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Titre : Exploration du paysage énergétique de défauts dans les métaux cubiques centrés. 

Mots clés : Métaux, paysage énergétique, défauts, potentiels empirique, ab initio 

Résumé : Les matériaux composants les réacteurs nucléaires subissent des conditions d’irradiation 

sévères, donnant lieu à des modifications de leurs propriétés mécaniques. Le vieillissement de ces 

matériaux soulève des questions aussi importantes que celles liées à la sécurité des centrales existantes et 

aux futurs réacteurs à fission et à fusion. Dans plusieurs situations les matériaux de structure cristalline 

cubique centrée CC sont utilisés ayant pour base le fer, le tungstène, le vanadium et le tantale. Les 

collisions entre les particules irradiantes et les atomes constituants les matériaux engendrent des défauts 

ponctuels dont la migration mène à la formation d’amas responsables du vieillissement. Dans cette thèse 

nous avons étudié les propriétés énergétiques des défauts ponctuels dans les métaux CC cités 

précédemment à l’échelle atomique. La modélisation des défauts ponctuels à l’échelle atomique peut être 

réalisée avec différentes méthodes se différenciant uniquement par la qualité de la description de 

l’interaction entre atomes. Les études utilisant des interactions atomiques exactes, type ab initio, 

nécessitent des calculs lourds rendant impossible l’étude directe des amas de grandes tailles. Avec la 

modélisation des interactions atomiques via les potentiels semi-empiriques on réduit la fiabilité et le 

caractère prédictif du calcul. Ceux-ci permettent toutefois de réaliser une étude des amas en fonction de 

leur taille. Dans cette thèse nous avons développé un modèle énergétique original pour les boucles de 

dislocation ainsi que pour les amas interstitiels tridimensionnels de type C15. Le modèle obtenu est sans 

limite de taille et peut être paramétré entièrement par les calculs ab initio. Afin de tester sa robustesse 

pour les grandes tailles d’amas nous avons également paramétré ce modèle par rapport à des calculs en 

potentiels semi-empiriques et comparé les prédictions du modèle aux simulations atomiques. Grâce à 

notre développement nous avons pu déterminer : (i) la stabilité relative des boucles de dislocation 

d’interstitiels d’après leur vecteur de Burgers. (ii) La stabilité  des amas C15 par rapport aux amas de type 

boucle. Nous avons montré que les amas de type C15 étaient plus stables lorsqu’ils impliquent moins de 

41 interstitiels dans le fer. (iii) Dans le Ta nous avons pu mettre en évidence la même stabilité jusqu’à 20 

interstitiels. Les expériences dans le fer irradié montrent qu’en fonction de la température d’irradiation, il 

se forme des boucles de dislocation très mobiles de vecteur de Burgers ½<111> ou immobiles ayant un 

vecteur de Burgers <100>. Les mécanismes de formation sous irradiation en fonction de la température, 

des amas de type <100> étaient une question restée sans explication théorique depuis 50 ans. Dans cette 

thèse, grâce à la précision de notre modèle énergétique, nous avons pu tester plusieurs théories. 

Notamment nous avons montré que les amas C15 constituent un catalyseur dans la formation des boucles 

<100>. Les clusters C15 peuvent se former, par germination, directement dans le processus d’irradiation. 

Ces clusters sont immobiles et  peuvent croitre. A partir d’une certaine taille les amas C15 se dissocient 

en boucles ½ <111> ou <100>. Nous avons étendu notre modèle au calcul d’énergie libre de formation 

des défauts permettant ainsi des prédictions à température finie que nous avons comparées aux 

simulations atomiques. Les lois établies dans cette thèse en utilisant notre modéle pour calculer l’énergie 

libre de formation en fonctions de la taille des amas, ont été ensuite utilisées dans une simulation de 

dynamique d’amas. Nous avons ainsi pu prédire avec un très bon accord expérience-théorie la 

concentration des amas d’interstitiels en fonction de leurs tailles au cours du murissement d’Oswald post-

irradiation dans un échantillon de Fer sous atmosphère d’Hélium. Le succès d’une telle approche nous 

permet d’espérer étendre ce type d’étude à des matériaux plus complexes. 
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Titre : Energy landscape of defects in body-centered cubic metals. 

Mots clés : Metals, energy landscape, defects, empirical potentials, ab initio 

Résumé : The structural materials in nuclear reactors are subjected to severe irradiation conditions, 

leading to changes in their mechanical properties. The aging of these materials raises important issues 

such as those related to the safety of existing plants and future reactors. In many cases, materials with 

body-centered cubic bcc crystal structure are used with iron, tungsten, vanadium and tantalum as base 

metal. Collisions between irradiating particles and atoms constituting materials generate point defects 

whose migration leads to the formation of clusters responsible for aging. In this thesis, we studied the 

energetic properties of point defects in the bcc metals mentioned above at the atomic scale. Modeling 

point defects at the atomic scale can be achieved with different methods that differ only in the quality of 

the description of the interaction between atoms. Studies using accurate atomic interactions such ab initio 

calculations are computationally costly making it impossible to directly study clusters of large sizes. The 

modeling of atomic interactions using semi-empirical potentials reduces the reliability of predictive 

calculations but allow calculations for large-sized clusters. In this thesis we have developed a unique 

energy model for dislocation loops as well as for three-dimensional interstitial cluster of type C15. The 

resulting model has no size limit and can be set entirely by ab initio calculations. To test its robustness for 

large sizes of clusters we also set this model with semi-empirical potentials calculations and compared 

the predictions of the model to atomic simulations. With our development we have determined: (i) The 

relative stability of interstitial dislocation loops according to their Burgers vectors. (ii) The stability of the 

clusters C15 compared to the type of cluster loop. We showed that the C15 type clusters are more stable 

when they involve less than 41 interstitials in iron. (iii) In Ta we were able to show the same stability till 

20 interstitials. The experiments involving iron show that depending on the irradiation temperature, 

highly mobile dislocation loops of Burgers vector ½ <111> or loops with Burgers vector <100> are 

formed. Considering formation mechanisms under irradiation as a function of temperature, formation of 

the <100>-type clusters lacked an acceptable theoretical explanation for about 50 years. In this thesis, the 

accuracy of our energy model enabled validation of several theories proposed in the last 50 years. In 

particular we have shown that the formation of loops <100> at high temperatures can be formed from 

C15 clusters which may be created directly in the irradiation process. These clusters are immobile and 

can grow. Beyond a certain size, the C15 clusters dissociate into loops ½ <111> or <100>. We have 

extended our model to free energy calculation of defect formation allowing for finite temperature 

predictions which is further compared to atomic simulations. The laws established in this thesis using our 

model to calculate the free energy of formation of the cluster size functions were then used in a cluster 

dynamics simulation. On comparison with experiments involving post-irradiation Oswald ripening in a 

sample of iron exposed to an atmosphere of helium, our energy model showed significant improvements 

over older energy laws, such as the capillary law widely-used in multiscale computation cluster dynamics 

or Monte Carlo kinetics. We conclude that the new laws established from our calculations are essential to 

predict the concentration of dislocation loop under irradiation, depending on their sizes. The success of 

such an approach encourages extension of a similar study in more complex materials. 

 

 

 



Résumé  

Les matériaux composants les réacteurs nucléaires subissent des conditions d’irradiation sévères, 

donnant lieu à des modifications de leurs propriétés mécaniques. Le vieillissement de ces matériaux 

en condition d’utilisation soulève des questions aussi importantes que celles liées à la sécurité des 

centrales existantes dans le cadre de l’allongement de leur durée de vie et celles liées aux systèmes 

énergétiques du futur tels que les réacteurs à fission de génération IV et le confinement de la fusion 

dans les tokamaks. Les réacteurs fonctionnant sur le principe de la  fission nucléaire utilisent 

essentiellement les alliages de fer comme matériaux de structure. Les systèmes énergétiques futurs 

reposant sur la fusion nucléaire proposent d’utiliser les alliages à base tungstène. Le vanadium et le 

tantale sont également des matériaux envisagés pour des  réacteurs à fusion. Le point commun entre 

ces différents matériaux est leur structure cristalline de symétrie cubique centrée CC. 

 

Les collisions entre les particules irradiantes et les atomes formant le réseau cristallin des matériaux 

engendrent des défauts ponctuels dont la migration par activation thermique mène au regroupement 

de ces défauts sous forme d’amas responsables du vieillissement de matériaux. Mieux comprendre 

comment ces amas se forment est donc essentiel pour appréhender l’évolution  des matériaux sous 

irradiation. Dans cette thèse nous avons étudié les propriétés du paysage énergétique de défauts 

ponctuels dans les métaux cubiques centrés fer, tungstène, vanadium et tantale. En s’appuyant sur la 

modélisation à l’échelle atomique, nous avons souhaité  améliorer et réduire le caractère empirique 

des modèles phénoménologiques existants.  

 

La modélisation des défauts ponctuels à l’échelle atomique peut être réalisée avec différentes 

méthodes se différenciant uniquement par la qualité de la description de l’interaction entre atomes. 

Les études utilisant des interactions atomiques exactes, type ab initio, nécessitent des calculs lourds, 

réduisant drastiquement les possibilités d’investigations systématiques et en particulier rendant 

impossible l’étude directe des amas de grandes tailles. A mesure que l'on réduit la qualité de la 

modélisation de l’interaction atomique, on réduit la fiabilité et le caractère prédictif du calcul. C’est 

le cas avec la modélisation des interactions atomiques via les potentiels semi-empiriques. Ceux-ci 

permettent toutefois de réaliser des  études systématiques des amas en fonction de leur taille. Dans 

cette thèse nous avons pu dépasser le facteur limitant des calculs ab initio et éviter l’utilisation des 

potentiels semi-empiriques. Nous avons développé un modèle énergétique original pour les boucles 

de dislocation ainsi que pour les amas interstitiels tridimensionnels de type C15. Le modèle obtenu 

est sans limite de taille et peut être paramétré entièrement par les calculs ab initio. Afin de tester sa 

robustesse pour les grandes tailles d’amas nous avons également paramétré ce modèle par rapport à 

des calculs en potentiels semi-empiriques et comparé les prédictions du modèle aux simulations 

atomiques sur des amas de grandes tailles. Pour développer ce modèle,nous avons dû combiner le 

caractère discret des petit amas qui tient compte du voisinage chimique de chaque atome avec le 

caractère continu des grandes boucles de dislocation, traité suivant l’approximation de l’élasticité 

anisotrope.  En utilisant cette approche il a été possible   de prédire les énergies de formations des 

amas C15 et des boucles de dislocations pour toutes  les tailles avec la précision des calculs ab 

initio. Les seules données nécessaires sont les énergies de formation ab initio d’une série de 

configurations de petits amas d’interstitiels dans les différents matériaux étudiés. 

 

Grâce à notre développement nous avons pu déterminer : (i) la stabilité relative des boucles de 

dislocation d’interstitiels dans le cas du Fe d’après leur vecteur de Burgers. (ii) la stabilité  des amas 

C15 par rapport aux amas de type boucle. Nous avons montré que les amas de type C15  étaient 

plus stables lorsqu’ils impliquent moins de  41 interstitiels dans le fer.  Ce résultat est très important 

pour les expérimentateurs puisqu’il fournit une indication précise de la taille maximale de ces amas 

C15, qui correspond à environ 2 nm de diamètre dans Fe. (iii) dans le Ta  nous avons pu mettre en 

évidence la même stabilité jusqu’à 20 interstitiels ouvrant une voie possible de détection 

expérimentale de ces amas correspondants à environ 1 nm de diamètre. (iv) pour l’ensemble des 
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matériaux étudiés nos données atomistiques pourront être utilisées dans des simulations multi-

échelles afin de décrire les différentes étapes du vieillissement.  

 

En utilisant les résultats de cette thèse nous avons pu aussi répondre à des questions restées en 

suspend liées à la germination et croissance des amas d’interstitiels dans les métaux de symétrie  

CC sous irradiation. Dans ces métaux, et leurs alliages, l'évolution de la microstructure sous 

irradiation dépend fortement de la morphologie des défauts ponctuels. La morphologie adoptée par 

ces amas de défauts est une question fondamentale, avec des conséquences pratiques évidentes sur 

les propriétés des matériaux, puisque cette propriété contrôle : (a) la mobilité des amas de défauts et 

donc la cinétique de la microstructure, (b) la force d’ancrage dislocation-obstacle et donc le 

durcissement des matériaux, (c) les variations dimensionnelles telles que le gonflement ou la 

croissance. Les expériences dans le fer irradié montrent qu’en fonction de la température 

d’irradiation, il se forme des boucles de dislocation très mobiles de vecteur de Burgers ½<111> ou 

immobiles ayant un vecteur de Burgers <100>.  Les mécanismes de formation sous irradiation en 

fonction de la température,  des amas de type <100>  étaient une question restée sans explication 

théorique depuis 50 ans.  Dans cette thèse, grâce à la précision de notre modèle énergétique, nous 

avons pu  tester plusieurs théories proposés au cours des derniers 50 ans. Notamment nous avons 

montré en étudiant le paysage d’énergie libre de trois catégories d’amas, C15, ½<111> et <100>, 

que les amas C15 constituent  un catalyseur dans la formation des boucles <100>.  Les clusters C15 

peuvent se former, par germination, directement dans le processus d’irradiation. Ces clusters sont 

immobiles et  peuvent croitre. A partir d’une certaine taille les amas C15 se dissocient en amas de 

type boucles ½ <111> ou <100>.  

 

Nous avons également étendu le champ d’application de notre model énergétique à l’énergie libre 

de formation des défauts permettant ainsi d’établir des prédictions pour différentes températures. 

Cette extension est possible essentiellement  par la prise en compte de la variation des constantes 

élastiques avec la  température. Nous avons étudié les limites de cette extension en  comparant nos 

prédictions avec des calculs d’énergie libre réalisés par simulations atomiques.  Nos calculs ont été 

réalisés avec plusieurs niveaux d’approximations afin de tenir compte de du caractère 

anharmonique des cristaux CC. 

 

Les lois établies dans cette thèse en utilisant notre modéle énergétique, pour calculer l’énergie et 

l’énergie libre de formation en fonctions de la taille des amas, ont été ensuite utilisées pour 

paramétrer une simulation de dynamique d’amas. Dans cette simulation nous avons pu prédire la 

concentration des amas d’interstitiels en fonction de leurs tailles au cours du murissement d’Oswald 

post-irradiation dans un échantillon de Fer en atmosphère d’Hélium.  Nous avons comparé les 

prédictions théoriques avec les résultats expérimentaux. Les résultats obtenus, en utilisant le modèle 

énergétique montrent un très bon accord expérience-théorie.  De plus, nous avons montré des 

améliorations considérables par rapport à des lois énergétiques plus anciennes, comme, par 

exemple, la loi capillaire utilisée par l’intégralité des physiciens réalisants des calculs multi-échelle 

de type dynamique d’amas ou Monte Carlo Cinétique.  Dans le Fe, toutes les autres lois empiriques 

utilisées par la communauté des matériaux sous irradiation ne permettent pas d’établir des 

prédictions conformes de aux résultats expérimentaux. Nous avons conclus que les nouvelles lois 

établies à partir de nos calculs sont essentielles pour prédire, sous irradiation, la concentration de 

boucle de dislocations en fonction de leurs tailles. Le succès d’une telle approche nous permet 

d’espérer  étendre ce type d’étude à des matériaux plus complexes tels que les alliages multi-

composants utilisés dans l’industrie. 
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Introduction

Safety of a commercial nuclear fission plant is ensured by its four barriers: the nuclear

fuel rod, the reactor cooling system, the containment building and the reactor building.

Undoubtedly, nuclear power plants (both fission and planned fusion reactors) require a

whole range of structural materials to maintain their integrity and to contain radiation

under all circumstances. Since longevity and safe functioning of the nuclear power

plant rely heavily on the adequacy of the structural materials, a thorough study of their

behaviour under radiation damage is inevitable. Study of radiation damage in structural

materials is thus central to the safety as well as smooth functioning of the nuclear power

plants.

In numerous situations, the main materials of interest in the nuclear fission and fusion

industries are the bcc transition metals, such as special steels or materials based on

tungsten, tantalum and vanadium. According to Ref. (1 ), Molecular dynamics simula-

tions and experimental studies have shown that the body centered cubic lattice demon-

strates improved radiation resistance compared to the close-packed face centered cubic

lattice due to reduced amount of vacancy and interstitial defect clustering that occurs

directly within displacement cascades. This endorses continued development of fer-

ritic/martensitic steels and vanadium alloys as promising candidates for fusion reactor

structures. (1 )

Reduced activation Ferritic/Martensitic steels exhibit high strength at higher tem-

peratures, as can be established from Refs. (2 –4 ) while vanadium alloys demonstrate a

good combination of strength, ductility and radiation resistance (5 –7 ). Tungsten alloys

are candidate materials for first wall and divertor components of future fusion reactors

because of their high melting point and hence higher operating temperatures (8 –10 ).

Tantalum is known for its high toughness, high-sputtering threshold energy, easy fabri-

cability and low activation properties which make it a candidate for target material for

spallation sources or even first wall material in fusion reactors (11 –14 ). As such, study
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of defects in Fe, V, Ta and W serve as the basic foundation for future research regarding

structural materials in the nuclear industry. It can also supplement the current indus-

trial research and lead to better understanding of the behavior of potential structural

materials.

To model the behaviour of materials in reactor theory needs multiscale approach.

These multiscale models require some inputs like formation energies of the Self Intersti-

tial Atom (SIA) defects. Although there exist many methods to determine the formation

energy of SIAs, each has its limitation. Ab initio calculations, which will be discussed

further in the chapters, incorporate some reasonable approximations and can be per-

formed using standard ab initio simulation packages. Such calculations are based on

Density functional theory and provide accurate formation energies for small-sized in-

terstitial defects but are computationally costly at larger sizes (say, above 22 SIAs).

To address this size limitation, various empirical potentials have been developed for Fe

and W with Embedded Atom Method (EAM) being the most popular. These EAM

potentials have facilitated calculation of formation energy while being computationally

feasible for large cluster sizes and fast. However, they do not yield accurate values for

formation energy and are non-transferable, i.e. reliable description of material proper-

ties strongly depends on the relation of these properties with the parameters fitted. For

instance, one important contribution of EAM potentials is allowing for testing scaling

laws and theory but the formation energy predicted using different empirical potentials

can have a difference of up to 400 eV for 1000 SIAs in Fe.

To summarize, existing accurate ab initio calculations to calculate formation energies

are limited by size, calculations using EAM potentials are hindered by non-transferability

and the easily accessible ad-hoc laws are empirical. That is what justifies the present

study. My work aims to address the need for a reliable atomistic model that can provide

reasonably accurate zero K formation energy or finite-temperature free energy without

size-limitation and which can be applied with reasonable ease in further multi-scale

studies. Although this study would be in principle applicable to all bcc metals, this

thesis concentrates on interstitial defects in Fe, W, Ta and V.

The organization of chapters in this thesis is as follows.

The first chapter is dedicated to the literature survey of the theoretical background of

radiation damage in the four transition metals of interest. It includes a brief summary of

the radiation damage theory and a survey of the existing experimental and simulation-
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based results. This chapter aims to emphasize the importance of this study and equip

the reader with relevant background of the radiation damage in the concerned metals,

as established before this study.

The second chapter presents a theoretical background of the existing atomistic tech-

niques to calculate formation energies of defects in transition metals. The first section

in this chapter traces the chronological evolution of the ab initio methods that are cur-

rently used to calculate accurate formation energies of ‘limited number’ (up to 22 self-

interstitial atoms) of interstitial defects. The second section involves description of the

tight-binding approach while the third section is dedicated to ‘approximate’ empirical

potentials with a special emphasis on EAM potentials for bcc metals.

The third chapter is devoted to the development of new EAM potentials for Fe. Firstly,

existing empirical potentials and their shortcomings are discussed to highlight the need

for a new empirical potential. Then, the lessons learned from the fitting strategies of

existing empirical potentials are recapitulated to devise an effective strategy to develop

new empirical potentials for studies involving irradiation-induced defects in Fe. This

strategy is then implemented in the development of new empirical potentials with a

description of the fitting procedure. Selection rules for the construction of stable C15

clusters are also presented. Finally, the relative stability of C15 clusters and dislocation

loops is studied using existing and newly-developed empirical potentials.

The fourth chapter focusses on a systematic description of the steps involved in the

development of ab initio accuracy model to predict formation energies of defect clus-

ters with various geometries and sizes. The first section in this chapter recapitulates

the elastic theory in the ‘continuum limit’ applicable for large two-dimensional (2D)

loops. Then, the second section formulates integration of ‘discrete’ ab initio formation

energies for small-sized defects with ‘continuum’ anisotropic elastic theory formulation

for formation energy of large-sized defects. This new formulation provides a ‘discrete-

continuum’ model to calculate formation energy of defects as a function of number of

SIAs without size-limitation at 0K and no strain condition. The discrete part involves

transformation of ab initio formation energies of small-sized defects into an energetic

model based on geometry i.e. in terms of 1st and 2nd nearest neighbors. The third

section outlines construction of a database of defect structures (2D and 3D) up to 22

SIAs, following some general rules from previous studies. The fourth section illustrates

validation of the discrete-continuum model after tests using existing empirical potentials

for Fe and W. After validation, the fifth section presents the ab initio based predictions
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of the energy landscape of defects and also provides scaling laws for extrapolation which

provide formation energies of defects (2D or 3D) of any size for the four metals solely

as a function of number of interstitials. This chapter concludes with a summary of the

main results obtained using the discrete-continuum model.

Chapter five is concerned with calculation of free energy of defects at finite temper-

atures. The first section emphasizes the need for free energy calculations. The second

section explains extension of the discrete-continuum model, developed for 0K conditions,

to calculate finite-temperature free energy. The temperature dependence of elastic con-

stants and other variables of the four metals was derived from experimentally observed

values of elastic constants and the corresponding variables at finite temperatures. This

temperature dependence of elastic constants was included in the discrete-continuum

model formulation for formation energy at 0K (explained in chapter 4) in order to

develop an atomistic model with validity at finite temperatures. The third section sup-

plies another possible method of free energy calculations involving the quasi-harmonic

approximation. Then, the free energy calculations from the two models are compared

to validate the finite-temperature discrete-continuum model. Two applications of this

finite-temperature discrete-continuum model are also presented. The first application

involves explanation of the mechanism of formation of 〈100〉 loops using the present finite

temperature model while the second one involves use of this model in cluster dynamics

for comparison with capillary law experimental results.
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1 State of the Art Review

The practical realization of new and improved engineering technologies in extreme con-

ditions, be it for nuclear reactors, medical application or space exploration, is directly

related to the sustainability of available materials in the specified conditions. Even when

a material sustains reasonably well in these specified extreme conditions, lifetime of such

an installation is most often limited by the material in use. Thus, a thorough study of

the sustainability and lifetime of materials are essential for any future application of

novel engineering technologies that push the boundaries of extreme conditions. This

study includes consideration of some possible changes and processes due to irradiation

in material.

As mentioned in the introduction, we have chosen four body centered cubic (bcc)

transition metals(Fe, W, V, Ta) that are promising candidates for future fusion reactors.

When subjected to extreme radiation conditions, a chain of collisions give rise to a

displacement cascade. This displacement cascade causes atom displacements and leads

to formation of point defects. Since migration and reactions of these point defects

influence the physical and mechanical properties of the material, it is worthwhile to carry

out a study of these point defects. In this thesis, we restrict our study to interstitial

defects in the four bcc metals of interest.

Objective: In this chapter, we present a brief summary of radiation damage and

a thorough survey of the relevant published articles about radiation damage in iron,

tungsten, vanadium and tantalum. The various sections and their contents are organized

as follows:

• Section 1.1: The radiation damage effects in materials are briefly recapitulated.

• Section 1.2: An extensive survey of articles reporting direct observation of mi-

crostructure of irradiated samples of iron, tungsten, vanadium and tantalum, and
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related computation-based studies are summarized. These articles are systemati-

cally discussed in the following sections:

– Section 1.2.1: The different morphologies encountered in bcc transition met-

als, according to experiments and Density Functional Theory calculations,

are discussed.

– Section 1.2.2: Overview of the microstructural studies, comprising experimen-

tal observations and simulation-based results, in irradiated iron are presented.

– Section 1.2.3: Overview of the microstructural studies, comprising experi-

mental observations and simulation-based results, in irradiated tungsten are

presented.

– Section 1.2.4: Overview of the microstructural studies, comprising experi-

mental observations and simulation-based results, in irradiated vanadium are

presented.

– Section 1.2.5: Overview of the microstructural studies, comprising experi-

mental observations and simulation-based results, in irradiated tantalum are

presented.

• Section 1.3: Finally, the main points of this chapter are recapitulated systemati-

cally to provide a clear idea of the experimental observations, the simulation-based

results and the correspondence between them.

1.1 Radiation damage

Depending on the type of radiation and their interaction with metals, radiation can be

classified (16 –18 ) into heavy charged particles, fast electrons, neutrons and photons.

The interactions of these different radiations in material cause some radiation effects,

which can typically be classified into four categorie (16 , 19 ):

• Impurity Production: This refers to products of nuclear reactions that may be

initiated by neutrons or even helium and hydrogen production on neutralization
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1.1 Radiation damage

Figure 1.1: Schematic representation of some possible atom displacements in a material

with face centered cubic structure resulting in different positions of the self-

interstitial atoms(SIA) and vacancies. Figure taken from Ref. (15 )
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of alpha and proton, respectively.

• Atom Displacement: This refers to the shift or relocation of atoms from their

original position in the material. Atom displacement is observed in materials

mainly in the form of interstitials, vacancies, Frenkel pairs, dislocations etc. Ex-

amples of point defects are shown in Fig. 1.1

• Ionization: Charged particulate radiations are directly ionizing because they

result in immediate stripping of electrons in the materials giving ion pairs, though

uncharged radiation are also capable of causing ionization indirectly.

• Energy Release: Since radiation continuously loses energy via interactions with

matter, this leads to its energy loss and consequent heating along its path in the

material.

In this thesis, we concentrate on defects caused by atom displacement specifically

in the form of interstitials. Irradiation-induced displacement of even one atom can

potentially lead to a chain of collisions in an otherwise (almost) perfect lattice of the

target material. This chain of collisions gives rise to a displacement cascade. Interstitials

and other point defects are formed mainly in the collisional phase of a displacement

cascade. The collisional phase is where creation of a primary knock-on atom(PKA)

leads to energy transfer from incident particle and all collisions of PKA take place.

These collisions lead to displacement of lattice atoms and a surge in the vacancy and

interstitial concentrations. A typical displacement cascade simulation is shown in Fig.

1.2(a,b) and the displacement cascade timescale is shown in Fig. 1.2(c). As seen in

Fig.1.2(c), the evolution of this displacement cascade can broadly be divided into three

overlapping phases (20 –22 ): the Collisional Phase (includes the creation of PKA at

about 10−18 seconds and PKA-caused collisions at about 10−13 seconds with temperature

rise in cascade core of up to thousands of degrees), the Cascade Cooling Phase (lasts till

about 10−11 seconds with annihilations, energy dissipation and some clustering lowering

of the cascade temperature to nearly equal that of the matrix) and the Diffusional

Interaction phase (includes defect interactions, defect migration and thermally activated

defect reactions depending on the temperature conditions).

The migration and reactions of the created point defects result in physical and me-

chanical changes in the material. A pictorial depiction of the classification of defect

reactions is shown in Fig1.3. Since a point defect is an isolated defect occuring when
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1.1 Radiation damage

Figure 1.2: Interstitial (green) and vacancy (red) configurations in 20 keV displacement

cascade are depicted at (a) peak damage state at 0.3 ps and (b) after 20 ps.

Evolution timescale of defect concentration in typical displacement cascade

in shown in (c). Figures (a) and (b) are taken from Ref. (23 ) and figure (c)

from Ref. (20 ).
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a single atom is missing from its original position in the lattice (vacancy) or an extra

atom is found to be at an interstitial position instead of a lattice position (interstitial),

it can be thought of as the fundamental unit of defects. Based on geometry, a collection

of point defects produced in a crystalline material lattice can be further divided into line

defects, planar defects(e.g., Dislocation loops) and volume defects(e.g., Voids, Bubbles,

Stacking fault tetrahedra).

Since a displacement cascade disrupts the perfect lattice of the target material and can

influence physical and mechanical changes in materials, it is important to estimate the

defects produced. Models based on different assumptions have been proposed to estimate

the number of Frenkel pairs generated by a primary knock-on atom (PKA). The number

of Frenkel pairs is directly proportional to the damage energy, and inversely proportional

to the threshold displacement energy, which is the energy available to generate minimal

atomic displacements.

Practical experimental situations might not satisfy all the criteria for an ideal system

because of presence of impurities or special experimental conditions. Despite this draw-

back, the observed defect morphologies in materials provide information about the most

stable defect configuration. Relative stability of the possible irradiation-induced defects

can also be theoretically estimated based on their free energies of formation which mainly

consists of the formation energy contribution. Since calculation of formation energies

are easier to perform, a comparison of the formation energies of defects provides a gen-

erally acceptable scale to gauge the relative stability of defects in the target material.

Nevertheless, formation energies in pure metals give a reasonably good starting point

to understand effects of radiation damage in high purity metals or even alloys and to

compare our theoretical understanding. This makes experimental and simulation-based

studies of irradiation effects essential in understanding the relative stability of defects

and so, the following section is dedicated to the literature survey comprising both ex-

perimental and simulation-based results.

Throughout this thesis, we assume Miller index notation. For the benefit of the reader,

we recapitulate the Miller indices for a 3D cubic lattice: Notation [abc] denotes a direc-

tion in the direct lattice vector while the notation (abc) denotes a plane in the reciprocal

lattice vectors. Due to symmetry of a cubic lattice, direction [abc] is perpendicular to

the plane (abc). Notation 〈abc〉 refers to all directions that are symmetrically equivalent

to [abc]. Notation {abc} refers to all planes that are symmetrically equivalent to (abc).
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1.1 Radiation damage

Figure 1.3: Various kinds of defect reactions are summarized. Classification is based on

Ref. (22 ). 23
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1.2 Literature Survey

Irradiation of bcc transition metals, in general, leads to a large number of point defects

in the form of self-interstitial atoms and vacancies. Interaction of these point defects

with each other or with sinks like dislocation and grain boundaries or their migration can

influence microstructural transformations. This microstructural evolution affects various

properties of the metals which ultimately dictate their lifetime in a nuclear reactor or

under any specified radiation condition. Throughout this thesis, we will concentrate on

interstitial point defects or self-interstitial atoms (SIAs). Following an extensive survey

of microstructural studies comprising of experimental and simulation-based results in

irradiated samples of iron, tungsten, vanadium and tantalum, a brief overview of the

different morphologies of radiation-induced defects is presented in Sec. 1.2.1. This is

followed by a summary of the main results for each of the four transition metals of

interest in this study, the results are listed chronologically for Fe in Sec. 1.2.2, for W

in Sec. 1.2.3, for V in Sec. 1.2.4 and for Ta in Sec. 1.2.5. The experimental literature

survey concerns only the limit of large loops, visible in experiments. In the limit of very

small loop size, the old resistivity recovery or internal friction experiments are mostly

in agreement with the theoretical findings.

1.2.1 Description of the different morphologies of defect clusters

encountered in bcc metals

Transmission electron microscopy (TEM) observations show that in all irradiated bcc

metals except Fe, dislocation loops with 1/2〈111〉 Burgers vector are dominant which

suggests that they are the most stable configurations for bundles of dumbbells. In

Fe, observations of nanometric-sized clusters of SIAs by TEM techniques reveal the

presence of planar loops, which can adopt either the 1/2〈111〉 (highly mobile) or 〈100〉
(immobile) configurations, depending on temperature (24 –26 ). The relative stability of

the two types of loops in Fe is influenced by magnetism, and it has been shown that

1/2〈111〉 loops are more stable at low temperatures while 〈100〉 loops are more stable

(27 , 28 ) at high temperatures (over 700 K). Recently, much progress has been made in

the experimental field, enabling observation of small 〈100〉 loops in W under heavy ion

irradiation at low temperatures, which vanish at high temperatures (29 , 30 ). The reason

for the formation of the 〈100〉 loops in W is still under debate in literature. In the low size
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limit, we can access information about the morphologies of SIA using resistivity recovery

or internal friction experiments. In the intermediate defect cluster size range, spanning

the interval between individual self-interstitial atoms and nanometric-sized dislocation

loops, it is difficult to generate experimental data because of the high resolution of

observations required to characterize such small objects.

Density Functional Theory (DFT) calculations provide quantitative insight into the

nature of clusters containing a small number of defects. These DFT predictions broadly

agree with experiment (25 ), which makes it desirable to extend predictions to clus-

ters larger than a single SIA by packing dumbbells together in bundles, to form small

dislocation loops. Fig. 1.4 shows formation energies of different mono-SIA interstitials

relative to 〈111〉 dumbbell for various bcc transition metals(31 ). As seen in this figure,

DFT calculations show that the most stable single SIA in Fe adopts a configuration

that corresponds to a 〈110〉 dumbbell, whereas in other bcc transition metals, a single

SIA forms a defect aligned along the 〈111〉 direction, known as a crowdion (32 –36 ) (a

few examples are shown in Fig.1.5). According to recent DFT calculations (37 ), SIA

clusters can also form three-dimensional structures in Fe with symmetry corresponding

to the C15 Laves phase.

Being a newly proposed interstitial configuration, the geometry of C15 cluster is not

very well known. Here, we discuss the structure of these clusters. The starting point of

the C15 family of SIA clusters is the di-interstitial. The C15 interstitial configuration

was initially obtained by combining the triangle and hexagonal ring building-blocks, as

illustrated in Fig.1.6. This construction illustrates the fact that making a closed-shell

structure decreases the net number of additional atoms in the lattice from 3 to 2. In

terms of SIAs and vacancies, this defect corresponds to 12 SIAs, placed at the edges

of a truncated tetrahedron, surrounded by 10 vacancies, which indeed makes a total of

two additional atoms in the bcc lattice. One can recognize that the highly symmetric

structure formed around the central atom by its 12+4 nearest neighbours corresponds

to the Z16 Frank-Kasper polyhedron (39 )(see Fig. 1.7a). Another Z16 polyhedron with

6 neighbours in common can then be constructed by adding 6 SIAs and 4 vacancies.

This makes a quadri-interstitial cluster, I4(see Fig. 1.7c). The two polyhedra have two

different orientations and they are centred on two nearest neighbours of the bcc lattice.

Other polyhedra can be added, forming I6 and I8 clusters as illustrated in Figs. 1.7g-h.

By repeating this process, 3D In clusters with a cubic periodic structure can be built.

This crystallographic structure corresponds to the C15 Laves phase, or MgCu2 structure

(see Fig. 1.7i) (40 ). Detailed construction of bigger clusters will be presented in chapter
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Figure 1.4: (a,b)This graph shows formation energies of different interstitial config-

urations relative to 〈111〉 interstitial dumbbell for various bcc transition

metals.(31 , 38 ) (c)Various SIA configurations are shown(left to right):

〈111〉,〈110〉, SIA at tetrahedral position, 〈100〉, SIA at octahedral position.

Figure taken from Refs.(31 , 38 ).
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Figure 1.5: The structure of small self-interstitial clusters in bcc iron. The lowest energy

structures for clusters made of parallel dumbbells obtained within DFT are

represented for clusters with 2 to 8 SIAs, with a transition from 〈110〉 to

〈111〉 orientations between 4 and 5 SIAs. The lowest energy structures within

DFT known for the di- and tri-interstititals, namely the triangular and ring

configurations, are also shown, as well as the related configuration for quadri-

interstitial. SIAs are represented by pink or light blue spheres and vacancies

by dark blue cubes.
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Figure 1.6: Step by step construction of the C15 di-interstitial starting from the trian-

gular di-interstitial. a: triangular di-interstitial formed by 3 SIAs (orange

spheres) and one vacancy (blue cube). b: tri-interstitial formed by 2 trian-

gular di-interstitials and a vacancy, or equivalently 6 SIAs and 3 vacancies.

c: tri-interstitial formed by 10 SIAs and 7 vacancies. d: C15 di-interstitial.

Figure taken from Ref.(41 )

3. These n-SIA C15 clusters will be denoted as IC15
n hereafter.

In other bcc transition metals the bulk C15 structure indeed also has a low energy

in particular in group VB metals where the energy relative to the bcc structure is

comparable to that in Fe, but DFT calculations performed for quadri-interstitials in V,

Nb, Ta, Cr, Mo and W show that the IC15
4 cluster is always significantly higher in energy

than the configuration made by four parallel 〈111〉 crowdions. The energy difference is

typically 2 to 3 eV, except in Ta where it is only 0.8 eV. Energy landscape of C15

clusters has been investigated in Fe, W, Ta and V using DFT calculations as part of

this thesis and will be discussed further in chapter 4. The atypical behaviour of Fe

with respect to the other bcc transition metals confirms the specificity of Fe regarding

SIA properties(42 ). In Fe, these C15 aggregates are stable, immobile, and exhibit large

antiferromagnetic moments. These C15 clusters have been found to form directly inside

atomic displacement cascades, and are able to grow by capturing self-interstitial atoms

from the surrounding material.
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Figure 1.7: Structure of small C15 interstitial clusters in a bcc lattice. a-c: Representa-

tion by vacancies (blue cubes) and interstitials (orange spheres) of the di-,

tri- and quadri-interstitial clusters. For the di-interstitial, the atoms of the

bcc lattice at the center and at the edges of the Z16 Frank-Kasper polyhe-

dron are also represented. d-f: same as a-c in a skeleton representation, i.e.

without the vacancies and the cubic lattice. g, h: skeleton representation for

the hexa- and octa interstitials. i: unit cell of the C15 Laves structure. For

each cluster size, the configuration which is represented corresponds to the

lowest energy one found within DFT.
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1.2.2 Overview of radiation-induced defects in iron

Experimental observations

In irradiated iron, the presence of point defect clusters had been indicated by Mogford

(43 ) who reported platelets of Carbon atoms aligned along {100} and Eyre (44 ) who

observed point defect clusters (glissile dislocations sweeping up defects forming jogs).

The crystallography of dislocation loops in Fe was first observed by B. C. Masters (24 ,

45 ). Masters irradiated 0.005 in foils of iron with Fe+ ions of energy 150 keV to a dose of

1.7×1016ions/cm2 at specimen temperature of 823 K (550◦C). He observed ‘interstitial’

loops with 〈100〉 Burgers vector on {100} planes with absence of vacancy loops. The

results of this paper were unexpected due to two reasons: Firstly, absence of vacancy

loops. Masters reasoned with uncertain choice of nucleation (homo or hetero) for this

absence and suggested further work using materials of high purity. The more surprising

result at that point in time was the presence of only 〈100〉 SIA loops. Since interstitial

loops with 1/2〈111〉 Burges vector had already been observed in bcc Molybdenum (46 ,

47 ), similar results were expected for iron, as in (48 ). Considering three modes of lowest

energy as {111} 1/2 [111], {110} 1/2 [11̄1̄] and {001} [001], he proposed a mechanism to

explain formation of 〈100〉 by a reaction as follows:

a

2
[111] +

a

2
[11̄1̄] = a [100] . (1.1)

Further, he explained that 1/2〈111〉 loops probably escape detection because they glide

out of the thin foil during irradiation.

Little and Eyre (49 ) studied the geometry of dislocation loops in 0.25 mm iron foils

using 1MeV electron irradiation at 823 K (550◦C). They observed rectilinear 〈100〉 loops

of interstitial nature, endorsing the mechanism for formation of 〈100〉 explained in (50 ).

They concluded that the formation of 〈100〉 loops are not just a consequence of excess

interstitials as suggested by Masters because 〈100〉 loops were observed with electron

irradiation as well.

Heavy ion damage in alpha iron was studied by English et al. (51 , 52 ). They irra-

diated iron foils at room temperature with ions ranging from Fe+ to W+ with atomic

weights ranging from 56 to 184 and low dose of 5× 1012ions/cm2. They did not observe

any visible damage for self-ions. Defect yield increased with ion mass and both 1/2〈111〉
and 〈100〉 loops of vacancy type were observed. Formation of 〈100〉 loops was surprising
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since it was known to be energetically unfavourable.

