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A mis padres, por su infinito cariño e inagotable paciencia con su hijo loco que quería ser doctor en matemáticas ii Illud in his quoque te rebus cognoscere avemus, Corpora cum deorsum rectum per inane feruntur, Ponderibus propriis, incerto tempore ferme, Que les atomes ne Incertisque locis, spatio decedere paullum, tumbent pas droit 220 Tantum quod momen mutatum dicere possis. contrebas Quod nisi declinare solerent, omnia deorsum, Imbris uti guttae, caderent per inane profundum, Nec foret offensus natus, nec plaga creata Principiis, ita nil unquam natura creasset. 225 Quod si forte aliquis credit graviora potesse Qu'ils ne peuvent enjandrer Corpora, quo citius rectum per inane feruntur, tumbans les unes Incidere ex supero levioribus, atque ita plagas sur les autres Gignere, quae possint genitaleis reddere motus : Avius a vera longe ratione recedit. 230 Nam per aquas quaecumque cadunt atque aera deorsum, Ce qui faict que Haec, pro ponderibus, casus celerare necessest, les choses poisantes Propterea quia corpus aquae naturaeque tenuis tumbent plus a coup Aeris haud possunt aeque rem quamque morari c'est que l'air ou l'eau Sed citius cedunt gravioribus exsuperata, qu'elles ont a perser 235 At contra nulli, de nulla parte, neque ullo leur resiste plus Tempore, inane potest vacuum subsistere rei, malaiseemant Quin sua quod natura petit concedere pergat. par le vuide Omnia quapropter debent per inane quietum tout iroit d'un trein Aeque ponderibus non aequis concita ferri. 240 Haud igitur poterunt levioribus incidere unquam Mouvemant a cartier Ex supero graviora, neque ictus gignere per se, fort legier et ridicule Qui varient motus, per quos natura gerat res. que les atomes font Quare etiam atque etiam paullum inclinare necessest Corpora, nec plus quam minimum, ne fingere motus 245 Obliquos videamur, et id res vera refutet. Il faut que ce mouvemant Namque hoc in promptu manifestumque esse videmus, a coste soit bien delicat Pondera, quantum in sest, non posse obliqua meare, de peur de faire un Ex supero cum praecipitant, quod cernere possis. mouvemant de travers Sed nil omnino recta regione viai 250 Declinare, quis est qui possit cernere sese ?

216 A ce propos, il est encore un fait que nous désirons te faire connaître : dans la chute en ligne droite qui emporte les atomes à travers le vide, en vertu de leur poids propre, ceux-ci, à un moment indéterminé, en un endroit indéterminé, s'écartent tant soit peu de la verticale, 220 juste assez pour qu'on puisse dire que leur mouvement se trouve modifié. Sans cette déclinaison, tous, comme des gouttes de pluie, tomberaient de haut en bas à travers les profondeurs du vide ; entre eux nulle collision n'aurait pu naître, nul choc se produire ; et jamais la nature n'eût rien créé.

225 Que si l'on va croire que les atomes les plus lourds peuvent, grâce à la vitesse plus grande qui les emporterait verticalement à travers le vide, tomber d'en haut sur les plus légers, et produire ainsi des chocs capables de provoquer des mouvements créateurs, on s'écarte et se fourvoie bien loin de la vérité. 230 Sans doute tous les corps qui tombent à travers l'eau ou le fluide rare de l'air, doivent accélérer leur chute à proportion de leur pesanteur ; car les éléments de l'eau et la nature de l'air subtil ne peuvent retarder également tous les corps, et cèdent plus vite à la pression victorieuse des plus pesants. 235 Mais pour le vide, en aucun lieu, en aucun temps il ne saurait se trouver sous aucun corps, sans continuer de lui céder, comme l'exige sa nature. Aussi tous les atomes, emportés à travers le vide inerte, doivent se mouvoir avec une égale vitesse malgré l'inégalité de leurs poids. 240 Les plus lourds ne pourront donc jamais se précipiter d'en haut sur les plus petits, ni engendrer par eux-mêmes les chocs qui déterminent les mouvements divers que la nature emploie pour accomplir sa tâche.

Aussi, je le répète encore, il faut que les atomes s'écartent un peu de la verticale ; mais à peine et le moins possible, que nous n'ayons pas l'air d'imaginer des 245 mouvements obliques ; ce que réfuterait la réalité. Car c'est chose visible, manifeste, évidente que les corps pesants ne peuvent d'eux-mêmes prendre une direction obhque en tombant, pour autant que nous puissions le discerner. 250 Mais qu'ils ne dévient absolument pas de la verticale, qui donc pourrait s'en apercevoir ?
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Préface / Abstract

Préface en français : Ce mémoire présente les travaux réalisés au cours de ma thèse dans le but d'étudier la contrôlabilité de quelques équations aux dérivées partielles.

La première partie de cette thèse est consacrée à l'étude de la contrôlabilité de quelques équations cinétiques en différents régimes. Dans un régime collisionnel, nous étudions la contrôlabilité de l'équation de Kolmogorov, un modèle de type Fokker-Planck cinétique, posée dans l'espace de phases R d × R d . Nous obtenons la contrôlabilité à zéro de cette équation grâce à l'utilisation d'une inégalité spectrale associée à l'opérateur Laplacien dans tout l'espace. Dans un régime noncollisionnel, nous étudions la contrôlabilité de deux systèmes de couplage fluidecinétique, les systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, comportant des non-linéarités dues au terme de couplage. Dans ces cas, l'approche repose sur la méthode du retour.

Dans la deuxième partie nous étudions la contrôlabilité d'une famille d'équations paraboliques dégénérées 1-D par la méthode de platitude, qui permet la constructions de contrôles explicites.

La troisième partie porte sur le problème de la contrôlabilité de l'équation de Schrödinger par la forme du domaine, c'est-à-dire, en utilisant le domaine comme variable de contrôle. Nous obtenons un résultat de ce type dans le cas du disque unité bidimensionnel. Nos méthodes sont basées sur un résultat de contrôle exact local autour d'une certaine trajectoire, obtenu grâce au théorème d'inversion locale.

Mots clés : contrôlabilité ; modèles cinétiques ; équations paraboliques dégénérées ; équation de Schrödinger.

Abstract in English : This memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some Partial Differential Equations.

The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing different regimes. Under a collisional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space R d × R d . We obtain the nullcontrollability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method. In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method, which allows the construction of explicit controls.

The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem. Quelques notions de théorie du contrôle I.1. La problématique de la théorie du contrôle L'objectif de la théorie du contrôle est de répondre à la question suivante : étant données la loi d'évolution d'un système (physique, biologique ou autre), un état initial et une cible, est-il possible de guider l'évolution du système, via une action extérieure, de l'état initial à la cible ? Cette notion peut s'énoncer plus précisément à l'aide du formalisme suivant. Soient X, U deux espaces normés. On considère un système gouverné par une loi d'évolution de la forme (I. 1.1) dy dt = F(t, y, u), y |t=0 = y 0 , pour une certaine fonction F : (0, T ) × X × U → X et y 0 ∈ X. Étant donnés y 0 et une cible y f , on cherche u tel que la solution de (I.1.1) satisfasse y| t=T = y f . Dans cette thèse nous nous intéressons à plusieurs situations décrites par des équations aux dérivées partielles différentes : équations cinétiques, paraboliques dégénérées et de Schrödinger.

I.2. Quelques méthodes de résolution de problèmes de contrôle

Les méthodes de résolution utilisées dans la littérature sont très variées. Dans cette section, nous décrivons les méthodes utilisées dans cette thèse : la méthode HUM, dans le cas linéaire, et les méthodes de linéarisation et du retour dans le cas non linéaire. I.2.1. La méthode HUM. Cette méthode, appelée Hilbert uniqueness method, a été introduite par J.-L. Lions dans [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations[END_REF] et [START_REF] Lions | The Hilbert Uniqueness Method[END_REF], comme généralisation des travaux précédents (voir, par exemple, [START_REF] Russell | Some recents results on the controllability of Partial Differential Equations[END_REF]), dans le but d'exploiter la dualité entre la contrôlabilité d'un système et l'observabilité de son système adjoint dans un sens à préciser. Cette dualité permet de caractériser les propriétés de contrôlabilité en termes d'une inégalité fonctionnelle. Cette méthode s'est avérée extrêmement puissante dans l'étude de la contrôlabilité des équations classiques, comme la chaleur ou les ondes, dans le cas d'un contrôle placé à l'intérieur du domaine, mais aussi dans le cas d'un contrôle frontière.

Nous allons expliquer la méthode HUM dans le cas général, même si nous nous intéressons dans cette thèse au cas particulier du contrôle interne (on renvoie à [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] pour d'autres applications).

Considérons un espace de Hilbert H et un opérateur linéaire à domaine A : D(A) ⊂ H → H, possiblement non borné. On suppose que (A, D(A)) est le générateur infinitésimal d'un C 0 semi-groupe d'opérateurs continus dans H, que l'on appelle (S(t)) t≥0 . Dans ce contexte, on considère une loi d'évolution linéaire donnée par F(t, y, u) := Ay + Bu, ∀(y, u) ∈ H × U, t ∈ [0, T ], pour un certain T > 0, où U est un espace de Sous les hypothèses sur A et B décrites ci-dessus, il est possible de démontrer que pour tout T > 0 et u ∈ L 2 (0, T ; U ) il existe une unique solution faible du système (I.2.2), grâce à des arguments de la théorie des semi-groupes (cf [START_REF] Coron | Control and Nonlinearity[END_REF]Thm. 2.37,p.53]).

En outre, ce formalisme permet de donner un sens précis à la question de contrôlabilité énoncée en §I.1 (cf. [START_REF] Coron | Control and Nonlinearity[END_REF]Def. 2.39,p.55]). D ÉFINITION I.2.2 (Contrôlabilité exacte). Le système (I.2.2) est exactement contrôlable en temps T > 0 avec des contrôles dans L 2 (0, T ; U ) si pour tout y 0 ∈ H et tout y f ∈ H, il existe un contrôle u ∈ L 2 (0, T ; U ) tel que la solution de (I.2.2) vérifie y| t=T = y f .

Afin de répondre à cette question, introduisons l'application linéaire (I.2.5) Θ T : L 2 (0, T ; U ) → H u → y| t=T , 1. Précisons que, H étant un espace de Hilbert, on peut définir l'opérateur

A * : D(A * ) ⊂ H → H.
En plus, D(A * ), • D(A * ) est un espace de Hilbert avec la norme

f D(A * ) := f H + A * f H , ∀f ∈ D(A * ).
où y est la solution faible de (I.2.2) avec u ∈ L 2 (0, T ; U ) et y 0 = 0. La contrôlabilité exacte de (I.2.2) est donc équivalente à la surjectivité de (I.2.5) 2 . Lorsque (S(t)) t≥0 présente un effet régularisant, l'application Θ T ne peut pas être surjective, car S(T )H H. Ce sera le cas de l'équation de la chaleur, par exemple, i.e., A = ∆. Dans ce cas, nous étudions la contrôlabilité à zéro (cf. [START_REF] Coron | Control and Nonlinearity[END_REF]Def. 2.39,p.55]). D ÉFINITION I.2.3 (Contrôlabilité à zéro). On dit que le système (I.2.2) est contrôlable à zéro en temps T > 0 avec des contrôles dans L 2 (0, T ; U ) si pour tout y 0 ∈ H et tout ŷ ∈ H, il existe u ∈ L 2 (0, T ; U ) tel que la solution de (I.2.2) satisfasse y| t=T = S(T )ŷ, où (S(t)) t≥0 est le semi-groupe engendré par A.

Autrement dit, la contrôlabilité à zéro de (I.2.2) est équivalente à ce que S(T )H ⊂ Im(Θ T ).

Précisons que le nom de cette notion provient du fait que la linéarité de (I.2.2) permet de montrer que l'on peut prendre ŷ = 0 dans la définition I.2.3 sans perte de généralité, en faisant donc de zéro l'unique cible nécessaire.

Afin d'analyser l'ensemble Im(Θ T ), on utilise la propriété suivante ([50, Lemma 2.48, p. 58]). LEMME I.2.4. Soient X 1 , X 2 , X 3 trois espaces de Hilbert et soient L 1 ∈ L (X 1 , X 3 ) et L 2 ∈ L (X 2 , X 3 ). Alors,

ImL 1 ⊂ ImL 2 ⇔ ∃C > 0, L * 1 z X1 ≤ C L * 2 z X3 , ∀z ∈ D(L * 2 ).
Étudions l'application adjointe de Θ T , définie dans (I. I.2.1.1. La méthode HUM pour la contrôlabilité à zéro. On applique le Lemme I.2.4 avec I.2.1.3. Une application de HUM. La méthode HUM, parmi d'autres applications, permet l'obtention de résultats de contrôle interne. Afin d'expliquer cette notion, considérons Ω ⊂ R d un ouvert régulier et ω ⊂ Ω un ouvert non vide. Le but du problème de contrôle interne est de montrer la contrôlabilité de (I.2.2) avec un contrôle localisé sur ω. Pour ce faire, on choisit B = χ ω , l'opérateur de multiplication par χ ω , où χ ω est la fonction caractéristique de ω.

X 1 = H, X 2 = H, X 3 = L 2 (0, T ; U ),
Il est possible d'aborder avec cette méthode la contrôlabilité interne de plusieurs équations classiques, comme la chaleur (voir §II.3.2 où ceci est expliqué en détail), l'équation de Schrödinger (cf. §IV.2.1) ou l'équation des ondes.

Dans l'étude de la contrôlabilité interne de l'équation des ondes linéaire, C. Bardos, G. Lebeau et J. Rauch ont développé dans [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF] une condition de contrôle géométrique de profonde importance.

DEFINITION I.2.5 (Bardos, Lebeau et Rauch). Soit Ω ⊂ R d , d ≥ 1, un ouvert régulier. On dit que ω ⊂ Ω satisfait la condition de contrôle géométrique s'il existe un temps T > 0 tel que tout rayon de l'optique géométrique (généralisé) dans Ω à vitesse unité intersecte ω en temps T > 0.

En présence d'un bord régulier ∂Ω, on supposera que les rayons de l'optique géométrique sont reflétés suivant la loi de Descartes.

C. Bardos, G. Lebeau et J. Rauch ont montré dans [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF] que cette condition est suffisante pour la contrôlabilité de l'équations des ondes. Plus tard, N. Burq et P. Gérard ont montré dans [START_REF] Burq | Condition nécessaire et suffisante pour la contr labilité exacte des ondes[END_REF] que la condition de contrôle géométrique est en fait nécessaire pour la contrôlabilité.

À titre d'exemple de ce type de résultats de contrôlabilité exacte, rappelons aussi que K.D. Phung dans [START_REF] Phung | Contrôle et stabilisation d'ondes électromagnétiques[END_REF] a démontré que les équations de Maxwell sont exactement contrôlables, dès que la condition de contrôle géométrique ci-dessus est satisfaite.

Dans cette thèse, on utilisera la méthode HUM dans le Chapitre 1. I.2.2. La méthode de linéarisation. Lorsque la loi d'évolution dans (I.1.1) comporte une non-linéarité, soit par rapport à l'état, soit par rapport au contrôle, il faut développer d'autres méthodes. En raison de la non-linéarité de (I.1.1), l'application (I.2.12) ϑ T : X × U → X × X (y 0 , u) → (y 0 , y| t=T ), sera à son tour non linéaire.

Une première stratégie consiste à étudier la surjectivité locale de ϑ T , à l'aide du théorème d'inversion locale. Pour ce faire, on fixe une trajectoire (ŷ, û) du sytème (I.1.1) et l'on considère le système linéarisé autour de cette trajectoire, (I.2.13) ∂x ∂t = ∂ y F(t, ŷ, û)(x, v) + ∂ u F(t, ŷ, û)(x, v), t ∈ (0, T ), x| t=0 = x 0 , pour analyser l'application (I.2. [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF] dϑ T (ŷ, û) : X × U → X × X (x 0 , v) → (x 0 , x| t=T ).

La méthode de linéarisation repose donc sur deux ingrédients :

(1) la contrôlabilité du système (I.2.13), c'est à dire, dϑ T (ŷ, û) est surjective dans X par rapport au deuxième argument,

(2) l'application ϑ T est de classe C 1 avec le même choix d'espaces X et U que dans le point antérieur.

Si ces deux points peuvent être demontrés, alors le théorème d'inversion locale fournit la contrôlabilité locale de (I.1.1) autour de (ŷ, û).

D ÉFINITION I.2.6. Le système (I.1.1) est localement contrôlable autour de la trajectoire (ŷ, û) en temps T > 0 dans X avec des contrôles dans U s'il existe > 0 tel que pour tous y 0 ∈ X et y f ∈ X avec ŷ| t=0 -y 0 X < , ŷ| t=T -y f X < , il existe un contrôle u ∈ U avec u -û U < , tel que la solution de (I.1.1) satisfait y| t=T = y f .

À titre d'exemple, on pourra citer le problème de contrôle bilinéaire pour l'équation de Schrödinger. En dimension 1 en espace, et étant donné un temps T > 0 et une fonction régulière µ, le problème consiste à trouver une amplitude du champ électrique u ∈ L 2 (0, T ; R) telle que la solution de (I.2.15)    i∂ t ψ = -∂ xx ψ + u(t)µ(x)ψ, (0, T ) × (0, 1), ψ(t, 0) = ψ(t, 1) = 0, (0, T ), ψ(0, x) = ψ 0 (x), (0, 1), avec ψ 0 ∈ X, un espace à préciser, satisfasse ψ t=T = ψ f , où ψ f ∈ X est une cible donnée à l'avance. Ce problème a été résolu par K. Beauchard et C. Laurent dans [START_REF] Beauchard | Local controllability of linear and nonlinear Schrödinger equations with bilinear control[END_REF], où les auteurs démontrent la contrôlabilité locale pour ce système autour de la trajectoire (e -iλ1t ϕ 1 , u ≡ 0), où ϕ 1 est la première fonction propre de -∂ xx et λ 1 est la valeur propre associée. Dans ce contexte, la méthode de linéarisation fonctionne avec le choix d'espace X = D (-∂ xx ) 3 2 , qui permet d'utiliser le théorème d'inversion locale classique. Nous verrons plus en détail ce résultat dans la section §IV.2.2.

Soulignons que trouver le bon cadre fonctionnel est un point crucial et parfois très délicat de l'approche par inversion locale.

Dans cette thèse, on présentera un exemple d'application de la méthode de linéarisation dans le Chapitre 5. I.2.3. La méthode du retour. Parfois la méthode de linéarisation ne s'applique pas parce que le système linéarisé n'est pas contrôlable.

Ce problème peut parfois être contourné en utilisant des développements de (I.2.12) jusqu'à un ordre supérieur, c'est-à-dire, en étudiant les problèmes quadratiques ou cubiques associés à d 2 Θ T , d 3 Θ T , etc. En revanche, cette stratégie, appelée méthode de développement en puissances, présente un grand nombre de difficultés dans la mise en pratique.

Une autre stratégie, appelée méthode du retour, a été proposée par Jean-Michel Coron (voir, par exemple, [START_REF] Coron | Control and Nonlinearity[END_REF] où [START_REF] Glass | La méthode du retour en contrôlabilité et ses applications en mécanique des fluides[END_REF]). Elle consiste à construire une autre trajectoire du système non-linéaire autour de laquelle le linéarisé est contrôlable. Cette construction utilise de manière cruciale la non-linéarité du système, contrairement aux méthodes précédentes, qui cherchent un lien avec un système linéaire. La méthode du retour exploite la non-linéarité au lieu d'essayer de l'éliminer.

Plus précisément, on construit une trajectoire du système (I.1.1), appelée trajectoire de référence et notée (y, u), telle que y| t=0 = 0, y| t=T = 0, d'où le nom de retour, et telle que le linéarisé associé soit contrôlable. Ceci permet d'obtenir des résultats de contrôlabilité locale (voir Définition I.2.6).

Cette méthode a été utilisée énormément dans la littérature et en particulier par Olivier Glass et Daniel Han-Kwan dans le contexte des systèmes de Vlasov-Poisson et de Vlasov-Maxwell relativiste, comme on expliquera dans §II.4.1.

Dans cette thèse, on utilisera la méthode du retour dans les Chapitres 2 et 3.

CHAPITRE II

Contrôlabilité des équations cinétiques

II.1. Présentation des modèles

L'objet de la théorie cinétique consiste à décrire des gaz, plasmas ou d'autres systèmes composés d'un grand nombre de particules, en étudiant la fonction de distribution de l'ensemble des particules dans l'espace des phases, f (t, x, v). De manière générale, on peut interpréter la quantité

Ω V f (t, x, v) dx dv, Ω ⊆ R d , V ⊆ R d ,
comme la probabilité de trouver des particules placées dans la région Ω et ayant une vitesse comprise dans V à l'instant t.

Les principaux modèles d'intérêt prennent en compte l'action de plusieurs mécanismes d'interaction entre les particules et sur l'ensemble des particules. En particulier, deux phénomènes sont d'une grande importance :

(1) les collisions entre particules ou avec le milieu, (2) l'action d'une force macroscopique sur les particules. Partant de la description microscopique de la dynamique des particules, la théorie cinétique cherche à décrire le comportement de l'ensemble des particules de manière statistique. Ce passage de la dynamique microscopique à l'étude statistique de la fonction de distribution dans l'espace des phases, ce que l'on appelle échelle mésoscopique, dont on verra des exemples plus loin, est l'une des bases de la théorie cinétique. En outre, l'échelle mésoscopique permet d'obtenir, sous certains régimes, une limite macroscopique, en variables d'espace et de temps, typiquement un système provenant de la mécanique des fluides. On renvoie à [START_REF] Mouhot | Kinetic Theory[END_REF] pour une exposition détaillée de la théorie cinétique.

Les résultats de cette thèse se concentrent uniquement au niveau mésoscopique, où la dynamique de la fonction de distribution est fréquemment décrite par une équation de Vlasov (voir [74, Chapter 1]) (II. 1.16)

∂ t f + v • ∇ x f + F (t, x) • ∇ v f = C (f ),
où F (t, x) représente l'action de la force macroscopique sur les particules, alors que C (f ) représente les collisions entre particules ou avec le milieu. Bien évidemment, différents F et C donnent lieu à des dynamiques très différentes. L'un des objectifs de cette thèse est d'analyser les propriétés de contrôlabilité de (II. 1.16) avec différents choix de F et C , issus de la littérature physique.

II.1.1. L'équation de Fokker-Planck cinétique. Il s'agit d'un modèle linéaire tenant compte des collisions des particules décrites par f avec un milieu (par exemple, d'autres particules non décrites par f ) dans un certain régime particulier 11 et sous l'action d'un potentiel externe, V (x). Cette équation, qui admet la forme suivante (II.1.17)

∂ t f + v • ∇ x f -∇ x V (x) • ∇ v f -∆ v f -div v (vf ) = 0, (0, T ) × Ω × R d , f | t=0 = f 0 (x, v), Ω × R d ,
pour un certain domaine spatial, typiquement le tore T d ou R d , peut se dériver à partir des équations de Langevin (voir [START_REF] Chandrasekharan | Stochastic Problems in Physics and Astronomy[END_REF]), qui font apparaître l'opérateur de Fokker-Planck en vitesse, L F P = ∆ v + div v (v•), comme résultat des collisions des particules avec le milieu au niveau microscopique. L'équation de Fokker-Planck cinétique présente, au premier abord, une compétition entre le terme de transport v • ∇ x et le terme de collisions L F P , ce qui a priori devrait engendrer de la diffusion uniquement en vitesse.

Malgré la séparation apparente entre espace et vitesse, un certain effet régularisant se produit aussi en x et non seulement en vitesse. Ceci a été mis en évidence par A.N. Kolmogorov dans [START_REF] Kolmogorov | Zufällige Bewegungen[END_REF] dans le cas d'une certaine classe d'équations. L'exemple le plus simple des équations étudiées par Kolmogorov est (II.1.18)

∂ t f + v • ∇ x f -∆ v f = 0, (0, T ) × Ω × R d , f | t=0 = f 0 (x, v), Ω × R d ,
qui porte désormais son nom, et qui peut être vue comme un cas particulier de (II.1.17). Nous allons traiter en détail l'équation de Kolmogorov en §II.3 et dans le Chapitre 1.

Le mécanisme permettant ce transfert de régularité, basé sur le mélange de phase, est l'hypoellipticité, étudiée de manière systématique par L. Hörmander dans [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]. Dans le cas des équations cinétiques l'hypoellipticité a été étudiée dans plusieurs situations, dont on pourra citer [START_REF] Hérau | Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential[END_REF][START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF][START_REF] Imbert | Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients[END_REF], parmi d'autres exemples.

Vu que la structure de (II.1.17) fournit un certain effet régularisant par rapport aux deux variables, on pourrait alors s'interroger sur ses propriétés de dissipation par rapport à x et v. Cette question a été traitée systématiquement par C. Villani dans [START_REF] Villani | Hypocoercivity[END_REF], donnant lieu à la notion d'hypocoercivité, qui permet de recupérer une dissipation en les deux variables x et v alors qu'a priori, on pouvait s'attendre à une dissipation partielle uniquement en vitesse. L'un des aspects essentiels de l'hypocoercivité réside dans la possibilité d'obtenir des estimations décrivant la convergence vers l'équlibre de la solution d'une équation. Par exemple, dans le cas de (II.1.17), les équilibres satisfaisant f ∞ (x, v) dx dv = 1 sont de la forme

f ∞ (x, v) = ce -V (x) M(v), M(v) := e -|v| 2 2 (2π) d 2
, où M est une distribution Maxwellienne normalisée et c est un paramètre de normalisation. Sous certaines conditions sur V , L. Desvillettes et C. Villani ont démontré dans [START_REF] Desvillettes | On the trend to global equilibrium in spatially inhomogeneous systems. Part I: the linear Fokker-Planck equation[END_REF] que la solution de (II.1.17) converge vers l'équilibre avec un taux polynomial. Il est possible d'améliorer ce résultat pour obtenir un taux de convergence exponentiel dans certains espaces de Sobolev (voir [START_REF] Hérau | Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential[END_REF][START_REF] Hérau | Short and long time behavior of the Fokker-Planck equation in a confining potential and applications[END_REF][START_REF] Villani | Hypocoercivity[END_REF][START_REF] Mouhot | Quelques résultats d'hypocoercitivité en théorie cinétique collisionnelle[END_REF] pour plus de détails). Finalement, grâce à des arguments abstraits, J. Dolbeault, C. Mouhot et C. Schmeiser ont obtenu dans [60] des résultats de convergence exponentielle vers l'équilibre pour une classe assez large d'équations cinétiques, contenant (II.1.17). Dans le cas de Fokker-Planck, les auteurs montrent que la convergence exponentielle vers l'équilibre a lieu dans l'espace à poids L 2 ( dµ), avec dµ := dx dv f∞ .

II.1.2. Quelques modèles de couplage fluide-cinétique. Dans cette thèse, nous considérons deux modèles de ce type. Dans un premier temps, on considère l'interaction d'un nuage de particules immergées dans un fluide incompressible, dont la dynamique est décrite par les équations de Stokes stationnaires. Ceci conduit au système de Vlasov-Stokes (II. 1.19)

       ∂ t f + v • ∇ x f + λ div v [(u -v)f ] = 0, (0, T ) × Ω × R d , -∆ x u + ∇ x p = j f , (0, T ) × Ω, div x u(t, x) = 0, (0, T ) × Ω, f (0, x, v) = f 0 (x, v), Ω × R d , où λ > 0 est un coefficient de friction, Ω est T d ou R d , pour d = 2, 3, et j f (t, x) := R d vf (t, x, v) dv.
Dans un deuxième temps, on tient compte des effets de la convection et de l'évolution du champ de forces, ce qui conduit au système de Vlasov-Navier-Stokes, (II.1.20)

           ∂ t f + v • ∇ x f + div v [(u -v)f ] = 0, (0, T ) × Ω × R d , ∂ t u + u • ∇u -∆ x u + ∇ x p = j f -ρ f u, (0, T ) × Ω, div x u(t, x) = 0, (0, T ) × Ω, f | t=0 = f 0 (x, v), Ω × R d , u| t=0 = u 0 (x), Ω, avec ρ f (t, x) := R d f (t, x, v) dv.
Ces deux modèles peuvent être obtenus comme limite de champ moyen à partir de la dynamique de sphères dures immergées dans un fluide, comme expliqué ensuite dans §II.1.2.1. On finit la présentation de ces modèles par une description de leurs propriétés qualitatives, dans §II. 

Approximation de champ moyen.

Nous allons décrire comment la méthode de champ moyen permet de trouver un système mésoscopique limite à partir de la dynamique microscopique. On pourra consulter [START_REF] Golse | On the Dynamics of Large Particle Systems in the Mean Field Limit[END_REF] pour la méthode de champ moyen dans d'autres contextes.

Au niveau microscopique, on s'intéresse à la dynamique de N particules dans une partie de l'espace Ω ⊆ R d , répresentées par N sphères de rayon > 0. Cette situation se décrit mathématiquement en admettant que les particules occupent les boules B xi(t), , de centre x i (t), dépendant du temps, pour i = 1, . . . , N . La vitesse et position de chaque particule sont données par un système du type

(II.1.21) ẋi (t) = v i (t), t ≥ 0, vi (t) = F i (t, x i , v i ), t ≥ 0, i = 1, . . . , N,
où F i est la force agissant sur chaque particule. Dans le cas du couplage fluidecinétique, les forces F i seront créées par le fluide dans lequel les particules sont immergées.

Tandis que la dynamique des particules est décrite par (II.1.21), une fois les forces F i connues, l'évolution du fluide sera affectée à son tour par les particules. Dans cette thèse, nous nous concentrons dans le cas où le fluide considéré est visqueux et incompressible, remplissant un ouvert régulier Ω (en pratique, le tore T d où R d ), excepté la partie du domaine occupée par les particules en mouvement, c'est-à-dire, (II. 1.22)

Ω := Ω \ N i=1 B xi(t), .
Le cas le plus général pour l'évolution du champ de vitesses est donc décrit par le système (II.1.23)

       ρ f (∂ t u + u • ∇ x u) + ∇ x p = ∆ x u, (0, T ) × Ω , div x u(t, x) = 0, (0, T ) × Ω , u| ∂B x i (t), = v i (t) + Ω i (t) ∧ (x -x i (t)) , (0, T ), u| ∂Ω = 0, (0, T ),
où Ω i est la vitesse angulaire de la i-ème particule et ρ f est la densité du fluide, supposée constante. Un système comme (II.1.23) est le point de départ pour étudier la dynamique du mouvement de plusieurs corps solides dans un fluide, ce qui est l'objet de l'étude fluide-structure (voir par exemple [START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction: compressible and incompressible models[END_REF][START_REF] San Martín | Global weak solutions for the twodimensional motion of several rigid bodies in an incompressibble viscous fluid[END_REF]). En revanche, le but de la théorie cinétique est de regarder cette dynamique du point de vue mésoscopique, dans la situation où le nombre de particules tend vers l'infini, alors que son rayon tend vers zéro. Ceci se fait via l'obtention d'un système limite, dans l'espace de phases, tenant compte de l'évolution de la fonction de distribution des particules et du fluide, reliées par un couplage non-linéaire.

Décrivons ensuite deux approximations de champ moyen pour la question du couplage entre (II.1.21) entre (II.1.23), dans de régimes particuliers.

Le système de Vlasov-Stokes. Le système (II.1.19) a été proposé par P. E. Jabin et B. Perthame dans [START_REF] Jabin | Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid[END_REF] comme limite formelle de la situation décrite précédemment, sous des hypothèses utilisées en la littérature mécanique, issues de l'étude des aérosols et des modéles de suspensions. Ces hypothèses garantissent que les particules sont très diluées dans le fluide, de manière à pouvoir négliger les collisions. En plus, on admettra que les effets de convection sont aussi négligeables. Ceci conduit au système (II.1.24) 

   -∆ x u + ∇ x p = 0, (0, T ) × Ω , div x u = 0, (0, T ) × Ω , u| ∂B x i (t), = v i (t) + Ω i (t) ∧ (x -x i (t)) , t ∈ (0, T ),
     ẋi (t) = vi (t), t ≥ 0, vi (t) = F i = - ρ f mp ∂B x i (t), (σ • n) dS, t ≥ 0 Ωi (t) = - jp j f ∂B x i (t), (x -x i (t)) ∧ (σ • n) dS, t ≥ 0, où m f = 4π 3 3 ρ f et σ = pI + 1
2 (∇u + ∇u T ) est le tenseur de stress de Cauchy.

Dans ces conditions, B. Perthame et P. E Jabin, ont proposé une approximation des forces F i dans (II.1.25) de la forme

F i (t) := -λv i (t) + µ N i =j A(x i -x j )v j , où λ est un paramètre de friction, µ = 3 4 2 N , et A est la matrice A(x) := - 1 |x| I + x ⊗ x |x| 2 , x ∈ R 3 ,
autrement dit, la solution fondamentale de l'opérateur de Stokes en dimension 3. Finalement, en considérant une mesure empirique de la forme

(II.1.26) f N (t, x, v) = 1 N N i=1 δ xi(t) ⊗ δ vi(t) ,
le couple (f N , u ) engendrée par (II. Le système de Vlasov-Navier-Stokes. Dans cette partie, nous allons présenter l'obtention d'un système limite pour la dynamique du couplage (II.1.23) et (II.1.21) lorsque l'on tient compte de l'action d'un terme de convection u • ∇u. Dans ce cas (voir [START_REF] Boudin | Modelling and numerics for respiratory aerosols[END_REF]), le modèle de système limite proposé par la littérature physique est le système de Vlasov-Navier Stokes (II. 1.20).

À l'heure actuelle, la justification rigoureuse des approximations de champ moyen de ce système est un problème ouvert de grande difficulté.

Cependant, il est possible d'obtenir une justification partielle du problème. Dans [START_REF] Desvillettes | The mean-field limit for solid particles in a Navier-Stokes flow[END_REF], L. Desvillettes, F. Golse et V. Ricci ont obtenu le système de Navier-Stokes stationnaire avec une force de Brinkman, (II.1.27)

   (u • ∇)u -ν∆u + ∇p = 6πν(j -ρu), Ω, div u = 0,
Ω, u| ∂Ω = 0, comme limite de champ moyen de l'intéraction de N sphères dures immergées dans un fluide incompressible remplissant un domaine borné Ω de R 3 , sous certaines hypothèses. Admettons que les effets des rotations des particules sont négligés, que la vitesse des particules est petite, de manière à pouvoir utiliser une approximation quasi-statique du champ de vitesses, et que l'effet des forces de trainée sur chaque sphère est du même ordre de magnitude que le champ de forces extérieure qui gouverne le fluide. Par conséquent, le système (II.1.23) sous ces hypothèses s'écrit (II.1.28)

       (u • ∇)u -ν∆u + ∇p = 0, Ω , div u = 0, Ω , u| ∂Bx i , = v i , i = 1, . . . , N, u| ∂Ω = 0,
en utilisant la notation (II. 1.22). Si l'on considère la mesure empirique (II.1.26) avec Theorem 2]) que si u est la solution de (II.1.28) et (ρ N , j N ) → (ρ, j) au sens des mesures, alors u → u, dans L 2 (Ω), solution de (II.1.27), lorsque N → ∞ et → 0 avec

ρ N (x) := R 3 f N (x, v) dv, j N (x) := R 3 vf N (x, v) dv, et sous l'hypothèse sup N ≥1 |v| 2 f N dx dv < ∞, il est démontré dans ([59,
N = 1, inf 1≤i≤N d(x i , ∂Ω) > 1 3
.

Ce résultat fournit donc un premier pas rigoureux vers (II.1.20).

II.1.2.2. Propriétes qualitatives des systèmes fluides-cinétiques. Décrivons quelques propriétés qualitatives de (II. 1.19). Dans le cas Ω = R 3 , P.E. Jabin a demontré dans [START_REF] Jabin | Large time concentrations for solutions to kinetic equations with energy dissipation[END_REF] l'existence et l'unicité des solutions faibles. Cette approche repose sur la méthode de propagation des moments, basée sur l'utilisation des lemmes de moyenne [START_REF] Gasser | Regularity and propagation of moments in some nonlinear Vlasov systems[END_REF]. Un aspect important de la dynamique de (II.1.19) mis en évidence dans [START_REF] Jabin | Large time concentrations for solutions to kinetic equations with energy dissipation[END_REF] est l'effet de friction, via le terme de couplage div v [(u -v)f ]. Ceci a pour conséquence qu'en temps long, la fonction de distribution a tendance à se concentrer autour d'un profil de vitesse nulle, de la forme ρ eq (x) ⊗ δ v=0 , avec une configuration macroscopique ρ eq indéterminée. Le point clé pour l'obtention de cette limite en temps long est la dissipation de l'énergie cinétique E cin (t) := |v| 2 f dx dv. Ce comportement en temps long motive en quelque sorte le besoin d'un résultat de contrôlabilité, dans la mesure où le seul moyen d'éviter la concentration des particules autour d'un état gelé en vitesse est d'agir sur le système. Nous donnerons un cadre général pour ce type de problèmes dans §II.2 et une application concrète à ce système dans §II.4.2 et le Chapitre 2.

Précisons qu'un autre système du type Vlasov-Stokes a été traité par K. Hamdache dans [START_REF] Hamdache | Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[END_REF], tenant compte de l'évolution temporaire du fluide et d'une force d'intéraction du type j -ρu. Malgré l'intérêt de ce système, nous considérerons ensuite un système plus sophistiqué, qui englobe celui-ci dans un certain sens. Concernant (II.1.20) du point de vue de l'existence de solutions, ce système a été considéré par L. Boudin, L. Desvillettes, C. Grandmont et A. Moussa dans [START_REF] Boudin | Global existence of solutions for the coupled Vlasov and Navier-Stokes equations[END_REF], lorsque Ω = T 3 . Dans ce contexte, il est possible d'obtenir l'existence de solutions faibles. En revanche, les questions d'unicité et régularité sont limitées par les difficultés profondes associées au système de Navier-Stokes en dimension 3.

La question du passage du niveau mésoscopique au macroscopique pour (II.1.20) a été traitée par T. Goudon, P. E. Jabin et A. Vasseur dans [START_REF] Goudon | Hydrodynamic limits for Vlasov-Stokes equations: Part I: Light Particles Regime[END_REF] et [START_REF] Goudon | Hydrodynamic limits for Vlasov-Stokes equations: Part II: Fine Particles Regime[END_REF] où des limites hydrodynamiques pour ce système sont obtenues, sous l'effet des collisions, dans certains régimes.

II.2. Cadre général de la contrôlabilité des équations cinétiques

Avant de décrire en détail les résultats obtenus pour les systèmes (II.1.18), (II. 1.19) et (II. 1.20), nous allons faire quelques commentaires généraux sur le type de questions que l'on se pose et auxquelles on essaye de répondre.

Dans cette thèse, nous nous limitons à considérer des cas où la variable d'espace se trouve dans le tore T d ou dans R d , avec d ≥ 1, ce qui exclut l'influence des bords. Notre but consiste à modifier l'évolution d'une fonction de distribution associée à (II.1.16), en agissant sur l'ensemble des particules. Plus précisément, on peut considérer idéalement un dispositif théorique permettant l'absorption où l'émission de particules depuis une partie de l'espace, un ouvert ω x de T d où R d . Ceci représente un terme source supplémentaire dans l'équation de Vlasov (II.1.16),

∂ t f + v • ∇ x f + F (t, x) • ∇ v f = C (f ) + χ ωx×R d G,
où G est la fonction d'absorption-émission, autrement dit, le contrôle. On voudra donc, en accord avec le cadre présenté en §I.1, trouver un G adéquat, dans des espaces adéquats, de manière à modifier l'évolution de ce système depuis l'état initial f 0 vers une configuration finale f 1 fixée par avance. En outre, on pourra considérer aussi des contrôles localisés en vitesse, c'est-à-dire, une région de contrôle de la forme ω x × ω v .

Dans cette thèse, nous allons résoudre ces problèmes dans certaines situations evoquées précédement :

(1) dans un cas hypoelliptique, pour l'équation de Kolmogorov (Chapitre 1),

(2) dans un cas non-collisionnel, en présence de forces extérieures, pour les systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, dans les Chapitres 2 et 3.

Signalons que, dans certains cas, on pourra modifier aussi la dynamique du champ de forces, ainsi que de la fonction de distribution. Ce sera le cas dans le Chapitre 3.

II.3. Cas hypoelliptique : contrôlabilité de l'équation de Kolmogorov

On considère l'équation de Kolmogorov dans l'espace de phases 

R d × R d , (II.3.29) ∂ t f + v • ∇ x f -∆ v f = χ ω u, (0, T ) × R 2d , f |t=0 = f 0 ∈ L 2 (R 2d
∂ t g -v • ∇ x g -∆ v g = 0, (0, T ) × R 2d , g| t=0 = g 0 (x, v), R 2d , c'est-à-dire, à l'existence d'une constante C obs > 0 telle que pour tout g 0 ∈ L 2 (R 2d ) la solution de (II.3.30) satisfasse (II.3.31) R d R d |g(T, x, v)| 2 dx dv ≤ C 2 obs T 0 ω |g(t, x, v)| 2 dt dx dv.
Cette approche, quoique classique, présente deux difficultés dans notre contexte :

(1) L'opérateur de Kolmogorov K := ∂ t +v•∇ x -∆ v est dégénéré du type hypoelliptique, contrairement à l'opérateur de la chaleur, qui est uniformément parabolique, ce qui empêche l'utilisation des méthodes classiques.

(2) Dans l'espace de phases R d × R d , la région de contrôlabilité ω doit être suffisamment grande pour garantir (II.3.31), ce qui est un problème peu compris dans la littérature, même dans le cas uniformément parabolique.

La difficulté (1) est d'ordre structurelle et concerne la nature de l'évolution de la dynamique associée à K, où un phénomène de transport entre en compétition avec une diffusion en vitesse. La difficulté (2) est de caractère géométrique. Comme on le verra dans la section §II.3.3, il existe des obstructions à l'observabilité de l'équation de la chaleur sur une région trop localisée. On devra surmonter cette difficulté en introduisant une condition géométrique adéquate. II.3.1. Travaux précédents sur Kolmogorov. La littérature contient deux travaux sur la contrôlabilité de l'équation de Kolmogorov : [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF][START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF], en domaine borné et non borné.

Dans [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF], K. 

= ω x × ω v , avec ω x = R et ω v = R \ [a, b],
pour a < b. Cette configuration permet aux auteurs de montrer la contrôlabilité à zéro de (II.3.29) dans ce cas.

Afin de palier à la difficulté (1), relative à la structure de l'opérateur de Kolmogorov, les auteurs introduisent l'idée de découpler la variable d'espace de la variable de vitesse grâce à la transformée de Fourier partielle. En effet, si l'on note F x la transformée de Fourier partielle par rapport à x, et ξ la variable de Fourier associée, (II.3.30) entraîne

∂ t F x (g) -iξ • vF x (g) -∆ v F x (g) = 0, (0, T ) × R d , F x (g)| t=0 = F x (g 0 ), R d ,
ce qui peut s'interpréter comme une famille d'équations de la chaleur avec un potentiel, indexées par la variable ξ. La stratégie des auteurs dans [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF], avec d = 1, consiste donc à montrer l'observabilité de ces systèmes sur l'ouvert R \ [a, b], pour chaque ξ, à l'aide d'une inégalité de Carleman appropriée pour l'opérateur 

∂ t -iξ • v -∆ v (cf. §II.
F x (f )(t, ξ, •) L 2 (R d ) ≤ e -|ξ| 2 t 3 12 F x (f 0 )(ξ, •) L 2 (R d ) .
Ce résultat, démontré dans [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF] pour d = 1, et étendu à la dimension quelconque dans le Chapitre 1 (voir Proposition 2.2, Chapitre 1), donne une estimation quantitative du taux de décroissance en fréquence de l'évolution libre de (II. 3.29).

Une première remarque sur ce résultat concerne la région d'observabilité, laquelle n'est pas localisée en la variable x, mais uniquement en v, et cela sur presque tout le domaine.

K. Beauchard a considéré à nouveau une équation de Kolmogorov dans [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF], cette fois dans un domaine borné avec des conditions aux bords adaptées. Concrètement, elle démontre dans [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] que le système (II.3.32)

       ∂ t f + v • ∇f -∆ v f = χ ω u, (0, T ) × T × (-1, 1), f (t, x -t, -1) = f (t, x + t, 1), (0, T ) × T, ∂ v f (t, x -t, -1) = ∂ v f (t, x + t, 1), (0, T ) × T, f | t=0 = f 0 ∈ L 2 (T × (-1, 1)),
est contrôlable à zéro lorsque ω ⊂ T × (-1, 1) est un ouvert arbitraire. L'ingrédient principal utilisé pour réduire le support du contrôle ω est la stratégie de Lebeau-Robbiano, que l'on expliquera en détail en §II.3.2.1.

Le but de notre travail sera donc d'essayer d'appliquer cette stratégie dans tout l'espace de phases, de manière à améliorer la région d'observabilité par rapport à [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF]. Comme on le verra plus loin, cette stratégie n'a jamais été utilisée en domaine non borné, ce qui motive notre travail et impose l'introduction de nouvelles techniques, comme on expliquera dans §II.3.4 et dans le Chapitre 1. II.3.2. Contrôlabilité de l'équation de la chaleur et inégalités de Carleman. Le but de cette section est de rappeler les méthodes classiques permettant d'aborder la contrôlabilité à zéro de l'équation de la chaleur en domaine borné. Essentiellement, nous suivrons deux méthodes, devenues classiques :

(1) la méthode de Lebeau-Robbiano, via des inégalités spectrales, (2) la méthode de Fursikov-Imanuvilov, via des inégalités de Carleman paraboliques globales.

Les deux approches permettent d'obtenir le même résultat, montré dans [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF].

TH ÉOR ÈME II.3.2 (Lebeau-Robbiano, Fursikov-Imanuvilov). Soit Ω ⊂ R d , d ≥ 1, un ouvert régulier et borné. Soit ω ⊂ Ω un ouvert non vide quelconque. Alors, pour tout T > 0 et tout y 0 ∈ L 2 (Ω) il existe un contrôle u ∈ L 2 ((0, T ) × Ω) tel que la solution de

(II.3.33)    ∂ t y -∆y = χ ω u, (0, T ) × Ω, y| ∂Ω = 0, (0, T ), y| t=0 = y 0 , Ω, satisfait y| t=T = 0.
Observons que, grâce à la méthode HUM (cf. §I.2.1), ce résultat est équivalent à l'observabilité du système 

(II.3.34)    ∂ t z -∆y = 0, (0, T ) × Ω, z| ∂Ω = 0, (0, T ), z| t=0 = z 0 , Ω, c'est-à-dire,
-∆e k = λ k e k , Ω, e k | ∂Ω = 0.
En outre, cette famille est une base hilbertienne de L 2 (Ω), ce qui permet d'écrire

f = ∞ k=1 (f, e k ) L 2 (Ω) e k , dans L 2 (Ω), pour tout f ∈ L 2 (Ω), avec (II.3.37) f 2 L 2 (Ω) = ∞ k=1 (f, e k ) L 2 (Ω) 2 .
Considérons maintenant un ouvert ω ⊂ Ω non vide. En connexion avec l'observabilité (II. 

λ k ≤µ (f, e k ) L 2 (Ω) 2 ≤ Ce C √ µ λ k ≤µ (f, e k ) L 2 (Ω) e k 2 L 2 (ω)
.

L'inégalité (II.3.38), appelée inégalité spectrale, apparaît dans le travail de G. Lebeau et L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Plus tard, les inégalités spectrales de ce type ont été exploitées par D. Jerison et G. Lebeau dans [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF] pour étudier la mesure de Hausdorff des ensembles nodaux de sommes finies de fonctions propres de certains opérateurs de la forme -∆ + V (x). À nouveau dans le contexte de la théorie du contrôle, l'utilisation d'inégalités spectrales a été cruciale dans l'étude du système de la thermoélasticité linéaire par G. Lebeau et E. Zuazua dans [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF]. Toujours en domaine borné, des inégalités spectrales pour des opérateurs différents du laplacien ont été obtenues par M. Léautaud dans [START_REF] Léautaud | Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems[END_REF].

Dans le contexte de cette thèse, on s'intéresse au lien entre (II. 

   ∂ t y j -∆y j = Π Ej (χ ω u), (0, T ) × Ω, y j = 0, (0, T ) × ∂Ω, y j | t=0 = Π Ej y 0 ∈ E j , Ω,
pour chaque j ∈ N. Par dualité, le système adjoint s'écrit

(II.3.40)    ∂ t z j -∆z j = 0, (0, T ) × Ω, z j = 0, (0, T ) × ∂Ω, z j | t=0 = Π Ej z 0 ∈ E j , Ω, Alors, pour tout z 0 ∈ L 2 (Ω), la dissipation de l'équation de la chaleur 1 et l'inégalité spectrale (II.3.38) permettent d'écrire T z j | t=T 2 L 2 (Ω) ≤ T 0 z j (t) 2 L 2 (Ω) dt = T 0 λ k ≤2 2j (z j (t), e k )e k 2 L 2 (Ω) dt ≤ Ce C2 j T 0 λ k ≤2 2j (z j (t), e k )e k 2 L 2 (ω) dt = Ce C2 j T 0 z j (t) 2 L 2 (ω) dt,
ce qui donne l'observabilité de (II. 3.40). Par conséquent, grâce à la méthode HUM, on en déduit le résultat suivant.

PROPOSITION II.3.4. Soit y 0 ∈ L 2 (Ω). Pour tout j ∈ N fixé et pour tout temps τ j > 0, il existe un contrôle u j ∈ L 2 ((0, τ j )×Ω) tel que la solution de (II.3.39) satisfait Π Ej y| t=τj = 0. 

d dt z j (t) 2 L 2 (Ω) + ∇z j (t) 2 L 2 (Ω) = 0, ce qui entraîne z j | t=T 2 L 2 (Ω) ≤ z j (t) 2 L 2 (Ω) , ∀t ≥ 0, d'où T z j | t=T 2 L 2 (Ω) = T 0 z j | t=T 2 L 2 (Ω) dt ≤ T 0 z j (t) 2 L 2 (Ω) dt.
De plus,

(II.3.41) u j L 2 ((0,τj )×Ω) ≤ Ce C2 j τ j Π j y 0 L 2 (Ω) .
On notera que le coût du contrôle partiel u j , donné par (II.3.41), dépend de la fréquence considérée, comme conséquence de (II. 3.38). Afin d'atténuer la croissance de cette norme par rapport à j, on essaye d'exploiter les propriétés de dissipation de l'évolution libre.

Deuxième ingrédient : taux de décroissance des hautes fréquences du système libre. Lorsque u ≡ 0, la dynamique de (II.3.33) est décrite par le semi-groupe associé. En particulier, lorsque y 0 ne présente que des hautes fréquences, par exemple, si Π Ej y 0 = 0 pour un certain j ∈ N, on peut écrire

S(t)y 0 L 2 (Ω) = λ k ≥2 2j e -λ k t (y 0 , e k )e k L 2 (Ω) = λ k ≥2 2j e -2λ k t |(y 0 , e k )| 2 (II.3.42) ≤ e -2 2j t λ k ≥2 2j |(y 0 , e k )| 2 ≤ e -2 2j t y 0 L 2 (Ω) .
Construction du contrôle. Les deux ingrédients décrits antérieurement sont les éléments de base pour la construction d'un contrôle pour (II.3.33), ce qui permet de démontrer le Théorème II.3.2. On rappelle ici les étapes de cette construction.

Soit T > 0. On découpe l'intervalle de temps sous la forme

(0, T ) = ∞ j=0
(a j , a j+1 ), avec a 0 := 0, a j+1 := a j + 2T j , ∀j ≥ 0, pour une suite (T j ) j∈N bien choisie. Dans chaque intervalle (a j , a j+1 ), on procède de la façon suivante :

Mode actif : sur (a j , a j +T j ), on utilise un contrôle u j permettant d'éliminer les fréquences inférieures à 2 2j . Ceci modifie l'énergie de la solution selon (II.3.41).

Mode passif : sur (a j + T j , a j+1 ), on tire profit de la décroissance des fréquences restantes, ce qui permet d'équilibrer l'effet du contrôle partiel de la partie précédente.

Ce procédé fournit un contrôle u ∈ L 2 ((0, T ) × Ω) tel que

y| t=T L 2 (Ω) = lim j→∞ y| t=aj L 2 (Ω) = 0,
ce qui conduit au Théorème II. 

P := -∂ 2 s -∆ x , (s, x) ∈ Z := (0, S 0 ) × Ω,
pour un certain S 0 > 0. L'inégalité d'interpolation en question est la suivante.

TH ÉOR ÈME II.3.5. Soit ω ⊂ Ω un ouvert non vide. Il existe C > 0 et δ ∈ (0, 1) tels que pour tout u ∈ H 2 (Z) satisfaisant u| ∂Ω = 0 et u| s=0 = 0, on a

(II.3.44) u H 1 (Y ) ≤ C u δ H 1 (Z) P u L 2 (Z) + ∂ s u(0, •) L 2 (ω) 1-δ , où Y := (α, S 0 -α) × Ω, pour un certain α ∈ (0, S0 2 
). Expliquons l'intérêt de (II. 3.44). Cette inégalité permet de dominer l'énergie de u sur Y ⊂ Z en interpolant deux termes : d'une part, l'énergie totale de u sur Z et d'une autre part, la quantité P u L 2 (Z) et un terme localisé sur ω. Ce dernier peut être vu comme un terme d'observation.

En particulier, cette inégalité permet de montrer (II. 3.38). En effet, soit

µ > 0 et soit f ∈ L 2 (Ω) avec f = λ k ≤µ (f, e k )e k . Alors, prenons u(s, x) := λ k ≤µ sinh( √ λ k s) √ λ k (f, e k )e k , (s, x) ∈ Z.
Cette fonction satisfait P u = 0 et en plus, ∂ s u| s=0 = f . Par ailleurs, il est possible de montrer que, grâce à ce choix,

u H 1 (Y ) ≥ C f L 2 (Ω) , u H 1 (Z) ≤ Ce C √ µ f L 2 (Ω) ,
pour une constante C > 0, ce qui donne (II. Un ingrédient crucial dans l'obtention de (II.3.44) à partir de ces inégalites de Carleman est le caractère borné de Ω, puisqu'il permet un argument de propagation de certaines inégalités intermédiaires conduisant à (II. 3.44). Cependant, nous serons capables de montrer une inégalité spectrale pour le laplacien dans tout le domaine R d , en contournant la limitation apparente du défaut de compacité du domaine, comme on le verra dans la section §II.3.4.

II.3.2.3.

Une inégalité de Carleman elliptique locale. Dans cette section nous nous proposons d'expliquer le principe d'obtention de certaines inégalités de Carleman, qui sont un objet très important en théorie du contrôle, ainsi qu'en d'autres domaines, comme l'étude de la continuation unique où les problèmes inverses.

En particulier, notre but est de donner quelques détails de la preuve des inégalités de Carleman elliptiques locales nécessaires pour l'obtention de l'inégalité d'interpolation (II.3.44). Le contenu de cete section est inspiré de l'article [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF].

Les inégalités de Carleman sont des inégalités d'énergie pour un opérateur différentiel, obtenues grâce à l'utilisation d'un poids convenable et d'un paramètre suffisamment grand. L'introduction du poids permet de minorer la norme de l'action de l'opérateur étudié par les normes des termes d'ordre inférieur, pondérées par rapport au paramètre choisi. Afin de détailler cette idée, nous allons voir un exemple d'inégalité de Carleman pour l'opérateur elliptique défini par (II. 3.43) en sa version semi-classique 2 . Cette inégalité résultante permet de démontrer (II. 3.44).

Soit Ω ⊂ R d un ouvert régulier et définissons l'opérateur

P = -∂ ss -∆ x , (s, x) ∈ (0, S) × Ω.
Soit une fonction régulière ϕ : Z → R, que l'on précisera plus tard. Considérons un paramètre h > 0 et définissons l'opérateur conjugué de P par rapport à ϕ, P ϕ := h 2 e ϕ h P e -ϕ h . L'intérêt de cette conjugaison réside justement dans le fait que P ϕ admet la décomposition suivante

P ϕ = P ϕ + P * ϕ 2 + i P ϕ -P * ϕ 2i = h 2 ∆ -|∇ϕ| 2 + h∆ϕ + 2h∇ϕ • ∇ = Q 2 + iQ 1 ,
c'est-à-dire, une décomposition en somme d'une partie autoadjointe et une partie antisymmétrique, ce qui permet de séparer les ordres zéro et deux (dans Q 2 ) des termes d'ordre 1 (dans Q 1 ). Cette remarque motive aussi l'utilisation des méthodes pseudodifférentielles, qui permettent de manipuler les opérateurs impliqués précédemment en termes de ses symboles associés. En particulier, le symbole de p ϕ s'écrit p ϕ = |ξ| 2 -|∇ϕ| 2 + ∆ϕ + 2∇ϕ • ξ, où la variable de Fourier associée à (s, x) est réprésentée par ξ, avec le scaling semiclassique.

Considérons maintenant u ∈ C ∞ c (Z). On remarque que, en posant v := e ϕ h u, P u = f est équivalent à ce que h 2 P ϕ v = e ϕ h f , ce qui permet d'écrire

h 4 e ϕ h P v 2 L 2 (Z) = Q 2 v 2 L 2 (Z) + Q 1 v 2 L 2 (Z) + 2 Re Q 2 v, iQ 1 v L 2 (Z) = Q 2 2 + Q 2 1 + i[Q 2 , Q 1 ] v, v L 2 (Z) , où [•,
•] désigne le commutateur. Insistons encore une fois sur le but cherché : on veut minorer la quantité e ϕ h P v L 2 par les termes d'ordre inférieur, c'est-à-dire, une 2. La version semi-classique est utile afin de tenir compte d'un paramètre h ∈ (0, h 0 ), tendant vers zéro, dans le sens où il est possible de définir un calcul pseudodifferentiel adapté, pour lequel le symbole de l'opérateur D = h i ∂ est ξ. En particulier, via le même scaling, l'opérateur associé au symbole a(x, ξ, h) est

Op(a)u(x) = 1 (2πh) d R d e ix•y h a(x, ξ, h)û x h dξ, ∀u ∈ S (R d ), pourvu que a satisfasse a(•, h) ∈ C ∞ (R d x ×R d ξ ), pour tout h ∈ (0, h 0 ) et la condition de décroissance à l'infini ∀α, β ∈ N d × N d , ∃C α,β : |∂ α x ∂ β ξ a(x, ξ, h)| ≤ C α,β (1 + |ξ| 2 ) m-|β| , ∀(x, ξ, h) ∈ R 2d × (0, h 0 ), pour un certain m ∈ R, qui est appelé ordre du symbole a. On notera a ∈ S m .
Ce formalisme permet de définir des espaces de Sobolev adaptés au scaling. Soit s ∈ R. On définit la norme

u H s := Op (1 + |ξ| 2 ) s 2 u L 2 (R d )
.

Alors, on définit l'espace de Sobolev associé en posant

H s := u ∈ S (R d ); u H s < ∞ . combinaison de v L 2 et ∇v L 2 . Au vu de l'égalité ci-dessus, ceci revient à minorer le produit scalaire Q 2 2 + Q 2 1 + i[Q 2 , Q 1 ] v, v
, ce qui peut se faire, par exemple, grâce à l'inégalité de Garding, pourvu que le symbole principal 3 de l'opérateur

Q 2 2 + Q 2 1 + i[Q 2 , Q 1 ]
, que l'on note σ ϕ , soit positif. Examinons donc ledit symbole. En notant σ(Q 2 ) = q 2 et σ(Q 1 ) = q 1 , le calcul symbolique (voir, par exemple, [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF]) permet d'écrire

σ ϕ = q 2 2 + q 2 1 + h {q 2 , q 1 } , où {•,
•} est le crochet de Lie. Précisons que l'importance du poids ϕ devient cruciale, puisque ce choix modifie le symbole σ ϕ . On impose donc des conditions sur ϕ pour que l'inégalité de Garding s'applique :

(II.3.45) ∃C > 0, ∀(x, s, ξ) ∈ V × R d+1 , p ϕ (x, s, ξ) = 0 ⇒ {q 2 , q 1 } (x, s, ξ) ≥ C,
où p ϕ est le symbole de P ϕ . Cette condition sur ϕ est connue sous le nom de condition d'hypoellipticité de Hörmander. Il existe des conditions suffisantes pour (II.3.45), comme la suivante :

ϕ := e λψ , avec λ grand et ψ ∈ C ∞ (V), telle que |∇ψ| > 0 dans V.
Sous la condition (II.3.45), il est possible de montrer que

σ ϕ ≥ C 1 + |ξ| 2 2 , ∀(x, s, ξ) ∈ V × R d+1 ,
ce qui implique, via l'inégalité de Garding, que, pour une certaine constante C > 0, pour un certain h 0 > 0, l'inégalité

e ϕ h v 2 L 2 (Z) ≥ C v 2 H 2 (Z) ≥ C h e ϕ h u L 2 (Z) + h 3 h e ϕ h ∇u 2 L 2 (Z)
soit vérifiée pour tout h < h 0 . Celle-ci est l'inégalité de Carleman cherchée.

En choisissant adéquatement un poids ϕ, (voir [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF] pour plus de détails), cette inégalité de Carleman conduit à (II.3.44) en utilisant un argument de propagation qui consiste à recoller plusieurs inégalités d'interpolation locales intermédiaires. On renvoie à [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF] et [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] 

Q := ∂ t -∆ x , (t, x) ∈ (0, T ) × Ω.
Observons que cet opérateur est parabolique, contrairement au cas traité dans la partie précédente. En outre, on veut que l'inégalité de Carleman correspondante soit applicable à des fonctions définies dans (0, T ) × Ω, ce qui oblige à tenir compte du bord ∂Ω. Pour ces deux raisons, le type d'inégalité obtenue par Fursikov et Imanuviliov s'appelle inégalité de Carleman parabolique globale. [START_REF] Cabanillas | Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms[END_REF] 

pour le choix Ω = R d et ω = R d \ K, avec K ⊂ R d compact.
Les résultats précédents exhibent des cas extrêmes pour l'observabilité ou la non observabilité. Ceci motive la recherche de régions d'observabilité pour lesquelles (II.3.35) soit vrai sans imposer que ω soit le complémentaire d'un compact. Dans cette direction, Luc Miller a montré dans [START_REF] Miller | On the null controllability of the heat equation in unbounded domains[END_REF] une condition nécessaire et quelques exemples d'observabilité lorsque Ω présente un bord.

Il a été observé par P. Cannarsa, P. Martinez et J. Vancostenoble dans [START_REF] Cannarsa | Null controllability of the heat equation in unbounded domains by a finite measure control region[END_REF] que la question de l'observabilité ne dépend pas uniquement de la géométrie de ω, mais aussi du cadre fonctionnel choisi. Les auteurs ont montré que, lorsque Ω = R + , il est possible d'obtenir une inégalité d'observabilité sur un ouvert de la forme

ω = n∈N (a n , b n ), 0 < a n < b n < a n+1 < b n+1 , ∀n ∈ N,
avec a n → ∞, au prix de remplacer l'espace ambiant par un espace à poids L 2 (R + ; ρ(x) dx). Il est même possible d'imposer |ω| < ∞, pourvu que le poids ρ satisfasse des conditions supplémentaires.

Dans le cas sans bord, les travaux de Luc Miller dans [START_REF] Miller | Unique continuation estimates estimats for the Laplacian and the heat equation on non-compact manifolds[END_REF] ont conduit à une condition géométrique, basée sur les propriétés du noyau de la chaleur sur des variétés, qui pourrait être suffisante pour l'observabilité de la chaleur. En revanche, on ne sait pas comment s'en servir pour montrer l'observabilité.

La question a été traitée aussi par M. González Burgos et L. de Teresa dans [START_REF] González-Burgos | Some results on controllability for linear and non linear heat equations in unbounded domain[END_REF], avec un changement de perspective par rapport au problème : une région d'observabilité est favorable dans la mesure où elle permet de montrer des inégalités de Carleman conduisant à (II. 3.35).

