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Rare Event Simulation by Shaking Transformation
and

Non-intrusive Stratified Resampling Method for Dynamic
Programming

by Gang LIU

This thesis covers two different subjects: rare event simulation and
non-intrusive stratified regression method for dynamic programming
problems.

In the first part, we design a Markovian transition called shaking
transformations on the path space, which enables us to propose IPS and
POP methods for rare event simulation, based respectively on interact-
ing particle system and the ergodicity of Markov chain. Efficient de-
signs of shaking transformation in finite and infinite dimensional cases
are proposed. We also design an adaptive version of the POP method,
which demands less information on the model to be well implemented.
Theoretical analysis is given on the convergence of these methods. Be-
sides, we demonstrate how these techniques can be applied to perform
sensitivity analysis of rare event statistics on model parameters and to
make approximative sampling of rare event. Many numerical examples
are discussed to show the performance of our methods and how to ap-
propriately choose method parameters.

In the second part, we aim at numerically solving certain dynamic
programming problems. Different from usual settings, we don’t have
access to full detail of the underlying model and only a relatively small-
sized set of root sample is available. To solve the problem with the lim-
ited information at hand, we propose a stratified resampling regression
method. More precisely, we shall use given the root sample to recon-
struct other paths and perform local regression on the stratified spaces.
Non-asymptotic error estimations are given and we demonstrate the
performance of our methods in several numerical examples.

During my thesis, I have also worked to create a financial software
in a startup project inside CMAP Ecole Polytechnique . This work is not
reported here due to confidentiality issues.
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Chapter 1

Thesis Summary

This thesis contains two different subjects: rare event simulation and
non-intrusive stratified resampling method for dynamic programming,
each of which is covered in a separate part of this thesis. In this begin-
ning chapter, we will briefly introduce these two problems, give a short
review of literature and summarize our contributions. Complementary
introductions and literature reviews will be given in respective parts for
both subjects.

1.1 Rare event simulation

Rare event simulation concerns the study of extreme events, which have
very small probabilities of taking place but imply serious consequences
once they happen. Examples of rare events are: insurance company
default (Subsection 3.1.1), communication network collapse (Subsection
3.1.2), random graph atypical configuration (Subsection 3.1.3) and black
swan events in finance (Subsection 3.1.5). Other applications of rare
event can also be found in Section 3.1.

1.1.1 Probabilistic formulation

The probabilistic study of rare event usually starts with the following
framework:

Given a probability space (Ω,F,P), we consider a random variable
(measurable mapping) X : Ω 7→ S , where S is some general state space,
and a measurable setA ( S. The setA is chosen such that the probability
that X lies in A is extremely small, in which case we call {X ∈ A} a rare
event. We are mainly interested in achieving the following goals

• to estimate the rare event probability P (X ∈ A)

• to sample from the conditional distribution X|X ∈ A

• to estimate the conditional expectation on rare event E (ϕ(X)|X ∈ A),
for bounded measurable functions ϕ : S 7→ R

• to evaluate the sensitivity of these rare event statistics with respect
to model parameters
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In the setting of rare event, P (X ∈ A) is usually less than 10−4. We al-
ways assume that P (X ∈ A) > 0. Remark that this formulation is very
general, in the sense that the random object X under investigation can
be correlated stochastic processes, random graphs and other compli-
cated random systems.

1.1.2 Literature review

Monte Carlo methods are mostly used to estimate probability and ex-
pectations. The simplest version is the plain Monte Carlo method, which
is based on the law of large numbers and central limit theorem: if we
make N independent and identically distributed (i.i.d.) copy (Xn)16n6N

of X and compute the empirical proportion of copies which lie in A,
then it converges to P(X ∈ A) as N goes to infinity and the central
limit theorem gives corresponding confidence intervals for our estima-
tors. Unfortunately plain Monte Carlo method fails to work efficiently
in the case of rare event. Since the probability for the event {X ∈ A}
is very small, a large number of simulations are needed to have one
realization of this event in average. Therefore, the computational cost
is prohibitively high to obtain a satisfying accuracy for our estimator.
Mathematically, it means that the relative variance for our estimator is
too high to deliver good estimation.

More precisely, if we makeN independent and identically distributed
(i.i.d.) copy (Xn)16n6N of X and set p = P(X ∈ A) and define the em-
pirical occupation measure by p̂N = 1

N

∑N
n=1 1Xn∈A, then by central limit

theorem, we have √
N(p̂N − p)

d−→ N(0, σ2)

where σ2 = p(1− p). Thus, when N is large, approximately we can get a
95% confidence interval for p:

(p̂N − 1.96

√
p(1− p)

N
, p̂N + 1.96

√
p(1− p)

N
)

.
This may look good at first glance, since the length of this interval

is equal to 3.92
√

p(1−p)
N

, which is small with large N and small p. But if
we look at the relative length (i.e. relative error) in percentage of p, it

is equal to 3.92
√

(1−p)
Np
≈ 3.92

√
1
Np

. If for example p = 10−8, even if we
use 10 million simulations of X , at the end we get a confidence interval
of relative length more than 10, so the final conclusion may be that p
is between 0 and 10−7. This information is completely useless in our
problem, since the possible error goes far beyond our tolerance.

One technique to overcome this problem of having too few realiza-
tions of our target event is the importance sampling, see Subsection
3.2.2. Instead of making simulations under the initial probability mea-
sure, we propose another probability measure under which the event of
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interest {X ∈ A} is more likely to happen, thus fewer simulations are
needed to have the same amount of realizations in average. Of course
by proposing a new probability measure some bias is induced in the es-
timator and a correction/weight term needs to be added to provide an
unbiased estimator. This method is very efficient when the new proba-
bility is easy to simulate, see [120, 19, 67, 72, 51]. But in general, the new
probability measure is not easy to find for complex systems and specific
study needs to be conducted for different models.

Another idea to deal with rare event simulation is splitting, see Sub-
section 3.2.3. Instead of making straightforward estimation of P(X ∈ A),
we define a series of nested subsets

S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A,

and make estimations of each conditional probability P(X ∈ Ak+1|X ∈
Ak), then their product gives an estimation of our rare event probability.
Studies on splitting methods can be found for example in [84, 93]. The
convergence of adaptive splitting method has been shown in [32].

FIGURE 1.1: Nested subsets in splitting

One problem of original splitting method is that a lot of simulation
time is spent in areas which are far from the rare event zone. To over-
come this problem, RESTART method is proposed, see Subsection 3.2.4.
The uniform splitting rule in original splitting method is modified in
the RESTART method such that simulation efforts are concentrated in
important areas, see [13, 125, 126, 86, 102]. This makes estimation more
efficient in many cases, but due to the non-uniform splitting rules, theo-
retical analysis becomes more difficult.

More recently, another group of methods called IPS is proposed, see
[42, 43, 31, 30, 29, 27] . It is based on the theory of interacting particle
system and it follows also the spirit of splitting methods, i.e. the final
estimator is given as a product of several conditional probability estima-
tors, see Subsection 3.2.5. IPS method imitates the procedure of natural
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selection and contains selection and mutation steps. The convergence of
adaptive IPS method has been shown in [33].

There are many other tools we can use for rare event simulation
problems, such as cross-entropy method [119, 24], large deviation the-
ory [44, 40], etc. Some other interesting works are [23] on generalized
splitting method and [92] on switching diffusions. A lot of other works
can be found on the websites of the recent two International Workshops
on Rare Event Simulation, RESIM 2014 and RESIM 2016.

1.1.3 Our contributions

General applicability According to our numerical experiments, when
all the methods can be easily implemented, importance sampling is usu-
ally the most efficient one. But specific techniques are needed to ad-
dress each problem and simulations under the importance sampling
measure become time consuming when the model at hand is compli-
cated. We aim at designing a new methodology which needs few ad-
justments when applied with different models.

Static point view on path space, no Markovian assumption and IPS
method The splitting idea applies more generally than importance sam-
pling, combined with different kinds of techniques. But it still relies on
several assumptions. When splitting, RESTART or IPS methods are ap-
plied with a dynamic model, Markovian assumptions are usually needed.
If the system under consideration is not given as a Markovian one, state
augmentation techniques can help sometimes. But this makes algo-
rithms a bit more cumbersome and markovianization is not always pos-
sible. In this thesis, we overcome this problem by adopting a static
pointview to address dynamic model. Thus we don’t need any Marko-
vian assumptions. This static point view also brings other benefits. When
combined with interacting particle system theory, it gives rise to a new
kind of IPS method, see 5.2.2. When one applies this version of IPS
method on dynamic models, discretization is no longer an issue to worry
about. The error explosion with existing IPS methods when the time
step goes to zero is not observed with our new version of IPS method.
This static point view is implicitly implied in our presentation of shak-
ing transformation in Section 5.2, which treats random variables and
stochastic process in a uniform way.

We will illustrate the above explanations by a simple example. Sup-
pose that we are dealing with the realization of an Ornstein-Uhlenbeck
process Zt between time t = 0 and t = 1 and we want to compute the
probability that the maximal value of Zt during this period is larger than
10. We take discrete time grid ti = i

N
for some N . If we apply the

IPS method with dynamic point view, such as in [27], we are going to
make i.i.d simulations for time t1, and select those paths which goes up-
wards faster than others, apply the mutation step to simulate for time
t2, then again select those paths which goes upwards faster than others.
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We repeat this procedure until time tN . With the dynamic point view,
the selection and mutation step is conducted during the simulation of
Brownian paths. However, if we apply the static point view, the entire
path ofZt between time 0 and 1 are treated as an indivisible point and no
partial paths will be simulated. We will make simulation of entire paths,
select those closer to the rare event zone and apply mutation transfor-
mation on the path space. The following graph illustrates both strong
and slight shaking transformations: the blue one is the initial path and
the green one is obtained by applying a slight shaking transformation
on the entire path while the red one is obtained by applying a strong
shaking transformation on the entire path.

FIGURE 1.2: Gaussian shaking transformation applied on
the entire path of an Ornstein-Uhlenlbeck process with
different shaking parameters: path before shaking in blue,

paths after shaking in red and green

Independent conditional probability estimators by POP method An-
other issue with splitting idea is the strong interdependence between
different conditional probability estimators. Although the final estima-
tor is given as a product, thus avoiding the particular simulation dif-
ficulty related to rare event, the elements in the product have strong
correlations. It is desirable to have independent estimations of each con-
ditional probability and we naturally expect this to make improvement
on numerical performances. We manage to achieve this goal using the
theory of ergodicity of Markov chain. More precisely, we will design
a Markov chain whose empirical occupation measure approximates the
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conditional distribution of the system under investigation and different
Markov chains for different conditional distribution run separately. As
we shall see, this method does not only give independent estimators for
each conditional probability, but also allows parallel implementations,
thus further improving the numerical performance. We call this new
method POP (Parallel-One-Path) method, which is presented in Subsec-
tion 5.2.3, together with implementation remarks.

Briefly speaking, POP methods rely on the Birkhoff’s point-wise er-
godic theorem. If we can design an ergodic Markov chain (Zn)n>1 which
has X|X ∈ Ak as its stationary distribution, then

1

N

N∑
n=1

1Zn∈Ak+1

will converge to P (X ∈ Ak+1|X ∈ Ak) as N goes to infinity. We manage
to find such a Markov chain and its constructions for different Ak can
be made independent. This is made possible by a reversible Markovian
transition on path space. Combined with rejection simulation technique,
it provides another Markovian transition which preserve the conditional
distribution of X .

A slightly more convenient implementation is given in Algorithm
2, where very weak interdependence exists. But this interdependence
can be eliminated with negligible computation efforts, as explained in
Subsection 5.2.3.

FIGURE 1.3: POP method illustration, computing proba-
bility that X as a point lies above level 5
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Shaking transformations Under our static point view, the IPS and
POP methods are implemented with some reversible Markovian tran-
sitions, which we call shaking transformations. Shaking is the key word
which summarizes the spirit of our methods, i.e. going through the rare
event zone by slight perturbations and keeping the conditional distribu-
tion unchanged.

Without further study, Metropolis-Hasting type transitions are nat-
ural candidates for shaking transformation in finite dimensional cases.
But these transitions are unwieldy for implementation and calibration.
They are not numerically efficient either, as explained in Subsection 5.4.4.
In this thesis, We propose a particular way of designing our shaking
transformation in Section 5.4, which is very easy to implement and to
calibrate for achieving best numerical performance. This is done in spe-
cific ways for Poisson and geometric distributions. In many continuous
random variable cases, this is made possible by an elegant distribution
identity called Gamma-Beta algebra:

(Γa1,b,Γa2,b)
d
= (Ba1,a2Γa1+a2,b, (1−Ba1,a2)Γa1+a2,b)

where Γ and B represent independent Gamma and Beta distributions
with respective parameters. Using this identity, we can design shaking
transformation for Gamma distribution, thus for exponential distribu-
tion, which is a particular case of Gamma distribution. Then using the
identity

U
d
= exp(−Exp(1))

where U is a uniform distribution in [0,1] and Exp(1) is an exponential
distribution, we can design shaking transformations for uniform distri-
bution:

K(U) = UBeta(1−p,p) exp(−Gamma(p, 1))

The same idea generalizes to the case of many other distributions such
as Cauchy distribution and χ2(k) distributions. Our density-free way
of constructing shaking transformation makes the generalization of our
methodology to infinite dimensional cases natural and immediate. For
example we can design shaking transformations for compound Pois-
son process using its classic coloring/superposition decomposition. As
will be explained in Section 5.5, our shaking transformation is in some
sense a good Metropolis-Hasting type transformation, written with an
implicit transition density, as it avoids one rejection step. These identi-
ties in law we find are also interesting in themselves.

Sensitivity analysis Another issue we will address in Section 5.7 is
the sensitivity of rare event statistics with respect to model parameters.
Combined with Malliavin calculus, the idea underlying POP method
gives us a surprisingly easy way to evaluate the sensitivity. More pre-
cisely, we will show that in many cases rare event relative sensitivity is



8 Chapter 1. Thesis Summary

easier to evaluate than the rare event probability itself:

∂θE
(
Φθ1Zθ∈A

)
E (Φθ1Zθ∈A)

=
E
(
I(Zθ,Φθ) | Zθ ∈ A

)
E (Φθ | Zθ ∈ A)

.

We want to compute sensitivity as defined on the left-hand side of the
above equation. By Malliavin calculus and Bayesian formula, this sen-
sitivity can also be written as on the right-hand side for some function
I(Zθ,Φθ) to be precised. If we can design a Markov chain to approximate
E
(
φ | Zθ ∈ A

)
for any random variable φ, then both E

(
I(Zθ,Φθ) | Zθ ∈ A

)
and E

(
Φθ | Zθ ∈ A

)
can be estimated using this Markov chain. Thus

only one Markov chain is used to estimated this sensitivity, while we
need several Markov chains to estimate rare event probability. See Propo-
sition 5.7.1 and Theorem 5.7.2 and explanations therein.

Adaptive POP method and IPS with more resamplings To make good
choice of intermediate subsets, we propose in Section 5.6 an adaptive
version of POP method. We also propose in Section 5.9 an IPS method
with more resamplings and fewer particles and give numerical experi-
ments to show this improves performance.

Convergence analysis for our methods Convergence analysis on our
methods are also given. We will show the L2 convergence of our POP
and IPS methods under several assumptions in Subsection 5.2.4. Then
the almost sure convergence of POP method is proved in Section 5.5 for
all the finite dimensional cases, without additional assumptions. The
almost sure convergence of our adaptive POP method is also demon-
strated in Subsection 5.6.2, using results from Markov chain quantile
estimations, see Theorem 5.6.1.

Results on Gaussian shaking transformations The shaking transfor-
mation in Gaussian framework is particularly interesting. We will show
in Subsection 5.3.2 that in one dimensional case, explicit analytical prop-
erty of Gaussian shaking can be shown via Hermite polynomials, see
Lemma 5.3.1. The L2 convergence of Gaussian shaking transformation
in the most general setting, including infinite dimensional cases are also
demonstrated in Subsection 5.3.3 using the generalized Gebelein inequal-
ity, see Theorem 5.3.3.

Rare event sampling How to apply our techniques to make rare event
sampling is discussed in Section 5.8. This is used in financial stress test-
ing and interesting simulation such as Brownian watermelon, see Sec-
tions 6.7, 6.8 and 6.13.

At last, many numerical examples are discussed to show the appli-
cations of our methods and how to well choose method parameters in
Chapter 6. Among others, we have examples on:
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• Maximum and oscillation of Ornstein-Uhlenbeck process.

• Insurance ruin probability with compound Poisson model.

• Jackson network in queuing system.

• Atypical configuration of Erdös-Rényi random graph.

• Hawkes process on self-exciting phenomena.

• Model misspecification and robustness in option hedging.

• Measuring default probability in credit portfolios.

• Fractional Brownian motion for modeling volatility.

• Sensitivities for out-of-money options.

• Population survival probability.

• Simulation of Brownian watermelon.

1.2 NISR method for dynamic programming

1.2.1 Problem formulation

Stochastic dynamic programming equations are classic equations aris-
ing in the resolution of nonlinear evolution equations, like in stochastic
control (see [124, 14]), optimal stopping (see [96, 70]) or non-linear PDEs
(see [34, 66]). In a discrete-time setting they take the form:

YN = gN(XN),

Yi = E (gi(Yi+1, . . . , YN , Xi, . . . , XN) | Xi) , i = N − 1, . . . , 0,

for some functions gN and gi which depend on the non-linear problem
under consideration. Here X = (X0, . . . , XN) is a Markov chain val-
ued in Rd, entering also in the definition of the problem. The aim is to
compute the value function yi such that Yi = yi(Xi).

1.2.2 Literature review

Among the popular methods to solve this kind of problem, we are con-
cerned with Regression Monte Carlo (RMC) methods. One essential
part of these methods is the approximation of conditional expectations:
given i.i.d. copies (Om, Rm)16m6M of two random variables O and R,
we want to compute the conditional expectation f(O) = E(R|O). How
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to apply regression methods to compute conditional expectations is ex-
plained in [75]. Basically a global regression is performed on a dictio-
nary Φ of basis functions and the estimator f̂ is taken as

f̂ := arg inf
φ∈Φ

1

M

M∑
m=1

|Rm − φ(Om)|2

And we have the error estimation

E
(
|f − f̂ |L2(µM )

)
6 σ2 K

M
+ min

φ∈Φ
|f − f̂ |L2(µ) (1.2.1)

where K is the dimension of the vector space Φ, µ is the distribution
of O and σ2 := supo V ar(R|O = o). For more details, see [67]. We see
that if K is large, then we have to take much larger M to achieve good
estimations. This issue is particularly serious when dealing with high-
dimensional problems, since global approximation in high dimensions
needs function dictionaries of large dimension.

To implement RMC methods, we will need M simulated paths of X ,
say (X1, . . . , XM) =: X1:M , as input data. These data will help us to
build estimations of yi. Instead of the single period regression above
for two variables O and R, we are going to make multi period regres-
sions. Suppose we already have estimations for yi+1, yi+2, · · · , yN , the
simulation-based approximations yM,L

i for yi is provided using Ordinary
Least Squares (OLS) within a vector space of functions L:

yM,L
i = arg inf

ϕ∈L

1

M

M∑
m=1

∣∣∣gi(yM,L
i+1 (Xm

i+1), . . . , yM,L
N (Xm

N ), Xm
i , . . . , X

m
N )− ϕ(Xm

i )
∣∣∣2 .

Basically, we replace yi+1, yi+2, · · · , yN in the problem definition by their
estimators and we choose among all the functions in L the one which
minimizes the above error. If we use the same X1:M to make all the esti-
mations, some interdependence is introduced among them. Sometimes
when extra simulations are easy to make, we can apply re-simulation
technique and use independent input data for each regression. This re-
duces correlations and makes error analysis easier. Remark that in the
above regression, we aim at estimating the entire function yi through
one regression. In order to have good performance, we wish to have
samples of Xm

i well spread throughout the entire space. If these sample
points are too concentrated in one area, then global estimation of yi may
lack accuracy in the area which is not sufficiently represented by Xm

i .
Thus a large number of simulation is needed to have good performance
with this version of RMC methods.

This Regression Monte Carlo methodology has been investigated in
[66] to solve Backward Stochastic Differential Equations associated to
semi-linear partial differential equations (PDEs) [106], with some tight
error estimates. Generally speaking, it is well known that the number of
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simulations M has to be much larger than the dimension of the vector
space L and thus the number of coefficients we are seeking.

1.2.3 Our contribution

In contradistinction, in this thesis, we want to solve the problem in an-
other situation where we are not allowed to make as many simulations
as we want. More precisely, we are faced with the case where M is rela-
tively small (a few hundreds) and the paths are not sampled by the user
but are directly taken from historical data (X1:M is called root sample in
this situation), in the spirit of [110]. This is the most realistic situation
when we collect data and when the model which fits the data is un-
known. In short, we want to solve the problem using limited observed
data, without information on a fully specified model and without the
permission to make simulations.

Thus, as main differences with the aforementioned references:

• We do not assume that we have full information about the model
for X . We need to have information of the model structure but
we do not need to have full knowledge on the values of model
parameters. Without a fully specified model, naturally we do not
assume that we can generate as many simulations as needed to
have convergent Regression Monte Carlo methods.

• The size M of the learning samples X1, . . . , XM is relatively small,
which discards the use of a direct RMC with large dimensional L.

To overcome these major obstacles, we elaborate on two ingredients:

1. First, we partition Rd in strata (Hk)k, so that the estimated func-
tions can be computed locally on each stratum Hk. We perform
local regression in each small stratum. Since the estimation is local,
this allows to use only a small dimensional approximation space
Lk, and therefore we have only a small number of coefficients to es-
timate and it puts a lower constraint onM , the number of paths we
need, due to our error control similar to Equation (1.2.1). In gen-
eral, this stratification technique breaks the properties for having
well-behaved error propagation due to the resampling technique
introduced in the next paragraph, but we manage to provide a pre-
cise analysis in order to be able to aggregate the error estimates in
different strata. To address the problem of error propagation and
complete the convergence analysis, we use a probabilistic distri-
bution ν that has good norm-stability properties with X (see As-
sumptions 7.3.2 and 7.4.2).

2. Second, by assuming a mild model condition on X , such as arith-
metic/geometric Brownian motion, Ornstein-Uhlenbeck process
and Lévy process with inhomogeneous coefficients, we are able
to resample from the root sample of size M , a training sample of
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M simulations suitable for the stratum Hk. This resampler is non
intrusive in the sense that it only requires to know the form of the
model but not its coefficients: for example, we can handle models
with independent increments (discrete inhomogeneous Lévy pro-
cess)

U := (Xi+1 −Xi)06i6N−1, θij(x, U) := x+
∑
i6k<j

Uk

or Ornstein-Uhlenbeck processes

Xt = x0 −
∫ t

0

A(Xs − X̄s)ds+

∫ t

0

ΣsdWs

See Examples 7.2.1-7.2.2-7.2.3-7.2.4 for more details. We call this
scheme NISR (Non Intrusive Stratified Resampler), it is described
in Definition 7.2.1 and Proposition 7.2.1. To perform local regres-
sion mentioned above, we need to have samples located in each
stratum. But this is hardly guaranteed by the given historical data
due to the small number of paths. Our path resampling technique
overcomes this problem by constructing paths starting from each
stratum using historical data. This introduces a strong correlations
in different regression steps and makes the error analysis more
difficult. But we manage to get good error analysis using results
based on the concept of covering numbers and uniform concentra-
tion inequalities on function dictionary, an introduction of which
can be found in [75].

The following picture illustrates how the path construction is done
in an additive model, see Section 7.2 for detailed explanations.

FIGURE 1.4: Description of the use of the root paths to
produce new paths
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The resulting regression scheme is, to the best of our knowledge,
completely new. To sum up, the contributions of this work are the fol-
lowing:

• We design a non-intrusive stratified resample (NISR) scheme that
allows to sample from M paths of the root sample restarting from
any stratum Hk. See Section 7.2.

• We combine this with regression Monte Carlo schemes, in order
to solve one-step ahead dynamic programming equations (Sec-
tion 7.3), discrete backward stochastic differential equations (BS-
DEs) and semi-linear PDEs (Section 7.4).

• In Theorems 7.3.4 and 7.4.1, we provide quadratic error estimates,
with Cgi as the bound of |gi|, Lgi as the Lipschitz constant of gi,
ν(Hk) as the probability mass of ν in Hk, Ti,k := infϕ∈Lk |yi − ϕ|2νk
and ν(Ti,.) :=

∑K
k=1 ν(Hk)Ti,k.

Theorem. Assume Assumptions 7.2.2-7.2.3-7.3.2-7.3.3 and define y(M)
i

as in Algorithm 4. Then, for any ε > 0, we have

E
(
|y(M)
i − yi|2ν

)
6 4(1 + ε)L2

gi
C (7.3.1)E

(
|y(M)
i+1 − yi+1|2ν

)
+ 2

K∑
k=1

ν(Hk)Ti,k

+ 4c(7.3.8)(M)
|yi|2∞
M

+ 2(1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2 + 8(1 + ε)L2

gi
c(7.3.7)(M)

|yi+1|2∞
M

.

Theorem. Assume Assumptions 7.2.2-7.2.3-7.3.3-7.4.2 and define y(M)
i

as in Algorithm 4. Set

Ē(Y,M, i) := E
(
|y(M)
i − yi|2ν

)
=

K∑
k=1

ν(Hk)E
(
|y(M)
i − yi|2νk

)
.

Define

δi = 4c(7.3.8)(M)
|yi|2∞
M

+ 2ν(Ti,.) + 16
1

N

N−1∑
j=i+1

L2
fj
c(7.3.7)(M)

|yj|2∞
M

+

+ 4
dim(L)

M

(
|yN |∞ +

1

N

N∑
j=i+1

(Cfj + Lfj |yj|∞)

)2

.

Then, letting Lf := supj Lfj , we have

Ē(Y,M, i) 6 δi + 8C (7.4.1)L
2
f exp

(
8C (7.4.1)L

2
f

) 1

N

N−1∑
j=i+1

δj.
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which essentially state that

quadratic error on yi 6 approximation error + statistical error
+ interdependency error .

The approximation error is related to the best approximation of yi
on each stratum Hk, and averaged over all the strata. The statis-
tical error is bounded by C/M with a constant C which does not
depend on the number of strata: only relatively small M is nec-
essary to get low statistical errors. This is in agreement with the
motivation that the root sample has a relatively small size. The in-
terdependency error is an unusual issue, it is related to the strong
dependency between regression problems (because they all use
the same root sample). The analysis as well as the framework are
original. The error estimates take different forms according to the
problem at hand (Section 7.3 or Section 7.4).

With this new method, we are able to solve Fisher-Kolmogorov–Petro
vsky–Piscounov (FKPP) equations rising in phase transition problems
in ecology and optimal stopping problems in dimension 2 with small
number of paths and good accuracy, see Chapter 8.

FIGURE 1.5: Estimated solution of FKPP equation with
M = 40 root samples
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FIGURE 1.6: Estimation error of FKPP equation with M =
40 root samples

1.3 Perspectives

Several interesting problems related to this thesis remain to be explored:

• The convergence of Gaussian shaking transformation has been proved
in the most general case in Theorem 5.3.3. But the general conver-
gence of Gaussian shaking transformation with rejection remains
to be proved in infinite dimensional case. In the numerical exam-
ple in Section 6.11, we see that on the contrary to intuition, the
optimal performance of our estimators do not deteriorate when
the event under study becomes rarer and rarer. We suspect this to
be related to the geometric property of rare event zone and proba-
bility distribution under study.

• The shaking transformation for Poisson process allows us to apply
our methodology with jump models. The convergence in this case
remains to be analyzed.

• In our numerical examples, we see that the numerical performance
of our shaking transformation is closely related to the values of
shaking parameter and of rejection rate. How to design a way
to optimize these parameters in an automatic and adaptive way
remains to be studied.
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• We mentioned the application of our methodology in the context
of stress test. Further applications on more realistic models and
related convergence analysis remain to be conducted.

• Our NISR method may be still valid in the context of Markovian
model with only one observation over a long period. Theoretical
analysis and numerical tests in this case is not studied in this the-
sis.
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Chapter 2

Résumé en français

Cette thèse contient deux sujets différents: la simulation d’événements
rares et la résolution numérique des programmations dynamiques par
des méthodes non-intrusives et stratifiées, dont chacun est couvert dans
une partie distincte de cette thèse. Dans ce chapitre, en commençant,
nous allons présenter brièvement ces deux problèmes, donner une courte
revue de la littérature et résumer nos contributions. Des introductions et
revues de la littérature complémentaires seront données dans les parties
respectives pour les deux sujets.

2.1 Simulation d’événement rare

La simulation d’événements rares concerne l’étude des phénomènes ex-
trêmes, qui ont de très faibles probabilités d’avoir lieu, mais impliquent
des conséquences graves une fois qu’ils se produisent. Des exemples
d’événements rares sont les suivants: faillite des compagnies d’assurance
(Subsection 3.1.1), défaut des réseaux de communications (Subsection
3.1.2), configuration atypique des graphes aléatoires (Subsection 3.1.3)
et événement cygne noir dans la finance (Subsection 3.1.5). D’autres ap-
plications des événements rares peuvent également être trouvées dans
la Section 3.1.

2.1.1 Formulation probabiliste

L’étude probabiliste de l’événement rare commence habituellement avec
le cadre suivant:

Étant donné un espace probabiliste (Ω,F,P), on considère une vari-
able aléatoire (une application mesurable mesurable) X : Ω 7→ S , où S
est un espace d’état général, et un sous-ensemble mesurable A ( S. Ce
sous-ensemble A est pris tel que la probabilité que X se trouve dans A
soit extrêmement petite, où on dit que {X ∈ A} est un événement rare.
On est principalement intéressé à réaliser les buts suivants:

• Estimer la probabilité de l’événement rare P (X ∈ A)

• Échantillonner selon la distribution conditionnelle X|X ∈ A

• Estimer l’espérance conditionnellement sur l’événement rare E (ϕ(X)|X ∈ A),
pour une fonction bornée et mesurable ϕ : S 7→ R
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• Évaluer les sensibilités des événements rares par rapport aux paramètres
des modèles

Dans le cadre des événements rares, P (X ∈ A) est typiquement plus
petite que 10−4. On suppose toujours que P (X ∈ A) > 0. Remarquons
que cette formulation est très générale, dans le sens où la variable aléa-
toireX sous considération pourrait être des processus stochastiques cor-
rélés, des graphes aléatoires et d’autres systèmes aléatoires compliqués.

2.1.2 Revue de littérature

Les méthodes de Monte Carlo sont principalement utilisées pour es-
timer la probabilité et les espérances. La version la plus simple est la
méthode de Monte Carlo simple, qui est basée sur la loi des grands
nombres et le théorème de la limite centrale: si nous faisons N copies
(Xn)16n6N indépendantes et identiquement distribuées (i.i.d.) de X et
calculons la proportion empirique des copies qui se trouvent dans A,
alors elle converge vers P(X ∈ A) lorsque N tend vers l’infini et le
théorème de la limite centrale donne des intervalles de confiance cor-
respondants pour nos estimateurs. Malheureusement cette version sim-
ple de méthode de Monte Carlo ne parvient pas à donner de bons ré-
sultats dans le cas d’événement rare. Étant donné que la probabilité de
l’événement {X ∈ A} est très faible, un grand nombre de simulations
est nécessaire pour avoir une réalisation de cet événement en moyenne.
Par conséquent, le coût de calcul est prohibitif pour obtenir une préci-
sion satisfaisante pour notre estimateur. Mathématiquement, cela sig-
nifie que la variance relative de notre estimateur est trop élevée pour
fournir une bonne estimation.

Plus précisément, on prend N copies i.i.d. (Xn)16n6N de X . On note
p = P(X ∈ A) et on définit la mesure empirical d’occupation par p̂N =
1
N

∑N
n=1 1Xn∈A, alors par le théorème central limite, on a

√
N(p̂N − p)

d−→ N(0, σ2)

où σ2 = p(1− p). Donc quand N est grand, approximativement on a un
intervalle de confiance de 95% pour la valeur de p:

(p̂N − 1.96

√
p(1− p)

N
, p̂N + 1.96

√
p(1− p)

N
)

.
Cela semble très bien, comme la longueur de cet intervalle est égale

à 3.92
√

p(1−p)
N

, qui est petite pour grand N et petit p. Mais si on regarde

la longueur relative en pourcentage de p, elle est égale à 3.92
√

(1−p)
Np
≈

3.92
√

1
Np

. Si par exemple p = 10−8, même si on utilise 10 millions de
simulations deX , à la fin on a un intervalle de confiance d’une longueur
relative plus grande que 10, donc la conclusion est que p est entre 0 et
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10−7. Cet information est complètement inutile pour notre problème,
parce que l’erreur est trop grande.

Une technique pour surmonter ce problème d’avoir trop peu de réal-
isations de notre événement d’intérêt est l’échantillonnage d’importance,
voir Subsection 3.2.2. Au lieu de faire des simulations sous la mesure de
probabilité initiale, on propose une autre probabilité sous laquelle notre
événement d’intérêt {X ∈ A} est plus probable de se produire, donc
moins de simulations sont nécessaires pour avoir le même nombre de
réalisations en moyenne. Bien sûr en proposant une nouvelle mesure de
probabilité un biais est introduit dans l’estimateur et un terme de cor-
rection/poids est nécessaire pour donner un estimateur sans biais à la
fin. Cette méthode est très efficace lorsque la nouvelle mesure de proba-
bilité est facile à simuler, voir [120, 19, 67, 72, 51]. Mais en général, cette
nouvelle mesure de probabilité n’est pas si facile à trouver pour des sys-
tèmes compliqués et des études spécifiques sont nécessaires pour des
modèles différents.

Une autre idée pour la simulation d’événements rares est celle de
splitting, voir Subsection 3.2.3. Au lieu de faire des estimations directes
de P(X ∈ A), on définit une suite de cascade des sous-ensembles

S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A,

et faire des estimations pour chaque probabilité conditionnelle P(X ∈
Ak+1|X ∈ Ak), alors leur produit donne une estimation de la probabilité
de notre événement rare. Quelques études sur la méthode de splitting
peuvent être trouvées dans [84, 93]. La convergence de la méthode de
splitting adaptative a été démontrée dans [32].

FIGURE 2.1: cascade des sous-ensembles avec splitting

Un problème avec la méthode de splitting initiale est que beaucoup
de temps de simulation est passé dans les zones qui sont loin de la
zone d’événement rare. Pour surmonter ce problème, la méthode de
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RESTART est proposée, voir Subsection 3.2.4. La règle de splitting uni-
forme dans la méthode initiale est modifiée dans RESTART telle que les
efforts de simulation sont concentrés dans des zones importants, voir
[13, 125, 126, 86, 102]. Cela rend l’estimation plus efficace dans beaucoup
de cas, mais en raison des règles de splitting non uniformes, l’analyse
théorique devient plus difficile.

Plus récemment, un autre groupe de méthodes appelées IPS est pro-
posé, voir [42, 43, 31, 30, 29, 27]. Il est basé sur la théorie du système de
particules en interaction et il suit aussi l’esprit des méthodes de splitting,
à savoir l’estimateur final est donné comme un produit de plusieurs esti-
mateurs de probabilités conditionnelles, voir Subsection 3.2.5. La méth-
ode IPS imite la procédure de sélection naturelle et contient des étapes
de sélection et de mutation. La convergence de la méthode IPS adapta-
tive a été démontrée dans [33].

Il y a beaucoup d’autres outils que nous pouvons utiliser pour la sim-
ulation d’événements rares, par exemple la méthode d’entropie croisée
[119, 24], la théorie des grandes déviations [44, 40], etc. Quelques autres
travaux intéressants sont [23] sur la méthode de splitting généralisée
et [92] sur des diffusions changeant de régimes. Beaucoup d’autres
travaux peuvent être consultés sur les sites Internet des deux derniers
ateliers internationaux sur la simulation d’événements rares, RESIM 2014
et RESIM 2016.

2.1.3 Nos contributions

Applicabilité générale Selon nos expériences numériques, lorsque toutes
les méthodes peuvent être facilement implémentées, l’échantillonnage
d’importance est souvent le plus efficace. Mais des techniques spé-
cifiques sont nécessaires pour gérer chaque problème et la simulation
sous la mesure d’échantillonnage d’importance devient très consom-
matrice en temps de calcul lorsque le modèle est compliqué. Nous vi-
sons à la conception d’une nouvelle méthodologie qui a besoin de peu
d’ajustements lorsqu’elle est appliquée sur des modèles différents.

Point de vue statique sur l’espace des trajectoires, pas d’hypothèse
markovienne et la méthode IPS Combinée avec différents types de
techniques, l’idée de splitting applique plus généralement que l’échantillonnage
d’importance. Mais il repose toujours sur plusieurs hypothèses. Lorsque
le splitting, RESTART ou les méthodes IPS sont appliqués avec un mod-
èle dynamique, les hypothèses markoviennes sont généralement néces-
saires. Si le système considéré n’est pas donné comme un modèle markovien,
on peut parfois augmenter l’espace d’état. Mais cela rend les algorithmes
un peu plus pénibles et en plus la markovianisation n’est pas toujours
possible. Dans cette thèse, nous surmontons ce problème en adoptant
un point de vue statique sur les modèles dynamiques. Ainsi, nous n’avons
plus besoin des hypothèses markoviennes. Ce point de vue statique ap-
porte aussi d’autres avantages. Lorsqu’il est combiné avec la théorie des
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systèmes de particules en interaction, elle donne une nouvelle méthode
IPS, voir 5.2.2. Lorsqu’on applique cette version de la méthode IPS sur
les modèles dynamiques, la discrétisation du temps n’est plus un prob-
lème dont il faut se soucier. L’explosion d’erreur avec les méthodes IPS
existantes lorsque la discrétisation de temps tend vers zéro n’est plus ob-
servée avec notre nouvelle version de la méthode IPS. Ce point de vue
statique est implicitement introduit dans notre présentation de transfor-
mation de shaking dans la Section 5.2, qui traite des variables aléatoires
et processus stochastiques d’une manière unifiée.

Nous allons illustrer les explications ci-dessus par un exemple sim-
ple. Supposons que nous avons affaire à la réalisation d’un processus
d’Ornstein-Uhlenbeck Zt entre le temps t = 0 et t = 1 et nous voulons
calculer la probabilité que la valeur maximale de Zt au cours de cette
période soit plus grande que 10. Nous prenons le grille du temps ti = i

N

pour un certain N . Si nous appliquons la méthode IPS avec le point de
vue dynamique comme dans [27], nous allons faire des simulations i.i.d.
pour le temps t1, et sélectionner les chemins qui vont vers le haut plus
vite que d’autres, appliquer l’étape de mutation pour simuler pour le
temps t2, puis sélectionner à nouveau ces chemins qui vont vers le haut
plus vite que d’autres. Nous répétons cette procédure jusqu’au temps
tn. Avec ce point de vue dynamique, les étapes de sélection et mutation
sont effectuées au cours de la simulation des chemins browniens. Par
contre, si nous appliquons le point de vue statique, la trajectoire entière
deZt entre le temps 0 et 1 est traitée comme un point indivisible et aucun
chemin partiel sera simulé. Nous allons faire la simulation de chemins
entiers, sélectionner ceux qui sont plus près de la zone d’événement rare
et appliquer la transformation de mutation sur l’espace de chemin. Le
graphe suivant montre des exemples de transformations de shaking. Le
chemin bleu est celui initial. Le chemin vert est obtenu en appliquant
une transformation de shaking légère sur le chemin bleu entier alors
que le chemin rouge est obtenu en appliquant une transformation de
shaking forte sur le chemin bleu entier.
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FIGURE 2.2: Appliquer la transformation de shak-
ing gaussienne sur le chemin entier d’un processus
d’Ornstein-Uhlenlbeck avec des différents paramètres de
shaking. Bleu: chemin avant shaking, vert et rouge:

chemins après shaking

Estimateurs indépendants des probabilités conditionnelles par la méth-
ode de POP Un autre problème avec l’idée de splitting est la forte in-
terdépendance entre les différents estimateurs des probabilités condi-
tionnelles. Bien que l’estimateur final soit donné comme un produit, évi-
tant ainsi la difficulté particulière de simulation liée à l’événement rare,
les éléments dans le produit ont de fortes corrélations. Il est souhaitable
de disposer d’estimations indépendantes pour chaque probabilité con-
ditionnelle et nous nous attendons naturellement à voir des améliora-
tions sur les performances numériques. Nous avons réussi à atteindre
cet objectif en utilisant la théorie de l’ergodicité des chaînes de Markov.
Plus précisément, nous allons concevoir une chaîne de Markov dont la
mesure d’occupation empirique se rapproche de la distribution condi-
tionnelle du système étudiée et des différentes chaînes de Markov pour
différentes distributions conditionnelles évoluent séparément. Comme
nous le verrons, cette méthode ne donne pas seulement des estima-
teurs indépendants pour chaque probabilité conditionnelle, mais per-
met également des implémentations parallèles, ce qui améliore encore
la performance numérique. Nous appelons cette nouvelle méthode POP
(Parallel-One-Path), qui est présentée dans Subsection 5.2.3, ainsi que
des remarques sur l’implémentation.
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Brièvement, la méthode de POP repose sur le théorème ergodique
trajectoriel de Birkhoff. Si nous pouvons concevoir une chaîne de Markov
ergodique (Zn)n>1 qui a comme distribution stationnaire X|X ∈ Ak ,
alors

1

N

N∑
n=1

1Zn∈Ak+1

converge vers P (X ∈ Ak+1|X ∈ Ak) lorsque N tend vers l’infini. Nous
avons réussi à trouver une telle chaîne de Markov et ses constructions
pour les différentsAk peuvent être indépendantes. Cela est rendu possi-
ble par une transition markovienne dans l’espace des trajectoires. Com-
binée avec la technique de rejet, elle donne une autre transition markovi-
enne qui préserve la loi conditionnelle de X .

Une implémentation un peu plus commode est donnée dans l’algorithme
2, où l’interdépendance très faible existe. Mais cette interdépendance
peut être éliminée avec des efforts de calcul négligeables, comme ex-
pliqué dans Subsection 5.2.3.

FIGURE 2.3: Illustration de la méthode de POP pour cal-
culer la probabilité qu’un point X se trouve au-dessus du

niveau 5

Transformations de shaking Sous notre point de vue statique, les méth-
odes de IPS et de POP sont implémentées avec des transitions markovi-
ennes réversibles, que nous appelons des transformations de shaking.
Shaking est le mot clé qui résume l’esprit de nos méthodes, à savoir
passer au travers de la zone d’événement rare par de légères perturba-
tions et préserver la distribution conditionnelle initiale.

Au premier coup d’œil, des transitions de type Metropolis-Hasting
sont des candidats naturels pour faire la transformation de shaking dans
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le cas fini-dimensionnel. Mais ces transitions ne sont pas directes à
implémenter et le calibration de la force de shaking devient difficile
avec elles. Elles ne sont pas efficaces d’un point de vue numérique
non plus, comme expliqué dans Subsection 5.4.4. Dans cette thèse, nous
proposons une façon particulière de concevoir notre transformation de
shaking dans la Section 5.4, qui est très facile à implémenter et à calibrer
pour atteindre la meilleure performance numérique. Cela se fait des
manières spécifiques pour les variables Poisson et géométriques. Pour
beaucoup de variables aléatoires continues, ceci est rendu possible par
une identité de distribution élégante appelée l’algèbre de Gamma-Beta:

(Γa1,b,Γa2,b)
d
= (Ba1,a2Γa1+a2,b, (1−Ba1,a2)Γa1+a2,b)

où Γ etB représentent des distributions indépendantes de Gamma et de
Beta avec des paramètres respectifs. Par cette identité, on peut constru-
ire des transformations de shaking pour la loi Gamma, et donc pour la
loi exponentielle, qui est un cas particulier des lois Gamma. Ensuite, par
l’identité

U
d
= exp(−Exp(1))

où U est une variable uniforme dans [0, 1] et Exp(1) est une variable ex-
ponentielle, on peut construire des transformation de shaking pour la
loi uniforme:

K(U) = UBeta(1−p,p) exp(−Gamma(p, 1))

La même idée se généralise sur beaucoup d’autres variables comme les
variables Cauchy et les variables χ2(k). Notre façon de construire la
transformation de shaking sans utiliser la fonction de densité rend la
généralisation de notre méthodologie aux cas infini-dimensionnel im-
médiate. Par exemple on peut construire des transformations de shak-
ing pour le processus de Poisson composé en utilisant sa décomposi-
tion classique par coloriage et superposition. Comme cela sera expliqué
dans Section 5.5, notre transformation de shaking est en quelque sorte
une bonne transformation de type Metropolis-Hasting, donnée avec une
densité de transition implicite, car elle évite une étape de rejet. Ces
identités probabilistes que nous trouvons sont également intéressants
en elles-mêmes.