A TEM study of low fluence neutron-irradiation with dpa=0.5-1 of 0.5 mm iron disk

specimen (3 mm diameter) at temperatures of 455-1013 K was carried out by Horton

et al. (53 ). Different microstructures were observed in the four temperature ranges.

From 455 to 523 K, small defect clusters near pre-irradiation dislocation segments were

observed but Burgers vector determination was inconclusive. In the range 548-573 K,

clusters of small loops were seen and identified as 〈100〉 loops of interstitial type. In

the 623-773 K range, 〈100〉{100} loops of interstitial type were observed with a decrease

in defect density and an increase in defect diameter. There was also a single 1/2〈111〉
loop observed in this temperature window. There were no visible changes compared

to unirradiated specimens in the temperature range 923-1013 K. According to them,

presence of 〈100〉 loops was justified because of their less glissile nature and presence of

Cottrell atmosphere which pins these loops while the behaviour at higher temperatures

(>723 K) was attributed to small precipitates (presumably, carbides). This is one of the

first papers to question the validity of the Eyre-Bullough mechanism for the formation

of the 〈100〉 loops on grounds of observation of solely 〈100〉 loops at higher temperatures

and total absence of 1/2〈111〉 loops which are energetically favoured.

Robertson (54 ) investigated low dose neutron irradiation damage where thin foils of

iron were irradiated to doses between 1022 to 1024 neutrons/m2 by 1MeV neutrons at

ambient temperature. Here, loops with both 〈100〉 and 1/2〈111〉 Burgers vectors were

identified with habit planes between the {110} nucleation and edge plane but nature

of loops was not determined. Post-irradiation annealing at 643 K for 60 min did not

show much change. Following the same irradiation and post-irradiation annealing with

dose of 4 × 1023 gave a majority of 1/2〈111〉 and 33 percent of 〈100〉 while a dose of

1.2×1024 gave higher percentage of 〈100〉 loops with all loops being of interstitial nature.

In accordance with the Eyre and Bullough mechanism (50 ), an elastic continuum model

by Little et al. (55 ) was used to calculate the relative probability of unfaulting of an

a/2〈110〉 loop into an a〈100〉 loop or an a/2〈111〉 loop at reactor ambient conditions.

This value was found to be 6.5 × 10−17 which could not explain results by Robertson,

even if anisotropy of iron were to be included for calculation in this model.

Robertson et al. (56 ) investigated damage structure in alpha-iron using 50 keV self

ions up to a maximum dose of 8 × 1013ions/cm2 at 40 K. They observed no damages

below 8 × 1013ions/cm2 and a non-linear increase in defect density at and above this

dose. Of the loops observed after irradiation with self-ions of 50 keV, 77 percent were
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1/2〈111〉 while the remainder were 〈100〉 loops. The loop nature was not determined.

These findings revealed that dislocation loops in iron are formed by spatial overlap of

cascades and not from direct collapse of individual displacement cascades as for other

metals at low temperatures.

Arakawa et al. (57 ) reported observations of a new type of changing process in the

Burgers vector of dislocations by simple heating or high-energy electron irradiation by in

situ transmission electron microsopy. According to this article, small 1/2〈111〉 interstitial

loops of diameter < 50nm are capable of transformation into another 1/2〈111〉 loop or an

energetically unfavorable 〈100〉 loops while these 〈100〉 loops can further transform into

a 1/2〈111〉 loop. On simple heating, it was seen that small 1/2〈111〉 loops (diameters

<20-30 nm) exhibited 1D thermal motion parallel to its Burgers vector at temperatures

above 450 K while 〈100〉 loops exhibited similar glide motion at higher temperatures

(<770 K). Meanwhile, on irradiation, 1/2〈111〉 loops (diameter <50 nm) showed 1D

motion at low temperatures whereas 〈100〉 loops rarely showed any 1D motion.

Yao et al. studied heavy-ion irradiation of thin foils of Fe and FeCr alloys at lower

doses (58 ). They irradiated Ultra-High Purity (UHP) Fe and FeCr alloys with 100

keV or 150 keV Fe+ or 100 keV Xe+ at room temperature(RT) and 573 K (300◦C).

A threshold value of dose (2 × 1016ions/m2) was noted, below which no defect was

observed. Moreover, a low proportion of 1/2〈111〉 loops for Fe indicated their loss from

the foil due to high mobility and possibility of glide cylinders intersecting the surface

of foil. This suggested that loops were more mobile in Fe than Fe-Cr alloys for same

irradiation condition.

Hernandez et al. (59 ) continued the above study at higher doses i.e. up to 2 ×
1018ions/m2 i.e. 13 dpa. For UHP Fe at 573 K (300◦C), strings of loops were observed

at a dose of 2 × 1018ions/m2. These dislocation loops grew to observable sizes with

loop-types depending on thickness of the Fe foil. A dense dislocation network for high

thicknesses (>100 nm), 1/2〈111〉 interstitial loops were observed for intermediate thick-

ness (between 50 and 100 nm) and 〈100〉 finger-shaped loops for low thickness (< 50nm).

They endorse the model proposed by Wen et al.(60 ) where 〈100〉 loops are assumed to be

formed by growth and coalescence of small loops. UHP Fe at room temperature showed

similar results. At low doses (300◦C), Fe-Cr results in irradiation damage similar to Fe

results but with lower loop number density. At higher doses, smaller maximum loop

sizes and larger loop number densities are observed due to a lower mobility of small

loops in Fe-Cr compared to Fe. So, the effect of Chromium is the reduction of mobility
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of loops which is consistent with the results at lower doses (58 )

Yao et al. (28 ) studied temperature dependence of microstructure in Fe when ir-

radiated with 150 keV Fe+ ions. At 673 K (400◦C), almost equal proportions of both

immobile 〈100〉 and mobile 1/2〈111〉 were observed. While 1/2〈111〉 loops coalesced into

larger loops of round or irregular shape, 〈100〉 loops were comparatively small in size.

At 723 K (450◦C), rectilinear 〈100〉 loops dominated and 1/2〈111〉 loops interacted elas-

tically to form long chains. These long chains of 1/2〈111〉 loops ceased to form above

723 K (450◦C) because small, mobile 1/2〈111〉 loops were consumed by 〈100〉 loops

such that only large 〈100〉 loops existed at 773 K (500◦C). They could not explain the

abrupt disappearance of 1/2〈111〉 loops above 738 K (465◦C). However, they did not

report any direct conversion of 1/2〈111〉 loops into 〈100〉 loops, contrary to Arakawa’s

observation (57 ). To give a plausible explanation, they did lend support to Bacon’s

MD simulations (61 ) which relied on small, self-interstitial clusters (bundles of 〈100〉
or 〈111〉 crowdions) formed after displacement phase of the cascade. Being mobile and

able to execute thermally-activated one-dimensional glide along the crowdion direction,

these small clusters were considered responsible for observable 〈111〉 and 〈100〉 loops by

coalescence. They postulated that the relative proportions of the two loops depended

on a number of factors such as loop stability at smaller sizes and mobility of 1/2〈111〉
loops at higher temperatures to explain their experimental observations. Irradiation

of iron with 150 keV Fe ions at 573 K (300◦C) gave a vast majority (90%) of 〈100〉
loops, compared to room temperature irradiations with 150 keV Fe ions(63%), 30 keV

Ga ions(55%) or 100 keV Fe ions(86%). This paper was found to be consistent with

theoretical papers by Dudarevet al.(27 , 62 ), discussed later in this section.

Xu et al. (63 ) studied the effect of 150 keV Fe+ ion irradiation on Fe and Fe-Cr alloys

at 573 K (300◦C). 92% of the loops were of type 1/2〈111〉 in Fe while the percentages

were 30%, 46% and 37% in Fe−5%Cr, Fe−8%Cr and Fe−11%Cr suggesting lack of any

pattern with respect to the percentage of Cr in the alloy. All the loops were reportedly

of interstitial nature. These experimental results were at variance with some earlier

experiments, notably those by Masters(45 ) and Yao et al.(58 ) which were discussed in

the previous paragraphs. Experimental observations by Gelles (64 , 65 ) and Porollo et

al. (66 ) are also contradictory because they both reported increase in the fraction of

1/2〈111〉 loops with increasing percentage of Cr in Fe-Cr alloys after neutron irradiation

up to 15 dpa at 673-723 K (400− 450◦C) and up to 7 dpa at 673 K (400◦C), respectively.

Jenkins et al. (67 ) further studied dynamic microstructure change in thin foils of Fe
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Figure 1.8: Fraction of 1/2〈111〉 and 〈100〉 loops in Fe as a function of temperature.

This graph shows the temperature dependent change of microstructure in

iron when irradiated with 150 keV Fe ions. Figure taken from Ref.(28 ).
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and FeCr alloys when irradiated with 100-150 keV Fe+ and Xe+ of dose up to 13 dpa

at room temperature, 573 K (300◦C) and 773 K (500◦C). They observed both 〈100〉
and 1/2〈111〉 loops at room temperature(RT) and at 573 K whereas only 〈100〉 loops

existed at 773 K (500◦C). Although similar radiation damage was observed in FeCr

alloys, defect yield did not show as much dependence on foil orientation as seen for Fe.

Nature of loops at low doses wasn’t reported with certainty but they were reportedly of

interstitial nature at higher doses.

Prokhodtseva et al.(68 ) studied bulk and thin foil of Fe after irradiation with Fe+ at

room temperature with or without a second He beam. In bulk, single beam resulted in

more than 75% of loops being 1/2〈111〉 loops. In thin foil, about 96% loops were 1/2〈100〉
loops and rest were 〈100〉 loops with single beam. The fraction reversed with double

beam and about 99% were reported to be 1/2〈111〉 loops along with 1% of 〈100〉 loops.

These results prove that He stabilizes the 1/2〈111〉 loops rendering them immobile, as

predicted by MD simulations (69 ). Due to absence of free surfaces, there is no strong

driving force to cause escape of 1/2〈111〉 loops or their (then proposed) transformation

into 〈100〉 loops in bulk.

Prokhodtseva et al.(70 ) extended the above experiment to FeCr alloys as well, re-

iterating the role of He in stabilizing the mobile 1/2〈111〉 loops and preventing their

(proposed) transformation into 〈100〉 leading to higher proportions of 1/2〈111〉 loops.

Since the early loop population is generally dominated by 1/2〈111〉 loops, they postu-

lated that the 〈100〉 loops must be formed from addition/absorption reactions between

them. It was concluded that Cr in Fe-Cr alloys reduce the mobility of the 1/2〈111〉 loops

as well, eventhough the combined effect of He beam and Cr content in alloys did not

show any clear trend.

Simulation-based results

In 1965, Eyre and Bullough (50 ) proposed some explanations for the observation of

〈100〉 and 1/2〈111〉 loops in experiments. They based their arguments on computer

calculations by Erginsoy et al.(71 ) and Johnson et al.(72 ) which indicate that 〈110〉
single and double interstitials are stable. They postulated growth of 〈110〉 di-interstitials

to ultimately form a platelet of interstitials in the {110} plane, further leading to a

stacking fault in the {110} plane. This stacking fault can be eliminated by the two
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following dislocation reactions:

a

2
[110] +

a

2
[1̄11] = a [010] , (1.2)

a

2
[110] +

a

2
[001̄] =

a

2
[111̄] , (1.3)

leading to formation of 〈100〉 and 1/2〈111〉 loops, seen in experiments. They explained

that the need for a higher energy 〈110〉 shear requires thermal energy assistance and

hence leads to formation of 〈100〉 loops only at higher temperatures. According to

experimental results from Masters(45 ), 〈100〉 loops were observed on irradiation of iron

with Fe+ ions at 823 K (550◦C) but not if neutron-irradiated iron at 333 K (60◦C)

is subjected to post-annealing heating up to 773 K (500◦C). Based on this, Eyre and

Bullough ruled out the possibility of formation of 〈100〉 loops by combination of two

closely spaced 1/2〈111〉 loops. In addition, they acknowledged presence of square 〈100〉
loops and circular 1/2〈111〉.

Meanwhile, developments in MD simulations progressed to explain experimental re-

sults obtained by radiation damage in iron. Some of the earliest MD simulations on

radiation damage in bcc iron were those by Calder and Bacon (73 ), Phythian et al. (74 ),

Stoller et al. (75 ) and Soneda et al. (76 ). Though various experimentalists continued

to lend support to the Eyre and Bullough mechanism (50 ) for formation of 〈100〉 loops,

this mechanism was considered unlikely on the basis of MD simulations from Calder and

Bacon (73 ). However, these early MD simulations ignored the effect of glissile clusters

whose 1D transport is essential to understand the damage accumulation. This led to

the development of the production bias model used by Osetsky et al. (77 , 78 ).

With improvement in MD simulations, many mechanisms were proposed to explain

the formation of 〈100〉 loops at high temperature in iron. Marian et al. (79 ) proposed

formation of [001] loops from two 1/2〈111〉 loops, in accordance with Masters’s experi-

mental results (45 ) using a modified Eyre-Bullough mechanism. They found using MD

simulation the following two-step mechanism:

1

2
[111] +

1

2
[001̄] → 1

2
[110] ,

1

2
[110] +

1

2
[11̄0] → [100] ,

For such reactions to occur, they postulated that the intersecting loops were required

to be of the same size, (preferably) same shape, should stabilize and grow 〈100〉-type

segments. However, they did not provide complete proof of this mechanism using MD
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simulations. Further, they suggested absorption of smaller loops by larger loops using

MD on nanometric-sized 1/2〈111〉 loops, in accordance with Osetsky et al. (78 ) and

Terentyev at al. (80 ). In 2008, Dudarev et al. (27 , 62 ) showed the importance of using

the full anisotropic elasticity approximation at higher temperatures where the alpha-

gamma phase transition occurs in iron. They calculated free energies of loops using

Bacon’s formalism(81 ) to explain increasing proportion of the 〈100〉 loops observed

experimentally above 573 K (300◦C). However, mechanism of 〈100〉 loop formation

remained unexplained.

As a consequence of development of new MD simulations, new interatomic potentials

were formulated simultaneously. Commonly used many-body interatomic models of

metals span from second moment of tight binding approximation (82 –86 ) to EAM (87 ,

88 ) or Modified EAM (89 ) and higher order tight binding models (90 –95 ). The Force-

Matching method proposed by Ercolessi and Adams in the late 90s (96 ) showed for the

first time that the database used in the fit of the empirical potentials could play the

same key role as the formalism used to mimic the electronic effects. The force-matching

method was used to parametrize EAM potentials suitable for defects in bcc iron. Using

the same fitting approach, Mendelev et al. (97 , 98 ) and Ackland et al.(99 ) proposed a

parametrization of iron. Using a different database (point defect oriented), Marinica (37 ,

100 ) obtained an improved parameterization for point defects. In 2005, Dudarev and

Derlet designed an alternative approach (101 ) with a ‘magnetic’ potential which was also

based on the EAM formalism. These empirical potentials permit simulation of cascades

facilitating studies involving defects which is otherwise not possible when using more

accurate means. However, the results may vary from one potential to other and also from

DFT calculations. Recently, Ref.(102 ) showed that the threshold displacement energies,

which serve as an important input for radiation damage studies, are significantly different

when calculated using DFT-MD and from a widely-accepted interatomic potentials. In

fact, the average value from the interatomic potential was found to be about 20% lower

than the average standard value in literature. This raises concerns over the quality of

empirical potentials available for MD simulations and the reliability of MD results. This

means that the quantitative and predictive studies based on empirical potentials cannot

be conclusive, though the results provide a good qualitative estimation. In chapter 3,

we develop a new empirical potential to improve the existing empirical potentials and in

chapter 4, we present a new model to overcome the shortcoming of empirical potentials.

Marian’s mechanism (79 ) was at odds with Kirchhoff’s law (103 ) which suggests

formation of a [001] junction leading to a sessile dislocation-loop complex. In order
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to find the mechanism experimentally, Arakawa et al. (104 ) irradiated thick sheets

of iron with electrons up to 3 × 1025e−/m2 at 110-190 K, followed by heating up to

290-800 K. They showed that collision of 1/2[111] and larger 1/2[111̄] gives an even

larger 1/2[111̄] after absorption of the former, shown in Fig. 1.9. In general, collision

of two loops with different Burgers vectors led to absorption of the smaller loop by

the larger loop. This experiment provided evidence for absorption of smaller loops

by larger loops but did not observe the formation of 〈100〉 loops from 1/2〈111〉 loops,

eventhough Xu and Terentyev et al. (105 ) showed MD simulations using two different

potentials, A04 (99 ) and M10 (100 ). This still didn’t provide conclusive evidence to

prove this mechanism because experimental evidence of complete absence of 1/2〈111〉
loops at higher temperatures goes against this mechanism(45 ). The main conclusion of

the experimental and theoretical papers is that the proposed mechanism of formation

of 〈100〉 loops can be realised only under some strict conditions on the size and the

orientation of the loops. Another mechanism was proposed by Chen et al. (106 ) which

demonstrated using MD simulations that rearrangement and reorientation could lead to

change of small 1/2〈111〉 loops into 〈100〉 loops.

DFT predicts that in Fe the orientation of these dumbbells changes from 〈110〉 to

〈111〉 depending on the number of SIA involved. The transition occurs around five

SIAs (37 , 107 ). As mentioned earlier, Dudarev et al.(27 ) took into account the full

anisotropic elasticity approximation to calculate the formation energies near the α − γ
transition. This treatment explained the reduction of free energy of 〈100〉 formation and

their consequent stability at temperatures higher than about 573 K (300◦C). This paper

will be further discussed in detail in the first part of the chapters 4 and 5. Although the

stability of 〈100〉 was thus established, the mechanism for the formation of 〈100〉 loops

has not been confirmed yet.

According to recent DFT calculations(37 ), SIA clusters can also form three-dimensional

structures in Fe with symmetry corresponding to the C15 Laves phase. Prior to C15

clusters, the lowest energy structures according to DFT calculations published for SIA

clusters in bcc-Fe were (36 , 108 ): the triangular configuration for the di-interstitial, the

hexagonal ring configuration for the tri-interstitial, the parallel 〈110〉 dumbbell configu-

ration for the quadri-interstitial, and compact arrangements of parallel 〈111〉 dumbbells

for larger clusters. These low energy structures are shown in Fig. 1.5. The parallel dumb-

bell configurations have slightly larger energies for di-interstitial I2 and tri-interstitial I3.

The quadri-interstitial configuration made of a 〈111〉 dumbbell centred on an hexagonal

ring had attracted attention because of its rather low energy and very low mobility (36 ,
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Figure 1.9: (a)-(d) Schematical representation of the experimentally observed absorption

of a smaller loop by a larger loop with a change in Burgers vector of the

smaller loop while (e) Plot showing the diameter of absorbing and absorbed

loops(in nm). This graph illustrates that absorbed loop size is always found

to be smaller than the absorbing loop size. Figure taken from Ref.(104 )
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109 , 110 ). As shown in Ref. (37 ), these stable structures are actually particular cases

of stable C15 clusters.

As reported in Ref. (37 ), the remarkable property of these C15 SIA clusters is that

they appear to be particularly stable in bcc Fe according to DFT calculations. For a

given n, the possible configurations for C15 clusters multiply which makes the construc-

tion of the most stable configuration challenging. The present work also includes the

rules for construction of stable n-SIA C15 clusters which will be discussed in Sec.3.4.

DFT calculations were also done to understand dumbbell migration barrier in Fe-Cr as

compared to pure Fe in Ref.(111 ). It was found that the pure Fe interstitials had a

higher dumbbell migration barrier as compared to mixed interstitials in accordance with

experiments.

As mentioned earlier, the mechanism of formation of 〈100〉 loops in Fe as a result of

high temperature irradiation was not explained so far. Quite recently, Zhang et al. (112 )

proposed an explanation involving the nucleation of C15 clusters and their growth by

trapping of single self-interstitials of 1/2〈110〉 dumbbell structure. They used MD sim-

ulations to show that these C15 clusters can transform into both 〈100〉 and 1/2〈111〉
loops after absorbing SIAs at small sizes. This mechanism will be further discussed in

chapter 4. Although there is no experimental evidence to support the formation of these

3D C15 clusters or the theory proposed by Zhang et al.(112 ), it is worthwhile to discuss

them in some detail considering their importance in understanding the energy landscape

of defects in Fe and in reconciling experimental observations with the calculated energy

landscape of defects in Fe. In preceding studies, the energy landscape of defects in Fe is

predicted using empirical potentials only but it will be predicted on the basis of DFT

calculation in chapter 4 of the current study.

Summary for iron:The number of experiments studying the irradiation-induced mi-

crostructural changes in iron is quite high compared to the other transition metals. All

these experiments report a majority of mobile 1/2〈111〉 interstitial loops at lower tem-

peratures. Further, an increasing proportion of the comparatively immobile 〈100〉 is

observed above 573 K which ultimately become the majority at around 773 K. The ori-

entation of the sample is crucial in this observation, otherwise the 1/2〈111〉 can migrate

to surface, biasing the results of experiments. Moreover, the impurities can also bias the

results impacting the mobilities of the different loop types. For example, He stabilizes

the 1/2〈111〉 loops rendering them immobile, as predicted by MD simulations. Cr in

Fe-Cr alloys reduce the mobility of the 1/2〈111〉 loops as well, eventhough the combined
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effect of He beam and Cr content in alloys did not show any clear trend. Though the

theoretical explanation was lacking till recently, most of the experiments have now been

explained rather convincingly in the existing literature. According to DFT Calculations,

the most stable mono-SIA in Fe is the 〈110〉 dumbbell. The 〈110〉 SIAs are the most

stable in Fe up to around five SIAs and 1/2〈111〉 loops are the most stable beyond the

cluster size of around five interstitials. Taking into account elastic approximation to

calculate the formation energies near the α−γ, a reduction of free energy of 〈100〉 loops

was demonstrated, thus making the 〈100〉 loops more stable compared to 1/2〈111〉 loops

at temperatures higher than about 800 K. Although the stability of 〈100〉 was thus es-

tablished, the mechanism for the formation of 〈100〉 loops has not been confirmed yet.

The theoretically proposed mechanism of the formation of 〈100〉 by collisions of two

1/2〈111〉 loops can explain the formation of 〈100〉 loops in pure Fe, or Fe under He

atmosphere. However, despite the fact that Cr reduce the mobility of 1/2〈111〉 loops

the formation of 〈100〉 loops is very active in FeCr alloys. Moreover, the absence of

〈100〉 interstitial dislocation loops at low temperatures remains unexplained, given that

the 1/2〈111〉 loops are very mobile at low temperature. Recent studies highlight the im-

portance of C15 clusters in understanding and explaining the anomalous experimental

observations of 〈100〉 loops in Fe, thus reconciling experiments with DFT calculations

of energy landscape of point defects in bcc Fe. The sections 4.5.1 and 5.4 will provide a

detailed discussion of the existing models and the present findings of this thesis.

1.2.3 Overview of radiation-induced defects in tungsten

Experimental observations

A number of articles were published on neutron irradiation effects on tungsten and its

alloys. However, these articles concentrated on effects of various irradiation conditions

and transmutation elements on radiation hardening and electrical resistivity (113 –119 ).

A summary of some experimental observations has been shown in Fig. 1.10, as reported

by Hasegawa et al. (120 ), where the presence of loops and voids as a function of irradition

temperature and displacement damage are marked in the graph. Eventhough these

experiments did not involve a systematic study regarding the Burgers vector or nature

of loops, they did provide a useful basis for future investigation in terms of irradiation

conditions. In particular, the irradiation conditions for observation of loops and voids or

only voids appeared to be quite well defined based on these experiments. Additionally,
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some studies also concentrated on interaction of tungsten with solute atoms (121 –125 ).

The experimental database studying the microstructural evolution of radiation dam-

age in tungsten is not as vast as that for iron. In 1972, Häussermann et al. (126 –128 )

studied microstructural changes in thin foils of tungsten irradiated with 30-60 keV Au

ions at room temperature. They reported a majority of small 1/2〈111〉 loops of vacancy

type along with a few 1/2〈110〉 loops. This led them to presume the Eyre-Bullough

mechanism (50 ), originally proposed for bcc iron (described in section 1.2.2). In keep-

ing with this mechanism, they assumed aggregation of loops of 1/2〈110〉 Burgers vector

in the {110} plane till a certain critical size. Following which, they transform into

1/2〈111〉 or 〈100〉 loops in order to remove stacking fault.

Jager and Wilkens (129 ) performed a similar experiment by irradiating tungsten foils

with 60 keV Au ions at room temperature with dose of the order of 1011 to 1012 ions/cm2.

Like Häussermann, they also suggested nucleation of 1/2〈110〉 vacancy loops on {110}
plane till they reach a critical radius. The critical radius for transformation into perfect

Burgers vector loops by shear process was estimated in this article to be in the range

0.9 nm-2 nm. Moreover, 90% of the observed loops were either 1/2〈111〉 or 〈110〉, both

in the {110} plane while the rest were assumed to be 〈100〉 loops as expected by the

Eyre-Bullough mechanism.

Recently, Yi et al. (130 ) irradiated tungsten foils with 150 keV tungsten ions at 773

K (500◦C) with dose in the range 1016− 1018W+m−2 at a rate of 6.25× 1014 W+/m2/s.

They observed a majority(75%) of 1/2〈111〉 loops, rest being 〈100〉 loops. Further, they

reported various kinds of elastic interaction among loops, e.g. dragging to form strings,

change of Burgers vectors of smaller loop while interacting with larger loops (104 ),

absorption and coalescence. The nature of the loops was not solely vacancy, in contrast

with earlier observations by Häussermann et al. (128 ) and Jager et al. (129 ). While

1/2〈111〉 loops were found to be of interstitial and vacancy type in equal numbers, 〈100〉
loops were more of interstitial type. They suggested a possible loss of 1/2〈111〉 loops by

glide.

Yi et al. (30 ) reported experimental characterisation of tungsten foils irradiated with

2 MeV self-ions at temperatures 573 K(with 3.3 × 1017, 1018 and 2.5 × 1019W+/m2),

773 K(with 3.3 × 1017, 1018 and 3 × 1018W+/m2) and 1023 K(with 1018W+/m2) at

3 × 10−4dpa/s. This characterisation revealed a majority of 1/2〈111〉 loops (> 60%)

alongwith 〈100〉 loops for all irradiation conditions studied. These loops were mostly of
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Figure 1.10: As a result of irradiation in JMTR (Japan Materials Testing Reactor of

JAEA-Oarai), JOYO (Sodium cooled High Flux Reactor of JAEA-Oarai)

and HFIR (High Flux Isotope Reactor of Oak Ridge National Laboratory

of the USA), the observed microstructure are plotted in the graph as a

function of irradiation temperature and displacement damage, as reported

in the Refs. (115 , 117 –119 ). The irradiation conditions for observation of

loops and voids or only voids appeared to be quite well defined based on

these experiments. Figure reproduced from Ref. (120 ).
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interstitial nature.

Ferroni et al. (131 ) performed characterisation of tungsten foils irradiated with 2 MeV

self-ions at temperatures ranging from 1073 to 1673 K (800− 1400◦C) with a dose of

1014 ions/cm2 at a rate of 2.73×1010 ions/cm2/s. This article reported that loops were

exclusively of 1/2〈111〉 type and predominantly of interstitial type.

Simulation-based results

Since ab-initio calculations (132 ) in W showed that the formation energies of 1/2〈111〉
loops are always less than those of 1/2〈110〉 or 〈100〉 loops, the Eyre-Bullough mechanism

didn’t seem probable.

Gilbert et al. (133 ) compared formation energies of various vacancy and interstitial

defects in iron and tungsten using zero Kelvin molecular dynamics calculations. In

tungsten, they concluded that spherical voids were the most stable energetically for a

given number of vacancies. Assuming Arrhenius diffusion, they attributed difference in

experimental observations to large characteristic equilibration time at room temperature.

For iron, this characteristic time is around 8 s whereas it is of the order of 4 × 1020 s

for W. They postulated that extremely small value of vacancy diffusion coefficient and

non-equilibrium conditions led to observation of interstitial or vacancy loops which are

otherwise energetically unfavourable.

Different potentials for tungsten were published which varied in their development

and also their accuracy or applicability in a particular study. For example, one of the

first potentials developed for tungsten is the Finnis-Sinclair potential (83 ) which is a

tight-binding second moment short-ranged potential and is fitted to fundamental bulk

properties. This potential did not work well for studying self-interstitial atom defects,

so Ackland and Thetford (85 ) enlarged the database accordingly to develop a new po-

tential that is well adapted for studies ranging from bulk related properties to energy

landscape of point defects and dislocations in tungsten. Another variant of this potential

was proposed by Juslin and Wirth (134 ) which is developed mainly by a modification of

the short range part of the potential by Ackland-Thetford and has been used to study

helium-vacancy clustering in tungsten. A new parametrization of the Finnis-Sinclair type

potential, fitted to include ab initio point defect formation energies, was given by Derlet

et al. (33 ). This potential has been mainly found application in study of thermally acti-

44



1.2 Literature Survey

Figure 1.11: (a) shows formation energies of 〈100〉 loops in black and 〈111〉 loops in

red as a function of cluster size, calculated using an embedded atom

method(EAM) potential (135 ). A crossover is predicted here which is con-

tradictory to calculations using some other potentials. (b) shows a plot of

formation energy of 〈111〉 loops as a function of size using two different

potentials, an EAM potential (135 ) in blue and potential by Ackland (85 )

in red.

vated migration of self-interstitial atoms but had certain drawbacks as well. Marinica et

al. (135 ) used force-matching method to parametrize embedded atom method potentials.

These potentials demonstrated qualitative agreement with DFT calculations on screw

dislocations which wasn’t achieved by other existing potentials but there remained some

scope of improvement for properties like formation energies of self-interstitial atoms.

Although these potentials provide a feasible means to study radiation effects, reliability

becomes an issue when predictions or calculations from different potentials contradict.

Consider the relative stability of point defect clusters some potentials (33 , 135 ) pre-

dict a crossover between 〈100〉 and 〈111〉 loops as shown in Fig. 1.11(a) while others

didn’t (85 ). Also, a significant difference in values is observed from different potentials,

as shown in Fig. 1.11(b). These contradictions cause empirical potential calculations to

be inconclusive.

Various DFT-based studies were carried out in order to furnish reliable calculations.

Notably, Becquart et al. (121 ) calculated vacancy formation energy and migration
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energy which were found to be in good agreement with experimental values. They also

concluded that the 〈111〉 loops were the most stable in tungsten and repulsive behaviour

of di-vacancy which was later confirmed by Ventelon et al (136 ). Ab initio calculations

have also been used as database to parametrize object kinetic Monte Carlo code to

simulate isochronal annealing experiments of He desorption from W (137 ).

Sand et al. (138 ) performed MD simulations of 150 keV collision cascades using PAR-

CAS code (139 –141 ) to have a direct comparison with experimental observations of Yi

et al. (130 ) using three different potentials. A modified EAM potential (33 ) having

the repulsive part given by the universal Ziegler-Biersack-Littmark potential (142 ) and

filled by Björkas et al. (143 ) was compared with Ackland-Thetford potential (85 ) and

a Tersoff-type potential by Ahlgren et al. (144 ). In accordance with experimental re-

sults, they reported 〈100〉 and 1/2〈111〉 loops of interstitial as well as vacancy type, the

nature being sensitive to the potential used. As discussed recently in Ref.(145 ), DFT

threshold displacement energy calculated with and without semi-core electrons vary sig-

nificantly which affects the quality of the developed empirical potential and thus, the

MD simulations.

Mason et al. (146 ) reported experimental results and object Kinetic Monte Carlo

simulations on irradiation of tungsten foils with self-ions of low fluence. The largest

loops were found to be mainly composed of prismatic 1/2〈111〉 loops of vacancy type.

These experimental results were well reproduced by simulations on considering elastic

interaction between loops.

Setyawan et al. (147 ) carried out MD simulations using the Juslin-Wirth poten-

tial (134 ) to document the defects following displacement cascades at 300 K, 1025 K and

2050 K in tungsten. At 300 K and 1025 K, vacancy defects (>50) were predominantly

〈100〉{100} loops or cavities while SIA clusters (>30) were 1/2〈111〉111 or 1/2〈111〉{110}
loops. Rarely 〈100〉{110} interstitial loops were reported at 1025 and 2050 K while 3D

interstitial clusters dominated at 2050 K.

Summary for tungsten: While recent experimental observations reveal presence of a

vast majority of 1/2〈111〉 and a few 〈100〉 interstitial loops at low temperatures, these

〈100〉 interstitial loops disappear leaving only 1/2〈111〉 interstitial loops at high temper-

atures. Empirical potentials seem to be inconclusive with some predicting 1/2〈111〉 as

most stable and others show a crossover between 1/2〈111〉 and 〈100〉 loops suggesting

competing stability of these loops as a function of number of interstitials. As such, MD
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simulations using different potentials can be contradictory as well but DFT calculations

have quite definitively established the stability of 1/2〈111〉 interstitial loops over other

possibilities.

1.2.4 Overview of radiation-induced defects in vanadium

Experimental observations

In 1968, Rau et al (148 ) were among the earliest to report the effects of neutron irradia-

tion on vanadium. Having irradiated vanadium disks with fast neutrons at temperatures

from 573 to 1448 K (300− 1175◦C), they reported defect clusters that grew into resolv-

able dislocation loops (apparently) of interstitial nature. The microstructure was not

reported due to impurities which were responsible for stability of loops at higher tem-

peratures. These impurities, appearing as black spots decorating dislocation loops, were

actually precipitates (most likely vanadium carbides or nitrides) formed by their inter-

action with vanadium. Additionally, they reported presence of damage halos around

some particles (probably boron)which were supposed to occur due to recoiling products

of 10B(n, α)7Li.

Elen et al. (149 ) irradiated ultra pure vanadium disks with fast neutrons and reported

their observations at 693 K (420◦C), 903 K (630◦C) and 1023 K (750◦C). At 693 K, they

observed three types of defects: aggregating small dislocation loops of Burgers vector

1/2〈111〉, inhomogeneous distribution of voids and radiation-induced planar precipitates

involving impurities such as oxygen, carbon or nitrogen. Similar precipitates had been

earlier reported by Wiffen et al. (150 ) and Rau et al. (148 ). At 903 K, extremely mobile

and large dislocation loops were observed which interacted with voids to give disloca-

tion tangles but no planar precipitates were seen. At 1023 K, only an inhomogeneous

distribution of voids existed at sites previously having dislocation loops.

Shiraishi et al. (151 ) studied effects of fast neutrons on 0.3 mm thick vanadium disks

at 473 K (200◦C) which was followed by annealing at temperatures of 453 to 973 K

(180− 700◦C). They observed growth of dislocation loops with temperature till around

873 K (600◦C) where 1/2〈111〉111 vacancy loops were found to have an average diameters

of 300Å, as seen in Fig. 1.12. These dislocation loops annealed out following 1 hr of

heating at 973 K (700◦C).
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Figure 1.12: Microstructure after irradiation and annealing of Vanadium specimen for 1

hr at 873 K (600◦C), showing 1/2〈111〉 loops of vacancy type. Figure taken

from Ref. (151 ).
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Horton et al. (152 ) analyzed temperature dependence of microstructures in vanadium

due to neutron irradiation. Vanadium disk of 0.5 mm thickness was irradiated with

neutrons up to 1 dpa at temperatures between 455 and 925 K. They also observed three

kinds of defects, as reported by Elen et al. (149 ). First type of defects were dislocation

loops. Between 455 and 625 K, the dislocation loops were shown to grow in size. The

Burgers vectors of these loops at 625 K was observed to be 1/2〈111〉 which remained the

same till atleast 773 K, in accordance with Elen et al (149 ). Secondly, homogeneously

distributed (except at 775 K) cavities were observed which also grew in diameter with

increasing temperature. Thirdly, platelet precipitates were observed at 725 and 775 K,

lying along 〈100〉 on 012. These precipitates, previously observed by Wiffen et al. (150 ),

Rau et al. (148 ) and Elen et al. (149 ), are expected to form due to interaction of

vanadium self-interstitials with interstitial impurities. However, exact composition of

these precipitates wasn’t explained till then (153 ).

Bradley et al. (154 ) examined microstructural change in vanadium wires and foils

on irradiation with T(d,n) neutrons at 300 K, 475 K and 675 K. At 300 K, irradia-

tion resulted in very small defect clusters which were assumed to be 1/2〈111〉 loops

based on earlier experimental observations. At 475 K, larger interstitial 〈100〉 loops

on (100) planes were observed in addition to small 1/2〈111〉 loops (nature unknown).

At 675 K, a heterogeneous distribution of dislocation loops and planar precipitates was

reported. Interestingly, precipitate distributions of similar kind were also observed by

vacuum annealing of unirradiated samples for 300 h at 675 K. This led them to conclude

that precipitates were thermally activated, contradicting previous studies that believed

precipitates were radiation-induced (149 , 152 ). Observation of 〈100〉 interstitial loop

is also another contradiction to previous studies (151 , 152 ). However, Bradley et al.

attributed this contradiction to the difference in impurity levels among the specimens

irradiated in various studies. Little, Bullough and Wood (155 ) had predicted presence

of 〈100〉 loops in vanadium and niobium using their model that was originally proposed

to explain presence of 〈100〉 dislocation loops in iron. One of the requirements of the

model is a high preirradiation dislocation network density which is not seen in the case

of annealed vanadium, so this model seemed an unlikely explanation for vanadium.

Ohnuki et al. (156 ) performed microstructural studies of 3 mm vanadium disks (pure

and impure) irradiated with neutrons up to 14 dpa at 870 K. After irradiation, pure vana-

dium was found to contain low-density large voids (dia = 50 nm) and higher-density small

voids (dia = 5 nm); blocky precipitates (of 30 nm) and large platelet-shaped precipitates

(several hundred nm long, 10 nm thick), and a network of dislocation lines. Meanwhile,
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Figure 1.13: Defect density evolution in Vanadium, irradiated using 3 MeV Cu3+ions, is

studied at various temperature variations a) shows the variation in density

of three types of defects(loops, precipitates and voids) as a function of tem-

perature b) shows number density of interstitial dislocation loops at various

temperatures and irradiation conditions. Figure taken from Ref. (157 )

irradiation of impure vanadium resulted in no void formation, under-developed network

of dislocations and higher density of platelets with faulted features along 〈001〉 direction.

Ochiai et al. (157 ) compared microstructural evolution in pure vanadium during ion

(3 MeV Cu3+) irradiation at constant and varying temperature (473/873, 673/873 and

873/473 K). As reported earlier (149 , 152 , 154 ), this study also reported interstitial

dislocation loops, needle-like precipitates along 〈100〉 direction and voids. Fig. 1.13a

shows the variation in density of these three types of defects as a function of temperature

while Fig. 1.13b shows number density change at various temperatures and irradiation

conditions. Nita et al. (158 ) performed stepwise temperature increase alongwith upward

and downward temperature changes to study microstructural changes due to irradiation

with 4 MeV nickel ions and reported similar trends of density.

Watanabe et al. (159 , 160 ) studied change in microstructure of vanadium by com-

paring irradiation with positron at two different temperature regimes. One temperature

regime involved irradiation of vanadium disks for 8 irradiation cycles consisting of irra-

diation at 498 K of about 0.05 dpa and at 613 K of about 0.45 dpa whereas the second

regime involved continious irradiation at 613 K. The latter resulted in an ordered array
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of voids while the former developed thin, long platelets of precipitates in 〈100〉 directions

with a random distribution of small voids. These precipitates were identified as carbides

which were also detected by conducting copper ion irradiation in varying temperature

condition(473/873 K) and were found to be sensitive to temperature variation. There is

one important conclusion that can be drawn from various temperature dependent irradi-

ation studies (161 –164 ) of microstructure in vanadium: Pre-irradiation of specimens at

lower temperature can suppress interstitial loops formation when temperature variation

exceeded a certain characteristic temperature. This temperature was estimated at about

673 K for pure vanadium (157 ).

Simulation-based results

Ab initio calculations show that a 1/2〈111〉 interstitial dumbbell is the most stable SIA in

vanadium. Various interatomic potentials have been developed to perform better atom-

istic simulations and its implications (165 ) using Finnis-Sinclair (FS) formalism (166 ,

167 ), using modified embedded atom method (MEAM) (168 ) by refitting of parameters

developed by Baskes (89 ). Zepeda-Ruiz et al. (169 , 170 ) reported stability of 1/2〈111〉
SIA loops over 1/2〈110〉 and 〈100〉 in simulations using the FS potential. They also

found easy rotation of these other dislocation loops into 1/2〈111〉 loops by relaxation

at low temperatures due to a significant difference in formation energies for 1/2〈111〉
loops and 〈100〉 or 1/2〈110〉 loops. Also, interaction of two 1/2〈111〉 loops indicated a

thermally unstable 〈100〉 junction that rotated into 1/2〈111〉 direction at temperatures

between 327 and 800 K (527◦C). A detailed study of diffusion of SIAs in vanadium (171 ,

172 ) revealed that SIA jumps were correlated with the correlation factor being sensitive

to temperature changes below 800 K.