Comme on le verra dans la section suivante, nous allons reprendre la condition exhibée par L. Miller 

∈ R d , ∃q ∈ R d tels que B R d (q, r) ⊂ ω et |p -q| ≤ δ 4 . TH ÉOR ÈME II.3.7 (Théorème 1.2, Chapitre 1). Soit ω ⊂ R 2d de la forme ω = ω x × ω v avec ω x ⊂ R d et ω v ⊂ R d satisfaisant à la Définition II.3.6. Alors, pour tout T > 0 et f 0 ∈ L 2 (R 2d ), il existe un contrôle u ∈ L 2 ((0, T ) × R 2d ) tel que la solution de (II.3.29) vérifie f |t=T = 0.
Comme mentionné dans §II.3, la structure de l'opérateur K = ∂ t + v • ∇ x -∆ v ne permet pas une approche directe via l'observabilité du système adjoint, puisque les estimations de Carleman globales pour K sont un problème ouvert.

En revanche, nous allons suivre l'idée de simplifier l'opérateur K en séparant les variables x et v via la transformation de Fourier partielle en x. Notre stratégie repose sur la méthode de Lebeau-Robbiano, expliquée dans la section §II.3.2.1, qui comporte deux ingrédients essentiels :

(1) l'observabilité des basses fréquences, (2) l'estimation du taux de décroissance des hautes fréquences du système libre. Comme on le verra plus tard, la fréquence dans notre cas est celle donnée par la variable de Fourier par rapport à x, que l'on note ξ.

Le deuxième ingrédient a déjà été mentionné dans Proposition II.3.1. Donnons les éléments de l'observabilité des basses fréquences.

Observabilité des basses fréquences. Comme dans le cas classique, traité dans §II.3.2.1, l'observabilité des basses fréquences repose sur une inégalité spectrale pour le laplacien. Nous aurons donc besoin de démontrer une telle inégalité spectrale dans l'espace entier R d , ce que l'on pourra faire grâce à la condition géométrique de la définition II.3.6.

TH ÉOR ÈME II.3.8 (Théorème 3.1, Chapitre 1). Soit ω ⊂ R d un ensemble d'observabilité dans tout l'espace. Alors, ∃C = C(ω) > 0 tel que

(II.3.47) f L 2 (R d ) ≤ e C(N +1) f L 2 (ω) ,
4. On peut remarquer que, si δ < r, alors ω = R d . Le cas intéressant est donc r < δ.

pour tout N ≥ 0 et toute f ∈ L 2 (R d ) tels que supp(F f ) ⊂ B(0, N ), où B(0, N ) est la boule fermée de rayon N et centre 0 et F est la transformée de Fourier dans R d .

Nous allons dériver (II.3.47) d'une inégalité de Carleman elliptique globale, suivant une approche introduite dans [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF][START_REF] Boyer | Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF][START_REF] Cannarsa | Représentation Microlocale de Solutions de Systèmes Hyperboliques, Application à l'Imagerie, et Contributions au Contrôle et aux Problèmes Inverses pour des Équations Paraboliques[END_REF]. Pour ce faire, nous devons construire un poids adéquat.

PROPOSITION II.3.9 (Proposition 3.2, Chapitre 1). Soit S > 0, Q = (0, S)× R d . Supposons que ω x ⊂ R d satisfait la condition de la Définition II.3.6. Alors, il existe une fonction

ψ ∈ C 3 ([0, T ] × R d ; R + ) telle que ψ ∈ W 3,∞ ([0, S] × R d ), |∇ s,x ψ(s, x)| ≥ C, ∀(s, x) ∈ Q, (II.3.48) ∂ s ψ| s=0 ≥ C, ∀x ∈ R d \ ω x , ∂ s ψ| s=S ≤ -C < 0, ψ| s=S = 0, pour une certaine constante C > 0.
Précisons que les conditions sur ce poids sont une adaptation au cas du domaine Q des conditions (II.3.46) demandées sur le poids de Carleman dans la méthode de Fursikov-Imanuvilov. Dans le cas non borné l'obtention de la condition (II.3.48) repose sur des arguments très techniques, dû à la perte de compacité du domaine, et qui exploitent la condition géométrique sur ω x .

Une fois qu'un tel poids a été construit, nous sommes en mesure de démontrer l'inégalité de Carleman elliptique globale mentionnée précédement. Soit

P := -∆ s,x = -∂ 2 s -∆ x , Q = (0, S) × R d .
PROPOSITION II.3.10 (Inégalité de Carleman elliptique globale, Proposition 3.3, Chapitre 1). Soit ω x ⊂ R d un ensemble d'observabilité dans tout l'espace. Soient ψ donné par la Proposition II.3.9 et ϕ(s, x) = exp λψ(s, x) , pour λ suffisamment grand. Alors, il existe C > 0, τ 0 ≥ 1, et λ 0 ≥ 1 tels que

(II.3.49) τ 3 e τ ϕ u 2 L 2 (Q) + τ e τ ϕ ∇ s,x u 2 L 2 (Q) + τ e τ ϕ(0) ∂ s u| s=0 2 L 2 (R d ) + τ e 2τ ∂ s u| s=S 2 L 2 (R d ) + τ 3 e 2τ u| s=S 2 L 2 (R d ) ≤ C e τ ϕ P u 2 L 2 (Q) + τ e 2τ ∇ x u| s=S 2 L 2 (R d ) + τ e τ ϕs=0 ∂ s u| s=0 2 L 2 (ωx) , pour tout τ ≥ τ 0 et u ∈ C 2 ([0, S]; S (R d ; C)) tel que u| s=0 ≡ 0.
Cette inégalité permet de démontrer (II.3.47) grâce à un choix de u(s, x) adéquat, inspiré de la construction classique. En effet, soit

f ∈ L 2 (R d ) avec supp(F f ) ⊂ B(0, N ). On définit u(s, x) := 1 (2π) d B(0,N ) sinh(ξs) ξ F f (ξ)e ix•ξ dξ, (s, x) ∈ (0, S) × R d .
Alors, P u = 0 et u| s=0 = 0, ce qui permet d'appliquer (II.3.49) pour obtenir

τ 2 e τ ϕ u| s=S 2 L 2 (R d ) e 2τ ϕ ∇ x u| s=S 2 L 2 (R d ) + e 2τ ϕ|s=0 ∂ s u| s=0 2 L 2 (ωx) . Puisque ∂ s u| s=0 = f et puisqu'il est possible de montrer que f 2 L 2 (R d ) u| s=S 2 L 2 (R d ) , ∇ x u| s=S 2 L 2 (R d ) u| s=S 2 L 2 (R d ) ,
un choix de τ suffisamment grand et indépendant de N conduit à (II.3.47).

Traitons maintenant la localisation en variable v. L'utilisation de la transformée de Fourier partielle en x fournit la famille d'opérateurs

P ξ = ∂ t -∆ v + iξ • v, ξ ∈ R d .
La nouveauté par rapport à [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF] repose encore une fois sur la condition géométrique de la Définition II.3.6, qui permet la construction de poids pour obtenir des inégalités de Carleman pour P ξ adéquates. Ainsi, une construction similaire à celle de la Proposition II.3.9 permet de démontrer une inégalité de Carleman parabolique globale pour chaque opérateur P ξ à ξ fixé. Ceci conduit à l'observabilité de chaque mode ξ via la méthode de Fursikov-Imanuvilov.

PROPOSITION II.3.11 (Proposition 4.1, Chapitre 1). Soit ω v ⊂ R d un ouvert d'observabilité dans tout l'espace. Alors, il existe une constante C > 0 telle que la solution du système

∂ t g ξ -iv • ξg ξ -∆ v g ξ = 0, (0, T ) × R d , g ξ |t=0 = g 0,ξ R d , avec T > 0, ξ ∈ R d , et g 0,ξ ∈ L 2 (R d ; C) satisfait (II.3.50) g ξ |t=T L 2 (R d ) ≤ e C 1+ 1 T + √ |ξ| g ξ L 2 ((0,T )×ωv) .
La combinaison de (II.3.47) et (II.3.50) conduit à l'observabilité des basses fréquences (voir la preuve de la Proposition 4.7, Chapitre 1). Par dualité, ceci produit un contrôle qui élimine les basses fréquences avec un coût dépendant de la fréquence, de l'ordre e CN .

PROPOSITION II.3.12 (Proposition 4.6, Chapitre 1). Il existe C obs > 0 tel que pour tout T > 0,

N ∈ N et f 0 ∈ L 2 (R 2d ) il existe un contrôle u ∈ L 2 ((0, T ) × R 2d ) tel que la solution de (II.3.29) satisfait supp( f (T, •, •)) ⊂ R d \ B R d (0, N ) × R d avec (II.3.51) u L 2 ((0,T )×R 2d ) ≤ e C obs( 1+ 1 T +N ) f 0 L 2 (R 2d ) .
La combinaison de la contrôlabilité des basses fréquences donnée par la Proposition II.3.12 et l'estimation du taux de décroissance des hautes fréquences donné par la Proposition II.3.1 permet de construire un contrôle pour (II.3.29), en alternant un mode actif avec un mode passif dans l'esprit de la constrution classique de Lebeau Une des premières difficultés associées à (II.4.52) est le défaut de contrôlabilité du problème linéarisé. En effet, si l'on considère le linéarisé formel de ce système autour de la trajectoire triviale (f, φ) = (0, 0), on obtient une équation du transport (II.4.53) 

∂ t f + v • ∇ x f + (-∆ v ) σ f + div v (vf ) = χ ω u, (0, T ) × R 2d , f |t=0 = f 0 , R 2d , où (-∆ v ) σ désigne, pour σ ∈ (0,
∂ t f + v • ∇ x f + E f (t, x) • ∇ v f = χ ω×R d G, (0, T ) × T d × R d , E f (t, x) = ∇ x φ f (t, x), -∆ x φ f (t, x) = ρ f (t, x) - T d ρ f dx, (0, T ) × T d , f | t=0 = f 0 , T d × R d , où ω ⊂ T d est
∂ t F + v • ∇ x F = χ ω×T d G, (0, T ) × T d × R d , F | t=0 = F 0 , T d × R d . D'
d dt X V = V (t) E(t, X(t)) , X(0) V (0) = x v , et désignons par (X, V )(t,
f + F (t, x), lorsque F ∈ L ∞ t W 1,∞
x , à celle de E f en temps court. En outre, les techniques développées dans [START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] par les mêmes auteurs permettent de traiter le cas de forces du type Lorentz, produites par l'action d'un champ magnétique, de la forme F = B ∧ v et qui, contrairement au cas précédent, ne peuvent pas être étudiées de manière perturbative. En dimension 2, cette force s'écrit F = b(x)v ⊥ , où b est une fonction scalaire telle que b ≥ 0, ce qui permet de décrire les dynamiques des caractéristiques associées à partir de quelques trajectoires circulaires. L'utilisation de la méthode du retour dans ce cas repose sur l'hypothèse géométrique suivante : l'ensemble x ∈ T 2 ; b(x) > 0 satisfait la condition de contrôle géométrique de la Définition I. 

           ∂ t f + v • ∇ x f + div v [(u -v)f ] = χ ω×R 2 G, (0, T ) × T 2 × R 2 , -∆ x u + ∇ x p = j f , (0, T ) × T 2 , div x u(t, x) = 0, (0, T ) × T 2 , T 2 u(t, x) dx = 0, (0, T ), f (0, x, v) = f 0 (x, v), T 2 × R 2 .
Le résultat précis est le suivant 6 .

TH ÉOR ÈME II.4.2 (Théorème 1.1, Chapitre 2). Soient T > 0, γ > 2 et ω ⊂ T 2 un ouvert arbitraire non vide. Il existe > 0 tel que pour tout f 0 , f 1 ∈ C 1 (T 2 × R 2 ) ∩ W 1,∞ (T 2 × R 2 ) satisfaisant T 2 R 2 f 0 (x, v) dx dv = T 2 R 2 f 1 (x, v) dx dv, T 2 R 2 vf 0 (x, v) dx dv = T 2 R 2 vf 1 (x, v) dx dv = 0, et tels que, pour i = 0, 1, f i C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f i C 0 (T 2 ×R 2 ) ≤ , ∃κ > 0, sup (x,v)∈T 2 ×R 2 (1 + |v|) γ+1 (|∇ x f i | + |∇ v f i |) (x, v) ≤ κ, (II.4.57) il existe un contrôle G ∈ C 0 ([0, T ] × T 2 × R 2 ) tel que la solution de (II.4.56) avec f | t=0 = f 0 satisfait (II.4.58) f | t=T = f 1 .
La stratégie de la preuve de ce résultat repose sur la méthode utilisée dans [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF] et [START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] En accord avec la stratégie précédente, notre objectif est de construire une solution de référence pour (II.4.56) afin d'éliminer les obstructions à la contrôlabilité de l'équation de Vlasov, qui sont les mauvaises directions et les basses vitesses. Nous allons procéder en deux étapes :

6. Un résultat similaire pourrait être démontré en dimension d ≥ 3, lorsque ω satisfait la condition géométrique de la Définition II.4.1, en suivant le schéma de [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF] en dimension supérieure. Le choix de la dimension deux est important ici pour utiliser certains résultats d'approximation harmonique, ce qui permet de choisir comme région de contrôle ω un ouvert non vide quelconque.

Étape 1 : construire une solution de référence (f , u) telle que 

f | t=0 = 0, f | t=T = 0,
   -∆ x u + ∇ x p = j f , [0, T ] × T 2 , div x u(t, x) = 0, [0, T ] × T 2 , T 2 u(t, x) dx = 0, [0, T ].
Une remarque très utile est la suivante : puisque l'on travaille en dimension [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF]. Par conséquent, la seule hypothèse nécessaire sur ω est que ce soit un ouvert non vide. Il existe donc x 0 ∈ T 2 et r 0 > 0 tels que B(x 0 , 2r 0 ) ⊂ ω.

Etape 1 : traitement des mauvaises directions. On construit un champ de vitesses capable de modifier les trajectoires caractéristiques associées aux grandes vitesses afin de les conduire dans ω.

PROPOSITION II.4.3 (Proposition 3.1, Chapitre 2). Soit τ > 0. Il existe u 1 ∈ C ∞ ([0, T ] × T 2 ; R 2 ) et m > 0 tels que rot u 1 = 0, (t, x) ∈ [0, T ] × T 2 \ B(x 0 , r 0 10 ) , supp u 1 ⊂ (0, τ ) × T 2 , T 2 u 1 (t, x) dx = 0, [0, τ ],
et tels que les caractéristiques associées à

-v + u 1 , (X 1 , V 1 ), satisfont la propriété suivante : pour tout m ≥ m et tout (x, v) ∈ T 2 ×R 2 avec |v| ≥ m, il existe t ∈ ( τ 4 , 3τ 4 ) tel que X 1 (t, 0, x, v) ∈ B(x 0 , r 0 4 ), |V 1 (t, 0, x, v)| ≤ m e 2τ .
Etape 2 : traitement des basses vitesses. On construit un champ de vitesses capable d'accélérer les trajectoires des caractéristiques associées aux basses vitesses, grâce au résultat suivant.

PROPOSITION II.4.4 (Proposition 3.4, Chapitre 2). Soient τ > 0 et M > 0. Il existe u 2 ∈ C ∞ ([0, τ ] × T 2 ; R 2 ) tel que rot u 2 = 0, (t, x) ∈ [0, T ] × T 2 \ B(x 0 , r 0 ) , supp u 2 ⊂ (0, τ ) × T 2 , T 2 u 2 (t, x) dx = 0, [0, τ ],
et tels que pour un certain M > M + 1, les caractéristiques associées à -v + u 2 satisfont la propriété suivante : pour tout 

(x, v) ∈ T 2 ×B R 2 (0; M ), il existe t ∈ (0, τ ) tel que M + 1 ≤ |V (t, 0, x, v)| ≤ M .
rot u = 0, T 2 \ ω, T 2 u(t, x) dx = 0, t ∈ [0, T ], et tel que les caractéristiques associées à -v + u satisfont (II.4.62) ∀(x, v) ∈ T 2 × R 2 , ∃t ∈ (0, T ) tel que X(t, 0, x, v) ∈ B(x 0 , r 0 ).
Il faut ensuite construire une fonction de distribution f associée, telle que (II.4.60) soit vérifié. Pour ce faire, on choisit

Z 1 , Z 2 ∈ S (R 2 ) tels que (II.4.63)    R 2 v 1 Z 1 dv = R 2 v 2 Z 2 dv = 0, R 2 v 2 Z 1 dv = - R 2 v 1 Z 2 dv = 1, R 2 Z 1 dv = R 2 Z 1 dv = 0, ce qui permet de définir, pour tout (t, x, v) ∈ [0, T ] × T 2 × R 2 , f (t, x, v) := Z 1 (v)∂ x1 rot u(t, x) + Z 2 (v)∂ x2 rot u(t, x).
Grâce aux conditions (II.4.63), on obtient (II.4.61), ce qui entraîne (II.4.60).

Nous avons donc construit une solution de référence (f , u) telle que (II.4.62) est satisfait. Schéma de point fixe. Suivant la démarche décrite dans la section §II.4.2, on définit un domaine S ⊂ C 0 ([0, T ] × T 2 × R 2 ), dépendant d'un paramètre > 0.

Sans rentrer dans les détails, une fonction hölderienne appartient à S losqu'elle est -proche de f dans une norme de type Hölder. Ensuite, on définit un opérateur V en trois étapes.

(1) On associe à chaque élément g ∈ S le champ de vitesses u g , solution de

   -∆ x u g + ∇ x p g = j g , [0, T ] × T 2 , div x u g (t, x) = 0, [0, T ] × T 2 , T 2 u g (t, x) dx = 0, [0, T ].
Afin de pouvoir utiliser les caractéristiques associées à u g , on devra exploiter la régularité elliptique du système de Stokes. On montrera que, puisque

j g ∈ C 0 t L p x pour p > 2, alors u g (t) ∈ W 2,p (T 2 ) pour tout t ∈ [0, T ], ce qui implique u ∈ C 0 t C 1 x .
(2) Grâce aux caractéristiques associées à -v +u g , (X g , V g ), on résout l'équation de Vlasov dans (II.4.56) en imposant une absorption dans ω chaque fois que X g passe par ω.

(3) Le processus d'absorption introduit des discontinuités, ce qui peut être corrigé en utilisant un opérateur d'extension.

Ces trois points fournissent un opérateur V : 

S → C 0 ([0, T ] × T 2 × R 2 ) continu satisfaisant V (S ) ⊂ S .
           ∂ t f + v • ∇ x f + div v [(u -v)f ] = χ ω×R 2 G, (0, T ) × T 2 × R 2 , ∂ t u + u • ∇u -∆ x u + ∇ x p = j f -ρ f u, (0, T ) × T 2 , div x u(t, x) = 0, (0, T ) × T 2 , f | t=0 = f 0 (x, v), T 2 × R 2 , u| t=0 = u 0 (x),
T 2 . En raison de la nature non linéaire de ce système, il est nécessaire de préciser ce que l'on entend par solution. Puisque nous utiliserons les caractéristiques associées au champ -v + u, on voudra travailler avec des solutions suffisamment régulières.

D ÉFINITION II.4.5 (Définition 1.1, Chapitre 3). Soient T > 0, f 0 ∈ C 1 (T 2 × R 2 ) , u 0 ∈ H 1 (T 2 ; R 2 ) avec div x u 0 = 0 et G ∈ C 0 ([0, T ] × T 2 × R 2
). On dit que (f, u) est une solution forte du système (II.4.64) si les conditions suivantes sont satisfaites. 

f ∈ C 1 ([0, T ] × T 2 × R 2 )
sup t∈[0,T ] T 2 R 2 1 + |v| 2 f (t, x, v) dx dv < ∞, (II.4.67) u ∈ C 0 ([0, T ]; H 1 (T 2 ; R 2 )) ∩ L 2 (0, T ; H 2 (T 2 ; R 2 )), (II.4.68) div x u(t, x) = 0, ∀t ∈ [0, T ], (II.4.69) et pour tout ψ ∈ C 1 ([0, T ]; H 1 (T 2 ; R 2 )) avec div x ψ(t, x) = 0 et t ∈ (0, T ], on a T 2 u(t)ψ(t) dx + t 0 T 2 (∇u : ∇ψ -u ⊗ u • ∇ψ -u∂ t ψ) ds dx = T 2 u 0 ψ(0) dx + t 0 T 2 (j f (s) -ρ f (s)u(s)) ψ(s) ds dx, (II.4.70) où ∇u : ∇ψ := 2 j,k=1 ∂ j u k ∂ j ψ k , u ⊗ u • ∇ψ := 2 j,k=1 u j u k ∂ j ψ k .
Précisons que, sous la condition d'incompressibilité, le terme de convection satisfait (u • ∇)u = div(u ⊗ u), avec les notations précédentes.

Le résultat principal du Chapitre 3, que l'on énonce en détail ci-dessous, est un théorème de contrôlabilité à zéro pour des données petites. Plus précisément, on montre qu'il est possible de modifier les solutions fortes de (II.4.64), pourvu qu'elles soient petites, de manière à atteindre la distribution nulle et le champ de vitesses zéro en temps long. On devra faire l'hypothèse d'une condition géométrique sur la zone de contrôle.

TH ÉOR ÈME II.4.6 (Théorème 1.3, Chapitre 3). Soient γ > 2 et ω ⊂ T 2 satisfaisant la condition de bande de la Définition II.4.1. Il existe > 0, M > 0 et T 0 > 0 tels que pour tout

T ≥ T 0 , f 0 ∈ C 1 (T 2 × R 2 ) ∩ W 1,∞ (T 2 × R 2 ) et u 0 satisfaisant les conditions u 0 ∈ C 1 (T 2 ; R 2 ) ∩ H 2 (T 2 ; R 2 ), div x u 0 = 0, u 0 H 1 2 (T 2 ) ≤ M, et f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) ≤ , ∃κ > 0, sup (x,v)∈T 2 ×R 2 (1 + |v|) γ+1 (|∇ x f i | + |∇ v f i |) (x, v) ≤ κ, il existe un contrôle G ∈ C 0 ([0, T ] × T 2 × R 2 ) tel que la solution forte de (II.4.64) avec f | t=0 = f 0 et u| t=0 = u 0 existe, est unique et satisfait (II.4.71) f | t=T = 0, u| t=T = 0.
La stratégie de la preuve de ce résultat est basée sur le schéma de preuve décrit précédement pour le système de Vlasov-Stokes, en incorporant quelques idées de la stratégie pour le système de Vlasov-Maxwell relativiste dans [START_REF] Glass | On the controllability of the relativistic Vlasov-Maxwell system[END_REF], comme l'utilisation d'un résultat de contrôle pour l'équation du champ afin de construire des solutions de référence. Plus précisément, nous devons construire une solution de référence (f , u) du système (II.4.64) de telle sorte que les caractéristiques associées à -v + u arrivent dans la zone de contrôle, malgré l'existence de mauvaises directions et basses vitesses.

En revanche, l'adaptation de cette stratégie au cas du système (II.4.64) est très délicate, en raison des difficultés engendrées par le système de Navier-Stokes et le terme d'interaction j f -ρ f u.

Nous allons suivre les trois étapes suivantes. Soient T 2 > T 1 > 0 suffisamment grands.

Etape 1 : on construit une solution de référence (f , u) adéquate et telle que 

(f , u)| t=0 = 0 et (f , u)| t=T = 0.
∂ t u -∆u + (u • ∇)u + ∇p = w, (t, x) ∈ (0, τ ) × T 2 , div x u(t, x) = 0, (t, x) ∈ (0, τ ) × T 2 , u |t=0 = u in (x), x ∈ T 2 ,
satisfasse u| t=τ = u N S | t=τ . On utilise ce résultat pour éliminer les obstructions liées aux basses vitesses et aux mauvaises directions. Dans ce cas, il faut utiliser l'hypothèse géométrique sur ω. D'après la Définition II.4.1, il existe une unique mauvaise direction, n ⊥ H , ce qui suggère de chercher un champ de vitesses capable d'accélérer les trajectoires des caractéristiques associées dans la direction n H . Nous pouvons faire ceci en trois étapes.

Premièrement, on utilise le théorème de Coron-Fursikov pour passer de zéro à la solution stationnaire n H . Deuxièmement, on maintient la solution stationnaire suffisamment de temps pour accélerer toutes les basses vitesses dans la direction du champ. C'est à ce stade que l'on a besoin d'imposer un temps long. Finalement, on récupère la configuration à vitesse zéro grâce au théorème cité.

Ces trois étapes fournissent un contrôle w, essentiel pour la modification du champ de vitesses u que l'on vient de décrire. Nous allons utiliser ce contrôle pour construire la fonction de distribution associée, via le couplage w

= j f -ρ f u. Choi- sissons deux fonctions Z 1 , Z 2 ∈ (R 2 ) telles que R 2 v 1 Z 1 dv = 1, R 2 v 2 Z 1 dv = 0, R 2 Z 1 dv = 0, R 2 v 1 Z 2 dv = 0, R 2 v 2 Z 2 dv = 1, R 2 Z 2 dv = 0. Ensuite, on définit f 2 (t, x, v) := (Z 1 , Z 2 )(v) • w(t, x), ∀(t, x, v) ∈ (0, T ) × T 2 × R 2 ,
Ceci nous conduit au résultat suivant.

PROPOSITION II.4.7 (Proposition 3.1, Chapitre 3). Soit ω ⊂ T 2 satisfaisant la Définition II.4.1. Il existe T 0 > 0 tel que pour tout T ≥ T 0 , il existe une solution de référence (f , u) du système (II.4.64) telle que

f ∈ C ∞ ([0, T ] × T 2 ; S (R 2 )), u ∈ C ∞ ([0, T ] × T 2 ; R 2 ), (f , u)| t=0 = (0, 0), (f , u)| t=T = (0, 0), supp(f ) ⊂ (0, T ) × ω × R 2 , et telle que les caractéristiques associées à -v + u satisfont (II.4.73) ∀(x, v) ∈ T 2 × R 2 , ∃t ∈ T 12 , 11T 12 tel que X(t, 0, x, v) ∈ ω.
Schéma de point fixe. Nous suivrons essentiellement les mêmes étapes que dans le cas de Vlasov-Stokes décrites en §II.4.2. On définit S ⊂ C 0 ([0, T ] × T 2 × R 2 ) un domaine de fonctions hölderiennes -proches de f . Ensuite, on définit un opérateur sur S en trois étapes : association d'un champ de vitesses, absorption et extension. Les deux derniers points sont semblables au cas de Vlasov-Stokes. En revanche, le premier point présente des difficultés importantes, dues au caractère non linéaire de Navier-Stokes, et que l'on décrit plus en détail.

1ère étape : association d'un champ de vitesses. A chaque g ∈ S , on associe la solution du système (II.4.74)

   ∂ t u g + (u g • ∇) u g -∆ x u g (t) + ∇ x p g (t) = j g (t) -ρ g (t)u g , (0, T ) × T 2 , div x u g (t, x) = 0, (0, T ) × T 2 , u g |t=0 = u 0 , T 2 ,
ce qui est possible en vertu du résultat suivant.

PROPOSITION II.4.8 (Proposition 4.1, Chapitre 3). Soit g ∈ S et soit ≤ 0 suffisamment petit. Alors, il existe une unique solution faible du système (II.4.74). En plus, cette solution satisfait, pour tout t ∈ [0, T ],

u g (t) 2 L 2 (T 2 ) + t 0 ∇u g (s) 2 L 2 (T 2 ) ds ≤ 2e T u 0 2 L 2 (T 2 ) + T (1 + j f 2 L ∞ (0,T ;L 2 (T 2 )) ) .
La notion de solution faible pour (II.4.74) est une adaptation de la notion de solution faible de Leray en présence du terme d'intéraction j g -ρ g u. La preuve de ce résultat se fait en exploitant le résultat d'existence et d'unicité en dimension 2 pour le système de Navier-Stokes, ce qui permet de voir j g -ρ g u comme un terme source via un schéma itératif, puis de passer à la limite dans la formulation faible. 2ème étape : absorption. Dans cette étape, nous avons besoin des caractéristiques associées à -v + u g , qui sont bien définies et régulières pourvu que u g soit suffisamment régulier. Afin d'obtenir cette régularité pour u g , il est nécessaire d'utiliser des résultats de regularité pour Navier-Stokes en dimension 2 sous l'hypothèse

j g -ρ g u g ∈ L 2 t H -1 2
x , ce qui permet de montrer que

u g ∈ L 2 t H 3 2
x . Puis, nous utilisons un argument de bootstrap, qui donne

u g ∈ C 0 t H 1 x ∩L 2 t H 2 x , puisque (u g •∇)u g ∈ L 2 t L 2
x . Ensuite, on continue l'argument de bootstrap à l'aide de la régularité du système de Stokes dans les espaces L s t L p x , dû à Y. Giga et H. Sohr [START_REF] Giga | Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF]. Nous montrons que

(u g • ∇)u g ∈ L 2 t L 3 x , ce qui implique u g ∈ L 2 t W 2,3
x , et par injection de Sobolev, on conclut u g ∈ L 2

t C 1 x . Cet argument permet de définir les caractéristiques associées à -v+u g , que l'on note (X g , V g ). Comme dans le cas de Vlasov-Stokes (cf. II.4.2), on résout l'équation de Vlasov dans (II.1.20) en imposant une absorption dans ω chaque fois que X g passe par ω.

3ème étape : extension . On suit les lignes décrites dans §II.4.2.

Comme dans le cas de Vlasov-Stokes, le théorème de Leray-Schauder permet de démontrer que l'opérateur V possède un point fixe, g * , dans S , lorsque est suffisamment petit.

En revanche, l'estimation permettant de raprocher uniformément les caractéristiques (X g * , V g * ) des caractéristiques de référence (X, V ) est beaucoup plus difficile à obtenir que dans les cas précédents, où l'on pouvait disposer de la régularité elliptique (Poisson et Stokes) ou de la linéarité du champ (Maxwell). Dans le cas de Navier-Stokes, nous obtiendrons les estimations pour les caractéristiques à partir du résultat de stabilité suivant.

PROPOSITION II.4.9 (Proposition 5.1, Chapitre 3). Soient (g, u g ) et (f, u f ) deux solutions fortes du système (II.4.64), en accord avec la Définition II.4.5, pour des données initiales

u g | t=0 = u g 0 , g| t=0 = g 0 et u f | t=0 = u f 0 , f | t=0 = f 0 . Supposons que sup t,x (|ρ g (t, x)| + |ρ f (t, x)|) < ∞.
Alors, il existe une constante C > 0 telle que pour tout t ∈ (0, T ],

(u g -u f )(t) 2 H 1 2 (T 2 ) + t 0 ∇(u g -u f )(s) 2 H 1 2 (T 2 ) ds ≤ e C(t) u g 0 -u f 0 2 H 1 2 (T 2 ) + t 0 j g-f -ρ g-f u f 2 L 2 (T 2 ) , avec C(t) := t 0 1 + ρ f (s) L ∞ (T 2 ) + ρ f (s) 2 L ∞ (T 2 ) ds. Ceci permet d'écrire sup t,x,v (X g * , V g * ) -(X, V ) ,
ce qui garantit que X g * arrive dans la zone de contrôle pourvu que soit suffisamment petit. Par conséquent, le processus d'absorption permet d'atteindre une configuration telle que g * = 0 en dehors de ω.

Finalement, une autre application du théorème de Coron-Fursikov mène cette solution à l'état final (II.4.71).

Précisons aussi que la Proposition II.4.9 est cruciale pour démontrer que la solution g * construite est unique dans une certaine classe.

CHAPITRE III

Contrôlabilité d'équations paraboliques dégénérées

par la méthode de platitude

III.1. Équations paraboliques dégénérées

Nous nous concentrons dans cette partie sur la contrôlabilité de quelques équations paraboliques dégénérées. Plus précisément, on considère un ouvert régulier Ω ⊂ R d , avec d ≥ 1, et un opérateur différentiel sur Ω de la forme

P := div x [A(x)∇] + b(x) • ∇, (0, T ) × Ω, avec A ∈ C 1 (Ω), b ∈ C 0 (Ω), A(x) ≥ 0, x ∈ Ω.
La dégénérescence vient du fait que la matrice A peut s'annuler dans Ω ou sur ∂Ω, contrairement au cas uniformément elliptique. Dans cette thèse, on s'intéresse à des systèmes du type (III.1.1)

   ∂ t f = Pf, (0, T ) × Ω, BC(f ) = 0, (0, T ) × ∂Ω, f | t=0 = f 0 , Ω,
où la condition BC(f ) = 0 réprésente les conditions aux bords associées à l'opérateur P. L'étude de ce type d'équations est motivé notamment par des connexions avec la géométrie sous-riemannienne (voir, par exemple, [START_REF] Boscain | The Laplace-Beltrami operator in almost-Riemannian Geometry[END_REF]).

Les questions de contrôlabilité présentes dans la littérature concernent le contrôle interne de (III.1.1), ainsi que le contrôle frontière, dont on verra un exemple dans le Chapitre 4. III.1.1. Un système modèle en 1-D. Décrivons un problème modèle 1 qui sera traité dans le Chapitre 4. Soit α ∈ R + et considérons l'opérateur

P α := ∂ x (x α ∂ x ) , x ∈ (0, 1),
qui rentre dans le cadre général de la partie précédente avec Ω = (0, 1),

A(x) = x α et b = 0. On considère l'équation parabolique associée (III.1.2)        ∂ t f = P α f, (0, T ) × (0, 1), BC(α, f ) = 0, t ∈ (0, T ), f | x=1 = 0, t ∈ (0, T ), f | t=0 = f 0 ,
x ∈ (0, 1).

1. L'intérêt de l'étude de ce modèle est académique dans le sens où il représente l'exemple plus simple d'équation parabolique dégenérée, où certaines pathologies du contexte dégénéré sont déjà visibles. C'est donc un premier pas vers la compréhension de modèles plus significatifs (Grushin, Heisenberg, etc).

Le caractère bien posé de (III.1.2) a été étudié par P. Cannarsa, P. Martinez et J. Vancostenoble dans [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF], suivant l'approche abstraite de [START_REF] Campiti | Degenerate self-adjoint evolution equations on the unit interval[END_REF]. Dans ce travail, les auteurs ont déterminé qu'il est nécessaire de distinguer les conditions aux bords associées à P α par rapport à la valeur de α :

(1) cas faiblement dégénéré :

lorsque α ∈ (0, 1), BC(α, f ) = f | x=0 , ( 2 
) cas fortement dégénéré : lorsque α ∈ [1, ∞), BC(α, f ) = (x α ∂ x f )| x=0 .
Ceci introduit des différences importantes entre les deux cas, spécialement au niveau du cadre fonctionnel associé au caractère bien posé.

Du point de vue de la contrôlabilité, les mêmes auteurs ont étudié dans [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerated parabolic operators[END_REF] 

la contrôlabilité de (III.1.2) avec un contrôle interne, c'est-à-dire, (III.1.3)        ∂ t f -∂ x (x α ∂ x f ) = χ ω u, (0, T ) × (0, 1), BC(α, f ) = 0, t ∈ (0, T ), f | x=1 = 0, t ∈ (0, T ), f | t=0 = f 0 , x ∈ (0, 1),
où ω ⊂ (0, 1) est un ouvert. Le résultat obtenu est le suivant.

TH ÉOR ÈME III.1.1 (P. Cannarsa, P. Martinez et J. Vancostenoble, [START_REF] Cannarsa | Carleman estimates for a class of degenerated parabolic operators[END_REF]).

Soit α ∈ (0, 2), T > 0 et soit ω ⊂ (0, 1) un intervalle. Alors, pour tout f 0 ∈ L 2 (0, 1), il existe u ∈ L 2 ((0, T ) × (0, 1)) tel que la solution de (III.1.3) avec f | t=0 = f 0 satisfait f | t=T = 0.
La preuve de ce résultat se fait grâce à la méthode HUM (cf. §I.2.1), en passant par une inégalité d'observabilité pour le système adjoint. Pour ce faire, les auteurs développent des nouvelles techniques pour obtenir des inégalités de Carleman globales pour l'opérateur parabolique

Q α := ∂ t -∂ x (x α ∂ x ) , (0, T ) × (0, 1).
La dégénérescence en x = 0 fait que le poids classique de la méthode de Fursikov-Imanuvilov (cf. §II.3.2.4) n'est pas utilisable. En revanche, les auteurs trouvent dans [START_REF] Cannarsa | Carleman estimates for a class of degenerated parabolic operators[END_REF] un nouveau poids de la forme 2 , qui tient compte de la dégénérescence. L'obtention d'inégalités de Carleman avec ce poids, combinée avec des inégalités du type Hardy, conduit à l'observabilité du système adjoint et donc au Théorème III.1.1.

(III.1.4) σ(t, x) := θ(t)p(x), θ(t) := 1 t 4 (T -t) 4 , p(x) := 2 -x 2-α (2 -α)
Dans le cas α ≥ 2, les mêmes auteurs ont démontré dans [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF] que le système (III.1.3) n'est pas contrôlable. En effet, un changement de variables permet de transformer (III.1.3) en une équation du type chaleur sur R + , alors que la région de contrôle ω est transformée en un intervalle borné. La non contrôlabilité du système résultant suit alors de celle du système de [START_REF] Escauriaza | Backward Uniqueness for Parabolic Operators[END_REF], evoqué en §II.3.3.

Concernant la contrôlabilité frontière de (III.1.2), lorsque le contrôle se place sur le bord x = 1, la contrôlabilité du système (III.1.5)

       ∂ t f -∂ x (x α ∂ x f ) = 0, (0, T ) × (0, 1), BC(α, f ) = 0, t ∈ (0, T ), f | x=1 = u(t), t ∈ (0, T ), f | t=0 = f 0 ,
x ∈ (0, 1), découle du Théorème III.1.1, grâce à la méthode d'extension. En outre, il est possible de traiter le cas où le contrôle se place sur le bord x = 0, du moins dans le cas faiblement dégénéré. Dans ce cas, la contrôlabilité approchée a été démontrée dans [START_REF] Cannarsa | Unique continuation and approximate controllability for a degenerate parabolic equation[END_REF], tandis que la contrôlabilité exacte a été obtenue dans [START_REF] Gueye | Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations[END_REF].

Dans le Chapitre 4, nous allons donner une preuve alternative de la contrôlabilité de (III.1.5) via la méthode de platitude, qui permet l'obtention de contrôles explicites.

III.2. La méthode de platitude

Cette méthode a été développée par M. Fliess, J. Lévine, P. Martin et P. Rouchon dans [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], dans le contexte des systèmes de dimension finie, avec des applications en Automatique. Cette méthode est importante car elle permet la construction de contrôles explicites. Cette approche a été adaptée à l'étude de certaines équations aux dérivées partielles, comme la chaleur ou Schrödinger ( [START_REF] Laroche | Motion planning for the heat equation[END_REF][START_REF] Martin | Null controllability of the heat equation using flatness[END_REF][START_REF] Martin | Null controllability of one-dimensional parabolic systems using flatness[END_REF][START_REF] Martin | Controllability of the 1D Schrodinger equation by the flatness method[END_REF]).

Afin d'expliquer les éléments de cette méthode, considérons un système de contrôle de la forme (III.2.6)

   ∂f ∂t = F(t, f ), (0, T ) × Ω, Bf = χ Γ u(t), (0, T ) × ∂Ω, f | t=0 = f 0 , Ω,
où le contrôle u est localisé sur Γ, une partie de la frontière ∂Ω. On dit que le système (III.2.6) est plat lorsqu'il est possible de paramétrer toute trajectoire (y, u) par rapport à une famille de fonctions dans un espace adapté, appelées sorties plates. L'obtention d'une telle paramétrisation permet de construire une sortie plate particulière destinée à mener le système (III.2.6) à zéro. III.2.1. La méthode de platitude pour l'équation de la chaleur. Décrivons l'application de cette méthode à l'équation de la chaleur, suivant [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF]. Cette approche est le modèle de notre stratégie dans le Chapitre 4.

Considérons l'équation de la chaleur avec des conditions aux bords du type Neumann (III.2.7)

       ∂ t f -∂ xx f = 0, (0, T ) × (0, 1), ∂ x f (t, 0) = 0, t ∈ (0, T ), ∂ x f (t, 1) = u(t), t ∈ (0, T ), f | t=0 = f 0 , (0, 1). 
Dans [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF] les auteurs montrent que le système (III.2.7) est plat, via la paramétrisation

(III.2.8) f | x=0 = y(t), t ∈ (0, T ),
qui permet de construire toute trajectoire de (III.2.7) à partir de la donnée initiale f 0 et de la sortie plate y. Afin d'assurer que cette paramétrisation est bien définie, il faut choisir les sorties plates dans une classe de fonctions régulières, la classe de Gevrey.

DEFINITION III.2.1. Soit s ∈ R + et t 1 , t 2 ∈ R avec t 1 < t 2 . Une fonction h ∈ C ∞ ([t 1 , t 2 ]) est Gevrey d'ordre s sur [t 1 , t 2 ] si ∃M, R > 0 tels que sup t1≤r≤t2 h (n) (r) ≤ M (n!) s R n , ∀n ∈ N.

Dans ce cas, on écrit

h ∈ G s ([t 1 , t 2 ]).
Le résultat obtenu grâce à la méthode de platitude est le suivant.

TH ÉOR ÈME III.2.2 (P. Martin, L. Rosier et P. Rouchon, [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF]). Soit

f 0 ∈ L 2 (0, 1), T > 0, τ ∈ (0, T ) et s ∈ (1, 2). Alors, il existe y ∈ G s ([τ, T ]) telle que le contrôle u(t) = 0, 0 ≤ t ≤ τ, ∞ k=1 y (k) (t) (2k-1)! , τ < t ≤ T, mène le système (III.2.7) à zéro en temps T > 0.
Expliquons les éléments de la preuve de ce résultat. D'abord, l'utilisation d'une série formelle du type (III.2.9) 

f (t, x) = ∞ k=1 a k (t) x k k! , (t, x) ∈ (0, T ) × (0,
(a k+2 -ȧk ) (t) x k k! = 0,
ce qui fournit la relation de récurrence a k+2 = ȧk , pour tout k ≥ 0. De plus, puisque la condition au bord impose a 1 = 0, cela donne, grâce à (III.2.8), la solution formelle (III.2.10)

f (t, x) = ∞ k=1 y (k) (t) x 2k (2k)! , (t, x) ∈ (0, T ) × (0, 1),
et la fonction de contrôle est donnée par la série formelle (III.2.11)

u(t) = ∞ k=1 y (k) (t) (2k -1)! , t ∈ (0, T ).
Afin d'assurer la convergence de ces séries, il est nécessaire de considérer des sorties plates dans les espaces G s ([0, T ]), avec s ∈ (0, 2). Ensuite, il faut construire une sortie plate de manière à mener (III.2.7) à zéro en temps T > 0. Pour ce faire, on doit exploiter l'effet régularisant de l'équation de la chaleur avec u = 0, ce qui permet d'écrire la solution de (III.2.7) pour une donnée initiale f 0 ∈ L 2 (0, 1) sous la forme

f (τ, x) = ∞ k=1 y k x 2k (2k)! , x ∈ (0, 1), pour un certain τ ∈ (0, T ). Le but est donc de construire une sortie plate y ∈ G s ([τ, T ]) telle que (III.2.12) y (k) (τ ) = y k , y (k) (T ) = 0, ∀k ∈ N.
Cette construction est possible grâce à l'utilisation de la fonction (III.2.13)

φ s (t) :=        1, t ≤ 0, e -(1-t) -1 s-1 e -(1-t) -1 s-1 +e -t -1 s-1 , 0 < t < 1, 0, t ≥ 1, qui appartient à G s ([0, 1]) et satisfait (III.2.14) φ s (0) = 1, φ s (1) = 0, φ (i) s (0) = φ (i) s (1) = 0, ∀i ∈ N * . Ceci permet de définir, pour s ∈ (1, 2), la sortie plate y(t) := φ s t -τ T -τ ∞ k=0 y k (t -τ ) k k! , t ∈ (τ, T ),
qui satisfait (III.2.12). Ceci conduit au Théorème III.2.2.

III.3. Résultats nouveaux (Chapitre 4)

Le but de cette section est de présenter le théorème principal du Chapitre 4, qui donne un résultat de contrôlabilité frontière, ainsi que des contrôles explicites, pour le système

(III.3.15)        ∂ t f (t, x) -∂ x (x α ∂ x ) f (t, x) = 0, (0, T ) × (0, 1), (x α ∂ x ) f (t, x)| x=0 = 0, t ∈ (0, T ), f (t, 1) = u(t), t ∈ (0, T ), f (0, x) = f 0 (x),
x ∈ (0, 1),

dans le cas fortement dégénéré où α ∈ [1, 2). TH ÉOR ÈME III.3.1 (Théorème 1.1, Chapitre 4). Soit α ∈ [1, 2). Soient f 0 ∈ L 2 (0, 1), T > 0, τ ∈ (0, T ) et s ∈ (1, 2). Alors, il existe une sortie plate y ∈ G s ([τ, T ]) telle que le contrôle u(t) = 0, 0 ≤ t ≤ τ, ∞ k=0 
y (k) (t) (2-α) 2k k! k j=1 (j+ α-1 2-α )
, τ < t ≤ T, mène à zéro la solution faible du système (III.3.15) en temps T .

La notion de solution faible utilisée est détaillée dans la Définition 1.2 du Chapitre 4.

Précisons que le cas faiblement dégénéré (α ∈ (0, 1)) a été traité dans [START_REF] Martin | Null controllability of one-dimensional parabolic systems using flatness[END_REF].

Donnons quelques éléments de la preuve de ce Théorème, qui se concentrent en trois étapes :

Étape 1 : détermination des sorties plates, via des solutions formelles, Étape 2 : étude de l'effet régularisant du système libre, Étape 3 : construction d'une sortie plate pour le contrôle à zéro.

Étape 1 : afin de déterminer la sortie plate permettant la paramétrisation du système (III.3.15), nous utilisons le développement formel suivant :

f (t, x) = ∞ k=0 c 2k (t) x 1-α 2 2k , ∀(t, x) ∈ (0, T ) × (0, 1), pour une suite (c 2k (t)) k ∈ N de coefficients à déterminer. Ceci donne, formellement, ∂ x (x α ∂ x f ) (t, x) = ∞ k=0 c 2(k+1) (t)(2 -α) 2 (k + 1) k + 1 + α -1 2 -α x 1-α 2 2k , ∂ t f (t, x) = ∞ k=0 ċ2k (t) x 1-α 2 2k .
Par conséquent, si f est solution formelle de (III.3.15), l'équation impose la relation de récurrence suivante sur les (c 2k (t)) k :

c 0 (t) := f (t, 0), c 2(k+1) (t) = ċ2k (t) (2 -α) 2 (k + 1) k + 1 + α-1 2-α , ∀k ∈ N. (III.3.16)
Alors, en choisissant une sortie plate de la forme (III.3.17)

y(t) := f (t, 0) = c 0 (t), ∀t ∈ (0, T ), et en itérant dans (III.3.16), il vient c 2k (t) = y (k) (t) (2 -α) 2k k! k j=1 j + α-1 2-α , ∀t ∈ (0, T ), ∀k ∈ N.
On en déduit la solution formelle

(III.3.18) f (t, x) = ∞ k=0 y (k) (t) x 1-α 2 2k (2 -α) 2k k! k j=1 j + α-1 2-α
, et la fonction de contrôle donnée par la série formelle

(III.3.19) u(t) = ∞ k=0 y (k) (t) (2 -α) 2k k! k j=1 j + α-1 2-α .
Il faut ensuite montrer que les expressions (III. Étape 2 : dans le cas du système (III.3.15), l'utilisation de l'effet régularisant de l'équation parabolique est plus compliqué que dans le cas de la chaleur.

Dans le but d'analyser quantitativement cet effet régularisant, nous déterminons (Proposition 4.1, Chapitre 4) la famille spectrale associée à l'opérateur

P α = ∂ x (x α ∂ x ). On obtient les fonctions propres (III.3.20) ϕ k (x) = √ 2 -α |J ν+1 (j ν,k )| x 1-α 2 J ν j ν,k x 1-α 2 , ∀x ∈ (0, 1), k ∈ N * , avec les valeurs propres (III.3.21) λ k := 1 - α 2 2 j 2 ν,k , ∀k ∈ N * , où J ν désigne la fonction de Bessel d'ordre ν = α-1 2-α et (j ν,k
) k la suite de ses zéros. On montre aussi que la famille (ϕ k ) k est une base hilbertienne de L 2 (0, 1). Par conséquent, la solution faible de (III. 3.15) 

avec u = 0 et f | t=0 = f 0 ∈ L 2 (0, 1) s'écrit 2 (III.3.22) f (t) = ∞ k=1 e -λ k t f 0 , ϕ k ϕ k dans L 2 (0, 1), ∀t ∈ [0, T ].
Une analyse approfondie de cette série permet d'obtenir le résultat suivant.

PROPOSITION III.3.2 (Proposition 5.1, Chapitre 4). Soient f 0 ∈ L 2 (0, 1), T > 0 et soit f ∈ C 0 ([0, T ]; L 2 (0, 1)) la solution faible du système (III.3.15) avec u = 0. Alors, il existe Y ∈ C ∞ ((0, T ]) tel que pour tout σ ∈ (0, T ), Y ∈ G 1 ([σ, T ]) et (III.3.23) f (t, x) = ∞ n=0 Y (n) (t) x 1-α 2 2n (2 -α) 2n n! n j=1 j + α-1 2-α , pour tout (t, x) ∈ [σ, T ] × [0, 1].
Étape 3 : La Proposition III.3.2 permet alors la construction d'une sortie plate adéquate, en utilisant encore une fois la fonction définie par (III.2.13). On pose

y(t) := φ s t -τ T -τ Y (t), t ∈ (0, T ],
pour un certain τ ∈ (0, T ). Cette sortie plate génère une solution faible de (III. 2. L'étude de ce développement permet aussi une approche de la contrôlabilité de (III.3.15) par la méthode des moments, dans l'esprit de [START_REF] Fattorini | Exact controllabiliity for linear parabolic equations in one space dimension[END_REF]. Cette direction a été exploitée dans [START_REF] Cannarsa | The cost of controlling degenerate parabolic equations by boundary controls[END_REF] en connexion avec ke problème de la caractérisation des états atteignables pour α ∈ (0, 1).

CHAPITRE IV

Contrôlabilité de l'équation de Schrödinger par la forme du domaine

IV.1. Modèle physique

Considérons la dynamique d'une particule quantique de masse m = 1 dans l'espace R d , avec d = 1, 2, 3. Selon le premier principe de la Mécanique Quantique (voir [12, Sec. 2.1.1, p. 35]), il est possible de décrire complètement l'état quantique à l'instant t ≥ 0 grâce à une fonction, appelée fonction d'onde,

ψ : R + × R d → C.
En particulier, la probabilité de trouver ladite particule dans la région

D ⊆ R d à l'instant t ≥ 0 est D |ψ(t, x)| 2 dx.
L'évolution de la dynamique de la particule quantique libre est décrite, grâce au deuxième principe (voir [12, Sec. 2.2.3, p. 38]), par l'équation de Schrödinger

i∂ t ψ = -∆ x ψ, R + × R d , ψ| t=0 = ψ 0 ∈ L 2 (R d ).
Dans le cas où il existe une interaction de la particule avec un élément extérieur, par exemple un champ de forces, le deuxième principe établit aussi (voir [12, Sec. 2.5.1, p.48]) que la dynamique dans ce cas est décrite par l'équation (IV.1.1)

i∂ t ψ = -∆ x ψ + V (t, x)ψ, R + × R d , ψ| t=0 = ψ 0 ∈ L 2 (R d ),
où V (t, x) est le potentiel d'interaction. On note par H = -∆ x + V l'hamiltonien du système. L'utilisation de certains potentiels, comme les puits de potentiel infinis, conduit au confinement d'une particule quantique dans une partie de l'espace (voir [START_REF] Basdevant | Mécanique Quantique[END_REF]Sec. 4.3.4,p. 88]). Plus précisément, si Ω ⊂ R d est un ouvert régulier, il existe des potentiels V (t, x) tels que (IV.1.1) s'écrit comme un problème aux limites sur Ω, (IV.1.2)

   i∂ t ψ = -∆ x ψ + V (t, x)ψ, R + × Ω, ψ = 0, R + × ∂Ω, ψ| t=0 = ψ 0 ∈ L 2 (Ω), avec la condition de normalisation Ω |ψ(t, x)| 2 dx = 1, t ≥ 0.
Cette condition exprime le fait que la probabilité de trouver la particule quantique en dehors de Ω ou sur le bord ∂Ω est zéro.

IV.2. Le problème du contrôle quantique

Considérant la dynamique décrite par (IV.1.1), et en connexion avec la problématique de la section §I.1, nous nous proposons de modifier la trajectoire d'une particule quantique en faisant agir un contrôle sur le système. En fonction de la nature de cette action extérieure, on peut distinguer plusieurs approches.

IV.2.1. Contrôle linéaire. L'action sur le système se fait via une source extérieure localisée sur une partie du domaine (contrôle interne) ou via un terme de bord localisé sur une partie de la frontière (contrôle frontière). Dans le premier cas, le problème modèle est

(IV.2.3)    i∂ t ψ = -∆ x ψ + χ ω u, (0, T ) × Ω, ψ = 0, (0, T ) × ∂Ω, ψ| t=0 = ψ 0 , Ω,
où Ω ⊂ R d est un ouvert régulier et ω ⊂ Ω. Ce problème a été étudié en utilisant différentes méthodes, basées sur l'approche HUM (cf. §I.2.1), avec plusieurs choix de Ω et ω.

Le premier résultat dans cette direction est dû à S. Jaffard, qui a démontré dans [START_REF] Jaffard | Contrôle interne exact des vibrations d'une plaque rectangulaire[END_REF] que le système (IV.2.3) avec Ω = T 2 est exactement contrôlable avec ω un ouvert quelconque. Ce résultat, qui repose sur l'analyse des séries de Fourier lacunaires, a été étendu à la dimension quelconque dans [START_REF] Komornik | Fourier series in Control Theory[END_REF]. On pourra citer aussi les travaux de N. Burq et M. Zworski [START_REF] Burq | Control in the presence of a black box[END_REF] pour des géométries plus complexes en l'absence de bord.

Dans le cas d'un ouvert Ω avec un bord ∂Ω, G. Lebeau a démontré dans [106] la contrôlabilité de (IV.2.3) lorsque ∂Ω est analytique et ω satisfait la condition de contrôle géométrique de la Définition I.2.5. Les outils développés dans ce travail, basés sur l'analyse microlocale, permettent aussi le traitement du problème de contrôle frontière. Un autre résultat dans cette même direction a été démontré par E. Machtyngier dans [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF] grâce à la méthode des multiplicateurs.

Précisons qu'il existe une connexion profonde entre la contrôlabilité interne de l'équation de Schrödinger et celle de l'équation des ondes (IV.2.4)

   ∂ tt w -∆ x w = χ ω g, (0, T ) × Ω, ∂w = 0 (0, T ) × ∂Ω, w| t=0 = w 0 , ∂ t w| t=0 = w 1 , Ω,
pour (w 0 , w 1 ) suffisament réguliers et g un contrôle localisé en ω. Il est possible de démontrer (voir [141, Section 6.7, p.200]) que la contrôlabilité exacte de (IV.2.4) implique la contrôlabilité exacte de (IV.2.3). Par conséquent, les hypothéses sur la régularité de Ω présentes dans [START_REF] Burq | Condition nécessaire et suffisante pour la contr labilité exacte des ondes[END_REF], c'est à dire, ∂Ω de classe C ∞ , sans points de contact d'ordre infini avec ses tangents et ω satisfaisant la condition de contrôle géométrique de la définition I.2.5, sont suffisantes por la contrôlabilité de (IV.2.3).

Les problèmes de contrôlabilité linéaire du type (IV.2.3), ne possèdent pas une interprétation physique évidente en rélation avec le modèle de §IV.1. En revanche, l'intérêt purement mathématique de cet approche est très grand. Par exemple, la compréhension du problème linéaire (IV.2.3) est essentiel dans l'étude de certains modèles non linéaires, comme dans [START_REF] Dehman | Stabilization and control for the nonlinear Schrödinger equation on a compact surface[END_REF][START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF][START_REF] Rosier | Exact Controllability and Stabilizability of the Nonlinear Schrödinger Equation on a Bounded Interval[END_REF][START_REF] Rosier | Control and Stabilization of the Nonlinear Schrödinger Equation on Rectangles[END_REF][START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on an interval[END_REF][START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3[END_REF]. On renvoie à [100] pour plus de détails dans cette direction. L'étude des systèmes du type (IV.2.3) permet aussi d'établir des connexions entre l'observabilité et des propriétés ergodiques de certaines familles spectrales (voir par exemple [START_REF] Anantharaman | Dispersion and controllability for the Schrödinger equation on negatively curved manifolds[END_REF]).

IV.2.2. Contrôle bilinéaire. Lorsque l'on veut agir sur un système quantique de manière effective, en vue des applications physiques (voir, par exemple, [54, p.xii]), il faut remplacer le terme de contrôle interne par un contrôle appartenant au hamiltonien du système, en tant que potentiel. Ceci conduit à une équation du type (IV.2.5)

   i∂ t ψ = (-∆ + V (t, x))ψ + w(t, x)ψ, (0, T ) × Ω, ψ = 0, (0, T ) × ∂Ω, ψ| t=0 = ψ 0 , Ω.
Le problème de contrôle bilinéaire consiste donc à trouver un potentiel w capable de changer la dynamique de (IV.2.5) pour arriver à une cible fixée à l'avance. On précisera que le terme wψ fait que l'application ΘT : w → ψ| t=T , où ψ est la solution de (IV.2.5) avec ψ 0 = 0 n'est pas linéaire par rapport à w. Le but de cette section est de donner quelques détails sur les techniques du contrôle bilinéaire pour l'équation de Schrödinger, qui seront utiles dans le Chapitre 5.

IV.2.2.1. Résultats de contrôlabilité exacte. Le premier résultat de contrôle bilinéaire, dû à J. M. Ball, J. Marsden et M. Slemrod, via une approche abstraite, a exhibé des obstructions importantes à la contrôlabilité. Plus précisément, les auteurs ont montré des exemples où l'ensemble des états atteignables possède un complémentaire dense dans l'espace d'états. En revanche, comme il a été montré par K. Beauchard dans [START_REF] Beauchard | Local controllability of a 1D Schrödinger equation[END_REF], ces restrictions sont dues uniquement au choix du cadre fonctionnnel. Expliquons cette problématique plus en détail.

Nous nous concentrerons sur le cas d = 1, où la particule quantique est confinée dans un segment. Le problème que l'on considère est alors le suivant :

(IV.2.6)    i∂ t ψ = (-∂ xx + V (x))ψ + u(t)µ(x)ψ, (0, T ) × (0, 1), ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ), ψ(0, x) = ψ 0 (x),
x ∈ (0, 1), avec un contrôle u ∈ L 2 (0, T ; R) et une fonction µ : (0, 1) → R fixée. Physiquement, on peut interpréter u comme l'amplitude du champ extérieur, alors que µ réprésente le moment dipolaire de la particule. Lorsque V est suffisamment régulier 1 , on note (λ k,V ) k∈N * la suite croissante de vecteurs propres de l'opérateur

A V := -∂ xx + V (x), D(A V ) = H 2 ∩ H 1 0 ((0, 1); C), et (ϕ k,V
) k∈N * la suite de ses fonctions propres, qui forme une base hilbertienne de L 2 (0, 1; C). Pour tout s > 0, on définit l'espace

H s (V ) (0, 1; C) := D (-∂ xx + V ) s 2 , 1. Par exemple, V ∈ L ∞ ((0, 1); C) et minoré uniformément. Dans cette thèse, on s'intéresse au cas V ≡ 0. muni de la norme f H s (V ) := ∞ k=1 λ s k,V |(f, ϕ k,V )| 2 1 2 , f ∈ H s (V ) ,
où (•, •) est le produit scalaire dans L 2 (0, 1; C). On note par S la sphère unité dans L 2 (0, 1; C). Décrivons quelques résultats de contrôle pour (IV.2.6). Suivant la direction de [START_REF] Ball | Controllability ofr distributed bilinear systems[END_REF] évoquée précédément, G. Turinici a demontré dans [START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF] que l'ensemble des états atteignables pour ce système avec des contrôles dans L 2 (0, T ; R) est d'intérieur vide dans H 2 (0) ∩ S. En revanche, K. Beauchard a montré dans [START_REF] Beauchard | Local controllability of a 1D Schrödinger equation[END_REF] plusieurs résultats positifs de contrôlabilité locale pour (IV.2.6) autour de certaines trajectoires, grâce à un choix différent de cadre fonctionnel. Ces résultats reposent sur le théorème de Nash-Moser, dû au fait que les espaces de contrôlabilité pour le problème linéaire et le problème non linéaire ne sont pas les mêmes, ce qui empêche d'appliquer le théorème d'inversion locale classique (cf. §I.2.2).

Cette perte de régularité apparente a été compensée plus tard par K. Beauchard et C. Laurent dans [START_REF] Beauchard | Local controllability of linear and nonlinear Schrödinger equations with bilinear control[END_REF], ce qui a permis de déterminer le cadre fonctionnel optimal pour la contrôlabilité locale exacte autour de l'état fondamental ϕ 1,0 .

Pour énoncer ce résultat, on prend V = 0, ce qui conduit au système (IV.2.7)

   i∂ t ψ = -∂ xx ψ + u(t)µ(x)ψ, (0, T ) × (0, 1), ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ), ψ(0, x) = ψ 0 (x),
x ∈ (0, 1), Dans ce cas, on note (ϕ k ) k∈N * les fonctions propres de -∂ xx avec des conditions de Dirichlet sur (0, 1). Les valeurs propres associées sont donc λ k = π 2 k 2 , pour tout k ∈ N * . On note par ψ k les paquets d'ondes associés, c'est-à-dire, ψ k (t) := e -iλ k t ϕ k . Finalement, (•, •) note le produit scalaire dans L 2 (0, 1; C).

TH ÉOR ÈME IV.2.1 (K. Beauchard et C. Laurent, [16]). Soit µ ∈ H 3 (0, 1; R) tel que (IV.2.8) ∃C > 0, telle que |(µϕ 1 , ϕ k )| ≥ C k 3 , ∀k ∈ N * . Soit T > 0. Il existe δ > 0 et une application de classe C 1 Γ : V T → L 2 (0, T ; R) avec V T := ψ f ∈ S ∩ H 3 (0) ; ψ f -ψ 1 (T ) H 3 (0) < δ , telle que Γ(ψ 1 (T )) = 0 et pour tout ψ f ∈ V T , la solution de (IV.2.6) avec ψ 0 = ϕ 1 et contrôle u = Γ(ψ f ) satisfait ψ| t=T = ψ f .
Ce résultat, evoqué dans §I. 

   i∂ t Ψ = -∂ xx Ψ + v(t)µ(x)ψ 1 (t), (0, T ) × (0, 1), Ψ(t, 0) = Ψ(t, 1) = 0, t ∈ (0, T ), Ψ(0, x) = 0,
x ∈ (0, 1).