L’analyse de sensibilité Une autre question que nous aborderons dans
Section 5.7 est la sensibilité de statistiques des événements rares par rap-
port aux paramètres du modèle. Combiné avec le calcul de Malliavin,
l’idée sous-jacente dans la méthode POP nous donne un moyen éton-
namment facile d’évaluer la sensibilité. Plus précisément, nous allons
montrer que dans beaucoup de cas la sensibilité relative de l’événement
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rare est plus facile à évaluer que la probabilité de l’événement rare:

∂θE
(
Φθ1Zθ∈A

)
E (Φθ1Zθ∈A)

=
E
(
I(Zθ,Φθ) | Zθ ∈ A

)
E (Φθ | Zθ ∈ A)

.

On veut calculer la sensibilité comme donnée par le terme ci-dessus à
gauche. Par le calcul de Malliavin et la formule de Bayes, cette sensibilité
peut aussi s’écrire comme le terme à droite, avec certaine I(Zθ,Φθ) à pré-
ciser. Si on peut construire une chaîne de Markov qui estime E

(
φ | Zθ ∈ A

)
pour toutes les variables φ, E

(
I(Zθ,Φθ) | Zθ ∈ A

)
et E

(
Φθ | Zθ ∈ A

)
peu-

vent être estimées à la fois par cette chaîne de Markov. Donc seulement
une chaîne de Markov est utilisée pour estimer la sensibilité, alors que
plusieurs chaînes sont utilisées pour estimer la probabilité des événe-
ments rares. Voir Proposition 5.7.1 et Théorème 5.7.2 et les explications
entre eux.

La méthode de POP adaptative et IPS avec plus de resamplings Pour
faire un bon choix de sous-ensembles intermédiaires, nous proposons
dans Section 5.6 une version adaptative de la méthode de POP. Nous
proposons également dans Section 5.9 une méthode IPS avec plus de re-
samlings et moins de particules et nous donnons des expériences numériques
pour montrer les performances.

Les analyses de convergence de nos méthodes Les analyses de con-
vergence de nos méthodes sont également données. Nous allons mon-
trer la L2 convergence de nos méthodes de POP et IPS sous plusieurs
hypothèses dans Subsection 5.2.4. Ensuite, la convergence presque sûre
de la méthode de POP est prouvée dans Section 5.5 pour tous les cas
fini-dimensionnels, sans hypothèses supplémentaires. La convergence
presque sûre de notre méthode de POP adaptative est également dé-
montrée dans Subsection 5.6.2, en utilisant les résultats sur l’estimation
de quantile par la chaîne de Markov, voir Théorème 5.6.1

Résultats sur les transformations de shaking gaussien La transfor-
mation de shaking dans le cadre gaussien est particulièrement intéres-
sante. Nous montrerons dans Subsection 5.3.2 que dans le cas uni-dimensionnel,
une propriété explicite de shaking gaussienne peut être démontrée via
des polynômes Hermite, voir Lemme 5.3.1. Le L2 convergence des shak-
ings gaussiens dans le cas général, y compris les cas infini-dimensionnels,
sont également démontrées dans Subsection 5.3.3 en utilisant l’inégalité
Gebelein généralisée, voir Théorème 5.3.3.

L’échantillonnage d’événement rare Comment appliquer nos techniques
pour faire l’échantillonnage d’événement rare est discuté dans Section
5.8. Notre méthode de simulation est utilisée dans les stress tests fi-
nanciers et les applications intéressantes comme la pastèque brownien,
voir Sections 6.7, 6.8 and 6.13.
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Enfin, de nombreux exemples numériques sont discutés pour montrer
les applications de nos méthodes et comment bien choisir les paramètres,
dans Chapitre 6. On donne des exemples sur

• Maximum et oscillation d’un processus Ornstein-Uhlenbeck.

• Probabilité de ruine en assurance avec un modèle du processus de
Poisson composé.

• Réseau de Jackson dans le système de files d’attente.

• Configuration atypique d’un graphe aléatoire du type Erdös-Rényi.

• Processus de Hawkes sur des phénomènes auto-excitants.

• Mauvaise spécification et robustesse des modèles dans le hedging
des options.

• Probabilité de défaut d’un portefeuille de crédit.

• Mouvement brownien fractionnaire pour modéliser la volatilité.

• Sensibilités des options en dehors de la monnaie.

• Probabilité de survie en dynamique de population.

• Simulation de pastèque brownien.

2.2 Méthode de NISR pour la programmation
dynamique

2.2.1 Formulation du problème

Les équations des programmations dynamiques stochastiques sont des
équations classiques qui apparaissent dans la résolution des équations
d’évolution non-linéaires, comme dans le contrôle stochastique (voir
[124, 14]), l’arrêt optimal (voir [96, 70]) et les EDPs non-linéaires (voir
[34, 66]). Dans un cadre discret, le problème est formulé ainsi:

YN = gN(XN),

Yi = E (gi(Yi+1, . . . , YN , Xi, . . . , XN) | Xi) , i = N − 1, . . . , 0,

pour certaines fonctions gN et gi qui dépendent du problème non-linéaire
étudié. IciX = (X0, . . . , XN) est une chaîne de Markov qui prend valeurs
dans Rd et qui est donnée dans la définition du problème. Le but est de
calculer les fonctions yi telles que Yi = yi(Xi).



2.2. Méthode de NISR pour la programmation dynamique 27

2.2.2 Revue de littérature

Parmi les méthodes populaires pour résoudre ce genre de problème, on
s’intéresse aux méthodes de régression Monte Carlo (RMC). Une par-
tie essentielle de ces méthodes est l’approximation des espérances con-
ditionnelles: étant données des copies i.i.d. (Om, Rm)16m6M de deux
variables aléatoires O et R, on veut calculer l’espérance conditionnelle
f(O) = E(R|O). Comment appliquer des méthodes de régression pour
calculer l’espérance conditionnelle est expliqué dans [75]. Essentielle-
ment, une régression globale est effectuée sur un dictionnaire Φ de fonc-
tions de base et l’estimateur f̂ est donné par

f̂ := arg inf
φ∈Φ

1

M

M∑
m=1

|Rm − φ(Om)|2

On a une estimation d’erreur

E
(
|f − f̂ |L2(µM )

)
6 σ2 K

M
+ min

φ∈Φ
|f − f̂ |L2(µ) (2.2.1)

où K est la dimension de l’espace vectoriel Φ, µ est la distribution de O
et σ2 := supo V ar(R|O = o). Pour plus de détails, voir [67]. On voit ici
que si K est grand, il est nécessaire de prendre M encore beaucoup plus
grand pour avoir de bonnes estimations. Ce problème est particulière-
ment sévère lorsqu’on regarde des applications en grande dimension,
parce que l’approximation globale dans les grandes dimensions néces-
site un dictionnaire des fonctions de grande dimension.

Pour implémenter les méthodes de RMC, on va avoir besoin de simuler
des trajectoires de X , notés (X1, . . . , XM) =: X1:M , comme les données
d’entrée des méthodes. Et ces données vont être utilisées pour constru-
ire des estimations de yi. Au lieu de la régression sur une seul étape,
on va faire des régressions sur plusieurs étapes. Supposons qu’on a
déjà des estimations pour yi+1, yi+2, · · · , yN , l’approximation yM,L

i pour
yi basée sur les simulations est donnée en utilisant la solution aux moin-
dres carrées (Ordinary Least Square, OLS) dans un espace vectoriel des
fonctions L:

yM,L
i = arg inf

ϕ∈L

1

M

M∑
m=1

∣∣∣gi(yM,L
i+1 (Xm

i+1), . . . , yM,L
N (Xm

N ), Xm
i , . . . , X

m
N )− ϕ(Xm

i )
∣∣∣2 .

Essentiellement, on remplace yi+1, yi+2, · · · , yn dans la définition du prob-
lème par leurs estimateurs et on choisit parmi toutes les fonctions dans
L celle qui minimise l’erreur ci-dessus . Comme on utilise les mêmes
X1:M pour faire toutes les estimations, une certaine interdépendance est
introduite parmi eux. Parfois, lorsque des simulations supplémentaires
sont faciles à faire, on peut appliquer la technique de re-simulation et
alors utiliser des simulations indépendantes pour chaque régression.
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Cela réduit les corrélations et rend l’analyse des erreurs plus facile. Re-
marquons que dans la régression ci-dessus, on vise à estimer l’ensemble
de la fonction yi par une seule régression. Afin d’avoir une bonne perfor-
mance, on souhaite avoir des échantillons de Xm

i suffisamment répartis
dans tout l’espace. Si les points échantillonnés sont trop concentrés dans
certaines zones, l’estimation globale de yi peut manquer de précision
dans la zone qui n’est pas assez représentée par Xm

i . Ainsi, un grand
nombre de simulation est nécessaire pour avoir une bonne performance
avec cette version de méthodes RMC.

Ces méthodes de Régression Monte Carlo ont été étudiées dans [66]
pour résoudre les équations différentielles stochastiques rétrogrades as-
sociés à des équations aux dérivées partielles semi-linéaires [106], avec
des estimations d’erreur fines. Généralement, il est bien connu que
le nombre de simulations M doit être beaucoup plus grand que la di-
mension de l’espace vectoriel L et donc le nombre de coefficients qu’on
cherche.

2.2.3 Nos contributions

A la différence des méthodes présentées précédemment, dans cette thèse,
nous voulons résoudre le problème dans une autre situation où nous ne
sommes pas autorisés à faire autant de simulations que nous voulons.
Plus précisément, nous sommes confrontés au cas où M est relative-
ment faible (quelques centaines) et les chemins ne sont pas échantillon-
nées par nous-même mais sont directement pris à partir de données his-
toriques (X1:M est appelé root sample dans cette situation), dans l’esprit
de [110]. C’est la situation la plus réaliste lorsque nous collectons des
données et quand le modèle qui correspond aux données est inconnu.
En bref, nous voulons résoudre le problème en utilisant les données ob-
servées avec une taille limitée, sans information sur un modèle entière-
ment spécifié et sans autorisation de faire des simulations du modèle.

Ainsi, les différences principales avec les références mentionnées ci-
dessus sont:

• Nous ne supposons pas que nous avons des informations com-
plètes sur le modèle pour X . Nous avons besoin de connaître le
type de modèle, mais nous n’avons pas besoin de connaître les
valeurs des paramètres du modèle. Sans un modèle entièrement
spécifié, naturellement, nous ne supposons pas que nous pouvons
générer autant de simulations que nécessaire.

• La taille M des échantillons d’apprentissage X1, . . . , XM est rela-
tivement petite, ce qui écarte la possibilité d’appliquer RMC di-
rectement sur un dictionnaire de fonctions L avec grande dimen-
sion.

Pour surmonter ces obstacles majeurs, nous combinons sur deux in-
grédients:
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1. Tout d’abord, nous divisons Rd en des strates (Hk)k tel que les
fonctions estimées peuvent être calculées localement sur chaque
strate Hk. Nous effectuons la régression locale dans chaque petit
strate. Comme l’estimation est locale, nous avons besoin d’utiliser
seulement une espace d’approximation Lk avec petite dimension,
et donc nous avons seulement un petit nombre de coefficients à
estimer et cela met une contrainte souple sur M , le nombre de
chemins dont nous avons besoin, grâce à des estimations d’erreur
similaires à l’Équation (2.2.1). En général, cette technique de strati-
fication ne conserve pas les propriétés garantissant la propagation
d’erreur bien réglée à cause de la technique de ré-échantillonnage
introduit dans le paragraphe suivant, mais nous réussissons à fournir
une analyse précise pour agréger les estimations d’erreur dans les
différentes strates. Pour résoudre le problème de la propagation
d’erreur, nous utilisons une distribution de probabilité ν qui a de
bonnes propriétés de stabilité de normes avec X (voir Hypothèses
7.3.2 et 7.4.2).

2. Deuxièmement, en faisant des hypothèses souples sur le modèle
deX , comme des mouvements browniens arithmétiques ou géométriques,
processus d’Ornstein-Uhlenbeck et processus de Lévy avec des co-
efficients non-homogènes, nous sommes en mesure de ré-échantillonner
à partir des root samples des échantillons d’apprentissage de taille M
partant de chaque strate Hk. Ce ré-échantillonnage est non intrusif
dans le sens où il ne nécessite que de connaître le type du modèle
mais pas ses coefficients: par exemple, nous pouvons prendre des
modèles avec des incréments indépendants (processus de Lévy in-
homogène et discret)

U := (Xi+1 −Xi)06i6N−1, θij(x, U) := x+
∑
i6k<j

Uk

ou des processus Ornstein-Uhlenbeck

Xt = x0 −
∫ t

0

A(Xs − X̄s)ds+

∫ t

0

ΣsdWs

Voir Exemples 7.2.1-7.2.2-7.2.3-7.2.4 pour plus de détails. Nous ap-
pelons ce schéma NISR (Non Intrusif Stratified Resampler), il est
décrit dans Définition 7.2.1 et Proposition 7.2.1. Pour effectuer la
régression locale mentionnée ci-dessus, nous avons besoin d’échantillonner
dans chaque strate. Mais cela n’est pas garanti par les données his-
toriques observées en raison du petit nombre de chemins. Notre
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technique de ré-échantillonnage surmonte ce problème en constru-
isant des chemins à partir de chaque strate et en utilisant des don-
nées historiques. Cela introduit une forte corrélation dans dif-
férentes étapes de régression et rend l’analyse d’erreur plus dif-
ficile. Mais nous parvenons à obtenir une bonne analyse des er-
reurs en utilisant les résultats basés sur le concept de nombre de
recouvrement et les inégalités de concentration uniforme sur les
dictionnaires des fonctions, dont on peut trouver une introduction
dans [75].

L’image suivante montre comment la construction du chemin se fait
dans un modèle additif, voir Section 7.2 pour des explications détaillées.

FIGURE 2.4: Description sur comment utiliser les root
samples pour construire de nouvelles trajectoires

Le schéma de régression ainsi proposé est, à notre connaissance, com-
plètement nouveau. Pour résumer, les contributions de ce travail sont
les suivants:

• Nous concevons un schéma de rééchantillonnage stratifié non in-
trusif qui permet d’échantillonner à partir de root samples des
chemins partant de chaque strate Hk. Voir Section 7.2.

• Nous combinons ceci avec des régressions Monte Carlo, en vue
de résoudre les équations des programmations dynamiques (Sec-
tion 7.3), équations discrètes différentielles stochastiques rétrogrades
(EDSR) et EDPs semi-linéaires (Section 7.4).

• Dans les Théorèmes 7.3.4 et 7.4.1, nous donnons l’estimation des
erreurs quadratiques de la manière suivante, avec Cgi comme la
borne de |gi|, Lgi comme la constante de Lipschitz de gi, ν(Hk)
comme le mass de probabilité de ν dans Hk, Ti,k := infϕ∈Lk |yi−ϕ|2νk
et ν(Ti,.) :=

∑K
k=1 ν(Hk)Ti,k.
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Theorem. Supposons les Hypothèses 7.2.2-7.2.3-7.3.2-7.3.3 et prenons
y

(M)
i comme dans Algorithme 4. Alors, pour tout ε > 0, on a

E
(
|y(M)
i − yi|2ν

)
6 4(1 + ε)L2

gi
C (7.3.1)E

(
|y(M)
i+1 − yi+1|2ν

)
+ 2

K∑
k=1

ν(Hk)Ti,k

+ 4c(7.3.8)(M)
|yi|2∞
M

+ 2(1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2 + 8(1 + ε)L2

gi
c(7.3.7)(M)

|yi+1|2∞
M

.

Theorem. Supposons les Hypothèses 7.2.2-7.2.3-7.3.3-7.4.2 et prenons
y

(M)
i comme dans Algorithme 4. Fixons

Ē(Y,M, i) := E
(
|y(M)
i − yi|2ν

)
=

K∑
k=1

ν(Hk)E
(
|y(M)
i − yi|2νk

)
.

Définissons

δi = 4c(7.3.8)(M)
|yi|2∞
M

+ 2ν(Ti,.) + 16
1

N

N−1∑
j=i+1

L2
fj
c(7.3.7)(M)

|yj|2∞
M

+

+ 4
dim(L)

M

(
|yN |∞ +

1

N

N∑
j=i+1

(Cfj + Lfj |yj|∞)

)2

.

Alors, avec Lf := supj Lfj , on a

Ē(Y,M, i) 6 δi + 8C (7.4.1)L
2
f exp

(
8C (7.4.1)L

2
f

) 1

N

N−1∑
j=i+1

δj.

qui essentiellement consiste à dire

erreur quadratique de yi 6 erreur d’approximation + erreur statistique
+ erreur d’interdépendance .

L’erreur d’approximation est liée à la meilleure approximation de
yi sur chaque strate Hk, et la moyenne sur toutes les strates. L’erreur
statistique est bornée parC/M avec une constante C qui ne dépend
pas du nombre de strates: un relativement petit M est suffisant
pour obtenir des erreurs statistiques faibles. Ceci est en accord
avec la motivation que le root samples a une taille relativement
petite. L’erreur de l’interdépendance est une question inhabituelle,
elle est liée à la forte dépendance entre les problèmes de régression
(parce qu’ils utilisent tous les même root samples). L’analyse dans
le cadre est ainsi originale. Les estimations d’erreur prennent des
formes différentes selon les problèmes considérés (Section 7.3 ou
Section 7.4).
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Avec cette nouvelle méthode, on est capable de résoudre les équa-
tions de Fisher-Kolmogorov–Petrovsky–Piscounov (FKPP) liées aux prob-
lèmes de transition de phases en écologie et les problèmes d’arrêt opti-
mal en dimension 2 avec un petit nombre de trajectoires et de bonne
précisions, voir Chapitre 8.

FIGURE 2.5: Solution estimée de l’équation FKPP avec
M = 40
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FIGURE 2.6: Erreur d’estimation de l’équation FKPP avec
M = 40

2.3 Perspectives

Certains sujets intéressants liés à cette thèse restent à être explorés:

• La convergence de transformation de shaking gaussienne a été dé-
montrée dans le cas le plus général dans Théorème 5.3.3. Mais
la convergence générale de transformation de shaking gaussienne
avec rejet reste à être prouvée dans le cas infini-dimensionnel. Dans
l’exemple numérique du Section 6.11, on voit que contrairement
à l’intuition, la meilleure performance de nos estimateurs ne se
détériore pas lorsque l’événement étudié devient de plus en plus
rare. Nous soupçonnons que c’est grâce à des propriétés géométriques
de la zone d’événement rare et de la distribution de probabilité
considéré.

• La transformation de shaking pour les processus de Poisson nous
permet d’appliquer notre méthodologie sur les modèles de saut.
La convergence dans ces cas reste à être analysée.

• Dans nos exemples numériques, on voit que la performance numérique
de notre transformation de shaking est très liée aux valeur du paramètre
de shaking et du taux de rejet. Comment élaborer une manière au-
tomatique d’optimiser ces paramètres reste à être étudié.
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• On a mentionné l’application de notre méthodologie dans le con-
texte de stress test. Des applications plus profondes sur des mod-
èles plus réalistes et des analyses de convergence reste à être ex-
plorés.

• Notre méthode de NISR pourrait marcher aussi dans le contexte
du modèle markovien avec une seule observation sur une longue
période. L’analyse théorique et des tests numériques n’ont pas été
faits dans cette thèse.
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Rare Event Simulation
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Chapter 3

Introduction

The analysis of rare events is an important issue which arises in econ-
omy, engineering, life sciences and many other fields. Various applica-
tions can be found in actuarial risks [5], communication network relia-
bility [115], aircraft safety [111], social networks and epidemics analy-
sis[21] and other domains, see [25, 117] and references therein. Before
talking in more details about the practical implications and different nu-
merical methods for rare event simulation, we will at first give several
examples.

3.1 Examples of rare events

3.1.1 Insurance company default

The capital reserve of an insurance company is modeled by

Rt = x+ ct−
Nt∑
k=1

Zk

where x is the initial reserve, c is the premium rate, N is a Poisson pro-
cess with intensity λ and (Zk)k are amounts of claims in case of accident
or natural disaster [5]. The amounts of claims (Zk)k are supposed to
follow different probability distributions in different settings. From the
perspective of the company manager, we would like to compute

P
(

min
06t6T

Rt 6 0

)
i.e. the probability of bankruptcy before T . This probability can also be
written in terms of hitting time

P (τ0 6 T ) where τ0 = inf{t, Rt 6 0}

This information could help to identify the level of risks that the com-
pany is dealing with. There have been many studies on this problem,
named ruin probability in insurance science, see for instance [108, 121].
Moreover, the manager may also be wondering: what are the typical
scenarios leading to the default of the company?
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3.1.2 Communication network reliability

Suppose we have a 2-nodes Jackson network (see [115, Chapter 4] for
definition). All the costumers arrive at node 1 and when they are served
they go to node 2. The customers’ arrival times are jump times of a
Poisson process with intensity λ. The serving time at node 1 and at node
2 are respectively exponential variables with parameters µ1 and µ2.

FIGURE 3.1: 2-nodes Jackson network

Our purpose is to compute

P( max
06t6T

Mt > K)

where Mt denotes the number of customers in the system at time t. In
other words, we want to know the probability that at some time before
T , the number of customers in the system reaches a fixed level K

In a communication network, those to-be-served customers are infor-
mation packages transmitted between distant servers. Since each server
has a given capacity, when the number of packages waiting to be pro-
cessed goes out of the limit, the system is saturated and the communi-
cation network breaks down. That is what happens during a network
collapse, such as in the recent Brussels attacks1.

3.1.3 Random graph

Random graph is the common tool to model the structure of social net-
work, for instance friend groups on Facebook, and the dynamics of a
financial network, such as the effect of risk contagion.

An Erdös-Rényi random graph [21] is a graph with V vertices where
every pair of vertices are connected with probability q, independently
of each other. It constitutes a toy model for the study of social networks
and epidemic. The graph is presented by the upper triangular matrix
X := (Xij)16i<j6V , where

Xij =

{
1, if vertices i and j are connected
0, otherwise

1http://www.independent.co.uk/life-style/gadgets-and-tech/news/brussels-
attacks-phone-networks-zaventem-airport-explosion-maelbeek-metro-live-updates-
a6945571.html
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If vertices i, j and k are all connected to each other, they form a triangle.
Thus the number of triangles in the graph is given by

T (X) :=
∑

16i<j<k6V

XijXjkXik.

We easily check that

E(T (X)) =
V (V − 1)(V − 2)

6
q3

We would like to consider the probability of the deviation event

{T (X) >
V (V − 1)(V − 2)

6
t3} for t > q

This problem has attracted recent interest in [35] with theoretical results
and in [16] for numerical computation.

FIGURE 3.2: An example of random graph

3.1.4 Combinatorics, counting problem

The previous random graph problem can also be formulated from a dif-
ferent perspective. Among all the possible configurations, how many
configurations contain more than V (V−1)(V−2)

6
t3 triangles? This is a com-

binatorics problem where an explicit answer is not obvious and a direct
counting is prohibitively difficult since the total number of configura-
tions is 2

V (V−1)
2 . But by taking q = 1

2
, thus attributing to each configu-

ration equal chance to appear, we can get an explicit expression of the
number of all such configurations as

P
(
T (X) >

V (V − 1)(V − 2)

6
t3
)

2
V (V−1)

2 (3.1.1)
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Therefore an estimation of P
(
T (X) > V (V−1)(V−2)

6
t3
)

gives an approxi-
mation of (3.1.1). Some other applications of rare event simulation tech-
niques in this direction can be found in [118, 22].

3.1.5 Finance

Rare events find many applications in financial settings, where they are
given an elegant name black swan(see [123]). A typical example of fi-
nancial rare event is the financial crisis. During the last thirty years,
financial crises have repeatedly occurred, ranging from the Black Mon-
day in 1987 to the recent Chinese stock market crash in 2015, passing
through the financial crisis of 2007-2008 triggered by over-valued sub-
prime mortgages. As a consequence, banks, insurance companies and
regulators are paying more and more attention to the quantification of
risk in all its forms (market risk, credit risk, operational risk) and to its
management, in particular in the tails and extremes. In the 90’s, the
value at risk (VaR) appeared as a common choice of metric to measure
the risk in the tails at a given probability (typically 95%) and has been
promoted by the Basel committee. Then, convex risk measures, like Ex-
pected Shortfall, have emerged to better account for the severity of po-
tential losses and not only for their frequency. More recently, increasing
attention has also been paid to stress tests and systemic risk, which are
related to extreme scenarios used to evaluate the resilience of individual
banks or entire banking system in case of pre-specified unlikely events.
All these justify the recent increasing interest in analysis of rare events
in finance.

Far from being exhaustive, we give a few examples showing impli-
cations of rare events in finance, which are diverse enough to cover a
wide range of possible situations.

• The first relevant issue is model risk [39], i.e. the impact of using a
misspecified model for hedging financial positions (see Section 6.7
for a detailed example following the analysis of [50, 28]).

• One may also be concerned with credit risk, for which a typical
problem is to estimate certain default probabilities required for
pricing Credit Default Swaps. An example inspired from [27, 26]
will be considered in Section 6.8.

• A third interesting problem is to estimate far-from-the-money im-
plied volatilities (IV). Due to the lack of data for extreme values,
standard calibration methods fail to apply here. In the recent work
[59, 58], the volatility of S&P 500 index is modeled by fractional
Brownian motion (fBM). A study of deep tail of IV in this kind of
model will be discussed in Section 6.9

• Another example of market risk comes from the evaluation of deep
out-of-the-money options. In Section 6.10, we provide an example
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by considering options written on a portfolio of assets and esti-
mate sensitivities with respect to different portfolio and model pa-
rameters.

The above examples may give a feeling of how rare event simulation
intervenes in different domains of real life. These illustrations are of
course far from exhausted and we will have future discussion on them
in later chapters. Instead of lengthening the list, we will go to next sec-
tion and talk about the numerical approaches to address rare event prob-
lems and their respective advantages and shortcomings. More examples
of rare events will be given as the story goes on and we show the imple-
mentations of different methods.

3.2 Existing methods in the literature

Different methods for rare event simulation are grouped under the name
Monte Carlo, which is originally the name of a casino in Monaco2. We
will start by specifying the probabilistic setting, which takes a general
form to include both finite and infinite dimensional situations. The state
space is described by a measurable space (S, S), where (S, dS) is a metric
space and S is the Borel sigma-field generated by its open sets. Given a
probability space (Ω,F,P), we consider a random variable (measurable
mapping) X : Ω 7→ S and a measurable set A ( S, then the rare event
under investigation is defined by {X ∈ A}. We are mainly interested in
achieving the following goals

• to estimate the rare event probability P (X ∈ A)

• to sample from the conditional distribution X|X ∈ A

• to estimate the conditional expectation on rare event E (ϕ(X)|X ∈ A),
for bounded measurable functions ϕ : S 7→ R

• to evaluate the sensitivity of these rare event statistics with respect
to model parameters

In the setting of rare event, P (X ∈ A) is usually less than 10−4. To
avoid uninteresting situations, from now on we always assume that
P (X ∈ A) > 0.

3.2.1 Plain Monte Carlo method and why it fails

The plain Monte Carlo method is based on the central limit theorem: if
we makeN independent and identically distributed (i.i.d.) copy (Xn)16n6N

2For more details about the story behind this puzzling name, see the wikipedia
page for Monte Carlo method
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of X and compute the empirical proportion of copies which lie in A,
then it converges to P(X ∈ A) as N goes to infinity. More precisely, set
p = P(X ∈ A) and define the empirical occupation measure by

p̂N =
1

N

N∑
n=1

1Xn∈A

then by central limit theorem, we have

√
N(p̂N − p)

d−→ N(0, σ2)

where σ2 is the variance of the random variable 1X∈A, i.e. σ2 = p(1 −
p). Thus, when N is large, approximately we can get a 95% confidence
interval

(p̂N − 1.96

√
p(1− p)

N
, p̂N + 1.96

√
p(1− p)

N
)

for p.
This may look good at first glance, since the length of this interval is

equal to 3.92
√

p(1−p)
N

, which is small with large N and small p. But if we
look at the relative length in percentage of p, it is equal to

3.92

√
(1− p)
Np

≈ 3.92

√
1

Np

If for example p = 10−8, even if we use 10 million simulations ofX , at the
end we get a confidence interval of relative length more than 10, so the
final conclusion may be that p is between 0 and 10−7. This information
is completely useless in our problem, since the possible error goes far
beyond our tolerance.

3.2.2 Importance sampling

The problem with plain Monte Carlo method is that the probability of
having a realization of X inside A is too small under the original prob-
ability distribution. One way to fix the problem is to design another
probability distribution under which the event {X ∈ A} is more likely
to happen. The idea will be illustrated with the following simple exam-
ple.

Example 3.2.1. X is a normal variable with mean m and variance σ2 under
probability P, we define another probability by

dQ
dP

= exp(λ(X −m)− λ2

2
σ2)

then under probability QX is a normal variable with mean m+ λσ2 and vari-
ance σ2. This can be easily proven by computing the Laplace transform of X
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under Q. Let’s take m = 0 and σ = 1, i.e. X is a standard normal variable. We
want to estimate the probability that X is greater than 10. To do that, we shall
design the probability Q in the above way with λ = 10, thus X has the mean
10 under probability Q, then we have

P(X > 10) = EP(1X>10)

= EQ(exp(50− 10X)1X>10)

Thus we are going to make N i.i.d. simulations (Xn)16n6N of X under Q and
write our estimator of P(X > 10) in the following way

P(X > 10) = EQ(exp(50− 10X)1X>10)

≈ 1

N

N∑
n=1

exp(50− 10Xn)1Xn>10

A confidence interval for P(X > 10) can be found similarly as in section 3.2.1

Importance sampling is a very powerful method to address rare event
simulation problem and it has various applications in different setting
of contexts. More importance sampling techniques on other probability
distributions and their related optimality analysis can be found in [120,
19, 67]

However, importance sampling is not always applicable, its feasibil-
ity depends much on the particularity of the model at hand. Various
studies have been carried to apply this method on more sophisticated
setting, see for instance [72], and it is still a active research field. But we
are not going to explore in this direction. Before closing this subsection,
we will just recall another importance sampling technique, applied on
compound Poisson processes. Later we shall compare performances of
new methods against importance sampling in this setting.

Theorem 3.2.1 ([51]). Let Xt =
∑Nt

i=1 Yi be a compound Poisson process with
jump intensity λ and jump distribution ν, given a terminal time T , we define

ZT = exp
( Nt∑
i=1

f(Yi)−
∫
R
(ef(x) − 1)λTν(dx)

)
then under the probability Q define by dQ

dP = ZT , (Xt)06t6T is a compound
Poisson process with jump intensity λ

∫
R e

f(x)ν(dx) and jump distribution
ef(x)ν(d×)∫
R e

f(x)ν(d×)
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3.2.3 Splitting

The earliest reference to our knowledge of splitting3 method is [84], as
said therein mentioned by Dr. von Neumann.

The idea of splitting method is the following: we will use some im-
portance function to divide the space into zones of different importance
levels, with the rare event zone being the most important one. So we
will get a series of nested subsets

S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A, (3.2.1)

We shall illustrate the procedure of splitting method with an example

Example 3.2.2. Suppose we have a continuous stochastic process X starting
from 0, and the rare event is defined by {τ10 < τ−1}, where τa is the stopping
time thatX reaches level a. To implement the splitting method, we define nested
subsets Ak = {τk < τ−1}, k = 1, 2, · · · , 10.

We will start by simulating M trajectories of X , labeled with 0, gradually
as time goes on. For each trajectory that enters A1, it is split into R1 sub-
trajectories, labeled with 1, each of which will evolve independently. Similarly,
each time one trajectory label with k − 1 goes from a less important zone Ak−1

to a more important zone Ak, it is split into Rk independent sub-trajectories,
labeled with k. Then finally we will count the number of trajectories that have
reached the rare event zone A, denoted by MA, and the rare event probability is
estimated as

MA

M
∏n

k=1 Rk

The procedure is illustrated in the following figure:

3Due to the vast amount of literature, splitting method may not have exactly the same
meaning in different places, it needs to be understood in the context
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FIGURE 3.3: Splitting illustration from [93]

One drawback in the implementation of splitting method is that the
trajectory does not only go to more and more important zone, it can
also evolve in the opposite direction, thus much simulation time could
be wasted in the unimportant zone and this leads to a loss of efficiency.
To moderate this negative affect, the authors of [84] propose a random
decision on the simulation continuation at each time one trajectory goes
from a more important zone to a less important one, and then add weights
to remain unbiased.

To achieve good performance with the splitting method, one needs to
be careful about the choice of importance function, the choice of nested
subsets and the values of Rk given a fixed computation budget. This
problem has been studied in various context, see [93] for example where
the author gives explicit formula on these choices.

Without enough information on the problem at hand, it may be dif-
ficult to choose appropriate nested subsets. Adaptive splitting method
can be used in this kind of situation. Analysis on its convergence has
been studied in [32].

3.2.4 RESTART

RESTART (REpetitive Simulation Trials After Reaching Thresholds) method
was firstly introduced in [13]. Then the fame and enthusiasm around



46 Chapter 3. Introduction

this method get a great spur with the paper [125] in 1991, where the au-
thors coined the name for this method and made more theoretical anal-
ysis. Sometimes the term RESTART is used as a synonym of splitting.
But as is explained in [126], there exist differences between the splitting
method in the above section and the RESTART method.

RESTART method shares the spirit of splitting. But different from
splitting method where all the trajectory are treated equally, there exist
main trajectory and retrials trajectory in RESTART method. A detailed
explanation of RESTART method can be found in [126]. We take exam-
ple 3.2.2 to explain the two main differences: firstly, for a retrial trajec-
tory labeled with k, it has no right to descend(in the sense of importance
zone) into Ak−1 with RESTART method. Once it goes back into Ak−1,
this retrial trajectory is killed. This feature of RESTART method avoids
spending too much simulation time in the unimportant zones. But if we
only added this modification to the splitting method, there could be a
bias in the final estimator, since those killed trajectories could have had
a chance to reach A if they had been kept. To counterbalance this ef-
fect, we give more privilege to the main trajectory: they are given more
chance to split, i.e. when a main trajectory labeled with k descend into
Ak−1 then ascends to Ak, it could split again whereas in the splitting
method it is not allowed to split in this case.

The RESTART method has been applied in a lot of models, see [86,
102] for instance.

3.2.5 Interacting particle system

More recently, methods using interacting particle systems(IPS) have been
developed. A systematic account of interacting particle system can be
found in the book [42]. To our knowledge, the first application of IPS
theory in the simulation of Markov chain related rare events is proposed
in [43], then it has been discussed in [31, 30, 29] among many others. The
convergence of adaptive IPS method has been shown in [33].

The idea of interacting particle system is to use the empirical mea-
sure of a large particle system to approach a target measure. In the case
of rare event, a large system is simulated according to a initial distri-
bution, then these particles which are more closer to the rare event zone
are given more possibility to be selected and evolved into the next stage.
This selection-mutation procedure resembles the evolution process of
genes. That is why sometime IPS methods are also called genetic algo-
rithms. IPS method is applied to static distributions in [29],. When IPS is
applied to stochastic process, this selection-mutation procedure is usu-
ally done during the evolution of the process, such as [27]. This requires
some Markovian assumption on the underlying model, and when the
process is not Markovian some state augmentation technique is needed.



3.3. Our methods 47

3.2.6 Others

The above methods do not cover all the study in rare event simulation at
all. There are many other tools we can use such as cross-entropy method
[119, 24], large deviation theory [44, 40], etc. Some other interesting
works are [23] on generalized splitting method and [92] on switching
diffusions. A lot of other works can be found on the websites of the
recent two International Workshops on Rare Event Simulation, RESIM
20144 and RESIM 20165.

3.3 Our methods

Methods like importance samplings are very efficient, but lacks gener-
ality of application. Specific techniques need to be developed according
to each model’s particularity. Splitting, RESTART and IPS methods all
enjoy wide applications, but most of the time they are developed on
Markovian assumptions and take a dynamic point of view when deal-
ing with stochastic process. This may leads to some implementation
difficulty and sometime the error may explode as the discretization step
length of process tends to zero. We aim at developing methods which
can be applied generally and with less assumptions. Of course we are
also looking for better numerical performance. Our contributions are
summarized in the following.

• We design a Markovian transition called shaking transformations on
the paths space, which enables us to propose IPS and POP meth-
ods for rare event simulation, based respectively on interacting
particle system and the ergodicity of Markov chain. These meth-
ods work in a Black-Box manner, which ask little information on
the system at hand to be implemented.

• We propose a particular way of designing shaking transformation,
which is very easy to implement and to calibrate for achieving
best numerical performance. Our density-free way of construct-
ing shaking transformation makes the generalization to infinite di-
mensional cases natural and immediate. As will be explained later,
our shaking transformation is in some sense a good Metropolis-
Hasting type transformation, written with an implicit transition
density, as it avoids one rejection step. These identities in law we
find are also interesting in themselves.

• The perspective of transformation on the path spaces allows us to
apply the static point view with interacting particle system to deal
with dynamic problem. Different from existing particle methods

4http://www.tinbergen.nl/conference/10th-international-workshop-rare-event-
simulation/

5http://www.eurandom.nl/events/workshops/2016/SAM_PROB+ANALYSIS/WS3.html
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using dynamics point view, the performance of our IPS method
will not deteriorate as time discretization becomes finer and finer.

• The POP method we propose runs in a parallel way, and can give
independent estimator for each conditional probability, thus achieves
very good numerical performance.

• The almost sure convergence of POP method is proved in all the
finite dimensional cases.

• We prove one interesting property of Gaussian shaking combined
with Hermite polynomials, as well as the convergence of Gaus-
sian shaking transformation in the most general setting, including
infinite dimensional cases.

• We propose an adaptive version of the POP method, which de-
mands less information on the model to be well implemented. We
also prove its consistency.

• We demonstrate how these techniques can be applied to make sen-
sitivity analysis of rare event statistics on model parameters and to
make approximative sampling of rare event.

• A variant of IPS method is proposed with extra resampling and
fewer particles.

• Many numerical examples are discussed to show the applications
of our methods and how to well choose method parameters.

Most of the materials in this first part are contained in our papers
[68, 2, 3].
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Chapter 4

Brief review of ergodicity and
IPS theories

This chapter gives a brief review of the theories of Markov chain ergod-
icity and of interacting particle system, which lay the foundation of the
numerical methods for rare event simulation that we are going to de-
velop in the next chapter.

4.1 Ergodic theory for Markov chain

Ergodic theory is by itself a very deep and active research domain, whose
development includes the work of one recent Field medalist Artur Avila.
This goes of course far beyond the scope of the current PhD thesis. We
are just going to look at the application of classic ergodic theory in a
probabilistic framework and how this gives rise to a powerful set of
simulation methods called MCMC (Markov Chain Monte Carlo) meth-
ods.

4.1.1 Ergodic theory

According to [107], the first ergodic theorem is probably a nowadays
widely known result in [127].

Theorem 4.1.1 ([127]). Let α be a irrational number, and define a sequence of
numbers between 0 and 1 by

xn = nα mod 1

then for any interval I ∈ [0, 1], denoting its length by |I|, we have

1

n

n∑
k=1

1xk∈I → |I|

That is, given the first n numbers in the sequence, if we look at the
proportion which is inside the interval I , this proportion tends to the
length of this interval. However, if α is rational, the result is no longer
true, as xn only has finite possible values in this case.

To appreciate the powerful theory lurking behind this theorem, we
need several definitions.
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Definition 4.1.1. Given a probability space (Ω,B,P) and a measurable map-
ping T : Ω→ Ω, T is said to be measure-preserving if

∀B ∈ B,P(T−1B) = P(B)

We also say that P is a T -invariant measure.

Take f ∈ L1(Ω,B,P) and F anther filtration smaller than B, then if T
is measure-preserving, we have

E (f |F) ◦ T = E
(
f ◦ T |T−1F

)
Definition 4.1.2. Given a probability space (Ω,B,P) and a measure-preserving
mapping T : Ω → Ω, we say that T is ergodic if for any B ∈ B, T−1B = B
implies P(B) = 0 or 1. We also say that P is an ergodic measure for T

We are then going to state two general ergodic theorem: von Neu-
mann’s mean ergodic theorem and Birkhoff’s point-wise ergodic theo-
rem.

Theorem 4.1.2. Given a probability space (Ω,B,P) and a measure-preserving
mapping T : Ω→ Ω, take f ∈ L2(Ω,B,P), then we have

1

n

n−1∑
k=0

f ◦ T n L2

−→ E (f |G)

where G = {B ∈ B : T−1B = B a.e.}. When T is ergodic, E (f |G) = E (f).

Theorem 4.1.3. Given a probability space (Ω,B,P) and a measure-preserving
mapping T : Ω→ Ω, take f ∈ L1(Ω,B,P), then we have

1

n

n−1∑
k=0

f ◦ T n → E (f |G) a.e.

where G is defined in the same way as above.

4.1.2 Ergodic theory for Markov chain

To apply the above theorems on Markov chain, we firstly need to precise
what probability space we are working with. Suppose we are dealing
with a one-dimensional Markov chain (Xn)n>0 taking values in R, then
we will take Ω = RN such that each element ω in Ω is written as ω =
(x0, x1, x2, · · · , xn, · · · ). The probability measure on Ω is induced by our
Markov chain X , i.e. for any cylinder

C = R× · · · × R×Bi1 × R× · · · × R×Bi2 × · · · ×Bir

where ir’s are time indices, we define

P(ω ∈ C) = P(Xi1 ∈ Bi1 , Xi2 ∈ Bi2 , · · · , Xir ∈ Bir)
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Define T as the shift operator, i.e. for ω = (x0, x1, x2, · · · )

T (ω) = (x1, x2, x3, · · · )

and take f(ω) = f(x0), then if T is measure preserving and ergodic, we
have for example

1

n

n−1∑
k=0

f(xk)→ E (f(x0)) a.e.

i.e.

1

n

n−1∑
k=0

f(Xk)→ E (f(X0)) a.e. (4.1.1)

where we replace ω by the realization of our Markov chain (Xn)n>0.
The above convergence tells us, if our Markov chain satisfies the

measure-preserving and ergodicity conditions, its time average will be
close to its space average at the starting time.

Naturally we are now wondering what are the necessary and suffi-
cient conditions for T to be measure preserving and ergodic.

Given a Borel set C ∈ R, take B = C × RN , we have T−1B = R ×
C × RN . Thus for T to be measure preserving, we need to have P(X0 ∈
C) = P(X1 ∈ C). Or more generally, Xn has the same distribution as
Xn+1 for any positive integer n. That is equivalent to saying the law of
Xn is invariant with respect to n. We call such a Markov chain stationary.
Therefore one of the important conditions for (4.1.1) to hold is that our
Markov chain (Xn)n>0 is stationary.

