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This work essentially addresses the development and the study of multiscale finite element methods for multiscale advection-diffusion problems in the advection-dominated regime. Two types of approaches are investigated: Take into account the advection in the construction of the approximation space, or apply a stabilization method. We begin with advection-dominated advection-diffusion problems in heterogeneous media. We carry on with advection-dominated advection-diffusion problems posed in perforated domains. Here, we focus on the Crouzeix-Raviart type boundary condition for the construction of the multiscale finite elements. We consider two different choices for the condition prescribed on the boundary of the perforations: the homogeneous Dirichlet condition or the homogeneous Neumann condition.

In an other part of this work, we consider in a single-scale setting, a general framework where the advection-diffusion operator is not coercive, possibly in the advection-dominated regime. We propose a Finite Element approach based on the use of an invariant measure associated to the adjoint operator. This approach is unconditionally well-posed in the mesh size. We compare it numerically to a standard stabilization method.

Titre: Méthodes éléments finis de type MsFEM pour des problèmes d'advection diffusion Résumé: Ce travail a porté principalement sur le développement et l'étude de méthodes numériques de type éléments finis multi-échelles pour un problème d'advection diffusion multiéchelles dominé par l'advection. Deux types d'approches sont envisagées: prendre en compte l'advection dans la construction de l'espace d'approximation, ou appliquer une méthode de stabilisation. On commence par l'étude d'un problème d'advection diffusion, dominé par l'advection, dans un milieu hétérogène. On poursuit par l'étude de problèmes d'advection-diffusion, dans le régime où l'advection domine, posés dans un domaine perforé. On se focalise ici sur la condition aux bords de type Crouzeix Raviart pour la construction des éléments finis multi-échelles. On considère deux situations différentes selon la condition prescrite au bord des perforations: la condition de Dirichlet homogène ou la condition de Neumann homogène.

Dans une autre partie de ce travail, cette fois-ci sur un problème mono-échelle, on se place dans un cadre général où l'opérateur d'advection-diffusion est non coercif, possiblement dominé par l'advection. On propose une approche éléments finis basée sur une mesure invariante associée à l'opérateur adjoint. Cette approche est bien posée inconditionnellement en la taille du maillage. On la compare numériquement à une méthode standard de stabilisation. 

Introduction

Ce travail de thèse a porté principalement sur l'étude de méthodes numériques de type éléments finis multi-échelles pour des problèmes d'advection-diffusion multi-échelles dominés par l'advection. Le caractère multi-échelles et la domination de l'advection représentent deux difficultés numériques distinctes. La littérature regorge de méthodes visant à résoudre chacune de ces deux difficultés séparément. La question est de comprendre comment adapter ces différentes méthodes pour un problème réunissant les deux difficultés.

Les principales contributions de ce travail sont les suivantes:

• La première analyse porte sur un problème d'advection-diffusion dominé par l'advection dans un milieu hétérogène de la forme ´div pa ε ∇u ε q `b ¨∇u ε " f dans Ω, u ε " 0 sur BΩ.

(

On propose plusieurs approches éléments finis multi-échelles et une méthode de splitting permettant de coupler deux codes existants déjà optimisés pour chacun des sous-problèmes: un problème de diffusion multi-échelles et un problème d'advection-diffusion mono-échelle dominé par l'advection. Mathématiquement, on étudie l'erreur numérique des approches éléments finis multi-échelles dans un contexte monodimensionnel. La convergence de la méthode de splitting est analysée sans restriction sur la dimension de l'espace. Numériquement, on compare les approches de type éléments finis multi-échelles et la méthode de splitting en terme de précision et de coût de calcul.

• Dans un deuxième temps, on poursuit l'analyse dans le cas d'un problème d'advectiondiffusion dominé par l'advection, posé dans un milieu perforé. Il s'agit d'un problème du type

´α∆u ε `p b ε ¨∇u ε " f dans Ω ε , (1.2)
où Ω ε Ĺ Ω est un domaine perforé par de petits trous de taille ε ą 0, situés à une distance d'ordre ε les uns des autres. On examine deux situations sensiblement différentes selon le type de condition prescrite aux bords des perforations. Dans la première, on impose la condition de Dirichlet homogène ´α∆u ε `p b ε ¨∇u ε " f dans Ω ε , u ε " 0 sur BΩ ε , (

et dans la seconde, la condition de Neumann homogène

$ ' ' & ' ' % ´α∆u ε `p b ε ¨∇u ε " f dans Ω ε ,
α∇u ε ¨n " 0 sur BΩ ε zBΩ, u ε " 0 sur BΩ ε X BΩ.

(1.4)

Mathématiquement, on obtient des estimées d'erreur dans le cas où l'on impose la condition de Dirichlet homogène aux bords des perforations. Numériquement, on étudie les performances des différentes approches éléments finis multi-échelles vis-à-vis de la domination de l'advection et du caractère multi-échelles.

• Un troisième travail propose une approche numérique éléments finis, à notre connaissance nouvelle, basée sur la notion de mesure invariante pour les problèmes d'advection-diffusion mono-échelle non coercifs, éventuellement dominés par l'advection, de la forme ´∆u `b ¨∇u " f dans Ω.

(1.5)

Mathématiquement, on montre le caractère bien posé de notre approche et on en étudie la convergence. Numériquement, on compare notre approche avec une méthode standard de stabilisation.

Contexte et motivations

Les problèmes d'advection-diffusion dans lesquels l'advection domine interviennent dans différents phénomènes physiques, tel que le transport d'un polluant dans un fluide. Des instabilités numériques apparaissent lorsqu'on utilise une méthode d'éléments finis classique. En pratique, il est nécessaire pour traiter ce régime d'utiliser des méthodes numériques adaptées. Ces méthodes, dites méthodes de stabilisation, sont bien comprises aujourd'hui. Dans diverses applications, le problème considéré est, de plus, multi-échelle, ce qui peut rendre le problème plus difficile dans certains régimes. La pollution des eaux souterraines par l'infiltration d'un fluide à travers un milieu poreux, la propagation du vent dans une ville et l'extraction pétrolière en sont des exemples.

Les modèles étudiés se trouvent à l'intersection entre des modèles d'advection-diffusion dans un milieu homogène (dominés par l'advection, comme décrit ci-dessus) et des modèles de diffusion dans un milieu hétérogène, sans phénomène de transport. Pour ces derniers, on utilise souvent des méthodes multi-échelles de type éléments finis multi-échelles [START_REF] Efendiev | of Surveys and Tutorials in the Applied Mathematical Sciences[END_REF], où les fonctions de base des éléments finis à l'échelle macroscopique sont obtenues via un calcul à l'échelle microscopique, prenant en compte les hétérogénéités présentes dans le problème.

Dans les exemples cités précédemment, le domaine dans lequel évolue le flot contient des perforations (représentant le milieu poreux, les bâtiments, ...) qui sont à une petite distance les unes des autres. Deux petites échelles sont donc simultanément présentes dans le problème: la petite échelle de la structure, et la petite épaisseur des couches limites.

L'objectif est de comprendre comment adapter les méthodes éléments finis multi-échelles pour résoudre efficacement des problèmes multi-échelles dominés par l'advection. Le chapitre 2 concerne l'étude d'un problème d'advection-diffusion, dominé par l'advection, dans un milieu hétérogène. On présente dans l'annexe A des résultats d'homogénéisation dans le cadre périodique pour ce problème. Le chapitre 4 est consacré à des problèmes d'advection-diffusion, sous le régime où l'advection domine, posés dans un domaine perforé.

Dans une autre partie de ce travail, on se place dans un cadre général où l'opérateur d'advection-diffusion est mono-échelle, non-coercif et le problème est dominé par l'advection. À notre connaissance, l'analyse des méthodes usuelles de stabilisation (de type Streamline Upwind Petrov Galerkin, SUPG) a été faite dans le cas coercif uniquement [81, Chapter III Section 3.2, p.229-255]. Plusieurs stratégies numériques ont été proposées pour ce type de problèmes (cf par exemple [START_REF] Demkowicz | A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions[END_REF][START_REF] Droniou | Finite volume methods for convection-diffusion equations with right-hand side in H ´1[END_REF]), mais aucune ne s'impose à l'heure actuelle. Dans le chapitre 3, on propose une approche éléments finis basée sur une mesure invariante associée à l'opérateur adjoint. Le contenu de ce chapitre est résumé dans l'annexe B sous la forme d'une note qui a été publiée dans Comptes Rendus Mathématique.

Introduction mathématique

Ce travail de thèse s'appuie sur des méthodes de stabilisation et la méthode des éléments finis multi-échelles. On les présente successivement dans les sections 1.2.1 et 1.2.2.

Méthodes de stabilisation

Soit Ω Ă R d , un ouvert borné régulier. On s'intéresse pour simplifier au problème suivant ´α∆u `b ¨∇u " f dans Ω, u " 0 sur BΩ,

avec f P L 2 pΩq, α ą 0 et b P L 8 pΩq tel que div b " 0 dans Ω.

(1.7)

La formulation variationnelle associée à (1.6) s'écrit Trouver u P V tel que pour tout v P V, apu, vq " F pvq, avec apu, vq " ˆΩ α∇u ¨∇v `pb ¨∇uqv,

F pvq " ˆΩ f v, (1.9) et V " H 1 0 pΩq. Soit T H un maillage régulier uniforme de taille H et V H un espace d'approximation associé à ce maillage. On rappelle que l'approximation de Galerkin standard consiste à résoudre la formulation variationnelle Trouver u H P V H tel que pour tout v H P V H , apu H , v H q " F pv H q.

(1.10)

Soit u P H 1 0 pΩq la solution du problème (1.6) et u H la solution de (1.10) où V H est la discrétisation standard en éléments finis P 1 (par exemple). D'après [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.12 . On voit que plus le produit Pe H est grand, plus l'erreur numérique peut être grande. On est dans la situation de perte de coercivité [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Section 3.5.2] quand Pe tend vers `8. Intuitivement, le problème devient de moins en moins coercif lorsque la domination de l'advection sur la diffusion augmente. Ceci a un impact direct sur les résultats numériques: des oscillations parasites dans tout le domaine apparaissent. C'est pourquoi dans le régime où l'advection domine, c'est à dire lorsque Pe H ą 1, la méthode P 1 standard aboutit à une approximation u H de faible précision.

Le traitement numérique du régime où l'advection domine est bien connu pour les problèmes d'advection-diffusion mono-échelles. La littérature regorge de méthodes de stabilisation conçues pour ce type de problème: méthode de diffusion artificielle [START_REF] Hughes | A multidimensional upwind scheme with no crosswind diffusion[END_REF], la classe de méthodes multiéchelles variationnelles introduite dans [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF]. . . On renvoie à [START_REF] John | On spurious oscillations at layers diminishing (sold) methods for convection-diffusion equations: Part I-A review[END_REF][START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF][START_REF] Roos | Robust numerical methods for singularly perturbed differential equations: a survey covering 2008-2012[END_REF][START_REF] Roos | Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems[END_REF][START_REF] Stynes | Steady-state convection-diffusion problems[END_REF] pour une revue des méthodes de stabilisation. Cette section est dédiée à la présentation d'une classe de méthodes de stabilisation fortement consistante.

La formulation variationnelle des méthodes dans cette classe est de la forme [78, Section 8.3.2, p. [269][270][271][272] Trouver u H P V H tel que pour tout v H P V H , apu H , v H q `astab pu H , v H q " F pv H q `Fstab pv H q, (1.12) avec a et F définis par (1.8) et (1.9), et

a stab pu H , v H q " ÿ KPT H
pτ K Lu H , pL ss `ρL s qv H q K , (1.13)

F stab pv H q " ÿ KPT H pτ K f, pL ss `ρL s qv H q K , ( 1.14) 
où L s u " ´α∆u et L ss " b ¨∇u sont respectivement la partie symétrique et antisymétrique de l'opérateur Lu " ´α∆u `b ¨∇u. Le paramètre de stabilisation τ K est à déterminer de telle sorte que τ K " O ˆH }b} L 8 pΩq ˙lorsque l'advection domine.

Le choix de ρ donne lieu à différentes méthodes:

• la méthode de Douglas-Wang (DW), ρ " ´1;

• la méthode Streamline Upwind Petrov Galerkin (SUPG), ρ " 0;

• la méthode Galerkin Least Squares (GLS), ρ " 1.

Dans le cas où V H est un espace d'approximation d'éléments finis P 1 et div b " 0, les trois méthodes précédentes sont équivalentes car pL s u H q |K " 0 pour tout u H P V H , pour tout K P T H . Le théorème suivant donne une estimation a priori des méthodes de stabilisation dans le cas où V H est un espace d'approximation d'éléments finis P 1 . En comparant les estimées (1.11) et (1.15), on peut s'attendre à une meilleure précision des méthodes stabilisées par rapport à la méthode P 1 standard dans le régime où l'advection domine, ce qui est confirmé en pratique.

Remarque 1.2. On a supposé ici la coercivité du problème (1.6). L'analyse numérique de ce type de méthodes repose en général sur la coercivité [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Roos | Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems[END_REF], qui est souvent obtenue comme une conséquence de l'hypothèse div b ď c 0 ă 0 dans Ω, avec b P W 1,8 pΩq. À notre connaissance, l'analyse numérique des méthodes de stabilisation (1.12) n'a pas été réalisée dans le cas non coercif. Une méthode numérique stabilisée conçue pour des problèmes non symétriques, non coercifs, est proposée dans [START_REF] Burman | Stabilized Finite Element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations[END_REF]. Cette méthode nécessite la résolution d'un système couplé entre le problème initial et un problème adjoint en utilisant des méthodes d'Éléments Finis stabilisés. Des estimées d'erreur en norme H 1 et L 2 sont prouvées sous l'hypothèse que le problème soit bien posé. Une méthode des moindres carrés a également été étudiée dans [START_REF] Bramble | Least-squares for second-order elliptic problems[END_REF][START_REF] Ku | A least-squares method for second order noncoercive elliptic partial differential equations[END_REF].

Remarque 1.3. Le choix du paramètre de stabilisation optimal τ K est une question difficile et importante en pratique, car ce choix affecte la qualité de l'approximation numérique. On renvoie par exemple à [START_REF] Brezzi | A relationship between stabilized finite element methods and the Galerkin method with bubble functions[END_REF][START_REF] Franca | Stabilized finite element methods. I. Application to the advective-diffusive model[END_REF][START_REF] Principe | On the stabilization parameter in the subgrid scale approximation of scalar convection-diffusion-reaction equations on distorted meshes[END_REF][START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF].

Méthode des éléments finis multi-échelles

Problème diffusif On insère maintenant un caractère multi-échelles au problème (1.6) et on omet temporairement le terme d'advection. Plusieurs méthodes numériques multi-échelles ont été proposées: la méthode d'upscaling [START_REF] Arbogast | Numerical subgrid upscaling of two-phase flow in porous media[END_REF], la méthode Residual Free Bubbles [START_REF] Brezzi | Residual-free bubbles for advection-diffusion problems: the general error analysis[END_REF], les méthodes multi-échelles variationnelles [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF], la méthode des éléments finis multi-échelles (MsFEM) [START_REF] Hou | Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[END_REF], la méthode multi-échelle hétérogène (HMM) [START_REF] Engquist | The heterogeneous multiscale methods[END_REF], Equation-Free [START_REF] Kevrekidis | Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis[END_REF], Local generalized Finite Element [START_REF] Målqvist | Localization of elliptic multiscale problems[END_REF], etc. Cette section est consacrée à la présentation de la méthode des éléments finis multi-échelles.

On s'intéresse au problème ´divpA ε ∇u ε q " f dans Ω, u ε " 0 sur BΩ, (1.16) avec f P L 2 pΩq et A ε P L 8 pΩq dˆd symétrique vérifiant une condition d'ellipticité dans le sens où il existe 0 ă α 1 ď α 2 tels que 0 ă α 1 |ξ| 2 ď pA ε ξq ¨ξ ď α 2 |ξ| 2 , pour tout ξ P R d zt0u.

(1.17)

La méthode des éléments finis multi-échelles (MsFEM) consiste en une approximation de Galerkin sur un espace d'approximation qui peut être précalculé et est adapté au problème considéré. Elle se décompose en trois étapes: i) Introduire une discrétisation grossière de Ω notée T H ; on définit l'espace d'approximation éléments finis P 1 associé

V H " Vect ␣ ϕ 0 i , 1 ď i ď N V H ( Ă H 1 0 pΩq;
ii) Résoudre les problèmes locaux (un par élément pour chaque fonction de base ϕ 0 i associée au maillage grossier)

´div ´Aε ∇ψ ε,K i ¯" 0 dans K, ψ ε,K i " ϕ 0 i sur BK, (1.18) 
pour chaque élément K du maillage grossier, de manière à construire les fonctions de bases multi-échelles.

iii) Appliquer une approximation de Galerkin standard sur le problème (1.16) avec l'espace

V ε H " Vect tψ ε i , 1 ď i ď N V H u Ă H 1 0 pΩq, (1.19) 
où ψ ε i est tel que ψ ε i | K " ψ ε,K i pour tout K P T H .

L'analyse d'erreur de la méthode MsFEM dans le cas ci-dessus (1.16), pour A ε " A per p¨{εq où A per est une matrice fixe périodique, a été faite dans [START_REF] Hou | Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[END_REF] (voir aussi [START_REF] Efendiev | of Surveys and Tutorials in the Applied Mathematical Sciences[END_REF]Theorem 6.5] ou [START_REF] Bris | Multiscale finite element approach for "weakly" random problems and related issues[END_REF]Theorem 4.5]). Le résultat principal est énoncé dans le théorème suivant. Théorème 1.4. On se place dans le cadre périodique A ε pxq " A per px{εq. On suppose que A per est hölderienne et que H ą ε. On suppose également que la solution u ‹ du problème homogénéisé associé à (1.16) appartient à W 2,8 pΩq. Soit u ε H l'approximation MsFEM de la solution u ε du problème (1.16). On a alors

}u ε ´uε H } H 1 pΩq ď C ˆH `?ε `c ε H ˙, (1.20) 
où C est une constante indépendante de H et ε.

Lorsque la taille du maillage grossier H est proche de l'échelle ε, un phénomène de résonance, encodé dans le terme a ε{H dans (1.20), apparaît et dégrade la solution numérique. La méthode d'oversampling [START_REF] Hou | A multiscale finite element method for elliptic problems in composite materials and porous media[END_REF] est une méthode bien connue réduisant cet effet. Brièvement, cette approche, qui se trouve être non conforme, consiste à poser chaque problème local sur un domaine légèrement plus grand que l'élément de maillage grossier considéré, de manière à devenir moins sensible au choix arbitraire des conditions aux bords imposés sur le domaine plus large, puis de tronquer sur l'élément du maillage grossier les fonctions obtenues. Cette approche permet d'améliorer considérablement les résultats numériques comparés à l'utilisation des conditions aux bords linéaires telle que dans (1.18). Dans le cas périodique, on a l'estimation suivante (voir [START_REF] Efendiev | Convergence of a nonconforming multiscale finite element method[END_REF]). Théorème 1.5. On se place dans le cadre du théorème 1.4. On suppose de plus que la distance entre un élément K et la frontière du macro élément utilisé dans l'oversampling est plus grande que H. On a alors

}u ε ´uε H } H 1 pT H q ď C ´H `?ε `ε H ¯, où }u ε ´uε H } H 1 pT H q " d ÿ KPT H }u ε ´uε H } 2 H 1 pKq .

Problème d'advection-diffusion

On réinsère maintenant l'advection dans le problème. Plusieurs études ont été réalisées dans le régime où l'advection domine. Citons [START_REF] Ouaki | Etude de schémas multi-échelles pour la simulation de réservoir[END_REF][START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF] dans le cas de la méthode des éléments finis multi-échelles. Dans ces deux travaux, les problèmes locaux sont définis à partir de l'opérateur d'advection-diffusion. Dans cette thèse, on note cette variante l'approche Adv-MsFEM. Pour d'autres méthodes multi-échelles, on renvoie à [1,[START_REF] Henning | The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift[END_REF] pour la méthode multi-échelle hétérogène (HMM), [START_REF] Calo | Multiscale stabilization for convection-dominated diffusion in heterogeneous media[END_REF] pour la méthode des éléments finis multi-échelles généralisée (GMsFEM) et [START_REF] Harder | On a multiscale hybrid-mixed method for advectivereactive dominated problems with heterogeneous coefficients[END_REF] pour la méthode multi-échelle hybride mixte (MHM). Dans [START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF], deux configurations sont analysées. Dans un premier temps, l'auteur étudie le problème dépendant du temps de la forme

B t u ε ´∆u ε `1 ε b ´ε ¯¨∇u ε " 0 dans R 2 ,
où b est Z 2 -périodique, de divergence nulle et de moyenne nulle. L'auteur s'intéresse seulement à obtenir des propriétés macroscopiques de la solution. Dans un second temps, toujours dans [START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF], le problème suivant est étudié:

´∆u ε `1 ε b ´ε ¯¨∇u ε " f dans Ω, u ε " 0 sur BΩ, avec f P L 2 pΩq. Une estimée d'erreur est établie, uniquement dans la norme L 2 et pas dans la norme H 1 qui serait sensible à la précision de la méthode numérique pour décrire les oscillations fines de la solution. Cette estimée est obtenue sous des hypothèses vérifiées numériquement sur quelques exemples. Une étude expérimentale de convergence est réalisée et est en accord avec le résultat théorique obtenu. Dans [START_REF] Ouaki | Etude de schémas multi-échelles pour la simulation de réservoir[END_REF], l'auteur étudie le problème $ & % ρ ε B t u ε ´div pA ε ∇u ε q `1 ε b ε ¨∇u ε " 0 dans p0, T q ˆp0, 1q d , u ε p0, ¨q " u 0 dans p0, 1q d , u ε pt, ¨q est p0, 1q d -périodique, où u 0 est régulier. Les fonctions ρ ε P L 8 pp0, 1q d q, b ε P pL 8 pp0, 1q d qq d et A ε P pL 8 pp0, 1q d qq dˆd ne dépendent pas du temps. Il est supposé qu'il existe une constante ρ m ą 0 telle que ρ ε ě ρ m presque partout sur p0, 1q d , et que b ε est un champ de divergence nulle. Le champ de convection est plus général que dans [START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF] car il n'est pas supposé de moyenne nulle (mais une condition aux bords périodique est imposée sur Bp0, 1q d ). Dans le régime où l'advection domine, le problème est stabilisé en utilisant la méthode des caractéristiques pour intégrer l'opérateur de transport ´K b ε ´K ρ ε pour tout K P T H . Une estimée d'erreur est obtenue dans [START_REF] Ouaki | Etude de schémas multi-échelles pour la simulation de réservoir[END_REF] dans le cadre périodique.

Méthode des éléments finis multi-échelles à la Crouzeix-Raviart avec fonctions bulles

On considère maintenant un problème multi-échelles posé dans un domaine perforé. On suppose que le domaine Ω ε est obtenu en perforant le domaine Ω. Dans ce contexte, le caractère multiéchelles est amené par la géométrie du domaine. On présente une variante de la méthode des éléments finis multi-échelles particulièrement adaptée à ce type de problèmes. La méthode MsFEM à la Crouzeix-Raviart avec fonctions bulles est proposée dans [START_REF] Bris | An MsFEM type approach for perforated domains[END_REF] pour la résolution d'un problème elliptique en domaine perforé de la forme ´∆u ε " f dans Ω ε , u ε " 0 sur BΩ ε .

(1.21)

Dans cette version de la méthode éléments finis multi-échelles, la continuité inter-éléments est imposée de manière faible: l'intégrale du saut à l'interface de chaque arête du maillage grossier est nulle. Ceci apporte une robustesse à la méthode numérique vis-à-vis du choix arbitraire des conditions prescrites aux bords des éléments du maillage grossier dans la définition des problèmes locaux. Une estimation d'erreur est obtenue dans le cadre périodique. Des variantes de la méthode MsFEM à la Crouzeix-Raviart avec fonctions bulles ont ensuite été proposées pour l'équation d'advection-diffusion [START_REF] Degond | Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media[END_REF] et le problème de Stokes [START_REF] Muljadi | Nonconforming multiscale finite element method for Stokes flows in heterogeneous media. Part I: Methodologies and numerical experiments[END_REF]. Dans [START_REF] Degond | Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media[END_REF], les auteurs s'intéressent à un problème d'advection-diffusion de la forme

$ ' ' & ' ' % ´∆u ε `b ¨∇u ε " f dans Ω ε , u ε " 0 sur BΩ ε zBΩ, u ε " g sur BΩ X BΩ ε .
L'espace d'approximation est construit à partir de l'opérateur d'advection-diffusion. Les fonctions de base multi-échelles associées aux arêtes sont obtenues en imposant une condition de type Crouzeix Raviart. On impose la condition de Dirichlet homogène aux bords des problèmes locaux définissant les fonctions bulles. Les auteurs montrent numériquement l'importance de l'ajout de fonctions bulles dans l'espace d'approximation et explorent le cas où les domaines ne sont pas perforés périodiquement.

Résumé des travaux 1.3.1 Comparaison numérique de quelques méthodes MsFEM pour les problèmes d'advection-diffusion dans un milieu hétérogène dominés par l'advection

On s'intéresse dans le chapitre 2 de cette thèse à un problème d'advection-diffusion dans un milieu hétérogène de la forme ´div pA ε ∇u ε q `b ¨∇u ε " f dans Ω, u ε " 0 sur BΩ, (1.22) où ε représente l'échelle caractéristique de la variation de la matrice A ε et f P L 2 pΩq. On suppose que A ε P pL 8 pΩqq dˆd vérifie la condition d'ellipticité (1.17). On suppose de plus que b P pL 8 pΩqq d est tel que div b " 0 dans Ω. La limite homogénéisée dans le cadre périodique du problème (1.22) est la solution d'un problème d'advection-diffusion qui dépend, entre autres, du champ d'advection b (on renvoie à l'annexe A). On adopte une approche numérique de type éléments finis multi-échelles, telle que celle présentée dans la section 1.2.2, pour prendre en compte le caractère multi-échelles de ce problème. On se place dans le régime où l'advection domine sur la diffusion. Une méthode de stabilisation est nécessaire dans ce régime. Plusieurs approches ont été étudiées numériquement:

• encoder l'advection dans les fonctions de bases multi-échelles: Pour chaque élément du maillage K P T H , on considère les problèmes locaux

´div ´Aε ∇ϕ ε,K i ¯`b ¨∇ϕ ε,K i " 0 dans K, ϕ ε,K i " ϕ 0 i sur BK.
L'espace d'approximation est engendré par les ϕ ε i . • appliquer une méthode de stabilisation de type Streamline-Upwind/Petrov-Galerkin (SUPG) sur un espace d'approximation standard d'éléments finis multi-échelles (voir la section 1.2.1). La méthode Stab-MsFEM est définie par la formulation variationnelle suivante:

Trouver u ε H P V ε H tel que pour tout v ε H P V ε H , ˆΩ A ε ∇u ε H ¨∇v ε H `pb ¨∇u ε H qv ε H `astab pu ε H , v ε H q " ˆΩ f v ε H `Fstab pv ε H q,
où V ε H est défini par (1.19), a stab et F stab par (1.13) et (1.14) avec Lu " ´div pA ε ∇uq`b¨∇u. • une approche de type splitting entre un problème mono-échelle, dominé par l'advection et un problème de diffusion multi-échelles. La motivation principale de cette approche est son caractère non intrusif. En pratique, elle permet de coupler deux codes existants déjà optimisés pour chacun des deux sous-problèmes. Supposons qu'à l'itération n, on a calculé u 2n sur un maillage grossier et u 2n`1 sur un maillage fin. On définit u 2n`2 et u 2n`3 par # ´αspl ∆u 2n`2 `b ¨∇u 2n`2 " f `b ¨∇pu 2n ´u2n`1 q dans Ω,

u 2n`2 " 0 sur BΩ, (1.23) 
# ´div pA ε ∇u 2n`3 q " ´αspl ∆u 2n`2 dans Ω, u 2n`3 " 0 sur BΩ.

(1.24)

Le problème (1.23) est discrétisé avec la méthode P1 SUPG sur un maillage grossier. Le terme ´b ¨∇u 2n`1 , présent dans le second membre de (1.23), est intégré sur un maillage fin. Le problème (1.24) est, quant à lui, résolu numériquement avec la méthode MsFEM.

Dans le chapitre 2, on obtient une estimation d'erreur pour les méthodes de type MsFEM en dimension 1 sur le problème ´d dx ˆAε du ε dx ˙`b du ε dx " f dans Ω " p0, Lq, u ε p0q " u ε pLq " 0, avec un coefficient d'advection constant b ‰ 0, f P L 2 p0, Lq et un coefficient de diffusion tel que 0 ă α 1 ď A ε pxq ď α 2 presque partout sur Ω. On estime l'erreur numérique par rapport à ε, b et la taille du maillage grossier H (voir les théorèmes 2.9, 2.12 et 2.15). En supposant A ε constant, on retrouve les estimées standards de la méthode P 1 et sa version stabilisée à partir de celles obtenues respectivement pour la méthode MsFEM et sa version stabilisée. On étudie ensuite la convergence de l'approche de type splitting sans restriction sur la dimension de l'espace. On propose deux méthodes: la méthode (1.23)- (1.24) dont on observe qu'elle a une précision similaire à la méthode MsFEM stabilisée, et une seconde méthode, moins précise. On peut trouver des configurations où l'algorithme de la méthode (1.23)-(1.24) diverge alors que la seconde méthode dépend d'un paramètre qui garantit la convergence lorsqu'il est bien choisi. Numériquement, les différentes approches sont comparées en terme de précision et de coût de calcul. Les méthodes les plus précises sont la méthode MsFEM stabilisée et la méthode de splitting. Leurs précisions sont relativement similaires. La différence essentielle entre les deux méthodes se trouve dans le caractère non intrusif de la méthode de splitting. Celui-ci entraîne l'augmentation du coût de la phase online qui devient prépondérant dans un contexte multi-requête (lorsque plusieurs seconds membres f doivent être considérés). Ce coût devient plus élevé lorsque seuls des solveurs itératifs peuvent être utilisés car la taille du problème ne permet plus d'utiliser des solveurs directs. Dans le cas où plusieurs champs d'advection sont étudiés, le coût de la méthode Adv-MsFEM devient considérable car les fonctions de bases multi-échelles doivent être calculées pour chaque champ d'advection. Les méthodes MsFEM stabilisée et de splitting sont encore compétitives car leurs fonctions de bases ne dépendent pas du champ d'advection. Elles sont peu précises dans la couche limite, ce qui est également le cas pour les autres approches. Lorsque la domination de l'advection est excessive, le caractère multi-échelles n'a plus d'influence sur la précision de la méthode numérique, et une méthode P 1 stabilisée standard est aussi performante que la méthode MsFEM stabilisée. La compétitivité des méthodes MsFEM stabilisée et de splitting se trouve dans un régime intermédiaire dans lequel la précision de la méthode numérique est liée aux deux aspects, la domination de l'advection et le caractère multi-échelles.

Approximation stable de l'équation d'advection-diffusion utilisant la mesure invariante

L'objectif du chapitre 3 est d'étudier l'équation d'advection-diffusion mono-échelle ´∆u `b ¨∇u " f dans Ω, (1.25) dans le régime non coercif et possiblement instable. On présente une approche numérique, à notre connaissance nouvelle, utilisant une mesure invariante associée à l'opérateur adjoint de (1.25) dont l'équation est de la forme ´div p∇σ `bσq " 0 dans Ω.

(1.26)

La nature de la condition aux limites ajoutée à (1.25) a une influence sur le choix de la mesure invariante. On se place pour simplifier dans le cas de la condition aux limites de Dirichlet homogène u " 0 sur BΩ, (1.27) bien que d'autres conditions aux limites puissent être considérées. L'approche numérique proposée s'inspire d'une preuve théorique du caractère bien posé du problème (1.25)- (1.27). Il est bien connu que le caractère bien posé de ce problème est donné par la théorie de Fredholm. D'autre part, le caractère bien posé du problème (1.25) Deux choix de mesures invariantes sont étudiés. La première mesure invariante σ 1 est l'unique solution du problème ´div p∇σ 1 `bσ 1 q " 0 dans Ω, p∇σ 1 `bσ 1 q ¨n " 0 sur BΩ, (1.30) avec la contrainte de normalisation (1.33)

On vérifie bien que, si div b " 0, alors σ 2 " 1 est solution de (1.33). En pratique, la mesure invariante n'est, en général, pas connue analytiquement. On dispose seulement d'une approximation notée σ h , où h désigne la taille du maillage associé à la discrétisation de (1.30)-(1.31) ou (1.33).

On considère d'abord la mesure invariante σ 1 solution du problème (1.30)- (1.31). On utilise une méthode itérative pour imposer numériquement la contrainte de normalisation (1.31). On suppose que σ 1,h ą 0 dans Ω ce qui est, en pratique, vérifié pour h suffisamment petit. On utilise une méthode de stabilisation (Douglas-Wang) de manière à obtenir la positivité de la solution discrète pour une taille de maillage h plus grande. La discrétisation d'une mesure invariante σ 2 solution de (1.33) est similaire à celle de σ 1 . On commence par obtenir une approximation de σ 0 2 , la solution du problème $ ' & ' % ´div p∇σ 0 2 `bσ 0 2 q " 0 dans Ω, p∇σ 0 2 `bσ 0 2 q ¨n " b ¨n ´ BΩ b ¨n sur BΩ, (1.34) avec la contrainte de normalisation Ω σ 0 2 " 1.

On calcule pσ 0 2 q h avec une méthode itérative pour imposer une contrainte de normalisation. On définit ensuite σ 2,h " pσ 0 2 q h `κh σ 1,h où κ h " 1 `inf tκ P r0, 8q tel que pσ 0 2 q h `κσ 1,h ą 0 dans Ωu.

Revenons maintenant au problème modifié (1.29). On note U H un espace d'approximation éléments finis P 1 associé à un maillage régulier uniforme de taille H. On utilise une formulation antisymétrique du terme d'advection pour assurer la coercivité du problème discret. La méthode pP 1 , σ h P 1 q est alors définie par la formulation variationnelle suivante: Le problème (1.29) peut être dominé par l'advection. C'est pourquoi on étudie également la méthode pP 1 , σ h P 1 q GLS, une version stabilisée de la méthode pP 1 , σ h P 1 q par la méthode Galerkin Least Squares. L'approche numérique proposée est bien posée inconditionnellement en la taille du maillage H. Cette propriété est utile dans les problèmes où on peut seulement obtenir une approximation grossière de u. Le cadre multi-échelle, où l'on remplace l'opérateur du Laplacien par ´divpapx{εq∇¨q, est un exemple particulier d'un tel contexte. On fournit également une analyse numérique détaillée de la convergence. Parmi les variantes proposées de l'approche numérique, les méthodes pP 1 , σ 1,h P 1 q et pP 1 , σ 2,h P 1 q GLS sont les plus précises. Ces deux méthodes sont aussi stables et précises qu'une méthode de stabilisation standard. Elles sont légèrement plus robustes par rapport à la taille du maillage utilisé pour la discrétisation de u. L'approche présentée constitue une alternative intéressante, certifiée et efficace aux méthodes plus établies dans la littérature. On montre qu'elle devient compétitive dans certaines situations lorsque plusieurs seconds membres f doivent être considérés ou lorsque seul un maillage grossier peut être utilisé.

Méthodes MsFEM à la Crouzeix-Raviart pour des problèmes dominés par l'advection dans des domaines perforés

On examine dans le chapitre 4 des problèmes d'advection-diffusion posés dans un domaine perforé.

Soit Ω Ă R d , d ě 2, un domaine ouvert régulier borné. On définit un domaine Ω ε Ĺ Ω perforé par de petits trous de taille ε ą 0, à une distance d'ordre ε les uns des autres. Sur le domaine perforé Ω ε , on considère le problème (1.2) avec α ą 0, pour un second membre f P L 2 pΩq et un champ d'advection p b ε P pW [START_REF] Bris | An MsFEM type approach for perforated domains[END_REF], la méthode MsFEM à la Crouzeix-Raviart avec fonctions bulles se révèle être efficace pour le problème de diffusion dans un domaine perforé. Dans le chapitre 4, on évalue plusieurs variantes de cette méthode sur un problème d'advection-diffusion dominé par l'advection et posé dans un domaine perforé. Ce travail s'inscrit dans la suite de l'étude réalisée dans le chapitre 2, présentée dans la section 1.3.1, où l'on considère un problème d'advection-diffusion dominé par l'advection dans un milieu hétérogène.

Dans le cas du problème de Dirichlet (1.3), le fluide et les méthodes numériques sont stables, même pour des champs d'advection de forte intensité. L'approche Adv-MsFEM avec fonctions bulles également construites avec l'opérateur d'advection-diffusion est la meilleure approche parmi celles étudiées et ne requiert pas de stabilisation supplémentaire.

Dans le cas du problème (1.4) où l'on prescrit la condition de Neumann homogène aux bords des perforations, des instabilités numériques engendrées par la domination de l'advection apparaissent. On peut à nouveau utiliser l'approche Adv-MsFEM avec fonctions bulles construites avec l'opérateur d'advection-diffusion ou bien l'approche MsFEM stabilisée sans nécessairement ajouter de fonctions bulles.

Perspectives

L'exposé ci-dessus laisse des questions en suspens, et en ouvre d'autres. On en mentionne quelques unes.

On s'est intéressé à des problèmes d'advection diffusion multi-échelles dominés par l'advection. Tout d'abord, on s'est placé dans le cadre d'un problème d'advection-diffusion dans un milieu hétérogène. On a montré que le caractère multi-échelles du problème (1.1) peut être estompé lorsque la domination de l'advection est excessive. Dans un régime intermédiaire où le caractère multi-échelles influe en pratique sur la précision, les méthodes MsFEM stabilisée et de splitting sont les meilleures approches. L'analyse numérique des approches MsFEM réalisée est limitée au cas monodimensionnel. Il serait intéressant de poursuivre l'analyse numérique de ces approches sur le problème (1.1) en dimension supérieure. De plus, toutes les méthodes sont peu précises dans la région de la couche limite, à l'exception de la méthode Adv-MsFEM, lorsqu'on utilise des conditions aux limite de type Crouzeix-Raviart pour définir les fonctions de forme. Localiser la couche limite peut être un atout pour améliorer la stratégie d'approximation. On peut penser à différentes manières d'exploiter cette information comme appliquer un traitement différent (en termes de maillage ou de stabilisation par exemple) dans la couche limite ou bien introduire un couplage entre la couche limite et le reste du domaine. Ces idées sont déjà présentes dans la littérature, au moins dans l'utilisation des maillages de Shishkin [START_REF] Stynes | Steady-state convection-diffusion problems[END_REF] et la méthode hétérogène [78, Part II, Section 8.6], et représentent autant de pistes pour aborder le problème multi-échelle. Une autre piste d'amélioration possible est de construire une approximation de manière adaptative. De manière générale, l'adaptivité des méthodes multi-échelles est un sujet qu'il serait intéressant d'examiner dans le cas du problème (1.1).

Ce travail représente une étape préliminaire à l'étude des problèmes d'advection-diffusion posés dans un domaine perforé. On a abordé deux situations radicalement différentes selon le type de condition aux limites prescrites aux bords des perforations. Dans le cas du problème de Dirichlet (1.3), le fluide et les approches numériques sont stables, même pour de forts champs d'advection. L'approche Adv-MsFEM avec des fonctions bulles également construites avec l'opérateur d'advection-diffusion représente la meilleure approche possible et ne nécessite pas de stabilisation supplémentaire. Pour le problème (1.4) où l'on prescrit la condition de Neumann homogène aux bords des perforations, les difficultés numériques rencontrées sont similaires à celles du problème (1.1): des instabilités numériques apparaissent lorsque l'advection domine. On peut une nouvelle fois utiliser l'approche Adv-MsFEM avec fonctions bulles construites avec l'opérateur d'advection-diffusion ou bien l'approche MsFEM stabilisée sans nécessairement ajouter de fonctions bulles. Il serait intéressant d'obtenir une estimation d'erreur entre la solution du problème (1.4) et sa limite homogénéisée, ce qui ouvre alors la voie à une analyse numérique des approches MsFEM pour l'approximation de ce problème. Une extension naturelle de ce travail est l'étude du problème d'Oseen en domaine perforé

$ ' ' & ' ' % ∇p ε ´α∆u ε `b ¨∇u ε " f dans Ω ε , div u ε " 0 dans Ω ε , u ε " 0 sur BΩ ε , avec α ą 0, b P pL 8 pΩqq d et f P L 2 pΩq.
On peut également envisager de remplacer la condition de Dirichlet homogène par une autre condition sur le bords des perforations.

Pour ce qui concerne le chapitre 3, on a proposé une approche éléments finis pour le problème (1.5) basée sur une mesure invariante associé à l'opérateur adjoint dans le cas où l'opérateur d'advection-diffusion n'est pas coercif et dominé par l'advection. On a montré que cette approche est bien posée inconditionnellement en la taille du maillage H et on en a analysé la convergence en détail. Il serait intéressant d'étendre au cadre multi-échelles cette approche, par exemple sur le problème (1.22) dans le cas non-coercif. Pour cela, il faut étendre le caractère isolé de zéro de la mesure invariante solution σ 1 solution du problème (1.30) au cas d'un opérateur de la forme ´div pA ε ∇σ 1 `bσ 1 q où A ε est régulier et vérifie (1.17). Dans le cadre du chapitre 3, on s'appuie sur le théorème [75, Theorem 1] dont la preuve repose sur une adaptation de l'inégalité de Harnack. Par ailleurs, cette extension présente une difficulté numérique majeure. Le problème que vérifie la mesure invariante est multi-échelle. Son calcul est nécessaire pour chaque milieu hétérogène, représenté dans le problème (1.22) par la matrice de diffusion A ε . Cependant, la mesure invariante ne dépend pas du second membre du problème (1.22). Dans un contexte où l'on veut résoudre le problème (1.22) pour plusieurs seconds membres f , un seul calcul de la mesure invariante est nécessaire. On pourrait également envisager de définir la mesure invariante sur chaque élément d'un maillage grossier. Cette possibilité pourrait permettre d'éviter la discrétisation d'un problème multi-échelle posé sur le domaine entier en résolvant des problèmes locaux sur chaque élément d'un maillage grossier.

Introduction

We consider in this work an advection-diffusion equation that has both a multiscale character (encoded in an highly oscillatory diffusion coefficient) and a dominating advection. Formally, the equation reads as

´div pA ε ∇u ε q `b ¨∇u ε " f in Ω, u ε " 0 on BΩ. (2.1)
Our self-explanatory notation will be made precise in the sequel, along with the mathematical setting that allows to rigorously consider this equation. Our purpose is to investigate whether numerical methods dedicated to the treatment of multiscale phenomena, such as Multiscale Finite Element Methods (henceforth abbreviated as MsFEM) and methods specifically designed to address the dominating advection, such as Streamline-Upwind/Petrov-Galerkin (SUPG) type methods, can separately adequately address the twofold problem, or, if need be, to discover how these methods may be combined to form the best possible approach in various regimes. Equation (2.1) is practically relevant and interesting per se. Our study of this particular equation is nevertheless rather to be seen as a step toward the study of the following much more relevant case : an (single-scale) advection-diffusion equation, with a dominating advection term, posed on a perforated domain (in that vein, see [START_REF] Degond | Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media[END_REF]). In a previous, somewhat related couple of studies [START_REF] Bris | MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems[END_REF][START_REF] Bris | An MsFEM type approach for perforated domains[END_REF], we have used with much benefit the highly oscillatory case as a test-bed for designing and studying approaches subsequently used for the more challenging perforated case. Methods of the MsFEM type have proved efficient in a number of contexts. In essence, they are based upon choosing, as specific finite dimensional basis to expand the numerical solution upon, a set of functions that themselves are solutions to a highly oscillatory local problem, at scale ε, involving the differential operator present in the original equation. This problem-dependent basis set is likely to better encode the fine-scale oscillations of the solution and therefore allow to capture the solution more accurately. Numerical observation along with mathematical arguments prove that this is indeed generically the case. For the specific advection-diffusion equation (2.1) we consider here, two natural options for the construction of the basis set are (i) to pick as basis functions solutions to the (multiscale) diffusion operator only, or (ii) to also involve in the definition of the functions the advection operator. These two approaches will be among the set of approaches considered and tested below. In the former option, when the basis functions do not involve the advection operator, one may fear that, in the presence of advection, and especially in the presence of a strong advection that dominates the diffusion -a regime we focus on throughout this work -, the accuracy of the classical MsFEM dramatically deteriorates. This is for instance the case, "when ε " 1", for classical P 1 finite element methods. Stabilization procedures are then in order and we will indeed adapt such a procedure to the present multiscale context. On the other hand, in the latter option, it is unclear whether the presence of the advection term also for the definition of the basis functions allows, or not, for the method to also perform well in the advection-dominated regime. This will be investigated below. However well such an approach performs, the fact that the advection is involved in the definition of the finite elements might create issues, and be prohibitively expensive computationally, when the advection varies and the equation needs to be solved repeatedly, either because the present steady state setting of (2.1) is in fact a time iteration within the numerical simulation of a time-dependent equation, or because equation (2.1) is part of an optimization, or inverse problem. Also, inserting the advection term in the definition of the basis functions is a very invasive implementation, which might be problematic in some contexts. Both observations are sufficient motivations to also consider a splitting method, separately addressing the multiscale character with a classical MsFEM approach for the solution of the diffusion operator, and solving a single-scale advection-dominated advection-diffusion equation with a stabilized P 1 method.

The four MsFEM-type approaches we have just mentioned (classical -that is, with basis functions constructed from diffusion only -, classical and stabilized, advection-diffusion based, splitting the advection and the multiscale character) will be studied and compared. For reference, we will also use a P 1 finite element method, stabilized or not, in particular to investigate when the multiscale nature of the problem and the domination of the advection matter, or not.

In the context of HMM-type methods, multiscale advection-diffusion problems with dominating advection have been considered e.g. in [1].

Our article is organized as follows. Section 2.2 briefly recalls, essentially for the sake of self-consistency, some basic, classical and well-known facts on the building blocks (stabilization, multiscale approaches) we use, and describes in more details the numerical approaches we consider. We next provide, in Section 2.3, a complete numerical analysis of the approaches in the one-dimensional setting. We are unfortunately unable to conduct the same analysis in higher dimensions, but some of the issues we raise and discuss in the one-dimensional context are definitely useful to understand the approaches in a more general context. In particular, we point out that the direct application of an SUPG stabilization on MsFEM leads to an approach that is not strongly consistent (in sharp contrast to its single-scale, say P 1 version), because the basis functions are not known analytically but only up to the numerical error present in the offline precomputation. We provide a solution to that difficulty. We show that, in spite of a lack of consistency, the method we design can be certified (and numerical observation will later show it performs efficiently). We also devote some time to the detailed study, in any dimension, of the convergence of the splitting approach.

Our final Section 2.4 presents a comprehensive series of numerical tests and comparisons. An executive summary of our main conclusions is as follows: i) the best possible approach among all those we consider is the stabilized version of MsFEM, unless one does not want to be intrusive in which case the splitting approach performs approximately equally well, for an online computational cost that might be significantly larger, especially for problems of large size for which iterative solvers have to employed;

ii) the method using basis functions built upon the full advection-diffusion operator is not sufficiently stable to perform well in the advection-dominated regime;

iii) when advection outrageously dominates diffusion, the multiscale character of the solution (at least in the bulk of the domain) is essentially overshadowed by the advection, and a "classical" stabilized P 1 finite element method performs as well as a MsFEM-type approach, a somewhat intuitive fact that our study allows to confirm.

Further details on the approaches considered are given in the body of the text.

Description of the numerical approaches

We describe in Section 2.2.1 the standard numerical tools we use throughout this work. We next present in Section 2.2.2 the four numerical methods we study.

Building blocks

In this section, we briefly recall for convenience some classical elements on the two building blocks we make use of to construct the approaches we study, namely stabilization methods (more specifically, SUPG type methods) and Multiscale Finite Element Methods (MsFEM). The reader already familiar with these notions may easily skip the present section and directly proceed to Section 2.2.2.

Stabilized methods

We temporarily consider the single-scale advection-diffusion problem

´α∆u `b ¨∇u " f in Ω, u " 0 on BΩ, (2.2) 
where Ω is a smooth bounded domain of R d , α ą 0, b P pL 8 pΩqq d and f P L 2 pΩq. We suppose that

div b " 0 in Ω, (2.3) 
so that problem (2.2) is coercive and amenable to standard numerical analysis techniques for coercive problems. We shall discuss the case of non-coercive problems in Remark 2.1 below.

Let T H be a uniform regular mesh of size H discretizing Ω, and let V H be the classical P 1 Finite Element space associated to this mesh. The classical Galerkin approximation of (2.2) reads as the following variational formulation:

Find u H P V H such that, for any v H P V H , apu H , v H q " F pv H q, (2.4) 
where apu, vq " ˆΩ α∇u ¨∇v `pb ¨∇uqv, F pvq " ˆΩ f v.

(2.5)

Since the solution u to (2.2) is in H 2 pΩq, we have the following error estimate as a direct consequence of Céa's lemma:

}u ´uH } H 1 pΩq ď CHp1 `Pe Hq }u} H 2 pΩq , (2.6)
where C is independent of H and b. We have introduced, as is classical, the global Péclet number

Pe " }b} L 8 pΩq 2α (2.7)
of problem (2.2). We thus see that the larger the product Pe H, the larger the potential numerical error. Intuitively, the problem becomes less and less coercive as advection increasingly dominates over diffusion and, eventually, the coercivity is lost [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Section 3.5.2] when Pe goes to `8. As is well-known, the Péclet number directly affects the quality of the numerical results. With the standard P 1 finite element approximation, oscillations polluting the solution are observed (see Figure 2.

below).

Stabilization is a classical subject of numerical analysis. Many works (see e.g. [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF] and the textbooks [START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF][START_REF] Roos | Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems[END_REF]) have been devoted to designing stabilized methods for the advection-dominated regime. They consist in considering the following problem:

Find u s H P V H such that, for any v H P V H , apu s H , v H q `astab pu s H , v H q " F pv H q `Fstab pv H q, (2.8) 
where a and F are defined by (2.5) and a stab and F stab are defined by

a stab pu s H , v H q " ÿ KPT H ˆτK Lu s H , pL ss `ρL s qv H ˙K, (2.9 
)

F stab pv H q " ÿ KPT H ˆτK f, pL ss `ρL s qv H ˙K, (2.10) 
where, for any u and v, pu, vq K " ˆK u v, L s u " ´α∆u and L ss u " b ¨∇u are the symmetric part and the skew-symmetric part of the advection-diffusion operator Lv " ´α∆v `b ¨∇v, respectively (recall that b is divergence free in view of (2.3)). The stabilization parameter τ K is chosen, roughly, of the order of

H }b} L 8 pΩq
. The choice of ρ leads to different stabilized methods.

In the sequel, we only consider the Streamline Upwind Petrov-Galerkin method (SUPG), which corresponds to the choice ρ " 0. For the sake of completeness, and also because we will use similar arguments in Section 2.3 below for the multiscale setting, we provide the proof of (2.11) in Appendix 2.5.1 below.

Remark 2.1. Notice that all the above analysis assumes that problem (2.2) is coercive (see (2.3)). This is usually the case in the literature, see [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Roos | Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems[END_REF]. To the best of our knowledge, the analysis of the stabilized methods of the type (2.8) has not been performed in the non-coercive case. A stabilized numerical method designed for nonsymmetric noncoercive problems is proposed and studied in [START_REF] Burman | Stabilized Finite Element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations[END_REF]. The method requires to solve the original problem coupled with an adjoint problem using stabilized finite element methods. Error estimates in H 1 and L 2 norms are proved under the assumption of well-posedness of the problem. Least-square methods for noncoercive elliptic problems have also been studied, see e.g. [START_REF] Bramble | Least-squares for second-order elliptic problems[END_REF][START_REF] Ku | A least-squares method for second order noncoercive elliptic partial differential equations[END_REF].

Remark 2.2. The stabilized methods (2.8) can also be understood in the framework of the Variational Multiscale Methods [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF].

Remark 2.3. The choice of an optimal stabilization parameter τ K is a difficult and sensitive question, since it affects the quality of the numerical approximation. We refer e.g. to [START_REF] Brezzi | A relationship between stabilized finite element methods and the Galerkin method with bubble functions[END_REF][START_REF] Franca | Stabilized finite element methods. I. Application to the advective-diffusive model[END_REF][START_REF] Principe | On the stabilization parameter in the subgrid scale approximation of scalar convection-diffusion-reaction equations on distorted meshes[END_REF]. The Variational Multiscale Methods [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF] give an interpretation of the stabilization parameter. If we assume τ K to be constant on each mesh element K, the Variational Multiscale Methods yield the formula

τ K " 1 |K| ˆK ˆK g K , (2.14)
where g K is the Green's function of the operator L ‹ (i.e. the adjoint of L) with homogeneous Dirichlet boundary conditions on BK. Simplifying assumptions are next used to infer, from (2.14), a practical expression for τ K .

For the sake of illustration, and because it allows us to introduce notions useful for what follows, we briefly consider the one-dimensional example

´αu 2 `bu 1 " f in p0, 1q, up0q " up1q " 0, (2.15) 
for a constant b. In that case, the expression (2.14) can be analytically computed and yields the choice

τ K " H 2|b| ˆcothpPe Hq ´1 Pe H ˙.
(2.16)

On Figure 2.1, we show the exact solution to (2.15) as well as two numerical approximations. We set α " 1{256, b " 1, f " 1 and H " 1{16, so that we are in the advection-dominated regime. On Figure 2.1, we can distinguish two regions. Outside the boundary layer, the P 1 SUPG method accurately approximates the solution. It has no spurious oscillations, in contrast to the standard P 1 method. Inside the boundary layer, the P 1 SUPG method only poorly performs.

MsFEM approaches

We now insert a multiscale character in our problem and temporarily erase the transport field b, which we will shortly reinstate in the next section. We consider the solution u ε P H 1 0 pΩq to ´div pA ε ∇u ε q " f in Ω, u ε " 0 on BΩ.

(2.17) We assume that the diffusion matrix A ε , encoding the oscillations at the small scale, is elliptic in the sense that there exists 0 ă α 1 ď α 2 such that @ε, @ξ P R d , α 1 |ξ| 2 ď pA ε pxqξq ¨ξ ď α 2 |ξ| 2 a.e. on Ω.

(

Throughout this article, we shall perform our theoretical analysis for general, not necessarily symmetric, matrix-valued coefficients A ε , not necessarily either of the form A ε " A p¨{εq for a fixed matrix A (although one may consider such a case to fix the ideas). In our numerical tests, however, we only consider a scalar coefficient A ε . The bottom line of the MsFEM is to perform a Galerkin approximation using specific basis functions, which are precomputed (in an offline stage) and adapted to the problem considered.

On the prototypical multiscale diffusion problem (2.17), the method, in one of its simplest variant, consists of the following three steps: i) Introduce a discretization of Ω with a coarse mesh; throughout this article, we work with the P 1 Finite Element space

V H " Span ␣ ϕ 0 i , 1 ď i ď N V H ( Ă H 1 0 pΩq; (2.19)
ii) Solve the local problems (one for each basis function for the coarse mesh)

´div ´Aε ∇ψ ε,K i ¯" 0 in K, ψ ε,K i " ϕ 0 i on BK, (2.20) 
on each element K of the coarse mesh, in order to build the multiscale basis functions.

iii) Apply a standard Galerkin approximation of (2.17) on the space

V ε H " Span tψ ε i , 1 ď i ď N V H u Ă H 1 0 pΩq, (2.21) 
where

ψ ε i is such that ψ ε i | K " ψ ε,K i for all K P T H .
The error analysis of the MsFEM method in the above case (2.17), for A ε " A per p¨{εq with A per a fixed periodic matrix, has been performed in [START_REF] Hou | Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[END_REF] (see also [START_REF] Efendiev | of Surveys and Tutorials in the Applied Mathematical Sciences[END_REF]Theorem 6.5] or [START_REF] Bris | Multiscale finite element approach for "weakly" random problems and related issues[END_REF]Theorem 4.5]). The main result is stated in the following Theorem.

Theorem 2.4. We consider the periodic case A ε pxq " A per px{εq. We assume that A per is Hölder continuous and that H ą ε. We also assume that the solution u ‹ to the homogenized problem associated to (2.17), that is the L 2 -limit of u ε solution to (2.17) when ε Ñ 0, belongs to W 2,8 pΩq. Let u ε H be the MsFEM approximation of the solution u ε to (2.17). Then

}u ε ´uε H } H 1 pΩq ď C ˆH `?ε `c ε H ˙, (2.22)
where C is a constant independent of H and ε.

When the coarse mesh size H is close to the scale ε, a resonance phenomenon, encoded in the term a ε{H in (2.22), occurs and deteriorates the numerical solution. The oversampling method [START_REF] Hou | A multiscale finite element method for elliptic problems in composite materials and porous media[END_REF] is a popular technique to reduce this effect. In short, the approach, which is non-conforming, consists in setting each local problem on a domain slightly larger than the actual element considered, so as to become less sensitive to the arbitrary choice of boundary conditions on that larger domain, and next truncate on the element the functions obtained. That approach allows to significantly improve the results compared to using linear boundary conditions as in (2.20). In the periodic case, we have the following estimate (see [START_REF] Efendiev | Convergence of a nonconforming multiscale finite element method[END_REF]). Theorem 2.5. Assume the setting and the notation of Theorem 2.4. Assume additionally that the distance between an element K and the boundary of the macro element used in the oversampling is larger than H. Then

}u ε ´uε H } H 1 pT H q ď C ´H `?ε `ε H ¯,
where

}u ε ´uε H } H 1 pT H q " d ÿ KPT H }u ε ´uε H } 2 H 1 pKq is the H 1 broken norm of u ε ´uε H .
Remark 2.6. The boundary conditions imposed in (2.20) are the so-called linear boundary conditions. Besides the linear boundary conditions, and the oversampling technique alluded to above, there are many other possible boundary conditions for the local problems. They may give rise to conforming, or non-conforming approximations. The choice sensitively affects the overall accuracy. We will explore this issue, in our specific context, in Section 2.4.2 below.

It is important to notice that the estimates of Theorems 2.4 and 2.5 hold true assuming that the multiscale basis functions employed to compute the approximation u ε H are the exact solutions of the local problems. In practice of course, the local problems (2.20) are only approximated numerically, using a fine mesh of size h sufficiently small to capture the oscillations at scale ε.

As mentioned above, our purpose is to understand how to adapt the stabilization methods and the MsFEM methods in order to efficiently approximate

´div pA ε ∇u ε q `b ¨∇u ε " f in Ω, u ε " 0 on BΩ, (2.23) 
where A ε P pL 8 pΩqq dˆd satisfies (2.18), b P pL 8 pΩqq d and f P L 2 pΩq. Notice that the transport field b is assumed to be independent of ε. We also choose it divergence-free as in (2.3). The variational formulation of (2.23) is:

Find

u ε P H 1 0 pΩq such that, for any v P H 1 0 pΩq, a ε pu ε , vq " F pvq, (2.24) 
where a ε pu, vq " ˆΩpA ε ∇uq ¨∇v `pb ¨∇uq v, F pvq " ˆΩ f v.

(2.25)

We now introduce in Section 2.2.2 below the four numerical approaches we consider.

