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A B S T R A C T

This thesis is mostly dedicated to study and discuss two important
challenges existing not only in the field of Mathematical Program-
ming: symmetries and distances. In the background we take a look
into Semidefinite Programming and its pertinency as one of the ma-
jor tools employed nowadays to solve hard Mathematical Programs.
After the introductory Chapter 1, we discuss about symmetries in
Chapter 2 and about distances in Chapter 4. In between them we
present a chapter that we actually prefer to call as entr’acte: its con-
tent is not necessarily worthy of publication yet (it does not provide
any innovation so far), but it does provide a connection between the
two seemingly separate Chapters 2 and 4, which are the ones contain-
ing the main contributions of this thesis.

It is widely known that symmetric Mathematical Programs are
harder to solve to global optimality using Branch-and-Bound type
algorithms, given that the solution symmetry is reflected in the size
of the Branch-and-Bound tree. It is also well-known that some of the
solution symmetries are usually evident in the formulation, which
makes it possible to attempt to deal with symmetries as a prepro-
cessing step. Implementation-wise, one of the simplest approaches
is to break symmetries by adjoining Symmetry-Breaking Constraints
to the formulation, thereby removing some symmetric global optima,
then solve the reformulation with a generic solver. Sets of such con-
straints can be generated from each orbit of the action of the sym-
metries on the variable index set. It is unclear, however, whether and
how it is possible to choose two or more separate orbits to gener-
ate Symmetry-Breaking Constraints which are compatible with each
other (in the sense that they do not make all global optima infeasible).
In Chapter 2 we discuss and test a new concept of Orbital Indepen-
dence that clarifies this issue. The numerical experiences conducted
using public Mixed-Integer Linear Programs and Mixed-Integer Non-
linear Programs emphasize the correctness and usefulness of the Or-
bital Independence theory.

In the sequel we continue to examine the impact of symmetries un-
der the particular scope of Binary Quadratic Programming, which
encompasses binary programs with a quadratic objective function
and quadratic constraints, and Semidefinite Programming, which is
considered to be one of the most significant developments in Mathe-
matical Programming in the last decades. Semidefinite Programming
importance stems from the fact that many practical problems in en-
gineering and operations research can be modelled or approximated
as Semidefinite Programs, and also from the fact that such programs
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provide tighter convex relaxations to several nonconvex combinato-
rial optimization problems when compared to other methods. Par-
ticularly, Semidefinite Programming suits Quadratically Constrained
Quadratic Programming. The Entr’acte 3 employs Binary Quadratic
Programming (a specialization of Quadratically Constrained Quadratic
Programming) to investigate symmetries and Semidefinite Program-
ming all together. This is of concern first because Binary Quadratic
Programming is in and on itself a relevant subfield of Mathematical
Programming, and second because Semidefinite Programming is a
typical tool used to cope with problems related to Distance Geome-
try, which we introduce in Chapter 4. We generate symmetric Binary
Quadratic Programs having a certain symmetry structure and use
them to exemplify the conditions under which the usage of Symmetry-
Breaking Constraints is majoritarily advantageous. Moreover, we try
to grasp initial impressions on the impact of symmetries and their
breaking devices in the performance of Semidefinite Programming
and Diagonally Dominant Programming solvers when handling this
particular class of (symmetric) Mathematical Programs.

Finally, we properly enter the Distance Geometry subject. In Chap-
ter 4 we cope with the most fundamental problem arising in the
field of Distance Geometry, the one of realizing graphs in Euclidean
spaces: it asks to find a realization of an edge-weighted undirected
graph in RK for some given K such that the positions for adjacent
vertices respect the distance given by the corresponding edge weight.
The Euclidean Distance Geometry Problem is of great importance
since it has many applications to science and engineering. It is no-
toriously difficult to solve computationally, and most of the methods
proposed so far either do not scale up to useful sizes, or unlikely
identify good solutions. In fact, the need to constrain the rank of the
matrix representing feasible solutions of the Euclidean Distance Ge-
ometry Problem is what makes the problem so hard. Intending to
overcome these issues, we propose a two-steps heuristic algorithm
based on Semidefinite Programming (or more precisely based on the
very recent Diagonally Dominant Programming paradigm) and the
explicitly modelling of Rank Constraints. We provide extensive com-
putational testing against randomly generated instances as well as
against feasible realistic protein conformation instances taken from
the Protein Data Bank to analyze our method.
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R É S U M É

Cette thèse est principalement consacrée à l’étude et à la discussion
de deux questions importantes qui se posent, entre autres, dans le
domaine de la Programmation Mathématique : les symétries et les
distances. En arrière-plan, nous examinons la Programmation Semi-
définie et sa pertinence comme l’un des principaux outils employés
aujourd’hui pour résoudre les Programmes Mathématiques difficiles.
Après le chapitre introductif, nous discutons des symétries au Cha-
pitre 2 et des distances au Chapitre 4. Entre ces deux chapitres, nous
présentons un court chapitre que nous préférons en fait appeler en-
tr’acte : leur contenu ne mérite pas d’être publié pour le moment (il
ne fournit aucune innovation à ce jour), mais il fournit un lien entre
les deux Chapitres 2 et 4 apparemment distincts, qui sont ceux qui
contiennent les principales contributions de cette thèse.

Il est bien connu que les Programmes Mathématiques symétriques
sont plus difficiles à résoudre pour l’optimalité globale en utilisant
des algorithmes du type Branch-and-Bound, étant donné que la sy-
métrie de solution est reflétée dans la taille de l’arbre Branch-and-
Bound. Il est également bien connu que certaines des symétries de
solution sont habituellement évidentes dans la formulation, ce qui
permet d’essayer de traiter les symétries en tant qu’étape de prétrai-
tement. En termes de mise en œuvre, l’une des approches les plus
simples consiste à rompre les symétries en associant les contraintes
de rupture de symétrie à la formulation, en supprimant ainsi des
optima globaux symétriques, puis à résoudre la reformulation avec
un solveur générique. Des ensembles de ces contraintes peuvent être
générés à partir de chaque orbite de l’action des symétries sur l’en-
semble des indices des variables. Cependant, il est difficile de savoir
si et comment il est possible de choisir deux ou plus orbites distinctes
pour générer des Contraintes de Rupture de Symétrie qui sont com-
patibles les unes avec les autres (en ce sens qu’elles ne rendent pas
tous les optima globaux infaisables). Dans le Chapitre 2, nous dis-
cutons et testons un nouveau concept d’Indépendance Orbitale qui
clarifie cette question. Les expériences numériques réalisées à l’aide
de Programmes Linéaires et Non-linéaires Mixtes-Entiers soulignent
l’exactitude et l’utilité de la théorie de l’Indépendance Orbitale.

Dans la suite, nous continuons à examiner l’impact des symétries
dans le cadre particulier de la Programmation Quadratique Binaire,
qui englobe les programmes binaires avec une fonction objectif qua-
dratique et des contraintes quadratiques, et la Programmation Semi-
définie, considérée comme l’un des développements les plus signifi-
catifs en Programmation Mathématique dans les dernières décennies.
L’importance de la Programmation Semidéfinie découle du fait que
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de nombreux problèmes pratiques de recherche d’ingénierie et d’ex-
ploitation peuvent être modélisés ou approchés sous forme de Pro-
grammes Semidefinis, et aussi du fait que de tels programmes four-
nissent des relaxations convexes plus serrées à plusieurs problèmes
d’optimisation combinatoire nonconvexes comparés à d’autres mé-
thodes. En particulier, la Programmation Semidéfinie s’adapte à la
Programmation Quadratique. L’Entr’acte 3 emploie la Programma-
tion Quadratique Binaire (une spécialisation de la Programmation
Quadratique) pour étudier ensemble les symétries et la Programma-
tion Semidéfinie. Ce sont des sujets d’intérêt d’abord parce que la Pro-
grammation Quadratique Binaire est en elle-même un sous-domaine
pertinent de la Programmation Mathématique, et deuxièmement parce
que la Programmation Semidéfinie est un outil typique utilisé pour
faire face aux problèmes liés à la Géométrie de Distance que nous in-
troduisons dans le Chapitre 4. Nous générons des programmes qua-
dratiques binaires symétriques ayant une certaine structure de symé-
trie et nous les utilisons pour illustrer les conditions dans lesquelles
l’utilisation des Contraintes de Rupture de Symétrie est avantageuse.
De plus, nous essayons de saisir les impressions initiales sur l’impact
des symétries et de leurs dispositifs de rupture dans la performance
des solveurs de Programmation Semidéfinie et de Programmation
Diagonale Dominante en manipulant cette classe particulière de Pro-
grammes Mathématiques symétriques.

Pour finir nous entrons proprement dans le champ de la Géomé-
trie de Distance. Dans le Chapitre 4, nous abordons le problème le
plus fondamental qui se pose dans le domaine de la Géométrie de
Distance, celui de la réalisation des graphes dans les espaces eucli-
diens : il s’agit de trouver une réalisation d’un graphe pondéré non
orienté dans RK pour un certain K donné, de sorte que les positions
pour les sommets adjacents respectent la distance donnée par le poids
de l’arête correspondante. Le Problème de la Géométrie de Distance
Euclidienne est d’une grande importance car il a de nombreuses ap-
plications en science et en ingénierie. Il est notoirement difficile de
calculer numériquement des solutions, et la plupart des méthodes
proposées jusqu’à présent ne sont pas adaptées à des tailles utiles ou
sont peu susceptibles d’identifier de bonnes solutions. En fait, la né-
cessité de contraindre le rang de la matrice représentant des solutions
réalisables du Problème de la Géométrie de Distance Euclidienne est
ce qui rend le problème si difficile. Dans le but de surmonter ces pro-
blèmes, nous proposons un algorithme heuristique en deux étapes
basé sur la Programmation Semidéfinie (et la Programmation Diago-
nale Dominante) et la modélisation explicite de Contraintes de Rang.
Nous fournissons de nombreux tests informatiques comprenant des
instances générées de façon aléatoire ainsi que des exemples réalistes
de conformation de protéines (prises auprès de la banque de données
de protéine) pour analyser notre méthode.
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1
I N T R O D U C T I O N

In this thesis we dedicate most of our effort to study and discuss
two very intriguing challenges existing not only in the field of Math-
ematical Programming: symmetries and distances. The second most
important subject adressed would be Semidefinite Programming.

In general terms, mathematical symmetry has to do with objects
that held an invariant, i.e., a property that remains unchanged when
operations (or transformations) of a certain type are applied to the ob-
jects. Particularly, the mathematical objects, property and operations
in which we are interested in this work are, respectively, the global
optimal solutions (or optima) of Mathematical Programs, the objec-
tive function value attained by these solutions, and permutations of
finite sets. In this sense, we can formally describe symmetric optima
as global optimal solutions that (by definition have the same objective
function value and) are mapped into each other by permuting the val-
ues attributed to (some of) the decision variables. As we explain later
on, the presence of symmetries acting within Mathematical Program-
ming might bring forth undesired effects when it comes to solvers
performance. On the other hand, it also prompts several theoretical
and practical demanding questions, notably as concerns the devel-
opment of techniques aiming to detect and exploit them efficiently,
hopefully in our favor.

Distance is a numerical description of how far apart two objects
are. In physics, distance refers to a physical length. In Mathematics,
distance refers to the value assigned by a metric (or distance function)
to each pair of elements in a set. Obviously, distances are intrinsic to
our lifes and, as a consequence, they are present in most of the practi-
cal situations faced by humans on a daily basis. This natural relation
with the notion of distance is deceptive and gives us the false impres-
sion that it is always trivial to estimate or calculate them. For concrete
cases, perhaps. Carrying a scale or the closed form of a distance func-
tion, for instance, one can easily compute the distance between two
windows in a living room or the distance between two given points
in an Euclidean space. But if one needs to solve problems by means
of computer algorithms involving distance calculations, derivative of
distance functions and so forth, several mathematical and computa-
tional challenges arise. This work provides an account of our attempt
to solve the most fundamental problem in Distance Geometry using
Mathematical Programming tools whilst, of course, trying to adress
these issues.
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4 introduction

1.1 mathematical programming

Mathematical Programming (MP) is a descriptive language used to
formalize several types of optimization problems in terms of param-
eters (input), decision variables (output), constraints and objective
functions, by defining a set of corresponding Mathematical Programs
(MPs) [48]. This work focus exclusively on the single-objective opti-
mization paradigm. In this context, we consider problems P ∈MP in
the following general form:

min
x

f(x)

∀i ∈ II gi(x) 6 0,

∀i ∈ IE gi(x) = 0,

x ∈ B.


(1)

In Eq. (1), f,gi : Rn → R are functions for which we have closed
form expressions f, gi for each i ∈ IE ∪ II. The expressions are written
in terms of a formal language L based on an alphabet A consisting of
a finite number of operators (e.g. sum, difference, product, fractions,
powers, square roots, basic transcendental functions such as loga-
rithm and exponentials, and possibly more complicated operators
depending on the application at hand), a countable supply of vari-
able symbols x1, . . . , xn representing the decision variables x1, . . . , xn,
and the rational numbers. The set B might contain nonfunctional con-
straints such as ranges [xL, xU] for the decision variables, and/or inte-
grality constraints, encoded as an index set Z ⊆ N = [n] = {1, . . . ,n}
such that xj ∈ Z for each j ∈ Z. As is well-known, this paradigm
contains Linear Programming (LP), Integer Linear Programming (ILP),
Mixed-Integer Linear Programming (MILP), Nonlinear Programming
(NLP), Integer Nonlinear Programming (INLP), Mixed-Integer Nonlin-
ear Programming (MINLP) and Semidefinite Programming (SDP) if
x1, . . . , xn are matrices.

1.2 symmetries in mathematical programming

By far, the most widely used technique for solving optimization prob-
lems formulated as Eq. (1) is the Branch-and-Bound (BB) algorithm
paradigm. In brief words, BB type algorithms consist of a tree-based
search in the solution set (or feasible region) of a given problem for
the best solution. Explicit enumeration is normally impossible due to
the exponentially increasing number of potential solutions, and thus
the search is wisely performed, from the root to the leaf nodes, using
branching and prunning rules based on lower and upper bounds on
the value of the objective function.

Since all the global optima have the same value in terms of objec-
tive function, it is immediate to note that should many leaf nodes in



1.2 symmetries in mathematical programming 5

the BB tree contain symmetric global optima, BB type algorithms may
converge even slower on problems whose solution set has many of
them [49]: all the symmetric leaf nodes must be visited (or explored)
in order to verify and assert convergence. In fact, it was shown in [49]
that roughly 18% of the MP instances in commonly employed public
libraries, such as Mixed Integer Problem Library (MIPLIB) and MINLP
Library (MINLPLib), have nontrivial symmetry. Therefore, symmetries
are investigated in MP mainly to reduce the computation time of BB

type algorithms.
Generally, we can break down any strategy designed to cope with

symmetries in MP into two main phases:

1. Symmetry detection;

2. Symmetry exploitation.

As we shall expose in Chapter 2, when it comes to symmetry detec-
tion, it is not difficult to cite several combinatorial optimization prob-
lems whose MP formulations inevitably exhibit (trivial) symmetries
due to their intrinsic symmetric nature, an example being Packing
Problems with identical objects [19]. Facing such cases, researchers
and practitioners typically uncover the presence of formulation sym-
metries “manually”, meaning that they identify the symmetries by
inspecting explicit properties of the problem. Nevertheless, formula-
tion symmetries are not always evident to human perception and,
therefore, the development of automated procedures aiming to de-
tect them systematically becomes critical. And these algorithmic ap-
proaches are largely based on Abstract Algebra, or more precisely,
on the algebraic structures studied in Group Theory [16]: groups. In
Chapter 2 we provide a short review of the Group Theory concepts
related to the study of symmetries in MP.

Similarly, in terms of symmetry exploitation, the most common
paradigm employed in the literature is to eliminate (or, as we pre-
fer to say, to break) the symmetries. This predilection for symmetry
breaking should entail smaller search trees with respect to the num-
ber of symmetric branches (subtrees). In order to accomplish such a
feat, the information obtained during the detection phase is normally
used either to derive constraints to be adjoined to original formula-
tion or to derive branching rules to be applied during the execution
of the BB algorithm itself.

If both phases (detection and exploitation) are performed before
running the solution algorithm, i.e., as a pre-solve procedure, we call
such strategy as a Static Symmetry Breaking (SSB) approach. Oth-
erwise, we call it a Dynamic Symmetry Breaking (DSB) approach
[62]. The work developed herein concerns a general-purpose auto-
mated SSB strategy that advocates the use of Symmetry-Breaking Con-
straints (SBCs), tailored specifically to eliminate symmetries. Overall,



6 introduction

we can describe our methodoly in a subtle higher level of detail (with
respect to the exploitation phase) as follows:

1. Detect formulation symmetries;

2. Generate new constraints and;

3. Reformulate the original problem.

The main contribution of this research concerns the second step:
constraint generation. We devise theoretical conditions that allow us
to exploit the symmetry properties of a problem P as much as possi-
ble, by generating as many SBCs as possible to be adjoined to P in the
reformulation step. The expectation is, as a consequence, to cut out
the largest possible number of symmetric optima from the solution
set of P. We then proceed and design an algorithm that implements
all these conditions, and we embed it within a SSB strategy.

Hereupon, one can observe how intimately related are symmetries
and reformulations when it comes down to SSBs. For this reason, we
dedicate a few words in the following section to briefly introduce the
Theory of Reformulations, provided that it plays an important part
as regards symmetries, not to mention in MP as a whole.

1.2.1 Reformulations

When a given problem P is cast into a different one, say P ′ ∈MP, we
call P ′ a reformulation of P. Furthermore, it is fairly well-known that
different formulations may share numerical properties (e.g., the set
of optima). In this sense, reformulations play an essential role in MP

since casting a problem formulation into the specific form required
by a certain algorithm is crucial to guarantee the efficiency of the
solution process. Such specific forms are called the standard form of
the problem with respect to the algorithm. We allude to [48] for a list
of the most common standard forms.

Yet, despite of this essential role and its frequent use, there were
few attempts to formally define what a reformulation is in MP until
2009. Among these few attempts, [82] proposes a definition that re-
quires the existence of a bijection σ between the feasible regions of
P and P ′ and [8] a definition based on complexity theory tools such
as instance, polynomial amount of time, and other concepts. Both are
quite limited however. The first work that objectively contributes to-
wards creating an unified Theory of Reformulations is [48], by provid-
ing several definitions as regards this concept. We present the most
fundamental ones in what follows.
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Although more quantifiers and sets could be eventually involved,
consider the binary variables x ∈ {0, 1}|I|×|J| and the packing con-
straints (or packing polytope [40])

∀i ∈ I
∑
j∈J

xij 6 1, (2)

written using quantifiers
∑

,∀ and sets of indices I, J. It does not de-
pend on the particular instance (i.e. numerical data) being solved. But
given one, e.g., where I = {1, 2} and J = {1, 2, 3}, the above constraints
translate into

x11 + x12 + x13 6 1,

x21 + x22 + x23 6 1.

}
(3)

The first formulation (2) is called a structured formulation and the sec-
ond one (3) is called a flat formulation. Formulations are commonly
written by researchers and practitioners in structured form so as to
decouple the model and data layers. Modelling softwares [30, 75], in
turn, obligatorily convert structured formulations into flat formula-
tions before passing them to solvers, given that solvers implement
numerical algorithms.

Formally, a flat problem P is defined as [48, 56]: given an alphabet A
consisting of countably many alphanumeric names NA and operator
symbols OA, a flat P is a 7-tuple (P,V,E,O,C,B,T) where:

• P ⊆ NA is the sequence of parameter symbols;

• V ⊆ NA is the sequence of variable symbols;

• E is the set of mathematical expressions;

• O ⊆ {−1, 1}× E is the sequence of objective functions;

• C ⊆ E× {−1, 0, 1}×R is the sequence of constraints;

• B ⊆ R|V| ×R|V| is the sequence of variable bounds and;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types.

The subsets like {n1, ...,ni} with ni ∈ Z, identify, respectively, op-
timization directions (minimization or maximization), types of con-
straints (6,= or >) and types of decision variables (continuous, inte-
ger or binary).

An expression tree e = (Ve,Ae) ∈ E can be represented by a Directed
Acyclic Graph (DAG), a natural data structure to store flat formula-
tions. Nodes may represent parameters, decision variables or opera-
tors whereas edges may represent the parent-child relationships be-
tween the nodes. For a few examples, see [48]. Moreover, reformulation
schemas define searching patterns that allow the manipulation of these
expression trees, i.e., which allow the execution of the reformulations
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in practical terms. Such graphs can be evaluated by the algorithm
proposed in [56].

The most commom flat reformulations in the literature are: opt-
reformulations, narrowings and relaxations. In basic terms (see [48]
for precise definitions):

Definition 1. Opt-reformulations are reformulations that guaranteedly pre-
serve both local and global optimality.

Definition 2. Narrowings are reformulations that guaranteedly preserve at
least one global optimum.

Definition 3. Relaxations are reformulations whose feasible regions contain
the feasible region of the original problem but do not keep track of optimality.

Relaxations are far and away the most used reformulations, mainly
to provide bounds on the objective function value at the optimum.
They are derived either by removing some constraints (Langrangian
relaxations, continuous relaxations, etc) or using simpler constraints
(such as convex relaxations [47]). A taxonomy of several flat reformu-
lations is given in [56].

Finally, a structured P is a P defined over structured entities [51].
Consider a sequence I = {Iβ ⊆N | β 6 α} of finite subsets of integers
and a multi-index i = (i1, ..., iα) where iβ ∈ Iβ, for each β 6 α. A
structured parameter p is a jagged array of parameter symbols pi,
with an assigned value pi and i ∈ I. Similarly, an structured decision
variable x is a jagged array of decision variables symbols xi, with
i ∈ I. And lastly, a structured expression is defined just as the flat
version, with parameters and variables replaced by their structured
versions, but now resting on OA enriched with quantifiers

∑
,
∏

,
among others.

1.3 distances in mathematical programming

In Mathematics, distance functions stem from the concept of norms,
meaning that they are formally defined by means of norms. In Linear
Algebra and Functional Analysis, a norm (denoted as ‖ · ‖) is a func-
tion that assigns a strictly positive length (or size) to each vector x in
a normed vector space (X, ‖ · ‖), except for the zero vector, which is
assigned a length of zero. In Chapter 4 we provide a short review of
further Linear Algebra concepts which shall be used in this work.

Definition 4. Given vectors x,y residing in (X, ‖ · ‖), the distance between
x,y values

d(x,y) = ‖x− y‖. (4)

There exist many different mathematical norms, each one inducing
different metrics and topological vector spaces. In this thesis we focus
our attention to a particular family of norms, namely the p-norms.
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Definition 5. The p-norm of a vector x ∈ X is given by

‖x‖p =

(∑
i∈N

|xi|
p

)1/p
. (5)

Our interest in p-norms is obvious and twofold: first, we target
two theoretical problems that are largely used to model many real-
life applications involving distance functions. This means that the
n-dimensional Euclidean space (denoted as Rn) is the normed vector
space which we will be working with, and the Euclidean norm is ex-
actly the 2-norm; second, we wish to explore the equivalence relation
between p-norms in the Rn.

Two norms ‖ · ‖α and ‖ · ‖β on a vector space X are said to be
equivalent if there exist positive real numbers a and b such that for
all x ∈ X

a‖x‖α 6 ‖x‖β 6 b‖x‖α.

In particular, for the (1, 2,∞)-norms in the Rn, it is true that

‖x‖2 6 ‖x‖1 6
√
n‖x‖2,

‖x‖∞ 6 ‖x‖2 6 √n‖x‖∞,

‖x‖∞ 6 ‖x‖1 6 n‖x‖∞.

 (6)

In the context of MP, the features that researchers and practitioners
wish the most are certainly the convexity and differentiability of the
functions appearing in Eq. (1). Each p-norm induces distance func-
tions with specific characteristics regarding these two properties. For
instance, the Euclidean norm defines a convex nonlinear nondifferen-
tiable distance function when plugged into Eq. (4). And nondifferen-
tiability is a serious issue in terms of optimization algorithms. On the
other hand, the (1,∞)-norms (also known as the Manhattan and the
Maximum norms, respectively) define distance functions which are
linearizable in a particular MP setting. Provided that Eq. (6) holds, we
can use the (1,∞)-norms to approximate and compute bounds for
the Euclidean norm.

Now from a computational standpoint, it is well-know that, when
dealing with real numbers, numerical issues originate from the usage
of floating point representation in computer systems: there is a natu-
ral precision limitation as far as it concerns the representation of the
real numbers, particularly of the irrational ones, which prohibits the
exact representation of most of them, calls for an ε-rounding repre-
sentation subterfuge for ε > 0 and, as a result, causes floating point
arithmetic to be error-prone [41]. As a matter of curiosity, to catch a
glimpse of this fact, one can run in the terminal of any computer the
command

$ echo 1.0E45 | awk ’{printf "%.0f\n", $1}’.
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The result depends on the technical standard used, but the outcome
in the author’s computer (which most likely employs the IEEE 754

Standard [39]) is "999999999999999929757289024535551219930759168".
All of this means that testing whether two floats (i.e. real number rep-
resentations in a computer) are equal might result to be false because
they differ on digits that actually are not significative to the applica-
tion in hand. So, in effect, one should always test whether two floats
are ε-proximal instead.

This problematic naturally extends to floating point arithmetic. So,
for instance, is it true that 0.05E45 + 0.95E45 = 1.0E45 under floating
point representation? Obviously, it should be, but again the result one
gets when running

$ echo 0.05E45 0.95E45 | awk ’{printf "%.0f\n", $1+$2}’

is "1000000000000000088213614053064226407018659840". It is obvious
that the order of magnitude here is far beyond what users routinely
need in practice, but this can truly affect two key features of MP

algorithms: feasibility and convergence. As for feasibility, it is clear
that checking whether a solution belongs to a feasible region defined
mostly by equality constraints may never result to be true, notedly
when the MP contains integer and continuous decision variables. As
for convergence, it is also clear that lower and upper bounds may
never converge precisely to the same value.

Altogether, the mathematical properties of the distance function
induced by the 2-norm and the use of floating point representation
in computer systems pose serious challenges for those willing to de-
vise fast and accurate MP methods for tackling problems that are inti-
mately related to distance computations.

1.3.1 Applications

As might be expected, next we introduce four of these problems that
put the concept of distance at their core. One of them is explored in
this thesis. The others are briefly presented because we judge that
they are quite interesting and should be divulged to the readers re-
gardless. But also because, most likely, they will become part of the
author’s research projects in the future.

1.3.1.1 Euclidean Distance Geometry Problem

Our first problem arises from the field of Distance Geometry (DG)
[11, 68]. Given a positive integer K and a simple edge-weighted undi-
rected graph G = (V ,E), the Euclidean Distance Geometry Prob-
lem (EDGP) questions the existence of a vertex realization function
V → RK such that each vertex pair adjacent to an edge is placed
at a distance which is equal to the edge weight. This problem has
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many applications to science and engineering, and many methods
have been proposed to solve it. Under the action of Euclidean groups,
the EDGP contains infinitely many (symmetric) congruent solutions.
In Chapter 4 one can find more details about the EDGP and also of
the new heuristic approaches that we are proposing to handle this
notoriously difficult problem.

1.3.1.2 Distance Matrix Completion Problem

A related problem, the Distance Matrix Completion Problem (DMCP),
asks whether a partially defined matrix can be completed to a dis-
tance matrix D, i.e., completed to a symmetric matrix whose entries
Dij represent the distance between the points i, j ∈ V . When the
completion is required to be to an Euclidean Distance Matrix (EDM)
[25], i. e. where distances are given by 2-norms, this problem is called
Euclidean Distance Matrix Completion Problem (EDMCP) [3]. The dif-
ference is that while K is part of the input in the EDGP, it is part of the
output in the EDMCP.