Next, we need to look into the implication of the ergodic condition.
The Markov chain interpretation of this condition is less direct. Instead
we are going to look at its consequence: i.e. the time average converges
to the space average.

We will suppose the stationary condition always holds and denote
by π the stationary distribution, i.e. Xn ∼ π,∀n, then (4.1.1) can be
slightly rewritten as

1

n

n−1∑
k=0

f(Xk)→ Eπ
(
f
)

a.e. (4.1.2)

to emphasize the dependence on π
Take a Borel set C such that π(C) > 0 and f(·) = 1·∈C , the above con-

vergence gives 1
n

∑n−1
k=0 1Xk∈C → π(C) almost surely. Obviously, there

has to be some k such that P(Xk ∈ C) > 0 for this to hold.
This does look like a over-complication, since P(Xk ∈ C) = π(C)

according to our assumption. The above reasoning is just one way to
prepare the introduction of definitions in the following. Actually, the
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power in real applications of Markov chain ergodicity is best demon-
strated when the initially distribution of X0 is different from π, which is
difficult to simulate under some situations.

Definition 4.1.3. Given a Markov chain taking values in some general state
space S, with the transition kernel P (x, dy), π is said to be a stationary (or
invariant) distribution of this Markov chain if π = πP

Definition 4.1.4. A Markov chain Xn is said to be η-irreducible, if for any
measurable set B such that η(B) > 0, we have that for any x ∈ S, there exist
some n > 1, possible depending on x such that, Px(Xn ∈ B) > 0, where Px
represents the probability induced by the Markov chain starting at x.

Convergence of occupation measure

The following is a classic result and one of the most important facts on
Markov chain:

Theorem 4.1.4 ([7]). Given a Markov chain having a stationary distribution
π and being η-irreducible for some η, for any positive function f , we have

1

n

n−1∑
k=0

f(Xj)→
∫
f(x)π(dx),Px − a.s.

as n goes to infinity, for π − a.a.x

The proof of this theorem can be found in standard Markov chain
textbooks, such as [98]. More recently, a short proof based on Theorem
4.1.3 is given in [7]

Another result for which a proof can be found in [7] is the following:

Theorem 4.1.5 ([7]). If the transition kernel of the Markov chain is given by

Px(X1 ∈ dy) = (1− a(x))δx(dy) + a(x, y)q(x, y)η(dy) (4.1.3)

where a(x) > 0,∀x ∈ S and X is η-irreducible and has a stationary distribu-
tion π, then , we have

1

n

n−1∑
k=0

f(Xj)→
∫
f(x)π(dx),Px − a.s.

as n goes to infinity, for any x ∈ S.

Remark that instead of having the convergence for almost every point,
this time the convergence is true for every starting point in S

To have a convergence rate estimation, we shall need stronger as-
sumptions such as the small set condition, see [94] for example.
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Convergence of marginal distribution

Instead of using the entire path of Markov chain, sometimes we may be
just interested in its marginal distribution. With the previous results in
the mind, it’s not surprising to discover that the marginal distribution
of the Markov chain will also converge to its stationary distribution, un-
der some conditions. In [98], we can find results in this direction using
coupling renewal process. A shorter proof is provided more recently in
[76] on the conditions for exponential convergence rate. The marginal
convergence of Markov chain will enable us to make approximative sim-
ulation of rare event scenarios, which is useful for applications such as
financial stress test.

Assumption 4.1.1. There exists a positive function V and constants K > 0
and γ ∈ (0, 1) such that for any x ∈ S

PV (x) 6 γV (x) +K

Assumption 4.1.2. There exists a constant α ∈ (0, 1) and a probability mea-
sure ν so that

inf
x∈C

P (x, ·) > αν(·)

with C = V −1([0, R]) for some R > 2K
1−γ where K and γ are the constants from

the above assumption

Theorem 4.1.6 ([76]). If Assumption 4.1.1 and 4.1.2 hold, then P admits a
unique invariant measure µ. Furthermore, there exists constant C > 0 such
that

‖P nφ− µ(φ)‖ 6 Cγn‖φ− µ(φ)‖

for every bounded measurable function φ, where ‖φ‖ = supx
φ(x)

1+V (x)

Convergence of empirical quantile

What we saw above are the convergence of the occupation measure and
the marginal distribution of Markov chain. What will happen if we use
the Markov chain realization to estimate the quantile of its stationary
distribution? Such a study has been conducted in [46], where one can
find convergence rates under different assumptions. We give one exam-
ple of their results.

Suppose the Markov chain (Xn)n>0starts with its stationary distribu-
tion π and the transition kernel P (x, dy). Given a measurable function g
taking value in R, we define a random variable V by V = g(W ) where
W ∼ π. Let FV denote the distribution function of V and for a given
q ∈ (0, 1), we define the quantile

ξq := inf{v : FV (v) > q}

We suppose that FV is absolutely continuous and has continuous den-
sity function which is strictly positive at the point ξq.
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In addition, we suppose there exists a constant α > 0 and a probabil-
ity measure ν and an integer n0 > 1 such that for any x ∈ S we have

P n0(x, ·) > αν(·)

Let ξ̂n,q be the empirical quantile of {g(X0), g(X1), · · · g(Xn−1)}, then
we have the following theorem

Theorem 4.1.7 ([46]). Under the above assumptions, we have for any ε > 0
and δ ∈ (0, 1)

P
(
|ξ̂n,q − ξq| > ε

)
6 2 exp

(
−
α2(nγ − 2n0

α
)

2nn2
0

)
(4.1.4)

for n > 2n0

αγ
where γ = min{FV (ξq + ε)− q, δ(q − FV (ξq − ε))}

More discussions on this will be given later in Section 5.6 when we
introduce our adaptive rare event simulation techniques

The ergodicity of Markov chain gives rise to a powerful set of simula-
tion techniques, called MCMC(Markov Chain Monte Carlo) methods.
It finds application in various domains, from statistical mechanics to
molecular engineering. We will make use of this theory to address our
rare event simulation problem.

4.2 Interacting Particle System

The theory of interacting particle system is more recently developed
compared to that of Markov chain ergodicity. A systematic account of
this theory can be found in the book [42]. We will just present the non-
asymptotic convergence result in [30], which will help us to show the
convergence rate of rare event simulation techniques in the next chap-
ters. We follow the presentation framework in [30].

Suppose we have a Markov chain X defined by the transition kernel
Mn(x, dy) from the state space E to itself and the initial distribution η0.
Gn and f are bounded function defined on E. We define measures γn
and ηn in the following way, where 0 6 Gn 6 1:

γn(f) = E(f(Xn)
n−1∏
k=0

Gk(Xk)) (4.2.1)

ηn(f) =
γn(f)

γn(1)
(4.2.2)
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Then the relation between probability measures ηn+1 and ηn are given
in terms of the Boltzmann-Gibbs transformation ΨGn :

ΨGn(ηn)(dx) :=
Gn(x)ηn(dx)

ηn(Gn)
(4.2.3)

ηn+1 = ΨGn(ηn)Mn+1 (4.2.4)

Given the above notations, we can check that, for α ∈ [0, 1] we define
a selection-type transition kernel

SαGn,ηn(x, dy) = αGn(x)δx(dy) + (1− αGn(x))ΨGn(ηn)(dy) (4.2.5)

and the McKean transition

Kα
n+1,ηn = SαGn,ηnMn+1

then we have

ηn+1 = ηnK
α
n+1,ηn (4.2.6)

4.2.1 Selection-Mutation simulation

Our aim is to make approximative simulation of the probability measure
ηn. To do that, we shall simulate a large particle system evolving in
interaction according to Equation 4.2.5 and 4.2.6.

Let’s fix the system size as N , i.e. there will be constantly N particles
inside the system. At first, we will simulate N i.i.d. particles X(N)

0 =

(X
(N,i)
0 )16i6N according to the initial distribution η0. Then suppose we

already have a particle system X
(N)
n = (X

(N,i)
n )16i6N approximating ηn,

we will apply the following procedure to get the particle system X
(N)
n+1 at

generation n+ 1:

• Selection step: for each particle X(N,i)
n in the system X

(N)
n , apply

the selection transition kernel SαGn,ηNn . That is, with probability
αGn(x) the particle remains the same, otherwise, it will be replaced
by another particle in the system selected according to the weight
function Gn. Thus we have

X̂(N,i)
n ∼ SαGn,ηNn , i = 1, 2, · · · , N (4.2.7)

where ηNn is the empirical measure represented by the systemX
(N)
n ,

i.e.

ηNn =
1

N

N∑
i=1

δ
X

(N,i)
n
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• Mutation step: for each selected particle X̂(N,i)
n , apply the mutation

kernel Mn+1 to get X(N,i)
n+1 . Thus we have

X
(N,i)
n+1 ∼Mn+1(X̂(N,i)

n , dx), i = 1, 2, · · · , N (4.2.8)

At the end we get an approximation of ηn+1 by

ηNn+1 =
1

N

N∑
i=1

δ
X

(N,i)
n+1

The above selection-mutation procedure imitates the natural gene evo-
lution process. That’s why this method is also called genetic algorithm
sometimes.

To implement this procedure, we need to have ηNn (Gn) > 0. This is
not always guaranteed, so we need to define the stopping time

τN = inf{n > 0 : ηNn (Gn) = 0}

For each n > τN , we will simply write ηNn = 0 by convention.
Using the identity

γn(1) =
n−1∏
p=0

ηp(Gp)

we can also get an estimation for γn(1) by

γNn (1) =
n−1∏
p=0

ηNp (Gp)

4.2.2 Non-asymptotic estimation

To present the non-asymptotic error estimation in [30], we need to intro-
duce some technical notations.

Let An = G−1
n ((0,+∞)). For each x ∈ An, define

Ĝn(x) := Mn+1(Gn+1)(x)

and for each x ∈ An−1, define

M̂n(x, dy) :=
Mn(x, dy)Gn(y)

Mn(Gn)(x)

Suppose for each n, there exist finite constants δ̃n and δ̂n such that

sup
(x,y)∈A2

n

Gn(x)

Gn(y)
6 δ̃n
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and

sup
(x,y)∈A2

n

Ĝn(x)

Ĝn(y)
6 δ̂n

We define another constant δ̂(m)
p by

δ̂(m)
p :=

p+m−1∏
q=p

δ̂q

Suppose in addition that there exists some integer m greater than 1
and a sequence of numbers β̂(m)

p ∈ [1,+∞) such that for any p > 0 and
any (x, x′) ∈ A2

p we have

M̂p,p+m(x, dy) 6 β̂(m)
p M̂p,p+m(x′, dy)

with
M̂p,p+m := M̂p+1M̂p+2 · · · M̂p+m

With all the above assumptions and technical notations, we have the
following theorem

Theorem 4.2.1 ([30]). For N >
∑n

s=0
δ̃sδ̂

(m)
s β̂

(m)
s

ηs(As)
, we have

E
((γNn (1)

γn(1)
− 1
)2
)

6
4

N

n∑
s=0

δ̃sδ̂
(m)
s β̂

(m)
s

ηs(As)
(4.2.9)

More recently, adaptive version of IPS method has been analysis in
[33].
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Chapter 5

IPS & POP with path shaking
transformations

5.1 Problem formulation

Let’s recall our problem to solve. Our state space is a measurable space
(S, S), where (S, dS) is a metric space and S is the Borel sigma-field gen-
erated by its open sets. Given a probability space (Ω,F,P), we consider
a random variable (measurable mapping) X : Ω 7→ S and a measurable
setA ( S, then the rare event under investigation is defined by {X ∈ A}.
We are mainly interested in achieving the follwoing goals

• to estimate the rare event probability P (X ∈ A)

• to sample from the conditional distribution X|X ∈ A

• to estimate the conditional expectation on rare event E (ϕ(X)|X ∈ A),
for bounded measurable functions ϕ : S 7→ R

• to evaluate the sensitivity of these rare event statistics with respect
to model parameters

In the setting of rare event, P (X ∈ A) is usually less than 10−4. We as-
sume that P (X ∈ A) > 0.

We shall always divide the entire space into nested subsets

S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A, (5.1.1)

Since P(X ∈ A) > 0, in view of the inclusion (5.1.1) we have P(X ∈
Ak) > 0 for any k, which justifies the decomposition

P (X ∈ A) =
n∏
k=1

P (X ∈ Ak|X ∈ Ak−1) . (5.1.2)

Both of the methods we are going to present share the spirit of splitting,
in the sens that instead of directly estimating P (X ∈ A) we are going to
estimate each conditional probability P (X ∈ Ak|X ∈ Ak−1) separately.

We emphasis that we take a static point view in our problem for-
mulation. So in case that X is a stochastic process or a random graph
evolving with time, we don’t look into the time dynamic of X . That is,
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we never deal with partial realization of X . Only the entire path of X
is concerned in our formulation. We shall see in the following how this
point view gives rise to new methods.

5.2 Reversible shaking transformation and al-
gorithms

5.2.1 Shaking transformation and invariance of conditional
distribution

In this section, the standing assumption is

(K) There is a measurable mapping K : S × Y 7→ S, where (Y,Y) is
a measurable space, and a Y-valued random variable Y indepen-
dent of X such that the following identity in distribution holds:

(X,K(X, Y ))
d
= (K(X, Y ), X). (5.2.1)

To simplify notation when there is no ambiguity, we simply write K(·) :=
K(·, Y ). Identity (5.3.15) reads as a time-reversibility condition and it is
equivalent to the balance equation used in [29]. This implies that X
and K(X) have the same distribution. In our algorithms, K will serve
to build Markov chains with invariant distributions given by the dis-
tribution of X and that of X restricted to Ak (see Definitions 5.2.2 and
5.2.3). The exact form of K and Y is specific to the model at hand, how
to construct K in different settings is explained in Section 5.4.

As we shall understand when we go through all the numerical ex-
amples in Chapter 6, we expect the random transformation X 7→ K(X)
to slightly modify values of X while preserving its distribution. Only in
this way can X move invariantly throughout the rare event zone and
explore all the possible configurations. This motivates the label of shak-
ing transformation.

Based on K(·), for each intermediate subset we define a shaking
transformation with rejection as follows.

Definition 5.2.1. Let k ∈ {0, 1, · · · , n− 1}. Under (K), define

MK
k :

{
S× Y→ S,
(x, y) 7→ K(x, y)1K(x,y)∈Ak + x1K(x,y)/∈Ak .

(5.2.2)

We set MK
k (.) := MK

k (., Y ) where Y is the generic random variable defined in
(K).

In [29, last equation of p.796 and first equation of p.797], transforma-
tions like (5.3.15) and (5.2.2) are used to design an interacting particle



5.2. Reversible shaking transformation and algorithms 61

algorithm for rare events related to random variables in Rd. Here we
generalize it to the general state space S. Proposition 5.2.1 and Theo-
rem 5.2.2 when S = Rd have similar counterparts in [29] whose proofs
make use of explicit Markov transition kernels. Here in order to gener-
alize, we follow a different presentation, focusing on a ω-wise transfor-
mation rather than one with explicit transition density, which is more
adapted to (K) and to our general state space setting, especially for infi-
nite dimensional applications.

Proposition 5.2.1. Let k ∈ {0, 1, · · · , n − 1}. The distribution of X condi-
tionally on {X ∈ Ak} is invariant w.r.t. the random transformation MK

k : i.e.
for any bounded measurable ϕ : S→ R we have

E
(
ϕ(MK

k (X))|X ∈ Ak
)

= E
(
ϕ(X)|X ∈ Ak

)
. (5.2.3)

The above equality still holds if ϕ(x) is replaced by ϕ(x, U) whereU is a random
variable independent of X and Y (defining MK

k ).

Proof. From Definition 5.2.1 and (K), we write that

E
(
ϕ(MK

k (X))1X∈Ak
)

=E
(
ϕ(K(X))1X∈Ak1K(X)∈Ak

)
+ E

(
ϕ(X)1X∈Ak1K(X)6∈Ak

)
=E

(
ϕ(X)1K(X)∈Ak1X∈Ak

)
+ E

(
ϕ(X)1X∈Ak1K(X)6∈Ak

)
=E (ϕ(X)1X∈Ak) .

The equality (5.2.3) readily follows. The extension to random ϕ(·, U) is
similar.

5.2.2 Application to IPS algorithm

We are now in a position to put the rare event probability estimation
problem in the framework of interacting particles system, which evolves
according to the following dynamics.

Definition 5.2.2. We define a S-valued Markov chain (Xi)06i6n−1, as follows:

X0
d
=X (5.2.4)

Xi :=MK
i (Xi−1) = MK

i (Xi−1, Yi−1) for 1 6 i 6 n− 1, (5.2.5)

where (Yi)06i6n−2 is a sequence of independent copies of Y (defined in (K)) and
independent of X0.

The IPS interpretation will follow from the next result.

Theorem 5.2.2. Let k ∈ {1, · · · , n}. We have:

P (X ∈ Ak) = E

(
k−1∏
i=0

1Ai+1
(Xi)

)
. (5.2.6)
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For any bounded measurable function ϕ : S→ R we have

E (ϕ(X)|X ∈ Ak) =
E
(
ϕ(Xk−1)

∏k−1
i=0 1Ai+1

(Xi)
)

E
(∏k−1

i=0 1Ai+1
(Xi)

) . (5.2.7)

The above formula is still valid if ϕ(x) is replaced by ϕ(x, U) (as in Proposition
5.2.1) where U is a random variable independent of (X,X0, Y0, . . . , Yk−2).

Proof. We first establish (5.2.7) by induction on k. We start with k = 1:
obviously

E (ϕ(X,U)|X ∈ A1) =
E (ϕ(X,U)1A1(X))

P (X ∈ A1)

=
E (ϕ(X0, U)1A1(X0))

E (1A1(X0))
.

Assume now that (5.2.7) holds for k, any function ϕ and any random
variable U allowed, and let us prove (5.2.7) for k + 1. By a slight abuse
of notation, we still write ϕ(x, U) = ϕ(x), where U is independent of
(X,X0, Y0, . . . , Yk−1). We have

E

(
ϕ(Xk)

k∏
i=0

1Ai+1
(Xi)

)

=E

(
ϕ(MK

k (Xk−1))1Ak+1
(MK

k (Xk−1))
k−1∏
i=0

1Ai+1
(Xi)

)

=E
(
ϕ(MK

k (X))1Ak+1
(MK

k (X))|X ∈ Ak
)
E

(
k−1∏
i=0

1Ai+1
(Xi)

)
(5.2.8)

where we have applied the induction hypothesis. Then Proposition 5.2.1
yields

E
(
ϕ(MK

k (X))1Ak+1
(MK

k (X))|X ∈ Ak
)

(5.2.9)

=E
(
ϕ(X)1Ak+1

(X)|X ∈ Ak
)

=E (ϕ(X)|X ∈ Ak+1)E
(
1Ak+1

(X)|X ∈ Ak
)

(5.2.10)

where the nested property (5.1.1) of Ak’s is used. Another application of
Proposition 5.2.1 and of (5.2.8) with ϕ ≡ 1 shows that

E
(
1Ak+1

(X)|X ∈ Ak
)

= E
(
1Ak+1

(MK
k (X))|X ∈ Ak

)
=

E
(∏k

i=0 1Ai+1
(Xi)

)
E
(∏k−1

i=0 1Ai+1
(Xi)

) . (5.2.11)

Substituting (5.2.11) into (5.2.10) and (5.2.8) gives the equality (5.2.7) for
k + 1. Lastly, the proof of (5.2.6) now follows easily from (5.2.11) and
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(5.1.2).

By the above theorem, the rare event probability is written in form
of an unnormalized Feynman-Kac measure for interacting particle sys-
tems, as we reviewed in Section 4.2 (see [42, 43] for detailed discussions).
This enables the use of numerical algorithms for estimating it. In gen-
eral, an interacting particle (a.k.a. genetic genealogical) algorithm pro-
vides a way to estimate

E

(
f(X0, . . . , Xn)

n−1∏
i=0

Gi(Xi)

)

where f and Gi are bounded and (Xi)06i6n is a Markov chain. In view
of (5.2.6) with k = n the rare event probability corresponds to f ≡ 1
and Gi(·) = 1Ai+1

(·) and the corresponding Markov chain is defined in
Definition 5.2.2.

The detailed description of interacting particle algorithms can be
found in [43, 30] (see also [29] for S = Rd). The adaptation to our rare
event problem in a general state space S is made without difficulty. As in
[30], we introduce an extra rejection parameter α ∈ [0, 1] which increases
the independent resampling effect. Note that in [43, 29], α = 1.

The algorithm below generates at each time i ∈ {0, . . . , n− 1} a sam-
ple of M elements in S, whose empirical measure approximates the dis-
tribution ofX conditionally on {X ∈ Ai}. We denote by (Y

(m)
i : 1 6 m 6

M, 0 6 i 6 n − 2) (resp. (U
(m)
i : 1 6 m 6 M, 0 6 i 6 n − 2)) a sequence

of independent copies of Y from Assumption (K) (resp. of a uniformly
distributed random variable on [0, 1]).
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Initialization:
Draw (X

(M,m)
0 ,m = 1, · · · ,M) which are M independent copies of

X ;
p

(M)
0 = 1

M

∑M
m=1 1A1(X

(M,m)
0 );

for i = 0 until n− 2 do
Ii = {m ∈ {1, . . . ,M} s.t. X

(M,m)
i ∈ Ai+1};

for m = 1 until M do
Selection step:
if U

(m)
i < α and X

(M,m)
i ∈ Ai+1 then

X̂
(M,m)
i = X

(M,m)
i ;

else
X̂

(M,m)
i = X

(M,m̂)
i where m̂ is drawn independently of

everything else and uniformly in the set Ii;
end
Mutation step:
X

(M,m)
i+1 = MK

i+1(X̂
(M,m)
i , Y

(m)
i );

end
p

(M)
i+1 = 1

M

∑M
m=1 1Ai+2

(X
(M,m)
i+1 );

end
Result: p(M) =

∏n−1
i=0 p

(M)
i

Algorithm 1: Interacting Particle System algorithm

In the case α = 1, the above algorithm takes the same form as that
in [29, Section 2] for random variables in Rd. The difference in our work
lies in the general state space for which Feynman-Kac formula (Theo-
rem 5.2.2) are nevertheless valid due to the assumption (K): once ob-
tained these formulas, deriving the above IPS algorithm follows a stan-
dard routine. How to apply this algorithm to stochastic processes is
explained in Sections 5.4 and 6. The convergence properties of this algo-
rithm are postponed to Subsection 5.2.4.
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FIGURE 5.1: IPS method illustration, computing probabil-
ity that X as a point lies above level 4

5.2.3 Application to POP algorithm

In Proposition 5.2.1, we have seen that the distribution of X condition-
ally on {X ∈ Ak} is invariant with respect to MK

k . This property allows
us to put the problem of computing P (X ∈ Ak+1|X ∈ Ak) or E (ϕ(X)|X ∈ Ak)
in the ergodic Markov chain setting and therefore to compute P (X ∈ A)
as a consequence of (5.1.2). Before entering into details, we recall that
provided (Zi)i>0 is a Markov chain on a measurable space with a unique
invariant distribution π, the ergodic theorems for Markov chains that we
reviewed in Section 4.1 gives

1

N

N−1∑
i=0

f(Zi) −→
N→+∞

∫
fdπ a.s. (5.2.12)

for π-a.e. starting point Z0. Here f is a bounded (or π-integrable) mea-
surable function. See also [98, Chapter 17] or [47, Chapter 7].

For each k we define a Markov chain as follows.

Definition 5.2.3. For each k = 0, . . . , n−1, given a starting pointXk,0, define

Xk,i := MK
k (Xk,i−1) = MK

k (Xk,i−1, Yk,i−1) for i > 1 (5.2.13)

where (Yk,i)i>0 is a sequence of independent copies of Y (defined in (K)) and
independent of Xk,0.
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We assume additionally that the sequences ((Yk,i)i>0 : 0 6 k 6 n− 1)
are independent. The above process Xk,. is a Markov chain in S and one
invariant measure is the distribution of X conditionally on {X ∈ Ak}.
Then, provided that this is the unique invariant measure, one can use
the approximation (as N → +∞)

E (ϕ(X)|X ∈ Ak) ≈
1

N

N−1∑
i=0

ϕ(Xk,i), (5.2.14)

which for ϕ ≡ 1Ak+1
yields an approximation of P (X ∈ Ak+1|X ∈ Ak)

and therefore of the rare event probability P (X ∈ A)1.
Observe that each conditional probability is computed separately, in

parallel for each Ak, on a single path. This gives the reason why we call
this method POP for Parallel One-Path. Furthermore, these conditional
probabilities can be estimated independently by taking independent ini-
tializations (as defined below), i.e., by restarting the initialization from
the beginning for each step k with negligible extra time cost since n is
usually small. Both the separate and independent evaluations of condi-
tional probabilities are nice properties of POP, and are not shared with
other existing algorithms to our knowledge.

The following algorithm evaluating P (X ∈ A) gives a way to auto-
matically initialize each step. Since the initialization is not done with
the stationary distribution, in numerical implementation, we could use
some burn-in time to reduce its impact.

Initialization: ;
X0,0 is a copy of X ;
for k = 0 until n− 1 do

for i = 1 until N − 1 do
Xk,i = MK

k (Xk,i−1, Yk,i−1) ;
end
p

(N)
k = 1

N

∑N−1
i=0 1Ak+1

(Xk,i) ;
ik = arg min{j : Xk,j ∈ Ak+1} ;
Xk+1,0 = Xk,ik

end
Result: p(N) =

∏n−1
k=0 p

(N)
k

Algorithm 2: Parallel One-Path algorithm

As previously mentioned, the n steps are almost separated, except
for initializations, which can also be made independently if we wish.
Thus our POP algorithm can be easily parallelized on different proces-
sors. For instance, one can use a preliminary run to get all the initial

1I realized this application of Markov chain ergodicity on rare event simulation
while typing Latex for my supervisor’s lecture notes on Markov chain theory, as good
surprise often comes at unexpected moments
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positions in different subsets/levels. Then all the ergodic time-averages
are performed in parallel. We could even use the same copy of Y through-
out the different levels to save time used in the generation of random
variables Y , even if this will introduce some correlation into conditional
probability estimators. This is useful especially when Y is very costly to
sample, otherwise it is better to use independent simultions for different
levels to achieve better accurary.

Besides, this algorithm can also serve for estimating E(ϕ(X)|X ∈
A) using the Markov chain (Xn,.) and the approximation (5.2.14). This
should even be less time-consuming than computing P(X ∈ A) since we
only need to get a starting point satisfying X ∈ A and then do POP once
at k = n to obtain an empirical distribution of X|X ∈ A.

Lastly, observe that increasing the accuracy of POP algorithm is el-
ementary since it suffices to keep on simulating the n Markov chains
((Xk,.) : 0 6 k 6 n−1) until a larger time horizonN ′. This is a significant
difference with IPS, for which increasing accuracy implies increasing M
and thus re-simulating all the M particles system from the beginning
(because of interactions).

The reduction of required memory space with POP method is enor-
mous. With POP only the current particle needs to be stored while with
IPS we need to store a large particle system.

FIGURE 5.2: POP method illustration, computing proba-
bility that X as a point lies above level 5
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5.2.4 Convergence analysis for both algorithms

Convergence of IPS

Convergence of the IPS algorithm for estimating unnormalized Feynman-
Kac measure is well studied in the literature, as the number of particles
M → +∞: under various hypotheses, are proved the law of large num-
ber, central limit theorem (at rate

√
M ) and non-asymptotic error esti-

mation (fixed M ).
Regarding Algorithm 1, it is known that the estimator is unbiased.

A non-asymptotic variance control is given in [30], which we reviewed
in the last chapter. Since in our algorithm the number of intermediate
levels is usually not large, we do not need the assumption (M)m or (M̂)m
in [30] and we can get similar results to Lemma 4.1 and Lemma 4.3 in
[30] by only assuming that the following quantity δ̂k is finite for each
k = 0, 1, · · · , n− 1

δ̂k := sup
(x,y)∈A2

k+1

P(K(x) ∈ Ak+2) + 1Ak+2
(x)P(K(x) 6∈ Ak+1)

P(K(y) ∈ Ak+2) + 1Ak+2
(y)P(K(y) 6∈ Ak+1)

< +∞

(5.2.15)

where by convention An+1 = An. We adapt [30, Corollary 5.2] to our
setting.

Theorem 5.2.3. Under the assumption that all δ̂k’s are finite, we have the
following non-asymptotic control when M >

∑n
s=0

∆s

P(X∈As+1|X∈As)

E

(∣∣∣∣p(M)

p
− 1

∣∣∣∣2
)

6
4

M

n∑
s=0

∆s

P (X ∈ As+1|X ∈ As)
(5.2.16)

where ∆s =
∏n−1

k=s δ̂k and by convention ∆n := 1.

Proof. We very closely follow the proof of [30]. The first adjustment
comes from a slightly annoying shift of index. Indeed, with notations
in the last reference, Gk(x) = 1Ak(x), while with our notations we have
Gk(x) = 1Ak+1

(x). Therefore, to fit as easily as possible with arguments
in [30], we set An+1 = An so that the last term in the sum becomes

∆n

P(X∈An+1|X∈An)
= 1. The second adjustment in our setting is that we

avoid their assumptions (M)m or (M̂)m whose role is partly to get better
estimates as n is large. We thus just emphasize how to get rid of these as-
sumptions in our work. Firstly, we easily check that δ̂k defined in their
assumption (Ĥ)m is the one given in our theorem. Secondly with this
estimate at hand, we can prove that (using notation of their Equation
(4.3))

sup
x,y∈A2

k+1

Q̂k,n(1)(x)

Q̂k,n(1)(y)
6 ∆k.
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Therefore, the upper bound on the r.h.s. of (4.5) in their Lemma 4.3
becomes ∆k (by noticing that their δ̃k = 1). Lastly, the rest of the proof
is similar in that the above estimate propagates to their Corollary 5.2 in
the form of our inequality (5.2.16).

The upper bound of Theorem 5.2.3 is useful to appropriately choose
the shaking transformation in order to make the error smaller. Firstly,
obviously we have δ̂k 6 supy∈Ak+1

1
P(K(y)∈Ak+2)

. In case of slight shaking,
K(y) will differ little from y so the probability of going from Ak+1 to
Ak+2 is small and δ̂k is large. Conversely, in case of strong shaking and
since Ak+2 is expected to be small, K(y) will be very likely to exit Ak+2,
resulting in a large δ̂k. Hence, choosing an intermediate shaking force is
presumably the best choice, see later numerical experiments.

Finally, the upper bound (5.2.16) is rather qualitative and seemingly
can not be quantitatively computed in general. More general cases are
left to further research.

Convergence of POP

Equation (5.2.12) with its assumptions gives

1

N

N−1∑
i=0

1Ak+1
(Xk,i) −→

N→+∞
P(X ∈ Ak+1|X ∈ Ak) a.s. (5.2.17)

for a.e. starting point Xk,0.
The convergence of ergodic theorem has been much studied in the

literature, with results like almost sure convergence, asymptotic and
non-asymptotic fluctuations, see for instance [98, 47]. Here we apply
the recent work [94, Theorem 3.1] in our rare event setting.

Theorem 5.2.4. For each k in {0, , · · · , n−1}, assume that (Ak, dS) is a Polish
space and that the Markov chain (Xk,i)i>0 is πk-irreducible and Harris recur-
rent, where πk is the distribution of X conditionally on {X ∈ Ak}. If in
addition the "small set" condition holds: "there exists a Borel set Fk ⊂ Ak of
positive πk measure, a positive number βk > 0 and a probability measure νk
such that Pk(x, ·) > βkνk(·),∀x ∈ Fk" where Pk(., .) is the transition kernel of
Xk,., then there exists a constant Ck depending on the model such that

E
((
p

(N)
k − P(X ∈ Ak+1|X ∈ Ak)

)2
)
6
Ck
N
.

For application in our rare event examples, the "Polish assumption"
is usually satisfied when we consider the space of continuous functions
C([0, T ],Rd) (T > 0) with the uniform convergence topology (example
of Subsection 6.1), or the space of càdlàg functions D([0, T ],Rd) with the
Skorohod topology (jump processes in insurance, queuing system and
Hawkes process in Subsections 6.2-6.3-6.5) or RN, see [17] for details.
The random graph example in Subsection 6.4 is associated to a finite
space and the "Polish assumption" is thus trivial.
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But verification of the small set condition is more difficult. In the
random graph example, this condition is satisfied obviously since the
state space is finite. In general, extra work is still needed to verify the
small set condition in each particular example.

Finally recall that our estimated rare event probability p(N) is the
product of all p(N)

k ’s. Since we have already error control for each p
(N)
k

and since these quantities are bounded, by easy computations we can
establish that the convergence rate is also

√
N for the estimation of rare

event probability.

5.3 Gaussian shaking and its properties

5.3.1 Gaussian variable, process and SDE driven by Brow-
nian motion

For a standard Gaussian variable X := G in Rd, a simple shaking trans-
formation is

K(G,G′) = ρG+
√

1− ρ2G′

with ρ ∈ (−1, 1) and Y := G′ is a independent copy ofG. Figure 5.3 gath-
ers two graphs of 100000 independent simulations of (G,K(G)) with
their respective marginal histograms (of course close to the Gaussian
distribution). The larger the value of ρ, the slighter the shaking, the
closer the points to the diagonal.

FIGURE 5.3: Shaking Gaussian variables in dimension 1,
with ρ = 0.9 (left) and ρ = 0.5 (right)

The same linear transformation works for Gaussian processes X :=
(Gt)06t6T (T > 0 fixed), with zero mean and any covariance function.
In the case where X is a d-dimensional Brownian motion, one can take
slightly more general transformation based on Wiener integrals: namely,
for the i-th component of K(G), take a measurable function ρi : [0, T ] 7→
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[−1, 1]d with |ρi,t| 6 1 and set

Ki(G) =

(∫ t

0

ρi,s · dGs +

∫ t

0

√
1− |ρi,s|2dG′i,s

)
06t6T

(5.3.1)

whereG′ = (G′1, . . . , G
′
d) is another independent Brownian motion in Rd.

Provided that the matrix ρt = (ρ1,t, . . . , ρd,t) is symmetric and ρi · ρj ≡ 0
for all i 6= j, this transformation satisfies (K).

With this tool at hand, it is then straightforward to define reversible
shaking transformations of solution to a stochastic differential equation
of the form

dZt = b(t, Zt)dt+ σ(t, Zt)dGt, Z0 independent of G, (5.3.2)

where coefficients b and σ fulfill appropriate smoothness and growth
conditions in order to have a unique strong solution [113]. Setting X =
(Zt)06t6T it suffices to define K(X) as the (strong) solution of

dZ ′t = b(t, Z ′t)dt+ σ(t, Z ′t)dK(G,G′)t, Z
′
0 = Z0

where the shaken Brownian motionK(G,G′) = K(G) is defined in (5.3.1):
this procedure satisfies (K). This will be applied to the example of Ornstein-
Uhlenbeck process in Subsection 6.1. Observe that this method can be
directly extended to non-Markovian equations driven by Brownian mo-
tion.

5.3.2 Hermite polynomials and one dimensional conver-
gence

� Hermite polynomials Recall that the j-th Hermite polynomial is de-
fined by

H0 := 1

Hj(x) :=
(−1)j

j!
e
x2

2
dj

dxj
(e−

x2

2 ), j > 1

and it satisfies the following properties:

H ′j(x) = Hj−1(x)

(j + 1)Hj+1(x) = xHj(x)−Hj−1(x).

Lemma 5.3.1. For ρ ∈ [−1, 1], we have

E
(
Hn(ρx+

√
1− ρ2N(0, 1))

)
= ρnHn(x)
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Proof. Obviously, this is true for n = 0 and 1. Now suppose the conclu-
sion is true for 1, 2, · · · , n, we are going to prove for n+ 1.

(n+ 1)E
(
Hn+1(ρx+

√
1− ρ2N(0, 1))

)
=E

(
(ρx+

√
1− ρ2N(0, 1))Hn(ρx+

√
1− ρ2N(0, 1))

)
− E

(
Hn−1(ρx+

√
1− ρ2N(0, 1))

)
=ρxρnHn(x) + E

(
(
√

1− ρ2N(0, 1))Hn(ρx+
√

1− ρ2N(0, 1))
)

− ρn−1Hn−1(x)

It is easy to prove that for h with polynomial growth, we have

E (h′(N(0, 1))) = E (N(0, 1)h(N(0, 1)))

Take h(·) = Hn(ρx+
√

1− ρ2·), we have

E
(

(
√

1− ρ2N(0, 1))Hn(ρx+
√

1− ρ2N(0, 1))
)

=(1− ρ2)E
(
H ′n((ρx+

√
1− ρ2N(0, 1))

)
=(1− ρ2)ρn−1Hn−1(x)

which enables us to conclude that

(n+ 1)E
(
Hn+1(ρx+

√
1− ρ2N(0, 1))

)
=ρn+1xHn(x)ρn+1Hn−1(x)

=ρn+1(n+ 1)Hn+1(x)

� Convergence of shaking in dimension one

Theorem 5.3.1. Assume Z = f(X) is square integrable where X ∼ N(0, 1)
and f is a given function. If |ρ| < 1 and we define

X1 ∼ N(0, 1), Xi = ρXi−1 +
√

1− ρ2N(0, 1)

and Zi = f(Xi), then we have

E

(∣∣∣ 1

N

N∑
i=1

Zi − E (Z)
∣∣∣2) 6

Var (Z)

N

(
1 + |ρ|
1− |ρ|

)
.

Proof. We define Tρf(X) = E
(
f(ρX +

√
1− ρ2N(0, 1))

)
where the ex-

pectation is taken only on N(0, 1).
For any square integrable f : R → R, since Hermite polynomials

form a complete orthonormal system in L2(X) there exists an ∈ R, n > 1
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such that f(X) = E (f(X)) +
∑

n>1 anHn(X) in L2(X). Then the above
lemma gives

Tρ(f(X)) = E(f(X)) +
∑
n>1

ρnanHn(X).

and we obtain

|Tρ(f(X))− E (f(X))|2
2
6
∑
n>1

ρ2nE
(
a2
nH

2
n(f(X))

)
6 |ρ|2Var (f(X)).

(5.3.3)

Denote E
(∣∣∣ 1

N

∑N
i=1 Zi − E (Z)

∣∣∣2) by eN . We have

eN =
1

N2

[ ∑
16k6N

Var (Zk) + 2
∑

16k<l6N

Cov (Zk, Zl)

]
.

By the reversibility property, Zk and Z have the same law. Thus,

N∑
k=1

Var (Zk)) = NVar (Z)

On the other hand, for l > k, we have by a conditioning argument

Cov (Zk, Zl) := E
((
Zk − E (Z)

)(
Zl − E (Z)

))
= E

((
Zk − E (Z)

)(
Tρl−k(Zk)− E (Z)

))
6 |ρ|l−kVar (Z)

where we have used (5.3.3) in the last line. Consequently, we have∣∣∣ ∑
16k<l6N

Cov (f(Zk), f(Zl))
∣∣∣ 6 N

|ρ|
1− |ρ|

Var (f(Z)) .

Finally, we get

eN 6
Var (f(Z))

N

[
1 + 2

|ρ|
1− |ρ|

]
which completes the proof.

5.3.3 Convergence of general Gaussian shaking

For many applications, we will deal with infinite dimensional Gaussian
variables, such as stochastic processes or random fields. To apply our
methods in these applications, we will define shaking transformation
on the underlying Gaussian random source rather than the final random
output. The following paragraphs are mainly to give a strict description
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on how shaking transformation is applied in these situations. At the end
we give a general convergence result.

We adopt the framework in [104] of an isonormal Gaussian process asso-
ciated with a general Hilbert space H (a.k.a. the framework of Gaussian
Hilbert spaces, see [83]). Namely, we assume that H is a real separable
Hilbert space with scalar product 〈., .〉H and we consider the probability
space (Ω,F,P) such that the stochastic process X = (X(h) : h ∈ H) is a
centered Gaussian family of scalar random variables with

E (X(h)X(g)) = 〈h, g〉H for any h, g ∈ H.

We may refer to X as a path indexed by h ∈ H. The norm of an element
h ∈ H is denoted by ‖h‖H. The mapping h 7→ X(h) is linear. Some
important examples are as following:

Example 5.3.1 (Finite dimensional Gaussian space). Let q ∈ N∗, set H :=
Rq and 〈h, g〉H :=

∑q
j=1 hjgj for any h, g ∈ Rq, denote by ei = (1{j=i} : 1 6

j 6 q) the i-th element of the canonical basis of Rq. Then (X(e1), . . . , X(eq))
is a vector with independent standard Gaussian components.

Example 5.3.2 (Multidimensional Brownian motion (BM)). Let q ∈ N∗,
denote by H the 2-space H := 2(R+ × {1, . . . , q}, µ), where the measure µ is
the product of the Lebesgue measure times the uniform measure which gives
mass one to each point 1, . . . , q, and set

〈h, g〉H :=

∫
R+×{1,...,q}

h(x)g(x)µ(dx) for any h, g ∈ H.

Define
X i
t := X(1[0,t]×{i}) for any t > 0, 1 6 i 6 q.

Then the process (X1
t , . . . , X

q
t : t > 0) is a standard q-dimensional Brownian

motion.

Example 5.3.3 (Fractional Brownian motion (fBM)). The fBM with Hurst
exponent H ∈ (0, 1) is a R-valued Gaussian process, centered with covariance
function

E(X
(H)
t X(H)

s ) =
1

2

(
t2H + s2H − |t− s|2H

)
:= RH(t, s), for any s, t > 0.

For any fixed T > 0, (X
(H)
t : 0 6 t 6 T ) can also be defined within our

framework (see [104, Chapter V]). Denote by H0 the set of step functions on
[0, T ], and let H be the Hilbert space defined as the closure of H0 w.r.t. the
scalar product 〈1[0,t],1[0,s]〉H = RH(t, s). Denote by X the Gaussian process
on H and (X(1[0,t]) : 0 6 t 6 T ) defines a fBm (X

(H)
t : 0 6 t 6 T ) with

Hurst exponent H .
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Of course, we can mix these examples by defining for instance si-
multaneously standard BM and fBM. On top of this Gaussian model on
H, we can define more sophisticated models frequently used in finance
for modeling risk. For the sake of convenience of the reader, here we
mention two of them.

• Local volatility models [49]:

dSt = b(t, St)dt+ σ(t, St)dXt (5.3.4)

whereX is a standard q-dimensional BM and S stands for the price
process of d tradable assets.

• Fractional Brownian Motion (fBM) volatility models [38, 59]:

dSt = µtStdt+ σtStdWt

where S stands for the price and the random volatility σt is defined
through a fractional Brownian Motion. To have mean-reverting
volatility, we may model σ as a fractional Ornstein-Uhlenbeck pro-
cess, see [37, 73]. For example, consider the fractional SABR model
of [58] where the volatility takes the form

σt = σ̄ exp

(
−1

2
α2t2H + αX

(H)
t

)
, t ∈ [0, T ] (5.3.5)

where σ̄ and α are positive parameters, and X(H) as in Example
5.3.3.

From now on, we assume that the probability space at hand (Ω,F,P)
is such that the σ-field F is generated by {X(h) : h ∈ H} and for no-
tational simplification, we often identity H with its orthonormal basis
bH = (h̄1, h̄2, . . . ). To allow rather great generality, we assume that
the rare event is defined through two components, some Rare-event Ex-
planatory Variables (REV) and a level-set function, which are parametrized
as follows:

a) We consider a random variable taking values in a general metric
space (Z,Z), i.e.