Our four numerical approaches

The classical MsFEM and its stabilized version

The classical MsFEM described in Section 2. This motivates the introduction of a stabilized version of this method, which is the adaptation to the multiscale context of the classical SUPG method. As we shall now see, some difficulty arises regarding the consistency of the approach, owing to the fact that the basis functions we use in practice are only approximate.

First, we consider the exact approximation space V ε H defined by (2.21). The SUPG stabilization, readily applied to our problem (2.24), yields the following variational formulation:

Find u ε H P V ε H such that, for any v ε H P V ε H , a ε pu ε H , v ε H q `astab pu ε H , v ε H q " F pv ε H q `Fstab pv ε H q, (2.26) 
where we recall that the SUPG stabilization terms are (see (2.9) and (2.10))

a stab pu ε H , v ε H q " ÿ KPT H ´τK p´div pA ε ∇u ε H q `b ¨∇u ε H q , b ¨∇v ε H ¯L2 pKq , ( 2.27 
)

F stab pv ε H q " ÿ KPT H ˆτK f, b ¨∇v ε H ˙K.
The method is, as is well known, strongly consistent (meaning that the exact solution u ε solves (2.26)). Because of the definition of the approximation space V ε H , we have

a stab pu ε H , v ε H q " a upw pu ε H , v ε H q for any pu ε H , v ε H q P pV ε H q 2 , ( 2.28) 
where

a upw pu ε H , v ε H q " ÿ KPT H pτ K b ¨∇u ε H , b ¨∇v ε H q L 2 pKq . (2.29)
In practice however, we only know a discrete approximation ψ ε,h , on a fine mesh K h , of the solution ψ ε to (2.20). Put differently, we manipulate

V ε H,h " Spantψ ε,h i , 1 ď i ď N V H u instead of V ε
H . It follows that, for example when A ε P C 0 pΩq and we use a P 1 approximation on a fine mesh K h for the local problem (2.20), A ε ∇u ε H,h may be discontinuous at the edges of the mesh K h , and ´div pA ε ∇u ε H,h q R L 1 loc pKq. We may consider at least two ways to circumvent that difficulty. First, if the matrix coefficient A ε is locally sufficiently regular, we may define the stabilization term as

r a stab pu ε H,h , v ε H,h q " ÿ KPT H ÿ κĂK h ´τK `´div `Aε ∇u ε H,h ˘`b ¨∇u ε H,h ˘, b ¨∇v ε H,h ¯L2 pκq .
When, as is the case here, we employ a P 1 approximation on K h , all we need for this stabilization term to make sense is that the vector field div pA ε q belongs to L 1 pκq for all κ Ă K h . This is more demanding than the simple classical assumption A ε P L 8 pΩq. Under this assumption, we obtain a strongly consistent stabilized method. We will however not proceed in this direction and favor an alternate approach, to which we now turn.

Based upon the observation (2.28) for the "ideal" space V ε H , we may use the stabilization term (2.29) rather than (2.27). In contrast to (2.27), the quantity (2.29) is also well defined on

V ε

H,h . And this holds true without any additional regularity assumption on A ε . The Stab-MsFEM method we employ is hence defined by the following variational formulation:

Find u ε H,h P V ε H,h such that, for any v ε H,h P V ε H,h , a ε pu ε H,h , v ε H,h q `aupw pu ε H,h , v ε H,h q " F pv ε H,h q `Fstab pv ε H,h q.
(2.30)

We emphasize that employing that stabilization comes at a price: we give up on strong consistency. We provide in Section 2.3.2, Theorem 2.14 below, an error estimate in the one-dimensional setting for this method. Despite the absence of consistency, we can still prove that the method is convergent.

The Adv-MsFEM variant

In contrast to our first two approaches, the Adv-MsFEM approach we discuss in this section accounts for the transport field in the local problems. For each mesh element K P T H , we indeed now consider

´div ´Aε ∇ϕ ε,K i ¯`b ¨∇ϕ ε,K i " 0 in K, ϕ ε,K i " ϕ 0 i on BK, (2.31) 
instead of (2.20), and next the approximation space

V ε,Adv H " Span tϕ ε i , 1 ď i ď N V H u Ă H 1 0 pΩq
defined as in (2.21). Problem (2.31) is an advection-diffusion problem with, in principle, a high Péclet number. Nevertheless, the problem is local and is to be solved offline, so we may easily employ a mesh size sufficiently fine to avoid the issues presented in Section 2.2.1.

There is however a difficulty in considering (2.31) and b-dependent basis functions ϕ ε,K i . In the context where we want to repeatedly solve (2.23) for multiple b, for instance when b depends heterogeneous media on an external parameter such as time, the method becomes prohibitively expensive as we will see in Section 2.4.3.

We note in passing the following consistency. In the one-dimensional single-scale example (2.15), the stiffness matrix of the Adv-MsFEM method is

M Adv-MsFEM " Tridiag ˆ´b exp pbH{αq exp pbH{αq ´1 , |b| coth ˆ|b|H 2α ˙, ´b exp pbH{αq ´1 ˙.
It then coincides with the stiffness matrix M P 1 SUPG of the P 1 SUPG method with τ K given by (2.16).

We also note that, in view of (2.27)-(2.31), we have that a stab pu ε,Adv

H , v ε,Adv H q " 0 for any pu ε,Adv H , v ε,Adv H q P pV ε,Adv H q 2
. Such a stabilization is therefore void on the Adv-MsFEM method. Actually, we shall see in the numerical tests of Section 2.4.2 that the Adv-MsFEM method is only moderately sensitive to the Péclet number.

MsFEM type basis functions depending on the transport term for multiscale advectiondiffusion problems have already considered in the literature. In [START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF], two settings are investigated. The Adv-MsFEM is first applied to the time-dependent multiscale advection-diffusion equation

B t u ε ´∆u ε `1 ε b ´ε ¯¨∇u ε " 0 in R 2 ,
with b " ∇ K ψ where ψ pxq " ψ px 1 , x 2 q " 1 4π 2 sinp2πx 1 q sinp2πx 2 q. The field b is thus Z 2 -periodic, divergence-free and of mean zero. The purpose is then to only capture macroscopic properties of the solution u ε . Also in [START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF], the Adv-MsFEM is investigated on the problem ´∆u ε `bε ¨∇u ε " f, with b ε P pL 8 pΩqq 2 and f P L 2 pΩq. Only the following L 2 error estimate

}u ε ´uε H } L 2 pΩq }u ε } L 2 pΩq ď C ε H `CH 2 }f } L 2 pΩq
is derived, and not an H 1 estimate which would be sensitive to how well the fine oscillations are captured by the numerical approach. It is completed in the periodic case, where b ε pxq " 1 ε b per ´x ε for a fixed, periodic, divergence-free function b per of mean zero, under some assumptions which have been numerically verified on some examples. An experimental study of convergence is performed and shows good agreement with the above theoretical error estimate.

A second reference we wish to cite is [START_REF] Ouaki | Etude de schémas multi-échelles pour la simulation de réservoir[END_REF]. The author studies there the problem

$ & % ρ ε B t u ε ´div pA ε ∇u ε q `1 ε b ε ¨∇u ε " 0 in p0, 1q d ˆp0, T q, u ε p0, ¨q " u 0 in p0, 1q d , u ε pt, ¨q is p0, 1q d -periodic,
where u 0 P W m,8 per pp0, 1q d q with m ě 3. The functions ρ ε P L 8 pp0, 1q d q, b ε P pL 8 pp0, 1q d qq d and A ε P pL 8 pp0, 1q d qq dˆd do not depend on time. It is assumed that there exists a constant ρ m ą 0 such that ρ ε ě ρ m a.e. on p0, 1q d , and that b ε is divergence-free. In contrast to [START_REF] Park | Multiscale numerical methods for singularly perturbed convectiondiffusion equations[END_REF], the mean of b ε is not assumed to vanish (but periodic boundary conditions are imposed on Bp0, 1q d ). In the advection-dominated regime, the problem is stabilized using the characteristics method for ´K b ε ´K ρ ε for all K P T H . The MsFEM approach which is used in [START_REF] Ouaki | Etude de schémas multi-échelles pour la simulation de réservoir[END_REF] is inspired by the variant of the Multiscale Finite Element approach introduced in [6] for purely diffusive problems. The multiscale basis functions are thus defined by ϕ ε j pxq " ϕ 0 j ´wε,H pxq ¯for 1 ď j ď N V H , where ϕ 0 j are the P 1 basis functions and w ε,H | K " pw ε,K 1 , . . . , w ε,K d q for each K P T H , where, for any i " 1, . . . , d, the function w ε,K i is the solution to

´div ´Aε ∇w ε,K i ¯`b ε ´ρε b ‹ H ε ¨∇w ε,K i " 0 in K, w ε,K i " x i on BK.
Note that, as in (2.31), the basis functions depend on the advection field. An error estimate is established in [START_REF] Ouaki | Etude de schémas multi-échelles pour la simulation de réservoir[END_REF] for the periodic case.

A splitting approach

The fourth and last approach we consider is a splitting method that decomposes (2.23) into a single-scale, advection-dominated problem and a multiscale, purely diffusive problem. The main motivation for considering such a splitting approach is the non-intrusive character of the approach. In practice, one may couple legacy codes that are already optimized for each of the two subproblems. Of course, splitting methods have been used in a large number of contexts. To cite only a couple of works relevant to our context, we mention [START_REF] Hundsdorfer | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[END_REF] for a review on the splitting methods for time-dependent advection-diffusion equations, and [START_REF] Szymczak | An analysis of viscous splitting and adaptivity for steady-state convectiondiffusion problems[END_REF] for the introduction of a viscous splitting method based on a Fourier analysis for the steady-state advection-diffusion equation.

Our splitting approach for (2.23) is the following. We define the iterations by

# ´αspl ∆u 2n`2 `b ¨∇u 2n`2 " f `b ¨∇pu 2n ´u2n`1 q in Ω, u 2n`2 " 0 on BΩ, (2.32) 
# ´div pA ε ∇u 2n`3 q " ´αspl ∆u 2n`2 in Ω,

u 2n`3 " 0 on BΩ, (2.33) 
with α spl ą 0. The initialization is e.g. u 0 " u 1 " 0.

The functions u 2n with even indices are approximations defined on a coarse mesh, using P 1 finite elements, and, since our context is that of advection-dominated problems, obtained with a SUPG formulation, as explained in Section 2.2.1. Note that, in the right-hand side of (2.32), the term ´b ¨∇u 2n`1 is integrated on a fine mesh, as we expect this term to vary at the scale ε. The discretized variational formulation of (2.32) where a stab and F stab are defined by (2.9) and (2.10), and a 0 pu, vq " ˆΩ α spl ∇u ¨∇v `pb ¨∇uqv,

F 1 pvq " ˆΩ f 1 v with f 1 " f `b ¨∇pu H 2n ´uH 2n`1 q.
The functions u 2n`1 with odd indices are obtained using a MsFEM type approach. A natural choice for the discretization of the problem (2.33) 

H 2n`1 in V ε H , that is u H 2n`1 pxq " N V H ÿ i"1 ru H 2n`1 s i ϕ ε i pxq.
We stop the iterations when the iteration residual, defined as

› › M 0 ru H 2n`2 s ´pF 0,H `M2 ru H 2n`2 s ´M3 ru H 2n`3 sq › › , ( 2.36) 
is smaller than a prescribed tolerance, here 10 ´9.

We immediately note that, if we assume that u 2n and u 2n`1 converge to some u even and u odd , respectively, then we have ´αspl ∆u even " f ´b ¨∇u odd in Ω, u even " 0 on BΩ, (2.37) ´div pA ε ∇u odd q " ´αspl ∆u even in Ω, u odd " 0 on BΩ.

(2.38)

Adding (2.37) and (2.38), we get that u odd is actually the solution to (2.23). A detailed analysis and a proof, under suitable assumptions, of the actual convergence of our splitting approach is provided in Section 2.3.4 below. In theory however, there is no guarantee that, in all circumstances, the naive, fixed point iterations (2.32)-(2.33) above converge. In all the test cases presented in Section 2.4.2, the iterations indeed converge. With a view to address difficult cases where the iterations might not converge, we design and study in Section 2.3.4 a possible alternate iteration scheme, based on a damping, which, for a well adjusted damping parameter, unconditionally converges. As will be shown in Section 2.4.2, this unconditional convergence comes however at the price of yielding results that are generically less accurate and longer to obtain than when using the direct fixed point iteration, when the latter converges of course. We therefore only advocate this alternate approach in the difficult cases.

As will be seen in Section 2.4.2 below, the splitting method and the Stab-MsFEM method provide numerical solutions of approximately identical accuracy. The non-intrusive character of the splitting method is somehow balanced by its online cost which, owing to the iterations, is larger than that of the Stab-MsFEM method. This is especially true in a multi-query context and/or for problems of large sizes only amenable to iterative linear algebra solvers.

Elements of theoretical analysis

This section is devoted to the theoretical study of our four numerical approaches. Throughout the section, we mostly work in the one-dimensional setting (in Sections 2.3.1, 2.3.2 and 2.3.3), with the notable exception of the mathematical study in Section 2.3.4 of the iteration scheme (2.32)-(2.33) used in our splitting method and of an alternative unconditionally convergent iteration scheme, which is performed with all the possible generality. Some of our results were first established in the preliminary study [START_REF] Ruffieux | Multiscale finite element method for highly oscillating advection-diffusion problems in convection-dominated regime[END_REF].

The MsFEM method, the Stab-MsFEM method and the Adv-MsFEM method are studied, in Sections 2.3.1, 2.3.2 and 2.3.3 respectively, on the one-dimensional problem

´d dx ˆAε du ε dx ˙`b du ε dx " f in Ω " p0, Lq, u ε p0q " u ε pLq " 0, (2.39) 
with a constant advection field b ‰ 0, f P L 2 p0, Lq and a diffusion coefficient such that 0 ă α 1 ď

A ε pxq ď α 2 a.e. on Ω. We estimate the error in terms of ε, b, the macroscopic mesh size H and possibly the mesh size h used to solve the local problems.

For further use, we first establish the following two propositions, namely Propositions 2.7 and 2.8. The first one is a Céa-type result, which holds in any dimension. Proposition 2.7. For d ě 1, let u H be the numerical solution obtained by applying any conforming Galerkin method to problem (2.23) (on some finite dimensional space W H ). Then, if the matrix A ε is symmetric, elliptic in the sense of (2.18) and b satisfies (2.3), we have

|u ε ´uH | H 1 pΩq ď inf v H PW H ¨c α 2 α 1 |u ε ´vH | H 1 pΩq `› › › a b T pA ε q ´1b › › › L 8 pΩq ? α 1 }u ε ´vH } L 2 pΩq ‹ ',
where |v| H 1 pΩq " }∇v} L 2 pΩq for any v P H 1 pΩq.

Proof. We follow the proof of [START_REF] Ruffieux | Multiscale finite element method for highly oscillating advection-diffusion problems in convection-dominated regime[END_REF]. Using (2.3) and the Galerkin orthogonality, we have, for any

v H P W H , ˆΩ r∇pu ε ´uH qs T A ε ∇pu ε ´uH q " a ε pu ε ´uH , u ε ´uH q " a ε pu ε ´uH , u ε ´vH q " ˆΩ r∇pu ε ´vH qs T A ε ∇pu ε ´uH q `ˆΩ rb ¨∇pu ε ´uH qs pu ε ´vH q, (2.40)
where a ε is defined by (2.25). Considering the square root pA ε q 1{2 of the symmetric positive definite matrix A ε pxq, and using the Cauchy-Schwarz inequality, we have, on the one hand,

ˆΩ r∇pu ε ´vH qs T A ε ∇pu ε ´uH q ď ˆˆΩ r∇pu ε ´uH qs T A ε ∇pu ε ´uH q ˙1{2 ˆˆΩ r∇pu ε ´vH qs T A ε ∇pu ε ´vH q ˙1{2 ,
and, on the other hand,

ˆΩ rb ¨∇pu ε ´uH qs pu ε ´vH q " ˆΩ " pA ε q ´1{2 b ı ¨"pA ε q 1{2 ∇pu ε ´uH q ı pu ε ´vH q ď ˆˆΩ b T pA ε q ´1b pu ε ´vH q 2 ˙1{2 ˆˆΩ r∇pu ε ´uH qs T A ε ∇pu ε ´uH q ˙1{2 .
Inserting these estimates in (2.40), we obtain

ˆˆΩ r∇pu ε ´uH qs T A ε ∇pu ε ´uH q ˙1{2 ď ˆˆΩ r∇pu ε ´vH qs T A ε ∇pu ε ´vH q ˙1{2 `ˆˆΩ b T pA ε q ´1b pu ε ´vH q 2 ˙1{2 .
Using (2.18), we infer that, for any v H P W H ,

? α 1 |u ε ´uH | H 1 pΩq ď ? α 2 |u ε ´vH | H 1 pΩq `› › › › b b T pA ε q ´1b › › › › L 8 pΩq }u ε ´vH } L 2 pΩq .
This concludes the proof of Proposition 2.7.

Proposition 2.8. Assume the ambient dimension is one. Consider u ε P H 1 0 pΩq the solution to (2.39). If |b|L

α 2 ě 1, then |u ε | H 1 pΩq ď ? 2α 2 L α 1 a |b| }f } L 2 pΩq .
Proof. Without loss of generality, we can assume that b ą 0. We decompose the right-hand side into a zero mean part (considered in Step 1 of the proof) and a constant part (considered in Step 2).

Step 1. We first consider the case when the mean of f vanishes. Introduce F pxq " ˆx 0 f and note that bu ε ´F P H 1 0 pΩq, so that we can use it as test function in (2.39). This leads to ˆΩ A ε pu ε q 1 pbu ε ´F q 1 `bpu ε q 1 pbu ε ´F q " ˆΩ f pbu ε ´F q, which also reads as ˆΩ A ε pu ε q 1 pbu ε ´F q 1 `pbu ε ´F q 1 pbu ε ´F q " 0, whence ˆΩ bA ε pu ε q 1 pu ε q 1 " ˆΩ A ε pu ε q 1 f.

Using the Cauchy-Schwarz inequality and the fact that α 2 ď |b|L, we get

|u ε | H 1 pΩq ď α 2 α 1 |b| }f } L 2 pΩq ď ? α 2 L α 1 a |b| }f } L 2 pΩq .
(2.41)

Step 2. We now consider the case when f is constant. Without loss of generality, we can assume that f " 1. The proof is based on the maximum principle. Introduce the function vpxq " α 2 b ˆx 0 dy A ε pyq ´uε pxq. This function is such that

´`A ε v 1 ˘1 `bv 1 " α 2 pA ε q ´1 ´1 ě 0, vp0q " 0 and vpLq ě 0.

According to the maximum principle [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.1], we have that vpxq ě 0 for all x P r0, Ls.

We deduce that, for any x P r0, Ls, u ε pxq ď

α 2 |b| ˆx 0 dy A ε pyq ď α 2 L α 1 |b|
. Taking u ε as a test function in (2.39) and using that b is constant, we obtain ˆΩ A ε pu ε q 1 pu ε q 1 " ˆΩ u ε . Using the Cauchy-Schwarz inequality, we obtain

|u ε | 2 H 1 pΩq ď α 2 L 2 α 2 1 |b|
. Hence, for any constant f , we have

|u ε | H 1 pΩq ď ? α 2 L α 1 a |b| }f } L 2 pΩq .
(2.42)

Step 3. For a general right-hand side f , we write f " f 1 `f2 where f 1 is constant and the mean of f 2 vanishes. In view of (2.41) and (2.42), we see that

|u ε | H 1 pΩq ď ? α 2 L α 1 a |b| `}f 1 } L 2 pΩq `}f 2 } L 2 pΩq ˘.
We observe that }f 1 } 2 L 2 pΩq `}f 2 } 2 L 2 pΩq " }f } 2 L 2 pΩq , due to the fact f 1 is constant and f 2 has zero mean. Hence, we have that }f 1 } L 2 pΩq `}f 2 } L 2 pΩq ď ? 2}f } L 2 pΩq , and we thus deduce that

|u ε | H 1 pΩq ď ? 2α 2 L α 1 a |b| }f } L 2 pΩq .
This concludes the proof of Proposition 2.8.

The MsFEM method

In the advection-dominated regime, the error bound of the MsFEM method, introduced in Section 2.2.2, is given by the following theorem.

Theorem 2.9. Let u ε be the solution to the one-dimensional problem (2.39) and u ε H P V ε H be its approximation by the MsFEM method. Assume that |b|L α 2 ě 1. Then the following estimate holds:

|u ε ´uε H | H 1 pΩq ď H ˆc α 2 α 1 `|b|H α 1 ˙˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 . ( 2 

.43)
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Proof. We follow the proof of [START_REF] Ruffieux | Multiscale finite element method for highly oscillating advection-diffusion problems in convection-dominated regime[END_REF]. The error u ε ´uε H is decomposed in two parts:

e I " u ε ´RH u ε , e I H " R H u ε ´uε H ,
where R H u ε is the interpolant of u ε in V ε H . We have that ´d dx ˆAε dpR H u ε q dx ˙" 0 in each mesh element K P T H and e I P H 1 0 pKq for all K P T H . Using the variational formulation of (2.39), we get

α 1 |e I | 2 H 1 pΩq ď a ε pe I , e I q " ÿ KPT H ˆLε e I , e I ˙K " ÿ KPT H ˆf ´bpR H u ε q 1 , e I ˙K, (2.44) 
where

L ε v " ´d dx ˆAε dv dx ˙`b dv dx
. Now, since e I P H 1 0 pKq, we have 0 " ˆpe I q 1 , e I ˙K " ˆpu ε q 1 , e I ˙K ´ˆpR H u ε q 1 , e I ˙K.

(2.45)

Using that b is constant, we deduce from (2.44) and (2.45) that We therefore obtain

α 1 |e I | 2 H 1 pΩq ď ÿ KPT H }f ´bpu ε q 1 } L 2 pKq }e I } L 2 pKq ď ÿ KPT H H}f ´bpu ε q 1 } L 2 pKq |e I | H 1 pKq ď H `}f } L 2 pΩq `|b| |u ε | H 1 pΩq ˘|e I | H 1 pΩq ď H ˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq |e I | H 1 pΩq , ( 2 
|u ´uH | H 1 pΩq ď CH ˆ1 `|b|H 2α ˙˜1 `c 2L|b| α ¸}f } L 2 pΩq α ,
which exactly coincides, up to constants independent of b, α, H and f , with (2.48).

The Stab-MsFEM method

For the Stab-MsFEM method, also introduced in Section 2.2.2, we successively consider two cases. We first consider the "ideal" approach employing the exact multiscale basis functions, solution to (2.20). Next, we account for the discretization error when numerically solving the local problem (2.20).

When the discretization error is ignored, the error estimate is the following. 

|u ε ´uε H | H 1 pΩq ď CH ˜1 `d α 2 2 α 2 1 `|b|H α 1 ¸˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 , (2.49)
where C is a universal constant.

Remark 2.13. In the case where A ε is constant, the Stab-MsFEM method is simply the P 1 SUPG method. In that case, we observe, as above, that the estimate of Theorem 2.12 is similar to the estimate (2.11) obtained for the P 1 SUPG method.

Note that the right-hand side of (2.49) is thought to be smaller than that of (2.43), as we think of |b|H{α 1 as being large. Theorem 2.12 is actually established following Steps 2, 3 and 4 of the proof of Theorem 2.14 below.

Accounting now for the discretization error in the local problems and employing the method (2.30), we now have the following error estimate. 

|u ε ´uε H,h | H 1 pΩq ď C ˜1 `H|b| α 1 `H|b| α 1 d α 2 2 α 2 1 `|b|H α 1 ¸errphq `CH ˜1 `d α 2 2 α 2 1 `|b|H α 1 ¸˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 , (2.

50)
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where C only depends on Ω and where

errphq " h ˆc α 2 α 1 `|b|h α 1 ˙˜1 `d 2α 2 L |b| }pA ε q 1 ´b} L 8 pΩq α 1 ¸}f } L 2 pΩq α 1 . (2.51)
Proof. This proof is an adaptation of the analysis in [START_REF] Ruffieux | Multiscale finite element method for highly oscillating advection-diffusion problems in convection-dominated regime[END_REF]. We proceed as in the proof of (2.11) (see Appendix 2.5.1). We decompose the error u ε ´uε H,h in three parts:

e I h " u ε ´uε h , e I " u ε h ´RH,h u ε h , e I H " u ε H,h ´RH,h u ε h ,
where u ε h is the Galerkin approximation of u ε in V h (the P 1 finite element space associated to the fine mesh of size h) and 

R H,h u ε h is the Lagrange interpolant of u ε h in V ε H,h .
|e I h | H 1 pΩq ď c α 2 α 1 |u ε ´Ih u ε | H 1 pΩq `|b| α 1 |u ε ´Ih u ε | L 2 pΩq ď ˆc α 2 α 1 `|b|h α 1 ˙|u ε ´Ih u ε | H 1 pΩq , ( 2.52) 
where I h u ε is the Lagrange interpolant of u ε in V h . Standard results on finite elements show that

|u ε ´Ih u ε | H 1 pΩq ď Ch|u ε | H 2 pΩq . (2.53)
Because of the equation, we have where errphq is defined by (2.51).

|u ε | H 2 pΩq ď }f } L 2 pΩq `}pA ε q 1 ´b} L 8 pΩq |u ε | H 1 pΩq α 1 ď ˜1 `d 2α 2 L |b| }pA ε q 1 ´b} L 8 pΩq α 1 ¸}f } L 2 pΩq α 1 , ( 2 
Step 2: estimation of e I . Using the coercivity of A ε , we get

α 1 |e I | 2 H 1 pΩq ď ˆΩ A ε `eI ˘1 `eI ˘1 " ˆΩ A ε pu ε h q 1 `eI ˘1 ´ˆΩ A ε pR H,h u ε h q 1 `eI ˘1 . (2.56)
Using that e I vanishes on the macroscopic mesh nodes and the variational formulation of the basis functions ψ ε,h i of V ε H,h on K, we observe that

ˆΩ A ε pR H,h u ε h q 1 `eI ˘1 " ÿ KPT H ˆK A ε pR H,h u ε h q 1 `eI ˘1 " 0.
We thus deduce from (2.56) and the variational formulation satisfied by u ε h that

α 1 |e I | 2 H 1 pΩq ď ˆΩ A ε pu ε h q 1 `eI ˘1 " ˆΩ ´f ´bpu ε h q 1 ¯eI " ˆΩ ´f ´bpu ε q 1 `bpe I h q 1 ¯eI .
Using a Poincaré inequality for e I P H 1 0 pKq and Proposition 2.8, we deduce that

α 1 |e I | 2 H 1 pΩq ď H ´}f ´bpu ε q 1 } L 2 pΩq `|b| |e I h | H 1 pΩq ¯|e I | H 1 pΩq ď H «˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq `|b| |e I h | H 1 pΩq ff |e I | H 1 pΩq
and thus

|e I | H 1 pΩq ď H ˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 `H|b| α 1 |e I h | H 1 pΩq .
(2.57)

Step 3: estimation of e I H . We write 

α 1 |e I H | 2 H 1 pΩq `aupw pe I H , e I H q ď a ε pe I H , e I H q `aupw pe I H , e I H q " a ε pu ε H,h , e I H q `aupw pu ε H,h , e I H q ´aε pR H,h u ε h , e I H q ´aupw pR H,h u ε h , e I H q " F pe I H q `Fstab pe I H q ´aε pR H,h u ε h , e I H q ´aupw pR H,h u ε h , e I H q " a ε pu ε h , e I H q `Fstab pe I H q ´aε pR H,h u ε h , e I H q ´aupw pR H,h u ε h , e I H q
KPT H ˆτK f, bpe I H q 1 ˙K `ÿ KPT H ˆτK b `eI ˘1 , b `eI H ˘1 ˙K ´ÿ KPT H ˆτK bpu ε h q 1 , b `eI H ˘1 ˙K " ˆΩ ´Aε `eI ˘1 `eI H ˘1 ´b `eI H ˘1 e I ¯`ÿ KPT H ˆτK `f ´bpu ε h q 1 ˘, bpe I H q 1 ˙K `ÿ KPT H ˆτK b `eI ˘1 , b `eI H ˘1 ˙K. (2.58) 
We now successively estimate each term of the right-hand side of (2.58). For the first part of the first term, we have

ˇˇˇˆΩ A ε `eI ˘1 `eI H ˘1ˇˇˇˇď ˆΩ α 2 ˇˇ`e I ˘1 `eI H ˘1ˇˇˇď α 1 4 |e I H | 2 H 1 pΩq `α2 2 α 1 |e I | 2 H 1 pΩq .
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For the second part of the first term, we obtain

´ˆΩ b `eI H ˘1 e I ď 1 4 ÿ KPT H }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq `ÿ KPT H }τ ´1{2 K e I } 2 L 2 pKq ď 1 4 ÿ KPT H }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq `ÿ KPT H 2|b| H H 2 |e I | 2 H 1 pKq ď 1 4 ÿ KPT H }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq `2|b|H|e I | 2 H 1 pΩq ,
where, in the second line, we have used the value of τ K and a Poincaré inequality. We bound the second term as follows:

ÿ KPT H ˆτK `f ´bpu ε h q 1 ˘, bpe I H q 1 ˙K ď ÿ KPT H 1 2 }τ 1{2 K `f ´bpu ε h q 1 ˘}2 L 2 pKq `ÿ KPT H 1 2 }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq " H 4|b| }f ´bpu ε h q 1 } 2 L 2 pΩq `ÿ KPT H 1 2 }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq ď H 2|b| ´}f } 2 L 2 pΩq `}bpu ε h q 1 } 2 L 2 pΩq ¯`ÿ KPT H 1 2 }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq ď H 2 4α 1 ´}f } 2 L 2 pΩq `}bpu ε h q 1 } 2 L 2 pΩq ¯`ÿ KPT H 1 2 }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq ,
where we have used the fact that |b|H 2α 1 ě 1 in the last line, and that τ K " H 2|b| .

For the third term, we get, using the expression of τ K ,

ÿ KPT H ˆτK b `eI ˘1 , b `eI H ˘1 ˙K ď ÿ KPT H }τ 1{2 K b `eI ˘1 } 2 L 2 pKq `ÿ KPT H 1 4 }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq " |b|H 2 |e I | 2 H 1 pΩq `ÿ KPT H 1 4 }τ 1{2 K b `eI H ˘1 } 2 L 2 pKq .
Collecting the terms, we deduce from (2.58) that

α 1 |e I H | 2 H 1 pΩq ď α 1 4 |e I H | 2 H 1 pΩq `ˆα 2 2 α 1 `2|b|H `|b|H 2 ˙|e I | 2 H 1 pΩq `H2 4α 1 }f } 2 L 2 pΩq `H2 |b| 2 4α 1 |u ε h | 2 H 1 pΩq , which yields |e I H | H 1 pΩq ď C "ˆα 2 2 α 2 1 `|b|H α 1 ˙|e I | 2 H 1 pΩq `H2 α 2 1 }f } 2 L 2 pΩq `H2 |b| 2 α 2 1 |u ε h | 2 H 1 pΩq ȷ 1{2 , (2.59)
where C is a universal constant. Using Proposition 2.8, we have

|u ε h | H 1 pΩq ď |u ε | H 1 pΩq `|e I h | H 1 pΩq ď ? 2α 2 L α 1 a |b| }f } L 2 pΩq `|e I h | H 1 pΩq ,
and we thus deduce from (2.59) that

|e I H | H 1 pΩq ď C « d α 2 2 α 2 1 `|b|H α 1 |e I | H 1 pΩq `H ˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 `H|b| α 1 |e I h | H 1 pΩq ff . (2.60)
Step 4: conclusion. Successively using the triangle inequality, (2.60), (2.57) and (2.55), we obtain

|u ε ´uε H,h | H 1 pΩq ď |e I H | H 1 pΩq `|e I | H 1 pΩq `|e I h | H 1 pΩq ď ˜1 `Cd α 2 2 α 2 1 `|b|H α 1 ¸|e I | H 1 pΩq `ˆ1 `CH|b| α 1 ˙|e I h | H 1 pΩq `CH ˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 ď « 1 `CH|b| α 1 `H|b| α 1 ˜1 `Cd α 2 2 α 2 1 `|b|H α 1 ¸ff |e I h | H 1 pΩq `˜1 `Cd α 2 2 α 2 1 `|b|H α 1 ¸H ˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 `CH ˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 ď C « 1 `H|b| α 1 `H|b| α 1 d α 2 2 α 2 1 `|b|H α 1 ff errphq `CH ˜1 `d α 2 2 α 2 1 `|b|H α 1 ¸˜1 `a2α 2 L|b| α 1 ¸}f } L 2 pΩq α 1 .
This concludes the proof of Theorem 2.14.

The Adv-MsFEM method

The error bound of the Adv-MsFEM method (introduced in Section 2.2.2) is given by the following theorem.

Theorem 2.15. Let u ε be the solution to the one-dimensional problem (2.39) and u ε H P V ε,Adv H be the solution to the Adv-MsFEM method. The following estimate holds:

|u ε ´uε H | H 1 pΩq ď H ˆc α 2 α 1 `|b|H α 1 ˙}f } L 2 pΩq α 1 .
The proof of this theorem follows the same pattern as the proof of Theorem 2.9. We therefore skip it.

Splitting approach

We now turn to the splitting method introduced in Section 2.2. 

|r u 2n`2 | H 1 pΩq ď ρ 1`n |r u 0 | H 1 pΩq , where ρ " C Ω }b} L 8 pΩq α 1 ˆ}A ε ´αspl Id} L 8 pΩq α spl ˙.
Because of (2.61), the sequence u 2n therefore converges in H 1 0 pΩq to some u even . In view of (2.65), the sequence u 2n`1 also converges in H 1 0 pΩq to some u odd . Passing to the limit n Ñ 8 in (2.32) and (2.33), we obtain that u even and u odd are the solutions to ´αspl ∆u even " f ´b ¨∇u odd in Ω, u even " 0 on BΩ, (2.67) ´div pA ε ∇u odd q " ´αspl ∆u even in Ω, u odd " 0 on BΩ.

( Then the sequences pu 2n q nPN and pu 2n`1 q nPN do not converge in H 1 0 pΩq.

Proof. We take f " 0. Then equation (2.33) reads as u 2n`1 " pα spl {α ‹ q u 2n , so (2.32) reduces to ´pu 2n`2 q 2 `b α spl pu 2n`2 q 1 " λpu 2n q 1 in p0, 1q, u 2n`2 p0q " u 2n`2 p1q " 0, where λ " b α spl ´1 ´αspl α ‹ ¯. A simple calculation shows that, for any n P N, pu 2n q 1 " c n cosp2πxqs n sinp2πxq, with rc n , s n s T " p´1q n λ n A n r0, ´2πs T and

A " « ˆb α spl ˙2 `4π 2 ff ´1 ˜´b{α spl ´2π 2π ´b{α spl ¸.
If ρpλAq " |λ| b pb{αsplq 2 `4π 2 ą 1, a condition which is equivalent to (2.70), then the sequence pu 2n q nPN does not converge.

An alternate splitting method

We now present an alternate splitting method, which includes some element of damping, and which, when the damping parameter (denoted by β) is suitably adjusted, unconditionally converges. We emphasize however that we have observed in our numerical tests that the convergence of this alternate approach, although guaranteed theoretically, is much slower than that of the method (2.32)-(2.33). See Figure 2.3 below.

The iterates u 2n`2 and u 2n`3 are now defined by

# ´pβ `αspl q∆u 2n`2 `b ¨∇u 2n`2 " f `b ¨∇pu 2n ´u2n`1 q ´β∆u 2n`1 in Ω, u 2n`2 " 0 on BΩ, (2.71) 
# ´div ppβId `Aε q∇u 2n`3 q " ´pβ `αspl q∆u 2n`2 in Ω, 

u 2n`3 " 0 on BΩ, (2.72 
q P V H ˆV ε H , then pu H even , u H odd q satisfies @v P V H , a 1 pu H even , vq `aconv pu H even , vq " r F 1 pv; u H odd q `r F stab pv; u H odd q `aconv pP V ε H pu H even q, vq, (2.83)
and

@w P V ε H , a 2 pu H odd , wq " a 1 pu H even , wq, (2.84) with r F 1 pv; u H odd q " ˆΩpf ´b ¨∇u H odd qv `ˆΩ β∇u H odd ¨∇v and r F stab pv; u H odd q " ÿ KPT H pτ K pf ´b ∇u H odd q, b ¨∇vq L 2 pKq
. This convergence is rigorously stated in Lemma 2.20 below, as well as the convergence when H Ñ 0. Lemma 2.20. Suppose that we set the stabilization parameter to

τ K pxq " H 2|bpxq| for any K P T H . Choose β " argmin xě0 "ˆC Ω `H 2 ˙}b} L 8 pΩq x `αspl }A ε ´αspl Id} L 8 pΩq x `α1 `x x `α1 ȷ (2.85)
where α 1 is such that (2.18) holds.
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Then, when n Ñ 8, pu H 2n , u H 2n`1 q converges in H 1 0 pΩq ˆH1 0 pΩq to pu H even , u H odd q P V H ˆV ε H solutions to the variational formulation (2.83)-(2.

84).

Assume in addition that A ε P W 1,8 pΩq and that

α spl ă 2α 1 .
(2.86)

Then, when H Ñ 0, u H odd converges in H 1 0 pΩq to u ε solution to (2.23).
The proof of Lemma 2.20 is postponed until Appendix 2.5.3.

Numerical simulations

In this section, we present and discuss our numerical experiments. They have all been performed using FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. Our aim is to compare the four approaches of Section 2.2.2. Section 2.4.1 collects some preliminary material. Then we assess the accuracy and computational cost of our four numerical methods in Sections 2.4.2 and 2.4.3, respectively.

Test case

We work on the domain Ω " p0, 1q 2 , discretized with a uniform coarse mesh T H of size H. Let

V H be the finite dimensional vector space (2.19) associated to the classical P 1 discretization. In (2.23), we set b " p1, 1q T , f " 1 and

A ε px 1 , x 2 q " α ˆ1 `δ cos ˆ2π ε x 1 ˙˙Id 2 , with α, δ ą 0.
We recall that the advection-dominated regime is defined by the condition Pe H ą We choose for the splitting method the value α spl " α. Motivated by the one-dimensional formula (2.16), the stabilization parameter τ K is chosen as

τ K pxq " |K| 2|bpxq| ´coth pPe K pxqq ´pPe K pxqq ´1¯f or all K P T H ,
where Pe K pxq " |bpxq| H 2α .

Evaluation of the accuracy

Let T h be a uniform fine mesh of Ω of size h such that T h is a refinement of T H . The reference solution u ref is obtained by the standard P 1 finite element discretization on T h where h is such that h ď 1 16 minpε, δ layer q and Pe h ď

1 4 ? 2 ă 1.
This condition ensures that the fine mesh can both resolve the oscillations throughout the domain at scale ε of the solution and the details within the boundary layer. It also ensures that, at scale h, the problem is not advection-dominated. This fine mesh is also that on which the local problems are solved, in order to determine the MsFEM basis functions.

In the sequel, the accuracies of the methods are compared using the following relative errors:

e H 1 in pu 1 q " }u 1 ´uref } H 1 pΩ layer q }u ref } H 1 pΩq
inside the boundary layer, and likewise e H 1 out pu 1 q "

}u 1 ´uref } H 1 pΩzΩ layer q }u ref } H 1 pΩq
outside that layer, and, in the whole domain, e L p pu 1 q "

}u 1 ´uref } L p pΩq }u ref } L p pΩq
for p " 2 or p " 8, and

e H 1 pu 1 q " }u 1 ´uref } H 1 pΩq }u ref } H 1 pΩq
. All these relative errors are computed on the fine mesh T h .

Evaluation of the computational costs

The sizes of the local and global problems in the test cases we consider in Section 2.4.2 are sufficiently small to allow for the use of direct linear solvers (in our case, the UMFPACK library). This clearly favors the splitting method as opposed to the other approaches, since that method is potentially the most expensive one of all four in its online stage. The factorization of the stiffness matrices is performed once and for all in the offline stage and is repeatedly used in the iterative process during the online stage. When, for problems of larger sizes, iterative linear solvers are in order, the online cost of the splitting method correspondingly increases.

To evaluate this marginal cost, we have also performed tests using iterative solvers as if the problem sizes were large. We have used either, for non-symmetric matrices, the GMRES solver and a value of the stopping criterion equal to 10 ´11 , or, for symmetric matrices, the conjugate gradient method with a stopping criterion at 10 ´20 . Both solvers are used with a simple diagonal preconditioner. The computations have all been performed on a Intel®Xeon®Processor E5-2667 v2. The specific function used to measure the CPU time is clock_gettime() with the clock CLOCK_PROCESS_CPUTIME_ID.

Accuracies

Reference test

We first consider problem (2.23), with the choices of A ε and b described in Section 2.4.1, and the parameters α " 1{128, δ " 0.5 and H " 1{16. Since Pe H " 4, the problem is expected to be advection-dominated and, for ε " 1{64, multiscale.

In order to practically check that the dominating advection is a challenge to standard approaches, we temporarily set ε to one, and compare the results obtained by the P 1 method and the P 1 Upwind method [START_REF] Hughes | A multidimensional upwind scheme with no crosswind diffusion[END_REF]. Table 2.2 shows that, outside the boundary layer, the relative H 1 error of the P 1 method is approximately 20 times as large as the error of the P 1 Upwind method. This confirms the advection-dominated regime. 2.2 Relative errors in the single-scale case (α " 1{128, δ " 0.5, ε " 1 and H " 1{16) Likewise, in order to practically demonstrate the relevance of accounting for the small scale, we reinstate ε " 1{64 and display on Table 2.3 the relative errors for the different methods. We indeed observe that, outside the boundary layer, the relative H 1 error of the P 1 Upwind method is about three times as large as the error of the Stab-MsFEM method.

We now compare the accuracies of the methods. The results are shown on Table 2.3. We observe that all methods have an outrageously large error within the boundary layer (close to a hundred percent). The only exception to this is discussed in Section 2.4.2 below, where we focus on the boundary layer and show that, specifically for the Adv-MsFEM method but not for the other methods, the accuracy (within the layer) is significantly improved upon changing the boundary conditions in the local problem (2.31).

As shown on Table 2.3, the Adv-MsFEM method has a relative H 1 error outside the layer about 7 times as large as the error of the Stab-MsFEM method. On this example, the methods that provide the lowest H 1 error outside the layer are the Stab-MsFEM method and the splitting method. 2.4 Relative errors for the two splitting methods (α " 1{128, δ " 0.5, ε " 1{64 and

e L 2 e L 8 e
H " 1{16)
In all what follows, we have only used the splitting method (2.34)-(2.35), which needs fewer iterations to converge and provides a more accurate solution.

Sensitivity with respect to the Péclet number

We set δ " 0.75, ε " 1{128, H " 1{16 and α " 2 ´k, k " 2, ¨¨¨, 9. We let α vary in order to assess the robustness of the approaches with respect to the Péclet number.

From (2.87), we suspect the advection-dominated regime corresponds to k ą 5. To doublecheck this is indeed the case, we first set ε " 1 and show on Figure 2.4 the relative errors of the P 1 method and the P 1 Upwind method. We indeed see that, for k ą 5, the relative H 1 error outside the layer of the P 1 method is at least five times as large as the relative H 1 error outside the layer of the P 1 Upwind method. In the sequel, we go back to the multiscale case with ε " 1{128.

Errors in the whole domain Results are shown on Figure 2.5. When α is small, all methods yield rather large errors. The error of the MsFEM method is significantly more important than the error of the Stab-MsFEM method. This indicates the presence of spurious oscillations on the solution obtained with the non stabilized MsFEM method. Hence the stabilization is important in this regime. The most robust methods are the Adv-MsFEM method, the Stab-MsFEM method and the splitting method. When α is large, the main difficulty is to capture the oscillations at scale ε. As expected, all multiscale methods perform better than the P 1 Upwind method. Note that the MsFEM method and the Stab-MsFEM method perform similarly. No stabilization is indeed necessary in that regime.

In both regimes, we note that the Adv-MsFEM method performs the best. We also see that the errors of the splitting method are extremely close to the errors of the Stab-MsFEM method. Errors outside the boundary layer It may be observed on Figure 2.6 that the Stab-MsFEM method and the splitting method are the best methods outside the boundary layer. They essentially share the same accuracy. On the other hand, the Adv-MsFEM solution is systematically less accurate than the Stab-MsFEM solution. This suggests that encoding the advection in the multiscale basis functions is not necessary to obtain a good accuracy in this subdomain, and that it may even deteriorate the quality of the numerical solution. The MsFEM method is much less accurate than the stabilized Stab-MsFEM method when the coercivity constant α is small, and has a comparable accuracy when α is larger than 0.1. When α is large (and hence the only difficulty is to capture the oscillation scale ε), the P 1 Upwind method is less accurate than the Stab-MsFEM method, as expected, since the latter encodes the oscillations of A ε in the multiscale basis functions. When α is moderately small (10 ´2 ă α ă 1{32 on Figure 2.6), the problem is both advection-dominated (we indeed observe that the Stab-MsFEM method provides a better accuracy than the MsFEM method) and multiscale (the Stab-MsFEM method is more accurate than the P 1 Upwind method). However, when α is very small (here, α ă 10 ´2), the advection is so large that it overshadows the multiscale nature of the problem. We then observe that the P 1 Upwind method and the Stab-MsFEM method share the same accuracy. Of course, the values of α that define these three regimes ((i) advection-dominated, (ii) both advection-dominated and multiscale, (iii) multiscale) depend on the problem considered, and in particular on the value of ε. We have checked this sensitivity by considering the following two test-cases: on Figures 2.7 and 2.8, we consider the case ε " 1{64 and ε " 1{256, respectively. The other parameters are δ " 0.75 and H " 1{32. When ε " 1{256, we observe that the Stab-MsFEM method is more accurate than the P 1 Upwind method for any 1{512 ď α ď 1{4. In contrast, when ε " 1{64, the P 1 Upwind method and the Stab-MsFEM method perform equally well when α ď 1{256. The sensitivity with respect to ε is also investigated in Section 2.4.2 below (see e.g. Figure 2.10).

Sensitivity with respect to the oscillation scale

In this section, the sensitivity of the different numerical methods to the oscillation scale ε is assessed. We work with the parameters δ " 0.75, H " 1{32, α " 1{128 and ε " 2 ´k, k " 3, ¨¨¨, 8, so that Pe H " 2 ą 1. Table 2.5 displays the relative errors of the P 1 method and the P 1 Upwind method for ε " 1. Outside the layer, the relative H 1 error of the P 1 method is about 30 times as large as the error of the P 1 Upwind method. The problem is advection-dominated.

Figures 2.5 Relative errors in the single-scale case (α " 1{128, δ " 0.75, ε " 1 and H " 1{32).

oscillation scale, as we can see on Figure 2.9. This error is dominated by the error located in the thin boundary layer due to the advection-dominated regime.

On Figure 2.10, two regions can be distinguished. In the region ε ă H, the Stab-MsFEM method performs better than the P 1 Upwind method. The error of the Stab-MsFEM method decreases as ε decreases (but its offline cost increases correspondingly, as the mesh to compute the highly oscillatory basis functions has to be finer), whereas the error of the P 1 Upwind method remains constant at a large value as ε decreases. The Adv-MsFEM method yields a large error (due to the mismatch between the shape of the solution outside the boundary layer and the shape of the basis functions). The MsFEM method is also inaccurate, given the absence of any stabilization. 

10 ´2 10 ´1 10 ´0.2 10 ´0.1 10 0 ε " H ε H 1 relative error P 1 Upwind Adv-MsFEM MsFEM Stab-MsFEM Splitting

Influence of the boundary conditions imposed on the local problems

In all the above experiments, the boundary conditions we have supplied the local problems (2.20) and (2.31) with are linear boundary conditions. For other choices of boundary conditions, our results remain qualitatively unchanged. We however wish to now investigate how the choice of 65 A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media boundary conditions affects the accuracy of the approaches within the boundary layer, since this is where the approaches equally poorly perform. It is known that, in general, the oversampling method is one of the best multiscale approach available for the multiscale diffusion problem (2.17). Whether this superiority also survives in the presence of a strong advection is an interesting issue.

For clarity, the Adv-MsFEM method as presented above (i.e. based on the local problem (2.31)) is denoted here the Adv-MsFEM lin method. The other boundary conditions that we consider are • Oversampling boundary condition, with an oversampling ratio equal to 3 (i.e. the local problems defining the basis functions are set on a quadrangle of size 3H ˆ3H). This method is denoted the Adv-MsFEM OS method;

• Crouzeix-Raviart type boundary condition. This method is denoted the Adv-MsFEM CR method.

The oversampling method is described in [START_REF] Hou | A multiscale finite element method for elliptic problems in composite materials and porous media[END_REF]. The MsFEM à la Crouzeix-Raviart has been introduced in [START_REF] Bris | MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems[END_REF][START_REF] Bris | An MsFEM type approach for perforated domains[END_REF]. Both the Adv-MsFEM OS and the Adv-MsFEM CR methods are nonconforming approaches, the purpose of which is to allow for more flexible boundary conditions on the boundary of the elements. We recall that the former approach achieves this by solving the local problems on a larger domain than, and usually homothetic to, the coarse mesh element itself (see Section 2.2.1). The oversampling ratio is the homothetic factor. The latter approach imposes continuity in a weak (integral) form at the edges, see [START_REF] Bris | MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems[END_REF][START_REF] Bris | An MsFEM type approach for perforated domains[END_REF] for more details. The relative H 1 error of those methods is computed with the broken

H 1 norm e H 1 in pu 1 q " }u 1 ´uref } H 1 pT H XΩ layer q }u ref } H 1 pΩq , with }u} 2 H 1 pT H XΩ layer q " ÿ KPT H
}u} 2 H 1 pKXΩ layer q . We first study the example presented in Section 2.4.2. Table 2.6 shows the relative errors. We observe that there is at least a factor 2 between the relative H 1 error inside the layer of the Adv-MsFEM lin and the other Adv-MsFEM methods. The improvement in the accuracy outside the boundary layer is less important, although significant for the Adv-MsFEM CR method. Second, we consider the setting presented in Section 2.4.2. Figure 2.11 shows the relative H 1 error inside the layer for the different Adv-MsFEM methods. We observe that the boundary conditions imposed on the local problems affect the accuracy. The Adv-MsFEM lin method always has the largest error. In the advection-dominated regime, the Adv-MsFEM CR is the best method. At Pe H " 16, there is a factor 8 between the relative H 1 error of the Adv-MsFEM lin method and the relative H 1 error of the Adv-MsFEM CR method (inside the layer). This shows that the convective profile should be encoded in some way in the boundary conditions imposed on the local problem in order for the solution to be accurate in the boundary layer region for the advection-dominated regime. For the MsFEM approaches other than the Adv-MsFEM approach, we have also performed similar experiments, which are not included here, and which do not seem to show any significant dependency of the accuracy inside the layer upon the boundary conditions of the local problems.

Figure 2.12 shows the relative H 1 error outside the layer for the different Adv-MsFEM methods. It may be observed that the Adv-MsFEM lin method and the Adv-MsFEM OS method share the same error. In the advection-dominated regime, the error of the Adv-MsFEM CR is the smallest. However, the errors outside the boundary layer of the various Adv-MsFEM methods are yet larger than the error outside the layer of the Stab-MsFEM method. 67 A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media

Computational costs

We now turn to the computational costs of the different numerical methods. We recall that the splitting method we consider below is (2.34)- (2.35).

Reference test

We consider the reference test presented in Section 2.4.2. Table 2.7 shows the offline cost and the online cost (in seconds) of the different numerical methods. Direct solvers All the methods (but the splitting method) essentially share the same offline cost. The Stab-MsFEM method is slightly more expensive than the MsFEM variant because of the assembling of the stabilization term. The splitting method has the largest offline cost because there are more computations (two assemblings) than in the other methods.

Direct solvers

The online cost of the splitting method is about 15 times as large as the online cost of the other methods. This corresponds to the number of iterations of the splitting method. Note that the online cost corresponds to solving the linear system from an already factorized matrix, which is negligible.

Iterative solvers

The online cost of the intrusive methods (Adv-MsFEM, MsFEM, Stab-MsFEM) corresponds to calling the GMRES solver. There are some differences in these costs because the number of iterations of the GMRES solver is sensitive to the condition number of the matrix that depends on the method. The online cost of the splitting method is still the largest because of the iteration loop of the splitting method. It is again about 15 times larger than the online cost of the Stab-MsFEM method. In this particular case, the splitting method needs 12 iterations to converge. The online costs are larger now than with direct solvers, of course.

The main part of the offline cost comes from solving the local problems. The MsFEM, Stab-MsFEM, and the splitting method share the same local problems, namely (2.20). This is why they essentially share the same offline cost. In the Adv-MsFEM method, the local problem to solve is (2.31). We observe that its offline cost is about 2 times larger than for the other methods. We thus see that the computational cost of solving with the GMRES solver the non-symmetric linear system corresponding to the local problem (2.31) is higher that the cost of solving with the conjugate gradient method the symmetric linear system stemming from the local problem (2.20).

Dependency with respect to the Péclet number

We again consider the setting of Section 2.4.2 where we now vary the coefficient α and thus the Péclet number. Figures 2.13 and 2.14 respectively show the online cost (in seconds) of the different numerical methods and the number of iterations of the splitting method as a function of α.

In Figure 2.13, we observe that the Adv-MsFEM method and the Stab-MsFEM method share the same online cost. The online costs of the two methods and the online cost of the MsFEM method (with direct solvers) do not seem to strongly depend on the Péclet number. The online cost of the MsFEM method with iterative solvers increases as α decreases, since the condition number of the stiffness matrix then increases. The splitting method is, overall, significantly more expensive than the other approaches.

Figure 2.14 shows that the number of iterations in the splitting method grows as α decreases. The number of iterations is larger when using iterative solvers than when using direct solvers, although the difference fades as the advection becomes dominant. Estimating each term of the right-hand side of (2.90), we successively obtain:

Appendix: Technical proofs

• for the first term, using (2.89),

ˆΩ α∇e I ¨∇e I H ď α 4 |e I H | 2 H 1 pΩq `α|e I | 2 H 1 pΩq ď α 4 |e I H | 2 H 1 pΩq `CαH 2 |u| 2 H 2 pΩq .
• for the second term,

´ˆΩ pb ¨∇e I H qe I ď 1 4 ÿ KPT H }τ 1{2 K pb ¨∇e I H q} 2 L 2 pKq `ÿ KPT H }τ ´1{2 K e I } 2 L 2 pKq ď 1 4 ÿ KPT H }τ 1{2 K pb ¨∇e I H q} 2 L 2 pKq `2}b} L 8 H }e I } 2 L 2 pΩq ď 1 4 a stab pe I H , e I H q `C}b} L 8 H 3 |u| 2 H 2 pΩq ,
where we have used that ∆e I H " 0 in the first term and (2.13) and (2.88) in the second term;

• for the first part of the third term, using that ∆e I " ∆u (because V H is the P 1 finite element space),

ÿ KPT H ˆτK p´α∆e I q, b ¨∇e I H ˙K ď 1 2 ÿ KPT H }τ 1{2 K α∆u} 2 L 2 pKq `1 2 ÿ KPT H }τ 1{2 K pb ¨∇e I H q} 2 L 2 pKq ď }b} L 8 H 3 16 |u| 2 H 2 pΩq `1 2 ÿ KPT H }τ 1{2 K pb ¨∇e I H q} 2 L 2 pKq ď C}b} L 8 H 3 |u| 2 H 2 pΩq `1 2 a stab pe I H , e I H q,
where we have used (2.12) to obtain

α 2 τ K pxq ď ˆ|bpxq|H 2 ˙2 H 2|bpxq| ď }b} L 8 H 3 8 ;
• for the second part of the third term,

ÿ KPT H ˆτK b ¨∇e I , b ¨∇e I H ˙K ď ÿ KPT H }τ 1{2 K pb ¨∇e I q} 2 L 2 pKq `ÿ KPT H 1 4 }τ 1{2 K pb ¨∇e I H q} 2 L 2 pKq ď }b} L 8 H 2 |e I | 2 H 1 pΩq `ÿ KPT H 1 4 }τ 1{2 K pb ¨∇e I H q} 2 L 2 pKq ď C}b} L 8 H 3 |u| 2 H 2 pΩq `1 4 a stab pe I H , e I H q,
where we used that τ K pxq|bpxq ¨∇e

I pxq| 2 ď H|bpxq| 2 |∇e I pxq| 2 .
Collecting the terms, we eventually deduce from (2.90) that

α|e I H | 2 H 1 pΩq `astab pe I H , e I H q ď α 4 |e I H | 2 H 1 pΩq `astab pe I H , e I H q `CH 2 pα `}b} L 8 Hq |u| 2 H 2 pΩq , hence 3 4 α|e I H | 2 H 1 pΩq ď CH 2 pα `}b} L 8 Hq |u| 2 H 2 pΩq , thus |e I H | H 1 pΩq ď CH p1 `Pe Hq 1{2 |u| H 2 pΩq .
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Along with (2.89), this estimate shows (2.11).

Density of the MsFEM spaces

V ε H in H 1 0 pΩq
We prove here the following result:

Lemma 2.21. Let ε be fixed and assume that A ε P W 1,8 pΩq. Consider, for any H, the spaces V ε H defined by (2.21). Then, for any g P H 1 0 pΩq and any η ą 0, there exists H 0 ą 0 such that, for any H ă H 0 , there exists some w H P V ε H such that }g ´wH } H 1 pΩq ď η. Note that we make no structural assumption on how A ε depends on ε, and that we do not assume ε to be small.

Proof. We fix η and g P H where C FE is independent of H and r g. Picking H TR1 " η{pC FE }r g} H 2 pΩq q, we therefore deduce from (2.91) and (2.92) that, for any

H ă H TR1 , we have v H P V H such that }g ´vH } H 1 pΩq ď 2η.
(2.93)

The function v H belongs to V H , and hence reads v H "

ř i v i ϕ 0 i . We now consider w H " ř i v i ψ ε i , which belongs to V ε H . On each element K, we have $ ' ' & ' ' % ´div `Aε ∇pw H ´vH q ˘" div pA ε ∇v H q " d ÿ k,ℓ"1 B k pA ε q kℓ B ℓ v H in K, w H ´vH " 0 on BK.
We hence have that

ˆK `∇pw H ´vH q ˘T A ε ∇pw H ´vH q " ˆK d ÿ k,ℓ"1 pw H ´vH qB k pA ε q kℓ B ℓ v H
and therefore, using (2.18),

α 1 }∇pw H ´vH q} 2 L 2 pKq ď }A ε } W 1,8 pΩq }w H ´vH } L 2 pKq }∇v H } L 2 pKq .
Using the Poincaré inequality on K, we obtain that there exists a constant C (which only depends on the shape of the elements, but not on their size) such that

α 1 }∇pw H ´vH q} L 2 pKq ď CH}A ε } W 1,8 pΩq }∇v H } L 2 pKq .
Summing over the elements, we obtain

α 1 }∇pw H ´vH q} L 2 pΩq ď CH}A ε } W 1,8 pΩq }∇v H } L 2 pΩq
which implies, using the Poincaré inequality on Ω, that

α 1 }w H ´vH } H 1 pΩq ď CH}A ε } W 1,8 pΩq }v H } H 1 pΩq .
Using (2.93) in the above bound, we get that, for any H ă H TR1 ,

}w H ´vH } H 1 pΩq ď C P H " 2η `}g} H 1 pΩq ‰ . (2.94)
We set H TR2 " minp1{C P , η{pC P }g} H 1 pΩq qq and H 0 " minpH TR1 , H TR2 q. Collecting (2.93) and (2.94), we deduce that, for any

H ă H 0 , w H P V ε H satisfies }g ´wH } H 1 pΩq ď 5η.
This concludes the proof.

