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Chapter 1
–

Introduction

1.1 Stability analyses for the study of unsteady flows

Unsteady flows play a central role in a very large number of problems, ranging from natural
phenomena to engineering applications. For instance, both military and civil aircrafts are
using increasingly large and powerful engines. As a consequence, the resulting noise has
become an important nuisance that scientists are continuously trying to reduce. A major
part of this noise does not originate from the engine itself, but from the unsteady interaction
between the exhaust jet and the ambient medium. Therefore, understanding the nature and
the features of the unsteady dynamics of jets is of great interest, and a large body of work
has been devoted to this question.

Jet noise is one example among many others where the unsteady behavior of a flow results in
complex side effects, that may be wanted or not depending on the application. For instance,
another widely studied flow is the wake of a cylinder: beyond a certain critical Reynolds
number, the flow goes through a super-critical Hopf bifurcation, and forms the famous
Von-Karman vortex street. Understanding the onset of this unsteadiness, as well as predicting
its frequency, is helpful for a large variety of applications, from the study of geophysical flows
(see for instance figure 1.1) to the design of bridge pillars where this induces unwanted load
vibrations, or for the implementation of obstacles in micro-channels to enhance mixing (see
for instance Wang et al. (2002)).

Stability analysis is an efficient tool for the characterization of such flows, that has been widely
used over the past decades. It consists of studying the temporal evolution of disturbances
about a given steady state, in order to predict the occurrence of unsteadiness and understand
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Fig. 1.1 Satellite observation of a Von-Karman vortex street behind the Juan Fernandez
Island, by B. Cahalan, NASA GSFC. This type of fluid behavior may be explained by a
stability analysis.

the underlying physical mechanisms. Classically, the perturbations are assumed to be small,
which yields the simplified linear problem detailed in section 1.2. This linear assumption may
be justified in some situations, such as in flow control for instance, where one may try to
reduce the perturbation amplitude as much as possible. But its physical relevancy may be
questioned in other contexts. Neglecting the nonlinear nature of the Navier-Stokes equations
yields results that might not correspond to any observed physical behavior. Yet, surprisingly,
in several situations, such a linear stability analysis accurately predicts nonlinear dynamical
features. The underlying reasons of success remain a rather eluding question, for which
we only have a partial understanding. Through the study of several different cases, this
thesis aims at giving a clearer picture of different linear stability approaches, their physical
relevancy, the underlying assumptions and the information they are able to give about the
dynamics of flows.

1.2 Stability about the base flow

Classically, a linear stability analysis consists of considering a base flow – a steady solution
of the governing equations – and then studying the behavior of small disturbances about
this field. Such a base flow stability analysis can be either global, by studying perturbations
over a whole domain, or local, by focusing on a cross-stream profile and see if locally, some
disturbance waves may get amplified. The following sections successively describe global and
local approaches, and present several classical stability theories.
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1.2.1 Global approaches

Global base flow stability analysis for self-sustained unsteadiness The global base
flow theory has been first introduced by Pierrehumbert and Widnall (1982) for the study
of a spatially periodic shear layer. Since then, this has become a widely used approach to
address the stability of a large range of flows (see for instance the review of Theofilis (2011)).
The main idea is as follows: let us consider a general flow governed by the Navier-Stokes
equations, which can be recast, for instance in a compressible framework, in the following
compact form:

∂q

∂t
= N(q), (1.1)

with q a state vector which contains the set of conservative variables describing the flow,
and N the Navier-Stokes operator. A classical linear stability analysis consists of assuming
the existence of a steady state qb (the base flow, verifying N(qb) = 0), and then studying
the temporal evolution of perturbations q′ about this base flow. Assuming that these
perturbations are small, q′ is governed by a linear equation that reads:

∂q′

∂t
= L(qb)q′, (1.2)

with L(qb) = ∂N
∂q

∣∣∣
qb

the linearized Navier-Stokes operator about the base flow, also called
the Jacobian of the system. A global linear stability analysis consists of searching modes
of the form q′ = q̂eλt, which reduces equation (1.2) to the eigenproblem L(qb)q̂ = λq̂. The
corresponding eigenvalues characterize the stability of qb: if an eigenvalue λi has a positive
real part σi = ℜ(λi) (positive growth rate), then the base flow is unstable and will be subject,
in the linear regime, to self-sustained oscillations growing exponentially over the whole
domain, and oscillating at a frequency ωi, given by the imaginary part of λi (ωi = ℑ(λi)).
The spatial structure of these oscillations is then described by the eigenvector q̂i.

Resolvent analysis for the study of pseudo-resonance Another global approach,
known as a resolvent analysis, consists of studying the effect of an external forcing on a base
flow instead of focusing on self-sustained oscillations. This was first introduced by Trefethen
et al. (1993) to explain the unsteady behavior that was sometimes observed for stable flows
(for instance, a Poiseuille flow is known to be unsteady even for a sub-critical Reynolds
number, see section 1.2.3). This observed unsteady state relates to the non-normality of the
linearized operator L, which allows external perturbations to get amplified by very large
factors through non-modal linear mechanisms, even if all the modes are stable (see Trefethen
et al. (1993), Schmid and Henningson (2012)).
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Resolvent analyses were introduced to address this behavior, and focus on the evolution
of small disturbances under an external forcing. This requires to add a forcing term f to
equation (1.2), which yields:

∂q′

∂t
= L(qb)q′ + f . (1.3)

In the frequency domain, this equation may be recast as:

q̂ = Rf̂ , (1.4)

with R = (iωI − L(qb))−1 the so-called resolvent operator, I the identity operator, ω the
frequency, q̂ and f̂ the Fourier transform of q′ and f , respectively. Then, a resolvent analysis
aims at finding the optimal forcing which maximizes the energy gain G(f̂) = ∥Rf̂∥2/∥f̂∥2,
with ∥ · ∥ a relevant Hermitian norm1, defined from an inner product denoted as ⟨·, ·⟩. This
is related to the Schmidt decomposition of R, that reads:

∀f̂ , Rf̂ =
∑
i∈N

µi⟨ϕi, f̂⟩ψi,

⟨ϕi,ϕj⟩ = ⟨ψi,ψj⟩ = δij , µi ≥ µi+1, (1.5)

where the sets (ϕi)i∈N, (ψi)i∈N and (µ2
i )i∈N are the so-called optimal forcings (of unit norm),

optimal responses (of unit norm) and optimal gains, respectively. These quantities are linked
by the relation:

µiψi = Rϕi, (1.6)

with ϕi the i− th optimal forcing that maximizes the energy gain G, equal to µ2
i . The optimal

forcings (ψi)i∈N and optimal gains (µ2
i )i∈N are given by the eigenvectors and eigenvalues of

R†R, respectively, with R† the Hermitian adjoint of R, defined as the operator verifying
∀a, b: ⟨a,Rb⟩ = ⟨R†a, b⟩. The optimal responses (ψi)i∈N correspond to the eigenvectors of
RR†, and can be deduced from (ϕi, µi)i∈N with equation (1.6).

In a discrete framework, R would be a discrete matrix of size n, and the discrete counterpart
of the Schmidt decomposition is called the singular value decomposition (s.v.d.) of R. The
sets (ϕi)0<i≤n, (ψi)0<i≤n and (µi)0<i≤n are referred to as left singular vectors, right singular
vectors and singular values of R, respectively. More details about the implementation of a
resolvent analysis are given in chapter 2.

1for a given flow behavior, the choice of this norm depends on the physical quantity of interest (kinetic
energy, acoustic energy, etc.). This is briefly discussed in chapter 2.
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Fig. 1.2 Schematic evolution of a perturbation close to x = 0 in the space-time plane (x, t),
for a one-dimensional base flow with advection from left to right, in the case where the base
flow is (a): absolutely unstable, (b): convectively unstable.

1.2.2 Local approaches

Local stability analysis A local stability analysis is conceptually close to a global analysis,
but focuses on infinitesimal disturbances superimposed to a given crosswise profile instead of
the complete base flow. Similarly to a global stability analysis, it yields an eigenproblem,
whose size is however drastically smaller than its global counterpart.

Historically, this local approach has been introduced prior to the global methods, and early
local stability analyses can be found, for instance, in the works of Lin (1944), Batchelor
and Gill (1962), Watson (1962) or Crighton and Gaster (1976). The full procedure and
main equations are detailed in chapter 2, and the central assumption is that the flow is
approximately parallel, such that all the streamwise derivatives of base flow quantities could
be neglected. Thus, only slowly diverging flows may be treated by such an analysis.

Two types of locally unstable behaviors may then be observed, denoted as convective and
absolute local instability, respectively (Huerre and Monkewitz, 1985). An absolute instability
describes disturbances that would eventually grow over a whole region, and never get convected
out (see figure 1.2(a)). Hence, an initial impulse at a given location may yield self-sustained
oscillations over this region, and this situation relates to a global instability. On the other
hand, a convective instability describes a situation where local disturbances grow exponentially
while traveling in the fluid, but they never contaminate the full domain due to advection
(see figure 1.2(b)). At first sight, convectively unstable flows could be considered as globally
stable configurations, whose unsteadiness stems from non-modal mechanisms, that could be
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studied with a resolvent analysis. But that is not always true: some global instabilities are
the result of an acoustic feedback loop between an upstream and a downstream location
(more details can be found in chapter 4). Due to its local nature, a local analysis only focuses
on one single streamwise location, and cannot account for such a downstream/upstream
interaction. Therefore, this may lead to globally unstable flow that would not contain any
absolutely unstable region.

Parabolised stability equations In the past decades, a non-modal approach, introduced
by Herbert (1997) and known as a Parabolized Stability Equations (PSE) analysis, has
become widely used for the study of weakly non-parallel flows. The detailed PSE procedure
can be found in chapter 2. For a given input frequency, this yields a global disturbance field,
obtained by marching the parabolized stability equations downstream. This spatial march is
classically initialized by the most unstable local mode at a given upstream location, given by
a local stability analysis. Chapter 5 shows that this may approximate the optimal response
modes given by a resolvent analysis. Note that contrary to a resolvent analysis, which is
a fully global approach, the PSE marching procedure consists of solving local equations
at successive streamwise locations. Therefore, a PSE analysis may be classified as a local
approach, and its computational cost is close to that of a local stability analysis.

However, the PSE approach presents stronger limitations than a resolvent analysis. Indeed,
the spatial marching procedure requires equations that avoid information to propagate
upstream (as explained, for instance, in Towne and Colonius (2015)). In the case of the
PSE, in which some ellipticity remains (Haj-Hariri, 1994), this is achieved by numerically
damping all upstream-propagating waves, either by taking sufficiently large marching steps or
by explicitly adding a damping term in the equations (Andersson et al., 1998). The PSE are
therefore designed to track one single downstream-going wave, and may significantly distort
and damp all other waves. Therefore, any unsteadiness related to both hydrodynamics and
acoustic waves, such as the acoustic feedback-loop behaviors mentioned previously, cannot
be treated by PSE, and a global stability or resolvent analysis is then required. The case of
screeching jets, studied in chapter 3, is an example of such a situation.

1.2.3 Characterizing a flow with a linear base flow analysis

The previous sections introduced several linear stability techniques, and the following para-
graphs present a few results from the literature that highlights some of their limitations. We
show that due to their linear nature, they are relevant only in some specific situations.
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Fig. 1.3 Eigenspectrum of the cylinder flow, computed from a linear base flow stability
analysis, for Re = Rec (data extracted from Sipp and Lebedev (2007)). σ is the real part of
the eigenvalues (the growth rate), and ω the imaginary part (the frequency). The red circled
point is the marginally stable mode that becomes unstable for Re > Rec.

Prediction of the onset of unsteadiness Many flow configurations are steady until a
certain critical value of a given parameter (for instance the Reynolds number), and linear
stability about the base flow is often used to predict this critical value. A typical example
is the case of a flow past a cylinder, which becomes unsteady through a Hopf bifurcation,
for a Reynolds number Re larger than Rec ≈ 46. Several studies, such as that of Barkley
(2006) or Sipp and Lebedev (2007) for instance, have addressed the problem using a stability
analysis. They have shown that a global linear analysis about the base flow remarkably
well predicts the value of Rec. For Re = Rec, the eigenspectrum of the Jacobian operator
L(qb) displays one marginally stable eigenvalue (see figure 1.3) that becomes unstable as
the Reynolds number is increased. Similarly, an open cavity flow is prone to a super-critical
Hopf bifurcation at a critical Reynolds number Rec ≈ 4140, and once again, a linear base
flow stability analysis is able to well predict this value (Sipp and Lebedev, 2007). These
good agreements are explained by the fact that the base flow stability assumptions, namely
the existence of a steady solution of the equations and the linear assumption, are perfectly
relevant at criticality.

However, in some situations, the transition from a steady to an unsteady state occurs much
earlier than what is predicted by a linear base flow stability analysis. This is the case
for a Poiseuille flow for instance, where the analysis predicts a critical Reynolds number
Rec = 5772, while in experiments, the transition to a turbulent state have been observed as
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early as for Re ≈ 1000 (see for instance Patel and Head (1969)). This apparent contradiction
has been explained by Trefethen et al. (1993), and this behavior is related to non-modal linear
mechanisms, that have been discussed in section 1.2.1. For such flows, studying the criticality
is not physically relevant, and one should rather carry a resolvent or a PSE analysis.

Prediction of the dynamics Mantič-Lugo (2015) explained that as we go further from
criticality, a linear base flow stability analysis is condemned to fail because of the increasingly
strong influence of the nonlinearities. Indeed, at criticality, the linear assumption is justified,
but beyond this critical point, its relevancy may quickly be invalidated. A typical example
of this may be observed in the case of the cylinder, introduced in the previous section.
For instance for Re = 100 > Rec ≈ 46, Barkley (2006) showed that starting a nonlinear
simulation from the unstable base flow leads to oscillations whose frequency initially matches
the stability prediction, but which quickly shift to a higher value. For the whole range of
Reynolds numbers that he studied (up to 180), the stability analysis always under-predicted
the frequency, and the discrepancy grew as he went further from criticality: for Re = 60,
the prediction error (compared to a nonlinear simulation) was approximately 10%, and for
Re = 180, this reached almost 50%. This is explained by the increasing importance of the
nonlinear mechanisms in the frequency selection process, that is not accounted for by a linear
stability about the base flow.

However, claiming that a linear base flow stability analysis would systematically fail is
erroneous, as several examples in the literature show otherwise. One example is the case
of an open cavity flow: a base flow analysis not only predicts the critical Reynolds number
for the onset of oscillations, but it also yields a good prediction of the frequency involved.
For instance, Yamouni et al. (2013) studied a cavity flow at a Reynolds number Re = 7500
(therefore far from criticality), for different Mach numbers. They carried out a base flow
stability analysis, and found unstable eigenvalues (positive real part) whose imaginary part
matches a characteristic frequency of the flow. This property, that we shall call the RPIF
(real positive imaginary frequency) property, is therefore fulfilled by a few base flows. This
shows that, in some situations, a linear base flow stability analysis yields relevant information
about the nonlinear dynamics of a flow, even far from criticality.

This RPIF property may be understood from the work of Sipp and Lebedev (2007). They
performed a linear and a third-order weakly nonlinear analysis of the cylinder wake and the
cavity flow, based on the small parameter ε = Re−1

c − Re−1. From that, they showed the
existence of a saturated limit cycle. Then, they computed a linear and a weakly nonlinear
estimate of the corresponding non-dimensional frequency ω as a function of ε, that we shall
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Fig. 1.4 Comparison between a weakly nonlinear and a linear analysis (using the results of
Sipp and Lebedev (2007)), showing the relative discrepancy between the weakly nonlinear
estimate of the frequency ωn and the linear prediction ωl, with respect to the Reynolds
number, for (a): the cylinder flow and (b): the cavity flow. The dotted line shows the value
of the critical Reynolds number for each configuration, and the dashed line represents the
asymptotic upper bound of the discrepancy.

refer to as ωl and ωn, respectively. For the cavity flow, they found

ωl = 7.5 + 3000ε, (1.7)

ωn = 7.5 + 5000ε, (1.8)

and for the cylinder wake, they obtained

ωl = 0.74 + 3.3ε, (1.9)

ωn = 0.74 + 34.3ε. (1.10)

From these relations, they concluded that in both cases, nonlinearities strongly affect the
frequency of the flow in the super-critical regime Re > Rec. But it should be noted that
ε is a monotonous bounded function of Re, that verifies for Re > Rec: 0 ≤ ε(Re) < Re−1

c .
Similarly, the relative discrepancy e between the weakly non-linear and the linear model,
defined as e = |ωn − ωl|/ωn, is also a function of Re, which displays an asymptotic upper
bound. For the cylinder, this bound is approximately equal to 83%, but for the cavity, it
is less than 6% (see figure 1.4). This reveals that actually, the nonlinearities have only a
moderate influence on the dynamics of the cavity flow, which explains that the RPIF property
is verified in this case.
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1.3 Mean flow stability for the study of nonlinear behavior

The previous section has revealed several limits of a linear base flow stability analysis,
which stem from its linear nature. In some cases (e.g. the cylinder flow), the frequency
selection process is strongly driven by nonlinear effects. Consequently, a linear base flow
stability analysis is unable to correctly predict the dynamical behavior of the flow, and this
yields situations where the RPIF property is not satisfied. However, there are many papers
(Mattingly and Criminale, 1972; Mittal, 2008; Pier, 2002, for instance) showing that those
nonlinear effects may be factored in by using the time-averaged field (the mean flow) instead
of the base flow. The procedures are the exact same as those described in section 1.2, except
that the equations are linearized about the mean flow.

A typical example for such an analysis is the cylinder case: Barkley (2006) has showed
that a linear stability analysis about the mean flow yields a marginally stable eigenvalue
(real part equal to zero) with a frequency (the imaginary part) close to that of the von
Kármán street (see figure 1.5). A justification of this so-called “real zero imaginary frequency”
(RZIF) property has been first studied by Sipp and Lebedev (2007). They showed that in
the vicinity of the bifurcation threshold, the RZIF property is approximately satisfied when
the fundamental frequency of the flow dominates the other harmonics. Recently, Turton
et al. (2015) more generally demonstrated that this is exactly satisfied for a flow exhibiting
monochromatic oscillations. This RZIF criterion has even been considered by Mantič-Lugo
et al. (2014, 2015) to build a self-consistent model of a cylinder flow that predicts the frequency
of the vortex shedding for Reynolds numbers up to 110. Note that however, since the growth
rate is zero, this cannot be used to study the onset of a given unsteadiness.

The generality of the RZIF property has been studied by Turton et al. (2015), who showed
that in the case of thermosolutal convection, the mean field corresponding to standing waves
does not satisfy it. They attributed this failure to the nature of the frequency spectrum of
the flow, that is rather broad and not strongly peaked. Yet, several papers show that mean
flow approaches may yield physically relevant results even for flows exhibiting a broadband
spectrum originating from convective instabilities, especially for the prediction of spatially
correlated structures linked to a nonlinear unsteadiness. For instance, Gudmundsson and
Colonius (2011) focused on turbulent round jets: using an array of microphones, they
experimentally measured the pressure fluctuations outside the jet shear layer and showed
that the pressure amplitude and phase of the data accurately matched predictions from a
PSE analysis about the mean flow. The same conclusions were obtained by Oberleithner
et al. (2014) in the case of a transitional jet, where the mean flow and unsteady structures
were fully characterized by Particle Image Velocimetry measurements: at given frequencies, a
local stability analysis around the mean velocity profiles led to the full reconstruction of the
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Fig. 1.5 From Barkley (2006): the thick line shows the evolution of the Strouhal number
of the cylinder flow (the nondimensional frequency) with respect to the Reynolds number,
computed from a direct numerical simulation. The vertical dotted line shows the critical
Reynolds number for the onset of the oscillations. The dashed line represent the frequency
prediction from a linear base flow stability analysis, and the triangles represent that of a
linear mean flow stability analysis.

spatial structure (in magnitude and phase) of the perturbation field. These are only a part of
the examples showing that a mean flow stability analysis is able to predict some dynamical
features of broadband-spectrum flows.

1.4 Scope of the research problem

The previous sections have introduced several examples of base flow and mean flow analyses,
and while the procedure is very similar in one case or another, there seems to have no clear
link between these two approaches. The present chapter has raised several unanswered
questions, that need to be addressed in two steps. In one hand, for a few situations, the base
flow is found to satisfy the RPIF property, even far from criticality. To our knowledge, the
existing literature does not provide any clear explanation to identify a priori the situations
where this would be the case.

In the other hand, regarding mean flow approaches, there are a few theoretical works that
have addressed the RZIF property. But these studies does not apply to broadband-spectrum
flows, and the situation where the frequency spectrum is not peaked is very little understood.
As a results, clear conditions for the RZIF property are still wanting, and the general meaning
of a mean flow analysis as well as its link with the actual nonlinear dynamics of a flow remain
eluding.
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1.5 Aim and structure of the thesis

This thesis aims at developing robust tools and methods, based on the stability theory, for
the study of flows. This requires to improve the state-of-the-art understanding of the existing
approaches, and thus, to address the points mentioned above. On account of this, the present
work starts with a chapter detailing the main stability tools and numerical strategies that
are used in the rest of the study (§2). Then, the manuscript is divided in two main parts,
dedicated to base flow and mean flow stability analyses, respectively. The first part starts
with a chapter focusing on the screech phenomenon, an original case that has never been
studied through a base flow analysis in the literature (§3). We evaluate the relevancy of
such an analysis in terms of frequency prediction by confronting stability results with the
existing literature. These stability results are then analyzed to identify an underlying noise
generation mechanism. This part dedicated to base flow analyses is then concluded by a
discussion in chapter 4 about the RPIF property, that relies on the findings about the screech
phenomenon. This aims at delimiting situations where a base flow analysis should or should
not be used to characterize a given dynamics.

The second part is dedicated to the mean flow approach, and contains two chapters (§5
and §6). Chapter 5 focuses on mean flow analyses for general flow configurations. We give
mathematical conditions as well as physical interpretations regarding the mean flow stability
approach. This serves as a basis to introduce a new predictive model for the characterization
of a flow dynamics. A turbulent backward facing step flow simulation is used to validate the
results of this chapter. Then, chapter 6 studies this new predictive model in an experimental
context, by focusing on a transitional round jet experiment. In particular, the robustness of
the model with respect to physical uncertainties is assessed in this chapter.

Note that three chapters of the present manuscript are based on articles (§3, §5 and §6), whose
content has been modified and adjusted for the present work. These chapters are introduced
by some preliminary remarks, that include the complete reference for the corresponding
article as well as the original abstract. In the following lines, we quickly detail the division of
work between each co-author of the said articles.

Paper 1 (§3): “Global stability analysis of underexpanded screeching jets”, S.
Beneddine, C. Mettot and D. Sipp, European Journal of Mechanics B/fluids 49,
pp. 392-399 (2014).

The codes used to produce the results have been developed by S. Beneddine (SB), based on
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an existing code from C. Mettot. All the computations have been performed by SB. The
paper has been written by SB with feedback from D. Sipp (DS).

Paper 2 (§5): “Conditions for validity of mean flow stability analysis”, S. Bened-
dine, D. Sipp, A. Arnault, J. Dandois and L. Lesshafft, Journal of Fluid Me-
chanics 798, pp. 485-504 (2015).

The simulation has been performed by A. Arnault under the supervision of J. Dandois. The
rest of the codes and computations have been done by SB, except for the PSE code that
is a Python porting (done by SB) of a Matlab code provided by L. Lesshafft (LL). The
mathematical developments and models have been done by SB with feedback from DS. The
paper has been written by SB with feedback from DS and LL.

Paper 3 (§6): “Time-resolved reconstruction of a round jet from point-wise
measurements and mean flow stability analysis”, S. Beneddine, R. Yegavian, D.
Sipp and B. Leclaire, submitted to Journal of Fluid Mechanics.

The experiment has been done by B. Leclaire (BL) and R. Yegavian (RY), with the help of
G. Losfeld and C. Illoul (ackowledged in the paper). The PIV processing has been performed
by R. Yegavian (RY). The PSE code is a Python porting (done by SB) of a Matlab code
provided by LL (the same as that of paper 2). The full reconstruction procedure, including
the processing of the velocity snapshots, has been done by SB. The study of the robustness
of the method has been done by SB, in collaboration with RY. The paper has been written
by SB with feedback from DS, BL, RY.

Remark The end of chapter 2 contains more details about the contribution of each
collaborator with respect to the development of codes.





Chapter 2
–

Procedures and numerical
strategies

In chapter 1, several stability analysis techniques have been introduced. In the following, we
give more details about these techniques, in particular regarding their implementation. The
last section presents the personal contribution for the implementation of each technique.

2.1 Global stability analysis

2.1.1 Linearization strategy

As explain in chapter 1, a linear global base flow/mean flow analysis requires a linearization
of the governing equations of the system. This is also required for resolvent-based approaches.
Several options co-exist for this linearization, that can be performed in a continuous or a
discretized framework, by an analytic derivation or difference methods. Each method has
advantages and drawbacks, that have been discussed by Peter and Dwight (2010) or Mettot
(2013), for instance. For the present study, we have chosen a fully discrete framework (the
equations are first discretized and then linearized), with a linearization performed by a
finite differences method. As explained by Mettot (2013), this is the easiest approach, as
all the complexity (boundary conditions, numerical scheme, etc.) is accounted for by the
method itself, without any particular treatment. The result is however more easily prone to
approximation errors, due to the finite differences method.
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We now give details about the linearization procedure, based on the notations introduced in
chapter 1: the equations to linearize are taken of the form

∂q

∂t
= N(q). (2.1)

In the following, the tilde-notation refers to discretized operators/vectors. We aim at
computing

L̃(q̃0) = ∂Ñ

∂q̃

∣∣∣∣∣
q̃0

,

where q̃0 is either a base flow or a mean flow. The approach consists of using a computational
fluid dynamics (CFD) code (in our case, ONERA’s finite-volume compressible code ElsA,
see Cambier et al. (2013)), able to compute Ñ(q̃) for any arbitrary q̃. We then consider the
following first order approximation, valid for any q̃ up to an accuracy of O(ε):

L̃(q̃0)q̃ = 1
ε

(
Ñ(q̃0 + εq̃) − Ñ(q̃0)

)
, (2.2)

whose right-hand side may be computed by the CFD code. If q̃ is chosen equal to the i-th
unit vector (0, 0 . . . 0, 1, 0, . . . 0, 0)t, equation (2.2) yields the i-th column of L̃(q̃0). Therefore,
using successive unit perturbation vectors gives the columns of the Jacobian one by one. The
number of required evaluations of equation (2.2) is then equal to the number of degrees of
freedom of the discrete system.