Z : ω ∈ (Ω,F) 7→ Z(ω) := ΨZ(X(ω)) ∈ (Z,Z) (5.3.6)

where ΨZ is a measurable mapping from RH to Z. The random vari-
able Z stands for the REV whose aim is to model the stochasticity of
the rare-event.

b) The above REV will be evaluated along a level-set function ϕ, which
completes the definition of the rare event:

ϕ : (z, a) ∈ Z× (−∞,+∞] 7→ ϕ(z, a) ∈ [−∞,+∞). (5.3.7)
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As we will see, non-positive values of ϕ(z, a) correspond to rare-
event scenarios whose probabilities we aim to compute. Further-
more, we assume that for any a, ϕ(., a) is a measurable map in the
first component and that ϕ(.) is non-increasing w.r.t. the second vari-
able, i.e.

ϕ(z, a) > ϕ(z, a′) for any −∞ < a 6 a′ 6 +∞ and any z ∈ Z.
(5.3.8)

We take the convention ϕ(z,+∞) = −∞ for any z ∈ Z. The property
(5.3.8) is crucial for the splitting approach in order to define nested
subsets of increasingly rare scenarios (see Equation (5.1.1) later).

c) The rare event under study is described by the critical paths of Z in
set A of the form

A := {z ∈ Z : ϕ(z, ā) 6 0} (5.3.9)

for a given level parameter ā ∈ R such that the probability P (Z ∈ A)
is small.
Attention: This is a slight abuse of notation. Different from Section
5.2, here the rare event zone A is defined in terms of the output vari-
able Z instead of the input variable X .

d) There is an integrable random variable Φ : Ω 7→ R modeling the
output, for which we wish to evaluate the statistics restricted to the
event {Z ∈ A}, i.e. to compute

E (Φ1Z∈A) . (5.3.10)

Similarly as in Equation (5.1.1), consider level parameters ā := an <
· · · < ak < · · · < a0 := +∞ and set

Ak := {z ∈ Z : ϕ(z, ak) 6 0} (5.3.11)

so that, owing to (5.3.8) we have

A := An ⊂ · · · ⊂ Ak ⊂ . . . A0 := Z. (5.3.12)

Note that for describing a given rare-event A, there are many possible
couples (level set function ϕ, level set parameter ā). The choice made
by the user has an impact on the performance of the methods (see the
example on credit-risk in Subsection 6.8). This choice should be made
according to the knowledge of the model at hand. Later, we will often
refer to (ak)

n
k=1 as acceptance level parameters, this terminology is justi-

fied by the subsequent Monte-Carlo schemes of Section 5.2. The choice
of acceptance levels is discussed later and can be done adaptively (see
Section 5.6).
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Then above explanation justifies the decompositions

E (Φ1Z∈A) = E (Φ1Z∈A | Z ∈ An−1)
n−1∏
k=1

P (Z ∈ Ak | Z ∈ Ak−1) (5.3.13)

= E (Φ | Z ∈ An)
n∏
k=1

P (Z ∈ Ak | Z ∈ Ak−1) . (5.3.14)

We define the shaking transformation for the infinite dimensional
Gaussian variable.

Definition 5.3.1 (Shaker). Let ρ := (ρh : h ∈ bH) ∈ [−1, 1]bH and define

K :

{
RH × RH 7→ RH

(x, x′) := (xh : h ∈ bH, x′h : h ∈ bH) → (ρhxh +
√

1− ρ2
hx
′
h : h ∈ bH).

(5.3.15)
Whenever useful, we will write Kρ to insist on the dependence on the so-called
shaking parameter ρ.

If X ′ = (X ′(h) : h ∈ H) is an independent copy of X , we simply denote by
K the random transformation from RH 7→ RH as

K(x) = K(x,X ′). (5.3.16)

In the stochastic analysis literature, the above parametrized transfor-
mation for a constant parameter ρh = constant ∈ (0, 1) is associated to
the Ornstein-Uhlenbeck (or Mehler) semigroup (see [104, Section 1.4])
and simply writes

K(x, x′) = ρx+
√

1− ρ2x′, (5.3.17)

independently of the choice of the basis bH.
We call the transformation (5.3.15) shaker and obviously it satisfies

the reversibility property in assumption (K)

Proposition 5.3.2. The following identity holds in distribution:

(X,K(X,X ′))
d
= (K(X,X ′), X).

This type of reversibility property is well-known in the Markov Chain
Monte-Carlo literature when studying the convergence of Markov chains
in large time. Thus, the shaker (5.3.15) preserves the distribution of X
(seen now as a stationary measure) and by iterating the transformations
and averaging out the outputs in time, we may obtain a numerical eval-
uation of related expectations (Birkhoff Law of Large Numbers). Actu-
ally, we can prove the convergence in L2 with an explicit error bound.
Our proof relies on the generalized Gebelein inequality [60] for the max-
imal correlation between Gaussian subspaces [83, Chapter 10].

Theorem 5.3.3. Let f : Z 7→ R be a measurable function and assume that
f(Z) ∈ 2 whereZ = ΨZ(X) as in (5.3.6). DefineX0 = X,Xk+1 = Kρ(Xk, X

′
k)
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and Zk = ΨZ(Xk) where the X ′k are independent copies of X . Then, for
|ρ|∞ := suph∈bH |ρh| < 1,∣∣∣∣∣ 1

N

N∑
k=1

f(Zk)− E (f(Z))

∣∣∣∣∣
2

2

6
Var (f(Z))

N

(
1 + |ρ|∞
1− |ρ|∞

)
, ∀N > 1.

(5.3.18)

Proof. Denote by eN the l.h.s. of the above inequality. We have

eN =
1

N2

[ ∑
16k6N

Var (f(Zk)) + 2
∑

16k<l6N

Cov (f(Zk), f(Zl))

]
.

By the reversible shaker property, Zk and Z have the same law, thus

N∑
k=1

Var (f(Zk)) = NVar (f(Z))

On the other hand, for l > k, we have

|Cov (f(Zk), f(Zl)) | 6 ρXk,Xl
√

Var (f(Zk))
√

Var (f(Zl))

= ρXk,XlVar (f(Z))

where ρXk,Xl is the so-called Renyi maximal correlation coefficient between
Xk and Xl, i.e. the supremum of the correlation between a function gk of
Xk and a function gl of Xl, the supremum being taken over all functions
(gk, gl) with squared integrability properties. We claim that

ρXk,Xl 6 |ρ|l−k∞ . (5.3.19)

The proof is provided at the end. With (5.3.19) at hand, we deduce∣∣∣ ∑
16k<l6N

Cov (f(Zk), f(Zl))
∣∣∣ 6 N

|ρ|∞
1− |ρ|∞

Var (f(Z)) .

Finally, we get

eN 6
Var (f(Z))

N

[
1 + 2

|ρ|∞
1− |ρ|∞

]
,

which finishes the proof of (5.3.18).
It remains to justify (5.3.19). This is a consequence of [83, Theo-

rem 10.11]. Indeed, assume without loss of generality that k = 1 (for
notational convenience). Now define a Gaussian Hilbert space G for
all the variables from shaker iteration k = 1 to l > 1. For this, set
H := {h = (h1, . . . , hl) ∈ Hl}: endowed with the scalar product 〈h, g〉H =∑l

i=1〈hi, gi〉H, H is a Hilbert space to which we associate the Gaussian
process X = {X(h) : h ∈ H}. Let G denote the Gaussian Hilbert space
spanned by {X(h) : h ∈ H}.
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In view of (5.3.15) we observe that (X1, Xl) can be realized jointly as
follows:

X1 =
{
X(h) : h = (h, 0, . . . , 0), h ∈ bH

}
,

Xl =
{
X(h) : h = (ρl−1

h h, ρl−2
h

√
1− ρ2

hh, · · · ,
√

1− ρ2
hh), h ∈ bH

}
.

Let G1 denote the Gaussian subspace spanned by

{X(h) : h = (h, 0, . . . , 0), h ∈ H}

and similarly for Gl. Then, [83, Theorem 10.11] states that ρX1,Xl is equal
to the norm of the operator PGl,G1 which is defined as the orthogonal
projection of G onto Gl and then restricted to G1. This is now an easy
exercise to check that ‖PGl,G1‖ 6 |ρ|l−1

∞ . The proof of (5.3.19) is complete.

5.4 Constructions of shaking transformation

In order to make previous algorithms applicable, we now provide re-
versible shaking transformations in various situations (for random vari-
ables and random processes). Of course, Metropolis-Hastings(MH) and
Gibbs type transformations using explicit transition kernels are natural
candidates but here, we provide path-wise representations which lead
to significant simplifications and which are presumably more suitable
for tuning the shaking force (they induce transition kernels which are
not explicit, as a difference with the usual MH algorithm). Our path-
wise representation also makes the generalization into infinite dimen-
sional cases natural and immediate.

Recall that one has to exhibit a shaking map K(·, ·) and a random
variable Y such that (X,K(X, Y ))

d
= (K(X, Y ), X).

5.4.1 Poisson variable and compound Poisson process

For a Poisson variable X := P
d
= Poisson(λ) with parameter λ > 0, a

possible transformation is

K(P, [Bin(P, 1− p), Poisson(pλ)]) = Bin(P, 1− p) + Poisson(pλ)

where p ∈ (0, 1), using extra independent Binomial and Poisson random
variables, see [87, Chapter 5]. The intuitive interpretation is that we con-
sider the Poisson realization P as a set of points. We remove each point
in the set with probability p and add another set of points represented
by an independent Poisson variable with parameter pλ

With the same idea, the above decomposition holds also for com-
pound Poisson process (CPP in short) with parameter (λ, µ), i.e. X :=

(Pt)06t6T where Pt =
∑Nt

k=1 Jk where N is a standard Poisson process
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with intensity λ and (Jk)k are i.i.d with distribution µ. Let p ∈ (0, 1): by
coloring at random the jumps of N in red with probability 1− p and in
green with probability p, we can writeNt = Nr

t +Ng
t andXt = Xr

t +Xg
t ,

using obvious notations. Then Xr and Xg are two independent CPP
with parameters ((1 − p)λ, µ) and (pλ, µ). Using an extra independent
CPP Y distributed as Xg, it is easy to check that the following transfor-
mation satisfies (K):

K(X, Y ) = (Xr
t + Yt)06t6T . (5.4.1)

In Subsection 6.3, we will use this shaking transformation for the exam-
ple of queuing system with exponential inter-arrival time .

5.4.2 Gamma distribution

For a random variable X = Γa,b with Gamma distribution Gamma(a, b)
(a > 0, b > 0) defined by P(Γa,b ∈ dx) = cab

axa−1e−bx1x>0dx for a nor-
malizing constant ca, we can provide a simple transformation based on
the so-called beta-gamma algebra from [48]. We read about this property
from [36]2.

Let p ∈ (0, 1): with the notation of (K), take

Y = (Beta(a(1− p), ap), Gamma(ap, b))

with two extra independent Beta and Gamma distributed random vari-
ables, and set

K(Γa,b) = Γa,b Beta(a(1− p), ap) + Gamma(ap, b). (5.4.2)

Then Assumption ((K)) is satisfied. This relation helps to construct re-
versible shaking transformations for other probability distributions. We
give the proof in the following.

Proposition 5.4.1 ([48]). Suppose a1, a2, b > 0 and Ba1,a2 ∼ Beta(a1, a2) we
have

(Γa1,b,Γa2,b)
d
= (Ba1,a2Γa1+a2,b, (1−Ba1,a2)Γa1+a2,b) (5.4.3)

where all the random variables are independent of each other.

Corollary 5.4.1. Equation (5.4.2) satisfies Assumption (K).

Proof. Take a1 = a(1− p), a2 = ap in Equation (5.4.3), we have

(Γa(1−p),b,Γap,b)
d
= (Ba(1−p),apΓa,b, (1−Ba(1−p),ap)Γa,b)

2I want to thank Société Générale, where I did an internship before starting my
PhD and had some idle time to read this book. This interesting exercise seemed very
innocent to me at that moment.
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Define Γ′ap,b as an independent copy of Γap,b. By the trivial identity

Γa,b = Ba(1−p),apΓa,b + (1−Ba(1−p),ap)Γa,b

and Proposition 5.4.1, we get

(Γa,b,Γa,bBa(1−p),ap + Γap,b)

=(Ba(1−p),apΓa,b + (1−Ba(1−p),ap)Γa,b,Γa,bBa(1−p),ap + Γap,b)

d
=(Γa,bBa(1−p),ap + Γ′ap,b,Γa,bBa(1−p),ap + Γap,b)

Similarly, we get

(Γa,bBa(1−p),ap + Γap,b,Γa,b)

=(Γa,bBa(1−p),ap + Γap,b, Ba(1−p),apΓa,b + (1−Ba(1−p),ap)Γa,b)

d
=(Γa,bBa(1−p),ap + Γap,b,Γa,bBa(1−p),ap + Γ′ap,b)

Set

A = Γa,bBa(1−p),ap + Γap,b

B = Γa,bBa(1−p),ap + Γ′ap,b

obviously (A,B)
d
= (B,A). This concludes the proof.

Figure 5.4 represents 100000 independent simulations of (Γ,K(Γ))
with their respective marginal histograms. The smaller the value of p,
the slighter the shaking. On the plots, observe that Γ and K(Γ) have the
same distribution (coherently with (K)).

FIGURE 5.4: Shaking Gamma(2.5, 0.12) variables with p =
0.1 (left) and p = 0.5 (right)

5.4.3 Other random variables

General trick for shaking construction Shaking transformations for
many other distributions can be found by a change of variable trick:
assume that

X
d
= f(Z)
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for some invertible function f and a random variableZ having a shaking
transformation KZ , then

KX(·) = f(KZ(f−1(·)))

defines a reversible shaking transformation for X . We list several cases
using this trick

� Exponential and χ2(k) distributions In particular, take a = 1 in
equation (5.4.2) we recover the case of exponential distribution Exp(b).
Note also that shaking transformation for χ2(k) distribution directly fol-
lows from the above since this distribution is the same as that of 2Gamma(k

2
, 1).

� (s)-distribution For X := T with the (s)-distribution given by

P(T ∈ dt) =
1√
2πt3

exp(− 1

2t
)1t>0dt

which represents the hitting time of level 1 by a standard Brownian mo-
tion, we have (at least) two shaking transformations. Firstly, we can
shake Brownian motion as previously explained. Alternatively, we can
use the well-known identity

T
d
= G−2

where G is a standard Gaussian random variable and apply the Gaus-
sian shaking transformation.

� Uniform variable on [0, 1] We can rely on the relation with exponen-
tial distribution to write

X := U
d
= exp(−Exp(1))

Let p ∈ (0, 1): in view of (5.4.2), the following transformation satisfies
(K),

K(U) = UBeta(1−p,p) exp(−Gamma(p, 1)) (5.4.4)

with extra independent Beta and Gamma random variables.
An alternative shaker is

K(U) = U + δY mod 1

where Y is uniformly distributed on [−1, 1] and independent of U with
|δ| small3. This choice is presumably efficient only in the case where the
values 0 and 1 are identified, since for values of U close to 0 and 1 respec-
tively, the shaker will produce with high probability values close to 1

3We thank one referee of our published paper [68] for suggesting this construction
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and 0 respectively, thus possibly dramatically changing the system con-
figuration when 0 and 1 are not identified. These are not the properties
we may wish for a shaker (changing slightly configurations). Clearly,
the choice of shakers is not unique and requires further investigation.

Now that we are in a position to shake uniform distribution, it is
easy to shake any distribution on R having a continuous CDF function
F since F (X)

d
= Unif. This is useful in the case F and F−1 are easily

tractable. We do not list all the possibilities.

� Bernoulli and geometric distribution SupposeX is a Bernoulli vari-
able, i.e. X = 0 with probability p and X = 1 with probability 1− p. The
shaking transformation we propose is that ifX = 0, it will be changed to
1 with probability x and ifX = 1, it will be changed to 0 with probability
y.

In order to satisfy Equation (5.3.15), we need to have

px = (1− p)y

If ξ follows a geometric distribution G(p), i.e.

P(ξ = k) = (1− p)kp, k > 0,

The shaking transformation we propose writes in the following way

K(ξ) = Y 1Y <ξ + ξ1Y >ξ,U<1−y + (ξ + Z + 1)1Y >ξ,U>1−y (5.4.5)

where Y ∼ G(x), U ∼ U([0, 1]) and Z ∼ G(p) with shaking parameters
x, y satisfying(1− p)x = py.

Proposition 5.4.2. Equation (5.4.5) satisfies Assumption (K).

Proof. Equation (5.4.5) does not come out of nothing. It is related to
the interpretation of geometric distribution as the sum of independent
Bernoulli variables.

We will just give a computational proof by verifying

P (ξ = n)P (ξ = n,K(ξ) = m) = P (ξ = m)P (ξ = m,K(ξ) = n)

We can easily check that

P (ξ = n,K(ξ) = m) =

{
(1− x)mx, m < n

y(1− x)n(1− p)m−n−1p m > n

Thus, supposing m < n, we have

P (ξ = n)P (ξ = n,K(ξ) = m) = (1− p)np(1− x)mx

P (ξ = m)P (ξ = m,K(ξ) = n) = (1− p)mpy(1− x)m(1− p)n−m−1p

(1− p)np(1− x)mx = (1− p)mpy(1− x)m(1− p)n−m−1p
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implies
(1− p)x = py

which is exactly what we impose with Equation (5.4.5).

Alternatively to Equation (5.4.5), we can use the fact that the integer
part of a random variable following exponential distribution has the ge-
ometric distribution. It writes as follows: we define λ = − ln(1− p) and

K(X) = b(X + {E})B +Gc (5.4.6)

where E ∼ Exp(λ), B ∼ Beta(1 − x, x) and G ∼ Gamma(x, λ) with shak-
ing parameter x ∈ [0, 1]. In words, we add the fractional part to turn
the geometric variable into an exponential one (indeed, the integer and
decimal parts of a Exp(λ) are two independent random variables), then
shake the exponential variable using existing formula, then take the in-
teger part of the shaken exponential variable as the shaken geometric
variable.

� Other shakings for random variables In cases where explicit trans-
formation is not available, we can use implicit transformation. Namely,
assume for instance that X := f(Z1, · · · , Zn) with independent (Zi)i,
which serves to simulate X through the simulation of (Zi)16i6n, and
suppose that each Zi has an explicit shaking transformation. Then the
implicit shaking transformation for X is

K(X) = f(K1(Z1), · · · ,Kn(Zn))

where the exact expression of Ki may be different according to the type
of random variables Zi and each shaking is made independently of the
others. For example, this can be applied to X having Beta distribution
because of the identity Beta(a, b)

d
= Gamma(a,1)

Gamma(a,1)+Gamma(b,1)
with independent

Gamma distributions.

5.4.4 Other variations on the shaking

� Randomized shaking Actually, in the previous examples K(·, ·) is
often written as Kθ(·, ·) for a parameter θ serving to tune the shaking
force. A first remark is that instead of fixing the parameter value of θ,
one can also randomize it, which gives rise to another reversible shaking
transformation.

Lemma 5.4.1. Assume that Kθ(·, Y ) satisfies (K) for any θ in a measurable
space Θ and that K·(·, ·) defines a measurable function from Θ × S × Y into
S. Let T be any Θ-valued random variable independent of Y , then KT (·, Y )
satisfies (K).
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The proof is easy and left to the reader. As a consequence, all the
shaking transformations presented before can be generalized with a ran-
dom parameter. This randomization technique will be seen useful in the
example of Section 6.6.

� Partial shaking When the random variable X is built on several in-
dependent random variables, it may be relevant to shake only some of
them. For instance, consider a general pure jump process (including
CPP or renewal process), where A = (An)n>1 represents the inter-arrival
times and B = (Bn)n>1 represents the jump sizes, A and B being in-
dependent: the shaking transformation may concern both A and B, or
only A (the jump times), or only B (the jump sizes). These alternatives
are tested in the subsequent examples on insurance and queuing sys-
tem. Similarly, for a SDE driven by both Brownian motion and another
independent Levy process, we can shake the first driving process or the
second, or both.

Another strategy is to apply randomized partial shaking. For a model of
the form X := f(Zi, 1 6 i 6 n) with independent (Zi)i, when n large or
n = +∞ we can reduce the computational cost by picking at random a
subset of coordinates and only shake independently the corresponding
random variables. The property of reversible shaking transformation
is preserved owing to Lemma 5.4.1. This method will be used in the
random graph example of Subsection 6.4.

Metropolis-Hastings type transformations In finite dimensional ap-
plications, we can also use Metropolis-Hastings(MH) type transforma-
tions, which consists in proposing a potential transition and then use a
rejection function to decide with which probability this transition will
be accepted. But this transition is usually less efficient than our shaking
transformation.

Firstly, suppose we work with a continuous distribution. With MH
type transformation, the simulation has a strictly positive probability
to be rejected and we stick to the previous position in this case. But
with our shaking transformation, we always get a different point so no
simulation effort is wasted.

Interestingly, our shaking with rejection can be interpreted as one
MH transformation with implicit transition kernel. This again shows
the interest of our shaking transformation. If we use standard MH type
transition in the shaking with rejection step, then we need to decide
twice if the transition proposition will be rejected (once inside MH tran-
sition, once for shaking with rejection) while using shaking transforma-
tion we only need to decide once.

Secondly, our shaking transformation is easier than MH transforma-
tion to be implemented. And since we only have one parameter inside
our shaking transformation, it is easy to be calibrated to achieve good
numerical performance.
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Lastly, the natural generalization to infinite dimensional case pro-
vided by our shaking transformation is out of scope for MH transfor-
mation since in infinite dimensional case we do not have a density func-
tion.

But there are also applications where only MH transformation is
available, such as the case where the system is simulated according to a
given density function with an unknown normalization constant.

5.5 Almost sure convergence of POP method in
finite dimensions

In Subsection 5.2.4 the L2 convergence of POP method is proven under
additional assumptions which are not obvious to verify. In this section,
we are going to prove the almost sure convergence of POP method in
all the finite dimensional cases without any assumption. Here by finite
dimensional cases we mean that X under consideration is a finite di-
mensional random variable. The proof is based on Theorem 4.1.5 that
we reviewed in Chapter 4.

Theorem 5.5.1. POP method converges almost surely in all the finite dimen-
sional cases where the shaking transformation admits a strictly positive transi-
tion density for continuous distributions or a strictly positive transition prob-
ability for discrete distributions. In particular, it converges for all the cases
presented in Section 5.4.

Proof. As is shown in Algorithm 2, the final estimator in POP method is
given as the product of a fixed number of conditional probability esti-
mators, so it suffices to prove that each conditional probability estimator
converges almost surely.

Firstly, we remark that the shaking and rejection transformation at
level k, defined in Equation (5.2.2), can be interpreted in the form of
Equation (4.1.3), which is well-known as Metropolis-Hastings sampler.
Unlike usual Metropolis-Hastings sampler where explicit transition den-
sities and acceptance functions are used, we use implicit transition den-
sities and acceptance functions via all the shaking transformations pro-
posed in Section 5.4. The implicit transition density for Gaussian shak-
ing transformations is given as an example after the proof. All the im-
plicit transition densities in Section 5.4 can be written out in a similar
way.

Secondly, the assumption a(x) > 0 in Theorem 4.1.5 writes in our rare
event setting as P (ΨZ(K(x)) ∈ Ak) > 0 for any x s.t. ΨZ(x) ∈ Ak. This
inequality holds true since we assume 0 < P (Z ∈ A) 6 P (ΨZ(X) ∈ Ak),
i.e. Ψ−1

Z (Ak) has a strictly positive Lebesgue measure.
Thirdly, notice that the existence of a stationary distribution has been

shown previously in Proposition 5.2.1 and we can easily see that the
Markov chain in POP method is η-irreducible, due to the strictly posi-
tive transition density p. Therefore, from Theorem 4.1.5 we deduce that
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in Algorithm 2, p(N)
k converges to P (Z ∈ Ak | Z ∈ Ak−1) almost surely,

which concludes the proof.

In the case of shaking transformation for standard q-dimensional
normal variable, we will take

K(x) = K(x,X ′) = (ρixi +
√

1− ρ2
iX
′
i)16i6q

with i.i.d. standard Gaussian variables (X ′i)16i6q and sup16i6q |ρi| < 1,
the measure η in Theorem 4.1.5 can be taken as the Lebesgue measure
on Rq and the transition density is given by

p(x, y) = exp

(
−

q∑
i=1

|yi − ρixi|2

2(1− ρ2
i )

)
(2π)−q/2

q∏
i=1

(1− ρ2
i )
−1/2 (5.5.1)

Then the acceptance function corresponds to a(x, y) = 1ΨZ(y)∈Ak and the
local mean acceptance rate to a(x) =

∫
Rq a(x, y)p(x, y)dy.

In a similar way, we can easily find the implicit transition density for
all the finite dimensional shaking transformations given in Section 5.4.

The above proof can not be extended directly to infinite dimensional
cases because of the loss of density function. An attempt towards the
convergence of infinite dimensional case has been made in Subsection
5.3.3, with further work remaining to be done.

5.6 Adaptive POP method

5.6.1 Algorithm

For good numerical performance, one may wish that the conditional
probabilities at intermediate levels of POP method are of the same or-
der (for example, in [93] it is argued that the equiprobability choice min-
imizes the variance of splitting algorithms). However, the appropriate
choice of intermediate levels to ensure this condition requires a priori
knowledge about the nature of the rare event under consideration. In
the absence of such knowledge, choosing appropriate intermediate lev-
els is challenging. Here, we propose an adaptive POP method where
at each level, except for the last, the conditional probability is fixed to a
pre-decided value p ∈ (0, 1) (typically 10%).

For the ease of exposition, let us suppose that Z = ΨZ(X) takes val-
ues in Rd and that the rare event set is of the form

A = {z ∈ Rd : ϕ(z) 6 ā}

where ϕ : Rd → R is a measurable function and ā is a given finite thresh-
old. The principle of the adapted version of POP is to set

Ak := {z ∈ Rd : ϕ(z) 6 ak} (5.6.1)
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with online computations of the acceptance level ak. Notice that this
choice of Ak corresponds to the notations explained in Subsection 5.3.3.
For having constant conditional probabilities, we should take ak as the
quantile of V := ϕ(ΨZ(X)) = ϕ(Z) at level pk. This heuristics guides the
following notation and definition.

We denote the p-quantile of the distribution of V as

Q1
p = F−1

V (p) := inf
{
v ∈ R : FV (v) > p

}
(5.6.2)

where FV (·) is the cumulative distribution function of V . We define the
conditional quantile function gp(·) of V in the following way:

gp(q) := inf{v ∈ R : P (V 6 v | V 6 q) > p} (5.6.3)

and also recursively define

Ql+1
p := gp(Q

l
p), l > 1. (5.6.4)

The above formula remains valid for l = 0 by setting Q0
p := +∞. This is

our convention from now on. Moreover, we define

r(q) := P (V 6 ā | V 6 q) , (5.6.5)

then the true rare event probability α = P (V ∈ A) can be written in a
unique way as

α = r(QL∗

p )pL
∗

(5.6.6)

where L∗ ∈ N and r(QL∗
p ) ∈ (p, 1]. We are now in a position to define the

POP algorithm with adaptive number of levels (approximation of L∗).

Initialization. We are given a common initialization point x0 such that
ϕ(ΨZ(x0)) 6 ā (we can follow the method given in Algorithm 2.

1st Markov chain. Simulate the first N iterations of the Markov chain
based on Equation (5.2.13) with starting state x0. Then, sort the
sample (V 1

N,1, . . . , V
1
N,N) in ascending order as

V 1
N,(1) 6 . . . 6 V 1

N,(k) 6 . . . 6 V 1
N,(N)

and take k1
p ∈ {1, . . . , N} such that

k1
p − 1 < Np 6 k1

p.

Denote by Q̂1
N,p = V 1

N,(k1p), the estimate for Q1
p based on N samples.

2nd Markov chain. Start the Markov chain in Equation (5.2.13) with
initial state x0 and with cascade event setA1 corresponding to level
â1 := Q̂1

N,p (see (5.6.1)). Again, simulate the first N steps and sort
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the sample (V 2
N,1, . . . , V

2
N,N) in ascending order as

V 2
N,(1) 6 . . . 6 V 2

N,(k) 6 . . . 6 V 2
N,(N).

Take k2
p such that

k2
p − 1 < Np 6 k2

p

and denote by â2 := Q̂2
N,p = V 2

N,(k2p), the estimate for Q2
p based on N

samples.

Iteration and stopping. Next, repeat the procedure until the (LN + 1)th
step where we have Q̂LN+1

N,p 6 ā for the first time. The intermedi-
ate setsAk in (5.6.1) are defined by the acceptance levels âk = Q̂k

N,p.
Calculate r̂N(Q̂LN

N,p), defined as the proportion of values (V LN+1
N,1 , . . . ,

V LN+1
N,N ) which are smaller than ā with the cascade event set corre-

sponding to acceptance level Q̂LN
N,p.

In the case LN = 0, we set by convention Q̂0
N,p = +∞ (similarly to

Q0
p).

Outputs. Compute the probability estimate as

α̂N := r̂N(Q̂LN
N,p)p

LN (5.6.7)

as an approximation of the probability α written in (5.6.6).

Remark 5.6.1. In the following Theorem 5.6.1, we assume that the initial
points of the above Markov chains are fixed (actually all equal to x0). The
deterministic initialization of Markov chain at each level, indeed, partly sim-
plifies the convergence analysis. However in practice, we could advantageously
start the l-th level Markov chain from a point close to the acceptance level, i.e.
Xl,0 equal to the x-configuration of one of the V l

N,(1), . . . , V
l
N,(klp)

. The choice
of V l

N,(1) is the simplest from algorithmic viewpoint, since we only need to up-
date the smallest V l

N,i (with the corresponding X) during the algorithm run.
Besides, we observe only a very small impact of initialization on the numerical
results.

The numerical performance of adaptive POP method and its com-
parison with POP method with prefixed intermediate levels can be found
in Section 6.7 and Section 6.8.

5.6.2 Convergence result

In order to prove the consistency of estimator α̂N , we make the following
assumptions. We discuss the applicability of these assumptions after the
proof of estimator convergence.

Assumption 5.6.1. The distribution of V admits a density q 7→ f(q), which
is continuous and strictly positive at q = Ql

p for all l ∈ {1, . . . , L∗}.
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Assumption 5.6.2. For any q ∈ (−∞,+∞], let ĝN,p(q) denote the quantile
estimator for gp(q) based on N iterations of the Markov chain based on the
rejection set {x : ϕ(ΨZ(x)) > q}. For any l ∈ {0, . . . , L∗ + 1}, there exist
an open interval Il containing Ql

p (with the convention Q0
p = +∞ and I0 =

{+∞}) and a function b : Il × N∗ × (0,+∞) → [0,+∞) such that for all
ε > 0 and q ∈ Il

P (|ĝN,p(q)− gp(q)| > ε) 6 b(q,N, ε).

We further assume ∑
N>1

sup
q∈Il

b(q,N, ε) < +∞.

Assumption 5.6.3. For any q ∈ (−∞,+∞], let r̂N(q) denote the mean esti-
mator for r(q) based on N iterations of the Markov chain based on the rejection
set {x : ϕ(ΨZ(x)) > q}. For any l ∈ {L∗ − 1, L∗} ∩ N, there exist an open
interval Jl containing Ql

p (with the convention J0 = {+∞}) and a function
c : Jl × N∗ × (0,+∞)→ [0,+∞) such that for all ε > 0 and q ∈ Jl

P (|r̂N(q)− r(q)| > ε) 6 c(q,N, ε).

We further assume ∑
N>1

sup
q∈Jl

c(q,N, ε) < +∞.

Theorem 5.6.1. Suppose that Assumptions 5.6.1, 5.6.2 and 5.6.3 hold. Then,
α̂N converges almost surely to α = P(Z ∈ A) as N → +∞.

Theorem 5.6.2. With ∑
N>1

sup
q∈Il

b(q,N, ε) < +∞

and ∑
N>1

sup
q∈Jl

c(q,N, ε) < +∞

in the above assumptions replaced by less restrictive conditions that

sup
q∈Il

b(q,N, ε)→ 0, sup
q∈Jl

c(q,N, ε)→ 0

as N → +∞, we have that α̂N converges in probability to α = P(Z ∈ A) as
N → +∞.

Proof of Theorem 5.6.1

We split the proof in several steps.

Lemma 5.6.1. For any l ∈ {1, . . . , L∗ + 1} and any ε > 0, we have∑
N>1

P
(
|Q̂l

N,p −Ql
p| > ε

)
< +∞. (5.6.8)
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Thus, Q̂l
N,p converges to Ql

p almost surely as N → +∞.
Proof. We proceed by induction on l. Assumption 5.6.2 with empty re-
jection (Q0

p = +∞) ensures that (5.6.8) is true for l = 1. Now suppose
that (5.6.8) is true for some l > 1 and let us prove it for l + 1. We have

P
(
|Q̂l+1

N,p −Q
l+1
p | > ε

)
6P
(
|Q̂l+1

N,p − gp(Q̂
l
N,p)| > ε/2

)
+ P

(
|gp(Q̂l

N,p)− gp(Ql
p)| > ε/2

)
6P
(
|Q̂l+1

N,p − gp(Q̂
l
N,p)| > ε/2, Q̂l

N,p ∈ Il
)

+P
(
Q̂l
N,p /∈ Il

)
+ P

(
|gp(Q̂l

N,p)− gp(Ql
p)| > ε/2

)
:=I + II + III. (5.6.9)

From Assumption 5.6.2, on {Q̂l
N,p ∈ Il}we have

P
(
|Q̂l+1

N,p − gp(Q̂
l
N,p)| > ε/2 | Q̂l

N,p

)
6 b(Q̂l

N,p, N, ε/2).

Thus, the term I in the right hand side of (5.6.9) is bounded the supre-
mum supq∈Il b(q,N, ε/2), and still by Assumption 5.6.2, we get∑

N>1

P
(
|Q̂l+1

N,p − gp(Q̂
l
N,p)| > ε/2, Q̂l

N,p ∈ Il
)
< +∞. (5.6.10)

Furthermore, Assumption 5.6.1 implies that the function gp(q) is contin-
uous at q = Ql

p. This combined with the induction hypothesis at level l
implies that the series with general terms given by II and III converge
similarly to (5.6.10). Therefore, (5.6.8) is proved for l + 1 and the result
follows.

Corollary 5.6.1. When logα
log p

is not an integer, i.e. QL∗+1
p < ā < QL∗

p , we have

P (LN = L∗ for N large enough ) = 1.

Proof. This is a direct consequence from Lemma 5.6.1.

Lemma 5.6.2. Assume L∗ 6= 0. When logα
log p

is not an integer, we have for any
ε > 0, ∑

N>1

P
(
|Q̂LN

N,p −Q
L∗

p | > ε
)
< +∞.

Proof. Firstly, we make a trivial decomposition:

P
(
|Q̂LN

N,p −Q
L∗

p | > ε
)

= P
(
Q̂LN
N,p −Q

L∗

p > ε
)

+ P
(
QL∗

p − Q̂
LN
N,p > ε

)
.

(5.6.11)

Recall, that Q̂LN+1
N,p is the first quantile estimation which lies below ā. In

the first term in r.h.s of Equation (5.6.11), if Q̂LN
N,p > QL∗

p + ε and Q̂LN+1
N,p 6
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ā, then there is no Q̂l
N,p which lies in the interval ]QL∗

p − δ,QL∗
p + δ[ with

δ = min{ε, QL∗
p − ā}> 0. So {Q̂LN

N,p −QL∗
p > ε} implies {|Q̂L∗

N,p −QL∗
p | > δ}

and we have

P
(
Q̂LN
N,p −Q

L∗

p > ε
)
6 P

(
|Q̂L∗

N,p −QL∗

p | > δ
)
.

Next, we make another decomposition:

P
(
QL∗

p − Q̂
LN
N,p > ε

)
6P
(
QL∗

p − Q̂
LN
N,p > ε, |Q̂L∗

N,p −QL∗

p |6ε
)

+P
(
|Q̂L∗

N,p −QL∗

p |>ε
)
.

On the joint event in the first probability in the above r.h.s. inequality,
we must have Q̂LN

N,p < Q̂L∗
N,p, and consequently Q̂L∗+1

N,p > ā (by definition
of Q̂LN

N,p as the last quantile estimation above ā). Thus, it follows that

P
(
QL∗

p − Q̂
LN
N,p > ε, |Q̂L∗

N,p −QL∗

p |6ε
)

6P
(
|Q̂L∗+1

N,p −Q
L∗+1
p | > ā−QL∗+1

p

)
.

We are able to conclude the proof by collecting the above results and
using Lemma 5.6.1 with l = L∗, l = L∗ + 1 and various ε > 0.

Lemma 5.6.3. When logα
log p

is not an integer, we have for any ε > 0∑
N>1

P
(
|r̂N(Q̂LN

N,p)− r(Q
L∗

p )| > ε
)
< +∞.

Consequently, r̂N(Q̂LN
N,p) converges to r(QL∗

p ) almost surely as N → +∞.

Proof. Assume first that L∗ > 1. We decompose each probability using
the notation of Assumption 5.6.3:

P
(∣∣∣r̂N(Q̂LN

N,p)− r(Q
L∗

p )
∣∣∣ > ε

)
6 P

(∣∣∣r̂N(Q̂LN
N,p)− r(Q̂

LN
N,p)
∣∣∣ > ε/2

)
+ P

(∣∣r(Q̂LN
N,p)− r(Q

L∗

p )
∣∣ > ε/2

)
6 P

(∣∣∣r̂N(Q̂LN
N,p)− r(Q̂

LN
N,p)
∣∣∣ > ε/2, Q̂LN

N,p ∈ JL∗
)

+ P
(
Q̂LN
N,p /∈ JL∗

)
+ P

(∣∣r(Q̂LN
N,p)− r(Q

L∗

p )
∣∣ > ε/2

)
. (5.6.12)

The first term in the above r.h.s. is bounded by supq∈JL∗ c(q,N, ε/2) (ar-
guing as in the proof of Lemma 5.6.1), thus it forms a convergent series
owing to Assumption 5.6.3 ; the second term gives also a convergent
series in view of Lemma 5.6.2; the last term is handled as the second,
by noting that r(q) is continuous at q = QL∗

p (Assumption 5.6.1). Now
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consider the case L∗ = 0 and write

P
(∣∣∣r̂N(Q̂LN

N,p)− r(Q
L∗

p )
∣∣∣ > ε

)
6 P

(∣∣∣r̂N(Q̂0
N,p)− r(Q0

p)
∣∣∣ > ε,LN = 0

)
+ P (LN 6= 0) . (5.6.13)

The convergence of the series formed by the first probability term in
the above r.h.s. directly follows from Assumption 5.6.3. Moreover, by
definition of LN and since L∗ = 0,

{LN 6= 0} ⊂ {Q̂1
N,p > ā} ⊂ {|Q̂1

N,p −Q1
p| > ā−Q1

p > 0}

then we conclude by Lemma 5.6.1 with l = 1.

Proof of Theorem 5.6.1, when logα/ log p is not an integer. This is a direct re-
sult from Corollary 5.6.1 and Lemma 5.6.3.

Next, we prove the convergence when logα/ log p is an integer. This
case needs to be dealt with separately as we no longer have almost sure
convergence of LN to L∗. When α = pL

∗ , the estimator can be expressed
as

α̂N = 1{LN=L∗−1}r̂N(Q̂L∗−1
N,p )pL

∗−1 + 1{LN=L∗}r̂N(Q̂L∗

N,p)p
L∗

+ 1{LN 6∈{L∗−1,L∗}}r̂N(Q̂LN
N,p)p

LN .

Then, the error of our estimator is given as:

α̂N − pL
∗

=1{LN=L∗−1}

(
r̂N(Q̂L∗−1

N,p )− p
)
pL
∗−1

+1{LN=L∗}

(
r̂N(Q̂L∗

N,p)− 1
)
pL
∗

+1{LN 6∈{L∗−1,L∗}}

(
r̂N(Q̂LN

N,p)p
LN − pL∗

)
. (5.6.14)

Lemma 5.6.4. If α = pL
∗ , we have P (LN ∈ {L∗ − 1, L∗}, as N is large enough) =

1.

Proof. In any caseQL∗+1
p < ā: since Q̂L∗+1

N,p converges a.s. toQL∗+1
p (Lemma

5.6.1), by the definition of LN we have LN + 1 6 L∗ + 1 as N → +∞.
Similarly, provided that L∗ > 1, Q̂L∗−1

N,p converges a.s. to QL∗−1
p > ā, thus

LN > L∗ − 1 as N → +∞.

Lemma 5.6.5. For l ∈ {L∗ − 1, L∗} ∩ N and any ε > 0, we have∑
N>1

P
(
|r̂N(Q̂l

N,p)− r(Ql
p)| > ε

)
< +∞.

Thus for such l, r̂N(Q̂l
N,p) converges to r(Ql

p) almost surely as N → +∞.
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Proof. Similarly to (5.6.12), write

P
(∣∣∣r̂N(Q̂l

N,p)− r(Ql
p)
∣∣∣ > ε

)
6 P

(∣∣∣r̂N(Q̂l
N,p)− r(Q̂l

N,p)
∣∣∣ > ε/2, Q̂l

N,p ∈ Jl
)

+ P
(
Q̂l
N,p /∈ Jl

)
+ P

(∣∣r(Q̂l
N,p)− r(Ql

p)
∣∣ > ε/2

)
.

If l = 0, the two last probabilities on the above r.h.s. are 0, since Q̂0
N,p =

Q0
p = +∞, while the first probability forms a convergent series in view

of Assumption 5.6.3.
If l > 0, we argue as in the proof of Lemma 5.6.1, applying Assumption
5.6.3, Lemma 5.6.1 and the local continuity of r(·).

Proof of Theorem 5.6.1, when logα/ log p is an integer. In the r.h.s. of Equa-
tion (5.6.14), applying Lemma 5.6.5 for l = L∗ − 1 and l = L∗, we get
that r̂N(Q̂L∗−1

N,p ) − p = r̂N(Q̂L∗−1
N,p ) − r(QL∗−1

p ) converges to zero almost
surely and that r̂N(Q̂L∗

N,p) − 1 = r̂N(Q̂L∗
N,p) − r(QL∗

p ) converges to zero al-
most surely, respectively. Thus, applying Lemma 5.6.4 completes the
proof.

We provide some discussion on the assumptions made to prove The-
orem 5.6.1.

• Assumption 5.6.1 is required for the continuity of gp(·) and r(·) at
quantile levels Ql

p. In [46], this type of condition is also required
for Assumption 5.6.2 to hold under some conditions.

• The first parts of Assumptions 5.6.2 and 5.6.3 are related to devi-
ation inequalities of various statistics of ergodic Markov chains.
Such inequalities have been shown for instance in [62, 90, 46] for
uniformly geometrically, or high order polynomially ergodic Markov
chains, when the starting point of the underlying Markov chain is
either fixed or distributed with the stationary distribution. Whereas
we always initialize the Markov chain at hand at a fixed point x0,
we believe that these assumptions are still reasonable because the
marginal distribution of Markov chain converges to the stationary
distribution (Proposition 5.8.1).

• The second halves of Assumption 5.6.2 and 5.6.3 are satisfied as
soon as some exponential-type inequalities hold locally uniformly.
Such exponential-type inequalities hold true under some assump-
tions, see for instance [62, Theorem 2], [90, Theorem 1] or [46, The-
orems 2 and 3]. We require some local uniformity w.r.t. the param-
eters defining the Markov chain which is valid in the aforemen-
tioned references. Thus, we argue that our assumptions appear to
be reasonable but it still requires some extra work to check these
conditions for the general (possibly infinite-dimensional) Gaus-
sian shaker.
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Proof of Theorem 5.6.2

The proof of convergence in probability of our estimator is based on a
well-known equivalence relationship: for a sequence of random vari-
able Cn, Cn converges to 0 in probability is equivalent to the fact that for
any given subsequence of Cn, we can extract a sub-subsequence such
that the sub-subsequence converges to zero almost surely, see [18, The-
orem 20.5].

