
HAL Id: tel-01498552
https://pastel.hal.science/tel-01498552

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation numérique d’écoulements turbulents de gaz
dense

Luca Sciacovelli

To cite this version:
Luca Sciacovelli. Simulation numérique d’écoulements turbulents de gaz dense. Mécanique des matéri-
aux [physics.class-ph]. Ecole nationale supérieure d’arts et métiers - ENSAM; Politecnico di Bari.
Dipartimento di Ingegneria Meccanica e Gestionale (Italia), 2016. Français. �NNT : 2016ENAM0061�.
�tel-01498552�

https://pastel.hal.science/tel-01498552
https://hal.archives-ouvertes.fr


Doctorat ParisTech

T H È S E
pour obtenir le grade de docteur délivré par

l’École Nationale Supérieure d'Arts et Métiers

Spécialité “mécanique et matériaux”

N°:  2009 ENAM XXXX

 

2016-ENAM-0061

École doctorale n° 432 : Sciences des métiers de l'ingénieur

Arts et Métiers ParisTech - Centre de Paris
Laboratoire Dynfluid - EA 92

présentée et soutenue publiquement par

Luca SCIACOVELLI

le 13 Décembre 2016

Numerical simulation of dense gas turbulent flows 

Directeur de thèse : Paola CINNELLA
Co-Directeur de thèse : Francesco GRASSO

   Co-Directeur de thèse : Michele NAPOLITANO

T

H

È

S

E

Jury 
M. Pierre SAGAUT, Professeur, Université d'Aix-Marseille Président
M. Christophe CORRE, Professeur, École Centrale de Lyon Rapporteur
M. Jörn SESTERHENN, Professeur, Technische Universität Berlin Rapporteur
M. Paola CINNELLA, Professeur, Arts et Métiers ParisTech Examinateur
M. Francesco GRASSO, Professeur, Conservatoire National des Arts et Métiers Examinateur
M. Michele NAPOLITANO, Professeur, Politecnico di Bari Examinateur
M. Rene PECNIK, Professeur, Delft University of Technology Examinateur



 

 

*Thèse en cotutelle entre Arts et Métiers ParisTech et le Politecnico di Bari (Italie), 
co-financé par une bourse Vinci pour la mobilité de l’Université Franco-Italienne

présentée et soutenue publiquement par

Luca SCIACOVELLI

le 13 Décembre 2016

Numerical simulation of dense gas turbulent flows*

Doctorat ParisTech

T H È S E
pour obtenir le grade de docteur délivré par

l’École Nationale Supérieure d'Arts et Métiers

Spécialité “mécanique et matériaux”

Directeur de thèse : Paola CINNELLA
Co-encadrement de la thèse :  Francesco GRASSO

Co-encadrement de la thèse :  Michele NAPOLITANO



Contents

Contents i

List of Figures iii

List of Tables x

Riassunto esteso 1
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Riassunto esteso

Introduzione

La comprensione fisica della dinamica della turbolenza nei flussi di gas denso è rilevante per molti
sistemi ingegneristici come, ad esempio, gallerie del vento ad alto numero di Reynolds (Anderson,
1991), processi e trasporto di sostanze chimiche (Kirillov, 2004), cicli per produzione e conversione
d’energia (Brown & Argrow, 2000) e refrigerazione (Zamfirescu & Dincer, 2009). Con il termine
gas denso (DG) ci si riferisce a fluidi monofase con complessità molecolare tale che la derivata

fondamentale della gasdinamica Γ := 1 + ρ
c
∂c
∂ρ

∣∣∣
s

(dove ρ è la densità, p la pressione, s l’entropia e

c la velocità del suono), che misura il tasso di variazione della velocità del suono in trasformazioni
isentropiche, è minore di uno (o addirittura negativa, Thompson, 1971) in un determinato intervallo
di condizioni termodinamiche prossime alla curva di saturazione. In tali condizioni, la velocità del
suono aumenta nelle espansioni isentropiche e diminuisce nelle compressioni isentropiche, contrari-
amente a ciò che accade nei classici casi di gas perfetto. I gas densi esibiscono i fenomeni più
interessanti per una famiglia di composti pesanti poliatomici, chiamata fluidi di Bethe–Zel’dovich–
Thompson (BZT, Thompson, 1971): tali fluidi esibiscono una regione termodinamica nella fase
vapore, prossima alla curva di coesistenza liquido/vapore e chiamata “zona di inversione” Cramer
& Kluwick (1984), in cui il valore di Γ è negativo. In queste condizioni, la teoria prevede la creazione
di effetti di comprimibilità non classici in regime di flussi transonici o supersonici, come ad esempio
urti di espansione, onde miste (urto/fascio), o decomposizione dell’urto (Cramer & Kluwick, 1984;
Cramer, 1991a). Inoltre, la variazione d’entropia attraverso un urto debole è molto inferiore per gas
densi con Γ << 1 rispetto al gas perfetto, portando a perdite d’urto ridotte. Solitamente, le simu-
lazioni numeriche di flussi di gas denso di interesse ingegneristico sono basate sulle ben conosciute
equazioni RANS (Reynolds-Averaged Navier–Stokes equations), che necessitano di essere accoppi-
ate con un idoneo modello per il tensore degli stress di Reynolds. L’accuratezza dei modelli RANS
per flussi di gas denso non è stata propriamente verificata finora, a causa della mancanza di dati di
riferimento sperimentali e numerici. La creazione di una banca dati di simulazioni numeriche dirette
(DNS) completa e affidabile è dunque necessaria per quantificare le eventuali carenze dei modelli
di turbolenza esistenti e per sviluppare e calibrare modelli migliorati. In aggiunta, le simulazioni
DNS possono permettere lo studio e la comprensione dell’influenza dei fluidi in uso sull’evoluzione
della turbolenza comprimibile. Per i gas densi, infatti, il modello di gas perfetto (PFG) perde la
sua validità e si rende necessario l’utilizzo di equazioni di stato (EoS) più complesse per prendere
in conto il loro insolito comportamento termodinamico. Inoltre, in regime di gas denso la viscosità
dinamica µ e la conduttività termica κ dipendono, oltre che dalla temperatura, anche dalla densità
tramite complesse relazioni di trasporto. Analogamente, l’approssimazione di numero di Prandtl
(Pr = µcp/κ, dove cp è il calore specifico a pressione costante) quasi costante non è più valida. In
questo riassunto esteso verranno presentati recenti risultati DNS relativi a due classiche configu-
razioni di flussi turbolenti, ossia il decadimento della turbolenza omogenea isotropa comprimibile
(CHIT), e il flusso turbolento attraverso un canale piano (TCF), rispettivamente rappresentativi di
turbolenza libera e confinata da pareti, e saranno sottolineati le principali differenze rispetto alla
più classica turbolenza di gas perfetto.
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Table 0.1. Proprietà termofisiche del PP11: peso molecolare (M), temperatura critica (Tc), densità critica
(ρc), pressione critica (pc), fattore di comprimibilità critico (Zc), fattore acentrico (ωac), momento di dipolo
della fase gassosa (ξ), temperatura di ebollizione (Tb), rapporto del calore specifico nel limite di gas diluito
valutato alla temperatura critica sulla costante del gas (cv(Tc)/R) e esponente della legge per il calore
specifico nel limite di gas diluito (n).

M Tc ρc pc Zc ωac ξ Teb cv(Tc)/R n

g mol−1 K kg m−3 MPa - - D K - -
624.11 650.2 627.14 1.46 0.2688 0.4963 0.0 488.15 97.3 0.5776

Equazioni di governo e metodo numerico

In questo studio si restringe l’attenzione su flussi di gas in regime monofase governati dalle equazioni
di Navier–Stokes tridimensionali comprimibili. Il comportamento del gas è modellato tramite
l’equazione termica di Martin–Hou (MAH, Martin & Hou, 1955), che fornisce una descrizione re-
alistica del gas e dell’estensione della sua zona di inversione. Tale equazione, che implica l’utilizzo
di cinque termini viriali e il soddisfacimento di dieci vincoli termodinamici, è ragionevolmente ac-
curata per il fluido di interesse e richiede una quantità minima di informazioni sperimentali. Per
modellare le variazioni del calore specifico nel limite di gas ideale con la temperatura, si utilizza
una legge esponenziale del tipo cv∞ = cv∞(Tc)(T/Tc)

n, dove n è un parametro dipendente dal flu-
ido considerato. In aggiunta alla EoS, occorre specificare dei modelli termofisici per esprimere la
viscosità dinamica e la conduttività termica alla temperatura e pressione del gas. Nelle seguenti sim-
ulazioni, le proprietà di trasporto seguono il modello di Chung-Lee-Starling (Chung et al., 1988),
che contiene un termine di correzione per la regione di gas denso. Per i casi di aria, il classico
modello di gas perfetto politropico è usato con una legge esponenziale nella temperatura per la
viscosità, µ = µref(T/Tref)

0.7, e un’assunzione di Prandtl costante, Pr = 0.7. Il fluido di lavoro è il
perfluoro-perhydrophenanthrene (formula chimica C14F24), chiamato da qui in avanti col suo nome
commerciale PP11. Le proprietà termodinamiche del PP11 sono fornite in tabella 0.1. Questo
fluido è stato spesso considerato negli studi sui gas densi in letteratura poichè esibisce una zona di
inversione relativamente ampia e, di conseguenza, può portare all’apparizione di effetti non classici.

Le derivate spaziali nelle equazioni di governo sono approssimate per mezzo di schemi alle dif-
ferenze finite ottimizzati. In particolare, i termini convettivi sono approssimati con differenze finite
ottimizzate al quarto ordine con una molecola di calcolo su undici punti per ogni direzione (Bogey &
Bailly, 2004), e i termini viscosi con differenze finite standard al quarto ordine centrate. L’algoritmo
prevede anche l’uso di un filtro selettivo al sesto ordine ottimizzato su undici punti, applicato in
ogni direzione al fine di rimuovere le oscillazioni maglia a maglia nelle regioni di flusso senza discon-
tinuità. Per assicurare robustezza numerica per flussi comprimibili in presenza di shock, si impiega
una strategia basata sul filtraggio adattativo selettivo non lineare (Bogey et al., 2009). In ultimo,
l’integrazione temporale è effettuata tramite uno schema di tipo Runge-Kutta a sei passi a basso
stoccaggio, ottimizzato nello spazio delle frequenze.

Decadimento della turbolenza omogenea isotropa comprimibile

Il problema del decadimento della turbolenza omogenea isotropa è risolto su un dominio cu-
bico [0, 2π]3, nelle cui tre direzioni cartesiane si impone una condizione al contorno di period-
icità. Lo spettro dell’energia cinetica turbolenta iniziale è del tipo Passot-Pouquet, ossia E(k) =

Ak4 exp
[
−2 (k/k0)2

]
, dove k0 è il numero d’onda di picco e A è una costante che dipende dalla
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Figure 0.1. Risultati sul decadimento della CHIT. Evoluzioni temporali del numero di Mach turbo-
lento Mt per vari Mt0 (a). Pannelli da (b) a (d): temperatura media normalizzata T/T0, viscosità
normalizzata µ/µ0 ed enstrofia normalizzata Ω/Ω0 a Mt0 = 1. : Aria; : PP11 IC1;

: PP11 IC2.

quantità iniziale di energia cinetica immessa nel dominio. Il campo iniziale di velocità è puramente
solenoidale e gli r.m.s. delle variabili termodinamiche sono fissati a zero. Il decadimento della

turbolenza comprimibile è governato dal numero di Mach turbolento Mt =

√
u2
i /c e dal numero di

Reynolds Reλ = u′λρ/µ, basato sulla microscala di Taylor λ. Si è effettuata una serie di simulazioni
numeriche dirette di CHIT di gas denso per diversi valori del numero di Mach turbolento iniziale,
cioè Mt0 = 0.2, 0.5, 0.8 e 1. Il numero di Reynolds iniziale è fissato a Reλ = 200 e il numero d’onda
di picco iniziale k0 è uguale a 2 per tutte le simulazioni. Il decadimento è simulato sino a t = 4
(essendo t una scala di tempo adimensionalizzata rispetto al large eddy turnover time iniziale).
Tutte le simulazioni sono state effettuate su una griglia regolare cartesiana di 5123. Nei casi più
severi (cioè per Mt0 = 1), la più piccola scala adimensionale risolta kmaxη (con kmax il numero
d’onda più grande e η = (µ3/ρ2ε)1/4 la scala di lunghezza di Kolmogorov, Jagannathan & Donzis,
2016) è sempre maggiore di ≈ 6.5 − 7, e la scala di Kolmogorov è discretizzata con almeno due
punti di griglia, assicurando una soddisfacente risoluzione in tutti i casi.

Le simulazioni di gas denso sono riportate per due differenti condizioni dello stato termodinam-
ico iniziale, corrispondenti ad un punto nella regione di gas denso (ρ0/ρc = 1.618, p0/pc = 1.02,
T0/Tc = 1.01, Γ0 = 0.1252, condizione IC1) ed una nella zona di inversione (ρ0/ρc = 1.618,
p0/pc = 0.98, T0/Tc = 1.001, Γ0 = −0.093, condizione IC2), per cui il flusso può esibire effetti
BZT. Poichè l’entropia può solo aumentare durante l’evoluzione, nessun effetto BZT può apparire
per la prima scelta di condizioni termodinamiche. I risultati sono sistematicamente confrontati con
quelli per un gas perfetto diatomico (aria). Gli effetti di comprimibilità sono analizzati compara-
ndo le evoluzioni temporale delle principali statistiche del flusso per le simulazioni con aria e gas
denso a vari Mt0 (figura 0.1a). Le soluzioni PFG e DG sono praticamente sovrapposte a Mt0 = 0.2
e deviano progressivamente con l’aumento di Mt0 , a causa della differente compressibilità e delle
proprietà di trasporto dei due fluidi. Per brevità, in seguito l’analisi è ristretta al caso più rap-
presentativo, cioè Mt0 = 1. La temperatura media (figura 0.1b) aumenta significativamente col
tempo per PFG, e la viscosità (figura 0.1c) ha lo stesso comportamento. Al contrario, per i casi
DG la temperatura rimane approssimativamente costante a causa dei ben più alti calori specifici,
e l’evoluzione temporale della viscosità (che dipende dalle variazioni di densità) mostra un picco
all’inizio del decadimento per poi diminuire, comportandosi in modo opposto al PFG. L’energia
cinetica turbolenta normalizzata K/K0 (non mostrata per brevità) e l’enstrofia Ω/Ω0 (figura 0.1d)
sono simili per PFG e DG. Si osserva un picco di enstrofia per t ≈ 1.4 − 1.5, che è leggermente
superiore per il gas denso, a causa della viscosità media più bassa rispetto all’aria. L’evoluzione
delle principali statistiche è molto simile per le due condizioni IC1 e IC2 scelte per il gas denso.

Le evoluzioni temporali della quantità termodinamiche fluttuanti sono mostrate in figura 0.2 (rigo
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superiore). Il rapporto istantaneo tra densità massima e minima aumenta durante la fase iniziale
supersonica, guidata dal meccanismo di vortex stretching e caratterizzata dalla produzione di forti
gradienti di velocità, raggiungendo un massimo per un tempo adimensionale compreso tra 1 e 2.
Per il gas denso, il valore massimo è comunque circa 2.5 volte inferiore a quello di gas perfetto, a
causa della formazione di shocklet più deboli. Successivamente il rapporto diminuisce ed entrambi i
fluidi esibiscono un comportamento simile. Analogamente, le fluttuazioni di pressione (figura 0.2b)
nel gas denso sono circa 5 volte inferiori per il PP11, indipendentemente dalla scelta dello stato
termodinamico iniziale. Gli r.m.s. della velocità del suono, invece, sono più alti in gas denso. Per
tale fluido, infatti c = c(ρ, T ) segue essenzialmente le variazioni di densità (essendo la temperatura
circa costante per tutto il decadimento). Tale comportamento è profondamente differente da quello
osservato in gas perfetto, per cui la velocità del suono aumenta a causa del riscaldamento per attrito.
Le evoluzioni temporali del valore medio ed r.m.s. della derivata fondamental della gasdinamica
sono anche riportate per il PP11 per varie condizioni iniziali. Il valore medio Γ (figura 0.2d) segue
le variazioni di densità. Sia per IC1 che IC2, lo sviluppo iniziale dei modi comprimibili aumenta il
Γ medio, che rimane comunque sotto 1 durante l’intera evoluzione (implicando che la velocità del
suono tende a decrescere nelle regioni di compressione) e poi diminuisce. Le fluttuazioni r.m.s. di Γ
arrivano circa ad 1 a t ≈ 1; ciò significa che, per flussi ad alto numero di Mach, i valori puntuali di
Γ sono ampiamente distribuiti attorno al valore medio e possono essere localmente molto più alti
di 1 o, per IC2, più bassi di 0. Nonostante il differente comportamento locale di Γ, le statistiche
macroscopiche del flusso sono poco influenzate e tendono a comportarsi similmente per entrambi
le condizioni iniziali.
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Figure 0.2. CHIT a Mt0 = 1. Da (a) a (c): evoluzioni temporali del rapporto tra densità massima e

minima ρmax/ρmin, r.m.s. della pressione

√
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t,0 al tempo adimensionale t = 2. Legenda come in figura 0.1.
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La figura 0.3 mostra la distribuzione degli stati termodinamici del flusso nel diagramma di Clapey-
ron al tempo t = 2, per la condizione IC1 a vari Mt0 e per IC2 a Mt0 = 1. Tutti gli stati tendono
ad essere distribuiti lungo l’isentropica iniziale, essendo la viscosità e le perdite d’urto basse. La
regione termodinamica spazzata dagli stati p− v durante il decadimento aumentano all’aumentare
di Mt0 . Per Mt0 = 1, il piccolo cambio delle condizioni termodinamiche iniziali cambia drastica-
mente la pressione massima raggiunta. Il volume specifico, infatti, è limitato inferiormente (limite
superiore per la densità, rispettivamente) dal valore corrispondente alla transizione liquido/gas,
quando il flusso è sottoposto a forti compressioni, D’altra parte, le forti espansioni sono favorite dal
comportamento di gas denso, poichè la velocità del suono aumenta e la comprimibilità diminuisce.
Le regioni a differente dilatazione sono classificate in base al livello locale di dilatazione normaliz-
zata θ/

√
θ′2M2

t0 (Sciacovelli et al., 2016a). In particolare, regioni con 0 < |θ/
√
θ′2M2

t0 | < 2 sono

catalogate come deboli espansioni/compressioni, mentre |θ/
√
θ′2M2

t0 | > 2 denota forti moti di es-
pansione/compressione. Inoltre, comunemente si considera che si possono ottenere shocklets per
θ/
√
θ′2M2

t0 < −3 (Samtaney et al., 2001). Le differenze nel diagramma di Clapeyron sono con-
fermate dalla funzione di densità di probabilità (p.d.f.) della dilatazione normalizzata mostrata
in figura 0.2f. Il gas denso esibisce una p.d.f. ben più simmetrica rispetto al gas perfetto, che è
caratterizzata da una lunga coda sinistra, in accordo con risultati simili in letteratura (Wang et al.,
2012b). Il maggior bilanciamento tra le code destra e sinistra della p.d.f. nei casi di gas denso sono
dovute al significativo indebolimento o soppressione degli shock di compressione nelle regioni dove Γ
è prossima o inferiore a zero; d’altra parte, le espansioni sono favorite, portando ad una coda destra
più pesante. Tale comportamento è più evidente per IC2, a causa della possibilità dell’esistenza di
effetti BZT che portano alla comparsa di shocklet di espansione. A t = 2, approssimativamente la
metà dell’intero volume è caratterizzato da stati termodinamici racchiusi all’interno della zona di
inversione. Tra questi stati, circa il 36% consistono in regioni di debole dilatazione e circa il 6% di
regione di forte espansione. Globalmente, le forti compressioni diminuiscono dal 3% al 2% mentre
le forti espansioni aumentano da 1.7% a 2.6%.
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Figure 0.3. Distribuzione degli stati termodinamici nel diagramma di Clapeyron per il PP11 a t = 2
per differenti valori di Mt0 e delle condizioni termodinamiche iniziali, con isovalori della velocità
del suono normalizzata. I simboli bianchi denotano le condizioni iniziali: PP11 IC1, PP11 IC2.
Per la condizione IC1: Mt0 = 0.5, Mt0 = 0.8, Mt0 = 1. Per la condizione IC2: Mt0 = 1.
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Flusso in un canale piano supersonico turbolento

In tale sezione si analizza nel dettaglio la configurazione di fluso attraverso un canale piano su-
personic turbolento (TCF). Condizioni periodiche sono imposte nelle direzioni streamwise (x) e
spanwise (z), mentre sulle pareti superiore ed inferiore si applicano condizioni di no-slip con tem-
peratura costante. Al fine di controbilanciare l’attrito viscoso e mantenere una portata massica
costante, una forza di volume costante è applicata nella direzione streamwise (Gerolymos & Vallet,
2014). Nel seguito, i pedici (·)B, (·)w e (·)cl denotano valori mediati nel tempo e nello spazio (sulla
sezione trasversale del canale), alla parete ed al centro del canale, rispettivamente; (·) indica una

media di Reynolds e (·)′ la fluttuazione di Reynolds; analogamente, (̃·) e (·)′′ denotano media e
fluttuazione di Favre. Le condizioni del flusso sono definite imponendo il numero di Reynolds bulk
ReB := ρB ũBh

µw
, e il numero di Mach bulk MB := ũB

cw
. Poiché alle pareti si applicano condizioni

isoterme, si ha Tw = Tw =const. Per il modello di PFG, fissare una temperatura di parete permette
di fissare conseguentemente la velocità del suono e le proprietà di trasporto a parete. Per i casi
di gas denso, queste quantità dipendono sia dalla temperatura che dalla densità, e dunque i loro
valori cambiano durante la simulazioni poiché ρw non può essere fissata a priori. Per tale ragione,
bisogna utilizzare un procedimento iterativo al fine di ottenere i numeri di Reynolds e Mach pre-
scritti. E’ stato effettuato uno studio parametrico per vari numeri di Reynolds (ReB = 3000, 7000
e 12000) e per due numeri di Mach (MB = 1.5 e 3.0). Il dominio computazionale ha dimensioni
Lx × Ly × Lz = 8πh × 2h × 2πh (essendo h la semi altezza del canale); le griglie computazionali
selezionate assicurano una risoluzione spaziale comparabile ad altre DNS di TCF (Coleman et al.,
1995; Huang et al., 1995; Lechner et al., 2001; Foysi et al., 2004; Gerolymos & Vallet, 2014), ossia
∆x∗ ∈ [5, 16], ∆y∗w ∈ [0.5, 0.8], ∆y∗cl ∈ [2, 6], ∆z∗ ∈ [2, 6]. Il numero di punti di griglia totale varia
tra 3.3 · 107 e 1.2 · 109 per i differenti casi. I principali parametri numerici e i risultati globali delle
DNS sono riassunti nella tabella 0.2. Le quantità asteriscate si riferiscono allo scaling semi-locale
inizialmente proposto da Huang et al. (1995) per flussi comprimibili, che corregge il classico scaling

di parete con quantità valutate localmente. In particolare, y∗ = ρ(y)u∗τy
µ(y) e Re∗τ = Reτ

√
ρcl
ρw

µw
µcl

, con

u∗τ :=
√

τw
ρ(y) la velocità d’attrito semi-locale. Tale scaling misto (recentemente analizzato in Patel

et al., 2015)) ha dimostrato di fornire risultati piuttosto soddisfacenti nello scalare i momenti del
primo e del secondo ordine (Foysi et al., 2004) ottenuti per un ampio range di MB. Ricordiamo
che in caso di un flusso incomprimibile, Re∗τ = Reτ .

La figura 0.4 mostra i profili della velocità longitudinale trasformata alla Van-Driest in funzione
dello scaling parietale. La velocità di Van-Driest è introdotta in letteratura per migliorare lo scaling
nel buffer layer e nella regione esterna degli strati limiti comprimibili prendendo in considerazione
le variazioni della densità media. Nonostante il considerevole miglioramento ottenuto rispetto
al classico scaling incomprimibile (con la velocità d’attrito uτ ), i profili si scostano dalla legge
logaritmica incomprimibile (ln y+)/0.4 + 5.5 all’aumentare del MB. Al contario, per il PP11 si
ottengono risultati piuttosto soddisfacenti per tutti i numeri di Mach considerati. Ciò conferma
che il gas denso tende a comportarsi similmente ad un liquido con proprietà variabili. Per aria,
la temperatura media T̃+ aumenta rapidamente con MB a causa dell’importante riscaldamento
da attrito, in particolare per il più basso ReB (pannello b). Per il PP11, a causa degli alti calori
specifici del fluido T̃+ è circa costante in tutto il canale per tutte le scelte di numeri di Mach
e Reynolds (pannello f), e la temperatura alla mezzeria del canale differisce di meno del 1% da
T̃w. Il disaccoppiamento degli effetti termici e dinamici nel gas denso porta a minori variazioni di
densità nel canale. Per l’aria, la densità al centro del canale è fino al 60% inferiore rispetto a ρw (per
MB = 3) mentre per il PP11 si osservano variazioni al di sotto del 20%. I pannelli (c) e (d) mostrano
i profili della viscosità normalizzata µ/µw. Tale quantità segue le variazioni di temperatura per
aria, cos̀ı che µcl/µw ≈ 2 per il caso AM3R3. Per il PP11, la viscosità mostra un comportamento
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Table 0.2. Parametri numerici e risultati delle DNS per i casi di aria e PP11.

air PP11

MB 1.50 3.0 1.50 3.0
ReB 3000 7000 7000 12000 3000 7000 7000 12000

Name AM1R3 AM1R7 AM3R7 AM3R12 PM1R3 PM1R7 PM3R7 PM3R12
Line
Nx 512 768 1024 1536 512 768 768 1280
Ny 256 384 512 768 256 384 384 768
Nz 256 512 768 1024 256 512 512 1024
Reτ 218.7 466.5 627 1017 191.3 401.6 425.1 692.8
Re∗τ 147.1 314.8 199.7 324.7 196.4 412.1 492.1 800.2
∆x∗c 7.2 10.3 4.9 5.3 9.7 13.5 16.1 15.7
∆z∗c 3.6 5.7 1.6 2.0 4.8 5.1 6.1 4.9
∆y∗c,w 0.52 0.79 0.25 0.26 0.79 0.66 0.79 0.8

∆y∗cl 2.2 5.5 1.8 2.0 2.7 5.0 6.0 4.3

M cl 1.5 1.47 2.18 2.16 1.62 1.60 2.61 2.58

Recl 2740 6319 4035 6903 3659 8423 10256 17635

T cl/Tw 1.39 1.39 2.59 2.58 1.00 1.00 1.01 1.01
ρw/ρB 1.36 1.37 2.49 2.51 1.05 1.05 1.25 1.25
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Figure 0.4. Da sinistra a destra: trasformazione di Van-Driest della velocità (uV D) in funzione di

y+, profili di temperatura e densità normalizzati rispetto ai valori a parete (T
+

e ρ+) in funzione
di y∗, viscosità normalizzata (µ/µw), e numero di Reynolds d’attrito semi-locale (Re∗τ ) in funzione
di y∗. Linea superiore: aria; linea inferiore: PP11. Legenda come in tabella 0.2.

simile al liquido per le condizioni termodinamiche considerate e assume valori inferiori in mezzeria.
Differentemente dai liquidi, comunque, ciò non è dovuto all’aumento della temperatura, ma alla
diminuizione della densità. Tale differenze motivano il comportamento opposto del numero di
Reynolds d’attrito per i due fluidi (pannelli d e h). Per l’aria, Re∗τ diminuisce rapidamente fino al
buffer layer e più lentamente fino in mezzeria. Per un datoReB, numeri di Mach più alti aumentano i
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gradienti di temperatura portando ad una caduta del Re∗τ nell’inner layer. Per il PP11, Re∗τ aumenta
monotonicamente fino al buffer layer; in seguito, il suo valore è approssimativemente costante. Gli
effetti di gas denso diventano più evidenti per alti MB, poiché gli stati termodinamici locali sono
distribuiti su un range più ampio. In generale, si ottiene Re∗τ < Reτ per l’aria (comportamento
di tipo gas) e Re∗τ > Reτ per il PP11 (comportamento di tipo liquido). Nella regione parietale,
Re∗τ è ≈ 20% inferiore per il PP11 (comportando un coefficiente d’attrito minore), mentre è fino
a due volte più alto al centro del canale, che è quindi caratterizzato da strutture turbolente in
proporzione più piccole. Nonostante il comportamento di tipo liquido di alcune properità di gas
denso, gli effetti di comprimibilità non sono soppressi. Al contrario, Il numero di Mach in mezzeria
è da 20 a 30% più alto nel gas denso rispetto all’aria, per la quale il riscaldamento per attrito riduce
il numero di Mach local rispetto al numero di Mach bulk.

La distribuzione degli stati termodinamici p − v per il caso PM3R12 è riportata in figura 0.5 in
funzione della distanza da parete in scaling semi-locale. Nel diagramma sono rappresentati gli
isovalori del numero di Prandtl locale. Muovendosi dalla parete alla mezzeria, gli stati spazzano
una regione termodinamica più piccola, mentre l’entropia media tende ad aumentare. Si osserva
che, poichè il flusso non attraversa mai la linea di transizione, non si possono registrare effetti
BZT. Inoltre, il numero di Mach turbolento massimo, approssimativamente 0.5 nel buffer layer,
è abbastanza basso da poter trascurare l’influenza della comprimibilità sulla turbolenza. D’altra
parte, il numero di Prandtl subice variazioni importanti (in particolare nella regione di parete), per
cui la classica assunzione di Prandtl costante si rivela piuttosto inaccurata per predirre la giusta
evoluzione di flussi di gas denso caratterizzata da una temperatura di parete prossima a quella
critica.

La figura 0.6 mostra gli r.m.s. di densità, delle tensioni di Reynolds e della tensione di shear

ρu′′i u
′′
j

+
= τ−1

w ρu′′i u
′′
j in scaling semi-locale, e il rapporto tra la produzione e la dissipazione di energia

cinetica turbolenta. I profili degli r.m.s. di densita per il gas denso ed il gas perfetto (pannelli a
ed e) mostrano delle importanti differenze. Alcuni risultati presenti in letteratura (Gerolymos

& Vallet, 2014) hanno mostrato che per casi di aria, O(T
−1
√
T ′2) = O(ρ−1

√
ρ′2) = O(p−1

√
p′2),

indipendentemente dalla coordinata y∗ e dai numeri di Mach e Reynolds. Lo stesso comportamento
è stato osservato nella turbolenza omogenea isotropa, sia forzata (Donzis & Jagannathan, 2013)
che libera. I risultati correnti per aria sono in accordo con la letteratura; la densità r.m.s. e

v/vc

p
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Figure 0.5. Distribuzione degli stati termodinamici istantanei nel diagramma di Clapeyron per
il caso PM3R12 (fluido PP11) per differenti distanze dalla parete, con isocontours del numero di
Prandtl Pr. : y∗ ≈ 10, : y∗ ≈ 50, : y∗ ≈ 800 (mezzeria).
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Figure 0.6. Da sinistra a destra: profili y∗ dei valori r.m.s. della densità (

√
ρ′2/ρ), tensioni di

Reynolds normali (ρu′′i u
′′
i

+
) e di taglio (ρu′′v′′

+
) e rapporto produzione su dissipazione dell’energia

cinetica turbolenta (Pk/εk − 1). Rigo superiore: aria; rigo inferiore: PP11. Legenda come in
tabella 0.2.

le fluttuazioni di temperatura sono più alte nel buffer layer, con un picco localizzato a y∗ ≈ 10,
mentre le fluttuazioni di pressione (non mostrate) sono approssimativamente costanti fino alla
zona logaritmica. Per il PP11, le fluttuazioni relative di densità e pressione sono dello stesso
ordine di quelle ottenute per flussi d’aria, mentre le fluttuazioni di temperatura (non riportate)
sono quasi due ordini di grandezza inferiori. Nonostante ciò, ρ′2 diminuisce monotonicamente
dalla parete in mezziera, come suggerito dalla dispersione inferiore degli stati p − v), rimanendo
approssimativamente costante nella zona logaritmica. Tale comportamento è dovuto al fatto che,
poiché la densità media diminuisce con la coordinata normale alla parete, la comprimibilità del
fluido è inferiore (essendo lo stato termodinamico medio più lontano dalla regione critica) e le
fluttuazioni di densità diminuiscono. In media, le fluttuazioni relative di densità sono più piccole
di quelle osservate per aria a MB = 1.5, mentre si ottiene il risultato opposto per MB = 3. In
altri termini, le fluttuazioni di densità crescono più rapidamente con MB nel PP11 rispetto all’aria.
L’ipotesi di Morkovin resta tuttavia valida, anche per il numero di Mach più alto.

Nonostante le importanti differenze nel comportamento termodinamico, i profili degli stress di
Reynolds sono simili per entrambi i fluidi. In particolare, i profili di gas denso sono simili a quelli
osservati in altri studi di TCF a basso Mach con proprietà di trasporto variabili (Patel et al., 2015).
Il comportamento di tipo liquido della viscosità porta ad un aumento degli stress di Reynolds in
direzione trasversale al flusso e normale alla parete e degli stress di shear, rispetto alla corrispon-
dente evoluzione incomprimibile, mentre le tensioni in direzione longitudinale diminuiscono, e tale
comportamento è tanto più evidente quando più alto è il numero di Mach (pannelli f e g). Si osserva
l’evoluzione opposta per l’aria (pannelli b e c). Ad esempio, il caso AM1R7 (Re∗τ ≈ 315) è carat-
terizzato da un numero di Reynolds semi-locale più alto del caso AM3R7 (Re∗τ ≈ 200); tuttavia,
essendo la viscosità (che dipende unicamente dalla temperatura) molto più alta nell’intero canale
per l’ultimo caso, ρv′′v′′, ρw′′w′′ e ρu′′v′′ sono più basse rispetto al caso AM1R7.

Infine, i pannelli d e h mostrano i profili del rapporto dei termini di produzione e dissipazione Pk/εk
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del budget di energia cinetica turbolenta. Lo scaling semi-locale, costruito con τ2
w/µ(y), fornisce

risultati ben migliori dello scaling con variabili bulk (Lechner et al., 2001) τwuB/h e dello scaling
parietale ρwu

4
τ/νw. Studi precedenti (Sarkar, 1995) hanno sottolineato che l’effetto principale della

comprimibilità è una riduzione sia di produzione che di dissipazione dell’energia cinetica turbolenta;
tale comportamento è confermato per entrambi i fluidi. Tutti i casi di aria e PP11 esibiscono il
classico picco di produzione nell’inner region, collocato approssimativamente a y∗ ≈ 12. Per il
caso di PP11 a Reynolds più alto, un secondo picco di produzione è osservato nell’outer region,
analogamente ai flussi incomprimibili ad alto Re. Ciò è dovuto al comportamento di tipo liquido
della viscosità nel PP11, che porta a valori di dissipazione inferiori avvicinandosi verso la mezzeria
del canale.

Conclusioni

In questo lavoro si sono effettuate simulazioni numeriche dirette del decadimento della turbolenza
omogenea isotropa comprimibile (CHIT) e di flussi di canale piano turbolento supersonico (TCF)
di gas denso. Per entrambi le configurazioni si sono effettuati studi parametrici rispetto ai numeri
di Mach e Reynolds caratteristici del problema. I risultati sono stati sistematicamente confrontati
a quelli ottenuti con aria. Nelle simulazioni di CHIT si sono osservate importanti differenze per
flussi con alti numeri di Mach turbolento iniziale. I trend differenti per i valori r.m.s. delle quantità
termodinamiche e delle proprietà di trasporto modificano significativamente l’evoluzione della tur-
bolenza. Nel gas denso, gli effetti di comprimibilità, e specificatamente gli eddy shocklets, sono più
deboli. Si osserva inoltre una tendenza alla simmetrizzazione della p.d.f. della divergenza della ve-
locità normalizzata, a causa dell’indebolimento degli shocklets di compressione e all’intensificazione
delle onde di rarefazione, portando alla possibile formazione di eddy shocklets di rarefazione per
fluidi BZT in idonee condizioni di funzionamento. Per il TCF, il classico scaling y+ basato sulla
velocità d’attrito si rivela non idoneo per sovrapporre i profili delle grandezze termodinamiche e
le tensioni di Reynolds quando alti MB vengono considerati, e dunque bisogna utilizzare scaling
che prendano in conto le variazioni delle proprietà del fluido. Lo scaling semi-locale, basato su un
misto di quantità termodinamiche a parete e locali, si rivela la scelta più idonea per le tensioni di
Reynolds ed i singoli termini dell’equazione dell’energia cinetica turbolenta. Tuttavia, il numero
di Mach turbolento massimo raggiunto è approssimativamente 0.5, nonostante l’elevato valore del
numero di Mach bulk, e dunque la struttura della turbolenza è poco influenzata dagli effetti di
comprimibilità. Inoltre, l’accoppiamento tra il campo cinetico e termico è molto piccolo per fluidi
densi caratterizzati da elevati valori dei calori specifici, contrariamente all’aria che invece subisce
un significativo riscaldamento per attrito, tipico di flussi altamente comprimibili. Per tali ragioni,
per il PP11 molte delle quantità di interesse seguono un’evoluzione simile a quella osservata in tur-
bolenza incomprimibile. Per le condizioni termodinamiche di riferimento considerate, le proprietà
di trasporto hanno un comportamento simile al liquido e i numeri di Reynolds reali si rivelano essere
molto più alti rispetto ai casi di aria. Ovviamente, la comprimibilità può diventare importante se
numeri di Reynolds e Mach più elevati fossero considerati.
Le simulazioni numeriche riportate nella tesi sono state effettuate per il PP11, ma alcune simulazioni
preliminari sono state effettuate per altri perfluorocarburi (come ad esempio il PP9 ed il PP10) che
hanno mostrato un comportamento simile. Alcune analisi preliminari sono state fatte anche per dei
silossani (in particolare, D5 e D6) e dei refrigeranti (R245fa e R134a). Si ricorda anche che alcune
simulazioni per un gas BZT modellato con l’equazione di stato di Van der Waals (non riportate
nel sommario ma presenti nella tesi) hanno mostrato un comportamento qualitativamente simile.
Ciò suggerisce che, benchè l’importanza degli effetti di gas denso osservati dipenda dall’estensione
della regione di gas denso per un dato fluido e dalla presenza (o no) di una zona di inversione, ci si
aspetta che il comportamento qualitativo sia simile anche per altri gas densi.



Résumé étendu

Introduction

La compréhension physique de la dynamique de la turbulence pour des écoulements de gaz dense est
importante pour plusieurs domaines en ingénierie, comme les souffleries à haut Reynolds (Anderson,
1991), le transport et le traitement des produits chimiques (Kirillov, 2004), les cycles pour la
conversion d’énergie (Brown & Argrow, 2000) et la réfrigération (Zamfirescu & Dincer, 2009).
Les gaz denses (DG) sont des fluides mono-phases avec une complexité moléculaire telle que la

dérivée fondamentale de la dynamique des gaz Γ := 1 + ρ
c
∂c
∂ρ

∣∣∣
s

(avec ρ la masse volumique, p

la pression, s l’entropie, et c la vitesse du son), qui mesure le taux de variation de la vitesse du
son dans les transformations isentropiques, est inférieure à l’unité (ou même négative, Thompson,
1971) dans une gamme de conditions thermodynamiques proches de la courbe de saturation. Dans
ces conditions, la vitesse du son augmente dans les détentes isentropiques et diminue dans les
compressions isentropiques, contrairement aux gaz parfaits. On s’attend à ce que les gaz denses
montrent les phénomènes les plus intéressants pour une famille de composés polyatomiques lourds,
nommés fluides Bethe–Zel’dovich–Thompson (BZT, Thompson, 1971), qui présentent une région
de valeurs de Γ négatives (appelée “zone d’inversion”, Cramer & Kluwick, 1984) dans la phase
vapeur proche de la courbe de coexistence liquide/vapeur. La théorie prédit que des effets de
compressibilité non classiques peuvent se produire dans les régimes d’écoulements transoniques et
supersoniques, comme par exemple des ondes de choc de raréfaction ou des ondes mixtes choc/fan
(Cramer & Kluwick, 1984; Cramer, 1991a). En plus, le changement d’entropie à travers un choc
faible est beaucoup plus faible que d’habitude pour des gaz denses avec Γ << 1, conduisant à des
pertes de choc réduites.

Les simulations numériques des écoulements turbulents de gaz dense d’intérêt technique sont basées
sur les bien connues équations RANS (Reynolds-Averaged Navier–Stokes equations), qui doivent
être complétées par un modèle pour le tenseur de contraintes de Reynolds. L’exactitude des modèles
RANS pour les écoulements de gaz dense n’a pas été correctement évaluée jusqu’à maintenant, en
raison de l’absence de données de référence expérimentales et numériques. La création de bases
de données DNS fiables et complètes est donc nécessaire pour quantifier les carences des modèles
de turbulence existants et pour développer et étalonner des modèles améliorés. De plus, les sim-
ulations DNS peuvent améliorer notre compréhension des modifications apportées à la turbulence
compressible due au fluide utilisé. En effet, pour les gaz denses, le modèle de gaz parfait (PFG)
n’est plus valable, et des équations d’état plus complexes (EoS) doivent être utilisées pour prendre
en compte leur comportement thermodynamique particulier. En outre, dans le régime de gaz dense,
la viscosité dynamique µ et la conductivité thermique κ dépendent de la température et de la pres-
sion à travers des relations complexes. De même, l’approximation de nombre de Prandtl presque
constant (Pr = µcp/κ ≈ const) n’est plus valide. Dans ce qui suit, nous présentons des résultats
récents de DNS pour la décroissance de la turbulence isotrope homogène compressible (CHIT), et
du canal plan turbulent (TCF), représentant respectivement des exemples de turbulence libre et
pariétale, et nous mettons en évidence les différences les plus frappantes par rapport à la turbulence
des gaz parfaits.

11
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Table 0.1. Propriétés thermophysiques du PP11: poids moléculaire (M), température critique (Tc), densité
critique (ρc), pressure critique (pc), facteur de compressibilité critique (Zc), facteur acentrique (ω), moment
dipolaire (d.m.), température d’ébullition (Tb), rapport de la chaleur spécifique à volume constante sur la
constant du gaz (cv(Tc)/R) évalué à la température critique et exposant de la loi de puissance pour la chaleur
spécifique dans la limite idéale (n).

M Tc ρc pc Zc ωac ξ Teb cv(Tc)/R n

g mol−1 K kg m−3 MPa - - D K - -
624.11 650.2 627.14 1.46 0.2688 0.4963 0.0 488.15 97.3 0.5776

Équations et méthode numérique

Dans cet étude, nous considérons des écoulements de gaz en régime mono-phase, régis par les
équations de Navier-Stokes tridimensionnelles compressibles. Le comportement du gaz est modélisé
par l’équation d’état thermique de Martin–Hou (MAH) (Martin & Hou, 1955), qui fournit une de-
scription réaliste du comportement du gaz et de l’extension de la zone d’inversion. Cette équation,
impliquant cinq termes viriales et satisfaisant dix contraintes thermodynamiques, est raisonnable-
ment précise pour le fluide d’intérêt et requiert un minimum d’informations expérimentales. Une
loi de puissance de type cv∞ = cv∞(Tc)(T/Tc)

n est utilisée pour modéliser les variations de la
chaleur spécifique à basse densité avec la température, où n est un paramètre dépendant du fluide.
En plus de l’EoS, des modèles thermodynamiques reliant la viscosité dynamique et la conductivité
thermique à la température et à la pression du gaz doivent être spécifiés. Dans les calculs suiv-
ants, les propriétés de transport suivent le modèle de Chung-Lee-Starling (Chung et al., 1988), qui
contient un terme de correction pour la région de gaz dense. Pour les cas d’air, le modèle de gaz
parfait polytropique classique est utilisé avec une loi de puissance dépendant de la température
pour la viscosité, µ = µref (T/Tref )0.7, et une hypothèse de Prandtl constant, Pr = 0.7. Le fluide
de travail est le perfluoro-perhydrophénanthrène (formule chimique C14F24), appelé ci-après avec le
nom commercial PP11. Les propriétés thermodynamiques du PP11 sont fournies dans la table 0.1.
Ce fluide a été souvent utilisé dans la littérature de gaz dense car il présente une zone d’inversion
relativement large et peut par conséquent conduire à l’apparition d’effets non classiques.

Les dérivées spatiales dans les équations de Navier–Stokes sont approchées avec des schémas
aux différences finies optimisés. Plus précisément, les termes convectifs sont approximés par des
différences finies optimisées au quatrième ordre avec un stencil à onze points dans chaque direction
de maillage Bogey & Bailly (2004), et les termes visqueux par des différences finies standard au
quatrième ordre centrées. L’algorithme prévoit aussi l’application dans chaque direction d’un filtre
sélectif optimisé de sixième ordre utilisant également un stencil à onze points pour supprimer les
oscillations maille à maille. Afin d’assurer la robustesse du calcul pour les écoulements compress-
ibles avec chocs, une stratégie de filtrage sélectif non linéaire adaptatif est utilisée Bogey et al.
(2009). Enfin, l’intégration temporelle s’effectue au moyen d’un schéma de Runge–Kutta à six pas
à stockage réduit optimisé dans l’espace des fréquences Bogey & Bailly (2004).

Décroissance de la turbulence homogène isotrope compressible

Le problème de la décroissance de la CHIT est résolu sur un domaine cubique de [0, 2π]3. Conditions
aux limites périodiques sont appliquées dans les trois directions cartésiennes. Le spectre d’énergie

cinétique turbulent initial est de type Passot-Pouquet type, i.e., E(k) = Ak4 exp
[
−2 (k/k0)2

]
, où

k0 est le nombre d’onde de pic et A une constante dépendant de la quantité initiale d’énergie
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Figure 0.1. Résultats de la décroissance de CHIT. Évolutions temporelles du nombre de Mach
turbulent Mt pour différents Mt0 (panneau a). (b) à (d): température moyenne normalisée T/T0,
viscosité normalisée µ/µ0 et enstrophie normalisée Ω/Ω0 à Mt0 = 1. : Air; : PP11
IC1; : PP11 IC2.

cinétique injectée. Le champ de vitesse initial est purement solénöıdal et les r.m.s. des variables
thermodynamiques sont fixées à zéro. La décroissance de la turbulence compressible est régie par

le nombre de Mach turbulent Mt =

√
u2
i /c et le nombre de Reynolds Reλ = u′λρ/µ, basé sur la

micro-échelle de Taylor λ. Nous avons réalisé des simulations directes de CHIT de gaz dense à
différents nombres de Mach turbulent initiaux, i.e. Mt0 = 0.2, 0.5, 0.8 et 1. Le nombre de Reynolds
initial est fixé à Reλ = 200 et le nombre d’onde de pic k0 est égal à 2 pour toutes les simulations.
La décroissance est simulée jusqu’à t = 4 (avec t une échelle de temps non dimensionnelle basée sur
le temps initial de rotation des gros tourbillons). Toutes les simulations ont été réalisées sur une
grille cartésienne régulière de 5123. Dans le cas le plus sévère (i.e. Mt0 = 1), la plus petite échelle
non-dimensionnelle résolue kmaxη (étant kmax le nombre d’onde le plus grande et η = (µ3/ρ2ε)1/4

l’échelle spatiale de Kolmogorov, Jagannathan & Donzis, 2016) est toujours supérieure à ≈ 6.5− 7
et la longueur de Kolmogorov est discrétisée au moins sur 2 points de maillage, qui correspond à
une très bonne résolution.