Note that if q̃ is a unit vector, q̃0 + εq̃ differs from q̃0 only at one mesh cell. As a result, this
unit-vectors strategy may be improved by taking advantage of the features of the CFD code
ElsA, which has a compact stencil represented in figure 2.1. Indeed, Ñ(q̃0 + εq̃) − Ñ(q̃0)
(which contains all elements of one column of the Jacobian) is different from zero only
inside the stencil of the cell perturbed by the unit vector. Consequently, if two cells are
sufficiently far away, i.e. their stencil do not overlap, then then could not “interfere” with
one another. It is therefore possible to simultaneously perturb them, and then separate,
in Ñ(q̃0 + εq̃) − Ñ(q̃0), their respective contribution (each one gives a full column of the
Jacobian matrix).

This is the cornerstone of the approach introduced by Mettot (2013), who explained that for
a one-dimensional case, for a stencil of width ns, the perturbation of all flow variables at all
grid points may be optimally achieved by defining perturbation vectors for each variable that
act every ns points. The number of evaluations of equation (2.2) needed to get all elements
of the Jacobian matrix is then nsnv, with nv the number of flow variables of the system of
equations. This is the optimal procedure, in the sense that it is not possible to simultaneously
perturb a larger number of cells without having an overlap of stencils. This yields, in one
evaluation of Ñ(q̃0 + εq̃) − Ñ(q̃0), the maximal number of non-zero Jacobian terms.
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Fig. 2.1 Stencil dependency of the ElsA CFD code: if a flow variable at the gray cell i, j
is perturbed, only the flow variables at the cells within this stencil are affected. Note that
several numerical scheme are implemented in ElsA, and this stencil corresponds to that of all
the schemes used in this thesis (but this may differ for other schemes).

He then extended this approach to two-dimensional (2-D) problems, by saying that one should
perturb every ns points in each direction, with ns the width of the 2-D stencil. In our case,
the stencil width is ns = 5 (see figure 2.1), but perturbing the flow every five points in each
direction results in the sub-optimal situation represented in 2.2(a), where Ñ(q̃0 + εq̃) − Ñ(q̃0)
would still contain many zero elements. An optimal situation corresponds to that of figure
2.2(b), where the perturbations are arranged in a compact way. This improved strategy has
been implemented for the present work. The number of required evaluations of equation (2.2)
is then 13nv (13 is the number of cells in the stencil, see figure 2.1). This procedure is easily
parallelisable using up to 13nv cores, since each evaluation is independent from the others.

Fig. 2.2 Perturbation pattern for the efficient computation of the Jacobian matrix by finite
differences, (a): sub-optimal strategy introduced by Mettot (2013), (b): optimal strategy
used in this thesis. The perturbed cells are in black, and their stencil is represented in gray.
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Note that the discretization parameter ε needs to be small enough to avoid approximation
errors, but not too small to avoid round-off errors. This has been discussed by Knoll and
Keyes (2004), and detailed again by Mettot (2013) for the present approach. We have found
the computations to be robust with respect to this parameter, and for all treated cases, after
adimensionalization of the base flow/mean flow, we have set ε = 10−7, and have ensured that
ε = 10−8 yields nearly identical results (in particular with respect to the eigenspectrum of
the Jacobian). An example of convergence study with respect to ε is presented in section 2.2.

2.1.2 Computation of eigenspectra

The eigenspectrum computations, required for global stability analyses (see chapter 1) have
been carried out by Krylov methods with a shift-and-invert strategy, using the open source
library ARPACK (Lehoucq et al., 1998). This strategy requires a linear solver. In our
case, we have used the direct LU solver MUMPS (see http://graal.ens-lyon.fr/MUMPS/).
The solver is parallel, which makes it potentially very fast. However, the LU factorization
step has high memory requirements, that may be non-affordable for large configurations
(typically tri-dimensional configurations). Given the size of the problems treated in this
thesis (only bi-dimensional configurations), this last aspect was not a limitation. To study
larger configurations, one may consider using an iterative solver such as BICGSTAB (see for
instance Mack and Schmid (2010)).

2.1.3 Base flow computation

The CFD solver ElsA, used in this thesis, is able to compute a base flow q̃b (steady solution of
(2.1)) using a backward-Euler scheme with a local time-stepping strategy, but this strategy is
very time-consuming. An alternative solution is the use of a Newton method, which yields q̃b
by iteratively computing q̃b,i+1 = q̃b,i − L̃(q̃b,i)−1q̃b,i. When initialized properly, this method
is known to converge quadratically.

In our case, given the chosen approaches for the computation of Jacobian operators (see
section 2.1.1) as well as for the inversions (LU solver MUMPS, see section 2.1.2), a more
efficient strategy consists of skipping the computation of L̃(q̃b,i) at each Newton iteration
except the first one, and re-using L̃(q̃b,0) at each step. This quasi-Newton method requires
a unique Jacobian computation and a unique LU factorization (performed during the first
iteration), which are the most time-consuming operations in our procedure. This yields a
much faster method, despite the larger number of iterations needed to reach convergence.
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Note that for the quasi-Newton method to work, the initial guess should be rather close to
the solution. Therefore, we used the solver ElsA to get a quick unconverged solution, that
was then used to initialize the method.

2.2 Example case: a laminar impinging jet

The configuration presented in this section has been studied during a collaboration with
O. Browne from the Universidad Politécnica de Madrid. Originally, the aim was a cross-
validation of numerical tools and a comparison of performances, with no physical study of the
results. This collaboration has never been achieved, but the work that has been done yields a
good illustration case for the global stability procedure, and provides a validation of some of
the tools introduced above.

In the following, we present a laminar impinging jet configuration, inspired from that of
Chiriac and Ortega (2002). The global stability procedure is illustrated on this case, and
the results are compared with those of Chiriac and Ortega (2002). This illustrates each step
of a global linear stability analysis. The information about the performances and level of
convergence that we obtained is representative of the other stability results presented in this
thesis.

2.2.1 Physical configuration and numerical parameters

We consider a laminar impinging jet flow. In the following, all the quantities are made
non-dimensional by using the density, velocity, temperature and pressure at the nozzle exit
and the nozzle height h. The exit Mach number is equal to M = 0.2, and the Reynolds
number, based on the hydraulic diameter d = 2, is 660. The jet-to-plate spacing is 5. The
computational domain as well as the boundary conditions are represented in figure 2.3. The
lower confining wall is adiabatic while the target plate is modeled as an isotherm surface,
at Tw = 1.1. We consider no-slip conditions for every wall. For the outflow condition, we
impose an output pressure pout = 1. To prevent any fluid to enter from these boundaries,
two converging sections have been added in both ends of the domain, which ensure that all
the fluid goes out (see figure 2.3). The mesh is composed of two blocks, one for the nozzle
(denoted as block 1 in the following) and one for the rest of the domain (denoted as block 2
in the following), containing 125 × 120 and 299 × 1063 points, respectively. For the numerical
scheme, we used a Jameson flux with scalar dissipation, and a second-order centered scheme
for the diffusive fluxes.
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adiabatic wall

isthermal wall, Tw = 1.1

adiabatic wall

M = 0.2, Re = 660

poutpout

12.3

2

5

Fig. 2.3 Impinging jet configuration: geometry of the domain and boundary conditions.

2.2.2 Base flow computation

The computation of the base flow has been done by following the procedure described in
section 2.1.3. The quasi-Newton method has been initialized with an unconverged base
flow q̃b,0 computed by local time-stepping with the compressible solver ElsA (the level of
convergence of this initial guess can be seen in figure 2.4). We have then computed the L2
and infinity norm of the residual Ñ(q̃b,i) for each iteration i. The evolution is represented in
figure 2.4, and roughly one order of magnitude is gained by iteration. The resulting base flow
can be seen in figure 2.5.

Fig. 2.4 Evolution of the residual norm with respect to the number of quasi-Newton iterations,
for the impinging test case.

Note that the good convergence of the quasi-Newton method gives an indirect validation of
the Jacobian computation tool (see section 2.1.1), since this method could not work without
a rather accurate evaluation of this matrix.
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Fig. 2.5 Density field of the impinging jet base flow, computed with the quasi-Newton method.

2.2.3 Unstable global modes

A global linear base flow stability analysis has been carried out, following the procedures
detailed in the previous sections. The resulting spectrum contains two unstable modes, at
St = 0.48 (mode A) and St = 0.55 (mode B) (see figure 2.6). The spatial structure of the
modes is shown in figures 2.7 and 2.8, respectively.

As said previously, this impinging jet is close to the configuration of Chiriac and Ortega
(2002), who performed incompressible simulations with a similar geometry, for different
Reynolds numbers ranging from 250 to 750. The main difference is the compressible nature of
our simulation, but the compressible effects should however be rather limited since M = 0.2.
For Re = 660, they found that the jet was unsteady, with a characteristic Strouhal number
St = 0.55. This compares favorably with the Strouhal numbers of the unstable modes we
found (see figure 2.6).

Fig. 2.6 Spectrum of the impinging jet (Re = 660). The red dots represent the two unstable
eigenvalues that has been found (St = 0.48 and St = 0.55).
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Fig. 2.7 Density field of mode A (St = 0.48) for Re = 660.

Fig. 2.8 Density field of mode B (St = 0.55) for Re = 660.

2.2.4 Critical Reynolds number of the unstable modes

Another point, studied by Chiriac and Ortega (2002), may be compared with stability results.
From their simulations, they showed that the flow becomes unsteady for a critical Reynolds
number between Re = 585 and Re = 610. To compare with this, we have performed a
stability analysis for several configurations that cover a range of Re from 560 to 660. As it
can be seen in figure 2.9, mode A becomes unstable for Re between 580 and 600, and mode
B, between 560 and 580. These values are in good agreement with the results of Chiriac
and Ortega (2002), especially for mode A. Note that some differences may appear due to
the compressible nature of our computations. Also, the existence of two modes instead of a
single one is something that has not been studied here. Further analysis would be required
to determine their origin and their role in the dynamics of the flow.

2.2.5 Convergence of the unstable eigenvalues

Mesh convergence To ensure that the two unstable modes have reached convergence
with respect to the mesh, the same base flow analysis has been performed with a denser grid,
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Fig. 2.9 Evolution of the growth rate of mode A (circles) and mode B (triangles) with respect
to the Reynolds number.

containing 183×153 points for block 1 and 439×1363 points for block 2. The variation of the
modulus of the eigenvalue has been found equal to 0.12% and 0.07% for mode A and mode
B, respectively. The variation of the frequency (imaginary part of the eigenvalue) was 0.09%
for mode A and 0.02% for mode B, and for the growth rate (real part of the eigenvalue), we
found 6.6% for mode A, and 2.7% for mode B. Note that this stronger relative variation of
the growth rate represents a small absolute variation, since the growth rate value is very
small (σ ∼ 10−2). Based on these results, the modes have been considered to be converged.

Epsilon convergence The Jacobian matrix, needed to perform the global stability analysis,
is computed by finite differences. This implies the use of a small parameter of discretization ε
(see section 2.1.1), that was set to ε = 10−7 for the results presented above. The same
analysis has been performed with ε = 10−8. The variation of the eigenvalue modulus was
then 0.05% and 0.09% for mode A and mode B, respectively. The variation of the frequency
(imaginary part of the eigenvalue) was 0.04% for mode A and 0.05% for mode B. For the
growth rate (real part of the eigenvalue), we found 3% for mode A and 3.1% for mode B.
Based on these results, the modes have been considered to be converged.

2.2.6 Performances

In the following, we give some information about the numerical procedure with respect to
memory and computational time. This configuration (initial mesh) contains 1.3 million
degrees of freedom (approximately 333000 mesh cells and four variables: density, streamwise
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and cross-stream momentum and total energy). The computation and storage of the Jacobian
required approximately 2 minutes using 52 cores (processors Intel Xeon X5675). The quasi-
Newton method (without the initial Jacobian computation) took approximately 30 seconds
for the initial Jacobian LU factorization, then 5 seconds per iteration (using 52 cores as
well). The matrix contained approximately 45 millions of non-zero elements, and its LU
factorization required 28 gigabytes of memory (approximately 540 megabytes per core).

2.3 Resolvent analysis

As explained in chapter 1, resolvent analyses require the computation of the Jacobian operator
as well as a linear solver and a code able to compute eigenvalues. This can be done using the
procedures previously described in sections 2.1.1 and 2.1.2. The following details some other
numerical aspects for the implementation of a resolvent analysis tool.

As introduced in chapter 1, a resolvent analysis aims at maximizing the gain G(f̂) defined as:

G = ⟨Rf̂ ,Rf̂⟩
⟨f̂ , f̂⟩

(2.3)

The definition of the inner product is a modeling choice, and while we often consider an
inner product corresponding to the energy norm (see chapter 5), any other choice is possible.
In the following, we consider a general situation with two different inner products for the
numerator and the denominator, denoted with the subscripts a and b, respectively. This
yields G = ⟨Rf̂ ,Rf̂⟩a/⟨f̂ , f̂⟩b. From a discrete point of view, these inner products can be
performed by introducing the corresponding symmetric semi-definite positive mass matrices
Qa and Qb (for the definition of these matrices for the energy norm, see Mettot (2013)). The
discrete counterpart of equation (2.3) is then:

G̃ = f̃
∗R̃∗QaR̃f̃
f̃

∗
Qbf̃

, (2.4)

where the tilde notation refers to discretized quantities, and R̃∗ and f̃
∗ are the trans-

conjugate of R̃ and f̃ , respectively. This corresponds to a generalized Rayleigh quotient,
and the optimal gains µi are given by the largest eigenvalues of the generalized eigenvalue
problem R̃∗QaR̃f̃ = µ2Qbf̃ , which can be solved using the ARPACK/MUMPS strategy
described in section 2.1.2. The optimal forcings of unit norm ϕi are then the corresponding
normalized eigenvectors, and the corresponding optimal responses are given by ψi = R̃ϕi.
These responses may then be normalized using the inner product defined by Qa.
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Remark As explained in Mettot (2013), this can be further modified to include a restriction
matrix, such that the forcing is restrained to a given spatial region for a given set of conservative
variables. This has not been used for the present work, and is therefore not detailed here.

2.4 Local approaches

In the following, we give details related to the local approaches introduced in chapter 1,
namely the PSE and the local stability analysis. We present the main equations and give
information about the numerical strategy adopted. Note that the theory for each approach is
introduced using a base flow, but the exact same could be done using a mean flow instead.

2.4.1 Parabolized stability equation analysis

A parabolised stability equation (PSE) analysis is a non-modal approach for the study of
weakly-nonparallel flows (Herbert, 1997). It has been briefly introduced in section 1.2, and
is further discussed in chapters 5, where we show that a PSE analysis may be used to
approximate the optimal response mode ψ1 given by a resolvent analysis. In the following,
we introduce the PSE equations in an incompressible framework and present the numerical
strategy adopted.

PSE in Cartesian coordinates Let us consider a weakly non-parallel base flow of the
form q = (ux(x, y), uy(x, y), p(x, y)), where ux, uy and p are the streamwise velocity, cross-
stream velocity and the pressure, respectively. A PSE analysis about this base flow consists
of considering small harmonic perturbations (u′

x, u
′
y, p

′) at a frequency ω, which are governed
by the linearized Navier-Stokes equations, that reads for an incompressible flow:

∂xu
′
x + ∂yu

′
y = 0, (2.5)

∂tu
′
x + ux∂xu

′
x + uy∂yu

′
x + ∂xuxu

′
x + ∂yuxu

′
y = −∂xp′ + 1

Re
(∂xxu′

x + ∂yyu
′
x), (2.6)

∂tu
′
y + ux∂xu

′
y + uy∂yu

′
y + ∂xuyu

′
x + ∂yuyu

′
y = −∂yp′ + 1

Re
(∂xxu′

y + ∂yyu
′
y), (2.7)

where Re is the Reynolds number. Note that p is not needed since it does not appear in the
equations. The perturbation (u′

x, u
′
y, p

′) is then separated into amplitude functions (ũx, ũy, p̃)
and an exponential function α. For instance, u′

x is taken of the form:

u′
x = ũx(x, y) exp(

∫ x

x0
α(ξ)dξ − iωt). (2.8)
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Substituting this form into {2.5;2.6;2.7} yields the PSE equations:

∂xũx = −αũx − ∂yũy, (2.9)

∂xũy = 1
ux

(
iω − αux − uy∂y − ∂yuy + 1

Re
(∂y + α2

)
ũy − 1

ux
∂yp̃, (2.10)

∂xp̃ = (iω − uy∂y − ux + 1
Re

(∂yy + α2)ũx + (ux∂y − ∂yuy)ũy − αp̃. (2.11)

Note that to obtain these equations, one has to consider the slowly varying base flow
assumption, which consists of setting ∂x, uy ∼ O(1/Re), and then neglecting all the terms
of order ∼ 1/Re2 and higher. The previous equations may be recast in the compact matrix
form:

∂xq̃ = Lq̃, (2.12)

with q̃ = (ũ, ṽ, p̃)T , and L the operator corresponding to equations {2.9;2.10;2.11}.

Starting at a certain upstream location x0, from an initial value for the shape functions
and for α, equation (2.12) can be marched downstream to compute the fluctuation field for
x > x0: the state vector q̃j+1 = q̃(xj+1) at a downstream location xj+1 may be computed
from the value q̃j directly upstream from it, by solving the first-order approximation:

(I − ∆xL)q̃j+1 = q̃j , (2.13)

with ∆x = xj+1 − xj the marching step, and I the identity matrix. The initial conditions
(q̃0, α0) are usually computed from a local spatial linear stability analysis (detailed in
section 2.4.2) using the base flow velocity profile at x0. Note that an additional condition
must be imposed to remove the ambiguity of the decomposition in (2.8), which allows the
streamwise development of the wave to be either absorbed by the shape function or by α.
The auxiliary condition usually considered is:∫

q̃∗∂xq̃dy = 0, (2.14)

where the superscript ∗ denotes the complex conjugate. This relation ensures that most of the
streamwise variation is absorbed by α. This provides an update algorithm for αj+1 = α(xj+1)
(see for instance Gudmundsson and Colonius (2011)):

αn+1
j+1 = αnj+1 − i

∆x

(∫
(q̃nj+1)∗(q̃nj+1 − q̃j)dy

)
/

(∫
(q̃nj+1)∗q̃nj+1dy

)
(2.15)

By iterating between (2.13) and (2.15) until convergence, the solution can be advanced from
xj to xj+1.
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In practice, this procedure may not converge for spatial steps ∆x that are too small. For
the present study, we therefore used the stabilizing procedure described in Andersson et al.
(1998), which consists of rewriting equation (2.13) as:

(I − ∆xL − sL) q̃j+1 = (I − sL)q̃j , (2.16)

where s is a positive scalar which value depends on ∆x and the local value of α (see Andersson
et al. (1998)). With this procedure, arbitrarily small marching step ∆x may be used.

Axisymmetric PSE in cylindrical coordinates Using similar notations than those of
section 2.4.1, the cylindrical PSE for an axisymmetric base flow reads:

∂xũx = −αũx − (∂r + 1
r

)ũr, (2.17)

∂xũr = 1
ux

(
iω − αux − ur∂r − ∂rur + 1

Re
(∂rr + α2 + ∂r

r
− 1
r2 )
)
ũr − 1

ux
∂rp̃, (2.18)

∂xp̃ = (iω − ur∂r − ux + 1
Re

(∂rr + α2 + ∂r
r

))ũx + (ux∂r + ux
r

− ∂rux)ũr − αp̃, (2.19)

with ux and ur the axial and radial base flow velocity, receptively, and ũx, ũr, p̃ the shape
function of the axial velocity fluctuation, the radial velocity fluctuation and the pressure
fluctuation, respectively. Then, the only difference from the procedure in Cartesian coordinates
is the auxiliary condition that becomes∫ rmax

0
q̃∗∂xq̃rdr = 0. (2.20)

Equation (2.15) then becomes

αn+1
j+1 = αnj+1 − i

∆x

(∫
(q̃nj+1)∗(q̃nj+1 − q̃j)rdr

)
/

(∫
(q̃nj+1)∗q̃nj+1rdr

)
. (2.21)

Numerical strategy For the present study, the discretization of the PSE equations is
based on second-order centered finite differences. Equation (2.16), as well as its axisymmetric
counterpart, have been solved using the LAPACK library (implemented in the python package
Numpy). The integrations involved in equations (2.15) and (2.21) have been carried out
numerically with a trapezoidal rule.
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2.4.2 Linear local spatial stability analysis

Linear local spatial stability analysis has been introduced in chapter 1, and such an analysis is
usually required to initialize a PSE procedure. In the following, we present its main equations
and assumptions, and give details about the numerical schemes that have been used for this
thesis.

Cartesian coordinates The 2D incompressible equations of a local stability analysis may
be derived by assuming a parallel base flow of the form q = (ux(y), uy = 0, p(y)). Considering
small fluctuations (u′

x, u
′
y, p

′) around the base flow gives the following linearized equations:

∂xu
′
x + ∂yu

′
y = 0, (2.22)

∂tu
′
x + ux∂xu

′
x + uy∂yu

′
x = −∂xp+ 1

Re
(∂xxu′

x + ∂yu
′
x), (2.23)

∂tu
′
y + ux∂xu

′
y = −∂yp′ + 1

Re
(∂xxu′

y + ∂yyu
′
y). (2.24)

We then assume every fluctuating quantities a′ of the classical form a′(x, y, t) = â(y) exp(αx− iωt),
yielding the final set of equations:

αûx + ∂yûy = 0, (2.25)(
− 1
Re

∂yy + uxα− 1
Re

α2
)
ûx + ∂yuxûy + αp̂ = iωûx, (2.26)(

− 1
Re

∂yy + uxα− 1
Re

α2
)
ûy + ∂yp̂ = iωûy. (2.27)

By setting q̂ = (ûx, ûy, p̂)t and A1, A2, A3, A4 as

A1 =


0 0 0

−1/Re 0 0
0 −1/Re 0

 , A2 =


1 0 0
ux 0 α

0 ux 0

 ,

A3 =


0 ∂y 0

−(1/Re)∂yy ∂yux 0
0 −(1/Re)∂yy 0

 , A4 =


0 0 0
1 0 0
0 1 0

 ,
equations {2.25;2.26;2.27} may be recast as

α2A1q̂ + αA2q̂ +A3q̂ = iωA4q̂. (2.28)
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A linear spatial stability analysis consists of computing α and q̂ for a given fixed real value
of ω. This can be achieved by considering the augmented eigenvalue problem for α:(

0 −A3 + iωA4

I −A2

)(
X

Y

)
= α

(
I 0
0 A1

)(
X

Y

)
, (2.29)

with I the identity operator. The pair (α, q̂ = Y ) formed from an eigenvalue and eigenvector
of (2.29) is also a solution of equation (2.28).

Axisymmetric flow in cylindrical coordinates The local stability analysis for an
axisymmetric base flow q = (ux(r), ur = 0, p(r)) may be carried by following the exact same
procedure than that of section 2.4.2, applied on the following equations

αûx + (∂r + 1
r

)ûr = 0, (2.30)([
ω − 1

Re
(∂rr + ∂r

r
)
]

+ uxα− 1
Re

α2
)
ûx + ∂ruxûr + αp̂ = 0, (2.31)([

ω − 1
Re

(∂rr + ∂r
r

− 1
r2 )
]

+ uxα− 1
Re

α2
)
ûr + ∂rp̂ = 0. (2.32)

Numerical strategy For the present study, the equations have been discretised using
second-order centered finite differences for the derivatives, then the eigenvalue problem (2.29)
and its axisymmetric counterpart have been solved using the ARPACK library (Lehoucq
et al., 1998), with a shift-and-invert strategy. For each streamwise location, the computation
of the eigenvalue may be initialized by the value of α computed just upstream from the
current location. For the initial guess for the most upstream position, the values usually
come from physical argument (by knowing the frequency and approximate wavelength of the
searched mode).
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Personal contributions

In this section, for each of the techniques presented above, we detail the work that has been
personally done as a part of this thesis, and we present the collaborators as well as their own
contribution.

Linearization procedure (section 2.1.1) The numerical code was based on a previous
code created by C. Mettot, a former ONERA PhD student, which has been validated
during his PhD (Mettot, 2013). It presented several limitations with respect to the mesh
configurations that could be treated (not detailed here), and has been modified to handle
any mesh configuration. Moreover, the new optimal strategy for the Jacobian computation,
described in section 2.1.1, has been implemented. In addition, as detailed in section 2.1.1, the
code requires the use of an external CFD software (ElsA). The integration of ElsA has been
improved: the inputs and outputs for this external software are now treated automatically
(input parameters, input/output files, etc.). The code has also been parallelized: the matrix
computation is based on multiple independent residual evaluations, which are now handled
simultaneously on all the available cores. Several other optimizations, not detailed here, have
been added to reduce the computational time. A new user interface has been developed with
the help of F. Sartor.

Eigenspectrum computation (section 2.1.2) This computation is based on existing
libraries (see section 2.1.2), that are called by a simple FORTRAN code, developed by D.
Sipp, and slightly modified for a better integration with the Jacobian computation code.

Quasi-Newton code (section 2.1.3) This has been entirely developed and implemented
as a part of the present work.

Resolvent analysis code (section 2.3) This tool is based on a previous code developed
by C. Mettot. The main contributions correspond to some bug-fixing related to forcing
restrictions, and improvements of the user interface.

PSE code (section 2.4.1) The PSE code developed for this thesis is a porting to Python
of a Matlab code provided by L. Lesshafft. The main modification concerns the spatial
differentiation schemes, that were initially based on a Chebyshev collocation, and that are
now performed by second-order finite differences. This has been done in order to get a more
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robust code with respect to bias and noise in the input data, motivated by the willing of
using it on experimental data (see chapter 6). The counterpart of this robustness is the need
of denser spatial grids in order to achieve a similar accuracy. On account of this, the code
has been optimized in order to reduce the computational time.