1.3.1.3 Euclidean Steiner Tree Problem

The Euclidean Steiner Tree Problem (ESTP) [59] asks for a shortest
possible network interconnecting a given set V of points in the K-
dimensional Euclidean space. The ESTP is related to the Minimum
Spanning Tree Problem (MSTP), the difference relying in the fact that
one is allowed to use extra (not given) points to construct the network
in the ESTP; these extra points are known as Steiner points. Indeed, the
value of the Steiner ratio, the ratio of the lenght of the Minimum Span-
ning Tree to the Steiner Minimal Tree for the same set V , conjectured
to be 2/

√
3, to the best of our knowledge, is still an open question. A

very interesting account on the history of the problem can be found
in [15].

1.3.1.4 Geometric Set Covering Problem

The Geometric Set Covering Problem (GSCP) consists of a broad class
of problems that essentially aims to cover a (compact) geometric set
by (usually a limited number of) other compact geometric sets. The
GSCP is a Set Covering Problem (SCP) in geometric settings. Consider,
for instance, the problem of covering cubic lattices with spheres [54],
the problem of filling the 3D Euclidean space with tilings (arrange-
ments of polyhedrons) [17] or the problem of covering ellipsoids with
spheres [69]. The fact is that to ascertain whether a point x ∈ Rn be-
longing to the target set is covered or not, one needs to verify whether
the distance between x and the center of the set that supposedly cov-
ers x, for example, lies below a threshold value. And this check is
done most often via distance functions.
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1.4 semidefinite programming

Semidefinite Programming is a relatively new subfield of Convex Op-
timization [14] concerned with optimization problems defined by a
linear objective function subject to the intersection of the cone of
Positive Semidefinite (PSD) matrices with an affine space. Simply put,
SDP is linear programming over PSD matrices. Actually, it is not hard
to see that SDP encompasses LP as a special case.

SDP is considered to be one of the most important developments in
MP in the last decades, and is of growing interest for several reasons:
first, the existence of polynomial algorithms with efficient implemen-
tations that make Semidefinite Programs (SDPs) tractable in many
situations; second, the vast list of different and important fields of
applications, where SDP has proved to be a useful tool; and third, the
beauty and depth of the underlying theory, that links in a natural way
different and usually unrelated areas of Mathematics [12].

One of the most important applications of SDP is its use in the for-
mulation of convex relaxations of nonconvex optimization problems.
And we shall apply it accordingly in Entr’acte 3 and Chapter 4. In
this context, we present the SDP programs in primal and dual stan-
dard forms. The problem in primal form can be written as

min
X

A0 •X

∀i ∈ II Ai •X 6 bi,
∀i ∈ IE Ai •X = bi,

X � 0,


(7)

where Ai with i ∈ {0} ∪ IE ∪ II are real symmetric n × n matrices,
b is a real (|IE|+ |II|)-vector and the variable X is a real symmetric
n× n matrix. Notationwise, the Frobenius inner prodcut is denoted
by U • V = tr(U>V) =

∑
j

∑
k ujkvjk for any two matrices of the

same dimensions and tr(U) is the trace of U. Moreover, U � 0 means
that the matrix U is positive semidefinite and U � 0 means that U
is Positive Definite (PD). U � V means that U− V � 0; and similarly
U � V means that U− V � 0. See Section 4.2 for further details.

Given an SDP in the form of Eq. (7), using the same data and some
linear algebra manipulation, we can convert it into a SDP in dual form
as

max
u

bTu

A0 −
∑

i∈IE∪II
uiAi � 0,

∀i ∈ II ui > 0.

 (8)

The dual program (9) has u as decision variables, one for each con-
straint of the primal program, and thus u is a real (|IE|+ |II|)-vector.
The second constraint in (9) is a Linear Matrix Inequality (LMI) on
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the variables u: a requirement that a matrix depending linearly (or
affinely) on some variables be positive semidefinite. It is convenient
however to introduce a slack matrix Q and rewrite the problem (9) as

max
u,Q

bTu

Q = A0 −
∑

i∈IE∪II
uiAi,

∀i ∈ II ui > 0,

Q � 0.


(9)

Here Q is a real symmetric n×n matrix.
The three most important mathematical properties of SDPs are prob-

ably the fact that (a) both forms represent convex Nonlinear Pro-
grams (NLPs), that (b) the dual of the dual is the primal and, lastly,
that (c) under Slater’s constraint qualification, strong duality holds
for feasible SDPs. The condition on strong duality requires that there
exists a matrix X � 0 which satisfies the constraints in Eq. (7). In this
case, the SDP is said to be strictly feasible.

Many practical problems in engineering and operations research
can be modeled or approximated as SDP problems. In fact, it is well-
known that SDPs provide tighter relaxations to several combinato-
rial optimization problems when compared to other methods [88,
91]. Particularly, it suits well (nonconvex) Quadratically Constrained
Quadratic Programming (QCQP) problems (i. e. problems which have
quadratic constraints and a quadratic objective function) and it is
largely used to cope with DG related problems, which are themselves
QCQPs. Incidentally, we experiment with SDP and two particular cases
of QCQP respectively in Entr’acte 3 and Chapter 4. Moreover, it is
widely accepted that Interior-Point Methods (IPMs) [4] are very ro-
bust and accurate for solving general SDP programs of moderate size,
which implies that SDPs (in both forms) can be solved efficiently in
such cases.

However, one notable limitation of SDP for practical purposes is
that current technology still does not allow us to scale up to large-
scale instance sizes unless we trade accuracy for scaling. For example,
folklore says that IPMs (which are second-order methods) for SDPs

are supposed to work well up to sizes of “around” 1000 variables,
i.e., a matrix variable of around 33× 33, which is hardly “large-scale”.
On top of this, SDP is not applicable to MPs containing integrality
constraints. We refer the reader to [5, 88, 91] for further details.

1.4.1 Diagonally Dominant Programming

As mentioned previously, one serious drawback of SDP is that current
solving technology is limited to instances of fairly low to moderate
sizes. Notwithstanding, Ali Ahmadi and Georgina Hall recently re-
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marked [2] that diagonal dominance provides a useful tool for inner
approximating the PSD cone.

Definition 6. A real symmetric matrix A = (Aij) is Diagonal Dominant
(DD) if

Aii >
∑
j∈N
j6=i

|Aij| ∀i ∈ N. (10)

Using Gershgorin’s theorem, one can easily show that all DD ma-
trices are PSD. And that the converse does not hold, hence the inner
approximation. See Section 4.2 for further details. This means that

min
X

A0 •X

∀i ∈ II Ai •X 6 bi,
∀i ∈ IE Ai •X = bi,

X is DD,


(11)

is a Diagonally Dominant Program (DDP) whose feasible region is a
inner approximation of that of Eq. (7).

The crucial observation here is that Eq. (10) is easy to linearize
exactly, and so the constraint X is DD in Eq. (11). In order to do so,
define a continuous nonnegative symmetric variable T = (Tij) as

Tij > |Aij|

and observe that, if we sum both the right and left hand sides over
all j ∈ N for a given i ∈ N, the inequality∑

j∈N
j 6=i

Tij >
∑
j∈N
j 6=i

|Aij|

holds. We can then reformulate the DD constraint into the system

∀i ∈ N Xii >
∑
j∈N
j6=i

Tij,

∀i, j ∈ N Tij > Xij > −Tij,

∀i, j ∈ N Tij > 0,

 (12)

which yields a linear Diagonally Dominant Programming (DDP) for-
mulation when replaced in Eq. (11).

1.4.1.1 DDP from the dual

Since Eq. (11) is an inner approximation of Eq. (7), there might con-
ceivably be cases where the feasible region of Eq. (11) is empty while
the feasible region of Eq. (7) is nonempty (quite independently of
whether the original SDP instance has a solution or not). For such
cases, the authors recall that the dual of any SDP is another SDP (and
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that strong duality holds under Slater’s condition). The alternative
would be to derive a DDP from the dual SDP as

max
u,Q

bTu

Q = A0 −
∑

i∈IE∪II
uiAi,

∀i ∈ II ui > 0,

Q is DD,


(13)

and its corresponding LP formulation by means of Eq. (12). Note how-
ever that the DDP from the dual can still result infeasible.

1.4.1.2 Iterative improvement of the DDP formulation

Furthermore, an iterative method to improve the DDP inner approxi-
mation for general SDPs is provided in [2]. For any n× n matrix U,
we have U>U � 0 since any Gram matrix is PSD. By the same reason,
U>ZU � 0 for any Z � 0. This implies that

D(U) = {U>ZU | Z is DD} (14)

is a subset of the PSD cone. We can therefore replace the constraint
X is DD by X ∈ D(U) in Eq. (11). Note that this means the LP for-
mulation is now parametrized on U, which offers the opportunity
to choose U so as to improve the approximation. More precisely, we
define a sequence of DDP formulations:

min
X

A0 •X

∀i ∈ II Ai •X 6 bi,
∀i ∈ IE Ai •X = bi,

X ∈ D(Uh),


(15)

for each h ∈N, with

U0 = I, (16)

Uh = factor(X̄h−1), (17)

where factor(·) indicates a factor of the argument matrix and X̄h is
the solution of Eq. (15) for a given h. Note that the interior of the
PSD cone contains PD matrices only, and so the authors suggest using
Choleski factors for efficiency.

The iterative method ensures that, for each h, the feasible region of
Eq. (15) contains the feasible region for h− 1. This is easily seen to be
the case since, if Uh is a factor of X̄h−1, we trivially have (Uh)

>
IUh =

(Uh)
>
Uh = X̄h−1, and since I is trivially DD, X̄h−1 ∈ D(Uh). More-

over, X̄h−1 is feasible in Eq. (15), which proves the claim.
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The transformation of the constraint X ∈ D(U) into a set of linear
constraints is also straightforward. X ∈ D(U) is equivalent to X =

U>ZU ∧ Z is DD, i.e., to

X = U>ZU,

∀i ∈ [n+K] Zii >
∑

j∈[n+K]
j6=i

Tij,

T > Z > −T ,

T > 0,


(18)

as observed above. Naturally, one may also apply the iterative proce-
dure to the DDP of the dual SDP given by Eq. (13).

Lastly, it is important to point out that Ahmadi and Hall also pro-
pose techniques to inner approximate the PSD cone via Second-Order
Cone Programming (SOCP). Bottom line, DDP can be described as a
technique for obtaining feasible solutions to SDPs via sequences of in-
ner approximating Linear Programs (LPs) or Second-Order Cone Pro-
grams (SOCPs). In this thesis we focus on the LP variant, since there
exists vastly superior technology for solving large-scale LPs than SDPs

or SOCPs.

1.5 thesis structure

This thesis is based mostly on the two Lecture Notes in Computer Sci-
ence (LNCS) papers [22] and [23], the contents of which are discussed
(and somewhat extended) in Chapters 2 and 4. The former exposes
our work on the Orbital Independence theory; the latter describes our
work on the Euclidean Distance Geometry Problem. In order to give
a sense of unity to two otherwise quite different topics, the two main
chapters were separated by a further chapter, which we prefer to call
entr’acte, about Binary Quadratic Programming.

The idea is to create a chain of topics that begins with the study
of orbital symmetry in Mathematical Programs (or more precisely
Mixed-Integer Linear and Nonlinear Programs) in Chapter 2, then
moves on to the analysis of the effects of symmetries in Semidef-
inite Programming formulations for Binary Quadratic Programs in
Entr’acte 3, and finally reaches our work on developing Semidefi-
nite Programming/Diagonally Dominant Programming based meth-
ods for the Euclidean Distance Geometry Problem in Chapter 4.

Nevertheless, it is important to urge the reader to consider the dif-
ference, in terms of relevance, between the chapters and the entr’acte.
The former are based on refereed publications, and contribute origi-
nal material. The latter is a light presentation of topics that the author
thinks would be worth deeper studies. It has not been submitted for
publication yet since its original content is still very limited; it is work
in progress.
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2
O R B I TA L I N D E P E N D E N C E

It is well-known that symmetric Mathematical Programs are harder to
solve to global optimality using Branch-and-Bound type algorithms,
since the solution symmetry is reflected in the size of the Branch-
and-Bound tree. It is also well-known that some of the solution sym-
metries are usually evident in the formulation, making it possible
to attempt to deal with symmetries as a preprocessing step. One
of the easiest approaches is to break symmetries by adjoining some
Symmetry-Breaking Constraints to the formulation, thereby remov-
ing some symmetric global optima, then solve the reformulation with
a generic solver. Sets of such constraints can be generated from each
orbit of the action of the symmetries on the variable index set. It
is unclear, however, whether and how it is possible to choose two
or more separate orbits to generate Symmetry-Breaking Constraints
which are compatible with each other (in the sense that they do not
make all global optima infeasible). In this chapter we discuss and test
a new concept of orbit independence which clarifies this issue.

2.1 introduction

An important issue that arises when breaking symmetries of MPs in
view of solving them using BB type algorithms is addressed in the
following sections. Symmetry-breaking devices are usually derived
from orbits of the action of the formulation group on the decision vari-
ables. However, one cannot simply use such devices for all the orbits
simultaneously: some orbits depend on each other, in a very precise
mathematical sense, and hence it may be impossible to use more than
one orbit for symmetry-breaking purposes. Next, we discuss a notion
of orbit independence which permits to break symmetries from dis-
tinct orbits concurrently. Briefly, a short theory describing sufficient
conditions is developed and used to devise an algorithm that poten-
tially identifies the largest independent set of orbits of any Mathe-
matical Program. We then provide extensive computational results
to showcase the correctness and usefulness of the Orbital Indepen-
dence (OI) ideas. The tests are performed against symmetric instances
taken from the public libraries MIPLIB2010 and MINLPLib2.

The rest of this chapter is organized as follows: in Section 2.2 we
introduce notation, recall concepts of Group Theory and review pre-
vious work related to symmetries in MP; in Section 2.3 we present
all the theoretical developments concerning the OI framework; in Sec-
tion 2.4 we describe in details the SBCs generator algorithm devised

19
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based on the theory recently constructed; and finally, computational
experiments are provided and analysed in Section 2.5.

2.2 notation and previous work

2.2.1 Group Theory

From now on, we consider that groups act on vectors in Rn by per-
muting its components and that permutations act on sets of vectors
by acting on each vector individually. Standard group nomenclature
is employed: Sn and Cn are the symmetric and cyclic group of order
n, respectively. Sym(·) is the symmetric group on the ground set ·
(e.g. Sn = Sym([n])). Let H and G be groups. If H is a subgroup of G,
we write H 6 G; if H is a normal subgroup of G, then we write H�G.
Finally, if H is isomorphic to G, we write H ∼= G. 〈∆〉 denotes the
group generated by the set ∆ of generators. For a group G 6 Sn and
a set X of row vectors, XG = {xg | x ∈ X∧ g ∈ G}. A similar definition
is valid for a set Y of column vectors: GY = {gy | y ∈ Y ∧ g ∈ G}.

2.2.2 Symmetry detection

We emphasize that Eq. (1) subsumes the description of two mathemat-
ical entities: the MP itself, denoted by P, and its formal description
P in the language L, which we obtain when replacing x, f,g by their
representing symbols x, f, g. It is well-known that P can be parsed into
a Directed Acyclic Graph data structure T (an elementary graph con-
traction of the well-known parsing tree) using a fairly simple context-
free grammar [10, 18]. The leaf nodes of T are labelled by constants
or decision variable symbols, whereas the other nodes of T are la-
belled by operator symbols. The incidence structure of T encodes the
parent-child relationships between operators, variables and constants.
In practice, we can write P using a modelling language such as AMPL

[30] and use an unpublished but effective AMPL API to derive T [32].
Since T is a labelled graph, we know how to compute the group G

of its label-invariant isomorphisms (which must also respect a few
other properties, such as noncommutativity of certain operators) [64,
65]. In addition, we can use the software codes NAUTY or TRACES
[65] to obtain G and the set Θ of the orbits of its action on the nodes
V(T) of the DAG.

2.2.3 Formulation and solution groups

Liberti has shown in [49] that:

(a) the action of G can be projected to the leaf nodes of V(T), which
represent decision variables;
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(b) this projection induces a group homomorphism φ mapping G

to a certain group image GP;

(c) GP is a group of permutations of the indices of the variable
symbols x1, . . . , xn;

(d) GP is precisely the group of variable permutations of P which
keeps f(x) and {gi(x) | i 6 m} invariant.

In other words, [49] provides (among other things) a practical method-
ology for computing the formulation group GP of a MP given as in
Eq. (1). Since it is not hard to show that GP is a subgroup of the so-
lution group of P, meant as the group of permutations which keeps
the set G (P) of global optima of P invariant, this methodology can be
used to extract symmetries from P prior to solving it.

2.2.4 Symmetry exploitation

Once the formulation symmetries are known, their most efficient ex-
ploitation appears to be their usage within the BB algorithm itself [60,
61, 71, 72]. Such approaches are, unfortunately, difficult to implement,
as each solver code must be addressed separately. Their simplest ex-
ploitation is the SSB [62, §8.2] which, simply put, consists in adjoin-
ing some Symmetry-Breaking Constraints to the original formulation
Eq. (1) in the hope of making all but one of the symmetric global op-
tima infeasible. Following the usual trade-off between efficiency and
generality, approaches which offer provable guarantees of removing
symmetric optima are limited to special structures [40], whereas ap-
proaches which hold for any MP in the large class Eq. (1) are mostly
common-sense constraints designed to work in general [50]. The con-
sensus seems to be that sets of SBCs are derived from each orbit of the
action of GP on X.

Remark 7. This is not the only possibility provided that SBCs can also be
derived from cyclic subgroups of GP or single permutations.

Though breaking symmetries may work well with BB type algo-
rithms, local-search based heuristics usually find optima faster if there
are many of them. So it may not always be worth eliminating them
[50]. The first attempt to propose a paradigm shift as concerns ex-
ploiting symmetries in MPs is Orbital Shrinking (OS) [29]. This recent
philosophy sustains that symmetry shall be exploited as much as pos-
sible and broken as a last resort. Developed at first to Mixed-Integer
Linear Programs (MILPs), the idea behind the technique is to derive
relaxations which are at the same time smaller (fewer variables) and
symmetry free. This is achieved by aggregating and replacing the
original x variables by means of new z variables, defined as

∀ω ∈ Ω zω =
∑
j∈ω

xj,
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where Ω is the set of orbits of a particular subgroup of the formula-
tion group of P. Simply put, the x variables indexed by the orbit ω
are replaced by a single zω variable.

The OS paradimg has already unveiled proofs of its promising
future [79, 80]. A survey on the subject will become public soon
where one will be able to find an extension of the OS method to con-
vex Mixed-Integer Nonlinear Programs (MINLPs) and to nonconvex
MINLPs having a special structure.

Finally, we would like to refer the reader to a very recent survey
paper [73], which contains an extensive and detailed assessment of
the state of the art in symmetry handling methods in Mathematical
Programming.

2.2.5 Orbits

We recall that an orbit is an equivalence class of the quotient set X/∼,
where i ∼ j if there is g ∈ GP such that g(i) = j. This way, GP parti-
tions X into a setΩGP of orbitsω1, . . . ,ωp, each of which can be used
to generate SBCs. The projection homomorphism φ defined above for
G and the leaf nodes of the parsing tree can be restricted to act on GP
and generalized to project its action to any subset Y ⊆ X as follows:
for each π ∈ GP let φ(π) be the product of the cycles of π having all
components in Y. We denote by φY this generalized action projection
homomorphism. The image of φY , when Y is some orbit ω ∈ ΩGP , is
a group GP[ω] called the transitive constituent of ω. A group action is
transitive on a set S if s ∼ t for each s, t ∈ S.

2.2.6 Symmetry-Breaking Constraints

We borrow the square bracket notation to localize vectors: if x∗ ∈
G (P) is a global optimum of P, then x∗[ω] is a projection of x∗ on
the coordinates indexed by ω. If GP[ω] is the full symmetric group
Sym(ω) on the orbit, it means that G (P) contains vectors which, when
projected onto ω, yield every possible order of x∗[ω]. This implies
that we can arbitrarily choose one order, e.g.:

∀` < |ω| xω(`) 6 xω(`+1), (19)

whereω(`) is the `-th element ofω (stored as a list), enforce this order
by means of SBCs, and still be sure that at least one global optimum
remains feasible. The SBCs in Eq. (19) are called strong SBCs. If GP[ω]

has any other structure, we observe that, by transitivity of the tran-
sitive constituents, at least one permutation in GP[ω] will map the
component having minimum value in x∗[ω] to the first component.
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Remark 8. The choice of minimum value and first components are arbitrary.
Alternative SBC sets can occur by choosing maximum and/or any other com-
ponent.

This, nonetheless, yields the weak SBCs:

∀` ∈ ωr {ω(1)} xω(1) 6 xω(`). (20)

Strong SBCs select one order out of |ω|! many, and hence are able to
break all the symmetries in GP[ω]. Weak SBCs , on the other hand,
are unlikely to be able to achieve that. We let g(x[B]) 6 0 denote SBCs

involving only variables xj with j in a given set B.

2.2.7 Stabilizers

Let Y ⊆ X. We recall that the pointwise stabilizer of Y with respect to
GP (or any group G) is defined as the subgroup of elements of GP
fixing each element of Y, i.e., GY = {g ∈ GP | ∀y ∈ Y (gy = y)}. The
setwise stabilizer of Y with respect to GP is the subgroup of those
elements of GP under which Y is invariant, i.e., stab(Y,GP) = {g ∈
GP | ∀y ∈ Y (gy ∈ Y)}. By definition, if Y is an orbit of GP, then GY is
the kernel of φY and stab(Y,GP) = GP.

2.3 orbital independence notions

In this section we introduce our main results regarding OI. First we
illustrate how SBCs built from different orbits may cut global optima
from a MP; then we recall the conditions of OI originally introduced
in [49], and finally we present a new concept of OI based on pointwise
stabilizers.

2.3.1 Incompatible SBCs

In general, one may only adjoin to P the SBCs from one orbit. Adjoin-
ing SBCs from two or more orbits chosen arbitrarily may result in all
global optima being infeasible, as Example 9 shows.

Example 9. Let P be the following MILP:

min
x∈{0,1}4

x1 + x2 + 2x3 + 2x4
1 1 0 0

0 0 1 1

−1 0 −1 0

0 −1 0 −1



x1

x2

x3

x4

 6

1

1

−1

−1

 .
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This problem has as set of optima G(P) = {(0, 1, 1, 0), (1, 0, 0, 1)}. In addition,
it has formulation group GP = 〈(1 2)(3 4)〉 and orbits ΩGP = {ω1,ω2} =
{{1, 2}, {3, 4}}. Valid SBCs for ω1 (resp. ω2) are x1 6 x2 (resp. x3 6 x4). By
simple inspection of the optima set, whereas adjoining either of the two SBCs

yields valid narrowings, adjoining both simultaneously leads to an infeasible
problem.

Yet, breaking symmetries from only one orbit does not generally
make a strong computational impact in MPs of the form Eq. (1). In
what follows, we explore the concept of Orbital Independence meant
as sufficient conditions to guarantee that SBCs from many orbits pre-
serve at least one global optimum of P feasible.

2.3.2 Some existing OI conditions

In order to concurrently combine sets of SBCs generated by two orbits
ω, θ ∈ ΩGP into a valid narrowing of a MINLP (see Section 1.2.1),
two sufficient conditions were provided in [49]:

1. There is a subgroup H 6 GP[ω ∪ θ] such that H[ω] ∼= C|ω| and
H[θ] ∼= C|θ|;

2. gcd(|ω|, |θ|) = 1.

Two orbits with these properties are called coprime. Coprime orbits
occur relatively rarely in practice [49].

Another set of conditions for OI was hinted at in [55], by means of
the following iterative procedure. Initially, one sets G← GP and picks
an orbitω ∈ ΩGP ; then adjoins SBCs forω to P, and then replacesG by
Gω. Termination occurs when G is the trivial group. At each iteration,
the SBCs from different orbits can be concurrently adjoined to P. On
the other hand, the orbits refer to the action of different groups: GP
initially, then the groups in a normal chain of pointwise stabilizers.
In the following, we expand on this idea.

2.3.3 New conditions for OI

Our goal now is to introduce the concept of independent set of orbits
and provide conditions that will help us to identify such sets. These
new necessary conditions for OI will be established based on point-
wise stabilizers.

First, let ω, θ ∈ ΩGP . We look at what happens to θ when ω is
pointwise stabilized: either Gω fixes θ, or a subset of θ, or it does not
fix any element of θ at all. So three cases follow:

(a) for any subset σ ⊆ θ, σ 6∈ ΩGω ;

(b) there is a subset σ ( θ such that σ ∈ ΩGω ;
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(c) θ ∈ ΩGω .

We can thus state the following binary dependence relations on the set
ΩGP .

Definition 10. The orbit θ is dependent of ω, denoted by θ → ω, if θ is
stabilized when ω is stabilized (case (a) above).

Definition 11. The orbit θ is semi-dependent of ω, denoted by θ ω, if θ
splits when ω is stabilized (case (b) above).

Definition 12. The orbit θ is independent of ω, denoted by θ

�

ω, if θ is
not stabilized when ω is stabilized (case (c) above).

Next, let Γω be the set of permutations of GP which move ele-
ments of the orbit ω nontrivially. By definition, Γω does not contain
the identity permutation e of GP and thus it is not itself a group.
Moreover, the following properties trivially hold: Gω ∩ Γω = ∅ and
stab(ω,GP) = Gω ∪ Γω = GP. Moreover:

Lemma 13. For ω ∈ ΩGP , GP[ω] = φω(Γω)∪ {e}.

Proof. For ω ∈ ΩGP , we have that GP[ω] = φω(GP) and that GP =

Gω ∪ Γω; thus, GP[ω] = φω(Gω ∪ Γω). From elementary set theory,
we also have that φω(Gω ∪ Γω) = φω(Gω)∪φω(Γω). Now take π ∈
GP. Because Gω ∩ Γω = ∅, either π ∈ Gω or π ∈ Γω. By definition,
φω(π) = e for all π ∈ Gω; otherwise, φω(π) 6= e for all π ∈ Γω. It
thus follows that GP[ω] = φω(Γω)∪ {e}.

Theorem 14 establishes the dependence relation between two orbits
ω, θ ∈ ΩGP by comparing the sets Γω and Γθ.

Theorem 14. The following statements are true:

(1) If Γθ = Γω then θ→ ω and ω→ θ;

(2) If Γθ ⊂ Γω then θ→ ω and either ω

�

θ or ω θ;

(3) If Γθ ∩ Γω 6= ∅ then (θ

�

ω or θ ω) and (ω

�

θ or ω θ);

(4) If Γθ ∩ Γω = ∅ then θ

�

ω and ω

�

θ.

Proof. (1) Assume Γθ = Γω and consider ω. Then Gω = GP r Γω ⇒
Gω ∩ Γθ = ∅⇒ θ /∈ ΩGω and θ→ ω. Since the same argument holds
if we consider θ, we also have ω→ θ.

(2) Assume Γθ ⊂ Γω and consider ω. Then Gω = GP r Γω ⇒
Gω ∩ Γθ = ∅ ⇒ θ /∈ ΩGω and θ → ω. Considering θ, we have that
Gθ = GP r Γθ ⇒ Gθ ∩ Γω 6= ∅. If the action of Gθ is transitive on ω,
we have ω

�

θ. Otherwise, we have ω θ.
(3) Assume Γθ ∩ Γω 6= ∅ but neither set is wholly contained in the

other, and consider ω. Then Gω = GP r Γω ⇒ Gω ∩ Γθ 6= ∅. If the
action of Gω is transitive on θ, we have θ

�

ω. Otherwise, we have
θ ω. The same argument holds if we consider θ.
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(4) Assume Γθ ∩ Γω = ∅ and consider ω. Then Gω = GP r Γω ⇒
Gω ⊃ Γθ ⇒ θ ∈ ΩGω and θ

�

ω. The argument is similar if we
consider θ, thus ω

�

θ.

