
HAL Id: tel-01515698
https://pastel.hal.science/tel-01515698

Submitted on 28 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Confluence properties of rewrite rules by decreasing
diagrams
Jiaxiang Liu

To cite this version:
Jiaxiang Liu. Confluence properties of rewrite rules by decreasing diagrams. Computation and Lan-
guage [cs.CL]. Université Paris Saclay (COmUE); Qing hua da xue (Pékin), 2016. English. �NNT :
2016SACLX044�. �tel-01515698�

https://pastel.hal.science/tel-01515698
https://hal.archives-ouvertes.fr

NNT : 2016SACLX044

1

Thèse de doctorat
de

Tsinghua University
et de

l’Université Paris-Saclay
préparée à

l’École Polytechnique

Ecole Doctorale n◦580
Sciences et technologies de l’information et de la communication

Spécialité de doctorat : Informatique
Par

M. Jiaxiang Liu
Propriétés de Confluence des Règles de Réécriture par des

Diagrammes Décroissants

Thèse présentée et soutenue à Palaiseau, le 10 octobre 2016.

Composition du Jury :

M. Olivier Bournez Professeur (Président du jury)
École Polytechnique

M. José Meseguer Professeur (Rapporteur)
University of Illinois at Urbana-Champaign

M. Luke Ong Professeur (Rapporteur)
University of Oxford

M. Vincent van Oostrom Docteur (Examinateur)
University of Innsbruck

M. Gérard Huet Directeur de recherche émérite (Examinateur)
INRIA

M. Jean-Pierre Jouannaud Professeur émérite (Directeur de thèse)
Université Paris-Saclay

Confluence Properties of Rewrite
Rules by Decreasing Diagrams

Jiaxiang Liu

Supervisors

Prof. Jean-Pierre Jouannaud

Prof. Ming Gu

i

Abstract

Formal methods are increasingly used for developing critical soft-
ware. Proof assistants based on type theories allow to formally prove
properties of software, in particular partial or total correctness. In
expressive type theories allowing for dependent types, computations
based on rewriting play a fundamental role in identifying types up
to computation, such as even(2 + 2) and even(4 + 0) which both
compute to even(4). This is possible thanks to two crucial properties
of rewrite rules, termination and confluence. A third essential, more
semantical property, is type preservation. Confluence is the property
of rewriting-based computations expressing that the associated ex-
tensional relation is functional, implying uniqueness of normal forms,
which exist thanks to termination. In this thesis, we are interested in
confluence.

Note that this problem is already present in algebraic specification
languages, such as OBJ or the functional kernel of Maude. In those
simply typed languages without functional types, type preservation is
an easy property of the rules, and proving termination can be done
independently of confluence. The confluence proof can therefore use
the termination property. This is not possible in typed theories, for
which termination, confluence of typed terms, and type preservation,
depend on each other. Proving confluence on untyped terms is the
usual way out, and can then be done first. The difficulty is that
computations do not terminate on untyped terms, hence confluence
must be proved for non-terminating computations. Our interest in
this thesis is therefore to develop confluence proof methods in the
presence of non-terminating computations.

It is well-known that confluence of a set of rewrite rules is un-
decidable. In the sub-case where rewriting terminates, methods for
showing confluence have been well developed, and are based on the
computation of “minimal diverging computations” called critical peaks,
made of a minimal middle term called “overlap” which computes in
two different ways, resulting in a so-called “critical pair”.

ii

In the case of non-terminating computations, a main result is
that left-linear rewrite rules that have no critical pairs are always
confluent, where a rule is left-linear when each one of its free variables
cannot occur more than once in the left-hand side. This suggests that
the notion of critical pairs plays a key role there too, but a general
understanding of the confluence of non-terminating computations in
terms of critical pairs is still missing.

Recently, van Oostrom proposed a framework based on decreasing
diagrams, a notion that can capture the two main methods used
in the literature for analyzing confluence, no matter whether the
rewrite system is terminating or not. Based on that, Felgenhauer
obtained a general result to solve the confluence problem of left-linear
non-terminating systems via critical pairs, leaving the non-left-linear
non-terminating case open.

This thesis is therefore devoted to the development of techniques
that reduce confluence to the checking of critical pairs for rewrite
systems that are possibly non-terminating and non-left-linear. To this
end, we carry out a thorough investigation of the notion of decreasing
diagrams, from the notion itself up to its applications.

The first part of this thesis focuses on the decreasing diagrams
method itself, which is known to be complete: a relation on an
abstract set is confluent if and only if it can be equipped with a (well-
founded) set of labels such that every diverging computation, called
peak, has a decreasing diagram, that is, its extremities can be joined
by steps whose direction and labels satisfy some constraints with
respect to the peak’s rewrites and labels. The proof of completeness
is based on Klop’s notion of cofinal derivations, which is an infinite
derivation playing the role of a normal form when computations do
not terminate.

By giving an alternative simpler proof of the decreasing diagrams
method, we succeed in extending the method and its completeness
result to the modulo case, in which computations mix rewrite steps
and equational steps which are strongly coherent, a notion used by
Jouannaud and Muñoz to study termination of computations mixing
rewrite steps and equational steps. A direct consequence is a new and

iii

concise proof of Toyama’s celebrated modularity result of confluence
for rewrite systems that are built from disjoint signatures and its
modulo extension by Jouannaud and Toyama.

A second achievement of the thesis lifts up the abstract decreasing
diagrams method to a slightly more concrete level. By generalizing
the method on abstract positional rewriting introduced by Jouannaud
and Li, and by extending it by a multi-labelled version, we propose
a general framework for proving confluence of term rewrite systems
in an axiomatic way which captures all results from the literature
that we know of, in particular those relying on a notion introduced
by Huet and further developed under the name of parallel closedness,
which all appear as particular cases of decreasing diagrams.

The rest of the thesis deals with confluence of syntactic classes
of concrete rewrite systems that are possibly non-terminating and
non-left-linear.

A first idea is to split a rewrite system into a terminating part
RT and a left-linear, possibly non-terminating one RNT . Again,
we assume two disjoint signatures, FT and FNT . RT is built from
symbols in FT . RNT is built from arbitrary symbols, but assumed
to be rank non-increasing, where the rank of a term is its maximal
number of layers alternations. Then, the confluence of RT ∪ RNT

can be reduced to the joinability of the critical pairs of RT and the
existence of decreasing diagrams for the critical pairs of RT inside
RNT , as well as for some parallel critical pairs of RNT with itself
called rigid. The results, that are a strict generalization of Knuth–
Bendix critical pair criterion for terminating computations, rely on a
new rewrite relation, called “sub-rewriting”, which allows to apply an
RT -rewrite provided the various possible instantiations of a non-linear
variable can be (recursively) joined. This notion appears therefore
as a restriction of conditional rewriting with left-linear conditional
rewrite rules, in case the conditions are conjunctions of joinability
predicates between variables.

The second idea investigated is a novel notion of rank, which is
defined independently of any signature split: in essence, the maximum
number of “linearized redexes” traversed from the root to a leaf in a

iv

term, where linearized redexes are instances of the linearized left-hand
sides of rules. The main result here relies on two notions: sub-
rewriting again, and “cyclic-unification”, in other words, unification
“à la PROLOG” without occurs-check. We then prove that a rank
non-increasing rewrite system is confluent provided all its “cyclic
critical pairs” have decreasing diagrams in which the cyclic equations
obtained by unification can be used via their congruence closure. This
result explains a variety of confluent and non-confluent examples due
to Newman for its abstract version, Klop for its concrete version,
and others for variations. We also show that our result is sharp, by
showing that another more complex non-confluent rewrite system,
due again to Klop, that happens to have no cyclic critical pair is
indeed rank increasing.

We are currently investigating non-terminating higher-order com-
putations as those we may find in Dedukti. This part of our work
is still preliminary, hence will not be included in this thesis, despite
the fact that it can be seen as a major practical application of these
techniques.

v

Résumé

Cette thèse étudie la confluence des systèmes de récriture en
l’absence de propriété de terminaison, pour des applications aux
langages fonctionnels de premier ordre comme Maude, ou aux langages
d’ordre supérieur comportant des types dépendants, comme Dedukti.
Dans le premier cas, les calculs opérant sur des structures de données
infinies ne terminent pas. Dans le second, les calculs non typés ne
terminent pas à cause de la beta-réduction. Dans le cas où les calculs
terminent, la confluence se réduit à celle des pics critiques, divergences
minimales du calcul, obtenues à partir d’un terme médian appellé
superposition qui se récrit de deux manière différentes en une paire
de termes appellée critique. Dans le cas où les calculs terminent, le
résultat de Knuth et Bendix dit que les calculs sont confluents si et
seulement si les paires critiques sont joignables. Dans le cas où les
calculs ne terminent pas, le résultat majeur est que les calculs définis
par des règles linéaires à gauche et sans paires critiques confluent. Il
s’agit donc d’étendre ce résultat aux systèmes dont les règles peuvent
être non-linéaires à gauche et avoir des paires critiques.

L’étude la confluence est faite à partir de la méthode des dia-
grammes décroissants de van Oostrom, qui généralise les techniques
utilisées antérieurement aussi bien pour des calculs qui terminent que
pour des calculs qui ne terminent pas. Cette technique est abstraite,
en ce sens qu’elle s’applique à des relations arbitraires opérant sur un
ensemble abstrait. Elle consiste à équiper chaque étape de calcul d’un
label pris dans un ensemble bien fondé. Un pic de calcul, composé
d’un terme se récrivant de deux manières différentes, possède un
diagramme décroissant lorsque ses extémités peuvent se récrire en
un terme commun avec des étapes de calcul dont les labels sont plus
petits, en un certain sens, que les labels du pic. La force de cette
technique est sa complétude, c’est-à-dire que toute relation confluente
peut-être équipée d’un système de labels (par des entiers) pour lequel
tous ses pics possèdent des diagrammes décroissants. Ce résultat
est basé sur un théorème assez ancien de Klop, qui définit pour les
systèmes non-terminant, une espèce de forme normale sous la forme

vi

d’une suite infinie de récritures élémentaires, appellée "dérivation
cofinale".

Dans une première partie, nous révisitons les résultats de van
Oostrom, et en proposons une preuve différente simple dans le but
de les généraliser au cas des calculs dits "modulo", c’est-à-dire dans
des quotients, qui mèlent des règles et des équations. Cette générali-
sation inclue la complétude, en faisant intervenir une généralisation
de la notion de dérivation cofinale dans le cas des calculs fortement
cohérents au sens de Jouannaud et Muñoz. Nous révisitons ensuite, et
généralisons parfois, un grand nombre nombre de résultats fondamen-
taux de confluence qui ne nécessitent pas d’hypothèse de terminaison.
C’est le cas des réductions parallèles-closes de Huet, au prix d’une
généralisation mineure de la méthode de van Oostrom. C’est aussi le
cas du théorème de modularité de Toyama et de sa généralisation aux
quotients, due à Jouannaud et Toyama. Ces deux dernière généralisa-
tions sont intéressantes, car elles sont l’aboutissement d’une succession
de travaux qui tous ont simplifié la preuve initiale de Toyama. Elles le
sont pour une autre raison: elles montrent que la construction d’une
dérivation cofinale au sens de Klop est elle-même modulaire.

La second partie de la thèse applique le théorème de van Oostrom
et sa généralisation à des systèmes (concrets) de récriture de termes,
ainsi qu’à plusieurs problèmes ouverts du domaine. Dans un premier
temps, la technique de van Oostrom est appliquée aux systèmes posi-
tionels, qui constituent un intermédiaire entre les récritures abstraites
et concrètes. Dans un second, elle est appliquée à deux problèmes
importants. Le premier est la généralisation du résultat de Knuth et
Bendix à des systèmes union d’un système arbitraire qui termine, et
d’un système linéaire gauche gauche qui ne termine pas mais dont les
paires critiques possèdent des diagrammes décroissants. Ce résultat
s’avère être la première généralisation importante de celui de Knuth
et Bendix, dans le sens où les calculs opérés sur les paires critiques du
système qui termine sont exactement ceux produits par le résultat de
Knuth et Bendix. La preuve de ce résultat utilise une stratification
des termes obtenue par une condition portant sur la signature, ainsi
que l’utilisation d’une nouvelle notion de récriture, la sous-récriture,

vii

qui permet de joindre des instances différentes d’une même variable
pour déclencher le remplacement d’une instance de membre gauche
de règle par l’instance du membre droit correspondant. Le second
résultat s’affranchit des conditions de signature en proposant une
nouvelle méthode de stratification, le décompte des redex amalgamés
traversés en parcourant un terme de sa racine vers ses feuilles, un
redex amalgamé étant défini comme une instance de membre gauche
de règle ou d’un terme médian. La sous-récriture dans ce contexte
introduit alors le calcul de paires-critiques par unification cyclique,
une nouvelle interprétation de l’unification dans les arbres infinis
rationels qui opère directement sur les arbres finis. Le résultat obtenu
dans ce cadre a permis de résoudre une enigme ancienne: l’existence
de système de règles n’ayant aucune paire critique, mais ne terminant
pas. De fait, ces sytèmes avaient des paires critiques obtenues par
unification cyclique.

L’application récente de ces techniques à des problèmes concrets
d’ordre supérieur tirés de la théorie des types dépendants ne fait pas
partie de la thèse bien que faisant partie des objectifs que nous nous
étions fixés.

Acknowledgements

First and foremost, I would like to express my sincere gratitude toward
Prof. Jean-Pierre Jouannaud, my supervisor, for his guidance and kind
support. Jean-Pierre is a patient supervisor. He led me to this interesting
rewriting world, taught me how to think, how to write and how to share
ideas. He is also a wise mentor, inspiring me greatly during work as well as
during life. Every discussion we had and the nights we worked together are
meaningful moments for me.

I am deeply grateful to Prof. Ming Gu, my co-supervisor in Tsinghua
University. She gave me such an opportunity to start this thesis, which has
been changing my life. It is her strong support encouraging me to get over
most difficulties during the thesis.

I would like to seize this opportunity to thank Tsinghua University and
Prof. Jiaguang Sun for supporting me to study in École Polytechnique, and
as well to thank École Polytechnique for providing me good environment
and so much convenience making my stay in France wonderful.

I also wish to give many thanks to my thesis reviewers Prof. José
Meseguer, Prof. Luke Ong and Dr. Vincent van Oostrom for their pa-
tient reading, constructive and detailed suggestions, and to all the other
jury members Prof. Gérard Huet and Prof. Olivier Bournez, who kindly
accepted to take part in the jury.

I would like to thank Prof. Yoshihito Toyama and Prof. Takahito Aoto
for hosting me in Tohoku University, and Prof. Aart Middeldorp for inviting
me to University of Innsbruck. Special thanks to Bertram Felgenhauer for
the invaluable discussion with him during my stay in Innsbruck and during
my whole thesis. I would also like to thank my co-authors Prof. Nachum

viii

ACKNOWLEDGEMENTS ix

Dershowitz, Prof. Mizuhito Ogawa, Ali Assaf and Prof. Gilles Dowek. I am
deeply impressed and influenced by their passions for knowledge and their
great ability to solve problems.

Thanks to my friends Qian Wang, Jiazi Yi, Jie Yang, Shiguang Li,
Guangyang Wen, Xinzi Rao, Dan Yu, Ling Qin, Han Zheng, Feng Xu,
Jianyang Pan, Jing Yang, Ruxi Shi and Yaowu Zhang for the help in my
daily life during my stay in France.

Last but not least, I am grateful to my parents and my sister. I could
not have done this without your endless support.

* This thesis is supported in part by the National Natural Science Foundation of
China under Grant 61272002.

Contents

Abstract i

Résumé v

Acknowledgements viii

Contents x

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Confluence . 2
1.2 Decreasing Diagrams . 4
1.3 This Thesis . 5

1.3.1 Decreasing Diagrams and Modularity 6
1.3.2 Decreasing Diagrams on Abstract Positional Rewriting 7
1.3.3 Confluence of Rewrite Unions 8
1.3.4 Confluence of Layered Rewrite Systems 8
1.3.5 Confluence in Dependent Type Theories 9

1.4 Contributions and Organization of This Thesis 9
1.5 Publications . 11

2 Preliminaries 12
2.1 Abstract Rewriting . 12

x

CONTENTS xi

2.2 Decreasing Diagrams . 14
2.2.1 Labelled Rewriting 14
2.2.2 Local Diagrams . 15
2.2.3 Diagram Rewriting 17

2.3 Term Rewriting . 18
2.3.1 Term Algebras . 18
2.3.2 Term Rewrite Systems 20

3 Decreasing Diagrams and Modularity 22
3.1 Diagrammatic Church-Rosser Property 23

3.1.1 Plain Labelled Rewriting 23
3.1.2 Diagram Rewriting 24
3.1.3 Labelled rewriting modulo 29
3.1.4 Diagram rewriting modulo 30

3.2 Cofinal Derivations and Streams 33
3.2.1 Cofinal Derivations 33
3.2.2 Cofinal Streams . 34

3.3 Completeness . 37
3.3.1 Plain Rewriting . 37
3.3.2 Strongly-Coherent Rewriting Modulo 38
3.3.3 Need for Strong Coherence 39

3.4 Modularity . 42
3.4.1 Plain Term Rewriting 42
3.4.2 Plain Modularity . 43
3.4.3 Term Rewriting Modulo Equations 47
3.4.4 Modularity Modulo 48

3.5 Conclusion . 50

4 Decreasing Diagrams on Abstract Positional Rewriting 52
4.1 Labelled Positional Rewriting 57

4.1.1 Domains . 58
4.1.2 Rewriting . 59
4.1.3 Rewriting Axioms . 59

CONTENTS xii

4.1.4 Local Diagrams . 60
4.2 Terminating Systems . 63
4.3 Linear Systems . 64
4.4 Left-Linear Systems . 65

4.4.1 First-Order Left-Linear Systems 71
4.4.2 When Plain Critical Pairs Suffice 73

4.5 Conclusion . 77

5 Confluence of Rewrite Unions 79
5.1 Rewriting and Decomposition 80

5.1.1 Rewriting . 80
5.1.2 Decreasing Diagrams 82
5.1.3 Decomposition . 82

5.2 From Church-Rosser to Critical Pairs 83
5.2.1 Proof Strategy . 84
5.2.2 A Hierarchy of Decompositions 85
5.2.3 Main Result . 88

5.3 Relaxing Assumptions . 94
5.3.1 Finite Constructor Lifting 96
5.3.2 Infinite Constructor Lifting 99

5.4 Related Work . 101
5.5 Conclusion . 103

6 Confluence of Layered Rewrite Systems 105
6.1 Terms and Rewriting . 106
6.2 Sub-Rewriting . 107
6.3 Cyclic Unification . 109
6.4 Layered Systems . 116

6.4.1 Layering . 118
6.4.2 Closure properties 119
6.4.3 Testing Confluence of Layered Systems via Cyclic

Critical Pairs . 122
6.5 Conclusion . 130

CONTENTS xiii

7 Conclusion 132

Bibliography 136

Index 149

List of Figures

2.1 Decreasing (Local) Diagrams 16
2.2 Diagram Rewriting with a Set D of Decreasing Diagrams 17

3.1 A Non-Strongly-Coherent Church-Rosser Rewrite System 41

4.1 Positional Rewriting Axioms . 60
4.2 Linear Axioms for Disjoint and Ancestor Peaks 64
4.3 Left-Linear Axioms for Disjoint and Ancestor Peaks 66
4.4 Assumptions for (Left-Linear) Critical Peaks 68
4.5 Proof of Theorem 4.4.5, Case 2 69
4.6 Assumptions for (Left-Linear) Plain Critical Peaks 74
4.7 Proof of Theorem 4.4.14, Case 3 76

5.1 RNT Root Peak . 90
5.2 RT Ancestor Peak . 92
5.3 RT above RNT Ancestor Peak 94
5.4 RNT above RT Critical Peak . 95
5.5 Decreasing Diagrams for Example 5.3.17 101

6.1 Ancestor Peak . 126
6.2 Critical Peak . 127

xiv

List of Tables

6.1 Unification Rules . 111

xv

One

Introduction

While software systems invade our life, embedded in most equipment of
everyday use, at the office, in the house, in the garden, in the car, in
our pockets, in our environment, and sometimes in ourselves, their correct
functioning raises new challenges to the industry. Traditional techniques such
as testing and static analysis have difficulties to eliminate all bugs in a system,
let alone to ensure its correctness. This increases the need for formal methods
to develop these sorts of software, especially those whose functioning is
critical, such as in aeronautics, transportation, finance and medicine. There
are three main trends in formal methods: abstract interpretation [CC77],
targeting bugs, model checking [CGP01], targeting safety properties, and
formal proofs (see, for instance, [BC04, Pau94, ORS92]), targeting total
correctness of programs with respect to their specification. Formal proofs
need being carried out with a proof assistant which checks that all proofs
elaborated by the user are correct.

The core of a proof assistant that is based on type theory is a proof
checker for the logical system on which it is based. These proofs contain
logical steps, described by inference rules, and computational steps described
by rewrite rules. Both are integrated in modern type theories which become
more and more sophisticated in order to meet the needs for user-friendly
proof assistants. In particular, rewrite rules may be user-defined. As a
consequence, studying the meta-theory of these type theories is becoming

1

1.1. Confluence

too complex to be carried out entirely by hand, requiring computer support
to do, at least, the error-prone calculations.

Rewriting is a non-deterministic mechanism for describing intensional
computations, which is at the heart of algebraic specification languages as
well as functional languages. Three properties of rewriting are fundamental,
from which the most important properties of the logical system, soundness
and decidability of type checking, can be derived: type preservation, con-
fluence, and termination. This thesis is devoted to the investigation of the
confluence property.

1.1 Confluence

Confluence is the property of rewriting expressing that the associated ex-
tensional relation is functional (if non-empty). It is a major property of
functional programming languages and proof systems as well, since proofs
are indeed functional programs by the Curry–Howard isomorphism. Conflu-
ence implies uniqueness of normal forms, and is therefore a key property to
decide the congruence defined by computations, which is itself an essential
ingredient of the type checking device of modern type theories.

Let → be a rewrite relation on a set. We denote by →= its reflexive
closure, by →∗ its reflexive, transitive closure called derivation, and by ↔∗
its reflexive, symmetric, transitive closure called conversion or convertibility.
A triple 〈u, s, v〉 is called a local peak if u ← s→ v, a peak if u ←∗ s→∗ v.
A conversion u↔∗ v or a pair 〈u, v〉 is joinable if u→∗ t ←∗ v for some t
and strongly joinable if u→= t ←= v, where the specific form →∗ ◦ ←∗ of
a conversion is called joinability. The rewrite relation → is Church-Rosser
(resp., confluent, locally confluent) if every conversion (resp., peak, local
peak) is joinable. It is strongly confluent if every local peak is strongly
joinable.

It is well-known that confluence of a set of rewrite rules is undecidable
in general [Hue80]. There are traditionally two main methods for showing
confluence of a rewrite relation, in terminating and non-terminating cases,
respectively. In both cases, there are abstract results at the level of relations

2

1.1. Confluence

on a set, and concrete results elaborating upon the abstract ones in the
case of rewrite relations operating on a concrete structure, in general a term
structure.

When rewrite relations are terminating, Newman proved that confluence
of an abstract rewrite system is reducible to local confluence [New42]. Then
Knuth and Bendix, followed by Huet, showed that local confluence of a
rewrite relation on terms, called a term rewrite relation, is reducible to
the joinability of pairs corresponding to specific local peaks called critical
pairs [KB70, Hue80], which are finitely many. Knuth–Bendix’s Lemma
makes the confluence test of terminating term rewrite relations decidable.

As for the non-terminating case, Hindley and Rosen proved that con-
fluence of an abstract rewrite relation is implied by its strong conflu-
ence [Hin64, Ros73], while Tait showed that parallel rewriting in pure
λ-calculus is strongly confluent, which therefore implies confluence. Reduc-
tion of confluence to joinability of critical pairs is possible as well under
strong linearity assumptions [Hue80], although practice favours the case of
orthogonal systems where there are no such pairs.

Many efforts have been made for investigating non-terminating rewrite
relations on terms, which can be viewed as labelled ordered trees, based on
different assumptions, such as: left-linearity [Hue80, Toy88, Gra96, vO97,
Oku98], a property stating that all left-hand sides of rewrite rules are linear,
where a term is linear if each of its free variables occurs at most once;
simple-right-linearity [TO94, OOT95], an assumption that for any rewrite
rule, the right-hand side is linear and no variables occurring more than
once in the left-hand side occur in the right-hand side; strongly depth-
preservation [GOO96, GOO98], a characteristic that for any rewrite rule
and any variable appearing in its both sides, the minimal depth of the
variable occurrences in the left-hand side is greater than or equal to the
maximal depth of the variable occurrences in the right-hand side; and non-
collapsingness [SO10, SOO15], meaning that right-hand sides of no rewrite
rules are variables. However, no general criterion based on critical pair
computations is known when rewrite relations do not terminate.

3

1.2. Decreasing Diagrams

1.2 Decreasing Diagrams

Based on de Bruijn’s Lemma [dB78], in van Oostrom’s seminal paper [vO94a],
he succeeded in capturing both abstract confluence methods – Newman’s
Lemma and Hindley–Rosen’s Lemma – within a single framework thanks
to the notion of decreasing diagrams of a labelled abstract relation. He
then improved it in [vO08a] to obtain a more flexible notion of decreasing
diagrams for practical use.

In this setting, each rewrite step underlying a rewrite relation is decorated
by an element belonging to an abstract set of labels, which is equipped with
a well-founded order �. A decreasing diagram for a local peak u ←l s→m v

is defined as a conversion of the form u ↔∗α ◦ →=
m ◦ ↔∗δ ◦ ←=l ◦ ↔∗β v,

where the labels in the sequence α (resp., β) are strictly smaller than l (resp.,
m), and the labels in the sequence δ are strictly smaller than l or m with
respect to �. Van Oostrom’s result says that a rewrite relation is confluent
if every local peak has a decreasing diagram. It is easy to see that decreasing
diagrams are a generalization of the familiar notions of joinability: joinability
is required by Newman’s Lemma for terminating relations; strong joinability
is required by Hindley–Rosen’s Lemma for non-terminating relations.

The decreasing diagrams method has a remarkable property: it is proved
to be complete, in the sense that, given any confluent rewrite relation on
a countable set, there always exists a way to label the relation making it
satisfy the decreasing diagram condition [vO94b]. This is still open for
non-countable sets.

The notion of decreasing diagrams appears to be a conceptual break-
through. In [JvO09], the method is applied to concrete term rewrite relations
that are both left-linear and right-linear, opening the way to an analysis
of non-terminating rewrite relations in terms of the existence of decreasing
diagrams for their critical peaks. Since then, many confluence results based
on decreasing diagrams have been obtained. We only cite a few here.

Hirokawa and Middeldorp showed that a left-linear and locally confluent
term rewrite relation → is confluent if the critical pair steps are relatively
terminating with respect to → [HM11], while Klein and Hirokawa obtained

4

1.3. This Thesis

an extension of Knuth–Bendix’s Lemma on relatively terminating term
rewrite relations, by checking joinability of extended critical pairs [KH12].
As for a more directly applicable result, Felgenhauer proved that confluence
of left-linear term rewrite relations can be reduced to the existence of
decreasing diagrams for their parallel critical pairs [Fel13b]. Further, he
and van Oostrom presented a new result of decreasing diagrams for a
generalization of confluence in the presence of equations, called the Church-
Rosser modulo property [FvO13]. On the other hand, Aoto et al. investigated
the confluence of non-left-linear term rewrite relations by combining the
decreasing diagrams technique with persistency of confluence [ATU14], where
persistency of confluence says that if a rewrite relation on sorted terms is
confluent then it is confluent on all terms when eliminating sorts [AT97].

1.3 This Thesis

The ambition of this thesis is to develop techniques that reduce confluence
of non-terminating rewrite relations on a term structure to the computation
and checking of critical pairs, specifically in the case of term rewrite relations
which are generated by non-left-linear rewrite rules.

To this end, we thoroughly investigate the notion of decreasing diagrams
and its applications. We address three different kinds of issues:

1. The proof of the decreasing diagrams method is revised, which allows
us to investigate its generalization in the presence of equations, and
give a new proof of well-known existing modularity results.

2. The decreasing diagrams technique is applied to abstract positional
rewrite relations, which builds a bridge between abstract rewriting and
term rewriting.

3. A new rewrite relation is introduced, sub-rewriting, whose role is to
linearize the non-left-linear variables of the rewrite rules and recursively
check when used that their different instances can be joined. Under
different assumptions on the rules, confluence of new classes of non-

5

1.3. This Thesis

terminating, non-left-linear term rewrite systems can then be reduced
to the checking of (some variant of) their critical pairs by using the
decreasing diagrams method.

1.3.1 Decreasing Diagrams and Modularity

In Chapter 3, we revise the proof of van Oostrom’s decreasing diagrams
method following the work by Jouannaud and van Oostrom [JvO09], via
a technique called diagram rewriting. The diagram rewriting technique
replaces a local peak in a conversion by its associated decreasing diagram
to obtain a new conversion. When diagram rewriting terminates on all
conversions of a rewrite relation, then the rewrite relation must be confluent.
We give a new, simple order on conversions that establishes the confluence
of rewriting under the assumption that every local peak has a decreasing
diagram.

A generalization of decreasing diagrams is then proposed for rewrite
modulo relations 〈S,E〉, made of a rewrite relation →S and a symmetric
relation ↔E. When considering rewriting modulo, confluence should be
generalized to the Church-Rosser modulo property: a rewrite modulo relation
〈S,E〉 is Church-Rosser modulo E if every (S ∪ E)-conversion u ↔∗S∪E v
is (S-)joinable modulo E (or say up to E), that is, u →∗S ◦ ↔∗E ◦ ←∗S v.
We show that the decreasing diagrams method scales to the modulo case,
thanks to a generalization of our order on conversions.

This chapter builds as well on a fundamental notion that character-
izes confluence of possibly non-terminating relations, Klop’s cofinal deriva-
tions [Klo80]. A cofinal derivation of a convertibility class is a possibly
infinite derivation that each element of the convertibility class can rewrite to
some element in the derivation. It plays the role of a normal form when the
relation is non-terminating. Cofinal derivations were used by van Oostrom
to obtain the completeness of his decreasing diagrams method, by labelling
each rewrite step u→ v with the minimum number of steps from v to the
cofinal derivation of its convertibility class [vO94b]. We show that cofinal
derivations can be used to give a new, concise proof of Toyama’s celebrated

6

1.3. This Thesis

modularity theorem [Toy87] and its recent extensions to rewriting mod-
ulo [JT08] in the case of strongly-coherent systems, an assumption discussed
in depth within the chapter. This is done by generalizing cofinal deriva-
tions to cofinal streams, allowing us in turn to generalize van Oostrom’s
completeness result to the modulo case.

1.3.2 Decreasing Diagrams on Abstract Positional

Rewriting

Shown to be complete via Klop’s notion of cofinal derivations [Klo80], the
decreasing diagrams method becomes a hammer for tackling confluence
problems. When applying the method to show the confluence of a particular
rewrite relation, the key is now to find a labelling that makes the relation
satisfy the decreasing diagrams condition. Since cofinal derivations are non-
constructive, the completeness result indeed gives us little information about
how to construct a local labelling, which is a function from rewrite steps to
labels. Common labellings such as self-labelling and rule-labelling [vO08a]
have no relationship whatsoever with the completeness result. Indeed,
finding good labellings in practice has shown to be a hard task.

Another problem pops up when applying the abstract decreasing dia-
grams technique to a concrete rewrite relation on a term structure. Our
experience is that difficulties come essentially from ancestor (local) peaks,
which are joinable in various ways depending on linearity assumptions of
the relation. The technicalities to make them decreasing get much more
complex in the absence of linearity assumptions.

In Chapter 4, inspired by the work of Jouannaud and Li [JL12a], we
lift the notion of decreasing diagrams to abstract positional rewriting, a
level intermediate between abstract rewriting and term rewriting. Positional
rewriting carries information about an abstract notion of positions, while
remaining a relation on an abstract set whose elements have no structure.
We further give different ways to define decreasing diagrams for abstract
positional rewriting, which are guidelines on how to label a relation and to
check its confluence.

7

1.3. This Thesis

In Chapter 4, motivated by Huet’s parallel closedness criterion [Hue80,
Lemma 3.3], we investigate the coloured (or commutation) version of decreas-
ing diagrams [vO94a, vO08a]. A simple extension, multi-labelled decreasing
diagram, is proposed to capture Huet’s parallel closedness criterion as well
as its generalization [Toy88].

1.3.3 Confluence of Rewrite Unions

Knuth and Bendix showed that confluence of a terminating term rewrite sys-
tem can be reduced to the joinability of its finitely many critical pairs [KB70].
In Chapter 5, a novel notion of rewriting based on a signature split, sub-
rewriting, is proposed. We show that Knuth–Bendix’s Lemma is still true
of a term rewrite system RT ∪RNT such that RT is terminating and RNT

is a left-linear, rank non-increasing, possibly non-terminating term rewrite
system. Confluence can then be reduced to the joinability of the critical
pairs of RT and to the existence of decreasing diagrams for the critical
pairs of RT inside RNT as well as for the rigid parallel critical pairs of RNT .
Our notion of rigid parallel critical pairs is computed by unifying several
copies of a single left-hand side of rewrite rule, hence the name “rigid”, with
another left-hand side of a rule at disjoint positions, which is a restriction
of the notion of parallel critical pairs [Gra96] used in [Fel13b, ZFM15] that
requires unifying several – possibly different – left-hand sides of rules with
another left-hand side of rule at disjoint positions.

1.3.4 Confluence of Layered Rewrite Systems

Consider a famous term rewrite system NKH = {f(x, x)→a, f(x, c(x))→b,

g → c(g)}, which is inspired by an abstract example of Newman, algebraized
by Klop and publicized by Huet [Hue80]. It is critical pair free but non-
confluent. Indeed, it enjoys non-joinable non-local peaks such as a ←
f(g, g) → f(g, c(g)) → b. Inspired by the example, its confluent and as
well non-confluent variations, in Chapter 6, we investigate the new, Turing-
complete class of layered systems, whose left-hand sides of rules can only be
overlapped at a multiset of disjoint or equal positions. Layered systems define

8

1.4. Contributions and Organization of This Thesis

a natural notion of rank for terms: the maximal number of non-overlapping
redexes along a path from the root to a leaf. Overlappings are allowed
in finite or infinite trees. Rules may be non-terminating, non-left-linear,
or non-right-linear. Using a more general notion of sub-rewriting and a
novel unification technique called cyclic unification, we show that rank
non-increasing layered systems are confluent provided their cyclic critical
pairs have cyclic-joinable decreasing diagrams.

1.3.5 Confluence in Dependent Type Theories

This work is not part of the thesis. We mention it for two reasons. First,
it is announced in the introduction as a major motivation for this thesis.
Second, while it was not completely finished at the time when the thesis was
defended, it is now ready when this final version of the thesis is completed.
It is quite clear that we would not have been successful without all the work
presented in this thesis and the experience we have got with the arcana
of the decreasing diagrams technique, in particular the work done on the
confluence of rewrite unions.

1.4 Contributions and Organization of This

Thesis

This thesis provides a thorough investigation of the notion of decreasing
diagrams, from its basis to its applications, showing its theoretical impor-
tance as well as its applicability to confluence test of concrete term rewrite
systems. The most significant contributions of this thesis can be summarized
as follows:

1. We give an alternative proof of the decreasing diagrams method, and
extend it to rewriting modulo, by defining a simple well-founded partial
order that contains diagram rewriting (in Chapter 3).

9

1.4. Contributions and Organization of This Thesis

2. We propose a notion of cofinal streams, generalizing cofinal derivations
to the modulo case, which allows to generalize the completeness result
of decreasing diagrams to the modulo case (in Chapter 3).

3. We obtain a new and simple proof of Toyama’s modularity result
of confluence, based on the use of cofinal derivations, and of cofinal
streams in the modulo case (in Chapter 3).

4. We propose a general framework based on abstract positional rewriting
for proving confluence of term rewrite systems, by using multi-labelled
decreasing diagrams, a simple extension of decreasing diagrams (in
Chapter 4).

5. By introducing a novel notion of sub-rewriting, we deliver a true
generalization of Knuth–Bendix’s confluence check, to rewrite systems
made of two subsets, RT of terminating rules and RNT of possibly
non-terminating, rank non-increasing, left-linear rules (in Chapter 5).

6. We propose a notion of cyclic unifiers, shown to be a powerful tool to
handle unification problems with cyclic equations in the same way as
we deal with unification problems without cyclic equations, thanks to
the existence of most general cyclic unifiers which generalize the usual
notion of most general unifiers (in Chapter 6). This notion is used to
explain the non-confluence of certain non-left-linear, non-terminating,
non-confluent systems that have no apparent critical pairs.

7. We prove that rank non-increasing layered systems are confluent pro-
vided their cyclic critical pairs have cyclic-joinable decreasing diagrams
(in Chapter 6). This new class of rewrite systems possesses an intrinsic
notion of term ranks, which does not invoke any signature split.

Basic notions and properties of abstract rewriting, term rewriting and
decreasing diagrams are first recalled in Chapter 2. The results and contri-
butions of this thesis that we just sketched are then presented in detail in
Chapters 3, 4, 5 and 6, respectively. Conclusion comes last, in Chapter 7.

10

1.5. Publications

1.5 Publications

The results of this thesis have already appeared in the scientific literature:

• Chapter 3 is based on the paper “From Diagrammatic Confluence
to Modularity” [JL12b] that was published in Theoretical Computer
Science.

• Chapter 4 is based on the paper “Confluence: The Unifying, Expressive
Power of Locality” [LJ14], which appeared in Specification, Algebra,
and Software - Essays Dedicated to Kokichi Futatsugi.