Local stability code (section 2.4.2) The local stability code has been entirely developed
and implemented as a part of the present work, with the help of N. Bonne (PhD student
at ONERA), who suggested the “augmented eigenproblem” strategy (see section 2.4.2). A
compressible version has also been developed (not presented here).
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Base flow stability analysis





Chapter 3
–

The screech phenomenon

Preliminary comments

The results of this section have been published in the European Journal of Mechanics B/fluids
as “Global stability analysis of underexpanded screeching jets”, S. Beneddine, C. Mettot and
D. Sipp, 49, pp. 392-399 (2014). The content of the article has been modified to conform
with the present manuscript. The original abstract of the article is the following:

This article deals with a global stability analysis of the screech phenomenon. We have shown
that a laminar underexpanded supersonic cold jet can exhibit globally unstable modes. A closer
look at the structure of these modes shows that they present upstream propagating waves,
which is known to be a major component of the screech phenomenon. Furthermore, we find a
good agreement between the frequency of the eigenmodes and existing empirical formulas for
the prediction of screech frequency. We have then studied the influence of two key parameters
on the linear stability of the flow, the jet pressure ratio (JPR) and the nozzle lip thickness,
which are known to play an important role in the screech phenomenon. Finally, a careful
study of the structure of the unstable modes shows that the upstream propagating acoustic
waves of those modes are generated by supersonic phase velocity disturbances, a well-known
sound generation mechanism.
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3.1 Motivation

Chapter 1 introduced the RPIF property, that refers to a base flow which is linearly unstable,
with unstable mode(s) displaying a frequency close to that of the actual nonlinear dynamics of
the corresponding flow. This property is verified far from criticality for a few configurations,
such as the cavity flow. But this is not always the case, and a classical counter-example is
the flow past a cylinder.

In the following, we focus on screeching jets and show that this case satisfies the RPIF
property. Beside yielding new results about the screech phenomenon, absent from the existing
literature, this introduces a new case that is then used for a general discussion in chapter 4
about the RPIF property.

3.2 Introduction

The study of imperfectly expanded supersonic jets is an active subject of research since such
flows can be found in a broad variety of industrial applications. The most common one is
military aircrafts, whose engines often operate at off-design conditions. In this chapter, we
focus on underexpanded jets, where the flow pressure at the nozzle exit is higher than the
ambient pressure. This mismatch in pressure induces the apparition of a complex quasi-
periodic “shock-cell" structure. The jet periodically overexpands and re-converges, attempting
to match the ambient pressure, and consequently, forms a standing wave pattern. As a result,
shocks and expansion fans appear periodically, creating the so-called shock-cells. Despite the
fact that those flows are highly nonlinear, it is possible to predict the gross features of such
jets, such as the shock-cell length, with a good agreement with experimental data (Pack,
1950; Prandtl, 1904; Tam et al., 1985).

One of the important features of supersonic jets is that they can generate strong noise, a
point which has been intensively studied in the past decades. A large number of articles
on the subject have been written since the first work of Lighthill (1952). One may refer for
instance to the review of Tam (1998) for further details. It is now known that the noise of
shock-containing supersonic jets has three components : the broadband shock-associated
noise resulting from the interaction of instability waves and the shocks, the turbulent mixing
noise generated by the turbulent fluctuations, and the screech tones, which are the subject of
this chapter. More information about the two first noise components can be found in Tam
(1998).
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The screech phenomenon was first studied by Powell (1953). He observed that, under certain
conditions, supersonic imperfectly expanded jets can produce very loud discrete frequency
tones, the so-called screech tones. This phenomenon can be so intense that in real flight
conditions, it can damage the structure of an aircraft. The first observation of such damages
was made by the British Aircraft Corporation in the 1960s, where in-flight measurements
showed that screech was responsible of minor cracking on VC 10 aircrafts (Hay and Rose,
1970; Raman, 1998). Such concerns do not affect most of modern commercial engines though,
and usually, screech tones are observed only with military aircrafts.

In one of his papers, Tam (1998) referred to screech as “the least understood, least predictable
component of supersonic jet noise”. Indeed, many questions, such as the prediction of the
amplitude of the noise, or its sensitivity to the surrounding environment, have remained
unanswered. However, the dominant physical mechanism is known and has been described
by Powell (1953) as a feedback loop between the shocks and the nozzle lip: instability
waves developing in the shear layer interact with the shocks, giving birth to acoustic waves
propagating upstream. When those waves reach the nozzle lip, they are reflected and excite
the shear layer, giving birth to new embryo perturbations that undergo the same process,
closing the resonant loop.

There is an abundant literature available on the topic of screeching jets: as mentioned in
Raman (1999), from Powell’s first observation to now, more than 200 papers have been
published. An extensive bibliography and a detailed review on screech can be found in the
article of Raman (1998). But despite this large amount of studies, our knowledge of the
phenomenon remains mainly qualitative. The only real quantitative prediction available is
the frequency of the tones (Powell, 1953). This lack of understanding is the reason why
screech is still an active field of research. But, to our knowledge, screech has never been
studied in the light of a linear global stability analysis.

Recent works have shown that stability theory appears as a very successful framework for
sound prediction in jets. We can cite for example Lesshafft et al. (2010) on global modes in
adapted subsonic hot jets, the work of Ray and Lele (2007) on broadband shock-associated
noise in supersonic underexpanded jets using parabolized stability equations (PSE, see section
2.4.1 for more details), or Nichols et al. (2009), who performed a global mode decomposition
on supersonic adapted jets. The case of screech presents one strong particularity: as briefly
detailed above, one of the key features of a screeching jet is that it presents upstream
propagating acoustic waves that play a major role in the instability process. Consequently, as
explained in chapter 1, a stability analysis based on PSE is unable to capture such upstream
propagating structures and cannot therefore be used here. On the contrary, a global stability
analysis, in which both the cross-stream and stream-wise directions of the perturbation are
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solved for, is able to capture upstream-propagating waves and may also handle more precisely
the non-parallelism induced by the shock-cell structures. In the present chapter, we aim
at finding an underexpanded supersonic jet that is globally unstable, and analyze the link
between the unstable structures and the screech phenomenon.

The outline of this chapter is as follows. After a presentation of the studied jets and corre-
sponding equations (§3.3) and the numerical strategy (§3.4), we focus on an underexpanded
jet configuration that is marginally unstable, and relate the features of the unstable global
mode to screech (§3.5). Then, we assess the effects of two key parameters, the jet pressure
ratio (§3.6) and the lip thickness (§3.7). In a last section (§3.8), we focus on the noise
generation mechanism associated with the unstable global modes.

3.3 Physical configuration and linear global stability analysis

We focus on two-dimensional cold jets of air surrounded by a co-flow. In this study, the jet
pressure ratio (JPR), defined as the ratio between the static jet pressure and the ambient
pressure, and the lip thickness are the two parameters that will be varied. All other parameters
of the configuration are fixed: the Mach number of the co-flow is 0.5, while the Mach number
of the jet is 1.02. The height of the nozzle exit is equal to 3 mm. The stagnation temperature
of both the jet and the co-flow is T0 = 288 K, the Prandtl number is 0.72 and the viscosity
follows a Sutherland law, with standard coefficients for air. The static pressure of the ambient
air is set to 3000 Pa. The static pressure of the jet, and thus the Reynolds number (based
on the jet velocity, the height of the nozzle, and the static density/temperature of the jet)
depend on the JPR. The value of the height of the nozzle and the static pressure of the
ambient air have been chosen such that, for all the studied JPR in this paper, the order of
magnitude of the Reynolds number is 103, ensuring that the flow is in a laminar transitional
situation. To simplify the study, we have imposed adiabatic slip conditions on the walls of
the nozzle, so that the boundary layer thicknesses (inside and outside the nozzle) are zero at
the nozzle exit. The effect of the boundary layer thickness is not studied here.

The flow dynamics is modeled using the compressible 2D Navier-Stokes equations, that can
be recast in the following compact form:

∂q
∂t

= N(q), (3.1)

where q = (ρ, ρu, ρv, ρE)T designates the variables describing the flow (density, streamwise
momentum, cross-stream momentum, total energy) and N(q) designates the conservation of
mass, momentum, and energy equations. From now on, we consider that all quantities are
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co-flow

co-flow

Me = 1.02

pe = JPR
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pa = 1

pa = 1

Ma = 0.5

Fig. 3.1 Scheme of the physical configuration of the flow (nondimensional quantities). The
two variable parameters are the JPR and the lip thickness hl.

made nondimensional using the jet velocity, the height of the nozzle, the static pressure and
density of the ambient air.

We then follow the formalism and notations of chapter 1, such that the linear global stability
analysis about the base flow qb reduces to the following eigenproblem:

L(qb)q̂ = λq̂, (3.2)

where L(qb) correspond to the linearization of N about the base flow qb.

3.4 Numerical strategy

All the computations were performed using the compressible ElsA solver developed at ONERA
(Cambier et al., 2013). The spatial discretization of the governing equations is based on a
second-order finite-volume conservative formulation. We use a Jameson numerical flux with
scalar dissipation with Martinelli correction for the convective fluxes, and a second-order
centered scheme for the diffusive fluxes.

The computational domain has 810 nodes in the streamwise direction, and 435 in the
cross-stream direction, and covers an area of (165 × 44). Sponge regions, necessary to damp
spurious reflections on the boundaries of the domain have been added. We impose respectively
supersonic and subsonic injection conditions for the jet and the co-flow. Similarly to the work
of Prudhomme and Haj-Hariri (1994), if the flow reaches the downstream boundary with a
subsonic speed, we impose its pressure to be equal to the static pressure of the co-flow, if it
is supersonic, no conditions are imposed. Figure 3.2 shows the sponges, the physical domain
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Fig. 3.2 Computational domain and boundary conditions. Sponge regions are in grey and
the physical domain of interest is in white.

of interest and the boundary conditions. Based on these numerical parameters, the base
flow, the Jacobian operator L(qb) and the solutions of equation (3.2) have been computed
following the procedures described in chapter 2.

3.5 Marginally unstable configuration and associated mode

3.5.1 Physical configuration and base flow computation

We consider a configuration as described in section 3.3, with a JPR equal to 1.12 and a lip
thickness hl = 0.063. With those parameters, the Reynolds number is 3020.

Figure 3.3 shows the computed density field. We can see the expected shock-cell structures.
We have checked that this solution is spatially converged by considering meshes twice as dense
in the streamwise and cross-stream direction, respectively. We have in particular compared
the pressure distribution along the central line of the jet for the different computed fields.
The maximum relative error, defined as

max
x∈[0,xmax]

(
|p(x) − pref (x)|

pref (x)

)
,

where p is the pressure distribution along the central line corresponding to the denser meshes,
and pref that of the original mesh, is inferior to 5%.

Finally, to check the validity of our computed base flow, we have compared the length of the
computed shock-cells with Tam’s formula (Tam et al., 1985):

ls = 2

√
M2
j − 1
Mj

(
1 + γ−1

2 M2
j

1 + γ−1
2

)(γ+1)/2(γ−1)

, (3.3)
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Fig. 3.3 Left: density field of the computed base flow (JPR=1.12, hl = 0.063). One can
notice the expected shock-cell structure. Right: zoom on the exit of the nozzle, on which we
have represented the main features of underexpanded jets. The figures display 15 contours
equally spaced between 0.9 and 1.4 (nondimensional density unit).

where γ is the heat capacity ratio, ls the nondimensional length of the shock-cells, and Mj ,
the fully expanded Mach number, defined as (see Berland et al. (2007)):

Mj =
√

2
γ − 1

[(
1 + γ − 1

2 M2
e

)
JPR(γ−1)/γ − 1

]
. (3.4)

For the studied configuration, the formula gives ls = 0.99. Using the computed base flow, we
can measure the length of the cells, for instance by evaluating the distance between two local
pressure maxima along the center-line of the jet. Table 3.1 shows that the results are in very
good agreement with equation (3.3).

Shock-cell number 1 2 3 4 5
Shock-cell length (computed base flow) 0.960 0.978 0.983 0.978 0.995

Relative error (w.r.t. formula (3.3)) 3.0% 1.3% 0.7% 1.3% 0.5%

Table 3.1 Comparison between the measured shock-cell lengths from the computed base flow
(for the five first shock-cells) and the theoretical values ls = 0.99 (equation (3.3)), for the
case JPR=1.12, hl = 0.063.
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Fig. 3.4 Spectrum of the Jacobian matrix, for the marginally unstable configuration
(JPR=1.12, hl = 0.063). Circled red dot: the marginally unstable eigenvalue, vertical
red line: frequency prediction (Powell’s formula Powell (1953)).

3.5.2 Global mode decomposition

Figure 3.4 shows the least stable eigenvalues corresponding to the base flow presented in the
above section. We can see that there exists one marginally unstable global mode and a series
of damped global modes.

Figure 3.5 shows the spatial structure of the marginal global mode. One can clearly notice
that the density field presents upstream propagating waves in accordance with the screech
phenomenon. We can observe that the radiated sound field is out-of-phase on either side
of the jet, in accordance with most of the works carried out on rectangular and planar jets
(see the review of Raman (1998)). However, it has also been shown that rectangular jets can
sustain a weak symmetric mode (Lin and Powell, 1997; Raman, 1998), but several papers
suggest that, in the strictly two-dimensional case, this mode should not appear (Lin and
Powell, 1997; Umeda et al., 1990)

To confirm that this mode is indeed related to screech tones, we have compared its frequency
with empirical formulas. Powell (1953) provides a simple formula to predict the frequency of
the tones, given by

f = uc
ls(1 + uc/ca)

, (3.5)

where f is the frequency, ls the length of the shock-cells, uc the convective speed of the
disturbance, and ca the ambient sound velocity. This formula indicates that one period of
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Fig. 3.5 Real part of the density field of the marginally unstable mode (JPR=1.12, hl = 0.063).
One can notice the upstream propagating waves, typical from screech. The structures in the
red rectangle propagate downstream. The black arrows show the direction of propagation of
the acoustic waves.

screech corresponds to the sum of the time needed for a disturbance to reach the first shock
(t1 = ls/uc) and the time needed for the generated acoustic waves to travel back from this
shock to the nozzle lip (t2 = ls/ca). This leads to a period for each screech cycle equal to
T = t1 + t2 = ls(uc + ca)/(ucca), from which one can easily deduce Powell’s formula. The
convective velocity uc is generally taken equal to a · uj , with uj the jet velocity, and a a
scalar around 0.5 to 0.7 Raman (1998). Equation (3.5) holds when the ambient air is at rest.
In our case, since we have a co-flow, the convection speed of the perturbation needs to be
modified according to:

uc = a(uj − ua) + ua,

where ua is the ambient velocity. The acoustic feedback is also impacted by the co-flow, and
sound waves propagate back to the nozzle with a speed equal to ca − ua instead of ca. This
yields the following final relation for the frequency prediction:

f = (a(uj − ua) + ua)
(
ls

[
1 + a(uj − ua) + ua

ca − ua

])−1
. (3.6)

In the present case, this formula yields ω = 2πf ≈ 1.96. We can see that the frequency of
the unstable mode is in reasonable agreement with this value (18 % of error, see figure 3.4).
A part of the discrepancy may stem from the fact that global stability analysis performed
around base flows may provide frequencies that are different from those observed on saturated
limit-cycles, since nonlinear mechanisms are not accounted for (see section 1.2.3). But we
can also point out that predictions based on (3.5) overestimate frequencies for low values of
Mj (and thus, low values of JPR) with respect to experimental data (see for example Raman
(1998)), in agreement with the present results. Therefore, we expect better consistency
between the global mode frequency and equation (3.6) for higher values of JPR (see next
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section). But those first results show that both the structure of the mode and its frequency
support the idea that screech is linked to a global instability of the jet.

3.6 Influence of the Jet Pressure Ratio

The influence of the JPR on the screech phenomenon is still an open question, in particular
there is no simple relation between the JPR and the intensity of the tones (Raman, 1998).
Yet, we know that this parameter plays a major role in the phenomenon since it has a
strong influence on the length of the shock-cells ls and on the convective velocity uc. An
increase of the JPR leads to a larger value of Mj , and therefore larger values of uc and ls

(see equation (3.3)), the resulting effect being a decrease of the frequency.

3.6.1 Physical configurations

To assess the effect of the JPR parameter on the eigenvalues, we consider seven configurations
with a fixed value of the lip thickness hl = 0.063 but with JPR values ranging from 1.12 to
1.215, and compute the associated spectrum. The studied values of JPR and the corresponding
Reynolds numbers are reported in table 3.2.

JPR 1.12 1.13 1.14 1.15 1.16 1.18 1.215
Re 3020 3050 3070 3100 3120 3170 3270

Table 3.2 Studied values of JPR and corresponding Reynolds numbers (hl = 0.063).

3.6.2 Results

We have reported in figure 3.6 the full spectrum for JPR=1.12 (circular symbols) and the
unstable eigenvalues for higher values of the JPR (other symbols). We can see that there
are two branches of unstable modes (red and blue symbols), that will be called modes A
and B in the following, respectively. The marginal global mode described in the previous
section is an A-mode. The spatial structure of the new unstable mode (mode B) can be seen
in figure 3.7. Similarly to mode A, it exhibits upstream propagating waves in accordance
with the screech phenomenon. The two modes exhibit a frequency decreasing when the JPR
increases, confirming their link with the screech phenomenon.
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Fig. 3.6 Spectrum of the JPR=1.12 configuration (circles), with the evolution of mode A
(red) and B (blue) when we increase the JPR, hl = 0.063. Darker colors correspond to higher
JPRs.

Fig. 3.7 Real part of the density field of mode B (JPR=1.18, hl = 0.063). One can notice
the upstream propagating waves, typical of screech, similar to what can be seen in the other
mode (figure 3.5). The black arrows show the direction of propagation of the acoustic waves.

Figure 3.8 displays the two mode branches in terms of growth rate σ and frequency ω, with
respect to the JPR. we observe that the two modes display a frequency in much closer
agreement with Powell’s formula as the JPR is increased. One last point about those results
can be commented: the growth rate, for which we have no theoretical results, presents an
interesting behavior. Indeed, we can observe that mode A, the first to become unstable,
stabilizes again when we increase the JPR, while the other mode has, within the studied
range of JPRs, a simpler behavior, with a growth rate increasing when the JPR becomes
higher. This shows that mode A is unstable only for a very narrow range of JPRs, meaning
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Fig. 3.8 Left: Comparison between the analytically derived evolution of the frequency with
respect to the JPR (based on equation (3.6), using equations (3.4) (continuous line) and
(3.3)), and the frequencies of mode A (red) and B (blue). Right: evolution of the growth rate
σ of mode A (red) and mode B (blue) with respect to the JPR

that mode B is certainly more relevant for the study of screech, which is known to be a
phenomenon occurring for a wider range of JPRs.

3.7 Influence of the Nozzle lip thickness

The lip thickness is another parameter known to have a major influence on screech tones.
As mentioned before, the mechanism of generation of the tones is based on a resonant
feedback loop with upstream propagating acoustic waves that are reflected on the lip and
excite the mixing layer. The thicker the lip is, the larger the reflecting surface is. The
experiment of Ponton and Seiner (1992) reported that increasing the nozzle lip thickness
tends to significantly increase screech tone amplitudes. Also, we know that screech ceases
to exist when the fully expanded Mach number Mj is large enough (Raman, 1998), but it
appears that even in such non-screeching jets, it can be reactivated by adding a thickener
on the lip (Raman, 1997). The frequency is also slightly affected by this parameter, and
tends to increase when hl is larger, as it has been shown for instance by Kim and Lee (2007).
But, to our knowledge, there is no prediction formula accounting for this parameter. The
influence of the lip thickness is still one of the points that is not entirely understood in the
screech phenomenon.

To study the impact of the lip thickness on the global stability, we consider five different lip
thicknesses (see table 3.3), with a fixed value of the JPR=1.215 (Re=3270).
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hl 0.0302 0.0392 0.0630 0.0728 0.0965

Table 3.3 Values of hl that have been considered for the parametric study (JPR=1.215).

Fig. 3.9 Eigenvalues of mode A (red) and B (blue) for different nozzle lip thicknesses hl
(JPR=1.215). Darker colors correspond to higher thicknesses. Remark: the eigenvalues
corresponding to the two higher lip thicknesses are very close, making hard to distinguish
one from the other.

3.7.1 Results

Figure 3.9 shows the evolution of the eigenvalues corresponding to mode A and mode B.
Mode A is stable for the three thinner lips, but is unstable with the two thicker lips. A
similar behavior is observed in mode B, which has a growth rate increasing when hl becomes
larger. As expected, the thicker the lip is, the more unstable the modes are. The frequency is
also slightly altered and becomes higher for thicker lips, in agreement with the paper of Kim
and Lee (2007) who pointed out that an increase of lip thickness causes a decrease in screech
wavelength and therefore an increase of the frequency. One can also notice that the spectrum
displays a saturation-like behavior: we can see that both the frequency and the growth rate
are practically not altered when we compare the two smaller or the two larger thicknesses.
This behavior is reminiscent of the experiments led by Raman (1998), where the strength of
the oscillations of the jet increases when the lip becomes thicker, until a certain point beyond
which no appreciable change is seen anymore. But this last remark should be considered
with caution, as the link between growth rate and noise intensity is not obvious, and the
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general physical interpretation of the growth rate in the nonlinear dynamics is very unclear
(see chapter 4).

3.8 Noise generation mechanism

We have identified two unstable modes related to screech, and we have observed that they
exhibit both upstream and downstream propagating acoustic waves. Here, we focus on the
sound generation mechanism responsible for the birth of those waves.

One of the well-known mechanism of sound generation is the presence of supersonic phase
velocity disturbances (Tam, 1998). Global stability analysis provides the temporal and spatial
linear behavior of the conservative variables of modes A and B. We have then computed the
associated vorticity field for each mode, using a second-order centered scheme for spatial
derivations of the velocity (see figure 3.10). Then, the local streamwise phase velocity of the
resulting field is given by:

vxϕ = − ω

∂ϕ/∂x
, with ϕ = arg(ω̂), (3.7)

where ω̂ is the complex vorticity field of the mode. We consider the case JPR=1.18 and
hl = 0.063. In the presence of a co-flow, one should consider the relative phase velocity with
respect to the ambient velocity ua. Therefore, in our case, we search for disturbances which
verify vxϕ − ua > ca, with ca the ambient sound velocity. Since the ambient Mach number is
Ma = 0.5, this is equivalent to vxϕ/ca > 1.5.

As seen in figure 3.11, for the two modes, several streamwise locations verify this relation,
confirming that some sound generation is caused by the supersonic phase velocity mechanism.
Both modes display evenly distributed supersonic phase velocity locations. Such observation is
reminiscent of the work of Panda (1999), where the convective velocity of coherent fluctuations
inside the shear layer, measured experimentally, presented such a feature. Note that here, the
supersonic disturbances that we identified have a positive phase velocity. Therefore, they are
likely to be responsible for the downstream-propagating part of the acoustic waves observed
in the modes.

As a remark, we want to point out that equation (3.7) is meaningless where the vorticity is
too small or equal to zero. Indeed, the computed vorticity values need to be significantly
greater than machine precision or numerical errors due to the finite difference scheme used to
compute vorticity. The computed phase velocity has no physical meaning in low-vorticity
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Fig. 3.10 Real part of the vorticity field of the two unstable modes (JPR=1.18, hl = 0.063).
Top: mode A, bottom: mode B.

areas. Therefore, for both modes, figure 3.11 shows the phase velocity only where we have
ensured that vorticity is high enough.
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Fig. 3.11 Spatial distribution of the quantity vxϕ/ca, with vxϕ the local phase velocity of the
vorticity field, and ca = 1.04 the ambient sound velocity, for the case JPR=1.18, hl = 0.063.
Only regions where vorticity is high enough with respect to numerical errors are shown.

3.9 Concluding remarks

The screech phenomenon has been studied through a linear global stability analysis. We have
seen that, under certain circumstances, underexpanded cold jets can be globally unstable.
The associated unstable modes have a structure reminiscent of the screech phenomenon. In
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particular, they all present upstream propagating acoustic waves, whom frequency is in good
agreement with the empirical prediction formula of Powell (1953). We have performed a
parametric study on two parameters, the JPR and the lip thickness, and the behavior of the
frequency of the unstable modes is consistent with Powell’s formula and existing experimental
results. Therefore, the base flows considered in this study satisfy the RPIF property. In
such a situation, the results of a linear base flow stability analysis may be used to further
study the dynamics of the flow. For instance, we have been able to study a sound generation
mechanism: the unstable modes contain supersonic phase velocity disturbances, which is a
mechanism known to generate acoustic waves. These successful findings about underexpanded
jets are further investigated in the next chapter, dedicated to a more general discussion about
base flow stability approaches.

Remark As mentioned in the preliminary remarks, this chapter is based on a published
article, which includes supplementary materials available online. Two videos show an
animation of each unstable mode, and two other videos show the vorticity of the modes:
one can see that the supersonic regions mentioned in 3.8 correspond to locations where the
structures accelerate abruptly.



Chapter 4
–

Discussion about linear base
flow stability

4.1 RPIF property and acoustic feedback loop

The previous chapters have introduced two flow configurations satisfying the RPIF property
even far from criticality, namely cavity flows (§1) and screeching jets (§3). Similarly, the
impinging jet case, briefly studied in section 2.2, also verifies this property. These three
examples are in stark contrast with the flow past a cylinder, where a similar analysis
inaccurately estimates the vortex shedding frequency of the wake, except very close to
criticality (see chapter 1). An explanation of those opposite results, already presented
in chapter 1, is that for some flows, the frequency selection process is weakly impacted
by nonlinearities, which explains why a linear analysis accurately predicts the nonlinear
frequency.

In general, determining a priori if an unsteadiness comes from a linear mechanism is a
complex question, but the present study reveals one recurrent mechanism: in the three
cases where the RPIF property is satisfied, the unsteady behavior stems from an acoustic
feedback loop, schematically illustrated in 4.1 (see Rossiter (1964) for the cavity, Powell
(1953) for the screeching jets and Ho and Nosseir (1981) for the impinging jet, for instance).
In these flow configurations, the situation is as follows: a shear layer amplifies disturbances
through the Kelvin-Helmholtz mechanism, that are convected downstream by the fluid. They
eventually generate acoustic waves by interacting with a wall or a shock. Finally, these waves
propagate downstream where they excite the shear layer, thus closing the loop. This results
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Fig. 4.1 Schematic illustration of the acoustic feedback mechanism: perturbations are
convected downstream and amplified inside the shear layer. They eventually interact with
a wall or a shock, for instance, which creates acoustic waves that eventually got reflected
on a surface and excite the shear layer. This kind of self-sustained mechanism, occurring
in cavities or screeching jets for instance, is nearly not affected by nonlinearities, yielding
situations where the RPIF property is verified.

in an oscillating behavior at discrete frequencies, that only depends on the geometry, the
convective and sound velocity, which are, in the present cases, well described by a linear
model. While these observations cannot be extended to any flow involving a feedback loop,
it still reveals a category of flows where the RPIF property seems to be often observed.
Moreover, these examples show that the high amplitude of fluctuations is not a sufficient
criterion to invalidates the results from a linear stability analysis.