Lemma 15. The premise Γθ∩ Γω = ∅ to condition (4) in Theorem 14 never
holds.

Proof. Let ∆ be the set of generators of GP. If there is g ∈ ∆ such
that g[ω] and g[θ] are nontrivial, then g ∈ Γθ ∩ Γω. Otherwise, let
∆θ = {g ∈ ∆ | g[ω] = e} and ∆ω = {g ∈ ∆ | g[θ] = e}. Because every
element of GP can be expressed as the combination (under the group
operation) of finitely many elements of ∆, there is g ∈ GP such that
g = gωgθ where gω ∈ ∆ω and gθ ∈ ∆θ. Thus g ∈ Γθ ∩ Γω.

Based on the above definitions and results, the following lemmata
hold.

Lemma 16. The relation → is reflexive and the relations  and

�

are
irreflexive.

Lemma 17. The relation → is symmetric iff Γθ = Γω and asymmetric iff
Γθ ⊂ Γω.

Lemma 18. The relation→ is transitive.

Proof. Let θ,ω, τ ∈ ΩGP be distinct orbits satisfying θ→ ω and ω→
τ. From Theorem 14, θ → ω implies that either Γθ = Γω or Γθ ⊂ Γω.
Similarly, ω→ τ implies that either Γω = Γτ or Γω ⊂ Γτ. Then:

(a) Γθ = Γω ∧ Γω = Γτ ⇒ Γθ = Γτ ⇒ θ→ τ;

(b) Γθ = Γω ∧ Γω ⊂ Γτ ⇒ Γθ ⊂ Γτ ⇒ θ→ τ;

(c) Γθ ⊂ Γω ∧ Γω = Γτ ⇒ Γθ ⊂ Γτ ⇒ θ→ τ;

(d) Γθ ⊂ Γω ∧ Γω ⊂ Γτ ⇒ Γθ ⊂ Γτ ⇒ θ→ τ.

Whenever the dependence relations are symmetric, we write ω ↔
θ or ω! θ or ω

��

θ. Using this notation, we set forth that:

Definition 19. Two orbits ω, θ ∈ ΩGP are dependent if ω ↔ θ, semi-
dependent if ω! θ and independent if ω

��

θ.

Following, we extend the dependence relations presented above
to sets of orbits. In this sense, consider a set Ω ⊆ ΩGP and let
Ωω = Ωrω for ω ∈ Ω. We look at what happens to ω when the
set Ωω is pointwise stabilized, i.e., when all the orbits in Ωω are (si-
multaneously) pointwise stabilized. Similar cases to (a)-(c) may occur
and suitable definitions can be stated.
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Definition 20. The orbit ω is dependent of Ωω, denoted by ω ↪→ Ωω, if
ω is stabilized when all orbits of Ωω are stabilized.

Definition 21. The orbitω is semi-dependent ofΩω, denoted byω; Ωω,
if ω splits when all orbits of Ωω are stabilized.

Definition 22. The orbit ω is independent of Ωω, denoted by ω "

Ωω, if
ω is not stabilized when all orbits of Ωω are stabilized.

Lemma 23 establishes necessary conditions to have ω "

Ωω. The
pointwise stabilizer of a set Ω of orbits is denoted as GΩ hereafter.

Lemma 23. If ω "

Ωω, then ω

�

θ for all θ ∈ Ωω.

Proof. By definition, ω "

Ωω implies that the action of GΩ
ω

on ω is
transitive. Since GΩ

ω
is a subgroup of Gθ for every θ ∈ Ωω, Gθ also

acts transitively on ω and thus ω

�

θ.

Finally we can define an independent set of orbits. We remark that,
although we do not state them explicitly, corresponding definitions
can be laid down concerning the concepts of dependent and semi-
dependent sets of orbits.

Definition 24. A setΩ is said to be independent ifω "

Ωω for allω ∈ Ω.

Corollary 25 provides necessary conditions so as to a set Ω be in-
dependent.

Corollary 25. If the set Ω is independent, then ω

��

θ for all ω, θ ∈ Ω.

Proof. By Definition 24 and Lemma 23.

Example 26 illustrates that the conditions presented in Corollary 25

are not sufficient to guarantee that a set Ω is independent.

Example 26. Let P be the following MILP:

min
x∈{0,1}6

x1 + x2 + 2x3 + 2x4 + 3x5 + 3x6

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 1 0

0 1 0 1 1 0

1 0 0 1 0 1

0 1 1 0 0 1





x1

x2

x3

x4

x5

x6


6



1

1

1

2

2

2

2


.

G(P) = {(1, 0, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 1, 0), (1, 0, 0, 1, 1, 0)} con-
tains its optima. It has formulation group GP = 〈(1 2)(3 4), (3 4)(5 6)〉,
which induces the orbits ΩGP = {ω1,ω2,ω3} = {{1, 2}, {3, 4}, {5, 6}}. One
can check that the elements in ΩGP are pairwise independent (ω1

��

ω2 ∧

ω1

��

ω3 ∧ ω2

��

ω3); however ω1 ↪→ {ω2,ω3} and ω2 ↪→ {ω1,ω3}
and ω3 ↪→ {ω1,ω2}.
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2.3.4 SBCs from independent sets

Let ΩI denote an independent set of orbits. Similarly to the results
presented in [49], the following propositions set appropriate condi-
tions to build weak and strong SBCs, respectively, from independent
sets of orbtis.

Proposition 27. The constraints (20) are SBCs for P and GΩ
ω
I with respect

to ω ∈ ΩI.

Proof. Let y ∈ G (P). Since GΩ
ω
I acts transitively on ω, there exists

π ∈ GΩωI mapping miny[ω] to yω(1).

Proposition 28. Provided that GΩ
ω
I [ω] = Sym(ω), the constraints (19)

are SBCs for P and GΩ
ω
I with respect to ω ∈ ΩI.

Proof. Let y ∈ G (P). Since GΩ
ω
I [ω] = Sym(ω), there exists π ∈ GΩωI

such that (πy)[ω] is ordered by 6. Therefore πy is feasible with re-
spect to the contraints (19).

2.4 orbital independence algorithm

In this section we describe the methodology used to find an inde-
pendent set of orbits of a mathematical program. We present how to
model and solve the problem of finding such a set by means of a clas-
sical combinatorial optimization problem. Moreover, we describe in
details the algorithm proposed to build SBCs from all orbits contained
in an independent set.

2.4.1 Independence graph

Our interest relies in finding the largest ΩI ⊆ ΩGP . Nevertheless, so
far we do not have theoretical results providing sufficient conditions
to find such a set. Yet we can use the necessary conditions provided
by Corollary 25 and search for the largest set ΩK ⊆ ΩGp whose ele-
ments are pairwise independent. Having obtained ΩK, we can then
search for the largest ΩI ⊆ ΩK.

Hence we propose to find ΩK by encoding the independence rela-
tion between orbits of GP as an undirected graph GI = (V ,E), as of
now called the independence graph of P, where V = ΩGP and E is the
set of pairs of independent orbits in ΩGP . In this manner we reduce
the problem of finding ΩK to the problem of finding the maximum
clique in GI.

2.4.2 OI reformulations

We expect that the larger the number of SBCs adjoined to the origi-
nal formulation, the stronger their computational impact. Particularly,
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the larger the number of strong SBCs, the better. We thus propose two
different reformulations based on the concept of OI: the first priori-
tizing the total number of SBCs generated and the second prioritizing
the total number of strong SBCs generated. In this sense, we look for
cliques in GI that either involve large orbits or involve mostly orbits
which may satisfy the conditions to build strong SBCs.

In order to find such cliques, we associate a weight function w :

V → W to GI = (V ,E,w) and solve the Maximum Weight Clique
Problem (MWCP) for GI using the MP formulation described in [13].
In the first reformulation, which we call orbital independence narrow-
ing, we have W = {|ω1|, . . . , |ω|V ||} and w(ωi) = |ωi| for all ωi ∈ V .
In the second, which we call strong orbital independence narrowing,
W = {w1,w2}. It is worth pointing out that the strong orbital indepen-
dence narrowing prioritizes cliques having mostly orbits which sat-
isfy GP[ω] = Sym(ω); this is a necessary condition to have GΩ

ω
I [ω] =

Sym(ω) since GΩ
ω
I [ω] is a subgroup of GP[ω] for every ω ∈ ΩI.

2.4.3 Algorithm description

The Algorithm 1 generates a set C containing SBCs derived from the
largest independent set of orbits of P. It takes as inputs a nontrivial
formulation group (parameter GP) and a reformulation strategy (pa-
rameter σ). The following list of functions simplify the pseudocode
of Alg. 1:

• computeOrbits(GP) returns the orbits of the group GP;

• computePointStab(ω) returns the pointwise stabilizer of orbit ω;

• pos(ω) returns the position of orbit ω in the list ΩGP ;

• isTransitive(G,ω) returns true if the action of the group G is
transitive on the orbit ω and false otherwise;

• buildGraph(V ,E,σ) returns a graph with vertices V , edges E and
weights appropriate to the strategy σ;

• solveMWCP(GI) returns a solution of the MWCP for the graph
GI.

If GP has more than one orbit (|ΩGP | > 1), the algorithm first itera-
tively looks for all the pairs of independent orbits in order to build the
set E. Provided that the Condition (3) in Theorem 14 is not sufficient
to ascertain whether two orbits ω, θ ∈ ΩGP satisfy ω

��

θ, ultimately
we must check if the action of the stabilizers Gω and Gθ is transi-
tive on θ and ω, respectively. Thus the algorithm does not compare
the sets Γω and Γθ but rather directly checks whether the actions are
transitive.
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Algorithm 1 Orbital Independence SBC generator

Require: nontrivial GP and reformulation strategy σ
1: Let C = ∅ and ΩI = ∅
2: Let ΩGP = computeOrbits(GP)
3: if |ΩGP | > 1 then
4: for ω ∈ ΩGP do
5: Let Gω = computePointStab(ω)
6: for θ ∈ ΩGP such that pos(θ) > pos(ω) do
7: Let Gθ = computePointStab(θ)
8: if isTransitive(Gω, θ)∧ isTransitive(Gθ,ω) then
9: Let E = E∪ {{ω, θ}, {θ,ω}}

10: end if
11: end for
12: end for
13: if |E| > 2 then
14: Let GI = buildGraph(ΩGP ,E,σ)
15: Let ΩK = ΩI = solveMWCP(GI)
16: for ω ∈ ΩK do
17: if not isTransitive(GΩωI ,ω) then
18: Let ΩI = ΩI rω
19: end if
20: end for
21: for ω ∈ ΩI do
22: Let g(x[ω]) 6 0 be some SBCs for P and GΩ

ω
I w.r.t. ω

23: Let C = C∪ {g(x[ω]) 6 0}
24: end for
25: end if
26: end if
27: return C
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Following the first loop, if at least one pair of independent orbits
is found (|E| > 2), the algorithm builds the independence graph GI
according to the reformulation strategy σ and calls a third party MILP

solver to solve the MWCP for GI. Once ΩK is known, the algorithm
converges to a set ΩI by iteratively removing (from a copy of ΩK
stored as ΩI) the orbits that do not satisfy ω "

ΩωI .

Remark 29. Our approach here is not optimal in the sense that the resulting
ΩI may not be the largest one; the point is that evaluating all possible ΩI ⊆
Ωk would most likely require a huge computational effort owing to many
stabilizer computations.

Then, for each orbit in the set ΩI, the algorithm builds and adds
SBCs to the set C. It is important to emphasize that if |ΩGP | = 1

(unique orbit) or |E| = 0 (no pair of independent orbits in ΩGP ), no
reformulation is carried out.

Theorem 30. The constraint set CΩI = {g(x[ωk]) 6 0 | ωk ∈ ΩI} is an
SBC system for P.

Proof. If P is infeasible then adjoining the constraints in CΩI to P does
not change its infeasibility, so assume P is feasible. Since g(x[ωk]) 6 0
are SBCs for P and GΩ

ωk
I with respect to ωk, there exist y ∈ G (P) and

πωk ∈ GΩ
ωk
I such that πωky satisfies g((πωky)[ωk]) 6 0. But πωk ∈

GP for all ωk ∈ ΩI and, due to the closure of the group operation,
there exists π ∈ GP such that π =

∏
πωk . So πy ∈ G (P). But π[ωk] =

πωk [ωk] since πωk ′ stabilizes ωk pointwise for every k ′ 6= k and thus
(πy)[ωk] = (πωky)[ωk]. Therefore πy satisfies g((πy)[ωk]) 6 0 for all
ωk ∈ ΩI.

2.5 computational experiments

In this section we show the computational impact on the resolution
of general MILPs and MINLPs when adjoining SBCs arising from
different orbits simultaneously. We describe the computational en-
vironment involved (the instances, machinery, solvers, setups, pro-
cedures, etc) and analyze the results obtained from the conducted
experiments.

2.5.1 Datasets

Our test bed consists of two groups of instances, all of them taken
from public libraries. The first group is comprised of symmetric MILPs

found in MIPLIB2010, and the second group is comprised of symmetric
MINLPs found in MINLPLib2. We have submitted all instances consti-
tuting these two libraries to Algorithm 2 (see below) and we have
kept only those exhibiting at least one pair of independent orbits
(|ΩK| > 2). As a result, we have found 89 instances in total, 47 from
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MIPLIB2010 and 42 from MINLPLib2. We have tested François Margot’s
instances as well (see wpweb2.tepper.cmu.edu/fmargot/lpsym.html),
but none of them has a single pair of independent orbits (ΩK = ∅).
Again, we allude to [73] for a detailed description of the presence of
symmetries in public MP instances.

2.5.2 Environment

The reformulations were obtained on a 4-CPU Intel Xeon at 2.66GHz
with 24Gb RAM. Automatic group detection is carried out using the
ROSE reformulator [51] and the software TRACES [65]. Other group
computations are carried out using GAP v. 4.7.4 [87]. The MP results
were obtained on a 24-CPU Intel Xeon at 2.53GHz with 48Gb RAM.
All problems were solved under the AMPL [30] environment. CPLEX
12.6 [37] was used to solve the MILPs and SCIP 3.0.1 [1] to solve the
MINLPs.

The computation time was limited to 7200 seconds of user cpu
time. In order to try and provide a fair assessment of our methodol-
ogy, we disabled the symmetry handling methods built into CPLEX.
We also ran CPLEX in single thread mode to impose its sequential
(and deterministic) behaviour and increase the chances of measuring
performance differences. Unfortunately we were not able to disable
SCIP’s symmetry handling features as well since, so far, to the best of
our knowledge, its API or CLI does not provide a setup parameter to
switch off this feature.

2.5.3 Reformulation algorithm

Currently, given an ASCII file containing a problem P ∈MP written
in AMPL, the overall SSB procedure which we employ to detect and
exploit the symmetries of P is depicted in Algorithm 2.

Algorithm 2 Orbital Independence reformulator

Require: P
1: Parse P’s AMPL model into its DAG representation;
2: Compute the generators of the DAG’s automorphism group;
3: Use the projection operator to obtain the generators of GP;
4: Run Algorithm 1 to obtain the set C;
5: Reformulate P into P ′ by adjoining C to P.
6: return P ′

As mentioned in Section 1.2, we can group the steps of Alg. 2 into
the two main phases: steps 1 to 3 (symmetry detection) and steps 4

to 5 (symmetry exploitation). Step 1 is performed by ROSE; step 2 is
performed by TRACES; steps 3 and 4 are performed by GAP, and the
whole process, which naturally includes step 5, is coordinated by a

wpweb2.tepper.cmu.edu/fmargot/lpsym.html
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shell script code. Note that the output of Alg. 2 is another ASCII file
containing an AMPL model corresponding to P ′.

2.5.4 Results

We first comment the results regarding the reformulation process. Ta-
bles 1 and 2 report, per instance, the number of variables (n) and
orbits (|ΩGP |) of the original formulation, and the total number of
variables indexed by the orbits ΩGP (#svar); for each OI narrowing
type, the Tables report the size of the maximum clique (|ΩK|), the size
of the largest independent set (|ΩI|), the total number of variables in-
dexed by all the orbits in ΩI (#var), the number of weak (#wea) and
strong (#str) SBCs generated, and the parameters σ, ρ and υ, which are
described in the sequel.

We would like to remark that both reformulation strategies yielded
the same narrowings for the most part of the instances. In these cases,
we do not present results concerning the strong orbital independence
reformulation. Additionally, we also point out that the size of the
maximum cliques is equal to the size of the largest independent sets
for all instances.

Apart from the structure of the group GP, intuitively, the ratio
σ = (#svar/n) may also indicate how symmetric a formulation P is.
Similarly, the ratios ρ = (|ΩI|/|ΩGP |) and υ = (#var/#svar) may indi-
cate how extensively we have exploited the symmetries of P. All to-
gether, we expect SBCs to make a strong computational impact when-
ever the triplet (σ, ρ,υ) tends to (1, 1, 1). Both Tables 1 and 2 show
that the generic symmetric instances tested so far have, in general,
at most two high ratios, which suggests that the impact of the SBCs

may not be too significative. Indeed, we can easily recognize three
patterns in which the majority of the instances fit into: either the in-
stance is highly symmetric (σ ≈ 1) and we cannot explore much of
its symmetries (ρ,υ) ≈ (0, 0), or the instance does not exhibit many
symmetries (σ ≈ 0) and we explore almost all of them (ρ,υ) ≈ (1, 1),
or eventually (σ, ρ,υ) ≈ (0, 0, 0). The few exceptions (among 89 cases)
being instances ex9_2_6, hmittelman, lop97icx and st_rv9.

Table 3 provides aggregated solution statistics. Per dataset and for
each formulation, the table reports the number of best performances
and the total time comsumed in hours to solve all instances. We do
not report in this table the cases where no method performed better
than the other. There were only 9 ties for the MIPLIB2010 dataset but
19 (almost half of the tested nonlinear instances) for the MINLPLib2.
From this point of view, the statistics are somewhat more expressive
regarding the MIPLIB2010 library, most likely because we could, as
mentioned previously, switch off CPLEX’s internal symmetry han-
dling procedures during the experiments and thus adequately detect
the computational impact of the SBCs on this particular dataset.
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Original formulation OI-narrowing

Instance n |ΩGP
| #svar |ΩK| |ΩI| #var #wea #str σ ρ υ

bab5 21600 1936 3872 4 4 8 0 4 .17 0* 0*

blp-ar98 16017 2 4 2 2 4 0 2 0* 1.00 1.00

blp-ic97 8445 2 4 2 2 4 0 2 0* 1.00 1.00

core2536-691 15288 88 187 12 12 29 3 14 .01 .13 .15

core4872-1529 24605 505 1046 46 46 96 0 50 .04 .09 .09

gmu-35-40 842 40 111 4 4 13 0 9 .13 .10 .11

gmu-35-50 1177 40 111 4 4 13 0 9 .09 .10 .11

gmut-75-50 36164 64 242 6 6 19 0 13 0* .09 .07

gmut-77-40 13140 70 280 7 7 26 0 19 .02 .10 .09

iis-bupa-cov 345 2 7 2 2 7 0 5 .02 1.00 1.00

lectsched-4-obj 3513 267 557 17 17 36 0 19 .15 .06 .06

macrophage 2260 251 566 18 18 42 5 19 .25 .07 .07

map06 46015 107 245 10 10 20 0 10 0* .09 .08

map10 46015 107 245 10 10 20 0 10 0* .09 .08

map14 46015 107 245 10 10 20 0 10 0* .09 .08

map18 46015 107 245 10 10 20 0 10 0* .09 .08

map20 46015 107 245 10 10 20 0 10 0* .09 .08

mcsched 1669 45 90 15 15 30 0 15 .05 .33 .33

mzzv11 10240 155 310 16 16 32 0 16 .03 .10 .10

neos-1311124 1092 52 1092 4 4 84 0 80 1.00 .07 .07

neos-1426635 520 52 520 4 4 40 0 36 1.00 .07 .07

neos-1426662 832 52 832 4 4 64 0 60 1.00 .07 .07

neos-1436709 676 52 676 4 4 52 0 48 1.00 .07 .07

neos-1440460 468 52 468 4 4 36 0 32 1.00 .07 .07

neos-1442119 728 52 728 4 4 56 0 52 1.00 .07 .07

neos-1442657 624 52 624 4 4 48 0 44 1.00 .07 .07

neos-555424 3815 132 3810 8 8 190 107 75 .99 .06 .04

neos-826841 5516 156 5436 3 3 200 191 6 .98 .01 .03

neos-849702 1737 128 1737 2 2 36 34 0 1.00 .01 .02

neos-911880 888 259 888 7 7 24 0 17 1.00 .02 .02

neos-952987 31329 37 81 4 4 8 0 4 0* .10 .09

neos18 963 53 248 5 5 26 0 21 .25 .09 .10

ns1631475 22696 105 210 11 11 22 0 11 0* .10 .10

ns2081729 661 300 600 3 3 6 0 3 .90 .01 .01

p2m2p1m1p0n100 100 25 92 3 3 12 0 9 .92 .12 .13

protfold 1835 558 1800 2 2 4 0 2 .98 0* 0*

rocII-4-11 3409 2 27 2 2 27 0 25 0* 1.00 1.00

rococoC10-001000 2566 41 82 4 4 8 0 4 .03 .09 .09

rvb-sub 33765 113 226 12 12 24 0 12 0* .10 .10

satellites1-25 9013 200 400 20 20 40 0 20 .04 .10 .10

seymour-disj-10 1209 49 106 5 5 12 0 7 .08 .10 .11

seymour 1255 55 156 5 5 41 29 7 .12 .09 .26

swath 6404 21 163 2 2 8 0 6 .02 .09 .04

transportmoment 9099 85 189 17 17 38 0 21 .02 .20 .20

toll-like 2883 386 1091 26 26 91 44 21 .37 .06 .08

uc-case3 36921 2687 5374 2 2 4 0 2 .14 0* 0*

uct-subprob 2236 136 306 7 7 14 0 7 .13 .05 .04

Original formulation SOI-narrowing

Instance n |ΩGP
| #svar |ΩK| |ΩI| #var #wea #str σ ρ υ

core2536-691 15288 88 187 12 12 27 0 15 .01 .13 .14

macrophage 2260 251 566 18 18 39 0 21 .25 .07 .06

neos-555424 3815 132 3810 8 8 145 58 79 .99 .06 .03

neos-826841 5516 156 5436 4 4 46 0 42 .98 .02 0*

neos-849702 1737 128 1737 2 2 9 0 7 1.00 .01 0*

toll-like 2883 386 1091 26 26 59 0 33 .37 .06 .05

Table 1: OI-narrowings of symmetric instances from MIPLIB2010. 0* indicates
values of O(10−3) or less.
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Original formulation OI-narrowing

Instance n |ΩGP
| #svar |ΩK| |ΩI| #var #wea #str σ ρ υ

arki0002 2456 384 2304 2 2 12 0 10 .93 0* 0*

arki0005 2370 9 18 9 9 18 0 9 0* 1.00 1.00

arki0006 2370 9 18 9 9 18 0 9 0* 1.00 1.00

autocorr_bern25-03 26 12 24 2 2 4 0 2 .92 .16 .16

carton7 230 49 162 3 3 13 8 2 .70 .06 .08

carton9 266 83 266 3 3 13 8 2 1.00 .03 .04

cecil_13 733 18 36 9 9 18 0 9 .04 .50 .50

chp_partload 2080 82 164 5 5 10 0 5 .07 .06 .06

crudeoil_li21 1236 134 268 2 2 4 0 2 .21 .01 .01

ex9_2_6 16 7 16 2 2 6 3 1 1.00 .28 .37

gastrans 89 6 12 2 2 4 0 2 .13 .33 .33

hmittelman 16 3 6 3 3 6 0 3 .37 1.00 1.00

kport20 98 25 55 5 5 11 0 6 .56 .20 .20

kport40 217 48 150 8 8 28 0 20 .69 .16 .18

lop97ic 1626 3 127 3 3 127 0 124 .07 1.00 1.00

lop97icx 986 8 777 8 8 777 0 769 .78 1.00 1.00

mbtd 210 61 210 2 2 12 9 1 1.00 .03 .05

netmod_kar1 456 48 132 3 3 9 0 6 .28 .06 .06

netmod_kar2 456 48 132 3 3 9 0 6 .28 .06 .06

powerflow2383wpr 15882 12 24 3 3 6 0 3 0* .25 .25

powerflow2383wpp 15882 12 24 3 3 6 0 3 0* .25 .25

risk2bpb 434 12 72 12 12 72 0 60 .16 1.00 1.00

routingdelay_bigm 1115 18 36 12 12 24 0 12 .03 .66 .66

routingdelay_proj 1115 18 36 12 12 24 0 12 .03 .66 .66

sepasequ_complex 485 5 27 5 5 27 9 13 .05 1.00 1.00

st_rv9 50 10 20 10 10 20 0 10 .40 1.00 1.00

super1 1263 12 26 12 12 26 0 14 .02 1.00 1.00

super2 1274 11 24 11 11 24 0 13 .01 1.00 1.00

super3 1281 11 24 11 11 24 0 13 .01 1.00 1.00

super3t 1032 11 24 11 11 24 0 13 .02 1.00 1.00

syn15m 55 2 5 2 2 5 0 3 .09 1.00 1.00

torsion100 5004 2 4 2 2 4 0 2 0* 1.00 1.00

torsion25 1254 2 4 2 2 4 0 2 0* 1.00 1.00

torsion50 2504 1227 2454 3 3 6 0 3 .98 0* 0*

torsion75 3754 2 4 2 2 4 0 2 0* 1.00 1.00

transswitch2383wpr 18768 15 30 3 3 6 0 3 0* .20 .20

transswitch2383wpp 18768 15 30 3 3 6 0 3 0* .20 .20

turkey 512 4 8 4 4 8 0 4 .01 1.00 1.00

unitcommit1 738 2 30 2 2 30 0 28 .04 1.00 1.00

unitcommit2 738 2 30 2 2 30 0 28 .04 1.00 1.00

waste 1425 30 76 15 15 38 0 23 .05 .50 .50

waterund28 760 106 216 2 2 4 0 2 .28 .01 .01

Original formulation SOI-narrowing

Instance n |ΩGP
| #svar |ΩK| |ΩI| #var #wea #str σ ρ υ

carton7 230 49 162 3 3 8 0 5 .70 .06 .04

carton9 266 83 266 3 3 8 0 5 1.00 .03 .03

Table 2: OI-narrowings of symmetric instances from MINLPLib2. 0* indicates
values of O(10−3) or less.
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Original formulation OI-narrowing SOI-narrowing

Dataset # Best Time (h) # Best Time (h) # Best Time (h)

MIPLIB2010 16 49.52 19 48.16 3 48.15

MINLPLib2 8 52.00 11 51.3 2 51.29

Total 24 101.52 30 99.46 5 99.44

Table 3: Aggregated solution statistics for the public datasets MIPLIB2010 and
MINLPLib2.

