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Abstract

We propose a generic Bayesian mixed-e�ects model to estimate the temporal progres-

sion of a biological phenomenon from manifold-valued observations obtained at multiple time

points for an individual or group of individuals. The progression is modeled by continuous tra-

jectories in the space of measurements, which is assumed to be a Riemannian manifold. The

group-average trajectory is de�ned by the �xed e�ects of the model. To de�ne the individual

trajectories, we introduced the notion of "parallel variations" of a curve on a Riemannian man-

ifold. For each individual, the individual trajectory is constructed by considering a parallel

variation of the average trajectory and reparametrizing this parallel in time. The subject-

speci�c spatiotemporal transformations, namely parallel variation and time reparametrization,

are de�ned by the individual random e�ects and allow to quantify the changes in direction and

pace at which the trajectories are followed. The framework of Riemannian geometry allows

the model to be used with any kind of measurements with smooth constraints. Particular

cases of the model are derived for the analysis of longitudinal normalized scalar measure-

ments, symmetric positive de�nite matrices or to study the temporal progression of a family

of biological features.

A stochastic version of the Expectation-Maximization algorithm, namely the Monte Carlo

Markov Chains Stochastic Approximation EM algorithm (MCMC-SAEM), is used to produce

produce maximum a posteriori estimates of the parameters. The use of the MCMC-SAEM

together with a numerical scheme for the approximation of parallel transport is discussed. In

addition to this, the method is validated on synthetic data and in high-dimensional settings.

Experimental results illustrate the ability of the model to be used with measurements

of varying nature and complexity. They also illustrate the role of the �xed and random ef-

fects of the model in the estimation of normative scenarios of progression with its temporal

variability of this progression among the population. These results consist in the analysis of

neuropsychological test scores from patients with mild cognitive impairments later diagnosed

with Alzheimer's disease, percentages of body fat from adolescent girls and simulated evolu-

tions of symmetric positive de�nite matrices. The data-driven model of the impairment of

cognitive functions during the course of the disease provide unique insights into the ordering

and timing of the decline of these functions. Results on symmetric positive de�nite matrices

show that the model correctly estimates a signi�cant event in the observed evolution. The

analysis of body fat show some limitations of our approach with univariate measurements

while giving a satisfying estimation of the impact of adolescent ageing on the evolution of

body fat. In these situations, the spatiotemporal transformations allow to put into correspon-

dence the progression of individuals.

Keywords : Riemannian geometry, Longitudinal data, Statistical modeling, Stochastic EM

algorithm.
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I.1 Motivation

Étudier l'évolution d'un phénomène biologique au cours du temps est un sujet dont
l'intérêt est central dans de nombreux domaines scienti�ques. Par exemple, comprendre
l'évolution de certaines maladies joue un rôle clef dans le développement de nouveaux
traitements. En vision par ordinateur, il peut être question de développer une mé-
thode permettant d'annoter automatiquement des images de visages humains avec une
certaine émotion.

Pour un individu ou objet donné, l'évolution du phénomène peut être mesurée à par-
tir de caractéristiques, grandeurs d'intérêt (features) qui décrivent l'état de l'individu
à un instant donné. Lorsque l'on s'intéresse à l'évolution d'une maladie, ces caracté-
ristiques peuvent être des mesures extraites de bilans sanguins, telles que le nombre
de lymphocytes, de globules rouges, la taille, le poids mais également de l'imagerie
médicale telle que l'imagerie par résonance magnétique (IRM). En revanche, si l'on
considère des images de visages humains, ces caractéristiques peuvent être la position
de parties spéci�ques du visage, telles que la bouche, le nez ou les joues. Ces mesures
se traduisent, à chaque instant, par un nombre réel ou un vecteur de nombres réels.
L'ensemble des mesures décrit une partie d'un espace Euclidien où l'évolution d'un in-
dividu peut être représentée par une trajectoire continue. Par exemple, des études sur
la croissance et le développement de jeunes enfants ont permis d'obtenir des scénarios
normatifs de poids et de taille, qui sont régulièrement utilisés par les pédiatres. Ces
scénarios normatifs de croissance donnent des trajectoires d'évolution de la taille et du
poids en fonction du temps, au cours des premières années de la vie. En particulier, ils
donnent une trajectoire de progression moyenne, qui décrit l'évolution du poids et de
la taille chez � l'enfant moyen �. De plus, ces scénarios donnent également la variabilité
de cette trajectoire moyenne au sein de la population. Cette variabilité est souvent
représentée sous forme d'un intervalle de con�ance autour de la trajectoire moyenne.
Une autre source de variabilité inter-individuelle dans les observations provient des
di�erences de vitesse de progression au sein de la population. En e�et, chaque individu
progresse avec une allure qui lui est propre, certains évoluant plus rapidement que
d'autres. Dans ces scénarios normatifs de taille ou de poids, la variabilité de la vitesse
d'évolution n'est pas représentée. En e�et, seule la variabilité des mesures à un âge
donné est représentée. Pour ce qui est de l'analyse d'images de visages humains pour
la détection automatique d'émotions, la variabilité inter-individuelle est d'autant plus
importante que la forme du visage, des yeux, de la bouche varie fortement d'un individu
à l'autre. Par ailleurs, certains individus vieillissent plus vite que d'autres. En�n, on
peut également remarquer que la dynamique des changements du visage n'est pas la
même pour la joie que pour la colère.

Pour pouvoir estimer une trajectoire moyenne de progression ainsi que la variabilité
de cette trajectoire au sein de la population, il convient de considérer des données longi-
tudinales. Ces données consistent en des observations (du même phénomène biologique)
acquises à des instants répétés, pour un groupe d'individus. Les instants auxquels ces
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observations sont obtenues ainsi que leur nombre peuvent varier d'un individu à l'autre.
De nombreuses études, dont certaines visant à modéliser la progression de maladies neu-
rodégénératives ou l'e�et du vieillissement sur le visage humain, ont constitué de larges
bases de données longitudinales. La base de données Alzheimer's Disease Neuroima-
ging Initiative (ADNI), pour la maladie d'Alzheimer, ou la base MORPH, pour les
visages humains, en sont des exemples. D'autres exemples incluent la base de donnée
Baltimore Longitudinal Study of Ageing, qui permet d'étudier l'e�et du vieillissement
sur une population d'individus sains. Ces bases de données sont souvent multimodales.
Les caractéristiques mesurées sont de nature di�érente. Dans la plupart des études, ces
mesures sont représentées par des nombres réels ou des vecteurs de nombres réels. Pour
certaines études, l'imagerie médicale - telle que l'Imagerie par Résonance Magnétique
(IRM) - joue un rôle important. L'image peut être considérée en tant que telle mais
permet également d'extraire des mesures complexes telles que des formes encodées par
des maillages. Ces exemples montrent que les observations collectées dans ces bases de
données peuvent être hautement structurées, comme des images ou des maillages. Dans
ce cas, l'espace des mesures est souvent dé�ni par des contraintes lisses et ne peut pas
être considéré comme ayant une structure d'espace Euclidien. Les variétés Rieman-
niennes permettent une description mathématique rigoureuse de l'espace des mesures.
Le cadre méthodologique o�ert par les variétés Riemanniennes permet de considérer des
observations dé�nies par des contraintes lisses, ainsi que des observations structurées
ou non-structurées.

Time

Individual 1

Individual 2

Individual 3

Figure 1 � Deux exemples schématiques de données longitudinales.

Ce manuscrit vise à proposer un modèle statistique, pour des données longitudinales
issues de l'observation d'un phénomène biologique, satisfaisant aux exigences suivantes :

(i) le modèle est dé�ni dans le cadre méthodologique des variétés Riemanniennes.
Cela assure que le modèle peut être utilisé avec des observations dé�nies par des
contraintes lisses, comme des observations sans contraintes.
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(ii) le modèle permet d'estimer une distribution de trajectoires dans l'espace des me-
sures. En particulier, une trajectoire moyenne est estimée ainsi que la variabilité
de celle-ci au sein de la population. Cela permet de capturer la variabilité inter-
individuelle des données longitudinales. De plus, le modèle estime la variabilité
de la vitesse de progression ainsi que de l'avance ou du retard de l'évolution du
phénomène observé chez les di�érents individus.

L'analyse statistique des observations collectées dans ces bases de données permet
d'apprendre des modèles de l'évolution d'un phénomène biologique. Les modèles à ef-
fets mixtes [Eisenhart, 1947, Laird and Ware, 1982, Verbeke and Molenberghs, 2009]
sont particulièrement populaires pour l'analyse de données longitudinales. Ces modèles
statistiques incluent des e�ets �xes et e�ets aléatoires qui leur confèrent une structure
hiérarchique. En e�et, ces e�ets permettent de décrire le modèle tant au niveau du
groupe qu'au niveau individuel. En adaptant un modèle à e�ets mixtes aux données,
il est alors possible d'apprendre un modèle moyen d'évolution ainsi que des modèles
spéci�ques à chaque sujet. De plus, les modèles à e�ets mixtes imposent des conditions
sur la loi de probabilité des e�ets aléatoires. Ainsi, ces e�ets aléatoires o�rent la possi-
bilité d'apprendre une distribution de trajectoires dans l'espace des observations. Les
modèles à e�ets mixtes sont des modèles génératifs dont les paramètres peuvent être
facilement interprétés. Par ailleurs, ces modèles peuvent gérer des données manquantes.

Les modèles linéaires à e�ets mixtes (modèles LME) sont les modèles à e�ets mixtes
les plus simples et sont fréquemment utilisés pour l'analyse de données longitudinales.
Ces modèles remontent au modèle d'ANOVA à e�ets mixtes [Sche�é, 1956]. Cependant,
ils sont vraiment devenus populaires dans les années 1980 avec le papier fondateur de
Laird et Ware [Laird and Ware, 1982]. En partant d'idées introduites dans [Harville,
1977], Laird et Ware ont mis en avant l'intérêt des modèles linéaires à e�ets mixtes
- en particulier dans le domaine des sciences du vivant - et ont proposé une famille
de modèles linéaires à e�ets mixtes �exible qui permet de traiter des observations
manquantes. Soit p le nombre d'individus et pour i ∈ {1, . . . , p}, soit yi ∈ Rki le
vecteur des observations du i-ème individu. Le modèle introduit par Laird et Ware
suppose que les observations (yi)1≤i≤p dérivent du modèle suivant :

yi = Xiα+ Ziβi + εi [i.1]

Pour chaque individu, les observations yi sont modélisées par une fonction linéaire des
e�ets �xes α ∈ Rp et des e�ets aléatoires sujet-spéci�ques βi ∈ Rq. Les matrices Xi

(respectivement Zi) (appelées design matrices) relient les e�ets �xes (respectivement
aléatoires) aux observations. Le modèle LME générique donné en Eq. [i.1] suppose
que les e�ets aléatoires (βi)1≤i≤p sont inpendants et identiquement distribués, de loi
normale.

Un cas particulier des modèles LME pour l'analyse de données longitudinales est
le modèle avec pente et ordonnée à l'origine aléatoires (random slope and intercept
model). Ce modèle est fréquemment utilisé pour analyser des données longitudinales
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scalaires et s'écrit :

yi,j = (ti,j − t0)(A + Ai) + (B + Bi) + εi,j [i.2]

où (ti,j)1≤j≤ki désignent les instants auxquels les observations du i-ème individu ont
été obtenues. Les paramètres de population (ou e�ets �xes) du modèle sont la pente
A et l'ordonnée à l'origine B. Les e�ets aléatoires sujet-spéci�ques sont les pentes
(Ai)1≤i≤p et les ordonnées à l'origine (Bi)1≤i≤p. Ces e�ets aléatoires sont supposés in-
dépendants entre eux et identiquement distribués, de loi normale. Ce modèle avec
pente et ordonnée à l'origine aléatoires permet d'estimer une trajectoire moyenne
D(t) = (t− t0)A + B. Les e�ets aléatoires permetttent d'estimer des trajectoires indi-
viduelles Di(t) = (t− t0)(A + Ai) + (B + Bi), qui sont obtenues en ajustant la pente
et l'ordonnée à l'origine de la trajectoire moyenne. Ce modèle permet essentiellement
de régresser les observations par rapport au temps. Le paramètre t0 du modèle peut
être interprété comme un temps de référence. Si les données longitudinales proviennent,
par exemple, d'études sur le développement et l'élevage de certains animaux, d'études
pharmacologiques, le temps de référence t0 peut être choisi comme la date de naissance
d'une portée ou le moment où un médicament a été administré. En revanche, il existe
de nombreuses situations pour lesquelles il n'existe pas de temps de référence t0 auquel
les observations peuvent être comparées entre elles. Par exemple, dans les études sur
les maladies neurodégénératives, deux individus du même âge peuvent être à des stades
très di�érents de la progression de la maladie. Ainsi, la régression des observations par
rapport au temps n'a pas de sens pour ces données. Pour des séquences d'images, il
faudrait commencer par trouver l'instant qui correspond au même � événement � ou
� état d'émotion � parmi les images de chaque individu. Il s'agit d'une tâche fastidieuse
et on souhaiterait qu'un tel alignement entre séquences d'images soit le résultat d'un
algorithme et non un prérequis pour analyser ces données. Lorsque le choix d'un temps
de référence t0 n'est pas évident, une solution consisterait à estimer ce paramètre à
partir des données avec les autres paramètres du modèle. Cependant, en faisant cela,
le modèle avec pente et ordonnée à l'origine aléatoires devient non-identi�able. C'est-
à-dire qu'il existe une in�nité de triplets (A,B, t0) qui maximise la vraisemblance du
modèle. Par conséquent, le modèle avec pente et ordonnée à l'origine aléatoires n'est
pas adapté pour décrire l'évolution d'un phénomène dont le début et la vitesse de
progression varient d'un individu à l'autre.

Dans de nombreuses situations, supposer que les observations dépendent linéaire-
ment des e�ets �xes (ou aléatoires) du modèle pourraient être irréaliste. La famille
des modèles non-linéaires à e�ets mixtes (modèles NLME) o�re une plus grande �exi-
bilité pour décrire les observations. Ces modèles sont introduits dans les travaux de
Sheiner et Beal [Sheiner and Beal, 1980] puis dans [Lindstrom and Bates, 1988]. Ils
ont fait l'objet de recherches actives depuis les années 1990. Ils sont maintenant très
populaires dans de nombreux domaines tels que la modélisation pharmaco-cinétique,
la médecine, etc. Les modèles NLME supposent qu'un jeu de données longitudinales
(yi,j, ti,j)1≤i≤p, 1≤j≤ki avec yi = (yi,1, . . . , yi,ki) découlent de :

yi = f(ψi, ti) + εi [i.3]
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où f désigne une fonction non-linéaire et ψi = Xiα + Ziβi. Les matrices (Xi)1≤i≤p
(respectivement (Zi)1≤i≤p) relient les e�ets �xes α (respectivement βi) à ψi. Les e�ets
aléatoires (βi)1≤i≤p sont supposés indépendants entre eux et identiquement distribués

avec : βi
i.i.d.∼ N (0,D). On peut remarquer que les modèles LME sont un cas particulier

des modèles NLME. Malgré leur formulation plus générique, les modèles NLME - en gé-
néral - ne permettent pas non plus de prendre en compte la variabilité de l'âge au début
de la maladie et de sa vitesse de progression. Dans [Yang et al., 2011] et [Delor et al.,
2013], les auteurs ont cherché à apporter une solution à ce problème en introduisant
des décalages temporels (time shifts). Cependant, les décalages temporels (ainsi que
leur variabilité au sein de la population) ne sont pas estimés par l'intermédiaire d'un
modèle statistique. Dans [Durrleman et al., 2013], des reparamétrisations temporelles
appellées time warps (id est, des di�éomorphismes de la droite réelle) sont considérés
pour répondre à ce problème dans le cadre de l'analyse longitudinale de formes. Toute-
fois, l'estimation des paramètres du modèle statistique est réalisée en minimisant une
somme de carrés qui résulte d'une approximation non contrôlée de la vraisemblance.
Dans [Hong et al., 2014], les auteurs considèrent des time warps paramétriques avec
un modèle de régression géodésique pour l'analyse de formes. Cependant, le modèle
proposé ne se généralise pas facilement à l'analyse de données longitudinales. En�n,
dans [Lorenzi et al., 2015], les auteurs utilisent des techniques de géométrie Rieman-
nienne pour estimer un modèle de vieillissement normal du cerveau à partir d'images
IRM d'individus sains. Le modèle est ensuite utilisé pour calculer un décalage tem-
porel appelé morphological age shift, qui correspond à � l'âge anatomique � du sujet,
par rapport à un âge moyen estimé pour la population d'individus sains. Toutefois, ces
décalages temporels ne sont pas estimés à partir d'un modèle statistique.

Comme mentionné plus haut, une di�culté tient en ce que les observations peuvent
être hautement structurées, comme des images ou des maillages, et peuvent être dé�-
nies par des contraintes lisses. Il s'en suit que l'espace des mesures peut être justement
décrit comme une variété Riemannienne. Il convient de penser à une variété Rieman-
nienne comme à un espace pouvant être courbe et de grande dimension. De manière
similaire aux espaces Euclidiens, il est possible de faire du calcul di�érentiel sur une va-
riété Riemannienne (dé�nir les notions de fonction lisse, courbe, champ de vecteurs et
les � dérivées � de ces quantités), faire des statistiques (dé�nir une moyenne, médiane,
variance, etc. d'un ensemble de points, lois de probabilité). Cependant, les calculs dans
ces espaces peuvent se révéler complexes, certaines quantités n'ayant pas d'expression
explicite, en termes de fonctions mathématiques usuelles. Bien que les variétés Rie-
manniennes o�rent un cadre mathématique �exible et rigoureux pour décrire l'espace
des mesures, ils soulèvent également des questions méthodologiques. En e�et, les mo-
dèles LME ne sont pas dé�nis pour des observations sur une variété Riemannienne.
Le modèle de Laird et Ware n'est dé�ni que pour des observations à valeurs dans un
espace Euclidien. Des généralisations des modèles à e�ets mixtes ont toutefois été pro-
posées dans la littérature. Dans [Fletcher, 2011], les auteurs proposent un modèle de
régression linéaire sur une variété Riemannienne. Ce modèle, qui apparaît comme une
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généralisation des modèles LME aux variété Riemanniennes, s'écrit :

yi = Exp
(
Exp(p,Xv), ε

)
[i.4]

où Exp(p,v) désigne l'exponentielle Riemannienne au point p sur la variété Rieman-
nienne, avec vitesse initiale v. Le modèle de bruit intrinsèque considéré ici conduit à
une vraisemblance n'ayant pas d'expression explicite. Ainsi, les auteurs proposent d'es-
timer les paramètres de leur modèle statistique en minimiant un critère des moindres
carrés et proposent une expression explicite du gradient de ce critère. Dans [Mura-
lidharan and Fletcher, 2012], le modèle proposé par [Fletcher, 2011] est utilisé pour
analyser des données longitudinales sur une variété Riemannienne. Toutefois, aucune
loi de probabilité n'est dé�nie sur les e�ets aléatoires du modèle. Un modèle hiérar-
chique sur le groupe des di�éomorphismes (partageant des propriétés communes avec
les variétés Riemanniennes) est proposé dans [Singh et al., 2013,Singh et al., 2014]. Ce
modèle hiérarchique permet d'estimer une trajectoire moyenne, que les auteurs sup-
posent être une géodésique. Les trajectoires sujet-spéci�ques sont obtenues à partir
de la trajectoire moyenne par une portion de géodésique émmanant de cette dernière,
à l'instant correspondant à la première observation de chaque sujet. Les paramètres
de cette portion de géodésique, qui sont considérés comme étant les e�ets aléatoires
du modèle, dépendent essentiellement de l'instant de la première observation. Chan-
ger drastiquement le temps auquel les observations ont été acquises modi�e ces e�ets
sujets-spéci�ques. Il devient alors di�cile de dé�nir une loi de probabilité commune
pour ces paramètres, dans un modèle statistique bien posé, tout en s'assurant que le
modèle soit robuste à ces changements d'origine temporelle. Il est, par ailleurs, di�cile
d'inclure la notion de reparamétrisation temporelle dans le modèle.

Ce manuscrit propose un modèle statistique à e�ets mixtes appelé modèle générique
spatio-temporel. Le modèle est présenté dans un cadre Bayésien et est dé�ni pour des
observations longitudinales sur une variété Riemannienne. Les e�ets �xes du modèle
sont utilisés pour dé�nir une trajectoire moyenne tandis que les e�ets aléatoires sont
utilisés pour dé�nir des trajectoires sujet-spéci�ques. Pour pouvoir dé�nir de telles
trajectoires individuelles, nous introduisons la notion de � variation parallèle � (pa-
rallel variation) d'une courbe sur une variété Riemannienne, basée sur la notion de
variation d'une courbe [Do Carmo Valero, 1992]. Contrairement au modèle présenté
dans [Singh et al., 2013], la loi de probabilité des e�ets aléatoires a la même forme (à
une transformation isométrique près) en chaque point le long de la trajectoire moyenne.
Cette propriété d'invariance temporelle permet d'inclure dans le modèle des reparamé-
trisations temporelles, dé�nies à partir des e�ets aléatoires. Ces reparamétrisations
temporelles sujet-spéci�ques sont utilisées pour modi�er l'allure à laquelle une varia-
tion parallèle de la trajectoire moyenne est parcourue. Ainsi, ces reparamétrisations
temporelles permettent d'estimer les changements de rythme de progression au sein
de la population. Par conséquent, le modèle Bayésien à e�ets mixtes présenté dans
ce manuscrit inclut des transformations spatiales et temporelles grâce auxquelles il
est possible de mettre les individus en correspondance et de dé�nir une distribution
spatio-temporelle de trajectoires sur une variété Riemannienne.
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Le modèle générique spatio-temporel o�re un moyen systématique d'obtenir des
modèles non-linéaires à e�ets mixtes adaptés à une large variété d'observations et de
variétés Riemanniennes. Nous donnerons la forme du modèle pour des observations
scalaires normalisées, vues alors comme des points dans l'intervalle ]0, 1[, ou bien non-
bornées. Nous donnerons également la forme du modèle pour la variété des matrices
symétriques dé�nies positives, ainsi qu'un produit de ces variétés élémentaires. Ce
modèle, intrinsèquement non-linéaire, soulève la question du choix d'un algorithme
pour estimer ses paramètres à partir d'observations longitudinales.

I.2 Méthodes et algorithmes d'inférence statistique

pour les modèles non-linéaires à e�ets mixtes

Le modèle générique spatio-temporel est un modèle non-linéaire à e�ets mixtes. Plu-
sieurs méthodes et algorithmes ont été proposés dans la littérature pour l'inférence
statistique dans les modèles NLME. Ces algorithmes peuvent être regroupés en deux
catégories : algorithmes déterministes et algorithmes stochastiques. Par opposition aux
algorithmes stochastiques, les algorithmes déterministes ne nécessitent pas de savoir
générer des variables aléatoires.

I.2.1 Algorithmes déterministes

Pour les modèles NLME, la vraisemblance observée q(y | θ) - qui s'exprime comme
une intégrale par rapport aux e�ets aléatoires (ou variables latentes) du modèle - est
souvent impossible à calculer explicitement :

q(y | θ) =

∫
β

q(y | β,θ)q(β | θ) dβ [i.5]

Les algorithmes déterministes visent à produire un maximum de vraisemblance (ou
maximum a posteriori) en approximant la vraisemblance obsevée. Depuis les années
1990, de nombreuses contributions méthodologiques ont été faites pour développer ces
algorithmes déterministes. Dans [Lindstrom and Bates, 1990], les auteurs ont proposé
un algorithme itératif en deux étapes appelé � Linear Mixed-E�ects approximation al-
gorithm � (algorithme LME), qui consiste à linéariser le modèle NLME. La première
étape de l'algorithme LME est appelée Penalized Nonlinear Least Squares (PNLS) et
consiste à minimiser une somme de carrés non-linéaire. Cette étape revient à maximiser
la loi conditionnelle jointe q(α,β | y, θ̃) ∝ q(y | α,β, θ̃)q(β | θ̃), où α (respectivement
β) désigne les e�ets �xes (respectivement aléatoires) du modèle NLME. Dans cette
étape, le vecteur θ̃ de paramètres de variance-covariance est considéré �xé. Les e�ets
�xes (et aléatoires) α̂ (et (β̂i)1≤i≤p) qui maximisent q(α,β | y, θ̃) sont appelés modes
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(de la loi conditionnelle). Ces modes sont utilisés dans la deuxième étape de l'algo-
rithme. Dans cette deuxième étape, un développement de Taylor au premier ordre est
utilisé pour linéariser le modèle autour de

(
α̂, (β̂i)1≤i≤p

)
. Ainsi, un modèle LME est

obtenu, puis ses paramètres sont estimés et utilisés pour mettre à jour les paramètres
de variance-covariance θ̃. Toutefois, cet algorithme est basé sur une approximation de
la vraisemblance observée pour laquelle il n'a pas de contrôle, ni de garanties théo-
riques de convergence. De plus, pour pouvoir être utilisé dans un cadre Bayésien, cet
algorithme devrait être modi�é.

Dans [Davidian and Gallant, 1992], Davidan et al. utilisent une méthode de qua-
drature Gaussienne adaptative pour approximer la vraisemblance donnée en Eq. [i.5].
Un cas particulier de cette méthode, appelé Approximation Laplacienne, est obtenu en
considérant cette méthode de quadrature Gaussienne adaptative avec un seul point.
Ces deux méthodes, la quadrature Gaussienne adaptative et l'approximation Lapla-
cienne, sont discutées dans [Pinheiro, 1994] et dans le livre [Pinheiro and Bates, 2006].
L'approximation Laplacienne, introduite dans [Tierney and Kadane, 1986], est utilisée
pour approximer la vraisemblance observée individuelle q(yi | θ). De manière similaire
à l'algorithme LME, cette approximation repose sur un développement de Taylor au
premier ordre. L'approximation est donnée par :

q(yi | θ) ' det ∆

(σ22π)ki/2
exp

(
− 1

2σ2
gθ̃(α, β̂i))

)(
det

∂2gθ̃
∂β2

i

(α, β̂i)
)−1/2

[i.6]

où ∆ est la matrice de précision telle que D−1 = σ−2∆>∆ et gθ̃ est dé�nie par :
gθ̃(α,βi) = ‖yi − f(ψi, ti)‖2 + ‖∆βi‖2 avec β̂i(α, θ̃) = argmin

βi

g(α,βi, θ̃). Un dé-

faut de cette approximation est qu'elle requiert le calcul de l'inverse de la matrice
Hessienne de gθ̃ au point (α, β̂i). En pratique, pour des modèles complexes, cette
matrice Hessienne est trop coûteuse à calculer et son approximation en utilisant des
schémas numériques s'avère également coûteuse. Pour palier à cela, Pinheiro a proposé
de remplacer la matrice Hessienne dans Eq. [i.6] par une approximation. Avec cette
approximation, Eq. [i.6] a une forme plus facile à manipuler et peut être maximisée
en utilisant des outils tels que la descente de gradient. Cependant, l'approximation
Laplacienne reste très coûteuse en temps de calcul et manque de résultats théoriques
concernant sa convergence.

L'algorithme Espérance-Maximisation (EM) [Dempster et al., 1977] est un algo-
rithme populaire permettant d'obtenir un maximum de vraisemblance (ou maximum
a posteriori) pour les modèles LME et NLME. Pour le cas des modèles LME, l'algo-
rithme EM est décrit dans [Laird and Ware, 1982,Laird et al., 1987]. L'algorithme EM
a été introduit dans le contexte des modèles statistiques à variables latentes. L'idée clef
de cet algorithme est de maximiser, de manière itérative, une borne inférieure sur la
vraisemblance observée. Sous des conditions assez génériques, données dans [Dempster
et al., 1977] puis corrigées dans [Wu, 1983] et généralisées dans [Delyon et al., 1999],
l'algorithme converge vers un maximum (local) de la vraisemblance observée. L'algo-
rithme EM itère, jusqu'à convergence, entre deux étapes : l'� étape E � et l'� étape
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M �. Soit y (respectivement z) les observations (respectivement les variables latentes)
du modèle générique spatio-temporel. Soit k ∈ N∗ et θ(k) la valeur courrante des para-
mètres du modèle à la k-ème itération de l'algorithme. Soit q(y, z | θ) la loi jointe des
observations et des variables latentes conditionnellement aux paramètres θ. L'étape E
de l'algorithme consiste à calculer la fonction θ ∈ Θ 7→ Q(θ | θ(k)) dé�nie par :

Q(θ | θ(k)) = Eq(·|y,θ(k))

[
log q(y, z | θ)

]
. [i.7]

Dans Eq. [i.7], l'espérance est calculée par rapport à la loi conditionnelle des variables
latentes sachant les observations y et l'état courrant des paramètres du modèle θ(k).
Cette fonction Q(· | θ(k)) est ensuite utilisée dans l'étape M de l'algorithme pour mettre
à jour les paramètres comme suit :

θ(k+1) = argmax
θ∈Θ

(
Q(θ | θ(k)) + qprior(θ)

)
. [i.8]

Cependant, pour de nombreux modèles non-linéaires à e�ets mixtes, l'espérance appa-
raissant dans l'étape E de l'algorithme ne peut être calculée explicitement. De plus, la
loi conditionnelle q(z | y,θ) des variables latentes z sachant les observations y et les
paramètres θ n'est, en général, pas d'une forme connue.

I.2.2 Algorithmes stochastiques

Comme mentioné ci-dessus, l'étape E de l'algorithme EM peut s'avérer impossible à
calculer explicitement pour certains modèles NLME. Une façon de résoudre ce problème
consiste à considérer une version stochastique de l'algorithme EM : l'algorithme Monte
Carlo Markov Chains - Stochastic Approximation EM (MCMC-SAEM). Contrairement
aux algorithmes déterministes, l'algorithme MCMC-SAEM peut être utilisé sans avoir
à calculer de dérivées ou de gradient. En e�et, il su�t de savoir évaluer la fonction f du
modèle pour utiliser le MCMC-SAEM. Cet algorithme, dont la convergence est prouvée
dans [Allassonnière et al., 2010] (basé sur les travaux de [Kuhn and Lavielle, 2004]),
est un algorithme itératif en trois étapes : échantillonnage, approximation stochastique
et maximisation. Soit θ(k) l'état courrant des paramères à la k-ème itération de l'al-
gorithme. Dans l'étape d'échantillonnage du MCMC-SAEM, des variables latentes z(k)

sont simulées en utilisant le noyau de transition d'une chaîne de Markov ergodique dont
la loi stationnaire est la loi conditionnelle q(z | y,θ(k)) des variables latentes z sachant
les observations y et l'état courrant des paramètres θ(k). Dans l'étape d'approximation
stochastique, une fonction Qk(·) est dé�nie par :

∀θ ∈ Θ, Qk(θ) = Qk−1(θ) + εk
(

log q(y, z(k) | θ)−Qk−1(θ)
)
. [i.9]

avec Q0 = 0. Le choix de la suite (εk)k≥0 est discuté plus bas. L'équation Eq. [i.9] est
une approximation stochastique du type Robbins-Monro [Robbins and Monro, 1951],
qui converge vers l'espérance Eq(z|;y,θ(k−1))

[
log q(y, z | θ)

]
. Ainsi, cette approximation
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stochastique est asymptotiquement équivalente à l'étape E de l'algorithme EM. Fina-
lement, l'étape de maximisation consiste à mettre à jour l'état courrant des paramètres
en maxmimisant la fonction Qk par rapport à θ ∈ Θ, où Θ désigne l'espace des pa-
ramètres du modèle. On peut remarquer que le MCMC-SAEM permet d'obtenir un
mode, c'est-à-dire un maximum local, de la loi a posteriori q(θ | y). On n'apprend pas
toute la loi a posteriori q(θ | y).

D'autres algorithmes stochastiques incluent les méthodes � pleinement Bayé-
siennes �. Il s'agit d'un terme faisant référence à une classe de méthodes Monte Carlo
par chaînes de Markov (MCMC) visant à apprendre la loi a posteriori q(θ | y). Pour
cela, ces algorithmes construisent une chaîne de Markov ergodique dont la loi station-
naire est la loi q(θ | y). Après un certain nombre d'itérations (ce qui correspond à
une période de burn-in), les réalisations de cette chaîne de Markov sont approximati-
vement distribuées selon la loi q(θ | y). En considérant un nombre su�samment large
de réalisations de cette chaîne de Markov, il est possible de reconstruire la loi a poste-
riori en utilisant, par exemple, des méthodes d'estimation de densité à noyaux (Kernel
Density Estimates). On peut alors obtenir des informations concernant cette loi de pro-
babilité telles que ses modes. Les méthodes de Monte Carlo Hamiltonniennes (HMC)
sont des méthodes MCMC qui sont populaires pour l'inférence Bayésienne. Dans [Ho�-
man and Gelman, 2014], les auteurs proposent une méthode HMC adaptative appelée
No U-Turn Sampler (NUTS). Cet échantillonneur MCMC est implémenté sous forme
d'une librairie R/C++ appelée STAN. Dans leur papier, les auteurs mentionnent que
l'échantillonneur NUTS o�re de meilleures performances en grande dimension qu'un
échantillonneur classique de Gibbs ou de Metropolis-Hastings. Toutefois, l'échantillon-
neur NUTS nécessite d'intégrer un système d'équations Hamiltonniennes et de calculer
(numériquement) le gradient de la loi a posteriori q(θ | y) par rapport aux paramètres
θ, ce qui peut s'avérer très coûteux.

Dans cette dissertation, les paramètres du modèle générique spatio-temporel seront
estimés en utilisant l'algorithme MCMC-SAEM. Nous nous intéresserons également à
la validation expérimentale de cet algorithme avec le modèle générique spatio-temporel.
En particulier, le MCMC-SAEM est testé sur des observations longitudinales de ma-
trices symétriques dé�nies positives, ce qui est un exemple non-trivial de variété Rie-
mamnnienne de courbure négative. De plus, les résultats numériques et les temps de
calcul obtenus avec le MCMC-SAEM sont comparés à ceux obtenus avec d'autres algo-
rithmes classiques pour l'inférence statistique dans les modèles NLME. En�n, nous nous
intéressons à l'utilisation du MCMC-SAEM dans le contexte des variété Riemanniennes
et à sa compatibilité avec des schémas numériques pour calculer les transformations
spatio-temporelles sujet-spéci�ques du modèle. Les résultats expérimentaux de cette
dissertation sont obtenus en analysant des jeux de données longitudinales liés à la santé.
En particulier, le jeu de données constitué de scores à des tests neuropsychologiques ou
de mesures d'épaisseurs corticales permettent d'obtenir des informations pertinentes
quant à l'évolution de la maladie d'Alzheimer (AD) chez une population d'individus
issue de la cohorte Alzheimer's Disease Neuroimaging Initiative (ADNI). Les résultats
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obtenus avec ces données longitudinales montrent l'intérêt des transformations spatio-
temporelles. En e�et, nous montrons que le modèle générique spatio-temporel permet
d'estimer un scénario normatif de progression de la maladie d'Alzheimer, ainsi que
son e�et sur di�érentes fonctions cognitives. Le modèle permet également d'estimer
l'ordre dans lequel les fonctions cognitives déclinent et l'écart temporel relatif entre le
déclin de deux fonctions cognitives. De plus, l'analyse de jeux de données longitudi-
nales de matrices symétriques dé�nies positives et de pourcentages de masse graisseuse
montre que le modèle générique spatio-temporel permet d'estimer un modèle moyen
de progression et que les transformations spatio-temporelles mettent correctement les
individus en correspondance.

I.3 Présentation des chapitres

Le chapitre III présente quelques notions clef de géométrie Riemannienne et de théo-
rie des méthodes de Monte Carlo par chaînes de Markov. Comme précisé ci-dessus,
le modèle générique spatio-temporel, introduit plus tard dans cette dissertation, est
dé�ni pour des données longitudinales sur une variété Riemannienne et les trajectoires
de progression sont des courbes sur une variété Riemannienne. Les notions présentées
dans le chapitre III permettent de dé�nir un cadre mathématique rigoureux et �exible
dans lequel le modèle générique spatio-temporel sera dé�ni. De plus, des notions sur
les méthodes de Monte Carlo par chaînes de Markov sont nécessaires pour introduire
la version stochastique de l'algorithme EM que nous utiliserons pour estimer les para-
mètres du modèle.

Le modèle générique spatio-temporel pour données longitudinales sur une variété
Riemannienne est présenté dans le chapitre IV. Ce chapitre commence par dé�nir la
notion de � variation parallèle � d'une courbe. Cette dé�nition requiert que des e�ets
aléatoires du modèle, appelés décalages spatiaux (space shifts) satisfassent une condi-
tion d'orthogonalité. Des propriétés et exemples de variations parallèles sur une variété
Riemannienne sont donnés au début du chapitre. Ces exemples montrent que cette
notion généralise celle de parallélisme aux espaces non-Euclidiens. En�n, le modèle gé-
nérique spatio-temporel est présenté en section IV.3. Ce chapitre s'intéresse également
à des schémas numériques permettant d'assurer que la condition d'orthogonalité est
satisfaite.

Le chapitre V introduit plusieurs cas particuliers du modèle générique spatio-
temporel. Comme mentionné ci-dessus, ce modèle permet, étant donné le choix d'une
variété Riemannienne et d'une métrique Riemannienne, d'obtenir une large variété
de modèles non-linéaires à e�ets mixtes. Ce chapitre vise à présenter quelques-uns
de ces modèles, qui résultent de di�érent choix de variété Riemannienne. Un modèle
appelé � modèle logisitique � (respectivement � modèle de droites �) est proposé pour
l'analyse de données longitudinales scalaires normalisées (respectivement non-bornées).
Dans les sections suivantes, deux modèles sont proposés pour des observations longitu-
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dinales multivariées. Le premier permet d'analyser des jeux de données longitudinales
de matrices symétriques dé�nies positives, dont les matrices de covariance sont un cas
particulier. Le second, appelé � modèle de propagation � permet de modéliser l'évo-
lution conjointe d'une famille de caractéristiques biologiques. Le modèle permet aussi
d'estimer l'écart temoprel relatif entre la progression de deux de ces caractéristiques.

Le chapitre VI concerne l'estimation des paramètres du modèle générique. La pre-
mière section du chapitre commence avec une revue de la littérature concernant dif-
férentes méthodes pour l'inférence statistique dans les modèles non-linéaires à e�ets
mixtes et motive le choix d'utiliser une version stochastique de l'algorithme EM pour
estimer les paramètres du modèle. Les sections suivantes de ce chapitre décrivent com-
ment cet algorithme stochastique peut être utilisé dans le contexte des variétés Rieman-
niennes. En�n, la dernière section discute la validation expérimentale de l'algorithme
et ses aspects computationnels.

Finalement, le chapitre VII présente des résultats expérimentaux obtenus avec dif-
férents cas particuliers du modèle générique. Les résutlats présentés dans ce chapitre
ont été obtenus en analysant des jeux de données longitudinales en rapport avec la
santé. Ces résultats montrent que les transformations spatio-temporelles du modèle
permettent de mettre en correspondance des événements similaires le long des trajec-
toires de progression individuelles. Le modèle générique réussit également à estimer un
événement, un changement qui se produit pour chaque individu, au cours de la période
d'observation.

I.4 Liste des publications

Ce manuscrit a donné lieu aux publications suivantes.

I.4.1 Articles de conférences avec commité de lecture

· [Schiratti et al., 2015d] Jean-Baptiste Schiratti, Stéphanie Allassonnière,
Alexandre Routier, the Alzheimer's Disease Neuroimaging Initiative (ADNI), Oli-
vier Colliot and Stanley Durrleman. A mixed-e�ects model for longitudinal uni-
variate manifold-valued data. In : Ourselin, S., Alexander, D. C., Westin, C.-F.,
Cardoso, M. J. (Eds.), Information Processing in Medical Imaging. - IPMI 2015.
No. 9123 in Lecture Notes in Computer Science. Springer International Publi-
shing. Poster élu parmi les trois meilleurs posters de la conférence, donnant lieu
à une présentation orale.

· [Schiratti et al., 2015a] Jean-Baptiste Schiratti, Stéphanie Allassonnière, Oli-
vier Colliot and Stanley Durrleman. Learning spatiotemporal trajectories from
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manifold-valued longitudinal data. In : Advances in Neural Information Proces-
sing Systems. - NIPS 2015. pp. 2404-2412. Poster et travel award.

· [Schiratti et al., 2015b] Jean-Baptiste Schiratti, Stéphanie Allassonnière, Oli-
vier Colliot and Stanley Durrleman. Mixed-e�ects model for the spatiotem-
poral analysis of longitudinal manifold-valued data. In : 5th MICCAI Work-
shop on Mathematical Foundations of Computational Anatomy - MFCA 2015.
Présentation orale
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· [Schiratti et al., 2015c] Jean-Baptiste Schiratti, Stéphanie Allassonnière,
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II.1 Motivation

Numerous scienti�c �elds require to study the temporal progression of a biological or
natural phenomenon. For instance, the study of progressive diseases plays a crucial
role in the development of new treatments. In computer vision, one may be interested
in analyzing faces in order to automatically detect whether a face displays an emotion
and label the images with the correct emotion.

For a given individual or object, the evolution of the phenomenon can be measured
by several characteristics or features, which describe the state of the individual at a
given time point. In studies on diseases, the features may be blood samples measure-
ments, like lymphocytes or blood cells count, height, weight, and also medical imaging,
as Magnetic Resonance (MR) imaging. For human faces, one could consider the po-
sition of speci�c points of the face such as the nose, mouth or cheeks. Each of these
features can be represented, at a given time point, by a real number or vector of real
numbers. The collection of these features lies in a subset of the Euclidean space where
the evolution of an individual can be represented by a continuous trajectory. For ex-
ample, developmental and growth studies have provided normative growth scenarios
of height and weight, which are often used by pediatricians. These normative growth
scenarios give trajectories of weight or height evolution with time, during the �rst years
of life. In particular, they give an average trajectory of progression, which describes
the evolution of weight or height in a typical child. These scenarios also provide in-
formation on the variability of this average trajectory among the population, which is
usually represented by a con�dence interval on the average trajectory. Another source
of variability in the measurements comes from the di�erences in pace of progression
among the population. Indeed, each individual is progressing at its own pace, with
some individuals progressing faster than others. Regarding the analysis of images of
faces for the detection of emotions, the inter-individual variability is quite important
since the shape of the face, mouth, eyes varies a lot within the population. Also, some
individuals may age faster than others. Not only each human has a di�erent face but
also, the dynamics of face changes during smiling or anger may vary across individuals.
In normative growth scenarios for a single feature, such as height, the variability in
pace of growth is not measured. Such scenarios usually measure only the variability of
the measurements at a given age.

In order to estimate an average trajectory of progression and the variability of the
average trajectory among the population, one usually analyze longitudinal data, which
consists in observations of the same biological phenomenon at repeated time points,
for a group of individuals. The time points and their number may be di�erent for each
individual. For several studies, such as modeling the progression of neurodegenerative
diseases or assessing the e�ects of ageing on human faces, large longitudinal databases
have been created, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) for
Alzheimer's disease, or the MORPH database for human faces. Other examples of lon-
gitudinal databases include the Baltimore Longitudinal Study of Ageing, which aims at
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studying the e�ects of ageing on a healthy population and the Beginning Postsecondary
Students Longitudinal Study, which collects observations of school and work experience
in students starting postsecondary education. Usually, these longitudinal databases are
multimodal. They consist in repeated observation of features of di�erent nature. In
medical studies, the features of interest are usually represented as scalar measurements
or vectors of scalar measurements. Still, in some studies, medical imaging, like MR
imaging, plays an important role. The image may be considered as a feature of interest
in itself. This type of observations may also allow to extract more complex features,
such as shapes encoded as meshes. These examples show that the features collected
in these databases can be highly structured, as are images or meshes. In those cases,
the space of measurements is usually de�ned by smooth constraints and may not be-
have as a Euclidean space. Indeed, algebraic operations such as addition or scaling do
not make sense for images or meshes. When the features are not de�ned by smooth
constraints, the space of measurements is usually the Euclidean space. Riemannian
manifolds are spaces which provide a rigorous mathematical framework to describe the
space of measurements. This framework allows to consider features de�ned by smooth
constraints as well as unconstrained features, and structured or unstructured features.

Time

Individual 1

Individual 2

Individual 3

Figure 2 � Two schematic examples of longitudinal datasets.

This dissertation aims at proposing a statistical model, for longitudinal observations
of a biological or natural phenomenon, which satis�es to the following requirements:

(i) the model is de�ned in the framework of Riemannian manifolds. This ensures
that the model could be used with observations de�ned by smooth constraints,
as well as unconstrained ones.

(ii) The model allows to estimate a distribution of trajectories in the space of mea-
surements. In particular, a group-average trajectory is estimated as well as its
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variability among the population. This allows to capture the inter-individual vari-
ability in the longitudinal observations. In addition to this, the model also allows
to estimate variability in speed and delay of progression among the population.

The statistical analysis of measurements collected longitudinal databases may enable
to learn data-driven models of evolution. In the literature, mixed-e�ects models [Eisen-
hart, 1947,Laird and Ware, 1982,Verbeke and Molenberghs, 2009] appear as a popular
method for the analysis of longitudinal data. These statistical models are particularly
popular for the analysis of longitudinal data since they include �xed and random ef-
fects which provide these models with a hierarchical structure. Indeed, these e�ects
allow the model to be described at the population (or group) level, as well as the in-
dividual level. By �tting a mixed-e�ects model, one can learn an average model of
evolution as well as individual-speci�c models. Therefore, the information provided by
the observations of each individual is averaged and becomes more generalizable to other
individuals. Moreover, mixed-e�ects models enforce conditions on the distribution of
the random e�ects in the model. Thus, the random e�ects open up the possibility
to learn a distribution of trajectories in the space of observations. Mixed-e�ects are
generative statistical models whose parameters may be easily interpreted. In addition
to this, these models o�er the advantage of handling missing data.

