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Abstract
This thesis is about some boundary integral operators defined on the unit disk in three-

dimensional spaces, their relation with the exterior Laplace and Helmholtz problems, and their
application to the preconditioning of the systems arising when solving these problems using
the boundary element method.

We begin by describing the so-called integral method for the solution of the exterior Laplace
and Helmholtz problems defined on the exterior of objects with Lipschitz-regular boundaries,
or on the exterior of open two-dimensional surfaces in a three-dimensional space. We describe
the integral formulation for the Laplace and Helmholtz problem in these cases, their numer-
ical implementation using the boundary element method, and we discuss its advantages and
challenges: its computational complexity (both algorithmic and memory complexity) and the
inherent ill-conditioning of the associated linear systems.

In the second part we show an optimal preconditioning technique (independent of the
chosen discretization) based on operator preconditioning. We show that this technique is
easily applicable in the case of problems defined on the exterior of objects with Lipschitz-
regular boundary surfaces, but that its application fails for problems defined on the exterior
of open surfaces in three-dimensional spaces. We show that the integral operators associated
with the resolution of the Dirichlet and Neumann problems defined on the exterior of open
surfaces have inverse operators that would provide optimal preconditioners but they are not
easily obtainable. Then we show a technique to explicitly obtain such inverse operators for
the particular case when the open surface is the unit disk in a three-dimensional space. Their
explicit inverse operators will be given, however, in the form of a series, and will not be
immediately applicable in the use of boundary element methods.

In the third part we show how some modifications to these inverse operators allow us
to obtain variational explicit and closed-form expressions, no longer expressed as series, that
also conserve some characteristics that are relevant for their preconditioning effect. These
explicit and closed forms expressions are applicable in boundary element methods. We obtain
precise variational expressions for them and propose numerical schemes to compute the integrals
needed for their use with boundary elements. The proposed numerical methods are tested using
identities available within the developed theory and then used to build preconditioning matrices.
Their performance as preconditioners for linear systems is tested for the case of the Laplace
and Helmholtz problems for the unit disk. Finally, we propose an extension of this method
that allows for the treatment of cases of open surfaces other than the disk. We exemplify
and study this extension in its use on a square-shaped and an L-shaped surface screen in a
three-dimensional space.

Finally, the methods developed are used in an application example. Based on techniques
and assumptions from geometrical optics, we propose improvements to existing methods for
the imaging of underground reflectivity using ground penetrating radar. Because they rely on
assumptions from geometrical optics, these methods have to tested by means of computational
simulations, resulting in the resolution of a massive number of direct problems. A complexity
analysis shows how the proposed preconditioning techniques can significantly reduce the algo-
rithmic complexity of the global problem. Finally, the resolution capability of the proposed
imaging methods are tested in different scenarios of practical interest.

Keywords: Exterior Laplace problem, exterior Helmholtz problem, boundary integral
equations, boundary element methods, operator preconditioning, optimal preconditioning, screen
problems, crack problems.
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Résumé
Cette thèse s’inscrit dans le sujet des opérateurs intégraux de frontière définis sur le disque

unitaire en trois dimensions, leurs relations avec les problèmes externes de Laplace et Helmholtz,
et leurs applications au préconditionnement des systèmes linéaires obtenus en utilisant la
méthode des éléments finis de frontière.

On décrit d’abord les méthodes intégrales pour résoudre les problèmes de Laplace et de
Helmholtz en dehors des objets à frontière régulière lipschitzienne, et en dehors des sur-
faces bidimensionnelles ouvertes dans un espace tridimensionnel. La formulation intégrale des
problèmes de Laplace et de Helmholtz pour ces cas est décrite formellement. La mise en œuvre
d’une méthode numérique utilisant la méthode des éléments finis de frontière est également
décrite. Les avantages et les défis inhérents à la méthode sont abordés : la complexité du
calcul numérique (de mémoire et algorithmique) et le mauvais conditionnement inhérent des
systèmes linéaires associés.

Dans une deuxième partie on expose une technique optimale de préconditionnement (in-
dépendante de la discrétisation) sur la base des opérateurs intégraux de frontière. On montre
comment cette technique est facilement réalisable dans le cas de problèmes définis en dehors
d’un objet régulier à frontière lipschitzienne, mais qu’elle pose des problèmes quand ils sont
définis en dehors d’une surface ouverte dans un espace tridimensionnel. On montre que les
opérateurs intégraux de frontière associés à la résolution des problèmes de Dirichlet et Neumann
définis en dehors des surfaces ont des inverses bien définies. On montre également que celles-ci
pourraient conduire à des techniques de préconditionnement optimales, mais que ses formes
explicites ne sont pas faciles à obtenir. Ensuite, on montre une méthode pour obtenir de tels
opérateurs inverses de façon explicite lorsque la surface sur laquelle ils sont définis est un disque
unitaire dans un espace tridimensionnel. Ces opérateurs inverses explicites seront, cependant,
sous forme de séries, et n’auront pas une adaptation immédiate pour leur utilisation dans des
méthodes des éléments finis de frontière.

Dans une troisième partie on montre comment certaines modifications aux opérateurs in-
verses mentionnés permettent d’obtenir des expressions variationnelles explicites et fermées,
non plus sous la forme de séries, en conservant certaines caractéristiques importantes pour
l’effet de préconditionnement cherché. Ces formes explicites sont applicables aux méthodes
des éléments finis frontière. On obtient des expressions variationnelles précises et on propose
des calculs numériques pour leur utilisation avec des éléments finis frontière. Ces méthodes
numériques sont testées en utilisant différentes identités obtenues dans la théorie développée, et
sont ensuite utilisées pour produire des matrices préconditionnantes. Leur performance en tant
que préconditionneurs de systèmes linéaires associés à des problèmes de Laplace et Helmholtz
à l’extérieur du disque est ainsi testée. Enfin, on propose une extension de cette méthode pour
couvrir les cas des surfaces diverses. Ceci est étudié dans les cas précis des problèmes extérieurs
à des surfaces en forme de carré et en forme de L dans un espace tridimensionnel.

Finalement, les méthodes développées sont utilisées dans un exemple d’application. Sur
la base de techniques et hypothèses de l’optique géométrique, on propose des améliorations à
des méthodes existantes pour l’imagerie de la réflectivité du sous-sol en utilisant le radar à
pénétration de sol. Étant basées sur des hypothèses de l’optique géométrique, ces méthodes
doivent être évaluées par simulations numériques, ce qui entrâıne la résolution d’un nombre très
important de problèmes directs. Une analyse de complexité montre comment les techniques
de préconditionnement proposées peuvent réduire la complexité algorithmique du problème
global. Enfin, la capacité de résolution des méthodes proposées pour la formation des images
du sous-sol est évaluée pour différents scénarios d’intérêt.

Mots-clés : Problème extérieur de Laplace, problème extérieur de Helmholtz, équations
intégrales de frontière, méthode des éléments finis de frontière, préconditionnement par opéra-
teurs, préconditionnement optimal, problèmes des surfaces ouvertes, problèmes de fissures.
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Resumen
Esta tesis trata sobre operadores integrales de contorno definidos sobre el disco unitario

en tres dimensiones, su relación con los problemas exteriores de Laplace y de Helmholtz, y su
aplicación al precondicionamiento de sistemas lineales generados utilizando el método de los
elementos finitos de frontera.

Inicialmente se describen los llamados métodos integrales para la resolución de problemas de
Laplace y Helmholtz en el exterior de objetos de frontera regular Lischitziana y de superficies
abiertas bi-dimensionales. Se describe la formulación integral de los problemas de Laplace
y Helmholtz para estos casos, su implementación numérica utilizando el método de elementos
finitos de frontera, y se discuten las ventajas y los desaf́ıos intŕınsecos a método: su complejidad
computacional (de memoria y algort́ımica), y el inherente mal condicionamiento de los sistemas
lineales asociados.

En una segunda parte se expone una técnica de precondicionamiento óptimo (independiente
de la discretización), basado en operadores integrales de contorno, y se muestra como esta
técnica es fácilmente realizable en el caso de problemas definidos en el exterior de un objeto
de frontera regular Lipschitziana, pero no aśı cuando el problema se define en el exterior
de una superficie abierta en tres dimensiones. Se mostrará que los operadores integrales de
contorno asociados a la resolución de los problemas de Dirichlet y de Neumann definidos en el
exterior de superficies tienen inversas bien definidas. Se mostrará también que estas inversas
podŕıan dar origen a técnicas de precondicionamiento óptimo, pero que su forma expĺıcita
no es fácil de obtener. A continuación se mostrarán formas de obtener dichos operadores
inversos de forma expĺıcita cuando la superficie es un disco unitario en un espacio tridimensional.
Estos operadores inversos expĺıcitos estarán dados, sin embargo, en forma de series, y no serán
apropiados para el uso inmediato en métodos de elementos finitos de frontera.

En una tercera parte mostraremos cómo algunas modificaciones a los operadores inversos
mencionados permiten obtener expresiones variaciones expĺıcitas y cerradas, ya no en forma
de series, conservando algunas caracteŕısticas relevantes para el efecto precondicionador. Estas
formas expĺıcitas cerradas śı son aplicables en métodos de elementos finitos de frontera. Se
obtienen expresiones variaciones precisas y se proponen cálculos numéricos para su uso con ele-
mentos finitos de frontera. Estos métodos numéricos se prueban utilizando distintas identidades
aseguradas en la teoŕıa desarrollada y se utilizan para producir matrices precondicionantes. Su
desempeño en la mejora del condicionamiento de los sistemas lineales asociados a los problemas
de Laplace y Helmholtz en el exterior del disco es exhibido. Finalmente, se propone una ex-
tensión de este método que permite cubrir casos de dominios exteriores a superficies de diversos
tipos, la que se ejemplifica y estudia en problemas exteriores a superficies cuadradas y en forma
de L en un espacio en tres dimensiones.

Finalmente, los métodos desarrollados se utilizan en un ejemplo de aplicación. Basados
técnicas y supuestos de la óptica geométrica, se proponen mejoras a métodos existentes para
la formación de imágenes de reflectividad del subsuelo utilizando radares de penetración de
suelo. Al basarse en supuestos de la óptica geométrica, estos métodos deben evaluarse median-
te simulaciones f́ısicas computacionales, lo que resulta en la resolución de un número masivo de
problemas directos. Un análisis de complejidad muestra cómo las técnicas propuestas de pre-
condicionamiento reducen significativamente la complejidad algóritmica del problema global.
Finalmente, la capacidad de resolución de los métodos propuestos para hacer imágenes se
evalúan en distintas situaciones de interés.

Palabras clave: Problema exterior de Laplace, problema exterior de Helmoltz, ecuaciones
integrales de contorno, método de elementos finitos de frontera, precondicionamiento por ope-
radores, precondicionamiento óptimo, problemas de superficies abiertas, problemas de fisuras.
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Chapter 1

Wave Propagation, Boundary
Integral Equations, Boundary
Element Methods, and
Computational Complexity

In this chapter we will treat the subject of wave propagation, its mathematical modeling
in some specific cases, some common numerical strategies to solve wave propagation problems,
their advantages and challenges.

In this chapter we lay down the framework for the results of the following chapters. The
chapter covers a wide range of subjects in a succinct manner aiming to provide a summarized
view of the domains relevant to the research work undertaken in this thesis. It contains defini-
tions, notations, and results from previous research to be used in later chapters. It also serves
to illustrate the motivation of this research through highlighting the advantages, and especially
the challenges, this approach poses. The reader can skip the different sections of this chapter
depending on its familiarity with the subjects treated.

We will begin by establishing the Helmholtz equation and its relation to the Laplace equa-
tion and to wave propagation phenomena in several areas of physics providing motivation and
examples. We will then state a precise formulation of a relevant family of problems arising
in wave propagation along with some geometrical and functional framework. Next, we will
present the integral equation approach, that allows to solve some partial differential equations
recasting them as integral equations on the boundaries of the propagation domains. We will
present variational formulations for the boundary integral equations, a boundary discretization
method, and the boundary element method which will give rise to discrete variational formu-
lations posed on finite-dimensional spaces. We will show how this allows for the construction
of Galerkin matrices leading to linear systems that can solve the discrete variational problem.
Finally, we will address the main difficulties of this method, regarding computational complex-
ity and accuracy, which will serve as an introduction to the following chapter where we provide
a strategy to tackle these issues.

The definitions, propositions and theorems have been taken from different classic sources
on the subject, such as [51], [57], [48]. Notation follows roughly that of [51]. Notation and
results concerning the surface discretization, triangular meshes, and boundary elements spaces
presented in this chapter have also been taken from [61].
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1.1 The Helmholtz equation in physics

We will briefly provide a few examples of the use of the Helmholtz equation in the mathe-
matical modeling of wave propagation phenomena. These examples will quickly show a wide
range of possible applications in science and engineering, which will serve as motivation and
background for the work undertaken and reported in this document. These examples follow
those presented in [51, Section 1.2] and [64, Section 1.2].

Wave propagation phenomena in three-dimensional space are governed at each point by the
hyperbolic wave equation,

− ∂2u

∂t2
(x, t) + c2∆u(x, t) = 0 for x ∈ R3, and t ∈ R+, (1.1)

where u is a function describing a quantity that is preserved over time and over R3, and c the
wave velocity of the propagation medium.

A time-harmonic solution, of frequency f , to the wave equation can be sought using Fourier
transforms, slightly abusing notation, with the time dependency convention

u(x, t) = Re
{
u(x)e−iωt

}
, (1.2)

where the quantity ω = 2πf is called the pulsation of the time-harmonic wave. Function u is
now a solution to the Helmholtz equation:

−
(
∆u(x) + k2u(x)

)
= 0 for x ∈ R3, (1.3)

where k = ω/c is called the wave number.

The Laplace equation is a limit case of the Helmholtz equation, in which the frequency f
is zero. Thus, k is also zero, yielding:

−∆u(x) = 0 for x ∈ R3. (1.4)

The Helmholtz equation arises naturally in the mathematical modeling of numerous wave
propagation phenomena that are intrinsically time-harmonic. Additionally, the use of Fourier
transforms allows us to perform time-harmonic calculations for frequencies f over a given band
so we can then compute the transient wave behavior. In the rest of this section we develop
examples of some of the most classic physical models for wave phenomena using the Helmholtz
equation.

1.1.1 Acoustic waves

Let us consider a gas in which a pressure wave is traveling. The total pressure on each
point is described by a function pT (x, t), the total density by a function ρT (x, t), and the total
velocity by a function vT (x, t). The conservation of mass can be expressed as

dρT
dt

(x, t) + div (ρT vT ) (x, t) = 0, (1.5)

and the conservation of momentum as

d

dt
(ρt vt) (x, t) +

−−→
grad (pt) (x, t) = 0. (1.6)

Being interested in the perturbations of the pressure, we express the total pressure, density,
and wave velocity as background values p0, ρ0, and v0 plus perturbations p, ρ, and v:

vT = v0 + v, pT = p0 + p, and ρT = ρ0 + ρ. (1.7)
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We will assume that the gas is perfect. Assuming that the gas is also at rest, i.e. that
v0 = 0, and using a first order linearization of (1.5) and (1.6) (refer to [64, Section 1.2.1]
or [39, Sections 1.1.1 & 1.1.2]) yields the system of equations

ρ0
∂v

∂t
(x, t) +

−−→
grad p(x, t) = 0,

1

c2

∂p

∂t
(x, t) + ρ0divv(x, t) = 0,

(1.8)

where c =
√
γRsT is the wave velocity, γ the adiabatic index of the gas, Rs its specific constant,

and T its absolute pressure. Assuming that the propagating wave is time-harmonic, and using
(1.2) as p(x, t) = Re

{
p(x)e−iωt

}
and as v(x, t) = Re

{
v(x)e−iωt

}
we can rewrite the system

(1.8) as 
−iωρ0v(x) +

−−→
grad p(x) = 0,

− iω

c2
p(x) + ρ0divv(x) = 0.

(1.9)

Applying divergence to the first equation and eliminating divv yields a Helmholtz equation
for the pressure variation p:

−
(
∆p(x) + k2p(x)

)
= 0, (1.10)

where k = ω/c is the wave number.

1.1.2 Elastic waves

The elastic equation describes the displacement of points inside an elastic object when a lin-
ear approximation is used in the case of small displacements. Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t))
be the three-dimensional displacement at point x and time t. Let the strain tensor ε for the
object be

εij(u) =
1

2

(
∂uj
∂xi

+
∂uj
∂xi

)
. (1.11)

The strain tensor is related to the stress tensor σ by the Lamé parameters µ and λ as

σij(u) = 2µεij(u) + δji λ
3∑

k=1

εkk(u), (1.12)

where δji is the Kronecker delta.

Given the density ρ, the conservation of momentum can be expressed as

ρ
∂ui
∂t2

(x, t)−
3∑
j=1

∂σij
∂xj

(u) (x, t) = 0. (1.13)

Using (1.2) as u(x, t) = Re
{
u(x, t)e−iωt

}
, if the displacement is time-harmonic, we can

rewrite the last equation as

ρω2ui(x) +

3∑
j=1

∂σij
∂xj

u(x) = 0, (1.14)

which, in vectorial notation, can be expressed as
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ρω2u(x) + µ∆u(x) + (λ+ µ)
−−→
grad divu(x) = 0. (1.15)

If the displacement u has null divergence, i.e. div u = 0, the object is incompressible
and the previous equation can be rewritten as a Helmholtz equation for the time-harmonic
displacement:

∆u(x) + k2u(x) = 0, (1.16)

where the wave number is k = ω
√
ρ/µ. These are the so-called shearing waves, or S waves.

An interesting type of solutions is the irrotational time-harmonic waves, thus writable as

u =
−−→
gradϕ. Using the vectorial identity ∆v =

−−→
grad divv −−−→curl

−−→
curlv, equation (1.15) can be

written as
ρω2u(x) + (λ+ 2µ)

−−→
grad div (u(x))− µ−−→curl

−−→
curlu(x) = 0, (1.17)

which means that, if u =
−−→
gradϕ, then ϕ must necessarily satisfy

ρω2ϕ+ (λ+ 2µ)∆ϕ = 0. (1.18)

This is a Helmholtz equation for a wave number k = ω
√
ρ/(λ+ 2µ). These are the so-called

pressure wave, or P waves.

1.1.3 Electromagnetic waves

We will show that the Helmholtz equation can also model an interesting range of electro-
magnetic wave propagation phenomena. Let us consider a homogeneous medium free of charges
with electrical permittivity ε and magnetic permeability µ. The behavior of the electric and
magnetics fields E and H is then governed by Maxwell’s equations:

−ε∂E
∂t

(x, t) +
−−→
curlH(x, t) = 0,

µ
∂H

∂t
(x, t) +

−−→
curlE(x, t) = 0.

(1.19)

Taking the divergence of both equations yields

∂

∂t
divE(x, t) =

∂

∂t
divH(x, t) = 0, (1.20)

which implies that
divE(x, t) = divH(x, t) = 0, (1.21)

if divE(x, 0) = divH(x, 0) = 0. Using again the identity ∆v =
−−→
grad divv − −−→curl

−−→
curlv, and

taking
−−→
curl on both equations, we can obtain

∂2E

∂t2
(x, t)− c2∆E(x, t) = 0,

∂2H

∂t2
(x, t)− c2∆H(x, t) = 0,

(1.22)

where c = 1/
√
εµ is the wave velocity.

Using (1.2) as E(x, t) = Re
{
E(x)e−iωt

}
and H(x, t) = Re

{
H(x)e−iωt

}
, we obtain

Helmholtz equations for the electric and the magnetic fields when they are considered to be
time-harmonic:
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
∆E(x) + k2E(x) = 0,

∆H(x) + k2H(x) = 0.

, (1.23)

where k = ω/c = ω
√
εµ is the wave number.
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1.2 Problem domains, boundaries, and Sobolev spaces

In this section, we will provide a geometrical and a functional setting for much of the rest of
this document. We will begin by describing the types of domains that will be considered for the
development of the results that will be treated in the subsequent chapters. These domains will
be mainly classified according to the regularity of their boundaries, for which we will provide
a precise definition. We will also provide a characterization of the functional spaces that will
be relevant to the analysis of the problems to be considered in these domains.

1.2.1 Domains and boundaries

Throughout this thesis we will consider a precise range of problems, those consisting of a
wave propagating on the exterior of a connected and bounded obstacle embedded in three-
dimensional space. This obstacle will be most notably distinguished by the regularity of its
boundary. If the obstacle is represented by the set of points O ⊂ R3 with boundary Γ = ∂O,
we will distinguish between obstacles with Lipschitz-regular boundary Γ and obstacles whose
boundary isn’t Lipschitz-regular. Roughly speaking, a Lipschitz-regular boundary Γ of an
obstacle O ⊂ R3 is a surface that can be represented locally by the graph of a Lipschitz-regular
function [48, page 89]. We will provide a more precise description of this notion in the following
definition.

Definition 1.2.1 (Lipschitz-regular surfaces [48, Definition 3.28]). A Lipschitz-regular surface
Γ = ∂O, boundary of an obstacle O in R3, is a surface for which exist finite families of sets
{Wi}Ni=1 and {Ωi}Ni=1 having the following properties:

1. The family {Wi}Ni=1 is a finite open cover of Γ, i.e., each Wi is an open subset of R3 and

Γ ⊆ ⋃N
i=1Wi.

2. Each Ωi can be transformed to a Lipschitz hypograph by a rigid motion, i.e., by a rotation
plus a translation.

3. The set O satisfies Wi ∩ O = Wi ∩ Ωi for i = 1...N .

We will also speak of a Lipschitz-regular obstacle whenever an obstacle has a boundary
that is a Lipschitz-regular surface. This kind of object allows for the use of special analysis
tools that will provide significant advantages in modeling wave propagation phenomena, and
in developing numerical methods able to produce numerical simulations.

Cusps, cracks, and screens are examples of surfaces that are not Lipschitz-regular. The
screens are the focus of much of the work presented in this thesis, and will be described in
more detail. A large family of surfaces that are not Lipschitz-regular is produced when, locally,
parts of two Lipschitz-regular surfaces are joined with an angle of zero degrees. Surfaces that
are not Lipschitz-regular appear naturally when modeling many problems of practical interest,
but unfortunately they deprive us of many of the useful analytical tools that are available
for cases that consider only Lipschitz-regular surfaces. These domains that are not Lipschitz-
regular have a more complex geometry when applied to the modeling of physical phenomena.
This will be a major subject in the next chapters of this document.

A particular case of obstacles that are not Lipschitz-regular, especially relevant for the work
presented here, are the so-called screens. They are open surfaces in R3. These obstacles can
be viewed as objects that have collapsed and thus have no interior (int(O) = ∅) but only
external boundary. The boundary will in turn have a one-dimensional manifold (a curve) as
boundary (∂Γ 6= ∅) . We will consider an orientation for surfaces Γ definable a.e. We will
denote with signs + and - this orientation, respectively signaling the exterior and interior sides
if Γ is a closed surface (in the case of the boundary of an obstacle), or an upper and lower
side in the case of an open surface, i.e., in the case of a screen. We will also define, a.e., a
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unit vector, denoted by n, normal to surface Γ and pointing towards the exterior or the upper
side, according to the case. Figure 1.1 illustrates a transformation that can give rise to screen
obstacles and the elements identified so far.

O �O ✓=0✓✓

n
n

n

� = @O � = @O @�

+
+

+

� �

�

Figure 1.1: Illustration of the collapse of a Lipschitz-regular obstacle O into a screen Γ, showing
its orientation and unit normal vector.

Two cases are of special interest: Lipschitz-regular obstacles O of boundary Γ, and screen
obstacles Γ. We will take interest in what is called the exterior problem. In the case of
Lipschitz-regular obstacles O with Lipschitz-regular boundaries Γ = ∂O, the problem domain
will be ΩO = R3 \ O with boundaries Γ, and what will be called the infinity. Similarly, in
the case of screen obstacles Γ , the problem domain will be denoted by ΩΓ = R3 \ Γ with
boundaries Γ and the infinity. Many problems in physics can be modeled specifying conditions
at the boundaries of the problem’s domain, i.e. on Γ and at infinity, the latter one meaning a
specification of the behavior of a solution asymptotically far from the obstacle.

It will be useful to consider a notion of regularity wider than that of Lipshitz-regularity.
In the context of Definition 1.2.1 a surface Γ will be further called of class Ck, or k-regular,
if there is a diffeomorphism ξi of class Ck with inverse of class Ck mapping each covering set
Wi onto the unit ball such that the set Wi ∩Γ is mapped onto its equatorial plane [51, Section
2.5.2].

1.2.2 Elementary differential geometry

It will be useful to define certain surface differential operators for functions defined on
sufficiently smooth surfaces, as the ones that will be used in the rest of this document. These
operators will appear later in the study of variational forms of boundary integral operators
that will be relevant for the treatment of the Laplace and Helmholtz problems. Let us begin
defining the distance from a point to a given set in R3.

Definition 1.2.2 (Distance function). For every point x in R3, we denote by dist (x, A) the
distance of x to the set A:

dist (x, A) = inf
y∈A
‖x− y‖ . (1.24)

The most relevant application for this function will be the measurement of the distance
from a point x to a surface Γ, i.e. dist (x,Γ), and the distance from a point on the surface,
x ∈ Γ, to the edge of that surface whenever it is open, i.e. dist (x, ∂Γ). We will use this notion
of distance to define the tubular neighborhood of a surface.

Definition 1.2.3 (Tubular neighborhood [51, Section 2.5.6]). A collection of points, denoted
Γε, whose distance to a surface Γ is less than ε > 0 is a tubular neighborhood of Γ defined as

Γε =
{
x ∈ R3 : dist (x,Γ) ≤ ε

}
. (1.25)
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The imposition of regularity conditions on Γ will allow us to define orthogonal projections
and liftings that will be needed in the definition of some surface differential operators.

Proposition 1.2.1 (Orthogonal surface projection [57, Example 8.1.8] [22, Lemma 14.16]). If
Γ is a k-regular surface with k ≥ 2, then there exists ε > 0 and a tubular neighborhood Γε of Γ
such that the mapping

ψ : Γ× (−ε, ε)→ Γε, ψ(x, s) = x + snx for x ∈ Γ, (1.26)

is a Ck−1 diffeomorphism. Thus, the orthogonal projection PΓ : Γε → Γ is well defined by

PΓ(x + snx) = x for x ∈ Γ, and s ∈ (−ε, ε). (1.27)

For a function u defined on a 2-regular surface Γ, we will consider the lifting u ◦ PΓ. We
denote this function, in the scope of this section, by ũ = u ◦ PΓ.

Definition 1.2.4 (Surface differential operators
−−→
curl Γ and

−−→
grad Γ). We introduce the tangential

gradient,
−−→
grad Γ, defined by −−→

grad Γu =
−−→
grad (ũ) , (1.28)

and the tangential curl,
−−→
curl Γ, defined by

−−→
curl Γu =

−−→
curl (ũn) , (1.29)

for a function u defined on a surface Γ with n being its unit normal.

Remark 1.2.1 (Alternative expression for
−−→
curl Γ). Considering the vector calculus identity−−→

curl (ψv) =
−−→
grad ψ × v + ψ

−−→
curl v for a field v and a scalar field ψ on R3, the definition of the

tangential curl is equivalent to −−→
curl Γu =

−−→
grad Γu× n, (1.30)

where n is the unit normal to Γ (and thus
−−→
curln = 0).

1.2.3 Sobolev spaces

In this subsection we will define the functional spaces in which the different problems to
be treated will be considered. These functional spaces are called Sobolev spaces and are the
natural spaces of functions in which to solve variational formulations of partial differential
equations [4, Section 4.1]. This is due to the fruitful energy analysis in mathematical physical
modeling and the capacity of the Sobolev spaces to treat this concept together with a formal
framework for integration.

We will consider a variety of Sobolev spaces defined on propagation domains and in the
surface of obstacles, either Lipschitz-regular or screens. We will focus on definitions directly
applicable to the cases to be treated in the next chapter. For results of wider reach and greater
detail, the reader is referred to [48, Chapter 3], [19, Chapter 7], and [51, Section 2.5.2]. The
following exposition follows that of [61, Section 1.1].

Let us consider the following norms.

Definition 1.2.5 (L2-norm). Let us consider a function u measurable on a set S ∈ R3. The
L2-norm ‖·‖L2(S) of u on S is defined as

‖u‖L2(S) =

∫
S

|u|2dS

1/2

. (1.31)
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Definition 1.2.6 (Sobolev-Slobodeckii norm). Let u be a function defined on a surface Γ in
R3, the Sobolev-Slobodeckii norm |·|H1/2(Γ) of u is defined as

|u|H1/2(Γ) =

∫
Γ

∫
Γ

|u(x)− u(y)|2

‖x− y‖3 dΓ(x)dΓ(y)

1/2

. (1.32)

Definition 1.2.7 (H1/2 Sobolev norm for functions defined on surfaces). Let u be a function
defined on a surface Γ in R3. The H1/2(Γ) Sobolev norm ‖·‖H1/2(Γ) of u is defined as

‖u‖H1/2(Γ) =
(
‖u‖2L2(Γ) + |u|2H1/2(Γ)

)1/2
. (1.33)

Before proceeding to the definition of the Sobolev spaces that will be used in the rest of
this document, let us consider the extension of an open surface on R3.

Definition 1.2.8 (Closed extension Γ̃ of an open surface Γ in R3). Given an open surface Γ
(i.e. ∂Γ 6= ∅) embedded in R3, let us consider the closed extension Γ̃ as the Lipschitz-regular,
closed surface (i.e. ∂Γ̃ = ∅) such that Γ ⊂ Γ̃.

Let us now define the Sobolev spaces that will be directly relevant for definitions to be
presented in the rest of this chapter, and for the results presented in subsequent ones.

Definition 1.2.9 (Positive order Sobolev spaces defined on surfaces in R3). For an open or
closed surface Γ embedded in R3 we define the following spaces:

1. The Sobolev space H1/2(Γ) is the closure of space C∞(Γ) using the norm ‖·‖H1/2(Γ).

2. The Sobolev space H
1/2
0 (Γ) is the closure of space C∞0 (Γ) using the norm ‖·‖H1/2(Γ).

3. The Sobolev space H̃1/2(Γ) is the subspace of H1/2(Γ̃) of functions with support on Γ:

H̃1/2(Γ) =
{
u ∈ H1/2(Γ̃) : supp(u) ⊆ Γ

}
. If Γ is closed, Γ̃ = Γ and H1/2(Γ) = H̃1/2(Γ).

Remark 1.2.2. It follows from the previous definition that H̃1/2(Γ) ⊆ H1/2
0 (Γ).

We will define negative order Sobolev spaces using duality, for which we will define the
duality pairing. It is a standard practice to represent the duality pairing of Sobolev spaces as
inner products in L2 even if the elements are no longer L2-integrable [19, Section 7.4].

Definition 1.2.10 (Duality pairing). Let f ∈ V ′ and g ∈ V be functions in dual spaces, with
V and V ′ defined over a surface Γ, and possibly f /∈ L2(Γ). We will compute the duality pairing
between dual Sobolev spaces as inner products in L2(Γ) using density as

〈f, g〉V ′,V = lim
n→∞

(fn, g)L2(Γ) = lim
n→∞

∫
Γ

fn(x)g(x)dΓ(x), (1.34)

where {fn}∞n=1 ⊂ L2(Γ) is a sequence such that

lim
n→∞

‖f − fn‖V ′ = 0. (1.35)

Notation 1.2.1. We also use the following notation for duality pairings referring only to the
domain of integration:

〈f, g〉Γ = 〈f, g〉V ′,V . (1.36)

We now use the duality pairing to define negative order Sobolev spaces on surfaces.
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Definition 1.2.11 (Negative order Sobolev spaces defined on surfaces in R3). For an open or
closed surface Γ embedded in R3 we use duality pairing to define the following spaces:

1. The Sobolev space H−1/2(Γ) =
(
H̃1/2(Γ)

)′
, with norm

‖u‖H−1/2(Γ) = sup
06=v∈H̃1/2(Γ)

| 〈u , v〉L2(Γ) |
‖v‖H1/2(Γ)

. (1.37)

2. The Sobolev space H̃−1/2(Γ) =
(
H1/2(Γ)

)′
, with norm

‖u‖
H̃−1/2(Γ)

= sup
06=v∈H1/2(Γ)

| 〈u , v〉L2(Γ) |
‖v‖H1/2(Γ)

. (1.38)

If Γ is closed, Γ̃ = Γ and H̃−1/2(Γ) = H−1/2(Γ).

Proposition 1.2.2 (Tilde spaces’ inclusions [61, Equation (1.6)]). It is easy to use the defini-
tion of the norms to state the following inclusions:

1. H̃1/2(Γ) ⊂ H1/2(Γ);

2. H̃−1/2(Γ) ⊂ H−1/2(Γ).

When Γ is an open surface (a screen) spaces H1/2(Γ) and H−1/2(Γ) are no longer dual to
each other. This will prove to be challenging to some preconditioning methods based on oper-
ator preconditioning with opposite order operators for first kind boundary integral equations.
It is this fact that deprives us from using well established operator preconditioning techniques
in the case of screen obstacles. Its implications will be made clearer during this chapter, and
will be formally stated in the next one.

When studying problems on unbounded domains, exterior to Lipschitz-regular obstacle O
or screen Γ, it will be natural to consider weighted Sobolev spaces that will take into account
prescribed behaviors on functions asymptotically far from O. Let us consider the following
spaces.

Definition 1.2.12 (The weighted Sobolev space W 1,−1(Ω) [51, Section 2.5.4]). Given an un-
bounded exterior domain, Ω = R3 \O for a bounded Lipschitz-regular obstacle O or Ω = R3 \Γ
for a screen Γ, we define the space

W 1,−1(Ω) =

{
u :

u

f
∈ L2(Ω),

∂u

∂xi
∈ L2(Ω)

}
, (1.39)

with f(x) =
√

1 + ‖x‖2.

Definition 1.2.13 (The weighted Sobolev space WH(Ω) [51, Section 2.6.2]). Given an un-
bounded exterior domain, Ω = R3 \O for a bounded Lipschitz-regular obstacle O or Ω = R3 \Γ
for a screen Γ, we define the space

WH(Ω) =

{
u :

u

f
∈ L2(Ω),

1

f

∂u

∂xi
∈ L2(Ω),

∂u

∂r
− iku ∈ L2(Ω)

}
, (1.40)

with f(x) =
√

1 + ‖x‖2.

Remark 1.2.3 (Restriction to bounded domains). For a bounded subset ΩB of the exterior
domain Ω from Definition 1.2.13, the restriction of functions from the weighted Sobolev spaces
to ΩB coincides with H1(ΩB). That is, for a bounded part of Ω, W 1,−1(Ω) and WH(Ω) coincide
with H1

loc(Ω)

The weighted Sobolev spaces are Hilbert spaces, unlikeH1
loc(Ω) which is only of Fréchet type.

Coinciding locally with H1
loc(Ω) will be an important feature of the weighted Sobolev space that

will provide us with a meaningful way of referring to the value of the limits of functions on Ω
as they approach surface Γ. This will be treated formally in the next subsection.
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1.2.4 Traces and jumps

In this subsection we will summarize some results about the relation between a function
defined on an exterior propagation domain and the limit of its value approaching the boundary
of an obstacle, be it Lipschitz-regular or a screen. We will define the so-called trace operator,
which will provide this limit value. The main tool presented in this subsection will be the
trace theorem, which will provide regularity estimates for a function defined on surface Γ as a
result of this limit process. We will begin by giving a simple definition for the trace operator,
following [19, Section 7.5]. Definitions and results with greater reach, beyond the scope of the
work presented in this document, can be found in [48, page 100] and [38, Section 4.2].

Definition 1.2.14 (Trace operator). Given a Lipschitz-regular surface Γ in R3, we define the
external and internal zeroth order trace operators γ±Γ : H1

loc(R3 \ Γ)→ H1/2(Γ) as

γ±Γ u(x) = lim
ε→0±

u(x± εnx) (1.41)

for x in Γ, and nx the external unit normal at x. Similarly, we define the first order trace
operator, γ±Γ ◦ ∂

∂n : H1
loc(R3 \ Γ)→ H−1/2(Γ) as

γ±Γ
∂u

∂nx
(x) = lim

ε→0±

∂

∂nx
u(x± εnx). (1.42)

Theorem 1.2.1 (Trace theorem [19, Section 7.5] [51, Theorem 2.5.3]). The trace operator γ±Γ
maps continuously the space H1

loc(R3 \ Γ), onto H1/2(Γ). The trace operator γ±Γ ◦ ∂
∂n maps

continuously the space H1
loc(R3 \ Γ), onto H−1/2(Γ).

We will be interested in the difference of the traces of opposite sides of a surface. The jump
operators will provide us with the functions describing this quantity.

Definition 1.2.15 (Jump operator). Given an oriented surface Γ in R3 we define the jump
operator [γΓ·] as

[γΓu] = γ+
Γ (u)− γ−Γ (u), (1.43)

and the jump operator
[
γΓ

∂
∂n ·
]

as[
γΓ
∂u

∂n

]
= γ+

Γ

∂u

∂n
− γ−Γ

∂u

∂n
. (1.44)

The trace operator and the trace theorem will allow us to define boundary conditions on
Γ for the problems of interest. Imposing boundary conditions on the limit values of a function
will give rise to the so-called Dirichlet problems, while imposing boundary conditions on the
limits of the normal derivatives of a function will give rise to the so-called Neumann problems.
We will detail the Dirichlet and Neumann problems for the Laplace and Helmholtz equations
in the following section.
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1.3 Laplace and Helmholtz problems

In this section we will define the problems that will be treated in the rest of this document.
These problems will be, for a propagation domain ΩO on the exterior of a Lipschitz-regular ob-
ject O, the Dirichlet or Neumann, Laplace or Helmholtz partial differential equation problems.
Likewise, for a propagation domain ΩΓ on the exterior of a screen obstacle Γ, the symmetric
or anti-symmetric, Dirichlet or Neumann, Laplace or Helmholtz partial differential equation
problems. We will use the domain characterization, functional framework, and the trace oper-
ators defined on previous Section 1.2 to provide precise definitions of these problems. Before
proceeding to the formal definition of the aforementioned partial differential equation problems,
we will describe the different kinds of boundary conditions that can be prescribed on functions,
and in particular the conditions for a searched solution asymptotically far from an obstacle.

1.3.1 Boundary and infinity conditions

Definition 1.3.1 (Dirichlet boundary conditions). Given an orientable surface Γ embedded in
R3, a function defined on a domain ΩΓ = R3 \ Γ, can be set to comply with Dirichlet boundary
conditions, on either side of Γ by prescribing the identities

γ+
Γ u = g+ and γ−Γ u = g− on Γ, (1.45)

for functions g± defined on Γ.

Definition 1.3.2 (Neumann boundary conditions). Given an orientable surface Γ embedded in
R3, a function defined on a domain ΩΓ = R3 \Γ, can be set to comply with Neumann boundary
conditions on either side of Γ by prescribing the identities

γ+
Γ

∂u

∂n
= ϕ+ and γ−Γ

∂u

∂n
= ϕ− on Γ, (1.46)

for functions ϕ± defined on Γ.

Definition 1.3.3 (Conditions at infinity [51, Section 2.2] [19, Section 11.3]). Let us consider a
function u defined on an exterior domain ΩO (for Lipschitz-regular obstacles) or ΩΓ (for screen
obstacles). For a point x far from the origin, let us express it as u(r), with r = ‖x‖. We will
say that it complies with the Sommerfeld radiation condition, or outgoing wave condition, if

lim
r→∞

r

∥∥∥∥∂u∂r − iku

∥∥∥∥ = 0. (1.47)

Remark 1.3.1 (Radiation condition and physical solutions). Commonly, given Dirichlet or
Neumann boundary conditions on the surface of an obstacle, two possible solutions complying
with the Helmholtz equation on the exterior domain. Being a time-harmonic formulation, both
incoming and outgoing waves satisfy it. The imposition of a condition like that of Definition
1.3.3, called the Sommerfeld radiation condition, eliminates one of them, leaving only the one
that physically represents an outgoing wave of field.

1.3.2 Exterior partial differential equation problems for Lipschitz-regular
obstacles

We will precisely define the problems that will treated throughout the rest of this document.
In this subsection we will specify the ones posed on domains exterior to a Lipschitz-regular
obstacle O.
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Laplace problems

Let us define the following problems related to the Laplace partial differential equation posed
on the exterior of a Lipschitz-regular obstacle O of boundary Γ = ∂O, i.e. on ΩO = R3 \ O.

Problem 1.3.1 (Dirichlet Laplace problem for a Lipschitz-regular obstacle).

Given g ∈ H1/2(Γ), find u ∈W 1,−1(ΩO) such that
−∆u(x) = 0, for x ∈ ΩO,

γ+
Γ u(x) = g(x), for x ∈ Γ.

(1.48)

Problem 1.3.2 (Neumann Laplace problem for a Lipschitz-regular obstacle).

Given ϕ ∈ H−1/2(Γ), find u ∈W 1,−1(ΩO)/R such that
−∆u(x) = 0, for x ∈ ΩO,

γ+
Γ

∂u

∂nx
(x) = ϕ(x), for x ∈ Γ.

(1.49)

Helmholtz problems

Let us define the following problems related to the Helmholtz partial differential equation
posed on the exterior of a Lipschitz-regular obstacleO of boundary Γ = ∂O, i.e. on ΩO = R3\O.

Problem 1.3.3 (Dirichlet Helmholtz problem for a Lipschitz-regular obstacle).

Given g ∈ H1/2(Γ) and k ∈ C, find u ∈WH(ΩO) such that
−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ ΩO,

γ+
Γ u(x) = g(x), for x ∈ Γ,

(1.47) is satisfied.

(1.50)

Problem 1.3.4 (Neumann Helmholtz problem for a Lipschitz-regular obstacle).

Given ϕ ∈ H−1/2(Γ) and k ∈ C, find u ∈WH(ΩO) such that

−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ ΩO,

γ+
Γ

∂u

∂nx
(x) = ϕ(x), for x ∈ Γ,

(1.47) is satisfied.

(1.51)

1.3.3 Exterior partial differential problems for screen obstacles

In this subsection we will specify the partial differential equation problems that will be
posed on domains exterior to screen a Γ, i.e., on exterior domains ΩΓ = R3 \Γ. These problems
will have a wider variety of interesting definitions because of the physical relevance of the cases
where the given Dirichlet or Neumann trace data are set symmetrically or anti-symmetrically
on opposite sides of Γ.
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Laplace problems

Let us define the following problems related to the Laplace partial differential equation
posed on the exterior of screen Γ, i.e. on ΩΓ = R3 \ Γ.

Problem 1.3.5 (Symmetric Dirichlet Laplace problem for a screen obstacle).

Given g ∈ H1/2(Γ) find u ∈W 1,−1(ΩΓ) such that
−∆u(x) = 0, for x ∈ ΩΓ,

γ±Γ u(x) = g(x), for x ∈ Γ.
(1.52)

Problem 1.3.6 (Anti-symmetric Dirichlet Laplace problem for a screen obstacle).

Given g ∈ H̃1/2(Γ) find u ∈W 1,−1(ΩΓ) such that
−∆u(x) = 0, for x ∈ ΩΓ,

γ±Γ u(x) = ±g(x), for x ∈ Γ.
(1.53)

Problem 1.3.7 (Symmetric Neumann Laplace problem for a screen obstacle).

Given ϕ ∈ H̃−1/2(Γ) find u ∈W 1,−1(ΩΓ)/R such that
−∆u(x) = 0, for x ∈ ΩΓ,[
γΓ

∂u

∂nx
(x)

]
= ϕ(x), for x ∈ Γ.

(1.54)

Problem 1.3.8 (Anti-Symmetric Neumann Laplace problem for a screen obstacle).

Given ϕ ∈ H−1/2(Γ) find u ∈W 1,−1(ΩΓ)/R such that
−∆u(x) = 0, for x ∈ ΩΓ,

γ±Γ
∂u

∂nx
(x) = ϕ(x), for x ∈ Γ.

(1.55)

Helmholtz problems

Let us now define the following problems related to the Helmholtz partial differential equa-
tion posed on the exterior of screen Γ, i.e. on ΩΓ = R3 \ Γ.

Problem 1.3.9 (Symmetric Dirichlet Helmholtz problem for a screen obstacle).

Given g ∈ H1/2(Γ) and k ∈ C find u ∈WH(ΩΓ) such that
−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ ΩΓ,

γ±Γ u(x) = g(x), for x ∈ Γ,

(1.47) is satisfied.

(1.56)

Problem 1.3.10 (Anti-symmetric Dirichlet Helmholtz problem for a screen obstacle).
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Given g ∈ H̃1/2(Γ) and k ∈ C find u ∈WH(ΩΓ) such that
−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ ΩΓ,

γ±Γ u(x) = ±g(x), for x ∈ Γ,

(1.47) is satisfied.

(1.57)

Problem 1.3.11 (Symmetric Neumann Helmholtz problem for a screen obstacle).

Given ϕ ∈ H̃−1/2(Γ) and k ∈ C find u ∈WH(ΩΓ) such that

−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ ΩΓ,[

γΓ
∂u

∂nx
(x)

]
= ϕ(x), for x ∈ Γ,

(1.47) is satisfied.

(1.58)

Problem 1.3.12 (Anti-Symmetric Neumann Helmholtz problem for a screen obstacle).

Given ϕ ∈ H−1/2(Γ) and k ∈ C find u ∈WH(ΩΓ) such that

−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ ΩΓ,

γ±Γ
∂u

∂nx
(x) = ϕ(x), for x ∈ Γ,

(1.47) is satisfied.

(1.59)

In the rest of this chapter, we will focus on the problems defined on exterior domains for
Lipschitz-regular obstacles. These results will later be extended for the screen obstacles in the
next chapter, where we will deal with the challenges posed by the screen geometry.
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1.4 Fundamental solutions and boundary integral operators

This section will mark a depart from the pure partial differential equations approach to
introduce Green’s functions and their associated boundary integral equations. These are the
main tools that will allow us to recast the considered problems, posed on exterior domains,
as integral equation problems posed on boundary surfaces or screens. These tools characterize
the framework for the results of this thesis, that is, the so-called integral equation methods.

We will begin by defining the Green’s function for the two partial differential operators
considered, the Laplace and the Helmholtz partial differential operators (following the exposi-
tion presented in [19, Section 11.1]). We will then use this Green’s function to define boundary
integral operators. We will show relevant properties of these operators that will later allow us
to formulate the exhibited problems as integral equation ones. The presentation of the results
for the boundary integral operators follow the exposition of [51, Chapter 3].

1.4.1 Fundamental solutions and Green’s functions

A fundamental solution for a partial differential operator P, linear, with constant coefficients
and defined in the space of distributions

(
C∞0 (R3)

)′
, is a distribution E that satisfies

PE = δ0 in
(
C∞0 (R3)

)′
, (1.60)

together with radiation or decay conditions, where δ0 is the Dirac delta function located at the
origin. Fundamental solutions are of interest because their convolution with a data function f ,
i.e. u = E ∗ f , when it has sense, is a solution to Pu = f . If we no longer consider the Dirac
delta function centered at the origin, but at a point x ∈ R3, i.e. δx, the solution G(x,y) to
PG(x,y) = δx(y) is called the Green’s function for the operator P.

The Green’s functions for the Laplace and Helmholtz operators are of great interest because
they allow us to express functions in ΩO (the exterior of a Lipschitz-regular obstacle) or in ΩΓ

(the exterior of a screen) using their traces on boundary Γ. Let us consider the free space
Green’s function for the Helmholtz differential operator for wave number k ∈ C as the function
that solves:

−
(

∆yG
k(x,y) + k2Gk(x,y)

)
= δx(y). (1.61)

The solution to (1.61) that satisfies conditions at infinity given in Definition 1.3.3 is

Gk(x,y) =
eik‖y−x‖

4π ‖y − x‖ . (1.62)

The Green’s function for the Laplace operator results from taking k = 0, as

G0(x,y) =
1

4π ‖y − x‖ . (1.63)

Likewise, the derivatives of the Green’s function for the Helmholtz operator is

−−→
grad yG

k(x,y) =
eik‖y−x‖

4π
(1− ik ‖y − x‖) y − x

‖y − x‖3
, (1.64)

and for the Laplace operator, making k = 0,

−−→
grad yG

0(x,y) =
y − x

4π ‖y − x‖3
. (1.65)

We have that
−−→
grad xG(x,y) = −−−→grad yG(x,y), for all k, including k = 0.
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Remark 1.4.1 (The Green’s function in R2). In R2, the Green’s function for the Helmholtz
operator is

Gk(x,y) =
i

4
H

(1)
0 (k ‖y − x‖) , (1.66)

where H
(1)
0 is the Hankel function of the first kind [19, Section 6.4]. The Green’s function for

the Laplace operator in R2 is

G0(x,y) = − 1

2π
ln ‖y − x‖ . (1.67)

Equation (1.66) satisfies conditions at infinity prescribed for R2 [19, Equation 11.25].

1.4.2 Boundary integral operators

Using the Green’s function for the Helmholtz differential operators, we will define the
following boundary integral operators.

Definition 1.4.1 (Boundary integral operators defined on a surface Γ). Let Γ be a surface
embedded in R3 and q be a function defined on Γ. We will define the following boundary
integral operators:

1. The single layer or weakly singular operator:(
Skq

)
(y) =

∫
Γ

Gk(x,y)q(x)dΓ(x). (1.68)

2. The double layer operator:(
Dkq

)
(y) =

∫
Γ

∂

∂nx
Gk(x,y)q(x)dΓ(x). (1.69)

3. The transpose double layer operator:(
(Dk)∗q

)
(y) =

∫
Γ

∂

∂ny
Gk(x,y)q(x)dΓ(x) (1.70)

4. The hypersingular operator:(
N kq

)
(y) =

∫
Γ

∂2

∂nx∂ny
Gk(x,y)q(x)dΓ(x). (1.71)

Theorem 1.4.1 (Traces of the weakly singular or single layer operator [51, Theorem 3.1.2,
part 1]). Let q be a function defined on Γ and let u(y) = (Sq)(y) for y ∈ R3. Then:

1. Function u is continuous across Γ: γ+
Γ u = γ−Γ u and [γΓu] = 0.

2. The normal derivates of u at Γ are

γ±Γ
∂u

∂ny
(y) = ∓q(y)

2
+

∫
Γ

∂

∂ny
G(x,y)q(x)dΓ(x), for y ∈ Γ. (1.72)

Theorem 1.4.2 (Traces of the double layer operator [51, Theorem 3.1.2, part 2]). Let ϕ be a
function defined on Γ and let u(y) = (Dϕ)(y) for y ∈ R3. Then :
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1. The normal derivate of function u is continuous across Γ: γ+
Γ
∂u
∂n = γ−Γ

∂u
∂n , and

[
γΓ

∂u
∂n

]
=

0.