Nous pouvons écrire la solution de ce système comme

Ψ(t) = -i ∞ k=1 (µϕ 1 , ϕ k ) t 0 v(t)e i(λ k -λ1)s ds ψ k (t).
La condition Ψ| t=T = Ψ f est donc équivalente au problème de moments

T 0 v(t)e i(λ k -λ1)t dt = i(Ψ f , ψ k (T )) (µϕ 1 , ϕ k ) , ∀k ∈ N * .
Ce problème de moments admet une solution v ∈ L 2 (0, T ; R) pour tout T > 0 lorsque

(1) les fréquences 

µ k = λ k -λ 1 sont deux à deux distinctes et ont un "gap" asymptotique infini, c'est-à-dire, lim inf k→+∞ (λ k+1 -λ k ) = ∞, (2) 
). Soient V ∈ L 2 (0, T ; H 3 ∩ H 1 (0) ) et ψ 0 ∈ H 3 (0)
. Alors, il existe une unique solution du système

(IV.2.11)    i∂ t ψ = -∂ xx ψ + V (t, x)ψ, (0, T ) × (0, 1), ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ), ψ(0, x) = ψ 0 (x),
x ∈ (0, 1),

telle que ψ ∈ C 0 ([0, T ]; H 3 (0) ).
Précisons que ce résultat suppose un effet régularisant pour le système (IV.2.11) dans le sens où le potentiel V étant moins régulier que H 3 (0) , le terme V ψ n'a pas de raison d'appartenir à H 3 (0) . Or, la Proposition IV.2.2 garantit que ψ ∈ C 0 ([0, T ]; H 3 (0) ). Grâce à cet effet régularisant, la Proposition IV.2.2 permet d'obtenir le caractère C 1 de l'application (IV.2.9) entre les espaces L 2 (0, T ; R) et H 3 (0) (0, 1; C), ce qui conduit à la contrôlabilité locale du Théorème IV.2.1 via le théorème d'inversion locale classique.

Le résultat du Théorème IV.2.1 admet plusieurs extensions. Une direction concerne l'hypothèse (IV.2.8) : il a été montré par K. Beauchard et M. Morancey dans [START_REF] Beauchard | Local controllability of 1D Schrödinger equations with bilinear control and minimal time[END_REF] qu'il est possible d'affaiblir cette hypothèse, au prix d'introduire un temps minimal pour la contrôlabilté.

Il est aussi possible de combiner ces techniques avec la méthode du retour pour contrôler plusieurs équations de Schrödinger de manière simultanée, comme montré par M. Morancey dans [START_REF] Morancey | Simultaneous local exact controllability of 1D bilinear Schrödinger equations[END_REF].

En revanche, l'extension du Théorème IV.2.1 à la dimension supérieure est un problème encore ouvert. Bien que l'effet régularisant de la Proposition IV.2.2 ait pu être adapté à la dimension quelconque par J.-P. Puel dans [START_REF] Puel | A regularity property for Schrödinger equations on bounded domains[END_REF], le cadre fonctionnel pour la contrôlabilité du linéarisé reste encore inconnu.

IV.2.2.2. Contrôle par la forme du domaine. Nous avons mentionné en §IV.1 la possibilité d'utiliser un potentiel confinant, sous la forme d'un puit de potentiel infini, de manière à enfermer une particule quantique dans une partie de l'espace. Bien que dans la plupart des cas, ce potentiel soit fixe, il est possible de le faire varier au cours de temps, ce qui conduit à une dynamique sur un domaine variable. Cette idée s'appuie sur la littérature physique (voir [START_REF] Band | Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time varying box[END_REF][START_REF] Munier | Schrödinger equation with timedependent boundary conditions[END_REF], par exemple).

Du point de vue de la théorie du contrôle, la possibilité de modifier le domaine à l'aide d'un potentiel conduit à utiliser la forme du domaine comme un contrôle. Plus précisement, on voudra faire changer la dynamique d'une particule quantique en faisant varier le domaine où elle est confinée selon une cible préfixée (voir [START_REF] Rouchon | Control of a quantum particle in a moving potential well[END_REF]).

On peut donner un sens à ce problème de la manière suivante. Considérons un ouvert régulier de référence Ω 0 ⊂ R d . Ensuite, on fixe un temps T > 0 et on considère une famille de difféomorphismes de la forme

U T := u ∈ C 1 ([0, T ]; Diff(R d )); u| t=0 = u| t=T = id R d .
Ceci permet de définir une évolution de l'ouvert de référence via

Ω(t) := u(t)(Ω 0 ), t ∈ [0, T ],
pour un certain u ∈ U T . Considérons ensuite l'évolution d'une particule quantique dans Ω(t), dont la dynamique est décrite par l'équation de Schrödinger sur un domaine variable (IV.2.12)

   i∂ t ψ = -∆ x ψ, (0, T ) × Ω(t), ψ = 0, (0, T ) × ∂Ω(t), ψ| t=0 = ψ 0 , Ω 0 ,
pour un état initial défini sur Ω 0 . La question de la contrôlabilité par la forme du domaine est la suivante : étant donnés un ouvert Ω 0 , un temps T > 0 et ψ 0 , ψ f deux éléments d'un espace de fonctions sur Ω 0 , est-il possible de trouver un contrôle u ∈ U T tel que la solution de (IV.2.12) satisfasse

ψ| t=T = ψ f , dans Ω 0 ?
Une première remarque concerne la notion de solution de (IV.2.12). À l'heure actuelle, on ne dispose pas d'un cadre mathématique général satisfaisant (voir [START_REF] Knobloch | Problems on time-varying domains: formulation, dynamics, and challenges[END_REF]). En revanche, on pourra travailler dans des cas particuliers où il est possible de surmonter cette difficulté apparente, via une transformation adéquate qui permet de se ramener à un domaine fixe.

Travaux précedents. Le premier résultat de contrôlabilité de l'équation de Schrödinger par la forme du domaine a été obtenu par K. Beauchard dans [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF], en dimension 1, pour l'ouvert de référence donné par l'intervale unité Ω 0 = (0, 1).

Considérons un puit de potentiel de largeur variable, l(τ ), donnée par une fonction régulière

l : [0, τ f ] → (0, ∞) τ → l(τ ), pour un certain τ f > 0, avec la contrainte (IV.2.13) l(0) = l(τ f ) = 1.
On considère l'évolution d'une particule quantique dans le domaine variable Ω(τ ) = (0, l(τ )), ce qui conduit à une fonction d'onde φ(τ, l(τ )) satisfaisant

l(τ ) 0 |φ(τ, z)| 2 dz = 1, ∀τ ∈ [0, τ f ],
et dont la dynamique est décrite par le système (IV.2.14)

i∂ τ φ = -∂ zz φ, (τ, z) ∈ (0, τ f ) × (0, l(τ )), φ(τ, 0) = φ(τ, l(τ )) = 0, τ ∈ (0, τ f ).
La stratégie suivie dans [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF] consiste à transformer le problème posé en domaine variable en un problème en domaine fixe, le segment (0, 1), grâce à un changement de variables. En effet, la transformation

(IV.2.15) ξ(t, x) := φ(τ, z), x := z l(τ ) , t := τ 0 dσ l(σ) 2 , conduit au système (IV.2.16) i∂ t ξ = -∂ xx ξ + i4u(t)x∂ x ξ, (0, T ) × (0, 1), ξ(t, 0) = ξ(t, 1) = 0, (0, T ), avec T := τ f 0 dσ l(σ) 2 et u(t) := 4 l(τ )l(τ )
. Ensuite, le changement de phase φ(t, x) := ξ(t, x)e -iu(t)x 2 +2i t 0 u(s) ds fournit le système équivalent (IV.2.17)

i∂ t ψ = -∂ xx ψ + u(t) -4u(t) 2 x 2 ψ, (0, T ) × (0, 1), ψ(t, 0) = ψ(t, 1) = 0, (0, T ),
que l'on peut interpréter comme un problème de contrôle bilinéaire, avec un contrôle u -4u 2 . En revanche, il faut tenir compte de la contrainte géométrique (IV.2.13), qui impose u(0

) = u(T ) et (IV.2.18) T 0 u(s) ds = 0.
Les techniques de contrôle bilinéaire evoquées en §IV.2.2 permettent de montrer un résultat de contrôlabilité locale pour (IV.2.17) autour des certaines trajectoires. Ceci fournit, grâce à la surjectivité de la transformation u → l, un résultat de contrôlabilité par la forme du domaine pour (IV.2.14).

Ces techniques ont permis à K. Beauchard, H. Lange et H. Teismann d'obtenir un résultat de contrôle par la forme du domaine dans le cas d'un problème non linéaire 1-D, décrivant la dynamique d'un condensat de Bose-Einstein (cf. [START_REF] Beauchard | Local exact controllability of a Bose-Einstein condensate in a 1D time-varying box[END_REF]), à l'aide d'une analyse spectrale très fine.

IV.2.3. Résultats nouveaux (Chapitre 5). Le but de cette section est d'expliquer les éléments de la preuve du résultat principal du Chapitre 5, qui garantit la contrôlabilité locale de l'équation de Schrödinger dans le disque unité en dimension 2 par déformations du domaine pour des données radiales.

Considérons, pour un certain T * > 0, une fonction R ∈ C 0 ([0, T * ]; R + * ). On définit les disques de rayon variable

D R(τ ) := (z, w) ∈ R 2 ; z 2 + w 2 < R(τ ) 2 , ∀τ ∈ [0, T * ],
Considérons l'évolution d'une particule quantique sur ces disques variables, dont la dynamique est décrite par l'équation (IV.2. [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF])

i∂ τ φ = -∆ z,w φ, (τ, z, w) ∈ (0, T * ) × D R(τ ) , φ = 0, (τ, z, w) ∈ (0, T * ) × ∂D R(τ ) , avec la normalisation D R(τ ) |φ(τ, z, w)| 2 dz dw = 1, ∀τ ∈ [0, T * ].
Notre objectif est d'étudier la contrôlabilité du système (IV.2.19) via des déformations des disques D R(τ ) , où le contrôle est le rayon R(τ ). On choisit le disque unité, D, comme ouvert de référence, ce qui impose

(IV.2.20) R(0) = R(T * ) = 1.
Comme dans [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF], il est possible de transformer (IV. 

i∂ τ φ = -∆ ρ φ, (τ, ρ) ∈ (0, T * ) × (0, R(τ )), φ(τ, R(τ )) = 0, τ ∈ (0, T * ),
où ∆ ρ := ∂ ρρ + 1 ρ ∂ ρ est le laplacien en cordonnées polaires pour des données radiales. Le changement de variables

ξ(t, r) := φ(τ, ρ), r := ρ R(τ ) , t := τ 0 dσ R(σ) 2 , et de phase ψ(t, r) := ξ(t, r)e -iu(t)r 2 +4i t 0 u(s) ds , avec u(t) := 1 4 Ṙ(τ )R(τ ), conduit au système équivalent (IV.2.22) i∂ t ψ = -∆ r ψ + u(t) -4u(t) 2 r 2 ψ, (t, r) ∈ (0, T ) × (0, 1), ψ(t, 1) = 0, t ∈ (0, T ), pour T := T * 0 dσ R(σ) 2 et (IV.2.23) ∆ r := ∂ rr + 1 r ∂ r .
On notera la similitude avec le système (IV. 

ϕ k (r) := J 0 (j 0,k r) √ π|J 1 (j 0,k )| , ∀r ∈ [0, 1],
où J 1 est la fonction de Bessel d'ordre 1. La famille (ϕ k ) k∈N * forme une base hilbertienne de L 2 (0, 1; r dr) avec le produit scalaire

f, g := 1 0 f (r)g(r)r dr, ∀f, g ∈ L 2 (0, 1; r dr).
Les valeurs propres sont (IV.2.25) λ k := j 2 0,k , ∀k ∈ N * . Dans le cas radial, ceci permet de définir les espaces

H s (0),rad (D; C) := D (-∆ r ) s 2
, s > 0, avec les normes

f H s (0),rad := ∞ k=1 |j s 0,k f, ϕ k | 2 1 2
.

Afin d'expliquer le résultat principal du Chapitre 5, qui garantit la contrôlabilité locale autour d'une certaine trajectoire, considérons l'ensemble suivant (IV.2.26)

D := (θ 2 , θ 3 ) ∈ R 2 ; θ 2 , θ 3 > 0, θ 2 + θ 3 < 1 , et les combinaisons d'états fondamentaux (IV.2.27) ϕ := 1 -θ 2 -θ 3 ϕ 1 + θ 2 ϕ 2 + θ 3 ϕ 3 , (θ 2 , θ 3 ) ∈ D.
Pour chaque τ > 0, considérons le paquet d'ondes associé

(IV.2.28) ψ (τ ) := e -iλ1τ 1 -θ 2 -θ 3 ϕ 1 +e -iλ2τ θ 2 ϕ 2 +e -iλ3τ θ 3 ϕ 3 , τ ≥ 0.
L'introduction de ces états permet de démontrer la contrôlabilité locale exacte autour de la trajectoire (ψ (τ ), u ≡ 0), ce qui constitue le résultat principale du Chapitre 5.

TH ÉOR ÈME IV.2.3 (Théorème 1.4, Chapitre 5). Soit T > 0. Il existe δ > 0 et une application de classe C 1 Γ : V 0 × V T → Ḣ1 0 (0, T ; R), avec V 0 := ψ 0 ∈ S ∩ H 3 (0),rad (D; C); ψ 0 -ϕ H 3 (0) < δ , (IV.2.29) V T := ψ f ∈ S ∩ H 3 (0),rad (D; C); ψ f -ψ (T ) H 3 (0) < δ , (IV.2.30) telle que Γ(ϕ , ψ (T )) = 0 et pour tout (ψ 0 , ψ f ) ∈ V 0 × V T , la solution de (IV.2.22) avec ψ |t=0 = ψ 0 et contrôle u = Γ(ψ 0 , ψ f ) satisfait ψ |t=T = ψ f .
La preuve de ce résultat se fait en suivant les étapes de la méthode de linéarisation, expliquée dans §I.2.2. Par conséquent, considérons l'application (IV.2.31) 

Θ T : Ḣ1 0 (0, T ; R) × H 3 (0),rad (D; C) → H 3 (0),rad (D; C) × H 3 (0),rad (D; C), (u, ψ 0 ) → (ψ 0 , ψ |t=T ),
   i∂ t Ψ = -∆ r Ψ + v(t)r 2 ψ (t), (t, r) ∈ (0, T ) × (0, 1), Ψ(t, 1) = 0, t ∈ (0, T ), Ψ(0, r) = 0, r ∈ (0, 1).
Comme dans §IV.2.2, on essaie de conclure la contrôlabilité de (IV.2.32) grâce à la méthode des moments. Pour ce faire, on écrit la solution de ce système sous la forme 

Ψ(t) = -i 1 -θ 2 -θ 3 ∞ k=1 t 0 v(s)e i(λ k -λ1)s ds a k ϕ k e -iλ k t -i θ 2 ∞ k=1 t 0 v(s)e i(λ k -λ2)s ds b k ϕ k e -iλ k t -i θ 3 ∞ k=1 t 0 v(s)e i(λ k -λ3)s ds c k ϕ k e -iλ k t , où (λ k ) k∈N * et (ϕ k ) k∈N * est
a k := r 2 ϕ 1 , ϕ k , b k := r 2 ϕ 2 , ϕ k , c k := r 2 ϕ 3 , ϕ k , ∀k ∈ N * .
La condition Ψ| t=T = Ψ f conduit à un problème de moments pour la famille e i(λ k -λj )t ; k ∈ N * , j = 1, 2, 3 , qui est le suivant :

T 0 v(s)e i(λ2-λ1)s ds = i Ψ f , ϕ 2 e iλ2T - √ θ 3 c 2 C a 2 √ 1 -θ 2 -θ 3 , (IV.2.34) T 0 v(s)e i(λ3-λ1)s ds = i Ψ f , ϕ 3 e iλ3T - √ θ 2 b 3 C a 3 √ 1 -θ 2 -θ 3 , (IV.2.35) T 0 v(s)e i(λ3-λ2)s ds = C, (IV.2.36) T 0 v(s)e i(λ k -λ1)s ds = i √ 1 -θ 2 -θ 3 a k Ψ f , ϕ k e iλ k T , ∀k ≥ 4, (IV.2.37) T 0 v(s)e i(λ k -λ2)s ds = i √ θ 2 b k Ψ f , ϕ k e iλ k T , ∀k ≥ 4, (IV.2.38) T 0 v(s)e i(λ k -λ3)s ds = i √ θ 3 c k Ψ f , ϕ k e iλ k T , ∀k ≥ 4, (IV.2.39) pour une certaine constante C ∈ C satisfaisant 2ib 3 θ 2 θ 3 Re C = 1 -θ 2 -θ 3 Ψ f , ϕ 1 e iλ1T (IV.2.40) + θ 2 e -iλ2T Ψ f , ϕ 2 + θ 3 e -iλ3T Ψ f , ϕ 3 .
Précisons que les relations (IV.2.34)-(IV.2.36) sont utiles pour séparer les fréquences λ k -λ j pour k, j = 1, 2, 3, ce qui peut se faire grâce au choix de la constante auxiliaire (IV.2.40).

En outre, les contraintes géométriques sur le contrôle imposent des conditions supplémentaires dans le problème de moments, qui sont (IV.2.41)

T 0 v(s) ds = 0, T 0 s v(s) ds = 0.
Comme dans §IV.2.2, le problème de moments (IV.2.34)-(IV.2.39), (IV.2.41) se résout si les fréquences {λ k -λ j ; k ∈ N * , j = 1, 2, 3} satisfont une condition de "gap" uniforme et si la suite formée par les membres de droite des équations (IV.2.34)-(IV.2.39) appartient à 2 (N * ; C).

Le premier point se démontre à l'aide des propriétés des fonctions de Bessel et de leur zéros (voir Appendices E et F). Le deuxième point, en revanche, est plus délicat. Afin d'analyser l'asymptotique des ( r 2 ϕ j , ϕ k ) j=1,2,3 par rapport à k ∈ N * , nous sommes amenés au résultat suivant, dont la preuve est technique.

LEMME IV.2.4 (Lemma 3.4, Chapitre 5). Pour tout ν ∈ N et k, l ∈ N * avec k = l, on a (IV.2.42) 1 0 r 3 J ν (j ν,l r)J ν (j ν,k r) dr = 4j ν,k j ν,l J ν+1 (j ν,k )J ν+1 (j ν,l ) j 2 ν,k -j 2 ν,l 2 .
Ce résultat permet de déduire l'asymptotique suivante, qui est l'adaptation dans notre cas de (IV.2.8) :

(IV.2.43) ∃c > 0 tel que r 2 ϕ j , ϕ k ≥ c j 3 0,k , ∀k ∈ N * .
Par conséquent, si on impose Ψ f ∈ H 3 (0),rad (D; C), le membre de droite dans (IV.2.34)-(IV.2.39) est une suite appartenant à 2 (N * ; C), ce qui garantit que le problème de moments correspondant a une solution. Ceci donne la contrôlabilité de (IV.2.32).

Ensuite, on montre le caractère C 1 de l'application Θ T dans (IV.2.31) grâce à l'effet régularisant de [START_REF] Puel | A regularity property for Schrödinger equations on bounded domains[END_REF] (voir Proposition 2.4, Chapitre 5). Finalement, le théorème d'inversion locale classique permet de conclure la preuve du Theorème IV.2.3. 

∂ t + v • ∇ x -∆ v f (t, x, v) = u(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, T ) × Ω,
where ω is an open subset of Ω, whose characteristic function is denoted by 1 ω . This is a control system, where the function f (t, x, v) represents the state and the source term u(t, x, v), supported in ω, is the control. Here, x • y denotes the Euclidean inner product in R d .

The null-controllability of this system has been studied with various configurations of (Ω, ω) (see Section 1.1.2 below). Here, we consider the case Ω = R 2d and an unbounded control/observation region ω ⊂ Ω. To be precise, we consider the Cauchy problem

(1.1.1) ∂ t + v • ∇ x -∆ v f (t, x, v) = 1 ω (x, v)u(t, x, v), (t, x, v) ∈ (0, T ) × Ω, f |t=0 (x, v) = f 0 (x, v), (x, v) ∈ Ω,
where ω contains a product open set, The aim of the present article is to prove the following null-controllability result.

(1.1.2) ω x × ω v ⊆ ω,
1. Ce chapitre a été écrit en collaboration avec Jerôme Le Rousseau. Son contenu a fait l'objet d'une publication dans J. Differential Equations (cf. [START_REF] Rousseau | Null-controllability of the Kolmogorov equation in the whole phase space[END_REF]). THEOREM 1.1.2. Let Ω = R 2d and assume that ω satisfies 1.1.2 with both ω x and ω v fulfilling property 1.1.3. Then, for every T > 0 and f 0 ∈ L 2 (R 2d ), there exists a control u ∈ L 2 ((0, T ) × R 2d ) such that the solution of (1.1.1) satisfies f |t=T ≡ 0.

As we shall see below in Section 1.2, the solution of (1.1.1), to be understood in the sense of distributions, is unique in C 0 ([0, T ]; L 2 (R 2d )). The initial condition, at t = 0, and the final condition, at t = T , are thus unambiguously well defined.

REMARK 1.1.3. The condition we impose on the set ω ⊂ R 2d is sufficient to obtain the null-controllability result. Any improvement on this condition is of interest (see Section 1.1.3).

The common structure of ω x and ω v permits the derivation of observability inequalities of the solutions of an elliptic equation, in the x variable, and a parabolic equation, in the v variable. Those observability inequalities are based on Carleman estimates, and the structure of Definition 1.1.1 that we assume allows us to construct the weight functions associated with these estimates. Carleman estimates for elliptic and parabolic operators are essentially of the same nature. This may help the reader understand why we impose the same structure on both ω x and ω v .

A classical duality result (see for instance [START_REF] Coron | Control and Nonlinearity[END_REF]Lemma 2.48]) shows that Theorem 1.1.2 above is equivalent to an observability inequality involving the adjoint system of (1.1.1), namely,

(1.1.4) (∂ t -v • ∇ x -∆ v ) g(t, x, v) = 0, (t, x, v) ∈ (0, T ) × Ω, g |t=0 (x, v) = g 0 (x, v), (x, v) ∈ Ω. THEOREM 1.1.2 .
Let Ω = R 2d and assume that ω satisfies (1.1.2) with both ω x and ω v fulfilling property (1.1.3). Then, for every T > 0, there exists C obs > 0 such that for every g 0 ∈ L 2 (R 2d ), the solution of (1.1.4) satisfies

(1.1.5) g |t=T L 2 (R 2d ) ≤ C obs g L 2 ((0,T )×ω) .
Note in particular that the constant C obs is such that the null-controllabilty of (1.1.1) can be achieved with a control function u that satisfies

u L 2 ((0,T )×R 2d ) ≤ C obs f 0 L 2 (R 2d ) .
1.1.2. Existing results and techniques. The null-controllability of parabolic equations has been extensively studied. For the heat equation, the problem is well understood in bounded domains since the seminal works of G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], and of A. Fursikov and O. Yu. Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF]. For results on the null-controllability of the heat equation on unbounded domains, we mention the works of L. Miller [START_REF] Miller | On the null controllability of the heat equation in unbounded domains[END_REF][START_REF] Miller | Unique continuation estimates estimats for the Laplacian and the heat equation on non-compact manifolds[END_REF], M. González-Burgos and L. de Teresa [START_REF] González-Burgos | Some results on controllability for linear and non linear heat equations in unbounded domain[END_REF], V. Barbu [START_REF] Barbu | Exact null internal controllability for the heat equation on unbounded convex domains[END_REF], and references therein. A result in a different functional framework was obtained by P. Cannarsa, P. Martinez and J. Vancostenoble in [START_REF] Cannarsa | Null controllability of the heat equation in unbounded domains by a finite measure control region[END_REF], where the observability region can be taken of finite measure, provided that an observability inequality holds in some weighted L 2 -space. Note that, in one dimension, the control/observation region given in [76, Example 2 of Section 2], expressly fulfills the condition given in Definition 1.1.1.

The Kolmogorov equation was first proposed in 1934 by A.N. Kolmogorov in [START_REF] Kolmogorov | Zufällige Bewegungen[END_REF]. It was subsequently studied by L. Hörmander in [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] as a model of a hypoelliptic operator. Controllability questions for the Kolmogorov equation have been studied in Ω ⊂ R 2 , where the controlled equation reads

(1.1.6) ∂ t + v∂ x -∂ 2 v f (t, x, v) = u(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, T ) × Ω,
and null-controllability was proven for various choices of (Ω, ω). On a bounded domain Ω = T×(-1, 1), null-controllability holds in the following cases.

-The nonempty open subset ω of Ω is arbitraty and the Kolmogorov equation (1.1.6) is associated with periodic-type boundary conditions in the v variable that are adapted to the transport part of the equation [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]: 

f (t, x -t, -1) = f (t, x + t, 1), ∂ v f (t, x -t, -1) = ∂ v f (t, x + t, 1), for (t, x) ∈ (0, T ) × T. -The nonempty open subset ω of Ω is a horizontal strip, ω = T × (a, b), with -1 < a < b < 1,
f (t, x, ±1) = 0 (t, x) ∈ (0, T ) × T.
With such boundary conditions, arbitrary control region ω may not be appropriate (see [START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF]), which hints towards a strong influence of the boundary conditions. In the case of the whole phase-space, that is Ω = R 2 , null controllability is proven in [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF], in the case ω = R × (R \ [a, b]), that is, ω is the complement set of a horizontal strip. The goal of the present article is to improve upon this last result by proving the null-controllability of (1.1.1) in the case of more general control regions ω in, possibly, higher dimension, that is d ≥ 1.

The first step of the strategy used in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF][START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF][START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF], where Ω = Ω x × Ω v , consists in applying a partial Fourier transform or Fourier decomposition, with respect to the x variable. In the case x ∈ R, with

f (t, ξ, v) := R f (t, x, v)e -ixξ dx, (t, ξ, v) ∈ (0, T ) × R 2 ,
this reduces the study of the Kolmogorov equation (1.1.6) to the study of a family of one-dimensional parabolic equations

(1.1.7) ∂ t -ivξ -∂ 2 v f (t, ξ, v) = û(t, ξ, v)1 ωv (v), (t, v) ∈ (0, T ) × R,
with the Fourier frequency ξ treated as a parameter. Such a transformation is possible if, for instance, ω takes the form

ω = R × ω v , for some ω v ⊂ Ω v .
Then, the proof of the null-controllability relies on the following two ingredients:

(1) A precise dependency of the decay rate in times of the free solution of (1.1.7), with respect to the Fourier variable ξ.

(2) A precise estimate of the 'cost' of the null-controllability of (1.1.7), in particular with respect to the Fourier variable ξ.

If the control region ω is also localized in the x variable, these two ingredients can be coupled by means of the Lebeau-Robbiano control strategy as done in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] following an idea of [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF]. This strategy relies on a spectral inequality. In one dimension, on a bounded domain, it takes the following form. The functions x → e inx / √ 2π on 2π mathbbT are orthonormal eigenfunctions of the Laplace operator ∂ 2

x . In arbitrary dimension, for a second-order symmetric elliptic operator, typically the Laplace-Beltrami operator ∆ g on a bounded Riemannian manifold M of dimension d, with or without boundary, the spectral inequality takes the form

u L 2 (M) ≤ Ce C √ µ u L 2 (ω) , u ∈ span{φ j ; µ j ≤ µ}, (1.1.9)
where ω ⊂ M is an open subset and where the functions φ j form a Hilbert basis of L 2 (M) of eigenfunctions of -∆ g associated with the nonnegative eigenvalues µ j , j ∈ N, counted with their multiplicities. (In the case of a manifold with boundary, one can consider homogeneous Dirichlet or Neuman boundary conditions.) This was proven in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF]. For instance, it allows one to prove the null-controllability of the heat equation (see [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF] for a presentation). It was adapted much later to the case of separated variables, for the null-controllability of parabolic equation in stratified media in [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF]. Therein, in one direction, one has observability by means of a Carleman estimate for a one-dimensional parabolic operator with parameter, and, in the transverse direction, a spectral inequality such as (1.1.9) is used. This later approach was successfully transposed to the study of the null-controllability of the Kolmogorov equation in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]. We follow this latter method in the present article, here in the case of an unbounded domain. Hence, one of the goals of the present article is to perform the Lebeau-Robbiano control strategy on an unbounded domain. We shall thus prove an adapted spectral inequality; see Theorem 1.3.1 below.

REMARK 1.1.5. The idea of exploiting a cartesian product form of the geometry can also be found in [START_REF] González-Burgos | Some results on controllability for linear and non linear heat equations in unbounded domain[END_REF]. Therein, the authors prove that, if a Carleman estimate holds for the heat equation in (0, T ) × R d1 (resp. (0, T ) × R d2 ) with an observation region (0, T ) × ω 1 (resp. (0, T ) × ω 2 ), then a similar estimate holds for the same equation in (0, T ) × R d1+d2 with (0, T ) × ω 1 × ω 2 as an observation region.

1.1.3. Open questions and perspectives. An open (and most likely difficult) question is the proof of the null-controllability of the Kolmogorov equation in R 2d with a control region ω ⊂ R 2d arbitrary located, without imposing the product structure we assumed here. An assumption similar to that stated in Definition 1.1.1 seems, however, to be a reasonnable assumption to make on the open subset ω. For such a study, a profond analysis of the properties of the Kolmogorov operator is necessary. Here, the product structures of both Ω and ω allow one to circumvent this difficulty. This open question is relevent because of the following proposition. Another interesting question would be the study of the influence on the condition imposed on the control region of the addition of an unbounded potential function in the Kolmogorov equation.

(n) = B (n 1 -R, n 2 ), R or B right (n) = B (n 1 + R, n 2 ),
Following the works of K. Beauchard et al. [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF][START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF], the controllability properties of evolution operators of the form

∂ t -|v| γ-1 v • ∇ x -∆ v , with γ > 1,
in an unbounded domain, would be of interest. More generally, one would also be interested in operators of the form

∂ t -r(x, v)v • ∇ x + A(x, v, ∂ v )
, where the scalar function r(x, v) is homogeneous of degree γ -1 with respect to v, and the operator A(x, v, ∂ v ), that only acts in the v direction, is elliptic and positive with respect to that variable. For γ > 1, in a bounded domain, controllability can only be proven for sufficiently large time. In fact, the natural L 2 -norm decay of the Kolmogorov equation degrades as γ increases. This feature is an important obstacle in the case of a bounded domain [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF][START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF]. Additionaly, in an unbounded domain, the term |v| γ-1 v will yield unbounded coefficients in the derivation of Carleman estimates, if γ > 1. The derivation of a Carleman estimate may then require the use of weighted norms that take this behavior into account.

1.1.4. Outline. The article is organized as follows. In Section 1.2, we present the well-posedness result in L 2 (R 2d ) for system (1.1.1) and the decay estimate of the L 2 -norm of the solutions of (1.1.7). In Section 1.3, we prove an elliptic global Carleman estimate and the Lebeau-Robbiano spectral inequality. In Section 1.4, we prove a parabolic global Carleman estimate, the observability of Fourier-mode packets and we finally construct a control, which leads to Theorem 1.1.2.

1.1.5. Notation. We collect here some of the notation we use throughout the article.

The Euclidean inner product in R d is denoted by x • y, whereas the Hermitian inner product in L 2 (Q; C) is noted by (., .). Let T > 0. We shall sometimes write Q := (0, T ) × R d for simplicity.

If ∂ denotes the derivation with respect to the variables s, x or v, we shall use the standard notation

D := 1 i ∂. For F ∈ C 2 (Q; R), we define ∇F (s, x) = (∂ s F, ∂ x1 F, . . . , ∂ x d F ) t (s, x), F (s, x) := ∂ 2 ij F 0≤i,j≤d (s, x),
for (s, x) ∈ (0, T )×R d , We also write ∆F (s, x) := (∂ 2 s F +∆ 2

x F )(s, x). For concision, in particular in the course of a proof, we shall often write F in place of ∇F .

We define

∂Q := {0, T }×R d . If w ∈ C 2 ([0, T ]×R d
), the derivative with respect to n, the normal outward vector of ∂Q, is denoted by ∂ n w := ∇w • n.

For a function f (t, x, v) defined on (0, T )×R 2d , we denote by f (t, ξ, v) its partial Fourier transformation with respect to x ∈ R d :

(1.1.10) f (t, ξ, v) := R d f (t, x, v)e -ix•ξ dx, (t, ξ, v) ∈ R × R 2d .
Applying this transformation, the (adjoint) Kolmogorov (1.1.4) equation becomes

(1.1.11) (∂ t -iv • ξ -∆ v ) ĝ(t, ξ, v) = 0, (t, ξ, v) ∈ (0, T ) × R d × R d .
We shall denote by S (R d ; C) the space of complexed valued functions of Schwartz class.

In what follows the letter C will always denote a constant whose value may change from one line to another. If we wish to keep track of the precise value of a constant we shall use another letter. Often, to avoid the introduction of such a generic constant, especially in the course of proofs, we shall use the usual notation A B to be read as A ≤ CB for some C > 0.

Well-posedness and exponential decay rate

In the whole phase-space, a fundamental solution for the evolution Kolmogorov operator can be derived explicitly [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]Section 7.6]. Here, we provide semigroup properties that yield the well-posedness of the evolution Kolmogorov equation. We also provide a decay rate for the free solution, that is used in the proof of the null-controllability in Section 1.4. Proofs are provided in Section 1.5.

PROPOSITION 1.2.1. The Kolmogorov operator K : L 2 (R 2d ) → L 2 (R 2d ) f → v • ∇ x f -∆ v f, with domain D(K ) = {f ∈ L 2 (R 2d ); v • ∇ x f -∆ v f ∈ L 2 (R 2d
)}, generates a strongly continuous semigroup of contraction S(t) on L 2 (R 2d ). The semigroup S(t) is not differentiable for any positive time.

PROPOSITION 1.2.2. Let K be the Kolmogorov operator as defined above.

(

) Let f 0 ∈ D(K ) and let F ∈ C 0 ([0, T ]; L 2 (R 2d )). Assume moreover that F ∈ L 1 (0, T ; D(K )) or F ∈ W 1,1 ((0, T ); L 2 (R 2d )). Then, there exists a unique f ∈ C 0 ([0, T ]; D(K )) ∩ C 1 ([0, T ]; L 2 (R 2d )) solution of (∂ t + K )f = F, t ∈ [0, T ], f |t=0 = f 0 . 1 
(

) Let f 0 ∈ L 2 (R 2d ) and let F ∈ L 1 (0, T ; L 2 (R 2d )). There exists a unique f ∈ C 0 ([0, T ]; L 2 (R 2d )) solution of (∂ t + v • ∇ x -∆ v )f = F in D ((0, T ) × R 2d ), f |t=0 = f 0 . 2 
(3) In both cases, the solution is given by the Duhamel formula

f (t) = S(t)f 0 + t 0 S(t -s)F (s) ds, t ∈ [0, T ]. (1.2.1)
We shall use the second case of the previous proposition in what follows. The solutions we shall consider are thus weak solutions and are given by the so-called mild solution provided in (1.2.1).

The next proposition describes the natural decay of the L 2 -norm of a free solution of the Kolmogorov equation. This will be used in the proof of the nullcontrollability in Section 1.4.

PROPOSITION 1.2.3. Let f 0 ∈ L 2 (R 2d ). If f (t, x, v) = S(t)f 0 (x, v), we have (1.2.2) f (t, ξ, .) L 2 (R d ) ≤ f0 (ξ, .) L 2 (R d ) e -|ξ| 2 t 3 /12 , ξ ∈ R d , t ≥ 0. REMARK 1.2.4.
The decay rate obtained for the homogeneous Cauchy problem in Proposition 1.2.3 is somewhat analogous 2 , in the ξ variable, to that of the heat equation. Note, however, that such a decay rate does not hold when considering Kolmogorov-type equations on a rectangle with Dirichlet boundary conditions in v [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF][START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF], since a weaker decay in the ξ variable occurs. Null-controllability, with arbitrary control support, may then not hold.

A spectral inequality

The goal of this section is to prove the following result, which states an inequality that is the counterpart of (1.1.8) in our context. 

f L 2 (R d ) ≤ e C(N +1) f L 2 (ωx)
for N ≥ 0 and f ∈ L 2 (R d ) such that supp( f ) ⊂ B R d (0, N ), the closed ball of radius N and center 0.

Inequalities (1.1.8) and (1.1.9) have appeared in several settings [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF]]. In the case of a bounded domain, the original proof is based on an interpolation inequality that can be found in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Some details can be found in the expository article [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF]. The proof of the interpolation inequality is based on local Carleman estimates for an augmented elliptic operator, that first imply local versions of the interpolation inequality. These local inequalities are then concatenated using compactness arguments thanks to the boundedness of the domain. Here such an argument is not possible as we consider unbounded domains. However, we circumvent this difficulty by proving a global Carleman estimate for the augmented elliptic operator. This approach for the proof of the spectral inequality was introduced in [START_REF] Cannarsa | Représentation Microlocale de Solutions de Systèmes Hyperboliques, Application à l'Imagerie, et Contributions au Contrôle et aux Problèmes Inverses pour des Équations Paraboliques[END_REF], in the case of bounded domains, and later successfully applied to the case of discrete elliptic operators [START_REF] Boyer | Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF]. Here, we extend this approach to the case of an unbounded domain.

2. This analogy remains limited as the semigroup S(t) is not analytic here, nor differentiable. The L 2 -norm of the solutions does decay. Yet, solutions do not become more regular as the evolution time grows, as opposed to what can be observed for parabolic equations. See Section 1.5 for details. 

∈ C 3 ([0, T ] × R d ; R + ) such that ψ ∈ W 3,∞ ([0, T ] × R d ), (1.3.2) |∇ s,x ψ(s, x)| ≥ C, ∀(s, x) ∈ Q, (1.3.3) ∂ s ψ| s=0 ≥ C, ∀x ∈ R d \ ω x , (1.3.4) ∂ s ψ| s=0 ≤ -C < 0, ψ s=T = 0, (1.3.5)
for some real constant C > 0.

We ought to stress that the properties required on ψ are precisely the same as those in the case of a bounded domain (in the x variable): the gradient of the weight function may not vanish and its norm is bounded from below, and various derivatives of the weight function are bounded. Here, the difficulty is precisely to obtain uniform bounds. In the case of a bounded domain, such uniformity immediately follows from compactness. In the proof below, some compactness in R d is enforced by starting from a periodic function; the function is then "deformed " so as to achieve the required properties.

Proof. Let L > 2(δ + r) and let us define the following smooth function

ψ(s, x) := 4s(S -s) S 2 d j=1 2 + sin πx j L , s ∈ R, x = (x 1 , . . . , x d ) ∈ R d .
Observe that

∂ s ψ(0, x) ≥ 4 S and ∂ s ψ(S, x) ≤ - 4 S , x ∈ R d .
We note that ∇ s,x ψ(s, x) = 0 if and only if s = S 2 and x ∈ w + LZ d , with w = L 2 , . . . , L 2 ∈ R d . Firstly, we define the following periodicty cells in R d ,

K α := T α (K), K := [0, 2L] d , T α (x) := x + 2Lα, α ∈ Z d .
Then, R d = α∈Z d K α . We decompose the model cell K into the following subcells,

K β := T β (K), K := [0, L] d , T β (x) := x + Lβ, β ∈ {0, 1} d .
We introduce

K α,β := T α (K β ) = T α,β (K), T α,β := T α • T β , α ∈ Z d , β ∈ {0, 1} d .
We also define the following translation operators in R × R d , Tα (s, x) := (s, T α (x)) , T β (s, x) := (s, T β (x)) , Tα,β (s, x) := (s, T α,β (s, x)) , 

:= ψ • T β (s, x), (s, x) ∈ R × K,
which is a translated version of ψ| K β . Since ψ is 2L-periodic in each variable x j , j = 1, . . . , d, we find

ψβ (s, x) = ψβ • Tα (s, x), α ∈ Z d .
Thus, ψβ is also a translated version of ψ| K α,β , for α ∈ Z d .

Secondly, we work in the elementary compact cell K. For any β ∈ {0, 1} d , observe that the only critical point of ψβ is S 2 , w , recalling that ψβ is only defined in R × K.

Let 0 < ρ < min{r/2, S/4}. Using compactness, there exist

w (i) i∈I ⊂ B R d (w, δ), with #I < +∞, such that (1.3.6) B R d (w, δ) ⊂ i∈I B R d (w (i) , ρ).
This covering by balls of radius ρ is illustrated in Figure 1. We pick, for any i ∈ I, a path

γ (i) ∈ C ∞ ([0, 1]; [-S/2, S/2] × B R d (w, δ + ρ)) such that γ (i) (0) = -S/2, w (i) , γ (i) (1) = S/2, w , Γ (i) ∩ {s = 0} ⊂ B R d (w (i) , ρ), where Γ (i) := γ (i) (t) : t ∈ [0, 1] .
These paths are illustrated in Figure 2.

We also choose a smooth vector field We denote by χ (i) (t, s, x) the flow associated to V (i) . We set

V (i) ∈ C ∞ c ((-S, S) × B R d (w, δ); R 1+d ) such that V (i) (γ (i) (t)) = (γ (i) ) (t), t ∈ [0, 1], supp(V (i) ) ∩ {s = 0} ⊂ B R d (w (i) , ρ),
φ (i) (s, x) := χ (i) (1, s, x), (s, x) ∈ K,
which is a diffeomorphism of (-S, S) × B R d (w, δ) onto itself and coincides with Id R 1+d outside the support of V (i) . In particular, φ (i) leaves unchanged a neighborhood of ∂ ([-S, S] × K). We have φ (i) -S/2, w (i) = (S/2, w).

On the compact K we define

ψ (i) β := ψβ • φ (i) , i ∈ I, β ∈ {0, 1} d ,
and we observe that ∇ s,x ψ

β (s, x) = 0 if and only if (s, x) = -S/2, w (i) . As #I < +∞, there exists C 0 > 0 such that

|∇ s,x ψ (i) β (s, x)| ≥ C 0 , in ([-S, S] × K) \ B R 1+d -S/2, w (i) , ρ , for i ∈ I and β ∈ {0, 1} d . Note that, in particular, |∇ s,x ψ (i) β (s, x)| ≥ C 0 , for (s, x) ∈ [0, S] × [0, L] d , i ∈ I, β ∈ {0, 1} d .
As #I < +∞, there exists also

C 1 such that d k ψ (i) β L ∞ ≤ C 1 , for 0 ≤ k ≤ 3, i ∈ I, β ∈ {0, 1} d . Thirdly, let α ∈ Z d , β ∈ {0, 1} d . We consider the sets O α,β := K α,β ∩ O and O α,β := T -1 α,β (O α,β
). Since O is an observability open set in R d , there exists y ∈ O α,β such that |y-w| ≤ δ and B R d (y, r) ⊂ O α,β , using that 2(δ+r) < L and the fact that the property of Definition 1.1.1 is translation invariant. As a consequence of (1.3.6), there exists j ∈ I such that y ∈ B R d (w (j) , ρ). Since 0 < ρ ≤ r/2, we then have

(1.3.7) B R d (w (j) , ρ) ⊂ B R d (y, r) ⊂ O α,β .
This is illustrated in Figures 1 and2. We introduce the following function on the cell K α,β , ψ α,β (s, x) := ψ (j)

β • T -1 α,β (s, x), which is well defined, for T α,β : K → K α,β . We deduce (1.3.8) |∇ s,x ψ α,β (s, x)| ≥ C 0 and |d k ψ α,β (s, x)| ≤ C 1 , 0 ≤ k ≤ 3, on [0, S]×K α,β .
We also have ψ α,β (0, x) = ψα,β (0, x), ∀x ∈ K α,β \ O and ψ α,β (S, x) = ψα,β (S, x), We now state a global Carleman estimate for the augmented elliptic operator

∀x ∈ K α,β . Finally, we define ψ ∈ C ∞ ([0, S] × R d ; R) by ψ(s, x) := ψ α,β (s, x), (s, x) ∈ [0, S] × K α,
P := -∆ s,x = -∂ 2 s -∆ x = D 2 s + D x • D x in Q = (0, T ) × R d .
PROPOSITION 1.3.3 (Global elliptic Carleman estimate). Let ω x ⊂ R d be an observability open set on the whole R d in the sense of Definition 1.1.1. Let ψ be as given by Proposition 1.3.2. For ϕ(s, x) = exp λψ(s, x) , there exist C > 0, τ 0 ≥ 1, and λ 0 ≥ 1 such that

(1.3.9) τ 3 e τ ϕ u 2 L 2 (Q) + τ e τ ϕ ∇ s,x u 2 L 2 (Q) + τ e τ ϕ(0) ∂ s u s=0 2 L 2 (R d ) + τ e 2τ ∂ s u s=T 2 L 2 (R d ) + τ 3 e 2τ u s=S 2 L 2 (R d ) ≤ C e τ ϕ P u 2 L 2 (Q) + τ e 2τ ∇ x u s=S 2 L 2 (R d ) + τ e τ ϕs=0 ∂ s u s=0 2 L 2 (ωx) ,
for τ ≥ τ 0 , λ = λ 0 , and u ∈ C 2 ([0, T ]; S (R d ; C)) such that u s=0 ≡ 0.

We follow essentially the derivation made in [101, section 2.1.2], which is adapted from the original proof of [START_REF] Fursikov | Controllability of evolution equations[END_REF].

Proof. We define the conjugated operator P ϕ := e τ ϕ P e -τ ϕ , where τ ≥ 1. This can be written as follows

P ϕ = e τ ϕ P e -τ ϕ = (D s + iτ ∂ s ϕ) 2 + (D x + iτ ∇ x ϕ) • (D x + iτ ∇ x ϕ) = P -τ 2 |ϕ | 2 + iτ (D s ∂ s ϕ + ∂ s ϕD s + D x • ∇ x ϕ + ∇ x ϕ • D x ) = P -τ 2 |ϕ | 2 + 2iτ ϕ • D + τ ∆ϕ.
We then write P ϕ = A + i B, with

A = A 1 + A 2 , B = B 1 + B2 ,
where

A 1 = P , A 2 = -τ 2 |ϕ | 2 , B 1 = 2τ ϕ • D, B2 = -iτ ∆ϕ.
We introduce yet another parameter µ > 0 to be chosen below and we write (1.3.10)

P ϕ + τ µ∆ϕ = A + iB, where B = B 1 + B 2 , and B 2 = -i(1 + τ )µ∆ϕ. Let v ∈ C 2 ([0, T ]; S (R; C)).
From (1.3.10), taking the L 2 -norm and applying the triangular inequality, we have

(1.3.11) Av 2 L 2 (Q) + Bv 2 L 2 (Q) + 2 Re(Av, iBv) L 2 (Q) P ϕ v 2 L 2 (Q) + τ 2 µ 2 v 2 L 2 (Q) .
Developing the scalar product we write

(1.3.12) Re(Av, iBv) L 2 (Q) = 1≤j,k≤2 I jk , with I jk = Re(A j v, iB k v) L 2 (Q) .
We first compute the terms I j,k separately. In the various computations we shall perform below we shall obtain interior integral terms over Q = (0, T ) × R d and boundary integral terms over ∂Q = {0, T } × R d . Term I 11 . Integrating by parts twice, we obtain

I 11 = Re(A 1 v, iB 1 v) L 2 (Q) = Re P v, 2iτ ϕ • Dv L 2 (Q) (1.3.13) = -2τ Re ∆v, ϕ • v L 2 (Q) = 2τ Re Q v • ∇ ϕ • v dx ds -2τ Re ∂Q ∂ n v ϕ • v dx = 2τ Re Q v • ϕ v + v • v ϕ dx ds -2τ Re ∂Q ∂ n v ϕ • v dx = 2τ Re Q v • ϕ v dx ds + τ Q ∇|v | 2 • ϕ dx ds -2τ Re ∂Q ∂ n v ϕ • v dx = J 11 + BT 11 ,
where

J 11 := 2τ Re Q v • ϕ v dx ds -τ Q ∆ϕ|v | 2 dx ds,
and

BT 11 := τ ∂Q |v | 2 ∂ n ϕ dx -2τ Re ∂Q ∂ n v ϕ • v dx.
Term I 12 . Integrating by parts once, we obtain

I 12 = Re(A 1 v, iB 2 v) L 2 (Q) = -τ (1 + µ) Re(∆v, ∆ϕv) L 2 (Q) (1.3.14) = τ (1 + µ) Re Q v • ∇ ∆ϕv dx ds -τ (1 + µ) Re ∂Q ∂ n v∆ϕv dx = J 12 + BT 12 ,
where

J 12 := τ (1 + µ) Q ∆ϕ|v | 2 dx ds + τ (1 + µ) Re Q v • ∇(∆ϕ)v dx ds,
and

BT 12 := -τ (1 + µ) Re ∂Q ∂ n v∆ϕv dx.
Term I 21 . Analogously, integrating by parts once, we obtain

I 21 = Re(A 2 v, iB 1 v) L 2 (Q) = Re(-τ 2 |ϕ | 2 v, 2iτ ϕ • Dv) L 2 (Q) (1.3.15) = -2τ 3 Re Q |ϕ | 2 vϕ • v dx ds = -τ 3 Q |ϕ | 2 ϕ • ∇|v| 2 dx ds = J 21 + BT 21 ,
where

J 21 := τ 3 Q div |ϕ | 2 ϕ |v| 2 dx ds and BT 21 := -τ 3 ∂Q ∂ n ϕ|ϕ | 2 |v| 2 dx.
Term I 22 . We obtain directly We now treat separately the interior terms collected in J and the boundary terms collected in BT .

I 22 = Re(A 2 v, iB 2 v) L 2 (Q) = Re(-τ 2 |ϕ | 2 v, τ (1 + µ)∆ϕv) L 2 (Q) (1.3.16) = -τ 3 (1 + µ) Re Q |ϕ | 2
Interior terms. We write

J = τ 3 Q div(|ϕ | 2 ϕ ) -(1 + µ)|ϕ | 2 ∆ϕ |v| 2 dx ds + τ µ Q ∆ϕ|v | 2 dx ds (1.3.17) + 2τ Re Q v • ϕ v dx ds + τ (1 + µ) Q v • ∇(∆ϕ)v ds dx = τ 3 Q γ 0 |v| 2 dx ds + τ Q γ 1 |v | 2 dx ds + X,
where

γ 0 := div(|ϕ | 2 ϕ ) -(1 + µ)|ϕ | 2 ∆ϕ, γ 1 := µ∆ϕ, X := 2τ Re Q v • ϕ v dx ds + τ (1 + µ) Q v • ∇(∆ϕ)v ds dx.
As in [101, Lemma 2.10], if we choose µ ∈ (0, 2), the coefficients γ 0 and γ 1 satisfy,

(1.3.18) γ 0 λ 4 ϕ 3 , γ 1 λ 2 ϕ.
For a proof of this fact, we follow [101, section 8.5]. Indeed, according to the form of the weight function ϕ, taking derivatives with respect to s and x, we obtain that

∂ 2 xixj ϕ = (λ 2 ∂ xi ψ∂ xj ψ + λ∂ 2 ij ψ)ϕ, i, j = 1, 2.
This allows one to write

γ 0 = div λ 3 ϕ 3 |ψ | 2 ψ -(1 + µ)λ 2 ϕ 2 |ψ | 2 λ 2 |ψ | 2 ϕ + λ(∆ψ)ϕ = 3λ 4 ϕ 3 |ψ | 4 + λ 3 ϕ 3 |ψ | 2 ∆ψ + λ 3 ϕ 3 ∇(|ψ | 2 )ψ -(1 + µ) λ 4 |ψ | 4 ϕ 3 + λ 3 ϕ 3 |ψ | 2 ∆ψ = (2 -µ)λ 4 |ψ | 4 ϕ 3 + λ 3 ϕ 3 ∇(|ψ | 2 )ψ -µ|ψ | 2 ∆ψ λ 4 ϕ 3 ,
using (1.3.2) and (1.3.3), choosing µ ∈ (0, 2), and taking λ ≥ 1 sufficiently large. Analogously, we write

γ 1 = µ∆ϕ = µ λ 2 |ψ | 2 + λ∆ψ e λψ λ 2 ϕ,
for λ ≥ 1 chosen sufficiently large.

We proceed now with the terms bound together in X, that will be 'absorbed' by the two other terms composing J in (1.3.17) thanks to the estimates (1.3.18). We write

X = 2τ λ 2 Q ϕ|ψ • v | 2 dx ds + 2τ λ Re Q ϕv • ψ v dx ds + τ (1 + µ) Re Q v • ∇(∆ϕ)v dx ds ≥ 2τ λ Re Q ϕv • ψ v dx ds + τ (1 + µ) Re Q v • ∇(∆ϕ)v dx ds =: Y.
Using that ψ ∈ W 3,∞ , we have |ψ | 1 and |∇(∆ϕ)| λ 3 ϕ, and the Young inequality gives

|Y | τ ϕ 1/2 v 2 L 2 (Q) + τ λ 3 Q ϕ|v ||v| dx ds (1 + ελ 2 )τ ϕ 1/2 v 2 L 2 (Q) + ε -1 τ λ 4 ϕ 1/2 v 2 L 2 (Q) .
Choosing ε > 0 sufficiently small, τ and λ sufficiently large we have

(1.3.19) J τ 3 v 2 L 2 (Q) + τ v 2 L 2 (Q) .
Boundary terms. We consider the different terms composing the compound BT defined above.

Term BT 11 . From Proposition 1.3.2 we have ϕ| s=S = 1 and since v| s=0 = 0 we obtain

BT 11 = τ R d ∂ s ϕ| s=T |v | s=T | 2 dx -2τ R d ∂ s ϕ| s=T |∂ s v| s=T | 2 dx + τ R d ∂ s ϕ| s=T |∂ s v| s=T | 2 dx = τ λ(E + F ), with E = - R d ∂ s ψ s=T |∂ s v| s=T | 2 dx, F = R d (ϕ∂ s ψ)| s=0 |∂ s v| s=0 | 2 dx + R d ∂ s ψ| s=T |∇ x v| s=T | 2 dx. Using (1.3.5), we have E ∂ s v| s=T 2 L 2 (R d ) .
Using again (1.3.2), (1.3.4) and (1.3.5), we obtain

F = ωx (ϕ∂ s ψ)| s=0 |∂ s v| s=0 | 2 dx + R d \ωx (ϕ∂ s ψ)| s=0 |∂ s v| s=0 | 2 dx + R d ∂ s ψ| s=T |∇ x v| s=T | 2 dx ≥ C ϕ 1/2 ∂ s v| s=0 2 L 2 (R d \ωx) -C ϕ 1/2 ∂ s v| s=0 2 L 2 (ωx) + ∇ x v| s=T 2 L 2 (R d ) ,
for some C, C > 0. This yields

BT 11 ≥ Cτ λ ∂ s v| s=T 2 L 2 (R d ) + ϕ 1/2 ∂ s v| s=0 2 L 2 (R d \ωx) (1.3.20) -C τ λ ϕ 1/2 ∂ s v| s=0 2 L 2 (ωx) + ∇ x v| s=T 2 L 2 (R d ) .
Term BT 12 . Since v| s=0 = 0, using (1.3.5), we find

BT 12 = -τ (1 + µ) Re R d ∂ 2 s ϕ v ∂ s v | s=T dx = -τ (1 + µ) Re R d (λ∂ 2 s ψ + λ 2 (∂ s ψ) 2 ) v ∂ s v |s=T dx.
We then have, for λ ≥ 1, by (1.3.2),

|BT 12 | τ λ 2 R d |∂ s v |s=T ||v |s=T | dx (1.3.21) τ 1 2 λ ∂ s v |s=T 2 L 2 (R d ) + τ 3 2 λ 3 v |s=T 2 L 2 (R d ) .
Term BT 21 . Since v |s=0 = 0, using (1.3.5), we obtain

BT 21 = -τ 3 R d |ϕ |s=T | 2 ∂ s ϕ |s=T |v |s=T | 2 dx (1.3.22) = -τ 3 λ 3 R d (∂ s ψ |s=T ) 3 |v |s=T | 2 dx τ 3 λ 3 v |s=T 2 L 2 (R d ) .
Collecting estimations (1.3.20)-(1.3.22), we obtain

BT ≥ Cτ 3 λ 3 v |s=T 2 L 2 (R d ) + Cτ λ ∂ s v |s=T 2 L 2 (R d ) + ϕ 1/2 ∂ s v |s=0 2 L 2 (R d \ωx) (1.3.23) -C τ λ ∇ x v |s=T 2 L 2 (R d ) + ϕ 1/2 ∂ s v |s=0 2 L 2 (ωx)
, choosing τ chosen sufficiently large.

We may now put together the estimates obtained for the interior and the boundary terms. From (1.3.11), (1.3.19) and (1.3.23) we obtain

τ 3 v 2 L 2 (Q) +τ v 2 L 2 (Q) +τ 3 v |s=T 2 L 2 (R d ) +τ ∂ s v |s=T 2 L 2 (R d ) + ∂ s v |s=0 2 L 2 (R d ) P ϕ v 2 L 2 (Q) + τ 2 µ 2 v 2 L 2 (Q) + τ ∇ x v |s=T 2 L 2 (R d ) + ∂ s v |s=0 2 
L 2 (ωx) . For τ ≥ τ 0 , with τ 0 chosen sufficiently large, we find Lτ 2 e 2τ u |s=T

τ 3 v 2 L 2 (Q) +τ v 2 L 2 (Q) +τ 3 v |s=T 2 L 2 (R d ) +τ ∂ s v |s=T 2 L 2 (R d ) + ∂ s v |s=0 2 L 2 (R d ) P ϕ v 2 L 2 (Q) + τ ∇ x v |s=T 2 L 2 (R d ) + ∂ s v |s=0 2 L 2 (ωx) . If we now set v = e τ ϕ u for u ∈ C 2 ([0, T ]; S (R d ; C))
∈ L 2 (R d ) be such that supp( f ) ⊂ B R d (0, N ). In particular, f ∈ C ∞ (R d ). We introduce the function (1.3.24) u(s, x) := 1 (2π) d B R d (0,N ) sinh(ξs) ξ f (ξ)e iξ•x dξ, which belongs to C ∞ ([0, T ] × R d ; C) ∩ H 2 (Q; C)
2 L 2 (R d ) ≤ e 2τ ∇ x u |s=0 2 L 2 (R d ) + e τ ϕ ∂ s u |s=0 2 
L 2 (ωz) , for τ ≥ τ 0 and L > 0. By the Plancherel equality we have

∇ x u |s=T 2 L 2 (R d ) = 1 (2π) d B R d (0,N ) |ξ û(T, ξ)| 2 dξ ≤ N 2 (2π) d û|s=T 2 L 2 (R d ) = N 2 u |s=T 2 L 2 (R d ) .
Thus, (1.3.25) gives

Lτ 2 -N 2 e 2τ u |s=T 2 L 2 (R d ) ≤ e τ ϕ ∂ s u |s=0 2 L 2 (ωx) .
Now, we choose τ such that τ ≥ τ 0 ≥ 1 and Lτ 2 -N 2 ≥ 1. For instance, we choose τ 2 = max τ 2 0 , L -1 (N + 1) 2 . Then, we have

(1.3.26) e 2τ u |s=T 2 L 2 (R d ) ≤ e 2τ sup R d ϕ |s=0 ∂ s u |s=0 2 L 2 (ωx)
. By the Plancherel equality, we have

u |s=T 2 L 2 (R d ) = T 2 (2π) d B R d (0,N ) sinh(ξT ) ξT f (ξ) 2 dξ ≥ T 2 (2π) d f 2 L 2 (R d ) = T 2 f 2 L 2 (R d ) .
Note that ∂ s u(0, .) = f. Thus, (1.3.26) reads

f 2 L 2 (R d ) ≤ 1 T 2 e 2τ (sup R d ϕ |s=0 -1) f 2 L 2 (ωx) ,
which proves the result, using the value chosen for τ above. Note that T > 0 is chosen arbitrary here and kept fixed.

A natural question at this stage can be the following: in the spectral inequality of Theorem 1.3.1, can one replace the factor e C(N +1) by some factor e g(N ) with g(N )

N + 1, as N → ∞, e.g. g(N ) = (N + 1) α , with α ∈ [0, 1), or g(N ) = (N +1)/ ln(N +2), etc.? The answer is in fact negative as described in the following proposition: one can construct a sequence of functions (f N ) N that saturates the inequality with the form given in Theorem 1.3.1, up to some constant.

PROPOSITION 1.3.4. Let A ⊂ R d be such that A = R d . There exist C 0 > 0 and N 0 > 0 such that ∀N ≥ N 0 , ∃f ∈ L 2 (R d ) with supp( f ) ⊂ B R d (0, N ) and (1.3.27) f L 2 (R d ) ≥ e C0N f L 2 (A) .
This result is the counterpart of Proposition 5.5 in [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF]. The proof is inspired by the argument developed therein.

Proof. At several places we shall use the following simple estimate

|x|≥α e -|x| 2 dx ≤ C d e -α 2 /2 , α ≥ 1. (1.3.28) In fact if d = 1 we simply write |x|≥α e -x 2 dx ≤ 2 α ∞ α xe -x 2 dx = 1 α e -α 2 , α > 0. If d ≥ 2, we write |x|≥α e -|x| 2 dx = |S d-1 | r≥α r d-1 e -r 2 dr ≤ C d r≥α re -r 2 /2 dr = C d e -α 2 /2 . Since A = R d , there exists x 0 ∈ R d \ A such that (1.3.29) d 0 := dist(x 0 , A) > 0.
We may assume, without any loss of generality, that x 0 = 0. We consider the heat kernel φ s (x) := (4πs) -d/2 e -|x| 2 4s , for s > 0 and x ∈ R d , whose Fourier transform is given by

(1.3.30) φs (ξ) = e -|ξ| 2 s , s > 0, ξ ∈ R d .
We define f ∈ L 2 (R d ) by its Fourier transform as follows

f (ξ) := e -|ξ| 2 N 1 {|ξ|≤N } (ξ), ξ ∈ R d , N > 0.
We first give an estimation of the L 2 -norm of f over the whole domain R d ; we have

f L 2 (R d ) N d/4 . (1.3.31)
In fact, with the Plancherel theorem, (1.3.30), and the inverse Fourier transformation, we write

f 2 L 2 (R d ) = 1 (2π) d f 2 L 2 (R d ) = 1 (2π) d B R d (0,N ) e -2|ξ| 2 N dξ = φ s= 2 N (0) - 1 (2π) d |ξ|≥N e -2|ξ| 2 N dξ.
Then, with a change of variables and (1.3.28) we obtain

f 2 L 2 (R d ) = N 8π d/2 - 1 (2π) d N 2 d/2 |ξ|≥ √ 2N e -|ξ| 2 dξ N d/2 ,
by using (1.3.28) and by choosing N sufficiently large. We now wish to estimate the L 2 -norm of f over the subset A. Again, the inverse Fourier transformation gives

f (x) = 1 (2π) d |ξ|≤N e -|ξ| 2 N +ix•ξ dξ = φ s= 1 N (x) -R(x), (1.3.32) with R(x) := (2π) -d |ξ|≥N e -|ξ| 2 N +ix•ξ dξ.
For the first term in (4.5.28), we use (1.3.29) and we write, with a change of variables,

φ s= 1 N 2 L 2 (A) ≤ |x|>d0 φ s= 1 N (x) 2 dx = N 4π d |x|>d0 e -N |x| 2 2 dx = (2N ) d/2 (4π) d |x|≥d0 √ N 2 e -|x| 2 dx.
This yields, by using (1.3.28), φ s= 1

N L 2 (A)
N d/4 e -d 2 0 N/8 . For the second term in (4.5.28), the Plancherel theorem gives 

R 2 L 2 (A) ≤ R 2 L 2 (R d ) = 1 (2π) d |ξ|≥N e -2|ξ| 2 N dξ = 1 (2π) d N 2 d/2 |ξ|≥ √ 2N e -
f L 2 (A) N d/4 e -C1N , (1. 

3).

The proof is first carried out in the Fourier domain with respect to the space variable x. We set M ξ = -iv•ξ-∆ v , acting on L 2 (R d ), with ξ ∈ R d viewed as a parameter, with domain

D(M ξ ) = {f ∈ L 2 (R d ); -iv • ξf -∆ v f ∈ L 2 (R d )}.
Adapting the results of Proposition 1.2.1 and of Appendix ?? to the case where ξ is only considered as a parameter 3 , and using a partial Fourier transformation in the variable v, we find that M ξ generates a strongly continuous semigroup of contraction e -tM ξ on L 2 (R d ). This gives the well-posedness of of the adjoint equation (1.1.11). This semigroup e -tM ξ is not differentiable for any postive time.