Proof of Lemma 2.20

We first study the convergence when n Ñ 8, and next when H Ñ 0.

Step 

" P V ε H pr u H 2n q ´r u H 2n`1 , we get pα spl `βq|r u H 2n`2 | 2 H 1 pΩq ď ˆΩpb ¨∇w n qr u H 2n`2 `ÿ KPT H pτ K b ¨∇w n , b ¨∇r u H 2n`2 q L 2 pKq `ˆΩ β∇r u H 2n`1 ¨∇r u H 2n`2 ď }b} L 8 pΩq |w n | H 1 pΩq }r u H 2n`2 } L 2 pΩq `ÿ KPT H H}b} L 8 pΩq 2 }∇w n } L 2 pKq }∇r u H 2n`2 } L 2 pKq `β|r u H 2n`1 | H 1 pΩq |r u H 2n`2 | H 1 pΩq ď }b} L 8 pΩq |w n | H 1 pΩq }r u H 2n`2 } L 2 pΩq `H}b} L 8 pΩq 2 |w n | H 1 pΩq |r u H 2n`2 | H 1 pΩq `β|r u H 2n`1 | H 1 pΩq |r u H 2n`2 | H 1 pΩq ď "ˆC Ω `H 2 ˙}b} L 8 pΩq |w n | H 1 pΩq `β|r u H 2n`1 | H 1 pΩq ȷ |r u H 2n`2 | H 1 pΩq . ( 2 

.96)
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We now estimate |w n | H 1 pΩq . We know that, for any

ψ P V ε H , a 1 pw n , ψq " a 1 pr u H 2n ´r u H 2n`1 , ψq " a 2 pr u H 2n`1 , ψq ´a1 pr u H 2n`1 , ψq " ˆΩp∇ψq T pA ε ´αspl Idq∇r u H 2n`1 ,
where we used (2.80) in the first line and (2.81) in the second line. Using that w n P V ε H (this is where using the projection P V ε H is needed), we deduce that 

|w n | H 1 pΩq ď }A ε ´αspl Id} L 8 pΩq β `αspl |r u H 2n`1 | H 1 pΩq . ( 2 
B H pv, wq " ˆΩ f v `ÿ KPT H pτ K f, b ¨∇vq L 2 pKq
is defined on H 1 0 pΩq ˆH1 0 pΩq. Note that B H pv, wq does not depend on w. The convergence proof when H Ñ 0 is based on the following arguments. First, we are going to show that, if H is sufficiently small, c H satisfies an inf-sup condition uniformly in the mesh size H. For that purpose, we adapt the arguments of [84, Theorem 4.2.9] to our setting. We introduce the bilinear form r c H ´pu, vq, pϕ, ψq ¯" c H ´pu, vq, pϕ, ψq ¯`λ ˆΩ u ϕ, defined on ´H1 0 pΩq ˆH1 0 pΩq ¯2, where λ ą 0 is a parameter, and show in Step 2a below that r c H is coercive in the H 1 pΩq ˆH1 pΩq norm, provided λ is large enough and H is sufficiently small. This allows us to next show, as claimed above, that c H satisfies the inf-sup condition (see Step 2b), uniformly in H (as soon as H is sufficiently small). In contrast to the setting of [84, Theorem 4.2.9], the bilinear forms c H and r c H here depend on H.

We are then in position to use classical numerical analysis arguments (see Step 2c) for estimating the discretization error (see (2.114) below). This error is bounded from above (up to some multiplicative constants) by the best approximation error and by the error introduced by the fact that c H and B H in (2.99) depend on H. The end of the proof amounts to showing that these two errors converge to 0 when H Ñ 0.

Step 2a: Coercivity of r c H . We assume that λ ě 4}b} This concludes the proof of the claim (2.101).

Step 2b: Inf-sup condition on c H . We want to show that there exists H 0 ą 0 and α ą 0 such that, for any

H ď H 0 , inf U H PV H ˆV ε H sup Φ H PV H ˆV ε H c H `U H , Φ H }U H } H 1 pΩqˆH 1 pΩq }Φ H } H 1 pΩqˆH 1 pΩq ě α. (2.107)
We prove this statement by contradiction and therefore assume that (2.107) does not hold. Then, there exists a sequence H n that converges to 0 and a sequence U Hn " ´uHn even , u As the sequence U Hn is bounded in H 1 pΩq ˆH1 pΩq, it weakly converges in H 1 0 pΩq ˆH1 0 pΩq to some U ‹ " pu ‹ even , u ‹ odd q P H 1 0 pΩq ˆH1 0 pΩq, up to the extraction of a subsequence that we still denote U Hn .

Using (2.80), we also deduce from the boundedness of u Hn even that P V ε Hn pu Hn even q is bounded in H 1 norm. Up to an additional extraction, we hence have that P V ε Hn pu Hn even q weakly converges in H 1 pΩq to some u Π even . We claim that u Π even " u ‹ even . Let indeed ϕ P H 1 0 pΩq. By density (see Appendix 2.5.2), there exists a sequence w n P V ε Hn converging strongly in H 1 0 pΩq to ϕ. For any n, we have a 1 pP V ε Hn pu Hn even q, w n q " a 1 pu Hn even , w n q. Passing to the limit n Ñ 8, we infer that a 1 pu Π even , ϕq " a 1 pu ‹ even , ϕq, which holds true for any ϕ P H 1 0 pΩq. This implies that u Π even " u ‹ even . Consequently, P V ε Hn pu Hn even q ´uHn even weakly converges in H 1 0 pΩq to 0. We first show that U ‹ " 0. We fix some Φ " pϕ, ψq P H 1 0 pΩq ˆH1 0 pΩq. For any Φ Hn " pϕ Hn , ψ Hn q P V Hn ˆV ε Hn , we write c Hn pU Hn , Φq " c Hn pU Hn , Φ Hn q `cHn pU Hn , Φ ´ΦHn q.

(2.109)

We have that c Hn pU Hn , Φq " 0.

|c
Making use of the explicit expression of c H and using that U Hn weakly converges in H 1 0 pΩqˆH 1 0 pΩq to U ‹ " pu ‹ even , u ‹ odd q and that P V ε Hn pu Hn even q ´uHn even weakly converges in H 1 0 pΩq to 0, we obtain that

a 1 pu ‹ even , ϕq ´ˆΩ β∇u ‹ odd ¨∇ϕ `ˆΩ pb ¨∇u ‹ odd qϕ `a2 pu ‹ odd , ψq ´a1 pu ‹ even , ψq " 0.
This holds for any pϕ, ψq P H 1 0 pΩq ˆH1 0 pΩq. Taking ϕ " ψ, we deduce that u ‹ odd " 0. This next implies that u ‹ even " 0, and hence that U ‹ " 0. Second, we show the strong convergence in H 1 0 pΩq ˆH1 0 pΩq of the sequence U Hn to U ‹ " 0. Under assumption (2.100), we have shown in Step 2a above that r c H is coercive. In view of (2.106), In view of (2.108), the first term in the above right-hand side converges to 0 when n Ñ 8. Up to the extraction of a subsequence, u Hn even (which weakly converges to 0 in H 1 pΩq) strongly converges to 0 in L 2 pΩq. This implies that the second term in the above right-hand side also converges to 0 when n Ñ 8.

We then deduce that lim nÑ8 }U Hn } 2 H 1 pΩqˆH 1 pΩq " 0, which is a contradiction with the fact that, by construction, }U Hn } H 1 pΩqˆH 1 pΩq " 1. This concludes the proof of (2.107).

Step 2c: Conclusion. We are now in position to use [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Lemma 2.27], which states an upper bound on the error (see (2.114) below) under three assumptions. Assumption (i) of that lemma is that the approximation spaces are conformal. This is obviously satisfied here, as

V H ˆV ε H Ă H 1 0 pΩq ˆH1 0 pΩq. Assumption (ii) is that c H satisfies an inf-sup condition.
It is satisfied here in view of (2.107). Assumption (iii) is that the bilinear form c H is bounded. This is again satisfied here. The assumptions of [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Lemma 2.27] being satisfied, we can write an error bound (see (2.114) below) between the solution to (2.99) and the solution to the corresponding infinite dimensional problem, that reads Find pu even , u odd q P H 1 0 pΩq ˆH1 0 pΩq such that, for any pv, wq P H 1 0 pΩq ˆH1 0 pΩq, c ´pu even , u odd q, pv, wq ¯" Bpv, wq, (2.112) where c ´pu even , u odd q, pv, wq ¯" a 1 pu even , vq ´ˆΩ β∇u odd ¨∇v `ˆΩ pb ¨∇u odd qv `a2 pu odd , wq ´a1 pu even , wq and Bpv, wq " ˆΩ f v.

It is obvious that pu even , u odd q is a solution to (2.112) if and only if pu even , u odd q is a solution to the system # ´pβ `αspl q∆u even " f ´b ¨∇u odd ´β∆u odd in Ω,

u even " 0 on BΩ, (2.113) 
# ´div ppβId `Aε q∇u odd q " ´pβ `αspl q∆u even in Ω, u odd " 0 on BΩ.

This system is well-posed: by adding the two equations, we obtain that u odd is a solution to (2.23), and is therefore unique. This implies the uniqueness of u even in view of (2.113). We denote by U " pu even , u odd q the unique solution to (2.112).

Using [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Lemma 2.27], we obtain that

}U ´U H } H 1 pΩqˆH 1 pΩq ď 1 α sup ΦPV H ˆV ε H |BpΦq ´BH pΦq| }Φ} H 1 pΩqˆH 1 pΩq `inf GPV H ˆV ε H « ˆ1 `M α ˙}U ´G} H 1 pΩqˆH 1 pΩq `1 α sup ΦPV H ˆV ε H |cpG, Φq ´cH pG, Φq| }Φ} H 1 pΩqˆH 1 pΩq ff , (2.114)
where M is the continuity constant of the bilinear form c. We successively study the two terms in the right-hand side of (2.114).

For the first term, we write, for any Φ " pϕ, ψq

P V H ˆV ε H , that |BpΦq ´BH pΦq| ď H 2 ÿ KPT H }f } L 2 pKq }∇ϕ} L 2 pKq ď H 2 }f } L 2 pΩq }Φ} H 1 pΩqˆH 1 pΩq , which implies that lim HÑ0 sup ΦPV H ˆV ε H |BpΦq ´BH pΦq| }Φ} H 1 pΩqˆH 1 pΩq " 0. (2.115)
For the second term of the right-hand side of (2.114), we write, for any Φ " pϕ, ψq

P V H ˆV ε H and any G " pg, hq P V H ˆV ε H , that c H pG, Φq ´cpG, Φq " a conv pg ´PV ε H pgq, ϕq `ÿ KPT H pτ K b ¨∇h, b ¨∇ϕq L 2 pKq .
We therefore deduce, using an integration by parts in the first line, that

|c H pG, Φq ´cpG, Φq| ď ˇˇˇˆΩ " g ´PV ε H pgq ı b ¨∇ϕ ˇˇȞ }b} L 8 pΩq 2 |g ´PV ε H pgq| H 1 pΩq |ϕ| H 1 pΩq `H}b} L 8 pΩq 2 |h| H 1 pΩq |ϕ| H 1 pΩq ď }b} L 8 pΩq }g ´PV ε H pgq} L 2 pΩq }Φ} H 1 pΩqˆH 1 pΩq `H}b} L 8 pΩq `|g| H 1 pΩq `|h| H 1 pΩq ˘}Φ} H 1 pΩqˆH 1 pΩq .
We hence write, for the second term of the right-hand side of (2.114), that

ˆ1 `M α ˙}U ´G} H 1 pΩqˆH 1 pΩq `1 α sup ΦPV H ˆV ε H |cpG, Φq ´cH pG, Φq| }Φ} H 1 pΩqˆH 1 pΩq ď C}U ´G} H 1 pΩqˆH 1 pΩq `C}g ´PV ε H pgq} L 2 pΩq `CH}G} H 1 pΩqˆH 1 pΩq
where C is independent of H. Using the density of the families V H and V ε H in H 1 0 pΩq (see Appendix 2.5.2 for the latter property), we build G H " pg H , h

H q P V H ˆV ε H such that lim HÑ0 }U ǴH } H 1 pΩqˆH 1 pΩq " 0. We thus have that inf GPV H ˆV ε H « ˆ1 `M α ˙}U ´G} H 1 pΩqˆH 1 pΩq `1 α sup ΦPV H ˆV ε H |cpG, Φq ´cH pG, Φq| }Φ} H 1 pΩqˆH 1 pΩq ff ď C}U ´GH } H 1 pΩqˆH 1 pΩq `C}g H ´PV ε H pg H q} L 2 pΩq `CH}G H } H 1 pΩqˆH 1 pΩq .
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The above three terms converge to 0 when H Ñ 0 (for the second term, this is a consequence of the fact that, for any bounded sequence τ H P H 1 0 pΩq, we have that τ H ´PV ε H pτ H q weakly converges to 0 in H 1 pΩq). Collecting this result with (2.114) and (2.115), we deduce that lim HÑ0 }U ´U H } H 1 pΩqˆH 1 pΩq " 0. This concludes the proof of Lemma 2.20.

Chapter 3

Stable approximation of the advection-diffusion equation using the invariant measure

Ce chapitre reprend l'intégralité d'un article écrit en collaboration avec Claude Le Bris et Frédéric Legoll et soumis pour publication [START_REF] Bris | Stable approximation of the advection-diffusion equation using the invariant measure[END_REF]. On inclut dans l'annexe B une note résumant le contenu de ce chapitre, écrite en collaboration avec Claude Le Bris et Frédéric Legoll, et publiée dans Comptes Rendus Mathématique [START_REF] Bris | Stabilisation de problèmes non coercifs via une méthode numérique utilisant la mesure invariante (Stabilization of non-coercive problems using the invariant measure)[END_REF].

Introduction and motivation

Our purpose is to study the advection-diffusion equation

´∆u `b ¨∇u " f in Ω, (3.1) 
more specifically in the regime where it is both non-coercive and possibly unstable. We present a new numerical strategy, based upon the utilization of the invariant measure associated to (3.1), namely the solution σ to the adjoint equation

´divp∇σ `bσq " 0 in Ω, (3.2) 
supplied with suitable boundary conditions and normalization constraints. Equation (3.1) arises in a huge variety of contexts of the engineering sciences, either in its stationary form (3.1), or in its time-dependent form. It may also contain a reaction term c u, with c ě 0. The second order (diffusion) operator can be chosen more general than a pure Laplacian, in the form of a divergence operator ´divpA ∇¨q, with a suitable matrix-valued function A. All such situations proceed from straightforward applications of our discussions below, which, for brevity and clarity, we limit to the simple, stationary case (3.1).

A typical difficulty associated with equation (3.1) is the possible lack of coercivity of the bilinear form, owing to the presence of the advection term b ¨∇u. More severely, not only coercivity, but also stability may be affected by the advection term, when the latter is "large" in a certain sense. The equation is then said advection-dominated. Studies abound in the literature, that describe the theory necessary to prove well-posedness of that problem under those difficult circumstances. Similarly, the works presenting possible numerical discretization techniques specifically targeted to this context are countless. Our purpose here is to propose yet another way of addressing the difficulties mentioned above. The computational approach we present actually originates from the theoretical proof of well-posedness of the problem.

As is well-known, a classical proof of the well-posedness of (3.1), when it is not coercive, proceeds by the Fredholm alternative. On the other hand, well-posedness is also, using the Banach-Nečas-Babuška Theorem, equivalent to a set of two conditions, namely the inf-sup condition

Dα ą 0 such that inf wPW sup vPV apw, vq }w} W }v} V ě α ą 0 (3.3)
where

apw, vq " ˆΩ ∇w ¨∇v `ˆΩ pb ¨∇wq v (3.4)
and V " W " H 1 0 pΩq, and the additional condition @v P V, p@w P W, apw, vq " 0q ñ v " 0.

(3.5)

We refer to, e.g., [38, p. 85] for a comprehensive exposition of the theory and general references therein for the study and approximation of (3.1). We shall recall some basic facts in Section 3.2.1 of this article.

In practice, two questions arise: to prove that the above conditions (3.3) and (3.5) hold, thereby providing a proof of well-posedness that is independent from Fredholm theory, and to make the constant α in (3.3) explicit. For this twofold purpose, the classical argument is to consider the invariant measure associated to ( 

which readily implies (3.3), as soon as σ is positive and bounded away from zero. The classical approach is then to use a finite element discretization that also satisfies the inf-sup condition (3.3), at least for a sufficiently small mesh size h, and is therefore, "by continuity", also well-posed, using the same type of argument.

The above observation on how the consideration of the invariant measure allows to transform the original problem (3.1) into a coercive problem seems to not have been exploited computationally (except in the very specific case when b is irrotational [START_REF] Brezzi | Two-dimensional exponential fitting and applications to drift-diffusion models[END_REF], for which σ is then analytically known). This is our purpose to do so. Formally, (3.6) and (3.7) suggest a Petrov-Galerkin formulation of the problem using test functions of the form σ v instead of a classical Galerkin formulation. (Formally) equivalently, one may perform a Galerkin approximation of the modified equation ´divpσ ∇uq `p∇σ `σ bq ¨∇u " σ f.

(3.8)

The point is of course that the modified advection field

B " ∇σ `σ b
is divergence-free because of (3.2). Problem (3.8), complemented by homogeneous Dirichlet boundary conditions, is consequently coercive. And the numerical analysis of its finite element approximation is amenable to standard arguments.

The definite added value of the approach is that it provides an unconditionally well-posed approximation, irrespective of the discretization parameter -the meshsize-adopted for approximating u, provided σ itself is correctly approximated (which in particular implies that some positivity of σ is preserved at the discrete level). This unconditional well-posedness may be most useful in problems where one can only afford a coarse approximation of u. Multiscale problems, where the Laplacian operator is replaced by ´divpapx{εq ∇ ¨q, are prototypical examples of such a context. Problems such as inverse problems, or time-dependent problems (once semi-discretized in time using, say, an implicit Euler scheme), where the solution to the advection-diffusion equation is required repeatedly, are also problems of choice for the approach. A rather coarse approximation might be employed, while the additional computational workload to solve the adjoint equation (3.2) is required only once. A definite improvement of the total computational time may be observed. In addition, in the advection dominated context, the approach enjoys particular stability properties that lead to numerical results qualitatively comparable to those obtained with classical, state-of-the-art stabilization approaches [START_REF] Franca | Stabilized finite element methods. I. Application to the advective-diffusive model[END_REF][START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF][START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF]. Our results show that the approach is accurate, robust and can be made effective in terms of computational cost. Applications to several other, more general contexts, may be envisioned.

On the theoretical level, one advantage of the approach is that we can establish (see Section 3.3) a complete numerical analysis. In contrast, and to the best of our knowledge, the added value of a classical stabilized finite element approximation is not proven theoretically when the advectiondiffusion equation is not coercive.

Our article is articulated as follows. Section 3.2 collects some preparatory material. We need to recall a few results, first on the Banach-Nečas-Babuška theory and the inf-sup condition, and second on the invariant measures that may be associated to the problem. The former ones are very classical, and we briefly overview them in Section 3.2.1. The latter ones are slightly less standard and are the purpose of Section 3.2.2. Of course, the reader familiar with the theory may easily skip our recollection and directly proceed to Section 3.3, where we present the specific discretization we use and analyze theoretically our approximation strategy. Our main result is Theorem 3.19. An ingredient of our numerical analysis is the adaptation to the case of the advection-diffusion equation with invariant measure σ of classical arguments from [START_REF] Brenner | The mathematical theory of Finite Element methods[END_REF] that allow for an error estimate in W 1,p pΩq, p ą 2, of a P 1 finite element approximation of σ (see Proposition 3.17 below). This extension is, in our opinion, nontrivial and has an interest on its own. We present its proof in Appendix 3.6. Our final Section 3.4 presents a comprehensive set of numerical tests that demonstrate the accuracy, stability and efficiency of the approach.

Our main conclusions are as follows. The approach based upon the precomputation of an approximation of σ solution to (3.2) and next the approximation of u as the solution to (3.8) provides with an approximation that is (i) well-posed unconditionally in the meshsize and amenable to a precise numerical analysis of convergence, and (ii) as stable and accurate as a direct typical stabilized solution of (3.1). It is slightly more robust with respect to the mesh size used for the approximation of u. If the precomputation time for σ is not accounted for, the approach has an equal computational cost. And if it is, then roughly ten solutions of the advection-diffusion equation are necessary to make the approach profitable. In many of the contexts we mentioned above, this is clearly the case.

In short, the approach presented here does not provide spectacular results but constitutes an interesting, certified and efficient alternative to more established approaches. It can be shown to outperform them in certain situations when only a coarse mesh can be afforded and/or when the advection-diffusion equation needs to be solved repeatedly.

The present work complements an earlier publication [START_REF] Bris | Stabilisation de problèmes non coercifs via une méthode numérique utilisant la mesure invariante (Stabilization of non-coercive problems using the invariant measure)[END_REF] which already summarized the approach. It provides the numerical analysis of the approach and extensive numerical tests to assess its performance.

Mathematical setting and theoretical results

We consider equation (3.1) on a domain Ω and for an advection field b that at least satisfy, throughout the article, the following two conditions:

# Ω is an open bounded domain of R d , d ě 2; b P pL 8 pΩqq d .
(3.9)

We additionnally assume, in this Section 3.2, that

Ω is of class C 1 . (3.10)
For some of our results of Section 3.2, we will have to make stronger assumptions (see in particular (3.21) below).

The right-hand side f of equation (3.1) is assumed H ´1pΩq. Again, in some instances, we will need to assume a better regularity (typically L p pΩq) on this function f .

The boundary conditions we supply (3.1) with affect the boundary conditions we need to impose in the definition of the invariant measure(s) we introduce. For simplicity, our discussion assumes homogeneous Dirichlet boundary conditions

u " 0 on BΩ, (3.11) 
although other boundary conditions may be considered. As the definition of the invariant measure σ is essentially a matter of integration by parts (in the spirit of (3.6) above), we leave to the reader the adaptation to other boundary conditions. We emphasize, however, that some of the arguments that follow might require some additional work.

For the sake of consistency, we are now about to recall a set of basic results we need, on the inf-sup theory and on the invariant measure. The results are in particular interesting to motivate the specific discretization approach we introduce. We reiterate that the reader familiar with the classical theory may easily skip the sequel and directly proceed to Section 3.3.

Inf-sup theory

The advection-diffusion equation (3.1) supplied with the data we have just described and the boundary condition (3.11) can be studied in the context of the Banach-Nečas-Babuška theory. Defining U " V " H 1 0 pΩq, apu, vq " ˆΩ ∇u ¨∇v `pb ¨∇uqv, (3.12)

F pvq " xf, vy H ´1pΩq,H 1 0 pΩq , (3.13)
it leads to a particular case of the general variational formulation:

Find u P U such that, for all v P V , apu, vq " F pvq,

where U is a Banach space, V is a reflexive Banach space, a P LpU ˆV ; Rq and F P V 1 . The well-posedness of (3.1)-(3.11), recast as (3.12)-(3.13)- (3.14), is known to be equivalent to the following two conditions:

pBNB1q There exists α ą 0 such that inf

uPH 1 0 pΩq sup vPH 1 0 pΩq apu, vq }u} H 1 pΩq }v} H 1 pΩq ě α;
pBNB2q For all v P H 1 0 pΩq, `@u P H 1 0 pΩq, apu, vq " 0 ˘ùñ pv " 0q.

Introducing a function σ satisfying (C1) ´div p∇σ `bσq " 0 in Ω, which is therefore also well-posed.

(C2) inf Ω σ ą 0, ( 
Note that property (C1) is actually not required to show that (3.1)-(3.11) and (3.15) are equivalent. This equivalence thus also holds for an approximation of the invariant measure, a fact we will use in the sequel.

On the invariant measure

We now turn to elements of theory regarding the invariant measure σ solution to (3.2). As mentioned above, (3.2) does not completely characterize σ since a boundary condition and possibly an additional normalization need to be supplied. Because of the homogeneous Dirichlet boundary condition (3.11) we have imposed on u for (3.1), it turns out that we have some flexibility on the boundary condition we may impose on σ. In other situations, the integration by parts performed to employ the adjoint equation might require more stringent conditions on σ on the boundary. The adaptation is, as we said, left to the reader.

We are going to consider two different choices for σ, respectively studied in the next two sections.

First choice of invariant measure

The first case is (formally) defined by

# ´div p∇σ `bσq " 0 in Ω, p∇σ `bσq ¨n " 0 on BΩ, (3.16) 
with the normalization constraint

Ω σ :" |Ω| ´1 ˆΩ σ " 1, (3.17) 
and the property inf

Ω σ ě c ą 0. (3.18)
The existence (and uniqueness) of such a function σ, along with some additional regularity properties, is established below. In the subsequent sections, this function is denoted by σ 1 .

The classical results concerning this case are contained in the following Lemma.

Lemma 3.3 (Theorem 1.1 of [START_REF] Droniou | Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions[END_REF]). In addition to (3.9)-(3.10), we assume that Ω is connected (for the uniqueness part of our statements). Then i) There exists σ P H 1 pΩq, unique up to a multiplicative constant, solution to (3.16). Up to a change of sign, we may require σ ą 0 a.e. on Ω;

ii) Let g P pH In this case, the set of all solutions is v `Rσ. In addition, the application g Þ Ñ v is a bounded linear map from

V #1 " ! g P pH 1 pΩqq 1 , xg, 1y pH 1 pΩqq 1 ,H 1 pΩq " 0 ) to H 1
´"0 pΩq " In addition, the application f Þ Ñ u is a bounded linear map from

" v P H 1 pΩq, ˆΩ v " 0 * ; iii) Let f P pH
V #σ " ! f P pH 1 pΩqq 1 , xf, σy pH 1 pΩqq 1 ,H 1 pΩq " 0 ) to H 1
´"0 pΩq. It is easily seen that all assertions are consequences of the Fredholm alternative. The positivity stated in (i) follows from the maximum principle. A bound from below on σ may be obtained using stronger assumptions. It is the purpose of the following lemma. Lemma 3.4 (after Theorem 1 of [START_REF] Perthame | Perturbed dynamical systems with an attracting singularity and weak viscosity limits in Hamilton-Jacobi equations[END_REF]). We assume (3.9) and that the domain Ω is of class C 2 . Then there exists a unique solution σ P W 1,p pΩq X C 0 pΩq, for all 1 ď p ă `8, to (3.16) that satisfies max Ω σ " 1. In addition, there exists c ą 0 so that

σ ě c in Ω.
This solution σ satisfies the conditions (C1), (C2) and (C3).

We immediately remark that the solution, the existence and uniqueness of which is established in Lemma 3.4, coïncides with one of the positive solutions dealt with in Lemma 3.3. We note also that a renormalization of that solution can be performed to comply with the constraint (3.17).

Before we are in position to state our main proposition regarding the measure defined in (3.16)-(3.17)-(3.18), we need to recall a technical lemma for the Neumann problem, and next to strengthen the assumptions (3.9)-(3.10). The technical lemma, which will be useful in our proof of Proposition 3.6 below, is the following. Lemma 3.5 (Chapter I, Theorem 1.10 of [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF]). Let Ω be an open bounded domain of R d with a C 1,1 boundary. Let 1 ă p ă 8 and let u be a solution to

# ´∆u " f in Ω, ∇u ¨n " g on BΩ,
where f P L p pΩq and g P W 1´1{p,p pBΩq satisfy the relation ˆΩ f `ˆBΩ g " 0. Then u P W 2,p pΩq and there exists a constant C, depending on p and Ω but independent from f , g and u, such that

› › › › u ´ Ω u › › › › W 2,p pΩq ď C ´}f } L p pΩq `}g} W 1´1{p,p pBΩq ¯.
In the sequel of this Section 3. For the numerical analysis of the approach performed in Section 3.3, we need the following extension of Proposition 3.6, making precise the continuity of the solutions to the advectiondiffusion equation and its adjoint equation with respect to their respective right-hand sides. Proposition 3.7. Let p be such that 1 ă p ă `8 if d " 2 and 2d{pd `2q ď p ă `8 otherwise. Assuming (3.9)-(3.21) and letting σ be the unique solution to (3.16)-(3.17), we have the following results: i) for all f P L p pΩq such that ˆΩ f " 0, there exists a unique v P H 1 pΩq solution to

$ ' & ' % ´div p∇v `bvq " f in Ω, Ω v " 1,
p∇v `bvq ¨n " 0 on BΩ.

(3.23)

In addition, v P W 2,p pΩq and we have the estimate

}v ´σ} W 2,p pΩq ď C}f } L p pΩq , (3.24)
where C is a constant depending on p, Ω and }b} LippΩq ;

ii) for all f P L p pΩq such that ˆΩ f σ " 0, there exists a unique u P H 1 pΩq solution to

$ ' & ' % ´∆u `b ¨∇u " f in Ω, Ω u " 1,
∇u ¨n " 0 on BΩ.

It satisfies u P W 2,p pΩq and we have the estimate

}u ´1} W 2,p pΩq ď C}f } L p pΩq , (3.25)
where C is a constant depending on p, Ω and }b} L 8 pΩq .

Remark 3.8. When d ě 3, the range 1 ă p ă 2d{pd `2q is not covered by the above proposition, and we will not need this case in the sequel. We remark that the existence of a solution to (3.23) for such p could be shown by regularization, considering a sequence f n P L q pΩq with q ě 2d{pd`2q such that lim nÑ8 }f n ´f } L p pΩq " 0. Problem (3.23) is then well-posed for such f n . We are then left with passing to the limit n Ñ 8 in (3.23), which can be done using Lemma 3.5. The other assertions of the above proposition likewise hold.

Proof. Introducing w " v ´σ, the point for proving assertion (i) is to consider

$ ' & ' % ´div p∇w `bwq " f in Ω, Ω w " 0,
p∇w `bwq ¨n " 0 on BΩ.

(3.26)

The right hand side f belongs to L p pΩq for exponents p that have been chosen so that, by the Sobolev embeddings, f P pH 1 pΩqq 1 . Lemma 3.3 therefore shows the existence and uniqueness of w P H 1 pΩq, and the fact that

}w} H 1 pΩq ď C}f } pH 1 pΩqq 1 ď C}f } L p pΩq . (3.27)
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We next rewrite (3.26) as

$ ' & ' % ´∆w " div pbwq `f in Ω, Ω w " 0,
∇w ¨n " ´pb ¨nqw on BΩ.

To apply Lemma 3.5, we distinguish two cases, whether 1 ă p ď 2 or p ą 2.

Suppose first that 1 ă p ď 2. Hölder inequalities and (3.27) show that

}div pbwq `f } L p pΩq ď }b} W 1,8 pΩq }w} W 1,p pΩq `}f } L p pΩq ď C}w} H 1 pΩq `}f } L p pΩq ď C}f } L p pΩq .
In addition, using again (3.27) and the fact that b is Lipschitz regular on the closed domain Ω, we get

}pb ¨nqw} W 1´1{p,p pBΩq ď C }w} W 1,p pΩq ď C }w} H 1 pΩq ď C}f } L p pΩq .
Lemma 3.5 therefore implies that w P W 2,p pΩq with

}w} W 2,p pΩq ď C ´}div pbwq `f } L p pΩq `}pb ¨nqw} W 1´1{p,p pBΩq ¯ď C}f } L p pΩq .
This readily yields (3.24), in the case when 1 ă p ď 2.

We now turn to the case p ą 2. Hölder inequalities show that, for any 2 ď q ď p, we have

}div pbwq `f } L q pΩq ď }b} W 1,8 pΩq }w} W 1,q pΩq `}f } L q pΩq . ( 3.28) 
In addition, because b is Lipschitz regular on the closed domain Ω, we get }pb ¨nqw} W 1´1{q,q pBΩq ď C }w} W 1,q pΩq (3.29)

for any 2 ď q ď p. Setting q " 2 in (3.28) and (3.29) and using that w P H 1 pΩq, we are in position to use Lemma 3.5, which implies that w P H 2 pΩq with

}w} H 2 pΩq ď C ´}div pbwq `f } L 2 pΩq `}pb ¨nqw} W 1´1{2,2 pBΩq ď Cp}w} H 1 pΩq `}f } L 2 pΩq q ď C}f } L p pΩq . (3.30)
Using the Sobolev embeddings, we deduce that w P W 1,q pΩq for any 2 ď q ă 8 if d " 2, and w P W 1,q pΩq for q ‹ " 2d{pd ´2q otherwise.

If d " 2, we deduce from (3.30) that

}w} W 1,p pΩq ď C p }w} H 2 pΩq ď C}f } L p pΩq . (3.31)
We set q " p in (3.28) and (3.29) and use Lemma 3.5, which implies that w P W 2,p pΩq with

}w} W 2,p pΩq ď C ´}div pbwq `f } L p pΩq `}pb ¨nqw} W 1´1{p,p pBΩq ď Cp}w} W 1,p pΩq `}f } L p pΩq q ď C}f } L p pΩq
where we have used (3.31). We have thus proved (3.24), in the case when p ą 2 and d " 2.

If d ą 2, we deduce from (3.30) that

}w} W 1,q ‹ pΩq ď C}w} H 2 pΩq ď C}f } L p pΩq . (3.32)
If q ‹ ě p, we proceed as above and readily obtain (3.24). If q ‹ ă p, we set q " q ‹ in (3.28) and (3.29) and use Lemma 3.5, which implies that w P W 2,q ‹ pΩq with

}w} W 2,q ‹ pΩq ď C ´}div pbwq `f } L q ‹ pΩq `}pb ¨nqw} W 1´1{q ‹ ,q ‹ pBΩq ď Cp}w} W 1,q ‹ pΩq `}f } L q ‹ pΩq q ď C}f } L p pΩq
where we have used (3.32). Using again the Sobolev embeddings, we deduce that w P W 1,q ‹‹ pΩq for 1{q ‹‹ " 1{q ‹ ´1{d " 1{2 ´2{d if d ą 4, and for any q ‹‹ ě 2 otherwise. Iterating the argument a sufficient number of times, we prove (3.24) in the case p ą 2 and d ą 2. This concludes the proof of assertion (i).

The proof of assertion (ii) proceeds similarly.

Second choice of invariant measure

In the case where div b " 0, Problem (3.1) is coercive, and the introduction of an equivalent problem using the invariant measure seems unnecessary (our numerical results will however show that using σ 1 solution to (3.16)-(3.17) indeed shows itself useful). Put differently, one intuitive choice of invariant measure is then σ " 1. Since σ " 1 is not necessary solution to (3.16) in that case, we consider another choice of invariant measure.

The invariant measure σ that we now aim to use (and which we will denote by σ 2 later in this article) is a solution to

$ ' ' ' ' & ' ' ' ' % ´div p∇σ `bσq " 0 in Ω, p∇σ `bσq ¨n " b ¨n ´ BΩ b ¨n on BΩ, inf Ω σ ą 0. (3.33)
Two remarks are in order. First, we note that σ needs not satisfy Ω σ " 1 since, in essence, this normalization constraint does not affect (3.8) nor a fortiori the original problem. Second, it is evident that σ solution to (3.33) is constant if div b " 0, a property that has precisely motivated the consideration of this alternate invariant measure.

Because of the constraint of positivity, we are unable to directly prove the existence of σ solution to (3.33). We therefore circumvent this theoretical difficulty by temporarily considering 93 Stable approximation of the advection-diffusion equation using the invariant measure the same problem, but without the sign constraint and with the specific normalization Ω σ " 1 (see (3.34) below). In a second stage, we will modify the function (adding some term involving σ 1 , see Corollary 3.11 below) in order to obtain positivity (possibly at the price of losing the normalization). We already notice that, when discretizing the problems and solving them numerically, we will proceed similarly. Since the practical implementation of (3.33), involving a sign constraint, would be delicate, we will first approximate numerically the solution to (3.34) below and next combine it with the numerical approximation of the solution to (3.16)-(3.17)- (3.18) to obtain an approximation to the solution to (3.33). This will be made precise in Section 3.3.

Let us consider the problem

$ ' ' & ' ' % ´div p∇σ 0 2 `bσ 0 2 q " 0 in Ω, Ω σ 0 2 " 1, p∇σ 0 2 `bσ 0 2 q ¨n " b ¨n ´ BΩ b ¨n on BΩ.
(3.34)

We have the following proposition, the proof of which is similar to that of Proposition 3.6 and which we therefore skip (note that the well-posedness of (3.34) in H 1 pΩq is a direct consequence of Lemma 3.3(ii)):

Proposition 3.9. Under assumptions (3.9)-(3.21), there exists a unique σ 0 2 P H 1 pΩq solution to (3.34). For any 1 ă p ă `8, this solution satisfies σ 0 2 P W 2,p pΩq X C 1 pΩq and we have the following estimate:

}σ 0 2 } W 2,p pΩq ď C ˜1 `}σ 0 2 } W 1,p pΩq `› › › › b ¨n ´ BΩ b ¨n› › › › W 1´1{p,p pBΩq ¸,
where C is a constant depending on p, Ω and }b} LippΩq . In addition, the solution to (3.34) satisfies conditions (C1) and (C3).

Likewise, the following proposition holds, with a proof that mimics that of Proposition 3.7:

Proposition 3.10. Let 1 ă p ă `8 if d " 2 and 2d{pd`2q ď p ă `8 otherwise. Assume (3.9)- (3.21). For all f P L p pΩq such that ˆΩ f " 0, there exists a unique v P H 1 pΩq solution to

$ ' ' & ' ' % ´div p∇v `bvq " f in Ω, Ω v " 1, p∇v `bvq ¨n " b ¨n ´ BΩ b ¨n on BΩ.
This solution belongs to W 

! σ 0 2 `κ σ 1 , κ P R such that inf Ω pσ 0 2 `κ σ 1 q ą 0
) .

The proof of Corollary 3.11 is immediate. Let σ be a solution to (3.33). Then σ ´σ0 2 is a solution to (3.16), and we are then in position to use Lemma 3.3, noticing that the necessary value of κ is κ " Ω σ ´1. The converse inclusion is straightforward.

We finally define σ 2 solution to (3.33) as

σ 2 " σ 0 2 `κ‹ σ 1 , ( 3.36) 
where

κ ‹ " 1 `inf ! κ P R such that inf Ω pσ 0 2 `κ σ 1 q ą 0 ) .
Of course this is an arbitrary choice. In practice, some suitable κ (and thus σ 2 ) will be used.

The numerical analysis will account for this.

Discretization and numerical analysis

Practically, we implement a finite element Galerkin approximation u H of the solution u to the coercive equivalent modified problem (3.15). Since, in most of the cases, the invariant measure σ is not known analytically, we first seek a Galerkin approximation of σ (we will describe later in this article how this approximation is obtained, for each of the two cases σ " σ 1 and σ " σ 2 ). We denote by H and h the mesh sizes for these two approximations, respectively. We have in mind that H " h, in order to be as efficient as possible. This is made possible by the uniform well-posedness of the discrete problem in u H (see Proposition 3.12 below). In practice, we will observe that we may indeed choose H one order of magnitude larger, say, than h.

We begin with making precise the approximation u H , for a given approximation σ h of σ. The discrete variational formulation reads as:

Find u H P U H such that, for all v H P U H , a ss pσ h ; u H , v H q " F pσ h v H q, (3.37) 
where F is defined by (3.13) and a ss is defined by (3.38) below. We assume throughout this section that the discretization space U H in (3.37) is a subspace of H 1 0 pΩq. In our actual implementation, the above formulation will be possibly slightly modified to account for a stabilization performed when computing σ h . This will be made precise in the next section, in formulae (3.79)-(3.80). As will be mentioned there, this potential modification does not modify the numerical analysis we perform in the present section.

In the left hand side of (3.37), we have denoted

a ss pσ h ; u H , v H q " ˆΩ σ h ∇u H ¨∇v H `Bh ¨p∇u H qv H ´p∇v H qu H 2 , (3.38) B h " ∇σ h `σh b. (3.39)
The classical skew-symmetric formulation of the advection part is adopted in order to ensure that a ss pσ h ; u H , u H q " ˆΩ σ h |∇u H | 2 and thus that the problem is coercive at the discrete level whenever σ h is positive and bounded away from zero. A simple application of standard arguments therefore shows the following well-posedness of the discretization. The point is, this well-posedness is uniform in the mesh size H, a property that is of major practical interest.

Proposition 3.12. Assume (3.9). Consider σ h an approximation of σ P H 1 pΩq such that inf Ω σ h ą 0. Then a ss pσ h ; ¨, ¨q is coercive in H 1 0 pΩq and (3.37) is well-posed, uniformly in H. We now proceed with the numerical analysis of (3.37).

Numerical analysis in the case when the invariant measure is analytically known

To begin with, we temporarily assume that we know σ analytically, meaning we replace B h given by (3.39) by B " ∇σ `σ b in the second term of (3.38) (and we likewise replace σ h by σ in the first term of (3.38)). Otherwise stated, we replace σ h by σ in (3.37).

Proposition 3.13. Assume (3.9)-(3.21) and that σ h " σ in (3.37). Let u be the solution to (3.15) and u H be the solution to (3.37). Then, for any p ą d, we have the estimate

}u ´uH } H 1 pΩq ď C " }σ} L 8 pΩq `}∇σ `σ b} L p pΩq inf Ω σ ȷ inf v H PU H }u ´vH } H 1 pΩq , (3.40)
with a constant C that only depends on Ω and p.

Note that, in view of Lemma 3.4, the assumptions (3.9)-(3.21) imply that σ 1 satisfies the conditions (C1), (C2) and (C3). Likewise, in view of (3.36), Lemma 3.4 and Proposition 3.9, σ 2 satisfies the conditions (C1), (C2) and (C3). In particular, for both choices σ " σ 1 and σ " σ 2 , we have inf Ω σ ą 0.

Proof. As div B " 0, we note that the problem Find u P H where 1{p `1{q " 1{2 and, for the Sobolev embedding to hold, q ă 2d{pd ´2q which amounts to p ą d. Classical results of numerical analysis of coercive problems then allow to conclude, using the Céa lemma.

The following corollary makes precise how the L p pΩq norm in the right hand side of (3.40) may be bounded from above by the H 1 pΩq norm of σ, because of the particular properties of σ. When the discretized approximation σ h is reinstated in place of σ, this part of the argument will become substantially more difficult. We will return to this later. Corollary 3.14. In addition to the assumptions of Proposition 3.13, we assume that the ambient dimension is d " 2 or 3. Then, we have

}u ´uH } H 1 pΩq ď C ˆ}σ} L 8 pΩq `}σ} H 1 pΩq `Cσ inf Ω σ ˙inf v H PU H }u ´vH } H 1 pΩq ,
where C is a constant independent of H and

C σ " $ ' & ' % 0 if σ " σ 1 , › › › › b ¨n ´ BΩ b ¨n› › › › H 1{2 pBΩq if σ " σ 2 .
Proof. Using [41, Corollary 3.7], we know that B " ∇σ `σ b satisfies

}B} H 1 pΩq ď C ´}B} L 2 pΩq `}div B} L 2 pΩq `}curl B} L 2 pΩq `}B ¨n} H 1{2 pBΩq ¯.
We notice that, on the one hand, div B " 0, by definition of σ, while, on the other hand, curl B " curl pσ bq, thus, given the Lipschitz regularity of b, }curl B} L 2 pΩq ď C }σ} H 1 pΩq . We therefore obtain

}B} H 1 pΩq ď C ´}σ} H 1 pΩq `}B ¨n} H 1{2 pBΩq ¯.
Finally, because d ď 3, we may find p such that d ă p ď 2d{pd ´2q, thus }B} L p pΩq ď C}B} H 1 pΩq , which proves the result.

Numerical analysis in the case when the invariant measure is numerically approximated

We now return to the case when the invariant measure is only approximated numerically. For simplicity, we restrict our attention to the case when the approximation space for σ is a P 1 finite element space associated to a polyhedral mesh of Ω. In this case, Ω is thus a polygon, and it cannot be of class C 1 or C 2 , as assumed previously in (3.10) or (3.21).

In the sequel of this Section 3.3.2, we assume, in addition to (3.9), that

$ ' ' & ' ' %
the domain Ω is connected, convex and polyhedral;

b is Lipschitz-continuous on Ω; the ambient dimension satisfies 2 ď d ď 3.

(3.42)

We also assume that

The conclusions of Propositions 3.6, 3.7, 3.9 and 3.10 hold.

(3.43)

A few remarks are in order. First, we point out that (3.43) is not a consequence of Section 3.2, as we now do not assume (3.21) here.

Second, (3.43) obviously holds in the case b " 0. In that case, there exists a unique solution to (3.16)-(3.17) (resp. to (3.34)) which is σ 1 " 1 (resp. σ 0 2 " 1). Third, when }b} LippΩq is sufficiently small, then (3.43) again holds. For the sake of brevity, we only sketch the proof for Proposition 3.6. To construct the invariant measure, consider the following iterations: set σ 0 " 1, and define σ m`1 as the unique solution in H 1 pΩq to the problem ´∆σ m`1 " div pbσ m q in Ω, ∇σ m`1 ¨n " ´bσ m ¨n on BΩ,

Ω σ m`1 " 1.
It is easy to see that

}∇pσ m`1 ´σm q} L 2 pΩq ď }b} L 8 pΩq }σ m ´σm´1 } L 2 pΩq .
Since the mean of σ m ´σm´1 vanishes, we can use the Poincaré-Wirtinger (PW) inequality, from which we deduce that

}∇pσ m`1 ´σm q} L 2 pΩq ď C PW }b} L 8 pΩq }∇pσ m ´σm´1 q} L 2 pΩq .
Assume that b is such that C PW }b} L 8 pΩq ă 1. Then σ m converges to some σ ‹ in H .

We now prove that σ ‹ P H 2 pΩq. Considering the Neumann problem ´∆pσ ‹ ´1q " div pbσ ‹ q in Ω, ∇pσ ‹ ´1q ¨n " ´bσ ‹ ¨n on BΩ, we observe, as in the proof of Proposition 3.6 and using the regularity of b, that

}div pbσ ‹ q} L 2 pΩq ď C }b} W 1,8 pΩq }σ ‹ } H 1 pΩq while }pb ¨nqσ ‹ } H 1{2 pBΩq ď C}b} LippΩq }σ ‹ } H 1 pΩq ,
where C is independent of b. Thanks to the assumption (3.42) on Ω, we are in position to use [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Theorem 3.12], which implies that σ ‹ ´1 P H 2 pΩq and

}σ ‹ ´1} H 2 pΩq ď C ´}div pbσ ‹ q} L 2 pΩq `}pb ¨nqσ ‹ } H 1{2 pBΩq ď C ´}b} W 1,8 pΩq `}b} LippΩq ¯}σ ‹ } H 1 pΩq ď C}b} LippΩq ˆ1 `}b} L 8 pΩq 1 ´CPW }b} L 8 pΩq ˙.
Similar estimates in W 2,p pΩq can be shown using [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Remark 3.13(ii)].

To show that Proposition 3.6 holds, we are now left with showing (3.18). Thanks to the Sobolev injections when 2 ď d ď 3, we have }σ ‹ ´1} C 0 pΩq ď C}σ ‹ ´1} H 2 pΩq . Thus, when b is sufficiently small, then }σ ‹ ´1} C 0 pΩq is small as well and (3.18) holds. We can thus conclude that Proposition 3.6 holds.

Preliminary estimate

In what follows, we proceed under the assumptions (3.9)-(3.42)- (3.43). The analogous result to that of Proposition 3.13 is stated in the following. (3.15)) and u H be the solution to (3.37), for some f P L 2 pΩq. For any p ą d, we have the estimate

}u ´uH } H 1 pΩq ď C inf Ω σ h }f } L 2 pΩq }σ ´σh } L p pΩq `C inf v H PU H « ˆ1 `~σ~p inf Ω σ h ˙}u ´vH } H 1 pΩq `~σ ´σh ~p inf Ω σ h }v H } H 1 pΩq ff , (3.44)
where C only depends on p and Ω, and where we have used the notation ~σ~p " }σ} L 8 pΩq `}∇σ `bσ} L p pΩq .

Proof. We note that u P H 1 0 pΩq satisfies @v P H 1 0 pΩq, a ss pσ; u, vq " F pσvq,

while u H P U H satisfies @v H P U H , a ss pσ h ; u H , v H q " F pσ h v H q.
Applying the first Strang Lemma (see [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Lemma 2.27]), we have

}u ´uH } H 1 pΩq ď 1 C Ω inf Ω σ h sup w H PU H ˇˇ´Ω f pσ ´σh qw H ˇ}w H } H 1 pΩq `inf v H PU H « ˆ1 `}σ} L 8 pΩq `Cp,Ω }B} L p pΩq C Ω inf Ω σ h ˙}u ´vH } H 1 pΩq `1 C Ω inf Ω σ h sup w H PU H |a ss pσ ´σh ; v H , w H q| }w H } H 1 pΩq ff , ( 3.45) 
where B " ∇σ `bσ, C Ω is the Poincaré constant of Ω (so that C Ω inf Ω σ h is a coercivity constant of a ss pσ h ; ¨, ¨q on U H ) and C p,Ω is the constant introduced in (3.41). When we take σ h " σ, this estimation of course agrees with the estimation we have already established, independently, for Proposition 3.13.

For the first term of the right-hand side of (3.45), we notice that, for all w H P U H and p ą d (thus 1{q " 1{2 ´1{p ă 1{2 ´1{d), we have

ˇˇˇˆΩ f pσ ´σh qw H ˇˇˇď }f } L 2 pΩq }σ ´σh } L p pΩq }w H } L q pΩq ď C p,Ω }f } L 2 pΩq }σ ´σh } L p pΩq }w H } H 1 pΩq . (3.46)
The rightmost term of (3.45) is estimated similarly: 

|a

Estimation of σ ´σh

The estimation of ∇pσ ´σh q in L p pΩq, for some p ą d, is the crucial ingredient we now need to proceed with the estimation of the right-hand side of (3.44). This estimation is the main purpose of Proposition 3.17 below. We emphasize that the result is not immediate and its proof instructive. Before stating this result, we first detail how σ h is defined and provide in Proposition 3.16 below a classical error estimate on σ ´σh in H 1 pΩq.

We introduce the bilinear form a ‹ pu, vq " ˆΩp∇u `buq ¨∇v,

which is formally the adjoint of the bilinear form a defined by (3.4), in the sense that a ‹ pu, vq " apv, uq. We note that the invariant measure σ 1 solution to (3.16)-(3.17)-(3.18) satisfies @v P H 1 pΩq, a ‹ pσ 1 , vq " 0 while the invariant measure σ 0 2 solution to (3.34) satisfies

@v P H 1 pΩq, a ‹ pσ 0 2 , vq " ˆBΩ g v with g " b ¨n ´ BΩ b ¨n on BΩ.
Proposition 3.16. We assume that (3.9)-(3.42)-(3.43) hold. Let Σ h be the P 1 approximation space associated to a regular quasi-uniform polyhedral mesh of Ω and

V h " " u P Σ h , Ω u " 1 * .
Let σ denote either the solution to (3.16)-(3.17)-(3.18) (in which case we set g " 0) or the solution to (3.34) (in which case we set g " b ¨n ´ BΩ b ¨n on BΩ). For h sufficiently small, there exists a unique σ h P V h (which is the Galerkin approximation of σ) solution to

@v h P Σ h , a ‹ pσ h , v h q " ˆBΩ g v h . (3.49)
Furthermore, we have, for h sufficiently small,

}σ ´σh } H 1 pΩq ď Ch}σ} H 2 pΩq (3.50)
where C is independent of h.

The proof of Proposition 3.16 is postponed until Appendix 3.5. We now turn to the estimation of ∇pσ ´σh q in L p pΩq. Proposition 3.17. Under the assumptions of Proposition 3.16, for all 2 ă p ă `8, the estimate

}σ ´σh } W 1,p pΩq ď Ch}σ} W 2,p pΩq (3.51)
holds for h sufficiently small, where C is independent of h.

The proof of Proposition 3.17 is given below. We emphasize that, to the best of our knowledge, this result is not present in the literature. There exist many contributions establishing W 1,p estimates between the solution of a linear PDE and its finite element approximation, for problems posed with homogeneous Dirichlet boundary conditions, or problems posed with Neumann boundary conditions and including a zero-order term. In [START_REF] Scott | Optimal L 8 estimates for the finite element method on irregular meshes[END_REF] There are (at least) two ways to prove Proposition 3.17. A first possibility is to assume that }b} LippΩq is small enough. Under this assumption (which is restrictive since we precisely aim in this article at considering non-coercive problems (3.1) where b is not small) and using (3.54), the proof of (3.51) is short. For the sake of brevity, we only consider the invariant measure σ 1 solution to (3.16)-(3.17)- (3.18). We introduce the sequence σ m P H 1 pΩq defined by ´∆σ m`1 " div pbσ m q in Ω, ∇σ m`1 ¨n " ´bσ m ¨n on BΩ,

Ω σ m`1 " 1, (3.55) 
with σ 0 " 1. Since b is small enough, it turns out that σ m converges to σ 1 , solution to (3.16)-(3.17). In addition, the above problem is of the type (3.53), so we will be in position to use (3.54).

Consider the sequence σ m h P Σ h defined by

@v P Σ h , ˆΩ ∇σ m`1 h ¨∇v " ´ˆΩ σ m h b ¨∇v, Ω σ m`1 h " 1, (3.56) 
with σ 0 h " 1, which converges to σ 1,h , solution to (3.49) with g " 0. Using the result (3.54) given in [41, Theorem A.2 p. 101], one can eventually show that

}σ m`1 h ´σm`1 } W 1,p pΩq ď C}b} LippΩq `}σ m h ´σm } W 1,p pΩq `h}σ m } W 1,p pΩq ˘(3.57)
for some C independent of h and b. Note that the right-hand sides of (3.55) and (3.56) are different, so the intermediate problem

´∆σ m`1 " div pbσ m h q in Ω, ∇σ m`1 ¨n " ´bσ m h ¨n on BΩ, Ω σ m`1 " 1,
has to be introduced to prove (3.57). Passing to the limit m Ñ 8 in (3.57), and using again that }b} LippΩq is sufficiently small, we obtain (3.51).

A second possibility, which is the one we follow here, is based on considering the following problem, that we write in a compact form as L η σ η,f " f :

# ´div p∇σ η,f `bσ η,f q `ησ η,f " f in Ω, p∇σ η,f `bσ η,f q ¨n " 0 on BΩ, (3.58) 
for any 0 ă η ď 1. Problem (3.58) is well-posed for any sufficiently regular function f (in particular, there is no compatibility condition on f ). Let σ η,f h P Σ h be the P1 finite element approximation of σ η,f . It is then possible to adapt the proof of [START_REF] Brenner | The mathematical theory of Finite Element methods[END_REF]Chap. 8] to this case, and show that there exists a constant C η independent of h and f (but a priori depending on η) such that

}σ η,f h ´ση,f } W 1,p pΩq ď C η h }σ η,f } W 2,p pΩq .
(3.59)

We now sketch the proof of (3.51), in the case of the invariant measure σ 1 solution to (3.16)-(3.17)- (3.18). The proof is based on the introduction of iterations of the type (3.55), with the operator L η of (3.58) instead of the Laplacian operator:

L η σ m`1 η " ησ m η
for some η sufficiently small. We refer to (3.64) below for details. The proof then proceeds as in the case b small above, the pivotal estimate (3.54) being replaced by (3.59). We emphasize that we take η sufficiently small, but we do not need to take the limit η Ñ 0.

We now proceed in details. For any 0 ă η ď 1, we introduce the bilinear form

a ‹ η pu, vq " ˆΩp∇u `buq ¨∇v `η ˆΩ u v. (3.60)
We have the following result:

Proposition 3.18. We assume that (3.9)-(3.42)-(3.43) hold. Let u P H 1 pΩq and u h P Σ h such that

@v P Σ h , a ‹ η pu ´uh , vq " 0. (3.61)
Let 2 ď p ă 8 and assume that u P W 1,p pΩq. Then, there exists C η and h 0 pηq, that both depend on η, such that, for any 0 ă h ă h 0 pηq, we have

}∇u h } L p pΩq ď C η }∇u} L p pΩq . (3.62)
Assume furthermore that u P W 2,p pΩq. Then

}∇pu ´uh q} L p pΩq ď C η h }u} W 2,p pΩq . (3.63)
The proof of Proposition 3.18 is postponed until Appendix 3.6. It follows the arguments of [START_REF] Brenner | The mathematical theory of Finite Element methods[END_REF]Chap. 8]. Most presumably, a similar result can be obtained when 1 ă p ă 2, using duality arguments as in [START_REF] Brenner | The mathematical theory of Finite Element methods[END_REF]Sec. 8.5]. We do not need such a result here, and therefore do not proceed in that direction.

We are now in position to prove Proposition 3.17.

Proof of Proposition 3.17. We define the function g on BΩ by g " 0 in the case of the invariant measure σ 1 and g " g 2 :" b ¨n ´ BΩ b ¨n on BΩ in the case of the invariant measure σ 0 2 . Let 2 ă p ă 8 and let η ą 0 be small enough in a sense made precise below. The proof falls in three steps.

Step 1. Consider the following iterations: set σ 0 η " 1 and define σ m` 

@v P H 1 pΩq, a ‹ pσ m`1 η , vq " η ˆΩpσ m η ´σm`1 η q v `ˆBΩ gv.
Using Proposition 3.7 in the case g " 0 (resp. Proposition 3.10 in the case g " g 2 ), we get

}σ m`1 η ´σ} W 2,p pΩq ď Cη}σ m η ´σm`1 η } L p pΩq .
Taking η sufficiently small, this shows that

}σ m`1 η ´σ} W 2,p pΩq ď Cη}σ m η ´σ} L p pΩq ,
and hence that lim

mÑ8 }σ m η ´σ} W 2,p pΩq " 0. (3.65)
Step 2. We now consider the following iterations, at the discrete level: set σ 0 h " 1 and define σ m`1 η,h as the unique solution to the problem:

$ ' & ' % Find σ m`1 η,h P Σ h such that, for any v P Σ h , a ‹ η pσ m`1 η,h , vq " η ˆΩ σ m η,h v `ˆBΩ gv. (3.66)
Theorem 3.25 in Appendix 3.6 below ensures that the above problem is well-posed (the proof of Theorem 3.25 is performed in the case g " 0, and it carries over to the case g " g 2 ). Taking v " 1 in (3.66), we observe that Ω σ m η,h " 1 for any m. Furthermore, we see that

@v P Σ h , a ‹ pσ m`1 η,h ´σh , vq " η ˆΩpσ m η,h ´σm`1 η,h q v.
We show in Appendix 3.5 below (see (3.91)) that a ‹ satisfies an inf-sup property on functions in Σ h of vanishing mean, with a constant γ independent of h. Since

Ω σ m η,h " 1 " Ω σ h for any m, we get }σ m`1 η,h ´σh } H 1 pΩq ď Cη}σ m η,h ´σm`1 η,h } L 2 pΩq . Taking η sufficiently small, this shows that }σ m`1 η,h ´σh } H 1 pΩq ď Cη}σ m η,h ´σh } L 2 pΩq ,
and hence that lim mÑ8 }σ m η,h ´σh } H 1 pΩq " 0. By equivalence of the norms in the finite dimensional space Σ h , this implies that lim mÑ8 }σ m η,h ´σh } W 1,p pΩq " 0.