Summary for vanadium: In general, dislocation loops of Burgers vector 1/2〈111〉, voids

and planar precipitates are observed after neutron irradiation. However, there are con-

tradictions among the experiments with one reporting the presence of 〈100〉 interstitial

loops in addition to the above-mentioned defects and another stating the nature of

1/2〈111〉 dislocation loops as vacancy-type. These contradictions have been attributed

to the varying levels of impurities among the different experimental samples. Ab initio

calculations have established that the 〈111〉 interstitial dumbbell is the most stable and

even predictions using interatomic potentials concur regarding the stability of 1/2〈111〉
interstitial loops. In fact, simulations using Finnis-Sinclair potential for V predicts easy
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rotation of 〈100〉 and 〈110〉 loops into 1/2〈111〉 due to a significant difference in their

formation energies.

1.2.5 Overview of radiation-induced defects in tantalum

Experimental observations

The database for experimental study of irradiated tantalum is extremely scarce. Among

these, only a handful of them actually report any details relevant to our field of interest

(with respect to microstructural changes: observation of point defects, dislocation loops

etc.). The first TEM study involving irradiated tantalum was reported in 1970 by

Kulcinski et al. (173 ). They analyzed neutron-irradiated tantalum foils at 723 K (450◦C)

and reported a large density of small loop and defect clusters with an average size of

50Å and no voids of comparable size. Absence of large clusters of loops is attributed

to lower interaction energy (174 ) due to smaller shear modulus for tantalum when

compared to bcc metal like Molybdenum.

Wiffen et al. (175 ) irradiated tantalum foils with neutrons at temperatures ranging

from 698 to 1323 K (425− 1050◦C). Many screw dislocations with Burgers vector (pre-

sumably) 1/2〈111〉 were observed. Electron microscopy revealed two different categories

of irradiated specimens: one after irradiation at 698 K and another for irradiation after

temperatures greater to equal to 858 K (585◦C). Irradiation at 698 K resulted in mainly

small dislocation loops, presumed to be of mixed vacancy and interstitial types with a

few larger loops and dislocation segments. They also observed slip of 1/2〈111〉 disloca-

tions on {110} planes. On the other hand, specimens irradiated at 858, 1063 and 1273

K (585, 790, 1000◦C) consisted of a void population as well as a dislocation structure.

The void size was found to increase with increase in temperature of irradiation. Dislo-

cation structures did not follow a general trend as for voids. After irradiation at 858

K, 1/2〈111〉 screw dislocations were reported along with random segments. Meanwhile

irradiation at 1063 K resulted in various areas free of dislocation, connected dislocation

and even isolated loops in addition to voids pinning dislocation segments. At 1273 K,

connected networks at smaller scale were observed as were a few voids without evidence

of void-dislocation interaction.

Yasunaga et al. (176 ) investigated microstructural evolution of tantalum disks after
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Figure 1.14: Microstructural evolution in Tantalum disks after Cu ion irradiation with

increasing dose at 973 K. Dose is marked above each image. Figure taken

from Ref. (176 )

copper ion irradiation to 20 dpa between temperatures 773 and 1546 K. Below 1073

K, a high density of small dislocation loops and line dislocations are observed. At 973

and 1073 K, they were identified to be of vacancy type and so the loops at 773 and

873 K were also presumed to be of vacancy type. They also studied the evolution

of microstructure at 973 K, as shown in Fig. 1.14. Interstitial type loops having a

diameter of about 10 nm were seen to be uniformy distributed at 0.03 dpa. With further

irradiation, these dislocation loops combined to form larger loops and appeared to tangle

with line dislocations. Small vacancy type loops formed preferentially inside these large

interstitial loops. Similar evolution studies at higher temperatures (1173 and 1408 K)

revealed voids even at 0.03 dpa which grew in size with increasing dose. Basically, they

concluded that the stable morphology of vacancy clusters changed from 2D loops to 3D

voids and the transition temperature was between 973-1073 K.

Yasunaga et al. (177 ) also studied copper ion irradition of tantalum disks up to 3 dpa

for temperatures ranging from room temperature to 1073 K. They reported presence of

only vacancy loops and vacancy voids.
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Simulation-based results

From first-principles, it has already been established that 1/2〈111〉 loops are the most

stable. As for the other transition metals, various potentials have been developed for

tantalum. EAM potentials for tantalum include those fit to experimental properties (83 ,

178 , 179 ), those fit on ab initio and experiments (180 , 181 ) along with MEAM potential

as in Ref. (182 ) and an angular-dependent potential as in Ref. (183 ). These have been

used in previous studies related to simulations of various dislocation processes (184 ,

185 ).

Summary for tantalum:Scarcity of experiments and contrasting irradiation conditions

among the various experiments prevent any conclusive evidence of finding a particular

type of defect over another. While one experiment found screw dislocations with Burg-

ers vector 1/2〈111〉, another reports growth of interstitial loops which is followed by

a preferential formation of vacancy loops at higher temperatures. Nevertheless, it has

already been established from first principles that 1/2〈111〉 loops are the most stable.

1.3 Conclusions

In this chapter, we have presented a brief summary of radiation damage and a thor-

ough survey of the relevant published articles about radiation damage in iron, tungsten,

vanadium and tantalum. In this section we emphasize the main conclusions.

Experimental observations of irradiated bcc transition metals except Fe reveal the

dominance of dislocation loops with 1/2〈111〉 Burgers vector. Irradiation of Fe at low

temperatures also results in 1/2〈111〉 loops while irradiation at high temperatures results

in 〈100〉 loops. Additionally, small 〈100〉 loops have been observed in W under heavy

ion irradiation at low temperatures. Explanation of these results are still under debate.

In agreement with experiments in bcc transition metals except Fe, DFT calculations

predict 1/2〈111〉 dumbbell to be the most stable mono-SIA. Although there is no ex-

perimental evidence to support their formation, the 3D C15 SIA clusters appear to be

particularly stable in bcc Fe according to DFT calculations(37 ). In iron, it was found

theoretically that these C15 clusters are stable, immobile, and exhibit large antiferro-
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magnetic moments. Theoretically, these C15 clusters have been found to form directly

inside atomic displacement cascades and are able to grow by capturing self-interstitial

atoms from the surrounding material. In other bcc transition metals the DFT calcu-

lations show that the energy of very small C15 cluster (up to 4 interstitial) is always

significantly higher than that of parallel 〈111〉 crowdions. In Ta this difference is the

lowest. A systematic description of the energy landscape of C15 clusters and dislocation

loops (1/2〈111〉 and 〈100〉 loops) will be the subject of Chapters 3, 4 and 5.

Below, we recapitulate the brief summary of each material treated in this thesis:

Summary for iron:The number of experiments studying the irradiation-induced mi-

crostructural changes in iron is quite high compared to the other transition metals. All

these experiments report a majority of mobile 1/2〈111〉 interstitial loops at lower tem-

peratures. Further, an increasing proportion of the comparatively immobile 〈100〉 is

observed above 573 K which ultimately become the majority at around 773 K. The ori-

entation of the sample is crucial in this observation, otherwise the 1/2〈111〉 can migrate

to surface, biasing the results of experiments. Moreover, the impurities can also bias the

results impacting the mobilities of the different loop types. For example, He stabilizes

the 1/2〈111〉 loops rendering them immobile, as predicted by MD simulations. Cr in

Fe-Cr alloys reduce the mobility of the 1/2〈111〉 loops as well, eventhough the combined

effect of He beam and Cr content in alloys did not show any clear trend. Though the

theoretical explanation was lacking till recently, most of the experiments have now been

explained rather convincingly in the existing literature. According to DFT Calculations,

the most stable mono-SIA in Fe is the 〈110〉 dumbbell. The 〈110〉 SIAs are the most

stable in Fe up to around five SIAs and 1/2〈111〉 loops are the most stable beyond the

cluster size of around five interstitials. Taking into account elastic approximation to

calculate the formation energies near the α−γ, a reduction of free energy of 〈100〉 loops

was demonstrated, thus making the 〈100〉 loops more stable compared to 1/2〈111〉 loops

at temperatures higher than about 800 K. Although the stability of 〈100〉 was thus es-

tablished, the mechanism for the formation of 〈100〉 loops has not been confirmed yet.

The theoretically proposed mechanism of the formation of 〈100〉 by collisions of two

1/2〈111〉 loops can explain the formation of 〈100〉 loops in pure Fe, or Fe under He

atmosphere. However, despite the fact that Cr reduce the mobility of 1/2〈111〉 loops

the formation of 〈100〉 loops is very active in FeCr alloys. Moreover, the absence of

〈100〉 interstitial dislocation loops at low temperatures remains unexplained, given that

the 1/2〈111〉 loops are very mobile at low temperature. Recent studies highlight the im-

portance of C15 clusters in understanding and explaining the anomalous experimental
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observations of 〈100〉 loops in Fe, thus reconciling experiments with DFT calculations

of energy landscape of point defects in bcc Fe. The sections 4.5.1 and 5.4 will provide a

detailed discussion of the existing models and the present findings of this thesis.

Summary for tungsten: While recent experimental observations reveal presence of

1/2〈111〉 and 〈100〉 interstitial(mainly) loops at higher temperatures (>573 K), pre-

vious experiments observed 〈110〉 and 1/2〈111〉 vacancy loops at room temperature.

Empirical potentials seem to be inconclusive with some predicting 1/2〈111〉 as most sta-

ble and others show a crossover between 1/2〈111〉 and 〈100〉 loops suggesting competing

stability of these loops as a function of number of interstitials. As such, MD simulations

using different potentials can be contradictory as well but DFT calculations have quite

definitively established the stability of 1/2〈111〉 interstitial loops over other possibilities.

Summary for vanadium: In general, dislocation loops of Burgers vector 1/2〈111〉, voids

and planar precipitates are observed after neutron irradiation. However, there are con-

tradictions among the experiments with one reporting the presence of 〈100〉 interstitial

loops in addition to the above-mentioned defects and another stating the nature of

1/2〈111〉 dislocation loops as vacancy-type. These contradictions have been attributed

to the varying levels of impurities among the different experimental samples. Ab initio

calculations have established that the 〈111〉 interstitial dumbbell is the most stable and

even predictions using interatomic potentials concur regarding the stability of 1/2〈111〉
interstitial loops. In fact, simulations using Finnis-Sinclair potential for V predicts easy

rotation of 〈100〉 and 〈110〉 loops into 1/2〈111〉 due to a significant difference in their

formation energies.

Summary for tantalum:Scarcity of experiments and contrasting irradiation conditions

among the various experiments prevent any conclusive evidence of finding a particular

type of defect over another. While one experiment found screw dislocations with Burg-

ers vector 1/2〈111〉, another reports growth of interstitial loops which is followed by

a preferential formation of vacancy loops at higher temperatures. Nevertheless, it has

already been established from first principles that 1/2〈111〉 loops are the most stable.
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2 Methods: Theoretical background of

atomistic methods

Atomistic methods, as the name suggests, involve consideration of each atom in the

material in order to understand its response under given conditions. The various phe-

nomena taking place at the atomic scale affect material behaviour at a macroscopic

scale, which in turn influences the thermal and mechanical properties of this mate-

rial. Applicability, lifetime and sustainability of a material under specific conditions can

only be determined accurately when a complete understanding of material behaviour

at atomistic and consequently, macroscopic level is attained. This serves mainly two

purposes: Firstly, limitations of experiments are circumvented and secondly, atomistic

methods provide the means to verify and validate our understanding of material. Numer-

ous methods have been developed to effectively describe the atomic scale of materials,

varying in computational cost, accuracy, approximations made etc.

Although there exist a number of numerical methods to characterize the energy land-

scape of point defects in metals, each has its limitation. Ab initio methods, based on

Density functional theory, provide accurate formation energies for small-sized intersti-

tial defects but are computationally costly at larger sizes. To overcome this size limi-

tation, various empirical potentials have been developed, such as, the Embedded Atom

Method(EAM) potentials for Fe and W which are widely used. These EAM potentials

have facilitated calculation of formation energy of defects while being computationally

feasible and fast. However, they do not yield accurate values for formation energy and

are non-transferable giving a difference of up to 400 eV for clusters of 1000 interstitial

atoms in Fe.

Objective: This chapter provides a brief insight into the atomistic methods under-

taken during this thesis. Additionally, we discuss the advantages and the limitations of

these atomistic methods which range from ab initio to interatomic potentials, through
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tight binding approximation.

The various sections and their contents are as follows:

• Section 2.1: In this section, a chronological account of the evolution of ab initio

methods is presented with subsections on the Born-Oppenheimer approximation

(Sec. 2.1.1), the Density Functional Theory (Sec.2.1.2) and Bloch’s theorem (Sec.

2.1.3).

• Section 2.2: A brief discussion of the principles of the tight-binding method are

presented to describe the transition from ab initio methods to empirical potentials.

• Section 2.3: In this section, the formulation for Embedded Atom Method po-

tential is briefly discussed and compared with tight binding empirical potentials.

This section also presents a subsection on the existing empirical potentials for bcc

metals(Sec.2.3.1).

• Section 2.4: A short conclusion is also provided at the end to highlight the main

points drawn from this study of atomistic methods.

2.1 Ab initio methods

At the macroscopic level (except for cases dealing with relativistic velocities), classical

mechanics provides the requisite physical laws to describe and predict the motion of

objects by measurement of its position as a function of time. However, the accuracy

of measurement deteriorates at atomic levels. This uncertainty doesn’t stem from any

limitation of measurement equipments but is an inherent feature of objects at an atomic

scale in the realm of quantum mechanics. Quantitatively, Heisenberg’s uncertainty prin-

ciple gives a lower bound to this inherent uncertainty as ∆σx∆σp ≥ h/4π, where ∆σx

and ∆σp denote standard deviations in position and momentum while h is the Planck’s

constant. The equality holds if the wave-packet is a Gaussian.

In the quantum realm, a particle is described by a wave function ψ(~r, t) which can be
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obtained by solving the time-dependent Schrödinger’s equation:

i~
∂ψ(~r, t)

∂t
= − ~2

2m
∇2ψ(~r, t) + V (~r, t)ψ(~r, t), (2.1)

where ~ = h/2π, m is the mass of the particle and V(~r,t) is the potential energy associ-

ated with the particle. The physical significance of ψ(~r, t) is that probability of finding

the particle at a position ~r at time t is proportional to ψ(~r, t)∗ψ(~r, t). Given ψ(~r1, t) for

a particle, the probability of finding it at the position ~r1 at time t is:

P (~r1, t) =
ψ∗(~r1, t)ψ(~r1, t)∫
ψ∗(~r, t)ψ(~r, t)d~r

, (2.2)

where the denominator signifies integration over all space.

If potential energy is assumed to be independent of time, the wave function can be

split into a time-dependent part and a spatially-dependent part as ψ(~r, t) = φ(~r)ϕ(t)

which leads to splitting of Eq. 2.2 into time-dependent and time-independent equations

as follows:

i~
∂ϕ(t)

∂t
= Eϕ(t), (2.3)

− ~2

2m
∇2φ(~r) + V (~r)φ(~r) = Eφ(~r), (2.4)

where E is a separation constant which was later established to be the energy associated

with the particle of interest. The general solution for the time-dependent equation can

be written as ϕ(t) = Ce−iEt/~. The LHS of time-independent is actually the Hamiltonian

operator, Ĥ:

Ĥ = − ~2

2m
∇2 + V (~r). (2.5)

Substituting the Hamiltonian operator in Eq. 2.4 gives:

Ĥφ = Eφ. (2.6)

The Hamiltonian operator acts on a wavefunction to return the wavefunction along

with a constant value for energy E. So, the time-independent Schrödinger’s equation is

an eigenvalue problem. This implies that for a set of possible eigenfunctions φn, only

certain discrete energy eigenvalues are feasible which satisfy Ĥφn = Enφn.

The time-independent Schrödinger’s equation holds good, except for fast processes

like laser excitation or the first stages of high energy cascades. Further on, only the
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2 Methods: Theoretical background of atomistic methods

time-independent Schrödinger’s equation will be discussed which can be written for a

general many-body system with N nuclei at positions ~RI and n electrons at positions ~ri

as:

Ĥφ(~ri, ~RI) = Eφ(~ri, ~RI) (2.7)

where Hamiltonian for the system is given by:

Ĥ =
N∑
I=1

PI
2

2MI

+
n∑
i=1

pi
2

2m
−

n∑
i=1

N∑
I=1

ZI

|~ri − ~RI |
+

1

2

N∑
I=1

N∑
J=1

ZIZJ

|~RI − ~RJ |
+

1

2

n∑
i=1

n∑
j=1

1

|~ri − ~rj|
,

(2.8)

where PI , MI and ZI denote the momentum, mass and charge of the ith nucleus while

pi denotes the momentum of the ith electron, m and e being mass and charge of an

electron. The first two terms represent the kinetic energy of nuclei and electrons while

the following three terms denote the Coulombic interction between electrons and nuclei,

among nuclei and among electrons, respectively. For simplicity, Eq. 2.8 can be written

as:

Ĥ = Tz + Te + Vez(~r, ~R) + Vzz(~R) + Vee(~r), (2.9)

where Tz and Te denote the kinetic energy of nuclei and electrons whereas Vez(~r, ~R),

Vzz(~R) and Vee(~r) denote Coulombic interaction (potential energy) between electrons-

nuclei, among nuclei and among electrons, respectively. This time-independent Schrödinger’s

equation can be solved analytically only for the case of a hydrogen atom. For a sys-

tem consisting of more than two interacting particles, no analytical solutions can be

found. Also, satisfying Pauli’s exclusion principle and indistinguishability of fermions

further complicate the unattainable. So, the way forward can be paved only on the

basis of some reasonable assumptions and simplifications which will be presented in the

following sections

2.1.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation (186 ) is based on the fact that the nuclei are

much heavier than electrons implying that the timescales of nuclear motion are much

larger than those of electronic motion. In other words, the electrons are able to adjust

quickly in response to any nuclear motion and this nullifies any effect that the nuclear

motion would have had on the system.

Although Born-Oppenheimer approximation and the adiabatic approximation are of-
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2.1 Ab initio methods

ten used interchangeably, there does exist a distinction in their implication (typically, a

chemist’s viewpoint). Strictly speaking, the Born-Oppenheimer approximation implies

absence of correlation of electronic surface and ionic motion while adiabatic approxima-

tion implies no coupling between different electronic surfaces. Finally, it can be stated

that the electrons evolve into an external potential provided by the nucleus, Vext = Vez.

Following Born-Oppenheimer approximation, Eq. 2.9 can be simplified as:

Ĥ = Te + Vext(~r, ~R) + Vee(~r), (2.10)

where the symbols follow the previously-stated convention.

2.1.2 Density Functional Theory

Although the Born-Oppenheimer approximation resulted in some significant simplifica-

tion, the actual problem of determination of many-body wavefunctions still involved a

great amount of complexity. The quantum problem is well defined if the external po-

tential and the number of electrons are given. In principle, the wavefunctions can be

determined using Schrödinger’s equation and these wavefunction give access to system

properties like charge density, energy etc. However, groundstate properties of the system

were not practically feasible.

This led Hohenberg and Kohn (187 ) to suggest an alternative which relied solely on

the electron density ρ(~r) without the main obstacle of determination of wavefunctions

φ(~r1, ~r2, ..., ~rn) from many-body Schrödinger’s equation. Electron density of n electrons

can be written:

ρ(~r) = n

∫
|φ(~r, ~r2, ..., ~rn)|2 d~r2...d~rn, (2.11)

They provided a unique way to calculate groundstate energy of the system as a functional

of the electron density: E[ρ(~r)].

Hohenberg-Kohn Theorems

The basic idea of their theorems (187 ) was acknowledgement of the significant role that

the electron density, ρ(~r), plays in defining the quantum system. Basically, this caused
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2 Methods: Theoretical background of atomistic methods

a shift in focus from the problem of determination of wavefunctions to electron charge

density. Considering an arbitrary number of electrons subjected to an external potential

Vext, the Hamiltonian for this system can be written, from Eq. 2.10:

Ĥ = Te + Vee + Vext, (2.12)

where, as stated, Te and Vee denote the kinetic energy and potential energy of electrons.

Theorem 1: The external potential Vext (and consequently, the ground state energy

of a system of electrons) is uniquely determined by its ground state electron density,

assuming that the groundstate is non-degenerate.

Proof: Let an external potential V
(1)
ext and Hamiltonian H(1) with groundstate wave-

function φ(1) lead to groundstate electron density ρ with a groundstate energy of E(1) =<

φ(1)|H(1)|φ(1) >. Suppose an external potential V
(2)
ext and Hamiltonian H(2) with ground-

state wavefunction φ(2) also give the same groundstate electron density but with a

groundstate energy E(2) =< φ(2)|H(2)|φ(2) >. Using variational principle, we obtain:

E(1) < 〈φ(2)|H(1)|φ(2)〉 = 〈φ(2)|H(2) + V
(1)
ext − V (2)

ext |φ(2)〉, (2.13)

which implies,

E(1) < E(2) +

∫
[V

(1)
ext − V (2)

ext ]ρ(~r)d~r. (2.14)

Similar treatment with interchanged (1) and (2) gives:

E(2) < E(1) +

∫
[V

(2)
ext − V (1)

ext ]ρ(~r)d~r. (2.15)

Now, addition of Eq. 2.14 and Eq. 2.15 leads to the following absurd relation:

E(1) + E(2) < E(1) + E(2) (2.16)

Thus, by reductio ad absurdum, the external potential Vext is shown to be uniquely

determined by the non-degenerate groundstate electron density ρ(~r). Since Vext con-

tributes to the complete Hamiltonian Ĥ, it can be concluded that the groundstate is

itself a unique functional of the groundstate electron density. As stated, this theorem is

valid only for groundstate and does not hold for a system with excited electrons.
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2.1 Ab initio methods

Theorem 2: A universal functional F [ρ(~r)] can be defined in terms of the density for

any given external potential Vext. The exact groundstate is the global minimum value

of this functional.

Proof: Firstly, we define the universal function F [ρ(~r)] as follows:

F [ρ(~r)] =< φ|T + V |φ > . (2.17)

One can write energy of a system subjected to an external potential Vext as a functional

of density ρ(1) as follows:

E[ρ(1)] =< φ(1)|T + V |φ(1) > + < φ(1)|Vext|φ(1) >, (2.18)

having a minimum value at the groundstate wavefunction φ and groundstate electron

charge density ρ such that (variational principle):

E[ρ(1)] = 〈φ(1)|T + V |φ(1)〉+ 〈φ(1)|Vext|φ(1)〉 > 〈φ|T + V |φ〉+ 〈φ|Vext|φ〉 = E[ρ], (2.19)

or equivalently, writing in terms of charge density:

E[ρ(1)] = F [ρ(1)] +

∫
Vextρ

(1)d~r > E[ρ] = F [ρ] +

∫
Vextρd~r. (2.20)

Hence, E0 = E[ρ(~r)] = minE[ρ(1)(~r)]. So, it can be concluded that the minimum of the

energy functional of electron density indeed is the minimum of the energy of the system.

If F [ρ] were a sufficiently simple functional of ρ, a mere minimization would suffice to

calculate the groundstate energy and density in a given external potential. The price to

pay for this simplification is that the actual form of the functional E(ρ) is not known.

In mathematical terms, this means that a variational principle exists for E(ρ), which

is minimized for the charge density of the ground state energy. However, determination

of F [ρ] is fairly complex and this led to further development in the form of Kohn-Sham

equations.

Kohn-Sham equations

Complexity of the quantum problem of determination of groundstate properties of a

given system of electrons under a given external potential (using Schrödinger’s equa-

tion) is mainly caused by the interaction of electrons among themselves i.e. the electron-

electron repulsion. In order to simplify this complexity, Kohn-Sham (188 , 189 ) proposed
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2 Methods: Theoretical background of atomistic methods

mapping of a many-body interacting system with the actual external potential onto a

non-interacting system of electrons in an effective potential such that the groundstate

charge density remains the same as the original system of interacting potential. This

effective potential is known as the Kohn-Sham potential. Kohn-Sham equations essen-

tially provide a simpler means to carry out calculations because the Schrödinger-like

equations just need to account for the external potential and not for all the possible

interactions considered otherwise. The groundstate energy functional of interacting

electrons can be written as:

Ee[ρ(~r)] =

∫
Vext(~r)ρ(~r)d~r + EKE[ρ(~r)] + EH [ρ(~r)] + EXC [ρ(~r)], (2.21)

or equivalently,

Ee[ρ(~r)] = −
∫ N∑

K=1

ρ(~r)

~r − ~RK

d~r +
n∑
i=1

∫
φi(~r)(

−∇2

2
)φi(~r)d~r

+
1

2

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2 + EXC [ρ(~r)], (2.22)

where the first term gives the interaction of electrons with the external potentials (which

should be determined), the second term is the kinetic energy of a system of non-

interacting electrons, the third term gives the electron-electron repulsion (Hartree elec-

trostatic energy of a charge distribution) and the fourth term is the exchange−correlation

functional. This exchange-correlation function is a universal function whose form is not

exactly known. Several approximations for this exchange-correlation term like Local

Density Approximation (LDA) or the Generalized Gradient Approximation (GGA) are

commonly used. These approximations will be discussed at the end of this section.

Minimization of the energy functional with respect to orbitals is performed to obtain

the orbitals that give the groundstate energy. Although both give the same results,

minimization is done with respect to φ∗(~r) instead of φ(~r). So, we get:

δEe
δφ∗i (~r)

=
δEKE
δφ∗i (~r)

+

[
δEext
δρ(~r)

+
δEH
δρ(~r)

+
δEXC
δρ(~r)

]
δρ(~r)

δφ∗i (~r)
= εiφi(~r), (2.23)

after functional derivatives the equation becomes:[
−∇2

2
+ Vext(~r) +

∫
d~r′

ρ(~r′)

|~r − ~r′|
+
δEXC
δρ

]
φi(~r) = εiφi(~r), (2.24)

The last equation resemble to Schrödinger’s equation with a form such as:

[T + V KS
eff ]φi(~r) = εiφi(~r), (2.25)
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and represents the Kohn-Sham equations. The effective self-consistent potential V KS
eff of

non-interacting electrons in term of electron density reads:

V KS
eff =

δ[Eext + EH + EXC ]

δρ∗i (~r)
= Vext(~r) +

∫
d~r′

ρ(~r′)

|~r − ~r′|
+
δEXC
δρ

(2.26)

In practice, we can evaluate the ground state energy of interacting electrons from the

solutions of the Kohn-Sham equation Eq. 2.25 as:

Ee(ρ) =
∑
i

εifFD(εF − εi) + F [{RI}, ρ], (2.27)

where the electronic density can be deduced as ρ(~r) =
∑
fFD(εF − εi)|φi(~r)|2, fFD is

the Fermi-Dirac distribution function, εF is the Fermi energy, and the residual term F

is given by:

F [ρ] = EXC [ρ]−
∫
V KS
eff (~r)ρ(~r)d~r. (2.28)

Finally in order to evaluate the total enbergy of the system we should add in the above

equation the nucleus-nucleus interaction. The new F reads:

F [{RI}] = F [ρ] +
1

2

∑
I 6=J

ZIZJ

| ~RI − ~RJ |
(2.29)

An initial guess for ρ(~r) is used to calculate the effective potential V KS
eff in Eq. 2.26.

This V KS
eff is, in turn, used to estimate the new density ρ(~r) using Eq. 2.24 and ρ(~r) =∑

i=1

∑
fFD(εF − εi)|φi(~r)|2 and so on. In this way, n individual electrons are used to

find the self-consistent electron density of the original system of interacting particles. So

far the only unknown part in the above Kohn-Sham self-consistent calculation are the

exchange-correlation energy EXC .

Local Density Approximation(LDA): This is the simplest approximation to the un-

known exchange-correlation term in the Kohn-Sham equations and considers only the

local electron density contribution i.e. it depends only on the value of the electronic

density at a single point. Assuming that the density of exchange-correlation energy of

homogenous electron gas exc(ρ) is known from the density of the electron gas ρ(~r) at

a given point ~r, the exchange-correlation energy can be written as a simple integra-

tion (189 ):

ELDA
XC =

∫
exc(ρ(~r))ρ(~r)d~r (2.30)

65



2 Methods: Theoretical background of atomistic methods

The exact form of exchange-correlation of the homogeneous gas is unknown except at

the asymptotic limits, i.e. very low and high density. Thus, it is usual to assume that

εxc can be written as the sum of exchange and correlation parts:

εxc = εc + εx (2.31)

The exchange part εx(~r) can be derived analytically and is given by the Dirac func-

tional (190 ):

εx(p) = −3

4

(
3

π

)1/3

ρ4/3 (2.32)

In contrast, the correlation part is analytically unknown. However, accurate calculations

using Quantum Monte Carlo integration have been done by Cerperley and Alder (191 ).

Many analytic interpolation of these numerical results have been proposed in the past,

such as, Perdew-Wang (192 ) or Perdew-Zunger (193 ). Despite being derived from the

homogeneous electron gas and the simplicity of LDA, this exchange correlation functional

provides sufficient accuracy to address material science problems. In this thesis, we have

not used the LDA approximation which is not very well adapted to metallic systems.

Generalized Gradient Approximation(GGA): A natural extension of the LDA approx-

imation is to go beyond the local approximation in Eq. 2.30 by increasing the region of

space which contributes to the exchange-correlation energy. The density ρ(r̃) can be for-

mally expanded around the point ~r which is assumed to be the origin, as follows (189 ):

ρ(r̃) = ρ+ ρir̃i +
1

2

∑
ρij r̃ir̃j + ..., (2.33)

where ρ = ρ(0), ρi = |∇iρ(~r)|~r=0 etc. The above development provides a series for

exchange-correlation functional as:

E
(0)
XC =

∫
exc(ρ(~r))ρ(~r)d~rr (2.34)

E
(1)
XC =

∫
f (1) [ρ(~r), | 5 ρ(~r)|] ρ(~r)d~r (2.35)

E
(2)
XC =

∫
f (2) [ρ(~r), | 5 ρ(~r)|]52 ρ(~r)d~r (2.36)

E
(0)
XC reproduces the LDA while E

(1)
XC gives the GGA. This approximation requires in-

dependent calculation of function of two variables, the density (ρ(~r)) and the gradient

of density(| 5 ρ(~r)|). One of the most reliable exhange-correlation functional of this
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type is the GGA-PBE or GGA-Perdew-Burke-Ernzerhof introduced in 1996 (194 ). This

functional will be used for all DFT calculations performed throughout this thesis.

There is no feasible way to improve the exchange-correlation functional because the

errors introduced by LDA or GGA are systematic and unavoidable. However, all other

approximation presented below are controllable in the sense that some convergence pa-

rameters can be tuned in order to reduce the corresponding error.

2.1.3 Bloch’s Theorem

Despite all the above approximations, complexity of a practical quantum problem arises

from the high number of electrons that need to be considered. Bloch’s theorem provides

the requisite simplification for cases with periodic lattices. Bloch’s theorem proves that

if potential V (~r) is periodic such that V (~r + ~R) = V (~r) where ~R is a lattice vector of

the periodic structure, then the wavefunction/eigenstate of an electron in this periodic

potential is:

ψj,k(~r) = uj(~r)e
i~k.~r, (2.37)

where uj(~r) is also a periodic function with the same periodicity as V such that uj(~r +
~R) = uj(~r), j is the band index and ~k lies in the first Brillouin zone. First Brillouin zone

represents a unique primitive cell in the reciprocal space. This implies that, in principle,

our problem is reduced to determining the eigenstates corresponding to each possible ~k

in the first Brillouin zone because the eigenstates are unique only in the first Brillouin

zone.

Eigenvalues of the Hamiltonian vary smoothly over the Brillouin zone, so that in prac-

tice only finite number of points are needed to be treated. Consequently, any observable

which should be integrated over the first Brillouin zone can be approximate as a sum of

function values calculated at a finite number of points in the Brillouin zone. This finite

grid is called the k-point mesh. Choosing a sufficiently dense mesh of integration points

is crucial for the convergence of the results and is therefore one of the major objectives

when performing convergence tests. The most used techniques to build a grid over the

Brillouin zone is the Monkhorst-Pack technique (195 ) which provides regular meshes to

be centered at Γ for odd or even divisions, with possibility of an additional shift in both

cases.
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It is important to distinguish the materials which have band gap, such as insulators

and semiconductors, from the metals investigated in this thesis. The latter requires

denser k-meshes compared to the former. This is a consequence of the fact that the

Fermi surface has a sharp interface in metals compared to the materials with gap. The

convergence of the observables, such as forces or energies with the grid is an important

step for any DFT calculations. Throughout this thesis, we will mention the k-mesh used

each time in order to sample the Brillouin zone. For instance, in order to obtain the

lattice parameter or the elastic constant of one of the materials of this thesis, the DFT

calculations require only a primitive unit cell. The k-point mesh in the reciprocal space

is set with a grid between 16× 16× 16 and 24× 24× 24 k points.

Basis set

A basis set is a set of known functions φj(~r) that are used to represent orbitals of

unknown analytic form ψi(~r) using coefficients, quite similar to the role of orthogonal

unit vectors in representation of any unknown vector using coefficients. Basically, the

unknown solution-wavefunctions are expressed as a linear combination of known func-

tions with expansion coefficients to facilitate computation. Typically, any unknown

wavefunction can be written as:

ψi(~r) =
∞∑
j

cjφj(~r). (2.38)

Now, this basis set needs to be chosen such that they resemble the solution of one-

electron Schrödinger equation and facilitate computation. There can be various possible

candidates for basis set but we mention the most commonly used ones.

Localized basis set: Localized basis set involves consideration of wavefunctions on each

nucleus/atom. The wavefunctions of isolated atoms can be written with a form similar

to the eigenfunctions for Hydrogen atom. Examples of localized basis set are atomic

orbitals (AOs), Slater-type orbitals (STOs) and Gaussian-type orbitals (GTOs).

Plane-wave basis set: Plane wave basis set are the most suitable when dealing with

periodic lattices which comply with Bloch’s theorem. Major advantage is that the infinite

sum can be restricted by a cut-off.

The one-electron wavefunction can be written in terms of a periodic function uj(~r).

Periodic nature of uj(~r) allows us to expand as plane waves basis set in terms of the
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reciprocal lattice vectors ~G as

uj(~r) =
∑
G

cj, ~Ge
i ~G.~r,

which gives:

ψj,k(~r) =
∑
G

cj, ~G+~ke
i( ~G+~k).~r. (2.39)

For a periodic system, integrals in real space over the (infinitely extended) system are

replaced by sums over the (finite) first Brillouin zone in reciprocal space, by virtue of

Bloch’s theorem. This finite number is chosen by imposing a condition on the reciprocal

lattice vectors ~G. So, only those ~G are considered that allowed by the following cutoff

criterion:
k2 +G2

2
≤ Ecut, (2.40)

where Ecut is the cut-off energy used in DFT calculations and refers to the kinetic energy

associated with a reciprocal vector ~G. Any ~k1 > ~G will then be equivalent to ~k1 − n~G
where n is an integer such that ~k1−n~G lies in the first Brillouin zone. For the concerned

metallic systems with valence orbitals as s, p and d, the minimal cut distance that we

take is Ecut = 350eV in our DFT calculations. In practical situations, like the k-points

setting, fixing of the Ecut must be done in preliminary convergence tests.

Even after considerable simplification, DFT calculations are limited by the size of the

periodic box considered and are feasible only upto a few hundreds of atoms. Further

approximations, like Tight-Binding Approach, can increase the accessible size-range and

provide valuable information. Moreover, the Tight Binding approximation led to the

formalism of empirical potential for metals.

2.2 Tight Binding Approach

The Tight Binding(TB) approximation is the intermediate approximation between ab

initio methods and empirical potentials. A vast majority of interatomic potential pro-

posed for transition metals have their roots in TB approximations. The main goal of

this section is to describe the transition from ab initio method to empirical potentials.

Here, I will present a brief description of the principles of the tight binding method. A

detailed description of this method can be found elsewhere (92 , 94 ).
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The main advantage of the tight binding approach is the accessibility to both electronic

structure and total energy under the assumption that the core electrons are very localized

due to tight binding. This approximation, is very similar to the quantum chemistry

method of Hückel (196 ) or linear combination of atomic orbitals which turned out to be

very useful in the study of molecules (197 ). The tight binding method is based on the fact

that the core electrons in solids remain very localized, and thus, the discrete core levels

of the atoms are only slightly broadened in the solid. The corresponding wave functions

are not very different from the atomic wave functions in the vicinity of each atom. Tight

binding method is also a very good approximation for valence electrons when the spatial

extension of the atomic orbitals is smaller than the interatomic distance. Consequently,

this method is suitable for the study of electrons arising from the narrow band (3d, 4d,

5d) of transition metals (92 , 94 ). Moreover, towards the end of 90’ (93 , 198 , 199 )

it was proved that the delocalized s, p valence electrons and their hybridization with

d electrons can be treated in tight binding approximation. This implied that only the

valence electrons should be treated. This effectively reduces our problem from a many-

body Hamiltonian to a one-electron Hamiltonian which experiences an effective potential

due to all the atoms in the system. For N atoms, this one-electron Hamiltonian can be

expressed as:

HTB = − ~2

2m
∆ +

N∑
I=1

V (~r − ~RI), (2.41)

HTB|φα〉 = εα|φα〉, (2.42)

where
∑N

I V (~r − ~RI) denotes the effective potential experienced by valence electrons

due to N atoms of the system. V
(
~r − ~RI

)
= V

(∣∣∣~r − ~RI

∣∣∣) ≡ VI can be interpreted as

the effective spherically symmetric atomic potential centered on the I th atom. εα and φα

are the eigenvalue and the eigenfunction, respectively, of the secular equation Eq.2.42.

This one-electron problem - Eqs. 2.42 - can be solved in a space which is spanned by a

set of atomic orbitals. Hence eigenfunction can be expressed as a linear combination of

atomic orbitals localized on each atom:

|φα〉 =
∑
Iλ

cαIλ|Iλ〉, (2.43)

where |Iλ〉 represents an atomic orbital. The angular dependence of the functions {|Iλ〉}
has the symmetry of s, px, py, pz, dxy, dyz, dx2−y2 and d3z2−r2 orbitals. For the transition

metals, investigated in this thesis, the delocalized s and p electrons give a small contri-

bution to the cohesive energy of the system and only the d band gives a good description
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of the system. The introduction of the sp valence orbitals becomes necessary when dis-

cussing noble metals for which the d band is filled. The s band is non-degenerate, the p

band is three times degenerated and the d band is five times degenerated.

Using Eq.2.43, Hamiltonian in Eq.2.41 can be solved as:∑
I′λ′

cαI′λ′〈Iλ|HTB|I ′λ′〉 = εα
∑
I′λ′

cαI′λ′〈Iλ|I ′λ′〉, (2.44)

which gives: ∑
I′λ′

cαI′λ′〈Iλ|HTB|I ′λ′〉 = εαc
α
Iλ. (2.45)

The Hamiltonian matrix elements 〈Iλ|HTB|I ′λ′〉 are parametrized using various approx-

imations and are related to the hopping integrals βIλ,I′λ′ which reflects the ability of

the electrons to jump from the orbital-site state |Iλ〉 to orbital-site state |I ′λ′〉. So, the

performance of tight binding models is dependent on the Hamiltonian matrix elements

in the atomic orbital basis. The most common way to express the above matrix was

presented in 1954 by Slater and Koster who showed that all the off-diagonal elements

of an spd base can be constructed from 10 independent parameters (200 ). The ability

of the tight binding model to reproduce electronic effects as well as the quality of the

transferability of the model are direct consequences of the quality of parametrization of

the Slater-Koster parameters.

