as it only
requires matrix manipulations. The only missing step to produce embedded surfaces is a
conversion from the functional characterization to a surface embedding. Namely, given
a base shape and shape differences, find the deformed surface. This problem is closely
related to recovering the shape from its Laplacian operator which is known to be possible
theoretically but for which very few computational methods are available. This thesis
attempts to fill this hole with two different approaches.

The first development in Chapter 7 starts with the remark that the discrete metric
on triangle meshes (edge length) can be recovered from shapes differences by solving a
set of linear equations. It follows that in the case of noisy and limited information the
metric can be recovered through two convex optimization problems. However, intrinsic
information alone is not sufficient to recover an embedded surface as multiple solutions
exist. We investigate the possibility of using offset surfaces to encode curvatures. The
outcome is a complete characterization of triangle meshes through functional operators
allowing us to deform surfaces according to shape difference operators and a corresponding
continuous theory.

The second development in Chapter 8 introduces a functional characterization of
extrinsic vector fields. To do so we introduce a unique shape difference accountable
for all intrinsic changes. Then we consider the operator associated to an infinitesimal
displacement. This way deformation fields are characterized by the distortion they induce
on the metric. Interestingly they enjoy similar properties as shape differences (composition,
transfer) enabling significantly simpler deformation reconstruction compared to the
previous method. We provide theoretical proofs of informativeness in both continuous
and discrete cases.

This thesis constitues a first step toward using functional representation for charac-
terization of deformable surfaces and deformation synthesis.
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Chapter 2

Introduction en français

L’une des difficultés rencontrées dans le traitement de forme 3D est la large gamme
de structures de données. Les formes 3D et autres géométries discrètes sont codées de
diverses manières dépendant principalement de la méthode d’acquisition et du domaine
d’application. Les données brutes provenant d’un scanner sont stockées sous forme de
nuages de points souvent bruités ; les simulations physiques s’effectuent habituellement sur
des complexes simpliciaux ; les modeleurs 3D ainsi que la communauté de la géométrie ar-
chitecturale travaillent traditionnellement avec des maillages quadrangulaires. Cependant,
de nombreux problèmes standards liés au traitement de la géométrie, tels que la mise
en correspondance de formes, le transfert de déformations et l’analyse de déformations,
doivent être résolus indépendamment de la représentation utilisée. La plupart du temps
chaque communauté fournit ses propres solutions vis-à-vis de ses données de base qui,
souvent, ne sont pas adaptables aux autres types de représentation. Cela nous conduit à
la nécessité de définir un cadre d’analyse indépendant des structures sous-jacentes.

L’idée à l’origine de la représentation fonctionnelle, d’abord introduite dans [88],
est de revenir au dénominateur commun dans l’analyse de la géométrie, à savoir les
fonctions à valeurs réelles. Les fonctions définies sur la géométrie ont été historiquement
utilisées et étudiées de manière approfondie dans de nombreux contextes fournissant une
abondante littérature sur laquelle se reposer. Par exemple, les opérateurs différentiels ont
été définis sur des maillages triangulaires et tétraédriques (Méthode des Eléments Finis
[19], Discrete Exterior Calculus [52]), sur des maillages polygonaux [3] et des nuages de
points (méthodes “sans maillage" basées sur des fonctions de base radiale ou Moving
Least Squares [46]) pour n’en citer que quelques-uns. De plus, beaucoup de ces méthodes
vont de paire avec une analyse de leur convergence et de leur stabilité. Par conséquent les
opérateurs fonctionnels peuvent être mis en œuvre dans de nombreuses situations tout en
se référant à une théorie unique. A titre d’exemple, dans [34] les auteurs proposent un
algorithme pour calculer les distances géodésiques grâce à l’opérateur de Laplace-Beltrami.
Ils obtiennent ainsi des résultats sur des structures de données radicalement différentes.
Cette flexibilité est également l’une des clés du succès des méthodes spectrales et des
descripteurs globaux tels que Global Point Signature [105], Heat Kernel Signature [119]
et Wave Kernel Signature [5].

L’idée de base développée dans cette thèse est de représenter des outils standards
pour les surfaces déformables (difféomorphismes, distorsions intrinsèques, champs de
vecteurs tangents et extrinsèques) par des opérateurs agissant sur des fonctions, suivant
l’intuition que leurs discrétisations ont été préalablement étudiées et sont facilement
comparables quelles que soient les structures de données considérées. Le point de départ
de cette thèse est la représentation fonctionnelle des difféomorphismes appelée Application
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Fonctionnelle (ou “Functional Map" en anglais), et des distorsions intrinsèques nommées
Opérateurs de Déformation (ou “Shape Differences" en anglais). Nous présentons dans
le Chapitre 5 une nouvelle méthode, robuste aux bruits et aux grandes déformations,
pour trouver des correspondances entre surfaces en utilisant une approche fonctionnelle.
Les Chapitres 6, 7 et 8 fournissent des réponses différentes à un problème ouvert dans
le cadre fonctionnel : la conversion de la représentation à base d’opérateurs vers une
représentation ponctuelle. Plus précisément, étant donné une application fonctionnelle,
nous proposons un algorithme pour la convertir en une affectation continue de sommet à
sommet ou à partir d’un opérateur de différence de forme, nous proposons des solutions
pour retrouver la surface déformée sous-jacente.

Applications fonctionnelles

L’espace des difféomorphismes est difficile à appréhender que ce soit dans le cadre continu
ou discret. Considérons deux maillages triangulaires, la représentation la plus simple
consisterait à attribuer à chaque sommet de la première forme un sommet de la seconde.
Toutefois, lorsque l’on considère deux maillages avec un nombre différent de sommets le
calcul de l’application inverse devient difficile. Une description plus complète est donc
nécessaire. Une possibilité serait de considérer une application linéaire par morceaux
permettant d’assigner des sommets à l’intérieur des triangles. De cette façon, il est possible
de calculer le difféomorphisme et son inverse de façon cohérente. Une telle description
discrète a été mise en œuvre notamment dans [2, 1] mais possède quelques inconvénients
car elle ne peut-être stockée de manière compacte et conduit souvent à des problèmes
d’optimisations non-convexes difficiles à appréhender.

Dans ce contexte, représenter l’application ϕ qui lie deux formes géométriques par
l’opérateur de composition f 7→ f ◦ ϕ fournit une alternative globalement indifférente
au changement de connectivité et facilement définie sur différents types de données.
Les applications fonctionnelles sont des représentations simplifiées et compactes des
correspondances car elles sont souvent calculées entre des bases de fonctions de tailles
réduites. Elles peuvent être stockées sous forme de matrices et analysées à l’aide d’outils
d’algèbre linéaire standards. Les travaux qui ont suivis (par exemple [100, 101, 64,
96]) se concentrent sur des calculs d’applications fonctionnelles entre surfaces dont la
mise en correspondance est inconnue. Pour ce faire ils minimisent différents types de
distorsions intrinsèques auxquelles s’ajoutent des contraintes fonctionnelles. Cependant,
ces contraintes fonctionnelles sont souvent peu fiables en cas de déformations importantes
ou non-isométriques et ne décrivent les correspondances entre les surfaces que de façon
incomplète. Nous proposons donc une méthode d’apprentissage supervisée pour identifier
l’ensemble des contraintes le plus digne de confiance et la partie de la surface sur laquelle
l’application fonctionnelle est la plus précise. Un autre défi de cette représentation
fonctionnelle est le problème de l’obtention d’une application point-à-point à partir
d’un opérateur. Les méthodes actuelles [88, 102] ne garantissent pas que l’application
résultante soit continue et peuvent conduire à des défauts de continuité. Pour surmonter
ces problèmes, nous limitons la conversion à des applications continues en utilisant une
représentation adéquate des champs de vecteurs par des opérateurs.
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Opérateurs de déformation

Représenter les distorsions de la métrique peut être difficile lorsqu’il s’agit de traiter des
données de provenances variées. Les opérateurs de déformation [106] tirent parti de la
représentation fonctionnelle pour fournir un encodage des distorsions intrinsèques faisant
abstraction du plongement de la surface dans l’espace ambiant. Ces opérateurs agissent
linéairement sur les fonctions et font la distinction entre les modifications de volumes et
l’évolution des angles. Ces changements sont locaux, facilement perturbables et difficiles
à définir correctement selon les différentes structures de données. Toutefois les opérateurs
de déformation parviennent à les rendre stables et facilement analysables.

Les opérateurs de déformation ont été initialement présentés comme des outils d’ana-
lyse, car ils peuvent être utilisés pour comparer et composer des déformations. Il est
intéressant de remarquer que l’espace généré par ces opérateurs semble “plat" et stable.
Par exemple les Figures 7.7 et 7.9 (voir aussi Figure 3 dans [106]) représentent une
collection de surfaces, interprétée comme une collection d’opérateurs, est envoyée dans
un espace euclidien de petite dimension grâce à une simple analyse en composantes
principales. Ce plongement décrit précisément les degrés de liberté des déformations.
Cette remarque ainsi que des propriétés algébriques intéressantes conduisent à l’intuition
que les opérateurs sont plus commodes pour décrire des déformations intrinsèques que
l’analyse directe d’un plongement dans l’espace euclidien.

Dans cette thèse, nous tentons d’utiliser les opérateurs de déformation pour synthétiser
et explorer l’espace des surfaces déformables. L’unique travail préalable par Boscaini et
al. dans [15] retrouve le plongement d’une surface à partir d’un opérateur représentant la
structure intrinsèque de la forme. Cependant, cette approche est limitée car elle ne prend
pas en compte les informations extrinsèques. Nous explorons différentes façons de stocker
les informations données par la courbure en utilisant des opérateurs fonctionnels.

Résumé de la thèse

Cette thèse porte sur le traitement de surfaces déformables dans le cadre d’une représen-
tation fonctionnelle. L’étude est divisée en deux parties qui coïncident avec l’analyse de
deux types d’opérateurs : les applications fonctionnelles et les opérateurs de déformation.

Des surfaces aux déformations

Le but de cette partie est de trouver des correspondances entre deux formes données. Nous
nous intéressons en particulier aux informations délivrées par la structure intrinsèque de
ces formes. Pour rendre le problème plus abordable, nous nous plaçons dans un modèle
restrictif en ne considérant que des déformations quasi-isométriques.

Trouver des correspondances entre formes 3D pour des déformations quasi-isométriques
fut présentée comme la première application de la représentation fonctionnelle par [88]
et est toujours la direction de recherche privilégiée dans ce domaine. L’une des raisons
de ce succès étant que ce problème, difficile de prime abord, devient un système des
moindres carrés dans cette nouvelle représentation. La formulation la plus basique prend
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en compte la distance à l’isométrie et des correspondances fonctionnelles, souvent obtenues
à partir de descripteurs globaux (HKS, WKS) restant stables même après de légères
déformations. Cependant, l’application résultante peut avoir des artefacts dus à de
mauvaises correspondances fonctionnelles, à des perturbations ou à une interpolation
spectrale trompeuse. De nombreuses variantes ont été proposées pour améliorer la qualité
des résultats [100, 64, 96]) afin de permettre des correspondances partielles [101] ou de
tirer parti de cohérences cycliques dans des réseaux de difféomorphismes [54].

Dans le Chapitre 5 nous prenons une approche légèrement différente : au lieu de
modifier la formulation initiale, nous tentons d’obtenir les résultats optimaux à partir des
données initiales. Les contraintes fonctionnelles, potentiellement peu fiables, nous obligent
à trier et à pondérer ces correspondances. Par ailleurs, l’application fonctionnelle résultante
n’est fiable que sur un sous-espace de fonctions qu’il nous appartient d’identifier. Notre
principale contribution est un algorithme d’apprentissage supervisé capable de calculer
un ensemble de pondérations évaluant conjointement l’utilité de chaque descripteur et
capable de déterminer les fonctions les plus fidèlement transférées par l’application.

Une fois calculées les applications fonctionnelles offrent un autre défi qui consiste à
les convertir en une représentation ponctuelle, utilisée dans la plupart des applications.
L’article original propose une méthode qui peut être comprise comme l’algorithme Iterative
Closest Point appliqué au domaine spectral. Bien qu’il ait été amélioré par des articles
postérieurs [102], un problème majeur demeure : l’existence de symétries internes et
l’absence de contraintes globales reliant les points proches les uns des autres conduisent à
des discontinuités dans l’application résultante. Dans le Chapitre 6 nous fournissons une
méthode pour restreindre ce processus de conversion aux seules applications continues.
Ce problème, difficile en utilisant des outils d’analyse standards, devient beaucoup
plus abordable en utilisant une représentation fonctionnelle. Ce problème, difficile en
utilisant des outils d’analyse standards, devient beaucoup plus abordable en utilisant une
représentation fonctionnelle. Le résultat est la conversion d’une application fonctionnelle
vers une application continue en utilisant le flot d’un champ de vecteurs.

Ainsi, la contribution principale de cette première partie est une procédure complète
pour résoudre les problèmes de mise en correspondance de formes dans le cadre d’une
représentation fonctionnelle : du calcul d’une application fonctionnelle fiable à une
correspondance ponctuelle entre surfaces.

Alors que la première partie vise à trouver des similarités entre des formes quasi-
isométriques, dans la deuxième partie notre objectif est de quantifier et de manipuler des
distorsions non-isométriques de la métrique. En particulier, nous nous intéressons à une
représentation complète des surfaces par des opérateurs fonctionnels.

Synthèse de formes et représentation fonctionnelle

Les opérateurs de déformation jouissent de nombreuses propriétés algébriques intéres-
santes. En particulier, ils permettent le transfert, la composition et l’addition (dans
des cas particuliers) de déformations. Ainsi, l’exploration et la création de nouvelles
déformations intrinsèques sont aisées dans cette représentation car elles ne nécessitent
que des manipulations de matrices. L’unique étape manquante est la conversion d’une
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caractérisation fonctionnelle des déformations en un plongement dans l’espace euclidien.
Plus précisément, étant donné une forme de base et un opérateur de déformations, il nous
faut retrouver la surface déformée. Ce problème est étroitement lié à la reconstruction
d’une forme à partir de son laplacien, connu pour être théoriquement possible bien que
peu d’algorithmes soient actuellement disponibles pour le résoudre. Cette thèse tente de
combler ce vide par deux approches différentes.

Le premier développement, présent dans le Chapitre 7, commence avec la remarque que
la métrique discrète d’un maillage triangulaire (longueur des arêtes) peut être récupérée à
partir des opérateurs de déformations, et ce, en résolvant un système d’équations linéaires.
Il en résulte que dans le cas d’informations bruitées et limitées la métrique peut être
récupérée grâce à deux problèmes d’optimisations convexes. Cependant, l’information
intrinsèque n’est pas suffisante pour obtenir le plongement d’une surface car il existe
plusieurs solutions à ce problème. Dans ce Chapitre nous étudions donc la possibilité
d’utiliser des surfaces parallèles pour encoder la courbure. Il en ressort une caractérisation
complète des maillages triangulaires par des opérateurs fonctionnels ainsi que des garanties
théoriques de reconstruction.

Le deuxième développement inclut dans le Chapitre 8 introduit une caractérisation
fonctionnelle des champs de vecteurs extrinsèques. Pour cela, nous introduisons un opéra-
teur de déformation unique, responsable de tous les changements de la métrique. Ensuite,
nous considérons l’opérateur associé à un déplacement infinitésimal. De cette façon, les
champs de déformation sont caractérisés par la distorsion qu’ils induisent sur la métrique.
Ils jouissent de propriétés similaires aux opérateurs de déformations (composition, trans-
fert), tout en permettant une reconstruction des déformations nettement plus simple que
la méthode précédente.

Cette thèse constitue une première étape vers l’utilisation de la représentation fonc-
tionnelle pour la caractérisation des surfaces déformables et la synthèse de déformation.

Publications liées à cette thèse

Cette thèse est en partie basée sur les publications suivantes :

• E. Corman, M. Ovsjanikov and A. Chambolle, Supervised descriptor lear-
ning for non-rigid shape matching, in ECCV 2014 Workshops, Part IV, Springer
International Publishing, 2014. [31]

• E. Corman, M. Ovsjanikov and A. Chambolle, Continuous matching via
vector field flow, in Proceedings of the Eurographics Symposium on Geometry
Processing, vol. 34, Eurographics Association, 2015, pp. 129–139. [32]

• E. Corman, S. Solomon, M. Ben-Chen, L. Guibas and M. Ovsjanikov,
Functional Characterization of Intrinsic and Extrinsic Geometry, currently under
minor revision for Transaction On Graphics

• E. Corman and M. Ovsjanikov, Functional Characterization of Deformation
Fields, to be submitted (2016)





Chapter 3

Context in Differential Geometry

and its Discrete Equivalents

This chapter introduces the main mathematical tools that will be used throughout
the thesis. A brief overview of differential geometry focused on intrinsic geometry
is provided. We put emphasis on the role of the metric tensor and the pullback
metric in the definitions of differential operators. This chapter also provides a brief
remainder of the Finite Element Method applied to the discretization of common
differential operators. This chapter can be skipped by readers familiar with the
continuous theory.

3.1 Differential Geometry

The study of surface deformations is central in this thesis. Therefore some notions and
terminology from differential geometry are recalled here. The aim of this section is to
introduce the notions of metric tensor and more importantly of pullback metric by a
diffeomorphism. The pullback metric accounts for the intrinsic distortion underlying a
mapping between shapes. This will be a key tool for our analysis of surface deformations
as it allows a classification of mappings according to their impact on the local structure.

To represent diffeomorphisms and distortions as operators on functions, we will need
some basic differential operators such as gradients and Laplacians. We will focus on the
change of variables which is equivalent to a change of metric in differential operators. This
remark allows us to construct operators provably informative of the intrinsic structure
and explain the leading role of the Laplace-Beltrami operator in geometry processing.

This basic introduction to differential geometry is greatly inspired by [78, 103]. The
Einstein summation convention is sometimes used to lighten the notations. Repeated
indices imply a summation, i.e. gijfj means

∑

j gijfj . Moreover when dealing with
tensors upper indices denote an element of the inverse matrix Aij = (A−1)ij .

3.1.1 Manifold

In practice we will most of the time deal with surfaces in R
3. However, operations on

intrinsic informations (e.g. transport, composition of distortion) may lead to metric
tensors which do not correspond to embedded surfaces and are only meaningful for general
manifolds. Thus, it is important to start with abstract definitions.

A topological manifold M is a space such that each point has a neighborhood
diffeomorphic to R

n. To introduce differential calculus, it is necessary to always refer
to the Euclidean space where derivatives are well-defined. To do so we introduce a
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local parametrization of M called an atlas. An atlas on M is a countable collection
of pairs (Uα, ψα) named charts where Uα are sets covering M and ψα : Uα → R

n are
homeomorphisms acting as local parametrizations.

Since the sets Uα cover the entire manifold some points maybe found in two different
charts. If Uα and Uβ overlap then one can change the coordinate system by means of the
transition map:

ψβα = ψβ ◦ ψ−1α : ψα(Uα ∩ Uβ) → ψβ(Uα ∩ Uβ).

Note that ψβα maps an open set of Rn to an open set of Rn, so at a point p in Uα∩Uβ
one can decompose this mapping in terms of coordinates (x1(p), . . . , xn(p)) with respect
to Uα and (y1(p), . . . , yn(p)) with respect to Uβ. Two systems of coordinates are linked
by:

yi(p) = ψβα(x1(p), . . . , xn(p))i.

A transition map and two coordinate systems are represented in Figure 3.1.
This formulation is convenient as it allows us to use standard differential calculus in

R
n to study the properties of a curved surface. In particular the Jacobian matrix of ψβα

will appear in coordinate change for vector fields (Section 3.1.3).
The charts introduce a local structure on the manifold. However, to have a differential

manifold we need to ensure that the local properties are consistent among themselves.

Definition 3.1.1 A topological manifold M equipped with an atlas S = (Uα, ψα) is called
differential manifold if all its coordinate changes ψβα are C∞ maps.

Uα

Uβ

M

 α

 β

 βα

x1

x2 y2

y1

Figure 3.1 – Two charts and a transition map on a manifold M .
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3.1.2 Tangent Vectors and Local Coordinates

Tangent vectors are a first step to introduce local intrinsic structure on a manifold. Let
f : M → R be a real valued function on a differential manifold. If, for all coordinate
systems (U,ψ) in an atlas, f ◦ ψ−1 : ψ(U) ⊂ R

n → R is a C∞ function on ψ(U) then f is
by definition a C∞ function on M .

Now let (U,ψ) be a coordinate system around a point p ∈ M and (x1, . . . , xn) the
coordinate functions with respect to U . The derivative of f in the direction xi denoted
∂if is naturally defined as:

∂if =
∂(f ◦ ψ−1)

∂xi
◦ ψ ∈ C∞(M).

In case of a surface in R
3, the gradient of a function is tangent to this surface.

Moreover, the set of all possible directions for function derivatives defines the set of all
tangent vectors. By analogy, the application Vp : C∞(M) → R acting on differentiable
functions at point p ∈M :

Vp(f) =

n
∑

i=1

Vi(p)∂if |p, (3.1)

is understood as a vector tangent to the manifold. The local coordinates of the vector
Vi(p) ∈ R depend on the chart (U,ψ) and correspond to the derivative in the canonical

directions ∂
∂xi

∣

∣

∣

p
. We denote TpM , the set of all tangent vectors at point p, defined as

the set of all linear combinations of the basis

{

∂
∂xi

∣

∣

∣

p

}

i

. The canonical basis satisfies the

property ∂xj
∂xi

= δij .
A vector field on M is a smooth assignment of a tangent vectors Vp ∈ TpM at each

point p. Namely V is a C∞ vector field if:

V (f) ∈ C∞(M), ∀f ∈ C∞(M).

We denote the set of smooth vector fields V(M).

3.1.3 Mappings

Along this thesis we will study relations between manifolds through mappings. Let M
and N be two differential manifolds, ϕ : N →M is a map between them. Since the map
is not real-valued we have to take into account the parametrizations from M and N to
introduce a differential structure.

Definition 3.1.2 The map ϕ : N →M is a C∞ map if for all charts (U,ψ) on N and
(V, ϑ) on M , the functions ϑ ◦ ϕ ◦ ψ−1 : Rn → R

n are of class C∞(Rn).

Local coordinate systems (x1(p), . . . , xn(p)) around p ∈ N and (y1(ϕ(p)), . . . , yn(ϕ(p)))
around q = ϕ(p) ∈M are linked by the mapping ϕ:

yi(ϕ(p)) = ϑ ◦ ϕ ◦ ψ−1(x1(p), . . . , xn(p))i. (3.2)
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Differential map

A C∞ map not only describes pointwise correspondences but also map tangent vectors
from one surface to another. The distortion of a tangent space is determined by the
Jacobian of the mapping dϕp.

Using the chain rules for derivatives, Equation (3.2) yields a change of coordinates
formula or pushforward of tangent vector fields:

dϕp

(

∂

∂xi

)

=

n
∑

j=1

∂yj
∂xi

∂

∂yj
, (3.3)

where dϕ denote the differential map or Jacobian of the transformation. Therefore,
a map not only relates points but also tangent spaces. The differential map defines a
linear mapping between the tangent space on N at point p and the tangent space on M
at point ϕ(p):

dϕp : TpN → Tϕ(p)M.

Categories of mappings

Mappings are categorized according to the properties of the differential map:

• Immersion: At each point p ∈ N the Jacobian is injective. It implies that the
image of the manifold ϕ(N) can intersect itself so it may not be a submanifold of
M .

• Embedding : ϕ is immersion and also a homeomorphism from N onto ϕ(N). In this
case no self-intersection can occur and the image ϕ(N) is a submanifold of M .

• Diffeomorphism: ϕ : N →M is a bijection and its inverse ϕ−1 :M → N is a C∞
map. These requirements are stronger than for embeddings, in particular it implies
that the Jacobian is bijective and that N,M have the same intrinsic dimension.

3.1.4 Riemannian Manifold

Metric tensor

The metric tensor extends the notion of scalar product in R
n to tangent vectors. It is

important to recall that general metric tensors can be arbitrarily chosen and are not
necessarily induced by the embedding of a surface. The choice of the metric determines
the specifying of the tangent plane, thus, specifying distances on the manifold and many
differential operators.

Definition 3.1.3 A Riemannian metric is a family of bilinear forms defined at each
point p of the differential manifold M by:

gp : TpM × TpM → R.
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As Euclidean scalar products the metric should be symmetric, positive definite at
each point. Moreover, a Riemannian metric varies smoothly on the manifold: for all
differentiable vector fields V,U on M , p 7→ gp(Vp, Up) is a smooth function from M to R.

Given a system of local coordinates (x1, . . . , xn) around p, the set
(

∂
∂x1

, . . . , ∂
∂xn

)

is

a basis of the tangent space TpM . So, the metric can be written as a matrix of Rn×n:

gij(p) := gp

(

∂

∂xi

∣

∣

∣

∣

p

,
∂

∂xj

∣

∣

∣

∣

p

)

.

Thus, the metric tensor can be interpreted as a Gramian matrix of tangent vectors.
Geometrically the square root of the determinant is the volume of the parallelotope
defined by the basis ∂

∂xi
. Therefore, the quantity

√

det(g) can be understood as a local
volume or area on the manifold.

Given two tangent vectors V,U ∈ TpM their scalar product is computed as a usual
bilinear form within the coordinate system:

gp(V,U) =
∑

ij

VigijUj .

Surface in R
3

An important example that will be frequently used in this thesis is the case where M is
an embedded surface of R3. In this configuration, the ambient Euclidean scalar product
〈., .〉 naturally induces a metric on the surface. Given a chart (U,ψ) in the neighborhood
of p ∈M , the mapping F = ψ−1 : ψ(U) ⊂ R

2 → U ⊂M ⊂ R
3 maps an open subset of

R
2 to an open subset of R3. Therefore ∂F

∂xi
(p) is a vector of R3 tangent to the surface at

p and can be identified with a basis of TpM . The induced metric in this basis is:

gij(p) =

〈

∂F

∂xi
(p),

∂F

∂xj
(p)

〉

. (3.4)

Many local coordinates expressions can be replaced by vectors in the ambient space.
For instance the scalar product g(V,U) can be replaced by 〈V̄ , Ū〉 where V̄ is the tangent
vector V expressed in the global coordinate system. To avoid heavy notations we will
consider the change of coordinates implicit when using the ambient scalar product.

Geodesic distance

The metric is a local quantity determining lengths of vectors. It induces a global structure
on the manifold enabling us to measure distances between points. The geodesic distance
is defined as the shortest path between two points on a manifold.

The application c : [0, 1] → M is a parametrized curve on M . Its velocity c′ is a
tangent vector whose length can be computed with the metric g. The arc length L(c) of
the curve c is defined by similarity with the Euclidean case:

L(c) :=

∫ 1

0

√

gc(t)(c′(t), c′(t))dt.
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The geodesic distance d :M ×M → [0,+∞) is the minimum over all curves on M :

d(p, q) := min
c:[0,1]→M

L(c) subject to c(0) = p, c(1) = q.

Figure 3.2 shows an example of geodesic distance field on a surface.

Figure 3.2 – Isolines of the geodesic distance, computed with the spectral method [34].

The pullback metric

The pullback metric is a key tool for analyzing metric distortion. Namely, given an
immersion ϕ : N → M between the differential manifolds M and N , we are able to
express gM , the metric tensor on M , as a distorted metric on N . This new tensor encodes
the distortion of the tangent space by the underlying deformation ϕ.

Definition 3.1.4 The pullback of a metric on M , denoted ϕ⋆gM , is defined as the action
of the tensor on the pushforward tangent vectors:

(ϕ⋆gM )p(V,U) = gMϕ(p)(dϕ(V ), dϕ(U)), ∀V,U ∈ TpN.

Given a coordinate system, Equation (3.3) leads to a local expression of the pullback
metric:

(ϕ⋆gM )ij(p) =
∂yk
∂xi

gMkl (ϕ(p))
∂yl
∂xj

.

The Jacobian of the immersion distorts the bilinear form in a symmetric way. If ϕ is
an immersion, the tensor ϕ⋆gM is a metric on N .

Three types of mappings are defined according to the intrinsic properties they preserve
(local areas, angles, geodesic distances). Figure 3.3 shows examples of deformation of the
plane.

• Area preserving map. A diffeomorphism is said to be area preserving if local
areas are preserved:

det(ϕ⋆gM )p = det(gN )p, ∀p ∈ N.
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• Conformal map. A diffeomorphism ϕ : N →M is said to be conformal if there
exists a positive function h ∈ C∞(M), sometimes called the conformal factor, such
that:

h(q)(ϕ⋆gM )p = gNp ∀p ∈ N.

Such deformations preserve angles between curves but affect local areas. A classical
example of such deformation are the Möbius transformations which span all the
bijective conformal maps from the sphere to itself.

• Isometry. A conformal and area preserving diffeomorphism is an isometry. In this
case, the pullback metric agrees with the metric on N :

(ϕ⋆gM )p = gNp ∀p ∈ N.

A map is an isometry if and only if geodesic distances are preserved, namely
dM (ϕ(p), ϕ(q)) = dN (p, q), as proven by the Myers–Steenrod theorem [83].

(a) Initial grid (b) Area-preserving (c) Conformal (d) Isometry

Figure 3.3 – Three categories of mapping according to the intrinsic property they preserve.

3.1.5 Integral on Manifold

Area preserving maps are naturally related to integral on manifold. In fact, a change of
variables in integral is equivalent to using the measure induced by the pullback metric
[78].

Volume form

First, we introduce the volume form dµg defined locally by: dµg =
√

det(g) dx1∧· · ·∧dxn.
The volume form induces a Borel measure µg:

µg(U) =

∫

U

dµg, ∀U ⊂M.

Note that µ will abusively stand for the local area
√

det(g) instead of the measure.
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Given a chart (Uα, ψα) and a coordinate system (x1, . . . , xn) the integral is then
defined through its mapping to the Euclidean space:

∫

Uα

f(p) dµg(p) =

∫

ψα(Uα)
(f
√

det(g)) ◦ ψ−1α (x1, . . . , xn) dx1 . . . dxn.

Pushforward measure

Let ϕ : N →M be a diffeomorphism between two manifolds and gN a metric on N . The
pushforward measure ϕ⋆µgN is a measure on M standing for the change of variables:

∫

M

f d(ϕ⋆µgN ) :=

∫

N

f ◦ ϕ dµgN .

Applying the change of coordinate formula for volume form [78] leads to Proposition
3.1.5.

Proposition 3.1.5 The volume form induced by the pushforward measure is the volume
form corresponding to the pullback metric:

d(ϕ⋆µgN ) = dµ(ϕ−1)⋆gN .

When ϕ is area preserving, integrals are left untouched by a change of variables:
∫

M

f dµgM =

∫

N

f ◦ ϕ dµgN , ∀f integrable.

Inner product

Let f, g :M → R be smooth functions on M . The space of square integrable functions
with respect to the volume form dµg is defined as:

L2(M,g) =

{

f :M → R integrable :

∫

M

f2 dµg <∞
}

.

This space is equipped with the inner product 〈f, g〉(M,g)
L2 :=

∫

M
fg dµg inducing the

norm ‖f‖(M,g)
L2 :=

(

〈f, f〉(M,g)
L2

) 1

2

. Mention of the metric and the manifold is sometimes

omitted to avoid heavy notation

3.1.6 Gradient, Divergence and Laplacian

Gradient, divergence and Laplacian are three fundamental differential operators to
study intrinsic geometry. Their definitions entirely rely on the underlying metric tensor.
Moreover, as we will see later, they also fully specify the metric structure of the manifold.
For this reason, the Laplacian is a key tool in geometry processing and computer graphics.
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In particular it has been used for: fairing and compression (e.g. [59]), geodesic computation
(e.g. [34]) and global descriptors (e.g. [99, 119, 5]) to name just few applications.
Two properties explain this success: its invariance under isometric deformation and its
eigenfunctions comparable to a Fourier basis on manifolds.

For a more comprehensive study of the Laplace-Beltrami operator in differential
geometry we refer the interested reader to [103].

Laplace-Beltrami operator

The directional derivative V (f) is the action of a tangent vector on a function. It can
also be thought of as the scalar product between a fixed vector and the function gradient.
Thus, the gradient can be defined as the tangent vector satisfying:

V (f) = g(V,∇f), ∀V ∈ V(M).

Given a local coordinate system we can write Vi∂if = Vigijg
jk∂kf , so the components

of the gradient are given by: (∇f)i = gij∂jf .
The gradient depends on the inverse metric tensor. As our main topic is intrinsic

geometry, it is interesting to relate the pushforward gradient with the pullback metric.

Lemma 3.1.6 Let ϕ : N →M be a diffeomorphism between two differential manifolds
and gN a metric on N . The pushforward of the gradient is equal to the gradient defined
by the pullback metric:

dϕp
(

∇gN (f ◦ ϕ)
)

= ∇(ϕ−1)⋆gN f(ϕ(p)).

Proof Given local coordinates (x1, . . . , xn) around p ∈ N and (y1, . . . , yn) around q =
ϕ(p) ∈M , a direct computation yields:

dϕp
(

∇gN (f ◦ ϕ)
)

= dϕp

(

g
ij
N

∂

∂xj
(f ◦ ϕ) ∂

∂xi

)

= g
ij
N

∂

∂xj
(f ◦ ϕ)∂yk

∂xi

∂

∂yk

= g
ij
N (ϕ

−1(q))
∂yl
∂xj

∂f

∂yl
(q)

∂yk
∂xi

∂

∂yk

= ((ϕ−1)⋆gN )ij(q)
∂f

∂yj
(q)

∂

∂yi

= ∇(ϕ−1)⋆gN f(q).