Linear Mixed E�ects (LME) models are the most simple mixed-e�ects models and
frequently used in longitudinal studies. These models date back to the mixed-e�ects
ANOVA [Sche�é, 1956]. However, they really became popular in the early 1980s with
the seminal paper of Laid and Ware [Laird and Ware, 1982]. Building upon ideas
from [Harville, 1977], Laird and Ware highlighted the usefulness of linear mixed-e�ects
models, especially in the context of life sciences, and proposed a �exible family of linear
mixed-e�ects models which could easily handle missing observations. Let p denote the
number of individuals and for i ∈ {1, . . . , p}, let yi ∈ Rki be the vector of observations
for the ith individual. The linear mixed-e�ect model introduced by Laird and Ware
assumes that:

yi = Xiα+ Ziβi + εi [ii.1]

For each individual, the observation yi are modeled as a linear function of the �xed
e�ects α ∈ Rp and the individual-speci�c random e�ects βi ∈ Rq. The matrices Xi

(respectively Zi) design matrices linking the �xed (respectively random) e�ects to the
observations. The generic LME model Eq. [ii.1] assumes that the random e�ects βi
are normally distributed.

A particular case of the LME models for analyzing longitudinal data is the ran-
dom slope and intercept model. This LME model is usually used to analyze scalar
longitudinal observations and writes:

yi,j = (ti,j − t0)(A + Ai) + (B + Bi) + εi,j [ii.2]

where t0 ∈ R and (ti,j)1≤j≤ki denotes the time points at which the observations of the
ith individual were obtained. The population parameters (or �xed e�ects) of the model
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are the slope A and the intercept B. The random e�ects are the subject-speci�c slopes
(Ai)1≤i≤p and intercepts (Bi)1≤i≤p, which are assumed to be normally distributed and
independent of each other. This random slope and intercept model estimates an average
trajectory D(t) = (t − t0)A + B. The random e�ects of the model allow to estimate
also individual trajectories Di(t) = (t− t0)(A + Ai) + (B + Bi), which are obtained by
adjusting the slope and intercept of the average trajectory. This model is essentially
built on the idea of regressing the measurements against time. The parameter t0 can
be understood as a reference time. If the longitudinal dataset arises from animal
breeding studies, developmental studies or pharmacological studies, the reference time
t0 can be chosen to be the date of birth or time at which a drug was administered.
However, there are many situations in which there is no obvious reference time t0 at
which observations may be compared. In aging for instance, the di�erent individuals
may be at the same age at di�erent stages of aging or disease progression. It therefore
does not make sense to regress the measurements against age. In video sequences,
one should �rst �nd the time-frame which corresponds to the same �event� or �stage
of smiling� across the sequences. This task may be di�cult and one would like such
an alignment to be the output of the algorithm instead of a prerequisite. A way to
address this problem would consist in estimating the reference time t0 along with the
other parameters of the model. However, this leads to a non-identi�able model because
there are in�nitely many triplets (A,B, t0) which maximize the likelihood of the model.
As a consequence, the random slope and intercept model is inadequate for studies in
which the observations describe the evolution of a phenomenon whose onset and pace
of progression varies from an individual to another.

In various situations, assuming that the observations depend linearly on the �xed
(or random) e�ects of the model might be unrealistic. The class of nonlinear mixed-
e�ects (NLME) models o�er a greater �exibility to describe the observations. These
models �rst appeared in the work of Sheiner and Beal [Sheiner and Beal, 1980] and
later in [Lindstrom and Bates, 1988]. They have been a blooming topic of research
since 1990. These models are now popular tools in a large variety of areas, such as
pharmacokinetic modeling, medicine, etc. NLME models assume that a longitudinal
dataset (yi,j, ti,j)1≤i≤p, 1≤j≤ki , with yi = (yi,1, . . . , yi,ki) ∈ Rki , arise from:

yi = f(ψi, ti) + εi [ii.3]

where f is a nonlinear mapping and ψi = Xiα + Ziβi. (Xi)i and (Zi)i are design
matrices linking the �xed (respectively random) e�ects α (respectively βi) to ψi. The

random e�ects are assumed to be normally distributed with βi
i.i.d.∼ N (0,D) and inde-

pendent of each other. One can easily note that the LME models appear as a particular
case of NLME models. Despite their more generic formulation, NLME models also,
in general, do not account for the variability in age at onset and pace of progression.
In [Yang et al., 2011] and [Delor et al., 2013], the authors addressed this problem
by introducing time shifts in their statistical models. However, the time shifts (and
their distribution among the population) were not estimated in a statistical frame-
work. In [Durrleman et al., 2013], time reparametrizations called time warps (smooth



30

monotonic transformations of the real line) are considered to address this point in the
context of longitudinal shape analysis. Nevertheless, the estimation of the parameters
of the statistical model is made by minimizing a sum of squares which results from an
uncontrolled likelihood approximation. In [Hong et al., 2014], the authors use para-
metric time warps with a geodesic regression model for shape analysis. However, the
proposed model is not easily extended to longitudinal observations. In [Lorenzi et al.,
2015], the authors used Riemannian manifold techniques to estimate a model of the
brain's normal ageing from healthy individuals MR images. The model was used to
compute a time shift, called morphological age shift, which corresponds to the actual
anatomical age of the subject with respect to an estimated average age for healthy
subjects. However, the subject-speci�c time shifts were not estimated as parameters
of a statistical model.

As mentioned above, the challenge is that the observations may be highly structured
data, such as shapes or images, and de�ned by smooth constraints. As a matter of
fact, the space in which observations lie can be better modeled as a Riemannian man-
ifold. One should think of a Riemannian manifold as a space which might be curved
and high-dimensional. Similarly to Euclidean spaces, one can do di�erential calculus
on a Riemannian manifold (de�ne smooth functions, curves, vector �elds, de�ne the
�derivative� of such quantities, etc.) and do statistics (de�ne the mean, median, vari-
ance of a set of points, probability distributions, etc.). However, the computations in
such spaces may be complicated or even intractable in closed-form. Even though Rie-
mannian manifolds o�er a very �exible and rigorous framework to describe the space of
observations with smooth constraints, they also raise methodological challenges since
the LME models are not de�ned for observations on a Riemannian manifold. Indeed,
the Laird and Ware mixed-e�ect models is de�ned for observations in the Euclidean
space. Generalization of mixed-e�ects models to Riemannian manifolds have been pro-
posed in the literature. In [Fletcher, 2011], the authors proposes a statistical model of
linear regression on a Riemannian manifold. The proposed model, which appears as a
generalization of LME models to Riemannian manifolds, writes:

yi = Exp
(
Exp(p,Xv), ε

)
[ii.4]

where Exp(p,v) denotes the Riemannian exponential at the point p on the Rieman-
nian manifold and with initial velocity v. The intrinsic noise model considered for this
model leads to an intractable computation of the likelihood. Therefore, the authors
propose to estimate the parameters of the model by minimizing a least-squares criterion
and derive a closed-form expression the gradient of this criterion. In [Muralidharan
and Fletcher, 2012], the model proposed in [Fletcher, 2011] is used for the analysis of
longitudinal observations on a Riemannian manifold. However, no probability distri-
bution is de�ned on the individual e�ects of the model. A hierarchical model on a
group of di�eomorphisms (which shares common properties of Riemannian manifold)
is proposed in [Singh et al., 2013,Singh et al., 2014]. This hierarchical model estimates
an average trajectory, which is modeled as a geodesic on the Riemannian manifold.
The subject-speci�c trajectories are derived from the average trajectory by a portion
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of geodesic emanating from the average geodesic at the time point corresponding to
the �rst observation of the subject. The parameters of this portion of geodesic, which
are considered as the individual random e�ects of the model, essentially depend on
this �rst time point, which comes from the design of the study. Changing the time of
observations drastically change the value of the subject-speci�c parameters. It makes
di�cult therefore to de�ne a common distribution of these parameters in a well-posed
mixed-e�ect model, to make the model reasonably robust to slight changes in the study
design and to include the concept of time warps in the model.

This dissertation proposes a Bayesian mixed-e�ects model, called generic spatiotem-
poral model, de�ned for longitudinal observations on a Riemannian manifold. The �xed
e�ects of the model are used to de�ne an average trajectory and the random e�ects
are used to de�ne individual-speci�c trajectories. In order to de�ne such individual
trajectories, we introduce the notion of �parallel variations� of a curve on a Riemannian
manifold, based on the idea of parallel variations of a curve. In contrast to [Singh et al.,
2013], the distribution of the random e�ects has the same form (up to an isometric
transformation) at any time point along the average trajectory. This time-invariance
property allows then the inclusion of time reparametrizations de�ned using temporal
random e�ects of the model. The individual time reparametrizations are used to alter
the pace at which a parallel variation of the average trajectory is followed, therefore
allowing to account for the possible delay and changes in speed of progression among
the population. As a consequence, the generic Bayesian mixed-e�ects model presented
in this dissertation includes spatial and temporal transformations which allow to put
into correspondence individual trajectories and therefore de�ne spatiotemporal distri-
butions of trajectories on a Riemannian manifold.

The generic spatiotemporal model gives a systematic way to derive speci�c nonlinear
mixed-e�ects models for a large variety of observations and Riemannian manifolds. We
will give the particular form of the model with bounded and unbounded measurements
such as points on ]0, 1[, symmetric positive de�nite matrices, as well as product of such
elementary manifolds. Such an intrinsically nonlinear mixed-e�ects model raises the
choice of an adapted algorithm to estimate its parameters given a set of longitudinal
observations.

II.2 Inference methods and algorithms for nonlinear

mixed-e�ects models

The generic spatiotemporal model is a nonlinear mixed-e�ects model. Several meth-
ods and algorithms have been proposed in the literature for the statistical inference in
nonlinear mixed-e�ects models (NLME). These algorithms may be grouped into two
categories: deterministic and stochastic algorithms. As opposed to stochastic algo-
rithms, the deterministic ones do not require to generate random numbers.
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II.2.1 Deterministic algorithms

For NLME models, the observed likelihood q(y | θ) is often intractable as it writes an
an integral over the random e�ects (or latent variables) of the model:

q(y | θ) =

∫
β

q(y | β,θ)q(β | θ) dβ [ii.5]

Deterministic methods aim at producing maximum likelihood (or maximum a posteri-
ori) by approximating the observed likelihood. Since the 1990's, many methodological
contributions have been made to this topic. In [Lindstrom and Bates, 1990], the authors
proposed a two-steps algorithm called �Linear Mixed-E�ects approximation algorithm�
(LME approximation), which consists in linearizing the NLME model. The �rst step
of the LME algorithm is called Penalized Nonlinear Least-Squares step (PNLS step)
and consists in minimizing a nonlinear sum of squares. This step is equivalent to
maximizing the joint conditional distribution q(α,β | y, θ̃) ∝ q(y | α,β, θ̃)q(β | θ̃),
where α (respectively β) denote the �xed (respectively random) e�ects of the NLME
model. In this step, the vector θ̃ of variance-covariance parameters is considered �xed.
The �xed (and random) e�ects α̂ (and (β̂i)1≤i≤p) which maximize q(α,β | y, θ̃) are
called conditional modes. These conditional modes are used in the second step of the
algorithm. In this step, a �rst-order Taylor expansion of the model function around
the conditional modes is used to linearize the model. Thus, a LME model is obtained
and its parameters are estimated and used to update the estimates of the variance-
covariance parameters. However, the LME algorithm is based on an approximation of
the observed likelihood without any control or theoretical guarantee of the convergence
toward a local maximum of the likelihood. Moreover, the method has to be adapted
in order to be used within a Bayesian framework.

In [Davidian and Gallant, 1992], Davidian et al. used an adaptive Gaussian quadra-
ture to approximate the likelihood Eq. [ii.5]. A particular case of this method, called the
Laplacian approximation, is obtained by considering the adaptive Gaussian quadrature
method with only one quadrature point. Both the adaptive Gaussian quadrature and
the Laplacian approximation are discussed in [Pinheiro, 1994] and in the book [Pin-
heiro and Bates, 2006]. The Laplacian Approximation, �rst introduced in [Tierney
and Kadane, 1986], is used to approximate the individual observed likelihood q(yi | θ).
Similarly to the LME algorithm, the approximation is based on a �rst-order Taylor
expansion. This approximation writes:

q(yi | θ) ' det ∆

(σ22π)ki/2
exp

(
− 1

2σ2
gθ̃(α, β̂i))

)(
det

∂2gθ̃
∂β2

i

(α, β̂i)
)−1/2

[ii.6]

where ∆ is the precision matrix such that D−1 = σ−2∆>∆, gθ̃ is de�ned by:
gθ̃(α,βi) = ‖yi − f(ψi, ti)‖2 + ‖∆βi‖2 and β̂i(α, θ̃) = argmin

βi

g(α,βi, θ̃). A notable

drawback of this approximation is that it requires the computation of the inverse of the
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Hessian matrix of the sum of squares gθ̃ at (α, β̂i). In practice, for complex models,
this matrix cannot be computed in closed-form and its approximation using numerical
schemes is very costly. To address this problem, Pinheiro proposed to approximate
the Hessian matrix. Using this approximation, Equation Eq. [ii.6] reduces to a more
tractable form which can be maximized using gradient descent methods. Still, the
Laplacian approximation remains computationally intensive and without control over
the approximation and convergence of the algorithm.

The Expectation-Maximization (EM) [Dempster et al., 1977] is a popular algorithm
which allows to obtain maximum likelihood (or maximum a posteriori) estimates of the
parameters of a LME or NLMEmodel. For LME models, the EM algorithm is described
in [Laird and Ware, 1982,Laird et al., 1987]. The EM algorithm was introduced in the
context of statistical models with latent variables. The idea of the EM algorithm is to
maximize a lower bound on the observed likelihood. Under generic conditions described
in [Dempster et al., 1977], corrected in [Wu, 1983] and generalized in [Delyon et al.,
1999], the algorithm converges to a local maximum of the observed likelihood. The
EM algorithm iterates, until convergence, between two steps: the �E-step� and the
�M-step�. Let y (respectively z) denote the observations (respectively latent variables)
of the generic spatiotemporal model. Let k ∈ N∗ and θ(k) denote the estimate of the
parameters of the model at the kth iteration of the algorithm. Let q(y, z | θ) denote the
distribution of the observations and latent variables conditionally on the parameters
θ. The �E-step� consists in computing the function θ ∈ Θ 7→ Q(θ | θ(k)) de�ned by:

Q(θ | θ(k)) = Eq(·|y,θ(k))

[
log q(y, z | θ)

]
. [ii.7]

In Eq. [ii.7], the expectation is taken with respect to the conditional distribution of
the latent variables knowing the observations and current estimate of the parameters.
This function Q(· | θ(k)) is then used in the �M-step� to update the estimate of the
parameters as follows:

θ(k+1) = argmax
θ∈Θ

(
Q(θ | θ(k)) + qprior(θ)

)
. [ii.8]

However, for most nonlinear mixed-e�ects models, the �E-step� of the EM algorithm
is intractable because the expectation cannot be computed in closed-form and the
conditional distribution q(z | y,θ) of the latent variables given the observations y
and the parameters θ, in general, does not belong to a known family of probability
distributions.

II.2.2 Stochastic algorithms

As mentioned above, the �E-step� of the EM algorithm may be intractable in NLME
models. To address this problem, one can consider a stochastic version of this al-
gorithm: the Monte Carlo Markov Chains - Stochastic Approximation EM (MCMC-
SAEM) algorithm. In contrast with deterministic algorithms, the MCMC-SAEM may
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be used without computing derivatives of the model function. Indeed, only evaluations
of the model function f are required to use the MCMC-SAEM. The algorithm, which
is proved convergent in [Allassonnière et al., 2010] (based on the work of [Kuhn and
Lavielle, 2004]), alternates between three steps: simulation, stochastic approximation
and maximization. Let θ(k) denote the estimates of the model parameters at the kth
iteration. In the simulation step, a set of latent variables z(k) is sampled using the
transition kernel of an ergodic Markov chain whose stationary distribution is the con-
ditional distribution q(z | y,θ(k)) of the latent variables z given the observations y and
the current estimates θ(k). In the stochastic approximation step, a function Qk(·) is
de�ned by:

∀θ ∈ Θ, Qk(θ) = Qk−1(θ) + εk
(

log q(y, z(k) | θ)−Qk−1(θ)
)
. [ii.9]

with Q0 = 0. The choice of the sequence (εk)k≥0 is discussed later. Equation Eq. [ii.9]
is a stochastic approximation of the Robbins-Monro type [Robbins and Monro, 1951]
which converges to the expectation Eq(z|y,θ(k−1))

[
log q(y, z | θ)

]
. This stochastic ap-

proximation step is asymptotically equivalent to the �E-step� of the classical EM al-
gorithm. Finally, the maximization step consists in maximizing the function Qk on
the parameter space Θ to update the current estimates of the parameters. Note that
the MCMC-SAEM only provides �point estimates�, as the algorithm converges to the
modes, id est a local maximum, of the posterior distribution q(θ | y).

Other stochastic algorithms include �Fully-Bayesian� methods. This term refers to
a class of Monte Carlo Markov Chains (MCMC) algorithms which aim at learning the
posterior distribution q(θ | y). To achieve this goal, these algorithms create an er-
godic Markov chain whose stationary distribution is the posterior distribution q(θ | y).
After a number of iterations (which corresponds to a �burn-in period�), samples from
this Markov chain are approximately distributed as q(θ | y). With a su�ciently large
number of samples from this Markov chain, one can reconstruct the posterior distri-
bution using, for examples, Kernel Density Estimates and derive other informations
about this posterior, such as its modes. Hamiltonian Monte Carlo (HMC) is a popular
MCMC method which can be used for Bayesian inference. In [Ho�man and Gelman,
2014], the authors propose an adaptive HMC sampler called the No U-Turns Sam-
pler (NUTS). This sampler is implemented in a R/C++ library called STAN. In this
paper, the authors mention that the NUTS sampler o�ers much better performance
in high-dimensional settings that classical samplers such as the Gibbs sampler or the
Metropolis-Hastings algorithm. However, HMC samplers require to integrate a system
of Hamiltonian equations and compute gradients of the posterior with respect to the
parameters of the model, which can be intractable.

In this dissertation, the parameters of the generic spatiotemporal model will be
estimated using the MCMC-SAEM algorithm. The validation of this algorithm with
the generic spatiotemporal model is considered in this dissertation. In particular, the
MCMC-SAEM is tested on longitudinal observations of symmetric positive de�nite ma-
trices, which represents a non-trivial example of Riemannian manifold of non-positive
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curvature. Moreover, the results and runtime of the proposed algorithm is compared
with other classical algorithms for statistical inference in NLME models. Finally, the
use of the MCMC-SAEM in a Riemannian framework and its compatibility with numer-
ical schemes for the computation of the individual spatiotemporal transformations is
discussed. Experimental results proposed in this dissertation are obtained by analyzing
longitudinal datasets of health data. In particular, the datasets of neuropsychological
test scores and cortical thickness measurements provide insightful informations regard-
ing the progression of Alzheimer's Disease (AD) among a population of individuals from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The results obtained
with these longitudinal datasets validate the use of spatiotemporal transformations.
Indeed, we show that the generic model allows to estimate a normative scenario of AD
progression and its e�ects on the cognitive functions. The model also estimates the
relative timing between these cognitive impairments. Furthermore, the analysis of lon-
gitudinal datasets of symmetric positive de�nite matrices and body fat measurements
shows that the generic spatiotemporal model can estimate a data-driven model of pro-
gression and the spatiotemporal transformations actually put into correspondence the
progression of individuals.

II.3 Overview of the chapters

Chapter III consists in an overview of key notions in Riemannian geometry and Monte
Carlo Markov Chain theory. As emphasized in the previous section, the generic
Bayesian model introduced later in this dissertation is de�ned for longitudinal ob-
servations on a Riemannian manifold and trajectories of progression are curves on a
Riemannian manifold. The notions presented in Chapter III de�ne a coherent and �ex-
ible mathematical framework in which the generic model is de�ned. Notions of Monte
Carlo Markov Chain theory are needed to introduce the stochastic version of the EM
algorithm which is used to estimate the parameters of the model.

The generic Bayesian model for longitudinal observations on a Riemannian mani-
fold is presented in Chapter IV. This chapter starts by de�ning the notion of �parallel
variations� of a curve. The de�nition of a parallel variation requires that some random
e�ects of the model, called space shifts, satisfy an orthogonality condition. Properties
and examples of parallel variations are given at the beginning of the chapter. These
examples show that the notion of parallel variations on a Riemannian manifold gen-
eralizes the notion of parallelism to non-Euclidean spaces. Eventually, the generic
Bayesian model is presented in Section IV.3 and numerical schemes to ensure that the
orthogonality conditions is satis�ed are proposed.

Chapter V introduces several particular cases of the generic model. As mentioned
above, the generic spatiotemporal model enables, given the choice of a Riemannian
manifold and Riemannian metric, to obtain a variety of nonlinear mixed-e�ects mod-
els. Chapter V aims at giving nonlinear mixed-e�ects models which result from di�erent
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choices of Riemannian manifold. A model called �the logistic curves model� (respec-
tively �the straight lines model�) is proposed for the analysis of bounded (respectively
unbounded) scalar measurements. In the following sections, two speci�c models are
proposed for multivariate observations. One allows the analysis of longitudinal datasets
of symmetric positive de�nite matrices, of which covariance matrices are a particular
case. Also, a �propagation model� is proposed to model the temporal progression of a
family of biological characteristics or family of features. This model also estimates the
relative timing between the progression of two features.

Chapter VI deals with the estimation of the parameters of the generic model. The
�rst section of this chapter starts with a review of several methods for the statistical
inference in nonlinear mixed-e�ects models and motivates the choice of a stochastic
version of the EM algorithm is chosen for the estimation of the parameters of the
model. The following sections of this chapter describe discuss how this stochastic
algorithm can be used within a Riemannian framework. The last section discusses the
validation of the proposed algorithm and computational aspects.

Eventually, chapter VII presents experimental results obtained with the particular
cases of the generic spatiotemporal model. The results presented in this chapter were
obtained by analyzing several longitudinal datasets of health data. These results show
that the estimated spatiotemporal transformation put in correspondence similar events
along the individual trajectories. The generic model also succeeds in estimating a
speci�c event, change in the evolution which occurs for each individual during the
observation period.
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III.1 Notions of Riemannian geometry

Riemannian geometry consists in the study of Riemannian manifolds, a smooth
manifold equipped with a Riemannian metric, and their properties. Section III.1.1
starts by giving a formal de�nition of smooth manifolds and reviews elementary no-
tions of di�erential geometry on such manifolds. Sections III.1.2, III.1.5 and III.1.4
introduce key concepts of Riemannian geometry which are used to de�ne the generic
model in Chapter IV. A comprehensive overview of di�erential geometry in smooth
manifolds and Riemannian geometry can be found in [Lang, 1972, Gallot et al.,
1990,Do Carmo Valero, 1992,Lee, 2003,Petersen, 2006].

III.1.1 Smooth manifolds

The general notion of manifold is quite di�cult to de�ne precisely. A surface gives the idea

of a two-dimensional manifold. If we take for instance a sphere, or a torus, we can

decompose this surface into a �nite number of parts such that each of them can be

bijectively mapped into a simply-connected region of the Euclidean plane.

Elie Cartan - Leçons sur la Géométrie des espaces de Riemann (1928)

Let n ∈ N∗ and M be a Hausdor� topological space such that every point of
M admits a neighborhood homeomorphic to an open subset of Rn. Such a space is
called a topological manifold. Around each point, an homeomorphism allows to
identify the manifold with the Euclidean space. However, this is not enough to carry
the di�erentiable structure from the Euclidean space to the manifold. The following
notions will allow to de�ne smooth manifolds and do di�erential calculus on these
spaces.

A smooth atlas on M is a collection {Uα, φα}α∈I where (Uα)α∈I is an open cover of
M and the maps φα : Uα → φα(Uα) ⊂ Rn are homeomorphisms onto subsets of Rn. In
addition to this, for any α, β ∈ I, the maps ψα,β = φβ ◦φ−1

α : φα(Uα∩Uβ)→ φβ(Uα∩Uβ)
are smooth di�eomorphisms, called transition maps. A pair (Uα, φα) is a local chart
(or local coordinates chart) for M. If A denotes an atlas on M, a local chart (U , φ)
on M is compatible with A if A∪{(U , φ)} is a smooth atlas. An atlas A is maximal
if it contains all the local charts that are compatible with it. Finally, a maximal atlas
on M is called smooth di�erentiable structure.

De�nition III.1. A n-dimensional smooth manifold M is a topological manifold
equipped with a (smooth) di�erentiable structure.

Example 1 (Sphere). The sphere Sn ⊂ Rn+1 de�ned by:

Sn =
{
x ∈ Rn+1, x>x = 1

}
is a n-dimensional smooth manifold of Rn. Two charts are enough to de�ne an atlas
on Sn. These charts are given by the stereographic projections (see [Gallot et al.,
1990]).
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The Euclidean space Rn is another example of n-dimensional smooth manifold.
Indeed, an atlas on Rn is given by (Rn, Id). Similarly, every open subset of Rn is a n-
dimensional smooth manifold. Together with the sphere Sn, these are actually examples
of smooth submanifolds of the Euclidean space Rn. More precisely, if n, k ∈ N∗ and
M ⊂ Rn, M is a k-dimensional smooth submanifold of Rn if every point in M
has an open neighborhood which is di�eomorphic to an open subset of Rk. Every
submanifold of Rn is a manifold according to De�nition III.1. However, some manifolds
are naturally de�ned as quotient spaces or embedded in in�nite dimensional Hilbert
spaces and cannot be considered as submanifolds of the Euclidean plane.

Other examples of interest in this dissertation are given below.

Example 2 (Linear group). LetM(n,R) denote the vector space of n×n real matrices
and GL(n,R) be the group of invertible n × n real matrices. GL(n,R) is an open
subset ofM(n,R). Therefore, it is a smooth submanifold ofM(n,R) ' Rn2

.

Example 3 (Products of manifolds). If M1 (respectively M2) is a n1-dimensional (re-
spectively n2-dimensional) smooth manifold, the Cartesian product M1 ×M2 can be
equipped with a structure of (n1 + n2)-dimensional smooth manifold.

The notion of local charts introduced above allows to de�ne smooth maps between
manifolds, by going back to open subsets of the Euclidean space. Indeed, if M and V
denote two smooth manifolds and f : M → V, the map f is smooth if and only if it
is continuous and its �expression in local charts� ψ ◦ f ◦ φ−1 : φ

(
U ∩ f−1(V)

)
→ ψ(V)

is smooth for every local chart (U , φ) (respectively (V , ψ)) on M (respectively V). The
notion of smooth map between manifolds is independent of the choice of an atlas. This
de�nition allows to di�erentiate maps which take values in a smooth manifold. This
is particularly useful to de�ne the velocity of a curve on a smooth manifold and the
notion of tangent space.

Tangent spaces

Let M be a n-dimensional smooth manifold and p ∈M. The tangent space at p is the
space of all possible velocities ċ(0) for any curve c :] − ε, ε[→ M such that c(0) = p.
We shall see later that the tangent space at p provides a linear approximation of the
manifold around p.

Let M be a smooth manifold and p ∈M. Let (U , φ) be a local chart around p and
ε > 0. Two curves c1, c2 :] − ε, ε[→ M with c1(0) = c2(0) = p are equivalent at p if
(φ◦c1)′(0) = (φ◦c2)′(0). The relation �equivalent at p� de�nes an equivalence relation.
For a curve c :]− ε, ε[→M such that c(0) = p, its equivalence class is denoted by [c]p.

De�nition III.2. The tangent space to M at p is de�ned by:

TpM =
{

[c]p, c :]− ε, ε[→M smooth with c(0) = p
}
. [iii.1]
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Another de�nition of tangent spaces consists in de�ning TpM as the set of derivation
on M at p. Let C∞(M) denote the space of smooth functions on M. A derivation
on M at p is a linear map D : C∞(M) → R which satis�es the Leibniz rule: ∀(f, g) ∈
C∞(M), D(fg) = f(p)D(g) + D(f)g(p). Indeed, if v ∈ TpM, the corresponding
derivation is the map v[·] : C∞(M)→ R such that: v[f ] = d

dt

(
f ◦ c

)∣∣
t=0

, where c is any
smooth curve on M such that c(0) = p and ċ(0) = v. The map v[·] is a derivation
on M at p and the map v 7→ v[·] is a bijective correspondence. Given a coordinate
chart (U, φ) around p, we can construct a basis of TpM as follows. De�ne ∂/∂xi as the
derivation: ∂/∂xi f = d

dt

(
f ◦ φ−1

)∣∣
t=φ(p)

. Intuitively, ∂/∂xi is the ith derivative in the
coordinates given by φ. One can show that (∂/∂x1, . . . , ∂/∂xn) forms a basis of TpM.

Note that if M is a smooth submanifold of Rn and p ∈ M, then the tangent space
to M at p is exactly the set of derivatives ċ(0) of smooth curves c :] − ε, ε[→ M with
c(0) = p. Theorems 1.22 and 1.23 of [Gallot et al., 1990] can be used to compute
the tangent space, at a given point, to a submanifold of Rn. The following examples
appear as consequences of these theorems.

Example 4. If U ⊂ Rn is an open subset of Rn and p ∈ U , then TpU = U .

Example 5 (Sphere). Let p ∈ Sn ⊂ Rn+1. The tangent space at p to Sn is given by:

TpSn = {p}⊥ =
{
x ∈ Rn+1, x>p = 0

}
.

Remark. It is important to note that, contrary to a Euclidean space, one should think
of the vector in TpM as attached to the point p. A direct and important consequence is
that if p and q are two neighbouring points on M, the tangent spaces TpM and TqM
are, in general, di�erent spaces. This remark will play a key role in Section III.1.4.

Having introduced the notions of smooth maps and tangent space, one can de�ne
the di�erential of a smooth map.

De�nition III.3. Let M,V be two smooth manifolds and f : M→ V a smooth map.
Given p ∈ M, the di�erential of f at p is the map Dpf : TpM → Tf(p)V such that:
∀[c]p ∈ TpM, Dpf · [c]f(p) = [f ◦ c]p, where c :]− ε, ε[→M is a smooth curve such that
c(0) = p.

Note that in the previous de�nition, the di�erential Dpf ·v of f at p in the direction
v ∈ TpM does not depend on the choice of the curve c. The previous de�nition allows
to give the following example.

Example 6 (Tangent space to a product of smooth manifolds). Let n1, n2, k1, k2 ∈
N∗ and M1 ⊂ Rn1 (respectively M2 ⊂ Rn2) be a k1-dimensional (respectively k2-
dimensional) smooth manifold. Let M = M1 ×M2 and p = (p1,p2) ∈ M. Let π1 :
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M→ M1 (respectively π2 : M→ M2) be the canonical projection on M1 (respectively
M2). Note that, by de�nition, the map

α :

{
TpM −→ Tp1M1 × Tp2M2

v 7−→
(
Dpπ1 · v,Dpπ2 · v

)
provides a linear isomorphism between TpM and Tp1M1 × Tp2M2. Indeed, introduce
the canonical inclusions ι1 : p1 ∈ M1 → (p1,p2) ∈ M (respectively ι2 : p2 ∈ M2 →
(p1,p2) ∈M) and note that the map de�ned by

β :

{
Tp1M1 × Tp2M2 −→ TpM

(x,y) 7−→ Dp1ι1 · x + Dp2ι2 · y

satis�es α ◦ β = Id. As a consequence, TpM ' Tp1M1 ⊕ Tp2M2.

The next de�nition introduces the notion of tangent bundle. Intuitively, the
tangent bundle of M is the space obtained by �gluing� together all the tangent spaces
(TpM)p∈M. This space appears naturally in problems dealing with position and veloc-
ity.

De�nition III.4. Let n ∈ N∗ and M be a n-dimensional smooth manifold. The set

TM =
⋃
p∈M

{p} × TpM = {(p,v), p ∈M, v ∈ TpM}

is the tangent bundle of M.

In [Gallot et al., 1990], it is proven that the tangent bundle TM can be equipped
with a structure of 2n-dimensional smooth manifold.

Vector �elds and a�ne connections

De�nition III.5. A smooth vector �eld on M is a smooth map V which associates
to each point p ∈M a tangent vector V (p) ∈ TpM. Equivalently, V is a smooth map
from M to TM.

The space of vector �elds on M is usually denoted by χ(M). If (U, φ) is a local chart
around p ∈ M, (∂/∂x1, . . . , ∂/∂xn) is the basis of TpM de�ned above and V ∈ χ(M),
then V (p) writes V (p) =

∑
i Vi(p) ∂

∂xi
where V1, . . . , Vn are smooth function U → R.

Vector �elds �act� on smooth functions in the following way: if f is real-valued smooth
function on M, de�ne (Xf)(p) =

∑
i Vi(p) ∂f

∂xi
(p). For every f ∈ C∞(M,R), Xf is

also a real-valued smooth function on M. Having de�ned the action of vector �elds on
C∞(M,R), if X and Y are two vector �elds on M and f ∈ C∞(M,R), then X(Y f) and
Y (Xf) make sense. One can show that there exist a unique vector �eld on M, denoted
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by [X, Y ] such that: for all f ∈ C∞(M,R), [X, Y ]f = X(Y f) − Y (Xf). This vector
�eld [X, Y ] is called the Lie bracket of X and Y .

These de�nitions related to vector �elds allow to introduce the notion of a�ne
connection, which plays a crucial role in the de�nition of geodesics and parallel transport
on a Riemannian manifold.

De�nition III.6. An a�ne connection on a smooth manifold M is a mapping ∇ :
(X, Y ) ∈ χ(M)× χ(M) 7→ ∇XY ∈ χ(M) such that:

(i) ∇ is bilinear,

(ii) ∇ is C∞(M,R)-linear in the �rst variable,

(iii) For all f ∈ C∞(M,R), ∇X(fY ) = f∇XY +X(f)Y .

Intuitively, if X and Y are smooth vector �elds on M and p ∈M, ∇XY (p) should
be thought as the derivative of Y at p, in the direction of X(p). If M ⊂ Rn, a
(smooth) vector �eld on M is a smooth map V : M → Rn. In that case, ∇XY ··=
πTpM

(
DpY ·X(p)

)
, where πTpM denotes the orthogonal projection on TpM, de�nes an

a�ne connection on M.

III.1.2 Riemannian metrics

A Riemannian metric is a smooth family of inner product which allows to measure
the length of tangent vectors. Therefore, it also allows to measure the length of curves
on a manifold. This lead to the introduction of a new family of curves called geodesics
(see Section III.1.5). More generally, a Riemannian metric allows to do geometry on
smooth manifolds.

De�nition III.7. A Riemannian metric gM on M is a smooth map which associates
to each point p ∈M an inner product 〈·, ·〉p on the linear space TpM. A pair (M, gM)
is a Riemannian manifold.

Let p ∈ M and x = (x1, . . . , xn) be a coordinate system around p. As discussed
above, the tangent vectors ∂

∂x1
(p), . . . , ∂

∂xn
(p) for a basis of the tangent space TpM.

For (i, j) ∈ {1, . . . , n}2, de�ne: gi,j(p) =
〈

∂
∂xi

(p), ∂
∂xj

(p)
〉

p
. The functions (gi,j)1≤i,j≤n

are smooth and characterize the Riemannian metric on M.

Theorem III.1 ([Gallot et al., 1990], Theorem 2.2). There exist at least one Rieman-
nian metric on a smooth manifold.

Example 7. If M is a smooth submanifold of Rn, the induced metric on M is the
Riemannian metric obtained by restricting the Euclidean metric to each tangent space.
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The sphere Sn ⊂ Rn+1 is usually equipped with the induced metric. More generally, a
smooth Riemannian metric on an open subset U ⊂ Rn is of the form g : p ∈ U 7→ gp

such that, for all (u,v) ∈ TpU ' Rn, gp(u,v) = u>F (p)v, where F is a positive
smooth function on U .

Example 8 (Product of Riemannian manifolds). Let (M1, g
M1) and (M2, g

M2) be two
Riemannian manifolds. The product manifold M = M1 ×M2 can be equipped with
a Riemannian metric gM called product metric. Let p = (p1,p2) ∈ M. With the
identi�cation TpM ' Tp1M1 ⊕ Tp2M2 (Example 6), gM is de�ned as follows:

∀u = u1 + u2,v = v1 + v2 ∈ TpM, gM(u,v) = gM1
p1

(u1,v1) + gM2
p2

(u2,v2).

III.1.2.1 Push-forward

A way of obtaining Riemannian metrics on a smooth manifold is through the use of a
di�eomorphism. Indeed, a di�eomorphism between two smooth manifolds can carry a
Riemannian metric from one manifold to another.

De�nition III.8. Let (M, gM) be a Riemannian manifold, V a smooth manifold and
f : M → V a di�eomorphism. The push-forward of the metric gM on V is the
Riemannian metric f∗g de�ned, for all p ∈ V by:

∀(u,v) ∈ TpV, (f∗g
M)p(u,v) = gMf−1(p)

(
Dp(f−1) · u,Dp(f−1) · v

)
.

The notion of push-forward will be used in Section IV.1 to derive Riemannian
metrics on several smooth manifolds.

III.1.2.2 Isometries

As before, (M, g) denotes a Riemannian manifold equipped with a Riemannian metric
g. Let f : M→M be a smooth map. The notion of isometry of a Riemannian manifold
is de�ned as follows.

De�nition III.9. A smooth map f : M→M is a local isometry of M if:

∀p ∈M, ∀(u,v) ∈ TpM, gf(p)

(
Dpf · u,Dpf · v

)
= gp(u,v). [iii.2]

A local isometry is called isometry if it is a global di�eomorphism.

The set of isometries of M is a group denoted by Isom(M).
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III.1.2.3 Gradient

Let f : M → R be a smooth function de�ned on a Riemannian manifold (M, g). Let
p ∈M. Since the Riemannian metric g de�nes an inner product on the tangent space
TpM, we can de�ne the gradient of f at p following the same ideas as in the Euclidean
space Rn.

De�nition III.10. The gradient of f at p is the unique tangent vector gradf(p) ∈
TpM such that:

∀v ∈ TpM, gp

(
gradf(p),v

)
= Dpf · v [iii.3]

where Dpf : TpM→ Tf(p)R ' R is the di�erential of f at p.

Let p ∈ M and x = (x1, . . . , xn) be a coordinate system around p. Let
(∂/∂x1, . . . , ∂/∂xn) denote the basis of the tangent space TpM de�ned above. Since
the gradient gradf(p) is a tangent vector in TpM, it writes: gradf(p) =

∑n
i=1 ai

∂
∂xi

.
Applying De�nition III.10 with v = ∂/∂xj (1 ≤ j ≤ n), we obtain:

∀1 ≤ j ≤ n,
∂f

∂xj
(p) =

n∑
i=1

aigp

( ∂

∂xi
,
∂

∂xj

)
=

n∑
i=1

aigi,j(p). [iii.4]

As a consequence:

∀1 ≤ i ≤ n, ai(p) =
n∑
j=1

gi,j(p)
∂f

∂xj
(p) [iii.5]

where gi,j(p) denotes the inverse of gi,j(p). This last equation gives the expression of
the gradient of f at p in local coordinates.

III.1.3 A�ne connections

As mentioned above, on a smooth manifold of positive dimension, there are in�nitely
many a�ne connections (or ways to di�erentiate vector �elds). However, on a Rie-
mannian manifold, the Riemannian metric gM ensures the existence of a natural a�ne
connection called the Levi-Civita connection. In order to introduce the Levi-Civita
connection, a few de�nitions are required.

If (M, gM) is a Riemannian manifold and ∇ an a�ne connection on M, the connec-
tion is said to be compatible with the metric gM if ∇Xg

M(Y, Z) = gM(∇XY, Z) +
gM(Y,∇XZ) for any triplet of vector �elds (X, Y, Z) on M. In addition to this, the
connection ∇ is symmetric if: ∇XY − ∇YX = [X, Y ] for any pair (X, Y ) of vector
�elds on M.

Theorem III.2 ([Do Carmo Valero, 1992], Theorem 3.36). On a Riemannian manifold
(M, gM), there exist a unique a�ne connection which is symmetric and compatible with
the metric gM. This a�ne connection is the Levi-Civita connection.
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Example 9. If M ⊂ Rn is a smooth submanifold of Rn (equipped with the induced
metric), a (smooth) vector �eld on M is a map X : M → Rn such that: ∀p ∈
M, X(p) ∈ TpM. If the vector �eld is regarded only as a map X : M → Rn, its
di�erential at p ∈ M provides a mapping DpX : TpM → Rn. If Y : M → Rn is
another vector �eld on M, the derivative of Y at p ∈ M, in the direction of X(p), is
given by DpY · X(p). However, projecting this quantity orthogonally on the tangent
space TpM, we obtain a tangent vector and de�ne an a�ne connection on M, which is
precisely the Levi-Civita connection induced by the metric from Rn.

III.1.4 Parallel transport

In general, if p and q are two neighbouring points on a smooth manifold M, there
is no natural correspondence between the tangent spaces TpM and TqM. Parallel
transport provides a way of comparing tangent vectors which belong to di�erent
tangent spaces. The notion of parallel transport will play a key role in the de�nition of
individual trajectories of progression in Chapter IV. Let (M, gM) denote a Riemannian
manifold and ∇ its Levi-Civita connection.

De�nition III.11. Let c : I ⊂ R→M be a di�erentiable curve on M and X a vector
�eld along c. The vector �eld X is parallel along c if DX

dt
= 0.

Proposition III.1 ([Do Carmo Valero, 1992], Proposition 2.6). Let c : [0, 1] → M be
a smooth curve on M. Let w0 ∈ Tc(0)M. There exist a unique vector �eld t ∈ [0, 1] 7→
w(t) parallel along c such that w(0) = w0. This vector �eld is denoted by Pc,0,t(w0).

This last proposition shows that parallel transport along a curve c : [0, 1] → M
de�nes a mapping (t,w0) ∈ [0, 1]× Tc(0)M→ Pc,0,t(w0) = wt ∈ Tc(t)M. The following
property of parallel transport will be very useful.

Proposition III.2 ([Do Carmo Valero, 1992]). For all t ∈ [0, 1], the mapping Pc,0,t :
Tc(0)M→ Tc(t)M is an isometry.

III.1.5 Geodesics

Intuitively, one can think of geodesics as a generalization of straight lines to Riemannian
manifolds. More formally, a geodesic is a smooth curve with zero acceleration. The
notion of geodesics allow to introduce the notion of Riemannian exponential: a
mapping which �generates� geodesics and provides, locally, a parametrization of the
manifold by the tangent space. Let (M, gM) be a Riemannian manifold and ∇ its
Levi-Civita connection.

De�nition III.12. Let γ : I ⊂ R → M a smooth curve. γ is a geodesic of M if
∇γ̇ γ̇ = 0. Equivalently, γ is a geodesic if and only if the velocity �eld γ̇ is parallel
along γ.
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Geodesics locally satisfy to a second order system of di�erential equations. In
several situations, this system of di�erential equations can be solved, explicitly (or
numerically), to compute the geodesics of a Riemannian manifold M. Let γ : I ⊂ R→
M a smooth curve on M and t ∈ I. Let (U, x) be a system of coordinates around γ(t).
In U , the curve γ writes: γ = (γ1, . . . , γn) and is a geodesic if and only if:

d2γk
dt2

+
∑

1≤i,j≤n

Γki,j
(
γ(t)

)dγi
dt

dγj
dt

= 0 [iii.6]

for all k ∈ {1, . . . , n}. In this system of di�erential equations, (Γki,j)1≤i,j,k≤n are the
Christo�el symbols (of the metric gM), de�ned by:

Γki,j =
1

2

n∑
l=1

gk,l
(∂gj,l
∂xi

+
∂gi,l
∂xj
− ∂gi,j

∂xl

)
. [iii.7]

Here, (gi,j)1≤i,j≤n (respectively, (gi,j)1≤i,j≤n) are the coe�cients of the metric
(see III.1.2) (respectively, their inverse).

Example 10 (Euclidean space). In the Euclidean space Rn, the geodesics are of the
form t ∈ R 7→ tA + B where A,B ∈ Rn. This result follows directly from the form of
the Levi-Civita on Rn (equipped with its canonical metric).

Example 11 (Product of Riemannian manifolds). Let (M1, g
M1) and (M2, g

M2) be two
Riemannian manifolds. Let ∇M1 (respectively ∇M2) denote the Levi-Civita connection
of M1 (respectively M2) and let M = M1 ×M2. We assume that M is equipped with
the product metric (see Example 8). One can show ([Do Carmo Valero, 1992], Chapter
6) that the Levi-Civita connection ∇M of M is characterized by:

∀(X,Z) ∈ χ(M1)2, ∀(Y, T ) ∈ χ(M2)2, ∇M
X+Y (Z + T ) = ∇M1

X Z +∇M2
Y T.

As a consequence the geodesics of M are of the form t 7→ (γ1(t),γ2(t)) where γ1

(respectively γ2) is a geodesic of M1 (respectively M2).