For the case of transition metals lying in the middle of series and having narrow

d band, the tight binding model can be even more simpler. The narrow d band of

transition metals can be explained by the small overlap of the d atomic orbitals. This

d band is superposed upon an s band which is wide, due to the large overlap of the

s atomic orbitals. These two bands slightly interact and this s − d hybridization may

be treated as a perturbation. This is what is called a pure d band model, without

any contributions from the s electrons. The atomic orbital basis {|Iλ >} (Λ = 5 and

λ = 1, ..., 5 labels respectively the |xy〉, |yz〉, |zx〉, |x2 − y2〉 and |3z2 − r2〉 orbitals) is,

in general, considered orthonormal.

The origin of the density of states of energy is taken to be the center of gravity of the

d-band. In this TB approximation, it is usual to divide the cohesive energy of the metal

into an attractive and a repulsive contribution. Consequently, the energy of the system

can be written:

ETB

({
~RI

})
=
∑
α

εαfFD (εF − εα) + Erep

({
~RI

})
. (2.46)
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2 Methods: Theoretical background of atomistic methods

In this model the band term in Eq. 2.46 is considered attractive (because of the delo-

calization of the valence d electrons when forming the solid) and the remainder of the

total energy in Eq. 2.46, Erep, can be interpreted as repulsive core-core energy. The

above form of the total energy is similar to the DFT energy given by Eq. 2.28. However,

there are two points that need attention: first, the self-consistent character of the DFT

method is lost in the tight binding method, and second, the form Eq. 2.46) of the total

energy is not universal.

For a given material, a good set of parameters can be found by fitting the on-site

terms, the hopping integrals and the phenomelogical repulsion potential to the experi-

mental data or ab-initio calculations. Then, the transferability of the model is checked.

Depending on the ingredients included in the form of the parameters, we can have major

differences between the models. For example, the non self-consistent aspect of the tight

binding method becomes visible in inhomogeneous systems such as metallic surfaces.

When such systems are treated, an unphysical large charge transfer is present. This

effect can be avoided by introducing an additional potential determined self-consistently

in order to recover a local quasi-charge-neutrality (198 , 201 ).

The energetics of transition metals is dominated by the width, shape and occupation

of the d-band. The widths and the shape of the electronic density of states of the

system can be calculated using the low-order theory of moments that will allow us to

find a simple analytic form for the energy components in Eq. (2.46).

Friedel (202 ) proposed to focus on the global and local density of states, ρI and ρIλ,

respectively, of atom I and orbital λ, which can be easily written as:

ρI(E) =
1

Λ

∑
λ

ρIλ(E) =
1

Λ

∑
λ

∑
α

|cαIλ|2δ(E − Eα), (2.47)

where cαIλ is defined by Eq.2.43 with ρI(E) and ρIλ(E) being normalized to unity. He

noted that all the physics of the system is revealed if the local densities of state is known.

The direct solution of the secular equation by a full diagonalization, Eq. 2.45, can be

replaced by a careful characterization of local density of states. The theory of moments

provides a historic way to characterize the local density of state.

Let me recapitulate the definition and the interpretation of moments for the

benefit of the reader. Given a function f(x), the quantity µ(n) is given by:

µ(n) =

∫ ∞
−∞

(x− xg)nf(x)dx (2.48)
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2.2 Tight Binding Approach

where

xg =
1

µ(0)

∫ ∞
−∞

xf(x)dx . (2.49)

µ(n) is known as the centred moment of order n of the f(x) distribution and

xg is the center of gravity of the function. From the mathematical point of

view, the moments can be used to describe the “center of gravity” of the

distribution, the width, the asymmetry, the tendency of a gap, and so on, of

the function f(x). Precisely:

• µ(0) gives the area under f(x). This can be used as a normalization

factor of the function f(x);

• µ(1) gives the “center of gravity” of f(x); the definition (2.48) assigns it

to 0;

• µ(2) gives the momentum of “inertia” of f(x). Hence
√
µ(2) is propor-

tional to the width of the f(x) in the root mean square sense;

• µ(3) gives the asymmetry from 0, e.g. a large negative value of µ(3)

corresponds to a long tail of f(x) in the region below µ(1);

• µ(4) measures the tendency for a gap in the middle of the band ...

and one can continue the description of the “picture” of f(x) with higher

order moments.

According to the Ducastelle-Cyrot-Lackmann theorem (203 , 204 ), the nth moment is

equal to the sum over all possible path of n jumps with the same starting and ending

orbital-site state |Iλ〉 . The nth moment can be expressed as:

µ
(n)
I =

1

Λ

∑
λ

〈Iλ|Hn
TB|Iλ〉 (2.50)

µ
(n)
I =

1

Λ

∑
λ

∑
I1λ1

...
∑

In−1λn−1

βIλ;I1λ1βI1λ1;I2λ2βI2λ2;I3λ3 ....βIn−1λn−1;Iλ (2.51)

where βIλ;I1λ1 is the above introduced hopping parameter permitting the jump of an

electron from the orbital-site state Iλ to orbital-site state I1λ1. If the second moment

of the local density of states is evaluated in terms of the Hamiltonian matrix, then the
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2 Methods: Theoretical background of atomistic methods

second moment can be expressed as:

µ(2) =
1

Λ

∑
I1 6=I

Tr[B2(~RI1I)], (2.52)

where B(~RI1I) denotes the matrix for hopping integrals, deduced from the Eq.2.51.

Since the energy of occupied d-states Eband is proportional to the width of the d-band√
µ

(2)
I (205 ), we obtain:

Eband ∝ A
∑
I

√
µ

(2)
I , (2.53)

Eband = A
∑
I

√∑
I1 6=I

g(RI1I), (2.54)

where g(RI1I) = Tr[B2(RI1I)] and A is proportionality constant which depends on the

occupation of the d-band. Within the rectangular d-band approximation it can be

demonstrated that the proportionality constant is 0 for noble metals (in which the d-

band is filled). Consequently, there is no theoretical justification for using the above

analytical form of the Eband energy for noble metals. However, this type of semi-empirical

potential was used successfully for noble metals, such as Cu, Ar or Au, by fitting the A

constant and the form of the g function in order to match the experimental values of

the cohesive energy, elastic constants etc.

For transition metals, the above formalism is the more suitable and simplified analytic

form of the total energy that can be proposed. The total energy can be divided into an

attractive contribution from valence d-electrons and a repulsive contribution from the

nuclei similar to DFT, Eq.2.28, or Tight-binding form, Eq. 2.46, as:

E({RI}) = −A
∑
I

√∑
I1 6=I

g(RI1I) + F [{RI}], (2.55)

which is the form of semi-empirical potentials using the second-moment tight binding

approximation.

2.3 EAM potentials

The goal of any atomic potential is to represent the potential energy as a simple func-

tion of atomic coordinates. As a consequence, the electronic effects are integrated into

74



2.3 EAM potentials

a parametric form of the inter-atomic potential which is determined by a fit. This strat-

egy greatly simplifies numerical implementation and drastically reduces the computation

time for large systems compared to quantum chemical methods presented in the prece-

dent sections. The tight binding empirical potentials given by the Eq. 2.55 answer to

this requirement and the total energy can be decomposed into two terms: the first term

is the sum of pair functions which accounts for the repulsion between nuclei and the

second term is a many body function(interaction between three or more atoms) which

mimics the cohesive d band energy.

In the begining of 1980, Daw and Baskes(206 , 207 ) proposed the embedded-atom

method (EAM) wherein an atom is assumed to be embedded into the local electron

density due to all the remaining atoms. They begin with the observation that the total

energy of the system using DFT can be written as following from Eq. 2.29 and Eq. 2.21:

E [{RI}] = EKE[ρ] + EXC [ρ] + EH [ρ] +

∫
Vext(~r)ρ(~r)d~r +

1

2

∑
I 6=J

ZIZJ

| ~RI − ~RJ |
. (2.56)

The first and the second terms of the above equation can be grouped together in a

functional G[ρ] and the following assumption are made: (i) G(ρ) can be described by

G[ρ] =
∫
g(ρ(~r),∇ρ(~r),∇2ρ(~r), ...)dr where g is assumed to be a function of the local

electron density and its lower derivatives. (ii) The electron density ρ is assumed to be a

linear superposition of the densities of individual atoms. Using these two assumptions,

Daw and Baskes found the total energy of the system to be divided into a pairwise con-

tribution which accounts for the electrostatic contribution and a many-body attractive

local contribution:

U =
N−1∑
I=1

N∑
J=I+1

ϕ(RIJ) +
N∑
I=1

Φ(ρI), (2.57)

where N is the total number of atoms in the system, Rij is the distance between atom

I and atom J . Φ(ρI) is the embedding energy and ρI is a function which represents the

electronic density around the I th atom.

The second moment many-body potentials approximate the spd in tight-binding ap-

proximation while the EAM potentials are based on local approximation of atoms

emerged in nearly free electron gas. It is interesting to note that even with evidently

different approximations to start with, the cohesive term in both approaches involves

many-body while the repulsive term involves a pair dependence. On comparison, it is

found that the second moment potentials resemble a particular case of the EAM poten-

tials.
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2 Methods: Theoretical background of atomistic methods

In practical implementation, it is useful to give a simple form to the functions involved

in Eq. 2.57. Now, ρi =
∑

j ψ(Rij) and the three functions ϕ(r), ψ(r) and Φ(r) can be

written as summations over basis functions. These basis functions can be chosen to

be cubic splines, exponentials or polynomials to obtain different variants of the EAM

potentials. As an example, the widely-used EAM potentials for iron, developed by

Mendelev and Ackland (97 –100 ) use cubic spline basis functions for ϕ(r) and ρ(r)

whereas Φ is (generally) expanded as Φ = a1

√
x+ a2x

2. We note that the only variance

compared to second-moment tight binding approximation is due to the x2 term.

2.3.1 Empirical potentials for bcc metals

As we have mentioned in the Introduction to this thesis, the main materials of interest

in the nuclear fission industry are the body centered cubic (bcc) metals. This endorses

continuous development of empirical potential for those metals in order to study of

point defects, dislocation loops or extended defects such as dislocation or surfaces. As

such, these studies serve as the basic foundation for future research regarding structural

materials in the nuclear industry. E.g. molecular dynamics simulation up to microsecond

with simulation box containing millions of atoms lead to better understanding of the

behavior of structural materials exposed to radiation.

Success of molecular dynamics simulations depends significantly on the inter-atomic

potential used. Hence, it becomes important to wisely consider the stakes before impos-

ing approximations. Generally, this choice can made according to the system of study.

The EAM formalism (as described in the previous section) works well for bcc metals(83 ,

85 ) because of relatively simple shape of the electronic density of states (DOS). However,

there exist other alternatives like Baskes’ modified EAM (MEAM) (89 ), bond order po-

tential (BOP) (91 , 93 ), or tight-binding method (94 )(described earlier in this chapter)

for more accurate description of a possibly complicated DOS. Various BOP parametriza-

tions have been developed for Fe and W (144 , 208 –210 ) but EAM potentials are the

most commonly-used potentials due to their sufficiently good description coupled with

ease of computational applicability.

Concerning the state of the art review of potentials for the materials investigates in

this thesis we already have mentioned the situation in W in Sec. 1.2.3. In the next

section we will focus on iron, the most important metal among those studies in this

76



2.4 Conclusions

thesis due to its technological importance.

2.4 Conclusions

In this chapter we have reviewed the various atomistic methods which were used in the

current study of defects, such as dislocation loops or C15 clusters, in metals.

Ideally, density functional theory (DFT) calculations would be utilised to capture

the complete physics involved in a system with irradiation-induced defects. However,

unachievable computational requirements of DFT calculations have fueled the search for

alternatives considering reasonable approximations over the past decades. This search

has led to development of a number of empirical potentials, ranging from pair potentials

to EAM. Although these empirical potentials have been successful in making radiation

damage studies feasible, inconsistency of results from different empirical potentials is a

major shortcoming that hinders conclusive theoretical results.

In the following chapter, we present an application of the EAM potential by developing

a new empirical potential for Fe, mainly to study irradiation-induced defects such as self-

interstitial atom clusters or dislocation loops.
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3 Development of Embedded-Atom

Method potentials for defects in iron

The EAM potential formalism, described in the previous chapter, is an important tool

to explore the mesoscopic regime between the two asymptotic limits of small clusters

and observables dislocation loops. At this scale, the EAM formalism remains the only

accessible atomistic method. This formalism is used in this chapter to develop a new

EAM potential. Developing new EAM potentials using up-to-date ab initio and exper-

imental data for all the metals of interest could potentially improve the quality of the

accessible simulation-based radiation damage studies. This development is not a easy

task, due to limitation of time, we develop an EAM potential only for for one metal,

iron. For technological interest, we have chosen iron, the most important metal among

those studied in this thesis.

As discussed in Sec. 1.2.1, C15 clusters have been reported recently using DFT cal-

culations. Consideration of this new DFT information is important in development of a

new EAM potential for Fe. Thus, we develop a new C15 oriented EAM potential in this

chapter with the main objective of investigating the energy landscape of C15 clusters.

As pointed in Chapter 1, radiation damage studies in Fe have posed a perplexing

scenario for a while now due to experimental observation of both 1/2〈111〉 and 〈100〉
families of SIAs depending on temperature, unlike other bcc metals. In addition, DFT

provides theoretical evidence(37 ) for the existence of highly stable, small-sized three-

dimensional SIA clusters with C15-type structure. In iron, the energy landscape of self-

interstitials atoms organized in loops is relatively known and has been widely investigated

by various methods. However, the energy landscape of C15 clusters is not very well

known and is very complicated due to an enormous number of possible configurations.

Only a few recent studies investigate this problem. Systematic exploration of the energy

landscape in search of the minimum energy C15 configurations gives good results for
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3 Development of Embedded-Atom Method potentials for defects in iron

small clusters. Marinica et al. (37 ) used the Activation Relaxation Technique (211 )

for finding the lowest energy configurations for 2, 3 or 4 SIAs clusters. Nonetheless, the

number of possible configurations grow exponentially with the size of the cluster, making

a systematic search prohibitive at larger sizes. More advanced techniques using a genetic

algorithm were proposed, making it possible to find the lowest energy configurations

containing up to 10 SIAs (212 ). This section will solve this problem in a more pragmatic

approach, we will deduce three selection rules which will be established from observation

of the formation energies of several trial configurations generated using existing and

newly-developed EAM potentials.

Objective: The goal of this chapter is to develop a potential for iron which includes

the latest knowledge from the DFT scale of the energy landscape of C15 clusters. The

motivation of such development is two-fold: (i) The newly-developed potential will be

used to exhaustively explore the energetic landscape of C15 clusters up to clusters which

contain hundreds of atoms. (ii) As discussed in Chapter 1, a mechanism has recently

been proposed to explain the anomalous behaviour in Fe of forming 〈100〉 loops, through

C15 clusters as intermediate reaction product (112 ). At very large sizes, we expect that

the dislocation loops becomes more stable than the C15 cluster. The crossover between

the two categories of clusters has practical importance. The confirmation of the Zhang’s

mechanism (112 ) depends on the crossover between the dislocation loops and the C15

clusters. A reliable potential for the energy landscape of C15 cluster is a key ingredient

for finding the right crossover.

The various sections and their contents are as follows:

• Section 3.1: In this section, the existing empirical potentials for irradiation-induced

defects in iron are discussed to emphasize the need for a new empirical potential.

• Section 3.2: A brief discussion of the fitting strategy of existing empirical potentials

is used to strategize the development of new empirical potentials.

• Section 3.3: In this section, the fitting procedure for new Fe potentials is provided

along with the database in Sec. 3.3.1 and the minimization of the cost function

in Sec. 3.3.2 . On comparison with the existing Fe potentials, these new Fe

potentials are found to be reasonably good. However, despite similar condition of

fitting, some scatter is observed in the results which numerically demonstrate the

limit of this fitting procedure. Nevertheless, the physics of the addressed system
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seems to be better described qualitatively.

• Section 3.4: Systematic exploration of the energy landscape in search of the mini-

mum energy C15 configurations gives good results for small clusters. Nonetheless,

the number of possible configurations grow exponentially with the size of the clus-

ter, making a systematic search prohibitive at larger sizes. In this section, the C15

configuration is discussed as a continuation of Sec.1.2.1 and three selection rules

for construction of C15 configurations are presented in Sec. 3.4.1.

• Section 3.5: The relative stability of C15 clusters and dislocation loops is analyzed

in the light of the newly developed empirical potentials.

• Section 3.6: A conclusion is also provided at the end to highlight the main points

drawn from this study of existing and newly-developed empirical potentials.

3.1 Existing empirical potentials for defects in iron

Performance and transferability of metal potential parameterization are obviously re-

lated to the underlying physical model. Commonly used many-body interatomic models

of metals span from second moment of tight binding approximation (82 , 85 , 86 ) to

EAM (87 , 88 ) or Modified EAM (89 ) and higher order tight binding models (90 –95 ).

Some examples of different parametrizations for iron include a well known tight-binding

second moment Finnis-Sinclair potential (83 ), the long range version given by Sutton and

Chen (84 ) and the parametrization proposed in 1997 by Ackland et al. (213 ) (hereafter

called A97). The force-matching method (96 ) was used to parametrize EAM poten-

tials suitable for defects in bcc metals such as iron and tungsten. Using the same fitting

approach, Mendelev et al (97 , 98 ) and Ackland et al (99 ) (A05) proposed a parametriza-

tion of iron. Using a different database (point defect oriented), Marinica (37 , 100 ) (M10)

obtained an improved parameterization for point defects. Recently, an empirical poten-

tial potential was developed to study thermally activated glide of dislocations (214 ),

this potential will be denoted as P12.

Our main goal in this chapter is to develop a potential which gives reasonably accurate

formation energy values of C15 interstitial clusters relative to traditional planar clusters.

Hereafter, these SIA clusters will be denoted as Iconfn , where n is the net number of SIAs
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3 Development of Embedded-Atom Method potentials for defects in iron

i.e. the number of additional atoms in the bcc lattice and conf denotes a particular

configuration of interstitial cluster. As discussed in Sec. 1.2.1, the morphology of small

interstitial clusters has been widely studied in the past and can be classified into two

main classes: the parallel configurations formed by dumbbells packed together in bun-

dles along 〈110〉 direction, I
〈110〉
n or 〈111〉 direction, I

〈111〉
n and secondly, the non-parallel

configurations where dumbbells are not aligned. Considering the most stable parallel

configurations, the DFT calculations predicted that the orientation of these dumbbells

changes from 〈110〉 to 〈111〉 above about five SIAs in Fe. This holds for most empiri-

cal potential except for the potentials fit prior to Mendelev 2003 EAM potential (97 )

and a few exceptions such as the P12 potential. The non-parallel configurations were

observed for the first time in molecular dynamics simulation (36 ) using A05 potential.

Due to very high vibrational entropy (100 , 110 ), these configurations are stabilized by

increasing the temperature. DFT calculations showed that the triangular configuration

for di-interstitial, denoted hereafter as Igao2 or I triangle2 (being first reported by Gao et al.

in (215 )), corresponding to three atoms in interstitial positions and one vacancy sharing

the same bcc lattice site (see the Figure 1.5) is even more stable than the traditional I
〈110〉
2

configuration. Using DFT calculations, the formation energy of triangle configuration is

found to be even lower than the parallel di-interstitial I
〈110〉
2 with 0.11 eV (36 ). Moreover,

the formation energy of these highly entropic non-parallel configurations, ring, tri- and

tetra-interstitial configurations (for tetra-interstitial see the Figure 1.5) are very close

to the formation energy of the parallel clusters. Quite recently, systematic exploration

of the energy landscape using an Eigenvector following method, ARTn by Marinica et

al. (110 ) revealed a very complex energy landscape of small interstitial cluster presenting

a lot of non-parallel configurations. Coupling this systematic search to lattice dynamics

free energy calculations, Marinica et al. (37 ) were able to reach regions of phase space

which remained inaccessible by standard molecular techniques of investigation and sub-

sequently, they provided evidence for the C15 clusters (37 ). Moreover, they showed

that in the case of I4 the ring configuration share the same energetic basin with the 3D

C15 clusters using disconnectivity graph technique. These C15 clusters can be seen as

generalizations of the oldest but low energy non-parallel configurations. The building

block of the C15 clusters is the di-interstitial configuration, IC15
2 and is described in

Sec. 1.2.1. As we indicated in the same section IC15
2 can be visualized using 4 linked

triangle configurations with each Igao2 having the central vacancy in the 4 corners of the

bcc cubic unit cell (see the step-by-step construction of IC15
2 in Fig. 1.6).

Consider the energy landscape provided by some existing empirical potentials in
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Figure 3.1: Formation energies of the C15 SIA clusters in bcc Fe calculated with respect

to the lowest energy parallel-dumbbell configurations i.e. with a 〈110〉 ori-

entation upto 4 SIAs and a 1/2〈111〉 orientation at larger sizes. The DFT

results are compared to those of selected empirical potentials.
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Fig.3.1, the formation energies of the C15 clusters relative to that of the lowest en-

ergy parallel dumbbell configurations (37 , 41 , 107 ) are plotted as a function of cluster

size. We have restricted the discussion to the most-widely used iron potentials in the

last few years namely A97, A05, M10 and P12 potentials. However, the self-interstitial

energy landscape provided by the P12 potential exhibits obvious anomalies making it

unsuitable for studies concerning point defects. As seen in Fig.3.1, the relative stability

of C15 clusters with respect to the traditional clusters calculated using the M10 po-

tential corresponds well while the A05 or older A97 potential do not agree very well.

Despite its weakness with respect to point defect energy landscape, the Mendelev po-

tentials (like A05) serve as reference for the study of extended defects, such as screw

dislocations in iron. Until 2012, the 2003 Mendelev potential was the only existing EAM

potential in literature that successfully predicted the compact non-degenerate core for

the screw dislocation in agreement with the ab initio calculation and the glide plane of

the screw dislocation in the plane in agreement with the experiments and the ab initio

calculations.

However, all the Mendelev based potentials (97 –99 ) exhibit two maxima for Peierls

barrier potential with a marked minimum mid-way whereas ab initio calculations indi-

cate only one maximum, as seen in Fig 3.2. The M10 potential, developed from the

2004 Ackland-Mendelev (A05) potential, gives very good energetics for point defects

when compared with DFT calculations but the properties of screw dislocation energetic

landscape are very poor in comparison. Despite the fact that the lowest configuration of

the dislocation core of the screw dislocation is degenerate, the Peierls barrier potential

displays an even more stable configuration mid-way between the degenerate configura-

tions. This situation is unphysical and needs to be corrected. While the P12 potential

alleviates this problem with a Peierls potential very close to the ab initio calculations of

Ventelon et al. (216 ), point defect properties from P12 potential show poor correspon-

dence and match older iron potentials like A97 better than modern potentials. So, each

of the existing empirical potentials seem to have some drawback which prevents it from

further use in the study of SIAs in iron.

Thus, it is necessary to develop a new empirical potential which works reasonably well

to overcome the shortcomings posed by the existing empirical potentials and to facilitate

the study of self-interstitial atom defects in iron. In the following section, we discuss

the fitting strategies adopted by the most widely-used empirical potentials and plan a

strategy for fitting a new empirical potential for iron in the sections to follow.
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Figure 3.2: Comparison of Peierls barrier for selected potentials and SIESTA DFT-GGA.
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3.2 Lessons learned from evaluation of fitting strategy

of existing interatomic potentials

As pointed out in Marinica et al.(135 ), the observables included in the database play a

very important role in the parameter fitting. It is therefore recommended to simulate

properties close to those that were fitted. The most straightforward approach to fit

the potential only on experimental observables of the crystal such as: elastic constants,

cohesive energy, Debye temperature etc. is insufficient. Some examples of different

parametrizations for iron include a well known tight-binding second moment Finnis-

Sinclair potential(83 ), the long range version given by Sutton and Chen(84 ) and the

parametrization proposed in 1997 by Ackland et al.(213 ). Although these potentials fit

bulk properties very well, they fail to reproduce simple properties of point defects such

as the most stable configuration of the single interstitial. In iron, all these parametriza-

tions predict 〈111〉 configuration to be the most stable instead of 〈110〉, as attested by

DFT (32 , 34 , 107 ) and the experiment (25 ). This contradiction is not surprising since

the goal of any atomic potential is to represent the potential energy as a function of

atomic coordinates by integrating electronic effects into a parametric form which is de-

termined by a fit. The environment of atoms which form the 〈110〉 mono interstitial

dumbbell in iron is very different from the perfect bulk atom neighborhood: the length

of the dumbbell is around 2 Å compared to 2.5 Å of the first nearest neighbor distance

in bcc iron. Consequently, this change in the neighborhood results in a strong modifi-

cation of the electronic density around interstitial atoms which is also reflected in the

drastically changing of magnetism around the dumbbell. Such sharp effects cannot be

caught by the physics injected in the tight binding second moment potentials. This lack

of versatility of the physical model should be compensated by directly fitting a dumbbell

environment.

More accurate potentials need to be developed using larger fitting data base which

contain information beyond experimental quantities e.g. the total energy or forces acting

on atoms in various configurations provided by ab initio methods. The Force-Matching

method proposed by Ercolessi and Adams in the late 90s (96 ) showed for the first time

that the database used in the fit of the empirical potentials play the same key role as

the formalism used to mimic the electronic effects. The force-matching method was

used to parametrize EAM potentials suitable for defects in bcc metals such as iron and

tungsten. Using the same fitting approach, Mendelev et al (97 , 98 ) and Ackland et

86



3.3 Developing new Fe potentials

al(99 ) proposed a parametrization of iron. Using a different database (point defect

oriented), Marinica (37 , 100 ) obtained an improved parameterization for point defects.

In 2005, Dudarev and Derlet designed an alternative approach (101 ) with a magnetic

potential which was also based on the EAM formalism. By systematically enlarging the

fitting database, these magnetic potential were continuously improved.

The main difference in the parametrization of the M10 and the A05 potentials is the

database used. The M10 potential is parametrized on point defect related database

including configurations of di-, tri- or tetra- interstitials provided by DFT calculations

(36 , 107 ). Among these configurations, Marinica et al.(100 ) also included the triangular

configuration. In the procedure of fitting, only those parametrizations were selected

for which the difference between the formation energy of triangle configuration, Igao2 ,

and the parallel dumbbell configuration, I
〈110〉
2 , is low. This approach did not succeed

in attaining triangular configurations with lower energy but managed to considerably

reduce the difference from 0.31 eV using A05 potential to 0.07 eV using M10 potential

(see the Table 3.1) (36 , 100 ). Perhaps, this low formation energy of the triangular

configuration which serves as the building block for C15 clusters influenced the low

formation energy of C15 clusters. In this new development, we will pay special attention

to triangular configuration which will be included in the database in order to produce

potentials with low formation energy for C15 clusters.

In the following section, we will develop new potentials for iron that would agree with

the latest ab initio knowledge of energy landscape of radiation-induced point defects and

dislocation loops, and Peierls barriers of screw dislocations. We follow a force matching

fitting procedure similar to that applied by Mendelev et al. (97 –99 ), Proville et al. (214 )

for iron and Marinica et al (135 ) for tungsten in order to produce a new set of empirical

potentials for iron.

3.3 Developing new Fe potentials

Overall, the main fitting procedure for developing new potentials is similar to the one

used in developing Fe (100 ) or W (135 ) potentials. As stated in (135 ), we com-

bine the database containing three components in order to produce suitable potential

parametrizations for radiation defects: experimental observables (elastic constants, cohe-

sive energies, surface energies etc.), point defect related configurations and force match-
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3 Development of Embedded-Atom Method potentials for defects in iron

ing matching method on the liquid or random iron configurations far from equilibrium.

The details about production of database are described in the following subsection 3.3.1.

The parametrization will be done using an on-the-fly iterative minimization of cost func-

tion, Sec. 3.3.2, until convergence to obtain several converged sets of parameters (the

details are given also in (135 ). Details of the fitting and the minimization of the cost

function can be found in the following subsection.

3.3.1 Fitting procedure: Database

The database contains the experimental observables (elastic constants, cohesive energies,

surface energies etc.) and different minima configurations (self-interstitials and vacan-

cies). We use force matching method on the liquid or random iron configurations far

from equilibrium. The ab initio liquid information appears to play an important role in

the fitting data base for extended defects.

The database used contains three components:

1. Experimental values of the solid state properties: lattice parameters and cohesive

energies of the FCC/BCC structures and elastic constants C11, C12 and C44.

2. The ab initio formation energies of basic point defects in iron: the mono-interstitial

with different orientations (〈110〉 , 〈111〉 , 〈100〉, octahedral and tetrahedral) and

the mono-vacancy. These ab initio calculations were performed within the Density

Functional Theory (DFT) framework using SIESTA code, i.e. using the pseudopo-

tential approximation and localized basis sets − made of 10 localized functions.

The defect calculations were performed using the supercell approximation keeping

the cell geometry fixed to the bulk equilibrium geometry and relaxing the atomic

positions. The 6×6×6, 4×4×4 and 3×3×3 shifted k-pont grids were used in the 54,

128 and 250 atom cells, respectively. The Hermite-Gauss scheme for electronic den-

sity of state broadening was used with a smearing of 0.3 eV and the residual forces

were smaller than 0.01eV/A. The standard Perdew-Burke-Ernzerhof Generalized

Gradient Approximation (GGA) was used for exchange-correlation functional.

3. The ab initio forces acting on the atoms in the liquid or random state configura-

tions. All the random configurations were generated using the Ackland-Mendelev
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potential for iron. From the initial perfect BCC supercell with 128 atoms, 15

atoms were removed in order to obtain the experimental liquid density of iron.

Afterwards, this system state was propagated using molecular dynamics at tem-

perature of 4000K over one million molecular dynamics steps (the integration step

is set to 1fs). From this molecular dynamics trajectory, we extracted one liquid

configuration each 50 ps. The time interval between snapshots was large enough

to avoid correlation due to the molecular dynamics propagation. Finally, all 20

random configurations were used as input for the ab initio calculations. The po-

sitions of atoms were frozen and only the atomic forces acting on each atom in

each liquid configuration are computed. The ab initio calculations were performed

using SIESTA GGA with the same pseudo potential and basis sets used for defect

calculations. Including different ab initio liquid configurations in the data base

fitting, the parameterization of the potential contains information out of equilib-

rium (non-zero forces). Moreover, the objective function is sampled through the

pair and embedded part of the EAM potential in continuum range of atom-atom

distances in variance with the case when only minima are present in the database.

For example in the case of the vacancy, the radial distribution functions are not

very different from the perfect bulk.

3.3.2 Fitting procedure: Minimization of the cost function

We chose as fitting tool, the ASSIMPOT code(217 ) where based on the principle of

the variational assimilation and the adjoint model(218 , 219 ), one compares the results

provided by the EAM model with the benchmark data (given experimental or ab initio)

on all the configurations and then minimizes the deviation. This deviation is quantified

using an objective function. For any set of parameters A the objective function is written

as:

J(A) =
∑
obs

wobs[Yobs − Y (A)]2 +
∑
i

wi[F
i
a−initio − F i(A)]2

Yobs contains the observables to be fitted (such as, cohesive energy, elastic constants

etc.) and Y (A) the corresponding values using the set of parameters A of the EAM

potential. F i
ab−initio is the target ab initio force and F i(A) is the corresponding force on

the ith atom with A parameters. The w coefficients are the weights and are user defined,

the choice of their values is to be discussed later.
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3 Development of Embedded-Atom Method potentials for defects in iron

The cost function J(A) is minimized by use of an iterative algorithm. We start with

a first set of parameters A and in each iteration step an improved vector of parameters

is sought. The search direction is computed from the gradient of the cost function

with respect to the parameters. The gradient needs the estimation of non linear target

function and implies numerical instabilities. For this reason, the gradient is computed

within the adjoint model. Alternatively, the gradient vector could be approximated

by finite differences. The use of the adjoint model in the estimation of the gradient

has two advantages over finite differences: high precision of the estimation and high

computational efficiency.

In practice only one minimization of the cost function J(A) is not satisfactory. It turns

out that it is impossible to fit energies and forces simultaneously: if one relaxes the posi-

tions with the obtained set of parameters A of EAM potential, relaxed energies deviate

from their objective values. In other words, DFT-GGA and EAM force fields around

defects differ significantly. This type of fitting is therefore used only in the first step.

Then the atomic positions are no longer considered in the fit and for every minimization

configuration, the energies are calculated using the atomic positions relaxed correspond-

ing to the previous set of parameters. This procedure is iterated until convergence to

obtain several converged sets of parameters. Of the many potentials developed, two

potentials (EAM 2/3) seem to be agreeing well for most of the tests performed. These

EAM potentials are quite good for SIAs (as seen in figure 3.4), bulk properties (see the

table 3.1) and they exhibit one peak for Peierls barrier (figure 3.3). In particular, EAM

3 emerged as the most promising EAM potential for studying SIA defects.

Starting from the P12 potential as an initial guess of parameters, we have developed

new potentials for iron following exactly the same three stages described in (135 ). The

difference here is that we selected only those parametrizations from the few hundreds of

parametrizations which resulted in a physical Peierls potential at the end with qualitative

agreement with DFT calculations and low disparity in the formation energy of I
〈110〉
2 and

Igao2 .

Two of the developed potentials, hereafter called EAM2 and EAM3, give satisfactory

results for most tests. Firstly, correspondance with the bulk properties like the elastic

constants is improved compared to the starting P12 potential as it is seen from Tab. 3.1.

Secondly, the energy landscape of small interstitial clusters is better matched. The mono

SIA relative energies of 〈110〉 and 〈111〉 configurations of the new developed potentials

are in agreement with DFT studies (32 , 34 , 107 ). The I
〈110〉
1 is the most stable con-
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3.3 Developing new Fe potentials

Figure 3.3: Comparison of Peierls barrier for selected existing potentials, SIESTA DFT-

GGA and the newly-developed empirical potentials.
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3 Development of Embedded-Atom Method potentials for defects in iron

Figure 3.4: Formation energies of the C15 SIA clusters in bcc Fe calculated with respect

to the lowest energy parallel-dumbbell configurations i.e. with a 〈110〉 ori-

entation upto 4 SIAs and a 1/2〈111〉 orientation at larger sizes. The DFT

results are compared to those of selected empirical potentials and the newly-

developed empirical potentials.
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figuration in variance with the P12 and previous second moment or EAM potentials.

Concerning di-interstitials, the difference between the formation energy of I
〈110〉
2 and Igao2

configurations is fairly reduced. Thirdly, as seen in Fig. 3.3, the Peierls pathway of the

screw dislocation exhibits one peak in qualitative agreement with the DFT calculations.

However, it can be noted that having reasonable properties for the energetics of self-

interstitials impacts the quantitative agreement between DFT and the newly-developed

potentials for the Peierls barrier. By comparison, the older P12 potential is found to be

closer to DFT calculation than the new potentials. Nevertheless, we recommend the new

potentials because they integrate more physics than the older P12 or M10 potentials.

Finally, the new potentials are tested for the relative stability of C15 cluster compared

to the traditional clusters. As presented in Fig. 3.4, the new potentials exhibit reasonable

agreement with the DFT calculations. Although these new potentials don’t compare as

well as the M10 potential, the energy landscape is quite accepable compared to the

previous parametrizations.

In the following section, the C15 configuration is discussed as a continuation of

Sec.1.2.1 and three selection rules for construction of C15 configurations are also pre-

sented in Sec.3.4.1.

3.4 Construction of the stable C15 clusters

Here we recall the construction of C15 clusters, briefly presented in Sec. 1.2.1. The

building block of C15 clusters is a di-interstitial cluster. A simple way to insert a di-

interstitial C15 cluster into a bcc matrix is to place a Z16 Frank-Kasper polyhedron

having 12 atoms at the interstitial positions (see Fig.3.5a) together with 10 vacancies

around a given bcc atomic site. Larger C15 clusters can be described as sums of Z16

Frank-Kasper polyhedra having centers situated on a diamond network, which underlies

the initial bcc structure (this network is shown in Fig.3.5a-e). By repeatedly following

the above-mentioned procedure of Z16 polyhedron addition, 3D clusters having a cubic

periodic structure can be built. It is interesting to note that the subsequent structure of

the center of Z16 polyhedra is same as the diamond structure obtained from the initial

bcc structure by removing half of the initial bcc sites. This network is represented in the

Fig.3.6a. The final cubic unit cell of the crystallographic structure obtained after the

3D growth process is represented in the Figure 3.6b and corresponds to the C15 Laves
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Target Potential

M10 A05 P12 EAM2 EAM3

Bulk Properties

a0 BCC (Å) 2.853 2.855 2.855 2.8148 2.831 2.835

a0 FCC (Å) 3.6583 3.700 3.658 3.6569 3.658 3.662

Ecoh BCC (eV/atom) -4.28 -4.122 -4.013 -4.122 -4.123 -4.122

Ecoh FCC (eV/atom) -4.158 -4.000 -3.892 -4.000 -4.001 -4.000

C11 BCC ( GPa ) 243 243 243 226 243 243

C12 BCC ( GPa ) 145 145 145 150 145 145

C44 BCC ( GPa ) 116 116 116 115 116 116

Defect Properties

E
〈111〉
f (eV) 4.11 4.36 4.00 3.36 3.93 3.64

E
〈110〉
f (eV) 3.41 3.69 3.53 3.75 3.45 3.37

∆E
Itri2 −I<110>

2
f (eV) -0.11 0.07 0.31 0.42 0.05 -0.01

EV1
f (eV) 2.02 2.01 1.72 1.96 1.89 1.87

EV2
b (1nn) (eV) 0.14 0.14 0.14 0.26 0.18 0.1

EV2
b (2nn) (eV) 0.30 0.32 0.24 0.30 0.31 0.3

EV2
b (3nn) (eV) -0.02 -0.03 -0.03 -0.14 -0.03 -0.02

Table 3.1: Bulk, mono- and di- interstitial and vacancies properties for a few widely-

used potential for iron, M10 (37 , 100 ), A05 (99 ) and the P12 (214 ) potential

as well as the new developed potential marked as EAM2 and EAM3. The

target value are computed from the ab-intio calculations, the same as were

used in the development of the potential M10 and P12 (100 , 214 ). The a0

and Ecoh denote the lattice parameter of the cubic corresponding structure

and the cohesive energy, respectively. Ef and Ev is the formation energies

of various orientation or configuration (the 1nn, 2nn and 3nn denotes the

first, second and third nearest-neighbor configurations of the di-vacancy).

The ∆E
Itri2 −I<110>

2
f is the difference between the formation energy of the di-

interstitial triangle and 〈110〉 configurations (positive/negative values indicate

that 〈110〉/triangle is the most stable.)
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Figure 3.5: (a-d) Top: Structure of small C15 interstitial clusters in a bcc lattice of the

di-, tetra-, hexa- and octo-interstitial clusters, in a skeleton representation,

i.e., only SIAs are represented as orange spheres without any representation

of vacancies and cubic lattice sites. (a-d) bottom: centers of the Z16 Frank-

Kasper polyhedron corresponding to the top C15 skeletons are represented

by green spheres. (e) The 11 SIA C15 cluster, the lowest size which forms

a closed ring with the centers of Z16 Frank-Kaspers polyhedra. This ring is

emphasized by blue bonds connecting the centers of Z16 polyhedra.
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3 Development of Embedded-Atom Method potentials for defects in iron

Figure 3.6: (a) The spheres in green represent the possible centers of the Z16 polyhedra.

We can easily recognize the diamond structure. The plotted cube is the cubic

unit cell of the original bcc lattice. (b) The unit cell of the cubic phase of

Laves C15 or MgCu2, with the Mg atoms in green and the Cu atoms in

orange. In our convention the green atoms correspond to the atoms which

are the center of Z16 polyhedra and the orange atoms are the atoms which

are in the interstitial positions.

phase or C15 structure. In this homo-atomic type of C15 structure, interstitials occupy

the Cu sites and half of the original bcc sites are empty while the others are occupied

and correspond to the Mg sites.