�

This simple lemma expresses the idea that instead of using the differential map
to transfer gradients of functions from N to M , one can transfer intrinsic information
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and then compute gradients locally with respect to this metric. Computing a the
differential map may be challenging when considering meshes with different triangulation
but transferring metrics, as we will see later, is more tractable since it is can be done by
pullback of the Laplacian.

For manifolds without boundaries the Laplacian can be defined through the integration
by parts identity:

∫

M

g(∇g,∇f) dµg = −
∫

M

g∆f dµg. (3.5)

The Laplacian is therefore a symmetric and negative definite operator on smooth
functions. The expression in local coordinates relies heavily on the metric:

∆f =
1

√

det(g)
∂i

(

√

det(g)gij∂jf
)

.

Eigen-decomposition

The Laplace-Beltrami operator has a countable set of eigenfunctions:

∆gφi = λiφi,

where the eigenvalues are negative and decreasing 0 = λ0 ≥ λ1 ≥ · · · ≥ λi. Moreover,
if M is a smooth manifold the eigenfunctions are infinitely differentiable functions.
Moreover they provide an orthonormal basis of L2(M,g) ordered from low to high
frequency, as the total integral of the gradient equals the absolute value of the eigenvalue.
Meaning that if

∫

M
f2 dµg <∞ then f can be written has a linear combination of the

functions {φi}i≥0:

f = lim
k→+∞

k
∑

i=0

〈f, φi〉(M,g)
L2 φi.

In the computer graphics literature, the basis {φi}i≥0 is often understood as a
generalization of Fourier basis on Manifolds. An example is shown in Figure 3.4. They
are sometimes referred to as manifolds harmonics [121].

Commutativity with isometries

The Laplacian heavily depends on the metric. Like gradients, change of variables in
Laplace-Betrami operators is equivalent to changing the metric tensor.

Lemma 3.1.7 Let ϕ : N →M be a diffeomorphism between manifolds and g a metric
on N , then:

∆g(f ◦ ϕ) = (∆(ϕ−1)⋆gf) ◦ ϕ, ∀f ∈ C∞(M).
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φ2 φ3 φ4 φ5 φ6

Figure 3.4 – Example of Laplace-Beltrami eigenfunctions computed on a surface. The
first eigenfunction, not represented here, is constant.

Proof To lighten the notations we denote g⋆ the pullback metric (ϕ−1)⋆g. Given the
local coordinates (x1, . . . , xn) around p ∈ N and (y1, . . . , yn) around q = ϕ(p) ∈M , the
Laplace-Beltrami operator can be transported from N to M using Lemma 3.1.6:

∫

N

g ◦ ϕ∆g(f ◦ ϕ) dµg = −
∫

N

gp (∇g(g ◦ ϕ),∇g(f ◦ ϕ)) dµg(p)

= −
∫

N

gp

(

dϕ−1
ϕ(p) (∇g⋆g) , dϕ−1

ϕ(p) (∇g⋆f)
)

dµg(p)

= −
∫

M

gϕ−1(q)

(

dϕ−1q (∇g⋆g) , dϕ−1q (∇g⋆f)
)

dµg⋆(q)

= −
∫

M

g⋆ (∇g⋆g,∇g⋆f) dµg⋆

=

∫

M

g∆g⋆f dµg⋆

=

∫

N

g ◦ ϕ (∆g⋆f) ◦ ϕ dµg.

The fundamental lemma of calculus of variations leads to the equality between the
functions. �

As a consequence of Lemma 3.1.7, the Laplace-Beltrami operator commutes with
isometries. Moreover, the converse also holds: the Laplacian determines the metric up to
isometries. This property is well-known in the computer graphics community and makes
this operator very attractive for shape analysis. For instance, Proposition 3.1.8 ensures
that the Heat Kernel Signature [119] and Wave Kernel Signature [5] fully encode intrinsic
information.

Proposition 3.1.8 Let ϕ : N → M be a bijection between manifolds then it is an
isometry if and only if:

∆gN (f ◦ ϕ) = (∆gM f) ◦ ϕ, ∀f ∈ C∞(N).
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Proof We prove the necessary and sufficient conditions separately:

• Assuming that ϕ is an isometry and using Lemma 3.1.7 lead to the equalities
∆gM f = ∆(ϕ−1)⋆gN f =

(

∆gN (f ◦ ϕ)
)

◦ ϕ−1.

• Now suppose that the Laplacians commute with the map ϕ. The operators on
both manifolds are therefore isospectral and the eigenfunctions of one operator are
eigenfunctions of the other after composition with ϕ. It follows that the heat kernel
[103], defined as ht(p, q) =

∑

i≥0 exp(tλi)φi(p)φi(q), is preserved by the map:

hNt (p, q) = hMt (ϕ(p), ϕ(q)), ∀p, q ∈ N, ∀t > 0.

This equality holds true if and only if ϕ is an isometry, as detailed in [119].

�

3.2 Discretization

To be defined correctly, differential operators require smooth surfaces. Obviously, in a
discrete setting smoothness has to be redefined since most of the data (scanner, MRI)
are point clouds or meshes. We will limit our theoretical study to triangular meshes.
Although in practice the functional map framework is stable across data representations,
all of the results presented in this thesis assume that the data comes in the form of triangle
meshes. Therefore, in this section we show how differential operators are approximated
using the standard Finite Element Method.

3.2.1 Discrete Manifold

Triangle meshes are composed of three sets (X , E ,F) creating a discrete manifold. The
set of vertices X whose elements xi ∈ R

n are points in space. The set of edges E linking
two vertices together forming an undirected graph. If a pair (i, j) belongs to E then the
edge vector is denoted eij = xj − xi where the order of the indices define the orientation.
We require an additional structural element that is the graph should be composed only
by triangles such that an edge is shared by only two triangles. A triangle is defined by
the indices of three vertices (i, j, k) belonging to the set F . Each side consists of an edge,
so {(i, j), (j, k), (k, i)} belongs to E . The notations are summarized in Figure 3.5a.

Meshes are thought of a piecewise linear approximations of a smooth manifold. When
refined by adding sample points, the approximation error should decrease and eventually
go to zero. On such discrete structure it seems natural to consider only piecewise linear
functions. So, a discrete function f is defined as an assignment of a scalar value per
vertex f : X → R and extended linearly inside triangles. For a point p inside the triangle
(xi, xj , xk) the interpolation is expressed using the hat basis composed of the functions
Bi defined in Figure 3.5b:

f(p) = fiBi(p) + fjBj(p) + fkBk(p).

The measure µ(T ) denotes the area of triangle T and ℓij = ‖xi − xj‖ the edge length.
These two quantities will be used to describe the intrinsic structure of a discrete manifold.
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xj

xixk

xl

αij

βij

Tiljwij

`ik

Tijk `il

`jl

`jk

(a) Discrete manifold

1

xi
xk

jeij

ejk

ETijk

(b) Hat basis function and local basis

Figure 3.5 – Notations used for the Finite Element Method.

3.2.2 Finite Element Method and Cotangent Weight Formula

For a short but efficient introduction to finite elements for computer graphics the reader
may enjoy [16] Chapter 3.

Inner product

Once the interpolation is written with the hat basis we can define the discrete inner
product 〈., .〉L2 by computing the integration of piecewise linear functions. Functions on
vertices are elements of RX so the inner product is a symmetric definite matrix A, called
mass matrix, of size |X | × |X |. The element Aij is then the inner product between Bi
and Bj :

Aij =
∑

T∈F

∫

T

Bi(p)Bj(p)dp.

For computational efficiency it is sometimes preferable to use the lumped mass matrix.
This matrix is diagonal whose elements are

∑

j Aij .

Gradient

Piecewise-linear functions are only differentiable inside triangles. Therefore, the discrete
gradient takes as input a function defined at vertices and outputs a vector per triangle.
By linearity, it is enough to compute the gradient of the hat functions to find the gradient
of any function [16]:

∇f(x) = 1

2µ(Tijk)
R90◦ETijk

(

fk − fj
fi − fj

)

, (3.6)

where R90◦ is the counterclockwise rotation by 90◦ around the normal and ETijk =
(

xj − xi, xk − xj
)

contains a local basis of edges.

Laplacian operator

The discretization of the Laplace-Beltrami operator L is obtained by discretizing the
inner product

∫

M
〈∇f,∇g〉dµ represented by the stiffness matrix W ∈ R

|X |×|X | and is
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deduced from W by integration by parts (Equation (3.5)) so L = A−1W . The discrete
inner product follows the discrete gradient in Equation 3.6:

g⊤Wf =
∑

T∈F

1

4µ(Tijk)

(

gk − gj
gi − gj

)⊤

E⊤T ET

(

fk − fj
fi − fj

)

. (3.7)

After rearranging the terms the matrix becomes a graph Laplacian:

(Wf)i =
∑

j∼i

wij(fi − fj),

wij =



















1
8µ(Tijk)

(ℓ2ij − ℓ2jk − ℓ2ki) (i, j) ∈ E
+ 1

8µ(Tijl)
(ℓ2ij − ℓ2jl − ℓ2li),

−
∑

k∼iwki, i = j
0, else.

(3.8)

The cotangent weight formula, a more popular expression of the Laplacian in the
computer graphics community, is obtained by remarking that cotαij =

1
4µ(Tijk)

(−ℓ2ij +
ℓ2jk + ℓ2ki). So the weight at an edge (i, j) ∈ E reads:

wij = −1

2
(cotαij + cotβij). (3.9)

where αij and βij are the angles opposite of the edge.

Eigenfunctions

Given the discrete Laplacian, finding the eigen-decomposition is done by solving the
generalized eigenvalue problem:

WΦ = AΦΛ, subject to Φ⊤AΦ = I,

where Λ is the matrix of eigenvalues. Since W is symmetric and A is positive definite,
there exists a solution with non-negative eigenvalues. The matrices A and W are sparse
so this problem is solved efficiently by standard sparse solvers.

3.2.3 Discrete Local Coordinates

Although the Finite Element Method has a nice interpretation as an approximation of
a function space by piecewise linear functions, it does not relate immediately to the
continuous concept of metric and local charts. In this section we make one link between
those two worlds.

The metric tensor expressed as a matrix of edge lengths was first introduced in 1961
in [98] by Regge. It was originally intended for the study of discrete general relativity.
This field is often referred as Regge calculus. For an accessible introduction see [60].
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Discrete gradient

Triangle faces provide a straightforward analog of tangent spaces as each triangle can
be easily mapped to a 2D plane. Of course, unlike the continuous case, the transitions
between coordinates are not smooth. In this section, we are going to construct the
gradient operator from directional derivatives.

The directional derivative of a piecewise linear function f in the direction of an edge
is, by definition, given by the classical finite difference formula:

〈

∇f, eij
‖eij‖

〉

=
fj − fi
‖eij‖

.

We denote ET = (eij , ejk) a particular coordinate system at a given triangle. Inside
a triangle the derivative of f can only be computed along the edges, therefore we store

them in the matrix ∂f =

(

fj − fi
fk − fj

)

. Given a vector V in the discrete tangent space and

its decomposition in local coordinate V = ETα, the directional derivative is expressed
through a matrix multiplication:

V (f) = α⊤∂f = 〈∇f, V 〉 .

This formulation is the discrete counterpart of Equation (3.1). In the direction of the
local basis we have the equality: E⊤T ∇f = ∂f . To obtain a gradient we need to invert
ET knowing that gradients are tangent vectors. To do so we are going to use the metric
induced by the ambient space defined by:

gT := E⊤T ET ,

as suggested by Equation (3.4). This leads to the following defining Proposition.

Proposition 3.2.1 Given a local coordinate system ET = (eij , ejk) in triangle T , the
gradient in local coordinate reads g−1T ∂f and in the global coordinate system:

∇f = ETg
−1
T ∂f.

In this discussion we merely computed the derivative of a piecewise linear function
therefore it should correspond to the Finite Element Method.

Discrete metric

The metric tensor possesses several properties that will prove useful in Chapters 7 and 8
when converting functional representation of deformation into embedded surfaces.

Proposition 3.2.2 Given a local frame ET = (eij , ejk) the metric tensor gT = E⊤T ET
is symmetric positive definite and its determinant is such that:

det(gT ) = 4µ(T )2.
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Moreover the metric tensor can be rewritten exclusively in term of edge lengths:

gT =
1

2

(

2ℓ2ij ℓ2ki − ℓ2ij − ℓ2jk
ℓ2ki − ℓ2ij − ℓ2jk 2ℓ2jk

)

.

Proof The discrete metric is by definition symmetric positive definite for non-degenerate
triangles. The computation of the determinant follows Heron’s formula.

The second statement comes from the fact that the edges sum to zero eij+ejk+eki = 0
so:

ℓ2ki = 〈eij + ejk, eij + ejk〉 = ℓ2ij + ℓ2jk + 2〈eij , ejk〉.

�

Equivalence with Finite Element Method

The discretization using the Finite Element Method, Equation (3.6), and using the local
coordinates, Proposition 3.2.1, are the same. First let’s recall this simple property satisfied
by every invertible symmetric matrix in R

2×2:

g−1T =
1

4µ(T )2
D⊤gTD, where D =

(

0 1
−1 0

)

. (3.10)

Starting from Proposition 3.2.1 and using Equation (3.10) lead directly to the conclu-
sion:

∇f = ETg
−1
T ∂f

=
1

2µ(T )
(

1

2µ(T )
ETD

⊤E⊤T )ETD∂f

= − 1

2µ(T )
R90◦ETD∂f.

The inner product matrix W also enjoys a formulation in terms of local coordinate
equivalent to Equation (3.7):

g⊤Wf =
∑

T∈F

(

gj − gi
gk − gj

)⊤

g−1T

(

fj − fi
fk − fj

)

µ(T ).

Extension to simplicial complexes

One advantage of Regge calculus is that metric tensors and gradients can be easily defined
for higher dimensional simplicial complexes. Moreover, they are still computable (but
not necessarily meaningful) for non-manifold triangulations while being equivalent to the
Finite Element Method in nicer scenarios.
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x1 x2

x3

x4

ES3

Figure 3.6 – Local basis in a tetrahedra.

For example in Figure 3.6 a k-simplex Sk is defined by k + 1 vertices (x1, . . . , xk+1).
The first k edges form the local basis: ESk

= (x2 − x1, . . . , xk+1 − x1). The discrete
metric tensor gSk

= E⊤Sk
ESk

is expressed locally using the edge lengths:

gij =

{

ℓ21i, i = j
1
2(ℓ

2
ij − ℓ21i − ℓ21j), i 6= j.

, 1 ≤ i, j ≤ k.

The volume of the simplex is accessible through the determinant of the metric by
µ(Sk) =

√

det(gSk
)/k!. The gradient inside the simplex is now computed with the

formula:

∇f = ESk
g−1Sk





f2 − f1
. . .

fk − f1



 .

Given a pure simplicial k-complex S, the inner product matrix W can be assembled
using the following rule:

g⊤Wf =
∑

Sk∈S





g2 − g1
. . .

gk − g1





⊤

g−1Sk





f2 − f1
. . .

fk − f1



µ(Sk).





Chapter 4

Operator Representation

This chapter reviews two tools of the operator based representation framework:
functional maps [88], representing diffeomorphisms, and shape differences [106],
encoding the intrinsic deformation. The next chapters of this thesis explore the
possibilities offered by these representations therefore this introduction attempts
to give a complementary background to the reader and highlight open problems
in this framework. We focus the presentation on the theoretical properties of
these operators and how they are preserved after discretization. Although most of
the results discussed here were already provided in the original papers, some are
novel and not mentioned in follow-up works. In particular, Theorem 4.1.1 gives
a characterization of composition operators never used in computer graphics and
Propositions 4.2.3 and 4.2.4 describe the precise conditions in which compositions
and summations are allowed for shape differences.

4.1 Functional Map

Real-valued functions are easily generated on many types of shapes (coordinate functions,
descriptors) plus they enjoy interesting algebraic structure as they can be added, multiplied
and composed with maps. To take advantage of this structure one can represent a
diffeomorphism ϕ : N →M as a composition operator Cϕ acting on real-valued functions:

Cϕ : L2(M) −→ L2(N)
f 7−→ f ◦ ϕ.

Instead of studying directly the deformation induced by ϕ, composition operators
assess the changes in the space of square-integrable functions L2 defined on the manifolds
M and N . These operators have been studied and used in many fields including dynamical
systems (Koopman operator theory [51]) and functional analysis [112]. The immediate
property of this point of view is that a composition acts linearly with respect to functions.
In the discrete settings, composition are therefore represented by matrices, meaning
that the space of diffemorphisms can be analyzed with standard linear algebra tools.
Of course, all linear operators do not represent a composition (for example f 7→ 0 is
not a composition) but it suggests a convexification of the space of diffeomorphisms as
linear mappings. In computer graphics composition operators were first introduced in
[88] under the name of functional maps. They were originally used in intrinsic shape
matching problems and led to many follow-up works. Two directions are now prevalent:
either to make better use of the structure of the space (e.g. [101, 100, 90]) or to extend
the functional representation to other quantities (e.g. metric distortion [106], tangent
vector fields [6], fluid mechanics [8]).
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In this section the term composition operator refers to the composition with an
underlying map and should not be mistaken for functional map designating a linear
operator acting on real-valued functions.

4.1.1 Mathematical Properties

All results presented here were first stated in [88] except for Theorem 4.1.1. Although
this fundamental property is well-known in operator theory [112], it has not been used in
a computer graphics context. A more comprehensive study and careful computations can
be found in [112].

Characterization

A functional map is a linear operator between function spaces. A first question is what
characteristic properties a linear operator should satisfy to be a composition operator.
The following theorem provides an answer through a single property of the composition:
the composition of a multiplication is the multiplication of the compositions.

Theorem 4.1.1 Let C : L2(M) → L2(N) be a non-zero linear operator. Then, there
exists a map ϕ : N →M such that C = Cϕ if and only if:

C(fg) = C(f)C(g), ∀f, g ∈ L2(M).

A sketch of the proof is formally reproduced here as it helps building an intuition
(for a complete version see [112] Theorem 2.1.13). The necessary condition is obviously
satisfied by a composition operator. The sufficient condition is proven in three steps. The
first part is to show that the image of an indicator function on M is an indicator function
on N . Second, C must define a homomorphism φ between algebras of measurable sets
and third φ induces a diffeomorphisms ϕ.

Let χU be the indicator function of a measurable set U ⊂M . The necessary condition
of Theorem 4.1.1 yields:

C(χU ) = C(χ2
U ) = C(χU )C(χU ) = (C(χU ))

2.

Therefore C(χU ) is also an indicator function. Any measurable set U ⊂M is mapped
to a set V ⊂ N through C, defining an map between sets by: φ(U) = V .

Let U1 and U2 be two disjoint subsets of M , then:

C(χU1∪U2
) = C(χU1

+ χU2
) = C(χU1

) + C(χU2
) = χV1 + χV2 .

Thus the image of a union of sets by φ is the union of the images. Similarly φ preserves
intersections and differences between sets. So it can be shown that φ is a homomorphism
between σ-algebras.

Finally, it follows, using a technical property of Borel sets (Theorem 2.1.12 in [112]),
that there exists a measurable transformation ϕ such that φ(U) = ϕ−1(U).
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Algebraic properties

Many algebraic properties of the space of diffeomorphisms are naturally transferred to
the space of composition operators. In a slightly simpler form, however, since we are
dealing with linear operators.

The most basic property we can hope for is composition of mappings. Obviously, a
composition of two mappings is also a composition operator since Cϕ(Cψ(f)) = f ◦ψ◦ϕ =
Cψ◦ϕ(f). Thus, a composition of mappings becomes a composition of linear operators
and we have proved the following:

Proposition 4.1.2 Let ϕ : N → M and ψ : M → O be mappings between manifolds
then their composition is the composition of the composition operators:

Cϕ ◦ Cψ = Cψ◦ϕ.

As a consequence of Proposition 4.1.2, an invertible mapping ϕ becomes an invertible
composition operator by noting that Cϕ ◦ Cϕ−1(f) = f .

Corollary 4.1.3 Let Cϕ : L2(M) → L2(N) be a composition operator then Cϕ is invert-
ible if and only if ϕ is invertible. Moreover, we have:

C−1ϕ (f) = Cϕ−1(f), ∀f ∈ L2(N).

Intrinsic information

Composition operators contain valuable information about the intrinsic structure of the
manifold. For example Proposition 3.1.5 states that the pushforward measure describes
the area distortion of the underlying deformation. Introducing the composition operator
in the change of variables formula leads to the equality:

〈Cϕ(f), Cϕ(g)〉ML2 =

∫

M

fg

√

det((ϕ−1)⋆gN )

det(gM )
dµgM . (4.1)

Thus the linear operator
(

C⋆ϕ ◦ Cϕ
)

(f) : L2(M) → L2(M), where the adjoint operator
C⋆ϕ is defined by 〈C⋆ϕ(f), g〉L2(M) = 〈f, Cϕ(g)〉L2(N), accounts for the multiplication of a
function by the ratio of local areas. Thus, C⋆ϕ ◦ Cϕ is an operator representation of the
area distortion which will reappear in Section 4.2.

Proposition 3.1.8 completes the intrinsic information given by composition operators:
composition operators representing isometries should commute with the Laplacian.

Theorem 4.1.4 Let Cϕ : L2(M) → L2(N) be a composition operator then,
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• ϕ is area preserving if and only if:

C⋆ϕ (Cϕ(f)) = f, ∀f ∈ L2(M).

• ϕ is an isometry if and only if:

Cϕ (∆Nf) = ∆MCϕ(f), ∀f ∈ L2(M),∆Nf ∈ L2(N).

Theorem 4.1.4 shows that composition operators fully characterize intrinsic geometry.
However, as such, we cannot use them to compare metrics of different manifolds since by
definition compositions start and end at different function spaces. For intrinsic distortion
analysis we will prefer the shape difference operators introduced in Section 4.2.

4.1.2 Discrete Functional Maps

In the discrete setting the space L2 is replaced by an approximation with piecewise linear
functions – a standard choice in FEM. A function is then a vector in R

|X | assigning a
real value per vertex. Therefore, functional maps will be understood as matrices. Let
(φM1 , . . . , φ

M
|X |) be an orthonormal basis of such a space (i.e. φ⊤i Aφ

M
j = δij where A is the

mass matrix), then any function f is uniquely defined by the coefficients aMi = f⊤AMφ
M
i

in the decomposition f =
∑|X |

i=1 a
M
i φ

M
i . The functional map is represented by a matrix

transporting coefficients on M to coefficients on N :

Cϕ(f) =

|X |
∑

j=1

aMj Cϕ(φ
M
j ) :=

|X |
∑

i,j=1

Cija
M
j φ

N
i .

The elements of Cϕ are by definition the coefficients of the functions Cϕ(φMj ) when
decomposed in the orthonormal basis φN . This leads to the scalar products:

Cij := (φNi )
⊤ANPMNφ

M
j , 1 ≤ i, j ≤ |X |.

where AN is the mass matrix an N and PMN assigns vertices on M to vertices on N .
Let ΦM be the matrix containing all the basis functions φMi , the discrete functional map
reads:

CMN = Φ⊤NANPMNΦM . (4.2)

Representing a given vertex-to-vertex assignment by a functional map is usually done
in two steps:

1. Compute a basis (or an orthonormal family) of piecewise linear functions on M
and N ,

2. Use Equation (4.2) to obtain CMN .

This representation is flexible as the choice of basis can be adapted to each application.
However, this is still an ongoing research topic. Some authors for example suggest a
compactly supported basis [87]. In this thesis, we will mostly focus on the popular choice
of the basis of eigenfunctions of the Laplace-Beltrami operator.
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Discrete properties

Every matrix does not represent a valid functional map since it has to satisfy Proposition
4.1.1, namely the composition of a product should be a product of the compositions.
In fact, the product of two piecewise linear functions is not piecewise linear. So, this
property cannot hold exactly when considering classic Finite Elements. This problem
will not be discussed further in this thesis even thought it could improve the operator
representation of mappings.

Nevertheless many of the other properties are still satisfied exactly at the condition
that the basis span the entire space of discrete functions, namely Φ⊤AΦ = I and
ΦΦ⊤A = I. Using Equation (4.2) the following operations hold:

• A composition of mappings becomes a multiplication of matrices as suggested by
Proposition 4.1.2:

CPNCMP = (Φ⊤NANPPNΦP )(Φ
⊤
PAPPMPΦM )

= Φ⊤NANPPNPMPΦM

= CMN .

• Proposition 4.1.3 remains true since CNM = Φ⊤MAMP−1MNΦN is the inverse of the
functional map CMN = Φ⊤NANPMNΦM .

• Theorem 4.1.4 is still valid in a discrete sense if the meshes have same connectivity.

Proposition 7.4.1 in Chapter 7 states that the mass matrix uniquely determines the
triangle areas. So C⊤MNCMN is the identity matrix if and only if M and N have
same triangle areas.

The main theorem in [137] proves that the stiffness matrix uniquely defines the
edge length up to global scaling. This strong result is mostly due to the rigidity
of triangle meshes. In particular, CMN

(

Φ⊤MWMΦM
)

=
(

Φ⊤NWNΦN
)

CMN if and
only if M and N have identical triangle inner angles.

In practice a basis spanning the full space is not desirable as it requires |X | func-
tions when shapes can contain several dozen thousand vertices. Besides, if the discrete
manifolds have different connectivity, an accuracy up to a triangle is not relevant in
many applications. It is often a better choice to use a small (compared to the number of
vertices) family of smooth functions so the functional map is resilient to discretization
noise.

Reduced basis

The eigenfunctions of the Laplace-Beltrami operator form a basis of the space of square-
integrable functions. Moreover, they are naturally ordered according to their smoothness
since they are minimizers of the Dirichlet’s energy [125].

Therefore, we set our reduced basis to be the first k eigenfunctions of the Laplace-
Beltrami operator. We are not considering the full function space but only a reduced space
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of smooth functions. This way we are compressing the information into a kN ×kM matrix
by keeping only the low frequency structure of the diffeomorphism. Nevertheless, this
basis has several interesting properties regarding the representation of nearly isometric
deformations. Since the Laplacian commutes with isometries, nearly isometric maps are
represented by nearly diagonal matrices. Furthermore, a recent paper by Rodolà and al.
[101] remarks that even when large parts of a shape are missing the functional map has a
slanted-diagonal structure, making this representation useful for challenging problems
such as partial matching. Figure 4.1 shows examples of functional maps in three cases.

So
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Figure 4.1 – The first two rows represent three maps via color correspondence and the
third their corresponding functional maps computed with 40 eigenfunctions. Three test
cases are organized in three columns: a nearly isometric map is represented by an almost
diagonal functional map, a partial matching becomes a slanted-diagonal matrix and a
non-isometric (but almost conformal) map which do not exhibit a very sparse structure.

Regarding algebraic operations on functional maps, all the discrete properties men-
tioned above still hold but only in a reduced space of functions. In the reduced basis
of the LB eigenfunctions the functional map acts as a low-pass filter on M and on N .
Two failure cases can be identified depending on kN and kM the size of the bases. First
scenario, the function do not lie in the span of ΦM so the projection onto the basis
distorts the function. The projection, however, is well transferred to N . Second scenario,
f is represented by the family ΦM but the transfer induces high frequency distortions
lying outside of the span of ΦN . Increasing kN solves this issue. Figure 4.2 illustrates
the effect of varying kM and kN on function transfer. In conclusion, a function f is
accurately transferred if f and PMNf are well represented in their respective basis. We
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can characterize this subspace by:
{

f ∈ R
|X | : f ∈ span(ΦM ), PMNf ∈ span(ΦN )

}

.

The problem of identifying the subspace of stable functions is tackled in Chapter 5.

kM = 5 kM = 50 kM = 100

k
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=
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k
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=
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k
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=
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kM

k
N

f f ◦ ϕ CMNf wrt kN , kM L2 relative error

Figure 4.2 – Left: The function f on M and its exact transfer on N . Middle: Representa-
tion of the function CMNf on the shape N when the functional map CMN is computed
for varying kN and kM . Right: The relative error ‖f ◦ ϕ − CMNf‖NL2/‖f ◦ ϕ‖N

L2 for
various values of kN and kM . This experiment highlights the effect of basis sizes kN and
kM on the transfer of a function by a functional map. When kM < kN the function is
badly represented on M but the projection is well transferred to N . When kN < kM the
function is well represented on M but the projection is badly transferred to N .

Other problems in the functional map framework

In this section we have only considered the problem of representing a given mapping
between surfaces. The study of approximating an unknown functional map with minimal
distortion using functional correspondences is covered in Chapter 5.

One of the challenge in this framework is to convert a functional map into a point-to-
point map used in many applications. In [88] the authors propose a way to solve this
problem by transferring highly localized functions. However, those functions are not well
represented in a reduced basis introducing noise and destroying the smoothness of the
recovered map. We propose a way to address this issue in Chapter 6.

4.2 Shape Differences

Characterization and operations on deformations are a fundamental tools in geometry
processing with many applications, including deformation design, shape search and the
organization of shape collections. The composition operator introduced in the previous
section provides a lot of information on the intrinsic structure of a diffeomorphism as
shown in Theorem 4.1.4. However, composition is not a convenient tool to compare
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mappings or metrics. For example, if M and N1, N2 are shapes, by definition the
functional maps ending points are respectively L2(N1) and L2(N2). As such it seems
difficult to compare the deformation between M and N1 with the deformation from M to
N2 without a map linking N1 to N2. Moreover, an isometric deformation does not change
the metric but is represented by a functional map different from identity. Thus, we need
a representation of intrinsic deformation invariant under composition with isometries.

The shape differences address some of these issues. They are operators acting on
functions and representing the intrinsic distortion induced by a given functional map.
They are also symmetric allowing comparison between deformations and invariant under
isometric composition.

4.2.1 Definition

Introduced by [106], the shape difference operators describe a shape deformation by
considering the change of two inner products between functions 〈f, g〉M

L2 :=
∫

M
fg dµ

and 〈f, g〉M
H1

0

:=
∫

M
g(∇f,∇g) dµ. Namely, given a pair of shapes M,N and a functional

map Cϕ : L2(M) → L2(N) the authors introduce the area-based and conformal shape
difference operators DA : L2(M) → L2(M) and DC : H1

0 (M) → H1
0 (M) respectively, as

linear operators acting on (and producing) real-valued functions on M implicitly via the
following equations:

〈f,DA(g)〉ML2 := 〈Cϕ(f), Cϕ(g)〉NL2 ∀f, g ∈ L2(M)

〈f,DC(g)〉MH1

0

:= 〈Cϕ(f), Cϕ(g)〉NH1

0

∀f, g ∈ H1
0 (M). (4.3)

By H1
0 (M) we denote the function space of square integrable functions with L2(M)

gradients and zero integrals:

H1
0 (M) =

{

f ∈ L2(M) :

∫

M

‖∇f‖2 dµ < +∞,

∫

M

f dµ = 0

}

.

This space seems natural when studying the conformal shape difference since DC

maps any constant function to zero. When equipped of the scalar product 〈., .〉L2+〈., .〉H1

0

,

H1
0 is a Hilbert space.

The bilinear form (f, g) 7→ 〈f, g〉M
H1

0

is continuous and coercive thanks to the Wirtinger’s

inequality [20]. Moreover, for a given g in H1
0 (M) the linear form f 7→ 〈Cϕ(f), Cϕ(g)〉NH1

0

is continuous assuming that Cϕ represents a composition with a diffeomorphism. All
conditions of the Lax-Milgram theorem [20] are satisfied therefore there exists a unique
DC(g) satisfying Definition 4.3. The existence and uniqueness of the area-based shape
difference are guaranteed by the same argument.

It is important to note that the definition of shape differences does not require a
composition operator but merely a functional map (i.e. a linear map between function
spaces). The properties derived in the following, however, assumes there exists an
underlying diffeomorphism ϕ : N →M .
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4.2.2 Fundamental Properties

As shown by [106] those operators fully characterize intrinsic deformations. More precisely,
the following equivalences link properties of the mapping to properties of the operators.

Theorem 4.2.1 Given a pair of surfaces M,N and a diffeomorphism ϕ : N →M with
the functional representation Cϕ, the followings hold for all functions f in H1

0 (M):

• ϕ is area-preserving if and only if DA(f) = f ,

• ϕ is conformal if and only if DC(f) = f ,

• ϕ is an isometry if and only if DA(f) = f and DC(f) = f .

The last item is a direct consequence of the first two. The first item has already been
proven by Theorem 4.1.4. Besides Equation (4.1) provides a direct representation of the
operator DA:

DA(f) =

√

det((ϕ−1)⋆gN )

det(gM )
f, ∀f ∈ L2(M). (4.4)

The proof of the second item requires a technical lemma proven in [109] and reproduced
here has it will be useful later on (in particular in Chapter 8). Lemma 4.2.2 generalizes
the fundamental lemma of calculus of variations to symmetric tensors.

Lemma 4.2.2 Let (M,g) be a Riemannian manifold (possibly with Lipschitz boundary)
and let A be a differentiable symmetric 2-tensor field on M . Then A is the null tensor if
and only if:

∫

M

g(∇f,A∇g) dµg = 0, ∀f, g ∈ C∞(M).

The proof of the last point follows after a few computations.

Proof of Theorem 4.2.1

Let gN be the metric on N and let g⋆ denote (ϕ−1)⋆gN the pullback metric on M .
Using Lemma 3.1.6 and the definition of the pullback metric, we have:

〈Cϕ(f), Cϕ(g)〉NH1

0

=

∫

N

gNp

(

dϕ−1
ϕ(p) (∇g⋆f) , dϕ−1

ϕ(p) (∇g⋆g)
)

dµg(p)

=

∫

M

gNϕ−1(q)

(

dϕ−1q (∇g⋆f) , dϕ−1q (∇g⋆g)
)

dµg⋆(q)

=

∫

M

g⋆ (∇g⋆f,∇g⋆g) dµg⋆ .