Exponential map

As a consequence of Proposition 2.7 ([Do Carmo Valero, 1992]), for each point p ∈M
and time t0 ∈ R, there exist an open set U in TpM such that, for each v ∈ U , there
exist a unique geodesic γ : I → M, de�ned on an open neighborhood I ⊂ R of t0 and
such that γ(t0) = p, γ̇(t0) = v.

De�nition III.13. Let p ∈M, t0 ∈ R and v ∈ U ⊂ TpM. The mapping

Expp,t0(v)(·) :

{
I −→ M

t 7−→ Expp,t0(v)(t)

is the unique geodesic of M which goes through the point p ∈ M at time t0, with
velocity v ∈ TpM.
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The Riemannian exponential at p, de�ned in [Do Carmo Valero, 1992,Gallot et al.,
1990], appears as a particular case of the previous de�nition, where the time t0 equals
0. We have the following de�nition:

De�nition III.14. The Exponential map at p ∈M is the mapping

Expp :

{
U ⊂ TpM −→ M

v 7−→ Expp(v) ··= Expp,0(v)(1)

which associates to each v ∈ U the value at time t = 1 of the unique geodesic γ
satisfying γ(0) = p and γ̇(0) = v.

From Proposition 2.9 of [Do Carmo Valero, 1992], we know that the Riemannian
exponential Expp at p ∈M de�nes a di�eomorphism from an open ball B(0, ε) ⊂ TpM
(ε > 0) onto an open subset ofM. The inverse of the Riemannian exponential is denoted
by Logp and called Riemannian logarithm. If the Riemannian exponential Expp is
de�ned on the entire tangent space TpM, the Riemannian manifold M is geodesically
complete.

III.2 Notions of Markov chains theory

III.2.1 Markov chains, transition kernels and stationary distri-
bution

This section consists in a review of fundamental concepts of Markov chains theory,
among which, the transition kernel of a Markov chain and stationary distributions.
These notions will play a central role in the following section on Monte Carlo Markov
Chains (MCMC) methods. A comprehensive overview of Markov chains theory can
be found in [Meyn and Tweedie, 2012,Billingsley, 2013]. More about MCMC methods
and their implementation can be found in [Robert and Casella, 2009, Liang et al.,
2011,Robert and Casella, 2013].

Markov chains and kernels

Before giving the de�nition of a Markov chain, we start by introducing the notions of
stochastic process and �ltration. Let (Ω,F ,P) be a probability space and (X,G) be
a measurable space. A stochastic process on X is a sequence (Xn)n∈N of random
variables with values in (X,G). A �ltration on (Ω,F) is an increasing sequence
(Fn)n∈N of sub-σ-�elds of F and a �ltered probability space is a probability space
(Ω,F ,P) equipped with a �ltration. If Y : (Ω,F) → (X,G) is measurable, σ(Y ) is
the smallest σ-algebra of F such that Y is measurable. In particular, if (Xn)n∈N is
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a stochastic process, the natural �ltration of this process if the �ltration (FXn )n∈N
de�ned by: ∀n ∈ N, FXn = σ(Xk, 0 ≤ k ≤ n). A stochastic process (Xn)n∈N is
adapted to the �ltration (Fn)n∈N if, for each n ∈ N, Xn is Fn-measurable.

In the following, (Ω,F ,P) be a probability space equipped with a �ltration (Fn)n∈N.

De�nition III.15. An adapted stochastic process (Xn)n∈N with values in (X,G) is a
Markov chain if, for all n ∈ N and all G ∈ G,

P(Xn+1 ∈ G | Fn) = P(Xn+1 ∈ G | Xn) P− a.e. [iii.8]

The measurable space (X,G) is often called state space.

With (Fn)n∈N = (FXn )n∈N, De�nition III.15 states that the future of the chain is
conditionally independent of its past, given the present state. An adapted stochastic
process (Xn)n∈N is a Markov chain if and only if, for all positive measurable function
f on (X,G), E[f(Xn+1) | Fn] = E[f(Xn+1) | Xn] P − a.e. Examples of Markov chains
are given below.

Example 12 (Random walk). Let (Wn)n∈N∗ be a sequence of i.i.d. random variables
taking values in Zd, with distribution µ. LetW0 be a random variable in Zd independent
of (Wn)n∈N∗ . A random walk on Zd, with distribution µ, is a stochastic process (Xn)n∈N
de�ned by: X0 = W0 and, for all n ∈ N∗, Xn+1 = Xn + Wn+1. A random walk on Zd
is a simple example of Markov chain on a discrete state space.

Example 13 (Auto-regressive process). Auto-regressive processes are a classical example
of Markov chains on a continuous state space. The AR(1) process (Xn)n∈N is de�ned
as follows: ∀n ∈ N∗, Xn = a + bXn−1 + Wn, where (Wn)n∈N∗ is a sequence of i.i.d.
real-valued random variables which are independent of X0. The chain (Xn)n∈N is a
Markov chain on (R,B(R)).

The following de�nitions introduce the notion of kernels. This allows to de�ne later
the transition kernel of a Markov chain.

De�nition III.16. Let (X,G) and (E, E) be two measurable spaces. A kernel P on
the product X × E is a mapping P : X × E → [0,+∞] such that:

(i) for every x ∈ X, the mapping P (x, ·) : A ∈ E → P (x,A) is a measure on E ,

(ii) for every A ∈ E , the mapping P (·, A) : x ∈ X → P (x,A) is a positive measurable
function on (X,G). The kernel P is a Markov kernel if, for all x ∈ X, P (x, ·)
is a probability measure on (E, E).

In particular, if X and E are countable sets, E is the set of P(E) of parts of E and a
kernel onX×P(E) can be identi�ed with amatrix (possibly in�nite) P =

(
P (x, y), x ∈

X, y ∈ E
)
. The matrix P is Markovian if, for all x ∈ X,

∑
y∈E P (x, y) = 1.

Kernels can �act� on positive measurable functions, on measures and can be com-
posed. These operations, which shall be used later, are de�ned as follows.
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De�nition III.17. Let P be a kernel on X ×E and f : E → [0,+∞[ be a measurable
function. The function Pf : X → [0,+∞[ is de�ned by:

∀x ∈ X, Pf(x) =

∫
X

P (x, dy)f(y). [iii.9]

If µ denotes a positive measure (respectively probability measure) on (X,G), the pos-
itive measure (respectively probability measure) µP on (E, E) is de�ned by:

∀A ∈ E , µP (A) =

∫
X

µ(dx)P (x,A). [iii.10]

Let (Z,H) be another measurable space and P (respectively Q) a kernel on X × E
(respectively on E ×H). The composition PQ, de�ned by:

∀x ∈ X, ∀A ∈ H, PQ(x,A) =

∫
E

P (x, dy)Q(y, A) [iii.11]

is a kernel on X ×H. For a positive measurable function f on (Z,H), for all x ∈ X,
(PQ)f(x) = P (Qf)(x).

The previous de�nitions and properties of kernels are aimed at de�ning the transi-
tion kernel of an homogeneous Markov chain. Let (X,G) be a measured space, P a ker-
nel and µ a probability measure on (X,G). An adapted stochastic process (Xn)n∈N is an
homogeneous Markov chain with transition kernel P and initial distribution µ
if, for all n ∈ N and all A ∈ G, P(X0 ∈ A) = µ(A) and P(Xn+1 ∈ A | Fn) = P (Xn, A).
This last condition is equivalent to: E[f(Xn+1) | Fn] = Pf(Xn) P-almost everywhere
and for every measurable positive function on (X,G).

Example 14. In Example 12 of the random walk, (Xn)n∈N is a Markov chain on Zd with
transition kernel P de�ned on Zd×Zd by: ∀(x, y) ∈ Zd, P (x, y) = µ(y−x). Regarding
Example 13 of the auto-regressive process, under the condition that E[|W1|] < +∞ and
E[W1] = 0, (Xn)n∈N is a Markov chain with transition kernel P de�ned on R × B(R)
by: ∀x ∈ R, ∀A ∈ B(R), P (x,A) = P(W1 + bx+ a ∈ A).

Invariant measure, stationarity and ergodicity

We now introduce the de�nition of invariant measure and the notion of stationarity.

De�nition III.18. Let P be a Markov kernel on X ×G. A positive σ-�nite measure
π is invariant with respect to P if it satis�es πP = P .

A stochastic process (Xn)n∈N on a probability space (Ω,F ,P) is stationary if, for
all integers n, p ∈ N, the distribution of (Xn, . . . , Xn+p) does not depend on n. Now,
let (Xn)n∈N is a Markov chain with initial distribution µ and transition kernel P . If
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(Xn)n∈N is stationary, then µP = µ. Conversely, if the initial distribution µ satis�es to
µP = µ, then it can be shown that (Xn)n∈N is stationary. A probability distribution π
which satis�es to πP = π is called stationary distribution of the chain (Xn)n∈N.

If there exist a probability distribution π
on (X,G) such that limn→+∞ supA∈G |πP n(A) − π(A)| = 0, one can show that π in
invariant with respect to P . If the limit distribution π is independent of the initial
distribution µ, the chain (Xn)n∈N is ergodic. Intuitively, an ergodic Markov chain
asymptotically forgets its initial distribution. Moreover, its distribution µP n converges
(as above) to π, which is invariant with respect to P . The notion of ergodicity will
play an important role in Section III.2.2 on MCMC algorithms.

A probability measure π on (X,G) is said to be reversible with respect to P if,
for all (A,B) ∈ G, ∫

A

π(dx)P (x,B) =

∫
B

π(dy)P (y, A) [iii.12]

Eq. [iii.12] is called the detailed balance condition. It provides a su�cient condition
for a Markov kernel to have an invariant distribution. In fact, if π is reversible with
respect to P , then π is invariant with respect to P .

III.2.2 Monte Carlo Markov Chains methods

Numerous situations require to compute integrals of the form

Eπ[f(X)] =

∫
f(x)π(x)dx [iii.13]

where π is a probability density on Rd. The density π is often quite complex, which
avoids direct sampling from π using methods such as the Inverse Transform method or
Acceptance-Rejection method. Moreover, in general, only an unnormalized version π̃
of π is available. Here, π̃ is a positive function such that π̃ = Cππ with Cπ > 0. The
normalizing constant Cπ cannot, in general, be computed in closed-form. To address
this problem, MCMC methods consist in generating an ergodic Markov chain which
admits π as (unique) invariant distribution. Since the chain is ergodic, after some time,
the distribution of the terms of the chain should be close to π. However, the terms of
the chain are not independent, as opposed to direct sampling methods which produce
i.i.d. draws from π. If (Xn)n∈N is an ergodic Markov chain whose invariant distribution
is π, the ergodic theorem ensures that:

1

n

n∑
k=1

f(Xk) −→
n→+∞

Eπ[f(X)]. [iii.14]

Such Markov chains are constructed using MCMC samplers. Among the large num-
ber of MCMC samplers, two are considered below: the Metropolis-Hastings sam-
pler (MH) and the Gibbs sampler.
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III.2.2.1 Metropolis-Hastings algorithm

Let λ denote a measure on (X,G) and π a positive measurable function on X such

that
∫
X
π(x)λ(dx) < +∞. Also let Q denote a Markov kernel on (X,G) which has a

density q with respect to λ. In other words, Q satis�es: ∀x ∈ X, ∀A ∈ G, Q(x,A) =∫
A
q(x, y)λ(dy). The MH algorithm works as follows. Initialized with a value Z0, the

algorithm builds a stochastic process (Zn)n∈N of random variables as follows:

Algorithm 1 Metropolis-Hastings algorithm: kth step
1: Given Zk (k ≥ 0):

2: Sample Z∗k ∼ Q(Zk, ·)
3: Compute α(Zk, Z

∗
k) de�ned by:

α(Zk, Z
∗
k) =

π(Z∗k)q(Z∗k , Zk)

π(Zk)q(Zk, Z∗k)
∧ 1.

4: Sample U ∼ Uniform([0, 1])

5: De�ne Zk+1:

Zk+1 =

Zk if U ≤ α(Zk, Z
∗
k)

Z∗k otherwise.

6: Return Zk+1.

The ratio α(Zk, Z
∗
k) in Algorithm 1 is called acceptance ratio and the density q

is the proposal density. Note that this quantity only depends on the target density
π through the ratio π(Z∗k)/π(Zk). As a consequence, the MH algorithm can be used
whenever π is known only up to a normalizing constant. This property of the acceptance
ratio is particularly desirable in Bayesian inference. The stochastic process (Zn)n∈N
produced by the algorithm is a Markov chain and its transition kernel is given as
follows.

Proposition III.3 ([Liang et al., 2011], Chapter 3). The transition kernel P of the
Markov chain (Zn)n∈N is given by:

P (x,A) =

∫
A

α(x, y)q(x, y)λ(dy) + δx(A)
(∫

X

(
1− α(x, y)

)
q(x, y)λ(dy)

)
. [iii.15]

for all x ∈ X and all A ∈ G.

Moreover, the following result holds:

Proposition III.4 ([Liang et al., 2011], Chapter 3). The distribution π is reversible
with respect to the transition kernel P .
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III.2.2.2 Gibbs sampler

Consider a product space X1 × . . . Xn equipped with the σ �eld B(X1)⊗ . . .⊗ B(Xn)
and π a density on X1× . . .×Xn. In the following, the notation x−i denotes the vector
(x1, . . . , xi−1, xi+1, . . . , xn) with i ∈ {1, . . . , n}. We assume that, for all i, π can be
written: π(dx1, . . . , dxn) = π̃i(dx−i)Ri(x−i, dxi) where Ri is a Markov transition kernel
on
∏

j 6=iXj × B(Xi) given by:

R(x−i, A) =

∫
A

π(x1, . . . , xi−1, y, xi+1, . . . , xn) dy∫
Xi

π(x1, . . . , xi−1, y, xi+1, . . . , xn) dy
. [iii.16]

for all x−i ∈
∏

j 6=iXj and all A ∈ B(Xi). Initialized with Z0 = (Z0
1 , . . . , Z

0
n), theGibbs

sampler (GS) constructs a stochastic process (Zn)n∈N as follows:

Algorithm 2 Gibbs sampler: kth step
1: Given Zk = (Zk

1 , . . . , Z
k
n) (k ≥ 0):

2: Sample Zk+1
1 ∼ R1

(
(Zk

2 , . . . , Z
k
n), ·

)
3: Sample Zk+1

2 ∼ R2

(
(Zk+1

1 , Zk
3 , . . . , Z

k
n), ·

)
4: . . .

5: Sample Zk+1
n ∼ Rn

(
(Zk+1

1 , . . . , Zk+1
n−1), ·

)
.

6: Return: Zk+1.

The stochastic sequence (Zn)n∈N is a Markov chain.

Proposition III.5. The transition kernel of the Markov chain (Zn)n∈N is R1 . . . Rn.

In addition to this:

Proposition III.6. The density π is reversible with respect to the transition kernel
R1 . . . Rn of the Markov chain (Zn)n∈N.

Note that using the GS requires to be able to sample from the densities

πi(y | x−i) =
π(x1, . . . , xi−1, y, xi+1, . . . , xn)∫

Xi

π(x1, . . . , xi−1, s, xi+1, . . . , xn) ds
. [iii.17]

These densities are usually called full conditionals of π. However, if the target density
π is a complex distribution, the normalizing constant of the full conditionals will be
intractable. In this situation, a way to address this problem is to use a MH algorithm
for the sampling steps of the GS. Then, this leads to a di�erent algorithm called hybrid
Gibbs sampler or Metropolis-Hastings-within-Gibbs sampler (MHwGS).
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The purpose of this chapter is to introduce a Bayesian mixed-e�ects model, called
generic spatiotemporal model, to learn trajectories of progression from longitudinal
manifold-valued observations. As emphasized in the introduction, the generic spa-
tiotemporal model assumes that each observation is a random perturbation of a point on
a Riemannian manifold. In addition to this, the model estimates an average trajectory
of progression, which is assumed to be a geodesic on a Riemannian manifold. Individ-
ual trajectories result from spatiotemporal transformations, namely parallel transport
and time reparametrization, of the average trajectory. The notions of Riemannian ge-
ometry introduced in Chapter III are used in this chapter to de�ne the generic model.
Section IV.1 gives examples of Riemannian manifolds in which the geodesics and par-
allel transport can be computed in closed-form. The Riemannian manifolds discussed
in this section will be considered in Chapter VII. Section IV.2 introduces the concept
of parallel variation of a curve on a Riemannian manifold. This notion is used to de-
�ne the individual trajectories. It also enforces an orthogonality constraint on some
random e�ects of the model called space shifts. Methods to include this orthogonality
constraint into the model are discussed in this section. Finally, Section IV.3 presents
the generic spatiotemporal model.

IV.1 Geodesics and parallel transport in some classi-

cal manifolds

IV.1.1 One-dimensional Riemannian manifolds

IV.1.1.1 Geodesics of a one-dimensional Riemannian manifold

Proposition IV.1 (Geodesics of one-dimensional Riemannian manifolds). Let M ⊂ R
be an open interval of R and g a Riemannian metric on M. The geodesics of the one-
dimensional Riemannian manifold (M, g) are of the form t 7→ φ(at+ b) with a, b ∈ R,
φ : M→ φ(M) ⊂]0,+∞[ an increasing C1 di�eomorphism.

Proof. Note that the Riemannian metric g is of the form p ∈ M 7→ gp with: ∀(u, v) ∈
TpM ' R, gp(u, v) = uf(p)v and f : M→]0,+∞[ a smooth function.

It follows from Eq. [iii.7] that the Riemannian metric g is characterized by a
single Christo�el symbol Γ1

1,1. This symbol is de�ned by: ∀p ∈ M, Γ1
1,1(p) =

(1/2)(f ′(p)/f(p)). Therefore, γ is a geodesic if and only if it satis�es the di�eren-
tial equation

γ̈(t) +
1

2

f ′
(
γ(t)

)
f
(
γ(t)

) (γ̇(t)
)2

= 0. [iv.1]
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Equivalently, γ is a geodesic if and only if:

d

dt

(
γ̇(t)

√
(f ◦ γ)(t)

)
= 0. [iv.2]

As a consequence, γ is a geodesic if and only if there exist a ∈ R such that:

∀t ∈ R, γ̇(t)
√

(f ◦ γ)(t) = a. [iv.3]

Let p ∈ M and F : u ∈ M ⊂ R 7→
∫ u
p

√
f(t) dt. F is an increasing C1 di�eomorphism

from M to its image F (M) ⊂ R. Since Eq. [iv.2] writes
(
F ◦ γ

)′
(t) = a, γ is a geodesic

if and only if: γ(t) = F−1(at+ b).

IV.1.1.2 The case M = R

If M = R is equipped with the canonical metric (de�ned by: ∀p ∈ R, ∀(u, v) ∈ TpR '
R, geucl

p (u, v) = uv), the geodesics are straight lines of the form t ∈ R 7→ p + tv. In
particular, if p0 ∈ R, t0 ∈ R and v0 ∈ Tp0R ' R, the geodesic γ0(·) = Expp0,t0(v0)(·) is
de�ned by:

γ0(t) = p0 + v0(t− t0). [iv.4]

It follows that (R, gR) is geodesically complete.

IV.1.1.3 The case M =]0, 1[

When M =]0, 1[, one could equip M with the induced metric from R. However, the
geodesics for the induced metric are straight lines, which may �go out of M� in �nite
time. Therefore, M would not be geodesically complete for the induced metric. To
address this problem, consider that M is equipped with the Riemannian metric g =
(gp)p∈]0,1[ de�ned by:

∀p ∈M, ∀(u, v) ∈ TpM, gp(u, v) = uG(p)v with G(p) =
1

p2(1− p)2
. [iv.5]

This Riemannian metric corresponds to the canonical metric on R, modi�ed by a
conformal factor G. In the literature, such Riemannian metrics are usually referred
to as conformal metrics. Proposition IV.1 ensures that the geodesics of M are of the
form t ∈ R 7→ F−1(at + b) with a ∈ R, b ∈ R and F given by: ∀u ∈]0, 1[, F (u) =∫ u

1/2
1

u(1−u)
du = ln

(
u

1−u

)
. The inverse mapping of F is given by: ∀s ∈ R, F−1(s) =

1
1+e−s

. Therefore, the geodesics of M are of the form: t ∈ R 7→ 1
1+e−(at+b) with a ∈ R

and b ∈ R. In particular, if p0 ∈ M, t0 ∈ R and v0 ∈ Tp0M , the geodesic γp0,t0,v0(·) =
Expp0,t0(v0)(·) of M is:

∀t ∈ R, γp0,t0,v0(t) =

(
1 +

( 1

p0

− 1
)

exp
(−v0(t− t0)

p0(1− p0)

))−1

. [iv.6]
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With this metric, the open interval ]0, 1[ is a geodesically complete Riemannian mani-
fold. The geodesics of this metric are usually called logistic curves (or sigmoid curves).

The Riemannian metric on ]0, 1[ and the logit transform

The open interval ]0, 1[ naturally appears when dealing with normalized scalar observa-
tions. Usually, in the literature, the common practice when dealing with observations
in ]0, 1[ consists in taking the logit transform of these observations to map these to
the real line. Then, analyzes are performed on these observations using, usually, linear
models such as LME models. Recall that the logit transform is the map

logit :


]0, 1[ −→ R

p 7−→ ln
( p

1− p

) . [iv.7]

Its inverse is the sigmoid function

S = logit−1 :


R −→ ]0, 1[

t 7−→ 1

1 + e−t

. [iv.8]

Consider, as above, R as a Riemannian manifold equipped with the metric geucl. Noting
that S is a di�eomorphism from R to ]0, 1[, one can use this sigmoid function to
push-forward(see De�nition III.8) the Riemannian metric geucl onto ]0, 1[. Indeed, for
p ∈]0, 1[, the di�erential of the logit transform is given by:

∀u ∈ Tp]0, 1[' R, Dp logit · u =
u

p− p2
. [iv.9]

Then, it follows from the de�nition of the push-forward that logit∗g
eucl de�nes a Rie-

mannian metric on ]0, 1[, which is given by:

∀p ∈]0, 1[, ∀(u, v) ∈ Tp]0, 1[' R,
(
logit∗g

eucl
)
p
(u, v) =

uv

p2(1− p)2
. [iv.10]

Remark. Also note that this Riemannian metric on the open interval ]0, 1[ could be
used to de�ne a Riemannian metric on S1 r {1}, where S1 = {z ∈ C, |z| = 1}. Indeed,
the mapping t ∈]0, 1[7→ e2iπt is a di�eomorphism from ]0, 1[ onto S1 r {1} which could
be used, again, to push-forward the Riemannian metric on ]0, 1[ onto S1 r {1}.

IV.1.1.4 The case M =]0,+∞[

Similarly to the case of M =]0, 1[, the open interval ]0,+∞[ can be equipped with a
Riemannian metric. This Riemannian metric is obtained as the push-forward of the
canonical metric geucl on R by the exponential. We have:

∀p ∈]0,+∞[, ∀(u, v) ∈ Tp]0,+∞[' R,
(

exp∗ g
eucl
)
p
(u, v) =

uv

p2
. [iv.11]
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As a result of Proposition IV.1, the geodesics of the one-dimensional Riemannian
manifold M =]0,+∞[ are of the form: ∀t ∈ R, γ(t) = exp(at + b) with a, b ∈ R.
In particular, if p0 ∈]0,+∞[, v0 ∈ Tp0M ' R and t0 ∈ R then the geodesic γ0(·) =
Expp0,t0(v0)(·) is given by:

∀t ∈ R, γ0(t) = p0 exp
(v0

p0

(t− t0)
)
. [iv.12]

IV.1.2 Product of one-dimensional Riemannian manifolds

Let M ⊂ R be an open interval of R equipped with a Riemannian metric g, such that
(M, g) is geodesically complete. Let N ∈ N∗. The product manifold M = MN is
equipped with the product metric (see Example 8). As discussed in Example 11, the
geodesics of M are of the form:

t ∈ R 7→
(
γ1(t), . . . , γN(t)

)
[iv.13]

where γ1, . . . , γN are geodesics of the one-dimensional manifold M .

The following proposition allows to characterize the parallel transport on this prod-
uct manifold.

Proposition IV.2. Let γ = (γ1, . . . , γN) be a geodesic of M and t0 ∈ R. Let w ∈
Tγ(t0)M be a tangent vector with w = (w1, . . . , wN

)
∈ Tγ(t0)M. The parallel transport

Pγ,t0,t(w) is given by:

∀t ∈ R, Pγ,t0,t(w) =
( w1

γ̇1(t0)
γ̇1(t), . . . ,

wN
˙γN(t0)

˙γN(t)
)
. [iv.14]

Proof. Since the Riemannian metric on M is the product metric, the computation the
parallel transport boils down to the computation of Pγi,t0,t(wi)). Indeed:

Pγ,t0,t(w) =
(

Pγ1,t0,t(w1), . . . ,PγN ,t0,t(wN)
)
. [iv.15]

Let i ∈ {1, . . . , N}. The parallel transport Pγi,t0,t(wi) is computed as follows.
As noted in the proof of Proposition IV.1, the Riemannian metric g of M is nec-
essarily of the form p ∈ M 7→ gp with: ∀(u, v) ∈ TpM, gp(u, v) = uvf(p) where
f : M → ]0,+∞[ is a smooth function.

It follows from the de�nition of parallel transport along the curve t 7→ γi that:
∀t, Pγi,t0,t(wi) ∈ Tγi(t)M . Since, for all t, Tγi(t)M is a one-dimensional vector space,
the tangent vector γ̇i(t) 6= 0 spans this space. As a consequence, there exist a smooth
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function ξi : R → R such that: ∀t ∈ R, Pγi,t0,t(wi) = ξi(t)γ̇i(t). Because the parallel
transport is an isometry and because γi is a geodesic, we have:

∀t ∈ R, gγi(t)
(
Pγi,t0,t(wi), γ̇i(t)

)
= gγi(t0)(wi, γ̇i(t0)). [iv.16]

The bilinearity of gγi(t) gives:

gγi(t)
(
Pγi,t0,t(wi), γ̇i(t)

)
= gγi(t)

(
ξi(t)γ̇i(t), γ̇i(t)

)
= ξi(t)gγi(t)

(
γ̇i(t), γ̇i(t)

)
.

[iv.17]

Using that γ̇i is parallel along γi, we have:

∀t ∈ R, gγi(t)
(
γ̇i(t), γ̇i(t)

)
= gγi(t0)

(
γ̇i(t0), γ̇i(t0)

)
. [iv.18]

As a consequence, Eq. [iv.16], Eq. [iv.17] and Eq. [iv.18] give:

∀t ∈ R, ξi(t)gγi(t0)

(
γ̇i(t0), γ̇i(t0)

)
= gγi(t0)

(
wi, γ̇i(t0)

)
. [iv.19]

Using the form of the metric on M , Eq. [iv.19] writes:

∀t ∈ R, ξi(t)
(
γ̇i(t0)

)2
f
(
γi(t0)

)
= wiγ̇i(t0)f

(
γi(t0)

)
. [iv.20]

This last equation gives: ∀t, ξi(t) = wi/ ˙γi(t0). Finally,

∀i ∈ {1, . . . , N}, ∀t ∈ R, Pγi,t0,t(wi) =
wi

γ̇i(t0)
γ̇i(t). [iv.21]

This last equation completes the proof of the proposition.

IV.1.3 The 2-sphere

The 2-sphere S2 = {x ∈ R3, ‖x‖2 = 1} ⊂ R3 is a smooth 2-dimensional submanifold
of R3. For each p ∈ S2, TpS2 = {p}⊥. If S2 is equipped with the induced metric from
R3, S2 is a geodesically complete Riemannian manifold, as proved by the following
proposition.

Proposition IV.3. The geodesics of the sphere S2 are of the form:

t ∈ R 7→ cos(t‖v‖)p +
v

‖v‖
sin(t‖v‖) [iv.22]

where p ∈ S2 and v ∈ TpS2 = {p}⊥.

Proof. Let p ∈ S2 and v ∈ TpS2 = {p}⊥. Let V = Span
(
p, v
‖v‖

)
and R be the re�ection

with respect to V , i.e. R = Id on V and R = −Id on V⊥. It follows from Pythagoras'
theorem that R : S2 → S2 is an isometry of S2. Let γ denote the geodesic of S2 such
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that γ(0) = p and γ̇(0) = v. Because R is an isometry, R ◦ γ is a geodesic of S2. By
unicity of a geodesic given its starting point and initial velocity, R ◦ γ = γ. Hence, γ
is �xed under the re�ection R. It follows that there exist real-valued functions α and
β such that:

∀t ∈ R, γ(t) = α(t)p + β(t)
v

‖v‖
. [iv.23]

One can easily see that: ∀t ∈ R, α(t) = cos(t‖v‖) and β(t) = sin(t‖v‖). Finally, the
geodesics of S2 are of the desired form.

A direct consequence of this proposition is that if p0 ∈ S2, t0 ∈ R and v0 ∈ Tp0S2,
the geodesic γ0(·) = Expp0,t0(v0)(·) is given by:

∀t ∈ R, γ0(t) = cos
(
(t− t0)‖v0‖

)
p0 +

v0

‖v0‖
sin
(
(t− t0)‖v0‖

)
. [iv.24]

The geodesics of S2 are great circles, i.e. the intersection of the sphere with a plane
going through the origin of the sphere.

Let γ denote a geodesic of S2 such that γ(0) = p and γ̇(0) = v. Parallel transport
on the 2-sphere is given by the following proposition.

Proposition IV.4. Let w ∈ TpS2. Let e1(t) =
γ̇(t)

‖v‖
and e2(t) = γ(t) ∧ e1(t). Then:

∀t ∈ R, Pγ,0,t(w) =
w>v

‖v‖
e1(t) + ε

√
‖w‖2 − (w>v)2

‖v‖2
e2(t) [iv.25]

where ε = sign
(
w>(p ∧ v)

)
.

Proof. For all t ∈ R, the set {e1(t), e2(t)} forms an orthonormal basis of Tγ(t)S2.
By de�nition of the parallel transport (along γ), there exist continuous real-valued
functions α and β such that:

∀t ∈ R, Pγ,0,t(w) = α(t)e1(t) + β(t)e2(t). [iv.26]

Since the parallel transport is an isometry,
(
Pγ,0,t(w)

)>
γ̇(t) = w>v for all t. Similarly,

‖Pγ,0,t(w)‖2 = ‖w‖2 for all t. These two conditions give:

∀t ∈ R, α(t) =
w>v

‖v‖
and β(t) = ε

√
‖w‖2 − (w>v)2

‖v‖2
[iv.27]

with ε = sign
(
w>(p ∧ v)

)
.
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IV.1.4 The space Spd(n) of symmetric positive de�nite matrices

If Σ ∈ SDP(3), the tangent space TΣM at Σ can be identi�ed with Sym(3). With the
a�ne-invariant metric, this tangent space is equipped with the inner product 〈·, ·〉Σ
de�ned by:

∀(W1,W2) ∈ TΣM, 〈W1,W2〉Σ = tr
(
Σ−1/2W>

1 Σ−1W2Σ
−1/2

)
. [iv.28]

This Riemannian metric was �rst introduced by Siegel in [Siegel, 1964], in the context of
symplectic geometry, and has been used ever since in several contributions ([Förstner
and Moonen, 2003, Pennec et al., 2006, Lenglet et al., 2006, Dryden et al., 2009, Su
et al., 2011]). In [Lenglet et al., 2006] and [Moakher and Zéraï, 2011], the authors
study the manifold Spd(n) equipped with the a�ne-invariant metric. In this section,
using Eq. [iv.29] given in [Lenglet et al., 2006], we derive closed-form expression of the
geodesics and parallel transport for the a�ne-invariant metric.

First, some notations need to be introduced. Let m = n(n + 1)/2 denote the
dimension of the linear space Sym(n), (Ei)1≤i≤m be the canonical basis of Sym(n) and
(E∗i )1≤i≤m its dual basis. The matrices are indexed by a single index, which corresponds
to an enumeration of the pairs of integers {(k, l), 1 ≤ k, l ≤ n, k ≤ l}. A matrix
V in Sym(n) will be identi�ed to the vector (v1, . . . , vm) of its coe�cients from the
upper triangular part. Using the expression of the Christo�el symbols in terms of the
canonical basis of Sym(n) and its dual basis, Lenglet and collaborators prove that if t 7→
Σ(t) = (σ1(t), . . . , σm(t)) is a smooth curve in Spd(n) and t 7→ V(t) = (v1(t), . . . , vm(t))
a vector �eld along Σ, the covariant derivative of V along Σ is given by the expression:

DV(t)

dt
=

m∑
i

dvi(t)

dt
Ei +

m∑
i,j=1

vi(t)
dσj(t)

dt
∇EiEj. [iv.29]

Applying E∗k (1 ≤ k ≤ m) to Eq. [iv.29] together with the expression of the Christo�el
symbols (see [Lenglet et al., 2006], Equations (3) and (4)), one gets that the vector
�eld V is parallel along the curve Σ if and only if:

dV(t)

dt
− 1

2
V(t)Σ(t)−1dΣ(t)

dt
− 1

2

dΣ(t)

dt
Σ(t)−1V(t) = 0. [iv.30]

Lenglet and collaborators also note that one can obtain the geodesics of Spd(n) by
solving Eq. [iv.30] with V(t) = d/dtΣ(t). One can also obtain the expression of the
geodesics by noting that the geodesic starting at In with velocity V ∈ Sym(n) is
given by exp(tV) and use the invariance of the a�ne-invariant metric under congruent
transformations. For P0 ∈ Spd(n), t0 ∈ R and V0 ∈ TP0Spd(n) ' Sym(n), the
geodesic γ0(t) = ExpP0,t0(V0)(t) is given by:

∀t ∈ R, γ0(t) = P
1/2
0 exp

(
tP
−1/2
0 V0P

−1/2
0

)
P

1/2
0 . [iv.31]

where P
1/2
0 (respectively P

−1/2
0 ) denotes the unique symmetric positive de�nite square

root of P0 (respectively its inverse). The expression of the parallel transport is given
by the following proposition.



63

Proposition IV.5. Let P0 ∈ Spd(n), t0 ∈ R and V0 ∈ TP0Spd(n) ' Sym(n). Let γ0

be the geodesic de�ned as above. If W is a tangent vector in TP0Spd(n), the parallel
transport Pγ0,t0,t(W) is given by:

∀t ∈ R, Pγ0,t0,t(W) = exp
(t− t0

2
V0P

−1
0

)
W exp

(t− t0
2

P−1
0 V0

)
. [iv.32]

Proof. With the de�nition Eq. [iv.31] of γ0, one can easily see that:

∀t ∈ R,
dγ0(t)

dt
γ−1

0 (t) = V0P
−1
0 . [iv.33]

It follows that Eq. [iv.30] is equivalent to:

dV(t)

dt
=

1

2
V(t)P−1

0 V0 −
1

2
V0P

−1
0 V(t). [iv.34]

Eq. [iv.34] is a di�erential Lyapunov equation. It can be solved by considering a matrix-
valued function of the form t 7→ exp(−tM>)R(t) exp(−tM). WithM = −(1/2)P−1

0 V0,
one has that the parallel transport in Spd(n) is given by:

V(t) = exp
(t− t0

2
V0P

−1
0

)
W exp

(t− t0
2

P−1
0 V0

)
. [iv.35]

Another Riemannian metric on Spd(n)

The a�ne-invariant metric is not the only metric which can be considered on Spd(n).
Sym(n) ' Rn(n+1)/2 can be considered as a smooth manifold equipped with the metric
gSym(n) de�ned by: ∀U,V ∈ TMSym(n), g

Sym(n)
M (U,V) = tr

(
U>V

)
. Using the fact

that the matrix exponential exp : Sym(n) → Spd(n) is a di�eomorphism, the push-
forward, with exp of the metric on Sym(n) de�nes a Riemannian metric exp∗ g

Sym(n)

on Spd(n) by:

∀S ∈ Spd(n), ∀(U,V) ∈ TSSpd(n),
(

exp∗ g
Sym(n)

)
S
(U,V) = tr

(
(DS log ·U)>DS log ·V

)
.

This Riemannian metric is called the Log-Euclidean metric on Spd(n).

In [Arsigny et al., 2006], the authors consider the space Spd(n) equipped with the
log-Euclidean metric. This metric provides the space of symmetric positive de�nite
matrices with a structure of Riemannian manifold. Unlike with the a�ne-invariant
metric, the space Spd(n) endowed with the Log-Euclidean metric is a �at Riemannian
manifold, meaning that its sectional curvature is null everywhere. By contrast, the
space Spd(n) equipped with the a�ne-invariant metric is a Riemannian manifold of
non-positive curvature [Skovgaard, 1984,Moakher and Zéraï, 2011] with no cut-locus.
Within the Log-Euclidean framework, the geodesics are of the form: exp(V1 + tV2)
with V1,V2 ∈ Sym(n). As expected, the geodesics are the image of a straight line in
Sym(n) by the matrix exponential map.
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IV.2 The concept of �parallel variations� on a Rie-

mannian manifold

IV.2.1 De�nition and properties

This section introduces the notion of �parallel variations� of a curve on a Riemannian
manifold (M, gM). The notion of �variation of a di�erentiable curve� on a manifold is
de�ned in [Do Carmo Valero, 1992], Chapter 9. This notions allows to de�ne neigh-
bouring curves to a given curve c. In the next section, this construction will be used to
de�ne individual trajectories. Let (M, gM) denotes a geodesically complete Riemannian
manifold equipped with its Levi-Civita connection ∇M.

De�nition IV.1. Let c : I ⊂ R → M a di�erentiable curve on M, t0 ∈ I and
w ∈ Tc(t0)M a tangent vector to M at c(t0). A parallel variation of c in the
direction of w is a curve ηw(c, ·) : I →M de�ned by:

∀t ∈ I, ηw(c, t) = ExpM
c(t)

(
Pc,t0,t(w)

)
. [iv.36]

This construction is illustrated in Fig. 3. Given t ∈ I, parallel transport carries the
tangent vector w from Tc(t0)M to Tc(t)M along the curve c. At the point c(t), a new
point on M is obtained by taking the Riemannian exponential of the tangent vector
Pc,t0,t(w). This new point is denoted by ηw(c, t). As t varies, one describes a curve
ηw(c, ·) on M, which can be understood as a �parallel� to the curve c.

Remark. If c is a geodesic, ηw(c, ·) is not, in general, a geodesic. The case of the 2-
sphere S2 ⊂ R3 provides a counter-example. Indeed, the geodesics of S2 are the great
circles (the intersection of the sphere with a plane which passes through the origin of
R3). In general, a parallel variation of a great circle is not a great circle.

A coordinate system

A notable property of this construction is that it de�nes a coordinate chart called Fermi
coordinates (or Fermi charts) [Michor, 2008]. As above, let c : t0 ∈ I ⊂ R→M be
a di�erentiable curve on M with no self intersection. Consider the mapping η de�ned
by

η :

{
I × {ċ(t0)}⊥ −→ M

(t,w) 7−→ ηw(c, t) = Expc(t)
(
Pc,t0,t(w)

)
.

[iv.37]

where {ċ(t0)}⊥ = {x ∈ Tc(t0)M, gMc(t0)(x, ċ(t0)) = 0} is the orthogonal complement of

Span
(
ċ(t0)

)
in Tc(t0)M. Let t ∈ I. The tangent map of η at (t,0) is given by:

T(t,0)η : (s,y) ∈ R× {ċ(t0)}⊥ 7→ sċ(t) + Pc,t0,t(y). [iv.38]
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Since this map is a linear isomorphism, the inverse functions theorem ensures that
there exist an open neighborhood V of I × {0} such that η is a di�eomorphism of V
onto its image. The pair (V,η|V ) is called Fermi chart along c.

IV.2.2 Examples of �parallel variations�

Computing in closed-form a parallel variation of a geodesic γ, in the direction of a
tangent vector w, is not always possible because the Riemannian exponential and
parallel transport are not always available in closed-form. Below, examples of geodesi-
cally complete Riemannian manifolds for which parallel variations can be computed in
closed-form are considered. These examples include the space of 3× 3 symmetric posi-
tive de�nite matrices, discussed in IV.1.4. Other examples include the case of a product
of one-dimensional geodesically complete Riemannian manifold, in Section IV.1.2, and
the 2-sphere S2 ⊂ R3 in Section IV.1.3. The results presented will be used extensively
in Chapter V.

IV.2.2.1 The 2-sphere

To illustrate the notion of parallel variations on the 2-sphere, let:

p0 =

1
0
0

 , t0 = 0, v0 =

0
0
1

 and w =

0
1
0

 . [iv.39]

Note that the vector w belongs to Tp0S2 and is orthogonal to v0. Figure 4 gives two
examples of parallel variations of the geodesic γ0(·) = Expp0,t0(v0)(·) in the direction
of the tangent vectors 0.5w and w. One can observe that these parallel variations of a
geodesic are no longer geodesics (the red curve is not a great circle of S2).

IV.2.2.2 Products of one-dimensional manifolds

In Section IV.1.2, closed-form expression for the geodesics and the parallel transport in
a product of one-dimensional manifolds are given. This section on examples of parallel
variations in such a product manifold starts with a proposition which gives a closed-
form expression of a parallel variation. Then, the result of this proposition is illustrated
with examples in RN and ]0, 1[2.

Proposition IV.6. Let γ be a geodesic of M and t0 ∈ R. If ηw(γ, ·) denotes a
parallel variation of γ in the direction of w, with w = (w1, . . . , wN

)
∈ Tγ(t0)M and

γ(t) = (γ1(t), . . . , γN(t)), we have:

∀s ∈ R, ηw(γ, s) =

(
γ1

( w1

γ̇(t0)
+ s
)
, . . . , γN

( wN
γ̇(t0)

+ s
))

. [iv.40]
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Figure 3 � Model description on a schematic manifold. Top: a non-zero vector wi

is chosen in Tc(t0)M. Middle: the tangent vector wi is transported continuously
along the curve c. Then, a point ηwi(c, s) is constructed at time s by use of the
Riemannian exponential. Bottom: The curve ηwi(c, ·) is the parallel resulting from
the construction.
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Figure 4 � For both, the black arrow represents the initial tangent vector to be trans-
ported. The magenta arrow represent the parallel transport of the black arrow at
di�erent time points. The geodesic γ0 is plotted in blue, whereas its parallel variation
in the direction of the tangent vector is in red. Left: a parallel variation of γ0(·) in
the direction of the tangent vector 0.5w. Right: a parallel variation of γ0(·) in the
direction of the tangent vector w.

Proof. The result of Proposition IV.2 writes:

Pγ,t0,t(w) =
( w1

γ̇1(t0)
γ̇1(t), . . . ,

wN
˙γN(t0)

˙γN(t)
)
. [iv.41]

Since the Riemannian metric onM is the product metric, the computation of the parallel
variation boils down to computing Expγi(t)

(
Pγi,t0,t(wi)

)
with t ∈ R �xed. Indeed, for

any point p = (p0,1, . . . , p0,N) ∈M and any tangent vector v = (v0,1, . . . , v0,N) ∈ TpM:

Expp(v) =
(

Expp0,1(v1), . . . ,Expp0,N (v0,N). [iv.42]

Introduce the curves

c : s ∈ [0, 1] 7→ Expγi(t)
(
sPγi,t0,t(wi)

)
and

c̃ : s ∈ [0, 1] 7→ γi

(
t+ s

wi
γ̇i(t0)

)
Both curves c and c̃ are geodesics of M which satisfy to: c(0) = c̃(0) = γi(t) and
ċ(0) = ˙̃c(0) = wi

γ̇i(t0)
γ̇i(t). By unicity, the two curves are equal. As a consequence, for

all i ∈ {1, . . . , N} and all t ∈ R,

Expγi(t)
(
Pγi,t0,t(wi)

)
= γi

(
t+

wi
γ̇i(t0)

)
[iv.43]
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which completes the proof.

The examples below illustrate the notion of parallel variations in a product of one-
dimensional manifolds.

Example 15. When M = R, the geodesic equation (see Eq. [iii.6]) is easily solved
and one obtains that the geodesics of the real line are straight lines of the form
t ∈ R 7→ p + tv, where p, v ∈ R2. In particular, if p0, t0, v0 ∈ R, the geodesic
γ0(·) = Expp0,t0(v0)(·) is the mapping t ∈ R 7→ p0 + v0(t − t0). As a consequence,
a geodesic of M = RN is simply a straight line in RN and a parallel variation of this
straight line (in the direction of an orthogonal tangent vector w) is the translation of
the straight line by the vector w.

Example 16. As discussed above, the geodesics of the Riemannian manifold M =
]0, 1[, equipped with the Riemannian metric de�ned in Eq. [iv.5], are logistic curves.
To illustrate the notion of parallel variations, consider the product manifold M =
M2 =]0, 1[2. Let p0 = (0.7, 0.3), t0 = 50, v0 = (0.06, 0.03). The vector w =

(
−

v0,2G(p0,2), v0,1G(p0,1)
)
' (−0.6803, 1.3605) is orthogonal to v0 for the product metric.

In Figure 5, two examples of parallel variations of γ0 in the directions w1 = 0.5w and
w2 = −0.3w are represented.