Les simulations de gaz dense sont montrées pour deux choix de l’état thermodynamique initial,
correspondant à un point dans la région de gaz dense (ρ0/ρc = 1.618, p0/pc = 1.02, T0/Tc = 1.01,
Γ0 = 0.1252, appelée IC1) et un à l’intérieur de la zone d’inversion (ρ0/ρc = 1.618, p0/pc = 0.98,
T0/Tc = 1.001, Γ0 = −0, 093, IC2), pour lequel l’écoulement peut présenter des effets BZT. Puisque
l’entropie ne peut qu’augmenter pendant l’évolution, aucun effet BZT ne peut apparâıtre pour le
premier choix des conditions thermodynamiques. Les résultats ont été systématiquement comparés
à ceux d’un gaz diatomique parfait (air). Les effets de compressibilité sont d’abord étudiés en
comparant les évolutions temporelles des statistiques principales de l’écoulement pour les simula-
tions d’air et de gaz dense à divers Mt0 (figure 0.1a). Les solutions PFG et DG sont pratiquement
superposées à Mt0 = 0.2 et s’écartent progressivement au fur et à mesure que Mt0 augmente, en
raison des différentes propriétés de compressibilité et de transport des deux fluides. Nous limitons
notre analyse au cas le plus représentatif, c’est-à-dire Mt0 = 1. La température moyenne (fig-
ure 0.1b) augmente significativement au cours du temps pour PFG, et la viscosité (figure 0.1c) suit
le même comportement. Au contraire, pour les cas DG, la température reste presque constante en
raison de la chaleur spécifique beaucoup plus élevée et l’évolution temporelle de la viscosité (qui
dépend des variations de densité) présente un pic au début et décrôıt ensuite, contrairement au
PFG. L’énergie cinétique turbulente normalisée K/K0 (non montrée pour brièveté) et l’enstrophie
Ω/Ω0 (figure 0.1d) sont similaires pour les cas PFG et DG. Un pic d’enstrophie est observé pour
t ≈ 1.4− 1.5, ce qui est légèrement plus élevé pour le gaz dense, en raison de la viscosité moyenne
plus faible par rapport au PFG. Des comportements similaires sont observés pour IC1 et IC2.

Les évolutions temporelles des grandeurs thermodynamiques fluctuantes sont présentées dans la
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figure 0.2 (ligne supérieure). Le rapport de densité instantanée maximum à minimum augmente
pendant la phase supersonique initiale, entrâıné par des mécanismes d’étirement de tourbillon avec
la production de gradients de vitesse forts, atteignant un maximum pour un temps non dimensionnel
compris entre 1 et 2. Dans le gaz dense, la valeur maximale est cependant environ 2.5 fois plus
faible que dans le gaz parfait dû à la formation de shocklets plus faibles. Ensuite, le rapport
décrôıt et les deux fluides présentent des comportements similaires à des moments ultérieurs. De
même, les fluctuations de pression (figure 0.2b) dans le gaz dense sont environ cinq fois plus faibles
pour le PP11, indépendamment du choix de l’état thermodynamique initial. Au contraire, les
valeurs r.m.s. de la vitesse du son sont plus élevées pour le gaz dense. Pour ce fluide, c = c(ρ, T )
suit essentiellement les variations de densité (la température étant presque constante pendant la
décroissance). Ce mécanisme est profondément différent de celui observé pour le PFG, où la vitesse
du son augmente en raison du réchauffement par frottement. Les évolutions temporelles de la
dérivée fondamentale de la dynamique des gaz moyenne et r.m.s sont également rapportées pour
PP11 à diverses conditions initiales. La valeur moyenne Γ (figure 0.2d) suit les variations de densité
moyenne. Pour IC1 et IC2, le développement initial des modes compressibles augmente la valeur
moyenne de Γ, qui reste cependant inférieure à 1 pendant toute l’évolution (ce qui implique que la
vitesse du son tend à diminuer dans les régions des compressions), puis décrôıt. Les r.m.s. de Γ
sont aussi élevée que 1 à t ≈ 1 signifiant que, pour des écoulements à nombre de Mach élevés, les
valeurs de Γ sont largement distribués autour de la moyenne et peuvent être localement supérieures
à 1 ou, pour IC2, inférieures à 0. Malgré le différent comportement local de Γ, les statistiques de
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Figure 0.2. CHIT à Mt0 = 1. (a) à (c): évolutions temporelles du rapport des valeurs maximum
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l’écoulement macroscopiques sont peu affectées et tendent à se comporter de manière similaire pour
les deux conditions initiales.

La figure 0.3 montre la distribution des états thermodynamiques de l’écoulement dans le diagramme
p − v à l’instant t = 2, pour IC1 à divers Mt0 et pour IC2 à Mt0 = 1. La viscosité et les pertes
de choc étant faibles, tous les états ont tendance à se distribuer le long de l’isentrope initiale.
La région thermodynamique couverte par les états p − v pendant la décroissance augmente avec
Mt0 . Pour Mt0 = 1, la légère modification des conditions thermodynamiques initiales modifie con-
sidérablement la pression maximale atteinte. Le volume spécifique, en effet, est limité par une
limite inférieure correspondant à la transition liquide/gaz (respectivement, une limite supérieure
de densité), car l’écoulement subit de fortes compressions. D’autre part, les fortes détentes sont
favorisées par le comportement de gaz dense, puisque la vitesse du augmente et la compressibilité
diminue. Les régions de dilatation sont classées selon le niveau local de dilatation normalisée
θ/
√
θ′2M2

t0 (Sciacovelli et al., 2016a). Les régions avec 0 < |θ/
√
θ′2M2

t0 | < 2 sont considérées des

dilatations/compressions faibles, alors que |θ/
√
θ′2M2

t0 | > 2 indique des mouvements de dilata-
tion/compression forts. De plus, il est communément admis que des chocs de compression peuvent
être formés pour θ/

√
θ′2M2

t0 < −3 (Samtaney et al., 2001). Les différences dans le diagramme de
Clapeyron sont confirmées par les fonctions de distribution de probabilité (p.d.f.s) de la dilatation
normalisée montrée dans la figure 0.2f. Le gaz dense présente une p.d.f. beaucoup plus symétrique
que le gaz parfait, qui se caractérise par une longue queue gauche, conformément à résultats sim-
ilaires dans la littérature (Wang et al., 2012b). Le plus grand équilibre entre les queues gauche et
droite de la p.d.f. pour le gaz dense est dû à l’affaiblissement ou à la suppression significative des
chocs de compression dans les régions d’écoulement où Γ est proche ou inférieur à zéro; d’autre
part, les détentes sont favorisées, conduisant à une queue droite plus lourde. Ce comportement est
plus développé pour IC2, en raison de la possibilité d’effets BZT conduisant à l’apparition de chocs
de détente. À t = 2, environ la moitié du domaine est caractérisée par des états thermodynamiques
enfermés sous la ligne de transition. Parmi ces états, environ 36% se composent de régions de di-
latation faible et ≈ 6% de régions de forte détente. Globalement, les fortes régions de compression
diminuent de 3% à 2% alors que les fortes détentes passent de 1.7% à 2.6%.
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Figure 0.3. Distributions des états thermodynamiques dans le diagramme de Clapeyron pour le
PP11 à t = 2 pour différents Mt0 et différentes conditions initiales, avec iso-valeurs de la vitesse du
son normalisée. Les symboles blancs dénotent les conditions initiales: PP11 IC1, PP11 IC2.
Pour la condition IC1: Mt0 = 0.5, Mt0 = 0.8, Mt0 = 1. Pour la condition IC2: Mt0 = 1.
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Canal plan turbulent supersonique

La configuration de canal plan turbulent supersonique est maintenant considérée. Les conditions
périodiques sont appliquées dans les directions longitudinale (x) et transversale (z) par rapport
à l’écoulement. Des conditions de paroi isotherme sans glissement sont appliquées sur les parois
inférieure et supérieure. Afin de équilibrer le frottement visqueux et de maintenir le débit massique
visé, une force volumique spatiale constante est appliquée dans la direction longitudinale (Geroly-
mos & Vallet, 2014). Dans ce qui suit, les indices (·)B, (·)w et (·)cl indiquent les valeurs moyennés
en temps et en espace sur la section transversale du canal, à la paroi et sur la ligne médiane, re-

spectivement; (·) indique la moyenne de Reynolds et (·)′ la fluctuation de Reynolds; de même, (̃·) et
(·)′′ indiquent les moyennes et le fluctuations de Favre. Les conditions de l’écoulement sont définies

en imposant le nombre de Reynolds bulk ReB := ρB ũBh
µw

et le nombre de Mach bulk MB := ũB
cw

.

Puisque des conditions isothermes sont appliquées aux parois, Tw = Tw =const. Pour le modèle
PFG, fixer la température de la paroi permet d’imposer la vitesse du son et les propriétés de trans-
port en conséquence. Pour les gaz denses, ces dernières dépendent à la fois de la température et
de la densité, et donc leur valeurs changent pendant la simulation car ρw ne peut pas être fixé a
priori. Pour cette raison nous avons utilisé une procédure itérative afin de obtenir les nombres de
Mach et Reynolds prescrits. Une étude paramétrique est effectuée à différents nombres de Reynolds
(ReB = 3000, 7000 et 12000) et deux nombres de Mach bulk (MB = 1.5 et 3). Le domaine de
calcul a dimensions Lx × Ly × Lz = 8πh× 2h× 2πh (étant h la demi-hauteur du canal); les grilles
de calcul sélectionnées assurent une résolution spatiale comparable à celle d’autres DNS de TCF
(Coleman et al., 1995; Huang et al., 1995; Lechner et al., 2001; Foysi et al., 2004; Gerolymos &
Vallet, 2014), i.e., ∆x∗ ∈ [5, 16], ∆y∗w ∈ [0.5, 0.8], ∆y∗cl ∈ [2, 6], ∆z∗ ∈ [2, 6]. Le nombre total de
points de grille varie entre 3.3 · 107 ÷ 1.2 · 109 pour les différents cas. Les principaux paramètres
numériques et les résultats globaux des DNS sont résumés dans le tableau 0.2. Les quantités in-
diquées se réfèrent à l’échelle semi-locale empirique initialement proposée par Huang et al. (1995)
pour écoulements compressibles, qui corrige l’échelle de paroi habituelle avec des quantités locales.

Plus précisément, y∗ = ρ(y)u∗τy
µ(y) et Re∗τ = Reτ

√
ρcl
ρw

µw
µcl

, avec u∗τ :=
√

τw
ρ(y) la vitesse de frottement

semi-locale. Cette échelle mixte (récemment analysée par Patel et al., 2015) donne des résultats
tout à fait satisfaisants pour superposer les moments de premier et deuxième ordre (Foysi et al.,
2004) obtenus à partir d’une large gamme de MB. Nous rappelons que dans le cas d’un écoulement
incompressible, Re∗τ = Reτ .

Figure 0.4 (panneaux a et e) montre les profils de vitesse longitudinale de Van-Driest dans l’échelle
pariétale. La vitesse de Van-Driest est introduite dans la littérature pour améliorer le scaling dans
la couche tampon et la région externe des couches limites compressibles en tenant compte des vari-
ations de densité moyenne. Malgré une amélioration considérable par rapport à l’échelle classique
incompressible (avec vitesse de frottement uτ ), les profils s’écartent de la loi log incompressible
(ln y+)/0.4 + 5.5 lorsque MB augmente. Au contraire, des résultats tout à fait satisfaisants sont
obtenus pour PP11 à tous le nombres de Mach. Dans un certain sens, le gaz dense se comporte de
manière similaire à un liquide ayant des propriétés variables. Pour l’air, la température moyenne
T̃+ crôıt rapidement avec MB, en raison de l’augmentation significative du chauffage par frotte-
ment, en particulier pour le plus bas ReB (panneau b). Pour PP11, en raison de la grande chaleur
spécifique du fluide, T̃+ est presque constante sur le canal pour tout choix des nombres de Mach et
de Reynolds (panneau f), et la température au centre du canal diffère moins de 1% par rapport à
T̃w. Le découplage des effets dynamiques et thermiques dans le gaz dense conduit à de plus faibles
variations de densité à travers le canal. Pour l’air, la densité au centre du canal est jusqu’à 60%
inférieure à ρw (à MB = 3) alors que des variations inférieures à 20% sont observées pour le PP11.
Les panneaux c et d montrent des profils de la viscosité normalisée µ/µw. Cette quantité suit
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Table 0.2. Paramètres numériques et résultats globaux des DNS pour l’air et PP11.

air PP11

MB,w 1.50 3.0 1.50 3.0
ReB,w 3000 7000 7000 12000 3000 7000 7000 12000

Name AM1R3 AM1R7 AM3R7 AM3R12 PM1R3 PM1R7 PM3R7 PM3R12
Line
Nx 512 768 1024 1536 512 768 768 1280
Ny 256 384 512 768 256 384 384 768
Nz 256 512 768 1024 256 512 512 1024
Reτ 218.7 466.5 627 1017 191.3 401.6 425.1 692.8
Re∗τ 147.1 314.8 199.7 324.7 196.4 412.1 492.1 800.2
∆x∗c 7.2 10.3 4.9 5.3 9.7 13.5 16.1 15.7
∆z∗c 3.6 5.7 1.6 2.0 4.8 5.1 6.1 4.9
∆y∗c,w 0.52 0.79 0.25 0.26 0.79 0.66 0.79 0.8

∆y∗cl 2.2 5.5 1.8 2.0 2.7 5.0 6.0 4.3

M cl 1.5 1.47 2.18 2.16 1.62 1.60 2.61 2.58

Recl 2740 6319 4035 6903 3659 8423 10256 17635

T cl/Tw 1.39 1.39 2.59 2.58 1.00 1.00 1.01 1.01
ρw/ρB 1.36 1.37 2.49 2.51 1.05 1.05 1.25 1.25
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Figure 0.4. De gauche à droite: transformation de Van-Driest vitesse longitudinale (uV D) vs

y+, température et masse volumique normalisées par rapport aux valeurs de paroi (T
+

et ρ+) vs
y∗, viscosité normalisée (µ/µw), et nombre de Reynolds de frottement semi-local (Re∗τ ). Ligne
supérieure: air; ligne inférieure: PP11. Légende comme en tableau 0.2.

les variations de température pour l’air, ayant µcl/µw ≈ 2 pour le cas AM3R3. Pour le PP11, la
viscosité présente un comportement de type liquide aux conditions thermodynamiques considérées
et présente des valeurs plus faibles en centerline. Contrairement aux liquides, cependant, ceci n’est
pas dû à une élévation de température, mais à la réduction de la densité. Les différences précédentes
expliquent le comportement opposé du nombre de Reynolds de frottement pour les deux fluides
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(panneaux d et h). Pour l’air, Re∗τ diminue rapidement jusqu’à la couche tampon et plus lentement
jusqu’à la ligne centrale. Pour un ReB donné, les nombres de Mach plus élevés augmentent les
gradients de température, conduisant à la chute de Re∗τ dans la région interne. Pour le PP11,
Re∗τ augmente monotoniquement jusqu’à la couche tampon; après, sa valeur est approximative-
ment constante. Les effets de gaz denses deviennent plus évidents à MB élevés, puisque les états
thermodynamiques locaux se répartissent sur une région plus large. En général, Re∗τ < Reτ pour
l’air (comportement de type gaz) et Re∗τ > Reτ pour PP11 (comportement de type liquide). Dans
la région de paroi, Re∗τ est ≈ 20% inférieur pour le PP11 (conduisant à un coefficient de frottement
plus petit), alors qu’il est jusqu’à deux fois plus élevé en centerline, qui est alors caractérisé par des
structures turbulentes plus petites. En dépit du comportement liquide de certaines propriétés dans
le gaz dense, les effets de compressibilité ne sont pas supprimés. Au contraire, le nombre de Mach
de la ligne médiane est de 20 à 30% plus grand dans le gaz dense que dans l’air, où le chauffage
par frottement réduit le nombre de Mach local par rapport au valeur de référence bulk.

La distribution des états thermodynamiques p−v pour le cas PM3R12 est montrée dans la figure 0.5
en fonction de la distance de la paroi en unités semi-locales. Le diagramme est coloré avec le nombre
de Prandtl local. En se déplaçant de la paroi à la ligne centrale, une région thermodynamique
plus petite est intéressée, alors que l’entropie moyenne tend à augmenter. Nous observons que,
puisque l’écoulement ne traverse jamais la ligne de transition, aucun effet BZT n’est impliqué. En
outre, le nombre de Mach turbulent maximal, environ 0.5, est suffisamment faible pour négliger
l’influence de la compressibilité sur la turbulence. D’autre part, le nombre de Prandtl subit des
variations significatives, en particulier dans la région proche de la paroi, ce qui rend l’utilisation
d’une hypothèse de Prandtl constante tout à fait inexacte pour prédire l’évolution des écoulements
de gaz dense caractérisés par une température de paroi proche de la valeur critique.

La figure 0.6 montre les valeurs r.m.s. de la masse volumique, les contraintes de Reynolds et de

shear ρu′′i u
′′
j

+
= τ−1

w ρu′′i u
′′
j en échelle semi-locale et le rapport entre production et dissipation de

l’énergie cinétique turbulente. Les profils des r.m.s. de la densité pour le gaz dense et le gaz parfait
(panneaux a et e) sont profondément différents. Les résultats de référence en littérature (Gerolymos

& Vallet, 2014) ont montré que pour les cas d’air, O(T
−1
√
T ′2) = O(ρ−1

√
ρ′2) = O(p−1

√
p′2),

indépendemment de la cordonnée y∗ et des nombres de Mach et Reynolds considérées. Le même
comportement a été observé à la fois pour la CHIT forcée et décroissante. Les résultats actuels
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Figure 0.5. Distributions des états thermodynamiques dans le diagramme de Clapeyron pour le
cas PM3R12 (fluide PP11) pour différentes distances de la parois, avec iso-valeurs du nombre de
Prandtl Pr. : y∗ ≈ 10, : y∗ ≈ 50, : y∗ ≈ 800 (centerline).
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Figure 0.6. De gauche à droite: profils en y∗ des fluctuations de densité (

√
ρ′2/ρ), tensions de

Reynolds normales (ρu′′i u
′′
i

+
) et de cisaillement (ρu′′v′′

+
), et rapport production-dissipation de

l’énergie cinétique turbulente (Pk/εk − 1). Ligne supérieure: air; ligne inférieure, PP11. Légende
comme en tableau 0.2.

pour l’air concordent avec les tendances de référence; les r.m.s. de la densité et de la température
sont plus élevées dans la couche tampon, avec un pic à y∗ ≈ 10, alors que les fluctuations de
pression (non montrées) sont approximativement constantes jusqu’à la région logarithmique. Pour
le PP11, la densité relative et les fluctuations de pression sont du même ordre pour les écoulements
d’air, alors que les fluctuations de température sont près de deux ordres de grandeur inférieures.
Néanmoins, ρ′2 diminue monotoniquement de la paroi à la centerline (comme le suggère la plus
petite dispersion des états p − v), restant à peu près constante dans la couche logarithmique. Le
comportement observé est dû au fait que, lorsque la densité moyenne diminue avec la coordonnée
normale à la paroi, la compressibilité du fluide devient inférieure (l’état thermodynamique moyen
s’éloigne de la région du point critique) et les fluctuations de la densité diminuent. En moyenne,
les fluctuations relatives de densité sont plus faibles que celles observées pour l’air à MB = 1.5,
alors qu’un résultat opposé est obtenu à MB = 3. En autres termes, les fluctuations de densité
se développent plus rapidement avec MB dans le PP11 que dans l’air. Néanmoins, l’hypothèse de
Morkovin reste satisfaite, même au plus haut nombre de Mach.

Malgré les évidentes différences du comportement thermodynamique, les profils de contraintes de
Reynolds sont similaires pour les deux fluides. Plus précisément, les profils de gaz dense sont en
accord avec ceux observés dans d’autres études (Patel et al., 2015) pour le TCF à bas-Mach avec
des propriétés de transport dépendant de la température. Le comportement de type liquide de la
viscosité conduit à une augmentation des contraintes de Reynolds spanwise, normales à la paroi et
de shear par rapport à la correspondante évolution incompressible, alors que celles longitudinales
diminuent et cet effet tend à être renforcé lors de l’augmentation du nombre de Mach (panneaux f et
g). Un comportement opposé est observé pour l’air (panneaux b et c). Par exemple, le cas AM1R7
(Re∗τ ≈ 315) est caractérisé par un nombre de Reynolds de frottement semi-local plus élevé que le
cas AM3R7 (Re∗τ ≈ 200). Néanmoins, étant la viscosité dépendant de la température beaucoup
plus élevée dans tout le canal, dans ce dernier cas, ρv′′v′′, ρw′′w′′ et ρu′′v′′ sont inférieurs par
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rapport à AM1R7. Enfin, les panneaux d et h montrent les profils du rapport entre la production
et le terme de dissipation Pk/εk du budget turbulent de l’énergie cinétique. L’échelle semi-locale,
construite avec τ2

w/µ(y), se comporte mieux que l’échelle bulk (Lechner et al., 2001) τwuB/h et
l’échelle de paroi ρwu

4
τ/νw. Des travaux précédents (Sarkar, 1995) ont montré que l’effet principal

de la compressibilité est une réduction de la production et de la dissipation; ceci est confirmé pour
l’air et le PP11. Tous les cas d’air et PP11 présentent le pic de production habituel dans la région
intérieure, situé approximativement à y∗ ≈ 12. Pour le cas avec le nombre Reynolds plus élevé
avec le PP11, un deuxième pic de production est observé dans la région externe, comme dans le
cas d’écoulements incompressibles à haut Reynolds, ce qui n’est pas le cas pour l’air au même ReB.
Cet effet est dû au comportement liquide de viscosité dans PP11, conduisant à une dissipation
réduite lors de l’approche à centerline.

Conclusions

Des simulations numériques directes de la décroissance de la turbulence homogène isotrope com-
pressible (CHIT) et du canal plan turbulent supersonique (TCF) de gaz dense ont été réalisées.
Des études paramétriques concernant les nombres caractéristiques de Mach et de Reynolds ont
été effectuées pour les deux configurations. Les résultats ont été systématiquement comparés à
ceux obtenus pour l’air. Dans les simulations CHIT, des différences importantes sont observées
pour les cas avec un nombre de Mach turbulent initial élevé. Les différentes évolutions des valeurs
moyennes et r.m.s. des grandeurs thermodynamiques et des propriétés de transport modifient forte-
ment l’évolution de la turbulence. Dans le gaz dense, les effets de compressibilité, et en particulier
les shocklets de compression, sont plus faibles. Une tendance à la symétrisation est observée pour les
p.d.f. de la divergence de la vitesse normalisée, due à l’affaiblissement des chocs de compression et
au renforcement des ondes de raréfaction, conduisant éventuellement à la formation de shocklets de
raréfaction pour les fluides BZT dans des conditions de fonctionnement convenables. Pour le TCF,
le scaling y+ classique basé sur la vitesse de frottement n’est pas capable de superposer les profils
thermodynamiques et les contraintes de Reynolds lorsqu’on considère des valeurs MB élevées; des
scalings corrigés qui prennent en compte les variations des propriétés du fluide doivent être con-
sidérés. L’échelle semi-locale, basée sur un mélange des quantités thermodynamiques pariétales et
locales, se révèle le choix le plus approprié. Néanmoins, le nombre de Mach turbulent maximal
étant environ 0.5, la structure de la turbulence est en effet peu affectée par les effets de compress-
ibilité. De plus, le couplage entre effets dynamiques et thermiques est très faible pour un fluide
dense caractérisé par des chaleurs spécifiques élevées, contrairement à l’air qui subit un important
chauffage par frottement (typique des écoulements hautement compressibles). Pour ces raisons,
pour le PP11, une grande partie des quantités d’intérêt suit une évolution similaire à celle observée
dans la turbulence incompressible. Pour les conditions thermodynamiques de référence adoptées,
les propriétés de transport ont un comportement de type liquide et les nombres réels de Reynolds se
révèlent être beaucoup plus élevés par rapport à l’air. La compressibilité peut devenir importante
si l’on considère un nombre plus élevé de Reynolds ou de Mach.
Les simulations numériques montrées ont été réalisées pour le PP11, mais des simulations préliminaires
réalisées pour d’autres perfluorocarbones (PP9 et PP10) ont montré un comportement similaire. En
plus, les simulations pour un gaz BZT van der Waals présentent un comportement qualitatif simi-
laire. Ceci suggère que, bien que l’amplitude des effets de gaz dense observés dépende de l’extension
de la région de gaz dense pour un fluide donné et de la présence (ou non) d’une zone d’inversion,
on s’attend à ce que le comportement qualitatif soit semblable pour différents gaz denses.
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Dense gas are characterized by complex molecules and moderate to large molecular weights. Due to
their molecular complexity, these gases exhibit important deviations from the perfect-gas behaviour
over wide ranges of thermodynamic conditions, and namely for pressures and temperatures of the
same order of the critical-point value or close to the saturation curve. The nonlinear thermodynamic
behaviour of dense gases is governed by the fundamental derivative of gas dynamics, which is defined
as

Γ :=
v3

2c2

∂2p

∂v2

∣∣∣∣
s

= 1 +
ρ

c

∂c

∂ρ

∣∣∣∣
s

, (1.1)

where ρ is the density, v := 1/ρ the specific volume, p the pressure, s the entropy, and c =
√
∂p/∂ρ|s

the sound speed. The first equality in the preceding definition shows that Γ is related to the
curvature of isentropic lines in the p− v plane; according to the second definition, Γ is a measure
of the rate of change of the sound speed in isentropic transformations. From (1.1), Γ < 1 implies
∂c/∂ρ|s < 0, meaning that the sound speed grows in isentropic expansions and drops in isentropic
compressions, unlike the case of perfect gases, where:

Γ =
γ + 1

2
, (1.2)

γ = cp/cv being the ratio of the isobaric specific heat cp to the isochoric specific heat cv. For
thermodynamic stability, γ is always greater than unity, hence Γ > 1 for perfect gases. On the
contrary heavy gases, characterized by high cv/R ratios (R being the gas constant), exhibit extended
ranges of density and pressures in which Γ is less than unity, or even negative, whereas the perfect
gas behaviour is recovered in the low-density limit. In regions where Γ < 1, dense gases can exhibit
non-classical phenomena, which will be detailed later.

In the last 40 years, the study of dense gases has generated a growing interest in both academic and
industry. An increasing number of researchers has been attracted by the peculiar behaviour of these
fluids, that have shown to be suitable for a wide range of engineering applications. Dense gases
have shown their major benefits in the energy production sector, primarily for turbomachinery
applications. Their use as working fluids in Organic Rankine Cycle (ORC) turbines (Brown &
Argrow, 2000; Angelino & Colonna, 1998) is exponentially increased over the last 20 years. Whereas
a traditional Rankine Cycle operates with water vapour as working medium, ORC turbines use
organic fluids such as silicon oils, hydrocarbons or organic refrigerants. Due to their high density,
low critical temperature and high specific heats, these fluids are suitable for a number of low
temperature applications. Furthermore, the slope of the saturated vapour curve for certain organic
fluids reduces – or even deletes – the risk of condensation in the proximity of the turbine outlet,
eliminating the need of heating the fluid into the superheated vapor region. As a result, ORC
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power systems have become attractive due to their high flexibility and their higher conversion
efficiency in the low power range, when compared to other classical systems. ORCs can be used
to convert thermal energy in a wide range of different temperatures and for different capacities,
make them suitable for a great number of external sources (geothermal reservoirs, solar radiation,
biomass combustion, industrial waste heat recovery, ocean thermal gradient and next-generation
nuclear reactors). Aside from the studies related to the components optimization and efficiency
increase of thermodynamic cycles of ORC systems, huge efforts have been made to improve the
fluid dynamic design of rotating equipment for dense gases. The strong non-linearities of the fluid
thermophysical properties near the saturation curve, indeed, cause substantial differences with
respect to the classical evolutions for steam and air. The lack of experience and experimental data
on the physical behaviour of dense gases represent the main limitation in the design of efficient
machines, which still nowadays often relies on simplified models or on design strategies developed for
air or steam compressors or turbines. ORCs, for instance, use turbo-expanders for medium to high
power (from approximately 100kW to several MW) and temperatures (120÷350◦C), and volumetric
(screw and scroll) machinery for low-capacity power systems (1÷ 100kW). An improvement of the
fluid dynamic performance of the expander influences directly the power output, hence considerable
research has been dedicated to this purpose (Harinck et al., 2013; Casati et al., 2014; Sciacovelli
& Cinnella, 2014; Bufi & Cinnella, 2015). Dense gases have been also considered for compressors
and turboexpanders for chemical processes and compressors for refrigeration applications (Schnerr
& Leidner, 1993; Monaco et al., 1997; Zamfirescu & Dincer, 2009), or even for the development of
Stirling engines (Angelino & Invernizzi, 1996, 2000). For an exhaustive review on ORC technology,
applications and future outlooks one should refer to Colonna et al. (2015) and references therein.

Apart from the energy production sector, dense gases have been widely considered for wind tunnel
design. The idea of using dense gases in wind tunnel design is rather old (Wagner & Schmidt, 1978),
and several conceptual studies have shown suitable applications for hypersonic and transonic wind
tunnels (Anderson, 1991; Anders et al., 1999; Korte, 2000). In 2014, the Variable Density Turbu-
lence Tunnel (Bodenschatz et al., 2014) has been built at the Max Planck Institute in Göttingen
(Germany). This new-generation facility allow to perform experimental studies on high-Reynolds
number turbulent flows, mainly thanks to the use of sulfur hexafluoride (SF6), a non flammable
dense fluid. SF6, indeed, has the advantage that at atmospheric pressure it is five times denser
than air, and it reaches a density of about 1/10 of water at 15 bars – a pressure much lower than
the 100 bars needed to bring air to the same density.

1.1 Dense gas dynamics

The study of compressible flows in this so-called dense-gas regime requires the use of thermodynamic
models able to take into account real-gas effects. Van der Waals (1873) was the first to introduce an
Equation of State (EoS) with the capability of predicting the real-gas behaviour, by considering the
so-called co-volume occupied by the molecules (i.e., the volume which had to be excluded from the
space that the fluid has in order to compress or expand itself), and the two-body inter-molecular
collisions. Under specific thermodynamic conditions, the Van der Waals (VDW) EoS shows that
fluids composed of polyatomic molecules can exhibit phenomena that both quantitatively and qual-
itatively differ from the ideal-gas behaviour. Among the others, the most interesting ones concern
the admissibility of shock waves. In ideal gases, only compression shock waves and expansions fans
are allowed to occur, in compliance with the statement of the second law of thermodynamics. In
dense gases, under certain circumstances, expansion shock waves and compression fans become ad-
missible (Zemplen, 1905; Rayleigh, 1910), whereas the former are forbidden. An exhaustive review
of these nonclassical phenomena is given in Menikoff & Plohr (1989).
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Hayes (1958) and Landau & Lifshitz (1959) showed that the admissibility of the type of shock
wave is dependent on the magnitude of the variation of the speed of sound with isentropic density
perturbations, i.e., on the fundamental derivative of gas dynamics. The adjective “fundamental”
derives from the fact that Γ governs the nonlinear behaviour of any substance. For instance, this
parameter has been introduced to study expansion and compression waves arising in compressible
flows (Thompson, 1971; Menikoff & Plohr, 1989; Cramer, 1991b), isentropic flows through nozzles
(Bober & Chow, 1990; Cramer & Fry, 1993), Fanno flows (Cramer et al., 1994) or Rayleigh flows
(Cramer, 2006). As shown by Bethe (1942), the entropy change across a weak shock can be written
as:

∆s = −c
2Γ

v3

(∆v)3

6T
+O((∆v)4), (1.3)

with T the absolute temperature and ∆(•) = (•)2 − (•)1, (•)1 and (•)2 representing the pre- and
post-shock values, respectively. When Γ << 1, ∆s is much weaker than usual, leading to reduced
shock losses. Moreover, if Γ is negative, ∆s > 0 only if ∆v > 0, meaning that expansion shocks
are admissible according to the second principle of thermodynamics1. The behaviour of the critical
isotherm in the p − v plane can be considered to explain the negative values for Γ. It is known,
indeed, that

1. at the critical point,
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= 0;

2. the critical isotherm has a positive concavity in the ideal-gas limit;

3. the isothermal compressibility coefficient βT := −1

v

∂v

∂p
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T

, is positive for any substance in any

phase.

The critical isotherm must therefore exhibit a region, located in the interval v ≥ vc (subscript (•)c
referring to critical point values), in which it exhibits a negative concavity. Moreover, for fluids
characterized by sufficiently complex molecules, also isentropes can display an interval of negative
concavity, due to their large isochoric heat capacity (when cv/R → ∞, isentropes and isotherms
collapse). This was shown for the first time by Bethe (1942) and Zel’dovich (1946) by means of the
VDW model. A rigorous description of what “sufficiently complex” means for fluid modelled with
the VDW EoS is given in Colonna & Guardone (2006).

Because of the pioneering work of Bethe, Zel’dovich and Thompson in the field of nonclassical gas
dynamics, i.e., the study of compressible wave fields in the dense-gas thermodynamic regime of
a molecularly complex substance, substances that exhibit a region of Γ < 0 in the single-phase
dense-gas regime are known as Bethe-Zel’dovich-Thompson (BZT) fluids (Cramer, 1991a), and
phenomena related to the presence of an inversion zone (i.e., a thermodynamic region with Γ < 0,
Cramer & Kluwick, 1984) are referred to as BZT effects.

A second important consideration is that in the dense gas regime, the dynamic viscosity µ and the
thermal conductivity κ depend both on temperature and pressure through complex relationships.
In this respect, the dense gas regime is a transition between two qualitatively different behaviours,
namely, the one of liquids, whose viscosity tends to decrease with increasing temperature, and
that of dilute gases, for which it increases with T . Similarly, the classical approximation of nearly

1It should be noted that expansion shocks can also be generated for solids undergoing a polymorphic phase transition
(Zel’dovich & Raizer, 1965) because of the discontinuity of isentropes at the phase boundary. These have indeed
be observed, for instance, for solid-solid phase transition of iron (Ivanov & Novikov, 1961) or in fused silica (Barker
& Hollenbach, 1970). Similarly, for certain thermodynamic states located on the vapour- and liquid saturation
lines of a retrograde fluid, Γ can tend to −∞ (Bethe, 1942), so that nonclassical phenomena related to mixed
nonlinearity may occur, as evaporation expansions shock waves (Thompson et al., 1986, 1987).
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constant Prandtl number (Pr = µcp/κ ≈ const) is no longer valid. Since the thermal conductivity
varies as the viscosity with temperature and pressure, the behaviour of Pr tends to be controlled
by variations of cp. Hence, in regions where cp becomes large, strong variations of Pr can be
observed, contrary to what occurs in perfect gases. Nevertheless, if the immediate vicinity of the
thermodynamic critical point is excluded from considerations, the Prandtl number remains of order
one. In contrast the Eckert number (Ec = u2

ref/(2cpTref), with uref and Tref a reference velocity and
temperature respectively), which is a measure of the sensitivity to friction heating, is significantly
lower due to the heat capacities much larger than those of gases of less molecular complexity. Hence,
the coupling between the dynamic and thermal boundary layers is much weaker than in flows of
standard gases like air (Schlichting & Gersten, 2003).
The VDW EoS is the simplest gas model accounting for dense gas effects, including the qualitative
features of BZT flows, but it is not very accurate for thermodynamic conditions close to saturation,
and largely over-predicts the extent of the inversion zone (Thompson & Lambrakis, 1973). A more
accurate representation of the fluid properties can be achieved by using more complex cubic EoS like
the Peng-Robinson-Stryjeck-Vera (Stryjek & Vera, 1986), virial-expansion-EoS like the Martin-Hou
(Martin & Hou, 1955), or multiparameter models based, e.g., on Helmoltz’ free energy (Lemmon &
Span, 2006). Concerning the transport properties, good predictions are obtained by means of the
Chung-Lee-Starling laws (Chung et al., 1984, 1988), which consider several fluid-specific parameters
and contains correction terms for the behaviour in the dense-gas region.
Depending on the thermodynamic conditions considered, these compounds may exhibit other effects
than dense gas ones. For instance, serious attention has been paid to supercritical fluids (i.e., fluids
operating at temperatures and pressures higher than the values of its critical point) for their
peculiar physics properties (Eckert, 1996; Gorelli et al., 2006; Simeoni et al., 2010; McMillan &
Stanley, 2010; Bolmatov et al., 2013; Brazhkin et al., 2013), for which they have been employed
in countless engineering applications, such as in the food industry (Brunner, 2005), cosmetic and
pharmaceutical industries (Kaiser et al., 2001), chemical, wood and waste treatment industries
(Kiran, 1995), and many others (Brunner, 2010; Stahl et al., 2012; McHugh & Krukonis, 2013). It
should be noted that the term “supercritical” refers to a particular phase of matter rather than
a specific family of fluids. Studies involving supercritical behaviour of thermodynamic properties
are usually carried out using light fluids that do not exhibit dense gas effects. Nevertheless, dense
gases share a common behaviour when temperatures and pressures higher than the critical ones
are considered, as it will be shown later.
Lastly, we point out that we will not consider critical-point effects. It is known that in the neigh-
bourhood of the critical point, several thermodynamic parameters undergo rapid variations, rep-
resenting a challenge for experimentalist and theoreticians. The behaviour of systems near the
critical point is described by the Renormalization group theory (Wilson, 1983), that classifies all
the fluids in term of universality classes. Fluids sharing the same class exhibit a common asymp-
totic behaviour through the critical region, which is well described by means of exponential power
laws having universal exponents. Nevertheless, to represent the thermodynamic properties in this
region, one should use scaled fundamental equations (Sengers & Sengers, 1986), valid only in the
critical zone and which would provide discontinuos solutions when coupled with equations for the
outer region. Hence, we will not consider the critical region in our analysis.

1.2 State of the art

Considerable progress has been made in the past 30 years about the study of inviscid dense gas
flows. These have been extensively studied analytically, with focus on the generation of non-classical
compressibility effects like expansion shocks, sonic and double-sonic shocks, and shock splitting
(Thompson & Lambrakis, 1973; Cramer & Kluwick, 1984; Cramer & Sen, 1987; Cramer, 1989a,b;
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Menikoff & Plohr, 1989; Cramer, 1991a; Cramer & Tarkenton, 1992; Cramer & Fry, 1993; Rusak &
Wang, 1997; Wang & Rusak, 1999; Rusak & Wang, 2000), both for one-dimensional unsteady and
two-dimensional steady configurations. Concerning viscous flows of dense gases, analytical studies
were carried out to investigate the dissipative structure of shock waves and the impact of dense
gas effects on laminar boundary layers and laminar shock/boundary layer interactions (Cramer
& Crickenberger, 1991; Cramer & Park, 1999; Kluwick, 2004; Kluwick & Wrabel, 2004; Kluwick
& Meyer, 2010, 2011). These studies pointed out that it is possible to greatly reduce or even
suppress the separation induced by shock/boundary layer interactions for some optimal choice of
the operating thermodynamic state.

Dense gases have reached mature stages regarding their exploitation in several engineering fields
and the theoretical study of their behaviour; nevertheless, reliable experimental measurements
are still difficult to obtain. This is even more problematic considering experimental evidence of
nonclassical gas-dynamic effects. Most attempts of constructing dense gas shock tubes or nozzle
experiments aiming at getting experimental proofs of the existence of non classical shock waves
are at the preliminary design stage yet. For single-phase gases close to saturation conditions, the
formation of a rarefaction shock wave was observed experimentally by Borisov et al. (1983) and
Kutateladze et al. (1987); however, the interpretation of such results has been challenged by several
authors (Cramer & Sen, 1986; Fergason et al., 2001). More recently, dense gas shock tubes and
test rigs have been devised by Fergason et al. (2001), Colonna et al. (2008a) and Spinelli et al.
(2010). Spinelli et al. (2013) illustrates the simulation and the construction of a Test Rig for
Organic VApors (TROVA), build at the Politecnico di Milano to investigate expansions of organic
vapor streams, representative of the conditions in an ORC turbine. They show preliminary results
using the siloxane MDM and the hydrofluorocarbon R245fa. Mathijssen et al. (2015) describes the
commissioning of the Flexible Asymmetric Shock Tube (FAST) facility, built at Delft University of
Technology, whose objective is to carry out measurements of the velocity of waves propagating in
dense gases in the non-ideal regime. They conducted preliminary experiments on rarefaction waves
by means of the siloxane D6 at temperatures up to 300 ◦C, providing values of the speed of sound
within 1.6% of the predictions of the state-of-the-art thermodynamic model. More experiments
are planned closer to the saturation line, where Γ attains its minimum. Further experiments on
BZT fluids could allow to gain insight into their actual behaviour, and to exploit such nonclassical
phenomena in technical applications operating in the dense-gas regime or in transonic or supersonic
conditions.

Even though huge efforts are being made from experimentalists to reproduce physics in the Non-
Ideal Compressible Fluid Dynamics (NICFD) regime, performing dense gas measurements in tur-
bulent flows is undoubtedly beyond the possibilities given by current technologies. In this context,
Computational Fluid Dynamics (CFD) is a powerful tool to investigate fundamental aspects of non-
ideal fluid flow behaviour. Computations of inviscid dense gas flows have been presented, among
others, by Argrow (1996), Brown & Argrow (1998) and Cinnella & Congedo (2005). Cinnella &
Congedo (2007) performed the first numerical simulation of turbulent dense gas flows. Specifically,
they investigated compressible turbulent boundary layers and transonic turbulent flows around
airfoils by using the Reynolds-Averaged Navier–Stokes (RANS) equations closed by standard tur-
bulence models. The simulations were carried out under a set of working assumptions, namely: (a)
the flow conditions being sufficiently far from the thermodynamic critical point, dramatic varia-
tions of the fluid specific heats and compressibility coefficients, as well as density fluctuations were
neglected; (b) the compressible RANS equations supplemented by an eddy viscosity turbulence
model were supposed to provide an adequate description of the mean flow for the configurations
under study; (c) the turbulent heat transfer was modelled though a “turbulent Fourier law”, by
introducing a turbulent Prandtl number, assumed to be roughly constant and O(1) throughout
the flow, as commonly done in perfect gas flows. More recently, several other authors have carried
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out RANS simulations of turbulent dense gas flows, in particular for turbomachinery applications
(Harinck et al., 2010a,b, 2013; Pasquale et al., 2013; Sciacovelli & Cinnella, 2014; Wheeler & Ong,
2013, 2014). However, the accuracy of RANS models for these flows has not been properly assessed
up to now, due to the lack of reference data either experimental, either numerical.
High-fidelity numerical dataset as those provided by Direct Numerical Simulation (DNS) represent
an effective tool for getting insight into the physics of turbulent dense gas flows. In DNS, the
computational mesh size and time step must be such that all the relevant spatial and temporal
scales of the turbulence – from the smallest dissipative scale up to the integral one – are adequately
resolved, without any turbulence model. Therefore, the computational cost of a DNS rapidly grows
with the Reynolds number (the number of the degrees of freedom of turbulence growing faster
than O(Re11/4), see Garnier et al., 2009), and their use for practical or industrial cases become
unfeasible even on the most powerful computers currently available. Nevertheless, they play a
crucial role in both understanding compressible turbulence dynamics and calibration of turbulent
closure models. In the literature, DNS have been carried out for low-Mach-number turbulent flows
of light supercritical fluids like carbon dioxide and nitrogen, with focus on heat-transfer properties,
the so-called piston effect and dissipation effects in mixing layers (Zappoli et al., 1990; Okong’o &
Bellan, 2002; Bae et al., 2005; Okong’o & Bellan, 2010; Tanahashi et al., 2011). Selle & Schmitt
(2010) have studied the influence of supercritical initial conditions on the decay of homogeneous
turbulence for nitrogen, assumed to obey a cubic EoS, even though their analysis is limited to the
study of the kinetic energy decay evolution at low turbulent Mach number (Mt0 = 0.1). At these
conditions compressibility effects are absent and the authors conclude that real gas thermodynamic
effects have a negligible influence on the turbulence dynamics. Battista et al. (2014) extended the
low-Mach Navier-Stokes equations for reactive perfect gas flows to a generic real-gas equation of
state. They analysed the turbulent mixing of slightly supercritical fluids at low Mach number by
means of the VDW EoS, and found differences in the ligament structures. Nevertheless, to the
author knowledge, the influence of dense-gas effects on highly-compressible turbulence has never
be assessed, and represents an open research field.