40 Chapter 4. Operator Representation

The scalar product g⋆ (∇g⋆f,∇g⋆g) is rearranged to gM
(

∇gM f,A∇gM g
)

where
Aij = (g⋆)ikgkj and gM is the metric on M . The definition of the pushforward measure
leads to the equation:

〈Cϕ(f), Cϕ(g)〉NH1

0

=

∫

M

gM
(

∇gM f, λA∇gM g
)

dµgM , λ =

√

det(g⋆)

det(gM )
. (4.5)

We are now ready to prove the equivalence.

• Suppose that ϕ is conformal then gM = λg⋆. In Equation (4.5) it implies that
λAij = δij so DC is the identity operator.

• Suppose that DC is identity then using Definition (4.3) and Equation (4.5) lead to:

∫

M

gM
(

∇gM f, (Id− λA)∇gM g
)

dµgN = 0, ∀f, g.

Thanks to Lemma 4.2.2 we conclude that gM = λg⋆.

�

Shape differences are interpreted as ratio of intrinsic quantities. The area-based
operator is the ratio between the local area of the pullback metric with the local area of
the reference metric. A similar explanation applies to the conformal operator, Equation
(4.5) allows us to rewrite Definition (4.3):

∫

M

〈∇f,∇DC(g)〉 dµ =

∫

M

〈∇f,B∇g〉 dµ,

Bij =

√

det((ϕ−1)⋆gN )

det(gM )
((ϕ−1)⋆gN )ikgMkj . (4.6)

Thus, DC describes the ratio of the pullback metric and the reference metric weighted
by the local area. The tensor B is immune to multiplication of the metric by a positive
function, so this measurement of distortion cannot be used to assess area changes. In
that sense DA and DC are orthogonal and complementary when describing intrinsic
deformations.

The shape difference operators are defined by the mean of a diffeomorphism but
Equations (4.5) and (4.6) rely only weakly on it. So these operators can be extended to
(and should be thought as) comparison of an arbitrary metric, not necessarily induced by
an embedded surface, with the reference metric.

4.2.3 Algebraic Properties

The results of this section, namely Propositions 4.2.3 and 4.2.4, are novel and do not
appear in the original paper [106] or any follow-up papers.
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Linear combination

Unlike composition operator there is no known defining property equivalent to Theorem
4.1.1. However, Equations (4.4) and (4.6) provide a sense of the structure of the shape
difference space.

Equation (4.4) tells us that the area-based shape difference is a multiplication operator
associated to a positive function. Thus multiplying DA by a positive scalar represents a
global scaling of the target metric. Moreover adding two area-based shape differences
results in a linear operator representing a shape difference. However, the underlying
metric may not correspond to an embedded surface.

For the conformal operator the situation is even simpler. From Equation (4.6) we take
out that this operator is characteristic of a 2-tensor with determinant one. In general
linear combinations do not produce a valid conformal shape difference.

Besides those algebraic considerations, the space of shape differences is vast as it
represents any metric distortion. At the moment, constraining shape differences to
represent the metric of an embedded surface is an open question.

Deformation support

The addition between operators is only possible in case of non-overlapping deformations.
As a consequence of Theorem 4.2.1, the set Ω ⊂M supports a deformation represented
by the operator D (area or conformal-based) if and only if:

D(f) = f, ∀f ∈ H(M) : Suppf ∩ Ω = ∅,

where Suppf = {p ∈ M : f(p) 6= 0} denotes the support of a real-valued func-
tion on M . The following proposition specifies necessary conditions for summation of
deformations.

Proposition 4.2.3 Let D1, D2 : H(M) → H(M) be two shape difference operators with
respective supports Ω1 and Ω2 such that Ω1 ∩ Ω2 = ∅, then the linear operator:

D+(f) = D1(f) +D2(f)− f, ∀f ∈ H(M),

is the shape difference operator corresponding to the deformation Di on Ωi and to an
isometry elsewhere.

Proof The proof is restricted to the case of conformal shape difference as it is very
similar for the area-based one. Using Equation (4.6) the operator D+ is separated into a
sum of three integrals:

〈f,D+(g)〉MH1

0

=

∫

Ω1

〈∇f,B1∇g〉 dµ +

∫

Ω2

〈∇f,B2∇g〉 dµ +

∫

Ωc
1
∪Ωc

2

〈∇f,∇g〉 dµ.

Since the support of these integrals are disjoint they can be written as a single integral:

〈f,D+(g)〉MH1

0

=

∫

M

〈∇f,B∇g〉 dµ,
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where B is the smooth tensor on M defined by:

B(p) =







B1(p), p ∈ Ω1

B2(p), p ∈ Ω2

Id(p), p ∈ Ωc1 ∪ Ωc2.

�

Composition of diffeomorphisms

Another possible operation on shape difference operators is the composition of two
(possibly overlapping) deformations. As the property introduced here applied to both
types of operators we will denote D the operator corresponding to either DA or DC and
H the function space L2 or H1

0 .
The following proposition was proved in a restricted discrete setting for one operator

in the original article [106].

N M

P

ϕ ◦ φ

φ ϕ

L2(N) L2(M)

L2(P )

Cϕ◦φ

Cφ Cϕ

Figure 4.3 – Left: the point-to-point maps φ, ϕ linking manifolds M,N,P . Right: dual
representation as functional maps.

Proposition 4.2.4 Assuming that Dϕ : H(M) → H(M) represents the distortion of
the metric between the surfaces M and P induced by the diffeomorphism ϕ : P → M
and Dφ : H(P ) → H(P ) the distortion between the surfaces P and N linked through
φ : N → P (see Figure 4.3).

The distortion Dϕ◦φ : H(M) → H(M) associated to ϕ ◦ φ : N →M is given by:

Dϕ◦φ = Dϕ ◦ C−1ϕ ◦Dφ ◦ Cϕ.

Proof The proof relies only on Definition (4.3). Let f, g be a pair functions in H(M):
〈

f,Dϕ◦φ(g)
〉M

H
= 〈Cϕ◦φ(f), Cϕ◦φ(g)〉NH

=
〈

Cϕ(f), D
φ (Cϕ(g))

〉P

H

=
〈

f,Dϕ
(

C−1ϕ

(

Dφ (Cϕ(g))
))〉M

H
.

�
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Proposition 4.2.4 confirms the intuition that the shape differences are invariant under
composition with isometries. Suppose that the diffeomorphism φ is an isometry then
Theorem 4.2.1 tells us that Dφ is the identity operator on H(P ). Using the composition
formula we conclude that the distortion of the composition is equal to the distortion
induced by ϕ alone:

Dϕ◦φ = Dϕ ◦ C−1ϕ ◦Dφ ◦ Cϕ = Dϕ.

The shape difference operators associated to the inverse mapping ϕ−1 can be computed
from Dϕ using the composition formula: Dϕ−1◦ϕ = Dϕ−1 ◦ Cϕ ◦Dϕ ◦ C−1ϕ . Formally, we
have:

Dϕ−1

= Cϕ ◦ (Dϕ)−1 ◦ C−1ϕ .

Distortion pullback

An attractive property of this framework is the possibility to transport a distortion from a
shape to another. Given a shape difference on shape P and a functional map between M
and P , we would like to describe an equivalent distortion of the metric on M . Intuitively,
the operator D⋆ = C−1ϕ ◦ Dφ ◦ Cϕ is a good candidate for the pullback of the shape
difference Dφ encoding the metric deformation from gP to (φ−1)⋆gN . It follows from
Proposition 4.2.4 that D⋆ is characteristic of the same distortion but after a pullback on
M , namely it compares (ϕ−1)⋆gP with ((ϕ ◦ φ)−1)⋆gN .

This operator pullback suggested various experiments in the original shape difference
article [106]. For example the authors find similar deformations across different shapes
collections. Given a collection of cats in different positions the pullback shape differences
are used to identify similar poses in a collection of lions.

4.2.4 Discrete Shape Differences

In the discrete setting, a functional map is defined by Equation (4.2). Thus, given
orthonormal bases ΦM and ΦN , Definition (4.3) yields the matrices DA, DC ∈ R

kM :

DA = C⊤MNCMN ,

DC =
(

Φ⊤MWMΦM

)−1
C⊤MN

(

Φ⊤NWNΦN

)

CMN .

We recover the interpretation of shape differences as ratios. The area-based shape
difference is the ratio between mass matrices and the conformal operator compares
stiffness matrices.

When the basis is restricted to the first eigenfunctions of the Laplacian, the conformal
shape difference has a slightly simpler expression ([106] Section 5 Option 2):

DC = Λ−1M C⊤MNΛNCMN ,

where Λ is the diagonal matrix storing the eigenvalues of the Laplacian.
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Source Deformed Area Conformal

Figure 4.4 – Most distorted functions corresponding to the area and conformal-based
shape differences for a nearly isometric deformation of the armadillo.

When represented by matrices the shape differences can be analyzed by standard
linear algebra tools. For example, the eigenvalues offer a quantification of the distortion.
According to Theorem 4.2.1, an eigenvalue close to one is associated to an eigenfunction
highlighting isometric areas. Figure 4.4 shows the most distorted function in the simple
deformation scenario.

Discrete properties

Theorem 4.2.1 is satisfied by the discretization. More precisely, in Chapter 7, we show
that one can recover the discrete metric (edge lengths) from both shape differences by
solving two linear systems of equations. In fact, this chapter proposes a solution to the
broader problem of finding embedded surfaces from operators.

The algebraic operations of addition and composition described by Propositions 4.2.3
and 4.2.4 hold true for a smooth subspace of functions. This is a direct consequence of
Section 4.1.2 showing that the algebraic properties of functional maps are preserved after
discretization.

As for functional maps, basis reduction can generate artifacts depending on the basis
sizes kM on M and kN on N . A low kN leads to a bad representation of hight frequency
distortions since some functions in ΦM are not represented in ΦN after transfer. So the
shape differences unjustly map to zero some functions. It follows that eigenvalues (and
eigenfunctions) lower the one are less reliable than eigenvalues greater than one. A low
kM implies that ΦM contains only low frequency functions so the shape differences tend
to smooth hight frequency deformation. Overall Figure 4.5 shows that a tradeoff has to
be found between kM and kN to represent correctly the distortion at a certain level of
detail.

4.3 Organization of the Thesis

The rest of the thesis is organized in two parts. The first part is dedicated to the
computation and analysis of functional maps, in particular applied to shape matching
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Figure 4.5 – Left: The function f on M and its image by the conformal shape difference
defined between the source and target meshes. Middle: Representation of the function
DC(f) when the functional map is computed for varying kN and kM . Right: The relative
error between DC(f) computed with a functional map for various values of kN and
kM and the exact conformal shape difference. This experiment highlights the effect of
basis sizes kN and kM on the conformal shape difference operator. When kM < kN the
shape difference cannot represent high frequency distortion. When kN < kM the shape
difference may represent parasite distortion due to the troncation of the basis.

problems. In Chapter 4 we have assumed that the underlying diffeomorphism was
given as a point-to-point correspondence so the functional map is an approximation of
a composition operator. Chapter 5 tackles the converse problem: given two shapes we
try to compute the functional map that fits a particular deformation model, namely the
one that minimizes the intrinsic distortion. For this purpose we provide a supervised
learning algorithm able to select features and identify functions that jointly produce
the best functional map. To complete our tour on shape matching problems we move
on to converting a functional map to a point-to-point representation. Although this
problem was already considered in the original article, it gave no guarantee of recovering a
continuous map. Chapter 6 suggests a solution based on repairing a given diffeomorphism
by a vector field flow.

The second part explore intrinsic deformation through the prism of shape differences.
As proven in the previous section shape differences completely characterize the metric in
the continuous setting. Chapter 7 expents the analysis to triangular meshes by proposing
an algorithm to recover edge lengths from operators. Furthermore, shape differences are
blind to some curvature deformations hence giving an incomplete description of embedded
surfaces. A possible solution explored in Chapter 7 is to encode the metric of an offset
surface leading to a coordinate free description of triangular meshes by four operators.

Shape difference operators were introduced for analysis purposes. However, their
interesting algebraic structure makes them suitable for exploration and synthesis of new
deformations. In Chapter 7 a first step is made in the direction of deforming shapes using
an operator-based representation with one drawback: to obtain embedded surfaces we
need first to extract the metric information and then reconstruct the mesh by solving an
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Multidimensional scaling problem which is computationally expensive and error prone.
Chapter 8 looks at this problem from another angle and studies a characterization of
deformation fields up to isometric deformation. For this, we first introduce a unified shape
difference that fully characterizes all intrinsic changes. Then we consider the operator
associated to an infinitesimal displacement, and characterize deformation fields by the
distortion they induce on the metric. Interestingly these operators enjoy similar properties
as shape differences (composition, transfer), which enable significantly simpler deformation
reconstruction compared to the previous method, and enable novel deformation synthesis
applications. We provide theoretical proofs of informativeness in both continuous and
discrete settings.



Part I

Shape to Deformation

This first part is dedicated to the computation and analysis of functional maps.
Namely, we use feature selection to improve solutions of shape matching problems in
Chapter 5 and then propose an algorithm to convert functional maps to continuous
point-to-point maps in Chapter 6.





Chapter 5

Supervised Descriptor Learning for

Non-Rigid Shape Matching

In this chapter, we present a novel method for computing correspondences between
pairs of non-rigid shapes. Unlike the majority of existing techniques that assume a
deformation model, such as intrinsic isometries, a priori and use a pre-defined set
of point or part descriptors, we consider the problem of learning a correspondence
model given a collection of reference pairs with known mappings between them. Our
formulation is purely intrinsic and does not rely on a consistent parametrization or
spatial positions of vertices on the shapes. Instead, we consider the problem of finding
the optimal set of descriptors that can be jointly used to reproduce the given reference
maps. We show how this problem can be formalized and solved for efficiently by
using the recently proposed functional maps framework. Moreover, we demonstrate
how to extract the functional subspaces that can be mapped reliably across shapes.
This gives us a way to not only obtain better functional correspondences, but also to
associate a confidence value to the different parts of the mappings. We demonstrate
the efficiency and usefulness of the proposed approach on a variety of challenging
shape matching tasks.

5.1 Introduction

Finding high quality correspondences is a key component in many tasks including
statistical shape analysis [49], deformation transfer [118] and interpolation (morphing)
[61] among others. While a number of efficient techniques have been proposed to address
the problem of rigid alignment [120], the problem of general non-rigid shape matching
remains difficult.
Most existing methods for finding correspondences between non-rigid shapes rely on an a
priori deformation model, which specifies the space of “reasonable” maps between shapes.
Perhaps the most popular and widely used such model is that of approximate intrinsic
isometries [22, 74], where the mapping is assumed to preserve geodesic distances between
all pairs of points on the shapes. A more general possibility is to consider conformal
deformations, which are only assumed to preserve angles [69, 62] or to parameterize the
space of possible maps using a fixed deformation model [138]. Although these techniques
can produce good results when the deformation satisfies the a priori model, they can
fail badly as soon as even moderate deviations from the model are introduced. This
is especially critical since many natural deformations, such as articulated motion of
humans or animals are known to induce potentially significant geodesic distortion [106].
Incorporating the possibility for such distortion into a deformation model is challenging
especially using a purely axiomatic (theoretical) approach.
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Rather than trying to devise a theoretical deformation model capable of adapting to
known deformations, several communities have tackled this challenge by using a data-
driven approach, where the space of “reasonable” maps or deformations is learned from
a set of examples, e.g. [29]. Since obtaining example deformations is often significantly
easier than devising a unified theoretical deformation model, such an approach allows the
resulting techniques to remain flexible yet efficient in the particular settings where they
are applied.
Most data-driven approaches for devising a deformation model, however, rely heavily
on a consistent parametrization of the deformation domain (e.g. on a fixed grid in
Euclidean space), and perform statistical analysis on the positions of vertices of the
shapes [30, 14, 37, 43]. When computing correspondences between pairs of surfaces in
3D, such parametrization is often unavailable and moreover, shapes can undergo severe
deformations which are difficult to capture using purely extrinsic approaches.
In this chapter, we propose a purely intrinsic method for exploiting prior correspondence
information between pairs of shapes to find better correspondences between a reference
shape and a new previously unseen instance. Rather than doing the learning over, e.g.,
the positions of the vertices on the shapes, we propose to find the optimal set of point
descriptors that can be jointly used to reproduce the given reference maps. While such
an optimization is, in general, very complicated, since even to evaluate how well the
descriptors can reproduce a given map would require a full solution of the shape matching
problem, we show how this problem can be formalized and solved for efficiently by using
the recently proposed functional maps framework [88]. Moreover, we demonstrate how
to extract the functional subspaces that can be mapped reliably across shapes. This
gives us a way to not only obtain better functional correspondences, but also to associate
a confidence value to the different parts of the mappings. Our approach is also quite
general since it can be used as a preprocessing step of other methods using functional
maps [90, 54, 6] in order to improve the quality of the results and help to handle difficult
deformation. Note that in this chapter we focus on the shape matching problem which is
the most developed application of the functional maps.

5.1.1 Related Work

Non-rigid shape matching is a very-well developed area and its complete overview is
beyond the scope of this chapter (see, e.g., [21, 127] for recent surveys of this field).
We therefore concentrate on the work directly related to ours, namely near-isometric
shape matching with special emphasis on approaches that utilise prior knowledge for
establishing correspondences between pairs of shapes.
The vast majority of techniques for non-rigid shape matching implicitly make use of a
deformation model for finding correspondences between geometric shapes. Perhaps the
most common model in the context of intrinsic (i.e., not relying on vertex positions and
not assuming approximate alignment) approaches is approximate isometries, introduced
by Bronstein et al. [22] and Mémoli [74]. This model has been used by a large number of
methods, (e.g., [55, 123, 89, 107, 88] among many others) that all assume that the sought
correspondences must approximately preserve pairwise geodesic distances. Another set of
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approaches is based on a more relaxed model, conformal mappings, used by, e.g., [69, 62]
where only angles are assumed to be preserved. Other techniques, such as the one used
by Zhang et al. [138] explicitly deform a shape using a fixed deformation model to find
correspondences between non-rigid shapes.
All of these approaches use a model given a priori to find correspondences, which can be
problematic if the real deformations do not agree with the given model. Interestingly,
it has recently been observed [106] that even articulated motion of humans can induce
noticeable isometric distortion, which could explain some of the difficulties encountered
by previously proposed techniques.
In contrast, other works have proposed to learn an appropriate deformation model from
a set of examples, and then use this model for shape matching. Perhaps the best-known
example of this approach are Active Shape and Active Appearance Models [29, 30] and
their variants (see, e.g., [43]) used widely in Computer Vision. In a similar vein, techniques
in Statistical Shape Analysis [37] use the distribution of positions of pre-specified landmark
points in 3D to learn a statistical deformation model over which inference can be made.
Related techniques are commonly used in medical imaging and Morphometrics [14] and in
Geometry Processing communities, e.g. [4, 49] among many others. However, all of these
methods assume the existence of a common domain over which learning can be made, and
which most often is done using vertex coordinates of either landmark points or all points
on a fixed reference shape. In the context of intrinsic shape matching, where shapes lack
labeled landmark points and can undergo severe deformations, vertex coordinates are
often not relevant, limiting the applicability of such techniques.
Rather than relying on vertex positions, recent methods have considered using derived
properties such as point or triangle descriptors for learning. Thus, Kalogerakis et al.
[58] and Van Kaick et al. [126] have proposed using a set of example shapes to train
classifiers for part segmentation and labeling, which can then be used to establish part-
level correspondences. Similarly, Chen et al. [26] explore the predictive power of various
descriptors for detecting distinctive landmark (schelling) points identified by users. These
methods, while similar to ours in learning on the level of descriptors do not, however,
specifically address the shape matching problem.
Perhaps most closely related to ours are recent works by Litman et al. [71] and Rodolà et
al. [100], where the authors use a set of examples to learn the most informative descriptors
that are used directly in the context of shape matching. Our approach is fundamentally
different, however, since rather than trying to identify descriptors that can distinguish
different points, we propose to find the optimal descriptor set that can be used to jointly
produce the entire map across shapes. We thus avoid the problem of obtaining consistent
correspondences present in these approaches (and obtained during post-processing), since
consistency is incorporated directly in the learning stage. Crucially, we use the recently
proposed functional map representation [88] that allows us to formulate the learning
problem purely intrinsically, while permitting to directly control and optimize for the
influence of descriptors on the quality of the final map.

Goals Given a collection of (training) shapes with known correspondences our goal is
to identify the most informative descriptor set that can be used to solve the non-rigid
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shape matching problem on new (test) instances. Besides we want to learn where are the
most stable correspondences.

5.2 Consistent Functional Maps

Our method is based on the functional map representation introduced in [88]. In this
section, we give a brief overview of the representation and the method used in [88] to
construct a functional map for a given pair of shapes.
While our method is general, throughout the chapter we assume that all shapes are
represented as triangle meshes, and all functions are expressed as vectors in the basis of
the eigenfunctions of the Laplace-Beltrami operator. This basis needs to be computed
beforehand on each shape. The objective is to output a uniquely defined functional map.

5.2.1 Functional Map Representation

The functional map representation is based on the observation that given two surfaces
M0 and Mi, a point-to-point map ϕi :Mi →M0 induces a map between function spaces
Ci : L

2(M0) → L2(Mi), where L2(M) is the set of square integrable functions defined on
the surface M . The functional map Ci is defined by composition with ϕi as Cif = f ◦ϕi.
The operator Ci is a linear transformation and given a basis it can be represented as a
matrix in the discrete setting. This matrix can be easily computed if the map ϕ is known.
The basic method described in [88] approximates the functional map Ci using a set of
linear constraints. The first type of constraints is given by a set of pairs of functions,
which we refer to below as “probe functions”, that are expected to be preserved by the
deformation. The second is a regularization term coming from the deformation model.
This leads to the least squares problem:

Xi = argmin
C

‖CG0 −Gi‖2F + α‖C ⊙W‖2F , (5.1)

where ‖.‖F denotes the Frobenius norm. The use and meaning of each term will be
detailed in the following paragraphs.

Probe Functions

The probe functions can be represented by two matrices G0 and Gi, where each pair
of corresponding columns represents a pair of functions g0, gi such that Cig0 ≈ gi is
expected to hold for the unknown Ci. In practice we normalize the corresponding column
so that each column has the same L2 norm and g0, gi contain the coefficients of the probe
functions in a given basis (e.g. LB eigenfunctions) . Thus, the functional map should
verify CG0 ≈ Gi. In the context of isometric matching the probe functions are given by
classical descriptors, such as the HKS [119], or WKS [5].
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Regularization

In addition to the probe function constraints, the authors of [88] have proposed a
regularization using the assumption that the deformation is nearly isometric. This
assumption is equivalent to the commutativity of Ci with the Laplace-Beltrami operator,
namely Ci∆0 = ∆iCi. In the discrete setting the eigenfunctions of the Laplace-Beltrami
operator are used as function basis. Thus, this equation can be written as Ci ⊙W = 0
where “⊙" denotes the component-wise multiplication and the matrix W is defined by
Wkl = λik−λ0l with λik the kth eigenvalue of the Laplace-Beltrami operator on the surface
Mi.
Other assumptions on the deformation model can be used. For example in [65] the
authors regularize the shape mathcing problem by imposing that the map should be
area-preserving implying that the matrices Ci are a-orthonormal as explained in Chapter 4.
However, this assumption is weaker and leads to a non-convex problem more challenging
to incorporate in our supervised learning algorithm.

Uniqueness of the solution. In practice the eigenvalues of the Laplace-Beltrami
operator of two different shapes are always numerically different except for the zero
eigenvalues. Thus, the only zero coefficient of W is W11 which weights the coefficient C11

of the functional map. Since the corresponding eigenfunctions are constant, C11 maps
the constant functions of L2(M0) into the constant functions of L2(Mi). The coefficient
C11 should always be one. Therefore, since W is non zero everywhere, the solution of
(5.1) is unique without any assumptions on G0.
However, the probe functions G0 and Gi are in practice composed of symmetric functions,
so we cannot hope to have information about the antisymmetric functions. Nevertheless,
the problem (5.1) still has a unique solution that might simply map the antisymmetric
functions poorly.

5.2.2 Main Challenge

In the original article [88] the probe functions are assumed to be given, so how to
choose them was not discussed. As mentioned in introduction, this choice can already be
challenging. For example in Figure 5.1a the smoothed Gaussian curvature computed on
two different meshes provides a decent functional correspondence. At the same time, in
Figure 5.1b the logarithm of the Gaussian curvature, while intrinsic in theory, does not
result in a useful correspondence.
One option to identify the best descriptors would be to simply find the most stable
probe functions in the example (training) set, by learning spectral descriptors [71] for
example. However, some descriptors (e.g., the constant function) can be stable without
at all being informative. More importantly, however, as can be seen from Equation (5.1),
the descriptors influence the resulting functional maps Xi jointly. As an example, if a
correspondence is described by several probe functions the resulting functional map will
tend to respect this constraint while other meaningful correspondences will be arbitrarily
put aside due to their low redundancy. So picking the best descriptors independently will
not necessarily result in high quality maps.
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(a) Smoothed Gaussian curvature. (b) Logarithm of the absolute value of Gaussian
Curvature.

Figure 5.1 – Probe functions computed independently on two shapes. One carries
meaningful information (a) and the other is misleading (b).

Thus, the key idea developed in this chapter is to introduce weights for probe functions,
over which learning can be done. As explained below, the probe function constraint will be
replaced by: ‖CG0D −GiD‖2F where D is an unknown diagonal matrix of weights.. The
weights D will be optimized so that the weighted descriptors are jointly as informative as
possible. This will allow us to improve the quality of the functional maps and to extract
the most stable functional subspaces.

5.2.3 Algorithm Outline

We propose a two-step method described in following two sections and summarized in
Figure 5.2. Given collection of shapes, we learn the most informative set of weights D by
solving an optimization problem. We then extract a functional basis whose components
are ordered by quality of correspondence. When given a previously unseen shape, we use
this information to compute a high-quality functional map using the optimal weights and
to discard the badly mapped functions by reducing the functional space.

5.3 Selection of the Best Functional Correspondences

The idea developed here is to assign a weight to each pair of probe functions. These
weights can then be tuned according to their consistency in the matching. Since a priori
there is no reason to choose one probe function over another, we propose to learn the
optimal weights given a training set of shapes.
As input we need a set of n triangulated meshes with known correspondences representing
the same object undergoing a set of deformations. Our main assumption is that the
optimal weights on the probe functions should be stable across the shapes in the collection.
Thus, if we are given a new deformation of the same shape, the learned weight should
also select the consistent probe functions. The output of our algorithm will be a set of
weights for the probe functions, which, as we will show below, can then be used to find
correspondences between new, unseen shape instances.
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Figure 5.2 – Pipeline of the proposed algorithm with the corresponding section. Top:
learning from a given collection. Bottom: processing a new shape.

5.3.1 Weighting the probe functions

As described above, our main idea is to introduce a set of weights on the functional
correspondences to measure their usefulness in finding a relevant map by using a diagonal
matrix D. For a given weight matrix D, the linear constraints given by the probe functions
become CG0D = GiD. We can then define the function Xi(D), which maps a given
sets of weights to the corresponding functional map, via the solution of the optimization
problem:

Xi(D) = argmin
C

‖CG0D −GiD‖2F + α‖C ⊙W‖2F (5.2)

We choose here to fix α and tune D. We could also try to tune all the parameters (α and
D) but the coefficients would be defined up to a multiplicative constant and C(D) may
no longer be well-defined when α is equal to zero.
Since all the functional maps start from the reference shape M0, this shape obviously
plays special role in our method. Ideally we would like to take as reference the most
“average” shape of the collection. Following this idea, a simple procedure is presented in
[111] to find the shape of the collection which minimizes the average isometric distortion.
However, in our experiments we chose the symmetric standing pose as reference. Note
that an interesting future work would be to use a more complex graph of correspondences
between the shapes of a collection and impose cycle consistency as proposed in [54].
As discussed in the previous section Xi(D) is well-defined and differentiable. Note that
the weight matrix D has a global effect on Xi(D), and the problem (5.2) cannot be
separated in terms of the individual components of D.
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5.3.2 Finding the best weights

Our goal is to find a set of weights which will provide a relevant set of functional maps.
The main hypothesis is that the weights should be stable across deformations that belong
to the same category. That is, the most relevant probe functions for the training shape
pairs will also be well-suited to find a functional map to new unseen shapes in that
category.

Learning from a given collection. We assume that we are given a collection of n
nearly isometric deformations of the same object with known functional maps Ci. The
optimal weights D⋆ are the ones that produce an approximation Xi(D) that is closest to
the ground truth Ci. Thus, we want to solve the following optimization problem:

D⋆ ∈ argmin
D

n
∑

i=1

‖Xi(D)− Ci‖, (5.3)

where the sum is over the set of given training maps Ci. Interestingly, the optimization
problem 5.3 is closely related to optimal control problems as the functional maps Xi(D)
are themselves solutions of an optimization problem. Similar setting appears in [71] where
a feedback loop is used to achieve a supervised dictionary learning.
Note that the choice of the norm is important. We would like the functional map Xi(D) to
match Ci over as-large-as possible functional subspace. This is equivalent to minimizing
the rank of the difference Xi(D)− Ci. Thus, the important quantities are the singular
values of the differences Xi(D)− Ci.
The naive choice of the squared Frobenius norm is not well suited for our problem since
‖A‖2F = ‖σ(A)‖22 where σ(A) is the vector containing the singular values of the matrix
A. Therefore this norm would give a large weight to the biggest singular values, which
correspond to the worst-matched functional subspaces. Among these subspaces is the
space of antisymmetric functions that we have no hope of mapping since the probe
functions give us very little information about this subspace. At the same time, the small
singular values have little influence on the minimization whereas they are the ones we
would like to optimize.

The choice of the norm. To tackle the rank minimization problem we choose the
following norm which is a regularization of the l0-norm:

‖A‖ǫ =
n
∑

i=1

σ(A)2i
σ(A)2i + ǫ

. (5.4)

Note that the problem (5.3) is differentiable as long as ‖.‖ǫ is differentiable. The gradient
can be computed efficiently using the Jacobian matrix of the singular values as expressed in
[92]. In practice, we solve this optimization problem using a standard L-BFGS algorithm.
The choice of ǫ can have a big impact on the results. In fact since we are using a gradient
descent method the big singular values are in the flat part of ‖.‖ǫ therefore their gradient
will be granted a small weight. On the contrary the singular values in the slope will have
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a big influence on the minimization. So with an ǫ too small only a few singular values will
be minimized but with an ǫ too large many singular values will not be well minimized.
We chose the parameter ǫ such that at the initialization 80 percent of the singular values

satisfy σ2

i

σ2

i +ǫ
≤ 0.9.

5.4 Basis function extraction

Since the probe functions can give redundant information in some shape parts and
incomplete information in others, the resulting functional map will map some subspaces
of L2(M0) with more confidence than others. Using a collection of shapes we would like
to extract the most stable subspaces.
For this purpose we propose to use the learned optimal weights D and the resulting
estimated functional maps Xi(D) and to identify stably mapped functional subspaces by
comparing Xi(D) to the reference maps Ci. The input here is the same as in the previous
section. We need n shapes with known ground truth functional maps Ci and a set of
consistent probe functions Gi. The output will be Y an orthonormal basis of L2(M0)
ordered with decreasing confidence. As we demonstrate in Section 5.5, in most cases this
order remains stable even for maps that are estimated to previously unseen shapes.

5.4.1 Identifying stable subspaces

The best mapped function y0 ∈ L2(M0) is such that Xiy0 is the closest to Ciy0 for all i.
Such function is solution of the problem:

y0 ∈ argmin
y∈L2(M0), ‖y‖=1

n
∑

i=1

‖(Xi − Ci)y‖2F

We can then iteratively define an orthonormal basis of L2(M0) ordered by decreasing
accuracy in the mapping, by solving the following problem:

yn+1 ∈ argmin
y∈L2(M0), 〈y,yj〉=0 ∀j≤n

n
∑

i=1

‖(Xi − Ci)y‖2F

Such a basis can be efficiently computed by considering the singular value decomposition
of the matrix:

B =





X1 − C1

. . .
Xn − Cn



 = UΣV t.

It is well-known that yj must be equal to singular vectors corresponding to the jth

smallest singular value of B. We can, therefore, form a new orthonormal basis Y of
L2(M0) composed of the singular vectors of B by increasing singular values. This allows
us to quantify the quality of the mapping of a functional subspace by looking at the
singular values of B: the smaller the singular values are, the better the mapping.



58 Chapter 5. Non-Rigid Shape Matching

5.4.2 Functional map to a test shape using a reduced basis

Now if we are given a new unseen shape Mn+1 that does not belong to the training
set, we first compute its probe functions and store them in a matrix Gn+1. We then
compute the functional map Xn+1 by using the previously solved for weight matrix D.
Finally, since we know that Xn+1 contains some badly mapped subspaces (for example the
antisymmetric functions), by using Yp the p first column of Y , we compute the reduced
map Xp

n+1

Xp
n+1 = Xn+1Yp : L

2(M0) ∩ L2(Im(Yp)) → L2(Mn+1).

5.5 Experimental Results

5.5.1 Functional correspondences

The probe functions used to solve the problem in Eq. (5.2) are given by various descriptors
computed on each shape:

• Heat Kernel Signature [119] for multiple values of t

• Wave Kernel Signature [5] at three different energies

• Gaussian and Mean Curvature

• Logarithm of the absolute value of Gaussian and Mean Curvature

• Mesh Saliency [67]

The HKS, WKS and Mesh Saliency are computed at various scales to ensure a wide
variability. We process the curvature functions to obtain a family of descriptors. Since
the curvatures can have very high peaks we take the logarithm of their absolute value to
put more weight on the small curvatures areas. The family of functions is then created
by considering the solution of the Heat Diffusion Equation at various times when each
function is used as initial heat distribution over the surface.