2. The traces of u at Γ are

γ±Γ u(y) = ±ϕ(y)

2
+

∫
Γ

∂

∂nx
G(x,y)ϕ(x)dΓ(x), for y ∈ Γ. (1.73)

Remark 1.4.2 (Normal derivative of Du). The normal derivate of Du from Theorem 1.4.2
is given by operator N from Definition 1.4.1. Its associated kernel admits a strong singularity
equivalent to ‖x− y‖−3 and it is not integrable. We will consider it to be an improper integral
to be calculated as a finite part integral or in a weak sense.

Finally, let us state the Calderón Identities for the defined boundary integral operators.

Theorem 1.4.3 (Calderón Identities [51, Theorem 3.1.3]). When a surface Γ is closed and
Lipschitz-regular, the boundary integral operators from Definition 1.4.1 satisfy the following
operator identities:

Dk ◦ Sk = Sk ◦ (Dk)∗, (1.74)

N k ◦ Dk = (Dk)∗ ◦ N k, (1.75)

Dk ◦ Dk − Sk ◦ N k =
1

4
I, (1.76)

(Dk)∗ ◦ (Dk)∗ −N k ◦ Sk =
1

4
I, (1.77)

where I is the identity operator.

Remark 1.4.3 (Laplace as a special case of the Helmholtz case). All the results presented in
this subsection apply to the Laplace case by setting k = 0.
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1.5 Boundary integral equations and variational formulations
for Lipschitz-regular obstacles

Using the previously defined boundary integral operators from Definition 1.4.1, the partial
differential equation problems can be recast as boundary integral equation problems posed
on bounded surfaces instead of on unbounded propagation domains. This becomes a crucial
advantage when seeking computational methods to solve these problems, as the domain to be
discretized now becomes finite. Without recourse to these so-called boundary integral equation
methods, the alternatives are the use of the so-called domain methods. These domain methods
discretize the propagation domain after truncating it at an often large distance from the obstacle
and imposing absorbing boundary conditions of perfectly matched layers on this new fictitious
boundary. This poses additional difficulties when estimating the existence and properties of the
searched solutions and often require greater computational resources. The integral equation
approach does eliminate these problems for a wide range of relevant cases, but introduces new
ones that will be addressed in the final section of this chapter, and treated in the rest of this
thesis.

1.5.1 Boundary integral equations for the exterior problems

Using the properties of the defined boundary integral operators, we can pose the partial
differential equation problems as integral equation problems for the case of Lipschitz-regular
obstacles. The case of screen obstacles will require special treatment and will be introduced in
the next chapter. Let O be a Lipschitz-regular obstacle of boundary Γ = ∂O. In order to solve
the exterior partial differential equation problem, we will associate it with an internal problem
posed on the interior of O. Let us denote by µ the jump of the Dirichlet trace and by λ the
jump of the Neumann trace across Γ:

µ(y) = [γΓu] (y) and λ(y) =

[
γΓ
∂u

∂n

]
(y), for y ∈ Γ. (1.78)

The properties of the boundary integral operators S and D from Theorems 1.4.1 and 1.4.2
will allow us to establish important identities. Let us consider the following function defined
on R3 \ Γ:

u(y) = Skλ(y)−Dkµ(y), for y ∈ R3 \ Γ. (1.79)

This function has an interesting property, as stated by the following theorem.

Theorem 1.5.1 (Integral representation theorem [51, Theorem 3.1.1]). For a Lipschitz-regular
obstacle O, for a given wave number k ∈ C, let u be a function such that

−
(
∆u+ k2u

)
= 0, in O,

−
(
∆u+ k2u

)
= 0, in R3 \ O.

(1.80)

Let us denote the jump of the traces of u across Γ as in (1.78). Then, for y /∈ Γ, u can be
written as

u(y) = Skλ(y)−Dkµ(y). (1.81)

We will use this theorem, central to the so-called boundary integral equation approach and
methods, to reformulate the exterior Dirichlet and Neumann problems for the Laplace and
Helmholtz equations. We will do so for the case of Lipschitz-regular obstacles. When used
for the case of screen obstacles, its use will demand more specificity, especially regarding the
spaces used. This will be a starting point of the subsequent chapters.
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Dirichlet problem for a Lipschitz-regular obstacle

Let us focus on the Dirichlet exterior Laplace or Helmholtz problem, i.e. Problem 1.3.1 or
Problem 1.3.3. Let us propose the following associated interior problem:

Problem 1.5.1 (Associated interior Dirichlet problem). Given g ∈ H1/2(Γ), and k ∈ C
(possibly zero), find u ∈W 1,−1(O) such that

−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ O,

γ−Γ u(x) = g(x), for x ∈ Γ.

(1.82)

If we consider the previous interior Problem 1.5.1 together with the exterior one, Problem
1.3.3 or Problem 1.3.1 for k = 0, we get that the jump of the Dirichlet traces is

[γΓu] (x) = µ(x) = 0, for x ∈ Γ. (1.83)

If we consider the jump of the Neumann traces,[
γΓ
∂u

∂n

]
(x) = λ(x), for x ∈ Γ, (1.84)

Theorem 1.5.1 tells us that

u(x) =
(
Skλ

)
(x), for x /∈ Γ, (1.85)

is a solution to the interior Problem 1.5.1, and particularly to the exterior Problem 1.3.3 or
Problem 1.3.1 when k = 0. Also, Theorem 1.4.1 assures the continuity of u across Γ, which
tells us that

γ+
Γ u = g. (1.86)

This provides us with an integral equation for λ, which we can later used to find the solution
to the exterior problem. This allows us to recast Problem 1.3.3, or Problem 1.3.3 if k = 0, as
a new integral equation problem.

Problem 1.5.2 (Boundary integral equation problem for the Dirichlet exterior partial differ-
ential equation problem). Given g ∈ H1/2(Γ), and k ∈ C (possibly zero), find λ ∈ H−1/2(Γ)
such that

Skλ(x) = g(x), for x ∈ Γ, (1.87)

and use it to determine
u(x) =

(
Skλ

)
(x), for x ∈ R3 \ O. (1.88)

This assures us that the solution to Problem 1.5.2 is also the solution to Problem 1.3.3 or
Problem 1.3.1 when k = 0.

Neumann problem for a Lipschitz-regular obstacle

Let us focus on the Neumann exterior Laplace or Helmholtz problem, i.e. Problem 1.3.2 or
Problem 1.3.4. Let us propose the following associated interior problem:

Problem 1.5.3 (Associated interior Neumann problem). Given ϕ ∈ H−1/2(Γ), and k ∈ C
(possibly zero), find u ∈W 1,−1(O) such that

−
(
∆u(x) + k2u(x)

)
= 0, for x ∈ O,

γ−Γ
∂u

∂nx
(x) = ϕ(x) for x ∈ Γ.

(1.89)
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If we consider the previous interior problem, Problem 1.5.3, together with the exterior one,
Problem 1.3.4 or Problem 1.3.2 if k = 0, we get that the jump of the Neumann traces is[

γΓ
∂u

∂n

]
(x) = λ(x) = 0, for x ∈ Γ. (1.90)

If we consider the jump of the Dirichlet traces,

[γΓu] (x) = µ(x) for x ∈ Γ, (1.91)

Theorem 1.5.1 tells us that

u(x) = −
(
Dkµ

)
(x) for x /∈ Γ, (1.92)

is a solution to the interior Problem 1.5.3, and particularly to the exterior Problem 1.3.4 or
Problem 1.3.2 if k = 0. Also, Theorem 1.4.2 assures the continuity of the normal derivative of
Dk, which tells us that

γ+
Γ

∂u

∂n
= ϕ, (1.93)

This provides us with an integral equation for µ, which we can later use in (1.92) to find
the solution to the exterior problem. This allows us to recast Problem 1.3.4 as a new integral
equation problem.

Problem 1.5.4 (Boundary integral equation problem for the Neumann exterior partial differ-
ential equation problem). Given ϕ ∈ H−1/2(Γ), and k ∈ C (possibly zero), find µ ∈ H1/2(Γ)
such that

− ∂

∂nx
Dkµ(x) = −N kµ(x) = ϕ(x), for x ∈ Γ, (1.94)

and use it to determine

u(x) = −
(
Dkµ

)
(x), for x ∈ R3 \ O. (1.95)

This assures us that the solution to Problem 1.5.4 is also the solution Problem 1.3.4 or
Problem 1.3.2 if k = 0.

1.5.2 Bilinear forms and variational formulation

Let us define the bilinear forms induced by the boundary integral operators associated with
the Dirichlet and Neumann exterior problems.

Definition 1.5.1 (Bilinear forms for Sk and N k). Let us define the following bilinear forms
induced by the weakly singular operator Sk and the hypersingular operator N k:

awsk (λ, λt) =
〈
Skλ , λt

〉
Γ
, (1.96)

ahsk (µ, µt) =
〈
−N kµ , µt

〉
Γ
. (1.97)

These bilinear forms are suitable for variational formulations for Problems 1.5.2 & 1.5.4, as
the following theorems will show.

Theorem 1.5.2 (The bilinear form induced by Sk is coercive [51, Theorems 3.3.1 & 3.4.1]).
The boundary integral equation (1.87) from Problem 1.5.2 admits the following variational
formulation 

Given g ∈ H1/2(Γ), find λ ∈ H−1/2(Γ) such that

∀λt ∈ H−1/2(Γ)
(
awsk (λ, λt) =

〈
g , λt

〉
Γ

)
.

(1.98)

The associated operator Sk is an isomorphism from H−1/2(Γ) onto H1/2(Γ) when −k2 is not
an eigenvalue of the interior Dirichlet Problem 1.5.1 for the Laplacian. This also holds for
k = 0.
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Theorem 1.5.3 (The bilinear form induced by N k is coercive [51, Theorems 3.3.2 & 3.4.2]).
The boundary integral equation (1.94) from Problem 1.5.4 admits the following variational
formulation 

Given ϕ ∈ H−1/2(Γ), find µ ∈ H1/2(Γ) such that

∀µt ∈ H1/2(Γ)
(
ahsk (µ, µt) =

〈
ϕ , µt

〉
Γ

)
.

(1.99)

The kernel of N k is not integrable, but can be computed as an improper integral and has the
following expression:

ahsk (µ, µt) =

∫
Γ

∫
Γ

Gk(x,y)
(−−→

curl Γµ,
−−→
curl Γµ

t
)
dΓ(x)dΓ(y)

−k2

∫
Γ

∫
Γ

Gk(x,y)µ(x)µt(y) (nx,ny) dΓ(x)dΓ(y).
(1.100)

The associated operator N k is an isomorphism from H1/2(Γ) onto H−1/2(Γ) when −k2 is not
an eigenvalue of the interior Neumann Problem 1.5.3 for the Laplacian and k 6= 0. For k = 0

operator N 0 is an isomorphism from H1/2(Γ)/R onto H
−1/2
0 (Γ), the subspace of H−1/2(Γ)

whose elements satisfy 〈ϕ , 1〉Γ = 0.

In the following section we will see how to discretize the integration domain Γ in order
to consider subspaces of the Sobolev trace spaces and formulate finite-dimensional variational
formulations.
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1.6 Surface discretization, boundary element method, and Galerkin
matrices

In this section we will define the way in which a surface Γ is discretized in order to form the
boundary element spaces. These spaces will be finite-dimensional subspaces of the Sobolev trace
spaces H1/2(Γ) and H−1/2(Γ), and will serve to define finite-dimentional variational formula-
tions that will provide approximations to the solutions of the infinite-dimensional variational
formulations associated with the boundary integral equations for Sk and N k.

1.6.1 Primal and dual meshes

Let Γ be a surface, open or closed, embedded in R3. Let us also consider a triangular
approximation Γh indexed by a discretization parameter h. Figure 1.2 illustrates a triangular
approximation for an open and a closed surface.

�
�

�h

�h

n

n

Figure 1.2: Conformal triangular approximation Γh of a closed (left) and an open (right) surface
embedded in R3.

Notation 1.6.1 (Indexing by the discretization parameter h). We will index a triangular
approximation of a surface Γ either by Γh or ΓNT , referencing the discretization parameter h
or the number of triangles NT .

Definition 1.6.1 (Conformal triangular approximation). A triangular approximation Γh of
a surface Γ is conformal if it is a connected set, and if the intersection of any two different
triangles of Γh is either void, a set triangle vertices, or a full triangle edge.

Definition 1.6.2 (Triangular mesh). A triangular mesh Th (or TNT ) for the conformal tri-
angular approximation Γh (or ΓNT ) of a surface Γ embedded in R3, open or closed, is the set
of:

• The set of NT triangles ti (indexed by i) that compose its triangular approximation Γh:
{ti}NTi=1.

• The set of NE edges ei (indexed by i) that compose its triangular approximation Γh:
{ei}NEi=1.

• The set of NV vertices vi (indexed by i) of the triangles that compose its triangular
approximation Γh: {vi}NVi=1.

If surface Γ is open, i.e. ∂Γ 6= ∅, the triangular mesh Th will also include the set of N0
V

internal vertices v0
i (indexed by i):

{
v0
i

}N0
V

i=1
.
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Notation 1.6.2 (Triangular mesh indexing). We will denote indistinctly a triangular mesh
indexing it by a discretization parameter h, or by the number NT of triangles that composes it
as TNT .

Notation 1.6.3 (Referencing elements of a triangular mesh). We will adopt the simplified
notation: ti ∈ Th will reference the i-th triangle from Th, ei ∈ Th will reference the i-th edge
from Th, vi ∈ Th will reference the i-th vertex from Th, and v0

i ∈ Th will reference the i-th
internal vertex from Th if surface Γ is open.

Definition 1.6.3 (Triangle elements). For each triangle ti of a triangular mesh Th we identify
the following elements:

• The set of its three vertices Tt→v(ti) := {vi1,vi2,vi3}.

• The set of the six non-intersecting sub-triangles resulting from dividing ti using all its

medians as delimiters (barycentric refinement): Tt→t̂(ti) :=
{
t̂ij

}6

j=1
.

• The set of the six pairwise non-intersecting sub-triangles resulting from dividing ti in

halves using its medians as delimiters: Tt→t̃(τi) :=
{
t̃ij

}6

j=1
.

ti

t̂i1 t̂i2

t̂i3
t̂i4t̂i5

t̂i6

t̃i6

t̃i5

t̃i4

t̃i3

t̃i2
t̃i1

Figure 1.3: Example of a triangle ti (left) of a triangular mesh with its sub-triangles t̂ij (center)

and sub-triangles t̃ij (right).

Definition 1.6.4 (Vertex elements). For each vertex vi of a triangular mesh Th we identify
the following elements:

• The set of triangles t for which vi is a vertex: Tv→t(vi) = {t ∈ Th : vi is a vertex of t}.

• The set of sub-triangles t̂ for which vi is a vertex: Tv→t̂(vi) = {t̂ ∈ Th : vi is vertex of t̂}.

Definition 1.6.5 (Triangle measurements). Let us define the following measurements related
to a triangle ti of a triangular mesh Th:

• Its area Ai:

Ai =

∫
ti

dti(x). (1.101)

• Its cell size hi:
hi =

√
Ai. (1.102)
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• Its diameter di:
di = sup

x,y∈ti
‖x− y‖. (1.103)

Definition 1.6.6 (Maximal and minimal cell sizes). For a triangular mesh Th we define the
maximal and minimal cell sizes as

hmax = max
i=1...NT

hi and hmin = min
i=1...NT

hi. (1.104)

Definition 1.6.7 (Regular triangular mesh). A family of triangular meshes Th is said to be
regular if for every triangle ti for every mesh there is always a constant CR such that

0 < CR ≤
hi
di
≤ 1. (1.105)

Definition 1.6.8 (Locally quasi-uniform triangular mesh). A family of triangular meshes Th
is said to be locally quasi-uniform if for every pair of triangles ti and tj, there is a constant CL
such that for every mesh in the family

hi
hj
≤ CL, (1.106)

whenever triangles ti and tj are adjacent, i.e., when they share an edge or a vertex.

Definition 1.6.9 (Globally quasi-uniform triangular mesh). A family of triangular meshes Th
is said to be globally quasi-uniform if there is a constant CG such that for every mesh in the
family

hmax
hmin

≤ CG. (1.107)

We will use the defined mesh to build a new one called dual mesh. The name is motivated
by the fact that we will use it to define spaces that will be subspaces of the space dual to the
one that we will define on the first and primal mesh.

Definition 1.6.10 (Dual mesh). We will call T̃h the dual mesh of the triangular mesh Th to
the set of polygonal-wise elements associated with the NV vertices of Th, {Li}NVi=1, where an
element Li associated with the vertex ri is defined as the union of the subtriangles t̂ that have
ri as vertex:

Li =
⋃

t̂∈Tv→t̂(ri)

t̂. (1.108)

We will use mesh Th to define subspaces ofH1/2(Γh) and T̃h to define subspaces ofH−1/2(Γh).

1.6.2 Boundary element spaces and discrete variational formulations

In this section we will use the discretized surface Γh of Γ and the triangular meshes Th
and T̃h to define finite-dimensional subspaces of H1/2(Γh) and H−1/2(Γh), which we will use to
compute approximations to the solutions to the integral equations associated with Sk and N k.
The space discretization for the case of open surfaces, i.e. screen obstacles, will be treated in
the next chapters.

Let Pn denote the space of bivariate polynomials of a degree less than or equal to n. Let
us also consider the triangular mesh Th for the triangular approximation Γh of Γ.

Definition 1.6.11 (The Vh finite-dimensional space). Let Vh ⊂ H1/2(Γh) be the finite-dimensional
space

Vh = {v ⊂ C(Γh) : for every triangle t ∈ Th (v|t ∈ P1)} . (1.109)
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Definition 1.6.12 (A basis for Vh). Let us consider as basis for Vh the set

{χi}NVi=1 such that, for i = 1...NV we have χi(vj) =

{
1 if j = i,

0 if j 6= i.
(1.110)

Definition 1.6.13 (The Wh finite-dimensional space). Let Wh ⊂ H−1/2(Γh) be the space

Wh =
{
w ⊂ L2(Γh) : for every element L ∈ T̃h (w|L ∈ P0)

}
. (1.111)

Definition 1.6.14 (A basis for Wh). Let us consider as basis for Wh the set

{κi}NVi=1 such that, for i = 1...NV we have κi(x) =

{
1 if x ∈ Li,
0 if x /∈ Li,

(1.112)

where Li is the element of T̃h associated with the vertex vi.

Definition 1.6.15 (Local mesh size associated with basis functions). For a basis function
associated with a vertex vi ∈ Th, be it χi or κi, we will denote by ĥi its local mesh size, defined
as

ĥi =
1

|Tv→t(vi)|
∑

tl∈Tv→t(vi)

hl, (1.113)

the average of the cell size of the triangles making up its support.

Using the defined basis functions, a function µh ∈ Vh(Γh) can be determined by the set of
coefficients {µhi }NVi=1:

µh(x) =

NV∑
i=1

µhi χi(x), for x ∈ Γh. (1.114)

Likewise, a function λh ∈Wh(Γh) can be determined by the set of coefficients {λhi }NVi=1:

λh(x) =

NV∑
i=1

λhi κi(x), for x ∈ Γh. (1.115)

We can use this decomposition to define finite-dimensional versions of the variational for-
mulations established for the boundary integral equations associated with operators Sk and
N k.

Definition 1.6.16 (Finite dimensional variational formulations). Let us define the following
finite-dimensional variational formulation associated with the variational formulation (1.98),
associated with the boundary integral equation for Sk:

Given gh ∈ Vh, find the set of coefficients {λhi }NVi=1 such that

for j = 1...NV :

NV∑
i=1

λhi a
ws
k (κi, κj) = 〈gh , κj〉Γh .

(1.116)

Similarly, let us define the following finite-dimensional variational formulation associated
with the variational formulation (1.98), associated with the boundary integral equation for N k:

Given ϕh ∈Wh, find the set of coefficients {µhi }NVi=1 such that

for j = 1...NV :

NV∑
i=1

µhi a
hs
k (χi, χj) = 〈ϕh , χj〉Γh .

(1.117)
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Slightly abusing notation, we have kept the notation awsk and ahsk although they now refer to
bilinear forms induced by operators Sk and N k defined over the discretized surface Γh. Addi-
tionally, finite-variational formulation (1.117) has to be augmented with a parameters α ∈ R+

when k = 0 to assure that the solution µh belongs to a subspace of H
1/2
0 (Γh):

Given ϕh ∈Wh, find the set of coefficients {µhi }NVi=1 such that

for j = 1...NV :

NV∑
i=1

µhi a
hs
0 (χi, χj) + α 〈χi , 1〉Γh 〈χj , 1〉Γh = 〈ϕh , χj〉Γh .

(1.118)

1.6.3 Boundary element computations and Galerkin matrices

In this subsection we will define the way in which the Galerkin matrices associated with
finite-dimensional variational formulations (1.116) and (1.117) are computed.

Definition 1.6.17 (Galerkin matrices associated with Sk and N k). Let us define the Galerkin
matrices associated with boundary integral operators Sk and N k on the conformal triangular
approximation Γh for a surface Γ. We denote by NV the number of vertices of the mesh Th for
Γh. We define Sh ∈ CNV ×NV as

Shk [i, j] = awsk (κi, κj) =
〈
Skκi , κj

〉
Γh
, for i, j = 1...NV . (1.119)

We define Nh
k ∈ CNV ×NV as

Nh
k [i, j] = ahsk (χi, χj) =

〈
−N kχi , χj

〉
Γh
, for i, j = 1...NV . (1.120)

In the case of the Laplace problem, when k = 0 matrix Nh
k has to be augmented, as indicated in

(1.118) to account for the kernel space of operator N 0. In that case, we define Nh
0 ∈ CNV ×NV

as

Nh
0 [i, j] = ahs0 (χi, χj) =

〈
−N 0χi , χj

〉
Γh

+ α 〈χi , 1〉Γh 〈χj , 1〉Γh , for i, j = 1...NV . (1.121)

with a parameter α ∈ R+.

These Galerkin matrices allow us to pose linear systems to solve the finite-dimensional
variational formulations for the integral equations that allow us to find solutions to Laplace and
Helmholtz problems, on the exterior of a Lipschitz-regular obstacle, with Dirichlet or Neumann
boundary conditions. Despite the advantages that this approach brings to the treatment of
such problems, most particularly in unbounded domains, we will see that it comes at a cost.
In the next section we will explain and quantify this cost. It will become evident that the
challenges posed by the boundary integral equation approach must be addressed, which will
end this introductory chapter by motivating the work undertaken in the subsequent ones.
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1.7 Memory complexity, algorithmic complexity and accuracy

The main advantage of the approach outlined in this chapter, that of the boundary integral
equations and the boundary element method, is that they can tackle partial differential equation
problems posed on unbounded domains in a more natural way. They also need less degrees
of freedom, in comparison to domain methods, when used to solve cases with small boundary
surface to propagation volume ratios. However, other problems inherent to the boundary
integral equation and boundary element methods are introduced. In this section we will discuss
and quantify these disadvantages.

Through this section we will consider the case of a Lipschitz-regular obstacle Ω, of bound-
ary ∂Ω = Γ that has been discretized in a mesh Γh. The number of basis functions spanning
the discrete boundary element spaces used, i.e. the number of degrees of freedom of the linear
equation to be solved, will be denoted as Ndof . We will consider the case of a numerical simu-
lation where the maximum frequency of the propagating wave is fmax, in a linear homogeneous
medium with wave propagation velocity v. Three quantities of a given mesh are of interest
when determining the size of the linear system, the number of unknowns Ndof : the number
of triangles NT , the number of vertices NV and the number of edges NE . The presented vari-
ational formulations will give rise to a linear system with Galerkin matrix A and right-hand
side vector b, thus giving to consideration the system Ax = b.

The approach presented is intended for single frequency problems, but the concept of a
maximum frequency fmax comes into consideration when a Fourier analysis is used for solving
transient waves using several frequencies on a frequency range.

1.7.1 Wave frequency and mesh refinement

The relation between maximum wave frequency and mesh refinement comes from the ne-
cessity to accurately represent the oscillatory behavior of the computed solution of the traces
defined on surface Γh. Depending on the application, different criteria are used.

If fmax is the maximum wave frequency and v is the wave velocity, the shortest wavelength
λmin in the simulated scenario will be

λmin =
v

fmax
. (1.122)

Depending on the application (simulation of near-field or far-field phenomena, for example)
a number nλ of basis functions, typically between 5 and 10, must be assured by each wavelength
[64, Section 6.2.1]. This means that the largest edge hmax on the mesh must comply with

hmax ≤
λmin
nλ

=
v

nλfmax
. (1.123)

In the limit case of compliance with the basis-per-wavelength criterion (hmax = v/(nλfmax)),
and if the mesh is regular in the sense of Definition 1.6.9 (hmax ≤ CGhmin), the following in-
equality holds:

hmax =
c

nλfmax
≤ CGhmin. (1.124)

The number NT of triangles of mesh Γh is bounded by

NT ≤
|Γh|

h2
min/2

, (1.125)

where |Γh| is the area of the discretized mesh surface Γh. Again in the limit case of compliance
with the basis-per-wavelength criterion (hmax = v/(nλfmax)), and if the mesh is regular in the

28



sense of Definition 1.6.9, the number of triangles can be further bounded by

NT ≤
2C2

G |Γh|n2
λ

v2
f2
max. (1.126)

If the mesh is conformal, counting three edges for each triangle gives a global counting of
edges where each one has been taken into consideration twice, thus relating the number triangles
NT and the number of edges NE like NE = 3/2NT . If Γh is non-intersecting polyhedral mesh
in R3, the Euler Characteristic applies, i.e.,

NV −NE +NT = 2, (1.127)

thus providing the number of nodes of the mesh:

NV =
1

2
NT + 2. (1.128)

These two results provide us with limits to the number of edges and nodes for a frequency
fmax:

NE ≤
C2
G |Γh|n2

λ

3v2
f2
max and NE ≤

C2
G |Γh|n2

λ

v2
f2
max + 2. (1.129)

Since the number of basis functions Ndof will be a combination of multiples of NV , NE

and/or NT , the size of the linear system can always be limited in order by f2
max.

1.7.2 Memory complexity

The Galerkin matrices produced by the boundary element method are symmetric and can
be stored by saving the elements in, .e.g., the upper triangular part of the matrix. If the linear
system has Ndof degrees of freedom and the computations use a data type that requires an
amount mt of memory to be stored, then the amount of memory Nmem required to store the
matrix is

Nmem = mt
Ndof (Ndof + 1)

2
. (1.130)

1.7.3 Algorithmic complexity

The algorithmic complexity of the resolution of the linear system is the amount of indi-
vidual number operations Nsolve required to solve it. Using iterative methods, the algorithmic
complexity is then the number of operations involved in a matrix-vector multiplication NM×v
times the number of iterations Nitem required by the iterative solver.

The number of individual number operations NM×v involved in the multiplication of a
Ndof ×Ndof matrix by a Ndof vector is N2

dof multiplications and (Ndof − 1)2 sums, adding up

to NM×v = 2N2
dof − 2Ndof + 1 individual operations.

The number of iterations Niter required by an iterative method depends on the condition
number of the matrix of the linear system; it grows with it.

Definition 1.7.1 (Condition number of a matrix). The condition number a matrix is a measure
of how much can the result of a multiplication by a vector change, for a small changes in this
vector. It depends on the norm used to measure this change. For a matrix A ∈ CN×N , the
2-norm condition number is defined as

cond2 (A) =
σmax(A)

σmin(A)
, (1.131)

where σmin(A) and σmax(A) are the minimal and maximal singular values of A.
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The following theorem about the conditioning of the Galerkin matrices arising from the
boundary element method will present us with a challenge.

Theorem 1.7.1 (Ill-conditioning of BEM matrices [57, Lemmas 4.5.1 & 4.5.2]). Let Γh be a
polygonal curve in R2 or polyhedral surface in R3, and Th a conformal, regular mesh for it. The
Galerkin matrices Skh and Nk

h, associated with the boundary integral operators Sk and N k, are
ill-conditioned in the sense that there exists a constant Ccond such that

cond2

(
Skh

)
≤ Ccond h−1

min and cond2

(
Nk

h

)
≤ Ccond h−1

min. (1.132)

It is known that for the conjugated gradient method, for example, to reach a relative
reduction of ε, there is a constant Ccg(ε) such that the number of iterations required is Niter =
Ccg(ε)

√
cond2(A) [24, Theorem 11.3.3]. For other iterative methods for the resolution of the

associated linear system, the dependency of the number of iterations on the condition number
of system matrix A is harder to determine, although it grows with it as the mesh is refined.
Some common iterative solvers used linear system arising from the boundary element method
are the GMRES and the BiCGSTAB methods [43,45,66].

1.7.4 Accuracy

When computing the solution of a linear system Ax = b, the relative error of the computed
solution will depend on the relative error in the numerical computation of A and b, and the
condition number of A as stated in the following theorem.

Theorem 1.7.2 (Accuracy lost due to ill-conditioning [24, Section 2.6.2]). When solving the
linear system Ax = b but with a perturbed matrix and right hand vector, i.e.,

Ã = A + δA and b̃ = b + δb, (1.133)

the relative error of the solution depends on the conditioning of matrix A and the perturbations
as:

‖x− x̃‖
‖x‖ ≤ cond2(A)

1− cond2(A)
‖δA‖
‖A‖

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
, (1.134)

where x̃ is the solution of the perturbed system Ãx̃ = b̃.

1.7.5 Overall complexity and accuracy

The overall situation concerning the difficulties inherent to the boundary integral equation
and boundary element method approach can be summarized in the following table, Table 1.1,
using asymptotic notation (Big O, or Bachmann-Landau notation).

Table 1.1: Summary of the computational cost and relations between different quantities de-
termining it, expressed in terms of the maximum frequency fmax, number of degrees of freedom
Ndof and minimum mesh cell size h.

Computational
Cost

fmax Ndof h

Ndof O
(
f2
max

)
1 O

(
h−2

)
Nmem O

(
f4
max

)
O
(
N2
dof

)
O
(
h−4

)
NM×v O

(
f4
max

)
O
(
N2
dof

)
O
(
h−4

)
The situation depicted in the previous table stresses the challenges that the integral method

introduces. Unaddressed, these difficulties greatly limit the applicability of this approach,
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especially to endeavors that require the solution of multiple direct problems (automatic control,
automated design, some inversion problems, etc.). Numerical accuracy will also prove to be
a challenging point in the application of the integral approach, as the example from the next
section will illustrate.

1.7.6 An illustrative example

In this subsection we will shortly illustrate the difficulties quantified in this section by
means of an example. Let us consider the problem of computing the acoustic scattering by a
rigid ball of one meter in radius in an unbounded scenario at normal propagation conditions:
v = 343.2m/s at 1 atmosphere of pressure and 20oC of temperature. The following figures
will describe the evolution of the main quantities describing the complexity of the numerical
problem for different required maximum frequencies within the audible range.
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Figure 1.4: Evolution of the computational complexity with the rise of the required maxi-
mum frequency for the example problem: memory complexity Nmem (left) and algorithmic
complexity NM×v (right) versus maximum required frequency fmax.
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Figure 1.5: Evolution of the conditioning and the relative error of the linear system with the
refinement of the mesh used for the example problem: condition number cond2(A) (left) and
relative error ‖x− x̃‖/‖x‖ (right) versus the discretization parameters h considering different
errors in the computation of the system matrix and right-hand side vector.

Algorithmic complexity NM×v and memory complexity Nmem can be managed with accel-
eration/compression techniques, such as the Fast Multipoles Method [25, 26, 52, 55], the Panel
Clustering Method [31,32,56,57], and the Hierarchical Matrix Method [9,28–30] with Adaptive
Cross Approximations [5, 8, 10, 65]. The Hierarchical Matrix and ACA approach is very flexi-
ble, being able to tackle the problem for multiple integral kernels with the same computational
implementation, and allows for reduced complexity:

Nmem = O (Ndof logNdof ) = O
(
f2
max log fmax

)
, (1.135)

NN×v = O (Ndof logNdof ) = O
(
f2
max log fmax

)
. (1.136)

However, conditioning and thus Niter remains a problem, and thus, for the accelera-
tion/compression given as example we still could encounter an elevated number of iterations
and undesired inaccuracies.

Although it still allows for an increase in the frequency of simulation for a fixed com-
putational capacity, this in turn stresses the importance of controlling the error due to ill-
conditioning through preconditioning.

The subject of preconditioning will be treated in the next chapters. When the obstacle has
a Lipschitz-regular surface there are robust and well-known methods. This isn’t the situation
for non-Lipschitz objects, for which we will propose a novel technique.
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Chapter 2

Operator Preconditioning and
Screen Obstacles

In this chapter we will develop a preconditioning strategy for the linear systems arising from
Galerkin discretizations of boundary integral equations related to the Laplace and Helmholtz
problems for a screen obstacle presented in Subsection 1.3.3. This present chapter can be
roughly divided into two parts: 1) Sections 2.1, 2.2, 2.3 and 2.4, and 2) Sections 2.5, 2.6 and
2.7.

In the first part we will describe the main theoretical tool for the devising of preconditioning
strategies in general, and for screen obstacles and Lipschitz-regular obstacles in particular. We
will show how this tool immediately provides a viable preconditioning method for Lipschitz-
regular domains and we will point out where it fails when applied to screens. Then, a brief
explanation will be provided on previous results adapting this strategy for a curve screen
embedded in R2. A geometrical and a functional framework will then be provided in the case
of a canonical surface screen embedded in R3, the unit disk, which will be the main and starting
case for further developments beyond this chapter.

In the second part we will establish the existence of operators that are the inverses to the
boundary integral operators associated with the boundary integral equations that are used to
solve the Dirichlet and Neumann problems. It will be also shown that their explicit form is
not easily attainable, thus preventing their immediate use in building preconditioning methods
using the boundary element method. We will develop tools to build basis functions for the
functional trace spaces involved. This will lead to a rewriting, in the form of series expansions,
of the involved integral operators, which in turn will allow for series representations of their
inverses, whose existence will have been already proven. A spectral method for the resolution
to the boundary integral equations will also be developed. Using the series expansions forms in
a spectral method will illustrate, in a straightforward manner, how the devised preconditioning
strategy yields an optimal preconditioning method and optimally preconditioned matrices, de-
spite not being suited for the more versatile boundary element method. These results will pave
the way for the introduction of new boundary integral operators, resulting from modifications
made to the ones proposed in this chapter. These new and modified integral operators, to be
developed in the next chapter, will have explicit variational forms that will be suited for use in
boundary element methods.
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2.1 Operator preconditioning

When solving a linear system Ax = b, where the matrix A is ill-conditioned, i.e., where
the value cond2(A) is high (in a sense given by Theorem 1.7.2 according to the context), a
preconditioning method must be used to tackle the problems that come with ill-conditioning
(increased number of iterations required by an iterative solver and poor numerical accuracy). A
preconditioning method provides a matrix M such that the matrix MA has a much lower con-
dition number and thus the linear system MAx = Mb does not suffer from the aforementioned
problems.

There are different strategies based on different rationales that deliver a wide gamut of
preconditioning methods with different performances (a good collection of them can be found
in [15]). In the context of Galerkin matrices arising from variational formulations such as
the ones for the boundary integral equations described in the previous chapter, it was seen in
Section 1.7 that conditioning worsens with mesh refinement (and thus higher frequencies in
numerical wave simulations). The following theorem will suggest a strategy suitable for that
context, and capable of providing optimal preconditioning.

Theorem 2.1.1 (Operator preconditioning [16], [35]). Let V and W be reflexive Banach spaces.
Let a ∈ L(V × V,C), b ∈ L(W × W,C) and d ∈ L(V × W,C) be continuous sesquilinear

forms, with norms ‖a‖, ‖b‖, and ‖d‖ respectively. Finally, let Vh = span
(
{χi}Ni=1

)
⊂ V and

Wh = span
(
{κi}Ni=1

)
⊂ W be finite-dimensional subspaces of the same dimension on which

the following inf-sup conditions are fulfilled:

∀uh ∈ Vh sup
vh∈Vh

|a(uh, vh)|
‖vh‖V

≥ ca‖uh‖V , (2.1)

∀qh ∈Wh sup
wh∈Wh

|b(qh, wh)|
‖wh‖W

≥ cb‖qh‖W , (2.2)

∀vh ∈ Vh sup
wh∈Wh

|d(vh, wh)|
‖wh‖W

≥ cd‖vh‖V . (2.3)

Let us define the following Galerkin matrices: A[i, j] = a(χi, χj), B[i, j] = b(κi, κj), and
D[i, j] = d(χi, κj), and let us define the preconditioning matrix M = D−1BD−H . The spectral
condition number of the preconditioned matrix MA has the following bound:

cond2 (MA) ≤ ‖a‖‖b‖‖d‖
2

cacbc
2
d

, (2.4)

where D−H is the inverse of the conjugate transpose of matrix D.

Remark 2.1.1 (Optimality of preconditioning). The bound from equation (2.4) is independent
of the choice of bases for the spaces involved. In particular, the bound does not depend on the
dimension of the chosen finite-dimensional subspaces.

A general situation is attempting to solve a functional equation Pv = w posed over a
domain Ω, with P : V → W , when one space is the dual of the other. We take interest in the
bilinear form a(v, vt) =

〈
Pv, vt

〉
Ω

for the variational formulation, for functions v, vt ∈ V . If

Vh = span
(
{χi}Ni=1

)
⊂ V is an N-dimensional discretization of the space for the variational

formulation, the problem can be solved via a linear system of equations Ax = b, with A[i, j] =
a(χi, χj). Theorem 2.1.1 is a tool that allows us to formulate an optimal preconditioning
strategy, as it will be stated in the following definition.

Definition 2.1.1 (Optimal preconditioning strategy). For a Galerkin matrix A arising from
the variational formulation associated with the functional equation Pv = w with P : V → W
(with V being the dual of W or vice versa), with variational formulation a(v, vt) =

〈
Pv, vt

〉
Ω

using Vh = span
(
{χi}Ni=1

)
, an optimal preconditioning strategy is:
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1. Find Q : W → V that will induce a coercive bilinear form b(w,wt) =
〈
Qw,wt

〉
Ω

, for
w,wt ∈W .

2. Take the bilinear form d to be the duality pairing between V and W and find a N-

dimensional discretization of the space W , Wh = span
(
{κi}Ni=1

)
⊂ W , such that it

also renders the duality product d(χ, κ) = 〈χ, κ〉Ω coercive for any χ ∈ Vh and κ ∈Wh.

3. Build matrices B and D from bilinear forms b and d, and assemble M = D−1BD−H

as stated in the theorem.

4. Precondition the linear system yielding MAx = Mb.

This particular preconditioning strategy is one among many other possibilities within the scope
of Theorem 2.4.

Remark 2.1.2 (Candidates for Q). Different problems naturally provide operators that will
fulfill the role of operator Q as stated in the optimal preconditioning strategy. In the context of
boundary integral equations linked to wave propagation phenomena, the weakly singular, and the
hypersingular boundary integral operators fit the roles of P and Q if the obstacle is Lipschitz-
regular. More generally, given an operator P, an inverse Q = P−1 (if available), is a useful
choice.

Remark 2.1.3 (Complexity of inversion). The computation of matrix M involves the inversion
of matrix D, for which the a priori algorithmic complexity is O

(
N3
)
. This consideration

becomes especially relevant when the purpose of the preconditioning is the reduction of the overall
algorithmic complexity of the resolution to a linear system. However, for many spectral and
boundary element discretizations, using appropriate bases’ numbering techniques can produce
sparse and banded D matrices that are much easier to invert.
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2.2 Preconditioning for Lipschitz-regular obstacles

In this section we will show how the optimal preconditioning strategy can be used to yield
methods that will achieve optimal preconditioning of the linear system associated with an
integral equation in the context of a Helmholtz or Dirichlet problem for a Lipschitz-regular
obstacle. We will see that when the obstacle is Lipschitz-regular, the second operator needed
for the strategy is naturally available. We will also see that the preconditioning matrix built
for the Laplace case, is also an optimal preconditioner for the Helmholtz case.

Let us begin by establishing the following result.

Proposition 2.2.1 (Stability of the pairing of the bases of finite-dimensional spaces [61, Section
2.2]). Let Γh be conformal triangular approximation of a closed surface Γ and let Th and T̃h be
primary and dual triangular meshes for it. Let us consider the sets of basis functions {χi}NTi=1

and {κi}NTi=1 as defined in Definition 1.6.12 and Definition 1.6.14. If we assume that Th is
locally quasi-uniform, and that for every triangle tl ∈ Th there is a constant C such that the
associated local mesh sizes for the functions associated with its vertices (refer to Definition
1.6.15) satisfy
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7
−

 ∑
vi∈Tt→v(tl)

ĥi
∑

vi∈Tt→v(tl)

1

ĥi

1/2

≥ C > 0, (2.5)

then, the following inf-sup condition is satisfied:

sup
j=1...NV

∣∣∣〈χi , κj〉Γh∣∣∣
‖κj‖H−1/2(Γh)

≥ cd ‖χi‖H1/2(Γh) , for i = 1...NV . (2.6)

Remark 2.2.1 (The discretization from Subsection 1.6.2 satisfies conditions of Theorem 2.1.1).
Condition (2.5) is easy to meet and, as we shall see indirectly in the next subsection, is met by
the discretization described in Subsection 1.6.2. The consequence of the previous proposition is
estimate (2.6), which allows to satisfy condition (2.3) from Theorem 2.1.1

2.2.1 Laplace problem

For a Lipschitz-regular obstacle Ω of boundary Γ = ∂Ω let us consider a conformal trian-
gular approximation Γh. It was shown in Theorem 1.5.3 that operator N 0 : H1/2(Γh)/R →
H−1/2(Γh) defines an isomorphism, and that it induces coercive bilinear form in H1/2(Γh)/R.
Similarly, it was shown in Theorem 1.5.2 that operator S0 : H−1/2(Γh)→ H1/2(Γh) defines an
isomorphism and that it induces a coercive bilinear form in H−1/2(Γh).

Additionally, it was shown in Subsection 1.2.3 that spaces H1/2(Γh) and H−1/2(Γh) are
dual to each other if the surface is Lipschitz-regular, and that they can be discretized into
N-dimensional spaces Vh and Wh using P0 Lagrange bases {κi}Ni=1 and P1 bases {χi}Ni=1. Fur-
thermore, it was shown in Proposition 2.2.1 that their basis functions comply with stability
estimates specified in (2.3) from Theorem 2.1.1 if the bilinear form d is taken to be the duality
product between H1/2(Γh) and H1/2(Γh).

Being in compliance with the hypotheses of Theorem 2.1.1, we follow the optimal pre-
conditioning strategy from Definition 2.1.1 and consider the following matrices to perform a
numerical experiment in the case of a spherical obstacle Ω = {x ∈ R3 : ‖x‖ < 1} with surface
Γ = {x ∈ R3 : ‖x‖ = 1} in R3, which we will mesh Γ into a triangular mesh Γh for a particular
value of h as shown in Figure 2.1. We consider the following Galerkin matrices (cf. Definition
1.6.17):

AS0 [i, j]=
〈
S0κi , κj

〉
Γh
, BN0 [i, j] =

〈
N 0χi , χj

〉
Γh

+ α〈χi , 1〉Γh〈χj , 1〉Γh , for α∈R+,

(2.7)
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and
D[i, j] = 〈χi , κj〉Γh . (2.8)

Using these Galerkin matrices, let us assemble the following preconditioning matrices as
indicated by the theorem:

MS0 = D−1AS0D−H , and MN0 = D−1BN0D−H . (2.9)

In the next figure, Figure 2.1, we show the evolution of the condition number for the
Galerkin matrices AS0 and BN0 as a function of the discretization parameter together with
the condition number for the preconditioned matrices MN0AS0 and MS0BN0 .
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Figure 2.1: A triangular mesh discretization Γh of the spherical surface Γ taken as an example
for a given discretization parameter h (left), and the evolution of the condition number of
matrices AS0 , BN0 , and MN0AS0 (or MS0BN0) for diminishing values of h.

It is remarkable that, as predicted by Theorem 1.7.1, the condition number is roughly
O
(
h−1

)
for the unpreconditioned matrices, whereas the preconditioned matrices attain optimal,

absolutely bounded, condition numbers.

2.2.2 Helmholtz problem

The Helmholtz case can be viewed as a perturbed case of the Laplace problem. We will use
this fact to show that preconditioners built for the Laplace problem can also precondition the
Galerkin matrices arising in the Helmholtz problem. Let us first note that the Green’s function
for the Helmholtz problem can be expressed as the integral kernel for the Laplace case plus a
more regular function. Indeed, for x,y ∈ Γ:

Gk(x,y) = G0(x,y) +Rk(x,y), (2.10)

with

Rk(x,y) =
eik‖x−y‖ − 1

4π ‖x− y‖ . (2.11)

Thus, the weakly singular boundary integral operator can be written as the sum of two
operators,
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Sk = S0 + Pk, (2.12)

with Pk being a convolution operator with kernelRk, and thus a compact operator relative to S0

[57, Lemma 3.9.8]. Then, the bilinear form associated with Sk will be a compact perturbation
of the one induced by S0, which will not affect the preconditioning strategy [36, Section 2.4].

Similarly, we know from Theorem 1.5.3 that the bilinear form induced by N k can be rewrit-
ten using Sk as 〈

−N ku, v
〉

Γh
=
〈
Sk−−→curl Γhu,

−−→
curl Γhv

〉
Γh
, (2.13)

which, by the same argument, can be written as a compact perturbation of the bilinear form
associated with N 0:〈

−N ku, v
〉

Γh
=
〈
S0−−→curl Γhu,

−−→
curl Γhv

〉
Γh

+
〈
Pk−−→curl Γhu,

−−→
curl Γhv

〉
Γh
. (2.14)

As before, the bilinear form induced by N k is then a compact perturbation of the bilinear
form induced by N 0.

These results indicate that the preconditioning matrices MS0 and MN0 from the previous
subsection can also be used to precondition the Galerkin matrices arising in the case of the
Helmholtz problem. In what follows, we will put this idea to the test through a numerical
example.

Let us consider the following two Galerkin matrices arising in the case of the Helmholtz
problem:

ASk [i, j] =
〈
Skκi , κj

〉
Γh
, and BNk [i, j] =

〈
N kχi , χj

〉
Γh
. (2.15)

Let us also take the previously considered preconditioning matrices built using the bilinear
forms associated with operators S0 and N 0. Figure 2.2 shows the condition number of the
Galerkin matrices associated with the Helmholtz problem for, e.g., a wavenumber k = 0.3 and
its evolution with diminishing discretization parameter h.
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Figure 2.2: Evolution of the condition number of the Galerkin matrix for the Dirichlet
Helmholtz problem ASk with and without preconditioning using the Neumann Galerkin ma-
trix MN0 (left). Evolution of the condition number of the Galerkin matrix for the Neumann
Helmholtz problem BNk with and without preconditioning using the Dirichlet Galerkin matrix
MS0 (left).

38



Remark 2.2.2 (Optimality of the preconditioning after a transient). Figure 2.2 shows optimal
preconditioning after an initial transient region due to the misrepresentation of the wave-like
characteristics of the trace functions when using large cells in comparison to the wavelength.

Given that the Laplace Galerkin matrices are enough to precondition the Helmholtz case
we will drop the consideration for the Helmholtz case, and we will retake it at the end of this
chapter when we test the developed preconditioning method for wave propagation phenomena.
Consistently, we will change the notation to ease the exposition with focus on the Laplace case.

Notation 2.2.1 (Weakly singular and hypersingular kernel notation). In what follows, and
unless specified otherwise, we will adopt the following simplifying notations. The weakly singular
integral kernel for the Laplace case will be written as:

Kws(x,y) = G0(x,y). (2.16)

Similarly, the hypersingular integral kernel for the Laplace case will be written as:

Khs(x,y) =
∂2

∂nx∂ny
G0(x,y). (2.17)

Consequently, the wavenumber superscript indicator will be dropped, implicitly indicating that
k = 0:

S = S0 and N = N 0. (2.18)

In what follows we will focus on the preconditioning of the matrices associated with the
Laplace operator. In the next section we will make clear why this approach can’t be used
directly in the case of the screen obstacles. In this chapter we will describe this application
problem, and in the next chapter we will develop a strategy to tackle it.
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2.3 Boundary integral equations for the screen problem

In this section we will show some well established results that will provide the functional
framework relevant to the integral equations associated with screen obstacles. We will underline
the main difference between the case when Ω is a Lipschitz-regular obstacle and the case
of screen obstacle, remarking the new and challenging mapping properties of the involved
boundary integral operators.

We start by noting that between the four cases at hand for the screen problem, both the
anti-symmetric Dirichlet (Problem 1.3.6) and symmetric Neumann (Problem 1.3.7), can be
solved straightforwardly without need of recourse to boundary integral equations.

Proposition 2.3.1 (Solutions to the anti-symmetric Dirichlet problem and the symmetric
Neumann problem). Given the symmetric Neumann data ϕ (i.e. [γΓ∂nu] = ϕ ), the solution
to the Symmetric Neumann Problem 1.3.7 can be computed without solving a boundary integral
equation. It can be computed by applying the weakly-singular operator to the Neumann data:

u(y) = (Sϕ) (y) =

∫
Γ

1

4π ‖x− y‖ϕ(x)dΓ(x), ∀y ∈ ΩΓ. (2.19)

Similarly, given anti-symmetric Dirichlet data g (i.e. γ±Γ u = ±g), the solution to the Anti-
symmetric Dirichlet Problem 1.3.6 can be computed without solving a boundary integral equa-
tion; it can be computed by applying the double layer operator to the Dirichlet data:

u(y) = − (Dg) (y) = −
∫
Γ

∂

∂nx

(
1

4π ‖x− y‖

)
g(x)dΓ(x), ∀y ∈ ΩΓ. (2.20)

Proof The solution u = Sϕ is continuous across Γ, and the jump properties of the weakly sin-
gular operator (see Theorem 1.4.1) yields [γΓ∂u/∂n] = ϕ, which satisfies boundary conditions
of the Symmetric Neumann Problem 1.3.7.