4.2 Base flow analysis using RANS equations

The previous findings also apply to a different base flow stability approach, not used for the
present work, but that relies on similar concepts than a classical base flow analysis. A linear
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Fig. 4.2 From Mettot et al. (2014a): cavity flow at a Reynolds number Re = 860000.
Comparison between the unstable (σ > 0) eigenvalues obtained from a RANS base flow
analysis (left) and the pressure spectrum at a given point in the shear layer, computed by
time marching the RANS equations (right). Both results are based on the k − ω model of
Wilcox (Roe scheme). The dashed lines indicates the Rossiter peak and harmonics observed
in the experiment by Forestier et al. (2003). The eigenvalues matching these frequencies are
indicated by the red dots.

base flow analysis addresses the linear stability of a fixed point qb of equations of the form

∂q

∂t
= N(q). (4.1)

So far, we have considered equation (4.1) to be the Navier-Stokes equations, but it could be
otherwise. For instance, one may consider the unsteady Reynolds-Averaged Navier-Stokes
(RANS) equations. A base flow would then be a solution of the steady RANS equations,
and comparing a RANS base flow analysis with respect to an unsteady RANS simulation is
analog to confronting a classical base flow analysis to a direct numerical simulation.

The RANS equations describe the large scale dynamics, with the influence of the small scales
being accounted for by an additional viscosity term (eddy viscosity). By analogy with the
previous section, we expect that nonlinearities in the RANS equations would not affect the
frequency selection process when the large scale unsteadiness originates from an acoustic
feedback loop. This is indeed the case for the cavity configuration, studied by Mettot et al.
(2014a): figure 4.2 shows the good agreement between the eigenspectrum computed from a
RANS base flow analysis of a high Reynolds number cavity flow (Re = 860000) and a pressure
spectrum computed from an unsteady RANS simulation of the same configuration. Such a
RANS approach may be helpful to carry out a base flow stability analysis of high Reynolds
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number flows, where a steady solution of the Navier-Stokes equations may be very challenging
to compute (it may not even exist). Note that the physical relevancy of the unsteady RANS
equations is not discussed here, and the results of such an analysis are conditioned by the
intrinsic ability of the unsteady RANS equations to describe the dynamics.

4.3 Conclusion

While a linear base flow analysis is often relevant to study the onset of some unsteady
behavior, the situation is more complex for the prediction of unsteady features, such as the
dominant frequency of an oscillating behavior. Chapters 1 and 3 have shown that a few
flows do verify the RPIF property because they become unsteady through linear mechanisms.
In particular, flows involving an acoustic feedback loop are likely to satisfy this condition.
Several strategies may then be considered, depending on the Reynolds number Re. If Re
is not too high, then a classical base flow analysis may be carried out, similarly to what
has been done in the case of the screech. This analysis can then be used, for instance, to
study the influence of complex parameters, such as the nozzle lip thickness for the screeching
jet. Finally, as shown for the screech phenomenon, the unstable global modes may help to
identify, for instance, a noise generation mechanism.

If the Reynolds number is too high, finding a steady solution of the Navier-Stokes equations
may be rather challenging, if not impossible. Then, one may proceed by computing a RANS
base flow (a steady solution of the RANS equations), and then performing the stability
analysis on the RANS equations. This approach could be used to study the onset of large
scale unsteadiness. This has been done, for instance, by Crouch et al. (2007). He predicted
the attack angle that yields the onset of the buffeting phenomenon on a NACA0012 airfoil at
Re = 107 and M = 0.76. This could also be used to study the large scale dynamics, under
the condition that the unsteady behavior is nearly not affected by nonlinear terms of the
RANS equations, such that the RPIF property is verified. These different situations are
summarized in figure 4.3.

Another point may motivate the use of a linear base flow analysis: when a base flow verifies
the RPIF property, then the resulting unstable modes indicate what phenomenon may be
generated through linear mechanisms. For instance in the case of the cavity, this gives insights
about the harmonics that can be seen in figure 4.2. Such harmonics are generally considered
to stem from nonlinear interactions. But as one can see in figure 4.2 in the cavity case, some
unstable eigenvalues match harmonic frequencies. This reveals that the harmonics may also
be generated through purely linear mechanisms.
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Fig. 4.3 Schematic procedure to identify the situations where a given kind of linear base flow
stability analysis is relevant. Note that the results of a RANS base flow stability analysis are
however conditioned by the ability of the RANS equations to model a given behavior.

Finally, the cavity example also reveals that comparing the growth rate of co-existing unstable
modes gives no reliable indication regarding their relative importance in the nonlinear
dynamics. For instance, the dominant eigenvalue of the cavity corresponds to the third
harmonics, that is not particularly energetic in the unsteady RANS simulation (see figure
4.2). Therefore, regarding the growth rate, the only relevant information about the nonlinear
dynamics relates to its sign and the onset of an unsteady behavior. The value itself gives no
quantitative information about the nonlinear regime.

The next part focuses on mean flow stability analyses, that may be used in several situation
where a base flow analysis would not be adapted. This includes situations where the RPIF
property is not satisfied, or when one cannot compute a steady solution of the Navier-Stokes
or RANS equations. It may also be used when the unsteady RANS equations are not able to
describe a given dynamics of interest.





Part II

Mean flow stability analysis





Chapter 5
–

Conditions for validity of mean
flow stability analysis

Preliminary comments

This chapter is based on an article, published in the Journal of Fluid Mechanics as “Conditions
for validity of mean flow stability analysis”, S. Beneddine, D. Sipp, A. Arnault, J. Dandois
and L. Lesshafft, 798, pp. 485-504 (2015). The content has been modified to conform with
the present manuscript. The original abstract of the article is the following:

This article provides theoretical conditions for the use and meaning of a stability analysis
around a mean flow. As such, it may be considered as an extension of the works by McKeon
& Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) to non-parallel flows and by Turton
et al. (Phys. Rev.E, vol. 91 (4), 2015, 043009) to broadband flows. Considering a Reynolds
decomposition of the flow field, the spectral (or temporal Fourier) mode of the fluctuation
field is found to be equal to the action on a turbulent forcing term by the resolvent operator
arising from linearization about the mean flow. The main result of the article states that
if, at a particular frequency, the dominant singular value of the resolvent is much larger
than all others and if the turbulent forcing at this frequency does not display any preferential
direction toward one of the sub-optimal forcings then the spectral mode is directly proportional
to the dominant optimal response mode of the resolvent at this frequency. Such conditions are
generally met in the case of weakly non-parallel open flows exhibiting a convectively unstable
mean flow. The spatial structure of the singular mode may in these cases be approximated by
a local spatial stability analysis based on parabolised stability equations (PSE). We have also
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shown that the frequency spectrum of the flow field at any arbitrary location of the domain
may be predicted from the frequency-evolution of the dominant optimal response mode and
the knowledge of the frequency spectrum at one or more points. Results are illustrated in the
case of a high-Reynolds number turbulent backward facing step flow.

5.1 Introduction

The previous chapter has focused on base flow stability analyses, which were found particularly
relevant in some specific situations where the nonlinearities do not affect significantly the
frequency, typically when the instability mechanism is an acoustic feedback loop. But many
flow configurations do not fall into this category, and mean flow stability analyses are an
alternative solution for the study of such flows, that has turned out to be extremely successful
for the prediction of the frequency in many situations (see chapter 1).

The few theoretical results from the literature, that investigate the relevancy of such an
approach, mainly focus on self-excited systems which present a strong dominating frequency
(Sipp and Lebedev (2007), Turton et al. (2015)). These articles address the so-called RZIF
(real zero imaginary frequency) property, that has been introduced in section 1.3. The work of
Turton et al. (2015) has showed that this RZIF property may not occur for flows with a rather
broad spectrum. Nonetheless, many examples from the literature show that a mean flow
analysis is still able to characterize spatio-temporal features of flows presenting a broadband
spectrum (Gudmundsson and Colonius (2011), Oberleithner et al. (2014), see section 1.3).
On account of this, mathematical foundations for the mean flow approach are still wanting.

In this chapter, we aim at providing, in the general case of a flow field that presents either a
broadband or a peaked spectrum, mathematical insights to justify the efficiency of a mean
flow stability approach to predict the spatio-temporal features of a flow field. Note that
our objective is not to tackle the turbulence closure problem, as in the stochastic structural
stability theory (SSST) of Farrell and Ioannou (2012): the mean flow is here considered as
known a priori (for example, from experimental measurements) and we aim at establishing
the link between the spatial structures of the underlying fluctuation field (the coherent
structures) and the linearized equations about this mean flow. The theoretical developments
are expressed in a general framework, without consideration of the turbulent/laminar or
amplifier/oscillator nature of the flow, and are based on the optimal response modes computed
from a singular value decomposition (s.v.d.) of the resolvent operator around the mean
flow. The use of the s.v.d. in hydrodynamic stability has first been considered as a way
to study energy amplification due to non-modal mechanisms in transitional flows (Schmid
and Henningson (2012); Trefethen et al. (1993), see section 1.2.1). Non-modal analysis with
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turbulent mean flows has been introduced by Butler and Farrell (1993), Chernyshenko and
Baig (2005), Del Álamo and Jimenez (2006), Cossu et al. (2009), Pujals et al. (2009) and
Moarref and Jovanović (2012). McKeon and Sharma (2010) showed that the first optimal
response computed from an s.v.d. around the mean flow dominates the velocity field of the
full flow field when the first singular value is significantly larger than all others. However, they
restricted their analysis to a turbulent pipe configuration, which is invariant (homogeneous)
in the streamwise direction. Hence, the mean flow was constant in the streamwise direction
and all fluctuating quantities were Fourier-transformed in this direction. Therefore, only a
local stability analysis was required. The present study is an extension of their work, where
we consider more general configurations, in particular open flows which are not invariant in
the streamwise direction, such as a backward-facing step or jet configurations. In such cases,
a global stability analysis is required, in which all operators and variables depend on the
streamwise coordinate in a non-specified (general) manner. As a consequence, the convective
non-normality (Marquet et al., 2009) becomes a dominant physical mechanism, which is
responsible for the downstream location of the optimal response modes and the upstream
location of the optimal forcing modes. Finally, we also aim at elucidating the link between
the global stability results and those provided by local stability approaches, such as spatial
stability or PSE (parabolised stability equations, see Herbert (1997)) analyses.

The present chapter is divided in four sections. First, we highlight the role of the resolvent
operator around the mean flow for the determination of the temporal spectral (Fourier) mode
of the fluctuation field (§5.2). Then, we introduce a rank 1 approximation of the resolvent
operator to link this spectral mode to the dominant optimal response, and relate this result
to local and global stability analyses (§5.3). This relation yields models for the prediction of
the frequency spectrum at arbitrary points of a flow (§5.4). The last part is dedicated to an
application of these results to a turbulent backward facing step (§5.5).

5.2 Resolvent-based equation for the Fourier mode of the fluc-
tuation field

We consider the incompressible, homogeneous Navier Stokes equations:

∂tu = −u·∇u+ ν∇2u− ∇p, ∇·u = 0 (5.1)

with u, ν, p respectively standing for the velocity, kinematic viscosity and pressure of the
fluid. If we consider a Reynolds decomposition of the flow variables, the mean quantities
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(denoted by an overline) verify:

− u·∇u− u′·∇u′ + ν∇2u− ∇p = 0, ∇·u = 0, (5.2)

and the fluctuating quantities, denoted by a prime:

∂tu
′ = −u·∇u′ − u′·∇u+ ν∇2u′ − ∇p′ − u′·∇u′ + u′·∇u′ (5.3)

∇·u′ = 0. (5.4)

Defining the turbulent forcing term f ′ = u′·∇u′ −u′·∇u′, and the linear operators L, B and
P by:

L =
(

−u·∇() − ()·∇u+ ν∇2() −∇()
∇·() 0

)
, B =

(
1 0
0 0

)
, P =

(
1
0

)
,

equations {(5.3),(5.4)} can be rewritten in the compact form:

B∂t

(
u′

p′

)
= L

(
u′

p′

)
+ Pf ′. (5.5)

The temporal Fourier transform of equation (5.5) gives, for each frequency ω:

iωB

(
û

p̂

)
= L

(
û

p̂

)
+ P f̂ , (5.6)

with û, p̂, f̂ as respectively the Fourier transform of u′, p′ and f ′. Finally, by using the
restriction operator R = (1 0) to eliminate the pressure term, equation (5.6) can be rearranged
as:

û = R(ω)f̂ , (5.7)

where R(ω) = R(iωB − L)−1P is the resolvent around the mean flow of the system. Note
that (iωB − L) has to be non-singular for the resolvent to be defined. This equation is the
cornerstone of the analysis that will follow. It highlights the central role that the linear
operator R plays in the natural dynamics of a flow. Note that f̂ is not an external forcing,
and cannot be seen as such, since it depends on the perturbation field. In this study, we
avoid any closure problem by assuming that the mean flow is known a priori, for example
by experimental data (similarly to McKeon and Sharma (2010)). In this situation, equation
(5.7) can be seen as a linear system governed by R relating the spectral mode û to a specific
forcing f̂ .
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5.3 Relation between the spectral mode and the dominant op-
timal response

This section focuses on the study of the linear operator R introduced in the previous section.
For a given harmonic forcing ϕ̃ and corresponding harmonic response ψ̃ = Rϕ̃, we define the
gain function µ2(ϕ̃) as:

µ2(ϕ̃) = ∥ψ̃∥2

∥ϕ̃∥2 = ⟨Rϕ̃,Rϕ̃⟩
⟨ϕ̃, ϕ̃⟩

= ⟨R†Rϕ̃, ϕ̃⟩
⟨ϕ̃, ϕ̃⟩

, (5.8)

with ∥ · ∥ a relevant Hermitian norm, ⟨·, ·⟩ the corresponding scalar product, and R† the
adjoint of R, defined as the operator R† that verifies ∀a, b; ⟨a,Rb⟩ = ⟨R†a, b⟩. For example,
we may consider the energy norm defined as ∥ψ̃∥2 = ⟨ψ̃, ψ̃⟩ =

∫
(ψ̃·ψ̃)dx, where ()·() is the

local Hermitian inner product.

As explained in section 1.2.1, the set of optimal forcings of unit norm (ϕj , j ≥ 1), that
maximize µ2, can be obtained by solving R†Rϕj = µ2

jϕj . The solution gain values (µ2
j , j ≥ 1)

and the corresponding forcings (ϕj , j ≥ 1) are sorted such that (µ2
1 ≥ µ2

2 ≥ . . . ), and so
the optimal forcing ϕ1 corresponds to the harmonic forcing which verifies µ2

1 = µ2(ϕ1) =
supϕ̃ µ2(ϕ̃).

Note that the operator R†R is hermitian, consequently ⟨ϕi,ϕj⟩ = δij , meaning that (ϕj , j ≥ 1)
is an orthonormal basis of the forcing space. The projection of f̂ in (5.7) onto this basis then
yields:

û = R(ω)
∑
j≥1

⟨ϕj , f̂⟩ϕj . (5.9)

For each optimal forcing ϕj , the corresponding optimal response of unit norm ψj is defined
by ψj = µ−1

j R(ω)ϕj . Similarly to the set of optimal forcings, the set of optimal responses of
unit norm (ψj , j ≥ 1) defines an orthonormal basis of the response space (⟨ψi,ψj⟩ = δij).
Using this basis, equation (5.9) can be rewritten as:

û =
∑
j≥1
ψjµj⟨ϕj , f̂⟩. (5.10)

This final relation is related to the singular value decomposition (s.v.d.) of the operator R,
with (µj , j ≥ 1) the so-called singular values of R, and (ψj , j ≥ 1) and (ϕj , j ≥ 1) respectively
the left and right singular vectors of R. In the case where, for a given frequency ω, the
first singular value µ1(ω) is significantly larger than the others, a rank 1 approximation of
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equation (5.10) yields:

û(x, ω) ≈ ψ1(x, ω)µ1(ω)⟨ϕ1(ω), f̂(ω)⟩ (5.11)

The approximation error reads:

||û−ψ1µ1⟨ϕ1, f̂⟩||2

||û||2
= 1 − µ2

1|⟨ϕ1, f̂⟩|2∑
i≥1 µ

2
i |⟨ϕi, f̂⟩|2

. (5.12)

In the following, the condition µ1 ≫ µj≥2 will be called the dominant singular value (DSV)
condition. Note that from equation (5.12), this DSV condition is not strictly sufficient for
the approximation to hold. A more rigorous one is:

µ2
1|⟨ϕ1, f̂⟩|2 ≫

∑
i≥2

µ2
i |⟨ϕi, f̂⟩|2. (5.13)

However, under the reasonable assumption that f̂ does not display any preferential direction
toward one of the sub-optimal forcings ϕj≥1, this stricter condition reduces to the DSV
condition. Note that the accuracy of the approximation is ensured in a global sense (the
error is evaluated with a 2-norm), which yields a good approximation in the high-energy
regions. In contrast, this might be locally inaccurate, especially in low-energy regions, which
are hopefully, in most applications, of lesser interest. Building approximations that hold
at any point would require infinity-norm based approaches, which have been considered in
hydrodynamic stability only very recently (Foures et al., 2013).

We have explicitly indicated the variable-dependency of each term of (5.11), highlighting that
the only term on the right-hand side depending on the spatial position x is ψ1, since µ1 is a
function of the frequency only, and the result of the scalar product ⟨ϕ1(ω), f̂(ω)⟩ is space
independent. This implies that for the frequencies where the DSV hypothesis holds, û is
directly proportional to the dominant optimal response ψ1. In other words, this result states
that the spatial structure of the unsteadiness at these frequencies may be closely related
to the dominant singular mode around the mean flow. From the literature (for instance
Dergham et al. (2013)), the DSV hypothesis seems fulfilled when a flow presents one dominant
convective instability mechanism (for example, the Kelvin-Helmholtz mechanism in a shear
layer). This point is discussed in further detail in section 5.5.5, and the rest of the present
study is dedicated to such flows. This excludes flows displaying a range of frequencies for
which the DSV condition is not verified, due, for example, to the existence of several strong
instability mechanisms. These cases could be treated by a higher rank approximation over
this particular frequency range. The present results justify why a mean flow stability analysis
may accurately predict unsteady spatial features of a flow.
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The findings of the present study can also relate to the global stability modes (eigenvectors
of the linearized Navier-Stokes operator) around a mean flow. Turton et al. (2015) showed
that if the flow field is monochromatic, then the mean flow satisfies the RZIF property, i.e.
it exhibits a marginally stable global mode at the frequency of the flow. In the context
of resolvent analysis, monochromatic oscillations at a frequency ω0 yield a monochromatic
turbulent forcing f ′ = u′·∇u′ − u′·∇u′ at a frequency 2ω0. This is not consistent with the
energy content of the response, that is concentrated at ω0. This problem can only be solved
if the resolvent operator degenerates such that the response is infinite for ω0, which happens
when the RZIF property is fulfilled. The situation is likely to be similar for periodic behaviors
with a very strong fundamental frequency and weak harmonics. The forcing term is then
expected to display most of its energy for ω = 2ω0, and for the flow response to be consistent
with oscillations at ω = ω0, the resolvent operator should display a very strong response in
the very vicinity of ω0. Note that in this situation, the first optimal gain function µ2

1 will
naturally be much higher than all others for this frequency, which would justify the validity
of a mean flow stability analysis.

5.4 Predictive models for the local frequency spectra

Equation (5.11) is a function of the frequency and of space. Except in the very particular
situation where the RZIF property is fulfilled (see the previous section), predicting the
frequency spectrum of the flow at different points requires the determination of all the terms
of the equation, including f̂ . Two models are proposed in this section, which will provide a
prediction of the frequency spectrum. By defining an amplitude function Λ(ω) ≡ µ1⟨ϕ1, f̂⟩,
equation (5.11) may be re-written as

û(x, ω) ≈ Λ(ω)ψ1(x, ω). (5.14)

The function Λ is directly related to the energy spectral density e(ω) of the fluctuation field
integrated over the whole domain Ω. Indeed, Parseval’s theorem yields:

1
2

∫
Ω

(∫ ∞

0
u′ · u′dt

)
dx = 1

4π

∫
Ω

(∫ ∞

0
û · ûdω

)
dx =

∫ ∞

0

∥û∥2

4π dω. (5.15)

Consequently, e(ω) = ∥û(ω)∥2/4π, and since ψ1 is of unit norm, equation (5.14) gives:

e(ω) = 1
4π∥û(ω)∥2 ≈ 1

4π |Λ(ω)|2. (5.16)

A first simple assumption consists in considering that e is proportional to the dominant
optimal energetic gain function µ2

1, which can be achieved by posing Λ = µ1 (model 1). Note
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that from the definition of Λ, this implies that ⟨ϕ1, f̂⟩ = 1 for all ω, which is a very strong
assumption since the projection of the turbulent forcing term on ϕ1 must depend on the
frequency and is not equal to 1 in general. Hence, we expect that model 1 may provide (at
best) only a qualitative shape of the frequency spectrum. Moreover, this model presents one
strong limitation that stems from considering Λ as a positive real-valued function (the actual
function Λ is complex-valued). By doing so, we lose all phase-related information, and can
only predict the amplitude of the spectra. The main advantage of this model is that it does
not require any knowledge of û. Results in section 5.5.6 confirm that this model provides
good qualitative insights.

A more precise and rigorous model can be built by assuming a partial local knowledge of
û (model 2). For example, from equation (5.14), the function Λ may be defined using one
component ûi of û, as Λ(ω) = ûi(x, ω)/ψ1,i(x, ω). Considering that ûi(ω) is known at a
given point x0 yields Λ(ω) = ûi(x0, ω)/ψ1,i(x0, ω). This approach consists in rescaling the
response mode for each frequency, such that its amplitude and phase match those of û at a
given point. Since the spatial shape of this response mode and û are close, This provides a
reconstruction of the spectra over the whole domain. Contrary to model 1 that only predicts a
qualitative shape of the spectra, model 2 provides a quantitative prediction of the amplitude,
but requires the knowledge of the spectrum at at least one point x0. The issue of the choice
of x0 is addressed in section 5.5.6, where the two models are compared in the turbulent
backward facing step case.

5.5 Application to a turbulent backward facing case

5.5.1 Computation of the mean flow

We consider the case of a two-dimensional backward facing step. From now on, we consider all
the quantities to be non-dimensionalized by the step height h and the free-stream velocity u∞.
We performed an unsteady 3D simulation by using the compressible CFD solver ElsA (Cambier
et al., 2013), at low Mach number M = 0.09 (the flow field may therefore be considered
as homogeneous and incompressible) and Re = 57500. These parameters correspond to
those of an experiment that has been carried in ONERA wind tunnels (Gallas et al., 2015).
The solid walls of the step are modeled by adiabatic no-slip conditions. We impose a fluid
injection upstream of the step on the left boundary of the computational domain, such that
the boundary layer thickness is δ = 0.35 at the step location (the momentum thickness is
θ = 0.041 and the displacement thickness is δ∗ = 0.056). Periodic boundary conditions are
used in the spanwise direction. All other boundary conditions are treated by imposing an
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Fig. 5.1 Streamwise velocity of the mean flow, computed by averaging in time and in the
spanwise direction the results of the 3D unsteady simulation. Contours are in equal increments
from -0.2 to 1. Negative contours are dashed, the thickened contours correspond to a zero
velocity.

output pressure. The computational domain dimensions are 38 in length (23 downstream
from the step edge, 15 upstream), 4 in width and 10 in height (downstream from the
step). The mesh contains approximately 19 million cells (block-structured mesh, L×H×W:
597 × 185 × 161 for the downstream block, x > 0, and 91 × 79 × 161 for the upstream block,
x < 0), and satisfies y+ ≤ 1 at the wall boundaries. We then performed a Zonal Detached
Eddy Simulation (Deck, 2005) for which the region upstream of the step edge is described
by a steady RANS model, and the region downstream by an unsteady LES model. A 2D
mean flow was obtained by averaging the results over 310 convection time units, and over
the spanwise direction.

To assess the validity of the mean flow, three methods have been used to compute the
streamwise reattachment location xr: (a) the location where the mean streamwise velocity U
is equal to 0 at the first cell away from the wall, (b) the location of the dividing streamline of
the mean flow, and finally (c) the location where the wall-shear stress ∂U/∂y = 0. These
three methods yield xr = 6.45 ± 0.2%, which corresponds to the results from the literature
for comparable Reynolds number and boundary layer thickness (Adams and Johnston, 1988;
Driver et al., 1983, for instance). The results of (a) can be seen in figure 5.1. A secondary
reattachment point is located at x = 0.88, which is consistent with the work of Spazzini et al.
(2001), who found a secondary separation at x = 1.1 for a Reynolds number of 16000. They
also showed that this length tends to decrease as the Reynolds number increases. Figure 5.1
displays a third corner recirculation region near (x, y) = (0, 0), with a size of 0.053. As a
comparison, this value is close to that found by Le et al. (1997) at a lower Reynolds number
(0.042 for Re = 5100).

The unsteady features computed from the simulation also present a good agreement with
the literature. The spectrum at (x = 2, y = 1.5) is shown in figure 5.2(a), and displays a
clear peak around Stθ = 0.013 (ω = 2.1), where Stθ is the Strouhal number based on the
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Fig. 5.2 Spectra of the streamwise (spanwise-averaged) velocity computed from the unsteady
ZDES simulation at two locations: (a) x = 2, y = 1.5, (b) x = 7.0, y = 0.1. Stθ is the
Strouhal number based on the free-stream velocity and the momentum thickness at the step
location, and F+ the Strouhal number based on the free-stream velocity and the reattachment
length.

free-stream velocity and the momentum thickness at the step location. This is the frequency
expected for the Kelvin Helmholtz instability (see for example Chun and Sung (1996)).
Further downstream, near to the reattachment, the flow presents another energetic frequency.
The associated Strouhal number F+ based on the free-stream velocity and the reattachment
length is around 0.6 (ω = 0.7) (see figure 5.2(b)), which is consistent with the values that can
be found in other studies (values between 0.5 and 1, see for example Dandois et al. (2007)).