5.5.2 Isometric Shape Matching

TOSCA Dataset. Our method is a tool which can be used in addition to other
methods using the functional framework in order to improve the approximation of the
functional maps. As several methods using functional maps [88, 90] have been shown to
be more efficient than the state-of-the-art methods, we compare our trained maps to the
baseline “original” method described in [88].
We have evaluated our method on the shape matching benchmark TOSCA [21]. For
each shape class we use all the available shapes for training, except one for testing
and we choose the standard undeformed pose as shape M0. We compare three ways of
weighting the probe functions: a single weight for all the functions, a weight per category
of descriptors and one weight per probe function.
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For all the experiments we express all functions in the basis given by the first 50
eigenfunctions of the Laplace-Beltrami operator. We compute 50 probe functions divided
in 9 categories (WKS is divided in three categories with tree different energies) of
descriptors. We take 5 functions per category except for the Mesh Saliency where 10
functions are computed. Since all the shapes in TOSCA have an internal symmetry, we
cannot hope to recover the entire functional map, and thus Eq. (5.4) is a reasonable
choice of norm.
The experiments follow the pipeline shown in Figure 5.2. First we learn the optimal
weights and extract the ordered basis using the training set of shapes. Second we are
given an unknown shape. We use the optimal weights to compute the functional map
and the extracted basis to suppress the badly mapped function subspaces. The L-BFGS
algorithm used to solve the optimization problem in Eq. (5.3) is initialized with the naive
functional maps solution of (5.1) with α = 10−3. We compare all of the functional maps
and subspaces computed with our method to the baseline “naive” map, obtained using
the identity matrix D, which correspond to the original method described in [88].

Performance The proposed approach was implemented in MATLAB. Note that the
number of vertices of each shape has no effect on the performance since all the functions
are expressed in a reduced functional basis. The most time consuming task in our pipeline
is the training part which requires to solve a difficult non-linear optimization problem
(5.3). The processing cost is dominated by the computation of the gradient of the energy,
which is done by solving two linear systems for each shape of the training set at each
iteration. However, the contributions of each shape to the gradient are independent so
this can be done in parallel. The learning process with a training set of 10 shapes took
about 45 min on an Intel i7 processor without parallelization.

Optimal Weights Figure 5.3 (left) shows the weights obtained after solving the
problem in Eq. (5.3) with a training set composed of 9 cats. To demonstrate the
importance of weighting the probe functions on the quality of the functional map, we
study the distribution of the singular values of the difference Xn+1(D)− Cn+1 for the
different learned weights. In Figure 5.3 (right) each curve depicts the percentage of
singular values below the threshold given on the x-axis. For the perfect map, all singular
values would be zero. As can be seen, the functional maps with the optimal weights have
a bigger concentration of small singular values than the naive functional map. Therefore
there exists a bigger functional subspace on which these functional maps provide a good
approximation of the ground truth. Note that the naive map has no small singular values
and is indeed a very bad approximation.

Stable subspaces From the naive maps and functional maps with optimal weights,
we extract four function bases ordered by decreasing stability. The most stable functions
for each case are shown in Figure 5.4. Even the most stable functions from the naive
maps are not mapped very accurately since they are very bad approximation of the
groundtruth. For the other bases the functions seem consistent with the information we
would expect from descriptors as HKS and WKS: a distinction between flat area (body)
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Figure 5.3 – Left: Optimal weights for different strategies after training with 9 cats.
Right: Effect of the different weights on the distribution of the singular value of the
difference Xn+1(D)− Cn+1.

and salient area (legs, tail, head). Note that even with only one weight we are able to
retrieve meaningful stable areas.
We also evaluate the extracted functional basis by computing the difference between the
ground truth map and our approximation on the unseen shape:

ǫi = ‖(Xn+1(D)− Cn+1)yi‖2, (5.5)

where yi is the ith function of the extracted basis. We compare this error for the three
weighting strategies with the naive map in Figure 5.5 (left). The extracted basis was
ordered by decreasing quality on the training set. Note that this order is still preserved
on the unknown shape for the 25 first functions of the basis. Most of all we are able to
identify the worst mapped subspaces, which can be safely removed.
Despite only estimating the functional maps on a subspace of the full functional space,
we converted them to point-to-point correspondences using the method described in [88].
Figure 5.5 right compares the quality of the point-to-point correspondences before and
after reducing the space dimension from 50 to 25. We obtain better results with our
learned weight than with the naive map. For the weighted maps, the reductions perform
better or similarly than the full maps. Thus our basis extraction manages to identify
correctly the most stable subspaces. For the naive map our reduction space strategy fails
as there is no well-mapped subspace.

5.5.3 Non-Isometric Shape Matching

Until now we have assumed the deformation to be nearly isometric. Our algorithm to
find the optimal set of probe functions and the extraction of the most stable subspaces do
not contain any explicit knowledge of the type of deformation. In fact, this assumption is
only used to construct the least-squares problem (5.1). Which means that our framework
can be adapted to any kind of deformation model as long as we have a consistent
way of computing a functional map form probe functions and a reduced basis that is
approximately stable.
To test this case, we consider a man or a gorilla and 12 women in different poses from
the TOSCA dataset. The ground truth functional maps are computed using a thousand
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(a) (b) (c) (d)

Figure 5.4 – Visualization of the first component of the extracted basis. First row: the
reference shape. Second row: transfer using different functional maps: (5.4a) naive map,
(5.4b) unique weight, (5.4c) one weight per category of function, (5.4d) one weight per
functions.

user-picked correspondences. The meshes have different number of vertices and different
connectivity. We train our method on 10 poses and use the last for testing.

The resulting problem is very noisy for two reasons. First, the ground truth functional
maps are computed from sparse correspondences, and therefore can be inaccurate on
some functional subspace. However, the use of a collection of shape for training allows us
to remove this noise. Second, since all the probe functions used are designed for isometric
deformation, few are going to contain useful information.

In order to introduce a wide variability of functions we pre-compute on each shape 50
basis functions, 310 probe functions and we put a weight on each probe function. The
optimization algorithm is initialized as in the previous experiment. Figure 5.7 (left) shows
the most stable functions learned from the training maps. Each of these functions is
also mapped to a previously unseen pose using the “ground truth” map converted to a
functional map. Note that the functions are badly transferred, due to the incompatibility
of the LB basis and the noise in the input maps. Compare this with Figure 5.7 (right)
where the probe functions have been weighted using our method. The stable functions
indicate the head, the hands and the feet to be the most stable area. Besides, these
functions are correctly mapped on a new shape using a computed functional map with
the learned weights. Clearly, the fact that we use a collection helps removing the noise of
the input data. Thus, our method is able to correctly identify the most stable functional
subspace under mild assumptions on the underlying deformation.
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Figure 5.5 – Left: Accuracy of the extracted function basis measured with Eq. (5.5). Right:
Comparison between full map (plain lines) and reduced map (dash lines). Symmetric
correspondences are considered correct.

5.6 Conclusion

In this work, we presented a method to learn the most informative descriptors for non-rigid
shape matching, from a given set of shape correspondences. Our method is purely intrinsic
and allows us to obtain high quality consistent correspondences to new, unseen shapes,
and to identify the most reliably mapped functional subspaces. The approach is flexible
and can potentially be applied to scenarios that lack a good theoretical deformation model,
as demonstrated by meaningful even non isometric deformation. One of its weaknesses is
a relatively high cost for the training due to the non-convex nature of the energy. In the
future, we plan to explore more efficient optimization strategies.
In this chapter we proposed an efficient method to compute functional maps. However in
many practical scenarios, one would like to obtain pointwise correspondences between the
given shapes. Thus, in the following chapter we present a method for converting functional
maps to point-to-point correspondences, that enforces continuity in the resulting map.
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Stable functions before training. Stable functions after training.

Figure 5.6 – Visualization of the first two components of the extracted basis on the
reference shape (man) then mapped to the unseen shape (woman) using the functional
map without optimization (left) and with the learned weight (right).

Stable functions before training. Stable functions after training.

Figure 5.7 – Visualization of the first two components of the extracted basis on the
reference shape (gorilla) then mapped to the unseen shape (woman) using the functional
map without optimization (left) and with the learned weight (right).





Chapter 6

Continuous Matching via Vector

Field Flow

In this chapter we present a new method for non-rigid shape matching designed
to enforce continuity of the resulting correspondence. Our method is based on the
functional map representation, which allows efficient manipulation and inference but
often fails to provide a continuous point-to-point mapping. We address this problem
by exploiting the connection between the operator representation of mappings and
flows of vector fields. In particular, starting from an arbitrary continuous map
between two surfaces we find an optimal flow that makes the final correspondence
operator as close as possible to the initial functional map. Our method also helps to
address the symmetric ambiguity problem inherent in many intrinsic correspondence
methods when matching symmetric shapes. We provide practical and theoretical
results showing that our method can be used to obtain an orientation preserving
or reversing map starting from a functional map that represents the mixture of the
two. We also show how this method can be used to improve the quality of maps
produced by existing shape matching methods, and compare the resulting map’s
continuity with results obtained by other operator-based techniques.

6.1 Introduction

Computing correspondences or mappings between 3D shapes is one of the key building
blocks in many areas of digital geometry processing, including deformation transfer
[118], shape interpolation (morphing) [61] and statistical shape analysis [49] among many
others. This problem is particularly challenging in the case of shapes undergoing non-rigid
deformations, where the notion of the optimal map may be difficult to define and optimize
for.
As mentioned in the previous chapter, most of the successful global methods proposed to
find correspondences between pairs of non-rigid shapes in the recent years have relied on
a variant of the conformal [131, 69, 62] or fully isometric [22, 123, 107, 88] deformation
models, which assume that either the angles or the geodesic distances between pairs of
points are approximately preserved by the mapping. Although such models have very
appealing theoretical properties, using them directly can often lead to difficult non-linear,
non-convex optimization problems [22]. Therefore, most recent works in this direction
have concentrated on finding a low-dimensional parameterization of the space of mappings,
that allows for efficient optimization techniques (e.g. [69, 89, 23]).
Among such low-dimensional representations of the space of correspondences, one par-
ticularly appealing approach is based on the framework of functional maps [88], which
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consider mappings as linear operators between the corresponding function spaces. One of
the weaknesses of the functional map representation, however, is that by representing
mappings as correspondences between functions, it requires an additional post-processing
step to obtain a point-to-point map after computing the optimal functional map. The
basic approach for this conversion step, proposed in [88] and used in most follow-up
works, assigns points by considering the mapping between the corresponding Dirac delta-
functions. Since each delta-function is mapped independently, however, this approach
can (and most often does) introduce significant artifacts and discontinuities into the
final point-to-point mapping (see the first two columns of Figure 6.6). This makes the
resulting correspondences unusable in settings that require continuity of the mapping,
such as texture transfer. Additional pair-wise terms can potentially be introduced in the
conversion procedure, but this would require creating variables for points with poten-
tially very expensive consistency constraints, which very quickly loses the appeal of the
functional map framework, and reduces to direct optimization.
In this context, we propose a novel method for converting a functional map to a point-to-
point map, which guarantees continuity and does not rely on any pairwise consistency
constraints, making it computationally efficient. Our main idea is to represent the target
point-to-point map as a composition of an arbitrary continuous map between the two
surfaces and a flow associated with an unknown vector field on one of them. By relying on
the recently proposed operator representation of vector fields [6], we show that the optimal
vector field can be computed efficiently entirely within the functional map framework, and
the computation of the final map requires a single discretization of vector field advection.
We also employ the supervised learning technique presented in Chapter 5 that not only
helps to obtain better functional maps but also helps to identify functional subspaces
where the map is reliable, which significantly helps to improve the final point-to-point
map.
Our method also helps to address the symmetric ambiguity problem inherent in many
intrinsic correspondence methods when matching symmetric shapes. We provide practical
and theoretical results showing that our method can be used to obtain an orientation
preserving or reversing map starting from a functional map that represents the mixture
of the two. Finally, we test our method on a shape collection and show that we can
produce maps that are both continuous and have smaller geodesic distortion compared
to the results obtained by existing techniques.

6.2 Related Work

Below we concentrate on the recent works that are directly related to ours, consisting of
methods for global near-isometric shape matching with special emphasis on approaches
that guarantee the continuity of the resulting maps.
As mentioned in the introduction, most of the existing techniques for non-rigid shape
matching use a deformation model for finding correspondences between 3D shapes. The
two most common models in this setting include approximate intrinsic isometries and
conformal mappings. The former model, which was originally introduced by Bronstein
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et al. [22] and Mémoli [74] assumes that pairwise geodesic distances are approximately
preserved by the deformation. The first works that use this assumption lead to continuous
maps by design, but result in very challenging optimization problems that are difficult
to solve with more than a small number of points [22]. As a result, many follow-up
techniques have used a relaxed version of the isometric mapping assumption, which
result in more manageable optimization problems, but can often fail to guarantee a low
distortion continuous mapping (e.g., [55, 123, 89, 107, 23]). Furthermore, an additional
challenge in using the isometric model assumption is that exact intrinsic isometries are
extremely rare, both in theory [44] and in practice, since most deformable shapes induce
some amount of distortion.

Another set of successful techniques, which are more widely applicable than those based on
the isometric mapping assumption are those that assume that the mapping is conformal,
and thus only preserves angles (e.g., [48, 131, 56, 69, 62]). These techniques are appealing
because a conformal mapping is known to exist between any pair of shapes with the same
topology, but also because the set of such mappings can be parameterized relatively easily
by using a canonical domain, such as a sphere for genus zero surfaces. Moreover, the
resulting maps obtained by these approaches are typically continuous. At the same time,
conformal mappings can often induce large area distortion, which can result in unrealistic
correspondences between non-rigid shapes, which limits their use significantly.

A recent set of approaches that overcome the above-mentioned challenges to some extent
is based on the functional map representation, introduced in [88]. As mentioned above,
this framework is based on representing maps as linear operators acting on real-valued
functions, and which can be encoded compactly by small-sized matrices in the discrete
setting by using a multi-scale basis. Although the original approach and the follow-up
works, including [65, 96], all implicitly use the isometric deformation assumption, they
have been shown to be very robust to small non-isometric distortions, by extensive use of
strong geometric and linear-algebraic regularization techniques. Moreover, several recent
works have shown how this framework can be used in the supervised learning setting,
where functional maps between unseen shapes can be obtained by exploiting information
present in a small set of example maps including [100] and Chapter 5.

Despite its practical appeal, one of the limitations of the functional map framework, is
that a post-processing step is necessary to convert a functional map to a point-to-point
one. The method used in [88] is based on mapping Dirac delta functions. However as the
points are considered independently the continuity of the resulting map is not ensured.
This problem can be particularly prominent in shapes that contain intrinsic symmetries,
which contain at least two equally good solutions for the optimal functional map, and
the computed one is at best a linear blending of the two.

Note that, closely related to our technique, especially in the use of flows for computing
continuous maps (diffeomorphisms) is the LDDMM framework [10, 76], widely used in
the medical imaging community. Unlike these methods, however, our approach is purely
intrinsic and operates directly on the surface of the target model, rather than deforming
a template in space.
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Contributions In this chapter we propose a novel method for converting a functional
map into a point-to-point one, which combines the strengths of the functional map
framework that allows to compute low-distortion functional maps, with those of the
conformal mapping approaches, which produce continuous correspondences. Namely,
starting from a map computed using the state-of-the-art conformal-based Blended Intrinsic
Map approach [62], we modify it by computing the optimal vector field, whose flow,
composed with the original map, would result in a functional map as close as possible to
the given one. By using the recently proposed operator representation of vector fields
[6] and the connection between advection and matrix exponentiation, we propose an
efficient optimization approach for computing the optimal vector field entirely within
the functional map framework. Moreover, we show theoretically that this approach
is guaranteed to produce the correct continuous map when the input functional map
represents a blending of the orientation preserving and reversing maps under certain
assumptions, and demonstrate this projection step in practice.

6.3 Functional Maps Conversion

Once the functional map C is computed following the pipeline proposed in [88] or by
Chapter 5, the goal of the second step is to convert it to a point-to-point map. The
method proposed in [88] and reused in most of the follow-up work consists in finding
the nearest neighbors of the images of Dirac-delta functions on M by C among the
Dirac functions on N . Namely, for each point p ∈M , the map: ϕ(p) is computed as via
ϕ(p) = argminq ||δq − Cδp||, where δp is an indicator function on point p, written in the
appropriate basis.

6.3.1 Main Challenges

While both steps described above are very efficient in practice, the second stage has a
very serious limitation, in that it processes each point independently, meaning that the
final map ϕ may not be (and often is not) continuous. The first two columns of Figure
6.6 provide examples of discontinuous maps resulting from this conversion.
To illustrate this phenomenon, let us assume that the target shape N has an orientation-
reversing (reflectional) intrinsic symmetry S : N → N. In this case, there exist at least
two equally good potential solutions for Eq. (5.1) and similarly, each point x may have
several candidate correspondences.
In practice the functional constraints are often not sufficient to resolve symmetric am-
biguities, in large part because most robust descriptors are invariant under intrinsic
isometries. The best we can hope for when approximating Cϕ is an exact functional map
for symmetric functions (i.e. f , s.t. f ◦ S = f) and a noisy or zero functional map for
antisymmetric functions (i.e. f ◦ S = −f). Since our approximations are obtained by
solving a linear system, most likely a solution of the least squares problem will be a linear
blending between the orientation preserving and reversing functional map:

Cαϕ = (1− α)Cϕ + αCϕ◦S (6.1)
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Figure 6.1 – Left: the unknown continuous map ϕC is a composition of the input ϕ0 and
the flow φtV of a vector field V . Right: dual representation as functional maps.

Note that α = 0.5 implies that all antisymmetric functions are mapped to zero.

The conversion of C to a point-to-point map in itself gives no guaranty of continuity in
the resulting map. Since each Dirac function of a point x is treated independently it can
be mapped indifferently to its image ϕ−1(x) or to its symmetric alternative S(ϕ−1(x)).
Moreover this process is not designed to be stable under the blending noise α, as in (Eq.
6.1).

In this context, the key idea developed in this chapter is to construct a point-to-point
map from the functional map C by following a procedure that guarantees continuity,
while being robust to blending noise. In particular, starting from an arbitrary continuous
map between M and N , we find an optimal vector field, whose flow makes the final
correspondence operator as close as possible to the given (e.g., computed) functional map.
Since the flow of a vector field provides a continuous, and orientation-preserving map,
the final correspondence is both continuous and has the orientation of the initial map. As
we show below, this can significantly improve the quality of the resulting point-to-point
map, while remaining computationally tractable and avoiding expensive second-order
pairwise constraints.

6.3.2 Algorithm Overview

The algorithm proposed in this chapter takes as input a functional map C : L2(M) →
L2(N) and an arbitrary continuous map ϕ0 : N → M . It then outputs a continuous
point-to-point map ϕC : N →M .

As mentioned above, the main idea of our algorithm is to construct the map ϕC by
composing ϕ0 with the flow φtV of a well-chosen vector field V (see Figure 6.1). We will
choose the vector field V such that φtV ◦ ϕ0 represented as a functional map is as close as
possible to the input C. This can be done efficiently by representing φtV as an operator
(Section 6.4) and then solving a small-scale optimization problem as explained in Section
6.5. To find the map ϕC we solve a system of ODEs with a simple solver (Section 6.6).

The main steps of the proposed algorithm are described in Algorithm 1.
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Algorithm 1: Functional Map Conversion

Input :C : L2(M) → L2(N) functional map
ϕ0 : N →M initial continuous map

Output :ϕC : C converted into a continuous map
1 Find Optimal Vector field (Section 6.5);
2 Convert ϕ0 to a functional map Cϕ0

;
3 Solve: a⋆ ∈ argmin

a∈Rn

‖Cϕ0
exp (

∑n
i=1 aiDVi)− C‖φ;

4 Set: V :=
∑n

i=1 a
⋆
iDVi ;

5 Compute ϕC (Section 6.6);
6 Solve: d

dtφ
t
V (p) = V

(

φtV
(

p)), φ0V (p) = p ∈ N ;
7 return ϕC := φ1V ◦ ϕ0;

6.4 Family of Diffeomorphisms

In this section we construct a family of diffeomorphisms which map N onto M and derive
their representation as functional maps. The point-to-point map which converts the given
functional map C will be chosen among this family.

Vector field flow Given a family of tangent vector fields {Vi}1≤i≤n on M , we let V be
the space spanned by the linear combinations of the Vi. Any vector field V ∈ V , defines
a one-parameter family of maps φtV :M →M called the flow of V . The flow is formally
defined as the unique solution to the differential equation:

d

dt
φtV (p) = V

(

φtV
(

p)), φ0V (p) = p ∈ N. (6.2)

Given an arbitrary diffeomorphism ϕ : N →M we construct a family of diffeomorphisms
T parametrized by t ∈ R and a ∈ R

n:

ϕta(p) = φtVa

◦ ϕ(p), Va =
n
∑

i=0

aiVi (6.3)

Remark that the orientation of a map ϕta ∈ T is given by the orientation of ϕ since the
flow of a vector field is orientation preserving.

Functional Representation of the family The family of mappings T has an easy
representation in the functional map framework as explained in [6]. This is because, a
vector field V on a smooth manifold can be represented as an operator DV acting on a
function f :

DV (f)(p) = 〈Vp,∇f(p)〉p. (6.4)

Since the action of DV is linear, the operator is conveniently represented as a matrix in
the discrete setting.
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It is well known that gt = f ◦ φtV is the unique solution of the PDE:

∂g

∂t
(t, p) = DV (g)(t, p), g(0, p) = f(p).

A key property of the operator representation of vector fields, introduced in [6] is that
for analytic functions the functional map Cφt

V
is represented by the exponential of the

operator DV since one has:

Cφt
V
f := f ◦ φtV = exp(tDV )(f)

Since map composition is achieved via matrix multiplication in the functional representa-
tion, this yields a simple way of describing our family of diffeomorphisms T . Let ϕta ∈ T
then

Cϕt
a

= Cϕ exp

(

t

n
∑

i=1

aiDVi

)

. (6.5)

6.5 Optimal vector field

6.5.1 Optimization Problem

Our main idea, developed in the section, is to project the input functional map C onto
the appropriate set of diffeomorphisms T . Namely our goal is to find a vector field
V ∈ V such that the operator representation (6.5) of ϕta is as-close-as possible to C. This
projection is easily written thanks to the operator representation, and computationally it
reduces to solving the optimization problem:

min
a∈Rn

‖Cϕ exp
(

n
∑

i=1

aiDVi

)

− C‖φ, (6.6)

for an appropriate choice norm ‖.‖φ. Here we note briefly that the norm is chosen to be
differentiable as indicated in Section 5.3.2.
In practice, the problem (6.6) can be solved using a first order method such as the
L-BFGS algorithm. The main difficulty in finding the gradient of the objective function
lies in the computation of derivative of exp (

∑n
i=1 aiDVi) in the direction Vj . While there

exists a vast literature on approximating the exponential of a matrix (for a survey see
[77]), to the best of our knowledge few methods address the problem of computing the
directional derivative of the matrix exponential, which is conceptually non-trivial. As
we show in Lemma 6.5.1, however, the directional derivative can be obtained as a block
of the matrix exponential of a bigger operator. Note that if there are n vectors in the
family of vector fields we have to compute n matrix exponentials.

Lemma 6.5.1 The directional derivative dHe
tA defined as

dHe
tA = lim

h→0

(

1

h
(exp (t(A+ hH))− exp (tA))

)

,
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is one block in the matrix exponential of a bigger operator:

(

etA Bt
dHe

tA Ct

)

= exp

(

tA 0
tH tA

)

Proof Let x0 be an arbitrary vector in R
n and x(t) = exp (tA)x0, it is well known that

x(t) satisfies the ODE:
x′(t) = Ax(t), x(0) = x0.

Moreover xh(t) = exp (t(A+ hH))x0 is solution of

x′h(t) = (A+ hH)xh(t), xh(0) = x0.

We denote y(t) the directional derivative in the direction H:

y(t) := lim
h→0

(

1

h
(exp (t(A+ hH))− exp (tA))x0

)

:= lim
h→0

(

1

h
(xh(t)− x(t))

)

.

After computing y′(t) we conclude that y(t) is the unique solution of the ODE
{

x′(t) = Ax(t), x(0) = x0
y′(t) = Ay(t) +Hx(t), y(0) = 0

Expressing the solution as an exponential of a matrix leads to the results. �

6.5.2 Properties

One of the advantages of the formulation of the problem of finding the optimal point-to-
point map from a functional map via Eq. (6.6) is that it makes no assumptions on the
input map C. This is particularly important since, as mentioned above, in the presence of
intrinsic symmetries the functional map C can, even in the best case, be a linear blending
of the functional representation of an orientation-preserving and orientation-reversing
map. However, one potential problem is that the presence of the “noisy” part in the
functional map can adversely affect the final output map ϕ obtained by optimizing Eq.
(6.6).
Fortunately, both in theory and in practice this is not the case. Namely, under some
suitable assumptions, the orientation-preserving ground-truth functional map, must be
a local minimum of the problem (6.6) even when the functional map C is given by the
symmetry blending defined at (6.1). In particular, as we show in the Lemma 6.5.2, Cϕ
must be a local minimum of Eq. (6.6) under some assumptions.

Lemma 6.5.2 If the norm ‖.‖φ = ‖.‖2F is the squared Frobenius norm, the set of vector
fields considered V is divergence-free and the initial transformation ϕ approximately
isometric, then Cϕ must be a local minimum of Eq. (6.6).
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Proof The first order necessary condition for Cϕ to be a local minimum reads:

∀dCϕ ∈ T (Cϕ), 〈dCϕ, Cϕ − Cαϕ〉F = 0,

where T (Cϕ) is the tangent space of the set of all functional map at the point Cϕ. This
tangent space has a simple expression. Let’s consider a small perturbation of Cϕ by the
flow φtV induced by the vector field V ∈ V applied to an arbitrary function f :

lim
t→0

1

t

(

Cφt
V
◦ϕf − Cϕf

)

= lim
t→0

1

t

(

f ◦ φtV ◦ ϕ− f ◦ ϕ
)

=
d

dt
(f ◦ φtV ◦ ϕ) |t=0

= 〈V,∇f〉 ◦ ϕ
= Cϕ(DV (f)).

Additionally the deformation is nearly isometric so C⊤ϕ ≈ Cϕ−1 see Theorem 4.1.4. The
necessary condition becomes:

∀V ∈ V, (1− α)〈DV , I − Cϕ◦S◦ϕ−1〉F ≈ 0.

Remark that the mapping ϕ ◦ S ◦ ϕ−1 : M → M is an intrinsic symmetry on M . Now
suppose that the basis function is composed only by even and odd functions with respect
to the symmetry S. Therefore the functional map associated to an internal symmetry is
a diagonal matrix with 1 and −1 on the diagonal corresponding to the symmetric and
antisymmetric eigenfunctions. So I − C⊤ϕ CSCϕ is approximatively a diagonal matrix.
By assumption the vector field V is divergence free therefore represented by a skew-
symmetric operator DV as explained in [6]. Since the result does not depend on the basis
Cϕ is a critical point of (6.6). �

6.5.3 Practical Choice of the Norm

As stated before C is not reliable for antisymmetric functions. Therefore there is some
function subspace on which C and Cϕ exp (t

∑n
i=1 aiDVi) cannot agree. The choice of the

norm ‖.‖φ in the problem (6.6) is of critical importance. Similarly to setting in Chapter 5
above, the naive choice of the squared Frobenius norm is not well-suited for this problem
since it is the sum of the squared singular values. As such, it will give a large weight on
badly matched function subspace and a small weight on well matched function subspace.
However, since typically we have almost no information about antisymmetric functions so
the optimization problem based on this problem will put a lot of effort matching functions
that we cannot hope to match and few matching interesting subspace. A better choice
for ‖.‖φ is a regularization of the nuclear norm. We choose

‖A‖φ = ‖AYp‖ǫ,⋆ (6.7)

where Yp is a basis of p functions that we want to focus on obtained using the approach
described in Chapter 5 and based on Chapter 5. In the unsupervised setting we chose Yp
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to be the identity. The norm ‖.‖ǫ,⋆ is a defined by
∑n

i=1

√

σ2i + ǫ the σi are the singular
values of the matrix. With this norm, we give smaller weight to the subspaces that are
difficult to align and focus on task we are able to complete.
The parameter ǫ makes the function ‖.‖ǫ,⋆ differentiable and should be small and is taken
at 10−3. Note that the Jacobian matrix of the singular values is easily computable as
explained in [92].

6.6 Vector Field Flow on Manifold

Once the optimal vector field V is found using the procedure described above, we obtain
the final point-to-point map by composing the initial map ϕ with the flow of V . To
compute this flow, we need to solve the system of equations (6.2) on the given triangle
mesh. In principle any advection solver will work with our method. However since
computing the flow is known to be potentially difficult, we implemented our own solution.
The implementation we use gives a coarse approximation of the flow and might not be
accurate for very large deformations. For more accurate solution of this problem we refer
to [97, 84] which provide more guaranties of continuity of the flow and faster convergence.
In all of our applications we assume that the shapes are given as triangulated meshes
and the vector field is given as a single vector per face. Given this representation, we
assume that that the vector field is constant per face and is interpolated at the edges.
Three main situations can occur: the current point could be at inside face, an edge or a
vertex.

At a Face Since inside a face the vector field is assumed to be constant, we follow it
until we reach an edge or a vertex (Figure 6.2 from p0 to p1).

At an Edge When a point is at an edge, we try to cross the face we did not come from
(Figure 6.2 from p1 to p2). If the point did not move we follow the edge by interpolating
the vector field from the two neighboring faces and end up at a vertex (Figure 6.2 from
p2 to p3).

At a Vertex When the point is at a vertex, we try to follow the vector of each of the
neighboring faces and choose the one that goes the furthest. If the point cannot move,
we try to follow the neighboring edges, using interpolated directions and to potentially
end up at another vertex (Figure 6.2 from p3 to p4).

6.7 Results

For all the experiments we express all functions in the basis given by the first 150
eigenfunctions of the Laplace-Beltrami operator. We choose a family of 50 tangent vector
fields for the Vi given by the first eigenfunctions of the 1-form Laplace-de Rham operator,
constructed following the procedure described in [41].
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Figure 6.2 – Example of a path trace starting point at p0.
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Figure 6.3 – Impact of the noisy functional map Cαϕ on the point-to-point correspondences
for various values of α.

We have evaluated our method for computing point-to-point correspondences on the
shapes on the benchmarks of Anguelov and al. [4] and of Bronstein and al. [21]. In all
of the cases, the input continuous map ϕ0 is the result of the BIM algorithm [62]. This
map is most of the time continuous but can be very distorted in some areas. We will
show that our method is able to detect the distorted areas and correct them.

6.7.1 Symmetry Blending

As stated above a plausible perturbation for the input functional map C is given by
equation (6.1). We test our method when C is the linear blending of the ground-truth
functional map and the ground-truth orientation reversing functional map for various
values of α. In this experiment Yp, in Equation 6.7, is the identity matrix. For this
experiment we choose a pair of shapes from the SCAPE dataset.

The graph shown in Figure 6.3 shows the percentage of correspondences with a geodesic
error smaller than a threshold. Of course the closer Cαϕ is to the ground-truth map the
better are the correspondences. However our results are robust even when the target
functional map is an exact blending of the direct and symmetric map and are always better
than the map coming from BIM. Thus, even when the assumptions of our theoretical
observation are not fulfilled, our method can successfully retrieve meaningful information
from noisy data.
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(a) SCAPE: average from 7 pairs
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(b) TOSCA: average from 5 pairs

Figure 6.4 – Improvement of the BIM map using our method.

6.7.2 Error using a computed functional map

In a more realistic scenario, rather than using a ground-truth functional map, we compute
it via the inference pipeline described in Chapter 5. In this section the experiments
are conducted on several pairs of shapes: 7 human pairs (SCAPE) and 5 animal pairs
(TOSCA). The functional map C is computed using the least squares problem (5.1), where
each functional constraints is weighted. The weights are learned by solving problem (5.3)
using the algorithm described in Chapter 5 which also outputs a matrix Yp corresponding
to the p best mapped functions, where we let p equal to 70. The training set is composed
of 8 randomly chosen meshes for the SCAPE example and 4 meshes for the TOSCA
centaur example. We compute 310 functional constraints equally distributed among these
categories:

• Heat Kernel Signature [119],

• Wave Kernel Signature [5] at three different variances,

• Gaussian and Mean Curvature,

• Logarithm of the absolute value of Gaussian and Mean Curvature,

• Mesh Saliency [67].

We compare our approach with BIM, that serves as ϕ0, and with the functional map
C converted to point-to-point map using the method proposed in [88]. The graph in
Figure 6.4 shows the percent of correspondences which have geodesic error smaller than
a threshold in average for SCAPE and TOSCA. In this case, we only accept direct
correspondences as correct, and consider symmetric points as wrong. Note that our
method shows quality improvement over Blended Intrinsic Maps. The direct conversion of
C have some point with very large geodesic error due to points mapped to their symmetric
counterparts.
We evaluate the continuity of our map with two measures of distortion. First the maximum
radius corresponding to a geodesic ball of given size. For a map ϕ this is formally given
by the function:

r(t) 7→ max
dN (p,q)≤t

dM (ϕ(p), ϕ(q)), (6.8)
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(a) Maximal distortion computed with Eq. (6.8)
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Figure 6.5 – Comparison of the distortion induced by various for a pair of centaur
(TOSCA).

where dN is the geodesic distance on N . If the map is nearly isometric r should be
close to identity. We compare this measure for different mapping in Figure 6.5a for one
example from TOSCA. Our method is comparable to BIM and to the ground truth in
terms of continuity while the direct conversion of C show some very large distortions.
Second we compare the ratio between the triangle’s area before and after deformation.
Since the deformations in our examples are almost isometric this ratio should be close
to one. The graph in Figure 6.5b shows the percent of triangles which have an area
ration smaller than a threshold. We show only the ratio greater than one since most of
the discontinuous behavior is due to large jumps. The area ratio of the exact mapping
are concentrated around one which is consistent with the fact that the deformation is
nearly isometric. Again the direct conversion of C show some very large area distortions
compare to BIM and our method.
This lack of continuity is confirmed by Figure 6.6 which provides on two examples
a visualization of the point-to-point mapping using color correspondence. The direct
conversion of the functional map shows some artifacts due to the blending between
orientation preserving and orientation reversing maps.
Our method successfully repairs the areas distorted by BIM as shown on Figure 6.7
for two different matching problems. In this example the BIM maps transfer poorly
functions from the source meshes to the target meshes while our method corrects these
incorrect matches by providing a more accurate transfer. A visualization of the optimal
vector field is provided on Figure 6.8 for the human example. The vector field on Figure
6.8b corresponds to the displacement needed to repair the BIM map, the action of this
correction can be seen on the upper row of Figure 6.7.