• Chapter 5 is based on the paper “Confluence by Critical Pair Analy-
sis” [LDJ14] that appeared in the Rewriting and Typed Lambda Calculi
- Joint International Conference (RTA-TLCA 2014).

• Chapter 6 is based on the paper “Confluence of Layered Rewrite
Systems” [LJO15], which was published in the proceedings of 24th
EACSL Annual Conference on Computer Science Logic (CSL 2015).

11

Two

Preliminaries

In this chapter, we recall some important notions of rewriting and decreasing
diagrams, which will be used throughout this thesis. For more about
rewriting, see [DJ90, BN98, Ter03], and for decreasing diagrams, see [vO94a,
vO94b, vO08a]. Notions specific to each chapter will be introduced on the
fly.

2.1 Abstract Rewriting

We first consider rewrite relations at an abstract level.

Definition 2.1.1. Given a set O of objects, an (abstract) rewrite step is a
pair 〈s, t〉 for s, t ∈ O, denoted by s → t. An (abstract) rewrite system is
composed of a set O and a set of rewrite steps, while an (abstract) rewrite
relation is the relation corresponding to a rewrite system.

Note that a rewrite relation is just a binary relation on a set O. We use
R or → to denote a rewrite system1 as well as its corresponding rewrite
relation, and sometimes mention them without differences. We may also
omit s, t to use only→ representing a rewrite step s→ t when no ambiguity
can arise.

1The set O is usually omitted when it is clear from the context.

12

2.1. Abstract Rewriting

Given an arbitrary rewrite relation →, we denote2 its inverse by ←, its
reflexive closure by →= , its symmetric closure by ↔, its reflexive, transitive
closure, called reachability, by →→, its transitive closure by →+, and its
reflexive, symmetric, transitive closure called convertibility, by ←↔→. The
sequence u0 → u1 . . . un−1 → un (resp., u0 ↔ u1 . . . un−1 ↔ un) of →-steps
(resp., ↔-steps), where u0 = u and un = v, witnessing the membership of a
given pair 〈u, v〉 to →→ (resp., ←↔→) is called a derivation (resp., conversion).
We use “◦”, which is sometimes omitted, to denote the composition of two
conversions u0 ←↔→ un and v0 ←↔→ vm, writing u0 ←↔→ un ◦ v0 ←↔→ vm, requiring
un = v0. Given u, {v | u →→ v} is the set of reducts of u. We say that a
reduct of u is reachable from u.

A conversion is called a local peak if it has the form v ← u→ w, a peak
if it has the form v←← u→→ w, a joinability if it is of the form v →→ u←← w.
A pair 〈v, w〉 is convertible if v ←↔→ w, divergent if v←← u→→ w for some u,
joinable if v →→ t←← w for some t, and strongly joinable if v →= t =← w for
some t. A conversion v ←↔→ w is (strongly) joinable if its corresponding pair
〈v, w〉 is so.

Now we can define confluence of a rewrite relation.

Definition 2.1.2. A rewrite relation → is Church-Rosser (resp., confluent ,
locally confluent) if every conversion (resp., peak, local peak) is joinable. It
is strongly confluent if every local peak is strongly joinable.

Another important property of rewriting is termination.

Definition 2.1.3. A rewrite relation → on a set O is terminating if there
exists no infinite sequence u1 → u2 → . . . of →-steps in O.

Two famous methods exist in the literature for checking confluence at
the abstract level in the terminating case and possibly non-terminating case,
respectively:

2Note that we define different notations from the superscript-style ones used in
Chapter 1, which are standard in the literature (for example in [DJ90]), because in the
following chapters, superscripts are preserved for other information.

13

2.2. Decreasing Diagrams

Lemma 2.1.4 (Newman’s Lemma [New42]). A terminating rewrite relation
is confluent if and only if it is locally confluent.

Lemma 2.1.5 (Hindley–Rosen’s Lemma [Hin64, Ros73]). A rewrite relation
is confluent if it is strongly confluent.

2.2 Decreasing Diagrams

In [vO94a], van Oostrom proposed a novel technique, called decreasing dia-
grams for showing confluence of abstract rewrite relations. In his framework,
rewrite systems should be extended by labels.

2.2.1 Labelled Rewriting

We now assume a set L of labels, equipped with a quasi-order � whose strict
part � is well-founded. We write l = m (resp., l#m) for equivalent (resp.,
incomparable) labels l,m ∈ L. Given l ∈ L, we also write α� l (resp., l�α)
if m� l (resp., l �m) for all m in the multiset (or sequence) α of labels.

Definition 2.2.1. Given a set O of objects and a set L of labels, a labelled
rewrite step is a triple 〈s, t, l〉 for s, t ∈ O and l ∈ L, denoted by s →l t,
where we may omit s, t or l. A labelled rewrite system is composed of a set
O and a set of labelled rewrite steps, while a labelled rewrite relation is the
corresponding relation.

The word “labelled” can be omitted when the context makes it clear that
a relation is labelled.

The underlying rewrite system of a labelled rewrite system is obtained
by projecting all its labelled rewrite steps on O ×O. On the other hand, a
rewrite system can be lifted to a labelled one by defining a labelling function
that maps each rewrite step to a label in L.

Properties of rewrite systems are extended to its labelled version via the
underlying rewrite system. All notions used for rewrite systems, such as
peaks and joinability, can be extended naturally to labelled rewrite systems
by equipping each rewrite step with a label. Notations are also extended as

14

2.2. Decreasing Diagrams

expected. In particular, reachability (resp., convertibility) is denoted by→→α

(resp., ←↔→α), where α is a sequence of labels. When needed, we consider the
sequence α to be a multiset of labels.

2.2.2 Local Diagrams

Given a labelled rewrite relation →, we first consider specific structures
made of a local peak and an associated conversion called local diagrams, and
recall the important subclass of van Oostrom’s decreasing (local) diagrams
and their main property: a relation whose all local peaks have decreasing
diagrams enjoys the Church-Rosser property, hence confluence.

Decreasing diagrams were introduced in [vO94a], where it is shown that
they imply confluence, and then further developed in [vO08a]. We will
mostly use here the latter version, but present both.

Definition 2.2.2. A diagram D is a pair made of a peak Dpeak := v ←←
u→→ w and a conversion Dconv := v ←↔→ w, where u, v, w ∈ O.

Definition 2.2.3 (Local Diagrams). A local diagram D is a diagram made
of a local peak Dpeak := v ← u → w and a conversion Dconv := v ←↔→ w,
where u, v, w ∈ O.

Definition 2.2.4 (Decreasing Diagrams [vO08a]). A local diagram D with
peak v ←l u →m w is decreasing if its conversion Dconv has the form
v ←↔→α s→=m s′ ←↔→δ t′ l =← t←↔→β w, satisfying the decreasingness condition:
labels in α (resp., β) are strictly smaller than l (resp., m), and labels in
δ are strictly smaller than l or m. See Figure 2.1 (i). The steps s →=m s′

and t′ l =← t (resp., v ←↔→α s and t ←↔→β w, s′ ←↔→δ t′) are called the facing
steps (resp., side steps, middle steps) of the diagram. We usually talk of
decreasing diagrams, omitting the word “local”.

It is worth noting that any local diagram decreasing for � is again
decreasing for �′ ⊇ �. Since a partial well-founded order can be embedded
into a total one by the axiom of choice, partial well-founded orders have
practical value only.

15

2.2. Decreasing Diagrams

(i) Decreasing Diagram

u
�

�
�

�
�+

l

v

Q
Q
Q
Q
Qs

m

w

??

66
α

s
??

66
β

t
@
@R

=m
�
�	

= l
s′ t′--��

δ

(ii) Joinably Decreasing Diagram

u
�

�
�
�
�+

l

v

Q
Q
Q
Q
Qs

m

w

??
α

s
??
β

t
Q
Qs=

m
�
�+=
ls′ t′

Q
Qs
QQs
δ

�
�+
��+
δ′

Decreasingness condition: labels in α (resp., β) are strictly smaller than l
(resp., m), and labels in δ, δ′ are strictly smaller than l or m.

Figure 2.1: Decreasing (Local) Diagrams

We refer to the first version of decreasing diagrams as joinably decreasing
diagrams. It suffices for our needs in some cases.

Definition 2.2.5 (Joinably Decreasing Diagrams [vO94a]). A local diagram
D with peak v ←l u→m w is joinably decreasing if its conversion Dconv is
of the form v →→α s→=m s′ →→δ ◦ δ′←← t′ l =← t β←← w, satisfying the decreas-
ingness condition: labels in α (resp., β) are strictly smaller than l (resp.,
m), and labels in δ, δ′ are strictly smaller than l or m. See Figure 2.1 (ii).

Here comes the main result of the decreasing diagrams method:

Theorem 2.2.6 ([vO08a]). A labelled rewrite relation is Church-Rosser
(hence confluent) if all its local peaks have a decreasing diagram.

Corollary 2.2.7 ([vO94a]). A labelled rewrite relation is Church-Rosser
(hence confluent) if all its local peaks have a joinably decreasing diagram.

Remark 2.2.8. Newman’s Lemma (Lemma 2.1.4) appears to be a particular
case of Theorem 2.2.6, more precisely of Corollary 2.2.7, when using self-
labelling [vO08a]: each rewrite step u → v is labelled by its source u (or

16

2.2. Decreasing Diagrams

target v), and labels are compared in the considered relation → which is
well-founded.

Remark 2.2.9. Hindley–Rosen’s Lemma (Lemma 2.1.5) is a particular case
of Corollary 2.2.7, by rule-labelling [vO08a]: all rewrite steps u → v are
labelled by the same label, for instance 0, and the labels are (strictly)
compared in the empty relation.

2.2.3 Diagram Rewriting

Definition 2.2.10. Diagram rewriting is the rewrite relation ⇒D on con-
versions associated with a set D of local diagrams, in which a local peak is
replaced by one of its associated conversions:

π ◦Dpeak ◦ψ ⇒D π ◦Dconv ◦ψ for some D ∈ D

where π, ψ are conversions.

u
�

�
�
�
�+

l

v

Q
Q
Q
Q
Qs

m

wv0 --��
π

w0�� --
ψ

v w

??

66α

s
??

66β

t
@
@R

=m
�
�	

= l
s′ t′--��

δ

v0 --��
π

w0�� --
ψ��@@ D

Figure 2.2: Diagram Rewriting with a Set D of Decreasing Diagrams

The replacement performed by diagram rewriting with a set D of de-
creasing diagrams is depicted in Figure 2.2. In [JvO09], Jouannaud and van

17

2.3. Term Rewriting

Oostrom revised the proof of Theorem 2.2.6 by using diagram rewriting.
They proved the following result implying the Church-Rosser property, thus
confluence, as a corollary:

Theorem 2.2.11 ([JvO09]). The rewrite relation ⇒D terminates for any
set D of decreasing diagrams.

Corollary 2.2.12. Assume that T ⊆ O and D is a set of decreasing di-
agrams in T such that the set of T -conversions, that is conversions only
consisting of objects in T , is closed under ⇒D. Then, the restriction of →
to T is Church-Rosser if every local peak in T has a decreasing diagram in
D.

Note that this simple corollary of Theorem 2.2.11 is a reformulation of
Theorem 2.2.6.

2.3 Term Rewriting

In this section, we consider concrete rewrite relations on a set of terms,
called term rewrite relations.

2.3.1 Term Algebras

Given a signature F of function symbols, and a denumerable set X of
variables, T (F ,X) denotes the set of terms built up from F and X , which
is the smallest set containing X such that f(t1, . . . , tn) ∈ T (F ,X) whenever
f ∈ F with arity n and ti ∈ T (F ,X) for i ∈ [1, n]. We reserve letters
x, y, z for variables, f, g, h for function symbols, and s, t, u, v, w for terms.
Sometimes we write fn to indicate the arity n of f ∈ F . Terms can be
viewed as finite labelled ordered trees.

Positions are finite strings of positive integers. We use o, p, q for arbitrary
positions, the empty string Λ for the root position, and “·” for concatenation
of positions or sets thereof. We denote by Pos(t) the set of positions of the
term t, and by FPos(t) the set of positions of function symbols in t. Given
a position p ∈ Pos(t), we use t(p) to denote the function symbol at position

18

2.3. Term Rewriting

p in t, t|p for the subterm of t at p, and t[u]p for the result of replacing t|p
with u at p in t. We may omit the position p, writing t[u] for simplicity. We
call t[·]p a context, which is a term where t|p is replaced by a fresh nullary
symbol in t. Given a term t, t(Λ) is called t’s head (symbol), #x(t) is the
number of occurrences of the variable x in t, and |t| is the size of t, which is
defined as |x| = 0 with x ∈ X and |fn(t1, . . . , tn)| = 1 + Σn

1 |ti| with fn ∈ F .
We use Var(t1, . . . , tn) for the set of variables occurring in {ti}i. A term
t is linear if no variable of Var(t) occurs more than once in t, ground if
Var(t) = ∅.

We use ≥P for the partial prefix order on positions (further from the
root is bigger), p#q for incomparable positions p, q, called disjoint. Given
sets P,Q of positions, we use the following abbreviations: P ≥P Q (resp.,
P >P Q) if (∀p ∈ P)(∃q ∈ max(Q)) p ≥P q (resp., p >P q), where max(Q)

is the set of maximal positions in Q. We use p for the singleton set {p}. Given
a term t and positions pi ∈ Pos(t) for i ∈ [1, n] satisfying pi#pj if i 6= j, the
notation t[u1, . . . , un]p1,...,pn is an abbreviation for the term t[u1]p1 . . . [un]pn ,
which is also written as t[u1, . . . , un]P when P = {p1, . . . , pn}.

Substitutions are mappings from variables to terms, extended to homo-
morphisms from terms to terms. A substitution is called a variable substitu-
tion when it maps variables onto variables, and a variable renaming when
also bijective. The domain of a substitution σ is the set Dom(σ) := {x ∈ X |
σ(x) 6= x}. Its variable range is VRan(σ) :=

⋃
x∈Dom(σ) Var(σ(x)). A substi-

tution of finite domain {x1, . . . , xn} is written as in {x1 7→ t1, . . . , xn 7→ tn}
or {xi 7→ ti}i∈[1..n]. We define σ|X as the restriction of σ to a subset X
of variables, by σ|X(x) = σ(x) if x ∈ X and σ|X(y) = y otherwise. And
we denote by σ|¬X for the restriction of σ to Dom(σ) \X. A substitution
σ is ground if for each x ∈ X , σ(x) is ground. We use Greek letters for
substitutions and postfix notation for their application.

The strict subsumption order m on terms (resp., substitutions) associated
with the quasi-order s •≥ t (resp., σ •≥ τ) iff s = tθ (resp., σ = τθ) for some
substitution θ, is well-founded3. t (resp., τ) is then said to be more general

3Note that m is well-founded on substitutions provided that the domains are finite,
which is the case we discuss in the thesis.

19

2.3. Term Rewriting

than s (resp., σ). Given two terms s, t, computing the substitution σ

whenever it exists such that s = tσ (resp., sσ = tσ) is called (pattern)
matching (resp., unification) and σ is called a match (resp., unifier). Two
unifiable terms s, t have a unique (up to variable renaming) most general
unifier mgu(s, t), which is the smallest with respect to subsumption. The
result remains true when unifying terms s, t1, . . . , tn at a set of disjoint
positions {pi}n1 such that s|p1σ = t1σ ∧ . . . ∧ s|pnσ = tnσ, of which the
previous result is a particular case when n = 1 and p1 = Λ.

2.3.2 Term Rewrite Systems

In a term rewrite relation, rewrite steps are generated by rewrite rules.

Definition 2.3.1. Given a signature F and a set X of variables. A rewrite
rule is a pair of terms in T (F ,X), written l → r, whose left-hand side l
is not a variable and whose right-hand side r satisfies Var(r) ⊆ Var(l). A
(term) rewrite system is composed of a signature F , a set X of variables and
a set R of rewrite rules. A rewrite rule l→ r is left-linear (resp., right-linear,
linear, collapsing) if l is a linear term (resp., r is a linear term, l and r

are linear terms, r is a variable). A rewrite system is left-linear (resp.,
right-linear, linear) if all its rules are so.

The signature F and the set X of variables are often omitted when they
are clear. The rewrite system is then represented by its set R of rewrite
rules.

Definition 2.3.2. A term u rewrites to a term v at position p ∈ Pos(u)

with the rule l→ r ∈ R, written as u→p
l→r∈R v, if u|p = lσ and v = u[rσ]p

for some substitution σ. The term lσ is a redex. We may omit p, R as well
as l→ r, writing for example u→R v.

Rewriting extends naturally to lists of terms of the same length, hence
to substitutions of the same domain.

Consider a local peak in a term rewrite system, we distinguish three
cases following Huet [Hue80]:

20

2.3. Term Rewriting

Definition 2.3.3. Given a term rewrite system R, a local peak
v ←pl→r u→q

g→d w is:

• a disjoint peak , if p#q;

• an ancestor peak , if q >P p · FPos(l);

• a critical peak , if q ∈ p · FPos(l).

The notion of critical pairs lies at the heart of most results showing
confluence of term rewrite systems. It is of course the basis of the well-known
Knuth–Bendix’s Lemma.

Definition 2.3.4 (Critical Pairs). Given two different rules l → r, g → d,
being possibly two copies of the same rule, and a position p ∈ FPos(l).
Variables are renamed such that Var(l)∩Var(g) = ∅. Assuming σ is a most
general unifier between l|p and g, then lσ is the overlap and 〈rσ, lσ[dσ]p〉
is the critical pair of g → d on l → r at p. Critical pairs of a term rewrite
system R are all critical pairs computed between any two rules in R at any
possible positions.

We end up this section with the most celebrated results for checking
confluence of terminating term rewrite systems.

Lemma 2.3.5 ([Hue80]). A terminating term rewrite system is locally
confluent if and only if all its critical pairs are joinable.

Lemma 2.3.6 (Knuth–Bendix’s Lemma [KB70]). A terminating term
rewrite system is confluent if and only if all its critical pairs are joinable.

21

Three

Decreasing Diagrams and Modularity

In 1987, Toyama proved a famous, major result stating that confluence
is a modular property of term rewrite systems: given two confluent term
rewrite systems sharing absolutely no function symbols, their union is as
well a confluent term rewrite system [Toy87]. Toyama’s original proof was
rather intricate, but an improved proof was later given by Klop, Middeldorp,
Toyama and de Vrijer [KMTdV94]. Toyama’s theorem was then extended in
three different directions. In 1994, Ohlebusch proved that modularity was
preserved for term rewrite systems sharing constructor symbols, provided
finitely many constructors only could pop up from a given term [Ohl94].
In 2006, Jouannaud gave a new, simple proof of Toyama’s modularity
theorem [Jou06] which was further improved by Jouannaud and Toyama who
showed that it indeed scales to all known notions of rewriting modulo [JT08].
Finally, van Oostrom proved in 2008 that constructive confluence is modular,
defining constructive confluence as the ability to recursively transform a
convertibility proof into a joinability proof [vO08b].

At the root of van Oostrom’s proof is the notion of decreasing diagrams.
Note that decreasing diagrams associate specific conversions to local peaks,
whose labels are smaller in some sense than those of the local peak they
aim at replacing. Any convertibility proof can then be converted into a
joinability proof by diagram rewriting: recursively replacing its local peaks
by their associated decreasing diagrams. Using a subtle characterization

22

3.1. Diagrammatic Church-Rosser Property

of confluence for arbitrary (possibly non-terminating) relations by cofinal
derivations due to Klop [Klo80], van Oostrom showed that his decreasing
diagrams method is complete: any confluent relation whose convertibility
classes are countable, can be labelled in a way that makes it a labelled
relation satisfying the decreasing diagrams condition. The constructive
version of Toyama’s theorem appears to be a side benefit of proving the
result by means of decreasing diagrams.

Our first contribution in this chapter is an elegant proof that replac-
ing local peaks by their associated decreasing diagrams terminates, which
is the key technical result behind van Oostrom’s decreasing diagrams
method [vO94a, vO08a]. This proof simplifies further [JvO09], where this
result appeared first, and is generalized here to rewriting modulo. The
second is the notion of cofinal streams, a natural extension of cofinal deriva-
tions under a strong coherence assumption (and countability of convertibility
classes), which allows us to prove completeness of decreasing diagrams for
characterizing the Church-Rosser modulo property under these two assump-
tions. The last is a new, concise proof of Toyama’s modularity theorem
based on cofinal derivations which scales to rewriting modulo via cofinal
streams.

The organization of this chapter follows this description. The decreasing
diagrams method on abstract labelled relations is discussed in Section 3.1,
followed by cofinal derivations and streams in Section 3.2. Completeness
and Modularity are considered in Sections 3.3 and 3.4, respectively. We
conclude this chapter in Section 3.5.

3.1 Diagrammatic Church-Rosser Property

3.1.1 Plain Labelled Rewriting

Labelled rewriting is also called plain labelled rewriting, when we need to
distinguish it with the modulo case.

Given a labelled rewrite relation → on a set O, we call convertibility
class of an object s the set s of objects that are convertible to s. In this

23

3.1. Diagrammatic Church-Rosser Property

chapter, we sometimes need closing conversions u ←↔→ v by juxtaposition,
yielding sequences of the form u = u1 ↔l1 v1 . . . un ↔ln vn = v, called
conversations, in which vi and ui+1 cannot be identified as in conversions,
since possibly different. To decompress notation, “◦” is also used to denote
the composition of two conversations.

3.1.2 Diagram Rewriting

In [JvO09], Jouannaud and van Oostrom proved Theorem 2.2.11 that dia-
gram rewriting terminates for any set of decreasing diagrams, implying the
Church-Rosser property, thus confluence, as a corollary.

The difficulty in the proof is to define a measure on conversions that
decreases when replacing a local peak by its associated conversion. Our
new measure below is based on two notions: that of a visible step in a
conversation introduced in [JvO09], that makes invisible all rewrite steps of
a smaller label located ahead of them; and that of shadow of a conversation.
It is defined on conversations, because conversions are not closed under
replacement of steps by arbitrary smaller conversions, an operation used
in the proof. On the other hand, ⇒D preserves conversions, since the peak
and its associated smaller conversion relate the same pair of objects.

Definition 3.1.1 (Visible Steps [JvO09]). Given conversations π, ψ, a
rewrite step ↔l is visible in a conversation π ◦ ↔l ◦ψ if there is no visible
step→m in π or ←m in ψ with m� l (the base case corresponding to empty
π and ψ). Otherwise, ↔l is hidden by some visible step aiming at it. We
denote by vs(π) (resp., vl(π)) the multiset of visible steps (resp., visible
labels) in π.

Consider the conversation π = →a ◦ ←b ◦ →c ◦ →b ◦ ←a , with the
ordered set of labels c � b � a. The step →a is hidden because of ←b
to its right, while →b and ←a are hidden with →c to their left. Hence
vl(π) = {b, c}.

The relationship between the set of visible labels of a conversation
and van Oostrom’s lexicographic maximum measure [vO94a] is explained

24

3.1. Diagrammatic Church-Rosser Property

in [JvO09], it generalizing the idea of lexicographic maximum measure.

Definition 3.1.2. The shadow of a conversation π is the multiset of shadows
of its visible steps, that is:
sh(π) := {〈ψ, κ〉 | π = ψ ◦ →l ◦κ with →l ∈ vs(π)}

∪ {〈ψ, κ〉 | π = κ ◦ ←l ◦ψ with ←l ∈ vs(π)}

We are ready for defining the interpretation of a conversation:

Definition 3.1.3. We interpret a conversation π by the pair
JπK := 〈vl(π), sh(π)〉 and define the partial order between conversations
π, ψ as the smallest partial order such that

π �� ψ if JπK (�mul, ((��,��)lex)mul)lex JψK .

We now need to show that our definition has indeed a least fixpoint,
that is, that the underlying functional is monotonic. This follows from
the coming observation, showing that the inductive comparisons by �� are
applied on strictly smaller conversations.

Lemma 3.1.4. Let conversation π := ψ ↔l κ, with ↔l ∈ vs(π). Then,
vl(π) �mul vl(ψ) and vl(π) �mul vl(κ).

Proof. Since↔l∈ vs(π), the labels in vl(ψ ◦κ) are either already in vl(π) or
strictly smaller than l. Hence vl(π)�mul vl(ψ ◦κ). Further, vl(ψ ◦κ)�mul

vl(ψ) and vl(ψ ◦κ) �mul vl(κ). The result follows by transitivity and
irreflexivity.

In the rest of this section, π and ψ denote arbitrary conversations. We
use the notations

Dpeak := ←m ◦ →n,
Dconv :=←↔→α ◦ →= n ◦ ←↔→δ ◦ m =← ◦ ←↔→β and
D′conv :=←↔→α ◦ →n ◦ ←↔→δ ◦ ←m ◦ ←↔→β,

with labels in α (resp., β) strictly smaller than m (resp., n), and labels in δ
strictly smaller than m or n.

Our aim is to prove that our (well-founded) partial order contains diagram
rewriting, hence implying that diagram rewriting terminates. A technical

25

3.1. Diagrammatic Church-Rosser Property

difficulty is that our order is not monotonic in general. Consider the steps→a

and ←a , which have the same interpretation. Consider now the conversations
→b ◦ →a and →b ◦ ←a with b� a, the first being bigger than the second
in our order. Taking ψ = →b and π = →c with a � b � c, ψ being bigger
than π, the conversation π →a ψ is now smaller than π ←a ψ. The next
two (weak) monotonicity properties will however suffice.

Lemma 3.1.5. If l � α, then π ↔l ψ �� π ←↔→α ψ.

Proof. By induction on the number of steps in π ↔l ψ. Note that the base
case corresponds to empty conversations π and ψ, hence is a particular case
of the first case of the induction step, which has two cases:

1. ↔l is visible in π ↔l ψ. Then, vl(π ↔l ψ) �mul vl(π ←↔→α ψ), which
concludes this case.

2. ↔l is hidden in π ↔l ψ. Then, there is a visible step ↔k in the
conversation π ↔l ψ aiming at ↔l such that k � l. By transitivity,
k � α, hence vl(π ↔l ψ) = vl(π ←↔→α ψ). We therefore need to
compare the shadows of both conversations, which are multisets of
pairs of conversations. We pairwise compare the shadows of the same
visible step. They are of the form: 〈π′, π′′ ↔l ψ〉 and 〈π′, π′′ ←↔→α ψ〉
if the visible step →m is in π; 〈π ↔l ψ′, ψ′′〉 and 〈π ←↔→α ψ′, ψ′′〉 if the
visible step →m is in ψ; for the other two cases, the pairs must be
flipped over. We conclude all four cases by induction, which finishes
the proof.

Lemma 3.1.6. πDpeakψ �� πD′convψ.

Proof. By induction on the number of steps in πDpeakψ. As before, the base
case corresponds to empty conversations π and ψ, hence is a particular case
of the two cases of the induction step:

1. Both steps from Dpeak are visible in πDpeakψ, with m � n (resp.,
n � m). Clearly, the step labelled by n (resp., m) is now hidden
in πD′convψ, hence there may be new visible steps from ψ (resp.,

26

3.1. Diagrammatic Church-Rosser Property

π) whose all labels are strictly smaller than n (resp., m). On the
other hand, visible steps from π, ψ remain unchanged, and therefore
vl(πDpeakψ) �mul vl(πD′convψ), which concludes this case.

2. Otherwise, the visibility status of the steps labelled by m,n of the
local peak is entirely determined by π, ψ (in case π, ψ are both empty,
then both steps of the local peak are visible), hence all steps in
D′conv which are not labelled by m,n are not visible in πD′convψ. It
follows that vl(πDpeakψ) = vl(πD′convψ), and visible steps in πDpeakψ

and πD′convψ are in one-to-one correspondence (facing steps from
Dpeak and D′conv being associated with each other when visible). We
now compare the shadows of the corresponding visible steps. By
induction hypothesis, the shadow associated with a visible step from
π, ψ is strictly smaller in πD′convψ than in πDpeakψ. By Lemma 3.1.5,
the shadows associated with the steps labelled by m and n (when
visible) are strictly smaller as well in πD′convψ than in πDpeakψ. Hence,
πDpeakψ �� πD′convψ.

It is now time to prove that �� is indeed a well-founded partial order:

Lemma 3.1.7. �� is a well-founded partial order on conversations satisfying
πDpeakψ �� πDconvψ for any decreasing diagram D and conversations π, ψ.

Proof. We first prove well-foundedness: no conversation π is the origin of
an infinite descending sequence in ��. The proof is by induction on the
definition of ��. Since � is well-founded on labels, hence on multisets thereof,
it suffices to show that sh(π) is not the origin of an infinite descending
sequence for ((��,��)lex)mul. This follows from Lemma 3.1.4, the induction
hypothesis and preservation of well-founded partial orders by multiset and
lexicographic extensions.

Transitivity is by induction on the definition again.
Now comes the monotonicity property for local peaks. If both steps

labelled m,n of Dpeak occur in Dconv , then πDpeakψ �� πDconvψ by Lemma
3.1.6. If not, adding them back to Dconv results in a new conversation D′conv .

27

3.1. Diagrammatic Church-Rosser Property

By Lemmas 3.1.6 and 3.1.5, πDpeakψ �� πD′convψ �� πDconvψ and we
are done.

Corollary 3.1.8 ([vO08a, vO08b]). Assume that → is a labelled binary
relation which all local peaks have a given decreasing diagram. Then → is
constructively confluent: an arbitrary conversion can be recursively trans-
formed into a joinability proof.

Already mentioned in [vO08b], proofs based on Newman’s Lemma or
on Hindley–Rosen’s Lemma yield constructive confluence in the very same
sense. Van Oostrom used this fact to show a stronger version of Toyama’s
modularity theorem stating modularity of constructive confluence under the
standard assumption of disjoint signatures.

Another important benefit of a proof based on a well-founded order
on conversions is that it is a necessary building block for the design of a
completion procedure. To this end, the ordering needs two monotonicity
properties, with respect to elementary step replacement (Lemma 3.1.5)
and with respect to local peak replacement (Lemma 3.1.7), see [BD07]. A
preliminary completion procedure for the simple case of constant terms is
given in [JvO09]. The general case of non-terminating rewrite rules built
from an arbitrary graded signature needs much more work since there is no
known technique yet to generate labels in this case.

Felgenhauer and van Oostrom presented another two different but novel
well-founded orders on conversions in [FvO13]. The iterative lexicographic
path order used in [FvO13] is more lightweight in the sense that it is equipped
with simple interpretations on conversions, whose sizes are only linear in the
number of steps in the conversions, while our order needs an exponential
number of comparisons. The other one in [FvO13] is monotonic, resulting
simpler proofs of Lemmas 3.1.5 and 3.1.6, while both our order and the one
in [JvO09] are not.

28

3.1. Diagrammatic Church-Rosser Property

3.1.3 Labelled rewriting modulo

We now turn our attention to a labelled rewrite system modulo (a labelled
rewrite system for short) 〈S,E〉, made of a labelled rewrite relation →S as
before (S for short), and a symmetric labelled relation ↔E (E for short).
Note that E and S need not be disjoint. In this section, we are interested
in the Church-Rosser property of their union S ∪ E.

At this point, it is important to understand that →S is not meant to be
generated by a set of rules. Both →S and ↔E denote relations. It turns
out that ↔E will later denote the one-step equality relation generated by a
set E of equations, but in general, →S will not denote the rewrite relation
generated by a set R of rules, but rewriting with R modulo E defined later.
We need not refer to R in this section.

We shall now need several convertibility relations that will be distin-
guished by indexing the labelled relation in use: we use←↔→E for E-conversion
and ←↔→S∪E for (S ∪ E)-conversion. We reserve the notation s for the E-
convertibility class of the element s. Conversations are as expected. We use
→→S∪E for the derivation relation of →S ∪ ↔E, while reachability is now
defined as →→S ◦ ←↔→E. Similarly, joinability modulo E of the pair 〈v, w〉
is now defined as v →→S s ←↔→E t S←← w for some s, t, expressing the
existence of a joinability proof modulo E.

Definition 3.1.9. A labelled rewrite system 〈S,E〉 is Church-Rosser modulo
E if and only if any two (S ∪ E)-convertible terms are joinable modulo E.

When E is the empty relation, the Church-Rosser property of S is
characterized by the possibility of eliminating all local peaks from a given
conversion. This is the essence of Theorem 2.2.11. In the case where E
is non-empty, not only peaks, but also cliffs must be eliminated to get
joinability proofs:

Definition 3.1.10 (Cliffs). A local cliff (cliff for short) of S with E is a
triple 〈v, u, w〉 such that v ←mS u ↔n

E w.

29

3.1. Diagrammatic Church-Rosser Property

3.1.4 Diagram rewriting modulo

To extend our results to the modulo case, we make the following assumption:

Assumption 3.1. The set of labels is completed with a minimum, labelling
all E-steps and only them.

This may look like a restrictive assumption, but it will however be enough
to obtain completeness under a strong coherence assumption introduced
later. We now need tuning our definitions and lemmas so as to fit with the
modulo case.

The notion of visible step is unchanged. Since equality steps have a
minimum label, they cannot hide any step and will be visible if and only if
no rewrite step aims at them.

We define the shadow of a conversation in the modulo case as the
heterogeneous multiset of pairs or two-element multisets, using ∪ for multiset
union:
sh(π) := {〈ψ, κ〉 | π = ψ →l

S κ with →l
S ∈ vs(π)}

∪ {〈ψ, κ〉 | π = κ ←lS ψ with ←lS ∈ vs(π)}
∪ {{ψ, κ} | π = ψ ↔l

E κ with ↔l
E ∈ vs(π)}

We shall of course make the assumption that pairs do not compare with
the two-element multisets, and compare the whole multiset with a union of
two orders, one for the pairs and the other for the two-element multisets.

The interpretation of a conversation is as before the pair made of its
multiset of visible labels and its shadow, hence conversations are now
compared in the smallest order such that

π �� ψ if JπK (�mul, ((��,��)lex ∪ ��mul)mul)lex JψK .

Definition 3.1.11 (Decreasing Diagrams Modulo). A local diagram modulo
is a pair made of a local peak or cliff 〈v, u, w〉 and an associated conversion
v ←↔→S∪E w.

A local peak diagram v ←mS u →n
S w is decreasing if the associated

conversion has the form v ←↔→α
S∪E s →= nS s′ ←↔→δ

S∪E t′ m
S =← t ←↔→β

S∪E w,
with labels in α (resp., β) strictly smaller than m (resp., n), and labels in

30

3.1. Diagrammatic Church-Rosser Property

δ strictly smaller than m or n. s →= nS s′ and t′ mS =← t are called the facing
steps of the conversion.

A local cliff diagram v ←mS u ↔n
E w is decreasing if the associated

conversion has the form v ←↔→δ
S∪E t m

S =← w, with labels in δ strictly smaller
than m (hence than m or n), t m

S =← w being the only facing step of the
conversion.

In all coming lemmas and proofs, we use the following notations:
Dpeak := ←mS ◦ →n

S,
Dcliff := ←mS ◦ ↔n

E,
Dconvp := ←↔→α

S∪E ◦ →= nS ◦ ←↔→δ
S∪E ◦ mS =← ◦ ←↔→β

S∪E,
D′convp := ←↔→α

S∪E ◦ →n
S ◦ ←↔→δ

S∪E ◦ ←mS ◦ ←↔→β
S∪E,

Dconvc := ←↔→δ
S∪E ◦ mS =←,

D′convc := ←↔→δ
S∪E ◦ ←mS ,

with labels in α (resp., β) strictly smaller than m (resp., n), and labels
in δ strictly smaller than m or n. Moreover, π, ψ will denote arbitrary
conversations.

The proof that diagram rewriting terminates follows the same steps as
before, with some additional lemmas for the E-steps.

Lemma 3.1.12. If l � α, then π ↔l
S ψ �� π ←↔→α

S∪E ψ.

Proof. The proof is the same as Lemma 3.1.5, except in the second case
of the induction, where ↔l

S is hidden in π ↔l
S ψ. Since vl(π ↔l

S ψ) =

vl(π ←↔→α
S∪E ψ), we need to compare the shadows of both conversations. As

before, we pairwise compare pairs associated to the same visible S-step and
two-element multisets associated to the same visible E-step. In both cases,
we conclude by induction.

Lemma 3.1.13. π ↔l
E ψ �� π ◦ψ.

Proof. By induction on the number of steps in π ◦ψ. The base case where
π ◦ψ is empty is trivial. Otherwise, there are two cases:

1. ↔l
E is visible in π ↔l

E ψ. Since l is minimum, vl(π ↔l
E ψ) =

vl(π ◦ψ) ∪ {l}, and we are done.

31

3.1. Diagrammatic Church-Rosser Property

2. ↔l
E is hidden in π ↔l

E ψ. By the same token, vl(π ↔l
E ψ) = vl(π ◦ψ)

and we easily conclude by induction.

We can now show our main lemma for local peaks:

Lemma 3.1.14. πDpeakψ �� πD′convpψ.

Proof. The proof is the same as Lemma 3.1.6, except the comparison of
shadows for the second case. As in Lemma 3.1.12, we need to compare the
two-element multisets of conversations for the same visible E-steps from π, ψ,
as well as the pairs of conversations for the same visible S-steps from π, ψ,
before to conclude by induction hypothesis. Then we use Lemma 3.1.12,
instead of Lemma 3.1.5, to compare the conversation pairs of m and n when
they are visible.

Lemma 3.1.15. πDpeakψ �� πDconvpψ.

Proof. By Lemmas 3.1.14, 3.1.12 and transitivity.

We now move to corresponding lemmas for cliffs:

Lemma 3.1.16. πDcliffψ �� πD′convcψ.

Proof. By induction on the number of steps in πDcliffψ. There are several
cases depending on the visibility of the steps labelled m,n from Dcliff in
πDcliffψ.