3.4.1 Selection rules for C15 construction

The energy landscape of C15 clusters is not very well known and is very complicated

due to an enormous number of possible configurations. The number of possible config-

urations of n SIA clusters in vaccuum (as metallic clusters, molecules, proteins) varies

as exp(n) (220 ). The situation is even more complicated for the SIA-clusters which are

embedded into bcc matrix because the interaction between SIAs and the continuum of

bcc states gives rise to many more configurations. As a result, the full investigation of
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the energy landscape for large SIA-clusters (more than 10 interstitial atoms) is a her-

culean task. So, there is a need to develop a new strategy in order to search the global

minimum. For the sake of simplicity, we use the subsequent diamond network formed by

the center of Z16 polyhedra in order to generate the C15 clusters by pointing/marking

only the center of the Z16 polyhedron. Similar to the configurations represented in

the Fig. 3.5, we can construct larger clusters. In spite of this simplified representation,

the number of possible configurations remains large. After a careful study of the vari-

ous configurations and their corresponding formation energies, some selection rules are

proposed in order to limit these choices:

Rule 1: the generated configuration will contain only those Z16 centers which are

connected to its nearest neighbors. This rule prevents the construction of configurations

formed by two (or more) disconnected clusters, e.g. we eliminate those n SIA cluster

configurations which consist of two separate clusters of p and q self-interstitials atoms,

where p + q = n. Let us take the case of IC15
4 which has two Z16 centers located in

random lattice positions. According to this rule, only the configurations with centers

in nearest neighbor position will be treated (as in Fig.3.5b). All other possibilities will

generate two disconnected clusters and are ineligible. This rule leads to only one possible

configuration for cluster with three Z16 centers (as in Fig. 3.5c).

In order to prevent the construction of open chains of Z16 centers, we impose the

second rule which allows only those clusters which have a special topology. Let’s take

the example of IC15
10 , presented in the Fig. 3.7, where many configurations for n=10. All

the EAM potentials confirm the same trend: the lowest energy configuration forms a

closed ring with 5 Z16 centers. This observation leads to the second rule.

Rule 2: Closed hexagonal path made of 6 Z16 centers are favored whenever possible.

The smallest structure having 6 Z16 connected centers is the IC15
11 cluster which is shown

in the Fig.3.5e or in the Fig. 3.8, using the network of centers of Z16 representation.

Loop closure then occurs for specific sizes, referred to as magic numbers. The next

magic numbers are observed for 17 and 23 SIAs. These structures indeed have very

low formation energies. E. g. the formation energy for 11 SIAs is particularly low due

to the completion of one closed loop. Such low formation energies can be observed for

some specific number of atoms and these are referred to as magic numbers. Next magic

numbers are observed for IC15
16 and IC15

17 where two and three closed loops are formed

and packed in the most compact way possible. IC15
17 is presented in the Fig. 3.8.
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Figure 3.7: 4 configurations of IC15
10 clusters. The green and yellow spheres are the pos-

sible centers of Z16 polyhedra. Green corresponds of one orientation of the

Z16 polyhedra and yellow to the orientation rotated at 90 degrees along Z

axis. The blue bonds link the centers of trial configurations. The configura-

tion (a) has the lowest formation energy for all three potentials M10, EAM2

and EAM3. The formation energy of (b), (c) and (d) configurations is higher

for the potential (i) M10 with 1.15 eV, 1.41 eV and 1.70 eV, respectively (ii)

EAM2 with 0.77 eV, 1.05 eV and 1.21 eV, respectively and (iii) EAM3 with

0.79 eV, 1.02 eV and 1.15 eV, respectively.
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Figure 3.8: The configuration of IC15
11 and IC15

17 which are formed by one and three closed

loops of Z16 centers, respectively. The IC15
18 cluster contains 2 plain closed

loops yielding a planar shape. For representing the C15 clusters the same

convention is used as in .Fig3.7.

The next step is to energetically segregate the different possible constructions of clus-

ters using closed loop topology. Examples are the IC15
17 and IC15

18 clusters from Fig. 3.8.

The IC15
17 cluster has a very compact 3D shape as opposed to the IC15

18 cluster which is

created by a planar geometry of 2 closed loops. Owing to different number of interstitial

atoms in the two configurations, conclusive interpretations can’t be made. Therefore,

different configurations of 22 interstitial atoms are used to compare energies of planar

and compact 3D forms. Careful observation reveals that the closed loops in compact

form have lower formation energies as compared to closed loops in planar form. Hence:

Rule 3: the C15 clusters must be constructed in the most compact 3D way respecting the

first 2 rules.

Having developed new potentials in the previous section and having laid down selection

rules for construction of stable C15 configurations, the formation energies of C15 clusters

1/2〈111〉 dislocation loops will be compared using different empirical potentials.
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3.5 Relative stability of C15 clusters and dislocation

loops

As repeatedly emphasized, precise knowledge of the energy landscape of interstitial de-

fects is central to carrying out reliable simulations. Here we compare the formation

energies of the dislocation loops 1/2〈111〉 and C15 clusters. Using the pragmatic ap-

proach presented in the previous section expressed by the three “selection rules” we

constructed configurations of C15 clusters up to hundreds of SIAs.

Fig.3.9 shows the formation energies of these two defect-types with cluster size for

different empirical potentials. All the presented potentials show a crossover between

1/2〈111〉 and C15 clusters at sizes lower than 100 SIAs. However, as evident from Fig.3.9,

these crossover values are dependent on the empirical potential used. It is thus impossible

to give a precise value for this crossover from the presented data. As mentioned in

the introduction: these empirical approaches give a good basis for description of the

physics but the quantitative prediction are dependent on the potential and thus, peculiar.

This characteristic remains even if great effort are made in order to fit a reliable set of

parameters, as in the present development. These inconsistent crossover values, when

used in simulations, can result in conflicting predictions.

Having reviewed the various atomistic methods, we conclude that this conflict can be

resolved only by going beyond the realm of atomistic methods. In the following chapter,

continuum methods are combined with accurate atomistic methods to assess their ability

to address the shortcomings of the empirical potentials.

3.6 Conclusions

In this chapter we have reviewed the various empirical potentials used in the study of

defects, such as dislocation loops or C15 clusters, in iron. Unachievable computational

requirements of DFT calculations have fueled the search for alternatives considering

reasonable approximations over the past decades. This search has led to the development

of a number of empirical potentials, ranging from pair potentials to EAM potentials.

Although these empirical potentials have been successful in making radiation damage
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Figure 3.9: Formation energy of the 1/2〈111〉 loops and C15 clusters, calculated for se-

lected potentials, are plotted as a function of cluster size. For each potential,

the yellow empty squares and line represent the formation energies of C15

clusters while the purple circles and line represent the formation energies of

the 1/2〈111〉 loops. The crossover between these two families of defects is

seen to vary considerably depending on the potential.
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studies feasible, inconsistency of results from different empirical potentials is a major

shortcoming that hinders conclusive theoretical results.

In this chapter, new empirical potentials are developed for Fe, mainly to study irradiation-

induced defects such as self-interstitial atom clusters or dislocation loops. These empir-

ical potentials are developed using embedded atom method formalism and are fitted on

experimental values of solid-state properties, ab initio formation energies of basic point

defects and ab initio forces acting on the atoms in the liquid or random state configu-

rations. Various bulk and defect properties are compared to validate the transferability

of the new potential.

We have also explored the energy landscape of the three-dimensional C15 self-interstitial

atom clusters using the present potentials. The complex energy landscape of C15 clus-

ters is explored and we establish three selection rules which facilitate the construction

of lowest energy cluster configurations. These rules have practical importance enabling

the construction of C15 clusters with hundreds of interstitials with minimal effort.

The newly-developed potentials are compared to selected existing potentials and are

used to address the relative stability of 1/2〈111〉 dislocation loops and C15 clusters.

This analysis gives a crossover between C15 and 〈111〉 cluster below 100 SIAs. However,

a precise value is missing despite the effort put in the fitting of the new empirical

potentials. The shortcomings of the existing Fe potentials highlight the lack of any

universally applicable potential.

Ironically, even developments and improvements in the empirical potentials fail to

reach a consensus on the energy landscape of radiation-induced defects in bcc metals.

This provides motivation to continue development of novel methods in order to eliminate

this ambiguity based on choice of potential.
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The energetics of interstitial clusters with nanometer size plays an important role, being a

key ingredient that enables the connection between the asymptotic limits: isolated point

defects that can be modeled using ab initio methods, and large observable dislocation

loops. Limitation on the size of a DFT simulation cell in transition metals does not

permit the exploration of clusters containing more than a few tens of SIAs. This technical

problem can be overcome in part through the development of inter-atomic potentials

based on the embedded atom method (EAM) as discussed in Section 2.3 and Chapter 3,

but the unavoidable approximations result in the loss of accuracy and transferability.

As explained in Section 2.3 and Chapter 3, most of the EAM potentials developed to

study clusters of SIAs are built to fit the energetics of small clusters of SIAs provided

by ab initio methods (33 , 37 , 98 , 99 , 101 , 134 ). Because of this, all the potentials

provide similar results in the small cluster size limit but there is significant scatter in

the predicted formation energies over the nanometer size range for loops (100 , 221 ) and

C15 clusters (37 , 112 ). For instance, the EAM potentials proposed in Refs.(98 –101 ,

213 ) can be used to compute the formation energy of nanometer-sized clusters in Fe

containing 1000 SIAs in the form of 1/2〈111〉 dislocation loops but the results span a

fairly broad interval from 400 eV to 700 eV. Similar scatter is observed for other bcc

elements, such as W, and for different types of clusters (〈100〉 or C15).

One way of circumventing this discrepancy is to establish scaling laws from elasticity

theory and then to use these laws to extrapolate DFT calculations from small clusters

to larger scales. One model, proposed by Soneda et al. (76 ) two decades ago, postulated

an ad hoc function for the formation energy in terms of the number n of SIAs forming

the cluster. The formation energy takes the form Ef (n) = P0 + P1n
2/3, where P0 and

P1 are adjustable parameters. This popular model, sometimes referred to as capillary

model, has been widely used in the literature and over a hundred studies have used this

simple law in order to parameterize kinetic Monte Carlo or cluster dynamics simulations

for the time evolution of a distribution of clusters (see for instance Refs. (107 , 146 , 222 ,
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223 ) and Refs. therein). However, as we shall see further in this section, this model

yields large uncertainties at large sizes when its parameters are fitted to properties of

small clusters.

Since the elastic theory is known to work well for large interstitial defects but not

at smaller sizes, we proceed to develop an atomistic model incorporating a ‘cluster-

expansion’ type discrete contribution that will enable us to calculate the formation

energy of interstitial defects at 0 K as a function of no. of SIAs. This involves integration

of ab initio formation energies for small-sized defects with anisotropic elastic theory

formulation for formation energy of large-sized defects and re-formulation of the general

formula (without size-limitation) to calculate formation energy using the full anisotropic

elastic theory and discrete contribution.

Objective: In this chapter, we develop a discrete-continuum model for the formation

energy of clusters, which combines cluster expansion and elasticity for crystalline solids,

enabling us to predict the formation energies for large SIA clusters directly from ab initio

calculations performed on small clusters. The various sections, subsections, and their

contents are as follows:

• Section 4.1: A systematic description of the key aspects of the continuum methods

adapted to dislocation loops is presented. In section 4.1.1, the continuum part of

formation energy formulation is developed starting from the anisotropic elastic

theory for 2D loops.

• Section 4.2: The development of the discrete-continuum formulations for 2D loops

and 3D C15 clusters are presented in the following subsections:

– Section 4.2.1 Formation energy formulation using discrete-continuum model

for 2D loops.

– Section 4.2.2: Formation energy formulation for 3D clusters is developed by

considering the 3D clusters as Eshelby’s inclusions in an anisotropic cubic

matrix.

• Section 4.3: Construction of database of small-sized interstitial (database) defects

up to 22 SIAs is explained in this section. In particular, the motivation and simpli-

fied methodology of construction of both 2D loops and 3D clusters are discussed.

104



4.1 Continuum Methods for 2D dislocation loops

• Section 4.4: In this section, validity of the discrete-continuum model is established

using existing empirical potentials for iron and tungsten.

• Section 4.5: Following validation of discrete continuum model, we proceed to its

parameterization using the DFT formation energies of configurations included in

our database. With this ab initio parametrization the formation energies of inter-

stitial defects without size-limitation at 0 K are provided. The subsections include

the following:

– Section 4.5.1: Ab initio based predictions of formation energy landscape of

SIA clusters are presented and discussed.

– Section 4.5.2: A useful application of the discrete-continuum model are the

ab initio scaling laws for formation energy calculations. These scaling laws

are supplemented by the formation energy values corresponding to various

defect-types are given and should be utilised when number of SIAs is less

than 15 for each bcc metal.

• Section 4.6: Finally, the main points of this chapter are recapitulated systemati-

cally to provide a clear picture of the energetic model developed.

4.1 Continuum Methods for 2D dislocation loops

Continuum methods involve treatment of materials as continuous mass by assuming

the constituents to be infinitesimal elements with identical properties as the bulk. This

treatment is fairly valid at macroscopic levels and is commonly used for elasticity studies.

Here, we deal with the problem of calculation of total elastic formation energy of a 2D

dislocation loop and a 3D cluster in the bcc metal medium. It is noteworthy that most

of the bcc metals (except W) considered in this thesis work, i.e. Fe, V and Ta, are

anisotropic (See Tab. 4.1).

The 2D dislocation loops are treated using the full anisotropic elasticity approxima-

tion, as explained in following paragraphs. According to the elastic theory of dislocations

(103 ), the formation energy of a 2D plate-like clusters of SIAs is related essentially to

two quantities: the line energy density of the edge dislocation which encloses the clus-
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Fe W V Ta

Expt. DFT Expt. DFT Expt. DFT Expt. DFT

B 173.0 150.7 314.2 303.2 160.7 184.2 194.2 193.1

C’ 53.0 63.0 163.8 162.3 58.1 74.2 54.1 40.6

C11 243.7 234.6 532.6 519.6 238.2 283.3 266.3 247.4

C12 137.7 108.7 204.0 190.0 122.1 134.8 158.2 166.1

C44 122.0 116.0 163.1 141.2 38.3 32.1 87.4 68.3

A 2.30 1.84 0.99 0.87 0.81 0.43 1.61 1.68

Table 4.1: The anisotropy factor (A) and the elastic constants, bulk modulus (B), shear

modulus (C’), C11, C12 and C44 (in GPa) of different bcc metals from exper-

iments and DFT calculations.

ter, and the stacking fault energy. The latter is very high in bcc metals, and as a result

stacking faults do not form, and are hence neglected in the following.

Other SIA clusters in bcc metals, such as C15 clusters, are 3D objects and have

different elastic constants than the anisotropic bcc medium. These C15 clusters will be

considered as Eshelby inclusions in anisotropic bcc matrix and the elastic energy of these

C15 clusters will also be treated accordingly, as given in Sec. A1.1.

Under the influence of an external force, the material can permanently deform (plastic

deformation) or regain its original shape (elastic deformation). (Note: Here, we restrict

to elastic deformations.) Determination of elastic stresses and strains as well as their

interdependence are key inputs to the study of their influence on materials. This shall

be the focus in the following pages of this section. Based on the elastic theory, elastic

formation energy of loops can be calculated as a function of the elastic constants and the

distortion field components. This calculation has been carried out by two approaches, as

illustrated by Bacon(81 ) and Stroh(224 ). Bacon’s approach will be briefly summarized

in the following subsection.
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4.1 Continuum Methods for 2D dislocation loops

4.1.1 Formation energy formulation using anisotropic elastic theory

for 2D loops

Here, derivation of the total linear strain energy per unit length without core contribution

is presented in accordance with the elastic theory, as explained in (81 ),(224 ). If the

displacement field ui(~x) is known, then the elastic energy density can be expressed as a

function of elastic stiffness tensor Cijkl and distortion components ui,j(~x) ≡ ∂ui
∂xj

:

∆E =
1

2
Cijklui,j(~x)uk,l(~x), (4.1)

where i,j,k and l can vary from 1 to 3 for a three-dimensional body and summation

over repeated indices is assumed. Due to high distortions at and near the dislocation,

this definition only holds till a certain distance from the dislocation. This distance is

approximated to be given by magnitude of Burgers vector and is called the core radius.

The total elastic energy of an arbitrary dislocation is obtained by integrating the elastic

density in Eq. 4.1 over its region of validity i.e. the entire volume V of the body except

a cylindrical region at the dislocation with core radius. Total linear elastic strain energy

is:

E =
1

2

∫
V

Cijklui,j(~x)uk,l(~x)dV =
1

2

∫
S

Cijkluk,l(~x)ui(~x)dSj. (4.2)

In the previous equation, the volume integral is converted into closed surface integral

using Gauss theorem. The surface which enclose the volume V should be carefully cho-

sen. In the immediate neighbourhood of the core, the strain is too high to be described

by elastic theory. Consequently, elastic field diverges and hence, the dislocation core

region should be excluded from the elastic description. Excluding the core region, the

closed surface integral in Eq. 4.2 has three different contributions: Sδ, SR and S+, S−.

Sδ is the curved surface of the cylindrical core region surrounding the dislocation at a

distance equal to core radius, SR is the external surface of the body and S+, S− are the

straight surfaces connecting the two curved surfaces (Sδ and SR), as it presented in the

Fig. 4.1. Using this contour surface the singularity due to the dislocation is removed.

Thus, the total elastic strain energy can be split into various surface contributions as:

E = ES+ + ESδ + ES− + ESR . (4.3)

In order to simplify the previous equation we combine ES+ and ES− into ES, i.e. S+

and S− are collapsed into S (S represents the limit when two surfaces approach infinity

close each to other). From the definition of Burgers vector ~b of the dislocation line, we

can set a leap in the solution of the elastic field ui(S
−) − ui(S+) = bi. We will denote
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4 The Discrete-Continuum model

Figure 4.1: Surfaces considered for dislocation elastic energy calculations are shown: Sδ

is the curved surface surrounding the dislocation, SR is the curved surface

encompassing the body and S+ and S− are the straight lines connecting the

two curved surfaces to remove the singularity due to the dislocation. (81 ,

224 ) Here, X represents a straight dislocation.

the outward unit normal vector from V as ~nS on S− and −~nS on S+. We obtain the

following equation which is valid for an infinite dislocation (81 ):

E =
1

2

∫
S

Cijklbin
S
j (~x)uk,l(~x)dS +

1

2

∫
Sδ

Cijklui(~x)uk,l(~x)dSj −
1

2

∫
SR

Cijklui(~x)uk,l(~x)dSj.

(4.4)

Static equilibrium of the body imposes the condition that the total force on the body

is zero. Hence, using body force free displacement equations for static equilibrium con-

dition,

Cijkluk,lj(~x) + fi = 0, (4.5)

where fi denotes body force density. It can be shown that the integrals over Sδ and SR

cancel each other because the resultant of forces in the core region or the entire body is

null. So, the final equation becomes:

E = ES. (4.6)

Using isotropic elasticity the Eq. 4.6 can be easy integrated into analytic form. E.g.

following, the textbook deduction of Hirth and Lothe (103 ) the energy per unit line of
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4.1 Continuum Methods for 2D dislocation loops

edge dislocation can be written as (Eq. 3.55 of (103 )):

E ′ =
µb2

4π(1− ν)
ln

(
R

δ

)
(4.7)

where µ is the shear modulus of the isotropic material, ν is its Poisson ratio. R is the

effective range of the elastic field of the loop and δ is the radius of the dislocation core.

In anisotropic elasticity is impossible to integrate Eq. 4.6 in analytic form. Historically,

two formulations of anisotropic elasticity are used in order to evaluate this equation:

Bacon’s theory (81 ) or Stroh’s sextic formalism (224 , 225 ). Wide numbers of studies

use these formalisms. In the study of defects, we cite only a few, such as the work of

Dudarev (27 , 133 ) using Bacon formalism or the work of Clouet (226 –230 ) based on

Stroh formalism. In this study, both formulations have been tested and yielded very

similar results. Here, we briefly describe the Bacon’s formalism.

Bacon’s formalism utilized some results provided by Willis in 1970. Willis (231 )

derived displacement and distortion fields due to a straight dislocation at a point ~x with

R � |~x| as follows:

ui(~x) = =
{

3∑
η=1

Fi( ~χη)ln

(
~χη.~x

R

)}
, (4.8)

ui,p(~x) = =
{

3∑
η=1

χηpFi( ~χ
η)ln

(
1

~χη.~x

)}
, (4.9)

where the function Fi( ~χη) is defined as:

Fi( ~χη) =
1

π
bjClmjknk

χηmNil( ~χη)

nr
∂D
∂χr

( ~χη)
, (4.10)

where = denotes the imaginary part. Given that ~l is a unit vector along the dislocation

line, ~m and ~n are unit vectors such that ~m, ~n and ~l form a right-handed set, or ~m = ~n×~l.
For an edge dislocation, ~n = ~b/b and ~χη = ~m + ~nωη. ω(1), ω(2) and ω(3) are the three

complex roots of the sextic equation S(ω) = det [Cijkl(mj + njω)× (ml + nlω)] = 0,

which are situated in the upper half of the complex plane ω = <ω+ i=ω, where =ω > 0,

and Nik(~χ) is the matrix adjoint to Lik(~χ) = Cijklχjχl, and D(~χ) = detLik(~χ).

Integrating Eq. 4.4 between the limits δ and R with the field expressed by Eqs.4.8 and

4.9, the total linear elastic strain energy per unit length, without the core contribution
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can be written as:

E ′ =
1

4π
bibmnjnqCijklCnpmq=

{
3∑

η=1

χηpχ
η
l

Nkn( ~χη)

ns
∂D
∂χs

( ~χη)

}
ln

(
R

δ

)
, (4.11)

where R is gain the effective range of the elastic field of the loop and δ is the radius of

the dislocation core.

Comparing the edge dislocation energy per unit line using anisotropic elastic theory,

given by the the above equation, and the isotropic form given by Eq.4.7 it can be noted

that the results have similar structure. Both approximations, isotropic and anisotropic,

can be written into compact form:

E ′ =
Kb2

4π
ln

(
R

δ

)
(4.12)

K is known as energy coefficient or prefactor or prelogarithmic factor of dislocation

line and for edge dislocation which has the values of µ/(1− ν) in isotropic elasticity or

complicated form, which can very easily be deduced from Eq. 4.11, in the anisotropic

elasticity case.

Although the major contribution to elastic energy comes from the total linear elastic

strain energy without core contribution, the core contribution is required to accurately

determine the elastic energy and to further use it as a state function. Thus, the complete

expression to calculate total elastic energy can be expressed as (27 ):

Etotal =

∮
Ed~l +

∮
Eδd~l +

∮
Ecd~l, (4.13)

where E is the total linear elastic strain energy per unit length without core contribution

as described by Eq. 4.11, Eδ is the core-traction energy per unit length and Ec is the

nonlinear core-traction energy per unit length.

To derive the formation energy of dislocation loops directly from anisotropic elasticity

is very difficult. However, we can obtain an analytic expression using isotropic elastic-

ity. Moreover, using the above mentioned similarity between isotropic and anisotropic

formulation, we can provide an analytic formula in both approximations. Considering

circular prismatic dislocation loop in an isotropic medium with its Burgers vector per-

pendicular to the loop’s plane, the total energy can be derived to be (as in Section 6.4

of Hirth and Lothe (103 )):

Etotal = 2πR′
[

µb2

4π(1− ν)
ln

(
4R′

eδ

)
+ Eδ + Ec

]
, (4.14)
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4.1 Continuum Methods for 2D dislocation loops

Figure 4.2: Variation of the ratio of pre-logarithmic term in Eq. 4.11 of two different

Burgers vector dislocation is shown as a function of the rotation in terms of

angle of vector, ~l. Figure is reproduced from (27 ).

where µ is the shear modulus of the isotropic material, ν is its Poisson ratio and R′ is the

radius of the equivalent circular loop. As mentioned, this equation is only applicable to

isotropic materials and is inadequate when dealing with anisotropic materials. Replacing

µ/(1− ν) by K, as energy prefactor of dislocation line, we obtain the common formula

for formation energy of prismatic dislocation loops using isotropic and anisotropic elastic

theory:

Etotal = 2πR′
[
Kb2

4π
ln

(
4R′

eδ

)
+ Eδ + Ec

]
, (4.15)

Using the above formulation of the formation energy, Dudarev et al. (27 ) brought

forth two main ideas to predict relative stability of different morphology of loops with

change in temperature for different bcc metals. Firstly, the full anisotropic elasticity ap-

proximation should be considered to treat dislocation loops in bcc metals due to strong

anisotropy of some bcc metals, like iron. As a consequence, ratio of prelogarithmic term
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4 The Discrete-Continuum model

for different Burgers vectors in Eq. 4.11 was shown to vary depending on the anisotropy

of the material considered(seen in Fig. 4.2). Secondly, an approximation to study tem-

perature dependence of the linear elastic energy involves consideration of temperature

dependence of elastic constants in the prelogarithmic energy factor in Eqs.4.11. Us-

ing this approximation, they demonstrated the stability of 〈100〉 loops in iron at high

temperatures which was not explained till then.

A comparison of the 1st terms in Eq. 4.13 and Eq. 4.15 relates the parameter K to the

integration of the total linear strain energy per length over the perimeter of the circular

loop. Except for special cases, K can not be determined analytically and is generally

calculated numerically. Since Kb2 value in Eq. 4.15 represents the dominant contribution

to total elastic energy calculation, the ratio of kb = Kb2 of 〈100〉 and 1/2〈111〉 loops

gives a reliable way to estimate the relative stability of loops. Clearly, when this ratio is

greater than 1, 〈111〉 dislocation loops are more stable than those of 〈100〉. Observing

Fig. 4.3, it can be concluded that the 1/2〈111〉 dislocation loops remain more stable

than 〈100〉 for all bcc metals of this thesis, except iron. There appears to be a crossover

of this ratio from greater than 1 to less than 1 indicating enhanced stability of 〈100〉
dislocation loops at higher temperatures.

Although E. Clouet (232 ) provides an expression to calculate the core traction con-

tribution in an anisotropic material, isolated dislocation and isolated dislocation dipole

were treated. As such, core traction contribution for dislocation loops cannot be calcu-

lated using this expression. Since the non-linear remaining terms, Eδ and Ec, cannot

be determined experimentally or analytically. It will be shown in the next chapter that

these terms can be fit on feasible DFT calculations to obtain reasonable estimates on

extrapolation.

The formula for formation energy of prismatic dislocation loop, given by 4.15 can be

related to the number of interstitials which form that loop. Imposing that the surface

area of the loop is equal to n times the average surface area per SIA, we obtain that R∗

is fbabcc
√
n, where abcc is the lattice parameter of the bcc structure and fb is a factor

that depends on the Burgers vector and the habit plane of the loop, i.e. fb =
√

1/(2π)

and
√√

2/(2π) for the 〈100〉{001} and 1/2〈111〉{110} loops, respectively. The latter

consideration allows us to rewrite Eq. 4.15 as a function of three unknown parameters,

T, P0 and P1:

Eelastic(n,b; δ, Ec−δ) = T
√
n ln (n) + P1

√
n+ P0, (4.16)
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4.1 Continuum Methods for 2D dislocation loops

Figure 4.3: Ratio of kb = Kb2 of 〈100〉 dislocation loops to kb value of 1/2〈111〉 dis-

location loops is plotted as a function of temperature. This ratio provides

information regarding the relative stability of the compared dislocation loops.

On the basis of this graph, the 1/2〈111〉 dislocation loops are more stable

than 〈100〉 for bcc metals, except for iron at higher temperatures (greater

than 830 K). The kb-values are plotted up to melting point for the bcc metals,

except iron where the plot is limited till its Curie temperature.
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where the P0 term is introduced to match the atomic data in the limit of small SIAs

cluster size, e.g., n = 1 or n = 2, for which the concepts of perimeter and surface are

not well defined.Using the sextic formalism (27 , 81 ), for the case of pure prismatic loop,

the term T can be written as:

T =
1

2
fbabcc ln

(
fbabcc
δ

)∮
bibmnjnqCijklCnpmq=

[
3∑

η=1

χηpχ
η
l

Nkn(χη)

ns
∂D(χη)
∂χs

]
dθ. (4.17)

with all the definitions givrn above, in Eq 4.11.

The elastic theory, detailed above, is adapted to the treatment of large clusters. How-

ever, we note from Eq. 4.16 that the elastic energy varies as the square root of n, so that

for small clusters, different contributions, either from the shape of the loops or from the

internal structure of the loop, are expected to become dominant below a certain value of

n. Additionally, the values of δ and Eδ−c in Eq. 4.15 cannot be determined solely from

elastic theory but they must be determined from atomistic calculations. This implies

that parameters P1 and P0 can not be calculated analytically and are unknown.

An example of parameterization of Eq. 4.16 is shown in Fig. 4.4a. The best set of

parameters for this model has been obtained using a database of clusters smaller than

22 SIAs, which are accessible to a DFT computation. The atomistic formation energies

are computed using an EAM inter-atomic potential (99 ) in order to check the validity

of our parametrization for large SIAs clusters through a comparison between predictions

and direct atomic scale simulations. Two strategies have been tested for fitting. In the

first case, all the three parameters, P0, P1 and T were fitted. For that case, not described

here, the predictions made from Eq. 4.16 for large clusters stringently diverge from the

atomistic values, with some relative errors up to 60% for the two families of loops that

have been examined. In a second method, T was computed from the elastic tensor as

shown in Eq. 4.17 and only P0 and P1 were adjusted with respect to the formation

energies computed at the atomic scale for clusters with n < 22. Using this approach,

as can be seen in Fig. 4.4a, the predictions are much better since the error is around

10% for the 1/2〈111〉 and less than 4% for the 〈100〉 loops. The error is smaller than

ad-hoc laws proposed by Soneda (76 ) but still important in absolute terms for 1/2〈111〉
loops. Even worse, the accuracy of the elastic model depends strongly on the choice of

the database used for the fit. For the same number of clusters involved in the database,

we can arbitrarily change the error by choosing various shapes of clusters. In order to

reduce the variability of the results due to differences in the shapes of small clusters

included in the database, and to reduce the relative error below 3% for the two types of
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4.2 Formation energy formulations of defects using discrete-continuum model

loops, we must increase the maximum size of loops included in the database to 53 SIAs.

However, this is not accessible to DFT simulations in transition metals with conventional

computers because to obtain the formation energies for clusters larger than 53 SIAs with

reasonable accuracy, the total number of atoms needed in the simulation cell is larger

than 5000. The fact that a pure elastic model parametrized on small clusters fails to

correctly predict the formation energies for large clusters can be ascribed to the two

following reasons: (i) the description of dislocation loops with finite core extensions is

inappropriate for small clusters where the enclosing dislocation core is comparable in

size to the radius of the cluster; (ii) the perimeter of the enclosing loops is fixed by

a function indexed on integer values i.e. the number of interstitial atoms. In order

to emphasize the latter point, we have reported in Fig. 4.4b the ratio of the convex

hull perimeter of loops to the perimeter deduced from n using the criterion described

above. This ratio converges very slowly to 1 and for sizes included in the fit (n between

3 to 21 SIAs) the value ranges from 0.56 to 0.85. Even if the ratio of convex hull

perimeter and perimeter deduced as function of n using
√
n criterion can be improved,

the ambiguity in the definition of perimeter of small and large loops remains. Therefore

the two points noted above imply that the parameters fitted to the data derived for

small loop sizes are not representative of larger loop sizes generating large errors in the

adjustment/extrapolation procedure.

4.2 Formation energy formulations of defects using

discrete-continuum model

As the name suggests, the discrete-continuum model combines discrete contribution con-

sisting of DFT calculations with anisotropic elastic theory to obtain the formation energy

formulation for 2D loops and with Eshelby’s inclusion method to obtain formation en-

ergy formulation for 3D C15 clusters. The development of these two discrete-continuum

formulations are presented in the following subsections.
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Figure 4.4: (a)Formation energies of the 1/2〈111〉 and 〈100〉 dislocation loops in Fe

against the number of SIAs, computed: (i) from atomic scale simulations

using an EAM inter-atomic potential (99 ); (ii) using predictions based on

the law P0+P1n
2/3(see Ref. (76 )); (iii) using the anisotropic elasticity theory

(see Eq. 4.16) which is parametrized with atomic scale calculations up to

n=21 SIAs. P0 and P1 are fitted while term T is computed directly from the

elastic tensor associated to the EAM potential. (b) The ratio of the convex

hull perimeter of the dislocation loops to the perimeter deduced from the

discrete number n of SIAs contained in the cluster. The full line curve was

fitted using the function (1 − (1/(xa1 + a2))), with values of 0.70 and 0.88

for the exponent a1 of 1/2〈111〉 and 〈100〉 loops, respectively.
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4.2 Formation energy formulations of defects using discrete-continuum model

4.2.1 Formation energy formulation of 2D loops using

discrete-continuum model

Hence, due to the size limitation of ab initio calculations, it is impossible at present – or

in the near future – to parameterize an elastic model using Eq. 4.16 for the formation

energies of SIA nanometric clusters. In order to overcome this difficulty, we add a

cluster-expansion like term to the elastic model, which takes into account the discrete

structure of small dislocation loops:

Eformation(n) = Ediscrete (n, n1, n2..; {Pj}) + Eelastic (n,b; δ, Ec−δ) . (4.18)

The discrete term depends on a set of parameters {Pj}, and we impose a requirement

that it vanishes in the asymptotic limit n −→ ∞ i.e.Ediscrete(n, n1, n2..; {P}j) −→ 0 as

[n→∞]. The discrete nature and the geometric structure of clusters are accounted for

in the term Ediscrete through a topological mapping to the local neighborhood of each

dumbbell which is defined by the number of first (n1), second (n2) or higher nearest

neighbor pairs of dumbbells. The distance between dumbbells is defined as the distance

between their centers. For example in the case of a 1/2〈111〉 dislocation loop with

a {110} habit plane, the first and second nearest neighbor shells each have 4 nearest

neighboring dumbbells, situated at distances
√

3abcc/2 and abcc, respectively.

The discrete part of the energy for a dislocation loop containing n SIAs is written as

the sum of contributions from all dumbbells:

Ediscrete =
n∑
i=1

Ei =
n∑
i=1

f(n;ni1, n
i
2)E(ni1, n

i
2). (4.19)

The local energy associated with the ith dumbbell of the cluster is expressed as Ei =

f(n;ni1, n
i
2)E(ni1, n

i
2), where the function E(ni1, n

i
2) fully determines how Ei depends

on the dumbbell neighborhood, i.e. on the number of the 1st and 2nd nearest neighbor

dumbbells in the habit plane, denoted ni1 and ni2, respectively. Function f(n;ni1, n
i
2) fixes

the weight for the ith dumbbell energy E(ni1, n
i
2). In order to define the latter function,

we note that various atomic scale studies (100 , 233 , 234 ) have confirmed that the inter-

atomic distance between two atoms that form the dumbbells situated far from cluster’s

edges recovers bulk coordination. For example, relaxation of dumbbells recovers perfect

bulk 1st nearest neighbor distance
√

3abcc/2 in the center of clusters. As a result, the

dumbbells that are close to the center of loops, with full nearest neighbor shells, make no

contribution to the energy of the system other than twice the cohesive bulk energy. This
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Figure 4.5: Structure of a 〈100〉 loop in the {001} habit plane containing 15 SIAs showing

the number of 1st and 2nd nearest neighbors of all dumbbells. Note: The

loops were constructed such that each dumbbell has at least one dumbbell

in 1st nearest neighbor position. As a result, possible number of 1st nearest

neighbors varies from 1 to 4 while the number of 2nd nearest neighbors varies

from 0 to 4. There exists just one exception which is the case of mono-SIA.

means that in terms of the formation energy, these dumbbells give no contribution to the

discrete energy. Therefore the function f(n, ni1, n
i
2) should be zero for the dumbbells with

their full nearest neighbour shell. A second constraint on this function is given by the

asymptotic limit at large n, i.e. f(n;n1, n2) −→ 0 as [n −→ ∞. Hence we consider the

following product form: f(n;n1, n2) = g(n)h(n1, n2), where h(n1, n2) equals unity for the

atoms which do not have full nearest neighborhood, and zero otherwise, and g(n) −→ 0

for large clusters. In order to ensure the condition Ediscrete(n, n1, n2..; {P}j) −→ 0 as

n −→∞ we have tried many monotonically decreasing functions of the form proportional

to 1/nα for g(n), with α in the interval from 0.5 to 1. The best choice for α was found

to be 0.55.

To reduce the sum in Eq. 4.19, we can rewrite the discrete energy contribution by

introducing the number of dumbbells having n1 and n2 first and second neighbors,

(in1,n2):

Ediscrete =

Nb
1∑

n1=0

Nb
2∑

n2=0

in1,n2f(n;n1, n2)E(n1, n2) + P2, (4.20)

where N b
1 and N b

2 are the bulk numbers of first and second neighbors and P2 is a constant.

A pair formulation is neither a necessity nor a constraint in this approach, since the model
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can be readily extended to more complex types of interaction. In order to exemplify this

energetic model, let’s take the example of a small 〈100〉{001} loop containing 15 SIAs,

which is sketched in Fig. 4.5. In this case, the discrete part of the energy can be written

as:

Ediscrete =
1

150.55 [2E(1, 2) + 4E(2, 2) + 3E(2, 3) + 2E(4, 2) + 3E(4, 3)] + P2. (4.21)

In the above equation h(4, 4) = 0 and h(1, 2) = h(2, 2) = h(2, 3) = h(4, 2) = 1.

Combining the elastic and discrete parts, we find that the formation energy of a loop

with n SIAs is:

Eformation(n) = T
√
n ln (n) + P1

√
n+ P0 +

Nb
1∑

n1=0

Nb
2∑

n2=0

in1,n2f(n;n1, n2)E(n1, n2). (4.22)

We note that parameter P0 derived from elasticity is combined with P2, deduced from

the discrete model, to give just one constant, denoted by P0 in Eq. 4.22. Our goal here

is to produce an analytical model that defines a general functional form of the scaling

law that describes the formation energy Eformation(n) of clusters as a function of their

size n. The advantage of this formulation, Eq. 4.22 is that a full set of parameters

E(n1, n2) and P0,1 can be obtained from ab initio formation energies derived using a

training series of configurations of small interstitial clusters. This new model combines

a discrete contribution to the energy, evaluated using a cluster expansion formalism,

with a term derived using a treatment of prismatic loops based on elasticity theory as

described in the chapter.

4.2.2 Formation energy formulation for 3D clusters using

discrete-continuum model

The strategy described above has also been adopted to develop a model for C15 clusters.

C15 inclusions have different elastic properties in comparison to the host bcc matrix

(41 ), and the corresponding energy is treated using the formalism of isotropic Eshelby

inclusion (225 , 235 , 236 ). The discrete contribution to the formation energy takes

into account the particular structure of C15 clusters. In comparison with the case of

dislocation loops, they have an additional contribution from the atoms having perfect

C15 bulk coordination situated inside the clusters. Thence the core region of a C15

cluster does contribute non-negligibly to the formation energy. In addition, the bcc
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bulk atoms of the perfect lattice are replaced by C15 bulk atoms with different cohesive

energies and consequently this difference must be accounted for. The remaining atoms

of the SIA cluster, which do not have the perfect C15 bulk coordination, correspond to

the interface between the C15 cluster and the bcc matrix. These interfacial atoms also

contribute significantly to the formation energy. The present energetic model is close to

the Zhang et al. (112 ) model used for interpolating the formation energy of C15 clusters

provided by EAM inter-atomic potential calculations. In the Zhang et al. model, the

number of atoms situated both at the interface and in the perfect C15 bulk, are deduced

from the asymptotic limit of large clusters. The present model is used for predicting

the formation energy of C15 clusters from DFT calculations. The difference between

the convex hull surface and the surface computed from the number of SIAs in a cluster

is fairly large for small sizes (even larger than that for perimeter of loops, Fig.4.4b).