6.7.3 Parameters Dependence

In practice we consider only a small family of vector fields based on the first eigenfunctions
of 1-form Laplace-de Rham operator. Therefore in this setting our method will be more
efficient in repairing low frequency distortion rather than recovering a high frequency
deformation that cannot be represented by the flow of low frequency vector field. Of
course the bigger is the vector field basis the better will be the repairs, and the slower
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(a) (b) (c)

(d) (e) (f)

Figure 6.6 – Visualization of the point-to-point mapping through color correspondence.
The texture of the first column (6.6a, 6.6d) are transferred to the second using the direct
conversion of a functional map (6.6b, 6.6e) and to the third using our method (6.6c, 6.6f).

will be the method. In the experiments we presented the dimension of the vector field
family can be reduced to 40 without influencing too much the point-to-point map.
Another critical parameter is the number of eigenfunctions we choose to represent the
functional map C and Cϕ0 . If the deformation is nearly isometric a small number is
sufficient as the functional map C is almost diagonal. These considerations also apply to
the initial map ϕ0: a very distorted map is badly approximated by a small number of
eigenfunctions and can severely influence our method. We found that lowering the size a
the function basis under 150 degrades rapidly the quality of the results.
In principle our method should work for non-isometric deformations provided we are
given high-quality functional map as input. To obtain such a map, the choice of the
functional basis would have to be modified in order to successfully encode the functional
map in a reduced basis. This direction is left as an interesting future work.

6.7.4 Performance

For performance evaluation the computation times are given in the Table 6.1 in various
cases. All the experiments have been performed on laptop with a 1.4 GHz processor
and 4Go memory without parallelization. The timings are given for the two steps of the
method: solving the problem (6.6) and tracing the flow lines. The time spent solving
the optimization problem is almost independent of the number of vertices. The size of
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(a) (b) (c)

(d) (e) (f)

Figure 6.7 – Transfer of a function on the source meshes 6.7a and 6.7d to the target
meshes using BIM 6.7b and 6.7e compared to our method 6.7c and 6.7f.

Mesh Vertices Optimization Flow
Horse 19248 369s 29.4s
Dog 25290 300s 20.4s
Centaur 15768 381s 39.0s
SCAPE 12500 231.8s 30.8s

Table 6.1 – Average CPU time of each step for different mesh size.

this problem depends only on the number of computed eigenfunctions of the Laplace-
Beltrami operator and on the dimension of the vector field family, which are constant in
all experiments. Note that the computation of the flow does not scale linearly with the
number of the vertices. This is explained by the fact we compute a composition with the
BIM map which may map many vertices to a single point.

6.8 Conclusion, Limitations and Future Work

In this chapter we presented a method for non-rigid shape matching that is designed
to output continuous maps. Our approach combines the strengths of conformal-based
approaches, which often guarantee continuity with the functional map framework, which
can enable low-distortion maps on the space of functions. Key to our method is enforcing
continuity via the flow of a vector field, which allows our method to remain efficient by
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(a) (b)

Figure 6.8 – Visualization of the direction of the optimal vector field corresponding to
the experiment 6.7c: complete shape 6.8a and close-up on the face 6.8b.

avoiding expensive pairwise vertex constraints. One of the limitations of our method
is that we only approximate the flow of a single vector field, whereas in practice, for
complex motions, a combination of flows may be necessary. Extending our method to such
cases is possible, while taking care of the robustness and non-accumulation of numerical
errors. We are also planning to wider arrays of initial maps and ways to incorporate the
continuity directly in the optimization of the functional maps.



Part II

Deformation to Shape

In the previous two chapters we showed how one can compute a mapping between
deformable shapes. In this part, we take a more careful look at the link between the
deformation of shapes and the induced metric distortion. In particular we aim at
creating a characterization of surface embeddings within the operator representation
framework fit for synthesis and exploration of intrinsic and extrinsic deformations.
Namely, in Chapter 7 we propose an algorithm to convert shape differences to
embedded surfaces. In Chapter 8 we take a different point of view and introduce a
characterization of deformation fields up to isometric deformation.





Chapter 7

Functional Characterization of

Intrinsic and Extrinsic Geometry

We propose a novel way to capture and characterize distortion between pairs
of shapes by extending the recently proposed framework of shape differences built
on functional maps. We modify the original definition of shape differences slightly
and prove that, after this change, the discrete metric is fully encoded in two shape
difference operators and can be recovered by solving two linear systems of equations.
Then, we introduce an extension of the shape difference operators using offset surfaces
to capture extrinsic or embedding-dependent distortion, complementing the purely
intrinsic nature of the original shape differences. Finally, we demonstrate that a set
of four operators is complete, capturing intrinsic and extrinsic structure and fully
encoding a shape up to rigid motion in both discrete and continuous settings. We
highlight the usefulness of our constructions by showing the complementary nature of
our extrinsic shape differences in capturing distortion ignored by previous approaches.
We additionally provide examples where we recover local shape structure from the
shape difference operators, suggesting shape editing and analysis tools based on
manipulating shape differences.

7.1 Introduction

One classic approach to comparing surfaces separates metrics of similarity into intrinsic
and extrinsic measurements. Intrinsic quantities are those that can be expressed exclu-
sively in terms of distances along the surface, whereas extrinsic quantities are those that
must be defined using an embedding into space and/or surface normals. A crowning result
of classical differential geometry describes local geometry in terms of two quantities: the
first and second fundamental forms, which capture the intrinsic Gaussian and extrinsic
mean curvatures, respectively [13].
Considerable research in geometry processing has been dedicated to measuring intrinsic
and extrinsic curvature in an attempt to replicate this attractive characterization of shape.
From a practical standpoint, however, this task remains challenging for potentially noisy
or irregular meshes considered in geometry processing. After all, surface curvature is
a second-derivative quantity whose approximation on a piecewise-linear mesh requires
considerable discretized adaptation and mollification to deal with noise. Measurement
of curvature aside, algorithms for recovering geometry from discrete curvatures remain
difficult to formulate, leading to potentially non-invertible discretizations.
In this chapter, we formulate an alternative characterization of surface geometry better
suited for analysis, comparison, and synthesis tasks in the discrete setting. Several
desiderata inform our design; a suitable framework for representing shape should
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• capture and distinguish intrinsic and extrinsic geometry,

• express shape properties in a multiscale fashion to distinguish noise and fine-scale
detail from large-scale structure,

• come from a smooth theory of shape to provide insensitivity to tessellation,

• be naturally expressible on continuous surfaces and on triangle mesh discretizations,
and

• admit an inverse operator for reconstructing the embedded shape.

In short, we wish to pass from pointwise embeddings to a “dual” space featuring a more
democratic treatment of intrinsic and extrinsic shape properties.
We approach this task by extending the theory of shape differences, introduced by
Rustamov et al. [106] for purely intrinsic comparisons of shape structure. Rather than
defining a shape in isolation, their construction characterizes shape by considering the
distortion or difference of the target shape from a fixed source shape given a functional map
between them [88]. Shape differences are couched in the language of functional analysis,
indirectly measuring changes in angles and distances through the effects of these changes on
inner products of functions and their gradients. They are written as linear operators whose
restriction to a multiscale basis like the Laplace–Beltrami eigenfunctions distinguishes
features at different levels of detail and allows for straightforward discretization via
piecewise-linear finite elements (FEM).
We modify and extend this framework to derive a shape representation that is complete,
encoding both the intrinsic and the extrinsic distortion without loss of information in
both the continuous and discrete cases. To this end, we begin by reexamining the
discretization of shape differences on triangle meshes. We modify the original definition
of discrete area-based shape difference and prove an analog of a continuous property
mentioned in [106] that shape differences fully capture intrinsic structure. Inspired by
this fully-discrete result, we proceed to ask whether shape differences also can capture
extrinsic structure. Towards this goal, we define an additional pair of shape differences
on a thickened surface that captures extrinsic geometry. We then show that our full set
of differences is sufficient to reconstruct a shape up to rigid motion in the discrete setting,
under mild assumptions.
Our discussion concludes by closing the loop between shape differences and embeddings.
In particular, we provide algorithms for recovering a shape embedding given a combination
of intrinsic and extrinsic shape differences. Our algorithms are guaranteed to succeed
in the presence of complete information under weak genericity conditions; when shape
differences have been truncated to a smaller basis, we suggest regularizers to recover
reasonable estimates of the missing data via convex optimization.
To summarize, our main contributions are:

• Theoretical discussion establishing that properly modified shape difference operators
from [106] fully encode the intrinsic metric of a triangle mesh. Unlike more direct
representations of meshed edge lengths, these operators enjoy connection to smooth
theory—providing some degree of tessellation invariance—as well as multiscale
approximation in the Laplace-Beltrami basis.
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• A novel set of shape differences aimed at capturing and characterizing extrinsic or
embedding-dependent information, with an associated observation that generically
this set of shape differences is complete and encodes shapes up to rigid motion.

• A set of approaches for recovering geometric structure and an embedding from
the shape differences that reduce to a sequence of linear solves with theoretical
guarantees of recovery in the presence of complete information, and which we apply
to shape editing operations based on manipulating shape differences.

We demonstrate the usefulness of these contributions on a variety of tasks, ranging from
the analysis of cloth simulations by using our novel shape difference operators, sensitive
to changes in extrinsic structure, to the transfer of shape structure such as geodesic
distances more accurately, compared to using functional maps, and finally to recovering
shape embedding even in the presence of approximate functional correspondences.

7.2 Related Work

Representation and manipulation of extrinsic and intrinsic structure is a vast theme
pervading the geometry processing literature. We refer to [16] for discussion of the basic
questions of representation and interaction with continuous differential geometry. Here,
we highlight research linked to our particular approach.

Functional maps Our goal of using functional maps to characterize local and global
geometry builds upon the machinery of shape differences [106]; see §7.4 for a summary.
Rustamov and colleagues [106] show that in the case of smooth surfaces, shape differences
fully encode intrinsic geometry. They do not, however, pursue a corresponding analysis
for the discrete case. Furthermore, their work focuses solely on intrinsic geometry and
hence cannot characterize extrinsic bending, critical for describing differences between
nearly-isometric shapes like articulated bodies and cloth.

Shape-from-Laplacian Recovering structure from intrinsic shape differences is closely
linked to recovering structure from Laplacian operators. Both in the continuous [103] and
discrete [137] cases, the Laplace-Beltrami operator fully encodes intrinsic surface geometry,
namely the Riemannian metric for smooth manifolds and edge lengths for discrete meshes.
For triangle meshes, de Goes and colleagues [35] provide convex machinery for recovering
the intrinsic structure of the mesh; their encoding of intrinsic structure using only
Laplacian matrices is more compact than our pair of area and conformal shape differences,
at the cost of a nonlinear objective sensitive to incomplete information.
The theoretical and practical contributions proposed in this chapter provide considerable
insight beyond the fundamental mathematical contributions in these other works. Specif-
ically, the convex optimizations in [137, 35] operate in the case of complete, noise-free
information. They cannot be used for projection-style problems, e.g. finding the closest
set of edge lengths to a noisy input Laplacian approximation or to finding an intrinsic
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structure consistent with a truncated spectral approximation of the full operator. Addi-
tionally, we show how to use related machinery to encode extrinsic bending rather than
only edge lengths.

Encoding extrinsic geometry A natural question is whether intrinsic structure can
be used to reconstruct a surface embedding up to a global rigid transformation. Numerous
examples of isometric smooth surface pairs disprove this notion in the continuous case [66].
While exact isometries of triangle meshes are rare with the exception of inward/outward
“popping” of valence-three vertices, near-isometries can often arrise and have signficant
differences in the embedding, making shape recovery from intrinsic data like edge lengths
a numerically ill-conditioned problem; these near-isometries appear because small vari-
ations in the input edge lengths can lead to large changes in the resulting embedding.
Nevertheless, Boscaini and colleagues [15] provide an algorithm for recovering a surface
embedding in R

3 from shape differences or equivalent structures. They apply the SMA-
COF algorithm [68] for multidimensional scaling to generate an extrinsic embedding that
replicates shape differences in a least-squares sense. As an alternative, [91] propose an
algorithm for embedding from local approximations of the metric tensor; we will use an
extension of this algorithm in §7.7.3. Both of these methods, however, operate using only
intrinsic information and are subject to the ambiguity and instability caused by isometry
invariance.
Adding extrinsic information to a shape representation allows it to be embedded in R

3 up
to rigid motion. In theory, the Gauss–Codazzi equations fully characterize surfaces from
the first and second fundamental forms [13] (see [24, pg. 236]). In geometry processing,
[40] reconstructs surfaces from prescribed principal curvatures, while [42] use nonlinear
optimization methods to recover shape from dihedral edge lengths. These methods and
many subsequent techniques employ nonlinear least-squares fits with few guarantees or
characterization of their behavior. Wang, Liu, and Tong [132] propose a linear technique
for embedding meshes from their edge lengths, dihedral angles, and axes of rotation
across mesh faces.
In this chapter, we make use of offset surfaces to introduce extrinsic information to the
shape difference representation. Offset surfaces have appeared in geometry processing for
some related tasks, including cage generation [11] and shape optimization for printing [82].
While techniques like [57] are needed to generate “clean” offset surfaces for geometry
editing purposes, in our case self-intersection and related artifacts are acceptable since
the offset surface is not used for display but rather for geometric computation. [28, 53]
provide curvature theories for discrete surfaces using offset geometry.

7.3 Overview

Our two main goals are to modify and extend the definition of the shape difference
operators of Rustamov [106] so as to capture extrinsic distortion and to facilitate shape
inference, i.e. to recover the metric and potentially the embedding of a target shape,
given a base shape and a collection of shape differences.
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We achieve these goals in several stages. The main ingredient for constructing both
smooth and discretized shape differences is the computation of inner products between
functions. So, rather than working directly with shape differences, we largely focus on
matrices of functional inner products, which can be constructed on a single shape rather
than a pair. Hence, after reviewing the smooth construction of shape differences (§4.2),
we reexamine the discretization of intrinsic inner products on triangle meshes and show
how a simple modification of the area-based inner product fully encodes intrinsic geometry
in an easily-inverted fashion (§7.4.1).
We then capture extrinsic shape structure by introducing two operators built from intrinsic
inner products on offset surfaces of a base shape (§7.5). We accompany our construction
with theoretical characterization of the new information provided by extrinsic products
(§7.5.3) and conclude by making explicit how our constructions involving inner product
matrices apply to the construction of differences between shapes (§7.6). In this section,
we also consider how truncating shape differences written in the Laplace–Beltrami basis
affects the linear systems we pose.
With our new definitions and analysis in place, we propose optimization procedures for
recovering intrinsic and extrinsic shape structure from the shape difference operators,
potentially expressed in a reduced basis (§7.7). While the basic machinery for recovering
metric information from shape differences is purely linear, we propose the use of more
general convex optimization tools that add resilience to noise and incomplete information
by explicitly enforcing the triangle inequality and/or smoothness. We conclude by
demonstrating the ability of our constructions to capture and characterize extrinsic
distortion ignored by previous approaches (§7.8.1). We furthermore apply our methods
to recovering the metric and shape embedding and to facilitating novel shape editing
operations via manipulating shape difference operators (§7.8.4).

7.4 Structure of Discrete Inner Products

By examining the derivation of formulas for computing shape differences, we can reveal
how they are related to local surface geometry. This analysis not only elucidates the
information encoded in a given shape difference but also will inform our design of
algorithms for recovering shape embeddings from shape differences.

7.4.1 Discrete Inner Products

Each quantity above is straightforward to discretize in the language of finite elements
over a triangle mesh; see [19, 108, 116] for general introductions to this approach. To
this end, suppose M is represented using a connected, orientable, and manifold triangle
mesh with vertices set X and triangles set F . We model functions as vectors f ∈ R

|X |

interpolated to triangle interiors in piecewise-linear fashion.
We will begin our fine-grained examination of shape differences by posing functional inner
products on these meshes in terms of discrete geometry. Our ultimate goal is to show
that before truncation in a basis, the area-based and conformal inner product matrices
completely encode the intrinsic structure of meshed geometry. This property is also
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stated in [106] in the continuous case; their discretization, however, does not admit such
completeness due to the use of lumped area weights, as explained below.
Consider a single triangle T ∈ F on M , and suppose f and g are affine functions on T ;
in other words, f and g are evaluated in the interior of T via barycentric interpolation
of the three scalar values f1, f2, f3 and g1, g2, g3 defined on the vertices of the triangle.
Multiplying these functions and integrating reveals that the inner product of f and g on
T is given by

〈f, g〉TL2 =
µ(T )

12

(

f1 f2 f3
)





2 1 1
1 2 1
1 1 2









g1
g2
g3



 ,

where µ(T ) is the area of T and fi, gi denote the values of f, g on vertex vi. As a sanity
check, taking fi = gi = 1 ∀i recovers the area of T . This is the exact L2 inner product
of f and g defined over the meshed surface using piecewise-linear interpolation, without
mass lumping commonly introduced in finite element discretizations; this distinction is
critical for our construction.
Taking inner products over all of M requires summing over triangles T . If f, g ∈ R

|X |,
then 〈f, g〉ML2 is given by f⊤Ag, where

Avw =
1

12
·







2
∑

T∼v µ(T ) when v = w
∑

T∼e µ(T ) when e = (v, w)
0 otherwise,

(7.1)

where T ∼ v denotes iteration over triangles adjacent to v and T ∼ (v, w) denotes
iteration over triangles adjacent to edge (v, w). This |X | × |X | “Galerkin mass matrix” A
is nondiagonal but positive definite, integrating products of piecewise linear functions
exactly. See e.g. [116, Chapter 10, (32)] for an example of its appearance in finite elements.
We can think of A as a linear operator A(µ) : R|F| → R

|X |×|X | that constructs the
area-based functional inner product matrix A given a vector µ ∈ R

|F| of triangle areas.
We can show that A(·) is invertible in the following sense:

Proposition 7.4.1 Suppose M has a boundary or at least one interior vertex with odd
valence. Then, A(µ) uniquely determines µ, recoverable via a linear solve.

Proof Equation (7.1) gives A as a linear function of µ(·). Hence, we must show that
this formula is invertible.
First we show how to recover the area of a single triangle on M . By the second row
of (7.1), given A we have the sum of triangle areas adjacent to any edge of M . If M has
a boundary, we then know the areas of the boundary triangles. Otherwise, take v with
odd valence, and enumerate its adjacent triangles as T1, . . . , Tk for odd k. Since we know
the sums of adjacent areas, we have a linear system to recover µ(T1), . . . , µ(Tk):
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. . . . . .
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Figure 7.1 – Notation for the conformal product W .

Consider carrying out forward substitution on the matrix. In each iteration, only the
bottom row changes, from (1, 0, . . . , 0, 1) to (0,−1, 0, . . . , 0, 1), then to (0, 0, 1, 0, . . . , 0, 1)
and so on with alternating sign. When k is odd, in the last step the 1 is augmented to
a 2, making the final row (0, . . . , 0, 2). In other words, the matrix reduces to an upper
triangular matrix with nonzero diagonal, which is invertible.
Hence, in either case we can recover µ(T ) for at least one T . The remaining areas can be
computed by flood filling outward from T ; given the area on one side of an edge and the
sum of the adjacent areas, the adjacent area is recovered by subtraction. �

The proof of this proposition and others below is in the appendix. A proposition of this
nature does not hold if masses are lumped down the diagonal of A. This observation is
intuitive in that a triangle mesh has approximately two times the number of triangles as
vertices.
If f and g are piecewise-linear functions on M , then their gradients are piecewise-constant
and expressible using one vector per triangle. Taking dot products of these gradients and
integrating over M shows that 〈f, g〉M

H1

0

= f⊤Wg, where

Wvw=
1

8
·















µ(T )−1(ℓ2vw−ℓ2v−ℓ2w)
+µ(T ′)−1(ℓ2vw−ℓ′2v −ℓ′2w)

when v ∼ w

−
∑

u∼vWuv when v = w
0 otherwise.

(7.2)

Notation for the v 6= w case is shown in Figure 7.1; e ∼ v denotes an edge e adjacent
to vertex v, and ℓuv is the length of the corresponding edge. This matrix is the familiar
cotangent Laplacian matrix cast in terms of edge lengths and triangle areas; this form
also appears e.g. in [15]. Comparing (7.1) and (7.2), scaling the edge lengths of a mesh
by some factor α will correspondingly scale A by α2 while W will be left unchanged;
unless otherwise noted, we scale meshes in our experiments to have unit surface area to
remove dependence on global scaling.
A crucial observation that we make here is that if the triangle areas encoded in µ are
fixed then the mapping W (ℓ2;µ) : R|E| → R

|X |×|X | taking squared edge lengths ℓ2 ∈ R
|E|

to a conformal inner product matrix W is linear. Note also that W is fully determined
by its values Wvw for v ∼ w. Thus, if we represent the list of inner products Wvw as
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a vector c in R
|E| then for a fixed set of area weights µ, there exists a matrix Bµ such

that c = Bµℓ
2. The entries of Bµ are, of course, given in Eq. 7.2. In the pipeline that

we propose below, we will first recover the triangle areas and then use those to recover
edge lengths from the corresponding inner products. The following proposition shows
that “generically” the matrix Bµ is invertible. I.e., the set of weights µ for which Bµ is
singular has measure 0.

Proposition 7.4.2 Assume that the mesh M is manifold without boundary. Then, for
almost all choices of areas µ, the map W (ℓ2;µ) uniquely determines ℓ, which is recoverable
via a linear solve.

Proof By construction W (ℓ;µ) takes squared edge lengths ℓ and outputs the matrix
W . Extracting elements of W corresponding to edges on M yields a linear operator
B : R|E| → R

|E| with matrix

Bij =
1

8







µ(Ti)
−1 + µ(T ′i )

−1 if i = j
−µ(T )−1 if i, j are edges of T
0 otherwise.

Here, indices i, j refer to edges on M ; for a given edge i, we label its adjacent triangles Ti
and T ′i . Remark that B can be written as a weighted sum: B =

∑

k
1
8µ(Tk)

−1Bk, where
each Bk is a matrix such that:

Bk
ij =







1 when i = j, and i belongs to triangle k.
−1 when i, j are edges of triangle k.
0 otherwise.

It is easy to see that the intersection of the kernels of all Bk is empty, since Bk is non-
singular when restricted to the values on edges of triangle k. Moreover, by considering
the determinant of B as a multivariate polynomial with real coefficients, we conclude that
B is either singular for any choice of values of µ(Tk)−1, or for a finite set of coefficients,
which thus have measure zero.
To complete the proof we note that if B is singular for any choice of values of µ(Tk)−1,
then the matrix pencil B =

∑

k akB
k is singular (i.e., B is singular for any choice of

coefficients ak). Using Lemma 3.4 from [80] and the fact that Bk are symmetric, we see
that in that case for every choice of ak, there must exist a vector x such that xTBkx = 0
for every Bk, and Bx = 0. Now, given the values of x on some triangle, this means that
its values on the adjacent triangle are either uniquely determined by the corresponding
two equations (one linear, one quadratic), or these equations cannot be satisfied. By
inspecting the resulting equalities, it is easy to see that at least two of the values on every
triangle must be equal, and by considering any closed loop of triangles, these equations
cannot be consistent for every choice of weights ak. Thus, B cannot be a singular matrix
pencil, and therefore B is invertible for almost any choice of values µ(Tk)−1. �

This proposition implies that the linear map W (ℓ2;µ) is invertible for a small (possibly
zero) perturbation of any set of area weights µ. Nevertheless, there exist cases in which
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Figure 7.2 – A mesh for which W (ℓ2;µ) is not invertible when µ = 1.

the squared edge lengths are not recoverable via inversion of the linear map W (ℓ2;µ)
for a fixed set of area weights. One example of such a shape is shown in Figure 7.2,
consisting of two tetrahedra glued at their bases. In this case, all the triangles have equal
area weights, and it can be seen that the resulting linear system is singular. We also
remark that the condition of no boundary is necessary in the Prop. 7.4.2 above, as it is
possible to construct meshes for which the map W (ℓ2;µ) is singular for all choices of µ
(e.g., a pair of triangles glued along a shared edge). For all the meshes that we tried in
practice (§7.8), we have observed that the resulting system is both invertible and typically
well-conditioned. We leave the formulation of the necessary and sufficient conditions on
the mesh and the weights µ for the invertibility of W (ℓ2;µ) as a question for future work.

7.5 Encoding Extrinsic Structure

Intrinsic inner products capture the metric tensor (first fundamental form) of a surface,
so to complete our representation we show how a related structure can be used to encode
its second fundamental form. In keeping with previous discussion, we will use additional
inner product matrices to derive a multiscale representation of this missing information.
While there exist many possible ways to measure extrinsic distortion, this “functional”
language facilitates a connection between continuous and discrete characterizations and
unifies our treatment of intrinsic and extrinsic distortion.
These added structures complement the area-based and conformal products by making
our representation of a shape unique up to rigid motion. In addition to providing a
lossless representation of surface geometry in the presence of complete information, we
demonstrate how the new products can capture and encode geometric relationships that
are not captured by purely intrinsic analysis.

7.5.1 Extrinsic Alternatives

In discrete language, the inner product matrices A(µ) and W (ℓ2;µ) determine the
edge lengths of a triangle mesh but not its dihedral angles, illustrated in Figure 7.3(a).
Additionally providing dihedral angles is sufficient to recover a mesh up to rigid motion.
There are many expressions of extrinsic shape that potentially encode these angles; before
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θ
ℓ

ℓ

(a) Dihedral angle (b) Dual edge length

Figure 7.3 – Two potential ways to encode extrinsic mesh structure.

presenting our final solution, we mention a few straightforward alternatives to explain
why they are less desirable.

At the most basic level, any technique encoding one value per edge of a triangle mesh
could be used to represent dihedral angles. For instance, since the angles are in a vector
θ ∈ R

|E|, we could use an analog of Proposition 7.4.2 to store them in the matrix W (θ;µ).
This matrix roughly corresponds to taking products of functional gradients under the
second fundamental form h as

∫

h(∇f,∇g) dA. The resulting matrix is not positive
semidefinite, however, which prevents the definition of a smooth analog via the Riesz
Representation Theorem (which applies only to positive definite inner products) and
causes numerical issues due to departure from the cone of semidefinite matrices. Dihedral
angles also are known only up to a period of 2π, providing potential for ambiguity in
the expression of the vector θ. Lastly, if the mesh is flat, a definition based on dihedral
angles will lead to a degenerate inner product.

In an attempt to bring back the positive definiteness enjoyed by the intrinsic formulation,
we might attempt to encode the edge lengths of a dual mesh, shown in Figure 7.3(b).
These lengths indirectly encode dihedral angles up to sign but are unable to distinguish
between inward and outward folding directions, as shown in the figure. Obvious techniques
for disambiguating the inward and outward folds generally accompany edge lengths with
signs, reintroducing the problems discussed in the previous paragraph.

An alternative construction might define extrinsic shape differences via the Gauss map, or
map from a surface into the unit sphere based on normal direction; see [75] for an example
in geometry processing. While the Gauss map is used in classical differential geometry
to derive extrinsic properties of surfaces, we find it to be unstable within the shape
difference framework. In particular, the image of the Gauss map is composed of many
overlapping spherical triangles that change rapidly from vertex to vertex. Projection of
this information into low-frequency Laplace-Beltrami bases tends to remove the majority
of the meaningful geometric signal. In a sense, however, we can view the offset surface
construction proposed below as a means of smoothing out this construction.

Before proceeding, we should remark that strictly speaking it may not be necessary to
provide extrinsic information at all. According to a classical result by Gluck [44], almost
all triangulated simply connected closed surfaces are rigid. Although this result might
imply that triangle edge lengths are, in general, sufficient to reconstruct the mesh up
to rigid motion, this is only true if the metric is known exactly ; moreover, it is highly
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ℓ decreases
ℓ increases

Figure 7.4 – Edge lengths change according to curvature of the offset surface.

nontrivial to recover an embedding even if one is known to exist. When the edge-lengths
are perturbed or are approximated, the corresponding embedding might either not exist or
be very far from the desired shape. As we show below, the presence of explicit information
about the extrinsic distortion can greatly help in both direct and inverse problems and is
largely complementary to the intrinsic distortion addressed by prior methods in practice.

7.5.2 Offset Surfaces

Our construction of an extrinsic shape representation is an extension of the dual mesh
idea from §7.5.1 that does not suffer from sign ambiguity. Instead, we are able to rely
upon the positive definiteness of inner product matrices directly to encode both intrinsic
and extrinsic information. In short, rather than encoding a metric and its derivative, we
encode a metric and a slightly deformed metric, both of which admit natural positive
definite representations.
The intuition for our construction is illustrated in Figure 7.4. Suppose we wish to recover
the embedding of the blue torus. As discussed in the previous section, it may be difficult
to reconstruct the torus purely from its list of edge lengths. Instead, suppose we generate
an offset surface by displacing each vertex and face along its outward normal a fixed
distance t. The operation is extrinsic, since the mesh moves through the surrounding
space, modulating edge lengths ℓ based on the curvature of the surface. The edge lengths
in the interior of the torus shrink while the edge lengths on the exterior expand, effectively
distinguishing the bend direction.
In the continuous case, we can formalize the effect of offsetting a surface as follows:

Proposition 7.5.1 Suppose M is a compact orientable Riemannian 2-manifold without
boundary. Consider a family of immersions Ft : U ⊂ R

2 →Mt ⊂ R
3 satisfying

∂Ft
∂t

(p) = nt(p), ∀(p, t) ∈ U × R+,

where nt denotes the outward unit normal of Mt := Ft(U). At all time t the normal nt
remains equals to the normal n0 of M0 :=M .
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Moreover, if gij(t) := 〈∂Ft

∂xi
, ∂Ft

∂xj
〉 is the metric of the embedded surface and hij(t) :=

〈∂Ft

∂xi
, ∂n
∂xj

〉 is its second fundamental form, then

gij(t) = gij + 2thij + t2hilg
lmhmj and µt = (1 + tH + t2K)µ,

where H := (gijhij)t=0 is the mean curvature, 2K := H2 − (gijhjkg
klhil)t=0 is the

Gaussian curvature at t = 0 and µt :=
√

detg(t).

Proof First let’s show that the normal vector is constant during the flow. The vector
n is unit norm therefore ∂t〈nt, nt〉 = 2〈∂tnt, nt〉 = 0 meaning that ∂tnt belongs to the
tangent of Mt. Since any tangent vector V can be written V = 〈V, ∂iF 〉gij∂jF , we have

∂nt
∂t

=

〈

∂nt
∂t

,
∂Ft
∂xi

〉

gij(t)
∂Ft
∂xj

= −
〈

nt,
∂nt
∂xi

〉

gij(t)
∂Ft
∂xj

= 0.

As consequence the immersion has the following closed form expression at all time:
Ft = tn0 + F0. Therefore the metric is quadratic with respect to time:

gij(t) =

〈

∂Ft
∂xi

,
∂Ft
∂xj

〉

=

〈

t
∂n0
∂xi

+
∂F0

∂xi
, t
∂n0
∂xj

+
∂F0

∂xj

〉

= gij + 2thij + t2
〈

∂n0
∂xi

,
∂n0
∂xj

〉

.

The proposition statement is obtained using the Gauss–Weingarten relations linking ∂in
with the second fundamental form. Because the normal is unit norm ∂in is a tangent
vector whose expression is given by:

∂n0
∂xi

=

〈

∂n0
∂xi

,
∂F0

∂xj

〉

gjk
∂F0

∂xk
= hijg

jk ∂F0

∂xk
.

The evolution of the local area is obtained by a direct computation of the determinant of
metric tensor. �

Results of this nature are fairly well-known for offset surfaces and sometimes referred to
as Steiner formula; see e.g. [94] for related discussion. Informally, the proposition shows
that the second fundamental form of M is encoded through the change in metric while
the surface is being offset along its normal directions. In case of surfaces, a closed form
expression for h can be derived. preciselly, there is only one square root of 2-matrices
(out of four) satisfying ∂tgij = 2hij at time zero:

hij(t) =
1

τtt
gij(t) +

1

t

(

δt
τt

− 1

)

gij , −ǫ < t < ǫ

where δt = µ(t)/µ, and τt =
√

gijgij(t) + 2δt.

When M is an oriented triangle mesh, there are many potential constructions of discrete
offset surfaces, and several likely would suffice for the proofs in this chapter. For
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Bottom layer Top layer

Figure 7.5 – Topology of offset mesh.

mathematical simplicity, we choose the construction in Figure 7.5. On the left we show
triangles of the original mesh M in blue. On the right, we define the topology of the
offset mesh in red, which contains a vertex for every vertex of M and every triangle of M .
For a fixed constant t > 0, we place the vertices distance t above M along its face/vertex
normals; any reasonable definition of a unit-length vertex normal suffices. Offset vertices
associated with triangles are placed directly above the barycenter of the triangle.