The solution u = −Dg has a discontinuity across Γ, given by Theorem 1.4.2: [γΓu] = g,
satisfying the boundary conditions given of the Anti-Symmetric Dirichlet Problem 1.3.6.

�

Remark 2.3.1 (Focus on the symmetric Dirichlet and the anti-symmetric Neumann problems).
Given that the anti-symmetric Dirichlet and the symmetric Neumann problem do not require
solving a boundary integral equation, and thus a linear system needing preconditioning, from
now on we will focus only on the integral operator preconditioning associated with the symmetric
Dirichlet and anti-symmetric Neumann problems.

Lemma 2.3.1 (Jump of the trace for the solutions of the symmetric Dirichlet and anti-symmet-
ric Neumann problems [62, Lemma 2.2]). Let u ∈W 1,−1(ΩΓ) be the solution to the symmetric
Dirichlet Laplace problem. Then, the jump of the Neumann trace on Γ is such that

λ =

[
∂u

∂n

]
∈ H̃−1/2(Γ). (2.21)

If u ∈ W 1,−1(ΩΓ) is the solution to the anti-symmetric Neumann Laplace problem, then the
jump of the Dirichlet trace on Γ is such that

µ = [u] ∈ H̃1/2(Γ). (2.22)

The next two theorems provide us with boundary integral equations that relate the traces
of the searched solution with the given data. These integral equations are the same as for the
case of Lipschitz-regular obstacles.
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Theorem 2.3.1 (Boundary integral equation for the symmetric Dirichlet problem [62, Theorem
2.5]). A function u ∈W 1,−1(ΩΓ) is the solution to the symmetric Dirichlet problem if and only
if λ = [∂u/∂n] ∈ H̃−1/2(Γ) is the solution to boundary integral equation problem

Sλ = g, (2.23)

for g ∈ H1/2(Γ).

Theorem 2.3.2 (Boundary integral equation for the anti-symmetric Neumann problem [62,
Theorem 2.6]). A function u ∈ W 1,−1(ΩΓ) is the solution to the anti-symmetric Neumann
problem if and only if µ = [u] ∈ H̃1/2(Γ) is the solution to boundary integral equation problem

−Nµ = ϕ, (2.24)

for ϕ ∈ H−1/2(Γ).

Theorem 2.3.3 (Potential computation of the solution to the Dirichlet and Neumann problems
[62, Lemma 2.4]). Once the jumps of the Dirichlet and Neumann traces have been found, the
solution to the symmetric Dirichlet and anti-symmetric Neumann problems can be computed
as

u = Sλ−Dµ. (2.25)

Remark 2.3.2 (Vanishing jump of the traces). In the case of the symmetric Dirichlet problem
(γ±Γ u = g), the jump of the Dirichlet traces is zero, i.e. µ = 0, and thus the solution to
the problem becomes u = Sλ once λ has been calculated. In the case of the anti-symmetric
Neumann problem (γ±Γ ∂u/∂n = ϕ), the jump of the Neumann traces is zero, i.e. λ = 0, and
thus the solution to the problem becomes u = −Dµ once µ has been calculated.

The following theorem describes a key feature of the traces of the solutions to the symmetric
Dirichlet and anti-symmetric Neumann problems for screen obstacles. This important feature
will be present throughout this chapter and will be considered later as a hint for the proposal
of many of the techniques involved in the preconditioning method.

Theorem 2.3.4 (Behavior of trace jumps at the edge of the screen [62, Theorem 2.9]). The
jump of the Neumann trace of the solution to the symmetric Dirichlet Laplace problem, i.e.
λ ∈ H̃−1/2(Γ), behaves, at edge ∂Γ of the screen, like

λ(y) ∼ 1/
√

dist (∂Γ,y), (2.26)

and the jump of the Dirichlet trace of the solution to the anti-symmetric Neumann Laplace
problem, i.e. µ ∈ H̃1/2(Γ), behaves, at edge ∂Γ of the screen, like

µ(y) ∼
√

dist (∂Γ,y), (2.27)

where dist (∂Γ,y) is the distance to the edge of the screen ∂Γ from a point y ∈ Γ in the vicinity
of the edge.

The core of the problem with operator preconditioning when a Lipschitz-regular obstacle Ω
of boundary Γ collapses into a screen, an object of void interior and non-Lipschitz boundaries,
is that the mapping properties of the weakly singular and the hypersingular boundary integral
operators degenerate. They continue to map trace spaces onto their duals, but these spaces no
longer coincide with the ones where the other operator induces coercive bilinear forms. When
the boundary Γ is Lipschitz-regular, there are two spaces in consideration, 1) H1/2(Γ) where N
induces a coercive bilinear form, and 2) H−1/2(Γ) where S also induces a coercive bilinear form.
These are mutual dual spaces. When the obstacle collapses into a screen, and its boundary
is no longer Lipschitz-regular, there are now four spaces in consideration, two associated with
each boundary integral operator. Operator S maps H̃−1/2(Γ) onto H1/2(Γ), to which it is the
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dual. On the other hand N maps H̃1/2(Γ) into its dual H−1/2(Γ). The two operators involved
in the integral equations needed to solve the two problems, do not share spaces (either as image
or pre-image) where they can induce coercive bilinear forms, and thus they no longer furnish
optimal preconditioners. Additionally, Calderón Identities no longer hold, which were useful in
achieving low condition numbers (besides being bounded) when the preconditioning strategy
was applied in Section 2.2.

Different approaches have been tried to tackle or to bypass this problem. Despite the fact
that the Calderón Identities no longer hold for screen boundaries, the weakly singular and
the hypersingular boundary integral operators do precondition each other to some degree, as
proposed in [49], although not in an asymptotically optimal manner, with the spectral condition
number growing as O(|log h|). Another approach, called generalized Calderón formula for
open boundaries, provides good preconditioning tools [44], but no asymptotical estimations
are available.

A family of strategies are based in the use of inverses to the boundary integral operators,
when available. Finding the inverse operators to S and N is, in general, a difficult task.
Recently, explicit variational expressions for the inverses have been found by Carlos Jerez-
Hanckes and Jean-Claude Nédélec, along with precise space mapping properties and Calderón-
type identities for the segment screen (Γ = (−1, 1) × {0}) in R2 [41]. These inverse operators
induce linear, continuous, and coercive bilinear variational forms in the dual spaces for each
operator, and thus provide a means to build preconditioning Galerkin matrices [36]. These
results have also been proven to be extensible to the boundary integral operators linked to
the Helmholtz equation and to curves other than the segment via a sufficiently regular curve
transformation. More recently, explicit expressions for the inverse have been found for the case
where the screen obstacle is the unit disk in R3 but only for N [37]. In this chapter we will
propose inverses for S and N in series form.
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2.4 Preconditioning for the segment obstacle in R2

In this section, we will briefly describe how the optimal preconditioning strategy was de-
veloped in the past into a preconditioning method for the case of a straight segment screen
in R2 for the symmetric Dirichlet and the anti-symmetric Neumann problems. This case will
illustrate the difficulties encountered when dealing with screens and will provide insight and
suggestions to the treatment of the tridimensional case. This aforementioned strategy was
reported in [36].

2.4.1 Geometrical and functional setting

The canonical curve screen chosen in R2 was the straight segment, which was defined as
the set Γ = I × {0}, with I = (−1, 1). The propagation domain is named ΩΓ. Function
w(x) =

√
1− x2 was defined for x ∈ I, which captures the behavior of the jump of the traces

at the edges of the screen (i.e. x = −1, 1) as revealed in Theorem 2.3.4.

Lemma 2.3.1 provides the relevant spaces where the boundary integral equations are posed:
H̃1/2(Γ) and H̃−1/2(Γ). As a reminder, these spaces are defined as in [61, Section 1.1]:

H̃−1/2(Γ) ≡
(
H1/2(Γ)

)′
and H−1/2(Γ) ≡

(
H̃1/2(Γ)

)′
. (2.28)

Gelfand triples [57, Proposition 2.5.2] provide us the following inclusion relations:

H̃1/2(Γ) ⊂ L2(Γ) ⊆ H−1/2(Γ), H1/2(Γ) ⊂ L2(Γ) ⊂ H̃−1/2(Γ). (2.29)

2.4.2 Direct and inverse operators and kernels for the symmetric Dirichlet
and the anti-symmetric Neumann problems

Among the four original screen problems (Problems 1.3.5, 1.3.6, 1.3.7 and 1.3.8), the anti-
symmetric Dirichlet and symmetric Neumann problems have straightforward solutions as shown
in Proposition 2.3.1. The other two problems, the symmetric Dirichlet and anti-symmetric
Neumann problems, can be rewritten as boundary integral equations. The direct operators
associated with these integral equations are known to be S and N , as stated in Theorems 2.3.1
and 2.3.2 respectively. For the symmetric Dirichlet boundary integral equation, the kernel of
the integral operator is the same as for the S boundary integral operator in two dimensions:

Kws
s (x, y) = − 1

2π
log |x− y|, for x, y ∈ I. (2.30)

The variational formulation for the associated boundary integral equation is


For g ∈ H1/2(Γ), find λ ∈ H̃−1/2(Γ) such that for all λt ∈ H̃−1/2(Γ),

〈
Sλ, λt

〉
Γ

= −
∫
Γ

∫
Γ

1

2π
log |x− y|λ(x)λt(y)dxdy =

∫
Γ

g(y)λt(y)dy.
(2.31)

For the anti-symmetric Neumann boundary integral equation, the integral kernel of the
integral operator is the same as for the N boundary integral operator in two dimensions:

Khs
as (x, y) =

1

2π

1

|x− y|2 , for x, y ∈ I. (2.32)

The variational formulation for associated boundary integral equation is
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
For ϕ ∈ H−1/2(Γ), find µ ∈ H̃1/2(Γ) such that for all µt ∈ H̃1/2(Γ),

〈
−Nµ, µt

〉
Γ

= −
∫
Γ

∫
Γ

1

2π

1

|x− y|2µ(x)µt(y)dxdy =

∫
Γ

ϕ(y)µt(y)dy.
(2.33)

In the development of the preconditioning strategy for the segment screen, as reported
in [41], explicit variational forms were developed for the inverse operators S−1 and N−1. For
the symmetric Dirichlet problem, a symmetric hypersingular boundary integral operator S−1,
with integral kernel Khs

s , was determined. Likewise, for the anti-symmetric Neumann problem,
a weakly-singular boundary integral operator N−1, with integral kernel Kws

as , was found. The
explicit forms of these kernels are shown in Table 2.1.

Table 2.1: Explicit forms of the integral kernels of the operators linked to the boundary integral
equations in two dimensions.

Kernel Symmetric Dirichlet Anti-symmetric Neumann

Weakly singular Kws
s (x, y) = − 1

2π log |x− y| Kws
as (x, y) = − 1

2π log 2|x−y|
(x−y)2+(w(x)+w(y))2

Hypersingular Khs
s (x, y) = 1−xy

w(x)w(y)
1

(x−y)2
Khs
as (x, y) = 1

2π
1

|x−y|2

2.4.3 Series form of the integral kernels for the direct and inverse operators

These developments were achieved using polynomial bases (first kind Tn, and second kind
Un Tchebyshev polynomials), allowing for series expressions of the integral kernels. Table 2.2
shows the series expression of the integral kernels for the direct and inverse integral operators
involved in the symmetric Dirichlet and anti-symmetric Neumann problems.

Table 2.2: Series forms of the integral kernels of the operators linked to the boundary integral
equations in two dimensions.

Kernel Symmetric Dirichlet Anti-symmetric Neumann

Weakly singular Kws
s (x, y) = log 2 +

∞∑
n=1

2
nTn(x)Tn(y) Kws

as (x, y) =
∞∑
n=1

w(x)w(y)
n Un−1(x)Un−1(y)

Hypersingular Khs
s (x, y) =

∞∑
n=1

2nTn(x)Tn(y)
w(x)w(y) Khs

as (x, y) =
∞∑
n=1

2nUn−1(x)Un−1(y)

Remark 2.4.1 (Kernel singularities at the edge of the screen). It is remarkable that the series
expressions of the integral kernels explicitly show their behaviour near the edges of the segment
screen. This will provide relevant hints in the development of similar inverse operators for the
disk screen in R3, showing that the key feature is the relation between the singularities of the
jump of the traces (the unknown of the integral equations) and the behavior of the kernel at the
edge the screen.

Having the integral kernels for the variational expressions of the inverse operators, Galerkin
matrices can be built once the spaces have been discretized. These matrices act as mutual
optimal preconditioners as has been reported in [36].

2.4.4 Series expansions of functions belonging to the Sobolev trace spaces

The polynomial bases mentioned in the previous subsection allow for the expression of the
functions of the Sobolev trace spaces in the form of series expansions. This will become a key
tool in the construction of bases for the trace spaces for disk screen in R3 in the next sections.
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It has been shown separately by E. Stephan and co-workers in [20, 33, 60] and more re-
cently in an more comprehensive exposition, in [41], that using polynomial bases for L2(I) and
the weight function w allows for the creation of bases for the Sobolev trace spaces H̃1/2(I),
H̃−1/2(I), H1/2(I), and H−1/2(I).

A function µ in the space H̃1/2(I) can be expanded on the basis {wUn}∞n=0:

µ(x) =

∞∑
n=0

µnw(x)Un(x), µn =
2

π

∫
I
µ(x)Un(x)dx. (2.34)

A function g in the space H1/2(I) can be expanded on the basis {Tn}∞n=0:

g(x) =
∞∑
n=0

gnTn(x), gn =
2

π

∫
I

g(x)Tn(x)

w(x)
dx. (2.35)

A function ϕ in the space H−1/2(I) can be expanded on the basis {Un}∞n=0:

ϕ(x) =
∞∑
n=0

ϕnUn(x), ϕn =
2

π

∫
I
ϕ(x)Un(x)w(x)dx. (2.36)

A function λ in the space H̃−1/2(I) can be expanded on the basis {w−1Tn}∞n=0:

λ(x) =

∞∑
n=0

λnw
−1(x)Tn(x), λn =

2

π

∫
I
λ(x)Tn(x)dx. (2.37)

In the next sections we will adapt the results related to segment screen in R2 for the unit disk
screen in R3. With that goal in mind, we will specify a geometrical and functional framework
for that particular case and we will show the existence of operators that are inverses to the
ones involved in the boundary integral equations associated with the symmetric Dirichlet and
anti-symmetric Neumann problems.
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2.5 Geometrical and functional setting for the disk screen in
R3

From now on, we will focus on the case of a unit disk screen obstacle in R3. We will provide
a geometrical and a functional setting appropriate for this case.

2.5.1 Geometrical definitions

Let x = (x1, x2, x3) ∈ R3, with canonical coordinate system (ê1, ê2, ê3), be a point, and let
us consider the split of the three-dimensional space into two half-spaces σ∓ = {x ∈ R3 : x3 ≶ 0},
with interface plane Π given by x3 = 0. We take interest in disk D in R3:

D = {x ∈ R3 : x3 = 0, x2
1 + x2

2 < 1}. (2.38)

We divide plane Π in open disjoint sections D and Πf = Π \ D. The problem domain for
the unit disk screen obstacle is denoted by ΩD = R3 \ D.

We also consider the unit sphere S in R3. The plane Π divides the unit sphere into two
half-spheres which we denote by S+ (upper half-sphere), and S− (lower half-sphere). For a
point on the sphere, we consider the cylindrical coordinate system (θ, φ), where θ and φ are the
classic Euler angles (θ ∈ [0, π] and φ ∈ [0, 2π]), and êr, êθ and êφ the local spherical coordinate
system for x ∈ S:

x1(θ, φ) = sin θ cosφ,
x2(θ, φ) = sin θ sinφ,
x3(θ, φ) = cos θ,

{
θ(x) = θx = arccos (x3) ,
φ(x) = φx = arctan (x2/x1) ,

(2.39)


êr(x) = (sin θ cosφ, sin θ sinφ, cos θ) ,
êθ(x) = (cos θ cosφ, cos θ sinφ,− sin θ) ,
êφ(x) = (− sinφ, cosφ, 0) .

(2.40)

For a point on the disk, represented in bi-dimensional Cartesian coordinates (x1, x2) ∈ R2,
we consider the polar coordinate system (ρ, φ), where ρ ∈ [0, 1) is the radius, and êρ and êφ
the local cylindrical coordinate system of a point x ∈ D.{

x1(θ, φ) = ρ cosφ,
x2(θ, φ) = ρ sinφ,

{
ρ(x) = ρx =

√
x2

1 + x2
2 = sin θ,

φ(x) = φx = arctan (x2/x1) ,
(2.41)

{
êρ(x) = (cosφ, sinφ) ,
êφ(x) = (− sinφ, cosφ) .

(2.42)

For a point x ∈ D we denote as x± ∈ S± its vertical projection onto the upper and lower
half-spheres. Likewise, points x± ∈ S± have a vertical projection x ∈ D onto the disk.

It is noteworthy that with this definition, ρ = sin θ is always non-negative. It will become
useful to define a weight function w relating the radius ρ of a point x ∈ D with the distance to
its vertical projections on unit sphere S,

w(ρ) =
√

1− ρ2 = |cos θ| , (2.43)

such that, for x = (ρ, φ) ∈ D,

x±(ρ, φ) = (ρ cosφ, ρ sinφ,±w(ρ)) . (2.44)

Finally, we will denote by (·, ·) the inner product in R2 and R3. When taking the inner
products of complex valued functions, we will use the conventions of taking the conjugate on
the second argument.
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Figure 2.3 resumes the definitions and relations comprising the elements of the geometrical
setting for the unit disk screen in R3.
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ê̂êe�
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Figure 2.3: Geometrical setting for disk screen D, upper S+, and lower S− half-spheres and
other geometrical elements considered in this chapter.

Proposition 2.5.1 (Hypersingular integral kernel on disk D). The kernel of the hypersingular
boundary integral operator N has the following expression when x,y ∈ D:

Khs(x,y) =
∂2

∂nx∂ny

(
1

4π ‖x− y‖

)
=

1

4π ‖x− y‖3
. (2.45)

Proof
−−→
grad x

(
1

4π ‖x− y‖

)
= − x− y

4π ‖x− y‖3
. (2.46)

∂

∂nx

(
1

4π ‖x− y‖

)
= nx ·

−−→
grad x

(
1

4π ‖x− y‖

)
= −nx · (x− y)

4π ‖x− y‖3
. (2.47)

−−→
grad y

∂

∂nx

(
1

4π ‖x− y‖

)
= −3

(nx · x)(x− y)

4π ‖x− y‖5
+ 3

(nx · y)(x− y)

4π ‖x− y‖5
+

nx

4π ‖x− y‖3
. (2.48)

ny ·
−−→
grad y

∂

∂nx

(
1

4π ‖x− y‖

)
=

nx · ny

4π ‖x− y‖3
− 3

(nx · (x− y)) (ny · (x− y))

4π ‖x− y‖5
. (2.49)

This identity gives the desired results for the case of the disk, when x,y ∈ D, an thus x3 =
y3 = 0 and nx = ny = (0, 0, 1)T . �

Proposition 2.5.2 (Hypersingular kernel on sphere S). The kernel of the hypersingular bound-
ary integral operator N has the following expression when x,y ∈ S:

Khs(x,y) =
1

4π ‖x− y‖3
+

1

16π ‖x− y‖ . (2.50)

Proof We know from the proof of Proposition 2.5.1 that

∂2

∂nx∂ny

(
1

4π ‖x− y‖

)
=

nx · ny

4π ‖x− y‖3
− 3

nx · (x− y)ny · (x− y)

4π ‖x− y‖5
. (2.51)
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We remark the fact that, particularly for x,y ∈ S, we have that nx = x, ny = y and
‖x‖ = ‖y‖ = 1. This allows for the following expressions for the distance ‖x− y‖:

‖x− y‖2 = 2− 2(x · y) and ‖x− y‖4 = 4− 8(x · y) + 4(x · y)2. (2.52)

We write the hypersingular kernel as,

∂2

∂nx∂ny

(
1

4π ‖x− y‖

)
=

(x · y) ‖x− y‖2 − 3x · (x− y)y · (x− y)

4π ‖x− y‖5
. (2.53)

The development of the numerator using the previous identities gives the desired result:

(x · y) ‖x− y‖2 − 3x · (x− y)y · (x− y) = 3− 4(x · y) + (x · y)2 (2.54)

= 2− 2(x · y) +
(
1− 2(x · y) + (x · y)2

)
(2.55)

= ‖x− y‖2 +
1

4
‖x− y‖4 . (2.56)

�

Proposition 2.5.3 (Relation between the weakly singular and the hypersingular integral ker-
nels on the disk). For x,y ∈ D, the kernels Kws and Khs of the boundary integral operators S
and N on disk D are linked by the Laplace-Beltrami operator:

∆DK
ws = Khs. (2.57)

∆D

(
1

4π ‖x− y‖

)
=

1

4π ‖x− y‖3
. (2.58)

Proof

∆D (G(x,y)) = div D

(−−→
grad DG(x,y)

)
=

(
∂2

∂y2
1

+
∂2

∂y2
2

)
G(x,y) (2.59)

∂

∂xi
G(x,y) = − xi − yi

4π ‖x− y‖3
(2.60)

∂2

∂x2
i

G(x,y) = − 1

4π ‖x− y‖3
− (xi − yi)

∂

∂xi

(
1

4π ‖x− y‖3

)
(2.61)

∂

∂xi

(
1

4π ‖x− y‖3

)
= − 3(xi − yi)

4π ‖x− y‖5
(2.62)

⇒ ∂2

∂x2
i

G(x,y) = − 1

4π ‖x− y‖3
+

3(xi − yi)2

4π ‖x− y‖5
(2.63)

⇒
(
∂2

∂x2
1

+
∂2

∂x2
2

)
G(x,y) = − 2

4π ‖x− y‖3
+

3
(
(x1 − y1)2 + (x2 − y2)2

)
4π ‖x− y‖5

(2.64)(
(x1 − y1)2 + (x2 − y2)2

)
= ‖x− y‖2 . (2.65)

⇒
(
∂2

∂x2
1

+
∂2

∂x2
2

)
G(x,y) =

1

4π ‖x− y‖3
. (2.66)

�

Remark 2.5.1 (Change of variables between the disk and the upper half-sphere for the surface
vector curl operator). The inner product in C3 for the curl of two functions u and v defined
on S is, in spherical coordinates:(−−→

curl Su(x),
−−→
curl Sv(y)

)
= ∂u(x)

∂φx

∂v(y)
∂φy

+ cos (φx − φy)
(
∂u(x)
∂θx

∂v(y)
∂θy

+
cos θx cos θy
sin θx sin θy

∂u(x)
∂φx

∂v(y)
∂φy

)
+ sin (φx − φy)

(
cos θy
sin θy

∂u(x)
∂θx

∂v(y)
∂φy
− cos θx

sin θx

∂u(x)
∂φx

∂v(y)
∂θy

)
.

(2.67)
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The inner product in C2 for the curl of two functions u and v defined on D is, in cylindrical
coordinates:(−−→

curl Du(x),
−−→
curl Dv(y)

)
= cos (φx − φy)

(
∂u(x)
∂ρx

∂v(y)
∂ρy

+ 1
ρxρy

∂u(x)
∂φx

∂v(y)
∂φy

)
+ sin (φx − φy)

(
∂u(x)
∂ρx

1
ρy

∂v(y)
∂φy
− 1

ρx

∂u(x)
∂φx

∂v(y)
∂ρy

) (2.68)

The change of variables u(x) = U(x+) gives ∂U/∂φ = ∂u/∂φ, and ρ = sin θ gives

∂u

∂ρ
=

1

cos θ

∂U

∂θ
=

1

w(ρ)

∂U

∂θ
. (2.69)

Expressing one of the identities in the variables of the other through a change of variables allows
for the identification of the following identity linking both:(−−→

curl Du(x),
−−→
curl Dv(y)

)
=

1

cos θx cos θy

((−−→
curl SU(x+),

−−→
curl Sv(y+)

)
− ∂U(x+)

∂φx

∂V (y+)

∂φy

)
. (2.70)

2.5.2 Functional setting

In this section we will recall some results from Section 1.2 for the particular case of disk
screen D embedded in R3.

Let us define a function’s restrictions over a half-space:

u± = u|σ± . (2.71)

Let us also introduce the trace operators γ±Π : C∞0

(
σ±
)
→ Π as

γ±Πu = lim
ε→0±

u(x1, x2, ε). (2.72)

Operators γ±Π can be uniquely extended to the space of bounded linear operators from

H1
loc(σ

±) to H
1/2
loc (Π) [48, Chapter 3]. Then, the trace operator of a subdomain Γ of Π can be

defined as:
γ±Γ u =

(
γ±Πu

)∣∣
Γ
. (2.73)

Let [γΓ] = γ+
Γ − γ−Γ be the jump operator across a surface Γ subset of plane Π. We will

take particular interest in the case where Γ is D.

Additionally, we define an orientation for the surface Γ, and denote by nx the unit normal
at x ∈ Γ on the positive part of the surface, according to Subsection 1.2.1. In the case of
screen D the unit normal becomes nx = ê3 = (0, 0, 1) for x ∈ D, thus defining the directional
derivative

∂nxu =
∂u

∂x3
. (2.74)

We take interest in the functional spaces relevant for the description of the solutions to the
Laplace and Helmholtz problems in ΩD = R3 \ D, and the trace spaces on screen D.

The natural Sobolev spaces considered for the Laplace and Helmoltz problems [4, Section
4.1], for a general problem domain Ω, are H1(Ω) if Ω ⊂ R3 is a bounded domain, or H1

loc(Ω) if
not. Being the latter only of Fréchet type, and being ΩD unbounded, we define

W 1,−1(ΩD) =

{
u ∈ C∞0 (ΩD) :

u√
1 + ‖x‖2

∈ L2(ΩD),
−−→
gradu ∈

(
L2(ΩD)

)3}
, (2.75)

defining a Hilbert space which coincides with H1
loc(ΩD) for bounded parts of ΩD [51, Section

2.5.4]. We will also consider the following subspace of W 1,−1(ΩD):
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W 1,−1
0 (ΩD) =

{
u ∈W 1,−1(ΩD) : γ±D u = 0

}
. (2.76)

Gelfand triples [57, Proposition 2.5.2] provide us the following inclusion relations:

H̃1/2(D) ⊂ L2(D) ⊆ H−1/2(D), H1/2(D) ⊂ L2(D) ⊂ H̃−1/2(D). (2.77)

It is also remarkable that H̃1/2(D) ⊂ H1/2
0 (D).

Using these geometrical definitions and the outlined functional framework, we will show in
the next section that boundary integral operators S and N do have inverses. Their existence
will be guaranteed by the Lax-Mailgram theorem, and thus an explicit form will not be readily
available. Their explicit form will then be the subject of the subsequent sections.
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2.6 Existence of inverse operators for the Dirichlet and Neu-
mann problems

As it was shown in Section 2.3, the Laplace problem for a screen can be posed as a bound-
ary integral equation on the surface of the screen. For the Dirichlet (Neumann) problem, and
given Dirichlet (Neumann) data, the problem amounts to finding the unknown jump of the
Neumann (Dirichlet) trace solving the integral equation for the weakly-singular S (hypersin-
gular N ) operator. In this section we will show that in the case of disk screen D in R3, integral
operators S and N have inverses. We will also show, however, that these inverses do not have
a straightforward explicit form. We will undertake the task of finding series expressions in the
following sections of this chapter.

This section regarding the existence of inverse operators is an adaptation for R3 of the
results derived for R2 in [41, Sections 2.6 & 2.7]. The exposition, order of the results and the
notation follow that of the mentioned reference.

2.6.1 Dirichlet Problems

Instead of directly considering the symmetric Laplace problem, we start by tackling a more
general Laplace problem with two different Dirichlet conditions g± from above and below on
D. These boundary data lie in the Hilbert space

X =
{
g = (g+, g−) ∈ H1/2(D)×H1/2(D) : g+ − g− ∈ H̃1/2(D)

}
(2.78)

with norm
‖g‖2X =

∥∥g+
∥∥2

H1/2(D)
+
∥∥g−∥∥2

H1/2(D)
+
∥∥g+ − g−

∥∥2

H̃1/2(D)
. (2.79)

We also define the Hilbert space for Neumann data as

Y =
{
ϕ = (ϕ+, ϕ−) ∈ H−1/2(D)×H−1/2(D) : ϕ+ − ϕ− ∈ H̃−1/2(D)

}
, (2.80)

with norm
‖ϕ‖2Y =

∥∥ϕ+
∥∥2

H−1/2(D)
+
∥∥ϕ−∥∥2

H−1/2(D)
+
∥∥ϕ+ − ϕ−

∥∥2

H̃−1/2(D)
. (2.81)

Let us consider the general Dirichlet problem for the disk screen.

Problem 2.6.1. For g ∈ X, find u ∈W 1,−1(ΩD) such that:
−∆u = 0, x ∈ ΩD,(
γ+
D
γ−D

)
u = g, x ∈ D.

(2.82)

Uniqueness of solutions

Any function u in W 1,−1(ΩD) can be split into its restrictions on π±:

u± = u|σ± ∈ W 1,−1(σ±), (2.83)

with well defined traces γ±D u
± ∈ H1/2

loc (D). By definition, if u is a solution to Problem 2.6.1,

then γ±D u
± = g± with [γDu] ∈ H̃1/2(D). Due to the regularity of the solution in the interior of

ΩD, we have that [
γΠfu

]
= 0, and

[
γΠf∂nu

]
= 0. (2.84)
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By the extension theorem [48, Theorem 3.18], there exists a continuous operator E+
Π :

H1/2(D)→ H1/2(Π) extending g+ over Π satisfying

E+
Π g

+ ∈ H1/2(Π) , supp
(
E+

Π g
+
)
b Π and

(
E+

Π g
+
) ∣∣

D = g+. (2.85)

Furthermore, [g] ∈ H̃1/2(D) so that its extension by zero in Πf , [̃g], belongs to H1/2(Π).

Let us define E−Π g− = E+
Π g

+− [̃g], which is also continuous. E+
Π g

+ and E−Π g− also admit liftings
with compact support in the upper and lower half-spaces, given by the continuous operators
R± : H1/2(Π)→W 1,−1(σ±). Let us define v± ∈W 1,−1(σ±) using operator composition:

v± =
(
R± ◦ E±Π

)
g±, (2.86)

which has compact support on σ±. We consider

v =

{
v+ if x ∈ σ+,
v− if x ∈ σ−, (2.87)

so that v ∈ W 1,−1(ΩD). This allows the definition of an operator A : X → W 1,−1(ΩD) such
that v = Ag, and for which the following continuity inequality holds,

‖Ag‖W 1,−1(ΩD) ≤ CA ‖g‖X (2.88)

because of the continuity of all the composing operators. The continuity of the trace operators
provides the following result.

Lemma 2.6.1. If u ∈W 1,−1(ΩD) is such that γ±D u = g± with (g+, g−) ∈ X, there exists a real
positive constant CX such that

‖g‖X ≤ CX ‖u‖W 1,−1(ΩD) . (2.89)

Since by construction γ±D v
± = g±, it holds γ±D (u− v) = 0 and we can rewrite Problem 2.6.1

with a homogeneous Dirichlet condition:

Problem 2.6.2. Given v = Ag and f = ∆ v ∈
(
W 1,−1

0 (ΩD)
)′

, find w in W 1,−1
0 (ΩD) such that{

−∆w = f, x ∈ ΩD,

γ±D w = 0, x ∈ D.
(2.90)

Proposition 2.6.1. There is one and only one solution w ∈W 1,−1
0 (ΩD) to Problem 2.6.2.

Proof From (2.90), we have

−
〈
∆w , wt

〉
W 1,−1

0 (ΩD)
=
〈
f , wt

〉
W 1,−1

0 (ΩD)
, ∀ wt ∈W 1,−1

0 (ΩD). (2.91)

Let BR be the open ball of radius R > 0 centered at zero with boundary ∂BR and such that
supp(f) b BR. Let ΠR = Π ∩ BR and B±R = σ± ∩ BR be the upper and lower half-spheres

with boundaries ∂B±R = ΠR ∪ (∂BR ∩ σ±). For every wt ∈W 1,−1
0 (ΩD), it holds

−
〈
∆w , wt

〉
W 1,−1

0 (B±R )
=
(
∇w , ∇wt

)
B±R
−
〈
γ∂B±R

∂nw , γ∂B±R
wt
〉
H1/2(∂B±R )

, (2.92)

and addition of both half-spheres contributions yields

−
〈
∆w , wt

〉
W 1,−1

0 (BR∩ΩD)
=
(
∇w , ∇wt

)
BR∩ΩD

−
〈
γ∂BR∂nw , γ∂BRw

t
〉
H1/2(∂BR)∑

±
∓
〈
γ±R∂nw , γ

±
Rw

t
〉
H1/2(ΠR)

,
(2.93)
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By definition of W 1,−1(ΩD), when R tends to infinity, the second term on the right-hand
side vanishes. The remaining boundary term over ΠR extends now over Π wherein the splitting
into D and Πf holds. Since γ±Dw

t = 0 and γ±Πfw
t = γΠfw

t, the duality products over D cancel

out and yield:

−
〈
γ+

Π∂nw , γ
+
Πw

t
〉
H1/2(Π)

+
〈
γ−Π∂nw , γ

−
Πw

t
〉
H1/2(Π)

= −
〈[
γΠf∂nw

]
, γΠfw

t
〉
H1/2(Πf )

. (2.94)

By the transmission conditions (2.84), the above contribution disappears to obtain:

ΦD(w,wt) =
(
∇w , ∇wt

)
ΩD

=
〈
f , wt

〉
W 1,−1

0 (ΩD)
∀ wt ∈ W 1,−1

0 (ΩD). (2.95)

The associated bilinear form is continuous and coercive onW 1,−1
0 (ΩD). Indeed, using semi-norm

properties for this space,

ΦD(w,w) = (∇w , ∇w)ΩD
= |w|21,−1,ΩD

≥ c−2 ‖w‖2
W 1,−1

0 (ΩD)
(2.96)

by [51, Theorem 2.5.11]. Thus, by the Lax-Milgram theorem, we have uniqueness of w since f
belongs to the dual space of W 1,−1

0 (ΩD). �

This allows us to prove the following result.

Proposition 2.6.2. If g ∈ X, then Problem 2.6.1 has a unique solution in W 1,−1(ΩD).

Proof Let w∗ denote the solution to Problem 2.6.2. Then, the solution to the original Problem
2.6.1 is u∗ = w∗ + v and is independent on the lifting v ∈ W 1,−1(ΩD). Indeed, if we let
u∗i = w∗i + vi denote the solution for two different liftings i = 1, 2, then it holds{

−∆ (u∗1 − u∗2) = 0 x ∈ ΩD,

γ±D (u∗1 − u∗2) = 0 x ∈ D,
(2.97)

which has as a unique solution u∗1 − u∗2 = 0 by Proposition 2.6.1. �

Average and jump decomposition

The solution to Problem 2.6.1 can be split as follows. To any function u in W 1,−1(ΩD),
we associate restrictions u± on σ± belonging to W 1,−1(σ±). Denote by ǔ± ∈ W 1,−1(Rd) the
mirror reflection of u± over σ∓. Average and jump solutions defined over R3 are written as

uavg =
ǔ+ + ǔ−

2
,

ujmp =
ǔ+ − ǔ−

2
,

associated with the data


gavg =

g+ + g−

2
,

gjmp =
g+ − g−

2
.

(2.98)

Normal traces can also be similarly decomposed. Due to the orientation of the normal,
define them as{

γD∂nuavg = 1
2 ê3 · ∇(ǔ+ − ǔ−),

γD∂nujmp = 1
2 ê3 · ∇(ǔ+ + ǔ−),

associated with the values

{
uavg,

ujmp,
(2.99)

and we have the associated Green’s formula (as (∇uavg , ∇vjmp)ΩD
= 0):

(∇u , ∇v)ΩD
= 〈γD∂nuavg , γDvavg〉H1/2(D) + 〈γD∂nujmp , γDvjmp〉H̃1/2(D)

, (2.100)

for v ∈W 1,−1(R2) split into average and jump parts.
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Proposition 2.6.3. The solution to the Dirichlet Problem 2.6.1, is such that its Neumann trace
at D belongs to the space Y. There exists a unique Dirichlet-to-Neumann map DtN : X → Y
satisfying

〈DtN g , g〉X ≥ C ‖g‖2X , (2.101)

for g in X, and where the vector duality product is given by:

〈DtN g , g〉X =
〈
DtN gavg , gavg

〉
H1/2(D)

+
〈
DtN gjmp , gjmp

〉
H̃1/2(D)

. (2.102)

Proof By Proposition 2.6.2, a unique continuous application TD exists such that

TD : X −→ W 1,−1(ΩD),
g 7−→ u = TDg. (2.103)

Due to the trace theorem, Theorem 1.2.1, one can construct a continuous operator

DtN =

(
γ+
D
γ−D

)
◦ ∂n ◦ TD : X −→ H−1/2(D)×H−1/2(D),

belonging to Y since γ+
D ∂nu − γ−D ∂nu ∈ H̃−1/2(D). Parity decomposition follows by taking

duality with v split into average and jump parts using formula (2.100). �

Corollary 2.6.1. For g± = g ∈ H1/2(D), the corresponding solution to Problem 2.6.1 in ΩD is
symmetric with respect to Π. Moreover, there exists a unique Dirichlet-to-Neumann operator
DtN s : H1/2(D)→ H̃−1/2(D) satisfying

〈DtN sg , g〉H1/2(D) ≥ C ‖g‖2H1/2(D) . (2.104)

Proof Since g = (g, g), the difference g+ − g− = 0 lies trivially in H̃1/2(D) and g ∈ X. Thus,
Proposition 2.6.3 holds but now the norm is

‖g‖X = 2 ‖g‖H1/2(D) ,

and the duality product becomes∑
±

〈
γ±D ∂nTDg , g±

〉
D = 2 〈[γD∂nTDg] , g〉D , (2.105)

where TD is given in (2.103) and factors two cancel out. We obtain the desired inequality by
defining DtN s = [γD∂nTDI2×2] where In×n is the identity matrix of dimension n. �

Corollary 2.6.2. For g± = ±g ∈ H̃1/2(D), the associated solution to Problem 2.6.1 is anti-
symmetric with respect to Π and there exists a unique Dirichlet-to-Neumann operator DtN as :
H̃1/2(D)→ H−1/2(D). Moreover, the energy inequality holds

〈DtN asg , g〉H̃1/2(D)
≥ C ‖g‖2

H̃1/2(D)
. (2.106)

Proof Let us define g = (g,−g). The difference g+ − g− lies trivially in H̃1/2(D) and g ∈ X.
Thus, Proposition 2.6.3 holds with

‖g‖X = 2 ‖g‖
H̃1/2(D)

,

with duality product∑
±

〈
γ±D ∂nTDg , g±

〉
H̃1/2(D)

= 2 〈γD∂nTDg , g〉H̃1/2(D)
, (2.107)

so that factors cancel and we obtain the desired inequality. �
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2.6.2 Neumann problems

As in the Dirichlet case, let us define the general problem:

Problem 2.6.3. Given ϕ ∈ Y, find u ∈W 1,−1(R3) such that
−∆u = 0, x ∈ ΩD,(
γ+
D ∂nu

γ−D ∂nu

)
= ϕ, x ∈ D.

(2.108)

Proposition 2.6.4. The Neumann Problem 2.6.3 has a unique solution in the space W 1,−1(R3)
if and only if ϕ ∈ Y.

Proof[cf. dem of Proposition 2.6.1] For ϕ = (ϕ+, ϕ−) and u satisfying (2.108), we have the
following variational formulation:

ΦN (u, v) = (∇u , ∇v)R3 =
∑
±
±
〈
ϕ± , γ±v

〉
H1/2(D)

, ∀ v ∈W 1,−1(R3). (2.109)

Clearly, the bilinear form ΦN is coercive and continuous. On the right hand side, the dual form
is well defined only if ϕ+ − ϕ− ∈ H̃−1/2(D), since γ±D v = γDv ∈ H1/2(D). Consequently, if ϕ
belongs to Y, by the Lax-Milgram theorem, the problem has a unique solution in W 1,−1(R3).
�

Proposition 2.6.5. The solution to the Neumann Problem 2.6.3, is such that its Dirichlet trace
at D belongs to the space X. There exists a unique Neumann-to-Dirichlet map NtD : Y → X
satisfying

〈NtDϕ , ϕ〉Y ≥ C ‖ϕ‖2Y , (2.110)

for ϕ in Y, and where the vector duality product is given by:

〈NtDϕ , ϕ〉Y =
〈
NtDϕavg , ϕavg

〉
H̃−1/2(Πc)

+
〈
NtDϕjmp , ϕjmp

〉
H−1/2(D)

. (2.111)

Proof By Proposition 2.6.4, a unique continuous application TN exists such that

TN : Y −→ W 1,−1(ΩD),
ϕ 7−→ u = TNϕ. (2.112)

Due to the trace theorem, one can construct a continuous operator

NtD =

(
γ+
D
γ−D

)
◦ TD : Y −→ H1/2(D)×H1/2(D),

belonging to X since γ+
D u−γ−D u ∈ H̃1/2(D). Parity decomposition follows by taking the duality

pairing with v split into average and jump parts using formula (2.100). �

The symmetric and anti-symmetric Neumann problems for the disk can be stated as follows:

Problem 2.6.4. Find us, uas ∈W 1,−1(R3) such that

{
−∆us = 0, x ∈ ΩD,

[γD∂nus] = ϕ, x ∈ D,
and

{
−∆uas = 0, x ∈ ΩD,

γ±D ∂nuas = ϕ, x ∈ D,
(2.113)

for data ϕ in the space H̃−1/2(D) and ϕ in H−1/2(D) respectively.
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Corollary 2.6.3. The symmetric Neumann Problem 2.6.4 has a unique solution in W 1,−1(R3)
if and only if ϕ ∈ H̃−1/2(D). Thus, there exists a unique continuous and invertible Neumann-
to-Dirichlet operator, denoted NtDs : H̃−1/2(D) → H1/2(D). Moreover, the energy inequality
holds

〈NtDsϕ , ϕ〉D ≥ C ‖ϕ‖2
H̃−1/2(D)

. (2.114)

The inverse of this application is the operator DtN s defined in Corollary 2.6.1.

Proof Same as for Proposition 2.6.4 using

ΦN (u, v) = (∇u , ∇v)R3 = 〈ϕ , γDv〉D , ∀ v ∈W 1,−1(R3), (2.115)

and replacing ϕ+ − ϕ− with ϕ. �

Corollary 2.6.4. The anti-symmetric Neumann problem 2.6.4 has a unique solution in W 1,−1(R3)
if and only if ϕ ∈ H−1/2(D). Hence, there exists a unique continuous and invertible operator
NtDas : H−1/2(D)→ H̃1/2(D) satisfying

〈NtDasϕ , ϕ〉D ≥ C ‖ϕ‖2H−1/2(D) . (2.116)

The inverse of this application is the operator DtN as defined in Corollary 2.6.2.

Proof Follows the one for Proposition 2.6.5. Operator TN becomes

TN : H−1/2(D) −→ W 1,−1(R3),
ϕ 7−→ u = TNϕ.

and we can construct an operator NtDas = [γD ◦ TN ] with range in H̃1/2(D). Thus,

〈NtDasϕ , ϕ〉D = (∇u , ∇u)R3 = |u|21,−1,R3 ≥ C1 ‖γDu‖2H̃1/2(D)
, (2.117)

by continuity of the lifting operator. This proves the invertibility of NtDas. Moreover, since
NtDas is also continuous, it holds

‖ϕ‖H−1/2(D) =
∥∥NtD−1

as γDu
∥∥
H−1/2(D)

≤ C2 ‖γDu‖H̃1/2(D)
, (2.118)

which combined with the previous inequality yields the desired result. �

2.6.3 Inverses

We will briefly state the main conclusions of the present section in the following remarks.
They will state in further detail the fact that the boundary integral operators S and N are
Neumann-to-Dirichlet and Dirichlet-to-Neumann operators, that they have inverses, but that
they have so far been only expressed using abstract applications that solve the Dirichlet and
Neumann problems, and thus do not have yet explicit form.

Remark 2.6.1 (S is NtDs and N is DtN as). It can be seen from Theorem 2.3.1 and Corollary
2.6.1 that we can identify the boundary integral operator S with the Neumann-to-Dirichlet
operator NtDs. Likewise, it can be seen from Theorem 2.3.2 and Corollary 2.6.4 that we can
identify the boundary integral operator N with the Dirichlet-to-Neumann operator DtN as.

Remark 2.6.2 (NtDs has DtN s as inverse and DtN as has NtDas as inverse). By construction,
for the symmetric Dirichlet problem, the Dirichlet-to-Neumann operator DtN s takes Dirichlet
data and provides the Neumann traces of the solution. Also, for the symmetric Neumann prob-
lem, the Neumann-to-Dirichlet operator NtDs takes Neumann data and provides the Dirichlet
traces of the solution. Operators DtN as and NtDas are linked in the same manner for the
anti-symmetric problems.
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Remark 2.6.3 (DtN s and NtDas don’t have explicit forms so far). In the previous development
presented in this chapter, operators DtN s and NtDas have been constructed using abstract
operators that solve Dirichlet and Neumann problems from given boundary data via the Lax-
Mailgram theorem, and thus do not have explicit form. Indeed, operator DtN s is built using
operator TD from (2.103) that takes Dirichlet data on D and provides the solution in the problem
domain ΩD. Likewise, operator NtDas is built using operator TN from Equation 2.112 that takes
Neumann data on D and provides the solution in the domain.

In their present form, inverse operators do not contribute to the optimal preconditioning
strategy because they do not have an explicit form usable in numerical methods resulting in a
Galerkin matrix. In what follows in this chapter we will find suitable explicit forms that can
be included in a preconditioning strategy. The following Table 2.3 summarizes the results so
far.

Table 2.3: Boundary integral operators S and N are identified with NtDs and DtN as respec-
tively, for which DtN as and NtDs are identified inverses, although not having explicit form.

BIO Closed form kernel D.-to-N./N-to-D. Mappings

S Kws NtDs H̃−1/2(D)→ H1/2(D)

N Khs DtN as H̃1/2(D)→ H−1/2(D)

S−1 DtN s H1/2(D)→ H̃−1/2(D)

N−1 NtDas H−1/2(D)→ H̃1/2(D)
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2.7 Series forms for the boundary integral operators and their
inverses

In this section we will develop bases for the functional spaces involved in the Dirichlet and
Neumann problems on the disk. This will allow us to rewrite boundary integral operators S
and N in series form, using series expressions of the integral kernels. This will allow for an
explicit expression for their inverses, also in series form.

The main tool for the development of disk basis functions will be the results for the case of
a boundary integral operators on the unit sphere S in R3. Firstly, the referred results for the
spherical case will be presented. Then, the basis disk functions will be defined in relation to the
ones on the sphere. This will allow for the definition of series expressions of the functions in the
spaces involved in the Dirichlet and Neumann problems. Finally, previously mentioned facts
about the already developed two-dimensional case, and some other well established results,
will suggest the construction of integral kernels that will define four new boundary integral
operators. These boundary integral operators will be then identified as the four operators from
the previous section, thus giving a series expression for S, N and their inverses.

2.7.1 Spherical Harmonics: symmetry and parity

In the present subsection we will establish some useful facts about bases for functions
defined on unit sphere S.

Definition 2.7.1 (Spherical Harmonics). The 2l + 1 Spherical Harmonics of order l > 0 are
the functions Y m

l : S→ C defined as

Y m
l (θ, φ) = γml e

imφIPml (cos θ), for − l ≤ m ≤ l, (2.119)

where IPml is the Associated Legendre Function of order l and degree m, and γml is a normal-
ization constant defined as

γml = (−1)m
√
l + 1/2

2π

√
(l −m)!

(l +m)!
. (2.120)

Proposition 2.7.1 (Hilbert basis for L2(S) [51, Theorem 2.4.4]). The Spherical Harmonics
are a Hilbert basis (i.e. orthogonal and normal) for the Hilbert space L2(S) endowed with the
natural inner product

(u, v)L2(S) =

∫
S

uvdS. (2.121)

It will be useful to define angular momentum differential operators that will later simplify
the writing of many identities.

Definition 2.7.2 (Angular momenta on the sphere [51, Section 2.4.1]). Let us consider the
following differential operations, called angular momenta, for a function u defined on the unit
sphere S:

L±u = e±iφ

(
±∂u
∂θ

+ i
cos θ

sin θ

∂u

∂φ

)
, and L3u =

1

i

∂u

∂φ
. (2.122)

Some properties regarding differential operators’ action over Spherical Harmonics will also
be used.

Lemma 2.7.1 (Angular momenta action on the Spherical Harmonics [51, Theorem 2.4.4]). The
action of the angular momentum operators on the Spherical Harmonics provide the following
identities:

L±Y
m
l =

√
(l ∓m)(l ±m+ 1)Y m±1

l , and L3Y
m
l = mY m

l . (2.123)
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Proposition 2.7.2 (Derivaties of the Spherical Harmonics). A Spherical Harmonic Y m
l has

the following derivatives:

∂Y m
l

∂θ
=

1

2

(
e−iφ

√
(l −m)(l +m+ 1)Y m+1

l − eiφ
√

(l +m)(l −m+ 1)Y m−1
l

)
, (2.124)

∂Y m
l

∂φ
= − i sin θ

2 cos θ

(
e−iφ

√
(l −m)(l +m+ 1)Y m+1

l + eiφ
√

(l +m)(l −m+ 1)Y m−1
l

)
. (2.125)

Proof The computation of the derivatives of the Spherical Harmonics comes straightforwardly
from the application of the previous Lemma 2.7.1. �

The parity of a Spherical Harmonics Y m
l with respect to the variable x3 is the same as the

parity of l + m, and thus the spaces generated by the Spherical Harmonics can be split into
two subspaces according to parity.