Therefore, the number of atoms with perfect C15 bulk coordination NC15, the number

of interfacial atoms Ni, as well as the surface area SC15 and volume VC15 of C15 clusters

are deduced directly from the geometry of the cluster. The formation energy expression

used in our model is written as follows:

Eformation(n) = SC15γ +
6VC15µε

2

α
+NC15(Ebcc

coh − EC15
coh ) +Ni∆Ei, (4.23)

where Ebcc
coh and EC15

coh are the cohesive energies of the perfect bulk bcc and of the perfect

C15 structures, respectively. Coefficient ∆Ei is the average energy of atoms at the

interface and γ is the interface energy per unit area between the bcc matrix and the

C15 inclusion. The second term in Eq.4.23 is the energy of isotropic Eshelby’s inclusion,

with a C15 cluster treated as an inclusion in the otherwise isotropic bcc matrix. Eshelby

discovered an elegant way of calculating the stress, strain and displacement fields, both

in the inclusion as well as in the matrix, by using a superposition of linear elasticity and

Green’s function formalism (235 , 236 ). The same approach allows the computation of

the strain energy contribution in the presence of a C15 cluster. Here, µ is the isotropic

shear modulus of the matrix, while α = 1 + 3µ/(4BC15) where BC15 is the bulk modulus

of C15 clusters and ε is the misfit strain, which can be computed directly from atomic

scale calculations. ∆Ei and γ are adjusted with respect to atomic scale simulations while

the cohesive energies of bcc and C15 clusters are determined from atomistic calculations

(41 ). In the limit of large spherical C15 clusters, the previous equation can be written

as a function of the number n of SIAs as in the Zhang model (112 ):

Eformation(n) = 2γs
(
9πΩ2

)1/3
n2/3 +

12Ωµε2

α
n+ 3n(Ebcc

coh − EC15
coh ), (4.24)

where Ω is the atomic volume of bcc iron. In the large limit, a cluster with n interstitials

is obtained by replacing 2n bcc atoms by 3n C15 atoms which gives the volume of the
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C15 cluster as: VC15 = 2nΩ. The convex hull surface and the atomic interface energies,

i.e., the first and last terms of Eq.4.23, have been combined into a single term that is

the first term of Eq.4.24. The prefactor γs in the first term, which gives the dependence

in n2/3, plays the role of interface energy. Because of the fact that SC15 and Ni terms

of the discrete formulation in Eq. 4.24 take the form n2/3 in the infinite limit, the new

interface energy γs combines γ and ∆Ei.

The elastic energy of C15 clusters can more accurately be considered by treating

the second term of Eq.4.23, as Eshelby inhomogeneities in anisotropic bcc matrix and

the elastic energy of these C15 clusters be treated accordingly, as given in Appendix

A1.1. As explained in the appendix, this treatment considers C15 clusters as spherical

inhomogeneities in an anisotropic cubic matrix in accordance with Refs.(237 –239 ). The

results obtained by this alternative treatment have not been presented because they

don’t vary much qualitatively from the current results.

4.3 Construction of database

The energy landscape of dislocation loops has been widely studied at the atomic scale by

various authors (27 , 100 , 110 , 133 , 240 ) and the lowest energy configurations of various

clusters have been already reported in the literature. 1/2〈111〉 dislocation loops were

generated by inserting 〈111〉 dumbbells in the {110} habit plane so as to form compact

clusters. 〈100〉 dislocation loops were generated by inserting atomic 〈100〉 dumbbells

in the {001} habit planes. In addition to these configurations, we have found that

some specific cluster geometries needed to be included as ’database’ in order to have

a good parameterization for E(n1, n2). As explained later in this section, the choice

of these configurations is made in such a way that the neighborhood of large loops is

reproduced, i.e., those containing thousands of SIAs. Here, the size of clusters included

in the database is limited by the feasibility of ab initio calculations. The size of clusters

in the database ranges from 2 to 20 SIAs with a total of about 50 configurations for

〈100〉 and from 2 to 22 SIAs with 31 configurations for 1/2〈111〉. The choice of the

largest cluster size, i.e. 22 SIAs for 1/2〈111〉, is justified by the low relative error in the

formation energy in simulation cells with 1024 + n atoms (8a×8a×8a cells). As shown

in Fig.4.9, the relative errors in the formation energies due to this size limit are lower

than 2%. More details, along with the exhaustive list of configurations included in the
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database, are given in the following section.

Parametrization of the discrete part of the present energetic model relies on the topol-

ogy of cluster configurations. The number of first or second nearest neighbors of each

dumbbell is an essential ingredient for the formation energy calculations in Eq. 4.22.

In this section, we present the constraints that we have imposed in the construction of

cluster geometries in order to set-up correctly, from the mathematical point of view, the

fitting procedure of E(n1, n2) parameters.

Database construction of dislocation loops

The construction of extrapolation database is based on previous studies of various au-

thors (27 , 100 , 110 , 133 , 240 ) which assert that the closed-loop configurations such

as rectangles, squares or circles are more stable than possible elongated configurations

for the same number of SIAs. Adhering to this requirement, hundreds of configurations

of 〈100〉 and 1/2〈111〉 dislocation loop types were constructed for SIAs ranging from

2 to 1500. For all these configurations, we investigated the local environment of each

dumbbells. To facilitate better understanding of the neighborhood behavior in this set

of configurations, occurrence of each (n1, n2) pair was plotted where n1 refers to the

number of first nearest neighbors and n2 refers to the number of second nearest neigh-

bors. The plotted histogram revealed that certain (n1, n2) pairs do not occur while other

pairs are overrepresented as shown in Figure 4.6.

The configurations contained in the training database of the discrete-continuum model

were built in keeping with the selective dumbbell neighborhood behavior of large clusters

expressed above. These configurations were constructed such that all the occurring

(n1, n2) pairs appear in the database as well so that each occurring pair is considered

for fitting. Due to the compact form of clusters, there are some extra (n1, n2) pairs

of neighbors that occur in database. However, this is not expected to pose a problem

because they do not contribute significantly in the extrapolation. The histogram of the

neighborhood of the training database is shown in Figure 4.6.

Database configurations were limited to 20 SIAs in 50 configurations and 22 SIAs

in 31 configurations for 〈100〉 and 1/2〈111〉, respectively. All the training database

configurations for 〈100〉 and 1/2〈111〉 clusters are shown in Figure 4.7 and Figure 4.8.
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4.3 Construction of database

Figure 4.6: Histograms showing number of occurrence of pairs of dumbbells with respect

to the type (n1, n2) for all (a) training (small clusters) and (b) validation

(small up to large clusters) 〈100〉 configurations where n1 is the number

of first nearest neighbors and n2 refers to the number of second nearest

neighbors. Possible (n1, n2) dumbbell pairs of the type (0, n) where n = 0

to 4 were not included due to absence of such pairs in both training and

validation configuration sets.
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Figure 4.7: Database configurations of 〈100〉 loop type. The cluster dumbbells are pro-

jected (and represented) in the 001 habit plane. The color of each dumbbell

is assigned according to the number of first and second neighbors, (n1, n2).

The color assignment map is shown in Figure 4.5 of the paper.
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Figure 4.8: Database configurations of 1/2〈111〉 loop type in 110 habit plane, projected

in the 110 plane. The same color convenction is applied as in the Figure 4.7.
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Figure 4.9: Formation energies of n SIAs of (a)1/2〈111〉 and (b)〈100〉 dislocation loops

in Fe, computed with an EAM potential (99 ) with different configurations in

cubic simulation cells containing 250 + n (red circle), 432 +n (blue square),

686 + n (orange triangle up) and 1024+n (green rhombus) atoms. All ener-

gies are normalized to the asymptotic limit, taken as the formation energy

in a simulation cell containing 207646 + n atoms. Lines are guides for the

eyes, obtained using a fit to a 4th order polynomial. Formation energies have

been corrected using the elastic dipole correction method to account for the

finite size of the simulation cells (230 ).
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Database construction of C15 clusters

The present database for C15 clusters should include the lowest energy configurations.

In order to form a cluster with a given number of SIAs, the number of possible choices

of Z16 centers is quite large and guessing the configurations with the lowest formation

energies is problematic. The database for C15 clusters contains up to 20 configurations

of SIAs. This limit is fixed, as in the case of loops, by the accuracy in the formation

energies derived from DFT calculations with a cell containing 1024+n atoms.The num-

ber of possible configurations grow exponentially with the size of the cluster, making a

systematic search prohibitive at larger sizes. We use the pragmatic approach, configura-

tions for the present database were generated using the three selection rules presented

in detail in the Sec. 3.4.

4.4 Validation of the Discrete-Continuum model

Discrete-continuum model can be parameterized through simulations performed using

different EAM inter-atomic potentials, which allows us to test model predictions for

large clusters, using large simulations cells. Several EAM potentials for Fe (99 –101 ,

213 ) and for W (33 , 85 , 134 , 135 ) were used for our tests. Note that in the Fe EAM

potential published in Ref.(100 ), a typo was corrected in Ref.(37 ).

The set of cluster geometries used for training the discrete-continuum model with

EAM energies is the same as the one that will be used later for parameterizing the

model from DFT data. The tests were performed for 〈100〉{100} and 1/2〈111〉{110}
dislocation loops containing up to 1200 SIAs. Three types of shapes were considered

to construct configurations: rectangular, circular, and hexagonal, where the sides of the

polygon correspond to the dense directions of the habit planes. The database of C15

clusters contains configurations with sizes up to 110 SIAs. The C15 configurations were

mostly generated in accordance with the three rules mentioned in the previous section.

The few configurations which do not obey these rules will be discussed later.

The atomistic formation energies of clusters of SIAs were computed using zero Kelvin

atomic relaxation simulations. The asymptotic values of the formation energies were

obtained by introducing interstitial clusters in a constant volume simulation cell with
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Figure 4.10: Cluster formation energies as a function of cluster size for (a) 1/2〈111〉
and (b)〈100〉 loops and for (c) C15 SIA clusters in Fe calculated using

the Ackland-Mendelev potential for Fe (99 ). Open diamonds represent the

direct EAM results derived from simulations using large cells while the blue

full diamonds represent values predicted by the discrete-continuum model.

The relative errors are plotted as insets. Note that for the nanometric

clusters the relative error is less than 3%.

millions of atoms, sufficient to remove any residual size effect. The system was relaxed

using a conjugate gradient technique with a convergence criterion on the maximal force

per atom of lower than 0.02 eV/Å. We have also performed calculations where the

criterion was 0.001 eV/Å, resulting in minor changes in the formation energies, less than

0.001 eV.

The formation energies calculated with EAM potentials were compared with predic-

tions made using the discrete-continuum model (see Fig.4.10). For dislocation loops the

difference is less than 2% (see Fig.4.10a and 4.10b for 1/2〈111〉 and 〈100〉 loops, respec-

tively) using the EAM potential from Ackland-Mendelev for Fe (99 ). Similar results are

obtained for all the EAM potentials tested for Fe and W. For the C15 clusters the error

is slightly larger, i.e. 3% (see Fig.4.10c). The error may reach 5% for some clusters e.g.

clusters containing 62, 64, 66 and 67 SIAs. The main reason for this discrepancy is that

such clusters don’t have compact geometries, hence they break the spherical symmetry

assumed in the model. These configurations were created by infringing the third rule

given in section 4.3. We estimate that such configurations are not significant for the

purpose of this study, being far from the lowest energy configurations.
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4.5 Calculation of formation energy for interstitial defects at 0K

4.5 Calculation of formation energy for interstitial

defects at 0K

Having validated the discrete-continuum model, we can now proceed to its parameteri-

zation using the DFT formation energies of configurations included in our database. For

calculation of DFT formation energies of database configurations, the DFT simulation

cell for n SIAs has been chosen to contain between 250+n and 1024+n atoms in such a

way that the relative error in the formation energy is lower than 2% from the converged

values (see Fig.4.9). The DFT calculations were performed using VASP within the pro-

jector augmented wave (PAW) framework (241 –244 ). The plane wave energy cutoff

is 350 eV and the Hermite-Gaussian broadening-width for Brillouin zone integration is

0.2 eV. The calculations are performed including the p semi-core states. The exchange

correlation energy is evaluated using the Perdew-Burke-Ernzerhof (PBE) Generalized

Gradient Approximation (GGA). The k-point grid mesh was chosen from 33 for 250+n

cell up to (1 or 23) for the 1024+n cell. W and V are non-magnetic materials and iron

is treated in the ferromagnetic state, which is a reasonable approximation in the low

temperature limit Each configuration is relaxed using the conjugate gradient technique

with a convergence criterion on the force on each atom of 0.02 eV/Å. The size of the

supercell remains fixed in order to ensure constant volume-per-atom simulations. All

the formation energies were adjusted using the dipole correction (230 ). In Varvenne et

al (230 ), it has been proved that dipole correction from constant volume, or zero strain,

yield a good correction value for the formation energy of defects in ferromagnetic iron,

such as dislocation loops or C15 clusters.

4.5.1 Ab initio based predictions of SIA cluster formation energies

The formation energies for the 〈100〉 and 1/2〈111〉 loops, as well as C15 clusters, were

computed using the discret continuum model for Fe, W, V (except 〈100〉 for V) and Ta,

and the results are shown in Figs.4.11, 4.12, 4.14 and 4.13, respectively.

As mentioned earlier, for all bcc metals, the experimental evidence, within the limit

of detection in TEM, for instance 1-2 nm radius for loops, confirms that the most

frequently observed morphology at low temperature corresponds to 1/2〈111〉 loops. The

formation energies predicted by the discrete-continuum model for large dislocation loops
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(sizes larger than hundreds of SIAs) are in agreement with this observation since the

1/2〈111〉 loops are predicted to be energetically more stable. The model also shows that,

for dislocation loops from 10 SIAs to sizes visible in TEM, 1/2〈111〉 loops always have

smaller formation energy than the 〈100〉 loops in both Fe and W. The present study is

at odds with some EAM potentials for Fe (37 , 100 ) and for W (33 , 133 , 135 ), which

predict a crossover in the relative stability of two families of loops around 200 SIAs.

Below this critical size the 〈100〉 loops would be more stable in W whereas they would

be more stable above the critical size in Fe. The origin of this inversion in the relative

stability of loops is still unclear. It is worth noting that the discrete-continuum model

is able to reproduce the crossover predicted by the EAM potentials if the model was

calibrated using the database corresponding to the same potential. When the model is

calibrated to the database derived from DFT, the model predicts no crossover between

the loop formation energies.

In contrast, the DFT-based predictions show crossovers between C15 clusters and

loops. In Fe, one crossover appears with 1/2〈111〉 loops at clusters around 51 SIAs in

size, corresponding to a 1.5 nm diameter C15 cluster. There is also a crossover with

〈100〉 loops, this time both in W and Fe at 21 and 91 SIAs, respectively. In V there is no

crossover, 1/2〈111〉 loops are the most stable configurations for all defect cluster sizes.

In Fe, the present results reconcile the theoretical predictions with experiments, where

only the 1/2〈111〉 loops were observed under irradiation at low temperature, by giving

some support to a mechanism recently identified as a possible route of formation of

the 1/2〈111〉 and 〈100〉 loops involving the collapse of larger C15 clusters (112 ). The

possible formation mechanisms of 〈100〉 loops in Fe were addressed in the past in several

studies, some examples are given in Refs. (79 , 105 , 106 , 245 ). In particular, Refs.

(79 , 105 , 245 ) propose a mechanism based on the reaction between two 1/2〈111〉 loops

having appropriate size and specific orientations. The mechanisms proposed by Marian

et al. (79 ) and Xu et al. (105 ) are similar, the only difference being that Xu et

al. showed that this reaction holds for larger clusters and has stochastic components.

Another scenario by Chen et al. proposed transformation of 1/2〈111〉 loops into 〈100〉
by correlated translation-rotation of SIAs forming the loop (106 ). All these mechanisms

involve a certain number of stringent conditions, such as the direction of loop migration

and the size of the loops, which make the corresponding events highly infrequent. Zhang

et al. (112 ) proposed an alternative idea involving the nucleation of C15 clusters and

their growth by trapping of single self-interstitials of 1/2〈111〉 dumbbell structure. In Fe,

small C15 clusters are energetically very stable and act as traps for small mobile SIAs.
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Figure 4.11: (a) DFT formation energies of 1/2〈111〉, 〈100〉 and C15 clusters in Fe (empty

circles, squares and diamonds, respectively) and the DFT based predictions

made using the discrete-continuum model (full circles, squares and dia-

monds, respectively) (b) Extrapolation of the formation energies at large

sizes for the 1/2〈111〉 loops, 〈100〉 loops and C15 clusters in Fe - empty

symbols. Full lines represent the elastic model (Eq. 4.16) parameterized

using the points predicted by the present discrete-continuum model. This

extrapolation can be done without size limitation. Note the crossover be-

tween 1/2〈111〉 loops and the C15 clusters at 51 SIAs, and between 〈100〉
loops and C15 clusters at 91 SIAs.
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Figure 4.12: (a) DFT formation energies of 1/2〈111〉, 〈100〉 and C15 clusters in W (empty

circles, squares and diamonds, respectively) and the DFT based extrapola-

tion from discrete-continuum model (coloured lines). (b) Extrapolation of

formation energies at large sizes for the 1/2〈111〉 loops, 〈100〉 loops and C15

clusters in W - empty symbols. Full lines represent the elastic model (Eq.

5) parameterized on the points predicted by the present discrete-continuum

model.

Moreover, they are kinetically trapped, meaning that the lowest energy reaction pathway

that allows C15 clusters to transform into planar loops corresponds to very large energy

barriers resulting in highly improbable transitions. In Ref.(37 ), it was shown that the

lowest energy pathway that transforms a 4-SIA C15 cluster into a planar loop is of the

order of a few electron-Volts. Under irradiation, small mobile interstitial clusters, such

as 1/2〈111〉 or 〈110〉 loops, are continuously produced, facilitating the growth of C15

clusters which can reach very large sizes, even larger than the crossover between C15

and traditional loops because of their kinetic trapping.

At large sizes the transformation of C15 clusters into dislocation loops with 1/2〈111〉
or 〈100〉 orientation becomes very likely. This transformation is demonstrated even on

the time scale of molecular dynamics simulations, by Zhang et al. (112 ). Therefore, the
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Figure 4.13: (a) DFT formation energies of 1/2〈111〉, 〈100〉 and C15 clusters in Ta

(empty circles, squares and diamonds, respectively) and the DFT based

extrapolation from discrete-continuum model (coloured lines). (b) Extrap-

olation of formation energies at large sizes for the 1/2〈111〉 loops, 〈100〉
loops and C15 clusters in Ta - empty symbols. Full lines represent the

elastic model (Eq. 5) parameterized on the points predicted by the present

discrete-continuum model.
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frequency of formation of 〈100〉 loops is definitely larger than in any other mechanism

proposed in the past. The only condition is that the C15 clusters should be formed

at small sizes, which is confirmed by DFT calculation of (37 ) and present study for

small (up to 8 SIAs) and large clusters (nanometric sized), respectively. Although the

mechanism proposed by Zhang et al. is rather convincing to explain the formation of

〈100〉 loops at high temperature in Fe, it doesn’t explain why these loops are not observed

at low temperature (28 ). Present work resolves this contradiction by revealing the DFT

relative energy of large clusters. All the past interpretations of Zhang et al mechanism

were based on EAM potentials energetic landscape which is different from the presents

DFT findings. As shown in Fig.4.11, the crossover between the C15 clusters with 〈111〉
and 〈100〉 loops occur at 51 and 91 SIAs, respectively, in Fe. It means that the C15

clusters which could form under irradiation and have sizes larger than 51 and smaller

than 91 SIAs can decay only into the 1/2〈111〉 clusters. This could explain the absence

of 〈100〉 loops because the C15 clusters are more stable in this size range (between

51 and 91 SIAs). We expect that C15 clusters should have sizes much larger than 91

SIAs in order to have non-zero probability to transform into 〈100〉 loops, which further

increases the size range where 〈100〉 cannot appear. Even though our interpretation

does not exclude the possibility of 〈100〉 loop formation directly under irradiation at

low temperature, it drastically reduces such probability in agreement with experimental

observations (28 , 70 ).

For small cluster sizes in W and V, the formation energies of C15 clusters are much

higher than for 1/2〈111〉 loops. In W for small sizes, between 7 and 21 SIAs, the C15

clusters have slightly lower formation energies than 〈100〉 loops as shown in Fig.4.12a

and 〈100〉 clusters become energetically more favorable than the C15 clusters containing

more than 21 SIAs. In V, 〈100〉 loops have the formation energies that are between

those of 1/2〈111〉 loops and C15 clusters at all sizes. We used a relatively restricted

set of calculations to parameterize an energetic model for 〈100〉 loops in V, and so this

conclusion is given on the basis of calculations for intermediate cluster sizes performed

for 2, 4, 10 and 20-SIA clusters.

The energy landcape for Ta seems to be a special intermediate case between Fe and W,

as shown in Fig.4.13. Like Fe, a crossover between 〈111〉 and C15 clusters does exist but

at a much smaller cluster size ( 17 SIAs). Beyond this crossover, the energy landscape

resembles that of W with 〈111〉 being the most stable and formation energies of C15 clus-

ters higher loops. Although conclusive experimental evidence of the irradiation-induced

defects in Ta is missing, required resolution might pose a major obstacle. Nevertheless,
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Figure 4.14: DFT and discrete-continuum model predictions for the formation energies of

1/2〈111〉 interstitial loops and C15 SIA clusters in V. The same conventions

as in Fig.4.11 and Fig.4.12 are used.
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DFT calculations in this study have clearly show the energy landscape upto 20 SIAs and

the crossover between 〈111〉 and C15 clusters at 17 SIAs.

4.5.2 Ab initio scaling laws for formation energy

One of the goals of this paper is to provide simple analytical scaling law formula for the

formation energy of self-interstitial clusters. The interest of such a formulation is the

practical application in multi-scale techniques including kinetic Monte Carlo simulations

and cluster dynamics or dislocation dynamics studies. Using the present analytical

scaling law, we restrict the input required for parametrization of defect energetics to

the number of interstitial atoms and their type. These new simple scaling law provide

reliable formation energies over a very broad range of defect sizes for any subsequent

multi-scale study.

Therefore, based on the dependence of the elastic contribution of the formation energy

of loops, in Eq. 4.16, and C15 clusters, in Eq. 4.24, on the number of interstitials, we

propose a simple analytical expression in order to fit the formation energies predicted

by the discrete-continuum model, for the loops,

Ef (n) = a0

√
n ln (n) + a1

√
n+ a2, (4.25)

and of C15 clusters,

Ef (n) = a0n
2/3 + a1n+ a2. (4.26)

It is worth noting that for sizes larger than 15 SIAs these two laws are a very good fit to

the formation energies, with an absolute error lower than 1 eV. Parameters of Eq.4.25

and 4.24 for Fe, W, V and Ta are given in table 4.2. For any subsequent use, it is

recommended to compute the formation energies using best-fit parameters from Table4.2

in Eqs. 4.25 and 4.26 for size of clusters higher than n = 15. For lower values of n the

formation energies of various configurations are provided in the Tab. 4.3. The presented

configurations are not necessarily those with the lowest formation energy. Moreover, it

should be noted that in the case of iron, as is mentioned earlier in Section 4.3, the lowest

energy configurations of small parallel clusters are 〈110〉 and not 〈111〉 or 〈100〉.
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Element a0 a1 a2

1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15

Fe 1.6049 1.7768 0.45330 5.3523 7.1595 1.3547 -0.14732 -5.8180 9.3542

W 3.9290 4.8488 1.0967 7.9242 13.6984 3.3295 6.2009 -8.2585 44.6802

V 1.0303 − 1.5365 0.8541 − 1.3499 3.8621 − -7.3536

Ta 2.2649 2.3573 3.3221 1.0118 4.4935 2.1860 10.7638 -0.1153 -20.7005

Table 4.2: Best fit parameters (Eq.4.25 and Eq. 4.26) for the formation energies extrap-

olated using the discrete-continuum model for the three types of clusters in

three different bcc crystals. a0, a1 and a2 are expressed in eV.

Fe W V Ta

size C15 1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15 1/2〈111〉 C15 1/2〈111〉 〈100〉
1 4.90 5.31 10.48 12.96 2.78 4.740

2 8.03 8.63 8.33 23.71 18.40 21.31 7.99 4.80 11.609 8.439

3 11.31 11.54 12.73 27.33 25.01 28.76 9.78 6.86 12.484

4 11.28 14.48 14.32 34.35 30.79 34.81 10.75 8.00 14.870 14.858 16.889

5 14.39 17.28 17.22 42.11 36.39 41.23 13.22 9.63 18.709 17.959 21.533

6 15.85 19.80 19.70 45.34 41.52 46.59 13.71 10.86 19.469 20.480

7 17.96 21.65 21.79 53.04 45.25 53.33 16.15 11.34 23.280 21.940

8 18.76 24.22 23.74 56.29 50.44 57.26 16.59 12.87 24.094 24.696 28.447

9 20.77 26.61 27.01 62.20 55.09 62.86 18.37 13.97 26.804 27.011 31.159

10 21.70 28.29 28.96 65.96 58.49 67.89 19.04 14.49 27.848 28.362 34.411

11 22.71 30.27 30.64 69.88 62.95 72.84 19.84 15.69 29.115 30.587 36.628

12 25.55 31.77 32.70 76.84 66.23 76.83 22.04 16.20 32.596 31.858 39.490

13 26.67 35.08 35.85 80.82 73.85 84.80 22.84 18.85 33.803 36.271 42.359

14 28.55 35.09 38.37 86.13 73.64 89.21 24.16 17.84 36.071 35.376 44.177

15 29.18 37.28 39.46 90.12 77.81 92.93 25.74 18.97 37.608 45.607

Table 4.3: DFT formation energies (expressed in eV) of smallest interstitial clusters, up

to 15 interstitials, as a function of size. In this table, only the lowest formation

energies are reported, at the same number of self-interstitial atoms, for the

configurations used in the present database.
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4 The Discrete-Continuum model

4.6 Conclusions

In this chapter, the formation energies of SIA clusters are investigated for four bcc

metals, namely Fe, W, V and Ta. The main result was the development and validation

of a discrete-continuum model that makes it possible to perform ab initio-level accurate

calculations for clusters without any size limitation. The model allows us to treat various

cases of interstitial dislocation loops and C15 clusters from clusters containing a few SIAs

to nanometer size.

From the interpretation of the present results it can be concluded that above ∼ 100

SIAs 1/2〈111〉 loops are always the most stable family of SIA-clusters – in agreement

with experimental observations of irradiation defects at low temperature in bcc metals.

However, these results are at odds with calculations made using various EAM interatomic

potentials, which yield spurious predictions concerning the relative stability of 〈100〉
and 1/2〈111〉 loops (100 ). Future developments of such potentials should consider the

information provided in the present paper, and include the appropriate additional fitting

conditions on the potential parameters.

Our study shows that in Fe, C15 clusters are the most stable clusters of defects for

sizes lower than 51 SIAs, which is a size range not accessible to direct TEM observations.

Our model also supports the theory of formation for 〈100〉 loops proposed by Zhang

et al. (112 ). In the present work, we do not include thermal effects and magnetic

excitations. As a consequence, our results are comparable only to low temperature

experiments. The results obtained, sheds some light on the absence of 〈100〉 loops in low

temperature experiments, and reconciles the Zhang mechanism with the experimental

evidence. However, in order to validate entirely our expectations, further analysis is

required.

Finally, our work makes it possible to establish scaling laws for the formation energies

of various types of clusters in various materials, which is significant for multi-scale simu-

lations such as kinetic Monte-Carlo simulations (107 , 223 , 246 –248 ), cluster dynamics

studies (249 , 250 ), or mean field approximations (251 ), where simple analytic laws are

needed to model the energy of large clusters. However, to enable the use of scaling laws

in multi-scale simulations, the effects of temperature must be accounted for. The present

formulation of the discrete-continuum model can be extended to address the formation

free energies e.g. by including the temperature dependence of elastic constants. These
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improvisations form the subject of the following chapter.
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5 Finite-temperature extension of

discrete-continuum model

In the previous chapter, a discrete continuum model based on atomistic parametrization

was developed to calculate nearly accurate formation energies of interstitial defects at

0 K without size-limitation. In order to apply the discrete-continuum model to realistic

environments, there is a need for extension of this model in terms of temperature. In

this chapter, we aim to extend the developed atomistic model beyond 0 K, permitting

calculation of nearly accurate formation energies of interstitial defects without size-

limitation at any given finite temperature.

Objective: The objective of this chapter is to develop a finite temperature extension

of the discrete continuum approach. This new extension will be compared to atomistic

free energy calculations for validation. When possible, the present development is also

directly compared to the corresponding experiment.

The various sections, subsections, and their contents are as follows:

• Section 5.1: In this section, the importance and relevance of free energy calcula-

tions is explained.

• Section 5.2: This section deals with the extension of the previously-developed

Discrete-Continuum model to obtain free energy at finite temperatures. Since

study of temperature dependence of elastic constants of the chosen metals is central

to this approach, this section also includes relevant discussion about adiabatic and

isothermal elastic constants in Section 5.2.1.

• Section 5.3: Firstly, a brief summary of the canonical ensemble is presented. The

goal of this section is to perform free energy atomistic calculations of interstitial
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5 Finite-temperature extension of discrete-continuum model

defects at finite temperature in order to validate the finite extension of the discrete

continuum approach. This section includes the following subsection:

– Section 5.3.1: Harmonic and quasi-harmonic approximations are considered

to obtain the temperature dependence of the observables required by the finite

temperature discrete continuum model, such as lattice parameters, elastic

constants or cohesive energies.

Apart from the obvious energy landscape, there are many possible applications

of the current developments of the discrete-continuum model. The following two

sections will treat two applications:

• Section 5.4 investigates the influence of temperature on the relative stability of

various cluster in iron. Also, the relevance of the mechanism of formation of 〈100〉
loops in bcc iron at higher temperature is discussed.

• Section 5.5: Here, free energy values predicted by the finite temperature discrete

continuum model are used as input in cluster dynamics simulations in order to

compare the simulation results with time evolution of loops density in post irradi-

ation experiments.

5.1 Free Energy

The objective of this chapter is to present a preliminary analysis of thermal impact on

point defects properties, which influence the atomistic free energy landscape at finite

temperatures. Unarguably, finite temperature excitations play an important role in the

physics of defects. Consider, for example, self-diffusion in a bcc material at a finite tem-

perature T, the concentration of defects as well as the diffusion rates are controlled by

the free energy landscape of vacancies. As evident, study of any temperature-dependent

process would directly or indirectly involve free energy calculation. For such calculations,

ideally, Gibbs free energy definition may be used due to its general formalism. How-

ever, when adequate information is available about the process/system, the definition

of free energy can be tailored depending on the thermodynamic variables of the pro-

cess/system. In this section, we assume a zero-pressure condition and consequently, the

thermodynamic functions like Gibbs (G = E + PV − TS) and enthalpy (H = E + PV )
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5.1 Free Energy

are replaced by Helmholtz free energy(F = E − TS) and energy(E) of the system, re-

spectively. The Helmholtz free energy surface F (T, V,N), a function of no. of moles

of the substance N , volume V and temperature T , is a central quantity in thermody-

namics of solids because it fully determines all other thermodynamic quantities such as

heat capacities or elastic properties at finite temperatures. From the differential of the

Helmholtz function (dF = −PdV −SdT ), a simple thermodynamics relation in the form

of partial differentiations can provide access to the entropy surface:

S(V, T ) = −
(
∂F

∂T

)
V

, (5.1)

or the pressure surface P (V, T ):

P (V, T ) = −
(
∂F

∂V

)
T

. (5.2)

Further, the isothermal bulk modulus at a given temperature, defined as change of

pressure per unit fractional change in volume at constant temperature T, can also be

calculated in terms of the Helmholtz free energy:

B(T ) = −V
(
∂P

∂V

)
T

= V

(
∂2F

∂V 2

)
T

. (5.3)

As such, the Helmholtz free energy is a quantity of great importance in understand-

ing chemical and biochemical processes. This claim will be further supported when

treatment of the canonical ensemble will be briefly explained in section5.3.

If we consider the concentration of defects, it is found to be related to the free en-

ergy landscape through the formation free energy landscape. The isobaric equilibrium

concentration of defects is given by:

Ceq(T ) = exp−F
f (T )

kT
, (5.4)

where the formation free energy of the defect F f (T ) is computed in the same way as the

formation energy i.e. by taking the difference of the corresponding function of a perfect

crystal and a crystal with defect. For example, the formation free energy in the case of

n intertitials (or vacancies) in a crystal with N atoms and volume V :

F f (T, V, n) = F (T, V,N ± n)− N ± n
N

Fbulk(T, V,N) , (5.5)

using +/− for interstitials/vacancies, respectively.
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5 Finite-temperature extension of discrete-continuum model

For a system at volume V , the free energy of N atoms can be expressed as:

F (T, V,N) = Fel(T, V,N) + Fvib(T, V,N) ,

Fel(T, V,N) = Eel(T, V,N)− TSel(T, V,N) , (5.6)

Fvib(T, V,N) = Uvib(T, V,N)− TSvib(T, V,N) ,

where Fel is the Mermin free energy of electrons (252 , 253 ) which takes into account

the electronic internal energy and the entropy of electrons at the temperature T . The

vibration free energy Fvib contains the internal energy of phonons and the vibrational

entropy of ions. The above entropic quantities, electronic Sel and well as vibrational

Svib are difficult to determine. The general tendency in the community is to neglect

the comparatively smaller electronic contribution and replace the vibrational entropy

effects by empirical laws. The main large scale simulations which fill the gap between

theory and experiments, such as the kinetic Monte Carlo, cluster dynamics, dislocation

dynamics simulations, use these empirical laws to calculate the contribution from the

vibrational part.

Having established the physical significance and relevance of calculating free energy,

calculation of free energy is illustrated in Sec. 5.2 by the finite temperature extension

of discrete continuum model. Furthermore, in the Sec. 5.3.1 is presented the quasi

harmonic approximation which provide us the atomistic free energy results for loops or

C15 clusters used to validate the finite temperature discrete continuum model.

5.2 Finite Temperature Extension of

Discrete-Continuum model

Free energy calculations using discrete-continuum model As explained in Sec.4.1.1 of Ch.4,

the formation energy for 2D loops at 0K using the discrete-continuum model is:

Eloops
formation(n) = T

√
n ln (n) + P1

√
n+ P0 +

Nb
1∑

n1=0

Nb
2∑

n2=0

in1,n2f(n;n1, n2)E(n1, n2), (5.7)
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5.2 Finite Temperature Extension of Discrete-Continuum model

where the parameter T is evaluated as:

T =
1

2
2πfbabccK (5.8)

K =
1

2π
ln

(
f~babcc
δ

)∮
bibmnjnqCijklCnpmq=

[
3∑

η=1

χηpχ
η
l

Nkn(~χη)

ns
∂D(~χη)
∂~χs

]
dθ, (5.9)

and where all the symbols in these equations hold the same meaning as defined in

Sec.4.1.1 of Ch.4. While this formulation provides the energy landscape at 0 K, it can

be extended to obtain the corresponding energy landscape at finite temperatures by

means of a simple manipulation which facilitates inclusion of temperature dependence

in the current 0 K formulation. The scheme proposed here is similar to the seminal

idea of Dudarev et al (27 ). In the present formulation, more consistent schemes are

proposed. Also, the limits of the accuracy of the model are provided by comparative

studies with atomistic free energy calculations.

At the end of the previous chapter, extrapolations of the formation energies at different

sizes provided by the discrete-continuum model were fitted with scaling laws. These

scaling laws were simple analytical functions in the frame of pure elastic theory and were

dependent only on the size of the interstitial defect clusters of a particular defect-type

(Section 4.5.2). In order to include temperature dependence, we assume that the elastic

functional form doesn’t change at finite temperatures and that only the parameters of

the scaling laws will vary. For the case of loops, the proposed function for the formation

free energy F (n, T ) is similar to that of formation energy given by pure elastic formula

Eq. 4.16:

F (n, T ) = T (T )
√
n lnn+ P1(T )

√
n+ P0 (5.10)

In the above equation, temperature dependence is integrated in the definition of pa-

rameter T and P1(T ) by considering temperature dependence of the elastic or atomistic

properties of the system. At 0 K, the two parameters are well defined being equal to:

T(0) =
1

2
2πfbabcc(0)K (5.11)

P1(0) = 2πfbabcc(0)

[
Eδ−c(0) + K ln

4fbabcc(0)

eδ

]
(5.12)

At 0 K, the formation free energy becomes the formation energy. By simple fitting

procedure on the formation energies predicted by the discrete continuum model the two

parameters P0,1 can be deduced. The T parameter is imposed to the value numerically
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5 Finite-temperature extension of discrete-continuum model

given by Eq. 5.9. Following this fit, from the value of P1(0) at 0 K, the values of

core-traction energy Eδ−c can be deduced:

Eδ−c(0) =
P1(0)

2πfbabcc(0)
−K(0) ln

4fbabcc(0)

eδ
(5.13)

The value of the core-traction term is an important ingredient of the scaling law.

Moreover, the value of Eδ−c can be used to test the reliability of the empirical potential

and to predict the correct values of formation energies in the mesoscopic scale. At small

sizes of loops, the core energy contributes significantly to the formation energy. The

discrete-continuum model parametrized by the present DFT calculations predicts the

values given in Table 5.1. It is interesting to note that these values have previously

been computed using empirical potential, only. In the case of Fe, Dudarev (27 ) et

al. reported the core-traction energy for 1/2〈111〉 {112̄} (〈100〉 {001}) dislocation us-

ing two empirical potentials and molecular dynamics calculations as 0.82 eV/Å (0.97

eV/Å) and 0.71 eV/Å ( 0.74 eV/Å) for EAM potentials of Dudarev-Derlet (101 ) and

Marinica (100 ), respectively. It is noteworthy that the core-traction energy of 1/2〈111〉
{112̄} dislocation is not far from the DFT values while the dislocation 〈100〉 {001} is

largely underestimated with a value roughly half of the DFT value. This difference is

found to be even more significant in the case of W when core-traction energy for the same

dislocations is computed using two EAM potentials. The values are 1.24 eV/Å (0.76

eV/Å) and 2.51 eV/Å ( 2.13 eV/Å ) for Dudarev-Derlet (33 ) and EAM4 of Marinica et

al. (135 ), respectively. None of these investigated potentials are close to the DFT values

and also predict an unphysical behaviour with a lower core energy in the case of 〈100〉
dislocations compared to 〈111〉. This contradiction in values of Eδ−c for the two types

of loops 〈100〉 and 1/2〈111〉 predicts unreliable results related to the relative stability of

1/2〈111〉 loops compared to 〈100〉 loops, as mentioned in the first and fourth chapters

for Fe and W. Furthermore, as we will discuss later, this term of scaling law is crucial

in the extrapolation of the discrete-continuum model to finite temperature.

Having the core-traction energy as key ingredient, the discrete model can be extended

to finite temperature. Certain assumptions should be made. Firstly, the P0 parameters

are assumed to be independent of temperature. The temperature dependence of the

other two parameters P1(T ) and T(T ) can be considered in different ways, thus resulting

in the following three models:

• In the first model, temperature dependence is ensured only through the elastic
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5.2 Finite Temperature Extension of Discrete-Continuum model

Eδ−c eV/Å Fe W Ta V

1/2〈111〉 {112̄} 0.91 1.33 0.36 0.21

〈100〉 {001} 1.62 3.03

Table 5.1: The 0 K core-traction energies, Eδ−c, for various dislocations in bcc metals,

based on discrete-continuum model at zero K fitted using Eq. 5.13. The values

are expressed in eV/Å.

constants and K(T ):

T(T ) =
1

2
2πfbabcc(0)K(T )

P1(T ) = 2πfbabcc(0)

[
Eδ−c(0) + K(T ) ln

4fbabcc(0)

eδ

]
(5.14)

• In the second model, temperature dependence of the linear thermal expansion is

also considered:

T(T ) =
1

2
2πfbabcc(T )K(T )

P1(T ) = 2πfbabcc(T )

[
Eδ−c(0) + K(T ) ln

4fbabcc(T )

eδ

]
(5.15)

• In the third model, temperature dependence of the core-traction energy is also

included with the temperature as:

T(T ) =
1

2
2πfbabcc(T )K(T )

P1(T ) = 2πfbabcc(T )

[
Eδ−c(T ) + K(T ) ln

4fbabcc(T )

eδ

]
(5.16)

In all the three models, the parameter K(T ) is calculated, using Eq. 5.9, through

the elastic constants at the temperature T .