IV.2.2.3 The space Spd(3)

To illustrate the notion of parallel variation in the space of 3 × 3 symmetric positive
de�nite matrices, consider the following matrices:

P0 =

10 0 0
0 10 0
0 0 10

 ∈ Spd(3), V0 =

1 0 0
0 0.5 0
0 0 0.05

 ∈ Sym(3). [iv.44]

With t0 = 40, the parameters (P0, t0,V0) de�ne the geodesic γ0(·) = ExpP0,t0(V0)(·)
de�ned in Eq. [iv.31]. This geodesic goes through the sphere 10I3 at time t0 = 40 and
progresses to an elongated ellipsoid at t increases. The matrix W de�ned by:

W =

−4.8717 7.0711 7.0711
7.0711 8.7445 7.0711
7.0711 7.0711 9.9900

 [iv.45]

is orthogonal to V0 for the inner product on TP0Spd(3). In Figure 7, examples of
parallel variations of γ0 in the direction of ±0.8W are given. In this �gure, each
matrix is colored according to its fractional anisotropy (FA), a measure in [0, 1] which
characterizes the anisotropy of a symmetric positive de�nite matrix. Let M ∈ Spd(3)
with eigenvalues λ1, λ2, λ3. The FA of M is de�ned by:

FA(M) =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

. [iv.46]
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Figure 5 � Top: plot of the two coordinates of γ0(·) in dotted line and ηw1(γ0, ·) in
solid line, with w1 = 0.5w. Bottom: plot of the two coordinates of γ0(·) in dotted line
and ηw2(γ0, ·) in solid line, with w2 = −0.3. For both �gures, the line with the round
(respectively square) marker corresponds to the �rst (respectively second) coordinate
of the curve.

For M ∈ Spd(3), if FA(M) = 0, then the ellipsoid de�ned by M is a sphere. On the
contrary, if FA(M) is close to 1, the ellipsoid de�ned by M is elongated in a direction.

IV.2.3 Discussion

In the sections above, the Riemannian exponential and parallel transport can be com-
puted in closed-form. However, such closed-form expressions cannot be obtained for
every geodesically complete Riemannian manifold. When the Riemannian exponential
or parallel transport cannot be written explicitly, one can use numerical schemes to
approximate these quantities. As mentioned in Section III.1.5, the Riemannian expo-
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Figure 6 � Plots of the �rst coordinate of ηwi(γ0, ·) against its second coordinate.
Blue: wi = 0. Violet: wi = 0.5w. Red: wi = 0.05w. Black: wi = −0.03w. Yellow:
wi = −0.3w.
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Figure 7 � First row: samples along the geodesic γP0,t0,V0
(·). Second (respectively

third) row: samples along the parallel variation ηWi(γ0, ·) with Wi = 0.8W (respec-
tively Wi = −0.8W.) The tangent vector W used here is given in Eq. [iv.45].
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nential can be obtained by solving a set of second-order nonlinear di�erential equations
(see Eq. [iii.6]). Solving these di�erential equations can be done with a large variety of
numerical schemes, such as Runge-Kutta method or Heun's method. Parallel transport
can also be approximated using a numerical scheme called Schild's ladder (see [Lorenzi
et al., 2011] and Chapter VI). Situations which require to numerically approximate the
Riemannian exponential are not considered in this dissertation.

IV.3 A generic model for longitudinal manifold-

valued data

In the following sections, M denotes a convex open subset of the Euclidean space RN

(N ≥ 1). This N -dimensional smooth manifold is equipped with a Riemannian metric
gM for which it is geodesically complete.

The observed data consists in repeated measurements for a group of p individuals.
Let i ∈ {1, . . . , p}. The number of observations for the ith individual is denoted by
ki ∈ Nr{0, 1}. These ki observations were obtained at the time points ti,1 < . . . < ti,ki .
The number of time points can vary from one subject to another. Let j ∈ {1, . . . , ki}.
The jth observation of the ith individual is denoted by yi,j.

IV.3.1 Hierarchical structure and spatiotemporal transforma-
tions

The generic spatiotemporal model is a nonlinear mixed-e�ects model. As emphasized
in the introduction of this dissertation, mixed-e�ects models include �xed and random
e�ects. The �xed-e�ects are parameters which are shared by all the individuals and
allow to describe the model at the population level. Random e�ects are individual-
speci�c random variable which describe the model at the individual level. These two
types of e�ects provide the model with a hierarchical structure. The generic spatiotem-
poral model is constructed as follows. To begin with, a group-average trajectory γ0 is
de�ned on the manifold M. Given the average trajectory, subject-speci�c trajectories
are obtained by spatiotemporal transformations, which consist in parallel variations
of the average trajectory γ and time reparametrization. The data points yi,j are seen
as samples along these individual trajectories. If γi denotes the trajectory of the ith
individual, the model writes: yi,j = γi(ti,j) + εi,j, where εi,j is a Gaussian noise. The
observation yi,j is therefore considered as a small perturbation of a quantity which lies
in a Riemannian manifold. This hierarchical modeling is summarized in Figure 8.
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Population 

level

Individual 

level

(1 ≤ 𝑖 ≤ 𝑝)

Observations

Individual trajectory 𝜸𝑖 ⋅ = 𝜼𝒘𝑖 𝜸0, 𝜓𝑖 ⋅

Average trajectory :

𝜸0 ⋅ = 𝜸𝒑0,𝑡0,𝒗0(⋅)

𝒚𝑖,𝑗 = 𝜸𝑖 𝑡𝑖,𝑗 + 𝜺𝑖,𝑗

Figure 8 � The hierarchical structure of the generic spatiotemporal model. The �xed
e�ects de�ne an average trajectory on M. This trajectory is used together with spatial
and temporal transformations to de�ne individual-speci�c trajectories. The observa-
tions (yi,j)1≤j≤ki of the ith individual are seen as random perturbations of points along
its speci�c trajectory.

The group-average trajectory γ0 is chosen to be the geodesic

γ0 :

{
R −→ M

t 7−→ γ0(t) = Expp0,t0(v)(t)
[iv.47]

which goes through the point p0 ∈ M at time t0 and with velocity v0 ∈ Tp0M. Recall
that Expp,t0(v)(·) denotes the Riemannian exponential (see Chapter III) at p ∈M and
with initial velocity v ∈ TpM. The parameters p0, t0 and v0 are �xed-e�ects of the
model.

Let i ∈ {1, . . . , p} denote the ith individual. The subject-speci�c trajectory γi is
de�ned in two steps. The �rst step consists in constructing the curve ηwi(γ0, ·), which
is a parallel variation the average trajectory γ0 = γp0,t0,v0

in the direction of a tangent
vector wi ∈ Tp0M. This tangent vector is chosen orthogonal, for the inner product
gMp0

, to γ̇0(t0) = v0. The tangent vectors (wi)1≤i≤p are random e�ects of the model,
called space shifts. The orthogonality condition on the space shifts is discussed in
Section IV.3.3.1.

The second step consists in reparametrizing in time the parallel variation ηwi(γ, ·).
We consider a subject-speci�c a�ne mapping ψi of the form ψi(t) = αi(t− t0− τi) + t0,
where αi > 0 and τi ∈ R are random e�ects of our model. The trajectory γi of the ith
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individual is

γi :

{
R −→ M

t 7−→ γi(t) = ηwi(γ0, ψi(t)).
[iv.48]

The function ψi is called time reparametrization and the random e�ects αi (respec-
tively τi) are called acceleration factor (respectively time shift). The form of the
individual time reparametrization is discussed in Section V.1.1.

In the following, for all i ∈ {1, . . . , p}, the individual time reparametrization ψi is
of the form ψi(t) = αi(t − t0 − τi) + t0 and the acceleration factors are de�ned by:
αi = exp(ξi).

IV.3.2 Parallel variation and time reparametrization commute

In the previous section, the individual trajectories are constructed as reparametrized
parallel variations of the average trajectory γ0. Recall that a parallel variation of γ0

(in the direction of a space shift wi) is constructed in two steps. First, the �parallel�
ηwi(γ0, ·) is constructed, then it is reparametrized using the a�ne time reparametriza-
tion ψi. In this section, we show that individual trajectories could be constructed by
considering a parallel of the geodesic γ0 ◦ ψi. In other words, parallel variations and
time reparametrization commute, in the following sense:

Proposition IV.7. For wi ∈ Tγ0(t0)M, we have:

∀t ∈ R, ηwi(γ0, ψi(t)) = ηw̃i(γ0 ◦ ψi, t) with w̃i = Pγ0,t0,ψi(t0)(wi). [iv.49]

In order to prove this proposition, the following lemma is needed.

Lemma IV.1. Let c : I ⊂ R→ M be a di�erentiable curve and ψ : [a, b]→ I (a < b)
an a�ne function. Let v ∈ T(c◦ψ)(a)M. Then:

∀s ∈ [a, b], Pc◦ψ,a,b(v) = Pc,ψ(a),ψ(b)(v). [iv.50]

This lemma is a consequence of elementary properties of the covariant derivative
along a curve. Note that the result of this lemma holds because ψ is a�ne. If ψ is a
polynomial of degree greater or equal to 2, the result no longer holds. The proof of the
proposition writes as follows.

Proof. Let w̃i = Pγ0,t0,ψi(t0)(wi). By de�nition of a parallel variation of γ0 ◦ ψi in the
direction of w̃i, we have:

∀s ∈ R, ηw̃i(γ0 ◦ ψi, s) = Exp(γ0◦ψi)(s)
(
Pγ0◦ψi,t0,s(w̃i)

)
. [iv.51]
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But, Pγ0◦ψi,t0,s(w̃i) = Pγ0◦ψi,t0,s
(
Pγ0,t0,ψi(t0)(wi)

)
. The previous lemma allows to rewrite

this last equality as:

Pγ0◦ψi,t0,s
(
Pγ0,t0,ψi(t0)(wi)

)
= Pγ0,ψi(t0),ψi(s)

(
Pγ0,t0,ψi(t0)(wi)

)
= Pγ0,t0,ψi(s)(wi).

[iv.52]

Finally,

∀s ∈ R, ηw̃i(γ0 ◦ ψi, s) = Exp(γ0◦ψi)(s)
(
Pγ0,t0,ψi(s)(wi)

)
= ηwi

(
γ0, ψi(s)

)
.

[iv.53]

Recall that the space shift wi ∈ Tγ0(t0)M are chosen, by de�nition, orthogonal to
γ̇0(t0) (for the inner product given by the metric gM). It follows that the transformed
space shifts w̃i in Proposition IV.7 remain orthogonal to γ̇0

(
ψ(t0)

)
because the parallel

transport in an isometry.

IV.3.3 De�nition of the space shifts and orthogonality condi-
tion

As emphasized above, the ith (1 ≤ i ≤ p) individual trajectory is de�ned to be the
parallel variation of γ0 in the direction of the tangent vector wi ∈ Tp0M. The space
shifts (wi)1≤i≤p are required to satisfy to the following orthogonality condition:

∀i ∈ {1, . . . , p}, gMp0
(wi,v0) = 0. [iv.54]

This section discusses di�erent methods which allow to include this orthogonality
condition on the space shifts into a statistical model. The methodological challenge
raised by this section consists in de�ning a (nonlinear) mixed-e�ects model with smooth
constraints on some of the random e�ect of the model. Chapter VI discusses the use
of a stochastic algorithm to estimate the parameters of the generic model. The impact
of the methods discussed below on the algorithm and its performance are discussed in
Section VI.4.4.

In order to ensure the interpretability of the space shifts, we consider an Indepen-
dent Component Analysis (ICA) [Hyvärinen et al., 2004] decomposition of each tangent
vector wi as a linear combination of Ns < N statistically independent tangent vectors
(Al)1≤l≤Ns which are called independent components or independent directions.
As a consequence, the space shifts (wi)1≤i≤p are de�ned as follows:

∀i ∈ {1, . . . , p}, wi = Asi =
Ns∑
l=1

sl,iAl [iv.55]
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where A = (Al)1≤l≤Ns is such that each Ai is a vector in Tγ̇0(t0)M. In the de�ni-
tion Eq. [iv.55], the weights (sl,i)1≤l≤Ns are random e�ects of the model called sources.
By de�ning the space shifts this way, the generic spatiotemporal model will estimate
an ICA decomposition of the space shifts. However, this de�nition does not ensure the
orthogonality of the space shifts. A possible solution to make the vectors wi orthogonal
to v0 = γ̇0(t0) consists in decomposing each vector in an orthonormal basis of Tp0M.

Moreover, it is important to note that the choice of the form of the distribution of
the space-shifts does not depend on the reference time-point t0. Indeed, the wi = Asi
are de�ned in the tangent space of the curve at point p0 = γ0(t0). At another point
p′0 = γ0(t′0), space-shifts become w′i = Pγ0,t0,t

′
0
wi, where Pγ0,t0,t

′
0
is an orthogonal

matrix. They are therefore distributed according to w′i = Pγ0,t0,tAsi : the distribution
of the sources si does not change and the independent components (i.e. the columns
of A) are adjusted to the new position on the average trajectory. In particular, the
variance of the w′i is invariant. This property holds for isometric invariant distributions.
For instance, if wi ∼ N (0,Σ), then w′i ∼ N (0,Pγ0,t0,t

′
0
Σ P>γ0,t0,t

′
0
).

IV.3.3.1 Construction of an orthonormal basis

Since M is a N -dimensional Riemannian manifold, the tangent space Tp0M is a N -

dimensional vector space and the subspace Span
(
γ̇0(t0)

)⊥
is a (N − 1)-dimensional

subspace of Tp0M. Let (Bk)1≤k≤N−1 denote an orthonormal basis of Span
(
γ̇0(t0)

)⊥
and de�ne:

∀l ∈ {1, . . . , Ns}, Al =
N−1∑
k=1

βl,kBk. [iv.56]

By de�nition, each independent component Al (1 ≤ l ≤ Ns) satis�es to:
gMp0

(
Al, γ̇0(t0)

)
= 0, which ensures, by linearity, that the orthogonality condition on

the space shifts holds.

Di�erent methods to compute the orthonormal basis (Bk)1≤k≤N−1 are reviewed be-
low. These methods exploit the form of the Riemannian metric gM on M. As a matter
of fact, since M is assumed to be a connected open subset of RN , for each p0 ∈M, the
tangent space Tp0M can be identi�ed with RN itself. It follows that the metric gM is
necessarily of the form

∀p0 ∈M, ∀(u,v) ∈ Tp0M, gMp0
(u,v) = 〈u,v〉p0

= u>G(p0)v. [iv.57]

where p ∈ M 7→ G(p) is a smooth mapping from M to Spd(N). The orthogonality
conditions Eq. [iv.54] write:

∀l ∈ {1, . . . , Ns}, 〈Al, γ̇0(t0)〉p0
= A>l G(p0)γ̇0(t0) = 0. [iv.58]

As a consequence, the problem of constructing an orthonormal basis of Span(γ̇0(t0))⊥

(for the inner product 〈·, ·〉p0
) is equivalent to constructing an orthonormal basis of
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Span
(
G(p0)γ̇0(t0)

)⊥
(for the canonical inner product on RN). In this dissertation, the

Householder method and the Gram-Schmidt algorithm are considered for the construc-
tion of an orthonormal basis of Span

(
G(p0)γ̇0(t0)

)⊥
. The computational cost of these

algorithms is discussed in Chapter VI.

IV.3.3.1.1 The Householder method

Let S0 = G(p0)γ̇0(t0) ∈ RN and let S0,k (1 ≤ k ≤ N) denote the kth coordinate of S0.
Introduce the vector a de�ned by:

a = S0 + Sgn(S0,1)‖S0‖e1 [iv.59]

where e1 denotes the �rst vector of the canonical basis of RN and sgn(S0,1), the sign
of S0,1. Let Q be the matrix de�ned by:

Q = IN − 2
aa>

a>a
. [iv.60]

The following result hold.

Proposition IV.8. Let Q be the N × N matrix de�ned in Eq. [iv.60]. For i ∈
{1, . . . , N}, let Qi denote the ith column of Q. Let Q̃ =

(
Q2 . . . QN

)
. Then:

(i) S0 ∈ Span(Q1),

(ii) Q̃>Q̃ = IN−1,

(iii) Q̃>S0 = 0.

Proof. Given the de�nition of a, one can easily show that a>S0 = ‖S0‖(‖S0‖ +
sgn(S0,1)S0,1) and a>a = 2‖S0‖(‖S0‖+ sgn(S0,1)S0,1). Therefore:

QS0 = S0 − 2
aa>

a>a
= S0 − a = −sgn(S0,1)‖S0‖e1. [iv.61]

Since Q2 = IN , Eq. [iv.61] yields: S0 = −sgn(S0,1)‖S0‖Q1. Therefore, S0 ∈ Span(Q1).

Let (e1, . . . , eN) denote the canonical basis of RN . Then, for all (i, j) ∈ {2, . . . , N}2,
we have:

Q>i Qj = e>i ej − 4e>i
aa>

a>a
ej + 4e>i

aa>

a>a
ej = e>i ej. [iv.62]

As a consequence, Q̃>Q̃ = IN−1.

Finally, for i ∈ {2, . . . , N}, we have:

Q>i S0 = S0,i − 2
S0,i‖S0‖(‖S0‖+ sgn(S0,1)S0,1)

2‖S0‖(‖S0‖+ sgn(S0,1)S0,1)
= 0. [iv.63]

Then, Q̃>S0 = 0.
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It follows that an orthonormal basis of Span(γ̇0(t0))⊥ is given by the columns of
the matrix Q̃.

IV.3.3.1.2 The Gram-Schmidt algorithm

The following proposition is to be used with a basis of Span
(
G(p0)γ̇0(t0)

)⊥
computed

beforehand.

Proposition IV.9. Let k ∈ N∗ and (v1, . . . ,vk) a set of linearly independent vectors
in RN . There exist a unique orthonormal set of vectors (ṽ1, . . . , ṽk) in RN such that:

(i) ∀j ∈ {1, . . . , k}, Span(v1, . . . ,vj) = Span(ṽ1, . . . , ṽj),

(ii) ∀j ∈ {1, . . . , k}, v>j ṽj > 0.

The vectors (ṽ1, . . . , ṽk) are given by:

ṽ1 =
v1

‖v1‖
and ∀j ∈ {2, . . . , k}, ṽj =

vj −
∑j−1

l=1 (v>j ṽl)ṽl

‖vj −
∑j−1

l=1 (v>j ṽl)ṽl‖
. [iv.64]

Proof. The existence of the set (ṽ1, . . . , ṽk) is done by induction on k. For k = 1, let
ṽ1 = v1/‖v1‖. Then, it is clear that Span(ṽ1) = Span(v1) and ‖ṽ1‖ = 1. Let s ∈ N∗.
Assume that (ṽ1, . . . , ṽs) satisfy to the conditions (i) and (ii) of the proposition. Let:

ṽs+1 = vs+1 −
s∑
j=1

(v>s+1ṽj)ṽj. [iv.65]

Then, the condition ṽs+1 ∈ Span(ṽ1, . . . , ṽs) is satis�ed since ṽs+1 is de�ned as the
orthogonal projection of vs+1 on Span(ṽ1, . . . , ṽs). The set (ṽ1, . . . , ṽs+1) satis�es the
conditions (i) and (ii) of the proposition.

The uniqueness of the set (ṽ1, . . . , ṽk) follows from the condition (ii) of the propo-
sition.

IV.3.4 Statistical model and probability distributions

The generic spatiotemporal model assumes that the jth observation of the ith individ-
ual at time ti,j derives from:

yi,j = ηwi(γ0, ψi(ti,j)) + εi,j. [iv.66]

With the notations introduced above, let zpop = (p0, t0,v0, (βl,k)l,k) denote the
population variables and (zi)1≤i≤p denote the set of individual variables with:
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zi = (ξi, τi, (sl,i)l,i). Both zpop and (zi)1≤i≤p are latent (or random) variables assumed
independent of each other and distributed as follows:

p0 ∼ N (p0, σ
2
p0

), t0 ∼ N (t0, σ
2
t0

), v0 ∼ N (v0, σ
2
v0

), βl,k
i.i.d.∼ N (βl,k, σ

2
β) [iv.67]

and

ξi
i.i.d.∼ N (0, σ2

ξ ), τi
i.i.d.∼ N (0, σ2

τ ), sl,i
i.i.d.∼ N (0, 1). [iv.68]

where σ2
p0
, σ2

t0
, σ2

v0
and σ2

β are �xed variance parameters. The noise variables (εi,j)i,j
are assumed independent of the other random variables and identically distributed:

εi,j
i.i.d.∼ N (0, σ2). [iv.69]

Let θvar = (σ2
ξ , σ

2
τ , σ

2) denote the variance parameters which are not �xed and θ =(
p0, t0,v0, (βl,k),θvar

)
be the parameters of the model. The domain of θ is denoted

by Θ and de�ned by:

Θ =
{
θ = (p0,v0, t0, (βl,k)l,k,θvar)

/
(p0,v0) ∈ TM, t0 ∈ R,
(βl,k)l,k ∈ R(N−1)Ns , θvar ∈]0,+∞[3

}
.

[iv.70]

The generic spatiotemporal model is described in a Bayesian framework. This means
that a probability distribution qprior, called prior distribution, is assumed for the
parameters of the model and given by:

qprior(dθ | θhyper) ∝ exp
(
− 1

2s2
p0

‖p0 − p0‖2
)
× exp

(
− 1

2s2
t0

(t0 − t0)2
)

× exp
(
− 1

2s2
v0

‖v0 − v0‖2
)
× exp

(
− 1

2s2
β

‖β‖2
)

×

(
1√
σ2
ξ

exp
(
−
σ2
ξ,0

2σ2
ξ

))mξ

×

(
1√
σ2
τ

exp
(
−
σ2
τ,0

2σ2
τ

))mτ

×

(
1√
σ2

exp
(
− σ2

0

2σ2

))mσ

dp0 dt0 dv0 dβ dσ2
ξ dσ2

τ dσ2

[iv.71]

where mξ,mτ and mσ are �xed hyperparameters strictly greater than 2 and
p0, t0,v0, s

2
p0
, s2
t0
, s2

v0
, s2

β, σ
2
ξ,0, σ

2
τ,0 and σ2

0 �xed hyperparameters. The vector θhyper

denotes the vector of all the �xed hyperparameters used to de�ne the prior density
function in Eq. [iv.71]. The dependence between the di�erent variables of the model is
represented in Fig. 9. The construction of the generic spatiotemporal model is subject
to several hypotheses which are discussed in the next section.
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Figure 9 � Graphical representation of the generic spatiotemporal model. Round in-
dicate latent variables of the model. Boxes with indexes in the upper left corner
indicate a repetition. Shaded boxed indicates that the quantity is observed. Priors on(
p0, t0,v0, (βl,k)1≤l≤Ns, 1≤k≤N−1, σξ, στ , σ

)
are omitted for clarity.
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IV.3.5 Discussion

IV.3.5.1 The noise model

The additive, or extrinsic, noise model in Eq. [iv.66] makes sense because we assumed
that M is a subset of the Euclidean space RN . The term ηwi(γ, ψi(ti,j)) belongs to
the manifold M while the noise term εi,j is added in the underlying Euclidean space.
However, the noise model is not intrinsic in the sense that the noise term εi,j is not
added on the manifold. In [Fletcher, 2011], the author have considered an intrinsic
noise model which would write:

yi,j = Expηwi (γ0,ψi(ti,j))
(εi,j). [iv.72]

This noise model allows to remain on the manifold. Still, obtaining maximum a pos-
teriori estimates of the parameters with this intrinsic noise model is more di�cult as
the model likelihood might not be available in closed-form.

In addition to this, the Gaussian random variables (εi,j)1≤i≤p, 1≤j≤ki are assumed
independent of each other and identically distributed. This assumption may be too
simplistic since it implies that for each individual, (yi,j)1≤j≤ki are not correlated. A
more realistic noise model would consist in assuming that the residuals (εi,j)1≤j≤ki are
correlated but independent of (εl,j)1≤j≤kl for l 6= i. In [Chi and Reinsel, 1989], the
authors addressed this problem by considering a regression model with autocorrelated
errors. However, they note that the correlation between measurements tends to de-
crease exponentially with the temporal distance between the measurements occasions.

IV.3.5.2 On the choice of probability distributions

IV.3.5.2.1 For the point p0

Note that the Gaussian prior on p0 does not take into account the fact that p0 is a point
on a Riemannian manifold. Indeed, the prior on p0 is de�ned in the Euclidean space
RN . In [Pennec et al., 2006], the author generalizes the multivariate Gaussian distri-
bution to Riemannian manifolds. Following these ideas, an intrinsic prior distribution
on p0 ∈M would be given by:

p(p0) ∝ exp
(
− 1

2σ2
p0

d(p0,p0)2
)

[iv.73]

where p0 ∈ M denotes the mean of the distribution, σ2
p0

its variance and d(·, ·), the
Riemannian distance function. For all (p,q) ∈ M, the Riemannian distance func-
tion d is de�ned by: d(p, q) = ‖Logp(q)‖p (Logp(·) is de�ned in III.1.5). In addition
to being intrinsic to the Riemannian manifold M, this probability distribution reduces
to the Gaussian distribution N (p0, σ

2
p0

IN) if M is the Euclidean space RN . However,
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this Riemannian Gaussian distribution requires that the Riemannian manifold M be
an homogeneous space. If M does not have this property, the normalizing constant of
the probability distribution may depend on p0, which makes a posteriori estimation
of p0 more di�cult. Moreover, computing the log-probability density function of p0

requires to be able to compute the Riemannian logarithm. In longitudinal shape anal-
ysis, where the Riemannian manifold M is given by the group of di�eomorphisms, this
would not be possible. Also note that the prior p0 ∼ N (p0, σ

2
p0

IN) makes sense since
we assume that the manifold M is an open subset of RN . As a consequence, if the
mean p0 is chosen on M with a �su�ciently small� variance σ2

p0
, p0 shall remain in M.

IV.3.5.2.2 For the acceleration factors αi

In Section IV.3, we assume that the acceleration factors (αi)1≤i≤p follow a log-normal
distribution. This choice of prior distribution aims at ensuring the positiveness of the
acceleration factors. Indeed, an individual time reparametrization ψi with a negative
acceleration factor would reverse time, which does not make sense for the generic
spatiotemporal model. Note that other continuous prior distributions could have been
considered, such as the exponential distribution.
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In this chapter, particular cases of the generic model are presented. These particular
cases are obtained by describing the model for speci�c Riemannian manifolds. The
models described below can be used to analyze univariate or multivariate normalized
measurements, symmetric positive de�nite matrices or the temporal progression of a
family of biological characteristics.

In the previous chapter, the model is described in a generic framework where M
can be any open subset of the Euclidean space RN . By specifying a manifold M and a
Riemannian metric on it, one speci�es a model. Indeed, choosing a Riemannian metric
on M de�nes the geodesics as well as the parallel transport. Several particular cases
of the generic spatiotemporal model are considered. In Section V.1, two particular
cases which allow to analyze longitudinal univariate observations are studies. These
models provide a di�erent insight on the form of the time reparametrization used above.
Section V.3 introduces a model which allows to analyze the temporal progression of
a family of biological characteristics. Finally, the generic spatiotemporal model is
described for 3× 3 symmetric positive de�nite matrices in Section V.2. The relations
between the generic model and the ones presented hereafter is summarized in Figure 10.

SPD(3)ℝ]0,1[ …

Normalized/bounded

scalar observations

Unbounded scalar

observations

3x3 symmetric

positive definite

matrices

Other geodesically

complete Riemannian

manifolds (group of 
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Logistic curves

model

Straight lines

model

SPD matrices

model

𝕄 = M1 ×⋯×M𝑁
Product of elementary Riemannian manifolds

Propagation model

(with a parametric

family of geodesics)

Multivariate straight 

lines/logistic curves

model

Elementary manifolds

Figure 10 � Particular cases of the generic spatiotemporal model
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V.1 One-dimensional geodesically complete Rieman-

nian manifolds

Let M be an open interval of R equipped with a Riemannian metric gM , for which
it is geodesically complete. The case of one dimensional manifolds is particular be-
cause, for all p0 ∈ M , TpM ' R and given v0 ∈ Tp0M , there is only one tangent
vector w at p0 which is orthogonal (for the inner product gMp0 ) to v0 : w = 0. As a
corollary of Proposition IV.6, if γ is a geodesic of M , t0 ∈ R and w = 0, then for
all s ∈ R, ηw(γ, s) = γ(s). Therefore, with the notations of Section IV.3, the generic
spatiotemporal model Eq. [iv.66] writes:

yi,j = γ ◦ ψi(ti,j) + εi,j [v.1]

with, for all i ∈ {1, . . . , p}, ψi(t) = αi(t− t0 − τi) + t0 and αi = exp(ξi). The prior on
the parameters of this model and probability distribution of its latent variables are the
same as in iv.71.

V.1.1 An alternative presentation of the generic model

The alternative presentation below provides a di�erent insight on the role of the latent
variables (αi, τi)1≤i≤p. Let p0 ∈ M , t0 ∈ R and v0 ∈ Tp0M ' R. With the notations
introduced in Section III.1.5, let γ0 be the group-average trajectory de�ned as the
geodesic t ∈ R 7→ Expp0,t0(v0)(t). γ0 is the geodesic of M which goes through the point
p0 at time t0 and with velocity v0. Let 1 ≤ i ≤ p. The trajectory γi of the ith individual
is de�ned as the geodesic γi(t) = Expp0,t0+τi

(αiv0)(t). Hence, γi is the geodesic which
goes through the point p0 at time t0 + τi and with velocity αiv0. Having de�ned
individual trajectories of progression, the observations are seen as random samples
along these trajectories:

yi,j = γi(ti,j) + εi,j. [v.2]

In this de�nition, the acceleration factor αi allows to characterize whether the ith
individual is progressing faster (αi > 1) or slower (αi < 1) than the average trajectory.
The time shift τi allows to determine whether the ith individual is evolving ahead
(τi < 0) or behind (τi > 0) the average trajectory.

The following proposition clari�es the link between this de�nition of individual
trajectories of progression and the time reparametrizations introduced in the previous
section.

Proposition V.1. Let p0 ∈ M , t0 ∈ R and v0 ∈ Tp0M . Let αi > 0 and τi ∈ R and
de�ne the a�ne function ψi(t) = αi(t− t0 − τi) + t0. Then,

∀s ∈ R, Expp0,t0+τi
(αiv0)(s) = Expp0,t0(v0)

(
ψi(s)

)
. [v.3]
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Proof. Introduce the curves c1 : s ∈ R 7→ Expp0,t0(v0)
(
ψi(s)

)
and c2 : s ∈ R 7→

Expp0,t0+τi
(αiv0)(s). Note that c1 and c2 are geodesics of M which, by de�nition,

satisfy to:

c1(t0 + τi) = c2(t0 + τi) = p0 and ċ1(t0 + τi) = ċ2(t0 + τi) = αiv0. [v.4]

By unicity, c1 = c2.

In addition to giving a simple interpretation of the acceleration factors (αi)1≤i≤p
and the time shifts (τi)1≤i≤p, this proposition legitimates the choice of a�ne time
reparametrizations of the form ψi : t 7→ αi(t− t0 − τi) + t0.

V.1.2 The �straight lines model�

Unbounded observations can be considered as points on the real line. The real line
M = R equipped with its canonical metric is a geodesically complete one-dimensional
Riemannian manifold. For the canonical metric, the geodesics are of the form t ∈ R 7→
at+ b with (a, b) ∈ R2. The generic model Eq. [v.1] writes:

yi,j = p0 + αiv0(ti,j − t0 − τi) + εi,j. [v.5]

This model is referred to as the univariate straight lines model. Note that, even
though the average and individual trajectories are straight lines, the model is not linear
due to the multiplication between the random e�ects αi and τi.

V.1.2.1 Discussion

We propose to compare the nonlinear straight lines model to the linear mixed-e�ects
model discussed in the introduction of this dissertation: the random slope and intercept
model. Recall that this linear mixed-e�ects model writes:

yi,j = (a+ ai)(ti,j − t0) + (b+ bi) + εi,j. [v.6]

This linear model analyzes the distribution of the observations at a �xed reference time
t0. In comparison, the straight lines model analyzes the distribution of the times at
which the observations reach a given value of the measurements. These two di�erent
approaches are illustrated in Figure 11.

V.1.3 The �logistic curves model�

If the observations are bounded, such as percentages or scores to a test, the measure-
ments can be normalized to produce new observations in the open interval M =]0, 1[.
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Figure 11 � Schematic example of a random slope and intercept linear mixed-e�ects
model (left) and straight lines model (right).

Then, if M =]0, 1[ is equipped with the Riemannian metric de�ned in Eq. [iv.5], the
generic model Eq. [v.1] writes:

yi,j =

(
1 +

( 1

p0

− 1
)

exp
(−αiv0(ti,j − t0 − τi)

p0(1− p0)

))−1

+ εi,j. [v.7]

This model for normalized longitudinal observations is referred to as the logistic
curves model.

V.1.3.1 Discussion

In this framework, the Riemannian logarithm at p ∈]0, 1[ is given by: ∀q ∈
]0, 1[, Logp(q) = −p(1 − p) ln(p(1 − q)) + p(1 − p) ln(q(1 − p)). In particular, at the
point p = 1/2, which corresponds to the in�exion point of the logistics, the Riemannian
logarithm is given by: ∀q ∈]0, 1[, Log1/2(q) = (1/4)logit(q). However, in Eq. [v.7], the
point p0 is not �xed to 1/2. p0 is a parameter of the model which is estimated along
with the other parameters. Therefore, the logistic curves model is not equivalent to
a linear model on the logit transform of the observations. The model, lifted up on
the tangent space at p = 1/2 is still not linear due to the multiplication between the
random e�ects αi and τi. Instead of �xing p0, the logistic curves model will estimate
the best p0, and therefore the best tangent space, at which describe the observations.
In Section VI.4.2.1, we compare the logistic curves model with a linear mixed-e�ects
model on logit-transformed observations. We show, on a longitudinal dataset of health
data, that the logistic curves model explains a greater percentage of the total variance
than the linear model.
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V.2 The �SPD matrices model�

We describe how the generic spatiotemporal model can be used to analyze longitudinal
datasets of 3 × 3 symmetric positive de�nite matrices. Such datasets may arise in
Di�usion Tensor Imaging (DTI) or when observing the temporal evolution of stochastic
process of covariance matrices. The space of 3×3 symmetric positive de�nite matrices
is usually denoted by SDP(3), which is an open subset of the vector space of (3, 3)
symmetric real matrices, denoted by Sym(3). By identifying Sym(3) with R6, M =
SDP(3) can be considered as an open subset of R6. In order to obtain a geodesically
complete Riemannian manifold, M is equipped with a Riemannian metric called a�ne-
invariant metric.

It follows from Eq. [iv.31] and Eq. [iv.32] that the generic spatiotemporal
model Eq. [iv.66] for symmetric positive de�nite matrices writes:

Yi,j = Pi(ti,j)
1/2 exp

(
Pi(ti,j)

−1/2Vi(ti,j)Pi(ti,j)
−1/2

)
Pi(t)

1/2 + εi,j [v.8]

with, for all t ∈ R,

Pi(t) = P
1/2
0 exp

(
αi(t− t0 − τi)P−1/2

0 V0P
−1/2
0

)
P

1/2
0 [v.9]

and:

Vi(t) = exp
(αi(t− t0 − τi)

2
V0P

−1
0

)
Wi exp

(αi(t− t0 − τi)
2

P−1
0 V0

)
. [v.10]

The probability distributions of the matrices P0, V0 and (εi,j)i,j are de�ned as follows:

P0 ∼ SN (P0, σ
2
P0

), V0 ∼ SN (V0, σ
2
V0

) and εi,j
i.i.d.∼ SN (0, σ2), where SN denotes the

Gaussian distribution on the vector space Sym(n). Given M ∈ Sym(n), the probability
distribution SN (M, σ2) on Sym(n) is de�ned by the density function q:

q(M) =
1

(2π)m/2σm
exp

(
− 1

2σ2
tr
[
(M−M)2

])
, M ∈ Sym(n) [v.11]

with m = n(n + 1)/2. The �standard� distribution SN (0, 1) is used in physics and
in the theory of random matrices. It is sometimes called Gaussian Orthogonal
Ensemble. The probability distribution of the other �xed or random e�ects of the
model are de�ned as in Eq. [iv.71]. This model will be referred to as the symmetric
positive de�nite matrices model or Spd(n) matrices model.

V.3 Propagation models

This section presents a particular case of the generic spatiotemporal model which can be
used to study the temporal progression of a set ofN (N ≥ 1) features which characterize
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the evolution of a biological phenomenon. We assume that each feature is described by
repeated univariate observations, which are random perturbations of quantities lying
in a one-dimensional geodesically complete Riemannian manifold (M, gM), open subset
of R. For each individual, at each time point, the observations (yi,j)1≤i≤p, 1≤j≤ki consist
in a N -dimensional vector of univariate features. Hence, for this propagation model,
the observations (yi,j)1≤i≤p, 1≤j≤ki are considered as random perturbations of quantities
which belong to the product manifoldM = M×. . .×M = MN . Since each Riemannian
manifold (M, gM) is geodesically complete, M equipped with the product metric Eq. [8]
is geodesically complete.

On the product manifoldM = MN , the geodesics and parallel transport are given by
the results in Section IV.1.2. In particular, these results show that a geodesic of M is of
the form t 7→

(
γ1(t), . . . , γN(t)

)
, where γ1, . . . , γN are geodesics of the one-dimensional

Riemannian manifold M . Because we would like to model the joint temporal pro-
gression of N features, we propose to choose the group-average trajectory among a
parametric family of geodesics of M. This family is of the form:{

γ0,δ : t ∈ R 7→
(
γ0(t), γ0(t+ δ1), . . . , γ0(t+ δN−1)

)}
[v.12]

with δ = (0, δ1, . . . , δN−1)>, δi ∈ R and γ0 denotes a geodesic of the one-dimensional
Riemannian manifold gM which goes through a point p0 ∈M at time t0 with velocity v0.
Following the ideas of the previous sections, if M = R (equipped with the canonical
metric), γ shall be a straight line and if M =]0, 1[ (equipped with the Riemannian
metric Eq. [iv.5]), γ shall be a logistic curve. The relative delay between two consecutive
biomarkers is given by the parameters δi (1 ≤ i ≤ N − 1). The vector δ is to be
estimated as a �xed e�ect of the model. The �rst component of the vector δ is chosen
equal to zero to ensure the identi�ability of the model.

Let δ = (0, δ1, . . . , δN−1)> ∈ RN and γ0,δ(t) = (γ0(t), . . . , γ0(t + δN−1)) be the
group-average trajectory. The result of Proposition Eq. [IV.6] allows to compute a
parallel variation of γ0,δ in the direction of a tangent vector wi ∈ Tγ0,δ(t0)M. The
generic spatiotemporal model with the parametric family of geodesics write:

(yi,j)k = γ0

( (wi)k
γ̇0(t0 + δk−1)

+ δk−1 + ψi(t)
)

+ (εi,j)k. [v.13]

where, for all k ∈ {1, . . . , N}, (yi,j)k denotes the kth component of yi,j. In other words,
(yi,j)k is the observation associated to the kth biomarker, for the ith individual, at the
jth time point. Similarly, (wi)k denotes the kth component of the space shift wi. For all
i ∈ {1, . . . , p}, ψi(t) = αi(t−t0−τi)+t0 is the individual speci�c time reparametrization
introduced in IV.3.1. This model is referred to as the propagation model. For this
model, the latent variables are: zpop =

(
p0, t0, v0, (δk)1≤k≤N−1, (βl,k)l,k

)
and, for all

i ∈ {1, . . . , p}, zi =
(
ξi, τi, (sl,i)l,i

)
. The de�nition of the individual latent variables

(zi)1≤i≤p remains unchanged. For the population latent variables zpop, the variables
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(δk)1≤k≤N−1 are added. We assume that the latent variables zpop are distributed as
follows:

p0 ∼ N (p0, σ
2
p0

), t0 ∼ N (t0, σ
2
t0

), v0 ∼ N (v0, σ
2
v0

) [v.14]

and
βl,k

i.i.d.∼ N (βl,k, σ
2
β), δk

i.i.d.∼ N (δk, σ
2
δ ) [v.15]

where σ2
p0
, σ2

t0
, σ2

v0
and σ2

δ are �xed variance parameters. Similarly to the generic
spatiotemporal model, the latent variables are assumed independent of each other and

independent of the noise variables εi,j
i.i.d.∼ N (0, σ2IN). For the propagation model, the

parameters space is de�ned as:

Θ =
{
θ =

(
p0, t0, v0, (δk)1≤k≤N−1, (βl,k),θvar

)
,

(p0, v0) ∈ TM, t0 ∈ R, (δk)k ∈ RN−1, (βl,k)l,k ∈ R(N−1)Ns , θvar ∈]0,+∞[3
} [v.16]

where θvar =
(
σ2
ξ , σ

2
τ , σ

2
)
as de�ned for the generic spatiotemporal model. The prior

assumed on the parameters of the propagation model writes:

qprior(dθ | θhyper) ∝ exp
(
− 1

2s2
p0

(p0 − p0)2
)
× exp

(
− 1

2s2
t0

(t0 − t0)2
)

× exp
(
− 1

2s2
v0

(v0 − v0)2
)
× exp

(
− 1

2s2
β

‖β‖2
)

× exp
(
− 1

2s2
δ

N−1∑
k=1

(δk − δk)2
)

×

(
1√
σ2
ξ

exp
(
−
σ2
ξ,0

2σ2
ξ

))mξ

×

(
1√
σ2
τ

exp
(
−
σ2
τ,0

2σ2
τ

))mτ

×

(
1√
σ2

exp
(
− σ2

0

2σ2

))mσ

dp0 dt0 dv0 dβ dδ dσ2
ξ dσ2

τ dσ2

[v.17]

where mξ,mτ ,mσ are �xed hyperparameters strictly greater that 2 and p0, t0, v0,

(δk)1≤k≤N−1, s2
p0
, s2

t0
, s2

v0
, s2

δ , s
2
β, σ

2
ξ,0, σ

2
τ,0 and σ2

0 are �xed hyperparameters. The
vector θhyper denotes the vector of the �xed hyperparameters.

V.3.1 The �straight lines propagation model�

If M = R, as mentioned in Section IV.1.1.2, the geodesics of the real line are of the
form t ∈ R 7→ p0 + v0(t − t0). Therefore, the propagation model Eq. [v.13] writes (in
matrix form):

yi,j = p01N + v0αi(ti,j − t0 − τi)1N + v0δ + wi + εi,j [v.18]

with δ = (0, δ1, . . . , δN−1)> and αi = exp(ξi). This model is called the straight lines
propagation model.
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V.3.2 The �logistic curves propagation model�

If M =]0, 1[ is equipped with the Riemannian metric introduced in Section IV.1.1.3,
then the geodesics of ]0, 1[ are logistic curves. In this situation, the propagation
model Eq. [v.13] writes:

(yi,j)k =

(
1 +

( 1

p0

− 1
)

exp

(
−
v0αi(ti,j − t0 − τi) + v0δk + v0

(wi)k
γ̇0(t0+δk)

p0(1− p0)

))−1

+ (εi,j)k

[v.19]
with αi = exp(ξi). This model is called the logistic curves propagation model.
Experimental results obtained with this model are presented in Section VII.

V.3.3 Discussion

Assuming that the group-average geodesic γ0,δ belongs to the parametric fam-
ily Eq. [v.12] is equivalent to assuming the progression of the biomarkers is described
by trajectories which have the same shape but are shifted in time.

It is interesting to note that for this model, the individual trajectories are of the
same shape as the group-average trajectory. More precisely, each individual trajectory
γi is of the form γ0,δ̃i

with δ̃i = (0, δ̃1, i, . . . , δ̃(N−1),i) and:

∀k ∈ {1, . . . , N − 1}, δ̃k =
(wi)k

γ̇0(t0 + δk−1)
+ δk−1. [v.20]

Given the de�nition of the space shift wi, we have: E[wi] = 0. As a consequence, the
delays δ̃k (1 ≤ k ≤ N − 1) can be interpreted as random perturbations of (δk)1≤k≤N−1:
E[δ̃k] = δk. This shows that constructing a parallel variation of γ0,δ (in the direction of
a tangent vector wi) may change the relative delay, and possibly the ordering, between
the di�erent biomarkers.
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VI.1 Existence of a maximum a posteriori

In Section IV.3.4, the generic spatiotemporal model is de�ned in a Bayesian framework.
In this context, given some observations y, the parameters of the generic model can
be estimated in a maximum a posteriori (MAP) approach. Let θ̂MAP denote the MAP
estimates of the parameters of the model, de�ned by:

θ̂MAP ∈ argmax
θ∈Θ

q(θ | y). [vi.1]

where q(θ | y) is the posterior distribution of the parameters θ given the observations
y. This section provides theoretical results regarding the existence of a maximum a
posteriori, given a dataset y. The main result of this section is given in Theorem VI.1.

VI.1.1 Main result

Lemma VI.1. Given the generic spatiotemporal model (see Eq. [iv.66]), the choice of
probability distributions for the parameters (see Eq. [iv.71]) and latent variables of the
model, the posterior θ ∈ Θ 7→ q(θ | y) is continuous on the parameters space Θ.

Proof. Using the notations introduced in Section IV.3.4, let Z denote the space of
latent variables in the generic spatiotemporal model:

Z =
{(

zpop, (zi)1≤i≤p
)
, zpop ∈M×R(N−1)Ns+N+1;∀i ∈ {1, . . . , p}, zi ∈ RNs+2

}
. [vi.2]

The posterior θ ∈ Θ 7→ q(θ | y) is de�ned by:

∀θ ∈ Θ, q(θ | y) =
1

q(y)
q(y | θ)qprior(θ | θhyper)

=
1

q(y)

(∫
Z
q(y | z,θ)q(z | θ) dz

)
qprior(θ | θhyper).