Definition 2.7.3 (Parity splitting of Spherical Harmonics). Let us define the two following
subsets of the set of Spherical Harmonics according to their parity:

Ys = {Y m
l : l ≥ 0, − l ≤ m ≤ l, and l +m is even} , (2.126)

Yas = {Y m
l : l ≥ 0, − l ≤ m ≤ l, and l +m is odd} . (2.127)

Remark 2.7.1 (Parity and symmetry). The Spherical Harmonics belonging to Ys are symmet-
rical with respect to plane Π, and their value is not zero for all points on the equator (x3 = 0)
of sphere S. The Spherical Harmonics belonging to Yas are anti-symmetric with respect to plane
Π, and their values are zero on the equator.

Proposition 2.7.3 (Orthogonality in S+). If l1 + m1 and l2 + m2 have the same parity, the
following orthogonality identity holds:∫

S+

Y m1
l1

(x)Y m2
l2

(x)dS+(x) =
1

2
δm1
m2
δl1l2 . (2.128)

Proof∫
S+

Y m1
l1

(x)Y m2
l2

(x)dS+(x) = γm1
l1
γm2
l2

π/2∫
0

IPm1
l1

(cos θ)IPm2
l2

(cos θ) sin θdθ

2π∫
0

ei(m1−m2)φdφ

(2.129)

= γm1
l1
γm2
l2

2πδm1
m2

1∫
0

IPm1
l1

(t)IPm2
l2

(t)dt. (2.130)

Since l1 + m1 and l2 + m2 have the same parity, IPm1
l1

and IPm2
l2

will also have the same
parity, and thus IPm1

l1
IPm2
l2

will always be a pair function, which implies that

1∫
0

IPm1
l1

(t)IPm2
l2

(t)dt =
1

2

1∫
−1

IPm1
l1

(t)IPm2
l2

(t)dt, (2.131)

from which we get∫
S+

Y m1
l1

(x)Y m2
l2

(x)dS+(x) =
1

2

∫
S

Y m1
l1

(x)Y m2
l2

(x)dS(x) =
1

2
δm1
m2
δl1l2 . (2.132)

�

The orthogonality property stated in the last proposition only works for pairs of Spherical
Harmonic functions having the same parity. This feature will become a key aspect of the tools
that will be developed in what follows.

59



2.7.2 Disk basis functions

Proposition 2.7.3 allows us to use orthogonality properties on the upper half-sphere, which
will allow us to define similar properties for vertical projections onto the disk.

Definition 2.7.4 (The Y set). Let us consider the Spherical Harmonics Y m
l on sphere S. We

define Y, as the set of functions defined on D resulting from the composition of a projection
from the disk onto the upper half-sphere, and the Spherical Harmonics:

Y =
{
yml ∈ C∞(D) : yml (x) = Y m

l (x+), for x ∈ D
}
. (2.133)

Notation 2.7.1 (Notation for arguments of the basis functions). Spherical Harmonics and
disk basis functions can have their arguments expressed in the following equivalent ways:

yml (x) = yml (ρ, φ) = γml e
imφIPml (w(ρ)) = Y m

l (θ(x+), φ(x+)) = Y m
l (x+). (2.134)

Remark 2.7.2 (First Associated Legendre Polynomials). The following table, Table 2.4, shows
the first values of the Associated Legendre Polynomials involved in the functions of the set Y,
i.e., IPml (w(ρ)). It is noteworthy that, when l+m is even, IPml (w(ρ)) is a polynomial, whereas
l +m odd renders IPml (w(ρ)) = w(ρ)pml (ρ), where is pml is a polynomial.

Table 2.4: First values of the Associated Legendre Polynomials evaluated at w(ρ), as used in
the definition of the functions of Y.
IPml (w(ρ)) m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3
l = 0 1

l = 1 ρ/2
√

1− ρ2 −ρ
l = 2 1

8
ρ2 1

2
ρ
√

1− ρ2 1− 3ρ2

2
−3ρ

√
1− ρ2 3ρ2

l = 3 1
48
ρ3 1

8
ρ2
√

1− ρ2 1
8
ρ
(
4− 5ρ2

) √
1− ρ2

(
1− 5

2
ρ2
)
− 3ρ

2

(
4− 5ρ2

)
15ρ2

√
1− ρ2 −15ρ3

Definition 2.7.5 (The Ys and Yas sets). We split the functions from Y into two subsets
according to parity as follows:

Ys = {yml ∈ Y : l +m is even} , (2.135)

Yas = {yml ∈ Y : l +m is odd} . (2.136)

Definition 2.7.6 (The Y1/w
s and Y1/w

as sets). Let us now define the following new sets based
on the previous ones:

Y1/w
s =

{
yml
w

: yml ∈ Ys
}
, (2.137)

Y1/w
as =

{
yml
w

: yml ∈ Yas
}
. (2.138)

Remark 2.7.3 (Behavior at the edge of D). The properties of the Associated Legendre Func-
tions determine that IPml (w(ρ)) is a polynomial on ρ whenever l+m is even, and a polynomial

times function
√

1− ρ2 whenever l + m is odd. That means that they can be expressed as
p(ρ)

√
1− ρ2, where p is a polynomial. This determines the behavior of the disk basis functions

near the border of D:

• In the radial direction, functions belonging to Ys behave as polynomials.

• In the radial direction, functions belonging to Yas go to zero as
√

1− ρ2 near ρ = 1.

• In the radial direction, functions belonging to Y1/w
s have a singularity that behaves as

1/
√

1− ρ2 near ρ = 1.

• In the radial direction, functions belonging to Y1/w
as behave as polynomials.
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2.7.3 Some identities on the disk

Proposition 2.7.4 (Orthogonality identity for D). If l1 +m1 and l2 +m2 have the same parity,
the following orthogonality identity holds:∫

D

ym1
l1

(x)ym2
l2

(x)

w(x)
dD(x) =

1

2
δm1
m2
δl1l2 . (2.139)

Proof The change of variable ρ = sin θ, along with the identity

yml (ρ, φ) = Y m
l (θ(x+), φ(x+)), (2.140)

implies that ∫
D

ym1
l1

(x)ym2
l2

(x)

w(x)
dD(x) =

∫
S+

Y m1
l1

(x)Y m2
l2

(x)dS+(x), (2.141)

for which Proposition 2.7.3 finishes the proof. �

Lemma 2.7.2 (Conjugated disk basis functions).

yml (x) = (−1)my−ml (x). (2.142)

Proof Direct application of the conjugation yields

yml (x) = γml e
−imφIPml (w(ρ(x))). (2.143)

From the properties of the Associated Legendre Functions [3, Section 8.2], we know that:

IPml (w(ρ(x))) = (−1)m
(l +m)!

(l −m)!
IP−ml (w(ρ(x))) (2.144)

⇒ yml (x) = (−1)m
(l +m)!

(l −m)!
γml e

−imφIP−ml (w(ρ(x))) (2.145)

= (−1)m
(l +m)!

(l −m)!
(−1)m

√
l + 1/2

2π

√
(l −m)!

(l +m)!
e−imφIP−ml (w(ρ(x))) (2.146)

= (−1)m

(
(−1)m

√
l + 1/2

2π

√
(l +m)!

(l −m)!

)
e−imφIP−ml (w(ρ(x))) (2.147)

= (−1)mγ−ml e−imφIP−ml (w(ρ(x))). (2.148)

�

Corollary 2.7.1 (Variations to orthogonality on D). If l1 + m1 and l2 + m2 have the same
parity, the following orthogonality identity holds:∫

D

ym1
l1

(x)ym2
l2

(x)

w(x)
dD(x) =

∫
D

ym1
l1

(x) ym2
l2

(x)

w(x)
dD(x) =

(−1)m

2
δl1l2δ

−m1
m2

, (2.149)

with m = |m1| = |m2| whenever m1 = −m2.

Definition 2.7.7 (Angular momenta on the disk). Similarly as in Definition 2.7.2, let us
define the following differential operators over functions defined on D:

L±u = e±iφ

(
±∂u
∂ρ

+ i
1

ρ

∂u

∂φ

)
, L3u =

1

i

∂u

∂φ
. (2.150)
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Proposition 2.7.5 (Conjugated angular momenta).

L±u = −L∓u, L3u = −L3u. (2.151)

Proof The proof comes straightforwardly from the definition of the angular momenta operators
on the disk. �

Proposition 2.7.6 (Laplace-Beltrami operators as a composition of angular momentum op-
erators). The Laplace-Beltrami operator on disk D can be written using the angular momenta
as

∆Du = −L+ ◦ L−u = −L− ◦ L+u. (2.152)

Proof In cylindrical coordinates, the Laplace-Beltrami operators are known to have the fol-
lowing expression:

∆Du =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂φ2
. (2.153)

Using the partial derivates,

∂

∂ρ
(L±u) = e±iφ

(
±∂

2u

∂ρ2
− i

ρ2

∂u

∂φ
+

i

ρ

∂2u

∂ρ∂φ

)
, (2.154)

∂

∂φ
(L±u) = ±ie±iφ

(
±∂u
∂ρ

+
i

ρ

∂u

∂φ

)
+ e±iφ

(
± ∂2u

∂ρ∂φ
+

i

ρ

∂2u

∂φ2

)
, (2.155)

we can calculate

L+ (L−u) = L− (L+u) = −∂
2u

∂ρ2
− i

ρ2

∂u

∂φ
+

i

ρ

∂2u

∂ρ∂φ
− 1

ρ

∂u

∂ρ
+

i

ρ2

∂u

∂φ
− i

ρ

∂2u

∂φ∂ρ
− 1

ρ2

∂2u

∂2φ
, (2.156)

from which the desired result is straightforward. �

Notation 2.7.2 (Angular momenta for functions of two variables). When applied to a function
of two variables, e.g. x and y, the variable on which the angular momentum operators are
applied is noted as a superscript:

Lx±u = e±iφx

(
± ∂u

∂ρx
+ i

1

ρx

∂u

∂φx

)
, Lx3u =

1

i

∂u

∂φx
. (2.157)

Proposition 2.7.7 (Inner product representation for the
−−→
grad D and

−−→
curl D operators over

complex functions). If u and v are complex functions defined on D, we have that(−−→
curl Du(x),

−−→
curl Dv(y)

)
=
(−−→

grad Du(x),
−−→
grad Dv(y)

)
, (2.158)

and that they are equal to

− 1

2

(
L+u(x)L−v(y) + L−u(x)L+v(y)

)
. (2.159)

Proof We start by recalling the expressions for the
−−→
grad D and

−−→
curl D on the disk:

−−→
grad Du =

(
cosφ∂u∂ρ −

sinφ
ρ

∂u
∂φ

sinφ∂u∂ρ + cosφ
ρ

∂u
∂φ

)
, (2.160)

−−→
curl Du =

(
sinφ∂u∂ρ + cosφ

ρ
∂u
∂φ

− cosφ∂u∂ρ + sinφ
ρ

∂u
∂φ

)
. (2.161)
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We observe that

L+u =

(
cosφ

∂u

∂ρ
− sinφ

ρ

∂u

∂φ

)
+ i

(
sinφ

∂u

∂ρ
+

cosφ

ρ

∂u

∂φ

)
, (2.162)

L−u =

(
− cosφ

∂u

∂ρ
+

sinφ

ρ

∂u

∂φ

)
+ i

(
sinφ

∂u

∂ρ
+

cosφ

ρ

∂u

∂φ

)
. (2.163)

Using these expressions we can write the gradient and the curl operators as

−−→
grad Du =

1

2

(
L+u− L−u
−iL+u− iL−u

)
, (2.164)

−−→
curl Du = −1

2

(
iL+u+ iL−u
L+u− L−u

)
. (2.165)

We also recall the expression for the inner product of complex vectors on D: (x , y) = xyT ,
giving us the expressions:(−−→

grad Du(x) ,
−−→
grad Dv(y)

)
=
−−→
grad Du(x)

(−−→
grad Dv(y)

)T
, (2.166)

(−−→
curl Du(x) ,

−−→
curl Dv(y)

)
=
−−→
curl Du(x)

(−−→
curl Dv(y)

)T
. (2.167)

From the previous expressions it becomes evident that(−−→
curl Du(x),

−−→
curl Dv(y)

)
=
(−−→

grad Du(x),
−−→
grad Dv(y)

)
(2.168)

=
1

4
((iL+u+ iL−u)(iL−v + iL+v)

+(L+u− L−u)(−L+v + L+v)) (2.169)

= −1

2
(L+uL−v + L−uL+v) . (2.170)

�

Lemma 2.7.3 (Adjoints of the angular momentum operators). For functions that are zero at
the edge ∂D, the angular momentum operators have the following adjoints:

〈L+u , v〉D = 〈u , L−v〉D , i.e., L∗+ = L−, (2.171)

〈L−u , v〉D = 〈u , L+v〉D , i.e., L∗− = L+. (2.172)

Proof Let us first address the adjoint of L+. We have that

∫
D

L+u(x)v(x)dD(x) =

1∫
0

2π∫
0

eiφ

(
∂u

∂ρ
(x) +

i

ρ

∂u

∂φ
(x)

)
v(x)ρdρdφ. (2.173)

Let us separate the integral in two parts:

I1 =

1∫
0

2π∫
0

eiφ

(
∂u

∂ρ
(x)

)
v(x)ρdφdρ, (2.174)

I2 =

1∫
0

2π∫
0

eiφ

(
i

ρ

∂u

∂φ
(x)

)
v(x)ρdφdρ. (2.175)

63



Applying integration by parts to the first integral gives us

I1 =

2π∫
0

eiφ
(
u(x)v(x)

)∣∣∣
ρ=1

dφ−
1∫

0

2π∫
0

eiφ

(
u(x)v(x)

ρ
+
∂v

∂ρ
(x)u(x)

)
ρdφdρ, (2.176)

and applying integration by parts to the second integral gives us

I2 = −
1∫

0

2π∫
0

eiφ

(
−u(x)v(x)

ρ
+

i

ρ
u(x)

∂v

∂φ
(x)

)
ρdφdρ. (2.177)

⇒ I1 + I2 = −
∫
D

u(x)L+v(x)dD +

2π∫
0

eiφ
(
u(x)v(x)

)∣∣∣
ρ=1

dφ. (2.178)

Proposition 2.7.5 tells us that L+v = −L−v, so we can rewrite the previous expression as

〈L+u , v〉D = 〈u , L−v〉D +

2π∫
0

eiφ
(
u(x)v(x)

)∣∣∣
ρ=1

dφ. (2.179)

Using the same procedure we also get

〈L−u , v〉D = 〈u , L+v〉D −
2π∫
0

eiφ
(
u(x)v(x)

)∣∣∣
ρ=1

dφ. (2.180)

Since u = v = 0 for ρ = 1, we obtain the desired result. �

In the rest of this section we will develop a series of results related to application of deriva-
tives and angular momenta to the disk basis functions that will prove useful in the proofs of
the main results contained in the rest of the chapter.

Lemma 2.7.4 (Some properties of the Associated Legendre Functions [3, Section 8.5]). For
a given variable ξ ∈ (−1, 1) we have the following recurrence relationships for the Associated
Legendre Functions:

(2l + 1)ξIPml (ξ) = (l −m+ 1) IPml+1(ξ)− (l +m) IPml−1(ξ), (2.181)

(1− ξ2)
∂IPml
∂ξ

(ξ) =
1

2l + 1

(
((l + 1)(l +m) IPml−1(ξ)− l(l −m+ 1) IPml+1(ξ)

)
), (2.182)

√
(1− ξ2)

∂IPml
∂ξ

(ξ) =
1

2

(
((l −m+ 1)(l +m) IPm−1

l (ξ)− IPm+1
l (ξ)

)
). (2.183)

This lemma and the application of the angular momentum operators easily allow to express
several identities regarding the disk basis functions. We will list them in the following corollaries
as they will be used later in subsequent proofs.

Corollary 2.7.2 (Angular momenta action on the disk basis functions).

L+y
m
l =

√
(l −m)(l +m+ 1)

ym+1
l

w
, (2.184)

L−yml =
√

(l +m)(l −m+ 1)
ym−1
l

w
, (2.185)
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L3y
m
l = myml , (2.186)

L+yml = −
√

(l +m)(l −m+ 1)
ym−1
l

w
, (2.187)

L−yml = −
√

(l −m)(l +m+ 1)
ym+1
l

w
, (2.188)

L3yml = −myml , (2.189)

L+y
m
l =

eiφ

2ρw(ρ)

(
(l −m)

√
(l + 1)2 −m2√
(l + 1)2 − 1/4

yml+1 − (l +m+ 1)

√
l2 −m2√
l2 − 1/4

yml−1

)
(2.190)

L−yml =− e−iφ

2ρw(ρ)

(
(l +m)

√
(l + 1)2 −m2√
(l + 1)2 − 1/4

yml+1 − (l −m+ 1)

√
l2 −m2√
l2 − 1/4

yml−1

)
(2.191)

L+yml =
eiφ

2ρw(ρ)

(
(l+m)

√
(l+1)2−m2√
(l+1)2−1/4

yml+1−(l−m+1)

√
l2−m2√
l2−1/4

yml−1

)
(2.192)

Corollary 2.7.3 (Recurrence relations for the disk basis functions).

yml (x) =
1

2
√

(1− ρ2)

(√
(l + 1)2 −m2√
(l + 1)2 − 1/4

yml+1(x) +

√
l2 −m2√
l2 − 1/4

yml−1(x)

)
, (2.193)

2 ρeiφ yml (x) =

√
(l −m)(l −m− 1)

l2 − 1/4
ym+1
l−1 (x)−

√
(l +m+ 1)(l +m+ 2)

(l + 1)2 − 1/4
ym+1
l+1 (x). (2.194)

2.7.4 Weighted spaces and series representations

Definition 2.7.8 (Sesquilinear forms associated with w and 1/w). Let us notate by (·, ·)w the
following sesquilinear form associated with w:

(u, v)w =

∫
D

u(x)v(x)w(x)dD(x). (2.195)

Similarly, let us notate by (·, ·)1/w, the sesquilinear form associated with 1/w:

(u, v)1/w =

∫
D

u(x)v(x)w−1(x)dD(x). (2.196)

Definition 2.7.9 (The L2
w(D) and the L2

1/w(D) spaces). Let us define the space L2
w(D), asso-

ciated with the inner product (·, ·)w and with the norm ‖u‖w =
√

(u, u)w, as

L2
w(D) = {u measurable : ‖u‖w <∞} , (2.197)

and the space L2
1/w(D), associated with the inner product (·, ·)1/w and with the norm ‖u‖1/w =√

(u, u)1/w, as

L2
1/w(D) =

{
u measurable : ‖u‖1/w <∞

}
. (2.198)
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Proposition 2.7.8 (Bases for L2
w(D)). The sets Y1/w

s and Y1/w
as form, each one, an orthogonal

and complete basis for L2
w(D).

Proof Orthogonality can be easily checked from Proposition 2.7.4. The sets Y1/w
s and Y1/w

as

are subsets of L2
w(D), since it can be easily shown that each member has a finite norm (indeed

equal to 1/
√

2). If the set Y1/w
s wasn’t dense in L2

w(D), there would be a member f ∈ L2
w(D)

not a.e. equal to zero and orthogonal to all members of Y1/w
s , i.e.,(

f ,
yml
w

)
w

=

∫
D

f(x)yml (x)dD(x) = 0 for l ≥ 0, −l ≤ m ≤ l, l +m even. (2.199)

But for l+m even, functions yml , i.e. the set Ys, is dense in C∞(D), since it is a combination of
polynomials in the radial direction (Remark 2.7.2) and trigonometric polynomials in the angular
direction. This means that f must be equal to zero a.e., which contradicts the premises, thus

implying that Y1/w
s is dense in L2

w. The same argument can be used for l + m odd, except
that yml functions in the radial direction are of the form w(ρ)p(ρ), where now p is polynomial
(Remark 2.7.2). Being w(ρ) regular on D the same argument stands, rendering the set of

functions yml for l +m odd dense in C∞(D), and thus Y1/w
as is also dense in L2

w(D) �

Proposition 2.7.9 (Bases for L2
1/w(D)). The sets Ys and Yas form, each one, an orthogonal

and complete basis for L2
1/w(D).

Proof This proof uses the same argument as the one from Proposition 2.7.8. Now, if the set
Yas was not dense in L2

1/w(D), there would be a member f ∈ L2
1/w(D) not a.e. equal to zero

and orthogonal to all members of Yas, i.e.,

(f , yml )1/w =

∫
D

f(x)yml (x)

w(x)
dD(x) = 0 for l ≥ 0, −l ≤ m ≤ l, ; l +m odd. (2.200)

But for l + m odd, again in accordance with Remark 2.7.2, yml /w are polynomials in ρ and
thus the functions yml /w are dense in C∞(D). For l+m even, functions yml are polynomials in
ρ, and thus f/w would have to be a.e. zero on D. This means that f itself would also have to
be a.e. zero on D. By contradiction, there is not such a function f . �

We can expand functions in any of the four Sobolev spaces H̃1/2(D), H1/2(D), H−1/2(D),
and H̃−1/2(D) using these bases. If u is the solution to the Laplace screen problem for the disk,
the jump of the Neumann trace will behave as λ ∼ 1/

√
1− ρ2 near the edge, i.e., for ρ → 1,

and the jump of the Dirichlet trace will behave as µ ∼
√

1− ρ2 near the edge (cf. Theorem
2.3.4). This motivates the use of the weight function w and the expansion of functions in
H̃1/2(D) on the space L2

1/w on the basis Yas, functions in the space H1/2(D) on the space

L2
1/w on the basis Ys, functions in the space H−1/2(D) on the space L2

w on the basis Y1/w
as , and

functions in the space H̃−1/2(D) on the space L2
w on the basis Y1/w

s . Given the properties of the
basis sets, derived from the properties of the Associated Legendre Polynomials, this equates to
use polynomial bases and the weight function w in the radial direction as it was done for the
segment in R2 in Subsection 2.4.4, and the basis

{
eimφ

}
m∈Z for L2([0, 2π]).

A function µ in the space H̃1/2(D) will be expanded on the basis Yas of space L2
1/w:

µ(x) =

∞∑
l=0

l∑
m=−l
l+m odd

µml y
m
l (x), µml = (µ, yml )1/w =

∫
D

µ(x)yml (x)√
(1− ρ(x)2)

dD(x). (2.201)

A function g in the space H1/2(D) will be expanded on the basis Ys of space L2
1/w :
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g(x) =
∞∑
l=0

l∑
m=−l
l+m even

gml y
m
l (x), gml = (g, yml )1/w =

∫
D

g(x)yml (x)√
(1− ρ(x)2)

dD(x). (2.202)

A function ϕ in the space H−1/2(D) will be expanded on the basis Y1/w
as of space L2

w:

ϕ(x) =

∞∑
l=0

l∑
m=−l
l+m odd

ϕm
l

yml (x)√
(1− ρ(x)2)

, ϕm
l =

(
ϕ ,

yml√
1− ρ(x)2

)
w

=

∫
D
ϕ(x)yml (x)dD(x). (2.203)

A function λ in the space H̃−1/2(D) will be expanded on the basis Y1/w
s of space L2

w:

λ(x) =

∞∑
l=0

l∑
m=−l

l+m even

λml
yml (x)√

(1− ρ(x)2)
, λml =

(
λ ,

yml (x)√
(1− ρ(x)2)

)
w

=

∫
D
ψ(x)yml (x)dD(x). (2.204)

2.7.5 Series forms for the boundary integral operators

In this section we will develop series expressions for the kernels of the integral operators
related to boundary integral equations linked to the symmetric Dirichlet and anti-symmetric
Neumann Laplace problems. This will be done in order to use the developed tools and identities
concerning the disk basis functions to derive inverse integral operators. These inverse operators
will be useful for solving the boundary integral equations and for building coercive bilinear forms
in the function spaces relevant to these problems, thus compliant with the Theorem 2.1.1 on
optimal preconditioning.

We will put forward a theorem about the mapping properties of the operator N acting on
the disk basis functions, hinted by the results of Krenk [42] and Martin [46]. We will provide
a proof later on this section. We will make use of the gamma function [19, Section 6.2], which
we will denote, in the scope of this chapter, with the symbol Γ.

Theorem 2.7.1 (Hypersingular operator on the disk basis functions). For l + m odd, the
action of the hypersingular boundary integral operator on a disk basis function yml is

(N yml ) (x) = −αml
yml (x)

w(x)
, (2.205)

where the constant αml is given by:

αml =
Γ
(
l+m+2

2

)
Γ
(
l−m+2

2

)(
l+m−1

2

)
!
(
l−m−1

2

)
!
. (2.206)

Remark 2.7.4 (Some of the first values of αml ). The values of αml are real for l + m odd,
increasing with degree l, and decreasing with the absolute value of the order m. Table 2.5 shows
some of the first values of αml .

We will now propose series expressions for the integral kernels of some integral operators
intended to be related to the Dirichlet-to-Neumann and Neumann-to-Dirichlet operators for
the symmetric Dirichlet and anti-symmetric Neumann Laplace problems.

We know from Theorem 2.3.4 that the behavior of the traces of the solutions for the sym-
metric Dirichlet and anti-symmetric resemble 1/

√
dist (x, ∂Γ) for the former and

√
dist (x, ∂Γ)

for the latter near the edge of the screen, and where dist (x, ∂Γ) is the distance to the edge of
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Table 2.5: Some of the first values of αml , for degree l ≤ 4, order −4 ≤ m ≤ 4 and l +m odd.

αml m = −4 m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3 m = 4

l=0

l=1 0.7854

l=2 1.1781 1.1781

l=3 1.4726 1.7671 1.4726

l=4 1.7181 2.2089 2.2089 1.7181

the screen from a given point x in the vicinity. We also know from the previous results ob-
tained for the segment screen embedded in R2 that the integral kernels match those behaviors.
Finally, from Theorem 2.7.1, the desired mapping properties of one of the integral operators,
N . We will propose new integral kernels that will match all these features in ρ.

Definition 2.7.10 (Some new integral kernels in series form). For (x,y) ∈ D×D, with x 6= y,
let us define the anti-symmetric weakly singular and hypersingular integral kernels as the formal
series

Kws
as (x,y) =

∞∑
l=0

l∑
m=−l
l+m odd

1

αml

(
yml (x)yml (y) + yml (x)yml (y)

)
, (2.207)

Khs
as (x,y) = −

∞∑
l=0

l∑
m=−l
l+m odd

αml

(
yml (x)

w(x)

yml (y)

w(y)
+
yml (x)

w(x)

yml (y)

w(y)

)
, (2.208)

where αml is defined as in Theorem 2.7.1. Similarly for (x,y) ∈ D × D, with x 6= y, let us
define the symmetric weakly singular and hypersingular integral kernels as the formal series

Kws
s (x,y) =

∞∑
l=0

l∑
m=−l
l+m even

1

βml

(
yml (x)yml (y) + yml (x)yml (y)

)
, (2.209)

Khs
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m even

βml

(
yml (x)

w(x)

yml (y)

w(y)
+
yml (x)

w(x)

yml (y)

w(y)

)
, (2.210)

where βml is a function of l and m yet to be defined.

Remark 2.7.5 (The behavior at the edge is the same as in the R2 case). From Remark 2.7.3,
it becomes clear that the integral kernels of the four integral operators on the segment for the
two-dimensional case, have the same behavior as the corresponding proposed integral kernels
from the previous definition in the radial direction.

Using these integral kernels we now define their corresponding boundary integral operators.

Definition 2.7.11 (Associated boundary integral operators). For a function u defined on D,
let us define the symmetric weakly singular integral operator

(Lwss u) (y) =

∫
D

Kws
s (x,y)u(x)dD(x), (2.211)

the anti-symmetric weakly singular integral operator

(Lwsas u) (y) =

∫
D

Kws
as (x,y)u(x)dD(x), (2.212)
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the symmetric hypersingular integral operator(
Lhss u

)
(y) =

∫
D

Khs
s (x,y)u(x)dD(x), (2.213)

and the anti-symmetric hypersingular integral operator(
Lhsasu

)
(y) =

∫
D

Khs
as (x,y)u(x)dD(x). (2.214)

Using the tools and identities developed in this section, the mapping properties of the
associated boundary integral operators for the disk basis functions are easy to determine.

Proposition 2.7.10 (Integral operator action on the disk basis functions). The following
mapping identities hold for the boundary integral operators from Definition 2.7.11:

Lwss
yml
w

=
1

βml
yml , for l +m even, (2.215)

Lwsas
yml
w

=
1

αml
yml , for l +m odd, (2.216)

Lhss yml = −βml
yml
w
, for l +m even, (2.217)

Lhsasyml = −αml
yml
w
, for l +m odd. (2.218)

Proof Let us analyze the first case.

(
Lwss

yml
w

)
(y)=

∞∑
l=0

l∑
m=−l
l+m even

1

βm
′

l′

ym′l′ (y)

∫
D

ym
′

l′ (x)
yml
w

(x)dD(x) + ym
′

l′ (y)

∫
D

ym
′

l′ (x)
yml
w
dD(x)

 .

(2.219)
Using the orthogonality relations from Proposition 2.7.4 and Corollary 2.7.1 it follows that(

Lwss
yml
w

)
(y) =

∞∑
l=0

l∑
m=−l
l+m even

1

βm
′

l′

(
ym
′

l′ (y)
(−1)(m′)

2
δm
′
−mδ

l′
l + ym

′
l′ (y)

1

2
δm
′

m δl
′
l + ym

′
l′

)
(2.220)

=
(−1)m

2

1

β−ml
y−ml (y) +

1

2

1

βml
yml (y). (2.221)

Noting that βml = β−ml and that y−ml = (−1)myml , the desired result is obtained. The next
three cases follow from similar analyses. �

Proposition 2.7.10 assures that the constructed boundary integral operator Lhsas has the
desired mapping qualities.

Remark 2.7.6 (N is identified Lhsas). Operator N is identified with operator Lhsas as they map
functions of H̃1/2(D) onto the same images on H−1/2(D).

The previous Proposition 2.7.10 allows us to extract two results that aim to show that
the boundary integral operators defined using the series integral kernel fulfill the required
conditions, i.e., they provide inverse operators that induce bilinear forms that we can use to
build preconditioners.
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Theorem 2.7.2 (Lhss is minus the inverse of Lwss and Lwsas is minus the inverse of Lhsas). The

operator Lhss : Ys → Y1/w
s is the inverse of the operator Lwss : Y1/w

s → Ys composed with a

change of sign, and the operator Lwsas : Y1/w
as → Yas is the inverse of the operator Lhsas : Yas →

Y1/w
as composed with a change of sign.

Proof These results follow straightforwardly from Proposition 2.7.10. �

Corollary 2.7.4 (Bilinear forms induced by the new boundary integral operators on for the
disk basis functions). For l1+m1 and l2+m2 odd, we have the following bilinear form identities:

〈
Lwsas

ym1
l1

w
,
ym2
l2

w

〉
D

=

 0 , if l1 6= l2 or m1 6= m2,

1
2αml

, if l1 = l2 = l and m1 = m2 = m,
(2.222)

〈
Lhsasym1

l1
, ym2

l2

〉
D

=

{
0 , if l1 6= l2 or m1 6= m2,

−αml
2 , if l1 = l2 = l and m1 = m2 = m.

(2.223)

For l1 +m1 and l2 +m2 even, we have the following additional bilinear form identities:

〈
Lwss

ym1
l1

w
,
ym2
l2

w

〉
D

=

 0 , if l1 6= l2 or m1 6= m2,

1
2βml

, if l1 = l2 = l and m1 = m2 = m,
(2.224)

〈
Lhss ym1

l1
, ym2

l2

〉
D

=

 0 , if l1 6= l2 or m1 6= m2,

−βml
2 , if l1 = l2 = l and m1 = m2 = m.

(2.225)

Proof These results follow straightforwardly from the mapping properties of basis functions
established in Proposition 2.7.10, and orthogonality properties from Proposition 2.7.4. �

Up until this point, we have matched Lhsas, for which Lwsas was the inverse, with N ; their
definitions depend on the coefficients αml , which are known. The question remains how to
choose βml so that we can identify Lwss with S, thus providing us with the inverse Lhss . We
noted in Remark 2.6.1 that the Neumann-to-Dirichlet operator for the symmetric Dirichlet
problem, NtDs, is in fact the operator S. Thus, the choice of βml must allow Kws

s to be written
as Kws. Following (1.100) from Theorem 1.5.3, we impose special relations between Lhsas and
Lwss , and between Lhss and Lwsas .

Definition 2.7.12 (βml and the relation between Lhsas and Lwss , and between Lhss and Lwsas ).

Let us define βml such that for functions u, v ∈ H̃1/2(D), the bilinear form induced by Lhsas can
be written as 〈

−Lhsasu, v
〉
D

=
〈
Lwss
−−→
curl Du,

−−→
curl Dv

〉
D
, (2.226)

and that for functions u, v ∈ H1/2(D) with zero mean, i.e. 〈u, 1〉D = 0 and 〈v, 1〉D = 0, the
bilinear form induced by Lhss can be written as〈

−Lhss u, v
〉
D

=
〈
Lwsas
−−→
curl Du,

−−→
curl Dv

〉
D
. (2.227)

Proposition 2.7.11 (Rewriting hypersingular operators). For real functions, Definition 2.7.12
can also be written as

Lhsas = −1

2
(L− ◦ Lwss ◦ L+ + L+ ◦ Lwss ◦ L−) , (2.228)

Lhss = −1

2
(L− ◦ Lwsas ◦ L+ + L+ ◦ Lwsas ◦ L−) . (2.229)
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Proof Let us address the first identity. Let us rewrite the following variational expression:〈
−Lhsasu , v

〉
D

= −
∫
D

∫
D

Kws
s (x,y)

(−−→
curl Du(x),

−−→
curl Dv(y)

)
dD(x)dD(y). (2.230)

Using Proposition 2.7.7 we can rewrite it as

1

2

∫
D

∫
D

Kws
s (x,y)

(
Lx+u(x)Ly−v(y) + Lx−u(x)Ly+v(y)

)
dD(x)dD(y) (2.231)

=
1

2

∫
D

∫
D

Kws
s (x,y)

(
−Lx+u(x)Ly+v(y)− Lx−u(x)Ly−v(y)

)
dD(x)dD(y) (2.232)

= −1

2
(〈Lwss ◦ L+u , L+v〉D + 〈Lwss ◦ L−u , L−v〉D) (2.233)

= −1

2
(〈L− ◦ Lwss ◦ L+u , v〉D + 〈L+ ◦ Lwss ◦ L−u , v〉D) (2.234)

= −1

2
(〈L− ◦ Lwss ◦ L+u , v〉D + 〈L+ ◦ Lwss ◦ L−u , v〉D) (2.235)

= −1

2
〈(L− ◦ Lwss ◦ L+ + L+ ◦ Lwss ◦ L−)u , v〉D , (2.236)

which is the desired result. The second identity is obtained using a similar procedure. �

Using Definition 2.7.12, the goal is to prove that it implies that the value of βml allows for
the rewriting of S as Lwss for the disk. In what follows, we will examine the consequences of
the definition of βml given in Definition 2.7.12.

Proposition 2.7.12 (Recurrence relations for αml and βml ). The values of αml and βml are
linked by the recurrence relations

αml =
1

2

(
(l +m)(l −m+ 1)

βm−1
l

+
(l −m)(l +m+ 1)

βm+1
l

)
, (2.237)

for l ≥ 1 and l +m odd, and

βml =
1

2

(
(l +m)(l −m+ 1)

αm−1
l

+
(l −m)(l +m+ 1)

αm+1
l

)
, (2.238)

for l ≥ 1 and l +m even.

Proof From Corollary 2.7.2 we know the effect of angular momentum operators on disk basis
functions yml , thus we can easily compute, for l +m odd,

L+ ◦ Lwss ◦ L−yml =
(l −m+ 1)(l +m)

βm−1
l

yml , (2.239)

L− ◦ Lwss ◦ L+y
m
l =

(l +m+ 1)(l −m)

βm+1
l

yml , (2.240)

which together with the action of Lhsas over yml gives the first recurrence relation. The second
recurrence relation comes similarly from computing the effect of L+◦Lwsas ◦L− and L−◦Lwsas ◦L+

for l +m even. �

Proposition 2.7.13 (Alternative expressions for αml and βml ). The values of αml and βml can
be rewritten without making use of recurrences as:

αml =
π

4

(l+m−1)/2∏
i=1

2i+ 1

2i

(l−m−1)/2∏
i=1

2i+ 1

2i

 , for l +m odd, (2.241)
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βml =
4

π

(l+m)/2∏
i=1

2i

2i− 1

(l−m)/2∏
i=1

2i

2i− 1

 , for l +m even. (2.242)

Proof Let us first recall the following property of the Gamma function [3, Eq. 6.1.12]:

Γ(n+ 1/2) =

√
π

2n

n−1∏
i=1

(2i+ 1). (2.243)

Let us now rewrite some factors making up αml in (2.206) (for l +m odd):

Γ

(
l +m+ 2

2

)
= Γ

(
l +m+ 1

2
+

1

2

)
=

√
π

2
l+m+1

2

l+m−1
2∏
i=1

(2i+ 1), (2.244)

Γ

(
l −m+ 2

2

)
= Γ

(
l −m+ 1

2
+

1

2

)
=

√
π

2
l−m+1

2

l−m−1
2∏
i=1

(2i+ 1), (2.245)

(
l +m− 1

2

)
! = 2−

l+m−1
2

l+m−1
2∏
i=1

(2i), (2.246)

(
l −m− 1

2

)
! = 2−

l−m−1
2

l−m−1
2∏
i=1

(2i). (2.247)

Replacing the four new expressions in (2.206) we get the desired formula for αml .

Using recursion relation (2.237) from Proposition 2.7.12, a similar expression can be found
for βml when l +m is even. Let us denote f(i) = (2i+ 1)/2i and note that,

αm−1
l =

π

4

l+m−2
2∏
i=1

f(i)

l−m
2∏
i=1

f(i) =
1

f
(
l+m

2

) π
4

l+m
2∏
i=1

f(i)

l−m
2∏
i=1

f(i), (2.248)

αm+1
l =

π

4

l+m
2∏
i=1

f(i)

l−m−2
2∏
i=1

f(i) =
1

f
(
l−m

2

) π
4

l+m
2∏
i=1

f(i)

l−m
2∏
i=1

f(i). (2.249)

Let us also denote

Aml =
π

4

l+m
2∏
i=1

f(i)

l−m
2∏
i=1

f(i). (2.250)

Then βml can be computed from the recursion as

βml =
1

2Aml

(
f

(
l +m

2

)
(l +m)(l −m+ 1) + f

(
l −m

2

)
(l −m)(l +m+ 1)

)
(2.251)

=
1

2Aml
((l +m+ 1)(l −m+ 1) + (l −m+ 1)(l +m+ 1)) (2.252)

=
(l +m+ 1)(l −m+ 1)

Aml
(2.253)

⇒ βml = (l +m+ 1)(l −m+ 1)
4

π

l+m
2∏
i=1

2i

2i+ 1

l−m
2∏
i=1

2i

2i+ 1
. (2.254)
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Let us rewrite the following two products:

l+m
2∏
i=1

1

2i+ 1
=

1

(l +m+ 1)

l+m
2∏
i=1

1

2i− 1
, (2.255)

l−m
2∏
i=1

1

2i+ 1
=

1

(l −m+ 1)

l−m
2∏
i=1

1

2i− 1
, (2.256)

from which we finally write βml as:

βml =
4

π

l+m
2∏
i=1

2i

2i− 1

l−m
2∏
i=1

2i

2i− 1
. (2.257)

�

Remark 2.7.7 (First values of βml ). The values of βml are real for l+m, increasing with degree
l, and decreasing with the absolute value of the order m. Table 2.6 shows, as an example, some
of the first values of βml .

Table 2.6: Some of the first values of βml , for degree l ≤ 4, order −4 ≤ m ≤ 4 and l +m even.

βml m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4

l=0 1.2732

l=1 2.5465 2.5465

l=2 3.3953 5.093 3.3953

l=3 4.0744 6.7906 6.7906 4.0744

l=4 4.6564 8.1487 9.0541 8.1487 4.6564

We will now show that the chosen value of βml is such that it allows us to rewrite S as Lwss
for the case of the symmetric Dirichlet Laplace problem for the disk screen.

Theorem 2.7.3 (Kws is Kws
s ). For (x,y) ∈ D × D, the weakly singular integral kernel Kws,

associated with S, is equal to the proposed weakly singular symmetric kernel Kws
s .

Proof It is easy to show that
−−→
grad x

D ‖x− y‖ = −−−→grad y
D ‖x− y‖ and that

−−→
grad x

DK
ws
s (x,y) =

−−−→grad y
DK

ws
s (x,y), and thus

−−→
grad x

D (‖x− y‖Kws
s (x,y)) = −−−→grad y

D (‖x− y‖Kws
s (x,y)) . (2.258)

For a function f of x and y on the D, we have that

−−→
grad x

Df(x,y) = 0⇔


cosφx

∂f
∂ρx

(x,y)− sinφx
ρx

∂f
∂φx

(x,y) = 0

and

sinφx
∂f
∂ρx

(x,y) + cosφx
ρx

∂f
∂φx

(x,y) = 0,

(2.259)

from where it is easy to conclude that

−−→
grad x

D (‖x− y‖Kws
s (x,y)) = 0 ⇔ Lx+ (‖x− y‖Kws

s (x,y)) = 0, (2.260)

since both ‖x− y‖ and Kws
s (x,y) are real. Using the above identities, we have that

Lx+ (‖x− y‖Kws
s (x,y)) = 0 ⇒ Kws

s (x,y) = CKws(x,y), (2.261)
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for some constant C.

Let us then prove that Lx+ (‖x− y‖Kws
s (x,y)) = 0.

If we consider the Law of Cosines, or Generalized Pythagoras Theorem, i.e.

‖x− y‖2 = ρ2
x + ρ2

y − 2ρxρy cos(φx − φy) (2.262)

We can easily state the identities

Lx+(‖x− y‖)=
eiφx

‖x− y‖
(
ρx − ρye−i(φx−φy)

)
(2.263)

and

Lx−(‖x− y‖)=
e−iφx

‖x− y‖
(
−ρx + ρye

i(φx−φy)
)
, (2.264)

which allows us to write:
Lx+(‖x− y‖)Lx−(‖x− y‖) = −1, (2.265)

‖x− y‖Lx+(‖x− y‖) = ρxe
iφx − ρye−iφy , (2.266)

‖x− y‖Lx−(‖x− y‖) = −ρxe−iφx + ρye
−iφy . (2.267)

Using (2.265) together with the product rule

Lx+(‖x− y‖Kws
s (x,y)) = Lx+(‖x− y‖)Kws

s (x,y) + ‖x− y‖Lx+(Kws
s (x,y)), (2.268)

we can write

Lx−(‖x− y‖)Lx+(‖x− y‖Kws
s (x,y))=−Kws

s (x,y)+‖x− y‖ Lx−(‖x− y‖)Lx+(Kws
s (x,y)). (2.269)

Since function Lx−(‖x− y‖) is not zero for all x and y on D, we have

Kws
s (x,y)=‖x− y‖ Lx−(‖x− y‖)Lx+(Kws

s (x,y)) (2.270)

⇐⇒ Lx−(‖x− y‖)Lx+(‖x− y‖Kws
s (x,y)) = 0 (2.271)

⇐⇒ Lx+(‖x− y‖Kws
s (x,y)) = 0 (2.272)

⇐⇒ −−→
grad x

D(‖x− y‖Kws
s (x,y)) = 0 (2.273)

As it has now become clearer, a way of proving the theorem is to demonstrate identity
(2.270). In order to do so we will use the action of the angular momentum operators on the
disk basis functions, contained in Corollary 2.7.2, and recurrence relations for βml that we will
conclude from the explicit expression for it given in Proposition 2.7.13.

Using (2.267) we can write

‖x− y‖ Lx−(‖x− y‖)Lx+(Kws
s (x,y)) =

(
−ρxe−iφx + ρye

−iφy
)
Lx+(Kws

s (x,y). (2.274)

We will use this to prove (2.270) in several steps:

1. Develop an expression for −ρxe−iφxLx+(Kws
s (x,y)). This will be easy using (2.190) and

(2.192) from Corollary 2.7.2.

2. Develop an expression for ρye
−iφyLx+(Kws

s (x,y)). This will be a more difficult task be-
cause ρye

−iφy , depending on y, will have to be treated to match the terms in Lx+(Kws
s (x,y)),

whose exponential components depend on x.

3. Finally we add both developed expressions to form ‖x− y‖ Lx−(‖x− y‖)Lx+(Kws
s (x,y))

and develop a suitable expression for Kws
s to conclude that they are the same.
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We will proceed in the same order.

1. Using (2.190) and (2.192) from Corollary 2.7.2 it is easy to see that

Lx+Kws
s (x,y) =

eiφx

2ρx
√

(1−ρ2
x)

∞∑
l=0

l∑
m=−l
l+m even

1

βml[(
(l−m)

√
(l+1)2−m2√
(l+1)2−1/4

yml+1(x)−(l+m+1)

√
l2−m2√
l2−1/4

yml−1(x)
)
yml (y)

+
(

(l+m)

√
(l+1)2−m2√
(l + 1)2−1/4

yml+1(x)−(l−m+1)

√
l2−m2√
l2−1/4

yml−1(x)
)
yml (y)

]
.

(2.275)

Then, the desired term is:

−ρxe−iφxLx+Kws
s (x,y) =

−1

2w(ρx)

∞∑
l=0

l∑
m=−l
l+m even

1

βml[(
(l−m)

√
(l+1)2−m2√
(l+1)2−1/4

yml+1(x)−(l+m+1)

√
l2−m2√
l2−1/4

yml−1(x)
)
yml (y)

+
(

(l+m)

√
(l+1)2−m2√
(l + 1)2−1/4

yml+1(x)−(l−m+1)

√
l2−m2√
l2−1/4

yml−1(x)
)
yml (y)

]
.

(2.276)

2. Now using (2.184) and (2.188) from Corollary 2.7.2 we write

ρye
−iφyLx+Kws

s (x,y)=
ρye
−iφy

w(x)

∞∑
l=0

l∑
m=−l
l+m even

1

βml

(√
(l −m)(l +m+ 1)ym+1

l (x)yml (y)

−
√

(l +m)(l −m+ 1) ym−1
l (x) yml (y)

)
.

(2.277)

Then, using (2.194) from Corollary 2.7.3:

ρye
−iφyL+(Kws

s (x,y))=
ρye
−iφ(y)

w(x)

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[

√
(l−m)(l+m+1)ym+1

l (x)

(√
(l−m)(l−m−1)

(l2 − 1/4)
ym+1
l−1 (y)−

√
(l+m+1)(l+m+2)

((l + 1)2 − 1/4)
ym+1
l+1 (y)

)

+
√

(l+m)(l−m+1) ym−1
l (x)

(√
(l+m− 1)(l+m)

(l2 − 1/4)
ym−1
l−1 (y)−

√
(l−m+1)(l−m+2)

((l + 1)2 − 1/4)
ym−1
l+1 (y)

)]
,

(2.278)
which can be ordered into
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ρye
−iφyL+(Kws

s (x,y))=
1

2w(x)

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[

(l−m)

√
l2 − (m+1)2

l2 − 1/4
ym+1
l (x)ym+1

l−1 (y) − (l+m+1)

√
(l+1)2 − (m+1)2)

(l + 1)2 − 1/4
ym+1
l (x)ym+1

l+1 (y))

+(l+m)

√
(l2 − (m−1)2)

(l2 − 1/4)
ym−1
l (x) ym−1

l−1 (y)− (l−m+1)

√
(l+ v1)2 − (m−1)2

(l + 1)2 − 1/4
ym−1
l (x) ym−1

l+1 (y)

]
.

(2.279)

We will now treat each term of (2.279) as a different summation and we will change the sum-
mation indices to accommodate the whole expression so that it will only have terms on yml (y)

and yml (y), as the expression found for part 1. Let us consider the first separate summation:

∞∑
l=0

l∑
m=−l
l+m even

1

βml
(l −m)

√
l2 − (m+ 1)2

(l2 − 1/4)
ym+1
l (x)ym+1

l−1 (y). (2.280)

We need to sum the new indices m − 1 and l + 1 to get an expression that is a factor of
yml (y). We use the properties of summations to get

∞∑
l=0

l∑
m=−l
l+m even

(l−m)

βml

√
l2−(m+1)2

(l2 − 1/4
ym+1
l (x)ym+1

l−1 (y)=
∞∑

l=−1

l+2∑
m=−l
l+m even

(l−m+2)

βm−1
l+1

√
(l+1)2−m2

(l+1)2−1/2
yml+1(x)yml (y).

(2.281)

In comparison to the summation to which we would like to add it, summed only for l > 0
and −l < m < l with l + m even, we are introducing additional terms for (l,m) = (−1, 1),
(l,m) = (0, 2), (l,m) = (1, 3), etc. But, since (2.281) has a factor (l−m+ 2), these additional
terms are zero, providing us the desired transformation of the first term of the summation
(2.279).

Transforming the summation of each one of the separate terms of (2.279) as indicated, it
can be rewritten as

ρye
−iφyL+(Kws

s (x,y))=
1

2w(x)

∞∑
l=0

l∑
m=−l
l+m even

[

(l −m+ 2)

βm−1
l+1

√
((l + 1)2 −m2)

((l + 1)2 − 1/4)
yml+1(x)yml (y)− (l +m− 1)

βm−1
l−1

√
(l2 −m2)

(l2 − 1/4)
yml−1(x)yml (y))

+
(l +m+ 2)

βm+1
l+1

√
((l + 1)2 −m2)

((l + 1)2 − 1/4)
yml+1(x) yml (y)− (l −m− 1)

βm+1
l−1

√
(l2 −m2)

(l2 − 1/4)
yml−1(x) yml (y)

]
.