(3.67)

Step 3. We eventually introduce the following problem:

$ ' & ' % Find σ m`1 η P H 1 pΩq such that, for any v P H 1 pΩq, a ‹ η pσ m`1 η , vq " η ˆΩ σ m η,h v `ˆBΩ gv. (3.68)
We observe that (3.68) is the continuous analogue of (3.66), for the same right-hand side (in contrast, when going from (3.64) to (3.66), we modify both the space in which we search the solution and the right-hand side of the equation). We observe that

@v P Σ h , a ‹ η pσ m`1 η ´σm`1 η,h , vq " 0.
We are thus in position to use Proposition 3.18, which states that, for any h ă h 0 pηq, we have

}σ m`1 η ´σm`1 η,h } W 1,p pΩq ď C η h }σ m`1 η } W 2,p pΩq . ( 3.69) 
We now estimate }σ m`1 η } W 2,p pΩq . We observe that

@v P H 1 pΩq, a ‹ pσ m`1 η , vq " η ˆΩpσ m η,h ´σm`1 η q v `ˆBΩ gv.
In addition, taking v " 1 in (3.68), we see that

Ω σ m`1 η " Ω σ m η,h " 1.
Using Proposition 3.7 in the case g " 0 (resp. Proposition 3.10 in the case g " g 2 ), we get

}σ m`1 η ´σ} W 2,p pΩq ď Cη}σ m η,h ´σm`1 η } L p pΩq .
Taking η sufficiently small, this shows that

}σ m`1 η ´σ} W 2,p pΩq ď Cη}σ m η,h ´σ} L p pΩq ,
and hence 

}σ m`1 η } W 2,
}σ m`1 η ´σm`1 η,h } W 1,p pΩq ď C η h `η}σ m η,h } L p pΩq `}σ} W 2,p pΩq ˘. (3.70) 
We now compare σ m`1 η and σ m`1 η . We observe that

@v P H 1 pΩq, a ‹ η pσ m`1 η ´σm`1 η , vq " η ˆΩpσ m η,h ´σm η q v, hence @v P H 1 pΩq, a ‹ pσ m`1 η ´σm`1 η , vq " η ˆΩpσ m η,h ´σm η ´σm`1 η `σm`1 η q v.
Using Proposition 3.7, we get that

}σ m`1 η ´σm`1 η } W 2,p pΩq ď Cη}σ m η,h ´σm η ´σm`1 η `σm`1 η } L p pΩq ,
which implies, for η sufficiently small, that

}σ m`1 η ´σm`1 η } W 2,p pΩq ď Cη}σ m η,h ´σm η } L p pΩq ,
and thus

}σ m`1 η ´σm`1 η } W 1,p pΩq ď Cη}σ m η,h ´σm η } W 1,p pΩq . (3.71)
Step 4. Collecting (3.70) and (3.71), we get

}σ m`1 η ´σm`1 η,h } W 1,p pΩq ď C η h `η}σ m η,h } L p pΩq `}σ} W 2,p pΩq ˘`Cη}σ m η,h ´σm η } W 1,p pΩq .
Using (3.65) and (3.67), we are in position to pass to the limit m Ñ 8. We deduce that

}σ ´σh } W 1,p pΩq ď C η h `η}σ h } L p pΩq `}σ} W 2,p pΩq ˘`Cη}σ h ´σ} W 1,p pΩq ,
and thus, for η sufficiently small,

}σ ´σh } W 1,p pΩq ď C η h `η}σ h } L p pΩq `}σ} W 2,p pΩq ď C η h `}σ h ´σ} L p pΩq `}σ} W 2,p pΩq ˘.
Taking h such that C η h ď 1{2, we deduce (3.51).

Main result: estimation of u ´uH

Proposition 3.17 allows to deduce from Proposition 3.15 the following Theorem 3.19. To this end, we successively consider the case of our two invariant measures. For our first invariant measure σ 1 , solution to (3.16)-(3.17)-(3.18), we obviously consider its P 1 finite element approximation σ 1,h . For our second invariant measure, the analysis is essentially similar. There is, however, an additional subtlety in the very definition of the measure and its approximation. One, basic but crucial, remark is that the solution u to (i) we first approximate σ 1 as above by σ 1,h , and assume that σ 1,h ą 0 on Ω. In practice, we have always numerically observed this property for sufficiently small h (this property actually often holds for h not asymptotically small). In addition, from a theoretical viewpoint, this bound from below is a consequence of the assumptions (3.9)-(3.42)-(3.43), as explained in the proof of Theorem 3.19 below.

(ii) we next approximate, again using P 1 finite elements, σ 0 2 solution to (3.34) by σ 0 2,h . We perform both these approximations on the same regular mesh T h . We then define σ 2,h "

σ 0 2,h `κh σ 1,h where κ h " 1 `inf ␣ κ P r0, 8q such that σ 0 2,h `κ σ 1,h ą 0 on Ω ( .
Precisely since, as noticed above, u does not depend on our choice of invariant measure, we correspondingly define σ 2 " σ 0 2 `κh σ 1 . The point of our analysis is then to estimate σ 2 ´σ2,h . The detail is contained in the following proof. 

}u ´uH } H 1 pΩq ď C h }f } L 2 pΩq `C inf v H PU H « }u ´vH } H 1 pΩq `h }v H } H 1 pΩq ff (3.72)
for a constant C independent of h.
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Proof. We first consider the case of our first invariant measure σ 1 , solution to (3.16)-(3.17)-(3.18), approximated by its P 1 finite element approximation σ 1,h . We have shown in Proposition 3.17 that }σ 1 ´σ1,h } W 1,p pΩq " Ophq for any 2 ă p ă 8. Using the Sobolev injections, we obtain that }σ 1 ´σ1,h } C 0 pΩq " Ophq. Since inf Ω σ 1 ą 0, we get that, for any h sufficiently small, inf Ω σ 1,h ě c min ą 0 for some c min independent of h. The estimate (3.44) thus holds. In order to deduce (3.72) from (3.44), we have to estimate both }σ 1 ´σ1,h } L 8 pΩq and }∇pσ 1 ´σ1,h q} L p pΩq by Ophq terms. Since, for p sufficiently large, the L 8 norm is controlled by the W 1,p norm, we will conclude our proof if we show that }σ 1 ´σ1,h } W 1,p pΩq " Ophq. This latter bound is precisely the purpose of Proposition 3.17.

As we said, the case of the second invariant measure is essentially similar with the suitable definition of σ 2 and σ 2,h . Note first that, when h is sufficiently small, we have inf Ω σ 1,h ě c min ą 0 for some c min independent of h, as explained above. We then observe that

σ 2,h " σ 0 2,h `κh σ 1,h " σ 0 2,h `p1 `κh q σ 1,h ě c min ą 0,
since, by definition of κ h , we have σ 0 2,h `κh σ 1,h ě 0 on Ω. The estimate (3.44) thus again holds. In our argument to establish (3.72), we use }σ 2 ´σ2,h } L 8 pΩq and }∇pσ 2 ´σ2,h q} L p pΩq for those particular choices of σ 2 and σ 2,h . Obviously,

σ 2 ´σ2,h " pσ 0 2 ´σ0
2,h q `κh pσ 1 ´σ1,h q.

The term σ 1 ´σ1,h has just been estimated above in the suitable norms, while the term σ 0 2 ´σ0 2,h is estimated similarly. Eventually, for h sufficiently small, because of the convergence in C 0 pΩq of the P 1 finite elements approximations, we know that sup Ω |σ 0 2,h | is bounded uniformly in h while inf Ω σ 1,h ě c min ą 0 for some c min independent of h. Thus κ h is bounded uniformly in h, when h is sufficiently small. The triangle inequality allows to conclude our proof.

Implementation details and numerical results

Discretization of the invariant measure

The numerical approximation of σ 1 , solution to (3.16)-(3.17)-(3.18) is, as we said in the previous section, obtained using a classical P 1 finite element space associated to a uniform mesh of size h that we denote T h . Problem (3.16)-(3.17)-(3.18) involves two constraints: a normalization constraint and a sign constraint. We comply with the normalization constraint by implementing an iterative algorithm. With a view to obtaining the positivity constraint, we use the adjoint equation and stabilize the problem (see (3.74) below). The stiffness matrix of the formulation employed to compute σ 1,h is the adjoint matrix to the matrix of the Douglas-Wang (DW) stabilized version of the approximation of the solution to the advection-diffusion equation. Since, in most situations, it is observed that the latter approximation preserves the maximum principle, it is intuitively expected that the same applies for the adjoint formulation. Nevertheless, we have no general theoretical argument that shows our formulation guarantees positivity of the solution σ 1,h (except of course if h is sufficiently small, as shown in the proof of Theorem 3.19).

For essentially all the practical computations we have performed, we observe that positivity is preserved, in the sense that ˆK σ 1,h is positive for all K P T H . This is all we need to proceed with a coercive bilinear form at the discrete level for the advection-diffusion equation (3.15) since we will be using P 1 finite elements for the approximation u H of u (see Section 3.4.2 below). We mention that Droniou [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] and Tobiska [START_REF] Kavaliou | A Finite Element method for a noncoercive elliptic problem with Neumann boundary conditions[END_REF] have proposed a discretization that gives a positive discrete solution, but we do not proceed this way.

We implement the following iterative algorithm: σ n` 1 1,h is defined as the solution to the problem

$ ' & ' % Find σ n`1 1,h P Σ h such that, for all φ P Σ h , a ‹ ´σn`1 1,h , φ ¯`λ ˆΩ σ n`1 1,h φ `astab, DW ´σn`1 1,h , φ ¯" λ ˆΩ σ n 1,h φ, (3.73)
where λ is a positive parameter, Σ h is the P 1 finite element space associated to T h , a ‹ is defined by (3.48) and a stab,DW pσ, φq " ÿ

KPT h ˆK τ ‹ rdivp∇σ `bσqs p´∆φ `b ¨∇φq, (3.74) 
with

τ ‹ pxq " h 2|bpxq| ˆcothpPe ‹ K pxqq ´1 Pe ‹ K pxq ˙, Pe ‹ K pxq " |bpxq|h 2 . ( 3.75) 
Note that the stabilization term (3.74) is the standard DW stabilization term for the invariant measure equation (3.16). The formulation is thus strongly consistent. We set λ " 10 ´3 in our numerical tests. The iterations are initialized with an approximation of the invariant measure of the potential part of b, namely I Σ h pe ´ψH q, where I Σ h is the nodal interpolation operator in Σ h and ψ H P U H satisfies, for any v H P U H , ˆΩ ∇ψ H ¨∇v H " ˆΩ b ¨∇v H .

The stopping criterion we use is

› › › › › 1 ´σn`1 1,h σ n 1,h › › › › › L 1 pΩq ă 10 ´3.
Temporarily ignoring the stabilization term a stab,DW in (3.73), we formally see that using this stopping criterion aims at enforcing that divp∇σ n`1 1,h `bσ n`1 1,h q σ n`1 1,h is small when we stop the iterations (3.73). This is a better criterion than enforcing that divp∇σ n` 1 1,h `bσ n`1 1,h q is small, as σ 1 may vary a lot over the domain Ω.

We similarly obtain an approximation σ 0 2,h P Σ h of σ 0 2 solution to (3.34), considering iterations where pσ 0 2 q n`1 h is the solution to the problem:

$ ' & ' % Find pσ 0 2 q n`1 h P Σ h such that, for all φ P Σ h , a ‹ `pσ 0 2 q n`1 h , φ ˘`λ ˆΩpσ 0 2 q n`1 h φ " λ ˆΩpσ 0 2 q n h φ `ˆBΩ ˆb ¨n ´1 |BΩ| ˆBΩ b ¨n˙φ .
The iterations are initialized using pσ 0 2 q 0 h " 1. The same stopping criterion is adopted as for σ 1 . Notice that, in that case, we need not account for the positivity, which will be obtained by the combination σ 2,h " pσ 0 2 q h `κh σ 1,h described above, so no stabilization of the formulation is employed.
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Discretization of u

A natural way to define the pP 1 , σ h P 1 q method would be to consider the following variational formulation (see (3.37)):

Find u H P P 1 pT H q s.t., for all v H P P 1 pT H q, a ss pσ h ; u H , v H q " F pσ h v H q, (3.76)

where we recall (see ( 

B h " ∇σ h `σh b.
In the case of the invariant measure σ 1 , we need to add an extra term related to the stabilized discretization used for σ 1,h . The reason is the following. Formally, the variational formulation (3.76)-(3.77) corresponds to the approximation

´divpσ h ∇uq `Bh ¨∇u `1 2 pdiv B h q u " σ h f (3.78)
of equation (3.15). The zero order term in div B h (originating from the skew-symmetric formulation that ensures coercivity at the discrete level) affects the accuracy. Now, the stabilization (3.74) introduced in the variational formulation for σ 1,h amounts to modifying

B h " pB 1 q h " ∇σ 1,h `σ1,h b into pB 1 q h " pB 1 q h `˜ÿ KPT h τ ‹ divppB 1 q h q1 K ¸b (3.79) 
with τ ‹ defined by (3.75). More precisely, at convergence (i.e. when n Ñ 8), the formulation (3.73) amounts to requesting that, for any φ P Σ h , ˆΩpB 1 q h ¨∇φ " 0 rather than ˆΩpB 1 q h ¨∇φ " 0, which is the standard discretization of (3.16). Formally, the quantity the divergence of which is zero is not pB 1 q h , but pB 1 q h . In view of the last term of the left-hand side of (3.78), and with the aim of obtaining the best possible accuracy, we thus need to modify pB 1 q h into pB 1 q h in (3.77). In order to be consistent, we therefore define

a ss pσ 1,h ; u H , v H q " ˆΩ σ 1,h ∇u H ¨∇v H `pB 1 q h ¨p∇u H qv H ´p∇v H qu H 2 (3.80)
instead of (3.77). The problem is, by construction, coercive, and may be analyzed by the standard tools of numerical analysis we have used in the previous section. We readily note that the replacement of pB 1 q h by pB 1 q h does not affect this analysis. Indeed, on any K P T h , div rpB 1 q h s " divp∇σ 1,h q `divpσ 1,h bq, where the first term vanishes for P 1 finite elements. Thus, for any p ą d,

› › pB 1 q h ´pB 1 q h › › L p pΩq ď }τ ‹ b divpσ 1,h bq} L p pΩq ď Ch }b} W 1,8 pΩq }σ 1,h } W 1,p pΩq
where C is a universal constant such that | cothpyq ´y´1 | ď C for any y P R. The factor }σ 1,h } W 1,p pΩq can be bounded from above independently of h as a consequence of Proposition 3.17.

Using arguments similar to those used in the proofs of Proposition 3.15 and Theorem 3.19, we thus see that (3.72) again holds when using the bilinear form (3.80) instead of (3.77).

In the case of the invariant measure σ 2 , we also need to add an extra term to (3.76)-(3.77). Recall that σ 2,h " pσ 0 2 q h `κh σ 1,h , where no stabilization is employed to compute pσ 0 2 q h , in contrast to σ 1,h . Formally, and again in view of the last term of the left-hand side of (3.78), it seems advantageous to work with pB 0 2 q h `κh pB 1 q h rather than pB 0 2 q h `κh pB 1 q h , as we expect that the divergence of the former is smaller than that of the latter. In order to be consistent, we therefore define

a ss pσ 2,h ; u H , v H q " ˆΩ σ 2,h ∇u H ¨∇v H `pB 2 q h ¨p∇u H qv H ´p∇v H qu H 2 (3.81)
with pB 2 q h " pB 0 2 q h `κh pB 1 q h instead of (3.77) (recall that pB 1 q h is defined by (3.79) and that pB 0 2 q h " ∇pσ 0 2 q h `pσ 0 2 q h b). As in the case of the invariant measure σ 1 , the problem is, by construction, coercive, and may be analyzed by the standard tools of numerical analysis we have used in the previous section.

In addition to the above practical and theoretical considerations, we also need to possibly modify the formulation when the problem is advection-dominated. It turns out that we only need to use such a stabilized formulation when working with the invariant measure σ 2 . In that case, we use a GLS type method and define the pP 1 , σ 2,h P 1 q-GLS method by the following variational formulation:

#

Find u H P P 1 pT H q such that, for all v H P P 1 pT H q,

a ss pσ 2,h ; u H , v H q `astab pu H , v H q " F pσ 2,h v H q `Fstab pv H q, (3.82) 
where a ss is defined by (3.81), and

a stab pu H , v H q " ÿ KPT H ˆK τ pσ 2,h b ¨∇u H q pσ 2,h b ¨∇v H q, (3.83) 
F stab pv H q " ÿ KPT H ˆK τ pσ 2,h f q pσ 2,h b ¨∇v H q, with τ pxq " H 2|pB 2 q h pxq| ˆcothpPe K pxqq ´1 Pe K pxq ˙, Pe K pxq " |pB 2 q h pxq|H 2σ 2,h pxq ,
where pB 2 q h " pB 0 2 q h `κh pB 1 q h " ∇σ 2,h `σ2,h b. Denoting L h v " ´divpσ h ∇vq `Bh ¨∇v the operator approximating that of (3.15) when only σ h is available, we indeed see that, on any ˆK τ pL h u H q pL h v H q.

K P T H ,

Irrotational case

For all our numerical tests throughout this article, we work on the unit square Ω " p0, 1q 2 and choose the right-hand side f " 1. All computations are performed on a Intelő Xeonő Processor E5-2667 v2. We use the FreeFem++ software [START_REF] Hecht | New development in FreeFem++[END_REF].

We assume in this Section 3.4.3 that the velocity field b is irrotational: b " ∇ϕ. In that case, we know that σ 1 "

ˆ Ω e ´ϕ˙´1 e ´ϕ and that ∇σ 1 `σ1 b " 0 in Ω. Specifically here, the velocity field b is taken of the form b " `b0

x , b 0 y ˘T `λ1 `cosp2πxq sinp2πyq, sinp2πxq cosp2πyq ˘T `λ2 `cos 2 p2πxq, 0 ˘T `λ3 py, xq T , where b 0 x , b 0 y , λ 1 , λ 2 , λ 3 ą 0. We take b 0 x " b 0 y " 64. The parameters λ 1 , λ 2 and λ 3 are given in Table 3.1 for the four test cases (i) through (iv) we consider. The last column of Table 3.1 shows that the problem is not coercive in the tests (ii) to (iv). For the convection fields we consider, we set the boundary layer region (see Figure 3.1) as Ω layer " pp0, 1q ˆp1 ´δlayer , 1qq Y pp1 ´δlayer , 1q ˆp0, 1qq Y pp0, 1q ˆp0, δ layer qq and we only measure the accuracy of u H outside this layer. We have also assessed the accuracy in L 2 pΩq norm and obtained similar qualitative conclusions. The reference solution u ref is computed using a P 1 approach with a tiny mesh size.

λ 1 λ 2 λ 3 inf v H PU H apv H , v H q }v H } 2 L 2
Ω Ω layer For all approaches, we fix the mesh size H " 1{16 for the approximation u H of u. We compare six approaches: the classical P 1 finite element approximation (which may be unstable in the advection-dominated regime), its stabilized Galerkin least-square variant P 1 -GLS, and our four approaches pP 1 , σ 1 P 1 q, pP 1 , σ 1,h P 1 q, pP 1 , σ 2,h P 1 q and pP 1 , σ 2,h P 1 q-GLS, respectively using the exact value of σ 1 , its approximation σ 1,h , and the approximation σ 2,h of σ 2 , either classical (as in (3.76) with a ss defined by (3.80) or (3.81)) or stabilized (as in (3.82)).

The comparison between P 1 and P 1 -GLS is used as an empirical measure of the instability of the problem. Likewise, comparing pP 1 , σ 2,h P 1 q and pP 1 , σ 2,h P 1 q-GLS allows to see the potential added value of a stabilization of the problem when using σ 2,h as an approximation of the invariant measure. The approach pP 1 , σ 1 P 1 q using the exact value of the invariant measure is of course the most accurate one, and performs equally well as (and often better than) P 1 -GLS. When we forbid ourselves to use that exact value of the invariant measure, pP 1 , σ 1,h P 1 q is the best method to use, and it does not require stabilization (see the third column of Tables 3.2 through 3.5). Note yet that, if one has to work with h " H, then pP 1 , σ 2,h P 1 q-GLS is the best method (see the second column of Tables 3.2 through 3.5), providing results the accuracy of which is around 8%. We also note the following fact. The two rightmost columns show tests that use a mesh to approximate σ that is not a subset of the mesh used to compute u. In that case, the approach pP 1 , σ 1,h P 1 q deteriorates. In the present state of our understanding, we are unable to explain this phenomenon. We therefore advocate to employ pP 1 , σ 1,h P 1 q with meshes that are a subset of one another, or, otherwise, to switch to pP 1 , σ 2,h P 1 q-GLS. Remark 3.20. For the Test (iv) reported on in Table 3.5, and in the particular case h " H, it turns out that ˆK σ 1,h is not positive for all K P T H (it is positive for all the other values of h considered, and for all the computations reported on in Tables 3.2 through 3.4). In that case, it is thus not possible to use the pP 1 , σ 1,h P 1 q method. However, it turns out, still for that value of h, that there exists κ h such that ˆK `σ0 2,h `κh σ 1,h ˘is positive for all K P T H . The pP 1 , σ 2,h P 1 q-GLS approach can thus be used.

General case

We now consider the general, not necessarily irrotational case. This time, b reads as b " `b0

x , b 0 y ˘T `λ1 `cosp2πxq sinp2πyq, sinp2πxq cosp2πyq ´45.05 Table 3.6 Definition of the parameters for the three discrete problems (v)-(vii) Tables 3.7 through 3.9 show our results, for H " 1{16 as in the previous section. The approaches evaluated are identical to those of Tables 3.2 through 3.5, with the notable exception of the approach pP 1 , σ 1 P 1 q since now the exact invariant measure σ 1 is unknown. The conditions in which we perform our tests are identical. The results confirm our conclusions of the previous section.

Remark 3.21. For the largest value of h used in Tables 3.7 through 3.9, it turns out that ˆK σ 1,h is not positive for all K P T H (see also Remark 3.20). But there still exists κ h such that ˆK `σ0 2,h `κh σ 1,h ˘is positive for all K P T H , which allows us to use the pP 1 , σ 2,h P 1 q-GLS approach.

Error (3.84)

(h " 1{17) (h " H{7) (h " 1{150) (h " 1{230) P 1 0.568 P 1 -GLS 0.0704 pP 1 , σ 1,h P 1 q -0.0390 0.146 0.0981 pP 1 , σ 2,h P 1 q 0.657 0.515 0.462 0.480 pP 1 , σ 2,h P 1 q-GLS 0.117 0.0672 0.0658 0.0660 Table 3 

Computational cost and efficiency

We now evaluate the computational cost of the most accurate of our approaches, namely the pP 1 , σ 1,h P 1 q method, given the results of the tests performed in the previous sections, as compared to the classical P 1 -GLS method.

As can be easily seen upon considering some particular situations where σ 1 is known analytically (some of these cases are considered in Section 3.4.3 above), the contrast of σ 1 over the domain, say measured by the ratio sup Ω σ 1 inf Ω σ 1 , may be huge, especially in the advection-dominated regime. Therefore, the stiffness matrix involved in the solution procedure for the modified equation (3.15) is often ill-conditioned. We therefore use, in our tests, a direct solver (from the UMFPACK library) for the linear algebraic systems. An alternate, equally effective approach is to use an iterative inversion algorithm together with a diagonal preconditioner. We have indeed tested such an approach in other tests not reproduced here, obtaining similar conclusions.

In particular, the diagonal preconditionner, although simple, turns out to be very effective in diminishing the number of iterations.

Fixed cost

We compare the pP 1 , σ 1,h P 1 q method and the P 1 -GLS method at fixed cost. Tables 3.10 through 3.12 show the accuracy of the two methods for the tests (v)-(vi)-(vii). Similar results have been obtained for our tests (i) through (iv). We observe that the P 1 -GLS is definitely more accurate than the pP 1 , σ 1,h P 1 q method. However, as already mentioned and as will be confirmed in the next tests, the latter approach is more adequate in a multiquery context, where several resolutions of the advection-diffusion equation (3.1)- (3.11) are to be performed.

cost Error (3.84) P 1 -GLS (H " 1{122) 4.76 0.00293 pP 1 , σ 1,h P 1 q (H " 1{16, h " H{7) 4.79 0.0390 Table 3.10 Test (v) cost Error (3.84) P 1 -GLS (H " 1{127) 6.42 0.00485 pP 1 , σ 1,h P 1 q (H " 1{16, h " H{7) 6.30 0.0549 Table 3.11 Test (vi) cost Error (3.84) P 1 -GLS (H " 1{144) 7.43 0.00143 pP 1 , σ 1,h P 1 q (H " 1{16, h " H{9) 7.09 0.0285 Table 3.12 Test (vii)

Fixed meshsize h

We fix the meshsize h " 1{2048. In order to measure the cost of the methods in a multiquery context, we distinguish, in the computational cost of the pP 1 , σ 1,h P 1 q method, (i) the offline cost, which comprises the assembling phase of the stiffness matrix, which itself involves the pre-computation of σ 1,h , and (ii) the online cost equal to the resolution time for the modified advection-diffusion equation.

Tables 3.13 through 3.15 show our results for the pP 1 , σ 1,h P 1 q method and the P 1 -GLS method for the tests (v)-(vi)-(vii). Again, similar results we do not show and which lead to similar conclusions have been obtained for our tests (i) through (iv). The two columns on the left of each table show the relative accuracy obtained for different mesh sizes H (employed, we recall, for the approximation of the advection-diffusion equation). The two columns on the right allow to compare the online cost of the pP 1 , σ 1,h P 1 q method, as defined above, with the total cost of the the P 1 -GLS method. The specific function used to measure the CPU time is clock_gettime() with the clock CLOCK_PROCESS_CPUTIME_ID.

The main two conclusions are, on the one hand, that the pP 1 , σ 1,h P 1 q method is more robust and allow for larger mesh sizes than the P 1 -GLS method, and, on the other hand, that the two approaches essentially share the same cost, if we assume that σ 1,h has been precomputed. Other tests, not reported on here, show that roughly ten solutions of the advection-diffusion equation are necessary to make the approach profitable if we take into account the cost to compute σ 1,h .

Error (3.84)

Online cost 1{H pP 1 , σ 1,h P 1 q P 1 -GLS pP 1 , σ 1,h P 1 q P 1 -GLS We here consider the Galerkin discretization of (3.85). Consider a mesh of Ω made of elements T P T h . Following Proposition 3.16, we take Σ h Ă H 1 pΩq the associated finite dimensional space made of continuous piecewise affine functions and introduce 

V h " " u P Σ h , Ω u " 1 * Ă V.

85).

For h sufficiently small, there exists a unique u h P V h solution to 

@v h P Σ h , a ‹ pu h , v h q " ˆΩ f v h `ˆBΩ g v h . ( 3 
P Σ h , a ‹ λ pu h , v h q " ˆΩ f v h `ˆBΩ g v h ,
is well-posed for any f P L 2 pΩq.

We now consider the iterations

$ ' & ' % Find u n`1 h P Σ h such that, for all v h P Σ h , a ‹ pu n`1 h , v h q `λ ˆΩ u n`1 h v h " a ‹ λ pu n`1 h , v h q " λ ˆΩ u n h v h `ˆΩ f v h `ˆBΩ g v h , (3.89) 
with the initial condition u 0 h " |Ω| ´1 (or any function in Σ h and of mean equal to 1). Thanks to the above argument, these problems are well-posed and define a sequence u n h P Σ h Ă H 1 pΩq. Furthermore, taking v h " 1 as test function, we see that all the functions u n h share the same mean, and due to the choice of u 0 h , we get u n h P V h for any n. We next prove that the sequence tu n h u nPN converges to a solution to (3.86). We recall that H 1 ´"0 pΩq "

" v P H 1 pΩq, ˆΩ v " 0 *
. We infer from (3.89) that, for any v h P Σ h X H 1

´"0 pΩq,

a ‹ pu n`1 h ´un h , v h q `λ ˆΩpu n`1 h ´un h q v h " λ ˆΩpu n h ´un´1 h q v h ,
from which we deduce that sup

v h PΣ h XH 1 ´"0 pΩq a ‹ pu n`1 h ´un h , v h q }v h } H 1 pΩq ´λ}u n`1 h ´un h } H 1 pΩq ď λ}u n h ´un´1 h } H 1 pΩq . (3.90)
Using the same arguments as above (this time for λ " 0 on Σ h X H 1

´"0 pΩq), we have that the bilinear form a ‹ satisfies an inf-sup condition on Σ h XH 1

´"0 pΩq with a constant γ ą 0 independent of h: inf

w h PΣ h XH 1 ´"0 pΩq sup v h PΣ h XH 1 ´"0 pΩq a ‹ pw h , v h q }w h } H 1 pΩq }v h } H 1 pΩq ě γ. (3.91)
We thus infer from (3.90) that

pγ ´λq}u n`1 h ´un h } H 1 pΩq ď λ}u n h ´un´1 h } H 1 pΩq .
Taking λ sufficiently small (so that 0 ă λ{pγ ´λq ă 1), we obtain that the sequence tu n h u nPN converges in H 1 pΩq to some u 8 h P V h . Passing to the limit n Ñ 8 in (3.89), we get that u 8 h is a solution to (3.86).

We now prove that (3.86) has a unique solution. Consider two solutions u h and u h to (3.86). Then u h ´uh P Σ h X H 1 ´"0 pΩq and satisfies a ‹ pu h ´uh , v h q " 0 for any v h P Σ h X H 1

´"0 pΩq. We deduce from (3.91) that u h ´uh " 0.

Step 2: estimate (3.87). Introducing the interpolant I h u P Σ h , we deduce from (3.91) that γ}I h u ´uh ´c} H 1 pΩq ď sup

w h PΣ h XH 1
´"0 pΩq a ‹ pI h u ´uh ´c, w h q }w h } H 1 pΩq , where c " Ω pI h u ´uh q. Using (3.85) and (3.86), we deduce from the above estimate that

γ}I h u ´uh ´c} H 1 pΩq ď sup w h PΣ h XH 1 ´"0 pΩq a ‹ pI h u ´u ´c, w h q }w h } H 1 pΩq ď `1 `}b} L 8 pΩq ˘}I h u ´u ´c} H 1 pΩq . (3.92)
We next write that

}u ´uh } H 1 pΩq ď }u ´Ih u `c} H 1 pΩq `}I h u ´uh ´c} H 1 pΩq ď C}u ´Ih u `c} H 1 pΩq [using (3.92)] ď C}∇pu ´Ih uq} L 2 pΩq ,
where, in the last line, we have used the Poincaré-Wirtinger inequality, as a consequence of the fact that c " Ω pI h u ´uh q " Ω pI h u ´uq. We then conclude using the approximation result }u ´Ih u} H 1 pΩq ď Ch}u} H 2 pΩq . This yields (3.87).

Appendix: Proof of Proposition 3.18

In order to prove Proposition 3.18, we follow and adapt the arguments of [START_REF] Brenner | The mathematical theory of Finite Element methods[END_REF]Chap. 8]. The proof relies on several technical results, the proof of which are given in the subsequent appendices 3.7 and 3.8. We fix some 0 ă η ď 1, and we recall (see (3.60)) that the bilinear form a ‹ η is defined by

a ‹ η pu, vq " ˆΩp∇u `buq ¨∇v `η ˆΩ u v.
We also define a η pu, vq " a ‹ η pv, uq.

Elliptic regularity results

Let q be such that 1 ă q ă `8 if d " 2 and 2d{pd `2q ď q ă `8 otherwise, and let f P L q pΩq. We consider the problem Find u P H 1 pΩq such that, for any v P H 1 pΩq, a ‹ η pu, vq " ˆΩ f v, (3.93) for which we have the following result.

Lemma 3.23. We work under the assumptions of Proposition 3.18 and assume that 0 ă η ď 1 and f P L q pΩq with q chosen as above. Then Problem (3.93) has a unique solution u P H 1 pΩq.

In addition, if η is sufficiently small, then u P W 2,q pΩq and it satisfies

› › › › u ´σ1 Ω u › › › › W 2,q pΩq ď C}f } L q pΩq (3.94)
for some C independent of η and f , where σ 1 is the invariant measure defined by (3.16)-(3.17)- (3.18).

We only prove this result in dimension 2 ď d ď 3 (see the assumptions of Proposition 3.18), but it certainly holds for larger dimensions.

Proof. The proof falls in two steps.

Step 1: existence and uniqueness of a solution. We first show that the bilinear form a ‹ η satisfies the pBNB1q condition on H 1 pΩq. Using the invariant measure σ 1 defined by (3.16)-(3.17)-(3.18), a simple computation indeed yields that, for any v P H 1 pΩq,

a η pv, σ 1 vq " ˆΩ σ 1 |∇v| 2 `1 2 ˆΩp∇σ 1 `bσ 1 q ¨∇pv 2 q `η ˆΩ σ 1 v 2 " ˆΩ σ 1 |∇v| 2 `η ˆΩ σ 1 v 2 (3.95) ě pinf σ 1 q minp1, ηq }v} 2 H 1 pΩq ě c minp1, ηq }v} H 1 pΩq }σ 1 v} H 1 pΩq , (3.96) 
for some c ą 0 independent of η. For any w P H 1 pΩq, we set v " σ ´1 1 w, which belongs to H 1 We thus deduce the pBNB1q condition. The bilinear form a ‹ η also satisfies the pBNB2q condition on H 1 pΩq. Indeed, if v P H 1 pΩq is such that a ‹ η pu, vq " 0 for any u P H 1 pΩq, then we have a ‹ η pσ 1 v, vq " 0, and we have thus found a function w P H 1 pΩq (namely w " σ 1 v) such that a ‹ η pw, σ ´1 1 wq " 0. The estimate (3.97) shows that w (and hence v) vanishes, which implies the pBNB2q condition on H 1 pΩq.

We have chosen f P L q pΩq with an exponent q such that f P pH 1 pΩqq 1 . We thus obtain that Problem (3.93) is well-posed.

Step 2: W 2,q estimate. Introduce u " u `σ1 ´σ1 Ω u, which satisfies

$ ' & ' % ´div p∇u `buq " F in Ω, Ω u " 1,
p∇u `buq ¨n " 0 on BΩ, with

F " f ´ηu " f ´ηu `ησ 1 ´ησ 1 Ω u.
Using v " 1 as test function in (3.93), we see that η Ω u " Ω f . We hence get that F " f ´ηpu ´σ1 q ´σ1 Ω f.

Using that σ 1 P W 2,s pΩq for any 1 ă s ă 8, we deduce that, for any s ą 1,

}F } L s pΩq ď C}f } L s pΩq `η}u ´σ1 } L s pΩq , ( 3.98) 
where we only know, at this stage, that u P H 1 pΩq. To proceed and obtain a W 2,q estimate, we distinguish two cases, whether d " 2 or d " 3.

Suppose first that d " 2. Using the continuous injection H 1 pΩq Ă L q pΩq, we deduce from (3.98) (written with s " q) that F P L q pΩq. We are thus in position to apply Proposition 3.7, which yields (see (3.24)) that there exists some C independent of η such that }u ´σ1 } W 2,q pΩq ď C}F } L q pΩq ď C}f } L q pΩq `Cη}u ´σ1 } L q pΩq . For η sufficiently small, this implies (3.94).

Suppose now that d " 3. If q ď 6, we proceed as above, using the continuous injection H 1 pΩq Ă L q pΩq. We now turn to the case q ą 6. Using (3.98) for s " 6, we deduce that F P L 6 pΩq. Applying Proposition 3.7, we obtain that }u ´σ1 } W 2,6 pΩq ď C}f } L q pΩq `Cη}u ´σ1 } L 6 pΩq , which implies that }u ´σ1 } W 2,6 pΩq ď C}f } L q pΩq . Using the continuous injection W 2,6 pΩq Ă L 8 pΩq, we deduce that }u ´σ1 } L 8 pΩq ď C}f } L q pΩq . The estimate (3.98), written with s " q, now yields }F } L q pΩq ď C}f } L q pΩq `η}u ´σ1 } L q pΩq ď C}f } L q pΩq , from which, applying again Proposition 3.7, we infer (3.94).

Likewise, for any f P L 2 pΩq, we consider the problem Find u P H 1 pΩq s.t., for any v P H 1 pΩq, a ‹ η pv, uq " a η pu, vq " ˆΩ f v, (3.99)

for which we have the following result.

Lemma 3.24. We work under the assumptions of Proposition 3.18 and assume that 0 ă η ď 1 and f P L 2 pΩq. Then Problem (3.99) has a unique solution u P H 1 pΩq. In addition, u P H 2 pΩq and it satisfies

› › › › u ´ Ω u › › › › H 2 pΩq ď C}f } L 2 pΩq (3.100)
for some C independent of η and f .

A similar result certainly holds for f P L q pΩq with q chosen such that f P pH 1 pΩqq 1 , yielding a control on

› › › › u ´ Ω u › › › › W 2,q pΩq
. We will however not need such a result and therefore do not pursue in that direction. As for Lemma 3.23, we only prove Lemma 3.24 in dimension 2 ď d ď 3 (see the assumptions of Proposition 3.18), but it certainly holds for larger dimensions.

Proof. The proof falls in three steps.

Step 1: existence and uniqueness of a solution. The bilinear form a η satisfies the pBNB1q condition on H 1 pΩq, as a direct consequence of (3.96). It also satisfies the pBNB2q condition on H 1 pΩq. Indeed, if v P H 1 pΩq is such that a η pu, vq " 0 for any u P H 1 pΩq, then we have a η pσ ´1 1 v, vq " 0, and we have thus found a function w P H 1 pΩq (namely w " σ ´1 1 v) such that a η pw, σ 1 wq " 0. The estimate (3.96) shows that w (and hence v) vanishes, which implies the pBNB2q condition on H 1 pΩq. We thus obtain that Problem (3.99) is well-posed.

Step 2: H 1 estimate. We claim that the solution u to (3.99) satisfies

› › › › u ´ Ω u › › › › H 1 pΩq ď C}f } L 2 pΩq (3.101)
for some C independent of η and f . Consider indeed u " u ´ Ω u. Using the Poincaré-Wirtinger inequality and (3.95) for the function u, we have

}u} 2 H 1 pΩq ď C }∇u} 2 L 2 pΩq ď Ca η pu, σ 1 uq " Ca η pu, σ 1 uq ´Ca η p1, σ 1 uq Ω u " C ˆΩ f σ 1 u ´Cη ˆΩ σ 1 u Ω u ď C}σ 1 } L 8 pΩq }f } L 2 pΩq }u} H 1 pΩq `Cη}σ 1 } L 8 pΩq }u} H 1 pΩq }u} L 2 pΩq .
We hence deduce that

}u} H 1 pΩq ď C `}f } L 2 pΩq `η}u} L 2 pΩq ˘. (3.102)
We now write (3.95) for the function u, from which we deduce that

}∇u} 2 L 2 pΩq `η}u} 2 L 2 pΩq ď Ca η pu, σ 1 uq " C ˆΩ f σ 1 u ď C}f } L 2 pΩq }u} L 2 pΩq , which implies that η}u} L 2 pΩq ď C}f } L 2 pΩq . (3.103)
Inserting this estimate in (3.102), we obtain the claimed estimate (3.101).

Step 3: H 2 estimate. We proceed as in the proof of Proposition 3.7. Introducing again

u " u ´ Ω u, we observe that $ ' & ' % ´∆u " F in Ω, Ω u " 0, ∇u ¨n " 0 on BΩ, with F " f ´b∇u ´ηu ´η Ω u. We compute that }F } L 2 pΩq ď }f } L 2 pΩq `}b} L 8 pΩq }u} H 1 pΩq `η}u} L 2 pΩq `η}u} L 2 pΩq
and we deduce, using (3.101) and (3.103), that }F } L 2 pΩq ď C}f } L 2 pΩq . We are then in position to use [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Theorem 3.12], which implies that u P H 2 pΩq with

}u} H 2 pΩq ď C}F } L 2 pΩq ď C}f } L 2 pΩq .
This concludes the proof of (3.100).

Discretized problems

We now consider the discretization of Problems (3.93) and (3.99). Let f P L 2 pΩq and let Σ h Ă H 1 pΩq be the P 1 approximation space associated to a regular quasi-uniform polyhedral mesh of Ω. Then, there exists h 0 independent of η such that, for sufficiently small η and any h ď h 0 , there exists a unique u h P Σ h solution to

@v h P Σ h , a ‹ η pu h , v h q " ˆΩ f v h . (3.104)
Proof. The proof follows the lines of that of Theorem 3.22. Let λ ą 0. We consider the iterations

$ ' & ' % Find u n`1 h P Σ h such that, for all v h P Σ h , a ‹ pu n`1 h , v h q `λ ˆΩ u n`1 h v h " a ‹ λ pu n`1 h , v h q " pλ ´ηq ˆΩ u n h v h `ˆΩ f v h , (3.105) with the initial condition u 0 h " η ´1 Ω f (or any function in Σ h such that η Ω u 0 h " Ω f
). In view of (3.88), these problems are well-posed for any h ď h 0 , where h 0 is independent of η. They thus define a sequence u n h P Σ h Ă H 1 pΩq. Furthermore, taking v h " 1 as test function, we see that

λ ˆΩ u n`1 h " pλ ´ηq ˆΩ u n h `ˆΩ f.
Our choice of u 0 h implies that all the functions u n h share the same mean. We next prove that the sequence tu n h u nPN converges to a solution to (3.104). We recall that H 1

´"0 pΩq "

" v P H 1 pΩq, ˆΩ v " 0 * . We infer from (3.105) that, for any v h P Σ h X H 1 ´"0 pΩq, a ‹ pu n`1 h ´un h , v h q `λ ˆΩpu n`1 h ´un h q v h " pλ ´ηq ˆΩpu n h ´un´1 h q v h ,
from which we deduce that sup

v h PΣ h XH 1 ´"0 pΩq a ‹ pu n`1 h ´un h , v h q }v h } H 1 pΩq ´λ}u n`1 h ´un h } H 1 pΩq ď pλ ´ηq}u n h ´un´1 h } H 1 pΩq . (3.106)
123 Stable approximation of the advection-diffusion equation using the invariant measure Using (3.91), we infer from (3.106) that

pγ ´λq}u n`1 h ´un h } H 1 pΩq ď pλ ´ηq}u n h ´un´1 h } H 1 pΩq .
Taking λ sufficiently small (so that 0 ă λ{pγ ´λq ă 1) and η ă λ, we obtain that the sequence tu n h u nPN converges in H 1 pΩq to some u 8 h P Σ h . Passing to the limit n Ñ 8 in (3.105), we get that u 8 h is a solution to (3.104). We now prove that (3.104) has a unique solution. Consider two solutions u h and u h to (3.104).

Then u h ´uh P Σ h X H 1 ´"0 pΩq and satisfies a ‹ pu h ´uh , v h q " ´η ˆΩpu h ´uh q v h for any v h P Σ h .

We deduce from (3.91) that

γ}u h ´uh } H 1 pΩq ď η}u h ´uh } H 1 pΩq ,
which implies, whenever η ă γ, that u h " u h .

Theorem 3.26 (Discretization of Problem (3.99)). We assume that (3.9)-(3.42)-(3.43) hold, and that 0 ă η ď 1. Then, there exists h 0 independent of η such that, for sufficiently small η and any h ď h 0 , there exists a unique u h P Σ h solution to

@v h P Σ h , a η pu h , v h q " ˆΩ f v h . (3.107)
Proof. The proof follows the lines of that of Theorem 3.25. We consider the iterations g " 0). We have shown in Proposition 3.16 that }σ 1,h ´σ1 } H 1 pΩq ď Ch, and we have shown in Lemma 3.4 that σ 1 is positive and bounded away from 0. We hence have Ω σ 1,h ą 0 when h is sufficiently small, and it is thus possible to pick u 0 h as a constant function. The problems (3.108) are well-posed for any h ď h 0 , where h 0 is independent of η. Consider indeed a basis pφ i q 1ďiďI of Σ h . Since a ‹ λ satisfies the inf-sup condition (3.88) on Σ h as soon as h ď h 0 , we know that the matrix K, defined by K ij " a ‹ λ pφ j , φ i q for any 1 ď i, j ď I, is invertible. The matrix K T is therefore invertible. This implies that (3.108) are indeed well-posed for any h ď h 0 , and thus define a sequence u n h P Σ h Ă H 1 pΩq. Furthermore, taking v h " σ 1,h as test function, we see that

$ ' & ' % Find u n`1 h P Σ h such that, for all v h P Σ h , apu n`1 h , v h q `λ ˆΩ u n`1 h v h " a λ pu n`1 h , v h q " pλ ´ηq ˆΩ u n h v h `ˆΩ f v h , ( 3 
λ ˆΩ u n`1 h σ 1,h " pλ ´ηq ˆΩ u n h σ 1,h `ˆΩ f σ 1,h .
Our choice of u 0 h implies that, for any n, we have

η Ω u n h σ 1,h " Ω f σ 1,h . (3.109) Let u n h " u n h ´ Ω u n h .
We infer from (3.108) that, for any

v h P Σ h , apu n`1 h , v h q `λ ˆΩ u n`1 h v h " pλ ´ηq ˆΩ u n h v h `ˆΩ f v h . Taking now v h P Σ h X H 1
´"0 pΩq, where we recall that H 1

´"0 pΩq "

" v P H 1 pΩq, ˆΩ v " 0 * , we get apu n`1 h , v h q `λ ˆΩ u n`1 h v h " pλ ´ηq ˆΩ u n h v h `ˆΩ f v h , hence apu n`1 h ´un h , v h q `λ ˆΩpu n`1 h ´un h q v h " pλ ´ηq ˆΩpu n h ´un´1 h q v h ,
from which we deduce that sup

v h PΣ h XH 1 ´"0 pΩq apu n`1 h ´un h , v h q }v h } H 1 pΩq ´λ}u n`1 h ´un h } H 1 pΩq ď pλ ´ηq}u n h ´un´1 h } H 1 pΩq . (3.110)
The bilinear form a ‹ satisfies an infsup condition on Σ h X H 1

´"0 pΩq for h sufficiently small (see (3.91)). Considering a basis pφ i q 1ďiďI of Σ h X H 1

´"0 pΩq, we get that the matrix K defined by K ij " a ‹ pφ j , φ i q for any 1 ď i, j ď I, is invertible. The matrix K T is therefore invertible, which implies that the bilinear form a also satisfies an infsup condition on Σ h X H 1 ´"0 pΩq (for h sufficiently small): inf

w h PΣ h XH 1
´"0 pΩq sup

v h PΣ h XH 1 ´"0 pΩq apw h , v h q }w h } H 1 pΩq }v h } H 1 pΩq ě γ a . (3.111)
We then infer from (3.110) that

pγ a ´λq}u n`1 h ´un h } H 1 pΩq ď pλ ´ηq}u n h ´un´1 h } H 1 pΩq .
Taking λ sufficiently small (so that 0 ă λ{pγ a ´λq ă 1) and η ă λ, we obtain that the sequence tu n h u nPN converges in H 1 pΩq to some u 8 h P Σ h . We also deduce from (3.109) that

η Ω u n h σ 1,h `η Ω u n h Ω σ 1,h " Ω f σ 1,h . Since Ω σ 1,h ‰ 0, we obtain that Ω u n h converges to some ℓ satisfying η Ω u 8 h σ 1,h `η ℓ Ω σ 1,h " Ω f σ 1,h .
We thus get that the sequence tu n h u nPN converges in H 1 pΩq to u 8 h :" ℓ `u8 h P Σ h . Passing to the limit n Ñ 8 in (3.108), we get that u 8 h is a solution to (3.107). We now prove that (3.107) has a unique solution. Consider two solutions u 1,h and u 2,h to (3.107). Introduce u 1,h " u 1,h ´ Ω u 1,h and likewise for u 2,h . Then u 1,h ´u2,h P Σ h X H 1 ´"0 pΩq and satisfies apu 1,h ´u2,h , v h q " ´η ˆΩpu 1,h ´u2,h q v h for any v h P Σ h X H 1

´"0 pΩq. We deduce 

η ˆΩ u 1,h σ 1,h " ˆΩ f σ 1,h
and likewise for u 2,h , which implies that u 1,h " u 2,h .

Weight function

For some κ ě 1, we set, for any x and z in Ω,

χ z pxq " a |x ´z| 2 `pκhq 2 . (3.112)
It is easy to show that there exists C (independent of κ and h) such that @T P T h , @z P Ω,

sup xPT χ z pxq inf xPT χ z pxq ď C.
Likewise, for any β P N d and Λ P R, there exists C (independent of κ and h) such that, for any x and z in Ω,

ˇˇB β pχ Λ z qpxq ˇˇď Cχ Λ´|β| z pxq. (3.113)
The following estimate will be useful: Proof. Let R be the diameter of Ω, so that, for any x P Ω, we have Ω Ă B R pxq. We write

ˆΩ χ ´θ z pxqdz ď ˆBR pxq χ ´θ z pxqdz " C d ˆR 0 r d´1 pr 2 `pκhq 2 q θ{2 dr.
We split the integral from r " 0 to r " κh (for which we write that r 2 `pκhq 2 ě pκhq 2 ) and from r " κh to r " R (for which we write that r 2 `pκhq 2 ě r 2 ). A straightforward computation then leads to (3.114).

We now recall some useful properties of Σ h , the subset of H 1 pΩq of piecewise affine functions. First, for any Λ P R, there exists C such that, for any ψ P H 1 pΩq such that ψ |T P H 2 pT q for any T P T h , there exists

I h ψ P Σ h such that ˆΩ χ Λ z pψ ´Ih ψq 2 `h2 ˆΩ χ Λ z |∇pψ ´Ih ψq| 2 ď Ch 4 ÿ T PT h ˆT χ Λ z |∇ 2 ψ| 2 (3.115)
where C is independent of z, κ, h and ψ. Second, we have, for any Λ P R and any

ψ h P Σ h , that ÿ T PT h ˆT χ Λ z |∇ψ h | 2 ď Ch ´2 ˆΩ χ Λ z ψ 2 h .
(3.116)

Numerical Green functions

For any element T P T h of the mesh, we introduce a function δ T P C 8 0 pT q such that δ T ě 0 on T and ˆT δ T " 1.

Let z P Ω such that z does not lie on an edge of the mesh. We call K z the element containing z, and set δ z " δ K z . For any function P which is piecewise constant on T h , we thus have ˆΩ δ z P " ˆKz δ z P " P pzq ˆKz δ z " P pzq.

(3.117)

It is possible to build δ z such that it satisfies the following bounds:

@k P N, }∇ k δ z } L 8 pΩq ď C k h d`k .
Note that δ z depends on h which is the diameter of K z .

Let ν P R d be a constant vector. Since δ z P C 8 0 pK z q, we have that ν ¨∇δ z P L 2 pΩq. Problem (3.99) is thus well posed for the right-hand side ν ¨∇δ z (see Lemma 3.24). We hence define g z P H 1 pΩq such that

@v P H 1 pΩq, a ‹ η pv, g z q " ´ˆΩ pν ¨∇δ z q v. (3.118)
Likewise, we introduce g z h P Σ h such that

@v P Σ h , a ‹ η pv, g z h q " ´ˆΩ pν ¨∇δ z q v. (3.119)
In view of Theorem 3.26, we know that there exists h 0 independent of η such that, for any h ă h 0 , the above problem is well-posed.

For any λ ą 0, we define

M h,λ " sup zPΩ, z not on edges d ˆΩ χ d`λ z ´|g z ´gz h | 2 `|∇pg z ´gz h q| 2 ¯(3.120)
with χ z defined by (3.112). The following lemma will be most useful:

Lemma 3.28. We work under the assumptions of Proposition 3.18. Then there exists h 0 ą 0, λ ą 0, κ ě 1 (possibly depending on η) and C κ,λ,η (possibly depending of κ, λ and η) such that, for any h such that 0 ă h ď h 0 and κh ď 1, we have

M 2 h,λ ď C κ,λ,η h λ .
The proof of this lemma is postponed until Appendix 3.7. The restriction h ď h 0 comes from the fact that the existence of g z h is only ensured for sufficiently small h. A careful inspection of the proof shows that one can take κ " C{η and C κ,λ,η " C κ 4`d`λ .

We proceed in the sequel of this Appendix 3.6 with the proof of Proposition 3.18.

Proof of (3.62)

Let u and u h (resp. in H 1 pΩq and Σ h ) satisfying the assumptions of Proposition 3.18. We write, for any fixed z not lying on the mesh edges, that [int. by part and δ z " 0 on BΩ] (3.121)

ν ¨∇u h pzq " ˆΩ δ z pν ¨∇u h q [eq. ( 3 
In Sections 3.6.5 and 3.6.5 below, we successively bound the two terms of the right-hand side of (3.121). In Section 3.6.5, we conclude the proof of (3.62).

Bound on the second term of the right hand side of (3.121) In view of the assumptions of Proposition 3.18, we know that u P W 1,p pΩq for some p ě 2. Let 1 ă q ď 2 such that 1 " 1 p `1 q .

We know that g z h ´gz P H 1 pΩq Ă W 1,q pΩq. By Hölder inequality and since 0 ă η ď 1, we write that

|a ‹ η pu, g z h ´gz q| ď ˆΩ |∇u| |∇pg z h ´gz q| `}b} L 8 ˆΩ |u| |∇pg z h ´gz q| `ˆΩ |u| |g z h ´gz | ď p1 `}b} L 8 q `}τ ´1 z ∇u} L p pΩq `}τ ´1 z u} L p pΩq }τ z ∇pg z h ´gz q} L q pΩq `}τ z pg z h ´gz q} L q pΩq ˘(3.122)
where the function τ z is defined by (3.124) below. Since q ď 2, there exists s ą 1 such that 1 " 1{s `q{2 (if q " 2, we take s " 8). Introducing real numbers α and β such that α `β " 1, we write

}τ z ∇pg z h ´gz q} q L q pΩq ď }τ αq z } L s pΩq › › ›τ βq z |∇pg z h ´gz q| q › › › L 2{q pΩq .
We hence have

}τ z ∇pg z h ´gz q} 2 L q pΩq ď }τ αq z } 2{q L s pΩq ˆΩ τ 2β z |∇pg z h ´gz q| 2 . (3.123)
Inspired by [START_REF] Rannacher | Some optimal error estimates for piecewise linear finite element approximations[END_REF], we take 

τ z " χ pd`λq{p z , 2β " p, ( 3 
}τ αq z } 2{q L s pΩq " › › ›χ ´pd`λq z › › › 2{pqsq L 1 pΩq " › › ›χ ´pd`λq z › › › pp´2q{p L 1 pΩq
.

If s " 8 (which corresponds to the case p " q " 2), the above estimate still holds, since α " 0 in that case. We thus get from (3.125) that

}τ z ∇pg z h ´gz q} L q pΩq ď M h,λ › › ›χ ´pd`λq z › › › pp´2q{p2pq L 1 pΩq
.

We likewise have

}τ z pg z h ´gz q} L q pΩq ď M h,λ › › ›χ ´pd`λq z › › › pp´2q{p2pq L 1 pΩq
.

We then deduce from (3.122) that

|a ‹ η pu, g z h ´gz q| ď 2 p1 `}b} L 8 q M h,λ › › ›χ ´pd`λq z › › › pp´2q{p2pq L 1 pΩq `}τ ´1 z ∇u} L p pΩq `}τ ´1 z u} L p pΩq ˘. (3.126)
Using (3.114) with θ " d `λ, and noting that χ z pxq " χ x pzq, we get

› › ›χ ´pd`λq z › › › L 1 pΩq ď C d 1 pκhq λ ˆ1 d `1 λ ˙.
Inserting this estimate in (3.126), using Lemma 3.28 and the fact that κ ě 1, we obtain

|a ‹ η pu, g z h ´gz q| ď C κ,λ,η h λ{2 ˆ1 h λ ˙pp´2q{p2pq `}τ ´1 z ∇u} L p pΩq `}τ ´1 z u} L p pΩq
where C κ,λ,η is independent of h, but depends on κ, λ and η. We denote it C η in the sequel. We integrate the p-th power of the above relation with respect to z:

ˆΩ |a ‹ η pu, g z h ´gz q| p dz ď C η h λ ˆˆΩ }τ ´1 z ∇u} p L p pΩq dz `ˆΩ }τ ´1 z u} p L p pΩq dz " C η h λ ˆˆΩ |∇upxq| p "ˆΩ τ ´p z pxqdz ȷ dx `ˆΩ |upxq| p "ˆΩ τ ´p z pxqdz ȷ dx ˙. (3.127)
Let us bound ˆΩ τ ´p z pxqdz. We write, using again (3.114) with θ " d `λ, that

@x P Ω, ˆΩ τ ´p z pxqdz " ˆΩ χ ´pd`λq z ď C h λ .
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We hence infer from (3.127) that

ˆΩ |a ‹ η pu, g z h ´gz q| p dz ď C η ˆˆΩ |∇u| p `ˆΩ |u| p ˙ď C η }u} p W 1,p pΩq . (3.128)
Bound on the first term of the right hand side of (3.121)

We denote F pzq " ˆΩ δ z pxq ν ¨∇upxq dx the first term of the right-hand side of (3.121). Recalling that δ z is supported in K z , and using the Hölder inequality, we have, for any z P Ω, |F pzq| ď }∇u} L p pK z q }δ z } L q x pK z q .

We compute that

}δ z } q L q x pK z q ď }δ z } q L 8
x pK z q ˆKz dx ď Ch ´qd h d , thus }δ z } L q x pK z q ď Ch ´d{p , hence

|F pzq| ď C}∇u} L p pK z q h ´d{p .
We integrate the p-th power of the above estimate with respect to z:

ˆΩ |F pzq| p dz ď Ch ´d ˆΩ dz ˆKz |∇upxq| p dx " Ch ´d ÿ T PT h ˆT dz ˆKz |∇upxq| p dx " Ch ´d ÿ T PT h ˆT dz ˆT |∇upxq| p dx " Ch ´d ÿ T PT h h d ˆT |∇upxq| p dx " C ˆΩ |∇upxq| p dx, (3.129)
where we have used that K z " T when z P T .

Proof of (3.62)

The right-hand side of (3.121) is the sum of two functions of z, the L p norm of which is bounded from above (up to a multiplicative constant independent of h) by }u} W 1,p pΩq , in view of (3.128) and (3.129). We thus get

}∇u h } L p pΩq ď C η }u} W 1,p pΩq
for any h ă h 0 pηq (this restriction comes from the fact that, in Lemma 3.28, we work in the regime κh ď 1 for some κ that depends on η), where C η and h 0 pηq a priori depend on η. This concludes the proof of (3.62). To obtain a bound on u ´uh , we introduce the interpolant I h u P Σ h . We then note that u ´Ih u P H 1 pΩq, u h ´Ih u P Σ h and that, in view of (3.61), we have, for any v P Σ h , a ‹ η ´pu ´Ih uq ´pu h ´Ih uq, v ¯" 0.

Furthermore, we observe that u ´Ih u P W 1,p pΩq. We are thus in position to write (3.62), that is

}∇pu h ´Ih uq} L p pΩq ď C η }∇pu ´Ih uq} L p pΩq .
Thus, we get that }∇pu ´uh q} L p pΩq ď }∇pu ´Ih uq} L p pΩq `}∇pI h u ´uh q} L p pΩq ď C η }∇pu ´Ih uq} L p pΩq and we conclude using an approximation result (see e.g. [79, eq. (1.5)]), stating that, for any u P W 2,p pΩq, we have }u ´Ih u} W 1,p pΩq ď Ch}u} W 2,p pΩq . This yields (3.63).