[vi.3]

The probability distribution qprior is de�ned in Eq. [iv.71]. This density function θ ∈
Θ 7→ qprior(θ | θhyper) is continuous on Θ since it is a product of continuous functions.
In order to prove the continuity of θ ∈ Θ 7→ q(θ | y), it su�ces to prove that, for any
compact L ⊂ Θ, there exist a positive function ϕL, de�ned and integrable on Θ, such
that:

∀z ∈ Z, ∀θ ∈ L ⊂ Θ, q(y | z,θ)q(z | θ) ≤ ϕL(z). [vi.4]

Given that:

q(y | z,θ) =
1

(σ
√

2π)NK
exp

(
− 1

2σ2

∑
1≤i≤p
1≤j≤ki

∥∥yi,j − ηwi
(
γ0, ψi(ti,j)

)∥∥2

)
[vi.5]

we have q(y | z,θ) ≤ 1 for all z ∈ Z and all θ ∈ Θ. Therefore, the inequality Eq. [vi.4]
holds by continuity of the mapping θ ∈ Θ 7→ q(z | θ) for every z ∈ Z.
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The main result of this section is given in the following theorem.

Theorem VI.1. Given the generic spatiotemporal model and the choice of probabil-
ity distributions for the parameters and latent variables of the model, for any dataset
(ti,j,yi,j)1≤i≤p, 1≤j≤ki, there exist θ̂MAP such that: θ̂MAP ∈ argmax

θ∈Θ
q(θ | y).

Proof. For clarity, let β denote the vector (βl,k)1≤l≤Ns, 1≤k≤(N−1). Recall from Eq. [iv.70]
that the parameters space Θ is de�ned by:

Θ =
{
θ =

(
p0, t0,v0,β,θvar

)
,
/

(p0,v0) ∈ TM, t0 ∈ R,

β ∈ R(N−1)Ns , θvar = (σ2
ξ , σ

2
τ , σ

2) ∈]0,+∞[2
}

=
(
M× R

)
× R× R(N−1)Ns×]0,+∞[2.

[vi.6]

becauseM is assumed to be an open subset of RN and therefore: TM = M×RN . Below,
M is equipped with the induced norm from RN . Given the result of Lemma VI.1, in
order to prove that θ ∈ Θ 7→ log q(θ | y) has a maximum, we prove:

lim
‖p0‖, |t0|, ‖v0‖, ‖β‖→+∞

σ2
ξ+(1/σ2

ξ )→+∞

σ2
τ+(1/σ2

τ )→+∞
σ2+(1/σ2)→+∞

log q(θ | y) = −∞. [vi.7]

Using Bayes rule,

q(θ | y) =
1

q(y)
q(y | θ)qprior(θ | θhyper) [vi.8]

where q(y | θ) is the observed likelihood and qprior(θ | θhyper) the prior of θ
(see Eq. [iv.71]). The constant q(y) is called model evidence and does not depend
on the parameters θ. As in Section IV.3.4, let zpop = (p0, t0,v0,β) denote the popula-
tion latent variables of the model and, for 1 ≤ i ≤ p, zi =

(
ξi, τi, (sl,i)l,i

)
, the individual

latent variables. Let z =
(
zpop, (zi)1≤i≤p

)
. By de�nition:

q(y | θ) =

∫
Z
q(y | z,θ)q(z | θ) dz. [vi.9]

The model likelihood q(y | z,θ) writes:

q(y | z,θ) =
1

(σ
√

2π)NK
exp

(
− 1

2σ2

∑
1≤i≤p
1≤j≤ki

∥∥yi,j − ηwi
(
γ0, ψi(ti,j)

)∥∥2

)
. [vi.10]

Bounding the exponential in Eq. [vi.10] above by 1 leads to:

q(y | θ) ≤ 1

(σ
√

2π)NK

∫
Z
q(z | θ) dz [vi.11]



97

and the term on the right integrates to 1. It follows from Eq. [vi.8] that:

q(θ | y) ≤ 1

q(y)

1

(σ
√

2π)NK
qprior(θ | θhyper). [vi.12]

Or, equivalently:

log q(θ | y) ≤ C(y)−NK log(σ) + log qprior(θ | θhyper). [vi.13]

where C(y) = − log q(y)− NK

2
log(2π). And:

log qprior(θ | θhyper) = C − 1

2s2
p0

‖p0 − p0‖2 − 1

2s2
t0

(t0 − t0)2 − 1

2s2
v0

‖v0 − v0‖2

− 1

2s2
β

‖β‖2 −mξ log(σξ)−mξ

σ2
ξ,0

2σ2
ξ

−mτ log(στ )−mτ

σ2
τ,0

2σ2
τ

−mσ log(σ)−mσ
σ2

0

2σ2
.

[vi.14]

In Eq. [vi.14], C is a sum of terms which only depends on the �xed hyper parameters
of the model. Putting Eq. [vi.13] and Eq. [vi.14] together gives:

log q(θ | y) ≤ C̃(y)−NK log(σ)− 1

2s2
p0

‖p0 − p0‖2 − 1

2s2
t0

(t0 − t0)2

− 1

2s2
v0

‖v0 − v0‖2 − 1

2s2
β

‖β‖2 −mξ log(σξ)−mξ

σ2
ξ,0

2σ2
ξ

−mτ log(στ )−mτ

σ2
τ,0

2σ2
τ

−mσ log(σ)−mσ
σ2

0

2σ2
.

[vi.15]

Finally, the existence result holds since:

lim
‖p0‖, |t0|, ‖v0‖, ‖β‖→+∞

(
− 1

2s2
p0

‖p0 − p0‖2 − 1

2s2
t0

(t0 − t0)2

− 1

2s2
v0

‖v0 − v0‖2 − 1

2s2
β

‖β‖2

)
= −∞

[vi.16]

And:

lim
σ2
ξ+(1/σ2

ξ )→0

σ2
τ+(1/σ2

τ )→0

σ2+(1/σ2)→0

(
−NK log(σ)−mξ log(σξ)−mξ

σ2
ξ,0

2σ2
ξ

−mτ log(στ )−mτ

σ2
τ,0

2σ2
τ

−mσ log(σ)−mσ
σ2

0

2σ2

)
= −∞.

[vi.17]
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VI.2 Inference in nonlinear mixed-e�ects models

This section reviews several algorithms for the statistical inference in nonlinear mixed-
e�ects models and discusses the advantages and drawbacks of each method. The meth-
ods and algorithms presented below are grouped into two classes: the deterministic
algorithms and the stochastic algorithms. Unlike deterministic algorithms, stochastic
methods require to generate random samples. Still, methods from both classes aim
at obtaining maximum likelihood estimates (MLE) or maximum a posteriori estimates
(MAP), in a Bayesian framework.

VI.2.1 A brief review of nonlinear mixed-e�ects models

Contrary to linear mixed-e�ects models, nonlinear mixed-e�ects models assume that
the �xed and random e�ects contribute nonlinearly to the response variable y.
Nonlinear mixed-e�ects (NLME) models �rst appeared in the work of Sheiner and
Beal [Sheiner and Beal, 1980] and have been a blooming topic of research since 1990.
These models are now popular tools in a large variety of areas, such as pharmacoki-
netic modeling, medicine, etc. NLME models assume that a longitudinal dataset
(yi,j, ti,j)1≤i≤p, 1≤j≤ki , with yi,j ∈ Rd, arises from:

yi,j = f(ψi,j, ti,j) + εi,j [vi.18]

where ψi,j = Xi,jα + Zi,jβi. (Xi,j)i,j and (Zi,j)i,j are design matrices linking the
�xed (respectively random) e�ects α (respectively βi) to ψi,j. The random e�ects are

distributed as follows: βi
i.i.d.∼ N (0,D) and independent of the noise εi,j

i.i.d.∼ N (0, σ2Id).
f is a nonlinear mapping from Rp+q × R to Rd. One can easily note that the LME
models appear as a particular case of NLME models.

The greater �exibility of the NLME models comes at the price of an intractable
likelihood. Indeed, if Eq. [vi.18] is written yi = f(ψi, ti) + εi in matrix form, then the
likelihood q(yi | α,θ) writes:

q(yi | α,θ) =

∫
q(yi | α,θ,βi)q(βi | θ) dβi [vi.19]

where the integral over the random e�ects is often intractable. As a consequence, the
methods to estimate the parameters of LME models cannot be used directly. Meth-
ods speci�c to NLME models are reviewed in the following section. We shall see
that some of these methods consist in linearizing the nonlinear model in order to �ap-
proximate� it with a linear model. Other methods consist in approximations of the
integral in Eq. [vi.19]. Another notable di�erence between LME and NLME models
is that NLME models are usually more sensitive to the initialization of the �xed ef-
fects. Finally, the increased �exibility and complexity of the model implies a higher
computational cost to �t these models.
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VI.2.2 Deterministic algorithms

Since the 1990's, many methodological contributions have been made to the topic
of inference in NLME models. There are currently several methods to address this
problem. As mentioned above, the likelihood in NLME models is not available in
closed-form. Therefore, several methods to estimate the parameters of NLME models
consist in approximations of the likelihood and linearization of the model.

Using the notations introduced in VI.2.1, NLME models write (in matrix form)

yi = f(ψi, ti) + εi, where ψi = Xiα + Ziβi and βi
i.i.d.∼ N (0,D) is independent of

εi
i.i.d.∼ N (0, σ2Iki). Similarly to LME models, the parameters to be estimated are θ =

(α,D, σ2), with α ∈ Rp, D ∈ Spd(q) and σ2 ∈]0,+∞[. If y = (y1, . . . ,yp) and
β = (β1, . . . ,βp), the likelihood q(y | θ) writes:

q(y | θ) =

∫
q(y | β,θ)q(β | θ) dβ. [vi.20]

In [Lindstrom and Bates, 1990], Lindstrom and colleagues proposed a two-steps algo-
rithm called �LME approximation�, which approximates the likelihood in Eq. [vi.20]
with the one of a LME model. This algorithm is implemented in the R package nlme

and in the MATLAB function nlmefit. Davidian et al., in [Davidian and Gallant,
1992], used an adaptive Gaussian quadrature to approximate the likelihood Eq. [vi.20].
This is implemented in the SAS Software procedure proc nlmixed. Laplacian approx-
imation, which is equivalent to the adaptive Gaussian quadrature method with only
one quadrature point is discussed in [Pinheiro, 1994] and also implemented in the SAS
procedure proc nlmixed. Note that the LME approximation, Laplacian approxima-
tion and adaptive Gaussian quadrature are also detailed in the book [Pinheiro and
Bates, 2006].

For Bayesian inference, the famous Expectation-Maximization (EM, [Dempster
et al., 1977]) algorithm is a natural choice. However, the nonlinearity and complexity
of the model makes the �E-step� usually intractable. Therefore, a stochastic version of
the EM algorithm, called the Monte Carlo Markov Chains Stochastic Approximation
EM (MCMC-SAEM) algorithm can be used to address this problem. The MCMC-
SAEM is implemented in the Monolix software, dedicated especially to pharmacoki-
netic/pharmacodynamic (PK-PD) modeling [Lavielle and Mentré, 2007, Savic et al.,
2011].

The adaptive Gaussian quadrature and importance sampling are not reviewed in
this dissertation. In the following, the LME approximation and Laplace approximation
are discussed. A short remainder on the EM algorithm and the MCMC-SAEM are
presented below.
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VI.2.2.1 The LME approximation

In order to discuss the LME approximation of Lindstrom and Bates, let D−1 =
σ−2∆>∆. The matrix ∆ is called precision matrix. Let θ = (α,∆, σ2) and note
that the likelihood q(y | θ) of a NLME model writes:

q(y | θ) =

p∏
i=1

∫
q(yi | βi,θ)q(βi | θ) dβi

=
1

(2πσ2)(K+qp)/2
(det ∆)p

p∏
i=1

∫
exp

(
− 1

2σ2

[
‖yi − f(ψi, ti)‖2

+
1

2
β>i ∆>∆βi

])
dβi.

[vi.21]

The LME approximation consists in two steps: the �rst is called �Penalized Nonlinear
Least-Squares (PNLS) step� and the second step is called �LME step�. The PNLS step
consists in solving the optimization problem

(
α̂, (β̂)1≤i≤p

)
= argmin

α,(βi)1≤i≤p

p∑
i=1

‖yi − f(ψi, ti)‖2 + ‖∆βi‖2 [vi.22]

where the precision matrix ∆ is considered �xed. Let θ̃ = (∆, σ2) and assume an
improper prior on α (id est q(α | θ̃) ∝ 1), then this step is equivalent to maximizing
the conditional distribution q(α,β | y, θ̃) ∝ q(y | α,β, θ̃)q(β | θ̃) with respect to α
and β. This explains why α̂, (β̂i)1≤i≤p are called conditional modes. The LME step
considers the LME model

ỹi = X̂iα+ Ẑiβi + εi [vi.23]

where ỹi = yi − f(α̂, β̂i) + X̂iα̂+ Ẑiβ̂i and:

X̂i =
∂f

∂α
(α̂, β̂i) and Ẑi =

∂f

∂βi
(α̂, β̂i). [vi.24]

This LME model is obtained with a �rst-order Taylor expansion of the model function f
around the conditional modes obtained from the PNLS step. Using methods presented
in Appendix B, one can write the likelihood of this LME model and obtain estimates
of the variance parameters (∆, σ2). The two steps are repeated until convergence. One
should note that Lindstrom and Bates do not provide order of convergence and control
regarding the approximations which are made to derive this algorithm.

VI.2.2.2 The Laplacian approximation

The Laplacian approximation [Tierney and Kadane, 1986] is used to approximate the
individual likelihoods q(yi | θ). Similarly to the LME approximation algorithm, it
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is based on a �rst-order Taylor expansion. For the ith individual (1 ≤ i ≤ p), the
likelihood q(yi | θ) is given by:

q(yi | θ) =
det ∆

(2πσ2)(ki+q)/2

∫
exp

(
− 1

2σ2

[
‖yi − f(ψi, ti)‖2 + ‖∆βi‖2

])
dβi. [vi.25]

Let θ̃ = (∆, σ2) and:

gθ̃(α,βi) = ‖yi − f(ψi, ti)‖2 + ‖∆βi‖2 and β̂i(α, θ̃) = argmin
βi

g(α,βi, θ̃). [vi.26]

Using a �rst-order Taylor expansion of gθ̃(α, ·) around β̂i, we have:

gθ̃(α,βi) ' gθ̃(α, β̂i) +
1

2
(βi − β̂i)>

∂2gθ̃
∂β2

i

(α, β̂i)(βi − β̂i) [vi.27]

where ∂2gθ̃/∂β
2
i (α, β̂i) denotes the Hessian matrix of gθ̃ at (α, β̂i). Plugging Eq. [vi.27]

into Eq. [vi.25], q(yi | θ) writes (up to some normalization terms) as the integral of
a multivariate Gaussian density function. The Laplacian approximation consists in
approximating q(yi | θ) with:

q(yi | θ) ' det ∆

(σ22π)ki/2
exp

(
− 1

2σ2
gθ̃(α, β̂i))

)(
det

∂2gθ̃
∂β2

i

(α, β̂i)
)−1/2

. [vi.28]

A notable drawback of this approximation is that it requires the computation of the
inverse of the Hessian matrix of gθ̃ at (α, β̂i). In practice, for complex models, this ma-
trix cannot be computed in closed-form and its approximation using numerical schemes
is usually very costly. Therefore, to address this problem, Pinheiro proposed to ap-
proximate the Hessian matrix. With this additional approximation, Eq. [vi.28] reduces
to a more tractable form which can be maximized using gradient descent to provide
estimates of the �xed e�ects and variance parameters.

VI.2.2.3 The Expectation-Maximization (EM) algorithm

The Expectation-Maximization (EM) algorithm [Dempster et al., 1977] is a popular
algorithm which allows to obtain maximum likelihood (or maximum a posteriori) esti-
mates of the parameters of a statistical model. The EM algorithm was introduced in
the context of statistical models with latent variables. These are models for which the
observed likelihood q(y | θ) writes:

q(y | θ) =

∫
q(y, z | θ) dµ(z) [vi.29]

where the integral is taken over a set of unobserved random variables z ∈ Z called
latent variables. The function is integrated with respect to a measure µ, which is
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de�ned by the latent variables z. With continuous latent variables, µ could be the
Lebesgue measure on RD (where D corresponds to the dimension of the set of the latent
variables). For discrete random variables (mixture of distributions, for example), then
µ is the counting measure. The joint likelihood q(y, z | θ) of y, z conditionally on the
parameters θ is the complete likelihood. Clearly, mixed-e�ects models belong to the
class of latent variables models since the random e�ects can be considered as latent
variables.

In general, with such models, the observed likelihood is not available in closed-form
as it writes as an integral, over the latent variables, of the complete likelihood. Because
this integral is often intractable, the idea of the EM algorithm is to maximize a lower
bound on the observed likelihood. Under generic conditions described in [Dempster
et al., 1977], corrected in [Wu, 1983] and generalized in [Delyon et al., 1999], the
algorithm converges to critical point of the observed likelihood.

The EM algorithm iterates, until convergence, between two steps: the �E-step�
and the �M-step�. Let y (respectively z) denote the observations (respectively latent
variables) of the generic spatiotemporal model. Let k ∈ N∗ and θ(k) denote the estimate
of the parameters of the model at the kth iteration of the algorithm. Let q(y, z | θ)
denote the distribution of the observations and latent variables conditionally on the
parameters θ. The �E-step� consists in computing the function θ ∈ Θ 7→ Q(θ | θ(k))
de�ned by:

Q(θ | θ(k)) = Eq(·|y,θ(k))

[
log q(y, z | θ)

]
. [vi.30]

In Eq. [vi.30], the expectation is taken with respect to the conditional distribution of
the latent variables knowing the observations and current estimate of the parameters.
This function Q(· | θ(k)) is then used in the �M-step� to update the estimate of the
parameters as follows:

θ(k+1) = argmax
θ∈Θ

(
Q(θ | θ(k)) + qprior(θ | θhyper)

)
. [vi.31]

However, for most nonlinear mixed-e�ects models, the �E-step� of the EM algorithm
is intractable. To address this problem, the Monte Carlo Markov Chain - Stochastic
Approximation EM (MCMC-SAEM), introduced in [Kuhn and Lavielle, 2004] and
proved convergent in [Allassonnière et al., 2010], replaces this step with a stochastic
approximation of the expectation in Eq. [vi.30]. The MCMC-SAEM is described in the
next section.

VI.2.2.4 Other deterministic algorithms

Other possible methods such as adaptive Gaussian quadrature are discussed in Pin-
heiro's Ph.D. dissertation [Pinheiro, 1994]. This method are compared to the Laplacian
approximation and LME approximation in terms of number of iterations requires to
reach convergence. The adaptive Gaussian quadrature is far more computationally
intensive than the other methods described above. Since the cost of these methods is
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already important with univariate observations, it can be expected that these methods
would not scale up to multivariate manifold-valued observations.

VI.2.3 Stochastic algorithms

VI.2.3.1 Towards a stochastic algorithm

The LME approximation algorithm is based on an approximation of the likeli-
hood Eq. [vi.21], without any control or theoretical guarantee of the convergence to-
wards a local maximum of the likelihood. Moreover, the methods has to be adapted
in order to be used in a Bayesian framework. The MATLAB nlmefit code was tested
with the univariate cases of the generic spatiotemporal model, without priors on the
parameters of the model, and raised several numerical issues. As a matter of fact, the
LME approximation requires (in the LME step) to compute the Jacobian matrix of
the model function f at the conditional modes (α̂, β̂i). For individuals whose accel-
eration factor exp(ξi) is close to 1, the Jacobian matrix becomes badly conditioned
thus leading to numerical instabilities which arise from trying to invert this Jacobian
matrix in a linear system. Moreover, the least-squares criterion in the PNLS step is
sometimes di�cult to minimize since coordinates of the gradient of this criterion are
almost proportional. To a greater extent, the LME approximation requires to compute
derivative of the model function f with respect to its parameters and random e�ects.
For the generic spatiotemporal model, this might not be possible since the Rieman-
nian exponential and parallel transport may not be known in closed-form. Even if
these quantities are known in closed-form, computing the derivatives of the parallel
transport (along the average trajectory) with respect to its initial conditions may be
a di�cult problem. Computing these derivatives would result in a set of coupled or-
dinary di�erential equations (ODE) with second-order covariant derivative, similar to
what is done in [Durrleman et al., 2011,Durrleman et al., 2013]. Such equations are
computationally expensive to implement and compute.

The Laplace approximation of the likelihood, through the SAS procedure nlmixed,
was used for the univariate straight lines model and the univariate logistic curves
model. The results obtained with the SAS Software are presented in Section VII.4
and in [Schiratti et al., 2015d]. However, similarly to the nlmefit or nlme code, these
functions are written to be used with univariate longitudinal observations. Their use
with multivariate longitudinal observations is not straightforward and would require
several modi�cations.

Stochastic algorithms such as the MCMC-SAEM o�er the advantage that, with a
particular family of MCMC samplers, these algorithms do not require to compute the
derivative of the model function with respect to its parameters. Still, other methods for
the Bayesian inference VI.2.3.3 may require to compute the gradient of the likelihood
with respect to the parameters of the model, which may be computationally intensive.
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VI.2.3.2 The MCMC-SAEM algorithm

Similarly to the EM algorithm VI.2.2.3, the Monte Carlo Markov Chain Stochastic
Approximation EM (MCMC-SAEM) algorithm is presented for latent variables mod-
els. The MCMC-SAEM is an �EM-like� algorithm which iterates, until convergence,
between three steps: simulation, stochastic approximation and maximization. These
three steps are reviewed in the following sections.

VI.2.3.2.1 Sampling step

Let θ(k) denote the estimate of the parameters at the kth iteration of the algorithm.
The �rst step of the algorithm, namely the simulation step, consists in sampling
a set of latent variables z(k) from the transition kernel πθ(k−1) of an ergodic Markov
chain whose stationary distribution is the conditional distribution q(· | y,θ(k−1)) of the
latent variables knowing the observations y and the estimate of the parameters at the
previous iteration. This step writes:

z(k) ∼ πy,θ(k−1)(z(k−1), ·) [vi.32]

and is achieved using a MCMC sampler. A large variety of MCMC samplers can
be used for this sampling step. However, theoretical results on the convergence of the
MCMC-SAEM with unbounded latent variables [Allassonnière et al., 2010] require that
the sampler produces an ergodic Markov chain whose convergence to its stationary
distribution is uniformly geometric. As proven in [Allassonnière et al., 2010], this
property holds for several samplers. In particular, the hybrid Metropolis-Hastings-
within-Gibbs sampler is likely to satisfy the property in our model. The sampling
step of the MCMC-SAEM is detailed below with the Metropolis-Hastings-within-Gibbs
sampler. Still, other samplers such as the slice sampler or the Hit-and-Run sampler
could be considered, even though they generally lead to numerous evaluations of the
target distribution function. Hamiltonian Monte Carlo samplers, which require the
computation of the gradient of the target distribution, may lead to heavy computations.

Using the Metropolis-Hastings-within-Gibbs sampler to sample z(k) would write:

Algorithm 3 Gibbs sampler to sample from the transition kernel πy,θ(k−1)(z(k−1), ·)
in Eq. [vi.32].

Require: Set of latent variables z(k−1), current estimate of the parameters θ(k−1)

Ensure: Set of latent variables z(k)

1: Sample z(k)
1 from q(z1 | y, z(k−1)

1 , . . . , z
(k−1)
L ,θ(k−1))

2: Sample z(k)
2 from q(z2 | y, z(k)

1 , z
(k−1)
3 , . . . , z

(k−1)
L ,θ(k−1))

3: . . .

4: Sample z(k)
L from q(zL | y, z(k)

1 , . . . , z
(k)
L−1,θ

(k−1))
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The lth step (1 ≤ l ≤ L) of the Gibbs sampler presented above requires to sample
z

(k)
l from its target distribution, the full conditional πk,l:

πk,l(·) = q(· | y, z(k)
1 , . . . , z

(k)
l−1, z

(k−1)
l+1 , . . . , z

(k−1)
L ,θ(k−1)). [vi.33]

The full conditional πk,l is the conditional distribution of zl knowing y,θ(k−1) and the

most recent state of all the other latent variables of the model. For complex nonlin-

ear models, the full conditionals are usually known up to a normalizing constant. In

addition to this, πk,l does not belong to a standard family of distributions. Therefore,

the Metropolis-Hastings algorithm is particularly suited to sample from πk,l since the

normalizing constant of πk,l may be intractable. As a consequence, the sampling step

is done using the (deterministic scan) Gibbs sampler combined with the Metropolis-

Hastings (MH) algorithm. At each step, the proposal distribution of MH is chosen to

be a Gaussian distribution centered at the current state, with a �xed variance. This

results in an algorithm called: Symmetric Random Walk Metropolis-Hastings (SRW-

MH). Other possible choices of proposal distributions and their in�uence on the con-

vergence or computational cost of the MCMC-SAEM is discussed in Section VI.3.5.

The SRW-MH within Gibbs sampler writes:

Algorithm 4 The Metropolis-Hastings-within-Gibbs sampler

Require: Set of latent variables z(k−1), current estimate of the parameters θ(k−1),

variances (σ2
l )1≤l≤L for the proposal distributions

Ensure: Set of latent variables z(k)

1: for l = 1 . . . L do

2: Draw a candidate z∗l using the proposal distribution: z∗l ∼ N (z
(k−1)
l , σ2

l )

3: Compute the acceptance ratio α(z
(k−1)
l , z∗l ) :

α(z
(k−1)
l , z∗l ) =

πk,l(z
∗
l )

πk,l(z
(k−1)
l )

∧ 1 [vi.34]

4: Draw U ∼ Uniform([0, 1])

5: Set:

z
(k)
l =

z∗l if U ≤ α(z
(k−1)
l , z∗l )

z
(k−1)
l otherwise.

6: end for

7: Return: z(k) = (z
(k)
1 , . . . , z

(k)
L ).

In the algorithm 4, the acceptance ratio can be written in terms of the
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model likelihood. For clarity, let z
(k−1),(k)
−l denote the set of latent variables

(z
(k)
1 , . . . , z

(k)
l−1, z

(k−1)
l+1 , . . . , z

(k−1)
L ). Then, the full conditional distribution πk,l writes:

q(· | y, z(k−1),(k)
−l ,θ(k−1)). Using the Bayes rule, we have:

πk,l(z
∗
l ) ∝ q(y | z(k−1),(k)

−l , z∗l ,θ
(k−1))q(z

(k−1),(k)
−l | θ(k−1))q(zl | θ(k−1)). [vi.35]

In Eq. [vi.35], the term q(z∗l | θ
(k−1)) (respectively q(z

(k−1),(k)
−l | θ(k−1))) denotes the

likelihood of the probability distribution speci�ed for zl (respectively joint probability
distribution of (z1, . . . , zl−1, zl+1, . . . , zL)) evaluated at z∗l (respectively z

(k−1),(k)
−l ). As a

consequence, the acceptance ratio in Eq. [vi.34] simpli�es to:

α(z
(k−1)
l , z∗l ) =

q(y | z∗l , z
(k−1),(k)
−l ,θ(k−1))q(z∗l | θ

(k−1))

q(y | z(k−1)
l , z

(k−1),(k)
−l ,θ(k−1))q(z

(k−1)
l | θ(k−1))

∧ 1. [vi.36]

VI.2.3.2.2 Stochastic approximation step

This paragraph on the stochastic approximation step starts with an important remark
about theoretical results regarding the convergence of the MCMC-SAEM.

Remark. The convergence of the MCMC-SAEM is proved, in [Kuhn and Lavielle, 2004]
(for bounded latent variables) and in [Allassonnière et al., 2010] (for unbounded latent
variables), for statistical models which belong to the curved exponential family. That
is to say, models for which the log complete likelihood q(y, z,θ) writes:

∀θ ∈ Θ, log q(y, z,θ) = −Φ(θ) + 〈S(y, z),Ψ(θ)〉 [vi.37]

where Φ,Ψ are smooth functions of the parameters, S(y, z) is a measurable function
of the observations and latent variables called su�cient statistic of the model and
〈·, ·〉 is an inner product on a product space. Proving that the model belongs to the
curved exponential family is necessary because if the model does not have this property,
the MCMC-SAEM might not converge.

The stochastic approximation step consists in constructing a sequence of functions(
Qk(·)

)
k≥0

de�ned on Θ. Let k ∈ N∗ denote the kth iteration of the MCMC-SAEM.

Using the set z(k) of latent variables obtained from the sampling step, the function
θ ∈ Θ 7→ Qk(θ) is de�ned as follows:

∀θ ∈ Θ, Qk(θ) = Qk−1(θ) + εk
(

log q(y, z(k) | θ)−Qk−1(θ)
)
. [vi.38]

where Q0 = 0 and (εk)k≥0 is a sequence of positive step-sizes which are such that:∑
k≥0 εk = +∞ and

∑
k≥0 ε

2
k < +∞. The choice of the sequence (εk)k≥0 is dis-

cussed in Section VI.3.6. Note that Eq. [vi.38] is a stochastic approximation of the
Robbins-Monro �like� [Robbins and Monro, 1951] which converges to the expectation
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Eq(z|y,θ(k−1))

[
log q(y, z | θ)

]
. As a consequence, the simulation and stochastic approx-

imation steps of the MCMC-SAEM are asymptotically equivalent to the �E-step� of
the classical EM algorithm.

Assuming that the statistical model at hand belongs to the curved exponential
family, the stochastic approximation in Eq. [vi.38] can be done on the su�cient statistics
of the model. For each su�cient statistic of the model, initialize it with S0 = 0 and
let:

Sk = Sk−1 + εk
(
S(y, z(k))− Sk−1

)
[vi.39]

during the �stochastic approximation� step of the algorithm. In that case, the function
Qk(θ) is de�ned by:

∀θ ∈ Θ, Qk(θ) = −Φ(θ) + 〈Sk,Ψ(θ)〉 . [vi.40]

From the stochastic approximation (Eq. [vi.39]) on the su�cient statistics, one can note
that if εk = 1, then Sk does not depend on Sk−1. Intuitively, the sequence (Sk)k≥0 has
�no memory� as long as εk = 1 and the MCMC-SAEM explores freely the parameters
space during this period. Usually, an integer Nb ∈ N∗ is chosen and the sequence
(εk)k≥0 is de�ned by:

∀k ∈ N, εk =

{
1 if 0 ≤ k ≤ Nb

(k −Nb)
−α otherwise

[vi.41]

where α ∈ [1/2, 1[. The condition on α is necessary to ensure the convergence of the
MCMC-SAEM (see [Allassonnière et al., 2010, Allassonniere and Kuhn, 2015]). The
integer Nb is called burn-in parameter. Contrary to Bayesian inference, where �burn-
in� traditionally refers to a certain amount of samples which are discarded, here the
term �burn-in� refers to memoryless approximation steps. In other words, during the
burn-in phase, the information contained in z(k) is not used in the approximation of
the su�cient statistics. In practice, the burn-in period is often chosen to be half of the
maximum number of iterations.

Remark. The convergence of the algorithm is proved in [Kuhn and Lavielle, 2004]
as long as the latent variables of the model belong to a compact of the Euclidean
space. However, for latent variables models in which the latent variables have a non-
compact support, a step called truncation on random boundaries (see [Andrieu et al.,
2005]) is necessary. Let S denote the space of the su�cient statistics and consider
an increasing sequence (Kn)n≥0 of compact subsets of S such that

⋃
nKn = S and,

for all n, Kn ⊂ int(Kn+1). At the beginning of the algorithm, one considers the
compact K0. As long as the stochastic approximation Sk−1 + εk

(
S(y, z(k)) − Sk−1 is

not �too far� from its previous value Sk−1 and as long as this stochastic approximation
states in the current compact, the algorithm continues. If one of the two conditions
is not satis�es, the sequences (z(k),Sk)k≥0 are re-initialized using a projection and the
size of the current compact is increased. These steps are described in [Allassonnière
et al., 2010], where the convergence is proved for any latent variables. In practice, this
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step is never required because the computer itself does not allow for arbitrarily large
numbers. The results obtained with the MCMC-SAEM and presented in Chapter VII
were obtained without this control.

VI.2.3.2.3 Maximization step

The last step of the MCMC-SAEM consists in updating the current estimate of the
parameters of the model. This is done by maximizing, with respect to θ ∈ Θ, the
function Qk(·) de�ned in Eq. [vi.40]. The, the maximization step writes:

θ(k) = argmax
θ∈Θ

(
− Φ(θ) + 〈Sk,Ψ(θ)〉

)
. [vi.42]

where Sk denotes the stochastic approximation on the su�cient statistics of the model,
obtained in the �stochastic approximation step� of the algorithm.

VI.2.3.2.4 Overview of the algorithm

The MCMC-SAEM algorithm, whose steps are detailed above, writes as follows:

Algorithm 5 The MCMC-SAEM algorithm.

Require: Data y, initial guess θ(0)

Ensure: ML or MAP estimate θ of the parameters of the model
1: Initializations: z← 0, S0 ← 0, θ ← θ(0) and step-sizes (εk)k≥0.
2: repeat

3: Simulation using a Metropolis-Hastings-within Gibbs sampler:

z(k) ∼ πy,θ(k−1)(z(k−1), ·)

4: Stochastic approximation:

Sk ← Sk + εk
(
S(y, z(k))− Sk−1

)
5: Maximization:

θ(k) ← argmax
θ∈Θ

(
− Φ(θ) + 〈Sk,Ψ(θ)〉

)
with closed-form updates given in VI.3.3.

6: until convergence.
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VI.2.3.3 Full-Bayesian inference

Finally, another class of stochastic algorithms can be considered for the statistical
inference in nonlinear mixed-e�ects models. These algorithms, grouped under the
term �Full-Bayesian methods� aim at learning the posterior distribution q(θ | y) and
not only its modes. In Chapter III, we mentioned that MCMC samplers can be used
to produce an ergodic Markov chain whose stationary distribution is the posterior
distribution q(θ | y) of θ given the observations y. After a su�ciently large number
of iterations, the sampler will produce samples which are approximately distributed
as q(θ | y). This approach di�ers from that of the MCMC-SAEM in the sense that
the MCMC-SAEM aims at producing maximum a posteriori estimates, or in other
words, �point estimates�. Indeed, the MCMC-SAEM (as would the EM algorithm)
will converge to a critical point of the posterior distribution q(θ | y), which is a local
maximum (thanks to the randomness of the algorithm which avoids saddle points).
Full-Bayesian methods draw a large number of samples approximately distributed as
q(θ | y) and then, these samples allow to construct approximations of the posterior
using, for example, Kernel Density Estimates (KDE). But other informations on the
posterior distribution can be derived from the samples.

Hamiltonian Monte Carlo (HMC) is a popular MCMCmethod which can be used for
Bayesian inference. In [Ho�man and Gelman, 2014], the authors propose an adaptive
HMC sampler called the No U-Turns Sampler (NUTS). This sampler is implemented
in a R/C++ library called STAN. In this paper, the authors mention that the NUTS
sampler o�ers much better performance in high-dimensional settings that classical sam-
plers such as the Gibbs sampler or the Metropolis-Hastings algorithm. However, HMC
samplers require to integrate a system of Hamiltonian equations and compute gra-
dients of the posterior with respect to the parameters of the model, which can be
computationally intensive.

VI.2.3.4 Other stochastic algorithms

In [Pinheiro, 1994], the author discusses the use of importance sampling (with Gaussian
importance distribution) for inference in NLME models. This method is implemented
in the nlmixed procedure of the SAS Software. In the work of Pinheiro, importance
sampling is used to approximate the observed likelihood (see Eq. [vi.29]) of the model.
Similarly, other Importance Sampling methods, such as Population Monte Carlo [Cappé
et al., 2012], could be used to approximate the observed likelihood of the model and
perform Bayesian inference. In [Pinheiro, 1994], the importance function is chosen to
be a Gaussian distribution while, in Population Monte Carlo (PMC), the algorithm
adapts the importance functions based on past samples. Even though importance
sampling methods usually produce accurate results, in comparison to other methods
to approximate the observed likelihood of the model, the computational cost of these
methods tends to become prohibitive when the dimension of the space of latent variables



110 VI.2.3 Stochastic algorithms

becomes �large�. Importance sampling methods are not considered in this work.

Mean-�eld variational inference [Jordan et al., 1999, Consonni and Marin, 2007]
aim at approximating the posterior q(θ | y) through an optimization problem. The
�best� approximating distribution q(θ) is estimated among a family of probability dis-
tributions Q by minimizing the Kullback-Leibler (KL) divergence KL

(
q(θ) || q(θ | y)

)
.

Since the KL divergence depends on the model evidence q(y), which is usually not
available in closed-form, these methods aim at minimizing a function called Evidence
Lower Bound (ELBO), which is equal to the KL divergence up to a constant. To
make the optimization problem tractable, the �mean-�eld assumption� consists in as-
suming that the approximating distribution q(θ) is a product of simple distributions,
of the form

∏
i qi(θi). Even though variational methods are usually faster than �Fully-

Bayesian� (MCMC) methods, there is currently no theoretical guarantee of convergence
for complex posterior distributions, such as the one we consider with the generic spa-
tiotemporal model. As a result, we chose not to consider variational inference methods
in this work.
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VI.3 The MCMC-SAEM for the Bayesian generic

spatiotemporal model

As mentioned in Section VI.2.3.2, the convergence of the MCMC-SAEM is proved
for models which belong to the curved exponential family. In the following sections,
we prove that the generic spatiotemporal model belongs to this curved exponential
family and give the su�cient statistics of the model. In Section VI.3.6 we discuss the
methodological challenges which arise when using the MCMC-SAEM algorithm in a
Riemannian framework.

VI.3.1 Su�cient statistics

For the generic spatiotemporal model(Eq. [iv.66]), recall that the parameters are
θ = (p0,v0, t0, (βk)1≤k≤(N−1)Ns ,θvar), with θvar = (σ2

ξ , σ
2
τ , σ

2). The latent variables
of the model are z = (zpop, (zi)1≤i≤p) with: zpop =

(
p0, t0,v0, (βk)1≤k≤(N−1)Ns

)
and

(zi)1≤i≤p =
(
ξi, τi, (sl,i)1≤l≤Ns

)
1≤i≤p

)
. Let θhyper denote the vector of �xed hyperpa-

rameters of the model. Recall that these hyperparameters are used to de�ne the prior
distribution qprior in Eq. [iv.71]. For the generic spatiotemporal model, the joint likeli-
hood q(y, z,θ | θhyper) writes:

q(y, z,θ | θhyper) = q(y | z,θ,θhyper)q(z,θ | θhyper)

= q(y | z,θ,θhyper)q(z | θ)qprior(θ | θhyper)

= q(y | z,θ)q(zpop | θ)q
(
(zi)1≤i≤p | θ

)
qprior(θ | θhyper)

= q(y | z,θ)q(zpop | θ)q
(
(zi)1≤i≤p | θ

)
qprior(θ | θhyper)

[vi.43]

and it follows from modeling assumptions that:

q(y | z,θ)q
(
(zi)1≤i≤p | θ

)
=

( ∏
1≤i≤p
1≤j≤ki

q(yi,j | zi,θ)

) ∏
1≤i≤p

q(zi | θ). [vi.44]
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Therefore,

log q(y, z,θ | θhyper) = −NK log(σ
√

2π)− 1

2σ2

∑
1≤i≤p

1≤j≤ni

‖yi,j − ηwi(γ0, ψi(ti,j))‖2

︸ ︷︷ ︸
À

− p log(σξ
√

2π)− 1

2σ2
ξ

p∑
i=1

ξ2
i − p log(στ

√
2π)− 1

2σ2
τ

p∑
i=1

τ 2
i

− pNs

2
log(2π) −N log(σp0

√
2π)− 1

2σ2
p0

‖p0 − p0‖2

︸ ︷︷ ︸
Á

− log(σt0
√

2π)− 1

2σ2
t0

(t0 − t0)2 − (N − 1)Ns log(σβ
√

2π)

−N log(σv0

√
2π)− 1

2σ2
v0

‖v0 − v0‖2︸ ︷︷ ︸
Â

− 1

2σ2
β

(N−1)Ns∑
k=1

(βk − βk)2

− 1

2

∑
1≤i≤p

1≤l≤Ns

s2
l,i −mξ log(σξ)−mξ

σ2
ξ,0

2σ2
ξ

−mτ log(στ )−mτ

σ2
τ,0

2σ2
τ

−mσ log(σ)−mσ
σ2

0

2σ2
− 1

2s2
p0

‖p0 − p0‖2

︸ ︷︷ ︸
Ã

− 1

2s2
t0

(t0 − t0)2

− 1

2s2
v0

‖v0 − v0‖2︸ ︷︷ ︸
Ä

− 1

2s2
β

‖β‖2 + Cprior

[[
− (N − 1) log(σδ

√
2π)

− 1

2σ2
δ

N−1∑
k=1

(δk − δk)2
]]

[vi.45]

where ki (1 ≤ i ≤ p) denotes the number of time points for the ith individual and
K =

∑
1≤i≤p ki. In Eq. [vi.45], Cprior is the normalization constant of qprior. Since it

depends only on the �xed hyperparameters θhyper of the model, Cprior is not written in
closed-form. The term between double brackets in Eq. [vi.45] shall be considered only
for the propagation model (see Eq. [v.13]). Note that for this model, the terms À−Ä
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write:

À = − 1

2σ2

∑
1≤i≤p
1≤j≤ki

‖yi,j − ηwi(γ0,δ, ψi(ti,j))‖2

Á = − log(σp0
√

2π)− 1

2σ2
p0

(p0 − p0)2

Â = − log(σv0
√

2π)− 1

2σ2
v0

(v0 − v0)2

Ã = − 1

2s2
p0

(p0 − p0)2

Ä = − 1

2s2
v0

(v0 − v0)2.

[vi.46]

Whereas, for the Spd(n) matrices model ( Eq. [v.8]), the terms À−Ä write:

À = −n(n+ 1)

2
K log(σ

√
2π)− 1

2σ2

∑
1≤i≤p
1≤j≤ki

tr
([

Yi,j − ηWi(γ0, ψi(ti,j))
]2)

Á = −n(n+ 1)

2
log(σP0

√
2π)− 1

2σ2
P0

tr
([

P0 −P0

]2)
Â = −n(n+ 1)

2
log(σV0

√
2π)− 1

2σ2
V0

tr
([

V0 −V0

]2)
Ã = − 1

2s2
P0

tr
([

P0 −P0

]2)
Ä = − 1

2s2
V0

tr
([

V0 −V0

]2)
.

[vi.47]
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In order to prove that the generic spatiotemporal model belongs to the curved expo-
nential family (see Eq. [vi.37]), let:

S1(y, z) =
[
‖yi,j‖2]i,j ∈ RK ,

S2(y, z) =
[
y>i,jη

wi(γ0, ψi(ti,j))
]
i,j
∈ RK ,

S3(y, z) =
[
‖ηwi(γ0, ψi(ti,j))‖2

]
i,j
∈ RK ,

S4(y, z) =
[
ξ2
i

]
i
∈ Rp,

S5(y, z) =
[
τ 2
i

]
i
∈ Rp,

S6(y, z) =
[
s2
l,i

]
l,i
∈ RpNs ,

S7(y, z) = p0 ∈ RN ,

S8(y, z) = t0 ∈ R,

S9(y, z) = v0 ∈ RN ,

S10(y, z) =
[
βk
]
k
∈ R(N−1)Ns ,

S11(y, z) = ‖p0‖2 ∈ R,

S12(y, z) = t20 ∈ R,

S13(y, z) = ‖v0‖2 ∈ R,

S14(y, z) =
[
β2
k

]
k
∈ R(N−1)Ns ,[[

S15(y, z) =
[
δk
]
k
∈ RN−1,

]]
,[[

S16(y, z) =
[
δ2
k

]
k
∈ RN−1

]]
.

[vi.48]

For the propagation model, the su�cient statistic S2 and S3 are de�ned by:
S2(y, z) =

[
y>i,jη

wi(γ0,δ, ψi(ti,j))
]
i,j

and S3(y, z) =
[
‖ηwi(γ0,δ, ψi(ti,j))‖2

]
i,j
. The suf-

�cient statistics S15 and S16 shall be considered only for this propagation model. Re-
garding the Spd(n) matrices model, the su�cient statistics S1, S2, S3, S7, S9, S11 and
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S13 are de�ned by:

S1(Y, z) =
∑
i,j

Y2
i,j,

S2(Y, z) =
∑
i,j

Y>i,jη
Wi(γ0, ψi(ti,j)),

S3(Y, z) =
∑
i,j

(
ηWi(γ0, ψi(ti,j))

)2
,

S7(Y, z) = P0,

S9(Y, z) = V0,

S11(Y, z) = P2
0,

S13(Y, z) = V2
0.