7.5.3 Recovery of Embedding

In the end, we encode the geometry accompanying a fixed triangle mesh topology using
four structures: the intrinsic area-based and conformal inner product operators and the
same operators for the offset surfaces with fixed normal offset distance t > 0. We denote
the offset surface of M as Mt. In this section, we show—at least before truncation—that
these four difference matrices are sufficient for fully reconstructing a shape.
The challenge of reconstructing a triangle mesh from its edge lengths arguably comes
from the fact that there are many ways to glue together two adjacent triangles by fixing
different dihedral angles. Rigidity may imply that only one such embedding exists, but it
is not obvious from local relationships. In contrast, an oriented tetrahedral mesh is easy
to reconstruct from its list of edge lengths simply by gluing individual tetrahedra face by
face.
Hence, our intuition for why a mesh plus its offset are enough to reconstruct the mesh
comes from a volumetric perspective. This intuition is confirmed by Proposition 7.5.1
and the Gauss–Codazzi equations, since offset geometry provides extrinsic curvature
information, which in turn determines an embedding. We chose the topology of the offset
mesh (Figure 7.5) specifically to allow for a canonical “thickening” of the offset slice into
a tetrahedral mesh, shown in Figure 7.6. Using mesh-based shape differences, we can
recover the edge lengths of the bottom and top layers of the thickening. By construction
of the offset mesh, we are able to recover the lengths of the interior edges of the thickening,
effectively proving the following proposition:
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Mesh (blue) and offset (red) Thickening

Upward-facing Mesh edge Downward-facing

Figure 7.6 – Canonical thickening (top right) of a triangle mesh (top left); types of
tetrahedra in the thickening (bottom).

Proposition 7.5.2 Suppose a mesh M satisfies the criteria in Propositions 7.4.1 and 7.4.2.
Given the topology of M , the area-based and conformal product matrices A(µ) and W (ℓ2;µ)
of M , and the area-based and conformal product matrices At(µt) and W (ℓ2t ;µt) of Mt,
the geometry of M can (almost always) be reconstructed up to rigid motion.

Proof The previous propositions show that µ, ν, µt, and νt are (almost always) sufficient
to recover the edge lengths of the base and offset surfaces. The remaining edges of the
canonical thickening are between the inner and outer layers and are recoverable essentially
by convention. Specifically:

• The edges along surface normals are length t by definition.

• The bottom edge lengths of the “upward-facing” tetrahedra (Figure 7.6) are known
because they are on the base surfaces. The remaining edges of these tetrahedra can
be computed because the upward-facing tetrahedron is generated via normal offset
from the barycenter of the base triangle by a distance t.

• “Mesh edge” tetrahedra are adjacent to “upward-facing” tetrahedra and outer faces
of the thickening and hence have edge lengths fixed by their neighbors’ construction.

• Similarly, “downward-facing” tetrahedra have one normal edge of length t, and
the remaining edges are on the outer surface or adjacent to an “upward-facing”
tetrahedron.

The embedding of a single oriented tetrahedron is fixed up to rigid motion given its edge
lengths, so the proposition follows by gluing the tetrahedra of the canonical thickening
according to the topology of the construction. �

7.5.4 Discussion

We pause to summarize the theoretical development in the previous sections. We began
by reconsidering the construction of inner products and shape differences from first-order



7.6. From Inner Products to Shape Differences 97

finite elements. When area elements are not lumped, we showed that inner product
matrices fully determine the edge lengths of a mesh and that they can be recovered by
solving two linear systems of equations: one for recovering the triangle areas, and the other
for recovering the edge lengths. Moreover, generically, both systems are non-singular.
In both the continuous and discrete cases, these intrinsic measurements are not enough
to distinguish isometric shapes. Even worse, the space of near-isometric shapes can be
very large. Hence, we propose generating an offset surface Mt from a mesh or surface M .
In the continuous case, the geometry of Mt determines the extrinsic structure of M by
encoding its second fundamental form. In the discrete case, combining edge lengths of M
with edge lengths of Mt fully determines M up to rigid motion. The main development
is that we can completely determine a shape using functional inner products via the
constructions above.
Our theoretical contributions deal with the noise-free, non-truncated case. Roughly, they
show that if intrinsic/extrinsic shape differences were computed from an embedded mesh
M with fixed topology, then the embedding of M almost always can be covered from
those differences up to rigid motion. We evaluate sensitivity to noise and the possibility
of recovering geometry from truncated shape differences empirically in §7.8.

7.6 From Inner Products to Shape Differences

With the goal of working with quantities that exist when meshes are not in vertex-for-
vertex correspondence, we shift from working with matrices of inner products to shape
differences. This shift is needed to propose algorithms in §7.7 for estimating the dense
structure of a target mesh given a source mesh and an approximate relationship between
the source and the target, represented as a functional map computed e.g. using assorted
correspondence techniques.

7.6.1 Discrete Shape Differences

We begin by considering two meshes M and N in vertex-for-vertex correspondence, with
areas µM , µN ∈ R

|F| and squared edge lengths ℓ2M , ℓ
2
N ∈ R

|E|. Based on the continuous
definitions in §4.2, the “full” area-based and conformal shape difference between meshes
M and N are [106, §5, “option 1”]

DA = A(µM )−1A(µN )
DC =W (ℓ2M ;µM )−1W (ℓ2N ;µN ).

(7.3)

A straightforward corollary of the discussion in §7.4.1 is that these two differences
completely determine the edge lengths and triangle areas of N given the geometry of
M . Notice the first relationship is still linear in µN and the second in ℓ2N , preserving the
proposed system of equations for reconstruction.
Similarly, the extrinsic differences are simply the shape differences between the offset
surfaces:

DE
A = A(µMt)

−1A(µNt)
DE
C =W (ℓ2Mt

;µMt)
−1W (ℓ2Nt

;µNt).
(7.4)
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The discussion in §7.5.3 implies that the tuple (DA, DC , D
E
A , D

E
C ) is sufficient to recon-

struct N up to rigid motion given M .

7.6.2 Source-Truncated Correspondence

More commonly, suppose Φ ∈ R
|X |×k contains the orthonormal Laplace–Beltrami basis

of M , truncated to k functions. Assuming M and N are still in vertex-for-vertex
correspondence, we can write “reduced” shape differences as

DΦ
A = Φ⊤A(µN )Φ

DΦ
C = diag(−{λMi })+Φ⊤W (ℓ2N ;µN )Φ,

(7.5)

where the eigenvalues of the Laplacian onM are λMi . These differences no longer determine
angles and edge lengths exactly but still encode a multiscale notion of geometry that
is valuable for understanding the relationships between M and N ; extrinsic differences
can be defined analogously from the offset surface. We can still define linear systems for
computing µN and ℓ2N from DA, DC , µM , and ℓ2N using these relationships, although
they are unlikely to be full-rank for small k; we provide regularizers in the next section.
These truncated differences essentially correspond to removing rows and/or columns from
the full shape differences after writing them in the Laplace–Beltrami eigenbasis. Such
a computation can be useful for multiscale analysis of surface deformations, in which
vertex-for-vertex correspondence is known but high-frequency changes may not be useful
to analyze. What remains, however, is to consider the case when M and N are not in
vertex-for-vertex correspondence and both have incomplete bases.

7.6.3 Source- and Target-Truncated Correspondence

Suppose we are given truncated bases ΦM ∈ R
|XM |×kM and ΦN ∈ R

|XN |×kN for the
eigenspaces of M and N , respectively, and a functional map matrix C ∈ R

|XN |×|XM |

taking functions written in the ΦM basis on M to functions in the ΦN basis on N .
Following [106, §5], we define shape differences in this case as

DΦM ,ΦN

A = C⊤C

DΦM ,ΦN

C = diag(−{λMi })+C⊤diag(−{λNi })C.
(7.6)

Whereas the truncated shape differences in (7.5) contain a limited window of values from
the full shape difference matrix, in this final case the non-truncated entries of the shape
difference matrices also undergo some change. This is because even if a function on M is
in the column space of ΦM , it will not be transported fully to N by the functional map
C due to removal of high frequencies.
These shape differences are discretizations of analogous linear operators in the smooth
setting. For this reason, even though the differences in (7.6) no longer satisfy exact
equality relationships like those in (7.5) for recovering areas µN and squared edge lengths
ℓ2N from shape differences and the geometry of M , we will pose approximate relationships
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DΦM ,ΦN

A ≈(ΦM )⊤A(µM←N )Φ
M

DΦM ,ΦN

C ≈diag(−{λMi })+ΦM⊤W (ℓ2M←N ;µM←N )Φ
M .

(7.7)

The unknown variables µM←N and ℓ2M←N can be thought of as “pullbacks” of the metric
of N to that of M , in the sense that they attempt to assign areas and edge lengths
to the topology of M to mimic inner products on N . The first condition is linear in
µM←N ∈ R

|FM | and the second in ℓ2M←N ∈ R
|EM |.

Since the shape differences in (7.6) are the most realistic test cases, we will assume in
our experiments that truncated shape differences are computed in this fashion unless
noted otherwise. That is, we will assume that we are given a source- and target-truncated
shape difference. The experiments in §7.8.2 verify that this approximation is reasonable
as long as kM and kN are sufficiently large.

7.7 Recovery of Intrinsic and Extrinsic Structure

Having established theoretical aspects of intrinsic and extrinsic shape differences, we now
provide algorithms for recovering a shape N given a base shape M and shape differences
to N and its offset. First, we recover triangle areas from the base and offset surfaces
from corresponding area-based shape differences. With these areas fixed, we then recover
edge lengths, which were shown in §7.5.3 to completely determine the surface.
Both steps can be carried out using linear solves when shape differences are not truncated.
When dealing with truncated or inexact functional maps, we augment the optimization
with constraints ruling out unreasonable structures. We also show how to apply existing
techniques for recovery of an embedding from edge lengths of the surface and its offset.

7.7.1 Triangle Area Computation

We first show how to recover areas of triangles given an area-based shape difference.
Our approach is an extension of the basic linear technique outlined in the proof of
Proposition 7.4.1, extended to deal with truncation and noise.
Following §7.6, suppose DA is the area-based shape difference between M and N in the
Laplace–Beltrami basis ΦM . Recall that our goal is to pull the geometry of N back
to the mesh of M . Hence, the the area-based difference from M to the reconstructed
target shape N∗ should satisfy D∗A = Φ⊤MA(µN )ΦM . If the reduced basis ΦM on M has
k functions, this linear system for µN has k2 equations and |F| unknowns. So, we need
at least k ∼

√

|F| to have a well-posed system.
The quality of the solution found by solving this system without regularization depends
on two factors: the quality of DA and the conditioning of the resulting linear problem.
We find that both limitations are improved considerably by introducing a nonnegativity
constraint, leading to the following optimization problem for µN :

minµN ‖Φ⊤MA(µN )ΦM −DA‖2Fro
s.t. µN (T ) ≥ 0 ∀ triangles T ∈ F . (7.8)
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We solve this and other convex programs using the Mosek toolbox [79]. When the system
is highly underdetermined, we additionally add a regularizing viscosity term ε‖µN −µM‖22
for small ε > 0, under the assumption that triangle areas should change minimally unless
there is evidence to do otherwise; we set ε = 10−4 in all the experiments in this chapter.

7.7.2 Edge Length Computation

Now that we can compute triangle areas, we can recover edge lengths. As in the last
section, we start from Proposition 7.4.2 to propose a basic linear system for squared edge
lengths and then provide regularization techniques for dealing with inexact or truncated
differences.
The conformal shape difference encodes the transformation of the cotangent Laplacian
through the deformation. Again borrowing from §7.6, the geometry of N can be pulled
back to M via the following linear condition on squared edge lengths ℓ2N given fixed areas
µN :

diag(−λMi )DC = Φ⊤MW (ℓ2N ;µN )ΦM . (7.9)

Solving this linear system of equations for ℓ2N depends critically on the approximated
areas µN ; numerical or discretization error from the method in §7.7.1 invalidates this
step, regardless of the quality of DC . To provide resilience to this issue and to noise in
DC , we add constraints to this system ruling out unrealistic edge lengths ℓ2N .
To define a triangulation, the squared edge lengths ℓ2N must be nonnegative; furthermore,
√

ℓ2N (T ) must respect the triangle inequality in each mesh triangle T . We enforce the
latter constraint via the following proposition:

Proposition 7.7.1 The symmetric matrix E defined by

E =
1

2





2x1 x3 − x1 − x2 x2 − x1 − x3
x3 − x1 − x2 2x2 x1 − x2 − x3
x2 − x1 − x3 x1 − x2 − x3 2x3





is positive semidefinite if and only if x1, x2, x3 are nonnegative and their square roots
satisfy the triangle inequality.

Proof We denote (e1, e2, e3) the canonical basis and the indices {i, j, k} ∈ {1, 2, 3}.
If
√
xk ≤

√
xi +

√
xj , then there exist three points (v1, v2, v3) which define an embedding

of a triangle. Let E be the matrix with columns v3 − v2, v1 − v3 and v2 − v1 then
E = E⊤E. The matrix E is therefore positive semidefinite.
Since E is symmetric positive semidefinite, the Cauchy-Schwartz inequality holds. Ex-
panding the expression (ei + ej)

⊤E(ei + ej) yields

(ei + ej)
⊤E(ei + ej) = xi + xj + 2e⊤i Eej

≤ xi + xj + 2
√
xixj

≤ (
√
xi +

√
xj)

2.

At the same time, a direct computation shows (ei + ej)
⊤E(ei + ej) = xk which implies

that
√
xk ≤

√
xi +

√
xj . �
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We also can link squared edge lengths to the computed triangle areas µN (T ). This link
is provided by the submatrices Ek defined as

Ek =
1

2

(

2xi xk − xi − xj
xk − xi − xj 2xj

)

,

where {i, j, k} = {1, 2, 3}. With this definition in place, we leverage the following proposi-
tion:

Proposition 7.7.2 E is positive semidefinite if and only if xk ≥ 0 for all k ∈ {1, 2, 3}
and det(E3) ≥ 0. Moreover, if E � 0, then det(Ek) = 4µN (T )

2.

Proof Starting with the second statement, direct computation of the determinant shows

4 det(Ek) =
(

x1 x2 x3
)





−1 1 1
1 −1 1
1 1 −1









x1
x2
x3



 .

When the xi’s are squared triangle edge lengths, this is a formulation of Heron’s area
formula.
The first statement is proved using a well-known theorem on positive block matrices
(property of Schur complements) [18]: E � 0 if and only if E3 � 0 and

2x3 −
(

x2 − x1 − x3
x1 − x2 − x3

)⊤

E−13

(

x2 − x1 − x3
x1 − x2 − x3

)

≥ 0.

Notice that

Ek

(

1
1

)

= −1

2

(

xj − xi − xk
xi − xj − xk

)

,

and hence the first condition is met whenever x3 ≥ 0. Moreover, E3 is a 2 × 2 matrix
and therefore is positive semidefinite if and only if x1 ≥ 0, x2 ≥ 0 and det(E3) ≥ 0. �

Enforcing constraints derived from these relationships in the computation of edge lengths
from a shape difference leads to the following optimization problem:

minℓ2
N

‖Φ⊤MW (ℓ2N ;µN )ΦM − diag(−λMi )DC‖2Fro
s.t. ℓ2N ≥ 0

det(E3(T )) = 4µN (T )
2 ∀ triangles T ∈ F .

This problem, however, is large and non-convex due to the determinant constraint. A
convex relaxation is possible by noticing that the cone of symmetric positive semidefinite
matrices with determinant ≥ 1 is convex; this observation derives from the convexity of
the function A 7→ − log(detA)) [18]. So, the former problem can be relaxed to a convex
problem:

minℓ2
N

‖Φ⊤MW (ℓ2N ;µN )ΦM − diag(−λMi )DC‖2Fro
s.t. ℓ2N ≥ 0

det(E3(T )) ≥ 4µN (T )
2 ∀ triangles T ∈ F .

(7.10)
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The determinant constraint is handled using the rotated quadratic cone optimization in
the Mosek toolbox [79]. While (7.10) contains a relaxation of the full set of constraints,
we find empirically that this relaxation generally is tight; we leave it to future work to
prove conditions for “exact recovery” akin to those in [38] for mesh alignment problems.
As in §7.7.1, we can additionally regularize by adding ε′‖ℓ2N − ℓ2M‖22 to the objective; our
experiments use ε′ = 10−4..

7.7.3 Global Extrinsic Reconstruction

At this point, we have presented algorithms for recovering edge lengths for the entire
canonical thickening defined in §7.5.3. As suggested in the proof of Proposition 7.5.2,
if these edge lengths are computed without error, the thickening can be reconstructed
greedily; then, the embedding of N from M is the inner envelope of this thickening.
In reality, the squared edge lengths in ℓ2N likely exhibit numerical error. For this reason,
we employ the algorithm in [91] for reconstructing a triangle mesh given its edge lengths.
We adapt their approach to take into account the tetrahedra defined by the offset surface,
by using the same ARAP-style deformation energy, defined on each triangle facet of
each tetrahedron, and using the same alternating optimization strategy. We note, in
particular, that this approach does not require embedded surfaces to be manifold, and
can easily incorporate edges shared by more than two triangles, which only changes the
computation of the gradient of the energy. Hence this allows us to reconstruct the entire
set of triangles in the canonical thickening rather than the inner or outer surfaces only.
We provide the thickening of M as a starting point for their alternating optimization
algorithm. Whereas their method is subject to isometric ambiguity when embedding
manifold meshes, reconstructing the entire thickened structure reduces ambiguity and
more reliably provides an extrinsically correct embedding.

7.8 Experiments

In this section we illustrate the utility of the constructions presented above in a variety of
practical application scenarios. We start by showing how the extrinsic shape differences
can be useful for shape exploration and analysis, by complementing the information
provided by the intrinsic differences of Rustamov et al. [106]. We then show how our
metric and shape recovery methods can be used to both infer shape structure and
ultimately recover the embedding from approximate, truncated shape differences.

7.8.1 Shape Space

An example application of shape differences that does not rely on exact reconstruction of
local geometry involves the extraction of variability within a collection of related shapes.
Suppose we choose an arbitrary base shape and compute its shape difference matrices
with the remaining shapes in a collection. Then, a simple low-dimensional description of
shape variability is to do PCA on the collection of matrices, resulting in the embedding
of each shape as a point in PCA space.
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Figure 7.7 – PCA on collections of shape differences reveals the axes of variability within
a collection; each shape on the left is colored the same as its corresponding points in the
plots. The area-based and conformal differences are unable to distinguish the inward and
outward bumps in the top example, leading to clusters of four points.

Figure 7.8 – Human models from Figure 7.7 sorted by the first PCA dimension for
area-based shape differences (top) and area-based differences including an offset surface
(bottom). The differences without offsets distinguish body type, while the differences
with offsets distinguish pose.

We use PCA experiments to illustrate the power of our proposed extrinsic differences.
For instance, Figure 7.7 illustrates embeddings of two-parameter shape collections into
the plane using the procedure above (kM = 50, kN = 100). The top row illustrates
the need for extrinsic differences most clearly. Here, we generate cubes with smooth
bumps, smoothly varying from an inward bump to an outward bump. Intrinsic shape
differences are identical for inward and outward bumps, leading to PCA embeddings
that cluster sets of four shapes together. Adding extrinsic information disambiguates the
embedding problem, separating the clustered points. Similarly, the extrinsic area-based
shape difference best separates the parametric human models evenly among the two axes
(57.2% variability along the principal axis, 38.3% along the secondary axis); interestingly,
conformal shape differences among offset surfaces do not exhibit much variability for this
particular class of surfaces.
Figure 7.8 highlights how intrinsic and extrinsic shape differences can measure different
properties of shape. We sort the collection of human models by the one-dimensional
embeddings (x-axis) of intrinsic (top) and extrinsic (bottom) area-based shape differences
(kM = 50, kN = 100). The intrinsic shape differences distinguish the body type of the
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Figure 7.9 – PCA on shape differences applied to recovering the sequence of animated
frames for a simulated piece of cloth (top) and galloping horse (bottom).

model and are invariant to the pose of the arms and legs; this ordering reflects the
property that articulated deformations of humans are nearly isometric. Complementing
this embedding, the extrinsic differences distinguish pose and are less sensitive to body
type. This property is also visible in Figure 7.7 since the area-based embeddings without
and with the offset are transposed from one another.
Figure 7.9 shows a similar experiment applied to shapes from individual frames of
animation sequences. Both intrinsic and extrinsic shape differences are able to recover the
cyclic structure of a galloping horse animation; this indicates that the galloping motion
contains both intrinsic and extrinsic deformation modes. Contrastingly, the intrinsic
differences severely underperform in recovering an animated sequence of deforming cloth.
The physics of cloth naturally avoids intrinsic stretching and shearing, maintaining
the initial developable structure. Thus, intrinisic shape differences provide little-to-no
information, while the extrinsic differences capture the evolution of the animation.
From a wider perspective, the experiments in this section reveal the value of explicitly
representing both intrinsic and extrinsic deformation in navigating datasets of 3D surfaces.
A sizable fraction of geometry processing algorithms, including the original work on shape
differences, focuses on shape exploration based exclusively on intrinsic structure. Yet,
motions like the deformation of a piece of cloth cannot be captured by this representation.
While cloth deformation may be an extreme example, based on these results we advocate
inclusion of both intrinsic and extrinsic structures in shape analysis rather than discarding
the extrinsic information.

7.8.2 Effects of Truncation

The propositions in this chapter show that discrete shape differences completely encode
geometric structure when they are written in a full basis. For many applications, however,
we approximate shape differences in a truncated low-frequency spectrum. While the
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Source Target Scale µ err. ℓ err. {λ}kNi=1 err. {λi}|V |i=1 err. ∆ err.

Figure 7.10 – Effects of truncation on computation of mesh structure. See §7.8.2 for
discussion.

effects of this truncation are difficult to characterize mathematically, in this section we
evaluate the effects of this approximation numerically.
There are two potential sources of truncation error in the twice-truncated differences
discussed in §7.6.3: The choice of kM and the choice of kN . As mentioned in §7.6.3 these
two parameters have slightly different effects; decreasing kM corresponds to removing
rows or columns of the shape difference matrices, while decreasing kN can affect the
values of the entries.
Figure 7.10 illustrates the results of an experiment varying kM and kN for intrinsic shape
differences and using the pipeline described in §7.7 to recover areas and edge lengths;
recall that this technique extracts areas and edge lengths on N using calculations on M .
We choose a pair of meshes with a ground-truth map to avoid additional error due to
map approximation (|XM | = |XN | = 1000).
Each color plot shows the relative error of assorted quantities extrapolated from the
truncated shape differences: face areas (µ), edge lengths (ℓ), truncated eigenvalues

({λ}kNi=1), full eigenvalues ({λ}|X |i=1), and entries of the Laplacian (∆). We assume kN ≥ kM ,
providing the upper-triangular structure of the plots; the vertical axis represents kM
(range: kM ∈ [60, 500]) and the horizontal axis represents kN (range: kN ∈ [60, 500]). We
choose ε so that the viscosity regularizer contributes < 10% of the optimal objective.
These plots show that even truncated shape differences can be used to extract per-face and
per-edge information about the mesh using our pipeline. Even with 15% of the Laplacian
eigenvectors, we can relatively reliably extract the face areas and edge lengths of the
target mesh. Even on challenging tasks like recovering the full spectrum of the target
mesh—beyond the eigenvalues used to compute the shape difference—our algorithm has
some success.
The choice of kN is particularly important. Intuitively, this phenomenon might be
explained by the fact that modulating kN changes the values in the shape difference
matrices rather than just their size. The top row of the matrix also exemplifies a pattern
we observed across our experiments; below a certain value for kM , there is not enough
information to get a meaningful indication of local geometry from the shape difference
matrices.

7.8.3 Intrinsic Recovery

The experiments in §7.8.2 illustrate a remarkable observation, that we are able to recover
local information about the target of a shape difference from a truncated shape difference.
That is, the nonnegativity and semidefinite constraints proposed in §7.7 paired with
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Figure 7.11 – Our machinery can be used to pull back Laplacian operators from a target
mesh to a source. Here, we use a truncated functional map (100 Laplace–Beltrami basis
functions on source, 200 on target) to compute revised edge lengths on the source mesh.
Eigenfunctions of the Laplacian before and after edge length adjustment are shown with
eigenvalues; boxed columns provide examples where the eigenfunction changes structure
significantly.

regularization are sufficient to avoid the null space of the truncated linear systems for
recovering areas and edge lengths.

As the cotangent Laplacian of a triangle mesh (with or without area weights) is an
intrinsic structure,we can use our computed vectors µ and ℓ to pull back the Laplacian
operator from N to M .

This technique is illustrated in Figure 7.11. In this experiment, we compute shape
differences from a 100× 200 functional map to compute µ and ℓ on the source surface;
we then use (7.2) to construct a new Laplacian operator on M using µ and ℓ pulled back
from N and show eigenfunctions of the resulting operator. Not only do the eigenvalues of
the pulled-back Laplacian better approximate the Laplace–Beltrami eigenvalues of N , but
qualitatively the eigenfunctions of the pulled-back Laplacian exhibit more structure in
common with the eigenfunctions of N . Boxed examples in Figure 7.11 show particularly
striking differences between the source and reconstructed eigenfunctions.

Figure 7.12 illustrates an application of recovering edge lengths from truncated shape
differences. Without constructing an embedding, we use pulled-back edge lengths to
compute two commonly-used intrinsic functions: single-source geodesic distances and the
wave kernel signature [5]. Our edge lengths enable computation of these functions on the
source mesh using the metric of the target, given a functional map between them. As a
baseline, computing these functions on the target and pulling them back to the source
using the functional map (right column) is less accurate; this is due to truncation of the
functional map, which removes high frequencies e.g. at the center point of the geodesic
function.
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d = 0 d = 0.0163 d = 0.0421
Source Target Exact Reconstruction Functional map

geodesic geodesic pullback pullback pullback

d = 0 d = 0.0417 d = 0.1594
Source Target Exact Reconstruction Functional map
WKS WKS pullback pullback pullback

Figure 7.12 – Our technique can be used to recover the pullback metric and therefore
compute geodesic distances without direct access to the target mesh. We compare
three geodesic pullbacks on the source mesh: the exact pullback using point-to-point
correspondence, the geodesic computed by reconstruction of the metric from the shape
differences, and the pullback of the geodesic function using a functional map. For each
pullback we compute the L2 distance d to the exact version. Our method achieves better
reconstructions than the direct usage of a functional map.

7.8.4 Reconstruction

Figures 7.13, 7.14 and 7.15 illustrate experiments in which geometry is reconstructed after
estimating local structure from shape differences. To highlight our method’s effectiveness
on extrinsic motion, we show behavior on human shapes and cloth simulation data.
Figure 7.13 applies our method to reconstructing models of humans from shape differences.
From a coarse human base mesh (|XM | = |XN | = 502,; M = 100, kN = 200 in truncated
experiments), we recover various poses. We compare reconstructions using only the
intrinsic shape difference (right of each pair) to reconstructions using intrinsic and
extrinsic differences together (left of each pair); we also compare using a truncated basis
for shape differences (second column) to using a full basis (third column). As a baseline, we
compare to [15], which uses only intrinsic geometry (rightmost column). Reconstruction
from intrinsic information shows considerable artifacts due to the non-uniqueness of the
solution of the embedding problem. Our provably complete intrinsic/extrinsic description
is much more stable and close to the solution. The truncation of the basis, discussed
in §7.8.2, tends to smooth out the sharp creases as they are represented as high frequency
features.
In Figure 7.14, we interpolate between frames of an animation sequence (|XM | = |XN | =
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dH = 0.036 dH = 0.054 dH = 0.013 dH = 0.030 dH = 0.058

dH = 0.083 dH = 0.140 dH = 0.023 dH = 0.116 dH = 0.147

dH = 0.064 dH = 0.110 dH = 0.0153 dH = 0.105 dH = 0.132
Source Target Intrinsic Intrinsic Intrinsic Intrinsic Intrinsic [15]

Extrinsic – Extrinsic – –
Truncated Truncated Full Full Full

Figure 7.13 – Mesh recovery from a source mesh and shape differences, with (left) and
without (middle) the extrinsic shape difference. Intrinsic mesh recovery using a concurrent
method (right). The distance to the target dH is measure by the Hausdorff distance on
the prealigned point cloud.

1089, kM = 100, kN = 200). After running a cloth simulation with coarse time steps,
we compute the shape difference between subsequent frames (t ∈ [0, 1]). We then use
the method in §7.7.3 to construct plausible motion between the frames by interpolating
linearly between the computed shape differences (t = 0.5). We further extrapolate the
motion beyond the t ∈ [0, 1] range to t = 1.5, effectively exaggerating the deformation
between the frames. As expected, the extrinsic shape differences allow for reconstruction
of largely isometric cloth motion.
Figure 7.15 illustrates a more challenging experiment (|XM | = 669, |XN | = 1089, kM =
60, kN = 180). In this case, we reconstruct the same cloth simulation sequence but vary
the topology of the source and target meshes. Now it is impossible to pull back the
deformation exactly to the new mesh topology, but we still reconstruct plausible motion,
with the notable exception of artifacts near the boundary of the patch.

7.8.5 Timings

Figure 7.16 shows timings by stage for our pipeline, applied to meshes of various sizes
and topologies. We employ a simplistic single-threaded implementation in Matlab,
using the Mosek toolbox [79] in the CVX library for convex optimization [45]; for this
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Figure 7.14 – Mesh recovery and interpolation from a source mesh and the intrin-
sic/extrinsic shape differences. The target meshes come from a cloth simulation sequence.

0.5 1 1.5
Source Target Interpolation Factor

Figure 7.15 – Mesh recovery and interpolation. The source mesh has different connectivity
than the target. The target meshes come from a cloth simulation sequence.

reason, the timings should be viewed as relatively pessimistic upper bounds. Even so,
our implementation—including semidefinite constraints, regularization, and the like—can
handle meshes of up to several thousand vertices.

7.9 Discussion & Conclusion

In this chapter, we introduced a new way to express intrinsic and extrinsic shape
information through functional shape differences. Not only do we prove that discrete
shape differences can be used to recover shape, but we also extend to characterizing
shapes up to rigid motion rather than isometry. Our four shape differences together—two
intrinsic and two extrinsic—comprise a powerful description of shape that applies to
a wide range of variability, including not only non-isometric shapes but also models
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# Eigen- Intrinsic metric
functions |V | |F | |E| Area Edge

Human 100 502 1000 4500 4.7s 9.0s
Cloth HD 200 1089 2048 3136 20.6s 79.8s
Cloth LD 60 669 1256 1924 6.0s 3.8s

Faces 180 588 1097 1687 8.5s 18.8s
Horse 160 752 1500 2250 10.1s 80.1s

# Eigen- Offset metric Reconst.
functions |V | |F | |E| Area Edge Tets.

Human 100 1502 3000 4500 16.5s 310.9s 195.6s
Cloth HD 200 3135 6016 9150 430.5s 1833.0s 912.6s
Cloth LD 60 1925 3688 5612 31.5s 73.2s 412.7s

Faces 180 1682 3208 4892 177.3s 709.6s 204.2s
Horse 160 2252 4500 6750 293.1s 666.6s 447.5s

Figure 7.16 – Performance measured on a 2015 iMac 3.3GHz.

dH = 0.119 dH = 0.069 dH = 0.064 dH = 0.036 dH = 0.023
Source Target kM = 20 kM = 40 kM = 60 kM = 80 kM = 100

Figure 7.17 – Example of failure in mesh recovery from a source mesh and shape differences.
As the size of the shape difference increases more details are added to the reconstructed
deformation. At kM = 100 and above we achieve a high-quality reconstruction.

obtained from physical simulation and animation. We also show that the inverse problem
of recovering shape structure from shape differences can be meaningful even in the
under-determined truncated case.
While this work offers the possibility of direct application in pipelines for shape search,
embeddings of shape space, and approximate reconstruction, it also suggests myriad
avenues for future research. On the theoretical side, a better understanding of the
effect of Laplace–Beltrami eigenfunction truncation may provide better guidance for the
minimal-sized shape differences needed to reconstruct a shape; spectral truncation is a
common part of the geometry processing pipeline, so any relevant theory would have the
potential to affect understanding of many existing algorithms.
On the practical side, the primary limitation of our proposed reconstruction methods
is the introduction of semidefinite constraints in computing the squared edge lengths ℓ;
multi-scale or lighter-weight optimization methods would enable application to larger-scale
meshes. Furthermore, the regularization proposed for recovery of µ and ℓ in §7.7 is very
generic and can be ineffective for noisy or highly truncated shape differences. Application
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dH = 0.128 dH = 0.073 dH = 0.065 dH = 0.036 dH = 0.023
Source Target kN = 100 kN = 200 kN = 300 kN = 400 Full

No noise

dH = 0.161 dH = 0.161 dH = 0.112 dH = 0.109 dH = 0.134
Source Target kN = 100 kN = 200 kN = 300 kN = 400 Full

Noisy shape diffirence

Figure 7.18 – Impact of the basis truncation on from a source mesh and noisy shape
differences. In this experiment, we fix the number of basis functions on the source shape
to kM = 100 and reconstruct the embedding for various kN . Top row: With no additional
noise, the quality of the embedding increases with kN . Bottom row: With added noise,
larger kN—which normally yields better transfer of high frequency deformation—does not
increase the quality of the reconstruction. The noisy shape differences do not correspond
to an actual embedding.

of machine learning techniques may allow for the characterization of edge length and
triangle area distributions specific to a given class of shapes, considerably reducing the
search space for our recovery algorithms.
Figures 7.17 and 7.18 show examples illustrating these potential avenues for improving
our pipeline. Figure 7.17 shows how reconstruction can fail when shape differences are
over-truncated; stronger regularizers might fill in missing information when truncated
shape differences are insufficient to recover edge lengths to high precision. Figure 7.18
shows results of shape reconstruction in the presence of noise. Here, we add noise directly
to the shape difference matrix so that it no longer corresponds to an embedded surface.
At some point, increasing kN does not improve the reconstruction result, because noise
in the entries dominates added high-frequency shape information.





Chapter 8

Functional Characterization of

Deformation Fields

In this chapter we present a novel representation for infinitesimal deformations
of 3D shapes, by considering the induced changes in the underlying metric. Unlike
traditional representations given, for example, by the infinitesimal displacement
of each point, our framework allows to consider shape deformations as operators
acting on real-valued functions defined on the shapes. This enables a wide variety of
applications such as deformation design through precise control of metric distortion,
deformation analysis and transfer and even improved shape matching by considering
the composition of the deformation with other functional operators. Fundamentally,
our approach helps to establish a direct connection between extrinsic deformation
fields and changes in intrinsic metric quantities, which can be useful in many
deformation processing scenarios.

Figure 8.1 – Example of deformation design using our framework where all objectives are
easily expressed as linear constraints. Left: A set of local constraints for the deformation
fields on two different shapes. Middle: The deformations are computed separately on
each shape to be as-isometric-as possible. Right: Joint deformation design with a soft
(functional) map and no pointwise correspondences between the shapes.

8.1 Introduction

Designing and analyzing shape deformations is a central problem in computer graphics
and geometry processing, with applications in scenarios such as shape manipulation
[135, 114], animation and deformation transfer [117], shape interpolation [61, 130], and
even anisotropic meshing [91] among myriad others. Traditionally, shape deformation
has been motivated by interactive applications in which the main goal is to design a
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deformation that satisfies some user-prescribed handle constraints while preserving the
main structural properties of the shape. In other applications, such as shape interpolation
and deformation transfer, that lack handle constraints, the goal is to design a global
deformation field that would satisfy some structural properties as well as possible.

In both types of applications, most deformation methods are based on specifying a
deformation energy and providing a method to optimize it. On the other hand, an-
other very productive line of work has demonstrated that by choosing an appropriate
representation for shape deformations, many tasks can become significantly easier, and
in particular can help to enforce certain properties of the deformation field, which are
otherwise very difficult to access and optimize for. In addition to the classical per-vertex
displacement vectors, such representations have included gradient-based deformations
[135, 136], Laplacian-based approaches [70, 115] and Möbius transformations in the
context of conformal deformations [33, 128] among others.

At the same time, several recent works have demonstrated that several basic operations in
geometry processing can be represented as linear operators acting on real-valued functions
defined on the shape. This includes the functional representation of mappings described
in Chapter 4 or correspondences [88, 96], representations of vector fields as derivations
[95, 6] and formulation of shape distortion via shape difference operators introduced in
[106] and described in Chapter 4. One advantage of these representations is that linear
operators can be naturally composed, which makes it easy to define, for example, the
push-forward of a vector field with respect to a mapping, if both are represented as linear
operators, or to solve for Killing vector fields, by composition between a derivation and
the Laplacian operator.

While tangent vector fields are classically understood as operators (derivations) in
differential geometry, extrinsic vector fields do not enjoy a similar property. Our main
goal is to provide a coordinate-free representation of extrinsic vector fields (infinitesimal
deformations) as functional operators, which will prove useful for analysis and design
of shape deformations. As we demonstrate below our representation greatly simplifies
certain tasks such as deformation transfer, deformation symmetrisation and even the
computation of shape correspondences by composition with other operators. Moreover, it
provides an explicit link between infinitesimal deformations and the changes in intrinsic
metric quantities, which can be useful in a variety of analysis and deformation processing
tasks.

For example, consider two shapes shown in Fig. 8.1 (left). By using our framework, it is
possible to combine local extrinsic deformation constraints with intrinsic objectives such
as constructing a deformation field that is as-isometric-as-possible (center). Moreover, our
coordinate-free representation allows to relate deformations on multiple shapes, enabling
deformation transfer and joint design even when only soft (functional) correspondences
are known.
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8.2 Related Work

Shape deformation is one of the oldest and best-researched topics in computer graphics
and geometry processing. We therefore only mention works most directly related to ours
and refer the interested reader to surveys including [85, 17] and Chapter 9 in [16].
A multitude of methods exists for surface deformation starting with the seminal work
of [122], its early follow-ups including [25, 133] and the multi-scale variants, such as
[140, 63, 47] among many others. Similarly to our approach, many of these techniques
are based on optimizing the so-called elastic thin shell energy that measures stretching
and bending, and which is often linearized for efficiency. In the majority of cases, the
deformation is represented explicitly as an extrinsic vector field defined on a surface,
making deformation transfer difficult in the absence of precise pointwise correspondences.
A number of methods have proposed alternative representations for deformation fields,
which greatly simplify certain tasks in design and analysis. This includes gradient-based
techniques [135, 136] which consider the deformation field by aligning its gradient with a
set of local per-triangle transformations. By working in gradient space, constraints can be
posed independently on the triangles and then optimized globally by solving the Poisson
equation. Similarly, Laplacian-based techniques [115, 70, 86] are based on defining shape
deformations by manipulating per-vertex differential coordinates (Laplacians) in order
to match some target Laplacian coordinates. Such differential coordinates enable direct
editing of the local shape properties, which can be especially beneficial for preserving
and manipulating the high-frequency details of the surface. However, these coordinates
are typically not rotationally invariant and additional steps are necessary to introduce
invariance [115, 70, 93].
More recently, a number of methods have introduced representations for mesh deformations
specifically geared towards particular shape manipulations, such as computing conformal
transformations by designing special maps into the space of quaternions [33] or by using
face-based compatible Möbius transformations [128]. These techniques are rotationally
invariant and coordinate-free, while being restricted to special types of manipulations.
Another technique, closely related to ours, designs shape deformations by constructing a
continuous divergence-free vector field [129], and applying path line integration to obtain
a deformed shape. We also consider the effect of the deformation on the metric, but
both analyze the distortion of arbitrary extrinsic vector fields and show how they can be
represented in coordinate-free way as linear functional operators.
Our approach of considering the deformation via its induced metric distortion is also
related to the work of [39] and [110] who manipulate shapes by explicitly editing their
curvature properties. Moreover, our use of the strain tensor in characterizing metric
distortion is closely related to the applications in various physically based deformation
scenarios including [124, 81] among many others (see also the surveys on physically based
elastic deformable models [85, 104]). Our approach is also related to the works that
aim to design as-isometric-as-possible shape deformations [139, 113, 73]. Similarly to
the latter work, however, our framework is general and allows an arbitrary prescribed
distortion, although our method works directly on surface representations and moreover
enables applications such as joint deformation design.
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Finally, our joint deformation design is related to the deformation transfer and inter-
polation techniques such as [117, 9] and [61] to name a few. However, we place special
emphasis on relating infinitesimal deformations between shapes with only soft (or func-
tional) correspondences, which are often much easier to obtain than detailed point
matches.
In contrast to the majority of existing techniques our goal is to devise a coordinate-free
representation of infinitesimal deformations as linear functional operators, by making an
explicit connection between the extrinsic deformations and the change in intrinsic metric
quantities. Thus, although we build on classical constructions such as the infinitesimal
strain tensor, we show how they can be exploited to create a functional representation
of shape deformation, which can be used in conjunction with other operators. As we
demonstrate below, our representation is particularly useful for relating deformations that
exist on multiple shapes, with only soft correspondences between them. In particular, it
enables joint deformation design and transfer without triangle or point-to-point matches,
and allows to introduce extrinsic information in the computation of functional maps,
greatly increasing the applicability of these techniques in a wide range of application
scenarios.

8.3 Overview

Our main strategy for devising a functional representation of infinitesimal deformation is
to consider the effect of the deformation on the intrinsic shape metric. Namely, we will
characterize the extrinsic vector fields by the isometric distortion that they induce. For
this purpose we will start by considering the shape difference operators described above,
which provide a way to capture the isometric distortion induced by a map between two
shapes as a pair of linear operators acting on functions on one of the shapes. Thus, in
this chapter our motivation is to use the information contained in those operators to
design and synthesize shape deformations.
The first challenge presented by this approach is the fact that the shape difference
operators only contain intrinsic information which is typically not enough to specify an
embedding, and thus a deformation. To tackle this problem we restrict our attention
to infinitesimal deformations which can be represented by extrinsic vector fields, and
which, as we show under certain genericity conditions, are fully encoded by the isometric
distortion they induce.
Second, the definition of the shape difference operators introduced in [106] is divided
between an area and conformal-based distortions. While this distinction might be desirable
for deformation analysis, it is cumbersome for deformation synthesis since it would require
us to represent each extrinsic vector field via a pair of functional operators. For this reason
we introduce a unified shape difference operator, that characterizes intrinsic distortion
fully.
Finally, although the shape difference operators characterise intrinsic distortion, design-
ing a deformation that would reproduce a given shape difference leads to challenging
optimization problems as shown in [15]. As we demonstrate below, our approach of
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considering infinitesimal deformations greatly simplifies the reconstruction procedure, by
allowing us to phrase it with a single linear system of equations.
To summarize, we proceed in three stages: first we introduce a unified shape difference
operator that fully characterizes isometric distortion. Second, we show how extrinsic
vector fields can be represented by infinitesimal shape difference operators, which act
linearly on the real-valued functions, in the same way as shape difference operators.
Finally, we demonstrate that extrinsic vector fields can be recovered from infinitesimal
shape difference operators by solving a linear system of equations.
Our main contribution therefore include:

• Defining a unified shape difference operator that fully characterizes isometric
distortion.

• Introducing infinitesimal shape difference operators as a way to represent extrinsic
vector fields as operators acting on functions, represented as matrices in the discrete
setting.

• Showing how infinitesimal shape difference operators can be used to naturally add
extrinsic information (second fundamental form) into the computation and analysis
of functional maps.

• Presenting various applications that demonstrate the usefulness of our representation,
in particular by showing how the infinitesimal deformations can be analysed,
designed, transfered and used in map computation by exploiting the operator
representation.

8.4 Extrinsic Vector Fields as Operators

In this section we provide a coordinate-free representation of extrinsic vector fields by
considering their action on the underlying shape metric. As mentioned in the previous
section, our main strategy will be to represent extrinsic vector fields via infinitesimal
shape difference operators. Therefore, we first define a unified isometric operator in
Section 8.4.1. We then define infinitesimal shape difference operators in Section 8.4.2 and
list some of their key properties in Section 8.4.3. Throughout this section we assume that
we are dealing with smooth surfaces without boundary embedded in R

3. The appropriate
discretization of all the concepts introduced in this section will be given in Section 8.5.

8.4.1 Isometric Shape Difference Operator

While the two shape difference operators defined in Chapter 4 are very convenient to
separate measure (area) and conformal distortion, they also imply that two operators are
needed to fully characterize a deformation, which will be cumbersome for representing
extrinsic vector fields. Moreover, these two operators are not commensurable since DA is
defined through products of functions, unlike DC which is a differential operator defined
through inner products of gradients. Thus, we introduce a single unified shape difference
operator below.
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Unified shape difference The main reason for which DC is only sensitive to conformal
changes is that both the inner product and the integration are taken on the target shape.
To see this, let us re-write the conformal shape difference DC by integrating on a fixed
domain using the pullback metric tensor as follows:

〈f,DC(g)〉MH1

0

=

∫

M

Cϕ−1 (〈∇Cϕ(f),∇Cϕ(g)〉) d(ϕ⋆µN ).

This definition is equivalent to the one given in Eq. (4.3) in Chapter 4, but here we simply
highlight the integration with respect to the pushforward measure d(ϕ⋆µN ) rather than
the measure on M itself. Here, the linear operator Cϕ−1 is simply the functional map
with respect to the inverse diffeomorphism ϕ−1. Since we are dealing with surfaces, the
change in the area will cancel out on the right, leaving DC only sensitive to conformal
changes.
To define a unified shape difference taking into account all intrinsic changes one should
compare the pullback metric to the metric on M while keeping the integrating measure
fixed. We thus propose a unified shape difference operator DI that fully characterizes
isometric distortion.

Definition 8.4.1 Assuming that ϕ : N → M is a diffeomorphism, the unified shape
difference DI : H

1
0 (M) → H1

0 (M) is defined implicitly by:

〈f,DI(g)〉MH1

0

:=

∫

M

Cϕ−1 (〈∇Cϕ(f),∇Cϕ(g)〉) dµM .

The existence of DI is once again guaranteed by the Lax-Milgram theorem in H1
0 .

Moreover, as we claimed above, the following proposition shows that the unified shape
difference fully characterizes isometric deformation.

Proposition 8.4.2 The following equivalence holds:

• DI(f) = f for all f ∈ H1
0 (M) if and only if ϕ is an isometry,

• DI = DC in H1
0 (M) if and only if ϕ is an area-preserving.

Proof Using Equation (4.5) we can rewrite Definition 8.4.1:

∫

M

〈∇f,∇DI(g)〉dµ =

∫

M

C−1 (〈∇C(f),∇C(g)〉) dµ

=

∫

M

〈∇f,A∇g〉dµ

where A is a symmetric (1,1)-tensor defined as Aij = ((ϕ−1)⋆gN )ikgMkj . This definition
allows us to prove both equivalences.
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• If ϕ is an isometry then (ϕ−1)⋆gN = gM so
∫

M

〈∇f,∇DI(g)〉dµM =

∫

M

〈∇f,∇g〉dµ

Therefore DI(g) = g for all function g in H1
0 .

If DI(f) = f then
∫

M
〈∇f,∇(Id−A)g〉dµ = 0 for all f, g ∈ H1

0 (M). Lemma 4.2.2
tells us that ϕ is an isometry.

• If ϕ is an area-preserving then det((ϕ−1)⋆gN ) = det(gM ) so the tensor field A is
equal to the tensor field B as defined in Equation 4.6.

If DI(f) = DC(f) then, using Lemma 4.2.2, the equality holds between the tensor
A and B. We conclude that det((ϕ−1)⋆gN ) = det(gM ).

�

This new shape difference is defined up to isometric deformation and a pullback operation
can be defied to transport a shape difference on another manifold. More precisely,
Proposition 4.2.4 can be restated for the unified shape difference.

Proposition 8.4.3 Assume that Dϕ
I : H1

0 (M) → H1
0 (M) represents the distortion of

the metric between the surfaces M and P induced by the diffeomorphism ϕ : P → M
and Dφ

I : H1
0 (P ) → H1

0 (P ) the distortion between the surfaces P and N linked through

φ : N → P . The distortion Dϕ◦φ
I : H1

0 (M) → H1
0 (M) associated to ϕ ◦ φ : N → M is

given by

Dϕ◦φ
I = Dϕ

I ◦ C−1ϕ ◦Dφ
I ◦ Cϕ.

Proof The proof relies only on Definition 8.4.1:
∫

P

Cϕ

(〈

∇f,∇Dϕ◦φ
I (g)

〉)

dµ =

∫

P

C−1φ (〈∇(f ◦ ϕ ◦ φ),∇(g ◦ ϕ ◦ φ)〉) dµ

=

∫

P

〈

∇(f ◦ ϕ),∇Dφ
I (g ◦ ϕ)

〉

dµ

=

∫

P

Cϕ

(〈

∇f,∇Dϕ
I

(

Dφ
I (g ◦ ϕ) ◦ ϕ−1

)〉)

dµ.

This yields the equality Dϕ◦φ
I (g) = Dϕ

I

(

Dφ
I (g ◦ ϕ) ◦ ϕ−1

)

for all g ∈ H1
0 (M). �

Example Computing DI is challenging when studying meshes with different connectiv-
ity as it requires the map and its inverse. However, when using it to define an operator
representation for infinitesimal deformations, we will only be dealing with shapes with a
fixed connectivity, for which we are able to obtain an appropriate discretization. Moreover,
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even in the general case, we are able to approximate this quantity in order to compute it
using the functional map framework, as shown in Section 8.5.
To illustrate the properties of the three shape differences we use a simple low-dimensional
description of a shape collection. Here we choose a fixed base shape and compute the
shape difference matrices with respect to the remaining shapes in a collection. Then, we
represent each shape by its shape difference matrix and plot them as points in PCA space.
Figure 8.2 represents the conformal deformation of a bunny into a sphere as viewed by
the three shape differences. As expected the conformal shape difference is almost identity
while the area and isometric shape differences both capture the distortion. In the second
experiment, shown in Figure 8.2, we explore another collection obtained by the shearing
of a plane patch. As this deformation is area preserving, the area-based shape difference
provides no information, unlike the other two shape differences which are equal in this
case.

8.4.2 Infinitesimal Deformations as Operators

One aspect of the shape difference operators, highlighted in [106], that makes them
particularly useful for capturing and representing shape deformations is that both the

Conformal collection Shearing collection
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Figure 8.2 – Middle row: Approximately conformal deformation of a bunny into a sphere
(top row left). The PCA applied to shape differences confirms the presence of large area
and isometric distortion in contrast to small conformal distortion. Bottom row: Area
preserving deformation of a plane (top row right). The area shape difference is almost
constant while conformal and isometric differences agree.
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domain and the range of these operators are functions on a fixed base shape. In other
words, although they are obtained by considering the distortion with respect to some target
shape, the final functional operators both act on and produce real-valued functions on the
base shape. Our main goal in this section is to consider a one-parameter family of shapes
Mt, given by displacing the points of a base shape along some fixed deformation field.
This family of shapes will result in a one-parameter family of shape difference operators
(DI)t on the base shape, that we will use to define the infinitesimal shape difference
operator ∂(DI)t/∂t at t = 0, as a coordinate-free representation of the deformation field.

Deformations via Extrinsic Vector Fields Specifically, given a surfaceM embedded
in R

3 we consider a family Mt of deformations of M , parameterized by a scalar t and
isometrically immersed by the local mappings Ft : U ⊂ R

2 →Mt ⊂ R
3. This family of

manifolds is generated by the displacement of the points along the smooth vector field
V (p) ∈ TpM × TpM

⊥ ≃ R
3:

∂Ft
∂t

(p) = V (p), (p, t) ∈M × R
+, (8.1)

where F0 is the local immersion of M . We call V a displacement field, or, alternatively,
an extrinsic vector field to highlight the distinction with tangent vector fields.
Our main goal below is to characterize extrinsic vector fields as linear functional operators.
For this, as mentioned above, we consider the family of diffeomorphisms ϕt :Mt →M ,
given trivially via ϕt(p) = Ft(p)− tV (p), and the associated functional maps Cϕt mapping
functions fromM0 toMt. This creates a one parameter family of shape difference operators
DV
t (which can be taken either to be the area or conformal-based operators or the unified

shape difference operator defined above). We then introduce the infinitesimal shape
difference, as a functional representation of the deformation field V as follows:

Definition 8.4.4 The functional representation of an extrinsic vector field V on a surface
M is given by the functional operator EV :

EV :=
∂DV

t

∂t

∣

∣

∣

∣

t=0

(8.2)

We will call EV the infinitesimal shape difference operator associated with the deformation
field V .

We will use EVA , E
V
C and EVI to denote the infinitesimal shape difference operators arising

from the area-based, conformal and unified shape differences respectively. Note that
although we characterize the properties of all three infinitesimal shape difference operators,
in all practical applications we will only use EVI as the functional representation of an
extrinsic vector field V . This is because this operator allows us to represent an extrinsic
vector field using a single linear operator, and moreover, as we show below, under certain
genericity conditions, in the discrete case, EV fully characterizes V up to rigid motion.
Remark that since EV is defined as a derivative of a one-parameter family of linear
operators acting on real-valued functions on a surface, both the range and the domain of
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EV are also real-valued functions on M . As such it can naturally be represented in a
multi-scale basis, composed with other functional operators, and analyzed thus enabling
applications including design, processing and transfer of extrinsic vector fields, as well as
their use in other tasks such as improved map (correspondence) computation. Moreover,
as we demonstrate below EVI is very closely related to classical constructions in computer
graphics, geometry processing and mechanics, based on the infinitesimal strain tensor.

8.4.3 Main Properties of Infinitesimal Shape Differences

Below we provide the defining characteristics of the infinitesimal shape difference operators
EV , which will be useful in both deriving the appropriate discretization in the case of
shapes represented as triangle meshes, and in the applications shown below.

The Levi-Civita Covariant Derivative We first need to introduce some fundamental
notions from differential geometry. In particular, we will use the Levi-Cevita connection
to define derivatives on a surface. For this, consider a tangent vector u at some point
p ∈ M , and an extrinsic vector field V on M . Then, given an arbitrary curve γ(t) on

M such that γ(0) = p and γ′(0) = u, we obtain ∇̄uV = ∂V (γ(t))
∂t

∣

∣

∣

t=0
. Here ∇̄uV is the

covariant derivative of the ambient space. Note that at a fixed point p ∈ M , ∇̄uV is
a vector in R

3. We can project the covariant derivative onto the tangent plane at p to
obtain a vector in the tangent plane, which we denote simply by ∇uV where ∇ is the
Levi-Cevita connection on M extended naturally to extrinsic vector fields, ([36] p. 126),
using the local coordinates ∇iVj = 〈∂iV, ∂jF 〉. We also remark that for any vector x in
the tangent space, 〈∇uV, x〉 = 〈∇̄uV, x〉, which we will use in our discretization. This
definition allows us to express the divergence of the extrinsic vector field V as the trace
of the Levi-Civita connection, given, at a fixed point p by div(V ) = gij∇iVj .

The fundamental object that we consider below is the infinitesimal strain tensor, which
can be understood as a bilinear form, acting on pairs of vectors x, y in the tangent plane
of a point p ∈ M . Namely, given an extrinsic vector field V , the infinitesimal strain
tensor LV g(x, y) is defined as:

LV g(x, y) = 〈x,∇yV 〉+ 〈∇xV, y〉 (8.3)

This quantity has the advantage of being linear in the vector field V which makes it easy
to handle for deformation and vector field design and therefore has been used in a wide
variety of works in computer graphics [85].

With these definitions in hand we can express the fundamental properties of the infinites-
imal shape difference operators described above.

Proposition 8.4.5 Given a one parameter family of surfaces described in Eq. (8.1), for
a fixed point p, the first-order change in the metric tensor g and in the local area element
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µ =
√

det(g) are given as:

∂g(t)

∂t

∣

∣

∣

∣

t=0

= LV g (8.4)

∂µ(t)

∂t

∣

∣

∣

∣

t=0

= div(V )µ. (8.5)

Proof Those properties are easily proven when using local coordinates. Given a family
of diffeomorphisms ϕt the Lie derivative of the metric tensor with respect to the vector
field V denoted LV g is by definition:

LV g :=
∂

∂t

(

(ϕ−1t )⋆g(t)
)

∣

∣

∣

∣

t=0

.

Since the local immersion Ft use a common chart system, the coordinates of the pullback
metric ((ϕ−1t )⋆gt)ij are equal to the metric on Mt in local coordinates gij(t) = 〈∂iFt, ∂jFt〉.
The computation of derivative is then straigthforward:

∂

∂t

(

((ϕ−1t )⋆g(t))ij
)

∣

∣

∣

∣

t=0

=
∂

∂t
(〈∂iFt, ∂jFt〉)

∣

∣

∣

∣

t=0

= ∇iVj +∇jVi

From here Eq. 8.5 is obtained easily:

∂µ(t)

∂t

∣

∣

∣

∣

t=0

=
∂

∂t

(

√

det(g(t))
)

∣

∣

∣

∣

t=0

=
1

2µ
det(g)gij(∇iVj +∇jVi) = div(V )µ

�

This property makes apparent the fact that the strain tensor is equal to the Lie derivative
of the metric tensor with respect to the extrinsic vector field V , and that the first-order
change in the local area is controlled by the divergence of the vector field, as is similarly
the case for tangent vector fields.

Infinitesimal Shape Differences As mentioned in Section 8.4.1, shape differences
operators can be expressed using the pullback metric and pushforward measure. Using
Proposition 8.4.5 we have all the tools to describe the infinitesimal shape difference
operators. The following proposition characterizes these new operators.

Proposition 8.4.6 Let V be a smooth deformation field on M , the derivatives of DA,
DC and DI at time zero satisfy for all smooth functions f, g:

〈f,EVA (g)〉ML2 =

∫

M

div(V )fg dµ,

〈f,EVC (g)〉MH1

0

=

∫

M

div(V )〈∇f,∇g〉 − LV g(∇f,∇g) dµ,

〈f,EVI (g)〉MH1

0

= −
∫

M

LV g(∇f,∇g) dµ.
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Proof The first statement is obtained by using (8.5):

〈f, ∂tDA(g)〉ML2 =
∂

∂t

(∫

Mt

Ct(f)Ct(g) dµ(t)

)∣

∣

∣

∣

t=0

=
∂

∂t

(

∫

M

fg

√

det(g(t))

det(g)
dµ

)∣

∣

∣

∣

∣

t=0

=

∫

M

div(V )fg dµ.

The second statement is a consequence of Equation (4.6):

〈f, ∂tDC(g)〉MH1

0

=
∂

∂t

(∫

Mt

〈∇Ct(f),∇Ct(g)〉 dµ(t)
)∣

∣

∣

∣

t=0

=
∂

∂t

(

∫

M

∂ifg
ij(t)∂jg

√

det(g(t))

det(g)
dµ

)∣

∣

∣

∣

∣

0

=

∫

M

div(V )〈∇f,∇g〉 dµ

−
∫

M

(〈∇f,∇∇gV 〉+ 〈∇∇fV,∇g〉) dµ

Starting from Definition 8.4.1:

〈f, ∂tDI(g)〉MH1

0

=
∂

∂t

(∫

M

C−1t (〈∇Ct(f),∇Ct(g)〉) dµ
)∣

∣

∣

∣

t=0

=
∂

∂t

(∫

M

∂ifg
ij(t)∂jg dµ

)∣

∣

∣

∣

t=0

= −
∫

M

〈∇f,∇∇gV 〉+ 〈∇∇fV,∇g〉 dµ.

�

As can be seen, the infinitesimal shape differences inherit the properties of the original
operators. Namely, EVA vanishes if and only if div(V ) is equal to zero, i.e., whenever V
infinitesimally preserves the volume form. On the conformal side, finding an extrinsic
vector field V such that EVC = 0 is equivalent to solving the conformal Killing equation:
LV g = div(V )g characteristic of infinitesimal conformal vector field. Both properties
combined lead to an infinitesimal isometric deformation induced by the vector field V
captured by Eq. (8.4).
Moreover Prop. 8.4.6 reveals a clear link between shape differences:

〈f,EVI (g)〉MH1

0

= 〈f,EVC (g)〉MH1

0

− 〈1, EVA (〈∇f,∇g〉)〉ML2 . (8.6)

Thus, intuitively, the operator EI , representing isometric distortion, can be decomposed
into an area and conformal parts.
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The operator representation of extrinsic vector fields, allows us to derive a some interesting
properties specific to this representation and useful for applications, while making a
connection between previously proposed shape difference operators and the classical
strain tensor.

Linearity The first key property of EI is its linearity with respect to both vector fields
and functions:

EαU+βV
I (f) = αEUI (f) + βEVI (f),

EVI (αf + βg) = αEVI (f) + βEVI (g). (8.7)

This makes it easily usable for vector field design, by representing the target deformation
field in some fixed basis.

Lie derivative representation From Proposition 8.4.2 we deduce that EVI (f) = 0
for all f if and only if LV g = 0, i.e., if the extrinsic vector field V preserves the intrinsic
shape metric to first-order. The operator EVI clearly quantifies how the Lie derivative
of the metric affects gradients of functions. So the linear dependence between shape
operators shown in Eq. (8.6) can be understood as the decomposition of the matrix LV g
into a trace free part, linked to the conformal Killing equation, and a divergence part,
related to the change in area.

Vector field representation In general the operator EVI does not uniquely define
an extrinsic vector field. From Prop. 8.4.2 the kernel of V 7→ EVI coincides with the
vector fields satisfying LV g = 0. In case of a volumetric manifold (i.e. M ⊂ R

3) the
infinitesimal change in the metric ∂tg defines the vector field V up to rigid motion (see
[27] and all the Korn’s inequalities). In the case of a surface embedded in R

3 the kernel
of EVI includes infinitesimal isometries such as Killing vector fields but also local normal
fields in planar areas. However such fields seem either rare or nonexistent generically.
No rigidity result seems to be known for smooth surfaces. However, as we demonstrate
below, in the discrete case it is can be shown that for almost all surfaces the kernel of
V 7→ EVI consists only of rigid deformations (Prop. 8.5.6).

Second-fundamental form representation One interesting special case to consider
is the interpretation of EI when the deformation field is the normal field n. By using Eq.
(8.3) it is possible to see that the covariant derivative of the normal yields the second
fundamental form denoted by hp : TpM×TpM → R, more precisely Lng = 2h. Therefore
the operator EnI captures the action of curvature on functions, since:

∫

M

〈∇f,∇EnI (g)〉dµ = −2

∫

M

h(∇f,∇g)dµ.

From a theoretical point of view the knowledge of the Laplace-Beltrami operator gives
access to the first fundamental form and EnI yields information about the second. Thus
these two operators jointly provide a coordinate-free representation of the embedding.
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1st eigenfunction 2nd eigenfunction

Figure 8.3 – Two eigenfunctions associated with the largest eigenvalues of the operator
infinitesimal shape difference EnI for the normal field n. The gradients of these functions
represent the direction of principal curvature (Bottom row).

The operator EnI can be used to obtain a multi-scale representation of curvature infor-
mation on the triangle mesh, as shown in Figure 8.3. In particular, the eigenfunctions
corresponding to the largest eigenvalues of EnI , are those that align the best with the
maximal principal curvature direction, and can be obtained even if EnI is represented
in a reduced functional basis, making the computation less sensitive to noise in the
triangulation. Moreover, as we demonstrate in Section 8.7.2, the operator EnI can be
used to inject extrinsic information into the computation of functional maps.

Composition with mappings In many applications, we are interested in the relation
between deformation on multiple surfaces related by a mapping. In particular given a
deformation field UN of shape N and a diffeomorphism ϕ : N →M with the associated
functional map (pullback) Cϕ of functions from M to N , one can define an infinitesimal
deformation VM of shape M that produces the same metric distortion. Instead of looking
directly at the deformation of the metric, which might require a mapping between
individual triangles [117], we account for the action of the metric on functions:

EUN

I Cϕ(f) = CϕE
VM
I (f) ∀f ∈ H1

0 (M)

In other words, VM can be obtained by considering an extrinsic vector field, whose opera-
tor representation has the same effect on functions when composed with the functional
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Figure 8.4 – Example of deformation fields that commute with the underlying diffeomor-
phism. Note that both the direction and the magnitude of the vector field have to adapt
to the underlying geometry to produce the same metric distortion.

map Cϕ as EUN

I . This property allows us to transfer deformation fields without requiring
point-to-point correspondences between shapes, by simply considering the commutativity
of the operators Cϕ and EI . We illustrate it in Figure 8.4 and use it in Section 8.7.1 for
deformation transfer and deformation symmetrization on meshes with different connec-
tivity with only a functional map known between them. Furthermore, this approach is
applicable to design deformations jointly on two shapes, such that they are consistent
with the functional map Cϕ and even as a regularizer in map computation.

8.5 Discrete Setting

In this section we provide the discretization of the concepts introduced above. For this, we
first define a discretization of the unified shape difference by considering Definition 8.4.1.
We then obtain a discrete version of the infinitesimal shape difference, by considering a
particular discretization of the Levi-Civita connection and the Lie derivative of the metric
on the triangle mesh. Finally, we demonstrate that the property stated in Proposition
8.4.6 which links the Lie derivative of the metric and the infinitesimal shape difference is
satisfied exactly in the discrete case.
Throughout this section, we assume that we are given a manifold triangle mesh. We
denote by (X , E ,F) respectively the set of vertices, edges and faces. To compute the
shape differences we start from the discretization of the inner product 〈., .〉H1

0

using
standard first order finite elements. We will denote by L the classical cotangent Laplacian
matrix, W the inner product of H1

0 and A the lumped mass matrix such that L = A−1W .
As before µ is a measure and µ(T ) denotes the area of triangle T .

8.5.1 Discrete unified shape difference

The discretization of the unified shape difference is straightforward when N and M are
triangle meshes and share the same connectivity. In Definition 8.4.1 given above, the
gradients and the point-wise scalar products are taken on N while the measure dµM
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comes from M . Therefore the right hand side can be discretized by a modified cotangent
weight formula:

WMDI =WM
N , where

(WM
N )i,j =

1

2

(

µM (Tα)

µN (Tα)
cotαNij +

µM (Tβ)

µN (Tβ)
cotβNij

)

. (8.8)

Here Tα, Tβ are the two triangles adjacent to edge i, j, which is opposite to angles α and
β, while µM and µN are the triangle areas on shapes M and N respectively. Note that
WM
N differs from the standard cotangent weight matrix WN only by the ratio of weights

per triangle. Moreover, one can remark that if the transformation is area preserving for
all triangles then DI reduces to the conformal shape difference defined in [106] (Option 1
in Section 5).
From the expression above it follows that DI =W−1M WM

N . For comparison the conformal
shape difference has a close formulation DC =W−1M WN .
Remarkably, Theorem 4.2.1 admits a discrete parallel as the operator DI entirely encodes
the discrete metric.

Theorem 8.5.1 The modified cotangent weight matrix WM
N (ℓN ) uniquely determines

the edge length ℓN on N . In particular the following equivalence holds true: DI = Id if
and only if ℓM = ℓN .