1.3 Compressible turbulence

The starting point of the research on compressible turbulence is represented by the simulation of
the decay of Compressible Homogeneous Isotropic Turbulence (CHIT), a well-documented config-
uration allowing a detailed study of turbulent features. Much of the numerical work on CHIT is
restricted to low or moderate Taylor-based Reynolds numbers Reλ (generally Reλ < 500, see Wang
et al., 2012b; Donzis & Jagannathan, 2016), restricting severely the range of scales in the inertial
range undergoing a cascade mechanism unimpeded by dissipative processes (Porter et al., 1998).
Addressing high Reynolds numbers is more difficult as the turbulent Mach number of the simula-
tion increases. Dissipative processes are, of course, fundamental at the smallest scales, where the
turbulent kinetic energy is converted into heat. For high Reynolds number incompressible isotropic
decaying turbulence, Lesieur (2008) identified two distinct stages: in the first stage, viscous effects
are negligible, worm-like structures due to sheet roll-up develop, and vortex stretching causes a
large increase of enstrophy; in the second stage of the decay the energy, transferred to the small-
est scales by means of the energy cascade mechanism, starts to be dissipated by viscosity. The
transition from the first to the second stage corresponds to a peak in the time history of the total
enstrophy, since no smaller structures can be created in the second phase and the existing ones are
destroyed due to viscous effects. Lesieur then concludes that the initial stages of the decay are well
represented by an inviscid model.
Euler-based turbulent simulations have been largely employed in the literature to investigate the
behaviour of high Reynolds number supersonic turbulent flows, such as wakes of objects moving at
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supersonic speed or those encountered in the interstellar medium. High-resolution numerical simu-
lations of both forced and decaying inviscid supersonic turbulence have been performed by Porter
et al. (1992b,a, 1994, 1998, 1999, 2002); Sytine et al. (2000), who provided information about the
spectra, intermittency, energy transfers and scaling exponents for structure functions of velocity,
density and entropy. For decaying turbulence, the impact of dilatational modes on the different
temporal phases has been addressed by Kritsuk et al. (2007), who performed large-scale 3D sim-
ulations of supersonic inviscid turbulence. They measured the velocity scaling exponents and the
slope of velocity power spectrum, founding substantial differences with respect to incompressible
turbulence and proposed an extension of Kolmogorov’s theory taking into account compressibil-
ity effects. Benzi et al. (2008) performed high-resolution numerical simulations of homogeneous
isotropic inviscid weakly-compressible turbulence. They showed that the scaling properties of the
velocity field in the inertial range were in excellent agreement with those observed in direct numer-
ical simulations of the Navier-Stokes equations. One important result of the studies cited above is
that the dynamics of the inertial range is independent not only of viscosity but also of the detailed
dynamics of the dissipative mechanism. As a consequence, the latter does not affect the statistical
properties in the inertial range. Similar considerations have led several investigators to model the
small-scale dissipative processes using hyperviscosity algorithms (e.g. Lamorgese et al., 2005; Cook
& Cabot, 2005).

For perfect gases at sufficiently high turbulent Mach numbers, turbulence is strongly affected by
randomly distributed spatially varying shocks and other compressibility effects. Erlebacher &
Sarkar (1993) carried out direct numerical simulations of compressible homogeneous shear flow
turbulence and highlighted the differences of behaviour of the solenoidal and irrotational strain
rate tensors. Samtaney et al. (2001) presented DNS of decaying CHIT for initial turbulent Mach
numbers in the range 0.1 ÷ 0.5 and 50 < Reλ < 200. They highlighted that a new phenomenon
produced by compressibility is the appearance of random shocklets, which form during the main
part of the decay, and developed an algorithm to extract and quantify the shocklet statistics
from the DNS fields. The shock thickness statistics were found to scale with the Kolmogorov
length. The existence of eddy shocklets was suggested by earlier simulations (Lee et al., 1991;
Passot & Pouquet, 1987), which assessed their role in expediting the energy exchanges between
turbulent kinetic energy and internal energy, as well as their influence on kinetic energy decay. The
responsible mechanisms were identified as the pressure-dilatation and the dilatation dissipation
terms, whose modelling has interested many authors in the 1990s (Sarkar et al., 1991; Zeman,
1990, 1991; Zeman & Blaisdell, 1991). More recently, the statistical properties of decaying CHIT
where analyzed by Pirozzoli & Grasso (2004) for various turbulent Mach numbers. Those authors
discussed the influence of compressibility on the time evolution of mean turbulence properties and
on the statistical properties and dynamics of turbulent structures. Specifically, they found that
the joint probability density function of the second and third invariants of the anisotropic part of
the deformation rate tensor has a universal tear-drop shape, as in incompressible turbulence. They
furthermore confirmed that, due to the competing mechanisms of vortex stretching and viscous
dissipation, the enstrophy obeys a two-stage evolution; however, at high turbulent Mach numbers,
compressibility effects associated with the occurrence of shocklets, become important. The effects
of local compressibility on the statistical properties and structures of velocity gradients for forced
CHIT at high turbulent Mach number were studied by Wang et al. (2012b). Those authors showed
in particular that strong local compression motions enhance the enstrophy production by vortex
stretching, while strong local expansion motions suppress enstrophy through the same mechanism.
Jagannathan & Donzis (2016) also studied stochastically forced CHIT at various Reynolds and
Mach numbers. They suggested that for turbulent Mach number above a critical value of about
0.3, dilatational effects strongly influence the flow behaviour. Specifically, strong compressions are
found to be ten times more likely to occur than strong expansions at high Mach numbers. This
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results in significant changes in the dynamics of energy exchanges. Furthermore, the probability
distribution of local dilatation develops long negative tails (thus leading to a negative skewness).

The study of homogeneous turbulence provides useful insights on both turbulence dynamics and
developments of RANS models. Nevertheless, the majority of compressible engineering flows are
characterized by the presence of solid walls. Wall turbulence includes several phenomena that are
absent in CHIT, such as the mean shear or variations of mean density. The coupling between
turbulence and state variables is a problem of fundamental interest and has been discussed notably
for high-speed flows, where compressibility effects come into play, or in the context of strong
variations of properties where the temperature can no longer be considered as a passive scalar.

The question of the effects of compressibility on the structure of wall-bounded turbulence is tightly
related to variations of the density, temperature, viscosity, and thermal conductivity, leading to
variations of the Reynolds and Mach numbers across the flow. Chu & Kovasznay (1958) proposed
a general decomposition into vorticity, acoustic and entropic modes and analyzed systematically
their interactions up to the second order. The effects of variable transport properties on heat
transfer or large-scale coherent structures can then be viewed as interactions between vorticity and
entropy modes. For supersonic wall-bounded flows, the main lesson learned from previous studies
is that the vortical motions are weakly affected by variations of mean properties and the large-scale
organisation of wall turbulence remains close to the one that has been extensively described for
incompressible wall-bounded turbulence (Spina et al., 1994). The nonlinear coupling with acoustic
or entropy modes (Chu & Kovasznay, 1958) does not generate substantial sources of the vorticity
mode. This passive character of compressible wall turbulence is well summarized by Morkovin’s
hypothesis (Morkovin, 1962), i.e., that compressibility only influences the turbulence through vari-
ations in mean density, whereas the density fluctuations have a negligible effect. Compressibility
only modulates the turbulence through variations in the mean values of thermodynamic quanti-
ties. Since the flow dynamics essentially follows an incompressible pattern, a lot of studies have
focused on the incompressible-compressible correspondence. Indeed, since no universal theory for
wall-bounded compressible flows is available so far, the incompressible limit remains an interesting
reference to quantify the alteration of turbulence structure. In particular, efforts have been made to
extend conventional scaling laws for constant property flows to compressible conditions (Bradshaw,
1977).

The first DNS of compressible turbulent channel flow of a perfect gas have been performed by
Coleman et al. (1995) and Huang et al. (1995). They considered a plane channel flow between
two (cooled) isothermal walls for two values of the bulk Mach number, namely 1.5 and 3. They
found that the flow is influenced by the strong wall-normal gradients of the mean density and
confirmed the validity of the Morkovin’s hypothesis (Morkovin, 1962), i.e., that compressibility
only influences the turbulence through variations in mean density, whereas the density fluctuations
have a negligible effect. Data were further analysed by Huang et al. (1995), who introduced a semi-
local scaling where local thermodynamic properties for density and viscosity replace wall values
to collapse turbulent statistics. The agreement with incompressible data is improved for mean
streamwise velocity profiles compared to the Van Driest transformation (Van Driest, 1951) often
used for turbulent boundary layers with adiabatic walls. Lechner et al. (2001) reproduced the DNS
of Coleman et al. (1995) at M=1.5 and Re=3000 and studied scatter plots to analyse sweeps and
ejections in the wall layer. They reported a slight change in Reynolds stresses anisotropy compared
to the incompressible case. Foysi et al. (2004) investigated turbulent channel flow with isothermal
walls using DNS with Mach numbers up to 3.5 and Reynolds numbers based on friction velocity
(Reτ ) up to 1030. They focused on the behaviour of pressure fluctuations and also found that
turbulent stresses are mainly affected by mean property variation so that the semi-local scaling is
well suited for comparison with incompressible cases. Morinishi et al. (2004) complemented the
study of Coleman et al. (1995) by investigating the influence of the thermal condition at the wall.
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They performed DNS of compressible channel flows between both adiabatic and isothermal walls at
Mach number 1.5. Tamano & Morinishi (2006) considered the asymmetric case of a channel with a
cold and a hot wall, either adiabatic or isothermal. Heat transfers can reduce compressibility effects
but remain of little entity, and Morkovin hypothesis is still applicable. Brun et al. (2008) performed
large-eddy simulations of fully developed channel flows with specific focus on wall modelling. They
proposed a variant of the semi-local scaling for both amplitude and distance and arrive at the
same conclusions as Huang et al. (1995) or Morinishi et al. (2004). Wei & Pollard (2011) studied
the influence of the Mach number, M=0.2, 0.7 and 1.5, at constant bulk Reynolds number and
proposed budgets of transport properties. Gerolymos & Vallet (2014) performed a series of DNS
and derived transport equations to study in detail the variance of thermodynamic fluctuations.
Trettel & Larsson (2016) gave a theoretical framework to the semi-local scaling of Huang et al.
(1995) showing that the scaling of the wall distance is important to take into account the variable
mean properties. A good match with incompressible distributions is found for a wide range of
Reynolds and Mach numbers. Recently, Modesti & Pirozzoli (2016) carried out an extensive DNS
database increasing the bulk Reynolds number up to Re = 34 000. They applied the different
scalings proposed in previous studies and showed that the transformation of Trettel & Larsson
(2016) very well reproduces the behaviour of the mean velocity profile by matching the friction
Reynolds number based on semi-local quantities.

In terms of coherent motions in the wall layer, Coleman et al. (1995) identified an enhanced coher-
ence of near-wall streaks when compared to the incompressible references. Greater streak elongation
was also reported for supersonic boundary layers with cooled walls, whereas a tendency towards
shorter streaks is noted for heated walls (Duan et al., 2010; Lagha et al., 2011). Morinishi et al.
(2004) noted that streaks do not become more coherent if the semi-local scaling is used instead of
wall units to non-dimensionalize the lengths. This was confirmed later by Patel et al. (2015) for
low-Mach number flows with variable properties.

Given the importance of mean density and viscosity variations, other studies have considered turbu-
lent channel flow with variable properties without compressibility effects due to high speed. Some
studies have investigated heat transfers in turbulent channel flow by treating temperature as a pas-
sive scalar. For instance, Teitel & Antonia (1993) considered the influence of different thermal wall
conditions and noted the importance of the value of the Prandtl number for heat transfers. Nicoud
& Poinsot (1999) investigated by DNS the effects of variable density and molecular viscosity on a
channel flow between two isothermal walls for different temperature ratios or viscosity laws. Low-
Mach simulations are used and support Van Driest scaling for mean velocity profiles and semi-local
scaling for Reynolds stresses. Several works have investigated the effects of temperature-dependent
properties using a nonlinear coupling algorithm (Bae et al., 2005; Li et al., 2008; Sewall & Tafti,
2008; Zonta et al., 2012). In all of these studies the viscosity, density and thermal conductivity
vary with the temperature. Zonta et al. (2012) considered temperature gradients in water chan-
nel flow and examined the turbulent kinetic energy budgets. Lee et al. (2013) showed that the
viscosity stratification and associated wall heating can alter the ejections and sweeps events in an
incompressible turbulent boundary layer. Bae et al. (2005) studied the turbulent heat transfer
mechanisms of supercritical carbon dioxide (CO2) performing DNS in heated vertical tubes. They
focused on the well-known heat transfer deterioration phenomenon in supercritical flows. Li et al.
(2008) investigated the same fluid in a long plane channel by imposing wall temperature variations
in the streamwise direction, i.e. considering heating and cooling regions at the beginning and at the
end of the channel, respectively. They found that the effects of density fluctuations, particularly
near the pseudo-critical temperature, on turbulent kinetic energy cannot be ignored, and that the
different temperature values cause a modulation of the near-wall turbulent structures. Patel et al.
(2015) conducted numerical experiments by imposing different distributions for the fluid properties
to investigate separately the effects of mean density or viscosity gradients in low-Mach-number
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turbulent channel flow. They showed that various laws bearing similarities either with liquid-like
or gas-like behaviour can be taken into account for turbulent statistics by using the semi-local
scaling introduced in the compressible regime. In particular, a good similarity was observed for an
equivalent friction Reynolds number constructed with semi-local quantities.
Understanding how the peculiar variations of the thermodynamic and transport properties typical
of dense gases influence the behaviour of wall-bounded turbulent flows is of primal importance for
providing a correct description of friction drag and heat fluxes in many applications, and to develop
suitable models for predicting them. Measurements of dense gas flows are hardly available due to
the difficulty of conducting measurements of this kind of flows. Most of the facilities presently
under development are thought to provide average pressure and temperature profiles and, in some
cases, flow visualizations, but are not expected to provide a detailed description of the turbulence
structure, at least in the short term.

1.4 Outline

In this work, we investigate the influence of dense gas effects on the structure of compressible
turbulence. The final purpose is the creation of reliable and complete DNS databases needed to
quantify the deficiencies of existing turbulence models and allow the development and calibration
of improved models.
Simulations are performed for PP11, a heavy fluorocarbon representative of the family of dense
gases, modelled by means of the simple Van Der Waals and the more complex Martin-Hou EoS.
The influence of the EoS is assessed and the results are systematically compared with canonical
perfect-gas cases. We consider also fluids of other dense-gas families usually employed for industrial
and experimental applications, namely, two siloxanes (D5 and D6) and two refrigerants (R134a and
R245fa).
The thesis is organized as follows. Chapter 2 describes the governing equations, the thermodynamic
models, the fluids under investigation and the numerical strategy adopted for the simulations. Some
preliminary validations for shock-tube dense gas test-cases are shown.
As a natural starting point, we select a configuration that has been well documented for perfect
gases, namely, the decay of highly-compressible HIT in a periodic box, which may exhibit eddy
shocklets. For this kind of flow, the peculiar behaviour of the speed of sound when Γ is close or less
than zero is expected to modify the turbulence structure significantly. Specifically, for turbulent
flows of BZT fluids, non-classical eddy shocklets may appear, leading to significant changes in the
probability distribution functions of several flow properties. In decaying CHIT, the turbulent Mach
number decreases with time. As a consequence, dense gas effects are expected to have an impact
most of all on the initial stages of the decay, which are dominated by large to medium scales of
turbulence. Since we are mainly interested in high-Reynolds number flows typical of dense-gas
industrial applications, in chapter 3 we first show inviscid CHIT simulations, focusing on the be-
haviour of the scales in the inertial range and on the evolution of integral quantities. PP11 is
modelled by means of the Van der Waals equation, and results are compared to perfect gas con-
figurations. A sensitivity analysis is carried out in order to quantify the influence of the shape of
the initial turbulent kinetic energy spectrum, the value of the artificial viscosity coefficients and
the value of the specific heat ratio. Afterwards, the viscous case is considered in chapter 4, in
order to investigate the influence of the peculiar behaviour of the thermodynamic quantities and
the transport properties on the small-scale dynamics. The local flow topology, the fractional con-
tribution of the different flow structures to dissipation and the mechanisms of enstrophy generation
are analyzed in detail. Chapter 5 focuses on turbulent configurations in presence of mean shear,
namely, a supersonic turbulent plane channel flow. The validity of the Morkovin’s hypothesis and
of the classical literature scalings is assessed, and the differences in the first- and second-order
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profiles of thermodynamic and turbulent quantities are highlighted. Moreover, an investigation on
the modifications in the turbulent kinetic energy budgets and in the near-wall structures is carried
out.
Parametric studies on the characteristic Reynolds and Mach numbers are performed for both the
configurations and the fluids, and their effect on the dynamics and structures of turbulence is
discussed. Lastly, conclusions and future works are drawn in chapter 6.
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The mathematical framework and the informatics tools used in this thesis are hereafter reported.
Section 2.1 describes the governing equations, the thermodynamic models and the working fluids
under investigation. The numerical strategy is proposed in section 2.2, with a focus on spatial dis-
cretization and shock-capturing methods. Afterwards, the CFD codes used for the simulations and
preliminary validations on a shock-tube test case are presented in sections 2.3 and 2.4, respectively.

2.1 Governing Equations

We consider flows of gases in the single-phase regime, governed by the compressible Navier-Stokes
equations that are written in differential form

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0

∂ρui
∂t

+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

(2.1)

∂ρE
∂t

+
∂((ρE + p)uj)

∂xj
=
∂(τijui − qj)

∂xj

with ui the components of the velocity vector (i ∈ {1, 2, 3}), ρ the density and p the pressure. The
specific total energy E is given by

E := e+
1

2
uiui, (2.2)

where e is the specific internal energy. The viscous stress tensor τij is completely dependent on
motion and derives from the momentum transport mechanisms at the molecular level. To express
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its formulation, it is convenient to decompose the velocity gradient tensor Aij := ∂ui/∂xj into
its symmetric and antisymmetric parts, denoted as Sij (strain-rate tensor) and Wij (rotation-rate
tensor), respectively:

Aij = Sij +Wij , (2.3)

Sij =
1

2
(Aij +Aji) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Wij =

1

2
(Aij −Aji) =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (2.4)

We will consider only Newtonian fluids, for which τij depends linearly on Sij . Moreover, Sij can be
decomposed into a traceless symmetric part (the shear-rate tensor) and a pure diagonal component
(expansion-rate tensor):

Sij =
1

3
Skkδij + (Sij −

1

3
Skkδij), (2.5)

where δij denotes the Kronecker delta. The most general form of τij is a linear combination of
these two tensors, namely

τij = ζSkkδij + µ

(
2Sij −

2

3
Skkδij

)
= 2µSij + ϑSkkδij , (2.6)

where µ, ϑ and ζ := ϑ+2/3µ are respectively the first (shear, or dynamic), the second and the bulk
viscosity coefficients. According to the Stokes’ hypothesis which assumes that the bulk viscosity
can be neglected with respect to the shear viscosity, one obtains ζ = ϑ+ 2/3µ ≈ 0 and the viscous
stress tensor becomes

τij = 2µSij −
2

3
µSkkδij . (2.7)

Finally, qj represents the heat flux, modelled by means of Fourier’s law:

qj = −κ ∂T
∂xj

(2.8)

where κ is the thermal conductivity of the fluid. It should be noted that by setting µ = 0 and
κ = 0 in system (2.1), the inviscid compressible Euler equations are recovered.

In order to close the system, a thermodynamic model relating the pressure with the conservative
variables is needed, i.e. an equation of state of the type

p = p(ρ, e) (2.9)

as well as constitutive laws for the transport properties µ and κ.

2.1.1 Working Fluid

In the following simulations, we consider the perfluoro-perhydrophenanthrene, (chemical formula
C14F24), called hereafter PP11 (commercial name); its thermodynamic properties are provided
in table 2.1. This fluid has been often used in the literature since it exhibits a wide inversion
zone and, as a consequence, significant dense-gas effects. For such a complex gas, the specific
heat ratio γ varies with the temperature. However, since the flow conditions investigated in this
work are characterized by small temperature variations, when we use the polytropic (i.e. calori-
cally perfect) assumption – for perfect gas and Van der Waals models – we assume hereafter an
equivalent γ value of 1.0125, which is representative of heavy fluorocarbons (Brown & Argrow,
1998). Other fluids considered in this work are air, always modelled as a diatomic perfect gas
(R = 287.04 J kg−1 K−1 and γ = 1.4), the siloxanes D5 (decamethylcyclopentasiloxane) and D6 (do-
decamethylcyclohexasiloxane), and the refrigerants R134a (1,1,1,2-tetrafluoroethane) and R245fa
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Table 2.1. Thermodynamic properties of the fluids under investigation: molecular weight (M),
critical temperature (Tc), critical density (ρc), critical pressure (pc), critical compressibility factor
(Zc), acentric factor (ωac), dipole moment of the gas phase (ξ), boiling temperature (Teb) and ratio
of ideal-gas specific heat at constant volume over the gas constant (cv(Tc)/R) at the critical point.

M Tc ρc pc Zc ωac ξ Teb cv(Tc)/R

g mol−1 K kg m−3 MPa - - D K -
PP11 624.11 650.2 627.14 1.46 0.2688 0.4963 0.0 488.15 97.3
D5 370.77 619.23 292.57 1.161 0.274 0.658 1.349 484.05 83.0
D6 444.92 645.78 279.09 0.961 0.285 0.736 1.559 518.11 105.9
R245fa 134.05 427.16 516.09 3.651 0.267 0.3776 1.549 288.29 16.45
R134a 102.03 374.18 508.0 4.056 0.262 0.327 2.058 247.06 16.3

(1,1,2,2,3-pentafluoropropane). The thermodynamic properties of these fluids are also reported in
table 2.1.

2.1.2 Thermodynamic models

For gases that are not perfect, it is generally not possible to write an explicit relation for the
pressure as a function of ρ and e, as in equation (2.9). For this reason, system (2.1) must be
supplemented by a thermal and a caloric EoS, respectively:

p = p(ρ, T ), (2.10)

e = e(ρ, T ). (2.11)

The caloric EoS depends on the thermal eos via the following compatibility relation:

e = eref +

∫ T

Tref

cidv (T ′)dT ′ −
∫ ρ

ρref

[
T
∂p

∂T

∣∣∣∣
ρ

− p

]
dρ′

ρ′2
, (2.12)

where the subscript (·)ref indicates a reference state, the superscript (·)′ denotes auxiliary integration
variables and cidv (T ) is the isochoric specific heat in the ideal-gas limit. The derivation of this
relation is reported in appendix A. Given the thermal EoS and the law for cidv (T ) or cidp (T ), the
fundamental derivative of gas dynamics can be obtained analytically as follows:

Γ =
v3

2c2

{
∂2p

∂v2

∣∣∣∣
T

− 3
T

cv

∂p

∂T

∣∣∣∣
v

∂2p

∂v∂T

∣∣∣∣
v,T

+

[
T

cv

∂p

∂T

∣∣∣∣
v

]2 [
3
∂2p

∂T 2

∣∣∣∣
v

+
1

T

∂p

∂T

∣∣∣∣
v

[
1− T

cv

∂cv
∂T

∣∣∣∣
v

]]}
. (2.13)

The complete derivation of equation (2.13) from the definition of Γ can be found in Colonna &
Silva (2003).
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Perfect gas model

In the Perfect Gas (PFG) model the fluid is considered simultaneously thermally and calorically
perfect. Equations (2.10)–(2.11) then become:

p = ρRT, (2.14)

e = cvT, (2.15)

with cv = R/(γ−1) = constant, and R = R/M (being R = 8.314472 J K−1 mol−1 the universal gas
constant andM the molecular weight). In this case it exists a direct relation between the pressure
and the conservative variables, i.e. p = (γ − 1)ρe. Furthermore, the fundamental derivative of gas
dynamics takes the simple form shown in equation (1.2), namely:

Γ =
γ + 1

2
. (2.16)

Since, for thermodynamic stability reasons, γ is always greater than 1, then Γ is also greater than
1 everywhere, and the PFG EoS is not able to predict dense gas effects.

Van der Waals model

The Van der Waals thermal equation of state (Van der Waals, 1873) models the gas molecules as
rigid spheres of given radius and subject to inter-particle attractive forces. Such EoS captures the
qualitative aspects of dense gas dynamics without the complexities and computational overhead
associated to more complex thermodynamic models. By assuming a polytropic (calorically perfect)
gas, equations (2.10)–(2.11) become:

p =
RT

v − b
− a

v2
, (2.17)

e = cvT −
a

v
, (2.18)

with:

a =
9pcv

2
c

8Zc
, b =

vc
3
, (2.19)

where Zc = pcvc/RTc is the critical compressibility factor and (•)c denotes critical-point values.
For VDW gases, the value of Zc is univocally determined by thermodynamic constraints at the
liquid/vapour critical point, and is found to be equal to 3/8 (for PFG one obviously has Zc = 1).
When the VDW EoS is cast in dimensionless form by introducing the reduced thermodynamic
values pr = p/pc, Tr = T/Tc and ρr = ρ/ρc, it is found to be invariant for all fluids. Physically, the
invariance derives from the principle of corresponding states (De Boer, 1948), which states that if
two fluids have the same reduced pressure, volume and temperature, they will respond to thermo-
dynamic perturbations roughly in the same way, even if their measurable physical characteristics
may differ significantly. Consequently, the only free parameters for the VDW EoS are the gas
constant R and the equivalent specific heat ratio γ. As for PFG, it is possible to derive an explicit
relationship for the pressure in terms of density ρ and internal energy e, i.e.,

p =
(γ − 1)ρe+ aρ2

1− bρ
− aρ2. (2.20)
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For a polytropic VDW gas, the fundamental derivative of gas dynamics writes:

Γ =
1

2

(
γ(γ + 1)RT

(1− bρ)3
− 6aρ

)/(
γRT

(1− bρ)2
− 2aρ

)
(2.21)

A region of negative values of the fundamental derivative appears if the specific heat ratio is in
the range 1 < γ ≤ 1.06 (Thompson & Lambrakis, 1973). As a consequence, VDW represents the
simplest thermodynamic model that is able to account for BZT effects.

Martin-Hou model

The Martin–Hou (MAH) thermal equation of state (Martin & Hou, 1955) ensures high accuracy
with a minimum amount of experimental information, thus providing a realistic description of
the gas behaviour and of the inversion zone size. In its derivation it is assumed that for any
compound, four properties are necessary to provide its complete characterization, namely, the
critical temperature, pressure and volume, and one point on the vapor-pressure curve. The point
of the vapor-pressure curve gives the slope m of the critical isometric on the pressure-temperature
diagram. The Martin-Hou thermal equation reads:

p =
RT

v − b
+

5∑
i=2

Ai +BiT + Cie
−kT/Tc

(v − b)i
(2.22)

where b = vc

(
1− β

Zc

)
is a constant, with β = −31, 883Z2

c +20.533Zc and k = 5.475. The conditions

that the equation of state has to verify are

1) pv = RT as p→ 0,

2)-5)
∂p

∂v

∣∣∣∣
T

=
∂2p

∂v2

∣∣∣∣
T

=
∂3p

∂v3

∣∣∣∣
T

=
∂4p

∂v4

∣∣∣∣
T

= 0 at the critical point,

6)
∂Z

∂pr

∣∣∣∣
Tr

= −(1− Zc) at Tr = Tp ≈ 0.8 as pr → 0,

7)
∂Z

∂pr

∣∣∣∣
Tr

= 0 at Tr = Tboy as pr → 0,

8)
∂2p

∂T 2

∣∣∣∣
v

= 0 at v = vc,

9)
∂p

∂T

∣∣∣∣
v

= m = −acpc/Tc at v = vc.

In the preceding relations, Tboy is the absolute temperature at Boyle point, given by

Tboy = −0.6492324× 10−3T 2
c + 2.505308Tc + 9.654291; (2.23)

Tp is the absolute temperature for which the slope at pr = 0 of the isotherm on the compressibility
chart equals the slope of the line joining the critical point and the point (Z = 1, pr = 0), given by
the relation

Tc
Tp

= −0.6751Zc + 0.9869, (2.24)
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Table 2.2. Coefficients ηi for the computation of the ideal specific heat in the ideal limit, equa-
tion (2.29).

ηi D5 D6 R134a R245fa

1 −4.197260× 106 −4.197257 2.791385 3.494300

2 2.238870× 10−1 2.238867× 10−1 2.903363× 10−2 3.957406× 10−2

3 −1.687900× 10−4 −1.687900× 10−4 −1.523713× 10−5 −1.609372× 10−5

4 6.013600× 10−8 6.013610× 10−8 5.668392× 10−9 −0.205304× 10−9

and ac is the Riedel parameter,

ac =
(0.315ψb − log 1.01325

pc
)

0.0838ψb − log Teb
; (2.25)

with Teb the boiling temperature and ψb = f(Teb) = −35 + 36T−1
eb + 42 log Teb − T 6

eb. These con-
straints set the values of the coefficients Ai, Bi, and Ci, whose values (not reported here for brevity)
are shown in Martin & Hou (1955). Finally, to compute the caloric EoS, a law for the variations of
the low-density specific heat must be provided. In our case we consider a power law of the form:

cidv (T ) = cidv (Tc)

(
T

Tc

)nc
, (2.26)

where nc is a parameter that depends on the gas used (for PP11, nc = 0.5776, see Cramer, 1991a).

Span-Wagner model

The Span-Wagner model is formulated in the terms of the free Helmholtz energy a(T, v) = e(T )−
Ts(T, v). For the sake of clarity, we introduce only for this section the classical notations τ = Tc/T
and δ = vc/v, denoting the inverse of the reduced temperature and the reduced specific volume,
respectively. As initially proposed by Setzmann & Wagner (1989), the free Helmholtz energy,
expressed in reduced form, is split into an ideal and a real part:

a(T, ρ)

RT
=
aid(T, ρ) + areal(T, ρ)

RT
= α(τ, δ) = αid(τ, δ) + αreal(τ, δ), (2.27)

where αid describes the behaviour of the hypothetical ideal gas at given values of temperature and
density and αreal describes the residual behaviour of the real fluid. All thermodynamic properties
can be calculated by combinations of derivatives of αid and αreal with respect to τ and δ. The ideal
component is computed as

αid(τ, δ) =
hidrefτ

RTc
−
sidref

R
− 1 + ln

δτref

δrefτ
− τ

R

∫ τ

τref

cidp
τ2

dτ +
1

R

∫ τ

τref

cidp
τ

dτ (2.28)

where the subscript (·)ref denotes arbitrary reference values. The arbitrary values for the enthalpy
hidref and the entropy sidref are chosen according to recommendations of the International Union for
Pure and Applied Chemistry (IUPAC). The computation of αid requires an auxiliary equation for
the ideal-gas isobaric heat capacity cidp (T ); in this work, cidp (T ) is approximated as a polynomial
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Table 2.3. Coefficients ni for the computation of the residual part of the Span–Wagner EoS,
equations (2.31) and (2.32).

ni D5 D6 R134a R245fa

1 1.40844725 1.69156186 1.0663189 1.2904

2 −2.29248044 −3.37962568 −2.4495970 −3.2154

3 0.42851607 0.38609039 0.44645718× 10−1 0.50693

4 −0.73506382 0.64598995× 10−1 0.75656884× 10−1 0.93148× 10−1

5 0.16103808 0.10589012 0.20652089× 10−3 0.27638× 10−3

6 0.29643278× 10−3 0.45456825× 10−4 0.42006912 0.71458

7 0.82412481 0.74169279 0.76739111 0.87252

8 0.15214274 −0.88102648× 10−1 0.17897427× 10−2 −0.15077× 10−1

9 −0.68495890 −0.17373336 −0.36219746 −0.40645

10 −0.55703624× 10−1 −0.10951368 −0.67809370× 10−1 −0.11701

11 0.13055391× 10−1 −0.62695695× 10−1 −0.10616419 −0.13062

12 −0.31853761× 10−1 0.37459986× 10−1 −0.18185791× 10−1 −0.22952× 10−1

function of the temperature:

cidp (T ) = η0 + η1T + η2T
2 + η3T

3 (2.29)

where the coefficients ηi depend on the substance under consideration and are given in table 2.2.
The residual part is assumed to be a linear combination of dimensionless density and temperature
terms, in the form

αreal(τ, δ) =

M1∑
m=1

amδ
imτ jm +

M2∑
m=M1+1

amδ
imτ jm exp(−δkm) (2.30)

where am is the coefficient for each term, im, jm and km are exponents on τ , δ and exponential
δ terms, respectively, and M1 and M2 are the numbers of different type of terms. Decision and
regression algorithms are used to determine the number of polynomial and exponential terms and
the values of the parameters. This functional form has been widely used to produce several state-
of-the-art EoS, such as those for fluids CO2 (Span & Wagner, 1996) or R134a (Tillner-Roth &
Dieter Baehr, 1994).

For many industrial fluids for which the quantity and quality of available thermodynamic data are
not sufficient to develop a reference EoS, it is possible to adopt the short technical multiparameter
EoS proposed by Span & Wagner (2003a) and Span & Wagner (2003b). This kind of EoS, also
expressed in the Helmholtz explicit functional form, conserves the same formulation for the ideal
part, whereas the residual part is written in the more compact form:

αreal(τ, δ) =n1δτ
0.25 + n2δτ

1.125 + n3δτ
1.5 +

n4δ
2τ1.375 + n5δ

3τ0.25 + n6δ
7τ0.875 +

n7δ
2τ0.625 exp−δ + n8δ

5τ1.75 exp−δ + n9δτ
3.625 exp−δ

2
+

n10δ
4τ3.625 exp−δ

2
+ n11δ

3τ14.5 exp−δ
3

+ n12δ
4τ12.0 exp−δ

3
, (2.31)
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obtaining the Span-Wagner for Non-polar fluids (SWN) EoS, and

αreal(τ, δ) =n1δτ
0.25 + n2δτ

1.25 + n3δτ
1.5 +

n4δ
3τ0.25 + n5δ

7τ0.875 + n6δτ
2.375 +

n7δ
2τ2.0 exp−δ + n8δ

5τ2.125 exp−δ + n9δτ
3.5 exp−δ

2
+

n10δτ
6.5 exp−δ

2
+ n11δ

4τ4.75 exp−δ
2

+ n12δ
2τ12.5 exp−δ

3
, (2.32)

obtaining the Span-Wagner for Polar fluids (SWP) EoS. Finally, the thermal and caloric equations
read

p

ρRT
= 1 + δ

∂αreal

∂δ

∣∣∣∣
τ

, (2.33)

e

RT
= τ

(
∂αid

∂τ

∣∣∣∣
δ

+
∂αreal

∂τ

∣∣∣∣
δ

)
. (2.34)

The coefficients ni of the residual part of the EoS are fluid-specific and are reported in table 2.3 for
the fluids of interest in this work. Namely, the coefficients for the siloxanes, modelled by means of
the SWN EoS, are taken from Colonna et al. (2006) for D5 and Colonna et al. (2008b) for D6. For
the refrigerants (modelled by means of the SWP EOS), the values are taken from (Span & Wagner,
2003b) and (Lemmon & Span, 2006) for R134a and R245fa, respectively.

2.1.3 Transport Properties

Calorically perfect gases

Since in the PFG and VDW models no fluid-specific parameter is considered, aside from the molec-
ular weight and the equivalent specific heat ratio in the low density limit, they cannot be combined
with accurate dense-gas laws for the transport properties. Instead, a simple temperature-dependent
power law

µ

µref
=

(
T

Tref

)0.7

(2.35)

is used to account for variations of viscosity with the temperature. This power-law has been
preferred to the well-known Sutherland law (Sutherland, 1893) since the parameter needed to
compute the latter (the so-called Sutherland temperature) is available only for a restricted group of
fluids. Figure 2.1 shows the comparison of the viscosity laws and the relative error of the power-law
for air. The influence of the viscosity law has been found to be negligible for the configurations
under investigation, the relative error being always lower than 2% for the range of temperature
considered in this work. Additionally, a constant Prandtl assumption Pr = µcp/κ = 0.7 is used to
model the thermal conductivity.

Dense gases

For dense gases, transport properties are generally considered to depend only on the temperature.
Nevertheless, when 1 < T/Tc < 1.5 and when p > pc, pressure has a strong effect on viscosity and
thermal conductivity. This effect is usually taken into account by applying correction factors in
the formula used to estimate the diluted-gas properties (i.e., the values of viscosity and thermal
conductivity in the ideal-gas limit). In the following, we describe the formulation derived by Chung
et al. (1984, 1988).

Dynamic viscosity. The Chapman-Enskog theory describes the integral relations for the trans-
port properties when the interactions between colliding molecules are described by a potential
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Figure 2.1. Comparison of viscosity laws for air (a) and relative error of power-law w.r.t. Sutherland
law (b). For panel a, : Sutherland law, : power law.

energy function. In general terms, the first-order solution for the dilute gas viscosity can be writ-
ten as:

µ0 =
26.69(MT )1/2

σ2Ωv(T )
(2.36)

where M is the molecular weight, T the temperature, Ωv(T ) the temperature dependence of the
collision integral and σ(vc) the collision diameter. In the derivation of equation (2.36), Ωv is
obtained as a function of a dimensionless temperature T ∗, defined as (Poling et al., 2001):

T ∗ =
kBT

ε
(2.37)

where kB is Boltzmann’s constant (kB = 1.38064852× 10−23 J K−1) and ε is the potential energy
parameter. Neufeld et al. (1972) proposed the following empirical equation:

Ωv =
A

T ∗B
+

C

exp(DT ∗)
+

E

exp(FT ∗)
+GT ∗B sin (ST ∗W −H) (2.38)

with A = 1.16145, B = 0.14874, C = 0.52487, D = 0.77320, E = 2.16178, F = 2.43787 G =
−6.436× 10−4, H = 7.27371, S = 18.0323 and W = −0.76830.

The method of Chung et al. (1984, 1988) starts from equation (2.36) with ε/kB = Tc/1.2593 and

σ = 0.809v
1/3
c (being Tc and vc the critical temperature and volume, respectively). Furthermore,

they multiply the right-hand side of equation (2.36) by a factor Fc in order to account for molecular
shapes and polarities of dilute gases. The final result for the dilute-gas viscosity µ0 reads:

µ0 = 40.785
Fc(MT )1/2

v
2/3
c Ωv

, (2.39)

with
Fc = 1− 0.2756ωac + 0.059035ξ4

r +$. (2.40)

In equation (2.40), ωac is the acentric factor, ξr is the reduced dipole moment, which reads

ξr = 131.3
ξ

(vcTc)1/2
, (2.41)
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Table 2.4. Parameters for evaluating the functions Ai of equation (2.47) for the computation of the
dense-gas viscosity.

i a0 a1 a2 a3

1 6.32402 5.04119× 101 −5.16801× 101 1.18902× 103

2 0.12102× 10−3 −0.11536× 10−2 −0.62571× 10−2 0.37283× 10−1

3 5.28346 2.54209× 102 −1.68481× 101 3.89827× 103

4 6.62263 3.80957× 101 −8.46414 3.14178× 101

5 1.97454× 101 7.63034 −1.43544× 101 3.15267× 101

6 −1.89992 −1.25367× 101 4.98529 −1.81507× 101

7 2.42745× 101 3.44945 −1.12913× 101 6.93466× 101

8 0.79716 1.11764 0.12348× 10−1 −4.11661
9 −0.23816 0.67695× 10−1 −0.81630 4.02528
10 0.68629× 10−1 0.34793 0.59256 −0.72663

being ξ the dipole moment (measured in Debeye), and $ is an empirically determined association
parameter, computed as (Chung et al., 1988):

$ = 0.0682 + 4.704
[number of -OH groups]

M
. (2.42)

The last three terms of equation (2.40), hence, take into account the molecular structure effect of
polyatomic molecules, the polar effect, and the hydrogen-bonding effect, respectively. For nonpolar
fluids one has ξr = 0 and $ = 0.

In order to take into account dense-gas effects, the dense-gas viscosity µ is written as the sum of
two terms:

µ = µk + µp (2.43)

being µk a modified dilute-gas viscosity and µp a correction term; specifically,

µk = µ0[
1

G
+A6Y ] (2.44)

µp = 36.44× 10−6 (MTc)
1/2

v
2/3
c

A7Y
2G exp [A8 +A9(T ∗)−1 +A10(T ∗)−2]. (2.45)

In equations (2.44) and (2.45), Y = ρvc/6 is a density-dependent term, G is a nonlinear function
written as

G =
A1[1− exp (−E4Y )]/Y +A2X exp (A5Y +A3X)

A1A4 +A2 +A3
, X =

1− 0.5Y

(1− Y )3
, (2.46)

and parameters A1 to A10 are linear functions of ωac, ξr and $:

Ai = a0(i) + a1(i)ω + a2(i)ξ4
r + a3(i)$, i ∈ {1, .., 10}. (2.47)

Values for the coefficients a0, a1, a2 and a3 are given in table 2.4. One should note that at very low
densities, Y approaches zero, X and G approach unity and the dense gas term becomes negligible,
and equation (2.45) reduces to equation (2.36).

Thermal conductivity. The dense-gas thermal conductivity is derived, in a similar way, as the
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Table 2.5. Parameters for evaluating the functions Bi of equation (2.54) for the computation of
the dense-gas thermal conductivity.

i b0 b1 b2 b3
1 2.41657 0.74824 −0.91858 1.21721× 102

2 −0.50924 −1.50936 −4.99912× 101 6.99834× 101

3 6.61069 5.62073 64.7599 2.70389× 101

4 1.45425× 101 −8.91387 −5.63794 7.43435× 101

5 0.79274 0.82019 −0.69369 6.31734
6 −5.86340 1.28005× 101 9.58926 −6.55292× 101

7 8.11710× 101 1.14158× 102 −6.08410× 101 4.66775× 102

sum of a dilute-gas component and a correction term. The dilute-gas component κ0 is written as

κ0 = 7.452
µ0Ψκ

M
(2.48)

with

Ψκ = 1 + ακ
0.215 + 0.28288ακ − 1.061βκ + 0.26665δκ

0.6366 + βκδκ + 1.061ακβκ
(2.49)

Here, βκ = 0.7682−0.7109ωac+1.3168ω2
ac is a fluid-dependent parameter, whereas ακ = cidv (T )/R−

3/2 and δκ = 2 + 10.5(T/Tc)
2 are temperature-dependent functions. The term βκ is an empirical

correlation for the contribution of the internal degrees of freedom of the molecule, and is applied
only for nonpolar materials. For polar substances βκ is specific for each compound, and Chung
et al. (1984) list values for a few materials. If the compound is polar and β is not available, a
default value of βκ = 0.758 is used. The parameter δκ represents instead the number of collisions
required to interchange a quantum of rotational energy with a quantum translational energy. Using
the same approach as for viscosity, the dense-gas thermal conductivity κ is computed as:

κ = κk + κp, (2.50)

with

κk = κ0[
1

H
+B6Y ], κp = 3.039× 10−4

√
T

M
1

v
2/3
c

B7Y
2H, (2.51)

where
Y =

ρvc
6
, (2.52)

H =
B1[1− exp (−B4Y )]/Y +B2X exp (B5Y +B3X)

B1B4 +B2 +B3
, X =

1− 0.5Y

(1− Y )3
, (2.53)

Bi = b0(i) + b1(i)ωac + b2(i)ξ4
r + b3(i)$, i ∈ {1, .., 7}. (2.54)

Values for b0, b1, b2 and b3 are given in table 2.5.

2.1.4 Comparisons of the EoS

In order to emphasize the importance of a suitable thermodynamic model for the prediction of the
actual thermodynamic behaviour of a specific substance, we plot the prediction of some thermo-
dynamic parameters of interest for the same fluid (PP11) according to the EoS considered in the
study. Figure 2.2 shows the isocontours of the reduced temperature in a Clapeyron diagram (i.e.
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in the p− v thermodynamic plane) for PFG (top), VDW (center) and MAH (bottom panel) EoS.
In all the diagrams, the dashed line represents the critical isotherm, T/Tc = 1. Two isolines of Γ
are plotted (solid lines), respectively Γ = 1 (denoting the beginning of the dense gas region, which
extends downwards up to the saturation curve) and Γ = 0 line (which marks the passage from the
dense gas region to the BZT zone).

The most striking difference is related to the saturation curve: the PFG EoS is of course unable to
predict its presence, due to the monotonicity of the isotherms. In the VDW case, a different shape
is obtained with respect to MAH EoS, the curve being much less flatter in the critical region. We
recall that saturation curves are computed by means of the Maxwell reconstruction; the algorithm
is described in appendix B. Moreover, VDW largely overestimates the extension of both the dense
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Figure 2.2. Iso-contours of reduced temperature T/Tc in the Clapeyron Diagram for fluid PP11,
modelled by means of PFG (top panel), VDW (central panel) and MAH (bottom panel) EoS.
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√
pcvc in the Clapeyron Diagram for fluid

PP11, modelled by means of PFG (top panel), VDW (central panel) and MAH (bottom panel)
EoS.

gas and BZT regions. Figures 2.3 and 2.4 show the contours of the normalized speed of sound and
viscosity for the different EoS. The critical region strongly influences the speed of sound value c,
which goes to zero approaching the critical point for both VDW and MAH equations. Nevertheless,
c increases abruptly (as well as Γ) when entering the compressed liquid region; this behaviour is
expected to lead to substantial changes (w.r.t. PFG) when strong compressions occur in turbulent
flows. Similarly, the dynamic viscosity predicted by the Chung-Lee law exhibit a strong density
dependence; note that for v >> vc the same viscosity value is recovered. Furthermore, figure 2.5
shows the local values of the equivalent specific heat ratio (γ = cp/cv) and the Prandtl number,
highlighting the importance of the caloric component. For PFG and VDW cases, γ is constant due
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Figure 2.4. Iso-contours of dynamic viscosity µ in the Clapeyron Diagram for fluid PP11, modelled
by means of VDW (top panel) and MAH (bottom panel) EoS.

to the polytopic assumption. In the low-density limit, the value of γ is similar to the typical one
for perfluorocarbons (i.e., γ ≈ 1.0125), whereas the Prandtl number is of the order of unity for any
thermodynamic condition. Deviations become important approaching the critical region, in which
these quantities rapidly increase.
Lastly, figure 2.6 shows, as an example, the isocontours of the reduced temperature for two fluids
of different families, namely, the siloxane D6 and the refrigerant R245fa.
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Figure 2.5. Iso-contours of specific heat ratio γ = cp/cv (top panel) and Prandtl number Pr
(bottom panel) in the Clapeyron diagram for fluid PP11, modelled by means of MAH EoS.

p/
p c

Γ=1

Dense gas
region

Saturation

curve
T=Tc

T/Tc

p/
p c

v/vc

Γ=1

Dense gas
region

Saturation

curve
T=Tc

T/Tc

Figure 2.6. Iso-contours of reduced temperature T/Tc in the Clapeyron diagram for fluids D6 (top,
SWN EoS) and R245fa (bottom, SWP EoS).
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2.2 Numerical methods

The Navier–Stokes equations are discretized by means of high-order finite-difference numerical
schemes, ensuring low discretization errors. To describe the methods, it is convenient to cast
system (2.1) in flux form:

∂U

∂t
+
∂(Fe − Fv)

∂x
+
∂(Ge −Gv)

∂y
+
∂(He −Hv)

∂z
= 0 (2.55)

where U = [ρ, ρu, ρv, ρw, ρE]T is the state vector containing the conservative variables; F, G and
H are the fluxes along, respectively, the x, y and z direction, split in an inviscid (convective) and
viscous (diffusive) part, (•) = (•)e − (•)v. Specifically, the inviscid fluxes read:

Fe =
[
ρu, ρu2 + p, ρuv, ρuw, (ρE + p)u

]T
, (2.56)

Ge =
[
ρv, ρuv, ρv2 + p, ρvw, (ρE + p)v

]T
, (2.57)

He =
[
ρw, ρuw, ρvw, ρw2 + p, (ρE + p)w

]T
, (2.58)

and the viscous ones:

Fv = [0, τxx, τxy, τxz, uτxx + vτxy + wτxz − qx]T , (2.59)

Gv = [0, τxy, τyy, τyz, uτxy + vτyy + wτyz − qy]T , (2.60)

Hv = [0, τxz, τyz, τzz, uτxz + vτyz + wτzz − qz]T . (2.61)

The viscous fluxes are discretized by means of standard fourth-order centered derivatives on a five-
point stencil. For the inviscid fluxes, instead, two different families of high-order finite-difference
numerical schemes have been used, namely, a Directional Non-Compact (DNC) scheme initially
developed in Lerat & Corre (2003) and a Dispersion-Relation Preserving (DRP) scheme introduced
by Tam & Webb (1993). For the sake of clarity, in the following we consider the 1D case, all
the considerations being easily extended to three-dimensional cases. We defined the following 1D
problem

∂w

∂t
+
∂f(w)

∂x
= 0, (2.62)

being t the time, x the spatial coordinate, w = w(x, t) the state vector, f = f(w) the physical
flux. Only for this section, we define two discrete spatial operators, namely, the basic difference
δ(•)j := (•)j+ 1

2
− (•)j− 1

2
, and the cell average operator µ(•)j+ 1

2
:= 1

2((•)j+1 + (•)j). Considering

a Cartesian grid xj = j∆x (with ∆x the grid step), a semi-discrete conservative approximation of
equation (2.62) writes:

(wt)j +
(δF)j
∆x

= 0, (2.63)

where Fj+ 1
2

is the numerical flux at cell interface j+ 1
2 . F can be written as the sum of a high-order,

centered, non-dissipative component, H, and a dissipative part, D:

Fj+ 1
2

= (H−D)j+ 1
2
. (2.64)

The numerical dissipation term plays a crucial role, especially for high-Reynolds number turbulence,
in order to prevent numerical instabilities due to the accumulation of the aliasing errors resulting
from discrete evaluation of the nonlinear convective terms (Phillips, 1959). Instead of introducing
dissipation terms, numerical stability can be ensured, for instance, by explicitly filtering the solution
or by adopting energy-consistent schemes. Moreover, some modifications are needed when dealing
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with flow discontinuities. A throughout review of numerical methods suitable for both smooth and
shocked flows is reported in Pirozzoli (2011).
For the two aforementioned numerical strategies used in this work, we will first present the deriva-
tion of the high-order centered fluxes, then we will consider the construction of the dissipative term.
Lastly, the shock-capturing corrections introduced for DNC and DRP schemes are presented.