We shall now prove the following result, that states the observability of the Fourier transformed (adjoint) Kolmogorov equation. Most important, we make explicit the dependency of the observability constant upon the Fourier variable ξ, dual to the variable x. 

∂ t g ξ -iv • ξg ξ -∆ v g ξ = 0 in (0, T ) × R d , g ξ |t=0 = g 0,ξ in R d , for T > 0, ξ ∈ R d , and g 0,ξ ∈ L 2 (R d ; C) satisfies (1.4.1) g ξ |t=T L 2 (R d ) ≤ e C 1+ 1 T + √ |ξ| g ξ L 2 ((0,T )×ωv) .
The proof of inequality (1.4.1) follows from a global Carleman estimate for the following parabolic operator (1.4.2)

P ξ = ∂ t -iv • ξ -∆ v = iD t -iv • ξ + D v • D v on Q = (0, T ) × R d
, where the frequency ξ ∈ R d acts as a parameter here. In the following proposition, constants can be chosen uniform with respect to the parameter ξ and to the time T . This is an important feature of the Carleman estimate that will be essential in the proof of the null-controllability of the Kolmogorov equation in Section 1.4.3.

PROPOSITION 1.4.2 (Global parabolic Carleman estimate). We set θ = t(T -t) 

C ∞ (R d ) ∩ L ∞ (R d ), C > 0, and τ 0 ≥ 1 such that (1.4.3) τ 3/2 e τ ϕ u L 2 (Q) + τ 1/2 e τ ϕ ∇ v u L 2 (Q) ≤ C e τ ϕ P ξ u L 2 (Q) + τ 3/2 e τ ϕ u L 2 ((0,T )×ωv) ,
for ξ ∈ R d , T > 0, τ ≥ τ 0 (T + T 2 + |ξ|T 2 ), and for u ∈ C 1 ([0, T ]; S (R d )).

An analogous result was proven in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]. Here, as we consider the whole phasespace we need to construct an adapted weight function. The property of ω v as given in Definition 1.1.1 turns out to be crucial in this construction. In the proof of Proposition 1.4.2 we shall follow the derivation of a Carleman estimate as given in [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF].

Note that the weight function we build in Lemma 1.4.4 below statisfies in fact ϕ ∈ W k,∞ for any k ∈ N.

In the proof of Proposition 1.4.2 we shall need the following result which enables us to choose open subsets of ω v that satisfy the same properties as those of Definition 1.1.1. 

∈ C ∞ (R d ) and C > 0 such that ψ ∈ W k,∞ (R d ), for any k ∈ N, and |ψ (v)| ≥ C for v ∈ R d \ O.
The proof is very much connected to that of Proposition 1.3.2. At places we refer to that proof so as to avoid too much redundancy. Some redundancy is, however, necessary for the sake of readability, as this constuction is technical. Firstly, the reader should recall the definition of

K, K α , K, K β , K α,β , T α , T β , T α,β , α ∈ Z d , β ∈ {0, 1} d ,
from the proof of Proposition 1.3.2. For β ∈ {0, 1} d , we then define the following function ψβ (v) = ψ • T β (v), for v in the compact set K. This is a translated version of the function ψ|K β and also of ψ|K α,β for any α ∈ Z d .

Secondly, we consider the elementary compact cell K. For any β ∈ {0, 1} d , the only point in K where the gradient of ψβ vanishes is w = (L/2, . . . , L/2). Using compactness, for 0 < ρ < r/2 and some w

(i) ∈ B R d (w, δ), i ∈ I with #I < ∞, we have B R d (w, δ) ⊂ i∈I B R d (w (i) , ρ). (1.4.4) Let i ∈ I. We pick a smooth path γ (i) (t), t ∈ [0, 1] such that γ (i) (0) = w (i) and γ (i) (1) = w.
The geometry we describe is illustrated in Figure 3. We also choose a smooth vector field

V (i) ∈ C ∞ c (B R d (w, δ); R d ) such that V (i) (γ (i) (t)) = γ (i) (t) for t ∈ [0, 1]
and we denote by χ (i) (t, v) the flow associated with the vector field V (i) . We then set φ w,δ) onto itself as it coincides with the identity outside the support of V (i) . In particular it leaves unchanged a neighborhood of ∂K. We have φ (i) (w (i) ) = w. On the compact set K we define β only vanishes at w (i) . As #I < ∞ there exists C 0 > 0 such that

(i) (v) = χ (i) (1, v) that is a smooth diffeomorphism of B R d (
ψ (i) β = ψβ • φ (i) , v ∈ K, i ∈ I, β ∈ {0, 1} d ,
ψ (i) β (v) ≥ C 0 , v ∈ K \ B R d (w (i) , ρ) i ∈ I, β ∈ {0, 1} d , (1.4.5)
and for all k ∈ N, there exists C k > 0 such that 

d k ψ (i) β (v) ≤ C k , v ∈ K i ∈ I, β ∈ {0, 1} d . ( 1 
ψ α,β (v) = ψ (j) β • T -1 α,β (v), v ∈ K α,β ,
which is well defined as T α,β maps K onto K α,β . We find that |ψ α,β | ≥ C 0 on K α,β \ O by (1.4.5) and

d k ψ α,β L ∞ ≤ C k on K α,β by (1.4.6), for any k ∈ N.
Observe also that ψ α,β coincides with ψ|K α,β in a neighborhood of ∂K α,β . Finally we define the following function ψ on R d by

ψ(v) = ψ α,β (v) if v ∈ K α,β . We have ψ ∈ C ∞ (R d ) and |ψ | ≥ C 0 in R d \ O, and d k ψ L ∞ (R d ) ≤ C k , for any k ∈ N. Proof of Proposition 1.4.2. Let u ∈ C 1 ([0, T ]; §(R d ))
and set z = e τ ϕ u and the conjugated operator P ϕ = e τ ϕ P ξ e -τ ϕ . We have

P ϕ = i(D t + iτ θ ϕ) + (D v + iτ ϕ ) • (D v + iτ ϕ ) -iξ • v.
We define the following two symmetric differential operators

Q 2 = (P ϕ + P * ϕ )/2, Q 1 = (P ϕ -P * ϕ )/(2i), which gives Q 2 = D v • D v -|τ ϕ | 2 -τ θ ϕ, Q 1 = D t + τ (D v • ϕ + ϕ • D v ) -ξ • v,
and P ϕ = Q 2 + iQ 1 . We denote by η and σ the Fourier variables associated with v and t respectively. We set µ 2 = τ 2 + |η| 2 . Using µ as an order function in the (cotangent) phase space associated with the variable v, thus giving the same strengh to τ and a differentiation w.r.t. v, the principal symbols 4 of these operators are

q 2 = |η| 2 -|τ ϕ | 2 -τ θ ϕ, q 1 = σ + 2τ η • ϕ -ξ • v. Note that the commutator i[Q 2 , Q 1 ]
is a differential operator that only acts in the v variable. Its principal symbol of is given by the Poisson bracket {q 2 , q 1 }.

We pick three open sets ω

(0) v , ω (1) 
v , and ω

v , all satisfying the properties of Definition 1.1.1 such that ω

(0) v ω (1) v ω (2) v ω v and such that (1.4.7) dist(ω (j) v , ∂ω (j+1) v 
) > 0, j = 0, 1, and dist(ω (2) v , ∂ω v ) > 0, which can be done according to Lemma 1.4.3. We now build the weight function ϕ using the following lemma whose proof is given below. LEMMA 1.4.5. There exists a negative function ϕ ∈ C ∞ (R d ) such that ϕ ∈ W k,∞ (R d ), for any k ∈ N, and for some

ν 0 > 0, τ 1 , C > 0 such that ν 0 q 2 2 + τ {q 2 , q 1 } ≥ Cµ 4 , for v ∈ R d \ ω (0) v , η ∈ R d ,
and for τ ≥ τ 1 (T + T 2 |ξ|).

Using (1.4.7), we can build χ ∈ C ∞ (R d ) be such that 0 ≤ χ(v) ≤ 1, supp(χ) ⊂ R d \ ω (1) v , and χ ≡ 1 in R d \ ω (2)
v and all its successives derivatives are bounded in R d (for instance adapt the proof of Theorem 1.4.1 in [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF] to the non compact case using (1.4.7)). We write, by integration by parts,

P ϕ χz 2 L 2 (Q) = Q 2 χz 2 L 2 (Q) + Q 1 χz 2 L 2 (Q) + 2 Re(Q 2 χz, Q 1 χz) L 2 (Q) (1.4.8) ≥ ν 1/2 0 τ -1/2 Q 2 χz 2 L 2 (Q) + i([Q 2 , Q 1 ]χz, χz) L 2 (Q) = (ν 0 τ -1 Q 2 2 + i[Q 2 , Q 1 ])χz, χz L 2 (Q)
, as z vanishes at t = 0 + and t = T -at all orders, because of the sign of the weight function, and where ν 0 τ -1 ≤ 1 by choosing τ /(ν 0 T 2 ) sufficiently large. We have 4. Here, to be precise we consider operators in a semi-classical setting. When considering the v variable, using t only as a parameter, then the (pseudo-)differential calculus is understood with the following metric in the (v, η) cotangent phase space R d × R d : g = |dv| 2 + |dη| 2 /µ 2 . Observe that the polynomial growth of q 1 w.r.t. v has no impact on the calculus operations performed in the remainder of the proof. For example, this polygonal growth is not present in the symbol {q 2 , q 1 } computed in the proof of lemma 1.4.5. This behavior in the symbol q 1 can thus be perfectly admitted. Here, quantification of the time derivative in q 1 is purely formal, as the dual variable σ does not occur in the calculus estimations that are performed below. We could only consider a symbol quantification in the v variable and preserve the Dt form. This, however, gives an awkward presentation that we chose to avoid here following [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF].

used that Q * j = Q j , j = 1, 2, and [τ , Q 2 ] = 0 as Q 2 is a differential operator that only acts in the v direction. The parameter ν 0 is chosen as in Lemma 1.4.5 above. The principal symbol of the operator

ν 0 τ -1 Q 2 2 + i[Q 2 , Q 1 ], that is differential only in the v variable, is given by ν 0 τ -1 q 2 2 + {q 2 , q 1 }. Let χ ∈ C ∞ (R d ) be such that 0 ≤ χ(v) ≤ 1, supp( χ) ⊂ R d \ ω (0) v , and χ ≡ 1 in R d \ ω (1)
v . In particular, χ ≡ 1 in a neighborhood of supp(χ). With the symbol ellipticity given in Lemma 1.4.5, we have

ν 0 q 2 2 + τ {q 2 , q 1 } χ + µ 4 (1 -χ) µ 4 , v ∈ R d , for τ ≥ τ 1 (T + T 2 |ξ|). Writting (ν 0 τ -1 Q 2 2 + i[Q 2 , Q 1 ])χz = (ν 0 τ -1 Q 2 2 + i[Q 2 , Q 1 ]) χ + Op(τ -1 µ 4 )(1 -χ)
χz, the Gårding inequality (in the v variable only with the time variable t regarded as a parameter) yields

(ν 0 τ -1 Q 2 2 + i[Q 2 , Q 1 ])χz, χz L 2 (R d ) τ -1 Op(µ 2 )χz(t, .) 2 L 2 (R d ) , uniformly w.r.t. t ∈ [0, T ],
for τ chosen sufficiently large, by choosing τ /T 2 sufficiently large. We thus choose τ ≥ τ 2 (T + T 2 + |ξ|T 2 ) with τ 2 large enough. Integrating w.r.t. t, we then obtain, using (1.4.8),

P ϕ χz L 2 (Q) τ -1/2 Op(µ 2 )χz L 2 (Q) τ 1/2 Op(µ)χz L 2 (Q) ,
Adding the term τ 1/2 Op(µ)(1 -χ)z L 2 (Q) on both sides, we obtain

P ϕ χz L 2 (Q) + τ 1/2 Op(µ)(1 -χ)z L 2 (Q) τ 1/2 Op(µ)z L 2 (Q) .
Next, writing P ϕ χ = χP ϕ + [P ϕ , χ], where the commutator is a first-order semiclassical differential operator in the v variable, we find

P ϕ z L 2 (Q) + τ 1/2 Op(µ)(1 -χ)z L 2 (Q) + Op(µ)z L 2 (Q) τ 1/2 Op(µ)z L 2 (Q) .
Chosing τ sufficiently large, we thus obtain

P ϕ z L 2 (Q) + τ 1/2 Op(µ)(1 -χ)z L 2 (Q) τ 1/2 Op(µ)z L 2 (Q) ,
which implies

P ϕ z L 2 (Q) + τ 3/2 z L 2 ((0,T )×ω (2) v ) + τ 1/2 ∇ v z L 2 ((0,T )×ω (2) v ) τ 3/2 z L 2 (Q) + τ 1/2 ∇ v z L 2 (Q) .
Moving back to the unknown function u we obtain

e τ ϕ P u L 2 (Q) + τ 3/2 e τ ϕ u L 2 ((0,T )×ω (2) v ) + τ 1/2 e τ ϕ ∇ v u L 2 ((0,T )×ω (2) v ) τ 3/2 e τ ϕ u L 2 (Q) + τ 1/2 e τ ϕ ∇ v u L 2 (Q) .
We now remove the gradient term on the l.h.s. of this estimate. This is a fairly classical argument, which we provide for completeness. We choose

χ 0 ∈ C ∞ (R d ) such that 0 ≤ χ 0 (v) ≤ 1, supp(χ) ⊂ ω v and χ ≡ 1 in ω (2)
v . Setting f = P ξ u, after multiplication by e 2τ ϕ τ χ 0 u, and integration over Q, we obtain 1 2

Q e 2τ ϕ τ χ 0 ∂ t |u| 2 dt dv -Re(∆ v u, e 2τ ϕ τ χ 0 u) L 2 (Q) (1.4.9) = Re(e τ ϕ f, e τ ϕ τ χ 0 u) L 2 (Q) .
For the first term I 1 an integration by parts in t yields

|I 1 | = 1 2 Q e 2τ ϕ τ χ 0 ∂ t |u| 2 dt dv = 1 2 Q ∂ t τ (1 + 2τ ϕ)e 2τ ϕ χ 0 |u| 2 dt dv τ 3/2 e τ ϕ u 2 L 2 ((0,T )×ωv) , since ∂ t τ = τ θ and θ T θ 2 and 1 T 2 θ yielding |∂ t τ | τ T θ 2 τ T 3 θ 3 τ 3 , |∂ t τ |τ τ T θ 2 τ τ 3 ,
as τ T + T 2 . The third term can be estimated as

|I 3 | = Re(e τ ϕ f, e τ ϕ τ χ 0 u) L 2 (Q) e τ ϕ f 2 L 2 (Q) + e τ ϕ τ χ 0 u 2 L 2 (Q) e τ ϕ f 2 L 2 (Q) + τ 3/2 e τ ϕ u 2 L 2 ((0,T )×ωv)
, as 1 T 2 θ τ θ = τ , since τ T 2 . For the second term, with integration by parts in v, we have

I 2 = Q e 2τ ϕ τ χ 0 |∇ v u| 2 dt dv + Re Q τ u∇ v (e 2τ ϕ χ 0 ) • ∇ v u dt dv ≥ τ 1/2 e τ ϕ ∇ v u 2 L 2 ((0,T )×ω (2) v ) - 1 2 Q τ ∆ v (e 2τ ϕ χ 0 )|u| 2 dt dv, and Q τ ∆ v (e 2τ ϕ χ 0 )|u| 2 dt dv τ 3/2 e τ ϕ u 2 L 2 ((0,T )×ωv) , as ϕ ∈ W 2,∞
. The previous estimates and (1.4.9) then yield

τ 1/2 e τ ϕ ∇ v u 2 L 2 ((0,T )×ω (2) v ) e τ ϕ P ξ u 2 L 2 (Q) + τ 3/2 e τ ϕ u 2 L 2 ((0,T )×ωv) .
The proof is complete.

Proof of Lemma 1.4.5. The Poisson bracket of q 2 and q 1 reads:

{q 2 , q 1 } = + 4τ τ θ |ϕ | 2 + τ θ ϕ -2η • ξ. with (v, t, η, τ ) = 4τ η • ϕ η + τ 2 ϕ • ϕ ϕ . According to Lemma 1.4.4 there exists a function ψ ∈ C ∞ (R d ; R) such that ψ ∈ W k,∞ (R d ), for any k ∈ N, and |ψ (v)| ≥ C > 0 for v ∈ R d \ ω (0)
v , for some C > 0. For λ ≥ 1 we set φ = exp(λψ) and ϕ = φ -exp(λM ), with M > ψ ∞ . We have ϕ < 0. We set q2 = q 2 + τ θ ϕ = |η| 2 -|τ ϕ | 2 and we claim, as proven below, that we have the following property

ν q2 2 + τ ≥ Cµ 4 , (t, v) ∈ [0, T ] × R d \ ω (0) v , η ∈ R d , τ ≥ 1, (1.4.10)
for some C > 0, if λ and ν are chosen sufficiently large.

In fact, first observe that we have

∂ vj ϕ = ∂ vj φ = λφ∂ vj ψ, ∂ 2 vj v k ϕ = λφ∂ 2 vj v k ψ + λ 2 φ∂ vj ψ∂ v k ψ, yielding, with τ = τ λφ > 0, = 4(τ λφ) 3 ψ • ψ ψ + λ|ψ | 4 + 4τ λφ η • ψ η + λψ • η 2 ≥ 4τ 3 ψ • ψ ψ + λ|ψ | 4 + 4τ η • ψ η. Using that 0 < C ≤ |ψ | in R d \ω (0)
v and ψ ∈ W 2,∞ (R d ), we obtain, for λ sufficiently large,

≥ C τ 3 λ -C τ |η| 2 , for v ∈ R d \ ω (0) v . (1.4.11)
We have q2 = |η| 2 -|τ ψ | 2 . We set μ = τ 2 + |η| 2 and we consider two cases: |q 2 | < εμ 2 and |q 2 | ≥ εμ 2 , for ε > 0 to be set just below.

Case |q 2 | < εμ 2 : Then, we have C τ 2 -εμ 2 < |η| 2 < C τ 2 + εμ 2 using that 0 < 1/C ≤ ψ ≤ C. For ε > 0 chosen sufficiently small and kept fixed, we obtain τ |η| τ . Then, by (1.4.11), for λ chosen sufficiently large and kept fixed, we have

τ 3 for v ∈ R d \ ω (0)
v . We thus have

ν|q 2 | 2 + τ ≥ τ τ 4 μ4 µ 4 for v ∈ R d \ ω (0) v . Case |q 2 | ≥ εμ 2 :
Here the values of ε and λ are kept fixed with the values chosen in the previous case. Observing that | | μ3 (using that λ is now fixed), we then have

ν|q 2 | 2 + τ ≥ νε 2 μ4 -C τ μ3 ≥ μ4 (νε 2 -C ).
Thus, for ν chosen sufficiently large we have

ν|q 2 | 2 + τ µ 4 , for v ∈ R d \ ω (0) 
v . We have thus obtain the property claimed in (1.4.10).

We observe that we have

1 T 2 θ, |θ | T θ 2 , |θ | T 2 θ 3 .
We thus find

|4τ τ θ (ϕ ) 2 + τ θ ϕ -2η • ξ| τ 3 T τ + T 2 τ 2 + |η|τ 2 |ξ|T 4 τ 2 . Similarly we find q 2 2 ≥ 1 2 q2 2 -(τ θ ϕ) 2 ≥ 1 2 q2 2 -C τ 4 T 2 τ 2 .
¿From (1.4.10), for τ ≥ τ 1 (T + |ξ|T 2 ), with τ 1 chosen sufficiently large, we hence obtain

2νq 2 2 + τ {q 2 , q 1 } µ 4 , (t, v) ∈ [0, T ] × R d \ ω (0) v , η ∈ R d . (1.4.12)
This concludes the proof of Lemma 1.4.5. Now, we can prove Proposition 1.4.1.

Proof of Proposition 1.4.1. Let t 1 = T /3 and t 2 = 2T /3. For t ∈ [t 1 , t 2 ], we have C 1 /T 2 ≤ θ(t) ≤ C 2 /T 2 , with C 1 = 4 and C 2 = 9/2 > C 1 .
With τ and ϕ as given by Proposition 1.4.2 we then have, e C2τ min ϕ/T 2 ≤ e τ ϕ ≤ e C1τ max ϕ/T 2 recalling that ϕ < 0; thus we find

τ 3/2 T 3 e C2 τ T 2 min ϕ τ 3/2 e τ ϕ τ 3/2 T 3 e C1 τ T 2 max ϕ , (t, v) ∈ [t 1 , t 2 ] × R d . (1.4.13)
With the parabolic decay of Proposition 1.2.3 and (1.4.13), we have

(t 2 -t 1 ) g ξ |t=T 2 L 2 (R d ) ≤ g ξ 2 L 2 ((t1,t2)×R d ) T 6 τ 3 e -2C2 τ T 2 min ϕ τ 3/2 e τ ϕ g ξ 2 L 2 ((t1,t2)×R d ) .
The Carleman estimate of Proposition 1.4.2 gives

τ 3/2 e τ ϕ g ξ 2 L 2 ((t1,t2)×R d ) τ 3/2 e τ ϕ g ξ 2 L 2 ((0,T )×ωv) τ 3 T 6 e 2C1 τ T 2 max ϕ g ξ 2 L 2 ((0,T )×ωv) ,
for τ ≥ τ 0 (T + T 2 + T 2 |ξ|). We thus obtain

g ξ |t=T L 2 (R d ) 1 √ T e τ T 2 (C1 max ϕ-C2 min ϕ) g ξ L 2 ((0,T )×ωv) .
Setting τ = τ 0 (T + T 2 + T 2 |ξ|) the observability inequality (1.4.1) follows.

1.4.2. Observability of Fourier packets. Here, we shall prove the following result that makes precise the cost of the control of the Kolmogorov equation (1.1.1) when one only aims to bring to zero a bounded part of the spectrum of the solution.

PROPOSITION 1.4.6. There exists C obs > 0 such that for every T > 0,

N ∈ N and f 0 ∈ L 2 (R 2d ) there exists a control u ∈ L 2 ((0, T ) × R 2d ) such that the solution of Problem (1.1.1) satisfies supp( f (T, ., .)) ⊂ R d \ B R d (0, N ) × R d and (1.4.14) u L 2 ((0,T )×R 2d ) ≤ e C obs (1+ 1 T +N ) f 0 L 2 (R 2d ) .
By duality, this result is equivalent to the following observability inequality for the adjoint problem (1.1.4), in the case of an initial data whose Fourier transform is compactly-supported. This result is a consequence of the spectral inequality of Theorem 1.3.1.

PROPOSITION 1.4.7. There exists C obs > 0 such that, for T > 0, N ∈ N, and

g 0 ∈ L 2 (R 2d )with supp(ĝ 0 ) ⊂ B R d (0, N ) × R d , the solution of (1.1.4) satisfies (1.4.15) g |t=T L 2 (R 2d ) ≤ e C obs (1+ 1 T +N ) g L 2 ((0,T )×ω) .
The constant C obs is the same as in Proposition 1.4.6.

Proof of Proposition 1.4.7. Because of the linearity we have supp(ĝ(t, ., . 

) ⊂ B R d (0, N ) × R d for t ∈ [0, T ].
g |t=T 2 L 2 (R 2d ) = 1 (2π) d B R d (0,N ) R d |ĝ(T, ξ, v)| 2 dv dξ B R d (0,N ) e C 1+ 1 T + √ |ξ| T 0 ωv |ĝ(t, ξ, v)| 2 dv dt dξ = e C 1+ 1 T + √ N T 0 ωv ĝ(t, ., v) 2 L 2 (B R d (0,N )) dv dt ≤ e C 1+ 1 T + √ N T 0 ωv e 2C (N +1) g(t, ., v) 2 L 2 (ωx) dv dt.
This proves (1.4.15) with, for instance, C obs = C + C .

1.4.3. Construction of the control function. The aim of this section is to prove Theorem 1.1.2. The type of control construction we use was originally performed in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Here we base our construction on the presentations given in [18, section 3.3], [24, section 3], and [103, section 6.2].

Proof of Theorem 1.1.2. We consider, for any j ∈ N, the space

E j := f ∈ L 2 (R 2d ) : supp f ⊂ B R d (0, 2 j ) × R d ,
where the Fourier transform is taken with respect to the variable x only, as in (1.1.10). This space is closed in L 2 (R 2d ). Accordingly, let Π Ej denote the projection of L 2 (R 2d ) onto E j .

Let ρ ∈ R be such that 0 < ρ < 1 3 and set T j = C ρ 2 -ρj , j ∈ N, with C ρ such that ∞ j=0 T j = T /2. We also define the time sequence (a j ) j∈N by a 0 := 0, a j+1 := a j + 2T j , j ∈ N.

We now define a control u for t ∈ (0, T ) as follows

u(t) = ũj (t -a j ), if t ∈ (a j , a j + T j ), 0, if t ∈ (a j + T j , a j+1 ],
where ũj is the control given by Proposition 1.4.6 with

T = T j , N = 2 j , f 0 = f (a j ). (1.4.16)
Then, Π Ej f (a j + T j ) ≡ 0 and (1.4.17) ũj L 2 ((aj ,aj +Tj )×ω) ≤ e

C obs 1+ 1 T j +2 j f (a j ) L 2 (R 2d ) .
We have also that, by the Duhamel formula stated in Proposition 1.2.2,

f (a j + T j ) L 2 (R 2d ) ≤ 1 + T j e C 1+ 1 T j +2 j f (a j ) L 2 (R 2d ) .
By Proposition 1.2.3 we deduce that

f (a j+1 ) L 2 (R 2d ) ≤ e - 2 2j T 3 j 12 f (a j + T j ) L 2 (R 2d ) ≤ 1 + T j e C 1+ 1 T j +2 j e - 2 2j T 3 j 12 f (a j ) L 2 (R 2d ) .
Hence, iterating this inequality, we obtain, for j ≥ 1,

f (a j ) L 2 (R 2d ) ≤ e -j-1 k=0 α k f 0 L 2 (R 2d ) , with α k = 2 2k T 3 k 12 -ln 1 + T k e C 1+ 1 T k +2 k ≥ 2 2k T 3 k 12 -C 1 + 1 T k + 2 k ≥ 2 k(2-3ρ) C 3 ρ 12 -C 1 + 2 ρk C ρ + 2 k ,
using the value given to T k above. As 0 < ρ < 1/3, we see that we have

α k ≥ C 2 k(2-3ρ) , (1.4.18)
for C > 0 and k sufficiently large, and thus the series

k α k diverges to +∞ yielding f |t=T L 2 (R 2d ) = 0, for f ∈ C 0 ([0, T ]; L 2 (R 2d )).
Furthermore, the control u built above belongs to L 2 ((0, T ) × R 2d ). In fact by (1.4.17) we have

u 2 L 2 ((0,T )×R 2d ) = ∞ j=0 ũj 2 L 2 ((aj ,aj +Tj )×R 2d ) ≤ ∞ j=0 e C 1+ 1 T j +2 j f (a j ) 2 L 2 (R 2d ) .
We thus find

u 2 L 2 ((0,T )×R 2d ) ≤ e C 2+ 1 T 0 + ∞ j=1 e C 1+ 1 T j +2 j -j-1 k=0 α k f 0 L 2 (R 2d ) .
Using (1.4.18), we obtain

C 1 + 1 T j + 2 j - j-1 k=0 α k ≤ C 1 + 1 T j + 2 j -α j-1 ≤ C 1 + 2 ρj C ρ + 2 j -C 2 (j-1)(2-3ρ) ≤ -C 2 j(2-3ρ)
for C > 0 and for j sufficiently large, as 0 < ρ < 1/3. Hence we find that u L 2 ((0,T )×R 2d ) ≤ C f 0 L 2 (R 2d ) , which conludes the proof.

1.5. Proofs of the semigroup and well-posedness properties 1.5.1. Proof of Proposition 1.2.1. We set L : L 2 (R 2d ) → L 2 (R 2d ), with domain

D(L ) = {g ∈ L 2 (R 2d ); -ξ • ∇ η g(ξ, η) + |η| 2 g(ξ, η) ∈ L 2 (R 2d )},
and defined by L g = -ξ • ∇ η g + |η| 2 g.

We denote by F the Fourier transformation in the x, v variables. Observe that F D(K ) = D(L ) and that L = F K F -1 . If we prove the well-poseness property of ∂ t + L , we can thus deduce that of ∂ t + K , because of the isometry property of F on L 2 (R 2d ). In particular, below, we prove that L is the generator of a C 0semigroup of contraction Σ(t) on L 2 (R 2d ). We thus deduce that K is the generator of a C 0 -semigroup of contraction S(t) on L 2 (R 2d ), given by S(t) = F -1 Σ(t)F .

Let g ∈ L 2 (R 2d ) and assume that G(t, ξ, η) is solution to

(∂ t + L )G = 0, G |t=0 = g(ξ, η).
We first proceed heuristically. Introducing H(t, ξ, η) = G(t, ξ, η -tξ), we find

∂ t H + |η -tξ| 2 H = 0, H |t=0 = g(ξ, η),
yielding H(t, ξ, η) = g(ξ, η) exp(-t 0 |η -sξ| 2 ds). The form of G should thus be G(t, ξ, η) = g(ξ, η + tξ)e -t 0 |η+(t-s)ξ| 2 ds = g(ξ, η + tξ)e -t 0 |η+sξ| 2 ds . (1.5. [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF] We find G(t, ., .) ∈ L 2 (R 2d ). Thus, we set Σ(t) :

L 2 (R 2d ) → L 2 (R 2d ) as (Σ(t)g)(ξ, η) = G(t, ξ, η). LEMMA 1.5.1. The map Σ(t) is a C 0 -semigroup of contraction on L 2 (R 2d ).
Proof. Let g ∈ L 2 (R 2d ). Considering the formula (1.5.19) we have Σ(0)g = g, and we write Σ(t)g -g = I t + J t , with

I t (ξ, η) = g(ξ, η + tξ) -g(ξ, η) e -t 0 |η+sξ| 2 ds , J t (ξ, η) = g(ξ, η) e -t 0 |η+sξ| 2 ds -1 .
With the Parseval formula we have, with

h(ξ, v) = R d exp(-iv • η)g(ξ, η) dη, I t L 2 (R 2d ) ≤ g(ξ, η + tξ) -g(ξ, η) L 2 (R 2d ) e itξ•v -1 h(ξ, v) L 2 (R 2d ) ,
and we find that I t L 2 (R 2d ) → 0 as t → 0 + by the Lebesgue dominated convergence theorem. We also directly see that J t L 2 (R 2d ) → 0 as t → 0 + by the same theorem.

Let t, t ≥ 0. As we have (Σ(t )g)(ξ, η) = g(ξ, η + t ξ) exp(- |η + sξ| 2 ds, we conclude that we have the semigroup property Σ(t) • Σ(t ) = Σ(t + t ). Finally, the contraction property on L 2 (R 2d ) is clear from (1.5.19).

t 0 |η + sξ| 2 ds), we find (Σ(t) • Σ(t )g)(ξ, η) = g(ξ, η + (t + t )ξ)e -t
We denote by A the generator of Σ(t) which is an unbounded operator on L 2 (R 2d ). Here, we use the convention Σ(t) = e -tA . LEMMA 1.5.2. Let g ∈ L 2 (R 2d ). We have (Σ(t)g -g)/t → ξ • ∇ η g -|η| 2 g in D (R 2d ), as t → 0 + .

Proof. The result follows from the convergence of (g(ξ, η + tξ) -g(ξ, η))/t to ξ • ∇ η g(ξ, η) in D (R 2d ), as t → 0 + . This can be proven by writting,

g(ξ, η + tξ) -g(ξ, η), ϕ(ξ, η) = g(ξ, η), ϕ(ξ, η -tξ) -ϕ(ξ, η) = -t g(ξ, η), ξ • ∇ η ϕ(ξ, η) + t 2 g(ξ, η), 1 0 d 2 η ϕ(ξ, η -tσξ)(ξ, ξ) dσ , for ϕ ∈ C ∞ c (R 2d ). Consequently, if g ∈ D(A), that is, if g ∈ L 2 (R 2d ) and (Σ(t)g -g)/t converges in L 2 (R 2d ) as t → 0 + , then Ag = -ξ • ∇ η g + |η| 2 g ∈ L 2 (R 2d
). We thus have D(A) ⊂ D(L ), and the operators A and L coincide on D(A). Proof. Let g ∈ D(L ). We prove that g ∈ D(A). By Lemma 1.5.2 we have

(Σ(t)g -g)/t → ξ • ∇ η g -|η| 2 g in D (R 2d ). (1.5.20)
We claim that (Σ(t)g -g)/t is bounded in L 2 (R 2d ). With (1.5.20), this implies that (Σ(t)g -g)/t converges weakly to ξ • ∇ η g -|η| 2 g = -L g in L 2 (R 2d ). Then, (Σ(t)g -g)/t converges to -L g in L 2 (R 2d ), as its weak convergence is equivalent to its strong convergence by Theorem 1.3 in [129, Section 2.1]. And thus g ∈ D(A).

We now prove the claim made above. First, we assume that g ∈ S (R 2d ) and observe that M (t, ξ, η) = (Σ(t)g)(ξ, η) is smooth. As we have

∂ t M (t, ξ, η) = ξ • ∇ η g(ξ, η + tξ) -|η + tξ| 2 g(ξ, η + tξ) e -t 0 |η+sξ| 2 ds = -L g(ξ, η + tξ)e -t 0 |η+sξ| 2 ds ,
writing a first-order Taylor formula gives

(Σ(t)g -g)(ξ, η) = M (t, ξ, η) -M (0, ξ, η) = t 1 0 ∂ t M (σt, ξ, η) dσ = -t 1 0 L g(ξ, η + tσξ)e -σt 0 |η+sξ| 2 ds dσ.
We then deduce

Σ(t)g -g L 2 (R 2d ) ≤ t 1 0 L g(ξ, η + tσξ) L 2 (R 2d ) dσ = t L g L 2 (R 2d ) .
This gives the claim, as S (R 2d ) is dense in D(L ), which can be seen by adapting classical arguments (for instance, one can adapt the argument in Theorem 31.5 and Lemma 31.1 in [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF]).

We finally consider the non-differentiability property of the semigroup S(t). It is equivalent to that of Σ(t). For g ∈ L 2 (R 2d ), we have Σ(t)g (ξ, η) = G(t, ξ, η), as given in (1.5.19). If Σ(t) were to be differentiable for t > t 0 , then Σ(t)g would be in the domain of the operator L , by Lemma 2.4.2 in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]. In the sense of distributions, we find

-ξ • ∇ η + |η| 2 G(t, ξ, η) = k(ξ, η + tξ)e -t 0 |η+sξ| 2 ds , (1.5.21) with k = -ξ • ∇ η + |η| 2 g. In fact, we have ξ • ∇ η G(t, ξ, η) = ξ • ∇ η g(ξ, η + tξ) -2g(ξ, η + tξ) t 0 ξ • (η + sξ) ds e -t 0 |η+sξ| 2 ds = ξ • ∇ η g(ξ, η + tξ) -t|ξ| 2 + 2tξ • η g(ξ, η + tξ) e -t 0 |η+sξ| 2 ds ,
and thus We now consider the second case, that is f 0 ∈ L 2 (R 2d ) and F ∈ L 1 (0, T ; L 2 (R 2d )). We set

-ξ • ∇ η + |η| 2 G(t, ξ, η) = -ξ • ∇ η g(ξ, η + tξ) + |η + tξ| 2 g(ξ, η + tξ) e -t 0 |η+sξ| 2 ds , which gives (1.5.21). If we choose g ∈ L 2 (R 2d ) lacking smoothness be such that k / ∈ L 2 loc (R 2d ), it leads to -ξ • ∇ η + |η| 2 G(t, ξ, η) / ∈ L 2 (R 2d ),
f 1 (t) = S(t)f 0 , f 2 (t) = t 0 S(t -s)F (s) ds. We have f 1 , f 2 ∈ C 0 ([0, T ]; L 2 (R 2d
)) with f 1|t=0 = f 0 and f 2|t=0 = 0. We start with the following result.

LEMMA 1.5.4. Let χ ∈ C ∞ c (0, T ). We have ∞ 0 χ(t)f j (t) dt ∈ D(K ), j = 1,

2, and moreover

K T 0 χ(t)f 1 (t) dt = T 0 χ (t)f 1 (t) dt, K T 0 χ(t)f 2 (t) dt = T 0 χ (t)f 2 (t) + χ(t)F (t) dt.
Proof. For h > 0 we compute

F h = h -1 (S(h) -Id) T 0 χ(t)f 1 (t) dt = h -1 T 0 χ(t) S(t + h) -S(t) f 0 dt. Observe that, for 0 < h < 1, T 0 χ(t)S(t + h)f 0 dt = T +h h χ(t -h)S(t)f 0 dt = T +1 0 χ(t -h)S(t)f 0 dt,
because of the support of χ. We thus obtain

F h = h -1 T +1 0 χ(t -h) -χ(t) f 1 (t) dt.
With the continuity of t → f 1 (t), in L 2 (R 2d ), the Lebesgue dominated convergence theorem yields, lim

h→0 + F h = - T +1 0 χ (t)f 1 (t) dt = - T 0 χ (t)f 1 (t) dt.
Consequently, by the very definition of the generator of a semigroup (see e.g. (1.2) and (1.3) 

in [129, Chapter 1] 5 ), T 0 χ(t)f 1 (t) dt ∈ D(K ) and K T 0 χ(t)f 1 (t) dt = T 0 χ (t)f 1 (t) dt.
We now turn to the term f 2 (t). Similarly, for h > 0, we set

F h = h -1 (S(h) -Id) T 0 χ(t)f 2 (t) dt = h -1 T 0 χ(t) t 0 S(t + h -s) -S(t -s) F (s) ds dt. Writing T 0 χ(t) t 0 S(t + h -s)F (s) ds dt = T +1 0 χ(t -h) t-h 0 S(t -s)F (s) ds dt,
we obtain

F h = h -1 T +1 0 χ(t -h) -χ(t) f 2 (t) dt 5.
Observe here that we consider S(t) = e -tK whereas one has e +tK in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF].

-h -1

T +1 0 χ(t -h) t t-h S(t -s)F (s) ds dt.
With the Lebesgue dominated convergence theorem we obtain lim

h→0 + F h = - T +1 0 χ (t)f 2 (t) + χ(t)F (t) dt = - T 0 χ (t)f 2 (t) + χ(t)F (t) dt.
Consequently,

T 0 χ(t)f 2 (t) dt ∈ D(K ) and K T 0 χ(t)f 2 (t) dt = T 0 χ (t)f 2 (t) + χ(t)F (t) dt, which concludes the proof. Let χ ∈ C ∞ c (0, T ) and ϕ ∈ C ∞ c (R 2d
). With Lemma 1.5.4, we find

K T 0 χ(t)f 1 (t) dt, ϕ D (R 2d ),C ∞ c (R 2d ) = T 0 χ (t)f 1 (t) dt, ϕ D (R 2d ),C ∞ c (R 2d ) , yielding T 0 χ(t)f 1 (t), t K ϕ D (R 2d ),C ∞ c (R 2d ) dt = T 0 χ (t)f 1 (t), ϕ D (R 2d ),C ∞ c (R 2d )
dt, and thus

f 1 , t K χ(t)ϕ(x, v) D (Q),C ∞ c (Q) = f 1 , χ (t)ϕ(x, v) D (Q),C ∞ c (Q) , with Q = (0, T ) × R 2d . This implies that f 1 satisfies (∂ t + v • ∇ x -∆ v )f 1 = 0 in D (Q). Similarly we find f 2 , t K χ(t)ϕ(x, v) D (Q),C ∞ c (Q) = f 2 , χ (t)ϕ(x, v) D (Q),C ∞ c (Q) + F, χ(t)ϕ(x, v) D (Q),C ∞ c (Q) , yielding (∂ t + v • ∇ x -∆ v )f 2 = F in D (Q).
We have thus obtained the existence part of the result with a solution given by the mild solution (1.2.1).

To prove uniqueness, as the equation is linear, it is sufficient to assume that

f ∈ C 0 ([0, T ]; L 2 (R 2d )) is such that (∂ t + v • ∇ x -∆ v )f = 0 in D ((0, T ) × R 2d ), f |t=0 = 0,
and to prove that f = 0. This function is only defined for 0 ≤ t ≤ T . We set

w(t) =      0 if t < 0, f (t) if 0 ≤ t ≤ T, S(t -T )f (T ) if T < t.
We have w ∈ C 0 (R; L 2 (R 2d )) and we have, using the above argument, [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] and such that R χ(t) dt = 1. We set w ε = w t * χ ε (convolution in time) with χ ε = ε -1 χ(t/ε). We have (1.5.22) and supp(w ε ) ⊂ [-ε, +∞)×R 2d by the support theorem. We have w ε ∈ C ∞ (R; L 2 (R 2d )) and thus using (1.5.22) we find w ε ∈ C ∞ (R; D(K )) and the Kolmogorov equation (1.5.22) holds in the sense of functions. By the uniqueness part of the first item of the proposition we find that w ε vanishes. Since χ ε → δ as ε → 0 we finally find that w also vanishes indentically. This gives the uniqueness result for the second item of the proposition.

(∂ t + v • ∇ x -∆ v )w = 0 in D (R × R 2d ). Next, we choose χ ∈ C ∞ c (R) with supp(χ) ⊂ [-1,
(∂ t + v • ∇ x -∆ v )w ε = 0 in D (R × R 2d ),
1.5.3. Proof of Proposition 1.2.3. We denote by F the Fourier transformation in the x, v variables. We set g = F f 0 and 

G(t) = F f = F (S(t)f 0 ). The proof
G(t, ξ, .) 2 L 2 (R d ) ≤ e -t 3 |ξ| 2 /6 R d |g(ξ, η + tξ)| 2 dη = e -t 3 |ξ| 2 /6 g(ξ, .) 2 L 2 (R d ) ,
which yields the result by the Parseval formula.

CHAPTER 2

On the controllability of the 2-D Vlasov-Stokes system Keywords: Vlasov-Stokes system; kinetic theory ; kinetic-fluid model; controllability; return method.1 

Introduction

We consider the Vlasov-Stokes system in the 2-dimensional torus T 2 := R 2 /Z 2 , which writes, for T > 0 and ω ⊂ T 2 , (2.1.1)

           ∂ t f + v • ∇ x f + λ div v [(U -v)f ] = 1 ω (x)G, (t, x, v) ∈ (0, T ) × T 2 × R 2 , -∆ x U + ∇ x p = j f , (t, x) ∈ (0, T ) × T 2 , div x U (t, x) = 0, (t, x) ∈ (0, T ) × T 2 , T 2 U (t, x) dx = 0, t ∈ (0, T ), f (0, x, v) = f 0 (x, v), (x, v) ∈ T 2 × R 2 ,
where λ > 0 is a friction coefficient and

(2.1.2)

j f (t, x) := R 2 vf (t, x, v) dv.
This is a control system in which the state is the distribution function f (t, x, v) and the control is the source term

1 ω (x)G(t, x, v), located in [0, T ] × ω × R 2 .
The Vlasov-Stokes system studied in this paper is an adaptation to the case of the 2-dimensional torus of the system obtained by P.E. Jabin and B. Perthame in [START_REF] Jabin | Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid[END_REF]. System (2.1.1) is a kinetic-fluid model describing the behaviour of a large cloud of particles, represented by the distribution function f (t, x, v), interacting with an incompressible fluid, whose velocity field is given by U (t, x), under the hypothesis that the effects of convection are negligible. The quantity f (t, x, v) dx dv can be interpreted as the number of particles at time t whose position is close to x and whose velocity is close to v. This model is especially convenient when describing sprays and aerosols, bubbly flows or suspension and sedimentation phenomena. This system is also important in biological applications, such as the transport in the respiratory tract (see Section 2.1.2.2 for more details).

2.1.1. Main result. We are interested in the controllability properties of system (2.1.1), by means of an internal control. The controllability problem that we want to solve is the following. Given f 0 and f 1 in a suitable function space and given T > 0, is it possible to find a control G steering the solution of (2.1.1) from f 0 to f 1 , in time T ? In other words, we want to find G such that

(2.1.3) f (T, x, v) = f 1 (x, v), ∀ (x, v) ∈ T 2 × R 2 .
Let us observe that a natural constraint regarding the control G is in order. Indeed, since the Vlasov-Stokes system preserves the total mass when G ≡ 0, i.e.,

T 2 R 2 f (t, x, v) dx dv = T 2 R 2 f 0 (x, v) dx dv, ∀t ∈ [0, T ],
we shall prescribe the condition

T 2 R 2 G(t, x, v) dx dv = 0, ∀t ∈ [0, T ].
More precisely, we obtain the following controllability result.

THEOREM 2.1.1. Let T > 0, γ > 2, λ = 1 and let ω be an arbitrary non empty open subset of T2 . There exists > 0 such that for every

f 0 , f 1 ∈ C 1 (T 2 × R 2 ) ∩ W 1,∞ (T 2 × R 2 ) satisfying that T 2 R 2 f 0 (x, v) dx dv = T 2 R 2 f 1 (x, v) dx dv, T 2 R 2 vf 0 (x, v) dx dv = T 2 R 2 vf 1 (x, v) dx dv = 0, (2.1.4)
and that, for i = 0, 1,

f i C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f i C 0 (T 2 ×R 2 ) ≤ , (2.1.5) ∃κ > 0, (|∇ x f i | + |∇ v f i |) (x, v) ≤ κ (1 + |v|) γ+1 , ∀(x, v) ∈ T 2 × R 2 , (2.1.6)
there exists a control G ∈ C 0 ([0, T ] × T 2 × R 2 ) such that the solution of (2.1.1) with f |t=0 = f 0 exists, is unique and satisfies (2.1.3). REMARK 2.1.2. Condition (2.1.4) in the previous statement can be seen as a natural compatibility condition needed for the well-posedness of the Stokes system with sources j f0 and j f1 .

Previous work.

The controllability of kinetic equations.

There exist some results on the controllability of nonlinear kinetic equations. The first one was obtained by O. Glass for the Vlasov-Poisson system on the torus (see [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF]). The strategy of this work consists on the construction of a reference solution, in the spirit of the return method introduced by J.-M. Coron (see Section 2.1.3.2 below). This allows to conclude the existence and uniqueness of a controlled solution by means of the Leray-Schauder theorem.

The strategy of [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF] permits to obtain two types of results: -In dimension 2, with arbitrary control region, one can obtain a local controllability result, i.e., a small-data result. -In any dimension and with a geometric assumption, precisely that the control region ω ⊂ T n contains a hyperplane of R n by the canonical surjection, one can obtain a global exact controllability result, i.e., an arbitrary-data result. However, the use of the invariant scaling of the Vlasov-Poisson system is crucial in this case.

This strategy was later extended in [START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] by O. Glass and D. Han-Kwan to the Vlasov-Poisson system under external and Lorentz forces. The authors obtain both local and global exact controllability results in the case of bounded external forces, which requires some new ideas to construct the reference trajectories. Precisely, the authors exploit the fact that the dynamics under the external force and without it are similar in small time. In the case of Lorentz forces, a precise knowledge of the magnetic field and a geometric control condition in the spirit of [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF] allow to obtain a local exact controllability result. The functional framework of [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF][START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] is the one given by the classical solution of the Vlasov-Poisson system, that is, some appropriate Hölder spaces. A remarkably different strategy has been developed by [START_REF] Glass | On the controllability of the relativistic Vlasov-Maxwell system[END_REF] in the context of the Vlasov-Maxwell system. In this case, the authors combine the classical strategy described previously with some controllability results for the Maxwell system, under the geometric control condition of [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF]. They also obtain a local result for ω containing a hyperplane, using the convergence towards the Vlasov-Poisson system under a certain regime.

2.1.2.2. A short review on the Vlasov-Stokes system. The Vlasov-Stokes system has been derived from the dynamics of a system of particles in a fluid by P. E Jabin and B. Perthame in [START_REF] Jabin | Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid[END_REF]. The system derived in this result, using the method of reflections and the dipole approximation, is set in the whole phase space R 3 × R 3 . In this setting, some regularity results can be found in [START_REF] Gasser | Regularity and propagation of moments in some nonlinear Vlasov systems[END_REF]. The limit when λ → ∞ has been studied in [START_REF] Jabin | Macroscopic limit of Vlasov type equation with friction[END_REF][START_REF] Jabin | Various levels of models for aerosols[END_REF]. Moreover, a major feature emphasised in these works is that friction plays a very important role in the dynamics of the Vlasov-Stokes system. More precisely, friction entails the dissipation of the kinetic energy. Consequently, as it has been proven by P. E. Jabin in [START_REF] Jabin | Large time concentrations for solutions to kinetic equations with energy dissipation[END_REF], when t → ∞, we recover a macroscopic limit of the form ρ(x)δ v=0 . On the other hand, very little information concerning the density ρ is known.

The non-stationary Vlasov-Stokes system on a domain with boundary has been considered by K. Hamdache in [START_REF] Hamdache | Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[END_REF]. The author gives a well-posedness result in Sobolev spaces in the case of Dirichlet boundary condition for the velocity field and specular reflexion boundary conditions for the distribution function.

A derivation of a model considering also the effects of convection has been obtained by L. Desvillettes, F. Golse and V. Ricci in [START_REF] Desvillettes | The mean-field limit for solid particles in a Navier-Stokes flow[END_REF].

For more concrete biological models, let us cite [START_REF] Boudin | Modelling and numerics for respiratory aerosols[END_REF] and the references therein.

Strategy of the proof.

2.1.3.1. Obstructions to controllability. Since Theorem 2.1.1 is of local nature around the steady state (f, U, p) = (0, 0, 0), a first step to achieve its proof could be the use of the linear test (see [START_REF] Coron | Control and Nonlinearity[END_REF]). Following the classical scheme, the controllability of the linearised system around the trivial trajectory and the classical inverse mapping theorem between proper functional spaces would imply the controllability of the nonlinear system (2.1.1).

Indeed, the formal linearised equation around the trajectory (f, U, p) = (0, 0, 0) is

(2.1.7) ∂ t F + v • ∇ x F -v • ∇ v F -2F = 1 ω (x) G, F (0, x, v) = f 0 (x, v),
which is a transport equation with friction. By the method of characteristics, we can give an explicit solution of (2.1.7), which writes (2.1.8)

F (t, x, v) = e 2t f 0 (x + (1 -e t )v, e t v) + t 0 e 2(t-s) (1 ω G)(s, x + (1 -e t-s )v, e t-s v) ds.
As pointed out in [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF], there exist two obstructions for controllability, which are Small velocities: A certain (x, v) ∈ T 2 × R 2 can have a "good direction" with respect to the control region ω, in the sense that x + (1 -e -t )v meets ω at some time. However, if |v| is not sufficiently large, the trajectory of the characteristic beginning at this point would possibly not reach ω before a fixed time. In our case, the effects of friction could enhance this difficulty.

Large velocities: The obstruction concerning large velocities is of geometrical nature. There exist some "bad directions" with respect to ω, in the sense that a characteristic curve parting from (x, v) ∈ T 2 ×R 2 would never reach ω, no matter how large |v| is.

As a result of this, and considering again equation (2.1.8), we deduce that the linearised system is not controllable in general. 2.1.3.2. The return method. In order to circumvent these difficulties, we use the return method, due to J.-M. Coron.

The idea of this method, in the case under study, is to construct a reference trajectory (f , U , p) starting from (0, 0, 0) and coming back to (0, 0, 0) at some fixed time in such a way the linearised system around it is controllable. This method allows to avoid the problems discussed in the previous section.

We refer to [START_REF] Coron | Control and Nonlinearity[END_REF][START_REF] Glass | La méthode du retour en contrôlabilité et ses applications en mécanique des fluides[END_REF] for presentations and examples on the return method. 2.1.3.3. Strategy of the proof of Theorem 2.1.1. The strategy of this work follows very closely the scheme of [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF][START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF]. More precisely, it relies on two ingredients.

Step 1: We build a reference solution (f , U , p) of system (2.1.1) with a control G, located in ω, starting from (0, 0, 0) and arriving at (0, 0, 0) outside ω at time T > 0 and such that the characteristics associated to the field -v + U meet ω before T > 0.

Step 2: We build a solution (f, U, p) close to (f , U , p) parting from (f 0 , U 0 , p 0 ) and arriving at (0, 0, 0) outside ω at time T > 0. This can be done by means of a fixed-point argument involving an absorption operator in the control region.

Furthermore, let us note that in the proof of Theorem 2.1.1 we can assume that (2.1.9)

f 1 (x, v) = 0, ∀(x, v) ∈ (T 2 \ ω) × R 2 .
To justify this assumption, we observe that, if f is solution of (2.1.1), then the functions

f (t, x, v) := f (T -t, x, -v), G(t, x, v) := G(T -t, x, -v), Ũ (t, x) := U (T -t, x), p(t, x) = p(T -t, x), for every (t, x, v) ∈ [0, T ] × T 2 × R 2 , satisfy the backwards Vlasov-Stokes system (2.1.10)              ∂ t f + v • ∇ x f + λ div v ( Ũ + v) f = 1 ω (x) G, (t, x, v) ∈ (0, T ) × T 2 × R 2 , -∆ x Ũ + ∇ x p = -j f , (t, x) ∈ (0, T ) × T 2 , div x Ũ (t, x) = 0, (t, x) ∈ (0, T ) × T 2 , T 2 Ũ (t, x) dx = 0, t ∈ [0, T ], f (T, x, v) = f 0 (x, v), (x, v) ∈ T 2 × R 2 ,
Consequently, given f 0 , f 1 as in Theorem 2.1.1, it is sufficient to consider -f 0 as initial datum and f1 satisfying (2.1.9) as a final state, -f 1 (x, -v) as initial datum and again f1 satisfying (2.1.9) as a final state. If we are able to solve these problems, a simple composition of them gives a solution with initial datum f 0 and final state f 1 , We observe, as it will be clear from the proofs, that (2.1.10) can be treated like the forward problem without significant modifications. As a consequence, we shall only treat specifically the forward problem with final state satisfying (2.1.9).

2.1.3.4. Notation. Let T > 0. We denote

Q T := [0, T ] × T 2 × R 2 and Ω T := [0, T ] × T 2 .
If Ω is a domain, for any σ ∈ (0, 1), C 0,σ b (Ω) denotes the space of bounded σ-Hölder functions, equipped with the norm

(2.1.11) f C 0,σ b (Ω) := f L ∞ (Ω) + sup (t,x,v) =(t ,x ,v ) |f (t, x, v) -f (t , x , v )| |(t, x, v) -(t , x , v )| σ .
We shall also use the Sobolev spaces W m,p (Ω), with m ∈ N * and p ∈ [1, ∞] (see the Appendix B for more details). If X is a Banach space, we will sometimes use, for simplicity, the notations L p t X x or C 0 t X x to refer to L p (0, T ; X) or C 0 ([0, T ]; X). For x ∈ T 2 and r > 0, we denote by B(x, r) the open ball in T 2 with centre x and radius r. Analogously, S(x, r) = ∂B(x, r). We denote by B R 2 and B S 1 the balls in different settings. We will also admit that T 2 dx = 1 without specifying the normalisation.

In dimension two, given a vector field

V ∈ C 1 (R 2 ; R 2 ), with V (x) = (V 1 , V 2 )(x) we recall the usual operator curl V (x) := ∂ 1 V 2 (x) -∂ 2 V 1 (x).
Given a function φ ∈ C 1 (R 2 ; R), we recall

∇ ⊥ φ(x) := -∂ 2 φ(x) ∂ 1 φ(x) .
2.1.3.5. Structure of the article. In Section 2.2 we set some features of the characteristic equations. In Section 2.3 we construct the reference trajectory, treating separately the large velocities and the low ones. In Section 2.4 we define the fixedpoint operator and we show that it has a fixed point. We prove next that this fixed point is the unique solution of system (2.1.1) within a certain class. In Section 2.5 we show that this solution satisfies the controllability property (2.1.3), which ends the proof of Theorem 2.1.1.

Some remarks on the characteristic equations

Let be given a fixed U (t, x). Let s, t ∈ [0, T ], (x, v) ∈ T n × R n . We denote by (X(t, s, x, v), V (t, s, x, v)) the characteristics associated with the field -v + U (t, x), i.e., the solution of the system (2.2.12)

       d dt X V = V (t) -V (t) + U (t, X) , X V |t=s = x v .
We observe that if U ∈ C 0 ([0, T ]; C 1 (T 2 ; R 2 )), system (2.2.12) has a unique solution, thanks to the Cauchy-Lipschitz theorem. Moreover, one has the explicit formulae (2.2.13)

X(t, s, x, v) = x + (1 -e -t+s )v + t s t s e τ -t U (τ, X(τ, s, x, v)) dτ dt , V (t, s, x, v) = e -t+s v + t s e τ -t U (τ, X(τ, s, x, v)) dτ.
Using the method of characteristics, given an initial datum f 0 ∈ C 0 (T 2 × R 2 ), the solution of the transport equation with friction (2.2.14)

∂ t f + v • ∇ x f + div v [(U -v)f ] = 0, (t, x, v) ∈ (0, T ) × T 2 × R 2 , f (0, x, v) = f 0 (x, v), (x, v) ∈ T 2 × R 2 , has the explicit solution (2.2.15) f (t, x, v) = e 2t f 0 ((X, V )(0, t, x, v)),
where (X, V ) are given by (2.2.13).

The following result is an adaptation of [70, Lemma 1, p. 337] to the case with friction. It will be used to obtain some Hölder estimates in Section 4.

LEMMA 2.2.1. Let U ∈ C 0 ([0, T ]; C 1 (T 2 ; R 2 )) Then, the characteristics associated to the field -v + U satisfy that for some

C = C(T, U C 0,1 t,x ) > 0, |(X, V )(t, s, x, v) -(X, V )(t , s , x , v )| ≤ C(1 + |v|)|(t, s, x, v) -(t , s , x , v )|, whenever (t, s, x, v), (t , s , x , v ) ∈ [0, T ] × T 2 × R 2 , with |v -v | < 1.
Proof. We shall divide the proof in four cases.

Step 1: Assume s = s , x = x , v = v . We can suppose that t ≤ t. Then, using (2.2.13), we write

V (t, s, x, v) -V (t , s, x, v) = (e -t -e -t )e s v + t s e τ -t U (τ, X(τ, s, x, v)) dτ - t s e τ -t U (τ, X(τ, s, x, v)) dτ = (e -t -e -t )e s v + t s e τ (e -t -e -t )U (τ, X(τ, s, x, v)) dτ - t t e τ -t U (τ, X(τ, s, x, v)) dτ.
This yields,

|V (t, s, x, v) -V (t , s, x, v)| ≤ |e -t -e -t | e T |v| + T e T U C 0,1 t,x + |t -t |e T U C 0,1 t,x ) ≤ C(T )(1 + |v|)(1 + U C 0,1 t,x )|t -t |.
The same argument gives, through (2.2.13),

|X(t , s, x, v) -X(t, s, x, v)| ≤ C(T )(1 + |v|)(1 + U C 0,1 t,x )|t -t |.
Step 2: Assume t = t , s = s . Then, again by (2.2.13), we have

X(t, s, x, v) -X(t, s, x , v ) = (x -x ) + (1 -e -t+s )(v -v ) + t s σ s e σ-τ (U (τ, X(τ, s, x, v)) -U (τ, X(τ, s, x , v )) dτ dσ, which gives, since U is Lipschitz in x, |X(t, s, x, v) -X(t, s, x , v )| ≤ (e T + 1) (|x -x | + |v -v |) +T e T U C 0,1 t,x t s |X(τ, s, x, v) -X(τ, s, x , v )| dτ.
Then, by Gronwall's lemma, we obtain

|X(t, s, x, v) -X(t, s, x , v )| ≤ (e T + 1) (|x -x | + |v -v |) (1 + T e T U C 0,1 t,x
)T e

T 2 e T U C 0,1 t,x ≤ C(T ) (|x -x | + |v -v |) (1 + U C 0,1 t,x
)e

T 2 e T U C 0,1 t,x .
This allows to obtain an analogue estimate for V .

Step 3: Assume that t = t , x = x , v = v . We observe that (X, V )(t, s , x, v) = (X, V )(t, s, X(s, s , x, v), V (s, s , x, v)).

Thus, Step 2 allows to write

|(X, V )(t, s, x, v) -(X, V )(t, s , x, v)| ≤ C(T ) (|x -X(s, s , x, v)| + |v -V (s, s , x, v)|) (1 + U C 0,1 t,x
)e

T 2 e T U C 0,1 t,x .
On the other hand, putting (x, v) = (X, V )(s , s , x, v), Step 1 allows to write

|x -X(s, s , x, v)| + |v -V (s, s , x, v)| ≤ |s -s |C(T )(1 + |v|)(1 + U C 0,1 t,x
), which together with the previous inequality gives

|(X, V )(t, s, x, v) -(X, V )(t, s , x, v)| ≤ C(T )(1 + |v|)(1 + U C 0,1 t,x
) 2 e T 2 e T U |s -s |.

Step 4: In the general case, we write

(X, V )(t, s, x, v) -(X, V )(t , s , x , v ) = (X, V )(t, s, x, v) -(X, V )(t, s , x, v) + (X, V )(t, s , x, v) -(X, V )(t, s , x , v ) + (X, V )(t, s , x , v ) -(X, V )(t , s , x , v ),
which allows to use the previous estimates to conclude.

2.3. Construction of a reference trajectory 2.3.1. Large velocities. The key result for the treatment of large velocities is the following one, which is an adaptation of [70, Proposition 1, p. 340] to the friction case. We will need some results on harmonic approximation, gathered in the Appendix A.

PROPOSITION 2.3.1. Let τ > 0. Given x 0 ∈ T 2 and r 0 > 0 a sufficiently small number, there exist U ∈ C ∞ ([0, τ ] × T 2 ; R 2 ) and m > 0 such that

curl x U (t, x) = 0, ∀(t, x) ∈ [0, τ ] × T 2 \ B(x 0 , r 0 /10) , (2.3.16) supp U ⊂ (0, τ ) × T 2 , (2.3.17) T 2 U (t, x) dx = 0, ∀t ∈ [0, τ ]. (2.3.18)
Moreover, the characteristics (X, V ) associated to the field -v + U satisfy that, for every m ≥ m,

∀(x, v) ∈ T 2 × R 2 with |v| ≥ m, ∃t ∈ τ 4 , 3τ 4 such that X(t, 0, x, v) ∈ B x 0 , r 0 4 and |V (t, 0, x, v)| ≥ m 2e τ . (2.3.19)
Following O. Glass (see [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF]), we characterise the bad directions in the following sense.

DEFINITION 2.3.2 (Bad directions). Given x 0 ∈ T 2 and r 0 > 0 a small number, e ∈ S 1 is a bad direction if

(x + te); t ∈ R + ∩ B(x 0 , r 0 /4) = ∅, in the sense of T 2 .
REMARK 2.3.3. It can be shown, thanks to Bézout's theorem, that for any x 0 ∈ T 2 and r 0 > 0 small, there exists only a finite number of such bad directions, namely {e 1 , . . . e N } (see [70, Appendix A, p. 373]).

Proof of Proposition 2.3.1. Given τ > 0 and N ∈ N * , the number of bad directions, let us define (2.3.20)

t j := τ 4 + jτ 2(N + 1) , ∀j ∈ i + k 4 ; i = 0, . . . , N, k = 0, 1, 2, 3 .
We consider

(2.3.21) η ∈ C ∞ c (0, 1
) such that 0 ≤ η ≤ 1, and

1 0 η(t) dt = 1.
Let A, ν > 0 so that

(2.3.22) ν < τ 8(N + 1) , A > e τ 8(N +1) 12(N + 1) τ + 2 + τ 4(N + 1)
.

Let > 0 to be chosen later on and set, according to Proposition A.1.2, the following vector field

(2.3.23)    U (t, x) = A ν η t-t i+ 1 4 ν ∇ ⊥ θ i (x), (t, x) ∈ [t i+ 1 4 , t i+ 1 2 ] × T 2 , U (t, x) = 0, otherwise.
With this definition, we readily have (2.3.16) 

|V (t, 0, x, v)| ≥ e -t |v| -τ U C 0 t,x ≥ e -τ m -τ U C 0 t,x ≥ e -τ m 2 ,
provided that m is large enough.