• Both steps are visible. Since δ�m, vl(πDcliffψ) = vl(πD′convcψ)∪{n}
and we are done.

• In the other two cases (the step labelled m is visible while the
one labelled n is hidden, or both are hidden), we first show that
vl(πDcliffψ) = vl(πD′convcψ), and then compare the shadows asso-
ciated with the corresponding visible steps. For the pairs (resp.,
two-element multisets) associated with visible S-steps (resp., E-steps)
from π and ψ, we use the induction hypothesis. And for the step m,
when visible, the associated pairs are of the form 〈↔n

E ◦ψ, π〉 and
〈ψ, π ◦ ←↔→δ

S∪E〉. We conclude thanks to Lemma 3.1.13.

32

3.2. Cofinal Derivations and Streams

Lemma 3.1.17. πDcliffψ �� πDconvcψ.

Proof. By Lemmas 3.1.16, 3.1.12 and transitivity.

Using Lemmas 3.1.15 and 3.1.17, we now get:

Corollary 3.1.18 (Decreasing Diagrams Modulo). Given a labelled rewrite
system 〈S,E〉, rewriting modulo is Church-Rosser modulo E if all local peaks
and cliffs have decreasing diagrams.

Decreasing diagrams for cliffs have also already been considered by
Ohlebusch [Ohl98] and by Aoto and Toyama [AT12]. Ohlebusch’s diagram
is indeed a particular (incomplete) instance of ours. Aoto and Toyama allow
arbitrary labels for equality steps, but forbid facing steps in the diagrams for
cliffs. Capturing their result requires allowing arbitrary labels for equality
steps, and modifying the notion of visibility as expected. The monotonic
order proposed in [FvO13] is able to capture [AT12], but it is open whether
the idea of visibility could work.

3.2 Cofinal Derivations and Streams

Van Oostrom showed the following completeness result: every confluent
rewrite relation on a countable set can be labelled in such a way that every
peak enjoys a decreasing diagram. The major insight is the use of Klop’s
notion of cofinal derivation [Klo80], which we recall before generalizing to
the modulo case.

In this section, we shall use sets indexed by any non-zero ordinal α ≤ ω,
the first limit ordinal. We will write i ∈ α ≤ ω for i ∈ α and α ≤ ω.

3.2.1 Cofinal Derivations

When every object has a unique normal form for a given rewrite relation, all
objects in a convertibility class reduce to that normal form. This property
is stronger than confluence: β-reduction in λ-calculus is an example of a
confluent relation for which some objects have no normal form. It however

33

3.2. Cofinal Derivations and Streams

enjoys an interesting property: objects in an equivalence class can be
rewritten to objects in a sequence converging towards some kind of limit,
hence this sequence can be regarded as a sort of “normal form” for the class,
in the sense that it forms a complete set of witnesses for joinability.

Definition 3.2.1. Given a rewrite relation → on a non-empty set O, a
cofinal derivation is a non-empty α-indexed subset D = {si}i∈α of O such
that

(i) for all i ∈ α \ {0}, si−1 → si;
(ii) every object s ∈ O reaches some element in D.

Being a set, the sequence {si}i is cycle-free: ∀i 6= j, si 6= sj. A cofinal
derivation D is indeed viewed as a sub-relation of → restricted to the set D,
and containing no more than the pairs of condition (i) : the rewrite steps
si → sj belong to the cofinal derivation if and only if j = i+ 1.

Note also that chopping off an initial segment from a cofinal derivation
yields another cofinal derivation. In particular, if a cofinal derivation is
finite, then its last element is itself cofinal (hence is a normal form in the
usual sense unless it is part of a cycle for →).

Theorem 3.2.2 ([Klo80]). A rewrite relation on a countable set is confluent
if and only if every convertibility class has a cofinal derivation.

It actually suffices that each convertibility class is countable, but we shall
use the simpler assumption that the underlying set itself is. Let us mention
that Klop gave a counter-example showing the necessity of the cardinality
assumption.

3.2.2 Cofinal Streams

We could think of reusing the same notion of cofinal derivation for a rewrite
system 〈S,E〉, but it would then contain E-steps as well as S-steps. Instead,
we build derivations in which the E-steps are crowded together after the
S-steps.

34

3.2. Cofinal Derivations and Streams

Definition 3.2.3. A derivation u→→S∪E v is said to be cycle-free if it does
not contain a (necessarily non-empty) sub-derivation s (→→S∪E \ ←↔→E) t such
that s = t.

Definition 3.2.4. Given a rewrite system 〈S,E〉 on a non-empty set O, a
cofinal E-stream (cofinal stream for short) is a non-empty α-indexed set of
E-convertibility classes {si}i∈α of representative si, of support D =

⋃
i∈α si,

such that
(i) for all i ∈ α \ {0} and s ∈ si−1, there exists t ∈ si such that s→S t;
(ii) every object s ∈ O reaches some element in D by S-steps only.

Note that a cofinal stream being a set, (∀i 6= j) si 6= sj (cycle-freeness).
As before, rewrite steps between non-consecutive classes do not belong to the
stream (viewed as a sub-rewrite system of 〈S,E〉 on its support), including
those between elements of a same E-class: only the S-steps defined in (i)
and the E-steps in each convertibility class si belong to the stream. Building
cofinal streams will require a compatibility property between S-steps and
E-steps:

Definition 3.2.5. A rewrite system 〈S,E〉 is strongly-coherent , if for all
u, v, w such that u↔E v →S w and v 6= w, there exists t such that u→S t

and t←↔→E w (note that t 6= u).

The notion of strong coherence is a particular case of the notion of
E-commuting relations > with a rewrite relation S used by Jouannaud and
Muñoz [JM84], by taking S to be the considered relation >.

Lemma 3.2.6. Let 〈S,E〉 be a strongly-coherent system. Then, any finite
sequence d of the form u→→S∪E v can be transformed into another sequence
d′ of the form u→→S w ←↔→E v for some w such that u→→S w is cycle-free,
and the number of S-steps in d′ is smaller or equal to that in d.

Proof. By induction on the number n of S-steps in d. If n = 0, we are done.
Otherwise, cycles are replaced by their corresponding E-convertibility steps,
allowing us to conclude by induction hypothesis. If we have a cycle-free
sequence u←↔→E s→S t→→S∪E v, repeated applications of strong coherence

35

3.2. Cofinal Derivations and Streams

yield a sequence u→S w ←↔→E t→→S∪E v for some w. We apply the induction
hypothesis to w →→S∪E v. If new cycles pop up, they are replaced, resulting
in a sequence with number n′ of S-steps such that n′ < n. We conclude by
induction hypothesis again.

We can now state and prove our generalization of Klop’s theorem:

Theorem 3.2.7. A strongly-coherent rewrite system 〈S,E〉 on a countable
set is Church-Rosser modulo E if and only if every convertibility class has a
cofinal stream.

Proof. First note that any two objects belonging to the cofinal stream are
joinable by rewrites belonging to the stream. The if direction therefore
follows from the fact that an arbitrary object reaches some object in the
cofinal stream of its convertibility class by definition of a cofinal stream.

We are left with the only if direction of the claim, for which the basic
idea is similar to van Oostrom’s [vO94b]: construct a sequence with cycles,
and then, eliminate the cycles.

The first construction is by induction on the natural number n. Let
{ai}i∈α be an enumeration of the (countable) class A. We denote by Dn

the support of the sequence Cn = {si}i≤qn<ω constructed at step n, and by
An the subset of A whose terms can reach Dn by S-steps only. Note that
Dn ⊆ An.

Base case: n = 0, q0 = 0, s0 = a0 and D0 = a0.
Induction case: if An = A, we are done, otherwise let a be the first

element of A not reaching Dn. Since a is convertible to sqn , by Church-
Rosser assumption, there exist u, v ∈ A such that sqn →→S u ←↔→E v S←← a.
Assuming the chosen derivation sqn →→S u has k steps, we write it as
sqn →S sqn+1 →S . . .→S sqn+k = u. Let Cn+1 = {si}i≤qn ∪ {sqn+i}1≤i≤k. It
follows that the new sequence is reachable from a subset An+1 of A such
that An ⊂ An+1, and satisfies property (ii) of a cofinal stream. By strong
coherence assumption, it also satisfies (i). We now have an infinite increasing
sequence {Cn}n which limit C :=

⋃
j≥0Cj satisfies (i) and (ii), with possibly

cycles. If the sequence C is finite, then its last element is cofinal. If there

36

3.3. Completeness

is an E-class s occurring infinitely often in C, then {s} is a cofinal stream
of A. Otherwise, every E-class in C occurs finitely often. We construct by
induction on n an infinite sequence {C ′n}n of increasing, finite sub-sequences
of C which limit C ′ is our cofinal stream.

Let C ′0 := {s0}, and let us assume by induction hypothesis that C ′n :=

{s′j}j≤n is cycle-free and satisfies (i,ii). Let j be the largest index such that
sj = s′n. Then s′n+1 = sj+1 and C ′n+1 := C ′n ∪ {s′n+1}. It is easy to see that
C ′n+1 is cycle-free and satisfies properties (i,ii). The limit of this increasing
sequence is our cofinal stream.

We shall now show two consequences of Klop’s theorem and its gen-
eralization. The first, as shown by van Oostrom, is that the existence of
decreasing diagrams is a characterization of completeness. The second is
that it yields a new, simple proof of Toyama’s modularity theorem. Both
results require the countability assumption and scale to rewriting modulo.

3.3 Completeness

We successively consider van Oostrom’s result and its generalization.

3.3.1 Plain Rewriting

Van Oostrom remarked in [vO94b, Theorem 3.3.3] that the cofinal derivation
in a convertibility class allows to define a notion of distance from a term
to the cofinal derivation seen as a normal form for the elements in the
convertibility class:

Definition 3.3.1. Given a cofinal derivation D = {si}i∈α in a convertibility
class A, the distance d(a,D) of a ∈ A to D is defined as the minimum
number of S-steps to reach an element of D from a.

Definition 3.3.2. Given a confluent relation →, a cofinal derivation Da

for the convertibility class of the element a, and two objects s, t in the
convertibility class of a such that s→ t, we call canonical labelling of s→ t

37

3.3. Completeness

the natural number 1 if s → t belongs to Da, and the natural number
d(t,D) + 2 otherwise.

The numbers 2 instead of 1 (for steps hitting Da but not in Da) and 1
instead of 0 (for steps in Da) are non-important here, but will help with the
modulo case. As noted in [vO08a], we can prove that:

Theorem 3.3.3. Given a confluent relation → on a countable set, equipped
with a canonical labelling, all its local peaks enjoy decreasing diagrams.

3.3.2 Strongly-Coherent Rewriting Modulo

We may now think of applying van Oostrom’s completeness result to an
arbitrary labelled rewrite system 〈S,E〉. This does not work, however:
to conclude the Church-Rosser property from the existence of a cofinal
derivation, we would need that the shortest path from an element of the
convertibility class to the cofinal derivation contains S-steps only, which is
not true in general. We shall therefore restrict our attention to strongly-
coherent systems, and use cofinal streams.

We define the distance of an object to the cofinal stream of its convert-
ibility class to be the minimum number of S-steps to reach an element of
its support. The canonical labelling of S-steps is then kept unchanged, and
the canonical labelling of E-steps is taken to be 0. We then get:

Theorem 3.3.4. Given a strongly-coherent, Church-Rosser system 〈S,E〉
on a countable set equipped with a canonical labelling, all its local peaks and
cliffs enjoy decreasing diagrams.

Proof. By Theorem 3.2.7, every convertibility class has a cycle-free cofinal
stream. Given a convertibility class, its cycle-free cofinal stream {si}i∈α and
the support D, we consider all local peaks and cliffs u ←mS∪E s →n

S∪E v.
There are several cases:

1. m = n = 0, hence s → u and s → v are both E-steps, then we are
done with the conversion u↔0

E s↔0
E v.

38

3.3. Completeness

2. m = 0, n = 1. Then s ↔ u is an E-step and s → v is an S-step.
According to the definition of a cofinal stream, there exists t ∈ v such
that u →1

S t. The derivation u →1
S t ←↔→0

E v satisfies the decreasing
diagram property.

3. m = 0, n ≥ 2, hence s ↔ u is an E-step and s → v is an S-step
which does not belong to {si}i∈α. If v is E-convertible to s, then it is
E-convertible to u, resulting in a decreasing diagram. Otherwise, by
strong coherence assumption, there exists t ∈ v such that u→n′

S t. We
get the decreasing diagram u→n′

S t←↔→0
E v by showing n′ ≤ n. Note

that n′ 6= 1, otherwise n would be 1 as well. Consider the shortest
derivation from v to D. By Lemma 3.2.6, d(t,D) ≤ d(v,D), and
similarly d(v,D) ≤ d(t,D). Therefore n′ = n and we are done.

4. m = n = 1, hence s → u and s → v are both S-steps belonging
to {si}i∈α and u, v are in the same E-class, resulting in a decreasing
diagram again.

5. m ≥ 1, n ≥ 2, hence both are S-steps. Taking the shortest (possibly
empty if m = 1) derivations to D from both extremities and joining
these derivations in {si}i∈α yields a conversion which all steps have
labels smaller or equal tomax(m,n)−1, which concludes the proof.

3.3.3 Need for Strong Coherence

One may wonder whether strong coherence is a necessary requirement for
the above theorem, and the notion of decreasing diagram for cliffs is general
enough.

It is possible to relax the definition of a cofinal stream, and replace
condition (i) by (i’): any two elements s ∈ si and t ∈ sj are E-joinable below,
that is, at some E-convertibility class sk with k ≥ i and k ≥ j. Assuming the
rewrite system 〈S,E〉 is Church-Rosser modulo E, then such cofinal streams
can be obtained with a slightly more involved construction. The problem is
that we were not able to prove completeness of decreasing diagrams under
condition (i’), even when allowing arbitrary labels for the E-steps.

39

3.3. Completeness

Indeed, we give at Figure 3.1 an example of Church-Rosser rewrite system
〈S,E〉 which shows the incompleteness of a relaxed decreasing diagrams
condition for cliffs, but leaves the question of completeness open for a
more general notion. We conjecture that a general definition of decreasing
diagrams for a cliff ←mS ◦ ↔n

E is obtained by taking Dconvc :=←↔→α
S∪E ◦ ↔= n

E

◦ ←↔→δ
S∪E ◦ mS =← ◦ ←↔→β

S∪E, with labels in β strictly smaller than n, and labels
in α, δ strictly smaller than m or n, where ↔= n

E denotes the reflexive closure
of ↔n

E. We only assume here that facing steps (of the rewrite step or the
equality step) belong to the same category. We restrict here this general
notion of decreasing diagram by assuming that (i) all E-steps have the same
label, or (ii) the labels of the E-steps are not bigger than the labels of the
S-steps. Since both these restrictions capture our previous definition of
decreasing diagrams for cliffs, we shall refer to them as the relaxed labelling
schema.

Lemma 3.3.5. There is no labelling ensuring that every cliff of Figure 3.1 (a)
has a decreasing diagram satisfying the relaxed labelling schema.

Proof. We reason by contradiction, assuming that all cliffs have decreasing
diagrams. We then show that (∀i ≥ 1)(∃j ≥ 1) li � lj . This implies that the
order on labels cannot be well-founded, resulting in a contradiction.

Let us consider all possible cycle-free conversions for the cliff u ←liS
s ↔mi

E v, since eliminating a cycle from the conversion of a decreasing
diagram yields a decreasing diagram with a conversion of a reduced length.
Let max and min be respectively the largest and the smallest indexes of the
E-steps occurring in such a conversion. There are two cases only depicted
at Figure 3.1, the cliff u ←liS s↔mi

E v being labelled in black for facilitating
its localization:

1. min < i, named (b) on Figure 3.1, with rewrite steps going opposite
directions from ↔mmin . We then let j = min (max is not needed here,
which has allowed us to shorten the figure by taking max = i+ 1).

2. min = i, named (c) on Figure 3.1, with rewrite steps going opposite
directions from ↔mmax . We then let j = max− 1.

40

3.3. Completeness

(a)

-

-

-

�

�

�

m1

m3

m5

?

?

?

?

l1

l2

l3

l4

?

?

l′1

l′3

-

-

�

�

m2

m4 ?

l′2

l′4

...

...

(b)

-

-

-

�

�

�

mj

mk

mi

?

?

lj

li

?

?

l′j

-� mi+1 ?

...

...

...

...

(c)

-

-

-

�

�

�

mi

mk

mj+1

?

li

?

lj
?

l′j−1

...

...

...

...

...

LEGEND:

- S-step

-� E-step

Figure 3.1: A Non-Strongly-Coherent Church-Rosser Rewrite System

In both cases, we show that the step →lj
S cannot be facing the step →li

S . We
carry out the proof for case (b) only, using either assumption (i): (∀i ≥
1)mi = m, or (ii): (∀i, j ≥ 1)mi 6� lj. There are two cases:

1. The conversion has the form u ←↔→S∪E ◦ ←
l′j
S ◦ ↔mj

E ◦ →
lj
S ◦ ←↔→S∪E

◦ ↔mk
E ◦ ←↔→S∪E v. Going the wrong direction, →lj

S cannot be the
facing step, thus either li � lj and we are done, or mi � lj which
contradicts assumption (ii). With (i), mk = m and lj must be smaller
than either li or mi = m, hence li �m implying li � lj.

2. The conversion has the form u←↔→S∪E ◦ ←
lj
S ◦ ↔mj

E ◦ →
l′j
S ◦ ←↔→S∪E v.

Since mj = m = mi with assumption (i), or mi 6� l′j with assump-
tion (ii), ←ljS cannot be the facing step, and the reasoning proceeds as
previously.

It is then easy to build an infinite decreasing sequence of labels, a contradic-
tion.

41

3.4. Modularity

Our lemma implies that strong coherence is a necessary condition for
completeness not only when labelling equality steps with a minimum (extra)
label, but even for the relaxed labelling schema. Aoto and Toyama use a
different restriction of the general decreasing diagram condition by forbidding
facing steps [AT12]. Whether this other restriction is complete is also open:
the rewrite system of Figure 3.1 (a) does not allow to show incompleteness
for their notion.

Finding a notion of decreasing diagrams for cliffs which characterizes
confluence is therefore still open.

3.4 Modularity

We give here a new, simpler proof of Toyama’s modularity theorem under
the countability assumption, based on cofinal derivations.

3.4.1 Plain Term Rewriting

Basic notions of term rewriting have been introduced in Chapter 2. We
assume in this section that the set F of signature and the set X of variables
are both countable.

Note that the term rewrite systems introduced in Chapter 2 are also
called plain term rewrite systems, since they use (plain) pattern matching
for firing rules. Note also that in Definition 2.3.1 we impose the condition
Var(r) ⊆ Var(l) for all rewrite rules l → r, thus term rewriting is variable
non-increasing , that is, Var(t) ⊆ Var(s) if s→ t for terms s, t. Examples
are given in [JT08] showing that rules which do not satisfy the above property
on variables do not, in general, define a non-trivial confluent rewrite relation.

An equation is a pair of terms written l = r. Unlike rules, equations
are not directed. We use ↔E for rewriting with a set E of equations. An
equation u = v is linear if both u, v are linear, regular if Var(u) = Var(v),
and collapsing if u or v is a variable.

Given a set of equations (or rules), the associated convertibility classes
are of course countable sets as subsets of a countable set.

42

3.4. Modularity

3.4.2 Plain Modularity

In this section, S, T denote two confluent plain rewrite systems built from
disjoint signatures G and H. It is important to note that two different
variables cannot be convertible (in S or T) since they are in normal form by
our definition of a rule. We denote by T (G ∪ H,X) the set of terms built
on the union signature G ∪ H and the set of variables X . Terms are called
homogeneous when they belong to T (G,X) ∪ T (H,X), heterogeneous when
they belong to T (G ∪ H,X) \ (T (G,X) ∪ T (H,X)).

Definition 3.4.1. The cap ŝ of a term s ∈ T (G ∪ H,X) is the largest
homogeneous term with respect to subsumption such that s = ŝσ for some
alien substitution σ, while As = {σ(x) | x ∈ Dom(σ) = Var(ŝ) \ Var(s)} is
its set of aliens .

The rank of a term s = ŝσ is equal to 1 + max({rank(u) | u ∈ As}),
where max(∅) = 0.

A homogeneous term s is compact if and only if it is a variable, or it is
not convertible to a variable and Var(s) ⊆ Var(t) for any term t convertible
to s. A heterogeneous term is compact if and only if its cap and aliens
are compact, and any two convertible aliens are equal. A substitution is
compact if it maps variables to compact terms.

Example 3.4.2. Take G = {a, b, c, f 2}, H = {g3}, S = {a→ b}, and T =

∅. Then g(g(x, a, b), a, b) has cap g(g(x, y, z), y, z) and alien substitution
{y 7→ a, z 7→ b}. The homogeneous term f(b, b) is compact. Similarly,
g(a, a, a) is a compact heterogeneous term, while g(b, a, b) is not. If T =

{g(x, y, x) → y}, then neither one is compact, but a is a compact term
reachable from both. In both cases, g(c, b, b) is a compact heterogeneous
term.

The definition of cap ensures three important properties: (i) it is the
identity for homogeneous terms; (ii) the cap of a heterogeneous term is not
a variable; and (iii) any rewrite in the cap of a heterogeneous term can
be lifted to a rewrite in its homogeneous cap. The idea of slicing terms
into a homogeneous cap and an alien substitution was already used by

43

3.4. Modularity

Shostak [Sho82]. To our knowledge, the particular definition used here
originates from [JO91].

Compact terms are exactly the stable equalizers introduced in [JT08],
defined there as being both stable and equalizers. The above more abstract
definition is new, and allows us to dispense with many technicalities of
collapsing and erasing rules present in [JT08]. It is important noting that
the cap of a compact heterogeneous term cannot be a variable (by definition
of cap), hence cannot be convertible to a variable since otherwise it would not
be compact as a homogeneous term. Note also that variables are compact
and reachable from any homogeneous convertible term under our assumption
that S and T are confluent, since they are in normal form.

Lemma 3.4.3. Given a homogeneous term s ∈ T (G,X) (resp., T (H,X)),
the cofinal derivation of its S- (resp., T -) convertibility class can be assumed
to contain compact terms only.

Proof. If s is convertible to a variable x, then {x} is a cofinal derivation
satisfying the claim. Otherwise, if {ui}i is a cofinal derivation for its
convertibility class, then Var(ui+1) ⊆ Var(ui) by definition of a rewrite rule
and property (i) of a cofinal derivation (Definition 3.2.1). Chopping off an
initial segment of a cofinal derivation yields a new cofinal derivation whose
all terms have the same minimum set X of variables. By property (ii) of a
cofinal derivation, X ⊆ Var(s) for all s in the class, hence ui is compact.

In the sequel, we associate to each convertibility class of homogeneous
terms a canonical cofinal derivation made of compact terms only.

We now recall a handy technical tool: a confluent plain rewrite system
for S ∪ T . By an appropriate use of ordered completion [HR87], any plain
rewrite system S can be transformed into a possibly infinite plain rewrite
system S∞ defining the same convertibility relation, such that ordered
rewriting is confluent and terminating, variable non-increasing and variables
are in normal form for S∞. See [Jou06, JT08] for the definition of ordered
rewriting and the detailed (easy) construction of S∞. Let S∞ and T∞ be
so obtained from S, T . Since G ∩ H = ∅, S∞ ∪ T∞ is the confluent plain

44

3.4. Modularity

rewrite system obtained from S ∪ T by the same construction. We denote
by s↓ the normal form of s with respect to S∞ ∪ T∞ (for S∞ or T∞ for
homogeneous terms).

Lemma 3.4.4. Assume that s = ŝσ and t = t̂τ are two different convertible
compact terms. Then, s, t have the same rank, ŝ and t̂ are convertible
homogeneous terms (up to some variable renaming) such that Var(ŝ) =

Var(t̂), and for all x ∈ Dom(σ) = Dom(τ), σ(x) and τ(x) are convertible
terms.

Proof. Similar to that of [JT08]. Note that s and t cannot be variables,
since variables are in normal form for S∞∪T∞, hence two different variables
cannot be convertible.

We prove by induction on the rank the following Claim: normal forms
of different convertible compact terms are compact terms of the same rank.
Since G ∩ H = ∅, then (ŝσ)↓ = (ŝ ↓)σ ↓, and therefore ŝ and ŝ ↓ are
convertible. Since ŝ is compact and rewriting is variable non-increasing,
Var(ŝ) = Var(ŝ↓), hence ŝ↓ is a compact homogeneous term. By induction
hypothesis, σ↓ is a compact substitution, and since S∞ ∪ T∞ is confluent,
σ(x)↓ = σ(y)↓ iff σ(x) = σ(y) iff x = y for any x, y ∈ Dom(σ), hence (ŝ↓)σ↓
is a compact term of the same rank.

We now normalize s, t with S∞∪T∞, yielding two equal normal compact
terms (ŝ↓)σ↓ and (t̂↓)τ↓ by confluence of S∞ ∪ T∞. The result follows.

We now prove Toyama’s theorem by lifting cofinal derivations of classes
of homogeneous terms to classes of heterogeneous terms. Remember that
the signature F and the set X of variables are assumed to be countable
sets, in order to have a countable term algebra T (F ,X) and apply Klop’s
theorem.

Theorem 3.4.5 ([Toy87]). S ∪ T is confluent if and only if S and T are
both confluent.

Proof. The only if part of the proof of Toyama’s theorem is straightforward.
For the if case, we build a cofinal derivation for every (S ∪ T)-convertibility
class and apply Theorem 3.2.2.

45

3.4. Modularity

Not all heterogeneous terms in an infinite cofinal derivation can be
compact, since two equal aliens may need to be rewritten one after the other
along the derivation, hence become temporarily unequal. We shall however
construct (eventually cofinal) dense derivations on heterogeneous terms: any
term in the derivation reaches a compact term further in the sequence.

We now prove by induction on the rank of terms the following properties:
(i) every term reaches a compact term in its convertibility class;
(ii) every compact term reaches a dense derivation in its convertibility

class;
(iii) any two convertible compact terms define the same dense derivation.
Proof of (i). Let u = ûσ be a term of rank k. For any x ∈ Dom(σ),

σ(x) has rank at most k − 1. By induction hypothesis (i), σ(x) reduces
to a compact term τ(x) in its convertibility class. Hence u reduces to
v = ûτ = v̂θ, where θ(y), for y ∈ Dom(θ) is either some τ(y) or one of its
aliens. Hence θ(y) is compact and has rank at most k − 1. We now reduce
θ to θ′ so that θ′(x) = θ′(y) iff θ(x) and θ(y) are convertible, by induction
hypothesis (ii,iii). Hence v reduces to v′ = v̂′θ′. If v̂′ is convertible to a
variable, then v′ reduces to the variable or one of its aliens, which are both
compact. Otherwise, v̂′ reaches a compact term w on its canonical cofinal
derivation, and v′ reaches the compact term wθ′. Hence u reduces to a
compact term.

Proof of (ii). Let u = ûσ be a compact term of rank k, and Dom(σ) =

{x1, . . . , xn}. By induction hypothesis (ii,iii), for xj ∈ Dom(σ), the class
of σ(xj) has a dense derivation {sji}i hence σ(xj) reaches some sjij . By
confluence assumption and Theorem 3.2.2, û reaches s0

i0
on a canonical

cofinal derivation {s0
i }i, where all terms are compact by Lemma 3.4.3. We

define {Ai := s0
i {xj 7→ sji}j}i to be the dense derivation (possibly adding

intermediate terms) for the class of u. Let m = max({ij}j∈[0..n]). Then u
reaches Am.

Proof of (iii). Let u = ûσ and v = v̂τ be different convertible compact
terms. By Lemma 3.4.4, u, v have the same rank k, û and v̂ are convertible
homogeneous terms (up to some variable renaming), and σ(x) and τ(x) are
convertible compact terms of rank at most k − 1 for all x ∈ Dom(σ) =

46

3.4. Modularity

Dom(τ). By induction hypothesis (iii), σ(x) and τ(x) define the same dense
derivation. By assumption, the cofinal derivations chosen for û and v̂ are the
same, since the canonical one. Therefore, the dense derivations constructed
in (ii) are the same for u and v.

Properties (i-iii) imply that the dense derivations so constructed are
cofinal.

We believe that this proof is the simplest proof so far of Toyama’s
theorem and can hardly be improved. Compared to [JT08], the use of
cofinal derivations provides the right argument for reachability of compact
terms.

3.4.3 Term Rewriting Modulo Equations

Rewriting is based on orienting equality steps, but this does not always
make clear sense. For example, the two sides of the commutativity axiom
x + y = y + x cannot be distinguished by their structure. Although it is
however possible to distinguish their instances by using a well-founded order
as an oracle [HR87, HR91].

There is a zoo of relations for rewriting modulo equations on terms, and
we are going to abstract them away by characterizing some properties they
satisfy. We assume given a set of rules R and a set of equations E. These
rewrite relations differ in the way rewriting is defined, we consider only two
of them here:

Class rewriting is defined as s→R/E t if and only if there exist u, v such
that u←↔→E s, v ←↔→E t and u→R v [LB77].

Rewriting modulo is defined as s→p
RE

t if and only if there exists u such
that u←↔→≥PpE s and u→p

R t [PS81].
Class rewriting has a very strong property, namely that if a term s

rewrites to a term t, then every term in the class of s rewrites (with class
rewriting) to every term in the class of t. This property is buried in the
definition, and has an important drawback: to know whether a term s is
rewritable by class rewriting, we need to search its E-convertibility class in

47

3.4. Modularity

order to find a term u which is plain-rewritable. This may be undecidable,
and at least very inefficient in practice.

Rewriting modulo answers this concern of making search efficient by
using E-pattern matching. We therefore need to assume its decidability.

Peterson and Stickel remarked that whenever a set of rules is closed
under extensions, then terms in an equivalence class are either all in normal
form or all rewritable by rewriting modulo [PS81]. Extensions were indeed
defined for associativity and commutativity and later extended to arbitrary
equations [JK86]. Closing a set of rules under extensions requires unifiability
modulo E to be decidable. This is the case for standard theories such as
commutativity (C), or associativity and commutativity (AC). It is not hard
to show that if the equations in E are linear and the rules in R are closed
under extensions, then rewriting modulo is strongly-coherent as well. We
make the assumptions explicit in the next section.

3.4.4 Modularity Modulo

We are now going to extend our proof of modularity to term rewrite systems
〈S,E〉 for which the rewrite relation →S satisfies the strong coherence
property with respect to E-convertibility. The modularity result of this
section therefore applies to rewriting modulo, but also to class rewriting
with the very same proof. On the other hand, the assumptions that the
pair (R,E) of rules and equations need to satisfy are very different: no
assumption is necessary for class rewriting to be strongly-coherent, while for
rewriting modulo, strong coherence requires the equations in E to be both
linear and regular, implying together that all variables of an equation occur
exactly once on both sides of the equation. Further, it is also implicitly
required in the latter case that unification modulo E is decidable, in order
to be able to close effectively the set of rules under extensions. Regularity
of the equations in E is required for class rewriting as well, since we shall
need the property that any two E-convertible terms have the same set
of variables. Equations in E are further assumed to be non-collapsing to
simplify the proofs. We conjecture that this non-collapsingness assumption

48

3.4. Modularity

can be removed, but it is still open to check.
From now on, we do not need the rules in R to be mentioned anymore,

all results can be stated and their proofs carried out abstractly with the
relation →S.

We assume therefore given two strongly-coherent rewrite systems 〈S,E〉
and 〈T, F 〉 built on the respective countable signatures G and H, such that
G ∩ H = ∅ and equations in E ∪ F are regular and non-collapsing.

We keep the notions homogeneous, heterogeneous, cap, alien, rank, com-
pact the same as in Section 3.4.2, except that we use (S ∪ E)-convertibility
instead of convertibility in the definitions. And we denote S ∪E ∪ T ∪ F by
U for convenience.

Now we modify Lemma 3.4.3 to fit with the modulo case:

Lemma 3.4.6. Given some homogeneous term s ∈ T (G,X), the cofinal
stream of its (S ∪ E)-convertibility class can be assumed to contain compact
terms only.

Proof. Same proof as for Lemma 3.4.3, using in addition the fact that E-
convertible terms have the same set of variables by our regularity assumption.

We are now ready for stating and proving the modularity of rewriting
modulo:

Theorem 3.4.7 (Modularity Modulo [JT08]). Assume that 〈S,E〉 and
〈T, F 〉 are strongly-coherent rewrite systems. Then 〈S∪T,E∪F 〉 is confluent
modulo E ∪ F if and only if 〈S,E〉 and 〈T, F 〉 are confluent modulo E and
F , respectively.

Proof. The proof is the same as the proof for Theorem 3.4.5 except that:

1. Instead of constructing dense cofinal derivations for the union system,
we construct dense cofinal streams: any representative in the stream
will reduce to a compact representative further in the sequence of
representatives.

49

3.5. Conclusion

2. We use Lemma 3.4.6 instead of Lemma 3.4.3 to find a dense cofinal
stream for homogeneous terms.

3. Given a compact term u = ûσ, we construct the dense cofinal stream
in its U -convertibility class as {Ai := s0

i {xj 7→ sji}j}i, where {s0
i }i is

the dense canonical cofinal stream for the U -class of û and {sji}i is the
dense cofinal stream for the U -class of σ(xj) for any xj ∈ Dom(û).

4. Instead of proving all terms can reach (with S-steps) the dense cofinal
derivations of their classes as in the plain case, we prove that each
term originates a U -derivation hitting some compact representative in
the dense cofinal stream of its U -class.

5. When proving the uniqueness of the constructed dense stream, we apply
Lemma 3.4.4 by using S ∪ E and T ∪ F instead of S, T , respectively.

6. In the end, a last use of Lemma 3.2.6 is needed to show that the
constructed dense streams are indeed cofinal.

Strong coherence and confluence modulo together imply the Church-
Rosser property modulo [JK86], hence the result could be stated as a
modularity of the Church-Rosser property modulo under our assumptions
(strongly-coherent systems and countable signatures).

3.5 Conclusion

This chapter investigates a key property of rewrite relations, the Church-
Rosser property, from three different points of view: via decreasing diagrams,
via cofinal derivations, and via Toyama’s famous modularity theorem.

Van Oostrom’s decreasing diagrams characterize a constructive version
of confluence. We give an alternative proof of this fundamental result, and
extend it to rewriting modulo by defining a simple well-founded partial order
that contains diagram rewriting.

He also showed a surprising important completeness property based on
Klop’s notion of cofinal derivation: any confluent relation can be labelled

50

3.5. Conclusion

such that it enjoys decreasing diagrams. In case of rewriting modulo, cofinal
stream, a generalization of cofinal derivation to the modulo case, allows us
to generalize the completeness result to that case.

Finally, we give a new, simple proof of Toyama’s modularity result based
on the use of cofinal derivations, and of cofinal streams in the modulo case.

Our generalization of cofinal derivations assumes a property, strong
coherence, which can always be satisfied by a rewrite system modulo, to
the price of possibly having infinitely many rules (finiteness is preserved in
many practical cases such as C and AC). This restriction is reflected in our
diagrams by having the same minimum label for the equations, a label which
cannot be used by the rules. While this labelling restriction fits well with
the strong coherence assumption, we believe that removing it might lead to
a more general modularity result in the modulo case, as in [JT08]. We give
two examples that show the need for relaxing the labelling of equality steps,
but have failed formulating a notion of decreasing diagrams for cliffs that
would both preserve completeness and dispense with strong coherence.

Labelling term rewrite relations so as to obtain decreasing diagrams is
hard. Indeed, one would like the labels to form an F -algebra with respect
to the signature F of the rewrite system in order to be able to lift the
labels from the rule instances to the whole rewrite relation, and possibly
reduce confluence to critical pair computations in the case of non-terminating
rewrite systems. We exhibit more efforts in this direction in the coming
chapters.

51

Four

Decreasing Diagrams on Abstract

Positional Rewriting

Scientific fields undergo successive phases of specialization and unification.
The field of programming languages is in a phase of specialization.

Among the main programming paradigms are imperative programming,
functional programming, logic programming, object-oriented programming,
concurrent programming and distributed programming. Each of these fields
is further specialized. For example, there are many different paradigms
for functional programming: LISP [McC60], McCarthy’s original functional
programming paradigm based on pure λ-calculus for lists enriched with
recursion; ML [MTH90], Milner’s paradigm based on a typed λ-calculus
enriched with data types, a let construct and recursion which has become
a standard; O’Donnell’s paradigm [O’D85] based on orthogonal rewriting;
and OBJ [GWM+00], Goguen’s paradigm based on terminating rewriting in
first-order algebra to cite a few. Similarly, logic programming has given rise
to constraint logic programming, as well as query languages for databases.

Bridges have also been built across these programming languages: OCaml
is a functional programming language with modules, objects, inheritance, and
more [Pot06]. Maude is a functional, rewriting-based, programming language
supporting concurrency [Mes11]. Similar to Maude, CafeOBJ [DF98b]
supports in addition behavioural descriptions [NKOF08]. Functional, logic

52

and constraint programming coexist in CoqMT [Str10]. Bridges have also
been built at the more abstract level of programming paradigms. For one
example, Kirchner’s rho-calculus is an attempt to unify λ-calculus and
rewriting [Kir12]. Meseguer’s rewriting logic can be seen as an attempt to
unify terminating rewriting with process algebra [Mes00]. Concurrent logic
programming is constraint logic programming with concurrent access to a
store representing the current state of shared logical facts [Sar90]. Attempts
of unifying functional and logic programming are numerous, although not
entirely conclusive so far.

In the area of functional programming, we think that a unification phase
has started, and our goal in this chapter is to contribute to this trend.

The theory of functional programming languages relies on two major
properties of rewriting, its computation mechanism: a syntactic property,
confluence that is the target of this thesis, and a semantic property, called
type preservation. Since rewriting is usually non-deterministic, the result
could depend on particular choices made by the interpreter or compiler.
Confluence ensures that rewriting is deterministic, that is, the result does not
actually depend upon a particular evaluation path. Type preservation ex-
presses the property that the input and the output have the same functional
behaviour. Our goal in this chapter is to unify techniques for checking con-
fluence of a given rewrite relation, independently of the rewriting mechanism
itself, and of its termination properties.

Confluence Checking: the Principles

Historically, confluence checking has been influenced by a few foundational
works, for terminating rewriting, and for non-terminating rewriting indepen-
dently.

For the terminating case, Newman’s Lemma and Knuth–Bendix’s Lemma
are the most powerful instruments, without doubt, for confluence checking at
the abstract level and the term level, respectively. As for the non-terminating
case, Hindley–Rosen’s Lemma shows that confluence of an abstract rewrite
relation is reducible to its strong confluence, while Tait proved that λ-

53

calculus is strongly confluent, thus confluent, via parallel rewriting. Driven
by the many applications, the terminating branch of rewriting specialized
further into rewriting modulo, constraint rewriting, higher-order rewriting
and normal rewriting to cite a few. On the other hand, the non-terminating
branch kept its unity by generalizing Tait’s result to orthogonal rewrite
systems, an important class of strongly confluent, term rewrite systems.

In recent years, techniques for proving confluence have been revisited so
as to start the unification process.

First, van Oostrom succeeded to capture Newman’s and Hindley–Rosen’s
results using the notion of decreasing diagrams. Second, stated in [JL12a],
most existing results belonging to the terminating branch have been unified
by Jouannaud and Li under the concept of a Normal Abstract Rewrite
System (NARS)1. There are two main ideas behind NARSes. Rewriting is
defined again on an abstract set, but each rewrite step is now decorated by
a subset Pp of an abstract set P of positions equipped with a well-founded
order >P , p being the minimum of Pp. It is then possible to characterize
whether a local peak u ←Pp s→Qq v is a disjoint peak (p#q), an ancestor
peak (q >P Pp), or a critical peak (q ∈ Pp) and to reduce confluence of a
NARS to the joinability of its abstract critical peaks. The framework of
NARSes appears therefore to be intermediate between abstract and concrete
rewriting. Second, normal rewriting can specialize to all important concrete
rewrite relations that have been introduced in the terminating case, and the
associated notions of critical pairs are indeed instances of the abstract ones
defined for a NARS.

Weaknesses of Decreasing Diagrams

Van Oostrom showed that the method of decreasing diagrams is complete
under the countability assumption, using Klop’s notion of cofinal derivations.
However, since Klop’s notion of cofinal derivation is non-constructive, this
result does not tell us how to guess the labelling we need. On the other

1However, they only gave in the paper an investigation of applications of NARS to
first-order term rewriting and several variants of Nipkow’s higher-order normal rewrit-
ing [Nip91].

54

hand, it could give us hints. Unfortunately, this is not the case if we look
for a local labelling, that is a mapping from rewrite steps to labels. Using
the canonical labelling in Definition 3.3.2, consider for example a confluent
system made of two distinct convertibility classes C1 and C2, the first having
a cofinal derivation reduced to a single element a, and the second having
an infinite one {ti}i<ω. Let us add the rewrite step a → t1000. Then, the
resulting system is still confluent, but the union of both cofinal derivations
is not a cofinal derivation. Of course, {ti}i<ω is a cofinal derivation for the
union, but the labels of all steps in C1 must be increased by 1. {a, ti≥1000} is
another with a similar effect on many steps in C2. This shows that labelling
can hardly be local.

A major strength of decreasing diagrams is that they capture Hindley–
Rosen’s Lemma as well as Newman’s Lemma. To prove it, it suffices to label
the rewrite steps by the same label in the first case, and by the origin s of
the step s→ t in the second. Doing so, we obtain a constructive labelling,
rather than using the completeness result itself (which we could do). Of
course, all known criteria for confluence of abstract relations are covered
by van Oostrom’s result, as a result of completeness. It however comes
as a surprise to us that in each case, a labelling can be built. Assume P
is a recursive set of confluent relations. Then, we would like to exhibit a
recursive function LP taking as input a relation R ∈ P and returning a
labelling function for R which satisfies van Oostrom’s assumptions. If such
a function exists for every P , then we say that the decreasing diagrams
method is constructively complete. We suspect a negative answer to the
open question whether this holds. Indeed, no constructive labelling is known
for Huet’s generalization [Hue80, Lemma 2.5] of Hindley–Rosen’s Lemma.

To overcome this particular weakness, van Oostrom introduced a gener-
alization of decreasing diagrams for local peaks that he calls commutation
diagrams. The idea is to duplicate the original rewrite relation → as →
and →. Then any step in a conversion is painted in blue if heading to the
left, and in red if heading to the right. We shall prefix all notions by the
word coloured. The coloured version of van Oostrom’s theorem says that
coloured confluence (or commutation) follows from the coloured joinability

55

of coloured local peaks. Coloured confluence implies confluence provided
the transitive closures of both relations coincide with the transitive closure
of the starting relation. Refining Tait’s idea for showing confluence of the
λ-calculus, we can indeed paint in blue the starting relation, and in red its
transitive closure. Coloured confluence can be much easier to prove than
confluence of the original relation, because the two coloured relations can
have very different labellings, giving more flexibility. Whether the coloured
version of the decreasing diagrams method is constructively complete for
abstract relations is open, but there is now a constructive labelling for the
commutation version of Huet’s generalization [Hue80, Lemma 2.5]. We shall
indeed prove that the most important criteria among those we know of can
be proved with a constructive labelling when using coloured diagrams, which
shows their importance.

The situation gets more complex when it comes to term rewrite systems.
Van Oostrom’s framework is abstract, only objects without structure are
rewritten. The framework therefore allows for critical peaks only: an object
a rewriting to objects b and c. Disjoint peaks enjoy a decreasing diagram
for any well-behaved labelling. Our experience is that difficulties come
essentially from ancestor peaks. Ancestor peaks are joinable in various
ways, depending on whether or not a given rule is left-linear or right-linear.
These joinability diagrams are not decreasing in general, unless the rules
are linear, or simply left-linear, but the technicalities get more complex.
Indeed, another result of Huet, called parallel closedness criterion [Hue80,
Lemma 3.3], says that a left-linear system is confluent if all its critical
peaks v ← u→ w satisfy the condition v →p1 . . .→pn w where {pi}i∈[1..n]

is a set of pairwise disjoint positions. We shall prove it, as well as its
generalization [Toy88], by blending coloured multi-labelled diagrams with
positional rewriting in order to abstract these results from a particular term
structure. Multi-labelling refers to a powerful extension of van Oostrom’s
technique allowing for global interpretations defined locally by a sequence
of labels.

56

4.1. Labelled Positional Rewriting

Organization. Our goal is to lift van Oostrom’s result to abstract posi-
tional rewriting, so as to capture the concrete results in both the terminating
and the non-terminating case. Our abstract framework of (multi-) labelled
abstract positional rewrite systems is described in Section 4.1 together with
our strategy for proving confluence. We will review in subsequent sections
several important results which are characteristic of the literature on conflu-
ence, and derive them as concrete cases of a same schema. On this journey,
we are not going to consider all rewriting notions captured by a NARS, but
only plain and parallel rewriting, the general case of NARS, for example
higher-order rewriting that motivates the work in this thesis, being left for
future work.

4.1 Labelled Positional Rewriting

Labelled positional rewriting brings together labelled rewriting as defined
by van Oostrom and positional rewriting as introduced by Jouannaud and
Li. As a consequence, our notations are possibly heavier than usual, and
sometimes heavier than needed. We assume given:

• a set L of labels, as before, equipped with a partial quasi-order �

whose strict part � is well-founded;

• an abstract set P whose elements are called positions , equipped with a
partial well-founded order >P , writing p#q for incomparable positions
p, q, satisfying the axiom: p′#q if p′ >P p and p#q, a binary (infix)
concatenation operation “·”, and a minimum Λ satisfying the axioms:
p ·Λ = Λ · p = p and p · q >P p provided q 6= Λ. Given a set of positions
Q, we let p ·Q := {p · q | q ∈ Q} ;

• a set O of objects, as before.

We should note that the positions defined here and in this chapter are
different from the ones defined in Chapter 2 and used in other chapters.
The notion of positions in this chapter is at an abstract level. It would

57

4.1. Labelled Positional Rewriting

however be instantiated by the usual one when we apply the results of
labelled positional rewriting to concrete term rewriting.

4.1.1 Domains

A domain Pp is any non-empty, downward closed set of positions p′ ≥P p,
that is, such that p′ ∈ Pp and p′ ≥P q ≥P p imply q ∈ Pp (hence, p ∈ Pp).
In some cases, p will not be mentioned, writing then P instead of Pp. In
practice, a domain is meant to be the set of non-variable positions of some
occurrence of a left-hand side of rule in a term. We denote by DP the set of
domains over P. We use the letters p, q for positions the notations Pp, Qq

for domains.
Given a position p and a set Q of positions, we write p >P Q if (∃q ∈

Q) p >P q and (∀q ∈ Q) q 6≥P p. Given domains Pp and Qq, we write
Qq >P Pp if q >P Pp. Two domains Pp, Qq are parallel or disjoint, written
Pp#Qq if p#q.

We use the letters Γ,∆ for multisets (or sequences) of domains, and
specifically Π,Θ for sets (or sequences) of pairwise parallel domains, which
set is denoted by D#P .

We write:
Γ#Pp if (∀Qq ∈ Γ)Qq#Pp ;
Γ#∆ if (∀Pp ∈ Γ)Pp#∆ ;
Γ ∈ Pp if (∀Qq ∈ Γ) q ∈ Pp ;
Γ ≥P p if (∀Qq ∈ Γ) q ≥P p ;
Γ >P Pp if (∀Qq ∈ Γ)Qq >P Pp ;
Pp ./ Qq if p 6∈ Qq ∧ q 6∈ Pp ;
Γ ./ ∆ if (∀Pp ∈ Γ)(∀Qq ∈ ∆)Pp ./ Qq.

We shall freely use the following straightforward key property of domains,
which first three cases are called respectively “disjoint case”, “critical case”
and “ancestor case” in the literature:

Lemma 4.1.1. (∀p, q ∈ P)(∀Pp ∈ DP)(q#p ∨ q ∈ Pp ∨ q >P Pp ∨ p >P q).

58

4.1. Labelled Positional Rewriting

4.1.2 Rewriting

A labelled positional rewrite step is a tuple 〈s, t, l, Pp〉 for s, t ∈ O, l ∈ L
and Pp ∈ DP , which is denoted by s→l

Pp
t and we may omit any of l, s, t or

Pp. A labelled positional rewrite relation is a rewrite relation generated by
labelled positional rewrite steps.

Notions of labelled (abstract) rewriting can be extended naturally to
labelled positional rewriting by replacing labelled rewrite steps with labelled
positional rewrite steps. The notations are extended as expected. In
particular, reachability (resp., convertibility) is denoted by →→α

Γ (resp., ←↔→α
Γ)

for some sequences α of labels and Γ of domains. Mention of l, Pp, α,Γ
may be altogether omitted, or abbreviated appropriately, in general by the
property that they satisfy, as in →l

≥Pp.
Conversions can be coloured as explained in the introduction, rewrites

heading left in blue and those heading right in red. All notions have therefore
a coloured version, which is from now on the one we consider in this chapter,
the uncoloured one being obtained by taking identical labellings for both
colours.

4.1.3 Rewriting Axioms

According to Lemma 4.1.1, there are three kinds of local peaks: disjoint
peaks if q#p, ancestor peaks if q >P Pp, and critical peaks if q ∈ Pp. Note
that the fourth case in Lemma 4.1.1 is captured by symmetry.

Aiming at applications on first-order term rewriting in this thesis, we now
assume that rewriting satisfies three (unlabelled) axioms, one for disjoint
peaks, one for ancestor peaks and one for parallel steps that relates to the
notion of square permutations [GLM92], which are displayed in Figure 4.1,
where Π1 and Π2 are supposed to be sequences of pairwise parallel domains.
The (universally quantified) assumptions are pictured with plain arrows,
while the (existentially quantified) conclusions are pictured with dashed
arrows.

In case rewrites are coloured, there are indeed two versions of the ancestor
peak axiom, depending which colour is above the other.

59

4.1. Labelled Positional Rewriting

(i) Disjoint Peak

s
�

�
�
�	

Pp

u

@
@
@
@R

Qq

vq#p

R
Qq

	
Pp

w

(ii) Ancestor Peak

s
�

�
�
�	

Pp

u

@
@
@
@R

Qq

vq >P Pp

UU
Π1

t
��

Π2

w�
Pp

(iii) Parallel Steps

s

�
�
�
��

Pp

u

@
@
@
@R

Qq

vq#p

R
Qq

�

Pp

w

Figure 4.1: Positional Rewriting Axioms

The following lemma follows from the parallel steps axiom:

Lemma 4.1.2. Given a set of domains Π ∈ D#P , and two enumerations
Π1 and Π2 of Π, then s→→Π1

t if and only if s→→Π2
t.

We can therefore define parallel positional rewriting as the relation such
that s ⇒Π t iff s →→Π1

t for an arbitrary enumeration Π1 of the set Π

of parallel domains. We have the following straightforward properties of
parallel rewriting:

Lemma 4.1.3. s⇒{Pp} t if and only if s→Pp
t.

Lemma 4.1.4. Assume that Π#Θ. Then s ⇒Π∪Θ t if and only if s ⇒Π

u⇒Θ t for some u.

4.1.4 Local Diagrams

In this chapter, since rewrites are coloured, we shall only consider coloured
diagrams. The decreasing diagrams framework is carried out in its coloured
version. A coloured local diagram D is therefore a pair made of a coloured
local peak Dpeak = v ← u→ w and a coloured conversion Dconv = v ←↔→ w.
We rephrase Theorem 2.2.6 in its coloured version:

Theorem 4.1.5 ([vO08a]). A labelled rewrite relation is coloured Church-
Rosser (hence coloured confluent) if all its coloured local peaks have a de-
creasing diagram.

60

4.1. Labelled Positional Rewriting

In [JvO09], Jouannaud and van Oostrom proved Theorem 2.2.6 by
diagram rewriting (Definition 2.2.10). Despite the fact that it is proved there
for uncoloured conversions, the proof applies without any change to coloured
conversions, hence Theorem 4.1.5, since rewriting a coloured conversion
yields a coloured conversion. In Chapter 3, we have shown that the idea of
the proof by Jouannaud and van Oostrom based on diagram rewriting is
to define a measure on conversions that decreases when replacing a local
peak by the conversion associated to its decreasing diagram. Termination of
diagram rewriting then implies the Church-Rosser property, thus confluence.
A simpler measure has already been introduced in Chapter 3. Yet another
two related measure are given in [FvO13]. We shall define here an alternative
measure which blends the one in Chapter 3 and the monotonic one in [FvO13]:

Definition 4.1.6. The interpretation of a conversion π is defined as the
multiset JπK := {〈l, ψ〉 | π = ψ →l κ or π = κ ←l ψ}. Conversions
are compared in the quasi-order π �� ψ iff JπK ((�,��)lex)mul JψK, the
equivalence being the equality π = = ψ iff JπK ((=, = =)lex)mul JψK.

Here is the main property of the above order, implying Theorems 2.2.6
and 4.1.5:

Lemma 4.1.7. �� (defined in Definition 4.1.6) is a partial quasi-order,
whose strict part �� is well-founded, and such that πDpeakψ �� πDconvψ for
any decreasing diagram D and conversions π, ψ.

This property is proved first in [JvO09] with a complex order, in Chapter 3
with a simpler, related order, and in [FvO13] with two slightly different,
yet novel orders. The order given here is easier to define than the one in
Chapter 3, without using the notion of visible steps. But their proofs are
similar.

In the sequel, the colouring will remain implicit.
A special kind of local diagrams called fixed diagrams is considered.

Definition 4.1.8. Given a labelled rewrite system R, a local diagram D is
fixed if πDpeakψ = = πDconvψ for any two conversions π, ψ.

61

4.1. Labelled Positional Rewriting

The existence of fixed diagrams depends on the properties of the order on
conversions. If this order is monotonic, as is the one introduced in [FvO13],
then the above condition reduces to Dpeak = = Dconv . If it is not, as are
the present one and those introduced in [JvO09] and Chapter 3, then the
property must be checked whether it holds or not for a given diagram. The
following simple fixed diagram is used in Theorem 4.4.14:

Lemma 4.1.9. Let Dpeak = v ←m u →n w and Dconv = v ←m u′ →n w,
where m,n ∈ L. Then D is a fixed diagram.

We now consider n-labelled abstract rewrite systems with n > 0, for
which each single rewrite step is labelled by a sequence [l1, . . . , ln], each label
li belonging to a set Li equipped with an order �i whose strict part �i is
well-founded.

Definition 4.1.10. Given n > 0, a set O of objects, and sets Li of labels,
each of which is equipped with an order �i whose strict part �i is well-
founded with i ∈ [1, n]. An n-labelled rewrite step is a triple 〈s, t, [l1, . . . , ln]〉
for s, t ∈ O and li ∈ Li with i ∈ [1, n], denoted by s→[l1,...,ln] t. An n-labelled
rewrite system is composed of a set O and a set of n-labelled rewrite steps,
while an n-labelled rewrite relation is the corresponding relation.

The sequence itself is not a label, this would then be a labelled system
as before and we would use the word “tuple” instead. We generally call n-
labelled rewrite steps (resp., rewrite systems, rewrite relations) for some n >
0 by multi-labelled rewrite steps (resp., rewrite systems, rewrite relations),
omitting the mention of n.

Theorem 4.1.11. An n-labelled abstract rewrite relation is coloured Church-
Rosser (hence coloured confluent) if, for each local peak there exists some
j ≤ n such that the local peak enjoys a fixed diagram for every ith-label with
i < j and a decreasing diagram for its jth-label.

Proof. Conversions now decrease in the order (��1, . . . ,��n)lex when a local
peak is replaced by its associated conversion.

62

4.2. Terminating Systems

The use of an n-labelled relation is actually different from the use of
the tuple 〈l1, . . . , ln〉 as a (single) label, since the order (��1, . . . ,��n)lex is
different from the order �� generated by the n-tuple of labels. Multi-labelled
systems are indeed a way to use labelling as a complex global interpretation
on conversions, while still concentrating on local peaks.

We will show the important impact of this seemingly small extension of
van Oostrom’s technique in Theorem 4.4.14.

4.2 Terminating Systems

In this first application of Theorem 4.1.11, we assume a single colour and
a single label, which means rewrite relations are 1-labelled, that is, van
Oostrom’s original labelling technique as described by Theorem 2.2.6 suffices.
We further make three key assumptions throughout this section:

(i) rewriting satisfies the axioms for disjoint and ancestor peaks ;
(ii) the rewrite relation is terminating ;
(iii) we use self-labelling : a rewrite step u→ v is labelled by u.
Self-labelling is made possible by assumption (ii), labels being compared

in the order →→. The following important lemma is straightforward:

Lemma 4.2.1. Joinable local peaks enjoy a decreasing diagram.

The result then follows:

Theorem 4.2.2. A terminating labelled positional rewrite relation satisfying
the axioms for disjoint and ancestor peaks is confluent if and only if all its
critical peaks are joinable.

Proof. Using Lemma 4.2.1.

Terminating, first-order rewriting satisfies Theorem 4.2.2, possibly the
most celebrated result on the topic [KB70]. So do Church’s simply typed
λ-calculus [CR36], another celebrated result, and more generally algebraic,
functional languages [JO91]. However, note that Theorem 4.2.2 is different
from the critical pair criteria in the literature, since there is still a gap

63

4.3. Linear Systems

between the (abstract) critical peaks and the (concrete) critical pairs. It
needs some work when applying Theorem 4.2.2 to concrete systems.

4.3 Linear Systems

In this second application of Theorem 4.1.11, we assume two colours and
a single label. We further make a key assumption about the labelling and
joinability of disjoint and (duplicated) ancestor peaks, which is displayed at
Figure 4.2.

(i) Disjoint Peak

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n
Qq

vq#p

R
Qq

�n

	
Pp

�m

w

(ii) Linear Ancestor
Peak (a)

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n
Qq

vq >P Pp

R=
Q′q′

�n

	
Pp

�m

w

(iii) Linear Ancestor
Peak (b)

s
�
�

�
�	

m
Pp

u

@
@
@
@R

n
Qq

vp >P Qq

R
Qq

�n

	=
P ′p′

�m

w

Figure 4.2: Linear Axioms for Disjoint and Ancestor Peaks

These revised axioms for disjoint and linear ancestor peaks are indeed
decreasing diagrams. Note that comparing rewrite positions breaks the
symmetry between the two colours, which results in two different axioms for
ancestor peaks.

We still need to care about critical peaks, and again, comparing positions
will break the symmetry between two colours, which will result this time in
three kinds of critical peaks, the new kind corresponding to the case where
the two rewrite positions are equal.

• top critical peaks : u ←mPp
s→n

Qq
v with q = p

• red subterm critical peaks : u ←mPp
s→n

Qq
v with q ∈ Pp \ {p}

• blue subterm critical peaks : u ←mPp
s→n

Qq
v with p ∈ Qq \ {q}

64

4.4. Left-Linear Systems

The following result follows easily from Theorem 4.1.11 and Lemma 4.1.1:

Theorem 4.3.1. A labelled positional rewrite relation satisfying the axioms
in Figure 4.2 for disjoint and linear ancestor peaks is coloured Church-Rosser
if all its critical peaks enjoy a decreasing diagram.

This result applies to any concrete system satisfying these axioms, which
are very restrictive since they are true of linear systems only. In case the
two coloured relations are identical, then we can conclude that the original
relation is confluent. The particular case of first-order linear rewriting
appears in [ZFM15], with a similar uni-coloured analysis.

Notice that critical peaks need be duplicated in the coloured version,
that is, need to be distinguished by comparing the minimum positions of the
two steps, unless the superposition is at the top, but not anymore if the two
colours are identical, as is the case when we are interested in a direct proof
of confluence of a given relation. On the other hand, having two colours
gives more flexibility for the labelling, hence may help in finding decreasing
diagrams for some critical pairs.

Theorem 4.3.1 implies Huet’s generalization [Hue80, Lemma 2.5] of
Hindley–Rosen’s Lemma. Both are actually direct applications of the
coloured version of Theorem 4.1.5, as first noted by van Oostrom [vO94a].

4.4 Left-Linear Systems

In this section, we relax the previous assumption for ancestor peaks, by
allowing for rewriting in parallel at a set of disjoint occurrences on the right.
To this end, we shall need the full power of Theorem 4.1.11 with two colours
and sequences of labels. Technically, we shall follow Tait’s steps that we
refine with a variation by taking the given rewrite relation as blue, and its
parallel rewriting version as red. This choice will be easier to carry out than
taking parallel rewriting for both the blue and red relations as done by Tait
and others.

We first introduce several kinds of local peaks needed in presence of
parallel rewriting:

65

4.4. Left-Linear Systems

Definition 4.4.1. A local peak u ←Pp
s →Π v is called a disjoint peak if

Pp#Π, a (parallel) blue/red ancestor peak if Π >P Pp, a parallel blue/red
critical peak if Π ∈ Pp and a plain blue/red critical peak if Π = {Qq} and
q ∈ Pp. A local peak u ←Pp

s→{Qq} v is called a (plain) red/blue ancestor
peak if p >P Qq, and a (plain) red/blue critical peak if p ∈ Qq.

Throughout this section, we revise the axioms for disjoint and ancestor
peaks as in Figure 4.3, and make four assumptions on the labels used:

• red labels are strictly larger than blue labels;

• the set of red labels is a sup-semi-lattice;

• given a parallel step s →m
Π t, we assume that its label is the sup

of the labels of its elementary parallel steps. Therefore, given any
Π1,Π2 such that Π = Π1 ∪ Π2 and s →m1

Π1
u →m2

Π2
t for some u, then

m = sup{m1,m2};

• given s →m1
Π1

u →m2
Π2

t with Π1#Π2, by Lemma 4.1.4 we have s →Π2

v →Π1
t for some v, we further assume the labels satisfy s→m2

Π2
v →m1

Π1

t.

(i) Disjoint Peak

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n
Π

vPp#Π

R
Π

�n

	
Pp

w

(ii) Left-linear Blue/Red
Ancestor Peak

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n
Π

vΠ >P Pp

R
Θ≥P p

�n

	
Pp

w

(iii) Left-Linear Red/Blue
Ancestor Peak

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n{Qq}
vPp >P Qq

R
{Qq}

�n

		
Θ≥P q

w

Figure 4.3: Left-Linear Axioms for Disjoint and Ancestor Peaks

We use Σ to denote sequence of elements in D#P , writing Σ#Γ if
(∀Π ∈ Σ) Π#Γ, and Σ ≥P p if (∀Π ∈ Σ) Π ≥P p.

66

4.4. Left-Linear Systems

To prepare the proof of the main theorem of this section, we need three
auxiliary lemmas:

Lemma 4.4.2. Given a derivation s →→α
Σ u →n

Π t such that Σ#Π, then
s→n

Π v →→α
Σ t for some v.

Proof. By induction on the number of steps in s→→α
Σ u and application of

Lemma 4.1.4 and our assumptions on labels.

Lemma 4.4.3. Given a peak u Γ←← s →n
Π v such that Γ#Π, then u →n′

Π

t Γ←← v for some t, n′ with n′ � n.

Proof. By induction on the number of steps in u Γ←← s and application of
the axiom for disjoint peaks.

Lemma 4.4.4. Given a peak u Θ←← s →n
Π v such that Θ ./ Π, then

u→n′

Π′ t Γ←← v for some t,Π′,Γ and n′ with n′�n. If Θ∪Π ≥P p is satisfied
for some position p, then Π′ ∪ Γ ≥P p. Π′ is called the residual of Π after
the derivation s→→Θ u, denoted by Π/Θ.

The notion of residual is quite old [CR36]. It is the key to many re-
sults, like the finite developments theorem and the standardization theorem,
see [Ter03].

Proof. The proof is by induction on the number of steps in s→→Θ u.
Selecting the first step s →P 1

p1

u′ of s →→Θ u, we have u Θ′←← u′ ←P 1
p1

s→n
Π v where Θ′ = Θ\{P 1

p1
}. To analyze the local peak u′ ←P 1

p1

s→n
Π v, we

split Π as Π = Π1∪Π2 such that Π1#P 1
p1

and Π2 satisfying either Π2 >P P
1
p1

or (∀Qq ∈ Π2) p1 >P Qq, in which case Π2 contains one element or is empty.
It follows in both cases that s →n1

Π1
v′ →n2

Π2
v. By the axiom for disjoint

peaks, u′ →n′1
Π1
w′ ←P 1

p1

v′ for some w′ with n′1 � n1. Using now the axiom

for ancestor peaks, w′ ←P 1
p1

v′ →n2
Π2

v can be joined by w′ →n′2
Π′2

w Γ←← v

for some Π′2,Γ, w with n′2 � n2, where Π′2 ≥P p1 if Π2 >P P
1
p1
, or Π′2 = Π2

otherwise. In both cases, Π′2#Π1 and Π′2 ./ Θ′, thus u′ →n′

Π1∪Π′2
w Γ←← v,

with n′ = sup{n′1, n′2}� sup{n1, n2} = n and Θ′ ./ (Π1 ∪Π′2). If there exists
some p such that Θ ∪ Π ≥P p, it is easy to see Θ′ ∪ Π1 ∪ Π′2 ∪ Γ ≥P p.

67

4.4. Left-Linear Systems

Applying the induction hypothesis to the peak u Θ′←← u′ →n′

Π1∪Π′2
w

yields the result.

The following result follows:

Theorem 4.4.5. Assuming that parallel steps have labels which are strictly
larger than the labels of plain steps, a labelled positional rewrite relation
satisfying the axioms for disjoint and left-linear ancestor peaks is confluent
if its critical peaks satisfy the decreasing diagrams in Figure 4.4:

(i) Parallel Blue/Red Critical Peaks

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n
Π

vΠ ∈ Pp\{p}
66≥P p �m

t

R
�n

Θ1≥P p
t′

Θ2 ≥P p

w--�n

Σ≥P p
(∀Π′#Π s.t. Π′ >P Pp and v →Π′ v

′)

(Θ2 ./ Π′, Θ1#(Π′/Θ2) and Σ#(Π′/Θ2))

(ii) Plain Red/Blue Critical Peaks

s
�
�

�
�	

m
Pp

u

@
@
@
@R

n{Qq}
vp ∈ Qq

66≥P q �m

t

R
�n≥P q
t′

≥P q

w--�n

≥P q

Figure 4.4: Assumptions for (Left-Linear) Critical Peaks

Proof. We show that every local peak u ←mPp
s →n

Π v has a decreasing
diagram. There are three cases according to the relative positions of Pp and
Π:

1. (∀Qq ∈ Π)Pp ./ Qq. We conclude by Lemma 4.4.4.

2. (∃Qq ∈ Π) q ∈ Pp \ {p}. The proof is represented in Figure 4.5.
Since there exists no Qq ∈ Π such that q < p, we first split Π into
Π = Π1 ∪ Π2 ∪ Π3 with Π1 := {Qq ∈ Π | q ∈ Pp}, Π2 := {Qq ∈ Π |
q >P Pp} and Π3 := {Qq ∈ Π | q#p}. Hence s→n1

Π1
v1 →n2

Π2
v2 →n3

Π3
v

by Lemma 4.1.4, and n = sup{n1, n2, n3} by assumption on labels of

68

4.4. Left-Linear Systems

parallel steps. By assumption, the blue/red critical peak u ←mPp
s→n1

Π1

v1 has a conversion u �m←← t→n′1
Θ1
t′1 →→α

Σ w1 Θ2
←← v1, with Θ2 ./ Π2,

Θ1 ∪Θ2 ≥P p, Σ ≥P p, n′1 � n1 and α� n1 � n. By Lemma 4.4.4, the
peak w1 Θ2

←← v1 →n2
Π2
v2 can be joined by w1 →n′2

Π′2
w2 Γ←← v2 where

n′2 �n2 and Π′2∪Γ ≥P p. For the peak w2 Γ←← v2 →n3
Π3
v, since Pp#Π3

by definition, we have Γ#Π3, hence w2 →n′3
Π3
w Γ←← v by Lemma 4.4.3

with n′3 � n3. By assumption in Figure 4.4 (i), Σ#Π′2, hence t′1 →
n′2
Π′2

t′2 →→α
Σ w2 by Lemma 4.4.2. We also have t′2 →

n′3
Π3

t′ →→α
Σ w since

Σ ≥P p and Pp#Π3. Thanks to the assumption in Figure 4.4 (i),
Θ1#Π′2. Since Θ1 ≥P p, Π′2 ≥P p and Pp#Π3, t →n′

Θ1∪Π′2∪Π3
t′ by

Lemma 4.1.4, where n′ = sup{n′1, n′2, n′3}� sup{n1, n2, n3} = n. The
local peak u ←mPp

s→n
Π v has therefore a decreasing conversion, namely

u �m←← t→n′

Θ1∪Π′2∪Π3
t′ →→�n

Σ w Γ←← v.

s

�
�

�
�
�
�	

m
Pp

u

@
@
@
@
@
@R

n1

Π1

v1Π1 ∈ Pp\{p}
66

�m

t
@
@@R

�n1

Θ1
t′1

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

Θ2

w1

Θ2 ./Π2

--�n1

Σ≥P p

@
@
@RΠ2

n2

v2

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

Γ

Γ#Π3

@
@
@R

n3

Π3

v

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

Γ

n = sup{n1, n2, n3}

@
@
@R

Π′2

�n2

w2

@
@
@R

�n3
Π3

w

@
@
@R

Π′2 �n2

t′2
@
@
@R
�n3Π3

t′

--�n1

Σ

--�n1

Σ
-

�n

Θ1 ∪ Π′2 ∪ Π3

Figure 4.5: Proof of Theorem 4.4.5, Case 2

69

4.4. Left-Linear Systems

3. (∃Qq ∈ Π) p ∈ Qq. We first split the step s →n
Π v into s →n1

{Qq}

v′ →n3
Π3

v where p ∈ Qq and Π3 = Π\{Qq}. By assumption, the
plain red/blue critical peak u ←mPp

s→n1

{Qq} v
′ admits the conversion

u �m←← t →�n1

Θ1
t′1 →→�n1

Σ w1 Γ←← v′ where Γ ≥P q, Σ ≥P q and
Θ1 ≥P q. Since Qq#Π3, we have Γ#Π3, Σ#Π3 and Θ#Π3. Then the
proof continues similarly as in Case 2.

Note that the rewrites from v to w in Figure 4.4 (i) are pairwise disjoint,
while those in Figure 4.4 (ii) are arbitrary, making these two figures incom-
patible when Π = {Qp}. In fact, we can define a more general, but also
more complex condition than the one given in Figure 4.4 (i).

Definition 4.4.6. Given a derivation t Γ←← s and a set Π of pairwise parallel
domains, we say that Γ and Π are overlap-free, written Γ ./∗ Π, if and only
if Γ = nil, or t Γ′←← t1 ←Pp

s, (∀Qq ∈ Π)Pp ./ Qq and one of the following
three conditions holds :

Case (i): Pp#Π, then Γ′ ./∗ Π.
Case (ii): (∃Qq ∈ Π) p >P Qq, then Γ′ ./∗ Π.
Case (iii): Π1 := {Qq ∈ Π | Qq >P Pp} 6= ∅, then Γ′ ./∗ (Π′1 ∪ Π2),

where Π2 = Π\Π1 and Π′1 := Π1/{Pp}.

Note that for any Θ,Π ∈ D#P , Θ ./∗ Π if Θ ./ Π. Then extensions of
Lemma 4.4.4 and Theorem 4.4.5 follow easily:

Lemma 4.4.7. Given a peak u Γ←← s →n
Π v such that Γ ./∗ Π, then

u →n′

Π′ t Γ′←← v for some t,Π′,Γ′ and n′ with n′ � n. If (Γ ∪ Π) ≥P p is
satisfied for some position p, then (Π′ ∪ Γ′) ≥P p. We shall overload the
word residual and call Π′ the residual of Π after the derivation s →→Γ u,
denoting it by Π/Γ.

Theorem 4.4.8. Assuming that parallel steps have labels which are strictly
larger than the labels of plain steps, a labelled positional rewrite relation
satisfying the axioms for disjoint and left-linear ancestor peaks is confluent
if its critical peaks satisfy the decreasing diagrams in Figure 4.4, replacing in
Figure 4.4 (i) Θ2 with Γ, and the bottom condition with the following one:

70

4.4. Left-Linear Systems

(∀Π′#Π s.t. Π′ >P Pp and v →Π′ v
′)

(Γ ./∗ Π′,Θ1#(Π′/Γ) and Σ#(Π′/Γ)).

Proof. The proof is the same as for Theorem 4.4.5, replacing Lemma 4.4.4
by Lemma 4.4.7.

With this new condition, take Π = {Qq} with p = q in Figure 4.4 (i),
giving then birth to a top critical peak. Then, the set Π′ satisfying the
condition above would be empty and the condition be trivially satisfied,
making both figures identical in this case. This explains the condition
Π ∈ Pp\{p} in Figure 4.4 (i), to avoid the duplication that would occur
with p = q.

The overlap-free condition on Γ and Π′ given in the theorem is somewhat
complicated, because we cannot talk about variables at the abstract level.
On the other hand, the condition will become quite simple at the concrete
level where the notion of variable is available. This lack of expressivity of
the abstract language is an obstacle for obtaining a better result.

4.4.1 First-Order Left-Linear Systems

Theorem 4.4.8 gives sufficient conditions for an abstract rewrite relation to
be confluent. We shall now consider the concrete case of first-order (term)
rewrite systems. To this end, we need to show that first-order rewriting
satisfies our axioms, and that the abstract notion of critical peaks leads to
the usual concrete notion of critical pairs.

Definition 4.4.9. Given a first-order term rewrite system R, a term u

rewrites in parallel to a term v at pairwise disjoint positions pi ∈ Pos(u)

with rules li → ri ∈ R, where i ∈ [1, n], written as u ⇒{p1,...,pn}R v, if
u|pi = liσi and v = u[r1σ1, . . . , rnσn]p1,...,pn for some substitutions {σi}i∈[1,n].

Here we use the coloured notation → instead of the uncoloured one ⇒.
We shall assume that the label of a plain rewrite step v ←Pp

u is the integer
0 while the label of a parallel step u→Π v is the integer 1, which satisfies
our abstract assumption that the labels of parallel steps are strictly larger

71

4.4. Left-Linear Systems

than that of plain steps. It also satisfies obviously the properties of labels
for parallel steps.

Definition 4.4.10. Given a first-order rewrite system R, a rule l→ r ∈ R,
a family of rules {gi → di}i≤n ⊆ R and a set of disjoint positions {pi ∈
FPos(l)}i such that the unification problem l|pi = gi has most general
unifier σ, then the pair (rσ, lσ[d1σ, . . . , dnσ]p1,...,pn) is a parallel red/blue
critical pair (a plain critical pair if n = 1) of the rules g1 → d1, . . . , gn → dn

onto l→ r at positions p1, . . . , pn. A top critical pair is a plain critical pair
with p1 = Λ. Others are subterm critical pairs. Plain blue/red critical pairs
are defined as expected.

There is no need for duplicating top critical pairs, we shall therefore
consider that they are plain blue/red pairs, as in the abstract case. Decreas-
ing diagrams for these pairs are obtained by instantiating the diagrams of
Figure 4.4 and formulating their conditions appropriately:

Definition 4.4.11. Plain blue/red critical pairs are said to be decreasing if
they satisfy the diagram of Figure 4.4 (ii).

Parallel red/blue critical pairs are said to be decreasing if they satisfy
the diagram of Figure 4.4 (i), replacing Θ2 by Γ, allowing domains that are
not disjoint, with the conditions Var(t′|Θ1) ⊆ Var(s|Π) and (∀ si →Θi

ti ∈
t′ →→Σ w)(Var(ti|Θi

) ⊆ Var(s|Π)).

This elegant condition is due to Toyama [Toy81] and used by Felgenhauer
in [Fel13b]. It indeed follows quite naturally in the case of first-order terms
from the abstract condition given at Figure 4.4. The condition allows to
merge the parallel step below a parallel critical pair with the parallel step
induced by its diagram, as we can see in the proof of Theorem 4.4.5. Note
however that Felgenhauer’s decreasing diagrams are different from ours since
the labelling technique is not the same: he uses rule-labelling, each rule
coming with an integer index. Rewrite steps, whether plain or parallel, use
as label the set of rule indexes implied in the rewrite (a singleton set in
case of plain rewrites). As a consequence, plain steps may have a bigger
label than parallel steps, which gives more flexibility for building decreasing

72

4.4. Left-Linear Systems

diagrams: in particular the steps between u and t in Figure 4.4 could be red
as well as blue in this case. An interesting question is whether our approach
is compatible with a more flexible schema for labelling plain and parallel
steps.

Theorem 4.4.12. A first-order term rewrite system R is confluent if all
its parallel red/blue subterm critical pairs, plain blue/red subterm critical
pairs and top critical pairs are decreasing.

Proof. We simply need to verify the axioms and apply Theorem 4.4.8.

4.4.2 When Plain Critical Pairs Suffice

The question we now investigate is whether parallel critical pairs are really
needed, or if plain critical pairs are enough. This question has received quite
a lot of attention in the past [Hue80, Toy88] under the name of parallel-
closedness. Proofs all follow the same proof pattern introduced by Huet,
by induction via a quite smart well-founded order. We will show how to
obtain it, and generalize it, in van Oostrom’s coloured labelled framework,
therefore hiding this smart induction within the use of the novel multi-
labelling technique. We shall as before state and prove our result at the
abstract level of labelled rewrite relations, therefore making it available to a
wider range of rewriting applications.

In this subsection, we use Σ̃ to denote heterogeneous sequences consist-
ing of domains and sets of pairwise parallel domains, since an arbitrary
conversion ←↔→

Σ̃
may contain both (plain) blue steps and (parallel) red steps

at the same time. We write Σ̃#Γ if ((∀Pp ∈ Σ̃)Pp#Γ) ∧ ((∀Π ∈ Σ̃) Π#Γ),
Σ̃ ≥P p if ((∀Pp ∈ Σ̃)Pp ≥P p) ∧ ((∀Π ∈ Σ̃) Π ≥P p). We also use specific
color to denote components or properties of steps in that specific color, for
example, s←↔→α

Σ̃
t meaning α is the sequence of labels of red steps in s←↔→

Σ̃
t.

All related abbreviations come as expected.
We need a lemma blending Lemma 4.4.2 with Lemma 4.4.3 before to

show the main result.

73

4.4. Left-Linear Systems

Lemma 4.4.13. Given conversion u ←↔→α
Σ̃
s →n

Π v such that Σ̃#Π, then
u→n′

Π t←↔→α
Σ̃
v for some t, n′, with n′ � n.

Proof. By induction on the number of steps in u←↔→α
Σ̃
s and application of

the axiom for disjoint peaks, Lemma 4.1.4 and our assumptions on labels.

The main result of this section states that decreasingness of plain critical
peaks implies the Church-Rosser property of rewriting:

Theorem 4.4.14. A labelled positional rewrite relation satisfying, (i) our
assumptions on labels and (ii) the axioms for disjoint and left-linear ancestor
peaks, is coloured Church-Rosser, hence confluent, if its plain critical peaks
enjoy the following local diagrams in Figure 4.6:

(i) Plain Red/Blue Critical Peaks

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n{Qq}
vp ∈ Qq

KK
≥P q �m

t
��

��
≥P q�n

w-
�n

≥P q
(ii) Plain Blue/Red Critical Peaks

q ∈ Pp\{p}

OR

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n{Qq}
v

II
≥P p �m

		

��
≥P q�n

w

s
�

�
�
�	

m
Pp

u

@
@
@
@R

n{Qq}
v� m

≥P p

Figure 4.6: Assumptions for (Left-Linear) Plain Critical Peaks

Proof. We apply Theorem 4.1.11 with two labels. To this end, we define an
appropriate labelling for the rewrite steps before to analyze the local peaks.

We (re-) label the plain step s→m
Pp
t by the sequence [m, 0], and the par-

allel step s→m
Π t by [m, |Π|] where |Π| denotes the size (that is, cardinality)

of the set Π. These labels for plain and parallel rewriting have the following
structure: the first label remains the same as the original one in L, and is
compared in the order �, while the second label is a natural number, which
is compared in the familiar order > on natural numbers.

The first label satisfies our assumptions on labels – in particular, the
(first) label for parallel rewrites is strictly larger than the (first) label for

74

4.4. Left-Linear Systems

plain rewrites –, the axioms for disjoint and left-linear ancestor peaks, and
the assumptions for plain critical peaks. The second label will be used in
case the first fails to conclude. It turns out that it does not need to satisfy
(and actually does not satisfy) the axioms and assumptions that are required
from the first. Theorem 4.1.11 allows us to use a sequence of labels possibly
satisfying different assumptions, which is impossible with Theorem 4.1.5
even if grouping different labels as a single tuple of labels.

In the sequel, we shall omit the second label when the first allows to
conclude.

Given a local peak v ←[m,0]
Pp

u→[n,|Π|]
Π w, we distinguish three cases:

1. (∀Qq ∈ Π)Pp ./ Qq. Using the first label, Lemma 4.4.4 concludes this
case.

2. (∃Qq ∈ Π) p ∈ Qq. The proof is similar to Case 3 of the proof of
Theorem 4.4.5, using Lemma 4.4.13 instead of Lemma 4.4.2 and 4.4.3.

3. (∃Qq ∈ Π) q ∈ Pp\{p}. As shown in Figure 4.7 (i), we first select
Qq ∈ Π such that q ∈ Pp\{p} and split the local peak into v ←mPp

u→n1

{Qq} w
′ →n2

Π′ w according to Lemma 4.1.4, where Π′ := Π \ {Qq}.
Since n = sup{n1, n2} by assumption on labels, we get n1 � n, n2 � n.
By assumption, we have either v α←← t′ ←↔→β

Σ̃
w′ for some t′, α, β, Σ̃

with α�m, β�n1 and Σ̃ ≥P q, or v ←m w′. The proof for the former
case is represented in Figure 4.7 (ii). Since Σ̃ ≥P q, Σ̃#Π′, hence
t′ →n′2

Π′ t←↔→β

Σ̃
w for some t, n′2 with n′2 � n2 by Lemma 4.4.13. It then

results in a decreasing diagram (using the first label only) shown in
the figure. In the latter case, the conversion v ←[m,0] w′ →[n2,|Π′|]

Π′ w is
either decreasing for the first label if n2 � n, or is fixed for the first
label by Lemma 4.1.9 while decreasing for the second, as displayed at
Figure 4.7 (iii), which concludes the whole proof.

Following Felgenhauer [Fel13a], the right diagram of Figure 4.6 (ii) can
probably be relaxed by adding extra blue steps from v at arbitrary positions
larger than q. We have not yet succeeded capturing this improvement in
our setting.

75

4.4. Left-Linear Systems

(i)

q ∈ Pp\{p}

u

�
�
�

��	

m
Pp

@
@R{Qq}
n1

w′

@
@RΠ′ := Π\{Qq}
n2

v w

(ii)

u

�
�

�
��	

m

Pp

@
@R{Qq}
n1

w′

@
@RΠ′
n2

v w
�

�
�
��		

��

Σ̃≥P q
�n1

@
@II
�m

t′

@
@R
�n2

Π′

�
�

�
��		

��

Σ̃
�n1

t

(iii)

u

�
�

�
��	

[m, 0]

Pp

@
@
@
@@R

[n, |Π|]
Π

v w

v �
[m, 0]

w′
�
�
�
���

Π′
[n2, |Π′|]

The black dashed lines here relate two copies of a same term in order
to make the picture look better.

Figure 4.7: Proof of Theorem 4.4.14, Case 3

Now we can turn our attention to concrete first-order rewrite systems,
using the above abstract result to prove Toyama’s generalization [Toy88] of
Huet’s parallel closedness criterion [Hue80, Lemma 3.3]. We still use two
kinds of rewrite relations: the original one as blue, and the parallel one as
red.

Lemma 4.4.15 ([Toy88]). A left-linear term rewrite system R is confluent
if for every plain subterm critical pair 〈u, v〉 we have v → u, and for every
top critical pair 〈u, v〉 we have v → t←← u for some t.

Proof. We label a plain step v ← u rewritten at position p by 〈0, |w|〉 where
w = v|p, and all parallel steps by tuple 〈1, 0〉. Then to apply Theorem 4.4.14,
we need to verify the assumptions on labels and the axioms on peaks.

Toyama’s proof is very different, based on a slight generalization of
Hindley–Rosen’s Lemma that we already alluded to. As a result, it is much
more involved. A further advantage of our proof, using colours and labels, is
that it makes clear the origin of these different criteria for top and subterm
critical pairs. We are indeed very surprised that Toyama was able to come
up with the right condition using Huet’s proof technique. Here, it follows
quite naturally from the distinction between two sorts of plain critical peaks.

76

4.5. Conclusion

Our proof technique actually shows that it is possible to generalize a
little bit Toyama’s condition for top critical pairs, as we do now.

Definition 4.4.16. A rewrite rule l → r is called size-increasing if (∀x ∈
Var(l)) #x(l) ≤ #x(r) and |l| ≤ |r|. Given a term rewrite system R, we
denote by Rs↑ its maximum subset of size-increasing rules, and by →Rs↑

the
corresponding rewrite steps.

Lemma 4.4.17. A left-linear term rewrite system R is confluent if for
every plain subterm critical pair 〈u, v〉 we have v → u, and for every top
critical pair 〈u, v〉 we have v (6=Λ)∗

Rs↑
←← t′ (6=Λ)∗←← t→ w←← u for some t, t′, w

provided the rewrite positions of t′ (6=Λ)∗←← t are pairwise disjoint.

In fact, there are various ways to generalize Toyama’s condition, based
on our proof technique, using in particular variations of the size-increasing
notion. We however prefer the present notion, which is clear and simple
enough, and leave the possible variations to the interested reader.

4.5 Conclusion

In this chapter, we have described a general framework for proving confluence
(actually Church-Rosser) properties of rewrite systems. Our approach is
axiomatic, in the sense that we hide the term structure as long as possible,
and derive concrete results from the abstract ones by first verifying the
axioms and then instantiating the abstract conditions.

This abstract framework is based on a generalization of the decreasing
diagrams approach which turns local labels into global measures on proofs by
defining appropriate orders on conversions. It further blends this framework
with the abstract notion of positions recently introduced by Jouannaud and
Li. Thanks to the abstract notion of positions, we can reduce Church-Rosser
properties of abstract rewrite relations to simple labelling properties of
certain local peaks called critical. Thanks to the use of several labels, we can
use complex inductive arguments which are actually hidden in the order used
on conversions. Finally, the use of colours to generalize the Church-Rosser

77

4.5. Conclusion

property allows us to encode and simplify old techniques based on the use
of parallel rewriting to study the properties of plain rewriting.

We have devoted limited effort to instantiate our abstract results to
concrete cases, since these instantiations are mostly straightforward in
the plain rewriting setting. These simple technicalities should of course
be carried out carefully in future work. Indeed, our ultimate goal is to
capture the entire field of confluence (or Church-Rosser) proofs with a single
abstract theorem reducing the Church-Rosser property of a NARS to the
existence of decreasing diagrams for its critical peaks, classified with respect
to the three manageable sub-components of NARSes, the terminating, linear
non-terminating, and left-linear non-terminating ones.

The case of conditional rewriting is another potential subject for future
work. However, since conditions serve filtering out critical pairs instances,
this issue is somehow orthogonal to our effort. In this respect, the general
case of NARSes is more important to us. This is the direction we want to
investigate first. Such a result could become the basis of a very general
implementation in which different concrete cases would be implemented via
appropriate plug-ins.

78

Five

Confluence of Rewrite Unions

We have already shown the power of decreasing diagrams on abstract rewrit-
ing, an abstract level, and abstract positional rewriting, a slightly more
concrete level. It is time to move our focus onto concrete term rewrite
systems.

With termination, Knuth and Bendix [KB70] followed by Huet [Hue80]
proved that confluence can be reduced to joinability of critical pairs. The
basis of this result at the abstract level, Newman’s Lemma, has been captured
by the decreasing diagrams framework. On the other hand, Felgenhauer
succeeded in reducing confluence of left-linear rewrite systems to the existence
of decreasing diagrams of parallel critical pairs [Toy81, Gra96], without
termination assumption [Fel13b]. It is our ambition to develop a criterion
based on critical pair capturing both situations together.

In [JvO09], the decreasing diagrams method is applied to concrete term
rewrite systems, opening a way to an analysis of non-terminating rewrite
systems in terms of the joinability of their critical pairs. The idea is to
split the set of rules into a set RT of terminating rules and a set RNT of
non-terminating ones. While left-linearity is required from RNT as shown
by simple examples, it is not from RT .

In this chapter, following the idea from [JvO09], we deliver the first
true generalization of Knuth–Bendix test to rewrite systems made of two
subsets, RT of terminating rules and RNT of possibly non-terminating, rank

79

5.1. Rewriting and Decomposition

non-increasing, left-linear rules. The main idea of our approach is to reduce
confluence – via decreasing diagrams – to joinability of the finitely many
critical pairs of rules in RT within rules in RT ∪RNT and the finitely many
rigid parallel critical pairs of rules in RNT within rules in RT ∪RNT . The
result is obtained thanks to a new notion, sub-rewriting, which appears as
the key to glue together many concepts that appeared before in the study
of termination and confluence of union systems, namely: caps and aliens,
rank non-increasing rewrites, parallel rewriting, decreasing diagrams, stable
terms, and constructor-lifting rules. This culminates with the discussion on
a mysterious example raised by Huet [Hue80], which is a critical-pair-free,
non-terminating, non-confluent system. We show that the computation of
critical pairs should then involve unification over infinite rational trees, and
then, indeed, Huet’s example is no longer critical-pair-free.

Organization. Section 5.2 is devoted to the main result and its proof.
We generalize this result in Section 5.3. Relevant literature is analyzed in
Section 5.4.

5.1 Rewriting and Decomposition

In this chapter, we assume a set of variables Y disjoint from X and a bijective
mapping ξ from the set of positions to Y. Given F ⊆F , a term t is called
F -headed if t(Λ) ∈ F . The notion extends to substitutions.

5.1.1 Rewriting

Our goal is to reduce the Church-Rosser property of the union of a termi-
nating rewrite relation RT and a non-terminating relation RNT to that of
finitely many critical pairs. The particular case where RNT is empty was
carried out by Knuth and Bendix and is based on Newman’s Lemma stating
that a terminating relation is Church-Rosser if and only if its local peaks
are joinable. The other particular case, where RT is empty, was considered
by Orthogonality and is based on Hindley–Rosen’s Lemma stating that a

80

5.1. Rewriting and Decomposition

(non-terminating) relation is Church-Rosser provided its local peaks are
strongly joinable. The general case requires using both, which has been
made possible by van Oostrom, who introduced decreasing diagrams to
replace joinability.

We first introduce our notion of parallel rewriting:

Definition 5.1.1. Given a term rewrite system R, a term u rewrites in
parallel (rigidly) to v at a set P = {pi}n1 of pairwise disjoint positions
with rule l → r ∈ R, written u ⇒P

l→r∈R v, if (∀pi ∈ P)u|pi = lσi and
v = u[rσ1, . . . , rσn]P . The term lσi is a redex. We may omit P , R or l→ r,
and replace P by a property that it satisfies.

We call our notion of parallel rewriting rigid. It departs from the
literature [Hue80, ZFM15] by imposing the use of a single rule. The idea of
using single rule in parallel rewriting has appeared in [vO08a, Theorem 6].
Rigid parallel rewriting extends naturally to lists of terms of the same length,
hence to substitutions of the same domain.

Plain (term) rewriting introduced in Chapter 2 is actually obtained as
the particular case of parallel rewriting when n = 1. We then still use the
usual notation u→p

l→r∈R v when rewriting is plain. As a consequence, most
of the following definitions given for parallel rewriting will degenerate into
corresponding plain versions, which have been introduced in Chapter 2,
when n = 1.

Consider two parallel rewrites issuing from the same term u with possibly
different rules, say u ⇒P

l→r v and u ⇒Q
g→d w. Following Huet [Hue80], we

distinguish three cases,
P#Q, that is, (∀p ∈ P)(∀q ∈ Q) p#q ; (disjoint case)
P = {p}, Q >P p · FPos(l) ; (ancestor case)
P = {p}, Q ⊆ p · FPos(l) ; (critical case)

all other cases being a combination of the above three.

Definition 5.1.2 (Rigid Parallel Critical Pairs). Given a rule l→ r, a set
P = {pi ∈ FPos(l)}n1 of disjoint positions and n copies {gi → di}n1 of a
rule g → d sharing no variable among themselves nor with l→ r, such that

81

5.1. Rewriting and Decomposition

σ is a most general unifier of the terms l, g1, . . . , gn at P . Then lσ is the
overlap and 〈rσ, lσ[d1σ, . . . , dnσ]P 〉 the rigid (parallel) critical pair of g → d

on l→ r at P (a critical pair if n = 1).

We now lift the parallel rewrite relation to a labelled parallel rewrite
relation, equipping each rewrite step by a label from L with a partial quasi-
order � whose strict part � is well-founded. We write u ⇒P,m

l→r∈R v for a
labelled parallel rewrite step from u to v at positions P with label m and
rule l → r ∈ R. Indexes P,m,R, l → r may be omitted, or replaced by
properties they satisfy.

5.1.2 Decreasing Diagrams

In this chapter, we will apply the decreasing diagrams method in its direc-
tional version, that is Definition 2.2.5. Sometimes the mention of the word
“joinably” is omitted for convenience. A notion of stability with respect to
contexts and substitutions are needed.

Definition 5.1.3. A (joinably) decreasing diagram D is stable if C[Dγ] is
(joinably) decreasing for arbitrary context C[·] and substitution γ.

In this chapter, we will also make a heavy use of Corollary 2.2.12 instead
of Theorem 2.2.6. With a different choice of the set T in Corollary 2.2.12, it
will be the basis of our main Church-Rosser result to come.

5.1.3 Decomposition

From now on, we assume two signatures FT and FNT satisfying

(A1) FT ∩ FNT = ∅.

and proceed by slicing terms into homogeneous subparts, following definitions
in [JT08] and Chapter 3, but with a slightly different notion of cap.

Definition 5.1.4. A term s ∈ T (FT ∪FNT ,X) is homogeneous if it belongs
to T (FT ,X) or to T (FNT ,X); otherwise it is heterogeneous .

82

5.2. From Church-Rosser to Critical Pairs

Thanks to assumption (A1), a heterogeneous term can be uniquely
decomposed (w.r.t. Y and ξ) into a topmost homogeneous part, its cap, and
a multiset of remaining subterms, its aliens, headed by symbols of the other
signature.

Definition 5.1.5 (Caps, Aliens). Let t ∈ T (FT ∪ FNT ,X). An alien of t
is a maximal non-variable subterm of t whose head does not belong to the
signature of t’s head. We use AlPos(t) for its set of (necessarily) pairwise
disjoint alien positions, A(t) for its list of aliens from left to right, and
CaPos(t) := {p ∈ Pos(t) | p 6≥P AlPos(t)} for its set of cap positions. We
(re-) define the cap t and alien substitution γt of t as follows:

(i) Pos(t) := CaPos(t) ∪ AlPos(t);
(ii) (∀p ∈ CaPos(t)) t(p) = t(p);
(iii) (∀p ∈ AlPos(t)) t(p) = ξ(p) ∧ γt(ξ(p)) = t|p.

It is worth noting that the caps defined in this chapter are different from
those in Chapter 3, in which two variables are identical if and only if their
corresponding aliens are identical. In fact, the notion of caps in Chapter 3
corresponds to a notion of hats that we will introduced in the next section.

The rank of t, denoted rank(t), remains the same as in Chapter 3 being
1 plus the maximal rank of its aliens.

Fact. Given t ∈ T (FT ∪ FNT ,X), then t = tγt.

Example 5.1.6. Let FT = {g3}, FNT = {f 3, 0, 1} and a term t =

f(g(0, 1, 1), g(0, 1, x), g(0, 1, 1)). Then t has cap f(y1, y2, y3) and aliens
g(0, 1, 1) and g(0, 1, x). g(0, 1, 1) has cap g(y1, y2, y3) and homogeneous
aliens 0 and 1, while g(0, 1, x) has cap g(y1, y2, x) and the same set of
homogeneous aliens. Hence, the rank of t is 3.

5.2 From Church-Rosser to Critical Pairs

Definition 5.2.1. A rewrite rule l → r is rank non-increasing if for all
rewrites u →l→r v, rank(u) ≥ rank(v). A rewrite system is rank non-
increasing if all its rules are.

83

5.2. From Church-Rosser to Critical Pairs

Rank non-increasingness is strongly relevant to our proof technique for
the main result, allowing both to apply induction on the rank of terms, and
to employ the decreasing diagrams method on subsets of terms with respect
to the ranks.

From now on, we assume we are given two rewrite systems RT and RNT

satisfying:

(A2) RT is a terminating rewrite system in T (FT ,X) ;

(A3) RNT is a set of rank non-increasing, left-linear rules f(~s)→ g(~t) such
that f, g ∈ FNT and ~s,~t ∈ T (FT ∪ FNT ,X) ;

(A4) if g → d ∈ RT overlaps l → r ∈ RNT at p ∈ FPos(l), then l|p ∈
T (FT ,X) .

Note that assumption (A3) forbids collapsing rules in RNT .
Our goal is to show that RT ∪RNT is Church-Rosser provided its critical

pairs have appropriate decreasing diagrams.

5.2.1 Proof Strategy

Since RT and RNT are both rank non-increasing, by assumption for the latter
and homogeneity assumption of its rules for the former, we are enabled to
prove our result by induction on the rank of terms. To this end, we introduce
the set Tn(FT ∪ FNT ,X) of terms of rank at most n. Since rewriting is
rank non-increasing, Tn(FT ∪ FNT ,X) is closed under diagram rewriting
with a set of joinably decreasing diagrams. This is why we adopted this
restricted form of decreasing diagrams rather than the more general form as
in Definition 2.2.4.

We say that two terms in Tn(FT ∪FNT ,X) are n-(RT ∪RNT)-convertible
(in short, n-convertible) if their conversion involves terms in Tn(FT ∪FNT ,X)

only. We shall assume that n-(RT ∪ RNT)-convertible terms are joinable,
and show that (n + 1)-(RT ∪ RNT)-convertible terms are joinable as well
by exhibiting joinably decreasing diagrams for all their local peaks, using
Corollary 2.2.12.

84

5.2. From Church-Rosser to Critical Pairs

Since RNT may have non-linear right-hand sides, we adopt the trick
from [vO08a] to use parallel rewriting with RNT -rules to enable the existence
of decreasing diagrams for ancestor peaks in case RNT is below RNT . The
main difficulty, however, has to do with ancestor peaks v ←qRNT

u→p
RT

w

for which RNT is below RT . Due to non-left-linearity of the rules in RT ,
the classical diagram for such peaks, v →→RNT

s→p
RT

t RNT
←← w, can hardly

be made decreasing in case s →p
RT

t must be a facing step, since the side
steps v →→RNT

s are usually with labels identical to that of the top RNT -step.
One way out is to make the labels of RT -steps strictly larger than those of
RNT -steps, which will cause problems in ancestor peaks v ←qRNT

u→p
RT

w

where RT is below RNT . Another way out is to group them together as a
single facing step from v to t. To this end, we introduce a specific rewrite
relation:

Definition 5.2.2 (RT -Sub-Rewriting). A term u RT -sub-rewrites (sub-
rewrites for short) to v at p ∈ Pos(u) with l→ r ∈ RT , written u→p

RTsub
v

if the following conditions hold:
(i) FPos(l) ⊆ CaPos(u|p) ;
(ii) u→→≥Pp·AlPos(u|p)

RT∪RNT
w = u[lσ]p ;

(iii) v = u[rσ]p .

Condition (ii) allows arbitrary rewriting in A(u|p) until an RT -redex is
obtained. Thanks to assumptions (A1–3), these aliens remain aliens along
the derivation from u to w, implying (i). Condition (i) will however be
needed later when relaxing assumptions (A1) and (A3). Note also that
the cap of w|p may collapse in the last step, in which case v|p becomes
FNT -headed.

5.2.2 A Hierarchy of Decompositions

RT -sub-rewriting suggests another notion of cap for FT -headed terms. Let
ζn be a bijective mapping from Y ∪X to n-(RT ∪RNT)-convertibility classes
of terms in T (FT ∪ FNT ,X), which is the identity on X . The rank of a
term being at least one, 0-(RT ∪RNT)-convertibility does not identify any

85

5.2. From Church-Rosser to Critical Pairs

two different terms; hence ζ0 is a bijection from Y ∪ X to T (FT ∪ FNT ,X).
Similarly we denote by ζ∞ a bijective mapping from Y ∪ X to (RT ∪RNT)-
convertibility classes, abbreviated as ζ.

Definition 5.2.3 (Hats). The hat at rank n of a term t ∈ T (FT ∪FNT ,X)

is the term t̂n defined as:
- if t is FNT -headed, t̂n = ζ−1

n (t) ;
- otherwise, (∀p ∈ CaPos(t)) t̂n(p) = t(p) and

(∀p ∈ AlPos(t)) t̂n(p) = ζ−1
n (t|p) .

Since n-(RT ∪RNT)-convertibility is an infinite hierarchy of equivalences
identifying more and more terms, given t, {t̂i}i is an infinite sequence of
terms, each of them being an instance of the previous one, which is stable
from some index nt. We use t̂ for t̂∞. Note that we overload here the
notation which is used in Chapter 3 for caps.

Lemma 5.2.4. Let t ∈ T (FT ∪ FNT ,X) and m ≥ n ≥ 0. Then t̂ •≥ t̂m •≥
t̂n •≥ t.

The associated variable substitution from t̂n to t̂m is ξn,m, omitting m when
infinite.

Note that ξn,m does not actually depend on the term t, but only on
the m- and n-convertibility classes. Also, t̂0 corresponds to the case where
identical terms only are identified by ζ−1

0 , while t̂ corresponds to the case
where any two (RT ∪RNT)-convertible terms are identified by ζ−1. In the
literature, t̂0 is usually called a hat (or a cap, which is the case in Chapter 3).

Example 5.2.5. Let FNT = {f 3},FT = {g3, 0, 1} and RT = {1 → 0}.
Then, g(f(1, 0, x), f(1, 0, x), 1) →2·1

1→0 g(f(1, 0, x), f(0, 0, x), 1). 0-hats of
these terms are g(y, y, 1) and g(y, y′, 1), respectively. Their 1-hats are
the same as their 0-hats, since their aliens have rank 2, hence cannot be
1-convertible. On the other hand, their (i ≥ 2)-hats are g(y, y, 1) and
g(y, y, 1), since f(1, 0, x) and f(0, 0, x) are 2-convertible.

We have the following lemmas, with ζt = ζ0|Var(t̂0).

Lemma 5.2.6. Let t ∈ T (FT ∪ FNT ,X). Then t = t̂0ζt.

86

5.2. From Church-Rosser to Critical Pairs

Lemma 5.2.7. Let u →p
RT

v, p ∈ CaPos(u). Then û0 →p
RT

v̂0 and
(∀y ∈ Var(v̂0)) ζu(y) = ζv(y).

Lemma 5.2.8. Let u(Λ) ∈ FT and u →p
RT∪RNT

v at p ≥P AlPos(u).
Then CaPos(u) = CaPos(v), (∀q ∈ CaPos(u))u(q) = v(q), AlPos(u) =

AlPos(v), (∀q∈AlPos(u))u|q →= RT∪RNT
v|q.

Main properties of RT -sub-rewriting are the following:

Lemma 5.2.9. Let u be an FT -headed term of rank n + 1 such that
u→≥PAlPos(u)

RT∪RNT
v. Then, (∀i ≥ n) ûi = v̂i.

Proof. Since both sides of rules in RNT are FNT -headed, AlPos(u) =

AlPos(v). Rewriting using both RT and RNT in aliens does not change
CaPos(u), and does not change (i ≥ n)-convertibility either, hence the
statement.

Lemma 5.2.10. Let u be of rank n + 1, p ∈ CaPos(u), and u →p
RTsub

v.
Then, (∀i ≥ n) ûi →p

RT
v̂i.

Proof. By definition of sub-rewriting, we get u→→≥Pp·AlPos(u|p)
RT∪RNT

w →p
l→r∈RT

v,
therefore w|p = lσ for some substitution σ and v = w[rσ]p. Let i ≥ n.

By Lemma 5.2.7, ŵ0 →p
l→r v̂

0. By repeated applications of Lemma 5.2.8,
CaPos(u) = CaPos(w), (∀q ∈ CaPos(u))u(q) = w(q), and A(u) rewrites to
A(w); hence aliens in A(u) are n-convertible if and only if the corresponding
aliens in A(w) are n-convertible. By definition 5.2.3, we get ûn = ŵn.

Putting things together, ûi = ûnξn,i = ŵnξn,i = ŵ0ξ0,nξn,i →p v̂0ξ0,nξn,i =

v̂i.

Definition 5.2.11 (Rewrite Root). The root of a rewrite u→p
RTsub

v is the
minimal position, written p̂, such that (∀q : p ≥P q ≥P p̂)u(q) ∈ FT .

Note that u|p is a subterm of u|p̂ . By monotonicity of rewriting:

Lemma 5.2.12. Let u→p
RTsub

v. Then û|p̂ →RT
v̂|p̂.

87

5.2. From Church-Rosser to Critical Pairs

5.2.3 Main Result

We assume from here on that rules are indexed, those in RT by 0, and those
in RNT by (non-zero) natural numbers, making RNT into a disjoint union
{Ri}i∈I where I ⊆ i > 0. Having a strictly smaller index for RT -rules is no
harm nor necessity.

Our relations, parallel rewriting with RNT and sub-rewriting with RT ,
are labelled by triples made of the rank of the rewritten redex first, the index
of the rule used, and – approximately – the hat of the considered redex,
ordered by the well-founded order � := (>,>,→+

RT
)lex. More precisely,

u⇒P
Ri>0

v is given label 〈k, i,_〉, where k = max{rank(u|pi)}pi∈P ;
u →q

RTsub
v is given label 〈k, 0, û|q′〉, where k = rank(u|q) and q′ is the

root q̂ of q.

The third component of an RNT -rewrite is never used. The notation ⇒−
is used for the reflexive closure of ⇒. We require decreasing diagrams for
critical pairs to be stable and to satisfy a variable condition introduced by
Toyama [Toy81], see also [ZFM15]:

Definition 5.2.13. The RNT rigid critical peak v ←Λl→r u⇒Q
g→d w (resp.,

rigid critical pair 〈v, w〉) is naturally decreasing if it has a stable joinably
decreasing diagram in which:

(i) step s⇒−Q′ s′ facing u⇒Q
g→d w uses the same rule g → d and satisfies

Var(s′|Q′) ⊆ Var(u|Q);
(ii) step t⇒− t′ facing u→Λ

l→r v uses the same rule l→ r.

Note the variable condition is automatically satisfied for an overlapping
at the root.

Definition 5.2.14. The RNT–RT critical peak v ←Λl→r∈RNT
u →q

RT
w

(resp., critical pair 〈v, w〉) is naturally decreasing if it has a stable joinably
decreasing diagram whose step t⇒−P t′ facing u→Λ

l→r∈RNT
v uses the same

rule l→ r.

Theorem 5.2.15 (Church-Rosser Unions). A rewrite union RT ∪ RNT

satisfying:

88

5.2. From Church-Rosser to Critical Pairs

– assumptions (A1–4),
– RNT–RT critical pairs are naturally decreasing,
– RNT rigid critical pairs are naturally decreasing,

is Church-Rosser if and only if its RT critical pairs are joinable in RT .

Proof. While the “only if” direction is trivial, we are going to prove the “if”
direction.

Since →RT∪RNT
⊆ (→RTsub

∪ ⇒RNT
) and (→RTsub

∪ ⇒RNT
)∗ =→→RT∪RNT

,
RT ∪ RNT is Church-Rosser iff →RTsub

∪ ⇒RNT
is. By induction on the

rank, we therefore show that every local peak v (←RTsub
∪ RNT

⇐)u (→RTsub

∪ ⇒RNT
)w, where rank(u) = n+ 1, enjoys a joinably decreasing diagram,

implying confluence on terms of rank n+ 1 by Corollary 2.2.12.
The proof is divided into three parts according to the considered local

peak. Each key case is described by a picture to ease the reading, in which
→, → and → are used for plain steps with RT , RTsub and RT ∪ RNT ,
respectively, while → is used for parallel (sometimes plain) steps with RNT .
Every omitted case is symmetric to some considered case, or is easily solved
by induction in case all rewrites take place in the aliens of u.

1. Consider a local peak v P,〈k,i,_〉
RNT
⇐ u ⇒Q,〈m,j,_〉

RNT
w. Following [Fel13b],

we carry out first the particular case of a root peak, for which a rule
l→ r ∈ Ri applies at the root of u.

a) Root case. Although our labelling technique is different from
that of [Fel13b], with ranks playing a prominent role here, the
proof can be adapted without difficulty, as described in Figure 5.1.
Let Q1 := {q ∈ Q | q ∈ FPos(l)}. We first split the parallel
rewrite from u to w into two successive parallel steps, at positions
in Q1 first, then at positions in Q2 = Q \ Q1. Note that the
peak is specialized into ancestor peak when Q1 = ∅. The inner
part of the figure uses the fact that l unifies at Q1 with some
RNT -rule, yielding a rigid critical peak 〈v′, u′, w′〉 of which the
peak 〈v, u, w′σ〉 is a σ-instance. By assumption, 〈v′, w′〉 has a
stable diagram which is instantiated by σ in the figure. Since

89

5.2. From Church-Rosser to Critical Pairs

Q1 ∪ Q2 are pairwise disjoint positions and Q2 >P FPos(w′),
by left-linearity of RNT , w′σ ⇒Q2

Rj
w′σ′ = w. Now, we can pull

that parallel rewrite from w′σ to s′σ as indicated, using stability
and monotonicity of rewriting, thereby making ancestor redexes
commute.

u = u′σ
�

�
�

�
�
�

�
�
�

�
�
�+

Λ, i

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

Q1,j

v = v′σ w′σ
Q
Q
Qs

Q
QQs

Q
Q
Qs

Q
QQs

Q
Qs

�
�

��+

�
�

��+

�
�
��+

�
�
�+
�

��+

?

?

?

?

?

Q
QQs

Q
Qs

�
�

��+

�
�

��+

�
�
��+

�
�
�+
�

��+

i

i

Q′
1,j

Q2, j

j

j

j

Q′
2, j

w = w′σ′

sσ

s′σ

w′′σ

s′σ′

w′′σ′

j

j

Figure 5.1: RNT Root Peak

Finally, Toyama’s variable condition ensures that Q′1 and Q′2 are
disjoint sets of positions; hence sσ rewrites to s′σ′ in one parallel
step with the same j-rule as u ⇒ w. The obtained diagram is
decreasing as a consequence of stability of the rigid critical pair
diagram and rank non-increasingness of rewrites.

b) For the general case, we proceed again as in [Fel13b]. For every
position p ∈ min(P ∪ Q), the peak v P,〈k,i,_〉

RNT
⇐ u ⇒Q,〈m,j,_〉

RNT
w

induces a root peak v|p P ′,〈k′,i,_〉
RNT
⇐ u|p ⇒Q′,〈m′,j,_〉

RNT
w|p. As just

shown, root peaks have decreasing diagrams; hence, for each
p, we have a decreasing diagram between v|p and w|p. Notice

90

5.2. From Church-Rosser to Critical Pairs

that in the decreasing diagram we have shown, each facing step
– if it exists – uses the same rule as that one it faces. Since
positions in min(P ∪Q) are pairwise disjoint, these decreasing
diagrams combine into a single decreasing diagram: in particular,
the facing steps ⇒〈m′,j,_〉RNT

(resp., 〈k
′,i,_〉
RNT
⇐) yield the facing step

⇒〈m,j,_〉RNT
(resp., 〈k,i,_〉RNT

⇐).

2. Consider a local peak v ←p,〈k,0,û|p̂〉
RTsub

u →q,〈m,0,û|q̂〉
RTsub

w. We denote by
l → r and g → d the RT -rules applied from u to v at p and u to w
at q, respectively. We discuss cases depending on p, p̂, q, q̂, instead of
only p, q as usual.

a) Disjoint case: p#q. The usual commutation lemma yields

v →q,〈m,0,v̂|q̂〉
RTsub

t ←p,〈k,0,ŵ|p̂〉
RTsub

w for some t. It is decreasing easily by
Lemma 5.2.12 or Lemma 5.2.9, decided by comparison between p̂
and q̂.

b) Root ancestor case: q̂ >P p. By Definition 5.2.11, m < k; hence
q ≥P AlPos(u|p̂). This case is thus similar to the RT above RNT

ancestor case (Case 3b) considered later, pictured at Figure 5.3.

c) Ancestor case: q̂ = p̂; hence k = m, with q >P p · FPos(l). This
is the usual ancestor case, within a given layer with respect to
the signature change from the root of u. The proof is depicted in
Figure 5.2, simplified by taking p = Λ.

Using Definition 5.1.5 and Lemma 5.2.6, then, by Definition 5.2.2,
the rewrite from u = u γu, to v = v̂0ζv (resp., w = ŵ0ζw) factors
out through v′ = v̂′

0
ζv′ (resp., w′ = ŵ′

0
ζw′). By Lemma 5.2.7, ζv

and ζv′ coincide on Var(v̂′
0
), and so do ζw and ζw′ on Var(ŵ′

0
). By

Lemma 5.2.8, A(u) rewrites to both A(v′) and A(w′), hence each
alien in A(v) and A(w) originates from some in A(u). It follows
that the aliens in A(v) and A(w) originating from the same one
in A(u) are n-convertible. For each y ∈ Var(v̂n) ∪ Var(ŵn), we
choose all aliens of v and w which belong to the n-convertibility
class ζn(y), and repeatedly apply induction hypothesis to get

91

5.2. From Church-Rosser to Critical Pairs

�
�
�

�
�

@
@
@
@
@

l

�
�
@
@g

q1=q

�
�
@
@g

qm

· · ·

ûn =

�
�
�	

@
@
@R

v̂n ŵn

A
A
AU

A
AAU

�
�
��

�
���

t s�

Λ q = q1

q2, . . . , qm

Λ

u = u γu

�
�
�

�
�
�	

�
�
�

�
�
�	

sub

@
@
@
@
@
@R

@
@
@
@
@
@R

sub

v̂′
0
ζv′ ŵ′

0
ζw′

?

Λ

?

q = q1

v = v̂0ζv ŵ0ζw = w

??

sub

??

sub

vn = v̂nζv↓nw ŵnζv↓nw = wn

A
A
A
AU

A
A
A
AU

�
�
�
��

�
�
�
��

q2, . . . , qm

tζv↓nw sζv↓nw� Λ

Figure 5.2: RT Ancestor Peak

a common reduct ty of them, mapping y to ty to construct the
substitution ζv↓nw. Letting vn be the term v̂nζv↓nw, v rewrites to
vn. Similarly, w rewrites to wn. This technique, which we call
equalization, of equalizing all n-convertible aliens to construct
ζv↓nw is crucial in our proof. The last three steps follow from
the inner ancestor diagram between hats of u, v, w, which upper
part follows from Lemma 5.2.10 and bottom part from the fact
that q >P p · FPos(l), resulting in an ancestor peak between
homogeneous terms. Such an ancestor peak has an easy stable
decreasing diagram, which bottom part can be therefore lifted
to the outside diagram. Using Lemmas 5.2.9 and 5.2.12, we can
checking that the obtained diagram is decreasing.

d) Critical case: q̂ = p̂; hence k = m, with q ∈ FPos(l). This is the
usual critical case, happening necessarily within same layer. The

92

5.2. From Church-Rosser to Critical Pairs

proof works as in Case 2c, except that the inner diagram is now
of a critical peak. Since the RT critical peak has a joinability
diagram by assumption, thanks to stability of rewriting, it can
be lifted to the outer diagram, yielding a decreasing diagram for
the starting peak.

3. Consider a local peak v ←p,〈k,0,û|p̂〉
RTsub

u ⇒Q,〈m,j,_〉
RNT

w. There are three
cases.

a) Disjoint case: p#Q. We get the usual commuting diagram which
is decreasing.

b) Ancestor case. There are two sub-cases: (α) p >P Q; hence
m > k. Since RNT is left-linear, then v ⇒〈m′,j,_〉RNT

t
〈k,0,?〉
RTsub
←← w

for some t and m′ ≤ m, being a clearly decreasing diagram.
(β) p <P Q. This case is a little bit more delicate, since the
RT -rule l → r used at position p may be non-left-linear. We
use equalization as for Case 2c, depicted in Figure 5.3 in the
particular case where p = Λ for simplicity. The main difference
with Case 2c is that the RNT -step must occur in an alien; hence
ŵn = ûn, which somewhat simplifies the figure. Note that thanks
to the introduction of RT -sub-rewriting, the problematic RNT -
steps from w to ŵnζv↓nw, which is mentioned in Section 5.2.1, is
hidden in a single RTsub-step directly from w to v̂nζv↓nw.

c) Critical case. By assumptions (A1–3), p ∈ qi · FPos(l) for some
qi ∈ Q. The proof is depicted at Figure 5.4 with Q = {Λ} for
simplicity, implying a unique redex for that parallel rewrite at
the top. Note that the RT - and RNT -redexes must have different
ranks, hence m > k.

By assumption, u = lθ ⇒Λ
l→r rθ = w and u →→≥Pp·AlPos(u|p)

RT∪RNT

u[gθ]p →p
g→d v for some substitution θ (assuming l and g are

renamed apart). The key of the proof is the fact that u[gθ]p = lθ′

for some substitution θ′ such that θ →→ θ′. By assumption (A4),
if o is a variable position in g and p · o ∈ FPos(l), then l|p·o ∈

93

5.3. Relaxing Assumptions

u = u γu

�
�
�

�
�
�	

�
�
�

�
�
�	

sub

@
@
@
@
@
@R

Q ≥P AlPos(u)

v̂′
0
ζv′ ŵ0ζw = w

?

Λ

??

subv = v̂0ζv

??

sub

v̂nζv↓nw ŵnζv↓nw� Λ

�
�
�

�
�

@
@
@
@
@

l
ûn =

�
�
�	

=

v̂n ŵn�

Λ

Λ

Figure 5.3: RT above RNT Ancestor Peak

T (FT ,X). This indeed ensures that the sub-rewrites from u to v
cannot occur at positions in FPos(l), therefore ensuring the fact
u[gθ]p = lθ′ since l is linear. It follows that lθ′ rewrites to rθ′ at
the root, and to v at p ∈ FPos(l), which proves the existence of
a critical pair of RT inside RNT . The rest of the proof is routine,
the lifting part being ensured by stability.

To conclude, we simply remark that any two (RT ∪ RNT)-convertible
terms are n-(RT ∪RNT)-convertible for some n possibly strictly larger than
their respective ranks.

5.3 Relaxing Assumptions

One must understand that there is no room for relaxing the conditions on
RT and little for RNT . Left-linearity is mandatory, rank non-increasingness
as well, and the fact that left-hand sides are headed by symbols which do
not belong to FT serves avoiding critical pairs of RNT inside RT . This does

94

5.3. Relaxing Assumptions

�
�
�

�
�
�

�
�
�

�
�
�+

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

Q
Q
QQs

Q
Q
QQs

Q
Q
QQs

Q
Q
QQs

Q
Q
QQs

�
�

��+

�
�

��+

�
�

��+
�

�
��+

�
�
��+

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

??

??

u = lθ

rθ = w

Λ,〈m, j,_〉
l→ r

sub≥P p·AlPos(u|p)

lσ[gσ]pρ = lσρ = lθ′

p

g → d

Λ,〈m′, j,_〉

l→ r

v = lσ[dσ]pρ rθ′ = rσρ

sub

�
�
�

@
@
@

l

�
�
@
@

gσ
p

lσ[gσ]p

�
�
�

��+

Q
Q
Q
QQs

lσ[dσ]p rσ
Q
Qs
QQs

Q
Qs
Q
Qs
QQs

�
�+
��+

�
�+

�
�+
��+

p Λ

Figure 5.4: RNT above RT Critical Peak

not forbid left-hand sides to stretch over possibly several layers, making our
result very different from known modularity results. Therefore, the only
potential relaxations apply to the right-hand sides of RNT -rules, which need
not be headed by FNT -symbols, as we assumed to make the proof more
comfortable. We will allow them to be headed by some symbols from FT .

From now on, we replace our assumption (A1) by the following:

(A1’) Let FC = FT ∩ FNT be the set of constructor symbols such that no
rule in RT ∪RNT can have an FC -headed left-hand side.

We use FT\C and FNT\C as shorthand for FT \FC and FNT \FC , respectively.
Terms in T (FC ,X) are constructor terms, trivial ones if in X . The

definitions of rank, cap and alien for terms headed by FT\C - or FNT\C -
symbols are as before with respect to FT and FNT , respectively. An FC -
headed term has its cap and aliens defined with respect to FC , and its rank
is the maximal rank of its aliens, which are headed in FT\C or FNT\C . The

95

5.3. Relaxing Assumptions

rank of a homogeneous constructor term is therefore 0, which explains why
we started with rank 1 before.

Definition 5.3.1. We introduce names for three important categories of
terms:
– type 1 : FNT\C -headed terms, which have a variable as cap and themselves
as alien;
– type 2 : terms u whose cap u ∈ T (FC ,Y) and aliens are all FNT\C -headed;
– type 3 : FT\C -headed terms, whose cap u ∈ T (FT ,X ∪ Y), and aliens are
FNT\C -headed.

We also modify our assumption (A3), which becomes:

(A3’) RNT is a left-linear, rank non-increasing rewrite system whose rules
have the form f(~l)→ r, where f ∈ FNT\C , ~l ∈ T (FT ∪ FNT ,X) and
r is a term of type 2.

The previous assumption (A3) is a particular case of (A3’) when r has type 1
⊆ type 2.

The proof structure of Theorem 5.2.15 depends on layering and labelling.
Allowing constructor lifting rules in RNT invalidates Lemmas 5.2.9 and 5.2.10
used to control the label’s third component of RT -sub-rewrite steps, since
RNT -rewrites in aliens may now modify the cap of an FT -headed term. Our
strategy is to modify the notion of hat and get analogues of Lemmas 5.2.9
and 5.2.10, making the whole proof work by changing the third component of
the label of an RT -sub-rewrite step. Following [JT08], the idea is to estimate
the constructors which can pop up at the head of a given FNT\C -headed
term, by rewriting it until stabilization.

From here on, we assume the Church-Rosser property for n-convertible
terms of rank up to n. Being fixed throughout this section, the rank n will
often be left implicit.

5.3.1 Finite Constructor Lifting

Definition 5.3.2. A derivation s →→ u, where s : type 1 and u : type 2 \
type 1, is said to be constructor lifting . RT ∪ RNT is a finite constructor

96

5.3. Relaxing Assumptions

lifting rewrite system if for each s of type 1, there exists ns ≥ 0 such that
for all constructor lifting derivations s→→ u, |u| ≤ ns holds.

Definition 5.3.3 (Stable Terms). A term whose multiset M of aliens only
contains FNT\C -headed terms is stable if M is stable. A multiset M of
FNT\C -headed terms is stable if

(i) reducts of terms in M are FNT\C -headed;
(ii) any two convertible terms in M are equal.

Example 5.3.4. Let FT = {g3, 0, 1}, FNT = {f 3}, RT = {g(x, x, y)→ y,

g(x, y, x)→ y, g(y, x, x)→ y, 1→ 0}, RNT = {f(0, 1, x)→ f(x, x, x),

f(1, 0, x)→ f(x, x, x), f(0, 0, x)→ f(x, x, x)}.
Then, u = g(f(0, 1, g(0, 0, 0)), f(0, 0, 0), f(1, 0, 0)) is not stable since its
aliens are all convertible but different. But u rewrites to the stable term
g(f(0, 0, 0), f(0, 0, 0), f(0, 0, 0)).

From rank non-increasingness and the Church-Rosser assumption, we
get:

Lemma 5.3.5. Let u be a stable term of type 1 such that u→→ v. Then v
is a stable term of type 1.

Lemma 5.3.6. Let u be a stable term whose aliens are of rank up to n.
Then, (∀i ≤ n) ûi = û0.

From now on we assume in this section RT ∪RNT is finite constructor
lifting.

Lemma 5.3.7 (Stabilization). A term s of type 1, 2, 3, whose aliens have
rank up to n, has a stable term t such that t̂n = ŝnθ for some constructor
substitution θ which depends only on the aliens of s.

Proof. Let M be a multiset of terms of type 1, and u ∈ M . By assump-
tion (A3’), the set of constructor positions on top can only increase along
a derivation from u. Being bounded, it has a maximum. Let v be such
a reduct. If v is of type 1, then it is stable. Otherwise, we still need to
equalize its convertible aliens, using the Church-Rosser property of terms

97

5.3. Relaxing Assumptions

of rank up to n, and we are done. Applying this procedure to all terms in
M , we are left equalizing as above the convertible stable terms which are
stable by Lemma 5.3.5. Taking now a term of type 2 or type 3, we apply the
procedure to its multiset of aliens, all of which have type 1. The relationship
between the hats of s and t is clear: θ is generated by constructor lifting,
which is the same for equivalent aliens, hence for equal aliens.

Lemma 5.3.8 (Structure). Let s be a term of type 1,2,3 whose aliens have
rank up to n, and u, v be two stable terms obtained from s by stabilization.
Then, (∀i ≤ n) ûi = v̂i.

Proof. Let p ∈ AlPos(s). By stabilization u|p and v|p are convertible stable
terms of type 2. By Church-Rosser assumption, u|p →→ t ←← v|p. Since
constructors cannot be rewritten, u|p and v|p must have the same constructor
cap, thus u, v have the same cap. Since they are stable, two convertible
aliens of u (resp., v) must be equal, hence u, v have the same 0-hat. We
conclude by Lemma 5.3.6.

Definition 5.3.9 (Estimated Hats). Let u be a term of type 1,2,3 whose
aliens have rank up to n and v a stable term obtained from u by stabilization.
The estimated hat

4n
uv of u w.r.t. v is the term v̂n.

By Lemma 5.3.8, the choice of v has no impact on
4n
uv , hence we use the

short notation
4
u.

The following two lemmas refine Lemmas 5.2.9 and 5.2.10 respectively, in
the sense that if FC = ∅, then they coincide with Lemmas 5.2.9 and 5.2.10,
respectively.

Lemma 5.3.10 (Alien Rewriting). Let u, v be terms of type 3, whose aliens
are of rank up to n, such that u→≥PAlPos(u)

RT∪RNT
v. Then

4
u=

4
v .

Proof. Follows from Lemmas 5.3.7 and 5.3.8: any stable term for v is a
stable term for u.

Lemma 5.3.11. Let u be a term of type 3, whose aliens have rank up to n,
such that u→p

RTsub
v with p ∈ CaPos(u). Then

4
u→RT

4
v .

98

5.3. Relaxing Assumptions

Proof. By definition of sub-rewriting, u →→≥Pp·AlPos(u|p) w →p
RT

v. By
Lemma 5.3.10,

4
u=

4
w. By Lemma 5.2.10, ŵn →p

RT
v̂n, and the aliens of

v are the aliens of w. Let now w′, v′ be stable terms obtained from w, v

by stabilization, hence ŵ′
n

= ŵnθw and v̂′
n

= v̂nθv by Lemma 5.3.7, where
θv, θw depend only on the aliens of v, w, respectively; hence θv and θw

coincide on Var(v̂n) ⊆ Var(ŵn) and v̂′
n

= v̂nθw. We conclude by stability
of rewriting and definition of estimated hats.

Theorem 5.3.12. With new assumptions (A1’) and (A3’), Theorem 5.2.15
holds in the finite constructor lifting case.

Proof. Same as for Theorem 5.2.15, with the exception of the cases involving
RTsub-steps in the local peaks, which are modified by using stabilization
instead of equalization of terms.

5.3.2 Infinite Constructor Lifting

This section shows preliminary ideas to solve the infinite constructor lifting
case, motivated by a famous rewrite system, which is inspired by an abstract
example of Newman, algebraized by Klop and publicized by Huet [Hue80].

Example 5.3.13 (NKH [Hue80]). Let F = {f 2, g0, a0, b0, c1} and
NKH = {f(x, x)→ a, f(x, c(x))→ b, g → c(g)}.

NKH is overlap-free, hence locally confluent by Huet’s lemma [Hue80].
However, it enjoys non-joinable non-local peaks such as a ← f(c(g), c(g)) ←
f(g, c(g)) → b. If we split NKH into RT = {f(x, x) → a, f(x, c(x)) → b}
and RNT = {g → c(g)}, such a peak a ← f(c(g), c(g)) ← f(g, c(g)) → b

can be described by a sub-rewriting local peak a ←ΛRTsub
f(g, c(g))→Λ

RTsub
b

again. In this sense, NKH is no more overlap-free.
It is easy to see that the only difficult case in the main proof is the

elimination of sub-rewriting critical peaks. Consider the critical peak v ←Λl→r

v′
≥PAlPos(u)

RT∪RNT
←← u →→≥Pp·AlPos(u|p)

RT∪RNT
w′ →p

g→d w, p∈FPos(l) and l → r, g →
d ∈ RT . To obtain a term instance of l whose subterm at position p

is an instance of g, v′ and w′ must be equalized into a term s whose

99

5.3. Relaxing Assumptions

hat rewrites at Λ with l → r and at p with g → d to the hats of the
corresponding equalizations of v and w. The heart of the problem lies
therefore in equalization which constructs here a solution in the signature
of FT to FT -unification problems associated with critical pairs by rewriting
in RT ∪RNT . Hence,

Theorem 5.3.14. With new assumptions (A1’) and (A3’), Theorem 5.2.15
holds if RT critical pairs modulo RT ∪RNT are joinable in RT .

Because sub-rewriting can only equalize aliens, the sole purpose of
(RT ∪RNT)-unification is to solve occurs-check [Col84] failures that occur
in the plain unification problem l|p = g.

Definition 5.3.15. Let l → r and g → d be two rules in RT such that
g Prolog unifies [Col82] with l at position p ∈ FPos(l). Let

∧
i xi =

si ∧
∧
j yj = tj be a dag solved form returned by Prolog unification, where∧

i xi = si is the finite substitution part, and
∧
j yj = tj the occurs-check

part. Let now σ be the substitution {xi 7→ si}i and τ = {yj = tj}j. Then
〈rσ, lσ[dσ]p〉 is a Prolog critical pair of RT , constrained by the occurs-checks
τ .

If the critical pairs obtained by Prolog unification are joinable in RT

constrained by the occurs-check equations, then the Church-Rosser property
is satisfied:

Conjecture 5.3.16.With new assumptions (A1’) and (A3’), Theorem 5.2.15
holds if RT critical pairs are joinable in RT and Prolog critical pairs of RT

are joinable in RT modulo their occurs-checks.

Example 5.3.17 (Variation of NKH). Let RT = {f(c(x), x)→ a(x),

f(y, c(y))→ b(y), a(x)→ e(x), b(y)→ e(c(y))}, RNT = {g → c(g)}. The
unification problem f(c(x), x) = f(y, c(y)) results in an empty substitution
and the occurs-check equations τ = {x = c(y), y = c(x)}. The critical
pair 〈a(x), b(y)〉 is then joinable by a(x) → e(x) =τ e(c(y)) ← b(y) with
an application of the constraint τ , as exemplified in Figure 5.5, where
θ1 = {x 7→ cn(g)}, θ2 = {y 7→ cm(g)}, and n ≤ m+ 1 is assumed.

100

5.4. Related Work

f(c(x), x) = f(y, c(y))

�
�
�	

@
@
@R

a(x) b(y)

A
A
AU

�
�
��

e(x) e(c(y))-
τ

� -θ1 θ2a(cn(g)) b(cm(g))

A
A
A
A
A
A
AAU

�
�
�
�
�
�
���

�
�
��

A
A
AU

θ1 θ2

e(cn(g)) e(cm+1(g))--

f(cn+1(g), cn(g)) f(cm(g), cm+1(g))

�
�
�

�
�
�

�
�	

@
@
@
@
@
@
@
@R

6 6
θ1 θ2

�
�
�	

�
�
�	

@
@
@R

@
@
@R

f(ck1(g), ck2(g))

? ?

Figure 5.5: Decreasing Diagrams for Example 5.3.17

The idea of Conjecture 5.3.16 is shown in Example 5.3.17 and Figure 5.5.
Note that the red bottom steps operate on aliens, hence have small ranks,
making the whole joinability diagram decreasing. We have no clear formula-
tion of the converse yet. Confluence is indeed satisfied if the occurs-check
is unsolvable, that is, when there exists no FNT\C -headed substitution θ

of the yj’s such that yjθ ←↔→RT∪RNT
tjθ. We suspect this condition can be

reinforced as yjθ →→RT∪RNT
tjθ, possibly leading to interesting sufficient

conditions for unsolvability of occurs-checks.

5.4 Related Work

In [JvO09], it is shown that confluence can be characterized by the existence
of decreasing diagrams for the critical pairs in RT ∪RNT provided all rules

101

5.4. Related Work

are linear1. This is a particular case of a recent result of Felgenhauer [Fel13b]
showing that RNT is confluent if all rules are left-linear and parallel critical
pairs have decreasing diagrams with respect to rule indexes used as labels.
When FT is empty, all terms have rank 1, hence our labels for non-linear rules
reduce to his. A difference is that we assume RNT -rules to be non-collapsing.
One could argue that collapsing RNT -rules can be moved to RT , but this
answer is not satisfactory for two different reasons: the resulting change of
labels may affect the search for decreasing diagrams, and it can also impact
condition (A1). A second difference is that we use rigid parallel rewriting,
which yields exponentially fewer parallel critical pairs than when allowing
parallel steps with different rules of a given index (which we could have
done too). The price to pay is having less flexibility for finding decreasing
diagrams.

A result of Klein and Hirokawa, generalizing [HM11], extends Knuth
and Bendix’s critical pair test to relatively terminating systems [KH12].
It is an extension in the sense that it boils down to it when RNT = ∅.
Otherwise, unlike our result, it requires computing critical pairs of RT

modulo a confluent RNT , hence modifies the critical pair test for the subset
of terminating rules. That is why we call our result a true generalization of
Knuth–Bendix test, and theirs a non-true generalization but an extension.
Further, the result in [KH12] requires proving relative termination (termina-
tion of →→RNT

→RT
→→RNT

), complete unification modulo RNT , and absence
of critical pairs between RT and RNT , all tests implemented in CSI [ZFM11].
This is used to detect that NKH is non-confluent.

Theorem 5.2.15 can be seen as a modularity theorem to some extent,
since rewriting a term in T (FT ,X) can only involve RT rules. But left-hand
sides of RNT rules may have FT -symbols. That is why we need to compute
critical pairs of RT inside RNT . Our proof uses many concepts and techniques
inherited from previous work on modularity, such as the decomposition of
terms (caps and aliens, hats and estimated caps [Toy87]). We have not tried
using van Oostrom’s notion of caps, in which aliens must have maximal

1This is an assumption that was forgotten, but used, for RT , as pointed out by Aart
Middeldorp.

102

5.5. Conclusion

rank [vO08b], nor the method developed by Klein and Hirokawa for studying
the Church-Rosser property of disjoint rewrite relations on terms [KH12],
which we could do by considering cap rewriting with RT -rules and alien
rewriting with all rules. This remains to be done.

5.5 Conclusion

Decreasing diagrams opened the way for generalizing Knuth and Bendix’s
critical-pair test for confluence to non-terminating systems, re-igniting these
questions. Our results answer important open questions, in particular by
allowing both non-left-linear and non-terminating rules. While combining
many existing as well as new techniques, our proof has proved quite robust.
Two technical questions have been left open: having collapsing rules in RNT ,
following [Fel13b], and eliminating assumption (A4).

A major theoretical question is whether layering requires assumption (A1).
Our proof is based on two key properties, layering and the absence of overlaps
of RNT inside RT . Currently, (A1) serves both purposes. The question is
however open whether the latter property is sufficient to define some form
of layering. We will further investigate it in the next chapter.

Transformation valuation is a static analysis that tries to verify that an
optimizer is semantics preserving by constructing a value graph for both
programs and showing their equivalence by rewriting techniques [TGM11].
Here, the user has a good feeling of which subset of rules is a candidate
for RNT . Where this is not the case, work is of course needed to find good
splits automatically.

We end up this chapter with our long-term goal, applying this technique
in practice. The need for showing the Church-Rosser property of mixed
terminating and non-terminating computations arises in at least two areas,
first-order and higher-order. The development of sophisticated type theo-
ries with complex elimination rules requires proving Church-Rosser before
strong-normalization and type preservation, directly on untyped terms. Un-
fortunately, besides being collapsing, β-reduction is also rank-increasing in
the presence of another signature. We therefore need to develop another

103

5.5. Conclusion

notion of rank that would apply to pure λ-calculus, a question related to
the previous one. More attempts will be carried out in the next chapter.

104

Six

Confluence of Layered Rewrite Systems

Notwithstanding many efforts [Ros73, Hue80, TO94, MOOO97, Oku98,
MO01, vO08a, GOO98, JvO09, SO10, HM11, ZFM15, KH12, SOO15, ATU14],
confluence of non-terminating systems is far from being understood in terms
of critical pairs. Only recently did this question make important progress
with decreasing diagrams, a generalization of joinability [vO94a, vO08a].
In particular, while Huet’s result stated that linear systems are conflu-
ent provided their critical pairs are strongly joinable [Hue80], Felgenhauer
showed that right-linearity could be removed provided parallel critical pairs
have decreasing diagrams [Fel13b]. In Chapter 5, we have demonstrated
that Knuth–Bendix’s Lemma and Felgenhauer’s theorem can join forces in
presence of both terminating and non-terminating rules.

We show in this chapter that rank non-increasing layered systems are con-
fluent provided their critical pairs have decreasing diagrams. Our confluence
result achieved in this chapter for non-terminating non-linear systems by
critical pair analysis is the first we know of. Further, the result holds in case
critical pairs become infinite, solving the confluence problem of variations of
a mysterious system raised in [Hue80], presented as NKH in Example 5.3.13.
Prior solutions to the problem existed under different assumptions that
could be easily challenged [TO94, GOO98, KH12].

Our results use a simplified, in some sense generalized, version of sub-
rewriting introduced in Chapter 5, and a simple, but essential revisitation

105

6.1. Terms and Rewriting

of unification in case overlaps generate occurs-check equations: cyclic unifi-
cation is based on a new, important notion of cyclic unifiers, which enjoy
all good properties of unifiers over finite trees such as existence of most
general cyclic unifiers, and can therefore represent solutions of occurs-check
equations by simple rewriting means.

The notion of terms is revised in Section 6.1. We introduce sub-rewriting
and cyclic unification in Sections 6.2 and 6.3, respectively. Layered systems
are discussed in Section 6.4 where our main result is developed, before
concluding in Section 6.5.

6.1 Terms and Rewriting

In this chapter, we consider possibly infinite terms instead of only finite
ones given in Chapter 2. We revise the notions related to terms, positions,
substitutions and rewriting. In this section, we only mention the ones that
need to be adapted, while keep the non-mentioned ones as usual.

Given a signature F of function symbols and a denumerable set X of
variables, T (F ,X) now denotes the set of finite or infinite rational terms
built up from F and X . Terms are recognized by top-down tree automata in
which some ω-states, and only those, are possibly traversed infinitely many
times. As usual, terms can be viewed as labelled ordered trees. See [Tho90]
for details.

Note that positions are finite strings of positive integers. However, Pos(t)
(resp., FPos(t)) is now for the possibly infinite set of all (resp., non-variable)
positions of t.

Given a term t, we denote by t any linear term obtained by replacing,
for each variable x ∈ Var(t), the occurrences of x at positions {pi}i in
t by linearized variable xki such that i 6= j implies xki 6= xkj . Note that
Var(s) ∩ Var(t) = ∅ iff Var(s) ∩ Var(t) = ∅. Identifying xk0 with x, t = t

for a linear term t.
A substitution σ is said to be finite if for each x ∈ Dom(σ), σ(x) is a

finite term. The subsumption order •≥ is defined on finite terms and finite
substitutions as defined in Chapter 2.

106

6.2. Sub-Rewriting

A rewrite rule is a pair of finite terms, written l → r, as we defined in
Chapter 2. We write u→p,m

l→r∈R v for a labelled rewrite step from u to v at
position p with label m and rule l→ r ∈ R. Indexes p,m,R, l→ r may be
omitted, or replaced by properties they satisfy.

Our goal is to reduce confluence of a non-terminating non-left-linear
rewrite system R to that of finitely many critical pairs, based on the decreas-
ing diagrams method. In this chapter, the directional version of decreasing
diagrams defined in Definition 2.2.5 will be applied. Mention of the word
“joinably” is sometimes omitted for convenience. As in Chapter 5, Corol-
lary 2.2.12 will be heavily used in stead of Theorem 2.2.6, since it is more
convenient for our purpose.

6.2 Sub-Rewriting

Consider the famous example NKH publicized by Huet [Hue80], as we have
presented in Example 5.3.13. It is overlap-free, hence locally confluent by
Huet’s lemma [Hue80], but non-confluent. The main difficulty with NKH is
that non-joinable peaks are non-local, such as a ← f(g, g)→ f(g, c(g))→ b.
To restore the usual situation for which the confluence of a relation can be
characterized by the joinability of its local peaks, we need another rewrite
relation whose local peaks capture the non-confluence of NKH as well as
the confluence of its confluent variations.

A major insight in Chapter 5 is that this can be achieved by the sub-
rewriting (in fact, RT -sub-rewriting) relation, that allows us to rewrite
f(g, c(g)) in one step to either a or b, therefore exhibiting the pair 〈a, b〉 as
a sub-rewriting critical pair. The idea underlying sub-rewriting is that a
preparatory equalization phase allows the variable instances of the left-hand
side l of some rule l → r to be joined, which takes place before the rule is
applied. However in Chapter 5, RT -sub-rewriting requires a signature split
to define layers in terms, the preparatory phase taking place in the lower
layers. No a-priori layering is needed here:

107

6.2. Sub-Rewriting

Definition 6.2.1 (Sub-Rewriting). A term u sub-rewrites to a term v at
p ∈ Pos(u) with some rule l→ r ∈ R, written u→p

RR
v, if u→→(>Pp·FPos(l))

R

u[lθ]p →p
R u[rθ]p = v for some substitution θ. The term u|p is called a

sub-rewriting redex.

This definition of sub-rewriting allows arbitrary rewriting below the
left-hand side of the rule until a redex is obtained. This is the major idea
of sub-rewriting, ensuring that R ⊆ RR ⊆ R∗. A simple but important
property of a sub-rewriting redex is that it is an instance of some linearized
left-hand side of rule:

Lemma 6.2.2 (Sub-Rewriting Redex). Assume u sub-rewrites to u[rσ]p

with l → r at position p. Then u|p = lθ for some θ such that (∀x ∈
Var(l)) (∀pi ∈ Pos(l) s.t. l(pi) = x) θ(xpi) →→R σ(x). We say that σ is an
equalizer of l, and the rewrite steps from lθ to lσ are an equalization.

Sub-rewriting differs from rewriting modulo an equational theory by
being directional. It differs from Klop’s higher-order rewriting modulo
developments [Ter03] used by Okui for first-order computations [Oku98],
in that the preparatory phase uses arbitrary rewriting. Having non-left-
linear rules with critical pairs at subterms seems incompatible with using
developments. Sub-rewriting differs as well from relative rewriting [Ges90]
in that the preparatory phase must take place below variables. The latter
condition is essential to obtain plain critical pairs based on plain unification.

Assuming that local sub-rewriting peaks characterize the confluence of
NKH, we need to compute the corresponding critical pairs. Unifying the left-
hand sides f(x, x) and f(y, c(y)) results in the conjunction x = y ∧ y = c(y)

containing the occurs-check equation y = c(y), which prevents unification
from succeeding on finite trees but allows it to succeed on infinite rational
trees: the critical peak has therefore an infinite overlap f(cω, cω) and a finite
critical pair 〈a, b〉. At the level of infinite trees, we then have an infinite local
rewriting peak a ← f(cω, cω) = f(cω, c(cω))→ b, the properties of infinite
trees making the sub-rewriting preparatory phase useless. Sub-rewriting
therefore captures on finite trees some properties of rewriting on infinite
trees, here the existence of a local peak.

108

6.3. Cyclic Unification

Unification over finite rational trees resulting in infinite rational trees
was first considered by Huet, who showed that, when unification over finite
trees results in a possibly empty set of equations without occurs-check,
and a non-empty set of equations with occurs-check, then the latter has
solutions over infinite rational trees [Hue76]. Solving equations over infinite
rational trees was also considered by Courcelle with a slightly different,
fixpoint-oriented perspective [Cou83].

Consider now the equation x = f(x) which has the most general rational
unifier σ = {x 7→ fω}. Then, xσ = fω and f(x)σ = f 1+ω. These two terms
are syntactically different, although they correspond to the same infinite
tree because the two ordinals 1 + ω and ω are equal. In the next section, we
develop a novel view of unification that will allow us to capture both finite
and infinite overlaps by finite means. Struggling with the axiomatization of
infinite rational trees will not be necessary.

6.3 Cyclic Unification

This section is adapted from [Hue76, Col84, DJ90, JK91] by treating finite
and infinite unifiers uniformly: equality of terms is interpreted over the set
of infinite rational terms when needed.

In this chapter, an equation is treated as an oriented pair of finite terms,
written u = v. A unification problem P is a (finite) conjunction ∧i ui = vi

of equations, sometimes seen as a multiset of pairs written ~u = ~v. A unifier
(resp., a solution) of P is a substitution (resp., a ground substitution) θ such
that (∀i)uiθ = viθ. A unifier describes a generally infinite set of solutions
via its ground instances. A major usual assumption, ensuring that solutions
exist when unifiers do, is that the set T (F) of ground terms is non-empty.
A unification problem P has a most general finite unifier mgu(P), whenever
a finite solution exists, which is minimal with respect to subsumption hence
unique up to variable renaming. Computing mgu(P) can be done by the
unifier-preserving transformations in Table 6.1, starting with P until a
solved form is obtained, ⊥ denoting the absence of solution, whether finite

109

6.3. Cyclic Unification

or infinite. Our notion of solved form therefore allows for infinite unifiers
(and solutions) as well as finite ones:

Definition 6.3.1. Solved forms of a unification problem P different from
⊥ are unification problems S := ~x = ~u ∧ ~y = ~v such that

(i) P = Var(P) \ (~x ∪ ~y) is the set of parameters of S;
(ii) variables in ~x ∪ ~y (i.e. variables at left-hand sides of equations) are

all distinct;
(iii) for each x = u in ~x = ~u, Var(u) ⊆ P ;
(iv) for each y = v in ~y = ~v, Var(v) ⊆ P ∪ ~y, Var(v)∩ ~y 6= ∅ and v 6∈ X .

Equations y = v ∈ ~y = ~v are called cyclic (or occurs-check , the vocabu-
lary originating from [Col84] used so far), ~x is the set of finite variables, and
~y is the set of (infinite) cyclic (or occurs-check) variables. A solved form is
a set of equations since ~x ∪ ~y is itself a set and an equation x = y between
variables can only relate a finite variable x with a parameter y.

Example 6.3.2. Consider NKH. f(x, x) = f(y, c(y))→Decomp x = y∧x =

c(y)→Coalesce x = y ∧ y = c(y)→Merep x = c(y) ∧ y = c(y). Alternatively,
f(x, x) = f(y, c(y)) →Decomp x = y ∧ x = c(y) →Replace c(y) = y ∧ x =

c(y)→Swap y = c(y) ∧ x = c(y).

Choose and Swap originate from [Col84]. Replace and Coalesce
ensure that finite variables (but parameters) do not occur in equations
constraining the infinite ones. Merep is a sort of combination of Merge and
Replace ensuring condition v 6∈ X in Definition 6.3.1, item (iv). Unification
over finite trees has another failure rule, called Occurs-check, fired in
presence of cyclic equations.

Theorem 6.3.3. Given an input unification problem P , the unification
rules terminate, fail if the input has no solution, and return a solved form
S = ~x = ~u ∧ ~y = ~v otherwise.

Proof. Proofs for termination, characterization of solved forms, and sound-
ness, are all adapted from [JK91].

110

6.3. Cyclic Unification

Remove s = s ∧ P → P

Decomp f(~s) = f(~t) ∧ P → ~s = ~t ∧ P
Conflict f(~s) = g(~t) ∧ P → ⊥

if f 6= g

Choose y = x ∧ P → x = y ∧ P
if x 6∈ Var(P), y ∈ Var(P)

Coalesce x = y ∧ P → x = y ∧ P{x 7→ y}
if x, y ∈ Var(P), x 6= y

Swap u = x ∧ P → x = u ∧ P
if u 6∈ X

Merge x=s ∧ x= t ∧ P → x = s ∧ s = t ∧ P
if x ∈ X , 0 < |s| ≤ |t|

Replace x = s ∧ P → x = s ∧ P{x 7→ s}
if x ∈ Var(P), x 6∈ Var(s), s 6∈ X

Merep y=x ∧ x=s ∧ P → y = s ∧ x = s ∧ P
if x ∈ Var(s), s 6∈ X , y 6∈ Var(s, P)

and no other rule applies

Table 6.1: Unification Rules

Termination. The quadruple 〈nu, |P |, nrv, nlv〉 is used to interpret a unifica-
tion problem P , where

– nu is the number of unsolved variables (0 for ⊥), where a variable x is
solved in x = s ∧ P ′ if x 6∈ Var(s, P ′);

– |P | is the multiset (∅ for ⊥) of natural numbers {max(|s|, |t|) | s =

t ∈ P} ;
– nlv (resp., nrv) is the number of equations in P whose left-hand (resp.,

right-hand) side is a variable and the other side is not.
Remove, Decomp and Conflict decrease |P | without increasing nu.

Choose and Coalesce both decrease nu. Swap decreases nrv without
increasing nu and |P |. Merge decreases nlv without increasing nu, |P | and
nrv. Replace decreases nu. Now, when Merep applies, no other rule can
apply, and we can check that no rules can apply either after Merep (except
another possible application of Merep). This can happen only finitely many

111

6.3. Cyclic Unification

times, by simply reasoning on the number of equations whose both sides are
variables.

Solved form. We show by contradiction that the output P , which is in
normal form with respect to the unification rules, is a solved form in case
Conflict never applies. First, P must be a conjunction of equations x = s,
since otherwise Decomp or Swap would apply. Let P = Var(P) \ (~x ∪ ~y).

• Condition (i) is a definition.

• Condition (ii). Let P = (x = s∧x = t∧P ′). Either s or t is a variable,
since otherwise Merge would apply. Assume without loss of generality
that s ∈ X , call it y. If x = y, Remove applies. If y 6∈ Var(t, P ′),
then Choose applies. Otherwise, Coalesce applies. Hence ~x, ~y are
all different sets, and P is therefore itself a set.

Let now ~x = ~u be a maximal (with respect to inclusion) set of equations
in P such that Var(~u) ⊆ P, and ~y = ~v be the remaining set of
equations.

• Condition (iii). It is ensured by the definition of ~x = ~u.

• Condition (iv). Let y = v ∈ ~y = ~v.

Let now x = u ∈ ~x = ~u, hence x 6∈ Var(u). Assume x ∈ Var(v). If u 6∈
X , thenReplace applies. Otherwise, if u has no other occurrence in P ,
thenChoose applies, elseCoalesce applies. Therefore Var(v)∩~x = ∅
by contradiction.

Assume Var(v) ∩ ~y = ∅. Then Var(v) ⊆ P, which contradicts the
maximality of ~x = ~u.

We are left to show that v is not a variable. If it were, then v ∈ ~y.
First, v 6= y, otherwise Remove applies. Let P = (y = v ∧ P ′) with
v ∈ ~y \ {y}. Let v = z, there must exist (z = w) ∈ P ′ for some w,
otherwise z ∈ P. Hence P ′ = (z = w ∧ P ′′). Now, y 6∈ Var(w,P ′′),
otherwise Coalesce applies. Then we show z ∈ Var(w): firstly, w 6= z,
otherwise Remove applies; secondly, w is not a variable, otherwise

112

6.3. Cyclic Unification

w 6∈ Var(y, P ′′) lets Choose apply, while w ∈ Var(y, P ′′) makes
Coalesce available; then if z 6∈ Var(w), Replace applies. Thus
z ∈ Var(w), allowing Merep, which contradicts that we have indeed
a solved form.

Soundness. The set of solutions is an invariant of the unification rules.
This is trivial for all rules but Coalesce, Merge, Replace, Merep, for
which it follows from the fact that substitutions are homomorphisms and
equality is a congruence.

The solved form is a tree solved form if ~y = ∅, and otherwise an Ω solved
form whose solutions are infinite substitutions taking their values in the set
of infinite (rational) terms. We shall now develop our notion of cyclic unifiers
capturing both solved forms by describing the infinite unifiers of a problem
P as a pair of a finite unifier σ and a set of cyclic equations E constraining
those variables that require infinite solutions. In case E = ∅, then P is a
tree solved form and σ = mgu(P). To avoid manipulating infinite unifiers
when E 6= ∅, we shall work with the cyclic equations themselves considered
as a ground rewrite system.

Definition 6.3.4 ([NO80]). Given a set of equations E, we denote by
=cc
E the equational theory in which the variables in Var(E) are treated as

constants, also called congruence closure E.

We are interested in the congruence closure defined by cyclic equations,
seen here as a set R of ground rewrite rules. We may sometimes consider R
as a set of equations, to be either solved or used as axioms, depending on
context.

Definition 6.3.5. A cyclic rewrite system is a set of rules R = {~y → ~v}
such that the unification problem ~y = ~v is its own solved form with ~y as the
set of infinite cyclic variables. Variables in R are treated as constants.

Lemma 6.3.6. A cyclic rewrite system R is ground and critical pair free,
hence Church-Rosser.

113

6.3. Cyclic Unification

We now introduce our definition of cyclic unifiers and solutions:

Definition 6.3.7. A cyclic unifier of a unification problem P is a pair
〈η,R〉 made of a substitution η and a cyclic rewrite system R = {~y → ~v},
satisfying:

(i) Dom(η) ⊆ Var(P) \ ~y, VRan(η)∩ ~y = ∅, and VRan(η)∩Dom(η) =

∅ ;
(ii) P and P ∧R have identical sets of solutions ; and
(iii.a) (∀u = v ∈ P)uη =cc

Rη vη, or equivalently by Lemma 6.3.6,
(iii.b) (∀u = v ∈ P)uη →→Rη ◦ Rη←← vη .

A cyclic solution of P is a pair 〈ηρ,R〉 made of a cyclic unifier 〈η,R〉 of P
and an additional substitution ρ.

We shall use (iii.a) or (iii.b) indifferently, depending on our needs, by
referring to (iii).

The idea of cyclic unifiers is that the need for infinite values for some
variables is encoded via the use of the cyclic rewrite system R, which allows
us to solve the various occurs-check equations generated when unifying
P . Finite variables are instantiated by the finite substitution η, which
ensures that cyclic unification reduces to finite unification in the absence of
infinite variables. The technical restrictions on Dom(η) and VRan(η) aim
at making η idempotent. In (iii), parameters occurring in R are instantiated
by η before rewriting takes place: cyclic unification is nothing but rigid
unification modulo the cyclic equations in R [GRS87]. Instantiation of
the infinite variables ~y is delegated to cyclic solutions via the additional
substitution ρ which may also instantiate the variables introduced by η.

Example 6.3.8. Consider the equation f(x, z, z) = f(a, y, c(y)). A cyclic
unifier is 〈{x 7→ a}, {y → c(z), z → c(z)}〉, and a cyclic solution is
〈{x 7→ a, y 7→ a, z 7→ c(a)}, {y → c(z), z → c(z)}〉, which is clearly an
instance of the former by the substitution {y 7→ a, z 7→ c(a)}. For the former,
f(a, z, z) =cc

{y=c(z),z=c(z)} f(a, y, c(y)). Another cyclic unifier is 〈{x 7→ a},
{z → c(y), y → c(y)}〉, for which f(a, z, z) =cc

{z=c(y),y=c(y)} f(a, y, c(y)).

114

6.3. Cyclic Unification

The set of cyclic unifiers of a problem P is closed under substitution
instance, provided the variable conditions on its substitution part are met,
as is the set of its unifiers. We believe that cyclic unifiers have many
interesting properties similar to those of finite unifiers, of which we are going
to investigate only a few which are relevant to the confluence of layered
systems.

We now focus our attention on specific cyclic unifiers sharing a same
cyclic rewrite system.

Definition 6.3.9. Given a unification problem P with solved form S =

~x = ~u ∧ ~y = ~v, let
– its cyclic rewrite system RS = {~y → ~v} and canonical substitution

ηS = {~x 7→ ~u},
– its S-based cyclic unifiers 〈η,RS〉, among which 〈ηS, RS〉 is said to be

canonical .

We now show a major property of S-based cyclic unifiers, true for any
solved form S:

Lemma 6.3.10. Given a unification problem with solved form S, the set of
S-based cyclic unifiers is preserved by the unification rules.

Proof. The result is straightforward for Remove, Choose, and Swap.
It is true for Decomp and Conflict since, using formulation (iii.b) of
Definition 6.3.7, the rules in Rη cannot apply at the root of F -headed terms.
Next comes Coalesce. We need to prove that 〈η,R〉 is a cyclic unifier for
x = y ∧ P if and only if it is one for x = y ∧ P{x 7→ y}. Let u = v ∈ P .
For the only if case, we have u{x 7→ y}η = uη{xη 7→ yη} =cc

Rη uη =cc
Rη

vη =cc
Rη vη{xη 7→ yη} = v{x 7→ y}η. The if case is similar. Replace is

similar to Coalesce. Consider now Merge (Merep is similar). Showing
that 〈η,R〉 is a cyclic unifier for x = s∧ x = t∧ P if and only if it is one for
x = s ∧ s = t ∧ P is routine by using transitivity of the congruence closure
=cc
Rη.

We can now conclude:

115

6.4. Layered Systems

Theorem 6.3.11. Given a unification problem P with solved form S =

(~x = ~u ∧ ~y = ~v), the canonical S-based cyclic unifier is most general among
the set of S-based cyclic unifiers of P .

Proof. Let 〈η,RS〉 be a cyclic unifier of P based on S.
Let x = u ∈ ~x = ~u. By definition of cyclic unification, xη →→RSη

◦ RSη
←← uη. By definition of a solved form and cyclic unifiers, we have:

Var(xη, uη) ⊆ (~x ∪ P ∪ VRan(η)), (~x ∪ P) ∩ ~y = ∅, VRan(η) ∩ ~y = ∅,
and ~y ∩ Dom(η) = ∅. Therefore, xη and uη are irreducible by RSη. Hence
xη = uη. Since xηS = u, it follows that xη = uη = (xηS)η = x(ηSη).

Let now z ∈ Var(P)\~x. Since z 6∈ Dom(ηS), then η(z) = zη = (zηS)η =

z(ηSη).
Therefore, η = ηSη and we are done.

This result, which suffices for our needs, is easily lifted to cyclic solutions,
as they are instances of a cyclic unifier. We can further prove that ηS is
more general than any S ′-based cyclic unifiers, for any solved form S ′ of P .
This is where our conditions on VRan(η) become important. We conjecture
that it is most general among the set of all cyclic unifiers.

6.4 Layered Systems

NKH is non-confluent, but can be easily made confluent by adding the rule
a → b (giving NKH1), or removing the rule g → c(g) (giving NKH2). It
can be made non-right-ground by making the symbols a, b unary (using
a(c(x)) and b(c(x)) in the right-hand sides of rules, giving NKH3), or even
non-right-linear by making them binary (giving NKH4). There are classes of
systems containing NKH for which it is possible to conclude its confluence.
The following classes succeed for NKH1: simple-right-linear [TO94], strongly
depth-preserving [GOO98], and relatively terminating [KH12]. As for NKH3,
it is neither simple-right-linear nor strongly depth-preserving: only [KH12]
can cover it. When it comes to NKH4, relative termination becomes hard to
satisfy in presence of non-right-linearity [KH12].

116

6.4. Layered Systems

Our goal is to define a robust, Turing-complete class of rewrite systems
capturing NKH and its variations, for which confluence can be analyzed in
terms of critical diagrams.

Definition 6.4.1. A rewrite system R is layered iff it satisfies the disjoint-
ness assumption (DLO) that linearized overlaps of some left-hand sides
of rules upon a given left-hand side l can only take place at a multiset of
disjoint or equal positions of FPos(l):

(DLO) := (∀l→ r ∈ R) (∀p ∈ FPos(l))

(∀g → d ∈ R s.t. Var(l) ∩ Var(g) = ∅)

(∀σ : Var(l|p, g)→T (F ,X) s.t. l|pσ = gσ) SOF(l|p) ∧ SOF(g)

SOF(u) := (∀q ∈ FPos(u)\{Λ})OF(u|q)

OF(v) := (∀g → d∈R s.t. Var(v) ∩ Var(g) = ∅)

(∀o ∈ FPos(v))(∀σ : Var(v, g)→ T (F ,X)) v|oσ 6= gσ

SOF stands for subterm overlap-free, and OF for overlap-free. In words, if
a linearized left-hand side g of a rule in R overlaps some linearized left-hand
side l of some rule in R at position p, then neither g nor l|p contains a strict
subterm that can be overlapped linearly. This implies the fact that if two
left-hand sides of rules overlap (linearly) a left-hand side l of a rule at p and
q, respectively, then either p = q or p#q. Overlaps at different positions
along a path from the root to a leaf of l are forbidden.

Layered systems are a decidable class relating to overlay systems [DOS87],
for which overlaps computed with plain unification can only take place at the
root of terms – hence their name –, and generalizes strongly non-overlapping
systems [SO10] which admit no linearized overlaps at all. All these classes
are Turing-complete since they contain a complete class [Klo93].

Example 6.4.2. NKH is a layered system, which is also overlay.
{h(f(x, y))→a, f(x, c(x))→b} is layered but not overlay. {h(f(x, x))→ a,

f(x, c(x)) → b, g → c(g)} is layered, but not strongly non-overlapping.
{f(h(x)) → x, h(a) → a, a → b} is not overlay nor layered: SOF(h(x))
succeeds while SOF(h(a)) fails, hence their conjunction fails.

117

6.4. Layered Systems

6.4.1 Layering

In this chapter, we define a new notion of rank with respect to redex-depth.
The (new) rank of a term t is the maximum number of non-overlapping
linearized redexes traversed from the root to some leaf of t, which differs
from the usual redex-depth.

Definition 6.4.3. Given a layered rewrite system R, the rank (with respect
to redex-depth) rankrd(t) (rank(t) for simplicity) of a term t is defined by
induction on the size of terms as follows:

– the maximal rank of its immediate subterms if t is not a linearized
redex ; otherwise,

– 1 plus max{rankrd(σ) | (∃l → r ∈ R) t = lσ}, where rankrd(σ) :=

max{rankrd(σ(x)) | x ∈ Var(l)}.

Definition 6.4.4. A rewrite system R is rank non-increasing if for all terms
u, v such that u→R v, then rank(u) ≥ rank(v).

The rewrite system {f(x) → c(f(x))} is rank non-increasing while
{f(x)→ f(f(x))} is rank increasing. The system {fib(0)→ 0, f ib(S(0))→
S(0), f ib(S(S(x)))→ fib(S(x))+fib(x)} calculating the Fibonacci function
is rank non-increasing. NKH is rank non-increasing. The coming decidable
sufficient condition for rank non-increasingness captures our examples (but
for Fibonacci, for which an even more complex decidable property is needed):

Lemma 6.4.5. A layered rewrite system R is rank non-increasing if each
rule g → d in R satisfies the following properties:

(i) (∀l→ r ∈ R)

(∀l′ → r′ ∈ R s.t. Var(d),Var(l),Var(l′) are pairwise disjoint)
(∀p, q ∈ FPos(d) s.t. q > p · FPos(l))
(∀σ : Var(g, l, l′)→ T (F)) (d|pσ 6= lσ) ∨ (d|qσ 6= l′σ) ;

(ii) (∀l→ r ∈ R s.t. Var(g) ∩ Var(l) = ∅)

(∀p ∈ FPos(l) \ Λ)

(∀σ : Var(g, l)→ T (F) s.t. dσ = l|pσ)

118

6.4. Layered Systems

(∃l′ → r′ ∈ R s.t. Var(l′) ∩ Var(g, l) = ∅)

(∃x 6∈ Var(l, l′, g)) l[x]p •≥ l′.

The intuition of property (i) is that the right-hand side d does not contain
two vertically non-overlapped redexes, which may increase the rank of terms.
And property (ii) gives an idea that rewriting with the rule g → d will not
create a new redex above the rewritten position.

We can now again index term-related notions by the rank of terms.
Let Tn(F ,X) (in short, Tn) be the set of terms of rank at most n. Two
terms in Tn are n-convertible (resp., n-joinable) if their R-conversion (resp.,
R-joinability) involves terms in Tn only.

6.4.2 Closure properties

We call a term u an OF-term if u satisfies OF(u), and a substitution an
OF-substitution if it maps variables to OF-terms. OF-terms enjoy several
important closure properties. Given two substitutions θ, σ and rank n, let

Convθn(u,v) if uθ and vθ are n-convertible, and
Equalizen(u)θσ if uθ →→RR

uσ with terms of rank at most n.

Lemma 6.4.6. For all OF-terms u and substitutions γ, uγ cannot sub-
rewrite at a position p ∈ FPos(u).

Corollary 6.4.7. OF-terms are preserved under instantiation by
OF-substitutions.

Lemma 6.4.8. Let u, v be two terms such that Convθn(u,v), Equalizen(u)θσ
and Equalizen(v)θσ. Then uσ and vσ are n-convertible.

Lemma 6.4.9. Let ∧i ui = vi be obtained by decomposition of a unification
problem P . Assume all equations ui = vi satisfy the properties Convθn(ui,vi),
Equalizen(ui)θσ, Equalizen(vi)θσ, OF(ui) and OF(vi). Assume further that n-
convertible terms are joinable. Then, unification of P succeeds, and returns
a solved form of which all equations satisfy these five properties.

119

6.4. Layered Systems

In this lemma and coming proof, we assume that linearizations are prop-
agated by the unification rules, implying in particular that u|p = u|p. P
defines the initial linearization.

Proof. We show that these five properties are invariant by the unification
rules. The claim follows since the unification rules terminate. We use
notations in Table 6.1.

• Remove, Choose, Swap are straightforward.

• Decomp. By assumption, Convθn(f(~s),f(~t)), hence f(~s)θ and f(~t)θ

are joinable by using terms of rank at most n, since R is rank non-
increasing. By assumption OF(f(~s)) and OF(f(~t)), hence no rewrite
can take place at the root. The result follows.

• Conflict. By the same token, f = g, a contradiction. Thus Conflict
is impossible.

• Coalesce. By assumption, we have Convθn(xk,yl), Equalizen(xk)θσ,
Equalizen(yl)θσ, and for each u = v in P , Convθn(u,v), Equalizen(u)θσ,
OF(u), Equalizen(v)θσ and OF(v). Putting these things together, we get
Convθn(u{xk 7→ yl},v{xk 7→ yl}), hence Convθn(u{x 7→ y},v{x 7→ y}).
Similarly, properties Equalizen(u{x 7→ y})θσ and Equalizen(v{x 7→ y})θσ
hold. Property OF(u) is of course preserved by variable renaming for
any u.

• Merge. Assume Convθn(xk,s), OF(s), Equalizen(s)θσ, Equalizen(xk)θσ,
Convθn(xl,t), OF(t), Equalizen(t)θσ and Equalizen(xl)θσ. Convθn(s,t) fol-
lows from Convθn(xk,s), Convθn(xl,t), Equalizen(xk)θσ and Equalizen(xl)θσ.
The other properties follow similarly.

• Replace. The proof is similar for the first 3 properties. Further, OF
is preserved by replacement by Corollary 6.4.7.

• Merep. Similar to Merge.

120

6.4. Layered Systems

Example 6.4.10 (NKH). Let P = (f(x, x) = f(y, c(y))). Then P →Decomp

x = y ∧ x = c(y)→Replace c(y) = y ∧ x = c(y)→Swap y = c(y) ∧ x = c(y).
Successive linearizations yield f(x1, x2) = f(y1, c(y2)), x1 = y1 ∧ x2 = c(y2),
c(y2)=y1 ∧ x2 =c(y2) and y1 =c(y2) ∧ x2 =c(y2). The announced properties
of the solved form can be easily verified.

Corollary 6.4.11. Let l → r, g → d ∈ R and p ∈ FPos(l) such that
Var(l)∩ Var(g) = ∅, and l|pθ = gθ are terms in Tn+1. Then, unification of
l|p = g succeeds, returning a solved form S such that, for each z = s ∈ S,
Convθn(z,s), OF(s), Equalizen(s)θσ for all σ satisfying (lθ →→(>PFPos(l)) lσ) ∧
(gθ →→(>PFPos(g)) gσ), and further, SOF(l|pηS) ∧ SOF(gηS).

Proof. Unification applies first Decomp. Conclude by Lemmas 6.4.9 and
Corollary 6.4.7.

Corollary 6.4.12. Assume t = lσ for some l → r ∈ R. Then, rank(t) =

1 + rank(σ).

Proof. Let t = liσi = liθγ (note that γ does not depend on i), where θ =

mgu(=i li). Then, rank(t) = 1 +maxi{rank(σi)} = 1 +maxi{rank(θγ)} =

1 + rank(γ) = 1 + rank(σi) since θ satisfies OF at all non-variable positions
by Lemma 6.4.9.

Example 6.4.13 (NKH). Consider f(c(g), c(g)) of rank 2, using either
linearized left-hand side f(x1, x2) or f(y1, c(y2)) to match f(c(g), c(g)).
Corresponding substitutions have rank 1.

A major consequence is that the preparatory phase of sub-rewriting
operates on terms of a strictly smaller rank. This would not be true anymore,
of course, with a conversion-based preparatory phase. More generally, we
can also show that the rank of terms does not increase – but may remain
stable – when taking a subterm, a property which is not true of non-layered
systems. Consider the system {f(g(h(x)))→ x, g(x)→ x, h(x)→ x}. The
redex f(g(h(a))) has rank 1 with our definition, but its subterm g(h(a)) has
rank 2.

121

6.4. Layered Systems

6.4.3 Testing Confluence of Layered Systems via

Cyclic Critical Pairs

Since R is rank non-increasing we shall prove confluence by induction on
the rank of terms. Since rewriting is rank non-increasing, the set of Tn-
conversions is closed under diagram rewriting, hence allowing us to use
Corollary 2.2.12.

Definition 6.4.14 (Cyclic Critical Pairs). Given a layered rewrite system
R, let l → r, g → d ∈ R and p ∈ FPos(l) such that Var(l) ∩ Var(g) = ∅,
and l|p = g is unifiable with canonical cyclic unifier 〈ηS = {~x 7→ ~u}, RS =

{~y → ~v}〉. Then, rηS ←R lηS =cc
RSηS

l[g]pηS →R l[d]pηS is a cyclic critical
peak , and 〈rηS, l[d]pηS〉 is a cyclic critical pair, which is said to be realizable
by the substitution θ iff (∀y → v ∈ RS) yθ →→R ◦ R←← vθ.

The relationship between critical peaks and realizable cyclic critical pairs,
usually called critical pair lemma, is more complex than usual:

Lemma 6.4.15 (Cyclic Critical Pair Lemma). Let l → r, g → d ∈ R

such that Var(l) ∩ Var(g) = ∅. Let rσ ←Λl→r lσ (>PFPos(l))←← lθ =

lθ[gθ]p →→(>Pp·FPos(g)) lθ[gσ]p →p
g→d lθ[dσ]p be a sub-rewriting local peak

in Tn+1, satisfying p ∈ FPos(l) and Var(lθ) ∩ Var(l, g) = ∅. Assume
further that R is Church-Rosser on the set Tn. Then, there exists a cyclic
solution 〈γ,RS〉 such that S is a solved form of the unification problem
l|p = g, γ = ηSρ for some ρ of domain included in Var(l, g), σ →→R γ, and
RS is realizable by γ.

Proof. Corollary 6.4.11 asserts the existence of a solved form S = (~x =

~u ∧ ~y = ~v) of the problem l|p = g. But 〈σ,RS〉 may not be a cyclic solution.
We shall therefore construct a new substitution γ such that σ →→RR

γ and
〈γ,RS〉 is a cyclic solution of the problem, obtained as an instance by some
substitution ρ of the most general cyclic unifier 〈ηS, RS〉 by Theorem 6.3.11.

The construction of γ has two steps. The first aims at forcing the
equality constraints given by S. This step will result in each parameter
having possibly many different values. The role of the second step will be
to construct a single value for each parameter.

122

6.4. Layered Systems

We start equalizing independently equations z=s ∈ S. Since Convθn(zj,s),
Equalizen(zj)θσ and Equalizen(s)θσ, Lemma 6.4.8 ensures that zσ and sσ are
n-convertible. By assumption, zσ and sσ are joinable, hence there exists a
term tsz such that zσ →→R t

s
z R←← sσ. Since OF(s) by Corollary 6.4.11, the

derivation from sσ to tsz must occur at positions below FPos(s). Maintaining
equalities in sσ between different occurrences of each variable in Var(s),
we get tsz = sτ sz for some τ sz . For each parameter p, pσ →→R pτ

s
z , hence the

elements of the non-empty set {pτ sz | p ∈ Var(s) for some z = s ∈ S} are
n-convertible thanks to rank non-increasingness. By our Church-Rosser
assumption, they can all be rewritten to a same term tp. We now define γ:

(i) parameters. Given p ∈ P, we define γ(p) = tp. By construction,
pσ →→R tp = pγ.

(ii) finite variables. Given x = u ∈ ~x = ~u, let γ(x) = uγ|P , thus xγ = uγ.
By construction, xσ →→R uτ

u
x →→R uγ, hence xσ →→R xγ.

(iii) cyclic variables. Given y = v ∈ ~x = ~u, let γ(y) = yσ, making
yσ →→R yγ trivial.

(iv) variables in Var(l, g) \ Var(l|p, g), that is, those variables from the
context l[·]p which do not belong to the unification problem l|p = g, hence to
the solved form S. Given z ∈ Var(l, g) \ Var(l|p, g), let γ(z) = zσ, making
zσ →→R zγ trivial.

Therefore σ →→R γ. We proceed to show 〈γ,RS〉 is a cyclic solution of
l|p = g. Take ρ = γ|¬~x. It is routine to see γ = ηSρ, and to check that
〈ηS, RS〉 is a cyclic unifier of S by Definition 6.3.7, hence of l|p = g by
Lemma 6.3.10. Hence the statement.

We end up the proof by noting that γ is a realizer of RS.

In case of NKH, the lemma is straightforward since solved forms have
no parameters.

Our proof strategy for proving confluence of layered systems is as follows:
assuming that n-convertible terms are joinable, we show that (n + 1)-
convertible terms are (n + 1)-joinable by exhibiting appropriate joinably
decreasing diagrams for all their local peaks. To this end, we need to define
a labelling schema for sub-rewriting. Assuming that each rule has a natural

123

6.4. Layered Systems

number index, different rules having possibly the same index, a step u→p
RR

v

with the rule li →i ri is labelled by the pair 〈rank(u|p), i〉 composed of the
rank of the redex and then the rule index. Pairs are compared in the order
� = (≥,≥)lex whose strict part is well-founded. Indexes give more flexibility
(shared indexes give even more) in finding decreasing diagrams for critical
pairs, this is their sole use.

Definition 6.4.16. Let l →i r, g →j d ∈ R and p ∈ FPos(l) such that
l|p = g has a solved form S. Then, the cyclic critical pair 〈rηS, l[d]pηS〉 has
a cyclic-joinable decreasing diagram if rηS →→〈1,I〉R s =cc

RSηS
t
〈1,J〉

R←← l[d]pηS,
whose sequences of indexes I and J satisfy the decreasingness condition,
with the additional condition, in case Var(l[·]p) 6= ∅, that all steps have a
rule index k < i.

By Corollary 6.4.11, the ranks of lηS and l[g]pηS are 1. Thanks to
rank non-increasingness and Definition 6.4.3, the cyclic-joinable decreasing
diagram – but the congruence closure part – is made of terms of rank 1

except possibly s and t which may have rank 0. It follows that all redexes
rewritten in the diagram have rank 1. The decreasingness condition is
therefore ensured by the rule indexes, which justifies our formulation.

Note further that the condition Var(l[·]p) = ∅ is automatically satisfied
when p = Λ, hence no additional condition is needed in case of a root
overlap. In case where Var(l[·]p) 6= ∅, implying a non-root overlap, the
additional condition aims at ensuring that the decreasing diagram is stable
under substitution. It implies in particular that there exists no i-facing
step. This may look restrictive, and indeed, we are able to prove a slightly
better condition: (i) there exists no i-facing step, and (ii) each step u→q

k v

using rule k at position q satisfies k < i or Var(u|q) ⊆ Var(gηS). We will
restrict ourselves here to the simpler condition which yields a less involved
confluence proof.

We can now state and prove our main result:

Theorem 6.4.17. Rank non-increasing layered systems are confluent pro-
vided their realizable cyclic critical pairs have cyclic-joinable decreasing
diagrams.

124

6.4. Layered Systems

Proof. Since →R ⊆ →RR
⊆ →→R, R-convertibility and RR-convertibility

coincide. We can therefore apply Corollary 2.2.12 to RR-conversions, and
reason by induction on the rank. We proceed by inspection of the sub-
rewriting local peaks v ←p(l→r)R u →q

(g→d)R
w, with Var(l) ∩ Var(g) = ∅.

We also assume for convenience that Var(l, g) ∩ Var(u, v, w) = ∅. This
allows us to consider u, v, w as ground terms by adding their variables as
new constants. We assume further that variables x, y ∈ Var(l, g) become
linearized variables xi, yj in l, g, and that ξ is the substitution such that
ξ(xi) = x and ξ(yj) = y, hence implying Var(l) ∩ Var(g) = ∅.

By definition of sub-rewriting, u|p = lθ →→(>PFPos(l))
R v′|p = lσ and

v = u[rσ]p, where for all positions o ∈ Pos(l) such that l|o = x and
l|o = xi, then xiθ →→R xσ. Similarly, u|q = gθ →→(>PFPos(g))

R w′|q = gσ

and w = u[dσ]q, where for all positions o ∈ Pos(g) such that g|o = y and
g|o = yj, then yjθ →→R yσ. There are three cases:

1. p#q. The case of disjoint redexes is as usual for rule labelling, since
ranks are only determined by the redexes, which are not changed.

2. q >P p · FPos(l), the so-called ancestor peak case, for which sub-
rewriting shows its strength. W.l.o.g. we assume u|p has some rank
n + 1 and note that u|q has some rank m ≤ n by Corollary 6.4.12.
Since the sub-rewrite steps from u to w occur strictly below p·FPos(l),
then q = p · o · q′ where l|o = ξ(yj) and l|o = yj . It follows that w = lτ

for some τ which is equal to θ for all variables in l except yj for which
τ(yj) = θ(yj)[dσ]q′ .

We proceed as follows: we equalize all n-convertible terms {xσ | x ∈
Var(r)} in v and {yτ | y ∈ Var(l)} in w by induction hypothesis,
yielding s, t. Note that steps from v to s have ranks strictly less than
the rank n + 1 of the step u →RR

v by Corollary 6.4.12 and rank
non-increasingness. Then, t is an instance of l by some γ, and s is the
corresponding instance of r, hence t rewrites to s with l → r. The
equalization steps from w to t have ranks which are not guaranteed
to be strictly less than m, hence cannot be kept to build a decreasing
diagram. But they can be absorbed in a sub-rewrite step from w to

125

6.4. Layered Systems

s whose first label is at most n + 1, hence faces the step u →RR
v:

sub-rewriting allows us to rewrite directly from w to s, short-cutting
the rewrites from w to t that would otherwise yield a non-decreasing
diagram. The proof is depicted at Figure 6.1, assuming p = Λ for
simplicity. Black color is used for the given sub-rewriting local peak,
blue for arrows whose redexes have ranks at most n+ 1, and red when
redex has rank at most n.

u = lθ
�

�
�
�

�
��+

�
�

�
�

�
��+

v′ = lσ

?N

n+ 1

v = rσ

Q
Q
Q
Q
Q
Q
Qs

m ≤ n

w = lτ

??

≤ n

s = rγ
??

t = lγ�9

≤ n+ 1

Figure 6.1: Ancestor Peak

3. q ∈ p · FPos(l), the so-called critical case, whose left and right rewrite
steps have labels 〈n+1, i〉 and 〈m, j〉, respectively, with rules l→ r and
g → d having indexes i and j. Assuming without loss of generality that
p = Λ, the proof is depicted at Figure 6.2. Most technical difficulties
here originate from the fact that the context l[·]q may have variables.
In this case, we first rewrite w to t′ = lσ[dσ]q = l[d]qσ by replaying
those equalization steps, of rank at most n, used in the derivation
from u to v′, which apply to variable positions in Var(l[·]q).
Now, since lθ = lθ[gθ]q, by Lemma 6.4.15, there is a substitution
γ and a solved form S of the unification problem l|q = g, such that
σ →→R γ, γ = ηSρ for some ρ, and RS is realizable by γ. By assumption,
the cyclic critical pair 〈rηS, l[d]qηS〉 has a cyclic-joinable decreasing

126

6.4. Layered Systems

u = lθ = lθ[gθ]q
�

�
�
�

�
�
�+

�
�

�
�

�
��+

v′ = lσ

?^

n+ 1

v = rσ

Q
Q
Q
Q
Q
Q
Qs

Q
Q
Q
Q
Q
QQs

w′= lθ[gσ]q

?+

m ≤ n+ 1

w = lθ[dσ]q
lηS =cc

RSηS
l[g]qηS

�
��	

@
@@R

rηS l[d]qηS
HH

HHj

HH
HHj

��
���

��
���=cc

RSηS
??
s = rγ

??
t′ = l[d]qσ

??
t = l[d]qγ

HHH
HHHj

HHH
HHHj

���
����

���
����=cc

RSηSρ

@@R@@R ��	��	

Figure 6.2: Critical Peak

diagram (modulo =cc
RSηS

). We can now lift this diagram to the pair
〈s, t〉 by instantiation with the substitution ρ. The congruence closure
used in the lifted diagram becomes therefore =cc

RSηSρ
. We are left

showing that the obtained diagram for the pair 〈v, w〉 is decreasing
with respect to the local peak v ← u→ w.

This diagram is made of three distinct parts: the equalization steps,
the rewrite steps instantiating the cyclic-joinability assumption with
ρ, which originate from s and t – we call them the middle part –, and
the congruence closure steps. By Corollary 6.4.12, the left equalization
steps v = rσ →→R rγ = s use rewrites with redexes of rank at most
n, hence their labels are strictly smaller than 〈n + 1, i〉. The right
equalization steps w →→ t′ →→ t are considered together with the
(green-)middle-part rewrite steps. There are two cases depending on
whether l[·]q is variable-free or not:

a) Var(l[·]q) = ∅, hence m = n + 1 by Corollary 6.4.12. In this
case, w = t′, and by Corollary 6.4.12, the rewrite steps w =

127

6.4. Layered Systems

l[d]qσ →→R l[d]qγ = t have redexes of rank at most n, making
their labels strictly smaller than 〈m, j〉 = 〈n+ 1, j〉. Let us now
consider the middle-part rewrite steps. Thanks to rank non-
increasingness, all terms in this part have rank at most n+ 1. It
follows that the associated labels are pairs of the form {〈n′, i′〉 |
n′ ≤ n+ 1, i′ ∈ I} on the left, or {〈n′, j′〉 | n′ ≤ n+ 1, j′ ∈ J} on
the right. The assumption that I, J satisfy the decreasingness
condition for the critical peak ensures that these rewrites do
satisfy the decreasingness condition with respect to the local peak
v ← u→ w as well.

b) Var(l[·]q) 6= ∅. By Corollary 6.4.12, the right equalization steps
w →→ t′ →→ t have redexes of rank at most n, making their labels
strictly smaller than 〈n + 1, i〉. Consider now the middle part.
Thanks to rank non-increasingness and the additional condition
on the cyclic-joinability assumption of the cyclic critical pair, all
labels 〈n′, k〉 in the middle part satisfy n′ ≤ n + 1 and k < i,
hence are strictly smaller than 〈n+ 1, i〉.

We are left with the congruence closure steps. Given y = v ∈ RS,
yγ →→R ◦ R←← vγ since RS is realizable by γ. By Lemma 6.4.9, OF(v)
holds, hence yγ and vγ are n-convertible by rank non-increasingness.
We are left with replacing the =cc

~yγ=~vγ-steps by a joinability diagram
whose all steps have rank at most n. The obtained diagram is therefore
decreasing, which ends the proof.

Using the improved condition of cyclic-joinability mentioned after Defini-
tion 6.4.16 requires modifying the discussion concerning the (green-)middle-
part rewrite steps. Although this does not cause any conceptual difficulties,
it is technically delicate. The interested reader can try to reconstruct this
proof for himself or herself.

Our result gives an answer to NKH: confluence of critical pair free rewrite
systems can be analyzed via their sub-rewriting critical pairs, which are
actually the cyclic critical pairs.

128

6.4. Layered Systems

NKH is critical pair free but non-confluent. Indeed, it has the Ω solved
form x = c(y) ∧ y = c(y) obtained by unifying f(x, x) = f(y, c(y)). The
cyclic critical peak is then a ← f(x, x) =cc f(y, c(y))→ b yielding the cyclic
critical pair 〈a, b〉 which is not joinable modulo {x = c(y), y = c(y)}.

We now give a slight modification of NKH making it confluent:

Example 6.4.18. The system R = {f(x, x)→2a(x, x), f(x, c(x))→2 b(x),

f(c(x), c(x))→3 f(x, c(x)), a(x, x)→1 e(x), b(x)→1 e(c(x)), g →0 c(g)} is
confluent. Showing that R satisfies (DLO) is routine, and it is rank non-
increasing by Lemma 6.4.5. There are three cyclic critical pairs, which all
have a cyclic-joinable decreasing diagram. For instance, the unification prob-
lem f(x, x) = f(y, c(y)) returns a canonical cyclic unifier 〈ηS = ∅, RS =

{x→ c(y), y → c(y)}〉, the corresponding cyclic critical peak a(x, x) ←〈1,2〉

f(x, x) =cc
RSηS

f(y, c(y)) →〈1,2〉 b(y) has a cyclic-joinable decreasing dia-
gram a(x, x)→〈1,1〉 e(x) =cc

RSηS
e(c(y)) ←〈1,1〉 b(y). The unification problem

f(x, x) = f(c(y), c(y)) returns 〈ηS = {x = c(y)}, RS = ∅〉, the correspond-
ing (normal) critical peak a(c(y), c(y)) ←〈1,2〉 f(c(y), c(y))→〈1,3〉 f(y, c(y))

decreases by a(c(y), c(y)) →〈1,1〉 e(c(y)) ←〈1,1〉 b(y) ←〈1,2〉 f(y, c(y)). By
Theorem 6.4.17, R is confluent.

Theorem 6.4.17 can be easily used positively: if all cyclic critical pairs
have cyclic-joinable decreasing diagrams, then confluence is met. This was
the case in Example 6.4.18. But there is another positive use that we
illustrate now: showing that {f(x, x) → a, f(x, c(x)) → b, g → d(g)} is
confluent requires proving that the cyclic critical pair given by unifying
the first two rules is not realizable. Although realizability is undecidable
in general, this is the case here since there is no term s convertible to c(s).
Theorem 6.4.17 can also be used negatively by exhibiting some realizable
cyclic critical pair which is not joinable: this is the case of example NKH.
In general, if some realizable cyclic critical pair leading to a local peak is
not joinable, then the system is non-confluent. Whether a realizable cyclic
critical pair always yields a local peak is still an open problem which we
had no time to investigate yet.