2.2.1 Approximation of centered fluxes

Standard finite differences (DNC schemes)

DNC schemes are constructed by means of standard centered finite differences, for which the order
is determined by the truncation error of the corresponding Taylor expansion. Generally, a spatial
derivative ∂f/∂x is discretized with a centered approximation by:

∂f

∂x
(x0) =

1

∆x

N∑
j=−N

aj [f(x0+j∆x))] =
1

∆x

N∑
j=1

aj [f(x0+j∆x)−f(x0−j∆x)] (2.65)

with aj = −a−j . It is possible to derive higher-order approximations of the first derivative by
successive corrections of the leading truncation error term. We cancel the terms of the Taylor
expansion of f up to order ∆x2N−1 (included):

f(x0 + j∆x) = f(x0) + j∆xf ′(x0) +
(j∆x)2

2!
f ′′(x0) +

(j∆x)3

3!
f ′′′(x0) +

(j∆x)4

4!
f (4)(x0) + ...

f(x0 − j∆x) = f(x0)− j∆xf ′(x0) +
(j∆x)2

2!
f ′′(x0)− (j∆x)3

3!
f ′′′(x0) +

(j∆x)4

4!
f (4)(x0) + ...

obtaining

∂f

∂x
(x0) =

1

∆x

N∑
j=1

aj

[
2j∆xf ′(x0) +

2j3∆x3

3!
f ′′′(x0) +

2j5∆x5

5!
f (5)(x0) +

2j7∆x7

7!
f (7)(x0) + ...

]
(2.66)

The coefficients aj are then solutions of the following system:

N∑
j=1

2jaj = 1

N∑
j=1

j3aj = 0

...

N∑
j=1

j2N−1aj = 0

N relations → order 2N (2.67)

In the end, the general expression of H is:

H =

I +
N−1∑
j=1

(−1)jajδ
2j

µf (2.68)

which gives a centered approximation of order 2N using 2N + 1 points in each direction.
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Figure 2.7. Behaviour of standard finite-difference schemes in the wavenumber space. (a) modified
wavenumber k∗∆x as a function of actual wavenumber k∆x and (b) dispersion error in logarithmic
scales. : order 2, : order 4, : order 6, : order 8, : order 10, :
exact.

We consider in the following the 10-th order scheme, which uses a 11-points stencil. By computing
the Fourier transform of equation (2.65), we define a modified wavenumber of the finite-difference
scheme k?:

k?∆x = 2
N∑
j=1

aj sin (jk∆x) (2.69)

The dispersion error is given by |k?∆x− k∆x| /π. The effective wavenumber of the standard
schemes and their dispersion errors are reported in figure 2.7.

Optimized finite differences (DRP schemes)

DRP schemes have been developed in the context of aeroacoustic simulations. Differently from
the DNC schemes, in which the objective is to maximise the spatial order with respect to the
corresponding Taylor expansion, DRP schemes are built by optimizing the dispersion error in the
Fourier space. Namely, the minimum of the following function

E =

∫ ln(k∆x)h

ln(k∆x)l

|k?∆x− k∆x| d(ln(k∆x)) (2.70)

is computed, i.e., ∂E
∂aj

= 0. The upper and lower limits (k∆x)l et (k∆x)h of the integral of

equation (2.70) have to be fixed. In order to create an optimized scheme on 2N + 1 points of order
2M (with M < N), one has to verify the M relations that cancel the terms of the Taylor expansion
up to ∆x2M−1, then it is possible to add M − N relations ∂E/∂aj = 0 (for j = 1, ..,M − N) in
order to obtain a system of N equations with N unknowns aj . In this work, we consider the DRP11
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Figure 2.8. Behaviour of optimized finite-difference schemes in the wavenumber space. (a) modified
wavenumber k∗∆x as a function of actual wavenumber k∆x and (b) dispersion error in logarithmic
scales. : DNC9, : DRP11, : exact.

scheme with a 11-points stencil (N = 5), for which we have to resolve the system

N∑
j=1

2jaj = 1

N∑
j=1

j3aj = 0

∂E

∂ai
= 0 with i = 1, 2, 3

(2.71)

with (k∆x)l = π/16 and (k∆x)h = π/2. The coefficients are given in Bogey & Bailly (2004).
The results of the optimization procedure are clearly visible in figure 2.8, where the dispersion error
of the 11-points optimized scheme is definitely lower with respect to the classic standard scheme
(DNC9) for wavenumber values in π/4 < k∆x < π/2.

2.2.2 Numerical stabilization terms

Central finite difference schemes are zero-dissipative and cannot damp unresolved grid-to-grid oscil-
lations (i.e., k∆x = π) and, in the end, lead to numerical instabilities. To avoid these high-frequency
oscillations one can, for instance, introduce dissipation terms or adopt filtering techniques.

Dissipative flux

A convenient way of introducing dissipation in schemes of the DNC family has been proposed
by Lerat & Corre (2003), which introduce a directional matrix dissipation term that leads to a
global odd-order accurate, dissipative dominant, space approximation. In their development, the
dissipation term naturally arises by recursively applying an upwind correction to the second-order
central scheme, up to the desired order of accuracy. The upwind correction terms involve the
numerical flux of a first-order upwind scheme, generally Roe’s scheme. For smooth flow fields,
the resulting schemes are equivalent to MUSCL schemes (Van Leer, 1979) based on a high-order
extrapolation of the physical fluxes. The first order scheme of this family corresponds to the Roe
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Table 2.6. Centered component H and dissipation term D of the numerical flux F = H−D of the
schemes of Lerat & Corre (2003) up to 9-th order.

Order H D

1 µf
1

2
|Q|δw

3 (I − 1

6
δ2)µf

1

12
|Q|δ3w

5 (I − 1

6
δ2 +

1

30
δ4)µf

1

60
|Q|δ5w

7 (I − 1

6
δ2 +

1

30
δ4 − 1

140
δ6)µf

1

280
|Q|δ7w

9 (I − 1

6
δ2 +

1

30
δ4 − 1

140
δ6

1 +
1

630
δ8)µf

1

1260
|Q|δ9w

scheme (Roe, 1981). The high-order centered component H and the dissipation term D of the
numerical flux F of Lerat & Corre (2003) schemes up to the 9-th order of accuracy are listed in
table 2.6. In the dissipation term, (Q)j+ 1

2
= Q(wj , wj+1) is the Roe matrix. When an ideal-gas

equation of state is considered, Q is uniquely determined. If a complex equation of state is taken into
account, the Roe matrix has to be modified since generally it will depend on three independent
variables, namely the velocity u and two thermodynamic variables, and is no longer uniquely
determined. Different types of linearization can be performed; a review of the techniques available in
literature is found in Guardone & Vigevano (2002) and Cinnella (2006). The “simplified” approach
described in Cinnella (2006) has been implemented in the CFD code; the Jacobian matrices for
perfect and dense gas cases are reported in appendix C.

To simplify the scheme implementation and reduce the computational cost for dense gas flows, the
Roe matrix Q can be replaced by its spectral radius. This leads to a scalar dissipation term, and
the resulting schemes correspond to higher-order versions of Rusanov’s first-order scheme.

Selective filtering methods

A selective centered (non-dispersive) filter is able to damp the highest frequencies without affecting
the physical solution. The filtered quantity ffilt reads:

ffilt(x0) = f(x0)− σdDf (x0) with Df (x0) =

N∑
j=−N

djf(x0 + j∆x) (2.72)

where 0 < σd < 1 is a coefficient used to adjust the filter strength. The damping function of the
centered filter is:

Dk(k∆x) = d0 +

N∑
j=1

2dj cos(jk∆x) (2.73)

As shown for the high-order centered schemes, filters are also built by means of an optimization
process.
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Standard filters. As usual, by means of Taylor expansions we obtain

Df (x0) = d0f(x0) +

N∑
j=1

dj [f(x0 + j∆x) + f(x0 − j∆x)]

= d0f(x0) +
N∑
j=1

dj

[
2f(x0) + j2∆x2f ′′(x0) +

2j4∆x4

4!
f (4)(x0) +

2j6∆x6

6!
f (6)(x0) + ...

]
In order to construct a standard high-order filter of order 2N−1, the terms of the Taylor expansions
up to ∆x2N−1 (included) are canceled. The N + 1 coefficients dj are solutions of the system

d0 + 2

N∑
j=1

dj = 0

N∑
j=1

j2dj = 0

...

N∑
j=1

j2N−2dj = 0

N relations +

In the Fourier space,(
Dk(0) = 0 ⇒ d0 + 2

N∑
j=1

dj = 0

)

Dk(π) = 1 ⇒ d0 + 2
N∑
j=1

(−1)jdj = 1

The damping functions of the standard filters are reported in figure 2.9.

Optimized filters. Following the same procedure of the optimized scheme, the following dissipa-
tion error is minimized:

E =

∫ ln(π/2)

ln(π/16)
Dk(k∆x) d(ln(k∆x)) (2.74)

The coefficients of the optimized 11-points filters are given in Bogey et al. (2009). This filter is
compared with the tenth-order standard filter in figure 2.10. One should note that the dissipation
error is lower for the optimized filter with respect to the standard tenth-order filter for values of k∆x
between π/4 and π/2, but it is slightly higher for lower wavenumbers. In order to limit its effects,
it is possible to reduce the filtering width or call the selective filtering procedure less frequently
(e.g., at the end of each Runge-Kutta iteration instead of each sub-step). Unless differently stated,
in this work we use σd = 0.1.

2.2.3 Shock-capturing methods

Both DNC and DRP schemes are conservative by construction, but not Total Variation Diminishing
(TVD), therefore it is not possible to produce non-oscillatory shock profiles. Apart from switching
to different numerical schemes (such as WENO, see for instance Liu et al., 1994; Jiang & Shu,
1995), possible ways to circumvent this problem are the introduction of artificial viscosity models,
or the use of hybrid schemes with nonlinear filtering. The two latter techniques are described below.

Adaptive nonlinear artificial dissipation

This technique is used in this work to enable shock-capturing abilities when using the DNC scheme.
An artificial dissipation based on the one proposed in Jameson et al. (1981) and extended to high
order by Kim & Lee (2001) has been used. It consists in a blending of a second-order term and a
high-order one, depending on the order of the centered approximation. Thus, the dissipative flux
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Figure 2.9. Behaviour of selective standard filters in the wavenumber space. The transfer function
of the filter as a function of wavenumber k∆x is plotted in normal (a) and logarithmic (b) scales,
respectively. : order 2, : order 4, : order 6, : order 8, : order 10.
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Figure 2.10. Behaviour of selective standard filters in the wavenumber space. The transfer function
of the filter as a function of wavenumber k∆x is plotted in normal (a) and logarithmic (b) scales,
respectively. : order 10, : optimized 11-points filter.

for the DNC9 scheme reads:

Dj+ 1
2

= |λ|j+ 1
2
[ε

(2)

j+ 1
2

(δω)j+ 1
2
− ε(10)

j+ 1
2

(δ9ω)j+ 1
2
], (2.75)

being |λ|j+ 1
2

the approximation at a cell face of the spectral radius of the Jacobian matrix,

ε
(2)
j = k2Ψj+ 1

2
, ε

(2)

j+ 1
2

= max(ε
(2)
j , ε

(2)
j+1), ε

(10)

j+ 1
2

= max[0, (k10 − ε(2)

j+ 1
2

)] (2.76)

the nonlinear dissipation functions, k2 and k10 some adjustable constants and

Ψj =
|pj+1 − 2pj + pj−1|
pj+1 + 2pj + pj−1

(2.77)
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the well-known pressure-based shock sensor of Jameson et al. (1981). The use of a scalar dissipation
term allows to simplify the implementation of complex equations of state and greatly reduces the
computational cost. However, Garnier et al. (1999) and Ducros et al. (1999) showed that a Jameson-
like dissipation is not recommended for its high damping at the small scales. Hence, in order to
be able to deal with flow discontinuities while preserving fine-scale structures, Ducros et al. (1999)
proposed a sensor based on local properties of the flow:

Φ =
θ2

θ2 + ω2 + εc
(2.78)

being θ = ∇·u the velocity divergence, ω = ||ω|| = ||∇×u|| the vorticity and εc a small real constant
used to prevent the denominator to become zero. The sensor acts in a very localized fashion.
It becomes O(1) in high-divergence regions and tends to zero in vortex-dominated regions, thus
allowing capturing flow discontinuities sharply while minimizing the effect of numerical dissipation
on vortical structures. It is applied to the second order term of the Jameson artificial viscosity,
which becomes:

ε
(2)
j+1/2 = k2|λ(A)|j+ 1

2
Ψj+ 1

2
Φj+ 1

2
with Ψj+ 1

2
Φj+ 1

2
= max(ΨjΦj ,Ψj+1Φj+1) (2.79)

This allows to perform a shock-capturing treatment and to achieve a better resolution in shock-
free regions. Note that, when k2 = 0 and k10 = 1

1260 , the preceding method degenerates to the
nineth-order accurate upwind scheme.

Adaptive nonlinear selective filtering

The adaptive nonlinear selective filtering is similar to the artificial viscosity model, but the damping
term is replaced by a signal processing operation at each time integration. This technique exploits
an algebraic algorithm which is theoretically able to treat flow discontinuities, as shown in Bogey
et al. (2009). The filter is applied at each time integration after the selective filtering procedure.
In conservative form, the filtered variable (•)f reads:

ffj = fj − (σf
j+ 1

2

Df

j+ 1
2

− σf
j− 1

2

Df

j− 1
2

) (2.80)

where the filter width 0 < σf < 1 is dynamically adjusted as a function of the flow variables, and
the damping functions Df

j+ 1
2

et Df

j− 1
2

are computed through the following interpolations:

Df

j+ 1
2

=

n∑
m=1−n

cmfj+m and Df

j− 1
2

=

n∑
m=1−n

cmfj+m−1 (2.81)

The coefficients cm are determined starting from the non conservative form of the filter (ffj =

fj − (σfj
∑n

m=−nD
f
j+1)) and are given in table 2.7 for the standard and the optimized 2nd order

filters, Fo2 and Fopt, respectively. Two sensors can be used to trigger the filter, namely, a pressure-
and a dilatation-based sensor. We consider only the latter which is more suitable to distinguish
shocks and turbulent fluctuations. Moreover, it has embedded information such as the local speed
of sound (important for dense gases) and grid step ∆x. The value of the shock sensor is thus:

rdj =
1
2 [(Dθj −Dθj+1)2 + (Dθj −Dθj−1)2]

c2
j/∆x

2
+ ε (2.82)
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Table 2.7. Coefficients cj (with c1−j = cj) of the conservative form of the adaptive nonlinear
selective filtering method for the standard (Fo2) and optimized second order (Fopt).

Fo2 Fopt

c1 -1/4 −0.210383
c2 0 0.039617

being ε a small constant used to prevent numerical divergence, cj the speed of sound at the j−th
point, ∆ the grid spacing, θ the local dilatation and Dθj extracted starting from a second-order
filter: Dθj = (−θj+1 + 2θj − θj−1)/4. Alternatively, a pressure-based formulation can be used, in
which

rpj =
1
2 [(Dpj −Dpj+1)2 + (Dpj −Dpj−1)2]

p2
i

+ ε. (2.83)

Lastly, the filter width is computed as:

σfj =
1

2

[
1− rth

rj
+

∣∣∣∣(1− rth
rj

)∣∣∣∣] (2.84)

where rj is the dilatation- or pressure-based filter chosen and rth is the threshold parameter govern-
ing the filter sensitivity. Its value is generally 10−6 < rth < 10−4; lower values of rth lead to bigger
sensitivity and thus to the application of the filter on a wider region. The filtering amplitudes in
the conservative form are approximated by:

σf
j+ 1

2

=
1

2
(σfj+1 + σfj ) and σf

j− 1
2

=
1

2
(σfj−1 + σfj ) (2.85)

2.2.4 Time integration methods

In this work a class of explicit Runge-Kutta (RK) algorithms is considered. Given the equation
∂U/∂t = F(U, t), the general form of a RK method with p subiterations reads:

Un+1 = Un + ∆t

p∑
i=1

biK
i with Ki = F

Un +

i−1∑
j=1

aijK
j , tn + ci∆t

 (2.86)

where ci =
∑i−1

j=1 aij (i ∈ {1, .., p}). The most famous scheme is the one proposed by Runge (1895)
and Kutta (1901), whose Butcher tableau reads:

ci aij
bi

0 0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

In order to obtain low-stockage schemes, we impose bp = 1 et bi = 0 for i = 1, ..., p− 1 (Hu et al.,
1996). The only non-zero aij are aii−1. The scheme reads:

Un+1 = Un + bpK
p with Ki = ∆tF

(
Un + αi−1K

i−1, tn + ci∆t
)
. (2.87)

where αi = aii−1 and α0 = 0. For the fourth-order, we obtain the following coefficients:
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ci aij
bi

0 0
1/4 1/4
1/3 0 1/3
1/2 0 0 1/2

0 0 0 1
This scheme is fourth-order for linear problems and second-order for nonlinear ones.

In order to increase the numerical efficiency and ensure low dispersion and dissipation errors, we
consider also the six-step RK algorithm described in Bogey & Bailly (2004). Similarly to the spatial
discretization, the coefficients are the results of an optimization procedure. Specifically, they chose
to minimize the following function:∫ ln(π/2)

ln(π/16)
(1− |GRK(ω∆t)|) d(ln(ω∆t)) +

∫ ln(π/2)

ln(π/16)
(|ω∗∆t− ω∆t|/π) d(ln(ω∆t)), (2.88)

with the constraints: 1 − |GRK | > 0 and ∂[ln(1 − |GRK |)]/∂[ln(ω∆t)] ≥ −5; GRK denotes the
effective amplification factor of the scheme. The details of the optimization procedure, as well as
the values of the coefficients are given in Bogey & Bailly (2004). For the numerical simulations
presented in this thesis, we will use the optimized RK algorithm.

2.3 Description of the CFD codes

In this work, two different CFD codes developed at DynFluid Laboratory have been used.

The first one is the Dynamic High-order Laboratory (DynHoLab), which combines the interpreted,
object-oriented Python language, and the compiled, fast Fortran language. This allows to shorten
the development time thanks to a flexible and modular Python environment, preserving the high
performances of compiled languages. Thanks to project like numpy (numerical libraries), scipy
(mathematics, science and engineering libraries), matplotlib (plotting library), sage (mathematics
software) and many others, Python – being moreover a free and open-source software – represents
a very good choice to develop a CFD kernel. DynHoLab is organized as a Python package, in
the sense that every component of the code can be imported by other programs to be re-used.
The most time consuming methods are written in Fortran and converted into Python libraries
by using the wrapper f2py. The data-structure chosen for DynHoLab is a CGNS-tree, which
provides a full hierarchical structure to store the data. This data-structure has been developed
by a consortium (ADAPCO, ANSYS, Boeing, NASA, ONERA, Rolls-Royce, Stanford University,
Tecplot, US Air Force, ..) with the purpose of creating a general, portable and extensible standard
for the storage and retrieval of CFD analysis data. DynHoLab is a multi-purpose CFD code based
on a finite-volume formulation able to handle complex geometries (including overlapping grids) and
carry out RANS, LES and DNS simulations. The code is equipped with a variety of high-order
space-discretization and time-integration methods. A thorough discussion on the structure of the
code, the development strategy, the physical and numerical models implemented and a series of
validation test cases can be found in Outtier et al. (2013) and Outtier (2014). This code has been
used to perform numerical simulations of decaying compressible homogeneous isotropic turbulence,
presented in chapters 3 and 4, as well as for cross validations with solution provided by the second
code on the configurations discussed on chapter 5. It will represent the basis for upcoming studies
of turbulent dense gas flow around turbine blades.

Since, however, the main objective of this thesis is to perform parametric DNS studies of turbulent
flows in simple Cartesian configurations and given the high cost required by such simulations, we
chose to use a dedicated faster code, based on finite-difference schemes. This code, also developed at
the DynFluid Laboratory, is named MUltiscale Solver in Computational Aeroacoustics (MUSICA).
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Figure 2.11. Left panel: decomposition of the computational Cartesian domain into subdomains
by means of the MPI CART functionalities. Right panel: interfaces exchanged among neighbours in
the three directions, each one composed of 5 plans.

MUSICA is completely written in Fortran, ensuring fast computations and an efficient memory
management. Differently from DynHoLab, MUSICA is not a modular code, but rather an ensemble
of solvers sharing a common core structure, dedicated to specific configurations. The code has been
employed, for instance, for aeroacoustics computations (Gloerfelt & Berland, 2013) and large-eddy
simulations of compressible flows (Aubard et al., 2013).

MUSICA takes advantage of the MPI libraries to enable data communication among different pro-
cessors. Since we are dealing with single-block structures meshes, the code has been parallelized
by means of the MPI CART functionalities. The cartesian communicator automatically distributes
the processors on a three-dimensional grid topology which is used to map the entire computa-
tional domain. Each processor is given an equal fraction of the entire domain, ensuring a perfect
repartition of the computational work (figure 2.11a). The data exchange among the processors is
carried out by means of non-blocking communications ISEND/IRECV. The passage from blocking to
non-blocking communications is needed in order to overcome the problems related to a saturation
of the performances when more than 1024 processors were used. Being the numerical discretization
completely explicit, each processor communicates only with its own neighbours in the three direc-
tions (figure 2.11b). Each exchanged interface is composed of 5 planes, corresponding to the stencil
of the spatial scheme. Given the the size of the computational domains, The input-output MPI IO

routines have been implemented in order to ensure high efficiency when big files are read/written
from thousands of processors. Particular attention has been paid to the portability of the code, in
order to allow a transparent passage from big-endian to little-endian machines and vice versa.

In order to perform dense gas simulations, both codes have been significantly modified. The
computation of thermodynamic properties has been externalized in a Fortran module; this allows
to implement any complex equation of state without changing the code kernel. The module contains
a set of functions which compute the thermal and caloric equations of state, the sound speed and
the pressure partial derivatives with respect to density and internal energy, written as a function
of density and temperature. A Newton–Raphson algorithm has been implemented whenever an
iterative procedure is required (i.e., for the calculation of temperature from density and internal
energy). To speed up the the Newton cycles, the solution at the previous iteration is taken as
initial guess. Since these functions are called at least once for each grid point and each Runge-
Kutta step, the computational overhead due to the externalization has been examined. It is shown
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Table 2.8. Comparison of the restitution times per iteration per grid point for the two codes and
the different thermodynamic models.

Code EoS time [µs]

DynHoLab PFG 18.5

MUSICA

PFG 5.42

VDW 5.97

MAH 8.89

SWP/SWN 21.4

to be negligible for complex EoS (such as MAH and SW models), due to the much higher number of
operations to be performed inside the function. For simpler EoS (such as PFG and VDW), instead,
it is slightly more important, but the use of aggressive optimizations and inlining techniques removes
almost completely the overhead.

In table 2.8 we provide a comparison of the values of the CPU time per iteration and per grid point
obtained by running a reference CHIT test-case with the two different codes and by means of differ-
ent equations of state. As previously stated, considering the PFG EoS, MUSICA is approximately
3.5 times faster than DynHoLab. This is mainly due to the fact that DynHoLab is a multipurpose
code, written in a mix of Python and Fortran languages in a finite volume formulation. Conversely,
MUSICA is a dedicated solver, completely written in Fortran and in a finite differences formulation.
Popescu et al. (2005) showed that writing the finite-volume version of the DRP scheme requires
more than twice the number of operations needed in the finite-difference one. This is hence the
main reason for the different performances between the code, (the cost of the Python layer for
DynHoLab being negligibly small when big simulations are performed). Lastly, one should note
that the perfect gas and Van der Waals EoS have approximately the same computational cost,
whereas the Martin–Hou and Span–Wagner equation are respectively 1.5 and 4 times slower with
respect to the perfect gas case.

2.3.1 Scalability tests

The scalability of DynHoLab is extensively described in Outtier (2014). Since the code used for
the most computationally expensive simulations is MUSICA, we present hereafter some of the tests
performed with the latter. The scalability study has been carried out on the same supercomputers
on which the computations have been successively performed. The computational hours have
been granted from the Institute for Development and Resources in Intensive Scientific Computing
(IDRIS), mainly on Turing (IBM Blue Gene/Q, 98304 processors Power A2 64-bit, 1.258 Pflop/s
of peak performance) and ADA (IBM x3750-M4, 10624 processors Intel Sandy Bridge E5-4650,
233 Tflop/s of peak performance). In the following we will show the scalability test on Turing,
given the restriction on the maximum number of processors available on ADA. Since the tests
are performed on a channel flow configuration, the different boundary conditions in the three
directions can influence the overall performance. Nevertheless, this allows us to have a prediction
of the computational time in actual runs – which is the aim of these tests.

There are commonly two ways to characterize the parallel performance of a code, that are referred-
to as strong scalability and weak scalability. In the weak scalability, we consider a fixed problem
size assigned to each processing element, and additional elements are used to solve a larger total
problem (e.g., one that wouldn’t fit in RAM on a single node). Linear scaling is achieved if the
run time stays constant while the workload is increased in direct proportion with the number
of processor units. Programs that employ mainly nearest-neighbour communication patterns (as
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Table 2.9. Weak scalability test from 16 to 16384 processing units. The efficiencies for five different
distributions of grid points per core are shown.

Nproc # blocks
E16

weak(N)

643 483 323 243 163

16 4× 2× 2 100 100 100 100 100

32 4× 2× 4 100 100 100 100 100

64 4× 4× 4 100 100 99.5 97.1 95.2

128 8× 4× 4 99.9 99.8 99.1 95.8 93.5

256 8× 4× 8 99.8 99.7 99.1 95.2 91.8

512 8× 8× 8 97.4 97.1 96.5 91.2 87.6

1024 16× 8× 8 97.3 97.1 96.4 91.0 87.5

2048 16× 8× 16 97.0 96.6 95.3 89.7 86.1

4096 32× 8× 16 96.8 96.2 94.9 89.3 85.2

8192 32× 8× 32 96.1 95.7 94.1 88.3 84.4

16384 32× 8× 64 95.9 95.5 93.8 87.5 83.6

10
1

10
2

10
3

10
4

80

85

90

95

100

Nproc

E
1
6

w
ea

k

(a)

10
1

10
2

10
3

10
410

1

10
2

10
3

10
4

Nproc

S
p

ee
d
u
p

(b)
Figure 2.12. Weak efficiency scalability (a) and speedup as a function of the number of processing
units, for different values of grid points per processing unit. : ideal, : 643, : 483,

: 323, : 243, : 163.

for the code in use) should have a good weak scalability, because the communication overhead is
approximately constant regardless of the number of processors. The goal of this test is to find the
smallest workload to be given to each unit ensuring good performance even for high core numbers.
We consider five different distributions of grid points per core, namely, 643, 483, 323, 243 and 163

points per core. Table 2.9 shows the efficiencies obtained in the different cases, for a core count
going from 16 to 16384. The weak scaling efficiency is given as

EBweak(N) =
tB
tN
× 100 (%), (2.89)

where tB is the amount of time to complete B work units with B processing elements (value taken
as baseline), and tN is the time to complete N of the same work units with N processing elements.
Usually, the time of a single core is taken as baseline, but in this study we consider B = 16,
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Table 2.10. Strong scalability test from 16 to 16384 processing units. Workloads A and B consist
of 16.8 and 537 millions of grid points, respectively.

Nproc # grid/proc (A) E16
strong # grid/proc (B) E512

strong

16 256× 32× 128 100 – –

32 128× 32× 128 99.2 – –

64 128× 32× 64 98.9 – –

128 64× 32× 64 98.2 – –

256 64× 32× 32 97.5 – –

512 32× 32× 32 95.1 256× 32× 128 100

1024 – 93.6 128× 32× 128 98.4

2048 – 92.4 128× 32× 64 97.2

4096 – 90.1 64× 32× 64 95.5

8192 – 88.5 64× 32× 32 93.1

16384 – 85.4 32× 32× 32 89.8
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Figure 2.13. strong scalability efficiency (left y−axis) and speedup normalized with respect to 16
cores (right y−axis) as a function of the number of processing units. : E16

strong, : ideal
speedup, actual speedup.

that is, the smallest possible allocation allowed on Turing. As shown in figure 2.12, very good
overall efficiencies are obtained and the speedup is close to the ideal one. Using work units of
243 or less, important efficiency drops are observed, hence we will consider 323 as the minimal
number of grid points to be assigned per core. One should note that, by disabling the few collective
communications needed in the code (as, for instance, to compute the forcing term for the channel
flow configuration), the performance degradation decreases and a minimum efficiency of 95% is
reached for work units ≥ 323 (figures not shown).

In the strong scalability, the problem size (workload) is fixed and the number of processing elements
is increased (the problem is said to be CPU-bounded). The goal is to find a compromise that allows
the computation to complete in a reasonable amount of time, without wasting much time for the
parallel overhead due to the increase of communications. This test is particularly severe because
the weight of the communications rapidly increase whereas the total work unit does not change.
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Table 2.11. Riemann problem data for the dense-gas shock tube.

Case ρl ul pl Γl ρr ur pr Γr

DG1 1.818 -0.5 0.1 0.679 0.1 0.5 0.1 0.679

DG2 0.879 0 1.09 -0.031 0.562 0 0.885 −4.016× 10−2

The strong scaling efficiency, computed as

Estrong =
BtB
NtN

× 100 (%), (2.90)

is shown in table 2.10 and figure 2.13. The smallest work unit is chosen on the basis of the weak
scalability (323). Being the total workload too big for small numbers of working units (the RAM
per core being limited to 1GB), the study is performed for two different workloads (A and B in
the table) and the efficiencies of workload A for Nproc > 512 are extrapolated assuming the same
proportionality of workload B. The overall performance is shown to be quite satisfactory.

These results should be seen as the worst-case scenario for two reasons. First, both the scalability
efficiencies are expected to be sensibly higher for the CHIT configuration due to the homogeneity of
the (periodic) boundary conditions. Secondly, since tests were performed with a perfect gas model,
higher efficiencies are expected if a dense gas is considered, due to the much higher computational
costs of these models.

2.4 Preliminary validations

Different dense-gas shock tube simulations have been performed in order to compare the numerical
strategies and validate the implementation of dense gas models in the CFD codes. In the following,
we consider two classical configurations with a Van der Waals gas having γ = 1.0125.

These cases have been initially studied by Argrow (1996), and then used for validation from
Guardone & Vigevano (2002) and Cinnella (2006), which developed simplified linearization proce-
dures in order the extend the Roe’s scheme to real gas flow computations. The initial conditions for
the two cases, named DG1 and DG2 (as in the references cited above), are reported in table 2.11.
We run the 1D computations by using the 3D DynHoLab and MUSICA codes, and by setting
periodicity conditions in two of the space directions. Case DG1 represents a Riemann problem
where both the left and the right states lie within the Γ > 0 region. The solution is characterized
by a left-running rarefaction wave, a middle contact discontinuity and a right-running compression
wave. The left-running wave starts as a rarefaction fan in the positive Γ region; then, the transition
line is crossed and it becomes a rarefaction shock for states with Γ < 0. For case DG2, both the
initial left and right states lie within the negative Γ region. During the evolution, the fundamental
derivative remains negative everywhere, and the flow behaviour is exactly opposite with respect to
“classical” Riemann problems in common fluids. Specifically, the solution presents a left-running
rarefaction shock, a middle contact discontinuity, and a right-running compression fan. The overall
computed numerical solution is again in very good agreement with the reference, even if some small
oscillations are generated near the rarefaction wave and the contact discontinuity.

Figure 2.14 shows the profiles of reduced density, pressure, fundamental derivative, velocity and
Mach at t∗ = 0.15 for case DG1, obtained for a 400-cells grid and both a DRP11 scheme (rth = 10−5)
and a DNC9 scheme (k2 = 1). Results are compared with those of Cinnella (2006). Both the
solutions are in good agreement with the reference. Similar results are obtained for case DG2
(figure 2.15, t∗ = 0.45). The numerical damping introduced by the Jameson sensor is much lower
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with respect to that of the low-order filter of Bogey-Bailly, resulting in a higher oscillatory profile.
The different behaviour of the two approaches relies essentially on the different definitions of the
shock sensors (equations (2.83) and (2.77), respectively).

One should consider that shock tubes are severe test cases in which the capability of numerical
schemes to appropriately resolve strong discontinuities is tested. In the following, hence, we retain
the less dissipative DNC9 for the computation of CHIT decay, characterized by the presence of
shocklets, i.e. weak, highly unsteady shock waves. For channel flow computations, instead, we
retain the DRP11 scheme without any shock correction term, which is slightly less costly. We have
verified for some cases that DNC9 produces virtually identical solutions.
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Chapter Summary

The governing equations, the numerical methods and the CFD codes considered in this work
have been presented.

• Governing equations:

– Several thermodynamic models are considered in order to study dense gases, namely,
the Van der Waals, the Martin–Hou and the Span–Wagner equations of state. The
Chung-Lee laws are used to model the dense gas transport properties.

– The analysis focuses on the perfluorocarbon PP11; other dense fluids considered are
the siloxanes D5 and D6 and the refrigerants R134a and R245fa.

• Numerical methods:

– Centered fluxes approximated by means of DNC and DRP high-order schemes

– Numerical stabilization performed by means of filtering methods build similarly to
centered fluxes

• CFD codes:

– DynHoLab: multipurpose, flexible and modular code, used to perform CHIT com-
putations

– MUSICA: dedicated solver for wall-bounded flows, used for TCF simulations

– Implementation of dense-gas routines and analysis of MPI scalability capabilities
for both codes

– Preliminary validations by means of reference dense-gas shock-tube cases.
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The present chapter aims at investigating the large-scale dynamics of compressible homogeneous
isotropic turbulence in presence of dense gas effects. Section 3.1 provides some useful classical
definitions largely used hereafter. Details of the numerical setup (initial and boundary conditions)
adopted for the CHIT simulations are provided in section 3.2. The flow model is based on the
compressible Euler equations, whose validity for large-scale dynamics is discussed in section 3.3.
In addition, we also discuss the validity of the inviscid assumption by comparison with viscous
results at various Reynolds numbers. A sensitivity study to the initial conditions, and specifically
to the initial compressibility ratio and initial peak wavenumber, has been conducted in the case of
a perfect gas and is presented in sections 3.4.1 and 3.4.2. Dense gases are characterized by values
of the specific heat ratio closer to unity than diatomic gases like air or triatomic gases like carbon
dioxide (see, e.g., Harinck et al., 2009). It is useful to recall that, for gases with γ close to one, the
specific heat coefficients tend to infinity (this is easily seen, e.g., for calorically perfect gases); hence,
isentropic transformations are also approximately isothermal. To the author’s knowledge, all of the
results about CHIT available in the literature up to now have been obtained for air, modelled as a
perfect gas with γ = 1.4. Since changing the specific heat ratio has an impact on the coupling of
the kinematic and thermodynamic fields, we first perform a parametric investigation of the effect
of γ on perfect-gas CHIT simulations. Specifically, we generate reference results for γ = 1.0125,
that is a value representative of the PP11 gas of interest here; Results are discussed in section 3.4.3.
In section 3.4.4, dense gas inviscid CHIT at various initial turbulent Mach numbers is investigated
by using the VDW model, and the results are compared with those of a PFG characterized by the
same heat ratio.
The simulations discussed in this chapter have been published in Sciacovelli et al. (2016a).

3.1 Definitions

In the following, we recall some useful relations for the analysis of compressible homogeneous
isotropic turbulence. Since the mean velocity field is zero, we define the turbulent fluctuating
velocity as u′ = u = 〈u2

i /3〉1/2, where the operator 〈•〉 refers to a volume average over the com-
putational domain at a fixed time instant and the index i = 1, 2, 3 represents the three Cartesian
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coordinates. The root-mean-square (r.m.s.) values are computed as (•)rms =
√
〈(•)2 − 〈(•)〉2〉,

where (•) is a generic fluctuating quantity. The integral length scale LI is defined as:

LI =
3π

4

∫∞
0 E(k)/k dk∫∞

0 E(k) dk
(3.1)

where k = ‖k‖ is the wavenumber and E(k) is the spectrum of the turbulent velocity ui, integrated
over shells of radius k. The Taylor microscale λf is defined as in Hinze (1975)

λf =
u′2〈(
∂u1
∂x1

)2
〉 . (3.2)

According to Jiménez et al. (1993), the Taylor microscale can be computed directly from integral
quantities, by using the relation:

λ2
f =

5K

Ω
, (3.3)

where K =
∫∞

0 E(k) dk is the integrated energy, and Ω =
∫∞

0 k2E(k) dk is the enstrophy. The
turbulent Mach number Mt and the root-mean-square Mach number Mrms are defined as:

Mt =

√
〈u2
i 〉

〈c〉
, Mrms = 〈M2

loc〉1/2 =

√〈
u2
i

c2

〉
, (3.4)

In the definition of Mrms in equation (3.4) it is assumed 〈Mloc〉 = 0 since the mean flow is zero and
only the fluctuating components of the kinetic energy are computed.

In the spectral space, the k-th harmonic of the turbulent velocity û(k) can be properly decomposed
in a solenoidal component, ûS(k), and a dilatational component, ûD(k). The latter is computed
as ûD = [k · û] k/k2, whereas the former is ûS = û− ûD. Considering a discrete representation of
the spectrum over N uniformly spaced grid points, the total and compressible kinetic energies K
and KD are computed as follows:

K =
1

2

N/2∑
k=1

E(k)nk, KD =
1

2

N/2∑
k=1

ED(k)nk, (3.5)

where nk is the number of Fourier modes in the k-th bin, satisfying nk =
∑

k−1/2<‖k‖≤k+1/2 1. The
spectra of the total kinetic energy and its dilatational component are computed as, respectively:

E(k) =
1

2

∑
k−1/2<‖k‖≤k+1/2

‖û(k)‖2/n(k), ED(k) =
1

2

∑
k−1/2<‖k‖≤k+1/2

‖ûD(k)‖2/n(k), (3.6)

Finally, the compressibility ratio χ is defined as χ = KD/K.

The skewness and flatness factors of the resolved velocity gradients are defined as the third and
fourth moment of the fluctuating velocity gradient, namely

Sn :=

〈(
∂u

∂x

)n〉/〈(
∂u

∂x

)2
〉n/2

, (3.7)

with n = 3 and n = 4, respectively. These quantities are used in order to describe the characteristics
of the flow and to quantify turbulence (since in compressible isotropic turbulence, the non-Gaussian
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nature of the skewness velocity derivative determines the dissipation rate, as stated in Mansour &
Wray, 1994). Sreenivasan & Antonia (1997) experimentally showed that the skewness value slightly
increases with Reλ, but it is approximately -0.5 for 10 < Reλ < 800.

3.2 Initial and boundary conditions

The CHIT decay problem is solved on a cubic computational domain with extension [0, 2π]3. Pe-
riodic boundary conditions are imposed in the three Cartesian directions. The issue of the initial
conditions for compressible isotropic turbulence has been addressed by various authors (Blaisdell
et al., 1993; Ristorcelli & Blaisdell, 1997; Samtaney et al., 2001). In general, the shape of the initial
three-dimensional spectrum and the root-mean-square level of each flow variable must be provided.
Different spectra can be assigned to the solenoidal and dilatational components. The main dif-
ference between an incompressible and compressible initialization is the presence of an intrinsic
velocity scale for the latter, which is related to the speed of sound. The initial r.m.s. velocity urms

is defined by prescribing the turbulent Mach number (urms = Mt〈c〉, where 〈c〉 is the prescribed
average speed of sound). Temperature and pressure fluctuations are specified in accordance with
the velocity fluctuations. Several simplifying hypotheses are usually made in the compressible case
(Blaisdell et al., 1993): usually, the same spectrum shape is imposed for all the fluctuating fields;
furthermore, fluctuations of the thermodynamic quantities are neglected. A review of initialization
methods for CHIT can be found in Samtaney et al. (2001), as well as an analysis of their influence
on the evolution of turbulent quantities. The latter authors show that for turbulent Mach numbers
up to 0.5 (the maximum value considered in their analysis), initial conditions have moderate influ-
ence on the turbulence decay. Incompressible-like initialization leads to a fast transient in which
the dilatational velocity component grows and becomes coherent with the solenoidal one, while fluc-
tuations of thermodynamic quantities develop. This transient leads to higher values of the r.m.s.
of the velocity divergence. Nevertheless, for PFG, neglecting fluctuations of the thermodynamic
quantities in the initial conditions has been found to lead to weaker compressibility effects on the
turbulence decay (Blaisdell et al., 1993).

For PFG cases, the initialization is similar to the one described in Sarkar et al. (1991) and Pirozzoli
& Grasso (2004). In the case of dense gases that use a complex EoS, additional assumptions are
required. Since the thermodynamic variables are non-linearly related, contrary to the perfect gas
case it is not possible to assume a direct proportionality between density (or temperature) and
dilatational velocity fluctuations. In all of the following PFG and Dense Gas (DG) simulations, we
have imposed an initial velocity spectrum of the Passot-Pouquet type (Passot & Pouquet, 1987):

E(k) = Ak4 exp

[
−2

(
k

k0

)2
]

(3.8)

where k0 is the initial peak wavenumber and A is a constant that depends on the initial amount of
kinetic energy. For small values of k0, this distribution associates most of the energy to the largest
scales and practically none to the smallest ones. As a consequence, the large-scale dynamics (which
is of interest here) is enhanced, while the impact of the small scales (which are not meaningful in
an inviscid simulation) is reduced.

To ensure fair comparisons between perfect and dense gas simulations, fluctuations of the ther-
modynamic quantities are set to zero, and the turbulent velocity field is assumed to be purely
solenoidal in all of the following simulations. With this choice, turbulent scales set at the begin-
ning of the simulation can be controlled accurately. The expression for the initial turbulent kinetic
energy spectrum is used to compute analytically the initial turbulent kinetic energy K0, the initial
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enstrophy Ω0, the initial integral length scale LI and the initial large-eddy turnover time τLE :

K0 =
3A

64

√
2πk5

0, Ω0 =
15A

256

√
2πk7

0, LI =

√
2π

k0
, τ =

√
32

A
(2π)1/4k

−7/2
0 . (3.9)

3.3 Assessment of the numerical strategy

The numerical method used in this work is first assessed versus results available in the literature for
inviscid CHIT of perfect gas. Results provided by the DNC9 scheme are compared to those obtained
by Garnier et al. (1999), who studied the capability of various shock-capturing schemes, including
Jameson’s (Jameson et al., 1981), TVD-MUSCL (Van Leer, 1979) and ENO (Shu & Osher, 1989;
Shu, 1990; Liu et al., 1994), to behave as implicit subgrid scale models for several schemes. For the
sake of comparison, we also run computations with the classical lower-order scheme by Jameson
available in our code. Computational grids made of 643 and 1283 cells have been used, and all of
the results are expressed in terms of the non-dimensional time of Garnier et al. (1999) based on a
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Figure 3.1. Comparison between the present results for CHIT decay at Mt0 = 0.2 and χ0 = 0
using the 9th-order scheme and Jameson’s second-order scheme and those of Garnier et al. (1999)
based on a 5th-order modified ENO scheme (MENO) and Jameson’s schemes. Time histories of
the turbulent kinetic energy (a), enstrophy (b), pseudo-Taylor microscale (c), and spectrum of the
turbulent kinetic energy at t = 10 (d). : Garnier et al. - Jameson; : Garnier et al. - MENO;

: present - Jameson; : present - DNC9.
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unit length and the initial r.m.s. velocity.

Figure 3.1 shows results obtained for case 1 of Garnier et al. (1999), corresponding to Mt0 =
0.2 and χ0 = 0. For comparison, we show in figure 3.1 the time histories of kinetic energy,
enstrophy, and pseudo-Taylor microscale λf (Porter et al., 1994), as well as the kinetic energy
spectrum at the non dimensional time t = 10. Note that the pseudo-Taylor microscale λf , defined
in equation (3.3), should tend to zero in a purely inviscid simulation. Here, due to the numerical
dissipation introduced by the scheme, it tends to a small but non-zero value. λf can be seen as a
measure of the smallest scales resolved by a numerical method, and its limit value becomes smaller
as the grid is refined or dissipation errors are reduced.

DNC9 scheme has very low phase and dissipation errors. Far from flow discontinuities, its leading
truncation error term is of the form k10∆x9 ∂10w

∂x10
, i.e. it is consistent with a tenth-order viscosity.