5.5.2 Singular values and DSV hypothesis

Since the configuration is invariant in the spanwise direction, the fluctuation field can be
expressed via its spatio-temporal Fourier coefficients, depending on the frequency ω and
on the spanwise number β. The resolvent operator therefore also depends on β and we
expect that the Fourier mode û(ω, β) is proportional to ψ1(ω, β) if µ1(ω, β) ≫ µ2(ω, β).
In the following, we will focus on two-dimensional perturbations (β = 0), for which the
spanwise component u′

3 is null. An s.v.d. of the resolvent matrix about the 2-D mean flow
has been performed following the procedures described in chapter 2. Figure 5.3 presents
the three highest singular values over a wide range of frequencies. It shows that the first
singular value µ1 is several orders of magnitude larger than all others, as expected from a
flow presenting a strong convective instability mechanism (see section 5.5.5). Consequently,
following the results of section 5.3, at all these frequencies, the spectral mode û is expected
to be proportional to the dominant optimal response ψ1.
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Fig. 5.3 Comparison of the first three energetic gain functions in the case of two-dimensional
perturbations (β = 0): one can see that the first singular value µ1 is significantly higher than
the others, which ensures the validity of the leading singular value assumption (section 5.3).

5.5.3 Computation of the Fourier modes

Checking the proportionality between Fourier and dominant resolvent modes requires the
computation of û, from the finite-length discrete temporal data given by the simulation.
Spectral properties of such a signal, that is not square integrable, is usually computed from a
statistical point of view, by dividing the time series of spanwise-averaged velocity snapshots
u′(x, y, t, β = 0), computed from the simulation, into Nb bins. These bins are then processed
to extract a statistically converged spectral information out of the flow. The final spectrum
may be obtained by two approaches: (a) the amplitude of the spectrum is computed from
the r.m.s. of all the bins, which corresponds to the classical Welch algorithm:

|ûwelch| =

 1
Nb

Nb∑
k=1

|ûk|2
1/2

, (5.17)

(b) the amplitude and phase of the spectrum are computed by performing a POD-filtering
of these bins. Method (b) aims at isolating the most energetic, spatially correlated spectral
field from each bin. This processing presents one strong advantage over method (a): it yields
not only the modulus of the modes, but also the phase. It has been used for instance by
Gudmundsson and Colonius (2011), and consists of computing, for each bin k and for each
frequency ω, the cross-spectral tensor T (k,ω) defined as:

T
(k,ω)
ij = ûk(ω,xi) · ûk(ω,xj), (5.18)
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where xi,j are the discretisation points. Then, one may compute the ensemble-averaged
tensor Tω0 :

Tω0 = 1
Nb

Nb∑
k=1

T (k,ω), (5.19)

and finally solve the eigenvalue problem:

Tω0 y
ω = λyω. (5.20)

By considering the unit-norm eigenvector yωm associated to the highest eigenvalue, one may
obtain the POD-filtered spectral mode ûpf (ω) = Aωy

ω
m, where the amplitude Aω is defined

as:

Aω = 1
Nb

Nb∑
k=1

|⟨ûk(ω),yωm⟩|. (5.21)

5.5.4 First optimal response vs. Fourier mode

For the present study, we have Nb = 30, with a 50% overlap between the bins. Each bin has
a frequency resolution of ∆ω = π/10. Figure 5.4 compares the amplitude of the streamwise
component of û computed with method (a) (figure 5.4(c)) and method (b) (figure 5.4(a)),
with the optimal response ψ1 (figure 5.4(b)), for ω = 2.1 (the frequency associated with
the Kelvin-Helmholtz mechanism, see the peak in figure 5.2(a)). To ease the comparison,
each field has been normalized such that its maximal amplitude is 1. Profiles extracted from
these fields at three streamwise locations (x = 2, x = 3.5, x = 5) are respectively compared
in figures 5.4(d), 5.4(e) and 5.4(f). These figures show that for ω = 2.1, the agreement
between the optimal response and the spectral mode of the flow is significantly improved when
POD-filtering is used. The mode obtained from method (a) displays moderately energetic
fluctuations near the wall, that are not found in the resolvent mode. Since this discrepancy
is absent from the POD-filtered mode, it means that this is associated to non-spatially
correlated motion near the wall. Similar results were obtained for all the tested frequencies
of the present study. This is reminiscent of the work of Gudmundsson and Colonius (2011),
who made the same observation in the downstream region of a turbulent jet, and attributed
this to some uncorrelated turbulent motion. This shows that the optimal response mode only
describes the coherent motion of the flow, which fortunately accounts for most of the energy
of the fluctuations, despite their turbulent nature.

Method (b) also gives the phase structure of the spectral modes, and for all the frequencies
investigated, it displays a strong similarity with the phase of the optimal response. As an
example, figure 5.5 illustrates this statement again for ω = 2.1. Note that from equation
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Fig. 5.4 Comparison between the amplitude of the normalized streamwise velocity field of
(a) the spectral mode computed by POD-filtering, (b) the optimal response, (c) the spectral
mode computed by r.m.s., for ω = 2.1 and two-dimensional perturbations β = 0. The three
vertical dashed lines represent the locations where profiles were extracted. Figures (d), (e),
(f) compare the pod-filtered profile (thick continuous line), the optimal response profile (red
dashed line), and the spectral r.m.s. profile (thin continuous line) respectively for x = 2,
x = 3.5 and x = 5.
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Fig. 5.5 Comparison between the phase of the streamwise velocity field of (a) the spectral
mode computed by POD-filtering, (b) the optimal response, for ω = 2.1 and two-dimensional
perturbations β = 0. The figures display ten equally spaced contours ranging from -π to π.
The three vertical dashed lines represent the locations where profiles were extracted. Figures
(c), (d), (e) compare the unwrapped pod-filtered phase profile (continuous line) and the
unwrapped optimal response phase profile (red dashed line) respectively for x = 2, x = 3.5
and x = 5.

(5.14), û and ψ1 are approximately equal up to a complex multiplicative constant, therefore
their phase fields are equal up to an additive constant. To ease the comparison, the phase of
the optimal response has been shifted such that it matches the one of the spectral mode at
an arbitrary position, here x = (3, 1.5). Note that despite a very good overall agreement,
a careful comparison of figures 5.4(a)/(b) and figures 5.5(a)/(b) shows that the strongest
discrepancy between the first optimal response and the spectral mode appears in low-energy
regions, where the spectral mode is not smooth (for instance the left bottom corner in
figure 5.5(a)). Increasing the simulation time should yield better agreement, but there is no
guarantee of the capability of the rank 1 approximation to finely describe these low-energy
regions. This issue is addressed in section 5.5.6.

This section introduced two practical definitions of the spectral mode, and method (b) has
yielded a better agreement with the optimal response. Therefore, in the following, the
remaining discussions of the chapter concerning the spectral mode all refer to the mode
computed with method (b), which corresponds to the spectral description of the spatially
correlated motion of the flow.
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5.5.5 Link with local stability analysis

The question of the link between a resolvent analysis and a local stability analysis has been
addressed by Sipp and Marquet (2013). They showed that a flow presenting a strong convective
instability, such as a backward facing step flow, displays respectively an upstream/downstream
location of the optimal forcings/responses. In such a situation, the spatial growth of the first
optimal response compares favorably with the growth rate computed from a local spatial
stability analysis: by defining the streamwise energy density dψ1(x, ω) of ψ1(ω) as

dψ1(x, ω) =
∫ ymax

ymin

ψ1(x, y, ω) ·ψ1(x, y, ω) dy, (5.22)

then the energy growth σψ1 = (∂dψ1/∂x)/2dψ1 at a given frequency is close to the spatial
amplification rate obtained from a local spatial stability analysis. Figure 5.6(a) compares
these two quantities in the backward facing step case for ω = 2.1, and shows that they
display a good agreement in the region where the optimal forcing is weak (the local spatial
stability results have been obtained by following the procedure detailed in section 2.4.2).
This link between a local stability analysis and the dominant optimal response also justifies
the argument that when a convective instability mechanism of a flow is strong, then the
dominant optimal forcing ϕ1 will produce a particularly energetic response (see Garnaud et al.
(2013); Sipp and Marquet (2013)). Therefore, the associated gain µ2

1 will be high. Thus, the
configurations presenting a strong convective instability mechanism are good candidates to
fulfill the DSV assumption required for the results of section 5.3. This conjecture is supported
by the literature, which shows that such flows indeed present a clear separation of singular
values (Boujo and Gallaire, 2015; Dergham et al., 2013; Sartor et al., 2015).

We will now show that not only the energy growth rates of the spatial most amplified k+ mode
and of the dominant optimal response mode compare well, but also the shape of the modes,
at least in the locally unstable region (where the local mode is amplified). In this region
(x < 3 for ω = 2.1, see figure 5.6(a)), the shape of the most amplified local k+ mode at a
given streamwise location is close to the leading optimal response profile at the same location
(figure 5.6(b)). However, in the region where the mode is spatially damped, this agreement
may strongly deteriorate due to the fact that the spatial structure of the leading optimal
response mode may no longer be dominated by one single spatial mode. In the backward
facing step flow, this leads to a strong discrepancy between the first optimal response and
the local eigenmode in the spatially damped regions of the mode, as illustrated in figure 5.6c
for x = 3.1 and ω = 2.1. Note that this failure of the local spatial stability analysis was
observed for all the tested frequencies of the present study.
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Fig. 5.6 Comparison between dominant optimal response mode (black continuous line) and
most amplified k+ mode obtained with local spatial stability analysis (red dashed line) for
ω = 2.1: (a) streamwise energy growth of the optimal response vs. spatial growth rate
computed from a local spatial stability analysis, (b) amplitude profile of the optimal response
mode at x = 0.75 vs. local spatial mode at the same location (streamwise velocity component),
(c) amplitude profile of the optimal response mode at x = 3.1 vs. local spatial mode at the
same location (streamwise velocity component). The local stability profiles are normalized
such that their maxima match those of the optimal response profile.

This problem can be overcome by solving the parabolised stability equations (see section
2.4.1), initialized just downstream of the step (amplified region) by the most amplified
local k+ mode. This procedure yields an accurate reconstruction of the perturbation field in
both the amplified and damped region of the mode. Figures 5.7(a) and 5.7(b) illustrate the
similarity between ψ1 and the PSE field, for ω = 2.1 (to ease the comparison, both fields
have been normalised such that their maximum amplitude is 1, and such that their phase
match at an arbitrary point, here (x = 3, y = 1.5)). This agreement was observed for all the
investigated frequencies. This shows that under the condition that the resolvent fulfill the
DSV property (or that the flow displays a strong local spatial growth rate), solving the PSE
equations around the mean flow may provide a good prediction of the spatial structure of
the unsteadiness.

Note that, even if here it gives excellent results, PSE is not guaranteed to work for any
configuration since it may damp any behavior not consistent with a single downstream-going
spatial wavelength (see section 1.2.1).

As a conclusion, the link between the resolvent analysis and the local spatial stability analysis
shows that the findings of the present study also hold when based on quantities obtained
from a local stability analysis: if a mean-flow exhibits a strong convective instability at some
frequency (the spatial growth rate is strictly positive in some region of the flow), then the
structure of the spectral mode at that frequency should correspond to the structure obtained
with a PSE analysis based on the mean flow.
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Fig. 5.7 Comparison between the real part of the streamwise velocity of (a) the dominant
optimal response and (b) the PSE field, for ω = 2.1 (normalized in phase and amplitude).
Each figure displays ten equally spaced contours ranging from -1 to 1.

5.5.6 Comparison of the predictive models for the local frequency spectra

The ability of model 1 and model 2 (defined in section 5.4) to predict the frequency spectrum
of the flow field at given points is assessed by comparing the resulting estimated energy
spectrum with results obtained from the unsteady simulation data.

The question of the choice of the matching points for model 2 needs to be addressed
beforehand (see section 5.4). Since model 2 consists of predicting the frequency spectra
at every point of the domain by matching, at all frequencies, the optimal response mode
and the spectral mode at given spatial locations, it may lead to poor predictions if these
locations are ill-chosen. In section 5.5.2, we showed that, for a given frequency, the energetic
regions were well predicted by the dominant optimal response. But the prediction was not
so accurate in low-energy regions. This probably stems from the inability of the rank 1
approximation to capture the low-energy regions of the spectral mode. Hence, at a given
frequency, low-energy regions should be avoided for the choice of the matching point. This
issue is illustrated in figure 5.8(a): for an arbitrary frequency ω = 5, the amplitude profiles
at x = 1 of û and ψ1 are rescaled such that their amplitudes match at x0 = (1, 1.4), which is
a point displaying a low level of energy at this particular frequency. This results in two quite
different profiles. However, when the rescaling is based on a point whose energy is high, for
instance x1 = (1, 0.9), the overall agreement is strongly improved (figure 5.8(b)). A robust
way to compute the function Λ of model 2 is to consider several points, such that at least one
point is located in an energetic area of the flow at all the frequencies of interest, and then
solving the over-determined set of n equations {Λ(ω) = ûi(xk, ω)/ũ1,i(xk, ω), 1 ≤ k ≤ n} by
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Fig. 5.8 Illustration of the issue of the choice of the matching point for the determination
of Λ. The three figures display profiles at x = 1 extracted from û (continuous line) and the
optimal response (red dashed line), for ω = 5. Figures (a) and (b) respectively compare
the resulting profiles when the optimal response is scaled to match the amplitude of the
low-energy point (x = 1, y = 1.4) and the higher-energy point (x = 1, y = 0.9). Figure (c)
shows the result after a scaling that minimizes the square of the error at those two points.

least squares, where n is the number of points considered. Figure 5.8(c) shows the result of
least squares fitting based on the two points x0 = (1, 1.4) and x1 = (1, 0.9). The resulting
profile is close to what is obtained when x0 is not considered. In brief, the least-squares
technique chooses automatically the best matching point at each frequency (several matching
points are generally mandatory due to the fact that the energetic regions of the spectral
modes are not the same at all frequencies).

For the present study, we used two points for the determination of Λ, located at x0 = (4, 1.5)
and x1 = (7, 0.1). These points have been chosen in order to correctly capture both the high
frequency behavior near the edge and the low frequency unsteadiness in the reattachment
region. Figure 5.9 presents the results for the prediction of the spectra of the streamwise
component û1 of the velocity, at five points xa = (3, 1.5), xb = (5, 3), xc = (6, 1.5),
xd = (8, 0.1) and xe = (9, 0.1). Note that since model 1 is unable to predict the amplitude
of the spectra, it has been rescaled such that its maximum matches the one predicted by
model 2. Model 1 gives a reasonable order of magnitude for the energetic frequencies of
the flow, and in particular it is able to qualitatively discriminate if a point displays either a
high or a low frequency content. On the other hand, model 2 led to a much more accurate
prediction of those frequencies. The overall shape of the spectra is well-predicted, as well as
the amplitude that remarkably agrees with the simulation data for all five tested points.
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Fig. 5.9 Comparison of the estimate of the streamwise velocity spectra, from model 1 (dotted
line) and model 2 (red dashed line), with the simulation (continuous line), at five points:
(a): x1 = (3, 1.5), (b): x2 = (5, 3), (c): x3 = (6, 1.5), (d): x4 = (8, 0.1), (e): x5 = (9, 0.1).
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5.6 Concluding remarks

The resolvent operator around the mean flow naturally appears in the full nonlinear equations
that govern the perturbation field around the mean flow. If the mean flow exhibits a strong
convective instability, the resolvent is expected to fulfill the DSV condition for the frequencies
dominated by the instability. Consequently, by assuming that the turbulent forcing does not
display any preferential direction toward one of the sub-optimal forcings, the resolvent can
be approximated by using the first singular value and the associated optimal response and
forcing modes. This approximation yields a mathematical link between the actual dynamics
of the flow (the spectral mode) and the dominant optimal response mode. In the case of
weakly non-parallel flows, we have shown that the DSV assumption generally holds at some
frequency if a strong convective instability mechanism affects the mean flow at that frequency.
In such a case, the spatial structure of the spectral mode should be very close to the spatial
structure obtained by a PSE analysis around the mean flow.

This article also focuses on the development of methods to predict the frequency spectrum at
every point of a flow. It presents a model (model 2) based on partial information of the flow, in
order to reconstruct the complete fluctuation field at any point. In experimental applications,
it is often easy to accurately obtain the mean flow as well as an accurate spectrum at a few
points in the flow, for example wall-measurements such as pressure or skin-friction. In the
context of compressible flows, the experimental jet setup from Gudmundsson and Colonius
(2011) uses an array of microphones measuring the pressure fluctuations just outside the jet
shear layer. The approach that is developed in the present study could give a reconstruction
of the local spectra at any point from this data and from a measurement of the mean flow.
The extent of the region in which mean flow measurements are required also depends on the
method chosen to compute the dominant optimal response modes. This region is smaller
when using the PSE, since the computation is restricted to the spatial support of those
modes. In contrast, a much larger domain is required in the streamwise direction for a global
stability computation in order to adapt to the upstream and downstream boundary conditions.
Finally, time-resolved data for frequency spectra are only needed at a few points; the mean
flow may be obtained by less sophisticated means, such as 5 hole probes or traditional (non
time-resolved) Particle Image Velocimetry measurements. The methodology presented here
is well-suited for the exploitation of experimental results, and the next chapter is dedicated
to the study of this approach in an experimental context.



Chapter 6
–

Mean flow stability for flow
reconstruction: an experimental

study

Preliminary comments

The present chapter focuses on the previous findings about a mean flow stability analysis.
These are studied in an experimental context in order to yield an alternative approach to
existing measurement methods.

This chapter is based on an article submitted to the Journal of Fluid Mechanics as “Time-
resolved reconstruction of a round jet from point-wise measurements and mean flow stability
analysis”, S. Beneddine, R. Yegavian, D. Sipp and B. Leclaire. The content has been modified
to conform with the present thesis. The original abstract of the article is the following:

This article presents a reconstruction of the unsteady behavior of a round jet at a Reynolds
number equal to 3300, from the sole knowledge of the time-averaged flow field and one point-
wise unsteady measurement. The reconstruction approach is an application of the work of
Beneddine et al. (2016) and relies on the computation of the dominant resolvent modes
of the flow, using a PSE analysis. To validate the procedure, the unsteady velocity field
of the jet has been characterized by time-resolved particle image velocimetry, yielding an
experimental reference. We first show that the dominant resolvent modes are proportional to
the experimental Fourier modes, as predicted by Beneddine et al. (2016). From these results,
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it is then possible to fully reconstruct the unsteady velocity and pressure fluctuation fields,
yielding a flow field that displays a good agreement with the experimental reference. Finally,
it is found that the robustness of the reconstruction mainly depends on the location of the
point-wise unsteady measurement, that should be within energetic regions of the flow, and this
robustness as well as the quality of the reconstruction can be greatly improved by considering
a few point-wise measurements instead of just one.

6.1 Introduction

A large quantity of work has been devoted to the improvement of measurement methods,
which are essential tools for the study of physical mechanisms. Nowadays, most of the
conventional methods in fluid mechanics, such as hot wire probes or microphones, are able to
give an accurate point-wise time-resolved characterization of a given physical quantity of a
flow. When the need for flow characterization goes beyond a single point, it is possible to use
arrays of sensors, but this has material limitations toward the spatial extent and resolution
of the characterization, and may be too intrusive to get a global flow field measurement.
Alternatively, a single sensor may be displaced to a large number of locations, yielding an
arbitrarily dense set of measurements, which are however uncorrelated due to their non-
simultaneity. Another quite widely used option consists of using Particle Image Velocimetry
(PIV), that classically yields the two or three instantaneous displacement components, by
acquiring and processing two images of the seeded flow separated by a very short time
interval. Due to technical constraints related to illumination (usually with pulsed lasers) and
camera imaging, the technique can still be considered as characterized by a trade-off between
accuracy and temporal resolution. Indeed, low frame rate lasers have a high energy per pulse
that guarantees a high signal-to-noise ratio in the images and a good measurement accuracy,
but such traditional PIV systems cannot resolve the unsteady flow behavior. On the other
hand, high frame rate systems (Time-Resolved PIV, TR-PIV) can characterize frequencies
up to 10 kHz, however at the cost of a much lower signal-to-noise ratio, possibly hindering
the accuracy unless some specific advanced processing are used (see for instance Jeon et al.
(2014); Lynch and Scarano (2013); Yegavian et al. (2016)). Besides, it is worthwhile noticing
that this highest measurable frequency remains one or two orders of magnitude lower than
that of a hot-wire probe for instance, which can make a difference in the context of high-speed
flows.

In view of these limitations, reconstructing the time-resolved flow field based on quantities
measurable by point-wise sensors and/or traditional, low frame rate PIV can be of great
interest. Several reconstruction techniques exist to rebuild global information from point-wise
measurements, and among them, the stochastic estimation (SE) is one of the most widely
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used in fluid mechanics. Initially introduced by Adrian (1979) as a way to extricate the
coherent structures in a turbulent flow, this technique has been extensively used to get the
instantaneous least-mean-square error estimate of the velocity at various locations, with
the sole information of the velocity at a few other points (see for instance Adrian (1979);
Cole and Glauser (1998); Guezennec (1989); Stokes and Glauser (1999); Tung and Adrian
(1980)). This requires to have access to simultaneous unsteady measurements at points of
interest. The method may also yield the estimation of the pressure, but requires the use of
a higher-order SE model than for the velocity estimation (see Hudy et al. (2007); Murray
and Ukeiley (2003); Naguib et al. (2001)), for which the linear SE (LSE) gives satisfactory
results. Other more advanced methods, relying on similar techniques, have been introduced
for instance by Tu et al. (2013). They elaborated a three-steps estimation of the unsteady
field, that uses down-sampled TR-PIV snapshots and point sensors. Their method is based
on a variant of LSE, coupled with proper orthogonal decomposition, Kalman smoothing and
Kalman filtering. They obtained satisfactory results for the estimation of the wake behind a
flat plate at a Reynolds number of 3600, but to the cost of a rather heavy processing of the
data. Moreover, similarly to classical SE, this requires a simultaneity of the PIV acquisition
and the sensor data.

The SE as well as any global estimation technique based on local measurements naturally
relies on a certain degree of spatial correlation in the flow field and the existence of coherent
structures. It is now generally admitted that even fully-turbulent flows present such structures,
which has been addressed in chapter 5 from a stability point of view. We have showed that
these structures relate to resolvent modes about the time-averaged flow field (mean flow).
Based on that, chapter 5 has demonstrated that it is possible to estimate the frequency
spectrum at any point of a flow from the knowledge of the mean flow and a few point-wise
measurements. The analysis was based on a rank-one approximation of the resolvent. We
have also showed that cheaper techniques such as a PSE analysis may be used to approximate
the dominant resolvent mode. A similar work has been conducted by Gòmez et al. (2016a),
who built a reduced-order model of a three-dimensional lid-driven cavity at Re = 1200, based
on resolvent modes. Their model yielded a flow reconstruction that accurately compared with
direct numerical simulation (DNS) results. Alike the work presented in chapter 5, their input
data were the mean flow and a few local unsteady measurements. More recently, Gòmez et al.
(2016b) used the same model to estimate aerodynamic forces from point-wise data, and they
once again successfully compared their results to DNS.

These theoretical articles claim that the use of such a model could be, in some situations, an
interesting alternative to TR-PIV. Yet, to our knowledge, the only experimental demonstration
that stability techniques could be used to rebuild a flow field from point-wise measurements is
a proceeding paper by Sasaki et al. (2015). They considered an experimental turbulent round
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jet, and measured pressure fluctuations near the shear layer with microphone rings, located
at several streamwise locations. They assumed the existence of a linear transfer function
between upstream and downstream measurements, and qualitatively showed that a PSE
analysis of the mean field may well-predict this function. However, they do not provide any
theoretical background explaining this, and their study relied on a very different formalism
than that of chapter 5, which introduced a more appropriate framework to understand
PSE/resolvent-based models. Moreover, they presented the accuracy of the reconstruction in
a qualitative way, and did not address the robustness of the reconstruction. Therefore, if
used in a new experimental context, its reliability would be unknown, and any new practical
application would lead to highly uncertain results.

6.1.1 Scope of the chapter

The following sections present a temporal reconstruction method, inspired from the model
introduced in chapter 5, and investigate its accuracy and robustness in an experimental
context. The case that is considered for this study is a transitional round jet at a Reynolds
number Re = 3300. We focus on the reconstruction of the flow field from the sole knowledge
of the mean flow (which can be measured for instance by classical non-time-resolved PIV
or by a large number of point-wise probings) and a few local unsteady measurements. This
reconstruction is then used to assess the impact of experimental uncertainties on the results.
Note that this article does not aim at predicting the future dynamics of the jet, since the
reconstruction is performed only for the time interval of the input data. This puts the present
study in stark contrast with estimation techniques such as that of Guzmán Iñigo et al. (2014),
who were able to predict the linear dynamics of a flow from local measurements. Contrary to
the present work, their model relies on a prior learning of the dynamics, based on a knowledge
of the time-resolved flow field.

This chapter is divided in four main sections. The first part briefly reintroduce the re-
construction procedure described in chapter 5 (§6.2). The second part is dedicated to a
physical description of the jet, through the analysis of TR-PIV measurements, which will be
considered as the reference to assess the performance of the approach (§6.3). We then apply
the procedure to rebuild the time-resolved flow field of the jet from only the mean flow and a
single point-wise measurement (§6.4). Finally, we focus on the robustness of the method and
present the main guidelines to get a robust reconstruction in an experimental context (§6.5).
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6.2 Reconstruction procedure

The following briefly reintroduces the model of chapter 5, in the context of a temporal
reconstruction. The unsteady velocity field U(x, t) of a given flow can be equivalently
represented in the frequency domain by its Fourier modes Û(x, ω). For any given frequency ω,
the Fourier mode of a flow is expected to be proportional to the dominant resolvent mode
about the mean flow, given that the resolvent operator fulfill the DSV condition (see chapter 5).
From a physical point of view, this DSV property relates to the existence of a strong instability
mechanism. In the case of the present jet flow, the proportionality between Fourier and
dominant resolvent mode occurs for all energetic frequencies (see section 6.4.1), which may
be explained by the global dynamics of the jet that is driven by the Kelvin-Helmholtz
instability mechanism. Using the notations of the previous chapter, this proportionality
may be formalized, for instance in an axisymmetric framework and for the axial velocity
component ux, as

ûx(ω, x, r) ≈ Λ(ω)ũωx (x, r), (6.1)

with ûx the Fourier transform of the measured axial velocity, ũωx the axial velocity component
of the dominant resolvent mode at the frequency ω and Λ the amplitude function (see
chapter 5). By assuming the knowledge of ûx at a given point (x0, r0), we get an evaluation
of Λ as

Λ(ω) = ûx(ω, x0, r0)/ũωx (x0, r0), (6.2)

yielding the prediction of ûx at any point of the domain (with equation (6.1)). Then, the
temporal unsteady field may be reconstructed by inverse Fourier transform. Note that, as
mentioned in the previous chapter, the resolvent modes may be computed by an s.v.d. of
the resolvent, or alternatively, by a PSE analysis. The latter presents several advantages
(discussed in chapter 5) that makes it more interesting in the present experimental context.
The final procedure that we followed is graphically illustrated in figure 6.1.