To show the first part of (2.3.19), we distinguish several cases, according to

(x, v) ∈ T 2 × R 2 . More precisely, if e = v
|v| ∈ S 1 , we shall show that (1) if x ∈ T 2 and e ∈ S 1 \ {e 1 , . . . , e N }, with |v| large enough, then (2.3.19) follows by comparison with the free transport without friction,

(2) if x ∈ B(x 0 , r0 5 ) + Re i and e ∈ B S 1 (e i ; 1 ), for some i ∈ {1, . . . , N } and

1 > 0, then (2.3.19) still holds if |v| is large enough, (3) if x ∈ T 2 , e ∈ B S 1 (e i ;
2 ) for some i ∈ {1, . . . , N } and 2 > 0 small enough, then for |v| large enough, we shall deduce that (X, V )(σ, 0, x, v), with some σ ∈ [t i , t i+ 3 4 ], satisfies the hypotheses of the case (2). Let us now treat in detail the three cases below.

First case: Let e ∈ S 1 \ {e 1 , . . . , e N }. Since e is not a bad direction, from Definition 2.3.2, there exists m > 0 such that if |v| ≥ m, then,

x + t|v|e ∈ B x 0 , r 0 4 , for a certain t ∈ [t 0 , t 1 ]. In particular, ∃t trans ∈ [t 0 , t 1 ] such that (2.3.24) x + t trans (1 + m)e ∈ B x 0 , r 0 4 .
We shall prove next that, by augmenting the minimal speed required, we can conclude in the friction case. Indeed, consider

m 0 := t 1 (1 + m) 1 -e -t1 .
and for any v ∈ R 2 with |v | ≥ m 0 , set the function 

t → f (t) := (1 -e -t )|v |, which is continuous from R + to R + . Since f (0) = 0 and f (t 1 ) ≥ t 1 (1 + m),
X(t * , 0, x, v) = x + (1 -e -t * )v.
Second case: Let us suppose that x ∈ B(x 0 , r0 5 )+Re i for some i ∈ {1, . . . , N }. Let e ∈ V 1 (e i ) := B S 1 (e i ; 1 ). If 1 > 0 is small enough and |v| ≥ m 1 is large enough, then there exists 0 < s ≤ t ≤ C |v| , for some constant C > 0, independent of (x, e) ∈ T 2 × S 1 , such that

x + (1 -e -t+s )|v|e ∈ B x 0 , 9r 0 40 .

To justify this, we point out that this holds for the free transport (see [70, p.375]), which implies, by a similar argument as before, that this also holds in the friction case. Whence, from (2.2.13) and for any s , s ∈ [0, τ ],

|X(s , s , x, v) -x -(1 -e -s +s )v| ≤ C(T, U C 0 t,x )|s -s | = O 1 m 1 .
Then, if m 1 is large enough, this entails in particular

X(s, t i , x, v) ∈ B x 0 , r 0 4 , for some s ∈ [t i , t i+1 ].
Third case: Let x ∈ T 2 , |v| ≥ m 2 , large enough. Let e ∈ V 2 (e i ) := B S 1 (e i ; 2 ), for some i ∈ {1, . . . , N } and 2 > 0 small enough. We have to show that ∃t ∈ [t i , t i+ 3 4 ] such that

X(t, t i , x, v) ∈ B x 0 , r 0 5 + Re i , (2.3.26) V (t, t i , x, v) |V (t, t i , x, v)| ∈ B S 1 (e i ; 1 ), with |V (t, t i , x, v)| ≥ m 1 . (2.3.27)
Then, we can use the analysis of the second case to conclude.

We 

U (t, X(t, t i , x, v)) - A ν η t -t i+ 1 4 ν e ⊥ i C 0 t,x (2.3.28) ≤ A ν η C 0 t ∇ ⊥ θ i -e ⊥ i C 0 x < A ν .
We choose > 0 small enough so that A ν < 1. Then, by (2.2.13),

|P e ⊥ i (V (t i+ 1 2 , t i , x, v))| = | V (t i+ 1 2 , t i , x, v), e ⊥ i | ≥ -|P e ⊥ i (v)|(t i+ 1 2 -t i ) + t i+ 1 2 t i+ 1 4 e s-t i+ 1 2 U (s, X(s, t i , x, v) ds, e ⊥ i . (2.3.29)
For the first term, by (2.3.20) and the hypothesis on P e ⊥ i (v),

(2.3.30)

-|P e ⊥ i (v)|(t i+ 1 2 -t i ) = -|P e ⊥ i (v)| τ 4(N + 1) ≥ - 3 2 .
For the second term, we write

t i+ 1 2 t i+ 1 4 e s-t i+ 1 2 U (s, X(s, t i , x, v)) ds, e ⊥ i = T 1 + T 2 , e ⊥ i ≥ -| T 1 , e ⊥ i | + | T 2 , e ⊥ i |, (2.3.31)
with

T 1 := t i+ 1 2 t i+ 1 4 e s-t i+ 1 2 U (s, X(s, t i , x, v)) - A ν η s -t i+ 1 4 ν e ⊥ i ds , 
T 2 := A ν t i+ 1 2 t i+ 1 4 e s-t i+ 1 2 η s -t i+ 1 4 ν e ⊥ i ds.
Then, using (2.3.28) and (2.3.20),

| T 1 , e ⊥ i | ≤ 2(t i+ 1 2 -t i+ i 4 ) U - A ν ηe ⊥ i C 0 t,x ≤ τ 4(N + 1) (2.3.32)
For the second term, using (2.3.20) 

8(N + 1) .

Then, choosing m 2 large enough, we get the second point of (2.3.27). On the other hand, we observe that

(2.3.34) V (t, t i , x, v) |V (t, t i , x, v)| -e i ≤ V (t, t i , x, v) |V (t, t i , x, v)| - v |v| + v |v| -e i .
By definition of V 2 (e i ), v |v| -e i < 2 . With the other term, using (2.2.13), we find

V (t, t i , x, v) |V (t, t i , x, v)| - v |v| = e -t+ti |v| + t ti e t-s U (s, X(s, t i , x, v)) ds |V (t, t i , x, v)| - v |v| ≤ e -t+ti v |V (t, t i , x, v)| - v |v| + τ e τ U C 0 t,x |V (t, t i , x, v)| = |e -t+ti |v| -|V (t, t i , x, v)|| |V (t, t i , x, v)| + τ e τ U C 0 t,x |V (t, t i , x, v)| ≤ 2τ e τ U C 0 t,x |V (t, t i , x, v)| .
This shows, by (2.3.34), that

V (t, t i , x, v) |V (t, t i , x, v)| -e i ≤ O 1 |V (t, t i , x, v)| + 2 ,
which entails, by (2.3.33), that (2.3.27) holds choosing m 2 large enough and 2 > 0 small enough.

Low velocities.

The goal of this section is to prove the following result, which is the key ingredient for the treatment of low velocities. The main difficulty is to adapt the construction made in [70, Proposition 2] to the case with friction. PROPOSITION 2.3.4. Let τ > 0, M > 0. Given x 0 ∈ T 2 and r 0 > 0 a small positive number, there exists (2.3.37) and such that, for some M > 0, the characteristics associated to -v + U satisfy that, for every

U ∈ C ∞ ([0, τ ] × T 2 ; R 2 ) satisfying curl x U (t, x) = 0, (t, x) ∈ [0, τ ] × T 2 \ B(x 0 , r 0 ) , (2.3.35) supp U ⊂ (0, τ ) × T 2 , (2.3.36) T 2 U (t, x) dx = 0, ∀t ∈ [0, τ ],
(x, v) ∈ T 2 × B R 2 (0, M ), there exists t ∈ (0, τ ) such that (2.3.38) V (t, 0, x, v) ∈ B R 2 (0, M ) \ B R 2 (0, M + 1).
Proof. Let θ be as in Proposition A.2.1. Since Ind S(x0,r0) (∇θ) = 0, possibly after a continuous extension, we may define (2.3.39) m := inf x∈T 2 |∇θ(x)| > 0. Let a, b ∈ R, to be chosen later on, and such that c := a b is fixed. Let η be as in (2.3.21). Then, we define the field

U (t, x) := aη(bt)∇ ⊥ θ(x), ∀(t, x) ∈ [0, τ ] × T 2 .
Conditions (2.3.35)-(2.3.37) follow from the definition of U and the properties of θ, given by Proposition A.2.1. We have to show (2.3.38). Indeed, from (2.2.13), we find that, for every (

x, v) ∈ T 2 × B R 2 (0, M ), (2.3.40) V (t, 0, x, v) = e -t v + a t 0 e σ-t η(bσ)∇ ⊥ θ(X(σ, 0, x, v)) dσ.
This gives, changing variables and using (2.3.21),

|V (t, 0, x, v) -e -t v| ≤ a b ∇ ⊥ θ C 0 x bt 0 e s b -t η(s) ds ≤ c ∇θ C 0 x , whenever t ≤ 1 b . Consequently, |X(t, 0, x, v) -x| ≤ t 0 |V (s, 0, x, v) -e -s v| ds + t 0 |e -s v| ds ≤ c b θ C 1 x + M b , (2.3.41) for every t ≤ 1 b . Thus, from (2.3.40), V ( 1 b , 0, x, v) -e -1 b v -c∇ ⊥ θ(x) = a 1 b 0 e s-1 b η(bs)∇ ⊥ θ(X(s, 0, x, v)) ds -c∇ ⊥ θ(x) ≤ I 1 + I 2 ,
with

I 1 := a 1 b 0 e s-1 b η(bs)∇ ⊥ θ(X(s, 0, x, v)) ds -c 1 0 e σ-1 b η(σ)∇ ⊥ θ(X( σ 2b , 0, x, v)) dσ , I 2 := c 1 0 e σ-1 b η(σ)∇ ⊥ θ(X( σ 2b , 0, x, v)) dσ -c∇ ⊥ θ(x) .
We note that the introduction of the term X( σ 2b , 0, x, v) is intended to take into account the exponential in the first integral.

For the first term, we write, changing variables,

I 1 = a 1 b 0 e s-1 b η(bs) ∇ ⊥ θ(X(s, 0, x, v)) -∇ ⊥ θ(X( s 2 , 0, x, v)) ds ≤ a θ C 1 x 1 b 0 e s-1 b η(bs) X(s, 0, x, v) -X( s 2 , 0, x, v) ds ≤ 2c θ C 1 x c b θ C 1 x + M b = O 1 b ,
as a consequence of (2.3.41). For the second term, by (2.3.21), we have

I 2 ≤ c 1 0 e σ-1 b η(σ) ∇ ⊥ θ(X( σ 2b , 0, x, v)) -∇ ⊥ θ(x) dσ + c 1 0 e σ-1 b -1 η(σ)∇ ⊥ θ(x) dσ ≤ c θ C 1 x 1 0 e σ-1 b η(σ) X( s 2 , 0, x, v) -x ds + c θ C 1 x |e -1 b -1| ≤ c θ C 1 x c b θ C 1 x + M b + O 1 b = O 1 b ,
using again (2.3.41). This allows to choose b large enough so that

V ( 1 b , 0, x, v) -e -1 b v -c∇ ⊥ θ(x) < 1 2 .
Whence, by (2.3.39),

1 2 > V ( 1 b , 0, x, v) -e -1 b v -c∇ ⊥ θ(x) ≥ c|∇ ⊥ θ(x)| -V ( 1 b , 0, x, v) -|v| ≥ cm -V ( 1 b , 0, x, v) -M, which gives, choosing c := 2(M +1) m , V ( 1 b , 0, x, v) > M + 3 2 .
This concludes the proof.

Description of the reference trajectory.

Since ω is a nonempty open set in T 2 , there exist x 0 ∈ ω and r 0 > 0 such that B(x 0 , 2r 0 ) ⊂ ω.

We can define a suitable vector field U using the constructions made in the previous sections. Firstly, we apply Proposition 2.3.1 with τ := T 3 , which gives a vector field U 1 and m 1 > 0 such that (2.3.19) is verified.

For reasons that will be clear in Section 2.5, we set the following parameters. Let (2.3.42) α

:= max T U 1 C 0,1 t,x + 5 2 , C r0,T U 1 C 0,1 t,x 4 
,
where C r0,T > 0 is a constant chosen large enough so that

(2.3.43) log 1 + 9r 0 C r0,T U 1 C 0,1 t,x < T 200 .
We set

(2.3.44) M 1 := max {m 1 , 2α} + T 3 U 1 C 0,1 t,x
.

With this choice of parameters, we apply Proposition 2.3.4 with τ = T 3 and M = M 1 , which gives U 2 and M . This allows to set

(2.3.45) U (t, x) :=    U 1 (t, x), (t, x) ∈ 0, T 3 × T 2 , U 2 t -T 3 , x , (t, x) ∈ T 3 , 2T 3 × T 2 , U 1 t -2T 3 , x , (t, x) ∈ 2T 3 , T × T 2 . By construction, curl x U (t, x) = 0, (t, x) ∈ [0, T ] × (T 2 \ ω), (2.3.46) supp U ⊂ (0, T ) × ω, (2.3.47) div x U (t, x) = 0, (2.3.48) T 2 U (t, x) dx = 0, ∀t ∈ [0, T ]. (2.3.49) We set (2.3.50) W (t, x) := curl x U (t, x).
Let us consider the functions

Z 1 (v) := -k 1 v 2 e -|v| 2 2 , Z 2 (v) := k 2 v 1 e -|v| 2 2 , ∀v = (v 1 , v 2 ) ∈ R 2 ,
where k 1 , k 2 > 0 are normalisation constants. These functions satisfy that

(2.3.51) Z 1 , Z 2 ∈ S (R 2 ),
where S (R d ) stands for the space of real-valued Schwartz functions in R d . Moreover, choosing k 1 , k 2 adequately, we have

R 2 v 1 Z 1 (v) dv = R 2 v 2 Z 2 (v) dv = 0, (2.3.52) R 2 v 2 Z 1 (v) dv = - R 2 v 1 Z 2 (v) dv = 1, (2.3.53) R 2 Z 1 (v) dv = R 2 Z 2 (v) dv = 0. (2.3.54)
We thus define, for any (t,

x, v) ∈ [0, T ] × T 2 × R 2 , (2.3.55) f (t, x, v) := Z 1 (v)∂ x1 W (t, x) + Z 2 (v)∂ x2 W (t, x).
From (2.3.47) and (2.3.50), we have

(2.3.56) f | t=0 = 0, f | t=T = 0.
Thanks to (2.3.54),

(2.3.57)

ρ f (t, x) = 0, ∀(t, x) ∈ Ω T .
Furthermore, by construction and using (2.3.52) and (2.3.53) we find

-∆ x W = curl x R 2 vf dv.
Moreover, thanks to (2.3.55),

(2.3.58)

T 2 j f (t, x) dx = 0.
Hence, for some p ∈ C ∞ ([0, T ] × T 2 ; R),

(2.3.59) -∆ x U (t, x) = ∇ x p(t, x) + R 2 vf dv.
Furthermore, from (2.3.55), (2.3.46) and (2.3.50), we deduce that

∂ t f + v • ∇ x f + div v (U -v)f = 0, ∀(t, x, v) ∈ [0, T ] × T 2 \ ω × R 2 , f (t, x, v) = 0, ∀(t, x, v) ∈ [0, T ] × (T 2 \ ω) × R 2 . (2.3.60)
To sum up, we have constructed a reference solution (f , U , p) of system (2.1.1) with (2.3.56) and such that the characteristics associated to -v + U satisfy (2.3.19).

Fixed point argument

Let ∈ (0, 0 ) be fixed, with 0 to be chosen later on. We shall define an operator V acting on a domain S ⊂ C 0 ([0, T ] × T 2 × R 2 ) to be precised below. The goal of this section is to show that V has a fixed point.

2.4.1. Definition of the operator. We describe the set S . Let ∈ (0, 0 ), to be precised later on, and γ > 2. Then, set (2.4.61)

δ 1 := γ 2(γ + 3) , δ 2 := γ + 2 γ + 3 .
According to the notation of Section 2.1.3.4, we define

S := g ∈ C 0,δ2 b (Q T ); (a) R 2 (f -g) dv C 0,δ 1 b (Ω T ) ≤ c 3 , (b) (1 + |v|) γ+2 (f -g) L ∞ (Q T ) ≤ c 1 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) , (c) (f -g) C 0,δ 2 b (Q T ) ≤ c 2 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) , (d) 
T 2 R 2 vg(t, x, v) dx dv = 0, ∀t ∈ [0, T ] (e) T 2 R 2 g(t, x, v) dx dv = T 2 R 2 f 0 (x, v) dx dv, ∀t ∈ [0, T ] ,
where c 1 , c 2 , c 3 are constants depending only on T, ω, γ, δ 1 and δ 2 (see (2.4.90), (2.4.93) and (2.4.94) for details). We observe that, for c 1 , c 2 , c 3 large enough and

f 0 ∈ C 1 (T 2 × R 2 ), with high moments in v, satisfying R 2 f 0 (x, v) dv C 0,δ 1 b (Ω T ) ≤ c 3 ,
we trivially have that f + f 0 ∈ S . Thus, S = ∅.

In order to describe the operator V we have to introduce some definitions. Let (see [70, p. 342])

γ -:= (x, v) ∈ S(x 0 , r 0 ) × R 2 ; |v| ≥ 1 2 , v, ν(x) ≤ - |v| 10 , γ 2-:= (x, v) ∈ S(x 0 , r 0 ) × R 2 ; |v| ≥ 1, v, ν(x) ≤ - |v| 8 , γ 3-:= (x, v) ∈ S(x 0 , r 0 ) × R 2 ; |v| ≥ 2, v, ν(x) ≤ - |v| 5 , γ + := (x, v) ∈ S(x 0 , r 0 ) × R 2 ; v, ν(x) ≤ 0 ,
where ν(x) denotes the outward unit normal at S(x 0 , r 0 ) at x. It can be shown that

(2.4.62) dist [S(x 0 , r 0 ) × R 2 ] \ γ 2-; γ 3-> 0.
Consequently, we may choose an absorption function

A ∈ C ∞ ∩ W 1,∞ (S(x 0 , r 0 ) × R 2 ; R + ) such that 0 ≤ A(x, v) ≤ 1, ∀(x, v) ∈ S(x 0 , r 0 ) × R 2 , (2.4.63) A(x, v) = 1, ∀(x, v) ∈ [S(x 0 , r 0 ) × R 2 ] \ γ 2-, A(x, v) = 0, ∀(x, v) ∈ γ 3-.
We also choose a truncation function

Y ∈ C ∞ (R + ; R + ) such that Y(t) = 0, ∀t ∈ 0, T 48 ∪ 47T 48 , T , Y(t) = 1, ∀t ∈ T 24 , 23T 24 
.
We describe the operator V in three steps.

1. Stokes system. Let g ∈ S . We associate to g the pair (U g (t), p g (t)), for every t ∈ [0, T ], solution of (2.4.64)

   -∆ x U g (t) + ∇ x p g (t) = j g (t), x ∈ T 2 , div x U g (t, x) = 0, x ∈ T 2 , T 2 U g (t, x) dx = 0, t ∈ [0, T ],
where

j g (t, x) := R 2 vg(t, x, v) dv.
We shall prove that this association is well defined, thanks to point (d) and the following result.

LEMMA 2.4.1. Let > 0. Then, there exists a constant K 1 = K 1 (γ) > 0 such that, for every g ∈ S and every t ∈ [0, T ],

j g (t) L 2 (T 2 ) 2 ≤ K 1 1 + c 2 1 2 .
Proof. We write, by the triangular inequality,

j g (t) 2 L 2 (T 2 ) 2 = T 2 R 2 vg(t, x, v) dv 2 dx = T 2 R 2 v g -f + f (t, x, v) dv 2 dx ≤ T 2 R 2 |v||g -f | dv + R 2 |v||f | dv 2 dx ≤ 2 T 2 R 2 |v||g -f | dv 2 dx + 2 T 2 R 2 |v||f | dv 2 dx. (2.4.65)
Let us note that, from (2.3.55), (2.3.51) and the properties of Schwartz functions, we have that (2.4.66)

I 1 := T 2 R 2 |v||f | dv 2 dx < ∞,
is a positive constant, independent from g.

We have to treat the first part of (2.4.65). Indeed, by point (b),

T 2 R 2 |v||(g -f )(t, x, v)| dv 2 dx ≤ c 2 1 R 2 |v| dv (1 + |v|) γ+2 2 ( f 0 C 1 + (1 + |v|) γ+2 f 0 L ∞ ) 2 , ≤ I 2 c 2 1 2 , (2.4.67)
where we have used (2.1.5) and

I 2 := R 2 |v| dv (1 + |v|) γ+2 2 < ∞.
Finally, putting together (2.4.67), (2.4.66) and (2.4.65), we obtain the result by choosing

K 1 := 2 max {I 1 , I 2 }.
We observe that the previous lemma shows that j g (t) ∈ L 2 (T 2 ) 2 , for every t ∈ [0, T ]. Then, using point (d), we get from Proposition B.1.1 (see Appendix B for notation) the solution of (2.4.64),

(U g (t), p g (t)) ∈ (H 2 0 (T 2 ) 2 ∩ V σ ) × L 2 (T 2 ), ∀t ∈ [0, T ].
Consequently, the association given by (2.4.64) is well defined.

Let us show some consequences that will be important in next sections. We will assume from now on that the choice of is made according to (2.4.68) 0 ≤ min

1 c 1 , 1 .
LEMMA 2.4.2. There exists a constant K 2 = K 2 (T, γ) > 0 such that for any g ∈ S and U g given by (2.4.64), we have

(2.4.69) U g L ∞ (Ω T ) ≤ K 2 (T, γ). Moreover, (2.4.70) U g ∈ C 0 ([0, T ]; C 1 (T 2 ; R 2 )).
Proof. Let g ∈ S . Then, by (B.2.10), the Sobolev embedding theorem and (2.4.68),

U g L ∞ (Ω T ) ≤ C S U g L ∞ t (H 2 x ) 2 ≤ C S C 1 j g L ∞ t (L 2 x ) 2 ≤ C S C 1 √ 2K 1 , (2.4.71) which gives (2.4.69) for a constant K 2 := √ 2C S C 1 K 1 > 0, independent from g.
Let us show (2.4.70). Indeed, by similar arguments as those in Lemma 2.4.1, we deduce that j g (t) ∈ L ∞ (T 2 ) 2 , for every t ∈ [0, T ]. Then, by interpolation between the L p spaces, we deduce that

j g (t) ∈ L p (T 2 ) 2 , ∀t ∈ [0, T ], p ∈ [2, ∞].
Consequently, using Proposition B.1.2 with source term j g (t) ∈ L p (T 2 ) 2 , we deduce that

U g (t) ∈ W 2,p (T 2 ) 2 , ∀t ∈ [0, T ], p ∈ [2, ∞).
Finally, choosing 2 < p < ∞, the Sobolev embedding theorem in this case (see [109, Corollaire 9.1, p.52]) implies that

U g (t) ∈ C 1 (T 2 ) 2 , ∀t ∈ [0, T ].
We have to show the continuity w.r.t. the time variable. Let t, s ∈ [0, T ]. Then, W (t, s) := U g (t) -U g (s), p(t, s) := p g (t) -p g (s), satisfy

   -∆ x W (t, s) + ∇ x p(t, s) = j g (t) -j g (s), x ∈ T 2 , div x W (t, s) = 0, x ∈ T 2 ,
T 2 W (t, s) dx = 0. On the one hand, we have

j g (t) -j g (s) p L p (T 2 ) 2 (2.4.72) ≤ C(p) sup x∈T 2 R 2 v(g(t, x, v) -g(s, x, v)) dv ≤ C(p) sup x∈T 2 g(t, x) -g(s, x) 1-γ+1 γ+2 L ∞ v R 2 |v||g(t, x, v) -g(s, x, v)| γ+1 γ+2 dv .
Furthermore, using point (b), we have, for any

x ∈ T 2 , R 2 |v||g(t, x, v) -g(s, x, v)| γ+1 γ+2 dv ≤ R 2 |v||g(t, x, v) -f (t, x, v)| γ+1 γ+2 dv + R 2 |v||f (t, x, v) -f (s, x, v)| γ+1 γ+2 dv + R 2 |v||f (s, x, v) -g(s, x, v)| γ+1 γ+2 dv ≤ 2 c γ+1 γ+2 1 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (T 2 ×R 2 ) γ+1 γ+2 R 2 |v| dv (1 + |v|) γ+1 + C(f , γ) ≤ C(c 1 , f 0 , γ, f ),
thanks to (2.3.55) and (2.3.51). This yields, from (2.4.72) and using the fact that g ∈ C 0,δ2 (Q T ),

j g (t) -j g (s) p L p (T 2 ) 2 ≤ C(p, c 1 , f 0 , γ, f ) sup x∈T 2 g(t, x) -g(s, x) 1-γ+1 γ+2 L ∞ v ≤ C(p, c 1 , f 0 , γ, f ) g 1-γ+1 γ+2 C 0,δ 2 (Q T ) |t -s| 1 γ+3 .
Then, combining this with (B.2.10), we deduce

W (t, s) W 2,p (T 2 ) 2 ≤ C|t -s| 1 p(γ+3) , ∀t, s ∈ [0, T ].
This implies, again by the Sobolev embedding, lim |t-s|→0 U g (t) -U g (s) C 1 (T 2 ) 2 = 0, which gives (2.4.70).

We also deduce the following property for the backwards characteristics associated to -v + U g . LEMMA 2.4.3. Let g ∈ S and let (X g , V g ) be the characteristics associated to the field -v + U g , according to (2.4.64). Then, there exists a constant

K 3 = K 3 (T, γ) > 0, independent of g, such that (2.4.73) e t |v| -|V g (0, t, x, v)| ≤ K 3 , for any (t, x, v) ∈ [0, T ] × T 2 × R 2 .
Proof. By (2.2.13), we have

e t |v| -|V g (0, t, x, v)| ≤ V g (0, t, x, v) -e t v = t 0 e s U g (s, X g (0, s, x, v)) ds ≤ C(T ) U g L ∞ t,x
≤ C(T )K 2 (T, γ), using (2.4.69). This allows to conclude, choosing K 3 := C(T )K 2 (T, γ).

Absorption.

To give a sense to the procedure of absorption we need first the following result, which asserts that the number of times the characteristics associated to the Stokes velocity field of the previous part meet γ-is finite. LEMMA 2.4.4. Let g ∈ S and let U g be given by (2.4.64) accordingly. Let (X g , V g ) be the characteristics associated to the field -v + U g . Then, for any

(x, v) ∈ T 2 × R 2 , there exists n(x, v) ∈ N such that there exist 0 < t 1 < • • • < t n(x,v) < T such that {(X g , V g )(t, 0, x, v); t ∈ [0, T ]} ∩ γ -= {t i } n(x,v) i=1 , (2.4.74) ∃s > 0 s.t. (t i -s, t i + s) ∩ (t j -s, t j + s) = ∅, ∀i, j = 1, . . . , n(x, v), (2.4.75)
with the convention that n(x, v) = 0 and {t i }

n(x,v) i=1 = ∅ if {(X g , V g )} ∩ γ -= ∅.
For more details on this result, see [70, p.348] and [72, p.5468]. In the friction case, this holds true without further modification, thanks to Lemma 2.4.2 and Lemma 2.4.3.

The previous lemma allows to define the following quantities. Let

f 0 ∈ C 1 (T 2 × R 2 ) and let (x, v) ∈ T 2 × R 2 . Then, for every t i , with i = 1, • • • , n(x, v), we have (x, ṽ) = (X g , V g )(t i , 0, x, v) ∈ γ -. Moreover, let f (t -, x, ṽ) = lim t→t - i f 0 ((X g , V g )(0, t, x, v)), (2.4.76) f (t + , x, ṽ) = lim t→t + i f 0 ((X g , V g )(0, t, x, v)). (2.4.77)
We define f := Ṽ [g] to be the solution of (2.4.78)

   ∂ t f + v • ∇ x f + U g • ∇ v f -div v (vf ) = 0, (t, x, v) ∈ [0, T ] × [T 2 × R 2 ] \ γ 2- f (0, x, v) = f 0 (x, v), (x, v) ∈ T 2 × R 2 , f (t + , x, v) = (1 -Y(t))f (t -, x, v) + Y(t)A(x, v)f (t -, x, v), (t, x, v) ∈ [0, T ] × γ -.
Let us explain how the absorption procedure works. From (2.4.70), the characteristics associated to the field -v + U g are regular. Thus, outside ω, the system above defines a function Ṽ [g] of class C 1 . Moreover, the exact value of Ṽ [g] is given by these characteristics through (2.2.15) and (2.2.13). When the characteristics (X g , V g ) meet γ -at time t, f (t + , •, •) is fixed according to the last equation in (2.4.78). We can see the function Y(t)A(x, v) as an opacity factor depending on time and on the incidence of the characteristics on S(x 0 , r 0 ). Indeed, f (t + , •, •) can take values varying from f (t -, •, •), in the case of no absorption, to 0, according to the angle of incidence, the modulus of the velocity and time.

Extension. The function Ṽ

[g] is not necessarily continuous around [0, T ]× γ -⊂ [0, T ] × B(x 0 , 2r 0 ).
To avoid this problem we shall use some extension operators preserving regularity.

Let us first consider a linear extension operator

π : C 0 b (T 2 \ B(x 0 , 2r 0 )) → C 0 b (T 2
), such that for any σ ∈ (0, 1), a C 0,σ b function is mapped onto a C 0,σ b function. This allows to define another linear extension operator by π :

C 0 b ([0, T ] × [T 2 \ B(x 0 , 2r 0 )] × R 2 ) → C 0 b ([0, T ] × T 2 × R 2 ) f → πf (t, x, v) = π [f (t, •, v)] (x).
We modify π in the following way. Let

µ 1 , µ 2 ∈ C ∞ (T 2 × R 2 ) such that T 2 R 2 µ 1 dx dv = 0, T 2 R 2 vµ 1 dx dv = 1, T 2 R 2 µ 2 dx dv = 1, T 2 R 2 vµ 2 dx dv = 0.
Then, set

π(f ) := π(f ) - T 2 R 2 vπ(f ) dx dvµ 1 + T 2 R 2 (f 0 -π(f )) dx dv µ 2 .
Thus, π is an affine extension satisfying the following properties: for every

f ∈ C 0 b ([0, T ] × (T 2 \ B(x 0 , 2r 0 )) × R 2
)), we have

T 2 R 2 πf (t, x, v) dx dv = T 2 R 2 f 0 (x, v) dx dv, ∀t ∈ [0, T ], (2.4.79) T 2 R 2 vπf (t, x, v) dx dv = 0, ∀t ∈ [0, T ], (2.4.80) ∃C π > 0 such that (2.4.81) (1 + |v|) γ+2 π(f ) L ∞ (Q T ) ≤ C π (1 + |v|) γ+2 f L ∞ ([0,T ]×(T 2 \ω)×R 2 ) , ∀σ ∈ (0, 1), ∃C π,σ > 0 such that (2.4.82) π(f ) C 0,σ b (Q T ) ≤ C π,σ (1 + |v|) γ+2 f C 0,σ b ([0,T ]×(T 2 \ω)×R 2 ) , We introduce another truncation in time. Let Ỹ ∈ C ∞ (R + ; [0, 1]) such that (2.4.83) Ỹ(t) = 0, t ∈ 0, T 100 , Ỹ(t) = 1, t ∈ T 48 , T . Finally, we set (2.4.84) Π : C 0 b ([0, T ] × (T 2 \ B(x 0 , 2r 0 )) × R 2 ) → C 0 b ([0, T ] × T 2 × R 2 ), f → Πf = (1 -Ỹ(t))f + Ỹ(t)πf.
This allows to define the fixed point operator by

(2.4.85) V [g] := f + Π Ṽ [f ] |([0,T ]×(T 2 \B(x0,2r0))×R 2 )∪([0, T 48 ]×T 2 ×R 2 ) , for every (t, x, v) ∈ [0, T ] × T 2 × R 2 .
2.4.2. Existence of a fixed point. We shall apply the Leray-Schauder fixed point theorem (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 1.11,p. 279]). To do this, we have to verify that (1) The set S is convex and compact in

C 0 b (Q T ), (2) V : S ⊂ C 0 b (Q T ) → C 0 b (Q T ) is continuous, (3) V (S ) ⊂ S .
The first point is straightforward, since the convexity of S is clear and the compactness is a consequence of Ascoli's theorem (see, for instance, [START_REF] Rudin | Real and Complex Analysis[END_REF]Theorem 11.28,p. 245]). The second point is similar to [70, Section 3.3] and holds without further modification, thanks to Lemma 2.4.4, Lemma 2.4.3 and Lemma 2.2.1.

We need to show that point (3) holds. Let g ∈ S . We have to prove that V [g] ∈ S , i.e, points (a)-(c), since points (d) and (e) follow by the construction of V , using (2.4.80) and (2.4.79).

2.4.2.1. Proof of point (b). By construction of V , we have

(1 + |v|) γ+2 V [f ] -f L ∞ (Q T ) = (1 + |v|) γ+2 Π Ṽ [g] |([0,T ]×(T 2 \B(x0,2r0))×R 2 ∪[0, T 48 ]×T 2 ×R 2 ) L ∞ (Q T ) (2.4.86) 
≤ C π (1 + |v|) γ+2 Ṽ [g] L ∞ (Q T )
, where we have used (2.4.81). Moreover, by (2.4.78) and (2.4.63),

|f (t + , x, v)| ≤ |f (t -, x, v)|, which implies, through (2.2.15), | Ṽ [g](t, x, v)| ≤ e 2t f 0 ((X g , V g )(0, t, x, v)) .
On the other hand, (2.4.88)

|f 0 ((X g , V g )(0, t, x, v))| = 1 + |V g (0, t, x, v)| 1 + |V g (0, t, x, v)| γ+2 |f 0 ((X g , V g )(0, t, x, v))| ≤ (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + |V g (0, t, x, v)|) γ+2 (2.4.87) = (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + [e t |v| -(e t |v| -|V g (0, t, x, v)|)]) γ+2 ≤ (1 + |e t |v| -|V g (0, t, x, v)||) γ+2 (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + e t |v|) γ+2 ≤ (1 + K 3 (T, γ)) γ+2 (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + e t |v|
1 1 + |x -x | ≤ 1 + |x | 1 + |x| , ∀x, x ∈ R 2 .
Furthermore, since

(1 + |v|) γ+2 | Ṽ [g](t, x, v)| ≤ (1 + e t |v|) γ+2 | Ṽ [g](t, x, v)|, for every (t, x, v) ∈ [0, T ] × T 2 × R 2 , we have (1 + |v|) γ+2 Ṽ [g] L ∞ (Q T ) (2.4.89) ≤ e 2T (1 + K 3 (T, γ)) γ+2 f 0 C 1 + (1 + |v|) γ+2 f 0 L ∞ .
This gives that V [g] satisfies point (b), thanks to (2.4.86) and choosing (2.4.90)

c 1 ≥ C π e 2T (1 + K 3 (T, γ)) γ+2 .

Proof of point (c).

We need the following technical result, which can be adapted from [70, Lemma 2, p. 347], thanks to Lemma 2.2.1 and (2.4.70).

LEMMA 2.4.5. For any g ∈ S , one has

Ṽ [g] ∈ C 1 (Q T \ Σ T ), with Σ T := [0, T ] × γ -. Moreover, there exists a constant K 4 = K 4 (γ, ω) > 0 such that Ṽ [g](t, x, v) -Ṽ [g](t , x , v ) (1 + |v|)|(t, x, v) -(t , x , v )| ≤ K 4 ( f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (Q T ) ), for any (t, x, v), (t , x , v ) ∈ [0, T ] × (T 2 \ ω) × R 2 with |v -v | < 1. Furthermore, if f 0 satisfies (2.1.6
), we also have

(1 + |v|) γ+1 ∇ x,v Ṽ [g] L ∞ ≤ K 5 (1 + |v|) γ+1 ∇ x,v f 0 L ∞ (Q T ) + (1 + |v|) γ+2 f 0 L ∞ , (2.4.91) for some constant K 5 = K 5 (κ, g) > 0.
Let δ 2 be given by (2.4.61). Again, by construction of V and (2.4.82), we deduce

(2.4.92) V [g] -f C 0,δ 2 b (Q T ) ≤ C π,δ2 Ṽ [g] C 0,δ 2 b ([0,T ]×(T 2 \B(x0,2r0))×R 2 )
. Then, interpolating (2.4.89) and Lemma 2.4.5, we have

| Ṽ [g](t, x, v) -Ṽ [g](t , x , v )| |(t, x, v) -(t , x , v )| δ2 = | Ṽ [g](t, x, v) -Ṽ [g](t , x , v )| (1 + |v|)|(t, x, v) -(t , x , v )| γ+2 γ+3 × (1 + |v|) γ+2 | Ṽ [g](t, x, v) -Ṽ [g](t , x , v )| 1-γ+2 γ+3 ≤ K γ+2 γ+3 4 K 1-γ+2 γ+3 6 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (Q T ) , with K 6 = 2e 2T (1 + K 3 (T, γ)) γ+2 .
Whence, by (2.4.92), this gives that Ṽ [g] satisfies point (c), choosing

(2.4.93) c 2 ≥ C π,δ2 K 4 (γ, ω) γ+2 γ+3 K 6 (T, γ) 1-γ+2 γ+3 . 2.4.2.3.
Proof of point (a). We show first the L ∞ estimate. Using (2.3.57) and point (b), we find

R 2 V [g] -f dv L ∞ (Ω T ) = R 2 (V [g](t, x, v)) dv L ∞ (Ω T ) = sup (t,x)∈Ω T R 2 |V [g](t, x, v)| dv ≤ K 7 ( f 0 C 1 + (1 + |v|) γ+2 f 0 L ∞ ), with K 7 := c 1 R 2 dv (1 + |v|) γ+2 .
To show the Hölder estimate, we interpolate (2.4.89) and (c). Indeed, if δ 1 is given by (2.4.61) and γ := 2 + γ 2 , we have

(1 + |v|) γ |V [g](t, x, v) -V [g](t , x , v)| |(t, x, v) -(t , x , v)| δ1 = (1 + |v|) γ+2 |V [g](t, x, v) -V [g](t , x , v)| 1 2 + 1 γ+2 × |V [g](t, x, v) -V [g](t , x , v)| |(t, x, v) -(t , x , v)| δ2 1 2 -1 γ+2 ≤ c 1 2 + 1 γ+2 1 c 1 2 -1 γ+2 2 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (Q T ) .
Consequently, choosing (2.4.94)

c 3 := K 7 + c 1 2 + 1 γ+2 1 c 1 2 -1 γ+2 2 R 2 dv (1 + |v|) γ ,
and thanks to (2.1.5), we have that V [g] satisfies point (a).

Let us choose 0 sufficiently small and satisfying (2.4.68). Then, the smallness assumption (2.1.5) and the properties of V and Π allow to conclude. Thus, if ≤ 0 , thanks to Leray-Schauder theorem, there exists g ∈ S such that V [g] = g. 2.4.3. Uniqueness. The goal of this section is to show that the solution of (2.1.1) obtained in the previous section is unique within a certain class.

Indeed, let ≤ 0 and g

= V [g]. Then. if f 0 ∈ C 1 (T 2 × R 2 ) satisfies (2.1.6
), Lemma 2.4.5 gives (2.4.91). By the construction of f and Ṽ , and since Π preserves regularity, we deduce that

g ∈ C 1 (Q T ), (2.4.95) ∃κ > 0, (|g| + |∇ x,v g|) (t, x, v) ≤ κ (1 + |v|) γ+1 , ∀(t, x, v) ∈ Q T , (2.4.96) T 2 j g (t, x) dx = 0, ∀t ∈ [0, T ]. (2.4.97)
Next result, inspired from [START_REF] Ukai | On classical solutions in the large in time of two-dimensional Vlasov's equation[END_REF]Section 8], shows that the solution in this class is unique.

PROPOSITION 2.4.6. Let f 0 ∈ C 1 (T 2 × R 2 ) satisfying (2.1.6) and let G ∈ C 0 (Q T ).
Then, the solution of system (2.1.1) satisfying conditions (2.4.95), (2.4.96) and (2.4.97) is unique.

Proof. Let f 1 = Ṽ [f 1 ], for ≤ 0 . Let us suppose that (f 2 , U 2 , p 2
) is a solution of system (2.1.1) with initial datum f 0 and control G such that (2.4.95) and (2.4.96) are satisfied.

Let

W := U 1 -U 2 , g := f 1 -f 2 , π := p 1 -p 2 . Then, (g, W, π) satisfies (2.4.98)            ∂ t g + v • ∇ x g + div v [(U 1 -v)g] = -W • ∇ v f 2 , (t, x, v) ∈ Q T , -∆ x W + ∇ x π = j g , (t, x) ∈ Ω T , div x W = 0, (t, x) ∈ Ω T , T 2 W (t, x) dx = 0, t ∈ [0, T ], g |t=0 = 0, (x, v) ∈ T 2 × R 2 .
Using Proposition B.1.1, we get, for every t ∈ [0, T ],

W (t) (H 2 x ) 2 ≤ C j g (t) (L 2 
x ) 2 . Moreover, the Sobolev embedding theorem gives, for every t ∈ [0, T ],

(2.4.99)

W (t) (L ∞ x ) 2 ≤ C j g (t) (L 2 x ) 2 .
On the other hand, we observe that condition (2.4.96) gives

(1 + |v|)|∇ x,v f 2 (t, (X 1 , V 1 )(0, t, x, v))| ≤ κ (1 + |v|) (1 + |V 1 (0, t, x, v)|) γ+1 ≤ C(κ , γ) (1 + |v|) γ ,
proceeding in the same fashion as in (2.4.87). As a result, (2.4.100) sup

(t,x)∈Ω T R 2 (1 + |v|) ∇ v f 2 (t, (X 1 , V 1 )(0, t, x, v) dv ≤ C(κ , γ),
for some constant C(κ , γ) > 0. Consequently, from the Vlasov equation in (2.4.98), by the method of characteristics, we have

|g(t, x, v)| ≤ e 2T t 0 W (s, X 1 (0, s, x, v)) • ∇ v f 2 (s, (X 1 , V 1 )(0, s, x, v) ds ≤ e 2T t 0 W (s, •) L ∞ x ∇ v f 2 (s, (X 1 , V 1 )(0, s, x, v) ds.
Thus,

(1 + |v|)|g(t, x, v)| ≤ t 0 W (s, •) L ∞ x (1 + |v|) ∇ v f 2 (s, (X 1 , V 1 )(0, s, x, v) ds,
which implies, thanks to (2.4.100) and (2.4.99), sup

x∈T 2 |j g (t, x)| ≤ C t 0 W (s, •) L ∞ x ds ≤ C t 0 j g (s) (L 2 x ) 2 ds ≤ C t 0 sup x∈T 2 |j g (s)| ds, ∀t ∈ [0, T ],
which, by Gronwall's lemma entails, since j g (0) = 0, that

j g (t, x) = 0, ∀(t, x) ∈ Ω T .
Moreover, using again system (2.4.98) we deduce from this that the difference

W (t) = (U 1 -U 2 )(t) satisfies, for every t ∈ [0, T ],    -∆ x W (t) + ∇ x π(t) = 0, x ∈ T 2 , div x W (t) = 0, x ∈ T 2 ,
T 2 W (t) dx = 0, which, according to Proposition B.1.1 must imply that U 1 = U 2 in Ω T . In particular, the characteristics associated to -v + U 1 and to -v + U 2 coincide and thus,

f 1 = f 2 in Q T .

End of the proof

In order to conclude the proof of Theorem 2.1.1 we have to show that if we choose ∈ (0, 1 ) with 1 small enough, then the fixed point g found in the previous section satisfies (2.1.3). To do this, we show that

V [g] |t=T = 0 in (T 2 \ ω) × R 2
(see the strategy of proof in Section 2.1.3). The key result is the following. PROPOSITION 2.5.1. There exists 1 > 0 such that the characteristics (X g , V g ) associated to the field -v + U g meet γ 3-for some time in T 24 , 23T 24 . Proof. Let us define

γ 4-:= (x, v) ∈ S(x 0 , r 0 ) × R 2 ; |v| ≥ 5 2 , v, ν(x) ≤ - |v| 4 .
We proceed in two steps. In a first time, we show the result for the characteristics associated to -v + U , given by (2.3.45). In a second time, we show that, thanks to the first step, the result for (X g , V g ) follows by choosing 1 > 0 small enough.

Step 1: Let us consider the characteristics (X, V ) associated to the field -v + U . We claim that (2.5.101)

∃ σ ∈ T 12 , 3T 12 
∪ 9T 12 , 11T 12 such that X(σ, 0, x, v) ∈ γ 4-.
To show this claim, we need to prove the following (2.5.102)

∃ t ∈ T 12 , 3T 12 ∪ 9T 12 , 11T 12 s.t X(t, 0, x, v) ∈ B x 0 , r 0 4 , |V (t, 0, x, v)| ≥ α,
where α is given by (2.3.42). Indeed, let M 1 be given by (2.3.44) and let us consider two cases.

Case 1: If |V ( T 3 , 0, x, v)| ≥ M 1 , then using (2.2.13), one obtains that |v| ≥ e T 3 V ( T 3 , 0, x, v) -e T 3 T 3 0 e τ -T 3 U 1 (τ, X(τ, 0, x, v)) dτ ≥ e T 3 M 1 - T 3 e T 3 U 1 C 0,1 t,x
.

Then, by the choice (2.3.44), this implies (2.5.103) |v| ≥ e T 3 max {m 1 , 2α} . Hence, in particular, we get |v| ≥ m 1 . This allows to apply Proposition 2.3.1, which gives that ∃t ∈ T 12 , 3T 12 such that X(t, 0, x, v) ∈ B(x 0 , r0 4 ). Moreover, we deduce from (2.5.103) that |v| ≥ 2e T 3 α, which entails, thanks to (2.3.19), that |V (t, 0, x, v)| ≥ α. Thus, (2.5.102) is satisfied in this case.

Case 2: If |V ( T 3 , 0, x, v)| < M 1 , then Proposition 2.3.4 implies that V ( 2T 3 , 0, x, v) ≥ 1 + M 1 .
Proceeding as in the previous case, this yields (2.5.102) with some t ∈ 9T 12 , 11T 12 . This shows (2.5.102).

Let us prove (2.5.101). We choose s > 0 with

s < log 1 + 9r 0 4α < T 200 ,
thanks to (2.3.42) and (2.3.43), and such that X(t, 0, x, v) + (1 -e s )V (t, 0, x, v) ∈ S(x 0 , 2r 0 ), (2.5.104)

V (t, 0, x, v), ν(x) ≤ - √ 3 2 |V (t, 0, x, v)|. (2.5.105)
The last point follows from the fact that any straight line arising from B(x 0 , r0 4 ) cuts S(x 0 , r 0 ) forming an angle with ν(x) of value at most π 6 . To see (2.5.104), we observe that, choosing s 0 := log 1 + 9r0 4α one has

|X(t, 0, x, v) + (1 -e s0 )V (t, 0, x, v) -x 0 | ≥ (e s0 -1)α -|X(t, 0, x, v) -x 0 | ≥ 9r 0 4 - r 0 4 = 2r 0 .
Hence, by the intermediate value theorem, there exists s with 0 < s ≤ s 0 such that (2.5.104) holds. Moreover, we deduce from (2.2.13) and (2.5.102) that

X(t, 0, x, v) + (1 -e s )V (t, 0, x, v) -X(t -s, 0, x, v) = X(t, 0, x, v) + (1 -e s )V (t, 0, x, v) -X(t -s, t, (X, V )(t, 0, x, v)) = t-s t σ t e σ-z U 1 (z, X(z, X(t, 0, x, v))) dz dσ ≤ T e T s U 1 C 0 t,x ≤ C(T ) log 1 + 9r 0 4α U 1 C 0 t,x ≤ C (T ) 9r 0 4α U 1 C 0 t,x ≤ C(T, r 0 ) C r0,T , using (2.3 
.42) and the fact that log(1 + x) ≤ x for x small. We may choose C r0,T large enough, together with (2.3.43), so that

X(t, 0, x, v) + (1 -e s )V (t, 0, x, v) -X(t -s, 0, x, v) < r 0 2 ,
which allows to deduce, thanks to (2.5.104), that

X(t -s, 0, x, v) ∈ B(x 0 , r 0 ).
Hence, by the intermediate value theorem, there exists σ ∈ [t -s, t] such that X(σ, 0, x, v) ∈ S(x 0 , r 0 ). Moreover, by (2.2.13) and (2.5.102), we have

|V (σ, 0, x, v)| = |V (σ, t, (X, V )(t, 0, x, v)| ≥ e t-σ |V (t, 0, x, v)| -T e t-σ U 1 C 0,1 t,x = e t-σ (α -T U 1 C 0,1 t,x ).
Then, the choice of α in (2.3.42) yields

|V (σ, 0, x, v)| ≥ 5 2 . Thus, (2.5.101) follows. 
Step 2: Let us denote by (X g , V g ) the characteristics associated to -v+U g . We have

(2.5.106) sup

(t,x,v)∈Q T ((X g , U g ) -(X, V ))(t, 0, x, v) ≤ C U g -U C 0 t,x .
Observe that, thanks to (2.4.64), (2.3.59), (2.3.49) and (2.3.58), (U g -U )(t) satisfy

   -∆ x (U g -U )(t) + ∇ x (p g -p)(t) = j g-f (t), x ∈ T 2 , div x (U g -U )(t) = 0, x ∈ T 2 , T 2 (U g -U )(t) dx = 0, t ∈ [0, T ].
Using the Sobolev embedding theorem and Proposition B.1.1, we deduce

U g -U (L ∞ t,x ) 2 ≤ C U g -U L ∞ t (H 2 x ) 2 ≤ C j g-f L ∞ t L 2 (T 2 ) 2 ≤ C , using point (b).
Hence, choosing 1 small enough, from (2.5.101) and (2.5.106), the conclusion follows.

Proof of Theorem 2.1.1. By the previous sections, choosing ≤ min { 0 , 1 }, where 0 satisfies (2.4.68) and 1 is given by Proposition 2.5.1, there exists g ∈ S such that V [g] = g and such that Proposition 2.5.1 applies.

The fact that g satisfies system (2.1.1) follows from the construction of V and (2.4.78). Since g ∈ C 1 ([0, T ] × T 2 × R 2 ), thanks to Lemma 2.4.5, (2.3.60) and the fact that Π preserves regularity, we deduce that

∂ t g + v • ∇ v g -div v [(U g -v)g] = 1 ω (x)G, for some G ∈ C 0 ([0, T ] × T 2 × R 2 ).
To show (2.1.3), we observe that from the construction of V and (2.3.56), we have (2.5.107)

V [g](T, x, v) := Π Ṽ [f ] |([0,T ]×(T 2 \B(x0,2r0))×R 2 )∪([0, T 48 ]×T 2 ×R 2 ) (T, x, v). In particular, for any (x, v) ∈ (T 2 \ ω) × R 2 , it comes from the definition of Π that V [g](T, x, v) = Ṽ [g](T, x, v).
Moreover, by (2.4.78) and ( 2

.2.15), Ṽ [g](T, x, v) = e 2T f 0 ((X g , V g )(0, T, x, v)).
Hence, the absorption procedure described by (2.4.78) and (2.4.63) and Proposition 2.5.1 allow to conclude that Ṽ

[g](T, x, v) = 0 in (T 2 \ ω) × R 2 .

Conclusion and perspectives

We have proved in Theorem 2.1.1 a local controllability result for the Vlasov equation coupled with the stationary Stokes system. Some possible extensions are possible.

We could consider the Vlasov-Stokes system on a bounded domain with boundary, as in [START_REF] Hamdache | Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[END_REF], with Dirichlet boundary conditions for the vector field and specular boundary conditions for the distribution function. In this case, with an internal control, the construction of a reference trajectory given in Section 2.3 is no longer effective, because of the specular reflection on the boundary of the characteristic flow. In particular, the distinction between good and bad directions should be refined. A geometric control condition could be very useful in this context. The boundary control problem may necessitate a very technical approach.

Other fluid-kinetic models could possibly be studied with similar techniques, such as the Vlasov-Navier-Stokes system. This is a matter of current work.

CHAPTER 3

Local null-controllability of the 2-D Vlasov-Navier-Stokes system Keywords: Vlasov-Navier-Stokes system; kinetic theory ; kinetic-fluid model; controllability; return method. 1

Introduction

We consider the Vlasov-Stokes system in the 2-dimensional torus T 2 := R 2 /Z 2 , which writes, for T > 0 and ω ⊂ T 2 , (

.1)            ∂ t f + v • ∇ x f + div v [(u -v)f ] = 1 ω (x)G, (t, x, v) ∈ (0, T ) × T 2 × R 2 , ∂ t u + (u • ∇ x ) u -∆ x u + ∇ x p = j f -ρ f u, (t, x) ∈ (0, T ) × T 2 , div x u(t, x) = 0, (t, x) ∈ (0, T ) × T 2 , f |t=0 = f 0 (x, v), (x, v) ∈ T 2 × R 2 , u |t=0 = u 0 (x), x ∈ T 2 , where (3.1.2) j f (t, x) := R 2 vf (t, x, v) dv, ρ f (t, x) := R 2 f (t, x, v) dv. 3.1 
We shall suppose throughout the article that the Lebesgue measure of the torus is normalised, i.e., T 2 dx = 1.

3.1.1. Main results. Before stating our main results, we give the notion of solution that we use in this work and we explain the controllability problem that we want to solve.

3.1.1.1. Strong solutions.

DEFINITION 3.1.1. Let T > 0. Let f 0 ∈ C 1 (T 2 × R 2 ) and u 0 ∈ H 1 (T 2 ; R 2 ) with div x u 0 = 0. Let G ∈ C 0 ([0, T ] × T 2 × R 2 ).
We say that (f, u) is a strong solution of system (3.1.1) if the following conditions are satisfied.

f ∈ C 1 ([0, T ] × T 2 × R 2 ), (3.1.3) the Vlasov equation is satisfied for every (t, x, v) ∈ (0, T ) × T 2 × R 2 , (3.1.4) sup t∈[0,T ] T 2 R 2 1 + |v| + |v| 2 f (t, x, v) dx dv < ∞, (3.1.5) u ∈ C 0 ([0, T ]; H 1 (T 2 ; R 2 )) ∩ L 2 (0, T ; H 2 (T 2 ; R 2 )), (3.1.6) div x u(t, x) = 0, ∀t ∈ [0, T ], (3.1.7)
1. Le contenu de ce chapitre fait l'objet d'une prépublication (cf. [START_REF] Moyano | Local null-controllability of the 2-D Vlasov-Navier-Stokes system[END_REF]). and for any ψ ∈ C 1 ([0, T ]; H 1 (T 2 ; R 2 )) with div x ψ(t, x) = 0 and t ∈ (0, T ], one has

T 2 u(t)ψ(t) dx + t 0 T 2 (∇u : ∇ψ -u ⊗ u • ∇ψ -u∂ t ψ) ds dx = T 2 u 0 ψ(0) dx + t 0 T 2 (j f (s) -ρ f (s)u(s)) ψ(s) ds dx, (3.1.8)
where

∇u : ∇ψ := 2 j,k=1 ∂ j u k ∂ j ψ k , u ⊗ u • ∇ψ := 2 j,k=1 u j u k ∂ j ψ k .
Let us recall that, under the incompressibility condition, the convection term satisfies that (u • ∇)u = div(u ⊗ u), with the previous notation.

3.1.1.2. The controllability problem. We are interested in the controllability properties of system (3.1.1), by means of an internal control, in the following sense. Given f 0 and f 1 in a suitable function space and given T > 0, is it possible to find a control G steering the solution of (3.1.1) from f 0 to f 1 , in time T ? In other words, we want to find G such that

(3.1.9) f (T, x, v) = f 1 (x, v), ∀ (x, v) ∈ T 2 × R 2 .
Another interesting point is to find G in such a away it could modify not only the dynamics of the distribution function G but also the evolution of the field u from u 0 to a given u 1 in time T .

In this article, we shall give a positive answer to this question for f 1 = 0 and u 1 = 0. We shall need a geometric assumption on the region ω, stated in [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF] and used in [73, Definition 1.2, p.699].

DEFINITION 3.1.2 (Strip assumption

). An open set ω ⊂ T 2 satisfies the strip assumption if it there exists a straight line of R 2 whose image H by the canonical surjection s : R 2 → T 2 is closed and included in ω. We shall call n H a unit vector orthogonal to H, in such a way H = x ∈ R 2 ; x • n H = 0 . For any l > 0, we denote

H l := H + [-l, l]n H . Let us observe that, as H is closed in T 2 , there exists δ > 0 such that (3.1.10) H 2δ ⊂ ω
and such that 4δ is smaller than the distance between two successive lines in s(H).

Under this geometric assumption and suitable hypothesis on the data u 0 , f 0 and f 1 , we obtain the following local null-controllability result in large time.

THEOREM 3.1.3. Let γ > 2, and let ω ⊂ T 2 satisfy the strip assumption of Definition 3.1.2. There exists > 0, M > 0 and T 0 > 0 such that for every T ≥ T 0 ,

f 0 ∈ C 1 (T 2 × R 2 ) ∩ W 1,∞ (T 2 × R 2 ) and u 0 satisfying that (3.1.11) u 0 ∈ C 1 (T 2 ; R 2 ) ∩ H 2 (T 2 ; R 2 ), div x u 0 = 0, u 0 H 1 2 (T 2 )
≤ M, and that

f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) ≤ , (3.1.12) ∃κ > 0, sup T 2 ×R 2 (1 + |v|) γ (|∇ x f 0 | + |∇ v f 0 |) (x, v) ≤ κ, (3.1.13) there exists a control G ∈ C 0 ([0, T ] × T 2 × R 2
) such that a strong solution of (3.1.1) with f | t=0 = f 0 and u| t=0 = u 0 exists, is unique and satisfies

(3.1.14) f | t=T = 0, u| t=T = 0.
The techniques developed in this article allow to obtain, in absence of the control term 1 ω (x)G, that the strong solutions of the homogeneous Vlasov-Navier-Stokes

(3.1.15)            ∂ t f + v • ∇ x f + div v [(u -v)f ] = 0, (t, x, v) ∈ (0, T ) × T 2 × R 2 , ∂ t u + (u • ∇ x ) u -∆ x u + ∇ x p = j f -ρ f u, (t, x) ∈ (0, T ) × T 2 , div x u(t, x) = 0, (t, x) ∈ (0, T ) × T 2 , f |t=0 = f 0 (x, v), (x, v) ∈ T 2 × R 2 , u |t=0 = u 0 (x), x ∈ T 2 ,
are unique within a certain class. The result is the following.

THEOREM 3.1.4. Let γ > 2 and T > 0. Then, for any M > 0, there exists > 0 such that for every

f 0 ∈ C 1 (T 2 × R 2 ) ∩ W 1,∞ (T 2 × R 2 ) and u 0 satisfying that u 0 ∈ C 1 (T 2 ; R 2 ) ∩ H 2 (T 2 ; R 2 ), div x u 0 = 0, u 0 H 1 2 (T 2 ) ≤ M,
and that

f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) ≤ , (3.1.16) ∃κ > 0, sup T 2 ×R 2 (1 + |v|) γ (|∇ x f 0 | + |∇ v f 0 |) (x, v) ≤ κ, (3.1.17)
there exists a unique strong solution of (3.1.15) with f | t=0 = f 0 and u| t=0 = u 0 . REMARK 3.1.5. Theorem 3.1.3 is a local null-controllibility result in the sense that the smallness conditions (3.1.12) and (3.1.11) are essential to prove the controllability. On the other hand, condition (3.1.13) is only useful to ensure the uniqueness of the corresponding solution.

Theorem 3.1.4 shows the existence of strong solutions of (3.1.15) with smalldata in any time. We show that under condition (3.1.17) this strong solution is unique.

Previous work.

3.1.2.1. The controllability of non-linear kinetic equations. The controllability of non-linear equations, typically described by the coupling of a Vlasov equation and a system for a vector field, originated from the work of O. Glass for the Vlasov-Poisson system in [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF]. In this work, the idea of combining the return method (see Section 3.1.2.4 for details) with a Leray-Schauder fixed-point argument involving an absorption procedure was successfully employed for the first time.

This strategy was later extended in [START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] by O. Glass and D. Han-Kwan to the Vlasov-Poisson system under external and Lorentz forces. The authors obtain both local and global exact controllability results in the case of bounded external forces, which requires some new ideas to construct the reference trajectories. Precisely, the authors exploit the fact that the free dynamics and the dynamics under the external force are similar in small time. In the case of Lorentz forces, a precise knowledge of the magnetic field and a geometric control condition in the spirit of [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF] allow to obtain a local exact controllability result. The functional framework of [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF][START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] is the one given by the classical solution of the Vlasov-Poisson system, that is, some appropriate Hölder spaces, according to [START_REF] Ukai | On classical solutions in the large in time of two-dimensional Vlasov's equation[END_REF]. To end up, let us mention that the systems considered in these results present a coupling with a Poisson equation, which is stationary, allowing the use of techniques from Harmonic approximation to construct the reference trajectories.

In the case in which the Vlasov equation is coupled with a non-stationary equation, the construction of a reference trajectory has to be achieved in a different way. In this direction, a new strategy has been developed by [START_REF] Glass | On the controllability of the relativistic Vlasov-Maxwell system[END_REF] in the context of the Vlasov-Maxwell system. In this case, the authors use some controllability results for the Maxwell system, under the geometric control condition of [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF], which allows to construct suitable reference trajectories. In a second step, the Leray-Schauder fixed-point procedure must be reformulated in order to respect some conservation laws. This gives a local controllability result for the distribution function. This results holds in some appropriate Sobolev spaces, according to the functional framework of [START_REF] Asano | On local solutions of the Cauchy problem for the Vlasov-Maxwell Equation[END_REF][START_REF] Wollman | Local existence and uniqueness theory of the Vlasov-Maxwell theorem[END_REF].

Furthermore, their strategy allows to obtain a local controllability result for the distribution function and the electric field under the assumption that ω contains a hyperplane, using the convergence towards the Vlasov-Poisson system under a certain regime.

Finally, the methods of [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF] and [START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF] have been applied by the author to a kinetic-fluid system in [START_REF] Moyano | On the controllability of the 2-D Vlasov-Stokes system[END_REF], the Vlasov-Stokes system, where a Vlasov equation is coupled with a stationary Stokes system, which can be seen as a simplified version of (3.1.1).

3.1.2.2. A short review on the Vlasov-Navier-Stokes system. This system is a model to describe the behaviour of a large cloud of particles interacting with a viscous incompressible fluid. Typically, the coupling is made through two mechanisms. The action of the fluid on the particles is taken into account in the Vlasov equation, where the field appears multiplying the gradient in velocity of the distribution function. Secondly, the action of the particles on the fluid gives rise to a drag force appearing in the Navier-Stokes system as a source term. For more details on the model, we refer to [START_REF] Boudin | Modelling and numerics for respiratory aerosols[END_REF].

The field equation in System (3.1.1), under the influence of the drag force j-ρu, has been rigorously derived as a mean-field limit of a large cloud of particles by L. Desvillettes, F. Golse and V. Ricci in [START_REF] Desvillettes | The mean-field limit for solid particles in a Navier-Stokes flow[END_REF], using homogeneisation techniques and under a strong non-collision hypothesis.

The well-posedness character of a simplified system has been done in [START_REF] Hamdache | Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[END_REF]. The existence of weak solutions to (3.1.1) in the three-dimensional torus has been achieved by L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa in [START_REF] Boudin | Global existence of solutions for the coupled Vlasov and Navier-Stokes equations[END_REF]. Other related systems, considering variable density or compressible fluids have been studied in [START_REF] Choi | Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations[END_REF], along with its asymptotic behaviour under strong hypothesis.