Such viscosity term acts differently according to the wavenumber. It dissipates scales characterized
by reduced wavenumbers of about 0.35π or higher, i.e. wavelengths that are discretized with less
than 6 mesh points, leaving larger scales essentially unaffected. As one would expect, the 9th-order
scheme improves the results dramatically not only with respect to the low-order scheme (which
exhibits a very dissipative behaviour), but also with respect to a 5th-order accurate modified ENO
scheme (MENO). We observe that: 1) the kinetic energy is preserved for longer times (figure 3.1a);
2) the enstrophy peak is shifted to the right and the maximum value is more than five time greater
than the one obtained with Jameson’s scheme and more than 2.5 times the one provided by the
MENO scheme (figure 3.1b); 3) the pseudo Taylor microscale is reduced by about a factor 6 for
times greater than 4 (where the solution is dominated by the smaller scales) with respect to the
low-order scheme, and more than a factor 2 with respect to the 5th-order scheme (figure 3.1c);
4) the cut-off in the kinetic energy spectrum is also moved toward wavenumbers that are closer
to the grid aliasing limit (figure 3.1d). Finally, figure 3.2 reports the time evolution of the r.m.s.
density values at various initial turbulent Mach numbers. Comparisons with the results provided
by Garnier et al. (1999) for a ENO scheme match to within plotting accuracy.

The sensitivity of the present numerical simulations to mesh resolution has been assessed for both
a perfect gas (γ = 1.4) and a VDW gas, at Mt0 = 0.8. For that purpose, we have considered four
grids with number of cells equal to 643, 1283, 2563, and 5123. The time histories of λf , ρrms and of
Ω normalized with the initial enstrophy, as well as the kinetic energy spectrum and the probability
distribution function of the velocity divergence at t = 2.5 are reported in figure 3.3 for the PFG
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Figure 3.3. Influence of grid resolution for a PFG CHIT simulation. The working fluid is a perfect
gas with γ = 1.4, and the initial turbulent Mach number is Mt0 = 0.8. Panels a-c show the time
histories of the normalized r.m.s. density (a), the pseudo Taylor microscale (b) and the normalized
enstrophy (c); panels d-e show the turbulent kinetic energy spectrum (d) and the p.d.f. of velocity
divergence (e) at t = 2.5. : 643; : 1283; : 2563; : 5123.
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Figure 3.4. Influence of grid resolution for a DG CHIT simulation. Here, the working fluid is
PP11, modelled as a polytropic VDW gas, and the initial turbulent Mach number is Mt0=0.8.
Panel a shows the time history of the normalized enstrophy; panels b-c show the turbulent kinetic
energy spectrum (b) and the p.d.f. of velocity divergence (c) at t = 2.5. : 643; : 1283;

: 2563; : 5123.

case. The figure shows that ρrms is little affected by grid resolution and is well captured even on
a 643 grid (panel a). The same is true for the average and r.m.s. of the other thermodynamic
quantities. Differences measured between the two finest grids are found to be of the order of 1%
or lower. Resolution has a stronger influence on the pseudo Taylor microscale (panel b), which is
reduced by a factor of about 1.6 when halving the mesh size (Garnier et al., 1999). We observe
that the enstrophy should become unbounded within a finite time in a purely inviscid simulation
and should exhibit a peak increasing with the Reynolds number in viscous simulations. In the
present calculations, due to numerical dissipation, the enstrophy peaks at nondimensional time of
the order of 5. Due to the creation of smaller scales, its amplitude tends to double when doubling
the mesh (panel c). Note that the solutions on the two finest grids are superposed up to t = 2
and tend to depart from each other at later times. At time t = 2, a significant inertial range has
not developed yet, and most of the energy is still contained in scales much larger than the grid
size. At time t = 2.5 (considered for the analyses discussed later), a well-identified inertial range is
observed already on the 1283 grid (see panel d), and enstrophy values computed on the two finest
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grids differ of about 5%. The inertial range extends approximately over more than a decade for a
grid resolution of 2563, and a bit less than two decades for 5123 (panel d). The exponential roll-off
of the spectra at the end of the inertial range is due to the numerical viscosity cutoff, and moves
toward higher wavenumbers as grid resolution increases. The observed cutoff wavenumber is rather
close to the grid resolvability limit (four points per wavelength), in agreement with the spectral
properties of the current numerical method.

In the aim of assessing the influence of the numerical cutoff on local turbulence properties, the p.d.f.
of the velocity divergence θ/θrms normalized with respect to M2

t0 at t = 2.5 is also reported (panel
e). Grid resolution modifies mainly the tails of the distribution, which are however characterized by
rather low probability values (less than 10−3). This leads to some differences between the various
grids in terms of integrated probabilities, like the volume fractions occupied by flow structures with
given divergence levels. Nevertheless, the order of magnitude are well conserved, and the associated
percentages are reliable at least to one significant digit or more, according to the considered diver-
gence level. Similar trends are observed for different initial turbulent Mach numbers (not reported)
and for VDW simulations (only results for the more sensitive quantities on the two finest grids are
shown in figure 3.4). The p.d.f. exhibits a shape different than the one observed for perfect gas,
independently of the grid. The physical mechanism leading to this different behaviour is discussed
in the next section. The 2563 grid leads to reasonably small numerical errors both on the mean and
rms properties, as well as an adequate description of the inertial range over more than a decade at
the non-dimensional time of interest (t = 2.5), and it has been selected for the parametric study
discussed in later sections.

As pointed out in the introduction, due to the high-order dissipation of the scheme, the present
Euler-based simulations can be considered as a form of implicit large eddy simulation of high
Reynolds number CHIT. To further assess the numerical model, we have also carried out a series of
Navier-Stokes-based simulations whereby the viscous fluxes are discretized by standard fourth-order
central differences. Comparisons were first made for PFG CHIT at Mt0 = 0.5 and Reλ = 175, 1750
and 17500 (Reλ being based on the initial Taylor microscale); all simulations were carried out on the
2563 grid (and setting k0 = 2 and χ0 = 0). For the Euler-based simulation, the effective Reynolds
number Reeff

λ is estimated by using the numerical viscosity of the scheme. In particular, the
numerical viscosity associated with the smallest wavenumbers is O(10−5) and Reeff

λ = O(104), which
is indeed of the same order of the highest Reλ considered in the Navier-Stokes-based simulations.
We observe that at t = 0, the smallest wavelength that can be resolved on the given grid, kmaxη
(η being the Kolmogorov lengthscale), is equal to 4.8, 1.5, and 0.48, respectively for the three Reλ.
Hence, for the lowest Reynolds number case, all scales are well resolved up to the Kolmogorov one.
The other viscous simulations do not resolve all of the scales, and represent instead implicit large
eddy simulations, with the numerical dissipation acting as a subgrid model. Figure 3.5 compares
the time histories of the Euler-based and Navier-Stokes-based results in terms of ρrms, crms, kinetic
energy and θrms. The figure shows that, for the highest Reynolds number cases, the initial stages
of the decay are well represented by inviscid simulations. At t = 2.5, the selected grid resolves
accurately large and medium scales up to a cutoff wavenumber well within the inertial range for
the high-Reλ cases. This is clearly shown in figure 3.6 (panel a), where we compare the kinetic
energy spectra. As the Reynolds number increases, the inertial range becomes larger and it extends
up to a wavenumber kv of about 10 for Reλ = 1750 and about 20 for Reλ = 17500 (for Reλ = 175
there is no scale separation and the inertial range is virtually non existent). We observe that the
inviscid model captures essentially the same energy spectrum as the viscous one at Reλ = 17500,
the effective Reynolds number being of the same order. The comparison of the p.d.f. of the velocity
divergence (panel b) shows that the Euler-based and the Navier-Stokes-based results are almost
superposed for all cases (except for the lowest Reλ, for which the probability content of the tails is
smaller; however, even in this unfavourable case the overall shape of the p.d.f. remains similar).
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Figure 3.5. Comparison of Euler-based and Navier-Stokes-based results for PFG. Panels a-d show
the time histories of the normalized r.m.s. density (a), the normalized r.m.s. sound speed (b), the
turbulent kinetic energy (c) and the normalized r.m.s. velocity divergence (d) at various Reynolds
numbers. : Reλ = 175; : Reλ = 1750; : Reλ = 17500; : Euler.

Finally, the influence of the artificial dissipation coefficients k2 and k10 on the turbulence decay
has been investigated considering a 2563 grid and Mt0 = 0.8 and χ0 = 0. Four different parameter
combinations were considered (see table 3.1). Sample results are shown in figure 3.7. The evolutions
of kinetic energy (panel a) and r.m.s. of the thermodynamic properties are essentially insentitive
to k2 and k10. Small changes in the enstrophy time history (panel b) are observed for t greater
than ≈ 3. At t = 2.5, the turbulent kinetic energy spectrum (panel c) is slightly dependent on k10

at high wavenumbers, whereas it is found to be largely insensitive to k2. Finally, the p.d.f. of the
normalized velocity divergence at the same time (panel d) shows that the coefficients have only
a small influence on the tails of the distribution. The following compressible computations were
carried out using k2 = 2 and k10 = 1

420 .

3.4 Results

3.4.1 Influence of the initial compressibility ratio

The influence of the initial compressibility ratio χ0 on the turbulent kinetic energy decay is here
discussed. We study the influence of χ0 for CHIT at Mt0 = 0.5 and k0 = 2 considering a perfect
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Figure 3.6. Comparison of Euler-based and Navier-Stokes-based results for PFG simulations. (a)
Turbulent kinetic energy spectrum and (b) p.d.f. of the normalized velocity divergence evaluated at
t = 2.5 at various Reynolds numbers. : Reλ = 175; : Reλ = 1750; : Reλ = 17500;

: Euler.

Table 3.1. Cases considered to study the influence of the artificial dissipation coefficients.

k2 k10

case A 2 1/420
case B 3 1/630
case C 3 1/420
case D 4 1/420

gas with γ = 1.4. In particular, three values of χ0 have been considered, namely 0, 0.1 and 0.2. In
figure 3.8 we report the time evolution of ρrms, crms, and Ω/Ω0, as well as the p.d.f. of the local
Mach number at t = 2.5. As discussed in Blaisdell et al. (1993), increasing the initial compressibility
ratio leads to higher values of ρrms, crms (panels a and b) and velocity divergence. This leads to a
slightly faster decay of the turbulent energy at the beginning of the simulation, due to the increased
shock losses. The initial normalized enstrophy growth is therefore smaller with respect to the case
χ0 = 0 (figure 3.8c). Nevertheless, at time 2.5, the p.d.f. of the local Mach number (figure 3.8d)
is not significantly affected by χ0. In summary, even if the initial value of χ0 has an influence on
turbulence decay, the main effect of increasing χ0 is to enhance compressibility effects, especially at
the initial stages of the decay. Since our objective is to investigate how the compressible turbulence
behaviour is modified by dense gases, we make the conservative choice of using χ0 = 0, since higher
values of χ0 tend to amplify the effects of interest.

3.4.2 Influence of the initial peak wavenumber

The influence of the initial peak wavenumber k0 is now considered. Three values of k0 are consid-
ered, namely 2, 4 and 8, for Mt0 = 0.5 and χ0 = 0. Figure 3.9 shows the time evolution of ρrms,
θrms normalized by the initial r.m.s. of the vorticity, Mt, and the turbulent kinetic energy spectra
at t = 2.5. The r.m.s density is weakly affected by the peak wavenumber and increases slightly
when using a smaller k0 (panel a). The r.m.s. fluctuations of the velocity divergence also increase
(panel b), due to the wider range of active scales. This leads to a different time evolution of the
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Figure 3.7. Influence of the artificial dissipation coefficients k2 and k10 (2563 grid, Mt0 = 0.8,
perfect gas with γ = 1.4). Panels a-b show the time histories of the normalized turbulent kinetic
energy (a), the normalized enstrophy (b). Panels c-d show the turbulent kinetic energy spectrum
(c) and the p.d.f. of velocity divergence (d) at t = 2.5. : case A; : case B; : case
C; : case D.

turbulent Mach number (panel c), that exhibits a rather low decay rate during the first stages. At
later times, the enhanced dilatational effects lead to higher losses and a quicker decay of turbulent
kinetic energy (not reported for brevity). From the turbulent kinetic energy spectra (panel d) we
observe that lower values of k0 yield a wider inertial range. After t = 5, the decay is driven by the
numerical dissipation and the turbulent kinetic energy exhibits a similar evolution for any choice
of the initial peak wavenumber. In order to enhance the large scales motions that are of interest in
this study, we have then used k0 = 2 in all of the following simulations, thus concentrating about
99% of the initial energy at large scales (the ones that are well resolved on the grids used in the
present study). As a consequence, the initial stages of the decay are practically not affected by
numerical dissipation.

3.4.3 Influence of the specific heat ratio

We then run dense gas simulations using the VDW EoS with γ = 1.0125, and setting k0 = 2 and
χ0 = 0. In table 3.2 we report the different values of γ considered, as well as the values of the
specific heat coefficients and fundamental derivative. Simulations were performed on the 2563 grid
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Figure 3.8. Influence of the initial compressibility ratio χ0. The working fluid is a perfect gas with
γ = 1.4. Panels a-d show the time histories of the normalized r.m.s. density (a), normalized r.m.s.
sound speed (b), time history of the normalized enstrophy (c), and p.d.f. of local Mach number at
t = 2.5 (d). : χ0 = 0; : χ0 = 0.1; : χ0 = 0.2.

Table 3.2. PFG simulations: influence of the specific heat ratio. Values of the specific heat ratio
(γ), specific heat coefficient at constant volume (cv) and at constant pressure (cp), and fundamental
derivative of gas dynamics Γ .

Case Gas γ cv/R cp/R Γ

G1 Monoatomic 1.6667 1.5 2.5 1.3335

G2 Diatomic 1.4 2.5 3.5 1.2

G3
Polyatomic, light gas

1.289 3.46 4.46 1.1445
(e.g., CO2)

G4
Polyatomic, heavy gas

1.0125 80.0 81.0 1.00625
(e.g., heavy fluorocarbon)

and assuming an initial turbulent Mach number Mt0 = 0.8.

Using dimensional analysis and momentum conservation, the pressure fluctuations can be related
to the velocity fluctuations:

prms ∼ ρ0u
2
rms0 ∼ ρ0M

2
t0c

2
0, (3.10)
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Figure 3.9. Influence of the initial peak wavenumber k0. The working fluid is a perfect gas with
γ = 1.4. Panels a-d show the time histories of the normalized r.m.s. density (a), normalized
r.m.s. velocity divergence (b), turbulent Mach number (c), and turbulent kinetic energy spectrum
at t = 2.5 (d). : k0 = 2; : k0 = 4; : k0 = 8.

hence:
prms

p0
∼ γM2

t0 . (3.11)

On the other hand, the normalized density fluctuation is related to the normalized pressure fluc-
tuations through the sound speed definition ρrms/ρ0 ∼ prms/c

2
0; hence using (3.11), one obtains

ρrms

ρ0
∼M2

t0 (3.12)

Recalling the definition of the fundamental derivative of gas dynamics in equation (1.1) and its
expression with the PFG model, equation (1.2), one obtains:

crms

c0
∼ ρrms

ρ0
(Γ− 1) ∼ ρrms

ρ0

γ − 1

2
∼ γ − 1

2
M2
t0 (3.13)

The time evolution of the normalized root mean square of speed of sound, pressure and density at
various γ are reported in figure 3.10, where prms and crms are rescaled according to equations (3.11)
and (3.13). The results show that changing the specific heat ratio has a strong influence on crms,
whose maximum value varies between 0.002 (for the low-γ case) and 0.84 (for the high-γ case).
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Table 3.3. Volume fraction occupied by flow regions with different dilatation levels at time t = 2.5.

Case
θ/θrmsM

2
t0 (%)

[−∞,−2] [−2,−1] [−1, 0] [0, 1] [1, 2] [2,+∞]

G1 1 5 38 53 3 0

G2 1 5 38 53 3 0

G3 1 5 38 53 3 0

G4 1 5 39 52 3 0

This is due to both direct and indirect effects. On the one hand, the speed of sound depends on
√
γ

for a perfect gas; on the other hand, lower values of γ correspond to higher values of the specific
heats, and hence to smaller heating effects and lower values of the mean temperature. For the case
of a polyatomic heavy gas (case G4 of table 3.2), characterized by high values of the specific heats,
the mean sound speed remains roughly constant with time. The opposite behaviour is observed for
monoatomic gases that are characterized by specific heats lower than air. Intermediate behaviours
are observed for cases G2 and G3. The prms exhibits trends similar to crms, with higher fluctuations
for case G4, which ρrms shows an opposite behavior, even though it is much less dependent on the
value of γ.

The time evolution of Mt, K, ωrms, and θrms, as well as the turbulent kinetic energy spectra and
the p.d.f. of the local Mach number at t = 2.5 is reported in figure 3.11, at various γ. The figure
shows that the vorticity fluctuations, the turbulent kinetic energy and its spectra are not affected
by γ. The figure also shows that the probability of finding local Mach numbers greater than unity
is greater for lighter gases.

To systematically quantify the effects of local compressibility, we classify the overall flow volume
into six subregions, according to the local dilatation scaled by the initial turbulent Mach number,
as done in Wang et al. (2012b) and Sciacovelli et al. (2016a):

θ/θrmsM
2
t0 ∈



[−∞,−2] Strong compressions
[−2,−1] Moderate compressions
[−1, 0] Weak compressions
[0, 1] Weak expansions
[1, 2] Moderate expansions
[2,∞] Strong expansions

(3.14)

In table 3.3 we report the volume fractions conditioned on the local dilatation value. We observe
that, independently of γ, weak expansions are more probable than compression ones (about 52%
to 38%). On the contrary, moderate and strong compression regions are more likely to occur than
expansion ones. However, overall weak compressions and expansions occupy more than 90% of the
flow volume, and the probability of the occurrence of eddy shocklets (defined as regions for which
θ/θrmsM

2
t0 < −3) exists, but it is rather small.

3.4.4 Dense gas simulations

This section presents a parametric study of the influence of dense gas effects on CHIT decay.
We have considered the perfluoroperhydrophenanthrene that is assumed to obey the VDW EoS
with γ = 1.0125. The results are compared to those of a perfect gas having the same specific
heat ratio. Since the PFG and VDW models lead to different intrinsic scales (the sound speed
being very different), it is not possible to set the same initial kinetic energy without changing
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the thermodynamic conditions. Consequently, comparisons were performed by renormalizing the
calculated quantities with respect to their initial values.

The initial thermodynamic state is reported in the p − v plane (figure 3.12) for the VDW model;
the initial thermodynamic conditions for both perfect and dense gas simulations are summarized
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Figure 3.10. PFG simulations: influence of the specific heat ratio. Time evolution of the r.m.s. of
the density (a), the pressure (b), the sound speed (c), and the rescaled values of prms (d) and crms

(e) according to equations (3.13) and (3.11), respectively. : γ = 1.0125; : γ = 1.289;
: γ = 1.4; : γ = 1.667.
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Figure 3.11. PFG simulations: influence of the specific heat ratio. Time evolutions of the turbulent
Mach number (a), turbulent kinetic energy (b), normalized r.m.s. of the vorticity (c), normalized
r.m.s. of the dilatation (d), kinetic energy spectrum (e) and p.d.f. of the local Mach number at
t = 2.5 (f). : γ = 1.0125; : γ = 1.289; : γ = 1.4; : γ = 1.667.

in table 3.4, where all variables are normalized with respect to their critical value. Figure 3.12
shows the location of the (uniform) initial thermodynamic state in the p − v plane for the VDW
model. The initial state is located close to the transition line and corresponds to a negative initial
value of the fundamental derivative of gas dynamics. As a consequence, non classical gas dynamic
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Figure 3.12. Representation in the p−v plane of the initial thermodynamic conditions used for the
dense gas simulations with the VDW model (isocontours of reduced temperature). I.C. represents
the initial thermodynamic state; the dashed line s = s0 is the isentropic curve containing the initial
thermodynamic state; T = Tc the critical isotherm; the curves Γ = 0 and Γ = 1 define the BZT
and the dense-gas region, respectively.
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Figure 3.13. PFG and DG simulations. Kinetic energy spectra at t = 2.5 at various initial turbulent
Mach numbers. : Mt0 = 0.2; : Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1. : VDW;

: PFG.

behaviours are likely to appear in supersonic flow regions. We have then carried out a parametric
study by considering various initial turbulent Mach numbers (Mt0 = 0.2, 0.5, 0.8 and 1).

Table 3.4. Initial thermodynamic conditions used for the dense gas simulations using the PFG and
VDW equations of state.

Case ρ/ρc T/Tc p/pc c/
√
pc/ρc Γ

VDW 0.6 1.012 0.944 0.818 -0.04471

PFG 0.6 1.012 0.607 1.012 1.00625
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Figure 3.14. PFG and DG simulations. Time evolution of the r.m.s. density (a), turbulent
Mach number (b), average speed of sound (c) and r.m.s. speed of sound (d). : Mt0 = 0.2;

: Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1. : VDW; : PFG.

The computed kinetic energy spectra at t = 2.5, reported in figure 3.13, exhibit an inertial range
for all values of the initial turbulent Mach number and the perfect and dense gas solutions do
not show any difference. However, the thermodynamic variables as well as the turbulent Mach
number are strongly affected by the dense gas effects as shown in figure 3.14, where the time
histories of ρrms, Mt, 〈c〉, and crms (normalized by the respective initial values) are reported at
various Mt0 . In particular, we observe that for the lower Mt0 cases (Mt0 = 0.2, 0.5) there are no
significant differences between PFG and VDW solutions. For the PFG, the average and the r.m.s.
speed of sound remain almost constant in time independently of Mt0 . In the VDW dense gas case
these quantities increase strongly with Mt0 . As a consequence the mean and r.m.s. fundamental
derivative of gas dynamics (which is directly related to sound speed variations) also exhibits a
strong dependence on Mt0 (figure 3.15). This behavior is due to the fact that for VDW gases both
c and Γ depend on temperature and density, which are changing. For the lowest values of Mt0 ,
fluctuations of the thermodynamic quantities are small and all the thermodynamic states remain
close to the initial one.

This is confirmed by inspection of figure 3.16 that shows the representation of the thermodynamic
states in the p− v diagram at t = 2.5 for various Mt0 . The thermodynamic states are distributed
along the isentropic line corresponding to s = s0 (s0 being the initial entropy). At Mt0 = 0.2
(panel a) ,the thermodynamic variables exhibit weak variations and 〈Γ〉 is rather constant in time.
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Figure 3.15. PFG and DG simulations. Time histories of the average (panel a) and r.m.s. (panel b)
fundamental derivative of gas dynamics for the dense gas at various initial turbulent Mach numbers.

: Mt0 = 0.2; : Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1. : VDW; : PFG.
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Figure 3.16. Representation in the p − v diagram of the thermodynamic states at t = 2.5 for
various initial turbulent Mach numbers. Each symbol represents the thermodynamic conditions
computed at a given mesh points at various initial Mach numbers. The spread of thermodynamic
states (approximately distributed along an isentropic curve) increases with the Mach number, due
to compressibility effects. : Mt0 = 0.2; : Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1.

As the initial turbulent Mach number increases, thermodynamic states attained by the flow lay
along isentropic line, and the thermodynamic variables exhibit strong variations, thus explaining
the strong dependence of 〈Γ〉 and Γrms observed in figure 3.15. The rapid growth of both quantities
(attaining a maximum at about 1÷ 1.5) is likely due to the appearance of strong local compression
phenomena (namely, eddy shocklets). A close-up of the instantaneous iso-contours of Γ, taken
along a mesh plane at t = 2.5, for a dense gas simulation with Mt0 = 1 is shown in figure 3.17.
The figure shows that there exist regions of the plane where Γ varies abruptly from negative to
positive values (from about −0.5 to values greater than 4). The representation in the p−v plane of
the thermodynamic states at the same time (figure 3.16) shows that indeed for the high turbulent
Mach numbers, strong compressions drive the thermodynamic states far away from the initial one,
up to supercritical pressures and temperatures. In the high pressure region, the second nonlinearity
parameter (the rate of change of Γ with respect to density at constant entropy) is positive, and Γ
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Figure 3.17. Instantaneous iso-contours (t = 2.5) of Γ (top), c/c0 (middle), and ρ/ρ0 (bottom)
along a mesh plane for a dense-gas computation at Mt0 = 1. At high-Mach number dense gas com-
putations, these thermodynamic properties exhibit significant large-scale fluctuations. Specifically,
Γ can take both positive and negative values.
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Figure 3.18. PFG and DG simulations. Time evolution of the r.m.s. divergence of the velocity field
normalized with the initial vorticity at various initial turbulent Mach numbers. : Mt0 = 0.2;

: Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1. : VDW; : PFG.

increases rapidly with pressure, leading to the formation of spots characterised by very high values.
As a consequence, the sound speed decreases abruptly, leading to large variations of the local Mach
number.

To further analyse compressibility effects, figure 3.18 displays the time evolution of the r.m.s.
velocity divergence normalized by the initial r.m.s. vorticity at various Mt0 . During the initial
transient phase, the development of dilatational modes exhibits similar trends for both perfect and
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(a)

(b)

(c)
Figure 3.19. Instantaneous iso-contours of the normalized velocity divergence θ/θrms for Mt0 = 1
at time t = 1 (a), t = 3 (b), and t = 5(c). Results for the perfect gas case are represented on the
left, dense gas on the right. Red regions correspond to strong compressions (θ/θrms < −3), green
regions to strong expansions (θ/θrms > 3).
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(a)

(b)

Figure 3.20. Snapshots at t = 2.5 of the isosurfaces θ/θrms = 3 (a) and of the iso-surfaces θ/θrms =
−3 (b), coloured by the local Mach number, for perfect (left panel) and dense gas (right panel)
simulations at Mt0 = 1.

dense gas. Afterwards, compressibility effects are enhanced for dense gas cases.

Regardless of the gas model in use, the observed dynamics is similar. The almost-incompressible
initial distribution of large-scale eddies is modified at the beginning of the decay with the appearance
of compressible modes, leading to the generation of eddy shocklets that start interacting at a later
stage. As observed by Passot & Pouquet (1987), when shocklets collide they may either coalesce
or “ignore” each other, pursuing their path with a slightly different velocity due to momentum
exchange. Because of turbulence kinetic energy decay, the number and intensity of shocklets tend
to decrease with time. Nevertheless, the nature of eddy shocklets for the perfect and dense gas
is different. Figure 3.19 shows a snapshot of the ratio θ/θrms on a slice of the domain at t = 1,
3 and 5. Red regions correspond to values of θ/θrms < −3, which is considered as a threshold
representative of strong compressions (Samtaney et al., 2001); conversely, green regions correspond
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Table 3.5. Volume fraction occupied by compression and expansion regions at time t = 2.5.

Mt0 EoS
θ/θrmsM

2
t0 (%)

[−∞,−2] [−2,−1] [−1, 0] [0, 1] [1, 2] [2,+∞]

0.2
PFG 0 0 50 50 0 0

VDW 0 0 50 50 0 0

0.5
PFG 0 0 48 52 0 0

VDW 0 0 51 49 0 0

0.8
PFG 1 5 39 52 3 0

VDW 0.5 4 46 44 5 0.5

1.0
PFG 4 8 30 48 9 1

VDW 3 9 38 38 9 3

Table 3.6. Volume fraction occupied by flow regions characterized by different Γ values, conditioned
on dilatation levels (dense gas simulations at Mt0 = 1 , t = 2.5). First row corresponds to regions
characterized by Γ < 0 (thermodynamic states falling in the inversion zone); second row to regions
with 0 < Γ < 1 (dense gas region); third row to regions having Γ > 1. The last column provides
the total volume fraction for each thermodynamic region.

〈Γ|θ/θrms〉
θ/θrmsM

2
t0 (%)

[−∞,−2] [−2,−1] [−1, 0] [0, 1] [1, 2] [2,+∞] [−∞,+∞]

[−∞, 0] 1 4 16 14 4 1 40

[0, 1] 2 5 21 22 5 1 56

[1,+∞] 0 1 1 2 1 0 4

to values of the relative divergence greater than 3, which identifies strong expansions. We observe
that strong compression zones are somewhat more frequent and wider in perfect gas than in dense
gas simulations. Conversely, strong expansion regions, which occupy a significant portion of the
domain in the DG solution, are nearly absent in PFG.

The iso-surfaces θ/θrms = 3 and θ/θrms = −3 at t = 2.5 are reported in figure 3.20, both for
PFG and DG. The figure shows that in the PFG case, strong compression regions correspond to
sheet-like structures, while strong expansions have tubular shapes. On the contrary, the dense gas
exhibits sheet-like and tubular structures, both in compression and in expansion regions.

Table 3.5 reports the volume fractions occupied by compression and expansion regions at t = 2.5, as
defined in section 3.4.3. At the lowestMt0 , only weak expansion and compression regions are present
both for perfect and dense gas cases, with a balanced distribution. The percentage of moderate and
strong compression and expansion regions increases as the initial turbulent Mach number increases.
The volume distribution for the PFG case with Mt0 = 1 is similar to the one reported in Wang
et al. (2012b). Strong compression regions become significant starting from Mt0 = 0.8. At Mt0 = 1,
strong dilatation regions (including compressions and expansions) occupy about 5% of the total
volume both for perfect and dense gases. However, in the latter case expansions and compressions
are equally probable and the volume fraction shows a more symmetric statistical behavior (which is
preserved for all Mt0 due to the nonclassical sound speed behaviour in zones with Γ < 0). For PFG
the volume fraction distribution is symmetric only at the lowest Mt0 . At Mt0 = 1 strong expansion
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Figure 3.21. P.d.f.s of the normalized velocity divergence scaled by M2

t0 for Mt0 = 0.2 (a), Mt0 = 0.5
(b), Mt0 = 0.8 (c), and Mt0 = 1 (d) (t = 2.5). The vertical dashed lines indicate the values
θ/θrms = ±3. : PFG; : VDW.

zones occupy a volume fraction which is about 400% less than strong compressions. In dense gases
strong expansions occupy a volume fraction that is about 10% less than strong compressions at the
same Mt0 . In the PFG case, moderate and weak expansion occupy 57% of the flow volume, while
the weak and moderate compressions occupy 38%. However, in VDW case the volume occupied by
weak and moderate compressions and expansions is approximately equal (about 47% each).

To further elucidate the influence of dense gas and compressibility, in figure 3.21 we report the p.d.f.
of the normalized dilatation at various Mt0 (t = 2.5) both for PFG and VDW. The dashed vertical
lines identify the regions of strong compression bounded by the area of negative (respectively,
positive) values of θ/θrms to the left (respectively, to the right) of θ/θrms = −3 (respectively,
θ/θrms = 3). In the case of the perfect gas, the p.d.f. of the dilatation is highly skewed, as
already observed in weakly and moderately compressible turbulent flows at high Mt0 (and γ = 1.4)
by Porter et al. (2002), Pirozzoli & Grasso (2004). In the dense gas case, strong expansion are
enhanced, resulting in a more symmetric p.d.f. (i.e. strong compressions and strong expansions are
equally probable). Table 3.6 shows the volume fractions occupied by flow regions having different
Γ values conditioned on the dilatation for the dense-gas case at Mt0 = 1. We observe that 40% of
the flow volume is characterized by thermodynamic states falling in the inversion zone (exhibiting
Γ < 0), whereas only 4% is characterized by Γ > 1. Strong expansion regions characterized by a
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Figure 3.22. Contours of the joint probability density function (log scale) of the fundamental
derivative of gas dynamics Γ with the scaled normalized local velocity divergence θ/θrmsM

2
t0 at the

initial turbulent Mach numbers Mt0 = 0.2 (a), Mt0 = 0.5 (b), Mt0 = 0.8 (c), and Mt0 = 1 (d) .

negative Γ occupy a volume fraction of about 1%, which represents 50% of all Γ values, whereas
strong expansion regions having Γ > 1 represent a negligible fraction. Strong compression regions
having positive Γ occupy about 70% of the total volume. This suggests that in the dense gas the
occurrence of both eddy shocklets and eddy ”expansion shocklets” is admissible.

In figure 3.22 we report the joint p.d.f. of Γ with θ/θrms at various initial turbulent Mach numbers
at time t = 2.5. For Mt0 = 0.2, the weak dilatation levels cause the p.d.f.s to be concentrated in the
neighbourhood of the initial condition (Γ ≈ −0.045). At Mt0 = 0.5, the p.d.f. becomes broader,
but most of the states are characterized by Γ < 1 and θ/θrms ∈ [−1, 1]. At higher Mt0 , due to strong
dilatation effects, the thermodynamic states spread over a large range of thermodynamic conditions,
and a secondary peak is obtained around Γ ≈ 4 and small positive values of θ/θrms. When strong
compressions occur, flow particles becomes increasingly difficult to compress as density grows. This
results in a clustering of the thermodynamic states in the high-pressure region, close to the critical
isotherm.

Figure 3.23 shows that, in the case of dense gas, the p.d.f. of the normalized local speed of sound
c/〈c〉 for the dense gas spans over a wider range than PFG, for a Dirac-like distribution is recovered
(i.e. the speed of sound is nearly constant). This is true for the total p.d.f. (conditioned on all



90 Results

0.75 1 1.25 1.5 1.75 2
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

10
1

10
2

c/〈c〉

p.
d
.f
.

Figure 3.23. Probability density function of the normalized sound speed conditioned on θ/θrms at
Mt0 = 1. : [−∞,−2]; : [2,∞]; : [−∞,∞]; : VDW; : PFG.
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Figure 3.24. Probability density functions of the local Mach number at various initial turbulent
Mach numbers (t = 2.5). : Mt0 = 0.2; : Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1.

: VDW; : PFG.

possible values of θ/θrms) and for p.d.f.s conditioned on either strong expansions either strong
compressions.

The heavy right tail of the dense-gas p.d.f.s, for c/〈c〉 > 1.5, is due to high compression regions
characterized by high Γ values, for which the sound speed increases considerably. In fact, the
p.d.f. conditioned on strong compressions exhibits a heavy right tail as well, whereas the p.d.f.
conditioned on strong expansions attributes lower probability to high values of the speed of sound.
On the other hand, in compression regions low values of c are also very probable when Γ < 0, since
in this case the sound speed initially decreases. This explains the higher probability associated with
values of c/〈c〉 below 0.7 in the case of strong compressions, with respect to strong expansions.

The peculiar behaviour of the speed of sound deeply modifies the p.d.f. of the local Mach number
(figure 3.24). However, the probability of having high local Mach number is higher in dense gases.
In figure 3.25 we report the p.d.f. of the local Mach number (panel a) and of the normalized vorticity
ω/ωrms (panel b) conditioned on the strong compression and expansion regions at Mt0 = 1. The
dense-gas and the perfect-gas case exhibit a bell-shaped form with an exponential right tail, as also
found by Wang et al. (2012b) and Moisy & Jiménez (2004) for a perfect gas with γ = 1.4. Restricting
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Figure 3.25. Total probability density function of the local Mach number (a) and the normalized
local vorticity (b), and p.d.f. conditioned on strong compressions (θ/θrms < −2) and strong expan-
sions (θ/θrms > 2) for Mt0 = 1 at time t = 2.5. : [−∞,−2]; : [2,∞]; : [−∞,∞];

: VDW; : PFG.

our attention to the conditional p.d.f. we note that for dense gas, unlike the PFG, the p.d.f.s
conditioned on strong dilatations and on strong compressions do not exhibit significant differences.
In other terms, the probability of producing a given vorticity is similar in both regions. A possible
explanation is that, on the one hand, extra vorticity may be generated in strong expansion regions
through expansion eddy shocklets; on the other hand, shocklets of any kind are expected to be
weaker in dense gases with Γ close to zero and specifically compression shocklets are weaker than
in a PFG. For the PFG case, vorticity production in high compression regions is more likely than
in high dilatation ones, as observed also by Wang et al. (2012b).
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Chapter Summary

A numerical study of the influence of dense-gas effects on the large-scale dynamics of decaying
homogeneous isotropic turbulence is carried out by using the Van der Waals gas model. The
simulations are based on the inviscid conservation equations, solved by means of the DNC9
scheme with the shock-capturing strategy presented in section 2.2.

• Assessment of the numerical strategy:

– Concerning grid resolutions, The 2563 grid leads to reasonably small numerical
errors both for mean and r.m.s. properties, as well as an adequate description of
the inertial range. It has been retained as best compromise between accuracy and
computational cost.

– Different dissipation coefficients were tested. They do not alter essentially the ther-
modynamic quantities, but slightly modify the tails of the p.d.f.s of dilatation, the
enstrophy value for t > 3 and the energy spectrum at high wavenumbers.

• Influence of the initial conditions.

– Higher initial values for the compressibility ratio lead to higher fluctuations of ther-
modynamic quantities and velocity divergence; hence, the non-physical, yet conser-
vative value of χ0 = 0 is chosen.

– The initial peak wavenumber k0 = 2 is retained since it concentrates energy in the
biggest scales, enhancing large-scale motions and yielding a wider inertial range.

• Influence of the specific heat ratio γ in perfect gases:

– Fluctuations of thermodynamic quantities are shown to scale according to dimen-
sional analysis and momentum conservation.

– Kinematic quantities exhibit a similar behaviour, although strong dilatation regions
are slightly enhanced for low-γ fluids.

• Dense-gas simulations:

– Significant influence for flows characterized by initial turbulent Mach numbers
higher than 0.5.

– Thermodynamic properties deeply affected and different behaviour in strong dilata-
tion regions:

∗ For the perfect gas, strong compressions occupy a much larger volume fraction
than strong expansions; vorticity in more likely to be created in strong com-
pressions, and strong expansions are characterized by tubular eddy structures.

∗ For the dense gas, strong compressions and expansions are more balanced, as
shown by the p.d.f.s of the normalized local dilatation, and vorticity is created
with equal probability in both regions. Strong expansions, furthermore, are
characterized by sheet-like structures, suggesting the possibility of the occur-
rence of eddy shocklets.
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In the present chapter, we focus on the role of viscous effects involved in the small-scale dynamics
of dense gas CHIT. On the one hand, we investigate how differences due to the complex thermody-
namic behaviour affect the dynamics at smallest scales. On the other hand, we elucidate the role of
the peculiar transport properties of dense gases. To this aim, we carry out DNS of the compressible
Navier-Stokes equations at various initial turbulent Mach numbers and for two different choices of
the initial thermodynamic state, corresponding to a small positive and a small negative value of
the fundamental derivative Γ, and compared with DNS results for a perfect gas. The effect of the
dense gas EoS and transport-property models adopted is quantified in section 4.1 by comparing
results with those provided by the simple polytropic VDW EoS along with a power law model for
the thermophysical properties. Afterwards, in order to evaluate the differences and similarities with
the PFG case, we focus on highly compressible CHIT and in section 4.2 we analyze the statistical
properties of the turbulent structures. The mechanisms of viscous dissipation of kinetic energy and
enstrophy production are also investigated, with an emphasis on phenomena related to dilatational
effects, which are more likely to be affected by the gas thermodynamic behaviour. The results
reported in this chapter have been submitted to the Journal of Fluid Mechanics (Sciacovelli et al.,
2016b).

4.1 General statistics

Direct simulations of dense gas CHIT have been carried out at Reλ0 = 200 and k0 = 2, using
a computational grid of 5123 cells. In order to assess the influence of both thermodynamic and
transport property models, we first focus on CHIT at Mt0 = 1, considering MAH and VDW models
at the same reduced initial pressure and temperature (cases PP11-MAH-IC1 and PP11-VDW), as
well as the perfect gas model assuming γ = 1.0125, a value which is representative of PP11 (referred-
to as PP11-PFG). The initial thermodynamic conditions used in each case are reported in table 4.1.
At the selected initial conditions the thermodynamic state lies within the inversion zone for the
VDW model, and immediately outside for MAH. Specifically, MAH-IC1 belongs to an isentrope
that does not cross the inversion zone, yet it is characterized by an initial value of Γ close to zero.
Hence, no BZT effects can appear since the entropy can only increase during the flow evolution.

93
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Table 4.1. Summary of the thermodynamic models and initial thermodynamic conditions used in
the study.

Case name Model T0/Tc p0/pc ρ0/ρc Γ0

Air PFG 2.21 2.69×10−3 3.85×10−3 1.2

PP11-PFG PFG 1.01 1.02 1.01 1.006

PP11-VDW VDW 1.01 1.02 0.53 -0.674

PP11-MAH-IC1 MAH 1.01 1.02 0.62 0.125

PP11-MAH-IC2 MAH 1.001 0.98 0.62 -0.093
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Figure 4.1. Isocontours of the reduced temperature in the Clapeyron diagram for PP11 using
Martin-Hou (a), and Van der Waals (b) model. Three iso-Γ lines are also represented. The black
dashed line denotes the critical isotherm. White circles are the initial thermodynamic conditions
chosen for the MAH and VDW cases. The red circle in panel (a) denotes the PP11-MAH-IC2
initial condition. White and red dash-dotted lines are used to highlight the corresponding initial
isentropes.

To further assess the role played by BZT effects when using a more realistic EoS, we have then
also considered a different initial state that falls in the inversion zone (case PP11-MAH-IC2). The
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initial thermodynamic states of the MAH and VDW cases are reported in the Clapeyron diagram
(figure 4.1, panels a and b, respectively).

In figure 4.2 we report the time history of the ratio of the Kolmogorov length scale over the mesh
size for the different thermodynamic models at Mt0 = 1 (value for which compressibility effects are
strongest). The figure shows that η is discretized with more than 2 mesh points at all times and
kmaxη ≥ 6.5− 7, thus confirming the adequacy of the selected grid.

DNS of PP11-MAH-IC1 are then carried out at various Mt0 , ranging from 0.2 to 1, and the dense
gas effects are assessed by comparing the results with those of air behaving as a perfect gas.

4.1.1 Influence of the thermodynamic and transport property models

In figure 4.3, we report the time evolution of the turbulence kinetic energy (left figure) and the
enstrophy (right) for the different cases of table 4.1. The thermodynamic model has a minor
influence on the decay of these kinematic quantities. However, this is in general not true for
the r.m.s. properties as figure 4.4 shows, where we report the time evolution of the r.m.s. of
the pressure, temperature and speed of sound. The PP11-PFG solution exhibits higher pressure
fluctuations compared to VDW and MAH results. On the other hand, temperature fluctuations
are very small for all cases (including PFG), due to the high specific heat of the PP11 gas. The
most significant differences are observed in the r.m.s. of the speed of sound. These are close to
zero for case PP11-PFG, whereas they exhibit similar levels and trends both for PP11-VDW and
PP11-MAH, and in general the decay rates are very similar, independently of the initial conditions.

The times histories of the average (a) and the r.m.s. of the fundamental derivative of gas dynamics
(b) are reported in figure 4.5. In the VDW case, due to the strong compressibility effects that lead to
a considerable scattering of the thermodynamic states (as already observed in the previous chapter
for inviscid CHIT), 〈Γ〉 changes rapidly from negative to positive values attaining a maximum over
a time scale t ≈ 0.4. Afterwards, it decays at a rate faster than MAH, and reaches negative values
at the final simulation time t = 4. The MAH model exhibits a significant initial increase, reaching a
maximum over approximately 0.4 initial eddy turnover time units. 〈Γ〉 then decays at a rate lower
than in the VDW case, and remains positive even when starting from a negative initial value (IC2
initial conditions), due to the smaller inversion zone exhibited by the MAH model. The distribution
of thermodynamic states in the Clapeyron diagram is reported in figure 4.6 both for VDW and
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Figure 4.3. Time histories of the normalized turbulent kinetic energy (left), and normalized enstro-
phy (right) for various dense gas simulations at Mt0 = 1. : PP11-PFG; : PP11-VDW;

: PP11-MAH-IC1; : PP11-MAH-IC2.
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Figure 4.4. Time histories of the r.m.s. pressure (a), r.m.s. temperature (b) and r.m.s. speed of
sound (c) for various dense gas simulations at Mt0 = 1. : PP11-PFG; : PP11-VDW;

: PP11-MAH-IC1; : PP11-MAH-IC2.

MAH, along with iso-lines of Γ and iso-contours of the speed of sound. The figure confirms that
the VDW model predicts much greater variations of Γ with p and v (figure 4.6b), which results in
a considerable over-estimation of the r.m.s. of the same quantity with respect to MAH.

Other important quantities affecting the dynamics of dense gases are the viscosity and the local
Eckert number. The results reported in figure 4.7 show that the viscosity behaviour is little de-
pendent on the initial condition; however, it is drastically different depending on the model. The
average Eckert number (figure 4.7b) exhibits a strong dependence on the type of gas (and on the
selected thermodynamic model). For the dense gas case 〈Ec〉 is two orders of magnitude less than
in air (not reported) and one order of magnitude less than in PP11-PFG. As a consequence, in the
dense gas (and in particular for the MAH model) thermal and dynamic effects are loosely coupled.
Similarly, the decrease of viscosity with time observed in the MAH cases may explain the flatter
enstrophy peaks. The same figure also shows the influence of the thermodynamic model on the
Eckert number. For PP11-PFG this is one order of magnitude smaller than in air (due to the much
larger specific heat); in dense gas, it is further reduced by another order of magnitude, leading to
a greater decoupling of thermal and dynamic effects.

The preceding considerations indicate that, despite quantitative differences in the prediction of
the thermodynamic properties (and in particular Γ), all dense gas simulations based on either
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Figure 4.5. Time histories of the mean (left) and r.m.s. (right) values of the fundamental derivative
of gas dynamics at Mt0 = 1. : PP11-VDW; : PP11-MAH-IC1; : PP11-MAH-
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Figure 4.6. Distributions of thermodynamic states in the Clapeyron diagram, for PP11-MAH (a)
and PP11-VDW (b) at Mt0 = 1 (t = 2). For PP11-MAH two initial thermodynamic conditions are
considered, namely, IC1 (black symbols) and IC2 (red symbols).
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Figure 4.7. Time histories of normalized mean viscosity (left) and Eckert number (right) at Mt0 = 1.
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Figure 4.8. P.d.f.s of the normalized speed of sound (a), local Mach number (b), and normalized
dilatation (c) for Mt0 = 1 (t = 2). : PP11-PFG; : PP11-VDW; : PP11-MAH-
IC1; : PP11-MAH-IC2.

MAH or VDW provide similar qualitative behaviours of the general flow statistics. Specifically, the
appearance of BZT effects plays only a minor role in the overall evolution of the general statistics.
Similar conclusions are drawn for the initial thermodynamic state, provided the latter lies in the
dense gas region.

The probability density function of the sound speed (a), local Mach number (b) and normalized
dilatation (c) at Mt0 = 1 (t = 2), are reported in figure 4.8. For PFG, the speed of sound exhibits
a Dirac-like p.d.f; on the contrary, a widespread, skewed p.d.f. is observed when a dense gas model
is used. The p.d.f. is truncated on the left side (corresponding to the minimal value of the speed of
sound in the supercritical vapour region), whereas it exhibits a long right tail (especially for BZT
cases PP11-MAH-IC2 and PP11-VDW), representative of the sharp increase of the speed of sound
in the vicinity of the critical isotherm. The p.d.f. of the local Mach number is also strongly affected
by dense gas effects. Specifically, in the proximity of the inversion zone, due to lower values taken
by the speed of sound for dense gases with Γ ≈ 0, the maximum Mach number attained by the flow
(in statistical sense) is higher than in PFG.