Proof. For any given subsequence α̂sNof α̂N , we can extract a sub-subsequence
α̂stN such that ∑

N>1

sup
q∈Il

b(q, stN , ε) < +∞

∑
N>1

sup
q∈Jl

c(q, stN , ε) < +∞

Remark the above summations are applied along the series stN . Fol-
lowing exactly the same lines in the previous proof, with the sequence
1, 2, · · · , N, · · · replaced by its sub-subsequence stN , we can prove that
α̂stN converges almost surely when N goes to infinity, thus concluding
the proof using the above-mentioned equivalence relationship.

Remark that in this adaptive version of POP method, the parallel
feature of original POP method is lost. To recover this nice feature, the
best way to implement POP method given a pratical problem is, in our
opinion, the one to be discussed in Section 5.10, where we keep the par-
allel feature and use the adaptive version to overcome the problem of
unusually small conditional probability.

We only provided the consistency study of this adaptive POP method.
It is well known that the variance of ergodic Markov chain is difficult to
make explicit in general, thus the theoretical study on the optimal vari-
ance of adaptive POP method remains to be conducted. However, in
Section 6.7 and Section 6.8, we will provide numerical comparisons of
different versions of IPS and POP methods with the same computation
cost.

5.7 Sensitivity analysis in the Gaussian space

Another issue which is not often addressed in the rare event literature is
the analysis of sensitivities of rare event statistics with respect to (w.r.t.)
model parameters. This is an important issue especially because the rare
events statistics are known to be strongly dependent on the model pa-
rameters (see the limit (5.7.1)). Moreover, if the parameters are estimated
from the observed data, they typically constitute some error, thus, relat-
ing the sensitivity analysis to the concept of model risk. To the best of
our knowledge, there are very few contributions on this subject in the
rare event setting. We refer to [6] where such study is handled in the case
of compound Poisson process using the score function method coupled
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with the IS method. Our aim here is to extend the IPS and POP methods
to encompass sensitivity analysis. As we consider Gaussian based mod-
els, for the sensitivity analysis we rely on the machinery of Malliavin
calculus to derive elegant representations of derivatives of expectations
of general Gaussian functionals (see e.g. [55, 63, 65, 88]). We will show
that this approach suits the POP algorithm based on path configuration
since there is no need to Markovianize the sensitivity weights. We note
that in order to derive these results, we do not need any semimartingale
models and Itô calculus framework.

Assume that the model at hand depends on a real-valued parameter
θ, through the definition of Z and Φ so that E (Φ1Z∈A) now should be
written as E

(
Φθ1Zθ∈A

)
. The sensitivity of the above quantity w.r.t. θ is

an important issue to account for because the errors in model calibra-
tion and estimation procedures could have a significant impact. This
concerns the evaluation of model risk (see e.g. [39]). This question is
even more delicate when combined with rare-event analysis since it is
known that tails are very sensitive to parameter shocks [4]. For instance,
if Gσ

d
= N(0, σ2) then

lim
x→+∞

P (Gσ > x)

P (Gσ′ > x)
=

{
0 if 0 < σ < σ′

+∞ if σ > σ′ > 0
, (5.7.1)

i.e. a small change of parameters may cause a large change of tail-
probabilities.

To quantify the impact of θ on E
(
Φθ1Zθ∈A

)
, we may evaluate the

derivative w.r.t. θ whenever it exists. However, this quantity may be
uninformative in practice since in our rare-event setting, the above ex-
pectation is small and likely its derivative too. Alternatively, we suggest
to evaluate the relative sensitivity defined by

∂θE
(
Φθ1Zθ∈A

)
E (Φθ1Zθ∈A)

(5.7.2)

provided that E
(
Φθ1Zθ∈A

)
is differentiable in θ and non zero.

Regarding the computational aspects, the derivative ∂θE
(
Φθ1Zθ∈A

)
can be estimated by the re-simulation method as follows: Take two val-
ues of θ which are close to each other, approximate expectation for each
value of θ by Monte-Carlo simulations and form the finite difference as
an estimator of the derivative. This is known to be not well suited to the
case where the functional inside the expectation is irregular in θ which
is typically our case because of the indicator function. A better strategy
is to represent the derivative as an expectation (known as the likelihood
method in the case of explicit distributions, or based on Integration-By-
Parts formula in the Malliavin calculus setting [55]) and then evaluate it
by simulations. This is our approach which we formulate as an assump-
tion.
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(IBP) There exists an open set Θ ⊂ R such that θ 7→ E
(
Φθ1Zθ∈A

)
is dif-

ferentiable on Θ and for any θ ∈ Θ, there is an integrable random
variable I(Zθ,Φθ) such that

∂θE
(
Φθ1Zθ∈A

)
= E

(
I(Zθ,Φθ)1Zθ∈A

)
. (5.7.3)

Combining this with Equation (5.3.14) gives a simple representation
of the relative sensitivity.

Proposition 5.7.1. Assume (IBP). For any θ ∈ Θ such that E
(
Φθ1Zθ∈A

)
6= 0,

we have
∂θE

(
Φθ1Zθ∈A

)
E (Φθ1Zθ∈A)

=
E
(
I(Zθ,Φθ) | Zθ ∈ A

)
E (Φθ | Zθ ∈ A)

. (5.7.4)

It is important to observe that this can be directly evaluated by the
POP method using the ratio of two time-average approximations of I(Zθ,Φθ)
and Φθ respectively, along only one Markov chain defined by applying
shaking with rejection with respect to Zθ ∈ A. The computations at
intermediate levels are unnecessary which very much simplifies the nu-
merical evaluation. When we are concerned by the sensitivity of the
rare-event probability, it takes the simple form

∂θ
[
log
(
P
(
Zθ ∈ A

))]
:=
∂θP

(
Zθ ∈ A

)
P (Zθ ∈ A)

=E
(
I(Zθ, 1) | Zθ ∈ A

)
. (5.7.5)

In full generality on the probabilistic setting, the determination of I(Zθ,Φθ)
is difficult but in our Gaussian noise setting, it can be achieved using the
Integration by Parts formula of Malliavin calculus. There are numerous
situations where one can obtain such a representation for sensitivities
(see [55, 63, 65, 88] among others, and [104, Section 6.2] for more refer-
ences). We establish such a result in the case Zθ takes values in Rd, and
Zθ,Φθ are smooth in θ. Hereafter, we adopt and follow the notation of
[104] for the derivative operator D, for the space D1,2 of random vari-
ables that are one time Malliavin differentiable with 2-integrability, and
for the divergence operator δ. We say that a family of random variables
(U θ : θ ∈ Θ) is in loc

p (p > 1) if for any θ ∈ Θ, there is a open set Vθ ⊂ Θ

containing θ such that supθ′∈Vθ |U
θ′| is bounded by a random variable in

p.

Theorem 5.7.2. Consider Z = Rd and let q > d. Assume the following
conditions:

(a) (Φθ, θ ∈ Θ) is in loc
2 and Zθ has a q-norm bounded locally uniformly in θ;

(b) Φθ and Zθ are continuous and differentiable on Θ and their derivatives
(Φ̇θ, Żθ : θ ∈ Θ) are respectively in loc

1 and loc
2 ;

(c) for any θ ∈ Θ, Zθ ∈ D1,2 and the Malliavin covariance matrix γZθ :=
(〈D.Zθ

i , D.Z
θ
j 〉H)16i,j6d is invertible a.s.;
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(d) for any θ ∈ Θ, Φθ
∑d

j=1(γ−1
Zθ
Żθ)jD.Z

θ
j is in the domain of δ and Φ̇θ +

δ(Φθ
∑d

j=1(γ−1
Zθ
Żθ)jD.Z

θ
j ) has a 2-norm bounded locally uniformly in θ;

(e) for any θ ∈ Θ and any i ∈ {1, . . . , d},
∑d

j=1(γ−1
Zθ

)j,iD.Z
θ
j is in the domain

of δ and δ(
∑d

j=1(γ−1
Zθ

)j,iD.Z
θ
j ) has a q-norm bounded locally uniformly in

θ.

Then (IBP) is satisfied on Θ and

I(Zθ,Φθ) := Φ̇θ + δ

(
Φθ

d∑
j=1

(γ−1
Zθ
Żθ)jD.Z

θ
j

)
.

Proof. The proof follows a standard routine inspired by [55, 63, 65, 88]
but it requires a careful analysis because of the indicator function. Firstly,
properly mollify the indicator function z → 1ϕ(z,ā)60. Secondly, compute
the derivative of the expectation for the mollified function, then, inte-
grate by parts and take the limit w.r.t. the mollified parameter. Mollify-
ing and passing to the limit is the critical part. In [88, Section 6], it has
been done for functions which are almost everywhere continuous. Here
we do not impose such restrictions.

Step 1. Let us define the measure µ̄(dz) = (1 + |z|)−qdz on Rd with
q as in the statement and as q > d, this is a finite measure. Since 1A
is in 4(µ), there is a sequence (ξk)k∈N of smooth functions with compact
support, such that∫

Rd
|1z∈A − ξk(z)|4(1 + |z|)−qdz −→

k→+∞
0. (5.7.6)

W.l.o.g. we assume that 0 6 ξk 6 1. Now, define

uk(θ) := E
(
Φθξk(Z

θ)
)
,

u(θ) := E
(
Φθ1Zθ∈A

)
,

vk(θ) := E
(
I(Zθ,Φθ)ξk(Z

θ)
)
,

v(θ) := E
(
I(Zθ,Φθ)1Zθ∈A

)
.

Going forward, we shall establish three results. Firstly,

uk(θ) −→
k→+∞

u(θ)

for any θ ∈ Θ, then, u′k(θ) = vk(θ) for any θ ∈ Θ, and finally, vk converges
to v locally uniformly on Θ. By [45, Statement (8.6.4) Chap. VIII], this
proves that u is differentiable on Θ and its derivative is v.

Step 2: Proof of u′k(θ) = vk(θ). We can show

u′k(θ) = ∂θE
(
Φθξk(Z

θ)
)

= E
(

Φ̇θξk(Z
θ)
)

+ E

(
Φθ

d∑
i=1

∂ziξk(Z
θ)Żθ

i

)
,
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from the dominated convergence theorem using the boundedness of
ξk,∇ξk and the uniform controls in the assumptions (a)-(b). Further, by
the chain rule property, ξk(Zθ) ∈ D1,2 withD.[ξk(Zθ)] =

∑d
i=1 ∂ziξk(Z

θ)D.Zθ
i .

Moreover by definition of δ as the adjoint operator of D, we have

vk(θ) = E

(
Φ̇θξk(Z

θ) + 〈
d∑
i=1

∂ziξk(Z
θ)D.Zθ

i ,Φ
θ

d∑
j=1

(γ−1
Zθ
Żθ)jD.Z

θ
j 〉H

)

= E

(
Φ̇θξk(Z

θ) + Φθ

d∑
i=1

∂ziξk(Z
θ)

d∑
j=1

(γZθ)i,j(γ
−1
Zθ
Żθ)j

)

= E

(
Φ̇θξk(Z

θ) + Φθ

d∑
i=1

∂ziξk(Z
θ)Żθ

i

)
= u′k(θ).

Step 3: Proof of (uk, vk) −→
k→+∞

(u, v) locally uniformly on Θ. As-

sume for a while the 2-convergence

E
(
|ξk(Zθ)− 1Zθ∈A|2

)
−→
k→+∞

0 locally uniformly in θ ∈ Θ. (5.7.7)

Then from above and (d), we deduce that for any θ ∈ Θ, there is an open
set V ⊂ θ such that

|vk(θ)−v(θ)| 6 sup
θ∈V

∣∣∣∣∣∣Φ̇θ + δ(Φθ
d∑
j=1

(γ−1
Zθ
Żθ)jD.Z

θ
j )

∣∣∣∣∣∣
2

sup
θ∈V

∣∣∣ξk(Zθ)− 1Zθ∈A

∣∣∣
2

−→
k→+∞

0

The same arguments apply for uk−u. Consequently, it remains to justify
(5.7.7).

Under the assumption (e), we have the integration by parts formula
at order 1 (derived as in the proof of Step 2), i.e. for any smooth function
ζ with compact support and any i ∈ {1, . . . , d},

E
(
∂ziζ(Zθ)

)
= E

(
ζ(Zθ)δ

(
d∑
j=1

(γ−1
Zθ

)j,iD.Z
θ
j

))
.

Therefore, from [122, Theorem 5.4] the distribution of Zθ has a contin-
uous density pZθ(.) w.r.t. the Lebesgue measure, which is uniformly
bounded by a function depending only on the q-norms of δ

(∑d
j=1(γ−1

Zθ
)j,iD.Z

θ
j

)
, 1 6
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i 6 d. In view of (a)-(e), we deduce that for any θ ∈ Θ, there is a neigh-
borhood V ⊂ Θ of θ such that supθ′∈V |pZθ′ |∞ := CV < +∞, and

E
(
|ξk(Zθ′)− 1Zθ′∈A|2

)
6
(
E
(
|ξk(Zθ′)− 1Zθ′∈A|4(1 + |Zθ′ |)−q

))1/2 (
E
(

(1 + |Zθ′ |)q
))1/2

6

(∫
Rd
|ξk(z)− 1z∈A|4(1 + |z|)−qCV dz

)1/2

sup
θ′∈V

(
E
(

(1 + |Zθ′|)q
))1/2

.

Owing to (5.7.6), the above converges to 0 as k → +∞, uniformly w.r.t.
θ′ ∈ V , and (5.7.7) is proved.

5.8 Rare event sampling and stress test

Besides computing all kinds of rare event statistics, sometimes we may
also want to pick some rare event samples. We can not just apply plain
Monte Carlo method with rejection because a huge number of simula-
tion will be needed to just have one rare event realization. Inpired by
our POP method, in order to make rare event sampling, we can use a
well-known result for positive Harris recurrent Markov chain, which is
that if the chain is in addition aperiodic, then its marginal distribution
converges to its stationary distribution (see for example [99, Theorem
13.0.1]).

Remark that in all the finite dimensional cases, the existence of an
implicit positive transition density p ensures that our Markov chain is
aperiodic.

We have the following result.

Proposition 5.8.1. For any fixed k ∈ {0, . . . , n − 1}, denote by L(X
xk,0
k,N ) the

law of Xxk,0
k,N with initialization at a given point Xk,0 = xk,0 ∈ Ψ−1

Z (Ak), and
denote the distribution of X conditionally on {ΨZ(X) ∈ Ak} by πk. Then, for
any xk,0 ∈ Ψ−1

Z (Ak) we have

‖L(X
xk,0
k,N )− πk‖TV → 0

as N → +∞, where ‖ · ‖TV denotes the total variation norm.

If some additional conditions are satisfied, we can have explicit con-
vergence rate, such as in Theorem 4.1.6.

The convergence of marginal distributions may have interesting prac-
tical use. For example, let X denote the financial random environment
that a banking system faces, and Z denote the related risk exposure. In
order to test the system resilience, regulators usually design some stress
test scenario which means imposing a presumably rare event inA on the
banking system and then see how the system reacts to this event. Some
references on the design of stress test can be found in [52]. In most stress
testing designs, regulators artificially construct one or a few elements
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in A. Using the POP method and Proposition 5.8.1, one can sample ap-
proximately according to the conditional distributions X|Z ∈ A and/or
Z|Z ∈ A, which gives a more relevant choice of stress test scenarios.

5.9 A variant of IPS method

We recall all the notations in the Subsection 5.2.2.
An intrinsic feature of IPS method is that different generations of

particles are correlated with each other. Thus, if the empirical measure
is inaccurate at the first generation, it is likely to be inaccurate at the fol-
lowing generation, which amplifies the variance of the final estimator.
Here, we propose a way to reduce this dependency between genera-
tions. As previously seen, the shaking with rejection transformation is
invariant with respect to the conditional distribution of X. Hence, if we
apply several iterations of the transformation to obtain the next particles
generation, the distribution of the system will be less influenced by the
previous state. In order to keep the same computational cost, we reduce
the size of the particle system. Thus, we run the proposed version of IPS
algorithm with particle size bM

J
c and the transformation MK

k (X) applied
J times at each time step. Regarding the convergence analysis, we can
show that for a given J , the convergence still holds as M

J
goes to infinity.

As we see in the numerical experiments, this variant of IPS method has
a better performance, compared to the standard algorithm in Subsection
5.2.2 without extra resampling (J = 1)4. This idea of more iterations to
gain more independence between particles have beem mentioned be-
fore, for example in [9] and [29]. We provide one numerical test for this
variant in Subsection 6.8.2. As it is not the main focus of this thesis, we
leave more numerical study on this interesting variant of IPS method
for further research.

The modified IPS method follows the following procedure:

4We would like to thank Professor Tony LELIEVRE for bringing this variant of IPS
method to our attention
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Initialization:
For given integers J and M , set M ′ = bM

J
c;

Draw (X
(M ′,m)
0 ,m = 1, · · · ,M ′) which are i.i.d. copies of X ;

p
(M ′)
0 = 1

M ′

∑M ′

m=1 1A1(X
(M ′,m)
0 );

for i = 0 until n− 2 do
for m = 1 until M ′ do

Selection step:
if X

(M ′,m)
i ∈ Ai+1 then
X̂

(M ′,m)
i,0 = X

(M ′,m)
i ;

else
Pick X̂(M ′,m)

i,0 uniformly in {X(M ′,m)
i ∈ Ai+1} and

independently of everything else;
end
Mutation step:
for j = 1 until J do

X̂
(M ′,m)
i,j = MK

i+1(X̂
(M ′,m)
i,j−1 , Y

(m)
i,j−1) where Y (m)

i,j are i.i.d
copies of Y ;

end
X

(M ′,m)
i+1 = X̂

(M ′,m)
i,J ;

end
p

(M ′)
i+1 = 1

M ′

∑M ′

m=1 1Ai+2
(X

(M ′,m)
i+1 );

end
Result: p(M ′) =

∏n−1
i=0 p

(M ′)
i

Algorithm 3: IPS method with extra resampling and reduced size
for computing P (X ∈ A)

5.10 Combine parallel and adaptive features in
POP method

As we shall see in the numerical examples, POP method is efficient
when provided with good choices of nested subsets, which is possible
thanks to the aforementioned level adaptive version. However, the ad-
vantage of parallelization is lost. Here, we propose a variant with level
refinement which allows to recover the possibility of parallelization.

To begin, we fix a threshold value q (for example q = 0.05) for each
conditional probability under which the estimation using one Markov
chain is considered insufficient, and we arbitrarily choose some nested
subsetAk (such as an equi-distant partition of the entire space according
to some criteria function). Then, we run one Markov chain as defined
in Definition 5.2.3 at each level in parallel to estimate all the conditional
probabilities P(X ∈ Ak | X ∈ Ak−1). Next, we check if the estimator
p

(N)
k is larger than q and accept the estimate for each level for which it

is true. Otherwise, if p(N)
k0

< q for some k0, we change the algorithm



5.11. Black-Box feature of our methods 103

to the adaptive scheme as given in Section 5.6 to estimate P(X ∈ Ak0 |
X ∈ Ak0−1). Notice that the Markov chain already used for level k0 need
not be simulated again. Another scheme is to put new nested subsets
between Ak0 and Ak0−1 and run POP method again in parallel. Finally,
the product of all the estimators provides an estimate of the rare event
probability.

5.11 Black-Box feature of our methods

It is worth pointing out that, different from importance sampling tech-
niques which depend much on model’s particularity, all our methods
presented above work with a Black-Box feature.

FIGURE 5.5: Black-Box system

As illustrated by Figure 5.5, our X can be the input of a Black-Box
system, some commercial computation code for example, and the rare
event is defined based on the output of this system. We apply the shak-
ing transformation on the input X on the left side and thus make corre-
sponding change on the output on the right hand side. In this way we
completely ignore what happens inside the Black-Box. This makes our
method applicable in very general situations.

As is demonstrated in the applications, even if the system is not
given as a Black-Box, this feature can be very useful. Sometimes the
explicit system involves very complicated dynamics, for example many
correlations, such that it is not even easy to artificially design a rare
event realization. Applying our method can help to overcome this prob-
lem.
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Applications

In this chapter, we will demonstrate the numerical performances of our
methods using shaking transformations presented in Section 5.4.

The examples below are chosen according to their importance in ap-
plications and also because they are numerically challenging: we choose
parameters so that rare-event probabilities are very small, from 10−5 to
10−10 or even less, moreover for some of them we can compute bench-
mark values using importance sampling techniques.

We do not provide theoretical results on the optimal choice of shak-
ing transformation, but numerical results with different shaking param-
eters are given in order to discuss about the robustness of algorithms
and to provide intuitive insights about these choices.

Besides, we have not optimized the choice of intermediate levels in
these examples. When our methods are run with prefixed intermediate
levels, some rough preliminary runs are done to make all conditional
probabilities more or less of the same magnitude. However, observe
that adding extra intermediate levels in POP can be done directly, with-
out changing the estimation for other levels, thus preliminary runs are
not necessary for POP; this is an advantage compared to IPS where one
would to resimulate the whole particle system. When our methods are
run with the adaptive versions, we pick a prefixed value for the quantile
estimation, this value is not optimized either.

Another important remark concerns the memory. While for IPS one
has to store all the particles (due to interactions), for POP only one par-
ticle per level needs to be stored which constitutes a large memory save.

Lastly we report the means and standard deviations of the algo-
rithms outputs which are evaluated empirically by several runs (50 or
100 runs in most cases). We report the ratio std/mean which measures
the relative error. Indeed, 50-100 macro-runs may be not sufficient to ac-
curately estimate the standard deviation. However, provided that as M
(and N ) goes to +∞, the renormalized errors of IPS and POP methods
converge towards a Gaussian distribution. The algorithm output (with
finite but largeM andN ) is approximately Gaussian, which supports an
empirical estimation of the standard deviation with only 50-100 macro-
runs. In addition, our aim is to highlight the impact of different shaking
parameters and as we will see, with 50 or 100 runs these differences are
already significantly clear.
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Usually in POP method, one could use some burn-in time to reduce
influence of the initial position of Markov chain. In all the applications
using POP method, if there is no extra explanation, by convention we
use the first 1 percent transitions as the burn-in time, except for the first
level where no burn-in time is needed.

Discussions and comments in more details are given in each exam-
ple.

6.1 One dimensional Ornstein-Uhlenbeck pro-
cess

The OU process we consider is given by

dZt = −Ztdt+ dGt, Z0 = 0, (6.1.1)

where G is a standard Brownian motion. It is in the form (5.3.2) and in
the sequel, we apply the Brownian motion shaking (5.3.1) with constant
ρ.

Actually, the following rare events are described in terms of the path
of (Zt)06t6T with T = 1. Instead of an exact simulation, we simply use
an Euler scheme Z̃ with time step h := T/m for m = 100 and piecewise
constant path approximation between the times tl := lh. This discretiza-
tion scheme does not alter significantly the performance of IPS and POP
algorithms.

6.1.1 Maximum of OU process

Here the rare event is given by {max
06l6m

Z̃tl > L} with L = 3.6. Because

of the mean reverting effect, the related probability is rather small. By
107 direct Monte Carlo simulations with importance sampling technique
under the new probability dQ = exp(aGT− 1

2
a2T )dP where a = 5, we de-

rive a 99% confidence interval of the requested probability [0.977, 1.004]×
10−7.

In (5.1.1) we take n = 5 intermediate sets associated to the levels

Lk = L
√

k
n
, k = 1, · · · , n. In the experiments we report, we change the

values of ρ, α N and M .

Results For the IPS and POP algorithms, we take respectively M =
100000 and N = 100000 so that the computational effort is similar. The
following tables show results for different values of (α, ρ) for IPS and
of ρ for POP. Output statistics (mean, standard deviation) are computed
with 50 algorithm runs.
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TABLE 6.1: mean, standard deviation and relative error of
IPS method with α = 1

IPS, α = 1 mean std std/mean
ρ = 0.9 1.06×10−7 5.12×10−8 0.48
ρ = 0.75 9.51×10−8 2.15×10−8 0.22
ρ = 0.5 9.32×10−8 9.42×10−8 1.01

TABLE 6.2: mean, standard deviation and relative error of
IPS method with α = 0.5

IPS, α = 0.5 mean std std/mean
ρ = 0.9 1.01×10−7 3.67×10−8 0.36
ρ = 0.75 9.81×10−8 1.76×10−8 0.18
ρ = 0.5 7.32×10−8 9.18×10−8 1.25

TABLE 6.3: mean, standard deviation and relative error of
IPS method with α = 0

IPS, α = 0 mean std std/mean
ρ = 0.9 1.01×10−7 3.94×10−8 0.39
ρ = 0.75 9.98×10−8 2.46×10−8 0.25
ρ = 0.5 8.27×10−8 1.18×10−7 1.42

TABLE 6.4: mean, standard deviation and relative error of
POP method

POP mean std std/mean
ρ = 0.9 9.80×10−8 6.74×10−9 0.07
ρ = 0.75 1.00×10−7 9.52×10−9 0.10
ρ = 0.5 1.05×10−7 2.78×10−8 0.27

We first notice, by considering usual confidence intervals, that the
probability is estimated coherently regarding the benchmark value (ob-
tained by importance sampling). We note that POP has a better per-
formance compared to IPS (see the column std/mean), whatever the
value of ρ is. Regarding the variance, we observe that the impact of
α (used for extra resampling) on IPS algorithm is not as significant as
that of ρ, which is important for both IPS and POP. The above standard
deviations are comparable to the one using importance sampling but
our approaches have the advantage to work in a rather general setting.
As for computational time, in MATLAB R2013a with Intel i7-4770 CPU
3.40GHz, one run of IPS with M = 100000 takes about 26 seconds while
one run of POP with N = 100000 takes about 27 seconds. We also recall
that POP is much more economic in memory since using POP requires
to store only the current state of Markov chain while with IPS one needs
to store the entire particle system.

In the following table, we report the average and standard deviation
of each conditional probability estimator by POP method, based on 50
runs, as well as the averaged rejection rate for each level. Intuitively,
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we expect methods in splitting spirit to have low variance when they
are run with roughly constant conditional probabilities and that the op-
timality of a Metropolis-Hastings algorithm, whose spirit is shared by
our shaking transformation, is related to the acceptance rate (for highly
dimensional Gaussian distribution case, it is proved in [116] that the
optimal acceptance rate is precisely 0.234). Thus, reporting these condi-
tional probabilities and rejection rates is interesting to see how far the
current implementation is from the optimal conditions, regarding the
intermediate sets Ak and the shaking force parameter ρ.

TABLE 6.5: mean, standard deviation and rejection rate of
POP method at level 1

POP, level1, (×10−2) mean std rejection rate
ρ = 0.9 2.74 0.11 0
ρ = 0.75 2.74 0.08 0
ρ = 0.5 2.73 0.06 0

TABLE 6.6: mean, standard deviation and rejection rate of
POP method at level 2

POP, level2, (×10−2) mean std rejection rate
ρ = 0.9 4.07 0.10 42.40
ρ = 0.75 4.12 0.10 63.52
ρ = 0.5 4.16 0.14 82.40

TABLE 6.7: mean, standard deviation and rejection rate of
POP method at level 3

POP, level3, (×10−2) mean std rejection rate
ρ = 0.9 4.33 0.12 57.39
ρ = 0.75 4.37 0.15 80.60
ρ = 0.5 4.34 0.33 94.98

TABLE 6.8: mean, standard deviation and rejection rate of
POP method at level 4

POP, level4, (×10−2) mean std rejection rate
ρ = 0.9 4.47 0.11 67.15
ρ = 0.75 4.44 0.19 89.03
ρ = 0.5 4.50 0.51 98.44

TABLE 6.9: mean, standard deviation and rejection rate of
POP method at level 5

POP, level5, (×10−2) mean std rejection rate
ρ = 0.9 4.53 0.10 74.19
ρ = 0.75 4.56 0.19 93.59
ρ = 0.5 4.66 1.08 99.50
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6.1.2 Oscillation of OU process

Now the rare event is associated to a large oscillation of the OU process,
i.e., we compute

P
(

max
06l6m

Z̃tl > L and min
06l6m

Z̃tl < −L
)

with L = 1.6. Note that in this situation standard importance sampling
techniques with shifted Brownian motion do not work any more. By a
crude Monte Carlo algorithm with 7× 109 simulations, we obtain a 99%
confidence interval equal to [3.97, 4.37]× 10−7.

In our IPS and POP approaches, we simply take Lk = L
√

k
5

for k =

1, . . . , 5 and define intermediate events as

{max
06l6m

Z̃tl > Lk and min
06l6m

Z̃tl < −Lk}.

Results In the following tables the empirical results of IPS and POP
algorithms are computed over 100 experiments, respectively with M =
100000 and N = 100000.

TABLE 6.10: mean, standard deviation and relative error
of IPS method with α = 1

IPS, α = 1 mean std std/mean
ρ = 0.9 4.01×10−7 1.23×10−7 0.31
ρ = 0.75 4.10×10−7 1.67×10−7 0.41
ρ = 0.5 2.44×10−7 4.76×10−7 1.95

TABLE 6.11: mean, standard deviation and relative error
of IPS method with α = 0.5

IPS, α = 0.5 mean std std/mean
ρ = 0.9 3.94×10−7 1.08×10−7 0.27
ρ = 0.75 4.12×10−7 1.89×10−7 0.46
ρ = 0.5 3.41×10−7 9.89×10−7 2.90

TABLE 6.12: mean, standard deviation and relative error
of IPS method with α = 0

IPS, α = 0 mean std std/mean
ρ = 0.9 4.18×10−7 1.08×10−7 0.26
ρ = 0.75 4.20×10−7 2.02×10−7 0.48
ρ = 0.5 2.66×10−7 4.61×10−7 1.73

TABLE 6.13: mean, standard deviation and relative error
of POP method
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POP mean std std/mean
ρ = 0.9 4.14×10−7 2.68×10−8 0.06
ρ = 0.75 4.18×10−7 4.60×10−8 0.11
ρ = 0.5 4.29×10−7 1.26×10−7 0.29

In the following table, we report the average and standard deviation
of each conditional probability estimated by POP, based on 100 runs, as
well as the averaged rejection rate for each level.

TABLE 6.14: mean, standard deviation and rejection rate
of POP method at level 1

POP, level1, (×10−2) mean std rejection rate
ρ = 0.9 4.27 0.12 0
ρ = 0.75 4.25 0.08 0
ρ = 0.5 4.25 0.07 0

TABLE 6.15: mean, standard deviation and rejection rate
of POP method at level 2

POP, level2, (×10−2) mean std rejection rate
ρ = 0.9 4.95 0.13 57.56
ρ = 0.75 4.96 0.15 76.15
ρ = 0.5 4.91 0.22 88.97

TABLE 6.16: mean, standard deviation and rejection rate
of POP method at level 3

POP, level3, (×10−2) mean std rejection rate
ρ = 0.9 5.55 0.17 71.10
ρ = 0.75 5.53 0.23 88.55
ρ = 0.5 5.52 0.45 97.15

TABLE 6.17: mean, standard deviation and rejection rate
of POP method at level 4

POP, level4, (×10−2) mean std rejection rate
ρ = 0.9 5.85 0.17 78.86
ρ = 0.75 5.85 0.33 93.83
ρ = 0.5 5.78 0.86 99.12

TABLE 6.18: mean, standard deviation and rejection rate
of POP method at level 5

POP, level5, (×10−2) mean std rejection rate
ρ = 0.9 6.05 0.20 83.95
ρ = 0.75 5.95 0.43 96.50
ρ = 0.5 5.68 1.56 99.71
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As before, both algorithms seemingly converge, with better results
for POP (the std for POP is about 4-5 times smaller than for IPS). Here
again, the value of α has less impact than the value of ρ on the variance.
We do not investigate further on the optimality of α. In all the following
IPS algorithms, we fix α equal to 1 (i.e. we skip the resampling step).
For computational time, with the same configuration as in previous ex-
ample, one run of both IPS and POP with M,N = 100000 takes about 28
seconds. In the next examples, we do not compare anymore the compu-
tational times since they are quite the same for IPS and POP.

In Figure 6.1, we show empirical variances of 100 experiments re-
sults for M and N respectively equal to 100000, 10000, 5000, 3000 and
2000. These variances are not perfectly estimated since we use only 100
runs. Nevertheless, we approximately obtain a linear convergence with
respect to 1/M and 1/N , as expected from theoretical results (see Theo-
rems 5.2.3 and 5.2.4).

FIGURE 6.1: Variance for IPS and POP methods as a func-
tion of 1/M and 1/N respectively

6.2 Insurance

The capital reserve of an insurance company is modeled by

Rt = x+ ct−
Nt∑
k=1

Zk
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where x is the initial reserve, c is the premium rate, N is a Poisson pro-
cess with intensity λ and (Zk)k are amounts of claims in case of accident
or natural disaster [5]. In the following example, we take c = 1, λ =
0.005, x = 100, T = 1 and suppose (Zk)k are Gamma variables with pa-
rameters (a, b) = (2.5, 0.12). We aim at computing the probability of

bankruptcy before T , i.e. P
(

min
06t6T

Rt < 0

)
.

Using Esscher transformation, we get the 99% confidence interval
for this probability: [1.042, 1.188]× 10−6 through 105 Monte Carlo simu-
lations under the new probability

dQ = exp(

NT∑
k=1

f(Zk)−
∫
R
(ef(y) − 1)λTν(dy))dP

where f(y) = 0.09y and ν(dy) is the probability measure of Gamma(a, b).
We can easily check that the distribution of Zk is still of Gamma type
under this new probability.

We take n = 5 intermediate levels, defined by Lk = x(1 − (k
5
)2) for

k = 1, . . . , 5.

IPS algorithm We apply the partial shaking to the jump sizes (and not
to the jump times), i.e. we shake all (Zk)k with the shaking transforma-
tions for Gamma variables (with parameter p), then we get the following
results (M = 10000, over 100 times experiments).

p = 0.1 p = 0.2 p = 0.3
mean 1.25×10−6 1.11×10−6 1.01×10−6

std 2.82×10−6 1.30×10−6 6.46×10−7

std/mean 2.26 1.17 0.64

p = 0.4 p = 0.5 p = 0.6
mean 1.02×10−6 1.15×10−6 1.09×10−6

std 8.39×10−7 5.15×10−7 4.11×10−7

std/mean 0.82 0.45 0.38

With the Poisson process decomposition shaking with parameter p
(M is equal to 10000, over 100 times experiments), results become as fol-
lows.

p = 0.1 p = 0.2 p = 0.3
mean 3.10×10−6 2.02×10−6 2.93×10−6

std 1.76×10−5 1.39×10−5 1.65×10−5

std/mean 5.68 6.85 5.62
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p = 0.4 p = 0.5 p = 0.6
mean 8.63×10−8 9.32×10−7 2.08×10−6

std 1.32×10−7 8.68×10−6 1.42×10−5

std/mean 1.53 9.32 6.81

We observe that Poisson shaking can not even produce a good mean
value and that partial shaking on Gamma variables is much better than
Poisson decomposition shaking. This can be explained as follows: in
this particular insurance reserve example where there are very few jumps
with important jump sizes, the Poisson shaking gives large perturbation
of the system (opposite to the spirit of slight shaking), since by remov-
ing a jump time (and therefore the claim amount at this instant), this
may completely change the situation of the company, from being close
to bankruptcy to running with good profit.

Obviously, partial shaking involving Gamma variables doesn’t cause
this kind of problem since we keep every jump time and only modify
claim amount. In this sense, the Gamma shaking is more continuous
and better suits this example.

Shaking all the inter-arrival and jump variables yields the following
results (over 100 experiments with M = 10000), which gives larger vari-
ance than for Gamma shaking only, as expected.

p = 0.1 p = 0.2 p = 0.3
mean 9.75×10−7 9.35×10−7 1.22×10−6

std 4.73×10−6 3.63×10−6 7.14×10−6

std/mean 4.85 3.89 5.87

p = 0.4 p = 0.5 p = 0.6
mean 2.97×10−7 9.75×10−7 1.10×10−6

std 5.90×10−7 8.15×10−6 9.80×10−6

std/mean 1.99 8.36 8.94

POP algorithm When using Poisson shaking or Gamma shaking for
our POP algorithm, we have observed that both of them fail. The reason
for Poisson shaking is similar to IPS case. As for Gamma shaking, the
difference between IPS and POP is that, in IPS we sample M trajectories
and we pick those with jumps, while in POP algorithm we have only
one trajectory and (in this insurance example) the initial configuration
may have no jump with a large probability, yielding that the output of
POP algorithm is destined to be 0.

To retrieve good convergence properties, we simply apply the shak-
ing for inter-arrival and jump variables and we get the following results
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(over 100 experiments with M = 10000), which are slightly more accu-
rate than IPS.

p = 0.1 p = 0.2 p = 0.3
mean 1.14×10−6 1.11×10−6 1.12×10−6

std 5.08×10−7 4.44×10−7 4.80×10−7

std/mean 0.45 0.40 0.43

p = 0.4 p = 0.5 p = 0.6
mean 1.05×10−6 1.12×10−6 9.29×10−7

std 6.74×10−7 8.24×10−7 9.52×10−7

std/mean 0.64 0.74 1.02

6.3 Queuing system

Suppose we have a 2-nodes Jackson network (see [115, Chapter 4] for
definition and [20] for related numerical algorithms). All the costumers
arrive at node 1 and when they are served they go to node 2. The cus-
tomers’ arrival times are jump times of a Poisson process with intensity
λ. The serving time at node 1 and at node 2 are respectively exponen-
tial variables with parameters µ1 and µ2. Our purpose is to compute the
probability that at some time before T , the number of customers in the
system reaches a fixed level K, i.e. P( max

06t6T
Mt > K) where Mt denotes

the number of customers in the system at time t.
Given the Poisson process N representing customers’ arrival time,

we define two compound Poisson processes

ZA
t =

Nt∑
k=1

Ak, ZB
t =

Nt∑
k=1

Bk,

to which we apply shaking transformations. Here Ak and Bk are respec-
tively the serving times of k-th customer at node 1 and at node 2. We
now claim that max06t6T Mt = Φ((ZA

t )06t6T , (Z
B
t )06t6T ) for a functional

Φ, this representation will be the basis for our algorithms. To justify this,
denote by ak the arrival time of the k-th customer (i.e. the k-th jump of
N ). Then if we note by e1

k the instant when the service for k-th customer
at node 1 is finished, we can find the following recursive relation:

e1
k+1 = max(ak+1, e

1
k) + Ak+1

with the initial condition e1
1 = a1 +A1. Remark that the service finishing

time at node 1 is the customer arrival time at node 2, we have the same
recursive relation for e2

k, the instants when service for k-th customer at
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node 2 is finished:

e2
k+1 = max(e1

k+1, e
2
k) +Bk+1

with the initial condition e2
1 = e1

1 + B1. Then when the k-th customer
enters the system, the number of customers in the system is

k −#{e2
j : e2

j < ak}

Since the maximal number of customers in the system is possibly reached
only when a new customer enters the system we have

max
06t6T

Mt = max
06k6NT

(k −#{e2
j : e2

j < ak})

which leads to our claim that the maximal number of customers in the
system before T is determined by the two CPP’s (ZA

t )06t6T and (ZB
t )06t6T .

We take λ = 0.5, µ1 = 1, µ2 = 1, T = 10 and n = 10 intermediate
levels defined as Lk = K

√
k
n
, k = 1, · · · , n. We set K = 20. For the

benchmark value, we use an importance sampling method (with 107

simulations) based on Esscher transformation using the new probability

dQ = exp(cNT − (ec − 1)λT )dP

where c = 1.5: the resulting 99% confidence interval for P( max
06t6T

Mt > K)

is [4.6380, 5.1210] × 10−10. The shaking transformation we use here is
defined in (5.4.1), with different values of p.

Results The following IPS and POP results are computed with M =
10000 andN = 10000 respectively, over 100 times experiments with each
parameter.

IPS p = 0.1 p = 0.3 p = 0.5
mean 4.35×10−10 5.04×10−10 5.58×10−10

std 5.33×10−10 4.26×10−10 2.00×10−9

std/mean 1.23 0.84 3.58

POP p = 0.1 p = 0.3 p = 0.5
mean 4.93×10−10 5.24×10−10 5.27×10−10

std 1.33×10−10 2.09×10−10 4.62×10−10

std/mean 0.27 0.40 0.88

The POP algorithm provides more accurate results than IPS, and
seems more stable as p is modified. If we only shake service times A
and B instead of the Poisson process ZA and ZB (as in (5.4.1)), both al-
gorithms fail to work, almost systematically the output of algorithm is
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0. This is not surprising since by shaking the service time, we will never
increase the number of clients in the system.

The POP method has been tested in the case of renewal process where
inter-arrival and service times are uniformly distributed. The perfor-
mance in that case is also good.

6.4 Random graph

A Erdös-Rényi random graph [21] is a graph with V vertices where ev-
ery pair of vertices are connected with probability q, independently of
the others. It constitutes a toy model for the study of social networks,
epidemics etc. The graph is presented by the upper triangular matrix
X := (Xij)16i<j6V where

Xij =

{
1, if vertices i and j are connected
0, otherwise

If vertices i, j and k are all connected to each other, they form a tri-
angle. Thus the number of triangles in the graph is given by

T (X) :=
∑

16i<j<k6V

XijXjkXik.

We easily check that E(T (X)) = V (V−1)(V−2)
6

q3 and as a rare event, we
consider the deviation event

{T (X) >
V (V − 1)(V − 2)

6
t3}

for t > q. This problem has deserved recent interest in [35] with theo-
retical results and in [16] with numerical computations based on impor-
tance sampling techniques.

The total number of possible connections is V (V−1)
2

and may be rather
large even for small graphs. In our case we take V = 64, q = 0.35 and
t = 0.4: the corresponding estimation given in [16] is about 2.19×10−6.
To reduce the complexity of IPS and POP algorithms, we use the tech-
nique of partial shaking, by picking randomly a proportion c of Xij and
shake them independently. Regarding the reversible shaking transfor-
mation of each Bernoulli random variable Xij , the only possibility is
described by a transition matrix P (x, y) (x, y ∈ {0, 1}2) which satisfies
the following condition

qP (1, 0) = (1− q)P (0, 1),

i.e. P (0, 1) = q
1−qP (1, 0). Since in this example q

1−q < 1, P (1, 0) can be
any value in [0, 1] and it parametrizes the force of shaking. The larger
the value of P (1, 0), the more important the change in the graph config-
uration. Numerical results are performed with n = 5 intermediate levels
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given by

Lk =
V (V − 1)(V − 2)

6
t3(
k

5
)
1
5

with k = 1, . . . , n.

Results First, we take c = 10% and statistics are computed over 50 al-
gorithm experiments. For IPS and POP algorithms, we take respectively
M = 10000 and N = 10000 and we obtain the following results.

IPS - P (1, 0) 0.25 0.5 0.75 1
mean 1.79×10−6 1.83×10−6 1.92×10−6 2.10×10−6

std 2.29×10−6 1.30×10−6 1.04×10−6 8.79×10−7

std/mean 1.28 0.71 0.54 0.42

POP - P (1, 0) 0.25 0.5 0.75 1
mean 2.15×10−6 2.05×10−6 2.06×10−6 2.13×10−6

std 5.76×10−7 4.52×10−7 3.23×10−7 3.35×10−7

std/mean 0.27 0.22 0.16 0.16

The performance of POP appears rather stable w.r.t. P (1, 0) and sys-
tematically better than the IPS method.

Secondly we can modify the value of c by keeping the product Mc =
Nc constant (the computational effort remains the same). Taking c = 1%
yields less accurate results we do not report. In the opposite direction,
taking c = 100% fails to work. The question of the best choice of c and
P (0, 1) according to t, q, V is open.

6.5 Hawkes process

The Hawkes process [77] is a self-exciting counting process (Nt)t>0 whose
intensity evolves as

dλt = θ(µ− λt)dt+ dNt.

In the last years, it has become rather popular to model earthquakes ac-
tivity, high-frequency financial data, information flow on internet (Twit-
ter etc) etc. We guess that this is a challenging model for rare event sim-
ulation because of its self-exciting property. Here we set θ = 2, µ = 1,
the terminal time T = 24 and λ0 = 1. We denote all the jump instants
before T by (τj)j>1 and define

H = max{τj − τi : τk+1 − τk < 0.5, i 6 k < j − 1},

which is the longest period between jump instants during which all
jump inter-arrivals are less than 0.5. Our aim is to estimate P(H > 11),
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using 3 × 108 crude Monte Carlo simulations gives a 99% confidence
interval [3.2469, 3.8064]× 10−6.

According to [105, Algorithm 2], Hawkes process (and thus H) can
be seen as a functional of countable number of uniform variables in [0, 1]
which fits our general setting.1. Thus we can use the shaking transfor-
mation for uniform variables in our algorithms. We define n = 5 in-
termediate sets as {H > Lk} where (Lk)k=1,··· ,5 = [3.5, 5.5, 7.5, 9.5, 11].
Results over 50 experiments for different shaking coefficients are listed
in the following (with M = N = 104).

IPS p = 0.1 p = 0.3 p = 0.5
mean 3.30×10−6 5.19×10−6 3.88×10−6

std 2.84×10−6 1.37×10−5 1.60×10−5

std/mean 0.86 2.64 4.12

POP p = 0.1 p = 0.3 p = 0.5
mean 3.33×10−6 3.51×10−6 2.69×10−6

std 1.25×10−6 2.92×10−6 3.71×10−6

std/mean 0.37 0.83 1.38

We observe good performance of POP (about three times more accu-
rate than IPS). Both algorithms are much more accurate than the crude
Monte Carlo method, as expected.

6.6 An example of randomized shaking trans-
formation

We conclude this presentation of numerical experiments by illustrat-
ing the benefit of randomization of shaking parameter as explained in
Lemma 5.4.1 of Subsection 5.4.4.

We consider the simple problem of estimating P (G > 6 or G < −5),
where X := G is a standard Gaussian variable. Of course, one could
compute respectively P (G > 6) and P (G < −5) then add them up. But
this solution requires extra knowledge about the problem that we could
not afford in general. Hence for the sake of exposition, we do not use
this decomposition.

If we use the POP method on the initial problem with intermediate
levels defined by

{G >

√
k

5
× 6 or G < −

√
k

5
× 5}, k = 1, · · · , 5,

1During implementation, we only need to keep record of uniform variables that
have been used.
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the results are rather unstable. Over 100 experiments with the shaking
G = ρG +

√
1− ρ2G′ where ρ = 0.75, 23 outputs are of order 10−9 and

the others are of order 10−7. This is due to the fact that in POP method
we average only one path. When shaking level after level, this path
tends gradually either towards {G > 6} or towards {G < −5} and it

becomes practically impossible to realize the jump from {G >
√

k
5
× 6}

to {G < −
√

k
5
× 5}. As a consequence, only one part of the distribution

is selected and estimated2. The IPS approach is less sensitive to this
problem since it is based on a large sample of paths.

To circumvent this problem for POP, we can take a random ρ such
that ρ = 0.75 with probability 0.8 and ρ = −0.75 with probability 0.2: this

enables the path to sometimes jump from {G >
√

k
5
×6} to {G < −

√
k
5
×

5}, thus to yield a better performance. Indeed over 100 experiments,
with fixed ρ we get mean 2.84×10−7 and standard deviation 1.70×10−7,
while with the random ρwe get mean 2.81×10−7 and standard deviation
6.73×10−8. We recall that

P (G > 6 or G < −5) = 2.8764×10−7.

In more general situations, randomization is certainly beneficial to
explore disjoint configurations. The right tuning is a delicate question
since too much randomization may alter the benefit of POP method.
This issue is left to future investigation.

6.7 Model misspecification and robustness

To address the issue of model risk, we consider the Profit&Loss (PL)
when the trader uses a Black-Scholes (BS) model to hedge a European
call option while the true dynamics of the underlying S is given by a
path-dependent volatility model. Let us suppose that there are two
volatility levels σ−, σ+ ∈ R+\{0} such that σ− < σ+. We propose a
discrete-time path-dependent volatility model based on a monitoring
period ∆t (say 1 week) and monitoring dates ti = i∆t, wherein, if the
underlying spot price drops below the average of previous four mon-
itored prices, the level of volatility becomes σ+, otherwise it remains

2The same phenomenon occurs using importance sampling techniques and other
splitting methods.
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constant at σ−. The asset price is given as

St = S0 exp
(
−1

2
σ2
−t+ σ−Wt

)
, t < t4, (6.7.1)

St =


Sti exp

(
−1

2
σ2
−(t− ti) + σ−(Wt −Wti)

)
if Sti ≥ 1

4

∑4
k=1 Sti−k and ti 6 t < ti+1,

Sti exp
(
−1

2
σ2

+(t− ti) + σ+(Wt −Wti)
)

if Sti <
1
4

∑4
k=1 Sti−k and ti 6 t < ti+1,

when t ≥ t4.

(6.7.2)

This model corresponds to the usual empirical observation that the un-
derlying volatility is higher when price falls. This is a discrete version
of the continuous time model proposed by [74]. Furthermore, we as-
sume the risk-free interest rate to be zero. The resulting model is com-
plete in the sense that any square integrable payoff written on S can
be replicated by a self-financing strategy (see [79] for complete models
with stochastic volatility). The above model is directly written under
the risk-neutral measure P.

Meanwhile, we assume that the trader uses a BS model in which the
volatility is constant and equal to σ−. The call option maturity is T > 0,
and [0, T ] is the trading period under consideration. As the trader as-
sumes a BS model, he/she uses the BS formula to perform delta hedg-
ing. For our numerical study, we take T = 1, n = 50 ∆t is s.t. n∆t = T )
and assume that the trader makes a rebalancing after every period of
5∆t. At times t5∆tj, 0 6 j < 10, the trader holds δj assets, so at the
maturity his/her PL is given by

PLtrader := Etrader
[
(ST −Kstrk)+

]
+

9∑
j=0

δj(S5∆t(j+1) − S5∆tj)− (ST −Kstrk)+

where δj is given from the BS-Delta formula with volatility σ− and spot
S5∆tj.

Since the realized volatility is higher than the one used for hedging,
the trader may underhedge the option (in continuous time hedging, see
[50] for precise results) and may incur large losses due to the model risk.
Thus, we wish to estimate the probability P (PLtrader 6 L).

6.7.1 Large loss probability

In the model of (6.7.1), we set S0 = Kstrk = 10, σ− = 0.2, σ+ = 0.27
and take L = −2.4. In our IPS and POP methods, we create the inter-
mediate levels as Lk := kL/5, k = 1, 2, 3, 4, 5. The crude Monte Carlo
method with 5× 108 simulations provides a 99% confidence interval for
this probability as [2.93, 3.34]× 10−6. The mean estimates and empirical
standard deviations of non-adaptive and adaptive estimators based on
IPS and POP methods using 100 macro-runs are given in Tables 6.19-
6.20. The adaptive algorithms are performed with parameter p = 10%
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for the intermediate conditional probability. From Table 6.19, it is clear
that POP based estimators provide accurate estimates with a lower stan-
dard deviation than IPS based estimators, both schemes being in their
non-adaptive versions. In Table 6.20, results with adaptive algorithms
are compared, here again POP method yields smaller variances in the
estimation.

When comparing standard deviations of Table 6.19 and Table 6.20,
we observe that they are similar (for a given shaker parameter ρ). The
reader may think that seemingly adaptive versions do not provide any
benefit. One should recall that, the non-adaptive versions require a pri-
ori choices of levels (here we choose them by preliminary experiments
to have roughly equal conditional probabilities) while with the adaptive
version we do not need this kind of a priori knowledge and still we ob-
tain efficient estimators. Actually the advantage really stems from the
fully adaptive tuning of levels, which is made possible without deterio-
rating the variances.

In Figure 6.2 (top), we investigate the dependence of the standard
deviation (of each conditional probability computed with POP method)
w.r.t. the shaking parameter ρ and the level l. We do not report results
for l = 1 (no rejection) since independent sampling (ρ = 0) is obvi-
ously the best. We observe that the impact of ρ on the variance is signif-
icant: the optimal parameter ρ∗l minimizing the variance changes from
one level to another and ρ∗l increases with l (the shaking has to become
slighter with increasing rarity of the event). These features are easily
explained heuristically. Complementary to this, we plot in Figure 6.2
(bottom) the rejection rate, which also depends on ρ and l. It appears
that ρ∗l depends very much on l whereas the associated rejection rate re-
mains rather stable and ranges from 60% to 80%. Since we observe a
quick explosion of standard deviation when ρ is too close to 1, we rec-
ommend to take ρ such that the rejection rate is above 60% rather than
below 60%, to be on the safe side when a finer optimization of ρ is not
possible. We shall take it as a rule of thumb for further experiments.

Lastly, in Figure 6.3 we report statistics on standard deviation and
rejection rate for the adaptive POP method. We observe similar fea-
tures as in Figure 6.2. Since different intermediate levels in the adaptive
POP method are correlated, we first run the beginning level to get cor-
responding value of ρ minimizing the standard deviation. Then, we use
this fixed value for the corresponding level in the search of optimal ρ
of the next level and so on. We can see in Figure 6.3 that with all the
values of ρ chosen in this way, the best standard deviation among the
final estimators is around 1.5 × 10−7, which is about 62.5% of standard
deviation of the estimator with a constant ρ = 0.9 for all the levels.

If we compare Table 6.19 and Table 6.20, we will find the relative er-
rors of non-adaptive and adptive methods are roughly the same. Then
why do we need to design adaptive versions of our methods? In fact,
these two tables show roughly the same errors because when we run the
non-adptive versions of our methods, some preliminary runs are used
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to gain knowledge about where to put the intermediate levels. These
preliminary runs help to fix intermediary levels near the places found
automatically by the adaptive methods. Therefore, the advantage of
adaptive methods is that they can find automatically appropriate inter-
mediate levels without preliminary runs, and without introducing extra
variance on numerical results according to our tests.

IPS POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−7) (×10−6) (×10−7)
ρ = 0.9 3.10 5.29 0.17 3.13 2.07 0.07
ρ = 0.7 3.23 13.3 0.41 3.11 3.98 0.13
ρ = 0.5 2.79 25.9 0.93 3.18 8.44 0.27

TABLE 6.19: Estimators of P (PLtrader 6 L) (mean) for L =
−2.4 with empirical standard deviation (std.) for non-adaptive
IPS and POP methods based on 100 algorithm macro-runs.
Each intermediate level estimator in both methods is based on

M = N = 105 simulations.
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FIGURE 6.2: POP method, standard deviation (std. dev.) of
each conditional probability estimator and corresponding rejec-
tion rate (rej. rate), based on 100 macro-runs, for different val-

ues of ρ.
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Adaptive IPS Adaptive POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−7) (×10−6) (×10−7)
ρ = 0.9 3.06 4.95 0.16 3.18 2.42 0.08
ρ = 0.7 2.98 11.1 0.37 3.10 3.71 0.12
ρ = 0.5 2.45 23.6 0.96 3.06 7.27 0.24

TABLE 6.20: Estimators of P (PLtrader 6 L) (mean) for L =
−2.4 with empirical standard deviation (std.) for adaptive IPS
and POP methods (p = 10%) based on 100 algorithm macro-
runs. Each intermediate level estimator in both methods is based

on M = N = 105 simulations.
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FIGURE 6.3: Adaptive POP method (p = 10%). Stan-
dard deviation (std dev.) and corresponding rejection rate (rej.
rate), based on 100 macro-runs, of each quantile estimator
(Q̂lN,p)16l6L∗−1 and last level occupation measure estimator

r̂N (Q̂LNN,p), for different values of ρ.

6.7.2 Stress Testing

Large loss probability P (A) with A = {PLtrader 6 L} has been esti-
mated above using POP and IPS methods. Here we are more interested
to know what are the typical scenarios which generate large losses. We
set S0 = Kstrk = 10, σ− = 0.2, σ+ = 0.27 and take L = −2.4. Applying
the principle of Section 5.8 on stress-testing, we can get samples from
the distribution X | X ∈ A; 5 typical scenarios are reported in Figure
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6.4. Each scenario is obtained using 104 iterations of shaking with rejec-
tion (with ρ = 0.9). As intuitively expected, typical extreme scenarios
exhibit large fluctuations of S.
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FIGURE 6.4: Typical paths of the underlying stock price
which lead to large hedging loss

6.8 Measuring default probabilities in credit port-
folios

In this subsection, we consider a credit portfolio based on asset values of
N0 different firms. Let us suppose

(
Ω,F,P) is a probability space where

{W1,W2, . . . ,WN0 ,W} are P-standard Brownian motions with constant
correlations. We denote by {Ft, t > 0} the P-augmentation of the filtra-
tion generated by {W1,W2, . . . ,WN0 ,W}. As in [27], we assume that the
dynamics of asset values is given by the following system of stochastic
differential equations

dSi(t) = rSi(t)dt+ σ(t)Si(t)dWi(t), i = 1, . . . , N0, (6.8.1)

where r is the risk-free interest rate, the common stochastic volatility
factor σ(t) is modeled by a Cox-Ingersoll-Ross model satisfying

dσ(t) = κ
(
σ̄ − σ(t)

)
dt+ γ

√
σ(t)dWt, (6.8.2)
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where κ, σ̄ and γ are positive constants. Brownian motions are corre-
lated as follows:

d〈Wi,Wj〉t = ρWdt, i 6= j, d〈Wi,W 〉t = ρσdt, i = 1, . . . , N0. (6.8.3)

Next, we consider the default boundary for each firm i to be a fixed
value Bi ∈ R+. The time of default for firm i in the portfolio is defined
as

τi(Bi) := inf
{
t > 0 : Si(t) 6 Bi

}
.

The current methods would directly adapt to the case where the default
level Bi is replaced by a time-dependent deterministic function.

In order to evaluate different tranches in a credit portfolio, we are
interested to calculate the probability that at leastL defaults occur before
T , i.e. for 0 < L < N0

P(L) = P

(
N0∑
i=1

1{τi(Bi)6T} > L

)
(6.8.4)

= P

(
N0∑
i=1

1{mint Si(t)6Bi} > L

)
, (6.8.5)

Due to the path dependency of the default scheme and of the stochastic
volatility model, it is not clear how to find the optimal change of mea-
sure to perform importance sampling to estimate P(L), which motivates
the use of alternative simulation techniques.

6.8.1 Default probability

In order to express P(L) in the form of (5.3.13), we need to create a cas-
cade of decreasing sets {Ak}16k6n. We define Z ∈ RN0 whose i-th com-
ponent is the minimum of (Si(t)/Si(0))t and we set

Ak :=

{
z ∈ RN0 :

N0∑
i=1

1{zi×(Bi+
k
n

(Si(0)−Bi)6Bi} > L

}
, 1 6 k 6 n,

which consists in progressively decreasing the default trigger levels.
The nested set condition (5.1.1) is then fulfilled. Then, we apply POP
and IPS methods to compute all the conditional probabilities P (Z ∈ Ak+1 | Z ∈ Ak).

Remark 6.8.1. Another natural way to create the nested sequence of sets is to
progressively increase the number of defaults:

Ãk :=

{
z ∈ RN0 :

N0∑
i=1

1{ziSi(0)6Bi} >
k

n
L

}
, 1 6 k 6 n. (6.8.6)
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We empirically observe that the choice is in general less accurate. Although
we have proven that POP method will eventually converge in all the finite-
dimensional cases, how to construct intermediate sets to achieve the best con-
vergence rate remains to be explored.

To perform numerical experiments in the considered model of (6.8.1)-
(6.8.2), we fix the parameter values as in Table 6.21.

Si(0) r ρW σ(0) κ σ̄ γ ρσ

90 0.06 0.10 0.4 3.5 0.4 0.7 -0.06

TABLE 6.21: Parameters for credit portfolio model

Further, we fix the total number of firms N0 = 125 and threshold
level Bi = B for some B > 0. Next, we estimate the default proba-
bility P(L) for different values of L over T = 1 with 50 time steps per
year in the Euler discretization scheme of Deelstra and Delbaen [41].
For L = 100 and B = 36, the crude Monte Carlo estimator of default
probability with 3 × 109 sample paths has a 99% confidence interval as
[4.92, 5.13] × 10−6. In Table 6.22, we report the results for IPS and POP
based estimators for fixed n = 5 levels. For different values of the shak-
ing parameter ρ, it is clear that POP based estimator provides more accu-
rate results than IPS method. In Figure 6.7, using POP based estimator
with fixed number of levels n = 20 and 104 simulations at each level,
we also report P(L) for different levels of default threshold B based on
different values of L. Remarkably, it allows to compute very low proba-
bilities (up to 10−24).

Next, we implement IPS and POP based estimators with an adap-
tive number of levels as discussed in Section 5.6. To estimate P(L), we
fix the conditional probability P (Z ∈ Ak+1 | Z ∈ Ak) of each, except the
last, intermediate level (to be estimated) to p = 10−1. In Table 6.23, we
can see that both IPS and POP based estimates are within the reported
confidence interval of the true value for ρ = 0.9. However, the corre-
sponding POP based estimator has a lower standard deviation. When
comparing with Table 6.22, variances are roughly unchanged by using
the adaptive scheme, but the advantage of this version is to have a fully
simulation-based scheme where we do not need to pre-specify the ac-
ceptance threshold levels.

In Figures 6.5 and 6.6, we report different detailed statistics w.r.t. the
level and the shaking parameter (non-adaptive POP method: standard
deviation and rejection rate; adaptive POP method: standard deviation
of quantile and occupation measure along with rejection rate). We ob-
serve similar behaviors as in the first example of Subsection 6.7. For
rare regions (levels l = 3, 4, 5), the parameter ρ∗l minimizing the stan-
dard deviation of the l-th conditional probability seems to be associated
to rejection rate of 70%. We believe that this (so far empirical) invari-
ance relation between best shaking parameters (for minimal variances)
and rejection rate of about 70% − 80% should give a way to adaptively
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choose ρ. This will be further investigated in the future. Again we see
that for the adaptive POP method, with different values of ρminimizing
standard deviation in each intermediate level, the standard deviation of
the final adaptive estimator of the rare event probability is about 60% of
that with a constant ρ = 0.9.

The above methodology can also be applied directly to better ac-
count for the systemic risk and the illiquidity issues, for example, in
the settings of [54] where inter-bank lending is modeled by a system of
coupled diffusion processes in a mean-field regime.

IPS POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−6) (×10−6) (×10−6)
ρ = 0.9 5.82 4.37 0.75 5.01 0.80 0.16
ρ = 0.7 4.92 1.56 0.32 4.99 1.02 0.20
ρ = 0.5 4.79 3.80 0.79 5.02 1.94 0.39

TABLE 6.22: Estimators of default probability (mean) for L =
100 and B = 36 with empirical standard deviation (std.) for
non-adaptive IPS and POP methods based on 100 algorithm
macro-runs. Each intermediate level estimator in both methods

is based on M = N = 104 simulations.
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FIGURE 6.5: POP method, standard deviation (std. dev.) of
each conditional probability estimator and corresponding rejec-
tion rate (rej. rate), based on 100 macro-runs, for different val-

ues of ρ.
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Adaptive IPS Adaptive POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−6) (×10−6) (×10−6)
ρ = 0.9 4.93 1.91 0.39 5.16 0.85 0.16
ρ = 0.7 5.42 1.58 0.29 4.98 1.02 0.20
ρ = 0.5 6.40 5.00 0.78 5.35 2.05 0.38

TABLE 6.23: Estimators of default probability (mean) for L =
100 and B = 36 with empirical standard deviation (std.) for
adaptive IPS and POP methods (p = 10%) based on 100 al-
gorithm macro-runs. Each intermediate level estimator in both

methods is based on M = N = 104 simulations.
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FIGURE 6.6: Adaptive POP method (p = 10%). Stan-
dard deviation (std. dev.) and corresponding rejection rate
(rej. rate), based on 100 macro-runs, of each quantile estima-
tor (Q̂lN,p)16l6L∗−1 and last level occupation measure estimator
r̂N (Q̂LNN,p), for different values of ρ. The std. dev. of occupation
measure estimator has been scaled by 10 for easier comparison.
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FIGURE 6.7: Plot (a) and log-plot (b) of default probabilities for
varying B/S0.

6.8.2 Variant of IPS method

In the following Tables 6.24 and 6.25, we present the numerical results
obtained by our modified IPS method, i.e. the variant of IPS method
with extra sampling and smaller system size, which is presented in Sec-
tion 5.9.
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×10−6 J = 1 J = 2 J = 3 J = 4 J = 5 POP
ρ = 0.9 2.50 1.21 1.04 1.01 1.03 0.80
ρ = 0.7 1.74 1.40 1.29 1.25 1.20 1.02
ρ = 0.5 4.46 3.69 3.56 3.11 3.18 1.94

TABLE 6.24: Empirical standard deviation of IPS estima-
tors of default probability for L = 100 and B = 36 based
on 1000 algorithm macro-runs, with M = 104 and par-
ticle system size equal to M ′ = bMJ c. The last column
is the empirical standard deviation of POP method using

n = M = 104 iterations at each level.

×10−6 J = 6 J = 7 J = 8 J = 9 J = 10 POP
ρ = 0.9 1.06 1.11 1.19 1.31 1.37 0.80
ρ = 0.7 1.29 1.28 1.33 1.37 1.43 1.02
ρ = 0.5 2.90 2.67 2.73 2.63 2.61 1.94

TABLE 6.25: Empirical standard deviation of IPS estima-
tors of default probability for L = 100 and B = 36 based
on 1000 algorithm macro-runs, with M = 104 and par-
ticle system size equal to M ′ = bMJ c. The last column
is the empirical standard deviation of POP method using

n = M = 104 iterations at each level.

As we can see, the IPS method with fewer particles but extra resam-
pling at each step have better performance compared to the case without
resampling. Heuristically, a good choice is J = 4. However, even after
extra resampling, POP method yields smaller standard deviation.

6.8.3 Impact of discretization

A different IPS-based method has been proposed by Carmona et al. [27]
in order to compute P(L) (see also [26] for application of this method in
other models). We would like to emphasize the main difference between
the former IPS approach and our work. The underlying Markov chain
for their IPS method is simply the time-discretization of the (2N0 + 1)-
dimensional process (Si,minSi, σ, 1 6 i 6 N0). This poses several dif-
ficulties for the authors. Firstly, one needs to exhibit a good potential
function for the selection of particles which is very delicate because of
the high-dimensionality of the problem. Secondly, one needs to choose
an appropriate discretization time step ∆t. This is also intricate, since on
the one hand a large number of time steps may help in better selection
of the particles in rarer and rarer regions, but on the other hand it slows
down the statistical convergence of IPS (the resampling adds noise in
the estimation). In our case, we directly consider Markov chains val-
ued on path space, thus avoiding the delicate problem of choosing the



6.8. Measuring default probabilities in credit portfolios 131

time step ∆t and the high-dimensional potential function (in our nu-
merical experiments, we have observed that ∆t has no significant im-
pact on the convergence of our versions of IPS-POP methods when it
is small enough). Thus, our approach and results are rather different
from those of Carmona et al. [27]. These differences are mainly due to
the fact that our method does not require any Markovian assumption
on (Si,minSi, σ, 1 6 i 6 N0) and could be directly applied to path-
dependent models (whenever useful).
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FIGURE 6.8: The impact of the number of discretization
times (Nstep) on the optimal shaking parameter (ρ) at each

level of POP method.
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In our version of IPS and POP methods, the underlying random vari-
able X lies in a large-dimensional space X = R(N0+1)Nstep . Therefore it is
important to assess how the large dimension affects the statistical er-
rors of the methods (like in MCMC sampler, for example, see [109]).
The important point is that we use reversible transformation directly
in the path space. This suggests that our methods are less sensitive to
time-discretization. We investigate this problem in Figure 6.8, where we
study the impact of Nstep in POP method with n = 5 levels. We report
the numerical results only for the POP method, as the qualitative phe-
nomenon for IPS method is the same. The graphs show that the choice
of Nstep, when large, has no significant impact on the optimal value of
the shaking parameter ρ, which corresponds to the minimum standard
deviation of the conditional probability estimator at a given level. Ad-
ditionally, both the standard deviation and the rejection rate are quite
insensitive to Nstep. These are important advantages of the methods
studied in this work. This allows to decouple the problem of bias re-
duction and the control of statistical convergence.

6.8.4 Stress Testing

In Figure 6.9, we exhibit extreme scenarios for the asset price of firm
1 and its volatility, in the situation of various defaults (level 1 and last
level, n = 5, L = 100) with two different values of B. Each scenario is
obtained by using 104 iterations of shaking with rejection (with ρ = 0.9).
For this, we have used the first and last-level Markov chain X1,. and
X5,., respectively, to get samples from the distributions X | X ∈ A1 and
X | X ∈ A respectively, as explained in Section 5.8. Such tools may
be efficiently exploited by regulators and risk managers for a better risk
assessment.
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FIGURE 6.9: Sample paths for the asset price of firm 1 at
Level 1 and Level 5 in the POP method and the respective

volatility sample paths.
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6.9 Fractional Brownian motion for modeling
volatility

The fractional Brownian motion (fBM) (B
(H)
t )t∈Rwith Hurst exponent

H ∈ (0, 1) was defined in Example 5.3.3. For H 6= 1/2, it is well known
that B(H) is not a semimartingale. In order to represent fBM, we make
use of the Mandelbrot and van Ness representation ofB(H) as an integral
w.r.t. a standard Brownian motion B:

B
(H)
t = CH

[ ∫ t

−∞

[
(t− s)H−

1
2 − (−s)H−

1
2

+

]
dBs

with

CH =

√
2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
.

Recently, Gatheral and co-authors [59] have successfully employed fBM
to model the market observed volatility of stock indexes. In order to
demonstrate the application of POP method for models which are not
necessarily based on semimartingales, we consider the fractional SABR
(fSABR) model proposed by Gatheral et al. [58]. In fSABR, the underly-
ing asset dynamics are given by

dSt
St

= σtdZt, (6.9.1)

σt = σ̄ exp

(
−1

2
α2t2H + αB

(H)
t

)
, (6.9.2)

whereZt is a standard Brownian motions with instantaneous correlation
ρBZ with Bt (i.e. d〈B,Z〉t = ρBZdt). Under the model (6.9.1), we use
POP method to estimate the small-strike tail asymptotic slope of implied
variance

βL := lim sup
x→−∞

I2(x)T

|x|
(6.9.3)

where I(x) is the BS implied volatility of a Vanilla option on S with
log-moneyness x = logK/S0 and maturity T . The estimate of the slope
can be, in turn, used to obtain estimate of the critical negative moment
q̃ := sup{q : E[S−qT ] < ∞} from the well-known moment formula [95,
Theorem 3.4]

q̃ = 1/2βL + βL/8− 1/2. (6.9.4)

We work with the following parameter values: S0 = 40, σ̄ = 0.235, r =
0, T = 1.0 and α = 0.5, 1.0. We use intermediate levels at

[32.5, 25, 19.5, 14, 10.5, 7, 5, 3, 2, 1]
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in the POP method (shaking parameter value = 0.9) with 105 simula-
tions3 at each level in order to estimate the implied volatility at differ-
ent values of the log-moneyness. The output values are based on 100
independent algorithm macro-runs. We observe on Figure 6.10 that the
squared implied volatilities seemingly behave linearly for large negative
values of the log-moneyness, which suggests that the lim sup in (6.9.3) is
presumably a limit (see Remark 6.9.1 below for a related discussion).

In light of (6.9.3), we could use the most extreme value of the implied
variance I2(xmin) (corresponding to xmin = −3.75 in Figure 6.10) in order
to evaluate βL. Instead of doing so, we compute the slope βL by linear
interpolation of the two most extreme implied variances I2(xmin) and
I2(xmin + ∆x). We observe that following one or the other procedure
has no significant impact on the results. This yields the estimates of q̃ in
Tables 6.26 and 6.27.

ρBZ H = 0.15 H = 0.25 H = 0.75 H = 0.9
-0.3 2.6133 2.5515 2.8058 2.9753
-0.5 2.4222 2.3823 2.6733 2.8715
-0.7 2.2593 2.2042 2.5465 2.7918
-0.9 2.1235 2.0653 2.4339 2.6919

TABLE 6.26: Estimates of critical negative moment q̃ in
fSABR model (6.9.1) using POP method, α = 0.5

ρBZ H = 0.15 H = 0.25 H = 0.75 H = 0.9
-0.3 0.8251 0.8267 0.9211 0.9632
-0.5 0.7905 0.7913 0.8950 0.9449
-0.7 0.7597 0.7591 0.8686 0.9277
-0.9 0.7325 0.7297 0.8449 0.9113

TABLE 6.27: Estimates of critical negative moment q̃ in
fSABR model (6.9.1) using POP method, α = 1.0

From our numerical results, we can observe that q̃ increases with the
value of the correlation ρBZ in the model. Conversely, q̃ decreases with
the value of the parameter α. There is no global monotonicity appear-
ing from the relationship between q̃ and value of H ∈ (0, 1). On the
other hand, one does see (as expected) the emergence of two different
regimes for H < 1/2 and H > 1/2. These observations suggest that it is
possible - at least in theory - to calibrate the value of one of these model
parameters from extreme implied volatility estimates, for example by

3We exactly simulate the skeleton of Z,B and BH (with a step length of T/100) as a
correlated Gaussian vector since the covariance matrix of this vector can be computed
explicitly.
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using POP method. Moreover, the plots in 6.10 indicate a ‘tilting’ effect
of the correlation parameter ρBZ on the whole smile curve, analogous to
that in standard stochastic volatility models based on Brownian motion.
This indicates that under the fractional model (6.9.1), too, the appropri-
ate value of the correlation parameter can be reasonably inferred from
market implied volatilities by observing the slopes of the left- and right
hand sides of the smile.
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FIGURE 6.10: Squared implied volatility as a function of log-
strike in the fSABR model (6.9.1).
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Remark 6.9.1. While the formulas (6.9.3)-(6.9.4) always hold when βL is de-
fined via a lim sup, it is interesting to notice that there is a (large) class of mod-
els for which the limsup can actually be updated to a true limit, thus providing
the full asymptotic equivalence I2(x)T ∼ |x| as x → −∞. This class is fully
characterized in Gulisashvili [71, Theorem 3.5]. Recall that a positive measur-
able function f defined on some neighborhood of infinity is said to be regularly
varying with index α ∈ R if for every λ > 0, f(λx)

f(x)
→ λα as x → +∞.

Furthermore, the class of Pareto-type functions is introduced in [71]. Let g be
positive measurable functions defined on (0, c) for some c > 0: if there exist
two functions g1 and g2 that are regularly varying with index α and such that
g1(x−1) ≤ g(x) ≤ g2(x−1) for all 0 < x < c, then we say that the function g is
of weak Pareto-type near zero with index α.
Gulisashvili [71] proves the following: under the assumption 0 < q̃ < ∞, the
asymptotic formula

lim
x→−∞

I2(x)T

|x|
= βL (6.9.5)

holds if and only if the following condition is satisfied:

i) The put price function P (K) = E[(K −ST )+], K > 0, is of weak Pareto
type near zero with index α1 = −q̃ − 1.

It is possible to relate the property i) in a more direct way to the distribution of
the stock price: condition i) holds for the put price if one of the following two
conditions is satisfied:

ii) The cdf of the stock price F (K) = P(ST ≤ K) is of weak Pareto type
near zero with index α2 = −q̃.

iii) The density pT (·) of the stock price ST (if it exists) is of weak Pareto type
near zero with index α3 = −q̃ + 1.

The implication iii) ⇒ i) is proven in [71], Theorem 3.11. The implication
ii) ⇒ i) can be proven following the lines of the proofs of Theorems 3.11 and
3.7 in [71].

Figure 6.10 suggests that squared implied volatilities behave asymptotically
linearly with log-moneyness, and we can therefore conjecture that equation
(6.9.5) holds for the fSABR model (6.9.1). An analysis of the cdf or the den-
sity function of the stock price, as performed in [73] for a class of models with
Gaussian self-similar stochastic volatility, would allow to show that properties
ii) and iii) hold true in the fSABR model. We leave such kind of investigation
for future research.

6.10 Sensitivities for out-of-the money options

In this example, we consider a d-dimensional Black-Scholes model in
which the asset price vector S = (S1, S2, . . . , Sd) is given as

dSit
Sit

= µidt+ σid(LWt)
i (6.10.1)
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where σi > 0 for all i = 1, . . . , d, W is an d-dimensional standard Brow-
nian motion, and L is the symmetric square root of a d-dimensional cor-
relation matrix C, so that LL∗ = C (here L = L∗). Hereafter we assume
that the matrix C (therefore L) is invertible. Denoting by Zi the log of
Si, one has

Zi
T = Zi

0 +

(
µi − 1

2
(σi)2

)
T + σi(LWT )i (6.10.2)

with Zi
0 = log(Si0). Equation (6.10.1) allows to model separately the indi-

vidual volatility σi of each asset and the correlation between the driving
Brownian factors. The introduction of a volatility smile on each asset
can be achieved simply by switching from constant to local volatility
functions σi(t, ·) (which can be separately calibrated to option data on
each asset).

We consider a digital-style payoff written on a generalized basket,
whose financial evaluation is defined by

P := P (ϕ(ZT , ā) > 0)

where

ϕ(z, ā) :=
d∑
i=1

εipie
zi − ā (6.10.3)

with pi > 0, εi ∈ {−1, 1} and ā ∈ R. This setting can cover the situation
of risk management of an insurance contract (when each asset evolves
with its own drift coefficient µi), and of course the pricing of a digital
option on the basket, which corresponds to set µi = r, where r is a risk-
free interest rate. We are interested in computing the sensitivities of P
with respect to different model parameters, such as

• pi in order to assess the influence of the individual weights, possi-
bly in order to reweight the portfolio and lower the risk,

• σi in order to quantify the impact of individual volatilities on the
tails of the basket,

• Ci,j = (LL∗)i,j for i < j, in order to study the effect of pair-wise
correlations on the product.

In order to obtain explicit sensitivity formulas, we apply Theorem 5.7.2
with Φθ = 1, Zθ = ZT in the context of multidimensional Brownian mo-
tion (Example 5.3.2), where θ plays the role of one the model parameters
or payoff parameters above. A direct computation shows

(DtZT )i,j = σiLi,j1t6T = Σi,j1t6T γZT = T ΣΣ∗, (6.10.4)

where we denote Σ the matrix Σ = diag(σ)L, where diag(σ)i,j = σiδi,j .
Under our assumption, the matrices Σ and γZT are invertible.

In what follows, we denote Ai,. (respectively A.,i) the i-th row (re-
spectively i-th column) of the matrix A.
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6.10.1 Sensitivity by Malliavin calculus

Sensitivity w.r.t. pi. In view of (6.10.3) we have ∂piP = ∂Zi0P
1
pi

and it
suffices to compute sensitivity w.r.t. θ = Zi

0. Clearly ∂Zi0ZT = ei where
ei is the i-th element of the canonical basis of Rd, therefore the weight
I(Zθ, 1) in Theorem 5.7.2 becomes

I(Zθ, 1) = δ

(
d∑
j=1

(
γ−1
ZT
∂Zi0ZT

)
j
D·Z

j
T

)

= δ

(
d∑
j=1

(γ−1
ZT

)j,i(Σ1[0,T ])j,.

)
= δ

(
d∑
j=1

(γ−1
ZT

)i,j(Σ1[0,T ])j,.

)

=
1

T
δ
(
(ΣΣ∗)−1Σ1[0,T ])i,.

)
=

1

T
δ
(
((Σ∗)−1)i,.1[0,T ]

)
=

1

T
Σ−1ei ·WT .

The computation of the sensitivities with respect to σi and Ci,j involves
quantities of the form δ((AWT )i ×u∗1[0,T ](·)), where A is a d × d matrix
and u a (constant) vector in Rd. We will therefore make use of the fol-
lowing formula

δ((AWT )iu∗1[0,T ](·)) = (AWT )iu ·WT − T (Au)i . (6.10.5)

Equation (6.10.5) can be proven using the identity δ(F U·) = Fδ(U·) −
〈DF,U〉 which holds for U ∈ dom(δ) and F ∈ D1,2, where we denote
〈V, U〉 =

∑d
j=1

∫ T
0
V j
t U

j
t dt.

Sensitivity w.r.t. θ = σi. We have ∂σiZT = (−σiT + (LWT )i)ei. Since
∂σiZT and ei are collinear, the computations are very similar to the pre-
vious ones, and we obtain

I(Zθ, 1) = δ

( d∑
j=1

(
γ−1
ZT
∂σiZT

)
j
D·Z

j
T

)
=

1

T
δ
(
(−σiT + (LWT )i)((Σ∗)−1)i,.1[0,T ]

)
= −σiδ

(
((Σ∗)−1)i,.1[0,T ]

)
+

1

T
δ
(
(LWT )i((Σ∗)−1)i,.1[0,T ]

)
= Σ−1ei ·WT

(
−σi +

1

T
(LWT )i

)
− (LΣ−1)i,i

where we have applied the identity (6.10.5) withA = L and u∗ = ((Σ∗)−1)i,.
in the last step.
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Sensitivity w.r.t. θ = Ci,j , i < j. We wish to take partial derivatives of
functions defined on the set of correlation matrices

C =
{

(Ci,j)i,j : C ∈ Sd≥0, Ci,i = 1, C invertible
}

with respect to each of the entriesCi,j , i < j, where Sd≥0 denotes the set of
symmetric and positive matrices. This is possible under the invertibility
assumption because, given a matrix C ∈ C and fixed i < j, the whole
set {Cε := C + εei,j + εej,i, ε ∈ R} is contained in C for ε small enough,
where ei,j denotes the matrix such that (ei,j)i,j = 1 and with zero entries
elsewhere.4

In particular, for the symmetric square root L =
√
C, its partial deriva-

tive L̇ := ∂Ci,jL solves the Sylvester equation [78, p.58]

L̇ L+ L L̇ = ei,j + ej,i := Ċ. (6.10.6)

From (6.10.2), we derive ∂Ci,jZT = ∂Ci,j [diag(σ)LWT ] = diag(σ)L̇WT .
This yields

I(Zθ, 1) = δ

( d∑
l=1

(
γ−1
ZT
∂Ci,jZT

)
l
D·Z

l
T

)

=
1

T
δ

( d∑
l=1

(
(ΣΣ∗)−1diag(σ)L̇WT

)
l
Σl,·1[0,T ]

)

=
1

T

d∑
l=1

((ΣΣ∗)−1diag(σ)L̇WT )l Σ∗·,l ·WT −
d∑
l=1

((ΣΣ∗)−1diag(σ)L̇Σ∗·,l)l

(using (6.10.5) with A = (ΣΣ∗)−1diag(σ)L̇ and u∗ = Σl,·)

=
1

T
WT · (Σ∗(ΣΣ∗)−1diag(σ)L̇WT )− Tr((ΣΣ∗)−1diag(σ)L̇Σ∗)

=
1

T
WT · L−1L̇WT − Tr(L−1L̇).

SinceWT ·L−1L̇WT is a scalar, it is equal to its transposeWT ·L̇L−1WT ,
and thus to its average 1

2
WT · (L−1L̇ + L̇L−1)WT . Similarly, Tr(L−1L̇) =

1
2
Tr(L−1L̇+ L̇L−1). We claim that

L−1L̇+ L̇L−1 = L−1ĊL−1, (6.10.7)
4The matrices Cε are clearly symmetric and satisfy (Cε)i,i = 1. The invertibility of

Cε for ε small enough follows from the continuity of the smallest eigenvalue λmin from
Sd≥0 into R, A 7→ λmin(A) (with respect to, say, the topology induced by the Hilbert-
Schmidt norm), see [81, Hoffman and Wielandt’s theorem, p.368].
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which gives the final representation

I(Zθ, 1) =
1

2T
WT · (L−1(ei,j + ej,i)L−1)WT −

1

2
Tr(L−1(ei,j + ej,i)L−1)

=
1

T
(L−1WT )i(L−1WT )j − (C−1)i,j

where the final formula follows from standard manipulations.
To prove (6.10.7), write the derivative of Cε and Lε =

√
Cε w.r.t. ε: it

gives (using the notation Ȧ = ∂εAε|ε=0)

−C−1ĊC−1 = ∂εC
−1
ε |ε=0 = ∂εL

−2
ε |ε=0

= ∂εL
−1
ε |ε=0L

−1 + L−1∂εL
−1
ε |ε=0

= −L−1L̇L−2 − L−2L̇L−1.

Now multiplying by L on the left and right we obtain (6.10.7).

6.10.2 Sensitivity by likelihood method

We can perform a change of variables and directly differentiate the den-
sity function to obtain sensitivity with respect to θ. Let us also define
(Y)i := (Z)i + log(piSi0) + (µi− 1

2
|σi|2)T, 1 6 i 6 d. We have the following

∂P

∂θ
=
∂

∂θ

∫
φ

(
d∑
i=1

εipiS
i
0 exp

(
(µi − 1

2
|σi|2)T + zi

))
× 1√

(2πT )d detC
× exp

(
− 1

2T
z · C−1z

)
dz

=
∂

∂θ

∫
φ(

d∑
i=1

εi exp(yi))
1√

(2πT )d detC

× exp
(
− 1

2T

(
yi − (µi − 1

2
|σi|2)T − log(piS

i
0)
)

16i6d
·

C−1
(
yi − (µi − 1

2
|σi|2)T − log(piS

i
0)
)

16i6d

)
dy

:=
∂

∂θ

∫
φ(

d∑
i=1

εi exp(yi))pθ(y)dy

=

∫
φ(

d∑
i=1

εi exp(yi))∂θ log(pθ(y))pθ(y)dy

=E
(
g
(
ST
)
h
((

(σWT )i + (µi − 1

2
|σi|2)T + log(piSi0)

)
16i6d

))
:=E

(
g
(
ST
)
Ξ
)

(6.10.8)



144 Chapter 6. Applications

where

h(y) := ∂θ log(pθ(y)),

Ξ := h
((

(σWT )i + (µi − 1

2
|σi|2)T + log(piSi0)

)
16i6d

)
,

log pθ(y) = −1

2
log
((

2πT
)d)− 1

2
log det(C)

− 1

2T

(
yi − (µi − 1

2
|σi|2)T − log(piSi0)

)
16i6d

· C−1

×
(
yi − (µi − 1

2
|σi|2)T − log(piSi0)

)
16i6d

.

We can write an explicit formula of the model parameter sensitivity in
(6.10.8) for few specific cases as follows, with the notation

D := C−1
(
yi − (µi − 1

2
|σi|2)T − log(piSi0)

)i=1

i=d

1. Case θ = piSi0.

∂θ
(
log pθ(y)

)
= − 1

T
(D)i ×

( −1

piSi0

)
,

Ξ =
1

T

1

piSi0

(
C−1σWT

)
i

=
1

T

1

piSi0

(
(σ∗)−1WT

)
i
.

2. Case θ = Cii = |σi|2.

∂θ
(
log pθ(y)

)
= −1

2

det(C−i,−i)

det(C)
− 1

2
(D)i +

1

2T
D ·
(
1ii

)
D,

Ξ = −1

2

det(C−i,−i)

det(C)
− 1

2

(
(σ∗)−1WT

)
i
+

1

2T

∣∣∣((σ∗)−1WT

)
i

∣∣∣2
where C−i,−i denotes the matrix C with ith row and column re-
moved and 1ii denotes the d × d matrix with all zero elements ex-
cept for at (i, i) position.

3. Case θ = Cij, j 6= i.

∂θ
(
log pθ(y)

)
= −(−1)(i+j) 1

2

det(C−i,−j)

det(C)
+

1

2T
D
(
1ij

)
D,

Ξ = −(−1)(i+j) 1

2

det(C−i,−j)

det(C)
+

1

2T

(
(σ∗)−1WT

)
i
×
(

(σ∗)−1WT

)
j
.

6.10.3 Numerical results

In order to illustrate the application of POP method to estimate model
sensitivity in the setting of (6.10.1), we consider a two-dimensional ex-
ample which is similar to the example discussed in [72, Pg. 10]. We take
interest rate r = µi = 0.01 and for the other parameters K = 100, T = 1,
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σ1 = 0.25, σ2 = 0.225, correlation parameter C1,2 = 0.9, p1 = 10, S1
0 = 10,

p2 = 5, S2
0 = 20 and estimate the sensitivities of the rare event statistics

E(K − p1S
1
T − p2S

2
T )+ with respect to p1, σ1 and C1,2. For other results

and approximations related to deep out-of-the-money options, see for
instance [56]. Observe that we choose σ2 = C1,2σ

1, which corresponds
to the critical case described in [72, Theorem 1] where the asymptotics
of the density of the basket undergoes a change of regime. It is thus
arguably delicate to obtain a tractable analytical approximation via the
derivation of the density.

In Tables 6.28, 6.29, 6.30, we compare the results of finite difference
method using simple Monte Carlo with common random numbers [57]
to those of the POP method with the number of simulations as indicated.

Sensitivity w.r.t. p1

POP method (106) (mean/std) −0.7155 (0.0046)
Finite difference (106) (mean/std) −0.7120 (0.0157)

Finite difference (109) (99% conf. interval) (−0.7155,−0.7129)

TABLE 6.28: Estimates of relative sensitivity w.r.t. p1.

Sensitivity w.r.t. σ1

POP method (106) (mean/std) 24.0078 (0.1760)
Finite difference (106) (mean/std) 23.9252 (0.4838)

Finite difference (109) (99% conf. interval) (23.9285, 24.0108)

TABLE 6.29: Estimates of relative sensitivity w.r.t. σ1

Sensitivity w.r.t. C1,2

POP method (106) (mean/std) 3.1058 (0.0253)
Finite difference (106) (mean/std) 3.0866 (0.1128)

Finite difference (109) (99% conf. interval) (3.0801, 3.0990)

TABLE 6.30: Estimates of relative sensitivity w.r.t. correlation.

Here the rare event probability P(p1S
1
T +p2S

2
T ≤ K) is around 1.7×10−3.

We deliberately choose such an example in order to show the applica-
tion of our method in “not-so-rare” situations. Actually, when the rare
event probability becomes smaller, the performance of POP method is
considerably improved with respect to the simple Monte Carlo.
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6.11 Optimal shaking parameter for standard
normal distribution

Given all the above tables and figures, it is natural to wonder which
shaking parameter will give the minimal standard deviation. Unfor-
tunately, due to the implicit property of many theoretical results on
Markov chain ergodicity, we are not able to do much theoretical work on
it. Thus, in this section, we are going to conduct some numerical experi-
ments on the simplest case, i.e. one dimensional normal distribution, to
gain some intuitive insights.

We denote the 10−n quantile of N(0, 1) by qn, i.e.

P (G < qn) = 10−n

where G ∼ N(0, 1)

6.11.1 Occupation measure estimation

We apply our POP algorithm to estimate

P (G < qn+1|G < qn)

whose exact value is 0.1 as given by definition.
The initialization of Markov chain is done by applying the shaking

transformation and only keeping the result when the value becomes
smaller. The computational time of this step is negligible. Once the
initial point is available, we will use M iterations to estimate our condi-
tional probability and we also record the rejection rate. Among the M
iterations, 1 percent is used as burn-in time to make the initial distribu-
tion close to the stationary one and we denote Mburn−in = 0.01M . The
conditional probability estimator and the rejection rate are obtained by
observing only the Markov chain after burn-in time. We say that we are
at level k when n is equal to k.

The shaking transformation we use is

K(X) = ρX +
√

1− ρ2N(0, 1)

we will take ρ going from 0.01 to 0.99 with step length 0.01. In Figures
6.11 - 6.20, we plot for each level the mean and standard deviation of
our esitmators for different shaking parameters.
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FIGURE 6.11: Level 1, M = 104, results over 100 macro-
runs

FIGURE 6.12: Level 2, M = 104, results over 100 macro-
runs
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FIGURE 6.13: Level 3, M = 104, results over 100 macro-
runs

FIGURE 6.14: Level 4, M = 104, results over 100 macro-
runs
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FIGURE 6.15: Level 5, M = 104, results over 100 macro-
runs

FIGURE 6.16: Level 6, M = 104, results over 100 macro-
runs
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FIGURE 6.17: Level 7, M = 104, results over 100 macro-
runs

FIGURE 6.18: Level 8, M = 104, results over 100 macro-
runs
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FIGURE 6.19: Level 9, M = 104, results over 100 macro-
runs

FIGURE 6.20: Level 10, M = 104, results over 100 macro-
runs
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The value of ρ which minimizes the standard deviation in each level
and the corresponding standard deviation and rejection rate are given
in the following table. Remark that since we consider only the empirical
standard deviation of 100 marco runs, these values are not exact optimal
ones.

Level 1 Level 2 Level 3 Level 4 Level 5
ρ 0.69 0.78 0.88 0.91 0.92

std 0.0041 0.0048 0.0049 0.0050 0.0046
rejection rate 0.5373 0.6417 0.5980 0.6027 0.6234

Level 6 Level 7 Level 8 Level 9 Level 10
ρ 0.94 0.93 0.96 0.97 0.98

std 0.0049 0.0052 0.0053 0.0051 0.0048
rejection rate 0.6130 0.6831 0.6083 0.5653 0.5716

In Figures 6.18, 6.19, 6.20, when the shaking is too strong (ρ close
to 0), we get a numerical standard deviation 0, which is due to the fact
that all the shaking transformations are rejected, so the outputs are con-
stantly zero. Of course this is not what we want, so these 0 outputs are
not considered when we give the above tables.

We can observe from these figures and tables that, the shaking forces
should be calibrated according to the rejection rate, and the best rejection
rates in this example are between 50% and 70%. To achieve the best
rejection rates, the shaking force needs to be smaller and smaller when
we go deep into the rare event zone.

Surprisingly, in this example, the best standard deviation does not
deteriorate when we approach the rare event zone. This is a very good
feature which may be related to the geometric property of our rare event
zone.

6.11.2 Quantile estimation

Next, we give tables showing the best shaking parameters and rejection
rates when we use Markov chain to estimate quantiles, i.e. we apply our
POP algorithm to estimate the value of qn+1 given the rejection level qn.

Level 1 Level 2 Level 3 Level 4 Level 5
ρ 0.66 0.82 0.89 0.93 0.94

std 0.0159 0.0136 0.0122 0.0110 0.0102
rejection rate 0.5645 0.5941 0.5747 0.5517 0.5526
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Level 6 Level 7 Level 8 Level 9 Level 10
ρ 0.92 0.93 0.94 0.95 0.97

std 0.0088 0.0086 0.0086 0.0072 0.0079
rejection rate 0.6700 0.6982 0.6884 0.6887 0.5912

Similarly to the previous subsection, we observe an empirically op-
timal rejection rate between 50% and 70%

6.12 Population dynamics

The classic probabilistic model for describing the evolution of a pop-
ulation of individuals is the Galton-Watson model, which can also be
regarded as a branching process with non random environment, see [8].
Theoretical analysis for these process with random enviroment has also
been conducted, such as in [61].

Under this model, the size of the population at date n+ 1 is denoted
by

Zn+1 =
Zn∑
j=1

ξn,j,

where the number of children (ξn,j) are i.i.d. variables. That is, each
individual of the generation nwill give birth to a certain number of chil-
dren, following the same probability distribution independently. And
the sum of all their children is the number of individuals at the genera-
tion n+ 1

We set Z0 = 1 and m = E(Z1) and we want to compute the survival
probability

P(Zn > 0)

, which is an important issue for studying and preventing species ex-
tinctions, see [85]. Other works on this can be found in [11, 103, 82].

We suppose the reproduction law ξ is geometric G(p) on N, i.e.

P(ξ = k) = (1− p)kp, k > 0,

where p = 1
m+1

.
This is a case where we know the exact theoretical value, thus we can

make accurate comparisons. Indeed, we know that the moment gener-
ating function ΦZn(z) = E(zZn) is given by

1

1− ΦZn(z)
=

{
1−m−n
1−m−1 + m−n

1−z if m 6= 1,

n+ 1
1−z if m = 1,

and that
P(Zn > 0) = 1− ΦZn(0).
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Thus, using these closed-form probabilities, we can compare values ob-
tained by our methods.

Shaking directly via geometric distribution We recall the shaking trans-
formation for the random variable X ∼ G(p) proposed in Subsection
5.4.3 :

K(X) = Y 1Y <X +X1Y >X,U<1−y + (X + Z + 1)1Y >X,U>1−y

where Y ∼ G(x), U ∼ U([0, 1]) and Z ∼ G(p) with shaking parameters
x, y satisfying(1− p)x = py.

In Tables 6.31 and 6.32, we report the results of POP methods over
100 times macro-runs for given parameter values. The intermediate lev-
els are takes as {Zk > 0}, k = 1, 2, 3, 4, 5

n = 5 theoretical value
m = 0.1, x = 0.05 9.59×10−6(4.62×10−6) 9 ×10−6

m = 0.1, x = 0.1 9.48×10−6(3.10×10−6)
m = 0.1, x = 0.2 8.96×10−6(2.24×10−6)
m = 0.1, x = 0.3 9.10×10−6(2.01×10−6)
m = 0.1, x = 0.4 9.31×10−6(2.26×10−6)
m = 0.1, x = 0.5 8.44×10−6(2.61×10−6)
m = 0.1, x = 0.6 9.15×10−6(3.73×10−6)
m = 0.1, x = 0.7 9.31×10−6(6.31×10−6)
m = 0.1, x = 0.8 8.67×10−6(1.08×10−5)
m = 0.1, x = 0.9 1.45×10−5(5.20×10−5)
m = 0.2, x = 0.05 2.70 ×10−4(7.61 ×10−5) 2.56 ×10−4

m = 0.2, x = 0.1 2.57 ×10−4(5.24 ×10−5)
m = 0.2, x = 0.2 2.51 ×10−4(3.47 ×10−5)
m = 0.2, x = 0.3 2.58 ×10−4(4.15 ×10−5)
m = 0.2, x = 0.4 2.58 ×10−4(4.15 ×10−5)
m = 0.2, x = 0.5 2.65 ×10−4(5.63 ×10−5)
m = 0.2, x = 0.6 2.64 ×10−4(6.76 ×10−5)
m = 0.2, x = 0.7 2.36 ×10−4(1.02 ×10−4)
m = 0.2, x = 0.8 2.46 ×10−4(1.86 ×10−4)
m = 0.2, x = 0.9 2.05 ×10−4(4.08 ×10−4)

TABLE 6.31: Survival probability in the subcritical and
critical cases (m 6 1): format = POP outputs averaged

over 100 runs (standard deviation)

Shaking via exponential distribution We then recall the shaking trans-
formation for geometric distribution via exponential variable, as pro-
posed in Subsection 5.4.3: we define λ = − ln(1− p) and

K(X) = b(X + {E})B +Gc
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where E ∼ E(λ), B ∼ Beta(1 − x, x) and G ∼ Γ(x, λ) with shaking
parameter x ∈ [0, 1].

In Table 6.32, we report the results of POP methods over 100 times
macro-runs for given parameter values, using this alternative shaking
transformation

n = 5 theoretical value
m = 0.1, x = 0.05 8.40×10−6(2.69×10−6) 9 ×10−6

m = 0.1, x = 0.1 8.97×10−6(2.17×10−6)
m = 0.1, x = 0.2 8.95×10−6(2.55×10−6)
m = 0.1, x = 0.3 8.61×10−6(2.04×10−6)
m = 0.1, x = 0.4 8.87×10−6(2.72×10−6)
m = 0.1, x = 0.5 8.48×10−6(2.99×10−6)
m = 0.1, x = 0.6 9.75×10−6(4.56×10−6)
m = 0.1, x = 0.7 8.60×10−6(5.38×10−6)
m = 0.1, x = 0.8 1.04×10−5(1.04×10−5)
m = 0.1, x = 0.9 8.84×10−6(2.38×10−5)
m = 0.2, x = 0.05 2.56 ×10−4(5.44 ×10−5) 2.56 ×10−4

m = 0.2, x = 0.1 2.56 ×10−4(4.48 ×10−5)
m = 0.2, x = 0.2 2.65 ×10−4(3.98 ×10−5)
m = 0.2, x = 0.3 2.57 ×10−4(5.04 ×10−5)
m = 0.2, x = 0.4 2.55 ×10−4(4.16 ×10−5)
m = 0.2, x = 0.5 2.50 ×10−4(4.41 ×10−5)
m = 0.2, x = 0.6 2.63 ×10−4(6.46 ×10−5)
m = 0.2, x = 0.7 2.54 ×10−4(7.91 ×10−5)
m = 0.2, x = 0.8 2.45 ×10−4(1.06 ×10−4)
m = 0.2, x = 0.9 2.48 ×10−4(1.60 ×10−4)

TABLE 6.32: Survival probability in the subcritical and
critical cases (m 6 1): format = POP outputs averaged

over 100 runs (standard deviation)

Comparing Tables 6.31 and 6.32, we see that the two different ways
of shaking geometric variables do not have significantly difference ef-
fects. The second way seems to deteriorate a bit more slowly when the
shaking force becomes too strong.

6.13 Brownian watermelon

A Brownian bridge is the trajectory of a standard Brownian motion Wt

between time t = 0 and t = 1, conditionally on W0 = W1 = t. It is well
know that a Brownian bridge has the same distribution as Wt − tW1, t ∈
[0, 1], see [114], and thus can be simulated in this way.

If we have several trajectories of independent Brownian bridges and
they do not cross each other, we get something which looks like a water-
melon. We call it a Brownian watermelon. Thus a Brownian watermelon
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is the configuration of several Brownian bridges conditionally on they
don’t intersect with each other. It has attracted attention in the field of
theoretical physics, see [112, 91] for example.

It is not easy to make exact simulation of Brownian watermelon,
since the probability that several Brownian bridges don’t intersect with
each other is very small. Using our shaking transformation, we can
make approximative simulation of Brownian watermelon.

We will consider the system of Brownian bridges as a functional of
several independent Brownian motion. Thus we can apply the shaking
transformation given by Equation (5.3.1) with a constant parameter to
shake the entire system of Brownian bridge.

We shall start with a given set of bridges which don’t intersect with
each other. Then we apply our shaking transformation on it. If some
of these bridges cross each other after the shaking transformation, we
will reject the result and just make a copy of the initial configuration.
Then Proposition 5.8.1 in Section 5.8 ensures that after a large number
of iterations, the current bridges configuration will be close to the exact
distribution of a Brownian bridge. This procedure is illustration in the
following figures.

FIGURE 6.21: Initial configuration before we start
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FIGURE 6.22: Final configuration after 105 iteration with
ρ = 0.999

Note that we have taken a ρ which is very close to 1. According to
our numerical experiments, more trajectories we have, more slightly we
need to shake, otherwise most of the transformations will be rejected.
Obviously, we can also compute average values along the way to esti-
mate quantities related to a Brownian watermelon.
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Chapter 7

Non-intrusive stratified
resampling

7.1 Introduction

Stochastic dynamic programming equations are classic equations aris-
ing in the resolution of nonlinear evolution equations, like in stochastic
control (see [124, 14]), optimal stopping (see [96, 70]) or non-linear PDEs
(see [34, 66]). In a discrete-time setting they take the form:

YN = gN(XN),

Yi = E (gi(Yi+1, . . . , YN , Xi, . . . , XN) | Xi) , i = N − 1, . . . , 0,

for some functions gN and gi which depend on the non-linear problem
under consideration. Here X = (X0, . . . , XN) is a Markov chain val-
ued in Rd, entering also in the definition of the problem. The aim is to
compute the value function yi such that Yi = yi(Xi).

Among the popular methods to solve this kind of problem, we are
concerned with Regression Monte Carlo (RMC) methods that take as
input M simulated paths of X , say (X1, . . . , XM) =: X1:M , and provide
as output simulation-based approximations yM,L

i using Ordinary Least
Squares (OLS) within a vector space of functions L:

yM,L
i = arg inf

ϕ∈L

1

M

M∑
m=1

∣∣∣gi(yM,L
i+1 (Xm

i+1), . . . , yM,L
N (Xm

N ), Xm
i , . . . , X

m
N )− ϕ(Xm

i )
∣∣∣2 .

This Regression Monte Carlo methodology has been investigated in [66]
to solve Backward Stochastic Differential Equations associated to semi-
linear partial differential equations (PDEs) [106], with some tight error
estimates. Generally speaking, it is well known that the number of sim-
ulationsM has to be much larger than the dimension of the vector space
L and thus the number of coefficients we are seeking.

In contradistinction, throughout this chapter, we focus on the case
where M is relatively small (a few hundreds) and the simulations are
not sampled by the user but are directly taken from historical data (X1:M

is called root sample), in the spirit of [110]. This is the most realistic
situation when we collect data and when the model which fits the data
is unknown.
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Thus, as a main difference with the aforementioned references:

• We do not assume that we have full information about the model
forX and we do not assume that we can generate as many simula-
tions as needed to have convergent Regression Monte Carlo meth-
ods.

• The size M of the learning samples X1, . . . , XM is relatively small,
which discards the use of a direct RMC with large dimensional L.

To overcome these major obstacles, we elaborate on two ingredients:

1. First, we partition Rd in strata (Hk)k, so that the regression func-
tions can be computed locally on each stratum Hk; for small stra-
tum this allows to use only a small dimensional approximation
space Lk, and therefore it puts a lower constraint onM . In general,
this stratification breaks the properties for having well-behaved
error propagation and we provide a precise way to sample in or-
der to be able to aggregate the error estimates in different strata.
We use a probabilistic distribution ν that has good norm-stability
properties with X (see Assumptions 7.3.2 and 7.4.2).

2. Second, by assuming a mild model condition on X , we are able
to resample from the root sample of size M , a training sample of
M simulations suitable for the stratum Hk. This resampler is non
intrusive in the sense that it only requires to know the form of the
model but not its coefficients: for example, we can handle models
with independent increments (discrete inhomogeneous Levy pro-
cess) or Ornstein-Uhlenbeck processes. See Examples 7.2.1-7.2.2-
7.2.3-7.2.4. We call this scheme NISR (Non Intrusive Stratified Re-
sampler), it is described in Definition 7.2.1 and Proposition 7.2.1.

The resulting regression scheme is, to the best of our knowledge,
completely new. To sum up, the contributions of this work are the fol-
lowing:

• We design a non-intrusive stratified resample (NISR) scheme that
allows to sample from M paths of the root sample restarting from
any stratum Hk. See Section 7.2.

• We combine this with regression Monte Carlo schemes, in order
to solve one-step ahead dynamic programming equations (Sec-
tion 7.3), discrete backward stochastic differential equations (BS-
DEs) and semi-linear PDEs (Section 7.4).

• In Theorems 7.3.4 and 7.4.1, we provide quadratic error estimates
of the form

quadratic error on yi 6 approximation error + statistical error
+ interdependency error .
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The approximation error is related to the best approximation of yi
on each stratum Hk, and averaged over all the strata. The statis-
tical error is bounded by C/M with a constant C which does not
depend on the number of strata: only relatively small M is nec-
essary to get low statistical errors. This is in agreement with the
motivation that the root sample has a relatively small size. The in-
terdependency error is an unusual issue, it is related to the strong
dependency between regression problems (because they all use
the same root sample). The analysis as well as the framework are
original. The error estimates take different forms according to the
problem at hand (Section 7.3 or Section 7.4).

• Finally we illustrate the performance of the methods on two types
of examples: first, approximation of non-linear PDEs arising in
reaction-diffusion biological models (Subsection 8.1) and optimal
sequential decision (Subsection 8.2), where we illustrate that root
samples of size M = 20− 40 only can lead to remarkably accurate
numerical solutions.

This chapter is organized as follows. In Section 7.2 we present the
model structure that leads to the non-intrusive stratified resampler for
regression Monte Carlo (NISR), together with the stratification. Main
notations will be also introduced. The algorithm is presented in a generic
form of dynamic programming equations in Algorithm 4. In Section 7.3
we analyze the convergence of the algorithm in the case of one-step
ahead dynamic programming equations (for instance optimal stopping
problems). Section 7.4 is devoted to the convergence analysis for dis-
crete BSDEs (probabilistic representation of semi-linear PDEs arising in
stochastic control problems). Numerical examples are provided in the
next chapter. Technical results are postponed to the Appendix. Most of
the materials in this part are contained in our paper [69].

7.2 Setting and the general algorithm

7.2.1 General dynamic programming equation

Suppose we have N discrete dates, and we aim at solving numerically
the following dynamic programming equation (DPE for short), written
in general form:

YN = gN(XN),

Yi = E (gi(Yi+1:N , Xi:N) | Xi) , 0 6 i < N.

Here, (Xi)06i6N is a Markov chain with state space Rd, (Yi)06i6N is a ran-
dom process taking values in R and we use for convenience the generic
short notation zi:N := (zi, . . . , zN). Note that the argument of the condi-
tional expectation is path-dependent, thus allowing greater generality.
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Had we considered Y to be multidimensional, the subsequent algorithm
and analysis would remain essentially the same.

Later (Sections 7.3 and 7.4), specific forms for gi will be considered,
depending on the model of DPE to solve at hand: it will have an impact
on the error estimates that we can derive. However, the description of
the algorithm can be the same for all the DPEs, as seen below, and this
justifies our choice of unifying the presentation.

Thanks to the Markovian property ofX , under mild assumptions we
can easily prove by induction that there exists a measurable function yi
such that Yi = yi(Xi), our aim is to compute an approximation of the
value functions yi(.) for all i. We assume that a bound on yi is available.

Assumption 7.2.1 (A priori bound). The solution yi is bounded by a con-
stant |yi|∞.

7.2.2 Model structure and root sample

We will represent yi(.) through its coefficients on a vector space, and the
coefficients will be computed thanks to learning samples of X .

Assumption 7.2.2 (Data). We have the observation of M independent paths
of X , which are denoted by ((Xm

i : 0 6 i 6 N), 1 6 m 6M). We refer to this
data as the root sample.

For our needs, we adopt a representation of the flow of the Markov
chain for different initial conditions, i.e., the Markov chain X i,x starting at
different times i ∈ {0, . . . , N} and points x ∈ Rd. Namely, we write

X i,x
j = θi,j(x, U), i 6 j 6 N, (7.2.1)

where

• U is some random vector, called random source,

• θi,j are (deterministic) measurable functions.

We emphasize that, for the sake of convenience, U is the same for repre-
senting all X i,x

j , 0 6 i 6 j 6 N, x ∈ Rd.

Assumption 7.2.3 (Noise extraction). We assume that θi,j are known and
we can retrieve the random sources (U1, . . . , UM) associated to the root sample
X1:M = (Xm : 1 6 m 6M), i.e.,

Xm
j = X

0,xm0 ,m
j = θ0,j(x

m
0 , U

m).

Observe that this assumption is much less stringent than identifying
the distribution of the model. We exemplify this now.
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Example 7.2.1 (Arithmetic Brownian motion with time dependent pa-
rameters). Let (ti : 0 6 i 6 N) be N times and define the arithmetic Brown-
ian motion by

Xi = x0 +

∫ ti

0

µsds+

∫ ti

0

σsdWs

where µt ∈ Rd, σt ∈ Rd×q,Wt ∈ Rq and µ, σ are deterministic functions of
time. In this case, the random source is given by

U := (Xi+1 −Xi)06i6N−1

and the functions by
θij(x, U) := x+

∑
i6k<j

Uk.

This works since Ui =
∫ ti+1

ti
µsds +

∫ ti+1

ti
σsdWs. The crucial point is that, in

order to extract U from X , we do not assume that µ and σ are known.

Example 7.2.2 (Levy process). More generally, we can set Xi = Xti with a
time-inhomogeneous Levy process X. Then take

U := (Xi+1 −Xi)06i6N−1, θij(x, U) := x+
∑
i6k<j

Uk.

Example 7.2.3 (Geometric Brownian motion with time dependent pa-
rameters). With the same kind of parameters as for Example 7.2.1, define the
geometric Brownian motion (component by component)

Xi = X0 exp

(∫ ti

0

µsds+

∫ ti

0

σsdWs

)
.

Then, we have that

U :=

(
log(

Xi+1

Xi

)

)
06i6N−1

, θij(x, U) := x
∏
i6k<j

exp(Uk).

Example 7.2.4 (Ornstein-Uhlenbeck process with time dependent pa-
rameters). Given N times (ti : 0 6 i 6 N), set Xi = Xti where X has
the following dynamics:

Xt = x0 −
∫ t

0

A(Xs − X̄s)ds+

∫ t

0

ΣsdWs

where A is d× d-matrix, Xt and X̄t are in Rd, Σt is a d× q-matrix, Wt ∈ Rq.
X̄t and Σt are both deterministic functions of time. The explicit solution is

Xt = e−A(t−s)Xs + e−At
∫ t

s

eAr(AX̄rdr + ΣrdWr).
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Assume that we knowA: in this case, an observation ofX0:N enables to retrieve
the random source

U :=
(
Xj − e−A(tj−ti)Xi

)
06i6j6N

and then
θij(x, U) := e−A(tj−ti)x+ Ui,j.

The noise extraction works since Ui,j = e−Atj
∫ tj
ti
eAr(AX̄rdr + ΣrdWr).

As illustrated above, through Assumption 7.2.2, all we need to know
is the general structure of the Markov chain model but we do not need
to estimate all the model parameters, and sometimes none of them (Ex-
amples 7.2.1, 7.2.2, 7.2.3). Our approach is non intrusive in this sense.

7.2.3 Stratification and resampling algorithm

On the one hand, we can rely on a root sample of size M only (possibly
with a relatively small M , constrained by the available data), which is
very little to perform accurate Regression Monte-Carlo methods (usu-
ally M has to be much larger than the dimension of approximation
spaces, as reminded in introduction).

On the other hand, we are able to access the random sources so that
resampling the M paths is possible. The degree of freedom comes from
the flexibility of initial conditions (i, x), thanks to the flow representation
(7.2.1). We now explain how we take advantage of this property.

The idea is to resample the model paths for different starting points
in different parts of the space Rd and on each part, we will perform a
regression Monte Carlo using M paths and a low-dimensional approx-
imation space. These ingredients give the ground reasons for getting
accurate results.

Let us proceed to the details of the algorithm. We design a stratifica-
tion approach: suppose there exist K strata (Hk)16k6K such that

Hk ∩Hl = ∅ for k 6= l,
K⋃
k=1

Hk = Rd.

An example for Hk is a hypercube of the form Hk =
∏d

l=1[x−k,l, x
+
k,l).

Then, we are given a probability measure ν on Rd and denote its re-
striction on Hk by

νk(dx) :=
1

ν(Hk)
1Hk(x)ν(dx).

The measure ν will serve as a reference to control the errors. See Para-
graph 7.3.1 and Chapter 8 for choices of ν.

Definition 7.2.1 (Non-intrusive stratified resampler, NISR for short). We
define the M -sample used for regression at time i and in the k-th stratum Hk:
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• let (X i,k,m
i )16m6M be an i.i.d. sample according to the law νk;

• for j = i+ 1, . . . , N , set

X i,k,m
j = θi,j(X

i,k,m
i , Um) ,

where U1:M are the random sources from Assumption 7.2.3.

In view of Assumptions 7.2.2 and 7.2.3, the random sourcesU1, . . . , UM

are independent, therefore we easily prove the following.

Proposition 7.2.1. The M paths (X i,k,m
i:N , 1 6 m 6 M) are independent and

identically distributed as Xi:N with Xi
d∼ νk.

7.2.4 Approximation spaces and regression Monte Carlo
schemes

On each stratum, we approximate the value functions yi using basis
functions. We can take different kinds of basis functions:

- LP0 (partitioning estimate): Lk = span(1Hk),

- LP1 (piecewise linear): Lk = span(1Hk , x11Hk , · · · , xd1Hk),

- LPn (piecewise polynomial): Lk = span( all the polynomials of degree
less than or equal to n on Hk).

To simplify the presentation, we assume hereafter that the dimension of
Lk does not depend on k, we write

dim(Lk) =: dim(L).

To compute the approximation of yi on each stratum Hk, we will use
the M samples of Definition 7.2.1. Our NISR-regression Monte Carlo
algorithm takes the form:

set y(M)
N (·) = gN(·)

for i = N − 1 until 0 do
for k = 1 until K do

sample (X i,k,m
i:N )16m6M using the NISR (Definition 7.2.1)

set S(M)(xi:N) = gi(y
(M)
i+1 (xi+1), . . . , y

(M)
N (xN), xi:N)

compute ψ(M),k
i = OLS(S(M),Lk, X

i,k,1:M
i:N )

set y(M),k
i = T|yi|∞

(
ψ

(M),k
i

)
where TL is the truncation

operator, defined by TL(x) = −L ∨ x ∧ L
end
set y(M)

i =
∑K

k=1 y
(M),k
i 1Hk

end
Algorithm 4: General NISR-regression Monte Carlo algorithm
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In the above, the Ordinary Least Squares approximation of the re-
sponse function S̃ : (Rd)N−i+1 7→ R in the function space Lk using the M
sample X i,k,1:M

i:N is defined and denoted by

OLS(S̃,Lk, X
i,k,1:M
i:N ) = arg inf

ϕ∈Lk

1

M

M∑
m=1

|S̃(X i,k,m
i:N )− ϕ(X i,k,m

i )|2.

The main difference with the usual regression Monte-Carlo schemes
(see [64] for instance) is that here we use the common random numbers
U1:M for all the regression problems. This is the effect of resampling. The
convergence analysis becomes more delicate because we lose nice inde-
pendence properties. Figure 7.1 describes a key part in the algorithm,
namely the process of using the root paths to generate new paths.

FIGURE 7.1: Description of the use of the root paths to
produce new paths in an arbitrary hypercube.

7.3 Convergence analysis in the case of the one-
step ahead dynamic programming equation

We consider here the case

YN = gN(XN),

Yi = E (gi(Yi+1, Xi, . . . , XN) | Xi) , 0 6 i < N,
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where we need the value of Yi+1 (one step ahead) to compute the value
Yi (at the current date) through a conditional expectation. To compare
with Algorithm 4, we take gi(Yi+1:N , Xi:N) = gi(Yi+1, Xi:N).

Equations of this form are quite natural when solving optimal stop-
ping problems (see [96, 70]) in the Markovian case. Indeed, if Vi is
the related value function at time i, i.e., the essential supremum over
stopping times τ ∈ {i, . . . , N} of a reward process fτ (Xτ ), then Vi =
max(Yi, fi(Xi)) where Yi is the continuation value defined by

Yi = E (max(Yi+1, fi+1(Xi+1)) | Xi) ,

see [124] for instance. This corresponds to our setting with

gi(yi+1, xi:N) = max(yi+1, fi+1(xi+1)) .

Similar dynamic programming equations appear in stochastic control
problems. See [14].

7.3.1 Standing assumptions

The following assumptions enable us to provide error estimates (Theo-
rem 7.3.4 and Corollary 7.3.1) for the convergence of Algorithm 4.

Assumptions on gi

Assumption 7.3.1 (Functions gi). Each function gi is Lipschitz w.r.t. the
variable yi+1, with Lipschitz constant Lgi and Cgi := supxi:N |gi(0, xi:N)| <
+∞.

It is then easy to justify that yi (such that yi(Xi) = Yi) is bounded
(Assumption 7.2.1).

Assumptions on the distribution ν

We assume a condition on the probability measure ν and the Markov
chain X , which ensures a suitable stability in the propagation of errors.

Assumption 7.3.2 (norm-stability). There exists a constant C (7.3.1) > 1 such
that for any ϕ : Rd 7→ R ∈ L2(ν) and any 0 6 i 6 N − 1, we have∫

Rd
E
(
ϕ2(X i,x

i+1)
)
ν(dx) 6 C (7.3.1)

∫
Rd
ϕ2(x)ν(dx). (7.3.1)

We now provide some examples of distribution ν where the above
assumption holds, in connection with Examples 7.2.1, 7.2.2 and 7.2.4.

Proposition 7.3.1. Let α = (α1, . . . , αd) ∈]0,+∞[d and assume that X i,x
i+1 =

x + Ui (as in Examples 7.2.1 and 7.2.2) with E
(∏d

j=1 e
αj |Uji |

)
< +∞. Then,
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the tensor-product Laplace distribution

ν(dx) :=
d∏
j=1

αj

2
e−α

j |xj |dx

satisfies Assumption 7.3.2.
Proof. The L.H.S. of (7.3.1) writes

E
(∫

Rd
ϕ2(x+ Ui)ν(dx)

)
= E

(∫
Rd
ϕ2(x)

d∏
j=1

αj

2
e−α

j |xj−Uji |dx

)

6 E

(∫
Rd
ϕ2(x)

d∏
j=1

αj

2
e−α

j |xj |+αj |Uji |dx

)

which leads to the announced inequality (7.3.1) with

C (7.3.1) := E

(
d∏
j=1

eα
j |Uji |

)

.

Proposition 7.3.2. Let k > 0 and assume that X i,x
i+1 = Dx + Ui for a di-

agonal invertible matrix D := diag(D1, . . . , Dd) (a form similar to Example
7.2.4) with E

(
(1 + |Ui|)d(k+1)

)
< +∞. Then, the tensor-product Pareto-type

distribution

ν(dx) :=
d∏
j=1

k

2
(1 + |xj|)−k−1dx

satisfies Assumption 7.3.2.
Proof. The L.H.S. of (7.3.1) equals

E
(∫

Rd
ϕ2(Dx+ Ui)ν(dx)

)
= E

(∫
Rd
ϕ2(x) det(D−1)

d∏
j=1

k

2
(1 + |(xj − U j

i )/Dj|)−k−1dx

)

6
∫
Rd
ϕ2(x) det(D−1)

d∏
j=1

k

2

(
E
(
(1 + |(xj − U j

i )/Dj|)−d(k+1)
))1/d

dx.

(7.3.2)

On the set {|U j
i | 6 |xj|/2} we have (1 + |(xj − U j

i )/Dj|) > (1 + (|xj| −
|U j

i |)/Dj|) > (1+ |xj|/(2Dj)). On the complementary set {|U j
i | > |xj|/2},

the random variable inside the j-th expectation in (7.3.2) is bounded by
1 and furthermore

P
(
|U j

i | > |xj|/2
)
6

E
(
(1 + 2|U j

i |)d(k+1)
)

(1 + |xj|)d(k+1)
.
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By gathering the two cases, we observe that we have shown that the
j-th expectation in (7.3.2) is bounded by Cst(1 + |xj|)−d(k+1), for any xj ,
whence the advertised result.

Remarks.

• Since we will apply the inequality (7.3.1) only to functions in a
finite dimensional space, the norm equivalence property of finite
dimensional space may also give the existence of a constant C (7.3.1).
But the constant built in this way could depend on the finite di-
mensional space (and may blow up when its dimension increases)
while here the constant is valid for any ϕ.

• The previous examples on ν are related to distributions with inde-
pendent components: this is especially convenient when one has
to sample ν restricted to hypercubes Hk, since we are reduced to
independent one-dimensional simulations.

• In Proposition 7.3.2, had the matrix D been symmetric instead of
diagonal, we would have applied an appropriate rotation to the
density ν.

Covering number of an approximation space

To analyze how the M -samples (X i,k,m
i:N , 1 6 m 6M) from NISR approx-

imates the exact distribution of Xi:N with Xi
d∼ νk over test functions in

the space Lk, we will invoke concentration of measure inequalities (uni-
form in Lk). This is possible thanks to complexity estimates related to
Lk, expressed in terms of covering numbers. Note that the concept of
covering numbers is mainly used to introduce Assumption 7.3.3 and it
intervenes in the main theorems only through the proof of Proposition
7.3.5.

We briefly recall the definition of a covering number of a dictionary
of functions G, see [75, Chapter 9] for more details. For a dictionary G of
functions from Rd to R and forM points x1:M := {x(1), . . . , x(M)} in Rd, an
ε-cover (ε > 0) of G w.r.t. the L1-empirical norm ‖g‖1 := 1

M

∑M
m=1 |g(x(m))|

is a finite collection of functions g1, . . . , gn such that for any g ∈ G, we
can find a j ∈ {1, · · · , n} such that ‖g − gj‖1 6 ε. The smallest possible
integer n is called the ε-covering number and is denoted by N1(ε,G, x1:M).

Assumption 7.3.3 (Covering the approximation space). There exist three
constants

α(7.3.3) >
1

4
, β(7.3.3) > 0, γ(7.3.3) > 1

such that for any B > 0, ε ∈ (0, 4
15
B] and stratum index 1 6 k 6 K, the

minimal size of an ε-covering number of TBLk := {TBϕ : ϕ ∈ Lk} is bounded
as follows:

N1(ε,TBLk, x
1:M) 6 α(7.3.3)

(β(7.3.3)B

ε

)γ(7.3.3)
(7.3.3)

independently of the points sample x1:M .
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We assume that the above constants do not depend on k, mainly for
the sake of simplicity. In the error analysis (see also Proposition 7.5.1),
the constants α(7.3.3) and β(7.3.3) appear in log and thus, they have a small
impact on error bounds. On the contrary, γ(7.3.3) appears as a multiplica-
tive factor and we seek to have the smallest estimate.

Proposition 7.3.3. In the case of approximation spaces Lk like LP0, LP1 or
LPn, Assumption 7.3.3 is satisfied with the following parameters: for any given
η > 0, we have

α(7.3.3) β(7.3.3) γ(7.3.3)

LP0 1 7/5 1

LP1 3 [4cη6
η]1/(1+η)e (d+ 2)(1 + η)

LPn 3 [4cη6
η]1/(1+η)e ((d+ 1)n + 1)(1 + η)

where cη = supx> 45e
2
x−η log(x).

The proof is postponed to the Appendix.

7.3.2 Main result: Error estimate

We are now in the position to state a convergence result, expressed in
terms of the quadratic error of the best approximation of yi on the stra-
tum Hk:

Ti,k := inf
ϕ∈Lk
|yi − ϕ|2νk where |ϕ|2νk :=

∫
Rd
|ϕ|2(x)νk(dx).

Our goal is to find an upper bound for the error E
(
|y(M)
i − yi|2ν

)
where

|ϕ|2ν :=

∫
Rd
|ϕ|2(x)ν(dx).

Note that the above expectation is taken over all the random variables,
including the random sources U1:M , i.e., we estimate the quadratic error
averaged on the root sample.

Theorem 7.3.4. Assume Assumptions 7.2.2-7.2.3-7.3.2-7.3.3 and define y(M)
i

as in Algorithm 4. Then, for any ε > 0, we have

E
(
|y(M)
i − yi|2ν

)
6 4(1 + ε)L2

gi
C (7.3.1)E

(
|y(M)
i+1 − yi+1|2ν

)
+ 2

K∑
k=1

ν(Hk)Ti,k

+ 4c(7.3.8)(M)
|yi|2∞
M

+ 2(1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2

+ 8(1 + ε)L2
gi
c(7.3.7)(M)

|yi+1|2∞
M

.

We emphasize that whenever useful, the constant 4(1 + ε)L2
gi
C (7.3.1)

could be reduced to (1 + δ)(1 + ε)L2
gi
C (7.3.1) (for any given δ > 0) by
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slightly adapting the proof: namely, the term 4 = 22 comes from two
applications of deviation inequalities stated in Proposition 7.5.1. These
inequalities are valid with (1 + δ)

1
2 instead of 2, up to modifying the

constants c(7.5.2)(M) and c(7.5.3)(M).
As a very significant difference with usual Regression Monte-Carlo

methods (see [66, Theorem 4.11]), in our algorithm there is no competi-
tion between the bias term (approximation error) and the variance term
(statistical error), while in usual algorithms as the dimension of the ap-
proximation space K dim(L) goes to infinity, the statistical term (of size
K dim(L)

M
) blows up. This significant improvement comes from the strati-

fication which gives rise to decoupled and low-dimensional regression
problems.

Since y(M)
N = yN , we easily derive global error bounds.

Corollary 7.3.1. Under the assumptions and notations of Theorem 7.3.4, there
exists a constant C(7.3.4)(N) (depending only onN , sup06i<N Lgi , C (7.3.1)), such
that for any j ∈ {0, . . . , N − 1},

E
(
|y(M)
j − yj|2ν

)
6 C(7.3.4)(N)

N−1∑
i=j

[ K∑
k=1

ν(Hk)Ti,k (7.3.4)

1

M

(
c(7.3.8)(M)|yi|2∞ + dim(L)(Cgi + Lgi|yi+1|∞)2 + L2

gi
c(7.3.7)(M)|yi+1|2∞

)]
.

It is easy to see that if 4(1+ε)L2
gi
C (7.3.1) 6 1, then interestinglyC(7.3.4)(N)

can be taken uniformly in N . This case corresponds to a small Lipschitz
constant of gi. In the case 4(1+ε)L2

gi
C (7.3.1) � 1, the above error estimates

deteriorate quickly as N increases. We shall discuss that in Section 7.4
which deals with BSDEs and where we propose a different scheme that
allows both large Lipschitz constant and large N .

7.3.3 Proof of Theorem 7.3.4

Let us start by setting up some useful notations:

S(xi:N) := gi(yi+1(xi+1), xi:N), ψki := OLS(S,Lk, X
i,k,1:M
i:N ),

|f |2i,k,M :=
1

M

M∑
m=1

f 2(X i,k,m
i:N )

(or |f |2i,k,M := 1
M

∑M
m=1 f

2(X i,k,m
i ) when f depends only on one argu-

ment).
We first aim at deriving a bound on E

(
|y(M)
i − yi|2i,k,M

)
. First of all,

note that

|y(M)
i − yi|2i,k,M =

∣∣∣T|yi|∞(ψ
(M),k
i )− T|yi|∞(yi)

∣∣∣2
i,k,M

6 |ψ(M),k
i − yi|2i,k,M
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since the truncation operator is 1-Lipschitz. Now we define

E
(
S(X i,k,m

i:N )|X i,k,1:M
i

)
= E

(
S(X i,k,m

i:N )|X i,k,m
i

)
= yi(X

i,k,m
i ) (7.3.5)

where the first equality is due to the independence of the paths (X i,k,m
i:N , 1 6

m 6 M) (Proposition 7.2.1) and where the last equality stems from the
definition of yi.

According to [66, Proposition 4.12] which allows to interchange con-
ditional expectation and OLS, we have

E
(
ψki (·)|X i,k,1:M

i

)
= OLS(yi,Lk, X

i,k,1:M
i:N ).

Since the expected values
(
E
(
ψki (X i,k,m

i )|X i,k,1:M
i

))
16m6M

can be seen

as the projections of (yi(X
i,k,m
i ))16m6M on the subspace of RM spanned

by {(ϕ(X i,k,m
i ))16m6M , ϕ ∈ Lk} and (ψ

(M),k
i (X i,k,m

i ))16m6M is an element
in this subspace, Pythagoras theorem yields

|ψ(M),k
i − yi|2i,k,M =

∣∣∣ψ(M),k
i − E

(
ψki (·)|X i,k,1:M

i

)∣∣∣2
i,k,M

+
∣∣∣E(ψki (·)|X i,k,1:M

i

)
− yi

∣∣∣2
i,k,M

=
∣∣∣ψ(M),k

i − E
(
ψki (·)|X i,k,1:M

i

)∣∣∣2
i,k,M

+ inf
ϕ∈Lk
|ϕ− yi|2i,k,M .