Finally, Tables 4 and 5 report details of the optimization results. Per
instance and for each formulation, the table exhibits the best solution
found, the user cpu time (in seconds), the gap (%) and the solver
status at termination (opt = optimum found, lim = time limit reached,
inf = infeasible instance). Best values are emphasized in boldface. Two
intances (namely powerflow2383wpp and transswitch2383wpp) from
Table 2 do not appear in Table 5 because we could not solve them with
SCIP 3.0.1 in view of the presence of unsupported AMPL operands in
their formulations (SCIP error message: "AMPL operand number 46

not supported so far").
As expected, we do not observe cases of infeasible narrowings on

account of the usage of SBCs derived from distinct orbits simultane-
ously. It is important to highlight that the SBCs reduced the total com-
putation time of the OI-narrowings in about 2 hours when compared
to the total computation time of the original formulations. We observe
small but consistent improvements in favor of the Orbital Indepen-
dence narrowings. In 35 out of 87 instances, the SBCs slightly helped
to improve the performance of the solvers. On the other hand, in 24

cases, the SBCs were harmful and in 28 other instances, they made no
difference at all. Although they provided good results, the few SOI-
narrowings did not achieve outstanding performances. As regards
the four instances that are closer to satisfy (σ, ρ,υ) ≈ (1, 1, 1), except
for ex9_2_6, the narrowings performed better, as expected. Interest-
ingly, the SBCs were particularly harmful to instances of two families,
map# among the MILPs and torsion# among the MINLPs. We shall
investigate the reasons behind these results in order to gain more
insights into the detrimental impact of SBCs.

But we can conjecture why SBCs are occasionally harmful: BB type
algorithms are complex systems whose performance depend on many
factors (LP solutions, branching policies, cut generation schemes and
so on). We expect the effect of SBCs to be, theoretically, the reduction
of the number of symmetric subtrees during the BB search. Since there
is no guarantee that this reduction will actually happen, failure is a
possibility. Yet their presence may change LPs solutions computed in
the nodes of the BB tree. In this sense, SBCs can also unduly impact on
branching policies and on cut generation schemes, since LP solutions
are the most important inputs for these two key features. However,
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Original formulation OI-narrowing

Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

bab5 -106412 3879.57 0 opt -106412 930.53 0 opt

blp-ar98 6205.21 1319.87 0 opt 6205.21 3736.05 0 opt

blp-ic97 4025.02 5517.71 0 opt 4025.02 3122.49 0 opt

core4872-1529 1459 7200.11 1.70 lim 1467 7200.14 2.21 lim

gmu-35-40 -2406600 63.59 0 opt -2406600 53.12 0 opt

gmu-35-50 -2607780 7208.25 0.01 lim -2607780 7209.47 0.01 lim

gmut-75-50 -14178800 7200.61 0.01 lim -14179300 6597.76 0 opt

gmut-77-40 -14170700 3439.64 0 opt -14170700 3582.83 0 opt

iis-bupa-cov 36 7200.08 4.34 lim 36 6017.99 0 opt

lectsched-4-obj 4 9.10 0 opt 4 8.05 0 opt

map06 -289 705.17 0 opt -289 806.19 0 opt

map10 -495 616.85 0 opt -495 699.47 0 opt

map14 -674 684.74 0 opt -674 664.73 0 opt

map18 -847 322.72 0 opt -847 328.57 0 opt

map20 -922 147.98 0 opt -922 169.07 0 opt

mcsched 211913 317.08 0 opt 211913 364.21 0 opt

mzzv11 -21718 20.27 0 opt -21718 34.15 0 opt

neos-1311124 -181 7200.79 0.55 lim -181 7200.49 0.55 lim

neos-1426635 -176 7201.01 1.14 lim -176 7200.77 0.57 lim

neos-1426662 -44 7200.67 14.40 lim -44 7201.45 12.94 lim

neos-1436709 -128 7200.38 0.78 lim -128 7200.40 0.78 lim

neos-1440460 -179.25 7200.59 0.42 lim -179.25 7200.37 0.05 lim

neos-1442119 -181 7200.35 0.55 lim -181 7200.34 0.55 lim

neos-1442657 -154.5 7200.59 0.97 lim -154.5 7200.40 0.97 lim

neos-911880 54.76 7.61 0 opt 54.76 7.12 0 opt

neos-952987 ∞ 7200.37 ∞ lim ∞ 7200.32 ∞ lim

neos18 13 25.43 0 opt 13 16.00 0 opt

ns1631475 21450 7200.10 91.03 lim ∞ 7200.06 ∞ lim

ns2081729 9 391.90 0 opt 9 815.13 0 opt

p2m2p1m1p0n100 0 0.00 0 opt 0 0.00 0 opt

protfold -26 7200.04 37.68 lim -27 7200.04 32.19 lim

rocII-4-11 -5.65564 400.50 0 opt -5.65564 385.86 0 opt

rococoC10-001000 11460 140.67 0 opt 11460 138.33 0 opt

rvb-sub 27.4683 7200.48 58.58 lim 27.4683 7200.39 58.56 lim

satellites1-25 -5 191.84 0 opt -5 421.96 0 opt

seymour-disj-10 287 7200.08 1.22 lim 288 7200.10 1.56 lim

seymour 306 7200.11 1.35 lim 307 7200.11 1.69 lim

swath 467.408 7200.37 10.14 lim 467.408 7200.42 9.95 lim

transportmoment ∞ 2.68 ∞ inf ∞ 2.50 ∞ inf

uc-case3 6931.2 7200.36 0.05 lim 6931.2 7200.38 0.05 lim

uct-subprob 315 7200.20 3.29 lim 315 7200.21 5.02 lim

Original formulation OI-narrowing SOI-narrowing

Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

core2536-691 683 56.90 0 opt 683 65.38 0 opt 683 50.90 0 opt

macrophage 374 868.50 0 opt 374 372.68 0 opt 374 271.38 0 opt

neos-555424 1286800 5.76 0 opt 1286800 6.79 0 opt 1286800 6.55 0 opt

neos-826841 29.0082 7200.13 3.45 lim 29.0082 7200.18 3.45 lim 29.0082 7200.14 3.45 lim

neos-849702 0 730.88 0 opt 0 8.65 0 opt 0 90.03 0 opt

toll-like 614 7200.07 18.52 lim 611 7200.08 17.02 lim 613 7200.07 16.76 lim

Table 4: MIPLIB2010 results obtained with CPLEX 12.6.
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Original formulation OI-narrowing

Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

arki0002 12.9734 7200.07 ∞∗ lim 12.9734 7200.06 ∞∗ lim

arki0005 10434.4 7200.31 ∞∗ lim 10434.4 7200.14 ∞∗ lim

arki0006 116.815 7200.22 ∞∗ lim 116.815 7200.54 ∞∗ lim

autocorr_bern25-03 -92 0.02 0 opt -92 0.02 0 opt

cecil_13 -115656 7304.46 2.66 lim -115656 7300.49 2.66 lim

chp_partload ∞ 7202.05 ∞ lim ∞ 7202.55 ∞ lim

crudeoil_li21 ∞ 7203.18 ∞ lim ∞ 7202.59 ∞ lim

ex9_2_6 -1 0.02 0 opt -1 0.02 0 opt

gastrans 89.0858 0.15 0 opt 89.0858 0.11 0 opt

hmittelman 13 0.03 0 opt 13 0.02 0 opt

kport20 26.9093 6489.09 0 opt 26.9093 4002.44 0 opt

kport40 32.3661 7443.03 35.35 lim 32.5547 7436.03 35.09 lim

lop97ic 4973.17 7200.83 94.03 lim 4830.18 7201.11 88.70 lim

lop97icx 4306 7208.88 49.98 lim 4323.03 7205.98 46.45 lim

mbtd 10.1668 7201.70 306.67 lim 8.50003 7206.50 240.00 lim

netmod_kar1 -0.419789 10.51 0 opt -0.419789 7.76 0 opt

netmod_kar2 -0.419789 10.59 0 opt -0.419789 7.79 0 opt

powerflow2383wpr ∞ 7204.88 ∞ lim ∞ 7204.91 ∞ lim

risk2bpb -55.8761 0.11 0 opt -55.8761 0.15 0 opt

routingdelay_bigm 146.626 12.27 0 opt 146.626 13.76 0 opt

routingdelay_proj ∞ 7201.98 ∞ lim ∞ 7201.87 ∞ lim

sepasequ_complex 578.744 7229.26 106.34 lim 492.415 7235.63 70.75 lim

st_rv9 -120.153 0.32 0 opt -120.153 0.22 0 opt

super1 ∞ 7211.69 ∞ lim ∞ 7209.83 ∞ lim

super2 ∞ 7209.98 ∞ lim ∞ 7212.45 ∞ lim

super3 ∞ 7224.12 ∞ lim ∞ 7209.58 ∞ lim

super3t ∞ 7209.06 ∞ lim ∞ 7208.77 ∞ lim

syn15m -853.283 0.16 0 opt -853.283 0.16 0 opt

torsion100 -0.337993 7200.57 39539.62 lim 0 7200.67 ∞∗ lim

torsion25 -0.341737 7200.11 10069.16 lim 0 7200.13 ∞∗ lim

torsion50 -0.333206 7200.32 16362.80 lim 0 7200.32 ∞∗ lim

torsion75 -0.338488 7200.61 25863.95 lim 0 7200.44 ∞∗ lim

transswitch2383wpr ∞ 7205.02 ∞ lim ∞ 7205.78 ∞ lim

turkey 1766.82 7200.18 ∞∗ lim 1766.82 7200.20 ∞∗ lim

unitcommit1 578177 2.79 0 opt 578177 2.66 0 opt

unitcommit2 578177 6.89 0 opt 578177 7.62 0 opt

waste 609.134 7216.32 101.88 lim 609.134 7217.47 101.88 lim

waterund28 ∞ 7200.37 ∞ lim ∞ 7200.84 ∞ lim

Original formulation OI-narrowing SOI-narrowing

Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

carton7 191.73 98.15 0 opt 191.73 92.05 0 opt 191.73 84.58 0 opt

carton9 205.137 103.60 0 opt 205.137 97.24 0 opt 205.137 42.99 0 opt

Table 5: MINLPLib2 results obtained with SCIP 3.0.1.
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since there are elements of arbitrary choice regarding the generation
of SBCs, we suspect that forcing these choices may, in some cases, pre-
vent the BB algorithm to take the correct decisions.

Overall, we understand that the results are at most reasonable, but
they support our motivation and encourage a more extensive exper-
imental evaluation against a larger set of instances that exhibit non-
trivial symmetries. In this sense, we will investigate a particular class
of symmetric Quadratically Constrained Quadratic Programs that fa-
vors the OI framework and yields interesting outcomes in the follow-
ing entr’acte. Conversely, the results presented so far may also be an
evidence that we have reached the limit of what we can do in terms of
SSB, since we are exploiting as much as we can, but not getting expres-
sive results for the general case. Perhaps this is not the most impactful
way to pursue in general, and so it is time to try and exploit the OI

ideas dynamically.

2.6 conclusions

In this chapter we have discussed the notion of Orbital Independence
by presenting theoretical results that establish sufficient conditions
to break symmetries from different orbits of Mathematical Programs
concurrently: we have defined the concept of an independent set of
orbits. These conditions were employed in the design of an algorithm
that potentially identifies the largest independent set of orbits of a
MP and generates SBCs to all orbits of this set. We have evaluated
the impact of our methodology by conducting experiments with sym-
metric instances taken from the libraries MIPLIB2010 and MINLPLib2.
Altogether, we have observed that the results were coherent in theo-
retical terms but at most reasonable in practical terms.





3
B I N A RY Q U A D R AT I C P R O G R A M M I N G

In this entr’acte we will continue to examine the impact of sym-
metries in Mathematical Programming by focusing on a particular
combinatorial specialization of Quadratically Constrained Quadratic
Programming, namely Binary Quadratic Programming. This relevant
subfield of Mathematical Programming encompasses binary programs
with a quadratic objective function and quadratic constraints, and
has many real-world and combinatorial optimization applications.
The choice of Binary Quadratic Programming here is twofold: first,
it allow us to use the Orbital Independence framework once more
to showcase the conditions under which the usage of Symmetry-
Breaking Constraints is majoritarily advantageous; and second, it al-
low us to reach other topic of our interest, Semidefinite Program-
ming. Since it is well-known that Semidefinite Programming suits
Quadratically Constrained Quadratic Programming perfectly in tech-
nical terms, this entr’acte uses Binary Quadratic Programs to inves-
tigate symmetries and Semidefinite Programming all together. This
is of concern because Semidefinite Programming is vastly employed
nowadays to solve (approximately) all sorts of hard Mathematical Pro-
grams; that being so, it is frequently used to cope with problems re-
lated to Distance Geometry, introduced in Chapter 4.

3.1 introduction

Even though solving general Binary Quadratic Programs (BQPs) is
known to be NP-hard (with a few known exceptions [46]), Binary
Quadratic Programming (BQP) has attracted a lot of attention amongst
the optimization community in recent years. It has become a very
important subfield of Mathematical Programming because a large
number of theoretical and practical applications can be modelled us-
ing BQPs [42]. Among several interesting examples, we would like
to mention one that relates to modelling and solving the Molecular
Conformation Problem (MCP) [70] by means of a quadratic assign-
ment formulation [74]. The Quadratic Assignment Problem (QAP) is
a BQP and the MCP is one of the many applications of the Euclidean
Distance Geometry Problem (see Chapter 4).

In this entr’acte we randomly generate symmetric Binary Quadratic
Programs having a certain symmetry structure with two main pur-
poses. First, we want to grasp initial impressions on the impact of
symmetries and their breaking devices in the performance of Semidef-
inite Programming and Diagonally Dominant Programming solvers.

41
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Second, we want to exemplify the conditions under which the usage
of Symmetry-Breaking Constraints is majoritarily advantageous. As
regards the former, after generating OI narrowings by means of the Al-
gorithm 2 proposed in Chapter 2, we derive the primal and dual SDPs

(as well as their respective DDPs) for both the original BQPs and their
narrowings; then we employ standard software codes available in the
literature to solve the resulting programs. Note that as a byproduct of
our experiments, we are also able to explicitly compare the quality of
the bounds generated by SDP and DDP. As regards the latter, we just
conduct similar experiments to those presented in Chapter 2.

The remainning of this entr’acte is structured as follows: in Section
3.2 we introduce the standard BQP form. The theoretical derivation
of the Semidefinite Programs and Diagonally Dominant Programs
associated to Binary Quadratic Programs are presented in Sections 3.3
and 3.4, respectively. We describe how we generate symmetric Binary
Quadratic Programs in Section 3.5 and, to conclude, computational
experiments are presented in Section 3.6.

3.2 binary quadratic programs

Notationwise, recall that N = [n] = {1, . . . ,n}. We are interested in
studying BQPs in the following general form:

min
x

x>A0x+ a0
>x

∀i ∈ II x>Aix+ ai
>x 6 bi,

∀i ∈ IE x>Aix+ ai
>x = bi,

x ∈ {0, 1}n.


(21)

where Ai denotes a n×n real (possibly indefinite) symmetric matrix
for all i ∈ {0}∪ II ∪ IE, b is a vector of dimension (|IE|+ |II|) and x is
a vector of decision variables of dimension n.

Now let diag(x) represent the square diagonal matrix that has the
elements of vector x on its main diagonal. Note that since xixi = xi
holds for all i ∈ N, it is also true that ai>x = x> diag(ai)x for all
i ∈ {0} ∪ II ∪ IE. If we define Ãi = Ai + diag(ai), we can actually
describe BQPs using the more compact form:

min
x

x>Ã0x

∀i ∈ II x>Ãix 6 bi,

∀i ∈ IE x>Ãix = bi,

x ∈ {0, 1}n.


(22)

The inconvenient of representing BQPs using the formulation given by
Eq. (22) is that linear constraints which may describe the feasible re-
gion of Eq. (21) are necessarily reformulated as quadratic constraints.
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Finally, since it is of our interest to work with SBCs later on, we
remark that any SBC written as defined in Section 2.2.6 can be eas-
ily translated into one of the inequality constraint forms present in
Eq. (21) or in Eq. (22).

3.3 sdp for bqp

Next we derive the primal and the dual standard SDPs (see Sect. 1.4)
for BQPs written as Eq. (21). To this end, the crucial step is to observe
that

x>Ax = tr(x>Ax) = tr(Axx>),

where tr(A) represents the trace of the matrix A. Defining a matrix X
of decision variables as X = xx>, one gets

x>Ax = tr(AX) = A> •X = A •X,

where A • B denotes the Frobenius inner product. The same pro-
cedure can be applied to the linear terms of the functions appear-
ing in Eq. (21) since a>x = tr(a>x) trivially holds. The equation
X − xx> = 0 is known as a Rank Constraint (RC) over the matrix
X: rkX = rk xx> = rk x for any x ∈ Rn×m. In the BQP case, x ∈ {0, 1}n.

The next step is to require diag(X) = x, where diag(X) represents
the column vector whose components are the elements of the main
diagonal of X. Note that X = x>x ∧ diag(X) = x⇒ x ∈ {0, 1}n. Indeed,
for i = j ∈ N, Xii = xixi ∧ Xii = xi ⇒ xixi = xi ⇒ xi(xi − 1) = 0⇒
xi ∈ {0, 1}. We may thus reformulate Eq. (21) into:

min
x,X

A0 •X+ a0 • x

∀i ∈ II Ai •X+ ai • x 6 bi,
∀i ∈ IE Ai •X+ ai • x = bi,

diag(X) = x,

X− x>x = 0.


(23)

Finally, observe that the constraint diag(X) = x can be rewritten using
the Frobenius inner product because Xii = xi ⇒ Xii − xi = 0 ⇒
Ai • X + ai • x = 0 for i ∈ N, where Ai = diag(ei), ai = −ei and
ei ∈ Rn is the ith canonical unit vector.

The most common way to derive a SDP relaxation for Eq. (23) is by
relaxing the Rank Constraint X− x>x = 0 into X− x>x � 0 and use
the fact that

X− x>x � 0 ⇐⇒
(
1 x>

x X

)
� 0

by the Schur complement condition for positive semidefiniteness to
formulate the SDP:
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min
x,X

A0 •X+ a0 • x

∀i ∈ II Ai •X+ ai • x 6 bi,
∀i ∈ IE Ai •X+ ai • x = bi,
∀i ∈ ID Ai •X+ ai • x = 0,(

1 x>

x X

)
� 0.


(24)

Following up, it is necessary to define a symmetric matrix Y of deci-
sion variables as

Y =

(
1 x>

x X

)
and notice that all constraints in Eq. (24) are linear with respect to
Y. It is then possible to rewrite the SDP given by Eq. (24) in primal
standard form like:

min
Y

P0 • Y

∀i ∈ II Pi • Y 6 bi,
∀i ∈ IE ∪ ID Pi • Y = bi,

Y � 0,


(25)

where

Pk =

(
0 0

ak Ak
>

)
for k ∈ {0}∪ IE ∪ II ∪ ID. According to what was described in Section
1.4, the dual SDP of Eq. (25) may be formulated as:

max
u,Q

bTu

P0 −
∑

i∈IE∪II∪ID
uiPi = Q,

∀i ∈ II ui > 0,

Q � 0.


(26)

3.4 ddp for bqp

The DDPs associated to the SDPs represented by Eq. (25) and Eq. (26)
are immediately obtained by substituting the PSD constraints for DD

constraints as in
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min
Y

P0 • Y

∀i ∈ II Pi • Y 6 bi,
∀i ∈ IE ∪ ID Pi • Y = bi,

Y is DD,


(27)

and
max
u,Q

bTu

P0 −
∑

i∈IE∪II∪ID
uiPi = Q,

∀i ∈ II ui > 0,

Q is DD.


(28)

The linearization of the DD constraints is achieved by means of
Eq. (12), and it yields the Linear Programs:

min
Y,T

P0 • Y

∀i ∈ II Pi • Y 6 bi,
∀i ∈ IE ∪ ID Pi • Y = bi,

∀i ∈ [n+ 1] Yii >
∑

j∈[n+1]
j6=i

Tij

T > Y > −T .


(29)

and
max
u,Q,T

bTu

P0 −
∑

i∈IE∪II∪ID
uiPi = Q,

∀i ∈ II ui > 0,

∀i ∈ [n+ 1] Qii >
∑

j∈[n+1]
j6=i

Tij

T > Q > −T .


(30)

Finally, consider an auxiliary matrix Z of decision variables to state
the iterative forms of Eq. (29) and Eq. (30) as:

min
Y,Z,T

P0 • Y

∀i ∈ II Pi • Y 6 bi,
∀i ∈ IE ∪ ID Pi • Y = bi,

Y = U>ZU,

∀i ∈ [n+K] Zii >
∑

j∈[n+K]
j6=i

Tij,

T > Z > −T ,

T > 0.



(31)
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and
max
u,Q,Z,T

bTu

P0 −
∑

i∈IE∪II∪ID
uiPi = Q,

∀i ∈ II ui > 0,

Y = U>ZU,

∀i ∈ [n+K] Zii >
∑

j∈[n+K]
j 6=i

Tij,

T > Z > −T ,

T > 0.



(32)

We would like to point out that our coding of the iterative DDP

method implements four termination criteria:

1. Maximum number of iterations reached;

2. Time limit reached;

3. Solution is feasible but not Positive Definite;

4. Problem is infeasible.

An execution is globally limited by a maximum number of iterations
and an execution time limit. Moreover, the execution stops if, at any
iteration, a feasible solution that is not PD is returned or if the ap-
proximation results infeasible. The former has to do with the fact that
a feasible non-PD solution means that the inner approximation has
converged to a face of the PSD cone, which is the ultimate objective of
the method. The latter happens in case the DD cone does not intersect
the original feasible region; this can only happen however in the first
iteration of the method, since after one successful (feasible) iteration,
the inner approximation can no longer become empty (see Section
1.4.1.2).

Recall that the DD constraint is parameterized by means of the
U matrices. In case the first program of the sequence is infeasible,
an alternative to construct a subsequent feasible approximation is to
run a feasibility-recovery subroutine (similar to the first phase of the
simplex method): run the iterative DDP method on a lifted program
containing slack and surplus variables whilst minimizing the sum of
these variables until all of them are zero. Then the main algorithm can
carry on minimizizing the original objective function using the U ma-
trices from the last iteration of the recovery subroutine (the iterative
method on the surplus/slack formulation).

3.5 bqp generation

In this section we will expose the most important properties of the
symmetric BQPs proposed in this entr’acte.
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The first property (P1) relates to their feasible region: every instance
has one single equality constraint of the type

a>x = dn/2e. (33)

The usage of constraint Eq. (33) aims at imposing a balance between
zeros and ones in the optimal solutions; as a consequence, we ex-
pect to create symmetric subtrees mostly around the central axis of
the search tree. Moreover, being invariant to permutations, this con-
straint allows us to specify the structure of the formulation groups by
controlling the strutucture of the matrix A0 alone.

The indices of the decision variables are divided into a partition P,
and the subsets s of the partition are randomly selected to be an orbit
or not.

The second property (P2) refers to the matrix A0: it is a block di-
agonal matrix. Each subset of the partition corresponds to a block in
the matrix A0. If a subset s ∈ P is not chosen to become an orbit, the
entries of the block Bs are computed by sampling a (|s|× |s|)-matrix
Ms and defining

Bs =Ms
>Ms. (34)

These blocks are Gram matrices. If a subset s is selected to be an orbit,
the entries of the block Bs are computed by sampling a pair (z1, z2)
of natural numbers and defining

Bs =

{
z1 + (|s|− 1)z2 if i = j,

−z2 if i 6= j.
(35)

These blocks are DD matrices. Since all blocks of A0 are PSD, the
matrix A0 is PSD as well and the continuous relaxations of the BQPs

are convex.
The blocks defined by Eq. (35) are the third and last property (P3).

Eq. (35) specifies matrices whose off-diagonal entries have the same
value and can be permuted at will among them; similarly, the diago-
nal entries are identical to each other and can be permuted freely.

When P1, P2 and P3 are put together, they induce the following
symmetry properties on the formulation group of the BQPs:

1. GP[ω] = Sym(ω) for every orbit ω ∈ ΩP;

2. ΩI = ΩGP .

According to the theory presented in Chapter 2, these two con-
ditions allow us to concurrently use SBCs derived from all orbits of
BQPs that satisfy P1, P2 and P3. Example 31 illustrates one of these
programs.
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Example 31. Let P be the following BQP:

min
x∈{0,1}9

x>A0x

a1
>x = 5,

where

A0 =



6 −3 −3 0 0 0 0 0 0

−3 6 −3 0 0 0 0 0 0

−3 −3 6 0 0 0 0 0 0

0 0 0 12 −6 −6 0 0 0

0 0 0 −6 12 −6 0 0 0

0 0 0 −6 −6 12 0 0 0

0 0 0 0 0 0 3 1 3

0 0 0 0 0 0 1 5 2

0 0 0 0 0 0 3 2 5


and a1> = (1 1 1 1 1 1 1 1 1). It does satisfy properties P1, P2 and P3.
Moreover, ΩGP = {ω1,ω2} = {{1, 2, 3}, {4, 5, 6}}, with ω1

��

ω2 holding.
And the transitive constituent of both orbits is the full symmetric group.

3.6 computational experiments

In this section we describe the computational environment involved
(instances, machinery, solvers, setups, procedures, etc) and analyze
the results obtained in our experiments.

3.6.1 Dataset

Our set of randomly generated symmetric BQPs is divided in two
groups, according to the size of the instances. The first group con-
tains 40 small instances (with up to 50 variables) which are used in
the SDP/DDP experiments. The second group constains 97 medium
sized instances (with up to 100 variables) which are used in the OI ex-
periments. The BQPs are named bqp_n_oxs, where n represents the
number of variables, o the number of orbits and s the orbits’ size (R
means orbits with random sizes).

3.6.2 Environment

We implemented the Mathematical Programs presented in Sections
3.3 and 3.4 in Python 2.7 using PICOS 1.1.1 [77] to interface with the
solvers MOSEK 7.1 [7] and CPLEX 12.6 [37], which were used to solve
the SDPs and the DDPs, respectively. The tests were carried out on a
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24-CPU Intel Xeon at 2.53GHz with 48Gb RAM running GNU/Linux.
We disabled CPLEX’s built-in symmetry handling methods and ran
it in single thread mode (similar to what was done in Chapter 2) to
obtain the OI results presented in Section 3.6.4.

3.6.3 Results: SDP/DDP

To evaluate the quality of the bounds computed in this section, we
computed the optima of the instances in our testbed. Table 6 reports
the optimization results for Eq. (21). Per instance, it exhibits the best
solution found, the execution time, the optimality gap and the solver
status at termination (opt = optimum found, lim = time limit reached,
inf = infeasible instance). All instances were solved to optimality.

Instance
Original formulation

Best Time (s) Gap (%) St.

bqp_25_2xR 140 0.54 0 opt

bqp_25_3xR 100 0.03 0 opt

bqp_25_4x5 68 0.06 0 opt

bqp_30_2x10 235 0.06 0 opt

bqp_30_2xR 375 0.38 0 opt

bqp_30_3x6 27 0.04 0 opt

bqp_30_3xR 114 0.03 0 opt

bqp_30_4x5 30 0.02 0 opt

bqp_30_4x6 69 0.06 0 opt

bqp_30_5x5 45 0.02 0 opt

bqp_35_2xR 3960 116.42 0 opt

bqp_35_3x7 87 0.04 0 opt

bqp_35_3xR 79 0.03 0 opt

bqp_35_4x7 108 0.05 0 opt

bqp_35_4xR 54 0.01 0 opt

bqp_35_6x5 56 0.10 0 opt

bqp_40_2x10 110 0.01 0 opt

bqp_40_2xR 200 0.02 0 opt

bqp_40_3x10 70 0.00 0 opt

bqp_40_3x8 160 0.11 0 opt

bqp_40_3xR 184 0.11 0 opt

bqp_40_4x8 116 0.15 0 opt

bqp_40_5xR 96 0.06 0 opt

bqp_40_7x5 30 0.02 0 opt

bqp_45_2x15 780 4.37 0 opt

bqp_45_2xR 1014 0.04 0 opt

bqp_45_3x9 290 0.22 0 opt

bqp_45_3xR 469 0.12 0 opt

bqp_45_4x9 242 0.40 0 opt

bqp_45_4xR 260 0.13 0 opt

bqp_45_5xR 172 0.37 0 opt

bqp_45_8x5 40 0.24 0 opt

bqp_50_2xR 842 1.04 0 opt
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bqp_50_3x10 255 0.74 0 opt

bqp_50_3xR 296 0.09 0 opt

bqp_50_4x10 105 0.23 0 opt

bqp_50_4xR 155 0.06 0 opt

bqp_50_6xR 80 0.04 0 opt

bqp_50_7x5 40 0.01 0 opt

bqp_50_9x5 40 0.04 0 opt

Table 6: Optimization results obtained with CPLEX 12.6 for the set of small
BQP instances.