The formalism introduced here presents one strong difference with that of chapter 5, which has
introduced different methods to compute a statistical representation of ûx from the simulated
data. Here, since we aim at performing a temporal reconstruction, which involves an inverse
Fourier transform, the Fourier mode has to come from a straightforward FFT of the time
signal ux(t), without any bin segmentation nor POD processing. As shown in section 6.4.1,
such FFT Fourier modes are found to be indeed proportional to the resolvent modes, which
makes the reconstruction possible. The generality of this is discussed in chapter 7.

The previous explanations arbitrarily focus on the axial velocity for the description of the
procedure. But the same relations hold for other flow quantities, and as shown in the previous
chapter, the resulting Λ would not depend on which quantity is used. We could therefore use
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Mean velocity field Unsteady point-wise measurement within the field

Dominant resolvent modes Local spectrum

Λ function

Fourier modes

Unsteady velocity and
pressure fluctuation fields

PSE FFT

inverse FFT

equation (6.2)

Λ×(dominant resolvent modes)

Experimental data

Fig. 6.1 Graphical illustration of the reconstruction procedure.

another velocity component, the pressure, or any other quantity that is linearly dependent
on these variables (such as the wall shear stress) to compute Λ, and this Λ may then be used
to reconstruct all the flow quantities. This aspect is demonstrated in the case of the round
jet studied here, in section 6.4.2 where both the radial velocity and the pressure fluctuation
field are reconstructed from the sole knowledge of the axial velocity at one point.

Note that Λ can be set equal to zero over a given frequency range, as this would simply result
in a frequency-filtering of the reconstruction. This is generally useful, since the unsteady
input measurement, used for the computation of Λ, is a discrete signal sampled in time. A
Fast Fourier transform (FFT) gives its Fourier transform for a set of discrete values ωi that
depends on the sampling and duration of the signal. Resolvent modes can be computed for
every ωi, but even if the model could accurately reconstruct all frequencies, it is likely that a
large number of them would have a very weak contribution to the dynamics (for instance
the very low or very high frequencies). Setting Λ = 0 for low-energy frequencies may spare
non-useful computations. This may also be necessary for flows where the DSV condition
holds for a limited frequency range: one may then focus on this range only, and get an
accurate filtered reconstruction of the unsteady field.
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6.3 Characterisation of the application case

6.3.1 Experimental set-up and data processing

The experimental configuration studied in the present work corresponds to that of Yegavian
et al. (2016). We have focused on a cold round jet at a Reynolds number Re ≈ 3300 (based
on the exit diameter of the nozzle D = 12 mm, the jet exit velocity Ue = 4.0 m/s and the air
viscosity at T = 15◦C). From now on, all quantities are made non-dimensional by using Ue
and D. The flow dynamics has been characterized in a diametral plane of the jet by TR-PIV
measurements, using the experimental set-up and parameters presented in Yegavian et al.
(2016). Note that the coincidence of the laser sheet with a diametral plane has been ensured
using precision devices, such that these planes can be considered nearly perfectly parallel (up
to 3 · 10−3 radians) and distant by less than 9 · 10−3 non-dimensional length units.

In the following, as depicted in figure 6.2, the streamwise direction of the jet is denoted as x,
while the cross-stream axis of the laser plane is y. The velocity has been measured in the
streamwise plane (x, y), using 10000 snapshots taken at a frequency of 10 kHz (corresponding
to 30 snapshots per non-dimensional time unit). Particles have been illuminated by a 2 mm
thick laser sheet, using a Litron LDY303HE laser that provides an energy of 5 mJ per pulse.
The snapshots have been processed using the FOLKI-PIV software, based on a classical
two-frame estimation technique (Champagnat et al., 2011). We used Gaussian interrogation
windows of 19×19 pixels (corresponding to a size of 0.09×0.09 in non-dimensional units) with
a standard deviation σ = 4 pixels. Given the seeding density of our set-up (approximately
0.05 particle per pixel), the choice of this interrogation window size yields a good trade-off
between noise and spatial resolution, in particular for the computation of the mean flow
required for our reconstruction technique. This is further discussed in section 6.5.3.

Note that such a seeding density is however low for planar PIV, and thus yields noisy
instantaneous velocity fields with the classical two-frame approach. However, Yegavian et al.
(2016) showed that an accurate estimation may be obtained in these conditions when using the
Lucas Kanade Fluid Trajectory (LKFT) algorithm described in their paper, similar to other
advanced time-resolved algorithms such as FTC Lynch and Scarano (2013) or FTEE Jeon
et al. (2014). Figure 6.3 compares a snapshot obtained with the two approaches, and the noise
appears indeed strongly reduced when using this alternative PIV processing. We therefore
have two sets of velocity estimations for the present study. The two-frame noisy fields were
used for the reconstruction procedure, both for the computation of the mean flow (figure
6.4) and for extracting the local input signal necessary for the reconstruction (figure 6.5).
On the other hand, the LKFT snapshots have been used as a comparison to evaluate the
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Fig. 6.2 Picture of the experimental set-up, displaying the round jet, the high-speed laser and
camera. In the laser sheet plane, the streamwise direction is denoted x, and the cross-stream
direction, y.

Fig. 6.3 Comparison between the instantaneous streamwise velocity field at t = 50 obtained
from (a): classical two-frame processing and (b): the LKFT algorithm. Velocities are made
non-dimensional using the jet exit velocity. The point-wise measurement and mean flow used
in the reconstruction will be extracted or computed from the classical processing, therefore
hereafter referred to as ’reconstruction set’. The LKFT processing will be considered as the
objective to attain, i.e. the ’reference set’.
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Fig. 6.4 Mean streamwise velocity field, computed from the reconstruction set of snapshots.
Point A (x0 = 2.5, y0 = 0.4) corresponds to the location where the unsteady signal used
for the reconstruction has been extracted (also extracted from the reconstruction set). The
nozzle position (schematically represented on the left of the figure) has been used to set the
origin of the reference frame.

Fig. 6.5 Streamwise velocity at point A (x0 = 2.5, y0 = 0.4) vs. time, extracted from the
reconstruction set. The reconstruction presented in section 6.4.2 has been done solely based
on this signal and the mean flow shown in Figure 6.4.

quality of the reconstruction. In the following, we will refer to these sets of snapshots as the
reconstruction set and the reference set, respectively. Using such a reconstruction set shows
that the procedure is rather robust even in sub-optimal experimental conditions. Moreover,
to our knowledge, the experimental studies based on stability theory seldom use raw PIV
results. For instance, the PSE analysis performed by Gudmundsson and Colonius (2011) uses
a mean flow computed from a Gaussian fitting of PIV measurements. As demonstrated in
the next sections, the present approach may be successfully used without any fitting of the
data acquired from classical measurement techniques, standard algorithms and a rather poor
experimental set-up.
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Fig. 6.6 Instantaneous fluctuation field about the mean flow for an arbitrary time t = 50 of
(a) the streamwise velocity and (b) the cross-stream velocity (reference set). The streamwise
velocity is symmetric w.r.t. y = 0 while the cross-stream velocity is anti-symmetric, as
expected from a round jet, known to be dominated by axisymmetric fluctuations.

6.3.2 Characterization of the unsteady behavior of the jet

The unsteady behavior of the jet near field can be qualitatively observed both in figures 6.3
and 6.6, where we see typical oscillations in the shear layer due to the Kelvin-Helmholtz
instability mechanism. A quantitative characterization of the dynamics has been made by
computing frequency spectra at several locations in the jet from the reference velocity field.
To obtain statistically converged spectra, the temporal velocity signals have been processed
following the classical Welch’s algorithm: the time series have been divided into 49 bins
of 600 snapshots with a 66 % overlap, the final spectra being obtained by averaging the
spectra of each bin. Close to the nozzle, they display a clear peak around a Strouhal number
St = 0.76 (see figure 6.7(a)). The boundary layer momentum thickness near the nozzle
has been measured as θ ≈ 0.023, and therefore, the Strouhal based on θ is around 0.009,
which is consistent with the existing work in the literature for low Reynolds number jets
(see for instance Gutmark and Ho (1983)). At later stages of the development of the shear
layer, the spectra become more broadband, and the energy shifts to lower frequencies. The
dominant frequency becomes close to St = 0.38, corresponding to a sub-harmonic of the
Kelvin-Helmholtz frequency (see figure 6.7(b)). This can be attributed to downstream vortex
pairing, as explained in Yegavian et al. (2016).

The global dynamics of round jets is known to be dominated by fluctuation modes of azimuthal
wavenumbers m = 0 and m = 1, the m = 0 mode being dominant where the shear layer
thickness is small with respect to the diameter (see for instance Davoust et al. (2012)). In
the present article, the investigated jet is measured rather near to the nozzle exit, and θ is
around 0.023 near the nozzle, explaining the apparent axisymmetry of the fluctuations that
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Fig. 6.7 Frequency spectrum of the streamwise velocity at (a) x = 1.0, y = 0.3 and (b)
x = 1.5, y = 0.25, computed from the PIV results (reference set). The upstream spectrum (a)
displays a clear peak at St = 0.76, linked to the Kelvin-Helmholtz mechanism, while further
downstream, (b) displays a broader spectrum center around St = 0.38. This latter frequency
is related to the typical downstream vortex pairing that occurs in such flows.

can be clearly observed in the PIV snapshots (symmetric streamwise velocity field and anti-
symmetric cross-stream velocity field, see figure 6.6). Consequently, for the reconstruction
procedure used in the rest of the study, we consider an axisymmetric framework, which has
been validated a posteriori by the agreement between the PIV results and the axisymmetric
PSE analysis (section 6.4.1).

The axisymmetric assumption requires to post-process the PIV velocity fields in order to
accurately determine the streamwise direction and the location of the symmetry axis of the
jet. To this end, the camera was carefully oriented to be approximately aligned with this axis.
The small remaining misalignment has been corrected by computing, for each streamwise
location x0, the center yc(x0) of the corresponding mean streamwise velocity profile u(x0, y)
defined as

yc(x0) = min
y

∫ 1

0
(u(x0, y + ỹ) − u(x0, y − ỹ))2 dỹ, (6.3)

The streamwise direction has been computed by linear regression over the computed points yc,
and finally, the velocity components have been corrected with respect to this new orientation.
The origin of the new system of coordinates is chosen at the center of the nozzle exit. Figure
6.4 presents the mean streamwise velocity field in this new frame of reference. Note that since
the new fields are slightly rotated with respect to the original PIV snapshots, the discrete
velocity values have been evaluated on a new grid centered around the axis of the jet, using a
third-order spline interpolation. The new grid covers the domain (0.5 ≤ x ≤ 2.75,−1 ≤ y ≤ 1)
and contains 225 × 200 points in the streamwise and cross-stream direction, respectively.
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6.4 Unsteady flow field reconstruction

6.4.1 Prediction of the Fourier modes from the mean flow

In this section, we aim at predicting for any arbitrary frequency ω0 the spatial structure of
the velocity Fourier mode Û(x, ω0) from the sole knowledge of the mean flow, computed by
time-averaging the reconstruction set of PIV snapshots. As explained in section 6.2, this may
be achieved by computing the dominant resolvent modes with a PSE analysis, by following
the procedure detailed in chapter 2. Note that the PSE analysis has been performed in an
axisymmetric framework, using the axisymmetric mean flow defined by the upper half of
the complete two-dimensional PIV mean flow (see figure 6.4). In the following, we therefore
switch from Cartesian coordinates (x, y) to cylindrical coordinates (x, r), and the axial and
radial velocity, denoted as ux and ur, are taken equal to the streamwise velocity component u
and the cross-stream velocity component v of the upper half of the PIV domain, respectively.
One may alternatively use the lower half of the domain (but ur has to be taken equal to −v),
but in our case, this second choice led to similar results, and therefore is not presented here.
Note that in such an axisymmetric configuration, it is also possible to use both the upper
and lower part of the domain, which virtually gives twice as many snapshots to produce a
mean flow that would be better converged. This may be useful when the number of available
snapshots is rather low, but this was not the case for the present study, explaining why we
did not use such processing.

The Fourier modes have been computed by an FFT of the reference set of PIV snapshots.
Figures 6.8 and 6.9 compare the axial velocity of the dominant resolvent mode and the
Fourier mode (modulus and phase comparison of the fields, respectively), for St = 0.76 (the
Kelvin-Helmholtz frequency, see 6.3.1). Figures 6.10 and 6.11 show the same comparison
for the radial velocity, for St = 0.38 (the Kelvin-Helmholtz sub-harmonic). For the sake
of comparison, the modulus of every mode has been normalized such that its maximum
is 1, and the phases such that they are equal to zero at an arbitrary location x = 2.25,
r = 0.3. These figures illustrate for the two velocity components, and for two different
characteristic frequencies of the flow, that, as claimed in section 6.2, the dominant resolvent
mode is approximately proportional to the Fourier mode (their modulus is approximately
equal up to a multiplicative constant and their phase, up to an additive constant). However
this agreement strongly deteriorates in low-energy parts of the flow. This is particularly
striking in figure 6.11 for instance. We see that close to r = 0, as well as for x < 1.7, the
two fields present a strong discrepancy. While it is known that the dominant modes may not
reproduce well the actual dynamics in the low-energy parts of the flow (see chapter 5), here
the discrepancy could also be attributed to the difficulty of measuring a signal with such a low
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fluctuating energy. Fluctuations in these regions are instead dominated by measurement noise,
which makes a relevant comparison impossible. Similar overall agreement has been found
for all the other investigated frequencies, both for the axial and radial velocity components.
This agreement justifies a posteriori the validity of the axisymmetric hypothesis. Note that
here, contrary to the turbulent backward facing step case of chapter 5, we do not need to use
POD-filtering to remove any uncorrelated turbulent fluctuations from the FFT, and still get
an accurate agreement with the PSE fields. This is due to the moderate Reynolds number of
the jet, which leads to a highly organized behavior. For turbulent flows, as seen previously,
the situation is more complex, and this is further discussed in the general conclusion of the
thesis (chapter 7).

The PSE analysis also yields the prediction of the pressure modes, for which we do not have
any experimental comparison. Figure 6.12 presents the real part of the pressure mode for
the Kelvin-Helmholtz frequency St = 0.76 and the sub-harmonic St = 0.38, where one can
see alternated positive and negative pressure regions along the shear layer, as classically
observed in shear layers. We also observe that the downstream structure that appears in
figure 6.12(b) is approximately twice as large as the structures of figure 6.12(a), consistently
with the assumption that frequency St = 0.38 is related to downstream vortex pairing.

Fig. 6.8 Comparison of the normalized modulus of the axial velocity of (a): the Fourier
mode computed by an FFT of the TR-PIV measurements and (b): the dominant resolvent
mode computed from the experimental mean flow only (St = 0.76). Figures (c), (d) compare
profiles from the Fourier mode (dashed line) and the dominant resolvent mode (continuous
red line), extracted at r = 0.4 and x = 2.0, respectively.
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Fig. 6.9 Comparison of the normalized phase of the axial velocity of (a): the Fourier mode
computed by an FFT of the TR-PIV measurements and (b): the dominant resolvent mode
computed from the experimental mean flow only (St = 0.76). Figures (c), (d) compare profiles
from the Fourier mode (dashed line) and the dominant resolvent mode (continuous red line),
extracted at r = 0.4 and x = 2, respectively. The phase profiles have been unwrapped.

Fig. 6.10 Comparison of the normalized modulus of the radial velocity of (a): the Fourier
mode computed by an FFT of the TR-PIV measurements and (b): the dominant resolvent
mode computed from the experimental mean flow (St = 0.38). Figures (c), (d) compare
profiles from the Fourier mode (dashed line) and the dominant resolvent mode (continuous
red line), extracted at r = 0.5 and x = 2.5, respectively.
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Fig. 6.11 Comparison of the normalized phase of the radial velocity of (a): the Fourier mode
computed by an FFT of the TR-PIV measurements and (b): the dominant resolvent mode
computed from the experimental mean flow (St = 0.38). Figures (c), (d) compare profiles
from the Fourier mode (dashed line) and the dominant resolvent mode (continuous red line),
extracted at r = 0.5 and x = 2.5, respectively. The phase profiles have been unwrapped.

Fig. 6.12 Real part of the pressure Fourier mode computed with the PSE analysis, from the
experimental mean velocity field, (a): St = 0.76, (b): St = 0.38, corresponding respectively
to the Kelvin-Helmholtz frequency and its sub-harmonic. The downstream structure of figure
(b) is approximately twice as large as the structures of figure (a), consistently with the fact
that this Kelvin-Helmholtz sub-harmonic is related to downstream vortex pairing.

6.4.2 Time-resolved reconstruction of the snapshots

Following the procedure of section 6.2, we have computed the amplitude function Λ using
the axial velocity ux at x0 = 2.5, r0 = 0.4 (the input signal can be seen figure in 6.5). This
choice of input point is discussed in more detail in section 6.5.1. The choice of the axial
velocity as the input quantity was arbitrary; using the radial velocity led to similar results
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Fig. 6.13 Comparison of the axial velocity of (a): the reconstructed field and (b): the TR-PIV
field (reference set) at t = 75.

(not presented here). The snapshots are finally reconstructed by performing an inverse FFT
at every spatial point. The Λ function has been computed for 0.2 < St < 1.4, which contains
most of the energy of the flow, see figure 6.7, following relation (6.2). Outside of this range,
we set Λ = 0, which filters the low-energy part of the spectra. In this frequency range, we
computed 400 resolvent modes. This number stems from the frequency resolution of the FFT
of the input signal, a mode being computed for every frequency within the range considered.
Note that the final reconstructed set of snapshots has therefore the same time-sampling and
duration as the input signal used for the computation of Λ.

The reconstructed snapshots display a good agreement with the reference set, as can be seen
in figure 6.13, which compares an axial velocity snapshot with the reference PIV field. The
size and the location of energetic structures are well reconstructed. The agreement is also
good in lesser-energy locations. This can be seen in figure 6.14, which compares the temporal
evolution of the axial velocity from the reconstruction and the reference set at the point
(x = 2.0, r = 0). The oscillations of both signals are well in phase, and their amplitude is
very close. Note that the comparison cannot be made in very low-energy parts of the flow,
such as the near-axis and most upstream zones in figure 6.11. This stems from the fact that
the reference set is not accurate in such regions (the signal-to-noise ratio is low) and the
model is not designed to reconstruct low energy behavior anyway (see chapter 5).

In order to provide a more quantitative comparison, we introduce an instantaneous global
measure of the error, denoted as e(t), defined as:

e(t) =

√√√√ 1
Np

Np∑
i=1

(
uix(t) − uix,0(t)

)2
, (6.4)

with Np the number of discrete points where the velocity is known, uix and uix,0 the i-th discrete
streamwise velocity value of the reconstructed field and of the reference field, respectively.
This quantity corresponds to the root mean square over the whole domain of the velocity
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Fig. 6.14 Comparison of the axial velocity computed from the TR-PIV snapshots (reference
set, dashed line) and the reconstructed signal (red continuous line) at x = 2.0, r = 0 (a point
presenting an intermediate level of energy), for an arbitrary time range 50 < t < 100.

Fig. 6.15 Time evolution of the global axial velocity error (continuous line) for an arbitrary
temporal range 50 < t < 100. The dashed line represents the mean error over the full time
range (0 < t < 333), which is approximately equal to 0.038.

error, expressed in non-dimensional unit. One should note that both the reconstruction errors
and the PIV measurement errors contribute to the value of e(t), therefore it would not be
zero even in the case of a perfect reconstruction. Figure 6.15 shows the temporal evolution of
this error, and we see that the discrepancy between the reference and the reconstruction does
not vary much with time (around 0.04), ensuring that the global quality of the reconstruction
is approximately constant over the full time range considered.

As explained in section 6.2, the amplitude function Λ computed from only one flow variable
(here the axial velocity) yields the reconstruction of all other fluctuating quantities (pressure
and radial component of velocity). Figure 6.16 compares a reconstructed radial velocity
snapshot with the corresponding reference field, and the agreement is once again favorable.
Figure 6.17 shows the temporal evolution of e, and the level of error is again rather steady
over time, with values close to that of the axial velocity (approximately 0.03). For the
pressure reconstruction, we do not have experimental results to serve as reference, but the
accurate reconstruction of the radial velocity is a strong argument in favor of the quality of
the pressure reconstruction. Indeed, nothing distinguishes these two variables in our approach.
Moreover, the resulting pressure fluctuation field p′(x, r) is reminiscent of what is expected
in such a jet (see figure 6.18(a)), with alternated positive and negative pressure regions that
grow in size and amplitude when moving downstream.
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Fig. 6.16 Comparison of the radial velocity of (a) the reconstructed field and (b) the reference
PIV fields, at t = 75.

Fig. 6.17 Time evolution of the global radial velocity error (continuous line) for an arbitrary
temporal range 50 < t < 100. The dashed line represents the mean error over the full time
range (0 < t < 333), which is approximately equal to 0.031.

Fig. 6.18 (a): Reconstructed pressure fluctuation field at t = 75, (b): mean square pressure
fluctuation field p′2.
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Fig. 6.19 Comparison of the azimuthal vorticity at t = 75, computed from (a):the PSE-based
reconstructed field, (b): the reference PIV set and (c): the reconstruction PIV set.

Another remarkable feature of the reconstructed fields is their smoothness, that makes them
easily differentiable. This is of high importance for the computation of derived quantities such
as the vorticity, which is sometimes difficult to accurately compute from PIV measurements,
especially in a time-resolved context where the fields display a stronger noise. As an
illustration, figure 6.19 compares a vorticity snapshot computed from the PSE reconstruction,
the reference PIV set and the reconstruction PIV set. The fields have been obtained from
differentiation of the velocity snapshots, based on second-order centred finite differences, with
a stencil length equal to 0.08 (twice the length of the interrogation window used for the PIV
estimation). The reconstructed vorticity compares very favorably with the reference. The
vorticity directly derived from the PIV reconstruction set illustrates the kind of results that
are obtained from PIV when the level of noise is too high. This strongly deteriorates the
estimation of the derivatives, while the same level of noise in the input data for the PSE
reconstruction has no similar impact on the reconstructed field. Note that the vorticity is one
among many other derived quantities that may be determined from the present reconstruction.
For instance, figure 6.18(b) shows the mean square pressure fluctuation field p′2, and any
mean square fluctuation or Reynolds stress term could be similarly computed, and exploited
for further physical analysis.
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6.5 Robustness of the reconstruction method

6.5.1 Influence of the choice of input point

The reconstruction model of this work is based on that presented in chapter 5, which has
explained that the point used for the computation of the function Λ should be in a high-energy
region of the flow to yield an accurate reconstruction. This requirement stems from the
fact that the dominant resolvent modes reproduce accurately the Fourier modes in these
regions, but we explained that there is no guarantee that this agreement would be as good
in low-energy regions. This is confirmed in our case, and it can be seen in figures 6.8 to
6.11, where we see that the strongest discrepancy between dominant resolvent modes and
Fourier modes appears in low-energy regions. But as mentioned in section 6.4.1, in our case,
this could be attributed to a poor signal-to-noise ratio in low-energy regions of the flow, a
common problem in experimental studies. This issue can be clearly seen in figures 6.9(a) and
6.11(a) for instance, where the non-energetic upstream part of the domain is strongly noised,
yielding to a significant discrepancy with the dominant resolvent fields.

To assess the sensitivity of the results with respect to the input point, we have considered
seven additional points along the shear layer for the determination of Λ (in total, four points
above the shear layer, four points below, see figure 6.20 for the position of the points). The
reconstruction is based on the streamwise component of the velocity only, as was done in
section 6.4.2. For each of these points, we have computed the global error E defined as

E = (1/Tmax)
∫ Tmax

0
e(t)dt (6.5)

with Tmax = 333 the duration of the TR-PIV acquisition, and e the instantaneous error
(see equation (6.4)). The resulting values can be seen in table 6.1, and we observe two
clear tendencies: the points located downstream yield a smaller error than the ones located
upstream, and the points above the shear layer display a larger error than the ones below.
This is fully consistent with the findings of chapter 5, which explained that input points
located in high-energy regions yields smaller error. Indeed, here the downstream region
contains more energy than the upstream one, where the Kelvin-Helmholtz instability has not
fully developed yet. Also, concerning the axial velocity, the region inside the jet has been
found more energetic than the region outside. This can be observed for instance in figure 6.8
for St = 0.76.

For a given flow configuration, the location of high energy region may usually be determined
by a prior physical knowledge of the qualitative dynamics of the flow. It may therefore
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Fig. 6.20 Definition of the eight points considered to study the influence of the input point
location on the accuracy of the reconstruction. A is the original point considered in section
6.4.2.

Point(s) error E x r

A 0.038 2.5 0.4
B 0.047 2 0.4
C 0.062 1.5 0.4
D 0.092 1 0.4
E 0.059 2.5 0.6
F 0.061 2 0.6
G 0.069 1.5 0.6
H 0.117 1 0.6

A and H 0.037 - -
E to H 0.046 - -

All points 0.035 - -
Table 6.1 Comparison of the global error for different input point/set of points.

be easy to predict good locations for the input sensor in most situations. However, it is
likely that the flow dynamics would involve several characteristic frequencies, or even a
range of frequencies, and that these frequencies would be related to different locations of
the flow. In such a case, it is not possible to find a single location that would be energetic
for all these frequencies. As explained in the previous chapter, this may be treated by
considering n points for the determination of Λ, leading to an over-determined set of n
equations {Λ(ω) = ûx(ω, xk, rk)/ũωx (xk, rk), 1 ≤ k ≤ n} that may be solved by least squares.
The resulting Λ would be weakly impacted by low-energy points, such that for every frequency,
only high-energy points would contribute to its value. The reconstruction would also be likely
to be more accurate because it would be based on more input data. Finally, multiplying the
number of input points may be useful when there is not any prior knowledge of the energetic
regions, or when this knowledge is not accurate enough, since only one of the sensor needs to
be well-positioned.
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We have tested this approach by considering the best and worst points together (A and H,
see table 6.1). The result, close to that obtained with A only, shows that the reconstruction
is not degraded by the poorly chosen point H. Therefore, in an experimental context, an
accurate prediction would be achieved by using several point-wise measurements as long as
at least one of them is located in a high-energy part of the flow for each frequency of interest.
We also tested the four points above the shear layer (E to H) together, as well as all points
together, and table 6.1 shows that when Λ is based on a set of points, the results appear
always more accurate than the single-point reconstruction based on the best point of the
set. This is of high importance in an experimental context, when using a sensor at some
specific high-energy points may be too intrusive (for example at points A to D). This gives
more flexibility to the method, since lower-energy points might also be used, as long as they
are sufficiently numerous. In particular, one may position a rather large number of sensors
downstream from the region of interest and get a satisfactory reconstruction, even if this
region is not the most energetic one.