Appendix: Proof of Lemma 3.28

The proof of Lemma 3.28 relies on four technical results, that we state below and prove in Appendix 3.8. We next turn here to the proof of Lemma 3.28.

Proposition 3.29. Assume that b P pL 8 pΩqq d and that κ and h are such that κh ď 1. Let w P H 1 pΩq and w h P Σ h such that @v P Σ h , a ‹ η pv, w ´wh q " 0.

(3.130)

We set e " w ´wh . Then there exists C ą 0, independent of η, κ and h, such that

ˆΩ χ d`λ z |∇e| 2 ď C ˆΩ χ d`λ´2 z |e| 2 `C ˆΩ χ d`λ z |∇pw ´Ih wq| 2 `χd`λ´2 z |w ´Ih w| 2 .
Lemma 3.30. Assume that (3.94) holds for any q such that 2d{pd `2q ă q ă 8. Assume also that 2 ď d ď 3 and that 0 ă λ ă 4 ´d. Let ζ ą 0 and x 0 P Ω, and set

χpxq " a |x ´x0 | 2 `ζ2 . ( 3 

.131)

Let f P H 1 pΩq. The solution v P H 1 pΩq to the problem

@ϕ P H 1 pΩq, a ‹ η pv, ϕq " ˆΩ f ϕ (3.132) satisfies ˆΩ χ ´d´λ ˇˇ∇ 2 v ˇˇ2 ď C 2 η ζ ´2 ˆΩ χ 4´d´λ `|f | 2 `|∇f | 2 ˘,
where C η is independent of x 0 and ζ (but a priori depends on η), and where σ 1 is the invariant measure defined by (3.16)-(3.17). In addition, C η ď C{η for some C independent of η.

Remark 3.31. Using the same arguments as for the proof of Lemma 3.30, it is also possible to show that

ˆΩ χ ´d´λ ˇˇˇ∇ 2 ˆv ´σ1 Ω v ˙ˇˇˇ2 ď Cζ ´2 ˆΩ χ 4´d´λ `|f | 2 `|∇f | 2 ˘,
where C is independent of η, x 0 and ζ.

Proposition 3.32. Assume that b P pL 8 pΩqq d and that (3.94) holds for any q such that 2d{pd 2q ă q ă 8. Assume also that 2 ď d ď 3 and that 0 ă λ ă 4 ´d. Let w P H 1 pΩq and w h P Σ h such that the Galerkin orthogonality (3.130) holds. We set e " w ´wh . Then, for any ε ą 0 small enough, there exists κ 1 pε, ηq ě 1 (which a priori depends on ε and η) such that, for any κ ě κ 1 pε, ηq and any h such that κh ď 1, we have

ˆΩ χ d`λ´2 z |e| 2 ď 8ε ˆΩ χ d`λ z |∇e| 2 ,
where χ z is defined by (3.112).

The proof of Proposition 3.32 shows that it is sufficient to take κ 1 pε, ηq ě C εη for some C independent of ε and η.

Lemma 3.33. Assume that b P pL 8 pΩqq d , that (3.94) holds for any q such that 2d{pd `2q ă q ă 8, and that (3.100) holds. Assume also that 2 ď d ď 3 and that 0 ă λ ă 4 ´d. Consider χ defined by (3.131) and assume that ζ ď 1.

Let f P H 1 0 pΩq and consider the solution v P H 1 pΩq of the adjoint problem @ϕ P H 1 pΩq, a ‹ η pϕ, vq " ˆΩpν ¨∇f q ϕ. (3.133)

Then v satisfies ˆΩ χ d`λ |∇ 2 v| 2 ď C ˆΩ χ d`λ |∇f | 2 `C2 η ζ ´2 ˆΩ χ d`λ f 2 ,
where C is independent of η, x 0 and ζ, and C η is independent of x 0 and ζ (but a priori depends on η). In addition, C η ď C{η for some C independent of η.

Thanks to the above results, we are in position to prove Lemma 3.28.

Proof of Lemma 3.28. From the assumptions of Lemma 3.28, we know that (3.9)-(3.42)-(3.43) hold. We can thus take λ such that 0 ă λ ă 1 ď 4´d, and all the assumptions of Proposition 3.29, Lemma 3.30, Proposition 3.32 and Lemma 3.33 are fulfilled. Let g z and g z h be the solutions to (3.118) and (3.119). They satisfy the Galerkin orthogonality (3.130), namely a ‹ η pv, g z ´gz h q " 0 for any v P Σ h . Let ε ą 0 be small enough, as in Proposition 3.32. Combining Propositions 3.29 and 3.32, we obtain that there exists κ 1 pε, ηq ě 1 (a priori depending on ε and η) such that, for any κ ě κ 1 pε, ηq and any h such that κh ď 1,

ˆΩ χ d`λ z |∇pg z ´gz h q| 2 `χd`λ´2 z pg z ´gz h q 2 ď pC `1q ˆΩ χ d`λ´2 z pg z ´gz h q 2 `C ˆˆΩ χ d`λ´2 z pg z ´Ih g z q 2 `ˆΩ χ d`λ z |∇pg z ´Ih g z q| 2 ď 8pC `1qε ˆΩ χ d`λ z |∇pg z ´gz h q| 2 `C ˆˆΩ χ d`λ´2 z pg z ´Ih g z q 2 `ˆΩ χ d`λ z |∇pg z ´Ih g z q| 2
ẇhere C is independent of ε, κ and η. We pick ε such that 8pC `1qε ď 1{2 and we obtain that

ˆΩ χ d`λ z |∇pg z ´gz h q| 2 `χd`λ´2 z pg z ´gz h q 2 ď C ˆˆΩ χ d`λ´2 z pg z ´Ih g z q 2 `ˆΩ χ d`λ z |∇pg z ´Ih g z q| 2
˙.

We have simply written that the error g z ´gz h is bounded by the best approximation error. However, this is not a trivial estimate, as all errors are weighted.

We next proceed as follows, successively using (3.115) and the fact that h ď κh ď χ z :

ˆΩ χ d`λ z |∇pg z ´gz h q| 2 `χd`λ´2 z pg z ´gz h q 2 ď C ˆΩ `χd`λ´2 z h 4 `χd`λ z h 2 ˘|∇ 2 g z | 2 ď Ch 2 ˆΩ χ d`λ z |∇ 2 g z | 2 . (3.134)
We have used at the second line the regularity assumption (3.100) with q " 2. Applying Lemma 3.33 with f " δ z P C 8 0 pΩq and χ " χ z , we obtain

ˆΩ χ d`λ z |∇ 2 g z | 2 ď C ˆΩ χ d`λ z |∇δ z | 2 `C2 η κ 2 h 2 ˆΩ χ d`λ z pδ z q 2 ď C ˆKz χ d`λ z |∇δ z | 2 `C η 2 κ 2 h 2 ˆKz χ d`λ z pδ z q 2 ď C h ´d´2 }χ z } d`λ L 8 pK z q ˆ1 `1 η 2 κ 2 ˙,
where we have used that }δ z } L 8 pK z q ď Ch ´d and }∇δ z } L 8 pK z q ď Ch ´d´1 . Using that }χ z } 2 L 8 pK z q ď Ch 2 p1 `κ2 q, we get that

ˆΩ χ d`λ z |∇ 2 g z | 2 ď C κ,λ,η h λ´2 , (3.135)
where C κ,λ,η depends on κ, λ and η but not on h (more precisely, since 1 ď κ, one can take

C κ,λ,η " C κ 2`d`λ η ´2). Introduce M h,λ pzq " d ˆΩ χ d`λ z ´|g z ´gz h | 2 `|∇pg z ´gz h q| 2 ¯,
133 Stable approximation of the advection-diffusion equation using the invariant measure so that M h,λ " sup z M h,λ pzq. Using that χ z is bounded (this is a consequence of the regime κh ď 1), we write, collecting (3.134) and (3.135), that

M 2 h,λ pzq ď C ˆΩ χ d`λ z |∇pg z ´gz h q| 2 `χd`λ´2 z pg z ´gz h q 2 ď C κ,λ,η h λ .
Taking the supremum over z yields the claimed bound on M h,λ and thus concludes the proof of Lemma 3.28.

Appendix: Technical proofs

We collect in this Appendix the proofs of Proposition 3.29, Lemma 3.30, Proposition 3.32 and Lemma 3.33.

Proof of Proposition 3.29

We set e " w ´wh , r e " I h w ´wh and ψ " χ d`λ z r e. We have 

ˆΩ χ d`λ z |∇e| 2 `η ˆΩ χ d`λ z e 2 " ˆΩ ∇pχ d`λ z eq ¨∇e ´ˆΩ e∇pχ d`λ z q ¨∇e `η ˆΩ χ d`λ z e 2 " a ‹ η pχ d`λ z e,
`pC `}b} L 8 }χ z } L 8 q ˆΩ χ d`λ´1 z |∇e| |e|.
Since we work in the regime κh ď 1, we have that, for any z P Ω, 

}χ z } L 8 ď C, ( 3 
ď Ch 2 ˆΩ χ ´d´λ z ´|χ d`λ´2 z r e| 2 `|χ d`λ´1 z | 2 |∇r e| 2 ¯,
where, in the last line, we have used (3.113) and the fact that r e is piecewise affine. We next use the inverse inequality (3.116) and the fact that χ ´2 z ď h ´2:

ˆΩ χ ´d´λ z ´|∇pψ ´Ih ψq| 2 `|ψ ´Ih ψ| 2 ď Ch 2 ˆΩ χ d`λ´4 z |r e| 2 `C ˆΩ χ d`λ´2 z |r e| 2 ď C ˆΩ χ d`λ´2 z |r e| 2 .
Since r e " I h w ´wh " I h w ´w `e, we get

ˆΩ χ ´d´λ z ´|∇pψ ´Ih ψq| 2 `|ψ ´Ih ψ| 2 ¯ď C ˆΩ χ d`λ´2 z |e| 2 `C ˆΩ χ d`λ´2 z pI h w ´wq 2 .
Inserting this estimate in (3.140), we obtain

1 4 ˆΩ χ d`λ z |∇e| 2 ď C ˆΩ χ d`λ´2 z |e| 2 `C ˆΩ χ d`λ z |∇pw ´Ih wq| 2 `χd`λ´2 z |w ´Ih w| 2 .
This concludes the proof of Proposition 3.29.

Proof of Lemma 3.30

We choose some s such that 1 ď 2d

d `2 ă s ă 2 (3.141)
and let s ‹ " sd{pd ´sq (note that s ă 2 ď d). From the Sobolev injections, we know that there exists C s such that

@g P W 1,s pΩq, }g} L s ‹ pΩq ď C s }g} W 1,s pΩq . (3.142)
The function f in the statement of Lemma 3.30 belongs to H 1 pΩq. Since s ă 2, we see that

f P W 1,s pΩq Ă L s ‹ pΩq. Since s ą 2d d `2 , we have s ‹ ą 2 ą 2d d `2
. We can thus use the regularity assumption (3.94) for s ‹ , from which we deduce that v P W 2,s ‹ pΩq. We set q " s ‹ {2 ą 1 and write a Hölder inequality with exponents q and q 1 :

ˆΩ χ ´d´λ ˇˇ∇ 2 v ˇˇ2 ď ˆˆΩ χ ´pd`λqq 1 ˙1{q 1 › › ∇ 2 v › › 2 L 2q pΩq " ˆˆΩ χ ´pd`λqq 1 ˙1{q 1 › › ∇ 2 v › › 2 L s ‹ pΩq ď C ˆ1 ζ q 1 pd`λq´d ˙1{q 1 }v} 2 W 2,s ‹ pΩq [eq. (3.114)] (3.143)
In view of (3.94), we have

}v} W 2,s ‹ pΩq ď › › › › v ´σ1 Ω v › › › › W 2,s ‹ pΩq `C ˇˇˇ Ω v ˇˇˇď C }f } L s ‹ pΩq `C ˇˇˇ Ω v ˇˇˇ.
Taking ϕ " 1 in (3.132), we see that η

Ω v " Ω f . Since s ‹ ě 1, we hence get }v} W 2,s ‹ pΩq ď C η }f } L s ‹ pΩq (with C η ď C{η).
Inserting this estimate in (3.143), and next using (3.142) for the function f P W 1,s pΩq, we deduce that

ˆΩ χ ´d´λ ˇˇ∇ 2 v ˇˇ2 ď C 2 η ζ λ`d{q }f } 2 L s ‹ pΩq ď C 2 η ζ λ`d{q }f } 2 W 1,s pΩq . (3.144)
We now define q " 2{s. Since s ă 2, we have q ą 1 and we can use the Hölder inequality with exponents q and q 1 to bound from above }∇f } s L s pΩq (and likewise for }f } s L s pΩq ): 

}∇f } s L s pΩq " ˆΩ χ ´p4´d´λqs{2 χ p4´d´λqs{2 |∇f | s ď ˆˆΩ χ ´p4´d´λqsq 1 {2 ˙1{q 1 ˆˆΩ χ p4´d´λqqs{2 |∇f | qs ˙1{q " ˆˆΩ χ ´p4´d´λqs{p2´sq ˙p2´sq{2 ˆˆΩ χ 4´d´λ |∇f | 2 ˙1{q . ( 3 
ˆΩ χ ´d´λ ˇˇ∇ 2 v ˇˇ2 ď C 2 η ζ λ`d{q ζ p´4`d`λq`dp2´sq{s ˆΩ χ 4´d´λ `|f | 2 `|∇f | 2 ˘.
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We have 1{q " 2{s ‹ " 2{s ´2{d, so that λ `d{q " λ `2d{s ´2 while p´4 `d `λq `dp2 ´sq{s " ´4 `λ `2d{s. We then obtain

ˆΩ χ ´d´λ ˇˇ∇ 2 v ˇˇ2 ď C 2 η ζ ´2 ˆΩ χ 4´d´λ `|f | 2 `|∇f | 2 ˘,
which concludes the proof of Lemma 3.30.

Proof of Proposition 3.32

Consider the problem (3.93) for the right-hand side f " χ d`λ´2 z e, which is indeed in L 2 pΩq. We denote v P H 1 pΩq its solution, and thus have

@ϕ P H 1 pΩq, a ‹ η pv, ϕq " ˆΩ χ d`λ´2 z e ϕ.
Taking e as a test function in the above problem, we get, using the Cauchy Schwarz inequality,

ˆΩ χ d`λ´2 z |e| 2 " a ‹ η pv, eq " a ‹ η pv ´Ih v, eq [Galerkin orthogonality (3.130)] ď C "ˆΩ χ d`λ z `e2 `|∇e| 2 ˘ȷ1{2 "ˆΩ χ ´d´λ z ´|∇pv ´Ih vq| 2 `|v ´Ih v| 2 ¯ȷ1{2 .
Let ε ą 0. Using the Young inequality, we deduce that 

ˆΩ χ d`λ´2 z |e| 2 ď ε ˆΩ χ d`λ z `e2 `|∇e|
ˆΩ χ d`λ´2 z e 2 ď ε ˆΩ χ d`λ z `e2 `|∇e| 2 ˘`Ch 2 ε ˆΩ χ ´d´λ z |∇ 2 v| 2 . (3.147)
We now use Lemma 3.30, with χ " χ z , noting that the right-hand side f " χ d`λ´2 z e is in H 1 pΩq. We thus deduce from (3.147), successively using Lemma 3.30 and estimate (3.113), that

ˆΩ χ d`λ´2 z e 2 ď ε ˆΩ χ d`λ z `e2 `|∇e| 2 ˘`Ch 2 ε C 2 η κ 2 h 2 ˆΩ χ 4´d´λ z ´|χ d`λ´2 z e| 2 `|∇pχ d`λ´2 z eq| 2 ď ε ˆΩ χ d`λ z `e2 `|∇e| 2 ˘`C 2 η εκ 2 ˆˆΩ χ d`λ z |∇e| 2 `ˆΩ χ d`λ´2 z e 2 ˙,
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where C η only depends on η. For any fixed ε, we take κ 1 pε, ηq ě 1 such that, when κ ě κ 1 pε, ηq, we have C 2 η εκ 2 ď minpε, 1{2q. We thus deduce that, for any κ ě κ 1 pε, ηq,

1 2 ˆΩ χ d`λ´2 z e 2 ď ε ˆΩ χ d`λ z e 2 `2ε ˆΩ χ d`λ z |∇e| 2 ď ε}χ z } 2 L 8 ˆΩ χ d`λ´2 z e 2 `2ε ˆΩ χ d`λ z |∇e| 2 .
Since we work in the regime κh ď 1, we are in position to use (3.136), and thus ε}χ z } 2 L 8 ď Cε for a constant C that only depends on Ω. Taking ε small enough (namely such that Cε ď 1{4), we get the claimed bound. This concludes the proof of Proposition 3.32.

Proof of Lemma 3.33

Since (3.100) holds and ν ¨∇f P L 2 pΩq, we have that v P H 2 pΩq. Expanding the expression ∇ 2 `χpd`λq{2 v ˘, we find (using (3.113) for χ rather than χ z ) that

χ d`λ |∇ 2 v| 2 ď ˇˇ∇ 2 ´χpd`λq{2 v ¯ˇˇ2 `C ´χd`λ´2 |∇v| 2 `χd`λ´4 v 2 ¯. (3.148) 
We now identify an equation satisfied by χ pd`λq{2 v, which will be useful to estimate its second derivatives. For any ϕ P H 1 pΩq, we have

a ‹ η ´ϕ, χ pd`λq{2 v ¯" ˆΩ ∇ϕ ¨∇ ´χpd`λq{2 v ¯`ϕ b ¨∇ ´χpd`λq{2 v ¯`η ϕ χ pd`λq{2 v " a ‹ η ´χpd`λq{2 ϕ, v ¯`ˆΩ ∇ϕ ¨∇ ´χpd`λq{2 v ¯`ϕ b ¨∇ ´χpd`λq{2 v Ω ∇ ´χpd`λq{2 ϕ ¯¨∇v ´ˆΩ χ pd`λq{2 ϕ b ¨∇v " a ‹ η ´χpd`λq{2 ϕ, v ¯`ˆΩ v∇ϕ ¨∇ ´χpd`λq{2 Ω ϕ∇ ´χpd`λq{2 ¯¨∇v `ˆΩ ϕ v b ¨∇ ´χpd`λq{2 " ˆΩpν ¨∇f q χ pd`λq{2 ϕ `ˆΩ v∇ϕ ¨∇ ´χpd`λq{2 Ω ϕ∇ ´χpd`λq{2 ¯¨∇v `ˆΩ ϕ v b ¨∇ ´χpd`λq{2 " ˆΩ F ϕ `ˆBΩ G ϕ,
where

F " χ pd`λq{2 pν ¨∇f q ´div " v∇ ´χpd`λq{2 ¯ı ´∇ ´χpd`λq{2 ¯¨∇v `v b ¨∇ ´χpd`λq{2 ānd G " v n ¨∇ ´χpd`λq{2 ¯.
Let ζ " χ pd`λq{2 v. We see that ζ P H 1 pΩq and is such that, for any ϕ P H 1 pΩq,

a ‹ η pϕ, ζq " ˆΩ F ϕ `ˆBΩ G ϕ.
Due to the presence of G, we cannot directly use the regularity result (3.100). We are instead going to use Lemma 3.5, which states a regularity result for (non-homogeneous) Neumann problems. We write that ζ satisfies ´∆ζ `b ¨∇ζ `ηζ " F in Ω, ∇ζ ¨n " G on BΩ, that we recast in the form

´∆ζ " r F in Ω, ∇ζ ¨n " G on BΩ, (3.149) 
with r F " F ´b ¨∇ζ ´ηζ, that is r F " χ pd`λq{2 pν ¨∇f q ´div

" v∇ ´χpd`λq{2 ¯ı ´∇ ´χpd`λq{2 ¯¨∇v ´χpd`λq{2 b ¨∇v ´ηχ pd`λq{2 v.
We wish to use Lemma 3.5 for the problem (3.149). Since f P H 1 pΩq, χ P C 8 , v P H 1 pΩq and b P pL 8 pΩqq d , we see that r F P L 2 pΩq. We have v P H 1 pΩq thus G P H 1{2 pBΩq. We are thus in position to use Lemma 3.5 with p " 2 on (3.149) (see also [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Theorem 3.12 and Remark 3.13]), which implies that

}∇ 2 ζ} L 2 pΩq " › › ›∇ 2 ´χpd`λq{2 v ¯› › › L 2 pΩq ď C ˆ› › › r F › › › L 2 pΩq `}G} H 1{2 pBΩq ˙(3.150)
where C is of course independent of η. We integrate (3.148) and use (3.150):

ˆΩ χ d`λ |∇ 2 v| 2 ď C ˆ› › › r F › › › 2 L 2 pΩq `}G} 2 H 1{2 pBΩq `ˆΩ χ d`λ´2 |∇v| 2 `ˆΩ χ d`λ´4 v 2 ˙.
Since we work in the regime ζ ď 1, we have that }χ} L 8 ď C for some C that only depends on Ω.

Using in addition the bounds (3.113), we deduce from the above estimate that there exists C independent of η, x 0 and ζ such that

ˆΩ χ d`λ |∇ 2 v| 2 ď C}G} 2 H 1 pΩq `C ˆΩ χ d`λ pν ¨∇f q 2 `χd`λ´2 |∇v| 2 `χd`λ´4 v 2 . ( 3.151) 
For the first term above, we see that

|G| ď C |v| |χ| pd`λq{2´1 , thus }G} 2 L 2 pΩq ď C ˆΩ χ d`λ´2 v 2 ď C ˆΩ χ d`λ´4 v 2 .
In addition, we have

|∇G| ď |∇v| ˇˇ∇ ´χpd`λq{2 ¯ˇˇ`| v| |∇n| ˇˇ∇ ´χpd`λq{2 ¯ˇˇ`| v| ˇˇ∇ 2 ´χpd`λq{2 ¯ˇď C ´|∇v| χ pd`λq{2´1 `|v| χ pd`λq{2´1 `|v| χ pd`λq{2´2 ānd thus }∇G} 2 L 2 pΩq ď C ˆΩ χ d`λ´2 |∇v| 2 `χd`λ´4 v 2 .
We hence deduce from (3.151) that

ˆΩ χ d`λ |∇ 2 v| 2 ď C ˆˆΩ χ d`λ pν ¨∇f q 2 `χd`λ´4 v 2 `χd`λ´2 |∇v| 2 ˙. (3.152) 
We are now left with bounding the two last terms in (3.152) in terms of f . We start with the last term, and write

ˆΩ χ d`λ´2 |∇v| 2 " ˆΩ ∇ ´χd`λ´2 v ¯¨∇v ´ˆΩ v ∇ ´χd`λ´2 ¯¨∇v " a ‹ η ´χd`λ´2 v, v ¯´ˆΩ χ d`λ´2 v b ¨∇v ´η ˆΩ χ d`λ´2 v 2 ´ˆΩ v∇ ´χd`λ´2 ¯¨∇v.
Using (3.133), we see that

a ‹ η ´χd`λ´2 v, v ¯" ˆΩpν ¨∇f q χ d`λ´2 v.
We thus get that

ˆΩ χ d`λ´2 |∇v| 2 " ˆΩpν ¨∇f q χ d`λ´2 v ´ˆΩ χ d`λ´2 v b ¨∇v ´η ˆΩ χ d`λ´2 v 2 ´ˆΩ v∇ ´χd`λ´2 ¯¨∇v.
We next proceed using the Young inequality and (3.113):

ˆΩ χ d`λ´2 |∇v| 2 ď 1 2 ˆΩ χ d`λ |ν ¨∇f | 2 `1 2 ˆΩ χ d`λ´4 v 2 `1 4 ˆΩ χ d`λ´2 |∇v| 2 `ˆΩ χ d`λ´2 |b| 2 v 2 `1 4 ˆΩ χ d`λ´2 |∇v| 2 `C ˆΩ χ d`λ´4 v 2 ,
which implies that

ˆΩ χ d`λ´2 |∇v| 2 ď C ˆΩ χ d`λ |∇f | 2 `C ˆΩ χ d`λ´4 v 2 . ( 3.153) 
We now turn to the second term of (3.152). We pick some P 1 ą max ˆd 2 , d 4 ´d ´λ ˙(note that 4 ´d ´λ ą 0) and write the Hölder's inequality with P 1 and its conjugate exponent P (note that P 1 ą d{2 ě 1):

ˆΩ χ d`λ´4 v 2 ď ˆˆΩ χ pd`λ´4qP 1 ˙1{P 1 ˆˆΩ v 2P ˙1{P ď Cζ pd`λ´4q`d{P 1 ˆˆΩ v 2P ˙1{P , ( 3.154) 
where we have used (3.114) with θ " P 1 p4 ´d ´λq, which is indeed larger than d. Note that the last factor of (3.154) is finite, as we have v P H 2 pΩq Ă L 8 pΩq (recall that d ď 3).

We next use a duality argument to bound }v} L 2P pΩq in terms of f . Let w P H 1 pΩq solve (3.93) with a right-hand side equal to signpvq |v| 2P ´1. Taking v as test function, we get

}v} 2P L 2P " ˆΩ `signpvq |v| 2P ´1˘v " a ‹ η pw, vq [def. of w] " ˆΩpν ¨∇f q w [def. (3.133) of v] " ´ˆΩ f pν ¨∇wq [int. by parts and f P H 1 0 pΩq] ď }f } L r pΩq }∇w} L r 1 pΩq with r " 2P d 2P `d . Taking v " 1 in (3.93), we infer that η Ω w " Ω signpvq|v| 2P ´1. Note that r ą 1 since P ą 1 ě d 2pd ´1q
. We have that r 1 " ˆ1 ´1 2P ´1 d

˙´1

, and we note that W 1,2P {p2P ´1q pΩq Ă L r 1 pΩq. Using that Sobolev injection, we get

}v} 2P L 2P ď C}f } L r pΩq }∇w} W 1,2P {p2P ´1q pΩq ď C}f } L r pΩq › › › › w ´σ1 Ω w › › › › W 2,2P {p2P ´1q pΩq `C ˇˇˇ Ω w ˇˇď C η }f } L r pΩq › › signpvq|v| 2P ´1› › L 2P {p2P ´1q pΩq pwith C η ď C{ηq. ( 3.155) 
We have used in the last line the regularity (3.94), which indeed holds since 2P {p2P ´1q ą 2d{pd `2q (this condition is equivalent to the condition P 1 ą d{2, which we have enforced when choosing P 1 ). We next deduce from (3.155) that

}v} 2P L 2P ď C η }f } L r pΩq }v} 2P ´1 L 2P pΩq .
Since v P L 2P pΩq, we get }v} L 2P pΩq ď C η }f } L r pΩq . Inserting this in (3.154), we obtain

ˆΩ χ d`λ´4 v 2 ď C 2 η ζ 2dp1´1{rq`λ´2 }f } 2 L r pΩq [Writing P 1 in terms of r] ď C 2 η ζ 2dp1´1{rq`λ´2 ˆˆΩ χ d`λ f 2 ˙ˆˆΩ χ ´pd`λqr{p2´rq ˙p2´rq{r 
where we have eventually used a Hölder inequality with q " 2{r. Note that q ą 1 (that is, r ă 2) as a consequence of the fact that P 1 ą d{2. We next see that r ą 1 ą 2d 2d

`λ , which implies that pd `λqr{p2 ´rq ą d, so we are in position to use (3.114), which yields 

ˆΩ χ d`λ´4 v 2 ď C 2 η ζ 2dp1´1{rq`λ´2 ˆˆΩ χ d`λ f 2 ˙ζ´pd`λq`dp2´rq{r ď C 2 η ζ ´2 ˆΩ χ d`λ f 2 . ( 3 

Chapter 4

Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains

Introduction

We consider a regular bounded open set Ω Ă R d , in dimension d ě 2, and its subset Ω ε Ĺ Ω, a domain perforated by holes of presumably small size ε ą 0. We denote by B ε " ΩzΩ ε the set of perforations (see Figure 4.1 below). Although this is by no means a limitation of our computational approaches, B ε will often be, in the sequel, a periodic array of perforations, each of them of diameter of order ε and separated by a distance also of order ε. On the perforated domain Ω ε , we consider the advection-diffusion equation

´α∆u ε `p b ε ¨∇u ε " f in Ω ε , ( 4.1) 
where α ą 0, for a right-hand side f P L 2 pΩq and for an advection field p b ε P pW 1,8 pΩ ε qq d on which we make a variety of assumptions. On the outer boundary BΩ, we impose homogeneous Dirichlet boundary conditions. On the other hand, the equation is supplied either with homogeneous Dirichlet or homogeneous Neumann boundary conditions on the boundary of the perforations. More precisely, we concurrently consider the two problems

# ´α∆u ε `p b ε ¨∇u ε " f in Ω ε , u ε " 0 on BΩ ε , ( 4.2) 
and

$ ' & ' % ´α∆u ε `p b ε ¨∇u ε " f in Ω ε , α∇u ε ¨n " 0 on BΩ ε zBΩ, u ε " 0 on BΩ ε X BΩ. (4.3) 
The well-posedness of these problems, under various assumptions on p b ε , will be established in Section 4. We study a regime where advection dominates diffusion. In the absence of perforations, it is well-known that numerical instabilities arise for classical Finite Element methods [START_REF] Stynes | Steady-state convection-diffusion problems[END_REF], and stabilization methods are in order. The case of perforated domains deserves more attention, all the more if the perforations are presumable many, and asymptotically infinitely many. It will be seen, and this is not unexpected, that the choice of the boundary conditions on the perforations drastically affects the nature of the flow, and therefore the conclusions regarding which numerical approach is best to adopt. In short, homogeneous Dirichlet boundary conditions on the perforations damp the effect of advection, making the flow more stable than it would be in the absence of perforations, while this is not the case for homogeneous Neumann boundary conditions. This intuitive fact, which we will investigate thoroughly at the numerical level, is particularly well exemplified, at the theoretical level, by the comparison of the respective homogenization limits of the problems (4.2) and (4. The numerical approaches we consider are variants of the Multiscale Finite Element method (MsFEM). We recall that MsFEM (see e.g. [START_REF] Efendiev | of Surveys and Tutorials in the Applied Mathematical Sciences[END_REF]) encodes the multiscale character of the problem to be solved in the finite element basis functions by defining them as the solution of independent local problems involving a differential operator identical, or close to that of the original equation. The finite element basis functions are defined independently of the source term and therefore are precomputed. A Galerkin approximation on the resulting approximation space is then performed. The choice of the boundary conditions imposed on the local problems is a critical issue. In [START_REF] Bris | MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems[END_REF], the first two authors of the present article have introduced Crouzeix-Raviart type boundary conditions for the local problems, in the case of a prototypical diffusion problem ´div pa ε ∇u ε q " f , for an highly oscillatory coefficient a ε " ap¨{εq. The approach was then enriched with bubble functions to address the case of the same diffusion equation posed in a perforated domain, see [START_REF] Bris | An MsFEM type approach for perforated domains[END_REF]. The main advantage of this particular choice of boundary conditions has been shown there to be the robustness with respect to the location of the perforations. The approximation remains accurate, irrespective of the fact that the boundaries of the mesh elements intersect or not the perforations, a sensitive issue for other types of boundary conditions. The next step, performed in [START_REF] Bris | A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media[END_REF], has been to consider the advection diffusion equation ´div pa ε ∇u ε q `p b ε ¨∇u ε " f instead of a pure diffusion, and to assume that the advection dominates diffusion to make the case strikingly different from pure diffusion. A question of specific interest is whether or not the advection term must be introduced in the equation defining the local basis functions, and whether or not this brings more stability to the approach. Two of our main conclusions in [START_REF] Bris | A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media[END_REF] were (i) that the multiscale character of the problem may be reduced when advection outrageously dominates diffusion and (ii) that, when the multiscale character is still important, a stabilized version of the MsFEM using basis functions defined by the diffusion operator only and Crouzeix-Raviart type boundary conditions on the boundary of mesh elements is one of the most effective and accurate approaches. The present work elaborates on all those previous works for advection-dominated advection diffusion equations in perforated domains.

Our article is articulated as follows. We make precise the various numerical approaches we consider in Section 4.2. Some elements of theoretical analysis for the problems (4.2) and (4.3) (assuming the perforations are periodic) are provided in Section 4.3. In particular, we identify the homogenization limits for these two equations. We also state some error estimates in the case of (4.2). The detailed proofs of all these theoretical results are postponed until the Appendices. Our numerical tests, and our conclusions, are presented in Section 4.4. In short, these conclusions are the following:

• for problem (4.2) (i.e. with homogeneous Dirichlet boundary conditions on the perforations), the flow and the numerical solutions are both stable, even for considerably large advection fields, and the method using a basis of functions built upon the full advection-diffusion operator enriched with bubble functions built likewise is the best possible approach, without requiring any additional stabilization;

• for problem (4.3) (i.e. with homogeneous Neumann boundary conditions on the perforations), instabilities due to the dominating advection arise, and one may use either again the method using a basis of functions built upon the full advection-diffusion operator enriched with bubble functions built likewise, or a stabilized version of the approach with basis functions built with the sole diffusive part of the operator, with no necessary enrichment by bubble functions whatsoever.

These conclusions will be substantiated and commented upon in the sequel.

Presentation of our numerical approaches

We introduce in this section the different variants of the MsFEM we will consider. All the variants use Crouzeix-Raviart boundary conditions on the boundary of mesh elements for the definition of the basis functions, including bubble functions. As we recalled above, previous works of ours [START_REF] Bris | MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems[END_REF][START_REF] Bris | An MsFEM type approach for perforated domains[END_REF] have introduced this variant.

We will consider MsFEM approaches with Crouzeix-Raviart type conditions that

• use basis functions defined with the full advection-diffusion operator (we abbreviate this into Adv-MsFEM ), or only the diffusive part of that operator (we abbreviate this into MsFEM, and sometimes to avoid any ambiguity, standard MsFEM );

• possibly enrich the approximation space spanned by these functions by adding bubble functions, the latter being either defined with the full advection-diffusion operator, or only the diffusive part of that operator;

• possibly have stabilized variational formulations, with various options for the stabilization terms.

We have considered in our investigations all combinations of the above options, but we will only report here on the most useful ones.

Our approaches share the following setting.

First of all, at the continuous level, we note that, extending by zero inside the perforations B ε a function in H 1 0 pΩ ε q, we can see this function as a function in H 1 0 pΩq. In the case of Problem (4.3), the choice of an extension in H 1 0 pΩq is more delicate. One example of such an extension procedure can be found in [28, p. 603].

For the discretization, we consider a uniform regular mesh T H of Ω, with mesh size H. This mesh size is presumably much larger than what would be in order for a classical FEM applied to a problem with small scale ε. Some actual range of values will be made precise below. We denote by E in H and E ext H , respectively, the set of inner and outer edges/faces of the mesh T H (E ext H is the set of edges lying in BΩ). For the study of Problem (4.2), we define the following infinite-dimensional functional spaces:

W H " $ & % u P L 2 pΩq such that u| K P H 1 pKq for all K P T H , ˆErruss " 0 for all E P E in H , u " 0 in B ε Y BΩ , .
-, (4.4)

W 0 H " " u P W H such that ˆE u " 0 for all E P E in H * , ( 4.5) 
and

W 0 H,bubble " $ ' & ' % u P W H such that ˆE u " 0 for all E P E in H and ˆK u " 0 for all K P T H , / . / - . ( 4.6) 
In the case of Neumann boundary conditions, we introduce the same functional spaces W H , W 0 H and W 0 H,bubble as above, except that in their definitions, K and E are respectively everywhere replaced by K X Ω ε and E X Ω ε , while the homogeneous Dirichlet boundary condition is set only on the portion BΩ ε X BΩ of the outer boundary.

The variational formulation of the Dirichlet problem (4.2) reads as follows: find u ε P H 1 0 pΩ ε q such that, for any v P H 1 0 pΩ ε q, apu ε , vq " F pvq with apu, vq " ˆΩε α∇u ¨∇v `´p b ε ¨∇u ¯v and F pvq "

ˆΩε f v. (4.7)
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Since u ε vanishes on BΩ ε , we can also consider the bilinear form cpu, vq "

ˆΩε α∇u ¨∇v `1 2 ´p b ε ¨∇u ¯v ´1 2 div ´p b ε v ¯u " ˆΩε α∇u ¨∇v `1 2 ´p b ε ¨∇u ¯v ´1 2 ´p b ε ¨∇v ¯u ´1 2 u v div p b ε ,
with a skew-symmetric formulation of the advection-term. For any u and v in H 1 0 pΩ ε q, we have apu, vq " cpu, vq. The variational formulation of (4.2) can thus be equivalently written: find u ε P H 1 0 pΩ ε q such that, for any v P H 1 0 pΩ ε q, cpu ε , vq " F pvq.

The finite dimensional approximation spaces (that we introduce below) are not included in H 1 0 pΩ ε q, since Crouzeix-Raviart boundary conditions allow for discontinuous functions. Our approximations of (4.2) are therefore not conformal approximations. For variational formulations, we therefore introduce the following three bilinear forms:

a H pu, vq " ÿ KPT H ˆKXΩ ε α∇u ¨∇v `´p b ε ¨∇u ¯v, (4.8 
)

a diff,H pu, vq " ÿ KPT H ˆKXΩ ε α∇u ¨∇v, (4.9) 
and

c H pu, vq " ÿ KPT H ˆKXΩ ε α∇u ¨∇v `1 2 ´p b ε ¨∇u ¯v ´1 2 ´p b ε ¨∇v ¯u ´1 2 u v div p b ε , (4.10)
which all involve broken integrals.

We easily observe that, on the broken space ␣ v P L 2 pΩ ε q, v P H 1 pK X Ω ε q for any K P T H , v " 0 on BΩ ε ( , and under the (classical) assumption div p b ε ď 0, we have c H pv, vq ě α ÿ KPT H }∇v} 2 L 2 pKXΩ ε q . Under mild additional constraints on the broken space (such as weak continuity of functions across element edges), we will obtain that c H is coercive. This is not the case for the bilinear form a H . For this reason, we will favor the bilinear form c H over a H when considering the problem (4.2) (in that vein, see Remark 4.1 below).

We now turn to the Neumann problem (4.3), the variational formulation of which reads as follows: find u ε P V ε such that, for any v P V ε , apu ε , vq " F pvq with a and F defined by (4.7) and

V ε " ␣ u P H 1 pΩ ε q such that u " 0 on BΩ ε X BΩ ( . ( 4.11) 
For this problem, there is no reason to consider the bilinear form c, as in general apu, vq ‰ cpu, vq for u and v in V ε . Only the bilinear forms a H pu, vq and a diff,H pu, vq will be considered in that case.

The finite dimensional approximation spaces we use in practice (and which are in the sequel generically denoted by V H with various additional subscripts or superscripts) are spanned by (numerical approximations on a finer mesh of) functions Φ ε,E associated to the inner edges/faces E P E in H and bubble functions Ψ ε,K associated to each mesh element K P T H . For the notation of these functions, we again use additional subscripts that depend on the specific situation considered.

MsFEM approaches using only the diffusion operator, and their stabilized version

We 

P V H , c H pu H , v H q " F pv H q, (4.12) 
with c H defined in (4.10) and the finite dimensional approximation space V H Ă W H given by

V H " ␣ u P W H such that a diff,H pu, vq " 0 for any v P W 0 H ( .
The variational formulation for the variant using bubble functions reads as

# Find u H P V H,bubble such that, for any v H P V H,bubble , c H pu H , v H q " F pv H q, (4.13) 
where the finite dimensional approximation space

V H,bubble Ă W H is V H,bubble " ␣ u P W H such that a diff,H pu, vq " 0 for any v P W 0 H,bubble ( . ( 4.14) 
The stabilized version of formulation (4.13) (or, mutatis mutandis, of (4.12)) reads as

# Find u H P V H,bubble such that, for any v H P V H,bubble , c H pu H , v H q `astab pu H , v H q " F pv H q `Fstab pv H q, (4.15) 
where the stabilization terms are defined by

a stab pu H , v H q " ÿ KPT H ´τK ´´α∆u H `p b ε ¨∇u H ¯, p b ε ¨∇v H ¯L2 pKXΩ ε q , ( 4.16 
)

F stab pv H q " ÿ KPT H ´τK f, p b ε ¨∇v H ¯L2 pKXΩ ε q ,
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with τ K pxq " H 2 ˇˇp b ε pxq ˇˇ» -coth ¨ˇˇp b ε pxq ˇˇH 2α '´2 α ˇˇp b ε pxq ˇˇH fi fl .
Description of the basis functions. We now make precise the definition of the basis functions.

For any E P E in H , we introduce a function Φ ε,E 0 which is such that, for all mesh elements K P T H ,

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Φ ε,E 0 " 0 in K X Ω ε , Φ ε,E 0 " 0 in K X B ε , if E 1 P E in H , ˆE1 Φ ε,E 0 " δ E,E 1 and α∇Φ ε,E 0 ¨n " λ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Φ ε,E 0 " 0 on E 1 X Ω ε , (4.17) 
where

λ K,E 1 is constant for all E 1 Ă BK. The function Φ ε,E 0 is supported in the elements K for which E Ă BK.
We also define, for K P T H , the bubble function Ψ ε,K 0 , the support of which is reduced to

K X Ω ε , as the solution to $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Ψ ε,K 0 " 1 in K X Ω ε , Ψ ε,K 0 " 0 in K X B ε , if E 1 P E in H , ˆE1 Ψ ε,K 0 " 0 and α∇Ψ ε,K 0 ¨n " µ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Ψ ε,K 0 " 0 on E 1 X Ω ε , (4.18) 
where µ K,E 1 is constant for all E 1 Ă BK.

We then have

V H " Span ! Φ ε,E 0 , E P E in H ) and V H,bubble " Span ! Φ ε,E 0 , Ψ ε,K 0 , E P E in H , K P T H ) .
Details on the stabilized formulations. Given the above basis functions, we can obtain a simpler expression of the term (4.16) by decomposing u H P V H,bubble as

u H " ÿ EPE in H U E H Φ ε,E 0 `ÿ KPT H U K H Ψ ε,K 0 .
Following the definition of the basis functions, we have

a stab pu H , v H q " ÿ KPT H ´τK ´p b ε ¨∇u H ¯, p b ε ¨∇v H ¯L2 pKXΩ ε q `ÿ KPT H U K H ˆKXΩ ε τ K ´p b ε ¨∇v H ¯. (4.19)
In practice, we make use of a discrete approximation of the basis functions on a fine mesh K h , and (4.16) may not be defined in general. For example, if we use a P 1 approximation on a fine mesh K ε h for the local problems, then ∇u H,h may be discontinuous at the interfaces of K ε h .

As a consequence, we have that ´∆u H,h R L 2 pK X Ω ε q and the stabilization term (4.16) has no natural expression when we work with the discretized approximation space pV H,bubble q h rather than V H,bubble . There are (at least) two options to circumvent the difficulty. The first option is to use

r a stab pu H,h , v H,h q " ÿ KPT H ÿ κĂK ε h ´τK ´´α∆u H,h `p b ε ¨∇u H,h ¯, p b ε ¨∇v H,h ¯L2 pκq (4.20) 
rather than (4.16). This yields a strongly consistent stabilized method.

The second option, and this is the variant we adopt, is to use the stabilization term (4.19) rather than (4.16). In contrast to (4.16), the quantity (4. [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF]) is also well defined on pV H,bubble q h . We point out that this stabilization approach is not strongly consistent. We however point out that we have already used (for the same reasons) this type of non-strongly consistent stabilization approach in [START_REF] Bris | A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media[END_REF], where we were able to show the convergence of the approach (see [60, Section 3.2]).

Neumann problem (4.3)

Variational formulations. The variational formulations for the Neumann problem read as (4.12), (4.13) and (4.15), with c H replaced by a H defined in (4.8).

Basis functions and stabilized formulations. For problem (4.3), (4.17) and (4.18) are respectively replaced by the following two systems (we temporarily use the same notation for the Dirichlet and the Neumann problems):

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Φ ε,E 0 " 0 in K X Ω ε , α∇Φ ε,E 0 ¨n " 0 in K X BB ε , if E 1 P E in H , ˆE1 XΩ ε Φ ε,E 0 " δ E,E 1 and α∇Φ ε,E 0 ¨n " λ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Φ ε,E 0 " 0 on E 1 X Ω ε , (4.21) 
where λ K,E 1 is constant for all E 1 Ă BK, and

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Ψ ε,K 0 " 1 in K X Ω ε , α∇Ψ ε,K 0 ¨n " 0 in K X BB ε , if E 1 P E in H , ˆE1 XΩ ε Ψ ε,K 0 " 0 and α∇Ψ ε,K 0 ¨n " µ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Ψ ε,K 0 " 0 on E 1 X Ω ε , ( 4.22) 
where µ K,E 1 is constant for all E 1 Ă BK.

For (4.3), we again work with the stabilization term (4.19).
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MsFEM approaches using the full advection-diffusion operator, and their stabilized version

In this variant, we use basis functions that depend on the advection field.

Dirichlet problem (4.2)

Variational formulations. When no bubble functions are used to enrich the approximation space, the variational formulation, for the study of Problem (4.2), reads as

Find u H P V adv H such that, for any v H P V adv H , c H pu H , v H q " F pv H q, (4.23) 
with c H defined by (4.10) and

V adv H " ␣ u P W H such that c H pu, vq " 0 for any v P W 0 H ( . ( 4.24) 
When using bubble functions, we consider the variational formulation

# Find u H P V adv bubble H such that, for any v H P V adv bubble H , c H pu H , v H q " F pv H q, (4.25) 
where

V adv bubble H " ␣ u P W H such that c H pu, vq " 0 for any v P W 0 H, bubble ( . (4.26) 
The stabilized version of the formulation (4.25) reads as

# Find u H P V adv bubble H such that, for any v H P V adv bubble H , c H pu H , v H q `astab pu H , v H q " F pv H q `Fstab pv H q. ( 4.27) 
with again V adv bubble H defined by (4.26). For the same reasons as those for which we favor (4.19) over (4.20), we choose the stabilization defined by

a stab pu H , v H q " ÿ KPT H U K H ˆKXΩ ε τ K ´p b ε ¨∇v H ¯. (4.28) 
Note that, for the formulation (4.23), the stabilization is void as a stab pu H , v H q " 0 for any

u H P V adv H .
Description of the basis functions. Similarly as in Section 4.2.1, we now make explicit a basis of functions for our approximation spaces. For any

E P E in H , the function Φ ε,E D is defined by $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Φ ε,E D `p b ε ¨∇Φ ε,E D " 0 in K X Ω ε , Φ ε,E D " 0 in K X B ε , if E 1 P E in H , ˆE1 Φ ε,E D " δ E,E 1 and ˆα∇Φ ε,E D ´1 2 p b ε Φ ε,E D ˙¨n " λ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Φ ε,E D " 0 on E 1 X Ω ε , ( 4.29) 
while the bubble function

Ψ ε,K D is the solution to $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Ψ ε,K D `p b ε ¨∇Ψ ε,K D " 1 in K X Ω ε , Ψ ε,K D " 0 in K X B ε , if E 1 P E in H , ˆE1 Ψ ε,K D " 0 and ˆα∇Ψ ε,K D ´1 2 p b ε Ψ ε,K D ˙¨n " µ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Ψ ε,K D " 0 on E 1 X Ω ε , (4.30) 
where λ K,E 1 and µ K,E 1 are constant for all E 1 Ă BK. The well-posedness of the two problems (4.29) and (4.30) is the purpose of Section 4.7.1.

In the case of the Dirichlet problem, we then have

V adv H " Span ! Φ ε,E D , E P E in H ) (4.31) 
and

V adv bubble H " Span ! Φ ε,E D , Ψ ε,K D , E P E in H , K P T H ) . ( 4.32) 
The method obtained is similar to the approach of [START_REF] Degond | Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media[END_REF]. The difference lies in the definition of the bubble functions since [START_REF] Degond | Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media[END_REF] use homogeneous Dirichlet conditions on the boundary of elements whereas we impose here Crouzeix-Raviart conditions. The work [START_REF] Degond | Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media[END_REF] shows the added value of bubble functions (which are, we emphasize it, defined using the full advection-diffusion operator, as we do here). It also explores numerically how non periodicity of the location of the perforations affects the quality of the numerical approach, an issue which we ourselves will examine later, in a specific manner, in the present article. When no bubble functions are used to enrich the approximation space, the variational formulation thus reads as

Find u H P V adv H such that, for any v H P V adv H , a H pu H , v H q " F pv H q, (4.33) 
where, instead of (4.24), the approximation space V adv H reads as

V adv H " ␣ u P W H such that a H pu, vq " 0 for any v P W 0 H ( .
When using bubble functions, we use the variational formulation

# Find u H P V adv bubble H such that, for any v H P V adv bubble H , a H pu H , v H q " F pv H q, (4.34) 
where, instead of (4.26), the approximation space V adv bubble H reads as

V adv bubble H " ␣ u P W H such that a H pu, vq " 0 for all v P W 0 H,bubble ( . ( 4.35) 
The stabilized version of the formulation (4.34) reads as

Find u H P V adv bubble H such that, for any v H P V adv bubble H , a H pu H , v H q `astab pu H , v H q " F pv H q `Fstab pv H q.

(4.36)

with again V adv bubble H defined by (4.35) and a stab given by (4.28). As in the Dirichlet case, the stabilization is void for the formulation (4.33).

Description of the basis functions.

Similarly as in Section 4.2.1, we now make explicit a basis of functions for our approximation spaces. For any

E P E in H , the basis function Φ ε,E N is defined by $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Φ ε,E N `p b ε ¨∇Φ ε,E N " 0 in K X Ω ε , ´α∇Φ ε,E N ¯¨n " 0 in K X BB ε , if E 1 P E in H , ˆE1 XΩ ε Φ ε,E N " δ E,E 1 and ´α∇Φ ε,E N ¯¨n " λ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Φ ε,E N " 0 on E 1 X Ω ε , ( 4.37) 
while the bubble function

Ψ ε,K N is the solution to $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´α∆Ψ ε,K N `p b ε ¨∇Ψ ε,K N " 1 in K X Ω ε , ´α∇Ψ ε,K N ¯¨n " 0 in K X BB ε , if E 1 P E in H , ˆE1 XΩ ε Ψ ε,K N " 0 and ´α∇Ψ ε,K N ¯¨n " µ K,E 1 on E 1 X Ω ε , if E 1 P E ext H , Ψ ε,K N " 0 on E 1 X Ω ε , ( 4.38) 
where λ K,E 1 and µ K,E 1 are constant for all E 1 Ă BK. The well-posedness of the two problems (4.37) and (4.38) is the purpose of Section 4.7.2.

In the case of the Neumann problem, we then have, instead of (4.31) and (4.32),

V adv H " Span ! Φ ε,E N , E P E in H ) and 
V adv bubble H " Span ! Φ ε,E N , Ψ ε,K N , E P E in H , K P T H
) .

A mixed approach and its stabilized version

In the previous two sections, we have considered basis functions that are all built using the same operator: either the full operator (in Section 4.2.2), or only the diffusion term (in Section 4.2.1), for both Φ ε,E and Ψ ε,K . The question arises to build separately functions Φ ε,E associated to edges and bubble functions Ψ ε,K associated to elements, using two different operators for each category. In this direction, we consider here the variant where the functions associated to the 0 0.2 0.4 edges are constructed with the diffusion operator, as in the standard MsFEM, while the bubble functions are built using the full advection-diffusion operator.

K 1 K 2 E 12 Figure 4.2 Rescaled exact solution u ε {ε 2 to Problem (4.39) with α " 1{64, β " 1, ε " 1{32, f " 1 and |K 1 | " |K 2 | " 2ε. 0 0.5 1 1.5 2 K 1 K 2 E 12 Ψ ε,K1 0 {ε 2 Ψ ε,K2 0 {ε 2 Φ ε,E12 0 0 0.5 1 1.5 2 K 1 K 2 E 12 Ψ ε,K1 {ε 2 Φ ε,E12 Ψ ε,K2 {ε 2
The consideration of this particular variant is based upon the following, one-dimensional observation (for the sake of conciseness, we only consider here the Dirichlet problem (4.2)).

We temporarily consider the following perforated problem in dimension 1:

$ ' & ' % ´α d 2 u ε dx 2 `β ε du ε dx " f in Ω ε , u ε " 0 on BΩ ε , ( 4.39) 
where Ω ε is the subset of the segment Ω " p0, 1q defined by periodically perforating that segment with holes of size ε{2. We mesh the segment using a uniform mesh consisting of mesh elements of size 2ε. The exact solution to (4.39) on two adjacent mesh elements (denoted K 1 and K 2 ) is displayed on Figure 4.2. We show on Figure 4.3 the basis functions corresponding respectively to the MsFEM and the Adv-MsFEM approach, as defined in Sections 4.2.1 and 4.2.2. We see that the profile of the advective bubble functions of Adv-MsFEM seems closer to the exact solution than that of the bubble functions of MsFEM. This observation motivates the introduction of a "mixed" variant for which the approximation space collects the functions Φ ε,E (associated to an edge) of MsFEM and the advective bubble functions Ψ ε,K of Adv-MsFEM. For the approximation of (4.2), the discrete variational formulation then writes

#

Find u H P V H,adv-bubble such that, for any v H P V H,adv-bubble , c H pu H , v H q " F pv H q, (4.40)
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where the approximation space reads as

V H,adv-bubble " Span ! Φ ε,E 0 , Ψ ε,K D , E P E in H , K P T H ) ,
where Φ ε,E 0 and Ψ ε,K D are defined by (4.17) and (4.30). The variational formulation of the stabilized version reads as:

# Find u H P V H,adv-bubble such that, for any v H P V H,adv-bubble , c H pu H , v H q `astab pu H , v H q " F pv H q `Fstab pv H q.

(4.41)

We can obtain a simplified expression of the stabilization term (4.16) by decomposing u H P

V H,adv-bubble as u H " u 0 H `ÿ KPT H U K H Ψ ε,K D with u 0 H " ÿ EPE in H U E H Φ ε,E 0 .
According to the definition of the basis functions, we get

a stab pu H , v H q " ÿ KPT H ´τK ´p b ε ¨∇u 0 H ¯, p b ε ¨∇v H ¯L2 pKXΩ ε q `ÿ KPT H U K H ˆKXΩ ε τ K ´p b ε ¨∇v H ¯. (4.42)

Elements of theoretical analysis

In this section 4.3, we consider periodic perforations. More precisely, let Y be the unit square and O Ă Y be some smooth perforation. We next scale O and Y by a factor ε and then periodically repeat this pattern with periods ε in all directions. The set of perforations is therefore

B ε " Ω X pY kPZ d εB k q with B k " k `O (4.43)
and the perforated domain is Ω ε " ΩzB ε .

Homogenization results

For self-consistency and for the convenience of the reader, we include here some results of homogenization for the problems (4.2) and (4.3) considered. These results are useful to bear in mind the different scalings involved, and the asymptotic behavior of the solutions u ε we approximate in the various cases. The proofs of these results are essentially contained in the literature, although some tiny details may vary. Also for convenience, we include the proof of these results in Appendix 4.5 of this article. In any event, we do not claim any originality for these results.

There is indeed a considerable body of literature for the homogenization of diffusion and advection-diffusion problems set on perforated domains. The behavior obtained in the homogenization limit drastically depend on the boundary conditions set on the boundaries of the perforations and on the density and size of these perforations. For the diffusion problem itself, we wish to cite [START_REF] Allaire | Homogenization of the Neumann problem with nonisolated holes[END_REF][START_REF] Capatina | Homogenization results for elliptic problems in periodically perforated domains with mixed-type boundary conditions[END_REF][START_REF] Cioranescu | Periodic unfolding and Robin problems in perforated domains[END_REF][START_REF] Cioranescu | A strange term coming from nowhere[END_REF][START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF][START_REF] Lions | Asymptotic expansions in perforated media with a periodic structure[END_REF][START_REF] Papanicolaou | Diffusion in regions with many small holes[END_REF], and more specifically [START_REF] Cioranescu | The periodic unfolding method for perforated domains and Neumann sieve models[END_REF][START_REF] Cioranescu | A strange term coming from nowhere[END_REF][START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF][START_REF] Bris | An MsFEM type approach for perforated domains[END_REF][START_REF] Lions | Asymptotic expansions in perforated media with a periodic structure[END_REF][START_REF] Papanicolaou | Diffusion in regions with many small holes[END_REF] for the case of Dirichlet boundary conditions. The advection-diffusion equation is studied in [7,[START_REF] Allaire | Homogenization of a convection-diffusion model with reaction in a porous medium[END_REF][START_REF] Amaziane | Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption[END_REF][START_REF] Hornung | Diffusion, convection, adsorption, and reaction of chemicals in porous media[END_REF][START_REF] Rubinstein | Dispersion and convection in periodic porous media[END_REF].

We also mention, for completeness, some of the many studies of the (Navier) Stokes equation in this setting, such as [3,5,[START_REF] Mikelić | Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary[END_REF]. A general reference on such topics is the textbook [START_REF] Hornung | Homogenization and porous media[END_REF].

In the case of homogeneous Dirichlet boundary conditions, that is problem (4.2), two different results, depending on the choice of the advection field p b ε , may be established, using standard arguments of the literature. Both results have proofs readily adapted from the already classical proofs of the same estimates for the pure diffusion operator (dating back to [START_REF] Lions | Asymptotic expansions in perforated media with a periodic structure[END_REF] and slightly extended in [START_REF] Bris | An MsFEM type approach for perforated domains[END_REF]Appendix A.2]).

As we briefly mentioned in the introduction, the most interesting case is when

p b ε " 1 ε b ´ε ¯.
Then, Theorem 4. 

ˇˇu ε ´ε2 w ´ε ¯f ˇˇH 1 pΩ ε q ď Cε 3{2 N pf q, (4.44)
with the notation |v| H 1 pΩ ε q " }∇v} H 1 pΩ ε q , where

N pf q " }f } L 8 pΩq `}∇f } L 2 pΩq `}∆f } L 2 pΩq (4.45)
and where w is the solution (actually in C 1 pY zOqq of the cell problem

# ´α∆w `b ¨∇w " 1 in Y zO,
w is Y -periodic, w " 0 on BO. We skip the proof of Theorem 4.3, that follows the same lines as the proof of Theorem 4.2.

For Neumann boundary conditions, the situation is different, as briefly mentioned in the introduction. No rescaling of the solution, which stays of order one, is necessary, and no enhancement of the advection field by a factor ε ´1 is required for the advection to affect the homogenized limit. In the case of the diffusion problem, the problem was first solved in the case of isolated (meaning that O Ă Y ) holes in [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]. The generalization to nonisolated holes was addressed in [2,[START_REF] Allaire | Homogenization of the Neumann problem with nonisolated holes[END_REF][START_REF] Cioranescu | Periodic unfolding and Robin problems in perforated domains[END_REF]. The homogenization limit for the advection-diffusion equation (4.3), in the periodic case, is the purpose of the following theorem. Its proof, which is postponed until Appendix 4.5.2, is an easy adaptation of the proof of [4, Theorem 2.9], that uses two-scale convergence and addresses the case without advection on a periodically perforated domain.

Theorem 4.4 (adapted from Theorem 2.9 of [4]). We assume (4.43) and that Ω ε is such that H 1 pΩ ε q ãÑ H 1{2 pBΩ ε q.

(4.47)

We also assume that the domain w i ´ε ¯Bx i u ‹ vanishes in H 1 pΩ ε q, where u ‹ is the solution to the problem

$ ' & ' % ´div pA ‹ ∇u ‹ q `b‹ ¨∇u ‹ " |Y zO| |Y | f in Ω, u ‹ " 0 on BΩ, (4.48) 
where the matrix A ‹ and the vector b ‹ are constant and given, for 1 ď i ď d, by

A ‹ e i " 1 
|Y | ˆY zO α `ei `∇w i ˘, (4.49) b ‹ ¨ei " 1 |Y | ˆY zO b ¨pe i `∇w i q, (4.50)
and where w i is the solution to the cell problem

# ´∆w i " 0 in Y zO, w i is Y -periodic, p∇w i `ei q ¨n " 0 on BO. (4.51) 
As the perforations are smooth, we have a continuous injection from H 1 pY zOq to H 1{2 pBOq. The assumption (4.47) thus amounts to a geometrical assumption on the perforations that intersect the boundary of Ω.

Error analysis for the Dirichlet problem

The error estimate of the Adv-MsFEM approach with advective bubble functions, the variational formulation of which is (4.25), is the purpose of the following theorem. It is the extension of a similar result for the diffusion problem [59, Theorem 2.2] establishing for that case the exact analogue estimate as (4.53) below. This is not unexpected since, in both cases, the same differential operator is present in the original equation and in the definition of all the basis functions. The proof of Theorem 4.5 is postponed until Appendix 4.6.2. We assume (and this is a purely technical assumption that does not matter for the numerical practice) that the slopes of the edges of the mesh elements are rational numbers, that is, more precisely, we suppose that the equation defining any internal edge E of the mesh reads as

x 2 " p E q E
x 1 `cE for some c E P R, p E P Z and q E P N ‹ that are coprime, with

|q E | ď C, (4.52)
for a constant C independent of the edge considered in the mesh and of the mesh size H. Then, the Adv-MsFEM approximation u ε H , solution to (4.25), satisfies

}u ε ´uε H } H 1 H pΩ ε q ď Cε ˆ?ε `H `c ε H ˙}f } H 2 pΩq , (4.53)
for a constant C independent of ε, H and f , where we have used the notation }v}

H 1 H pΩ ε q " d ÿ KPT H }v} 2 H 1 pKXΩ ε q .
As for the approach that does not account for the advection field in none of the basis functions, namely the MsFEM with bubble functions defined by the variational formulation (4.13), its error estimate is established in the following theorem, itself again an extension of the result for the diffusion problem [START_REF] Bris | An MsFEM type approach for perforated domains[END_REF]Theorem 2.2]. Again, the proof is postponed until Appendix 4.6.3. Understandably, the advection term, present in the original equation but not in the definition of the basis functions, has to be accommodated (thus the additional first term in the right-hand side of (4.54) below). Theorem 4.6. We make the same assumptions as those of Theorem 4.5 and let again u ε be the solution to (4.2) in dimension d " 2, with f P H 2 pΩq. We additionally assume here that b P pW 2,8 pY zOqq 2 and that }b} L 8 pY zOq is sufficiently small (in a sense made precise in the proof).

Then, the MsFEM approximation u ε H , solution to (4.13), satisfies for a constant C independent of ε, H and f .

}u ε ´uε H } H 1 H pΩ ε q ď CH }b} L 8 pY
Although we suspect that similar estimates to those of Theorems 4.5 and 4.6 above can be established for the problem with Neumann boundary conditions (4.3), we have not pursued in this direction.

Numerical results

This section presents our numerical results. They have all been performed with FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF], on the following test case. We consider the two-dimensional domain Ω " p0, 1q 2 . Its subdomain Ω ε is a periodically perforated domain defined by

Ω ε " ! x P Ω, χ ´x ε ¯" 1 ) . (4.55)
where χ is the extension by Y -periodicity, for the periodicity cell Y " p0, 1q 2 , of the characteristic function 1 Y zO , where O Ă Y defines a perforation. For either of the problems considered ((4.2) or (4.3)), and for either of our approaches, based on the diffusion operator only or the full advection-diffusion operator, we will investigate several issues. The first issue is how enriching the approach with bubble functions affects the accuracy. Of course, as all our approaches are variational approaches, enriching the variational approximation space using bubble functions can only improve the accuracy, at the price of increasing the number of degrees of freedom. We however notice that, when a gain in accuracy is observed, that gain is much higher than that obtained by, say, reducing by a factor two the size of the coarse mesh. We therefore then safely conclude about the added value of bubble functions. Other issues that are specifically examined below are the influence of the Péclet number (measuring the relative amplitude of the advection with respect to the diffusion) and that of the small scale ε defining both the size of the perforations and their typical distance. Many of these issues are examined upon considering a range of mesh sizes H for the coarse mesh. This range is typically chosen as H varying from ε{10 to 10 ε. One must bear in mind that capturing all the details of the oscillatory solutions u ε using a standard FEM approach would require choosing a mesh size in any event smaller, and in most cases much smaller, than ε{10. At the other end, choosing H larger than 10 ε is hopeless. Thus the choice of our typical range of values of H.

Beside comparing the various approaches considered, and assessing their performance in function of the various parameters of the problem, we will also specifically assess their robustness with respect to the location of the perforations. To this aim, we consider two locations for the perforation within the periodicity cell Y " p0, 1q 2 :

O " O 1 " p0.25, 0.75q 2 and O " O 2 " p0, 0.25q ˆp0.25, 0.75q Y p0.75, 1q ˆp0.25, 0.75q.

The shape of the perforations is the same (squares of size 0.5ε). The difference lies in the relative position of the mesh with respect to the perforations. One set of perforations is obtained from the other by shifting by 0.5 ε in the x direction. When O " O 1 , the perforations do not intersect the edges of the mesh elements (which are taken aligned with the periodicity cells). In contrast, when O " O 2 , many edges are intersected by the perforations. In doing so, we have in mind, like in our previous works, to use these two specific periodic geometries to emphasize which approaches can easily carry over to the case of non periodic perforations, where a typical mesh may often intersect the perforations. To some extent, the two periodic geometries we consider respectively represent the best case scenario (when perforations are all interior to mesh elements) and the worst case scenario (when "half" the perforations intersect the boundaries of mesh elements).

The advection field p b ε we consider is proportional to the constant field b " p1, 1q T . Depending on the situation considered, the proportionality constant is either 1 or 1{ε, for reasons that have been made clear above. Throughout the section, the Péclet number, the non dimensionalized number that measures the relative importance of advection over diffusion, is denoted by Pe " } p b ε } L 8 pΩq {p2αq.

The reference solution u ref , and all the relative errors that will be defined with respect to that reference solution, are computed on the fine mesh. The reference solution itself is computed using the standard P 1 Finite Element method on this fine mesh. We measure the accuracy using, on domains ω Ă Ω ε , the H In all what follows, we choose f px, yq " sin ´π 2

x ¯sin ´π 2 y ¯as right-hand side for the advectiondiffusion equation considered (we have checked that our results and conclusions do not sensitively depend on the choice of f ).

Homogeneous Dirichlet boundary condition

Unless otherwise stated, the Adv-MsFEM and its variants defined in Section 4.2.2 are derived from the approximation space (4.26).

In Section 4.4.1, we study the added value of bubble functions. Sections 4.4.1 and 4.4.1 respectively explore the influence of the Péclet number and the small scale ε.

Adding bubble functions

We fix ε " 0.03 and α " 0.25. The perforations are defined by the set O " O 1 , but we have explicitly checked, alternately choosing O " O 2 , that all our results and conclusions in this section are qualitatively insensitive to the location of the perforations.

To start with, we consider the MsFEM approach. We observe on Figure 4.4 that adding bubble functions significantly improves the accuracy, and that the best option is that with advective bubble functions. We next turn to Adv-MsFEM. Only here in the present article, we temporarily also include in our comparison multiscale basis functions built with boundary conditions other than Crouzeix-161 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains

Raviart, namely elements with linear boundary conditions and elements using oversampling (specifically with an oversampling ratio equal to 3, see [START_REF] Efendiev | of Surveys and Tutorials in the Applied Mathematical Sciences[END_REF] for the definition). In the case of the Adv-MsFEM CR approach, the bubble functions are defined by (4.30), with Crouzeix Raviart boundary conditions. In the case of the Adv-MsFEM lin approach (with affine boundary conditions on BK) and of the Adv-MsFEM OS approach (with oversampling), the bubble functions are defined using Dirichlet homogeneous conditions on BK, that is as the solution to

# ´α∆Ψ ε,K D `p b ε ¨∇Ψ ε,K D " 1 in K X Ω ε , Ψ ε,K D " 0 in K X B ε , Ψ ε,K D " 0 on BK.
Figure 4.5 displays the relative H 1 broken error of the different approaches. We again observe that adding advective bubble functions significantly improves the accuracy, and that Adv-MsFEM à la Crouzeix Raviart with advective bubble functions is the best of all the approaches considered. 

Influence of the Péclet number

We now study the influence of a large advection, quantified by the Péclet number, on the accuracy of our approaches. We fix ε " 0.03125 and the mesh size H " 1{16. We choose O " O 1 , the configuration where the perforations do not intersect the coarse mesh. In order to vary the Péclet number, we let the diffusion parameter take the values α " 2 k , for the integers k " ´5 through 2. When α decreases, Problem (4.2) increasingly becomes advection-dominated. Given the results of our previous section, we only consider MsFEM and Adv-MsFEM with advective bubble functions. Figure 4.6 shows that the latter approach stays accurate when α decreases while the error blows up to a hundred percent for the former approach.

We have checked that our conclusions are not modified when using a stabilized formulation of the various approaches. They are not modified either when considering shifted perforations O " O 2 , many of which now intersect the edges of mesh elements. 

Influence of the small scale ε

We fix α " 1{16, H " 1{16, and, in order to evaluate the influence of the small scale ε, let ε take the values ε " 2 ´k for k " 3, . . . , 8. Since we know from previous observations that stabilization does not bring any added value, we only consider our approaches without stabilization. In Figure 4.7, we observe that the most accurate method is the Adv-MsFEM with advective bubble functions. The results are shown for O " O 1 , in which case the perforations do not intersect the coarse mesh, but we have also checked that the exact same conclusion holds for O " O 2 .

Comparison of two variants of Adv-MsFEM

In the previous sections, we have always used the formulation problem) can also be considered for the present Dirichlet case. The difference between the two approaches is the use of the bilinear form a H instead of c H in the definition of the local and global problems, which in particular implies different boundary conditions prescribed on the inner edges/faces of the mesh elements, see Section 4.2.2.

We first compare the two methods as in Section 4.4.1, that is for varying Péclet numbers (i.e. varying α). We first fix O " O 1 , and next fix O " O 2 . In both cases, we have observed (results not shown) that the behavior of the methods (4.25) and (4.34) when α decreases is similar.

We then consider again the setting of Section 4.4.1. We start with O " O 2 . In Figure 4.8, both methods yields a reasonable accuracy for small values of ε. We now set O " O 1 , all the other parameters being unchanged. We see in Figure 4.9 that method (4.34) is much less accurate than method (4.25) for small values of ε. This provides a practical motivation (in addition to the theoretical motivation outlined above) to use method (4.25). 

Homogeneous Neumann boundary condition

In this section, we investigate the influence of the Péclet number and the small scale ε. Then, we study the effect of adding bubble functions. We consider the Neumann problem 

Influence of the Péclet number

As already mentioned, one consequence of the Neumann conditions, as opposed to the homogeneous Dirichlet conditions, set on the boundary of the perforations is that the flow is not slowed down around the perforations. Thus, when advection dominates diffusion, the effect of advection is all the more acute (and a boundary layer indeed develops close to the boundary of the domain Ω). Since advection is more extreme, it is therefore important to primarily investigate how the approaches perform on Problem (4.3) when advection increasingly dominates diffusion (a study we presented in Section 4.4.1 for the Dirichlet problem). In practice, we perform our tests fixing ε " 0.03125, H " 1{16 and varying α " 2 k , for integers k " ´9 to ´2.

It is well known that all discretization methods poorly perform within the boundary layer in the advection dominated regime. The only exceptions are methods specifically tailored to the boundary layer and we do not wish to go in that direction. We have checked that all our approaches essentially fail in the boundary layer, the error for some of them even blowing up to more than a hundred percent. Therefore, in order to discriminate between the approaches, we only consider the region outside the boundary layer (we have also adopted such a strategy in [START_REF] Bris | A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media[END_REF]). Figure 4.10 shows the relative error (4.57) (for ω " Ω ε zΩ layer in (4.56)) calculated there, in the configuration where the perforations do not intersect the coarse mesh, i.e. when O " O 1 . We observe that Adv-MsFEM performs well. As is the case for MsFEM provided it is stabilized. 

Influence of the small scale ε

We fix α " 1{256, H " 1{16 and we vary ε " 2 ´k, k " 5, . . . , 8. We only show here the results when the perforations do not intersect the coarse mesh, i. 4.13 both show that the relative error, respectively on the whole domain and outside the boundary layer, is essentially insensitive to the small scale ε. The comparison of the actual size of the error in each of the two figures shows that the error within the boundary layer significantly dominates that outside the layer and is often prohibitively large, as is usually the case in the advection-dominated regime and as was mentioned in the previous section. In both figures, we observe that MsFEM is outperformed. Overall, Adv-MsFEM performs the best, but Stab-MsFEM is the most accurate method outside the layer.

Adding bubble functions

In this section, we study the added value of bubble functions for Adv-MsFEM and, given that the conclusions of the previous sections that show the inaccuracy of MsFEM itself, the stabilized variant Stab-MsFEM. 4.17, we infer that:

• inside the boundary layer, the Adv-MsFEM with advective bubble functions is sensitive to the location of the perforations with respect to the coarse mesh;

• outside the boundary layer, the Adv-MsFEM with advective bubble functions is robust to the location of the perforations with respect to the coarse mesh. Nonperiodic geometry of perforations A main motivation for using MsFEM approaches is to consider nonperiodic cases. Unlike the periodic setting, homogenization theory does not yield any explicit approximation strategy. In this section, we assess the performance of our approaches on a nonperiodic geometry Ω ε np depicted in Figure 4.19 and compare to an equivalent periodically perforated domain Ω ε p defined by (4.55) with ε " 0.03125, Y " p0, 1q 2 and O " rO 1 where r ą 0 is such that |Ω ε p | " |Ω ε np |. To this aim, we choose the test case introduced in the study of the influence of the Péclet number. We recall that we fix ε " 0.03125, H " 1{16 and we vary α " 2 k , for integers k " ´9 to ´2. bubble functions and the Stab-MsFEM. We observe that the Stab-MsFEM is insensitive to the nonperiodicity of the geometry. We see that the Adv-MsFEM with advective bubble functions is more sensitive to the nonperiodicity of the geometry but still outperforms the Stab-MsFEM in both cases.

Appendix: Homogenization results

We include here the proof of the homogenization limit for some of the problems we consider. 

Homogeneous Dirichlet boundary condition

We prove here Theorem 4.2. The proof of Theorem 4.3 follows the same pattern and we therefore omit it. A key ingredient in the proof below is the following Poincaré inequality (see [START_REF] Bris | An MsFEM type approach for perforated domains[END_REF]Appendix A.1]): there exists C ą 0 independent of ε such that

@ϕ P H 1 0 pΩ ε q, }ϕ} L 2 pΩ ε q ď Cε}∇ϕ} L 2 pΩ ε q " Cε|ϕ| H 1 pΩ ε q , ( 4.58) 
where we recall the notation |v| H 1 pΩ ε q " }∇v} L 2 pΩ ε q for any v P H 1 pΩ ε q.

Proof of Theorem 4. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.10] and using the regularity of b, we get that w P W k,2 pY zOq, for some k ą 1 `d{2. This holds when b P W k´2,8 pY zOq. Using the Sobolev inclusions, we obtain that w P C 1 pY zOq.

Using similar arguments, we observe that (4.2) is well-posed for any f P L 2 pΩq.

We now prove (4.44). Let η ε be a regular function, vanishing in the neighborhood of the boundary of Ω, such that 0 ď η ε ď 1 on Ω, and which is equal to 1 on tx P Ω, dist px, BΩq ą εu (see Figure 4.1). Since the domain Ω is regular, we can construct η ε such that it satisfies

}η ε } L 8 pΩq ď C, }1 ´ηε } L 2 pΩq ď C ? ε, }∇η ε } L 8 pΩq ď C ε , }∇η ε } L 2 pΩq ď C ? ε , }∇ 2 η ε } L 2 pΩq ď C ε 3{2 ,
where C ą 0 is a constant independent of ε. We define ϕ ε " u ε ´ε2 w ´ε ¯f η ε and compute

∇ϕ ε " ∇u ε ´ε∇w ´ε ¯f η ε ´ε2 w ´ε ¯∇pf η ε q, ∆ϕ ε " ∆u ε ´∆w ´ε ¯f η ε ´2ε∇w ´ε ¯¨∇pf η ε q ´ε2 w ´ε ¯∆pf η ε q. Recalling that p b ε " 1 ε b ´ε ¯, we get ´α∆ϕ ε `p b ε ¨∇ϕ ε " f `α∆w ´ε ¯f η ε `2εα∇w ´ε ¯¨∇pf η ε q `1 ε b ´ε ¯¨´´ε ∇w ´ε ¯f η ε ´ε2 w ´ε ¯∇pf η ε q ¯`ε 2 αw ´ε ¯∆pf η ε q " f `´α∆w ´ε ¯´b ´ε ¯¨∇w ´ε ¯¯f η ε `2εα∇w ´ε ¯¨∇pf η ε q ´εb ´ε ¯¨w ´ε ¯∇pf η ε q `ε2 αw ´ε ¯∆pf η ε q " f p1 ´ηε q `ε´2 α∇w ´ε ¯´b ´ε ¯w ´ε ¯¯¨∇pf η ε q `ε2 αw ´ε ¯∆pf η ε q.
We infer from the above that

› › ›´α∆ϕ ε `p b ε ¨∇ϕ ε › › › L 2 pΩ ε q ď }f } L 8 pΩq }1 ´ηε } L 2 pΩq `ε}2α∇w ´bw} L 8 pY zOq ´}f } L 8 pΩq }∇η ε } L 2 pΩq `}∇f } L 2 pΩq }η ε } L 8 pΩq ε2 α}w} L 8 pY zOq ´}f } L 8 pΩq }∆η ε } L 2 pΩq `2}∇f } L 2 pΩq }∇η ε } L 8 pΩq `}∆f } L 2 pΩq }η ε } L 8 pΩq ď C ? ε ´}f } L 8 pΩq `}∇f } L 2 pΩq `}∆f } L 2 pΩq ¯.
Noticing that ϕ ε vanishes on the boundary of Ω ε and that div b ď 0 on Y zO, we obtain 

ˆΩε α|∇ϕ ε | 2 ď ˆΩε ´´α∆ϕ ε `p b ε ¨∇ϕ ε ¯ϕε ď C ? ε}ϕ ε } L 2 pΩ ε q N pf q. ( 4 
|ϕ ε | H 1 pΩ ε q ď Cε 3{2 N pf q. (4.60)
To estimate ˇˇu ε ´ε2 w ´ε ¯f ˇˇH 1 pΩ ε q , we use the triangle inequality and write

ˇˇu ε ´ε2 w ´ε ¯f ˇˇH 1 pΩ ε q ď |ϕ ε | H 1 pΩ ε q `ε2 ˇˇw ´ε ¯f p1 ´ηε q ˇˇH 1 pΩ ε q . ( 4.61) 
We are thus left with bounding the quantity ε 2 ˇˇw ´ε ¯f p1 ´ηε q ˇˇH 1 pΩ ε q . To this aim, we compute

ε 2 ∇
" w ´ε ¯f p1 ´ηε q ı " ε∇w ´ε ¯f p1 ´ηε q `ε2 w ´ε ¯∇f ´ε2 w ´ε ¯∇pf η ε q.

We then have

ε 2 ˇˇw ´ε ¯f p1 ´ηε q ˇˇH 1 pΩ ε q ď ε › › ›∇w ´ε ¯f p1 ´ηε q › › › L 2 pΩq `ε2 › › ›w ´ε ¯∇f › › › L 2 pΩq `ε2 › › ›w ´ε ¯∇pf η ε q › › › L 2 pΩq ď Cε 3{2 N pf q. ( 4.62) 
We infer from (4.61), (4.60) and (4.62) that

ˇˇu ε ´ε2 w ´ε ¯f ˇˇH 1 pΩ ε q ď Cε 3{2 N pf q.
This concludes the proof of Theorem 4.2.

Homogeneous Neumann boundary condition

We prove Theorem 4.4 using two-scale convergence, as in [4, Theorem 2.9]. The problem considered in [4, Theorem 2.9] is a diffusion problem with a zero-order term, while the problem we consider here is an advection-diffusion problem without zero-order term. Although the problems are different, the arguments of the proof are essentially similar. We thus only detail the steps in the argument different from those in [4, Theorem 2.9]. domains

As a preliminary step, before we are in position to prove Theorem 4.4, we establish the following Poincaré inequality. We recall (see (4.11)) that 

V ε " ␣ u P H 1 pΩ ε q such that u " 0 on BΩ ε X BΩ ( . ( 4 
@u P V ε , }u} L 2 pΩ ε q ď C}∇u} L 2 pΩ ε q . (4.64)
Proof of Lemma 4.7. The proof of (4.64) falls in two steps.

Step 1. For any u P V ε , we show here how to build a suitable extension v of u in the perforations B ε . We recall that, in view of (4.43), we have B ε " Ω X pY kPZ d pεO `εkqq.

Let u P H 1 pY zOq. We claim that there exists v P H 1 pY q with v " u in Y zO and }∇v} L 2 pY q ď C}∇u} L 2 pY zOq (4.65)

for some C independent of u and v. By scaling, we next deduce from (4.65) that there exists C independent of ε such that, for any u P H 1 pεpY zOqq, there exists v P H 1 pεY q with v " u in εpY zOq and }∇v} L 2 pεY q ď C}∇u} L 2 pεpY zOqq .

Consider now u P V ε :

• For each perforation εO `εk included in Ω, we extend u in εO `εk as above.

• For each perforation εO `εk that intersects the boundary BΩ, we extend u in Ω X pεO `εkq by a function that is equal to u on BpεO `εkq X Ω and that vanishes on BΩ. To build this extension, we use the assumption (4.47) along with the same arguments as above.

Doing so, we thus construct v P H 1 0 pΩq such that v " u on Ω ε and }∇v} L 2 pΩq ď C}∇u} L 2 pΩ ε q (4.66)

where C is independent of u and v.

Step 2. Let u P V ε and let v P H 1 0 pΩq be the extension built in Step 1. Using the Poincaré inequality in H 1 0 pΩq and (4.66), we write that

}u} L 2 pΩ ε q ď }v} L 2 pΩq ď C}∇v} L 2 pΩq ď C}∇u} L 2 pΩ ε q .
This concludes the proof of Lemma 4.7.

Proof of Theorem 4.4. We recall that the variational form of (4.3) is as follows:

Find

u ε P V ε such that, for any v P V ε , a ε pu ε , vq " ˆΩε f v
where V ε is defined by (4.63) and the bilinear form a ε is defined (see (4.7); we now make explicit the dependency with respect to ε) by

a ε pu, vq " ˆΩε α∇u ¨∇v `ˆΩ ε ´p b ε ¨∇u ¯v. (4.67) 
The proof falls in 3 steps.

Step 1: a priori estimates. Similarly to r u ε P L 2 pΩq, the extension by zero of the solution u ε to (4.3), we denote r ∇u ε P L 2 pΩq the extension by zero of ∇u ε . We want to show that the sequences r u ε and r ∇u ε are uniformly bounded in L 2 pΩq with respect to ε. We recall that p b ε " b ´ε ¯. We distinguish two cases, depending on the assumptions on b.

We start with the case where div b ď 0 in Y zO and b ¨n ě 0 on BO. For any u P V ε , we have

a ε pu, uq " ˆΩε α|∇u| 2 `1 2 ˆBΩ ε ´p b ε ¨n¯u 2 ´1 2 ˆΩε ´div p b ε ¯u2 ě α}∇u} 2 L 2 pΩ ε q ě C}u} 2 H 1 pΩ ε q , ( 4.68) 
successively using that div b ď 0 in Y zO, b ¨n ě 0 on BO, u " 0 on BΩ ε X BΩ and the Poincaré inequality shown in Lemma 4.7. The bilinear form (4.67) is thus coercive, uniformly with respect to ε. This of course implies that the problem (4.3) is well-posed, and also that u ε is uniformly bounded in H 1 pΩ ε q.

In the case where b is curl-free, we know there exists ψ P W 2,8 loc pEq (where we recall that E is the domain obtained by Y -periodicity from Y zOq) such that b " α ∇ψ in E. Denoting by domains p ψ ε " εψ ´x ε ¯, we have, for any u and v in H 1 pΩ ε q,

a ε ´u, e ´p ψ ε v " ˆΩε α∇u ¨∇ ´e´p ψ ε v ¯`´p b ε ¨∇u ¯e´p ψ ε v " ˆΩε αe ´p ψ ε ∇u ¨∇v `ˆΩ ε "´p b ε ´α ∇ p ψ ε ¯¨∇u ı e ´p ψ ε v " ˆΩε αe ´p ψ ε ∇u ¨∇v. (4.69)
Writing b as the sum of its mean and a mean-free quantity, we see that ψ can be written as the sum of a linear function and a periodic function, which implies that

p ψ ε pxq " 1 α xby ¨x `ε ψ per ´x ε ¯(4. 70 
)
where xby is the mean of b over Y and ψ per is Y -periodic. There thus exists C ψ such that

@ε, › › › p ψ ε › › › W 1,8 pΩ ε q ď C ψ . (4.71)
Furthermore, setting ψ 0 pxq "

1 α xby ¨x, we have lim εÑ0 › › › p ψ ε ´ψ0 › › › L 8 pΩ ε q " 0. (4.72) 
We deduce from (4.69) and (4.71), using again Lemma 4.7, that

@u P V ε , a ε ´u, e ´p ψ ε u ¯ě α e ´Cψ }∇u} 2 L 2 pΩ ε q ě C}u} 2 H 1 pΩ ε q , (4.73)
where C is a constant independent of ε. We deduce that there exists C independent of ε such that inf uPV ε sup

vPV ε a ε pu, vq }u} H 1 pΩ ε q }v} H 1 pΩ ε q ě C. ( 4.74) 
Again using (4.73), we also observe that, if v P V ε is such that a ε pu, vq " 0 for any u P V ε , then v " 0. Using the Banach-Nečas-Babuška Theorem, we conclude that the problem (4.3) is well-posed (we refer to, e.g., [38, p. 85] for a comprehensive exposition of the inf-sup theory). We next deduce from (4.74) that u ε is uniformly bounded in H 1 pΩ ε q.

Thus, in both cases we consider, the solution u ε to (4.3) is well-defined and uniformly bounded in H 1 pΩ ε q. Consequently, r u ε (resp. r ∇u ε ) is uniformly bounded in L 2 pΩq (resp. pL 2 pΩqq d ).

Step 2: homogenized limit. Because of the above bounds, we know that there exists u 0 P L 2 pΩ ˆY q (resp. ξ 0 P pL 2 pΩ ˆY qq d ) such that the sequence r u ε (resp. r ∇u ε ) two-scale converges, up to an extraction, to u 0 (resp. ξ 0 ). Following the proof of [4, Theorem 2.9], we obtain that there exists u ‹ P H 1 0 pΩq and u 1 P L 2 `Ω, H The variational formulation (4.67) of (4.3), using v " ϕ ε , writes

α ˆΩ r ∇u ε ¨∇ϕ ε `ˆΩ b ´ε ¯¨r ∇u ε ϕ ε " ˆΩε f ϕ ε " ˆΩ 1 E ´ε ¯f ϕ ε , ( 4.76) 
where we recall that E is the domain obtained by Y -periodicity from Y zO.

We check that the functions r∇ϕpxq `∇y ϕ 1 px, yq `ε∇ϕ 1 px, yqqs and b pyq pϕpxq `εϕ 1 px, yqq are admissible test functions in the sense of the two-scale convergence.

Passing to the limit ε Ñ 0 in (4.76) and using (4.75), we obtain

α ˆΩˆY 1 Y zO p∇u ‹ `∇y u 1 q ¨p∇ϕ `∇y ϕ 1 q `ˆΩˆY 1 Y zO p∇u ‹ `∇y u 1 q ¨bϕ " ˆΩˆY 1 Y zO f ϕ.
By a density argument, we have that this variational formulation holds for any pϕ, ϕ 1 q P H 1 0 pΩq ˆL2 pΩ; H 1 per pY qq. We thus have @ϕ 1 P H 1 per pY q, ˆY zO p∇u ‹ `∇y u 1 q ¨∇y ϕ 1 " 0 (4.77) and @ϕ P H 1 0 pΩq, α ˆΩˆpY zOq p∇u ‹ `∇y u 1 q ¨∇ϕ `ˆΩˆpY zOq p∇u ‹ `∇y u 1 q ¨bϕ " |Y zO| ˆΩ f ϕ. (4.78)

Let w i , 1 ď i ď d, be the corrector solution to (4.51). We deduce from (4.77) that

u 1 px, yq " d ÿ i"1 w i pyq B x i u ‹ pxq.
Inserting this expression in (4.78), we get that u ‹ satisfies

@ϕ P H 1 0 pΩq, ˆΩ A ‹ ∇u ‹ ¨∇ϕ `pb ‹ ¨∇u ‹ q ϕ " |Y zO| |Y | ˆΩ f ϕ,
where A ‹ (resp. b ‹ ) is defined by (4.49) (resp. (4.49)). This is exactly the variational formulation of (4.48).

Since the couple pu ‹ , u 1 q is uniquely determined, we infer that the whole sequence r u ε (resp. r ∇u ε ) two-scale converges to u 0 (resp. to ξ 0 ) in L 2 pΩq (resp. in pL 2 pΩqq d ).
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Step 3:

H 1 convergence. Let u ε,1 " u ‹ `ε d ÿ i"1 w i ´ε ¯Bx i u ‹ and ξ 1 px, yq " d ÿ i"1 pe i ∇w i pyqq B x i u ‹ pxq, so that ∇u ε,1 " ξ 1 ´¨, ε ¯`ε ξ 2 ´¨, ε ¯with ξ 2 px, yq " d ÿ i"1 w i pyq B x i ∇u ‹ pxq.
We note that ξ 0 px, yq " 1 Y zO pyq ξ 1 px, yq. We note that u ε,1 does not vanish on BΩ. This is a usual difficulty in homogenization, which is standardly addressed by introducing a truncation function η ε as in the proof of Theorem 4.2 (see Appendix 4.5.1), and considering g ε,1 " u ‹ `εη ε To estimate }u ε ´gε,1 } H 1 pΩ ε q , we distinguish two cases, depending on the assumptions on b.

d ÿ i"1 w i ´ε ¯Bx i u ‹ P V ε .
We start with the case where div b ď 0 in Y zO and b ¨n " 0 on BO. Using (4.68), we write

C}u ε ´gε,1 } 2 H 1 pΩ ε q ď a ε pu ε ´gε,1 , u ε ´gε,1 q " ˆΩε f pu ε ´gε,1 q `aε pg ε,1 , g ε,1 q ´aε pg ε,1 , u ε q " ˆΩε f pu ε ´uε,1 q `aε pu ε,1 , u ε,1 q ´aε pu ε,1 , u ε q `Rε , ( 4.80) 
where lim εÑ0 R ε " 0 (4.81) as a consequence of (4.79). We successively pass to the limit in the three terms of (4.80). For the first one, we have

ˆΩε f u ε " ˆΩ f r u ε Ñ εÑ0 ˆΩˆY f u 0 " ˇˇY zO ˇˇˆΩ f u (4.82) and ˆΩε f u ε,1 " ˆΩ 1 E ´ε ¯f u ε,1 Ñ εÑ0 ˆΩˆY 1 Y zO f u " ˇˇY zO ˇˇˆΩ f u. (4.83)
For the second term of (4.80), we write

a ε pu ε,1 , u ε,1 q " ˆΩε α∇u ε,1 ¨∇u ε,1 `ˆΩ ε " b ´ε ¯¨∇u ε,1 ı u ε,1 " ˆΩε αξ 1 ´¨, ε ¯¨ξ 1 ´¨, ε ¯`2ε ˆΩε αξ 1 ´¨, ε ¯¨ξ 2 ´¨, ε ¯`ε 2 ˆΩε αξ 2 ´¨, ε ¯¨ξ 2 ´¨, ε Ωε " b ´ε ¯¨ξ 1 ´¨, ε ¯ı u ε,1 `ε ˆΩε " b ´ε ¯¨ξ 2 ´¨, ε ¯ı u ε,1 " ˆΩ αξ 0 ´¨, ε ¯¨ξ 0 ´¨, ε ¯`2ε ˆΩε αξ 1 ´¨, ε ¯¨ξ 2 ´¨, ε ¯`ε 2 ˆΩε αξ 2 ´¨, ε ¯¨ξ 2 ´¨, ε Ω " b ´ε ¯¨ξ 0 ´¨, ε ¯ı u ε,1 `ε ˆΩε " b ´ε ¯¨ξ 2 ´¨, ε ¯ı u ε,1 .
Passing to the limit ε Ñ 0, we get that lim εÑ0 a ε pu ε,1 , u ε,1 q " ˆΩˆY αξ 0 px, yq ¨ξ0 px, yq `ˆΩˆY rbpyq ¨ξ0 px, yqs upxq. (4.84)

For the third term of (4.80), we write

a ε pu ε,1 , u ε q " ˆΩε α∇u ε,1 ¨∇u ε `ˆΩ ε " b ´ε ¯¨∇u ε,1 ı u ε " ˆΩ αξ 1 ´¨, ε ¯¨r ∇u ε `ε ˆΩ αξ 2 ´¨, ε ¯¨r ∇u ε `ˆΩ " b ´ε ¯¨ξ 1 ´¨, ε ¯ı r u ε `ε ˆΩ " b ´ε ¯¨ξ 2 ´¨, ε ¯ı r u ε .
Passing to the limit ε Ñ 0 and using the two-scale limits of r u ε and r ∇u ε , we get that C}u ε ´gε,1 } H 1 pΩ ε q " 0.

lim εÑ0 a ε pu ε,1 , u ε q " ˆΩˆY αξ 1 px
Collecting this result with (4.79), we deduce the claimed H 1 convergence.

In the case where b is curl-free, using (4.73), we write C}u ε ´gε,1 } H 1 pΩ ε q " 0.

C}u ε ´gε,1 } 2 H 1 pΩ ε q ď a ε ´uε ´gε,1 , e ´r ψ ε pu ε ´gε,1 q " ˆΩε f e ´r ψ ε pu ε ´gε,1 q `aε ´gε,1 , e ´r ψ ε g ε,1 ¯´a ε ´gε,1 , e ´r ψ ε u ε " ˆΩε f e ´r ψ ε pu ε ´uε,1 q `aε ´uε,1 , e ´r ψ ε u ε,1 ¯´a ε ´uε,1 , e ´r ψ ε u ε ¯`R ε , ( 4 
Collecting this result with (4.79), we deduce the claimed H 1 convergence. This concludes the proof of Theorem 4.4.

Appendix: Proof of the error estimates

Some preliminary material

Before being in position to present the proofs of Theorem 4.5 and Theorem 4.6, which follow that of [59, Theorem 2.2], we need some preliminary results.

To start with, we establish a Poincaré-type inequality. As we clearly have

}u} L 2 pΩ ε q ď Cε}∇u} L 2 pΩ ε q for all u P H 1 0 pΩ ε q,
where C is a constant independent of ε, we also have

}u} L 2 pΩ ε q ď C P ε|u| H 1 H pΩ ε q for all u P W H,B ε , (4.91)
where C P is a constant independent of ε, where |u| 2

H 1 H pΩ ε q " ÿ KPT H }∇u} 2 L 2 pKXΩ ε q and W H,B ε " $ & % u P L 2 pΩq such that u| K P H 1 pKq for any K P T H , ˆErruss " 0 for any E P E in H , u " 0 in B ε , .
-.

We ). Let g P L 8 pRq be a q-periodic function with zero mean. Let f P W 1,1 p0, Hq Ă C 0 p0, Hq be a function defined on the interval r0, Hs that vanishes at least at one point of r0, Hs. Then, for any ε ą 0, ˇˇˇˆH 0 g ´x ε ¯f pxqdx ˇˇˇď 2 ε q }g} L 8 pRq }f 1 } L 1 p0,Hq .

Proof of Theorem 4.5

To simplify notation, we denote by u, instead of u ε , the solution to (4.2), and u H , instead of u ε H its approximation, solution to (4.25). Upon dividing Equation (4.2) by α, we may assume that α " 1. Let Π H f be the L 2 -orthogonal projection of f on the space of piecewise constant functions. We recall that we have the following 181 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains interpolation estimate: there exists C independent of H and f such that

}f ´ΠH f } L 2 pΩq ď CH}∇f } L 2 pΩq (4.97) We define v H pxq " ÿ KPT H Π H f Ψ ε,K pxq `ÿ EPE in H ˆˆE u ˙Φε,E pxq,
where Φ ε,E and Ψ ε,K are respectively solutions to (4.29) and (4.30). We recall that if K Ă B ε (resp. E Ă B ε ), then Ψ ε,K " 0 (resp. Φ ε,E " 0). We see from (4.26) that v H P V adv bubble

H

. We next decompose the exact solution into

u " v H `ϕ. Notice that v H satisfies ˆE v H " ˆE u, hence ˆE ϕ " 0, for all E P E in H ˆ∇v H ´1 2 p b ε v H ˙¨n " Constant on (each side of) E, for all E P E in H (4.98) ´∆v H `p b ε ¨∇v H " Π H f on K X Ω ε , for all K P T H .
In what follows, we make use of the notation g |ε pxq " g ´x ε ¯. The constant C denote a constant independent of ε, H and f and that may vary from one line to the next. We begin by estimating ϕ.

Step 1: Estimation of u ´vH : Using the approximation of u given in the homogenization result (4.44) and denoting r ϕ " ε 2 w ε f ´vH , we have

c H pϕ, ϕq " c H pu ´ε2 w ε f, ϕq `cH pε 2 w ε f ´vH , ϕq (4.99) " c H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕ `ˆBpKXΩ ε q ˆ∇ r ϕ ´1 2 p b ε r ϕ ˙¨nϕ " c H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕ `ˆpBKqXΩ ε ˆ∇ r ϕ ´1 2 p b ε r ϕ ˙¨nϕ " c H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕ `ε2 ÿ KPT H ˆpBKqXΩ ε ˆ∇pw ε f q ´1 2 p b ε pw ε f q ˙¨nϕ, (4.100) 
where we used the fact that ϕ " 0 on BΩ ε in the third line and (4.98) in the last line. Using that div b ď 0, we obtain the coercivity of c H as follows 

c H pϕ, ϕq " ÿ KPT H ˆKXΩ ε |∇ϕ| 2 `pp b ε ¨∇ϕqϕ ´1 2 ˆBpKXΩ ε q p p b ε ¨nqϕ 2 " ÿ KPT H ˆKXΩ ε |∇ϕ| 2 `1 2 p b ε ¨∇pϕ 2 q ´1 2 ˆBpKXΩ ε q p p b ε ¨nqϕ 2 " ÿ KPT H ˆKXΩ ε |∇ϕ| 2 ´1 2 pdiv p b ε qϕ 2 ě |ϕ| 2 H 1 H pΩ ε q . ( 4 
|ϕ| 2 H 1 H pΩ ε q ď c H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕ `ε2 ÿ EPE in H ˆEXΩ ε ˆ∇pw ε f q ´1 2 p b ε pw ε f q ˙¨nrrϕss. (4.102)
We bound successively the three terms of the right-hand side of (4.102). Roughly speaking:

• the first term is small because of the homogenization result (4.44);

• the second is small because at the leading order ´∆v H `p b ε ¨∇v H » Π H f ;

• bounding the third term uses the fact that w is a periodic function.

Step 1a The first term of (4.102) is estimated as follows. Denoting r u " u ´ε2 w ε f , we write

c H pr u, ϕq " ÿ KPT H ˆKXΩ ε ∇r u ¨∇ϕ `1 2 p p b ε ¨∇r uqϕ ´1 2 div p p b ε ϕqr u " ÿ KPT H ˆKXΩ ε ∇r u ¨∇ϕ `ÿ KPT H ˆKXΩ ε 1 2 p p b ε ¨∇r uqϕ ´1 2 p p b ε ¨∇ϕqr u ´ÿ KPT H ˆKXΩ ε 1 2 div p p b ε qϕr u ď |r u| H 1 H pΩ ε q |ϕ| H 1 H pΩ ε q `ε´1 }b} L 8 pY zOq p|r u| H 1 H pΩ ε q }ϕ} L 2 pΩ ε q `|ϕ| H 1 H pΩ ε q }r u} L 2 pΩ ε q q `ε´2 }b} W 1,8 pY zOq }r u} L 2 pΩ ε q }ϕ} L 2 pΩ ε q ď p1 `C}b} W 1,8 pY zOq q|r u| H 1 H pΩ ε q |ϕ| H 1 H pΩ ε q ď Cε 3{2 N pf qp1 `C}b} W 1,8 pY zOq q|ϕ| H 1 H pΩ ε q , ( 4.103) 
where we used (4.91) in the fourth line and (4.44) in the last line.
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Step 1b We now turn to the second term of the right-hand side of (4.102). Using the corrector equation (4.46) and (4.98), similarly as in the proof of Theorem 4.2, we have

ˇˇˇˇÿ KPT H ˆKXΩ ε ´´∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕˇˇˇˇď `}f ´ΠH f } L 2 pΩq `2ε}∇w} L 8 pΩ ε q }∇f } L 2 pΩq `ε2 }w} L 8 pΩ ε q }∆f } L 2 pΩq `ε}b} L 8 pY zOq }w} L 8 pΩ ε q }∇f } L 2 pΩq ˘}ϕ} L 2 pΩ ε q ď CεpCH}∇f } L 2 pΩq `CεN pf qq|ϕ| H 1 H pΩ ε q .
where N pf q is defined by (4.45), and we used (4.91), (4.97) and the fact that w P C 1 pY zOq (4.104) in the last line. We infer that ˇˇˇˇÿ

KPT H ˆKXΩ ε ´´∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕˇˇˇˇˇď CεpH `εqN pf q|ϕ| H 1 H pΩ ε q . ( 4 

.105)

Step 1c We then deal with the third term of the right-hand side of (4.102). In view of the assumptions on the mesh, we first observe that, for any edge E P E in H , the function x P E Ñ n ¨ˆ∇w ´1 2 bw ˙´x ε ¯is periodic with period q E ε, for some q E P N ‹ satisfying |q E | ď C for some constant C independent of the mesh edges and of H. We denote

C ˆ∇w ´1 2 bw
˙|ε ¨nG E the average of that function over one period, and decompose the third term of the right-hand side of (4.102) as follows:

ε 2 ÿ EPE in H ˆEXΩ ε ˆ∇pw ε f q ´1 2 p b ε pw ε f q ˙¨nrrϕss " ε ÿ EPE in H ˆEXΩ ε ˜ˆ∇w ´1 2 bw ˙|ε ¨n ´Cˆ∇ w ´1 2 bw ˙|ε ¨nG E ¸f rrϕss `ε ÿ EPE in H C ˆ∇w ´1 2 bw ˙|ε ¨nG E ˆEXΩ ε f rrϕss `ε2 ÿ EPE in H ˆEXΩ ε pw ε ∇f ¨nq rrϕss. ( 4 

.106)

We will extend the function ϕ " u ´vH by 0 inside the perforations B ε , so that we can understand ϕ either as a function of H 1 0 pΩq or H 1 0 pΩ ε q. We consider the first term of the right-hand side of (4.106), which we evaluate essentially using the fact that it contains a periodic oscillatory function of zero mean. We claim that where, for any function g, ∇ E g " t E ¨∇g where t E is a unit tangential vector to the edge E. By interpolation between (4.109) and (4.110), and using (4.108), we infer (4.107), with a constant C (independent of the edge) which is independent from ε and H by scaling arguments (see [START_REF] Bris | MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems[END_REF] for details).
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We deduce from (4.107) that the first term of the right-hand side of (4.106) satisfies

ˇˇˇˇˇε ÿ EPE in H ˆEXΩ ε ˜ˆ∇w ´1 2 bw ˙|ε ¨n ´Cˆ∇ w ´1 2 bw ˙|ε ¨nG E ¸f rrϕss ˇˇˇˇď Cε 3{2 ÿ EPE in H }f } H 1 pEq }rrϕss} H 1{2 pEq ď Cε 3{2 ¨ÿ EPE in H }f } 2 H 1 pEq '1{2 ¨ÿ EPE in H }rrϕss} 2 H 1{2 pEq '1{2 ď Cε 3{2 ¨ÿ EPE in H ;choose one KPK E 1 H }f } 2 H 1 pT q `H}∇f } 2 H 1 pT q '1{2 ÿ EPE in H ÿ KPK E }∇ϕ} 2 H 1 pT q '1{2
where we have used (4.92) of Lemma 4.8, and (4.96) of Lemma 4.9 (and, we recall that K E denotes the set of triangles sharing the edge E). We therefore obtain that the first term of the right-hand side of (4.106) satisfies

ˇˇˇˇˇε ÿ EPE in H ˆEXΩ ε ˜ˆ∇w ´1 2 bw ˙|ε ¨n ´Cˆ∇ w ´1 2 bw ˙|ε ¨nG E ¸f rrϕss ˇˇˇˇď Cε 3{2 ˆ1 H }f } 2 H 1 pΩq `H}∇f } 2 H 1 pΩq ˙1{2 |ϕ| H 1 H pΩ ε q ď Cε ˆc ε H }f } 2 H 1 pΩq `?εH}∇f } 2 H 1 pΩq ˙|ϕ| H 1 H pΩ ε q . (4.111)
The second term of the right-hand side of (4.106) has no oscillatory character. This is why it is estimated using standard arguments for Crouzeix-Raviart finite elements (using that ˆEXΩ ε rrϕss " 0), and the regularity of w. Introducing, for each edge E, the constant c E " |E| ´1 ˆE f , we bound the second term of the right-hand side of (4.106) by We are now left with the third term of the right-hand side of (4.106). This term has a prefactor ε 2 and all we have to prove is that the term itself is bounded. Using again (4.104), (4.95) of Lemma 4.9 and (4.92) of Lemma 4.8, we obtain 

ˇˇˇˇˇε ÿ EPE in H C ˆ∇w ´1 2 bw ˙|ε ¨nG E ˆEXΩ ε f rrϕss ˇˇˇˇ" ˇˇˇˇˇε ÿ EPE in H C ˆ∇w ´1 2 bw ˙|ε ¨nG E ˆEXΩ ε pf ´cE qrrϕss ˇˇˇˇď Cε ÿ EPE in H }rrϕss} L 2 pEq }f ´cE } L 2 pEq ď Cε ¨ÿ EPE in H }rrϕss} 2 L 2 pEq '1{2 ¨ÿ EPE in H }f ´cE } 2 L 2 pEq '1{2 ď Cε ¨ÿ EPE in H ÿ KPK E H}∇ϕ} 2 L 2 pKq '1{2 ¨ÿ EPE in H ;choose one KPK E }f ´cE } 2 L 2 pKq '1{2 ď CεH|ϕ| H 1 H pΩ ε q}f } L 2 pΩq , ( 4 
ˇˇˇˇˇε 2 ÿ EPE in H ˆEXΩ ε pw ε ∇f ¨nq rrϕss ˇˇˇˇď Cε 2 ¨ÿ EPE in H }rrϕss} 2 L 2 pEq '1{2 ¨ÿ EPE in H }∇f } 2 L 2 pEq '1{2 ď Cε 2 ˜1 H ÿ KPT H }rrϕss} 2 L 2 pKq ¸1{2 ˜H ÿ KPT H }∇f } 2 L 2 pKq ¸1{2 ď Cε 2 }∇f } H 1 pΩq |ϕ| H 1 H pΩ ε q . ( 4 
ˆEXΩ ε ˆ∇pw ε f q ´1 2 p b ε pw ε f q ˙¨nrrϕss ˇˇˇˇď Cε ˆc ε H }f } H 1 pΩq `´ε `?εH ¯}∇f } H 1 pΩq `H}∇f } L 2 pΩq ˙|ϕ| H 1 H pΩ ε q . ( 4 
|ϕ| 2 H 1 H pΩ ε q ď Cε ˆc ε H `H `?ε ˙`}f } L 8 pΩq `}∇f } H 1 pΩq ˘|ϕ| H 1 H pΩ ε q (4.115)
This ends the first step of the proof.
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Step 2: Estimation of u H ´vH : Denoting ϕ H " u H ´vH , we see that

|ϕ H | 2 H 1 H pΩ ε q ď c H pϕ H , ϕ H q " c H pu H ´u, ϕ H q `cH
pu ´vH , ϕ H q, where we recall that c H is defined by (4.10). The first term is estimated using (4.114). We then bound the second term.

Since ϕ H P V adv bubble H , we deduce from the discrete variational formulation (4.25) that

c H pu H ´u, ϕ H q " ˆΩε f ϕ H `cH pε 2 w ε f ´u, ϕ H q ´cH pε 2 w ε f, ϕ H q " ˆΩε f ϕ H `cH pε 2 w ε f ´u, ϕ H q ´ÿ KPT H ˆKXΩ ε ´´∆ `ε2 w ε f ˘`p b ε ¨∇ `ε2 w ε f ˘¯ϕ H `ÿ KPT H ˆBpKXΩ ε q ϕ H n ¨p∇pε 2 w ε f q ´1 2 p b ε pε 2 w ε f qq (4.116)
Since ϕ H " 0 on BΩ ε , we can take the integral in the last term of (4.116) only on BK X Ω ε . Using (4.46), we compute

´∆ `ε2 w ε f ˘`p b ε ¨∇ `ε2 w ε f ˘" f `εp´2∇w `bwq |ε ¨∇f ´ε2 w ε ∆f
We then obtain from (4.116) that

c H pu H ´u, ϕ H q " c H pε 2 w ε f ´u, ϕ H q ´ÿ KPT H ˆKXΩ ε `εp´2∇w `bwq |ε ¨∇f ´ε2 w ε ∆f ˘ϕH `ÿ KPT H ˆBpKXΩ ε q ϕ H n ¨p∇pε 2 w ε f q ´1 2 p b ε pε 2 w ε f qq. ( 4 

.117)

We now successively bound the three terms of the right-hand side of (4.117). Following the arguments of Step 1a, we obtain that

c H pε 2 w ε f ´u, ϕ H q ď Cε 3{2 N pf qp1 `C}b} W 1,8 pY zOq q|ϕ H | H 1 H pΩ ε q . (4.118)
For the second term of the right-hand side of (4.117), we use the fact that the first factor is bounded and that the second factor satisfies a Poincaré inequality. More precisely, we use the regularity (4.104) of w and (4.91) for ϕ H . We then obtain ˇˇˇˇÿ

KPT H ˆKXΩ ε `εp´2∇w `bwq |ε ¨∇f ´ε2 w ε ∆f ˘ϕH ˇˇˇď Cε ÿ KPT H p}∇f } L 2 pKXΩ ε q `ε}∆f } L 2 pKXΩ ε q q}ϕ H } L 2 pΩ ε q ď Cε}∇f } L 2 pΩq }ϕ H } L 2 pΩ ε q ď Cε 2 }ϕ H } H 1 H pΩ ε q . (4.119)
Following the arguments of Step 1c, we get ˇˇˇˇÿ

KPT H ˆBpKXΩ ε q ϕ H n ¨p∇pε 2 w ε f q ´1 2 p b ε pε 2 w ε f qq ˇˇˇď Cε ˆc ε H }f } H 1 pΩq `?εH}∇f } H 1 pΩq `H}∇f } L 2 pΩq `ε}∇f } H 1 pΩq ˙|ϕ H | H 1 H pΩ ε q . (4.120)
Combining (4.118), (4.119) and (4.120), we infer that 

|u H ´vH | 2 H 1 H pΩ ε q ď Cε ˆc ε H `H `?ε ˙`}f } L 8 pΩq `}∇f } H 1 pΩq ˘|ϕ H | H 1 H pΩ ε q . ( 4 
|u ´uH | H 1 H pΩ ε q ď Cε ˆc ε H `H `?ε ˙`}f } L 8 pΩq `}∇f } H 1 pΩq ˘.
which yields the desired estimate (4.53). This concludes the proof of Theorem 4.5.

Proof of Theorem 4.6

We again denote by u be the solution to (4.2), and u H its approximation, solution to (4.13).

Let Π H f be the L 2 -orthogonal projection of f on the space of piecewise constant functions. We recall that we have the following interpolation estimate: there exists C independent of H, f such that

}f ´ΠH f } L 2 pΩq ď CH}∇f } L 2 pΩq (4.122) 
In what follows, we make use of the notation g |ε pxq " g ´x ε ¯. The constant C denote a constant independent of ε, H, f and that may vary from one line to the next. We will make use of the fact that

w P C 2 pY zOq, (4.123) 
which follows from the arguments of the proof of Theorem 4.2 and the assumption that b P pW 2,8 pY zOqq 2 . We define

v H pxq " ÿ KPT H Π H pf p1 ´pb ¨∇wq |ε qqΨ ε,K 0 pxq `ÿ EPE in H ˆˆE u ˙Φε,E 0 pxq,
where Φ ε,E 0 and Ψ ε,K 0 are respectively solutions to Problems (4.17) and (4.18). We recall that if For all pu H , v H q P V H,bubble ˆVH,bubble , we have

K Ă B ε , respectively E Ă B ε then Ψ ε,K 0 " 0, Φ ε,E 0 " 0.
a H pu H , v H q ď α|u H | H 1 H pΩ ε q |v H | H 1 H pΩ ε q `}p b ε } L 8 pΩ ε q |u H | H 1 H pΩ ε q }v H } L 2 pΩ ε q ď pα `CP ε} p b ε } L 8 pΩ ε q q|u H | H 1 H pΩ ε q |v H | H 1 H pΩ ε q
, where we used (4.91). Using

C P }b} L 8 pY zOq ă α, ( 4.125) 
where C P is such that (4.91) holds, the bilinear form a H is coercive and we have for all

u H P V H,bubble apu H , u H q ě α|u H | 2 H 1 H pΩ ε q ´}p b ε } L 8 pΩ ε q |u H | H 1 H pΩ ε q }u H } L 2 pΩ ε q ě pα ´CP ε} p b ε } L 8 pΩ ε q q|u H | 2 H 1 H pΩ ε q ě pα ´CP }b} L 8 pY zOq q|u H | 2 H 1
H pΩ ε q . We want to apply Strang's lemma [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Lemma 2.25] and obtain

|u ´uH | 2 H 1 H pΩ ε q ď ˜1 `α `CP ε} p b ε } L 8 pΩ ε q α ´CP ε} p b ε } L 8 pΩ ε q ¸inf w H PV H,bubble |u ´wH | H 1 H pΩ ε q `1 α ´CP ε} p b ε } L 8 pΩ ε q sup w H PV H,bubble ˇˇ´Ω ε f w H ´aH pu, w H q ˇ|w H | H 1 H pΩ ε q . ( 4 

.126)

Our proof is decomposed in two steps. We bound the first term of (4.126) by the norm of ϕ " u ´vH . Then we estimate the second term of (4.126) which corresponds to the error of consistency.

Step 1: Estimation of u ´vH : Using the approximation of u given in the homogenization result (4.44) and denoting r ϕ " ε 2 w ε f ´vH , we have

α|ϕ| 2 H 1 H pΩ ε q " a diff,H pu ´ε2 w ε f, ϕq `adiff,H pε 2 w ε f ´vH , ϕq " a diff,H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´α∆ r ϕ ¯ϕ `ˆBpKXΩ ε q pα∇ r ϕ ¨nqϕ " a diff,H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´α∆ r ϕ ¯ϕ `ˆpBKqXΩ ε pα∇ r ϕ ¨nqϕ " a diff,H pu ´ε2 w ε f, ϕq `ÿ KPT H ˆKXΩ ε ´´α∆ r ϕ ¯ϕ `ε2 ÿ KPT H ˆpBKqXΩ ε pα∇pw ε f q ¨nqϕ, (4.127) 
where we used the fact that ϕ " 0 on BΩ ε in the third line, (4.124) in the last line and we recall that a diff,H is defined by (4.9). We bound successively the three terms of the right-hand side of (4.102). Roughly speaking:

• the first term is small because of the homogenization result (4.44);

• the second is of order H because at the leading order ´α∆v H `p b ε ¨∇v H » Π H pf p1 ´pb ∇wq |ε qq;

• bounding the third term uses the fact that w is a periodic function.

Step 1a The first term of (4.127) is estimated as follows. Denoting r u " u ´ε2 w ε f , we write a diff,H pr u, ϕq ď α|r u| H 1 H pΩ ε q |ϕ| H 1 H pΩ ε q ď Cε 3{2 N pf q|ϕ| H 1 H pΩ ε q , (4.128)

where we used (4.44) in the last line.
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Step 1b We now turn to the second term of the right-hand side of ( `αε 2 }w} L 8 pΩ ε q }∆f } L 2 pΩq ˘}ϕ} L 2 pΩ ε q ď CεH}∇pf p1 ´pb ¨∇wq |ε qq} L 2 pΩ ε q |ϕ| H 1 H pΩ ε q `Cε 2 N pf q|ϕ| H 1 H pΩ ε q ď CH}∇ 2 w} L 8 pΩ ε q }b} L 8 pΩ ε q }f } L 2 pΩq |ϕ| H 1

H pΩ ε q `CεHp}∇f } L 2 pΩq `}f } L 2 pΩq q|ϕ| H 1 H pΩ ε q `Cε 2 N pf q|ϕ| H 1 H pΩ ε q ď CH}b} L 8 pΩ ε q }f } L 2 pΩq |ϕ| H 1 H pΩ ε q
`CεtCHt}f } L 2 pΩq `}∇f } L 2 pΩq u `CεN pf qu|ϕ| H 1 H pΩ ε q , where N pf q is defined by (4.45), and we used (4.91), (4.97) in the third line and (4.123) in the fourth line. We infer that ˇˇˇˇÿ KPT H ˆKXΩ ε ´´α∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕˇˇˇˇď `CH}b} L 8 pΩ ε q }f } L 2 pΩq `CεpH `εqN pf q ˘|ϕ| H 1 H pΩ ε q . (4.129)

Step 1c We then deal with the third term of the right-hand side of ( This ends the first step of the proof.

Step 2: Estimation of the consistency error We want to estimate the error of consistency.

We have for all w H P V H,bubble , a H pu, w H q ´ˆΩ ε f w H " a H pu ´ε2 w ε f, w H q `aH pε 2 w ε f, w H q ´ˆΩ ε f w H " a H pu ´ε2 w ε f, w H q `ÿ KPT H ˆKXΩ ε p´α∆pε 2 w ε f q `p b ε ¨∇pε 2 w ε f qqw H ´ˆΩ ε f w H `ε2 ÿ KPT H ˆBpKXΩ ε q pα∇pε 2 w ε f q ¨nqw H . (4.132)

The first term of ( In this section, we show that Problems (4.29) and (4.30) are well-posed. They are saddle-point problems (see [START_REF] Ern | Theory and practice of Finite Elements[END_REF] for the theory). Let n K be the number of inner edges associated to K P T H and V K " tu P H 1 pKq, u " 0 in K X B ε and u " 0 on E ext H u, their variational formulation are of the form Find pu H , rλ K,E s EPE in where we used that div b ď 0 in the last line.