We start by analyzing the impact of SBCs in SDP. Tables 7 and 8 re-
port details of the optimization results for the primal and dual SDPs,
respectively. We derived the primal and dual relaxations for both the
original formulation and its OI-narrowing. Per instance and for each
formulation, the table exhibits the best solution found, the user cpu
time (in seconds), the gap (%), the rank of the solution and its maxi-
mum possible value (displayed like rank/rankmax), and the solver sta-
tus at termination (opt = optimum found, nopt = near optimal, unkn
= unknown, lim = time limit reached, inf = infeasible). Best values
are emphasized in boldface. According to MOSEK’s online documen-
tation [7], the near optimal status occurs when the IPM terminates
having found a solution not too far from meeting the optimality con-
ditions (for instance when the solver stalls and can make no more
significant progress towards the optimal solution). The same applies
for the unknown status, but in this case, the solution is less likely
to be optimal. Yet MOSEK’s documentation recommends to check its
quality; an illustrative description can be found in [6].

As Table 7 exhibits, all executions of the primal SDPs terminated
due to stalling, either with near optimal or unknown status. Since
we are not dealing with BB type algorithms in this case, we will
evaluate the impact of the SBCs according to the ranking: quality of
bound, status and execution time. In terms of value, the bounds dif-
fer in six cases (bqp_25_2xR, bqp_25_3xR, bqp_30_3xR, bqp_45_2xR,
bqp_45_3xR and bqp_45_5xR); in terms of status, the bounds differ in
three instances, two (bqp_25_2xR and bqp_25_3xR) in favor of the nar-
rowing relaxation (the status changed from "unkn" to "nopt"). Time-
wise, we observe 30 cases were the use of SBCs were detrimental. But
this is expected since more constraints are added to the SDPs. As re-
gards the rank, we notice that it is considerably reduced in three cases
when using SBCs: bqp_40_2xR, bqp_45_3xR and bqp_50_3x10.

Instance
Primal SDP

Original formulation OI-narrowing

Best Time (s) Rank St. Best Time (s) Rank St.

bqp_25_2xR 0.16 0.12 26/26 unkn 0.17 0.12 26/26 nopt



3.6 computational experiments 51

bqp_25_3xR 3.45 0.08 26/26 unkn 3.44 0.11 26/26 nopt

bqp_25_4x5 13.00 0.07 26/26 nopt 13.00 0.09 26/26 nopt

bqp_30_2x10 38.25 0.12 24/31 nopt 38.25 0.13 28/31 nopt

bqp_30_2xR 15.00 0.09 30/31 nopt 15.00 0.12 31/31 nopt

bqp_30_3x6 0.00 0.13 30/31 unkn 0.00 0.12 30/31 unkn

bqp_30_3xR 2.81 0.15 30/31 unkn 2.80 0.13 28/31 unkn

bqp_30_4x5 7.23 0.11 31/31 nopt 7.23 0.11 31/31 nopt

bqp_30_4x6 0.00 0.09 31/31 unkn 0.00 0.13 31/31 unkn

bqp_30_5x5 0.00 0.09 30/31 unkn 0.00 0.12 31/31 unkn

bqp_35_2xR 18.00 0.14 36/36 nopt 18.00 0.15 36/36 nopt

bqp_35_3x7 36.00 0.13 35/36 nopt 36.00 0.18 35/36 nopt

bqp_35_3xR 14.33 0.11 36/36 nopt 14.33 0.13 36/36 nopt

bqp_35_4x7 0.00 0.11 36/36 nopt 0.00 0.14 36/36 unkn

bqp_35_4xR 0.00 0.11 36/36 unkn 0.00 0.13 36/36 unkn

bqp_35_6x5 0.00 0.11 36/36 unkn 0.00 0.14 36/36 unkn

bqp_40_2x10 80.00 0.13 40/41 nopt 80.00 0.16 41/41 nopt

bqp_40_2xR 3.18 0.13 41/41 nopt 3.18 0.17 23/41 nopt

bqp_40_3x10 60.00 0.16 41/41 nopt 60.00 0.18 41/41 nopt

bqp_40_3x8 0.00 0.14 40/41 unkn 0.00 0.15 40/41 unkn

bqp_40_3xR 60.00 0.13 41/41 nopt 60.00 0.16 40/41 nopt

bqp_40_4x8 0.00 0.13 41/41 unkn 0.00 0.20 41/41 unkn

bqp_40_5xR 6.61 0.13 41/41 nopt 6.61 0.21 41/41 nopt

bqp_40_7x5 20.00 0.14 40/41 nopt 20.00 0.15 40/41 nopt

bqp_45_2x15 92.00 0.14 45/46 nopt 92.00 0.19 45/46 nopt

bqp_45_2xR 5.69 0.13 44/46 unkn 5.70 0.16 45/46 unkn

bqp_45_3x9 0.00 0.17 45/46 unkn 0.00 0.19 45/46 unkn

bqp_45_3xR 0.10 0.19 40/46 unkn 0.08 0.20 25/46 unkn

bqp_45_4x9 46.00 0.18 45/46 nopt 46.00 0.21 45/46 nopt

bqp_45_4xR 0.00 0.15 46/46 unkn 0.00 0.19 45/46 unkn

bqp_45_5xR 53.03 0.16 46/46 nopt 53.02 0.19 43/46 nopt

bqp_45_8x5 0.00 0.13 45/46 unkn 0.00 0.26 45/46 unkn

bqp_50_2xR 75.00 0.18 50/51 nopt 75.00 0.24 50/51 nopt

bqp_50_3x10 0.35 0.18 40/51 unkn 0.35 0.23 21/51 unkn

bqp_50_3xR 6.42 0.18 49/51 nopt 6.42 0.34 46/51 nopt

bqp_50_4x10 0.00 0.26 51/51 unkn 0.00 0.23 50/51 unkn

bqp_50_4xR 0.00 0.19 49/51 unkn 0.00 0.24 51/51 unkn

bqp_50_6xR 0.00 0.17 50/51 unkn 0.00 0.23 51/51 unkn

bqp_50_7x5 0.00 0.17 51/51 unkn 0.00 0.21 51/51 unkn

bqp_50_9x5 0.00 0.15 51/51 unkn 0.00 0.19 51/51 unkn

Table 7: Primal SDP results obtained with MOSEK 7.1 for the set of small BQP
instances.

Table 8 shows that the results related to the dual SDPs are slightly
better. MOSEK has converged to optmimal solutions 30 times, what
did not happen with the primal programs; and the lower bounds ob-
tained are the same per instance. In relative terms, the results have
also improved in favor of the SDPs relaxations of the narrowings. As
regards the termination status, they differ in 17 intances with 6 im-
provements (either "unkn" to "nopt" or "nopt" to "opt") in favor of the
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SBCs; as regards reduction in CPU time, we observe 5 cases out of 23

in favor of the SBCs. No favorable trend is observed as concerns the
rank of the solutions.

Overall, it may be interesting to further investigate why there are
so many cases of unknown or near optimality solutions. Moreover,
it seems to be clear that solving the SDPs corresponding to the OI-
narrowing is not quite advantegeous. In any case, provided that the
times do not differ too much in absolute values, we believe that if
the non-SBC version provides a weak bound, one should add the
SBCs and re-solve it hoping for better bounds. Specially because these
results refer to a particular application, symmetric BQPs. They may
be better in a different context.

Instance
Dual SDP

Original formulation OI-narrowing

Best Time (s) Rank St. Best Time (s) Rank St.

bqp_25_2xR 0.16 0.74 26/26 nopt 0.16 0.63 26/26 nopt

bqp_25_3xR 3.44 0.49 26/26 nopt 3.44 0.58 26/26 nopt

bqp_25_4x5 13.00 0.47 25/26 opt 13.00 1.02 26/26 nopt

bqp_30_2x10 38.24 1.05 31/31 nopt 38.24 0.92 30/31 opt

bqp_30_2xR 15.00 0.92 30/31 opt 15.00 1.74 31/31 nopt

bqp_30_3x6 0.00 1.65 31/31 nopt 0.00 1.26 31/31 nopt

bqp_30_3xR 2.78 1.43 31/31 nopt 2.78 1.12 31/31 nopt

bqp_30_4x5 7.23 1.14 31/31 opt 7.23 0.82 31/31 opt

bqp_30_4x6 0.00 0.78 30/31 opt 0.00 1.39 31/31 nopt

bqp_30_5x5 0.00 0.92 31/31 nopt 0.00 1.43 31/31 nopt

bqp_35_2xR 18.00 1.52 35/36 opt 18.00 2.77 35/36 nopt

bqp_35_3x7 36.00 1.45 35/36 opt 36.00 3.02 36/36 opt

bqp_35_3xR 14.32 1.36 35/36 opt 14.32 1.87 35/36 opt

bqp_35_4x7 0.00 1.44 35/36 opt 0.00 2.27 35/36 opt

bqp_35_4xR 0.00 1.54 36/36 nopt 0.00 3.16 36/36 nopt

bqp_35_6x5 0.00 2.14 36/36 nopt 0.00 2.97 36/36 nopt

bqp_40_2x10 80.00 2.80 40/41 opt 80.00 3.71 41/41 opt

bqp_40_2xR 3.18 2.88 41/41 nopt 3.18 2.37 40/41 opt

bqp_40_3x10 60.00 3.02 40/41 opt 60.00 4.02 41/41 nopt

bqp_40_3x8 0.00 2.57 41/41 unkn 0.00 5.64 41/41 nopt

bqp_40_3xR 60.00 2.19 39/41 opt 60.00 4.04 41/41 opt

bqp_40_4x8 0.00 2.88 41/41 nopt 0.00 4.13 41/41 nopt

bqp_40_5xR 6.61 2.15 40/41 opt 6.61 2.13 40/41 opt

bqp_40_7x5 20.00 2.57 40/41 opt 20.00 5.17 41/41 nopt

bqp_45_2x15 92.00 5.51 45/46 nopt 92.00 7.26 46/46 nopt

bqp_45_2xR 5.67 4.00 46/46 nopt 5.67 5.28 45/46 unkn

bqp_45_3x9 0.00 4.80 46/46 nopt 0.00 7.27 45/46 nopt

bqp_45_3xR 0.05 4.45 46/46 unkn 0.05 5.37 46/46 unkn

bqp_45_4x9 46.00 3.84 45/46 opt 46.00 5.94 46/46 opt

bqp_45_4xR 0.00 4.29 46/46 nopt 0.00 6.73 45/46 nopt

bqp_45_5xR 53.02 3.05 46/46 opt 53.02 3.78 46/46 opt

bqp_45_8x5 0.00 4.83 45/46 nopt 0.00 7.17 45/46 nopt

bqp_50_2xR 75.00 5.09 50/51 opt 75.00 11.14 50/51 nopt
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bqp_50_3x10 0.35 5.30 50/51 opt 0.35 6.72 51/51 unkn

bqp_50_3xR 6.41 5.70 51/51 nopt 6.41 5.38 51/51 opt

bqp_50_4x10 0.00 5.88 51/51 nopt 0.00 8.50 51/51 unkn

bqp_50_4xR 0.00 6.93 50/51 unkn 0.00 10.04 51/51 nopt

bqp_50_6xR 0.00 7.04 51/51 nopt 0.00 9.96 51/51 nopt

bqp_50_7x5 0.00 6.78 51/51 unkn 0.00 10.77 50/51 nopt

bqp_50_9x5 0.00 4.61 51/51 opt 0.00 8.42 51/51 unkn

Table 8: Dual SDP results obtained with MOSEK 7.1 for the set of small BQP
instances.

Next we analyze the impact of SBCs in DDP. Tables 9 and 10 report
details of the optimization results for primal and dual DDPs, respec-
tively. Again we derived the primal and dual relaxations for both the
original formulation and its OI-narrowing. Per instance and for each
formulation, the table exhibits the best solution found, the user cpu
time (in seconds), number of DDP iterations, the rank of the solution
and its maximum possible value (displayed like rank/rankmax) and
the termination status of the algorithm (not = solution is feasible but
not PD, lim = time limit reached, inf = infeasible). Best values are
emphasized in boldface.

With respect to the primal DDPs, the results are quite poor. Al-
though the bounds obtained were the same for each instance, the
usage of SBCs was detrimental in 28 out of 40 cases in terms of the
execution time; they were helpful in 7 out of 40 cases. Furthermore,
we notice that the first inner aproximation already provides a feasible
non-PD solution for all instances (Iter. "1" and St. "not"). This means
that the inner approximation intersects one of the faces of the PSD

cone in the first iteration. As a consequence, we could not verify the
usefulness of the iterative method in terms of improving the value of
the bounds after each iteration. We note however that the presence of
the SBCs alter the sequence of approximations since the rank of the so-
lutions differs (i. e. a different face of the cone is reached) per instance
when the SBCs are used. Fortunately this particular investigation has
no requirements regarding the rank of the solutions; the context is
rather different in Chapter 4 though.

Instance
Primal DDP

Original formulation OI-narrowing

Best Time (s) Iter. Rank St. Best Time (s) Iter. Rank St.

bqp_25_2xR 520.00 0.48 1 1/26 not 520.00 0.39 1 8/26 not

bqp_25_3xR 715.00 0.37 1 1/26 not 715.00 0.43 1 6/26 not

bqp_25_4x5 364.00 0.35 1 1/26 not 364.00 0.36 1 5/26 not

bqp_30_2x10 645.00 0.55 1 1/31 not 645.00 0.56 1 10/31 not

bqp_30_2xR 2160.00 0.67 1 1/31 not 2160.00 0.57 1 6/31 not

bqp_30_3x6 45.00 0.55 1 1/31 not 45.00 0.56 1 1/31 not
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bqp_30_3xR 210.00 0.66 1 1/31 not 210.00 0.56 1 6/31 not

bqp_30_4x5 285.00 0.66 1 1/31 not 285.00 0.67 1 1/31 not

bqp_30_4x6 465.00 0.68 1 1/31 not 465.00 0.56 1 6/31 not

bqp_30_5x5 315.00 0.55 1 1/31 not 315.00 0.58 1 1/31 not

bqp_35_2xR 918.00 0.82 1 1/36 not 918.00 0.84 1 5/36 not

bqp_35_3x7 342.00 0.83 1 1/36 not 342.00 0.83 1 7/36 not

bqp_35_3xR 936.00 0.82 1 1/36 not 936.00 0.83 1 1/36 not

bqp_35_4x7 216.00 1.04 1 1/36 not 216.00 1.05 1 7/36 not

bqp_35_4xR 882.00 0.83 1 1/36 not 882.00 1.05 1 7/36 not

bqp_35_6x5 558.00 1.05 1 1/36 not 558.00 1.05 1 3/36 not

bqp_40_2x10 3500.00 1.20 1 1/41 not 3500.00 1.22 1 4/41 not

bqp_40_2xR 200.00 1.21 1 1/41 not 200.00 1.21 1 1/41 not

bqp_40_3x10 2000.00 1.20 1 1/41 not 2000.00 1.58 1 6/41 not

bqp_40_3x8 720.00 1.18 1 1/41 not 720.00 1.22 1 8/41 not

bqp_40_3xR 480.00 1.20 1 1/41 not 480.00 1.22 1 5/41 not

bqp_40_4x8 520.00 1.17 1 1/41 not 520.00 1.59 1 8/41 not

bqp_40_5xR 480.00 1.18 1 1/41 not 480.00 1.21 1 1/41 not

bqp_40_7x5 180.00 1.16 1 1/41 not 180.00 1.21 1 5/41 not

bqp_45_2x15 4002.00 1.65 1 1/46 not 4002.00 1.71 1 7/46 not

bqp_45_2xR 667.00 2.24 1 1/46 not 667.00 2.28 1 8/46 not

bqp_45_3x9 1840.00 1.63 1 1/46 not 1840.00 1.69 1 9/46 not

bqp_45_3xR 6049.00 1.64 1 1/46 not 6049.00 1.71 1 1/46 not

bqp_45_4x9 1518.00 1.64 1 1/46 not 1518.00 1.67 1 9/46 not

bqp_45_4xR 1656.00 1.64 1 1/46 not 1656.00 1.65 1 7/46 not

bqp_45_5xR 1150.00 1.64 1 1/46 not 1150.00 1.64 1 7/46 not

bqp_45_8x5 368.00 1.65 1 1/46 not 368.00 1.68 1 2/46 not

bqp_50_2xR 5675.00 3.07 1 1/51 not 5675.00 2.28 1 12/51 not

bqp_50_3x10 1075.00 2.26 1 1/51 not 1075.00 2.29 1 10/51 not

bqp_50_3xR 1725.00 2.22 1 1/51 not 1725.00 3.12 1 9/51 not

bqp_50_4x10 1450.00 2.68 1 1/51 not 1450.00 2.26 1 1/51 not

bqp_50_4xR 850.00 2.25 1 1/51 not 850.00 3.15 1 9/51 not

bqp_50_6xR 1150.00 2.28 1 1/51 not 1150.00 3.51 1 8/51 not

bqp_50_7x5 1375.00 2.28 1 1/51 not 1375.00 2.28 1 5/51 not

bqp_50_9x5 525.00 3.08 1 1/51 not 525.00 2.29 1 1/51 not

Table 9: Primal DDP results obtained with CPLEX 12.6 for the set of small
BQP instances.

As refers to the dual DDPs, the results are slightly better. Again
the lower bounds obtained are the same for each instance, but the
SBCs impact improved in relative terms: we observe a reduction in the
execution time in 15 cases, and a growth in 20 cases. For the same
reason, feasible and non-PD solutions found in the first iteration, we
could not observe the iterative method in action and improving the
quality of the bounds after performing at least two iterations success-
fully. In the case of the dual programs, however, the presence of the
SBCs did not change the rank of the solutions, but again, this is not
relevant in this context.
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Instance
Dual DDP

Original formulation OI-narrowing

Best Time (s) Iter. Rank St. Best Time (s) Iter. Rank St.

bqp_25_2xR -2184.00 0.54 1 25/26 not -2184.00 0.53 1 25/26 not

bqp_25_3xR -13858.00 0.42 1 25/26 not -13858.00 0.47 1 25/26 not

bqp_25_4x5 -6552.00 0.49 1 25/26 not -6552.00 0.57 1 25/26 not

bqp_30_2x10 -40425.00 0.68 1 30/31 not -40425.00 0.68 1 30/31 not

bqp_30_2xR -20385.00 0.82 1 30/31 not -20385.00 0.67 1 30/31 not

bqp_30_3x6 -21435.00 0.70 1 30/31 not -21435.00 0.68 1 30/31 not

bqp_30_3xR -29835.00 0.75 1 30/31 not -29835.00 0.82 1 30/31 not

bqp_30_4x5 -1260.00 0.68 1 30/31 not -1260.00 0.69 1 30/31 not

bqp_30_4x6 -6330.00 0.83 1 30/31 not -6330.00 0.75 1 30/31 not

bqp_30_5x5 -660.00 0.69 1 30/31 not -660.00 0.69 1 30/31 not

bqp_35_2xR -40302.00 0.97 1 35/36 not -40302.00 0.95 1 35/36 not

bqp_35_3x7 -31068.00 1.05 1 35/36 not -31068.00 1.24 1 35/36 not

bqp_35_3xR -2754.00 1.27 1 35/36 not -2754.00 1.01 1 35/36 not

bqp_35_4x7 -29574.00 1.06 1 35/36 not -29574.00 1.03 1 35/36 not

bqp_35_4xR -19926.00 1.30 1 35/36 not -19926.00 1.03 1 35/36 not

bqp_35_6x5 -4284.00 1.12 1 35/36 not -4284.00 1.05 1 35/36 not

bqp_40_2x10 -130340.00 1.48 1 40/41 not -130340.00 1.88 1 40/41 not

bqp_40_2xR -900.00 1.46 1 40/41 not -900.00 1.48 1 40/41 not

bqp_40_3x10 -126800.00 2.08 1 40/41 not -126800.00 1.51 1 40/41 not

bqp_40_3x8 -96640.00 1.46 1 40/41 not -96640.00 1.57 1 40/41 not

bqp_40_3xR -52780.00 1.45 1 40/41 not -52780.00 1.51 1 40/41 not

bqp_40_4x8 -67880.00 1.46 1 40/41 not -67880.00 1.57 1 40/41 not

bqp_40_5xR -800.00 1.50 1 40/41 not -800.00 1.59 1 40/41 not

bqp_40_7x5 -41420.00 1.90 1 40/41 not -41420.00 1.57 1 40/41 not

bqp_45_2x15 -739496.00 2.59 1 45/46 not -739496.00 2.11 1 45/46 not

bqp_45_2xR -234669.00 2.06 1 45/46 not -234669.00 2.14 1 45/46 not

bqp_45_3x9 -183954.00 2.12 1 45/46 not -183954.00 2.13 1 45/46 not

bqp_45_3xR -253644.00 2.05 1 45/46 not -253644.00 2.08 1 45/46 not

bqp_45_4x9 -105800.00 2.70 1 45/46 not -105800.00 2.72 1 45/46 not

bqp_45_4xR -73853.00 2.11 1 45/46 not -73853.00 2.70 1 45/46 not

bqp_45_5xR -23253.00 2.14 1 45/46 not -23253.00 2.71 1 45/46 not

bqp_45_8x5 -48530.00 2.16 1 45/46 not -48530.00 2.16 1 45/46 not

bqp_50_2xR -183075.00 3.76 1 50/51 not -183075.00 2.86 1 50/51 not

bqp_50_3x10 -103075.00 2.96 1 50/51 not -103075.00 2.96 1 50/51 not

bqp_50_3xR -24650.00 3.84 1 50/51 not -24650.00 2.93 1 50/51 not

bqp_50_4x10 -3600.00 3.91 1 50/51 not -3600.00 2.99 1 50/51 not

bqp_50_4xR -389725.00 3.06 1 50/51 not -389725.00 3.06 1 50/51 not

bqp_50_6xR -190725.00 3.05 1 50/51 not -190725.00 3.09 1 50/51 not

bqp_50_7x5 -58100.00 3.10 1 50/51 not -58100.00 3.12 1 50/51 not

bqp_50_9x5 -1550.00 3.09 1 50/51 not -1550.00 3.13 1 50/51 not

Table 10: Dual DDP results obtained with CPLEX 12.6 for the set of small BQP
instances.
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Table 11 displays a direct comparison of the bounds obtained dur-
ing our experiments. In theory, for the same instance, we expect the
bounds to satisfy two possible chains, either

DDPP > BQPO > SDPP = SDPD > DDPD (C1)

or
BQPO > DDPP > SDPP = SDPD > DDPD, (C2)

where the subscripts P,O and D mean primal, original and dual, re-
spectively. Both chains are correct because both the DDPP and the
BQPO can be seen as two unrelated inner approximations of the SDPP

(recall that SDPs are convex relaxations of nonconvex MPs). As re-
gards the SDPs, the equality holds because of strong duality.

In most of the cases, the bounds satisfy the chain C1, whilst the
chain C2 is verified in only two cases: bqp_35_2xR and bqp_45_2xR.
The most important dicovery with this comparison is that the bounds
provided by the dual DDPs are very weak. Most likely, even though
the first inner approximation (U0 = I, see Eq. (16)) is feasible, it is
not good for the application at hand. Nevertheless, since this is a
parameterized method, one can always consider to use a different
starting value for the U matrices, seeking for improvements in the
bounds generated by the dual DDPs.

Instance BQPO DDPP SDPP SDPD DDPD Chain

bqp_25_2xR 140 520.00 0.16 0.16 -2184.00 C1

bqp_25_3xR 100 715.00 3.45 3.44 -13858.00 C1

bqp_25_4x5 68 364.00 13.00 13.00 -6552.00 C1

bqp_30_2x10 235 645.00 38.25 38.24 -40425.00 C1

bqp_30_2xR 375 2160.00 15.00 15.00 -20385.00 C1

bqp_30_3x6 27 45.00 0.00 0.00 -21435.00 C1

bqp_30_3xR 114 210.00 2.81 2.78 -29835.00 C1

bqp_30_4x5 30 285.00 7.23 7.23 -1260.00 C1

bqp_30_4x6 69 465.00 0.00 0.00 -6330.00 C1

bqp_30_5x5 45 315.00 0.00 0.00 -660.00 C1

bqp_35_2xR 3960 918.00 18.00 18.00 -40302.00 C2

bqp_35_3x7 87 342.00 36.00 36.00 -31068.00 C1

bqp_35_3xR 79 936.00 14.33 14.32 -2754.00 C1

bqp_35_4x7 108 216.00 0.00 0.00 -29574.00 C1

bqp_35_4xR 54 882.00 0.00 0.00 -19926.00 C1

bqp_35_6x5 56 558.00 0.00 0.00 -4284.00 C1

bqp_40_2x10 110 3500.00 80.00 80.00 -130340.00 C1

bqp_40_2xR 200 200.00 3.18 3.18 -900.00 C1

bqp_40_3x10 70 2000.00 60.00 60.00 -126800.00 C1

bqp_40_3x8 160 720.00 0.00 0.00 -96640.00 C1

bqp_40_3xR 184 480.00 60.00 60.00 -52780.00 C1

bqp_40_4x8 116 520.00 0.00 0.00 -67880.00 C1

bqp_40_5xR 96 480.00 6.61 6.61 -800.00 C1

bqp_40_7x5 30 180.00 20.00 20.00 -41420.00 C1
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bqp_45_2x15 780 4002.00 92.00 92.00 -739496.00 C1

bqp_45_2xR 1014 667.00 5.69 5.67 -234669.00 C2

bqp_45_3x9 290 1840.00 0.00 0.00 -183954.00 C1

bqp_45_3xR 469 6049.00 0.10 0.05 -253644.00 C1

bqp_45_4x9 242 1518.00 46.00 46.00 -105800.00 C1

bqp_45_4xR 260 1656.00 0.00 0.00 -73853.00 C1

bqp_45_5xR 172 1150.00 53.03 53.02 -23253.00 C1

bqp_45_8x5 40 368.00 0.00 0.00 -48530.00 C1

bqp_50_2xR 842 5675.00 75.00 75.00 -183075.00 C1

bqp_50_3x10 255 1075.00 0.35 0.35 -103075.00 C1

bqp_50_3xR 296 1725.00 6.42 6.41 -24650.00 C1

bqp_50_4x10 105 1450.00 0.00 0.00 -3600.00 C1

bqp_50_4xR 155 850.00 0.00 0.00 -389725.00 C1

bqp_50_6xR 80 1150.00 0.00 0.00 -190725.00 C1

bqp_50_7x5 40 1375.00 0.00 0.00 -58100.00 C1

bqp_50_9x5 40 525.00 0.00 0.00 -1550.00 C1

Table 11: SDP and DDP bounds for BQP.

3.6.4 Results: OI

Again we start off commenting the results related to the OI reformu-
lation process. Table 12 reports, per instance, the number of variables
(n) and orbits (|ΩGP |) of the original formulation, and the total num-
ber of variables indexed by the orbits ΩGP (#svar); for each OI nar-
rowing type, the table reports the size of the maximum clique (|ΩK|),
the size of the largest independent set (|ΩI|), the total number of
variables indexed by all the orbits in ΩI (#var), the number of weak
(#wea) and strong (#str) SBCs generated, and the parameters σ, ρ and
υ, which were described in Section 2.5.4.