For the model 3, an additional temperature dependence is given by the temperature

dependence of the core-traction energy. However, the complete first principles deduction

of core-traction free energy is inaccessible. Even if empirical potentials are used, the

direct determination of the core-traction free energy is challenging and requires the free

energy of very large simulation boxes, a task difficult to achieve even with the latest,
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5 Finite-temperature extension of discrete-continuum model

fast and parallel computers. Hence, some assumptions about this term will be made,

the accuracy of these approximations will be numerically demonstrated later in this

chapter. The core-traction free energy is associated with the free energy of a tube of

radius δ enclosing the edge of dislocation loop. The magnitude of the core-traction free

energy stored in this tube is fixed by the zero K energy while the temperature dependence

is controlled by an effective vibrational entropic term. This dependence is given by the

usual form of free energy:

Eδ−c(T ) ≡ Fδ−c(T ) = Eδ−c − TSδ−c (5.17)

where, Sδ−c denotes the effective formation vibrational entropy of the tube, per unit

length.

In order to estimate the effective formation energy, Sδ−c three assumptions have been

made: (i) Firstly, the main contribution to the formation entropy comes only from

the atoms of tube which have an atomic environment different from the bulk i.e. only

the atoms which are in the border of the loop. This assumption is entirely consistent

with the derivation of discrete term of the discrete continuum model presented in the

Sec. 4.2.1. (ii) Secondly, the formation entropy given by the self-interstitials located in

the border of the loops are treated in Einstein approximation, i.e. only local contribu-

tions are dominant. (iii) Thirdly, the value of the formation entropy for each interstitial

in the border of loops is considered as the formation entropy of single self-interstitial in

bcc matrix, 〈100〉 or 〈111〉, for 〈100〉 and 1/2〈111〉 loops, respectively. Using the last

assumption, the finite temperature extension of the discrete continuum model remain

entirely parametrized using first principles or experimental observables. Also, the last

assumption implies that even the self-interstitials located in the corner of loops con-

tribute with the same vibrational entropy as those located in the edges. In iron, the

formation entropy S
〈111〉
f , of 〈111〉 self-interstitial has been already computed in DFT by

Lucas and Schäublin (69 ) as 4.2 kB. For 〈100〉 self-interstitial, the value of S
〈100〉
f is 1.8

kB, as computed in this thesis. Using these values for the perimeters depending on the

geometrical structure of the loops and using the same neighbourhood analysis, as in the

previous chapter, it can be easily estimated that the effective vibration entropies Sδ−c

are 1.3 kB/Å and 2.1 kB/Å for 〈100〉 and 1/2〈111〉 loops, respectively.

The Fig. 5.1 sketches the free energies obtained using the three models of free en-

ergy discussed above. Even at elevated temperatures, the differences between the three

models are less than 10 % which attests the hypothesis that the main influence of tem-

perature is included in the temperature dependence of the dominant term T. The source
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5.2 Finite Temperature Extension of Discrete-Continuum model

of the comparatively small difference between the models 2 and 3 is the core-traction free

energy. This denotes the importance of the parametrization of the function proposed for

the Eδ−c(T ) to detail the description of the free energy landscape of dislocation loops.
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Figure 5.1: The formation free energy (eV) of 1/2〈111〉 dislocation loops at 800 K as a

function of size of the cluster in the three free energy models, 1, 2 and 3,

mentioned in the text through the Eqs. 5.14, 5.15 and 5.16, respectively.

Similarly, formation energy for the C15 clusters is derived in Sec.4.2.2 as:

EC15
formation(n) = 2γs

(
9πΩ2

)1/3
n2/3 +

12Ωµε2

α
n+ 3n(Ebcc

coh − EC15
coh ), (5.18)

which can be manipulated in the same way, as demonstrated for 2D loops, to include

temperature dependence of the parameters as:

FC15(n, T ) = 2γs
(
9πΩ(T )2)1/3

n2/3 +
12Ω(T )µ[Cijkl(T )]ε(T )2

α[Cijkl(T ), BC15(T )]
n

+ 3n(Ebcc
coh(T )− EC15

coh (T )). (5.19)

The finite temperature extension of discrete-continuum model for C15 clusters is more

robust. The only variable which is fitted from the zero K calculation is the γs term.
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5 Finite-temperature extension of discrete-continuum model

The interfacial term γs is assumed independent of temperature change. The required

parametrization of all the variables in Eq. 5.19 can be obtained from experiment (bcc

elastic constants or the thermal expansion) or can be deduced from first principles calcu-

lations (variation with the temperature of the elastic constants of the C15 phase, cohesive

energies and the mismatch ε). As indicated in the previous chapter, the above equation

utilizes the isotropic implementation. We have implemented also the anisotropic variant

by replacing the contribution of the second term of Eq. 5.19, by the energy given by

spherical anisotropic Eshelby inclusion.

The key ingredient for the finite temperature extension of discrete continuum model

is consideration of the temperature dependence of elastic constants for each bcc metal.

An extensive literature survey provides us with the experimental values of the elastic

constants at 0K and/or higher, finite temperatures. These experimental values are fit

with appropriate polynomials of temperature to obtain an expression for calculation of

elastic constants of each bcc metals. The experimental values and the curves obtained

by fitting a polynomial in temperature are shown in Fig.5.2. Using this temperature-

polynomial expression, Eqs.5.10 and 5.19 are evaluated to obtain the energy landscape at

finite temperatures. However, we should note that all the elastic constants which come

from the experiment are adiabatic elastic constants while the present free energy models

assume a thermal equilibrium between the loops and bulk matrix which requires the

iso-thermal elastic constants. The difference between the two types of elastic constants

are presented in the following subsection.

5.2.1 Adiabatic and iso-thermal elastic constants

In order to define the elastic constants at finite temperatures the free energy can be

written as Taylor series in strain components:

F (ε, T, V ) = F (T, V ) + V
∑
ij

σijεij +
1

2

∑
ijkl

∂2F

∂εijεkl

∣∣∣∣
T

εijεkl + . . . (5.20)

From the Helmholtz free energy, the isothermal elastic constants can be defined as

follows:

CT
ijkl =

1

V

∂2F

∂εijεkl

∣∣∣∣
T

, (5.21)
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Figure 5.2: Various adiabatic elastic constants i.e. Bulk modulus B, shear modulus C’,

elastic constants C44 and anisotropy A are plotted as a function of temper-

ature for Fe, W, Ta and V. Different references were used for each element

to obtain the variance of the elastic constants in the temperature range of

interest: Fe (254 –256 ), W (257 –259 ), Ta (258 , 260 , 261 ) and V (262 –264 ).

Here, empty symbols denote the experimental values while the lines repre-

sent an extrapolation. In graphs where experimental values are missing e.g.

B for Ta and V, experimental bulk modulus values were not provided and

the extrapolation was obtained by deriving B from the other experimental

elastic constants. Unit of elastic constants is GPa and temperature is in

Kelvin.
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5 Finite-temperature extension of discrete-continuum model

while the adiabatic elastic constants are defined in the same manner but at constant

entropy. Using the definition of free energy, we obtain:

CS
ijkl =

1

V

∂2F

∂εijεkl

∣∣∣∣
S

=
1

V

∂2U

∂εijεkl

∣∣∣∣
S

, (5.22)

where U is the internal energy of the system. Alternatively, the adiabatic elastic constant

can be defined as the Taylor development of the internal energy of the system:

U(ε, T, V ) = U(T, V ) + V
∑
ij

σijεij +
1

2

∑
ijkl

∂2U

∂εijεkl

∣∣∣∣
S

εijεkl + . . . (5.23)

In the same manner the isothermal bulk modulus BT and the adiabatic bulk modulus

BS are defined as derivatives of the free energy with volume at constant temperature

and entropy, respectively:

BT = V

(
∂2F

∂V 2

)
T

(5.24)

BS = V

(
∂2F

∂V 2

)
S

(5.25)

While the adiabatic bulk modulus BS is typically measured in experiments, it is more

straightforward to calculate the isothermal bulk modulus in theory. The two variants of

the bulk modules coincide at T=0 K and deviate at higher temperatures. Using simple

equilibrium thermodynamic relations, the difference between adiabatic and isothermal

elastic constants can be related to this deviation of the bulk modulus:

CS
ijkl − CT

ijkl = δijδkl(B
S −BT ) (5.26)

or in Voigt notations:

CS
11 − CT

11 = BS −BT (5.27)

CS
12 − CT

12 = BS −BT (5.28)

CS
44 − CT

44 = 0 (5.29)

Using thermodynamics relations, generalized to include elastic strain energy, Hear-

mon (265 , 266 ) have shown that the difference between isothermal and adiabatic elastic

compliances(stiffnesses) decreases(increases) linearly with temperature. For most me-

chanical purposes the difference between the two classes of elastic constants are negli-

gible, being few percent or less for most of the cases. However, this difference can be

important at high temperatures.
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The distinction between isothermal and adiabatic elastic constants arises naturally

from measurement methods followed in experiments: slow or static loading experiments

give isothermal elastic constants while rapid measurements, such as ultrasonic wave

determination of elastic constants, yield adiabatic constants because the system does

not get enough time to achieve thermal equilibrium. In order to have access to the free

energy using the finite temperature version of discrete-continuum-model, it is suitable

to use isothermal elastic constants. These isothermal elastic constants are related to the

experimental adiabatic elastic constants via thermodynamic relations such as (267 ):

BS

BT
=
CP
CV

= 1 + αTγ = 1 +
α2TV BT

CV
(5.30)

where

CP,V = T

(
∂S

∂T

)
P,V

, is the specific heat at constant pressure/volume (5.31)

α =
1

V

(
∂V

∂T

)
P

, is the volumetric thermal expansion coefficient (5.32)

γ = V

(
∂P

∂V

)
V

=
αV BT

CV
, is the Grüneisen parameter (5.33)

This relation in Eq. 5.30 enables calculation of isothermal bulk modulus from experimen-

tal adiabatic bulk modulus, thermal expansion coefficient and the Grüneisen parameter.

However a simpler method for calculating the isothermal bulk modulus is to use the

Maxwell relation:

CP − CV = TV α2BT , (5.34)

and substitute CV = CPB
T

BS
from Eq. 5.30 to directly obtain BT as:

BT =
CPB

S

Cp + TV α2BS
, (5.35)

where CP is the isobaric heat capacity which is very well known experimentally.

Consequently, using Eq. 5.26 along with the experimental isobaric heat capacities CP ,

the volumetric thermal expansion α and the adiabatic bulk modulus BS, we can access

the isothermal bulk modulus (as seen in Fig.5.3) and other elastic constants. The first

three rows of graphs in Fig.5.3 show the variation of the volume, volumetric expansion

coefficient α and the experimental isobaric heat capacities CP with temperature for Fe,

W, Ta and V. The last row represents the ratio BS/BT calculated using Eq. 5.35.
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5 Finite-temperature extension of discrete-continuum model

Figure 5.3: Volume, volumetric expansion coefficient α (alpha in graph), Cp and the

ratio BS/BT are plotted as a function of temperature for Fe, W, Ta and V.

Experimental values showing temperature dependence of volume and α are

taken from Ref. (268 ) while those for specific heat are taken from Ref. (269 ).

Here, empty symbols denote the experimental values while the lines represent

an extrapolation. Units: Volume is in Å3, α in 10−6K−1, specific heat in

Jmol−1K−1 and temperature in Kelvin.
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5.3 Atomistic models for interstitial defects at finite temperature

5.3 Atomistic models for interstitial defects at finite

temperature

Canonical ensemble

The first step towards an appropriate statistical treatment of any system is construc-

tion of a statistical ensemble in accordance with the physical conditions involved. De-

pending on the known thermodynamic quantities, three principle ensembles are micro-

canonical, canonical and grand-canonical ensembles (270 ). This classification of ensem-

bles is not exhaustive and other ensembles can be defined based on the system of interest.

In our study, canonical ensemble is the most appropriate choice because a finite, spec-

ified temperature is assumed instead of a constant, known energy. Following is a brief

recapitulation of the main results for canonical ensemble.

By the second law of thermodynamics, a system in the canonical ensemble is at equi-

librium when the entropy is maximized or the Helmholtz free energy is minimized. In

general, the probability function of a canonical ensemble or the canonical distribution

can be expressed as:

Pα =
e−βEα

Z
, (5.36)

where the exponential term e−βEα denotes the Boltzmann factor with β = 1
kBT

, kB

is the Boltzmann constant, T is the temperature of the system and the denominator

Z = Σαe
−βEα is the partition function which denotes sum over all states. Now, the

probability of a system in a canonical ensemble having energy in the interval E to E+dE

is P (E) = ΣαPα where α refers to the states with energy lying in the concerned energy

interval or equivalently, P (E) = cΩ(E)e−βEα , where Ω(E) is the number of states with

energy is the concerned energy interval. In principle, if the canonical partition function

Z or the number of states Ω(E) can be calculated, then it becomes possible to derive the

other thermodynamic quantities and to obtain the required thermodynamic quantities

of interest for that system. It can be shown that choosing canonical partition function

Z provides mathematical convenience and eliminates cumbersome counting of states for

Ω(E) (271 ), especially when dealing with macroscopic systems.

Under certain conditions, the problem can be treated classically by replacing sum-

mation over (~ri, ~pi) states by integration over d3~rd3~p phase space. When considering N

indistinguishable particles in a continuous phase space, the canonical partition function
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5 Finite-temperature extension of discrete-continuum model

for a system with Hamilton H(~r1, ~r2, ..., ~rN ; ~p1, ~p2, ..., ~pN) can be written as:

ZN(T, V,N) =
1

h3NN !

∫
exp [−βH(~r1, ..., ~pN)]d3~r1....d

3~pN . (5.37)

Once the canonical partition function is calculated for a system, all thermodynamic

observables can be derived. For example, the Helmholtz free energy is found to be:

F = −kBT lnZN(T, V,N). (5.38)

Differentiating the Helmholtz free energy, thermodynamic properties can also be calcu-

lated as follows:

P = −
(
∂F

∂V

)
T,N

, (5.39)

S = −
(
∂F

∂T

)
V,N

, (5.40)

µ = −
(
∂F

∂N

)
T,V

. (5.41)

Thus, calculation of the canonical partition function of the system by classical treatment

provides a convenient means to obtain the required thermodynamic information, pro-

vided conditions of validity hold (271 ). Unfortunately the integration over the highly

dimensional phase space in order to deduce the partition function Z is possible in only

few simple cases. One of them, the harmonic approximation, will be discussed further

ahead in this section. Formation free energy landscape of defects requires calculation

of free energy which in turn can be derived from the partition function of the system

by considering an appropriate ensemble. Free energy calculation using quasi-harmonic

approximations will be discussed in Sec.5.3.1.

5.3.1 Quasi-Harmonic approximation

Before proceeding to the description of quasi-harmonic approximations, results from

treatment of harmonic approximation are recapitulated.

Harmonic Approximation

Any arbitrary potential surface can be approximated by a harmonic potential in the close

vicinity of its equilibrium position, provided the corresponding energy of the system is
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5.3 Atomistic models for interstitial defects at finite temperature

less than the dissociation energy. Being the quantum analog of the classical harmonic

oscillator problem, quantum mechanical solutions can be derived by reinterpretation of

the classical solutions. This analogy somewhat simplifies the problem at hand.

Let the adiabatic potential energy of a system of N atoms be denoted by U (r, r0),

where

r = (~r1, ~r2, ..., ~rN)

refers to the set of positions of N atoms and

r0 = (~r1,0, ~r2,0, ..., ~rN,0)

refers to their equilibrium positions. Given the position ~ri of the ith atom, the dis-

placement from equilibrium of the ith atom is given by ~ui = ~ri − ~ri,0, where ~ri,0 is

the equilibrium position of the corresponding atom. To consider sum of N vectors

over the three (x, y, z) coordinates, we consider i to vary from 1 to 3N such that

u1x, u1y, u1z, ..., uNx, uNy, uNz = {ui}i=1,3N = u1, u2, u3, ..., u3N−2, u3N−1, u3N . The po-

tential energy of N atoms can be expanded into a Taylor series about its equilibrium

position as:

U (r, r0) = U (r0) +
∑
i

Ci ui +
1

2

∑
i,j

Cij uiuj (5.42)

+
1

6

∑
i,j,k

Cijk uiujuk + · · · , (5.43)

where

Ci =
∂ U(r, r0)

∂ ri

∣∣∣∣∣
r=r0

, (5.44)

Cij =
∂2 U(r, r0)

∂ ri∂ rj

∣∣∣∣∣
r=r0

, (5.45)

Cijk =
∂3 U(r, r0)

∂ ri∂ rj∂ rk

∣∣∣∣∣
r=r0

, etc.

The coefficients Cij, Cijk,... are the atomic force constants of the second order, third

order,..., respectively.

The harmonic approximation (HA) holds for small displacements compared to the

nearest neighbor distance and it implies that the third and higher order terms in the

Taylor expansion can be neglected from Eq. 5.43. The first term in Eq. 5.42 is a constant
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5 Finite-temperature extension of discrete-continuum model

and defines the equilibrium potential energy of the system. Since the Taylor expansion

is done at the minimum energy of the system, the first derivative of the potential at

equilibrium has to be zero i.e. Ci = 0 for all i. Hence, the harmonic potential U(r, r0)

will depend quadratically on the equilibrium position r0 due to the non-zero third term

in Eq. 5.42. At high temperatures, when the displacements ui are too large, it becomes

necessary to consider anharmonic terms ∼ rn (n > 2) too.

Using harmonic approximation, the classical Hamiltonian of N atoms of a system can

be written in the following form:

H =
1

2

∑
i

mi u̇
2
i +

1

2

∑
ij

Cijuiuj, (5.46)

and the equations of motion for these N atoms are

miüi = −1

2

∑
j

[Cji + Cij]uj . (5.47)

The above linear equation relates the force mir̈i to the displacements uj through the

force constant Cij. These constants can be: i) calculated directly from the derivatives

of the interatomic potential, empirical potential or ab initio, using Eq. (5.45), or ii) fitted

from experimental elastic constants and phonon frequencies.

The Hamiltonian of Eq. (5.46) is a quadratic in displacement {ui}i=1,3N . A feasible

method to solve such coupled differential equations of motion is to assume a linear

transformation of displacement of the kind:

ui =
1√
mi

3N∑
p=1

LipUp . (5.48)

in order to diagonalise the quadratic form of Hamiltonian in Eq. 5.46 into the form:

H =
∑
p

(
1

2
U̇p

2
+

1

2
ω2
pU2

p

)
. (5.49)

This new set of coordinates Up is known as normal coordinates. In phase-space, the

component Up defines the motion of a simple harmonic oscillator of frequency ωp and

mass 1. Substituting the solution from Eq. 5.48 in Eq. 5.46, one gets:

H =
1

2

∑
i

∑
p

L2
ipU̇2

p +
1

2

∑
j,i

∑
p,p′

1
√
mimj

CjiLjpLip′ UpUp′

=
1

2

∑
i

∑
p

L2
ipU̇2

p +
1

2

∑
p,p′

(
L−1DL

)
p,p′

UpUp′ . (5.50)
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5.3 Atomistic models for interstitial defects at finite temperature

where the D matrix defined by Dij = Cij/
√
mimj is known as a dynamic matrix. Now,

Eq. 5.48 can represent the solution only if Eq. 5.50 can be converted into the required,

diagonalised form in Eq. 5.49 by imposing the necessary conditions on the unknowns of

the supposed solution. By comparison of the two equations, it can be concluded that

 L−1DL should be diagonal and L should be a unitary matrix which diagonalizes D.

Formally, one has:(
L−1DL

)
p,p′

= ω2
pδp,p′ ⇔

∑
j

DijLjp = ω2
pLip , (5.51)

where the eigenvalues ωp of the dynamical matrix represent the normal frequencies

associated with the normal modes. The eigenvectors of the dynamical matrix D can be

taken to satisfy the usual orthogonality conditions:

LipL
?
ip′ = δp,p′ (5.52)

The orthogonal nature of the matrix L is imposed by the quadratic form of the kinetic

energy and the symmetric form of the matrix C. If L satisfies the Eqs.5.51 and 5.52, only

then does its form preserve kinetic energy and potential energy forms simultaneously.

If the system has a periodical boundary condition, it can be shown that the three

frequencies are exactly zero and correspond to the modes which represent a transla-

tion of the overall system. Taking into account the oscillatory behavior of the normal

coordinates, the small displacements ui can now be rewritten as:

ui =
1√
mi

∑
p

LipUp(0)e−iωpt , (5.53)

The coordinate Up(0) is the amplitude of the pth normal mode. Note finally that the

symmetry considerations can drastically reduce the present 3N × 3N dimensions of the

dynamical matrix D.

Following (5.45), the C matrix is symmetric. The equilibrium conditions of the system

ensure that it represents a convex function due to minimization condition or, equiva-

lently, that the matrix D is positively defined. This implies that ω2
p ≥ 0 or that the

frequency ωp is real.

Beyond normal modes analysis, we should pay attention to the anharmonic terms in

Eq. (5.43). The anharmonic terms introduce couplings among normal modes which can

be treated as correction terms. For instance, these terms allow the thermal equilibrium

to be reached, a process which could not occur if the modes were completely independent.
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5 Finite-temperature extension of discrete-continuum model

Harmonic free energy

Using harmonic approximation, the partition function can be easily deduced using the

energy of independent harmonic oscillators. For a single harmonic oscillator with the

frequency ωp, the canonical partition function at temperature β reads:

Zp =
∑
n

exp

[
−β~ωp

(
n+

1

2

)]
=

exp
(
−1

2
β~ωp

)
1− exp (−β~ωp)

=
1

2 sinh
(
β~ωp

2

) . (5.54)

The partition function for a harmonic solid with 3N independent oscillators is the prod-

uct of these individual oscillator partition functions. Consequently, the free energy of

the harmonic solid can be written as:

Fvib = −β−1 ln

(∏
p

Zp

)
=

1

2

∑
p

~ωp + β−1
∑
p

ln [1− exp (−β~ωp)], (5.55)

or

Fvib = β−1
∑
p

{
ln

[
2 sinh

(
β~ωp

2

)]}
. (5.56)

The first term of the previous equation is known as zero-point energy i.e. the canonical

free energy of the system in the limit of T → 0. The vibrational entropy becomes:

Svib = −∂Fvib
∂T

= kB
∑
p

{
− ln [1− exp (−β~ωp)] +

β~ωp
exp (β~ωp)− 1

}
, (5.57)

or

Svib = kB
∑
p

{
− ln

[
2 sinh

(
β~ωp

2

)]
+

~βωp
2

coth

(
β~ωp

2

)}
, (5.58)

and the vibration internal energy is calculated from the expression:

Uvib = −
∂ ln

(∏
p Zp

)
∂β

=
∑
p

~ωp
2

coth

(
β~ωp

2

)
. (5.59)

From the above-mentioned results for Fvib, Uvib and Svib, it can be verified that the

thermodynamic relation Fvib = Uvib − TSvib holds good. It is worth noting that the

entropy at temperature β of phonon with energy ~ωp can be rewritten as:

Sp = kB [(1 + nBE) ln (1 + nBE)− nBE ln(nBE)] , (5.60)

where n = nBE(β, ωp) gives the number of particles with the corresponding energy and

at the given temperature in Bose-Einstein distribution:

n (β, ωp) =
1

eβ~ωp − 1
. (5.61)
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5.3 Atomistic models for interstitial defects at finite temperature

In the case of fermions, entropy has a form similar to Eq. 5.60 but with a negative sign

before kB and number of particles from Fermi-Dirac distribution for fermions instead of

Bose-Einstein distribution.

Classical harmonic free energy

In the limit of high temperatures, the Bose-Einstein distribution function becomes

Boltzmann distribution and the phonons behave as classical oscillators system. In this

limit, the free energy and entropy of a classical solid become:

Fvib = β−1
∑
p

ln (β~ωp) (5.62)

Svib = −kB
∑
p

[
ln

(
kBT

~ωp

)
+ 1

]
(5.63)

In the case of solids, the limit of high temperature is given by Debye temperature at

which all phonons of the solids are excited.

Quasiharmonic free energy surface

A pure harmonic limit assumes that the vibrational frequencies ωp do not depend on

the interatomic distances. Consequently, the vibrational free energy Fvib depends only

on T without any dependence on V . To overcome this drawback, the harmonic approx-

imation can be generalized to the quasi-harmonic approximation where the pulsations

ωp are assumed to depend on volume. This situation is consistent with any strain ε or

deformation applied to the solid. Let a constraint, say X, be applied to the system.

This constraint can be volume V or the strain tensor or any externally applied load.

Now, the pulsations ωp will depend on the constraint X and the Helmholtz free energy

can be written:

FQHA(X,T ) = U(X) +
1

2

∑
p

~ωp(X) + β−1
∑
p

ln {1− exp [−β~ωp(X)]} . (5.64)

The U(X) is the energy of the crystal or the free energy at 0 K while the second and

the third terms denote the zero-point energy and the thermal contribution, respectively.

If X = V , then the above expression of the QHA free energy gives the equation of state

of the crystal:

P (T, V ) = −∂F
∂V

= −∂U
∂V

+
1

V

∑
p

~ωp(V )γp

{
1

2
+

1

exp [β~ωp(V )]− 1

}
, (5.65)
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Figure 5.4: The values of lattice parameter (a0), isothermal bulk modulus (B) and the

free energy (F ) of the bcc phase of iron (Ackland-Mendelev potential (99 ) )

from QHA approximation implemented in this thesis and force brute calcula-

tion (as it is explained in the text). The solid line and circles emphasize the

QHA and brute force calculations, respectively. The phonon gas is quantized

(blue) or treated in classical approximation (orange).
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5.3 Atomistic models for interstitial defects at finite temperature

where γp’s are known as the Grüneisen mode parameters and are defined as:

γp = − V

ωp(V )

∂ωp(V )

∂V
(5.66)

The Grüneisen mode parameters γp are assumed to be independent of the volume V .

These parameters can be computed by a series of ωp(V ) calculations, using harmonic

approximation at various volume around equilibrium. In general, 2-4 calculations are

necessary to provide a good estimation of the first partial derivatives in Eq. 5.66.

Once the Grüneisen mode parameters γp are computed, any thermodynamics property

of the system which depends on the volume can be calculated. For example, thermal

expansion becomes accessible using one of Maxwell’s thermodynamics relations as:

α(T ) =
1

V

(
∂V

∂T

)
P

= −(∂P/∂T )V
(∂P/∂V )T

=
1

BT

(
∂P

∂T

)
V

, (5.67)

or by using the derivation in Eq. 5.65, the thermal expansion can also be written as:

α(T ) =
1

BT

∑
p

~ωpγp
∂

∂T

{
1

exp [β~ωp(V )]− 1

}
. (5.68)

A more precise, though not more efficient way to take into account the volume depen-

dence of the harmonic free energy is to fit the full free energy surface F (T, V ) using a

formula of the kind:

FQHA(T, V ) =
3∑
i=0

ci(T )V i (5.69)

This recipe was proposed by the group of J. Neugebauer et al.(272 , 273 ) and calculations

involving 7 or 10 phonons at different volumes are needed to achieve high accuracy ci(T )

coefficients.

Moreover, using Eq. 5.2, the equilibrium volume of a solid at given temperature T

and pressure P can be deduced by solving the following equation for V :

P = P (V, T ) = −
(
∂F

∂V

)
T

(5.70)

If zero pressure condition is imposed in the previous equation, the volume corresponds to

the equilibrium volume Veq(T ) at the temperature T . Then, computing this equilibrium

volume at many temperatures we can have access to volume expansion coefficient. Also

the corresponding free energy at zero pressure becomes F (T, Veq(T )).
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5 Finite-temperature extension of discrete-continuum model

We have tested the present variant of the quasi-harmonic approximation against the

brute force calculations for observables such as the free energy, lattice parameter and

the bulk modulus of the bcc structure at various temperatures. This test stresses the

flexibility of the polynomial form proposed in Eq. 5.69 for the free energy (V, T ) surface as

well as the first derivative (lattice parameter) and the second derivative (bulk modulus)

with respect to the volume. The brute force calculations are performed on a grid with

temperatures {Ti} ranging from 0 to 1800 K in steps of 100 K. These calculations were

performed as follows:

• At a temperature Ti, the corresponding lattice parameter of the bcc lattice aTi0 are

deduced. A first guess aTiguess is provided which is the lattice parameter deduced

from the previous temperature Ti−1, a
Ti−1

0 (For the lowest temperature of grid we

started with the lattice parameter deduced from 0 K static calculation).

• Around the guessed lattice parameter, aTiguess, we deformed the bcc solid with a

volumetric strain ± 0.8 % and 7 bcc systems are built in this interval.

• The free energy for each of the 7 systems is computed.

• From the free energy-volume plot and using a fit with Birch-Murnagham-Vinet

equation of state (274 –276 ) we got the value of the bcc lattice parameter aTi0 as

well as the free energy and the bulk modulus at the temperature Ti.

• The procedure is repeated for the temperature Ti+1.

The comparison between the two approaches is emphasized in the figure 5.4. The

agreement between the two approaches is excellent up to 10−5 eV, 10−4 Å and 10−2

GPa values of the free energy, lattice parameter and bulk modulus, respectively. This

agreement holds for both treatments of the free energy in Eq. 5.69, classical using Eq. 5.62

and quantum using Eq. 5.55.

It is interesting to note the differences between the classical and quantum free energy

of the phonon gas. As expected, for temperatures higher than Debye temperature (347

K for Ackland-Mendelev potential for iron) both approaches, classical and quantum are

identical. Below Debye temperature down to very low temperature, near 0 K, there are

small differences in all three observables due to the quantum zero point energy which

has no counterpart in the classical approximation. These discrepancies are not related
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5 Finite-temperature extension of discrete-continuum model

to the artefacts of empirical potential and have their origin in the mentioned differences

between quantum and classical phonon gas. The situation is very interesting for the

bulk modulus: most of the studies in literature (e.g. DFT calculation) report the bulk

modulus which are fitted from the energy-volume curve. Using the free-energy curves

we show a difference of up to 2 GPa between the two approximations, the correct value

being the quantum value. Thus, a potential (empirical or pseudo- for DFT calculation)

which perfectly fit the experimental value does not necessarily translate into a very good

potential. Probably, the future comparison of experiment-DFT calculations should take

this difference into account.

In order to access the isothermal and adiabatic elastic properties, quantities such as

heat capacities CP,V of Eq. 5.31 should be provided. This can be achieved by computing

the entropy of system and its partial derivatives at constant pressure or volume, respec-

tively. In harmonic approximation, it is very simple to access entropy using classical,

Eq. 5.63, or quantum approximation, Eq. 5.57. In order to achieve the volume depen-

dence, we fit the entropy computed at 7-10 volumes around equilibrium with the same

function in volume as Eq. 5.69. The equilibrium value of the lattice parameter is already

deduced for each temperature of interest, hence, the function S(V ) and its derivative

(∂S/∂T )V ) should be evaluated at one point for deducing CV (T ) at the equilibrium

volume. CP (T ) is then obtained from CV (T ) using Maxwell relation, Eq. 5.34. Using

this procedure, we calculate a0, CP,V for pure bcc and C15 structure of iron using M10

potential (100 ), as shown in Fig. 5.5.

Through the assumed volume dependence of vibrational frequencies of the crystal in

QHA, all equilibrium thermal properties of the system become immediately accessible.

This approach takes into account the anharmonic effects implicitly through the volume

dependence of the vibrational frequencies.

Elastic constants at finite temperatures using QHA approximation

Determination of elastic constant at finite temperature is quite straightforward, using

the same procedure as well established for 0 K (277 ). Using QHA approximation,

we determine the equilibrium volume of the solid for a specific temperature. For this

volume, we distort the primitive vectors using a well-defined strain tensor. Then using

the development of the free energy in term of strain given by Eq. 5.20 we obtain the
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5 Finite-temperature extension of discrete-continuum model

elastic constants. Let’s consider a general deformation with the strain ε. The crystal

primitive vectors ~ai are transformed into vectors ~a′i of deformed crystal as: ~a′1
~a′2
~a′3

 =

 ~a1

~a2

~a3

 (I + ε) (5.71)

where the I is 3×3 identity matrix and ε is the symmetric strain tensor. We consider only

non-rotating strain which also preserve the constant volume. If we take the following

two deformations:

ε11 =

 δ/2 0 0

0 −δ/2 0

0 0 δ2/(1− δ2)

 , ε44 =

 0 δ/2 0

δ/2 0 0

0 0 δ2/(4− δ2)

 ,

then the difference in free energy at a given volume V for both deformations becomes

an even function in δ which can be written as:

∆F 11(δ) = V (C11 − C12) δ2 +O[δ4], (5.72)

∆F 44(δ) =
1

2
V C44δ

2 +O[δ4]. (5.73)

By performing a series of deformations around the equilibrium volume given by QHA

approximation, the above equation can be fitted in order to obtain the curvature. For

the Taylor expansion of free energy in strain to hold good (Eq.5.20),the value of maximal

strain should be small. Here, we use the maximal strain less than 1%. Using also the

value of the bulk constant, deduced previously in QHA approximation, we have all the

elastic constants, C11, C12 and C44 at all temperatures of interest.

As described above, we show the elastic constant of bcc phase computed using QHA

approximation in Fig. 5.6 with empirical potentials for Fe (99 ) and W (135 ). At low

temperatures, we find the intrinsic differences between classical and quantum approxi-

mation due to the zero point energy. We should point the anomalous behavior of W, for

which, using the present EAM potential, the isothermal elastic constants increase with

the temperature. This behavior is probably an artefact of the empirical potential. The

experiments, summarized in Fig 5.2 suggest this deficiency of the present EAM potential

for tungsten.
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5.3 Atomistic models for interstitial defects at finite temperature

5.3.2 Validation of finite temperature discrete-continuum approach

using atomistic calculations

In this section we will compare the predictions of the three free energy models proposed

as extension of the discrete continuum model and the direct atomistic calculations. This

comparison is made for all types of clusters 1/2〈111〉, 〈100〉 and C15. The shape of

clusters is chosen with various sizes in order to test the Einstein approximation for the

core-traction free energy, as explained in the Sec. 5.2. The size of the clusters are large,

up to few hundreds of SIAs. In order to have reliable results of the free energy for this

size of clusters the bcc matrix should have 128 000 atoms. Computing the frequency

of phonons of these boxes is a challenging task. Consequently, this type of comparison

is impossible to perform using interatomic interactions other than the EAM potentials.

We will use the Ackland-Mendelev potential (99 ), one of the potentials already used in

order to validate the zero K discrete-continuum model in Sec.4.4

Firstly, using Ackland-Mendelev potential (99 ) and QHA approximation, we numeri-

cally obtain the quantities needed in order to parametrize the finite temperature discrete

continuum model. The three models for loops given by Eqs. 5.14, 5.15 5.16, as well as the

model proposed for C15 clusters Eq.5.19 are investigated. To parametrize the previous

equations, the required quantities are abcc(T ), C11,12,44(T) as well as the mono-interstitial

formation entropies, S
〈100〉
f and S

〈111〉
f of mono-interstitial. In order to parametrize the

energetic model for C15 clusters, we need all the previous quantities, adapted to C15

phase, except entropies S
〈111〉,〈100〉
f . Additional quantities to complete the input list of

discrete continuum model for C15 clusters is ∆C15,bcc(T ) = EC15
coh (T )−Ebcc

coh(T ). All these

calculations can be rapidly done using simulation boxes containing maximum 128 (bcc

matrix) +1 (for mono-interstitial entropy) atoms. The prediction of discrete continuum

models for two different sizes of loops for each type are presented in the Fig.5.7. The

prediction of free energy for C15 clusters are reported in Fig. 5.8

The atomistic calculations are done using the present implementation of QHA ap-

proximation. The number of atoms is 128000 ± n (where n is the number of SIAs in

cluster). 12 volumes are generated for each system in order to accurate interpolate the

free energy landscape using Eq.5.69. Each of 12 boxes is relaxed and the boxes are

considered as relaxed when all the forces are smaller than 10−4 eV/Å. Normal modes at

each volume are computed by diagonalizing the Hessian matrix. Exact diagonalization

of the Hessian was performed using diagonX package, already used in (214 ). The free
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5 Finite-temperature extension of discrete-continuum model

Figure 5.7: Formation free energy of dislocation loops of 〈100〉 and 1/2〈111〉 with vari-

ous sizes using atomistic QHA calculations and the three free energy models

derived from discrete continuum model. All models are based on the in-

teratomic potential Ackland-Mendelev (99 ). Inset is the shape of the loop

corresponding to each graph (the same convention is applied as in Figs 4.6

and 4.7).
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5.3 Atomistic models for interstitial defects at finite temperature

Figure 5.8: Formation free energy of C15 containing 36 SIAs given by atomistic QHA

calculations and the finite temperature discrete continuum model (using

isotropic and anisotropic elasticity). All models are based on the interatomic

potential Ackland-Mendelev (99 ). The cluster is drawn using the centers of

Z16 polyhedron lying on the bcc matrix which are linked with blue bonds

(the same convention is applied as in Fig. 3.7)
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5 Finite-temperature extension of discrete-continuum model

energies of various interstitials clusters are reported in the Figs. 5.7 and 5.8.

In Fig. 5.7 we have compared the results from the three free energy model, entirely

parametrized using Ackland-Mendelev (99 ) potential, to the atomistic calculations using

the same potential. In the case of loops the model 1 and the model 2 are very close and

give large discrepancies compared to atomistic calculations. However, the 3rd model is

very close to the atomistic calculation. The precision is high with error less than about

3 % in the range of temperature 0 - 1000 K. As expected, the form of the function

proposed for the dependence in the temperature of the core-traction energy is crucial in

the prediction on the discrete-continuum model. The same agreement holds for the case

of anisotropic version of discrete-continuum for the C15 clusters, as it shown in 5.8.

The comparison of both models, discrete-continuum and atomistic, indicates that the

discrete-continuum model is able to predict, with striking precision and without any

adjustable parameter, the free energies given directly from atomistic calculation. The

accuracy of predictions of discrete continuum is remarkable, even at higher temperatures.

The present validation opens up many possibilities in the investigation of the free energy

landscape of mesoscopic dislocation loops. In the following section of this chapter, we

will present only two of the many possible applications of the extended version of the

discrete-continuum model.

5.4 Application: mechanism of formation of 〈100〉 loops

in bcc iron

At zero K, using discrete-continuum model, we have shown in the previous chapter that

the 1/2〈111〉 loops are always the most stable family of SIA-clusters above ∼ 50 SIAs. At

lower sizes < 50 SIAs, the C15 clusters are the most stable clusters. In the intermediate

regime the C15 clusters have energies lying between 1/2〈111〉 and 〈100〉 loops. Above

∼ 100 SIAs the traditional dislocation loops, 〈100〉 or 1/2〈111〉 are more stable than

3D C15 cluster. The energy landscape obtained, sheds some light on the absence or

low concentration of 〈100〉 loops in low temperature experiments, and reconciles the

Zhang mechanism (112 ) with the experimental evidence. Our findings support the

theory of formation for 〈100〉 loops proposed by Zhang et al. (112 ) which completes

the panel of mechanisms proposed by Marian (79 ) and Xu and Terentyev (105 ). These
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5.4 Application: mechanism of formation of 〈100〉 loops in bcc iron

mechanism are described in detail in Sec.1.2.2 and Sec.4.5.1. However, our zero K results

are comparable only to low temperature experiments.
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Figure 5.9: The lattice parameter, adiabatic bulk modulus, C’ and C44 adiabatic elastic

constants of α-iron. The experimental results are emphasized by full triangle

while the DFT using QHA approximation results by black circles or full black

lines. The circles denote the temperatures chosen for QHA approximation,

the black line being an interpolation of those points. The orange curves de-

note the DFT results rescaled to the experimental value of the corresponding

observable at zero K.