[vi.49]

For n ∈ N∗, let 1n denote the vector in Rn with all its components equal to 1 and In
be the n×n identity matrix. For the generic spatiotemporal model, the inner product
〈S(y, z),Ψ(θ)〉 is given by:

〈S(y, z),Ψ(θ)〉 =
(
S1(y, z)− 2S2(y, z) + S3(y, z)

)>(− 1

2σ2
1K

)
+ S4(y, z)>

(
− 1

2σ2
ξ

1p

)
+ S5(y, z)>

(
− 1

2σ2
τ

1p

)
+ S>6 (y, z)

(
− 1

2
1pNs

)
+ S11(y, z)

(
− 1

2σ2
p0

)
+ S7(y, z)>

( 1

σ2
p0

p0

)
+ S12(y, z)

(
− 1

2σ2
t0

)
+ S8(y, z)

( 1

σ2
t0

t0

)
+ S13(y, z)

(
− 1

2σ2
v0

)
+ S9(y, z)>

( 1

σ2
v0

v0

)
+ S14(y, z)>

(
− 1

2σ2
β

1(N−1)Ns

)
+ S10(y, z)>

( 1

σ2
β

β
)

[[
+ S16(y, z)>

(−1

2σ2
δ

1N−1

)
+ S15(y, z)>

( 1

σ2
δ

δ
) ]]

[vi.50]

with β =
[
βk
]
k
, δ =

[
δk
]

1≤k≤N−1
. The two terms between double brackets in Eq. [vi.50]

shall be considered only for the propagation model. Regarding the Spd(n) matrices
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model, the dot product 〈S(Y, z),Ψ(θ)〉 write:

〈S(Y, z),Ψ(θ)〉 =

〈
S1(Y, z)− 2S2(Y, z) + S3(Y, z),− 1

2σ2
In

〉
F

+ S4(Y, z)>
(
− 1

2σ2
ξ

1p

)
+ S5(Y, z)>

(
− 1

2σ2
τ

1p

)
+ S>6 (Y, z)

(
− 1

2
1pNs

)
+

〈
S11(Y, z),− 1

2σ2
P0

In

〉
F

+

〈
S7(Y, z),

1

σ2
P0

P0

〉
F

+ S12(Y, z)
(
− 1

2σ2
t0

)
+ S8(Y, z)

( 1

σ2
t0

t0

)
+

〈
S13(Y, z),− 1

2σ2
V0

In

〉
F

+

〈
S9(Y, z),

1

σ2
V0

V0

〉
F

+ S14(y, z)>
(
− 1

2σ2
β

1(N−1)Ns

)
+ S10(y, z)>

( 1

σ2
β

β
)

[vi.51]

where 〈·, ·〉F denotes the Frobenius inner product de�ned by:
∀(A,B) ∈ Matn(R), 〈A,B〉F = tr

(
A>B

)
.

For the generic spatiotemporal model, the term Φ(θ) writes:

Φ(θ) = −(NK +mσ) log(σ)− (p+mξ) log(σξ)− (p+mτ ) log(στ )

− 1

2σ2
p0

‖p0‖2 − 1

2s2
p0

‖p0 − p0‖2

︸ ︷︷ ︸
Å

− 1

2σ2
t0

t0
2 − 1

2s2
t0

(t0 − t0)2

− 1

2σ2
v0

‖v0‖2 − 1

2s2
v0

‖v0 − v0‖2︸ ︷︷ ︸
Æ

− 1

2σ2
β

‖β‖2 − 1

2s2
β

‖β‖2 − 1

2

(
NK + 2p

+ pNs + 2N + 1 + (N − 1)Ns

)
log(2π)−mξ

σ2
ξ,0

2σ2
ξ

−mτ

σ2
τ,0

2σ2
τ

−

mσ
σ2

0

2σ2
+ Cprior

[[
− 1

2
(N − 1) log(2π)− 1

2σ2
δ

N−1∑
k=1

δk
2
]]

[vi.52]

where the terms between double brackets are to be considered only for the propagation
model. With the Spd(n) matrices model, the terms Å and Æ write:



117

Å = − 1

2σ2
P0

tr
(
P0

2)− 1

2s2
P0

tr
([

P0 −P0

]2)
Æ = − 1

2σ2
V0

tr
(
V0

2)− 1

2s2
V0

tr
([

V0 −V0

]2)
.

[vi.53]

Given the expressions of the su�cient statistics Eq. [vi.48], the stochastic approx-
imation step of the MCMC-SAEM can be conducted as written in Section VI.2.3.2.2.
The next section discusses sampling strategies for the sampling step of the MCMC-
SAEM.

VI.3.2 On the sampling step of the MCMC-SAEM

In this section, we derive a Block Metropolis-Hastings-within-Gibbs (Block MHwG)
sampler for the sampling step of the MCMC-SAEM. Each Metropolis-Hastings step of
the algorithm consists in a multivariate symmetric random walk. The Block MHwG
sampler updates simultaneously block (or sets) of latent variables then, at each it-
eration, each block is updated conditionally on the others. Even though the latent
variables can be grouped in several ways, we chose to group the latent variables as
follows: {zpop} and {zi}1≤i≤p. This grouping being given by the hierarchical structure
of the model. Note that the latent variables also could have been grouped as follows:
{p0, t0,v0}, {(βl,k)l,k} and {zi}1≤i≤p. In the case of the propagation models, the delay
variables (δk)1≤k≤N−1 were grouped with zpop, although they could also be considered as
a block in itself. For each block, the proposal in the Metropolis-Hastings step is chosen
to be a multivariate Gaussian distribution centered at the current state of the block.
Each variance-covariance matrix of a proposal distribution is chosen to be diagonal
matrix: Dpop = Diag

(
ζ2
p0

IN , ζ
2
t0
, ζ2

v0
IN , ζ

2
βI(N−1)Ns

)
for the proposal distribution associ-

ated to zpop and Dindiv = Diag
(
ζ2
ξ , ζ

2
τ , ζ

2
s

)
for the proposal distribution associated to zi

(1 ≤ i ≤ p). The variances parameters ζ2
p0
, ζ2
t0
, ζ2

v0
, ζ2

β and ζ2
ξ , ζ

2
τ are adjusted by hand

to ensure an average acceptance rate for each block around 23% [Roberts et al., 1997].
The Block MHwG sampler is described in Algorithm 6. Let θhyper = (σ2

p0
, σ2

t0
, σ2

v0
, σ2

β)

denote the �xed hyperparameters which appear in the probability distribution of the
latent variables in zpop.
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Algorithm 6 The Block Metropolis-Hastings-within-Gibbs sampler

Require: Set of latent variables z(k−1) =
(
z

(k−1)
pop , (z

(k−1)
i )1≤i≤p

)
, current estimate of

the parameters θ(k−1), variance-covariance matrices Dpop and (Di)1≤i≤p and θhyper

Ensure: Set of latent variables z(k)

1: Block z
(k)
pop of population latent variables:

2: Draw a candidate z∗pop ∼ N
(
z

(k−1)
pop ,Dpop

)
3: Compute the acceptance ratio α(z

(k−1)
pop , z∗pop) de�ned by:

α(z(k−1)
pop , z∗pop) =

q(y | z∗pop, (z
(k−1)
i )1≤i≤p,θ

(k−1))qpop(z∗pop | θ(k−1))

q(y | z(k−1)
pop , (z

(k−1)
i )1≤i≤p,θ

(k−1))qpop(z
(k−1)
pop | θ(k−1))

∧ 1.

4: Draw U ∼ Uniform
(
[0, 1]

)
5: Set:

z(k)
pop =

z
(k−1)
pop if U ≤ α(z

(k−1)
pop , z∗pop)

z∗pop otherwise.

6: for i = 1 . . . p do

7: Blocks (z
(k)
i )1≤i≤p of individual latent variables:

8: Draw a candidate z∗i ∼ N
(
z

(k−1)
i ,Dindiv

)
9: Compute the acceptance ratio α(z

(k−1)
i , z∗i ) de�ned by:

α(z
(k−1)
i , z∗i ) =

q(y | z(k)
pop, z

(k−1),(k)
−i , z∗i ,θ

(k−1))qi(z
∗
i | θ(k−1))

q(y | z(k)
pop, z

(k−1),(k)
−i , z

(k−1)
i ,θ(k−1))qi(z

(k−1)
i | θ(k−1))

∧ 1.

10: Draw U ∼ Uniform([0, 1])

11: Set:

z
(k)
i =

z∗i if U ≤ α(z
(k−1)
i , z∗i )

z
(k−1)
i otherwise.

12: end for

13: Return: z(k) =
(
z

(k)
pop, (z

(k)
i )1≤i≤p

)
.

Let i ∈ {1, . . . , p} and qpop

(
· | θ

)
(respectively qi(· | θ) denote the density function

of the joint distribution of the latent variables zpop (respectively zi) as speci�ed in the
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generative model (Eq. [iv.67] and Eq. [iv.68]):

qpop(zpop | θ) ∝ exp
(
− 1

2σ2
p0

‖p0 − p0‖2
)

exp
(
− 1

2σ2
t0

(t0 − t0)2
)

exp
(
− 1

2σ2
v0

‖v0 − v0‖2
)

exp
(
− 1

2σ2
β

‖β − β‖2
) [vi.54]

and

qi(zi | θ) ∝ exp
(
− 1

2σ2
ξ

ξ2
i

)
exp

(
− 1

2σ2
τ

τ 2
i

)
exp

(
− 1

2
‖si‖2

)
[vi.55]

with: β = [βl,k]1≤l≤Ns, 1≤k≤N−1 and for all i ∈ {1, . . . , p}, si = [sl,i]1≤l≤Ns . The prob-
ability distributions qpop and qi (1 ≤ i ≤ p) are given up to a constant. Indeed,
the normalizing constant of qpop or qi (1 ≤ i ≤ p) depends only on the parame-
ters θ. Therefore, these constants can be omitted for the computation of the ac-
ceptance ratio in Algorithm 6. For k ∈ N∗ and i ∈ {1, . . . , p}, z(k−1),(k)

−i denotes:(
z

(k)
1 , . . . , z

(k)
i−1, z

(k−1)
i+1 , . . . , z

(k−1)
p

)
.

VI.3.2.1 Discussion

In the sampling step of the MCMC-SAEM, the computation of the model likelihood
q(y | z,θ), de�ned by:

log q(y | z,θ) = − 1

2σ2

∑
1≤i≤p
1≤j≤ki

∥∥yi − ηwi
(
γ0, ψi(ti,j)

)∥∥2
[vi.56]

is computationally costly for large datasets. The runtime of the MCMC-SAEM on
speci�c examples is detailed in Section VI.4.1. Since computing the log-likelihood q(y |
z,θ) is expensive, it is preferable use a sampler which requires few computation of this
log-likelihood. As a consequence, the Block MHwG sampler is computationally more
interesting than a deterministic (or �one-at-a-time�) MHwG sampler as the algorithm
proposed above requires 2+2p computations of the model likelihood against a minimum
of 4+(N−1)(Ns+1)+(3+Ns)p for the �one-at-a-time� Gibbs sampler. In Algorithm 6,
the variance-covariance matrices of the proposal distributions are diagonal and the
variance coe�cients on the diagonal are tuned by hand. Using adaptive sampling
algorithms, such as the one described in [Atchadé, 2006], the variance parameters on
the diagonal could be automatically adjusted by the algorithm. Finally, note that the
steps 7: to 12: in Algorithm 6 could be done in parallel, for large datasets.

VI.3.3 On the maximization step of the MCMC-SAEM

The maximization step of the MCMC-SAEM consists, at the kth iteration, in solving
the following optimization problem:

θ(k) = argmax
θ∈Θ

(
− Φ(θ) + 〈Sk,Ψ(θ)〉

)
. [vi.57]
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where Sk denotes the stochastic approximation on the su�cient statistics of the model
obtained from the �stochastic approximation step�. Recall, from Section IV.3.4, that:

Θ =
{
θ = (p0,v0, t0, (βl,k)l,k,θvar)

/
(p0,v0) ∈ TM, t0 ∈ R,
(βl,k)l,k ∈ R(N−1)Ns , θvar ∈]0,+∞[3

} [vi.58]

with θvar = (σ2
ξ , σ

2
τ , σ

2). Since we assumed thatM is a convex open subset of RN , for all
p ∈ M, one has the following identi�cation: TpM = RN . Moreover, as M ⊂ RN , one
can consider that the function Qk, de�ned by ∀θ ∈ Θ, Qk(θ) = −Φ(θ) + 〈Sk,Ψ(θ)〉, is
de�ned and di�erentiable on an open subset of the Euclidean space. As a consequence,
Qk is maximized by looking for its critical points.

Computing the gradient of Qk shows that there is a unique critical point in Θ.
Therefore, the maximization step of the MCMC-SAEM for the generic spatiotemporal
model writes:

p0
(k+1) =

( 1

s2
p0

+
1

σ2
p0

)−1( 1

σ2
p0

S7(y, z(k)) +
1

s2
p0

p0

)
,

v0
(k+1) =

( 1

s2
v0

+
1

σ2
v0

)−1( 1

σ2
v0

S9(y, z(k)) +
1

s2
v0

v0

)
,

t0
(k+1)

=
( 1

s2
t0

+
1

σ2
t0

)−1( 1

σ2
t0

S8(y, z(k)) +
1

s2
t0

t0

)
,

β
(k+1)

l,j =
( 1

s2
β

+
1

σ2
β

)−1( 1

σ2
β

S10(y, z(k))
)

(σ2
ξ )

(k+1) =
1

p+mξ

(
S4(y, z(k))>1p +mξσ

2
ξ,0

)
,

(σ2
τ )

(k+1) =
1

p+mτ

(
S5(y, z(k))>1p +mτσ

2
τ,0

)
,

(σ2)(k+1) =
1

NK +mσ

([
S1(y, z(k))− 2S2(y, z(k))+

S3(y, z(k))
]>
1K +mσσ

2
0

)
,[[

(δj)
(k+1)
j = S15(y, z(k))

]]

[vi.59]

Eq. [vi.59] shows that each update can be interpreted as a barycenter between its
corresponding su�cient statistic and the mean of its corresponding prior. For instance,
in the update

p0
(k+1) =

( 1

s2
p0

+
1

σ2
p0

)−1( 1

σ2
p0

S7(y, z(k)) +
1

s2
p0

p0

)
[vi.60]
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the larger the variance s2
p0
, the less the in�uence of the prior p0

(k+1). On the contrary, a
narrow prior (s2

p0
small) will force the parameter p0 to remain close to p0. The update

between double brackets is to be considered only for the propagation models.

Note that the Riemannian metric on M does not appear in the parameter update
of p0. Because M is a convex open subset of RN , the proposed update (in Eq. [vi.60])
remains in M as long as, at the kth iteration, p

(k)
0 = S7(y, z(k)) is in M. In the previous

section, we saw that, at each step, the latent variable p0 is updated with a symmetric
random walk. If the variance of the proposal ζ2

p0
is �small enough�, the assumption

that M is open ensures that a small perturbation of a point in M remains in M. In
the case where M =]0, 1[, the validation of the MCMC-SAEM in Section VI.4 and the
experimental results in Chapter VII show that the parameter p0 remains within the
range of the observations and is never estimated close to 0 or close to 1.

VI.3.4 Choice of the hyperparameters

As discussed in Section VI.1.1, the priors assumed for the generic spatiotemporal model
(see Eq. [iv.71]) ensure the existence of a maximum a posteriori. In order to use the
MCMC-SAEM, the hyperparameters p0, t0,v0, σξ,0, στ,0, σ0,mξ,mτ ,mσ, sp0 , st0 , sv0 , sβ
have to be speci�ed. The prior distribution could also be used to constrain the param-
eters space and avoid identi�ability problems. In this section, we describe heuristics to
choose these hyperparameters, based only on the longitudinal dataset which is to be
analyzed with the MCMC-SAEM.

In a naive heuristic, the hyperparameter p0 can be chosen to be the median of
the observations. In order to ensure that p0 belongs to the manifold M, the notion
of median shall be generalized to smooth manifolds. On a Riemannian manifold, the
median can be de�ned as the minimizer of the sum of geodesic distances to the data
points [Fletcher et al., 2009]. In practice, the hyperparameter sp0 is chosen �large�
(sp0 ' 1) to ensure that the prior on p0 is not informative and does not force p0 to
remain in a close neighborhood of p0. For the other hyperparameters, consider p0 ∈M
�xed and �t a geodesic of the form γ0,i(·) = Expp0,ti

(vi)(·) to the individual obser-
vations (yi,j, ti,j)1≤j≤ki for each individual: this is typically p independent regression
problems, where the observations of each individual are regressed against age. Each �t
can be done by minimizing a nonlinear least-squares criterion which writes:

∀1 ≤ i ≤ p, (ti, vi) = argmin
t∈R,v∈RN

ki∑
j=1

‖yi,j − Expp0,t
(v)(ti,j)‖2 [vi.61]

This nonlinear least squares criterion is minimized using gradient descent, where
the gradient of the objective function is approximated numerically using central �nite
di�erences. For each individual, ti (respectively vi) corresponds to the time at which
(respectively the speed at which) the �tted trajectory goes through p0. Naturally,
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t0 can be chosen to be the median of the times (ti)1≤i≤p and v0 the median of the
speeds (vi)1≤i≤p. Similarly, the associated variance hyperparameters st0 and sv0 are
chosen to provide narrow or non-informative priors. The variance hyperparameter sβ
is, by default, chosen equal to 1 in the experimental results and validations presented
hereafter. In the simple heuristic presented above, we choose to consider the median
instead of the mean. This is because the median is known to be more robust to outliers
than the mean.

In the case of the propagation model, recall that the observation (yi,j)1≤i≤p, 1≤j≤ki
are points in the product manifoldM = MN , whereM is a one-dimensional geodesically
complete Riemannian manifold. For this model, the hyperparameter p0 is initialized as
the Riemannian median of the observations

(
(yi,j)1

)
1≤i≤p, 1≤j≤ki

, where (yi,j)1 denotes
the �rst component of yi,j. This choice is motivated by the speci�c form of the average
trajectory in the propagation model. Similarly to the procedure described above, for
each k ∈ {1, . . . , N}, times (tki )1≤i≤p (in years) and velocities (vki )1≤i≤p are estimated
by minimizing the least squares criterion

∀1 ≤ k ≤ N − 1, (tki , v
k
i ) = argmin

t∈R,v∈R

ki∑
j=1

(
(yi,j)k − Expp0,t,v(ti,j)

)2
[vi.62]

where Expp0,t,v(·) denotes the geodesic of the one-dimensional manifold M , which goes

through the point p0 ∈ M at time t and with velocity v. The hyperparameter t0 (re-
spectively v0) is initialized as the median of the times (t1i )1≤i≤p (respectively velocities

(v1
i )1≤i≤p). For k ∈ {2, . . . , N}, the hyperparameter δk is initialized as the di�erence

between t0 and the median of the times (tki )1≤i≤p.

Regarding the variance parameters, the hyperparameters σξ,0, στ,0 and σ0 really
play an important role when the number of individuals is small. In that case, these
hyperparameters bound below the variances σ2

ξ , σ
2
τ , σ

2 and avoid variance parameters
going to 0. But if the number of individuals is large enough, the variance parameters
in the MCMC-SAEM are not expected to degenerate. The hyperparameters mξ, mτ

and mξ control the shape of the Inverse-Gamma prior on these variance parameters.
The larger these hyperparameters are, the narrower the priors are. In the applications
presented in this dissertation, these shape hyperparameters are chosen equal to 3, which
corresponds to a wide prior.

VI.3.5 Stopping criterion and convergence assessment

VI.3.5.1 Impact of several variables on the overall runtime

We discuss below the impact of several variables on the runtime of the MCMC-SAEM.
These variables are: the number of independent sources Ns, the dimension of the
observations N and the number of individuals p. The variables Ns and N characterize
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the total number of parameters to estimate. The number of individuals p in�uences
(linearly) the number of latent variables in the model, and therefore the sampling step
of the algorithm.

In the MCMC-SAEM algorithm (see Algorithm 5), the sampling step is, by far,
the most computationally demanding step of the algorithm. Indeed, if the longitudinal
dataset contains a large number of individuals and/or high-dimensional data, comput-
ing the model likelihood may have a high computational cost. Eq. [vi.29] shows that the
logarithm of the model likelihood consists in a double sum where each term requires
to compute a Riemannian exponential, the parallel transport of a tangent vector and
an orthonormal basis (see Section IV.3.3.1).

For instance, with the (logistic curves or straight lines) propagation
model Eq. [v.13], the MCMC-SAEM would have to estimate the following parame-
ters: θ = (p0, t0, v0, δ1, . . . , δN−1, β1, . . . , β(N−1)Ns , ση, στ , σ). In this example, we see
that the number of parameters to estimate is 6 + (N − 1)(Ns + 1). As the dimension
N of the product manifold M increases, the number of parameters increases linearly.
Moreover, as N increases, the number Ns of independent sources has a greater im-
pact on the number of parameters to estimate. In a high-dimensional setting (N very
large), considering a large number of independent components may be computationally
very costly since each additional independent component requires to estimate N − 1
additional parameters.

VI.3.5.2 Convergence monitoring

At the kth iteration of the algorithm, let θ(k) denote the current estimate of the pa-
rameters of the generic spatiotemporal model. For 1 ≤ j ≤ |θ(k)|, θ(k)

j denotes the jth

coordinate of the vector θ(k). Monitoring the convergence of empirical averages de�ned
by: {(1

k

k∑
s=1

θ
(s)
j

)
k≥1

}
j

[vi.63]

can inform on whether the MCMC-SAEM has converged. To avoid biased averages,
the empirical averages in Eq. [vi.63] should be computed on a moving window. Plotting
the evolution of these empirical averages while the MCMC-SAEM is running provides
a graphical mean of assessing the convergence of the algorithm. Another solution is
to plot the evolution of the parameters (θ(k))k≥0. This visualization is proposed in
MONOLIX. When the evolution of the parameters stabilizes, the MCMC-SAEM may
have converged.

In [Booth and Hobert, 1999], the authors use a numerical stopping rule for their
Monte Carlo EM (MCEM) algorithm. Given small positive constants c1 and c2 (for
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example, c1 = 10−3 and c2 = 10−4), the algorithm is stopped as soon as

max
j

(
|θ(k)
j − θ

(k−1)
j |

|θ(k)
j |+ c1

)
< c2 [vi.64]

is satis�ed for several consecutive iterations.

In the following experiments, the MCMC-SAEM was run several times with various
limits on the maximum number of iterations. If the MCMC-SAEM could not converge
in the given number of iterations, the algorithm was run again from the previous
estimates. Even though the plots of empirical averages, computed on a moving window,
o�ers a way of assessing the convergence of the algorithm, deriving a generic and
automatic convergence criterion would help to save computational time by stopping
the algorithm at the right moment. However, proposing such an automatic stopping
rule remains an open problem.

VI.3.6 Discussion

VI.3.6.1 Sampling and optimization on a Riemannian manifold

The choice of the proposal distribution in Section VI.3.2 and parameters updates in
Section VI.3.3 make sense M is a convex open subset of the Euclidean space RN .
However, if we no longer assume that M is open in RN , as it would the case for the
sphere Sn−1 ⊂ Rn, the multivariate Gaussian proposal distribution centered at the
current state, used as proposal distribution in the Block MHwG sampler, would no
longer make sense for the latent variable p0, constrained to remain on the sphere. The
discussion below aims at proposing solutions to address this problem.

VI.3.6.1.1 Sampling step

In the block MHwG sampler (Algorithm 6), if M =]0, 1[, the proposal distribution for
p0 could be chosen to be a logit-normal distribution and if M = S2, the proposal dis-
tribution could be the Von Misses distribution. These proposal distributions solutions
are speci�c to these Riemannian manifolds. Even though considering these probability
distributions would allow to sample on the Riemannian manifold, a more generic solu-
tion would be preferable. In the following, we consider a generalization of the Gaussian
distribution to Riemannian manifolds.

Recall that for all (p,q) ∈ M, the Riemannian distance on M is de�ned by:
d(p,q) = ‖Logp(q)‖p, with Logp, the Riemannian logarithm at p ∈ M. The Rie-
mannian Gaussian distribution [Pennec, 2006], centered at p0 ∈ M and with variance
σ2, is the probability distribution on M whose density qM(· ; p0, σ

2) is given by:

∀p ∈M, qM(p ; p0, σ
2) ∝ exp

(
− 1

2σ2
d2(p,p0)

)
. [vi.65]
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As discussed in Section IV.3.5.2, the normalization constant of qM(· ; p0, σ
2) depends,

in general, on both the mean p0 ∈ M and the variance σ2. However, in a Riemannian
homogeneous space, the normalization constant in independent of the mean.

Note that the Riemannian manifolds considered in this thesis (M = RN , M =]0, 1[N

with N ∈ N∗ or M = Spd(n)) are Riemannian homogeneous spaces. For each of these
Riemannian manifolds, the group Isom(M) of the isometries (see Section III.1.2.2) of
M acts transitively on M. In other words, for any pair of distinct points on M, there
exist an isometry of the Riemannian manifold M which maps the �rst point onto the
other. In the following section, we show that the Riemannian manifolds considered in
this dissertation are Riemannian homogeneous spaces. It follows that, the Riemannian
Gaussian distribution could be used to replace the Gaussian proposal for p0 in the
sampling step of the MCMC-SAEM. Indeed, at the kth iteration of the MCMC-SAEM,
a candidate p∗0 could be proposed as follows: p∗0 ∼ qM(· ; p

(k−1)
0 , ζ2

p0
). However, using

this Riemannian Gaussian distribution as proposal distribution raises a di�culty: in
general, this probability distribution does not belong to a known family of probability
distributions. As a consequence, sampling from it may be di�cult or impossible. To
address this problem, a Metropolis-Hastings algorithm could be used to sample from
this distribution.

In [Girolami and Calderhead, 2011], the authors proposed a Metropolis adjusted
Langevin algorithm and Hamiltonian Monte Carlo algorithm to sample from probabil-
ity distributions de�ned on Riemannian manifolds. However, these methods depend
on the Fisher-Rao metric, which relies on the Hessian matrix of the target distribution.
As a consequence, these methods could lead to heavy computations. In [Betancourt,
2013], the author proposes a new metric tensor for Riemannian Hamiltonian Monte
Carlo methods, which is everywhere well-behaved and more practical to compute. Still,
the proposed metric still relies on the Hessian matrix, which would be very costly to
compute for the generic spatiotemporal model.

VI.3.6.1.2 The Riemannian manifolds ]0, 1[ and Sn are Riemannian homo-
geneous spaces

This section aims at proving that the Riemannian manifolds discussed above, namely
the open interval ]0, 1[ equipped with the Riemannian metric de�ned in Eq. [iv.5] and
the sphere Sn ⊂ Rn+1 equipped with the induced metric, are Riemannian homogeneous
spaces.

Proposition VI.1. The Riemannian manifold M =]0, 1[, equipped with the Rieman-
nian metric de�ned in Eq. [iv.5], is a Riemannian homogeneous space.

Proof. Let p, q be two points in ]0, 1[ with p 6= q. Consider the map fp,q :]0, 1[→]0, 1[
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de�ned by:

∀s ∈M =]0, 1[, fp,q(s) =
1

1 + exp
(
− logit(q) + logit(p)− logit(s)

)
=
(

1 +
(1− p)q(1− s)
p(1− q)s

)−1

.

[vi.66]

For purposes of simplicity, we use the notation f instead of fp,q. The map f is a
di�eomorphism of ]0, 1[ onto itself. In order to prove that f is a local isometry of M,
we shall prove that (see De�nition III.9):

∀p0 ∈]0, 1[, ∀(u, v) ∈ Tp0 ]0, 1[' R,
uv
(
f ′(p0)

)2

f(p0)2
(
1− f(p0)

)2 =
uv

p2
0(1− p0)2

. [vi.67]

Writing ∀s ∈]0, 1[, f(s) = 1/(1+g(s)) with: ∀s ∈]0, 1[, g(s) =
(
(1−p)q(1−s)

)
/
(
p(1−

q)s
)
, Eq. [vi.67] is equivalent to proving that:

∀p0 ∈]0, 1[,
(g′(p0)

g(p0)

)
=

1

p2
0(1− p0)2

[vi.68]

which follows easily from the de�nition of the function g. As a result, f is a local
isometry. To complete the proof that f is, indeed, a global isometry of ]0, 1[, it remains
to prove that:

∀(p0, q0) ∈]0, 1[, d
(
f(p0), f(q0)

)
= d(p0, q0) [vi.69]

where d denotes the Riemannian distance function, which is de�ned by:

∀(p0, q0) ∈]0, 1[, d(p0, q0) =
∣∣∣ ln(q0(1− p0)

p0(1− q0)

)∣∣∣. [vi.70]

Therefore, Eq. [vi.69] is equivalent to proving that:

∀(p0, q0) ∈]0, 1[,
g(p0)

g(q0)
=
q0(1− p0)

p0(1− q0)
[vi.71]

which follows directly from the de�nition of g. Finally, f is an isometry of M. Since
f is such that f(p) = q, the Riemannian manifold ]0, 1[ is a Riemannian homogeneous
space.

In [Lee, 2006], the author proves that the group of isometries of Sn is the orthogonal
group O(n+ 1). Proposition 3.3 of this book proves that, given any pair of points p, p̃
on Sn (with p 6= p̃), there exist ϕ ∈ O(n + 1) such that ϕ(p) = p̃. In particular, this
result proves that Sn is a Riemannian homogeneous space.
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VI.3.6.1.3 Maximization step

In Section VI.3.3, we proposed parameters updates which do not take into account
the Riemannian metric on M. Even though, in practice, the parameter p0 is always
estimated on the Riemannian manifold M, it is possible to derive an algorithm for the
maximization step which ensures that the parameter p0 always remain on the manifold
M. For all k, the function Qk(·) is de�ned on Θ = M × RN × R(N−1)Ns×]0,+∞[3, id
est the product of the manifold M and an open subset of the Euclidean space. Since
M is a Riemannian manifold, the Riemannian metric on M changes the expression of
the gradient of Qk. As mentioned in Section IV.3.3.1, the Riemannian metric gM on M
is of the form: ∀p ∈ M, ∀(u,v) ∈ TpM, gMp (u,v) = u>G(p)v. Therefore, it follows
from the de�nitions in Section III.1.2.3 that the gradient at θ of Qk is de�ned by:

grad Qk(θ) =



G(p0)−1∂Qk

∂p0

(θ)

∂Qk

∂v0

(θ)

...

∂Qk

∂σ
(θ)


. [vi.72]

The gradient of the function can be used to maximize Qk (or, equivalently, minimize
-Qk) in a Steepest Descent (SD) algorithm. Indeed, gradient-based algorithm for the
minimization of functionals de�ned on a Riemannian manifold were proposed in [Smith,
1994,Ring and Wirth, 2012].

In the case where M =]0, 1[ is equipped with the Riemannian metric given

in Eq. [iv.5], the function G above is de�ned by: ∀p0 ∈]0, 1[, G(p0) =
(
p0

2(1− p0)2
)−1

.

Therefore, the coe�cient G(p0)−1 in Eq. [vi.72] ensures that the �rst coordinate of

grad Qk vanishes as p0 goes to the �ends� of of the manifold M and, in that case, the

gradient descent moves less and less on the manifold, avoiding to converge to a point

which is not on the manifold. The SD algorithm is described in 7. In this algorithm,

the step size tj is chosen such that the objective function Qk decreases along the search

direction given by the gradient.
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Algorithm 7 Steepest descent on the Riemannian manifold M to maximize the func-
tion Qk.
Require: Initial guess θ0 ∈ Θ

Ensure: Set of parameters θ(k+1) solution of Eq. [vi.57]

1: Set j = 0, θj = θ0 and −→g j = grad Qk(θj)

2: repeat

3: Compute the descent step size tj using, for example, backtracking linesearch.

4: Set θj+1 = Expθj
(tj
−→g j),

−→g j+1 = grad Qk(θj+1), j = j + 1

5: until convergence.

6: Return: θ(k+1) ··= θj+1.

If we assume that the manifold M is no longer open in RN , the tangent space at
a given point can no longer be identi�ed with the ambient space. A way to maximize
the function Qk in the maximization step could be to consider that the function Qk is
de�ned on the product space TM×R(N−1)Ns×]0,+∞[3, where TM denotes the tangent
bundle ofM. Then, the function can be maximized using the steepest descent algorithm
on a Riemannian manifold and taking into account the Riemannian manifold structure
on the tangent bundle. As a matter of fact, TM can be naturally equipped with a
Riemannian metric called the Sasaki metric [Musso and Tricerri, 1988,Muralidharan
and Fletcher, 2012]. Considering this Riemannian metric on the tangent bundle would
ensure that the parameters (p0,v0) actually belong to the tangent bundle TM.

VI.4 Evaluation of the MCMC-SAEM

VI.4.1 Empirical validation on simulated data

VI.4.1.1 With the logistic curves propagation model

In order to validate the MCMC-SAEM, the logistic curves propagation model
(Eq. [v.19]) is tested on a synthetic longitudinal dataset. Using the generative model
(Eq. [v.19]), a longitudinal dataset with 248 individuals was generated, with an average
of 7 time points per individual (min: 5, max: 9). For each individual, the observa-
tions were random perturbations of points in ]0, 1[4. In addition to this, the number
of independent components Ns was �xed to 2. The parameters used to generate this
dataset are reported in Table 1. The MCMC-SAEM was run for a total of 1 020 000
iterations with a burn-in period of 600 000 iterations (which corresponds to 58% of the
total number of iterations). The initial parameters (respectively estimated parameters)
are reported in Table 2 (respectively Table 3).

The convergence of the parameters p0, t0, v0 is illustrated in Figure 12b. For a
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p0
∗ t0

∗
v0
∗ δ

∗
β
∗

σ∗ξ σ∗τ σ∗

0.2 74 0.03


0
−4
−2
−1




0.27
0.176
−0.02
−0.12
0.17
−0.16

 0.7 7 0.01

Table 1 � �True parameters�: parameters used to generate the test dataset.

p0 t0 v0 δ β σξ στ σ

0.3 65 0.01


0
0
0
0




0
0
0
0
0
0

 0.5 5 1

Table 2 � Initial parameters used for the MCMC-SAEM.

matter of clarity, the other parameters are not displayed. Let θ denote the parameters
of the logistic curves propagation model. Let p0

(k) (respectively t0
(k), v0

(k)) denote
the current estimate at the kth iteration of the MCMC-SAEM. The normalized errors
plotted in Figure 12 (b) are de�ned as follows:

|p0
(k) − p0

∗|
p0
∗

(
respectively

|t0
(k) − t0

∗|
t0
∗ ,

|v0
(k) − v0

∗|
v0
∗

)
[vi.73]

and the normalized empirical averages in Figure 12 (top) are de�ned as follows:

1

kp0
∗

k∑
n=1

p0
(k)
(
respectively

1

kt0
∗

k∑
n=1

t0
(k)
,

1

kv0
∗

k∑
n=1

v0
(k)
)
. [vi.74]

p̂0 t̂0 v̂0 δ̂ β̂ σ̂ξ σ̂τ σ̂

0.21 74.37 0.0291


0

−4.29
−1.96
−0.8




0.68
0.43
−0.0545

0.09
0.0572
−0.008

 0.65 6.69 0.01

Table 3 � Parameters estimated by the MCMC-SAEM.



130 VI.4.1 Empirical validation on simulated data

0 1 2 3 4 5 6 7 8

Iterations ×10
5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 e

m
p

ir
ic

a
l 
a

v
e

ra
g

e
s

p0

t0

v0

(a)

0 1 2 3 4 5 6 7 8

Iterations ×10
5

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 e

rr
o

r

p0

t0

v0

δ

(b)

Figure 12 � Top: Normalized errors for the parameters p0, t0 and v0. Bottom: Nor-
malized empirical averages for the parameters p0, t0 and v0.

As discussed in Section VI.3.5.2, the normalized empirical averages are computed using
a moving average of 1000 iterations.

VI.4.1.2 With the SPD matrices model

In this section, we provide results regarding the validation of the SPD matrices model
on a synthetic dataset. Using the model described in Eq. [v.8], a longitudinal dataset
of 3× 3 symmetric positive de�nite matrices (covariance matrices) was generated with
p = 250 individuals and an average of 6 time points per individual (a minimum of 5
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and a maximum of 8). The parameters used to generate the test dataset are reported
in the �rst column of Table 4. The MCMC-SAEM was run for a total of 2 900 000
iterations and with a burn-in period of 2 500 000 iterations, which corresponds to 83%
of the total number of iterations. The initial parameters are reported in Table 5.

Note that, in Table 6, the sign of β̂ is not correct. However, this is not surprising as,
given the Independent Component Analysis (ICA) model on the space shifts (wi)1≤i≤p,
the vector β can only be estimated up to a sign change. Similarly to the previous

P0
∗

t0
∗

V0
∗

β
∗

σ∗ξ σ∗τ σ∗

5.2 1.9 2.2
1.9 11.4 4.6
2.2 4.6 6.3

 60

−0.13 −0.17 −0.16
−0.17 −0.66 −0.37
−0.16 −0.37 −0.25




0.03
0.49
0.15
0.32
−0.493

 0.4 3 0.20

Table 4 � �True parameters�: parameters used to generate the test dataset.

P0 t0 V0 β σξ στ σ

4 0 1
0 9 1
1 1 3

 70

−1 0 0
0 −1 0
0 0 −1




0
0
0
0
0

 1 5 1

Table 5 � Initial parameters used for the MCMC-SAEM.

P̂0 t̂0 V̂0 β̂ σ̂ξ σ̂τ σ̂

5.14 1.89 2.16
1.89 11.28 4.52
2.16 4.52 6.19

 60.74

−0.13 −0.16 −0.15
−0.16 −0.63 −0.39
−0.15 −0.39 −0.24



−0.035
−0.501
−0.159
−0.336
0.5105

 0.39 2.92 0.2011

Table 6 � Parameters estimated with the MCMC-SAEM and the SPD matrices model.

experiment on simulated data, the convergence of the MCMC-SAEM is illustrated with
the normalized error of parameters P0, t0 and V0. As above, the normalized error for
P0 (respectively t0, V0) are de�ned by:

‖P0
(k) −P0

∗‖F
‖P0

∗‖F

(
respectively

|t0
(k) − t0

∗|
t0
∗ ,

‖V0
(k) −V0

∗‖
V0
∗

)
[vi.75]
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This experiment on a synthetic dataset shows that the MCMC-SAEM succeeds in
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Figure 13 � Normalized errors for the parameters P0, t0 and V0.

providing estimates of the parameters of the model which are quite close to the ones
used to generate the data, even though a large number of iterations was necessary to
reach convergence.

VI.4.1.3 Runtime

In the previous sections, the MCMC-SAEM is used with the logistic curves propagation
model and with the SPD matrices model. This section provides informations on the
runtime of the MCMC-SAEM for these two examples. The two experiments on sim-
ulated data were run using MATLAB®, on a computer with 4 Intel®Xeon(R) CPU
at 3.20GHz. The timings given below were measured using the cputime MATLAB
function. The runtimes below are given for 1000 iterations.

VI.4.1.3.1 For the logistic curves propagation model

· Overall MCMC-SAEM algorithm: 333 s (5.5 minutes ; ∼ 0.3 s per iteration)

· Sampling step of the MCMC-SAEM: 300 s (5 minutes)
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· Computation of an orthonormal basis (Bk)1≤k≤(N−1)Ns : 3.05 s for 7992 calls
(∼ 3.8× 10−4 s per call).

VI.4.1.3.2 For the SPD matrices model

The SPD matrices model, without approximation of the parallel transport, requires
to compute multiple exponentials, logarithms and square roots of matrices. Using
MATLAB function to perform these operations leads to a costly algorithm. Indeed,
for 1000 iterations, the MATLAB code (not optimized) of the overall MCMC-SAEM
runs in 23 714 s (6.58 hours). By using MATLAB Executable Files (MEX �les), the
overall runtime was divided by 70.

· Overall MCMC-SAEM algorithm: 339 s (5.6 minutes ; ∼ 0.3 s per iteration)

· Sampling step of the MCMC-SAEM: 316 s (∼ 5 minutes)

· Computation of an orthonormal basis (Bk)1≤k≤(N−1)Ns : 9 s for 8991 calls (∼
3.8× 10−4 s per call).

VI.4.1.3.3 Discussion

These results show that the sampling step is the most expensive step of the MCMC-
SAEM. The computations which are not included in the timing of the sampling step
include the computation of the su�cient statistics, the update of the parameters. For
both experiments, approximately 65% of the runtime of the sampling step is spent in
the computation of the model likelihood q(y | z,θ). The computation of an orthonor-
mal basis of Span

(
γ̇0(t0)

)
is de�nitely not costly for the low dimensional examples

considered here.

VI.4.2 Comparison with standard methods and algorithms

VI.4.2.1 Comparison between the �logistic curves model� and a LME
model

In Section V.1.3.1, it is mentioned that the logistic curves model (abridged LC model ;
see Eq. [v.7]) is not equivalent to a LME model on observations transformed with the
logit function. In this section, we provide a numerical comparison of both methods,
which completes the discussion of Section V.1.3.1. To this end, we consider a longi-
tudinal dataset which is analyzed later in Section VII.3.1. This longitudinal dataset
consists in normalized scalar observations for p = 1393 individuals, with a minimum
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(respectively maximum, average) of 3 (respectively 11, 5) time points per individual.
Let (yi,j, ti,j) denote this longitudinal dataset.

Recall that the logistic curves model writes:

yi,j =

(
1 +

( 1

p0

− 1
)

exp
(
− v0αi(ti,j − t0 − τi)

p0(1− p0)

))−1

+ εi,j. [vi.76]

In this section, we assume that εi,j
i.i.d.∼ N (0, σ2

LC). The other random e�ects are of
the model are distributed as in Section IV.3.4. We propose to compare this nonlinear
mixed-e�ects model to a �random slope and intercept� model on transformed observa-
tions. Indeed, it is quite common, with observations in ]0, 1[, to map these observations
to the real line using the logit transform (de�ned in Eq. [iv.7]) and then perform a lin-
ear analysis. As a consequence, the logistic curves model is to be compared to the
following LME model:

logit(yi,j) = (A+ Ai)ti,j +B +Bi + ε̃i,j. [vi.77]

with: [
Ai
Bi

]
i.i.d.∼ N

([
0
0

]
,

[
σ2
A 0
0 σ2

B

])
and ε̃i,j

i.i.d.∼ N (0, σ2
LME). [vi.78]

Since the logistic curves model is used with observations in ]0, 1[ and the LME model
is used with observations in R, the variance of the noise terms (εi,j) and (ε̃i,j) cannot
be directly compared. To address this problem, we propose to compare the percentage
of variance explained by both models.

For the logistic curves (LC) model, let θ̂LC =
(
p̂0, t̂0, v̂0, σ̂2

ξ , σ̂
2
τ , σ̂

2
LC

)
be the param-

eters estimated with the MCMC-SAEM. For each individual, the MAP (Maximum A
Posteriori) estimates (α̂i, τ̂i) of the individual random e�ects are obtained by maximiz-
ing the joint conditional distribution q(αi, τi | yi, θ̂LC). The residuals (r̂i,j)i,j of the
model are therefore computed as follows:

∀i, j, r̂i,j = yi,j −

(
1 +

( 1

p̂0

− 1
)

exp
(
− v̂0α̂i(ti,j − t̂0 − τ̂i)

p̂0(1− p̂0)

))−1

. [vi.79]

and the percentage of total variance explained by the LC model is de�ned by:

R2
LC = 1− var(r̂i,j)

var(yi,j)
. [vi.80]

For the LME model (see Eq. [vi.77]), let θ̂LME =
(
Â, B̂, σ̂2

A, σ̂
2
B, σ̂

2
LME

)
denote the

parameters estimated using the fitlmematrix function of the MATLAB software.
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The MAP estimates (Âi, B̂i)1≤i≤p of the individual random e�ects are obtained using
the BLUP, given in Eq. [viii.8]. The residuals

(̂̃ri,j) of this model are de�ned by:

∀i, j, ̂̃ri,j = yi,j −
1

1 + exp
(
− (Â+ Âi)ti,j − (B̂ + B̂i)

) . [vi.81]

The percentage of total variance explained by the LME model is de�ned by:

R2
LME = 1−

var
(̂̃ri,j)

var(yi,j)
. [vi.82]

Finally, we obtained: R2
LME = 82.2% and R2

LC = 93.3%. Therefore, the logistic curves
model �ts the observations better than the LME model. These results illustrates the
idea that the logistic curves model is not equivalent to a LME model. In the LME
model (see Eq. [vi.77]), if the term ti,j is replaced by (ti,j − t̂0), where t̂0 = 70.3 years
is the parameter estimated with the MCMC-SAEM, the percentage of total variance
explained by the LME model raises to 90, 7%. Even though the result improved, it
remains lower than with the one obtained with the logistic curves model. In addition
to this, if the logistic curves model had not been used before, it would have been
impossible to estimate t̂0 with the other parameters of the LME model.

VI.4.2.2 Comparison between the MCMC-SAEM and the Laplacian Ap-
proximation

In this section, two algorithms are considered for the estimation of the parameters of
the univariate logistic curves model (seeEq. [v.7]). The longitudinal dataset considered
here is the same as the one introduced in the previous section.

The �rst algorithm considered is the Laplacian Approximation. The nlmixed proce-
dure of the SAS Software implements, among other likelihood approximation methods,
the Adaptive Gaussian quadrature method presented in [Pinheiro and Bates, 1996].
With a single quadrature point, this method is equivalent to the Laplacian Approxi-
mation presented in Eq. [vi.28]. Note that no priors on the parameters were used in
this experiment. At the beginning of the algorithm, the parameters were initialized
to the value of the hyperparameters proposed in Section VI.3.4. The estimates ob-
tained with the SAS Software are reported in Table 7. The MCMC-SAEM was also

p0 t0 v0 σξ στ σ

0.22 77.17 0.0139 0.64 7.42 0.13

Table 7 � Parameters estimated with the Laplacian Approximation (nlmixed proce-
dure) of the SAS Software.

used to estimate the parameters of the univariate logistic curves model on this dataset.
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The hyperparameters were chosen as discussed in Section VI.3.4. As for the Laplacian
Approximation, the parameters were initialized to the same value than the hyperpa-
rameters. The estimates obtained with the MCMC-SAEM are reported in Table 8.
The parameters estimated by both methods are not really similar and this is coherent

p0 t0 v0 σξ στ σ

0.1148 69.68 0.0076 0.94 10.42 0.0384

Table 8 � Parameters estimated with the MCMC-SAEM.

with the fact that the standard deviation of the noise is much smaller with the MCMC-
SAEM than with the Laplacian Approximation. Hence, the MCMC-SAEM explained
more variance than the Laplacian approximation. Still, the MCMC-SAEM converges
more slowly due to the high number of iterations required to observe the convergence
of the empirical averages of the parameters p0, t0 and v0. In fact, the MCMC-SAEM
was run for a total of 700 000 iterations with a burn-in period of 500 000 iterations.
The di�erence we observe between the two methods may be explained by the use of
priors with the MCMC-SAEM. Indeed, the priors act a regularization terms on the
likelihood.