Finally, the p.d.f. of the dilatation, characterized by a heavy left tail in the PFG case (due to the
occurrence of strong compression regions, namely shocklets) becomes more and more symmetric
as dense gas effects are introduced, as already observed in figure 3.21 for inviscid CHIT. For case
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Figure 4.9. Pressure ratio psh vs density ratio ρsh in a direction normal to the extracted shocklets
at t = 2 for Air (left panel) and PP11-PFG (right panel). The solid line denotes the ideal relation

PP11-MAH-IC1, the fundamental derivative is always positive and the reduction of the left tail
is essentially due to the weakening of compression waves in the neighbourhood of Γ = 0 (see
equation (1.3), compared to PFG for which Γ = O(1). For cases PP11-MAH-IC2 and PP11-
VDW, the fundamental derivative takes negative values in some flow regions, which may lead to
the formation of expansion shocklets in strong expansion regions, while inhibiting the formation of
compression ones.

In order to detect the occurrence of eddy shocklets, Samtaney et al. (2001) developed an algorithm
based on an edge-detection technique frequently used in image processing. The details of the
algorithm and of its implementation are provided in appendix D. Samtaney et al. (2001) used the
shocklet database to validate a simple model p.d.f. for the shocklet strength; afterwards, Wang
et al. (2011) used the same algorithm to study the effect of shocklets on the velocity gradients
and on the enstrophy generation in highly compressible isotropic turbulence. The algorithm use
the Rankine-Hugoniot relations to relate the states upstream and downstream the shocklet. For
a perfect gas, the density ratio across the shock ρsh may be written as a function of the pressure
ratio psh and the specific heat ratio γ, i.e.

ρsh =
(γ + 1)psh + γ − 1

(γ − 1)psh + γ + 1
. (4.1)

Figure 4.9 shows the density jump against the corresponding pressure jump across shocks detected
by the algorithm for air and PP11-PFG at t = 2. The solid line denotes the theoretical relation.
Almost the totality of the points lie very close to the ideal curve, and their dispersion is much lower
with respect to the case of Samtaney et al. (2001). This is mainly due to the higher turbulent
Mach number and lower tolerance value for the penalty function. Nevertheless, the application
of the algorithm for the detection of expansion shocklets in dense gases is not straightforward for
several reasons. First, in dense gases it does not exist an equation of the type ρsh = f(psh) – being
the specific heats not constant – and an iterative procedure must be used to find the theoretical
downstream temperature (see, e.g. Quartapelle et al. (2003) for the nonpolytopic Van der Waals
case). Furthermore, the algorithm is based on the Rankine-Hugoniot relations, which are derived
from an inviscid framework, hence not taking into account the significant viscous effects that are
present in the low-Reλ configuration; the highest deviations from the ideal curve are indeed obtained
for low pressure and density jumps. Being the shocklets in dense gases much weaker with respect to
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perfect gases, the algorithm fails in identifying them. Moreover, the penalty function does not take
into account shock curvatures and shock accelerations (the shock is supposed to be one-dimensional
and steady), thus the error on the results of the algorithm increases with higher fluctuations due to
the higher average shock speed. In order to assess whether a surface is a shocklet or not, an entropy
condition should be imposed in addition to the Rankine-Hugoniot relations. For instance, if one
consider the surfaces characterized by strong expansions and null density laplacian (∇2ρ = 0 and
θ/θrms > 3), the algorithm find more than 2000 points for PFG cases, marking them as shocklets.
Some modifications are therefore needed to apply the shock-detection algorithm in dense gases,
representing an interesting perspective of this work.

4.1.2 Influence of the fluid type

Numerical simulations were performed also for other families of dense fluids. Specifically, we con-
sidered the siloxanes D5 and D6, and the refrigerants R134a and R245fa. The former are modelled
by means of the Span-Wagner EoS for non-polar fluids, whereas for the latter the version for polar
fluids is used. The thermodynamic properties of these fluids are listed in table 2.1, whereas the two
equations of state are described in section 2.1.2. We set the same initial reduced temperature and
pressure as for the PP11-MAH-IC1 case, i.e., T/Tc = 1.01 and p/pc = 1.02, with Mt0 = 1, k0 = 2
and χ0 = 0. Results are shown in figures 4.10-4.11. Globally, fluids of the same family exhibit a
very similar behavior, the differences in their properties being small. This is especially the case for
D5 and D6, whose slightly different behavior is due to the higher molecular weight of D6.

The decay of the kinetic energy and the kinetic energy spectrum are similar to the perfect gas
case, independently on the fluid considered. The p.d.f. of the velocity divergence is highly skewed
towards negative values; siloxanes exhibit a slightly lighter left tail and heavier right tail with
respect to refrigerants and air. As shown before for PP11, this behavior is related to the value
of the fundamental derivative Γ (shown in figure 4.11a), which is lower than unity for D5 and D6
throughout the decay. R.m.s. density values are of the same order of magnitude of refrigerants,
whereas temperature fluctuations are lower due to the higher – on average – specific heats. Despite
the lower Trms values, crms is higher, highlighting the strong dependence of the speed of sound on
density values, unlike the case of air.

4.1.3 Mach number effects

In this section we discuss the time evolution of the flow statistics at various Mt0 , focusing on the
MAH model and condition IC1. The results are compared with those of a standard diatomic gas,
namely air, modelled as a perfect gas with γ = 1.4.

Figure 4.12 reports the time evolution of K/K0 (a) and Ω/Ω0 (b), and the compensated energy
spectra at a time at which the enstrophy approximately peaks (c), for various Mt0 (left panels,
air; right panels, PP11-MAH). Perfect and dense gas exhibit similar qualitative behaviours. After
an initial transient (that establishes to let the flow to adjust to the purely solenoidal initial condi-
tions), the turbulent kinetic energy decays at a rate that is weakly affected by Mt0 , and at t = 4
approximately 75% of the turbulent kinetic energy is dissipated. The enstrophy evolution exhibits
a peak in the range t ≈ 1.5÷ 2 depending on the value of Mt0 (figure 4.12 b). Due to the increased
dissipation, the normalized enstrophy peak decreases with the Mach number and tends to occur at
earlier times. Figures 4.12 a and b also show that in the perfect gas case the decay of turbulence
kinetic energy is slightly faster, and the enstrophy peak is slightly smaller than in the dense gas
case for high Mt0 . The distribution of the computed energy spectra (figure 4.12 c) shows that,
when scaled with Kolmogorov’s length scale, all data collapse well up to kmaxη ≈ 2 independently
of Mt0 .
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Figure 4.10. Time histories of the normalized turbulent kinetic energy (a), and premultiplied kinetic
energy spectrum (b) and p.d.f. of the velocity divergence (c) at t = 2. : Air; : D5;

: D6; : R134a; : R245fa.

The p.d.f.s of the longitudinal velocity differences ∆u(r) = ∆u(r) · r/||r|| have been computed at
different separations, being r the separation vector. Figure 4.13 shows the p.d.f. of ∆u(r) for
air and PP11-MAH-IC1 at Mt0 = 0.2 (top panels) and 1 (bottom panels). At Mt0 = 0.2, the
p.d.f.s exhibit stretched exponential tails at small spatial separations and approach Gaussian as
the separation increases. Due to the low turbulent Mach number, these trends are very similar to
those found in incompressible turbulence (Chen et al., 1993). At Mt0 = 1, for both air and PP11
the shape of the p.d.f.s are highly skewed at small separations, due to the strong influence of the
dilatational component of the velocity field (Wang et al., 2012a).

Figure 4.14 reports the time histories of the r.m.s. of T , p and ρ. Temperature and pressure fluctu-
ations in the dense gas are much smaller than in air. However, the dense gas solution significantly
departs from the perfect gas one for Mt0 ≥ 0.5. Finally, even if the time histories for the r.m.s. of
the density are similar in both cases, the instantaneous ratio of maximum to minimum density is
much smaller for the dense gas. At Mt0 = 1 the perfect gas density ratio is nearly 2.5 times greater
than the dense gas. As the decay proceeds, compressibility effects decrease and the differences
become smaller. This difference is likely to be due to the occurrence of compression shocklets that
imply significant density variations, which are stronger in air than in the dense gas.

The observed differences between air and PP11 are tightly related to the fluid compressibility and
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Figure 4.11. Time histories of the mean fundamental derivative of gas dynamics (a), normalized
r.m.s. values of density (b), temperature (c) and speed of sound (d). : Air; : D5;

: D6; : R134a; : R245fa.

are better understood by looking at the time evolution of the speed of sound, turbulent Mach
number and dilatation (figure 4.15). At Mt0 = 0.2, compressibility effects are still weak in both
cases and the two gases behave similarly. Departures from the standard behaviour start to become
visible for Mt0 = 0.5 and increase significantly at higher Mach numbers. For air, 〈c〉 increases
with the square root of the average temperature, while for the dense gas it strongly depends on
density fluctuations, leading to a scattering of the flow thermodynamic states in the p − v plane
(see figure 4.16 where we report the thermodynamic states in the Clapeyron diagram at various
Mt0). In regions characterized by pressures higher than the initial one, the speed of sound is
considerably higher than in low-pressure regions, resulting hence in an higher average sound speed
than the initial one. At later times the scattering decreases due to turbulence decay, and 〈c〉
decreases accordingly. The r.m.s. of the dilatation has a peak (increasing with Mt0) at t ≈ 0.6 for
the perfect gas case, whereas the dense gas exhibits a smoother behaviour and lower peak values.
It is interesting to observe that the 〈Γ〉 remains below 1 throughout the decay (figure 4.17 a),
while the Γrms (figure 4.17 b) is of the same order of 〈Γ〉 due to the considerable scattering in the
thermodynamic space and to the strong increase experienced by the fundamental derivative in the
high-pressure limit.

Regarding the time evolution of the viscosity, Eckert and Prandtl numbers we first observe that,
both for PFG and DG gas, 〈µ〉 varies as 〈c〉. Specifically 〈µ〉 varies approximately as 〈T 〉0.7 in the
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Figure 4.12. Time histories of the normalized turbulent kinetic energy (a), normalized enstrophy
(b) and compensated turbulent kinetic energy spectra at t = 2 (c) for air (left panels) and PP11-
MAH-IC1 (right panels) at various Mach numbers. : Mt0 = 0.2; : Mt0 = 0.5; :
Mt0 = 0.8; : Mt0 = 1. : Air; : PP11-MAH.
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Figure 4.13. P.d.f.s of the velocity differences for Mt0 = 0.2 (a) and and Mt0 = 1 (b) for air (left
panels) and PP11-MAH-IC1 (right panels) at t = 2. : r = 1; : r = 2; : r = 4;

: r = 8; : r = 16; : r = 128; : r = 256.

perfect gas, while in the dense gas it is primarily driven by density variations (figure 4.18 a). As a
result, viscosity grows with time in the perfect gas case and decreases (after the initial transient)
for the dense gas. For air, the maximal value reached by the viscosity during the evolution is about
15% greater than the initial one (at the largest time considered in the simulations), whereas for the
dense gas the peak of viscosity, reached at t ≈ 0.5, is of the order of 3% only. The Eckert number
(figure 4.18 b) is O(10−1) for PFG, whereas it is at least two orders of magnitude less for PP11,
which implies that dynamical and thermal effects are loosely coupled at all Mt0 . Furthermore, 〈Ec〉
scales approximately with Mt0 both for air and PP11. It is interesting to observe that for the dense
gas the Prandtl number (figure 4.18 c) varies in our case with Mt0 ranging approximately between
2.4 and 2.6 (whereas it is constant PFG), thus implying that energy transfer by viscous diffusion
dominates with respect to heat conduction.

Figure 4.19 reports the time evolution of the skewness and flatness of the velocity gradients, com-
puted as in equation (3.7). In both the perfect and dense gas case the considered higher-order
statistics exhibit a minimum (maximum) at t ≈ 0.5, which becomes lower (higher) as Mt0 is
increased. Both quantities then evolve asymptotically toward the incompressible limit, the rate
depending on Mt0 . We recall that the large magnitudes of the skewness and flatness observed
for the highest Mach number cases are associated with the occurrence of strong compression re-
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Figure 4.14. Time histories of the r.m.s. temperature (a), r.m.s. pressure (b), r.m.s. density
(c), and maximum to minimum density ratio (d), for air (left panels) and PP11-MAH-IC1 (right
panels) at various Mach numbers. : Mt0 = 0.2; : Mt0 = 0.5; : Mt0 = 0.8; :
Mt0 = 1. : Air; : PP11-MAH.
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Figure 4.15. Time histories of normalized sound speed (a), r.m.s. sound speed (b), turbulent Mach
number (c), and r.m.s. dilatation normalized with the initial r.m.s. vorticity (d), for air (left
panels) and PP11-MAH-IC1 (right panels) at various Mach numbers. : Mt0 = 0.2; :
Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1. : Air; : PP11-MAH.
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gions, and specifically shocklets, as also pointed out by Wang et al. (2012b). We observe that the
dense gas solution departs less from the incompressible behaviour and returns more quickly to the
incompressible limit.

4.2 Small-scale features

4.2.1 Local flow topology

To elucidate the influence of dense gas effects on the statistical properties of turbulence structures,
we consider the topological classification proposed by Perry & Chong (1987), Chong et al. (1990)
and Kevlahan et al. (1992) in the framework of incompressible turbulence, and also employed by
Pirozzoli & Grasso (2004) and Wang et al. (2012b) to analyse the small-scale behaviour of CHIT.

As stated in section 2.1, the velocity gradient tensor Aij may be broken up into a symmetric and
an antisymmetric part, Sij and Wij respectively (equation (2.3)). Let P , Q and R be, respectively,
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Figure 4.18. Time histories of the normalized average viscosity (a), Eckert number (b) for air (left
panels) and PP11-MAH-IC1 (right panels) at various Mach numbers. The Prandtl number (c)
is reported only for PP11, being constant and equal to 0.7 for air. : Mt0 = 0.2; :
Mt0 = 0.5; : Mt0 = 0.8; : Mt0 = 1. : Air; : PP11-MAH.
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Figure 4.19. Time histories of the velocity gradient skewness (a) and flatness (b), for air (left
panels) and PP11-MAH-IC1 (right panels) at various Mach numbers. : Mt0 = 0.2; :
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the first, second and third invariant of Aij , defined as

P =− tr[Aij ] = −Sii = −(λ1 + λ2 + λ3) (4.2)

Q =
1

2
(P 2 − tr[A2

ij ]) =
1

2
(P 2 − SijSij +WijWij) = λ1λ2 + λ1λ3 + λ2λ3 (4.3)

R =− det[Aij ] =
1

3
(−P 3 + 3PQ− tr[A3

ij ]) = (4.4)

=
1

3
(−P 3 + 3PQ− SijSjkSki − 3WijWjkSki) = −λ1λ2λ3

where λi are the three eigenvalues of Aij . Similarly, the invariants of Sij and Wij are defined by
their characteristic equations, and can be computed by setting Sij = 0 for the invariants of Wij

and vice-versa for the invariants of Sij .

The nature of turbulent structures is classified according to the sign of the discriminant of Aij :

∆ =
27

4
R2 + (P 3 − 9

2
PQ)R+ (Q3 − 1

4
P 2Q2) (4.5)

When ∆ is positive, the velocity gradient tensor has one real eigenvalue and two complex-conjugate
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Figure 4.20. Local topologies for incompressible flows. Extracted from Ooi et al. (1999).

ones, and focal regions are present; on the contrary, when ∆ is negative, the eigenvalues of Aij are
all real and turbulent regions are nonfocal. Moreover, in the case of incompressible turbulence
(P = 0) flow regions are further classified according to the sign of R, as shown in figure 4.20,
leading to the following families of configurations:

∆ > 0

{
R < 0 stable focus-stretching
R > 0 unstable focus-compressing

∆ < 0

{
R < 0 stable node-saddle-saddle
R > 0 unstable node-saddle-saddle

(4.6)

In the case of compressible turbulence, according to the sign of P additional topologies can be
identified, referred-to as stable-focus compressing, unstable focus-stretching, stable node-stable
node-stable node, and unstable node-unstable node-unstable node regions (Chong et al., 1990).
In shock/turbulence interaction Kevlahan et al. (1992) have analyzed the evolution of turbulent
structures in terms of the deviatoric part of the strain-rate tensor S∗ij = Sij − 1

3Skkδij and the
rotation-rate tensor Wij , and have classified the flow into three regions, namely:

W 2 < S∗2/2 convergence zones (essentially irrotational)
S∗2/2 ≤W 2 ≤ 2S∗2 shear zones
W 2 > 2S∗2 eddy-dominated zones (highly rotational)

(4.7)

Furthermore, turbulent structures behave as compressible or incompressible depending on the value
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Table 4.2. Classification of turbulent regions in three-dimensional compressible flow according to
Kevlahan et al. (1992).

Incompressible Compressed Expanding

O ≤ 0.05
O > 0.05 O > 0.05
θ < 0 θ > 0

Eddy EI EC EE
Convergence CI CC CE
Shear SI SC SE

of the parameter O:

O =
θ2

S∗2 +W 2
;

{
O ≤ 0.05 incompressible structures
O > 0.05 compressible structures

(4.8)

All possible combinations of turbulent structures are summarized in table 4.2. Furthermore, as
done in the inviscid case (section 3.4.3), we use the same classification to separate compressions and
expansions into strong, moderate and weak dilatation regions, according to the local dilatation.

In the discussion that follows the statistical data are plotted at nondimensional time t = 2.

The distribution of the volume fractions 〈V 〉 occupied by the different structures conditioned on
the above-defined dilatation levels is presented in figure 4.21 as a function of Mt0 , for perfect and
dense gas. Up to Mt0 = 0.5, moderate and strong dilatation regions are close to zero, and the flow
volume is nearly symmetrically occupied by weak expansion and compression regions. At the higher
Mt0 , due to the development of moderate and strong compression and the progressive reduction
of weak expansion regions this symmetry is rapidly broken in the PFG cases. At Mt0 = 1, strong
compressions occupy approximately 3.5% of the total volume for PFG, while they represent about
3% for PP11. The remaining 50% of the flow volume is mostly occupied by weak expansions for
air, while strong expansions occupy only ≈ 0.5% of the total volume (at Mt0 = 1), in agreement
with results of Wang et al. (2012b). In dense gas, strong compressions tend to be inhibited and
strong expansions enhanced, leading to a nearly symmetric repartition of the volume fractions, as
already observed in inviscid CHIT of BZT Van der Waals gas (see section 3.4.4). At Mt0 = 1, weak
dilatation regions occupy ≈ 40% only, while moderate and strong expansion occupy, respectively,
approximately 10% and 2% of the flow volume. The present results show that strong expansions are
highly enhanced in the dense gas even when the operating conditions (IC1) do not allow BZT effects
like expansion eddy shocklets. However, BZT effects contribute to further enhance expansions at
the expense of compressions. Table 4.3 summarizes the percentage of focal and non focal structures
conditioned on the different dilatation levels as a function of the initial turbulent Mach number.
The results are quite insensitive to the type of gas up to Mt0 = 0.5, then the repartition changes
more and more as compressibility effects increase. At Mt0 = 1, focal structures occupy 63% of the
total volume for the PFG, whereas it is 58% for IC1 and even lower (57%) for IC2. The largest
deviations are observed in moderate and strong expansion regions, which are much more populated
by non focal structures in the dense gas than PFG.

For a variety of incompressible flows, including forced isotropic turbulence (Ooi et al., 1999), plane
mixing layers (Soria & Cantwell, 1994), channel flows (Blackburn et al., 1996) and turbulent bound-
ary layers (Chong et al., 1998), an universal behavior has been observed when analyzing the flow
topology in the (Q − R) plane. Specifically, the joint p.d.f. (Q,R) is found to exhibits a tear
drop shape. In order to analyze the influence of dense gas effects on the dynamics of CHIT, we
follow the approach of Pirozzoli & Grasso (2004) developed for perfect gas flows. We have then
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Figure 4.21. Volume fractions (%) occupied by flow regions characterized by different normalized
dilatation intervals as a function of Mt0 (t = 2). : Air; : PP11-MAH-IC1; :
PP11-MAH-IC2. (a) Strong compressions; (b) moderate compressions; (c) weak compressions; (d)
weak expansions; (e) moderate expansions; (f) strong expansions.

Table 4.3. Percentage of focal/non focal structures according to dilatation levels (at nondimensional
time t = 2). PP11-IC1 and PP11-IC2 refer to MAH EoS.

Mt0 θ/θrmsM
2
t0 [−∞,−2] [−2,−1] [−1, 0] [0, 1] [1, 2] [2,+∞]

(%) F. N.F. F. N.F. F. N.F. F. N.F. F. N.F. F. N.F

0.5

Air 0.0 0.0 0.1 0.1 30.6 18.0 31.7 19.5 0.0 0.0 0.0 0.0

PP11-IC1 0.0 0.0 0.0 0.0 30.7 19.0 30.8 19.4 0.0 0.0 0.0 0.0

PP11-IC2 0.0 0.0 0.0 0.0 31.2 19.8 29.3 19.6 0.0 0.0 0.0 0.0

0.8

Air 0.6 0.7 2.1 1.5 23.4 13.9 35.2 20.2 1.5 0.7 0.1 0.0

PP11-IC1 0.3 0.4 2.3 2.4 26.6 16.7 28.4 18.4 2.2 2.0 0.1 0.2

PP11-IC2 0.2 0.3 2.1 2.4 27.3 18.2 27.0 17.5 2.3 2.3 0.2 0.3

1.0

Air 1.5 1.9 3.3 2.7 18.7 11.8 34.5 18.5 4.4 2.1 0.3 0.2

PP11-IC1 1.1 2.0 4.6 4.8 20.2 14.0 24.9 16.3 6.0 4.4 0.8 0.9

PP11-IC2 1.0 1.9 4.7 5.2 21.5 14.7 23.0 15.5 5.5 4.9 0.9 1.3

formulated the problem in terms of the second and third invariants of the anisotropic part of the
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velocity gradient tensor (A∗ij = Aij − θδij/3):

Q∗ = −1

2
(S∗ijS

∗
ij −WijWij) = Q− 1

3
P 2 (4.9)

R∗ = −1

3
(S∗ijS

∗
jkS
∗
ki + 3WijWjkS

∗
ki) = R− 1

3
PQ+

2

27
P 3 (4.10)

where P ∗ = 0 and λ∗i = λi−θ/3 (note that, by construction, Σλ∗i = 0 and the discriminant reduces
to ∆∗ = 27/4R∗2 + Q∗3), and we have carried out a detailed analysis in the invariant plane, the
objective being twofold: i) verify if the universal behaviour of the solenoidal component of the
flow is recovered in dense gas flows, despite the peculiar transport properties of these gases; ii)
investigate the influence of dense gas effects on the various flow structures.

In figure 4.22 we report the log of the total (left column) and conditioned joint p.d.f. of Q∗ and
R∗ for air (panels a) and dense gas (MAH-IC1, panels b; MAH-IC2, panels c) for Mt0 = 1 (strong
compressions, central column; strong expansions, right column). The joint p.d.f. is computed from
the conditional averages of the data by dividing the (Q∗, R∗) plane into a number of equally sized
partitions. For a good compromise between accuracy and statistical convergence each axis has been
divided in (2n)1/3 subdivisions, where n = 5123 is the number of samples. As done in Chong et al.
(1990) and Pirozzoli & Grasso (2004) the invariants are normalized by the average of the second
invariant of the rotation-rate tensor (〈QW 〉 = 〈WijWij/2〉), which is a measure of the rotation
energy. The thin solid line represents points where ∆∗ = 0 (so as to discriminate between focal and
non focal regions). In the PFG and DG cases the joint p.d.f. (Q∗, R∗) exhibits a tear-drop shape
as in the incompressible limit (Ooi et al., 1999), with a statistical preference in the second and in
the fourth quadrant, where points are aligned with the right branch of the zero-discriminant curve
(Cantwell, 1993; Mart́ın et al., 1998; Pirozzoli & Grasso, 2004). It is interesting to observe that
conditioning on strong compressions reveals an even stronger alignment with the right branch for
all cases, as in Wang et al. (2012b). However, due to the weakening/suppression of compression
structures, the tail of the tear-drop is slightly shorter in the dense gas cases, especially for the BZT
condition IC2. The joint p.d.f.s conditioned on strong expansions exhibits more striking differences.
For the dense gas case PP11-MAH-IC2 (whose initial thermodynamic state falls in the zone where
Γ is negative) the p.d.f. tends to be skewed toward the left branch of the zero discriminant curve (in
particular for probability levels of 10−3, or higher), in contrast with PFG and PP11-MAH-IC1 that
exhibit a more symmetric shape. The same result is obtained by conditioning the p.d.f.s on the type
of local structures, namely, eddy, shear and convergence regions (as shown in figure 4.23). In dense
gas, as in the case of air, eddies have focal character, shears have both focal and nonfocal topology,
and convergence regions are essentially nonfocal and show a statistical preference for points to lie
in the fourth quadrant, thus indicating that dense gas effects do not alter essentially the character
of flow structures. However, the main differences are observed in convergence regions for PP11-
MAH-IC2. This suggests that different flow structures may appear in the strong expansion regions
of BZT flows. These structure have an influence on the dissipation and enstrophy generation, as
discussed in the next sections. An interesting feature is that, for dense gas, expanding convergence
regions (associated with strong expansion phenomena and, possibly, shocklets for the IC2 case)
are almost as frequent as expanding shear zones, unlike the perfect gas for which shear regions
dominate. This behaviour is likely to be related to the non-convex nature of the inviscid fluxes and
to the degeneracy of the characteristic fields in the proximity of the inversion zone (Γ ≈ 0), leading
to the formation of steep expansion fronts, as discussed in greater detail in a later section.
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Figure 4.22. Iso-contours (-4 to 0, spacing equal to 1) of the log10 of the joint p.d.f. of the scaled
second and third invariants of the anisotropic part of the velocity gradient at Mt0 = 1 (t = 2) for air
(panel a), PP11-MAH-IC1 (panel b) and PP11-MAH-IC2 (panel c). Left column: total joint p.d.f.
Central column: p.d.f. conditioned on strong compressions (regions with θ/θrmsM

2
t0 ∈ [−∞,−2]).

Right column: p.d.f. conditioned on strong expansions (regions with θ/θrmsM
2
t0 ∈ [2,∞]). The

bold solid isoline denotes the iso-contour -3.

4.2.2 Contribution of flow structures to dissipation

To further elucidate the influence of dense gas on the role of focal and non focal structures, it is
useful to consider the second invariants of the rotation-rate tensor (QW = WijWij/2) and of the
anisotropic part of the strain-rate tensor (QS∗ = −S∗ijS∗ij/2). We recall that for CHIT, under the
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Figure 4.23. Iso-contours (-4 to 0, spacing equal to 1) of the log10 of the joint p.d.f. of the scaled
second and third invariants of the anisotropic part of the velocity gradient at Mt0 = 1 (t = 2)
conditioned on the local type of structure for air (panel a), PP11-MAH-IC1 (panel b) and PP11-
MAH-IC2 (panel c). Left column: eddy regions. Central column: shear regions. Right column:
convergence regions.

assumption of weak variation of the viscosity coefficient (Sarkar et al., 1991), one has

ε = −2〈µ〉〈QS∗〉 = 2〈µ〉〈QW 〉+
2

3
〈µ〉〈P 2〉, (4.11)
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Figure 4.24. Fractional contribution of the various flow structures to 〈V 〉+ (a), and 〈V 〉− (b)
at various Mt0 (t = 2). Left column: incompressible structures; central column: compressed
structures; right column: expanding structures. : Air; : PP11-MAH-IC1. +, EI; ×,
CI; , SI; , EC; , CC; , SC; , EE; , CE; , SE.

where ε is the total dissipation, 2〈µ〉〈QW 〉 and and 2
3〈µ〉〈P

2〉 the solenoidal and dilatational compo-
nents, respectively. Even though the analysis has been conducted at various Mt0 , in the following
only the results corresponding to Mt0 = 1 are discussed.

The distribution of the volume fractions occupied by different structures is reported in figure 4.24
as a function of Mt0 (left column, incompressible structures; central column, compressed structures;
right column, expanding structures) for air and PP11-IC1. In the following, we indicate with 〈·〉+
(respectively, 〈·〉−) a quantity associated to focal (respectively, non focal) structures. At low Mt0

we observe that, in the perfect gas case: i) structures of incompressible nature occupy a larger
volume fraction than compressible ones; ii) shear-like structures are the most frequent and occupy
≈ 42% of the flow volume; and iii) eddy and convergence zones represent ≈ 19% and ≈ 38% of the
total flow volume, respectively. Up to Mt0 = 0.5, PP11 exhibits similar statistical volume fraction
distributions. As the initial turbulent Mach number increases, the volume fraction occupied by
incompressible structures is reduced significantly due to the development of compressible structures,
whose volume fractions nearly triple when Mt0 is varied from 0.5 to 1. As compressibility effects
become significant, the volume percentage associated to the different flow structures is most affected
by the working fluid. Specifically, the volume fraction of compressible structures is 58% for PP11-
IC1, whereas it is only 44% for air, and convergence and shear compressed regions are ≈ 30% larger
than in air. The choice of the initial conditions for the dense gas cases has a small influence on the
computed volume fractions.

The fractional contributions of the different flow structures to the solenoidal, total and dilatational
dissipation are shown, respectively, in figure 4.25, 4.26 and 4.27 (we only report case IC1, since the
initial thermodynamic condition and, more generally, the thermodynamic model, has a negligible
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Figure 4.25. Fractional contribution of the various flow structures to the solenoidal dissipation
〈QW 〉+ (a) and 〈QW 〉− (b), at various Mt0 (t = 2). Left column: incompressible structures;
central column: compressed structures; right column: expanding structures. : Air; :
PP11-MAH-IC1. +, EI; ×, CI; , SI; , EC; , CC; , SC; , EE; , CE; , SE.

influence on the solenoidal dissipation). For both perfect and dense gas cases, shear regions account
approximately for 50% of the solenoidal dissipation (figure 4.25), albeit this percentage is slightly
lower for PP11. The contribution of compressed and expanding structures to QW increases almost
linearly with the turbulent Mach number, especially in focal regions. Nevertheless, even for the case
Mt0 = 1 compressible regions contribute less than 20% of the total, the contribution being slightly
higher for the dense gas. In all cases, the contribution of eddy-like regions is almost negligible.

At low Mt0 , both for perfect and dense gas, focal and non focal structures contribute to kinetic
energy dissipation by the same amount, whereas at high Mt0 the contribution of nonfocal compress-
ible convergence structures is significantly increased (figure 4.26). The increase is more significant
in the dense gas case. In particular, the contribution of expanding non focal structures at Mt0 = 1
is about twice than the one found in the PFG.

The most interesting differences between the perfect and the dense gas concern the dilatational
dissipation (figure 4.27). While the contribution of incompressible structures is almost the same
both for PFG and DG, the contribution of compressible structures changes significantly. We observe
in particular that, for the dense gas at high Mt0 , nonfocal expanding structures play a major role
and contribute to the dilatational dissipation by an amount that is comparable to that of compressed
focal structures (≈ 20% versus ≈ 30%). For condition IC2, for which the occurrence of expansion
and compression shocklets is almost equally probable, this effect is even more accentuated (a
comparison of the fractional contributions to 〈QP 〉± for IC1 and IC2 is reported in figure 4.28).
On the contrary, in the perfect gas compressed non focal structures (associated to the formation
of eddy shocklets) contribute more significantly to dilatational dissipation than expanding ones.
The amount of dilatational dissipation increases with the initial turbulent Mach number and, at
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Figure 4.26. Fractional contribution of the various flow structures to the total dissipation −〈QS∗〉+
(a) and −〈QS∗〉− (b) at various Mt0 (t = 2). Left column: incompressible structures; central
column: compressed structures; right column: expanding structures. : Air; PP11-
MAH-IC1. +, EI; ×, CI; , SI; , EC; , CC; , SC; , EE; , CE; , SE.

Mt0 = 1, it represents more than 50% of the total, whereas expanding ones contribute for less than
10% and the dependence on Mt0 is weak.

To further investigate the correlation between the various flow structures and the occurrence of
strong compression/expansion phenomena, in figure 4.29 we report the volume fractions of the
different flow structures conditioned with respect to strong compression (θ/θrmsM

2
t0 < −2) and

strong dilatation zones (θ/θrmsM
2
t0 > 2). The former are populated by similar structures both in

the perfect and dense gas, with convergence compressed zones representing more than 80% of the
total volume and eddy zones being negligible. In the case of dense gas, convergence and shear zones
represent, respectively, 75-80% (depending on the initial thermodynamic state) and 15-20% (eddy-
like being negligible) of the volume occupied by expanding structures, whereas in air the different
flow structures are nearly equally probable (45% shear, 30% convergence and 25% eddy-like).

Introducing the total flow volume having positive (negative) ∆∗ greater (less) than the threshold
value ∆th, computed as

V∓(∆th) =
〈1|∆ ≶ ∓∆th〉

〈1〉
(4.12)

we analyze the associated conditional cumulative averages of QS∗ , QW and P 2 defined, respectively,
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Figure 4.27. Fractional contribution of the various flow structures to the dilatational dissipation
〈QP 〉+ (a) and 〈QP 〉− (b) at various Mt0 (t = 2). Left column: incompressible structures; central
column: compressed structures; right column: expanding structures. : Air; : PP11-
MAH-IC1. +, EI; ×, CI; , SI; , EC; , CC; , SC; , EE; , CE; , SE.

as:

Q∓S∗(∆th) =
〈QS∗ |∆∗ ≶ ∓∆th〉

〈QS∗〉

Q∓W (∆th) =
〈QW |∆∗ ≶ ∓∆th〉

〈QW 〉
(4.13)

Q∓P (∆th) =

〈
P 2|∆∗ ≶ ∓∆th

〉
〈P 2〉

where superscripts + and − indicate conditioning on focal and non focal structures, respectively. As
already found by Pirozzoli & Grasso (2004), the dissipation (either total, solenoidal or dilatational)
is approximately constant for |∆/〈QW 〉3| ≤ 10−3 and structures are most active in the range
10−2 ≤ |∆/〈QW 〉3| ≤ 103 (see figure 4.30). We also observe that, contrary to the results reported
in Pirozzoli & Grasso (2004), nonfocal, rather than focal structures, have a stronger influence on
the dilatational dissipation, due to differences in Reλ (simulations were carried out at Reλ = 50 in
Pirozzoli & Grasso (2004), while Reλ = 200 in the current simulations).

The iso-surfaces of the strong compression regions θ/θrmsM
2
t0 = −3 (left panels) and of the strong

expansion regions θ/θrmsM
2
t0 = 3 (right panels) are reported in figure 4.31 both for the air (a) and

for the dense gas cases (b and c) at Mt0 = 1. For air, strong compression regions are populated by
random sheet-like structures of convergence type topology over a wide range of scales, contrary to
strong expansions that are characterized by sparse blob or tubular structures mainly of the eddy and
shear type. The dense gas also exhibits compressed sheet-like shocklets and an increased volume
percentage of expanding structures having tubular as well as sheet-like convergence topology. The
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Figure 4.28. Influence of the initial thermodynamic state on the fractional contribution of the
various flow structures to the dilatational dissipation 〈QP 〉+ (a) and 〈QP 〉− (b) at various Mt0

(t = 2). Left column: incompressible structures; central column: compressed structures; right
column: expanding structures. : PP11-MAH-IC1; : PP11-MAH-IC2. +, EI; ×, CI; ,
SI; , EC; , CC; , SC; , EE; , CE; , SE.
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Figure 4.29. Volume fractions of the various flow structures conditioned with respect to strong
compression regions (a) and strong expansion regions (b) at various Mt0 (t = 2). : Air;

: PP11-MAH-IC1; : PP11-MAH-IC2. , EC; , CC; , SC; , EE; , CE; , SE.

continuous convergence structures steepen in the case of IC2 (figure 4.31 c), leading to expansion
shocklets that are admissible since the initial thermodynamic state falls in the inversion region.

In figure 4.32 we report the isosurfaces of log10(|∆|/〈QW 〉3) = 3, conditioned on eddy-type struc-
tures (left panels) and convergence regions (right panels) for air (a), PP11-MAH-IC1 (b) and
PP11-MAH-IC2 (c), coloured with the local dilatation θ/θrms. The figure shows that for eddy-type
structures the dilatation levels are close to zero for each case, whereas the dynamically most active
convergence regions are mainly sheet-like undergoing strong compressions and expansions, and the
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Figure 4.30. Normalized conditional volume-integrated data at Mt0 = 1 (t = 2). (a) Volume
fraction V; (b) QW ; (c) QS∗ ; (d) QP . , ∆ > 0; , ∆ < 0; : Air; PP11-MAH-IC1; :
PP11-MAH-IC2.

latter are more and more significant in dense gas.

4.2.3 Enstrophy generation mechanisms

The works of Kida & Orszag (1989), Sarkar et al. (1991), Pirozzoli & Grasso (2004) and Wang et al.
(2012b) show that the vortex stretching plays an essential role in compressible turbulence dynamics,
namely in the mechanism of vorticity and enstrophy generation, highlighting in particular the role
played by shocklets. Given the significant modification of flow structures and their contributions to
mechanical energy dissipation in dense gas, we analyse in detail to which extent dense gas effects
modify enstrophy generation. We recall that enstrophy is governed by the following transport
equation (Erlebacher & Sarkar, 1993):

D

Dt

(
ω2

2

)
= ωiV

T
i + ωiεijk

1

ρ2

∂ρ

∂xj

∂p

∂xk
+ ωiεijk

∂

∂xj

(
1

ρ

∂τmk
∂xm

)
(4.14)
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(a)

(b)

(c)
Figure 4.31. Strong compressions θ/θrms = −3 (left panels) and strong expansions θ/θrms = 3
(right panels) for air (a), PP11-MAH-IC1 (b) and PP11-MAH-IC2 (c) coloured with the local type
of structure. Blue: eddy; white: shear; red: convergence.
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(a)

(b)

(c)
Figure 4.32. Iso-surfaces of log10(|∆|/〈QW 〉3) = 3, conditioned on eddy-type structures (left panels)
and convergence regions (right panels) for air (a), PP11-MAH-IC1 (b) and PP11-MAH-IC2 (c),
coloured with the local dilatation θ/θrms.
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(b)
Figure 4.33. Distribution of the averages of the vortex stretching vector ωiV

T
i (left column), ωiV

D
i

(central column), and ωiV
S
i (right column) conditioned on the dilatation for air (a) and PP11-

MAH-IC1 (b) at Mt0 = 1 (t = 2). In each figure the contributions to enstrophy generation in the
direction parallel ( : r = n) and tangential ( : r = t) to the density gradient are also
reported.

where ω2/2 = ωiωi/2 is the enstrophy density, D/Dt is the material derivative, and the three
terms on the right-hand side represent, respectively, enstrophy generation due to vortex stretching,
the baroclinic term and the viscous diffusion. The vortex stretching vector V T

i is the sum of two
contributions due to the deviatoric strain rate (V S

i = ωjS
∗
ij) and to dilatation (V D

i = −2
3θωi).

Integration of equation (4.14) over the entire volume yields:

D〈ω2/2〉
Dt

= 〈ωiV S
i 〉+ 〈ωiV D

i 〉+ 〈ωiεijk
1

ρ2

∂ρ

∂xj

∂p

∂xk
〉+ 〈ωiεijk

∂

∂xj

(
1

ρ

∂τmk
∂xm

)
〉 (4.15)

Kida & Orszag (1989), Pirozzoli & Grasso (2004) and Wang et al. (2012b) showed that the baroclinic
effects are negative and rather negligible, while the viscous dissipation acts as a sink.

We focus our analysis on the action of the strain rate 〈ωiV S
i 〉 and dilatation 〈ωiV D

i 〉 terms. To
relate enstrophy generation with the occurrence of shocklets, as in Wang et al. (2012b), we project
the vorticity and the vortex stretching vectors (both the one associated with the deviatoric strain
rate and the dilatation rate) in the normal and tangential directions relative to the local density
iso-surfaces, i.e. the direction aligned with the density gradient n = grad(ρ)/||grad(ρ)|| and a
direction t orthogonal to n.

In figure 4.33 we report the volume average of the rate of total enstrophy generation 〈ωiV T
i 〉 (left

column), the rate of dilatational enstrophy generation 〈ωiV D
i 〉 (central column) and the deviatoric

strain rate enstrophy generation 〈ωiV S
i 〉 (right column) conditioned on dilatation, both for air

(panels a) and dense gas (panels b). The vorticity vector having a tendency to be orthogonal to
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(b)
Figure 4.34. P.d.f. and p.d.f.s conditioned on dilatation levels of the eigenvalues ratios λ∗2/λ

∗
1

(left) and λ∗2/λ
∗
3 (right) of the deviatoric strain rate tensor at Mt0 = 1 (t = 2) for air (a) and

PP11-MAH-IC1 (b). : [−∞,+∞]; : [−∞,−2]; : [−2,−1]; : [1, 2]; :
[2,∞].

the density gradient, the main contribution to enstrophy generation is in the tangential direction.
Enstrophy is produced due to vortex stretching across eddy shocklets (compressed structures).
Expanding perfect gas structures destroy enstrophy and both 〈ωiV S

i 〉 and 〈ωiV D
i 〉 increase rapidly

in magnitude with θ. On the contrary, dense gases have a tendency to strongly inhibit enstrophy
destruction across moderate and strong expansions. Furthermore, dilatational enstrophy generation
is of comparable order both in the directions normal and tangential to the expanding structures.
The attenuation of enstrophy destruction in expansion regions is likely due to two competing
mechanisms: expansion processes associated with thermodynamic states having Γ = O(1) that
contribute to enstrophy destruction as in perfect gases, and (strong) expansions associated with
thermodynamic states having Γ close to or less than zero that have a tendency to behave similar
to compressions (thus producing enstrophy and counteracting its destruction).

To further elucidate into the enstrophy generation mechanism and its relation with the flow topol-
ogy, we have also analyzed the contribution due to vortex stretching in the eigendirections of the
deviatoric strain rate. We recall that in incompressible flows (Ashurst et al., 1987; Cantwell, 1993),
vorticity has a tendency to align with the eigendirection associated with the intermediate eigen-
value of the strain rate, which is found to be positive in the average (i.e. more often positive than
negative). For compressible flows, we consider the deviatoric strain rate S∗ij and project the vortex
stretching vector in the eigendirections Λk associated with the eigenvalues λ∗k of S∗ij . The vortex
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Figure 4.35. P.d.f. and p.d.f.s conditioned on dilatation levels of the normalized eigenvalues (βk =

λk/
√∑

i λ
2
i ) of the strain rate tensor Sij for air (a) and PP11-MAH-IC1 (b) (Mt0 = 1; t = 2).

: [−∞,+∞]; : [−∞,−2]; : [−2,−1]; : [1, 2]; : [2,∞].
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Figure 4.36. Conditional averages of squares of cosines of angles between density gradient direction
n and the strain rate eigenvectors Λk for air (a), PP11-MAH-IC1 (b) and PP11-MAH-IC2 (c) at
Mt0 = 1 (t = 2τ). : k = 1; : k = 2; : k = 3.

stretching term then reduces to:

ωiωjS
∗
ij = ω2

∑
k

λ∗kcos
2φk (4.16)

where φk = cos−1(ω ·Λk/||ω|| ||Λk||) is the angle between the vorticity vector and the k-th eigendi-
rection.

The p.d.f.s and the conditional p.d.f.s of the eigenvalue ratios λ∗2/λ
∗
1 and λ∗2/λ

∗
3 of the deviatoric

strain rate are reported in figure 4.34 for air (left panels) and PP11-MAH-IC1 (right panels). The

conditional p.d.f.s of the normalized eigenvalues of the strain rate tensor βk = λk/
√∑

i λ
2
i are
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(b)
Figure 4.37. P.d.f.s and conditional p.d.f.s of the cosines of the angles between the vorticity ω and
the strain rate eigenvectors Λk for air (a) and PP11-MAH-IC1 (b) at Mt0 = 1 (t = 2). :
[−∞,+∞]; : [−∞,−2]; : [−2,−1]; : [1, 2]; : [2,∞].

reported in figure 4.35. As found both in incompressible and compressible turbulence (Ashurst
et al., 1987; Erlebacher & Sarkar, 1993; Pirozzoli & Grasso, 2004; Lee et al., 2009; Wang et al.,
2012b) the most probable values of λ∗k are approximately in the ratio [−4 : 1 : 3]. As compression
increases, the p.d.f. of β1 peaks at lower values, β2 and β3 become much smaller than β1 and the
eigenvalues are approximately in the ratio [−1 : 0 : 0]. In strongly expanding regions the p.d.f. of
β3 peaks at approximately 1 and the eigenvalues are in the ratio [0 : 0 : 1]. Hence compression is
dominant in the first eigendirection, while expansion is dominant in the third one.

Reported in figure 4.36 are the conditional averages of the squared cosines of the angles between
the density gradient direction and the principal strain ones (ψk = cos−1(n · Λk)) for air (a),
PP11-MAH-IC1 (b) and PP11-MAH-IC2 (c) at Mt0 = 1 (t = 2). In strong compressions, the
eigendirection associated with the most negative eigenvalue of Sij has a tendency to align with the
density gradient (i.e. it tends to be perpendicular to shocklets) both for the perfect and the dense
gas. In expansion regions, the first eigenvector is nearly orthogonal to the density gradient, while
the third strain-rate eigendirection has a tendency to somewhat align with the density gradient.
This tendency is strongly marked in dense gas, supporting the possibility of the occurrence of steep
expansion fronts for condition IC1 and eventually expansion shocklets for IC2.

From equation (4.16) we observe that the amount of enstrophy production/destruction depends
on the alignment between vorticity and the deviatoric strain rate eigendirections, and on the sign
and magnitude of the associated eigenvalues. Reported in figure 4.37 are the p.d.f.s and the
conditional p.d.f.s of the angles between vorticity and Λks. As in Wang et al. (2012b), the vorticity
is preferentially parallel or antiparallel to the intermediate eigenvector, and has a tendency to be
orthogonal to the first eigendirection. The angle between vorticity and the eigendirection associated
with the most positive eigenvector has a tendency to be more uniformly distributed as expansion
strengthens (i.e. any angle between vorticity and Λ3 is equally probable). This behaviour does not
depend on the type of gas and is rather similar to that observed in incompressible flows (Erlebacher
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(c)
Figure 4.38. Conditional averages of enstrophy production associated with the three strain rate
eigenvectors at Mt0 = 1 (at t = 2) for air (a), PP11-MAH-IC1 (b) and PP11-MAH-IC2 (c).
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Figure 4.39. Conditional average of the normalized vorticity magnitude at Mt0 = 1 (t = 2). ,
Air; , PP11-MAH-IC1; , PP11-MAH-IC2.
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Figure 4.40. Total and conditional p.d.f. of the normalized vorticity magnitude. Air (a); PP11-
MAH-IC1 (b); PP11-MAH-IC2 (c). , [−∞,+∞]; , [−∞,−2]; , [2,∞].