Proof In [137] the authors prove that W uniquely determines the edge length up to
global scaling. Our proof simplifies and adapts their arguments to our problems.
We will first build a convex energy whose gradient corresponds to the modified cotangent
weights then show that this energy have a unique minimizer.
Let C be the set of squared edge length respecting the triangle inequality, namely the set:

C =
{

x ∈ R
|E| : xij ≥ 0, ∀(i, j) ∈ E ;

√
xij ≤

√
xjk +

√
xki, ∀(i, j, k) ∈ F

}

.

As shown by Proposition 7.7.1, C is convex.
Thanks to the Heron’s formula the triangle areas can be expressed as a function of the
squared edge lengths. More precisely we have:

µ(T )2 =
1

16





ℓ2ij
ℓ2jk
ℓ2ki





⊤



−1 1 1
1 −1 1
1 1 −1









ℓ2ij
ℓ2jk
ℓ2ki



 , ℓ2 ∈ C.

Therefore the gradient of µ(T ) with respect to the squared edge lengths is equal to the
vector of cotangent:

∇ℓ2µT (ℓ
2) =

1

4





cot(αij)
cot(αjk)
cot(αki)



 , ℓ2 ∈ C,
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where αij denotes the angle opposite to the edge (i, j). We introduce the energy term
E : C ⊂ R

|E| → R defined as

E(ℓ2) := −2
∑

T∈F

log
(

µT (ℓ
2)
)

µT (ℓ
2
M ) +

∑

(i,j)∈E

w̄ijℓ
2
ij , ℓ2 ∈ C.

By construction the gradient yields ∇ℓ2E(ℓ
2) = −wM (ℓ2) + w̄, where wM is the vector

containing the modified cotangent weight of Equation (8.8) computed with ℓ instead of
ℓN and w̄ is a target vector of weights.
The triangle areas are also accessible through the determinant of the discrete metric, i.e.
µ(T ) =

√

det(gT )/2 in Prop 3.2.2. The function A 7→ − log(det(A)) is strictly convex,
i.e. [18], and ℓ2 7→ gT is an injective linear map so E is strictly convex on its domain of
definition. Thus the optimization problem:

min
ℓ2∈R|E|

E(ℓ2) s.t. ℓ2 ∈ C,

has, when it exists, a unique solution characterized by wM (ℓ2) = w̄. As claimed, there is
a one-to-one correspondence between C and wM (C).
Suppose DI = Id it implies that the equality wM (ℓ2N ) = wM (ℓ2M ) holds true, thus the
only solution is ℓN = ℓM . �

Theorem 8.5.1 suggests that the unified shape difference can be used for recovering
intrinsic structure as developed in Chapter 7. However, it will most likely lead to highly
non-convex optimization problems as we perform a projection of the weights in the
least-squares sense.

Expression in a basis Similarly to the construction given in [106] we can also express
the unified shape difference when the basis on the source shape M is given by the
eigenfunctions of the Laplace-Beltrami operator ΦM . In that case, using a diagonal
matrix ΛM of eigenvalues, the expression for DI becomes:

DI = Λ−1M ΦTMW
M
N ΦM .

This expression has the advantage of avoiding the inverse of a large sparse matrix, and
can be used to analyze deformation of a shape with fixed connectivity in multi-scale basis,
which can make the computations resilient to local perturbations (see Option 3 in Section
5 of [106] ).

Approximation with a functional map Note that both expressions above assume
that the source and target meshes share the same connectivity. When the meshes have
different connectivity this discretization requires a map between triangles making it
challenging to use in practice. To overcome this problem we approximate this discrete
formulation by transferring the weights on triangles to lumped weights on vertices. The
approximation then reduces to the usual discrete quantities:

(W̃M
N )ij ≈

∑

t∼i µM (Tt)
∑

t∼i µN (Tt)

1

2

∑

j∼i

(cotαNij + cotβNij ).
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We recognize here the cotangent weight Laplacian LN with lumped area weights, namely
AMLN . In the case of meshes with different connectivity, this remark suggests the
following approximation of the isometric shape difference, valid only in a discrete sense,
for an arbitrary linear functional map C between M and N :

f⊤AMLMDIg ≈ f⊤AMC
−1LNCg.

In the reduced basis of the Laplacian eigenvectors, the approximation of the shape
difference becomes DI ≈ Λ−1M C−1ΛNC, which preserves the principal property of the
operator: DI is identity if and only if the deformation is an isometry since the Laplacian
on N has to be equal to the Laplacian on M . We used this discretization in Figure 8.2
and observed that the two expressions given above typically produce similar results.

8.5.2 Infinitesimal shape difference

Throughout this section we will consider the deformation field, which we also call an
extrinsic vector field, to be a given as a three-dimensional vector per vertex. As we
mentioned above, there are two possible ways of discretizing the infinitesimal shape
difference operator. First, one can use Definition 8.4.1 and take the derivative at time
zero of a discrete shape difference operator. The second possibility is to start from
Proposition 8.4.6 and find the discrete equivalent of the Lie derivative of the metric.
Remarkably, those two paths lead to the same discretization in our case.

Discrete connection

To build the discrete operator EVI we need a consistent discretization of the Levi-Civita
connection. While several discrete connections have been proposed (e.g. [7, 72]), because
of the special nature of our problem, we choose to build our own. This is because, in
applications such as parallel transport it is fundamental that the vectors u, v and ∇uv
are expressed in the same space (at vertex or face or edge) so often an averaging step
has to be introduced to transfer, for example, a face-based representation of a vector to
an edge based representation. In our setting such a requirement is not needed and it is
easier to distinguish tangent vector fields that will be expressed by one vector per face
and extrinsic vector fields expressed at vertices. Thus, our goal is to obtain a connection
of the ambient space ∇̄uV where u is a tangent vector and V is an extrinsic vector field :

∇̄ : R
3|F| × R

3|V| → R
3|F|

(u, V ) 7→ ∇̄uV

We build the connection ∇̄ using finite differences as follows. Since extrinsic vector fields
are defined at vertices the differences are taken along the edges.

Definition 8.5.2 In a given triangle T ∈ F the ambient covariant derivative along the
edge eij is defined by

(

∇̄ eij

‖eij‖

V

)

T

=
Vi − Vj
‖eij‖

.
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Thus the ambient connection in the directions E = (eij , ejk) can be stored in a matrix

(∇̄EV )T =
(

Vi − Vj Vj − Vk
)

.

Then, given any tangent vector x = Eα, the covariant derivative in its direction can be
computed as ∇̄xV = (∇̄EV )α.

Given the expression above, the discrete Lie derivative of the metric inside triangle T
follows immediately, using Eq. (8.3). Namely for any pair of tangent vectors x = Eα, y =
Eβ in the triangle T , we have:

LV g(x, y)T = 〈x, (∇̄EV )β〉+ 〈(∇̄EV )α, y〉. (8.9)

After integration we obtain the discrete infinitesimal shape difference:

f⊤WME
V
I g = −

∑

T∈F

LV g(∇f,∇g)Tµ(T ).

Shape difference derivative

The above discrete formulation can also be considered from another point of view. Recall
that we first introduced the infinitesimal shape difference as a derivative of a one-parameter
family of shape differences. Interestingly, it is possible to reproduce the equivalence
shown in Proposition 8.4.6 in the discrete setting using our discretization of the unified
shape difference operator.
Suppose that each vertex pi of the mesh is displaced by the vector Vi by pti = pi + tVi.
This produces a family of triangle meshes (X t, E ,F) with identical connectivity. Using
this setup properties similar to the continuous case can be derived.

Proposition 8.5.3 Given a one parameter family of meshes, the first-order change in
the metric tensor gT = E⊤E and in the area at a triangle T ∈ F , is given as:

∂tgT
∂t

∣

∣

∣

∣

t=0

= E⊤(∇EV )T + (∇EV )⊤TE,

∂tµ(T )

∂t

∣

∣

∣

∣

t=0

= Tr
(

g−1T E⊤(∇EV )
)

µ(T ).

Proof First let’s remark that the derivative of the discrete metric can be expressed with
respect to discrete connection:

∂gtT
∂t

∣

∣

∣

∣

t=0

= E⊤(∇EV )T + (∇EV )⊤TE.

Since the metric is linked to the triangle area by µt(T ) = 1
2

√

det(gtT ) the statement
obtained by a direct computation of the derivative. �
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In the continuous case the divergence was defined using orthonormal tangent vectors.
The formula above is the analog for a pair non orthonormal vectors, therefore we will
denote div(V )T = Tr

(

g−1T E⊤(∇EV )
)

.
Taking the derivative of the discrete unified shape difference in Eq. 8.8 might be
challenging. However, using the formulation of Eq. (3.7) in Chapter 3 leads to an
equivalent formulation of Eq. (8.8) is:

f⊤WDt
Ig :=

∑

T∈F

〈∇tf,∇tg〉tTµ(T ). (8.10)

By taking the derivative of his expression at time t = 0, we obtain an alternative
discretization of the infinitesimal shape difference EI .

Proposition 8.5.4 The discrete infinitesimal shape difference reads EVI (u) = W−1M H,
where H is a Laplacian matrix whose weights depend on the extrinsic vector field:

(H)ij =
1

2

∑

j∼i

(c(Tαij
) + c(Tβij )),

c(T ) = (〈ejk, Vj − Vi〉+ 〈eij , Vj − Vk〉)
1

4µ(T )
− div(V )T

〈ejk, eki〉
µ(T )

.

Proof Using the FEM gradient, e.g. Equation (3.6), to discretize the unified shape
difference written in Eq. 8.10 leads to:

f⊤WDt
Ig =

∑

T∈F

1

4

(

fj − fk
fj − fi

)⊤
gtT

µt(T )2

(

gj − gk
gj − gi

)

µ(T ). (8.11)

We can now compute the derivative with respect to time by using Proposition 8.5.3:

f⊤WEVI g =
∑

T∈F

1

4µ(T )

(

fj − fk
fj − fi

)⊤

LT

(

gj − gk
gj − gi

)

,

LT = E⊤(∇EV )T + (∇EV )⊤TE − 2Tr
(

g−1T E⊤(∇EV )
)

gT .

The matrices LT can be written in a form similar to the discrete metric (see Prop. 3.2.2):

LT =
1

2

(

2aij aki − ajk − aij
aki − ajk − aij 2ajk

)

,

where aij = 〈eij , Vi − Vj〉 − 2div(V )T l
2
ij , (8.12)

leading to the point-wise formulation:

(WME
V
I )ij =

1

2

∑

j∼i

(c(Tαij
) + c(Tβij )),

c(T ) =
−aki + ajk + aij

4µ(T )
.

�
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Remarkably these two discritizations are strictly identical.

Proposition 8.5.5 The discretization of EI based on the discrete Levi-Civita connection
is equivalent to the one obtained by differentiating the unified shape difference operator.

Proof In Equation (8.9) the tangent vectors in a given triangle have be to expressed in
the basis form by two edges of the triangle. Following the discussion in Section 3.2.3, the
FEM gradient at a face T can be written in two equivalent ways:

∇fT =
1

2µ(T )
R90◦E

(

fj − fk
fj − fi

)

= Eg−1T

(

fj − fi
fk − fj

)

.

Therefore the discrete strain tensor at triangle T follows immediately:

LV g(∇f,∇g) =
(

fi − fj
fj − fk

)⊤

g−1T

(

(∇̄EV ) + (∇̄EV )⊤
)

g−1T

(

gi − gj
gj − gk

)

,

From Proposition 8.5.3, we recognize the term the derivative of the inverse metric. Using
Equation (3.10), one can further modified the expression to:

LV g(∇f,∇g)T = −1

4

(

fj − fk
fj − fi

)⊤
∂

∂t

(

gtT
µt(T )2

)∣

∣

∣

∣

t=0

(

gj − gk
gj − gi

)

. (8.13)

The right had side term appears in the discrete isometric shape difference as written in
Equation (8.11). This leads to the equality between the different discretization:

∂

∂t

(

f⊤WDt
Ig
)

∣

∣

∣

∣

t=0

= −
∑

T∈F

LV g(∇f,∇g)Tµ(T ).

�

Interestingly, the discrete metric tensor can be defined for higher dimension simplicial
complexes in accordance with the FEM discretization. Therefore Proposition 8.5.5 holds
in more general cases.

8.5.3 Properties

Interestingly, many of the properties of the continuous operators are satisfied exactly by
their discrete counterparts.

Linearity The discretization EVI (f) naturally preserves the linearity with respect to
both V and f .
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Shape difference decomposition Since the discretization using a discrete connection
and through a the time derivative agree, the decomposition described by Eq. (8.6) is also
satisfied exactly. With the family of meshes conformal shape difference is:

f⊤WDt
Cg := f⊤Wtg =

∑

T∈F

〈∇tf,∇tg〉tTµt(T ),

where Wt is the cotangent weight matrix associated to the deformed mesh at time t. As
noted above the derivative of 〈∇tf,∇tg〉tT will lead to EVI . The derivative of the area
will produce a term close to

∫

M
div(u)〈∇f,∇g〉dµ thanks to Proposition 8.5.3. Namely:

f⊤WEVC g = f⊤WEVI g +
∑

T∈F

div(V )T 〈∇f,∇g〉Tµ(T ).

Thus, the decomposition of EVI , representing isometric distortion, into area and conformal
parts given in Eq. (8.6) in the continuous case holds exactly in the discrete case as well.

Vector Fields representation In the continuous setting the kernel of V 7→ EVI is
the set of infinitesimal isometries. However, to the best of our knowledge, there is no
characterization of how often this set is reduced to rigid motion. In the particular setting
of our discretization some standard results can be applied, however.

Proposition 8.5.6 For almost all triangle meshes M without boundary, the operator
EVI uniquely defines the extrinsic vector field V up to rigid motion.

Proof The proof is organized as follows: we show that we can recover the matrices LT
from the infinitesimal shape difference then we use a standard results in combinatorix to
prove that LT = 0 if and only if the extrinsic vector field is a rigid motion.

• Kernel of LT 7→ EVI . Information about the extrinsic vector field are solely contained
by the matrices LT . Those matrices agree on edges so they can be reduced to the
vector a ∈ R

|E| as defined in Eq. (8.12). The mapping a 7→ EVI is linear and almost
always invertible as proven by Proposition 7.4.2.

• Rigidity Theorem. As shown previously the kernel of a 7→ EVI is almost always
reduced to the zero element. Going back to the matrices LT , the extrinsic vector
field in the kernel should satisfy:

g−1T LT = g−1T E⊤(∇EV )T + g−1T (∇EV )⊤TE − 2Tr
(

g−1T E⊤(∇EV )
)

Id = 0.

Taking the trace in both sides implies that div(V )T = Tr(g−1T ∂tg
t
T |0) should vanish

so it is equivalent to have all matrices E⊤(∇EV )T + (∇EV )⊤TE equal zero. It
follows that the extrinsic vector field satisfies 〈eij , Vi − Vj〉 = 0 at all edges. It has
been proved in [44] that almost all simply connected closed surfaces only admit
rigid deformation as solution of this equation.

�

Therefore, unlike continuous setting, we can guarantee that EVI is a coordinate-free
representation of almost any extrinsic vector field V .
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8.6 Representation in basis

8.6.1 Basis for the Function Space

Our infinitesimal shape difference is a linear operator acting on smooth functions defined
on the surface. In practice, it is handy to use a basis for the function space, so any function
can be represented as a linear combination of some basis functions φi. In this basis, the
operator EVI can be seen as a (possibly infinite) matrix. For a function f =

∑

i αiφi
we use the linearity property EVI (f) = EVI (

∑

i αiφi) =
∑

i αiE
V
I (φi). The choice of

basis depends on the application. Since we want to represent smooth deformations of a
surface, we take a subset of the smoothest functions given by the first eigenfunctions of
the Laplace-Beltrami operator.

8.6.2 Vector field basis

As mentioned in Section 8.4.3 the infinitesimal shape difference operator EVI is linear
with respect to V . Therefore, if the vector field is given in some basis V =

∑

i βiXi

then the operator reads EVI =
∑

i βiE
Xi

I . This means that when designing infinitesimal
deformation V we can consider an objective as a function of the coefficients β, and
moreover if the function is quadratic in β then recovering V can be done by solving a
single linear system of equations. Note that this allows us to combine constraints both on
the vector field itself (e.g., handle constraints) and on its operator representation, such
as enforcing commutativity with other operators, while remaining easy to optimize for.

Choice of basis In practice we use two alternatives for the basis of extrinsic vector
fields. The simplest option is to take the eigenfunctions of the Laplace-Beltrami operator
as the basis for each component of the deformation field. While simple, this basis might not
preserve rotation invariance. Thus, alternatively we construct a basis via modal analysis of
a deformation energy. In particular we consider an energy of the form V 7→

∫

M
‖∇̄V ‖2dµ.

This corresponds to the Dirichlet energy on a particular discretization of the Bochner
Laplacian of extrinsic vector fields. To obtain the basis we take the eigenvectors of the
Hessian of the energy function, which correspond to smooth deformation fields.

8.7 Experiments

In this section we apply our constructions to various tasks in deformation design and
analysis. As our framework relies on manipulating and inverting moderately-sized matrices,
all of the applications are very efficient and even when combining multiple objectives our
method remains near interactive.

8.7.1 Deformation transfer

Pose transfer Given frames from an animation sequence and a functional map we
can use our method to transfer the deformation to an arbitrary mesh. At each step we
take a given deformation field U and find the transferred deformation V by minimizing



136 Chapter 8. Functional Characterization of Deformation Fields

So
ur

ce
(3

k
ve

rt
ic

es
)

T
ar

ge
t

(5
k

ve
rt

ic
es

)
T
ar

ge
t

(5
k

ve
rt

ic
es

)

Figure 8.5 – Deformation transfer from a given animation sequence (top row) to: another
mesh with different connectivity (middle row), and in a different pose (bottom row) in
an orientation-invariant way without using point or triangle correspondences.

V 7→ ‖EUI
M
Cϕ − CϕE

V
I

N‖2 for some given functional map Cϕ, which is represented in
a reduced basis. We parameterize the space of deformations by using the 70 principal
eigenfunctions of the Bochner-Laplacian as explained in Section 8.6.2. Figure 8.5 shows
an example of transfer from an animation consisting of 20 frames of a waving Armadillo to
Armadillos with different connectivity and in different starting position. The transferred
animation induces a similar metric distortion across different shapes resulting in a
consistent deformation. In Figure 8.6 a similar experiment is presented for a collection
of faces. The facial expressions of the first row are transferred to a another face on the
second row. The results are compared to the corresponding faces present in the collection.
Unlike [117] the transfer does not require a triangle-to-triangle map only an approximate
functional map. Moreover the meshes do not need to be oriented or positioned consistently
since only the metric changes are transferred as illustrated in the third row of Figure 8.5.

Style transfer In a similar experiment we use our approach to transfer style across
the poses of different face shapes, shown in Figure 8.7, as we all shapes in the FAUST
dataset [12], shown in Figure 8.8. Here we first consider the deformation field U given
by the point displacements across two different shapes in approximately the same pose.



8.7. Experiments 137

So
ur

ce
T
ar

ge
t

In
co

lle
ct

io
n

Figure 8.6 – Transfer of expressions in a faces collection. The expressions of the reference
face (top row) are transferred to a different face (middle row) and compared to the
corresponding faces of the collection (third row).

We then use our framework to transfer U to another shape in a different pose and with
different mesh structure. In Figure 8.8 our method consistently preserves the global
structure, although some high frequency details of the deformation are lost because of
the basis reduction. The deformation transfer for faces in Figure 8.7 is successful because
the deformation is very smooth and therefore well represented in the basis.

Symmetry transfer One interesting feature of the functional representation is that it
is “shape aware.” For example in Figure 8.9 we transfer the shrinking of the right leg to
the left leg by looking for the operator which commutes with the operator representation
of the symmetry map. Since both legs are in different positions this transfer is not easy
by a simple point-to-point transfer of the vector field or even by transferring it using
local coordinates. As shown by the vector field representation in Figure 8.9 bottom row,
the transferred vector field adapts to the geometry.

Deformations design Since our operator is linear with respect to the deformation
field one can easily enforce additional deformation constraints to the extrinsic vector
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Figure 8.7 – The deformation between the two shapes in the first column is transferred to
a face in various expressions (red faces top row). The obtained deformation is consistent
across the poses (red faces bottom row) even if the meshes have different connectivity
and only an approximate functional map is used for the transfer.

field. In Figure 8.10 we require that at a point p the deformation field matches a given
vector u: V (p) = u in addition to other global constraints. We find the most isometric
deformation by minimizing V 7→ ‖EVI ‖2F . Given a self-map S, we design a symmetric
vector field imposing a constraint of the form ‖EVI CS−CSEVI ‖ = 0. We observe a similar
deformation on each tentacles. We can also impose an anti-symmetry constraint with
‖EVI CS + CSE

V
I ‖ = 0. Alternatively, regularization technique for deformation can be

tested by imposing the commutativity with the Laplace-Beltrami operator, interestingly
the deformation tends to spread to the entire shape.
Figure 8.11 presents an example of joint deformation design. Namely, we impose a set of
directional constraints on two different shapes and want a deformation on each shapes
that is aware in some way of the deformation of the other shape. To do so, we find U

and V minimizing (U, V ) 7→ ‖EUI
M
Cϕ − CϕE

V
I

N‖2 and respecting the local constraint
on their respective shape. As a result, the constraints on one shape are transferred to the
other. Moreover the area that could lead to contradictory deformation remains still.

8.7.2 Functional map inference

The infinitesimal shape difference is not only useful for design and analysis of deformations,
it can also be used as a regularization in a shape matching problem. Below we show
how this representation can be used to add extrinsic information to the computation of
functional maps [88]. In this framework it is challenging to use extrinsic information in
another way than just using extrinsic based descriptors and while remaining rotationally
invariant.
In this experiment we propose to solve the following problem: given two shapes and a
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Figure 8.8 – The deformation field defined by the blue shapes (first column) is transferred
to the same shape in different poses (top white shapes). While the style is consistent
across the poses (red shapes) some details of the deformation are lost due to the basis
representation. The style transfer are compared to the corresponding shape in the
collection (bottom white shapes).

sparse set of correspondences recover a dense map. The shapes come from the Faust
dataset [12] and we are given five corresponding landmarks at the hands, feet and head.
The baseline method following the logic of the original paper is to represent the landmark
points as delta functions δM and δN and look for the most isometric functional map
C : L2(M) → L2(N), by enforcing commutativity with the Laplace-Beltrami operator.
Thus, the straightforward approach would be to solve the optimization problem:

min
C

‖C∆M −∆NC‖2F s.t. CδM = δN .

In order to add extrinsic information to this problem, we would like C to commute with
the operator EnI representing the information about the second fundamental form. Note
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Initial shape Deformation Symmetrization

Figure 8.9 – An initial deformation (first two columns), corresponding to the shrinking of
the right leg of a human model, is transferred to the left leg by imposing the commutativity
between the infinitesimal shape difference and the symmetry map. Both legs are in
different position so the transfer has to adapt to the geometry.

Constraints As-iso.-as possible Symmetry Anti-sym. Laplacian Reg.

Figure 8.10 – We design deformations respecting the directional constraints shown on
the far left and minimizing various criteria (from right to left): the infinitesimal shape
difference leading to the most isometric vector field, the commutativity with the a self-
map, the anti-commutativity with the same self-map and the commutativity with the
Laplace-Beltrami operator.

that if a diffeomorphism commutes with the Laplace-Beltrami operator and EnI then the
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Separate design Joint design

Figure 8.11 – Left: The deformations are designed separately by minimizing the norm of
EVI . Right: joint deformation design by adding the commutativity with the mapping to
the optimization. Note that the constraints on one shape tend to be transferred to the
other.

shapes admit the same embedding. Our new optimization problem thus reads:

min
C

‖C∆M −∆NC‖2F + ‖CEnI M − EnI
NC‖2F

s.t. CδM = δN .

Once the functional maps are obtained they are converted to a point-to-point map
using the knn-algorithm as described in [88]. The results are shown for two shape
matching problems a nearly-isometric and a non-isometric. Figure 8.12 shows the
percentage of correspondence within a given geodesic distance, and it can be seen
clearly that the additional extrinsic information provides valuable information since the
correspondence exhibits less error. Figure 8.13 provides a visualization of the point-to-
point correspondences by transferring the coordinates functions encoded as RGB channels.
Interestingly our new constraint make the map smoother in both cases.
We preform a similar experiment in Figures 8.14 and 8.15, where instead of using the
normal field as regularization we deform by hand the shapes to be matched with an
equivalent deformation. This extrinsic vector field is used to regularized the shape
matching problem.
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Figure 8.12 – Percentage of correspondences within a geodesic ball for a nearly-isometric
and a non-isometric shape matching problems. Note that adding the commutativity
constraint with EnI (red lines) improves the correspondences.

Initial Laplacian Reg. Curvature Reg.

Figure 8.13 – Representation of the point-to-point map evaluated in Figure 8.12. The
RGB channel (left column) represents the xyz-coordinates, which are transferred using
the recovered point-to-point map. In both cases, the maps obtained using commutativity
with EnI (right column) tend to be smoother than the naive approach (middle column).
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Figure 8.14 – Percentage of correspondences within a geodesic ball for an nearly-isometric
and a non-isometric shape matching problems. Note that adding the commutativity
constraint with a deformation field (red lines) improves the correspondences.

Figure 8.15 – Representation of the point-to-point map evaluated in Figure 8.14. The
RGB channel (left column) represents the xyz-coordinates, they are transferred using
the point-to-point map. In both case, the maps obtained using commutativity constraint
(right column) tend to be smoother than the naive approach (middle column).
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8.8 Conclusion and Future Work

In this chapter we presented a method for representing extrinsic vector fields as linear op-
erators acting on functions on the shapes, by considering the metric distortion induced by
the deformation. For this we adapted the previously proposed shape difference operators
by first introducing a unified shape difference, which fully encodes isometric distortion.
We then defined infinitesimal shape difference operators, which provide a compact func-
tional representation of deformation fields. We showed how this representation can be
used to analyze, transfer, and design deformations and to introduce extrinsic information
into the computation of functional correspondences.
In the future, we are planning to use the newly introduced functional representation
for shape animation, by exploiting its simplicity and ability to relate deformations on
multiple shapes even without pointwise correspondences.



Chapter 9

Conclusion

In this thesis we have studied functional characterization of diffeomorphisms and embeded
surfaces. The field of operator representation is relatively new in computer graphics and
many questions remain open. Here we summarize some possible improvements and future
works.

Shape to Deformation

This thesis provides a whole pipeline for shape matching. The first stage is the computation
of an unknown functional map between shapes. The descriptor selection and stable
subspace learning prove to be resilient to noise and robust to non-isometric matching.
The learning procedure is guided by given correspondences in a collection. However, this
type of data might be difficult to obtain, whereas non-supervised optimization seems an
achievable goals with functional maps. For example spectral descriptors are often related
to geodesic distances. So tracking inconsistencies among descriptors might be a way of
learning common intrinsic changes and moving parts in models.

The second stage, which consists of converting the functional map into a continuous
point-to-point map attempts to improve currently available methods by adding continuity.
The method relies on the functional representation of vector field flow. However some
diffeomorphisms are badly or not at all represented due to the use of a reduced function
basis. Therefore, only a subset of vector fields generates representable maps. Currently
we restrict vector fields to smooth bases but a more careful analysis of representability is
needed to adapt the size of the vector field space to the size of the function space. Besides
the hierarchical nature of eigenfunctions may be exploited into a “spectral multi-grid"
algorithm.

A more long term challenge is to rethink this pipeline to solve non-isometric matching.
The conversion to a point-to-point map do not make any assumptions on the nature of the
deformation as-long-as a valid functional map is given as input. The computation of the
functional map however depends on function correspondences which are most of the time
unreliable for large deformations. Moreover, the function basis, based on the Laplacian
eigenfunctions, can be quite different on each mesh, meaning that large functional maps
are needed. It seems that improvements can be obtained by considering adaptive basis
function and localized descriptors.
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Deformation to Shape

A functional characterization of deformable surfaces offers many possible future works in
particular it defines an alternative shape space (e.g. [61, 50]).
Infinitesimal shape differences constitute a tangent space of a shape difference. This is a
first step toward building a complete representation of a manifold of Riemannian metrics.
We can then explore the shape space by following geodesics between surfaces or finding
barycentric shapes. The most straightforward method to do so is by linear interpolation
of the edge length and dihedral angle [134] – discrete analogs of the metric and mean
curvature. However, it is challenging to extent this view to other types of data whereas
operator based methods rely on well-studied discretizations. To reach this goal, however,
we are lacking a notion of metric between infinitesimal shape difference operators. The
naive Frobenius norm does not have meaning outside the discrete setting and may lead
to ill-conditioned problems. An analysis of the space of shape differences would help
defining a suitable metric and geodesic distances as different metric and curvature may
lead to different notion of interpolation of meshes.
Defining a functional curvature representation stands as an unsolved problem. The
solution provided by Chapter 7 is not entirely satisfactory since it requires to transform
a surface to a tetrahedral mesh increasing the size of the problem. Moreover, global
constraints linking the shape differences of the bottom layer to the top layer so it represents
an embedded surface, are lacking and may not be easy to use in practice. Chapter 8 also
suggests an answer but without theoretical proof of complete representation of triangle
meshes. Nevertheless, this issue is fundamental in order to perform deformation based on
curvature analysis (parametrization is an extreme example) or curvature interpolation.
Two properties are desirable: the completeness of information, in the sense that we are
able to recover the embedding from the shape differences and the curvature representation,
and the insensitivity to noise and tessellation.
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Titre : Représentation fonctionnelle des surfaces déformables pour l’analyse et la synthèse

géométrique

Mots clés : Imagerie 3D, Association forme, Algorithmes géométriques

Résumé :

La création et la compréhension des déformations de surfaces

sont des thèmes récurrents pour le traitement de géométrie

3D. Comme les surfaces lisses peuvent être représentées de

multiples façons allant du nuage de points au maillage polygo-

nal, un enjeu important est de pouvoir comparer ou déformer

des formes discrètes indépendamment de leur représentation.

Une réponse possible est de choisir une représentation flexible

des surfaces déformables qui peut facilement être transportée

d’une structure de données à une autre.

Dans ce but, les "functional map" proposent de représenter

des applications entre les surfaces et, par extension, des dé-

formations comme des opérateurs agissant sur des fonctions.

Cette approche a été introduite récemment pour le traitement

de modèle 3D, mais a été largement utilisée dans d’autres

domaines tels que la géométrie différentielle, la théorie des

opérateurs et les systèmes dynamiques, pour n’en citer que

quelques-uns. Le principal avantage de ce point de vue est de

détourner les problèmes encore non-résolus, tels que la cor-

respondance forme et le transfert de déformations, vers l’ana-

lyse fonctionnelle dont l’étude et la discrétisation sont souvent

mieux connues. Cette thèse approfondit l’analyse et fournit

de nouvelles applications à ce cadre d’étude. Deux questions

principales sont discutées.

Premièrement, étant donné deux surfaces, nous analysons

les déformations sous-jacentes. Une façon de procéder est de

trouver des correspondances qui minimisent la distorsion glo-

bale. Pour compléter l’analyse, nous identifions les parties les

moins fiables du difféomorphisme grâce à une méthode d’ap-

prentissage. Une fois repérés, les défauts peuvent être éliminés

de manière différentiable à l’aide d’une représentation adé-

quate des champs de vecteurs tangents.

Le deuxième développement concerne le problème inverse :

étant donné une déformation représentée comme un opéra-

teur, comment déformer une surface en conséquence ? Dans

une première approche, nous analysons un encodage de la

structure intrinsèque et extrinsèque d’une forme en tant

qu’opérateur fonctionnel. Dans ce cadre, l’objet déformé peut

être obtenu, à rotations et translations près, en résolvant une

série de problèmes d’optimisation convexe. Deuxièmement,

nous considérons une version linéarisée de la méthode précé-

dente qui nous permet d’appréhender les champs de déforma-

tion comme agissant sur la métrique induite. En conséquence

la résolution de problèmes difficiles, tel que le transfert de dé-

formation, sont effectués à l’aide de simple systèmes linéaires

d’équations.

Title : Functional representation of deformable surfaces for geometry processing

Keywords : Geometry processing, Shape matching, Geometry algorithm

Abstract :

Creating and understanding deformations of surfaces are re-

curring themes in geometry processing. As smooth surfaces

can be represented in many ways from point clouds to tri-

angle meshes, one of the challenges is being able to compare

or deform consistently discrete shapes independently of their

representation. A possible answer is choosing a flexible repre-

sentation of deformable surfaces that can easily be transpor-

ted from one structure to another.

Toward this goal, the functional map framework proposes to

represent maps between surfaces and, to further extents, de-

formation of surfaces as operators acting on functions. This

approach has been recently introduced in geometry processing

but has been extensively used in other fields such as diffe-

rential geometry, operator theory and dynamical systems, to

name just a few. The major advantage of such point of view is

to deflect challenging problems, such as shape matching and

deformation transfer, toward functional analysis whose dis-

cretization has been well studied in various cases. This thesis

investigates further analysis and novel applications in this

framework. Two aspects of the functional representation fra-

mework are discussed.

First, given two surfaces, we analyze the underlying defor-

mation. One way to do so is by finding correspondences that

minimize the global distortion. To complete the analysis we

identify the least and most reliable parts of the mapping by

a learning procedure. Once spotted, the flaws in the map can

be repaired in a smooth way using a consistent representation

of tangent vector fields.

The second development concerns the reverse problem : gi-

ven a deformation represented as an operator how to de-

form a surface accordingly ? In a first approach, we analyse a

coordinate-free encoding of the intrinsic and extrinsic struc-

ture of a surface as functional operator. In this framework a

deformed shape can be recovered up to rigid motion by sol-

ving a set of convex optimization problems. Second, we consi-

der a linearized version of the previous method enabling us

to understand deformation fields as acting on the underlying

metric. This allows us to solve challenging problems such as

deformation transfer are solved using simple linear systems of

equations.
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