We propose to show that, even though the parameters estimated with both meth-
ods are quite di�erent, the information provided by the MAP (maximum a posteri-
ori) estimates of the individual random e�ects are quite similar. For each method,
let θ∗ denote the estimated parameters. MAP estimates of the individual random
e�ects zi = (ξi, τi)1≤i≤p were obtained by maximizing the conditional distribution
q(ξi, τi | yi,θ

∗) of (ξi, τi) given the observations yi of the ith individual and the es-
timated parameters θ∗. The MAP estimates obtained from both methods are plotted
in Figure 14. The 1393 individuals are grouped into 4 groups: �stable controls�, �stable
Mild Cognitive Impairment (MCI)�, �stable Alzheimer's Disease (AD)� and �converters
MCI�. Even though the MCMC-SAEM allowed to obtain a better residual noise for
the same longitudinal dataset, we can observe that the plots of the individual random
e�ects are not dramatically di�erent. In particular, they both provide similar informa-
tions in terms of disease progression among the studied population. Figure 14 (b) is
interpreted and discussed in Section VII.3.

VI.4.2.3 Comparison of our MCMC-SAEM algorithm with STAN and
MONOLIX

This section aims at comparing our implementation of the MCMC-SAEM algorithm
with other state-of-the-art algorithms for the inference in nonlinear mixed-e�ects mod-
els and implementations: STAN and MONOLIX. Recall that STAN is a library, avail-
able in R or C++, which implements an adaptive Hamiltonian Monte Carlo sampler
called the No U-Turn Sampler (NUTS, [Ho�man and Gelman, 2014]). MONOLIX is
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Figure 14 � Plot of (the MAP estimates of) the individual log-acceleration factor ξi
against the time shifts t0 + τi. Figure (a) is the result of the Laplacian approximation
and Figure (b) is the result of the MCMC-SAEM. Each point corresponds to an indi-
vidual. On both plots, a vertical line was drawn at the estimated value of t0. Figure
(a) is taken from [Schiratti et al., 2015d].

a software, developed by Marc Lavielle [Lavielle and Mentré, 2007] and promoted by
the Lixoft company, which implements the MCMC-SAEM algorithm.

In order to compare these algorithms, we considered a synthetic longitudinal dataset
of observations in ]0, 1[. This dataset was generated for p = 250 individuals, with an
average of 5 time points per individual, using the logistic curves model (see Eq. [v.7])
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with parameters reported in Table 9. The three algorithms (our MCMC-SAEM de-

p0 t0 v0 σξ στ σ

0.24 70 0.034 0.5 7 0.01

Table 9 � Parameters used to generate the longitudinal dataset.

scribed in this dissertation, STAN and MONOLIX) were used with the logistic curves
model (Eq. [v.7]) and with initial parameters reported in Table 10. Our MCMC-SAEM

p0 t0 v0 σξ στ σ

0.6 60 0.05 1 1 1

Table 10 � Initial parameters: the same initial parameters were used with each algo-
rithm.

algorithm and STAN were run on a PC with 4 Intel Xeon(R) CPU at 3.20 GHz, even
though the computations were not done in parallel. The MONOLIX algorithm was
run on a MacBook Pro, with Intel Core i7 CPU at 2.5 GHz. Since the algorithms were
not run on the same platform, with the same resources, the runtimes presented below
should be read with caution. The results obtained with each algorithm are given in
the following sections.

VI.4.2.3.1 Results obtained with our MCMC-SAEM algorithm

Our MCMC-SAEM was run for 230 000 iterations, with a burn-in period of 175 000
iterations. The parameters estimated with our MCMC-SAEM are reported in Table 11.
The number of iterations and length of the burn-in period were determined by running
several times the experiment since the algorithm does not have a generic stopping
rule. Figure 15 represents the evolution of the normalized empirical averages for the
parameters p0, t0 and v0, computed on a moving window of length 1000. This �gure
shows that, after 230 000 iterations, the MCMC-SAEM had converged to values close
to the ones used to generate the data. Regarding the runtime of our MCMC-SAEM,

p0 t0 v0 σξ στ σ

0.23 69.93 0.0317 0.52 6.75 0.01

Table 11 � Parameters estimated with our MCMC-SAEM

1 000 iterations of the algorithm (run in MATLAB) took, on average, 6.05 seconds.
The runtime is actually quite fast because the MCMC-SAEM uses, as discussed in
the previous sections, a block MHwG sampler, which allows to reduce the number
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Figure 15 � Convergence of the MCMC-SAEM: plots of normalized empirical averages,
computed on a moving window of length 1000 iterations.

of computations of the model likelihood. Moreover, no parallel transport had to be
computed.

VI.4.2.3.2 Results obtained with STAN

As discussed above, the STAN software does not implement a variant of the MCMC-
SAEM. It implements the �NO U-Turns Sampler� (NUTS, [Ho�man and Gelman,
2014]), which is an adaptive Hamiltonian Monte Carlo sampler. As for our MCMC-
SAEM, no automatic stopping rule is implemented in STAN. In order to assess the
convergence of the sampler, STAN computes a coe�cient, for each Markov chain,
called Rhat (potential scale reduction factor). This coe�cient is also known as the
�Gelman and Rubin's convergence diagnostic� [Gelman and Rubin, 1992]. This con-
vergence diagnostic is quite popular to determine whether a Markov chain may have
converged. When the value of a Rhat coe�cient is below 1.01, as well as its correspond-
ing upper con�dence limit, we can assume that the chain has converged. A review of
other convergence diagnostics for MCMC methods can be found in [Cowles and Carlin,
1996].

In a �rst experiment, the STAN software was run for 2 000 iterations. The pa-
rameters estimates obtained after 2 000 iterations are reported in Table 12. Only the
variance parameters were correctly estimated. For the other parameters, the associ-
ated Markov chains had not converged yet since their Rhat coe�cient was above 1.3. A
total of 15 000 iterations were necessary, in a second experiment, to reach convergence
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and obtain a Rhat coe�cient below 1.01 for each Markov chain. The results obtained
after 15 000 iterations are presented in Table 13. Regarding the runtime of the STAN

p0 t0 v0 σξ στ σ

0.20 68.35 0.029 0.52 6.93 0.0998

Table 12 � Parameters estimated with STAN after 2 000 iterations.

p0 t0 v0 σξ στ σ

0.218 68.66 0.0305 0.53 6.73 0.098

Table 13 � Parameters estimated with STAN after 15 000 iterations.

software, 1 000 iterations took, on average, 1 500 seconds (25 minutes). The �warm-
up� phase of the algorithm is the most costly part of the algorithm since it takes up
to 75% of the overall runtime. The �sampling� part of the algorithm is usually quite
fast. This large runtime may be explained by the fact that, in opposition to the block
MHwG sampler, the NUTS sampler require numerous computations of the gradient of
the model likelihood.

VI.4.2.3.3 Results obtained with MONOLIX

The MONOLIX software was run on the simulated dataset and stopped automatically
after 500 iterations. Indeed, the MCMC-SAEM implemented in MONOLIX uses, by
default, an automatic rule which sets the burn-in period and the total number of
iterations. The software was run several times and, each time, after 500 iterations
(burn-in period stopped at 300 iterations), the algorithm had not converged to the
parameters used to generate the data. As a matter of fact, the results obtained with
MONOLIX after 500 iterations are reported in Table 14. Only the standard deviation
σ of the noise and the standard deviation of the log-acceleration factors (ξi)1≤i≤p are
correctly estimated. In another experiment, the MONOLIX software was forced to
run for a large number of iterations (with a long burn-in period). After approximately
20 000 iterations, the parameters estimates almost did not change anymore. The values
estimated after 20 000 iterations are reported in Table 15. In addition to this, the
evolution of the parameters is represented in Figure 16.

After 20 000 iterations, all the variance parameters were correctly estimated. Still,
the estimates of the �xed e�ects remain quite di�erent from the ones used to generate
the data. Regarding the runtime of the MONOLIX software, 1 000 iterations took,
on average, 3.5 minutes. In contrast to the STAN software, the MCMC-SAEM im-
plemented in the MONOLIX software does not require to compute derivatives of the
model likelihood. Moreover, its C++ implementation makes it very e�cient. Moreover,
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p0 t0 v0 σξ στ σ

0.078 60.7 0.010 0.55 8.11 0.099

Table 14 � Parameters estimated with MONOLIX after 500 iterations.

p0 t0 v0 σξ στ σ

0.37 71.6 0.0406 0.52 6.8 0.01

Table 15 � Parameters estimated with MONOLIX after 20 000 iterations.

Iterations (× 104)

𝑝0

(a)

Iterations (× 104)

𝑡0

(b)

Figure 16 � Figure (a) (respectively (b)): evolution of the parameter p0 (respectively
t0).

the MCMC-SAEM implemented in MONOLIX uses a Simulated Annealing algorithm
to avoid getting stuck in local maximums. This allows for a better and faster explo-
ration of the parameters space. However, the MONOLIX software currently does not
implements vectors or matrices, which prevented its use with more complex models.

VI.4.2.3.4 Comments

The results presented above show that, even with optimized algorithms (like STAN or
MONOLIX) large number of iterations are required to reach convergence. A possible
explanation would be that the posterior distribution q(θ | y), which is maximized by
these algorithms, is probably quite �at around its global maximum. Therefore, explor-
ing the parameters space to �nd this maximum is a di�cult optimization problem. In
higher dimension, adding the notion of parallel variation into the model, as well as
many latent variables, increases the di�culty of this optimization problem. This could
explain why the experiments presented in Section VI.4.1 required many iterations to
converge.
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VI.4.3 Detecting errors in the sampling step

This section aims at proposing a method to help detect coding errors in MCMC sam-
plers. The method we propose is adapted from the work of [Geweke, 2004]. Orig-
inally introduced in a Bayesian framework, the generic method is described in Sec-
tion VI.4.3.1. Then, this method is derived for our generic spatiotemporal model in
Section VI.4.3.2.

VI.4.3.1 The generic method

We consider a statistical model which speci�es a probability distribution for some

observations y ∈ RT , conditionally on unobserved parameters θ ∈ Θ̃ ⊂ RL. The

model is characterized by the density function q(y | θ). We also assume that the

model speci�es a proper prior distribution for the parameters θ, characterized by the

density function q(θ). As discussed in Chapter III, �Fully Bayesian� methods aim at

learning the posterior distribution q(θ | y) of the unobserved parameters, given some

observations y. When sampling from the posterior is not directly possible (because it

is known up to an intractable normalizing constant, for example), the sampling can be

done by using MCMC samplers. These samplers construct an ergodic Markov chain

with stationary distribution q(θ | y). For complex models, writing a MCMC sampler

to sample from q(θ | y) may be complicated and could lead to coding error. We

propose an iterative method which could help determine whether a MCMC sampler is

�error-free�. To do this, we use the MCMC sampler to construct an ergodic Markov

chain
(
y(k),θ(k)

)
k≥0

whose stationary distribution is the joint distribution q(y,θ). At

each iteration, the sample θ(k) is saved. After a su�ciently large number of iterations

(necessary for the chain to converge to its stationary distribution), if the sampler is

�error-free�, the samples
(
y(k),θ(k)

)
should be (approximately) distributed as q(y,θ).

Therefore, comparing an histogram of the samples
(
θ(k)
)
k≥0

to the density function of

the prior distribution allows to determine if there could be a problem with the sampler.

This method is implemented in Algorithm 8.
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Algorithm 8 Posterior sampler test
Require: Nmax : number of iterations.

Ensure: Samples
(
θ(k)
)
k≥0

1: Initialization: θ(0) ∼ q(θ) and y(0) ∼ q(y | θ(0)).

2: for k = 1 to Nmax do

3: θ(k) ∼ πy(k−1)(θ(k−1), ·)
4: Save θ(k)

5: y(k) ∼ q(y | θ(k))

6: end for

7: Return: samples
(
θ(k)
)
k≥0

In Algorithm 8, πy(k−1)(θ(k−1), ·) denotes the transition kernel of an ergodic Markov
chain whose stationary distribution is q(θ | y(k−1)).

Proposition VI.2. Algorithm 8 generates an ergodic Markov chain (y(k),θ(k))k∈N
whose stationary distribution is the joint distribution q(y,θ).

An outline of the proof of Proposition VI.2 is given in [Geweke, 2004].

VI.4.3.2 Application to the generic spatiotemporal model

In order to apply this method to the generic spatiotemporal model, the method pro-

posed in the previous section should be adapted to deal with latent variables. To this

end, we propose to consider the parameters θ of the generic spatiotemporal model �xed

and use Algorithm 8 to construct an ergodic Markov chain whose stationary distribu-

tion is the joint distribution q(y, z | θ), where y denote some observations and z the

latent variables of the model. The proposed method for the generic spatiotemporal

model is given in Algorithm 9. Recall form Section IV.3.4 that z =
(
zpop, (zi)1≤i≤p

)
with zpop =

(
p0, t0,v0, (βl,k)l,k

)
and, for all i ∈ {1, . . . , p}, zi =

(
ξi, τi, (sl,i)l

)
. If, at

each iteration of Algorithm 9, the latent variable t(k)
0 is saved into the vector R, after

a large number of iterations Nmax, the samples (t
(k)
0 )k should be approximately dis-

tributed as its prior distribution, if step 3: of Algorithm 8 is �error-free�. Indeed, the

marginal distribution of t0 in q(y, z | θ) is the prior t0, id est t0 ∼ N (t0, σ
2
t0

).
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Algorithm 9 Posterior sampler test derived for the generic spatiotemporal model
Require: Observations y generated using Eq. [iv.66], a set of parameters θ, Nmax :

number of iterations.

Ensure: Samples
(
y(k), z(k)

)
k≥0

1: Initialization: z(0) ∼ q(z | θ) and y(0) ∼ q(y | z(0),θ).

2: for k = 1 to Nmax do

3: z(k) ∼ πy(k−1),θ(z(k−1), ·)
4: R[k]← f

(
z(k)
)

5: y(k) ∼ q(y | z(k),θ)

6: end for

7: Return: the vector R.

VI.4.3.2.1 Numerical examples and discussion

The posterior sampler test described in Algorithm 8 was tested in two di�erent situa-
tions:

(i) In the �rst experiment, the algorithm was tested with the univariate logistic
curves model (see Eq. [v.7]). Therefore, the observations y(k) generated at each
step of the algorithm consist, for each individual, in perturbations of points in
the one-dimensional Riemannian manifold M =]0, 1[. The parameters used for
this experiment are given by: p0 = 0.3, t0 = 70 years, v0 = 0.03, σξ = 0.7, στ = 7
and σ = 0.1. The number of individuals was chosen to be p = 250.

(ii) For the second experiment, we used the logistic curves propagation model
(see Eq. [v.19]). This model was used with N = 4. Therefore, at each step
of Algorithm 9, the observations y(k) were, for each individual, a random pertur-
bation of a point in M =]0, 1[4. The parameters used for this experiment are:
p0 = 0.2, t0 = 74 years, v0 = 0.03, δ =

[
0 −4 −2 −1

]>
(in years), σξ = 0.7,

στ = 7 years, σ = 0.01 and β =
[
0.27 0.1768 −0.02 −0.12 0.1718 −0.16

]>
.

The number of individuals was chosen to be p = 250 and the number of indepen-
dent components Ns was chosen equal to Ns = 2.

For the �rst experiment, the algorithm was run for 50 000 iterations. At each iteration,
the latent variables (p0, t0, v0, ξ1, τ1) were saved. At the end of the algorithm, for
each latent variable, a normalized histogram of the saved samples was plotted and the
density of the probability distribution assumed for this variable was superimposed to
the histogram. The results are given in Figure 17 (a). These results show that, for
each latent variable, the density function is well superimposed to the histogram. This
means that the validation of the sampler was successful.
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Similarly, for the second experiment, the algorithm was run for 150 000 iterations
and the latent variables (p0, t0, v0, ξ1, τ1) were saved at each iteration. The results ob-
tained in the second experiment are given in Figure 17 (b). The results obtained with
this experiment are less satisfying. Indeed, the density function is well superimposed
to the histogram for p0 and t0. However, it is not the case for the other latent variables.
The reason why the results are di�erent in dimension N = 4 remains an open method-
ological question. A possible answer would be as follows. In the �rst experiment, the
dimension of the space of the latent variables equals 2p + 3 = 503, whereas in the
second experiment, it equals: 4p + 12 = 1012. The block MHwG sampler used in the
MCMC-SAEM may have di�culties sampling e�ciently in this very high-dimensional
setting. Even though the results are less satisfying in dimension N = 4 than in di-

𝑝0 𝑡0 𝑣0 𝜉1 𝜏1

(a)

𝑝0 𝑡0 𝑣0 𝜉1 𝜏1

(b)

Figure 17 � Figure (a) (respectively Figure (b)): Normalized histograms of the
samples of the latent variables (p0, t0, v0, ξ1, τ1) for the �rst experiment (respectively
second experiment).

mension N = 1, the experimental results presented in Chapter VII show that the
MCMC-SAEM, used with the block MHwG sampler, allows to obtain meaningful pa-
rameters estimates. Moreover, the maximum a posteriori estimates of the individual
random e�ects provide informations which are consistent with the knowledge on the
progression of neurodegenerative diseases (see Section VII.3).
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VI.4.4 Numerical schemes for parallel transport and construc-
tion of an orthonormal basis

VI.4.4.1 The Schild's Ladder algorithm

As mentioned in Section IV.2.3, the parallel transport is not always available in closed-
form. In such a situation, numerical schemes can be used to approximate it. The �rst
approach to address this problem consists in solving the set of di�erential equation
which de�ne the parallel transport. If the Riemannian exponential and Riemannian
logarithm are available, another possible solution is a numerical scheme called Schild's
ladder. The Schild's ladder was introduced in the 1970's by Alfred Schild, in the
context of general relativity. Since then, it has been used in various �elds, such as
medical imaging [Lorenzi et al., 2011,Ng et al., 2014], general relativity or computer
vision [Rumpf and Wirth, 2012]. In [Kheyfets et al., 2000], the authors describe the
Schild's ladder for an arbitrary a�ne connection and prove its convergence. However,
they do not give the order of convergence of this numerical scheme.

The Schild's Ladder is an iterative algorithm which approximates the parallel trans-
port of a tangent vector along a curve or a geodesic by repeating the procedure described
below. Consider a curve c drawn on a smooth manifold M. Let P0, P1 be points on c.
Let v be a tangent vector to M at P0. One step of the Schild's Ladder transports the
vector v from P0 to P1 as follows:

(i) Let P′0 = ExpP0
(v).

(ii) Let P2 = ExpP′0

(
1
2
LogP′0

(P1)
)
. The point P2 correspond to the midpoint of the

geodesic from P′0 to P1.

(iii) Let P′1 = ExpP0

(
2LogP0

(P2)
)
. The point P′1 corresponds to the endpoint of the

geodesic starting from P0, whose midpoint is P2.

(iv) The parallel transport along c of the vector v, from P0 to P1, is v′ = LogP1
(P′1).

This procedure is illustrated in Figure 18. For an arbitrary smooth manifold M, the
points P0 and P1 are chosen close enough that this numerical scheme takes place within
a single coordinate chart.
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Algorithm 10 Approximation of the parallel transport based on the Schild's Ladder
procedure
Require: Step size ε > 0, tangent vector w ∈ Tγ(t0))M, time t ∈ R
Ensure: Approximation of Pγ,t0,t(w)

1: if |t− t0| < ε then

2: Nsteps ← 1

3: else

4: Nsteps ←
⌊
|t−t0|
ε

⌋
5: end if

6: for k = 0 to Nsteps − 1 do

7: tk ← t0 +
k

Nsteps

(t− t0)

8: tk+1 ← t0 +
k + 1

Nsteps

(t− t0)

9: Pk ← γ(tk)

10: Pk+1 ← γ(tk+1)

11: procedure Schild's Ladder(Pk, Pk+1, w):
12: P′0 ← Exp(Pk,w)

13: P2 ← Exp
(
P′0, 0.5Log(P′0,Pk+1)

)
14: P′1 ← Exp

(
Pk, 2Log(Pk,P2)

)
15: w← Log(Pk+1,P

′
1)

16: end procedure

17: end for

18: Return: w

P0

P1

P2

P0′

P1′

𝒗

𝒗′

𝒄

Figure 18 � Schild's Ladder: construction of one �geodesic parallelogram� to transport
the tangent vector v ∈ TP0M to P1 along γ.

Since the step size ε is ought to be small, the procedure described above is to be
repeated several times to transport a tangent vector from a point on c to another.
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VI.4.4.1.1 In�uence on the runtime of the MCMC-SAEM

The Schild's Ladder can be used to replace the exact computation of the parallel
transport on the Riemannian manifold Spd(n). We used this numerical scheme to ap-
proximate the parallel transport in the SPD matrices model. This model was then used
to analyze the longitudinal dataset of symmetric positive de�nite matrices discussed
in Section VI.4.1.2. For the Schild's ladder, we chose a step size ε = 0.1. As a result,
one iteration of the MCMC-SAEM takes, on average, 53 s. In contrast to the runtimes
presented in Section VI.4.1.3, we can observe that the MCMC-SAEM is, on average,
176 times slower with this numerical scheme. Note that the multiplicative factor 176
could be even larger if the step size ε of the Schild's Ladder was chosen smaller.

VI.4.4.2 Algorithms for the construction of an orthonormal basis

In Section IV.3.3.1, the Householder method and Gram-Schmidt algorithm were in-
troduced as possible solution to compute an orthonormal basis of the vector space
Span

(
G(p0)γ̇0(t0)

)⊥
. Such an orthonormal basis is then used to de�ne the space shifts

and independent components according to Eq. [iv.55] and Eq. [iv.56]. In this section,
we exploit these two methods to derive algorithms to compute the space shift of a given
individual. Two algorithms are proposed, one based on the Householder method and
the other on the Gram-Schmidt. This section ends with a comparison of both methods
and a discussion regarding their computational cost.

Following the description of the Householder method in Section IV.3.3.1 and using
the same notations, let a be the vector in RN de�ned by:

a = S0 + sgn(S0,1)‖S0‖e1 [vi.83]

where S0 = G(p0)γ̇0(t0) and (e1, . . . , eN) denotes the canonical basis of RN . The
following algorithm is based on the Householder method and allows to compute the
space shifts (wi)1≤i≤p:
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Algorithm 11 Computation of the individual space shift wi based on the Householder
method
Require: Ns, a as in Eq. [vi.83], (sl,i)1≤l≤Ns as in Eq. [iv.55], (βl,k)1≤l≤Ns, 1≤k≤N−1 as

in Eq. [iv.56]
Ensure: Individual space shift wi

1: ẽ← 0

2: wi ← 0

3: for l = 1 to Ns do

4: for k = 1 to (N − 1) do

5: ẽ← ek+1 − 2 (a>ek+1)

a>a
ek+1

6: wi ← βl,kẽ + wi

7: end for

8: wi ← sl,iwi

9: end for

10: Return: wi.

A second algorithm can be proposed using the Gram-Schmidt algorithm described
in Section IV.3.3.1:

Algorithm 12 Computation of the individual space shift wi based on the Gram-
Schmidt algorithm

Require: Ns, (v1, . . . ,vN−1) a basis of Span
(
G(p0)γ̇0(t0)

)⊥
, (sl,i)1≤l≤Ns as

in Eq. [iv.55], (βl,k)1≤l≤Ns, 1≤k≤(N−1) as in Eq. [iv.56]
Ensure: Individual space shift wi

1: wi ← 0

2: for l = 1 to Ns do

3: for k = 1 to (N − 1) do

4: Q̃k ← vk
‖vk‖

5: wi ← βl,kQ̃k + wi

6: for s = (k + 1) to N do

7: vs ← vs − (v>s Q̃k)Q̃k

8: end for

9: end for

10: wi ← sl,iwi

11: end for

12: Return: wi.

Note that the algorithm 12 uses the �Modi�ed Gram-Schmidt� algorithm. This
version of the Gram-Schmidt algorithm does the same computations as the usual Gram-
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Schmidt algorithm but is known to be numerically more stable and less sensible to
rounding errors. Still, the Householder method is usually numerically more stable than
the Gram-Schmidt algorithm. In addition to numerical stability, these two algorithms
for the computation of space shifts do not have the same cost.

VI.4.4.2.1 Comparison of the Householder method and Gram Schmidt al-
gorithm

The most computationally expensive step of Algorithm 11 is the step 5:.
Indeed, it can be decomposed as follows:

· a>ek+1 (respectively a>a)): N multiplications, (N − 1) additions.

· Given a>ek+1 and a>a, 2
(a>ek+1)

a>a
requires 2 multiplications.

· Given 2
(a>ek+1)

a>a
, 2

(a>ek+1)

a>a
ek+1 requires N multiplications.

· Finally, ek+1 − 2
(a>ek+1)

a>a
ek+1 requires N additions.

As a consequence, step 5: of Algorithm 11 requires 2N+2(N−1)+2+2N = 6N �oating-
point operations. Step 6: (respectively 8:) requires 2N (respectively N) �oating-point
operations. Therefore, the innermost loop of the �rst algorithm requires 8N �oating-
point operations and steps 3: to 9: require: Ns

(
8N(N − 1) + N

)
= 8N2Ns − 7NNs

�oating point operations.

Similarly, step 7: of Algorithm 12 requires 4N−1 �oating-point operations. Indeed,
it is decomposed as follows:

· v>s Q̃k : N multiplications, (N − 1) additions.

· Given v>s Q̃k, (v>s Q̃k)Q̃k requires N multiplications.

· Given (v>s Q̃k)Q̃k, vs − (v>s Q̃k)Q̃k requires N additions.

As a consequence, step 7: requires 4N − 1 �oating-point operations. It follows that
steps 6: to 8: require:

∑N
s=k+1(4N − 1) = (4N − 1)(N − k) �oating-point operations.
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Steps 4: (respectively 5:) require N (respectively 2N) elementary operations.
Therefore, steps 2: to 11: require

Ns

[
N−1∑
k=1

( N∑
s=k+1

(4N − 1) + 3N
)

+N

]

= Ns

N∑
k=1

(
(4N − 1)(N − k) + 3N

)
+NNs

= Ns

N−1∑
k=1

(
4N2 + 2N + k − 4Nk

)
+NNs

= Ns

[
2N3 +

N(N − 1)

2
−N

]
[vi.84]

�oating-point operations.

In the end, the cost (in time) of the Algorithm 11 is O(N2) whereas it is O(N3) for
the Algorithm 12. In addition to this, Algorithm 11, based on the Householder method,
only requires to store ẽ and a, which are two vectors in RN . Algorithm 12, based on
the modi�ed Gram-Schmidt algorithm, requires to store the set (v1, . . . ,vN−1) which
consists in (N − 1) vectors in RN . It follows that the memory footprint of the �rst
algorithm is O(N) whereas it is O(N2) for the second algorithm. Note that the �rst
algorithm repeats, each time it is called, the same computations in step 5 :. This is
because the orthonormal basis of Span

(
G(p0)γ̇0(t0)

)
is not stored. Judging by the

runtime and memory footprint of both algorithms, the �rst algorithm seems to be a
better choice, especially when dealing with high-dimensional observations.
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VII.1 Motivation

This chapter proposes experimental results obtained with the particular cases of the
generic spatiotemporal model. These experiments on longitudinal datasets of health
data aim at showing that the generic spatiotemporal model allows to estimate prop-
agation models which provide insightful informations on the evolution of a speci�c
biological phenomenon. In Section VII.2, we propose a method to assess how well the
generic spatiotemporal model allows to put into correspondence individual trajectories
of progression. This evaluation method is used in the di�erent experiments presented
below. We show that, in various situations, the time reparametrization estimated by
the MCMC-SAEM provides a good correspondence between individuals.

In Section VII.3, we analyze longitudinal datasets of neuropsychological test scores.
These test scores provide a measure of the impairment of cognitive functions among a
group of healthy individuals and individuals diagnosed with Alzheimer's disease. By
analyzing these neuropsychological test scores with the logistic curves models, we de-
rive normative data-driven scenarios of the impairment of cognitive functions during
the course of Alzheimer's disease. These normative scenarios provide an ordering in
which the cognitive functions are impaired, as well as the relative timing between these
impairments. We also show that the individual acceleration factors and time shifts,
estimated a posteriori from the individual data, successfully capture the temporal vari-
ability in the measurements.

Section VII.4 proposes an analysis of a longitudinal dataset of cortical thickness
measurements. With this dataset, we were able to �nd anatomical regions where
the cortical atrophy progresses faster than others. These �ndings are consistent with
previous knowledge on Alzheimer's disease pathophysiology.

In Section VII.5, we propose the analysis of a longitudinal dataset of body fat
measurements, collected from a population of pre-menarcheal young girls. It is known
that the percentage of body fat increases after menarche. In this dataset, the time
of menarche is known for each individual. The menarche is a biological event which
leads to changes in the metabolism, and in the body fat measurements. This could be
considered as the equivalent of the onset of Alzheimer's disease. Therefore, the body
fat dataset o�ers the advantage that the time of occurrence of this speci�c event is
known for each individual, unlike the age at onset in Alzheimer's disease.

Finally, Section VII.6 proposes the analysis of a synthetic dataset of 3×3 symmetric
positive de�nite matrices. This dataset was not obtained from a clinical study, but is
intended to represent longitudinal datasets which could be obtained in Di�usion Tensor
Imaging (DTI). DTI is a medical imaging technique which aims at characterizing the
structure of biological tissues organized in �bers (like the white matter in the brain or
cardiac �bers) by estimating the directions in which water molecules di�use. Moreover,
analyzing this longitudinal dataset with the SPD matrices model allows to validate the
model and the algorithm in a Riemannian manifold of negative sectional curvature.
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VII.2 Experimental setup and evaluation criteria

In this section, we propose a method to evaluate how well the individual time
reparametrizations, introduced in Section IV.3.1, allow to put in correspondence the
evolution of the individuals. In order to do this, we will use an additional information
which is not used in the model: the time at which a particular event occurs in the life
of an individual. For example, the event could be the time of onset of a disease, if
this information is known, or a time at which a change occurs in the metabolism. In
sequences of images of people smiling, the event could be the time at which the muscles
of the face relax and the person stops smiling. The event occurs at a di�erent time
point for each individual. The individual time reparametrization ψi aims at putting

Average 
timeline 

Timeline of 
individual 1 

Timeline of 
individual 2 

𝑡1
∗ 

𝑡2
∗ 

𝜓1
−1 

𝜓2
−1 
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𝜓1
−1 topt  

𝜓2
−1 topt  

Figure 19 � The average time of event topt is mapped to the individual timelines using
ψ−1
i .

in correspondence the progression of the di�erent individuals. For the ith individual,
ψi maps the timeline of this individual to the �average timeline�, namely the timeline
of the average trajectory. Let t∗i be the time point at which the event occurs in the
timeline of the ith individual. Given this information, we de�ne topt as the time point,
in the average trajectory γ0, corresponding to the occurrence of the event. This time
point topt is obtained by minimizing the sum of errors E : t 7→

∑
i |t∗i − ψ

−1
i (t)|. Note

that topt can be interpreted as a median of the normalized ages (ψi(t
∗
i ))i, and could

therefore not be unique. Then given topt which minimizes the sum of errors E, this
time point is mapped from the average timeline to the individual timelines by the map-
pings ψ−1

i , as illustrated in Figure 19. If the time-reparametrization ψi allowed for an
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exact correspondence between the average timeline and the timeline of the ith individ-
ual, the corresponding age ψ−1

i (topt) would actually be t∗i . In practice, the di�erence
|t∗i − ψ−1

i (topt)| allows to quantify how well the timeline of the ith individual and the
average timeline have been put into correspondence.

In the experiments considered in the following sections, the median topt of(
ψi(t

∗
i )
)

1≤i≤p was computed unambiguously. To assess how well the individual tra-
jectories and the average trajectory have been put into correspondence, we proposed
an histogram of the errors

(
|t∗i − ψ−1

i (topt)|
)

1≤i≤p.

VII.3 Neuropsychological test scores

VII.3.1 The datasets

In this section, three longitudinal datasets are considered. All these datasets consist
in normalized neuropsychological test scores collected from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database. The neuropsychological test used is the
modi�ed �ADAS-Cog� test [Mohs et al., 1997]. Each of the 13 items of the test measures
the impairment of either memory, language, concentration or praxis. The sum of the
13 items is marked out of 85. The higher the score, the more impaired the cognitive
function.

(i) For the �rst longitudinal dataset, the scores to the 13 items were summed and
normalized by the maximum possible value, 85. Therefore, the observations are
points in ]0, 1[ (no individual had a score equal to 0 or to 85). These observations
were collected for 1393 individuals from the ADNI1, ADNI2 and ADNIGo cohorts
of the ADNI database, with an average of 4 time points per individual (min: 3
; max: 11). Results obtained with this dataset are presented in Section VII.3.2.
Elements of this section are taken from [Schiratti et al., 2015d].

(ii) The second longitudinal dataset was obtained by grouping the items by cogni-
tive function (memory, language, praxis and concentration). For each cognitive
function, the sum of the scores was normalized by the maximum possible value.
Therefore, the observations are points in ]0, 1[4. These observations were collected
for individuals, from the ADNI1 cohort, with mild cognitive impairment (MCI)
who converted to Alzheimer's disease (AD) during the observation period. A to-
tal of 248 individuals were included in this dataset. Results with this dataset are
presented in Section VII.3.3. Elements of this sections are taken from [Schiratti
et al., 2015a].

(iii) The third longitudinal dataset consists in the same population as for the second
one. However, instead of grouping the scores by cognitive functions, each item
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score was normalized by its maximum possible value, resulting in observations in
]0, 1[13. The results obtained with this dataset are presented in Section VII.3.4.
Elements of this section are taken from [Schiratti et al., 2015b].

Since the observations of the �rst longitudinal dataset are normalized univariate
measurements, this dataset was analyzed using the univariate logistic curves model
(see Eq. [v.7]). The two other datasets, which consist in multivariate normalized ob-
servations, were analyzed using the unstructured logistic curves propagation model
(see Eq. [v.19]). The parameters of each model was estimated using the MCMC-SAEM
algorithm.

VII.3.2 Results with observations in ]0, 1[

At each visit, a diagnosis (healthy, mild cognitive impairment, Alzheimer's disease) was
given to each individual by a clinician. The evolution of the diagnosis sequence with
time allowed to group the 1393 individuals into 4 groups of interest: �stable controls�,
�stable mild cognitive impairment (MCI)�, �stable Alzheimer's Disease (AD)� and �MCI
converters�. The group �stable controls� (resp. �stable MCI�, �stable AD�) consists in
individuals who were diagnosed healthy (resp. mild cognitive impairment, Alzheimer's
Disease) at each visit. These MCI individuals are not considered as healthy, nor as
Alzheimer patients. MCI might be considered as a transition state between a healthy
state and Alzheimer's disease (AD). Finally, �MCI converters�, consists in individuals
who were diagnosed as MCI at their �rst visit and converted to AD by the end of
the observation period. Among the 1393 individuals of this longitudinal dataset, 329
individuals are stable controls, 472 are stable MCI, 248 are stable AD and 248 are MCI
converters. The 96 remaining are individuals who converted from control to MCI (54
out of 96), who converted from control to AD (3 out of 96), who reverted from AD
to MCI (3 out of 96) or who reverted from MCI to control (36 out of 96). These 96
individuals were included in the estimation of the parameters of the model but not in
the plot of the estimates of the individual random e�ects, in Figure 20. The MCMC-
SAEM, used with the logistic curves model, allowed to estimate an average trajectory
characterized as follows: it is the logistic curve which goes through the point p0 = 0.11
at time t0 = 69.68 years with velocity v0 = 0.0076 units per year. The estimated
variance parameters σξ = 0.94 and στ = 10.42 years inform on the temporal variabil-
ity of the progression among the population. To illustrate this temporal variability,
Figure 20 (a) presents a plot of the maximum a posteriori (MAP) estimates of the in-
dividual random e�ects (ξi, τi) across the four groups of interest. We can observe that
stable controls have larger time shifts than other groups. On the one hand, the sta-
ble controls are mainly late-onset individuals who are not, on average, evolving faster
than the average disease progression trajectory. On the other hand, stable Alzheimer
patients and MCI individuals tend to have smaller time shifts than stable controls. A
portion of the stable MCI and most of the stable Alzheimer patients can be consid-
ered as early-onset individuals. It appears clearly that stable Alzheimer patients and
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Figure 20 � Figure (a): plot of (MAP estimates of) the individual log-acceleration
factor ξi = log(αi) against the time shifts t0 + τi. Each point corresponds to an
individual. The parameter t0 = 69.68 years was estimated with the MCMC-SAEM.
Figure (b): the points of Figure (a) are colored in black if the individual has 4/4
APOE genotype. Other genotypes are colored in grey.
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MCI converters are fast progressing individuals even though a small number of MCI
converters are slow-progressers. On average, stable MCI and stable controls are not
progressing faster than the average disease progression scenario. These observations
are coherent with the diagnoses of the individuals and the subject-speci�c random ef-
fects allow to distinguish groups of individuals. The disease progression for Alzheimer
patients and converters MCI is faster and started earlier than for stable controls. The
Alzheimer patients are quite clearly separated from the stable controls. In addition
to the information provided by the individual random e�ects, genetic information was
considered to obtain the results presented in Figure 20 (b). Apolipoprotein E (APOE)
locus on chromosome 19 is a gene which is known to be a strong risk factor for AD. This
gene has three alleles: APOE-ε2, APOE-ε3 and APOE-ε4. In [Corder et al., 1993], the
authors �nd that individuals with an ε4 − ε4 genotype are eight times more likely to
be a�ected by AD than individuals with ε2− ε3 or ε3− ε3 genotypes. APOE is also a
strong risk factor in familial forms of AD. In Figure 20 (b), each point (or individual)
is colored according to its genotype. Only the individuals with ε4− ε4 genotype were
colored in black. This result shows that, on average, the ε4 homozygotes are fast pro-
gressers who are evolving ahead of the average trajectory. Indeed, even though some
of the ε4− ε4 individuals appear as slow progressers who evolve behind of the average
trajectory (bottom right quadrant), most of these individuals are fast progressers and
in the left quadrants (fast progressers). These results are coherent with the fact that
an ε4− ε4 genotype is a risk factor for AD.

VII.3.3 Results with observations in ]0, 1[4

As mentioned above, this longitudinal dataset of multivariate observations was ana-
lyzed with the logistic curves propagation model (see Eq. [v.19]). In contrast to the
model used in the previous section, this model includes space shifts which aim a captur-
ing and estimating the distribution of the directions of the trajectories on the manifold.
Recall that, before using this model, a number Ns of independent components must be
chosen (see Section IV.3.3). Given that M =]0, 1[4 is a four-dimensional Riemannian
manifold, the number Ns of independent components could have been either 1, 2 or
3. The model with two and tree independent sources allowed to better explain the
total variance and reduce the residual noise. Indeed, the model with one indepen-
dent component estimated a residual noise variance σ2 = 0.012 and explained 79%
of the total variance, whereas the model with two (respectively three) independent
components estimated a noise variance σ2 = 0.008 (respectively σ2 = 0.0084) and ex-
plained 84% (respectively 85%) of the total variance. Because the results obtained with
three independent components are similar to the results obtained with two independent
components, we choose, for the sake of clarity, to report the results obtained with two
components (Ns = 2). The average trajectory estimated by logistic curves propa-
gation model, plotted in Figure 21 (a), is characterized by the �xed e�ects p0 = 0.3,
t0 = 72 years old, v0 = 0.04 units per year and δ = [0;−15;−13;−5] years. The �rst
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Figure 21 � Figure (a): the average trajectory estimated with the MCMC-SAEM.
The estimated parameters p0 (resp. t0) are represented by an horizontal (resp. vertical
line) at p0 = 0.3 (resp. t0 = 72 years). Figure (b): histogram of the ages (tdiag

i )1≤i≤p
at which individuals converted to AD (in blue) in blue ; Histogram of the normalized
ages

(
ψi(t

diag
i )

)
1≤i≤p in red.



161

Early onset Late onset

Time shifts (𝑡0 + 𝜏𝑖 , in years)

Age of conversion 

to AD (in years)

L
o
g
-
a
c
c
e
l
e
r
a
t
i
o
n

f
a
c
t
o
r
 
𝜉 𝑖

S
l
o
w

p
r
o
g
r
e
s
s
in

g

F
a
s
t

p
r
o
g
r
e
s
s
in

g

(a)

Early onset Late onset

Time shifts (𝑡0 + 𝜏𝑖 , in years)

L
o
g
-
a
c
c
e
l
e
r
a
t
i
o
n

f
a
c
t
o
r
 
𝜉 𝑖

S
l
o
w

p
r
o
g
r
e
s
s
in

g

F
a
s
t

p
r
o
g
r
e
s
s
in

g

(b)

Figure 22 � Figure (a): Plot of t0 + τi with respect to the log-acceleration factor ξi.
Each point is colored with respect to the estimated age of conversion to AD. Figure
(b): the points of Figure (a) are colored in black if the individual has 4/4 APOE
genotype. Other genotypes are colored in grey.

cognitive function, memory, reaches the value p0 = 0.3 at 72 years, on average. The
second cognitive function to reach the same value is concentration, at t0 + 5 = 77 years
on average. The progression of these two cognitive functions is followed by praxis and
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language. The �xed e�ect of the model provide an ordering of the cognitive functions
and the relative delay between two given cognitive functions. The random e�ects of
the model characterize the spatiotemporal variability of the average trajectory among
the population. Indeed, the time-shifts allow to determine whether an individual is
evolving ahead or behind the average trajectory and account for the variability in age
at disease onset. To illustrate the role played by the time shifts and acceleration fac-
tors, maximum a posteriori estimates of the individual time-shits and log-acceleration
factors are plotted in Figure 22 (a). This �gure shows a clear correspondence between
the time shifts and the estimated age of conversion to AD. Indeed, the individuals with
a negative (resp. positive) time-shift, the individuals evolving ahead (resp. behind) the
average trajectory, are the ones who convert young (resp. late) to AD. In other words,
the normalized age ψi(t) is, as opposed to age, a good indicator of disease progression.
In order to show that the individual time reparametrizations, de�ned by the estimated
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Figure 23 � Histogram of the errors
(
|tdiag
i − ψ−1

i (topt)|
)

1≤i≤248
superimposed with the

cumulative distribution of these errors, with topt = 74.30 years.

time shifts and acceleration factors, actually put into correspondence individuals, we
used the evaluation criteria described in Section VII.2. For each individual, we de-
rived an age of conversion to Alzheimer's disease. This age, denoted by tdiag

i for the
ith individual, is de�ned as the mean between his age at the last time point where
he was MCI and his age at the �rst time point he was diagnosed with Alzheimer's
disease. The histogram given in Figure 23 shows that the estimated age of conversion
ψ−1
i (topt), with topt = 74.30 years, is a good estimation of tdiag

i . Indeed, this error is
less than 3 years for 62% of the individuals. In addition to this, the e�ect of the time
reparametrizations is illustrated in Figure 21 (b). This �gure shows (in blue) an his-
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togram of the ages of conversion (tdiag
i )1≤i≤p. The histogram (in red) of the �normalized

ages�
(
ψi(t

diag
i )

)
1≤i≤p was superimposed to the previous one. We can observe that the

histogram of the normalized ages is peaked around 77 years, with a smaller variance
compared to the distribution of the ages of conversion.

In Figure 22 (b), each point (or individual) is colored in black if the corresponding
individual has a ε4-ε4 genotype. In the considered population of 248 converters MCI,
41 have an ε4-ε4 genotype. If the quadrants are numbered from one to four in a
trigonometry fashion), 43% of the ε4-ε4 individuals are in the second quadrant (early
onset and fast progressers) and 29% of these individuals are in the third quadrant (early
onset and slow progressers). Among the 41 individuals, 73% are early-onset individual.
By comparing the black dots in Figure 22 (b) with the colored dots of Figure (a), one
can observe that some ε4-ε4 individuals actually convert quite late to AD (purple dots).
However, the logistic curves propagation model estimated that these individuals tend
to evolve ahead of the average individual.