As the results in Table 12 indicate, the BQPs generated according
to what was exposed in Section 3.5 are highly symmetric. In general,
we observe that (σ, ρ,υ) = ([0.5, 1], 1, 1) holds for all cases, meaning
that at least half of the variables of each instance belongs to an orbit
(σ ∈ [0.5, 1]) and that we explore them all ((ρ,υ) = (1, 1)). Moreover,
the BQPs were generated so as to guarantee that every orbit satisfies
the conditions in Proposition 28; as one may also observe in Table 12,
we could build nothing but strong SBCs for all instances.

Original formulation OI-narrowing

Instance n |ΩGP
| #svar |ΩK| |ΩI| #var #wea #str σ ρ υ

bqp_55_2xR 55 2 37 2 2 37 0 35 .67 1.00 1.00

bqp_55_3xR 55 3 40 3 3 40 0 37 .72 1.00 1.00

bqp_55_4x11 55 4 44 4 4 44 0 40 .80 1.00 1.00

bqp_55_4xR 55 4 46 4 4 46 0 42 .83 1.00 1.00

bqp_55_5xR 55 5 55 5 5 55 0 50 1.00 1.00 1.00

bqp_55_6xR 55 6 45 6 6 45 0 39 .81 1.00 1.00
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bqp_60_2x20 60 2 40 2 2 40 0 38 .66 1.00 1.00

bqp_60_2xR 60 2 45 2 2 45 0 43 .75 1.00 1.00

bqp_60_3x15 60 3 45 3 3 45 0 42 .75 1.00 1.00

bqp_60_3x20 60 3 60 3 3 60 0 57 1.00 1.00 1.00

bqp_60_3xR 60 3 47 3 3 47 0 44 .78 1.00 1.00

bqp_60_4x12 60 4 48 4 4 48 0 44 .80 1.00 1.00

bqp_60_4xR 60 4 47 4 4 47 0 43 .78 1.00 1.00

bqp_60_5x10 60 5 50 5 5 50 0 45 .83 1.00 1.00

bqp_60_5xR 60 5 49 5 5 49 0 44 .81 1.00 1.00

bqp_65_11x5 65 11 55 11 11 55 0 44 .84 1.00 1.00

bqp_65_2xR 65 2 47 2 2 47 0 45 .72 1.00 1.00

bqp_65_3xR 65 3 49 3 3 49 0 46 .75 1.00 1.00

bqp_65_4x13 65 4 52 4 4 52 0 48 .80 1.00 1.00

bqp_65_4xR 65 4 54 4 4 54 0 50 .83 1.00 1.00

bqp_65_5x13 65 5 65 5 5 65 0 60 1.00 1.00 1.00

bqp_65_5xR 65 5 54 5 5 54 0 49 .83 1.00 1.00

bqp_65_6xR 65 6 54 6 6 54 0 48 .83 1.00 1.00

bqp_70_2xR 70 2 49 2 2 49 0 47 .70 1.00 1.00

bqp_70_3xR 70 3 45 3 3 45 0 42 .64 1.00 1.00

bqp_70_4x14 70 4 56 4 4 56 0 52 .80 1.00 1.00

bqp_70_4xR 70 4 70 4 4 70 0 66 1.00 1.00 1.00

bqp_70_5xR 70 5 58 5 5 58 0 53 .82 1.00 1.00

bqp_70_6x10 70 6 60 6 6 60 0 54 .85 1.00 1.00

bqp_70_7xR 70 7 63 7 7 63 0 56 .90 1.00 1.00

bqp_70_9x7 70 9 63 9 9 63 0 54 .90 1.00 1.00

bqp_75_2x25 75 2 50 2 2 50 0 48 .66 1.00 1.00

bqp_75_2xR 75 2 39 2 2 39 0 37 .52 1.00 1.00

bqp_75_3xR 75 3 60 3 3 60 0 57 .80 1.00 1.00

bqp_75_4x15 75 4 60 4 4 60 0 56 .80 1.00 1.00

bqp_75_4xR 75 4 54 4 4 54 0 50 .72 1.00 1.00

bqp_75_5x15 75 5 75 5 5 75 0 70 1.00 1.00 1.00

bqp_75_5xR 75 5 66 5 5 66 0 61 .88 1.00 1.00

bqp_75_6xR 75 6 67 6 6 67 0 61 .89 1.00 1.00

bqp_75_7xR 75 7 63 7 7 63 0 56 .84 1.00 1.00

bqp_75_8xR 75 8 66 8 8 66 0 58 .88 1.00 1.00

bqp_80_2x20 80 2 40 2 2 40 0 38 .50 1.00 1.00

bqp_80_2xR 80 2 55 2 2 55 0 53 .68 1.00 1.00

bqp_80_3x20 80 3 60 3 3 60 0 57 .75 1.00 1.00

bqp_80_3xR 80 3 64 3 3 64 0 61 .80 1.00 1.00

bqp_80_4x16 80 4 64 4 4 64 0 60 .80 1.00 1.00

bqp_80_4xR 80 4 65 4 4 65 0 61 .81 1.00 1.00

bqp_80_5x16 80 5 80 5 5 80 0 75 1.00 1.00 1.00

bqp_80_5xR 80 5 70 5 5 70 0 65 .87 1.00 1.00

bqp_80_6xR 80 6 72 6 6 72 0 66 .90 1.00 1.00

bqp_80_7x10 80 7 70 7 7 70 0 63 .87 1.00 1.00

bqp_80_8xR 80 8 68 8 8 68 0 60 .85 1.00 1.00

bqp_85_12x5 85 12 60 12 12 60 0 48 .70 1.00 1.00

bqp_85_16x5 85 16 80 16 16 80 0 64 .94 1.00 1.00

bqp_85_2x17 85 2 34 2 2 34 0 32 .40 1.00 1.00

bqp_85_2xR 85 2 59 2 2 59 0 57 .69 1.00 1.00

bqp_85_3xR 85 3 68 3 3 68 0 65 .80 1.00 1.00
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bqp_85_4x17 85 4 68 4 4 68 0 64 .80 1.00 1.00

bqp_85_4xR 85 4 67 4 4 67 0 63 .78 1.00 1.00

bqp_85_5xR 85 5 64 5 5 64 0 59 .75 1.00 1.00

bqp_85_6xR 85 6 75 6 6 75 0 69 .88 1.00 1.00

bqp_85_7xR 85 7 76 7 7 76 0 69 .89 1.00 1.00

bqp_85_8xR 85 8 80 8 8 80 0 72 .94 1.00 1.00

bqp_85_9xR 85 9 85 9 9 85 0 76 1.00 1.00 1.00

bqp_90_2x30 90 2 60 2 2 60 0 58 .66 1.00 1.00

bqp_90_2xR 90 2 65 2 2 65 0 63 .72 1.00 1.00

bqp_90_3x30 90 3 90 3 3 90 0 87 1.00 1.00 1.00

bqp_90_3xR 90 3 75 3 3 75 0 72 .83 1.00 1.00

bqp_90_4x18 90 4 72 4 4 72 0 68 .80 1.00 1.00

bqp_90_4xR 90 4 73 4 4 73 0 69 .81 1.00 1.00

bqp_90_5x15 90 5 75 5 5 75 0 70 .83 1.00 1.00

bqp_90_5xR 90 5 77 5 5 77 0 72 .85 1.00 1.00

bqp_90_6xR 90 6 76 6 6 76 0 70 .84 1.00 1.00

bqp_90_7xR 90 7 70 7 7 70 0 63 .77 1.00 1.00

bqp_90_8x10 90 8 80 8 8 80 0 72 .88 1.00 1.00

bqp_90_9x9 90 9 81 9 9 81 0 72 .90 1.00 1.00

bqp_95_18x5 95 18 90 18 18 90 0 72 .94 1.00 1.00

bqp_95_2xR 95 2 51 2 2 51 0 49 .53 1.00 1.00

bqp_95_3xR 95 3 77 3 3 77 0 74 .81 1.00 1.00

bqp_95_4x19 95 4 76 4 4 76 0 72 .80 1.00 1.00

bqp_95_4xR 95 4 90 4 4 90 0 86 .94 1.00 1.00

bqp_95_5xR 95 5 88 5 5 88 0 83 .92 1.00 1.00

bqp_95_6xR 95 6 89 6 6 89 0 83 .93 1.00 1.00

bqp_95_7xR 95 7 95 7 7 95 0 88 1.00 1.00 1.00

bqp_95_8xR 95 8 95 8 8 95 0 87 1.00 1.00 1.00

bqp_95_9xR 95 9 86 9 9 86 0 77 .90 1.00 1.00

bqp_100_2xR 100 2 70 2 2 70 0 68 .70 1.00 1.00

bqp_100_3x25 100 3 75 3 3 75 0 72 .75 1.00 1.00

bqp_100_3xR 100 3 77 3 3 77 0 74 .77 1.00 1.00

bqp_100_4x20 100 4 80 4 4 80 0 76 .80 1.00 1.00

bqp_100_4xR 100 4 81 4 4 81 0 77 .81 1.00 1.00

bqp_100_5x20 100 5 100 5 5 100 0 95 1.00 1.00 1.00

bqp_100_5xR 100 5 93 5 5 93 0 88 .93 1.00 1.00

bqp_100_6xR 100 6 96 6 6 96 0 90 .96 1.00 1.00

bqp_100_7xR 100 7 88 7 7 88 0 81 .88 1.00 1.00

bqp_100_8xR 100 8 89 8 8 89 0 81 .89 1.00 1.00

bqp_100_9x10 100 9 90 9 9 90 0 81 .90 1.00 1.00

Table 12: OI narrowings of symmetric BQPs. 0* indicates values of O(10−3)
or less.

Some comments about the optimization results are in order. Ta-
ble 13 presents the aggregated statistics for the BQP dataset. In the
majority of the cases, 67 out of 97, the narrowings performed better,
against 27 of the original formulations; in three cases, the SBCs us-
age was indifferent. We were expecting a better ratio in favor of the
narrowings. Note however the large difference in terms of execution
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Original formulation OI-narrowing

Dataset # Best Time (h) # Best Time (s)

BQP 27 12.22 67 19.84

Table 13: Aggregated solution statistics for the BQP dataset.

time: 12 hours in total for the original problems against 20 seconds
for the OI narrowings. Table 14 exhibits detailed results. All instances
were solved to optimality.

Original formulation OI-narrowing

Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

bqp_55_2xR 2708 137.96 0 opt 2708 0.05 0 opt

bqp_55_3xR 232 0.05 0 opt 232 0.07 0 opt

bqp_55_4x11 846 3.88 0 opt 846 0.08 0 opt

bqp_55_4xR 219 0.04 0 opt 219 0.07 0 opt

bqp_55_5xR 285 2.07 0 opt 285 0.08 0 opt

bqp_55_6xR 63 0.02 0 opt 63 0.05 0 opt

bqp_60_2x20 1443 10.98 0 opt 1443 1.44 0 opt

bqp_60_2xR 1189 0.08 0 opt 1189 0.05 0 opt

bqp_60_3x15 60 0.01 0 opt 60 0.01 0 opt

bqp_60_3x20 4790 1757.17 0 opt 4790 0.12 0 opt

bqp_60_3xR 1485 2.05 0 opt 1485 0.08 0 opt

bqp_60_4x12 420 2.08 0 opt 420 0.07 0 opt

bqp_60_4xR 240 0.21 0 opt 240 0.10 0 opt

bqp_60_5x10 180 0.02 0 opt 180 0.06 0 opt

bqp_60_5xR 212 0.11 0 opt 212 0.09 0 opt

bqp_65_11x5 77 0.21 0 opt 77 0.11 0 opt

bqp_65_2xR 1137 0.15 0 opt 1137 0.10 0 opt

bqp_65_3xR 303 0.06 0 opt 303 0.08 0 opt

bqp_65_4x13 1717 11.34 0 opt 1717 0.11 0 opt

bqp_65_4xR 266 0.12 0 opt 266 0.08 0 opt

bqp_65_5x13 241 2.09 0 opt 241 0.10 0 opt

bqp_65_5xR 236 0.04 0 opt 236 0.08 0 opt

bqp_65_6xR 204 0.35 0 opt 204 0.10 0 opt

bqp_70_2xR 580 7212.02 14.69 lim 580 0.14 0 opt

bqp_70_3xR 1132 2.04 0 opt 1132 0.58 0 opt

bqp_70_4x14 427 2.85 0 opt 427 0.13 0 opt

bqp_70_4xR 648 16.13 0 opt 648 0.12 0 opt

bqp_70_5xR 197 0.12 0 opt 197 0.17 0 opt

bqp_70_6x10 155 0.68 0 opt 155 0.13 0 opt

bqp_70_7xR 112 0.05 0 opt 112 0.09 0 opt

bqp_70_9x7 70 0.02 0 opt 70 0.05 0 opt

bqp_75_2x25 763 0.07 0 opt 763 0.08 0 opt

bqp_75_2xR 646 0.05 0 opt 646 0.11 0 opt

bqp_75_3xR 651 0.06 0 opt 651 0.17 0 opt

bqp_75_4x15 949 14.61 0 opt 949 0.20 0 opt

bqp_75_4xR 981 0.26 0 opt 981 0.11 0 opt

bqp_75_5x15 931 93.00 0 opt 931 0.15 0 opt
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bqp_75_5xR 604 0.84 0 opt 604 0.20 0 opt

bqp_75_6xR 210 0.07 0 opt 210 0.12 0 opt

bqp_75_7xR 172 0.06 0 opt 172 0.09 0 opt

bqp_75_8xR 100 0.06 0 opt 100 0.08 0 opt

bqp_80_2x20 500 0.01 0 opt 500 0.02 0 opt

bqp_80_2xR 1760 59.90 0 opt 1760 0.06 0 opt

bqp_80_3x20 100 0.01 0 opt 100 0.02 0 opt

bqp_80_3xR 853 0.25 0 opt 853 0.24 0 opt

bqp_80_4x16 976 75.01 0 opt 976 0.18 0 opt

bqp_80_4xR 715 3.42 0 opt 715 0.19 0 opt

bqp_80_5x16 936 27.07 0 opt 936 0.40 0 opt

bqp_80_5xR 305 0.66 0 opt 305 0.22 0 opt

bqp_80_6xR 78 0.04 0 opt 78 0.12 0 opt

bqp_80_7x10 170 0.04 0 opt 170 0.07 0 opt

bqp_80_8xR 100 0.06 0 opt 100 0.09 0 opt

bqp_85_12x5 147 1.25 0 opt 147 0.66 0 opt

bqp_85_16x5 69 1.76 0 opt 69 1.06 0 opt

bqp_85_2x17 2924 0.04 0 opt 2924 0.04 0 opt

bqp_85_2xR 5189 3.98 0 opt 5189 0.06 0 opt

bqp_85_3xR 695 649.55 0 opt 695 0.10 0 opt

bqp_85_4x17 714 27.94 0 opt 714 0.15 0 opt

bqp_85_4xR 1374 61.84 0 opt 1374 0.21 0 opt

bqp_85_5xR 827 1.75 0 opt 827 0.86 0 opt

bqp_85_6xR 233 1.65 0 opt 233 0.17 0 opt

bqp_85_7xR 141 0.07 0 opt 141 0.06 0 opt

bqp_85_8xR 160 0.65 0 opt 160 0.06 0 opt

bqp_85_9xR 52 0.14 0 opt 52 0.10 0 opt

bqp_90_2x30 9420 7212.55 35.51 lim 9420 0.11 0 opt

bqp_90_2xR 1872 7212.53 32.07 lim 1872 0.08 0 opt

bqp_90_3x30 6585 7212.67 34.19 lim 6585 0.16 0 opt

bqp_90_3xR 2735 4.49 0 opt 2735 0.18 0 opt

bqp_90_4x18 576 40.24 0 opt 576 0.11 0 opt

bqp_90_4xR 1047 3.22 0 opt 1047 0.22 0 opt

bqp_90_5x15 225 0.01 0 opt 225 0.03 0 opt

bqp_90_5xR 215 0.61 0 opt 215 0.26 0 opt

bqp_90_6xR 183 0.12 0 opt 183 0.17 0 opt

bqp_90_7xR 283 2.90 0 opt 283 0.55 0 opt

bqp_90_8x10 925 65.20 0 opt 925 1.17 0 opt

bqp_90_9x9 117 0.04 0 opt 117 0.06 0 opt

bqp_95_18x5 95 2.22 0 opt 95 1.40 0 opt

bqp_95_2xR 4226 3.26 0 opt 4226 0.11 0 opt

bqp_95_3xR 1843 8.24 0 opt 1843 0.12 0 opt

bqp_95_4x19 636 29.29 0 opt 636 0.09 0 opt

bqp_95_4xR 480 0.08 0 opt 480 0.07 0 opt

bqp_95_5xR 468 0.07 0 opt 468 0.37 0 opt

bqp_95_6xR 220 0.05 0 opt 220 0.04 0 opt

bqp_95_7xR 468 1.33 0 opt 468 0.17 0 opt

bqp_95_8xR 1425 3194.67 0 opt 1425 0.12 0 opt

bqp_95_9xR 209 1.06 0 opt 209 0.29 0 opt

bqp_100_2xR 8606 7211.99 43.86 lim 8606 0.32 0 opt

bqp_100_3x25 700 0.12 0 opt 700 0.07 0 opt
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bqp_100_3xR 6942 186.10 0 opt 6942 0.49 0 opt

bqp_100_4x20 4230 1238.27 0 opt 4230 0.22 0 opt

bqp_100_4xR 400 1.36 0 opt 400 0.16 0 opt

bqp_100_5x20 1280 161.01 0 opt 1280 0.79 0 opt

bqp_100_5xR 884 0.16 0 opt 884 0.31 0 opt

bqp_100_6xR 725 0.09 0 opt 725 0.23 0 opt

bqp_100_7xR 358 0.10 0 opt 358 0.17 0 opt

bqp_100_8xR 294 0.16 0 opt 294 0.14 0 opt

bqp_100_9x10 70 0.02 0 opt 70 0.02 0 opt

Table 14: BQP results obtained with CPLEX 12.6.

Original formulation

Instance Best Time (s) Gap (%) St.

bqp_70_2xR 580 7212.03 14.62 lim

bqp_90_2x30 9420 7212.37 35.51 lim

bqp_90_2xR 1872 7212.13 32.07 lim

bqp_90_3x30 6585 7212.88 34.19 lim

bqp_100_2xR 8606 7212.29 43.86 lim

Table 15: Extended results for hard BQP instances obtained with CPLEX 12.6.

In five occasions, CPLEX could not reach optimality: bqp_70_2xR,
bqp_90_2x30, bqp_90_2xR, bqp_90_3x30 and bqp_100_2xR. Given the
level of difficulty displayed by these BQPs, we decided to perform
a second round of tests restricted to them, but now using CPLEX’s
full power in terms of symmetry exploitation, setting the parameter
symmetry of CPLEX’s API to level 5. The results are shown in Table 15.
Remarkably, there is no significative change in the final gaps when
compared with the previous results, meaning that these five instances
are indeed hard to solve, except if one employs the OI reformulations.

3.7 conclusions

In this entr’acte we have continued to examine the impact of symme-
tries in the context of Binary Quadratic Programming and Semidefi-
nite Programming. At first, our findings indicate that it may not be
necessary to consider Symmetry-Breaking Constraints when solving
Semidefinite Programs. But these results represent a first attempt in
this sense and involve a particular setting. So it remains important
to conduct further investigations in the topic. In order to carry out
our experiments, we have also established a procedure to generate
symmetric Binary Quadratic Programs. In particular, these Binary
Quadratic Programs have proved to be very relevant to the Orbital In-
dependence Theory since they embed the conditions under which the
use of Symmetry-Breaking Constraints is majoritarily advantageous.



4
E U C L I D E A N D I S TA N C E G E O M E T RY P R O B L E M

Entering the Distance Geometry subject, in this chapter we cope with
the most fundamental problem arising in the field of Distance Ge-
ometry, the one of realizing graphs in Euclidean spaces: it asks to
find a realization of an edge-weighted undirected graph in RK for
some given K such that the positions for adjacent vertices respect the
distance given by the corresponding edge weight. The Euclidean Dis-
tance Geometry Problem is of great importance since it has many
applications to science and engineering. It is notoriously difficult to
solve computationally, and most of the methods proposed so far ei-
ther do not scale up to useful sizes, or unlikely identify good solu-
tions. In fact, the need to constrain the rank of the matrix represent-
ing feasible solutions of the Euclidean Distance Geometry Problem is
what makes the problem so hard. In view of overcoming such issues,
we propose a two-steps heuristic algorithm based on Semidefinite
Programming (or, precisely, based on the recent Diagonally Dominant
Programming paradigm) and the explicitly modelling of Rank Con-
straints. We analyze our method via extensive computational testing
against randomly generated instances and against feasible realistic
protein conformation instances taken from the Protein Data Bank.

4.1 introduction

In this chapter we are interested in solving the following decision
problem:

Euclidean Distance Geometry Problem (EDGP). Given
an integer K > 1 and a simple, edge-weighted, undirected
graph G = (V ,E,d), where d : E → R+, is there a realiza-
tion function x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖2 = dij? (36)

The EDGP is a fundamental problem in Distance Geometry and was
formally introduced by Yemini in 1978 [94]. In [81], the problem was
shown to be NP-hard (with 2-norm and K = 1) by reduction from
Partition. Nevertheless, due to its vast range of practical applica-
tions, the three most investigated being clock syncronization (K = 1)
[83], sensor network localization (K = 2) [85] and molecular confor-
mation (K = 3) [44], the problem has attracted the attention of the sci-
entific community in the last decades. For example, very recently, the
EDGP was applied to model and solve special Graph Coloring Prob-

63
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lems (GCPs) involving distance constraints as weighted edges [31]. We
refer to [58] for an extensive survey on the EDGP subject.

Usually, the squared version of Eq. (36) is employed, for two rea-
sons: first, as pointed out in [25], the squared EDM D2 = (d2ij) has
rank at most K+ 2, a fact which might come in useful for all sorts of
reasons (e. g. to devise cuts for the ESTP); secondly, and most impor-
tant, since the vast majority of algorithmic implementations employ
floating point representations, as we pointed in Section 1.3, there is a
risk that

∑
k(xik − xjk)

2 = 0 might be represented by a tiny negative
floating point scalar, resulting in a computational error when extract-
ing the square root in Eq. (5) for p = 2. Obviously solving the squared
system yields exactly the same set of solutions as the original system.

Most MP methods for solving Eq. (36) thus do not address the orig-
inal system explicitly, but rather a Global Optimization (GO) problem
defined by means of a penalty function:

min
x∈Rn×K

∑
{i,j}∈E

(‖xi − xj‖22 − d2ij)2, (37)

which has global optimum x∗ with value zero if and only if x∗ satis-
fies Eq. (36). This formulation is convenient because most local NLP

solvers find it easier to improve the cost of a feasible nonoptimal so-
lution, rather than achieving feasibility from an infeasible point, and
relevant because such solvers are often employed to solve EDGP in-
stances. Moreover, Eq. (37) can be easily adjusted to deal with impre-
cise distances represented by intervals, which is useful considering
that practical methods employed to gauge physical distances (such
as the Nuclear Magnetic Resonance (NMR) in the case of molecules,
for instance) typically provide bounds on the values of the distances
and not precise values. A survey on continuous methods for the EDGP

is given in [57].
Semidefinite Programming is quite often used to devise relaxations

of EDGPs [3, 85, 93]. In this setting, presented in details in Section 4.3,
solutions of the EDGP are usually represented by real symmetric matri-
ces which are required to have rank at most K. As it is widely known,
the rank of a matrix A ∈ Mm×n is defined as the size of the largest
collection of linearly independent columns (or rows) of A. However,
requiring linear independence of a set of vectors {v1, ..., vn} ⊆ Rm

of decision variables of a Mathematical Program is a nontrivial feat
since the elementary definition,

∀α ∈ Rn
n∑
i=1

αivi = 0⇒ α = 0,

requires in general uncountably many nonlinear constraints, each in-
volving either binary variables or complementarity terms. In view of
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this difficulty, it is absolutely reasonable to opt to relax the Rank Con-
straint instead.

On the other hand, we adventure to explore an equivalent defini-
tion of the rank of A (its number of nonzero eigenvalues) and pro-
pose general Rank Constraint formulations consisting of a finite set
of equations. Perhaps unwisely, because these models are nonlinear
and yield MINLPs when adjoined to any MP; and MINLPs represent
undoubtedly the most difficult class of MPs to be solved. In our case,
based on the characteristics of the EDGP, we manage to at least sim-
plify our MINLPs into nonconvex NLPs. Such MPs are quite challeng-
ing to solve anyway, particularly because NLP solvers are complex
algorithms sensitive to many factors, notably to the quality of the
starting points. Since we are actually dealing with SDPs, our idea is
to use DDP to find cheap and hopefully good starting points for the
rank constrained SDPs.

We thus propose a simple two-steps heuristic algorithm to tackle
the EDGP based on Mathematical Programming: first solve an LP ob-
tained by means of DDP and afterwards use its solution as a starting
point to solve the rank constrained SDPs.

The rest of this chapter is organized as follows: in Section 4.2 we
introduce notation and recall some classical definitions of Linear Al-
gebra; in Section 4.3 we present some of the many formulations for
the EDGP; in Section 4.4 we describe in details all the tools we apply
in our heuristic to solve the EDGP; and finally, computational results
are provided and discussed in Section 4.5.

4.2 notation and definitions

We start off by reviewing well-known concepts of Linear Algebra. All
vectors in this chapter are contained in the vector space Rn endowed
with an inner product, denoted by 〈·, ·〉. We let Rm×n be the set of
m × n real matrices and Sn the set of real symmetric matrices of
dimension n.

Definition 32. An orthonormal basis B of the vector space Rn is a set of n
orthogonal unit vectors that spans Rn.

Definition 33. A linear operator A : Rn → Rn is called self-adjoint when
〈Au, v〉 = 〈u,Av〉 for any vectors u, v ∈ Rn.

A self-adjoint linear operator A may be represented by a matrix
A ∈ Sn corresponding to an orthonormal basis B of Rn. We remark
that A differs as B changes.

Definition 34. A nonzero vector ν ∈ Rn is an eigenvector of a matrix
A ∈ Sn when there is λ ∈ R such that

Aν = λν.
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The number λ is an eigenvalue of A corresponding to ν.

Theorem 35 (Spectral Theorem). For any self-adjoint linear operator A :

Rn → Rn, there is an orthonormal basis for Rn consisting of the eigenvec-
tors of a matrix A ∈ Sn.

Let N = {1, . . . ,n}. By the Spectral Theorem, for any matrix A ∈ Sn,
there exists a set of orthonormal eigenvectors {ν1, ...,νn} ⊂ Rn satisfy-
ing Aνi = λiνi for i ∈ N, where λi ∈ R. Let ϑ ∈ Rn×n be the square
matrix whose columns are the eigenvectors of A and Λ ∈ Sn be the
diagonal matrix whose entries are the eigenvalues of A. Using matrix
notation, we can write Aϑ = [Aν1 Aν2 ... Aνn] = [λ1ν1 λ2ν2 ... λnνn],
and finally

Aϑ = ϑΛ. (38)

Eq. (38) constitutes the eigensystem of the matrix A. B is an eigenbasis
for A. Since ϑ is orthogonal, it has an inverse and ϑ−1 = ϑ>. Therefore
Aϑϑ−1 = ϑΛϑ−1 and

A = ϑΛϑ>. (39)

Eq. (39) represents the eigendecomposition of A.

Definition 36. A matrix A ∈ Sn is said to be Positive Semidefinite (PSD) if
v>Av > 0 for every nonzero vector v ∈ Rn. The standard notation A � 0
is applied.

It is well-known that the eigenvalues of PSD matrices are nonnega-
tive. Indeed, if A � 0, it follows that νi>Aνi = νi>λiνi = λi‖νi‖22 >
0⇒ λi > 0 for i ∈ N.