& Sarkar, 1993).

The conditional averages of enstrophy production by vortex stretching in the principal strain rate
directions is reported in figure 4.38 for air (a), PP11-MAH-IC1 (b) and PP11-MAH-IC2 (c). For
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perfect gas, the main contributions to enstrophy production in strong compression are associated
with the second and third eigenvectors, whereas in regions where the gas undergoes strong expan-
sions the small positive contribution in the direction associate with the most positive eigenvalue
(λ∗3) is overwhelmed by the negative contributions in the other directions, as also found by Wang
et al. (2012b). For dense gas, a similar behaviour is observed in compression regions. However,
in expansion zones the large negative contributions in the Λ1 and Λ2 eigendirections are reduced
by one order of magnitude, yielding striking differences with the perfect gas case. This can be
interpreted by examining the vorticity distribution whose conditional average is reported in fig-
ure 4.39 as a function of dilatation for air (a), and PP11-IC1 (b) and IC2 (c). In general, dense gas
effects reduce vorticity both in compression and expansion zones. In strong compressions, perfect
and dense gases generate a comparable average vorticity. On the contrary, in strong expansions
dense gas exhibits a stronger decrease in vorticity. The p.d.f. of vorticity magnitude conditioned
on dilatation is reported in figure 4.40, which shows indeed that high vorticity magnitudes are
somewhat less probable in dense gas (the effect being stronger for case PP11-IC2) than in perfect
gas.
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Chapter Summary

The statistical properties of dense gas CHIT decay are analyzed by means of DNS of PP11.
Simulations were carried out at various initial turbulent Mach numbers and for two different
choices of the initial thermodynamic state, corresponding to a small positive and a small
negative value of the fundamental derivative Γ, and compared with DNS results for a perfect
gas.

• Time evolution of general statistics:

– The trends observed in the previous chapter for inviscid CHIT are confirmed,
namely:

∗ Temperature variations are negligible due to the decoupling of dynamic and
thermal effects

∗ The p.d.f.s of the local dilatation conserve a more symmetric shape than in
perfect gas, especially for BZT initial conditions.

– The fluid viscosity exhibits smaller average and r.m.s. variations than a perfect gas.

– Thermodynamic statistics are slightly affected by the choice of the initial thermo-
dynamic state, provided that the initial Γ value is close enough to zero.

– Fluids of the same family exhibit similar evolutions for the thermodynamic quanti-
ties. Globally, the influence of the fluid type on kinematic features is small.

• The shocklet detection algorithm of Samtaney et al. (2001) has been implemented, but
modifications are required in order to be able to capture expansion shocklets.

• Analysis of small scales dynamics and properties of turbulent structures:

– The total joint p.d.f. (Q∗, R∗) is characterized by the same universal tear-drop shape
found for incompressible and compressible perfect gas turbulence.

– The joint p.d.f. conditioned on strong compression and expansion regions is modi-
fied due to the weakening of compressive structures and enhancement of expanding
regions.

– Strong expansions are found to be mostly populated by non-focal convergence struc-
tures, in contrast with the perfect gas that is dominated by eddy-like structures
having focal topology.

– Effects are enhanced for BZT initial thermodynamic conditions.

• Analysis of the role of different flow structures on viscous dissipation mechanism:

– Enhanced contribution of non-focal expanding structures to dilatational dissipation.

– The occurrence of steep expansion structures and, possibly, of expansion shocklets
is confirmed by the preferential alignment of the density gradient with the third
strain rate eigenvector. This effects deeply modifies the enstrophy generation in
strong expansion regions, which mostly acts as a sink in perfect gases.

– In dense gases, the presence of a much higher percentage of nonfocal convergence
structures significantly decreases vorticity and counterbalances enstrophy destruc-
tion by means of the eddy-like ones.



5 Supersonic dense-gas turbulent channel
flow

Contents

5.1 Numerical experiments of compressible channel flows . . . . . . . . . . 131

5.1.1 Setup and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1.2 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1.3 Description of the computed cases . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Influence of dense-gas effects on flow properties . . . . . . . . . . . . . . 135

5.2.1 Global flow properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.2 Scalings and first-order statistics . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.3 Second-order statistics of the thermodynamic and transport properties . . . 145

5.3 Influence of dense-gas effects on turbulence structure . . . . . . . . . . 148

5.3.1 Reynolds stresses and anisotropies . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.2 Turbulent kinetic energy budgets . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.3 Near-wall turbulent structures . . . . . . . . . . . . . . . . . . . . . . . . . 156

In this chapter we investigate the influence of dense gas effects on compressible wall-bounded
turbulence. Direct numerical simulations of supersonic turbulent channel flows are performed both
for air and PP11 and a parametric study on the bulk Mach and Reynolds numbers is carried out.
The analysis is performed by comparing with the flows for an ideal gas. The chapter is organised
as follows. The setup of the test-case and some useful definitions are presented in section 5.1,
along with validations with the classic literature references of Kim et al. (1987) and Coleman
et al. (1995). In section 5.2, the effects of dense-gases on mean and fluctuating properties are
analyzed. The profile of turbulence intensities, turbulent kinetic budgets and near-wall structures
are investigated in section 5.3.

5.1 Numerical experiments of compressible channel flows

5.1.1 Setup and definitions

Numerical experiments are conducted for the plane channel flow configuration, i.e. the flow be-
tween two infinite parallel flat plates. This is reproduced by applying periodic conditions in the
homogeneous streamwise (x) and spanwise (z) directions. Isothermal no-slip wall conditions are
applied on the lower and upper walls. In order to counteract viscous friction and maintain a tar-
get bulk mass flow, the approach described in Gerolymos et al. (2010) and Gerolymos & Vallet
(2014) is used to compute the forcing term. Specifically, at the end of each Runge-Kutta stage,
the bulk density is explicitly constrained to maintain a fixed target value, whereas a source term
fu1 is injected in the streamwise momentum equation to enforce a constant massflow. The density
correction is equivalent to including a source term in the continuity equation. Nevertheless, this
term is very small and can be neglected (Coleman et al., 1995; Huang et al., 1995; Lechner et al.,
2001; Morinishi et al., 2004; Foysi et al., 2004; Wei & Pollard, 2011; Gerolymos & Vallet, 2014).

131
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In the following, the subscripts (•)B, (•)w and (•)cl denote averaging over the whole computational
domain, the walls and centreline, respectively; (•) indicates Reynolds averaging over the homo-

geneous spatial directions and in time, whereas (•)′ are Reynolds fluctuations; similarly, (̃•) and
(•)′′ denote Favre averaging and Favre fluctuations. In the following, we also use the centreline
Reynolds and Mach numbers, respectively defined as Recl = ρcluclh/µcl and M cl = ucl/ccl.

The DNS operating point is defined by a bulk Reynolds number ReB and a bulk Mach number
MB, defined as:

ReB =
ρBũBh

µw
, MB =

ũB
cw
, (5.1)

where ρB is the bulk density, h is the channel half-height, µw is the dynamic viscosity and cw the
sound speed at the walls. In the definition of the bulk reference numbers, wall values for viscosity
and speed of sound are usually considered since this greatly simplifies the imposition of the reference
conditions for isothermal walls. Indeed, for a perfect gas model, a fixed wall temperature implies
µw = µ(Tw) and cw = c(Tw) =

√
γRTw. However, this is no longer true when using more complex

thermodynamic models, since the speed of sound and the transport properties depend on both
temperature and density values. In these cases, ρw is not known a priori and it is not possible
to fix directly ReB and MB. To enforce the reference conditions, an iterative procedure has been
followed: first, a preliminary calculation is run by choosing a reasonable value for the ratio ρw/ρB.
Once the solution is converged, the ρw obtained from the simulation is used to compute the updated
values of µw and cw, and the flow field is interpolated onto a new grid (adapted to the updated
value of the Reynolds number). In order to achieve convergence to the desired state, about 3 to 4
iterative cycles are needed. In the following parametric study, higher-ReB cases are initialized from
lower-ReB solutions by scaling the channel height and the forcing terms. Conversely, a change in
the target bulk Mach number requires the preceding initialization procedure.

We recall the definition of the standard wall coordinates and friction Reynolds number

y+ :=
ρwuτ (y − yw)

µw
; Reτ :=

ρwuτh

µw
(5.2)

where uτ =
√
τw/ρw is the friction velocity and τw = (µ∂u∂y )

w
the shear stress at the wall. It is

widely known that the Reynolds number based on the friction velocity does not correctly represent
the effect of rapid wall-normal variations for density and viscosity profiles in presence of high
compressibility effects. Huang et al. (1995) proposed an empirical semi-local scaling based on both
wall and centreline quantities:

y∗ :=
ρ(y)u∗τ (y − yw)

µ(y)
; Re∗τ :=

ρcl

√
τw
ρcl
h

µcl
= Reτ

√
ρcl
ρw

µw
µcl

(5.3)

with u∗τ =
√
τw/ρ(y) the semi-local friction velocity. This mixed scaling has proven to give quite

satisfactory results in collapsing first- and second-order moments (Foysi et al., 2004; Morinishi
et al., 2004; Modesti & Pirozzoli, 2016) obtained from a wide range of MB and ReB. Recently,
Patel et al. (2015) and Trettel & Larsson (2016) have developed a mathematical framework giving
a theoretical basis to the semi-local scaling. Even if this scaling was initially introduced in order
to take into account the effects of compressibility, Patel et al. (2015) assessed its validity also for
variable-property flows, since it inherently considers the evolution of transport properties and their
relation with thermodynamic quantities.
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5.1.2 Validations

In order to validate the code and the numerical strategy, two reference test-cases have been con-
sidered, namely the incompressible channel flow of Kim et al. (1987) and supersonic isothermal
channel flow of Coleman et al. (1995). The parameters of the DNS are summarized in table 5.1.
Note that a low subsonic Mach number, MB=0.3, has been chosen for the comparison of our com-
pressible solver with the incompressible case. Table 5.2 shows the main results of our simulations.
Figure 5.1 shows the mean streamwise velocity profile in wall units, the profiles of r.m.s. veloc-
ity fluctuations and the evolution of the turbulent kinetic energy budgets (whose components are
listed in subsection 5.3.2) compared to the data from Kim et al. (1987). Figure 5.2 shows similar
comparison for the first- and second-order statistics for the supersonic case. A very good agreement
with the reference results is obtained for both cases.

Table 5.1. Parameters used for the DNS of the selected test cases.

Case ReB MB Lx × Ly × Lz Nx ×Ny ×Nz

Subsonic (Kim et al., 1987) 2795 0.3 4πh× 2h× 2πh 192× 180× 160

Supersonic (Coleman et al., 1995) 3000 1.5 8πh× 2h× 2πh 512× 256× 256

Table 5.2. Results of the DNS computations of the selected test cases.

Case Reτ Re∗τ ∆x+ ∆z+ ∆y+
w ∆y+

cl −Bq ρw/ρB ρcl/ρB T cl/Tw

Subsonic 181 178 11.9 7.2 0.81 4.1 -0.002 1.01 0.99 1.01

Supersonic 219 147 10.7 5.4 0.78 3.2 -0.049 1.36 0.98 1.39

5.1.3 Description of the computed cases

Dense-gas effects are evaluated by means of a parametric study at three bulk Reynolds numbers
(namely, ReB = 3000, 7000 and 12000) and three bulk Mach numbers (MB = 1.5, 2.25 and 3).
For PP11 cases, the bulk density was imposed to be ρB = 0.618ρc, and the wall temperature was
fixed to Tw = 1.01Tc. The density value ensures that the flow evolves in the dense-gas region,
whereas the slightly supercritical wall temperature condition avoids the occurrence of a two-phase
flow. It should be noted that for these conditions it is not possible to obtain negative values of the
derivative of gas dynamics Γ, so no BZT phenomena are expected to occur.
In the following, we refer to each simulation with a unique tag of the form XMαRβ, where the first
letter indicates the fluid (A for air and P for PP11), α refers to MB (α = 1, 2, 3 for MB = 1.5, 2.25, 3,
respectively) and β to ReB (β = 3, 7, 12 for ReB = 3000, 7000, 12000, respectively). For all the
cases, the computational domain has dimensions Lx × Ly × Lz = 8πh× 2h× 2πh. The dimension
in the streamwise direction is greater than the one used in the previous compressible channel DNSs
(Coleman et al., 1995; Lechner et al., 2001; Morinishi et al., 2004; Wei & Pollard, 2011) in order
to ensure uncorrelated inlet and outlet quantities for high-MB cases. The computational grids
are chosen in order to provide a good spatial resolution in all directions. Specifically, the chosen
spatial resolutions, expressed in semi-local units, are in the ranges ∆x∗ ∈ [10, 16], ∆y∗w ∈ [0.5, 0.8],
∆z∗ ∈ [4, 6], according to the considered flow conditions. The spatial resolution is also evaluated
with respect to the wall-normal distribution of the Kolmogorov length-scale η = ((µ/ρ)3ρ/ε)1/4,
where ε is the turbulent kinetic energy dissipation. According to Zonta et al. (2012) and Lee
et al. (2013), the resolution requirements are ∆x < 12η, ∆y < 2η and ∆z < 6η. However, higher
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Figure 5.1. Validations for the subsonic channel flow case. Lines, present simulation; symbols, data
from Kim et al. (1987). (a) Law of the wall; (b) r.m.s. velocity fluctuations; (c) turbulent kinetic

energy budget. In (b), ( , ) u′u′
+

; ( , ) v′v′
+

; ( , ) w′w′
+

. In (c), ( , )
production; ( , ) dissipation; ( , ) turbulent diffusion; ( , ) viscous diffusion;
( , ) turbulent pressure diffusion.

resolutions may be needed when complex terms involving high-order velocity gradient correlations
are studied (Gerolymos & Vallet, 2014). In our simulations, the overall number of grid points varies
between 3× 106 and 1.2× 109.

Table 5.4 summarizes the conditions used for the parametric study. Wall-friction Reynolds numbers
range from 218.7 to 1017 for air, and from 191.3 to 692.8 for PP11. The semi-local scaling drastically
changes the predictions in terms of friction Reynolds number. For air, Re∗τ goes from 88.7 to 324.7,
the drop for each case being roughly proportional to MB. For PP11, an opposite behaviour is
observed: Re∗τ is higher than Reτ in each case, and the deviations increase with MB. This is due to
the different behaviour of the transport properties as it will be explained later. Thus, contrarily to
air, the resolution requirements for PP11 are more severe in semi-local scaling than in the classical
wall scaling. However, as reported in table 5.4, the chosen grids ensure a good resolution in each
case. Once the Re∗τ values is converged, statistics are collected each ten computational timesteps,
with ∆t+ ≈ 0.02÷ 0.03 in wall units for all the simulations, and during an observation time t+OBS

in the range 1000÷ 3000.
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Figure 5.2. Validations for the supersonic channel flow case. Lines, present simulation; symbols,
data from Coleman et al. (1995). (a) Profiles of mean quantities; (b) r.m.s. velocity fluctuations.
In (a), ( , ) ρ/ρB; ( , ) T/Tw; ( , ) u/uτ . In (b), ( , ) u′u′/ũ2

B; ( ,
) v′v′/ũ2

B; ( , ) w′w′/ũ2
B.

5.2 Influence of dense-gas effects on flow properties

In this section we first present results for general flow properties and their dependency on the
bulk parameters and fluid type. Then, we analyze cross-wise profiles of the first order statistics.
For this purpose, we initially assess different wall scalings, and then focus more specifically on
the variations of average thermodynamic properties across the channel, to highlight the peculiar
behaviour of dense-gas flows compared with air flows. For the sake of clarity, we investigate the
role of compressibility effects by focusing on cases characterised by ReB = 7000 and various Mach
numbers. The Reynolds number influence is also studied by considering sets of simulations M1R3
and M3R12. We complete the analysis by discussing dense-gas effects on second-order statistics
of the thermodynamic and transport properties. Second-order moments of the velocity fields and,
more generally, on turbulence structure are discussed in Section 4. For these sets of results, each
case is uniquely identified with the line style defined in table 5.3, unless otherwise stated.

5.2.1 Global flow properties

Figure 5.3 reports MB and T
+
cl = T cl/Tw as functions of the average centreline Mach number M cl.

Values obtained for air cases are in good agreement with reference DNSs in similar conditions (Foysi
et al., 2004; Wei & Pollard, 2011; Gerolymos & Vallet, 2014). For MB ≥ 1.5, M cl is systematically
lower than MB, since the walls are cooler than the channel core. Indeed for perfect gases, M cl

increases non-linearly since T cl grows rapidly and c ∝
√
T . The average centreline temperature

in figure 5.3b is approximately 1.4 times higher than the wall temperature for AM1R3 and more
than 2.5 times higher for AM3R3 due to the significant increase of the viscous heating τijSij . The

Table 5.3. Line styles for some of the DNS cases considered.

MB 1.5 1.5 2.25 3.0 3.0
ReB 3000 7000 7000 7000 12000
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dependence on the Reynolds number is weak on the considered range, with slightly lower values
of T

+
cl for higher ReB, which is more clearly appreciated for the highest Mach-number conditions.

The centreline Mach number M cl tends to decrease as the bulk Reynolds is higher due to more
flattened profile of the streamwise velocity. The variations are however relatively weak given the
limited range of Reynolds numbers in the present study. The most important viscous effects are
thus found for the highest MB and the lowest ReB. PP11 flows exhibit a rather different behaviour
since the results are highly dependent on the specific heats of the fluid. By increasing the molecular
complexity, the gas specific heat coefficients rise sharply and PP11 flows show an evolution closer
to the incompressible flows.
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Figure 5.4. Evolution of Re∗τ as a function of Reτ for different cases. Same legend as figure 5.3.

Inspection of figure 5.3b shows that, for these cases, the centreline temperature is almost equal to
the wall value for any choice of the Mach and Reynolds numbers. Considering an ideal model, one
would obtain ccl ≈ cw and thus M cl ≈MB. Nevertheless, the evolution of M cl changes significantly
because in dense gases the speed of sound depends also on density, which decreases moving from
the wall to the centreline. In turn ccl increases leading to lower values of M cl. Table 5.5 summarizes
the main characteristic values of the simulations.

The relationship between Re∗τ and Reτ , depicted in figure 5.4, gives useful information about the
differences between perfect and dense gases. We recall that, in the incompressible assumption,
Re∗τ = Reτ since density and viscosity are constant across the channel. Generally, for fluids ex-
hibiting gas-like (resp. liquid-like) behaviour, one has Re∗τ < Reτ (resp. Re∗τ > Reτ ). Consequently,
the semi-local friction Reynolds number reduces (resp. increases) the scaled turbulence intensity
with respect to that predicted by the incompressible scaling. The greatest difference between the
scalings are found for air: the semi-local scaling considerably modifies the friction by taking into
account temperature variations. It is shown that for a given ReB, higher bulk Mach numbers
lead to lower Re∗τ , whereas the opposite relation exists between MB and Reτ . For PP11 flows,
Re∗τ > Reτ due to the liquid-like behaviour of the transport properties of this fluid working in the
dense gas region. Higher MB lead to an increase in both Reτ and Re∗τ .

For practical applications, it is interesting to investigate the modifications of momentum and heat
transfer coefficients when working with a dense gas. For that purpose, we consider the evolutions
of the skin friction coefficient Cf and the bulk Nusselt number NuB, respectively defined as

Cf =
τw

1
2ρBu

2
B

; NuB =
qwDh

κw(TB − Tw)
, (5.4)

which are depicted in figure 5.5. Dh denotes the hydraulic diameter, Dh = 4h for a flat channel.

The values predicted by the correlation of Dean (1978), i.e. CDf = 0.073Re
−1/4
m , are denoted by the

solid black line in figure 5.5a. The correlation has been established in the incompressible regime
for Rem > 6000, where Rem is the Reynolds number based on bulk quantities and channel height,
i.e. Rem = 2ReBb = ρBũB2h/µB. For the dense-gas cases, the computed skin friction coefficients
are slightly lower than the values predicted by Dean’s correlation, but follow closely the trend with
respect to the bulk Reynolds number. The deviations are greater for air flows with an underesti-
mation more pronounced for higher Mach numbers. Some authors (Moneghan, 1953; Huang et al.,
1993) have proposed compressibility corrections, which work well for turbulent boundary layers
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Figure 5.5. Evolutions of Cf (a) and NuB (b) as a function of ReDh for different cases. Same
legend as figure 5.3.

over adiabatic walls. A similar extension for channel flows is not without ambiguities since the
definition of the freestream values and of the dynamic pressure for normalisation is more arbitrary.
It can however be concluded that Mach number effects in dense gas flows are less influential on the
skin friction coefficient than in air flows, and Dean’s formula yields a reasonable correlation.
In a similar manner, the Nusselt number is compared in figure 5.5b with a classical empirical cor-
relation, commonly used to estimate heat transfer in hydraulic pipes (Incropera & DeWitt, 2007;

Zonta, 2013). Specifically, we use the Sieder-Tate correlation, NuSTB = 0.027Re
4/5
Dh
Pr

1/3
B (µB/µw)0.14

(Sieder & Tate, 1936). Here, the Reynolds number at bulk conditions is based on the hydraulic di-
ameter Dh, i.e. ReDh = 2Rem = 4ReBb. This formula is an extension of the Dittus-Boelter/Colburn
correlations including the viscosity dependence due to temperature change between the bulk average
temperature and wall temperature. Figure 5.5b shows that the power law exponent of 0.8 capture
well the Reynolds-number dependence for both fluids. The higher values obtained for dense-gas
cases are explained by the Prandtl number dependence, which is constant and equal to 0.7 for air
and varies between 2 and 4 for PP11. The enhanced heat capacities of dense gases reduces the heat
conduction. A Mach-number effect can also be noticed, leading to lower Nusselt numbers when
the Mach number increases. This compressibility effect, more visible for air flows, is not taken
into account by the empirical correlation. The predicted values of Cf and NuB are reported in
table 5.5. The heat flux towards the walls Bq = qw/(ρwuτhw), with hw the specific enthalpy at
the wall, is also given. Its order of magnitude is O(100 ÷ 101) for air and O(10−4) for PP11 flows.
Hence, for dense gases, isothermal walls translate also into quasi-adiabatic conditions. Also given
in table 5.5, the wall and centreline mean values of the fundamental derivative Γw and Γcl are
globally lower than unity. Their increase with MB is mainly associated with a higher dispersion of
the instantaneous thermodynamic states.

5.2.2 Scalings and first-order statistics

Figure 5.6 displays the mean streamwise velocity profiles for air (top row) and PP11 flows (bottom
row). It is known that the classical incompressible scaling (panels a and d) fails in collapsing the
velocity profiles when compressibility effects are present. In particular, predictions get worse in
presence of a substantial heat flux towards the walls. Several attempts have been made in the
past in order to derive a transformation able to collapse the compressible velocity profiles into an
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Figure 5.6. Scalings for the law of the wall for air (top) and PP11 (bottom). (a,d) Classical in-
compressible scaling u+; (b,e) Van Driest transformation uV D; (c,f) Trettel-Larsson transformation
uTL in semi-local coordinates. Same legend as in table 5.3.

universal law of the wall for a wide range of Mach numbers. For non-hypersonic flows, Van Driest
(1951) developed the transformation:

uV D =

∫ u+

0

√
ρ

ρw
du+ , (5.5)

which takes into account mean-density variations and translates the compressible profile into an
equivalent ”constant-density” profile keeping the same wall-normal coordinate y+. The Van Driest
transformation provides a substantial improvement of the scaling (panels b and e), even if it departs
from the log law as MB increases. The size of the buffer layer increases rapidly for air since the
beginning of the logarithmic zone moves towards higher y+ values (from y+ ≈ 20 for AM1R7 to
y+ ≈ 70 for AM3R12). On the other hand, for dense gases, the heat flux is greatly reduced and
uV D-scaling provides quite satisfactory results. Indeed, this scaling was found to behave well for
adiabatic walls (Guarini et al., 2000; Pirozzoli & Grasso, 2004). Modifications for the value of the
intercept of the log-law velocity profile, u+ = 1/κ log y+ + C were proposed by Bradshaw (1977),
yielding empirical laws that relate C to the friction Mach number Mτ and to the heat flux Bq.
Modesti & Pirozzoli (2016) have recently provided a thorough review of the main scalings available
in the literature, and have shown that the transformation proposed by Trettel & Larsson (2016),

uTL =

∫ u+

0

√
ρ

ρw

[
1 +

1

2

1

ρ

dρ

dy
y − 1

µ

dµ

dy
y

]
du+, (5.6)
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Figure 5.7. Profiles of density ρ+, temperature T̃+ and pressure p/pw for cases air (top) and PP11
(bottom). Same legend as in table 5.3.

accurately reproduces the mean velocity profile even for cases with high wall heat flux. Panels c
and f confirm its validity even for dense gases. Note that, with this transformation, the wall-normal
distance is normalised according to the semi-local scaling y∗, equation (5.3).

Figure 5.7 shows the density, temperature and pressure profiles normalised with wall quantities.
The semi-local scaling y∗ is retained from hereafter as the standard scaling for comparing perfect-
and dense-gas cases. The rise of wall density values for increasing MB is significant for air and
less pronounced for PP11 flows. For instance, ρ/ρB = 2.51 for AM3R12 and 1.25 for PM3R12
(see values in table 5.5). Mean density ρ+ decreases towards the centreline, with minimum values
miny{ρ+

cl} ≈ 0.39 for AM3R3 and ≈ 0.77 for PM3R3. An eventual influence on Re∗τ is hidden

by the strong dependence on M cl, noticeable for both ρ+ and T̃+. As prefigured by figure 5.3b,
temperature profiles are quite different, with increases lower than 1% of the wall temperature for
PP11 flows. Pressure is roughly constant across the channel. More precisely, it exhibits a constant
value in the viscous sublayer and linear region, then it slightly decreases in the buffer layer reaching
a minimum in the logarithmic zone, and afterwards increases in the outer region. For air, the
relationship p/pw = ρ+T̃+ / 1 (Gerolymos & Vallet, 2014) holds in each case. The minimum values
for air flows are up to three times higher than for PP11 flows, with maxy{(p − pw)/pw} ≈ 1.5%
for AM3R12 and 0.5% for PM3R12. Although pressure is nearly constant, its mean value can
be directly related to the turbulent fluctuations. In fact, by applying the Favre-averaging to the
Navier–Stokes equations, one obtains for the mean equation in the y-direction (Huang et al., 1995):

∂ρṽṽ

∂y
+
∂p

∂y
=
∂τyy
∂y
− ∂ρṽ′′v′′

∂y
(5.7)
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Figure 5.8. Mean profiles of the speed of sound c/cw and of the Mach number M for air (a,b) and
PP11 (c,d) flows. Same legend as in table 5.3.

For incompressible flows, ∂(p + ρv′v′)/∂y = 0, thus p = −ρv′v′ up to an additive constant. For
compressible flows, the first and the third terms are not equal to zero, yet they remain much lower
than the other two. As a consequence, the minimum value of p coincides with the maximum of the
wall-normal Reynolds stresses, as it will be shown later.

Figure 5.8 shows the mean profiles of the speed of sound and Mach number across the channel.

Sound-speed variations across the channel are related to temperature changes for air (c/cw =
√
T

+
),

whereas they follow density variations for PP11. We notice that relative variations of the speed of
sound are much smaller for PP11 (about 20% against 60% for air), leading to higher values of M
compared to air flows. Note however that, when comparing the Mach number profiles at the same
y∗-location, similar values are found for both fluids (even if they are indeed slightly higher for PP11),
proving the effectiveness of the semi-local scaling for comparing various variable property flows.
For both fluids, a moderate dependence on the Re number is observed, with M(y∗) decreasing for
higher ReB. This is due to the fact that, for higher ReB, momentum conservation tends to flatten
the streamwise velocity profile in the outer layer in such a way that ucl decreases more quickly than
the speed of decreases (heating effects being mitigated for higher Reynolds numbers). Note that
using different definitions of the Mach number, namely u/c and u/c, leads to quite similar results,
with differences below 1% for all cases.

The most striking differences between perfect and dense gas flow cases are highlighted in figure 5.9,
presenting the profiles of viscosity, semi-local friction Reynolds number Re∗τ and average Reynolds
number Re. For air flows, µ/µw increases towards the centreline (gas-like behaviour), with a
maximum deviation in AM3R3 for which maxy{µ/µw} ≈ 2. For PP11 flows, the ratio decreases
(following approximately the ρ+ profile)up to miny{µ/µw} ≈ 0.75 for PM3R3, which is a liquid-like
behaviour. The viscosity behaviour largely influences the profiles of Re, shown in figure 5.4, and
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Figure 5.9. Mean profiles of the viscosity µ/µw, the friction Reynolds number Re∗τ and the Reynolds
number Re for air (a,b,c) and PP11 (d,e,f) flows. Same legend as in table 5.3.

in particular the centreline values, that tends to be considerably larger for the dense gas flows.
The evolution of Re∗τ follows opposite behaviours for the two fluids, due to the aforementioned
evolutions of transport properties. For air flows, it decreases rapidly up to the logarithmic layer
and then more slowly in the outer region. For a given ReB, a higher MB leads to higher values
of Re∗τ near the wall, since µw is the same whereas ρw and ∂u/∂y|w are increasing functions of
the Mach number. At greater distance from the wall, Re∗τ decreases even more quickly due to the
strong temperature gradients in the wall-normal direction. Outside of the viscous sublayer, Re∗τ is
considerably lower than the near-wall one for the higher MB cases, due to the combined effect of a
rapid decrease of local density and an increase of local viscosity. Specifically, the centerline value
may drop below the one obtained for lower Mach number cases, for which the fluid properties vary
less. For PP11 flows, Re∗τ exhibits an opposite behaviour, namely, it increases when moving from
the wall to the centreline. The overall variations, of the order of 12% at most for high Mach number
cases, are anyway much smaller than in the perfect gas (variations up to 60%). When increasing the
wall distance, Re∗τ slightly increases up to the buffer layer and remains roughly constant afterwards.
Due to the increasing reduction of centerline viscosity for higher Mach number cases, the growth
of Re∗τ is enhanced when MB becomes higher. The liquid-like viscosity viscosity behaviour clearly
affects the profile of the local Reynolds number Re (figure f) compared to the perfect gas (figure
c). For instance, at the centreline, Recl is about 2.5 times higher for PM3R12 than for AM3R12
results.

A direct consequence of the constant-Prandtl-number assumption in the ideal model is that κ/κw =
µ/µw for air. In PP11 simulations, variations of the thermal conductivity across the channel are
smaller than the ones of viscosity (miny{κ/κw} ≈ 0.95), nevertheless the ratio of the two transport
properties remains roughly constant and µ/κ ≈ 1.25 throughout. Thus, the Prandtl number
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Figure 5.10. Mean profiles of the Prandtl number Pr (a), specific heat at constant pressure cp/R
(b) for PP11, and Eckert number Ec (c) for air and PP11. Same legend as in table 5.3.

profile (figure 5.10a) is essentially driven by the normalized specific heat at constant pressure cp/R
(figure 5.10b) which, in turn, follows a trend similar to the density profile (i.e. decreases with the
wall distance). As pointed out in the above, the latter exhibit a strong dependency on MB in the
near-wall region, which is then fed back to Pr. Specifically, the wall Prandtl number increases by
about 50% when doubling the bulk Mach number and is almost insensitive to the Reynolds number.
In the outer region, Pr ≈ 2.3 − 2.4 for all dense-gas cases. On the other hand, the high values
of cp/R for dense gases lead to very small values of the average Eckert number, Ec = u2/cpT , a
parameter that is representative of the degree of coupling between thermal and kinematic effects.
We recall that for air flows, cp/R = cp/R = 3.5, which is two order of magnitude lower than the
mean values obtained with PP11. In figure 5.10c, Ec exhibits a similar trend for both fluids, with
two logarithmic zones connected near y∗ ≈ 15, but the curves are shifted by about two order of
magnitude. In fact, the centreline values are of the order of O(1) for air and O(10−2) for PP11
cases.

5.2.3 Second-order statistics of the thermodynamic and transport properties

Root mean square values for the density, temperature and pressure are shown in figure 5.11. Geroly-

mos & Vallet (2014) have shown that for air flows O(
√
T ′2/T ) = O(

√
ρ′2/ρ) = O(

√
p′2/p), regard-

less of the y∗ location, Mach and Reynolds numbers. The same trend has been observed for both
forced (Donzis & Jagannathan, 2013) and decaying (chapter 4 of this thesis) highly-compressible
homogeneous turbulence. As discussed in Gerolymos & Vallet (2014) this behaviour is a direct con-
sequence of the perfect-gas equation of state, and does not depend on the specific flow configuration
under investigation. Indeed, the present relative r.m.s. distributions of thermodynamic quantities

for air flows also verify this kind behaviour. After an initial growth in the linear region,

√
ρ′2/ρ

and
√
T ′2/T reach a peak in the buffer layer at y∗ ≈ 10 and then decay. The pressure fluctuations

are rather nearly constant close to the walls, a slightly peak at the beginning of the logarithmic
zone (y∗ ≈ 40) and finally decrease, reaching a minimum in the core region. For dense gases, the
observed trends are very different. While the overall levels of density and pressure fluctuations
remain of the same order of magnitude as for air cases, the relative temperature fluctuations are
more than one order of magnitude lower. The fluctuating pressure distribution is much like the
perfect-gas one, since it depends on the fluctuating velocity. Furthermore, ρrms decreased mono-
tonically with the wall distance, the highest density fluctuations being observed close to the walls.
The r.m.s. density levels decay at higher rates in the linear layer and in the outer region, and ex-
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Figure 5.11. Profiles of the normalised r.m.s. density (a,d), temperature (b,e), and pressure (c,f)
for air flows (top row) and PP11 flows (bottom row).
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Figure 5.12. Profiles of normalised r.m.s. viscosity for air (a) and PP11 (b) flows.

hibit only weak variations in the logarithmic region. We have also seen that for PP11 the average
density decreases with the wall-normal distance, and so thus the fluid compressibility (inverse of

the speed of sound). The latter is O
(√

ρ′2/ρ

√
p′2
)

. Thus, relative density fluctuations decay due

to the reduced compressibility and decaying r.m.s. pressure. The variance of viscosity is depicted in
figure 5.12. As shown for the first-order moments, r.m.s. distributions of the transport properties
inherit from the behaviour of the temperature fluctuations for air and of the density fluctuations for
PP11 flows. Both viscosity and density fluctuations are sustained for PP11 (up to 18% of the mean
value in the near wall region for the higher Mach number case). Yet, the hypothesis of Morkovin
(1962) cannot be considered as invalid.

To further clarify the strong relations between density and pressure, correlation coefficients are
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Figure 5.13. Profiles of the correlation coefficients Cρ′p′ (a,e), Cρ′u′ (b,f), Cρ′v′ (c,g) and Cu′v′ (d,h)
for air (top row) and PP11 (bottom row) flows.

calculated. Given two flow variables α and β, the correlation coefficient cα′β′ is defined as:

Cα′β′ =
α′β′√
α′2
√
β′2

(5.8)

Figure 5.13 shows the correlations Cρ′p′ , Cρ′u′ , Cρ′v′ and Cu′v′ plotted with outer scaling. Due to
the isothermal boundary conditions, the correlation coefficient Cρ′p′ is equal to unity at the walls
for both air and PP11. Afterwards, it decreases reaching a minimum at y∗ ≈ 8, approximately
corresponding to the temperature variance peak, and then it increases again towards the centreline.
For PP11 flows Cρ′p′ approaches unity already at y∗ ≈ 20 and then remains constant. On the other
hand, it raises slowly for air flows, with an asymptotic value close to 0.9. The correlation coefficients
Cρ′u′ and Cρ′v′ , which represent the transport of density fluctuations by the streamwise and wall-
normal velocities, exhibit a totally different evolution depending on the fluid nature. Specifically,
for air the streamwise correlation is negative and the spanwise is positive, whereas for PP11 both
coefficients tend rapidly towards zero. Furthermore, Cρ′u′ exhibits both a Mach and Reynolds
dependence for air, whereas for PP11 it varies only with the Mach number. Lastly, the distributions
Cu′v′ are similar even if a perfect collapse can be noticed for air, whereas a slight Mach dependence
is observed for PP11.

Another way to interpret the peculiar behaviour of the thermodynamic quantities is to look at
representations in Clapeyron’s diagrams. Figure 5.14 shows distributions of the p− v states in the
computational box at one instant for PP11 flows. The different subfigures correspond successively
to the influence of MB, ReB and the wall normal position. The different p−v diagrams are coloured
successively with values of the speed of sound, viscosity and Prandtl number in order to highlight
the differences with respect to air. The p− v states are recorded on slices parallel to the wall. The
location is fixed at y∗ ≈ 10 where temperature fluctuations peak for figures 5.14 a and b. It is clear
from figure 5.14a that the main effect of increasing MB is a broadening of the region spanned by
the p−v states. For MB = 3 cases, the states characterised by stronger compressions exit the dense
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gas region and reach a supercritical zone where strong variations of the thermodynamic properties
are observed. Higher values of MB imply a greater dispersion in ρw values and in variances of the
thermodynamic variables near the wall. Changing the Reynolds number ReB for a given MB in
figure 5.14b reveals that the distributions of p− v states are almost superimposed for the same y∗,
providing an a-posteriori check of the validity of the semi-local scaling. Lastly, distributions for
different y∗ values are shown in figure 5.14c. The thermodynamic regions spanned by the p−v states
are reduced moving away from the wall. Even if most of the states are enclosed in the dense-gas
region, none of the present simulations exhibit peculiar dense-gas effects, such as expansion shock

waves. This can be explained by the fact that the turbulent Mach number, Mt =
√
u
′2
i /c, does

not reach sufficiently high values. For instance, figure 5.15 indicates that Mt approaches 0.4 for
MB = 3, whereas the simulations of decaying CHIT have shown that significant dense-gas effects
can appear for Mt above 0.8. The distributions of Mt are similar as the simulations with air with
slightly higher values for PP11 flows, showing that, notwithstanding liquid-like characteristics of
dense gases, important compressibility is also present. The profiles of the fundamental derivative
of gas dynamics Γ, plotted in figure 5.15c, confirm that mean values are indeed lower than 1 for
PP11 flows, with minimal values in the channel core. The flows thus evolve in the dense-gas region
but with positive values of Γ, so that BZT phenomena are not expected.

5.3 Influence of dense-gas effects on turbulence structure

5.3.1 Reynolds stresses and anisotropies

Figure 5.16 shows the Reynolds stresses [ρu′′i u
′′
j ]

+ = ρu′′i u
′′
j /τw for the selected simulations. Patel

et al. (2015) have shown that for variable-property turbulent channel flows, gas-like transport
properties tend to lower the spanwise, wall-normal and shear Reynolds stresses with respect to the
corresponding incompressible evolution, whereas the streamwise component increases. The opposite
trend is expected when liquid-like properties are considered. In our cases the strong compressibility
adds a complexity in the sense that higher MB increase the velocity gradients near the wall –thus
increasing the Reynolds stresses– but also dramatically affect viscosity distributions. For instance,
the case AM1R7 (Re∗τ ≈ 315) is characterised by a semi-local friction Reynolds number higher
than case AM3R7 (Re∗τ ≈ 200). For incompressible flows, all the Reynolds stresses would increase
monotonically with Reτ . However, since the temperature-dependent viscosity takes much higher
values throughout the channel in the AM3R7 case, ρv′′v′′, ρw′′w′′ and ρu′′v′′ are lower compared to
AM1R7, whereas ρu′′u′′ reaches higher levels. For PP11, a higher Mach number has the opposite
effect on spanwise, wall-normal and shear stresses, coherently with a diminishing viscosity. For
the streamwise stress, instead, the same behaviour is observed as in gas-like cases, mainly due
to the more severe wall-normal velocity gradients counteracting viscosity variations. Indeed, Re∗τ
increases continuously from PM1R3 to PM3R12, as seen in figure 5.4.

Concerning the location of the peak values, for both air and PP11 flows they are roughly constant for

the streamwise and spanwise components, namely around y∗ ∈ [10, 13] for ρu′′2
+

, and y∗ ∈ [40, 50]

for ρw′′2
+

. On the other hand, a weak dependence on Re is observed for wall-normal and shear
stresses. The slight shift towards higher y∗ is more pronounced for PP11 flows since much higher
Re∗τ are achieved. The influence of Re is consistent with high-Reynolds-number incompressible
simulations (Lee & Moser, 2015).

Despite the similar behaviour in the inner region, higher deviations are noticeable in the core
region. A striking difference is found for the centreline evolution of the wall-normal stresses. Outer
scaling y/h is used for the wall distance in figure 5.17 to stress this point. In air flows, all the
computed stresses collapse logarithmically in the outer region, reaching approximately the same
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Figure 5.14. Distribution of p − v states of an instantaneous flow field for PP11 in a Clapeyron
diagram.

value at the centreline of the channel. On the contrary, wall-normal stresses ρv′′v′′
+

for PP11 flows
present different centreline values, notably for cases PM3R7 and PM3R12 at MB = 3. The levels
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Figure 5.15. Profiles of the turbulent Mach number Mt for air (a) and PP11 (b) and of the
fundamental derivative of gas dynamics Γ for PP11 (c). Same legend as in table 5.3.

of wall-normal fluctuations become then of the same level as those in the streamwise direction. A
great change is thus expected in the anisotropies of the Reynolds stress tensor, which is defined as

aij = 2
ρu′′i u

′′
j

ρu′′ku
′′
k

− 2

3
δij (5.9)

The terms aij point out the role of compressibility and appear in the formulation of advanced
turbulence models. Figure 5.18 shows the evolutions of the four non-zero elements of the anisotropy
tensor. For air flows, it is shown that the behaviour of the diagonal elements of the anisotropy tensor
is opposite to that of the Reynolds stresses. Specifically, anisotropy is reduced as the Reynolds
number increases and is more marked for higher Mach numbers. Conversely, the cross component
a12 increases for higher values of the shear stresses. The evolutions of the Reynolds anisotropies,
as well as the turbulent kinetic energy budgets as shown later, are in accordance with the study
of Sarkar (1995). This author has shown that, for homogeneous shear flows, compressibility has a
“stabilizing” effect in the sense of a reduction of Reynolds-stress anisotropy, causing a reduction
of the growth rate of the turbulent kinetic energy. For PP11 flows, the Mach number (hence,
the thermodynamic conditions) has a much greater impact on the anisotropies than the Reynolds
number. If the cross components are roughly similar to air cases, significant differences are found
for the streamwise and wall-normal anisotropies at MB = 3. These can be related to the different
behaviour of ρv′′v′′ after its peak value. In the channel core, the anisotropy components are close
to zero.

To further assess the deviation of dense-gas behaviour from ideal one, we consider the non-
dimensional shear rate Sk/ε (with S = dũ/dy) and the gradient Mach number Mg = Sk3/2/(cε),
plotted in figure 5.19. Sk/ε is a measure of the turbulence-to-mean-shear timescale ratio. It peaks
in the buffer layer and attains approximately constant values in the logarithmic zone, where the
flow is close to equilibrium (Sk/ε ≈ 3). For air flows, the peak values are higher with respect to
PP11 flows. For instance, the maxima are maxy[Sk/ε] ≈ 22.8 and 20 for AM3R7 and PM3R7
cases, respectively. The gradient Mach number, on the other hand, measures the importance of
compressibility effects. For both fluids, a high dependency on both ReB and MB is observed. The
magnitudes and locations of the peaks are similar in each case. The highest differences are observed
for M3R12 cases, with a slightly higher Mg for PP11. Higher Mg is directly linked to important
reductions of the turbulent shear stress and an increase of the diagonal components of Reynolds
stress anisotropy tensor (Sarkar, 1995), as previously shown in figures 5.16 and 5.18.

Finally, important differences are found also by analysing the skin friction coefficient by means
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Figure 5.16. Reynolds stresses in the streamwise (a, e), wall-normal (b, f) and spanwise (c, g)
directions and Reynolds shear stresses (d, h) for air (top row) and PP11 (bottom row) flows with
semi-local scaling.
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Figure 5.17. Reynolds stresses in the streamwise (a, e), wall-normal (b, f) and spanwise (c, g)
directions and Reynolds shear stresses (d, h) for air (top row) and PP11 (bottom row) flows with
outer scaling.

of the Fukagata–Iwamoto–Kasagi (FIK) identity. Starting from the incompressible expression of
Fukagata et al. (2002), Gomez et al. (2009) derived an exact relationship for the analysis of the
contribution of Reynolds stresses to the skin friction coefficient in compressible cases. The skin
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Figure 5.18. Profiles of the streamwise (a,e), wall-normal (b,f), spanwise (c,g) and shear (d,h)
Reynolds stress anisotropies for air (top row) and PP11 (bottom row) flows.
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Figure 5.19. Evolutions of non-dimensional shear rate Sk/ε (a,c) and gradient Mach number Mg

(b,d) profiles for air (top row) and PP11 (bottom row) flows.

friction coefficient may be break up into four contributions, namely:

Cf =
6

ReBb︸ ︷︷ ︸
CL

+ 6

∫ 1

0
(1− y)ρ(−̃u′′v′′) dy︸ ︷︷ ︸

CT

+
6

ReBb

∫ 1

0
(1− y)µ̂ũ′′v′′ dy︸ ︷︷ ︸
CC

+

6

ReBb

∫ 1

0
(1− y)µ′

(
∂u′

∂y
+
∂v′

∂x

)
dy︸ ︷︷ ︸

CCT

, (5.10)
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Table 5.6. Contributions to the skin friction coefficient according to the compressible extension of
the FIK identity of Gomez et al. (2009) for different cases.