Finally, the question of hydrodynamical limits under certain regimes has been treated by T. Goudon, P. E. Jabin and A. Vasseur in [START_REF] Goudon | Hydrodynamic limits for Vlasov-Stokes equations: Part I: Light Particles Regime[END_REF][START_REF] Goudon | Hydrodynamic limits for Vlasov-Stokes equations: Part II: Fine Particles Regime[END_REF], considering also the effects of collisions between particles.

3.1.2.3. Obstructions to controllability. Since Theorem 3.1.3 is of local nature around the steady state (f, u) = (0, 0), a first step to achieve its proof could be the use of the linear test (see [START_REF] Coron | Control and Nonlinearity[END_REF]). Following the classical scheme, the controllability of the linearised system around the trivial trajectory and the classical inverse mapping theorem between proper functional spaces would imply the controllability of the nonlinear system (3.1.1).

Indeed, the formal linearised equation around the trajectory (f, u) = (0, 0) is

(3.1.18) ∂ t F + v • ∇ x F -v • ∇ v F -2F = 1 ω (x) G, F (0, x, v) = f 0 (x, v),
which is a transport equation with friction. By the method of characteristics, we can give an explicit solution of (3.1.18), which writes (3.1.19)

F (t, x, v) = e 2t f 0 (x + (1 -e t )v, e t v) + t 0 e 2(t-s) (1 ω G)(s, x + (1 -e t-s )v, e t-s v) ds.
As pointed out in [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF], there exist two obstructions for controllability, which are:

Small velocities: a certain (x, v) ∈ T 2 × R 2 can have a "good direction" with respect to the control region ω, in the sense that x + (1 -e -t )v meets ω at some time. However, if |v| is not sufficiently large, the trajectory of the characteristic beginning at this point would possibly not reach ω before a fixed time. In our case, the effects of friction could enhance this difficulty.

Large velocities: the obstruction concerning large velocities is of geometrical nature. There exist some "bad directions" with respect to ω, in the sense that a characteristic curve parting from (x, v) ∈ T 2 ×R 2 would never reach ω, no matter how large |v| is.

As a result of this, and considering again equation (3.1.19), we deduce that the linearised system is not controllable in general.

3.1.2.4. The return method. In order to circumvent these difficulties, we use the return method, due to J.-M. Coron.

The idea of this method, in the case under study, is to construct a reference trajectory (f , u) starting from (0, 0) and coming back to (0, 0) at some fixed time in such a way the linearised system around it is controllable. This method, which makes a crucial use of the nonlinearity of the system, allows to avoid the obstructions discussed in the previous section.

We refer to [START_REF] Coron | Control and Nonlinearity[END_REF][START_REF] Glass | La méthode du retour en contrôlabilité et ses applications en mécanique des fluides[END_REF] for presentations and examples on the return method. 3.1.2.5. Strategy of the proof of Theorem 3.1.3. The strategy of this work follows the scheme of [START_REF] Glass | On the controllability of the relativistic Vlasov-Maxwell system[END_REF]. More precisely, it relies on two ingredients.

Step 1: We build a reference solution (f , u) of system (3.1.1) with a control G, located in ω, starting from (0, 0) and arriving at (0, 0) outside ω at a sufficiently large time T > 0 and such that the characteristics associated to the field -v + u meet ω before T > 0. In doing this, the non-linear coupling will be essential, thanks to the use of controllability results for the Navier-Stokes system.

Step 2: We build a solution (f, u) close to (f , u) parting from (f 0 , u 0 ) and arriving at (0, 0) outside ω at time T > 0. This can be done by means of a fixed-point argument involving an absorption operator in the control region.

3.1.2.6. Outline of the paper. In Section 3.2, we recall some results on the characteristics equation that will be important in the sequel. In Section 3.3, we construct a suitable reference trajectory of system (3.1.1). In Section 3.4, we construct a strong solution of this system, thanks to a fixed-point argument. In Section 3.5 we prove some stability estimates for the Navier-Stokes system. In Section 3.6, we show that this strong solution satisfies the controllability property. In Section 3.7, we prove that this strong solution is unique within a certain class.

3.1.2.7. Notation and functional framework. Let T > 0 and set

Q T := [0, T ] × T 2 × R 2 and Ω T := [0, T ] × T 2 . If σ ∈ [0, 1], C 0,σ b (Ω) denotes the space of bounded σ-Hölder functions in Q T , equipped with the norm (3.1.20) f C 0,σ b (Ω) := f L ∞ (Ω) + sup (t,x,v) =(t ,x ,v ) |f (t, x, v) -f (t , x , v )| |(t, x, v) -(t , x , v )| σ , for any f ∈ C 0,σ b (Q T ).
We shall also consider the spaces C 0,σ b (Ω T ), with analogous definitions.

We will also use the Sobolev spaces W m,p , with m ∈ N * and p ∈ [1, ∞]. In the particular case of the flat torus T 2 , the Fourier series allow to write

(3.1.21) f = k∈Z 2 c k e ik•x , in L 2 (T 2 ), ∀f ∈ L 2 (T 2 ), with (3.1.22) 
c k = c k (f ) := T 2 f (x)e ik•x dx, ∀k ∈ Z 2 .
Thus, for any s > 0, we may write

H s (T 2 ) = f ∈ L 2 ; f = k∈Z 2 c k e ik•x , c k = c -k , k∈Z 2 1 + |k| 2 s |c k | 2 < ∞ , H s 0 (T 2 ) = f ∈ H s (T 2 ); T 2 f (x) dx = 0 ,
which allows to equip these spaces, respectively, with the norms

(3.1.23) f H s := k∈Z 2 (1 + |k| 2 ) s |c k | 2 1 2 , f H s 0 := k∈Z 2 |k| 2s |c k | 2 1 2
, with equivalence of norms in the case of H s 0 as a subspace of H s . In the case of vector fields, we shall use (W m,p (T 2 )) 2 , with the product norm. Let us introduce, as usual, the space of solenoidal vector fields in L 2 , i.e.,

H := F ∈ L 2 (T 2 ) 2 ; div x F = 0 in R 2 ,
where the operator div x is taken in the distributional sense. Analogously, let us use the following notations, following [START_REF] Chemin | Mathematical Geophysics[END_REF],

V σ := F ∈ H 1 (T 2 ) 2 ; div x F = 0 in R 2 , V σ := F ∈ H -1 (T 2 ) 2 ; div x F = 0 in R 2 , V := F ∈ H -1 (T 2 ) 2 .
We shall also denote by S (R 2 ) the space of Schwartz functions in R 2 .

Finally, if X is a Banach space and p ≥ 1, we will sometimes use, for simplicity, the notations L p t X x or C 0 t X x to refer to L p (0, T ; X) or C 0 ([0, T ]; X). To simplify some computations, we shall use the symbol to denote that a multiplicative constant is omitted.

We shall refer to Appendices B and C to recall some notation and important results on the non-stationary Stokes system and the Navier-Stokes system.

Some remarks on the characteristic equations

Let be given a fixed u(t, x). Let s, t ∈ [0, T ], (x, v) ∈ T 2 × R 2 . We denote by (X(t, s, x, v), V (t, s, x, v)) the characteristics associated with the field -v + u(t, x), i.e., the solution of the system (3.2.24)

       d dt X V = V (t) -V (t) + u(t, X) , X V |t=s = x v .
We observe that if u ∈ C 0 ([0, T ]; C 1 (T 2 ; R 2 )), system (3.2.24) has a unique solution, thanks to the Cauchy-Lipschitz theorem. Moreover, one has the explicit formulae (3.2.25)

X(t, s, x, v) = x + (1 -e -t+s )v + t s t s e τ -t u(τ, X(τ, s, x, v)) dτ dt , V (t, s, x, v) = e -t+s v + t s e τ -t u(τ, X(τ, s, x, v)) dτ. REMARK 3.2.1.
The same result is still valid if one considers vector field in the class u ∈ L 1 (0, T ; C 0,1 (T 2 ; R 2 )). This will be important in Section 3.4. For details, see [START_REF] Crippa | The flow associated to weakly differentiable vector fields[END_REF]Remark 1.2.3 ,p.13]. In that case, the associated characteristics are still given by (3.2.25), well-defined for every t ∈ [0, T ] and differentiable also in time.

Using the method of characteristics, given an initial datum f 0 ∈ C 0 (T 2 × R 2 ), the solution of the transport equation with friction (3.2.26)

∂ t f + v • ∇ x f + div v [(u -v)f ] = 0, (t, x, v) ∈ (0, T ) × T 2 × R 2 , f (0, x, v) = f 0 (x, v), (x, v) ∈ T 2 × R 2 ,
has the explicit solution

(3.2.27) f (t, x, v) = e 2t f 0 ((X, V )(0, t, x, v)),
where (X, V ) are given by (3.2.25). The proof of the following result, under the hypothesis that the field belongs to C 0 t C 1 x , can be found in [125, Lemma 1, Section 3] (see Lemma 2.2.1 in Chapter 2). The adaptation to the case in which the field belongs to

L 1 t C 0,1 x is straightforward. LEMMA 3.2.2. Let u ∈ L 1 (0, T ; C 0,1 (T 2 ; R 2 ))
Then, the characteristics associated to the field -v + u satisfy that for some

C = C(T, u L 1 t C 0,1 x ) > 0, |(X, V )(t, s, x, v) -(X, V )(t , s , x , v )| ≤ C(1 + |v|)|(t, s, x, v) -(t , s , x , v )|, whenever (t, s, x, v), (t , s , x , v ) ∈ [0, T ] × T 2 × R 2 , with |v -v | < 1.

Construction of a reference trajectory

The aim of this section is to construct a reference solution (f , u) of system (3.1.1), according to the return method, in such a way the characteristics associated to u, say (X, V ) verify the following property

∀(x, v) ∈ T 2 × R 2 , ∃t ∈ T 12 , 11T 12 such that X(t, 0, x, v) ∈ H, with |V (t, 0, x, v) • n H | ≥ 5. (3.3.28) PROPOSITION 3.3.1.
Let ω ⊂ T 2 satisfy the strip assumption of Definition 3.1.2. There exists T 0 > 0 such that for any T ≥ T 0 , there exists a reference solution (f , u) of system (3.1.1) such that

f ∈ C ∞ ([0, T ] × T 2 ; S (R 2 )), (3.3.29) u ∈ C ∞ ([0, T ] × T 2 ; R 2 ), (3.3.30) (f , u)| t=0 = (0, 0), (f , u)| t=T = (0, 0), (3.3.31) supp(f ) ⊂ (0, T ) × ω × R 2 , (3.3.32)
and such that the characteristics associated to u satisfy (3.3.28).

3.3.1.

Global exact controllability of the Navier-Stokes system. We recall a result due to Jean-Michel Coron and Andrei Fursikov, that guarantees the global exact controllability of the Navier-Stokes system on a surface without boundary (see [START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF]).

More precisely let (M, g) be a connected, two-dimensional, orientable, compact, smooth Riemannian manifold without boundary. Let us denote by T x M , as usual, the tangent space to M at x ∈ M and let T M = x∈M T x M . For the definition of the differential operators div, ∆ and ∇• on the manifold M used below, we refer to [START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF]Section 2].

Let us choose and fix a particular solution of the Navier-Stokes system in M , i.e., let ŷ ∈ C ∞ ([0, ∞) × M ; T M ) be such that ŷ(t, x) ∈ T x M, ∀(t, x) ∈ [0, ∞) × M, (3.3.33) div x ŷ(t, x) = 0, ∀(t, x) ∈ [0, ∞) × M, (3.3.34) and such that ∃p ∈ C ∞ ([0, ∞) × M ; R) for which

∂ t ŷ -∆ŷ + ∇ ŷ • ŷ + ∇p = 0, in (0, ∞) × M.
Then, we have the following controllability result. THEOREM 3.3.2 ). Let τ > 0, let M 0 ⊂ M be an arbitrary open set and let y 0 ∈ C ∞ (M ; T M ) satisfying y 0 (x) ∈ T x M , for all x ∈ M , and that div x y 0 = 0. Then, there exists a control w ∈ C ∞ (M × [0, ∞); T M ) verifying (3.3.35) supp w ⊂ (0, τ ) × M 0 and such that the solution of the system   

∂ t y -∆y + ∇ y • y + ∇p = w, (t, x) ∈ (0, ∞) × M, div x y(t, x) = 0, (t, x) ∈ (0, ∞) × M, y |t=0 = y 0 (x), x ∈ M, satisfies y |t=τ = ŷ|t=τ .
This result guarantees that, given a fixed trajectory of the Navier-Stokes system, namely ŷ, given a time τ , given an arbitrary initial state y 0 and given any open set M 0 ⊂ M , we can find a suitable force w, acting on M 0 , allowing to pass from the initial state y 0 to the solution ŷ in time τ . We shall exploit Theorem 3.3.2 to construct a reference trajectory in the case of the torus. We shall work separately on each interval (T i , T i+1 ), for i = 0, . . . , 3. Let us fix from now on the values 0 < T 1 < T 2 .

Step 1. The reference solution in [0, T 1 ].

We set (f 1 , u 1 ) = (0, 0), which trivially solves (3.1.1).

Step 2. The reference solution in [T 

, M = T 2 , M 0 = ω, τ := T 2 -T 1 , y 0 ≡ 0. This yields a control (3.3.37) w 2 ∈ C ∞ ([0, T 2 -T 1 ] × T 2 ; R 2 ) with (3.3.38) supp w 2 ⊂ (0, T 2 -T 1 ) × ω
and such that the corresponding solution to the Navier-Stokes system under this force, say u 2 , satisfies u 2 | t=T2-T1 = n H . To construct the associated distribution function, let us consider

Z 1 , Z 2 ∈ S (R 2 ) such that R 2 v 1 Z 1 dv = 1, R 2 v 2 Z 1 dv = 0, R 2 Z 1 dv = 0, (3.3.39) R 2 v 1 Z 2 dv = 0, R 2 v 2 Z 2 dv = 1, R 2 Z 2 dv = 0. (3.3.40) Then, define (3.3.41) f 2 (t, x, v) := (Z 1 , Z 2 )(v) • w 2 (t, x), ∀(t, x, v) ∈ (0, T 2 -T 1 ) × T 2 × R 2 , which gives f 2 ∈ C ∞ ([0, T 2 -T 1 ] × T 2 ; S (R 2 )), (3.3.42) j f2 (t, x) = w 2 (t, x), ρ f2 (t, x) = 0. Consequently, (3.3.43) ∂ t u 2 + (u 2 • ∇) u 2 -∆u 2 + ∇p 2 = j f2 -ρ f2 u 2 , (0, T 2 -T 1 ) × T 2 ,
and using (3.3.38),

(3.3.44) ∂ t f 2 + v • ∇ x f 2 + div v [(u 2 -v)f 2 ] = 0, in (0, T 2 -T 1 ) × T 2 \ ω × R 2 .
Step 3. The reference solution in [T 2 , T 3 ].

Let us choose T 3 > T 2 large enough, to be chosen later on. During the interval [T 2 , T 3 ], we use the stationary solution n H to accelerate all the particles in the direction of n H , as explained in detail in Step 5.

Step 4. The reference solution in [T 3 , T 4 ]. Working as in Step 2, we use again Theorem 3.3.2 to steer the Navier-Stokes system from n H to 0 in time T 4 -T 3 . This provides a control

w 4 ∈ C ∞ ([0, T 4 -T 3 ] × T 2 ; R 2 )
and supp w 4 ⊂ (0, T 4 -T 3 ) × ω, such that the corresponding solution of the Navier-Stokes system under the force w 4 , say u 4 , satisfies

u 4 ∈ C ∞ ([0, T 4 -T 3 ] × T 2 ; R 2 ), u 4 | t=0 = n H , u 4 | t=T4-T3 = 0. (3.3.45)
Thus, choosing Z 1 and Z 2 as in (3.3.39) and (3.3.40), we define (3.3.46) 

f 4 (t, x, v) := (Z 1 , Z 2 )(v) • w 4 (t, x), ∀(t, x, v) ∈ (0, T 4 -T 3 ) × T 2 × R 2 .
By the same arguments as before, this yields + 10, (3.3.51) where u 2 is defined as in Step 2.

∂ t u 4 + (u 4 • ∇) u 4 -∆u 4 + ∇p 4 = j f4 -ρ f4 u 4 , in (0, T 4 -T 3 ) × T 2 , (3.3.47) ∂ t f 4 + v • ∇ x f 4 + div v [(u 4 -v)f 4 ] = 0, in (0, T 4 -T 3 ) × T 2 \ ω × R 2 .
T 3 ≥ 3T 2 + 2 Λ 0 + u 2 L 1 (0,T2-T1;L ∞ (T 2 ))
Next, according to (3.3.36), let us define the vector field

(3.3.52) u(t) :=        0, t ∈ [0, T 1 ], u 2 (t -T 1 ), t ∈ [T 1 , T 2 ], n H , t ∈ [T 2 , T 3 ], u 4 (t -T 3 ), t ∈ [T 3 , T 4 ],
and the distribution function

f (t) :=        0, t ∈ [0, T 1 ], f 2 (t -T 1 ), t ∈ [T 1 , T 2 ], 0, t ∈ [T 2 , T 3 ], f 4 (t -T 3 ), t ∈ [T 3 , T 4 ].
Thanks to the previous definitions and using (3.3.43), (3.3.44), (3.3.47) and (3.3.48), we have, for T = T 4 ,

∂ t u + (u • ∇) u -∆u + ∇p = j f -ρ f u, in (0, T ) × T 2 , ∂ t f + v • ∇ x f + div v (u -v)f = 0, in (0, T ) × T 2 \ ω × R 2 .
Let us now prove (3.3.28).

Let (x, v) ∈ T 2 × R 2 . We shall distinguish two cases.

Case 1. (High velocities): Let us assume that |v • n H | ≥ Λ 0 . Thus, for any s ∈ ( T1 2 , T 1 ), we have

| X(s, 0, x, v) -x • n H | = |(1 -e -s )v • n H | ≥ (1 -e -T 1 2 )|v • n H | > d 0 ,
thanks to the choice (3.3.49). Thus, thanks to the intermediate value theorem, there exists t ∈ (0, T 1 ) such that X(t, 0, x, v) ∈ H. Moreover, 

|V (t, 0, x, v) • n H | = |e -t v • n H | > e -T1 Λ
(X(s, 0, x, v) -x) • n H = (1 -e -s ) • v • n H + s T2 T1 u 2 (σ, X(σ)) dσ + s 0 σ T2 dτ dσ = (1 -e -s ) • v • n H + s T2 T1 u 2 (σ, X(σ)) dσ + (s -T 2 ) 2 2 ≥ -|v • n H | -T 3 u 2 L 1 t L ∞ x + (s -T 2 ) 2 2 > d 0 , whenever s > T3-T2

2

. Consequently, by the intermediate value theorem, there exists t ∈ (T 2 , T 3 ) such that X(t, 0, x, v) ∈ H. Moreover, the choice (3.3.51) gives, through (3.3.53), that |V (t, 0, x, v) • n H | ≥ 5, which entails (3.3.28).

Fixed-point argument

Let ∈ (0, 0 ) be fixed, with 0 to be chosen later on. We shall define an operator V acting on a domain S ⊂ C 0 ([0, T ] × T 2 × R 2 ) to be defined below. The goal of this section is to show that V has a fixed point.

Throughout all this section, we fix f 0 and u 0 as given in the statement of Theorem 3.1.3.

3.4.1. Definition of the operator. In order to describe the set S , let ∈ (0, 0 ), to be precised later on, and γ > 2. Then, set (3.4.54) δ 1 := γ 2(γ + 3) , δ 2 := γ + 2 γ + 3 .

According to the notation of Section 3.1.2.7, we define

S := g ∈ C 0,δ2 (Q T ); (a) ρ g C 0,δ 1 (Ω T ) ≤ c 3 , (b) (1 + |v|) γ+2 (f -g) L ∞ (Q T ) ≤ c 1 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) , (c) (f -g) C 0,δ 2 (Q T ) ≤ c 2 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 C 0 (T 2 ×R 2 ) , (d) 
T 2 ρ g (t, x) dx = T 2 ρ f0 (x) dx, ∀t ∈ [0, T ] ,
where c 1 , c 2 , c 3 are constants depending only on T, ω, γ, δ 1 and δ 2 (see (3.4.111), (3.4.114) and (3.4.115) for details). We observe that, for c 1 , c 2 , c 3 large enough and

f 0 ∈ C 1 (T 2 × R 2 ), with high moments in v, satisfying R 2 f 0 (x, v) dv C 0,δ 1 (Ω T ) ≤ c 3 ,
we trivially have that f + f 0 ∈ S . Thus, S = ∅.

We describe the operator V in three steps:

(1) First, we associate to each g ∈ S the solution of a suitable Navier-Stokes system, namely u g .

(2) Secondly, we solve a Vlasov equation thanks to the field u g , forcing the absorption of particles in ω, which produces Ṽ [g].

(3) Thirdly, we perform a regular extension of Ṽ [g], which gives V [g].

We shall describe next these three steps in detail.

3.4.2. Navier-Stokes system with a drag force interaction term. Let g ∈ S . The aim of this section is to give a sense to the associated Navier-Stokes system (3.4.55)

   ∂ t u g + (u g • ∇) u g -∆ x u g (t) + ∇ x p g (t) = j g (t) -ρ g (t)u g , in Ω T , div x u g (t, x) = 0, in Ω T , u g |t=0 = u 0 , in T 2 ,
where

j g (t, x) := R 2 vg(t, x, v) dv, ρ g (t, x) := R 2 g(t, x, v) dv,
and u 0 satisfies (3.1.11). Let us observe that the interaction between the fluid and the distribution function is taken into account through the term j g -ρ g u.

DEFINITION 3.4.1. A time-dependent vector field u is a weak solution of (3.4.55) whenever

(3.4.56) u ∈ C 0 ([0, T ]; V σ ) ∩ L ∞ (0, T ; H) ∩ L 2 (0, T ; V σ ),
and for any ψ ∈ C 1 ([0, T ]; V σ ) and t ∈ (0, T ], one has

T 2 u(t)ψ(t) dx + t 0 T 2 (∇u : ∇ψ -u ⊗ u • ∇ψ -u∂ t ψ) ds dx = T 2 u 0 ψ(0) dx + t 0 T 2
(j g (s) -ρ g (s)u(s)) ψ(s) ds dx. (3.4.57) PROPOSITION 3.4.2. Let g ∈ S and let ≤ 0 be small enough and suppose that the initial data f 0 and u 0 satisfy (3.1.12) and (3.1.11). Then, there exists a unique weak solution of system (3.4.55) in the sense of Definition 3.4.1, Moreover, this solution satisfies, for any t ∈ [0, T ],

u g (t) 2 L 2 (T 2 ) + t 0 ∇u g (s) 2 L 2 (T 2 ) ds (3.4.58) ≤ 2e T M 2 + T (1 + j f 2 L ∞ (0,T ;L 2 (T 2 )) ) ,
where M > 0 is given by (3.1.11).

Let us show a property of j g that will be important in the proof of the result above.

LEMMA 3.4.3. For any g ∈ S with small enough, we have (3.4.59) sup

t∈[0,T ] j g (t) 2 L 2 (T 2 ) ≤ 2 1 + j f 2 L ∞ (0,T ;L 2 (T 2 )) .
Proof. We write, by the triangular inequality,

j g (t) 2 L 2 (T 2 ) 2 = T 2 R 2 vg(t, x, v) dv 2 dx = T 2 R 2 v g -f + f (t, x, v) dv 2 dx ≤ T 2 R 2 v(g -f ) dv + R 2 vf dv 2 dx ≤ 2 T 2 R 2 |v||g -f | dv 2 dx + 2 T 2 R 2
vf dv 2 dx. (3.4.60) Let us note that, from (3.3.29), we have

(3.4.61) j f 2 L ∞ (0,T ;L 2 (T 2 )) := sup t∈[0,T ] T 2 R 2 vf (t) dv 2 dx < ∞,
is a positive constant, independent from g.

We have to treat the first part of (3.4.60). Indeed,

T 2 R 2 |v||(g -f )(t, x, v)| dv 2 dx ≤ R 2 |v| dv (1 + |v|) γ+2 2 (1 + |v|) γ+2 f 0 2 L ∞ , ≤ I 2 c 2 1 2 , (3.4.62)
where we have used (3.1.12) and point (b) and Proof of Proposition 3.4.2. Firstly, we construct a solution, which proves the existence part. Secondly, we show that this solution must be unique.

I := R 2 |v| dv (1 + |v|) γ+2 < ∞.
1. Existence. Let us consider the following iterative scheme, for every n ∈ N,   

∂ t u n+1 + u n+1 • ∇ u n+1 -∆u n+1 + ∇p n+1 = j g -ρ g u n , (0, T ) × T 2 , div u n+1 = 0, t ∈ (0, T ), u n+1 | t=0 = u 0 , x ∈ T 2 .
We observe that, since g ∈ S ε , we have j g ∈ L 2 (0, T ; V σ ). In addition, since u 0 ∈ V σ by (3.1.11), Theorem C.1.2 yields

u 1 ∈ L ∞ (0, T ; H) ∩ L 2 (0, T ; V σ ).
Thus, by induction,

u n ∈ L ∞ (0, T ; H) ∩ L 2 (0, T ; V σ ), ∀n ∈ N.
Furthermore, according to Definition C.1.1, we deduce that for any ψ ∈ C 1 (R + ; V σ ), and any t ∈ (0, T ] and n ∈ N, 

T 2 u n+1 (t)ψ(t) dx + t 0 T 2 ∇u n+1 : ∇ψ -u n+1 ⊗ u n+1 • ∇ψ -u n+1 ∂ t ψ ds dx = T 2 u 0 ψ(0) dx + t 0 T 2 (j g (s) -ρ g (s)u n (s)) ψ(s) ds dx. ( 3 
   1, 1 Ic 1 , 1 c 3 √ T , M c 3 2T e T [M 2 + T (1 + j f 2 L ∞ t L 2 x )]    ,
where M > 0 is given by (3.1.11) and I is given by (3.4.62), one has

u n (t) 2 L 2 + t 0 ∇u n (s) 2 L 2 ds (3.4.66) ≤ 2e T M 2 + T (1 + j f 2 L ∞ t L 2 
x ) , ∀n ∈ N. To prove this claim, let us proceed by induction. Indeed, for n = 0, (3.4.64) yields, thanks to point (a), (3.1.11), (3.1.12) and Lemma 3.4.3,

u 1 (t) 2 L 2 + t 0 ∇u 1 (s) 2 L 2 ds ≤ e T u 0 2 L 2 + t 0 j g (s) 2 L 2 ds + T ρ g 2 L ∞ u 0 2 L 2 ≤ e T M 2 + 2T (1 + j f 2 L ∞ t L 2 x ) + T c 2 3 ≤ 2e T M 2 + T (1 + j f 2 L ∞ t L 2
x ) , using the choice (3.4.65).

Let now be any N ∈ N * and suppose that (3.4.66) holds for any n ∈ N up to N -1. Thus, in the same fashion as before, (3.4.64) yields

u N (t) 2 L 2 + t 0 ∇u N (s) 2 L 2 ds ≤ e T u 0 2 L 2 + t 0 j g (s) 2 L 2 ds + T ρ g 2 L ∞ u N -1 2 L ∞ t L 2 x ≤ e T M 2 + 2T (1 + j f 2 L ∞ t L 2 x ) + T c 2 3 2 u N -1 2 L ∞ t L 2 x ≤ 2e T M 2 + T (1 + j f 2 L ∞ t L 2 
x ) . This shows (3.4.66).

Consequently, (u n ) n∈N is uniformly bounded in L 2 (0, T ; V σ ), which implies that ∃u ∈ L 2 (0, T ; V σ ) such that u n u in L 2 (0, T ; V σ ), (3.4.67) (3.4.68) thanks to Banach-Alaoglu's theorem and Rellich's theorem. Thus, a compactness argument allows to pass to the limit in (3.4.63), which gives (3.4.57). This can be done in detail following [47, 

u n → u in L 2 (0, T ; H),
(u -v)(t) 2 L 2 + t 0 ∇(u -v)(s) 2 L 2 ds ≤ exp T + cE(t) 2 t 0 ρ g (u -v)(s) 2 L 2 ds,
for some constant c > 0 and

(3.4.69) E(t) := e T u 0 2

L 2 + e T min T 0 j g -ρ g u 2 L 2 ds, T 0 j g -ρ g v 2 L 2 ds .
We shall prove that E(t) can be bounded independently from u or v. Indeed, since v is a solution of (3.4.55), the estimate (C. 1.14) gives

v(t) 2 L 2 ≤ e T u 0 2 L 2 + t 0 j g (s) 2 L 2 ds + ρ g 2 L ∞ t 0 v(s) 2 L 2 ds .
Thus, (3.1.12), Lemma 3.4.3 and point (a) combined with Gronwall's lemma give (3.4.70) sup

t∈[0,T ] v(t) 2 L 2 ≤ C(T, γ, f ),
for some constant C > 0. This, using (3.4.58), yields (3.4.71) sup

t∈[0,T ] E(t) ≤ C,
for some constant C > 0. Then, we find, by point (a),

(u -v)(t) 2 L 2 + t 0 ∇(u -v)(s) 2 L 2 ds t 0 (u -v)(s) 2 L 2 ds,
for any t ∈ [0, T ], which, thanks to Gronwall's lemma allows to write

sup t∈[0,T ] (u -v)(t) L 2 ≤ 0.
Henceforth, u ≡ v.

We now provide further regularity properties of u g that will be important to define the characteristics associated to -v + u g , used in the sequel. PROPOSITION 3.4.4. Let ≤ 0 be small enough. Then, there exists a constant K 2 > 0, such that for any g ∈ S , the solution of (3.4.55) satisfies

(3.4.72) u g L 2 (0,T ;L ∞ (T 2 )) ≤ K 1 . Moreover, (3.4.73) u g ∈ L 2 (0, T ; C 1 (T 2 ; R 2 )) ∩ C 0 ([0, T ]; V σ ) ∩ L 2 (0, T ; H 2 (T 2 )).
Proof. We shall prove first (3.4.72), by using a regularity result for the Navier-Stokes system (Theorem C.3.1). Secondly, we prove (3.4.73) thanks to the regularising properties of the Stokes system (Theorem B.2.1).

1. Estimate L 2 t L ∞ x .
Let us consider, for any fixed g ∈ S , the solution of (3.4.55) given by Proposition 3.4.2, that we note u. We observe that Theorem C.3.1 is stated under the mean-free assumption, which requires to take care of the mean of u in our case. Let 

       ∂ t û + (û • ∇) û -∆û + ∇p = F hom (t, x), (t, x) ∈ (0, T ) × T 2 , div û = 0, (t, x) ∈ (0, T ) × T 2 , T 2 û(t, x) dx = 0, t ∈ (0, T ), û|t=0 = u 0 - T 2 u 0 dx, x ∈ T 2 , with (3.4.78) F hom (t, x) := j g - T 2 j f dx + ρ g u - T 2 ρ g u dx + (m u (t) • ∇) u.
Our goal is to apply Theorem C.3. 

≤ u 0 2 H 1 2 (T 2 ) < M 2 ,
according to (3.1.11).

In order to treat the source term, we write (3.4.79)

F hom := T 1 + T 2 + T 3 ,
with

T 1 := j g - T 2 j g dx, T 2 := ρ g u - T 2 ρ g u dx, T 3 := (m u (t) • ∇) u.
For the first term, Lemma 3.4.3 allows to write

T 1 2 L ∞ (0,T ;H -1 2 0 ) = sup t∈[0,T ] k∈Z 2 \{0} 1 |k| |j g,k (t)| 2 (3.4.80) ≤ sup t∈[0,T ] k∈Z 2 |j g,k (t)| 2 = j g 2 L ∞ (0,T ;L 2 ) < 2 1 + j f 2 L ∞ t L 2 x .
Analogously, using (3.1.12), point (a) and (3.4.58), we obtain

T 2 L ∞ (0,T ;H -1 2 0 ) = sup t∈[0,T ] k∈Z 2 \{0} 1 |k| | (ρ g u) k (t)| 2 (3.4.81) ≤ ρ g 2 L ∞ (Q T ) sup t∈[0,T ] k∈Z 2 |u k (t)| 2 ≤ c 2 1 2 u 2 L ∞ (0,T ;L 2 ) ≤ c 2 3 2 2e T M 2 + T (1 + j f 2 L ∞ t L 2 x ) .
Finally, we show that T 3 ∈ L 2 (0, T ; L 2 0 ) which, a fortiori, implies T 3 ∈ L 2 (0, T ; H -1 2 0 ). Indeed, for any t ∈ [0, T ],

m u (t) • ∇u 2 L 2 (T 2 ) = T 2 i,j=1,2 m i u (t)∂ i u j (t) 2 dx ≤ sup t∈[0,T ] |m i u (t)| 2 i,j=1,2 T 2 ∂ j u i (t) 2 dx.
On the other hand, by Jensen's inequality and (3.4.58), we get, for any t ∈ [0, T ],

|m u (t)| 2 ≤ T 2 |u(t, x)| 2 dx (3.4.82) = u(t) 2 L 2 (T 2 ) ≤ 2e T M 2 + T (1 + j f 2 L ∞ t L 2 x .
Thus, we obtain

T 0 m u (t) • ∇u 2 L 2 (T 2 ) dt (3.4.83) 2e T M 2 + T (1 + j f 2 L ∞ t L 2 x T 0 ∇u(t) 2 L 2 (T 2 ) dt 4e 2T M 2 + T (1 + j f 2 L ∞ t L 2 x ) 2 ,
thanks again to (3.4.58).

Hence, from (3.4.79), we deduce that F hom ∈ L 2 (0, T ; H 

F hom (s) 2 H -1 2 0 ds ≤ T T 1 + T 2 L ∞ (0,T ;H -1 2 ) + t 0 (m u (t) • ∇) u 2 L 2 (T 2 ) ≤ C(T, M, f ).
Consequently, injecting this in (3.4.85) and using (3.4.58), we find (3.4.86) û(t) 2

H 1 2 0 + t 0 ∇û(s) 2 H 1 2 0
ds ≤ e CT C(T, M, f ).

Finally, using the injection 

H 3 2 (T 2 ) → L ∞ (T 2 ), we deduce t 0 u(s) 2 L ∞ (T 2 ) ds ≤ C S t 0 u(s) 2 H 3 2 (T 2 ) ds t 0 k∈Z 2 1 + |k| 2 3 2 |u k (s)| 2 ds t 0 |m u (s)| 2 ds + t 0 k∈Z 2 \{0} |k| 3 |û k (s)| 2 ds T u L ∞ (0,T ;L 2 ) + T 0 ∇û(s) 2
   ∂ t u -∆u + ∇p = F source (t, x), (t, x) ∈ Ω T , div u(t, x) = 0, (t, x) ∈ Ω T , u| t=0 = u 0 , x ∈ T 2 , with (3.4.88) F source := j g -ρ g u -(u • ∇) u.
According to the previous discussion, j g -ρ g u ∈ L 2 (0, T ; L 2 (T 2 )). Consequently, we have to estimate the convection term u • ∇u. In order to to do so, we use the following argument.

Let r ∈ N with r ≥ 2. Then, by Hölder's inequality, and the Cauchy-Schwarz's inequality, we have

(u(t) • ∇) u(t) r L r (T 2 ) T 2 i,j=1,2 |u i (t)∂ i u j (t)| r dx T 2   i=1,2 |u i (t)| 2r   1 2   i,j=1,2 |∂ i u j (t)| 2r   1 2 dx (3.4.89)   T 2 i=1,2 |u i (t)| 2r dr   1 2   T 2 i,j=1,2 |∂ j u i (t)| 2r dx   1 2 u(t) r L 2r (T 2 ) ∇u(t) r L 2r (T 2 )
, for any t ∈ [0, T ]. Then, choosing r = 2 in the estimate above, the injection H 1 2 (T 2 ) → L 4 (T 2 ) (see [47, p.81]), allows to deduce

T 0 (u(t) • ∇) u(t) 2 L 2 (T 2 ) dt T 0 u(t) 2 H 1 2 (T 2 ) ∇u(t) 2 H 1 2 (T 2 ) dt sup t∈[0,T ] u(t) 2 H 1 2 (T 2 ) T 0 ∇u(t) 2 H 1 2 (T 2 )
dt < ∞, thanks to (3.4.86). Thus, F source ∈ L 2 (0, T ; L 2 (T 2 )). Consequently, as u 0 is regular enough by (3.1.11), Theorem B.2.1 with the choice s = q = 2, yields u ∈ L 2 (0, T ; H 2 (T 2 ) ∩ V σ ) and ∂ t u ∈ L 2 (0, T ; H). This allows to deduce ([29, Théorème II.5.13, p.96]) that (3.4.90) u ∈ C 0 ([0, T ]; V σ ).

Let us perform next a bootstrap argument. Let us choose r = 3 in (3.4.89), which allows to deduce

T 0 u • ∇u(t) 3 L 3 (T 2 ) dt T 0 u(t) 3 L 6 (T 2 ) ∇u(t) 3 L 6 (T 2 ) dt u 3 L ∞ t L 6 x T 0 ∇u(t) 3 L 6 (T 2 ) dt u 3 L ∞ t H 1 x u 3 L 2 t H 2 x ,
as H 1 (T 2 ) → L p (T 2 ) for any p ≥ 2 ([62, Th. 5.6.6, p. 270]). Thus, we deduce that u • ∇u ∈ L 2 (0, T ; L 3 (T 2 )). In addition, using points (c) and (a), we have

j g ∈ L 2 (0, T ; L p (T 2 )), ∀p ≥ 2, ρ g ∈ L ∞ (Ω T ),
which entails that j g -ρ g u ∈ L 2 (0, T ; L 3 (T 2 )), as u ∈ L 2 (0, T ; L 3 (T 2 )), thanks to (3.4.90). Then, applying Theorem B.2.1 to system (3.4.87) with s = 2, q = 3, as u 0 is regular enough, thanks to (3.1.11), we deduce that u ∈ L 2 (0, T ; W 2,3 (T 2 )) and ∂ t u ∈ L 2 (0, T ; L 3 (T 2 )).

Finally, the injection W 2,3 (T 2 ) → C 1 (T 2 ) ([62, Th. 5.6.6, p. 270]) gives (3.4.73).

3.4.3. Absorption. In order to describe the absorption procedure, we have to introduce some definitions (see [70, p. 369]). According to Definition 3.1.2, there exists δ 0 > 0 such that H 2δ0 ⊂ ω. Let us choose (3.4.91) δ := min δ 0 ,

1 2 , e T 200 -1, 1 4K 2 1 ,
where K 1 is given by (3.4.72). The choice of this parameter will be useful in Section 3.6. According to this choice of δ, we set

γ -:= (x, v) ∈ ∂H δ × R 2 ; v • n ext H ≤ -1 , γ 2-:= (x, v) ∈ ∂H δ × R 2 ; v • n ext H ≤ - 3 2 , γ 3-:= (x, v) ∈ ∂H δ × R 2 ; v • n ext H ≤ -2 , (3.4.92) γ + := (x, v) ∈ ∂H δ × R 2 ; v • n ext H ≥ 0 , where n ext
H is ±n H , taken in the outward direction with respect to ∂H 2δ . It can be shown that (3.4.93) dist [∂H δ × R 2 ] \ γ 2-; γ 3-> 0.

Consequently, we may choose an absorption function

A ∈ C ∞ ∩ W 1,∞ (∂H δ × R 2 ; R + ) such that 0 ≤ A(x, v) ≤ 1, ∀(x, v) ∈ ∂H δ × R 2 , (3.4.94) A(x, v) = 1, ∀(x, v) ∈ [∂H δ × R 2 ] \ γ 2-, A(x, v) = 0, ∀(x, v) ∈ γ 3-.
We also choose a truncation function Y ∈ C ∞ (R + ; R + ) satisfying

Y(t) = 0, ∀t ∈ 0, T 48 ∪ 47T 48 , T , Y(t) = 1, ∀t ∈ T 24 , 23T 24 . 
To give a sense to the procedure of absorption we need first the following result, which asserts that the number of times the characteristics associated to the Navier-Stokes velocity field of the previous part meet γ-is finite.

LEMMA 3.4.5. Let g ∈ S and let u g be given by (3.4.55) accordingly. Let (X g , V g ) be the characteristics associated to the field -v+u g . Then, for any (x, v) ∈ T 2 × R 2 , there exists n(x, v) ∈ N such that there exist 0 < t

1 < • • • < t n(x,v) < T such that {(X g , V g )(t, 0, x, v); t ∈ [0, T ]} ∩ γ -= {t i } n(x,v) i=1 , (3.4.95)
∃s > 0 s.t. (t i -s, t i + s) ∩ (t j -s, t j + s) = ∅, ∀i, j = 1, . . . , n(x, v), (3.4.96) with the convention that n(x, v) = 0 and {t i }

n(x,v) i=1 = ∅ if {(X g , V g )} ∩ γ -= ∅.
For more details on this result, see [70, p.348] and [72, p.5468]. In the friction case, this holds true without further modification.

The previous lemma allows to define the following quantities. Let f 0 ∈ C 1 (T 2 × R 2 ) and let (x, v) ∈ T 2 × R 2 . Then, for every t i , with i = 1, • • • , n(x, v), we have (x, ṽ) = (X g , V g )(t i , 0, x, v) ∈ γ -. Moreover, let

f (t -, x, ṽ) = lim t→t - i f 0 ((X g , V g )(0, t, x, v)), (3.4.97) f (t + , x, ṽ) = lim t→t + i f 0 ((X g , V g )(0, t, x, v)). (3.4.98)
We define f := Ṽ [g] to be the solution of (3.4.99)

   ∂ t f + v • ∇ x f + u g • ∇ v f -div v (vf ) = 0, (t, x, v) ∈ [0, T ] × [T 2 × R 2 ] \ γ 2-, f (0, x, v) = f 0 (x, v), (x, v) ∈ T 2 × R 2 , f (t + , x, v) = (1 -Y(t))f (t -, x, v) + Y(t)A(x, v)f (t -, x, v), (t, x, v) ∈ [0, T ] × γ -.
Let us explain how the absorption procedure works. From (3.4.73), the characteristics associated to the field -v + u g are regular. Thus, outside ω, the system above defines a function Ṽ [g] of class C 1 . Moreover, the exact value of Ṽ [g] is given by these characteristics through (3.2.27) and (3.2.25). When the characteristics (X g , V g ) meet γ -at time t, f (t + , •, •) is fixed according to the last equation in (3.4.99). We can see the function Y(t)A(x, v) as an opacity factor depending on time and on the incidence of the characteristics on ∂H δ . Indeed, f (t + , •, •) can take values varying from f (t -, •, •), in the case of no absorption, to 0, according to the angle of incidence, the modulus of the velocity and time. Let us first consider a linear extension operator

π : C 0 (T 2 \ H δ ) → C 0 (T 2 ),
such that for any σ ∈ (0, 1), a C 0,σ function is mapped onto a C 0,σ function. This allows to define another linear extension operator by

π : C 0 ([0, T ] × [T 2 \ H δ ] × R 2 ) → C 0 ([0, T ] × T 2 × R 2 ) f → πf (t, x, v) = π [f (t, •, v)] (x).
We modify π in the following way.

Let µ ∈ C ∞ (T 2 × R 2 ) such that T 2 R 2 µ dx dv = 1.
Then, set

π(f ) := π(f ) + T 2 R 2 (f 0 -π(f )) dx dv µ.
Thus, π is an affine extension satisfying the following properties: for every f ∈ C 0 ([0, T ] × (T 2 \ H δ ) × R 2 ), we have (3.4.72). This allows to conclude, choosing K 2 ≥ C(T )K 1 (T, γ).

T 2 R 2 πf (t, x, v) dx dv = T 2 R 2 f 0 (x, v) dx dv, ∀t ∈ [0, T ], ( 3 
e t |v| -|V g (0, t, x, v)| ≤ V g (0, t, x, v) -e t v = t 0 e t-s u g (s, X g (0, s, x, v)) ds ≤ C(T ) t 0 u g (s) L ∞ (T 2 ) ds ≤ C(T ) u g L 2 (0,T ;L ∞ (T 2 )) ≤ C(T )K 1 , using
By construction of V , we have

(1 + |v|) γ+2 V [f ] -f L ∞ (Q T ) = (1 + |v|) γ+2 Π Ṽ [g] |([0,T ]×(T 2 \H δ )×R 2 ∪[0, T 48 ]×T 2 ×R 2 ) L ∞ (Q T ) (3.4.107) ≤ C π (1 + |v|) γ+2 Ṽ [g] L ∞ (Q T )
,

where we have used (3.4.101). Moreover, by (3.4.99) and (3.4.94),

|f (t + , x, v)| ≤ |f (t -, x, v)|, which implies, through (3.2.27), | Ṽ [g](t, x, v)| ≤ e 2t f 0 ((X g , V g )(0, t, x, v)) .
On the other hand,

|f 0 ((X g , V g )(0, t, x, v))| = 1 + |V g (0, t, x, v)| 1 + |V g (0, t, x, v)| γ+2 |f 0 ((X g , V g )(0, t, x, v))| ≤ (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + |V g (0, t, x, v)|) γ+2 (3.4.108) = (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + [e t |v| -(e t |v| -|V g (0, t, x, v)|)]) γ+2 ≤ (1 + |e t |v| -|V g (0, t, x, v)||) γ+2 (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + e t |v|) γ+2 ≤ (1 + K 2 (T, γ)) γ+2 (1 + |v|) γ+2 f 0 L ∞ (Q T ) (1 + e t |v|) γ+2 ,
where we have used (3.4.106) and the inequality (see [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF]Eq. (3.33), p. 347].

(3.4.109)

1 1 + |x -x | ≤ 1 + |x | 1 + |x| , ∀x, x ∈ R 2 .
Furthermore, since

(1 + |v|) γ+2 | Ṽ [g](t, x, v)| ≤ (1 + e t |v|) γ+2 | Ṽ [g](t, x, v)|, for every (t, x, v) ∈ [0, T ] × T 2 × R 2 , we have (1 + |v|) γ+2 Ṽ [g] L ∞ (Q T ) (3.4.110) ≤ e 2T (1 + K 2 (T, γ)) γ+2 f 0 C 1 + (1 + |v|) γ+2 f 0 L ∞ .
This gives that V [g] satisfies point (b), thanks to (3.4.107) 

[g] ∈ C 1 (Q T \ Σ T ), with Σ T := [0, T ] × γ -. Moreover, there exists a constant K 4 = K 4 (γ, ω) > 0 such that Ṽ [g](t, x, v) -Ṽ [g](t , x , v ) (1 + |v|)|(t, x, v) -(t , x , v )| ≤ K 3 ( f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (Q T ) ), for any (t, x, v), (t , x , v ) ∈ [0, T ] × (T 2 \ ω) × R 2 with |v -v | < 1.
Furthermore, if f 0 satisfies (3.1.13), we also have

(1 + |v|) γ+1 ∇ x,v Ṽ [g] L ∞ ≤ K 4 (1 + |v|) γ+1 ∇ x,v f 0 L ∞ (Q T ) + (1 + |v|) γ+2 f 0 L ∞ , (3.4.112)
for some constant K 4 = K 4 (κ, g) > 0.

Let δ 2 be given by (3.4.54). Again, by construction of V and (3.4.102), we deduce (3.4.113)

V [g] -f C 0,δ 2 (Q T ) ≤ C π,δ2 Ṽ [g] C 0,δ 2 ([0,T ]×(T 2 \H δ )×R 2 ) .
Then, interpolating (3.4.110) and Lemma 3.4.8, we have

| Ṽ [g](t, x, v) -Ṽ [g](t , x , v )| |(t, x, v) -(t , x , v )| δ2 = | Ṽ [g](t, x, v) -Ṽ [g](t , x , v )| (1 + |v|)|(t, x, v) -(t , x , v )| γ+2 γ+3 × (1 + |v|) γ+2 | Ṽ [g](t, x, v) -Ṽ [g](t , x , v )| 1-γ+2 γ+3 ≤ K γ+2 γ+3 4 K 1-γ+2 γ+3 5 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (Q T ) , with K 5 = e 2T (1 + K 2 (T, γ)) γ+2 .
Whence, by (3.4.113), this gives that Ṽ [g] satisfies point (c), choosing

(3.4.114) c 2 ≥ C π,δ2 K 4 (γ, ω) γ+2 γ+3 K 5 (T, γ) 1-γ+2 γ+3 .
3.4.5.3. Proof of point (a). We show first the L ∞ estimate. Using the fact that ρ f = 0 and point (b), we find

R 2 V [g] -f dv L ∞ (Ω T ) = R 2 (V [g](t, x, v)) dv L ∞ (Ω T ) ≤ sup t,x∈Ω T R 2 |V [g](t, x, v)| dv ≤ K 6 ( f 0 C 1 + (1 + |v|) γ+2 f 0 L ∞ ),
with

K 6 := c 1 R 2 dv (1 + |v|) γ+2 .
To show the Hölder estimate, we interpolate (3.4.110) and (c). Indeed, if δ 1 is given by (3.4.54) and γ := 2 + γ 2 , we have

(1 + |v|) γ |V [g](t, x, v) -V [g](t , x , v)| |(t, x, v) -(t , x , v)| δ1 = (1 + |v|) γ+2 |V [g](t, x, v) -V [g](t , x , v)| 1 2 + 1 γ+2 × |V [g](t, x, v) -V [g](t , x , v)| |(t, x, v) -(t , x , v)| δ2 1 2 -1 γ+2 ≤ c 1 2 + 1 γ+2 1 c 1 2 -1 γ+2 2 f 0 C 1 (T 2 ×R 2 ) + (1 + |v|) γ+2 f 0 L ∞ (Q T ) .
Consequently, choosing (3.4.115)

c 3 := K 6 + c 1 2 + 1 γ+2 1 c 1 2 -1 γ+2 2
, and thanks to (3.1.12), we have that V [g] satisfies point (a).

Let us choose 0 sufficiently small. Then, the smallness assumption (3.1.12) and the properties of V and Π allow to conclude that if ≤ 0 , thanks to the Leray-Schauder theorem, there exists g ∈ S such that V [g] = g. This ends the proof of Proposition 3.4.6.

Stability for the Vlasov-Navier-Stokes system

The goal of this section id to prove the following stability estimate for the strong solutions of (3.1.1), that will be crucial in the proof of Theorem 3.1.3, both for the controllability as well as for uniqueness. PROPOSITION 3.5.1. Let (g, u g ) and (f, u f ) be two strong solutions of system (3.1.1), according to Definition 3.1.1, for initial data

u g | t=0 = u g 0 , g| t=0 = g 0 , u f | t=0 = u f 0 , f | t=0 = f 0 . Assume further that (3.5.116) sup (t,x)∈Ω T (|ρ g (t, x)| + |ρ f (t, x)|) < ∞.
Then, there exists a constant C > 0 such that for any t ∈ (0, T ],

(u g -u f )(t) 2 H 1 2 (T 2 ) + t 0 ∇(u g -u f )(s) 2 H 1 2 (T 2 ) ds (3.5.117) ≤ e C(t) u g 0 -u f 0 2 H 1 2 (T 2 ) + t 0 j g-f -ρ g-f u f 2 L 2 (T 2 ) ,
where

C(t) := t 0 1 + ρ f (s) L ∞ (T 2 ) + ρ f (s) 2 L ∞ (T 2 ) ds.
Proof. We observe that the difference w := u g -u f satisfies the system (3.5.118)

   ∂ t w -∆w + ∇π = -u g • ∇u g + u f • ∇u f + j g-f -ρ g u g + ρ f u f , in Ω T , div x w = 0, in Ω T , w| t=0 = u g 0 -u f 0 , in T 2 .
Thanks to (3.1.6), the difference u g -u f belongs at least to C 0 ([0, T ]; V σ ), which allows, up to a regularisation in time argument, to use it as a test function. Indeed, multiplying the equation in (3.5.118) by u g -u f and taking the H

1 2 scalar product, we find d dt (u g -u f )(t) 2 H 1 2 + ∇(u g -u f )(t) 2 H 3 2
(3.5.119)

≤ -u g • ∇u g + u f • ∇u f , u g -u f H 1 2 + j g-f -ρ g u g + ρ f u f , u g -u f H 1 2 .
We then have to estimate the two terms of the right-hand side. For the first one, according to (3.1.23), one has

-u g • ∇u g + u f • ∇u f , u g -u f H 1 2 (3.5.120) = n∈Z 2 (-u g • ∇u g + u f • ∇u f ) n (1 + |n| 2 ) 1 2 (u g -u f ) n = n∈Z 2 \{0} (-u g • ∇u g + u f • ∇u f ) n (1 + |n| 2 ) 1 2 (u g -u f ) n n∈Z 2 \{0} (-u g • ∇u g + u f • ∇u f ) n |n| (u g -u f ) n   n∈Z 2 \{0} (-u g • ∇u g + u f • ∇u f ) n 2   1 2   n∈Z 2 \{0} |n| 2 (u g -u f ) n 2   1 2 -u g • ∇u g + u f • ∇u f L 2 (T 2 )   n∈Z 2 \{0} |n| 2 (u g -u f ) n 2   1 2 
, thanks to the Cauchy-Schwarz's inequality.

With the second term in the expression above, we have, for every n ∈ Z2 \ {0}, and for any η > 0,

|n| 2 |(u g -u f ) n | 1 η |n||(u g -u f ) n | 2 + η|n| 3 |(u g -u f ) n | 2 1 √ η |n| 1 2 |(u g -u f ) n | + √ η|n|
This gives, thanks to Minkowski's inequality,

  n∈Z 2 \{0} |n| 2 |(u g -u f ) n | 2   1 2 (3.5.121) ≤   n∈Z 2 \{0} 1 √ η |n| 1 2 |(u g -u f ) n | + √ η|n| 3 2 |(u g -u f ) n | 2   1 2 1 √ η   n∈Z 2 \{0} |n||(u g -u f ) n | 2   1 2 + √ η   n∈Z 2 \{0} |n| 3 |(u g -u f ) n | 2   1 2 = 1 √ η u g -u f H 1 2 + √ η ∇(u g -u f ) H 1 2 .
On the other hand, in the same fashion as in (3.4.89) with r = 2, we can estimate the convection term as follows.

u g • ∇u g -u f • ∇u f 2 L 2 (T 2 ) = (u f -u g ) • ∇u + u g • ∇(u f -u g ) L 2 (T 2 ) ≤ (u f -u g ) • ∇u f L 2 + u g • ∇(u f -u g ) L 2 u f -u g L 4 ∇u f L 4 + u g L 4 ∇(u f -u g ) L 4 ∇u f L 4 + u g H 1 2 u f -u g H 1 2 + ∇(u f -u g ) H 1 2 u f -u g H 1 2 + ∇(u f -u g ) H 1 
2 , thanks to (3.4.86). Hence, combining this with (3.5.120) and (3.5.121), we obtain

-u g • ∇u g + u f • ∇u f , u g -u f H 1 2 (3.5.122) ≤ C(u f , T ) u f -u g H 1 2 + ∇(u f -u g ) H 1 2 × 1 √ η u f -u g H 1 2 + √ η ∇(u f -u g ) H 1 2 1 √ η u f -u g 2 H 1 2 + √ η ∇(u f -u g ) 2 H 1 2
.

Let us treat next the other term in the right-hand side of (3.5.119). We proceed as follows

(j g-f -ρ g u g + ρ f u f , u f -u g ) H 1 2 (3.5.123) ≤ j g-f -ρ g-f u g , u f -u g H 1 2 + ρ f (u g -u f ), u g -u f H 1 2 = n∈Z 2 (j g-f -ρ g-f u g ) n (1 + |n| 2 ) 1 2 (u -u) n + ρ f (u g -u f ), u g -u f H 1 2 ≤ n∈Z 2 \{0} (j g-f -ρ g u) n (1 + |n| 2 ) 1 2 (u -u) n + (j g-f -ρ g u) 0 (u -u) 0 + ρ f (u g -u f ), u g -u f H 1 2 n∈Z 2 \{0} (j f -g -ρ g u) n 2 + n∈Z 2 \{0} |n| 2 |(u -u) n | 2 + T 2 (j g-f -ρ g u) dx T 2 (u -u) dx + ρ f (u g -u f ), u g -u f H 1 2 = B 1 + B 2 + B 3 , with B 1 := n∈Z 2 \{0} (j f -g -ρ g u) n 2 + T 2 (j g-f -ρ g u) dx T 2 (u -u) dx , B 2 := n∈Z 2 \{0} |n| 2 |(u -u) n | 2 , B 3 := ρ f (u g -u f ), u g -u f H 1 2 .
For the first term, we write

B 1 j g-f -ρ g-f u g 2 L 2 (3.5.124) + 1 2 T 2 |j g-f -ρ g-f u g | 2 dx + 1 2 T 2 |u f -u g | 2 dx 3 2 j g-f -ρ g-f u g 2 L 2 + u g -u f 2 H 1 2
.

For the second term, using the Cauchy-Schwarz's inequality, one finds

B 2 = n∈Z 2 \{0} |n| 1 2 + 3 2 |(u f -u g ) n | 2 (3.5.125)   n∈Z 2 \{0} |n||(u f -u g ) n | 2   1 2   n∈Z 2 \{0} |n| 3 |(u f -u g ) n | 2   1 2 1 η n∈Z 2 \{0} |n||(u f -u g ) n | 2 + η n∈Z 2 \{0} |n| 3 |(u f -u g ) n | 2 1 η u f -u g 2 H 1 2 + η ∇(u f -u g ) 2 H 1 2
, for some η > 0 to be chosen later on. For the third term, we have, thanks to (3.5.116),

B 3 n∈Z 2 \{0} ρ f (u g -u f ) n (1 + |n| 2 ) 1 2 (u g -u f ) n (3.5.126) + T 2 ρ f (u g -u f ) dx T 2 (u g -u f ) dx 1 η n∈Z 2 \{0} ρ f (u g -u f ) n 2 + η n∈Z 2 \{0} |n| 2 |(u g -u f ) n | 2 + ρ f L ∞ (T 2 ) T 2 |u g -u f | dx 2 ρ f L ∞ (T 2 ) η + 1 ρ f L ∞ (T 2 ) u g -u f 2 L 2 (T 2 ) + η ∇(u g -u f ) 2 L 2 (T 2 ) ,
thanks to Jensen's inequality. Next, combining this with (3.5.124), (3.5.125) and (3.5.119), we obtain

d dt (u g -u f )(t) 2 H 1 2 + ∇(u g -u f )(t) 2 H 1 2 1 + ρ f L ∞ + 1 η (2 + ρ f L ∞ ) u g -u f 2 H 1 2 + η ∇(u g -u f ) 2 H 1 2 + j g-f -ρ g-f u g 2 L 2 .
Thus, choosing η > 0 small enough, and integrating in time, this yields

(u g -u f )(t) 2 H 1 2 + t 0 ∇(u g -u f )(s) 2 H 1 2 ds u g 0 -u f 0 2 H 1 2 + t 0 j g-f (s) -ρ g-f (s)u g (s) 2 L 2 ds + t 0 1 + ρ f L ∞ + 1 η (2 + ρ f (s) L ∞ ) (u g -u f )(s) 2 H 1 2
ds By Gronwall's inequality, we obtain (3.5.117).

3.6. Proof of Theorem 3.1.3. Controllability.

Let us denote by g the fixed point of the operator V , found in Section 3.4, for ≤ 0 . The purpose of the following result is to establish that, choosing ≤ 1 possibly smaller, the characteristics associated to -v + u g meet H δ at a sufficient speed. PROPOSITION 3.6.1. There exists 1 > 0 and M 1 > 0 such that for any ≤ 1 and M ≤ M 1 the characteristics associated to -v + u g , where u g is given by Proposition 3.4.2, namely (X g , V g ), satisfy the following property

(3.6.127) ∀(x, v) ∈ T 2 × R 2 , ∃t ∈ T 48 , 47T 48 s.t. (X g , V g )(t, 0, x, v) ∈ γ 3-,
where γ 3-is defined in (3.4.92).

Proof. In order to prove (3.6.127), we proceed in two steps.

Step 1. Stability argument. We shall show that the characteristics (X g , V g ) are uniformly close to (X, V ) whenever and M are chosen sufficiently small. Indeed, from (3.2.25), we have, for every

(t, x, v) ∈ Q T , X(t, 0, x, v) -X g (t, 0, x, v) (3.6.128) = t 0 s 0 e τ -s u(τ, X(τ, 0, x, v)) -u g (τ, X g (τ, 0, x, v)) dτ ds = J 1 + J 2 , with J 1 := t 0 s 0 e τ -s u(τ, X(τ, 0, x, v) -u(τ, X g (τ, 0, x, v) dτ ds, J 2 := t 0 s 0 e τ -s (u(τ, X g (τ, 0, x, v) -u g (τ, X g (τ, 0, x, v)) dτ ds.
For the first term above, using (3.3.30), we find (3.6.129)

|J 1 | ≤ C(T, u) t 0 X(τ, 0, x, v) -X g (τ, 0, x, v) dτ.
For the second term above, we have

(3.6.130) |J 2 | ≤ C(T ) u -u g L 2 t L ∞
x . Consequently, we have to obtain a precise estimate of the difference u g -u in L 2 t L ∞ x . In order to do this, we shall use Proposition 3.5.1 with the solutions u g and u. Let us observe that, thanks to point (a) and the fact that ρ f ≡ 0, hypothesis (3.5.116) is staisfied in this case. Thus, (3.5.117) yields

(u g -u)(t) 2 H 1 2 + t 0 ∇(u g -u)(s) 2 H 1 2 ds (3.6.131) u 0 2 H 1 2 + t 0 j g-f -ρ g u g 2
L 2 ds, thanks to (3.3.31). Firstly, we observe that, thanks to (3.4.62), 

j g-f 2 L 2 = T 2 R 2 v(g -f ) dv
ρ g (t) 2 L 2 (T 2 ) u(t) 2 L 2 (T 2 ) ≤ 2c 2 3 2 e T M 2 + T (1 + j f 2 L ∞ t L 2 x ) 2 .
Then, for any t ∈ (0, T ],

t 0 j g-f -ρ g u g 2 L 2 (T 2 ) ds ≤ 2 , Thus, (u -u)(t) 2 H 1 2 + 1 2 t 0 ∇(u -u)(s) 2 H 1 2 ds u 0 2 H 1 2 + 2 M 2 + 2 ,
thanks to (3.1.11). To conclude, using the injection

H 3 2 (T 2 ) → L ∞ (T 2 ), we deduce T 0 (u -u)(t) 2 L ∞ (T 2 ) dt T 0 (u -u)(t) 2 H 3 2 dt M 2 + 2 , which gives the L 2 t L ∞ x estimate.
We have, from (3.6.128), (3.6.129), (3.6.130) and the previous inequalities,

X(t, 0, x, v) -X(t, 0, x, v) ≤ |J 1 | + |J 2 | t 0 X(s, 0, x, v) -X(s, 0, x, v) ds + u -u L 2 x L ∞ x t 0 X(s, 0, x, v) -X(s, 0, x, v) ds + M 2 + 2 .
Whence, thanks to Gronwall's lemma, (3.6.132) sup

Q T |(X -X)(t, 0, x, v)| M 2 + 2 .
Using (3.2.25), we also deduce (3.6.133) sup

Q T |(V -V )(t, 0, x, v)| M 2 + 2 .
Step 2. Conclusion. Let us choose > 0 and M > 0 small enough so that sup

Q T (X -X g )(t, x, v) + sup Q T (V -V g )(t, x, v) < δ 2 ,
with the choice (3.4.91). Thus, combining (3.3.28) with (3.6.132) and (3.6.133), we obtain the following property.

For every (

x, v) ∈ T 2 × R 2 , there exists t (x,v) ∈ T 48 , 47T 48 such that X g (t (x,v) , 0, x, v) ∈ H δ 2 , (3.6.134) V g (t (x,v) , 0, x, v) • n H > 7 2 . (3.6.135)
We shall show that this entails (3.6.127).