For any given φ ∈ Lk, we have

E
(

inf
ϕ∈Lk
|ϕ− yi|2i,k,M

)
6 E

(
|φ− yi|2i,k,M

)
= E

(
1

M

M∑
m=1

|φ(X i,k,m
i )− yi(X i,k,m

i )|2
)

=

∫
Rd
|φ(x)− yi(x)|2νk(dx).

Taking the infimum over all functions φ on the R.H.S. gives

E
(

inf
ϕ∈Lk
|ϕ− yi|2i,k,M

)
6 Ti,k.

So, for any ε > 0, we have

E
(
|ψ(M),k
i − yi|2i,k,M

)
6 Ti,k + (1 + ε)E

(
|ψ(M),k
i − ψki |2i,k,M

)
+ (1 +

1

ε
)E
(∣∣∣ψki − E

(
ψki (·)|X i,k,1:M

i

)∣∣∣2
i,k,M

)
.

By [66, Proposition 4.12], the last term is bounded by dim(L)
M

(Cgi+Lgi|yi+1|∞)2
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where (Cgi+Lgi |yi+1|∞)2 clearly bounds the conditional variance of S(X i,k
i:N).

This is the statistical error contribution. Here, we have used the inde-
pendence of (X i,k,m

i:N , 1 6 m 6M) (Proposition 7.2.1).
The control of the term E

(
|ψ(M),k
i − ψki |2i,k,M

)
is possible due to the

linearity and stability of OLS [66, Proposition 4.12]:

|ψ(M),k
i − ψki |2i,k,M 6 |S(M) − S|2i,k,M 6 L2

gi

1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(X i,k,m

i+1 ),

where we have taken advantage of the Lipschitz property of gi w.r.t. the
component yi+1. So far we have shown

E
(
|y(M)
i − yi|2i,k,M

)
6 Ti,k + (1 + ε)L2

gi
E

(
1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(X i,k,m

i+1 )

)

+ (1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2. (7.3.6)

This shows a relation between the errors at time i and time i + 1, but
measured in different norms. In order to retrieve the same L2(ν)-norm
and continue the analysis, we will use the norm-stability property (As-
sumption 7.3.2) and the following result about concentration of mea-
sures. The proof is a particular case of Proposition 7.5.1 in the Appendix,
with ψ(x) = (−2|yi+1|∞ ∨ x ∧ 2|yi+1|∞)2, B = |yi+1|∞,K = Lk, η = yi+1.

Proposition 7.3.5. Define (c(7.3.7)(M), c(7.3.8)(M)) by considering c(7.5.2)(M)
and c(7.5.3)(M) from Proposition 7.5.1 with the values (α(7.3.3), β(7.3.3), γ(7.3.3))
instead of (α, β, γ). Then we have

E

(
1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(X i,k,m

i+1 )

)
6 2E

(
|y(M)
i+1 (X i,νk

i+1 )− yi+1(X i,νk
i+1 )|2

)
+ 4c(7.3.7)(M)

|yi+1|2∞
M

, (7.3.7)

E
(
|y(M)
i − yi|2νk

)
6 2E

(
|y(M)
i − yi|2i,k,M

)
+ 4c(7.3.8)(M)

|yi|2∞
M

. (7.3.8)

Multiply both sides of Equation (7.3.7) by ν(Hk), sum over k, and use
the norm-stability property (Assumption 7.3.2): it readily follows that

K∑
k=1

ν(Hk)E

(
1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(X i,k,m

i+1 )

)

6 2E
(
|y(M)
i+1 (X i,ν

i+1)− yi+1(X i,ν
i+1)|2

)
+ 4c(7.3.7)(M)

|yi+1|2∞
M

6 2C (7.3.1)E
(
|y(M)
i+1 − yi+1|2ν

)
+ 4c(7.3.7)(M)

|yi+1|2∞
M

.
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Similarly, we can get from Equation (7.3.8) that

E
(
|y(M)
i − yi|2ν

)
6 2

K∑
k=1

ν(Hk)E
(
|y(M)
i − yi|2i,k,M

)
+ 4c(7.3.8)(M)

|yi|2∞
M

.

Finally, by combining the above estimates with (7.3.6), we get

E
(
|y(M)
i − yi|2ν

)
6 4c(7.3.8)(M)

|yi|2∞
M

+ 2
K∑
k=1

ν(Hk)Ti,k + 2(1 +
1

ε
)
dim(L)

M
(Cgi

+ Lgi |yi+1|∞)2 + 2(1 + ε)L2
gi

(
2C (7.3.1)E

(
|y(M)
i+1 − yi+1|2ν

)
+ 4c(7.3.7)(M)

|yi+1|2∞
M

)
.

This links E
(
|y(M)
i − yi|2ν

)
with E

(
|y(M)
i+1 − yi+1|2ν

)
as announced.

7.4 Convergence analysis for the solution of BS-
DEs with the MDP representation

Let us consider the semi-linear final value problem for a parabolic PDE
of the form{

∂tu(t, x) + 1
2
∆u(t, x) + f(t, u(t, x), x) = 0, t < 1, x ∈ Rd,

u(1, x) = g(x).

This is a simple form of the Hamilton-Jacobi-Bellman equation of stochas-
tic control problems [97]. Under fairly mild assumptions (see [106] for
instance), the solution to the above PDE is related to a Backward Stochas-
tic Differential Equation (Y,Z) driven by a d-dimensional Brownian mo-
tion W . Namely,

Yt = g(W1) +

∫ 1

t

f(s,Ys,Ws)ds−
∫ 1

t

ZsdWs

and Yt = u(t,Wt), Zt = ∇u(t,Wt). Needless to say, the Laplacian ∆
and the process W could be replaced by a more general second order
operator and its related diffusion process, and that f could depend on
the gradient Z as well. We stick to the above setting which is consistent
with this work. Taking conditional expectation reduces to

Yt = E
(
g(W1) +

∫ 1

t

f(s,Ys,Ws)ds | Wt

)
.

There are several time discretization schemes of Y (explicit or implicit
Euler schemes, high order schemes [34]) but here we follow the Multi-
Step Forward Dynamic Programming (MDP for short) Equation of [66],
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which allows a better error propagation compared to the One-Step Dy-
namic Programming Equation:

Yi = E

(
gN(XN) +

1

N

N∑
j=i+1

fj(Yj, Xj, . . . , XN)|Xi

)
= yi(Xi), 0 6 i < N.

Here, we consider a more general path-dependency on fj , actually this
does not affect the error analysis. In comparison with Algorithm 4, we
take

gi(yi+1:N , xi:N) = gN(xN) +
1

N

N∑
j=i+1

fj(yj, xj:N).

In [10] similar discrete BSDEs appear but with an external noise. That
corresponds to time-discretization of Backward Doubly SDEs, which in
turn are related to stochastic semi-linear PDEs.

7.4.1 Standing assumptions

We shall now describe the main assumptions that are needed in the
methodology proposed in this paper.

Assumptions on fi and gN

Assumption 7.4.1 (Functions fi and gN ). Each fi is Lipschitz w.r.t. yi, with
Lipschitz constant Lfi and Cfi = supxi:N |fi(0, xi:N)| < +∞. Moreover gN is
bounded.

The reader can easily check that yi is bounded.

Assumptions on the distribution ν

Assumption 7.4.2 (norm-stability). There exists a constant C (7.4.1) > 1 such
that for any ϕ ∈ L2(ν) and any 0 6 i < j 6 N , we have∫

Rd
E
(
ϕ2(X i,x

j )
)
ν(dx) 6 C (7.4.1)

∫
Rd
|ϕ(x)|2ν(dx). (7.4.1)

It is straightforward to extend Propositions 7.3.1 and 7.3.2 to fulfill
the above assumption.

7.4.2 Main result: error estimate

We express the error in terms of the best local approximation error and
the averaged one:

Ti,k := inf
ϕ∈Lk
|yi − ϕ|2νk , ν(Ti,.) :=

K∑
k=1

ν(Hk)Ti,k.



178 Chapter 7. Non-intrusive stratified resampling

In this discrete time BSDE context, Theorem 7.3.4 becomes the following.

Theorem 7.4.1. Assume Assumptions 7.2.2-7.2.3-7.3.3-7.4.2 and define y(M)
i

as in Algorithm 4. Set

Ē(Y,M, i) := E
(
|y(M)
i − yi|2ν

)
=

K∑
k=1

ν(Hk)E
(
|y(M)
i − yi|2νk

)
.

Define

δi = 4c(7.3.8)(M)
|yi|2∞
M

+ 2ν(Ti,.) + 16
1

N

N−1∑
j=i+1

L2
fj
c(7.3.7)(M)

|yj|2∞
M

+

+ 4
dim(L)

M

(
|yN |∞ +

1

N

N∑
j=i+1

(Cfj + Lfj |yj|∞)

)2

.

Then, letting Lf := supj Lfj , we have

Ē(Y,M, i) 6 δi + 8C (7.4.1)L
2
f exp

(
8C (7.4.1)L

2
f

) 1

N

N−1∑
j=i+1

δj.

The above general error estimates become simpler when the param-
eters are uniform in i.

Corollary 7.4.1. Under the assumptions of Theorem 7.4.1 and assuming that
Cfi , Lfi and |yi|∞ are bounded uniformly in i and N , there exists a constant
C(7.4.2) (independent of N and of approximation spaces Lk) such that

Ē(Y,M, i) 6 C(7.4.2)

(
c(7.3.8)(M) + c(7.3.7)(M) + dim(L)

M
+ ν(Ti,.) +

1

N

N−1∑
j=i+1

ν(Tj,.)

)
.

(7.4.2)

We observe that this upper bound is expressed in a quite convenient
form to let N → +∞ and K → +∞. As a major difference with the
usual Regression Monte Carlo schemes, the impact of the statistical error
(through the parameter M ) is not affected by the number K of strata.
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7.4.3 Proof of Theorem 7.4.1

We follow the arguments of the proof of Theorem 7.3.4 with the follow-
ing notation:

S(xi:N) := gN(xN) +
1

N

N∑
j=i+1

fj(yj(xj), xj:N),

S(M)(xi:N) := gN(xN) +
1

N

N∑
j=i+1

fj(y
(M)
j (xj), xj:N),

ψki := OLS(S,Lk, X
i,k,1:M
i:N ), ψ

(M),k
i := OLS(S(M),Lk, X

i,k,1:M
i:N ).

The beginning of the proof is similar and we obtain (here, there is no
need to optimize ε and we take ε = 1)

E
(
|y(M)
i − yi|2i,k,M

)
6 E

(
|ψ(M),k
i − yi|2i,k,M

)
6 Ti,k + 2E

(
|ψ(M),k
i − ψki |2i,k,M

)
+ 2E

(∣∣∣ψki − E
(
ψki (·)|X i,k,1:M

i

)∣∣∣2
i,k,M

)
.

The last term is a statistical error term, which can be controlled as fol-
lows:

E
(∣∣∣ψki − E

(
ψki (·)|X i,k,1:M

i

)∣∣∣2
i,k,M

)
6

dim(L)

M

(
|yN |∞ +

1

N

N∑
j=i+1

(Cfj + Lfj |yj|∞)

)2

where (. . . )2 is a rough bound of the conditional variance of S(X i,k
i:N).

We handle the control of the term E
(
|ψ(M),k
i − ψki |2i,k,M

)
as in Theo-

rem 7.3.4 but the results are different because the dynamic programming
equation differs:

E
(
|ψ(M),k
i − ψki |2i,k,M

)
6 E

(
|S(M) − S|2i,k,M

)
6 E

 1

M

M∑
m=1

(
1

N

N−1∑
j=i+1

Lfj |y
(M)
j − yj|(X i,k,m

j )

)2


6 E

(
1

M

M∑
m=1

1

N

N−1∑
j=i+1

L2
fj
|y(M)
j − yj|2(X i,k,m

j )

)
.

We multiply the above by ν(Hk), sum over k, apply the extended Propo-
sition 7.3.5 valid also for the problem at hand, and the Assumption 7.4.2.
Then, it follows that

K∑
k=1

ν(Hk)E
(
|ψ(M),k
i − ψki |2i,k,M

)
6 2

1

N

N−1∑
j=i+1

L2
fj

(
C (7.4.1)E

(
|y(M)
j − yj|2ν

)
+ 2c(7.3.7)(M)

|yj|2∞
M

)
.
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On the other hand, from Equation (7.3.8) we have

E
(
|y(M)
i − yi|2ν

)
6 2

K∑
k=1

ν(Hk)E
(
|y(M)
i − yi|2i,k,M

)
+ 4c(7.3.8)(M)

|yi|2∞
M

.

Now collect the different estimates: it writes

Ē(Y,M, i) := E
(
|y(M)
i − yi|2ν

)
6 4c(7.3.8)(M)

|yi|2∞
M

+ 2
K∑
k=1

ν(Hk)Ti,k

+ 8
1

N

N−1∑
j=i+1

L2
fj

(
C (7.4.1)E

(
|y(M)
j − yj|2ν

)
+ 2c(7.3.7)(M)

|yj|2∞
M

)
+

+ 4
dim(L)

M

(
|yN |∞ +

1

N

N∑
j=i+1

(Cfj + Lfj |yj|∞)

)2

:= δi + 8C (7.4.1)
1

N

N−1∑
j=i+1

L2
fj
Ē(Y,M, j).

It takes the form of a discrete Gronwall lemma, which easily allows to
derive the following upper bound (see [10, Appendix A.3]):

Ē(Y,M, i) 6 δi + 8C (7.4.1)
1

N

N−1∑
j=i+1

Γi,jL
2
fj
δj,

where Γi,j :=

{∏
i<k<j(1 + 8C (7.4.1)

1
N
L2
fk

), for i+ 1 < j,

1, otherwise.

Using now Lf = supj Lfj , we get Γi,j 6 exp
(∑

i<k<j 8C (7.4.1)
1
N
L2
fk

)
6

exp(8C (7.4.1)L
2
f ). This completes the proof.

7.5 Appendix

7.5.1 Proof of Proposition 7.3.3

Consider first the case of the partitioning estimate (LP0) and let ε ∈
(0, 4

15
B]. We use an ε-cover in the L∞-norm, which simply reduces to

cover [−B,B] with intervals of size 2ε. A solution is to take the interval
center defined by hj = −B + ε + 2εj, 0 6 j 6 n, where n is the smallest
integer such that hn > B (i.e., n = dB

ε
− 1

2
e). Thus, we obtain

N1(ε,TBLk, x
1:M) 6 n+ 1 6

B

ε
+

3

2
6

7

5

B

ε

where we use the constraint on ε.
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In the case of general vector space of dimension K, from [75, Lemma
9.2, Theorem 9.4 and Theorem 9.5], we obtain

N1(ε,TBK, x
1:M) ≤ 3

(4eB

ε
log
(6eB

ε

))K+1

whenever ε < B/2. For ε as in the statement of Assumption 7.3.3, we
have 6eB

ε
> 45e

2
. Let η > 0, since log(x) 6 cηx

η for any x > 45e
2

with
cη = supx> 45e

2

log(x)
xη

, we get

N1(ε,TBK, x
1:M) 6 3

(
[4cη6

η]1/(1+η) eB

ε

)(K+1)(1+η)

.

For LP1 and LPn, we have respectively K = d + 1 and K = (d + 1)n,
therefore the announced result. Whenever useful, the choice η = 1 gives
β(7.3.3) 6 3.5.

For the partitioning estimate (case LP0), we could also use this esti-
mate with K = 1 but with the first arguments, we get better parameters
(especially for γ).

7.5.2 Probability of uniform deviation

Lemma 7.5.1 ([66, Lemma B.2]). Let G be a countable set of functions g :
Rd 7→ [0, B] with B > 0. Let X,X(1), . . . ,X(M) (M > 1) be i.i.d. Rd valued
random variables. For any α > 0 and ε ∈ (0, 1) one has

P

(
sup
g∈G

1
M

∑M
m=1 g(X(m))− E (g(X))

α + 1
M

∑M
m=1 g(X(m)) + E (g(X))

> ε

)

6 4E
(
N1

(αε
5
,G,X1:M

))
exp

(
− 3ε2αM

40B

)
,

P

(
sup
g∈G

E (g(X))− 1
M

∑M
m=1 g(X(m))

α + 1
M

∑M
m=1 g(X(m)) + E (g(X))

> ε

)

6 4E
(
N1

(αε
8
,G,X1:M

))
exp

(
− 6ε2αM

169B

)
.

7.5.3 Expected uniform deviation

Proposition 7.5.1. For finite B > 0, let G := {ψ
(
TBφ(·)−η(·)

)
: φ ∈ K},

where ψ : R → [0,∞) is Lipschitz continuous with ψ(0) = 0 and Lipschitz
constant Lψ, η : Rd → [−B,B], and K is a finite K-dimensional vector space
of functions with

N1(ε,TBK,X
1:M) 6 α

(βB
ε

)γ
for ε ∈ (0,

4

15
B] (7.5.1)
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for some positive constants α, β, γ with α > 1/4 and γ > 1. Then, for
X(1), . . . ,X(M) i.i.d. copies of X , we have

E

(
sup
g∈G

( 1

M

M∑
m=1

g(X(m))− 2

∫
Rd
g(x)P ◦ X−1(dx)

)
+

)
6 c(7.5.2)(M)

BLΨ

M

with c(7.5.2)(M) := 120

(
1 + log(4α) + γ log

(
(1 +

β

16
)M

))
,

(7.5.2)

E

(
sup
g∈G

(∫
Rd
g(x)P ◦ X−1(dx)− 2

M

M∑
m=1

g(X(m))
)

+

)
6 c(7.5.3)(M)

BLΨ

M

with c(7.5.3)(M) :=
507

2

(
1 + log(4α) + γ log

(
(1 +

8β

169
)M

))
.

(7.5.3)

Proof. The idea is to adapt the arguments of [66, Proposition 4.9].
� We first show (7.5.2). Set Z := supg∈G

(
1
M

∑M
m=1 g(X(m))−2

∫
Rd g(x)P◦

X−1(dx)
)

+
. Let us find an upper bound for P (Z > ε) in order to bound

E (Z) =
∫∞

0
P (Z > ε) dε. Using the equality

P (Z > ε) = P

(
∃g ∈ G :

1
M

∑M
m=1 g(X(m))−

∫
Rd g(x)P ◦ X−1(dx)

2ε+
∫
Rd g(x)P ◦ X−1(dx) + 1

M

∑M
m=1 g(X(m))

>
1

3

)
,

and that the elements of G take values in [0, 2BLψ], it follows from Lemma
7.5.1 that

P (Z > ε) ≤ 4E
(
N1(

2ε

15
,G,X1:M)

)
exp

(
− εM

120BLψ

)
.

Define TBK as in Proposition 7.5.1. Since |ψ
(
φ1(x) − η(x)

)
− ψ

(
φ2(x) −

η(x)
)
| ≤ Lψ|φ1(x)− φ2(x)| for all x ∈ Rd and all (φ1, φ2), it follows that

N1(
2ε

15
,G,X1:M) ≤ N1(

2ε

15Lψ
,TBK,X

1:M).

Due to Equation (7.5.1), we deduce that

P (Z > ε) ≤ 4α
(15βBLψ

2ε

)γ
exp

(
− εM

120BLψ

)
(7.5.4)

whenever 2ε
15Lψ

6 4
15
B, i.e., ε ≤ 2BLΨ. On the other hand, P (Z > ε) = 0

for all ε > 2BLΨ. Setting a =
15βBLψ

2
, b = 1

120BLψ
, it follows from (7.5.4)

that
P (Z > ε) ≤ 4α

(a
ε

)γ
exp(−bMε), ∀ ε > 0.
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Fix ε0 to be some finite value (to be determined later) such that

ε0 ≥
a

M(1 + ab)
. (7.5.5)

It readily follows that

E (Z) =

∫ ∞
0

P (Z > ε) dε ≤ ε0 +

∫ ∞
ε0

4α
(a
ε

)γ
exp(−bMε)dε

≤ ε0 +
4α

bM

(
M(1 + ab)

)γ
exp(−bMε0).

We choose ε0 = 1
bM

log
(

4α
(
(1 + ab)M

)γ): It satisfies (7.5.5) since

1

bM
log
(

4α
(
(1 + ab)M

)γ)
>

a

M

log(1 + ab)

ab
>

a

M

1

1 + ab

(use α > 1/4, γ > 1, M > 1 and log(1 + x) ≥ x/(1 + x) for all x > 0).
Moreover, this choice of ε0 implies that

E[Z] ≤ 1

bM

(
1 + log(4α) + γ log

(
(1 + ab)M

))
(7.5.6)

=
120BLψ
M

(
1 + log(4α) + γ log

(
(1 +

β

16
)M

))
.

The inequality (7.5.2) is proved.

� We now justify (7.5.3) by similar arguments. Set Z := supg∈G

( ∫
Rd g(x)P◦

X−1(dx)− 2
M

∑M
m=1 g(X(m))

)
+

. From Lemma 7.5.1, we get

P (Z > ε) ≤ 4E
(
N1(

ε

12
,G,X1:M)

)
exp

(
− 2εM

507BLψ

)
.

Since N1( ε
12
,G,X1:M) ≤ N1( ε

12Lψ
,TBK,X

1:M) and thanks to (7.5.1), we
derive

P (Z > ε) ≤ 4α
(12βBLψ

ε

)γ
exp

(
− 2εM

507BLψ

)
(7.5.7)

whenever ε
12Lψ

6 4
15
B. For other values of ε the above probability is

zero, therefore (7.5.7) holds for any ε > 0. The end of the computations
is now very similar to the previous case: we finally get the inequality
(7.5.6) for the new Z with adjusted values a = 12βBLψ, b = 2

507BLψ
. Thus

inequality (7.5.3) is thus proved.
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Chapter 8

Numerical Tests

We shall now illustrate the methodology presented in the previous chap-
ter in two numerical examples coming from practical problems. The
first one concerns a reaction-diffusion PDE connected to spatially dis-
tributed populations, whereas the second one deals with a stochastic
control problem.

8.1 An Application to Reaction-Diffusion Mod-
els in Spatially Distributed Populations

In this section we consider a biologically motivated example to illustrate
the strength of the stratified resampling regression methodology pre-
sented in the previous sections. We selected an application to spatially
distributed populations that evolve under reaction diffusion equations.
Besides the theoretical challenges behind the models, it has recently at-
tracted attention due to its impact in the spread of infectious diseases
[100, 101] and even to the modeling of Wolbachia infected mosquitoes
in the fight of disease spreading Aedes aegypti [12, 80].

The use of reaction diffusion models to describe the population dy-
namics of a single species or genetic trait expanding into new terri-
tory dominated by another one goes back to the work of R. A. Fisher
[53] and A. Kolmogorov et al. [89]. The mathematical model behind
it is known as the (celebrated) Fisher-Kolmogorov-Petrovski-Piscounov
(FKPP) equation.

In a conveniently chosen scale it takes the form, in dimension 1,

∂tu+ ∂2
xu+ au(1− u) = 0 , u(T, x) = h(x), x ∈ R, t ≤ T , (8.1.1)

where u = u(t, x) refers to the proportion of members of an invading
species in a spatially distributed population on a straight line. The equa-
tion is chosen with time running backwards and as a final value problem
to allow direct connection with the standard probabilistic interpretation.

It is well known [1] that for any arbitrary positive C, if we define

h(x) :=
(

1 + C exp (±
√

6a

6
x)
)−2

(8.1.2)
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then

u(t, x) =
(

1 + C exp (
5a

6
(t− T )±

√
6a

6
x)
)−2

is a traveling wave solution to Equation (8.1.1). We fix a = C = 1 in
this example. The behavior of h(x) as x → ±∞ is either one or zero
according to the sign chosen inside the exponential. Thus describing
full dominance of the invading species or its absence.

The probabilistic formulation goes as follows: Introduce the system,
as in Section 7.4,

dPs =
√

2dWs (8.1.3)
dYs = −f(Ys)ds+ ZsdWs

YT = u(T, PT ) = h(PT ) .

where f(x) = ax(1− x) and Zs =
√

2∂xu(s, Ps).
Then, the process Yt = E

[
YT +

∫ T
t
f(Ys)ds|Pt

]
satisfies Yt = u(t, Pt).

To test the algorithms presented herein, we shall start with the fol-
lowing more general parabolic PDE

∂tW +
∑

1≤i,j≤d

Aij∂yi∂yjW + aW (1−W ) = 0 , t ≤ T , and y ∈ Rd . (8.1.4)

Here, the matrixA is chosen as an arbitrary positive-definite constant d×d
matrix. Furthermore, we choose, for convenience, the final condition

W (T, y) = h(y′Σ−1θ) , (8.1.5)

where Σ = Σ′ =
√
A and θ is arbitrary unit vector. We stress that

this special choice of the final condition has the sole purpose of by-
passing the need of solving Equation (8.1.5) by other numerical meth-
ods for comparison with the present methodology. Indeed, the fact
that we are able to exhibit an explicit solution to Equation (8.1.4) with
final condition (8.1.5) allows an easy checking of the accuracy of the
method. We also stress that the method developed in this work does
not require an explicit knowledge of the diffusion coefficient matrix A
of Equation (8.1.4) since we shall make use of the observed paths. Yet
the knowledge of the function W 7→ aW (1−W ) is crucial.

It is easy to see that if u = u(t, x) satisfies Equation (8.1.1) with final
condition given by Equation (8.1.2) then

W (t, y) := u(t, y′Σ−1θ) (8.1.6)

satisfies Equation (8.1.4) with final condition (8.1.5).
An interpretation of the methodology proposed here is the follow-

ing: If we were able to observe the trajectories performed by a small
number of free individuals according to the diffusion process associated
to Equation (8.1.4), even if we did not know the explicit form of the dif-
fusion (i.e., we did not have a good calibration of the covariance matrix)
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we could use such trajectories to produce a reliable solution to the final
value problem (8.1.4) and (8.1.5).

We firstly present some numerical results in dimension 1 (Tables 8.1-
8.2-8.3). We have tested both the one-step (Section 7.3) and multi-step
schemes (Section 7.4). The final time T is fixed to 1 and we use time
discretization ti = i

N
T, 0 6 i 6 N with N = 10 or 20. We divide the

real line R into K subintervals (Ii)16i6K by fixing A = 25 and dividing
[−A,A] into K − 2 equal length intervals and then adding (−∞,−A)
and (A,+∞). We implement our method by using piecewise constant
estimation on each interval. Then finally we get a piecewise constant
estimation of u(0, y), noted as û(0, y). Then we approximate the squared
L2(ν) error of our estimation by∑

16k6K

|u(0, yk)− û(0, yk)|2ν(Ik)

where yk is chosen as the middle point of the rectangle if Ik is finite
and the boundary point if Ik is infinite. We take ν(dx) = 1

2
e−|x|dx and

we use the restriction of ν on Ik to sample initial points. The squared
L2(ν) norm of u(0, ·) is around 0.25. Finally remark that the error of our
method includes three parts: time discretization error, approximation
error due to the use of piecewise constant estimation on hypercubes and
statistical error due to the randomness of trajectories. In the following
tables, M is the number of trajectories that we use (i.e., the root sample).

We observe in Tables 8.1 and 8.3 that the approximation error (visible
for small K) contributes much more to the global error for the one-step
scheme, compared to the multi-step one. This observation is in agree-
ment with those of [15, 66].

When N gets larger with fixed K and M (Tables 8.1 and 8.2), we may
observe an increase of the global error for the one-step scheme, this is
coherent with the estimates of Corollary 7.3.1.

K = 10 K = 20 K = 50 K = 100 K = 200 K = 400
M = 20 0.0993 0.0253 0.0038 0.0014 0.0014 0.0019
M = 40 0.0997 0.0252 0.0034 9.01e-04 5.16e-04 6.17e-04
M = 80 0.0993 0.0249 0.0029 6.15e-04 3.92e-04 3.91e-04
M = 160 0.0990 0.0248 0.0029 3.15e-04 1.57e-04 1.71e-04
M = 320 0.0990 0.0248 0.0028 2.47e-04 1.02e-04 1.19e-04
M = 640 0.0990 0.0246 0.0028 2.26e-04 5.46e-05 4.94e-05

TABLE 8.1: Average squaredL2 errors with 50 macro runs,
N = 10, one-step scheme.
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K = 10 K = 20 K = 50 K = 100 K = 200 K = 400
M = 20 0.1031 0.0299 0.0073 0.0018 0.0011 0.0012
M = 40 0.1031 0.0294 0.0066 0.0014 7.86e-04 7.28e-04
M = 80 0.1027 0.0293 0.0065 0.0010 3.18e-04 3.86e-04
M = 160 0.1027 0.0294 0.0064 8.91e-04 2.46e-04 1.04e-04
M = 320 0.1026 0.0293 0.0064 8.39e-04 1.42e-04 7.03e-05
M = 640 0.1027 0.0292 0.0063 8.04e-04 8.16e-05 5.60e-05

TABLE 8.2: Average squaredL2 errors with 50 macro runs,
N = 20, one-step scheme.

K = 10 K = 20 K = 50 K = 100 K = 200 K = 400
M = 20 0.0484 0.0066 0.0017 0.0015 0.0011 0.0013
M = 40 0.0488 0.0058 8.45e-04 5.81e-04 6.35e-04 5.68e-04
M = 80 0.0478 0.0053 4.33e-04 2.96e-04 3.45e-04 4.06e-04
M = 160 0.0481 0.0051 2.98e-04 2.23e-04 1.71e-04 1.08e-04
M = 320 0.0479 0.0051 1.79e-04 6.48e-05 8.38e-05 1.04e-04
M = 640 0.0478 0.0050 1.50e-04 6.49e-05 6.66e-05 5.70e-05

TABLE 8.3: Average squaredL2 errors with 50 macro runs,
N = 10, multi-step scheme.

FIGURE 8.1: Upper and lower bounds of exaxt solution
and piecewise constant estimation with M = 50 and K =

200
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FIGURE 8.2: exact solution and linear estimation with
M = 50 and K = 200

Table 8.4 below describes numerical results in dimension 2. The final
time T is fixed to 1 and we use the time discretization ti = i

N
T, 0 6 i 6 N

with N = 10. We divide the real line R into K subintervals (Ii)16i6K

by fixing A = 25 and dividing [−A,A] into K − 2 equal length inter-
vals and then adding (−∞,−A) and (A,+∞) . We take Σ = [1, β; β, 1]

with β = 0.25 and θ = [1;1]√
2

. We implement our method by using piece-
wise constant estimation on each finite (or infinite) rectangle Ii × Ij .
Then finally we get a piecewise constant estimation of W (0, y), noted
as Ŵ (0, y). Then we approximate the squared L2(ν ⊗ ν) error of our
estimation by∑

16k16K,16k26K

|W (0, yk1 , yk2)− Ŵ (0, yk1 , yk2)|2ν ⊗ ν(Ik1 × Ik2)

where (yk1 , yk2) is chosen as the middle point of the rectangle if Ik1 × Ik2
is finite and the boundary point if one or both of Ik1 and Ik2 are infinite.
We take ν(dx) = 1

2
e−|x|dx and we use the restriction of ν ⊗ ν on Ii× Ij to

sample initial points. The squared L2(ν ⊗ ν) norm of W (0, ·, ·) is around
0.25.

K = 10 K = 20 K = 50 K = 100 K = 200
M = 20 0.0592 0.0167 0.0027 0.0018 0.0010
M = 40 0.0588 0.0163 0.0022 5.34e-04 5.00e-04
M = 80 0.0588 0.0160 0.0019 3.74e-04 2.98e-04
M = 160 0.0586 0.0160 0.0018 3.08e-04 9.16e-05
M = 320 0.0586 0.0159 0.0017 1.1e-04 9.24e-05

TABLE 8.4: Average squaredL2 errors with 50 macro runs,
N = 10, one-step scheme.
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As for the previous case in dimension 1, we observe that when K is
small, it is useless to increase M . This is because in such case the ap-
proximation error is dominant. But when K is large enough, the perfor-
mance of our method improves when M becomes larger, since this time
it is the statistical error which becomes dominant and larger M means
smaller statistical error.

In the perspective of a given root sample (M fixed), it is recom-
mended to take K large: indeed, in agreement with Theorems 7.3.4 and
7.4.1, we observe from the numerical results that the global error de-
creases up to the statistical error term (depending on M but not K). In
this way, for M = 20 (resp. M = 40) the relative squared L2 error is
about 0.4% (resp. 0.22%).

FIGURE 8.3: Estimated solution with M = 320 and K =
200
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FIGURE 8.4: Estimation error with M = 320 and K = 200

FIGURE 8.5: Estimated solution with M = 40 and K =
100
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FIGURE 8.6: Estimation error with M = 40 and K = 100

FIGURE 8.7: Estimated solution with M = 40 and K = 50
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FIGURE 8.8: Estimation error with M = 40 and K = 50

FIGURE 8.9: Estimated solution with M = 40 and K = 20
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FIGURE 8.10: Estimation error with M = 40 and K = 20

How to derive FKPP equation

Suppose the population density at point x and time t is u(t, x). Then
given a arbitray volume Ω, the number of individuals inside Ω is given
by

N(t) =

∫
Ω

u(t, x)dx

As time goes on, the number of individuals inside Ω will be affected
by two different sources. The first change is internal and it comes from
the new births inside Ω, which depends on the base population and also
on the limited natural resource supporting the population inside a fixed
domain. When the base population is small, there are not many new
births and then the birth number increases with the population number
until this tendency is inversed by the limited resource. We model this
internal change by ∫

Ω

au(t, x)(1− u(t, x))dx

Remark that a is the only value that we need to know to apply our
NISR method. Besides, there is another change which is external, i.e.
individuals coming and leaving across the boundary of Ω. We suppose
that this movement is proportional to the gradient of u(t, x) with the
coefficient D. Thus is external change is given by∫

∂Ω

D∇u(t, x) · n(t, x)dS
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where n(t, x) is the unit outward orthogonal vector. By divergence the-
orem it is equal to ∫

Ω

D∆u(t, x)dx

So finally we have

dN(t)

dt
=

∫
Ω

du(t, x)

dt
dx

=

∫
Ω

au(t, x)(1− u(t, x))dx+

∫
Ω

D∆u(t, x)dx

Since the domain Ω is arbitrary, we get

∂u(t, x)

∂t
= au(t, x)(1− u(t, x)) +D∆u(t, x)

By a change of variable s = T − t, we get the FKPP equation as stated
in this section.

Remark that if we keep the constant D, then Equation (8.1.3) will
become

dPs =
√

2DdWs

which means, when we apply our algorithm based on observed tra-
jectories of population individuals, we are making implicitly an assump-
tion that the diffusion coefficient is proportional to the variance of in-
dividual movement, which may be simplistic but still is a reasonable
assumption.

8.2 Travel agency problem: when to offer trav-
els, according to currency and weather fore-
cast...

In this section we illustrate the stratified resampler methodology in the
solution of an optimal investment problem. The underlying model will
have two sources of stochasticity, one related to the weather and the
other one to the exchange rate. The corresponding stochastic processes
shall be denoted by X1

t and X2
t .

We envision the following situation: A travel agency wants to launch
a campaign for the promotion of vacations in a warm region abroad dur-
ing the Fall-Winter season. Such travel agency would receive a fixed
value c in local currency from the customers and on the other hand
would have to pay the costs c = c(exp(X2

τ+1/12)) in a future time τ+1/12,
where τ is the launching time of the campaign andX2

τ+1/12 is the prevail-
ing logarithm of exchange rate one month after the launching, with the
time unit set to be one year. The initial time t = 0 is by convention Oc-
tober 1st. In other words, the costs are fixed to the traveler and variable
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for the agency. A pictorial description of the cost function is presented
in Figure 8.11.

The effectiveness of the campaign will depend on the local temper-
ature (t − 0.25)2 × 240 + X1

t (in Celsius) and will be denoted by q((t −
0.25)2× 240 +X1

t ) exp(−|t− 1/6|), where (t− 0.25)2× 240 represents the
seasonal component and X1

t represents the random part. Its purpose is
to capture the idea that if the local temperature is very low, then peo-
ple would be more interested in spending some days in a warm region,
whereas if the weather is mild then people would just stay at home. A
pictorial description of the function q is presented in Figure 8.11. The
second part of this function exp(−|t − 1/6|) is created to represent the
fact that there are likely more registrations at beginning of December
for the period of new year holidays.
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FIGURE 8.11: Pictorial description of the cost function c
(left) and of the campaign effectiveness q (right).

Thus, our problem consists of finding the function v defined by

v(X1
0 , X

2
0 ) = ess sup

τ∈T
E
(
q((τ − 0.25)2 × 240 +X1

τ )e−|τ−1/6|
(
c− c(eX

2
τ+1/12)

)
| X1

0 , X
2
0

)
= ess sup

τ∈T
E
(
q((τ − 0.25)2 × 240 +X1

τ )e−|τ−1/6|
(
c− E

(
c(eX

2
τ+1/12) | X2

τ

))
| X1

0 , X
2
0

)
,

where T denotes the set of stopping times valued in the weeks of the
Fall-Winter seasons { k

48
, k = 0, 1, · · · , 24}, which corresponds to possible

weekly choices for the travel agency to launch the campaign. The above
function v models the optimal expected benefit for the travel agency
and the optimal τ gives the best launching time. We shall assume, for
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K = 10 K = 20 K = 50 K = 100
M = 20 0.1827 0.0512 0.0349 0.0269
M = 40 0.1982 0.0361 0.0249 0.0114
M = 80 0.2063 0.0325 0.0051 0.0047
M = 160 0.1928 0.0264 0.0058 0.0067

TABLE 8.5: Average squaredL2 errors with 20 macro runs.
Simple regression.

simplicity, that the processes X1 and X2 are uncorrelated since we do
not expect much influence of the weather on the exchange rate or vice-
versa.

The problem is tackled by formulating it as a dynamic programming
one related to optimal stopping problems (as exposed in Section 7.3)
using a mean-reversion process for the underlying process X1 and a
drifted Brownian motion for X2. Their dynamics are given as follows:

dX1
t = −aX1

t dt+ σ1dWt, X
1
0 = 0, X2

t = −σ
2
2

2
t+ σ2Bt.

The cost function c is chosen piecewise linear so that we can get
E(c(eX

2
τ+1/12)|X2

τ ) explicitly as a function of X2
τ using the Black-Scholes

formula in mathematical finance. Thus we can run our method in two
different ways: either using this explicit expression and apply directly
the regression scheme of Section 7.3; or first estimating

E(c(eX
2
τ+1/12)|X2

τ )

by stratified regression then plugging the estimate in our method again
to get a final estimation. We refer to these two different ways as simple
regression and nested regression. The latter case corresponds to a cou-
pled two-component regression problem (that could be mathematically
analyzed very similarly to Section 7.3).

The parameter’s values are given as: a = 2, σ1 = 10, σ2 = 0.2, c =
3, x2

min = e−0.5, x2
max = e0.5, cmin = 1, cmax = cmin + x2

max − x2
min, tmin =

0, tmax = 15, qmin = 1, qmax = 4. We use the restriction of µ(dx) =
k
2
(1 + |x|)−k−1dx with k = 6 to sample point for X1 and the restriction of
ν(dx) = 1

2
e−|x|dx to sample points for X2. Note that k = 6 means that,

in the error estimation, more weight is distributed to the region around
X1

0 = 0, which is the real interesting information for the travel agency.
We will firstly run our method with M = 320 and K = 300 to get a

reference value for v then our estimators will be compared to this ref-
erence value in a similar way as in the previous example. The squared
L2(µ ⊗ ν) norm of our reference estimation is 32.0844. The results are
displayed in the Tables 8.5 and 8.6.

As in Subsection 8.1 and in agreement with Theorem 7.3.4, we ob-
serve an improved accuracy as K and M increases, independently of
each other. The relative error is rather small even for small M .



8.2. Travel agency problem: when to offer travels, according to
currency and weather forecast... 199

K = 10 K = 20 K = 50 K = 100
M = 20 0.1711 0.0458 0.0436 0.0252
M = 40 0.1648 0.0361 0.0130 0.0169
M = 80 0.1534 0.0273 0.0109 0.0085
M = 160 0.1510 0.0296 0.0048 0.0058

TABLE 8.6: Average squaredL2 errors with 20 macro runs.
Nested regression.

Interestingly, the nested regression algorithm (which is the most re-
alistic scheme to use in practice when the model is unknown) is as accu-
rate as the scheme using the explicit form of the internal conditional ex-
pectation E

(
c(eX

2
τ+1/12) | X2

τ

)
. Surprisingly, the simple regression scheme

takes much more time than the nested regression one because of the nu-
merous evaluations of the Gaussian CDF in the Black-Scholes formula.

More numerical results are given in the following graphs.

FIGURE 8.12: Reference value for v at time t = 0 obtained
with K = 200 and M = 320
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FIGURE 8.13: Estimated value for v at time t = 0 obtained
with K = 100 and M = 40

FIGURE 8.14: Estimation error for v at time t = 0 obtained
with K = 100 and M = 40
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FIGURE 8.15: Difference between continuation value and
current payoff at end November

8.3 Conclusion

As we can see from the above examples, our method works well with
relatively small root samples, especially in the case where the number of
hypercubes is large. We have thus proposed an efficient method to solve
dynamic programming problem where only historical data is available
and no additional simulation is possible. It still remains to be explored
how this methodology can be further generalized to more complicated
models, such as local volatility model.
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Titre : Simulation des événements rares par transformation de shaking et NISR méthode pour
la programmation dynamique

Mots clés : événement rare, splitting, ergodicité, programmation dynamique, strati�cation

Résumé :
Cette thèse contient deux sujets di�érents: la simulation d'événements rares et la résolution
des programmations dynamiques par méthode de régression empirique strati�ée. Dans la
première partie, on construit une transition markovienne appelée transformation de shaking

sur l'espace des trajectoires, qui nous permet de proposer les méthodes IPS et POP, basées
respectivement sur le système des particules en interaction et sur l'ergodicité de chaîne de
Markov. Des constructions e�caces de transformations de shaking ont été proposées. On a
aussi élaboré une version adaptative de la méthode POP. Les analyses de convergence pour ces
méthodes sont également données. En plus, on montre comment ces techniques peuvent être
utilisées pour calculer la sensibilité des événements rares. De nombreux exemples numériques
sont donnés pour montrer la performance de nos méthodes. Dans la deuxième partie, notre but
est de résoudre certains problèmes de programmation dynamique. À la di�érence du contexte
usuel, on n'a pas accès à toutes les informations du modèle et seulement un petit ensemble
d'observations historiques sont disponibles. On propose une méthode de régression par
strati�cation et ré-échantillonnage. Plus précisément, on utilise les données historiques pour
reconstruire d'autres trajectoires et faire des régressions locales sur l'espace strati�é.
L'estimation des erreurs non-asymptotiques est établie avec certains exemples numériques.

Title : Rare event simulation by shaking transformations and NISR method for dynamic
programming problems
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Abstract :
This thesis covers two di�erent subjects: rare event simulation and strati�ed regression method
for dynamic programming problems. In the �rst part, we design a Markovian transition called
shaking transformations on the path space, which enables us to propose IPS and POP methods,
based respectively on interacting particle system and the ergodicity of Markov chain. E�cient
designs of shaking transformation are proposed. We also design an adaptive version of the POP
method. Theoretical analysis is given on the convergence of these methods. Besides, we
demonstrate how these techniques can be applied to perform sensitivity analysis of rare event
statistics and to make approximative sampling of rare event. Many numerical examples are
discussed to show the performance of our methods. In the second part, we aim at numerically
solving certain dynamic programming problems. Di�erent from usual settings, we don't have
access to full detail of the underlying model and only a relatively small-sized set of root sample
is available. We propose a strati�ed resampling regression method. More precisely, we shall use
given the root sample to reconstruct other paths and perform local regression on the strati�ed
spaces. Non-asymptotic error estimations are given with several numerical examples.
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