129

6.5. Conclusion

A main assumption of our result is that rules may not increase the rank.
One can of course challenge this assumption, which could be due to the
proof method itself. The following counter-example shows that it is not the
case.

Example 6.4.19. Consider R = {d(x, x) → 0, f(x) → d(x, f(x)), c →
f(c)} due to Klop, which predates NKH, as an example of critical pair
free but non-confluent system. It is layered but its second rule is rank
increasing since d(x, f(x)) has rank 2 while f(x) has rank 1. This system is
non-confluent, since f(f(c))→ d(f(c), f(f(c)))→ d(f(f(c)), f(f(c)))→ 0

while f(f(c)) → f(d(c, f(c))) → f(d(f(c), f(c))) → f(0) which generates
the regular tree language {S → d(0, S), S → f(0)} not containing 0. Note
that replacing the second rule by the right-linear rule f(x) → d(x, f(c))

yields a confluent system [SO10].

Releasing rank non-increasingness would indeed require strengthening
another assumption, possibly imposing left- or right-linearity.

6.5 Conclusion

The decreasing diagrams method has shown its power to study confluence
of non-terminating systems based on critical pairs computing. Our results
give a partial solution by allowing non-terminating rules which can also be
non-linear on the left as well as on the right. The notion of layered systems
is our first conceptual contribution here.

Another, technical contribution of our work is the generalized notion of
sub-rewriting, which can indeed be compared to parallel rewriting. Both
relations contain plain rewriting, and are included in its transitive closure.
That is, → ⊆ →RR

⊆ →+ and → ⊆ ⇒ ⊆ →+. Both can therefore be
used for studying confluence of plain rewriting. Tait and Martin-Löf’s
parallel rewriting – as presented by Barendregt in his famous book on
λ-calculus [Bar84] – has been recognized as the major tool for studying
confluence of left-linear non-terminating rewrite relations when they are
not right-linear. We believe that sub-rewriting will be equally successful

130

6.5. Conclusion

for studying confluence of non-terminating rewrite relations that are not
left-linear. In the present work where no linearity assumption is made,
assumption (DLO) ensuring the absence of stacked critical pairs in left-
hand sides makes the combined use of sub-rewriting and parallel rewriting
superfluous. Without that assumption, as is the case in Chapter 5, their
combined use becomes necessary.

A last contribution, both technical and conceptual, is the notion of cyclic
unifiers. Although their study is still preliminary, we have shown that they
constitute a powerful new tool to handle unification problems with cyclic
equations in the same way we deal with unification problems without cyclic
equations, thanks to the existence of most general cyclic unifiers which
generalize the usual notion of most general unifiers. This indeed opens the
way to a uniform treatment of problems where unification, whether finite or
infinite, plays a central role.

As mentioned in Chapter 5, our long-term goal goes beyond improving
the current toolkit for carrying out confluence proofs for non-terminating
rewrite systems. We aim at designing new tools for showing confluence
of complex type theories (with dependent types, universes and dependent
elimination rules) directly on raw terms, which would ease the construction
of strongly normalizing models for typed terms. Since redex-depth, the
notion of rank used here, does not behave well for higher-order rules, as the
case in Chapter 5, appropriate new notions of ranks are still required in that
setting.

131

Seven

Conclusion

In this thesis, we presented a thorough investigation of the notion of de-
creasing diagrams, from the notion itself up to its applications, aiming at
confluence proofs of non-terminating non-left-linear rewrite systems based
on critical-pair analysis. Along this journey, we inspect the notion at three
different levels.

At the abstract level, we first revise the proof of the decreasing diagrams
method in Chapter 3. An alternative simpler proof is given, allowing to
generalize the method, as well as its completeness, to the modulo case. The
basis of the completeness result, cofinal derivation due to Klop [Klo80], leads
to new proofs of existing modularity results [Toy87, JT08]. Moreover, we
extend the decreasing diagrams technique with a multi-labelled version in
Chapter 4, which enhances the expressivity of the technique by localizing
global measures of conversions into step labels.

Then still in Chapter 4, following the work by Jouannaud and Li [JL12a],
we move our focus onto a slightly more concrete level of rewriting, called
abstract positional rewriting. The decreasing diagrams method is lifted to
abstract positional rewrite relations, where (abstract) positional information
is available to bridge the gap between abstract rewriting and term rewriting.

Finally at the concrete term level, we investigate different classes of
non-terminating non-left-linear term rewrite systems by decreasing diagrams
via introducing a new rewrite relation, sub-rewriting, in the following two

132

chapters. In Chapter 5, inspired by the work of Jouannaud and van Oost-
rom [JvO09], we prove that the confluence of a union of two systems – one
is terminating, the other is non-left-linear, rank non-increasing and possibly
non-terminating – can be reduced to the existence of decreasing diagrams for
its various kinds of critical pairs, based on a signature split. In Chapter 6,
motivated by a famous example raised by Huet [Hue80], we demonstrate,
in absence of signature assumptions, that rank non-increasing layered sys-
tems are confluent provided their cyclic critical pairs have cyclic-joinable
decreasing diagrams. Since there is no signature split, the notion of rank is
of course different, and indeed, intrinsic.

These various issues are still worth investigating.
One interesting direction would be to draw a complete picture of de-

creasing diagrams in the NARS framework [JL12a]. While the strength of
the NARS framework is its capability to unify existing rewriting definitions,
and therefore their Church-Rosser properties assuming some terminating
property, the power of the decreasing diagrams technique is its ability to
capture confluence proofs at the abstract level no matter whether the rewrite
relation terminates or not. It seems a natural idea to combine this two
elegant frameworks to build a comprehensive new setting in order to study
the Church-Rosser properties of possibly non-terminating systems based on
their critical pairs at an abstract level, even in presence of equations and
simplifiers. The efforts made in Chapter 4 are only preliminary. A thorough
investigation is needed.

Another important direction that we have not touched is the use of the
decreasing diagrams method in conditional rewriting, in which case the use
of the rewrite rules is subjected to conditions to be satisfied. Conditional
rewriting is the basis of rewriting-based, declarative programming languages,
such as Maude [CDE+02, CDE+07], CafeOBJ [DF98a] and ELAN [BKK+96,
BKK+98], which have shown their power in describing and verifying network
protocols, cryptographic protocols, embedded systems to cite a few [Mes12].
We realize that our notion of sub-rewriting is somehow related to conditional
rewriting with left-linear rules and the conditions are joinability predicates
between variables. We suspect that applying the decreasing diagrams method

133

to conditional rewriting will allow to enhance the capabilities of these formal
verification tools.

Our long-term goal goes beyond improving the current toolkit for higher-
order computations. We are interested in carrying out confluence proofs for
complex type theories, with dependent types, universes, dependent elimi-
nation rules, directly on untyped terms. Three properties of a type theory
– type preservation, strong normalization and confluence – are essential to
prove consistency and decidability of type checking. However in dependent
type theories, confluence and type preservation are needed to build strongly
normalizing models; confluence is needed to show preservation of product
types by rewriting, which is an essential ingredient of the type preservation
proof; type preservation is needed to show that derivations issued from
well-typed terms are well-typed, which is an essential ingredient of the
confluence proof. One can break this circularity in two ways: by proving
all three properties together within a single huge induction [Gog94]; or by
proving confluence on untyped terms, then allowing to prove successively
type preservation, confluence on typed terms, and strong normalization,
which motivates our long-term objective. Since β-reduction becomes then
non-terminating in the latter case, the only potential technique of use is
that of decreasing diagrams. Current techniques for showing confluence by
using decreasing diagrams in higher-order rewrite systems [vO97], admit
type theories in which the rules are left-linear, have development closed
critical pairs, and do not build associativity and commutativity into pattern
matching. But allowing for non-left-linear rules and/or for non-trivial critical
pairs, and computing over non-free data structures like sets and/or abstrac-
tion, is out of scope of current techniques. Such computations are however
present in type theories such as in Dedukti1, and, more recently, in Agda2.
We have already started promising investigations in this direction for the
λΠ-calculus modulo [CD07, Ass15], the theory on which Dedukti is based.
One important thing we have learned from this thesis is that, decreasing
diagrams make it possible to work modularly: we can split a rewrite system

1The INRIA project Dedukti is described at http://dedukti.gforge.inria.fr/
2The Agda project is described at http://wiki.portal.chalmers.se/agda

134

http://dedukti.gforge.inria.fr/
http://wiki.portal.chalmers.se/agda

into different pieces, and even split and/or duplicate a rewrite relation into
different ones, and discriminate them by labelling them appropriately. This
technique can be very useful for higher-order rewrite systems as well, as
shown by a recent work of Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud
and myself, presented in workshop HOR [ADJL16]. Dependent type theo-
ries that allow for user-defined rewrite rules in addition to β-reduction, like
Dedukti and Agda, are good targets for such techniques. We believe that
we have opened the way to using a technique that will play a key role in
proving confluence in type theory.

135

Bibliography

[ADJL16] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang
Liu. Untyped Confluence in Dependent Type Theories. In
Proceedings Higher-Order Rewriting Workshop, Porto, Portugal,
June 2016.

[Ass15] Ali Assaf. A framework for defining computational higher-order
logics. (Un cadre de définition de logiques calculatoires d’ordre
supérieur). PhD thesis, École Polytechnique, Palaiseau, France,
2015.

[AT97] Takahito Aoto and Yoshihito Toyama. Persistency of confluence.
J. UCS, 3(11):1134–1147, 1997.

[AT12] Takahito Aoto and Yoshihito Toyama. A reduction-preserving
completion for proving confluence of non-terminating term
rewriting systems. Logical Methods in Computer Science, 8(1),
2012.

[ATU14] Takahito Aoto, Yoshihito Toyama, and Kazumasa Uchida. Prov-
ing confluence of term rewriting systems via persistency and
decreasing diagrams. In Dowek [Dow14], pages 46–60.

[Bar84] Hendrik P. Barendregt. The Lambda Calculus: Its Syntax and
Semantics, volume 103 of Studies in Logic and the Foundations
of Mathematics. North-Holland, 1984.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development - Coq’Art: The Calculus of Inductive

136

Bibliography

Constructions. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

[BD07] Maria Paola Bonacina and Nachum Dershowitz. Abstract
canonical inference. ACM Trans. Comput. Log., 8(1), 2007.

[BKK+96] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-
Etienne Moreau, and Marian Vittek. ELAN: A logical frame-
work based on computational systems. Electr. Notes Theor.
Comput. Sci., 4:35–50, 1996.

[BKK+98] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-
Etienne Moreau, and Christophe Ringeissen. An overview of
ELAN. Electr. Notes Theor. Comput. Sci., 15:55–70, 1998.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that.
Cambridge University Press, 1998.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Robert M. Graham,
Michael A. Harrison, and Ravi Sethi, editors, Conference Record
of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, pages
238–252. ACM, 1977.

[CD07] Denis Cousineau and Gilles Dowek. Embedding pure type sys-
tems in the lambda-Pi-calculus modulo. In Simona Ronchi Della
Rocca, editor, Typed Lambda Calculi and Applications, 8th In-
ternational Conference, TLCA 2007, Paris, France, June 26-28,
2007, Proceedings, volume 4583 of Lecture Notes in Computer
Science, pages 102–117. Springer, 2007.

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lin-
coln, Narciso Martí-Oliet, José Meseguer, and Jose F. Que-
sada. Maude: specification and programming in rewriting logic.
Theor. Comput. Sci., 285(2):187–243, 2002.

137

Bibliography

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott,
editors. All About Maude - A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewrit-
ing Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model checking. MIT Press, 2001.

[Col82] Alain Colmerauer. Prolog and infinite trees. Logic Programming,
16:231–251, 1982.

[Col84] Alain Colmerauer. Equations and inequations on finite and
infinite trees. In FGCS, pages 85–99, 1984.

[Cou83] Bruno Courcelle. Fundamental properties of infinite trees.
Theor. Comput. Sci., 25:95–169, 1983.

[CR36] Alonzo Church and J. B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–
482, 1936.

[dB78] N. G. de Bruijn. A note on weak diamond properties. Memo-
randum 78–08, Eindhoven University of Technology, 1978.

[DF98a] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report -
The Language, Proof Techniques, and Methodologies for Object-
Oriented Algebraic Specification, volume 6 of AMAST Series
in Computing. World Scientific, 1998.

[DF98b] Razvan Diaconescu and Kokichi Futatsugi. An overview of
CafeOBJ. Electr. Notes Theor. Comput. Sci., 15:285–298, 1998.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite sys-
tems. In Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics (B), pages 243–320. 1990.

138

Bibliography

[DOS87] Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Con-
fluence of conditional rewrite systems. In Stéphane Kaplan and
Jean-Pierre Jouannaud, editors, Conditional Term Rewriting
Systems, 1st International Workshop, Orsay, France, July 8-10,
1987, Proceedings, volume 308 of Lecture Notes in Computer
Science, pages 31–44. Springer, 1987.

[Dow14] Gilles Dowek, editor. Rewriting and Typed Lambda Calculi -
Joint International Conference, RTA-TLCA 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes in
Computer Science. Springer, 2014.

[Fel13a] Bertram Felgenhauer. Personal communication, 2013.

[Fel13b] Bertram Felgenhauer. Rule labeling for confluence of left-linear
term rewrite systems. In International Workshop on Confluence,
pages 23–27, 2013.

[FvO13] Bertram Felgenhauer and Vincent van Oostrom. Proof orders
for decreasing diagrams. In Femke van Raamsdonk, editor,
RTA, volume 21 of LIPIcs, pages 174–189. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[Ges90] Alfons Geser. Relative Termination. PhD thesis, University of
Passau, Germany, 1990.

[GLM92] Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès.
An abstract standardisation theorem. In Proceedings of the
Seventh Annual Symposium on Logic in Computer Science
(LICS ’92), Santa Cruz, California, USA, June 22-25, 1992,
pages 72–81. IEEE Computer Society, 1992.

[Gog94] Healfdene Goguen. The metatheory of UTT. In Peter Dyb-
jer, Bengt Nordström, and Jan M. Smith, editors, Types for
Proofs and Programs, International Workshop TYPES’94, Bås-
tad, Sweden, June 6-10, 1994, Selected Papers, volume 996

139

Bibliography

of Lecture Notes in Computer Science, pages 60–82. Springer,
1994.

[GOO96] Hiroshi Gomi, Michio Oyamaguchi, and Yoshikatsu Ohta. On
the Church-Rosser property of non-E-overlapping and strongly
depth-preserving term rewriting systems. IPSJ, 37(12):2147–
2160, 1996.

[GOO98] Hiroshi Gomi, Michio Oyamaguchi, and Yoshikatsu Ohta. On
the Church-Rosser property of root-E-overlapping and strongly
depth-preserving term rewriting systems. IPSJ, 39(4):992–1005,
1998.

[Gra96] Bernhard Gramlich. Confluence without termination via paral-
lel critical pairs. In Hélène Kirchner, editor, Trees in Algebra
and Programming - CAAP’96, 21st International Colloquium,
Linköping, Sweden, April, 22-24, 1996, Proceedings, volume
1059 of Lecture Notes in Computer Science, pages 211–225.
Springer, 1996.

[GRS87] Jean H. Gallier, Stan Raatz, and Wayne Snyder. Theorem
proving using rigid E-unification equational matings. In Pro-
ceedings of the Symposium on Logic in Computer Science (LICS
’87), Ithaca, New York, USA, June 22-25, 1987, pages 338–346.
IEEE Computer Society, 1987.

[GWM+00] Joseph A Goguen, Timothy Winkler, José Meseguer, Kokichi
Futatsugi, and Jean-Pierre Jouannaud. Introducing OBJ. In
Software Engineering with OBJ, pages 3–167. Springer, 2000.

[Hin64] James Roger Hindley. The Church-Rosser property and a result
in combinatory logic. PhD thesis, University of Newcastle upon
Tyne, 1964.

[HM11] Nao Hirokawa and Aart Middeldorp. Decreasing diagrams
and relative termination. J. Autom. Reasoning, 47(4):481–501,
2011.

140

Bibliography

[HR87] Jieh Hsiang and Michaël Rusinowitch. On word problems
in equational theories. In Thomas Ottmann, editor, ICALP,
volume 267 of LNCS, pages 54–71. Springer, 1987.

[HR91] Jieh Hsiang and Michaël Rusinowitch. Proving refutational
completeness of theorem-proving strategies: The transfinite
semantic tree method. J. ACM, 38(3):559–587, 1991.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1,2,...,ω. Thèse de Doctorat es Sciences Mathématiques, Uni-
versité Paris VII, Septembre 1976.

[Hue80] Gérard P. Huet. Confluent reductions: Abstract properties and
applications to term rewriting systems. J. ACM, 27(4):797–821,
1980.

[JK86] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of
a set of rules modulo a set of equations. SIAM J. Comput.,
15(4):1155–1194, 1986.

[JK91] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations
in abstract algebras: A rule-based survey of unification. In
Computational Logic - Essays in Honor of Alan Robinson, pages
257–321, 1991.

[JL12a] Jean-Pierre Jouannaud and Jianqi Li. Church-Rosser properties
of normal rewriting. In Patrick Cégielski and Arnaud Durand,
editors, CSL, volume 16 of LIPIcs, pages 350–365. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[JL12b] Jean-Pierre Jouannaud and Jiaxiang Liu. From diagrammatic
confluence to modularity. Theor. Comput. Sci., 464:20–34,
2012.

[JM84] Jean-Pierre Jouannaud and Miguel Muñoz. Termination of a set
of rules modulo a set of equations. In Robert E. Shostak, editor,
7th International Conference on Automated Deduction, Napa,

141

Bibliography

California, USA, May 14-16, 1984, Proceedings, volume 170 of
Lecture Notes in Computer Science, pages 175–193. Springer,
1984.

[JO91] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation
model for executable higher-order algebraic specification lan-
guages. In Proceedings of the Sixth Annual Symposium on Logic
in Computer Science (LICS ’91), Amsterdam, The Netherlands,
July 15-18, 1991, pages 350–361, 1991.

[Jou06] Jean-Pierre Jouannaud. Modular Church-Rosser modulo. In
Frank Pfenning, editor, RTA, volume 4098 of LNCS, pages
96–107. Springer, 2006.

[JT08] Jean-Pierre Jouannaud and Yoshihito Toyama. Modular
Church-Rosser modulo: The complete picture. Int. J. Software
and Informatics, 2(1):61–75, 2008.

[JvO09] Jean-Pierre Jouannaud and Vincent van Oostrom. Diagram-
matic confluence and completion. In Susanne Albers, Alberto
Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,
and Wolfgang Thomas, editors, ICALP (2), volume 5556 of
LNCS, pages 212–222. Springer, 2009.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in
universal algebras. In J. Leech, editor, Computational Problems
in Abstract Algebra, pages 263–297. Elsevier, 1970.

[KH12] Dominik Klein and Nao Hirokawa. Confluence of non-left-
linear TRSs via relative termination. In LPAR, volume 7180 of
Lecture Notes in Computer Science, pages 258–273. Springer,
2012.

[Kir12] Claude Kirchner. Rho-calculi for computation and logic (invited
talk). In Ashish Tiwari, editor, RTA, volume 15 of LIPIcs,
pages 2–4. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

142

Bibliography

[Klo80] Jan Willem Klop. Combinatory reduction systems. PhD thesis,
Univ. Utrecht, 1980.

[Klo93] Jan Willem Klop. Term rewriting systems. In Handbook of Logic
in Computer Science, Vol.2, pages 1–116. Oxford University
Press, 1993.

[KMTdV94] Jan Willem Klop, Aart Middeldorp, Yoshihito Toyama, and
Roel C. de Vrijer. Modularity of confluence: A simplified proof.
Inf. Process. Lett., 49(2):101–109, 1994.

[LB77] Dallas S. Lankford and A. M. Ballantyne. Decision procedures
for simple equational theories with commutative-associative
axioms: Complete sets of commutative-associative reductions.
Memo ATP-39, University of Texas, Austin, August 1977.

[LDJ14] Jiaxiang Liu, Nachum Dershowitz, and Jean-Pierre Jouannaud.
Confluence by critical pair analysis. In Dowek [Dow14], pages
287–302.

[LJ14] Jiaxiang Liu and Jean-Pierre Jouannaud. Confluence: The
unifying, expressive power of locality. In Shusaku Iida, José
Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra,
and Software - Essays Dedicated to Kokichi Futatsugi, volume
8373 of Lecture Notes in Computer Science, pages 337–358.
Springer, 2014.

[LJO15] Jiaxiang Liu, Jean-Pierre Jouannaud, and Mizuhito Ogawa.
Confluence of layered rewrite systems. In Stephan Kreutzer,
editor, 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, September 7-10, 2015, Berlin, Germany,
volume 41 of LIPIcs, pages 423–440. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[McC60] John McCarthy. Recursive functions of symbolic expressions
and their computation by machine, part I. Commun. ACM,
3(4):184–195, 1960.

143

Bibliography

[Mes00] José Meseguer. Rewriting logic and Maude: Concepts and
applications. In Leo Bachmair, editor, RTA, volume 1833 of
Lecture Notes in Computer Science, pages 1–26. Springer, 2000.

[Mes11] José Meseguer. Maude. In David A. Padua, editor, Encyclopedia
of Parallel Computing, pages 1095–1102. Springer, 2011.

[Mes12] José Meseguer. Twenty years of rewriting logic. J. Log. Algebr.
Program., 81(7-8):721–781, 2012.

[MO01] Ken Mano and Mizuhito Ogawa. Unique normal form property
of compatible term rewriting systems: a new proof of Chew’s
theorem. Theor. Comput. Sci., 258(1-2):169–208, 2001.

[MOOO97] Kunihiro Matsuura, Michio Oyamaguchi, Yoshikatsu Ohta, and
Mizuhito Ogawa. On the E-overlapping property of nonlinear
term rewriting systems (in Japanese). IEICE, 80-D-I(11):847–
855, 1997.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The definition
of Standard ML. The MIT Press, Massachusetts and London,
England, 1990.

[New42] M. H. A. Newman. On theories with a combinatorial definition
of ‘equivalence’. Ann. Math., 43(2):223–243, 1942.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proceedings of
the Sixth Annual Symposium on Logic in Computer Science
(LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991,
pages 342–349, 1991.

[Nip98] Tobias Nipkow, editor. Rewriting Techniques and Applications,
9th International Conference, RTA-98, Tsukuba, Japan, March
30 - April 1, 1998, Proceedings, volume 1379 of LNCS. Springer,
1998.

[NKOF08] Masaki Nakamura, Weiqiang Kong, Kazuhiro Ogata, and Ko-
kichi Futatsugi. A specification translation from behavioral

144

Bibliography

specifications to rewrite specifications. IEICE Transactions,
91-D(5):1492–1503, 2008.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures
based on congruence closure. J. ACM, 27(2):356–364, 1980.

[vO94a] Vincent van Oostrom. Confluence by decreasing diagrams.
Theor. Comput. Sci., 126(2):259–280, 1994.

[vO94b] Vincent van Oostrom. Confluence for abstract and higher-order
rewriting. PhD thesis, Vrije Universiteit Amsterdam, 1994.

[vO97] Vincent van Oostrom. Developing developments. Theor. Com-
put. Sci., 175(1):159–181, 1997.

[vO08a] Vincent van Oostrom. Confluence by decreasing diagrams
converted. In Andrei Voronkov, editor, RTA, volume 5117 of
LNCS, pages 306–320. Springer, 2008.

[vO08b] Vincent van Oostrom. Modularity of confluence, constructed.
In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, IJCAR, volume 5195 of LNCS, pages 348–363. Springer,
2008.

[O’D85] Michael J. O’Donnell. Equational logic as a programming lan-
guage. In Rohit Parikh, editor, Logics of Programs, Conference,
Brooklyn College, June 17-19, 1985, Proceedings, volume 193 of
Lecture Notes in Computer Science, page 255. Springer, 1985.

[Ohl94] Enno Ohlebusch. On the modularity of termination of term
rewriting systems. Theor. Comput. Sci., 136(2):333–360, 1994.

[Ohl98] Enno Ohlebusch. Church-Rosser theorems for abstract reduc-
tion modulo an equivalence relation. In Nipkow [Nip98], pages
17–31.

[Oku98] Satoshi Okui. Simultaneous critical pairs and Church-Rosser
property. In Nipkow [Nip98], pages 2–16.

145

Bibliography

[OOT95] Y. Ohta, M. Oyamaguchi, and Y. Toyama. On the Church-
Rosser property of simple-right-linear TRS’s (in Japanese).
Trans. IEICE, J78-D-I(3):263–268, 1995.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A
prototype verification system. In Deepak Kapur, editor, Auto-
mated Deduction - CADE-11, 11th International Conference on
Automated Deduction, Saratoga Springs, NY, USA, June 15-18,
1992, Proceedings, volume 607 of Lecture Notes in Computer
Science, pages 748–752. Springer, 1992.

[Pau94] Lawrence C. Paulson. Isabelle - A Generic Theorem Prover
(with a contribution by T. Nipkow), volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

[Pot06] François Pottier. An overview of Cαml. Electr. Notes Theor.
Comput. Sci., 148(2):27–52, 2006.

[PS81] Gerald E. Peterson and Mark E. Stickel. Complete sets of
reductions for some equational theories. J. ACM, 28(2):233–
264, 1981.

[Ros73] Barry K. Rosen. Tree-manipulating systems and Church-Rosser
theorems. J. ACM, 20(1):160–187, 1973.

[Sar90] Vijay A. Saraswat. The paradigm of concurrent constraint
programming. In ICLP, pages 777–778, 1990.

[Sho82] Robert E. Shostak. Deciding combinations of theories. In
Donald W. Loveland, editor, CADE, volume 138 of LNCS,
pages 209–222. Springer, 1982.

[SO10] Masahiko Sakai and Mizuhito Ogawa. Weakly-non-overlapping
non-collapsing shallow term rewriting systems are confluent.
Inf. Process. Lett., 110(18-19):810–814, 2010.

[SOO15] Masahiko Sakai, Michio Oyamaguchi, and Mizuhito Ogawa.
Non-E-overlapping, weakly shallow, and non-collapsing TRSs

146

Bibliography

are confluent. In Amy P. Felty and Aart Middeldorp, editors,
Automated Deduction - CADE-25 - 25th International Confer-
ence on Automated Deduction, Berlin, Germany, August 1-7,
2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pages 111–126. Springer, 2015.

[Str10] Pierre-Yves Strub. Coq modulo theory. In Anuj Dawar and
Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in
Computer Science, pages 529–543. Springer, 2010.

[Ter03] Terese. Term rewriting systems. In Cambridge Tracts in
Theoretical Computer Science (Jan Willem Klop et al editors),
volume 55. Cambridge University Press, 2003.

[TGM11] John-Baptiste Tristan, Paul Govereau, and Greg Morrisett.
Evaluating value-graph translation validation for LLVM. In
Proceedings of the ACM SIGPLAN Conference on Programming
Design and Implementation (PLDI), New York, NY, USA, 2011.
ACM.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Semantics (B), pages 133–192. 1990.

[TO94] Yoshihito Toyama and Michio Oyamaguchi. Church-Rosser
property and unique normal form property of non-duplicating
term rewriting systems. In Nachum Dershowitz and Naomi
Lindenstrauss, editors, Conditional and Typed Rewriting Sys-
tems, 4th International Workshop, CTRS-94, Jerusalem, Israel,
July 13-15, 1994, Proceedings, volume 968 of Lecture Notes in
Computer Science, pages 316–331. Springer, 1994.

[Toy81] Yoshihito Toyama. On the Church-Rosser property of term
rewriting systems (in Japanese). NTT ECL Technical Report
17672, December 1981.

147

Bibliography

[Toy87] Yoshihito Toyama. On the Church-Rosser property for the
direct sum of term rewriting systems. J. ACM, 34(1):128–143,
1987.

[Toy88] Yoshihito Toyama. Commutativity of term rewriting systems.
Programming of future generation computers II, pages 393–407,
1988.

[ZFM11] Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp. CSI
- a confluence tool. In CADE, volume 6803 of Lecture Notes in
Computer Science, pages 499–505. Springer, 2011.

[ZFM15] Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp.
Labelings for decreasing diagrams. J. Autom. Reasoning,
54(2):101–133, 2015.

148

Index

F -headed, 80
n-labelled rewriting

n-labelled rewrite relation, 62
n-labelled rewrite step, 62
n-labelled rewrite system, 62

(Abstract) position, 57
Domain, 58

Abstract rewriting
abstract rewrite relation, 12
abstract rewrite step, 12
abstract rewrite system, 12

Alien, 43, 83
Alien position, 83
Alien substitution, 43, 83

Cap, 43, 83
Cap position, 83

Church-Rosser, 13
Church Rosser modulo E, 29

Class rewriting, 47
Cliff, 29
Cofinal derivation, 34
Cofinal stream, 35

Representative, 35
Support, 35

Compact
Compact substitution, 43
Compact term, 43

Confluence, 13
Local confluence, 13
Strong confluence, 13

Congruence closure, 113
Constructor

Constructor lifting, 96
Constructor symbol, 95
Constructor term, 95

Conversation, 24
Conversion, 13
Convertibility, 13

Convertibility class, 23
Convertible, 13

Critical pair, 21
Critical peak

Subterm critical peak, 64
Top critical peak, 64

Cyclic critical peak, 122
Cyclic critical pair, 122

Realizable, 122
Cyclic equation, 110
Cyclic rewrite system, 113

149

Index

Cyclic unifier, 114
Canonical cyclic unifier, 115
Cyclic solution, 114

Cyclic variable, 110

Decreasingness condition, 15
Derivation, 13
Diagram, 15

Cyclic-joinable decreasing dia-
gram, 124

Decreasing diagram, 15
Fixed diagram, 61
Joinably decreasing diagram,

16
Local diagram, 15
Natural decreasing diagram, 88
Stable decreasing diagram, 82

Diagram rewriting, 17
Divergent, 13
DLO, 117

Equalization, 108
Equalizer, 108

Equation, 42, 109

Hat, 86
Estimated hat, 98

Joinability, 13
Joinable, 13

Strongly joinable, 13

Labelled positional rewriting
Labelled positional rewrite re-

lation, 59

Labelled positional rewrite step,
59

Labelled rewrite system (modulo),
29

Labelled rewriting
Labelled rewrite relation, 14
Labelled rewrite step, 14
Labelled rewrite system, 14

Layered rewrite system, 117
Local diagram modulo, 30

Decreasing diagram modulo, 30
Local peak, 13

Ancestor peak, 21, 59
Critical peak, 21, 59
Disjoint peak, 21, 59

Multi-labelled rewriting
Multi-labelled rewrite relation,

62
Multi-labelled rewrite step, 62
Multi-labelled rewrite system,

62

NKH, 99

Occurs-check, 110
OF, 117

OF-term, 119

Parallel critical pair, 72
Parallel rewriting, 71
Pattern matching, 20

Match, 20
Peak, 13
Position, 18

150

Index

Rank, 43, 118
Rank non-increasing, 83, 118
Reachability, 13
Reduct, 13
Residual, 67, 70
Rewrite root, 87
Rewriting modulo, 47
Rigid parallel rewriting, 81

Rigid parallel critical pair, 82

Self-labelling, 63
Shadow, 25, 30
SOF, 117
Solved form, 110

Ω solved form, 113
Tree solved form, 113

Stabilization, 97
Stable term, 97
Strong coherence, 35
Sub-rewriting, 107

RT -sub-rewriting, 85
Substitution, 19

Domain, 19
Variable range, 19
Variable renaming, 19
Variable substitution, 19

Subsumption order •≥,m, 19

Term, 18, 106
Heterogeneous term, 43, 82
Homogeneous term, 43, 82

Term rewriting, 20
Rewrite rule, 20
Term rewrite system, 20

Terminating, 13

Unification, 20
Most general unifier, 20
Parameter, 110
Solution, 109
Unification problem, 109
Unifier, 20, 109

Variable non-increasing, 42
Visibility

Visible label, 24
Visible step, 24

151

Titre : Propriétés de Confluence des Règles de Réécriture par des Diagrammes
Décroissants
Mots clefs : confluence, paires critiques, diagrammes décroissants

Résumé : Cette thèse porte sur la confluence de
systèmes de réécriture en l’absence d’hypothèse de
terminaison, pour des applications aux langages
fonctionnels de premier ordre comme MAUDE ou
d’ordre supérieur avec typage dépendant comme
Dedukti. Dans le premier cas, les calculs portant
sur des structures de données infinies ne terminent
pas. Dans le second, les calculs sur les termes
non typés ne terminent pas à cause de la beta-
réduction. Lorsque les calculs ont la propriété de
terminaison, la confluence se réduit à celle des “pics
critiques”, qui sont les calculs divergents minimaux
issus d’un même terme, dont la paire de résultats
est dite “critique”. Dans le cas des calculs qui ne ter-
minent pas, un résultat essentiel est tout ensemble
de règles de calcul linéaires à gauche et sans paires
critiques est confluent. Cela suggère que la notion
de paire critique jouer un rôle là-encore essentiel,
mais qui reste largement incompris à ce jour.

Notre étude de la confluence est basée sur la mé-
thode des diagrammes décroissants de van Oos-
trom, qui généralise les techniques utilisées anté-
rieurement, que ce soit en la présence ou en l’ab-
sence de la terminaison des calculs. Cette méthode
est abstraite en le sens qu’elle s’applique à des re-
lations quelconques sur des ensembles arbitraires.
Dans la première partie, nous révisons les résultats
de van Oostrom et proposons un preuve alternative
qui s’étend au cas dit “modulo”, pour lequel les cal-
culs mélangent des étapes de récriture avec d’autres
qui sont purement équationnelles. Le résultat de
complétude de van Oostrom est étendu lui-aussi
lorsque les calculs sont fortement cohérents.
La seconde partie de cette thèse applique la mé-
thode et sa généralisation à des systèmes de réécri-
ture de termes, et en particulier à plusieurs pro-
bèmes ouverts du domaine.

Title : Confluence Properties of Rewrite Rules by Decreasing Diagrams
Keywords : confluence, critical pairs, decreasing diagrams

Abstract : This thesis is devoted to the confluence
of rewrite systems in the absence of termination, for
applications in first-order functional languages like
MAUDE or higher-order languages with dependent
types, as Dedukti. In the first case, the computa-
tions on infinite data structures do not terminate,
while in the second case, untyped computations
do not terminate because of beta-reduction. In the
case where the computations terminate, confluence
is reduced to that of critical peaks, the "mini-
mal diverging computations", made of a minimal
middle term called "overlap" which computes in
two different ways, resulting in a so-called "critical
pair". In the case of non-terminating computations,
a main result is that left-linear rewrite rules that
have no critical pairs are always confluent. This
suggests that the notion of critical pairs plays a
key role there too, but a general understanding of
the confluence of non-terminating computations in

terms of critical pairs is still missing.
Our investigation of confluence is based on the de-
creasing diagrams method due to van Oostrom,
which generalizes the techniques used previously
for both terminating and non-terminating compu-
tations. The method is abstract in the sense that
it applies to arbitrary relations on an abstract set.
In the first part, we revise the results of decrea-
sing diagrams, and propose an alternative proof
that extends the method to the "modulo" case, in
which computations mix rewrite steps and equa-
tional steps. Van Oostrom’s completeness result,
showing that decreasing diagrams always exist for
confluent relations, is extended as well for strongly
coherent computations.
The second part of the thesis applies the decreasing
diagrams method and its generalization to concrete
systems rewriting terms, in particular to several
open problems in this area.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

1

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Confluence
	Decreasing Diagrams
	This Thesis
	Decreasing Diagrams and Modularity
	Decreasing Diagrams on Abstract Positional Rewriting
	Confluence of Rewrite Unions
	Confluence of Layered Rewrite Systems
	Confluence in Dependent Type Theories

	Contributions and Organization of This Thesis
	Publications

	Preliminaries
	Abstract Rewriting
	Decreasing Diagrams
	Labelled Rewriting
	Local Diagrams
	Diagram Rewriting

	Term Rewriting
	Term Algebras
	Term Rewrite Systems

	Decreasing Diagrams and Modularity
	Diagrammatic Church-Rosser Property
	Plain Labelled Rewriting
	Diagram Rewriting
	Labelled rewriting modulo
	Diagram rewriting modulo

	Cofinal Derivations and Streams
	Cofinal Derivations
	Cofinal Streams

	Completeness
	Plain Rewriting
	Strongly-Coherent Rewriting Modulo
	Need for Strong Coherence

	Modularity
	Plain Term Rewriting
	Plain Modularity
	Term Rewriting Modulo Equations
	Modularity Modulo

	Conclusion

	Decreasing Diagrams on Abstract Positional Rewriting
	Labelled Positional Rewriting
	Domains
	Rewriting
	Rewriting Axioms
	Local Diagrams

	Terminating Systems
	Linear Systems
	Left-Linear Systems
	First-Order Left-Linear Systems
	When Plain Critical Pairs Suffice

	Conclusion

	Confluence of Rewrite Unions
	Rewriting and Decomposition
	Rewriting
	Decreasing Diagrams
	Decomposition

	From Church-Rosser to Critical Pairs
	Proof Strategy
	A Hierarchy of Decompositions
	Main Result

	Relaxing Assumptions
	Finite Constructor Lifting
	Infinite Constructor Lifting

	Related Work
	Conclusion

	Confluence of Layered Rewrite Systems
	Terms and Rewriting
	Sub-Rewriting
	Cyclic Unification
	Layered Systems
	Layering
	Closure properties
	Testing Confluence of Layered Systems via Cyclic Critical Pairs

	Conclusion

	Conclusion
	Bibliography
	Index