Figure 24 illustrates the spatiotemporal variability of the average trajectory among
the population. The temporal variability is characterized by the time shifts and accel-
eration factors. For this longitudinal dataset, the estimated standard deviation of the
time shifts equals στ = 7.5 years. Therefore, the average trajectory is shifted by ±7.5
years for 95% of the population (second row of Figure 24). The estimated standard
deviation of the log-acceleration factors (ξi)1≤i≤p is σξ = 0.9. As a consequence, most
of the individuals are progressing between eσξ ' 2.4 times faster or e−σξ ' 0.4 times
slower than the average trajectory (�rst row of Figure 24). The spatial variability is
characterized by the random variations of the space-shifts. Let A1 (respectively A2)
denote the �rst (respectively second) estimated independent component. Third row
of Figure 24 shows that individuals with a space shift of the form wi = σsiA1 have
memory and concentration impaired almost simultaneously. For these individuals, the
ordering between language and praxis is not changed. Individuals with a space-shift
of the form wi = −σsiA1 have language and praxis impaired nearly at the same time
and the ordering of these two cognitive functions is slightly changed. We also note
that the relative delay between memory and concentration varies greatly for individ-
uals with space shifts in the direction of the �rst independent component. The e�ect
of the second independent component A2 is illustrated in the last row of Figure 24.
We note that in this direction, the relative timing between memory and concentration
is not greatly changed but the ordering between language and praxis changes. These
results show that the cognitive functions tend to evolve by pairs: memory & concen-
tration, language & praxis. The individual space-shift impacts the relative delay and
the ordering of these cognitive functions.
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Figure 24 � Variability of the average trajectory in terms of space-shift and acceleration
factor. First (respectively second row): plot of t 7→ γ0,δ(e∓σξ(t− t0) + t0) (respectively
t 7→ γ0,δ(t± στ )) with t0 = 72 years and σξ = 0.9, στ = 7.5 years. Third (respectively
fourth) row: plots of parallels η∓σsiAi(γ0,δ, ·) (i = 1, 2) in the direction given by the two
estimated independent components, with σs1 = 2.66 and σs2 = 2.68 are the standard
deviations of the estimates (s1,i)1≤i≤p and (s2,i)1≤i≤p.
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VII.3.4 Results with observations in ]0, 1[13

For the third longitudinal dataset, the observations (yi,j)i,j are considered perturba-
tions of a point in ]0, 1[13, where each component of the vector yi,j corresponds to
the normalized score of a speci�c task or question of the ADAS-Cog test. The results
obtained without averaging the scores are presented below. As one might expect, these
results are similar with the ones presented above, where the items of the ADAS-Cog
test were averaged by cognitive function.

The MCMC-SAEM was used with the logistic propagation model to analyze this
longitudinal dataset. The algorithm was run with Ns = 1, 2, 3 and, as before, we
note that increasing the number of sources allowed to decrease the residual noise
among the experiments: σ2 = 0.02 for Ns = 1, σ2 = 0.0162 for Ns = 2 and
σ2 = 0.0159 for Ns = 3. Because the residual noise was almost similar for Ns = 2
and Ns = 3 sources, we choose to report here the results obtained with the less
complex model. As a consequence, we report the results obtained with 2 indepen-
dent sources. The average trajectory is given in Figure 25, where each curve rep-
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Figure 25 � The estimated average trajectory. In blue: the average trajectory of
progression for the 5 memory-related items (item 1:∗, item 4:�, item 7:◦, item 8:+
and item 9:M). In orange: average trajectory for the 5 language-related items (item
2:∗, item 5:�, item 10:◦, item 11:+ and item 12:M). In yellow: average progression
trajectory for the 2 praxis-related items (item 3:∗ and item 6:�). In purple: average
progression trajectory for the concentration-related item (item 13:∗).
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resents the temporal progression of one speci�c item of the ADAS-Cog test. The
estimated �xed e�ects are p0 = 0.74, t0 = 79.88 years, v0 = 0.047 unit per
year, and δ = [0;−14;−11; 4.6;−13;−14;−7.7;−0.9;−14.4;−14.05;−11.80;−15.3292]
years. This means that, on average, the memory-related items (items 1, 4, 7, 8, 9) reach
the value p0 = 0.74 at respectively t0, t0−δ4, t0−δ7, t0−δ8 and t0−δ9 years, which corre-
sponds to respectively 79.88, 75.2, 87.6, 80.7 and 94.3 years. The concentration item
reaches the same value at t0 − δ13 = 86.1 years. The progression of the concentration
item is followed by praxis and language items.

The estimated standard deviation of the time shifts is στ = 8.3 years. Recall
that with the previous dataset, the estimated standard deviation was στ = 7.5 years.
Therefore, the average disease propagation model is shifted by ±8.3 years for 95% of
the population, which is quite similar to the shift obtained in the previous experiment.
The standard deviation of the log-acceleration factor is σξ = 0.8, whereas it was 0.9 for
the previous experiment. Again, the variability of the log-acceleration factor among the
population is similar to the one obtained above. The e�ect of the acceleration factor
is illustrated in the �rst row of Figure 26. In the second and third rows of Figure 26,
the �rst and second independent components illustrates the spatial variability in the
measurements and the variability in the relative timing of the cognitive impairments.
The �rst independent direction shows that some memory items and language items are
shifted in time with respect to the other ones, especially for memory item 4 (�) and item
7 (◦). The ordering of the memory item 7 (◦) and the concentration item is inverted
for individuals with a space shift wi = −σsi,1A1. For those individuals, praxis items are
impaired later, after the language items 2 (∗), items 12 (M) and item 5 (�). The second
independent component shows a greater variability for the memory-related items than
for the �rst independent components, in particular for memory item 9 (M) and item
4 (�). For individuals with a space shift wi = σsi,2A2, language-related items might
be impaired later than the average individual, especially for the language item 12 (M).
The estimated log-acceleration factor ξi and time shift τi are plotted for each individual
in Figure 27 (a). As for Figure 22 (a), we can observe that the individuals who have a
positive (respectively negative) time shift (they are evolving ahead, respectively behind,
the average trajectory) are the individuals who converted late (respectively early) to
AD. This means that the individual time-shifts correlate well with the age at which a
given individual was diagnosed with AD. However, we can note that, in this experiment,
there is a negative correlation, equal to −0.4, between the estimated log-acceleration
factors and time shifts. This means that there is a tendency for early onset patients to
be fast progressers. As with the previous dataset, the evaluation criteria described in
Section VII.2 is used to evaluate how well the estimated time reparametrizations put
individuals into correspondence. The histogram given in Figure 27 (b) shows that the
error on the estimation of the age of conversion is similar to the one obtained in the
previous section.
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Figure 26 � First row: plot of t 7→ γ0,δ(α(t− t0) + t0) with α = exp(∓σξ) and σξ = 0.8.
Second (respectively third) rows: plots of parallels η∓σsiAi(γ0,δ, ·) in the direction given
by the two estimated independent components, with σs1 = 2.88 and σs2 = 2.54 are the
standard deviations of the estimates (s1,i)1≤i≤p and (s2,i)1≤i≤p.
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Figure 27 � Figure (a): plot of the (MAP estimates of the) subject-speci�c random
e�ects: the log-acceleration factor ξi is plotted against the time-shifts t0 + τi. Each
point is colored according to the age of conversion to AD. Figure (b): histogram of
the errors

(
|tconv
i −ψ−1

i (topt)|
)

1≤i≤248
superimposed with the cumulative distribution of

these errors.
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VII.4 Cortical thickness measurements

VII.4.1 The dataset

The longitudinal data used to obtain the experimental results presented below were
obtained from the ADNI database. The cortical thickness measurements were collected
for 725 individuals. On average, individuals have 5 time points (min: 3 ; max: 7). The
longitudinal follow-up period of these individuals ranges from 6 months to 4.5 years,
with an average of 2.5 years. For 95% of the population, the longitudinal follow-up
period ranges from 1.5 year to 3.5 years. Diagnoses were recorded for every individual
and at each visit. As for the neuropsychological test scores (see Section VII.3), these
subject-speci�c sequences of diagnoses allowed to classify the individuals into 4 groups
of interest: stable controls (194 individuals), stable mild cognitive impairment, also
denoted as stable MCI (182 individuals), stable Alzheimer patients (162 individuals)
and converters MCI (170 subjects). The individuals who reverted to control or MCI
were not included in these groups. The cortical thickness measurements were computed
using the Freesurfer software and averaged within the 34 regions of interest given by
the Desikan-Killiany cortical parcellation [Desikan et al., 2006]. These measurements
were analyzed using the univariate straight lines model (see V.1.2), for data in each
parcel independently.

VII.4.2 Results

For each subject, MAP estimates of the time shifts and acceleration factors were ob-
tained and the corresponding values were displayed on the cortical surface. The dif-
ferences in the estimated time shifts and acceleration factors were compared between
Alzheimer patients and controls in Figure 28 (a), and between converters MCI and
stable MCI in Figure 28 (b). Signi�cance level was set at 0.05, corrected for multiple
comparisons using Bonferroni correction. Alzheimer patients present accelerated gray
matter loss compared to stable controls in a large number of regions, with highest speed
in temporal (including entorhinal cortex, parahippocampal gyrus, superior and middle
temporal gyri), parietal associative (including precuneus) and frontal regions.

A similar topographical pattern was found for converters MCI compared to stable
MCI but with smaller accelerations than in AD patients. On the contrary, primary
motor and sensitive as well as visual cortices were spared. These results are consis-
tent with the spatial-temporal progression patterns of neurodegeneration evidenced
in histopathological studies [Braak and Braak, 1995], [Delacourte et al., 1999]. Fur-
thermore, accelerated atrophy has also been recently shown to coincide with disease-
onset [Benzinger et al., 2013]. On the other hand, the estimated time shifts were not
signi�cantly di�erent for the vast majority of regions. In the few signi�cant regions,
the magnitude of the time-shifts was small. This is in contrast with the large time-
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(a)

(b)

Figure 28 � Figure (a): at the top (respectively bottom), the di�erence in averaged
acceleration factors (respectively time shifts) between AD patients and stable controls
is displayed on the cortex. Figure (b): at the top (respectively bottom): the di�er-
ence in averaged acceleration factors (respectively time shifts) between converters MCI
and stable MCI is displayed on the cortex. In both �gures, acceleration factors (and
respectively time shifts) were averaged per regions of interest. Only regions where the
di�erence was statistically signi�cant (p < 0.05, corrected for multiple comparisons)
were colored.
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shift values found for the cognitive variables. This can be attributed to the slow but
consistent age-related atrophy that is present in normal ageing subjects.

VII.5 Body fat measurements

VII.5.1 The dataset

We propose to analyze a longitudinal dataset from a prospective study on body fat
accretion among a population of young girls. This dataset consists in observations of,
initially, 162 young (from 8 to 18 years-old) girls from the MIT Growth and Develop-
ment Study [Bandini et al., 2002,Phillips et al., 2003]. For each individual, at each visit,
a measurement of body fatness is obtained through bioelectric impedance. Let Hi,j de-
note the height (in cm), Wi,j the weight (in kg) of the ith individual (1 ≤ i ≤ 162) at
the jth visit. As mentioned in [Fitzmaurice et al., 2012], a measurement of total body
water TBWi,j is obtained with the following formula: TBWi,j = (0.7H2

i,j)/R − 0.32,
where R denotes the bioelectric impedance resistance. The percentage of body fat is
obtained as follows: yi,j =

(
1− (TBWi,j/0.73)Wi,j

)
× 100. The regression variable ti,j

associated to each measurement yi,j is the age of the ith individual at the jth visit.
In [Fitzmaurice et al., 2012], the authors mention that, at the beginning of the study,
all the girls were pre-menarcheal and non-obese. They were all followed and had regular
visits up to four years after the menarche. Indeed, body fat in girls starts to increase
before the menarche and levels-o� approximately four years after menarche. In this
study, the time of menarche is known for each individual. The normalized observations
of body fat were analyzed with the univariate logistic curves model (see Eq. [v.7]).
Since this model assumes a monotonic progression of the measurements with time, we
chose to remove from the initial dataset 11 individuals for whom the percentage of
body fat was decreasing with time. For all the remaining individuals, the percentage
of body fat tends to increase with time. After this step, a total of p = 151 individuals
were remaining in the dataset.

Note that, by nature, the morphology of each individual is di�erent. Natural dif-
ferences in body shape induce a �size e�ect� in the measurements of body fat. In
other words, the variability in the size of measurements is partly due to morphological
di�erences between individuals. With our approach (the logistic curves model), this
variability in the size of measurements would be interpreted as delay or advance in the
progression of an individual. Therefore, the �size e�ects� in the measurements would
translate as a temporal variability. In order no to over-estimate this temporal vari-
ability, it is preferable to reduce the size e�ects in the measurements. To address this
problem, we propose to normalize the measurements. We assume that, for the ith indi-
vidual, the observations (yi,j)1≤j≤ki belong to the open interval ]ai, bi[⊂]0, 1[. The lower
(respectively upper) bound ai (respectively bi) are unknown. The method proposed
in this paragraph aims at estimating these bounds on the individual measurements.
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Once ai and bi estimated, the observations of the ith individual are mapped to the Rie-
mannian manifold M =]0, 1[ using the a�ne map x ∈]ai, bi[ 7→ (x − ai)/(bi − ai) ∈ M.
The bounds ai and bi are estimated by �tting a sigmoid curve, with unknown asymp-
totes, to the observations (yi,j)1≤j≤ki . More precisely, for each individual, the following
optimization problem is solved:

∀i ∈ {1, . . . , p},
(
ai, bi

)
= argmin

0<ai<bi<1

ki∑
j=1

[
yi,j − fa,b(ti,j)

]2
+ λ(b− a)2 [vii.1]

where fa,b is an increasing sigmoid function with asymptotes a and b. In the least
squares criterion, the trade-o� parameter λ is chosen equal to 10−1. This optimization
problem was solved using a gradient descent algorithm, implemented in MATLAB.

VII.5.2 Results

The �xed e�ects estimated with the MCMC-SAEM are p0 = 0.37, t0 = 13.08 and
v0 = 0.13 units per year. On average, the normalized score of an individual reaches the
value p0 = 0.37 at t0 = 13.08 years old. The estimated standard deviation parameters
σξ = 0.71 and στ = 2.00 years inform on the variability of the average trajectory
among the population. The average trajectory is shifted by ±2 years with respect to
the estimated time t0 and the speed of normalized body fat increase varies, among the
population, from 2.04 times slower to 2.04 times faster (Figure 29). After estimating the
parameters of the model, the maximum a posteriori estimates of (ηi, τi) allow to consider
the subject-speci�c time reparametrization ψi. This a�ne time reparametrization maps
the individual timeline (to which (ti,j)1≤j≤ki belongs) to the reference timeline (the
timeline of the average trajectory). Let tmenarche

i denote the age of the ith individual
at menarche. Using these informations and the estimated individual trajectories, we
propose to minimize the function t ∈ R 7→

∑
1≤i≤p |tmenarche

i − ψ−1
i (t)|. This function

has a unique minimum at topt = 12.96 years. The minimum topt can be understood as
the age at menarche in the timeline of the normative scenario of body fat progression.
We note that this age in the timeline of the average trajectory is close to the mean
of (tmenarche

i )1≤i≤p, which is 12.77 years. This average age at menarche can be mapped
back to the individual timeline using the reparametrization ψi. For the ith individual,
the age ψ−1

i (topt) is an estimate of the actual age at menarche. An histogram of(
tmenarche
i − ψ−1

i (topt)
)

1≤i≤p is given in �gure 30. The results given above show that

the estimated age at menarche ψ−1
i (topt) is a good approximation to the actual age

at menarche tmenarche
i for 71% of the population. The error is greater than four years

for only 7 individuals out of 151. For these individuals, the progression of body fat
with time is more erratic, with periods during which measurements are decreasing.
The logistic shape of the average trajectory is probably not the best choice of average
trajectory for these individuals.

In [Fitzmaurice et al., 2012], the authors analyze the body fat measurements with a
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Figure 29 � Left: e�ect of the acceleration factor with plots of γ0(e±σξ(t − t0) + t0).
Right: e�ect of the time shift with plots of γ0((t− t0 ∓ στ ) + t0).
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Figure 30 � Histogram of
(
|tmenarche
i − ψ−1

i (topt)|
)

1≤i≤151
superimposed with the cumu-

lative probability distribution of this error.

piecewise linear mixed-e�ects model. The performance of their model and our logistic
curves model can be assessed by computing the percentage of total variance explained
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by both models. This percentage is de�ned by: R2 = 1 − var(ε̂i,j)/var(ỹi,j), where
var(ε̂i,j) denotes the variance of the residuals while var(ỹi,j) denotes the variance of
the (normalized) observations. The piecewise linear mixed-e�ects model proposed by
Fitzmaurice et al. explains 84% of the variance (the coe�cient R2 is computed with
the variance σ2 of the noise εi,j since the actual variance of the residuals is not given
by the authors) whereas our logistic curves model explains 81% of the variance. Note
that in [Fitzmaurice et al., 2012], the authors regress the percentages of body fat
with respect to the time to menarche. In our approach, the age at menarche is not
used during the estimation of the parameters of the model. As a matter of fact,
it is an important piece of information our model tries to estimate. Even though
the age to menarche was not included in our model, we note that its performance is
similar to theirs (in terms of explained variance). We note also that our model requires
the estimation of 6 parameters (�xed e�ects and variance-covariance parameters) as
opposed to 10 parameters for the piecewise linear mixed-e�ects model. However, a
drawback of our approach is the subject-speci�c normalization of the measurements.
Indeed, as a di�erent normalization is applied to each individual, the results cannot
be used to make predictions on the evolution of body fat percentages. The piecewise
linear mixed-e�ects model proposed in [Fitzmaurice et al., 2012] is well suited to the
modeling of the progression of these measurements because it includes a change point
at the age of menarche. However, it would be di�cult to generalize or use this model
to �t other types of measurements. Moreover, our model assumes that the time at
menarche is unknown while this information is crucial in the de�nition of the model
used by Fitzmaurice and colleagues.

VII.6 SPD matrices

VII.6.1 The dataset

We consider a synthetic dataset which consists in a repeated observations of a sin-
gle di�usion tensor for one hundred individuals, simulating a progressive reduction in
tensor asymmetry. The observations were not generated from the model contrary to
the experiments described in Chapter VII. As a matter of fact, the observations were
obtained by prescribing a hierarchical model on the eigenvalues of the di�usion ten-
sors. At the level of the population, the eigenvalues of the di�usion tensors follow a
decreasing piecewise linear evolution with a change point at 50 years old. Observations
for a given individual were simulated by randomly shifting the change point (time at
which the a change occurs in the speed at which eigenvalues decrease) and randomly
increasing or decreasing the slopes of each eigenvalue (see Figure 31). As a result, we
ensured that each individual follows a di�erent trajectory in the space of eigenvalues
and this trajectory is not given by a parallel variation of a geodesic. In particular,
the initial values of the eigenvalues were di�erent for each individual. The data was
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generated for p = 100 individuals with, on average, 5 time points per individual.

VII.6.2 Results

The results presented below were obtained with Ns = 1 source. A greater number of
independent sources would have been possible but many more iterations would have
been necessary for the MCMC-SAEM to converge. The Bayesian tensor model with the
MCMC-SAEM allowed to estimate an average trajectory of progression in the space
SDP(3). This average trajectory is the geodesic which goes through the point P0, at
time t0, with velocity V0 given by:

P0 =

11.30 0.96 0.68
0.96 9.53 1.21
0.68 1.21 10.19

 , t0 = 53.83,

and

V0 =

−0.99 −0.17 −0.20
−0.17 −0.75 −0.27
−0.20 −0.27 −0.85

 .

The evolution of the eigenvalues of the average trajectory, plotted in �gure 31, is
similar to the model used to generate the observations. However, the MCMC-SAEM
tends to underestimate the �rst eigenvalue and overestimate the third eigenvalue. The
variability in speed and delay of progression is captured by the estimated parameters
ση = 0.07 and στ = 0.5. In �gure 31 (top), we see that that, before and after the change
point, eigenvalues of each individual decrease at a similar pace. This may explain why
the model captured small variations in speed of progression. The standard deviation
στ on the parameter t0 is much smaller. The individual acceleration factor, time shift
and space shift allow to �t the average trajectory to the observations of an individual.
As shown on �gure 31 (bottom), the estimated individual trajectory is well adjusted
to the observations of the individual.

The eigenvalues of the average estimated trajectory are smooth functions of time.
Therefore, it would not have been possible to obtain piecewise-linear progression of
the eigenvalues for the average trajectory. However, if t∗i denotes the change point of
each individual progression, we can validate the ability of the tensor model to put into
correspondence the dynamic of each individual, using the validation method described
in Section VII.2. For this dataset, the sum of errors

∑
i |t∗i − ψ−1

i (t)| has a unique
minimum at topt = 49.73 years. This minimum topt is close to 50 years, the time
at which the change point occurs in the average model used to generate the data.
Figure 32 shows that individual progressions are not perfectly put into correspondence
by the time shift. However, for the ith individual, we make an error less than 2
years for almost 60% of the population by estimating the individual change point with
ψ−1
i (topt). Moreover, the error is less than 4 years for 90% of the population. During

the simulation of this dataset, the change point of the average eigenvalues trajectory, at
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(a)

(b)

Figure 31 � Figure (a): In solid bold line, the average model of eigenvalues evolution
for the synthetic dataset of tensors. In solid lines, the evolution of the eigenvalues
for all the individuals in the dataset. In dotted line, the evolution of the eigenvalues
of the average trajectory, given by the MCMC-SAEM. Figure (b): The evolution
of the eigenvalues of an individual. In dotted line, the eigenvalues of the average
trajectory estimated by the MCMC-SAEM.With square markers, the eigenvalues of the
observations for this individual. With round markers, the eigenvalues of the estimated
individual trajectory.
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50 years, was randomly shifted using draws from a centered Gaussian distribution with
a standard deviation of 2 years. Therefore, the error (|t∗i −ψ−1

i (topt)|)i is similar to the
standard deviation of the distribution of the change point. However, we note that the
eigenvalues of a geodesic, for the a�ne-invariant metric used here (see Eq. [iv.31]), or a
parallel variation of a geodesic, tend to evolve as smooth functions, with an exponential
shape. Therefore, it seems impossible for this model to recover precisely a piecewise
linear evolution of the eigenvalues.
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Figure 32 � Histogram of
(
|t∗i − ψ−1

i (topt)|
)

1≤i≤100
superimposed with the cumulative

distribution of this error. Here, t∗i represent the age of the change point for the ith
individual and topt = 49.73 years.
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VIII.1 Conclusive summary

In this dissertation, we proposed a Bayesian mixed-e�ects model, called generic spa-
tiotemporal model, for the spatiotemporal analysis of longitudinal manifold-valued mea-
surements. The framework of Riemannian manifolds enables to consider almost any
kind of longitudinal observations lying in a space de�ned by smooth constraints. The
generic model inherits a hierarchical structure from its �xed and random e�ects, which
allow to describe the model both at the group and individuals level. At the population
level, the �xed e�ects of the model de�ne a group-average trajectory of progression,
which is a geodesic on a Riemannian manifold. In order to de�ne individual trajec-
tories of progression, we introduced the concept of �parallel variation� of a curve on
a Riemannian manifold. For each individual, a �parallel� to the average trajectory is
de�ned using an individual-speci�c space shift. This parallel is then reparametrized in
time using an a�ne individual-speci�c time reparametrization de�ned by its accelera-
tion factor and time shift. The concept of parallel variation enforces an orthogonality
constraint on the space shifts and we proposed methods and algorithms to include this
orthogonality constraint into the generic model. Eventually, the random e�ects of the
model, namely acceleration factors, time shifts and space shifts, allow to put into cor-
respondence trajectories of progression across individuals. In other words, the space
shifts allow to spatially register the trajectories whereas the acceleration factor and
time shifts allow to temporally register the timeline of each individual to the reference
timeline. The distribution of these random e�ects allows to learn a distribution of
trajectories of changes on a Riemannian manifold.

Chapter V shows how a large variety of mixed-e�ects models for longitudinal data
may be derived from the generic abstract model. We proposed particular cases of the
generic model which can be used to analyze speci�c types of longitudinal observations.
The logistic curves model (respectively straight lines model) is designed for longitudinal
normalized or bounded (respectively unbounded) scalar observations. The progression
models may be used to model the temporal progression of a family of features or
biological characteristics. These models assumes the same shape of progression for
each feature, but shifted in time. As a result, it models the joint temporal progression
of these features, but also to estimate the relative delay between those. These models
can be used to determine an ordering of the observed features. Finally, we proposed
a model called SPD matrices model, which is designed for the analysis of longitudinal
datasets of positive symmetric de�nite matrices (like covariance matrices).

In Chapter VI, we reviewed and discussed several methods for the inference in non-
linear mixed-e�ects models. We chose to use a stochastic version of the EM algorithm,
namely the Monte Carlo Markov Chain Stochastic Approximation EM (MCMC-SAEM)
algorithm, to estimate the parameters of the generic spatiotemporal model. This choice
is motivated by the fact that the MCMC-SAEM o�ers theoretical guarantees of con-
vergence and, with speci�c families of samplers, does not require any computation
of derivative. Since the model is de�ned in a Riemannian manifold framework, we
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discussed possible solutions to overcome di�culties encountered when deriving the
MCMC-SAEM for the generic spatiotemporal model. In this chapter, we also evaluated
and validated the proposed algorithm in settings of varying complexity. In particular,
the MCMC-SAEM is validated on a synthetic longitudinal dataset of 3 × 3 covari-
ance matrices, which provides an example of observations on a multivariate curved
Riemannian manifold. We also discussed the use of numerical schemes within the
MCMC-SAEM. Eventually, we presented in chapter VII data-driven models of pro-
gression estimated from longitudinal health data. Longitudinal datasets of normalized
neuropsychological test scores are analyzed with the unstructured logistic progression
model to derive a normative scenario of the progressive impairment of cognitive func-
tions during the onset of Alzheimer's disease. We also analyzed longitudinal observation
of cortical thickness for individuals from the Alzheimer's Disease Neuroimaging Initia-
tive (ADNI) cohort and obtained results which are consistent with previous knowledge
on the pathophysiology of Alzheimer's disease. The experimental results obtained with
the longitudinal dataset of body fat measurements and with the simulated longitudinal
dataset of SPD matrices show that the generic spatiotemporal model successfully puts
in correspondence the progression of individuals.

VIII.2 Limitations

The proposed methodology and algorithm are subject to several assumptions. Some of
these assumptions are discussed in the previous chapters of this dissertation. In this
section, we review and discuss some limitations of the generic approach.

VIII.2.1 The monotonicity assumption

The straight lines model (Eq. [v.5]), logistic curves model (Eq. [v.7]) or progression
models (see Section V.3) assume a monotonic evolution of the measurements. The
monotonicity of the progression makes sense, for example, for the analysis of neuropsy-
chological test scores in the context of Alzheimer's disease. However, this assumption
may not make sense for other neurodegenerative diseases such as multiple sclerosis
(MS) for which patients may experience remission periods. This assumption may also
not make sense for other types of longitudinal observations such as behavioral, men-
tal health test questions, where the progression for healthy individuals might not be
monotonic.

VIII.2.2 Assumptions on the Riemannian manifold M

Throughout this dissertation, the assumption that the Riemannian manifold M is a
(connected) open subset of the Euclidean space RN played an important role. This
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assumption is particularly useful for the MCMC-SAEM since it legitimates the use
of symmetric random walk Metropolis-Hastings algorithms within the Gibbs sampler.
However, this assumption clearly does not hold for simple Riemannian manifolds such
as the 2-sphere S2 or the torus T2 ⊂ R3 de�ned by: T2 = {(x, y, z) ∈ R3, z2 +

(
2 −√

x2 + y2
)2

= 1}. Indeed, the Gibbs sampler with symmetric random walk proposal
would draw samples which are not necessarily on the manifold. Possible solutions
might consist in considering the projection of a multivariate Gaussian distribution on
the Riemannian manifold, as long as this leads to a tractable density function. It may
also be possible to consider speci�c probability distributions such as the Von Misses
distribution for the 2-sphere S2 or the Bivariate Von Misses distribution for the torus
T2, but at the expense of the generalization to other Riemannian manifolds.

VIII.3 Perspectives

This section discusses several possible improvements to the generic spatiotemporal
model.

VIII.3.1 Multi-class approach

A possible development would consist in using the model for unsupervised clustering.
This could be done by replacing the probability distribution in Section IV.3.4 by mix-
tures of probability distributions. As a result, the generic spatiotemporal model could
be used to automatically create subsets of individuals among the population sharing
similar spatiotemporal patterns. Another possible approach to unsupervised clustering
would be to �t the generic spatiotemporal model to a longitudinal dataset and esti-
mate the individual random e�ects as it was done in Sections VII.3. Then, algorithms
such as K-Means or mixture of Gaussians could be used to classify these individual
random e�ects into subgroups. However, such classi�cation method could be directly
included into the model as mixtures of probability distributions, following the work
in [Marin et al., 2005]. For instance, consider the longitudinal dataset analyzed in
Section VII.3.2. Recall that this longitudinal dataset consists in univariate normalized
neuropsychological test scores for 1393 individuals from the ADNI database. Let θ∗

denote the parameters estimated by the MCMC-SAEM for this dataset. The individual
log-acceleration factors (ξi)1≤i≤p are estimated with two di�erent methods. The �rst
method was used to produce results presented in Chapter VII: (ξi, τi) are estimated for
each individual by maximizing the joint conditional distribution q(ξi, τi | yi,θ∗). With
the second method, (ξi, τi) were estimated by minimizing the nonlinear least squares∑ki

j=1 |yi,j − γ0

(
ψi(ti,j)

)
|2. In the second method, no constraint is enforced on the dis-

tribution of the individual random e�ects. Equivalently, the second method is similar
to the �rst, without prior distribution on these individual random e�ects. Figure 33
gives a normalized histogram of the log-acceleration factors obtained with both meth-



183

-2 -1 0 1 2 3 4

Log-acceleration factor ξ
i

0

0.5

1

1.5

2

2.5

-15 -10 -5 0 5

Log-acceleration factor ξ
i

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 33 � Left: Normalized histogram of the individual log-acceleration factors ξi
estimated by maximizing the joint posterior distribution q(ξ, τi | yi,θ∗), where θ∗ are
the model parameters estimated by the MCMC-SAEM in Section VII.3.2. Right:
Normalized histogram of the individual log-acceleration factors ξi estimated by solving
a nonlinear least squares problem. No prior distribution was assumed for the log-
acceleration factors.

ods. These results give the idea that a mixture of distributions could better explain
the data and allow to identify a subpopulation of slow progressers (the left peak in the
second histogram) and another subpopulation of fast progressers (the right peak in the
second histogram).

VIII.3.2 Using the generic model with multi-modal data

Other possible developments include the extension of the generic spatiotemporal model
to multi-modal longitudinal observations. Indeed, at each time point and for each indi-
vidual, the observations could be the concatenation of images (like Magnetic Resonance
(MR) images, for example) and observations of biological features such as the concen-
tration of a protein in the cerebrospinal �uid or neuropsychological test scores. A
possible application of these methodological developments would be to map the onset
of clinical symptoms on the anatomical and functional changes of the brain seen in
MR images. Still, this would require to extend the generic spatiotemporal model to
longitudinal shape analysis. This could be done by specifying the generic model on
the group of di�eomorphisms. However, this might raise several methodological di�-
culties. In particular, the parallel transport is not known explicitly for the group of
di�eomorphisms. Therefore, the MCMC-SAEM would have to be used with a numer-
ical scheme to approximate the parallel transport. Moreover, considering multi-modal
data will lead to work in a high-dimensional Riemannian [product] manifold. This
high-dimensional setting might lead to consider more e�cient MCMC samplers for the
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MCMC-SAEM.

VIII.3.3 Towards MCMC methods for high-dimensional set-
tings

If the generic spatiotemporal model is used to analyze multi-modal data, the dimension
N of the space of observations M might increase greatly. As a result, using the generic
model in a high-dimensional setting might raise several methodological and compu-
tational challenges. The block Metropolis-Hastings-within-Gibbs sampler proposed in
Section VI.3.2 might have di�culties in sampling e�ciently the target distribution if the
dimension of the space of latent variables becomes very large. To address this problem,
we could consider other MCMC samplers such as the Metropolis Adjusted Langevin
Algorithm [Atchadé, 2006,Beskos, 2014]. Other possible improvements would consist
in using or adapting MCMC methods, such as [Maclaurin and Adams, 2014, Shang
et al., 2015], which only use subsets of the dataset.

VIII.3.4 Personalization and prediction

Finally, the generic spatiotemporal model could be used for prediction purposes. Given
some individual observations, we could determine how well the generic spatiotemporal
model allows to predict the observation at the next time point. In addition to this, the
model could allow to predict the evolution of biological features and estimate the time
to the onset of symptoms and provide insightful informations to help diagnose speci�c
diseases.
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Appendices

A A review of mixed-e�ects models and their limita-

tions in the context of manifold-valued data

Remarkable developments have been made in the past 30 years regarding the method-
ology for analyzing longitudinal data. Advancements in computer softwares and tech-
nologies have facilitated these methodological developments, their implementation and
use in a large spectrum of disciplines. This section presents a powerful and �exible
family of statistical models for longitudinal data analysis called mixed-e�ects models
or mixed models. Initially, these models were introduced to handle clustered data (data
in which the measurements can be grouped into several �classes�). Longitudinal data
can be considered as a particular case of clustered data since multiple observations are
made for the same individual. Mixed-e�ects models have become popular for several
reasons. Among these, they o�er the advantage of handling missing data and unbal-
anced repeated measures with uneven spacing of the measurements in time. Moreover,
they model the observations as a function of �xed e�ects and random e�ects. The
terms ��xed e�ects� and �random e�ects� were formally introduced in 1947 by Eisen-
hart in [Eisenhart, 1947] and lead to the terminology mixed models. Fixed and random
e�ect provide the model with a hierarchical structure, allowing to describe the model at
di�erent levels. In numerous applications, two-levels models are considered, where the
�xed (respectively random) e�ects describe the model at the population (respectively
individuals) level. However, models with more than two levels appear in the literature.
In particular, a third level is sometimes used to model clusters of individuals.

Two types of mixed-e�ects models have been extensively studied in the litera-
ture: linear mixed-e�ects models and nonlinear mixed-e�ects models. A comprehensive
overview of mixed-e�ects models for longitudinal data can be found in [Diggle et al.,
2002,Fitzmaurice et al., 2008,Verbeke and Molenberghs, 2009,Fitzmaurice et al., 2012].

A.1 Linear mixed-e�ects (LME) models

An LME model is the random slope and intercept model, which assumes that a longi-
tudinal dataset (yi,j, ti,j)1≤i≤p, 1≤j≤ki arise from:

yi,j = ti,j(A + Ai) + (B + Bi) + εi,j [viii.1]

where (ti,j)1≤j≤ki denotes the time points at which the observations of the ith individ-

ual were obtained. This model assumes that, for all i ∈ {1, . . . , p}, Ai
i.i.d.∼ N (0,ΣA),

Bi
i.i.d.∼ N (0,ΣB) and εi,j

i.i.d.∼ N (0, σ2Iki) and are independent of each other. Note that
the random slope and intercept model is a particular case of the generic LME model
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(see Eq. [ii.1]) since it may be written with:

Xi = Zi =

 ti,1 1
...

...
ti,ki 1

 , α =

[
A
B

]
, and βi =

[
Ai

Bi

]
. [viii.2]

For i ∈ {1, . . . , p}, let Di(t) = (A+Ai)t+ (B+Bi). Then, Eq. [viii.1] may be written:
yi,j = Di(ti,j) + εi,j. This last equation shows that, under this LME model, the
observations of the ith individual can be seen as random samples along an individual
trajectory Di, which is obtained as follows: starting from the average trajectory D(t) =
tA+B, the random e�ects Ai and Bi are used to transform, via a change of slope and
intercept, the straight line D into Di. The random e�ect Ai informs on whether the
ith individual is progressing faster or slower than the average trajectory D, whereas
the random e�ect Bi informs on the distribution of the measurements at time t = 0.

B Methods for the inference in linear mixed-e�ects

models

In this section, we consider the LME model (see Eq. [ii.1]) where, for all i ∈ {1, . . . , p},
Ri = σ2Iki . Moreover, we assume that the variance-covariance matrix D ∈ Spd(q)
is a function of some unknown parameters θ̃. Let θ = (θ̃, σ2) denote the variance-
covariance parameters of the model. Hence, the parameters of the model are: (α,θ).

As mentioned above, estimating the parameters of this model is done by using
maximum likelihood methods or restricted maximum likelihood methods. Restricted
likelihood methods were introduced in [Thompson Jr, 1962] to reduce the small-sample
biais of maximum likelihood methods. Both methods proceed as follows: �rst, the
maximum likelihood estimator of α, denoted by α̂(θ), is obtained. This estimator,
which is a function of the unknown variance-covariance parameters θ is plugged into
the likelihood to obtain a pro�led likelihood. This pro�led likelihood is then maximized
a Newton-Raphson algorithm or an EM algorithm ([Dempster et al., 1977] ; see [Lind-
strom and Bates, 1988, Laird et al., 1987] for the use of the EM algorithm in LME
models).

Conditionally on α and θ, the vector y is normally distributed with mean Xα and
variance-covariance matrix Γ(θ) = ZDZ> + σ2In. The log-likelihood log q(y | α,θ) of
y is given by:

log q(y | α,θ) = −1

2
log det Γ(θ)− 1

2
(y −Xα)Γ−1(θ)(y −Xα). [viii.3]

If the variance-covariance parameters θ are known, the log-likelihood q(y | α,θ) can
be maximized with respect to α, yielding an estimate α̂(θ) given by:

α̂(θ) =
(
X>Γ−1(θ)X

)−1
X>Γ−1(θ)y. [viii.4]
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The estimator α̂(θ) is the best linear unbiased estimator (BLUE) of α since it depends
linearly on y and it has minimum mean square error among the class of linear unbiased
estimator of α. Since the conditional distribution of y is normal, given α and θ,
the estimator α̂(θ) can be derived from the Gauss-Markov theorem (see [Harville,
1976]). Plugging the estimator α̂(θ) into the log-likelihood log q(y | α,θ) leads to the
pro�led log-likelihood log q(y | α̂(θ),θ). In [Harville, 1977] and [Lindstrom and Bates,
1988], the authors use the pro�led log-likelihood to estimate the variance-covariance
parameters of a LME model. Indeed, by de�nition of the BLUE of α:

max
α,θ

log q(y | α,θ) = max
θ

log q(y | α̂(θ),θ). [viii.5]

However, maximizing the pro�led log-likelihood with respect to θ is a di�cult problem
which usually does not yield closed-form solutions. In order to ensure the positive
de�niteness of the matrix D, Pinheiro and Bates in [Pinheiro and Bates, 1996] propose
�ve di�erent possible parametrizations of variance-covariance matrices to ensure posi-
tive de�niteness and compare them in terms of computational e�ciency and statistical
interpretability.

B.1 Restricted likelihood

The drawback of maximizing the pro�led log-likelihood to produce estimates of the
variance-covariance parameters is that the maximum likelihood estimates (MLE) are
biased as they do not take into account the loss of degree of freedom from the estimation
of the �xed e�ects with α̂(θ). To address this problem, the likelihood is replaced with
the restricted likelihood. By de�nition, the restricted likelihood method consists not in
the likelihood of the full data y but the likelihood of n− s error contrasts Ay, where
s is the rank of the matrix X. The matrix A is given by: A = In −X

(
X>X

)−1
X>,

the orthogonal projection onto
(
ImX

)⊥
. In [Harville, 1974], the authors show that the

likelihood of Ay is given by:

q(Ay | θ) = q(y | α̂(θ),θ)− 1

2
log det

(
X>Γ−1(θ)X

)
. [viii.6]

Let D̃ be the scaled covariance matrix such that D = σ2D̃. The matrix Γ(θ) can be
written Γ(θ) = σ2

(
ZD̃Z>+In

)
. It follows that the restricted likelihood Eq. [viii.6] can

be used to provide an unbiased estimate of σ2:

σ̂2(θ̃) =
1

n− s
(
y −Xα̂(θ̃)

)>
Γ−1(θ̃)

(
y −Xα̂(θ̃)

)
. [viii.7]

Substituting this estimator in Eq. [viii.6] yields a pro�led restricted likelihood which
only depends on the variance-covariance parameters θ̃. Maximizing this pro�led re-
stricted likelihood with respect to θ̃ is a nonlinear optimization problem. In [Lindstrom
and Bates, 1988], the authors suggest to use a Newton-Raphson algorithm to maximize



this function. In addition to this, they note that removing σ2 from the parameters to
estimate reduces the number of iterations required and improves the overall conver-
gence behavior. They also note that the Newton-Raphson algorithm fails to converge
when applied directly to the log-likelihood of y, but is able to maximize the pro�led
(restricted) log-likelihood. However, the authors do not mention whether the objective
function is convex. Indeed, if the objective function is not convex (and not unimodal),
the Newton-Raphson algorithm could fail to converge.

B.2 Estimation of the random e�ects

When the variance-covariance parameters θ are known, [Laird and Ware, 1982] provide
an estimator β̂(θ) of β, which is given by:

β̂(θ) = DZ>Γ−1(θ)
(
y −Xα̂(θ)

)
. [viii.8]

This estimator is called best linear unbiased predictor (BLUP) of the random e�ect β.
The term predictor is used to distinguish this estimator from estimator of the �xed
e�ects. In [Robinson, 1991], di�erent methods to obtain β̂(θ) are reviewed. Note
that Eq. [viii.8] and Eq. [viii.4] both require to inverse the K ×K matrix Γ(θ), where
K =

∑
i ki denotes the number of observations for all the individuals. In [Henderson,

1950], a method to jointly obtain α̂(θ) and β̂(θ) is proposed. This methods consist in
solving a linear system of equation called mixed-model equations (MME). This linear
system is de�ned by: [

X>X X>Z

Z>X Z>Z + σ2D−1

][
α

β

]
=

[
X>y

Z>y

]
. [viii.9]

The matrix of this linear system is a (2p+1)×(2p+1) matrix, where p corresponds to the
number of individuals. Usually, p is much smaller than K. As a consequence, solving
the MME is computationally interesting. The MME can be obtained by maximizing
the joint density function of (y,β) with respect to (α,β).
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Titre : Méthodes et algorithmes pour l'apprentissage de modèles d'évolution spatio-temporels
à partir de données longitudinales sur une variété Riemannienne

Mots clefs : Géométrie Riemannienne, Données longitudinales, Modélisation statistique, Algorithme EM
stochastique

Résumé : Dans ce manuscrit, nous présentons un mod-
èle à e�ets mixtes, présenté dans un cadre Bayésien,
permettant d'estimer la progression temporelle d'un
phénomène biologique à partir d'observations répétées,
à valeurs dans une variété Riemannienne, et obtenues
pour un individu ou groupe d'individus. La progres-
sion est modélisée par des trajectoires continues dans
l'espace des observations, que l'on suppose être une var-
iété Riemannienne. La trajectoire moyenne est dé�nie
par les e�ets �xes du modèle. Pour dé�nir les trajec-
toires de progression individuelles, nous avons intro-
duit la notion de �variation parallèle� d'une courbe sur
une variété Riemannienne. Pour chaque individu, une
trajectoire individuelle est construite en considérant
une variation parallèle de la trajectoire moyenne et en
reparamétrisant en temps cette parallèle. Les transfor-
mations spatio-temporelles sujet-spéci�ques, que sont la
variation parallèle et la reparamétrisation temporelle,

sont dé�nies par les e�ets aléatoires du modèle et
permettent de quanti�er les changements de direc-
tion et vitesse à laquelle les trajectoires sont par-
courues. Le cadre de la géométrie Riemannienne
permet d'utiliser ce modèle générique avec n'importe
quel type de données dé�nies par des contraintes
lisses. Une version stochastique de l'algorithme EM,
le Monte Carlo Markov Chains Stochastic Approxima-
tion EM (MCMC-SAEM), est utilisé pour estimer les
paramètres du modèle au sens du maximum a poste-

riori. L'utilisation du MCMC-SAEM avec un schéma
numérique permettant de calculer le transport parallèle
est discuté dans ce manuscrit. De plus, le modèle et
le MCMC-SAEM sont validés sur des données synthé-
tiques, ainsi qu'en grande dimension. En�n, nous des
résultats obtenus sur di�érents jeux de données liés à la
santé.

Title : Models and algorithms to learn spatiotemporal changes from longitudinal manifold-
valued observations

Keywords : Riemannian geometry, Longitudinal data, Statistical modeling, Stochastic EM algorithm

Abstract : We propose a generic Bayesian mixed-
e�ects model to estimate the temporal progression of
a biological phenomenon from manifold-valued obser-
vations obtained at multiple time points for an individ-
ual or group of individuals. The progression is mod-
eled by continuous trajectories in the space of measure-
ments, which is assumed to be a Riemannian manifold.
The group-average trajectory is de�ned by the �xed ef-
fects of the model. To de�ne the individual trajecto-
ries, we introduced the notion of �parallel variations�
of a curve on a Riemannian manifold. For each indi-
vidual, the individual trajectory is constructed by con-
sidering a parallel variation of the average trajectory
and reparametrizing this parallel in time. The subject-
speci�c spatiotemporal transformations, namely paral-
lel variation and time reparametrization, are de�ned

by the individual random e�ects and allow to quan-
tify the changes in direction and pace at which the tra-
jectories are followed. The framework of Riemannian
geometry allows the model to be used with any kind
of measurements with smooth constraints. A stochas-
tic version of the Expectation-Maximization algorithm,
the Monte Carlo Markov Chains Stochastic Approxi-
mation EM algorithm (MCMC-SAEM), is used to pro-
duce producemaximum a posteriori estimates of the pa-
rameters. The use of the MCMC-SAEM together with
a numerical scheme for the approximation of parallel
transport is discussed. In addition to this, the method
is validated on synthetic data and in high-dimensional
settings. We also provide experimental results obtained
on health data.
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