(2.282)
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3. Summing the terms developed in points 1. and 2. we get the following expression

‖x− y‖ L−(‖x− y‖)L+(Kws
s (x,y) =

1

2w(x)

∞∑
l=0

l∑
m=−l
l+m even

[
(
l −m+ 2

βm−1
l+1

− l −m
βml

)√
(l + 1)2 −m2√
(l + 1)2 − 1/4

yml+1(x)yml (y)

+

(
l +m+ 1

βml
− l +m− 1

βm−1
l−1

) √
l2 −m2√
l2 − 1/4

yml−1(x)yml (y)

+

(
l +m+ 2

βm+1
l+1

− l +m

βml

)√
(l + 1)2 −m2√
(l + 1)2 − 1/4

yml+1(x)yml (y)

+

(
l −m+ 1

βml
− l −m− 1

βm+1
l−1

) √
l2 −m2√
l2 − 1/4

yml−1(x)yml (y)

]
.

(2.283)

From Proposition 2.7.13 we can extract suitable relations for βml that will further simplify
the previous expression:

(l −m− 1)βml = (l −m)βm+1
l−1 , (l +m+ 2)βml = (l +m+ 1)βm+1

l+1 ,

(l −m+ 1)βm−1
l+1 = (l −m+ 2)βml , (l +m)βm−1

l−1 = (l +m− 1)βml .
(2.284)

Using these expressions we can rewrite (2.283) as

‖x− y‖ L−(‖x− y‖)L+(Kws
s (x,y) =

1

2w(x)

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[

√
(l+1)2−m2√
(l+1)2−1/4

yml+1(x)yml (y) +

√
l2−m2√
l2 − 1/4

yml−1(x))yml (y)

+(

√
(l+1)2−m2√
(l+1)2−1/4

yml+1(x)yml (y)+

√
l2−m2√
l2−1/4

yml−1(x) yml (y)

]
.

(2.285)

This last expression can be easily equated to Kws
s applying identity (2.193) from Corollary

2.7.3 to yml and yml :

Kws(x,y) =
∞∑
l=0

l∑
m=−l
l+m even

1

βml

(
yml (x)yml (y) + yml (x)yml (y)

)
(2.286)

=
1

2w(x)

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[

√
(l+1)2−m2√
(l+1)2−1/4

yml+1(x)yml (y) +

√
l2−m2√
l2 − 1/4

yml−1(x))yml (y)

+

√
(l+1)2−m2√
(l+1)2−1/4

yml+1(x)yml (y)+

√
l2−m2√
l2−1/4

yml−1(x) yml (y)

]
.

. (2.287)
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This finishes part 3., allowing us to conclude that Kws
s = CKws. We will now see that the

constant C is equal to 1.

Using Proposition 2.7.10, Proposition 2.7.13, and Remark 2.7.2 (i.e. y0
0 = γ0

0 , from (2.120)),
it is easy to check that ∫

D

Kws
s (x,y)

y0
0(x)

w(x)
dD(x) =

1

β0
0

y0
0(x) = γ0

0

π

4
. (2.288)

On the other hand∫
D

Kws(x,y)
y0

0(x)

w(x)
dD(x) = γ0

0

∫
D

1

4π ‖x− y‖w(x)
dD(x). (2.289)

It will suffice to show that the integral of (4π ‖x− y‖w(x))−1 over D is π/4 to prove that
C = 1. We know that Kws

s = CKws, so we also know that the integral of (4π ‖x− y‖w(x))−1

over D will be a constant for every y. Let us choose the arbitrary point y0 = (0, 0) to evaluate
this integral.

We suppose that y has cylindrical coordinates y = (ρy, 0) and express x in general cylin-
drical coordinates x = (ρx, φx). We will compute the integral over the sub-region of D such
that ρx ≥ ρy, and then compute the limit when ρy → 0. We will introduce the variable α such
that,

cos(α) =
ρx cos(φx)− ρy
‖x− y‖ , and sin(α) =

ρx sin(φx)

‖x− y‖ , (2.290)

which comply with cos2(α) + sin2(α) = 1 by the law of cosines for ‖x− y‖. We will also use
the standard change of variables ρx = sin θx and ρy = sin θy.

Using variable α, for α ∈ [0, 2π], we can express the following terms:

ρx cos(φx) = ρy sin2(α) + cos(α)
√
ρ2
x − ρ2

y sin2(α) (2.291)

and

‖x− y‖ = −ρy +
√
ρ2
x − ρ2

y sin2(α). (2.292)

This allows us express the following derivative that will permit us to compute the integral
using the change of variables:

dα

dφx
=

ρ2
x − ρyρx cos(φx)

‖x− y‖2
=

√
ρ2
x − ρ2

y sin2(α)

‖x− y‖ . (2.293)

Using this change of variables, and making θy = arcsin(ρx), we can write the first integral
for ρx ≥ ρy as

1

4π

2π∫
0

1∫
ρy

ρxdρxdφx

‖x− y‖
√

1− ρ2
x

=
1

4π

2π∫
0

π/2∫
θy

sin(θx)√
1− cos2(θx)− ρ2

y sin2(α)
dθxdα. (2.294)

Integrating first on θx we have that

π/2∫
θy

sin(θx)dθx√
1− cos2(θx)− ρ2

y sin2(α)
= arcsin


√

1− ρ2
y√

1− ρ2
y sin2(α)

 (2.295)

=
π

2
− arccos


√

1− ρ2
y√

1− ρ2
y sin2(α)

 , (2.296)
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so that

1

4π

2π∫
0

1∫
ρy

ρxdρxdφx

‖x− y‖
√

1− ρ2
x

=
π

4
− 1

4π

2π∫
0

arccos


√

1− ρ2
y√

1− ρ2
y sin2(α)

 dα. (2.297)

Summarizing, we have

1

4π

∫
D

dD(x)

‖x− y0‖w(ρx)
= lim

ρy→0

1

4π

2π∫
0

1∫
ρy

ρxdρxdφx

‖x− y‖
√

1− ρ2
x

(2.298)

=
π

4
− lim
ρy→0

1

4π

2π∫
0

arccos


√

1− ρ2
y√

1− ρ2
y sin2(α)

 dα (2.299)

=
π

4
, (2.300)

which finishes the proof. �

Remark 2.7.8 (S is identified Lwss ). Being the integral kernels Kws and Kws
s equal for the

case of the symmetric Dirichlet problem for the disk, the integral operators S and Lwss map the
same functions from H̃−1/2(D) to H1/2(D).

Theorem 2.7.4 (Weakly singular operator on the disk basis functions). For l + m even, the
action of the weakly singular boundary integral operator S on a disk basis function yml is(

S y
m
l

w

)
(x) =

1

βml
yml . (2.301)

Proof This result comes straightforwardly from the Proposition 2.7.10, and the fact that S
and Lwss produce the same mapping from H̃−1/2(D) to H1/2(D). �

The result from Theorem 2.7.4 was later found to coincide with one from an article by Peter
Wolfe [68]. It was achieved by a different method, taking the Fourier transform of the left-hand
of (2.301) and inverting it. More recently, P. A. Martin has compared it to other expressions
for the application of S in the case of the disk screen [47].

We will now develop the results that will lead to the proof of Theorem 2.7.1.

Proposition 2.7.14 (Relation between the symmetric weakly singular and the anti-symmetric
hypersingular kernels on the disk). For (x,y) ∈ D×D, the kernels Kws

s and Khs
as of the boundary

integral operators Lwss and Lhsas on disk D are linked by the Laplace-Beltrami operator:

∆DK
ws
s = Khs

as . (2.302)

Proof In this proof we will develop two expressions for ∆DK
ws
s using the two expressions

provided in Proposition 2.7.6 and then add them to recover the coefficients αml needed for Khs
as

from the coefficients βml using the recurrence relations from Proposition 2.7.12.

Let us proceed with the first expression for the Laplace-Beltrame operator. It is easy to
show that Lx±Kws

s (x,x) = −Ly±Kws
s (x,x), so we can write the first expression for the Laplace-

Beltrami operator, as

∆DK
ws
s (x,y) = −Lx− ◦ Lx+Kws

s (x,y) (2.303)

= Lx− ◦ Ly+Kws
s (x,y). (2.304)
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Using (2.184) and (2.187) we can obtain

Ly+Kws
s (x,y) =

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[
−
√

(l +m)(l −m+ 1)
yml (x)

w(x)

ym−1
l (y)

w(y)

+
√

(l −m)(l +m+ 1)
yml (x)

w(x)

ym+1
l (y)

w(y)

]
,

(2.305)

and using (2.185) and (2.188)

Lx− ◦ Ly+Kws
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[
(l +m)(l −m+ 1)

ym−1
l (x)

w(x)

ym−1
l (y)

w(y)

+(l −m)(l +m+ 1)
ym+1
l (x)

w(x)

ym+1
l (y)

w(y)

]
.

(2.306)

As done in the proof of Theorem 2.7.3 we will analyze each term of the summand. Noting
that the pairs (l,m) = (0, 0), (l,m) = (1,−1), (l,m) = (2,−2), etc. make l +m = 0 allows us
to rewrite the first term as:

∞∑
l=0

l∑
m=−l
l+m even

(l+m)(l−m+1)

βml

ym−1
l (x)

w(x)

ym−1
l (y)

w(y)
=

∞∑
l=0

l∑
m=−l
l+m odd

(l−m)(l+m+1)

βm+1
l

yml (x)

w(x)

yml (y)

w(y)
. (2.307)

Noting that the pairs (l,m) = (0, 0), (l,m) = (1, 1), (l,m) = (2, 2), etc. make l −m = 0
allows us to rewrite the second term as:

∞∑
l=0

l∑
m=−l
l+m even

(l−m)(l+m+1)

βml

ym+1
l (x)

w(x)

ym+1
l (y)

w(y)
=

∞∑
l=0

l∑
m=−l
l+m odd

(l+m)(l−m+1)

βm−1
l

yml (x)

w(x)

yml (y)

w(y)
. (2.308)

Let us now obtain the second expression for the Laplace-Beltrami operator:

∆DK
ws
s (x,y) = −Lx+ ◦ Lx−Kws

s (x,y) (2.309)

= Lx+ ◦ Ly−Kws
s (x,y). (2.310)

Using again (2.184), (2.185), (2.187), and (2.188), we can write

Lx+ ◦ Ly−Kws
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m even

1

βml

[
(l −m)(l +m+ 1)

ym+1
l (x)

w(x)

ym+1
l (y)

w(y)

+(l +m)(l −m+ 1)
ym−1
l (x)

w(x)

ym−1
l (y)

w(y)

]
.

(2.311)

As with the first expression for the Laplace-Beltrame operator, noting that the pairs (l,m) =
(0, 0), (l,m) = (1, 1), (l,m) = (2, 2), etc. make l−m = 0 allows us to rewrite the first term as:

∞∑
l=0

l∑
m=−l
l+m even

(l−m)(l+m+1)

βml

ym+1
l (x)

w(x)

ym+1
l (y)

w(y)
=

∞∑
l=0

l∑
m=−l
l+m odd

(l+m)(l−m+1)

βm−1
l

yml (x)

w(x)

yml (y)

w(y)
. (2.312)

Noting that the pairs (l,m) = (0, 0), (l,m) = (1,−1), (l,m) = (2,−2), etc. make l+m = 0
allows us to rewrite the second term as:

∞∑
l=0

l∑
m=−l
l+m even

(l+m)(l−m+1)

βml

ym−1
l (x)

w(x)

ym−1
l (y)

w(y)
=
∞∑
l=0

l∑
m=−l
l+m odd

(l−m)(l+m+1)

βm+1
l

yml (x)

w(x)

yml (y)

w(y)
. (2.313)
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We can now add the two expressions for the Laplace-Beltrami operator to obtain

∆DK
ws
s (x,y) =

1

2
(Lx− ◦ Ly+ + Lx+ ◦ Ly−)Kws

s (x,y) (2.314)

= −
∞∑
l=0

l∑
m=−l
l+m odd

[
1

2

(
(l+m)(l−m+1)

βm−1
l

+
(l−m)(l+m+1)

βm+1
l

)
yml (x)

w(x)

yml (y)

w(y)

+
1

2

(
(l−m)(l+m+1)

βm+1
l

+
(l+m)(l−m+1)

βm−1
l

)
yml (x)

w(x)

yml (y)

w(y)

]
. (2.315)

Using the recursion expression for αml from Proposition 2.7.12 we can finally write

∆DK
ws
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m odd

αml

(
yml (x)

w(x)

yml (y)

w(y)
+
yml (x)

w(x)

yml (y)

w(y)

)
(2.316)

= Khs
as (x,y). (2.317)

�

Theorem 2.7.5 (Khs is Khs
as ). For (x,y) ∈ D × D, the hypersingular kernel Khs, associated

with N , is equal to the proposed hypersingular anti-symmetric kernel Khs
as .

Proof This result follows from the relation ∆DK
ws(x,y) = Khs(x,y) from Proposition 2.5.3,

the identity Kws(x,y) = Kws
s (x,y) from Theorem 2.7.3, and the relation ∆DK

ws
s (x,y) =

Khs
as (x,y) from Proposition 2.7.14. �

It’s now easy to prove Theorem 2.7.1.

Proof of Theorem 2.7.1 From Proposition 2.7.10, we know that(
Lhsasyml

)
(y) = −αml

yml (y)

w(y)
, for y ∈ D. (2.318)

Integral operators N and Lhsas have the same kernel for x,y ∈ D, from which we conclude
the desired result: ∫

D

ym(x)dD(x)

4π ‖x− y‖3
= −αml

yml (y)

w(y)
, (2.319)

for l +m odd and y ∈ D. �

We will now use these new expressions of the boundary integral operators linked to the
symmetric Dirichlet and anti-symmetric Neumann Laplace problems for the disk, and their
inverses, to build variational formulations and Galerkin matrices usable in preconditioning
methods. We will first summarize the previous results in a succinct and clear manner in the
following table.

Remark 2.7.9. The following table summarizes the situation so far:

Table 2.7: Summary of the operators over D in their different forms.
BIO Closed form kernel DtN/NtD Series Kernel Series BIO Mapping

S Kws NtDs Kws
s Lwss H̃−1/2(D)→ H1/2(D)

N Khs DtN as Khs
as Lhsas H̃1/2(D)→ H−1/2(D)

S−1 DtN s −Khs
s −Lhss H1/2(D)→ H̃−1/2(D)

N−1 NtDas −Kws
as −Lwsas H−1/2(D)→ H̃1/2(D)
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2.7.6 Variational formulations and norms

We will now use the new defined integral operators to endow the Sobolev spaces with
explicit inner products and norms.

Definition 2.7.13 (Induced bilinear forms). Let us define the following bilinear forms induced
by the described boundary integral operators:

awss ∈ L
(
H̃−1/2(D)× H̃−1/2(D),C

)
: awss (λ, λt) =

〈
Lwss λ, λt

〉
D , (2.320)

bhss ∈ L
(
H1/2(D)×H1/2(D),C

)
: bhss (g, gt) =

〈
−Lhss g, gt

〉
D
, (2.321)

ahsas ∈ L
(
H̃1/2(D)× H̃1/2(D),C

)
: ahsas(µ, µ

t) =
〈
−Lhsasµ, µt

〉
D
, (2.322)

bwsas ∈ L
(
H−1/2(D)×H−1/2(D),C

)
: bwsas (ϕ,ϕt) =

〈
Lwsas ϕ,ϕt

〉
D . (2.323)

Proposition 2.7.15 (Bilinear forms define inner products). The bilinear forms from Definition
2.7.13 define inner products in the following linear spaces: awss in H̃−1/2(D), bhss in H1/2(D),
ahsas in H̃1/2(D) and bwsas in H−1/2(D).

Proof Let us focus on the first bilinear form, awss for the linear space Y1/w
s . Let us take two

arbitrary functions u, v ∈ Y1/w
s and show that conjugate symmetry, linearity, and positive-

definitiveness are satisfied.

〈Lwss u , v〉D =

〈
Lwss

∞∑
l=0

l∑
m=−l
l+m even

uml
yml
w
,
∞∑
l=0

l∑
m=−l
l+m even

vml
yml
w

〉
D

(2.324)

=

〈 ∞∑
l=0

l∑
m=−l
l+m even

uml
βml

yml ,

∞∑
l=0

l∑
m=−l
l+m even

vml
yml
w

〉
D

(2.325)

=
∞∑
l=0

l∑
m=−l
l+m even

uml v
m
l

2βml
(2.326)

=
∞∑
l=0

l∑
m=−l
l+m even

vml u
m
l

2βml
(2.327)

=

〈
Lwss

∞∑
l=0

l∑
m=−l
l+m even

vml
yml
w
,

∞∑
l=0

l∑
m=−l
l+m even

uml
yml
w

〉
D

(2.328)

= 〈Lwss v , u〉D. (2.329)

Linearity on the first argument comes straightforwardly from the definition of the duality
product. And finally,

〈Lwss u , u〉D =

∞∑
l=0

l∑
m=−l
l+m even

|uml |2
2βml

(2.330)

shows that awss (u, u) is always positive and that, only uml = 0 for every l andm, and thus only for
u = 0, makes awss (u, u) = 0, which shows the positive-definiteness property. The value (2.330) is
finite by virtue of the bi-continuity of the bilinear form for its associated Neumann-to-Dirichlet
operator, NtDs from Section 2.6. Coercivity of the bilinear form induced by the corresponding
operator NtDs also guarantees that norm ‖·‖awss is equivalent to norm ‖·‖

H̃−1/2(D)
. The same

argument follows for the other three cases. �
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Definition 2.7.14 (Norms for the trace spaces). Being inner products, the previous bilinear
forms allow us to define the following norms in the Sobolev spaces:

‖λ‖awss =
√
awss (λ, λ), (2.331)

‖µ‖ahsas =
√
ahsas(µ, µ), (2.332)

‖g‖bhss =
√
bhss (g, g), (2.333)

‖ϕ‖bwsas =
√
bwsas (ϕ,ϕ). (2.334)

Proposition 2.7.16 (Computation of the norms associated with the new boundary integral
operators). The norms from Definition 2.7.14 can be computed as follows:

‖λ‖2awss =
∞∑
l=0

l∑
m=−l
l+m even

1

2βml
λml λ

m
l , (2.335)

‖µ‖2ahsas =

∞∑
l=0

l∑
m=−l
l+m odd

αml
2
µml µ

m
l , (2.336)

‖g‖2bhss =
∞∑
l=0

l∑
m=−l
l+m even

βml
2
gml g

m
l , (2.337)

‖ϕ‖2bwsas =

∞∑
l=0

l∑
m=−l
l+m odd

1

2αml
ϕml ϕ

m
l , (2.338)

where
λml = (λ, yml /w)w, (2.339)

µml = (µ, yml )1/w, (2.340)

gml = (g, yml )1/w, (2.341)

ϕml = (ϕ, yml /w)w. (2.342)

Proof These results follow straightforwardly from applying Corollary 2.7.4 together with the
decomposition in bases described in Section 2.7.4. �

Proposition 2.7.17 (Variational formulations for the new integral operators). The previous
bilinear forms are coercive in the appropriate spaces, and thus furnish appropriate variational
formulations for the boundary integral equations. A variational formulation for the boundary
integral equation associated with the boundary integral operator Lwss (identified with S) is

(Lwss −VF )


Given g ∈ H1/2(D), find λ ∈ H̃−1/2(D), such that

∀λt ∈ H̃−1/2(D)
(
awss (λ, λt) =

〈
g, λt

〉
D
)
.

(2.343)

The boundary integral equation associated with the boundary integral operator Lhss (identified
with S−1) admits the variational formulation

(
Lhss −VF

)
Given λ ∈ H̃−1/2(D), find λ ∈ H1/2(D), such that

∀gt ∈ H1/2(D)
(
bhss (g, gt) =

〈
λ, gt

〉
D
)
.

(2.344)
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The boundary integral equation associated with the boundary integral operator Lhsas (identified
with N ) admits the variational formulation

(
Lhsas−VF

)
Given ϕ ∈ H−1/2(D), find µ ∈ H̃1/2(D), such that

∀µt ∈ H̃1/2(D)
(
ahsas(µ, µ

t) =
〈
ϕ, µt

〉
D
)
.

(2.345)

The boundary integral equation associated with the boundary integral operator Lwsas (identified
with N−1) admits the variational formulation

(Lwsas−VF )


Given µ ∈ H̃1/2(D), find ϕ ∈ H−1/2(D), such that

∀ϕt ∈ H−1/2(D)
(
bwsas (ϕ,ϕt) =

〈
µ, ϕt

〉
D
)
.

(2.346)

Proof Coercivity follows from the definitions of the norms for each space in Definition 2.7.14.
Bi-continuity of the variational bilinear forms follows from the discrete Hölder’s inequality. Let
us consider the first case; the proof for the rest follows the same procedure.

awss (λ, λt) =

∞∑
l=0

l∑
m=−l
l+m even

λml (λt)ml
2βml

(2.347)

≤
∞∑
l=0

l∑
m=−l
l+m even

|λml |√
2βml

∣∣(λt)ml ∣∣√
2βml

. (2.348)

Using the discrete Hölder’s inequality we have

awss (λ, λt) ≤

√√√√√ ∞∑
l=0

l∑
m=−l
l+m even

∣∣λml ∣∣2
2βml

√√√√√ ∞∑
l=0

l∑
m=−l
l+m even

∣∣(λt)ml ∣∣2
2βml

(2.349)

≤ ‖λ‖
H̃−1/2(D)

∥∥λt∥∥
H̃−1/2(D)

. (2.350)

�

2.7.7 Spectral method and preconditioning of the Laplace problem for the
disk screen

In this section we will use the developed theory to derive finite-dimensional variational
formulations using the disk basis functions in order to solve the boundary integral equations
linked with the four new integral operators. We will generate the Galerkin matrices associated
with the finite-dimensional variational formulation and we will build the matrix preconditioners
outlined by the optimal preconditioning strategy. In doing so, the preconditioning process will
be clearly illustrated.

In order to consider N-dimensional finite subspaces of the involved Sobolev spaces, we will
specify a way of counting the basis functions for each space, initially indexed by l and m.

Definition 2.7.15 (Counting the basis functions on the disk). For las+mas odd, we will count
the basis functions sequentially with the index ias as

ias(mas, las) =
1

2

(
l2as +mas + 1

)
, (2.351)

which in turn inversely gives

las(ias) = 1 + arg max
las ≥ 0

las(las + 1)/2 < ias

las(las + 1)

2
, and mas(ias) = 2ias − las(ias)2 − 1. (2.352)
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For ls +ms even, we will count the basis functions sequentially with the index is as

is(ms, ls) =
1

2

(
l2s + 2ls +ms + 2

)
, (2.353)

which in turn inversely gives

ls(is) = 1+ arg max
ls ≥ −1

(ls + 1)(ls + 2)/2 < is

(ls + 1)(ls + 2)

2
, and ms(is) = 2is− ls(is)2−2ls(is)−2. (2.354)

Definition 2.7.16 (Finite subspaces of Sobolev trace spaces). Let us define the following
N-dimensional subspaces to be used in the finite-dimensional variational formulations of the
infinite-dimensional ones described above:

VN = span

({
y
ms(is)
ls(is)

}N
is=1

)
⊂ H1/2(D), (2.355)

ṼN = span

({
y
mas(ias)
las(ias)

}N
ias=1

)
⊂ H̃1/2(D), (2.356)

WN = span

({
y
mas(ias)
las(ias)

/w
}N
ias=1

)
⊂ H−1/2(D), (2.357)

W̃N = span

({
y
ms(is)
ls(is)

/w
}N
is=1

)
⊂ H̃−1/2(D). (2.358)

Definition 2.7.17 (N-dimensional variational formulations). An N-dimensional discrete vari-
ational formulation for the boundary integral equation associated with the boundary integral
operator Lwss (identified with S) is

(Lwss −VFN )


Given gN =

N∑
k=1

g
ms(k)
ls(k) y

ms(k)
ls(k) ∈ VN , find λN =

N∑
i=1

λ
ms(i)
ls(i)

y
ms(i)
ls(i)

w ∈ W̃N , such that

N∑
i=1

λ
ms(i)
ls(i)

awss

(
y
ms(i)
ls(i)

w ,
y
ms(j)
ls(j)

w

)
=

N∑
k=1

g
ms(k)
ls(k)

〈
y
ms(k)
ls(k) ,

y
ms(j)
ls(j)

w

〉
D
, for j = 1...N.

(2.359)

The boundary integral equation associated with the boundary integral operator Lhss (identified
with S−1) admits the N-dimensional discrete variational formulation

(
Lhss −VFN

)


Given λN =
N∑
k=1

λ
ms(k)
ls(k)

y
ms(k)
ls(k)

w ∈ W̃N , find gN =
N∑
i=1

g
ms(i)
ls(i)

y
ms(i)
ls(i)

∈ VN , such that

N∑
i=1

g
ms(i)
ls(i)

bhss

(
y
ms(i)
ls(i)

, y
ms(j)
ls(j)

)
=

N∑
k=1

λ
ms(k)
ls(k)

〈
y
ms(k)
ls(k)

w , y
ms(j)
ls(j)

〉
D
, for j = 1...N.

(2.360)

The boundary integral equation associated with the boundary integral operator Lhsas (identified
with N ) admits the N-dimensional discrete variational formulation

(
Lhsas−VFN

)


Given ϕN =
N∑
k=1

ϕ
mas(k)
las(k)

y
mas(k)
las(k)

w ∈WN , find µN =
N∑
i=1

µ
mas(i)
las(i)

y
mas(i)
las(i)

∈ ṼN , such that

N∑
i=1

µ
mas(i)
las(i)

ahsas

(
y
mas(i)
las(i)

, y
mas(j)
las(j)

)
=

N∑
k=1

ϕ
mas(k)
las(k)

〈
y
mas(k)
las(k)

w , y
mas(j)
las(j)

〉
D
, for j = 1...N.

(2.361)
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The boundary integral equation associated with the boundary integral operator Lwsas (identified
with N−1) admits the N-dimensional discrete variational formulation

(Lwsas−VFN )


Given µN =

N∑
k=1

µ
mas(k)
las(k) y

mas(k)
las(k) ∈ ṼN , find ϕN =

N∑
i=1

ϕ
mas(i)
las(i)

y
mas(i)
las(i)

w ∈WN , such that

N∑
i=1

ϕ
mas(i)
las(i)

bwsas

(
y
mas(i)
las(i)

w ,
y
mas(j)
las(j)

w

)
=

N∑
k=1

µ
mas(k)
las(k)

〈
y
mas(k)
las(k) ,

y
mas(j)
las(j)

w

〉
D
, for j = 1...N.

(2.362)

Proposition 2.7.18 (Computation of bilinear forms). The computation of the bilinear forms
from Definition 2.7.17 is performed as follows:

awss

yms(i)ls(i)

w
,
y
ms(j)
ls(j)

w

 =
1

2β
ms(i)
ls(i)

δij , bhss

(
y
ms(i)
ls(i)

, y
ms(j)
ls(j)

)
=
β
ms(i)
ls(i)

2
δij , (2.363)

ahsas

(
y
mas(i)
las(i)

, y
mas(j)
las(j)

)
=
α
mas(i)
las(i)

2
δij , bwsas

ymas(i)las(i)

w
,
y
mas(j)
las(j)

w

 =
1

2α
mas(i)
las(i)

δij . (2.364)

Proof The values of the bilinear form follow directly from Corollary 2.7.4. �

Definition 2.7.18 (Galerkin matrices for the spectral discretization). The Galerkin matrices
associated with the N-dimensional variational formulations from Definition 2.7.17 are defined
as

Aws
s =

1

2
diag

 1

β
ms(1)
ls(1)

, ...,
1

β
ms(N)
ls(N)

 , (2.365)

Bhs
s =

1

2
diag

(
β
ms(1)
ls(1) , ..., β

ms(N)
ls(N)

)
, (2.366)

Ahs
as =

1

2
diag

(
α
mas(1)
las(1) , ..., α

mas(N)
las(N)

)
, (2.367)

Bws
as =

1

2
diag

 1

α
mas(1)
las(1)

, ...,
1

α
mas(N)
las(N)

 , (2.368)

where diag defines a matrix by indicating the elements of its diagonal.

Proposition 2.7.19 (Computation of right-hand sides). The right-hand sides associated with
the N-dimensional variational formulations from Definition 2.7.17 are computed as〈

y
ms(k)
ls(k) ,

y
ms(j)
ls(j)

w

〉
D

=
1

2
δkj ,

〈
y
ms(k)
ls(k)

w
, y
ms(j)
ls(j)

〉
D

=
1

2
δkj , (2.369)

〈
y
mas(k)
las(k)

w
, y
mas(j)
las(j)

〉
D

=
1

2
δkj ,

〈
y
mas(k)
las(k) ,

y
mas(j)
las(j)

w

〉
D

=
1

2
δkj . (2.370)

Proof Right-hand side values follow from the orthogonality properties for basis functions on
the disk in Proposition 2.7.4. �

Proposition 2.7.20 (Spectral solution to the N-dimensional variational formulations). The
coefficients of the solution to the discrete variational problem (Lwss −VFN ) are

λ
ms(i)
ls(i)

= β
ms(i)
ls(i)

g
ms(i)
ls(i)

, for i = 1, ..., N. (2.371)
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The coefficients of the solution to the discrete variational problem (Lhss −VFN ) are

g
ms(i)
ls(i)

=
1

β
ms(i)
ls(i)

λ
ms(i)
ls(i)

, for i = 1, ..., N. (2.372)

The coefficients of the solution to the discrete variational problem (Lhsas−VFN ) are

µ
mas(i)
las(i)

= α
mas(i)
las(i)

ϕ
mas(i)
las(i)

, for i = 1, ..., N. (2.373)

The coefficients of the solution to the discrete variational problem (Lwsas−VFN ) are

ϕ
mas(i)
las(i)

=
1

α
mas(i)
las(i)

µ
mas(i)
las(i)

, for i = 1, ..., N. (2.374)

Proof Let us consider the first N-dimensional variational formulation (Lwss −VFN ). From
Proposition 2.7.18 we know that the left-hand side is:

N∑
i=1

λ
ms(i)
ls(i)

2β
ms(i)
ls(i)

δji , for j = 1...N. (2.375)

We also know from Proposition 2.7.19 that the right-had side is

N∑
k=1

1

2
g
ms(k)
ls(k) δ

j
k, for j = 1...N. (2.376)

Then, we can compute each coefficient λ
ms(j)
ls(j)

determining solution λN as

λ
ms(j)
ls(j)

= β
ms(j)
ls(j)

g
ms(j)
ls(j)

, for j = 1...N. (2.377)

The same procedure, using Proposition 2.7.18 and Proposition 2.7.19 gives the desired results
for the next three spectral formulations. �

The application of the preconditioning strategy into a preconditioning method for the
Laplace problem using the described spectral discretization yields some interesting results.
In the application of the optimal preconditioning theorem, Theorem 2.1.1, the Galerkin matri-
ces and right-hand side vectors can be computed using the two previous propositions. Matrix
D, accounting for the duality pairing of the bases becomes 1

2I, with I being the identity ma-
trix. Matrices A and B (for the symmetric Dirichlet and anti-symmetric Neumann cases) are
diagonal, such that the application of the prescribed preconditions yields,

MA = D−1BD−HA =
1

4
I, (2.378)

which has optimal condition number, i.e. cond2(MA) = 1, independently of the dimension
N of the discretization. This shows the way in which optimal preconditioning works despite
being a case where no preconditioning was required, since the linear systems arising from this
discretization are diagonal and can be solved explicitly without recourse to linear solvers, as it
was shown in Proposition 2.7.20.

In this present section we have found series forms for the operators S and N (identified
with Lwss and Lhsas respectively), and their inverses S−1 and N−1 (identified with Lhss and Lwsas
respectively). This allows us to build spectral discretizations to solve the associated problems,
specially the ones of interest (symmetric Dirichlet and anti-symmetric Neumann), and to test
the principles of operator preconditioning, although it is not practically needed when in a
spectral method framework.

In the following section we will attempt to modify the integral kernels to obtain explicit and
closed variational expressions that will be suited for boundary element method computations,
attempting to escape the limitations of spectral methods and reach practical applications to
screens other than the disk.
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Chapter 3

Preconditioning for Screen Obstacles
with Modified Integral Operators

The expressions found in the previous chapter for the inverses of the boundary integral
operators involved in the solution of the symmetric Dirichlet and anti-symmetric Neumann
are in the form of series. This makes their use inadequate for boundary element method
computations and for the construction of associated Galerkin matrices capable of improving the
preconditioning using the strategy outlined by Theorem 2.1.1 in a wider range of applications.
In this chapter, roughly divisible in three parts, we will develop a strategy to overcome this
problem.

In the first part, Section 3.1, using the previous two-dimensional case from Section 2.4
and the existing series representation for the disk from the previous chapter as hints, we will
propose a modification to the series expressions for the inverse boundary integral operators.
These modified operators, although not being the exact inverses, will be proven to have an
explicit and closed variational expression, and thus be suited for use in boundary element
method preconditioning methods while still preserving the behavior of the kernels’ singularities
from previously developed inverses.

In the second part, Section 3.2, we will define a special mesh partition suitable for the case
of the screens and in particular for the disk. We will use this discretization to define boundary
element spaces with which to formulate variational problems for the modified integral operators,
and then we will use them to develop numerical methods to compute their respective Galerkin
matrices. Using known solutions to the modified boundary integral operators, these methods
will be tested numerically.

In the third part, Section 3.3, we will use the Galerkin matrices to build preconditioners
that will be studied in numerical experiments. We will show that the preconditioners built
with them are mutually optimal preconditioners, from which we will draw several conclusions
about the variational problems associated with the modified integral operators, and about the
mesh partition process. We will later show the preconditioning capabilities of these matrices
when used as preconditioners to the matrices associated with operators S and N . We will also
show the preconditioning capabilities when applied to the matrices linked to the Helmholtz
problem, i.e. Sk and N k. Finally, we will propose a technique to extend the exposed method
to other screens.
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3.1 Modified boundary integral operators with explicit closed
variational form

In this section we will modify the kernel expressions in order to find closed forms of the
integral operators suited for boundary element method computation. They will be suggested by
the series expansion of the integral kernels of the weakly singular and hypersingular boundary
integral equations when the domain of integration is the sphere in R3. In the case of the
sphere, there are well-established results that allow us to change integral kernels from a series
expression to a closed form expression. Theorem 1.5.3 will also allow us write the hypersingular
integral operator using the weakly singular kernel. These two tools, as we shall see, will suggest
the mentioned modifications.

3.1.1 Integral kernels for the weakly singular and hypersingular boundary
integral operators on the sphere

Proposition 3.1.1 (Series for the weakly singular and hypersingular boundary integral oper-
ators on the sphere [51, Section 3.2.3]). The application of the weakly singular operator S and
hypersingular operator N on functions defined on S have the alternative series expressions:

(Sλ) (y) =

∞∑
l=0

l∑
m=−l

1

2l + 1
λml Y

m
l (y), (3.1)

(Nµ) (y) = −
∞∑
l=0

l∑
m=−l

l(l + 1)

2l + 1
µml Y

m
l (y), (3.2)

where

λml =

∫
S

λ(x)Y m
l (x)dS(x) and µml =

∫
S

µ(x)Y m
l (x)dS(x). (3.3)

Proposition 3.1.2 (Series expression for the weakly singular kernel). The weakly singular
kernel has the following series expression:

Kws(x,y) =

∞∑
l=0

l∑
m=−l

1

2l + 1
Y m
l (y)Y m

l (x). (3.4)

Proof

(Sλ) (y) =
∞∑
l=0

l∑
m=−l

(
1

2l + 1

)
λml Y

m
l (y)

=

∞∑
l=0

l∑
m=−l

(
1

2l + 1

)∫
S

λ(x)Y m
l (x)dS(x)Y m

l (y)

=

∫
S

∞∑
l=0

l∑
m=−l

(
1

2l + 1

)
Y m
l (x)Y m

l (y)λ(x)dS(x).

(3.5)

⇒ Kws(x,y) =

∞∑
l=0

l∑
m=−l

1

2l + 1
Y m
l (x)Y m

l (y) (3.6)

1

4π‖x− y‖ =

∞∑
l=0

l∑
m=−l

1

2l + 1
Y m
l (x)Y m

l (y). (3.7)

�

The previous expression of the weakly singular kernel allows us to extract some conclusions
that will further simplify the expression of the modified kernels proposed.
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Corollary 3.1.1 (Realness of the series weakly singular kernel on the sphere). The series
expression of the weakly singular integral kernel is real, i.e.

Im

{ ∞∑
l=0

l∑
m=−l

1

2l + 1
Y m
l (x)Y m

l (y)

}
= 0 (3.8)

and thus can be written in either of the following two forms:

∞∑
l=0

l∑
m=−l

1

2l + 1
Y m
l (x)Y m

l (y) =

∞∑
l=0

l∑
m=−l

1

2l + 1
Y m
l (y)Y m

l (x). (3.9)

3.1.2 Modified integral kernels and operators

The boundary integral operators on the disk, defined and studied in Section 2.7, have the
desired mapping properties that induce bilinear forms that allow for preconditioning strategies
in the sense defined by Theorem 2.1.1. However, having a series expression, they are not suited
for use in boundary element method computations. In this section we will propose modified
boundary integral operators, based on the previous ones, that will preserve the same behavior
in ρ of the integral kernels on the edge of the disk, which is the key feature of their performance.
This idea will be tested numerically in following sections.

The known relation between closed and series form for the kernels, in the case of the sphere,
suggests a modification on the previously defined kernels. Let us define the following modified
integral kernels in the form of series.

Definition 3.1.1 (Modified integral kernels for the disk). Let us define the following two weakly
singular integral kernels for (x,y) ∈ D× D, with x 6= y, as the formal series:

K̃ws
s (x,y) =

∞∑
l=0

l∑
m=−l
l+m even

ζly
m
l (y)yml (x), (3.10)

K̃ws
as (x,y) =

∞∑
l=0

l∑
m=−l
l+m odd

ζly
m
l (y)yml (x), (3.11)

with

ζl =
2

2l + 1
. (3.12)

Similarly, let us define the following two hypersingular integral kernels for (x,y) ∈ D×D, with
x 6= y, as the formal series:

K̃hs
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m even

ηl
yml (y)

w(y)

yml (x)

w(x)
, (3.13)

K̃hs
as (x,y) = −

∞∑
l=0

l∑
m=−l
l+m odd

ηl
yml (y)

w(y)

yml (x)

w(x)
, (3.14)

with

ηl =
2l(l + 1)

2l + 1
. (3.15)

We will use these modified integral kernels to define modified boundary integral operators
for which we will later find explicit and closed forms in variational contexts.
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Definition 3.1.2 (Modified boundary integral operators on the disk). For y ∈ D we define
the following boundary integral operators:(

L̃wss λ
)

(y) =

∫
D

K̃ws
s (x,y)λ(x)dD(x), (3.16)

(
L̃wsas ϕ

)
(y) =

∫
D

K̃ws
as (x,y)ϕ(x)dD(x), (3.17)

(
L̃hss g

)
(y) =

∫
D

K̃hs
s (x,y)g(x)dD(x), (3.18)

(
L̃hsasµ

)
(y) =

∫
D

K̃hs
as (x,y)µ(x)dD(x). (3.19)

Up until this point, the modified integral operators (L̃wss , L̃wsas , L̃hss , and L̃hsas), modification
of the ones known to be identified with S and N and their inverses (Lwss , Lwsas , Lhss , and
Lhsas), present the same problem in their incorporation into a boundary element method: they
are in series form. The next theorems, central to this section, will show that they can also
be expressed in closed form, thus solving this problem while still preserving the same radial
behavior in ρ that was present in the exact inverses in the R2 and R3 cases.

Theorem 3.1.1 (Closed variational form for the weakly singular integral kernels). The weakly
singular integral operators from Definition 3.1.2 have the following closed form variational
expressions:〈

L̃wss λ , λt
〉
D

=

∫
D

∫
D

1

4π

(
1

‖x+ − y+‖ +
1

‖x− − y+‖

)
λ(x)λt(y)dD(x)dD(y), (3.20)

〈
L̃wsas ϕ , ϕt

〉
D

=

∫
D

∫
D

1

4π

(
1

‖x+ − y+‖ −
1

‖x− − y+‖

)
ϕ(x)ϕt(y)dD(x)dD(y). (3.21)

Proof Let us first consider the case of K̃ws
s . Let us consider a projection T : S → D taking

points on the upper half-sphere to their vertical projections on the disk (y = Ty+ = Ty− ∈ D),
to be used in integration by substitution. The application of L̃wss to a function λ defined on
the disk yields, for y ∈ D:(

L̃wss λ
)

(y) =

∫
D

K̃ws
s (x,y)λ(x)dD(x) (3.22)

=

∫
S+

∞∑
l=0

l∑
m=−l
l+m even

ζly
m
l (Tx)yml (Ty+)λ(Tx)| cos θx|dS+(x). (3.23)

Let us define λ+ = λ ◦ T over S+, so that the application of L̃wss can be pulled to the upper
half-sphere:

(
L̃wss λ

)
(y) =

∫
S+

∞∑
l=0

l∑
m=−l
l+m even

ζlY
m
l (x)Y m

l (y+)λ+(x)| cos θx|dS+(x). (3.24)

Let us now define λ̃+ as the mirror reflection over S−, so that it is an even function of x3, i.e.,

λ̃+(x+) = λ̃+(x−). Being Y m
l (x) (for l + m even), | cos θx|, and λ̃+(x) even functions of x3,
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the integration can be computed on the whole sphere as

(
L̃wss λ

)
(y) =

1

2

∫
S

∞∑
l=0

l∑
m=−l
l+m even

ζlY
m
l (x)Y m

l (y+)λ̃+(x)| cos θx|dS(x). (3.25)

Also, for the rest of the (l,m) pairs, when l+m is odd, Y m
l will be odd, so that the integrand

will also be odd, and thus,

l +m odd ⇒
∫
S

Y m
l (x)Y m

l (y+)λ̃+(x)| cos θx|dS(x) = 0. (3.26)

Now these terms can be added to 3.25, so that the sum has all the (l,m) pairs:

(
L̃wss λ

)
(y) =

1

2

∫
S

∞∑
0=l

l∑
m=−l

ζlY
m
l (x)Y m

l (y+)λ̃+(x)| cos θx|dS(x). (3.27)

By construction ζl/2 = 1/(2l + 1), for which (3.4) from Proposition 3.1.2 allows us rewrite
(3.27):(
L̃wss λ

)
(y)=

∫
S

Kws(x,y+)λ̃+(x)| cos θx|dS(x) (3.28)

=

∫
S+

Kws(x,y+)λ̃+(x)| cos θx|dS+(x)+

∫
S−

Kws(x,y+)λ̃+(x)| cos θx|dS−(x) (3.29)

=

∫
D

Kws(x+,y+)λ(x)dD(x) +

∫
D

Kws(x−,y+)λ(x)dD(x) (3.30)

=

∫
D

1

4π

(
1

‖x+ − y+‖ +
1

‖x− − y+‖

)
λ(x)dD(x), (3.31)

which proves the identity (3.20) of the theorem.

The demonstration for K̃ws
as can be deduced from the application of L̃wsas to a function ϕ

defined over D, using the same argument with some modifications. Starting with the series

definitions for L̃wsas ϕ, a function ϕ+ = ϕ ◦ T is defined to pull the integral to S+. Defining ϕ̃+

now as the odd mirror reflection, i.e. ϕ̃+(x+) = −ϕ̃+(x−), the same two key properties are
achieved: 1) the integrand becomes even and thus it can be transformed into an integral over
S, and 2) the complementary (l,m) pairs (the even ones) integrate as zero and can be added
to complete the series. Once the expression of the integral kernel for the sphere is recognizable
from Proposition 3.1.2, it can be replaced and the integral later pulled back to the disk. Being

ϕ̃+ odd, the minus sign appears naturally differentiating this case from the previous one.

�

These closed form expressions of two of the integral kernels, without resorting to series
expressions, allow for the computation of boundary element calculations and the construction
of Galerkin matrices as it will be shown later in this chapter. In the next theorem we use the
closed form expressions of the weakly singular integral kernels to deliver closed form variational
expressions for the modified hypersingular operators L̃hss and L̃hsas.

Theorem 3.1.2 (Closed variational form for the hypersingular integral kernels). The bilinear
forms induced by the hypersingular boundary integral operator L̃hsas admits the following two
expressions of integration by parts:〈

−L̃hsasµ , µt
〉
D

=
〈
L̃wss
−−→
curl Dµ,

−−→
curl Dµ

t
〉
D

+

〈
L̃wsas

(
1

w

∂µ

∂φx

)
,

1

w

∂µt

∂φy

〉
D

(3.32)
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and〈
−L̃hsasµ , µt

〉
D
=

〈
L̃wsas
L3µ

w
,
L3µ

t

w

〉
D
− 1

2

〈
L̃wss L+µ,L−µt

〉
D
− 1

2

〈
L̃wss L−µ,L+µ

t
〉
D
. (3.33)

Similarly, the bilinear forms induced by the hypersingular boundary integral operator L̃hss
admits the following two expressions of integration by parts:〈

−L̃hss g , gt
〉
D

=
〈
L̃wsas
−−→
curl Dg,

−−→
curl Dg

t
〉
D

+

〈
L̃wss

(
1

w

∂g

∂φx

)
,

1

w

∂gt

∂φy

〉
D

(3.34)

and〈
−L̃hss g , gt

〉
D

=

〈
L̃wss
L3g

w
,
L3g

t

w

〉
D
− 1

2

〈
L̃wsas L+g,L−gt

〉
D
− 1

2

〈
L̃wsas L−g,L+g

t
〉
D
. (3.35)

Proof Let us demonstrate the expressions for L̃hsas; the ones for L̃hss can be deduced similarly.
The bilinear form induced by L̃hsas is written as:〈

−L̃hsasµ , µt
〉
D

= −
∫
D

∫
D

K̃hs
as (x,y)µ(x)µt(y)dD(x)dD(y) (3.36)

=

∫
D

∫
D

∞∑
l=0

l∑
m=−l
l+m odd

ηl
yml (x)

w(x)

yml (y)

w(y)
µ(x)µt(y)dD(x)dD(y). (3.37)

Let us define T : S→ D as the vertical projection of points from the sphere onto the disk,
and let us define the following odd functions for points x,y on S:

µ̃(x) =

{
µ(Tx) if x ∈ S+,
−µ(Tx) if x ∈ S−, and µ̃t(y) =

{
µt(Ty) if y ∈ S+,
−µt(Ty) if y ∈ S−. (3.38)

Defined like this, we identify Y m
l (x)µ̃(x) and Y m

l (y)µ̃t(y) as even functions for l+m odd,
and as odd functions for l +m even. Thus, we can rewrite the bilinear form as:

〈
−L̃hsasµ , µt

〉
D

=
1

2

∫
S

∫
S

∞∑
l=0

l∑
m=−l

ηl
2
Y m
l (x)Y m

l (y)µ̃(x)µ̃t(y)dS(x)dS(y). (3.39)

Using Proposition 3.1.1 we can further write the expression as

〈
−L̃hsasµ , µt

〉
D

=
1

2

∫
S

∫
S

Khs(x,y)µ̃(x)µ̃t(y)dS(x)dS(y). (3.40)

Using Theorem 1.5.3, we can rewrite the previous expression as〈
−L̃hsasµ , µt

〉
D

=
1

2

∫
S

∫
S

Kws(x,y)
(−−→

curl Sµ̃(x),
−−→
curl Sµ̃

t(y)
)
dS(x)dS(y). (3.41)

Using now Remark 2.5.1, we can rewrite again the previous expression as〈
−L̃hsasµ , µt

〉
D

=
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1

2

∫
S

∫
S

Kws(x,y)
∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy
dS(x)dS(y)

+
1

2

∫
S

∫
S

Kws(x,y)

[
cos (φx − φy)

(
∂µ̃(x)

∂θx

∂µ̃t(y)

∂θy
+

cos θx cos θy
sin θx sin θy

∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy

)

+ sin (φx − φy)

(
cos θy
sin θy

∂µ̃(x)

∂θx

∂µ̃t(y)

∂φy
− cos θx

sin θx

∂µ̃(x)

∂φx

∂µ̃t(y)

∂θy

)]
| cos θx| | cos θy|dS(x)dS(y)

(3.42)

Let us focus on the first integral. Using Proposition 3.1.2, we can write:

1

2

∫
S

∫
S

Kws(x,y)
∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy
dS(x)dS(y) =

1

2

∫
S

∫
S

∞∑
l=0

l∑
m=−l

ζl
2
Y m
l (x)Y m

l (y)
∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy
dS(x)dS(y),

(3.43)

and since µ̃ and µ̃t are odd (and even (l,m) pairs vanish) functions we can write:

=
1

2

∫
S

∫
S

∞∑
l=0

l∑
m=−l
l+m odd

ζl
2
Y m
l (x)Y m

l (y)
∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy
dS(x)dS(y) (3.44)

=

∫
S+

∫
S

∞∑
l=0

l∑
m=−l
l+m odd

ζl
2
Y m
l (x)Y m

l (y)
∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy
dS(x)dS+(y) (3.45)

=

∫
S+

∫
S+

∞∑
l=0

l∑
m=−l
l+m odd

ζlY
m
l (x)Y m

l (y)
∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy
dS+(x)dS+(y) (3.46)

=

∫
D

∫
D

∞∑
l=0

l∑
m=−l
l+m odd

ζly
m
l (x)yml (y)

1

w(x)

∂µ(x)

∂φx

1

w(y)

∂µt(y)

∂φy
dD(x)dD(y) (3.47)

=

〈
L̃wsas

(
1

w

∂µ

∂φx

)
,

1

w

∂µt

∂φy

〉
D
, (3.48)

thus providing the desired result for the first integration in (3.42). Let us now address the
second one. Let us first note that the following functions are even with respect to the plane
x3 = 0:

∂µ̃

∂θx
(x),

∂µ̃t

∂θy
(y),

cos θx
sin θx

∂µ̃

∂φx
(x) and

cos θy
sin θy

∂µ̃t

∂φy
(y). (3.49)

Thus, we can rewrite the second integral in (3.42), eliminating the terms for l+m odd, as:

1

2

∫
S

∫
S

∞∑
l=0

l∑
m=−l
l+m even

ζl
2
yml (x)yml (y)

[
cos (φx − φy)

(
∂µ̃(x)

∂θx

∂µ̃t(y)

∂θy
+

cos θx cos θy
sin θx sin θy

∂µ̃(x)

∂φx

∂µ̃t(y)

∂φy

)

+ sin (φx − φy)

(
cos θy
sin θy

∂µ̃(x)

∂θx

∂µ̃t(y)

∂φy
− cos θx

sin θx

∂µ̃(x)

∂φx

∂µ̃t(y)

∂θy

)]
| cos θx| | cos θy|dS(x)dS(y).