Definition 37. A matrix A ∈ Sn is said to be Positive Definite (PD) if
v>Av > 0 for every nonzero vector v ∈ Rn. The standard notation A � 0
is applied.

Similarly, PD matrices have positive eigenvalues.

Definition 38. A matrix A ∈ Sn is called a Gram matrix if it arises from
a set of vectors {a1, ...,an} ⊆ Rm as Aij = 〈ai,aj〉 for i, j ∈ N.

Every Gram matrix A is PSD. In fact, writing A = a>a, we have that
v>a>av = (av)>av = ‖av‖22 > 0 for every nonzero v ∈ Rn, where
a ∈ Rm×n is the matrix whose columns are the generating vectors of
A.

Definition 39. Given a matrix A ∈ Sn and i ∈ N, the closed discs
B(Aii,Ri) centered at Aii with radius

Ri =
∑
j∈N
j6=i

|Aij| (40)

are called Gershgorin discs.
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Theorem 40 (Gershgorin Circle Theorem). Every eigenvalue of A ∈ Sn

lies within at least one of the Gershgorin discs B(Aii,Ri), for i ∈ N.

As mentioned earlier, it follows from Gershgorin’s theorem that
all DD matrices are PSD. Indeed, from Eq. (10), Aii > Ri > 0. Since
λi ∈ B(aii,Ri) implies |λi−Aii| 6 Ri, we have that λi−Aii > −Ri ⇒
λi > Aii − Ri > 0. But the converse does not hold, i.e. PSD does not
imply DD.

Definition 41. A real symmetric interval matrix is defined as the family of
matrices

A = {A ∈ Sn : A 6 A 6 A},

whereA,A ∈ Rn×n are given matrices satisfyingA 6 A and the inequality
is considered element-wise.

The midpoint and the radius of A are defined respectively by

Ac =
1

2
(A+A) and Ar =

1

2
(A−A).

The spectral radius (i.e. the supremum among the absolute values of
all eigenvalues) is denoted by ρ(·). Moreover, consider the matrices
AC = 1

2(Ac +Ac
>) and AR = 1

2(Ar +Ar
>). Let λi(A) denote the ith

eigenvalue of A.

Theorem 42 ([35], Thm. 1). Let A be a real symmetric interval matrix. For
i ∈ N,

λi(A) ⊆ [λi (AC) − ρ (AR) , λi (AC) + ρ (AR)]. (41)

4.3 edgp formulations

In this section we present the feasibility formulation that we aim to
solve and one of the MP formulations that we use in our heuristic.

4.3.1 Feasibility formulations

We represent a realization x as a matrix x ∈ Rn×K where each of the
n = |V | rows is a vector xi ∈ RK that gives the position of vertex
i ∈ V .

It was shown in [85] that the system of constraints given by Eq. (36)
can be reformulated exactly to a pure feasibility MP as

∀{i, j} ∈ E (ei − ej)
>X(ei − ej) = d

2
ij,

X = xx>,

}
(42)

where ei ∈ Rn is the i-th canonical unit vector.
From this point forward, the conventional way to pursue would be

to derive a SDP relaxation of Eq. (42) by carrying out the same proce-
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dure described in Section 3.3, and solve the resulting formulation via
standard SDP algorithms.

In the opposite way, we want to solve Eq. (42) exactly. In order to
fulfill our goal, from the definition of X, we first observe that X ∈ Sn

and rkX = rk x 6 min{n;K}. In addition, since X is a Gram matrix, it
is PSD. These facts permit us to reformulate Eq. (42) into

∀{i, j} ∈ E (ei − ej)
>X(ei − ej) = d

2
ij,

rkX 6 min{n;K},

X � 0.

 (43)

The mapping between solutions of Eq. (42) and Eq. (43) is simple: if
there is X satisfying Eq. (43), there are vectors x1, ..., xn ∈ RK satisfy-
ing Eq. (42) with 〈xi, xj〉 = Xij holding for all {i, j} ∈ E.

There are polynomial time algorithms to retrieve the vectors x asso-
ciated to a solution X. Briefly, we can use Eq. (39) to write X = ϑΛϑ>.
Since X � 0, Λ has a nonnegative diagonal and

√
Λ exists; so we

can perform Principal Component Analysis (PCA) and factor X into

x = ϑ
√
Λ+
φ, where ϑ is the eigenvector matrix of X and Λ+

φ is the
diagonal matrix with the φ = min{n;K} largest positive eigenvalues
and zeros elsewhere; hence our interest in solving Eq. (43) exactly.

4.3.2 MP formulations

The EDGP is solved using MP techniques commonly by means of er-
ror minimization formulations. Apart from Eq. (37), there are several
equivalent alternatives [20, 66]. Due to our own empirical evidences,
we are particularly interested in the following GO problem:

min
x∈Rn×K

∑
{i,j}∈E

|‖xi − xj‖22 − (dij)
2|. (44)

Similarly to what happens to Eq. (37), we are interested in finding
global optima of Eq. (44), which is a nonconvex NLP. Nonlinear Pro-
grams are challenging to solve in practical terms, not only because
they do not scale well as instances increase in size, but also due to nu-
merical issues. The Rank Constraint models presented in Section 4.4.2
adjoin nonlinear constraints to whatever formulation one chooses as
base model. Therefore, prior to using Eq. (44) to derive a MP equiv-
alent to Eq. (43), we first derive a simpler version of Eq. (44) with
respect to nonlinearities: we reformulate it into a LP using SDP.

In that regard, we start off remodelling the absolute value function
by defining a continuous nonnegative symmetric variable S = (Sij)

as
Sij = |‖xi − xj‖22 − (dij)

2|,
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which measures the deviation from the computed and the respective
given distance for all {i, j} ∈ E. Then using the definition of the ab-
solute value function (y = |a| ⇒ y = a∨ y = −a) and the fact that
Eq. (44) is a minimization problem, we formulate the following con-
strained NLP:

min
x∈Rn×K,S∈Sn

∑
{i,j}∈E

Sij

∀{i, j} ∈ E Sij > ‖xi − xj‖22 − (dij)
2,

∀{i, j} ∈ E Sij > −‖xi − xj‖22 + (dij)
2,

S > 0.


(45)

The contraints in Eq. (45) together guarantee that the objective func-
tion (total deviation) tends to zero through positive values whenever
‖xi − xj‖22 6= (dij)

2 for any {i, j} ∈ E. Now we use the squared expan-
sion of the Euclidean norm

‖xi − xj‖22 = 〈(xi − xj), (xi − xj)〉 = 〈xi, xi〉− 2〈xi, xj〉+ 〈xj, xj〉

and the fact that the solutions of Eq. (42) and Eq. (43) are related by
Xij = 〈xi, xj〉 (and also that X is symmetric) to obtain the LP relax-
ation:

min
X,S∈Sn

∑
{i,j}∈E

Sij

∀{i, j} ∈ E Sij > Xii − 2Xij +Xjj − (dij)
2,

∀{i, j} ∈ E Sij > −Xii + 2Xij −Xjj + (dij)
2,

S > 0.


(46)

Besides being a LP, we remark that two positive features of the formu-
lation above are (a) the fact that all of its constraints (except the sym-
metry constraints X,S ∈ Sn) are inequalities, and (b) the fact that we
can conveniently check the quality of our solutions by direct compar-
ison of their objective function value with the global optimum value
zero. A drawback is that Eq. (46) actually has twice more constraints
(two per edge) when compared to the LPs that we could derive from
alternative EDGP formulations.

It remains however to model the rank and PSD constraints over X
to attain the MP equivalent to Eq. (43). This contribution is adressed
in the next section.

4.4 efforts to solve the edgp

This section describes the ingredients which we put together in our
two-steps heuristic; first we derive the LP that will provide the start-
ing points; after we present our modelling regarding the Rank Con-
straints; in the sequence we describe how we compute bounds for the
variables of our models and present some extra (and hopefully help-
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ful to improve performance) constraints; finally we explain how we
exploit characteristics of the EDGP to simplify our MINLPs into NLPs,
and how we tweak our heuristic in terms of accuracy so as to reduce
computation times when dealing with large EDGP instances.

4.4.1 Starting points via DDP

Aiming to find good initial solutions, we derive a LP formulation that
inner-approximates a SDP relaxation of Eq. (42) based on diagonal
dominance (see Section 1.4.1). As mentioned previously, the relax-
ation is obtained by relaxing the Rank Constraint to X− xx> � 0. We
then use once more the fact that

X− xx> � 0 ⇐⇒
(
IK x>

x X

)
� 0

to get the pure feasibility SDP:

∀{i, j} ∈ E Xii +Xjj − 2Xij = d
2
ij,(

IK x>

x X

)
� 0.

 (47)

This means that

∀{i, j} ∈ E Xii +Xjj − 2Xij = d
2
ij,(

IK x>

x X

)
is DD

 (48)

is a DDP formulation that inner approximates Eq. (47). Now recall that
we can linerize the DD constraint. We exploit this idea to derive a new
DDP formulation related to the EDGP, which is in fact an LP for the
EDGP. Let

Y =

(
IK x>

x X

)
and consider a continuous nonnegative variable T ∈ Sn+K, then:

∀{i, j} ∈ E Xii +Xjj − 2Xij = d
2
ij

Y =

(
IK x>

x X

)
,

∀i ∈ [n+K] Yii =
∑

j∈[n+K]
j6=i

Tij,

T > Y > −T ,

T > 0.


(49)
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Note that the only existing LP formulation for the EDGP is the linear
relaxation of Eq. (37), in which every monomial m(x) of the quartic
polynomial in the objective is linearized to a variable µ subject to a
linear outer approximation of the nonconvex constraint µ = m(x). It
is well-known [43] that this relaxation is much weaker than the obvi-
ous (tight) lower bound zero. Although the new formulation Eq. (49)
is linear, it may not necessaryly improve this situation since it actually
inner approximates the SDP relaxation given by Eq. (47).

Imediatelly, if we consider a continuous variable Z ∈ Sn, we can
state the iterative form of Eq. (49) as:

∀{i, j} ∈ E Xii +Xjj − 2Xij = d
2
ij

Y =

(
IK x>

x X

)
Y = U>ZU,

∀i ∈ [n+K] Zii >
∑

j∈[n+K]
j6=i

Tij,

T > Z > −T ,

T > 0.



(50)

These are still pure feasibility MPs. We then use Eq. (46) to cast
Equations (49) and (50) as LPs as follows:

min
X,S∈Sn

∑
{i,j}∈E

Sij

∀{i, j} ∈ E Sij > Xii − 2Xij +Xjj − (dij)
2,

∀{i, j} ∈ E Sij > −Xii + 2Xij −Xjj + (dij)
2,

Y =

(
IK x>

x X

)
,

∀i ∈ [n+K] Yii >
∑

j∈[n+K]
j6=i

Tij,

T > Y > −T ,

S, T > 0,



(51)

and
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min
X,S∈Sn

∑
{i,j}∈E

Sij

∀{i, j} ∈ E Sij > Xii − 2Xij +Xjj − (dij)
2,

∀{i, j} ∈ E Sij > −Xii + 2Xij −Xjj + (dij)
2,

Y =

(
IK x>

x X

)
,

Y = U>ZU,

∀i ∈ [n+K] Zii >
∑

j∈[n+K]
j6=i

Tij,

T > Z > −T ,

S, T > 0.



(52)

Our implementation of the iterative DDP method for the EDGP is
similar to the one described in Section 3.4 as concerns the termination
criteria and the feasibility recovery subroutine.

As stated previously, it is common knowledge that local NLP solvers
find it easier to improve the cost of a feasible nonoptimal solution,
rather than achieving feasibility from an infeasible point. So it is im-
portant to point out that a solution X ′ computed by solving either
Eq. (51) or Eq. (52) is not necessarily feasible in Eq. (42): the interior
of the PSD cone contains PD matrices, which have full rank, and so
rkX ′ > min{n;K} may hold. We thereby employ a global NLP solver
instead of a local one to handle our rank constrained models, hoping
to better exploit the cheap but most likely rank infeasible (with re-
spect to Eq. (43)) solutions obtained via the LPs above. In this sense,
the second step of our method may be interpreted as a rank reduction
procedure.

4.4.2 Modelling the rank

In Sections 4.4.2.1 and 4.4.2.2 the rank is modeled as the number of
nonzero eigenvalues of X ∈ Sn. The eigensystem and eigendecom-
positon of X (see Section 4.2) are used, respectively, to encode the
eigenvalues and eigenvectors of X as decision variables of the MP. We
emphasize that several problems in optimization and control involve
a matrix of decision variables to be subject to a Rank Constraint, and
so other applications may benefit of the models presented hereafter.

There are three middling attractive reasons for modeling the rank
using eigenvalues and eigenvectors: first, it enables us to model both
the RC and the PSD constraint appearing in Eq. (43) with the same set
of equations; second, given a solution X ′ obtained through the DDP

models, we can compute its eigenvalues and eigenvectors to warm
start the rank constrained models; and third, we obtain as a byprod-
uct of our heuristic the eigenvectors and eigenvalues of the matrix X
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satisfying rkX 6 min{n;K}, and so we can easily retrieve the matrix x
using the procedure described in Section 4.3.1.

4.4.2.1 Eigensystem

In order to model the eigensystem of X, we assume that eigenvalues
of X are bounded and satisfy λi ⊆ [λLi , λUi ] for i ∈ N, with λLi , λUi ∈ R,
and that the nonzero eigenvalues have absolute value greater than a
given ελ > 0. Next we define binary decision variables like z : N →
{0, 1} that take value 1 if the respective eigenvalue is nonzero and 0
otherwise. Let δij be the Kronecker delta for i, j ∈ N and consider the
system of constraints:

∀i, j ∈ N
∑
k∈N

Xikνkj = λjνij, (53)

∀i, j ∈ N
∑
k∈N

νkiνkj = δij, (54)

∀i ∈ N λLi zi 6 λi 6 λ
U
i zi, (55)

∀i ∈ N |λi| > ελzi. (56)

Eq. (53) represents the eigensystem of X. Eq. (54) states that the set of
eigenvectors {ν1, ...,νn} is an orthonormal basis of Rn associated to
X. Eq. (55) and Eq. (56) together require λi = 0 ⇔ zi = 0 for i ∈ N.
We call MES the model represented by the system (53)-(56) and point
out that it can be solved over the reals in case X is required to be
symmetric as well (which is our case). An alternative to constraint
(56) is the constraint λ2i > ε

2
λzi for all i ∈ N.

4.4.2.2 Eigendecomposition

The next model follows directly from substituting Eq. (53) by con-
straints that represent the eigendecomposition of X:

∀i, j ∈ N Xij =
∑
k∈N

νikνjkλk. (57)

We call MED the model given by the system (54)-(57). But Eq. (57)
implicitly guarantees that X is symmetric since

Xij =
∑
k∈N

νikνjkλk =
∑
k∈N

νjkνikλk = Xji. (58)

Hence it is possible remove the symmetry constraints on X when
using MED. Should we maintain the symmetry constraints, the total
number of constraints in Eq. (57) can be reduced as follows

∀i 6 j ∈ N Xij =
∑
k∈N

νikνjkλk, (59)
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yielding a third model given by the system (54)-(56),(59), named MEDRS.

4.4.2.3 Rank constraints

Finally, Rank Constraints can be constructed by means of the z vari-
ables like, e.g.: ∑

i∈N
zi 6 r (60)

with r ∈ N. Other types of constraints (e.g. the rank is bounded
below by r) and objectives (e.g. the rank must be maximum) can be
constructed similarly. In the EDGP, r = min{n;K} in Eq. (60).

4.4.3 Bounds on the variables x, X and λ

The next result is simple but important to establish bounds for the
variables x,X and λ.

First, we introduce some notation and an useful definition which
will serve to shorten our presentation. Given a weighted graph G =

(V ,E,d), let P[s,t] denote a simple path of G with endpoints s, t ∈
V and len(P[s,t]) its length. Furthermore, let PG denote the longest
simple path of G and P−[s,t] the shortest path between s, t.

Definition 43. The center point c of a path P[s,t] is the point located along
P[s,t] satisfying len(P[s,c]) = len(P[c,t]) = len(P[s,t])/2.

Note that the center point of P[s,t] may or may not coincide with
one of its original vertices.

Proposition 44. Let G = (V ,E,d) be an YES instance of the EDGP having
no prelocated vertices and a PG with len(PG) = L. There exists x bounded
by B(0,L/2).

Proof. We prove it by contradiction. Let ws,wt be the endpoints and
wc the center point of PG. Take a realization x of G. Because G has
no anchors, x can be translated at will to satisfy ‖x(wc)‖2 = 0 (center
point of PG at the origin). Now assume that there is a different vertex
wo ∈ V such that ‖x(wo)‖2 > L/2. In this case, since G is connected,
there must exist a path P[wc,wo] satisfying len(P[wc,wo]) > L/2. But
then len(P[ws,wo]) = len(P[ws,wc]) + len(P[wc,wo]) > len(PG), which
contradicts our assumption.

The proof of Prop. 44 provides straight foward bounds to the norm
of the x vectors. For the realization x satisfying c = 0, it is easy to see
that no vector xi (i ∈ N) can be located further than the length of its
shortest path to the origin. So

‖xi‖2 6 len(P−[i,0]). (61)

Now for the X variables, recall that Xij = 〈xi, xj〉 for i, j ∈ N. By
the Cauchy-Schwarz inequality, ‖Xij‖2 = ‖〈xi, xj〉‖2 6 ‖xi‖2‖xj‖2;
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and in turn, if we denote γij = ‖xi‖2‖xj‖2, we have −γij 6 Xij 6
γij. But these bounds can be improved. First, from the inner product
definition, we know that Xii > 0. Second, for {i, j} ∈ E, any global
optima of the EDGP must satisfy Xii − 2Xij + Xjj − (dij)

2 = 0; since
the elements of the diagonal of X are nonnegative, Xii +Xjj > 0 and

Xij > −
d2ij

2

must hold. We can then define the parameter

ηij =


0 if i = j,

max(−
d2ij
2 ,−γij) if {i, j} ∈ E,

−γij otherwise,

and set forth that ηij 6 Xij 6 γij for i, j ∈ N. As a consequence, the
matrix X of decision variables can be interpreted as a real symmetric
interval matrix like

X =


[η11,γ11] [η12,γ12] . . . [η1n,γ1n]

[η21,γ12] [η22,γ22] . . . [η2n,γ2n]
...

...
. . .

...

[ηn1,γn1] [ηn2,γn2] . . . [ηnn,γnn]

 .

And this condition allow us to compute bounds for the λ variables
according to Eq. (41).

4.4.4 Additional constraints

4.4.4.1 Trace constraints

This is possibly the most popular equation relating the eigenvalues
and the diagonal elements of a matrix X:∑

i∈N
Xii =

∑
i∈N

λi. (62)

However here we have floating point numbers appearing in an equal-
ity expression, which may not be interesting computationally for the
reasons mentioned in Sect. 1.3. So alternatively to adjoining the Trace
Constraint (TC) as given by Eq. (62) directly to the MPs, one might
derive bounds for the sum of the λ values since the following in-
equalities trivially hold:∑

i∈N
ηii 6

∑
i∈N

λi 6
∑
i∈N

γii. (63)
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In fact, we do observe experimentally that these sums over η and γ
are tighter than the sums over the bounds computed using Eq. (41).
And also that these inequalities are beneficial.

4.4.4.2 Symmetry-Breaking Constraints

Provided that there is no relation between the eigenvalues of a matrix
X ∈ Sn, it is usual to assume them sorted in a nondecreasing order
like

λ1(X) 6 λ2(X) 6 · · · 6 λn(X).
These are strong SBCs which might remove symmetric global optima
and quicken the performance of BB type algorithms (see Section 2.2.6).
Of course, we intend to test them.

4.4.5 Modelling simplifications

In order to write Eq (43) as a MP, we must put together the LP relax-
ation Eq.(46), one of the RC models (MES, MED or MEDRS), the RC

given by Eq. (60), and set the lower bounds of the λ variables to zero
since X � 0. Some variations include adjoining the TCs or the SBCs

or both. Notwithstanding, all the resulting formulations are MINLPs.
Needless to say, some preliminary tests indicated that it would be
impossible to scale up with these programs in practical terms [24].

We therefore proceed to simplify our MINLPs into NLPs based on
the following observation: with probability 1, any matrix x ∈ Rn×K

would have full rank if sampled from an uniform space, particularly
for n� K. This latter condition (n� K) is common in real-life appli-
cations of the EDGP, since one is usually interested in localizing many
n points in the low (1, 2, 3)-dimensional Euclidean spaces. Whenever
this condition is known to hold a priori, one can (safely) narrow the
search space by assuming that:

rkX = K.

Now recall that the eigenvalues of X keep no relation between them;
since we have just assumed that the rank of X equals K, we can actu-
ally fix the n− K first z-variables to 0 and the remaining K to 1, so
as to satisfy the SBCs described in the previous section. This allow us
to eliminate the binary z-variables and the Rank Constraint from our
formulations.

4.4.6 Tackling large instances

A successful computational method has to be fast and accurate, re-
gardless of its application domain. The most successful algorithms in
the literature for the EDGP are the DGSol [67] (an homotopy method)
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and the Branch-and-Prune [45, 53] (a pure feasibility combinatorial-
type method). Both have many positive and few negative traits.

Recall that, for the EDGP, a 100% accurate solution has optimum
value zero either in Eq. (37) or in Eq. (44). So in terms of MP methods,
being fast and accurate means converging fast to global optima. It
is common-sense however that exact MP solvers are accurate, but that
they do not necessarily scale well to large sizes, at least timewise. This
means that we are setting the bar too high in attempting to solve the
EDGP exactly. It is thus desirable to endow our heuristic with some
speed capability, specially to tackle large instances. And the idea is
to turn it into an approximative method, in a controlled way though,
to avoid compromising the accuracy of the solutions provided by the
MP formulations. Or in other words, to accept convergence to certain
local optima.

In this regard, recall that solvers usually provide (via API or CLI)
setup parameters which permit users to fine-tune the stopping (or
convergence) criteria. Most likely, there is a parameter (say absgap)
representing the absolute gap tolerance, meaning that the solver stops
whenever the absolute gap between the best feasible solution and the
best lower bound (upper bound in case of maximization problems)
drops below absgap (or when the time limit is reached, whatever
comes first).

The point is that if the value of absgap is fixed and equal for
all instances, we end up searching for realizations with the same
level of accuracy, oblivious to the fact that number of edges differs
from instance to instance (we are obviously concerned with increas-
ing trends). A simple alternative to adjust the convergence criteria
according to the size of the instance being solved is to parameterize
the absolute gap tolerance in terms of |E|; and we can do this defining
a parameter that fixes the "maximum allowed error per edge", say epe,
and then setting absgap = epe ∗ |E|. We can eventually experiment
and calibrate epe so as to converge to local optima with acceptable
accuracy values.

4.5 computational experiments

In this section we describe the computational environment involved
(instances, machinery, solvers, setups, procedures, etc) and analyze
the results obtained in our experiments.

4.5.1 Dataset

Our test set consists of 40 feasible instances of the EDGP, divided into
two groups. The first group consists of 9 instances for the EDGPs in
K = 2, named euclid-n_p, which were generated randomly as follows:

1. place n points in a square, uniformly at random;
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Instance |V | |E| Instance |V | |E|

K = 2

euclid-15_0.5 15 60 euclid-50_0.3 50 412

euclid-20_0.5 20 111 euclid-50_0.4 50 535

euclid-30_0.5 30 240 euclid-50_0.5 50 642

euclid-40_0.5 40 429 euclid-50_0.6 50 772

euclid-50_0.2 50 290

K = 3

C0700odd.2 8 28 lavor30_6-3 30 195

lavor11 11 40 lavor30_6-4 30 191

lavor11_7 11 47 lavor30_6-5 30 195

lavor11_7-2 11 47 lavor30_6-6 30 195

C0150alter.1 26 191 lavor30_6-7 30 195

tiny 27 252 lavor30_6-8 30 193

lavor30_6-1 30 192 C0700.odd.G 36 308

lavor30_6-2 30 202 2erl-frag-bp1 39 406

C0080create.1 60 681 res_3000 108 1487

C0080create.2 60 681 res_5000 108 1392

names 82 840 1guu 150 955

C0020pdb 107 999 1guu-1 150 959

pept 107 999 1guu-4000 150 968

res_0 108 1410 2kxa 177 2711

res_1000 108 1506 res_2kxa 177 2627

res_2000 108 1404

Table 16: Description of the EDGP instances.

2. generate the cycle 1, . . . ,n to ensure biconnectedness;

3. for each other vertex pair i, j, decide whether {i, j} ∈ E with
probability p;

4. record the Euclidean distance dij between pairs of points in E;

obviously, all such instances are feasible.
The second group consists of 31 instances for the EDGPs in K = 3,

which are protein instances taken from the Protein Data Bank (PDB)
[9]. For these instances, only edges smaller than 5Å were kept, which
is realistic with respect to NMR experiments.

Overall, we consider instances having |V | 6 40 as small instances.
Table 16 gives details (name and dimensions) of our test set.

4.5.2 Environment

The LPs were solved with CPLEX 12.6 [37] and the NLPs with BARON
14.4.0 [78, 86] under the GAMS environment [63, 75] on a 24-CPU
Intel Xeon at 2.53GHz with 48Gb RAM running GNU/Linux. Both
solvers ran with default configurations. Execution time was limited to
3 hours of wall clock time. We set GAMS absolute gap parameter optca
according to the discussion in Section 4.4.6, and preliminary trial and
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error type experiments indicated that epe = 10 leads to a good trade-
off between accuracy and time consumption. We set ελ = 0.001 and
use Eigen [34], a C++ template library for Linear Algebra, to com-
pute the bounds on the λ variables using Eq. (41). We also added the
constraints Eq. (63) to all formulations.

4.5.3 Results

The most used quality indicators of a realization x of the EDGP are the
(scaled) largest distance error, defined as

lde(x) = max
{i,j}∈E

(| ‖xi − xj‖2 − dij |/dij),

and the (scaled) mean distance error, defined as:

mde(x) = 1

|E|

∑
{i,j}∈E

(| ‖xi − xj‖2 − dij |/dij).

These are the metrics used to analyze our results, with lower val-
ues meaning better solutions. But note that they are defined in terms
of the original vectors x ∈ Rn×K. Therefore, first and foremost, we
need to apply PCA on every SDP solution X ′ by factoring X ′ into

x ′ = ϑ
√
Λ+
K , and then compute and record the mde and lde values

for x ′.

4.5.3.1 DDP results

We start off presenting the results regarding the DDP programs. Table
17 reports per instance, for the noniterative DDPs, the mde, lde and
rank of the solutions, and the total wall clock time time (in seconds);
for the iterative DDPs, it reports the mde, lde and rank of the solu-
tions (we also display the maximum possible value of the rank like in
Chapter 3), and the total wall clock time (in seconds), number of DDP

iterations and the termination status of the algorithm (not = solution
is feasible but not PD, lim = time limit reached, inf = infeasible).

Overall, our experiments show that the DDP methods are fast and
scale well (at least the noniterative method), as expected, given that
we solved DDPs with matrices of size up to 177 × 177, apparently,
without major difficulties. The exception being the fruitless attempts
to solve instances res_0, res_1000, res_2000, res_3000, 2kxa, res_2kxa
with the iterative method, which reached the time limit of 3 hours
whilst solving the second program of the DDP sequence.

Differently to what happened with the BQPs (see Section 3.6.3), we
judge that the iterative method finally displayed its importance and
usefulness when applied to solve the EDGP: it improved the quality
of the solutions whenever at least two programs of the DDP sequence
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DDP Iterative DDP

Instance mde lde Rank Time (s) mde lde Rank Time (s) Iter St.