6.5.2 Impacts of an inaccurate knowledge of the input sensor position

The present procedure aims at being used with unsteady data obtained from point-wise
sensors. However, in practice, the spatial positions of these sensors can be subject to some
uncertainties. In this section, the impact of such an inaccurate knowledge of the input sensor
position on the quality of the unsteady reconstruction is studied by considering an input
sensor positioned at (x0 + δx, r0 + δr), but which would be erroneously assumed to be located
at (x0, r0). In the procedure, this amounts to select a different input signal than that of
figure 6.5, such that the computed amplitude function is no longer defined by equation (6.2),
but becomes equal to the following biased amplitude function

Λb = ûx(ω, x0 + δx, r0 + δr)
ũωx (x0, r0) . (6.6)

For the reconstruction, we found that such a misplacement mainly results in a streamwise
translation of the structures of the fields, and to a lesser extent, to a moderate change in
their overall amplitude and shape. This overall effect on the reconstruction can be seen in
figure 6.21 for δx = δr = 0.05, δx = δr = 0.1 and δx = δr = −0.2 (Λ is computed from the
axial velocity and (x0, r0) = (2.5, 0.4)). In physical units, this corresponds respectively to a
misplacement of 0.85, 1.7 and 3.4 mm, i.e. from realistic up to over-estimated experimental
positioning errors. When compared with an unbiased reference snapshot (figure 6.21(a)),
these biased snapshots seems to all present a phase shift. Beside this dephasing, the resulting
field displays the expected physical features (alternated positive and negative structures
along the shear layer that grow in size and amplitude in the streamwise direction). This
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Fig. 6.21 Comparison of the streamwise velocity of (a): the unbiased reconstructed field
(no misplacement of the input sensor), (b): biased reconstructed field with δx = δr = 0.05,
(c): biased reconstructed field with δx = δr = 0.1, (d): biased reconstructed field with
δx = δr = −0.2, for t = 10 and (x0, r0) = (2.5, 0.4). The reconstruction is performed using
the axial velocity component.

demonstrates that despite a possibly significant misplacement, the reconstruction does not
degenerate but rather keeps a certain physical relevancy. This may be explained by the
fact that here we consider flows displaying coherent structures, which present by definition
a strong spatial correlation. Therefore, the energy content of the frequency spectrum will
not suddenly change by considering a point slightly misplaced (the spectrum will display a
similar shape with the same dominant frequencies). The phase of the spectrum may however
change significantly, which explains why the main observable effect of a misplacement is a
dephasing of the fields.

Despite this weak overall impact on the physical features of the reconstruction, it may still
be interesting to minimize the sensitivity with respect to a misplacement by a relevant choice
of input data. To address this issue, let us decompose the biased amplitude function Λb as

Λb = Λ + δΛ, (6.7)

with Λ = ûx(ω, x0, r0)/ũωx (x0, r0) the unbiased amplitude function defined by equation (6.2),
and δΛ a spurious term that reads

δΛ = δûx
ũωx (x0, r0) , (6.8)
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with δûx = ûx(ω, x0 + δx, r0 + δr) − ûx(ω, x0, r0). For the reconstruction to be weakly
impacted by the misplacement of the sensor, δΛ has to be small with respect to Λ, which
would ensure that each Fourier mode is rebuilt with a good accuracy. The spurious effect of
the misplacement may therefore be evaluated by the ratio b = |δΛ/Λ| = |δûx/ûx|. Finally,
using the proportionality between the Fourier modes and the dominant resolvent modes
yields the following expression of b

b =
∣∣∣∣ ũωx (x0 + δx, r0 + δr) − ũωx (x0, r0)

ũωx (x0, r0)

∣∣∣∣ . (6.9)

This expression only involves the dominant resolvent modes, and may therefore be computed
by only knowing the mean flow. Assuming that the misplacement (δx, δr) is small, b may be
linearized as:

b = |bx(ω, x0, r0)δx+ br(ω, x0, r0)δr|, (6.10)

with bx and br respectively the axial and radial sensitivity coefficient defined as

bx = ∂xũ
ω
x/ũ

ω
x , br = ∂rũ

ω
x/ũ

ω
x . (6.11)

Small values of |bx| and |br| correspond to a low sensitivity with respect to misplacements
of the sensors, but the reciprocal is not true, as b may be small even for large values of |bx|
and |br| (errors along x and r may compensate each other). In addition, the value of this
coefficient does not give any indication regarding the type of effect of a misplacement, which
could be a simple phase shift (as evidenced in figure 6.21), or a more significant distortion of
the fields. Therefore, this coefficient only gives qualitative guidelines to minimize the impact
of misplacements.

First, it should be noted that these coefficients depend on the input physical quantity
considered: here bx and br are defined from ux, but using for instance the radial velocity ur as
input data for the reconstruction yields bx = ∂xũ

ω
r /ũ

ω
r and br = ∂rũ

ω
r /ũ

ω
r . Consequently, the

sensitivity with respect to misplacements may be reduced by considering an input physical
quantity whose Fourier modes do not present strong spatial gradients. In the case of the jet,
while the axial velocity modes display some abrupt variations across the shear layer, as it may
be seen for instance in figure 6.9, the radial velocity or pressure modes do not display such
high-gradient regions (see figures 6.10 and 6.12). The reconstruction may be more robust if
based on a local record of one of these two quantities, especially if the sensors are designed
to be near the shear layer.

Equations (6.10;6.11) give also insight about the best locations for the input sensors. Due
to the division by the local amplitude of the resolvent modes in equation (6.11), bx and br

are expected to be small in high-energy regions, as long as the local spatial gradients do
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Fig. 6.22 (a): sensitivity map with respect to misplacements of the input sensors, for the
radial velocity ur used an an input (the quantity displayed is |bx| + |br|), (b): radial velocity
modulus of the normalized dominant resolvent mode. For both figures, St = 0.76. The figures
show a relative correspondence between low-sensitivity and high-energy regions.

not become too strong. Moreover, the spatial gradients are expected to be rather small
in the direct neighborhood of a local energy maxima. Figure 6.22 compares the quantity
|bx| + |br| (computed from the radial velocity modes) and |ũωr | for St = 0.76, and we see that
high-energy regions are indeed rather weakly sensitive. While the considerations related to
the sensors misplacements completely differ from that of section 6.5.1, we are here led to a
similar conclusion: the input sensors should be preferably positioned in energetic regions.

Finally, this rather good correspondence between high-energy and low-sensitivity points is
interesting if multiple input points are considered for the computation of Λ. The procedure
that is used for the determination of Λ is then based on a least squares minimization that
rules out the low-energy points, for each single frequency of the reconstruction (see section
6.5.1). It is therefore expected to also rule out the high-sensitivity points, which increases
the overall robustness of the method.

6.5.3 Sensitivity with respect to the mean flow measurements

The PIV measurements need to be accurate enough to yield a proper mean flow. In addition
to the experimental conditions, the key parameter that influences the quality of the PIV
velocity estimation is the size of the interrogation window: a large interrogation window
contains more particles, which reduces the measurement noise, but it tends to smooth down
the spatial gradients of the flow.

In the previous sections, we have used a mean flow that yields an accurate reconstruction,
confirming a posteriori that the choice of the size of the interrogation windows was appropriate
(see section 6.3.1). Choosing a smaller window increases the level of noise, but this does not
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Fig. 6.23 Comparison between mean flow A (continuous line) and mean flow B (dashed line),
the latter corresponding to a PIV processing with a larger interrogation window. Figures (a)
and (b) respectively display ux and ∂ux/∂r at x = 2, where ux is the mean axial velocity.

have any significant impact on the final mean flow, as long as the number of snapshots used
for the time-averaging is high enough for convergence to be reached. However, taking an
overly large interrogation window yields a mean flow that displays inaccurate, biased spatial
gradients. This may be observed in figure 6.23, which compares the original mean flow (mean
flow A) with a new mean flow (mean flow B), obtained with interrogation windows twice as
large in each direction (Gaussian window, 37×37 pixels, σ = 8). The overall effect of this
enlargement is an under-estimation of the spatial derivatives of the mean flow. For St = 0.38
(the dominant frequency in the downstream zone of the flow), the dominant resolvent modes
computed from mean flow A or B have been found hardly distinguishable. However, as we go
to higher frequencies, an increasingly strong discrepancy appears when considering one mean
flow or another. This discrepancy is therefore particularly important for high frequencies,
as it can be seen for instance in figure 6.24: for the Kelvin-Helmholtz frequency St = 0.76,
the mode computed from mean flow B is abnormally energetic in the upstream region of the
jet. The impact on the final reconstruction may be observed in figure 6.25 (reconstruction
based on the axial velocity at (x = 2.5,r = 0.4)): while the large low-frequency structures
are correctly reconstructed downstream, some spurious high-frequency structures appear
upstream of the flow.

These results show that the quality of the reconstruction is conditioned by the accuracy of
the mean flow measurement, and one crucial aspect is the correct evaluation of the spatial
gradients of the mean flow. In our case, it is found that when these gradients are erroneously
evaluated, the final reconstruction presents abnormal levels of energy for high-frequency
structures only. Note that this kind of preoccupation mainly concerns configurations where
the seeding density would be particularly low, or where some parts of the flow contain really
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Fig. 6.24 Comparison between the normalized modulus of the dominant resolvent mode
(radial velocity) at St = 0.76 computed from (a): mean flow A (reference mean flow) and (b):
mean flow B (larger interrogation window in the PIV processing).

Fig. 6.25 Comparison between a reconstructed radial velocity snapshot computed from (a):
mean flow A (reference mean flow) and (b): mean flow B (larger interrogation window in the
PIV processing).

few particles. These two situations would be the only ones justifying the use of windows so
large that it would have a significant impact on the PSE analysis.

6.6 Concluding remarks

This study shows that, in the case of a round jet at Re = 3300, the sole knowledge of the
mean flow and the unsteady behavior of one velocity component at a given point is enough to
yield a reconstruction of all the variables of the flow field, including the pressure fluctuations.
The reconstruction procedure relies on the ability of a PSE analysis on the mean flow to
yield the dominant resolvent modes, which gives an approximation of the spatial structure of
the Fourier modes of the flow. Such an analysis is computationally low-demanding and easy
to implement. It is also particularly well adapted to the study of experimental configurations
since it can be used even when the mean flow is known on a rather small region.
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The reconstruction quality is conditioned by the choice of the input measurement location:
for the reconstruction to be accurate, it has to be located in a rather energetic area of the flow.
Moreover, high-energy locations are likely to be robust with respect to a small misplacement
of the sensors (but in our case the overall effect of a misplacement was rather limited). In
some situations, determining a priori these optimal locations may be difficult. Hopefully, as
demonstrated in the last section of the article, this issue may be solved by increasing the
number of inputs: the reconstruction technique is then more robust and accurate even if
the sensors are not optimally positioned. This gives more flexibility for the location of the
inputs. For instance, with enough sensors, one may avoid intrusive regions, and place all the
inputs downstream of the flow. The accuracy of the reconstruction is also naturally related
to the quality of the mean flow measurement. But the present study proves that a sufficiently
accurate mean flow may be obtained from classical two-frame PIV even in the case of difficult
experimental conditions (e.g., here, with a low seeding density). The noise present in the
PIV snapshots should not impact the reconstruction, since it cancels out in the mean flow as
soon as enough snapshots have been acquired and convergence is achieved. Standard PIV
parameters yield, in our case, a good reconstruction, and the main precaution that emerged
concerns the interrogation window used for the PIV processing, as it may lead to bias present
in the mean flow. If it is excessively large, then the final mean flow may present erroneous
spatial derivatives, which had in our reconstruction an impact on high-frequency structures.

The present work is a successful example of the use of our reconstruction method, but it
does not ensure the generality of this approach. For higher Reynolds number flows, while
chapter 5 has showed that the statistical spectra associated to the coherent part of the
unsteadiness may be predicted, a temporal reconstruction would be a more challenging task,
that is discussed in the general conclusion of the thesis (chapter 7).

Note that here, we have only reconstructed the m = 0 fluctuations, that are dominant for the
present jet. In the case where an m = 1 mode would be of interest, then the PSE analysis
could be performed for m = 1 disturbances, to get the associated resolvent mode. Then,
the only requirement would be to separate, in the unsteady point-wise data, the m = 0 and
m = 1 contributions. This may be done by considering a circular array of sensors, and using
classical azimuthal decomposition techniques (see for instance Kopiev (2004)). Then, the
m = 0 contribution of the input data would serve to compute an amplitude function Λ0 for
the axisymmetric PSE mode, and the m = 1 one, for the computation of its counterpart Λ1

for the m = 1 mode. This approach may be generalized to other situations where several
modes would come into play.
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General conclusion and future work





Chapter 7
–

Conclusion

7.1 Summary of the work

The purpose of this thesis was to develop reliable tools for the characterization of a general
flow dynamics, based on linear stability theory. A large body of work has already focused
on that goal, which gave birth to a manifold of linear stability methods. Unfortunately, as
showed in chapter 1, none of these linear approaches has the ability to fully characterize any
general flow. Instead, each one presents its own limitations, and a clear understanding of
these limitations is still missing.

On account of this, the present work addressed the conditions of validity of these methods. To
this end, chapter 2 provided efficient implementation strategies for the main linear stability
techniques. Then, the work was carried out in two steps, by studying successively the base
flow and the mean flow approach.

The base flow approach was first addressed in chapter 3, by focusing on a global stability
analysis of screeching jets. This revealed unstable modes, with a frequency close to that of
screech tones. Moreover, the stability analysis correctly accounted for the influence of two key
parameters, namely the jet-to-ambient pressure ratio and the nozzle lip thickness. Finally, a
careful study of the unstable modes revealed supersonic disturbances, which is a well-known
noise generation mechanism that is responsible for acoustic waves emission in the jet.

These successful results served as a discussion basis in chapter 4, which addressed the general
ability of a linear base flow analysis to predict the nonlinear frequency of a flow. The main
finding was that for oscillating flows, when the frequency selection process originates from an
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acoustic feedback loop (encountered for instance in impinging jets, cavity flows, screeching
jets), then the nonlinearities weakly impact the dynamics. In this situation, a linear base
flow analysis would be physically relevant even far from criticality. More specifically, the
eigenspectrum of the Jacobian is expected to fulfill the so-called RPIF (real positive imaginary
frequency) property, which refers to the existence of an eigenvalue whose real part is positive
(unstable eigenvalue) and imaginary part matches the nonlinear frequency of the flow.

In the second part of the manuscript, we investigated the mean flow approach, with a focus
on resolvent analyses. From the formalism introduced in chapter 5, the Fourier mode of a
flow was found equal to the product of the resolvent operator by a turbulent forcing term.
We then considered a singular value decomposition of this operator. This yielded a set of
optimal responses and optimal forcings, which were used as projection basis for the Fourier
mode and the turbulent forcing, respectively. The resulting relation may then be simplified
by assuming that the first singular value is much larger than all other. From a physical point
of view, this dominant singular value (DSV) assumption relates to the existence of a strong
convective instability in a flow. Under this condition, the first optimal response was found
to be approximately proportional to the Fourier mode. Note that for this to be true, the
turbulent forcing should not be preferentially oriented toward sub-optimal forcings. This was
the only modeling assumption of our study.

These findings, that addressed the prediction of spatial features of an unsteady flow, are
consistent with the work of Sipp and Lebedev (2007) and Turton et al. (2015), who fo-
cused on the prediction of the frequency of self-oscillating flows. They showed that for a
(quasi)monochromatic dynamics, the mean flow verifies the so-called RZIF property (real
zero imaginary frequency), i.e. a global stability analysis of this field yields a marginally
stable mode whose frequency matches the frequency of the flow. In a resolvent framework,
such monochromatic oscillations could only appear if the first singular value tends to infinity
in the vicinity of this frequency, which is equivalent to the RZIF property. In addition, the
DSV condition would then be automatically fulfilled for the frequency of the flow oscillations.
Therefore, a mean flow analysis would predict not only the frequency, but spatial features of
the self-oscillating behavior too.

In the more general case where the RZIF property is not fulfilled, there are two options to
predict the frequency spectrum at any point: one needs to either model the turbulent forcing
term, or use additional information about the dynamics. On account of that, we introduced
two models. The first one considered a modeling of the forcing as a response-independent
white noise. The second one was based on a few point-wise unsteady measurements from
the flow. The models were tested in the case of a turbulent backward facing step simulation,
which was found to fulfill the DSV condition for all considered frequencies. The results from
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the first model were qualitatively acceptable, but quantitatively inaccurate. This was due to
the overly-simple modeling of the turbulent forcing. On the other hand, the second model
gave excellent results, and proved to well predict the dominant frequency and the level of
energy at all the tested locations. Finally, we showed that in the backward facing step case,
the optimal response may be well-approximated by a PSE analysis. This gives an inexpensive
alternative that may replace the s.v.d. for both models.

The second model, based on point-wise measurements, is very interesting for experimental
studies. Indeed, the mean flow and point-wise data are generally much easier and much
cheaper to measure than the unsteady field over a whole region. Therefore, in chapter 6,
we focused on the use of this model in an experimental context, and we reconstructed the
unsteady flow field of a transitional round jet from the sole knowledge of the mean flow and a
single point-wise measurement. This reconstruction favorably compared with an experimental
reference, given by TR-PIV measurements. Finally, we addressed the robustness of the model
with respect to experimental uncertainties. We gave a few guidelines to ensure robust results,
and the main finding was that the measurements should be in high-energy regions. Moreover,
using a few point-wise measurements instead of a single one increases both the accuracy and
the robustness of the reconstruction.

7.2 Meaning of a mean flow stability analysis

The present work showed that a mean flow stability analysis has a clear physical meaning from
the resolvent point of view. From this standpoint, and despite its name, a mean flow stability
analysis is not a stability analysis: the stability of the mean flow has no physical meaning,
and such an analysis cannot yield any kind of information with respect to the onset of an
unsteadiness. However, this work pinpointed the central role of the resolvent about the mean
flow in the nonlinear dynamics of a flow. For flows displaying a strong convective instability
mechanism, this operator is expected to fulfill the DSV property. This leads to a particular
situation where the flow would display high-energy spatially correlated structures that can
be easily computed from the resolvent. Regarding the frequency prediction, this cannot be
achieved by a classical mean flow analysis in a general case, and it requires to properly model
the turbulent forcing term, or to use additional information about the dynamics (such as
point-wise measurements).

However, in the particular case of monochromatic and quasi-monochromatic flow oscillations,
the situation is different: for the system to display a consistent behavior, the resolvent has
to degenerate such that the response is infinite for the frequency of the flow. We showed
that this yields a very particular situation where the frequency may be predicted without
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any modeling of this turbulent forcing term, by performing a simple global stability analysis
about the mean flow.

7.3 Temporal reconstruction and convergence of spectra

Chapter 6 has demonstrated that the techniques developed in this thesis may yield an
accurate flow reconstruction. The studied case was a jet at Re = 3300. Such a flow is often
classified as a noise amplifier, in the sense that its dynamics is rather broadband, and does
not stem from self-sustained oscillations. This may be observed with the spectra presented
in the previous chapter for the characterization of the jet (figure 6.7). These spectra were
obtained by the classical Welch algorithm to compute the power spectral density. This is a
common way to get a converged spectral information from non-periodic flows, that cannot
be obtained from a straightforward FFT, since the signal is not square integrable. However,
the reconstruction itself is based on a straightforward FFT. But the non-convergence of the
local spectra is not an issue to rebuild a signal. Indeed, an FFT of a sampled signal u(x, y, ti)
gives spatial Fourier modes ûn(x, y) for a discrete set of frequencies (ωn), such that we have:

u(x, y, ti) =
N∑
n=0

ûn(x, y)eiωnti + c.c, (7.1)

valid for all discrete times ti of the sampled signal. The spectrum of an FFT at a given point
gives the relative amplitude and phase of all the FFT modes. Regardless of the convergence
of this spectrum, it still gives the exact linear combination of these modes that reproduces the
original signal. If the length of the signal increases, the number of modes increases too, and
therefore the phase and amplitude of the modes have to change to reproduce the extended
signal. As a consequence, the spectra obtained from an FFT does not converge. Nonetheless,
the finite-length signal is always perfectly reproduced by this superposition of Fourier modes,
by construction.

Therefore, in the case where the resolvent modes would be perfectly proportional to the FFT
Fourier mode, then the flow field may also be perfectly reconstructed from these modes. This
would be true without any consideration regarding the local convergence of the spectra. The
real issue is therefore the convergence of the Fourier modes, obtained from an FFT, rather
than the local spectra. In the case of the jet, this convergence occurs, and the reconstruction
is therefore possible (see chapter 6).

But the jet is a moderate Reynolds number flow, and for turbulent flows, the question is
more complex. In the case of the turbulent backward facing step, the most energetic behavior
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Fig. 7.1 Backward facing step treated in chapter 5: comparison of the real part of the
streamwise velocity of (a) the Fourier mode obtained by a straightforward FFT based on
the full ZDES data of chapter 5, (b) the resolvent mode computed from the mean flow,
for ω = 0.7 (most energetic frequency of the flow). The figures display ten equally spaced
contours from the minimal to the maximal value of each field.

was associated to ω = 0.7. The corresponding Fourier mode, computed from a simple FFT,
yields highly organized structures, that is easily converged with a simple FFT, as long as the
input signal is long enough to account for this low-frequency behavior. For this frequency,
the resolvent mode is very close to this FFT mode (see figure 7.1), and therefore the situation
is similar to that of the jet, where a reconstruction should be possible.

At a higher, less-energetic frequency, the situation is different. The Fourier mode, computed
from an FFT, displays a spatially organized region, that is well converged when the length is
increased, but the downstream part presents an apparent noise, that does not converged as
the length of the input signal is changed (figure 7.2). Similarly to what is shown in chapter 5,
this noisy part is absent from the resolvent mode. The nature of these fluctuations is still
unknown, and may be further studied in future works.

7.4 Unsteady reconstruction of turbulent flows

The previous results show that only the reconstruction of highly-organized behavior is
possible from the rank-one approach developed in part II. For non-turbulent flows, this yields
a straightforward reconstruction, similar to that of chapter 6. For turbulent flows, the previous
findings show that some high-energy behavior may correspond to such spatially correlated
structures, which can therefore be accurately reconstructed. However, some lower-energy
behaviors, typically associated to higher frequencies, can only be partially reconstructed.
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Fig. 7.2 Backward facing step treated in chapter 5: comparison of the real part of the
streamwise velocity of (a) the Fourier mode obtained by a straightforward FFT based on the
full ZDES data of chapter 5 (simulated time: 310 non-dimensional time units), (b) a similar
FFT mode obtained from a truncated signal corresponding to a simulated time of 280, (c)
the resolvent mode computed from the mean flow, for ω = 11. The figures display ten equally
spaced contours from the minimal to the maximal value of each field.

Indeed, at least in the case of the backward facing step, above a certain frequency, the Fourier
modes display a coherent behavior superimposed to some uncorrelated fluctuations. Only
the former can be reconstructed, but such a partial reconstruction would require to isolate,
in the point-wise input data, this coherent part. This could be done by performing a proper
orthogonal decomposition of the input point-wise signals, similarly to what has been done by
Gudmundsson and Colonius (2011), but the number of input sensors should be high enough
for such a technique to be used.

Alternatively, one could perform a reconstruction based on a rank-n model, using the sub-
optimal resolvent modes. In theory, with enough modes, the reconstruction can be arbitrarily
accurate, but the cost is, again, a higher number of input sensors, in order to compute an
amplitude function Λi for each of these sub-optimal modes.



Future work

The following section presents several ideas of further developments, for the base flow and
the mean flow approach, respectively.

7.5 Base flow approach

Chapters 3 and 4 defined some limits of validity for a linear base flow analysis. We pinpointed
the cases where such an analysis may yield relevant results, even far from criticality. These
chapters were based on a stability analysis of underexpanded jets, which revealed that the
screech phenomenon originates from a global instability of the jets. This result is very
interesting from a physical point of view, especially in the context of control, but the aim of
the chapter was such that we did not explore this aspect. Nonetheless, based on the existing
tools described in chapter 2, it would be rather straightforward to perform a sensitivity
analysis of the unstable modes with respect to an external forcing (see Mettot (2013)). This
would bring new results for the problem of screech suppression, that has been intensively
studied during the past decades (see for instance the work of Norum (1983) or more recently
the article of Ramakrishnan et al. (2009)).

7.6 Mean flow approach

The present study led to conditions for the validity of a mean flow stability analysis, in the
case where the flow dynamics is governed by the Navier-Stokes equations. Since the approach
is rather general, an interesting development would be the extension to an augmented set of
equations, that would include equations from other physical or chemical mechanisms. From
this, one may then study reactive fluids, for instance. It would be also interesting to see
if the formalism introduced in chapter 5 could be extended to multi-phased flows, or even
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coupled solid/fluid systems. In both cases, the notion of mean field needs to be addressed,
in particular in region where the nature of the medium changes during time. A shared
mathematical framework is also needed to describe both media, in particular for fluid/solid
systems, which are classically described from an Eulerian and a Lagrangian point of view,
respectively. Moreover, the state of each medium may be described by different variables,
which adds to the complexity of the problem.

Other developments may be done regarding the reconstruction model described in chapter 5.
In the present work, we only considered 2-D data. But in the case where one would be able
to produce a three-dimensional mean flow measurement, then the exact same procedure may
be used to rebuild a full 3-D time-resolved flow field. This could be of high interest since the
existing methods to measure a flow field in a volume are more complex and costly than their
2-D counterparts. Note that several flows, such as the backward facing step of chapter 5,
have a 3-D dynamics but a 2-D mean flow. Therefore, this mean flow could be measured
from 2-D PIV, and a few point-wise measurements may yield the full 3-D unsteady flow field.