(3.50)

Using the same procedure as before for writing sphere integrals of even functions as integrals
on S+ and on D, and using (2.67) and (2.68) from Remark 2.5.1, we find the desired expression
for the second integral.
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For the second part regarding ãhsas(µ, µ
t), using proposition 2.7.7, let us rewrite the first

term of (3.32):〈
L̃wss
−−→
curl Dµ,

−−→
curlµt

〉
D

=

∫
D

∫
D

K̃ws
s (x,y)

(−−→
curl Dµ,

−−→
curl Dµ

t
)
dD(x)dD(y) (3.51)

= −1

2

∫
D

∫
D

K̃ws
s (x,y)

(
L+µL−µt + L+µL−µt

)
dD(x)dD(y) (3.52)

= −1

2

〈
L̃wsas L+µ,L−µt

〉
D
− 1

2

〈
L̃wsas L−µ,L+µ

t
〉
D
. (3.53)

The second term of (3.32) can be easily rewritten, using the definition of operator L3 and
its conjugate (Proposition 2.7.5), as:〈
L̃wsas

(
1

w

∂µ

∂φx

)
,

1

w

∂µt

∂φy

〉
D

=

∫
D

∫
D

K̃ws
as (x,y)

1

w(x)

∂µ

∂φx

1

w(y)

∂µt

∂φy
dD(x)dD(y) (3.54)

= −
∫
D

∫
D

K̃ws
as (x,y)

1

w(x)

1

i

∂µ

∂φx

1

w(y)

1

i

∂µt

∂φy
dD(x)dD(y) (3.55)

= −
∫
D

∫
D

K̃ws
as (x,y)

L3µ(x)

w(x)

L3µt(y)

w(y)
dD(x)dD(y) (3.56)

=

∫
D

∫
D

K̃ws
as (x,y)

L3µ(x)

w(x)

L3µt(y)

w(y)
dD(x)dD(y) (3.57)

=

〈
L̃wsas

L3µ

w(x)
,
L3µ

t

w(y)

〉
D
. (3.58)

This proves identities (3.32) and (3.33) from the theorem. Equations (3.34) and (3.35)
regarding L̃hss can be obtained with the same procedure using complementary parity and sym-
metry. �

Proposition 3.1.3 (Modified integral operators’ action over basis functions on the disk).
The modified boundary integral operators from Definition 3.1.2 have the following mapping
properties:

L̃wss
yml
w

=
ζl
2
yml , for l +m even, (3.59)

L̃wsas
yml
w

=
ζl
2
yml , for l +m odd, (3.60)

L̃hss yml = −ηl
2

yml
w

, for l +m even, (3.61)

L̃hsasyml = −ηl
2

yml
w

, for l +m odd. (3.62)

Proof Let us analyze the first case.(
L̃wss

yml
w

)
(y) =

∞∑
l′=0

l′∑
m′=−l′
l′+m′ even

ζl

∫
D

ym
′

l′ (y)ym
′

l′ (x)
yml (x)

w(x)
dD(x). (3.63)

Using the orthogonality relations 2.7.4 and 2.7.1 it follows that(
L̃wss

yml
w

)
(y) =

∞∑
l′=0

l′∑
m′=−l′
l′+m′ even

ζly
m′
l′ (y)

1

2
δl
′
l δ

m′
m (3.64)
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=
ζl
2
yml (y). (3.65)

The next three cases follow from similar procedures. �

Proposition 3.1.4 (Calderón-type identities for the modified boundary integral operators on
the disk). The modified boundary integral operators from Definition 3.1.2 have the following
Calderon-type identities:

− L̃hss ◦ L̃wss λ =
1

4

(
I +

1

w
L̃wss

(
1

w
L̃wss λ

))
, (3.66)

− L̃hsas ◦ L̃wsas ϕ =
1

4

(
I +

1

w
L̃wsas

(
1

w
L̃wsas ϕ

))
, (3.67)

− L̃wss ◦ L̃hss g =
1

4

(
I + L̃wss

(
1

w
L̃wss

( g
w

)))
, (3.68)

− L̃wsas ◦ L̃hsasµ =
1

4

(
I + L̃wsas

(
1

w
L̃wsas

(µ
w

)))
. (3.69)

Proof Let us prove the first identity for L̃hss ◦ L̃wss . Using Proposition 2.7.10 it is easy to see
that, for λ ∈ H̃−1/2(D)

−
(
L̃hss ◦ L̃wss

)
λ =

1

4

∞∑
l=0

l∑
m=−l
l+m even

ζlηlλ
m
l

yml
w

(3.70)

=
∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)

(2l + 1)2
λml

yml
w
. (3.71)

This expression can be separated as

∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)

(2l + 1)2
λml

yml
w

=

∞∑
l=0

l∑
m=−l
l+m even

λml
yml
w
−
∞∑
l=0

l∑
m=−l
l+m even

3l2 + 3l + 1

(2l + 1)2
λml

yml
w

(3.72)

= λ−3
∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)

(2l + 1)2
λml

yml
w
−
∞∑
l=0

l∑
m=−l
l+m even

1

(2l + 1)2
λml

yml
w
, (3.73)

⇒ −4
(
L̃hss ◦ L̃wss

)
λ = λ−

∞∑
l=0

l∑
m=−l
l+m even

1

(2l + 1)2
λml

yml
w
. (3.74)

The last term of the equation is easy to compose using operator L̃wss . Using again Propo-
sition 2.7.10 it’s easy to see that

1

w
L̃wss

(
1

w
L̃wss λ

)
=

∞∑
l=0

l∑
m=−l
l+m even

1

(2l + 1)2
λml

yml
w
, (3.75)

which proves the first case. The case for L̃hsas ◦ L̃wsas is done in the same way for H−1/2(D) but
summing over l +m odd pairs.

Let us now address the case L̃wss ◦ L̃hss . In a way similar to the previous two cases, we have,
for g ∈ H1/2(D),

−
(
L̃wss ◦ L̃hss

)
g =

∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)

(2l + 1)2
gml y

m
l . (3.76)
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Using yet again Proposition 2.7.10 it’s easy to see that

L̃wss
(

1

w
L̃wss

( g
w

))
=
∞∑
l=0

l∑
m=−l
l+m even

1

(2l + 1)2
gml y

m
l , (3.77)

which proves this case proceeding as in the previous two cases but replacing yml /w with yml .

The case for L̃wsas ◦ L̃hsas is done in the same way for H̃1/2(D) but summing over l+m odd pairs.
�

3.1.3 Variational problems and norms

In this section we will use the modified boundary integral operators, for which we know their
explicit variational expressions, to formulate variational problems that we will later use to build
Galerkin matrices. The preconditioning capabilities of these matrices will be an important part
of this chapter, and will be studied in subsequent sections.

Definition 3.1.3 (Induced bilinear forms). Let us define the following bilinear forms induced
by the modified boundary integral operators from Definition 3.1.2:

ãwss ∈ L
(
H̃−1/2(D)× H̃−1/2(D),C

)
: ãwss (λ, λt) =

〈
L̃wss λ, λt

〉
D
, (3.78)

b̃hss ∈ L
(
H1/2(D)×H1/2(D),C

)
: b̃hss (g, gt) =

〈
−L̃hss g, gt

〉
D
, (3.79)

ãhsas ∈ L
(
H̃1/2(D)× H̃1/2(D),C

)
: ãhsas(µ, µ

t) =
〈
−L̃hsasµ, µt

〉
D
, (3.80)

b̃wsas ∈ L
(
H−1/2(D)×H−1/2(D),C

)
: b̃wsas (ϕ,ϕt) =

〈
L̃wsas ϕ,ϕt

〉
D
. (3.81)

These bilinear forms define norms in the spaces spanned by the disk basis functions, as we
will show in the next propositions.

Proposition 3.1.5 (The bilinear forms define inner products). The bilinear forms from Defi-
nition 3.1.3 define inner products in the linear spaces spanned by the set of disk basis functions:

ãwss in Y1/w
s , b̃hss in Ys, ãhsas in Yas and b̃wsas in Y1/w

as .

Proof Let us focus on the first bilinear form, ãwss for the linear space spanned by Y1/w
s . Let us

take two arbitrary functions u, v ∈ span
(
Y1/w
s

)
and show that conjugate symmetry, linearity,

and positive definiteness are satisfied.〈
L̃wss u , v

〉
D

=

〈
Lwss

∞∑
l=0

l∑
m=−l
l+m even

uml
yml
w
,

∞∑
l=0

l∑
m=−l
l+m even

vml
yml
w

〉
D

(3.82)

=

〈 ∞∑
l=0

l∑
m=−l
l+m even

ζl
2
uml y

m
l ,

∞∑
l=0

l∑
m=−l
l+m even

vml
yml
w

〉
D

(3.83)

=

∞∑
l=0

l∑
m=−l
l+m even

ζlu
m
l v

m
l

4
(3.84)

=
∞∑
l=0

l∑
m=−l
l+m even

ζlv
m
l u

m
l

4
(3.85)

=
〈
L̃wss v , u

〉
D
. (3.86)
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Linearity on the first argument comes straightforwardly from the definition of the duality
product. And finally,

〈
L̃wss u , u

〉
D

=
∞∑
l=0

l∑
m=−l
l+m even

ζl
|uml |2

4
, (3.87)

shows that ãwss (u, u) is always positive and that, only uml = 0 for every l and m, and thus
only u = 0, makes ãwss (u, u) = 0, which shows the positive-definiteness property. The same
argument follows for the other three cases. �

Definition 3.1.4 (Norms associated with the modified operators). Being inner products, the
previous bilinear forms from Definition 3.1.3 allow us to define the following norms for their
respective spaces:

‖λ‖ãwss =
√
ãwss (λ, λ), (3.88)

‖µ‖ãhsas =
√
ãhsas(µ, µ), (3.89)

‖g‖
b̃hss

=

√
b̃hss (g, g), (3.90)

‖ϕ‖
b̃wsas

=

√
b̃wsas (ϕ,ϕ). (3.91)

Proposition 3.1.6 (Computation of the norms associated with the modified boundary integral
operators). The norms from Definition 3.1.4 can be computed as follows:

‖λ‖2ãwss =
∞∑
l=0

l∑
m=−l
l+m even

ζl
4
λml λ

m
l , for l +m even, (3.92)

‖µ‖2ãhsas =

∞∑
l=0

l∑
m=−l
l+m odd

ηl
4
µml µ

m
l , for l +m odd, (3.93)

‖g‖2
b̃hss

=

∞∑
l=0

l∑
m=−l
l+m even

ηl
4
gml g

m
l , for l +m even, (3.94)

‖ϕ‖2
b̃wsas

=
∞∑
l=0

l∑
m=−l
l+m odd

ζl
4
ϕml ϕ

m
l , for l +m odd, (3.95)

where
λml = (λ, yml /w)w, (3.96)

µml = (µ, yml )1/w, (3.97)

gml = (g, yml )1/w, (3.98)

ϕml = (ϕ, yml /w)w. (3.99)

Proof The demonstration is done as the one for Proposition 2.7.16. �

We will use the bilinear forms induced by the modified boundary integral operators to pose
variational problems. These variational problems will later give rise to the Galerkin matrices
that will be the subject of study, especially in their preconditioning abilities.
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Definition 3.1.5 (Variational problems for the modified boundary integral operators). Let
us consider the following variational problems for the bilinear forms from Definition 3.1.3.
A variation problem for the boundary integral equation associated with the boundary integral
operator L̃wss is

(
L̃wss −VF

)
Given g ∈ H1/2(D), find λ ∈ H̃−1/2(D), such that

∀λt ∈ H̃−1/2(D)
(
ãwss (λ, λt) =

〈
g, λt

〉
D
)
.

(3.100)

The boundary integral equation associated with the boundary integral operator L̃hss admits the
variational problem

(
L̃hss −VF

)
Given λ ∈ H̃−1/2(D), find λ ∈ H1/2(D), such that

∀gt ∈ H1/2(D)
(
b̃hss (g, gt) =

〈
λ, gt

〉
D

)
.

(3.101)

The boundary integral equation associated with the boundary integral operator L̃hsas admits the
variational problem

(
L̃hsas−VF

)
Given ϕ ∈ H−1/2(D), find µ ∈ H̃1/2(D), such that

∀µt ∈ H̃1/2(D)
(
ãhsas(µ, µ

t) =
〈
ϕ, µt

〉
D
)
.

(3.102)

The boundary integral equation associated with the boundary integral operator L̃wsas admits the
variational problem

(
L̃wsas−VF

)
Given µ ∈ H̃1/2(D), find ϕ ∈ H−1/2(D), such that

∀ϕt ∈ H−1/2(D)
(
b̃wsas (ϕ,ϕt) =

〈
µ, ϕt

〉
D

)
.

(3.103)

Coercivity and bi-continuity in the Sobolev trace spaces must be proven for the associated
Galerking matrices to be optimal preconditioners. These variational problems will provide
the Galerkin matrices that are intended to produce the desired preconditioning effect on the
Galerkin matrices associated with S and N by virtue of their kernels’ behavior in the radial
direction. This idea will be put to the test numerically in the next sections. These variational
problems are not necessarily variational formulations for the modified integral operators in
the relevant trace spaces on which these problems are posed, as their coercivity is not readily
assured for the norms of the Sobolev trace spaces H̃−1/2(D), H1/2(D), H̃1/2(D) and H−1/2(D).
In fact, following Propositions 2.7.16 and 3.1.6, the coercivity would need the existence of
constants Cwss , Chss , Cwsas and Chsas such that

1

βml
≤ Cwss ζl, βml ≤ Chss ηl,

1

αml
≤ Cwsas ζl, and αml ≤ Chsas ηl, (3.104)

and the existence of constants C ′wss , C ′hss , C ′wsas and C ′hsas such that

1

βml
≥ C ′wss ζl, βml ≥ C ′hss ηl,

1

αml
≥ C ′wsas ζl, and αml ≥ C ′hsas ηl. (3.105)

This would amount to norm equivalency between the norms induced by the series operators
presented in the previous section and the norms induced by modified series operators presented
in this current section.

We will present the answer to some of this issues the following sections.
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3.2 Boundary elements method implementation

Taking advantage of known series representation of the operators posed on the sphere, it
was possible to consider in this present chapter slight modifications to the series form integral
kernel from Definition 2.7.10, that had explicit and closed variational forms while preserving the
singularity behavior properties of the integral kernels. These singularity behavior properties
were signaled as a key feature of a previous achievement for a segment screen in R2 and in
fact they were also shown for the series forms of the kernels of the inverse operators for the
case of the disk. In the rest of this chapter we will describe a domain discretization suitable
for the preconditioning strategy drawn from Theorem 2.1.1 and a boundary element method
adapted to the case of the disk screen. With these tools we will build, in the subsequent
sections, the Galerkin matrices for the new modified operators and we will test the numerical
implementation with benchmark cases. Finally, once the implementation has been argued to
be successful, we will explore the capacity for preconditioning of the new modified operators
in various cases for the Laplace and Helmholtz screen problem for a disk obstacle. We will end
this chapter showing an extension of the numerical method that can extend preconditioning
capabilities into screens with other shapes.

3.2.1 Domain discretization

In this subsection we will address in further detail the triangular mesh partition of the
surface of screens, particularly the disk. The main concepts about mesh partition were already
described in Subsection 1.6.1. The details further developed in this present subsection will
be related to the fulfillment of dimension matching conditions stipulated in Theorem 2.1.1
when the surface is not closed. Producing a mesh over which to specify supports for boundary
element basis functions is more difficult for screens because the existence of a border of the
surface (∂D 6= ∅), and because the fact that one of the Sobolev spaces has functions that are

zero at this border ( in fact, H̃1/2(D) ⊆ H1/2
0 (D)).

Let us consider a triangular mesh Th for the conformal triangular approximation Dh of
D (Definition 1.6.1) and a triangular mesh Th (Definition 1.6.2), made of NT closed triangles
(with ti its i-th triangle), NE edges and NV vertices (with vi its i-th vertex), of which N0

V

are interior. The new domain of integration Dh, an approximation of D, is then Dh = ∪NTi=1ti
(modulo a close-open topological operation).

Two dual meshes will be constructed starting from Th. The first dual mesh T̃h is constructed
as it was indicated in Definition 1.6.10, but we will shortly refresh its main elements. We
consider the six disjoint sub-triangles (of type t̂ in Definition 1.6.3) resulting from dividing
each triangle of Th using its medians. We consider the set of piece-wise polygonal elements
{Li}NVi=1, associated with the vertices of the primal mesh Th such that piece-wise polygonal
element Li associated with vi is the union of the collection of sub-triangles of type t̂ that have
vertex vi of the mesh Th as one of its own vertices. This construction also yields Dh = ∪NVi=1Li
(modulo a close-open topological operation) and, when the discretized surface lies on a plane,
elements Li are not just piece-wise polygonal, but polygons themselves.

We will consider a second dual mesh in order to develop appropriate elements for a subspace
of H−1/2(D), dual to H̃1/2(D) of functions zero on the border, and to comply with the require-
ment that both finite subspaces have the same dimensions. The second dual mesh, denoted by
T̃ 0
h , will use a different subdivision of the triangles on the border of Dh: triangles t ∈ Th with

two or three vertices on the edge ∂Dh will not be subdivided and will be considered proper
sub-triangles, while the ones with one vertex over ∂Dh will be divided into two sub-triangles (of
type t̃ in Definition 1.6.3) separated by the median associated with the vertex on the border
∂Dh. Triangles without vertices on ∂Dh will be subdivided as in T̃h. The dual mesh T̃ 0

h is
then the set of piece-wise polygonal elements associated with the N0

V internal vertices of the

mesh Th, {Mi}N
0
V

i=0, such that the element Mi associated with the internal vertex vi of Th is the
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collection of sub-triangles (now produced differently than for T̃h) that have the internal vertex
vi of the Th as one of their own vertices. Figure 3.1 illustrates the construction process for T̃h
and T̃ 0

h showing the subdivision of triangles near edge ∂Dh on a sector the of Dh. Figure 3.2
shows specimens of the three meshes for Dh for a given h.
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Figure 3.1: Detail of the subdivision of the triangles of a mesh Th near the border of ∂Dh,
showing the subdivision border triangles for the construction of T̃h (left) and T̃ 0

h (right).
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Figure 3.2: An example of triangular mesh partition Th of Dh for a given mean edge size h ex-
hibiting its triangles {ti}NTi=1 (left), with the resulting dual meshes T̃h, exhibiting its components

{Li}NVi=1 (center), and T̃ 0
h exhibiting its components {Mi}N

0
V

i=1 (right).

A more formal definition will be given using the tools developed in Subsection 1.6.1.

Definition 3.2.1 (Secondary dual mesh T̃ 0
h ). We will call T̃ 0

h the secondary dual mesh of the
triangular mesh Th the set of piece-wise polygonal elements associated with the N0

V internal

vertices of Th, {Mi}N
0
V

i=1, where the element Mi associated with the internal vertex vi is defined
as:

Mi =

 ⋃
t∈Tv→t(vi)

|Tt→v(t)∩∂Dh|=2,3

t

⋃
 ⋃

t∈Tv→t(vi)
|Tt→v(t)∩∂Dh|=1

⋃
t̃∈Tt→t̃(t)

t̃

⋃
 ⋃

t∈Tv→t(vi)
|Tt→v(t)∩∂Dh|=0

⋃
t̂∈Tt→t̂(t)

t̂

 , (3.106)
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for i = 1...N0
V indexing the internal vertices of Th.

From its construction it is also clear that the dual mesh T̃ 0
h is also a partition of Dh in the

sense that Dh = ∪N
0
V

i=1Mi (modulo a close-open topological operation), and when the discretized
surface lies in a plane elements Mi are not just piece-wise polygonal, but polygons themselves.

It is remarkable that the number of piece-wise polygonal elements of the first dual mesh
T̃h is the same as the number of vertices of Th, and that the number of piece-wise polygonal
elements of the secondary dual mesh T̃ 0

h is the same as the number of internal vertices of Th.

Notation 3.2.1 (Sub-triangles of piece-wise polygonal elements from T̃h and T̃ 0
h ). Given a

piece-wise polygonal element Li, associated with the vertex vi of Th, the notation k ∈ Li will
be used to mean that a triangle k is one of the sub-triangles of the element Li (in this case,
triangles of type t̂ in Definition 1.6.3). Given a piece-wise polygonal element Mi, associated
with the internal vertex vi of Th, the notation k ∈Mi will be used to mean that a triangle k is
one of the sub-triangles of the element Mi (in this case triangles of type t̂ or type t̃ in Definition
1.6.3, or just triangles from Th).

3.2.2 Mesh sets

In the presented modified boundary integral operators related to the Laplace equation for
the disk, the kernels involved projections of points from disk D onto upper half-sphere S+ and
onto lower half-sphere S−. When performing numerical integrations over Dh, advantage can be
taken performing them instead over projected conformal triangular approximations S+

h and S−h ,
which can be obtained from Dh or vice versa. A projected conformal triangular approximation
is obtained using the weight function w, defined for the disk in (2.43) from Subsection 2.5.1.
For the disk, function w provides the distance ‖x− x±‖ for x ∈ D. Thus, conformal triangular
approximations S±h can be obtained from Dh taking the points of S±h to be the ones of Dh
after projecting them vertically using function w. Likewise, any one of S±h can define Dh and
the complementary half-sphere using a similar procedure. Using different weight functions for
vertical projections will become a relevant tool when treating different screens, as it will be in
the next section of this chapter.

The boundary element computations will use, as it will be seen later in this chapter, in-
tegration over triangles in the upper and lower half-spheres. The set of these three meshes,
available for the computation of bilinear forms over Dh, will be named mesh set.

Definition 3.2.2 (Mesh set). A mesh set for disk D is the set of conformal triangular approxi-
mations of D, S+, and S−, i.e.

{
Dh, S+

h ,S
−
h

}
for a fixed discretization parameter h of Dh, such

that every vertex of S+
h (and of S−h ) is the vertical projection of a vertex of Dh onto S+ (and

onto S−).

We will consider three different types of mesh sets. The interest in studying different meshes
and mesh sets arises from: 1) the interest in providing mesh refinement near ∂Dh as some
solutions to the relevant boundary integral equationes are expected to present singularities at
the border of D (refer to Theorem 2.3.4), and 2) the interest in analyzing the effect of mesh
uniformity (Definitions 1.6.8 and 1.6.9) on the numerical method to be proposed. Theorem
2.1.1 assures optimal preconditioning independently of the choice of the basis for the finite-
dimentional subspaces of the relevant Sobolev trace spaces, provided that stability estimates
are fulfilled by the chosen bases. The type of mesh sets to be considered are summarized and
explained in Table 3.1. They are obtained fixing one of the three surfaces, taking it to be
globally or locally quasi-uniform (Definitions 1.6.8 and 1.6.9) and generating the other two by
projection.
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Table 3.1: Description of the types of mesh sets considered for the numerical experiments and
their construction processes for disk screen D.

Type Dh S+
h S−h

Mesh set #1 Projected from S+
h Glob. q.-uniform triangular mesh of S+ Proj. from S+

h

Mesh set #1 Glob. q.-uniform mesh of Dh Projected from Dh Proj. from Dh

Mesh set #3 Radially graded mesh of Dh Projected from Dh Proj. from Dh

Specimens of the three types of mesh sets described in Table 3.1 are illustrated in Figures
3.3, 3.4 & 3.5 providing graphical representations of Dh and S+

h for a given discretization
parameter h.
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Figure 3.3: Example of discretized domains Dh (left) and S+
h (right) in a mesh set of type

Mesh set #1 for a given discretization parameter h.
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Figure 3.4: Example of discretized domains Dh (left) and S+
h (right) in a mesh set of type

Mesh set #2 for a given discretization parameter h.
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Figure 3.5: Example of discretized domains Dh (left) and S+
h (right) in a mesh set of type

Mesh set #3 for a given discretization parameter h.

3.2.3 Boundary element spaces and basis functions

We employ the described meshes and mesh sets to obtain zeroth and first order piecewise
polynomial boundary element spaces, subspaces of the Sobolev trace spaces involved in the
variational formulations for the new boundary integral operators on the disk. We call Pn the
space of bi-variate polynomials of a degree less than or equal to n, and we then proceed to define
the following boundary element spaces. The definitions that will be presented will resemble
those of Subsection 1.6.2, but will differ in the treatment required for the finite-dimensional
subspaces of the new spaces H̃1/2(D) and H̃−1/2(D), that were not considered in Chapter 1.

Definition 3.2.3 (Boundary element spaces). Let us define the following finite-dimensional
boundary element spaces, piecewise polynomial on the triangles defined for the primal mesh Th
and on the piece-wise polygonal elements defined for its dual mesh T̃h and for its secondary
dual mesh T̃ 0

h :

Vh (Dh) =
{
gh ∈ C (Dh) : ∀t ∈ Th

(
gh|t ∈ P1

)}
⊂ H1/2 (Dh) , (3.107)

Ṽh (Dh) =
{
µh ∈ Vh (Dh) : µh|∂Dh = 0

}
⊂ H̃1/2 (Dh) , (3.108)

W̃h (Dh) =
{
λh ∈ L2 (Dh) : ∀L ∈ T̃h

(
λh|L ∈ P0

)}
⊂ H̃−1/2 (Dh) , (3.109)

Wh (Dh) =
{
ϕh ∈ L2 (Dh) : ∀M ∈ T̃ 0

h

(
ϕh|M ∈ P0

)}
⊂ H−1/2 (Dh) . (3.110)

We will define precise basis functions that we will use in finite-dimensional versions of the
variational problems for the modified boundary integral operators. These basis functions will
be defined by slightly modifying those from Subsection 1.6.2.

Definition 3.2.4 (Basis functions for the boundary element spaces). We denote the standard
zeroth and first order finite element basis functions for the previously defined finite dimensional
spaces as follows.

Let i ∈ {1...NV } index the vertices of mesh Th, and its associated piece-wise polygonal
element Li ∈ T̃h.

For i ∈ {1...NV }, we define κi(x) =

{
1 if x ∈ Li,
0 if x /∈ Li.

(3.111)
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Let i ∈ {1...N0
V } index the internal vertices of mesh Th, and its associated piece-wise polyg-

onal element Mi ∈ T̃ 0
h .

For i ∈ {1...N0
V }, we define κ0

i (x) =

{
1 if x ∈Mi,

0 if x /∈Mi.
(3.112)

To define the first order finite element basis functions we will consider the set of vertices of
a mesh Th, i.e. {vi}NVi=1. Let i ∈ {1...NV } index the vertices of mesh Th.

For i ∈ {1...NV }, we define χi∈Vh (Dh) such that χi(vj) =

{
1 if i = j,

0 if i 6= j,
for j=1...NV .

(3.113)

We will use the superscript 0 in χ0
i , to emphasize the case when a function χi cannot

be associated with a vertex on the boundary of Dh in the case when χi ∈ Ṽh(Dh). This will
facilitate the notation when referring to basis functions of the space Ṽh(Dh), signaling when a
basis function belongs to this space.

For piecewise affine functions χi or χ0
i we will denote their restriction to a triangle tm as

χtmi (x) = ami x1 + bmi x2 + cmi . We will write tm 3 vi to mean that the triangle tm has vi as one
of its vertices.

Remark 3.2.1 (Dimension matching of the boundary element spaces). Constructed like this,
the defined finite-dimensional spaces are subspaces of the relevant Sobolev trace spaces associated
with operators S and N , and they also comply with the dimension matching requirement from
Theorem 2.1.1:

dim
(
W̃h(Dh)

)
= dim (Vh(Dh)) = NV , (3.114)

dim
(
Ṽh(Dh)

)
= dim (Wh(Dh)) = N0

V . (3.115)

3.2.4 Finite-dimensional variational problems

Using the defined boundary element spaces, we will specify finite-dimensional versions to
the variational problems from Definition 3.1.5 associated with the modified boundary integral
operators. We will use these finite-variational problems in the construction of Galerkin matrices
that will be used in solving boundary integral equations for the modified operators, and later
in preconditioning methods.

Given a particular conformal triangular approximation Dh of D, we will consider the fol-
lowing expressions for functions in the boundary element spaces.

Definition 3.2.5 (Representation of functions in the boundary element spaces). A function

λh ∈ W̃h(Dh) will be expressed as

λh(x) =

NV∑
i=1

λhi κi(x), for x ∈ Dh. (3.116)

A function gh ∈ Vh(Dh) will be expressed as

gh(x) =

NV∑
i=1

ghi χi(x), for x ∈ Dh. (3.117)

A function µh ∈ Ṽh(Dh) will be expressed as

µh(x) =

N0
V∑

i=1

µhi χ
0
i (x), for x ∈ Dh. (3.118)
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A function ϕh ∈Wh(Dh) will be expressed as

ϕh(x) =

N0
V∑

i=1

ϕhi κ
0
i (x), for x ∈ Dh. (3.119)

Definition 3.2.6 (Finite-dimensional variational problems). We will adapt the variational
problems from Definition 3.1.5 using finite-dimensional variational problems as follows. A
variational problem for the boundary integral equation associated with the boundary integral
operator L̃wss is

(
L̃wss −VFh

)
Given gh ∈ Vh(Dh), find

{
λhi
}NV
i=1

, such that

NV∑
i=1

λhi ã
ws
s (κi, κj) =

NV∑
k=1

ghk 〈χk, κj〉Dh , for j = 1...NV .

(3.120)

The boundary integral equation associated with the boundary integral operator L̃hss admits
the variational problem

(
L̃hss −VFh

)
Given λh ∈ W̃h(Dh), find

{
ghi
}NV
i=1

, such that

NV∑
i=1

ghi b̃
hs
s (χi, χj) =

NV∑
k=1

λhk 〈κk, χj〉Dh , for j = 1...NV .

(3.121)

The boundary integral equation associated with the boundary integral operator L̃hsas admits
the variational problem

(
L̃hsas−VFh

)
Given ϕh ∈Wh(Dh), find

{
µhi
}N0

V

i=1
, such that

N0
V∑

i=1
µhi ã

hs
as(χ

0
i , χ

0
j ) =

NV∑
k=1

ϕhk

〈
κ0
k, χ

0
j

〉
Dh
, for j = 1...N0

V .

(3.122)

The boundary integral equation associated with the boundary integral operator L̃wsas admits
the variational problem

(
L̃wsas−VFh

)
Given µh ∈ Ṽh(Dh), find

{
ϕhi
}N0

V

i=1
, such that

N0
V∑

i=1
ϕhi b̃

ws
as (κ0

i , κ
0
j ) =

N0
V∑

k=1

µhk

〈
χ0
k, κ

0
j

〉
Dh
, for j = 1...N0

V .

(3.123)

In these variational problems we have kept the symbols of the bilinear forms from Definition
3.1.3, abusing the notation, but they represent here bilinear forms induced by the corresponding
modified operators over the new domain on integration Dh.

3.2.5 Boundary element computations

In this subsection we will describe how to compute numerically the bilinear forms asso-
ciated with the previous finite-dimensional variational problems for the corresponding basis
functions. Let us first establish the key numerical tool underlying all other boundary integral
computations.

Remark 3.2.2 (Integrating Kws over pairs of arbitrary triangles). The main tool behind the
numerical computation of the bilinear forms associated with the four finite-dimensional varia-
tional problems from Definition 3.2.6 is the integration of the kernel Kws over any two pairs
of triangles, denoted here as k1 and k2, in R3:
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∫
k1

∫
k2

Kws(x,y)dk1(x)dk2(y) =

∫
k1

∫
k2

dk1(x)dk2(y)

4π ‖x− y‖ . (3.124)

This integral is computed using a 6 point Gauss-Lobatto quadrature scheme when triangles
k1 and k2 are separated. If the triangles are adjacent (or if they are the same triangle) the
integral is computed analytically as described in [34, Annex D.12] and [11]. Later in this
subsection, triangles k1 and/or k2 from (3.124) will be triangles t in Th, sub-triangles of type t̂,
or sub-triangles of type t̃ (refer to Definition 1.6.3). This will be useful when integrating over
pairs piece-wise polygonal elements in T̃h or T̃ 0

h .

We will now proceed to specify the way in which the numerical computation of the bilinear
forms will be performed. For integrations over piece-wise polygonal elements, we will follow
Notation 3.2.1 and denote k ∈ Li the fact that a sub-triangle k is one of the sub-triangles that
constitute a piece-wise polygonal element Li ∈ T̃h. In this case, sub-triangles k can only be
of type t̂. We will use the same notation, denoting by k ∈ Mi the fact that a sub-triangle k
is one the sub-triangles that constitute a piece-wise polygonal element Mi ∈ T̃ 0

h . In this case,
sub-triangles k can either be of type t̂, t̃ or even t (refer to Definition 1.6.3). For couples of
identified sub-triangles km and kn, or their projections onto the upper or lower half-spheres,
the integration of Kws can be performed as indicated by the previous remark, i.e. Remark
3.2.2.

Notation 3.2.2 (Projected triangles). For any given triangle k with vertices on Dh, we will
denote by k± its projection into the upper o lower projected domains S±h .

Proposition 3.2.1 (Computation of bilinear variational forms associated with L̃wss and L̃wsas ).
The values of the bilinear forms associated with the weakly singular integral operators L̃wss and
L̃wsas for the piecewise constant basis functions are:

ãws
s (κi, κj) =

∫
Li

∫
Lj

Kws
(
x+,y+

)
dLi(x)dLj(y) +

∫
Li

∫
Lj

Kws
(
x−,y+

)
dLi(x)dLj(y), (3.125)

b̃ws
as (κ0i , κ

0
j ) =

∫
Mi

∫
Mj

Kws
(
x+,y+

)
dMi(x)dMj(y)−

∫
Mi

∫
Mj

Kws
(
x−,y+

)
dMi(x)dMj(y). (3.126)

Proof This comes easily from considering the bounded support of elements Li and Mi and the
definition of the bilinear forms in Definition 3.1.3. �

Notation 3.2.3 (Components of unit vector normal to a triangle). Given a triangle k in R3

we will denote by nk its unit normal vector, and by nki , for i = 1, 2, 3, its coordinates.

Definition 3.2.7 (Approximation of elementary integrals of Kws over piece-wise polygonal
elements). We will use the following approximations, signaled by ≈, for the integration of the
weakly singular kernel with projected arguments:∫

Li

∫
Lj

Kws
(
x±,y+

)
dLi(x)dLj(y)≈

∑
km⊂Li

∑
kn⊂Lj

∣∣∣nk±
m

3 n
k+
n

3

∣∣∣ ∫
k±
m

∫
k+
n

Kws (x,y) dk±m(x)dk+n (y), (3.127)

∫
Mi

∫
Mj

Kws
(
x±,y+

)
dMi(x)dMj(y)≈

∑
km⊂Mi

∑
kn⊂Mj

∣∣∣nk±
m

3 n
k+
n

3

∣∣∣ ∫
k±
m

∫
k+
n

Kws (x,y) dk±m(x)dk+n (y). (3.128)

Proposition 3.2.2 (Computation of bilinear variational forms associated with L̃hss and L̃hsas).
The values of the bilinear forms associated with the hypersingular integral operators L̃hss and
L̃hsas for the piecewise affine basis functions are:

ãhsas(χ
0
i , χ

0
j ) =

〈
L̃wss
−−→
curl Dhχ

0
i ,
−−→
curlχ0

j

〉
Dh

+

〈
L̃wsas

(
1

w

∂χ0
i

∂φx

)
,

1

w

∂χ0
j

∂φy

〉
Dh

, (3.129)
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b̃hss (χi, χj) =
〈
L̃wsas
−−→
curl Dhχi,

−−→
curl Dhχj

〉
Dh

+

〈
L̃wss

(
1

w

∂χi
∂φx

)
,

1

w

∂χj
∂φy

〉
Dh
. (3.130)

Proof This follows straightforwardly from the definition of the bilinear forms. �

Definition 3.2.8 (Approximation of the elementary integrals for affine functions over trian-
gles). We will approximate the integrals involved in the previous proposition. The first dual
product of the bilinear forms (3.129) and (3.130) will be computed as:

〈
L̃wss/as

−−→
curl Dχi,

−−→
curlχj

〉
Dh

=
∑

tm∈Tv→t(vi)

∑
tn∈Tv→t(vj)

〈
L̃wss/as

−−→
curl Dhχ

tm
i ,
−−→
curl Dhχ

tn
j

〉
Dh
, (3.131)

with 〈
L̃wss/as

−−→
curl Dhχ

tm
i ,
−−→
curl Dhχ

tn
j

〉
Dh

=
(
ami a

n
j + bmi b

n
j

) ∫
tm

∫
tn

Kws(x+,y+)dtm(x)dtn(y)

±
(
ami a

n
j + bmi b

n
j

) ∫
tm

∫
tn

Kws(x−,y+)dtm(x)dtn(y),

(3.132)

and ∫
tm

∫
tn

Kws(x±,y+)dtm(x)dtn(y) ≈
∣∣∣nt±m3 nt

+
n

3

∣∣∣ ∫
t±m

∫
t+n

Kws(x,y)dt±m(x)dt+n (y). (3.133)

Let us first define function Fw for points x,y ∈ Dh, triangles m and n, and vertices i and
j of Th:

Fw(x,y,m, n, i, j) =
1

w(x)w(y)

[
x ·
(

bmi
−ami

)][
y ·
(

bnj
−anj

)]
, (3.134)

where ami , bmi , anj , and bnj are defined in Definition 3.2.4.

The second dual product of the bilinear forms (3.129) and (3.130) will be computed as:

〈
L̃wss/as

(
1

w

∂χi
∂φx

)
,

1

w

∂χj
∂φy

〉
Dh

=
∑

tm∈Tv→t(vi)

∑
tn∈Tv→t(vj)

〈
L̃wss/as

(
1

w

∂χtmi
∂φx

)
,

1

w

∂χtnj
∂φy

〉
Dh

, (3.135)

with

〈
L̃wss/as

(
1

w

∂χtmi
∂φx

)
,

1

w

∂χtnj
∂φy

〉
Dh

=

∫
tm

∫
tn

Kws(x+,y+)Fw(x,y,m, n)dtm(x)dtn(y)

±
∫
tm

∫
tn

Kws(x−,y+)Fw(x,y,m, n)dtm(x)dtn(y),

(3.136)
and

∫
tm

∫
tn

Kws(x±,y+)Fw(x,y,m, n)dtm(x)dtn(y)≈F (rmc , r
n
c ,m, n, i, j)

∫
tm

∫
tn

Kws(x±,y+)dtm(x)dtn(y),

(3.137)

where rmc and rnc are the centroids of triangles tm and tn.
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3.2.6 Galerkin matrices

Using the previously defined boundary element computations we will proceed to define
the construction of the Galerkin matrices associated with the new modified boundary integral
equations.

Definition 3.2.9 (Galerkin matrices associated with the new modified operators). We will de-
fine the Galerkin matrices associated with the bilinear forms described in this section. These ma-
trices will be used in the resolution of boundary integral equations associated with the proposed
operators for testing purposes and later in preconditioning methods. We define Shs ∈ CNV ×NV
as

Shs [i, j] = ãwss (κi, κj), for i, j = 1...NV . (3.138)

We define Shas ∈ CN0
V ×N

0
V as

Shas[i, j] = ãwsas (κ0
i , κ

0
j ), for i, j = 1...N0

V . (3.139)

We define Nh
s ∈ CNV ×NV as

Nh
s [i, j] = ãhss (χi, χj) + α 〈χi , χj〉Dh , for i, j = 1...NV . (3.140)

We define Nh
as ∈ CN0

V ×N
0
V as

Nh
as[i, j] = ãhsas(χ

0
i , χ

0
j ), for i, j = 1...N0

V . (3.141)

The variational problem associated with L̃hss is being modified in (3.140), augmented with a
parameter α ∈ R+ to eliminate the kernel space. It becomes evident from (3.61) in Proposition
3.1.3 that the modified integral operator L̃hss has the constant functions on Dh as kernel space
(since they can be spanned by function y0

0, and l = 0⇒ ηl = 0).

Remark 3.2.3 (Computational implementation). The variational problems, as well as all the
following computational experiments regarding preconditioning, have been implemented using
several computational languages and libraries. The main programs were implemented using
C++ along the style of [17]. Core routines for the integration of Kws for any two triangles in
R3 have been coded in FORTRAN, though accessed from C++, from slight modifications of the
code explained in [34]. Scientific computing libraries such as LAPACK [6] and EIGEN [27]
were used to perform matrix operations and condition number computations. BOOST scientific
library for C++ was used for the computation of values of special functions (Γ function and
Spherical Harmonics) [1]. Conformal mesh approximation of the surfaces D, S and S+ (and
other geometries to be exhibited in the nest subsections) were done using Gmsh [21].

3.2.7 Benchmarks

In this subsection we will test the numerical implementation of the Galerkin matrices arising
from the variational problem using the described discretization and boundary element compu-
tations. By solving boundary integral equations associated with the new modified boundary
integral operators for given data we can compare the computed results with the known solu-
tions. Using Proposition 3.1.3, boundary integral equations with known exact solutions can
be considered for each one of the four modified boundary integral operators on the disk. Ap-
proximations λh, µh, gh and ϕh can then be computed with the finite-dimensional variational
problem from Definition 3.2.6 using the described boundary element computations. Table 3.2
shows four boundary integral equations for given data, each one associated with one of the new
modified boundary integral operators on the disk, and their known exact solutions (as given
by Proposition 3.1.3). We will exhibit the of error of the computed solutions for the boundary
integral equations on Table 3.2, in order to show that the proposed numerical method is valid,
despite not having a priori error estimations.
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Table 3.2: Boundary integral equations for the modified integral operators to be used as bench-
mark cases.

Variational Problem Integral Equation Exact Solution Computed Solution

L̃wss −VFh L̃wss λ =
y11
3 λ =

y11
w λh

L̃wsas−VFh L̃wsas ϕ =
y12
5 ϕ =

y12
w ϕh

L̃hss −VFh L̃hss g = −2y11
3w g = y1

1 gh

L̃hsas−VFh L̃hsasµ = −6y11
7w µ = y1

2 µh

We will be interested in the convergence of the relative error by which the computed solu-
tions approximate the exact ones. In what follows, we will show this relative error convergence
using the Sobolev norms, for which an expression was established in Proposition 2.7.16, and
using the norms induced by the modified boundary integral operators in Definition 3.1.4.

Relative error convergence in Sobolev norms

Let us consider the four boundary integral equations and their variational problems from
Table 3.2. We will be interested in the convergence of the associated relative error in Sobolev
norms, as it will be summarized in Table 3.3

Table 3.3: Sobolev norms relative errors for the boundary integral equations for the modified
integral operators.

Variational Problem Exact Solution Computed Solution Relative Error

L̃wss −VFh λ λh
‖λ− λh‖awss
‖λ‖awss

L̃wsas−VFh ϕ ϕh
‖ϕ− ϕh‖bwsas
‖ϕ‖bwsas

L̃hss −VFh g gh
‖g − gg‖bhss
‖g‖bhss

L̃hsas−VFh µ µh
‖µ− µh‖ahsas
‖µ‖ahsas

In the following figures, Figure 3.6, 3.7 & 3.8 (for the three types of mesh sets described in
Table 3.1), we will show the convergence of the relative error of the computed solutions from
Table 3.2 & 3.3 for the different variational problems for different mesh refinements measured
by the discretization parameter h of Dh.
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Figure 3.6: Convergence of the relative error in Sobolev norms between the exact solutions and
the computed solutions described in Table 3.2 using a mesh set of type Mesh set #1 with
mesh refinement parameter h of Dh
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Figure 3.7: Convergence of the relative error in Sobolev norms between the exact solutions and
the computed solutions described in Table 3.2 using a mesh set of type Mesh set #2 with
mesh refinement parameter h of Dh
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Figure 3.8: Convergence of the relative error in Sobolev norms between the exact solutions and
the computed solutions described in Table 3.2 using a mesh set of type Mesh set #3 with
mesh refinement parameter h of Dh

Relative error convergence in modified norms

Let us consider the four boundary integral equations and their variational problems from
Table 3.2. We will be interested in the convergence of the associated relative error in the norms
induced be the modified integral operators, as it will be summarized in Table 3.4

Table 3.4: Modified norms relative errors for the boundary integral equations for the modified
integral operators..

Variational Problem Exact Solution Computed Solution Relative Error

L̃wss −VFh λ λh
‖λ− λh‖ãwss
‖λ‖ãwss

L̃wsas−VFh ϕ ϕh
‖ϕ− ϕh‖b̃wsas
‖ϕ‖

b̃wsas

L̃hss −VFh g gh
‖g − gg‖b̃hss
‖g‖

b̃hss

L̃hsas−VFh µ µh
‖µ− µh‖ãhsas
‖µ‖ãhss

In the following figures, Figure 3.9, 3.10 & 3.11 (for the three types of mesh sets described
in Table 3.1) , we will show the convergence of the relative error of the computed solutions from
Table 3.2 & 3.4 for the different variational problems for different mesh refinements measured
by the discretization parameters h of Dh.
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Figure 3.9: Convergence of the relative error in modified norms between the exact solutions
and the computed solutions described in Table 3.2 using a mesh set of type Mesh set #1 with
mesh refinement parameter h of Dh
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ã w s
s
/‖λ‖
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ã h s
a s

Figure 3.10: Convergence of the relative error in modified norms between the exact solutions
and the computed solutions described in Table 3.2 using a mesh set of type Mesh set #2 with
mesh refinement parameter h of Dh
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Figure 3.11: Convergence of the relative error in modified norms between the exact solutions
and the computed solutions described in Table 3.2 using a mesh set of type Mesh set #3 with
mesh refinement parameter h of Dh

Validation of the numerical method

Remark 3.2.4 (A posteriori validation of the numerical implementation). Figures 3.6, 3.7 &
3.8, and Figures 3.9, 3.10 & 3.11 show the a posteriori error convergence, strongly suggesting
the validity of the mesh partition process and the boundary element computations.

Remark 3.2.5 (Variational problems allow for the resolution of boundary integral equations
for disk basis function data). These results also suggest that the variational problems from
Definition 3.1.5 are adequate in that, even if the bilinear forms are not assured to be coercive
for the relevant trace spaces indicated for them (relevant for the symmetric Dirichlet and anti-
symmetric Neumann problems, i.e., H̃1/2(D), H−1/2(D), H̃−1/2(D), and H1/2(D)). They are
coercive in some spaces spanned by the disk basis functions and where the bilinear forms can
induce coercive bilinear forms (Definition 3.1.4), and where boundary integral equations for
the modified operators can be correctly posed using right-hand side data from the set of basis
functions.
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3.3 Preconditioning

In the previous section it was argued that the boundary element implementation for the
bilinear forms induced by the modified boundary integral operators was correct in the sense
that their Galerkin matrices correctly represent their associated variational problems, providing
solutions of diminishing relative error to the associated boundary integral equations of known
solutions. In this section we will study these Galerkin matrices in their use as preconditioners.
We will first describe the construction of the preconditioning matrices following the strategy
from Definition 2.1.1 outlined by Theorem 2.1.1, but using the modified boundary integral
operators.

In a first part of this section we will study the mutual preconditioning effect of the Galerkin
matrices from Definition 3.2.9. In order to do so, we will build the bases’ duality pairing
matrix D from Theorem 2.1.1. The Galerkin matrices associated with the modified integral
operators will prove to be mutual optimal preconditioners. This will provide us with relevant
information on the stability of the duality pairing of the basis from the sub-spaces of the dual
spaces involved in the boundary integral equations for the disk screen. It will also allow us to
extract some conclusions about the variational problems from Definition 3.1.5. In the second
part of this section we will use these Galerkin matrices to precondition the matrices associated
with operators S and N , related to the boundary integral equations for the symmetric Dirichlet
and anti-symmetric Neumann problems. In a third and fourth part we will extend the use of
these preconditioners to the case of the Helmholtz equation and to other screens, modifying
the weight function w.

3.3.1 Mutual preconditioning of the Galerkin matrices for the modified
boundary integral operators

In order to build preconditioning matrices as outlined in the optimal preconditioning strat-
egy from Definition 2.1.1, we will take bilinear operator d from Theorem 2.1.1 to be the duality
pairing, with which we will build the bases’ duality pairing matrices.

Definition 3.3.1 (Bases’ duality pairing matrices). Let us consider the following matrices for
a triangular mesh Th for the conformal triangular approximation Dh of D, with NV vertices,
of which N0

V are internal.

We define Dh
D ∈ RNV ×NV as:

Dh
D[i, j] = 〈κi , χj〉Dh , for i, j = 1...NV . (3.142)

We define Dh
N ∈ RN0

V ×N
0
V as:

Dh
N [i, j] =

〈
κ0
i , χ

0
j

〉
Dh
, for i, j = 1...N0

V . (3.143)

Remark 3.3.1 (Bases duality pairing matrices are sparse). Because the chosen bases for the
boundary element spaces have local support, matrices Dh

D and Dh
N will be sparse. This will

result in a lower inversion complexity, when required in building preconditioning matrices, as
stated in Remark 2.1.3

We now have all the necessary elements to build the preconditioning matrices, following
the optimal preconditioning strategy from Definition 2.1.1 taking the preconditioning operator
to be not the exact inverses, for which we do not have an explicit variational formulation, but
the modified integral operators (L̃hss and L̃wsas ), for which we do.

Definition 3.3.2 (Preconditioning matrices). Let as consider matrices Nh
s and Shas from

Definition 3.2.9, associated with the modified integral operators L̃hss and L̃wsas , and matrices Dh
S
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and Dh
N from Definition 3.3.1, to define the following preconditioning matrices as in Theorem

2.1.1. We define Mh
D ∈ CNV ×NV as

Mh
D =

(
Dh
D

)−1
Nh

s

(
Dh
D

)−H
. (3.144)

We define Mh
N ∈ CN0

V ×N
0
V as

Mh
N =

(
Dh
N

)−1
Shas

(
Dh
N

)−H
. (3.145)

We will now consider using matrix Mh
D to precondition matrix Shs and matrix Mh

N to
precondition matrix Nh

as. These two matrices on which to apply the preconditioners come from
the variational problems from Definition 3.1.5 and do not correspond to the variational problems
from Proposition 2.7.17, which are linked to operators S and N . In doing this, however, will
we show some interesting properties of the variational problems stated in Definition 3.1.5, and
we will extract conclusions regarding the discretization and the boundary element method
proposed.

Figures 3.12, 3.13 and 3.14 will show, for the three different types of mesh sets considered,
the evolution of the condition number for matrices Shs , Shas, Nh

s and Nh
as, and that of the

preconditioned matrices Mh
DS

h
s and Mh

NN
h
as.
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Figure 3.12: Preconditioning of matrix Shs by matrix Mh
D (left) and matrix Nh

as by matrix
Mh

N for the mesh set of type Mesh set #1.
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Figure 3.13: Preconditioning of matrix Shs by matrix Mh
D (left) and matrix Nh

as by matrix
Mh

N for the mesh set of type Mesh set #2.
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Figure 3.14: Preconditioning of matrix Shs by matrix Mh
D (left) and matrix Nh

as by matrix
Mh

N for the mesh set of type Mesh set #3.

As appreciated from the previous figures, matrices Shs , Shas, Nh
s , and Nh

as are naturally
ill-conditioned, but they act as optimal mutual pre-conditioners.

Remark 3.3.2 (Spaces of the variational problem for the modified integral operators). Even
if the bilinear forms induced by the modified boundary integral operators are not coercive in
the relevant Sobolev trace spaces specified for the variational problem from Definition 3.1.5 (as
it was stated in the final comments to Section 3.1), the fact that they provide optimal mutual
preconditioning suggests that the modified boundary integral operators do induce coercive bilinear
forms in the spaces spanned by the disk basis functions, and that these are pair-wise mutual
duals.

Remark 3.3.3 (Stability of the bases duality pairing for the boundary element spaces). As
an extension to the previous remark, the fact that modified boundary integral operators provide
optimal mutual preconditioning suggests that the bases’ duality pairing for basis of the spaces
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Ṽh(Dh) and Wh(Dh) is also stable, as it was shown to be the case for W̃h(Dh) and Vh(Dh) in

Proposition 2.2.1, where, for a closed surface Γ, it’s evident that W̃h(Γh) = Wh(Γh).

In the next subsection, we will use the preconditioning matrices from Definition 3.3.2 on
the matrices associated with the boundary integral operators S and N , associated with the
symmetric Dirichlet and the anti-symmetric Neumann problems.

3.3.2 Preconditioning the matrices for the symmetric Dirichlet and anti-
symmetric Neumann problems on the disk

We will now specify the construction of the Galerkin matrices for the symmetric Dirichlet
and the anti-symmetric Neumann problems for the disk screen. This matrices will be defined
as in Definition 1.6.17 and as in Subsection 2.2.1, but now explicitely for open surfaces using
the tools and definitions developed in this chapter.

Definition 3.3.3 (Galerkin matrices associated with S and N ). Let us define the Galerkin
matrices associated with boundary integral operators S and N on the conformal triangular
approximation Dh for the disk. As usual, we denote by NV the number of vertices of the mesh
Th for Dh, of which N0

V are internal.

We define Sh ∈ CNV ×NV as

Sh[i, j] = 〈Sκi , κj〉Dh , for i, j = 1...NV . (3.146)

We define Sh ∈ CN0
V ×N

0
V as

Nh[i, j] =
〈
−Nχ0

i , χ
0
j

〉
Dh

+ α
〈
χ0
i , 1

〉
Dh

〈
1 , χ0

j

〉
Dh
, for i, j = 1...N0

V , (3.147)

with a parameter α ∈ R+ to suppress the kernel space of operator N (refer to Theorem 1.5.3),
as it was done for the Galerkin matrix associated with operator L̃hss from Definition 3.2.9.

We will now consider the preconditioning effect of matrix Mh
D on matrix Sh, and of matrix

Mh
N on matrix Nh. Figures 3.15, 3.16 & 3.17 will show the evolution of the condition number of

matrices Sh and Nh, and the preconditioned matrices Mh
DS

h and Mh
NN

h using the different
types of mesh sets defined.
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Figure 3.15: Preconditioning of matrix Sh by matrix Mh
D (left) and of matrix Nh by matrix

Mh
D for a mesh set of type Mesh set #1.
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Figure 3.16: Preconditioning of matrix Sh by matrix Mh
D (left) and of matrix Nh by matrix

Mh
D for a mesh set of type Mesh set #2.
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Figure 3.17: Preconditioning of matrix Sh by matrix Mh
D (left) and of matrix Nh by matrix

Mh
D for a mesh set of type Mesh set #3.

In stark difference with the cases from Subsection 3.3.1, matrix Mh
D is not an optimal

preconditioner for Sh as it was for Shs , and matrix Mh
N is not an optimal preconditioner for

Nh as it was for Nh
as. As suggested in Remark 3.3.3, the dual pairing of bases for the finite-

dimensional spaces is stable in the sense of (2.3) as required by Theorem 2.1.1, and as it was
proven for the closed surfaces in Proposition 2.2.1. Also, as suggested by Remark 3.3.2, the
bilinear forms induced by the modified boundary integral operators are coercive and continuous
in some spaces, but their coercivity and continuity was not assured on the relevant Sobolev
trace spaces for the symmetric Dirichlet and anti-symmetric Neumann problems for the disk
(as warned in the closing remarks for Section 3.1).

The fact that matrix Mh
D is not an optimal preconditioner for Sh as it was for Shs , and

matrix Mh
N is not an optimal preconditioner for Nh as it was for Nh

as, strongly suggests that
it is the case that the bilinear forms induced by the modified boundary integral operators are
not coercive and continuous in the relevant Sobolev trace spaces for the symmetric Dirichlet
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and anti-symmetric Neumann. However, there is a significant improvement in the condition
number of the preconditioned matrices, which is due to the radial behavior of the kernels of
the modified boundary integral operators. This was the guiding principle in devising operator
preconditioning techniques from the modifications of the exact inverses developed in Chapter
2.

When preconditioning, the bilinear forms b̃hss and b̃wsas used to precondition the matrices
associated to the boundary integral operators S and N respectively, can be shown to fail to be
continuous and coercive in the relevant spaces: H1/2(D) and H−1/2(D). We will analyze this
carefully in what follows, picking up the discussion at the end of Section 3.1

b̃hss is not continuous in H1/2(D)

In order for b̃hss to be continuous in H1/2(D) there would have to be a constant C > 0 such
that

ηl ≤ Cβml , (3.148)

for all l ≥ 0 and l +m even. However, the opposite can be shown: there is no constant C > 0
such that inequality hold. Given the fact that βll ≤ βml for all l ≥ 0 and l +m even, it suffices
to show that there is no constant C > 0 such that

ηl ≤ Cβll , (3.149)

or equivalently, that the series ηl/β
l
l does not has an upper bound for all l ≥ 0. The following

figure shows that this is the case.
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Figure 3.18: No-continuity of b̃hss in H1/2(D) shown by the unboundness of ηl/β
l
l .

b̃hss is not coercive in H1/2(D)

In order for b̃hss to be coercive in H1/2(D) there would have to be a constant C > 0 such
that

ηl ≥ Cβml , (3.150)
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for all l ≥ 0 and l + m even. The existence of such a constant is impossible, since η0 = 0.
However, it’s worth noting that in the subspace of functions from H1/2(D) with zero mean, b̃hss
would be coercive. Noting that β0

l ≥ βml , the existence of C > 0 for l ≥ 1 such that (3.150)
holds can be assured by the existence of a constant C ′ > 0 such that

ηl ≥ C ′β0
l , (3.151)

or equivalently, that the series ηl/β
0
l has a lower bound for all l ≥ 1. The following figure shows

that this is the case.
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Figure 3.19: Coercivity of b̃hss for zero-mean functions of H1/2(D) shown by the lower boundness
of ηl/β

0
l .

b̃wsas is continuous in H−1/2(D)

In order for b̃wsas to be continuous in H−1/2(D) there would have to be a constant C > 0
such that

ζl ≤
C

αml
, (3.152)

for all l ≥ 1 and l + m odd. Given the fact that α0
l ≥ αml for all l ≥ 1 and l + m odd, it

suffices to show that there is a constant C ′ > 0 such that

ζl ≤
C ′

α0
l

; (3.153)

or equivalently, that the series ζlα
0
l has an upper bound for all l ≥ 1. The following figure

shows that this is the case.
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Figure 3.20: Continuity of b̃wsas in H−1/2(D) shown by the boundness of ζlα
0
l .

b̃wsas is not coercive in H−1/2(D)

In order for b̃wsas to be coercive in H−1/2(D) there would have to be a constant C > 0 such
that

ζl ≥
C

αml
, (3.154)

for all l ≥ 1 and l +m odd. Noting that αl−1
l ≤ αml , the existence of C > 0 for l ≥ 1 such

that (3.154) holds can be assured by the existence of a constant C ′ > 0 such that

ζl ≥
C ′

αl−1
l

, (3.155)

or equivalently, that the series ζlα
l−1
l has a lower bound for all l ≥ 1. This is not the case, and

the non-existence of such a constant would be assured by the impossibility of the existence of
a lower bound for the series ζlα

l−1
l for l ≥ 1. However, a simple numerical experiment does not

provide a convincing argument, as the following figure illustrates.
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Figure 3.21: No-coercivity of b̃wsas in H−1/2(D) shown by the lower unboundness of ζlα
l−1
l .

An explicit determination of the limit of the sequence provides the argument required to
assure that b̃wsas is not coercive in H−1/2(D).

Lemma 3.3.1 (Limits of the sequence associated with the coerciveness of b̃wsas in H−1/2(D)).
The limits value of the sequence ζlα

l−1
l is:

lim
l→∞

ζlα
l−1
l = 0. (3.156)

Proof Using the definition of αml we can write

αl−1
l =

Γ (l + 1/2) Γ (3/2)

Γ (l) Γ (1)
, (3.157)

where Γ stands for the special function Gamma.

Using the properties of the Gamma function, we can rewrite

αl−1
l =

π

22l+1

(2l)!

l!(l − 1)!
. (3.158)

We now consider the sequence

ζlα
l−1
l =

π

22l(2l + 1)

(2l)!

l!(l − 1)!
. (3.159)

We recall that Stirling’s approximations provide us with the following bounds for the fac-
torial of numbers n > 0: √

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n. (3.160)

Using Stirling’s approximations from (3.160) we can produce bounds for the factorial factors
in the expression of the sequence (3.159):

(2l)! ≤ e(2l)2l+1/2e−2l, (3.161)

1

l!
≤ el√

2π

1

ll+1/2
, (3.162)
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1

(l − 1)!
≤ el−1

√
2π

1

(l − 1)l−1/2
. (3.163)

Using these bounds we can now establish a bound for the sequence (3.159) as

ζlα
l−1
l ≤ 22/3 ll

(2l − 1)(l − 1)l−1/2
. (3.164)

A rearrangement of terms,

ζlα
l−1
l ≤ 22/3

(
l

l − 1

)l √l − 1

l − 1
, (3.165)

shows that
lim
l→∞

ζlα
l−1
l = 0. (3.166)

�

In the next subsections we will extend the principle explored in the present one to confirm
that the Laplace preconditioners preserve their preconditioning capabilities when applied to the
Helmoltz case when the surface is a screen (open), and we will further extend it to adapt this
preconditioning method to cover screens other than the disk by modifying the weight function
w.

3.3.3 The Helmholtz problem for the unit disk in three dimensions as a
compact perturbation

In Section 2.2 it was shown that the boundary integral operators for the Laplace problems
provided equally good preconditioners for the integral operators for the Helmholtz problems
when the surface on which they were posed were Lipschitz-regular. That is, the Galerkin
matrix associated with the bilinear form induced by S, provides an optimal preconditioner for
the Galerkin matrix associated with the bilinear form induced by N k, and that the Galerkin
matrix associated with the bilinear form induced by N provided an optimal preconditioner for
the Galerkin matrix associated with the bilinear form induced by Sk (following Notation 2.2.1).
In what follows we will apply the same reasoning to the case of screen obstacles using the disk
as an example. For that, we will define the Helmholtz Galerkin matrices for operators Sk and
N k, now explicitly for the disk screen.

Definition 3.3.4 (Galerkin matrices associated with Sk and N k). Let us define the Galerkin
matrices associated with boundary integral operators Sk and N k on the conformal triangular
approximation Dh for the disk. As usual, we denote by NV the number of vertices of the mesh
Th for Dh, of which N0

V are internal.

We define Shk ∈ CNV ×NV as

Shk [i, j] =
〈
Skκi , κj

〉
Dh
, for i, j = 1...NV . (3.167)

We define Nh
k ∈ CN0

V ×N
0
V as

Nh
k [i, j] =

〈
−N kχ0

i , χ
0
j

〉
Dh
, for i, j = 1...N0

V . (3.168)

Remark 3.3.4 (The bilinear forms for the Helmholtz case are compact perturbations of the
ones for the Laplace case). By the same reasoning as that exposed in Subsection 2.2.2, the
bilinear forms for the Helmholtz case for the disk, i.e.

〈
Skλ , λt

〉
Dh

and
〈
−N kµ , µt

〉
Dh

, are
compact perturbations of the ones used for the Laplace case and defined in Definition 3.3.3.
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Figure 3.22 will show the evolution of the condition number of matrices Shk and Nh
k , defined

in Definition 3.3.4, and the evolution of the condition number of the preconditioned matrices
Mh

DS
h
k and Mh

NN
h
k using the pre-conditioners defined in Definition 3.3.2, for diminishing

discretization parameter h.
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Figure 3.22: Preconditioning of matrix Shk by matrix Mh
D (left) and of matrix Nh

k by matrix
Mh

D for a mesh set of type Mesh set #1.

The same preconditioning effect is observed when preconditioning the symmetric Dirichlet
and the anti-symmetric Neumann Helmholtz problem for the unit disk using the Laplace pre-
condifioners. Figure 3.23 exemplifies the scenario of a wave propagation numerical simulation
where the disk screen is the obstacle for an incoming wave.

Figure 3.23: Example of a numerical simulation of wave propagation where a disk screen is
the obstacle for an incoming wave, showing the incoming wave (left) and the scattered wave
(right).

3.3.4 Generalization to planar polygonal screens

The preconditioning effect of matrices Mh
D and Mh

N is achieved by selecting kernels K̃hs
s

and K̃ws
as that induce integral operators that, while not providing exact inverses for S and N ,

have kernels that behave similarly to those of the known inverses. This was related to the known
behavior of the jump of traces of the solutions of the Laplace problems, as stated in Remark
2.7.3, related to w(ρ) and 1/w(ρ). The weight function w was also intimately linked to the
relation between the sphere and the disk. This role manifests itself in the subsequent proposed
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method in the fact that vertical projection of point x on the disk onto the half-spheres, i.e.
x±, was separated by a quantity w(x). This effect was included in the numerical method in
two different ways: 1) considering the upper and lower conformal triangular approximations
S±h that were produced with weight function w to perform the integrations involved in the
boundary element computations in Subsection 3.2.5, and 2) in the explicit use of the weight
function w in the proposed numerical scheme in (3.134).

In this section we will extend the action of the defined preconditioners to some planar
polygonal screens Γ, by preserving the behavior of the modified integral operators’ kernels near
the edges of the screen. To do so, we will propose a different weight function for each screen Γ,
that will be related to the distance of a given point x ∈ Γ to edge ∂Γ when in the vicinity of
this edge. We will begin by dividing the planar polygonal screen Γ into zones, and defining for
each one of them a distance function with which we will later define a global modified weight
function wΓ for screen Γ.

Let us state formally the definition of division by zones of a planar polygonal screen Γ.

Definition 3.3.5 (Zone division of a planar polygonal screen). Let us consider a planar and
polygonal screen Γ divided in NZ disjoint zones {Zi}NZi=1 such that each one of them reaches the
edge ∂Γ, i.e., for i = 1...NZ we have Zi ∩ ∂Γ 6= ∅, and such that the set Zi ∩ ∂Γ 6= ∅ belongs
to a line in R3. The set {Zi}NZi=1 is called a zone division for the planar polygonal screen Γ.

Let us consider the case of a square-shaped and an L-shaped screen to illustrate this ex-
tended method. We will divide the square-shaped screen into four zones, and the L-shaped
screen into six zones as indicated in Figure 3.24 and in compliance with Definition 3.3.5.

DomainsBoundariesSpace
s	
  

Z1

Z3

Z2

Z4

Z5

Z6

Z1

Z2

Z3

Z4

Figure 3.24: Zone division of a square-shaped screen (left) and an L-shaped screen (right).

Let consider the following geometrical definition that will be useful in defining the mentioned
zone-wise distance functions.

Definition 3.3.6 (External edge line of a zone). For each zone Zi of a zone division {Zi}NZi=1

for a planar polygonal screen Γ, we will define the external edge line `i as the only straight line
in R3 containing the segment Zi ∩ ∂Γ 6= ∅.

We can now formally define the zone-wise distance-to-edge function.

Definition 3.3.7 (Zone-wise distance-to-edge function). For each zone Zi of a zone division
{Zi}NZi=1 for a planar polygonal screen Γ, we will define the zone-wise distance-to-edge function
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distZi(x) for a point x ∈ Zi as
distZi(x) = dist (x, `i) , (3.169)

where function dist (·, ·) is defined in Definition 1.2.2.

Finally, using the zone-wise distance-to-edge function we can define the global modified
weight function wΓ for a planar polygonal screen Γ.

Definition 3.3.8 (Global modified weight function wΓ for a planar polygonal screen Γ). Given
a planar polygonal screen Γ divided in NZ disjoint zones {Zi}NZi=1, we define the global modified
weight function wΓ for x ∈ Γ as

wΓ(x) =


√

distZ1(x), if x ∈ Z1,
...

...√
distZNZ (x), if x ∈ ZNZ .

(3.170)

Although this global modified weight function could be discontinuous at the intersection of
zones in which a screen is subdivided, it is easy to produce continuous ones for a considerably
wide range of screen geometries, such as the ones depicted in Figure 3.24. We will focus
on these examples, using this global modified weight function wΓ to generate the mesh set
{Γh,Γ+

h ,Γ
−
h } by means of vertical projections, where Γ±h are the upper and lower conformal

triangular approximation determined by vertical projections using function wΓ to project form
Γh. Figures 3.25 & 3.26 illustrate the achieved mesh set for a square-shaped and an L-shaped
screen by showing Γh and Γ+

h .
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Figure 3.25: Discretized square-shaped screen Γh (left) with its upper projection Γ+
h (right)

generated using the global modified weight function wΓ.
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Figure 3.26: Discretized L-shaped screen Γh (left) with its upper projection Γ+
h (right) gener-

ated using the global modified weight function wΓ.

Given a planar polygonal screen Γ and given a chosen zone division for it, we use the global
modified weight function wΓ over a conformal triangular approximation Γh to generate the mesh
set {Γh,Γ+

h ,Γ
−
h }. Together with replacing function w by wΓ in (3.134) this allows to redefine

the boundary element computations to generate the Galerkin matrices for the particular case
of a planar polygonal screen Γ. Using these matrices, we will test again the preconditioning
capabilities of matrices Mh

D and Mh
D computed with these prescribed modifications.

Figure 3.27 shows the evolution of the condition number of matrix Sh and the condition
number of the preconditioned matrix Mh

DS
h, and also the evolution Nh and the condition

number of the preconditioned matrix Mh
NN

h, for diminishing minimum edge lengths h, all
while using a square-shaped screen. Figure 3.28 shows the evolution of the condition number
of matrix Sh and the condition number of the preconditioned matrix Mh

DS
h, and the evo-

lution Nh and the condition number of the preconditioned matrix Mh
NN

h for diminishing
discretization parameter h.
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Figure 3.27: Evolution of the condition numbers for Sh and Mh
DS

h (left) and Nh and Mh
NN

h

(right) for a squared-shaped screen Γ with diminishing discretization parameter h.

129



10
−2

10
−1

10
0

10
3

10
4

10
5

10
6

10
7

10
8

h

C
o
n
d
i
t
i
o
n

n
u
m
b
e
r
c
o
n
d
2

 

 
S

h

M
h

D
S

h

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

h

C
o
n
d
i
t
i
o
n

n
u
m
b
e
r
c
o
n
d
2

 

 
N

h

M
h

N
N

h

Figure 3.28: Evolution of the condition numbers for Sh and Mh
DS

h, (left) and Nh and Mh
NN

h

(right) for an L-shaped screen Γ with diminishing discretization parameter h.

Remarkably, the condition number has greatly improved, especially for the symmetric
Dirichlet problem, although it presents anomalies in its evolution as the discretization pa-
rameter diminishes. This is due to the fact that the broken angles on the edge of the screen
introduce other singularities on the jump of the traces, not described so far, and fall out of
the scope of the functional framework given by the available theorems provided in Section 2.3.
These anomalies are sensitive to the values α chosen to eliminate kernel spaces for the operator
L̃hss , which explains why they only occur in the use of its associated matrix Mh

D.
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Chapter 4

Applications to the Design and
Testing of Remote Perception
Technologies

In this chapter we will present some results related to the use of numerical simulations
in the assessment of remote sensing technologies such as the ground-penetrating radar. This
application example will highlight the need for robust and efficient numerical simulation of
physical phenomena, such as the one outlined in Chapter 1, to which Chapters 2 & 3 suggest
ways of improving it.

As discussed in Section 1.7, computational complexity and numerical inaccuracy can severely
limit the usefulness of the application of numerical methods to solve partial differential equa-
tions modeling physical phenomena. This becomes especially true when the solution to a partial
differential equation has to be computed in numerous repetitions for different parameters, or
when its solution has to be fed into a process that has a feedback loop that might amplify
the error. A wide variety of relevant applications that involve the evolution of some physical
system make these situations unavoidable, such as automated design, optimization, automatic
control, or the solution of some inverse problems. The ground-penetrating radar technology is
an example where multiple and numerous transmitting and receiving spatial positions are used
to determine some physical property of the underground. The assessment of a given type of
radar can thus be performed by computing the direct problems associated with each of the nu-
merous emitting-receiving positions to simulate physical wave propagation. Then, these results
to feed an inverse problem solver that will determine some parameter of the physical system
that was involved in the evolution of the direct physical problems. This procedure allows for
the assessment of the performance of a system before it is built, which in turn allows for a
more efficient, and sometimes even a possible, development process.

In this chapter we will give a description of ground-penetrating radar systems, emphasizing
the ones that rely on time-harmonic radar signals. We will present a type of ground-penetrating
radar called holographic radar and a special variant. Next, we will discuss how to simulate the
propagation of radio waves using the Helmholtz equation for this chosen type of radar. This
will be a simplification of the more precise but costly simulations using the Maxwell equations
for the electromagnetic phenomena. This simplification is, however, a useful and standard
practice in the framework of the development of many remote perception technologies. This
discussion will include the modeling of reflective radar targets, the treatment of the interface
between the air above-ground and the subsurface, the cost of solving a large number of wave
propagation problems (as required by this setting), and how the approach developed in the
previous chapter can help reduce this burden. Finally, the simulations will be used as examples
in the assessment of a radar imaging principle that, because it relies on many assumptions that
usually go unverified, provides a case of study suited for the use of numerical simulations.
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4.1 Ground-penetrating radars

A ground-penetrating radar is a device that uses radio signals to gather physical informa-
tion from the underground of a given portion of land. More generally, they are considered to
be part of the subsurface radars, that include devices that use radio signals to gather physical
information that is otherwise inaccessible behind a wall, clothes, skin tissue, canopy, or other
material hiding a target of interest. The ground-penetrating radar often emits a radio signal
(unless it is a passive radar) that travels across the surface, reaches an underground area of
interest, and then is scattered back to the radar’s antennas. The most common use for a
ground-penetrating radar is the location and identification of underground objects that can
scatter an incoming radio wave depending on their reflectivity, which is determined by differ-
ent physical parameters. These objects can be, according to the application of the technology,
structures of archeological interest, pipes, bodies of water, cavities, undesired remnants from
previous industrial activities, and even unexploded ordnance or landmines. Using the backscat-
tered radio waves, a ground-penetrating radar can locate the reflectivity, position, depth, and
possibly the shape of a reflective target depending on its design. These physical parameters
that determine the reflectivity of an underground target are of great importance in the descrip-
tion a physical scenario in which a ground-penetrating radar is to be used. Radio waves are
reflected by interfaces between media with different electromagnetic characteristics, which can
be modeled by the point-wise values of complex electrical permittivity and magnetic permeabil-
ity when time-harmonic radio waves are considered (cf. [63, Section 2.1]). A common scenario
is that of a bounded target buried within a sufficiently homogeneous underground material. In
this scenario, the contrast in the electromagnetic properties of the underground and those of
the target determine its reflectivity. A relevant type of target is the totally reflective target,
often called a hard boundary object. This type of target is such that all incoming waves are
reflected and no carried energy penetrates into its interior. In what follows, we will consider
homogeneous above-ground and underground domains where homogeneous totally reflective
targets can be buried. We will detail in the next sections the framework to be considered.

Ground-penetrating radar systems can be classified according to numerous criteria. We will
provide some of them in the next subsection in order to precisely describe a given type. This
type will allow us to show the advantages attainable by more efficient numerical simulations,
such as the ones achievable using the numerical method proposed in Chapter 3, and how this
can help in the testing and design of radar imaging methods.

4.1.1 Types of ground-penetrating radars

Ground-penetrating radar systems can be classified according to different and numerous
criteria. We will mention the ones that will become relevant to the description of the system
on which we will focus our attention.

Proximity to the ground surface

In the framework of the ground-penetrating radars, the proximity of the antennas of a
radar system to the surface hiding the relevant propagation domain where a target of interest
is possibly hidden, is one of the distinguishing characteristics. We will differentiate two types
of proximities that are relevant for practical reasons: 1) single domain, or contact ground-
penetrating radars, and 2) double domain or interface ground-penetrating radars.

Single domain, or contact ground-penetrating radars have their emitting and receiving
antennas in contact with the ground’s surface or very close to it, thus generating relevant wave
propagation only in the underground domain; hence its name. These radars normally require
ground support to be put in position, and rely on ground transportation and mobility. This
has two major consequences: 1) there is interaction between the ground under analysis and
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radar equipment and/or even its operators, which can be problematic in the case of landmines,
unexploded ordnance or archeological sites, and 2) the effect of the geometry and reflectivity
of the surface can be better controlled.

Double domain, or interface ground-penetrating radars have their emitting and receiving
antennas considerably above the surface of the ground under analysis, making the distance
that the wave travels above ground of importance, often introducing distorting effects depend-
ing on the geometry and reflectivity of the interface surface between the above-ground and
underground. This is the case of airborne ground-penetrating radars, and has the advantage
of removing the possible mechanical interaction between the radar equipment and the ground,
and avoiding dependence on ground mobility which is often less agile, allowing less ground
coverage in a given amount of operation time.

Configuration of transmitting and receiving positions

Radars in general, and ground-penetrating radars in particular, have antennas that emit
and receive the radio signals used to scan the surroundings or the underground. These antennas
can be the same or different (for emission and reception), and a radar system can have one or
multiple antennas. One distinguishing characteristic is the spatial and temporal sequentiation,
and the type configuration of the radar measurements. If the antennas of a radar system move
above the ground, their movement will be often much slower than the propagation speed of the
radio wave, so that a radar measurement can be considered as a still photograph. Variations
from this setting for high speed radar systems or targets can be taken into account considering
the doppler effect, but often fall outside the scope of ground-penetrating radars. Each one
of these measurements will be recorded by a number of antennas from the echoes produced
by the radio signal emitted by the same or possibly other antennas. According to this, we
will differentiate: 1) multi-bistatic ground-penetrating radars and 2) multi-monostatic ground-
penetrating radars.

A multi-bistatic (MBS) ground-penetrating radar records radar measurements from differ-
ent antennas as they receive the backscattered radio signal emitted from other antennas. A
common configuration is recording on all the antennas while only one is transmitting separately.

A multi-monostatic (MMS) ground-penetrating radar records in numerous positions the
backscattered radio signal using the same antenna that produced it. The relevant feature is
that emission and reception are produced in the same spatial position, and can in fact be
separate but close-by antennas depending on the application.

Time-domain or frequency-domain radars

One of the most relevant and distinguishing aspects of the different types of ground-
penetrating radar, is the kind signal that they transmit and then receive back. The signal
that a radar system transmits through its antenna is generated internally in its electronic com-
ponents. This signal can be [40]: 1) a time-domain impulse signal, or 2) a frequency-domain
signal.

Time-domain impulse signals are characterized by short bursts of energy compacted into
a short duration of time that create a propagating wave that travels into the underground
generating echoes in its contact with the boundaries of reflective buried targets when present.
The relative compactness in time of the signals allows for the echoes to arrive separately so that
they are distinguishable when their arrival time is determined. This information, together with
the speed of propagation of radio waves in the different domains involved, provides relevant
spatial information about the targets that gave origin to the received reflections. This kind of
wave phenomenon lies out of the scope of the modeling described in Chapter 1 and adopted
throughout this document, unless it is used with Fourier analysis decomposition techniques for
transient signals.
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Frequency-domain signals are characterized by continuous emission of a single-frequency,
time-harmonic radio wave, so that at a given time, the antenna receives the sum of all backscat-
tered reflections, with different amplitudes and phases according to the traveled distances and
possible attenuations. This radar type is also known as continuous-wave radar, and can be fur-
ther classified in: 1) continuos-wave frequency-modulated and 2) holographic radars. The first
ones, not often used in ground-penetrating radars, introduce slight changes in the frequency
of the radio signal, and are suited to detect the presence of targets, and their range and speed
though doppler analysis. The second ones emit a phase-coherent single-frequency radio wave
and record at each receiving antenna the amplitude and the phase of the incoming backscat-
tered wave. They are called holographic radars because the principle used in taking radar
measurements is analogous to the optical recording of an holographic image using coherent
light illumination and interference on a photographic plate [2, Section 1.2] [54].

In what remains of this chapter we will consider a specific type of ground-penetrating radar.
According to our exhibited classification characteristics, it falls under the interface, multi-
monostatic, holographic, ground-penetrating radar type. The motivation is closely linked to
the rise of airborne instrumentation using drones and the improvements on data storage and
treatment.

4.1.2 Airborne ground-penetrating radars

The ground-penetrating radar to be considered as an example in this chapter is intended
to be fit for use on board of a flight platform such a drone. This has determined some of its
characteristics, as the ones that have been specified in the previous subsection. A line array of
multi-monostatic antennas, taking holographic radar measurement, is positioned in a drone or
other flying platform aligned perpendicular to the flight path. The different antennas on the
line array are switched to take monostatic, time-harmonic, holographic radar measurements,
i.e., emitting a single-frequency, continuous-wave, and measuring the amplitude and the phase
of the sum of all incoming reflected backscattered signals from the ground and the underground.
As this switching provides measurements of the different antennas along the array, and as this
array travels over a portion of ground due to the movement along a flight path, the result
is a collection of NMMS amplitude and phase backscattered sample measurements taken at
points {rHi }NMMS

i=1 contained in a surface above ground described by the movement of the
array on the air. This surface, which we will denote by ΓH contains the recorded hologram
of the double domain for the wave propagation scenario. This scenario consists of an above-
ground propagation domain Ω+ and an underground propagation domain Ω−, separated by
the ground’s surface, which we will denote as the interface surface ΓI . A target possibly buried
in Ω−, of boundary ΓT , is considered. Figure 4.1 illustrates the proposed scenario. In the case
of a single under domain radar, the hologram recording surface ΓH is just placed at the surface
of the ground.
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Figure 4.1: Illustration of an airborne line-array of antennas taking multi-monostatic radar
measurements over a given portion of land.

The interest on this configuration lies in that it allows for recording of underground data
for large portions of terrains in short periods of time. This relies, however, on complementary
technologies such as precise flight positioning and navigation, laser telemetry of the determi-
nation of the shape of ΓI , and the storage and treatment of large volumes of data. Despite the
disadvantages of the stress put on the need for robust complementary technologies, and the
narrower range of ground-penetrating radar configurations usable in this setting, it offers sev-
eral advantages. Analyzing the underground of large portions of terrain can provide a critical
cost- and time-effective first assessment of a terrain when scouting for targets. This can become
critical when, for example, the intended radar targets are landmines and the assessment is set
to provide quick clearance of suspicious terrains or clear safe ground paths on it.

This particular radar type and sampling setting have many different variants, but we have
focused on radar systems consistent with the developments achieved in [18] and [13]. This two
documents describe a precise procedure to take multi-monostatic holographic radar samples.
The second, particularly, is suited to produce the kind of sampling data described in this
subsection using airborne platforms.
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4.2 Simulating time-harmonic radio signals

In this section we will show how to take advantage of some of the proposed techniques
developed in the previous chapters to perform simulations of the wave propagation problem
involved in ground-penetrating radar techniques. There are different ways of modeling these
phenomena, and while the Maxwell’s equations provide a more comprehensive modeling that
takes into account physical characteristics particular to the electromagnetic behavior such as
polarization, the use of scalar wave equations is a standard recourse in the radar community
(cf. [2,23,58]). Doing this still yields useful conclusions, insight, and methods while simplifying
the theoretical framework to be used and the numerical complexity of the simulations involved.
In this chapter we will describe how to use different models and assumptions to take advantage
of the preconditioning tools developed in the previous chapters to evaluate a given ground-
penetrating radar system.

We will begin by setting the precise assumptions and tools that will be used to treat scalar
wave propagation and scattering produced by the boundaries present in a simulation scenario,
be it a single underground domain, or double domain or interface scenario as described in the
classification provided in Subsection 4.1.1. We will specify the notation to be used in each
one of these two scenarios, and the treatment that will be given to the reflective underground
targets and to the air-ground interfaces. Next, we will address the cost of simulating a wave
propagation in these scenarios. It is in this part where the previous results will be shown to
be significant by increasing time-efficiency even for simplistic implementations. Finally, we
will state the precise problem definition for the computation of the holographic recording for
a single underground domain ground-penetrating radar scenario, and for an interface ground-
penetrating scenario. We will also provide examples of how these solutions look for relatively
complex radar targets such as the L-shaped screen presented in Subsection 3.3.4 from the
previous chapter. This screen target will be used throughout the chapter as it presents less
symmetries than other described screens such as the disk or the square-shaped screen. It will
also provide us with the chance to study the consequences of the preconditioning methods
described in Subsection 3.3.4.

4.2.1 General setting and assumptions

In the modeling of the behavior of wave propagation across surfaces, the Helmholtz equation
will use some assumptions that will give rise to a set o boundary conditions. Let us consider the
Helmholtz equation for acoustics governing the behavior of a scalar wave field u. Let us focus
a on given oriented interface surface ΓI with unit normal n with upper side + and lower side
−. We will call u± the upper/lower restriction of u. The interface separates two propagating
homogeneous domains, Ω+ and Ω−, having wave velocities c+ and c−, wavelengths λ+ and λ−,
and wavenumbers k+ and k− respectively. Enforcing continuity conditions across the surface
ΓI , we have the following continuity conditions:

u−(x) = u+(x), for x ∈ ΓI ,

∂u−

∂n
(x) = n2∂u

+

∂n
(x), for x ∈ ΓI .

(4.1)

where n = c+/c− = λ+/λ− = k−/k+ is the refraction index between the two media. The
second condition in (4.1) comes from applying the time-harmonic conservation of momentum
across the interface ΓI from (1.9). Figure 4.2 shows in detail the elements to be considered and
defined at the interface surface.
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Figure 4.2: Composition of the scalar wave fields at both sides of an interface ΓI .

Let us shortly define the geometrical settings for the two operation scenarios to be consid-
ered hereinafter: a single underground propagation domain and a double domain divided by
an interface. In the first one the antennas contained in the hologram plane ΓH are in contact
with the ground’s surface and the only propagation domain is the underground Ω−. In the
second one, the antennas contained in the hologram recording surface ΓH are above-ground and
there are two propagation domains: the above-ground and the underground. We will call the
above-ground domain Ω+, the underground domain Ω−, we recall that the surface containing
the multi-monosstatic radar measurement is ΓH , and the air-ground interface is ΓI . In both
cases we will denote by ΓT the surface of an underground radar target. Let us denote the above
ground (underground) wave velocity c+ (c−), the wavelength λ+ (λ−), and the wavenumber k+

(k−). Figure 4.3 shows both scenarios: the described single domain, and the interface scenario
for the holographic ground-penetrating radar simulations that will be specified in this section.

⌦�

⌦�

⌦+

�H �H

�I

�T �T

Figure 4.3: General setting for a holographic ground-penetrating simulation for a single domain
(left) and a double domain scenario (right).

We will now adopt further specifications. We will consider a set of emitting-receiving
(monostatic) samples recording amplitude and phase values {cHi }NMMS

i=1 , with cHi ∈ C, each

associated with one of the sampling points {rHi }NMMS
i=1 ⊂ ΓH . A position rHi is a position

where an antenna has emitted a time-harmonic radio signal, which will be modeled by a point
source represented by a Diract delta function. The scalar wave field u will be decomposed
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in uinc and uscat. Let uinc be each scalar field caused by the radiation of each antenna at
point rHi ∈ ΓH , propagating towards the radar target, be it in in a single domain or through
an interface. Let uscat be the corresponding scalar field scattered back by the surface of the
reflective radar target ΓT . When the scenario to be considered consists of a double domain
or interface problem, their restrictions to the above-ground domain Ω+ will be called u+

inc and
u+
scat, and their restrictions to the underground domain Ω− will be called u−inc and u−scat. Figure

4.5 illustrates the situation for a single domain scenario, and Figure 4.5 for a double domain
or interface scenario.
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Figure 4.4: General setting for a holographic ground-penetrating simulation for a single under-
ground domain scenario showing the incident (left) and the scattered (right) wave.
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Figure 4.5: General setting for a holographic ground-penetrating simulation for a double do-
main or interface scenario showing the incident (left) and the scattered (right) wave.
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4.2.2 Radar targets

For the examples to come in this chapter we will use totally reflecting screen radar targets
with boundaries denoted by ΓT . This will impose the following Neumann boundary condition
on the exterior of the screen surface:

∂u−scat
∂n

(x) = −∂u
−
inc

∂n
(x), for x ∈ ΓT . (4.2)

This is in accordance with the more general conditions (4.1) when taken to be for a surface
ΓT considered totally reflective. In this case the transmitted scalar wave field is zero and that
the exterior field is decomposed as u− = u−inc + u−scat, yielding the stated boundary condition
on ΓT .

For the examples that follow we will consider an L-shaped screen radar target to provide a
complex geometry that will allow us to test the resoling capacities of the ground-penetrating
radar to be simulated. Let us consider the following parametric square-shaped horizontal
screen:

�a×br =

{
(x1, x2, x3) : r1 −

a

2
≤ x1 ≤ r1 +

a

2
, r2 −

b

2
≤ x2 ≤ r2 +

b

2
, x3 = r3

}
. (4.3)

This parametric screen will prove useful in the definition of several surfaces in this chapter.
We will use this parametric squared-shaped screen to define the radar target screen ΓT as:

ΓT =
(
�0.2×0.1

(0.05,0,0)

)⋃(
�0.1×0.2

(0,0.05,0)

)
, (4.4)

which is a 20cm wide and 20cm long L-shaped flat screen on the plane x3 = 0. We will consider
a conformal triangular approximation ΓTh for h ≈ 5 millimeters. According to the requirements
for the relation between h and the wavelength λ− from Section 1.7, this should safely allow us
to simulate up to frequencies resulting in λ− = 5cm. Figure 4.6 shows the conformal triangular
approximation ΓTh of ΓT for h ≈ 5 milimeters and 2872 triangles.
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Figure 4.6: Conformal triangular approximation ΓTh of the radar target ΓT for h = 4.9 milime-
ters resulting in 2872 triangles.
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4.2.3 Computational cost and conditioning

In this subsection we will analyze the cost of computing the wave scattered by the under-
ground screen target ΓT described in (4.4) using conformal triangular meshes, the boundary
element method, and the Galerkin matrix Nh

k from (3.168) in Definition 3.3.4 to solve the anti-
symmetric Neumann Helmholtz problem for the screen ΓT (Problem 1.3.12 for Neumann data
(4.2)). We will consider and compare two ways of solving this problem: 1) directly solving the
linear system for matrix Nh

k for screen as computed in Definition 3.3.4, and 2) preconditioning
the matrix Nh

k using a preconditioner Mh
N computed as indicated in Subsection 3.3.4 before

solving the linear system now for the preconditioned matrix Mh
N ·Nh

k . This second way of
solving a linear system will be indexed by the superscript PC, meaning preconditioned, in the
several variables we will define.

Let us consider different conformal triangular approximations ΓTh of the screen target ΓT

from (4.4) for different discretization parameters h. With each discretization parameters h we
will associate the admissible shortest wavelength λ− = 10 ·h, a highest admissible wavenumber
k=2π/λ− or a highest admissible simulation frequency f = c−/λ−, for an underground wave
velocity c−. For each progressively finer mesh approximation, indexed by h, we will compute the
matrix Nh

k− and solve the associated linear system using the GMRES iterative method, taking
Niter iterations to be solved. Likewise, we will also considered the preconditioned linear system
for matrix Mh

N ·Nh
k− and solve it also using the GMRES iterative method, now taking NPC

iter

iterations. Table 4.1 shows the number of triangles NT , and the admissible wavelength λ− in the
underground for the target ΓT approximated by progressively finer triangular approximations
ΓTh indexed by h. It also show the condition number of the associated preconditioned and
unpreconditioned matrix, and the number of iterations required in each case.

Table 4.1: Condition number and number of iterations required to solve the linear system
associated with unpreconditioned matrix Nh

k and with the preconditioned matrix Mh
N ·Nh

k

for progressively finer meshes for the L-shaped screen ΓT using the GMRES iterative solver.
The row for the radar target chosen in Subsection 4.2.2 has been highlighted.

NT h λ− k− cond2(Nh
k−) Niter cond2(Mh

NNh
k−) NPC

iter

176 0.019936 0.1993 31.5174 5.697 23 1.714 17
204 0.018175 0.1817 34.5792 6.758 25 1.777 18
388 0.013331 0.1333 47.1314 7.694 28 2.052 17
668 0.010116 0.1011 62.1132 8.381 63 2.495 18

1214 0.007398 0.0739 84.9305 11.486 82 3.047 22
2872 0.004969 0.0496 126.4352 12.984 122 6.730 29

It could be hastily concluded from Table 4.1 that applying matrix preconditioning might
increase efficiency when solving a single direct problem, i.e., solving the backscattered wave
when the target has been reached by the incoming wave coming from a single emitter at rHi
in the hologram recording surface ΓH . A closer look into the time-efficiency of the processes
involved in preconditioning will indicate otherwise.

Let us consider the following definition of time lapses associated with different parts of the
matrix computation and linear system solving in the context of the matrix preconditioning
methods described in Chapter 3.

Definition 4.2.1 (Time lapses associated with linear systems solving and preconditioning).
Let us consider the different conformal triangular approximations ΓTh (of the radar target ΓT

from (4.4)) referred to in Table 4.1 and indexed by the discretization parameter h. For the
unpreconditioned linear system, let us define the following time lapses in seconds:

• Tsetup(h): Time required to compute the matrix Nh
k− for ΓTh .

• TGMRES(h): Time required to compute the solution of the linear system using the GMRES
iterative method once the linear system has been assembled.
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• TLS(h): Time required to assemble and solve the linear associated with Nh
k− given Neu-

mann data (4.2) for a single direct problem for single emitter/receiver in rHi ∈ ΓH , i.e.,
Tsetup(h) + TGMRES(h).

For the preconditioned linear system, let us define the following time lapses in seconds:

• TPC(h): Time required to precondition matrix Nh
k− for ΓTh . This includes the time re-

quired to compute matrix Shas from (3.139) in Definition 3.2.9, the time required to com-
pute matrix Dh

N from (3.142) in Definition 3.3.1, the time required to invert it, the time
required to compute matrix Mh

N from (3.145) in Definition 3.3.2 and the time multiply
it by Nh

k−.

• TPC
setup(h): Time required to compute the matrix Mh

N ·Nh
k− for ΓTh , i.e., Tsetup(h)+TPC(h).

• TPC
GMRES(h): Time required to compute the solution of the preconditioned linear system

using the GMRES iterative method once the linear system has been assembled.

• TPC
LS (h): Time required to assemble and solve the linear system associated with Mh

N ·Nh
k−

given Neumann data (4.2) for a single direct problem for single emitter receiver in rHi ∈
ΓH , i.e., TPC

setup(h) + TPC
GMRES(h).

• Tsaved(h): Total time saved when solving a linear system for the anti-symmetric Neumann
Helmholtz problem due to preconditioning, i.e. TLS(h)− TPC

LS (h).

Remark 4.2.1 (The time required to assemble right-hand sides is neglected). In the time
lapses from Definition 4.2.1 the time required to assemble the right-hand side of the linear
system has been intentionally neglected as its algorithmic complexity involved in doing so is
significantly lower than the complexity involved in the other processes.

Remark 4.2.2 (Times are dependent on the machine used). The time needed to assemble
and solve a linear system also depends on the computer and the algorithms used. The matrix
inversion algorithm was chosen from the Eigen library as stated in Remark 3.2.3 (not optimized
for sparse matrices), and the machine used had a dual 3GHz Intel i7 core and 16GBytes of
RAM memory. Both parameters could be optimized to improve the required processing times,
but this wouldn’t affect the argument made throughout this subsection.

We will see that while preconditioned linear systems can be solved faster, the over time-
efficiency is not always poised to improve. Table 4.2 shows, for the same progressively finer
triangular approximations ΓTh of ΓT indexed by h, some of the time durations from Definition
4.2.1.

Table 4.2: Time duration in seconds of the different processes involved in matrix assembling,
preconditining and solving for progressively finer triangular approximation ΓTh of the screen
radar target ΓT .

NT h Tsetup TGMRES TLS TPC
setup TPC

GMRES TPC
LS Tsaved

176 0.019936 0.7288 0.0259 0.7548 4.2468 0.0169 4.2637 -3.5089
204 0.018175 0.9531 0.0311 0.9842 5.3685 0.0221 5.3907 -4.4064
388 0.013331 3.9945 0.0812 4.0758 18.2498 0.0357 18.2856 -14.2098
668 0.010116 11.199 0.4115 11.6111 47.4604 0.0974 47.5578 -35.9467

1214 0.007398 36.804 1.9721 38.7763 131.8325 0.7201 132.5525 -93.7762
2872 0.004969 236.57 10.3864 246.9604 652.3295 2.3754 654.7049 -407.7445

As anticipated, the last column of Table 4.2 shows that despite the fact that the proposed
preconditioning strategy from Subsection 3.3.4 allows for faster solving of the associated linear
system in less iterations, the overall time required for the assembly and solving of the linear
systems can grow with mesh refinement and be less time-efficient. Although these particular
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time lapses presented in Table 4.2 could be improved in view of Remark 4.2.2, the following
exposition will make use of this chosen application example to show the relevance of improved
algorithmic complexity as a motivation for the development preconditioning methods and ac-
celeration/compression methods. This will be the case regardless of observations about the
particular machine used and inversion algorithm chosen and commented in Remark 4.2.2. The
other advantage of matrix preconditioning, i.e., improved accuracy, will not be tested.

Let us reconsider the global problem of simulating the radar acquisition process for a holo-
graphic ground-penetrating such as it described in Subsection 4.2.1, and let us analyze the
time-cost of computing the scattering produced by the radar target ΓT when illuminated by
radio waves coming from NMMS different sources placed in the hologram recording surface ΓH .
This is the so-called multi-monostatic scattering problem for positions {rHi }NMMS

i=1 .

Definition 4.2.2 (Time lapses associated with the multi-monostatic scattering problem for
the radar target). Let us consider the different conformal triangular approximations ΓTh (of the
radar target ΓT from (4.4)) referred to in Table 4.1 and indexed by the discretization parameters
h, the time lapses defined from Definition 4.2.1 and let NMMS be a number of multi-monostatic
scattering problems to be solved. Let us define the time in seconds needed to assemble and solve
the linear system for the anti-symmetric Neumann Helmholtz problem:

TMMS(h,NMMS) = Tsetup(h) +NMMSTGMRES(h). (4.5)

Likewise, let us define the time in seconds needed to assemble, precondition and solve the
linear system for the anti-symmetric Neumann Helmholtz problem:

TPCMMS(h,NMMS) = TPCsetup(h) +NMMST
PC
GMRES(h). (4.6)

Since the assembling and preconditioning of a matrix is only performed once for many
Neumann data, i.e., different positions rHi , the gain in time when solving the system will
outweigh the time lost in preconditioning after a certain value of NMMS . Let us consider
the radar target from Subsection 4.2.2 and its discretization ΓTh highlighted on Tables 4.1
& 4.2, with 2872 triangles and h ≈ 5mm, allowing for simulation frequencies resulting in
wavelength down to λ− ≈ 5cm. Let us define the percent time gain for a given number NMMS

of emitting/receiving points in ΓH :

T%
MMS(h,NMMS) = 100 · TMMS(h,NMMS)− TPCMMS(h,NMMS)

TMMS(h,NMMS)
, (4.7)

which can be easily shown to be equal to

T%
MMS(h,NMMS) = 100 · NMMS

(
TGMRES(h)− TPCGMRES(h)

)
− TPC(h)

NMMS TGMRES(h) + Tsetup(h)
. (4.8)

The limit value, also directly obtainable, exemplifies the usefulness of the improvements
leading to increased time-efficiency of linear system solving in problems requiring the solution
for a massive number of different right-hand side data:

T%
MMS(h,NMMS) −−−−−−−→

NMMS→∞
100 · TGMRES(h)− TPCGMRES(h)

TGMRES(h)
. (4.9)

Figure 4.7 shows the evolution of T%
MMS(h,NMMS) for the chosen radar target approxi-

mation ΓT from Subsection 4.2.2, for h = 0.0049695 and NT = 2872 and to be used in the
subsequent simulations, for an increasing number NMMS of multi-monostatic radar measuring
points in the hologram recording surface ΓH .
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Figure 4.7: Evolution of T%
MMS(h,NMMS) for the chosen radar target approximation ΓTh , for

h = 0.0049695 and NT = 2872 for an increasing number NMMS of multi-monostatic radar
measuring points in the hologram recording surface ΓH

4.2.4 Air-ground interface, hologram recording surfaces, and imaging sur-
faces

In this subsection we will describe three surfaces of importance to the modeling of the
radar system: the air-ground interface surface ΓI , the hologram recording surface ΓH , and the
imaging surface ΓR.

For the cases presented in this chapter we will consider the air-ground interface surface ΓI

to be an aperture surface from where the radio waves will enter and then exit the underground.
For the purposes of the following exposition, we will describe it parametrically in R3, fixing a
given range in x1 and x2, where it will be inscribed, and describing the height of the interface
surface with a function fI of these two variables:

ΓI = {(x1, x2, x3) : −0.5 ≤ x1, x2 ≤ 0.5, x3 = fI(x1, x2)} . (4.10)

When specifying an interface surface, a range for x1 and x2 will be provided along with a
given resolution δI determining the number NI of area elements to be used in computations.
These area elements are arranged in a rectangular grid.

Figure 4.8 shows a discretized approximation of surface ΓI for the function fI the function,
e.g.,

fI(x1, x2) =
7

20
− 1

2
(x2

1 + x2
2). (4.11)
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Figure 4.8: Rectangular grid approximation of ΓIh of surface ΓI , made of 400 elements (for
illustrative purposes) for the function fI from (4.11)

The hologram recording surface ΓH is the surface that contains all sample points where
the monostatic holographic radar measurement are taken. In the case of a switching line array
of antennas moving at a height above the ground, as described in Subsection 4.1.2, the result
is most often a plane in three-dimensional space. In our examples, we will consider in fact a
plane which we will describe using the parametric square-shaped screen from (4.3) as:

ΓH = �a×brH
. (4.12)

When specifying a hologram recording surface, a, b, and rH will be provided along with
a given resolution δH determining sampling points {rHi }NMMS

i=1 ⊂ ΓH for the multi-monostatic
configuration using a rectangular grid such that

NMMS =
ab

(δH)2 . (4.13)

The recorded hologram is H
(
ΓH
)
→ C, so that for a sampling point rHi ∈ ΓH the value

H
(
rHi
)

is the complex value of the backscattered radio wave: u−scat(r
H
i ) (in the context of a sin-

gle underground domain) or u+
scat(r

H
i ) (in the context of a double domain of interface problem).

The complex value of a backscattered radio wave will provide us with the amplitude and phase
information needed for a holographic ground-penetrating radar image reconstruction. Given
a fixed hologram recording surface ΓH , taking enough sample points {rHi }NMMS

i=1 (choosing a
sufficiently small δH) allows for the determination of the map H through interpolation, and
the magnitude of the values H(rHi ) for i = 1...NMMS can be regarded as the pixel values of
the holographic image recorded on ΓH .
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Finally, we will describe the imagining surface where the reflectivity values of the under-
ground will be computed using the holographic ground-penetrating radar and the imaging
principle to be described. Similarly to the description of ΓH , we will define the reflectivity
imaging surface using the parametric square-shaped screen surface (4.3) as:

ΓR = �c×drR
. (4.14)

Unlike for the hologram recording surface, for all the examples presented we will consider
c = d = 1m, a resolution of δR = 1cm, and we will put the imaging surface at the center of the
target ΓT , setting rR = (0, 0, 0).

Using the reflective imaging surface ΓR, the recorded reflectivity image will be R
(
ΓR
)
→ C,

so that for a sampling point rRi ∈ ΓR the value R
(
rRi
)

is the complex reflectivity reconstructed
using the imaging principle to be described in the next section. Given a fixed image recording
surface ΓR, taking enough sample points {rRi }NRi=1 (choosing a sufficiently small δR, with NR =
cd/(δR)2) allows for the determination of the map R through interpolation, and the magnitude
of the values R(rRi ) for i = 1...NR can be regarded as the pixel values of the reconstructed
reflectivity image recorded on ΓR.

4.2.5 Simulating single domain and interface problems

In this subsection we will show the results of example simulations of wave propagation in the
prescribed scenarios, i.e., for a single underground domain scenario and for a double domain or
interface scenario. In both cases we will use the radar target ΓT described in Subsection 4.2.2.
We will position a single emitter in an arbitrary position and we will compute the incident
scalar wave field uinc and the scattered scalar wave field created by the L-shaped screen radar
target ΓT contained in the plane x3 = 0. In providing these examples we will show how to
compute incident wave scattering and backscattered waves, especially when they travel across
an interface surface ΓI separating the above ground and the underground domains using an
aperture model. These simulations will be explained and performed for a single monostatic
holographic radar acquisition from a single sampling point rHi .

For the results described and exemplified in this subsection, we will consider the single
emitter to be in rHi = (0.5, 0, 1.1), and we will plot the values of the real part of the incident
wave field uinc and the backscattered field uscat on a plane Πx2=0 given by:

Πx2=0 = {(x1, x2, x3) : x2 = 0, −0.5 ≤ x1 ≤ 0.5, −0.1 ≤ x3 ≤ 0.7} . (4.15)

The description exhibited here for the computation of the scattered fields will be applied
in the next section to compute recorded holograms H to be used in imaging algorithms that
will provide reflectivity images of the underground.

Single underground domains

The following definition will state the procedure for computing a single direct problem for
a single emitter/receiver in a single underground domain scenario. This will then be used in
the next section to compute recorded hologram data H using this procedure for each emit-
ting/receiving point.

Definition 4.2.3 (Single underground domain wave computation). For a single monostatic
direct problem computation the procedure is as follows:

1. Select an emitting/receiving point rHi .

2. Compute u−inc in Ω− as u−inc(y) = Gk
−

(rHi ,y) for y ∈ Ω−.
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3. Compute the Neumann data of the scattered field on the surface of ΓT as

∂u−scat
∂ny

(y) = −∂u
−
inc

∂ny
(y), for y ∈ ΓT . (4.16)

4. Assemble and compute the linear system for the discrete variational formulation of

−N k−µ =
∂u−scat
∂ny

(y). (4.17)

5. Solve the jump of the Dirichlet traces µ.

6. Compute the scattered scalar wave field u−scat as u−scat(y) = −Dk−µ(y) for y ∈ Ω−.

7. Compute the value of the recorded hologram at rHi as u−scat(r
H
i ).

In the following example, there is only one unbounded propagation domain Ω−, with prop-
agation parameters described in Table 4.3.

Table 4.3: Parameters for the single underground domain example simulations
Parameter Value Units

Domain Ω−
λ− 5 cm
k− 125.66 cm−1

Target
ΓTh (4.4)
h 5 mm

Figure 4.9 shows an example computation of radio wave propagation in a single underground
domain scenario using the radar target ΓT described in Subsection 4.2.2 using parameters from
Table 4.3 and the procedure from Definition 4.2.3.

Figure 4.9: Example computation of radio wave propagation in a single underground domain
scenario using the radar target ΓT described in Subsection 4.2.2 using parameters from Table
4.3 and the procedure from Definition 4.2.3. The real values of the scalar wave fields uinc (left)
and uscat (right) are plotted on the plane Πx2=0.

Double domain or interface problems

In order to compute incident and scalar fields across an aperture interface surface ΓI we
will consider the Kirchhoff’s diffraction formula [12, Section 8.3.2]. For known traces of u−inc

and
∂u−inc
∂n on ΓI from Ω−, we compute

u−inc(y) =

∫
ΓI

[
u−inc(x)

∂

∂nx
Gk
−

(x,y)−Gk−(x,y)
∂u−inc
∂nx

(x)

]
dΓI(x), for y ∈ Ω−. (4.18)
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For known traces of u+
scat and

∂u+scat
∂n on ΓI from Ω+, we compute

u+
scat(y) = −

∫
ΓI

[
u+
scat(x)

∂

∂nx
Gk

+
(x,y)−Gk+(x,y)

∂u+
scat

∂nx
(x)

]
dΓI(x), for y ∈ Ω+.

(4.19)

The successful modeling of the propagation across surface ΓI using the previously enunci-
ated Kirchhoff’s diffraction formula for the to cases of interest assumes that dist

(
ΓI ,y

)
� λ±.

Definition 4.2.4 (Double domain interface wave computation). For a single monostatic direct
problem computation the procedure is as follows:

1. Select an emitting/receiving point rHi .

2. Compute u+
inc in Ω+ as u+

inc(y) = Gk
+

(rHi ,y) for y ∈ Ω+.

3. Compute the values of u+
inc and

∂u+inc
∂n at ΓI as

u+
inc(y) = Gk

+
(rHi ,y) and

∂u+
inc

∂ny
=

∂

∂ny
Gk

+
(rHi ,y) for y ∈ ΓI . (4.20)

4. Compute the values of u−inc and
∂u−inc
∂n at ΓI as

u−inc(y) = u−inc(y) and
∂u−inc
∂ny

= n2∂u
+
inc

∂ny
for y ∈ ΓI , (4.21)

with n = λ+/λ−.

5. Compute u−inc in Ω− as

u−inc(y) =

∫
ΓI

[
u−inc(x)

∂Gk
−

∂nx
(x,y)−Gk−(x,y)

∂u−inc
∂nx

(x)

]
dΓI(x), for y ∈ Ω−. (4.22)

6. Compute the normal derivative of u−inc on ΓT as

∂u−inc
∂ny

(y)=

∫
ΓI

[
u−inc(x)

∂2Gk
−

∂nx∂ny
(x,y)− ∂Gk

−

∂ny
(x,y)

∂u−inc
∂nx

(x)

]
dΓI(x), for y ∈ ΓT .

(4.23)

7. Compute the Neumann data of the scattered field on the surface of ΓT as

∂u−scat
∂ny

(y) = −∂u
−
inc

∂ny
(y), for y ∈ ΓT . (4.24)

8. Assemble the linear system for the discrete variational formulation of

−N k−µ =
∂u−scat
∂ny

(y). (4.25)

9. Solve the jump of the Dirichlet traces µ.

10. Compute the scattered scalar wave field u−scat as u−scat(y) = −Dk−µ(y) for y ∈ Ω−.
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11. Compute the values of u−scat and
∂u−scat
∂n at ΓI as

u−scat(y) = −Dk−µ(y) and
∂u−scat
∂ny

= − ∂

∂ny
Dk−µ(y) for y ∈ ΓI . (4.26)

12. Compute the values of u+
scat and

∂u+scat
∂n at ΓI as

u+
scat(y) = u−scat(y) and

∂u+
scat

∂ny
=

1

n2

∂u−scat
∂ny

for y ∈ ΓI , (4.27)

with n = λ+/λ−.

13. Compute u+
scat in Ω+ as

u+
scat(y) = −

∫
ΓI

[
u+
scat(x)

∂Gk
+

∂nx
(x,y)−Gk+(x,y)

∂u+
scat

∂nx
(x)

]
dΓI(x), for y ∈ Ω+. (4.28)

14. Compute the value of the recorded hologram at rHi as u+
scat(r

H
i ).

In the following example, there are two unbounded propagation domains, the underground
Ω−, and the above-ground Ω+, with propagation parameters described in Table 4.4.

Table 4.4: Parameters for double domain example simulations
Parameter Value Units

Domain Ω−
λ− 5 cm
k− 125.66 cm−1

Domain Ω+ λ+ 10 cm
k+ 62.83 cm−1

n = λ+/λ− 2 dimensionless

Interface ΓI fI (4.11) m

Target
ΓT (4.4) m
h 5 mm

Figures 4.10 & 4.11 shows an example computation of radio wave propagation in a double
domain scenario using the radar target ΓT described in Subsection 4.2.2 using parameters from
Table 4.4, using the interface surface from Subsection 4.2.4 and the procedure from Definition
4.2.4.

Figure 4.10: Incident wave field example computation of radio wave propagation in a double
domain scenario using the radar target ΓT described in Subsection 4.2.2 using parameters from
Table 4.4 and the procedure from Definition 4.2.4. The real part of the incident scalar wave
field uinc is shown with its values on ΓI (left) and on the plane Πx2=0 (right).
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Figure 4.11: Scattered wave field example computation of radio wave propagation in a double
domain scenario using the radar target ΓT described in Subsection 4.2.2 using parameters from
Table 4.4 and the procedure from Definition 4.2.4. The real part of the scattered scalar wave
field uscat is shown with its values on the plane Πx2=0 (left) and on ΓI (right).
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4.3 A type of subsurface holographic radar

Given a configuration for radar acquisition in a scenario in which radar target ΓT is buried
in the underground Ω−, and there is possibly a surface ΓI separating it from an above-ground
domain Ω+, multi-monostatic holographic radar measurements can be taken on a recording
hologram surface ΓH to determine the map H, as described in Subsection 4.2.4. An imaging
method uses an imaging principle, the holographic data measurement represented by the map
H, possibly the knowledge of a known interface ΓI , and the physical parameters of the media
to compute a reflectivity complex map R on a reflectivity image surface ΓR. The magnitude
of the values of this map on the surface ΓR is the reflectivity image that signals the possible
presence of a reflective radar target buried at the position where that reflectivity image surface
has been computed.

In this section we will describe a type of imaging principle and method for the holographic
ground-penetrating radar. We will explain the motivations and assumptions behind it, and
we will propose simplifications leading to new methods. These motivations are not the im-
provement of the quality or robustness of the capacities to identify a reflective target, but the
reduction of the cost and an increase of the speed in doing so. In fact, we will present prin-
ciples and methods that will progressively rely on more stringent assumptions that will allow
for faster image computations at the expense of robustness and quality. This provides, on the
other hand, the motivation for efficient simulation tools capable of predicting the performance
of such imaging methods and thus assessing their usefulness despite the lack of robustness
in many scenarios of interest. It is precisely the point that, through efficient simulation, the
spectrum of scenarios on which these methods can be relied upon may be correctly delimited.

We will begin by explaining the imaging principle used by the radar type chosen as moti-
vation, as explained in Section 4.1 and especially, in Subsection 4.1.2. We will also provide a
general framework for holographic radar imaging. We will present an imaging method based
on that principle for single underground domain scenarios and subsequent adaptations for dou-
ble domains or interface scenarios. We will provide image reconstructions for several cases of
interest giving some insight into the capabilities of the studied radar system while showing the
usefulness of the proposed simulation methods in such endeavor.

4.3.1 Holographic radar imaging and principles

Given a scenario for ground-penetrating radar analysis such as those given in Subsection
4.2.1, the result of performing multi-monostatic radar acquisition provides the following avail-
able data:

• A hologram recording surface ΓH .

• A set of multi-monostatic holographic radar measurements {cHi }NMMS
i=1 taken at sample

points {rHi }NMMS
i=1 ⊂ ΓH . Through interpolation this provides the mapping H : ΓH → C.

• A chosen reflective image surface ΓR on which to compute the complex reflectivity map
R : ΓT → C.

• Knowledge of the physical parameters of the underground. In our case λ−, (k−).

• If the scenario has an interface surface, it’s geometry is also assumed to be known, so
that the geometrical object ΓI is defined, as well as the physical parameters of the above-
ground domain. In our case λ+, (k+).

The position and the shape of the radar target is not know. But, a reflectivity image surface
has been chosen on which to compute the reflectivity of the underground on that area.

A general holographic imaging method can be expressed as a family of filter functions
F : ΓH × ΓR → C such that the complex reflectivity image is computed as
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R(y) =

∫
ΓH

F(x,y)H(x)dΓH(x), for y ∈ ΓR. (4.29)

In the case of a double domain or interface scenario, where the above-ground is separated
from the underground by a surface ΓI , the filter function depends on the interface surface and
is denoted as FI : ΓH × ΓR → C, resulting in a complex reflectivity image

R(y) =

∫
ΓH

FI(x,y)H(x)dΓH(x), for y ∈ ΓR. (4.30)

The principles and methods used in what follows come from geometrical optics, especially
in it’s use of Snell’s law for radio waves. Other techniques have used geometrical optics and
Snell’s law in ground-penetrating technologies, but mostly for time-domain radars [7,53,59,67].
Under this approach, radio waves are being treated under the assumption that wavelengths are
considerably smaller than all other geometrical distances and magnitudes in consideration. The
imaging principle on which the methods here considered are base on, is the so-called conjugate-
phase matching (CPM) principle [23, 50], and it is based on the principle of minimum optical
path length. In this context, the optical path length, or optical distance, is the product
of the geometric length of a wave path through an optical system, and the refraction index
of the medium where the wave propagates. The minimum optical path length between two
points is then the shortest between all possible wave paths joining the two points. The stated
assumption in which the wavelength of a time-harmonic radio wave is much smaller than all
other geometrical distances in consideration is crucial to the meaningfulness of the optical path
length. This assumption will soon prove to be excessive for ground-penetrating radars, and it
is one of the elements that compromise the robustness of these imaging methods in exchange
for speed and simplicity.

The conjugate-phase matching principle uses a conjugate phase propagation function Gkc
and the minimum optical path length, under geometrical optics’ assumptions, to provide a
measure of phase coherence between the observed holographic data contained in the map H,
and a possible reflective target at a given position in ΓR. Given the fundamental solution
governing wave propagation in the framework described in Section 1.4, the conjugate phase
propagation function uses the minimum optical path length, hereinafter called `, as:

Gkc (`) = e−ik`. (4.31)

In the next subsection we will provide an explicit expression for F for the case of a single
underground domain that will illustrate how the minimum optical path length is used by the
conjugate-phase matching holographic imaging method. This method was described and tested
by Giubbolini and Sambuelli in [23] for single underground domains.

4.3.2 Imaging method for single underground domain scenarios

Given x ∈ ΓH and y ∈ ΓR, the minimum optical path length of the round-trip path is the
geometrical distance between the two points, i.e. 2 ‖x− y‖, times the refraction index n− for
the underground domain:

`(x,y) = 2n− ‖x− y‖ . (4.32)

Being Ω− the only domain under consideration, the refraction index can be set to n− = 1
setting Ω− as the reference propagation domain. The filter function for the single underground
domain scenario in the conjugate-phase matching method is then given by

F(x,y) = Gk
−
c (`(x,y)) = e−ik−2‖x−y‖ . (4.33)
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The complex reflectivity image can be then computed as:

R(y) =

∫
ΓH

e−ik−2‖x−y‖H(x)dΓH(x), for y ∈ ΓR, (4.34)

or in its discrete version, using the points from the rectangular grid defined in Subsection 4.2.4
for ΓH and ΓR, as:

R(rRi ) = (δH)2
NMMS∑
j=1

e−ik−2‖rHj −rRi ‖H(rHj ), for i = 1...NR. (4.35)

In what follows we will provide an example of complex image reconstruction using the
algorithm described in this subsection and synthesized in (4.35). As for the rest of the re-
construction examples of complex reflectivity images given in this chapter, we will present a
table summarizing the main parameters for the considered scenario, for the multi-monostatic
holographic radar acquisition, and for the image reconstruction.

Table 4.5 shows the parameters used for a multi-monostatic simulation and image recon-
struction using a single underground scenario.

Table 4.5: Parameters used for a multi-monostatic simulation and image reconstruction using
a single underground scenario

Parameter Value Units

Domain Ω−
λ− 5 cm
k− 125.66 m−1

Hologram H ΓH �1×1
(0,0,1) meters

δH 2.5 cm

Image R
ΓR �1×1

(0,0,0) meters

δR 1 cm
Method (4.35)

Target
ΓT (4.4) m
h 5 mm

The following figures show the scenario for the simulated multi-monostatic holographic
radar acquisition and the magnitude of the maps H on ΓH , and R on ΓR. The values of R are
represented on an arbitrary reflectivity scale.
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Figure 4.12: Scenario for the simulated multi-monostatic holographic radar acquisition using
parameters of Table 4.5, showing the underground propagation domain, the radar target, and
ΓH with the magnitude of the values of H painted on.

Figure 4.13: Magnitude of the values of the map H painted on ΓH (left), and magnitude of the
values of the map R painted on ΓR (right) using parameters of Table 4.5. The known shape
of the radar target ΓT has been drawn on the reflectivity image on the right as a reference.

As seen in Figure 4.13, the method proposed in [23], synthesized in (4.35) for our framework,
is capable of generating a reflectivity image R where the radar target ΓT can be resolved using
the parameters given in Table 4.5. In the next subsection, we will extend the principles used
to the case of a radar scenario with an above-ground and an underground domain separated
by a non-flat interface. We will draw inspiration from geometrical optics techniques mentioned
in Subsection 4.3.1 and in particular from [14] for the treatment of the interface as a lens.
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4.3.3 Imaging method for double domains scenarios

When the scenario consists of an above-ground domain Ω+, and an underground domain
Ω− separated by an interface surface ΓI , the application of the same method using the principle
of minimum path length becomes a more difficult task. This is because now the determination
of the minimum path length for the round-trip from a point on the hologram recording surface
and a point in the imaging surface is not trivial as it was in (4.32). We will consider all possible
round-trips between x and y, then we will consider the subset of those complying with Snell’s
law for the paths’ entrance and exit across ΓI , and finally we will choose the one with the
minimum optical path length.

A given (possibly non-physical) round-trip between points x ∈ ΓH and y ∈ ΓR, can be
decomposed in the incident go trip from x to y, crossing ΓI at rIinc, and the scattered return
trip from y to x, crossing ΓI at rIscat. We will consider the following geometrical distances:

l+inc=
∥∥x− rIinc

∥∥ , l−inc=
∥∥y − rIinc

∥∥ , l+scat=
∥∥x− rIscat

∥∥ , and l−scat=
∥∥y − rIscat

∥∥ .
(4.36)

We will also define the following directions given by unit vectors:

v+
inc=

rIinc − x

l+inc
, v−inc=

y − rIinc
l−inc

, v+
scat=

x− rIscat
l+scat

, and v−scat=
rIscat − y

l−scat
. (4.37)

When λ± (k±) are known, and we fix Ω+ as the reference media for refraction, i.e. n =
λ+/λ−, only a subset of all the possible round-trips between the two points comply with Snell’s
law of angles. A round-trip will be called admissible or physical if both its incident go trip
wave path and its scattered return trip wave path comply with Snell’s law of angles.

Using Snell’s law we can compute the direction of the transmitted wave paths across the
interface surfaces for the incident wave and for the scattered wave. For the incident wave path
joining x and rIinc we have that the transmitted direction v̂−inc should be

v̂−inc =
1

n

(
v+
inc −

((
v+
inc ·nrIinc

)
+

√
n2 − 1 +

(
v+
inc ·nrIinc

)2
)
nrIinc

)
. (4.38)

so that the error in the transmitted angle for the incident wave is

θeinc = arccos(r̂−inc · v−inc). (4.39)

A given incident path will be called admissible or physical if θeinc = 0.

Likewise for the scattering wave, for the scattered wave path joining y and rIscat we can
compute the direction v̂+

scat that the outgoing wave path should have as

v̂+
scat = n

(
v−scat −

((
v−scat ·nrIscat

)
−
√

1

n2
− 1 +

(
v−scat ·nrIscat

)2
)
nrIscat

)
. (4.40)

and determine the error in the angle with the actual direction for that given return path as

θescat = arccos(v̂+
scat · v+

scat). (4.41)

A given scattered path will be called admissible or physical if θescat = 0.

Figure 4.14 illustrates the defined values and vector for a given round-trip between points
x ∈ ΓH and y ∈ ΓR.
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Figure 4.14: Geometrical lengths and vectors for an arbitrary round-trip between points x ∈ ΓH

and y ∈ ΓR.

A given round-trip will be called admissible if both the incident and the scattered wave
paths are admissible. For every admissible trip, let us define the optical path length as

`I(x,y) = l+inc + l+scat + n
(
l−inc + l−scat

)
. (4.42)

From all the admissible round-trips, let `∗I(x,y) be the minimum optical path length, with
associated geometrical distances l+∗inc, l

−∗
inc, l

+∗
scat, and l−∗scat. Then the new filter function FI is

FI(x,y) = Gk
+

c (`∗I(x,y)) = e−ik+`∗I (x,y) = e
−i2π

(
l+∗
inc
λ+

+
l−∗
inc
λ− +

l−∗scat
λ− +

l+∗scat
λ+

)
. (4.43)

The imaging method is then

R(y) =

∫
ΓH

FI(x,y)H(x)dΓH(x), for y ∈ ΓH . (4.44)

In practice, in a discrete version, for every sample taken at rHj ΓH , and every reconstruction

point rRi ∈ ΓR, we explore a finite number of points on a rectangular grid on ΓI and consider
admissible the paths that comply with a tolerance θtol, i.e., θeinc ≤ θtol and θescat ≤ θtol. Then,
the optical path length is computed for all the admissible paths and the shortest one is selected
as `∗I(r

H
j , r

R
i ). We then compute the complex reflectivity image at points {rRi }NRi=1 as:

R(rRi ) = (δH)2
NMMS∑
j=1

e−ik+`∗I (rHj ,r
R
i )H(rHj ), for i = 1...NR. (4.45)

The proposed method, synthesized in (4.45) an called hereinafter Across-Interface Conjugate-
Phase Matching (AI-CPM), is capable of generating a reflectivity image R where the radar
target ΓT can be resolved, as it will be seen in subsequent subsections. This comes at a cost,
since the complexity algorithm (4.45) is O (NR ·NMMS ·NI). In the next subsection, we will
further extend the principles for the case of a radar scenario with an above-ground and an
underground domain using additional assumptions that will distance us further from correct
physical representation and will achieve lower algorithmic complexities at the expense of ro-
bustness. We propose a new simplified imaging method based on the one presented in this
subsection and we will test it under different circumstances using numerical simulations.
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4.3.4 A simplified imaging method for double domain scenarios

In a further simplification of the imaging method from Subsection 4.3.3 we will adopt
the assumption that the incident incoming wave path and the scattered outgoing wave path
between points x ∈ ΓH and y ∈ ΓR are not siginificantly different in magnitude, i.e., we will
assume that

l+inc + l−inc ≈ l+scat + l−scat (4.46)

Under assumption (4.46), the task of computing the minimum wave path lengths is sim-
plified because we can compute only one of them. In a new simplified algorithm, and under
this new assumption, we will consider the entry and exit wave paths that pass through points
x ∈ ΓI and y ∈ ΓR and we will determine the corresponding point r̃H ∈ ΓH that complies
with Snell’s law, for which we will consider the exit wave path. The direction v−scat of the wave
path exiting the domain Ω− is computed as before using the new points:

v−scat =
x− y

‖x− y‖ . (4.47)

Then, the direction v+
scat of the exit wave path in the domain Ω+ can be computed similarly

as in (4.40):

v̂+
scat = n

(
v−scat −

((
v−scat ·nx

)
−
√

1

n2
− 1 +

(
v−scat ·nx

))
nx

)
. (4.48)

Using the exit direction v̂+
scat, and if the holographic recording surface ΓH is contained in

a plane at a given height rH3 , then the corresponding the point r̃H ∈ ΓH on ΓH can be found
using x = (x1, x2, x3) ∈ ΓI as

r̃H(x,y) = x +
rH3 − x3

ê3 · v̂+
scat

v̂+
scat. (4.49)

Figure 4.15 illustrates the described geometrical process.

�H

�I

�R

x

y

l+scat

l�scat

v̂+
scat v�

scat

⌦+

⌦�

nx

r̃H

Figure 4.15: Geometrical lengths and vectors for the simplified round-trip passing through
between points x ∈ ΓI and y ∈ ΓR.
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Taking Ω+ as reference medium and n = λ+/λ−, the corresponding round-trip optical path
length is

`I(r̃
H(x,y),y) = 2

(∥∥r̃H(x,y)− x
∥∥ + n ‖x− y‖

)
, (4.50)

and the new filter function FI is

FI(r̃H(x,y),y) = Gk
+

c (`I(r̃
H(x,y),y)) = e−ik+`I(r̃H(x,y),y). (4.51)

Using this new filter function, now defined for points on ΓT and ΓI , the imaging method is
expressed as

R(y) =

∫
ΓI

FI(r̃H(x,y),y)H(r̃H(x,y))dΓI(x), for y ∈ ΓI . (4.52)

Given a rectangular grid of points {rIi }NIi=1 with resolution δI , the new simplified imaging
algorithm is

R(rRi ) =

NI∑
j=1

FI(r̃H(rIj , r
R
i ), rRi )H(r̃H(rIj , r

R
i ))δΓI(rIj ), for i = 1...NR, (4.53)

where the area element is

δΓI(rIj ) = (δI)2

√
1 +

(
∂fI
∂x1

(rIj )

)2

+

(
∂fI
∂x2

(rIj )

)2

. (4.54)

The value H(r̃H) is available through interpolation whenever the resolution δH of the
recorded hologram is small enough, and whenever r̃H ∈ ΓH and the there is a physical return-
trip ray. It is remarkable that the complexity of the new imaging method (4.53) is now
O (NR ·NI). This new and simplified method, synthesized in (4.53) and called hereinafter
Single-Path Across-Interface Conjugate-Phase Matching (SPAI-CPM), is capable of producing
reflectivity images of the underground as it will be seen in the next subsection. Its resolving
capabilities and robustness will be, as expected, worse than those of the previously described
method, AS-CPM from Subsection 4.3.4. This less performant method, relying on additional
assumptions, will be able to produce reflectivity images but it will also show greater image
degradation as the scenarios on which it’s used deviate from conditions less challenging to
those assumptions.

In what follows we will provide examples of complex image reconstruction using the al-
gorithm described in this subsection, synthesized in (4.53), and in the previous subsection,
synthesized in (4.45).

4.3.5 Simulated examples

In this subsection we will present simulated examples of the two proposed imaging meth-
ods for underground reflectivity in double domain scenarios. The aim of these simulations
is to exemplify how numerical simulations of the global direct problem, i.e. solving a direct
backscattering wave problem for each monostatic radar sampling position, can help predict
the performance of a ground penetrating radar as the one considered. The two particular
underground imaging schemes proposed pose a case of interest because they are based on as-
sumptions that are commonly violated in realistic scenarios, and their performance must be
assessed via numerical simulations.

The different scenarios under which the imaging schemes will be evaluated, and the simu-
lations of wave propagation and backscattering in them, will share many parameters. Those
parameters particular to each scenario will be specified explicitly, while those shared will be
presented in the following table.

157



Table 4.6: Parameters used for example cases of a multi-monostatic simulation and image
reconstruction in double domain scenarios

Parameter Value Units

Domain Ω+ λ+ 10 cm
k+ 62.83 m−1

Domain Ω−
λ− 5 cm
k− 125.66 m−1

n = λ+/λ− 2 dimensionless

Interface ΓI
x1, x2 −0.5 ≤ x1, x2 ≤ 0.5 m

δI 5 mm

fI(x1, x2) hI − a(x2
1 + x2

2) + b sin
(

2πx1
l

)
m

Hologram H ΓH �L
H×LH

(0,0,xH3 )
m

δH 5 cm

Image R
ΓR �1×1

(0,0,0) m

δH 1 cm
Methods AI-CPM (4.45), and SPAI-CPM (4.53)

Target
ΓT (4.4) m
h 5 mm

The parameters specified in Table 4.6 show settings similar to those used for simulations in
Subsection 4.2.5 and image reconstruction in Subsection 4.3.2. We will use the target defined
in Subsection 4.2.2. The main difference between the scenarios that will be presented, as
anticipated in Table 4.6, will be the interface surface ΓI , parametrized by the values hI , a, b,
and l, and the surface ΓH of holographic recording, parametrized by its height xH3 and its size
LH . The following table summarized the scenarios that will be presented and the values for
the mentioned parameters that will define them.

Table 4.7: Summary of the scenarios presented under which the two underground imaging
methods will be evaluated using numerical simulations with common parameters from Table
4.6 and particular parameters for each case in meters.

Scenario hI a b l xH3 LH

A 0.35 0.00 0.000 0.0 1.0 1.0

B 0.35 0.50 0.000 0.0 1.0 1.0

C 0.35 0.00 0.000 0.0 3.0 1.5

D 0.35 0.00 0.025 0.8 1.0 1.0

E 0.35 0.00 0.025 0.4 1.0 1.0

F 0.35 0.00 0.025 0.2 1.0 1.0

G 0.35 0.00 0.070 0.1 1.0 1.0

The scenarios considered are divided in two main groups. In the first group we consider a
flat surface, a parabolic surface, and a radio sampling performed from a greater distance from
the surface and on a wider area, in a setting more similar to airborne acquisition. In a second
group we explore the effect of the presence of ripple on the interface surface, ranging from
moderate to acute in comparison to the wavelength used.

For each scenario four figures will be presented. The first one will show a three-dimensional
scenario showing the position and shape of the radar target ΓT , the interface surface ΓI , and
the surface of holographic recording ΓH with the magnitude of the recorded hologram, i.e. H|,
painted on it. The second one will show the magnitude of the complex values of the map H
for the NMMS points sampled in ΓH . The third and fourth figures will show the magnitude of
the complex values of the maps R painted on the reconstruction points on ΓR for the AI-CPM
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and SPAI-CPM methods.

The reconstructed reflectivity maps R are represented using an arbitrary and normalized
scale across the examples presented. The edge of the original radar target it drawn over every
map to provide as reference of the accuracy of the reconstruction.
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Scenario A

Scenario hI a b l xH3 LH

A 0.35 0.00 0.000 0.0 1.0 1.0

Figure 4.16: Three-dimensional depiction of Scenario A showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.17: Absolute values of map R reconstructed for Scenario A using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.
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Scenario B

Scenario hI a b l xH3 LH

B 0.35 0.50 0.000 0.0 1.0 1.0

Figure 4.18: Three-dimensional depiction of Scenario B showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.19: Absolute values of map R reconstructed for Scenario B using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.
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Scenario C

Scenario hI a b l xH3 LH

C 0.35 0.00 0.000 0.0 3.0 1.5

Figure 4.20: Three-dimensional depiction of Scenario C showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.21: Absolute values of map R reconstructed for Scenario C using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.
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Scenario D

Scenario hI a b l xH3 LH

D 0.35 0.00 0.025 0.8 1.0 1.0

Figure 4.22: Three-dimensional depiction of Scenario D showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.23: Absolute values of map R reconstructed for Scenario D using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.
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Scenario E

Scenario hI a b l xH3 LH

E 0.35 0.00 0.025 0.4 1.0 1.0

Figure 4.24: Three-dimensional depiction of Scenario E showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.25: Absolute values of map R reconstructed for Scenario E using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.
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Scenario F

Scenario hI a b l xH3 LH

F 0.35 0.00 0.025 0.2 1.0 1.0

Figure 4.26: Three-dimensional depiction of Scenario F showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.27: Absolute values of map R reconstructed for Scenario F using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.

165



Scenario G

Scenario hI a b l xH3 LH

G 0.35 0.00 0.070 0.1 1.0 1.0

Figure 4.28: Three-dimensional depiction of Scenario G showing the radar target ΓT , the
interface surface ΓI , the surface of holographic recording ΓH and the absolute value of H
painted on it (left), and the absolute values of the map H painted on ΓH (right).

Figure 4.29: Absolute values of map R reconstructed for Scenario G using AI-CPM (left) and
SPAI-CPM (right), painted on ΓR.
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The results provided for the cases A through G, described in Subsection 4.3.5 and with
parameters summarized in Table 4.6, show an overall satisfactory performance. Even if many
cases violate the assumption underlying the imagining principles of both methods, i.e., that
the wavelength is very small in comparison to the geometrical features of the scenario, the
algorithms produce reflectivity maps R whose absolute values allow for the location and (in
many cases) the identification of the shape of the radar target. From the somewhat restricted set
of simulated examples, some conclusions can be extracted about the imaging methods. Besides
the performance of the imaging methods, their simulations proves the proposed simulation
method appropriate to measure it, and highlights the improvements leading to more efficient
numerical simulations.

The first method, called AI-CPM, a proposed extension of the method described and tested
for single domain scenarios in [23], is able to resolve the obstacle even when the geometrical
features of the interface surface violate the assumptions of geometrical optics on which it is
based. It does however provide poorer results the further this violation goes. Depending on the
actual refraction index and on the used wavelength in a real scenario, this method stands as
promising for use with airborne ground-penetrating radars when the underground is assumed
to be sufficiently homogeneous and the geometrical features of the interface surface are larger
than the wave used length. The second method, SPAI-CPM, relying on additional and most
often unrealistic assumptions, stands out by its lower algorithmic complexity while its resolving
performance remains useful for a range of cases that could prove useful for some applications.
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dont l’ouverture est partiellement remplie par un diélectrique. Onde électrique, 66(1):77–
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Synthèse en Français
Cette thèse s’inscrit dans le sujet des opérateurs intégraux de frontière définis sur le disque

unitaire en trois dimensions, leurs relations avec les problèmes externes de Laplace et Helmholtz,
et leurs applications au préconditionnement des systèmes linéaires obtenus en utilisant la
méthode des éléments finis de frontière. On utilise aussi les résultats obtenus pour éteindre la
portée des ces méthodes pour le préconditionnement des systèmes linéaires produits par des
objets plats plus générals. Finalement, on montre la capacité de la méthode proposée dans la
gestion de la complexité computationnelle associée à une nouvelle méthode de reconstruction
des images en utilisant la diffraction d’ondes.

Chapitre 1: Propagation d’Ondes, Équations Intégrales de Front-
ière, Méthode des Éléments Finis de Frontière et Complexité
Computationnelle

On décrit d’abord les méthodes intégrales pour résoudre les problèmes de Laplace et de
Helmholtz en dehors des objets à frontière régulière lipschitzienne, et en dehors des surfaces
bidimensionnelles ouvertes dans un espace tridimensionnel. On met le focus sur le cas du
problème de Laplace. La formulation intégrale des problèmes de Laplace est décrite formelle-
ment.

On s’intéresse aux formes bilinéaires

〈
Sλ , λt

〉
Γ

et
〈
Nµ , µt

〉
Γ

pour l’opérateur de simple couche sur une distribution λ ∈ H−1/2(Γ)

Sλ(y) =

∫
Γ

G(x,y)λ(x)dΓ(x), y ∈ R3,

et pour l’opérateur hyper-singulière sur une distribution µ ∈ H1/2(Γ)

Nµ(y) =

∫
Γ

∂2G

∂nx∂nx
(x,y)µ(x)dΓ(x), y ∈ R3,

définis pour une frontière Γ suffisamment régulière et pour la solution fondamental de
l’équation de Laplace en trois dimensions, i.e.

G(x,y) =
1

4π ‖x− y‖ .

On décrit l’obtention des solution numériques en utilisant la méthode des éléments finis de
frontière (BEM en anglais) et on s’intéresse aux matrices qu’en résultent de cette méthode. On
décrit également la mise en œuvre d’une méthode numérique utilisant la méthode des éléments
finis de frontière dans un cadre suffisamment ample. Les avantages et les défis inhérents à
la méthode sont abordés : la complexité du calcul numérique (de mémoire et algorithmique),
d’ordre O

(
N2
)
, et le mal conditionnement inhérentes à des systèmes linéaires associés, d’ordre

O
(
h−1

)
, où N est le nombre de fonctions de base de l’espace discret utilisé et h est le paramètre

de taille de la discrétisation de la surface Γ. Dans la suite de la thèse, on s’attaque au problème
du conditionnement pour un type précis de surface Γ.
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Chapitre 2: Opérateurs Intégraux et les Objets en Forme de
Disque

Dans une deuxième partie on expose une technique optimale de préconditionnement (in-
dépendante de la discrétisation) sur la base des opérateurs intégraux de frontière. On montre
comment cette technique est facilement réalisable dans le cas de problèmes définis en dehors
d’un objet régulier à frontière lipschitzienne, mais qu’elle pose des problèmes quand ils sont
définis en dehors d’une surface ouverte dans un espace tridimensionnel. On montre que les
opérateurs intégraux de frontière associés à la résolution des problèmes de Dirichlet et Neumann
définis en dehors des surfaces ont des inverses bien définis. On montre également que ceux-ci
pourraient conduire à des techniques de préconditionnement optimales, mais que ses formes
explicites ne sont pas faciles à obtenir. Ensuite, on montre une méthode pour obtenir de tels
opérateurs inverses de façon explicite lorsque la surface sur laquelle ils sont définis est un disque
unitaire dans un espace tridimensionnel. Ces opérateurs inverses explicites seront, cependant,
en forme des séries, et n’auront pas une adaptation immédiate pour leur utilisation dans des
méthodes des éléments finis de frontière. On définit le disque comme

D = {x = (x1, x2, x3) ∈ R3 : x3 = 0, x2
1 + x2

2 < 1},

sur lequel on considerera aussi des coordonnées cylindriques (ρx, φx) pour un point x ∈ D.

On considère les harmoniques sphériques définies pour un point x sur la sphère unité définie
en coordonnées sphériques

Y m
l (θx, φx) = γml e

imφxIPml (cos θx), pour − l ≤ m ≤ l et m ≥ 0,

où

γml = (−1)m
√
l + 1/2

2π

√
(l −m)!

(l +m)!
.

On définit des fonctions de base sur le disque comme

yml (x) = Y m
l (x+), pour x ∈ D,

où x± est la projection verticale supérieure/inférieure du point x sur la sphère unité. En
considérant aussi une fonction de poids liée à la singularité des sauts des traces, w(x) =√

1− ρ2
x, et l’ensemble

Y =
{
yml ∈ C∞(D) : yml (x) = Y m

l (x+), for x ∈ D
}
,

on définit les ensembles

Ys = {yml ∈ Y : l +m pair} , Y1/w
s =

{
yml
w

: yml ∈ Ys
}
,

Yas = {yml ∈ Y : l +m impair} , Y1/w
as =

{
yml
w

: yml ∈ Yas
}
.

Un des principaux résultats est le développement en séries des fonctions sur les espaces
H1/2(D), H−1/2(D), H̃1/2(D), et H̃−1/2(D).

Une fonction µ dans l’espace H̃1/2(D) peut être développée dans la base Yas:

µ(x) =

∞∑
l=0

l∑
m=−l

l+m impair

µml y
m
l (x), µml =

∫
D

µ(x)yml (x)√
(1− ρ(x)2)

dD(x).
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Une fonction g dans l’espace H1/2(D) peut être développée dans la base Ys:

g(x) =

∞∑
l=0

l∑
m=−l
l+m pair

gml y
m
l (x), gml =

∫
D

g(x)yml (x)√
(1− ρ(x)2)

dD(x).

Une fonction ϕ dans l’espace H−1/2(D) peut être développée dans la base Y1/w
as :

ϕ(x) =
∞∑
l=0

l∑
m=−l

l+m impair

ϕml
yml (x)√

(1− ρ(x)2)
, ϕml =

∫
D
ϕ(x)yml (x)dD(x).

Une fonction λ dans l’espace H̃−1/2(D) peut être développée dans la base Y1/w
s :

λ(x) =
∞∑
l=0

l∑
m=−l
l+m pair

λml
yml (x)√

(1− ρ(x)2)
, λml =

∫
D
ψ(x)yml (x)dD(x).

En utilisant ces développements en série, on propose des noyaux intégraux comme séries
formelles:

Kws
as (x,y) =

∞∑
l=0

l∑
m=−l

l+m impair

1

αml

(
yml (x)yml (y) + yml (x)yml (y)

)
,

Khs
as (x,y) = −

∞∑
l=0

l∑
m=−l

l+m impair

αml

(
yml (x)

w(x)

yml (y)

w(y)
+
yml (x)

w(x)

yml (y)

w(y)

)
,

Kws
s (x,y) =

∞∑
l=0

l∑
m=−l
l+m pair

1

βml

(
yml (x)yml (y) + yml (x)yml (y)

)
,

Khs
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m pair

βml

(
yml (x)

w(x)

yml (y)

w(y)
+
yml (x)

w(x)

yml (y)

w(y)

)
.

Dans ces noyaux, les coefficients αml et βml son définis comme

αml =
π

4

(l+m−1)/2∏
i=1

2i+ 1

2i

(l−m−1)/2∏
i=1

2i+ 1

2i

 , pour l +m pair,

βml =
4

π

(l+m)/2∏
i=1

2i

2i− 1

(l−m)/2∏
i=1

2i

2i− 1

 , pour l +m impair.

En définissant les opérateurs intégraux

(Lwss u) (y) =

∫
D

Kws
s (x,y)u(x)dD(x),

(Lwsas u) (y) =

∫
D

Kws
as (x,y)u(x)dD(x),
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(
Lhss u

)
(y) =

∫
D

Khs
s (x,y)u(x)dD(x),

(
Lhsasu

)
(y) =

∫
D

Khs
as (x,y)u(x)dD(x),

on preuve que Lhss ◦ Lwss = −I et que Lwsas ◦ Lhsas = −I (où I est l’application identité). En
suite on preuve que Kws = Kws

s et que Khs = Khs
as , avec

Kws(x,y) = G(x,y) et Khs(x,y) =
∂2G

∂nx∂ny
(x,y),

en donnant des expression pour les inverses de S et N sur le disque. Ces bases permettent
de triangulariser les formulation variationnelles pour les problèmes de Dirichlet et de Neumann
pour le disque en trois dimensions, donnant une méthode spectrale pour les résoudre.

Chapitre 3: Le Preconditionnement par Opérateurs Intégraux
Modifiés pour des Objets Plats

Dans une troisième partie on montre comment certaines modifications aux opérateurs in-
verses mentionnés permettent d’obtenir des expressions variationnelles explicites et fermées,
non plus sous la forme des séries, en conservant certaines caractéristiques importantes pour
l’effet de préconditionnement cherché. Ces formes explicites sont applicables aux méthodes
des éléments finis frontière. On obtient des expressions variationnelles précises et on propose
des calculs numériques pour leur utilisation avec des éléments finis frontière. Ces méthodes
numériques sont testées en utilisant différentes identités obtenues dans la théorie développée, et
sont ensuite utilisées pour produire des matrices préconditionnantes. Leur performance en tant
que préconditionneurs de systèmes linéaires associés à des problèmes de Laplace et Helmholtz
à l’extérieur du disque est testée. Enfin, on propose extension de cette méthode pour couvrir
les cas de surfaces diverses. Ceci est étudié dans les cas précis des problèmes extérieurs à des
surfaces en forme de carré et en forme de L dans un espace tridimensionnel.

En considérant des noyaux modifiés,

K̃ws
s (x,y) =

∞∑
l=0

l∑
m=−l
l+m pair

ζly
m
l (y)yml (x),

K̃ws
as (x,y) =

∞∑
l=0

l∑
m=−l

l+m impair

ζly
m
l (y)yml (x),

K̃hs
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m pair

ηl
yml (y)

w(y)

yml (x)

w(x)
,

K̃hs
as (x,y) = −

∞∑
l=0

l∑
m=−l

l+m impair

ηl
yml (y)

w(y)

yml (x)

w(x)
,

où les coefficients modifiés sont

ζl =
2

2l + 1
et ηl =

2l(l + 1)

2l + 1
,
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on définit également des opérateurs intégraux modifiés:

(
L̃wss λ

)
(y) =

∫
D

K̃ws
s (x,y)λ(x)dD(x),

(
L̃wsas ϕ

)
(y) =

∫
D

K̃ws
as (x,y)ϕ(x)dD(x),

(
L̃hss g

)
(y) =

∫
D

K̃hs
s (x,y)g(x)dD(x),

(
L̃hsasµ

)
(y) =

∫
D

K̃hs
as (x,y)µ(x)dD(x).

Un résultat central de la thèse est l’expression des formes bilinéaires associées aux ces
opérateurs. En fait:

〈
L̃wss λ , λt

〉
D

=

∫
D

∫
D

1

4π

(
1

‖x+ − y+‖ +
1

‖x− − y+‖

)
λ(x)λt(y)dD(x)dD(y),

〈
L̃wsas ϕ , ϕt

〉
D

=

∫
D

∫
D

1

4π

(
1

‖x+ − y+‖ −
1

‖x− − y+‖

)
ϕ(x)ϕt(y)dD(x)dD(y),

〈
−L̃hsasµ , µt

〉
D

=
〈
L̃wss
−−→
curl Dµ,

−−→
curl Dµ

t
〉
D

+

〈
L̃wsas

(
1

w

∂µ

∂φx

)
,

1

w

∂µt

∂φy

〉
D
,

〈
−L̃hss g , gt

〉
D

=
〈
L̃wsas
−−→
curl Dg,

−−→
curl Dg

t
〉
D

+

〈
L̃wss

(
1

w

∂g

∂φx

)
,

1

w

∂gt

∂φy

〉
D
.

Ces expression bilinéaires sont fermées, et donc calculables dans le cadre des méthodes des
éléments finis de frontière. Les matrices qui en résultent, provenant des opérateurs avec des
singularités dans leur noyaux similaires à celles des inverses de S et N , sont adaptées pour être
préconditionnantes. Plusieurs exemples numériques en montrent leur performance.

Chapitre 4: Application à la gestion de la Complexité Com-
putationnelle dans la Test de Méthodes de Télédétection par
Simulation

Enfin, les méthodes développés sont utilisés dans un exemple d’application. Sur la base de
techniques et hypothèses de l’optique géométrique, on propose des améliorations à des méthodes
existantes pour l’imagerie de la réflectivité du sous-sol en utilisant le radar à pénétration de
sol. Étant basées sur des hypothèses de l’optique géométrique, ces méthodes doivent être
évaluées par simulations numériques, ce qui entrâıne la résolution d’un nombre très impor-
tant de problèmes directs. Une analyse de complexité montre comment les techniques de
préconditionnement proposées peuvent réduire la complexité algorithmique du problème global.
Enfin, la capacité de résolution des méthodes proposées pour la formation des images du sous-
sol est évaluée dans pour different scénarios d’intérêt.

Les méthodes traitées dans ce chapitre appartient aux méthodes de filtrage adaptative pour
la reconstruction des images complexes de réflexivité R sur un surface ΓR,
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R(y) =

∫
ΓH

F(x,y)H(x)dΓH(x), for y ∈ ΓR,

où H est la fonction de diffraction (d’un objet irradié) mesurée sur une surface ΓH , F
est le filtre adapté, et ΓI est une surface qui cache l’objet dont on veut faire un image de sa
réflectivité.
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également que celles-ci pourraient conduire à des techniques de préconditionnement optimales, mais que ses formes
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