Case Cf (×103) Error (%) CL (%) CT (%) CC (%) CCT (%)

AM1R7 6.41 0.3 13.28 84.63 2.04 0.05
AM2R7 6.37 1.8 13.26 82.19 4.45 0.11
AM3R7 6.36 3.8 13.15 79.08 7.60 0.17
PM1R7 6.24 −0.8 13.76 86.71 −0.48 0.02
PM2R7 6.15 0.4 14.05 87.00 −1.07 0.02
PM3R7 6.04 0.9 14.31 88.21 −2.55 0.02

being CL the laminar contribution, CT the turbulent contribution, CC the compressible contribution
(in which µ̂ = µ−1) and CCT the compressible-turbulent interaction term. As observed by Fukagata
et al. (2002), the turbulent term is proportional to the weighted average of Reynolds stresses,
where the weight decreases linearly with the distance from the wall. This explains why the main
contribution to the frictional drag is due to the turbulent structures close to the wall, rather
than where the Reynolds stresses peak. The compressible term CC is due to the mean viscosity
variations and to the mean wall-normal velocity gradient, whereas CCT represent the interaction
between compressibility and turbulent effects, and usually it is rather small. Table 5.6 shows the Cf
values obtained from equation (5.10) for different cases, as well as the relative error with respect to
the values obtained from DNS and the relative weights of each contribution. In order to investigate
the effect of compressibility, we consider the cases with ReB = 7000 and different MB, such that
the laminar contribution CL is approximately constant (i.e. CL ≈ 13 − 14%). For air cases, the
contribution due to the turbulent fluctuations CT decreases for higher MB, coherently with the
decreasing of the Reynolds stress peak. The opposite is registered for PP11, for which the relative
weight of CT increases of about 1.5% due to the liquid-like behaviour. Moreover, the peculiar
liquid-like behavior causes substantial changes in the compressible contribution CC : namely, it
becomes more important as the MB increases for both fluids, but it is positive for air (being µ̂ > 0)
and negative for PP11 (µ̂ < 0). This term, indeed, is related to variable-property effects rather
than compressibility effects due to high-speed flows. Lastly, the compressible-turbulent interaction
term, always quite small, contributes to the total skin friction coefficient for about 0.1% in air and
one order of magnitude less (0.02%) in PP11.



154 Influence of dense-gas effects on turbulence structure

5.3.2 Turbulent kinetic energy budgets

For fully developed, statistically stationary channel flow, the turbulent kinetic energy budget reads
(Lechner et al., 2001):

Pk + Tk + Vk +Mk +Dk + εk = 0 (5.11)

with

Pk = −ρũ′′v′′dũ
dy

(5.12)

Tk = − d

dy

1

2
(ρu′′2v′′ + ρv′′3 + ρw′′2v′′) (5.13)

Vk =
d

dy
(u′τ ′xy + v′τ ′yy + w′τ ′yz) (5.14)

Mk = u′′
(
−∂p
∂x

+
dτxy
dy

)
+ v′′

(
−∂p
∂y

+
dτyy
dy

)
+ w′′

dτyz
dy

(5.15)

Dk = p′
∂u′

∂x
+ p′

∂v′

∂y
− d

dy
v′p′ + p′

∂w′

∂z
(5.16)

εk = −
(
τ ′xj

∂u′

∂xj
+ τ ′yj

∂v′

∂xj
+ τ ′zj

∂w′

∂xj

)
(5.17)

Pk is the turbulent production, Tk and Vk the turbulent and viscous transports, Mk the mass flux
variation, Dk the velocity-pressure gradient tensor (composed of the sum of pressure-strain corre-
lation and pressure-transport term) and εk the dissipation term. Figure 5.20 shows the turbulent
kinetic energy budget for cases AM3R12 and PM3R12. Three different nondimensionalisations are
tested, namely, a bulk scaling with τwuB/h (Lechner et al., 2001; Huang et al., 1995), a wall scaling
with ρwu

4
τ/νw (Guarini et al., 2000), and a semi-local scaling with τ2

w/µ(y) (Foysi et al., 2004). It is
clear from the figure that the first two scalings are not able to take into account variable-property
effects. The latter represents thus the most suitable scaling to compare perfect and dense gases.
In semi-local scaling, the viscous and turbulent transports behave similarly, whereas the mass flux
variation (which is zero for incompressible flows) is much smaller for PP11 case. In the core region,
all the budget terms collapse.

A closer inspection of the turbulent production and dissipation for the selected simulations is
provided in figure 5.21, which also shows their ratio, plotted both in linear and logarithmic semi-
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Figure 5.20. Comparisons of turbulent kinetic energy budgets for cases AM3R12 (dashed lines) and
PM3R12 (solid lines) normalised by τwuB/h (a), ρwu

4
τ/νw (b) and τ2

w/µ(y) (c). Pk,
Tk, Vk, Mk, Dk, εk.
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local coordinates. For both fluids, the production peak is located at y∗ ≈ 11 − 12 for all the
considered bulk conditions. Lechner et al. (2001) and Sarkar (1995) showed that the main effect
of compressibility is a reduction in the production and dissipation rate of the turbulent kinetic
energy. Nevertheless, this effect can be associated to the strong variations of properties at high
Mach numbers. The semi-local scaling τ2

w/µ(y) is able to collapse, for instance, the budgets for cases
M1R7, M2R7 and M3R7, for which substantial differences should be observed due to the doubling
of the bulk Mach number. Globally, a common trend is observed for air and PP11 flows, where the
peaks of production and dissipation terms slightly increase with Re∗τ . The ratio of the production
and dissipation rates Pk/εk − 1 exhibits a similar evolution for similar value of Re∗τ (cases PM1R3
and AM3R7). The ratio peaks at the same y∗ location as the production term. Furthermore, for
cases with Re∗τ > 200, a second peak starts growing in the logarithmic region. For PP11 flows, the
inner peak seems roughly unaffected, as found for high-Reynolds-number turbulent incompressible
flows (Lee & Moser, 2015), whereas in air a slight decrease is observed with increasing Re∗τ , as
shown in the subfigure in logarithmic scale. Since the Re∗τ values are low in air cases, the ratio
always remains negative and no effective net turbulent production is observed in the outer layer.
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Figure 5.21. Profiles of the turbulent production Pk, the turbulent dissipation εk and the ratio of
production to dissipation Pk/εk − 1 for air (top row) and PP11 (bottom row) flows.
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Figure 5.22. Isosurfaces of normalised Q−criterion Q(h/uB)2 = 1 coloured with normalised stream-
wise velocity

√
ρu/
√
τw. Top: AM3R7, centre: PM1R3, bottom: PM3R7.

For PP11, the case PM3R12 is the only one with a positive region, extending between y∗ ≈ 180
and y∗ ≈ 400.

5.3.3 Near-wall turbulent structures

The difference in near-wall turbulent structures is now analysed by means of instantaneous flow
visualizations. Figure 5.22 shows the isosurfaces of the normalised Q-criterion coloured with the
streamwise velocity for cases AM3R7, PM1R3, PM3R7. The Q−criterion is normalised with respect
to the channel half-height h and the bulk velocity uB in order to focus on differences in the outer
region. A visual inspection of the instantaneous fields shows that similar structures are observed
for iso-Re∗τ cases, namely, AM3R7 and PM1R3 (Re∗τ ≈ 200). For case PM3R7, smaller structures
are visible due to the higher Re∗τ , and the structures survive up to centreline, where a greater
turbulent activity is observed.

Figures 5.23-5.25 show a slice of the instantaneous flow field at different values of y∗ (namely,
y∗ = 12, 50 and centreline) coloured with levels of the normalised streamwise velocity fluctuations√
ρu′′/

√
τw for cases AM3R7 and PM1R3 (hence for Re∗τ ≈ 200). The local density value ρ is

used for normalisation instead of ρ, since it correlates better with the modulation of the streak
magnitude (Patel et al., 2015). In all cases, the computational box is scaled with respect to semi-
local co-ordinates (x∗, z∗). Differently from the classical wall scaling (x+, z+) that is the same
for all heights, the semi-local scaling changes with the wall distance. The box size considered is
5000×1200 based on non-dimensional coordinates x∗ × z∗ for each case. For both fluids, the maps
of the instantaneous streamwise velocity close to the wall exhibits the well-known organization
in streaks (Coleman et al., 1995; Chernyshenko & Baig, 2005; Gerolymos & Vallet, 2014). In
past years, the role of compressibility on the modification of near-wall structures has been widely
discussed. Initially, it was argued that its effect was to increase the streamwise correlation length,
enhancing the coherence of near-wall streaks (Coleman et al., 1995; Duan et al., 2010; Lagha et al.,
2011). This statement was not confirmed when the semi-local scaling was taken into account
(Morinishi et al., 2004; Patel et al., 2015). A rather universal behaviour was then observed. The
latter conclusion holds in the present comparison between air and PP11 flows at the three heights
shown in the figures. Figures 5.23 shows that near-wall layers are dominated by streaks with similar



Supersonic dense-gas turbulent channel flow 157

Figure 5.23.
√
ρu′′/

√
τw fluctuations at y∗ ≈ 12 for AM3R7 (top) and PM1R3 (bottom).

Figure 5.24.
√
ρu′′/

√
τw fluctuations at y∗ ≈ 50 for AM3R7 (top) and PM1R3 (bottom).

streamwise lengths and spanwise separations. At y∗ ≈ 50, in figure 5.24, the structures become
less coherent and less energetic. At the centerline of the channel, as illustrated in figure 5.25, no
prominent coherent structures can be found.

Differently from velocity fields which have a similar structural behaviour if represented with the
semi-local scaling, the thermodynamic quantities are much more sensitive. Figures 5.26 and 5.27
show the instantaneous pressure p′+ and density ρ′+ fluctuations at y∗ ≈ 12. Pressure fluctuations
are characterised in both cases by long-range interactions (Kim, 1989; Chang III et al., 1999), even
if the mean-square fluctuations mainly have local contributions (Kim, 1989). Higher deviations
from the mean value are observed in air. Contrary to pressure, density fluctuations behave dif-
ferently between air and PP11 flows. For air, very elongated scales in the streamwise direction
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Figure 5.25.
√
ρu′′/

√
τw fluctuations at y∗ ≈ 200 for AM3R7 (top) and PM1R3 (bottom).

Table 5.7. Values of y∗ and λ∗ for the peak values of the spectra shown in figure 5.28

kxEρuu/τw kzEρuu/τw kzEρvv/τw
air PP11 air PP11 air PP11

y∗ 13.9 14.1 13.5 13.2 48.8 55.2
λ∗ 1180 1220 115 114 116 116

are preferentially observed and follow approximately velocity fluctuations. In fact, the correlation
Cρ′,u′ is close to -1 in the buffer layer. Consequently, negative (positive) density fluctuations are
associated with positive (negative) velocity fluctuations. Low-speed streaks are thus characterised
by higher-density fluid and vice versa. The behaviour for PP11 flows is rather different, as inferred
from the correlation coefficients Cρ′,u′ and Cρ′,p′ in figure 5.13. Cρ′,u′ being much smaller in the
buffer layer, the density modulation for low and high-speed streaks is less marked. Instead, the
pressure signature is visible on the instantaneous density since Cρ′,p′ ≈ 1 across the whole channel
height.

Figure 5.28 show the premultiplied kinetic energy spectra kxEρuu/τw, kzEρuu/τw and kzEρvv/τw
for cases AM3R7 and PM1R3 on the whole channel height as a function of semi-local streamwise k∗x
and spanwise k∗z wavenumbers. The semi-local scaling provides an approximate collapse over a wide
range of wavenumbers, improving substantially the classical inner scaling. The strongest modifica-
tions are obtained for air flows, in which the high gradients of variable properties near the wall alter
the effective scaled wavenumbers up to the buffer layer. This corresponds to elongated (shortened)
structures for gas-like (liquid-like) transport properties with respect to the incompressible regime
(Coleman et al., 1995; Duan et al., 2010). The locations y∗ and the wavelengths λ∗ corresponding
to the peak values are reported in table 5.7. Similar values with respect to those typically obtained
in incompressible turbulence are found (i.e., for the streamwise velocity, λ+

x ≈ 1000 and λ+
z ≈ 100)

for both fluids.

Near-wall turbulent structures can be also analysed by means of the quadrant analysis (Wallace,
2016). This representation allows a detailed study of the physical mechanisms producing the
Reynolds shear stresses and, in a related way, underlying the turbulent kinetic energy production.
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Figure 5.26. Pressure fluctuations p′+ at y∗ ≈ 12 for AM3R7 (top) and PM1R3 (bottom).

Figure 5.27. Density fluctuations ρ′+ at y∗ ≈ 12 for AM3R7 (top) and PM1R3 (bottom).

The (u, v) plane is divided into four quadrants: Q1 (+u′′,+v′′), Q2 (−u′′,+v′′), Q3 (−u′′,−v′′), Q4
(+u′′,−v′′). Figure 5.29 shows the joint probability functions of

√
ρu′′/

√
τw and

√
ρv′′/

√
τw for air

and PP11 flows at different y∗ values. Near the walls the p.d.f.s appear stretched in the streamwise
direction and flatter in the spanwise direction, with a preferential orientation in the Q2 and Q4
quadrants, corresponding respectively to ejections (u′′ < 0, v′′ > 0) and sweeps (u′′ > 0, v′′ < 0).
Moving towards the centreline, the p.d.f.s tend to become more isotropic. The most important
differences between air and PP11 are found in the buffer layer. Namely, strong ejections events
are less likely to occur with the dense gas. Distributions in the logarithmic zone and in the
core region, instead, exhibit similar values. The exact contribution of the different quadrants
can be obtained by plotting the isocontours of the probability-weighted Reynolds shear stresses
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Figure 5.28. Premultiplied energy spectra for cases AM3R7 (top) and PM1R3 (bottom).
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Figure 5.29. Joint p.d.f.s of
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τw for air (top) and PP11 (bottom).
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Figure 5.30. Probability weighted Reynolds shear stress ρu′′v′′/τwP (

√
ρu′′/

√
τw,
√
ρv′′/

√
τw) for air

(top) and PP11 (bottom).

ρu′′v′′/τwP (
√
ρu′′/

√
τw,
√
ρv′′/

√
τw), depicted in figure 5.30. The contribution of ejections events

to shear stresses appear lower for PP11 flows with respect to air flows. This is consistent with
recent findings of Patel et al. (2015). Gas-like (liquid-like) transport properties tend to stabilise
(weaken) the low-speed streaks, which lift less (more) intensely away from the wall.
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Chapter Summary

Direct numerical simulations of supersonic turbulent channel flows of perfect and dense gases
have been performed for different values of bulk Reynolds and Mach numbers.

• Mach numbers remain below the limit where strong compressibility effects are visible.

• The temperature being almost constant for dense gases, isothermal wall conditions are
close to adiabatic conditions.

– The Van Driest transformation already provides a good collapse for PP11 flows, the
heat transfer at the walls being weak.

• Peculiar behavior of transport properties, the viscosity and thermal conductivity decreas-
ing with density across the channel:

– Dense gases behave similarly to incompressible flows with liquid-like transport prop-
erties

– The semi-local scaling introduced by Huang et al. (1995), and later formalised by
Patel et al. (2015), is well adapted to take into account variable properties. This is
shown by the comparisons of Reynolds stresses, the instantaneous views of the ve-
locity fields, the kinetic energy budgets and streamwise and spanwise pre-multiplied
spectra.

– Morkovin’s hypothesis is well respected.

• Different profiles for r.m.s. of thermodynamic properties w.r.t. air cases

• Density fluctuations follow pressure ones in PP11 flows, their correlation being close to
unity across the whole channel.

• The extension of the FIK identity for compressible flows (Gomez et al., 2009) has been
used to analyse the different skin friction values:

– The compressible term has opposed sign, due to the liquid-like viscosity, and it is
smaller than air, viscosity variations being higher in the latter case

– The compressible-turbulent interaction term is one order of magnitude lower in
PP11



6 Conclusions and Perspectives

Turbulent flows of dense gases represent a research field of great importance for a wide range
of applications in the field of process engineering and energy conversion cycles. In this thesis, a
numerical study of the influence of dense-gas effects on turbulent flows has been carried out. It
is usual to identify dense gases as fluids that exhibit values of Γ lower than one in their vapour
phase. In such conditions, the speed of sound tends to decrease in isentropic compressions and
increase in expansions, contrary to the behaviour of lighter, ”classical” gases, like air or steam.
The reversed variations of the speed of sound deeply modify the behaviour of dense gas flows in the
transonic and supersonic regime compared to more standard fluids. The most striking differences
are obtained for BZT fluids, which exhibit an inversion zone leading to the appearance of non
classical phenomena such as expansion shocks. A heavy fluorocarbon fluid, namely the PP11, has
been systematically considered in the study since it presents a wide inversion region in which BZT
non-classical phenomena can occur. Its thermodynamic behaviour is well represented with the
Martin–Hou thermal equation of state, whereas the transport properties are modelled by means
of the Chung–Lee laws, that take into account correction terms for the evolution of viscosity and
thermal conductivity in the dense-gas region.

In order to have a preliminary idea of the differences between dense- and perfect gases, the large-
scale dynamics of decaying homogeneous isotropic turbulence are investigated by using the simpler
Van der Waals gas model. The simulations are based on the inviscid conservation equations,
solved by means of the 9th-order accurate numerical method, validated beforehand against inviscid
CHIT results available in the literature for perfect diatomic gases. Inviscid simulations rely on the
numerical viscosity of the scheme to dissipate energy at the finest scales, while leaving the larger
scales mostly unaffected. First, we have carried out a preliminary parametric study of the influence
of the specific heat ratio γ for perfect-gas CHIT simulations. At high turbulent Mach numbers
(Mt0 ≥ 0.8), the flow thermodynamic properties are found to be highly dependent on γ. The root
mean square of the pressure and sound speed scale respectively with γ and (γ − 1)/2, while the
root mean square of density is weakly affected by γ. These findings have been shown on theoretical
grounds using dimensional analysis and momentum conservation. On the contrary, kinematic
properties like the kinetic energy and the vorticity are almost insensitive to γ. The influence of the
specific heat ratio on local velocity divergence levels is also found to be weak. Afterwards, dense
gas results are systematically compared with those obtained for a perfect gas. Once again, at high
Mt0 the thermodynamic model has a significant influence on the time evolutions of the average and
r.m.s. of the thermodynamic properties, whereas the influence on kinematic properties is smaller.
However, the flow dilatational behaviour is deeply different. For a dense gas, the r.m.s. values of the
thermodynamic properties show higher amplitudes than for a PFG. The simulations show that the
most affected quantity is the speed of sound. In the PFG case, sound speed is nearly constant with
time, independently of the initial turbulent Mach number, whereas for the dense gas it varies over
a range of values that increases with Mt0 . Accordingly, the fundamental derivative of gas dynamics
varies abruptly from negative to positive values. The peculiar behaviour of the speed of sound for
a dense gas has a strong influence on the local Mach number and flow dilatation levels. The most
significant differences between the perfect and the dense gas case are found for the repartition of
dilatation levels. For PFG, strong compression regions occupy a much larger volume fraction than
strong expansion regions. As a consequence, the probability distribution of the velocity divergence is
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highly skewed toward negative values, even for values of γ typical of dense gases. For the dense gas,
the volume fraction occupied by strong compression and expansion regions is much more balanced:
strong compression regions are reduced by 30% and strong expansion regions are increased by 80%
with respect to the perfect gas, and strong expansions and compressions are found to be equally
probable. More than a half of the strong expansion regions are characterized by negative values of
Γ, suggesting the possibility that expansion shocklets may occur in the dense gas. The presence of
expansion shocklets is also suggested by the fact that, for the dense gas, strong expansion regions
exhibit a sheet-like structure, rather than the tubular structure observed in the PFG case. In strong
compression regions, both the dense and the perfect gas exhibit sheet-like structures, characteristic
of eddy shocklets. Furthermore, for PFG the probability of producing a given vorticity is greater
in strong compression regions, where compression shocklets possibly occur. For the dense gas, the
production of vorticity in strong compression and expansions is equally probable. This is due to
the vorticity generated across expansion eddy shocklets forming in strong expansion regions, and
to the fact that shocklets of any kind are expected to be weaker in dense gases with Γ close to zero.

Afterwards, we focused our attention on the dynamics of small scales by means of direct numerical
simulations of homogeneous isotropic turbulence. Simulations were carried out at various initial
turbulent Mach numbers and for two different choices of the initial thermodynamic state, cor-
responding to a small positive and a small negative value of the fundamental derivative Γ, and
compared with DNS results for a perfect gas. The influence of dense gas effects on the time evolu-
tion of general statistics was first investigated, confirming the ones obtained in inviscid simulations
with the VDW EoS. In dense gas, turbulence temperature variations are negligible due to the de-
coupling of dynamic and thermal effects for fluids characterized by large specific heat coefficients.
This leads, on the one hand, to weaker pressure fluctuations (with respect to a perfect gas like air),
and large variations of the speed of sound that strongly depend on the density fluctuations; on the
other hand, the fluid viscosity exhibits smaller average and r.m.s. variations than a perfect gas.
The present results also confirm that, for high Mt0 , the p.d.f. of the local dilatation conserves a
more symmetric shape than in perfect gas, especially for BZT initial conditions. Moreover, dense
gas effects are found to be largely insensitive to the equation of state in use. Furthermore, the
general statistics are little affected by the choice of the initial thermodynamic state, provided that
the initial (positive or negative) Γ value is close enough to zero.

In the second part of the study we investigated how dense gas effects modify the small scale
dynamics and the properties of turbulent structures. For that purpose we carried out an analysis
in the invariant plane of the deviatoric strain rate tensor. The analysis showed that the total joint
p.d.f. (Q∗, R∗) is characterized by the same universal tear-drop shape found for incompressible
and compressible perfect gas turbulence. The joint p.d.f. conditioned on strong compression and
expansion regions are somewhat modified due, on the one hand, to the weakening of compressive
structures and, on the other hand, by the enhancement of expanding regions. Furthermore, strong
expansions are found to be mostly populated by non-focal convergence structures, in contrast with
the perfect gas that is dominated by eddy-like structures having focal topology. These effects are
stronger for initial thermodynamic conditions allowing the occurrence of BZT effects, for which the
formation of convergence compressed structures, like compression shocklets, is strongly reduced,
while continuous convergence expanding structures tend to steepen into expansion shocklets. The
analysis of the role of the different flow structures on viscous dissipation mechanisms shows the
enhanced contribution of non-focal expanding structures (of the same order of that of compressed
focal structures) to the dilatational dissipation. The occurrence of steep expansion structures and,
possibly, of expansion shocklets is confirmed by the preferential alignment of the density gradient
with the third strain rate eigenvector. This effects deeply modifies the enstrophy generation in
strong expansion regions, which mostly act as a sink in perfect gases. In dense gases, the presence
of a much higher percentage of nonfocal convergence structures significantly decreases vorticity and
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counterbalances enstrophy destruction by means of the eddy-like ones.
Lastly, near-wall turbulence dynamics of dense gases is studied by means of direct numerical simu-
lations of supersonic turbulent channel flows. A parametric study at three bulk Reynolds numbers
and three bulk Mach numbers is performed and results are compared to the corresponding air
cases. The analysis of mean and fluctuating thermodynamic and transport properties reveals the
peculiar behaviour of wall-bounded dense-gas flows. In channel flows with isothermal walls, viscous
heating lead to high centreline temperature, which amounts to consider cooled walls. An important
difference with ideal gas is that, due to the high heat capacities of dense gases, the heat flux across
the walls is dramatically reduced and the temperature variations are very limited. That means that
the isothermal wall condition is close to an adiabatic condition, and a weak coupling of the dynamic
and thermal boundary layers is noticed. Consequently, the classical Van Driest transformation for
the longitudinal velocity profiles already provides a good collapse for PP11 flows.
A striking point is that dense gas transport properties are functions of both temperature and den-
sity. The former being approximately constant, viscosity and thermal conductivity follow essentially
the density profile, decreasing across the channel. This make the evolution of wall-bounded dense-
gas flows intermediate between the compressible regime for an ideal gas at supersonic speeds and
the well-documented incompressible regime with liquid-like transport properties. Compressibility
effects are related to the nonstandard variations of its sound speed, as in CHIT cases. The dis-
tributions of the turbulent Mach number are similar to those observed for a perfect gas but with
slightly higher levels. Note that the maximum values obtained with the considered range of bulk
Mach numbers remain below the limit where strong dense-gas effects are visible. Moreover, BZT
phenomena are not observed since γ remain positive in the whole channel. As already shown in
previous studies for both supersonic channel flows or low-speed variable-property channel flows, the
semi-local scaling introduced by Huang et al. (1995), and later formalised by Patel et al. (2015), is
well adapted to compare results from existing surveys and with the well-documented incompress-
ible limit. The comparison of second-order statistics and instantaneous views of the velocity fields
gives a strong support for the validity of semi-local scaling with dense-gas flows, and confirms the
validity of the Morkovin’s hypothesis even for dense gases. This conclusions is also reinforced by
the fact that the order of magnitude of density and pressure fluctuations is roughly similar as air
flows, whereas temperature fluctuations are strongly reduced. The structure of turbulence is thus
not deeply altered in dense-gas supersonic channel flows. The main effect of variable properties
can be taken into account by using the semi-local scaling, and comparing results with a constant
semi-local friction Reynolds number. The streamwise and spanwise non-dimensional lengths of
the near-wall structures, quantified using pre-multiplied spectra, are found to be universal and
comparable to values for incompressible flows when semi-local coordinates are used. Same consid-
erations hold concerning the generation of Reynolds stresses, analyzed by means of the joint p.d.f.s
of streamwise and wall-normal velocity fluctuations. Some particular features are nonetheless ob-
served with PP11 flows, notably for the highest value of the Mach number, MB=3. Specifically,

a different y−profile for the density fluctuations is observed, with

√
ρ′2 decreasing monotonically

with the wall distance due to the reduced compressibility. Furthermore, density fluctuations are
highly dependent on pressure ones across the whole channel, as shown by the correlation coefficient
and the flow visualizations in the buffer layer.
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6.1 Future work

The analysis contained in this thesis represents a first step for a deeper understanding of dense gas
turbulent flows. Further studies could be envisaged; for instance, concerning the configurations:

• Compressible homogeneous isotropic turbulence is a perfect framework for detailed analysis on
the structure of turbulence. Simulations of forced CHIT could provide useful insights on the
difference between perfect and dense-gas turbulent flows. The study performed in chapters 3
and 4 could be performed at higher turbulent Mach number, without concerning about the
influence of initial conditions. Forced computations also allow to study higher-order moments
and obtain cleaner data with respect to decaying CHIT due to the higher number of samples
available (e.g., in strong dilatation regions). Furthermore, the study on isotropic turbulence
could be enhanced by performing Helmholtz decompositions of the turbulent flow in order to
study in detail the dense-gas dilatational velocity field. It would be also useful to adapt the
shock-detection algorithm of Samtaney et al. (2001) to identify accurately expansion shocklets
and isolate their contribution to modification of turbulent features.

• Concerning wall-bounded flows, due to the lower turbulent Mach numbers involved in such
a configuration, less “exotic” phenomena should occur. Nevertheless, it would be interesting
to investigate the development of a turbulent boundary layer of a dense gas over a flat-plate
and, later, the shock - boundary layer interaction, particularly in the case of an impinging
expansion shock waves.

• Clearly, one should remember that the main interest in studying dense gas turbulent flows
concerns energy-production applications. Performing high-fidelity numerical simulations of
dense gas flows in turbomachinery configurations would provide valuable information both
from a practical and theoretical point of view. To this purpose, LES simulations of ORC
turbines have been planned for the next future.

Then, further analysis are required concerning the thermodynamics of dense gases. This study has
indeed focused on the behavior of PP11; but there are several dense fluids, commonly used for
engineering applications, for which more accurate equations for the thermodynamic variables and
the transport properties exist, and whose behaviour in the aforementioned turbulent configurations
is not known. Parametric studies represent a good way to assess whether their behaviour could be
considered as universal, or dependent on the chosen thermodynamic conditions.
Lastly, the numerical simulations performed for this thesis allowed the creation of a reliable database
for perfect and dense gases that could be used, for instance, to perform a-priori analysis for RANS
and LES closure models. This would allow to assess the validity of the application of classical
closure models, or eventually provide a basis for the calibration of improved models tailored for
dense gas applications.
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A Basic thermodynamics relations

In order to develop analytical relations between thermodynamics variables, one needs to start from
the two fundamental laws of thermodynamics and the definitions of the thermodynamic potentials,
namely, the internal energy e, enthalpy h, Helmholtz free energy a and Gibbs free energy g. For
instance, for e and h one has:

de = Tds− pdv and dh = Tds+ vdp (A.1)

By means of simple manipulations and exploiting the Schwarz’ theorem, it is possible to obtain the
so-called Maxwell relations, i.e., a set of equations relating the derivatives of the thermodynamic
properties. The four most common relations are shown in table A.1.

When complex equations of state are considered, usually the thermal equation is given, i.e., p =
p(T, v). The caloric equation is related to the thermal EoS by means of the compatibility relation,
that will be derived in the following. First, the reciprocity relations are computed by deriving the
potentials:

∂e

∂v

∣∣∣∣
T

= T
∂s

∂v

∣∣∣∣
T

− p ∂v
∂v

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
v

− p (A.2)

∂h

∂p

∣∣∣∣
T

= T
∂s

∂p

∣∣∣∣
T

+ v
∂p

∂p

∣∣∣∣
T

= −T ∂v

∂T

∣∣∣∣
p

+ v (A.3)

∂e

∂T

∣∣∣∣
v

= T
∂s

∂T

∣∣∣∣
v

− p ∂v

∂T

∣∣∣∣
v

= T
∂s

∂T

∣∣∣∣
v

(A.4)

∂h

∂T

∣∣∣∣
p

= T
∂s

∂T

∣∣∣∣
p

+ v
∂p

∂T

∣∣∣∣
p

= T
∂s

∂T

∣∣∣∣
p

(A.5)

Then, from the definitions of the specific heats at constant volume cv and constant pressure cp, one

Table A.1. Derivation of Maxwell relations from the fundamental laws of thermodynamics.

Fundamental Variables Single Mixed Maxwell
potential to relate derivative derivative relation

de = Tds− pdv s, v
∂e

∂s

∣∣∣∣
v

= T,
∂e

∂v

∣∣∣∣
s

= −p ∂2e

∂s∂v

∂T

∂v

∣∣∣∣
s

= − ∂p

∂s

∣∣∣∣
v

dh = Tds+ vdp s, p
∂h

∂s

∣∣∣∣
p

= T,
∂h

∂p

∣∣∣∣
s

= v
∂2h

∂s∂p

∂T

∂p

∣∣∣∣
s

=
∂v

∂s

∣∣∣∣
p

da = −sdT − pdv T, v
∂a

∂T

∣∣∣∣
v

= −s, ∂a
∂v

∣∣∣∣
T

= −p − ∂2a

∂T∂v

∂s

∂v

∣∣∣∣
T

=
∂p

∂T

∣∣∣∣
v

dg = −sdT + vdp T, p
∂g

∂T

∣∣∣∣
p

= −s, ∂g
∂p

∣∣∣∣
T

= v − ∂2g

∂T∂p
− ∂s

∂p

∣∣∣∣
T

=
∂v

∂T
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p
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obtains:

cv :=
∂e

∂T

∣∣∣∣
v

= T
∂s

∂T

∣∣∣∣
v

and cp :=
∂h

∂T

∣∣∣∣
p

= T
∂s

∂T

∣∣∣∣
p

. (A.6)

In general, however, heat capacity data are available only at ideal gas conditions. Hence, we need
to relate the real heat capacity at any given temperature to the ideal gas heat capacity. We need
to compute ∂cv

∂v

∣∣
T

and then integrate from the volume of an ideal gas to the volume of the real gas
v. Thus, using equation (A.2):
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=
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,

and integrating:∫ real

id
dcv =

∫ vreal

vid

T
∂2p

∂T 2

∣∣∣∣
v

dv =⇒ crealv = cidv +

∫ vreal
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T
∂2p

∂T 2
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v

dv (A.7)

Finally, since:

de = Tds− pdv = cvdT + T
∂p

∂T

∣∣∣∣
v

dv − pdv = cvdT +

(
T
∂p

∂T
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v

− p
)

dv, (A.8)

substituting equation (A.7) in (A.8), the compatibility relation is obtained:

de =

(
cidv +

∫ vreal

vid

T
∂2p

∂T 2
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v

dv

)
dT +

(
T
∂p

∂T

∣∣∣∣
v

− p
)

dv. (A.9)

In the same way, one can derive the same relation for the enthalpy:

dh =

(
cidp −

∫ preal

pid

T
∂2v

∂T 2
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p

dp

)
dT +

(
−T ∂v

∂T

∣∣∣∣
p

+ v

)
dp. (A.10)



B Computation of saturation curves

Generally, the thermal equations of state are conceived to work in the vapour phase of a fluid and
are not able to predict a phase change. Nevertheless, these can be used to compute the saturation
curve for certain thermodynamic properties.

A necessary condition for thermodynamic stability reasons is that the pressure does not increase
with the specific volume, i.e.,

∂p

∂v

∣∣∣∣
T

≤ 0, (B.1)

which is always fulfilled for perfect gas equation of state. For more complex EoS, instead, it is
not generally the case. An example is given in figure B.1a, in which we show the predictions of
several isotherms computed by the Van Der Waals EoS and drawn in the Clapeyron plane. The
colours blue, black and red denote respectively subcritical, critical and supercritical values for the
temperature. Hence:

• For T > Tc, the function p = f(v) is strictly monotonically decreasing, whereas for T = Tc, an
inflection point appears at the critical point. Hence, the condition expressed in equation (B.1)
is fulfilled for T ≥ Tc.

• For T < Tc, the condition is generally not satisfied, and a correction must be applied, which
is usually referred-to as the Maxwell reconstruction (Clerk-Maxwell, 1875).

The failing of the thermodynamic stability condition for subcritical temperatures implies the oc-
currence of a phase change and a jump from an equilibrium state characterized by a local entropy
maximum (or a local energy minimum) to another. For first-order transitions, these two states
have different values for entropy, volume and free Helmholtz energy, but are characterized by the
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Figure B.1. Panel a: isotherms computed by means of the VDW EoS. Colours blue, black and red
denotes respectively subcritical, critical and supercritical isotherms. Panel b: example of Maxwell
reconstruction algorithm for the isotherm T = 0.9Tc.
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same values of pressure and Gibbs potential, i.e.:{
g(T , vL) = g(T , vV )

p(T , vL) = p(T , vV )
(B.2)

where (•)L and (•)V denotes the saturated liquid and vapour values, respectively. This property
can be used to correct the unstable branch of the isotherms and obtain, for a given isotherm T < Tc,
the corresponding values for vL and vV .
From the definition of the Gibbs potential dg = −sdT + vdp, integrating along the hypothetical
isotherm (dT = 0) and considering system (B.2), one has:

g(T , vV )− g(T , vL) =

∫ pV

pL

v(p) dp = 0. (B.3)

A geometrical interpretation is shown in figure B.1b: since pL = pV , condition (B.3) implies that
the areas included between the functions p = f(T , v) and p = pL = pV (coloured in red and green in
figure) must be equal, i.e. ALBC = ACDV. Hence, the nominal (non-monotonic) isotherm TABCDE is
truncated by this equal-area construction to give the physical isotherm TALVE. Hence, provided the
thermal EoS, it is possible to compute directly the saturated liquid and vapour curve by joining
all the points (vL, pL) and (vV , pV ), respectively obtained for different values of the subcritical
isotherm. No information about the caloric component is required.
The algorithm used in our code uses Newton–Raphson procedures to compute the inflection points
of the subcritical isotherms. In the following, we denote with f = p(T, v) the thermal EoS and
with a prime its derivatives with respect to specific volume (at constant temperature). Specifically,
we first compute the analytical functions f ′, f ′′ and f ′′′ for each EoS. Then, making reference to
figure B.1b, for each isotherm (starting from T = 0.99Tc) we proceed as follows:

1. In order to find point B and D, we compute the point H in which the isotherm change
concavity for the first time, i.e. the smallest root of f ′′ for which f ′′(vH) = 0;

2. The values of the local maximum and minimum vB and vD, are searched by solving the
equation f ′(v) = 0. Among the roots X of the solution, the one for which vX < vH gives
X ≡ B, whereas vX > vH gives X ≡ D;

3. Starting from C ′ such that vC′ = vD − ε (being ε a small positive value):

a) Search for the points L′ and V ′ such that f(L′) = f(D′) = f(C ′);

b) Compute the areas AL′BC′ and AC′DV ′ analytically as

AL′BC′ = pC′(vC′−vL′)−
∫ vC′

vL′

f(v) dv; AC′DV ′ =

∫ vV ′

vC′

f(v) dv−pC′(vV ′−vC′); (B.4)

c) if AL′BC′ ≡ AC′DV ′ , then L′ ≡ L and V ′ ≡ V are points belonging to the saturation
curve. The algorithm restart for the following isotherm. Instead, if the areas are not
equal, we compute C ′′ such that vC′′ = vC′ − ε and the algorithm restarts from 3(a).

This algorithm has been used to compute the saturation curves for the fluids and the equations of
state presented in section 2.1.



C Jacobian matrix for dense gases

The explicit form for the Jacobian Matrix for perfect gases reads

A1 =
∂U

∂F1
=



0 1 0 0 0
γ−1

2 q2 − u2 (3− γ)u (1− γ)v (1− γ)w γ − 1

−uv v u 0 0

−uw w 0 u 0(
γ−1

2 q2 −H
)
u H + (1− γ)u2 (1− γ)uv (1− γ)uw γu


(C.1)

A2 =
∂U

∂F2
=



0 0 1 0 0

−uv v u 0 0
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2 q2 − v2 (1− γ)u (3− γ)v (1− γ)w γ − 1

−vw 0 w v 0(
γ−1

2 q2 −H
)
v (1− γ)uv H + (1− γ)v2 (1− γ)vw γv


(C.2)

A3 =
∂U

∂F3
=



0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0
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2 q2 − w2 (1− γ)u (1− γ)v (3− γ)w γ − 1(
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2 q2 −H
)
w (1− γ)uw (1− γ)vw H + (1− γ)w2 γw


(C.3)

where U is the conservative variable vector and Fi is the convective flux in the i-th direction. The
matrix can be generalised to dense gases by taking the pressure as a function of the internal energy
e. In particular, we have that for the speed of sound:

c2 =
∂p(ρ, e)

∂ρ

∣∣∣∣
s

=
∂p

∂ρ

∣∣∣∣
e

∂ρ

∂ρ

∣∣∣∣
s

+
∂p

∂e

∣∣∣∣
ρ

∂e

∂ρ

∣∣∣∣
s

= pρ + peeρ (C.4)

Since the fundamental potential is Tds = de− p
ρ2

dρ, along an isentrope (ds = 0) one has eρ = p
ρ2

and thus:
c2 = pρ +

ppe
ρ2

=⇒ pρ = c2 − ppe
ρ2

(C.5)

Hence, the Jacobian in dense gases read:

A1 =
∂U

∂F1
=



0 1 0 0 0

c2 − pe
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ρ w
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u H − pe

ρ u
2 −pe

ρ uv −pe
ρ uw

(
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)
u
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A1 =
∂U

∂F1
=


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−uv v u 0 0
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ρ w
pe
ρ
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(
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A1 =
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0 9 0 1 0

−uw w 0 u 0
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ρ u −pe
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ρ uw −pe
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ρ w
2
(
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)
w


One should note that for perfect gases c2 = γp

ρ and pe = (γ−1)ρ, hence the perfect-gas formulation
is recovered.



D Shock-detection algorithm

In this section we describe the algorithm developed by Samtaney et al. (2001) to detect a shocklet
in a three-dimensional turbulent field.
The shocklets are mathematically defined as a set of disjoint surfaces S = {Sl} such that if xk ∈ Sl
then xk /∈ Sl̃ (l̃ 6= l), being xk the spatial coordinates of the k-th point in the domain. For a viscous
shock in one dimension, the shock can be arbitrarily located where the density profile exhibits an
inflection point. Hence, by extension, the set of shocklets is:

S = {Sl|∇2ρ(x) = 0,−θ > 3θrms}. (D.1)

In the following, we summarize the main steps of the algorithm:

1. The Laplacian of density ∇2ρ(x, y, z) and the velocity divergence θ(i, j, k) is computed at
each mesh node. The data is then divided into (N − 1)3 uniform cubes, whose bounds are
[xi,j,k, xi+1,j,k] × [yi,j,k, yi,j+1,k] × [zi,j,k, zi,j,k+1] (with i = 1, .., N − 1, j = 1, .., N − 1, k =
1, .., N − 1).

2. A marching cube algorithm is used in order to generate the isosurface∇2ρ(x) = 0; this algorithm
is used only for cubes in which at least one vertex satisfies the condition θ/θrms < −3. The
points of intersection between the surface and the edges of the cubes are computed by linear
interpolation of the values at the vertices. These points are tessellate with triangles to obtain
a piecewise triangular surface in each cube. The global triangle list obtained in such a way is
denoted as

∆ = {∆k|∆k = {xk,1,xk,2,xk,3}} (D.2)

3. A recursive surface growing algorithm is used to isolate each shocklet Sl (composed of a set of
triangles sharing at least one vertex) from ∆.

4. ∀Sl, ∀∆k ∈ Sl, we compute the unit normals n̂ and, by trilinear interpolation, the pressure and
density at the following points:

xk,±l = xk ± (l − 1)δn̂, l = 1, 2, ..L (D.3)

where n̂ is the centroid of triangle ∆k, δ = 0.5δx and L = 4 (as in Samtaney et al., 2001).

5. Compute the pressure and density ratio

psh,l =
p(xk,l)

p(xk,−l)
ρsh,l =

ρ(xk,l)

ρ(xk,−l)
. (D.4)

If (psh,l − 1)(ρsh,l − 1) < 0, skip triangle ∆k and move onto the next triangle. Moreover, if
psh,l < 1, invert the ratios, i.e., psh,l = 1/psh,l and ρsh,l = 1/ρsh,l.

6. Verify if the pressure and density jump verify the Rankine-Hugoniot (R-H) relation across the
shock, i.e.,

ρsh,l =
(γ + 1)psh,l + γ − 1

(γ − 1)psh,l + γ + 1
(D.5)
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However, equation (D.5) derives from an inviscid framework, hence it is not accurately satisfied
in low-Reynolds configurations. Thus, we compute the following penalty function:

Cs,l =
1

ρsh,l − 1

∣∣∣∣ρsh,l − (γ + 1)psh,l + γ − 1

(γ − 1)psh,l + γ + 1

∣∣∣∣ (D.6)

If Cs,l < 0.1, then the triangle ∆k is assumed to be a shocklet.

7. Repeat the same procedure ∀l = 1, 2, ..L and choose the pressure and the density ratio using
the index l where the penalty function is a minimum.

For dense gases, it is not possible to explicit equation (D.6), hence we use the relation

Cs,l =

∣∣∣∣2(h2 − h1)− (p2 − p1)

(
1

ρ1
+

1

ρ2

)∣∣∣∣ (D.7)

where (·)1 and (·)2 denotes the upstream and downstream states, respectively.
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SIMULATION NUMERIQUE D'ECOULEMENTS TURBULENTS DE GAZ
DENSE

RÉSUMÉ :  Les écoulements turbulents de gaz denses, qui sont d’un grand intérêt pour un
large éventail d'applications, sont le siège de phénomènes physiques encore peu connus et
difficiles à étudier par des approches expérimentale. Dans ce travail,  nous étudions pour la
première fois l’influence des effets de gaz denses sur la structure de la turbulence compressible
à l’aide de simulations numériques. Le fluide considéré est le PP11, un fluorocarbure lourd, dont
le comportement thermodynamique a été représenté à l’aide de différentes lois d’état, afin de
quantifier la sensibilité des solutions aux choix de modélisation. Nous avons considéré d’abord
la  décroissance  d’une  turbulence  homogène  isotrope  compressible.  Les  fluctuations  de
température sont négligeables, alors que celles de la vitesse du son sont importantes à cause
de leur  forte  dépendance  de  la  densité.  Le  comportement  particulier  de  la  vitesse  du son
modifie de manière significative la structure de la  turbulence,  conduisant  à la formation de
shocklets de détente.  L’analyse de la contribution des différentes structures à la dissipation
d’énergie et à la génération d’enstrophie montre que, pour un gaz dense, les régions de forte
dilatation jouent un rôle similaire à celles de forte compression, contrairement aux gaz parfaits,
dans lesquels le comportement est fortement dissymétrique.  Ensuite, nous avons mené des
simulations numériques pour une configuration de canal plan en régime supersonique, pour
plusieurs valeurs des nombres de Mach et de Reynolds. Les résultats confirment la validité de
l’hypothèse de Morkovin. L’introduction d’une loi  d’échelle semi-locale prenant en compte le
variations de densité et viscosité, permet de comparer les profils des grandeurs turbulentes
(contraintes de Reynolds, anisotropie, budgets d’énergie) avec ces observés en gaz parfait. Les
variables thermodynamiques, quant à elles, présentent une évolution très différente pour un gaz
parfait  et  pour  un gaz  dense,  la  chaleur  spécifique  élevée  de  ce  dernier  conduisant  à  un
découplage des effets dynamiques et thermiques et à un comportement proche de celui d’un
fluide incompressible avec des propriétés variables.

Mots clés : gaz dense, simulation numérique, fluides BZT, écoulements turbulents.

NUMERICAL SIMULATION OF TURBULENT DENSE GAS FLOWS

ABSTRACT : Dense gas turbulent  flows,  of  great  interest  for a wide range of  engineering
applications,  exhibit  physical  phenomena  that  are  still  poorly  understood  and  difficult  to
reproduce experimentally. In this work, we study for the first time the influence of dense gas
effects on the structure of compressible turbulence by means of numerical simulations. The fluid
considered is  PP11,  a  heavy fluorocarbon,  whose thermodynamic behavior  is  described by
means of different equations of state to quantify the sensitivity of solutions to modelling choices.
First,  we  considered  the  decay  of  compressible  homogeneous  isotropic  turbulence.
Temperature fluctuations are found to be negligible, whereas those of the speed of sound are
large because of the strong dependence on density. The peculiar behavior  of  the speed of
sound  significantly  modifies  the  structure  of  the  turbulence,  leading  to  the  occurrence  of
expansion  shocklets.  The  analysis  of  the  contribution  of  the  different  structures  to  energy
dissipation and enstrophy generation shows that, for a dense gas, high expansion regions play
a role similar to high compression ones, unlike perfect gases, in which the observed behaviour
is  highly  asymmetric.  Then,  we carried out  numerical  simulations of  a  supersonic  turbulent
channel flow for several values of Mach and Reynolds numbers. The results confirm the validity
of the Morkovin' hypothesis. The introduction of a semi-local scaling, taking into account density
and  viscosity  variations  across  the  channel,  allow  to  compare  the  wall-normal  profiles  of
turbulent  quantities (Reynolds stresses,  anisotropy, energy budgets)  with  those observed in
ideal gases. Nevertheless, the thermodynamic variables exhibit a different evolution between
perfect and dense gases, since the high specific heats of the latter lead to a decoupling of
dynamic and thermal effects, and to a behavior close to that of variable property incompressible
fluids.

Keywords : dense gas, numerical simulation, BZT fluids, turbulent flows.
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