In chapters 5 and 6, the PSE analysis is presented as an inexpensive alternative to an s.v.d. of
the resolvent, that may be useful to treat 3-D configurations (too expensive for an s.v.d. with
the numerical tools presented in this thesis). But it can also be argued that the PSE analysis
presents some limitations that a resolvent analysis do not have. For instance, acoustic waves
are often impossible to properly capture by PSE (see chapter 1). Other spatial marching
methods, that may be superior to PSE in some situations, could be used, such as the one-way
equations introduced by Towne and Colonius (2015). This may replace the PSE analysis in
the present reconstruction model if needed. Its computational cost is between that of a PSE
analysis and an s.v.d. of the resolvent.

The reconstruction method is based on a rank-one approximation of the resolvent operator,
that is only valid if the DSV property is fulfilled. But if that is not the case, then a higher-rank
approximation may be used. This requires to compute sub-optimal responses, which cannot
be obtained from a PSE analysis. Therefore, it would be interesting to modify the PSE
procedure, and to use the adjoint PSE equations such that, from a random initialization, we
compute the optimal response by adjoint optimization. We may then compute sub-optimal
responses by imposing this optimization procedure in a sub-space that would exclude the
first optimal response. With such a technique, one may be able to perform a higher-rank
reconstruction without the need of a costly resolvent analysis.

Note that in chapters 5 and 6, the reconstruction is performed in the frequency domain.
Gòmez et al. (2016a) performed a similar reconstruction in the time domain. They assumed
that the flow field is equal to a Fourier series involving the modes computed with the resolvent.
The coefficients of the series are then determined by minimizing the error at at few points,
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from a few point-wise measurements. An alternative approach would be to minimize the error
from a PIV snapshot instead of a point-wise measurement: instead of using an information
at one point for a large set of different times, we use the information at one time for a large
number of points. We may then use classical (non time-resolved) PIV, which yields the
mean flow and a set of snapshots. The minimization can be performed over the whole set
of snapshot to make the reconstruction more robust, which gives a time-resolved field from
a non-time-resolved set of snapshots. Note that from a physical point of view, a snapshot
contains structures of various sizes, associated to various frequencies. Therefore, a single
snapshot contains phase and amplitude information about all the energetic frequencies. In
the approach developed in this thesis, the snapshots are only used for the computation of the
mean flow, and therefore a lot of information is lost in the process. It may be also possible
to use both point-wise measurements and the snapshots to increase the robustness of the
reconstruction.

This snapshot-based approach could also be used with Particle Image Tracking (PTV, see
for instance Maas et al. (1993)) instead of PIV. PTV is based on a tracking of individual
particles, and yields an instantaneous velocity measurement at the location of these particles,
that may be more accurate than PIV measurements. However, this velocity measurement is
usually sparser than with PIV, as the density of particles needs to be low enough to get an
accurate tracking. Following an approach similar to that mentioned above, PTV results may
be used to reconstruct a dense time-resolved velocity field.

Finally, one may attempt to reconstruct a flow field from the sole knowledge of a mean
flow, without any other extra data about the dynamics. To this end, the modeling of the
turbulent forcing term should be further analyzed. In this thesis, the only modeling that we
proposed was extremely simple, and could only recover some qualitative trends of the unsteady
dynamics (we could only identify high frequency or low frequency regions). Undoubtedly, a
better modeling would yield an improved reconstruction, but this requires to further study
this turbulent term.
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Résumé en français

A.1 Problématique scientifique

La très grande majorité des applications en mécanique des fluides fait intervenir des com-
portements instationnaires qu’il est nécessaire de caractériser (aéronautique, ingénierie,
météorologie, etc.). Au cours des dernières décennies, la théorie de la stabilité linéaire a été
intensivement utilisée pour cela. Le concept central de cette dernière consiste en l’étude de
l’évolution de petites perturbations autour d’un état stationnaire donné (un champ de base).
Il est ainsi possible de montrer que certains comportements instationnaires sont le résultat du
caractère instable de ces perturbations, qui peuvent être amplifiées à des niveaux importants
par des mécanismes d’instabilité.

Cela correspond historiquement à l’approche classique pour analyser la stabilité d’un écoule-
ment, qui présente plusieurs limites. Tout d’abord, même si elle permet d’étudier les
bifurcations d’un état stationnaire vers un état instationnaire, et donc de prédire l’apparition
d’instationnarités, une hypothèse centrale de ce type d’étude consiste à considérer des pertur-
bations de petite amplitude, ce qui permet une linéarisation des équations. Par conséquent,
dans le cas d’un écoulement présentant une bifurcation, il n’y a aucune garantie sur la
pertinence physique de l’approche loin de la criticalité, où les fluctuations ont une grande
amplitude. Cette question est traitée dans la première partie de la thèse, dédiée aux analyses
linéaire de stabilité du champ de base.

Une autre limite vis-à-vis de l’étude du champ de base est qu’il n’y a aucune garantie
théorique sur l’existence d’un tel champ. En effet, un écoulement est régi par les équations
de Navier-Stokes, et dans un cas général, il est possible que ces équations n’aient pas de
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Fig. A.1 Barkley (2006): la ligne épaisse représente l’évolution du nombre de Strouhal
(fréquence adimensionnée) du sillage du cylindre, en fonction de nombre de Reynolds. La
courbe pointillée représente la prédiction provenant d’une analyse de stabilité globale linéaire
du champ de base. Les triangles correspondent à la même analyse effectuée autour du champ
moyen.

solution stationnaire. Dans une telle situation, Pier (2002) puis Barkley (2006) ont proposé
de mener des analyses de stabilités linéaires, reposant sur des approches classiques, mais
utilisant le champ moyen (moyenne temporelle du champ instationnaire) au lieu du champ
de base. Leurs résultats concernant l’étude d’un écoulement de cylindre révèlent que cette
approche fournit une excellente prédiction de la fréquence d’oscillation du sillage, même
loin de la criticalité (voire figure A.1). Ce résultat très intéressant soulève cependant de
nombreuses questions: outre la fréquence, quelles quantités peuvent-être ainsi caractérisées ?
Quelle est la généralité de l’approche ? Quelle sont ses conditions de validité ? La réponse
à ces interrogations est encore mal connue, et constitue la problématique traitée dans la
seconde partie de la thèse.

A.2 Analyse linéaire du champ de base

La littérature scientifique présente des cas pour lesquels une analyse linéaire de stabilité
du champ de base ne permet pas une prédiction correcte de la fréquence d’oscillation d’un
écoulement. Un exemple classique de cela est l’écoulement derrière un cylindre, qui présente
une bifurcation de Hopf super-critique pour un nombre de Reynolds critique Rec = 46. Dès
lors que l’on s’éloigne de cette valeur pour aller vers des nombres plus grand, l’analyse linéaire
sous-estime significativement la fréquence (voir figure A.1).
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Cette situation n’est cependant pas systématique, et la littérature scientifique contient un
certain nombre de contre-exemples. Dans cette thèse, il est proposé l’étude d’un phénomène
connu sous le nom de screech, pour lequel une analyse linéaire du champ de base prédit avec
une bonne précision la fréquence de l’écoulement, alors même que les perturbations ont une
grande amplitude. Cette étude, présentée dans le paragraphe suivant, a servi de base pour
une discussion plus générale sur la pertinence physique d’une telle analyse.

A.2.1 Cas d’étude: le phénomène de screech

Les jets supersoniques sont qualifiés de sous-détendus lorsque la pression à la sortie de la
tuyère est supérieure à celle du milieu ambiant. Le ratio de pression jet/milieu ambiant (JPR,
Jet Pressure Ratio) caractérise la structure spatiale du jet, qui s’organise en une succession
de cellules de chocs (voir figure A.2).

Sous certaines conditions, un bouclage acoustique peut se former: des perturbations naissent
dans la couche de mélange, et sont convectées vers les chocs où elles interagissent et génèrent
des ondes acoustiques. Ces dernières remontent l’écoulement, jusqu’à être reflétées par la
lèvre de la tuyère, ce qui excite la couche de mélange et génère de nouvelles perturbations qui
subissent le même processus. Ce mécanisme donne naissance à une dynamique oscillatoire,
associée à l’apparition d’un bruit tonal de très forte intensité se propageant vers l’amont
du jet, connu sous le nom de screech. Ce phénomène a été décris pour la première fois par
Lighthill (1952) et Powell (1953).

Une formule analytique de prédiction de fréquence, basée sur le calcul du temps nécessaire
pour une perturbation de parcourir une cellule de choc et pour une onde acoustique de
revenir au niveau de la tuyère, a été introduite par Powell (1953). Cette formule prédit assez
bien la fréquence du bruit de screech. Dans cette thèse, il est montré que contrairement
au cas du cylindre décris précédemment, une analyse globale de stabilité linéaire la prédit
avec une bonne précision également. En effet, l’analyse révèle deux modes instables (mode
A et B), dont la fréquence est très proche de ce qui est obtenu à partir de la formule de
Powell (1953) (voir figure A.3). De plus, les écarts existants correspondent qualitativement à
des observations expérimentales présentes dans des travaux précédents (surestimation de la
fréquence par la formule de Powell (1953), voir par exemple Raman (1998)).

A.2.2 Interprétation et discussion des résultats

Les résultats obtenus sur le cas du screech, très différents de ceux d’un écoulement de cylindre
(voir figure A.1) révèlent que malgré la grande amplitude des fluctuations, le mécanisme
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Fig. A.2 Gauche: Densité du champ de base d’un jet sous-détendu calculée pour JPR=1.12,
faisant apparaître les cellules de chocs. Droite: zoom sur la sortie de la tuyère, présentant
les principaux éléments d’une cellule de choc. Les figures présentent 15 contours également
répartis entre 0.9 et 1.4 (unités adimensionnées par la densité du milieu ambiant). Le nombre
de Reynolds du jet est de 3030.

Fig. A.3 Comparaison de la fréquence obtenue à partir d’une analyse globale de stabilité
linéaire du champ de base (rouge: mode A, bleu: mode B) et de la prédiction donnée par la
formule de Powell (1953), pour différents JPRs.

de sélection de fréquence (le bouclage acoustique) est peu influencé par des dynamiques
non-linéaires. Il en résulte qu’une analyse linéaire prédit correctement la fréquence en jeu.

Ce mécanisme de bouclage acoustique est présent dans d’autres configurations, telles que
les écoulements de cavités et les jets impactants. Des analyses de stabilité linéaire similaires
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semblent aboutir également, dans ces cas, à une bonne prédiction de fréquence, même loin
de la criticalité (voir par exemple les travaux de Mettot et al. (2014b)). Il semblerait donc
que le bouclage acoustique soit un mécanisme récurrent où les non-linéarités jouent un rôle
marginal dans la sélection de fréquence d’un écoulement.

Bien que la généralité de ce résultat n’est ici pas démontrée, il est facile de l’interpréter
d’un point de vue physique. La fréquence est déterminée principalement par la géométrie de
l’écoulement (par exemple dans le cas de la cavité, par la longueur de la cavité), expliquant
qu’un modèle linéaire aboutisse à une bonne prédiction de cette dernière. Outre cette
interprétation physique, l’un des points centraux de la présente discussion est qu’elle prouve
l’existence de situations où une analyse de stabilité linéaire est pertinente, même loin de la
criticalité. Pour la prédiction de fréquence, l’amplitude des fluctuations n’est pas un critère
suffisant pour trancher sur la validité d’une analyse de stabilité linéaire.

A.3 Analyse linéaire du champ moyen

Une analyse linéaire du champ de base présente néanmoins un certains nombre de limites,
détaillées précédemment. Dans certains cas, ces limitations peuvent être contournées en
étudiant la stabilité linéaire du champ moyen (voir Pier (2002), Barkley (2006)). Les
conditions de validité de cette approche sont encore mal comprises, et ont fait l’objet de la
seconde partie de la thèse.

A.3.1 Cadre théorique

Le présent manuscrit démontre qu’un opérateur linéaire nommé résolvante, qui fait directement
intervenir la linéarisation des équations de Navier-Stokes autour du champ moyen, est au
cœur de la dynamique non-linéaire d’un écoulement. En conséquence, il est possible d’extraire
des informations sur la dynamique d’une configuration à partir de cet opérateur linéaire,
qui peut être calculé par la seule connaissance du champ moyen. Cela fournit un cadre
permettant de comprendre en quoi une analyse de stabilité linéaire du champ moyen peut
caractériser un écoulement.

En particulier, une décomposition en valeur singulière (s.v.d.) de la résolvante fournit de
nombreuses informations sur la dynamique de l’écoulement. Dans le cas particulier où la
première valeur singulière de la résolvante présente une nette séparation avec les autres
(hypothèse DSV, Dominant Singular Value), il est alors possible de montrer que les modes
de Fourier sont directement proportionnels à la première réponse optimale (premier vecteur
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Fig. A.4 Champ moyen (vitesse longitudinale) calculé en moyennant temporellement et suivant
la direction transverse une simulation 3D. Les contours sont également espacés entre -0.2 et 1
(unités adimensionnées par la vitesse à l’infini). les contours négatifs sont en pointillés, le
contour épais correspond à une vitesse nulle.

singulier à gauche). Cela fournit une condition de validité pour les analyses de résolvante
(une technique classique d’analyse de stabilité) autour du champ moyen. De plus, ce résultat
se généralise à d’autres approches de stabilité linéaires, notamment les techniques locales
telles qu’une analyse PSE (Parabolized Stability Equations, see Herbert (1997)), dont le lien
avec les analyses de résolvante est bien établi dans la littérature (Sipp and Marquet, 2013).

Cela pose cependant la question de l’interprétation physique de l’hypothèse DSV. Une des
grandes conclusions des travaux présents dans cette thèse lie cette dernière à l’existence d’un
mécanisme d’instabilité convectif dominant (tel que le mécanisme de Kelvin-Helmholtz dans
une couche de mélange). Cette situation est typiquement rencontrée dans un jet simple flux,
ou dans un écoulement de marche descendante, étudié dans le paragraphe suivant.

A.3.2 Prédiction des modes de Fourier: validation sur un écoulement de
marche

Ces résultats ont été vérifiés sur des données de simulation d’une marche descendante
turbulente (Re = 57000), à partir de laquelle un champ moyen a été calculé (figure A.4). Il a
été ensuite possible d’effectuer une analyse de résolvante pour une large gamme de fréquence.
Comme attendu, la propriété DSV est vérifiée sur l’ensemble de cette gamme (figure A.5).

Cependant, malgré cette large séparation, les modes de Fourier, évalués par des techniques
d’estimation spectrale de type méthode de Welch, ne sont proportionnels aux réponses
optimales que dans certaines zones de l’écoulement. La figure A.6 montrent que même
si l’accord est globalement bon, proche de la paroi, la différence entre réponse optimale
et mode de Fourier normalisé est significative. Une approche différente pour le calcul de
ces modes de Fourier, basée sur un filtrage POD (Proper Orthogonal Decomposition) des
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Fig. A.5 Comparaison des trois premières valeurs singulières de la résolvante pour des
perturbations 2D (β = 0): la première valeur singulière µ1 est beaucoup plus grande que les
autres, i.e. l’hypothèse DSV est vérifiée pour la gamme de fréquence présentée ici.

fluctuations non-corrélées en espace (généralement associées à des fluctuations turbulentes),
permet cependant d’améliorer grandement cet accord (figure A.6). Cela révèle que les
réponses optimales se comparent, en réalité, à la partie cohérente (spatialement corrélée) de
l’écoulement. L’explication de ce point reste, aujourd’hui, une question ouverte.

A.3.3 Prédiction des spectres locaux

La partie précédente montre qu’il est possible de prédire, à une constante de proportionnalité
près, la structure des modes de Fourier (la partie cohérente uniquement, obtenue par filtrage
POD). En utilisant le spectre en quelques points de l’écoulement, il est possible de calculer
pour chaque fréquence cette constante de proportionnalité, ce qui donne accès aux spectres
locaux associés aux fluctuations.

Pour vérifier cette approche, ces constantes de proportionnalité (qui définissent une fonction
d’amplitude Λ) ont été calculées à partir de deux points x0 = (4, 1.5) et x1 = (7, 0.1), ce
qui a permis ensuite une prédiction en tout point. La figure A.7 présente les résultats de
la prédiction des spectres associés à la vitesse longitudinale en cinq points: xa = (3, 1.5),
xb = (5, 3), xc = (6, 1.5), xd = (8, 0.1) et xe = (9, 0.1). On y voit que la forme générale des
spectres, la fréquence dominante et le niveau associé sont remarquablement bien prédits.
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Fig. A.6 Comparaison du module des champs de vitesse longitudinal normalisés de (a) le mode
de Fourier calculé par filtrage POD, (b) la réponse optimale, (c) le mode de Fourier calculé
par méthode de Welch, pour ω = 2.1 (pulsation temporelle adimensionée) et perturbations
2D (β = 0). les trois lignes verticales pointillées représentent les positions des profils qui
ont été extraits. Les figures (d), (e), (f) comparent le profil du mode avec filtrage POD
(ligne continue épaisse), le profil de la réponse optimale (ligne rouge pointillée), le profil du
mode obtenu par la méthode de Welch (ligne continue fine), pour x = 2, x = 3.5 et x = 5,
respectivement.
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Fig. A.7 Comparaison de l’estimation de spectres locaux associés à la vitesse longitudinale
(ligne rouge pointillée) avec des résultats de simulation (ligne noire continue) en cinq points:
(a): x1 = (3, 1.5), (b): x2 = (5, 3), (c): x3 = (6, 1.5), (d): x4 = (8, 0.1), (e): x5 = (9, 0.1).
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Champ moyen u(t, x0, y0)

Réponse optimale ψ1(ω, x, y) Spectre local û(ω, x0, y0)
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Λ× ψ1

Données d’entrée

Fig. A.8 Illustration graphique de la procédure de reconstruction temporelle.

A.3.4 Application expérimentale pour la reconstruction d’écoulement

Dans le cas d’écoulements à plus faible nombre de Reynolds Re que la marche turbulente,
l’approche détaillée précédemment permet de reconstruire, à partir du champ moyen et d’une
ou de quelques mesures ponctuelles, le comportement temporel des fluctuations. En effet, si
Re est modéré, le comportement est principalement dominé par des structures cohérentes,
et il n’est alors pas nécessaire de recourir à des techniques de filtrage POD. Les spectres
locaux peuvent alors être entièrement calculés, sans qu’il ne manque la partie associée aux
fluctuations turbulentes non corrélées en espace. Une transformée de Fourier discrète (DFT)
inverse permet ensuite de calculer le comportement temporel à partir des spectres. La
procédure complète est présentée en figure A.8.

Cette technique a été appliquée pour la reconstruction d’un jet rond transitionnel (Re = 3300),
qui avait été préalablement caractérisé par Particle Image Velocimetry résolue en temps (TR-
PIV). Les résultats montrent une reconstruction très fidèle à ces mesures TR-PIV (figure A.9).
Cela présente un grand intérêt pour un expérimentateur puisque la TR-PIV reste aujourd’hui
une technique complexe et coûteuse. Or, la présente approche requiert uniquement le champ
moyen et un spectre ponctuel. Ces quantités sont beaucoup plus simples et beaucoup moins
chères à obtenir que les images TR-PIV (elles peuvent être obtenues par exemple par PIV
classique et par l’utilisation de capteurs ponctuels).
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Fig. A.9 Comparaison de la vitesse axiale instantanée de (a): le champ reconstruit (b): le
champ TR-PIV (champ de référence).

A.4 Conclusion

Une analyse linéaire de stabilité du champ de base permet de prédire et comprendre le
caractère stationnaire ou instationnaire d’un écoulement. Cette thèse a cependant montré
que contrairement à l’idée reçu, une telle analyse peut aussi caractériser fréquentiellement
le comportement instationnaire de certains écoulements loin de la criticalité, malgré son
caractère linéaire. En effet, un certain nombre de mécanismes de sélection de fréquence,
souvent associés à un bouclage acoustique, sont très peu influencés par des dynamiques
non-linéaire, indépendamment de l’amplitude des fluctuations associées. Pour ces cas, il est
possible de prédire, avec une bonne précision, le fréquence des oscillations de l’écoulement.

Pour traiter les autres situations, un certains nombre de travaux antérieurs ont montré
qu’une étude de la stabilité linéaire du champ moyen aboutissait à une caractérisation précise
de certains écoulements. La présente thèse fournit un cadre mathématique qui permet de
comprendre la pertinence de cette approche ainsi que sa généralité. Ce cadre met en évidence
le rôle que joue la résolvante autour du champ moyen dans la dynamique d’un écoulement. Il
est montré que lorsque cet opérateur présente une forte séparation de valeurs singulières, ce
qui correspond à l’existence d’un mécanisme d’instabilité fort, alors les modes de Fourier de
l’écoulement sont proportionnels aux modes de résolvante dominants. Ce résultat fournit
des conditions mathématiques et physiques pour l’utilisation et le sens de diverses méthodes
d’analyse du champ moyen, telles qu’une analyse PSE. De plus, cela permet de mettre en
place un modèle de prédiction du spectre fréquentiel en tout point d’un écoulement, à partir
d’une ou de quelques mesures ponctuelles et du champ moyen. L’ensemble de ces résultats a
été illustré et validé sur un cas de marche descendante turbulente. Enfin, cela a été exploité
dans un cadre expérimental, afin de reconstruire le comportement instationnaire d’un jet rond
transitionnel, à partir de la seule connaissance du champ moyen et d’une mesure ponctuelle.
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L’étude a révélée que, sous certaines précautions expérimentales, la reconstruction est très
précise et robuste.



Titre: Caractérisation de comportement d’écoulement instationnaire par analyse de stabilité linéaire.
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Résumé: Au cours des dernières décennies, la théorie de
la stabilité a été intensivement utilisée pour caractériser le
comportement instationnaire d’écoulements. Cela a donné
naissance à un grand nombre d’approches, mais malheureuse-
ment chacune d’entre elles semble présenter ses propres lim-
itations. De plus, leurs conditions de validité sont encore
très mal connues, ce qui soulève la question de la fiabilité de
ce genre de méthodes dans un cas général.

Cette problématique est traitée dans cette thèse en
s’intéressant dans un premier temps aux approches clas-
siques de stabilité, qui étudient l’évolution de petites per-
turbations autour d’une solution stationnaire – un champ
de base – des équations de Navier-Stokes. Pour cela, le
phénomène du screech – un bruit tonal que peuvent causer
les jets sous-détendus – est étudié d’un point de vue de la
stabilité linéaire. Les résultats obtenus montrent que la dy-
namique non-linéaire du phénomène est correctement prédite
par une analyse linéaire de stabilité du champ de base. Une
confrontation avec d’autres analyses similaires montre qu’un
tel résultat n’est pas toujours observé. Cependant, lorsque
les oscillations auto-entretenues d’un écoulement sont provo-
quées par un bouclage acoustique, comme c’est le cas entre
autres pour le screech, l’écoulement de cavité ou encore les
jets impactants, alors les non-linéarités ont une faible in-
fluence sur le phénomène de sélection de fréquence. Cela
explique la capacité d’une analyse linéaire à caractériser ces
écoulements, même dans le régime non-linéaire.

Une autre approche, consistant à étudier la stabilité
linéaire du champ moyen, a montré de bons résultats dans
certaines configurations qui ne peuvent être correctement
étudiées par une analyse linéaire du champ de base. Cela
est justifié dans cette thèse en mettant en évidence le rôle
que joue la résolvante autour du champ moyen dans la
dynamique d’un écoulement. Il est montré que lorsque cet
opérateur présente une forte séparation de valeurs singulières,
ce qui correspond à l’existence d’un mécanisme d’instabilité
fort, alors les modes de Fourier de l’écoulement sont propor-
tionnels aux modes de résolvante dominants. Ce résultat
fournit des conditions mathématiques et physiques pour
l’utilisation et le sens de diverses méthodes d’analyse du
champ moyen, telles qu’une analyse d’équations de stabil-
ité parabolisées (Parabolised Stability Equations). De plus,
cela permet de mettre en place un modèle de prédiction du
spectre fréquentiel en tout point d’un écoulement, à par-
tir d’une ou de quelques mesures ponctuelles et du champ
moyen. L’ensemble de ces résultats est illustré et validé sur
un cas de marche descendante turbulente. Enfin, cela est
exploité dans un cadre expérimental, afin de reconstruire le
comportement instationnaire d’un jet rond transitionnel, à
partir de la seule connaissance du champ moyen et d’une
mesure ponctuelle. L’étude montre que, sous certaines pré-
cautions expérimentales, la reconstruction est très précise et
robuste.

Title: Characterization of unsteady flow behavior by linear stability analysis.
Keywords: Base flow, Mean flow, Flow Stability, Resolvent, Coherent Structures, Flow Reconstruction.
Abstract: Linear stability theory has been intensively used
over the past decades for the characterization of unsteady
flow behaviors. While the existing approaches are numerous,
none has the ability to address any general flow. Moreover,
clear validity conditions for these techniques are often miss-
ing, and this raises the question of their general reliability.

In this thesis, this question is addressed by first consid-
ering the classical stability approach, which focuses on the
evolution of small disturbances about a steady solution –
a base flow – of the Navier-Stokes equations. To this end,
the screech phenomenon – a tonal noise that is sometimes
generated by underexpanded jets – is studied from a linear
stability point of view. The results reveal that the nonlinear
dynamics of this phenomenon is well-predicted by a linear
base flow stability analysis. A confrontation with other simi-
lar analyses from the literature shows that such a satisfactory
result is not always observed. However, when a self-sustained
oscillating flow is driven by an acoustic feedback loop, as
it is the case for the screech phenomenon, cavity flows and
impinging jets for instance, then the nonlinearities have a
weak impact on the frequency selection process, explaining
the ability of a linear analysis to characterize the flow, even
in the nonlinear regime.

Another alternative approach, based on a linearization
about the mean flow, is known to be successful in some
cases where a base flow analysis fails. This observation from
the literature is explained in this thesis by outlining the
role of the resolvent operator, arising from a linearization
about the mean flow, in the dynamics of a flow. The main
finding is that if this operator displays a clear separation of
singular values, which relates to the existence of one strong
convective instability mechanism, then the Fourier modes
are proportional to the first resolvent modes. This result
provides mathematical and physical conditions for the use
and meaning of several mean flow stability techniques, such
as a Parabolised Stability Equations analysis of a mean flow.
Moreover, it leads to a predictive model for the frequency
spectrum of a flow field at any arbitrary location, from the
sole knowledge of the mean flow and the frequency spectrum
at one or more points. All these findings are illustrated and
validated in the case of a turbulent backward facing step
flow. Finally, these results are exploited in an experimental
context, for the reconstruction of the unsteady behavior of a
transitional round jet, from the sole knowledge of the mean
flow and one point-wise measurement. The study shows
that, after following a few experimental precautions, de-
tailed in the manuscript, the reconstruction is very accurate
and robust.
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