H q P V K ˆRn K such that c K pu H , v H q ´ÿ EPE in H λ K,E ˆE v H " F pv H q for all v H P V K , µ K,E ˆE u H " δ K,E µ K,
Let pµ E q E P R n K , we denote v H " ř

EPE in H µ E Φ ε,E 0
, where Φ ε,E 0 is solution to (4.17). We have

c E pv H , pµ E q E q }pµ E q E }}v H } H 1 pKXΩ ε q " ř EPE in H pµ E q 2 }pµ E q E }}v H } H 1 pKXΩ ε q ě C,
where we used that C}v H } H 1 pKXΩ ε q ď }pµ E q E }. We infer that there exists a constant C such that inf

pµ E q E PR n K sup v H PV K c E pv H , pµ E q E q }pµ E q E }}v H } H 1 pKXΩ ε q ě C.
We then deduce that Problems (4.29) and (4.30) are well-posed.

Approximation space (4.35)

In this section, we show that Problems (4.37) and (4.38) are well-posed under the assumption that C K P } p b ε } L 8 pΩ ε q ă α, (4.134)

where C K P is a constant such that }v} L 2 pKXΩ ϵ q ď C K P }∇v} L 2 pKXΩ ϵ q for all v P H 1 0 pK X Ω ε q. They are saddle-point problems. Let n K be the number of inner edges associated to K P T H and V K " tu P H 1 pKq, u " 0 in K X B ε and u " 0 on E ext H u, their variational formulation are of the form Find pu H , rλ K,E s EPE in

H q P V K ˆRn K such that a K pu H , v H q ´ÿ EPE in H λ K,E ˆE v H " F pv H q for all v H P V K , µ K,E ˆE u H " δ K,E µ K,E
for all µ K,E P R, for all E P E in H , where a K pu H , v H q " ˆKXΩ ε α∇u H ¨∇v H `pp b ε ¨∇u H qv H , δ K,E " 0, 1 and F P L 2 pK X Ω ε q.

We want to apply [START_REF] Ern | Theory and practice of Finite Elements[END_REF]Theorem 2.34,p100]. We denote a E pv H , pµ K,E q E q " ř EPE in H µ 

} p b ε q} L 8 pΩ ε q }∇u H } 2 L 2 pΩ ε q ě pα ´CK P } p b ε } L 8 pΩ ε q q ˆKXΩ ε |∇u H | 2 ,
where we used that div b ď 0 in the last line.

Following the lines of the previous section, we have that there exists a constant C such that inf Démonstration. Plusieurs techniques de preuve sont possibles. On utilise ici la notion de convergence "à deux-échelles" [4]. On rappelle que la suite pu ε q εą0 converge "à deux-échelles" vers u 0 P L 2 pΩ ˆY q si pour toute fonction ψ P C On déduit alors de (A.3) que ˆΩ A ε ∇u ε ¨p∇ϕ `∇y ϕ 1 `ε∇ϕ 1 q `b ¨∇u ε pϕ `εϕ 1 q " ˆΩ f ϕ ε . (A.4)

pµ E q E PR n K sup v H PV K c E pv H , pµ E q E q }pµ E q E }}v H } H 1 pKXΩ ε q ď C.
Les fonctions A pyq p∇ϕpxq `∇y ϕ 1 px, yq `ε∇ϕ 1 px, yqq et b pxq pϕpxq `εϕ 1 px, yqq sont des fonctions test admissibles au sens de la convergence à deux échelles. On peut alors passer à la limite dans (A.4). On a alors

ˆΩˆY

Ap∇u 0 `∇y u 1 q ¨p∇ϕ `∇y ϕ 1 q `ˆΩˆY p∇u 0 `∇y u 1 q ¨bϕ " ˆΩ f ϕ, (A. ˆY Ap∇u 0 `∇y u 1 q ¨p∇ y ϕ 1 q " 0 @ϕ 1 P H 1 # pY q{R, ˆΩˆY Ap∇u 0 `∇y u 1 q ¨p∇ϕq `ˆΩˆY p∇u 0 ¨bqϕ " ˆΩ f ϕ @ϕ P H 1 0 pΩq. w i pyqB x i u 0 pxq.

On obtient alors à partir de (A.6) que u 0 est alors la solution du problème homogénéisé ˆΩ A ‹ ∇u 0 ¨∇ϕ `pb ¨∇u 0 qϕ " ˆΩ f ϕ @ϕ P H 1 0 pΩq,

avec

A ‹ e i " ˆY A pyq pe i `∇w i pyqq dy.

Le couple pu 0 , u 1 q est déterminé de manière unique, on peut donc en déduire que toute la suite u ε converge faiblement vers u 0 dans H 1 0 pΩq. pu ε q εą0 converge faiblement dans H 1 0 pΩq, quand ε tend vers 0, vers u ‹ solution du problème ´div pA ‹ ∇u ‹ q `b‹ ¨∇u ‹ " f dans Ω, u ‹ " 0 sur BΩ. Les fonctions A pyq r∇ϕpxq `∇y ϕ 1 px, yq `ε∇ϕ 1 px, yqqs et b pyq pϕpxq `εϕ 1 px, yqq sont donc des fonctions test admissibles. On peut alors passer à la limite dans (A.9), et on obtient que

ˆΩˆY

Ap∇u 0 `∇y u 1 q ¨p∇ϕ `∇y ϕ 1 q `ˆΩˆY p∇u 0 `∇y u 1 q ¨bϕ " ˆΩ f ϕ. (A.10)

Par un argument de densité, on obtient (A.10) pour tout pϕ, ϕ 1 q P H 1 0 pΩq ˆL2 pΩ; H 1 # pY q{Rq. On peut découpler la formulation de la façon suivante $ ' ' & ' ' % ˆY Ap∇u 0 `∇y u 1 q ¨p∇ y ϕ 1 q " 0 @ϕ 1 P H 1 # pY q{R, ˆΩˆY Ap∇u 0 `∇y u 1 q ¨p∇ϕq `ˆΩˆY p∇u 0 `∇y u 1 q ¨bϕ " ˆΩ f ϕ @ϕ P H 1 0 pΩq. ¨ei " ˆY bpyqpe i `∇w i pyqqdy.

Le couple pu 0 , u 1 q est déterminé de manière unique, on peut donc en déduire que toute la suite u ε converge faiblement vers u 0 dans H 1 0 pΩq. On suppose que b P pW 1,8 pY qq d , div b " 0 dans Y et ˆY b " 0. La suite pu ε q εą0 converge faiblement dans H 1 0 pΩq, quand ε tend vers 0, vers u ‹ , solution du problème ´div pA ‹ ∇u ‹ q " f dans Ω, u ‹ " 0 sur BΩ,

avec

A ‹ e i " ˆY A pyq pe i `∇w i pyqq `bw i pyq dy, pA ‹ e i q ¨∇B x i ϕ dans L 2 pΩq où

où
A ‹ e i " ˆY A pyq pe i `∇w i pyqq `b pyq w i pyq dy.

En utilisant la régularité de ϕ, on obtient que

d ÿ i"1
A ‹ e i ¨∇B x i ϕ " div ppA ‹ q T ∇ϕq. La forme bilinéaire du problème est coercive uniformément en ε car div b " 0, la suite u ε est donc bornée dans H 1 0 pΩq. Par suite, on peut en déduire qu'à extraction près, la suite u ε converge faiblement vers u ‹ dans H 1 0 pΩq et fortement dans L 2 pΩq. On peut alors passer à la limite dans (A.14) et obtenir ˆΩ ´u‹ div ppA ‹ q T ∇ϕq " ˆΩ f ϕ ˆΩ A ‹ ∇u ‹ ¨∇ϕ " ˆΩ f ϕ.

(A.15)

Par un argument de densité on obtient (A.15) pour tout ϕ P H 1 0 pΩq. Ceci implique l'unicité de u ‹ P H 1 0 pΩq. On peut donc en déduire que toute la suite converge vers u ‹ P H 1 0 pΩq.

Annexe B

Stabilisation de problèmes non coercifs via une méthode numérique utilisant la mesure invariante

Cette annexe concerne l'étude du chapitre 3 et reprend l'intégralité d'une note rédigée en collaboration avec Frédéric Legoll et Claude Le Bris et publiée dans Comptes Rendus Mathématiques [START_REF] Bris | Stabilisation de problèmes non coercifs via une méthode numérique utilisant la mesure invariante (Stabilization of non-coercive problems using the invariant measure)[END_REF].

measure σ, and then performing a Petrov-Galerkin approximation of the original advectiondiffusion equation (B.1) using test functions approximating the product form σ v. The definite added value of the approach is that it provides an unconditionally well-posed approximation, irrespective of the discretization parameter -the meshsize-adopted for approximating u, provided σ itself is correctly approximated. This property may be most useful in problems where one can only afford a coarse approximation of u. Multiscale problems are prototypical examples of such a context. In addition, in the advection dominated context, the approach enjoys particular stability properties that lead to numerical results qualitatively comparable to those obtained with classical, state-of-the-art stabilization approaches [2,4,5,7]. The results of this Note, see in particular Tables B.1 and B.2, show that the approach is accurate, robust and can be made effective in terms of computational cost. Applications to several other, more general contexts, may be envisioned. pour des données telles que l'équation est non coercive et dominée par l'advection. Il est bien connu que l'approximation numérique classique par éléments finis est alors instable, et requiert une méthode de stabilisation. La littérature regorge de méthodes dans ce sens (cf. par exemple les célèbres contributions [2,4,5] et l'ouvrage [7]), au moins dans le cas coercif (les travaux dans le cas non coercif étant, semble-t-il, plus rares), et il est impossible de citer ici toutes les contributions, y compris récentes : nous dressons un état des lieux dans [6]. Nous présentons ici une approche à notre connaissance nouvelle, reproduisant au niveau numérique l'observation théorique essentielle fournissant une des approches possibles pour démontrer le caractère bien posé du problème. Nous obtenons ainsi une approche différente de celles de la littérature, systématiquement coercive et, dans une très large gamme de régimes, stable. Cette nouvelle approche se compare très favorablement aux approches déjà connues. Supposons plus précisément (pour fixer les idées, mais la suite est largement adaptable à d'autres cas modulo des ajustements techniques que nous omettons, et qui sont précisés dans [6]) que l'équation (B.1) est posée sur un domaine borné régulier Ω de R d et qu'on la munit de conditions au bord de Dirichlet homogènes u " 0 sur BΩ. Supposons aussi que le champ b est donné, qu'il possède toute la régularité nécessaire pour donner un cadre rigoureux aux résultats cités ci-dessous, mais qu'il ne présente pas les propriétés classiques qui rendent le problème coercif (typiquement b, ou sa divergence, assez petits dans une norme adéquate). Une des approches théoriques classiques pour prouver que le problème est bien posé (au sens de Hadamard) passe par l'alternative de Fredholm. Il est aussi connu que le caractère bien posé est, via la théorie de Banach-Nečas-Babuska, équivalent à la célèbre condition inf-sup (voir par exemple [3, p. (où on a bien sûr défini ici apw, vq " ˆΩ ∇w ¨∇v `ˆΩ pb ¨∇wq v et V " W " H 1 0 pΩq), à laquelle on adjoint une autre condition classique : @v P V, p@w P W, apw, vq " 0q ñ v " 0. Soit afin de rendre explicite la constante α de (B.2), soit afin de fournir une preuve autonome du caractère bien posé, on peut aussi prouver que cette condition (B.2) est vérifiée par le problème (B.1) en considérant la mesure invariante associée au problème (B.1). Cette mesure est la solution σ de ´div p∇σ `σ bq " 0, (B. une analyse numérique en utilisant des arguments standards. Le prix à payer pour employer une telle approche est l'approximation numérique de la mesure σ, avec la précision requise (on verra qu'il suffit en pratique d'utiliser un maillage pour σ un peu plus fin que celui pour u), puisqu'il est rare que cette mesure soit connue explicitement analytiquement. L'objectif de cette Note est d'explorer cette piste, sur l'équation (B.1) spécifiquement. Les résultats numériques présentés ci-dessous montrent que, en qualité, elle est tout à fait comparable aux approches classiques (de type SUPG, GLS ou DW, cf. [7]), voire meilleure, et que, même si le calcul additionnel de la mesure invariante est un surcoût, l'approche peut aussi être rendue globalement compétitive dans plusieurs contextes (cf. la fin de la Section 2). Rien n'interdit de penser que la même approche peut être appliquée à d'autres cas, y compris potentiellement des cas non linéaires, et des cas inaccessibles à des approches plus classiques. Les résultats résumés dans cette Note sont exposés plus en détail, et complétés, dans le chapitre 3.

B.1 Introduction et motivation

B.2 Mise en oeuvre de l'approche B.2.1 Différentes mesures possibles

Le point clé de l'approche suggérée est bien évidemment la détermination de la mesure invariante. Il convient tout d'abord de souligner une certaine liberté dans le choix de cette mesure. En effet, le passage de la forme non coercive initiale à la forme coercive suggérée par (B.5) repose, via une intégration par partie, sur trois ingrédients : (i) l'annulation, grâce à l'équation adjointe (B.3), du terme de volume causant la non coercivité, (ii) l'élimination des termes de bord, et (iii) la positivité de la mesure invariante, ou plus exactement, son caractère isolé de zéro. Typiquement, l'intégration par partie est de la forme : Les deux tailles de maillage h et H, utilisées respectivement dans les étapes (i) et (ii), ne sont pas nécessairement identiques. Quoi qu'il en soit, l'étape (i) est un surcoût qui, bon an mal an, double le coût de (ii) pour une unique résolution de (B.1). Cependant, on doit garder à l'esprit que l'étape (i) n'est effectuée qu'une seule fois, à b donné, et ne dépend pas de f . Ainsi, dans un calcul répétitif comme dans un problème inverse, où on doit résoudre plusieurs fois le problème (B.1) pour des données f différentes, le surcoût de (i) devient négligeable. Il l'est de même dans le cas de la résolution de l'équation d'advection-diffusion transitoire, pour un champ b lui indépendant du temps, où on résout, après semi-discrétisation Euler implicite en temps, une équation du type (B.1), appelant un unique calcul de mesure invariante à l'étape (i).

Signalons aussi que l'étape (ii) requiert souvent l'utilisation d'un préconditionneur, la matrice de rigidité issue de (B.5) ayant, pour une mesure σ présentant de fortes variations, un conditionnement délicat. Dans les tests pratiqués, un simple préconditionnement diagonal a suffi à rendre la résolution très efficace.

B.3 Résultats numériques

Après une série de calculs en dimension 1, présentés dans [6], l'approche utilisant la mesure invariante a été testée en dimension 2, pour différents choix de champs b. Nous comparons nos approches avec une méthode classique d'éléments finis P1 et une telle méthode stabilisée par l'approche Galerkin Least-Squares (GLS, cf. [4,5]), pour distinguer les cas stables des cas instables.

Nous commençons par considérer un champ b irrotationnel, c'est-à-dire, en un sens intuitif (penser à la décomposition de Helmholtz), un champ aussi éloigné que possible d'un champ à divergence nulle, pour lequel le problème serait coercif. Dans ce cas, b " ∇Φ dérive donc d'un potentiel, et la mesure σ 1 solution de (B.8) est alors explicitement connue : σ 1 " expp´Φq, à un facteur de normalisation près. L'objet du test est alors de vérifier (i) que la connaissance exacte de la mesure permet de construire une méthode efficace, (ii) que cette efficacité reste robuste quand on remplace σ 1 par une approximation numérique -y compris relativement grossière-, (iii) que l'approche se compare favorablement à une méthode classique. Les résultats présentés confirment cela (notons que, pour le cas de tels champs b, la question (i) a été abordée dans [1]). Parallèlement, les mêmes questions concernant σ 2 (cette fois nécessairement numériquement approchée) amènent une réponse plus nuancée, comme les résultats le montreront de manière évidente.

Un autre intérêt de ce cas irrotationnel est qu'il met en exergue un point intéressant de notre approche. Pour un tel champ b " ∇Φ, non seulement σ 1 est connue explicitement, mais en plus cette mesure permet de construire une formulation qui est non seulement coercive mais inconditionnellement stable, puisque le terme de transport ∇σ 1 `σ1 b " 0 disparaît ! Cette propriété reste "quasiment" vraie pour une approximation pσ 1 q h de σ 1 , mais, sauf cas particulier, n'est plus vraie pour le choix σ 2 . On comprend donc par cet argument intuitif la stabilisation automatiquement induite par l'approche quand la mesure est bien choisie. Dans le cas général, nous croyons que cette supériorité du choix σ 1 "stabilisant" reste globalement vraie, notamment parce que intuitivement, ∇σ `σ b reste plus petit pour σ " σ 1 (vu la condition de nullité au bord) que pour σ " σ 2 . Les tests numériques du paragraphe suivant montrent cette supériorité, bien que nous n'ayons pas d'argument théorique précis sur ce point.

Les données utilisées sont les suivantes : px, yq P Ω "s0, 1r 2 Ă R 2 , f " 1, b " pδ ´1 λ cos 2 p2πxq, δ ´1q T . En jouant sur la valeur des paramètres δ et λ, on peut rendre le problème coercif ou non, stable ou instable. Pour être bref, nous ne montrons ici les résultats que dans le cas non coercif et instable (δ " 1{64, λ " 50.34) et on renvoie au chapitre 3 pour les résultats complets. La mesure invariante σ 1 est connue explicitement à partir de la donnée de b ci-dessus, mais on l'approche aussi. La discrétisation de l'étape (i), pour déterminer une approximation de σ 1 ou de σ 2 , se fait alors en éléments finis P1 sur un maillage régulier triangulaire de taille h. Celle de l'étape (ii) s'effectue en éléments finis P1 sur un maillage régulier de taille H " 1{16. Pour simplifier, on a pris ici H{h entier, mais cela n'est pas requis par l'approche.

Les résultats sont détaillés dans la Table B.1. On mesure l'erreur relative par rapport à une solution de référence calculée sur un maillage très fin. L'erreur H 1 indiquée s'entend hors couche limite, comme cela est usuel pour les problèmes où l'advection domine. On observe la supériorité, l'efficacité et la stabilité de la méthode basée sur la mesure σ 1 .

Méthode

P1

P1 GLS pP1, σ 1 P1q pP1, pσ 1 q h P1q pP1, pσ 2 q h P1q pP1, pσ 2 q h P1q GLS H{h " 7

H{h 

  Mots clés: Homogénéisation, Éléments finis multi-échelles, Advection dominante, Stabilisation, Mesure invariante, Non coercif, Domaine perforé Chapter 1

ε

  ¨∇, et une approche éléments finis multi-échelles pour la partie restante du terme d'advection, i.e. b ε ´ρε b ‹ H ε ¨∇, où b ‹ H | K "

Ω σ 1

 1 :" |Ω| ´1 ˆΩ σ 1 " de mesure invariante est motivé ainsi. Dans le cas où div b " 0, choisir σ " 1 semble naturel car le problème (1.25)-(1.27) est coercif. Cependant, la mesure invariante σ 1 n'est pas nécessairement égale à 1. C'est pourquoi, on considère l'alternative $ ' ' ' ' & ' ' ' ' % ´div p∇σ 2 `bσ 2 q " 0 dans Ω, p∇σ 2 `bσ 2 q ¨n " b ¨n ´ BΩ b ¨n sur BΩ, inf Ω σ 2 ą 0.

Figure 2 . 1

 21 Figure 2.1 Exact and numerical solutions to (2.15) for Pe H " 8. Left: Plot on the whole domain. Right: Close-up on the boundary layer. The vertical dashed line delineates the boundary layer.

  integrating the transport operator B t `b‹ H ε ¨∇, and the multiscale finite element method for the remaining part of the advection term, i.e. b ε ´ρε b ‹ H ε ¨∇, where b ‹ H | K "

Figure 2 . 4

 24 Figure 2.4 Relative errors in the single-scale case (δ " 0.75, ε " 1 and H " 1{16).

Figure 2 . 5

 25 Figure 2.5 Relative error e H 1 (δ " 0.75, ε " 1{128 and H " 1{16).

Figure 2 . 6

 26 Figure 2.6 Relative error e H 1 out (δ " 0.75, ε " 1{128 and H " 1{16).

Figure 2 . 9

 29 Figure 2.9 Relative error e H 1 (α " 1{128, δ " 0.75 and H " 1{32).
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 2 Figure 2.10 Relative error e H 1 out (α " 1{128, δ " 0.75 and H " 1{32).

Figure 2 .

 2 Figure 2.11 Relative error e H 1 in for the Adv-MsFEM methods.

Figure 2 .

 2 Figure 2.12 Relative error e H 1 out for the Adv-MsFEM methods.

Figure 2 .

 2 Figure 2.13 Online costs (s) for the different numerical methods, using direct (DS) or iterative (IS) solvers.

Figure 2 .

 2 Figure 2.14 Number of iterations of the splitting method for direct (DS) and iterative (IS) solvers.

Proposition 3 . 15 .

 315 Assume (3.9)-(3.42)-(3.43). Consider σ h an approximation of σ P H 1 pΩq such that inf Ω σ h ą 0. Let u be the solution to (3.1)-(3.11) (or equivalently

  (3.1)-(3.11) does not depend on the choice of σ. More precisely, (3.1)-(3.11) is equivalent to (3.15) irrespectively of the choice of σ. We use this flexibility for our numerical analysis:

Theorem 3 . 19 .

 319 Assume that the invariant measure (σ 1 , as defined by (3.16)-(3.17)-(3.18), or σ 2 a solution to (3.33)) is approximated as we have just described in items (i) and (ii) above. Under the assumptions (3.9)-(3.42)-(3.43), we have, for h sufficiently small,

Figure 3 . 1

 31 Figure 3.1 The domain Ω layer coloured in grey

(3. 85 )

 85 Under assumptions (3.9)-(3.42)-(3.43), we have shown above (in Proposition 3.7 for the specific case g " 0 and in Proposition 3.10 for the case g " b ¨n ´ BΩ b ¨n, where we actually did not use the specific expression of g) that problem (3.85) is well-posed, and that its unique solution belongs to H 2 pΩq.

Theorem 3 . 22 .

 322 We assume that (3.9)-(3.42)-(3.43) hold. Let u denote the solution to (3.

Theorem 3 . 25 (

 325 Discretization of Problem (3.93)). We assume that (3.9)-(3.42)-(3.43) hold, and that 0 ă η ď 1.

.108) with an initial condition u 0 h such that η Ω u 0 h σ 1

 1 ,h " Ω f σ 1,h (where σ 1,h satisfies (3.49) with

Lemma 3 . 27 .

 327 For any real number θ ą d, we have, for any x P Ω,ˆΩ χ ´θ z pxq dz ď C d 1 pκhq θ´d ˆ1 d `1 θ ´d ˙,(3.114)where C d only depends on the dimension d.
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 728366 Appendix: Proof of Lemma 3.Proof of(3.63) 

  Using the Galerkin orthogonality (3.130) and the fact that η ˆΩ χ d`λ z e 2 ą 0, and next the estimate (3.113), we get ˆΩ χ d`λ z |∇e| 2 ď a ‹ η `χd`λ z pw ´Ih wq, e ˘`a ‹ η pψ ´Ih ψ, eq `}b} L 8 ˆΩ |∇e| χ d`wq, e ˘`a ‹ η pψ ´Ih ψ, eq

  .156) Collecting (3.152), (3.153) and (3.156) yields the desired estimate and concludes the proof of Lemma 3.33.

Figure 4 . 1

 41 Figure 4.1 The domain Ω contains perforations B ε , some of which may intersect BΩ. The perforated domain is Ω ε " ΩzB ε . The boundary of Ω ε is the union of BB ε X Ω ε (the part of the boundary of the perforations that is included in Ω ε ) and of BΩ X Ω ε .

  3) when ε vanishes. If p b ε " b ´ε ¯is an oscillatory advection field, with b independent of ε, and if b is (say) divergence-free, then the solution u ε to (4.2) converges to zero as ε 2 . Once renormalized by a factor ε ´2, u ε converges, in the limit ε Ñ 0, to the nontrivial solution of a problem where the advection field b has disappeared. We recall below the classical statement, Theorem 4.3, that formalizes this result. To reinstate advection in the (rescaled) homogenization limit, which in the numerical practice formally means keeping advection dominant in (4.2) for ε small, we therefore consider p b ε " 1 ε b ´ε ¯(see the theoretical result stated in Theorem 4.2). In sharp contrast, for the Neumann problem (4.3) and an advection field of the type p b ε " b ´ε ¯(enjoying specific additional properties), not only the solution u ε stays of order 1, instead of ε 2 , but it converges, in a suitable sense, to the solution of an homogenized equation that does contain advection, as shown by the classical result we recall below in Theorem 4.4.

Remark 4 . 1 .

 41 In principle, from a practical viewpoint, it is possible to work with the bilinear form a H instead of c H . The definitions (4.24) and (4.26) of the discretization spaces should then be amended, as well as the variational formulations (4.23), (4.25) and (4.27). This variant is briefly examined in Section 4.4.1, where it is shown that it may lead to inaccurate results. Neumann problem (4.3) Variational formulations. The variational formulations for the Neumann problem read as (4.23), (4.25) and (4.27), with c H replaced by a H both in the variational formulations and in the definition of the discretization spaces.

Figure 4 . 3

 43 Figure 4.3 Basis functions for (left) MsFEM and (right) Adv-MsFEM as defined in Sections 4.2.1 and 4.2.2, applied to the one-dimensional problem (4.39), with α " 1{64, β " 1, ε " 1{32, and |K 1 | " |K 2 | " 2ε.

Theorem 4 . 2 (

 42 2 below holds. Its proof is postponed until Appendix 4.5.1. The advection field b does affect the homogenized behavior, since the cell problem (4.46) defined there depends on b. adapted from [64, 59]). We assume (4.43), that the domain Ω ε is connected, and that the right-hand side f belongs to H 2 pΩq. Let p b ε " 1 ε b ´ε ¯where b belongs to pW 1,8 pY zOqq d , is Y -periodic and is such that div b ď 0 in Y zO. The solution u ε to Problem (4.2) satisfies

(4. 46 )

 46 On the other hand, when p b ε " b ´ε ¯, Theorem 4.3 below describes the asymptotic behavior of the solution to (4.2), which does not depend at the dominant order upon the advection field b. Theorem 4.3 (adapted from [64, 59]). Under the same assumptions as those of Theorem 4.2, except that here p b ε " b ´ε ¯, estimate (4.44) holds, where w is now defined as the solution to the cell problem # ´α∆w " 1 in Y zO, w is Y -periodic, w " 0 on BO, instead of (4.46).

Theorem 4 . 5 .

 45 We assume(4.43), that the domain Ω ε is connected, and that p b ε " 1 ε b ´ε ¯where b P pW 1,8 pY zOqq 2 is Y -periodic and is such that div b ď 0 in Y zO. Let u ε be the solution to (4.2) in dimension d " 2, with f P H 2 pΩq.
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 44 Figure 4.4 [Dirichlet Problem (4.2)] Addition of bubble functions to MsFEM CR.

Figure 4 . 5 [

 45 Figure 4.5 [Dirichlet Problem (4.2)] Addition of bubble functions to Adv-MsFEM and variants.

Figure 4 . 6 [

 46 Figure 4.6 [Dirichlet Problem (4.2)] Sensitivity to the Péclet number.

Figure 4 . 7 [

 47 Figure 4.7 [Dirichlet Problem (4.2)] Sensitivity to the the small scale ε.

  (4.25) (with the bilinear form c H defined by (4.10)) for the definition of Adv-MsFEM. As briefly mentioned in the introduction and in Remark 4.1, a formulation such as (4.34) (which we introduce and use for the Neumann 163 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains

( 4 . 3 )

 43 for a constant advection field p b ε , namely p b ε " p1, 1q T . As expressed by Theorem 4.4, the homogenized problem is an advection-dominated problem posed in Ω. In contrast to the situation with homogeneous Dirichlet boundary conditions, the flow is not slowed down by the boundary conditions set on the boundary of perforations. It however has to comply with the Dirichlet boundary conditions on the outer boundary of the domain Ω. Given the orientation of p b ε , a boundary layer is expected close to the upper right corner of Ω.

Figure 4 .

 4 [START_REF] Arbogast | Numerical subgrid upscaling of two-phase flow in porous media[END_REF] shows the results of the same tests for O " O 2 . It confirms the same conclusions, qualitatively, and therefore the flexibility of our approaches all based upon Crouzeix-Raviart type boundary conditions.

  e. when O " O 1 . The results for O " O 2 are similar. 165 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains

Figure 4 . 10 [

 410 Figure 4.10 [Neumann Problem (4.3)] Sensitivity to the Péclet number: Error outside the layer when O " O 1 .

Figure 4 . 11 [

 411 Figure 4.11 [Neumann Problem (4.3)] Sensitivity to the Péclet number: Error outside the layer when O " O 2 .

Figure 4 .

 4 Figure 4.12 and Figure4.13 both show that the relative error, respectively on the whole domain and outside the boundary layer, is essentially insensitive to the small scale ε. The comparison of the actual size of the error in each of the two figures shows that the error within the boundary layer significantly dominates that outside the layer and is often prohibitively large, as is usually the case in the advection-dominated regime and as was mentioned in the previous section. In both figures, we observe that MsFEM is outperformed. Overall, Adv-MsFEM performs the best, but Stab-MsFEM is the most accurate method outside the layer.
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 412 Figure 4.12 [Neumann Problem (4.3)] Sensitivity to the small scale ε: Error in the whole domain.
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Figure 4 . 13 [

 413 Figure 4.13 [Neumann Problem (4.3)] Sensitivity to the small scale ε: Error outside the layer.

Figure 4 .

 4 14 displays the relative H 1 broken error of our different approaches outside the boundary layer, when O " O 1 . The case O " O 2 is shown on Figure 4.15. We observe that the Adv-MsFEM with advective bubble functions outperforms the Adv-MsFEM and the Stab-MsFEM (without bubble functions). It in fact also gives reasonable results in the whole domain (results not shown).We next turn to the test cases of Section 4.4.2. In Figure4.16, we observe, for O " O 1 , that the Adv-MsFEM with advective bubble functions yields a reasonable accuracy. Choosing next O " O 2 , we see on Figure4.17 the relative H 1 broken error of the Adv-MsFEM with advective bubble functions inside and outside the boundary layer. ComparingFigures 4.16 

  and

Figure 4 . 10 ´2 10 1 outFigure 4 . 16 [

 410101416 Figure 4.16 [Neumann Problem (4.3)] Sensitivity to the small scale ε: Adv-MsFEM with advective bubble functions (O " O 1 ).

10 ´2. 4 1 outFigure 4 . 17 [

 41417 Figure 4.17 [Neumann Problem (4.3)] Sensitivity to the small scale ε: Adv-MsFEM with advective bubble functions (O " O 2 ).

169Figure 4 . 18 [

 418 Figure 4.18 [Neumann Problem (4.3)] Adding bubbles to Stab-MsFEM: Error outside the layer.

Figure 4 . 1 Figure 4 . 20 [

 41420 Figure 4.19 Nonperiodic geometry: Let M ε be the set of perforations obtained by periodically perforating the domain Ω " p0, 1q 2 with Y " p0, 1q 2 , ε " 0.03125 and the motif O 2 . We include each perforation of M ε in B ε according to a Bernoulli distribution of parameter 1{2.

  avec pA ‹ qe i " ˆY A pyq `ei `∇w i pyq ˘dy, où w i , 1 ď i ď d, est le correcteur solution du problème de cellule suivant # ´div pAp∇w i `ei qq " 0 sur Y, y Ñ w i pyq Y -périodique.

5 )

 5 La fonction y Þ Ñ u 1 px, yq est Y -périodique, b et ϕ sont indépendants de y, donc ˆΩˆY p∇ y u 1 ¨bqϕ " 0. Par un argument de densité, on obtient (A.4) pour tout pϕ, ϕ 1 q P H 1 0 pΩq ˆL2 pΩ; H 1 # pY q{Rq.203 Quelques résultats d'homogénéisation périodique sur le problème d'advection diffusion stationnaire hautement oscillantOn peut découpler (A.5) de la façon suivante

(A. 6 )

 6 Soit w i , 1 ď i ď d, le correcteur solution du problème de cellule # ´div pAp∇w i `ei qq " 0 dans Y, y Ñ w i pyq Y -périodique.On peut écrire u 1 px, yq "

ii) Le cas b ε " b ´x ε ¯avec b Y -périodique Théorème A. 2 ([ 12 ,

 212 Theorem 13.1, p.185]). Soit u ε la solution du problème (A.1) avec b ε pxq " b ´x ε ¯où b est Y -périodique. On suppose que b P pW 1,8 pY qq d et div b ď 0 dans Y . La suite

(A. 11 ) 1 w

 111 Soit w i , 1 ď i ď d, le correcteur solution du problème (A.7). En utilisant le fait que u 1 px, yq " i pyqB x i u 0 pxq, on obtient à partir de (A.11) que u 0 est la solution du problème homogénéisé suivant ˆΩ A ‹ ∇u 0 ¨∇ϕ `pb ‹ ¨∇u 0 qϕ " ˆΩ f ϕ @ϕ P H 1 0 pΩq, 205 Quelques résultats d'homogénéisation périodique sur le problème d'advection diffusion stationnaire hautement oscillant avec A ‹ e i " ˆY A pyq pe i `∇w i pyqqdy, b ‹

iii) Le cas b ε " b ε avec b constant non nul Théorème A. 3 .

 3 Soit u ε la solution du problème (A.1) avec b ε pxq " b ε où b est constant non nul. La suite pu ε q εą0 converge faiblement vers 0 dans H 1 0 pΩq, quand ε tend vers 0. Démonstration. Le problème est coercif, ce qui implique que la suite u ε est bornée dans H 1 0 pΩq. À extraction près, la suite converge faiblement dans H 1 0 pΩq vers u ‹ . Soit ϕ P H 1 0 pΩq. La formulation variationnelle de (A.1) s'écritε ˆΩ A ε ∇u ε ∇ϕ `ˆΩ pb ¨∇u ε qϕ " ε ˆΩ f ϕ.En passant à la limite ε Ñ 0, on obtient que @ϕ P H 1 0 pΩq, ˆΩpb ¨∇u ‹ qϕ " 0, ce qui implique b ¨∇u ‹ " 0 dans Ω. On peut supposer que b est dirigé selon e x . On a donc u ‹ " u ‹ pyq. La condition aux bord de Dirichlet homogène nous permet de déduire que u ‹ " 0. iv) Le cas b ε " b `x ε ε avec b Y -périodique, de moyenne nulle Théorème A.4. Soit u ε la solution du problème (A.1) avec b ε pxq " b `x ε ε où b est Y -périodique.

  Nous étudions dans cette Note la question très classique de l'approximation par éléments finis d'une équation d'advection-diffusion ´∆u `b ¨∇u " f, (B.1)

  85]) Dα ą 0 tel que inf wPW sup vPV apw, vq }w} W }v} V ě α ą 0, (B.2)

  , p.186], on sait que u P H 2 pΩq. On a alors l'estimée d'erreur a priori suivante: |u ´uH | H 1 pΩq ď CHp1 `Pe Hq|u| H 2 pΩq . (1.11) où |u ´uH | H 1 pΩq " }∇pu ´uH q} L 2 pΩq , |u| 2 H 2 pΩq " }B ij u} 2 L 2 pΩq , et Pe" }b} L 8 pΩq 2α

	d ÿ
	i,j"1

  Théorème 1.1. On se place dans le régime où l'advection domine Alors, si u est la solution exacte du problème (1.6) et u H est la solution de (1.12) avec comme paramètre τ K pxq " τ pxq " H 2|bpxq| pour tout K P T H , on a |u ´uH | H 1 pΩq ď CH ´1 `?Pe H ¯|u| H 2 pΩq . (1.15)

	P epxq "	|bpxq|H 2α	ą 1 pp. x P Ω.

  -(1.27) est équivalent, d'après le théorème de Banach-Nečas-Babuška [38, Theorem 2.6], à un ensemble de deux conditions, la condition inf-sup

	Dα ą 0 tel que inf uPH 1 0 pΩq	sup vPH 1 0 pΩq	apu, vq }u} H 1 pΩq }v} H 1 pΩq	ě α,	(1.28)
	où				
	apu, vq " ˆΩ ∇u ¨∇v	`ˆΩ	pb ¨∇uqv,
	¨∇v	`ˆΩ	p∇σ `σbq ¨∇uv	´ˆBΩ	p∇u ¨nqσv.

et la seconde condition Pour tout v P H 1 0 pΩq, pPour tout w P H 1 0 pΩq, apw, vq " 0q ñ v " 0. Il s'agit alors de prouver les deux conditions énoncées ci-dessus et de rendre la constante α dans (1.28) explicite. L'étape principale de la preuve est de considérer le produit σv comme fonction test. On constate que ˆΩp´∆u `b ¨∇uqσv " ˆΩ σ∇u Le terme de bord s'annule lorsque qu'on prescrit une condition de Dirichlet homogène au bord du domaine. En choisissant σ vérifiant (1.26), on obtient formellement apu, σuq " ˆΩ σ|∇u| 2 pour tout u P H 1 0 pΩq, ce qui implique (1.28) si σ est positif et isolé de zéro. L'approche numérique proposée revient à se ramener à ce problème modifié ´div pσ∇uq `p∇σ `bσq ¨∇u " σf dans Ω, u " 0 sur BΩ, (1.29) qui est équivalent à (1.25)-(1.27) et a l'avantage d'être coercif.

  H , v H q " ˆΩ σ h ∇u H ¨∇v H `Bh ¨p∇u H qv H ´p∇v H qu H 2 , B h " ∇σ h `bσ h .

Trouver u H P U H tel que pour tout v H P U H , a ss pσ h ; u H , v H q " F pσ h v H q,

(1.35)

où a ss pσ h ; u

  La situation est radicalement différente pour le problème (1.4). Si p b ε " b ´x ε ¯(et sous des hypothèses supplémentaires), alors la solution u ε du problème (1.4) reste d'ordre 1, au lieu de ε 2 , et converge, en un certain sens, vers la solution d'un problème homogénéisé qui dépend du champ d'advection b, ce qu'on rappelle dans le théorème 4.4.

	renvoie au théorème 4.2).	ε	b	´x ε	(on

1,8 

pΩ ε qq d tel que div p b ε " 0 dans Ω ε .

(1.36)

On examine deux situations sensiblement différentes selon le type de condition prescrite aux bords des perforations: la condition de Dirichlet homogène dans le problème (1.3) et la condition de Neumann homogène dans le problème (1.4). On étudie un régime où l'advection domine sur la diffusion. La présence de perforations nécessite plus d'attention dans ce régime, particulièrement lorsque les perforations sont nombreuses, et asymptotiquement infiniment nombreuses. En effet, le choix de la condition prescrite aux bords des perforations influence fortement la nature du fluide, ce qui est attendu, et par conséquent les conclusions concernant la meilleure approche numérique à adopter. La condition de Dirichlet homogène aux bords des perforations atténue l'effet de l'advection, ce qui rend le fluide plus stable qu'en l'absence de perforations, contrairement au cas de la condition de Neumann homogène. Ce comportement peut s'illustrer en considérant la limite homogénéisée des problèmes (1.3) et (1.4) dans le cadre périodique. Si p b ε " b ´x ε ¯, avec b indépendant de ε, de divergence nulle, alors la solution u ε du problème de Dirichlet (1.3) converge vers 0 à la vitesse ε 2 . Renormalisée par le facteur ε ´2, la solution u ε converge vers une limite qui ne dépend pas du champ d'advection b (on rappelle ce résultat dans le théorème 4.3). Pour rétablir l'advection dans la limite homogénéisée du problème (1.3), ce qui numériquement revient formellement à conserver la domination de l'advection pour ε petit, on considère p b ε " 1 D'après

Table 2 .

 2 

	Outside the layer Inside the layer In the whole domain 0.3513 0.3217 0.0297	0.0624 0.1549 0.2173	0.8913 0.3722 1.2635	0.2228 0.7163 0.9391

1 

shows the relative errors of the methods.

L 2 : P 1 L 2 : P 1 SUPG H 1 : P 1 H 1 : P 1 SUPG

Table 2 .

 2 1 Relative errors for (2.15) with α " 1{256, b " 1, f " 1 and H " 1{16. The parameter τ K is given by (2.16).

Remark 2.10.

  Note that the estimate in Theorem 2.9 does not depend on the oscillation scale ε of A ε , but only on the contrast α 2 {α 1 . pΩq . Since ´αu 2 `bu 1 " f , |u| H 2 pΩq may be bounded, using Proposition 2.8, as α|u| H 2 pΩq ď }f } L 2 pΩq `|b| |u| H 1 pΩq ď }f } L 2 pΩq `a2L|b|{α }f } L 2 pΩq .

	.46) (2.47) Remark 2.11. Assume that A ε pxq " α. Then the MsFEM method reduces to the classical P 1 successively using the Poincaré inequality and Proposition 2.8. On the other hand, using Proposition 2.7 and the Poincaré inequality, we have |u ε ´uε H | H 1 pΩq ď c α 2 α 1 |e I | H 1 pΩq `|b| α 1 }e I } L 2 pΩq ď ˆc α 2 α 1 `|b|H α 1 ˙|e I | H 1 pΩq . Collecting (2.46) and (2.47), we conclude the proof of Theorem 2.9. method and the estimate (2.43) then reads as |u ´uH | H 1 pΩq ď H ˆ1 `|b|H α ˙˜1 `c 2L|b| α ¸}f } L 2 pΩq α . (2.48) On the other hand, the classical numerical analysis result for that problem has been recalled in (2.6). It is |u ´uH | H 1 pΩq ď CH ˆ1 `|b|H 2α ˙|u| H 2 2.3 Elements of theoretical analysis 48

Theorem 2.14. Let u ε be the

  

	solution to the one-dimensional problem (2.39) and u ε H,h P V ε H,h be the solution to (2.30) with τ K " H 2|b| . Assume that A ε P W 1,8 pΩq and that |b|L α 2 ě 1. Assume also that we are in a advection-dominated regime, and hence that |b|H 2α 1 ě 1. Then the following estimate holds:

  2. In contrast to Sections 2.3.1, 2.3.2 and 2.3.3, we do not restrict ourselves to the one-dimensional setting. In what follows, we denote C Ω the Poincaré constant of Ω as defined by }φ} L 2 pΩq ď C Ω |φ| H 1 pΩq for any φ P H 1 0 pΩq. | H 1 pΩq ď C Ω }b} L 8 pΩq |r u 2n ´r u 2n`1 | H 1 pΩq , (2.64)α 1 |r u 2n`1 | H 1 pΩq ď α spl |r u 2n | H 1 pΩq, ´r u 2n , we have ´div pA ε ∇w n q " ´αspl ∆r u 2n `div pA ε ∇r u 2n q in Ω, w n " 0 on BΩ.
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	The method (2.32)-(2.33)				
	Lemma 2.16. Consider the splitting method (2.32)-(2.33). If
	C Ω }b} L 8 pΩq α 1	ˆ}A ε	´αspl Id} L 8 pΩq α spl	˙ă 1,	(2.61)
	then u 2n`1 converges in H 1 0 pΩq to u ε solution to (2.23).	
	Proof. Let r u n " u n`2 ´un . We reformulate the system (2.32)-(2.33) as # ´αspl ∆r u 2n`2 `b ¨∇r u 2n`2 " b ¨∇pr u 2n ´r u 2n`1 q in Ω, r u 2n`2 " 0 on BΩ, # ´div pA ε ∇r u 2n`3 q " ´αspl ∆r u 2n`2 in Ω, r u 2n`3 " 0 on BΩ.	(2.62) (2.63)
	Using the variational formulations of (2.62) and (2.63), we have
	α spl |r u 2n`2 (2.65)
	where we have used (2.3) and (2.18). Letting w n " r u 2n`1 We deduce that	
	α 1 |w n | H 1 pΩq ď }A ε	´αspl Id} L 8 pΩq |r u 2n | H 1 pΩq .	(2.66)
	Collecting (2.64) and (2.66), we get				

  spl . Consider for instance the one-dimensional setting where A ε is continuous. Then }A ε άspl Id} L 8 pΩq " maxp|a `´α spl |, |a ´´α spl |q where a ´" inf

	that				
			ρ ě ρ ´,			(2.69)
	where ρ ´" C Ω }b} L 8 pΩq α 1 satisfied. Of course, (2.61) is only a sufficient, and not a necessary condition for the convergence a `´a á``a´. If ρ ´ą 1, then, for any α spl ą 0, condition (2.61) is not
	of the iterations. In most cases, and even in some cases when (2.61) is not satisfied, the splitting
	method (2.32)-(2.33) converges, see Section 2.4.2. In some cases, it does not. Lemma 2.17 below
	describes such a convergence failure, for a one-dimensional example that can be easily extended
	to higher dimensional settings using tensor products.		
	Lemma 2.17. Assume that Ω " p0, 1q, that A ε " α ‹ , that the initial guess for (2.32)-(2.33) is u 0 " cosp2πxq ´1 and u 1 the solution to (2.33) with u 0 in the right-hand side. Take α ‹ and α spl such that
	b α spl	ă	b 2α ‹ ´2π 2 α ‹ b	.		(2.70)
						.68)
	Adding (2.67) and (2.68), we get that u odd is actually the solution to (2.23).
	There are unfortunately simple situations where (2.61) is not satisfied, whatever the choice
	of α Ω	A ε and a `" sup Ω	A ε . We observe

Lemma 2.18. Choose

  ) | H 1 pΩq ď ρ|r u 2n | H 1 pΩq ,where ρ " gpβq and where the function g is defined by
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	with α spl ą 0 and β ě 0. Of course, β " 0 yields (2.32)-(2.33). The convergence of (2.71)-(2.72) is established in the following lemma, in the infinite dimensional setting. The discretized, finite dimensional version will be studied next. In (2.77), P V ε H is the projector on the space V ε H defined as follows. For any v P H 1 0 pΩq, we define P V ε H pvq P V ε H by @w P V ε H , a 1 ´PV ε H pvq, w ¯" a 1 pv, wq. (2.80)
	β " argmin xě0 Second, we discretize (2.72) using the MsFEM approach: we define u H ˆCΩ }b} L 8 pΩq x `αspl }A ε ´αspl Id} L 8 pΩq x `α1 ˙, 2n`3 by the following (2.73) variational formulation: `x x `α1 where α 1 is such that (2.18) holds. Then u 2n`1 converges in H 1 Find u H 2n`3 P V ε H such that, for any w P V ε H , a 2 pu H 2n`3 , wq " a 1 pu H 2n`2 , wq, (2.81) 0 pΩq to u ε solution to (2.23). Proof. Following the arguments of the proof of Lemma 2.16, we have |r u 2n`2 | H 1 pΩq ď where (2.82) a 2 pu, vq " ˆΩp∇vq T pβId `Aε q∇u. C Ω }b} L 8 pΩq β `αspl |r u 2n ´r u 2n`1 | H 1 pΩq `β β `αspl |r u 2n`1 | H 1 pΩq , (2.74) |r u 2n`1 | H 1 pΩq ď β `αspl β `α1 |r u 2n | H 1 pΩq , (2.75) |w n | H 1 pΩq ď }A ε ´αspl Id} L 8 pΩq β `α1 |r u 2n | H 1 pΩq , (2.76) where we recall that r u n " u n`2 ´un and w n " r Remark 2.19. Three remarks on (2.77) are in order. First, the term ´β∆u H 2n`1 is absent from r F stab only because, as we use a P 1 approach, that term identically vanishes in each element K. Second, as already mentioned in Section 2.2.2, the computation of r F 1 pvq needs to be performed on a fine mesh, since u H 2n`1 belongs to the MsFEM space V ε H . Third, the introduction of the projector P V ε H in (2.77) is motivated by the need to guarantee the convergence of the iterations (2.77)-(2.81) to an accurate approximation of the solution u ε to the reference problem (2.23). Lemma 2.20 u 2n`1 ´r u 2n . Collecting (2.74), (2.75) and (2.76), we have below will clarify and establish this convergence. Note that, instead of (2.80), we could as well have defined P V ε H pvq P V ε H , for any v P H 1 0 pΩq, by the relation a 2 ´PV ε H pvq, w ¯" a 2 pv, wq for any w P V ε H . We establish in Appendix 2.5.3 below the convergence of (2.77)-(2.81). Formally passing to |r u 2n`2 gpxq " C Ω }b} L 8 pΩq x `αspl }A ε ´αspl Id} L 8 pΩq x `α1 We next observe that gpxq " 1 ´α1 x `O xě0 gpxq ă 1. In view of (2.73), we have ρ " gpβq " min xě0 argument in the proof of Lemma 2.16. gpxq ă 1. We next conclude the proof mimicking the ˆ1 x 2 ˙. Since α 1 ą 0, this implies that min `x x `α1 . the limit n Ñ 8 in (2.77)-(2.81), we observe that, if pu H 2n , u H 2n`1 q converges to some pu H even , u H odd
	We now consider the discrete case. Given the approximations u H 2n and u H 2n`1 , we define u H 2n`2 and u H 2n`3 as follows. First, we discretize (2.71) on a coarse mesh and use the SUPG terms to stabilize the approach. We hence define u H 2n`2 by the following variational formulation:
	Find u H 2n`2 P V H such that, for any v P V H , a 1 pu H 2n`2 , vq `aconv pu H 2n`2 , vq " r F 1 pvq `r F stab pvq `aconv pP V ε H pu H 2n q, vq,	(2.77)
	where we recall that V H is the P 1 finite element space, and where	
	a 1 pu, vq " ˆΩpβ `αspl q∇u ¨∇v,	(2.78)
	a conv pu, vq " ˆΩpb ¨∇uq v	`ÿ KPT H	pτ K b ¨∇u, b ¨∇vq L 2 pKq ,	(2.79)
	r F 1 pvq " ˆΩpf ´b ¨∇u H 2n`1 qv F stab pvq " r ÿ KPT H pτ K pf ´b ¨∇u H `ˆΩ 2n`1 q, b ¨∇vq L 2 pKq . β∇u H 2n`1 ¨∇v,	
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	P 1 P 1	in 0.24 0.69 1.08 0.90 0.58 e H 1 out

Table 2 .

 2 

	out

H 1 e H 1 in e H 1 3

Relative errors in the multiscale case (α " 1{128, δ " 0.5, ε " 1{64 and H " 1{16)

Comparison of the splitting methods

  We specifically compare here our two variants of the splitting approach: (2.34)-(2.35) and (2.77)-(2.81). In spite of the value of ρ ´" 128 in (2.69), so that assumption (2.61) of Lemma 2.16 is violated, the method (2.34)-(2.35) converges. For the approach (2.77)-(2.81), we choose β as in (2.85), that is β " 1.9941. In the numerical tests, we have not used the projection P V ε H (see Remark 2.19). The contraction factor (see (2.98) in the proof of Lemma 2.20) is ρ " 0.99902. Given the proof of Lemma 2.20 and that value of ρ, the convergence is expected to be slow. It is indeed very slow, as will now be seen, confirming that the approach (2.77)-(2.81) is only advocated in the case where the convergence of (2.34)-(2.35) fails.

Figure 2.3 shows the error (in terms of the iteration residual (2.36) for the method (2.34)-(2.35), and a similar quantity for the method (2.77)-(2.81)) in function of the number of iterations. The method (2.77)-(2.81) needs 100 times more iterations than the method (2.34)-(2.35) to reach the same tolerance with respect to that criterion.

Table 2 .

 2 4 shows the accuracy of the methods with respect to the reference solution. We see that the method (2.34)-(2.35) is more accurate than the method (2.77)-(2.81) (outside the boundary layer). Both methods are equally inaccurate inside the boundary layer.

	Convergence error	10 10 10 10	´8 ´6 ´4 ´2		Method (2.34)-(2.35) Method (2.77)-(2.81)
		10 ´10	10 0	10 1 Number of iterations 10 2	10 3

Figure 2.3 Convergence history of the two splitting methods (α " 1{128, δ " 0.

5, ε " 1{64 and H " 1{16) e L 2 e L 8 e H 1 e H 1 in e H 1 out Method (2.34)-(2.35) 0.22 0.80 0.87 0.87 0.03 Method (2.77)-(2.81) 0.59 0.96 0.94 0.94 0.10 Table

  Upwind: e H 1 P 1 Upwind: e H 1

		10 0		
	relative error H 1	10	´1			P 1 : e H 1 P 1 : e H 1 out P 1 out
			10 ´3	10 ´2 α	Pe H " 1	10	´1

  Upwind 0.11 0.46 0.75 0.75 0.01 Table

	H 1 relative error outside the layer	10 ´1 10 0				P 1 P 1 Upwind Adv-MsFEM MsFEM Stab-MsFEM
			10 ´2 Pe H " 1 α	10	´1	
	H 1 relative error outside the layer	10 ´2 10 ´1 10 0	10 ´2 Pe H " 1 α	10	´1	P 1 P 1 Upwind Adv-MsFEM MsFEM Stab-MsFEM
			Figure 2.8 Relative error e H 1	
			P 1 P 1	e L 2 0.11 0.48 0.93 0.86 0.33 e L 8 e H 1 e H 1 in e H 1 out

2.9 and 2.10 respectively show the relative global H 1 error and the relative H 1 error outside the boundary layer. The relative global H 1 error does not seem to be sensitive to the heterogeneous media Figure 2.7 Relative error e H 1 out (δ " 0.75, ε " 1{64 and H " 1{32). out (δ " 0.75, ε " 1{256 and H " 1{32).

Table 2 .

 2 6 Relative errors for different boundary conditions in the local problems.

	e L 2 Adv-MsFEM lin 0.11 Adv-MsFEM OS 0.36 Adv-MsFEM CR 0.038 0.034 0.20 0.075 0.18 e L 8 e H 1 e H 1 in e H 1 out 0.62 0.74 0.68 0.29 0.55 0.42 0.34 0.24

  By standard finite element results (see e.g. [13, end of Section IX.3] or [38, Remark 1.129 and Lemma 1.127]), we have the following best approximation property: for any H and any

	2.5.1 Proof of (2.11)

v P H 1 0 pΩq X H 2 pΩq, there exists I H v P V H such that }v ´IH v} L 2 pΩq `H |v ´IH v| H 1 pΩq ď C FE H 2 |v| H 2 pΩq (2.88) where C FE is independent of H and v. Our proof of (2.11) is inspired by [83] and [77, Theorem 11.2]. We split the error u ´us H in two parts, e I " u ´IH u and e I H " u s H ´IH u. Given (2.88), we have |e I | H 1 pΩq ď CH|u| H 2 pΩq . (2.89) We now estimate the term |e I H | H 1 pΩq . The Galerkin orthogonality and (2.3) give α|e I H | 2 H 1 pΩq `astab pe I H , e I H q " ape I H , e I H q `astab pe I H , e I H q " ape I , e I H q `astab pe I , e I H q " ˆΩ `α∇e I ¨∇e I H `pb ¨∇e I qe I H ˘`ÿ KPT H ˆτK Le I , b ¨∇e I H ˙K " ˆΩ `α∇e I ¨∇e I H ´pb ¨∇e I H qe I ˘`ÿ KPT H ˆτK Le I , b ¨∇e I H ˙K. (2.90)

  1 0 pΩq. By density of H 2 pΩq X H 1 0 pΩq in H 1 0 pΩq, there exists r g P H 2 pΩq X H 1 0 pΩq such that }g ´r g} H 1 pΩq ď η.

(2.91) By standard finite element results (see e.g. [13, end of Section IX.3] or [38, Remark 1.129 and Lemma 1.127]), for any H, there exists v H P V H such that }r g ´vH } H 1 pΩq ď C FE H}r g} H 2 pΩq (2.92)

  Recall that a 1 , a conv and a 2 are defined by (2.78), (2.79) and (2.82), respectively, while the operator P V ε

								.97)
	Collecting (2.96), (2.97) and (2.95), we obtain	
				|r u H 2n`2 | H 1 pΩq ď ρ|r u H 2n | H 1 pΩq ,	(2.98)
	where ρ " ˆCΩ	`H 2	˙}b} L 8 pΩq β `αspl	}A ε	´αspl Id} L 8 pΩq β `α1	`β β `α1	.
	xě0 Arguing as in the proof of Lemma 2.16, we obtain that pu H gpxq ă 1. 2n , u H 2n`1 q converges in H 1 0 pΩqˆH 1 0 pΩq to some pu H even , u H odd q P V H ˆV ε
	Step 2: Convergence when H Ñ 0. We recast (2.83)-(2.84) as the following variational formulation:
	Find pu H even , u H odd q P V H c H ´pu H even , u H ˆV ε H such that, for any pv, wq P V H odd q, pv, wq ¯" B H pv, wq,	ˆV ε H ,	(2.99)
	where the bilinear form				
	c H ´pu H even , u H odd q, pv, wq ¯" a 1 pu H even , vq `aconv pu H even , vq
					´ˆΩ	β∇u H odd ¨∇v `aconv pu H odd , vq
	is defined on ´H1 0 pΩq ˆH1 0 pΩq ¯2.	´aconv pP V ε H pu H even q, vq `a2 pu H odd , wq ´a1 pu H even , wq

As in the proof of Lemma 2.18, we introduce the function

gpxq " ˆCΩ `H 2 ˙}b} L 8 pΩq x `αspl }A ε ´αspl Id} L 8 pΩq x `α1 `x x `α1 , observe that gpxq " 1 ´α1 x `O ˆ1 x 2 ˙,

which implies, since α 1 ą 0, that min xě0 gpxq ă 1. In view of (2.85), we have ρ " gpβq " min H . Letting n go to `8 in (2.77) and (2.81), we obtain that u H even and u H odd satisfy the variational formulations (2.83) and (2.84). H is defined by (2.80). The linear form

  We now bound the terms in the last line of(2.102). Using the fact that τ K pxq " H 2|bpxq| and |P V ε H puq| H 1 pΩq ď |u| H 1 pΩq , we have that |a conv pu ´PV ε H puq, uq `aconv pv, uq| ď }b} L 8 pΩq |u ´PV ε H puq| H 1 pΩq }u} L 2 pΩq `H 2 }b} L 8 pΩq |u ´PV ε H puq| H 1 pΩq |u| H 1 pΩq `}b} L 8 pΩq |v| H 1 pΩq }u} L 2 pΩq `H 2 }b} L 8 pΩq |v| H 1 pΩq |u| H 1 pΩq ď 2}b} L 8 pΩq |u| H 1 pΩq }u} L 2 pΩq `5H 4 }b} L 8 pΩq |u| 2 H 1 pΩq `}b} L 8 pΩq |v| H 1 pΩq }u} L 2 pΩq `H 4 }b} L 8 pΩq |v| 2
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	ď	ˆαspl 4 `ˆ1 2	H 1 pΩq L 8 pΩq `˜4}b} 2 α spl `}b} 2 L 8 pΩq 2 pα 1 ´αspl {2q }b} L 8 pΩq ˙|v| 2 }b} L 8 pΩq ˙|u| 2 H 1 pΩq ´αspl `5H 4 ´α1 2 ¯`H 4 H 1 pΩq ,	¸}u} 2 L 2 pΩq	(2.104)
			2 H ¯ě p|u| 2 H 1 pΩq `|v| 2 H 1 pΩq q `β `αspl 2 p|u| 2 ˆαspl 4 ´5H 4 }b} L 8 pΩq ˙|u| 2 H 1 pΩq `ˆ1 2 ´α1 ´αspl 2 ¯´H 4 }b} L 8 pΩq ˙|v| 2 H 1 pΩq `˜λ ´4}b} 2 L 8 pΩq α spl ´}b} 2 L 8 pΩq 2 pα 1 ´αspl {2q ¸}u} 2 L 2 pΩq .	
			L 2 pΩq		
			´ˆΩ `aconv pu ´PV ε β∇v ¨∇u ´a1 pu, vq H puq, uq `aconv pv, uq.		(2.102)
	Using the coercivity of the bilinear forms a 1 and a 2 , we get		
			a 1 pu, uq `a2 pv, vq ě pβ `αspl q|u| 2 H 1 pΩq `pβ `α1 q|v| 2 H 1 pΩq .	(2.103)

2 L 8 pΩq α spl `}b} 2 L 8 pΩq 2 pα 1 ´αspl {2q and H}b} L 8 pΩq ă min ´2α 1 ´αspl , α spl 5 ¯(2.100) where we recall that α 1 is such that (2.18) holds and that α spl is such that 2α 1 ą α spl (see (2.86)). We claim that Under assumption (2.100), r c H is coercive. (2.101) Note that (2.100) does not impose any restriction on β. The assumption (2.85) is only used in Step 1 above (to show the convergence when n Ñ 8). For any pu, vq P H 1 0 pΩq ˆH1 0 pΩq, we have r c H ´pu, vq, pu, vq ¯" a 1 pu, uq `a2 pv, vq `λ}u} 2 where we have used a Young inequality in the last line. We bound the terms in the second line of (2.102) by ˇˇˇ´ˆΩ β∇v ¨∇u ´a1 pu, vq ˇˇˇď β 1 pΩq `|v| 2 H 1 pΩq q. (2.105) Collecting (2.102), (2.103), (2.104) and (2.105), we get r c H ´pu, vq, pu, vq Under assumption (2.100), using a Poincaré inequality, we see that there exists η ą 0 such that @pu, vq P H 1 0 pΩq ˆH1 0 pΩq, r c H ´pu, vq, pu, vq ¯ě η ´}u} 2 H 1 pΩq `}v} 2 H 1 pΩq ¯. (2.106)

  Hn pU Hn , Φ Hn q| ď ˜sup Hn pU Hn , Ψq }Ψ} H 1 pΩqˆH 1 pΩq ¸}Φ Hn } H 1 pΩqˆH 1 pΩq

	lim nÑ`8	ΨPV Hn }Φ ´ΦHn } H 1 pΩqˆH 1 pΩq " 0. We infer from (2.109), (2.111), (2.110) and (2.108) that ˆV ε Hn c Hn ˆV ε Hn such that
		lim nÑ`8

(2.110) 

and, since c H is a continuous bilinear form,

|c Hn pU Hn , Φ ´ΦHn q| ď M }U Hn } H 1 pΩqˆH 1 pΩq }Φ ´ΦHn } H 1 pΩqˆH 1 pΩq .

(2.111)

By an argument of density (see Appendix 2.5.2), there exists a sequence ψ Hn P V ε Hn converging strongly in H 1 0 pΩq to ψ. Likewise, by an argument of density and classical results on finite element methods, we know that there also exists a sequence ϕ Hn P V Hn converging strongly in H 1 0 pΩq to ϕ. We thus have built a sequence Φ Hn " `ϕHn , ψ Hn ˘P V
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		even	˘2
	ď ˜sup ΦPV Hn ˆV ε Hn	c even } 2 L 2 pΩq .

  3.1), namely the solution σ to (3.2), satisfying σpxq ě σ ą 0 almost everywhere in Ω, |Ω| ´1 ˆΩ σ " 1, along with an adequate boundary condition (think of the natural Neumann boundary condition, but other boundary conditions might be considered, in particular because of the various boundary conditions (3.1) itself may be supplied with). The existence and uniqueness of a suitable σ follows from the Fredholm theory. In short, (3.3) is then obtained as follows. One multiplies (3.1) by the product σ v and integrates over the domain Ω:

	ˆΩp´∆u `b ¨∇uq σv " ˆΩ σ ∇u ¨∇v	`ˆΩ	p∇σ `σ bq ¨∇u v	´ˆBΩ	p∇u ¨nq σ v.	(3.6)
	The rightmost term cancels out when homogeneous Dirichlet boundary conditions are imposed
	on u (and thus on the test function v), which is the setting we adopt throughout this article.
	Considering (3.2), this formally yields					
	apu, σ uq " ˆΩ σ |∇u| 2 for any u P H 1 0 pΩq,		

  C3) for all u P H 1 0 pΩq, (σ u P H 1 0 pΩq and) }σ u}H 1 pΩq ď C σ }u} H 1 pΩq ,it is easy to see that the conditions pBNB1q and pBNB2q are satisfied in our case.

								Using (C3)
	and (C1), a simple calculation indeed yields, for any u P H 1 0 pΩq,	
	apu, σuq " ˆΩ σ∇u ¨∇u	´ˆΩ	div p∇σ `bσq	u 2 2
		" ˆΩ σ∇u ¨∇u ě ´inf Ω σ ¯}∇u} 2 L 2 pΩq ě C ´inf			
	Simply observing that one may harmlessly multiply and divide by a function σ enjoying the
	properties (C2) and (C3), and that the following formal integration by parts holds
	ˆΩp´∆u `b ¨∇uq σv "	´ˆBΩ	p∇u ¨nq σv	`ˆΩ	∇u ¨∇pσvq	`ˆΩ	pσ b ¨∇uq v
	"	´ˆBΩ	pσ∇u ¨nq v	`ˆΩ	pσ∇uq ¨∇v	`ˆΩ	pp∇σ `bσq ¨∇uq v
	" ˆΩp´divpσ∇uqq v	`ˆΩ	pp∇σ `bσq ¨∇uq v,

Ω σ ¯}u} 2 H 1 pΩq . Using (C2) and (C3), we obtain apu, σuq }u} H 1 pΩq }σu} H 1 pΩq ě C pinf Ω σq C σ ą 0 and thus the inf-sup inequality pBNB1q. The second condition pBNB2q is a consequence of the maximum principle (see e.g. [40, Theorem 8.1]): a function v P H 1 0 pΩq that satisfies apu, vq " 0 for all u P H 1 0 pΩq is a solution to ´div p∇v `bvq " 0 in Ω and therefore vanishes. The following, very classical proposition collects the properties established. Proposition 3.1. We assume (3.9)-(3.10) and that there exists σ P H 1 pΩq satisfying conditions (C1), (C2) and (C3). Then (3.1)-(3.11) is well-posed, that is, it has a unique solution in H 1 0 pΩq, and the map H ´1pΩq Q f Þ Ñ u P H 1 0 pΩq is continuous. one readily obtains the following result. Proposition 3.2. Under the assumptions of Proposition 3.1, (3.1)-(3.11) is equivalent to the problem ´divpσ∇uq `p∇σ `bσq ¨∇u " σf in Ω, u " 0 on BΩ, (3.15)

  1 pΩqq 1 . The problem

	$ ' &	Find u P H
	' %	

1 pΩq such that, for any φ P H 1 pΩq, ˆΩ ∇φ ¨∇u `φb ¨∇u " xf, φy pH 1 pΩqq 1 ,H 1 pΩq , (3.20) admits at least one solution (which is unique up to the addition of a constant) if and only if xf, σy pH 1 pΩqq 1 ,H 1 pΩq " 0.

  2, we assume that # the domain Ω is connected, and of class C 2 ;

	b is Lipschitz-continuous on Ω.	(3.21)
	We have the following result:	
	$ ' & ' %	´∆σ " div pbσq in Ω,

Proposition 3.6. Under assumptions (3.9)-

(3.21)

, there exists a unique solution σ P H 1 pΩq to

(3.16

) with the normalization

(3.17)

. In addition, it satisfies

(3.18)

. Furthermore, for all 1 ă p ă `8, we have σ P W 2,p pΩq X C 1 pΩq and the estimate

}σ} W 2,p pΩq ď C p1 `}σ} W 1,p pΩq q,

(3.22

) where C is a constant depending on p, Ω and }b} LippΩq " sup xPΩ |bpxq| `sup x‰yPΩ |bpxq ´bpyq| |x ´y| . Proof. Lemma 3.4 yields the existence and uniqueness of σ P W 1,p pΩq X C 0 pΩq, 1 ď p ă `8, solution to (3.16)-(3.17), and states that (3.18) holds. The point here is to prove that σ P W 2,p pΩq for all 1 ă p ă `8, and that the estimate (3.22) holds true. Since Ω σ " 1, ∇σ ¨n " ´pb ¨nqσ on BΩ, we may apply Lemma 3.5. Using in particular that b P W 1,8 pΩq, we obtain that }div pbσq} L p pΩq ď }b} W 1,8 pΩq }σ} L p pΩq `}b} L 8 pΩq }∇σ} L p pΩq ď C }σ} W 1,p pΩq using the Leibniz formula and the Hölder inequality, while }pb ¨nqσ} W 1´1{p,p pBΩq ď C}σ} W 1,p pΩq is a consequence of the Sobolev trace theorems and the Lipschitz regularity of b on the closed domain Ω. Lemma 3.5 therefore implies σ P W 2,p pΩq and (3.22). Since p can be taken arbitrary large, we also have σ P C 1 pΩq.

  2,p pΩq and satisfiesWe now eventually obtain a solution to(3.33), modifying σ 0 2 in a suitable manner. This is the purpose of our next result. Let σ 0 2 (resp. σ 1 ) be the solution to (3.34) (resp. to (3.16)-(3.17)). Under assumptions (3.9)-(3.21), the set of solutions to(3.33) reads as

	Corollary 3.11.		
	}v ´σ0 2 } W 2,p pΩq ď C}f } L p pΩq ,		(3.35)
	where σ 0		
	actual value of that integral.	Ω	σ 0 2 and not the

2 is the solution to (3.34) and C is a constant depending on p, Ω and }b} LippΩq . Of course, all what matters in the above estimation (3.35) is that Ω v "

  1 0 pΩq such that, for all v P H 1 0 pΩq, a ss pσ; u, vq " F pσ vq is a variational formulation of the modified problem (3.15). Since σ h " σ, Problem (3.37) is the Galerkin approximation of (3.15) in U H . We note that the bilinear form a ss pσ; ¨, ¨q is coercive, while, for all u and v in H 1 0 pΩq, we have a ss pσ; u, vq ď }σ} L 8 pΩq }∇u} L 2 pΩq }∇v} L 2 pΩq `}∇σ `σ b} L p pΩq }∇u} L 2 pΩq }v} L q pΩq

ď `}σ} L 8 pΩq `Cp,Ω }∇σ `σ b} L p pΩq ˘}u} H 1 pΩq }v} H 1 pΩq ,

(3.41) 

  1 pΩq, which is a solution to (3.16)-(3.17). The uniqueness of such a solution is easily obtained, again as a consequence of the Poincaré-Wirtinger inequality and of the fact that C PW }b} L 8 pΩq ă 1.

Furthermore, for any v P H 1 pΩq, we have

ˆΩ ∇pσ ‹ ´1q ¨∇v " ´ˆΩ pσ ‹ ´1q b ¨∇v ´ˆΩ b ¨∇v. Choosing v " σ ‹ ´1,

we get }∇pσ ‹ ´1q} L 2 pΩq ď C PW }b} L 8 pΩq }∇pσ ‹ ´1q} L 2 pΩq `}b} L 8 pΩq , and thus }σ ‹ ´1} H 1 pΩq ď b 1 `C2 PW }b} L 8 pΩq 1 ´CPW }b} L 8 pΩq

  ss pσ ´σh ; v H , w H q| ď `}σ ´σh } L 8 pΩq `Cp,Ω }B ´Bh } L p pΩq ˘}v H } H 1 pΩq }w H } H 1 pΩq , (3.47) where B h " ∇σ h `bσ h . Combining (3.45), (3.46) and (3.47) gives the desired estimate.

  , the author considers the Neumann problem All these problems are well-posed (under appropriate assumptions) for any sufficiently regular right-hand side. We note that the proofs contained in the contributions we have cited consider the problem of interest (e.g.(3.52) in[START_REF] Scott | Optimal L 8 estimates for the finite element method on irregular meshes[END_REF]) for several right-hand sides, and not only the right-hand side f originally considered. In contrast, Problem (3.19) is well-posed only for right-hand sides satisfying some compatibility conditions (seeLemma 3.3). This is one of the reasons why the proof of Proposition 3.17 is not immediate. W 1,p estimate between v and its finite element approximation v h (chosen such that ˆΩ v h " ˆΩ v): there exists C independent of h such that }v h ´v} W 1,p pΩq ď Ch}v} W 2,p pΩq .(3.54)

	and state a		
	´∆v `v " f in Ω,	∇v ¨n " 0 on BΩ,	(3.52)
	while the Dirichlet problem		
	Another contribution we wish to cite is [41, Theorem A.2 p. 101]. Taking some sufficiently
	regular f and g such that the compatibility condition ˆΩ f the Neumann problem	`ˆBΩ	g " 0 holds, the authors consider
	´∆v " f in Ω,	∇v ¨n " g on BΩ	(3.53)

´∆v " f in Ω, v " 0 on BΩ, is studied in

[START_REF] Natterer | Über die punktweise Konvergenz finiter Elemente[END_REF][START_REF] Nitsche | L 8 -convergence of finite element approximations[END_REF][START_REF] Rannacher | Some optimal error estimates for piecewise linear finite element approximations[END_REF]

. A more general PDE (including an advection term and a zero-order term, but again with homogeneous Dirichlet boundary conditions) is considered in

[START_REF] Brenner | The mathematical theory of Finite Element methods[END_REF] Chap. 8

].

  p pΩq ď Cη}σ m η,h } L p pΩq `C}σ} W 2,p pΩq . Inserting this estimate in (3.69), we deduce that

  3.38)-(3.39)) that a ss pσ h ; u H , v H q " ˆΩ σ h ∇u H ¨∇v H `Bh ¨p∇u H qv H ´p∇v H qu H

	2	,	(3.77)

  H is a P 1 function. The term(3.83) is indeed a GLS-type stabilization term, in the sense that it reads a stab pu H , v H q " ÿ

	KPT H

we have L h u H " σ h b ¨∇u H 3.4 Implementation details and numerical results 110 as a consequence of the fact that u

  " 64 and where λ 1 , λ 2 , λ 3 , λ 4 ą 0. We study the three examples defined in Table3.6.

	Error (3.84) P 1 P 1 -GLS pP 1 , pσ 1 qP 1 q pP 1 , σ 1,h P 1 q pP 1 , σ 2,h P 1 q pP 1 , σ 2,h P 1 q-GLS x " b 0 where b 0 y λ 1 (h " H) (h " H{5) (h " 1{150) (h " 1{230) 0.191 0.0328 0.0187 0.313 0.0208 0.127 0.0818 0.191 0.191 0.191 0.191 0.0328 0.0328 0.0326 Table 3.2 Test (i) 0.0327 λ 2 λ 3 λ 4 inf v H PU H apv H , v H q }v H } 2 L 2 pΩq Test (v) 0 50.34 0 64 ´45.05 Test (vi) 20 50.34 0 64 ´95.21 Test (vii) 0 50.34 30 64
	Error (3.84) P 1 P 1 -GLS pP 1 , pσ 1 qP 1 q pP 1 , σ 1,h P 1 q pP 1 , σ 2,h P 1 q pP 1 , σ 2,h P 1 q-GLS	(h " H) (h " H{7) (h " 1{150) (h " 1{230) 0.479 0.0551 0.0199 0.385 0.0218 0.139 0.102 0.614 0.398 0.362 0.377 0.0827 0.0532 0.0511 0.0520 Table 3.3 Test (ii)
	Error (3.84) P 1 P 1 -GLS pP 1 , pσ 1 qP 1 q pP 1 , σ 1,h P 1 q pP 1 , σ 2,h P 1 q pP 1 , σ 2,h P 1 q-GLS	(h " H) (h " H{9) (h " 1{150) (h " 1{230) 0.536 0.0411 0.0302 0.453 0.0250 0.153 0.126 0.862 0.461 0.412 0.429 0.0784 0.0420 0.0397 0.0405 Table 3.4 Test (iii)
	Error (3.84) P 1 P 1 -GLS pP 1 , pσ 1 qP 1 q pP 1 , σ 1,h P 1 q pP 1 , σ 2,h P 1 q pP 1 , σ 2,h P 1 q-GLS	(h " H) (h " H{7) (h " 1{150) (h " 1{230) 0.468 0.0573 0.0250 -0.0266 0.153 0.111 0.612 0.401 0.379 0.388 0.0894 0.0550 0.0535 0.0544 Table 3.5 Test (iv)

˘T

`λ2 `cos 2 p2πxq, 0 ˘T `λ3 py, xq T `λ4 py, ´xq T ,

Appendix: Proof of Proposition 3.16

  , σ 1,h P 1 q P 1 -GLS pP 1 , σ 1,h P 1 q P , σ 1,h P 1 q P 1 -GLS pP 1 , σ 1,h P 1 q P

	3.5 Proposition 3.16 is shown as a consequence of a more general result, namely Theorem 3.22 below.
	We introduce the space	V "	"	u P H 1 pΩq,	Ω	u " 1 *
	and recall (see (3.48)) that the bilinear form a ‹ is defined by
		a				
	16 24 28 32 64	0.0291 0.0190 0.0173 0.0135 0.00626	0.0704 0.0508 0.0235 0.0187 0.00608 Table 3.13 Test (v) 0.00107 0.00177 0.00250 0.00312 0.0138	0.000921 0.00171 0.00229 0.00294 0.0137
	Error (3.84) 1{H pP 1 1 -GLS Online cost 16 0.0475 0.0807 0.00102 0.000804 24 0.0308 0.0615 0.00157 0.00166 28 0.0275 0.0440 0.00238 0.00232 32 0.0226 0.0258 0.00298 0.00301 64 0.0105 0.0102 0.0143 0.0139 Table 3.14 Test (vi)
	Error (3.84) 1{H pP 1 1 -GLS Online cost 16 0.0219 0.0606 0.000976 0.000807 24 0.0139 0.0437 0.00186 0.00171 28 0.0119 0.0189 0.00256 0.00229 32 0.00946 0.0146 0.00332 0.0296 64 0.00401 0.00388 0.0156 0.0138 Table 3.15 Test (vii)

‹ pu, vq " ˆΩp∇u `buq ¨∇v.

Let f P L 2 pΩq and g be Lipschitz-continuous on BΩ such that ˆΩ f `ˆBΩ g " 0. Consider the problem Find u P V such that, for any v P H 1 pΩq, a ‹ pu, vq " ˆΩ f v `ˆBΩ gv.

well-posedness of

  Theorem 3.22 then implies that(3.49) is well-posed and that the error estimate (3.50) holds.Proof of Theorem 3.22. The proof falls in two steps.(3.86). Let λ ą 0. The bilinear form a coer pu, vq " ˆΩ ∇v ¨∇u λ ˆΩ v u is coercive in H 1 pΩq, while the bilinear form a comp pu, vq " ˆΩ bu ¨∇v can be represented vq " a coer pu, vq `acomp pu, vq satisfies an inf-sup condition on Σ h .

	Step 1: by a compact operator T P L ´H1 pΩq, `H1 pΩq ˘1¯a s a comp pu, vq " xT u, vy. Consequently (see the proof of [84, Theorem 4.2.9]),
	when h is sufficiently small, the bilinear form λ pu, (3.88) a ‹
	Using [38, Prop. 2.21], we thus see that the problem	
	Find u	
		.86)
	Furthermore, we have, for h sufficiently small,	
	}u ´uh } H 1 pΩq ď Ch}u} H 2 pΩq	(3.87)

where C is independent of h. Theorem 3.22 obviously implies Proposition 3.16. Consider indeed the invariant measure σ 1 P H 1 pΩq solution to (3.16)-(3.17). It is the solution to (3.85) with f " g " 0. Likewise, the invariant measure σ 0 2 P H 1 pΩq solution to (3.34) is the solution to (3.85) with f " 0 and 117 Stable approximation of the advection-diffusion equation using the invariant measure g " b ¨n ´ BΩ b ¨n. h P Σ h such that, for all v h

125

  Stable approximation of the advection-diffusion equation using the invariant measure from (3.111) thatγ a }u 1,h ´u2,h } H 1 pΩq ď η}u 1,h ´u2,h } H 1 pΩq ,which implies, whenever η ă γ a , that u 1,h " u 2,h . The functions u 1,h and u 2,h are thus equal up to the addition of a constant. Taking v h " σ 1,h as test function in (3.107), we see that

  .124) where λ ą 0 and the parameter κ ě 1 in the definition (3.112) of χ z are defined in Lemma 3.28.

	We hence have τ 2β z " χ d`λ z	. In view of the definition (3.120) of M h,λ , we infer from (3.123) that
		}τ z ∇pg z h	´gz q} 2 L q pΩq ď M 2 h,λ }τ αq z } 2{q L s pΩq .	(3.125)
	Our choice of β implies that α " 1´β " 1´p{2 and αqs " ´p, hence }τ αq z } s L s pΩq " and therefore	› › ›χ ´pd`λq z	› › › L 1 pΩq	,

  .136)where C only depends on Ω. We deduce from the above estimate that We now bound the last term of (3.140) by finite element estimation (note that ψ P H 1 pΩq and ψ |T P H 2 pT q for any T P T h , since χ z belongs to C 8 pΩq and r e P Σ h ; we are thus in position to use(3.115)):

	135 Stable approximation of the advection-diffusion equation using the invariant measure
	Collecting (3.137), (3.138) and (3.139), we obtain
	ˆΩ χ d`λ z 1 |∇e| 2 ď a ‹ η ď a ‹ η 4 ˆΩ χ d`λ z |∇e| 2 ď C ˆΩ χ d`λ´2 `χd`λ z pw ´Ih wq, e ˘`a ‹ η pψ ´Ih ψ, eq `χd`λ z z |e| 2 pw ´Ih wq, e ˘`a ‹ η pψ ´Ih ψ, eq `1 4 ˆΩ χ d`λ z |∇e| 2 `C ˆΩ χ d`λ´2 z |e| 2 . `C ˆΩ χ d`λ´1 z `C ˆΩ χ d`λ z |∇pw ´Ih wq| 2 `χd`λ´2 z |w ´Ih w| 2 `C ˆΩ χ ´d´λ z ´|∇pψ ´Ih ψq| 2 `|ψ ´Ih ψ| 2 ¯.	|∇e| |e|	(3.137) (3.140)
	We successively estimate the first two terms of (3.137). For the first term, we write, using
	estimate (3.113), the Cauchy Schwarz inequality and the Young inequality,
	ˇˇa ‹ η C ˆΩ |∇e| ´χd`λ `χd`λ z pw ´Ih wq, e z |∇pw ´Ih wq| `χd`λ´1 ˘ˇď z L 8 pΩq ˆΩ χ d`λ z |w ´Ih w| |∇e| `η ˆΩ χ d`λ |w ´Ih w| z ď C ˆΩ |∇e| ´χd`λ z |∇pw ´Ih wq| `χd`λ´1 z |w ´Ih w| }b} |w ´Ih w| |e| C ˆΩ χ ´d´λ z ď ´|∇pψ ´Ih ψq| 2 `|ψ ´Ih ψ| 2 Ch 2 ÿ T PT h ˆT χ ´d´λ z ˇˇ∇ 2 pχ d`λ z r eq ˇˇ2 [estimate (3.115) and def. of ψ]
	ď C ď 1 4	ˆΩ χ d`λ´2 z χ d`λ z |∇e| 2 ˆˆΩ χ d`λ´2 |w ´Ih w| |e| ˙1{2 ˆˆΩ χ d`λ z z |w ´Ih w| 2 ˙1{2 |∇pw ´Ih wq| 2 `χd`λ´2 z ˆˆΩ χ d`λ´2 z ˙1{2 |e| 2 ˆΩ χ d`λ ˆˆΩ `C z |∇e| 2 `C ˆΩ χ d`λ z |∇pw ´Ih wq| 2 `χd`λ´2 z |w ´Ih w| 2 |w ´Ih w| 2	˙1{2
		`C ˆΩ χ d`λ´2 z	|e| 2 .	(3.138)
	Estimating the second term of (3.137) is done in a similar fashion:
	|a ‹		
	ď C ď 1 4	¯`ˆΩ ´|∇pψ ´Ih ψq| 2 `|ψ ´Ih ψ| 2 |ψ ´Ih ψ| |e| χ ´d´λ χ ´d´λ z z ˙1{2 |ψ ´Ih ψ| 2 `C ˆΩ χ ´d´λ |∇e| 2 ˙1{2 ˆˆΩ χ d`λ χ d`λ z `ˆˆΩ ˆˆΩ z |e| 2 ˙1{2 ˆˆΩ ˆΩ χ d`λ z |∇e| 2 z ´|∇pψ ´Ih ψq| 2 `|ψ ´Ih ψ| 2 C ¯˙1{2
			ˆΩ χ d`λ z	|e| 2 .	(3.139)

η pψ ´Ih ψ, eq| ď ˆΩ |∇e| |∇pψ ´Ih ψq| `}b} L 8 pΩq ˆΩ |ψ ´Ih ψ| |∇e| `η ˆΩ |ψ ´Ih ψ| |e| ď C ˆΩ |∇e| ´|∇pψ ´Ih ψq| `|ψ ´Ih ψ|

  We are thus in position to use the finite element estimate (3.115). Inserting (3.115) in (3.146), we get

2 ˘`C 2 4ε ˆΩ χ ´d´λ z ´|∇pv ´Ih vq| 2 `|v ´Ih v| 2 ¯. (3.146) We now use the regularity assumption (3.94) for the problem (3.93) with the right hand side f defined above, which states that v belongs to H 2 pΩq (note indeed that 2d d `2 ă 2).

  3.1 below.

	��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���	����� ����� ����� ����� ����� ����� ����� �����	���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����	����� ����� ����� ����� ����� �����	Perforations B ε Boundary BB ε of the perforations Domain Ω ε

  successively consider the Dirichlet problem (4.2) (with the functional spaces W H , W 0

	H H,bubble defined by (4.4), (4.5) and (4.6)) and the Neumann problem (4.3) (with the and W 0 corresponding functional spaces W H , W 0 H and W 0 H,bubble ).

Dirichlet problem (4.2)

Variational formulations. The variational formulation of the standard MsFEM approach with Crouzeix-Raviart type boundary conditions reads as Find u H P V H such that, for any v H

  E, obtained by Y -periodicity from Y zO, is a smooth connected open set of R d . Let p b ε " b ´ε ¯where b P pW 1,8 pY zOqq d is Y -periodic. We suppose either that b is curl-free or that div b ď 0 in Y zO and b ¨n ě 0 on BO. We assume that f P L 2 pΩq. As ε

	vanishes, u ε ´u‹	ÿ ´ε d i"1

  " Ω ε ) and, possibly, separately inside and outside the boundary layer when there is such a boundary layer close to some portion of the boundary of the domain Ω (see Section 4.4.2).

	and the relative errors in the whole domain (ω The results for Problem (4.2), where we impose homogeneous Dirichlet boundary conditions e H 1 pωq puq " |u ´uref | H 1 H pωq , (4.57) |u ref | H 1 pωq
	on the perforations, are presented in Section 4.4.1, while Section 4.4.2 contains those for the
	Neumann problem (4.3).					
	1 broken norm				
	|u| H 1 H pωq "	˜ÿ KPT H	}∇u} 2 L 2 pKXωq	¸1{2	,	(4.56)

  We denote by Ω layer " ´p0, 1q ˆp1 ´δlayer , 1q Comparison of the Adv-MsFEM CR variants: e H 1 (α " 1{16, O " p0.25, 0.75q 2 ,

	4.4 Numerical results	164
	relative error	10 ´0.5			Adv-MsFEM CR + adv Bubbles: (4.25) Adv-MsFEM CR + adv Bubbles: (4.34)
	H 1			
		10 ´1		
			10 ´2	" ε	10	´1
					H
					ε
	Figure 4.9 f " sin ´π 2	x ¯sin	´π 2	y ¯, H " 1{16).
	boundary layer, of approximate width δ layer "	1 Pe	¯Y logpPeq.	´p1 ´δlayer , 1q ˆp0, 1q ¯this expected

Stab-MsFEM with advective bubbles functions We

  consider the test cases of Section 4.4.2 in the case O " O 1 . Figure4.18 shows the error outside the boundary layer. We observe that adding bubbles functions does not significantly improve the accuracy. The results for O " O 2 are similar.

	167 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains
	relative error outside the layer	10 ´1		Adv-MsFEM CR + adv Bubbles Adv-MsFEM CR Stab-MsFEM CR
	H 1	10 ´2	
		10 ´2	10	´1
		α	
	Figure 4.14 [Neumann Problem (4.3)] Adding bubble functions: Error outside the layer when O " O 1 .
	10 ´1.5 10 ´1 relative error outside the layer		Adv-MsFEM CR + adv Bubbles Adv-MsFEM CR Stab-MsFEM CR
	H 1		
		10 ´2	10	´1
		α	
	Figure 4.15 [Neumann Problem (4.3)] Adding bubble functions: Error outside the layer when O " O 2 .

  2. We adapt the proof of [59, Appendix A.2], where we considered a purely diffusive problem. We first prove that Problem (4.46) is well-posed. Consider 171 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains where we used the periodicity of w and b and the fact that w " 0 on BO. Using now that div b ď 0 in Y zO and a Poincaré inequality in V , we get, for any w P V , apw, wq ě α}∇w} 2 L 2 pY zOq ě C}w} 2 H 1 pY zOq , and thus the coercivity of a. The solution w of (4.46) is thus well defined. Since the perforations are isolated, we can consider the cell problem on a larger bounded open domain Y `of class C 1 such that Y Ă Y `and Y `X O ‹ " O, where O ‹ is the domain obtained by Y -periodicity from O. Applying

	V "	␣ w P H 1 pY zOq, w is Y -periodic, w " 0 on BO	(	.
	The variational formulation of (4.46) reads as: find w P V such that
			@v P V, apw, vq " ˆΩ v
	with The bilinear form a is coercive on V . Indeed, for any w P V , apw, vq " ˆY zO α∇w ¨∇v pb ¨∇wq v. `ˆY zO
		apw, wq " "	ˆY zO ˆY zO ˆY zO	α|∇w| 2 α|∇w| 2 α|∇w| 2	`ˆY zO `ˆY zO ´ˆY zO	pb ¨∇wq w b ¨∇ ˆw2 2 pdiv bq 2 " ˆw2 ˙,

  .63) We assume (4.43) and (4.47). There exists C independent of ε such that

	Lemma 4.7.

  To identify the equation satisfied by u ‹ and u 1 , we consider, following[4], the following test function ϕ ε pxq " ϕpxq `εϕ 1 ´x,

	x	¯,
	ε	
	where ϕ P C 8 c pΩq and ϕ 1 P C 8 c pΩ; C 8 per pY qq, the gradient of which reads ∇ϕ ε pxq " ∇ϕpxq `∇y ϕ 1 ´x, x ε ε ¯`ε∇ϕ 1 ´x, x ¯.

1 

per pY zOq{R ˘such that u 0 px, yq " u ‹ pxq 1 Y zO pyq and ξ 0 px, yq " 1 Y zO pyq p∇u ‹ pxq `∇y u 1 px, yqq.

(4.75)

  Under sufficient regularity assumptions on O and f , we have w i P W 1,8 pY zOq and u ‹ P W 2,8 pΩq, hence

	lim εÑ0	}u ε,1 ´gε,1 } H 1 pΩ ε q " 0.	(4.79)

  179 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domainsFor the second term of (4.86), we write a ε ´uε,1 , e ´r ψ ε u ε,1

		¯" ˆΩε	αe ´r ψ ε	ˇˇ∇u ε,1 ˇˇ2	[Eq. (4.69)]
			"	ˆΩε	αe ´ψ0 ˇˇ∇u ε,1 ˇˇ2 `op1q.	[Eq. (4.72)]
	Arguing as in (4.84), we get		
	lim εÑ0	a ε ´uε,1 , e ´r ψ ε u ε,1	¯" ˆΩˆY	αe ´ψ0 ξ 0 px, yq ¨ξ0 px, yq.	(4.89)
	For the third term of (4.86), we write
	a ε ´uε,1 , e ´r ψ ε u ε	¯" ˆΩε	αe ´r ψ ε ∇u ε,1 ¨∇u ε	[Eq. (4.69)]
			"	ˆΩε	αe ´ψ0 ∇u ε,1 ¨∇u ε `op1q.	[Eq. (4.72)]
	Arguing as in (4.85), we get		
	lim εÑ0	a ε ´uε,1 , e ´r ψ ε u ε,1	¯" ˆΩˆY	αe ´ψ0 ξ 0 px, yq ¨ξ0 px, yq.	(4.90)
	Collecting (4.86), (4.87), (4.88), (4.89) and (4.90), we deduce that
						lim εÑ0
						.86)
	where				
						lim εÑ0	R ε " 0	(4.87)
	as a consequence of (4.79) and (4.71).
	We successively pass to the limit in the three terms of (4.86). For the first one, we use (4.72).
	Arguing as in (4.82) and (4.83), we get that
						lim εÑ0 ˆΩε	f e ´r ψ ε pu ε ´uε,1 q " 0.	(4.88)

  now recall three lemmas, borrowed from[START_REF] Bris | An MsFEM type approach for perforated domains[END_REF] Section 3]. The first lemma is a trace inequality. For any domain ω Ă R d , it is classical to define the space There exists C (depending on the regularity of the mesh) such that, for any K P T H and any edge E Ă BK, we have}v} L 2 pEq ď C ´H´1 }v} 2 L 2 pKq `H}∇v} 2 L 2 pKq ¯for all v P H 1 pKq. Consider an edge E P E in H , and let K E Ă T H denote all the triangles sharing this edge. There exists C (depending only on the regularity of the mesh) such that } rrvss } L 2 pEq ď CH ÿ

		H 1{2 pωq "	"	u P L 2 pωq,		ˆω ˆω |upxq ´upyq| 2 |x ´y| d`1 dxdy ă	`8*	,
	and the norm			}u} 2 H 1{2 pωq " }u} 2 L 2 pωq `|u| 2 H 1{2 pωq
	where	|u| 2 H 1{2 pωq "	ˆˆω	ˆω |upxq ´upyq| 2 |x ´y| d`1 dxdy	˙1{2	.
	Lemma 4.8 (Lemma 3.2 of [59]). (4.92)
	Under the additional assumption that ˆE v " 0, we have
				}v} 2 L 2 pEq ď CH}∇v} 2 L 2 pKq	(4.93)
	and			}v} 2 H 1{2 pEq ď Cp1 `Hq}∇v} 2 L 2 pKq .	(4.94)
	Lemma 4.9 (Corollary 3.3 of [59]). KPK E	}∇v} 2 L 2 pKq for all v P W H ,	(4.95)
	and	} rrvss } L 2 pEq ď Cp1 `Hq	ÿ KPK E	}∇v} 2 L 2 pKq for all v P W H .	(4.96)
	Lemma 4.10 (Lemma 3.4 of [59]		

  Indeed, we first note that ϕ vanishes on E X B ε , henceC}f } L 2 pEq }rrϕss} L 2 pEq . (4.109)Third, suppose momentarily that rrϕss P H 1 pEq Ă C 0 pEq. We infer from the fact that ˆErrϕss " 0 that rrϕss, and hence rrϕssf , vanishes at least at one point on E. In addition, the function We are then in position to apply Lemma 4.10, which yields, using (4.104),

	"	ˆEXΩ ε ˆE ˜ˆ∇w ˜ˆ∇w ´1 2 ´1 2 bw ˙|ε bw	˙|ε ¨n	¨n ´Cˆ∇ ´Cˆ∇ w ´1 2 w ´1 2 bw ˙|ε bw	˙|ε ¨nG ¨nG E ¸f rrϕss. E ¸f rrϕss	(4.108)
	Using the regularity (4.104) of w, we indeed have that
		ˇˇˇˇˆE	˜ˆ∇w	´1 2	bw	˙|ε	¨n	´Cˆ∇	w	´1 2	bw	˙|ε	¨nG	E	¸f rrϕss	ˇˇˇď
			ˆ∇w				˙|ε								˙|ε
				´1 2	bw		¨n		´Cˆ∇	w	´1 2	bw	¨nG
		ˇˇˇˇˆE 4εq E C ˜ˆ∇w › › › › ∇w ´1 2 ´1 2 bw bw ˙|ε › › › › L 8 ¨n }∇ ´Cˆ∇	w	´1 2	bw	˙|ε	¨nG	E	¸f rrϕss	ˇˇˇď
	ˇˇˇˇˆE	˜ˆ∇w			˙|ε								˙|ε
		XΩ ε	´1 2	bw		¨n	´Cˆ∇ w	´1 2	bw	¨nG

E ¸f rrϕss ˇˇˇď C ? ε}f } H 1 pEq }rrϕss} H 1{2 pEq , (4.107) where C is a constant independent of the edge E, ε and H. E is periodic on E (with a period q E uniformly bounded with respect to E P E in H ) and of zero mean. E pf rrϕssq} L 2 pEq , ď Cε}f } H 1 pEq }rrϕss} H 1 pEq (4.110)

  .121)

	Conclusion We deduce from (4.115) and (4.121) that

  We see from(4.14), that v H P V H,bubble . We next decompose the exact solution into u " v H `ϕ.189 Multiscale Finite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domainsNotice that v H satisfies ˆE v H " ˆE u, hence ˆE ϕ " 0, for all E P E in H pα∇v H q ¨n " Constant on ( each side of) E, for all E P E in ´α∆v H " Π H pf p1 ´pb ¨∇wq |ε qq on K X Ω ε , for all K P T H .

	H	(4.124)

  4.127). Using the corrector equation (4.46) and (4.98), similarly as in the proof of Theorem 4.2, we have ˇˇˇˇÿ KPT H ˆKXΩ ε ´´α∆ r ϕ `p b ε ¨∇ r ϕ ¯ϕˇˇˇˇď `}f p1 ´pb ¨∇wq |ε q ´ΠH pf p1 ´pb ¨∇wq |ε qq} L 2 pΩq `2αε}∇w} L 8 pΩ ε q }∇f } L 2 pΩq

  4.127) similarly as in the previous proof. We then obtainH 1 pΩq `?εH}∇f } H 1 pΩq `H}∇f } L 2 pΩq `ε}∇f } H 1 pΩq ˙|ϕ| H 1 H pΩ ε q . H pΩ ε q ď CH}b} L 8 pΩ ε q }f } L 2 pΩq `Cε ˆc ε H `H `?ε ˙`}f } L 8 pΩq `}∇f } H 1 pΩq ˘|ϕ| H 1

	ˇˇˇˇď }f } (4.130) ˆEXΩ ε pα∇pw ε f q ¨nq rrϕss ˆc ε ÿ EPE in H Cε ˇˇˇˇˇε 2 H
	Conclusion of Step 1 Combining (4.128), (4.129), and (4.130), we infer that	
	|ϕ| 2 H 1	
	H pΩ ε q	(4.131)

  4.132) is bounded using(4.44). The second term of (4.132) is estimated using the corrector equation (4.46) and (4.98), similarly as in the proof of Theorem 4.2. We deal with the term of (4.132) following the arguments of [59, Section 4, Step 1c]. We then obtain for allw H P V H,bubble , ˇˇˇa H pu, w H q ´ˆΩ ε f w H ˇˇď ˙`}f } L 8 pΩq `}∇f } H 1 pΩq ˘|w H | H 1 H pΩ ε q . (4.133) Conclusion Combining (4.126), (4.131) and (4.133), we get the desired estimate. This concludes the proof of Theorem 4.5.

	Cε	ˆc ε H	`H `?ε

  E for all µ K,E P R, for all E P E in H , wherec K pu H , v H q " ˆKXΩ ε α∇u H ¨∇v H `1 2 p p b ε ¨∇u H qv H ´1 2 div p p b ε v H qu H , MultiscaleFinite Element methods à la Crouzeix-Raviart for advection-dominated problems in perforated domains The bilinear form c K is coercive on W K " " u H P V K , ˆE u H " 0 for all E P E in H * since we have for all u H P W K c K pu H , u H q " ˆKXΩ ε α∇u H ¨∇u H `1 2 p p b ε ¨∇u H qu H ´1 2 div p p b ε u H qu H

	"	ˆKXΩ ε	α|∇u H | 2	´1 2	pdiv p b ε qpu H q 2
	ě α	ˆKXΩ ε	|∇u H | 2 ,

δ K,E " 0, 1 and F P L 2 pK X Ω ε q.

We want to apply

[START_REF] Ern | Theory and practice of Finite Elements[END_REF] Theorem 2.34, p100

]. We denote

c E pv H , pµ K,E q E q " ÿ EPE in H µ K,E ˆE v H .
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  K,E ´E v H . The bilinear form c K is coercive on W K " " u H P V K , ˆE u H " 0 for all E P E in H * since we have for all u H P W K a K pu H , u H q " ˆKXΩ ε α∇u H ¨∇u H `pp b ε ¨∇u H qu H

	"	ˆKXΩ ε	α|∇u H | 2 ´CK P

  On a supposé que b P W1,8 pΩq et div b ď 0 dans Ω, de telle sorte que le problème (A.1) est uniformément coercif. La suite u ε est bornée dans H 1 0 pΩq et converge faiblement, à extraction près, dans H 1 0 pΩq vers u 0 . On peut montrer qu'il existe u 1 P L 2 pΩ, H 1 # pY q{Rq telle que la suite ∇u ε converge, à extraction près, "à deux échelles" vers ∇u 0 `∇y u 1 . Soient ϕ P C 8 c pΩq et ϕ 1 P C 8 c pΩ; C 8 # pY qq, on considère la fonction test suivante ϕ

			8 c pΩ, C 8 # pY qq, on a
	lim εÑ0 ˆΩε	u ε pxqψ ´x,	x ε	¯" ˆΩˆY	u 0 ψ.

ε pxq " ϕpxq `εϕ 1 ´x, x ε ¯.

La formulation variationnelle du problème hautement oscillant nous donne

ˆΩ A ε ∇u ε ¨∇ϕ ε `b ¨∇u ε ϕ ε " ˆΩ f ϕ ε . (A.3)

On fait apparaître le gradient de la fonction test

∇ϕ ε pxq " ∇ϕpxq `∇y ϕ 1 ´x, x ε ¯`ε∇ϕ 1 ´x, x ε ¯.

  avec pA ‹ qe i " ˆY A pyq `ei `∇w i pyq ˘dy, b ‹ ¨ei " ˆY bpyqpe i `∇w i pyqqdy, où w i , 1 ď i ď d, est le correcteur solution du problème de cellule suivant # ´div pAp∇w i `ei qq " 0 dans Y, y Ñ w i pyq Y -périodique. (A.7) Démonstration. On suit le même cheminement que dans le cas précédent. On obtient que le problème est uniformément coercif par rapport à ε. La suite u ε est alors bornée dans H 1 0 pΩq et converge faiblement, à extraction près, dans H 1 0 pΩq vers u 0 . On peut montrer qu'il existe u 1 P L 2 pΩ, H 1 # pY q{Rq telle que la suite ∇u ε converge, à extraction près, "à deux échelles" vers 204 ∇u 0 `∇y u 1 . Soient ϕ P C 8 c pΩq et ϕ 1 P C 8 c pΩ; C 8 # pY qq, on considère la fonction test suivante ϕ ε pxq " ϕpxq `εϕ 1 ´x, x ε ¯.La formulation variationnelle du problème hautement oscillant nous donneˆΩ A ε ∇u ε ¨∇ϕ ε `bε ¨∇u ε ϕ ε " ˆΩ f ϕ ε . (A.8)On fait apparaître le gradient de la fonction test ∇ϕ ε pxq " ∇ϕpxq `∇y ϕ 1 ´x, On déduit alors de (A.8) queˆΩ A ε ∇u ε ¨p∇ϕ `∇y ϕ 1 `ε∇ϕ 1 q `bε ¨∇u ε pϕ `εϕ 1 q " ˆΩ f ϕ ε . (A.9)La fonction ψpx, yq est une fonction test admissible (au sens de la convergence à deux échelles) si elle est Y -périodique en y et satisfait

					x ε	¯`ε∇ϕ 1 ´x,	ε x	¯.
	lim εÑ0	ˆΩ ψ ´x,	x ε	¯2 "	ˆΩˆY	ψ px, yq 2 .

  w i , 1 ď i ď d, est le correcteur solution du problème de cellule suivant # ´div pAp∇w i `ei qq ´b ¨p∇w Plusieurs techniques de preuve sont possibles. On utilise la méthode de la fonction test oscillante de Tartar[START_REF] Cioranescu | An introduction to homogenization[END_REF] Chapter 8] avec ϕ P C 8 c pΩq et où w i , 1 ď i ď d, sont les correcteur solution du problème de cellule (A.12). On peut appliquer cette méthode pour démontrer les théorèmes A.1 et A.2 sous l'hypothèse, plus restrictive, que div b " 0 dans Y . Avec les hypothèses div b " 0 et ˆY b " 0, les correcteurs sont bien définis. La formulation variationnelle de (A.1) nous donneˆΩ A ε ∇u ε ¨∇ϕ ε ´bε u ε ¨∇ϕ ε " ˆΩ f ϕ ε , (A.13)où on a intégré par parties le terme d'advection. On fait apparaître le gradient de la fonction test∇ϕ ε pxq " ∇ϕpxq `d ÿ pe i `∇w ε i qB x i ϕ ¸´b ε u ε ¨∇ϕ ε " ˆΩ f ϕ `rε A ε pe i `∇w ε i qB x i ϕ ¸´b ε u ε ¨∇ϕ ε " ˆΩ f ϕ `rε A ε pe i `∇w ε i qB x i ϕ ¸´b ε u ε ¨∇ϕ ε " ˆΩ f ϕ `rε ¨∇B x i ϕpxq.207 Quelques résultats d'homogénéisation périodique sur le problème d'advection diffusion stationnaire hautement oscillant D'après la définition du problème du correcteur, g ε pxq " 0. De plus h ε est bornée dans L 2 pΩq, h ε P L 2 # pY ; CpΩqq, donc la suite h ε converge faiblement vers

									ϕ ε pxq " ϕpxq	`ε d ÿ i"1	w i	´x ε	¯Bx i ϕpxq,
												i"1	∇w i	´x ε	¯Bx i ϕpxq	`ε d ÿ i"1	w i	´x ε	¯∇B x i ϕpxq
				"	d ÿ i"1	´ei `∇w i	´x ε	¯¯B x i ϕpxq	`ε d ÿ i"1	w i	´x ε	¯∇B x i ϕpxq.
	On pose													
	r ε "	´ˆΩ	pA ε ∇u ε q ¨˜ε	d ÿ i"1	w i	´x ε	¯∇B x i ϕpxq	¸`ˆΩ	f ε	˜d ÿ i"1	w i	´x ε	¯Bx i ϕpxq	¸.
	On déduit alors de (A.13) que					
		ˆΩ A ε ∇u ε	¨˜d ÿ i"1			
		ˆΩ ∇u ε ˆΩ ´uε div ¨˜d ÿ i"1 ˜d ÿ i"1 ˆΩ ´uε ˆ1 ε g ε `hε	˙" ˆΩ f ϕ `rε ,	(A.14)
	avec													
		g ε pxq "	d ÿ i"1		rdiv pApe i `∇w i qq `b ¨pe i `∇w i qs	´x ε	¯Bx i ϕpxq,
		h ε pxq "	d ÿ i"1	! A	´x ε	¯´e i `∇w i	´x ε	¯¯`b	´x ε	¯wi	´x ε	¯)

i `ei q " 0 dans Y, y Ñ w i pyq Y -périodique. (A.12) 206 Démonstration. d ÿ i"1

  3) satisfaisant les propriétés σpxq ě σ ą 0 presque partout dans Ω, |Ω| ´1 ˆΩ σ " 1 et une condition au bord bien choisie (pour simplifier, pensons à la condition de Neumann naturelle, mais d'autres choix peuvent éventuellement être faits, selon les conditions au bord imposées dans (B.1)). L'existence et l'unicité de σ convenable sont obtenues par la théorie de Fredholm. Schématiquement, la preuve de la condition inf-sup (B.2) repose alors sur la multiplication de (B.1) par la fonction produit σ u, et une intégration sur le domaine Ω. On écrit, à des termes de bord près qui, dans les conditions prises ci-dessus, s'annulent tous (voir le détail ci-dessous en (B.7)), Ceci permet d'obtenir facilement (B.2). Il reste alors, en pratique, à utiliser une discrétisation par éléments finis qui permette de vérifier aussi cette condition inf-sup au niveau discret, au moins, "par continuité", pour un pas de maillage h assez petit. Il s'ensuit un problème discret bien posé. Tout cela est désormais classique, mais, curieusement, cette technique de transformation d'un problème non coercif en un problème modifié coercif, via l'utilisation de la mesure invariante σ, ne semble pas avoir été exploitée au niveau numérique (sauf dans le cas où b est irrotationel [1], pour lequel σ est alors analytiquement connu). L'égalité (B.5) suggère pourtant une approximation de type Petrov-Galerkin sur (B.1), usant de fonctions tests produits σv, au lieu d'une approche classique Galerkin, de sorte que la coercivité (B.5) soit directement satisfaite au niveau discret. Il est facile de se rendre compte que, au moins dans le cas décrit ci-dessus, une telle approche est aussi une approche Galerkin sur l'équation modifiée ´divpσ ∇uq `p∇σ `σ bq ¨∇u " σ f, (B.6) où on observe que, par construction, le champ ∇σ `σ b est, à cause de (B.3), à divergence nulle. D'où encore la coercivité immédiate. On comprend immédiatement l'intérêt d'une telle approche, puisqu'elle donne par nature un caractère bien posé (et, qui plus est, coercif) au problème discret associé à (B.1), et ce uniformément en la taille du maillage. Pour des problèmes coûteux où la discrétisation ne peut être que grossière, avoir un problème discret bien posé et stable est un objectif naturel. On pense ainsi, par exemple mais pas seulement, au cas où on superposerait au problème (B.1) ci-dessus un aspect multiéchelle (en remplaçant l'opérateur de diffusion par un opérateur divpapx{εq ∇ ¨q à coefficients rapidement oscillants, ou bien en le considérant sur un domaine Ω ε à la géométrie complexe). Un autre avantage de l'approche est qu'on peut en faire B.2 Mise en oeuvre de l'approche 214

apu, σ uq " ˆΩp´∆u `b ¨∇uq σu " ˆΩ σ |∇u| 2 ´1 2 ˆΩ ´div p∇σ `σ bq ¯u2 , (B.4) et donc, en utilisant (B.3), apu, σ uq " ˆΩ σ |∇u| 2 . (B.5)

  terme disparaît au vu des conditions de Dirichlet homogènes posées sur u et donc v. Dans ce cas, et l'observation est en fait assez générale, on a donc un choix libre de la condition au bord à imposer sur la solution de (B.3), pourvu que la fonction σ ainsi définie existe et soit (positive et) isolée de zéro.Deux choix au moins peuvent paraître naturels. Le premier est d'imposer la condition de Neumann associée à l'équation (B.3). On définit ainsi la mesure σ 1 ą 0, normalisée par |Ω| ´1 ˆΩ σ 1 " 1, montrer qu'elle existe, sous de bonnes hypothèses de régularité de Ω et b, par l'alternative de Fredholm suivie d'une application du principe du maximum. Ce choix peut cependant paraître surprenant car, dans le cas particulier où le champ b est à divergence nulle, et où le problème original (B.1) est donc ipso facto coercif, on n'a σ 1 " 1 que si b ¨n " 0 sur BΩ. On verra pourtant que ce choix de mesure est le meilleur qu'on puisse prendre dans le cas spécifique traité ici. Motivé par la discussion ci-dessus, on peut alternativement penser à choisir σ de sorte que σ " 1 dès que div b " 0. D'où l'idée de considérer la mesure σ 2 solution de l'équation similaire à (B.8) où on a remplacé la condition de bord p∇σ 1 `σ1 bq ¨n " 0 par p∇σ 2 `σ2 bq ¨n " b ¨n ´|BΩ| ´1 ˆBΩ b ¨n sur BΩ. Ce choix, quoique plus consistant en un certain sens, s'avérera moins efficace dans les tests numériques menés. Retenons que, dans un cadre de travail fixé (conditions aux bord imposées pour (B.1), régularité des données), on peut utiliser la flexibilité dont on dispose pour définir la mesure invariante pour choisir la meilleure d'entre elles. Une fois la mesure invariante choisie, l'approche consiste à (i) si sa solution n'est pas connue explicitement analytiquement, résoudre numériquement l'équation (B.8) (ou une équation analogue) par une méthode d'éléments finis, pour un certain maillage de taille h, obtenant ainsi une approximation σ h de la mesure σ. Il faut veiller à ce que cette approximation soit positive, et suffisamment précise pour ne pas hypothéquer la qualité du calcul de u. Pour ce faire, nous avons utilisé une formulation variationnelle stabilisée de (B.8). (ii) construire une approximation Petrov-Galerkin pU H , V H " σ h U H q de l'équation (B.1) (équivalente à une approximation Galerkin de (B.6) sur U H ), à partir d'un espace d'approximation éléments finis U H de départ, pour une certaine taille de maillage H. Dans les tests numériques présentés dans la section suivante, U H est l'espace des éléments finis continus P1 sur un maillage régulier de taille H. Comme le champ ∇σ h `σh b n'est pas à divergence nulle pour h ą 0, on utilise l'astuce classique d'antisymétrisation du terme d'advection dans la formulation variationnelle de (B.6), afin d'assurer la coercivité au niveau discret.

	ˆΩp´∆u `b ¨∇uq σv " ˆΩ σ ∇u ¨∇v où le dernier solution de # ´div p∇σ 1 `σ1 bq " 0 `ˆΩ p∇σ `σ bq ¨∇u v dans Ω, p∇σ 1 `σ1 bq ¨n " 0 sur BΩ, dont on peut B.2.2 Discrétisation	´ˆBΩ	p∇u ¨nq σ v,	(B.7) (B.8)

  Table B.1 Erreurs relatives dans le cas non coercif instable (b irrotationnel, H " 1{16). Nous passons ensuite au cas général. Comme cas représentatif d'un champ b général, non irrotationnel, on choisit de prendre b " p1 `50.34 cos 2 p2πxq `64y, 64p1 ´xqq T , toutes autres données égales par ailleurs aux données du cas précédent. Ce champ b a été ajusté pour avoir

	Erreur L 2 Erreur H 1	0.208 0.479	0.214 0.0488	0.200 0.0199	0.207 0.0218	" 7 0.195 0.399	H{h " 7 0.226 0.0536
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Appendix A

Quelques résultats d'homogénéisation périodique sur le problème d'advection diffusion stationnaire hautement oscillant

Cette annexe est consacrée à la théorie de l'homogénéisation du problème d'advection diffusion hautement oscillant en dimension d ě 2 dans le cas périodique. On note Y " p0, 1q d la cellule de périodicité. On définit Ω un domaine ouvert borné régulier de R d . Le problème s'écrit ´div pA ε ∇u ε q `bε ¨∇u ε " f dans Ω, u ε " 0 sur BΩ, (A.1) avec b ε P pL 8 pΩqq d et f P L 2 pΩq. On suppose que la matrice de diffusion A ε est de la forme A `x ε ˘où A P pL 8 pY qq dˆd est Y -périodique, symétrique pour presque tout y P Y . On suppose de plus qu'il existe 0 ă α 1 ď α 2 tels que

Omettons un instant le champ d'advection b ε dans le problème (A.1). Dans le cas du problème de diffusion pure hautement oscillant, la propriété (A.2) assure la coercivité du problème de manière uniforme par rapport à ε, ce qui permet en particulier de montrer la caractère bien posé du problème et que la suite u ε est bornée dans H 1 0 pΩq. La présence du champ d'advection b ε représente une difficulté supplémentaire car le problème (A.1) n'est plus coercif en général. On étudie dans cette section l'homogénéisation du problème (A.1) pour différentes formes du champ d'advection b ε . Les résultats présentés dans cette annexe sont classiques. On renvoie à [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Cioranescu | An introduction to homogenization[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF][START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF][START_REF] Marcellini | Convergence of second order linear elliptic operators[END_REF][START_REF] Murat | H-convergence[END_REF] pour une introduction à la théorie de l'homogénéisation.

i) Le cas b ε " bpxq

Théorème A.1. (adaptation de [4, Theorem 2.3, p.1494]) Soit u ε la solution du problème (A.1) avec b ε " b pxq. On suppose que b P pW 1,8 pΩqq d et div b ď 0 dans Ω. La suite pu ε q εą0 converge faiblement dans H 1 0 pΩq, quand ε tend vers 0, vers u ‹ , solution du problème

Abstract

Nous nous intéressons à un problème d'advection-diffusion non coercif où l'advection domine. Nous présentons une approche numérique possible, à notre connaissance nouvelle, basée sur l'utilisation de la mesure invariante associée au problème. Nous démontrons sur l'exemple traité que l'approche permet de définir une approximation éléments finis du problème bien posée, et ce inconditionnellement en la taille du maillage. Plusieurs variantes de l'approche sont possibles, dont une, qui s'avère stable, conduit à des résultats numériques de qualité tout à fait comparable à une méthode classique de stabilisation sur l'équation considérée. Ceci suggère une piste possible, générale, pour toute une classe de problèmes non coercifs.

Abstract

We study an advection-diffusion equation that is both non-coercive and advection-dominated. We present a possible numerical approach, to our best knowledge new, and based on the invariant measure associated to the original equation. We show that the approach allows for an unconditionally well-posed finite element approximation. Two variants of the approach are studied. One of them is stable, and as accurate as a classical stabilization approach. This suggests a possible general strategy, applicable to a large class of non coercive problems.

Abridged English version

We study the advection-diffusion equation ´∆u `b ¨∇u " f (equation (B.1) of the French version) in the regime where the associated bilinear form is not coercive and where the advection dominates. As is well-known, a classical proof of the well-posedness of this non coercive equation proceeds by the application of the Fredholm alternative. Well-posedness is actually, using the Banach-Necas-Babuska Theorem, equivalent to the celebrated inf-sup condition and an additional condition (see (B.2) below and, e.g., [3] for a comprehensive exposition of the theory and general references therein for the study and approximation of (B.1)). Well-posedness of the Galerkin approximation of (B.1) follows, at least for a sufficiently small mesh size and for a suitable class of finite element approximations. In fact, as is also well known, the inf-sup condition may be established independently, using the notion of invariant measure associated to the original equation, namely the (positive, normalized) solution σ of the adjoint equation ´div p∇σ`σ bq " 0 (see (B.3) below) supplied with adequate boundary conditions. The non coercive bilinear form apu, vq corresponding to the advection-diffusion equation (B.1) then reads, for a test function v " σu, as (B.5). The bilinear form pu, vq Þ Ñ apu, σvq is hence coercive. The inf-sup condition readily follows. Although the above is by now classical, the approach consisting in using the invariant measure as a tool for forcing coerciveness in an otherwise non coercive equation seems to not have been explored from a numerical perspective. In short, our numerical approach consists in constructing, using an auxiliary finite element computation, an approximation of the invariant un cas non coercif et instable. Les résultats sont détaillés dans la Table B