Indeed, let us set s 0 := log(1 + δ). Let (x, v) ∈ T 2 ×R 2 and let t (x,v) be given by (3.6.134). Then, we have the following

X g (t (x,v) , 0, x, v) + (1 -e s0 )V g (t (x,v) , 0, x, v) • n H ≥ -|X g (t (x,v) , 0, x, v) • n H | + (e s0 -1)|V g (t (x,v) , 0, x, v) • n H | ≥ - δ 2 + 7 2 (e s0 -1)
> 2δ, using (3.6.134), (3.6.135) and the choice (3.4.91). Thus, thanks to the previous inequality and (3.2.25), and denoting X g (t) := X(t, 0, x, v) and V g (t) := V g (t, 0, x, v) for (x, v) fixed, we get

X g (t (x,v) ) + (1 -e s0 )V g (t (x,v) ) -X g (t (x,v) -s 0 ) • n H = X g (t (x,v) ) + (1 -e s0 )V g (t (x,v) ) -X g (t (x,v) -s 0 , t (x,v) , (X g , V g )(t (x,v) )) • n H = t (x,v) -s0 t (x,v) η t (x,v) e z-η u g (z, X g (z)) dz dη ≤ s 3 2 0 u g L 2 L ∞ x < δ,
thanks to Cauchy-Schwarz's inequality and (3.4.91). Let us observe that this entails that X g (t (x,v) -s 0 , 0, x, v) ∈ H δ . Combining this with (3.6.134) and thanks to the intermediate value theorem, we deduce that there exists σ (x,v) ∈ (t (x,v) -s 0 , t (x,v) ) such that (3.6.136)

X g (σ (x,v) , 0, x, v) ∈ ∂H δ .
Let us observe that, thanks to (3.4.91),

(3.6.137)

σ (x,v) ∈ T 48 , 47T 48 , ∀(x, v) ∈ T 2 × R 2 .
Finally, thanks to (3.2.25) and (3.6.135), we deduce

|V g (σ (x,v) , 0, x, v) • n H | = V g (σ (x,v) , t (x,v) , (X g , V g )(t (x,v) , 0, x, v)) • n H ≥ e t (x,v) -σ (x,v) |V g (t (x,v) , 0, x, v)| - √ s 0 u g L 2 t L ∞ x ≥ 3,
where we have used the Cauchy-Schwarz's inequality and (3.4.91). Thus, combining last inequality with (3.6.136) and (3.6.137), we find (3.6.127).

Proof of Theorem 3.1.3. Controllability part. Let us choose ≤ min { 0 , 1 }, where 0 is given by Proposition 3.4.6, and 1 is given by Proposition 3.6.1. Let us consider T ≥ T 0 , according to Proposition 3.3.1, and τ 1 , τ 2 > 0. Thus, define

T f = T + τ 1 + τ 2 .
We shall prove that (3.1.14) in a large enough time T f > 0, which will be don in three steps.

Step 1. From the initial configuration to a confinement in ω. By the choice of , we apply Proposition 3.4.6 in time T > 0 large enough, which provides a fixed point of V , that we denote g * and a strong solution (g * , u g * ) of (3.1.1) for some G ∈ C 0 ([0, T ] × T 2 × R 2 ). We observe that from the construction of V and (3.3.31), we have 

(3.6.138) V [g * ](T, x, v) := Π Ṽ [g * ] |([0,T ]×(T 2 \H δ )×R 2 )∪([0, T 48 ]×T 2 ×R 2 ) (T, x, v). In particular, it comes from the definition of Π that V [g * ](T, x, v) = Ṽ [g * ](T, x, v), ∀(x, v) ∈ (T 2 \ ω) × R 2 , (3.6.139) V [g * ](0, x, v) = f 0 (x, v), ∀(x, v) ∈ T 2 × R 2 . ( 3 
[g * ](T, x, v) = e 2T f 0 ((X g * , V g * )(0, T, x, v)).
Hence, since epsilon ≤ 1 , Proposition 3.6.1 applies, which implies, thanks to the absorption procedure described by (3.4.99) and (3.4.94) that Ṽ [g](T, x, v) = 0 in (T 2 \ ω) × R 2 . Thus, by (3.6.139), we get (3.6.141)

g * (T, x, v) = 0, ∀(x, v) ∈ (T 2 \ ω) × R 2 .
Step 2. From the confinement in ω to the zero distribution.

Let ζ ∈ C ∞ (R) such that 0 ≤ ζ ≤ 1 and ζ(t) = 1, ∀t ≤ 0, (3.6.142) ζ(t) = 0, ∀t ≥ 1. (3.6.143)
Then, let us define

f (t, x, v) := ζ t τ 1 g * (T, x, v), ∀(t, x, v) ∈ (0, τ 1 ) × T 2 × R 2 . Thus, f | t=0 = g * | t=T , and f | τ1 = 0,
We associate to f the velocity field u obtained by solving the associated system (3.4.55), which is possible thanks to Proposition 3.4.2, as f has the same regularity in (x, v) as g * at any time τ 1 . We observe that u (0) = u g * (T ) by construction.

Step 3. From the zero distribution to the stationary fluid According to Step 2, after a time τ 1 , the field evolves from u g * (T ) to u . Then, Theorem 3.3.2 allows to modify the field in order to reach zero in time τ 2 . Meanwhile, the distribution function can be modified accordingly, keeping the particles confined in ω. Let us apply Theorem 3.3.2 with

τ = τ 2 , M = T 2 , M 0 = ω, ŷ ≡ 0, y 0 = u (τ 1 ). This provides a control w ∈ C ∞ ([0, τ 2 ] × T 2 ) such that (3.6.144) supp w ⊂ (0, τ 2 ) × ω
and such that the solution of (3.6.145)

   ∂ t u + u • ∇u -∆u + ∇p = w , (t, x) ∈ (0, τ 2 ) × T 2 , div x u = 0, (t, x) ∈ (0, τ 2 ) × T 2 , u | t=0 = u (τ 1 ), x ∈ T 2 , satisfies (3.6.146) u | t=τ2 ≡ 0.
We thus define the associated distribution function as

f (t, x, v) := (Z 1 , Z 2 )(v) • w (t, x), ∀(t, x, v) ∈ (0, τ 2 ) × T 2 × R 2 ,
where Z 1 and Z 2 are given by (3.3.39) and (3.3.40). As a consequence of (3.6.144) and step 2,

f | t=0 = f | t=τ1 = 0, f | t=τ2 = 0.

Conclusion.

We put together these steps to construct a suitable solution. Let us define (3.6.147)

f (t) :=    g * (t), t ∈ [0, T ), f (t -T ), t ∈ [T, T + τ 1 ), f (t -T -τ 1 ), t ∈ [T + τ 1 , T + τ 1 + τ 2 ], and (3.6.148) u(t) :=    u g * (t), t ∈ [0, T ), u (t -T ), t ∈ [T, T + τ 1 ), u (t -T -τ 1 ), t ∈ [T + τ 1 , T + τ 1 + τ 2 ].
According to the previous arguments, (f, u) is a strong solution of (3.1.1) and satisfies (3.1.14). The goal of this section is to show that the strong solution of (3.1.1) obtained in Section 3.4 is unique within a certain class.

Indeed, let ≤ 0 and g

= V [g]. Then. if f 0 ∈ C 1 (T 2 × R 2
) satisfies (3.1.13), Lemma 3.4.8 gives (3.4.112). By the construction of f and Ṽ , and since Π preserves regularity, we deduce that Let w := u 1 -u 2 , g := f 1 -f 2 . We shall use Proposition 3.5.1 on the difference w. Observe that, thanks to point (a) and (3.7.150), we have sup

g ∈ C 1 (Q T ), (3.7.149) ∃κ > 0, (|g| + |∇ x,v g|) (t, x, v) ≤ κ (1 + |v|) γ+1 , ∀(t, x, v) ∈ Q T . ( 3 
(t,x)∈Ω T |ρ f 1 | + |ρ f 2 | < ∞.
Thus, (3.5.117) yields in this case

w L 2 t H 3 2 x j g L ∞ t L 2 x + ρ g L ∞ t L 2 x u 2 L 2 t L ∞ x .
Moreover, the Sobolev embedding theorem gives,

.151) w L 2 t L ∞ x j g L ∞ t L 2 x + ρ g L ∞ t L 2 x u 2 L 2 t L ∞ x . (3.7 
On the other hand, we observe that condition (3.7.150) gives

(1 + |v|)|∇ x,v f 2 (t, (X 1 , V 1 )(0, t, x, v))| ≤ κ (1 + |v|) (1 + |V 1 (0, t, x, v)|) γ+1 ≤ C(κ , γ) (1 + |v|) γ ,
proceeding in the same fashion as in (3.4.108). As a result, (3.7.152) sup

(t,x)∈Ω T R 2 (1 + |v|) ∇ v f 2 (t, (X 1 , V 1 )(0, t, x, v) dv ≤ C(κ , γ),
for some constant C(κ , γ) > 0.

Next, we observe that the difference of the distribution functions, g, satisfies the following Vlasov equation

∂ t g + v • ∇ x g + div v [(u 1 -v)g] = -w • ∇ v f 2 , ∀(t, x, v) ∈ Q T .
Consequently, by the method of characteristics, we have 

|g(t, x, v)| ≤ e 2T t 0 w(s, X 1 (0, s, x, v)) • ∇ v f 2 (s, (X 1 , V 1 )(0, s, x, v) ds t 0 w(s, •) L ∞ x ∇ v f 2 (s, (X 1 , V 1 )(0, s, x, v) ds. Thus, (1 + |v|)|g(t, x, v)| ≤ t 0 w(s, •) L ∞ x (1 + |v|) ∇ v f 2 (s, (X 1 , V
(t, x)|) t 0 w(s, •) L ∞ x ds t 0 ( j g (s) L 2 x + ρ g (s) L 2 x ) ds t 0 sup x∈T 2 (|j g (s)| + |ρ g (s)|) ds, ∀t ∈ [0, T ],
which, by Gronwall's lemma entails, since ρ g (0) = j g (0) = 0, that

ρ g (t, x) = 0, j g (t, x) = 0, ∀(t, x) ∈ Ω T .
Moreover, we deduce from this that the difference w(t) = (u 1 -u 2 )(t) satisfies, for every t ∈ [0, T ],

∂ t w -∆ x w(t) + ∇ x π(t) = -(u 1 • ∇)u 1 + (u 2 • ∇)u 2 + ρ f 1 (t)w(t), Ω T , div x w(t) = 0, Ω T ,
which, according to Theorem C.2.1 must imply that u 1 = u 2 in Ω T . In particular, the characteristics associated to -v + u 1 and to -v + u 2 coincide. Then,

f 1 = f 2 in Q T .

Perspectives and comments

We have proved in Theorem 3.1.3 a null-controllability result for the Vlasov-Navier-Stokes system in dimension 2. Let us make some comments about the possible limitations of this result.

First of all, we observe that a natural limitation concerning dimension comes from the difficulties presented by the three-dimensional Navier-Stokes system. In particular, since the uniqueness of weak solutions for this system is still unknown, there is no hope, a priori, to obtain better results when considering the coupling with a Vlasov equation.

On the other hand, the Navier-Stokes in dimension 2 allows the use of fine stability estimates and a certain regularising effect, which permits the definition of classical characteristics associated with the velocity field. This is essential to describe the absorption procedure of Section 3.4.

Let us emphasise that the controllability result of Theorem 3.1.3 allows to control at the same time the distribution function of particles and the motion of the fluid in which they are immersed. This can be done thanks to the return method, by exploiting in a crucial manner the two coupling terms of the system: the friction term in the Vlasov equation and the drag force term present in the Navier-Stokes system. Furthermore, we can achieve the control of all the components with a scalar control acting only on the Vlasov equation. This kind of feature is already well understood in the case of the Navier-Stokes system [START_REF] Coron | Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component[END_REF][START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF], where the controlled component is arbitrary. In the VNS case, our methods work only if the controlled component is the distribution function.

The result of Theorem 3.1.3 can be seen as a kinetical limit case of the result obtained for a fluid-structure system in [START_REF] Boulakia | Local null controllability of a two-dimensional fluid-structure interaction problem[END_REF] (see [START_REF] Boulakia | Local null controllability of a fluid-solid interaction problem in dimension 3[END_REF] for a three-dimensional result). Indeed, whereas the fluid-structure problems aims at controlling the trajectory of a macroscopic body immersed in a fluid, the kinetic approach allows to treat the dynamics of a cloud of microscopic particles in a fluid, replacing the individual effects of particles by a mesoscopic description.

CHAPTER 4

Flatness for a strongly degenerate 1-D parabolic equation

Keywordspartial differential equations; degenerate parabolic equation; boundary control; null-controllability; motion planning; flatness. 

       ∂ t f (t, x) -∂ x (x α ∂ x ) f (t, x) = 0, (t, x) ∈ (0, T ) × (0, 1), (x α ∂ x ) f (t, x)| x=0 = 0, t ∈ (0, T ), f (t, 1) = u(t), t ∈ (0, T ), f (0, x) = f 0 (x), x ∈ (0, 1),
where the state is the solution f (t, x) and the control is the function u(t). The parameter α ∈ [1, 2) is fixed through the whole article. The aim of this work is to construct explicit controls u for the null-controllability of system (4.1.1) in finite time T > 0, using the flatness method.

4.1.1. Main result. We will make use of the Gevrey class of functions.

DEFINITION 4.1.1. Let s ∈ R + and t 1 , t 2 ∈ R with t 1 < t 2 . A function h ∈ C ∞ ([t 1 , t 2 ]) is said to be Gevrey of order s if ∃M, R > 0 such that sup t1≤r≤t2 h (n) (r) ≤ M (n!) s R n , ∀n ∈ N.
We then write h ∈ G s ([t 1 , t 2 ]).

Before stating the main result, we have to recall the notion of weak solutions of the inhomogeneous system (4.1.1). DEFINITION 4.1.2 (Weak solutions). Let f 0 ∈ L 2 (0, 1), T > 0 and u ∈ H 1 (0, T ). A weak solution of system (4.1.1) is a function f ∈ C 0 ([0, T ]; L 2 (0, 1)) such that for every t ∈ [0, T ] and for every

(4.1.2) ψ ∈ C 1 ([0, t ]; L 2 (0, 1)) ∩ C 0 ([0, t ]; H 2 (0, 1)) such that (4.1.3) (x α ∂ x ) ψ(t, x)| x=0 = ψ(t, 1) = 0, ∀t ∈ [0, t ], one has t 0 1 0 f (t, x) (∂ t ψ + ∂ x (x α ∂ x ψ)) (t, x) dt dx 1.
Le contenu de ce chapitre fait l'objet d'une publication à paraître dans Mathematics of Control, Signals and Systems (cf. [START_REF] Moyano | Flatness for a strongly degenerate 1-D parabolic equation[END_REF]).

FLATNESS

= 1 0 f (t , x)ψ(t , x) dx - 1 0 f 0 (x)ψ(0, x) dx + t 0 u(t)∂ x ψ(t, 1) dt.
As we show in Section 4.2 (see Corollary 4.2.2), system (4.1.1) has a unique weak solution under suitable assumptions. Our main result is the following. THEOREM 4.1.3. Let f 0 ∈ L 2 (0, 1), T > 0, τ ∈ (0, T ) and s ∈ (1, 2). Then, there exists a flat output y ∈ G s ([τ, T ]) such that the control

(4.1.4) u(t) = 0, if t ∈ [0, τ ], ∞ k=0 
y (k) (t) (2-α) 2k k! k j=1 (j+ α-1 2-α ) , if t ∈ (τ, T ],
steers to zero at time T the weak solution of system (4.1.1). Furthermore, the control u belongs to G s ([0, T ]). 

      ∂ t f (t, x) -∂ x (x α ∂ x ) f (t, x) = 1 ω (x)v(t, x), (t, x) ∈ (0, T ) × (0, 1), (x α ∂ x ) f (t, x)| x=0 = 0, t ∈ (0, T ), f (t, 1) = 0, t ∈ (0, T ), f (0, x) = f 0 (x),
x ∈ (0, 1),

where ω ⊂ (0, 1), has been studied by P. Cannarsa, P. Martinez and J. Vancostenoble in [START_REF] Cannarsa | Carleman estimates for a class of degenerated parabolic operators[END_REF]. Their strategy relies on appropriate Carleman estimates. To deal with the degeneracy at {x = 0}, they use an adequate functional framework that we recall in Section 4.2, and Hardy-type inequalities.

The null-controllability of system (4.1.1) is a consequence of the internal nullcontrollability and the extension principle, since the control is located on {x = 1}, away from the degeneracy. The interest of the present article is to provide explicit controls.

In the case of a control located on {x = 0}, an approximate controllability result for α ∈ [0, 1) has been proven by P. Cannarsa, J. Tort and M. Yamamoto in [START_REF] Cannarsa | Unique continuation and approximate controllability for a degenerate parabolic equation[END_REF] using Carleman estimates. The exact controllability was later proven by M. Gueye in [START_REF] Gueye | Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations[END_REF] again in the weakly degenerate case α ∈ [0, 1) by using the transmutation method.

Other related one-dimensional problems have been treated: see [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF][START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Alabau-Boussourira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF], see [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF] for a non-divergence setting, see [START_REF] Vancostenoble | Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems[END_REF] for a system with a singular potential. A multi-dimensional case has been studied in [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF].

4.1.2.2. The flatness method. The main interest of the flatness method is to provide explicit controls. It has been developed for finite-dimensional systems (see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]) and then generalised to some infinite-dimensional systems; see [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF] for the heat equation on a cylindrical domain with boundary control, [START_REF] Martin | Null controllability of one-dimensional parabolic systems using flatness[END_REF] for one-dimensional parabolic equations with varying coefficients and [START_REF] Martin | Controllability of the 1D Schrodinger equation by the flatness method[END_REF] for the onedimensional Schrödinger equation. However, the strongly degenerate case α ∈ [1, 2) considered in Theorem 4.1.3 does not belong to the class concerned in [START_REF] Martin | Null controllability of one-dimensional parabolic systems using flatness[END_REF]. Our goal is to adapt the flatness method to this case. 4.1.3. Open questions and perspectives. The flatness method may also be successful on similar equations, for instance in non-divergence form as in [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF]. For the time being, this is an open problem.

4.1.4. Structure of the article. In Section 4.2 we recall a well-posedness result and the functional framework. In Section 4.3 we derive, thanks to an heuristic method, an explicit solution of system (4.1.1) consisting on a formal series development. We prove its convergence, provided that the corresponding flat output is in a Gevrey class. In Section 4.4 we discuss the spectral analysis of the associated stationary problem. In Section 4.5 we study the regularising effect of system (4.1.1) when u = 0. In Section 4.6 we construct an appropriate flat output steering the solution of (4.1.1) to zero, which concludes the proof of Theorem 4.1.3. 4.1.5. Notation. Since all the functions appearing in the article are realvalued, we omit any explicit mention by writing, for instance, L 2 (0, 1) instead of

L 2 ((0, 1); R). If h ∈ C k ([t 1 , t 2 ]
), for some t 1 , t 2 ∈ R with t 1 < t 2 and k ∈ N * , we will denote by h (t) and h (t) its first and second derivatives and by h (n) (t), for every n ∈ N, 2 < n ≤ k, the n-th derivative.

If h 1 , h 2 : R → R are two real-valued functions and µ ∈ R, we will write h 1 ∼ h 2 as x → µ to denote that lim t→µ h1(t) h2(t) = 1. We will denote by •, • the inner product in L 2 (0, 1).

Well-posedness

We consider, for T > 0 and f 0 ∈ L 2 (0, 1), the following system (4.2.5)

       ∂ t f (t, x) -∂ x (x α ∂ x ) f (t, x) = h(t, x), (t, x) ∈ (0, T ) × (0, 1), (x α ∂ x ) f (t, x)| x=0 = 0, t ∈ (0, T ), f (t, 1) = 0, t ∈ (0, T ), f (0, x) = f 0 (x),
x ∈ (0, 1).

We recall below a well-posedness result for system (4.2.5) proven originally in [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF]. The strategy of the proof consists in a semigroup approach and the introduction of adequate weighted Sobolev spaces, that we recall below. We refer to [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Campiti | Degenerate self-adjoint evolution equations on the unit interval[END_REF] for further details.

We introduce the weighted Sobolev space H 1 α (0, 1) := f ∈ L 2 (0, 1); f is loc. absolutely continuous on (0, 1], x α 2 f ∈ L 2 (0, 1) and f (1) = 0 , endowed with the norm

f 2 H 1 α (0,1) := f 2 L 2 (0,1) + x α 2 f 2 L 2 (0,1) , ∀f ∈ H 1 α (0, 1
). We remark that H 1 α (0, 1) is a Hilbert space with the scalar product 

(4.2.6) f, g H 1 α := 1 0 f (x)g(x) dx + 1 0 x α f (x)g (x) dx, ∀f, g ∈ H 1 α (0, 1
= f ∈ H 1 α (0, 1); x α f ∈ H 1 (0, 1) , Af := -(x α f ) .
Then, A : D(A) → L 2 (0, 1) is a closed self-adjoint positive operator with dense domain. As a consequence, A is the infinitesimal generator of a strongly continuous semigroup, and for any f 0 ∈ L 2 (0, 1), and h ∈ L 2 ((0, T ) × (0, 1)) there exists a unique weak solution of system (4.2.5), i.e., a function f ∈ C 0 ([0, T ]; L 2 (0, 1)) ∩ L 2 (0, T ; H 1 α (0, 1)) such that

f (t) = S(t)f 0 + t 0 S(t -s)h(s) ds, in L 2 (0, 1), ∀t ∈ [0, T ].
As a consequence, using classical arguments (see for instance [50, Section 2.5.3]), we deduce the following result. COROLLARY 4.2.2. Let T > 0, f 0 ∈ L 2 (0, 1) and u ∈ H 1 (0, T ). Then, system (4.1.1) has a unique weak solution (see Definition 4.1.2).

Proof. Let f 0 ∈ L 2 (0, 1), u ∈ H 1 (0, T ) and

θ(x) := x 2 , x ∈ [0, 1]. We consider the system        (∂ t -∂ x (x α ∂ x )) g(t, x) = H(t, x), (t, x) ∈ (0, T ) × (0, 1), (x α ∂ x ) g(t, x)| x=0 = 0, t ∈ (0, T ), g(t, 1) = 0, t ∈ (0, T ), g(0, x) = f 0 (x) -u(0)θ(x), x ∈ (0, 1), with H(t, x) := -u (t)θ(x) -u(t)Aθ(x), ∀(t, x) ∈ (0, T ) × (0, 1).
Since H ∈ L 2 ((0, T ) × (0, 1)), by Proposition 4.2.1 there exists a unique weak solution g ∈ C 0 ([0, T ]; L 2 (0, 1)) ∩ L 2 (0, T ; H 1 α (0, 1)) of this problem. We set f (t, x) := g(t, x) + u(t)θ(x).

Then, using the integral formulation associated to g, one shows that f is a weak solution of system (4.1.1) in the sense of Definition 4.1.2.

The uniqueness follows since, if f 1 and f 2 are weak solutions of (4.1.1), then f 1 -f 2 is the unique weak solution of system (4.2.5) with h ≡ 0, and then by Proposition 4.2.1, f 1 -f 2 = 0. 

f (t, x) = ∞ k=0 c 2k (t) x 1-α 2 2k , ∀(t, x) ∈ (0, T ) × (0, 1).
where (c 2k (t)) k∈N is a sequence of real numbers. We formally have

∂ x (x α ∂ x f ) (t, x) = ∞ k=0 c 2(k+1) (t)(2 -α) 2 (k + 1) k + 1 + α -1 2 -α x 1-α 2 2k , ∂ t f (t, x) = ∞ k=0 c 2k (t) x 1-α 2 2k .
If f solves (4.1.1), then the following recurrence relation holds

c 2(k+1) (t) = c 2k (t) (2 -α) 2 (k + 1) k + 1 + α-1 2-α , ∀k ∈ N.
Choosing a flat output c 0 (t) := y(t) and iterating, we readily have

c 2k (t) = y (k) (t) (2 -α) 2k k! k j=1 j + α-1 2-α , ∀t ∈ (0, T ), ∀k ∈ N.
This gives a formal solution of (4.1.1),

(4.3.8) f (t, x) = ∞ k=0 y (k) (t) x 1-α 2 2k (2 -α) 2k k! k j=1 j + α-1 2-α
, and a control given by u(t) = f (t, 1), which is

(4.3.9) u(t) = ∞ k=0 y (k) (t) (2 -α) 2k k! k j=1 j + α-1 2-α . 4.3.2.
Pointwise solutions. The goal of this section is to introduce a notion of pointwise solution of system (4.1.1) to give a sense to the heuristics made in the previous section.

We define of system (4.3.10) in (t 1 , t 2 ) × (0, 1) with u given by (4.3.9) and initial datum

C 2 α (0, 1) := f ∈ C 0 ([0, 1]) ∩ C 2 ((0, 1)) such that x α f (x) ∈ C 0 ([0, 1)) . DEFINITION 4.3.1 (Pointwise solution). Let t 1 , t 2 ∈ R with t 1 < t 2 . Let f t1 ∈ C 0 (0, 1) and u ∈ C 0 ([t 1 , t 2 ]). A pointwise solution of system (4.3.10)        ∂ t f (t, x) -∂ x (x α ∂ x f ) (t, x) = 0, (t, x) ∈ (t 1 , t 2 ) × (0, 1), x α ∂ x f (t, x)| x=0 = 0, t ∈ (t 1 , t 2 ), f (t, 1) = u(t), t ∈ (t 1 , t 2 ), f (t 1 , x) = f t1 (x), x ∈ (0, 1), is a function f ∈ C 0 ([t 1 , t 2 ] × [0, 1]) ∩ C 1 ((t 1 , t 2 ) × (0, 1)) such that (1) f (t, •) ∈ C 2 α (0, 1), ∀t ∈ (t 1 , t 2 ), (2) ∂ t f -∂ x (x α ∂ x f ) = 0 pointwisely in (t 1 , t 2 ) × (0, 1), (3) lim x→0 + x α ∂ x f (t, x) = 0, ∀t ∈ (t 1 , t 2 ), (4) f (t, 1) = u(t), ∀t ∈ (t 1 , t 2 ), (5) f (t 1 , x) = f t1 (x), ∀x ∈ (0, 1
f t1 (x) := ∞ k=1 y (k) (t 1 ) x 1-α 2 2k (2 -α) 2k k! k j=1 j + α-1 2-α , ∀x ∈ [0, 1]. Proof. Let M, R > 0 be such that |y (n) (t)| ≤ M n! s R n , for any n ∈ N, t ∈ [t 1 , t 2 ].
Step 1: We prove that u is well defined and belongs to C

∞ ([t 1 , t 2 ]). For any t ∈ [t 1 , t 2 ], k ∈ N * , we have, as α-1 2-α ≥ 0, |y (k) (t)| (2 -α) 2k k! k j=1 j + α-1 2-α ≤ M k! s R k (2 -α) 2k k! 2 = M R k (2 -α) 2k k! 2-s .
Hence, the series in (4.3.9) converges uniformly w.r.t. t ∈ [t 1 , t 2 ] and u ∈ C 0 ([t 1 , t 2 ]). Furthermore, for any n ∈ N * , the function ξ n,k (t) :=

y (k+n) (t) (2-α) 2k k! k j=1 (j+ α-1 2-α ) satisfies |ξ n,k (t)| ≤ M (k + n)! s R n+k (2 -α) 2k k! 2 , ∀t ∈ [t 1 , t 2 ], k, n ∈ N. Thus, k ξ n,k (t) converges uniformly w.r.t t ∈ [t 1 , t 2 ]. Whence, u ∈ C ∞ ([t 1 , t 2 ]) and for every n ∈ N, t ∈ [t 1 , t 2 ], u (n) (t) = ∞ k=0 ξ n,k (t).
Step 2: We prove that u is Gevrey of order s.

Let n ∈ N. We deduce from last inequality that

u (n) (t) ≤ ∞ k=0 M (k + n)! s R n+k (2 -α) 2k k! 2 ≤ M ∞ k=0 1 (k!) 2-s 2 s R(2 -α) 2 k 2 s R n n! s , (4.3.11)
where we have used (D.0.21). The D'Alembert criterium for entire series shows that, whenever s ∈ (0, 2), the series above converges, which shows that u ∈ G s ([t 1 , t 2 ]).

Step 3: We show that the function f given by (4.3.8) is well defined and

f ∈ C 0 ([t 1 , t 2 ] × [0, 1]) ∩ C 1 ((t 1 , t 2 ) × (0, 1)). Let, for every k ∈ N, f k (t, x) := y (k) (t) x 1-α 2 2k (2 -α) 2k k! k j=1 j + α-1 2-α , ∀(t, x) ∈ [t 1 , t 2 ] × [0, 1]. Then, |f k (t, x)| ≤ M k! 2-s 1 R(2 -α) k , ∀(t, x) ∈ [t 1 , t 2 ] × [0, 1]. This proves that k f k converges uniformly w.r.t. (t, x) ∈ [t 1 , t 2 ] × [0, 1]. Thus, f ∈ C 0 ([t 1 , t 2 ] × [0, 1]). We observe that ∃k 0 = k 0 (α) ∈ N * such that (2 -α) k 0 ≥ 1. Then, for every k ≥ k 0 , f k (t, •) ∈ C 1 ([0, 1]) and |∂ x f k (t, x)| = y (k) (t)2k 1 -α 2 x -α 2 x 1-α 2 2k-1 (2 -α) 2k k! k j=1 j + α-1 2-α ≤ 2M 1 - α 2 k k! 2-s 1 R(2 -α) 2 k , ∀x ∈ [0, 1], since 1 -α 2 (2k -1) -α 2 ≥ 0. This proves that k≥k0 ∂ x f k converges uniformly w.r.t. (t, x) ∈ [t 1 , t 2 ] × [0, 1]. Thus, f (t, •) ∈ C 1 ((0, 1]) for every t ∈ [t 1 , t 2 ]
. Note that f may not be differentiable w.r.t. x at x = 0 because of the finite number of terms

k0 k=0 ∂ x f k . Moreover, ∂ x f (t, x) = ∞ k=0 ∂ x f k (t, x) for every (t, x) ∈ (t 1 , t 2 ) × (0, 1). A similar argument shows that, for every x ∈ (0, 1), f (•, x) ∈ C 1 (t 1 , t 2 ) and (4.3.12) ∂ t f (t, x) = ∞ k=0 ∂ t f k (t, x), ∀(t, x) ∈ (t 1 , t 2 ) × (0, 1).
Finally, since the partial derivatives of f exist and are continuous in (t 1 , t 2 ) × (0, 1), f ∈ C 1 ((t 1 , t 2 ) × (0, 1)).

Step

4: We show that f (t, •) ∈ C 2 α (0, 1), for every t ∈ (t 1 , t 2 ). Let k 1 = k 1 (α) ∈ N * such that k 1 (2 -α) ≥ 2.
Working as in Step 3, we see that k≥k1 ∂ 2

x f k converges uniformly w.r.t. (t, x) ∈ (t 1 , t 2 ) × (0, 1). Thus, f (t, •) ∈ C 2 (0, 1), ∀t ∈ (t 1 , t 2 ). Furthermore, (4.3.13)

∂ x (x α ∂ x f ) (t, x) = ∞ k=1 y (k) (t) x 1-α 2 2(k-1) (2 -α) 2(k-1) (k -1)! k-1 j=1 j + α-1 2-α .
for every (t, x) ∈ (t 1 , t 2 ) × (0, 1). From Step 3, we obtain

|x α ∂ x f (t, x)| = ∞ k=1 y (k) (t)2k 1 -α 2 x 2k(1-α 2 )+α-1 (2 -α) 2k k! k j=1 j + α-1 2-α ≤ 2M 1 - α 2 ∞ k=1 k k! 2-s 1 R(2 -α) 2 k x,
for all (t, x) ∈ (t 1 , t 2 ) × (0, 1), which implies, since α ∈ [1, 2), that

x α ∂ x f (t, x) → 0, as x → 0 + . Therefore, f (t, •) ∈ C 2
α , for every t ∈ (t 1 , t 2 ).

Step 5: According to (4.3.12) and (4.3.13), an straightforward computation shows that the equation in (4.3.10) is satisfied.

Spectral Analysis

The goal of this section is to give the explicit expression of the eigenfunctions and eigenvalues of the spectral problem (4.4.14) Aϕ(x) = λϕ(x), x ∈ (0, 1), (x α ϕ ) | x=0 = ϕ(1) = 0, where A is given by (4.2.7). We will make use of several results about Bessel functions recalled in Appendix E. From now on, we use the notation Step 1: We prove that ϕ k ∈ D(A), for every k ∈ N * and that Aϕ k -λ k ϕ k = 0. Let k ∈ N * . We observe that ϕ k ∈ C ∞ ((0, 1]) ∩ C 0 ([0, 1]), for any k ∈ N * and x ∈ (0, 1). We have (4.4.19) 

φ k (x) = 1 -α 2 x -1+α 2 J ν (j ν,k x 1-α 2 ) + j ν,k 1 - α 2 x 1 2 -α J ν (j ν,k x 1-α 2 ).
Whence, using (E. 1.25) and Lemma E.4.2, we deduce

x α 2 φ k = (1 -α) O x→0 + x α 2 -1 + O x→0 + x 1-α 2 .
It follows that x α 2 ϕ n ∈ L 2 (0, 1). Thus ϕ k ∈ H 1 α (0, 1). Moreover, from (4.4.19), a direct computation shows

(x α φ k ) = - 1 -α 2 2 x α-3 2 J ν (j ν,k x 1-α 2 ) + 1 - α 2 2 j ν,k x -1 2 J ν (j ν,k x 1-α 2 ) + 1 - α 2 2 j 2 ν,k x
1-α 2 J ν (j ν,k x 1-α 2 ). (4.4.20) Then, evaluating equation (E.1.24) at z = j ν,k x 1-α 2 and multiplying by x α-3 2 , it follows

j 2 ν,k x 1-α 2 J ν (j ν,k x 1-α 2 ) = -j ν,k x -1 2 J ν (j ν,k x 1-α 2 ) -j 2 ν,k x 1-α 2 J ν (j ν,k x 1-α 2 ) + α -1 2 -α 2 x α-3 2 J ν (j ν,k x 1-α 2 ).
Substituting in (4.4.20), this gives

-(x α φ k ) = 1 - α 2 2 j 2 ν,k x 1-α 2 J ν (j ν,k x 1-α 2 ) = λ k φk .
Then, we readily have (x α φ k ) ∈ H 1 α (0, 1) ⊂ L 2 (0, 1). Thus, ϕ k ∈ D(A). Moreover, Aϕ k = λ k ϕ k .

Step 2: We check the boundary condition of (4.4.14) at x = 0.

We observe first that the case α = 1 is straightforward. From (4.4.19), (E. 1.25) and Lemma E.4.2, we have

|x α φ n (x)| = O x→0 + x α-1 .
Then, it follows that lim x→0 + x α φ n (x) = 0. This shows, combined with Step 1, that ϕ k satisfies (4.4.14).

Step 3: We prove that (ϕ k ) k∈N * is an orthonormal family in L 2 (0, 1).

Let n, m ∈ N * . Then, changing variables and using (E.3.32), we get Step 1: We show that 

∞ k=1 h α n (j ν,k ) = h α n (j ν,K α n ) + h α n (j ν,K α n +1 ) + k∈N * -{K α n ,K α n +1} h α n (j ν,k )
On one hand, we have Henceforth, the D'Alembert criterium for entire series gives (4.5.24).

h α n (j ν,K α n ) + h α n (j ν,K α n +1 ) ≤ 2h α n (N α n ) ≤ 2e -(n+
Step 2: We find Y ∈ G 1 ([σ, T ]) such that (4.5.22) holds.

Thanks to Fubini's theorem, (4. As a consequence of (4.6.32), we have y(t) = Y (t), ∀t ∈ (0, τ ], y(T ) = 0. (4.6.35) Whence, f (t, x) = f (t, x), for every (t, x) ∈ (0, τ )×(0, 1). Thus, as f ∈ C 0 ([0, T ]; L 2 (0, 1)), we deduce f ∈ C 0 ([0, T ]; L 2 (0, 1)), (4.6.36) f (0) = f 0 in L 2 (0, 1). (4.6.37)

We have to check that f is the weak solution of system (4.1.1) on (0, T ). To do so, and according to Definition 4.1.2, let t ∈ (0, T ) and let ψ satisfying (4.1.2) and (4.1.3). Then, by (4.6.34) and since a pointwise solution is a weak solution (see Remark 4.3.2), we have, for every σ > 0, Thanks to the change of variables described above, we find that the controllability of system (5.1.6) implies the controllability of system (5.1.3), according to Definition 5.1.2, via the application u → R. Indeed, this can be proved thanks to the following result (see [20, Proposition 1] for a proof).

PROPOSITION 5. 1.3 ([20]). Let T > 0, u ∈ L ∞ (0, T ; R) extended by zero in (-∞, 0) ∪ (T, ∞) and such that T 0 u(s) ds = 0. The unique maximal solution of the Cauchy problem g (τ ) = 4e -2 g(τ ) 0 u(s) ds , g(0) = 0, is defined for every τ ≥ 0, strictly increasing and satisfies according to (5.1.12). In this setting, we consider the associated wave packets (5.1.17) ψ τ := e -iλ1τ 1 -θ 2 -θ 3 ϕ 1 + e -iλ2τ θ 2 ϕ 2 + e -iλ3τ θ 3 ϕ 3 , τ ≥ 0.

Thus, ψ 0 = ϕ and let ψ t = e -it∆ ϕ , for t ≥ 0. With this notation, the main result of this section is as follows. such that Γ(ϕ , ψ T ) = 0 and for any (ψ 0 , ψ f ) ∈ V 0 × V T , the solution of (5.1.6) with ψ |t=0 = ψ 0 and control u = Γ(ψ 0 , ψ f ) satisfies ψ |t=T = ψ f . 5.1.4. Previous work. The evolution of a quantum particle in a time-dependent domain has been studied from a physical point of view in [START_REF] Band | Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time varying box[END_REF], in connection with adiabatic phenomena. This system, among other quantum dynamics in a variable domain, has been also treated in [START_REF] Munier | Schrödinger equation with timedependent boundary conditions[END_REF] and [START_REF] Knobloch | Problems on time-varying domains: formulation, dynamics, and challenges[END_REF].

From a mathematical point of view, the question of controllability via deformations of the domain was considered in [START_REF] Rouchon | Control of a quantum particle in a moving potential well[END_REF]. This problem has been solved in the one-dimensional case -by K. Beauchard in [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF] for the free evolution, -by K. Beauchard, H. Lange and H. Teismann in [START_REF] Beauchard | Local exact controllability of a Bose-Einstein condensate in a 1D time-varying box[END_REF] for a Bose-Einstein condensate. In both cases, the problem of controllability via domain transformations can be handled thanks to a suitable change of variables, which reduces the problem into a bilinear control system under constraints. Then, the techniques developed by K. Beauchard and C. Laurent in [START_REF] Beauchard | Local controllability of linear and nonlinear Schrödinger equations with bilinear control[END_REF] allow to prove local exact controllability results thanks to the Inverse Mapping Theorem and a certain smoothing effect. This approach simplifies the original proofs in [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF], which use the Nash-Moser theorem. 5.1.5. Strategy and outline. In this work, we shall follow this strategy to prove a local exact controllability result, exploiting the connection with bilinear control problems under constraints for the control. More precisely, the strategy of the proof of Theorem 5.1.4, according to the linear test, has three main ingredients:

-we prove first that the linearised system around (ψ t , u ≡ 0) is controllable, Let us define next (5.2.33) h := f -g.

Since ∆ f ∈ L 2 (0, T ; H 1 (D)), and using (5.2.32), we have h ∈ L 2 (0, T ; H 2 ∩ H 1 0 (D)), (5.2.34) ∆ r h ∈ L 2 (0, T ; H 1 (D)). ( 5 (5.2.30). This implies in particular that, as all data are radial and ∆ 2 is invariant by rotations, we deduce ξ ∈ C 0 ([0, T ]; H 3 (0),rad (D)).

Step 2: We derive an appropriate energy estimate for system (5.2.30). We claim that (5.2.38) ξ C 0 ([0,T ];H 3 (0),rad ) ≤ C(T ) ψ 0 H 3 (0),rad + f L 2 (0,T ;H 3 ∩H 1 (0),rad ) , for some constant C(T ) > 0 which is bounded on bounded intervals (0, T ).

Indeed, according to (5.2.28), we have ξ C 0 ([0,T ];H 3 (0),rad )

≤ C ψ 0 H 3 (0),rad + g L 1 (0,T ;H 3 (0),rad ) + ∆h |∂D L 2 (0,T ) . We treat the two last terms separately. For the first one, we observe, using (5.2.31), elliptic regularity (see [START_REF] Lions | Problèmes aux limites non homogènes[END_REF]Th. 5.1,p. 166]) and the Cauchy-Schwarz inequality, it follows g L 1 (0,T ;H 3 0,rad )

≤ C 1 ∆ 2 f L 1 (0,T,H -1 ) ≤ C 2 f L 1 (0,T ;H 3 ∩H 1 0,rad ) ≤ C 3 √ T f
L 2 (0,T ;H 3 ∩H 1 0,rad ) . For the other term, using (5.2.31), (5.2.36) and the continuity of the trace map (see [START_REF] Lions | Problèmes aux limites non homogènes[END_REF]Th.8.3,p.44]), ≤ C 5 f L 2 (0,T ;H 3 ∩H 1 (0),rad (D) ). Putting these estimates together, we obtain (5.2.38).

Step 3: We show that F is a contraction in C 0 ([0, T ]; H 3 (0),rad (D)). where Ψ is the solution of the linearised system around (0, ϕ ), i.e.,

(5.3.45)

   i∂ t Ψ = -∆ r Ψ + v(t)r 2 ψ t , (t, r) ∈ (0, T ) × (0, 1), Ψ(t, 1) = 0, t ∈ (0, T ), Ψ(0, r) = Ψ 0 , r ∈ (0, 1), and (ψ t ) t∈(0,T ) is given by (5.1.17).

The proof of this result can be carried out as in [16, Proposition 3, p.531], with minor modifications, thanks to Proposition 5.2.1. We omit the details. 5.4. Controllability of the linearised system around (ϕ , u ≡ 0) PROPOSITION 5.4.1. Let T > 0. There exists a continuous linear map L : X 0 × X T → Ḣ1 0 (0, T ; R) (Ψ 0 , Ψ f ) → v, such that for any Ψ 0 ∈ X 0 and Ψ f ∈ X T , the solution of system (5.3.45) with initial condition Ψ 0 and control v = L(Ψ 0 , Ψ f ) satisfies Ψ |t=T = Ψ f . The proof of this result relies on the following lemma. In particular, we observe that given Ψ f ∈ X T , the equality Ψ t=T = Ψ f with a control v ∈ Ḣ1 0 (0, T ; R) is equivalent to the following trigonometric moment problem (5.4.48) + θ 2 e -iλ2T Ψ f , ϕ 2 + θ 3 e -iλ3T Ψ f , ϕ 3 .

                             T 0 v(s) ds = 0,
Note that the choice of C ∈ C is possible, since Ψ f ∈ T ψ τ S. We observe that the trigonometric moment problem (5.4.48) can be solved by using Proposition F.0.2. In order to justify this, we claim that there exist C r 3 J 0 (j 0,1 r)J 0 (j 0,k ) dr = 4j 0,1 j 0,k (j 0,k -j 0,1 ) 2 (j 0,k + j 0,1 ) 2 , and thus, j 3 0,k |a k | = 4j 0,1 j 4 0,k (j 0,k -j 0,1 ) 2 (j 0,k + j 0,1 ) 2 , ≥ 4j 0,1 (j 0,k -j 0,1 ) 2 (j 0,k -j 0,1 ) 2 j 2 0,k (j 0,k + j 0,k ) 2 ≥ j 0,1 .

The majoration follows by the same arguments. Then, (5.4.50) is proved for (a k ) k∈N * . Let us observe that the other two cases can be done in the same way.

Next, let us consider the sequence

d k :=                        0, if k = 0, 1 a2 √ 1-θ2-θ3 i Ψ f , ϕ 2 e iλ2T - √ θ 3 c 2 C , if k = 1, 1 a3 √ 1-θ2-θ3 i Ψ f , ϕ 3 e iλ3T - √ θ 2 b 3 C , if k = 2, C, if k = 3, i √ θ3 c k Ψ f , ϕ k e iλ k T , if k ∈ 4 + 3N, i √ θ2 b k Ψ f , ϕ k e iλ k T , if k ∈ 5 + 3N, i √ 1-θ2-θ3 a k Ψ f , ϕ k e iλ k T , if k ∈ 6 + 3N,
for C given by (5.4.49). We observe that the assumption Ψ f ∈ H 3 (0),rad (D, C), combined with (5. we find a control v ∈ Ḣ1 0 (0, T ; R) solving (5.4.48). Moreover, the application (0, Ψ f ) → v thus defined is continuous, thanks to Proposition F.0.2. REMARK 5.4.3. At this point, we can justify further the choice of the family of states ϕ given by (5.1.16). Indeed, choosing, for instance, (θ 2 , θ 3 ) = (0, 0) ∈ D, we get ϕ = ϕ 1 . However, in this case, the corresponding linearised system around (0, ϕ 1 ) is not controllable with controls in Ḣ1 0 (0, T ; R), because of the constraint W 1 ν-1,k (r) := rJ ν-1 (j ν,k r), ∀r ∈ (0, 1). According to (E.1.24), we have, for every r ∈ (0, 1),

d 2 dr 2 W 1 ν-1,k (r) - 1 r d dr W 1 ν-1,k (r) + j 2 ν,k + 1 -(ν -1) 2 r 2 W 1 ν-1,k (r) = 0.
Then, 1 0 r 2 J ν-1 (j ν,k r)J ν (j ν,l r) dr = J ν-1 (j ν,k )J ν (j ν,l ).

Any advance in a more general setting would be utterly interesting. The consideration of more general domains and data may lead, very likely, to the use of more general controls, probably space-dependent. Consequently, the tools from bilinear control, very useful in the one-dimensional case and in the present work, will be no longer convenient, in profit of other approaches. PROPOSITION B. 1.2 ([4]). Let r ∈ (1, ∞) and m ∈ N. For each f ∈ W m,r (T 2 ) satisfying T 2 f (x) dx = 0, the Stokes system (B.2.9) has a unique solution u ∈ W m+2,r (T 2 ), p ∈ W m+1,r (T 2 ). Moreover, (B. 1.8) u W m+2,p (T 2 ) 2 + p W m+1,p (T 2 ) ≤ C 1 f W m,p (T 2 ) 2 , for a constant C 1 > 0.

B.2. Non stationary Stokes system

Let us recall a well-posedness result for the non-stationary Stokes system, i.e., (B.2.9)

   ∂ t u -∆ x u + ∇ x p = f, (t, x) ∈ (0, T ) × T 2 , div x u = 0, (t, x) ∈ (0, T ) × T 2 , u| t=0 = u 0 ,

x ∈ T 2 , due to Y. Giga and H. Sohr (see [START_REF] Giga | Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF]Theorem 2.8,p.82]). This result gives a very general framework for the L s t L q x well-posedness, under suitable assumptions on the data. Particularly, in the case of initial data, we are lead to the following spaces (see [69, p.77]). Let

D α,s (A) := u ∈ L q (T 2 ); u L q + ∞ 0 t 1-α Ae -tA u L q dt t 1 s < ∞ ,
where α ∈ (0, 1), s ∈ [1, ∞), and A is the Stokes operator A = P(-∆), P being the Leray projector. In this context, the result is as follows.

THEOREM B.2.1 ( [START_REF] Giga | Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF]). Let 1 < s < ∞ and 1 < q < ∞. For any f ∈ L s (0, T ; L q (T 2 )) and u 0 ∈ D(A) 1-1 s ,s q , there exists a unique solution of system (B.2.9), satisfying u ∈ L s (0, T ; W 2,q (T 2 )) and ∂ t u ∈ L s (0, T ; L q (T 2 )). Moreover, there exists a constant C 0 > 0 such that (B.2.10)

T 0 ∂ t u(t) s L q dt + T 0 D 2 u s L q dt ≤ C T 0 f s L q dt + u 0 D(A) 1-1 s ,s
.

CHAPTER C

Review of the Navier-Stokes system on the 2-dimensional torus

We have used in Chapter 3 some classical results on the Navier-Stokes, that we gather here for reference. For Notation see 3.1.2.7. 

C.1. Existence results

Let us consider

C.2. A stability result

In the 2-dimensional case, we also have some stability estimates (see [47, Theorem 3.2, p.56]). 

E.4. Asymptotic behaviour

We recall the asymptotic behaviour of J ν for large arguments and near zero. .

The following asymptotic result is important in the proof of Proposition 4.5.1 in Chapter 4. We give the proof for the sake of completeness. 

E.5. A non resonance result

The properties of the zeros allow to prove the following non-resonance result, used in Chapter 5.

PROPOSITION E.5.1. Let λ n := j 2 0,n for any n ∈ N * . Then, for any n, m ∈ N * and p, q ∈ {1, 2, 3}, we have (E. 5.35) λ n -λ p = λ m -λ q , ∀n = m, p = q.

Proof. Let us assume that n, m ≥ 4, property (E.5.35) being obvious otherwise.

Working by contradiction, let us suppose that there exist m, n ≥ 4 and p, q ≤ 3 such that (E. 5.36) λ n -λ p = λ m -λ q .

Moreover, we may assume, without loss of generality, that (E.5.37) n > m > p > q.

We shall distinguish two cases.

Case 1: Let us suppose that p = q + 1.

Then, thanks to (E.2.31), we have λ n -λ m = (j 0,n -j 0,m ) (j 0,n + j 0,m ) = n-1 k=m (j 0,k+1 -j 0,k ) (j 0,n + j 0,m ) > (n -m) (j 0,p -j 0,q ) (j 0,n + j 0,m ) .

Thus, combining this with (E.5.36), we get λ p -λ q > (n -m) (j 0,p -j 0,q ) (j 0,n + j 0,m ) .

This implies j 0,p + j 0,q > j 0,n + j 0.m , which is incompatible with (E.5.37), which shows (E.5.35) in this case.

Case 2: Let us suppose that p = q + 2. Firstly, let us assume that n = m + 1. Then, by claim (E.5.36) and using (E.2.31) twice, this yields j 0,m+1 + j 0,m < (j 0,p -j 0,q )(j 0,p + j 0,q ) j 0,m+1 -j 0,m < (j 0,p -j 0,q )(j 0,p + j 0,q ) j 0,p -j 0,q+1 < 1 + j 0,q+1 -j 0,q j 0,p -j 0,q+1 (j 0,p + j 0,q ) < 2 (j 0,p + j 0,q ) . But this is impossible, since j 0,4 + j 0,3 > 2(j 0,3 + j 0,1 ), as can be seen from the exact values of these zeros.

Moreover, we observe that, for a sufficiently large n 0 ∈ N, the frequencies (ω n ) n≥n0 can be gathered in successive three-element packets of the form (F.0.43) j 2 0,n0+n -j 2 0,3 < j 2 0,n0+n -j 2 0,2 < j 2 0,n0+n -j 2 0,1 . Consequently, the gap between the elements of each packet must be (F.0.44) γ = min j 2 0,3 -j 2 0,2 , j 2 0,2 -j 2 0,1 > 0. In addition, the gap between the elements of successive packets must be j 2 0,n0+n+1 -j 2 0,n0+n + j 2 0,1 -j 2 0,3 , which tends to ∞ as n → ∞, thanks to (E.2.29) and (E.2.30). In addition, the non-resonance property (E.5.35) ensures that ω k = ω n , for any n = k. This allows to deduce that (F.0.41) holds.

Finally, let us remark that, again by (E.2.29) and (E.2.30), we must have D + = 0. Thus, Beurling's theorem allows to conclude.

Step 2: We prove that the family F := t, e iωnt ; n ∈ Z is minimal in L 2 (0, T ) for any T > 0.

Working by contradiction, let us assume that F is not minimal in L 2 (0, T ), for some T > 0. Then, the previous step implies that t ∈ Adh L 2 (0,T ) (spanF) .

Then, by successive integrations, one checks that

t j ∈ Adh C 0 [0,T ] span F , ∀j ∈ N, j ≥ 2.
But the Stone-Weierstrass theorem guarantees that the family 1, t j ; j ∈ N, j ≥ 2 is dense in C 0 [0, T ]. Thus, we deduce that (F.0.45) span F is dense in L 2 (0, T ).

On the other hand, let us choose some ω ∈ R \ {ω n } n∈Z . The previous step, combined with Ingham's theorem (see [START_REF] Beauchard | Local controllability of linear and nonlinear Schrödinger equations with bilinear control[END_REF]Theorem 6, Appendix B]), entails that e iωt ∪ F is minimal in L 2 (0, T ). But then, we must have e iωt ∈ Adh L 2 (0,T ) span F , which is a contradiction with (F.0.45).

Step 3: Resolution of (F.0.40). Thus, w solves (F.0.40) and is also real-valued, since u and ξ are so. Moreover, proceeding exactly as in [16, Corollary 2, Appendix B], one shows that the map M is continuous.

  Hilbert et B ∈ L (U, D(A * ) ), où D(A * ) est l'espace dual de D(A * ) pour l'espace pivot H 1 . En accord avec (I.1.1), le système étudié a la forme (I.2.2)dy dt = Ay + Bu, t ∈ (0, T ), y| t=0 = y 0 ∈ H.Nous supposons aussi que l'espace de contrôles a la forme U = L 2 (0, T ; U ), pour un certain espace de Hilbert U , et que la propriété suivante, (I.2.3) ∀T > 0, ∃C T > 0 tel queT 0 B * S(t) * z 2 U dt ≤ C T z 2 H ,∀z ∈ D(A * ), est vérifiée. Dans ce cadre, on peut définir une notion de solution faible pour le système (I.2.2). D ÉFINITION I.2.1 (Solution faible). Soit T > 0, y 0 ∈ H et u ∈ L 2 (0, T ; U ). Une solution faible du système (I.2.2) est une fonction y ∈ C 0 ([0, T ]; H) telle que (I.2.4) (y(t), z) H -(y 0 , S(t) * z) H = t 0 (u(s), B * S(t -s) * z) U ds, pour tout t ∈ [0, T ] et tout z ∈ H.

2 . 5 )

 25 , c'est-à-dire, Θ * T : H -→ L 2 (0, T ; U ). On peut trouver une expression explicite de Θ * T grâce au calcul suivant. Soit ζ ∈ D(A * ) ⊂ H. En utilisant (I.2.4), on obtient(Θ T u, ζ) H = (y| t=T , ζ) H = T 0 (u(s), B * S(t -s) * ζ) H ds = (u(•), B * S(T -•) * ζ) L 2 (0,T ;U ) . On en déduit que (I.2.6) Θ * T : H → L 2 (0, T ; U ) ζ → B * S(T -•) * ζ, puisque D(A * ) est dense dans H et B * ∈ L (D(A * ), U).

2 .

 2 En effet, la définition I.2.2 entraîne trivialement la surjectivité de Θ T . On détaille la réciproque. Soient y 0 , y f ∈ H et supposons que Θ T est surjective. Alors, il existe u ∈ L 2 (0, T ; U ) tel que Θ T (u) = y f -S(T )y 0 . Cela veut dire que la solution faible du système dz dt = Az + Bu, z| t=0 = 0, satisfait z| t=T = y f -S(T )y 0 . Définissons y ∈ C 0 ([0, T ]; H) par y(t) := S(t)y 0 + z(t), ∀t ∈ [0, T ]. Par conséquent, y ainsi défini satisfait (I.2.2) au sens faible et y| t=T = y f .

L 1 : 2 H ≤ C 2 obs T 0 BI. 2 . 1 . 2 . 2 H ≤ C 2 obs T 0 B

 1220212220 y → S(T )y, L 2 = Θ T , ce qui fournit l'équivalence (I.2.7) S(T )H ⊂ ImΘ T ⇔ ∃C > 0, S(T ) * z H ≤ C Θ * T z L 2 (0,T ;U ) , ∀z ∈ D(A * ). Introduisons le système adjoint de (I.2.2), c'est à dire, (I.2.8)dz dt = A * z, t ∈ (0, T ), z| t=0 = z 0 ∈ H, qui a comme solution z(t) = S(t) * z 0 , pour tout t ∈ [0, T ] et z 0 ∈ H.Par conséquent, grâce à (I.2.6), l'inégalité (I.2.7) est équivalente à la propiété suivante : il existe C obs > 0 telle que pour tout z 0 ∈ H la solution de (I.2.8) satisfait (I.2.9) z| t=T * z(t) 2 U dt. L'inégalité (I.2.9) est l'inégalité d'observabilité evoquée précédement. Cet argument permet donc de conclure que (I.2.2) est contrôlable à zéro si et seulement si (I.2.9) est vérifiée. La méthode HUM pour la contrôlabilité exacte. Dans ce cas, on utilise le Lemme I.2.4 avecX 1 = H, X 2 = H, X 3 = L 2 (0, T ; U ), L 1 = Id H , L 2 = Θ T , ce qui entraîne que (I.2.10) H ⊂ ImΘ T ⇔ ∃C > 0, z H ≤ C Θ * T z L 2 (0,T ;U ) , ∀z ∈ D(A *). Afin de mieux comprendre cette inégalité, introduisons le problème adjoint rétrograde de (I.2.2), (I.2.11)dz dt = -A * z, t ∈ (0, T ), z| t=T = z T ∈ H.Alors, z(t) = S(T -s) * z T et donc, grâce à (I.2.6), la contrôlabilité exacte de (I.2.2) est équivalente à la propriété suivante : il existe une constante C obs > 0 telle que pour tout z T ∈ H, la solution de (I.2.11) satisfait z| t=0 * z(t)2 U dt.

  avec la notation (II.1.22), qui est une version simplifiée de (II.1.23), alors que (II.1.21) devient (II.1.25)

  3.35), on voudrait localiser l'information dans ω de manière à pouvoir estimer complètement la norme L 2 (Ω) à partir de la norme L 2 (ω). Au premier abord, on observe que, la famille (e k ) k∈N n'étant pas orthogonale dans L 2 (ω), une relation comme (II.3.37) ne sera pas vérifiée sur ω.En revanche, il est possible de mesurer quantitativement la perte d'orthogonalité des (e k ) k∈N sur ω, au prix de considérer uniquement les basses fréquences λ k ≤ µ. C'est là le contenu des inégalités spectrales.TH ÉOR ÈME II.3.3. Soit ω ⊂ Ω un ouvert quelconque. Il existe une constante C = C(Ω, ω) > 0, dépendant uniquement de Ω et ω, telle que pour tout f ∈ L 2 (Ω) et tout µ > 0, on a (II.3.38) 

Etape 3 :

 3 Conclusion. Fixons T > 0. Les Propositions II.4.3 et II.4.4 permettent de construire un champ de vitesses u tel que

Etape 2 :

 2 on construit une solution de (II.4.64) proche de (f , u) grâce à un schéma de point fixe, telle que (f, u)| t=0 = (f 0 , u 0 ) et (II.4.72) f | t=T1 = 0, en dehors de ω.Etape 3 : on modifie la solution construite grâce à un résultat de contrôle pour le système de Navier-Stokes, ce qui permet de passer de (u| t=T1 , f | t=T1 ) à (0, 0) en temps T 2 -T 1 . Dans le cas du système (II.4.64), on ne pourra pas utiliser le système rétrograde ni un argument de réversibilité, à cause de la nature parabolique du système de Navier-Stokes. Les cibles raisonnables sont donc (0, 0) ou les trajectoires libres du système, comme pour le système de Navier-Stokes. Construction de la solution de référence. Le point clé pour la construction d'une solution de référence est l'utilisation d'un résultat de contrôle pour le système de Navier-Stokes, dû à J.-M. Coron et A. Fursikov ([49]) (voir Théoréme 3.2, Chapitre 3). Ce résultat garantit qu'étant donnés un temps τ > 0, un état initial u in et une solution régulière du système de Navier-Stokes u N S , il est possible de trouver un contrôle w à support dans (0, τ ) × ω, tel que la solution du système   

  3.15) sur [σ, T ], f , telle que f | t=T = 0, grâce à (III.2.14). En plus, un argument d'unicité pour les solutions faibles permet de passer à la limite en σ → 0 + , ce qui entraîne f | t=0 = f 0 . Ceci conduit au Théorème III.3.1.

  1.1. Introduction 1.1.1. Main Results. For d ≥ 1 and Ω ⊆ R 2d an open subset, we consider the Kolmogorov equation,

  with both ω x and ω v open subsets of R d satisfying the following property. DEFINITION 1.1.1. We say that an open set O of R d is an observability open set on the whole space if there exist δ > 0 and r > 0 such that ∀y ∈ R d , ∃y ∈ O such that B R d (y , r) ⊂ O and |y -y | ≤ δ. (1.1.3) Here, B R d (y , r) denotes the open Euclidean ball of radius r centered at y . This property states that the open set O is sufficiently spread out throughout the whole space R d .

PROPOSITION 1 . 1 . 4 .

 114 Let c, d ∈ R be such that 0 < d -c ≤ 2π. There exists C > 0 such that, for every N ∈ N and (b n ) |n|≤N ∈ C 2N +1 , the following inequality holds (1.1.8) n=N n=-N |b n | 2 ≤ e C(N +1) d c n=N n=-N b n e inx 2 dx.

PROPOSITION 1 .

 1 1.6 (L. Hillairet [80]). Let d ≥ 1. There exists an open set O of R 2d which is an observability open set in the whole R 2d , that is, satisfying the property of Definition 1.1.1, and, yet, does not contain any cartesian product O 1 × O 2 , where O 1 and O 2 are both observability open sets in the whole R d . Proof. We exhibit an example in the case d = 1. We let 0 < R < 1/2 and consider first the following open set Õ = ∪ n∈Z 2 B(n, 2R) that satisfies (1.1.3) in the whole R 2 , with δ = √ 2 and r = 2R. If one replaces each ball B(n, 2R), with n = (n 1 , n 2 ), by either B left

  R , then the resulting open set O is also an observability open set in the whole R 2 . For each n 1 ∈ Z, we pick the 'left' or the 'right' ball according the following rule: if |n 2 | = 0 we pick the left ball, and we pick the right ball if 2 2k ≤ |n 2 | < 2 2k+1 , k ∈ N, we pick the left ball if 2 2k+1 ≤ |n 2 | < 2 2k+2 , k ∈ N. Assume now that O 1 × O 2 ⊂ O, and let x ∈ O 1 . Observe that, with the construction made for O, the set {x} × R only intersects 'left' type or 'right' type balls. In either case, it shows that the complement set of O 2 contains arbitrary large intervals. Thus, O 2 cannot satisfy the property of Definition 1.1.1.

THEOREM 1 . 3 . 1 (

 131 Spectral inequality). Let ω x ⊂ R d be an observability open set on the whole space R d as in Definition 1.1.1. Then, there exists a constant C > 0 such that (1.3.1)

1. 3 . 1 .

 31 A global elliptic Carleman estimate. Our proof of the spectral inequality (1.3.1) follows from a global elliptic Carleman estimate for the operator D 2 s + D x • D x in (0, S) × Ω, for some S > 0, which is stated in Proposition 1.3.3 below. We need first to construct an appropriate weight function. To that purpose, we adapt an argument by A. V. Fursikov and O. Yu. Imanuvilov, that can be found in[START_REF] Coron | Control and Nonlinearity[END_REF] Lemma 2.68, p.80] and[65, p.20-21], to the case of unbounded domains. PROPOSITION 1.3.2 (Weight function for the elliptic Carleman estimate). Let T > 0, Q = (0, T ) × R d , and let ω x ⊂ R d be an observability open set on the whole space R d , as in Definition 1.1.1. There exists a function ψ

Figure 1 .

 1 Figure 1. Local geometry in the x variable for the construction of the weight function.

Figure 2 .

 2 Figure 2. Local geometry in the s, x variables for the construction of the weight function.

  β , and (1.3.2)-(1.3.5) hold by the above construction, according to (1.3.7) and (1.3.8).