The free energy predictions are needed to explore high temperature limit. These free

energy calculations should include thermal effects and magnetic excitations, explicitly.

Our finite temperature discrete continuum model does not include the magnetic excita-

tion explicitly but these excitation are included through the temperature dependence of

the experimental elastic constants. The finite temperature discrete continuum model for

loops include these excitation entirely. However, for C15 clusters, the observables needed

by the finite temperature discrete continuum model are not available from experiments.

These observables should be computed using DFT calculations.

Treating the magnetic excitation, even in ab initio method is very challenging and this

field is subject to continuous development. Consequently, the bulk properties of the C15
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5 Finite-temperature extension of discrete-continuum model
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Figure 5.10: The DFT values of lattice parameter, isothermal bulk modulus, C’ and C44

isothermal elastic constants of the ferromagnetic C15 phase of iron. The

circles denote the temperatures chosen for QHA approximation, the black

line being a interpolation of those points.
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5.4 Application: mechanism of formation of 〈100〉 loops in bcc iron

phase will be computed only using the ferromagnetic approximation. The thermal effects

will be treated using the previous developed QHA approximation. As we have pointed

out in the previous sections the quantity needed to complete the experimental data

are temperature dependence of the lattice parameter, cohesive energy and the elastic

constants of the C15 phase. In order to validate this approach, we have computed the

corresponding quantities also for the bcc phase which can be directly compared to the

experiment.

In order to perform phonons calculations we have chosen PWSCF code as part of the

Quantum-Espresso package (278 ). This choice is motivated by the possibility of com-

putation of the second derivatives of the potentials energy surfaces Density-Functional

Perturbation Theory. Using this approach, the force constants can be deduced directly

in the reciprocal space. By Fourier transform and using a uniform grid mesh in the

Brillouin zone (4×4×4 in these calculations), the force constants can be recovered in the

direct space. The major advantage of this technique is that the simulation cell can be

restricted only to the unit cell i.e. one atom per cell and six atoms per cell for bcc and

C15 phase, respectively. DFT calculations were performed using the Generalized Gra-

dient Approximation and the Projector Augmented-Wave scheme with semicore states

in the electronic configuration of iron. Energy cutoff of plane-waves was set to 90 Ry.

The Hermite Gaussian broadening was set to 0.04 eV. The choice of the K-point grid

is extremely important because lower grid could yield results for an order of magnitude

higher or lower than the converged results. 24×24×24 and 14×14×14 mesh grids are

used for bcc and C15 respectively. In addition to vibrational free energy, we have also

included the electronic free energy, which is very easy to compute once the Kohn-Sham

orbitals are computed.

For QHA approximation, we have used 10 volumes in order to fit the volumetric

free energy surface. Once the equilibrium volumes are deduced, we have computed the

elastic constants using the procedure described in Sec. 5.3.1: 14 temperatures have been

chosen, the deformation consists of 6 strain values at each temperature.

The results are displayed in the Figs. 5.9 and 5.10, for ferromagnetic bcc and C15

phase of iron. In bcc iron the brute DFT results seems to be shifted compared to

experiment. This type of behaviour is expected due to systematic errors of the exchange-

correlation functional in the estimation of the lattice parameter and the elastic constants

at zero K. However by scaling DFT results with the experimental values, the DFT

prediction get closer to the experimental results for B and C44. The discrepancies for
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5 Finite-temperature extension of discrete-continuum model

Figure 5.11: The crossover (expressed in number of interstitials) in the relative stability

of 〈100〉 (blue) and 1/2〈111〉 (orange) loops with respect to C15 clusters in

α-iron using finite temperature discrete continuum approach. The shaded

area denotes the estimated errors. The light blue shaded regions represents

the error arising due to temperature dependence of elastic constants and

the inherent error in the zero K discrete-continuum model. Using the best

parametrization for zero K, the darker shaded region around both lines

denotes the error arising from only the use of finite-temperature discrete-

continuum method.

176



5.4 Application: mechanism of formation of 〈100〉 loops in bcc iron

lattice parameter and the C ′ have their origin, in the anharmonic vibrational contribution

and the magnetic excitation. Here, bcc Fe is treated in the ferromagnetic state of iron and

the present QHA approximations, so these DFT calculations cannot predict the abrupt

decrease of C’ near the α → γ transition. The same errors are expected to impact

the calculations of the corresponding observables for the C15 phase also. Consequently,

some errors are expected in the prediction of the discrete continuum approach for the

C15 phase.

To resume for loops we have used experimental values for lattice parameters and

elastic constants as well as the DFT values of formation entropies of 〈111〉 and 〈100〉
mono-interstitial as inputs. In the case of C15 the parametrization is done by ab initio

only. All the inputs of the finite temperature discrete continuum models being set, the

prediction about the crossover between the free energies of 〈100〉 and 1/2〈111〉 loops and

the C15 clusters are presented in the Fig. 5.11 by full line.

We have tested the sensitivity of the model to variation with the temperature of the

elastic constants of C15 phase. Beyond the full ab initio prediction and anisotropic

elasticity, emphasized by full line in Fig. 5.11 we have tested different temperature

dependence of the elastic constant of C15 phase. The experimental isothermal elastic

constant of the bcc phase is rescaled to zero K DFT values of C15 elastic constants and

used as input in the isotropic or anisotropic model. The obtained values are compared

with the three energy models for the free energy of the dislocations loops. All these

predictions are included in the errors bars presented in the Fig 5.11. However, even after

this error analysis the question of stability in temperature of the C15 phase, remains.

Theoretical or experimental answers for this question is a challenge and probably should

be addressed in the future.

The main information from the Fig 5.11 is that there is a crossover between loops and

C15 clusters for the entire range of temperature between 0 K and the temperature of

α− γ transition. This implies two important conclusions:

• Firstly, the C15 clusters can be observed for higher temperatures as they remain

the most stable clusters up to 900 K, near the transitions α− γ

• Secondly, due to this thermal stability of C15 clusters, the mechanism of formation

of 〈100〉 proposed by Zhang can operate in any range of temperature. Moreover, the

difference in crossover sizes of C15 clusters with the two types of dislocation loops
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5 Finite-temperature extension of discrete-continuum model

decreases with increasing the temperature impacting the possibility of formation of

clusters 〈100〉. Due to this, the concentration of 〈100〉 becomes higher and higher

with increasing temperature.

As we already mentioned we do not claim that the present findings will replace the ex-

isting accepted mechanism of formations of 〈100〉 loops proposed by Marian (79 ) and Xu

and Terentyev (105 ). We claim that the present mechanism can occur with much higher

probability than the previous mechanism. For instance, let us consider the experiments

mentioned in section 1.2.2. According to Marian (79 ) and Xu and Terentyev (105 ),

migration of 1/2〈111〉 loops should produce 〈100〉 loops under some specific conditions.

Experiments proved that Cr can slow down the migration of 1/2〈111〉 loops in irradiated

FeCr. This implies that the 〈100〉 loops should not be formed. However, 〈100〉 dislo-

cation loops exist in FeCr alloys. The scenario proposed in this thesis can explain the

above experimental results. Preliminary calculations of the C15 clusters in iron suggest

increased stabilization of C15 clusters in the presence of Cr (279 , 280 ).

5.5 Application: concentration of dislocation loops post

irradiation

In this section, finite-temperature free energy derived from discrete-continuum model is

used to perform cluster dynamics modeling. These results, along with cluster dynamics

results from the widely-used capillary law, are compared with experimental results.

In 2015-16, A. Duchateau and E. Meslin performed an irradiation experiment with

an iron sample in helium atmosphere to study the density and size of dislocation loops.

They used a polycrystalline ultra-high purity α−iron discs of 100 µm thickness and 3

mm diameter. These discs were irradiated with 60 keV He ions at room temperature,

producing an estimated dose of 0.5 dpa. This He irradiation of iron samples is done to

prevent the non-conservative Ostwald ripening process (249 , 281 ) which is caused by

presence of powerful vacancy sources, like vacancy clusters and surfaces of thin sam-

ples, capable of annihilating interstitial loops. After irradiation, at room temperature,

isochronal annealing at 3 K/min is carried out up to 830 K which is followed by isother-

mal annealing at 830 K, as shown in Fig. 5.12. Standard diffraction contrast methods

using bright field technique were used to determine the morphology and nature of point
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5.5 Application: concentration of dislocation loops post irradiation

Figure 5.12: Loop radius as a function of time. The two regions separated by a vertical

dotted line represent isochronal annealing at 3K/min. and isothermal in-

situ annealing at 830 K, respectively.
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5 Finite-temperature extension of discrete-continuum model

defect clusters. The dislocation loops were found to be interstitial 1/2〈111〉 loops. The

mean radius and surface of these dislocation loops were also measured with time. The

blue dots in Fig. 5.13 show the experimental data points, after annealing during 50 min.

The same distributions were recorded at 72 min and 100 min.
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Figure 5.13: Initial loop distribution (after annealing during 50 min).

The goal of this section is to compare the cluster dynamics results, based on the free

energy model proposed in this chapter, with the experimental distribution of sizes of

dislocation loops at 72 min and 100 min.

5.5.1 Cluster dynamics

Cluster dynamics modeling provides an efficient means to study time evolution of clusters

representing the real system by using chemical rate theory. Whenever interstitial loops

are present, vacancy clusters are also considered because vacancies can be created during

annealing of interstitial loops (249 ). If concentration of clusters containing n interstitials

(n ≥ 1) is denoted by Cn, equation for immobile cluster (250 ) is given by:

dCn
dt

=
∑
m∈M

Jn−m,n −
∑
m∈M

Jn,n+m, (5.74)
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5.5 Application: concentration of dislocation loops post irradiation

whereM is the set of mobile species and Jn,n+m is a net reactive flux between cluster n

and cluster n+m, due to the mobility of cluster m. This flux is defined by:

Jn,n+m = βn,mCnCm − αn+m,mCn+m, (5.75)

where absorption rate βn,m is determined as:

βn,m = 4πZn,m(rn + rm)Dm, (5.76)

Dn is the diffusion coefficient of n (Dn = D0,n exp (−Fm
n /kT )), rn is an effective radius of

cluster n and Zn,m is an efficiency factor which accounts for long-range elastic interactions

between defects n and m. The emission rate can be calculated as:

αn+m,n =
βn,m
Vat

exp

(
−F

b
n+m,m

kT

)
. (5.77)

In this expression Vat is the atomic volume and F b
n+m,m is the free binding energy of

clusters n and m, defined in terms of the cluster free formation energies F f
n as:

F b
n+m,m = F f

n + F f
m − F f

n+m. (5.78)

For mobile species, Eq. (5.74) becomes:

dCn
dt

=
∑
m∈M

Jn−m,n −
∑
m∈M

Jn,n+m −
∑
m∈Ω

Jm,n+m. (5.79)

where Ω is the set of all species.

From the cluster dynamics equations described above, it can be seen that a number

of parameters are required to carry out cluster dynamics modeling. These parameters

are mentioned in the Appendix A1. Additionally, free formation energies are needed as

input. Since the capillary model for cavities gives a good asymptotic value as well as

a smooth transition for small vacancy clusters, it is widely used (107 , 250 ). For loops,

the four models derived in this thesis (Model 1, 2 and 3 are same as those introduced in

Sec. 5.2 while Model 0 is another parametrization where elastic constants considering

temperature dependence are adjusted according to DFT calculations) are considered

along with the popular capillary law which is very similar to the one for cavities, so the

binding energy of an interstitial to a loop is given by:

Eb
n,1 = Ef

1 −
Ef

1 − Eb
2,1

22/3 − 1

(
n2/3 − (n− 1)2/3

)
. (5.80)
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5 Finite-temperature extension of discrete-continuum model

Experimentally, loops are shown to evolve due to an Ostwald ripening by emission and

capture of vacancies, since emission of interstitials is not possible owing to their high

formation energy (249 ) (Fig. 5.14). Therefore, the relevant parameter for this study

is the free binding energy of a vacancy to an interstitial dislocation loop, which reads

(n ≥ 1):

F b
n,−1 = F b

(n+1)−1,−1 = F f
−1 + F f

n+1 − F f
n. (5.81)

v

Figure 5.14: Schematic representation of the Ostwald ripening of interstitial loops by

vacancy emission. The thickness of the arrows is proportional to the vacancy

flux

For the capillary law, this binding energy can be deduced from Eq. (5.80), since:

F b
n,−1 = (F f

−1 + F f
1)− F f

1 + F f
n+1 − F f

n (5.82)

= (F f
−1 + F f

1)− F b
n+1,1 (5.83)

For the four other models, it is computed directly from the values of F f
n.

Binding energies of vacancies and interstitial loops given by the 5 models are compared

in Fig. 5.15.
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Figure 5.15: Binding energies of vacancies with interstitial loops

182



5.5 Application: concentration of dislocation loops post irradiation

5.5.2 Initial distribution

We start with the distribution of loops given experimentally after an annealing of 50

min. The distribution C(r) (as a function of the loop radius, in m−3 nm−1) is fitted

arbitrarily by a log-normal law:

C(r) =
p1

r
exp

(
−(ln r − p2)2

p3

)
, (5.84)

with (r expressed in nm)

p1 = 1.67× 1021 m−3 (5.85)

p2 = 2.0 (5.86)

p3 = 0.36. (5.87)

Then it is transformed into a distribution as a function of the number of interstitials,

according to

Cn = C(r)
dr

dn
, (5.88)

and assuming that loops are 〈111〉 spherical loops, so that πr2b = nVat with b = 0.165

nm.

The initial distribution is shown in Fig. 5.13.

5.5.3 Results

The cluster distributions at different times, t = 72 min and t = 100 min are compared

in Fig 5.16. We see that the capillary law leads to a very different result from the other

models and deviates significantly from the experimental results. On the contrary, the

other four models lead to results in good agreement with experimental results.

It is known that these results are highly sensitive to the sum of the vacancy formation

and migration free energies. It is interesting to see what would be the value of this sum

to obtain a good agreement with experimental results, when a capillary law is used.

A fair agreement can be obtained if, for example, the migration free energy is lowered

from 0.51 eV to 0.45 eV (Fig. 5.17). In turn, this leads to a self-diffusion coefficient
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Figure 5.16: Comparison of loop distributions obtained with different loop energy models

at (a) t = 72 min and (b) t = 100 min.

which is clearly overestimated with respect to measurements (Fig. 5.18). This tends to

invalidate the capillary law. It remains to check that results are indeed sensitive only to

the mono-vacancy properties and to the energetics of loops.
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Figure 5.17: Loop distributions obtained at different times with a capillary law, for a

migration free energy of the vacancy equal to (a) 0.51 eV and (b) 0.45 eV.

Sensitivity analysis is performed using model 0 as a reference. It is found that the

results are not sensitive to individual values of F f
−1 and Fm

−1 but the sum F f
−1 + Fm

−1.

Moreover, mobility of mono- to tetra-interstitials and that of di- to penta- vacancies do

not modify the results, as shown in Appendix A1.3. Thus, the robustness of our results

is confirmed.
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Figure 5.18: Self-diffusion coefficient in α-iron. The green dot represents the value ob-

tained if the properties of the vacancy are fitted to reproduce experimental

loop measurements with a capillary law. Yellow and blue dots are from

Ref. (282 ) and Ref. (283 ), respectively

We have shown that the finite temperature discrete continuum model predict the

variation of the post irradiation loops concentration with the temperature compared

to the direct experiments very well. Moreover, the precision of the discrete continuum

model does not leave much arbitrariness in the choice of the parameter. In fact, only the

vacancy activation energy can be considered as an arbitrary variable. On fitting vacancy

property with the finite discrete-continuum model, the value is found to be the value

predicted by the self-diffusion experiments but the value predicted by using capillary law

shows some deviation. The present finite temperature discrete continuum is perfectly

compatible with the self-diffusion experiments. Beyond this fact, the precision of our

model, open up new experimental possibility such as the experimental determination of

the activation energy of the vacancy from the present experiment.

5.6 Conclusions

Our work makes it possible to extend the zero K scaling laws for the formation energies

of various types of clusters in various materials to finite temperature. This extension was

done to preserve the possibility to be completely parametrized from first principles cal-
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culations. The present finite temperature extension of the discrete continuum approach

has been validated by atomistic calculations using quasi-harmonic approximation.

The discrete continuum model is able to predict, with striking precision and without

any adjustable parameter, the free energies given directly the atomistic calculation. The

accuracy of predictions of discrete continuum is remarkable, even at higher temperatures.

The present validation opens up many possibilities in the investigation of the free energy

landscape of mesoscopic dislocation loops. Finally, we have presented two of the many

possible applications.

As the results obtained from the zero K discrete-continuum model relate the low

temperature experiments in Fe with Zhang mechanism, the finite temperature exten-

sion of this model supports the same mechanism for explanation of high temperature

experiments in Fe. The experimental observation of 〈100〉 dislocation loops at high tem-

peratures is justified using the finite-temperature extension of the discrete-continuum

model and the Zhang mechanism. As a second application, free energy values predicted

by the finite temperature discrete continuum model are used as input in cluster dynam-

ics simulations in order to compare the simulation results with time evolution of loops

density in post irradiation experiments. The comparison with our model shows better

results than the commonly-used capillary law.

Validation of the 0 K discrete-continuum model and its extension for finite tempera-

tures coupled with successful applications of both the versions of the model show promise

for more possible implementations.
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A fairly-detailed literature survey of irradiation-induced effects on Fe, W, V and Ta

has been compiled, recapitulating most of the relevant experimental results along with

significant simulation as well as computation results. The conclusions corresponding to

each transition metal is presented below:

• Fe: The number of experiments studying the irradiation-induced microstructural

changes in iron is quite high compared to the other transition metals. All these

experiments report a majority of mobile 1/2〈111〉 interstitial loops at lower tem-

peratures. Further, an increasing proportion of the comparatively immobile 〈100〉
is observed above 573 K which ultimately become the majority at around 773 K.

The orientation of the sample is crucial in this observation, otherwise the 1/2〈111〉
can migrate to surface, biasing the results of experiments. Moreover, the impuri-

ties can also bias the results impacting the mobilities of the different loop types.

For example, He stabilizes the 1/2〈111〉 loops rendering them immobile, as pre-

dicted by MD simulations. Cr in Fe-Cr alloys reduce the mobility of the 1/2〈111〉
loops as well, eventhough the combined effect of He beam and Cr content in alloys

did not show any clear trend. Though the theoretical explanation was lacking till

recently, most of the experiments have now been explained rather convincingly in

the existing literature. According to DFT Calculations, the most stable mono-SIA

in Fe is the 〈110〉 dumbbell. The 〈110〉 SIAs are the most stable in Fe up to around

five SIAs and 1/2〈111〉 loops are the most stable beyond the cluster size of around

five interstitials. Taking into account elastic approximation to calculate the for-

mation energies near the α−γ transition, a reduction of free energy of 〈100〉 loops

was demonstrated, thus making the 〈100〉 loops more stable compared to 1/2〈111〉
loops at temperatures higher than about 800 K. Although the stability of 〈100〉
was thus established, the mechanism for the formation of 〈100〉 loops has not been

confirmed yet. The theoretically proposed mechanism of the formation of 〈100〉
by collisions of two 1/2〈111〉 loops can explain the formation of 〈100〉 loops in
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pure Fe, or Fe under He atmosphere. However, despite the fact that Cr reduce

the mobility of 1/2〈111〉 loops the formation of 〈100〉 loops is very active in FeCr

alloys. Moreover, the absence of 〈100〉 interstitial dislocation loops at low temper-

atures remains unexplained, given that the 1/2〈111〉 loops are very mobile at low

temperature. Recent studies highlight the importance of C15 clusters in under-

standing and explaining the anomalous experimental observations of 〈100〉 loops

in Fe, thus reconciling experiments with DFT calculations of energy landscape of

point defects in bcc Fe.

• W: While recent experimental observations reveal presence of a vast majority of

1/2〈111〉 and a few 〈100〉 interstitial loops at low temperatures, these 〈100〉 inter-

stitial loops disappear leaving only 1/2〈111〉 interstitial loops at high temperatures.

Empirical potentials seem to be inconclusive with some predicting 1/2〈111〉 as most

stable and others show a crossover between 1/2〈111〉 and 〈100〉 loops suggesting

competing stability of these loops as a function of the number of interstitials.

As such, MD simulations using different potentials can be contradictory as well

but DFT calculations have quite definitively established the stability of 1/2〈111〉
interstitial loops amongst other possibilities.

• V: In general, dislocation loops of Burgers vector 1/2〈111〉, voids and planar pre-

cipitates are observed after neutron irradiation. However, there are contradictions

among the experiments with one reporting the presence of < 100 > interstitial

loops in addition to the above-mentioned defects and another stating the nature

of 1/2 < 111 > dislocation loops as vacancy-type. These contradictions have been

ascribed to the varying levels of impurities among the different experimental sam-

ples. Ab initio calculations have established that the 〈111〉 interstitial dumbbell is

the most stable and even predictions using interatomic potentials concur regarding

the stability of 1/2〈111〉 interstitial loops. In fact, simulations using Finnis-Sinclair

potential for V predicts easy rotation of 〈100〉 and 〈110〉 loops into 1/2〈111〉 due

to a significant difference in their formation energies.

• Ta: Scarcity of experiments and contrasting irradiation conditions among the var-

ious experiments prevent any conclusive evidence about the type of defect encoun-

tered in Ta. While one experiment found screw dislocations with Burgers vector

1/2〈111〉, another reports growth of interstitial loops which is followed by a prefer-

ential formation of vacancy loops at higher temperatures. Nevertheless, from first

principles calculations we can expect that 1/2〈111〉 loops are the most stable.
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The existing theoretical background of the atomistic methods (ranging from ab initio

to EAM potentials via Tight Binding Approach) are revisited. Also, the various EAM

potentials for bcc metals are discussed. Ideally, density functional theory (DFT) calcu-

lations would be employed to capture the complete physics involved in a system with

irradiation-induced defects. However, unachievable computational requirements of DFT

calculations have fueled the search for alternatives considering reasonable approxima-

tions over the past decades. This search has led to development of a number of empirical

potentials, ranging from pair potentials to EAM.

Although many empirical potentials have been successful in making radiation damage

studies feasible, inconsistency of results from different empirical potentials is a major

shortcoming that hinders conclusive theoretical results. Thus, a new potential is de-

veloped for Fe specifically for point-defect simulation studies. A comparative study of

the results from empirical potentials is also presented, justifying the need for a new

EAM potential. Further, the construction of C15 clusters is illustrated with the selec-

tion rules. On comparison of the energy landscape of defects in Fe using existing and

newly-developed empirical potentials, it is established that better results can only be

obtained by going beyond empirical potentials and thus, a new model is proposed.

A new model is developed from ‘discrete’ ab initio formation energies for small-sized

defects and ‘continuum’ anisotropic elastic theory formulation for formation energy of

large-sized defects. The so-called discrete-continuum model makes possible ab initio-

level accurate calculations for clusters without any size limitation. The scaling laws

predicted by the discrete-continuum model about the size dependence of the clusters

energy are validated by comparison with empirical potentials spanning the very same

scales within extensive atomistic simulations. The model allows us to treat various cases

of interstitial dislocation loops and C15 clusters from clusters containing a few SIAs to

nanometer size.

From the interpretation of the present results it can be concluded that above ∼ 100

SIAs 1/2〈111〉 loops are always the most stable family of SIA-clusters – in agreement

with experimental observations of irradiation defects at low temperature in bcc metals.

However, these results are at odds with calculations made using various EAM interatomic

potentials, which yield spurious predictions concerning the relative stability of 〈100〉
and 1/2〈111〉 loops (100 ). Future developments of such potentials should consider the

information provided in the present paper, and include the appropriate additional fitting

conditions on the potential parameters. Our study shows that in Fe, C15 clusters are the
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most stable clusters of defects for sizes lower than 51 SIAs, which is a size not accessible

to direct TEM observations. Our model also supports the theory of the formation for

〈100〉 loops proposed by Zhang et al. (112 ). In this zero K discrete-continuum model, we

do not include thermal effects and magnetic excitations. As a consequence, our results

are comparable only to low temperature experiments. The results obtained, shed some

light on the absence of 〈100〉 loops in low temperature experiments, and reconcile the

Zhang mechanism with the experimental evidence. However, in order to validate entirely

our expectations, further analysis is required.

Finally, our work makes it possible to establish scaling laws for the formation energies

of various types of clusters in various materials, which is significant for multi-scale simu-

lations such as kinetic Monte-Carlo simulations (107 , 223 , 246 –248 ), cluster dynamics

studies (249 , 250 ), or mean field approximations (251 ), where simple analytic laws are

needed to model the energy of large clusters. However, to enable the use of scaling laws

in multi-scale simulations, the effects of temperature must be accounted for.

Our work makes it possible to extend the zero temperature scaling laws for the for-

mation energies of various types of clusters in various materials to finite temperature.

This extension was done to preserve the possibility to be completely parametrized from

first principles calculations. The present formulation of the discrete-continuum model

is extended to address the formation free energies, e.g. by including the temperature

dependence of elastic constants. The present finite temperature extension of the discrete

continuum approach has been validated by atomistic calculations using quasi-harmonic

approximation. The comparison of both models indicates that the discrete continuum

model is able to predict, with striking precision and without any adjustable parameter,

the free energies given directly the atomistic calculation. The accuracy of predictions

of discrete continuum is remarkable, even at higher temperatures. The present vali-

dation opens up many possibilities in the investigation of the free energy landscape of

mesoscopic dislocation loops. Finally, we have presented two of the many possible ap-

plications. As the results obtained from the zero K discrete-continuum model relate the

low temperature experiments in Fe with Zhang mechanism, the finite temperature ex-

tension of this model supports the same mechanism for explanation of high temperature

experiments in Fe. The experimental observation of 〈100〉 dislocation loops at high tem-

peratures is justified using the finite-temperature extension of the discrete-continuum

model and the Zhang mechanism. As a second application, free energy values predicted

by the finite temperature discrete continuum model are used as input in cluster dynam-

ics simulations in order to compare the simulation results with time evolution of loops
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density in post irradiation experiments. The comparison with our model shows better

results than the commonly-used capillary law.

The key ingredient useful for the extension of the discrete-continuum model at zero

K to finite temperatures is the temperature dependence of the core-traction free energy.

For the first time, we give the ab initio-based value of the energy of the core-traction for

various dislocations at zero K in this thesis. At the present, none of the tested empirical

potentials can reproduce the DFT results. The future development of empirical poten-

tials should include this knowledge. At finite temperatures, the results and predictions

can be significantly influenced by this term and further studies are needed to better

understand the temperature-dependent core-traction energy.

Validation of the 0 K discrete-continuum model and its extension for finite tempera-

tures coupled with successful applications of both the versions of the model show promise

for more possible implementations. Our findings can influence even the experimental

field. Because of the precision of our energetic model, it can be used as a basic tool

by experimentalists in order to reinterprete some experimental data. As an example,

we have shown in this thesis how the experimental determination of density of loops

in post-irradiation isothermal experiments can give access even to determination of va-

cancy activation energy for any given temperature when coupled with cluster dynamics

and our energetic model.

Moreover, the cluster expansion form of the discrete-continuum model permits further

extension to bcc metals with impurities, such as Fe-Cr, Fe-Mn which could be useful for

radiation damage studies related to nuclear fission reactors and W-H, W-He for future

fusion reactors.
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A1 Appendix

A1.1 Eshelby’s inclusion and Eshelby’s spherical

inhomogeneity

Calculation of the strain energy of C15 clusters in iron by Eshelby’s inclusion

method

A preliminary analysis of C15 clusters in Fe presents a scenario similar to the one solved

by Eshelby using the popular Eshelby’s inclusion method (235 , 236 ) which is illustrated

in (284 ). However, our scenario of interest is complicated by two facts. Firstly, the

elastic constants of the matrix and the inclusion are different. Technically speaking,

C15 clusters are inhomogeneities. Secondly, the matrix is not isotropic as for Eshelby’s

case but anisotropic (Zener anisotropy factor, A = 2.4 for Fe (285 )), as mentioned in

Table4.1 of Sec.4.1.

Originally, Eshelby provided elastic energy formulation only for a uniform permanent

(inelastic) deformation called inclusion in a homogeneous linear elastic isotropic solid

matrix. Here, the elastic constants of the inclusion and the matrix were assumed equal

but this formulation can be readily extended to inhomogeneities using the equivalent

inclusion method by assuming ellipsoidal inhomogeneities for simplicity. This means that

in order to calculate strain energy contribution to formation energy of C15 clusters by the

equivalent inclusion method, the inhomogeneity is essentially replaced by an equivalent

inclusion such that the stress and strain remain the same as that inside the original

inhomogeneity. These results will be presented. Having established the complexity

of the problem, a further simplification of the case of C15 clusters is carried out by

reasonably approximating them as spherical inhomogeneities in anisotropic matrix. This

approximation and other assumptions used to treat C15 clusters will be substantiated
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further ahead in this section.

All primed-symbols (C ′ijkl, e
∗′
ij , etc.) are used for the inhomogeneity i.e. C15 clusters

while the same symbols without prime are for the matrix phase or equivalent inclusion,

depending on the context. Let σIij and ecij denote the stress and constrained strain

inside an equivalent inclusion while σI
′
ij and ec

′
ij denote the stress and constrained strain

inside the inhomogeneity. By assumption of equivalent inclusion method for an elliptical

inhomogeneity, we have the following equations:

σIij = σI
′

ij , (A1.1)

ecij = ec
′

ij. (A1.2)

A fourth order tensor (popularly known as Eshelby’s tensor S) is defined as:

eckl = Sklmne
∗
mn, (A1.3)

where e∗ij is the eigenstrain in the equivalent inclusion i.e. strain in the absence of any

external stress. Using Hooke’s law, we can write stresses inside the inhomogeneity and

the equivalent inclusion as follows:

σI
′
ij = σc

′
ij − σ∗

′
ij = C ′ijkl

(
ec
′

kl − e∗
′

kl

)
,

σIij = σcij − σ∗ij = Cijkl (e
c
kl − e∗kl) ,

(A1.4)

where σc
′
ij, σ

∗′
ij and C ′ijkl denote the constrained stress, eigenstress (solely caused by

eigentrain) and elastic constants in the inhomogeneity, respectively while σcij, σ
∗
ij and

Cijkl refer to those in the equivalent inclusion. e∗
′

kl is the eigenstrain in the inhomogeneity.

Using the eq. A1.4 to satisfy the conditions in eq. A1.1 and A1.2, we obtain an expression

to calculate eigenstrain of the equivalent inclusion as:

e∗mn = C ′ijkle
∗′
kl

[(
C ′ijkl − Cijkl

)
Sklmn + Cijmn

]−1
. (A1.5)

Once the eigenstrain for the equivalent strain is calculated, the total strain energy for

the inhomogeneity in an anisotropic medium can be calculated as:

Estrain = −1

2
σIije

∗′
ijV0. (A1.6)

Although theoretical solutions for inhomogeneities in anisotropic matrix are well formu-

lated, there is no general analytical solution for anisotropic matrix.

In order to numerically solve this problem, we make certain reasonable assumptions.

Firstly, C15 clusters are assumed to have spherical shape since the most stable config-

urations of C15 clusters are closely packed 3D structures. Secondly, a pure dilatational
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transformation strain is assumed e∗
′
ij = εδij. This seems reasonable because it is usually

so in diffusional solid-state transformations.

Kroner(238 ) provided approximate solutions to calculate the strain energy of an in-

coherent ellipsoidal precipitate in both isotropic and anisotropic matrices as a function

of the ellipsoidal aspect ratio but Kroner’s approximation was shown to have significant

errors when used for anisotropic matrix, as explained in (237 ). The system of spher-

ical precipitates in anisotropic matrix dealt by Lee matches well with our scenario of

spherical C15 clusters in anisotropic Fe matrix with one exception that C15 clusters are

coherent in BCC Fe matrix while precipitates considered in the paper are incoherent.

This difference is reconciled by a paper by Christian(239 ) which establishes that there

is no distinction between coherent and incoherent precipitates if only a pure dilatational

transformation strain is assumed. In light of our earlier assumption of purely dilatational

transformation strain, Lee’s system fully corresponds with our system of interest.

In order to use the results from (237 ), we define two tensors:

1. Auxiliary Tensor, D (286 ): It is defined such that

uci,l (x) = −σ∗kjDijkl (x) , (A1.7)

where uci,l is the constrained displacement gradient and σ∗kj is the eigenstress inside

the inclusion. Within a spherical inclusion, D is shown to be:

Dijkl = − 1

4π

∫ π

0

∫ 2π

0

(zz)−1
ij zkzlsinφdΘdΦ. (A1.8)

Using the definition of Eshelby tensor, it can also be shown that:

Sijkl (x) = −1

2
Clkmn (Diklj (x) +Djkli (x)) . (A1.9)

2. Tensor, T: For convenience, we define another tensor T such that

Tijkl =
SEshelbyijkl

Clkmn
(x) = −1

2
(Diklj (x) +Djkli (x)) . (A1.10)

Combining eq A1.8 and eq. A1.10, we obtain the tensor T as:

Tijkl =
1

8π

2π∫
0

dθ

π∫
0

sinφ
(
ZiZlM

−1
jk + ZjZiM

−1
ik

)
dφ, (A1.11)
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where Mij = CijklZkZl and Z = (sinφ cos θ, sinφ sin θ, cosφ). Now, re-writing eq.A1.3

with the newly defined tensor,

ecij = TijklCklmne
∗
mn. (A1.12)

In eq.A1.6, we substitute the value for stress inside equivalent inclusion from eq.A1.4

and using eqs.A1.1-A1.2, we get the following form to calculate the strain energy:

Estrain =
1

2
C ′ijkl

(
e∗
′

kl − eckl
)
e∗
′

ijV0. (A1.13)

For a spherical precipitate in cubic matrix, there exist only three independent compo-

nents of T: T1111, T1122 and T1212 which simplifies the problem at hand.

Summarising results using Kroner’s notation(237 ), we have

Estrain =
9

2

CαCβ

Cα + Cβ
ε2V0, (A1.14)

where
Cβ = 1

3
(C ′11 + 2C ′12) ,

Cα = Γ
3
,

Γ = 1
T1111+2T1122

− (C11 + 2C12) ,
(A1.15)

In order to calculate the sum T1111 + 2T1122, an integral of the following form is to be

solved:

T1111 + 2T1122 =
1

12πg

2π∫
0

dθ

π∫
0

∧ (Z1, Z2, Z3)

4 (Z1, Z2, Z3)
sinφ dφ, (A1.16)

where

∧ (Z1, Z2, Z3) = e2 + 2e (f − 1) (Z2
1Z

2
2 + Z2

2Z
2
3 + Z2

3Z
2
1)

+3 (f − 1)2 Z2
1Z

2
2Z

2
3 ,

(A1.17)

4 (Z1, Z2, Z3) = e2 (e+ f) + e (f 2 − 1) (Z2
1Z

2
2 + Z2

2Z
2
3 + Z2

3Z
2
1)

+ (f − 1)2 (f + 2)Z2
1Z

2
2Z

2
3 ,

(A1.18)

g = C12 + C44, (A1.19)
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e =
C44

g
, (A1.20)

f =
C11 − C44

g
. (A1.21)

However, this integral cannot be solved analytically and a numerical solution using Simp-

son’s rule is carried out which ultimately provides the total strain energy for spherical

C15 clusters in anisotropic iron matrix. Eshelby’s method and the above evolution is a

fairly suitable way to treat the larger size limit of C15 clusters but does not work for

smaller C15 clusters. However, this is fit numerically due to limitation of DFT calcula-

tions and the next chapter will describe the method using the feasible DFT calculations.

A1.2 Parameters for cluster dynamics

Symbol Description Value Unit Reference

Ef
−1 Formation energy of the vacancy 2.18 eV (249 )

Sf
−1 Formation entropy of the vacancy 4 kb (249 )

Ef
−2 Formation energy of the di-vacancy 4.06 eV

Ef
n<−2 Formation energy of vacancy clusters capillary law

Ef
1 Formation energy of the interstitial 3.77 eV

Ef
2, Ef

3, Ef
4 Formation energy of interstitial clusters 6.74, 9.59, 11.72 eV

Ef
n≥4 Formation energy of interstitial clusters elastic model

Em
−1 Migration energy of the vacancy 0.67 eV (249 )

Sm
−1 Migration entropy of the vacancy 2.2 kb (249 )

Em
−2, Em

−3, Em
−4, Em

−5 Migration energy of vacancy clusters 0.62, 0.35, 0.48, 0.50 eV

Em
1 Migration energy of the interstitial 0.34 eV

Em
2 , Em

3 , Em
4 Migration energy of interstitial clusters 0.42, 0.43, 0.62 eV

D0,n Diffusion prefactor 8.2× 10−7 m2/s

The values of formation and migration energies and entropies of the mono-vacancy

are fitted to reproduce self-diffusion experimental values (247 , 282 , 283 ), which only

depend on the sum of the formation and migration free energies (Fig. A1.1).
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Figure A1.1: Self-diffusion coefficient in α-iron. The black line corresponds to the values

of the formation and migration free energies adopted. The red dot indicates

the temperature at which the simulations are performed (T = 833 K).

A1.3 Sensitivity to other parameters in cluster dynamics

Sensitivity analysis is performed using model 0 as a reference (Fig. A1.2).

• Sensitivity to F f
−1 + Fm

−1, whatever the values of F f
−1 and Fm

−1 (Fig. A1.3).

• No role of mobility of di-, tri-, tetra- and penta-vacancy (Fig. A1.4)

• No role of mobility of di-, tri- and tetra-interstitials (Fig. A1.5).

• No role of mobility of mono-interstitial (Fig. A1.6).
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Figure A1.2: Reference calculation for sensitivity analysis, model 0
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Figure A1.3: Change of F f
−1 (from 1.89 eV to 1.71 eV), keeping F f

−1 +Fm
−1 the same (Fm

−1

changed from 0.51 eV to 0.69 eV).
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Figure A1.4: Calculation without the mobility of small vacancy clusters
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Figure A1.5: Calculation without the mobility of small interstitial clusters
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Figure A1.6: Calculation with Em
1 = 0.20 eV instead of 0.34 eV.
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Titre : Exploration du paysage énergétique de défauts dans les métaux cubiques centrés. 

Mots clés : Métaux, paysage énergétique, défauts, potentiels empirique, ab initio 

Résumé : Les matériaux composants les réacteurs nucléaires subissent des conditions 

d’irradiation sévères, donnant lieu à des modifications de leurs propriétés mécaniques 

dus à la formation et la migration de défauts ponctuels. Dans cette thèse nous avons 

étudié les propriétés du paysage énergétique de ces défauts et de leurs amas dans les 

métaux cubiques centrés Fe, W, V et Ta. Nous avons développé un modèle permettant 

d’ établir nos calculs avec la précision du calculs ab initio sans limitation de taille  

Nous avons établi ce modèle pour le cas des boucles de  dislocation ainsi que pour les 

amas interstitiels tridimensionnels de type C15. Ce a également été étendu  afin 

d’intégrer les effets de température. L’utilisation de ce nouveau modèle  a montré des 

améliorations considérables par rapport à des lois énergétiques plus anciennes, comme, 

par exemple, la loi capillaire utilisée dans les calculs multi-échelle de type dynamique 

d’amas. 

 

 

 

Title : Energy landscape of defects in body-centered cubic metals. 

Keywords :Metals, energy landscape, defects, empirical potentials, ab initio 

Abstract : The structural materials of nuclear reactors are subjected to severe 

irradiation conditions, leading to changes in their mechanical properties. In this thesis, 

we studied the properties of the energy landscape of point defects in bcc metals, i.e. Fe, 

W, V and Ta. We overcome the size-limitation of ab initio calculations and unreliability 

of semi-empirical potentials by development of a unique energetic model for 

calculation of formation energies of dislocation loops as well as for three-dimensional 

interstitial cluster type C15.We also expanded the scope of our energy model to the free 

energy of defect formation, thereby establishing predictions for different temperatures. 

Additionally, by using this energy model, we showed significant improvements over 

older energy laws, such as the capillary law widely-used in multiscale computation 

cluster dynamics. 
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