K = 2

euclid-15_0.5 0.531 2.125 14/15 0.095 0.531 2.125 14/15 0.095 1 not

euclid-20_0.5 0.817 8.226 19/20 0.126 0.817 8.226 19/20 0.126 1 not

euclid-30_0.5 0.688 3.806 29/30 0.274 0.688 3.806 29/30 0.274 1 not

euclid-40_0.5 0.863 10.822 39/40 0.584 0.863 10.822 39/40 0.584 1 not

euclid-50_0.2 0.873 8.669 46/50 0.567 0.873 8.669 46/50 0.567 1 not

euclid-50_0.3 0.816 8.562 47/50 0.733 0.816 8.562 47/50 0.733 1 not

euclid-50_0.4 0.939 9.344 47/50 0.709 0.939 9.344 47/50 0.709 1 not

euclid-50_0.5 1.265 181.876 48/50 0.924 1.265 181.876 48/50 0.924 1 not

euclid-50_0.6 1.051 30.699 48/50 0.676 1.051 30.699 48/50 0.676 1 not

K = 3

C0700odd.2 0.256 0.986 7/8 0.079 0.256 0.986 7/8 0.079 1 not

lavor11 0.379 1.496 11/11 0.085 0.222 0.888 8/11 0.388 3 not

lavor11_7 0.457 1.722 11/11 0.085 0.267 1.317 10/11 0.347 3 not

lavor11_7-2 0.448 1.487 11/11 0.085 0.331 1.477 10/11 0.195 2 not

C0150alter.1 0.587 2.338 25/26 0.192 0.587 2.338 25/26 0.192 1 not

tiny 0.608 2.476 27/27 0.227 0.495 2.994 25/27 2.021 2 not

lavor30_6-1 0.694 2.029 30/30 0.183 0.580 1.471 27/30 2.165 2 not

lavor30_6-2 0.651 3.078 30/30 0.154 0.487 2.430 29/30 1.741 2 not

lavor30_6-3 0.665 2.151 30/30 0.190 0.534 1.833 29/30 1.754 2 not

lavor30_6-4 0.642 1.539 30/30 0.209 0.477 0.950 28/30 2.761 2 not

lavor30_6-5 0.605 4.447 30/30 0.178 0.409 0.971 27/30 14.50 3 not

lavor30_6-6 0.610 2.029 29/30 0.222 0.610 2.029 29/30 0.222 1 not

lavor30_6-7 0.717 5.194 30/30 0.222 0.527 4.112 28/30 2.943 2 not

lavor30_6-8 0.637 5.516 30/30 0.167 0.428 1.175 25/30 2.049 2 not

C0700.odd.G 0.697 1.502 35/36 0.414 0.697 1.502 35/36 0.414 1 not

2erl-frag-bp1 0.682 3.268 39/39 0.557 0.433 1.513 34/39 94.36 3 not

C0080create.1 0.741 1.723 60/60 0.879 0.605 1.034 58/60 154.41 2 not

C0080create.2 0.741 1.723 60/60 0.889 0.605 1.034 58/60 154.49 2 not

names 0.859 1.325 82/82 2.141 0.730 0.993 79/82 2385.58 2 not

C0020pdb 0.871 1.197 106/107 3.879 0.871 1.197 106/107 3.879 1 not

pept 0.849 1.067 106/107 3.729 0.849 1.067 106/107 3.729 1 not

res_0 0.795 1.875 108/108 6.103 0.795 1.875 108/108 10868.27 2 lim

res_1000 0.792 1.110 108/108 6.182 0.792 1.110 108/108 10829.29 2 lim

res_2000 0.805 1.765 108/108 4.914 0.805 1.765 108/108 10929.82 2 lim

res_3000 0.823 1.551 108/108 5.947 0.823 1.551 108/108 10842.22 2 lim

res_5000 0.808 2.180 107/108 5.102 0.808 2.180 107/108 5.102 1 not

1guu 0.870 1.120 149/150 3.330 0.870 1.120 149/150 3.330 1 not

1guu-1 0.913 2.270 148/150 3.277 0.913 2.270 148/150 3.277 1 not

1guu-4000 0.900 1.558 149/150 3.114 0.900 1.558 149/150 3.114 1 not

2kxa 0.913 4.486 177/177 17.359 0.913 4.486 177/177 11392.98 2 lim

res_2kxa 0.925 4.696 177/177 15.283 0.925 4.696 177/177 11661.45 2 lim

Table 17: Results obtained with CPLEX 12.6 from all EDGP instances and
both DDP methods.
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were solved successfully; this is clearly the case among the sample
of small K = 3 instances. Moreover, we point out that the method
does take few iterations (3 at most in our tests) and converges very
quickly to a face of the PSD cone, regardless of the instance size (see
rows with status "not"). Unfortunately, but again as foreseen, the rank
of the solutions found are rather greater than the dimensions of the
embedding spaces (2 or 3, accordingly), meaning that we definitely
need to solve a rank reduction problem (i.e. employ a rank reduction
procedure) to find realizations with the correct rank, at least as it
concerns the EDGP. The results pertaining to this task are exposed in
the next section.

4.5.3.2 NLP results: RC models

We tested the simplified rank constrained NLPs obtained by combin-
ing Eq. (46) with either MES, MED or MEDRS, and their respective
narrowings, obtained by adjoining the SBCs on the λ variables (see
Section 4.4.4.2), resulting in a total of 6 models per instance. Tables
18, 19 and 20 report the results. Per instance and for each formulation,
the tables exhibit the mde and lde of the solutions found, the elapsed
wall clock time (in seconds) and the solver status (opt = optimal, feas
= feasible, nsf = no solution found). Per instance, we emphasize in
boldface the best realizations found according to the ranking criteria:
solver status, mde and computational time.

Unfortunately, but not surprisingly, although the DDP methods pro-
vided starting points for instances with up to 177 points, we could
not scale up too much with our MP heuristic, and no approximate
solutions were found for instances having more than 60 points: our
method could pull out solutions for just 27 out of the 40 tested in-
stances, basically the small ones. Yet our rank reduction step man-
aged to improve the quality of the initial DDP solutions in all 27 cases,
which is a positive achievement.

We move on to draw preliminary conclusions on which family of
RC models performs the better. We observe a slight advantage to the
MED based formulations: optimal solutions were found for instances
with up to 30 points and they produced 15 best performances. In
second place comes the MEDRS models, which were also capable of
providing optimal solutions for instances of size at most 30, but pro-
duced only 10 best performances. This is not quite as expected, since
the MEDRS models have less nonlinear terms overall per instance, but
possible, considering that the trilinear terms in Eq. (57) are identical
for Xij and Xji (as seen in Eq. (58)): these constraints are kind of
redundant and so, in theory, they induce no overhead in terms of
convexification techniques or feasibility matters. On the other hand,
the MES based formulations performed the worse: they could solve
instances with at most 11 points and produced only one best perfor-
mance (lavor11).
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Original RC formulation Narrowing

Instance Model mde lde Time (s) St. mde lde Time (s) St.

euclid-15_0.5
mes - - 10808.13 nsf - - 10808.17 nsf

med 0.065 0.680 10808.10 fea 0.065 0.680 10808.12 fea

medrs 0.065 0.680 10808.14 fea 0.065 0.680 10808.11 fea

euclid-20_0.5
mes - - 10808.15 nsf - - 10808.12 nsf

med 0.124 3.772 10808.11 fea 0.124 3.772 10808.12 fea

medrs 0.124 3.772 10808.15 fea 0.150 4.828 10808.16 fea

euclid-30_0.5
mes - - 10808.28 nsf - - 10808.14 nsf

med 0.049 1.505 103.84 fea 0.023 0.713 175.29 fea

medrs 0.039 0.918 52.66 fea 0.039 0.865 95.94 fea

euclid-40_0.5
mes - - 10808.22 nsf - - 10808.18 nsf

med 0.011 1.027 981.53 fea 0.011 1.027 1022.62 fea

medrs 0.011 1.027 1680.93 fea 0.011 1.027 1774.48 fea

euclid-50_0.2
mes - - 10809.28 nsf - - 10809.25 nsf

med 0.017 0.715 7620.37 fea 0.253 6.531 10808.31 fea

medrs 0.017 0.715 7295.73 fea 0.018 1.202 5580.57 fea

euclid-50_0.3
mes - - 10814.81 nsf - - 10877.01 nsf

med 0.011 1.081 4763.35 fea 0.012 1.265 8574.81 fea

medrs 0.012 1.322 9848.76 fea 0.026 2.553 2148.76 fea

euclid-50_0.4
mes - - 10809.44 nsf - - 10806.06 nsf

med 0.029 1.706 4574.68 fea 0.029 1.706 3650.53 fea

medrs 0.029 1.706 2217.35 fea 0.033 2.887 3720.59 fea

euclid-50_0.5
mes - - 10800.66 nsf - - 10808.32 nsf

med 0.126 43.278 3982.96 fea 0.126 43.278 1694.92 fea

medrs - - 10808.57 nsf 0.147 43.278 10808.31 fea

euclid-50_0.6
mes - - 10808.60 nsf - - 10841.86 nsf

med 0.040 3.981 7813.21 fea - - 10808.20 nsf

medrs - - 10808.40 nsf - - 10808.31 nsf

Table 18: Results for K = 2 EDGP instances obtained from all RC formulations
with BARON 14.4.0. 0* indicates values of O(10−5) or less.
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Original RC formulation Narrowing

Instance Model mde lde Time (s) St. mde lde Time (s) St.

C0700odd.2
mes 0* 0* 3.55 opt 0* 0* 4.15 opt

med 0* 0* 0.88 opt 0* 0* 0.08 opt

medrs 0* 0* 1.71 opt 0* 0* 0.93 opt

lavor11

mes 0.022 0.265 33.78 fea 0* 0* 28.05 opt

med 0.003 0.082 0.47 fea 0.103 0.768 0.24 fea

medrs 0.003 0.082 0.58 fea 0.103 0.768 0.50 fea

lavor11_7

mes 0* 0* 32.37 opt 0* 0* 51.85 opt

med 0* 0* 0.25 opt 0* 0* 0.26 opt

medrs 0* 0* 0.21 opt 0* 0* 0.19 opt

lavor11_7-2
mes 0* 0* 21.98 opt 0.007 0.049 31.17 fea

med 0* 0* 0.22 opt 0* 0* 0.19 opt

medrs 0* 0* 0.28 opt 0* 0* 0.18 opt

tiny
mes - - 10808.16 nsf - - 10808.59 nsf

med 0.038 0.601 23.91 fea 0.033 0.893 79.65 fea

medrs 0.024 0.544 28.25 fea 0.033 0.893 113.34 fea

C0150alter.1
mes - - 10808.31 nsf - - 10808.19 nsf

med 0.016 0.401 223.25 fea 0.003 0.050 77.19 fea

medrs 0.016 0.401 61.70 fea 0.047 0.860 36.91 fea

lavor30_6-1
mes - - 10808.44 nsf - - 10808.18 nsf

med 0.019 0.481 1748.64 fea 0.001 0.040 1020.75 fea

medrs 0* 0* 756.32 opt 0.020 0.498 403.95 fea

lavor30_6-2
mes - - 10808.54 nsf - - 10808.17 nsf

med 0.008 0.472 342.76 fea 0.006 0.484 157.61 fea

medrs 0.011 0.490 284.97 fea 0.011 0.490 147.05 fea

lavor30_6-3
mes - - 10808.20 nsf - - 10808.47 nsf

med 0.009 0.421 63.34 fea 0.013 0.484 601.13 fea

medrs 0.010 0.456 43.66 fea 0.001 0.068 265.19 fea

lavor30_6-4
mes - - 10808.18 nsf - - 10808.19 nsf

med 0.017 0.469 137.28 fea 0.006 0.469 99.62 fea

medrs 0.017 0.484 151.72 fea 0.031 0.430 33.00 fea

lavor30_6-5
mes - - 10808.18 nsf - - 10808.21 nsf

med 0* 0* 72.31 opt 0* 0* 170.73 opt

medrs 0* 0* 55.79 opt 0.020 0.491 281.05 fea

lavor30_6-6
mes - - 10808.39 nsf - - 10808.16 nsf

med 0* 0* 224.43 opt 0* 0* 433.66 opt

medrs 0.014 0.457 130.49 fea 0* 0* 178.94 opt

lavor30_6-7
mes - - 10808.58 nsf - - 10808.38 nsf

med 0.004 0.203 981.34 fea 0.008 0.426 64.14 fea

medrs 0.007 0.455 170.63 fea 0.008 0.502 109.46 fea

lavor30_6-8
mes - - 10808.20 nsf - - 10808.56 nsf

med 0.022 0.587 35.20 fea 0* 0* 72.20 opt

medrs 0.007 0.459 156.00 fea 0.008 0.516 113.49 fea

C0700.odd.G
mes - - 10808.68 nsf - - 10808.19 nsf

med 0.004 0.239 563.83 fea 0.006 0.278 331.08 fea

medrs 0.001 0.046 530.14 fea 0* 0.007 828.07 fea

2erl-frag-bp1

mes - - 10808.20 nsf - - 10808.22 nsf

med 0.029 0.622 148.39 fea 0.029 0.622 225.98 fea

medrs 0.029 0.622 153.89 fea 0.029 0.622 257.93 fea

Table 19: Results for small K = 3 EDGP instances obtained from all RC for-
mulations with BARON 14.4.0. 0* indicates values of O(10−5) or
less.
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Original RC formulation Narrowing

Instance Model mde lde Time (s) St. mde lde Time (s) St.

C0080create.1
mes - - 10808.53 nsf - - 10827.49 nsf

med 0.039 2.191 10808.43 fea - - 10808.26 nsf

medrs - - 10808.48 nsf 0.080 1.440 6678.16 fea

C0080create.2
mes - - 10812.33 nsf - - 10828.08 nsf

med 0.038 2.182 10808.42 fea 0.042 1.970 10808.56 fea

medrs - - 10808.08 nsf 0.080 1.440 4683.39 fea

Table 20: Results for large K = 3 EDGP instances obtained from all RC for-
mulations with BARON 14.4.0. 0* indicates values of O(10−5) or
less.

Original RC formulation Narrowing Total
Model Euclid Protein Euclid Protein

mes - 1 - - 1

med 4 4 2 5 15

medrs 2 3 - 5 10

Total 14 12 26

Table 21: Aggregated solution statistics for the RC models.

Proportionally, the narrowings were not helpful as regards the re-
duction of computational times, most likely because we set to zero
the value ofN−K eigenvalues a priori; that is, we are actually adding
solely one strong SBC for the K = 2 instances and two strong SBCs for
the K = 3 instances, which is insignificant in total numbers. Yet the
narrowings are responsible for 12 out of the 26 best performances; in
14 cases the original formulations performed better, and there was
one case in which no influence of the SBCs was detected at all (in-
stance euclid-15_0.5). Table 21 depicts a summary of the performance
statistics.

An interesting observation is that the set of euclid instances seems
to be harder solve than the protein set. If we compare the elapsed
times of the instances having less than 40 vertices, apart from the
MED models, almost all protein instances were solved in less than
ten minutes, whilst the euclid instances consumed one to two hours
of elapsed time, reaching the time limit in many cases (see e.g. euclid-
15_0.5 and euclid-20_0.5). One could possibly argue that this does not
make sense because the realization matrices x ∈ Rn×K are smaller for
the K = 2 instances of the euclid set. However, recall that SDPs and
DDPs are oblivious to the dimension K since X ∈ Rn×n, so in terms
of DDP methods for the EDGP, we can affirm with certainty that the
"hardness" of an instance is purely related to the set of distance values,
and not to the dimension of the embedding spaces at all.

Overall, the NLP results are not expressive but can be taken as a
proof of concept of our methodology, particularly with respect to the
RC models, considering that global optima were found for many in-
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stances. Timewise the method is not competitive when compared to
the main algorithms in the literature (DGSol and BP). A direct com-
parison is barely necessary: even focusing on the best performances
of the MED formulations, the elapsed times are already surpassing 2

hours for the small instances (see euclid-50_0.6), and reaching 3 hours
for the large instances (see C0080create.1 and C0080create.2). This is
the price one pays for applying exact methods to solve difficult MP

problems.

4.5.3.3 NLP results: GO models

To scrutinize even further the accomplishments of our heuristic, we
decided to test both Eq. (37) and Eq. (44), which we name respec-
tively Squared and Absval, for simplicity, and compare the results.
Note that, in this round of experiments, both programs (Squared and
Absval) are written in terms of the original x ∈ Rn×K variables, so
we warm started them with the output x ′ of the PCA of the DDP so-
lutions. We added constraints Eq. (61) to both formulations and also
employed the stopping criterion described in Section 4.4.6.

Table 22 reports per instance and per formulation, the mde and lde
of the solutions found, the elapsed wall clock time (in seconds) and
the solver status (opt = optimal, feas = feasible, nsf = no solution
found). Again, we rank and emphasize in boldface the best solution
per instance according to the solver status, the mde value and the
computational time.

First of all, we would like to remark that both programs provided
approximate solutions for all instances in good elapsed times, par-
ticularly the Squared model. This is an indication that perhaps it is
possible to increase their accuracy (by reducing the value of epe) and
find even better solutions, yet in reasonable computational times. In
general, we observe that the Squared model performed better on the
set of euclid instances (8 vs 1), while the Absval model performed
better on the protein instances (21 vs 9). A perceptible trend among
the large protein instances is that the Absval model converged slower
to lower mde values.

Besides, contrary to what happened with the RC models, the GO

solver clearly took advantage of the value of the dimension K and
solved to optimality all intances of the euclid set (the exception being
euclid50_0.2), what did not happen with the protein set. It would
be very insteresting indeed if we could somehow explore this lower
dimensionality when employing Semidefinite Programming.

In comparison with the quality of the RC results, the GO results are
superior in all senses: scale, accuracy and computational time. The
point is, while the RC formulations have n× n matrices as decision
variables, the GO formulations have n×K matrices. Given that n� K

in basically all real-world applications of the EDGP, n2 � nK also
holds, and one ends up inevitably with many more variables when
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Squared Absval

Instance mde lde Time (s) St. mde lde Time (s) St.

K = 2

euclid-15_0.5 0* 0* 0.05 opt 0* 0* 0.20 fea

euclid-20_0.5 0* 0* 0.13 opt 0* 0* 0.88 fea

euclid-30_0.5 0* 0* 0.08 opt 0* 0* 1.08 fea

euclid-40_0.5 0* 0* 3.11 opt 0* 0* 1.84 fea

euclid-50_0.2 0* 0.001 4.24 fea 0* 0.001 1.04 fea

euclid-50_0.3 0* 0* 4.30 opt 0* 0* 1.17 fea

euclid-50_0.4 0* 0* 4.58 opt 0* 0* 2.55 fea

euclid-50_0.5 0* 0* 6.20 opt 0.021 3.935 2.25 fea

euclid-50_0.6 0* 0* 4.86 opt 0* 0* 2.79 fea

K = 3

C0700odd.2 0.226 0.986 0.01 fea 0* 0* 0.02 opt

lavor11 0.004 0.042 0.06 fea 0.029 0.293 0.10 fea

lavor11_7 0* 0* 0.07 opt 0* 0* 0.07 opt

lavor11_7-2 0* 0* 0.05 opt 0* 0* 0.15 opt

C0150alter.1 0* 0* 1.54 opt 0* 0* 1.22 opt

tiny 0* 0* 1.65 opt 0.033 0.893 0.72 fea

lavor30_6-1 0.013 0.347 1.30 fea 0* 0* 1.01 opt

lavor30_6-2 0.053 0.511 0.42 fea 0.012 0.430 0.73 fea

lavor30_6-3 0.045 0.548 2.20 fea 0.006 0.477 1.31 fea

lavor30_6-4 0.035 0.539 2.57 fea 0.025 0.445 0.67 fea

lavor30_6-5 0.013 0.354 3.47 fea 0* 0* 0.63 opt

lavor30_6-6 0* 0* 1.83 opt 0* 0* 1.61 opt

lavor30_6-7 0.038 0.555 2.28 fea 0.011 0.446 0.81 fea

lavor30_6-8 0.013 0.359 4.19 fea 0.008 0.520 0.95 fea

C0700.odd.G 0.015 0.419 5.46 fea 0* 0* 1.90 opt

2erl-frag-bp1 0.014 0.331 2.92 fea 0.029 0.622 2.24 fea

C0080create.1 0* 0* 15.38 opt 0.127 3.634 33.35 fea

C0080create.2 0* 0* 15.27 opt 0.127 3.634 33.22 fea

names 0.108 0.903 3.33 fea 0.036 0.777 120.92 fea

C0020pdb 0.073 0.782 41.49 fea 0.051 0.974 183.22 fea

pept 0.059 0.930 21.28 fea 0.048 1.009 154.56 fea

res_0 0.080 0.803 10.11 fea 0.001 0.596 276.53 fea

res_1000 0.073 1.513 16.75 fea 0.020 1.750 319.17 fea

res_2000 0.085 1.465 5.76 fea 0.051 1.983 345.85 fea

res_3000 0.021 0.534 46.22 fea 0.026 2.310 246.78 fea

res_5000 0.080 0.815 17.85 fea 0.139 3.396 135.32 fea

1guu 0.035 0.885 48.01 fea 0.027 1.011 17.41 fea

1guu-1 0.037 0.884 81.24 fea 0.021 0.776 18.17 fea

1guu-4000 0.048 0.818 81.14 fea 0.039 1.113 15.53 fea

2kxa 0.046 0.889 9.63 fea 0.120 3.322 810.46 fea

res_2kxa 0.058 0.821 4.89 fea 0.048 2.513 798.82 fea

Table 22: Results for all EDGP instances obtained from the GO formulations
with BARON 14.4.0. 0* indicates values of O(10−5) or less.
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employing SDP approaches. Adding a bunch of nonlinear constraints
on top of this enlarged set of decision variables seems to be a recipe
for failure then. Maybe not in theoretical applications where n ≈ K.
But if this is not the case or if one simply does not want to resort
to SDP procedures, based on our experience, it seems to be more at-
tractive computationally to attack the GO formulations at once, above
all if a powerful Global Optimization solver is available; or develop
algorithms that are not heavily based on MP solvers. Lesson learned.

4.6 conclusions

In this chapter we have presented a two-steps approximative heuristic
algorithm based on Mathematical Programming to try and solve the
notoriously difficult Euclidean Distance Geometry Problem. We have
provided new Linear Programs for the EDGP based on the recent Diag-
onally Dominant Programming paradigm, which we used to obtain
as good as possible (but yet rank infeasible) starting solutions to the
problem. Furthermore, we have also provided three Rank Constraint
models based on the classical concepts of eigensystem and eigende-
composition, which we used as rank reduction devices. We have then
described an heuristic that consists simply of using the solution of the
LPs to warm start the rank constrained formulations. Computational
experiments, performed with some randomly generated instances as
well as with some realistic protein instances taken from the Protein
Data Bank, allowed us to validate our method and draw conclusions
regarding its performance and accuracy.





5
C O N C L U S I O N S

In this thesis we have explored theoretical and practical aspects of
Mathematical Programming mainly from the standpoint of symme-
tries and distances. Some mathematical and computational issues
were adressed with the intention of effectively overcoming them (or
at least taking a few steps forward in this direction) by providing new
ideas which may be further explored and developed in the future.

As regards the Symmetry-Breaking Constraints paradigm, we ex-
pect that the larger the amount of orbits exploited and SBCs generated,
the tigther the resulting narrowing and the faster the convergence of
Branch-and-Bound type algorithms. Previously, in general, adjoining
SBCs from two or more orbits chosen arbitrarily could result in all
global optima being infeasible. To overcome this issue, we have es-
tablished the Orbital Independence Theory. In short words, given the
set ΩGP of orbits of the formulation group GP of a problem P, we
have devised a procedure to identify an independent set ΩI ⊆ ΩGP
of orbits and we have shown that we can use the SBCs generated from
each of the orbits in ΩI concurrently to reformulate the original for-
mulation without losing global optima. We have evaluated the im-
pact of our methodology by conducting experiments with symmetric
instances taken from the libraries MIPLIB2010 and MINLPLib2, as well
as with randomly generated Binary Quadratic Programs. The results
related to the public instances were at most reasonable. Nevertheless,
the results are also considered as an evidence of the fact that we may
have reached the limit of what we can do in terms of Static Symmetry
Breaking, since we are exploiting as much as we can, but not getting
expressive results for the general case; we therefore consider that it
is long past time for trying and exploiting the Orbital Independence
ideas dynamically.

Next we have explored the symmetry subject in Mathematical Pro-
gramming by discussing about Binary Quadratic Programming and
the performance of Semidefinite Programming (and Diagonally Dom-
inant Programming) when solving symmetric Binary Quadratic Pro-
grams. Our preliminary findings indicate that it may not be necessary
to adjoin Symmetry-Breaking Constraints when solving Semidefinite
Programs or Diagonally Dominant Programs. Yet we recommend its
use first because we observed a few cases of improvement and second
because these results originate from what is a preliminary attempt
to study these subjects together. That being so, we judge that it re-
mains important to further investigate it; at least from the point of
view of other symmetry handling strategies available in the literature.
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However, in order to carry out our experiments, we have established
a procedure to generate symmetric Binary Quadratic Programs. In
particular, these tailored Binary Quadratic Programs have proved to
be quite relevant to the Orbital Independence Theory since they em-
bed the conditions under which the use of Symmetry-Breaking Con-
straints produces very interesting outcomes in terms of reduction of
Branch-and-Bound execution times.

Finally, we have adventured to tackle the fundamental Euclidean
Distance Geometry Problem by means of Semidefinite Programming
as a final act. We have presented a two-steps approximative heuris-
tic algorithm to try and solve this notoriously difficult problem. Em-
ploying the recent Diagonally Dominant Programming paradigm, we
have derived new Linear Programming relaxations for the Euclidean
Distance Geometry Problem, used to obtain starting solutions which
are rank infeasible with high probability. We have also devised rank
reduction devices, namely Rank Constraint models based on the clas-
sical concepts of eigensystem and eigendecomposition. Using these
two tools, we have described a heuristic that consists simply of us-
ing the solution of the Linear Programs to warm start the rank con-
strained formulations. Computational experiments, performed with
some randomly generated instances as well as with some realistic
protein instances taken from the Protein Data Bank; these tests al-
lowed us to validate our method and draw conclusions regarding its
performance and accuracy when comparing to the results obtained
from solving the original Mathematical Programming formulations.

Taking all the content of this thesis into account, we judge that
the results presented in this work are far from being exceptional, but
they are quite reasonable. Naturally, we hope that the ideas presented
herein may be useful and/or insightful in other contexts, eventually.
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Résumé : Cette thèse est principalement consa-
crée à l’étude et à la discussion de deux questions
importantes qui se posent, entre autres, dans le do-
maine de la Programmation Mathématique : les sy-
métries et les distances. En arrière-plan, nous exa-
minons la Programmation Semidéfinie et sa perti-
nence comme l’un des principaux outils employés
aujourd’hui pour résoudre les Programmes Mathé-
matiques difficilles. Après le chapitre introductif,
nous discutons des symétries au Chapitre 2 et des

distances au Chapitre 4. Entre ces deux chapitres,
nous présentons un chapitre que nous préférons en
fait appeler entr’acte : leur contenu ne mérite pas
d’être publié pour le moment (il ne fournit aucune
innovation à ce jour), mais il fournit un lien entre
les deux Chapitres 2 et 4 apparemment distincts,
qui sont ceux qui contiennent les principales contri-
butions de cette thèse. Les conclusions de la thèse
sont présentées au Chapitre 5.
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Abstract : This thesis is mostly dedicated to
study and discuss two important challenges exis-
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its pertinency as one of the major tools employed
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gly separate Chapters 2 and 4, which are the ones
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The concluding remarks of the thesis are presen-
ted in Chapter 5.
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