  ∆ϕ|v| 2 dx ds. Collecting (1.3.12)-(1.3.16), we obtain Re(Av, iBv) = J + BT, with J := J 11 + J 12 + J 21 + I 22 and BT := BT 11 + BT 12 + BT 21 .

  we obtain the desired inequality by classical arguments. 1.3.2. Proof of the spectral inequality. We now give the proof of the spectral inequality (1.3.1) of Theorem 1.3.1. Proof of Theorem 1.3.1. Let N ≥ 0 and f

  and satisfies P u = 0 in Q, for P = D 2 s + D x • D x , and u |s=0 ≡ 0. The Carleman inequality (1.3.9) of Proposition 1.3.3 holds for functions in H 2 (Q; C) by density. It can thus be applied to the function u(s, x). This yields(1.3.25) 

  3.33) and we conclude the proof with (1.3.31)-(1.3.33) and by choosing C 0 such that 0 < C 0 < C 1 .1.4. Null-controllability of the Kolmogorov equationThis section is devoted to the proof of the main result of this article, Theorem 1.1.2, that is the null-controllability of the Kolmogorov equation (1.1.1) in the whole phase space with a control region as given in (1.1.2)-(1.1.

1. 4 . 1 .

 41 Observability of one Fourier mode. Here, we consider the Fourier transformed (adjoint) Kolmogorov equation, as in (1.1.10)-(1.1.11).

3 .

 3 In Section 1.5, change ξ into -ξ as we consider the adjoint operator here. PROPOSITION 1.4.1 (Observability inequality). Let ω v ⊂ R d be an observability open set on the whole space R d as in Definition 1.1.1. Then, there exists a constant C > 0 such that the solution of

- 1

 1 and τ (t) = τ θ(t). Let ω v ⊂ R d be an observability open set on the whole space R d as in Definition 1.1.1. There exist a negative weight function ϕ ∈

LEMMA 1 . 4 . 3 .√ d/ 2 .

 1432 Let O ⊂ R d be an observability open set on the whole space R d as in Definition 1.1.1. Then, there exits Õ ⊂ O ⊂ R d that is also an observability open set on the whole space R d satisfying (1.1.3), with different values of δ > 0 and r > 0, and moreover dist( Õ, ∂O) > 0. Proof. Let y ∈ Z d . There exists y = y (y) ∈ O such that B R d (y , r) ⊂ O and |y -y | ≤ δ. We then set Õ as the following open subset Õ := y∈Z d B R d (y (y), r/2). We have Õ ⊂ O and dist( Õ, ∂O) ≥ r/2 by construction. Next, for z ∈ R d there exists y ∈ Z d such that |y -z| ≤ √ d/2. Then, y (y), as introduced above, is such that y (y) ∈ Õ and B R d (y (y), r/2) ⊂ Õ and |z -y (y)| ≤ δ + We thus have the properties of Definition 1.1.1 for the values δ + √ d/2 and r/2 of the two parameters. The following lemma provides the details of the construction of an weight function associated with an observability set O that will fits our needs for the derivation of the Carleman estimate of Proposition 1.4.2 for a well chosen O ⊂ ω v . LEMMA 1.4.4. Let O be an observability open set on the whole R d , in the sense of Definition 1.1.1. Then, there exist ψ

  Proof. If O is an observability open set on R d we let δ and r be the positive constants used in Definition 1.1.1. Letting L > 2(δ + r) we set ψ(v) := d j=1 2 + sin(πv j /L) , v = (v 1 , . . . , v d ) ∈ R d .This function is 2L-periodic in each direction associated with the canonical basis of R d . Observe that ψ (v) = 0 if and only if v ∈ w + LZ d with w = (L/2, . . . , L/2).

Figure 3 .

 3 Figure 3. Local geometry for the construction of the weight function.

  .4.6) Thirdly, let α ∈ Z d and β ∈ {0, 1} d . We consider the set O α,β = K α,β ∩ O andO α,β = T -1 α,β (O α,β ) ⊂ K.As O is an observability open set there exists y ∈ O α,β such that |y -w| ≤ δ and B R d (y, r) ⊂ O α,β , using that 2(δ + r) < L and the fact that the property of Definition 1.1.1 is translation invariant. There exists some j ∈ I such thaty ∈ B R d (w (j) , ρ) because of the finite covering of B R d (w, δ) introduced in (1.4.4).Then, as ρ < r/2, we have B R d (w (j) , ρ) ⊂ B R d (y, r) ⊂ O α,β ; see Figure3. We now define the following function on the cell K α,β

  With the Plancherel equality, Proposition 1.4.1, and Theorem 1.3.1 we obtain

PROPOSITION 1 . 5 . 3 .

 153 We have D(A) = D(L ) and thus L is the generator of the C 0 -semigroup Σ(t).

  ) γ+2 , where we have used (2.4.73) and the inequality (see [70, Eq. (3.33), p. 347].

129

 129 

3. 3 . 2 .

 32 Proof of Proposition 3.3.1. Let us consider some T 1 , T 2 , T 3 , T 4 with T 3 large enough, to be chosen later on, and(3.3.36) 0 := T 0 < T 1 < T 2 < T 3 < T 4 .

1 -e -T 1 2 , 8 (T 3 -

 283 5e T1 , d 0 := max y∈T 2 d(y, H), where d 0 is finite thanks to the compactness of T 2 and the fact that H is closed. Let us choose next T 3 > T 2 large enough so that 1 3T 2 ) 2 -T 3 u 2 L 1 (0,T2-T1;L ∞ (T 2 )) ≥ Λ 0 + d 0 ,(3.3.50) 

Finally

  , putting together (3.4.62), (3.4.61) and (3.4.60), we obtain the result by choosing ≤ 1 Ic1 .

  gives that, for every t ∈ [0, T ], û(t)2 

  In addition, combining (3.4.79), (3.4.80) and (3.4.81) and (3.4.83), yields t 0

  , M, f ), thanks to(3.4.82) and(3.4.86). This gives (3.4.72).2. L 2t C 1 x regularity. Let us show next (3.4.73), thanks to the regularity properties of the Stokes system. Indeed, we may rewrite (3.4.55) as(3.4.87) 

3. 4 . 4 .

 44 Extension. The function Ṽ [g] is not necessarily continuous around [0, T ] × γ -⊂ [0, T ] × H δ . To avoid this problem we shall use some extension operators preserving regularity.

  .4.100) ∃C π > 0 such that (3.4.101) Proof. By (3.2.25), we have

2 dx 2

 22 Secondly, using point (a) and (3.4.58), sup t∈[0,T ]

3. 7 .

 7 Proof of Theorem 3.1.3. Uniqueness.

  .7.150) Next result, inspired from[START_REF] Ukai | On classical solutions in the large in time of two-dimensional Vlasov's equation[END_REF] Section 8], shows that the solution in this class is unique.PROPOSITION 3.7.1. Let f 0 ∈ C 1 (T 2 × R 2 ) satisfying (3.1.13) and let G ∈ C 0 (Q T ).Then, the strong solution of system (3.1.1), according to Definition 3.1.1, and satisfying conditions (3.7.149) and (3.7.150) is unique.Proof. Let f 1 = Ṽ [f 1 ], for ≤ 0 . Let us suppose that (f 2 , u 2) is a strong solution of system (3.1.1) with initial datum f 0 and control G and such that (3.7.149) and (3.7.150) are satisfied.

1

 1 

4. 3 .

 3 Explicit solution 4.3.1. Heuristics. We consider the following formal expansion

2 ,( 4 )

 24 Let(4.4.16)ϕ k (x) = √ 2 -α |J ν+1 (j ν,k )| x 1-α 2 J ν j ν,k x 1-α ∀x ∈ (0, 1), k ∈ N * .Then,(1) ϕ k ∈ D(A), ∀k ∈ N * , (2) ϕ k satisfies (4.4.14) with , ∀k ∈ N * ,(3)(ϕ k ) k∈N * is a Hilbert basis of L 2 (0, 1), for every f 0 ∈ L 2 (0, 1) the solution of (4.2.5) with h = 0 writes (4.4.18)f (t) = ∞ k=1 e -λ k t f 0 , ϕ k ϕ k in L 2 (0, 1), ∀t ∈ [0, T ].Proof. We will note for simplicity b k := √ 2-α |Jν+1(j ν,k )| and φk := 1 b k ϕ k , for every k ∈ N * .

1 0ϕ 1 0x 1 - 1 0

 1111 n (x)ϕ m (x) dx = (2 -α) α J ν (j ν,n x 1-α 2 ) |J ν+1 (j ν,n )| J ν (j ν,m x 1-α 2 ) |J ν+1 (j ν,m )| dx = 2 |J ν+1 (j ν,n )||J ν+1 (j ν,m )| yJ ν (j ν,n y)J ν (j ν,m y) dy = δ n,m ,where δ n,m stands for the Kronecker delta.

Step 4 : 1 0fStep 5 : 2 2n( 2 - 1 -α 2 J ν j ν,n x 1-α 2 = ∞ k=1 e -λ k t a k √ 2 Bx 1 -α 2 2n

 41522122k=1212 We prove that (ϕ k ) k∈N * is a Hilbert basis of L 2 (0, 1) by checking the Bessel equality. Let f ∈ L 2 (0, 1) and let(4.4.21)a k := (x)ϕ k (x) dx, ∀k ∈ N * .Then, using Lemma E.3.1 and changing variables twice, we get ν+1 (j ν,k )| J ν (j ν,k y) dy Finally, (4.4.18) is a consequence of [3, Theorem 8.2.3, pp.237-240].4.5. Regularising effectWe use the orthonormal basis obtained in Proposition 4.4.1 and some properties of Bessel functions to quantify the smoothing of the solution of system (4.1.1) when u ≡ 0. PROPOSITION 4.5.1. Let f 0 ∈ L 2 (0, 1), T > 0 and let f ∈ C 0 ([0, T ]; L 2 (0, 1)) be the unique weak solution of system (4.2.5) when h = 0, according to Proposition 4.2.1. Then, there exists Y ∈ C ∞ ((0, T ]) such that for every σ ∈ (0, T ),Y ∈ G 1 ([σ, T ]) and (4.5.22) f (t, x) = ∞ n=0 Y (n) (t) x 1-α α) 2n n! n j=1 j + α-1 2-α , ∀(t, x) ∈ [σ, T ] × [0, 1].Moreover, f solves system (4.3.10) pointwisely (see Definition 4.3.1) in (σ, T ) × (0, 1) with u = 0 and initial datum f σ (x) = f (σ, x).Proof. Let ν be given by (4.4.15) and a k as in(4.4.21). Let σ ∈ (0, T ) be fixed but arbitrary. Let t ∈ [σ, T ] be fixed. By(4.4.18) and (E.1.23), we have, for a.e. x ∈ [0, 1],f (t, x) = ∞ k=1 e -λ k t a k √ 2 -α |J ν+1 (j ν,k )| x -α |J ν+1 (j ν,k )| x n,k (t, x), (4.5.23) where, for every (n, k) ∈ N × N * , B n,k (t, x) := e -λ k t b k (-1) n j 2n+ν ν,k n!Γ(n + 1 + ν)2 2n+ν |J ν+1 (j ν,k )| , and b k := a k √ 2 -α, ∀k ∈ N * .

2 ) 2 x 2 σ x 2n+ν+ 1 2 ,

 22 k (t, x)| < ∞, ∀x ∈ [0, 1].Indeed, since λ k > 0, we have for every (n, k) ∈ N × N * and x ∈ [0, 1],|B n,k (t, x)| ≤ |b k |j 2n+ν ν,k e -λ k σ 2 2n+ν n!Γ(n + 1 + ν)|J ν+1 (j ν,k )| ≤ C 1 |b k |e -λ k σ j C 1 > 0,using Lemma E.4.3. We fix n ∈ N and we define the function h α n ∈ C ∞ (R + ; R + ) by h α n (x) := e -(1-α ∀x ∈ [0, +∞), α) . Hence, from (4.5.25) and (4.4.17),(4.5.27)∞ k=1 |B n,k (t, x)| ≤ C 1 sup k |b k | 2 2n n!Γ(n + 1 + ν) ∞ k=1 h α n (j ν,k )Introducing K α n := sup {k ∈ N * ; j ν,k ≤ N α n }, we write (4.5.28)

2 2

 2 C 2 > 0, using Lemma D.0.2 with a = 1, b = 1 2 . On the other hand, using (4.5.26), we writek∈N * -{K α n ,K α n +1} h α n (j ν,k )where we have used (D.0.18) with p = n + α 4(2-α) + 1 2 . Hence, combining this with (4.5.28) and (4.5.29), we get∞ k=1 h α n (j ν,k ) ≤ C 2 + to (4.5.27), implies ∞ k=1 |B n,k (t, x)| ≤ C 4 α) Γ n + α 4(2-α) + 1 2n n!Γ (n + ν + 1).

2 2n( 2 -a 2 ν

 222 5.23) and (D.0.19), we may writef (t, x) = ∞ n=0 y n (t) x 1-α α) 2n n! n j=1 (j + ν), where, for every n ∈ N,y n (t) := (-1) n √ 2 -α 1k e -λ k t j 2n+ν ν,k |J ν+1 (j ν,k )| , ∀t ∈ [σ, T ],and ν is given by (4.4.15),k t , t ∈ [σ, T ], we have that, since σ > 0, Y is analytic in [σ, T ]. Moreover, Y (n) (t) = y n (t), ∀t ∈ [σ, T ], ∀n ∈ N.Hence, we obtain (4.5.22) with this choice. Since σ ∈ (0, T ) is arbitrary, we have in addition that Y ∈ C ∞ ((0, T ]). Furthermore, applying Proposition 4.3.3 to (4.5.22) with t 1 = σ and t 2 = T , we deduce that f solves (4.1.1) pointwisely in (σ, T ) × (0, 1) with u = 0 and f σ (x) = f (σ, x).

4. 6 .t ≥ 1 , 2 2n( 2 -

 6122 Construction of the controlLet s ∈ R with s > 1. The function (see[START_REF] Martin | Null controllability of the heat equation using flatness[END_REF] Section 2] and[START_REF] Widder | The Heat Equation[END_REF] Theorem 11.2, p.48]) belongs to G s ([0, 1]) and satisfies (4.6.32)φ s (0) = 1, φ s (1) = 0, φ (i) s (0) = φ (i) s (1) = 0, ∀i ∈ N * . Proof of Theorem 4.1.3. Let f 0 ∈ L 2 (0, 1), T > 0.Let f and Y be given by Proposition 4.5.1.We pick τ ∈ (0, T ), s ∈ (1, 2) and we set the flat outputy(t) := φ s t -τ T -τ Y (t), ∀t ∈ (0, T ],which belongs to C ∞ (0, T ). Moreover, for every σ ∈ (0, T ), y ∈ G s ([σ, T ]), as it is a product of two functions in G s ([σ, T ]). We define accordingly the functionf (t, x) := ∞ k=1 y (n) (t) x 1-α α) 2n n! n j=1 j + α-1 2-α , ∀(t, x) ∈ (0, T ] × [00, τ ], f (t, 1), t ∈ (τ, T ].Since y ∈ G s ([σ, T ]) for some s ∈ (1, 2), Proposition 4.3.3 shows that(4.6.34) ∀σ ∈ (0, T ), f is the pointwise solution of (4.3.10) with t 1 = σ, t 2 = T, f t1 = f (σ, •) and (4.6.33).

1 0 2 ,System ( 5 . 1 . 6 )

 12516 , x) (∂ t ψ + ∂ x (x α ∂ x ψ)) (t, x) dt dx = f (t , x)ψ(t , x) dx -1 0 f (σ, x)ψ(σ, x) dx + t σ u(t) (x α ∂ x ψ) (t, 1) dt.where ∆ ρ := ∂ 2 ρ + 1 ρ ∂ ρ is the Laplacian operator in polar coordinates with radial data.5.1.1. Change of variables. Following[START_REF] Band | Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time varying box[END_REF][START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF][START_REF] Beauchard | Local exact controllability of a Bose-Einstein condensate in a 1D time-varying box[END_REF], let us introduce the new variables(5.1.4) ξ(t, r) := φ(τ, ρ), with r := ρ and the change of phaseψ(t, r) := ξ(t, r) exp -iu(t)r 2 + 4i )R(τ ).This change of variables transforms system (5.1.3) into the following one, posed on a fixed domain,(5.1.6)i∂ t ψ = -∆ r ψ + u(t) -4u(t) 2 r 2 ψ, (t, r) ∈ (0, T ) × (0, 1), ψ(t, 1)= 0, t ∈ (0, is a bilinear control system in which the state is the function ψ with ψ(t) ∈ S, for any t ∈ [0, T ], where S is the unit sphere of L 2 (D; C), and the control is the real-valued function u ∈ Ḣ1 0 (0, T ; R), with Ḣ1 0 (0, T ; R) := u ∈ H 1 0 (0, T ; R), T 0 u(s) ds = 0 .

  ) = +∞. Thus, T * = g -1 (T ) is well-defined and if R is defined by R(τ ) := e g(τ ) 0 u(s) ds , then (5.1.2) and (5.1.5) are satisfied.

5. 1 . 3 .

 13 Main result. The main result of this article is a local exact controllability result of system (5.1.6) around a well-chosen trajectory. To describe these states, let us introduce the set (5.1.15)D := (θ 2 , θ 3 ) ∈ R 2 ; θ 2 , θ 3 > 0, θ 2 + θ 3 < 1 ,and the family of states(5.1.16)ϕ := 1 -θ 2 -θ 3 ϕ 1 + θ 2 ϕ 2 + θ 3 ϕ 3 , (θ 2 , θ 3 ) ∈ D,

THEOREM 5 . 1 . 4 .

 514 Let T > 0. There exists δ > 0 and a C 1 -mapΓ : V 0 × V T → Ḣ1 0 (0, T ; R), whereV 0 := ψ 0 ∈ S ∩ H 3 (0),rad (D; C); ψ 0 -ϕ H 3 (0) < δ , (5.1.18) V T := ψ f ∈ S ∩ H 3 (0),rad (D; C); ψ f -ψ T H 3 (0) < δ ,(5.1.19) 

∆h |∂D L 2

 2 (0,T ) = ∆ f|∂D L 2 (0,T ) ≤ C 4 ∆ f L 2 (0,T ;H 1 rad (D))

PROPOSITION 5 . 3 . 1 .

 531 Let T > 0. The map Θ T defined by(5.3.42) is of class C 1 . Moreover, for all (v, Ψ 0 ) ∈ Ḣ1 0 (0, T ; R) × X 0 , we have(5.3.44) dΘ T (0, ϕ ).(v, Ψ 0 ) = Ψ 0 , Ψ |t=T ∈ X 0 × X T ,

LEMMA 5 . 4 . 2 .r 3 2 ν,k -j 2 ν,l 2 .--

 5423222 For every ν ∈ N and k, l ∈ N * such that k = l, J ν (j ν,l r)J ν (j ν,k r) dr = 4j ν,k j ν,l J ν+1 (j ν,k )J ν+1 (j ν,l ) j Since the proof of Lemma 5.4.2 is technical, we postpone it until Section 5.4.1. Let us give next the proof of Proposition 5.4.1.Proof of Proposition 5.4.1. By linearity, we may suppose that Ψ 0 ≡ 0. Thus, the solution of system (5.3.45) admits the following expansion, for any t ∈ [0, T ],Ψ(t) = -i 1 -θ 2 -θ 3 )e i(λ k -λ1)s ds a k ϕ k e -iλ k t )e i(λ k -λ2)s ds b k ϕ k e -iλ k t )e i(λ k -λ3)s ds c k ϕ k e -iλ k t ,where (λ k ) k∈N * and (ϕ k ) k∈N * are given by (5.1.12) and(5.4.47) a k := r 2 ϕ 1 , ϕ k , b k := r 2 ϕ 2 , ϕ k , c k := r 2 ϕ 3 , ϕ k , ∀k ∈ N * .

T 0 s

 0 v(s) ds = 0, T 0 v(s)e i(λ2-λ1)s ds =1 a2 √ 1-θ2-θ3 i Ψ f , ϕ 2 e iλ2T -√ θ 3 c 2 C , T 0 v(s)e i(λ3-λ1)s ds = 1 a3 √ 1-θ2-θ3 i Ψ f , ϕ 3 e iλ3T -√ θ 2 b 3 C , T 0 v(s)e i(λ3-λ2)s ds = C, T 0 v(s)e i(λ k -λ1)s ds = i √ 1-θ2-θ3 a k Ψ f , ϕ k e iλ k T , ∀k ≥ 4, T 0 v(s)e i(λ k -λ2)s ds = i √ θ2 b k Ψ f , ϕ k e iλ k T , ∀k ≥ 4, T 0 v(s)e i(λ k -λ3)s ds = i √ θ3 c k Ψ f , ϕ k e iλ k T , ∀k ≥ 4, where C ∈ C satisfies 2ib 3 θ 2 θ 3 Re C = 1 -θ 2 -θ 3 Ψ f , ϕ 1 e iλ1T (5.4.49) 

  1 , C 2 , C 3 , D 1 , D 2 , D 3 , positive constants such that (5.4.50) C 1 ≤ j 3 0,k |a k | ≤ D 1 , C 2 ≤ j 3 0,k |b k | ≤ D 2 , C 3 ≤ j 3 0,k |c k | ≤ D 2 , ∀k ∈ N * . Indeed,let k > 1, the case k = 1 being straightforward. Identity (5.4.46) with ν = 0, l = 1, allows to write, through (5.4.47) and (5.1.10), that |a k | = 1 |J 1 (j 0,1 )||J 1 (j 0,k )| 1 0

  4.50), gives that d := (d k ) k∈N ∈ 2 (N; C). This allows to apply Proposition F.0.2, which provides a function w := M(0, d) ∈ L 2 (0, T ;

T 0 v 2 . 5 r 3 1 0r 2 1 0r 2 r 3 1 0r 2

 02531212312 (s) ds = 0. 5.4.1. Proof of Lemma 5.4.Proof of Lemma 5.4.2. Let us define, for every k ∈ N * , (5.4.53)W 2 ν,k (r) := r 2 J ν (j ν,k r), ∀r ∈ (0, 1). From (E.1.24), we deduce that W 2 ν,k satisfies the following equation(J ν (j ν,k r)J ν (j ν,l r) dr = 1 0 W 2 ν,k (r)J ν (j ν,l r)r dr = -(r)J ν (j ν,l r)r dr = -(r)J ν (j ν,l r)r dr. (5.4.55)For the last integral, we have, by(5.4.53), (E.3.32) and (E.1.27), (r)J ν (j ν,l r)r dr = j ν,k J ν (j ν,k r)J ν (j ν,l r) dr = j ν,k J ν-1 (j ν,k r)J ν (j ν,l r) dr.(5.4.56) For the other integral in (5.4.55), we have, integrating by parts and using (E.1.24), (r)J ν (j ν,l r)r dr = -j 2 (r)J ν (j ν,l r)r dr.Combining this equality with (5.4.55) and (5.4.J ν (j ν,k r)J ν (j ν,l r) dr = 4 j ν,k J ν-1 (j ν,k r)J ν (j ν,l r) dr.To calculate the last integral, let us define(5.4.58) 

r 2

 2 k (r)J ν (j ν,l r)r dr.Integrating by parts, and recalling that J ν (0) = 0, for any ν ∈ N * , we findk (r)J ν (j ν,l r)r dr = -J ν (j ν,l r) k (r)J ν (j ν,l r)r dr + j ν,l j 2 ν,k J ν-1 (j ν,k )J ν (j ν,l ). k (r)J ν (j ν,l r)r dr (5.4.59) + j ν,l j 2 ν,k

2 uT 2 ∇u 2 u 0 F 2 L 2 ds ≤ e t u 0 2 L 2 + t 0 F

 222022220 F ∈ L 2 (0, T ; V ) and u 0 ∈ H and the Navier-Stokes system (C.1.11)   ∂ t u + (u • ∇) u -∆u + ∇p = F, (t, x) ∈ (0, T ) × T 2 , div u(t, x) = 0, t ∈ (0, T ), u |t=0 = u 0 , x ∈ T 2 .Following[47, p.42], we shall use the following notion of solution.DEFINITION C.1.1. A time-dependent vector field u is a solution of (C.1.11) whenever(C.1.12) u ∈ C 0 ([0, T ]; V σ ) ∩ L ∞ (0, T ; H) ∩ L 2 (0, T ; V σ )and for any ψ ∈ C 1 ([0, T ]; V σ ) and t ∈ (0, T ], one hasT (t)ψ(t) dx + t 0 : ∇ψ -u ⊗ u • ∇ψ -u∂ t ψ ds dx = T 0 ψ(0) dx + t (s), ψ(s) V ×V ds. (C.1.13)We have the following classical result, due to J. Leray (see[START_REF] Chemin | Mathematical Geophysics[END_REF] Theorem 2.3]).THEOREM C.1.2. Let F ∈ L 2 (0, T ; V ) and u 0 ∈ H. There exists a unique global solution of (C.1.11), i.e., for any T > 0, in the sense of Definition C.1.1. Moreover, this solution satisfies the energy estimate (s)2 V ds .

THEOREM C. 2 . 1 . 1 0

 211 Let u and v be two solutions of system (C.1.11) associated to (u 0 , F ) and (v 0 , G) respectively. Then,e -t (u -v)(t) 2 L 2 + t 0 ∇(u -v)(s)2 L 2 ds 199 This allows to show the following. LEMMA E.3.1. [84, p.40] Let ν ≥ 0. The family {w n } n∈N * defined byw n (z) := √ 2z |J ν+1 (j ν,n )| J ν (j ν,n z), ∀z ∈ (0, 1),is an orthonormal basis of L 2 (0, 1). In particular, if f ∈ L 2 (0, 1) andd n := f (z)w n (z) dz, ∀n ∈ N * , then f 2 L 2 (0,1) = ∞ n=1 |d n | 2 .

LEMMA E. 4 . 1 . [ 96 ,

 4196 Lemma 7.2, p.129] For any ν ∈ R, E.4.2. [1, 9.1.7, p.360] For any ν∈ R \ {-N * }, J ν (z) ∼ z→0 z ν 2 ν Γ(ν + 1)

LEMMA E. 4 . 3 .

 43 Let ν ∈ R + . Then, (E.4.34) j ν,k |J ν+1 (j ν,k )In particular, there exists a constantC 1 > 0 such that for all k ∈ N * , 1 |J ν+1 (j ν,k )| ≤ C 1 j ν,k .Proof. Using Lemma E.4.1, for ν + 1 and x = j ν,k ,j ν,k |J ν+1 (j ν,k )| = 2 π cos j ν,k -Using again Lemma E.4.1 with ν and x = j ν,k , we have that cos j ν,kk and then (E.4.34).

For k < 0 ,

 0 let d k := d -k . Let ξ, ξ k , ; k ∈ Z be the biorthogonal family to F (see [16, Proposition 18, Appendix B]). From Ingham's theorem ([16, Theorem 6, Appendix B]), there exists a constant C > 0 and a unique u ∈ Adh L 2 (0,T ) (spanF) satisfying T 0 u(t)e iω k t dt = d k , ∀k ∈ Z, and such that u L 2 (0,T ) ≤ C k∈Z |d k | 2

1 2 .

 12 Moreover, u is real-valued thanks to the uniqueness.Let us setw := M( d, d) = u + d -T 0 tu(t) dt ξ.
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  1.2.2. II.1.2.1. Dérivation de modèles fluides-cinétiques. Le but de cette section est d'évoquer la dérivation formelle des systèmes (II.1.19) et (II.1.20). Nous décrivons d'abord l'approximation de champ moyen et son application aux deux modèles considérés.

  Beauchard et E. Zuazua considèrent le système (II.3.29) avec d = 1. A cause de la difficulté (2) énoncée dans la section précédente, la région d'observabilité est choisie de la forme ω

  La méthode de Lebeau-Robbiano. Dans cette section, nous nous proposons d'expliquer comment l'utilisation d'une inégalité spectrale pour le laplacien avec des conditions de Dirichlet permet de démontrer le Théorème II.3.2.Prenons Ω ⊂ R d , un ouvert borné régulier. Grâce au théorème spectral, le laplacien admet une famille spectrale (e k ) k∈N * satisfaisant (II.3.36) 

à l'existence d'une constante C obs > 0 telle que, pour tout z 0 ∈ L 2 (Ω), la solution de (II.3.34) correspondante satisfasse (II.3.35) Ω |z(T, x)| 2 dx ≤ C 2 obs T 0 ω |z(t, x)| 2 dt dx. II.3.2.1.

  3.38) et le Théorème II.3.2, suivant l'article[START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF].Observons d'abord que la méthode de Lebeau-Robbiano ne vise pas à montrer directement l'inégalité (II.3.35) pour toute donnée initiale. En revanche, la stratégie consiste à exploiter et combiner deux ingrédients essentiels :(1) l'observabilité de (II.3.35) pour les basses fréquences, grâce à (II.3.38), (2) le taux de décroissance haute fréquence de (II.3.33) lorsque u ≡ 0, c'està-dire, de l'évolution libre. := span e k ; λ k ≤ 2 2j , ainsi que la projection orthogonale associée, Π Ej : L 2 (Ω) → E j . Avec ces notations, considérons (II.3.33) dans sa version basses fréquences, c'est-à-dire,

	On examine ensuite comment la combinaison de (1) et (2) conduit à une preuve du
	Théorème II.3.2.	
	Premier ingrédient : observabilité des basses fréquences. On considère, grâce	à
	(II.3.36), pour tout j ∈ N, l'espace	
	E (II.3.39)	

j

  Comment obtenir une inégalité spectrale ? À la suite des travaux[START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF], la stratégie essentielle pour obtenir (II.3.38) passe par l'utilisation d'une inégalité d'interpolation adéquate, obtenue à son tour via des inégalités de Carleman elliptiques locales.

	3.2. II.3.2.2. Considérons l'opérateur elliptique (II.3.43)

  pour une dérivation complète. II.3.2.4. La méthode de Fursikov-Imanuvilov. Il existe une autre méthode pour montrer le Théorème II.3.2, due à A. Fursikov et Yu. Imanuvilov, qui repose également sur l'utilisation des inégalités de Carleman.

	Contrairement à la stratégie présentée précédemment, cette approche vise	à
	démontrer l'inégalité d'observabilité (II.3.35) directement. Pour ce faire, on montre
	une inégalité de Carleman pour l'opérateur de la chaleur	

3 .

 3 Le symbole principale d'un opérateur pseudodifférentiel correspond, grosso modo, à la partie du symbole d'ordre le plus elevé. Par exemple, dans notre cas, σ(Pϕ) = |ξ| 2 -|∇ϕ | 2 +2∇ϕ•ξ (voir [103] pour un exposition complète). Considérons un ouvert Ω, possiblement non borné de R d , qui pourrait avoir un bord ∂Ω. Dans cette section, on s'intéresse aux conditions sur ω permettant de montrer des inégalités d'observabilité du type (II.3.35).

	Malgré ces différences, le but est le même que dans le cas elliptique : obtenir
	une minoration de la norme de Qu 2 L 2 , pour u assez régulier, à partir des normes
	des termes d'ordre inférieur, pondérés par un paramètre, avec un poids bien choisi.
	Par contre, la prise en compte des termes sur le bord fera apparaître un terme
	d'observation supplémentaire.	
	Le choix des poids fait dans [65] est désormais classique : il s'agit d'un poids
	du type φ(t, x) := θ(t)ϕ(x), avec	
		θ(t) :=	1 t(T -t)	, t ∈ (0, T ),
	c'est à dire, un poids singulier en t = 0, T . La méthode impose des conditions sur ϕ,
	qui devront assurer un certain comportement du poids par rapport au bord ∂Ω et	à
	la région d'observabilité ω. En particulier, on choisit ϕ tel que (cf. [101, Assumption
	4.6.8])		
	(II.3.46)	ϕ| ∂Ω = cst, ∂ n ϕ| ∂Ω < 0, |∇ϕ(x)| > 0, x ∈ Ω \ ω.
	Ces conditions permettent d'obtenir une inégalité de Carleman parabolique globale
	pour Q, ce qui conduit à (II.3.35). On renvoie à [101] pour plus de détails.
	II.3.3. Conditions géométriques pour l'observabilité sur des domaines
	non bornés. Lorsque Ω est non borné, contrairement au cadre du Théorème II.3.2, il existe
	des régions d'observabilité pour lesquelles (II.3.35) est fausse.
	Citons quelques exemples. Dans [116], S. Micu et E. Zuazua ont montré qu'il
	n'y a pas observabilité lorsque ω est un compact de R + . Cette direction a été
	développée par L. Escauriaza, G. Seregin et V. Sverák dans [61], où il est démontré
	que (II.3.35) ne peut pas être vraie lorsque Ω = R d et ω = B(0, R), avec R > 0.
	En revanche, il est possible de démontrer (II.3.35) lorsque la région d'observabilité
	est suffisamment grande, comme V. Cabanillas, S. de Menezes et E. Zuazua ont
	montré dans		

  et l'exploiter afin de montrer des inégalités de Carleman, ce qui nous permettra de montrer des inégalités d'observabilité. II.3.4. Résultats nouveaux (Chapitre 1). L'objectif de mon travail avec Jerôme Le Rousseau, repris dans le Chapitre 1, est de montrer un résultat de contrôlabilité à zéro pour l'équation de Kolmogorov dans tout l'espace de phases, c'est-à-dire, pour le système (II.3.29), en dimension d ≥ 1 quelconque et sous les hypothèses les plus générales possibles sur la région de contrôle ω ⊂ R 2d . Dans ce but, la condition géométrique suivante sera essentielle. D ÉFINITION II.3.6 (Définition 1.1, Chapitre 1). Un ouvert ω ⊂ R d est un ensemble d'observabilité dans tout l'espace si ∃δ, r > 0 tels que ∀p

  La restriction au cas bidimensionnel est motivée par les difficultés liées à la théorie de Cauchy pour le système de Navier-Stokes en dimension trois. Le choix de la dimension deux pour le système de Stokes sera expliqué plus tard (cf. §II.4.2). En outre, on pourrait considérer d'autres espace de phases, comme Ω×R d pour Ω ⊂ R d un ouvert. Par contre, le possible bord de Ω impose certaines difficultés techniques.

	1), le laplacien fractionnaire. Ceci fait l'objet d'un travail en cours avec I. Tristani. Cette direction devra probablement exploiter les liens entre contrôlabilité et hypocoercivité pour des systèmes non hypoelliptiques, qui ont déjà été mises en évidence par D. Han-Kwan et M. Léautaud dans [81]. II.4. Cas non-collisionnel : contrôlabilité des systèmes fluide-cinétique Dans cette section, nous détaillons les résultats obtenus pour les systèmes fluide-cinétiques (II.1.19) et (II.1.20), du point de vue de la contrôlabilité, repris dans les Chapitres 2 et 3. Dans les deux cas, on considère l'évolution de particules dans le tore bidimensionnel 5 , ce qui conduit à l'espace de phases T 2 × R 2 . L'optique de ces deux problèmes de contrôlabilité rentre dans le cadre décrit en §II.2. Signalons quelques caractéristiques importantes de (II.1.19) et (II.1.20), ce qui fournira des indications pour la stratégie de nos preuves. Tout d'abord, on ob-serve que la dynamique des deux systèmes est fortement influencée par le terme de couplage div v [(u -v)f ], ce qui éloigne l'équation de Vlasov de son comportement linéaire. En plus, dans le cas du système de Vlasov-Navier-Stokes, l'équation du champ de vitesses contient une non-linéarité caractéristique du système de Navier-Stokes, le terme de convection (u•∇)u. Malgré les obstacles que cette dynamique non linéaire oppose au premier abord, l'utilisation des termes non linéaires sera essen-tielle dans la résolution des deux problèmes de contrôlabilité, grâce à la méthode du retour (cf. §I.2.3). Dans ce but, nous nous inspirerons des techniques développées par Olivier Glass et Daniel Han-Kwan pour les équations du type Vlasov non linéaires, dans le contexte des systèmes de Vlasov-Poisson et Vlasov-Maxwell relativiste. II.4.1. Travaux précedents : contrôlabilité des équations de Vlasov non linéaires. Afin d'exposer les techniques qui seront utiles dans notre traitement des systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, nous allons expliquer deux approches permettant d'aborder la contrôlabilité d'une équation de Vlasov stationnaire ou non-stationnaire. II.4.1.1. Champ stationaire : le système de Vlasov-Poisson. L'étude de la con-trôlabilité des équations de Vlasov non linéaires a ses origines dans le travail d'Oli-vier Glass [70] sur le système de Vlasov-Poisson (II.4.52)   5. couplée avec un champ de forces. On distinguera selon que le champ associé soit 

  la région de contrôle et d ≥ 2. Le système (II.4.52) est un modèle de référence dans l'étude des plasmas, décrivant la dynamique d'une population de particules chargées, typiquement des ions ou des électrons, sous l'influence d'un champ électrique E f induit par la densité des particules, ρ f . La non-linéarité de (II.4.52) repose sur le terme de couplage E f • ∇ v f . On notera que l'équation pour le champ électrique, de type Poisson, est stationnaire, alors que le terme source dépend du temps.

  0, x, v) ses solutions. Le but de la construction de la trajectoire de référence est de trouver E tel que les caractéristiques associées passent par la zone de contrôle ω pour tout (x, v) ∈ T d × R d . On dit qu'un ouvert ω ⊂ T d satisfait la condition de bande lorsqu'il existe un hyperplan de R d , H, tel que s(H) ⊂ ω, par la surjection canonique s : R d → T d .

	Ensuite, il est possible d'obtenir une solution du système non linéaire (II.4.52)
	avec f | t=0 = f 0 fixé grâce à un argument de point fixe, basé sur la trajectoire de
	référence (f , φ). Afin d'obtenir la contrôlabilité, on prescrit un processus d'absorp-
	tion pour les caractéristiques arrivant dans ω.
	Grâce à cette stratégie, O. Glass a obtenu deux types de résultats pour le
	système (II.4.52) :
	(1) contrôlabilité locale (c'est-à-dire, pour des données petites) avec d = 2 et
	ω un ouvert quelconque du tore T 2 ,
	(2) contrôlabilité globale (c'est-à-dire, pour des données arbitraires) en di-
	mension quelconque avec ω satisfaisant une condition géométrique.
	La condition géométrique mentionnée ci-dessus est la suivante.
	D ÉFINITION II.4.1. La preuve du résultat global fait un usage essentiel des propriétés d'invariance
	de (II.4.52) par changement d'échelle. Puisque les systèmes (II.1.19) et (II.1.20) ne
	possèdent pas des propriétés semblables, nous nous concentrerons uniquement sur
	le résultat local.
	Généralisations. La méthode évoquée ci-dessus admet plusieurs extensions. En
	plus de la version globale, en dimension quelconque et sous l'hypothèse de bande de
	la Définition II.4.1, il est possible d'adapter cette méthode de preuve pour traiter
	des dynamiques plus complexes.
	En particulier, O. Glass et D. Han-Kwan ont adapté la méthode au traite-
	ment de forces extérieures bornées sans avoir besoin d'hypothèses supplémentaires.
	L'argument essentiel consiste à comparer la dynamique de E

  et expliquée dans §II.4.1.1. Le but du Chapitre 2 est d'adapter ces techniques dans le cas du couplage avec l'équation de Stokes.

  Grâce au théorème de Leray-Schauder, on montrera que V possède un point fixe, g * , lorsque > 0 est suffisamment petit.Afin de pouvoir démarrer le processus d'absorption, il faut garantir que X g * arrive dans ω en temps T . Pour ce faire, on utilise (II.4.62) et l'estimation suivante

	sup	(X g *	, V g *	) -(X, V )	,
	t,x,v				
	que l'on obtient grâce à la régularité elliptique du système de Stokes. Il suffit donc
	de prendre > 0 suffisamment petit pour conclure (II.4.59), d'où (II.4.58).
	D'ailleurs, la condition (II.4.57) permet de montrer que le point fixe trouvé, g * ,
	est unique dans une certaine classe.			
	II.4.3. Résultats nouveaux pour le système de Vlasov-Navier-Stokes
	(Chapitre 3). Le but de cette section est d'expliquer les éléments de la preuve
	du résultat principal du Chapitre 3. Nous nous intéressons à la contrôlabilité du
	système				
	(II.4.64)				

  2.2 comme modèle d'utilisation de la méthode de linéarisation, est aussi d'une importance capitale dans le contexte du contrôle bilinéaire et particulièrement dans le Chapitre 5 de cette thèse. Il est donc important de donner quelques détails sur sa preuve, qui repose sur deux éléments : la contrôlabilité du système linéarisé et le caractère C 1 de l'application

	(IV.2.9)	Θ T : u → ψ| t=T ,
	où ψ est solution de (IV.2.7) avec ψ| t=0 = ϕ 1 .
	Le premier point repose sur l'hypothèse (IV.2.8) et la méthode des moments.
	En effet, considérons le problème linéarisé autour de (ψ 1 , u ≡ 0), qui est
	(IV.2.10)	

  Le deuxième ingrédient de la preuve du Théorème IV.2.1 repose sur un effet régularisant pour le problème (IV.2.6).

	PROPOSITION IV.2.2 ([16]

le membre de droite i(Ψ f ,ψ k (T )) (µϕ1,ϕ k ) k∈N * appartient à 2 (N * ; C), (voir [96] ou [16, Appendix B]). Dans le cas étudié, l'hypothèse sur les fréquences est vérifiée car λ k = π 2 k 2 , pour tout k ∈ N * . Le deuxième point est vérifié lorsque (IV.2.8) est satisfait et Ψ f ∈ H 3 (0) . Ceci garantit la contrôlabilité du problème linéarisé (IV.2.10) dans H 3 (0) avec des contrôles dans L 2 (0, T ; R).

  La famille spectrale associée à (IV.2.23) est donnée par les fonctions de Bessel d'ordre zéro, J 0 , et ses zéros, (j 0,k ) k∈N * (cf. Appendix E). Les fonctions propres sont, pour tout k ∈ N * ,

	(IV.2.24)

2.16

). La nouveauté de ce cas provient du fait que l'opérateur (IV.2.23) est différent, ce qui fait changer la famille spectrale associée et le comportement des valeurs propres.

  où ψ est la solution de (IV.2.22) avec ψ| t=0 = ψ 0 . En accord avec §I.2.2, nous devons montrer (1) que le linéarisé de (IV.2.22) autour de (ψ (t), u ≡ 0) est contrôlable, (2) que l'application Θ T est de classe C 1 dans ce cadre fonctionnel. Dans ce but, nous allons adapter les techniques développées par K. Beauchard et C. Laurent dans [16], expliquées dans §IV.2.2.

	Commençons par détailler l'heuristique conduisant au point (1). Le problème
	linéarisé est
	(IV.2.32)

  independently of the value of t > 0.

1.5.2. Proof of Proposition 1.2.2. The first case of the proof, as well as the Duhamel form (1.2.1) of the solution in this case, follows for instance from [45, Lemma 4.1.1 and Proposition 4.1.6].

  by the intermediate value theorem, ∃t * ∈ (0, t 1 ) such that f (t * ) =

	t trans (1 + m). Whence, by (2.3.24),
	(2.3.25) x + (1 -e -t

* )|v |e = x + f (t * )e = x + t trans (1 + m)e ∈ B x 0 , r 0 4 .

This shows (2.3.19) in this case, since U (t, x) = 0 for t ∈ [t 0 , t 1 ], and thus,

  1 , T 2 ]. At this step we use Theorem 3.3.2 to modify the reference trajectory in a convenient way. Indeed, since ω ⊂ T 2 satisfies the strip assumption, let us consider the constant vector field ŷ(t, x) ≡ n H , where n H is given by Definition 3.1.2. Thus, ŷ is a stationary solution of the Navier-Stokes system in T 2 . Let us apply Theorem 3.3.2 with ỹ = n H

  Let us assume that |v • n H | < Λ 0 . Taking s ∈ (T 2 , T 3 ), we can write, thanks to (3.2.25) and (3.3.52),

			0 ,		
	which shows (3.3.28) in this case.			
	Case 2. (Low velocities): (3.3.53) V (s, 0, x, v) = e -s v +	T2	u 2 (τ, X(τ )) dτ +	s	dτ n H ,
	0			T2	
	which, combined with (3.3.50) entails		

  Proof of point (c). We need the following technical result, which can be adapted from [70, Lemma 2, p. 347], thanks to Lemma 3.2.2 and (3.4.73). LEMMA 3.4.8. For any g ∈ S , one has Ṽ

		and choosing
	(3.4.111)	c 1 ≥ C π e 2T (1 + K 2 (T, γ)) γ+2 .
	3.4.5.2.	

  ).

	PROPOSITION 4.2.1 ([39], Proposition 3.2 and Theorem 3.1). Let
	(4.2.7)	D(A) :

  ). REMARK 4.3.2. The usual energy argument proves that, given u ∈ C 0 ([t 1 , t 2 ]), the pointwise solution of system (4.3.10) is unique. We observe that, changing parameters adequately in Definition 4.1.2 a pointwise solution of (4.3.10) is also a weak solution.4.3.3. Convergence. The goal of this section is the proof of the following result.PROPOSITION 4.3.3. Let t 1 , t 2 ∈ R, with t 1 < t 2 . If y ∈ G s ([t 1 , t 2 ]) for some s ∈ (0, 2), then(1)the control u given by (4.3.9) is well defined and belongs to G s ([t 1 , t 2 ]),(2) the function given by (4.3.8) is a pointwise solution (seeDefinition 4.3.1) 

  .2.35) Hence, from (5.2.31), (5.2.36) ∆ 2 h(t)| ∂D = 0 and h(t)| ∂D = 0, a.e t ∈ (0, T ). Moreover, using trace results (see [109, Th.8.3, p.44]), (5.2.35) implies (5.2.37) ∆h ∈ L 2 (0, T ; L 2 (∂D)). Thanks to (5.2.33), (5.2.32) and (5.2.34)-(5.2.37), we can apply Proposition 5.2.4 to system

NULL-CONTROLLABILITY OF THE KOLMOGOROV EQUATION

1.4. NULL-CONTROLLABILITY OF THE KOLMOGOROV EQUATION

Le contenu de ce chapitre fait l'objet d'une publication à paraître dans Communications in Mathematical Sciences (cf.[START_REF] Moyano | On the controllability of the 2-D Vlasov-Stokes system[END_REF]).

ON THE CONTROLLABILITY OF THE 2-D VLASOV-STOKES SYSTEM

CONTROLLABILITY OF THE 2-D VLASOV-NAVIER-STOKES SYSTEM

|(u g -u f ) n |

FLATNESS

Remerciements

∀σ ∈ (0, 1), ∃C π,σ > 0 such that (3.4.102)

We introduce another truncation in time. Let Ỹ ∈ C ∞ (R + ; [0, 1]) such that (3.4.103) Ỹ(t) = 0, t ∈ 0, T 100 , Ỹ(t) = 1, t ∈ T 48 , T . Finally, we set (3.4.104) Π :

This allows to define the fixed point operator by (3.4.105)

3.4.5. Existence of a fixed point. The goal of this section is to prove the following result. PROPOSITION 3.4.6. Let T > T 0 , where T 0 > 0 is given by Proposition 3.3.1. There exists 0 > 0 such that the operator defined by (3.4.105) in the domain S has a fixed point g * ∈ S . Furthermore, if u g * denotes the solution of (3.4.55) associated to g * , the pair (g * , u g * ) is a strong solution of (3.1.1), with initial data f 0 and u 0 , for a certain source term G ∈ C 0 ([0, T ] × T 2 × R 2 ).

We shall carry out the proof of this result in several steps. The main idea is to apply the Leray-Schauder fixed-point theorem. To do this, we have to verify that [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] The set S is convex and compact in C 0 (Q T ), [START_REF] Alabau-Boussourira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF] 

The first point is straightforward, since the convexity of S is clear and the compactness is a consequence of Ascoli's theorem. The second point is similar to [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF]Section 3.3] and holds without further modification, thanks to Lemma 3.4.5 and Lemma 3.2.2.

We need to show that point (3) holds. In other words, we have to prove that, for any g ∈ S , V [g] ∈ S , i.e, points (a)-(c), since point (d) follows by the construction of V , using (3.4.100).

3.4.5.1. Proof of point (b). At this stage, we shall need the following property for the backwards characteristics associated to -v + u g . LEMMA 3.4.7. Let g ∈ S and let (X g , V g ) be the characteristics associated to the field -v + u g , according to (3.4.55) and Proposition 3.4.2. Then, there exists a constant K 2 = K 2 (T, γ) > 0, independent of g, such that

Then, from (4.6.33), (4.6.36), (4.6.37) and (4.1.2), taking σ → 0 + , we get the conclusion. Finally, by construction (4.6.35) implies that f (T, x) = 0, for every x ∈ (0, 1).

CHAPTER 5

Local exact controllability of a quantum particle in a time-varying 2D disc with radial data.

Keywords-Schrödinger equation; controllability; bilinear control. 1

Introduction

Let us consider, for some

and we set the Schrödinger equation on this variable domain, which reads (5.1.1)

REMARK 5.1.1. An appropriate notion of solution of this problem will be defined in Section 5.2, thanks to a convenient change of variables, described in Section 5.1.1, that transforms (5.1.1) into a system set on a fixed domain. This is a control system in which the state is the wave function φ(τ, z, w), with

and the control is the radius of the disc D R(τ ) , with the condition

We are interested in the following notion of controllability.

DEFINITION 5.1.2 (Controllability via domain transformations). System (5.1.1) is controllable in the space X if for any φ 0 , φ f ∈ X, there exists T * > 0 and R ∈ C 0 ([0, T * ]; R + ) satisfying (5.1.2) and such that the solution of (5.1.1) with initial datum

The controllability of the Schrödinger equation via domain transformations has been treated, in the one-dimensional case, by K. Beauchard in [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF]. The goal of this article is to explore the analogous question in the disc, as a first example of a two-dimensional case. Indeed, we shall prove a controllability result, according to Definition 5.1.2, for regular enough radial data.

More precisely, assuming the mentioned hypothesis, system (5.1.1) writes

(5.1.3)

1. Le contenu de ce chapitre fait l'objet d'une prépublication (cf. [START_REF] Moyano | Controllability of a 2D quantum particle in a time-varying disc with radial data[END_REF]).

5.1.2. Functional setting. Let D be the unit disc of R 2 . We shall work on the space L 2 (D; C), with scalar product (5.1.8) f, g L 2 (D) := D f (x, y)g(x, y) dx dy, ∀f, g ∈ L 2 (D; C).

Let (A, D(A)) be the operator defined by (5.1.9)

Let us recall that the eigenfunctions of this operator write, in polar coordinates, as follows ([55, Ch.6, p.130])

(5.1.10)

, where J ν is the Bessel function of the first kind and order ν ≥ 0 and {j ν,k } k∈N * is the sequence of its zeros (see the Appendix E).

Since the radial case will be particularly important in this article, we will write, for simplicity, (5.1.12)

Thus, from (5.1.7), one has

According to (5.1.10), we introduce the spaces

2 ), ∀s > 0, endowed with the norm (5.1.13)

where •, • L 2 (D) is given by (5.1.8). In the case s = 1, we simply write H 1 0 (D), as usual, as well as H -1 (D) for its dual space. In the radial case, we set

and L 2 rad (D) when s = 0. Furthermore, if f ∈ H s (0),rad (D; C), by changing variables, the norm (5.1.13) reduces to We observe that H s (0),rad is a closed subspace of H s (0) .

-secondly, we prove that the end-point map (see Section 5.3 for the definition) is of class C 1 between some adequate spaces, -finally, we deduce the local exact controllability from the Inverse Mapping Theorem. 5.1.5.1. Outline of the article. In Section 5.2 we recall the well-posedness of system (5.1.6) and state a smoothing effect. In Section 5.3 we use the smoothing effect to prove that the end-point map is of class C 1 . In Section 5.4 we show that the linearised system around (ψ t , u ≡ 0) is controllable, thanks to a key result proven in Section 5.4.1. In Section 5.5 we conclude the prove of Theorem 5.1.4. In Section 5.6 we gather some comments and perspectives.

Well-posedness and smoothing effect

The goal of this section is to prove a well-posedness result in an appropriate functional setting for the system (5.2.20)

where ∆ r is given by (5.1.7).

Let us recall that the Schrödinger operator iA, where A is given by (5.1.9), generates a group of isometries in H s (0) (D), for s ≥ 0, that we denote e -it∆ t≥0 . Furthermore, thanks to (5.1.12), for any

, there exists a unique weak solution of system (5.2.20) with ψ |t=0 = ψ 0 , i.e., ψ ∈ C 0 ([0, T ]; H 3 (0),rad (D)) such that

Furthermore, for every M > 0 there exists a constant

The proof of this result relies on the smoothing effect of Section 2.1.

REMARK 5.2.2. Proposition 5.2.1 allows to use the following notation. For any ψ 0 ∈ H 3 (0),rad (D), T > 0 and any u ∈ Ḣ1 0 (0, T ; R), we shall denote by U(T, ψ 0 , u) the solution of system (5.1.6) evaluated at time t = T . REMARK 5.2.3 (Time reversibility). Using the notation introduced in the previous remark, let us suppose that U(T, ψ f , u) = ψ 0 for some ψ 0 , ψ f ∈ H 3 (0),rad (D; C), u ∈ Ḣ1 0 (0, T ; R) and T > 0. Then, U(T, ψ 0 , w) = ψ f , where w(t) := u(T -t).

Smoothing effect.

As it was shown by K. Beauchard and C. Laurent in the one-dimensional case in [START_REF] Beauchard | Local controllability of linear and nonlinear Schrödinger equations with bilinear control[END_REF]Proposition 2], a certain smoothing effect can be expected for e -it∆ t≥0 in a suitable functional framework. This has been extended to a large class of smooth domains in any space dimension by J.P. Puel in [START_REF] Puel | A regularity property for Schrödinger equations on bounded domains[END_REF]. To be precise, in the case of the unit disc D ⊂ R 2 , let (5.2.25)

Then, the following has been proved (see [START_REF] Puel | A regularity property for Schrödinger equations on bounded domains[END_REF]Theorem 2.1]).

PROPOSITION 5.2.4 ( [START_REF] Puel | A regularity property for Schrödinger equations on bounded domains[END_REF]). Let T > 0. For every ψ 0 ∈ H 3 (0) (D) and for every f = g + h, where

) and there exists a constant C > 0, independent of ψ 0 , g or h, such that (5.2.28)

). We consider the map (5.2.29)

where ξ is the solution of (5.2.30)

r ∈ (0, 1).

Our aim is to prove that this map has a fixed point. We divide the proof in several steps.

Step 1: We show that (5.2.29) is well-defined. By direct computation, we observe that, as u ∈ L 2 ((0, T ); R), for every 

Then, by linearity of system (5.2.30), η := ψ 1 -ψ 2 satisfies (5.2.39)

r ∈ (0, 1).

Using (5.2.38), we deduce

, where C (T ) > 0 is a constant which remains bounded on bounded intervals.

If

. The Banach fixed-point theorem gives then the existence of a unique fixed point of F . Moreover, (5.2.38) gives (5.2.23) in this case.

In order to extend the result to arbitrary u ∈ L 2 (0, T ), we choose N ∈ N * and a partition of [0, T ], namely 0 = T 0 < T 1 < • • • < T N = T and such that u L 2 (Ti,Ti+1) is small enough ∀i ∈ {1, . . . , N }. We then apply the preceding arguments in each interval [T i , T i+1 ].

Finally, whenever f ≡ 0 and u ∈ C 0 ([0, T ]; R), identity (5.2.24) follows by classical arguments. This allows to extend (5.2.24) to the case u ∈ L 2 (0, T ; R) by density.

C 1 -regularity of the end-point map

In order to define the end-point map, we shall need the following definitions. Let, for s > 0, (5.3.40)

X s := H s (0),rad (D; C) ∩ S. Setting T > 0, let us fix ξ ∈ S and let us consider the tangent space (5.3.41)

Then, we consider, thanks to Proposition 5.2.1, the end-point map

where ψ is the solution of (5.1.6) with control u and initial condition ψ 0 . Let (5.3.43)

Then, we have the following.

We treat the last integral separately. Integrating by parts and using (5.4.58) and (E.1.27), it comes

Hence, using (E.3.33), we deduce.

Consequently, from (5.4.59), we get

Combining this with (5.4.57) we find

Hence, this yields (5.4.46), since (E.1.27) and (E.1.26) imply that J ν (j ν,k ) = -J ν+1 (j ν,k ) and J ν-1 (j ν,l ) = -J ν+1 (j ν,l ).

Proof of Theorem 5.1.4

Following [16, Section 2.4], Theorem 5.1.4 is a consequence of the Inverse Mapping Theorem, combining Proposition 5.4.1 and Proposition 5.3.1. We omit the details.

Comments and perspectives

In this paper we have proved a controllability result via domain deformations for the Schrödinger equation in the unit disc of R 2 . This work, the first of this kind in a two-dimensional domain, shows that the geometry of the domain under study is essential. Indeed, our result is possible thanks to the particular geometry of the disc, which allows to exploit the radial symmetry. This yields a simplified situation to which the tools from one-dimensional bilinear control can be adapted. Even if some extensions in this direction are still possible, this feature of our result seems quite limiting.

On the other hand, a major difficulty of this result was to determine the functional framework in which controllability holds, since, to the best of our knowledge, the bilinear control for the Schrödinger equation in 2D is almost entirely unexplored.

Part 3

Appendices CHAPTER A

Auxiliary results on harmonic approximation

We gather some results needed for the construction of the reference trajectory in Chapter 2.

A.1. Results for high velocities

As it has been done in by O. Glass in [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF], the treatment of large velocities relies on a result on harmonic approximation due to T. Bagby and P. Blanchet (see [START_REF] Bagby | Uniform harmonic approximation on Riemannian manifolds[END_REF]).

PROPOSITION A. 1.1 ([9]). Let F be a closed subset of an orientable compact Riemannian manifold Ω, and U an open subset of Ω \ F . Suppose that U meets every connected component of Ω \ F . For f harmonic in a neighborhood of F and > 0, there is a Newtonian function u on Ω, whose poles lie in U , and such that

This result allows to show the following, which is a minor variation of [70, Lemma A.1, p. 374]. Let {e 1 , . . . , e N } be given by Definition 2.3.2.

PROPOSITION A.1.2. For any i ∈ {1, . . . , N } and any > 0, there exists θ i ∈ C ∞ (T 2 ; R) such that 

A.2. Results for low velocities

Review of the Stokes system

The well-posedness theory for the Stokes system is classical, especially in the case of L 2 with possibly Dirichlet boundary conditions. However, we shall need to precise an energy estimate used in Chapter 2 and a regularity result in L p spaces. In the non stationary case, we review a regularity result used in Chapter 3.

Following [139, Ch.2], we set the appropriate functional setting. We shall work with the usual Sobolev spaces W m,p (T 2 ), with m ∈ N and 1 ≤ p ≤ ∞. When p = 2, we can write, thanks to the Fourier series,

which allows to equip these spaces, respectively, with the norms

, with equivalence of norms in the case of H m 0 as a subspace of H m . In the case of vector fields, we shall use (W m,p (T 2 )) 2 , with the product norm. Let us introduce, as usual,

where the operator div x is taken in the distributional sense (see Section 3.1.2.7 for more details).

B.1. Stationary Stokes system

This setting allows to treat the system (see [START_REF] Temam | Navier-Stokes equations and Nonlinear Functional Analysis[END_REF]

The following regularity result in L p spaces is an adaptation of [4, Theorem 3, p. 172] to the case of the flat torus T 2 .

C.3. A propagation of regularity result

In the specific case of the 2-dimensional torus, we have the following result of propagation of regularity (see [START_REF] Chemin | Mathematical Geophysics[END_REF]Theorem 3.7,p. 80].

Then the unique solution of (C.1.11) satisfies

CHAPTER D

Some properties of the Gamma function

For any p ∈ R + , the Gamma function is defined (see [1, 6. 

We have the following asymptotics of the Gamma function.

We show an inequality used in Proposition 4. This inequality follows by induction, since, for every n ∈ N,

To show (D.0.21), we assume, w.l.o.g., that n < k. Then, using (D.0.22),

CHAPTER E

Some properties of Bessel functions

We have used the Bessel functions in Chapters 4 and 5. We gather here some definitions and results.

E.1. Definition and Differential relations

Let ν ∈ R. The Bessel function of order ν of the first kind is ([1, 9.1.10, p.360])

We recall that ∀ν ∈ R, the Bessel function J ν satisfies the following differential equation (see [1, 9.1.1, p.358

and the relations (see [1, 9.1.27, p.361]), 2J ν (z) = J ν-1 (z) + J ν+1 (z), ∀z ∈ (0, +∞), (E.1.25)

E.2. Properties of the zeros

We denote by {j ν,k } k∈N * the increasing sequence of zeros of J ν , which are real for any ν ≥ 0 and enjoy the following properties (see [1, 9.5.2, p.360] and [START_REF] Komornik | Fourier series in Control Theory[END_REF]Lemma 7.8,p.135]). ν < j ν,k < j ν,k+1 , ∀k ∈ N * , (E.2.28)

E.3. Orthogonality

We also have the integral formula ( [1, 11.4.5, p.485])

and (see [1, 11.3.29, p. 484])

for any α, β ∈ R, with α = β.

Secondly, let us suppose that n -m ≥ 2, i.e., n-m 2 ≥ 1, where • stands for the floor function. Thus,

≥ n -m 2 (j 0,p -j 0,q ) ≥ (j 0,p -j 0,q ) . (E.5.38) Thus, (E.5.36) yields j 0,n + j 0,m < j 0,p + j 0,q , which is in contradiction with (E.5.37).

CHAPTER F

Moment problem

We prove in this section that the moment problem encountered in Chapter 5 is solvable. We refer to [START_REF] Beauchard | Local controllability of linear and nonlinear Schrödinger equations with bilinear control[END_REF]Appendix B] for further details on Riesz basis and minimal families.

Let us introduce the space Proof. Let us set, according to the statement, ω -n := ω n , for any n ∈ N. Then, define the family F := e iωnt ; n ∈ Z . We shall proceed in several steps.

Step 1: We prove that F is a Riesz basis of H 0 := Adh L 2 (0,T ) (spanF).

Let us consider D + the upper density of the sequence (ω n ) n∈Z , i.e,

where n + (r) is the largest number of elements of (ω n ) belonging to an interval of length r > 0.

Let us observe that the Beurling's theorem (see [ La première partie de cette thèse est consacrée à l'étude de la contrôlabilité de quelques équations cinétiques dans différents régimes. Dans un régime collisionnel, nous étudions la contrôlabilité de l'équation de Kolmogorov, un modèle de type Fokker-Planck cinétique, posée dans l'espace de phases R d ×R d . Nous obtenons la contrôlabilité à zéro de cette équation grâce à l'utilisation d'une inégalité spectrale associée à l'opérateur Laplacien dans tout l'espace. Dans un régime non-collisionnel, nous étudions la contrôlabilité de deux systèmes de couplage fluide-cinétique, les systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, comportant des non-linéarités dues au terme de couplage. Dans ces cas, l'approche repose sur la méthode du retour.

Dans la deuxième partie nous étudions la contrôlabilité d'une famille d'équations paraboliques dégénérées 1-D par la méthode de platitude, qui permet la constructions de contrôles explicites.

La troisième partie porte sur le problème de la contrôlabilité de l'équation de Schrödinger par la forme du domaine, c'està-dire, en utilisant le domaine comme variable de contrôle. Nous obtenons un résultat de ce type dans le cas du disque unité bidimensionnel. Nos méthodes sont basées sur un résultat de contrôle exact local autour d'une certaine trajectoire, obtenu grâce au théorème d'inversion locale.

Mots clés : contrôlabilité ; modèles cinétiques ; équations paraboliques dégénérées ; équation de Schrödinger.

Controllability of some kinetic equations, parabolic degenerate equations and Schrödinger equations

This memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some Partial Differential Equations.

The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing different regimes. Under a collsional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space R d × R d . We obtain the null-controllability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method.

In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method, which allows the construction of explicit controls.

The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem.