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Dû à leur impact destructeur et meurtrier, il est important de comprendre la dynamique des tsunamis afin d'améliorer les modèles de prévention et d'alerte. Le peu de données disponibles in situ rend la génération des tsunamis peu connue. Les modèles de générations, notamment la génération sismique qui est considérée ici, simplifient les phénomènes mis en jeu. De nombreux effets sont négligés, parmi eux la cinématique de déformation du fond.

Deux paramètres temporels peuvent être définis pour décrire ce mouvement: la vitesse de propagation de rupture v p qui est propre à l'évènement sismique, et le temps d'élévation t r . Respectivement, ces paramètres caractérisent le mouvement horizontal et vertical.

Une étude linéaire et théorique, puis non-linéaire et numérique, révèle un phénomène de résonance pour de courts t r et des v p de l'ordre de la célérité des ondes longues. Dans ces conditions, l'amplitude des vagues générées est amplifiée par rapport à celle de la déformation du fond marin, et des phénomènes dispersifs apparaissent. Pour illustrer ce phénomène, le cas du tsunami de 1947, qui frappa la Nouvelle Zélande, est simulé avec les modèles de Saint-Venant puis de Boussinesq du système Telemac2D. Rejoignant la théorie, l'influence de v p est nettement observable tandis que les faibles valeurs de t r ont un impact limité. Bien que des effets dispersifs soient attendus durant cet évènement, ils ne sont pas observés avec le modèle numérique. En parallèle de cette étude sur les échelles temporelles, cette thèse a permis de contribuer à la validation des modèles numériques du système Telemac dans le cadre du projet TANDEM. Ainsi, les modèles issus de Telemac2D et Telemac3D sont testés sur des cas tests représentant la génération, la propagation ou le run-up d'un tsunami. Il s'avère que dans la plupart des cas, les modèles numériques proposent de résultats très corrects. Cependant, on note une certaine dépendance aux paramètres numériques pour les cas délicats comme celui de la propagation d'une onde solitaire. En plus des cas idéalisés, le modèle de Saint-Venant de Telemac2D est utilisé pour modéliser l'évènement de Tohoku-Oki de 2011, pour lequel les résultats sont satisfaisants.
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INTRODUCTION

Context of the thesis

On the 11 th of March 2011, an earthquake of magnitude M w 9.1 generated a huge tsunami that hit the Japan East coast. This tsunami reached extremely high elevation, with 30m

run-ups at some locations in the Tohoku Bay (Mori et al. [2011]). The impact on the coast was particularly devastating, and some cities were destroyed as it was the case for Otsushi (Figure 1). The project is structured in four work-packages, so called WP1, WP2, WP3 and WP4.

Similarly to the one of the NOAA [START_REF] Synolakis | The runup of solitay waves[END_REF]), the aim of WP1 is to build a numerical benchmark where each partner's code is validated and compared with a set of test cases. This work-package permits to adapt and improve the existent numerical models and also to identify any weaknesses. Through this benchmark, the numerical resolutions of idealized and simplified generations, propagations and impacts on the coast of tsunamis are addressed, see [START_REF] Violeau | A database of validation cases for tsunami numerical modelling[END_REF]. This work-package is a first important step in the evolution of the project because it permits to validate the use of the different codes prior to modeling real cases.

The WP2 treats the influence of the model parameters and uncertainties focusing on seismic and landslide generations. The sensitivity to the source characteristics of the generated waves and flooded area are tested. These parameters concern the geometrical aspects of the source (size, direction, density) but also the generation parameters as its motion velocities. The influence of the bathymetric and topographic data, values of the tides and seasonal fluctuations has also been tested [START_REF] Antoshchenkova | Propagation of uncertainties for an evaluation of the Azores-Gibraltar Fracture Zone tsunamigenic potential[END_REF]).

The third work-package, WP3, concerns the study of the 2011 Tohoku-oki tsunami. This real case permits to test the numerical models and compare them to real scale tsunami data. Four steps are defined for this work: the construction of Digital Elevation and bathymetric Maps (DEM) thanks to the Japanese partner (MRI), the identification of co-seismic source models from the literature, the modeling of the propagation with the different codes and its comparison with data, the modeling of the impact of the waves on the coast and protection structures.

The last work-package, WP4, is the application to the French coasts from creating an inventory of the possible tsunamigenic sources in order to estimate water height approaching the French coasts and finally to study the response of local sites and specific coast configurations.

Objectives and contents of the thesis

This thesis takes part in the WP1, WP2 and WP3 workpackages of the above mentioned project.

One aim of this work is to validate the Telemac system to model tsunamis. [2007] and on the system website http://www.opentelemac.org. Thus, during these
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three years of work, I performed some test cases taking part of the benchmark defined by the TANDEM project in WP1. I was also responsible of one of these cases: the generation of waves by a moving vertical step, built on the works of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]. The aim is to reproduce the different experiments and to compare the result from the numerical models to the experimental data. At the end, only three codes participate to the realisation of this test case: Telemac2D, Telemac3D and Misthyc [START_REF] Yates | Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves[END_REF]). The ultimate validation is the application to a real case: the Tohoku-oki tsunami that hit on March 11 th of 2011 the East coast of Japan, which is my participation to the WP3.

To the best of my knowledge, only preliminary and limited studies about tsunamis have been performed with Telemac and in the Saint-Venant Hydraulics Laboratory, respectively.

Thus, there was a need to review what was done by the scientific community from the basis processes. A first state-of-the-art review gave me a global landscape of the phenomena.

This work led to identifying the generation process as the least well-known due to its diversity and complexity. Ultimately, the impact of kinematic seismic source on the wave generation became the subject of interest of this thesis. Thus, inspired by the literature where only one temporal parameter is studied, the horizontal or the vertical scale, a study using both temporal parameters is carried out here. An analytical solution is then developed and compared to numerical solutions. Furthermore, to test its applicability in general cases, and to assess its influence in numerical simultation, a real event is simulated with the Telemac system. The results show a real impact of the temporal parameters, thus validating our approach.

Structure of the thesis

Related to the duality of the work, between the study on the influence of timescales and the applications for the TANDEM project, this manuscript has two distinct parts.

The first part focuses on the influence of the timescales on the generation of the waves.

This part is structured in three chapters. First, Chapter 1 presents the state-of-the-art.

In this review, a global approach of the tsunami processes is presented from the different generations to the run-up (impact on the coast). Particular attention is given to the seismic generation and the kinematic processes that can be important but usually neglected.

Chapter 2 details the development of the linear analytical solution of the generation of waves by an idealised sea floor motion taking into consideration both vertical and horizontal motions simultaneously. In this chapter, the analytical solution is compared to linear and nonlinear numerical models, permitting a more in-depth study of the impact of the temporal parameters. During this study, a resonance phenomena is enhanced for slow ground motions. Thus, Chapter 3 presents an application case of a tsunami earthquake (with slow deformation) performed with Telemac2D: the event of March 1947 that occurred in New-Zealand for which unexpected wave heights were observed.
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The second part gathers the different applications performed for the project TANDEM in order to validate the Telemac System for modeling tsunamis. In Chapter 4, my different contributions to the benchmark are presented with the different models within the Telemac system. There are test cases about the generation: a sliding mass and a moving step, one case about the propagation of a solitary wave, and three cases about the run-up:

oscillations in a close basin, run-ups of Gaussian and solitary waves. Finally, Chapter 5 concerns the study of the Tohoku-Oki event of the 11 th March 2011 that hit Japan. This incorporates all the aspect of the simulation developed, from the construction of meshes to the conclusions about the capacity of the Telemac codes to model such an event.
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Part I [START_REF] Levin | Physics of tsunamis[END_REF] that was intensively used to prepare this Chapter, and strongly recommend this work for more details. A recent historical review was also performed by [START_REF] Kânoglu | Tsunamis: bridging science, engineering and society[END_REF]. In their work, the authors traced the history of the major events and the responses and advances of the scientific community. Kânoglu et al. constructed their work around the historical background while in the present chapter, the review is built around the physical processes. First, this Chapter chronologically describes the different steps of a tsunami from its generation in Section 1.1.1, to its propagation in Section 1.1.2 before finishing with its impact on the coasts and wave run-up, in Section 1.1.3. Then, the second part of this chapter is focused on the subject of interest for this thesis, that is the seismic generation of tsunami and the necessity to consider kinematic model for the source, Section 1.2.

Kinematic generation of tsunamis

Generation

The generation of tsunamis may be the most complex part of its life. One of the difficulties is that we rarely have in situ measurement data. Moreover, the generation processes can be very complex and multidisciplinary. In the present section, the main features of some tsunami generations are described.

Landslide tsunami

After seismic generation that will be investigated in Section 1.2, the generation of tsunami by landslide is the most probable. The landslide process consists of an accumulation of sedimentary material until an event triggers the destabilisation of the sediment layer.

Among them, one can find the erosion on a steep underwater slope, coastal construction projects, prolonged rain leading to a saturation of coastal land, volcanic activities and often earthquakes. Indeed, some seismic events are accompanied by tsunamigenic landslides as suggested by [START_REF] Tappin | Did a submarine landslide contribute to the 2011 tohoku tsunami?[END_REF] for the Japan 2011 event or the catastrophic event of the Papua New Guinea July, 1998 [START_REF] Gelfenbaum | Erosion and Sedimentation from the 17 July, 1998 Papua New Guinea Tsunami[END_REF], [START_REF] Synolakis | The slump origin of the 1998 papua new guinea tsunami[END_REF], [START_REF] Imamura | Re-examination of the source mechanism of the 1998 papua new guinea earthquake and tsunami[END_REF], [START_REF] Tappin | The papua new guinea tsunami of 17 july 1998: anatomy of a catastrophic event[END_REF]). The latter was such destructive that it awakes the awareness of this hazardous type of generation, that was until there less investigated than seismic generation, [START_REF] Bardet | Landslide tsunamis: Recent findings and research directions[END_REF].

Landslide tsunamis are considerated as more local events than seismic events, with large run-ups close to the source, [START_REF] Harbitz | Mechanisms of tsunami generation by submarine landslides: a short review[END_REF]. A famous example is the Lituya bay, 1958 event in Alaska where a 524m run-up was measured on the other side of the bay, [START_REF] Miller | Giant waves in lituya bay, alaska[END_REF], [START_REF] Mader | Modeling the 1958 lituya bay mega-tsunami, ii[END_REF]. This event corresponded to a sub-aerial landslide, starting from air to water. Some tsunamis are triggered by only submarine landslide, that makes them difficult to identify. Moreover, the nature of the landslide can be diverse:

a rock fall, a motion of a solid bloc or a fluid flow. In all these cases, the characterising parameters that influence the amplitude of the generated wave, are the landslide volume, velocity, initial acceleration, length and thickness. Its parameters influencing the wavelength are its length and its run-out distance. However, the best indicator of tsunamigenic potential seems to be the ratio between the volume and the initial acceleration of the sliding material [START_REF] Masson | Submarine landslides: processes, triggers and hazard prediction[END_REF]). It can also be noted that an abrupt deceleration of the landslide can contribute to large water surface elevation [START_REF] Harbitz | Mechanisms of tsunami generation by submarine landslides: a short review[END_REF]). [START_REF] Bardet | Landslide tsunamis: Recent findings and research directions[END_REF] recalled us how important the study of landslide tsunami generation is. Many studies have been devoted to this aim. Describing precisely all the possibilities will be out of the scope of the present work. However, I noted that this problem was addressed either theoretically than experimentally or numerically. Experimentally, lots of works have been performed for solid landslides, as done by [START_REF] Grilli | Tsunami generation by submarine mass failure. i: Modeling, experimental validation, and sensitivity analyses[END_REF] and [START_REF] Enet | Experimental study of tsunami generation by three-dimensional rigid underwater landslides[END_REF]. The latest considered a sliding mass moving under the action of gravity. Figure 1.1 shows pictures of their set up experiment. Besides of providing an accurate benchmark for numerical models, this experiment permitted to highlight the influence of the initial acceleration on the generated waves and to confirm an analytical kinematic motion of the landslide: the 1D displacement of the mass 1.1 GENERAL OVERVIEW center s(t) is evaluated such as:

s(t) = s 0 ln cosh t t 0 ,
with s 0 = u 2 t a 0 , t 0 = ut a 0 , a 0 and u t the landslide initial acceleration and terminal velocity, respectively. The latter are calculated from the characteristics of the landslide. Another possibility is to consider the landslide as being deformable, corresponding more to the reality [START_REF] Levin | Physics of tsunamis[END_REF]). Thus, some studies were performed with granular slide as done by [START_REF] Fritz | Near field characteristics of landslide generated impulse waves[END_REF]. In their work, a slide Froude number, F r = vs √ gh with v s the slide impact velocity, is defined as the predominant parameter characterizing the generated waves. They identified weakly nonlinear oscillatory wave, nonlinear transition wave, solitary-like wave and dissipative transient bore for small to important Froude numbers.

The diverse water surface response as function of F r and S is illustrated in Figure 1.2 where here S is the slide thickness. √ gh and the slide thickness S = s/h with weakly nonlinear oscillatory wave, ♦ nonlinear transition wave, solitary-like wave, dissipative transient bore. Light-shaded square corresponds to the nonlinear transition region, the dark-shaded square to solitary-like region, and the black square to bore region. Result issued from the work of [START_REF] Fritz | Near field characteristics of landslide generated impulse waves[END_REF].

Among the theoretical works, we can mention the work of [START_REF] Jiang | The coupling of a submarine slide and the surface waves which it generates[END_REF], [START_REF] Jiang | Three-dimensional modeling of tsunami generation due to a submarine mudslide[END_REF] for which the landslide is considered as an incompressible viscous fluid.

Under specific assumptions (important difference between the water and landslide densities, thickness of the landslide much smaller than water depth, laminar and quasistationary landslide flow, neglected mixing effects mainly), the velocity of the landslide flow can be estimated with a parabolic profile. Using this property, Jiang and LeBlond coupled the hydrodynamics equations in landslide with Nonlinear Shallow Water Equations. However, [START_REF] Bardet | Landslide tsunamis: Recent findings and research directions[END_REF] and [START_REF] Murty | Tsunami wave height dependence on landslide volume[END_REF] suggested caution about applying hydrodynamic simulation codes to the landslide because Murty found important differences between numerical simulations and observations. Liu et al. [2003] proposed a 1D analytical solution for the forced Linear Shallow Water Equations (fLSWE) for which the author imposed the landslide on a uniform beach as a motion of the ground. The 1D dimensionless sea floor deformation h 0 is considered as: h 0 (x, t) = exp iω(2 µx tan β -t), with ω the frequency, tan β the beach slope and µ = vertical thickness of the slide horizontal length of the slide . Thus, the dimensionless fLSWE is:

η tt - tan β µ (xη x ) x = h 0tt ,
η being the free surface deformation. This equation is solved by applying an Hankel transformation. Then, the authors confronted the linear analytical solution to numerical nonlinear and linear shallow water models for different values of tan β/µ. These comparisons permit the authors to conclude that the theoretical solution gives a good approximation of the generated waves for thin slides (tan β/µ large) while for thick slides (tan β/µ small), the nonlinear propagation aspects are not correctly represented.

Beyond this limitation, this landslide stays a idealized special case. As suggested by the authors, this analytical study is still a good benchmark because analytical solution is helping for validate computational techniques, and this case is performed in the frame of the project TANDEM (see Chapter 4). Up to now, theoretical studies and experiment have 1.1 GENERAL OVERVIEW the technical bias to impose the nature of the landslide and adapted the model from it. [START_REF] Abadie | Numerical simulation of waves generated by landslides using a multiple-fluid navier-stokes model[END_REF] remove this limitation of numerical models by using a three-phase model that solves the Navier-Stokes equations for the air, the water and the landslide.

Thus the landslide is considered as a fluid but its density and viscosity can be modified to consider the landslide as a solid. In Figure 1.4, one can see numerical result for a solid case (µ = 10 10 P a.s) and a deformable slide (µ = 10 2 P a.s). 

Volcanic tsunami

The Earth is covered with volcanoes. They can be land based, close or not to the coast, underwater, and thus they can generate their own tsunamis. Humankind has been marked by some of these events; as example the explosion and tsunami of the volcanic Thera that occurred 3500 years ago and eradicated the local population, the Minoans on Crete; or the Krakatau volcano event that occurred in three steps between the 26 th and 27 th of August 1883 [START_REF] Mader | Numerical model for the krakatoa hydrovolcanic explosion and tsunami[END_REF], [START_REF] Choi | Simulation of the trans-oceanic tsunami propagation due to the 1883 krakatau volcanic eruption[END_REF]). The mechanisms of tsunami generation by volcano are complex, they can be caused by:

• discharge matter into water,

• collapse of a caldera,

• landslide, pyroclastic flow,

• volcano earthquake.

The last mechanism is assimilated to seismic generation and thus will not be developed here as this part will be detailed in the following. Volcano landslides and pyroclastic flows have similar dynamics than landslides, see [START_REF] Tinti | Simulation of tsunamis induced by volcanic activity in the gulf of naples (italy)[END_REF], and create dispersive waves.

Pyroclastic flows are particular as they are first lighter than water, then become colder CHAPTER 1: STATE-OF-THE-ART Figure 1.5: Volcanic tsunami generation -Schematising of the tsunami generation by a discharge into water of a large volume of matter. Adapted from [START_REF] Levin | Physics of tsunamis[END_REF].

and heavier. Thus, the disturbance of the water level is created by an overpressure on the free surface. [START_REF] Tinti | Simulation of tsunamis induced by volcanic activity in the gulf of naples (italy)[END_REF] idealized this condition assuming the pressure as an impulse function. However, the dynamics of pyroclastic flow is complex, mixing multiphase elements and deserves its own model. This was done by [START_REF] Todesco | Pyroclastic flow hazard assessment at vesuvius (italy) by using numerical modeling. i. large-scale dynamics[END_REF] for a possible Vesuvius eruption.

A collapse of a caldera corresponds to a lowering of the ocean bottom, that is similar to a negative displacement of the seafloor during an earthquake. The generated wave, depending of the width of the caldera, is assumed to be a long wave.

The last possible generation, a discharge of matter into water, is proper to the tsunami generation by volcanoes. This generation can be idealized as shown in Figure 1.5. h is the water depth, R the radius of the pipe, V 0 the volume of matter released during the time τ of the eruption.

A first approximation permits to estimate the amplitude of the initial water level elevation η 0 [START_REF] Levin | Physics of tsunamis[END_REF]):

η 0 = V 0 πτ 2 gh . (1.1)
If a potential model is considered with φ the velocity potential and H the heaviside function, the dynamic boundary condition can be fixed in the cylindrical coordinate as (see Levin and Nosov):

φ z (r) = V 0 τ πR 2 (1 -H(r -R))(H(t) -H(t -τ )) z = -h. (1.2)
This condition is valid only if the process is slow. Unfortunately, it can be explosive, and in this case, the dynamics of the discharge are much more complex to represent within particular high temperature gases. The works of Le Méhauté and [START_REF] Méhauté | Water waves generated by underwater explosion[END_REF] and [START_REF] Kurkin | Freak waves: facts, theory and modelling[END_REF] (see [START_REF] Levin | Physics of tsunamis[END_REF]) approach the real phenomena with the following estimation of the initial free surface deformation:

η 0 (r) = H s 2 r R s 2 -1 (1 -H(r -R s )), (1.3) 1.1 GENERAL OVERVIEW
where R s is the source radius and H s the amplitude of the water level displacement at the source calculated from the delivered energy. In both cases (slow and explosive), the generation and the propagation of waves can be calculated with a linear model. It appears that, depending on the radius of the initial perturbation, the waves are strongly dispersive. [START_REF] Levin | Physics of tsunamis[END_REF] illustrated this conclusion by computed the free surface elevation for two cases with different radius of the initial perturbation (Equation 1.3). In Figure 1.6, we can see the profile of the waves excited by an underwater eruption for a radius R s /h = 1 and R s /h = 3, h the uniform water depth.

Figure 1.6: Volcanic tsunami -Free surface deformation η generated by an underwater eruption with a radius of R s /h = 1 (up) and R s /h = 3 (down) after t = 100 g/h. Figure adapted from [START_REF] Levin | Physics of tsunamis[END_REF].

For the larger radius, the wave signal is more complex and dispersive as can be seen by the extended wave trains.

Meteotsunami

Some complete studies about meteotsunami are available in the literature as in the reviews of [START_REF] Levin | Physics of tsunamis[END_REF], [START_REF] Monserrat | Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band[END_REF] or the compilation from Vilibić et al.

[2014].

It seems that meteotsunami are often confused with seismic tsunami due to their similarities [START_REF] Monserrat | Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band[END_REF]), but they are rarer. Meteotsunami are also long waves;

nevertheless they are less energetic than seismic tsunami and thus, they are considered local tsunami. The term of "meteotsunami" was first given by [START_REF] Nomitsu | A theory of tsunamis and seiches produced by wind and barometric gradient[END_REF]. They find their origin in the variation of atmospheric processes upon the water layer1 . It can be a suddenly variation of the atmospheric pressure of few hPa, the example of atmospheric pressure record of the event of the 15 June 2006 that occurred in the Balearic island is shown in Figure 1.7.

However, these variations of the atmosphere are not strong enough to generate significant sea level response as tsunami wave. In fact, the disturbance of atmospheric pressure or wind friction tension need a resonance effect [START_REF] Levin | Physics of tsunamis[END_REF]) to be efficient. In these cases:

• the velocity of the atmospheric perturbation is close to the long wave celerity,

• the period of the atmospheric perturbation matches the period of oscillation of the basin.

Considering these characteristics, meteotsunami are favoured by semi-closed coastal basins, in particular places well-known to be subject to seiche oscillation. Among these places, one can find the Nagasaki Bay (Japan) and the Balearic Island (Spain). The first one was victim of an extreme seiche oscillation (abiki ) on 31 March 1979 for which wave heights reached 4.8m, [START_REF] Hibiya | Origin of the abiki phenomenon (a kind of seiche) in nagasaki bay[END_REF]. The second place was touched more recently, on 15 June 2006, by a locally called rissaga: a 4m negative wave reached the bay emptying the Ciutadella Harbour [START_REF] Jansa | The rissaga of 15 june 2006 in ciutadella (menorca), a meteorological tsunami[END_REF]) as illustrated in the pictures Figure 1.8.

Cosmogenic tsunami

As for meteotsunamis, this paragraph on the cosmogenic tsunami is a first approach for this phenomenon; complete work could be found in the studies of [START_REF] Crawford | Modeling asteriod impact and tsunami[END_REF], [START_REF] Levin | Physics of tsunamis[END_REF], [START_REF] Ward | Asteroid impact tsunami: a probabilistic hazard assessment[END_REF], [START_REF] Ward | Impact tsunami-eltanin[END_REF], [START_REF] Ward | Asteroid impact tsunami of 2880 march 16[END_REF], [START_REF] Massel | Tsunami in coastal zone due to meteorite impact[END_REF].

As suggested by its name, a cosmogenic tsunami is created by the impact of a meteorite in the ocean. No human being has been witness of this kind of events [START_REF] Levin | Physics of tsunamis[END_REF]). Nevertheless, the risk exists: every year objects penetrate in our atmosphere. The probabilities of impact per year are [START_REF] Massel | Tsunami in coastal zone due to meteorite impact[END_REF]):

• 0.001% for an object of 500m radius,

• 0.2% for a 50m radius object,

• 50% for a 5m radius object,

• 100% for a 1m radius object.

The impact cavity of the object is usually modeled in cylindrical coordinates by:

η 0 (r) = d r 2 RC 2 -1 1 -H(r - √ 2RC) , (1.4)
where η 0 is the initial free surface deformation, d the cavity depth, RC is the internal radius of the cavity and √ 2RC the external radius of the cavity. RC and d are parameters that are calculated from the radius of the meteorite and its physical properties and also from water properties. This idealized initial state is compared in Figure 1.9 to a numerical CHAPTER 1: STATE-OF-THE-ART simulation of [START_REF] Crawford | Modeling asteriod impact and tsunami[END_REF] for an asteroid of 500m diameter, with a density of 3.32g/cm 3 in a 5km depth ocean and a fall velocity of 20km/s. Using the previous relationships between the initial state and the meteorite properties, the part of energy transmitted from the meteorite to the water is estimated at 16% of the meteorite energy. .9: Cosmogenic tsunami -Comparison between the idealized impact cavity 1.4 (solid line) and numerical simulation of [START_REF] Ward | Asteroid impact tsunami of 2880 march 16[END_REF] at t = 25s (dot line). The thin line is the sea ground. Graph adapted from [START_REF] Levin | Physics of tsunamis[END_REF].

To describe the propagation from the initial state, linear theory is commonly used even if it is not really appropriate to the heights of the generated waves which are of the order of the ocean depth, but it permits a first approach. In this case, the dispersion is important, the wavelengths are smaller than the one of a seismic tsunami and the wave train is slower (see [START_REF] Levin | Physics of tsunamis[END_REF]). Long wave theory is not adapted here. Also, the maximal wave height decreases rapidly. This attenuation depends on, for instance, the size of the meteorite and the ocean depth.

A famous example is the 4km diameter Eltanin asteroid that impacted the South Pacific Ocean 2.15M yr ago [START_REF] Ward | Impact tsunami-eltanin[END_REF]). Using the linear tsunami theory and initiating the cavity with the approximation 1.4, the authors numerically estimated the propagation of the generated wave as can be seen on the illustration of Figure 1.10. [START_REF] Ward | Impact tsunami-eltanin[END_REF] estimated a 200 -300m height wave reaching the Antartic Peninsula and the tip of South America (1200 -1500km from the point of impact) while waves of 60m amplitude hit New-Zealand, 6000km away. Another possible future example is the 1950 DA asteroid (∼ 1km of diameter), see [START_REF] Ward | Asteroid impact tsunami of 2880 march 16[END_REF]. This asteroid, discovered in 1950, has between 0 and 0.3% chance to impact the Earth in 2880. Ward and Asphaug built a numerical model supposing that such an asteroid will fall close to the east coast of United States. The predicted waves are at least 60m high at the United States coast while they will decrease to 15m at the European coasts. 

Propagation

After its generation, the second part of a tsunami life is its propagation. Similarly to the review of [START_REF] Dutykh | Mathematical modelling of tsunami waves[END_REF], the following section recalls the general models used for it.

The propagation of tsunamis is supposed to be the most well known part of the tsunami life, considering here that a tsunami is a wave propagating along large distances. We use the following designation:

• the free surface deformation : η(x, y, t),

• the vertical displacement of the sea floor : ζ(x, y, t),

• the initial water depth : h, (assumed constant)

• the sea floor depth :

z = -h + ζ(x, y, t),
• the wavelength : λ,

• the wave amplitude : a,

• the velocity : u = (u, v, w).

Coriolis effects associated with the rotation of the Earth are not considered here for simplicity, however, in reality according to the source parameters, they should (Kirby et al.

[2013]). The wave length of a tsunami is much larger than the capillary length scale, thus surface tension effects are not taken into account. Moreover, fluid is assumed to be incompressible and inviscid. Thus, the flow is assumed irrotational, and there exists a velocity potential φ(x, z, t), u = ∇φ, that satisfies the Laplace equation and the boundary conditions as follows:

2 φ = 0, (1.5a) φ z = η t + φ x η x z = η(x, t), (1.5b) φ t + 1 2 | φ| 2 + gη = 0 z = η(x, t), (1.5c) φ z = ζ t + φ x ζ x z = -h + ζ(x, t), (1.5d) 
where subscripts t, x indicate partial derivatives. This system describes the general case issued from the Euler equation for an irrotational flow. To simplify the resolution, approximations can be done on the dispersion and/or the linearity of the system. The latest is addressed in Chapter 2. The factor evaluating the dispersion effects is µ 2 , µ = h λ and the linearity factor is = a h . To scale the mathematical model, Equations 1.5a-1.5d are non-dimensionalised using:

x * = x λ , y * = y λ , z * = z h , t * = c 0 t λ η * = η a , ζ * = ζ a , φ * = c 0 agλ φ, = a h (1.6)
where c 0 = √ gh. The previous system becomes:

φ * zz + µ 2 φ * xx + φ * yy = 0 (1.7a) φ * z = µ 2 η * t + µ 2 φ * x η * x + φ * y η * y z * = η * (1.7b) φ * z = µ 2 ζ * t + µ 2 φ * x ζ * x + φ * y ζ * y z * = -1 + ζ * (1.7c) µ 2 φ * t + 1 2 µ 2 φ * x 2 + µ 2 φ * y 2 + φ * z 2 + µ 2 η * = 0 z * = η * (1.7d)
The mathematical simplification of the dispersion is performed by conserving only certain order of µ 2 as illustrated below for Boussinesq and Nonlinear Shallow Water Equations.

The non-dimensionalised potential velocity φ * is decomposed on a Taylor expansion in µ 2 :

φ * = φ * 0 + µ 2 φ * 1 + µ 4 φ * 2 + ...
This expansion is introduced in Equations 1.7a-1.7d. Then, the Boussinesq equations are found by keeping the terms of order µ 2 and µ 4 :

(η -ζ) t + [(1 + (η -ζ))u] x + [(1 + (η -ζ))v] y = µ 2 ( 1 6 ( u x + v y )), (1.8a) u t + (uu x + vv x ) + η x -1 2 µ 2 (u txx + v txx ) = 0, (1.8b) v t + (uu y + vv y ) + η y -1 2 µ 2 (u txy + v txy ) = 0. (1.8c)
While the Non Linear Shallow Water equations are recovered by keeping the terms of order µ 2 and µ 2 :

(η -ζ) t + [(1 + (η -ζ))u] x + [(1 + (η -ζ))v] y = 0, (1.9a) u t + (uu x + vv x ) + η x = 0, (1.9b) v t + (uu y + vv y ) + η y = 0. (1.9c)
Usually, the numerical models used to simulate tsunami are based on the NonLinear Shallow Water equations (NLSWE). However, the impact of dispersive effects on the propagation of tsunami is still an open question. Indeed, some events showed dispersive wave packets, as for the case of the 24 December 2004 tsnami that occurred in Thailand.

Its wave trains hitting the Koh Jum islande are illustrated in Figure 1.11. This problem was addressed in studies by [START_REF] Glimsdal | Dispersion of tsunamis: does it really matter?[END_REF] or [START_REF] Kirby | Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and coriolis effects[END_REF]. The dispersive effects can be linked to the source parameters as seen in Sections 1.1.1 or 2.4, but as it is a cumulative effect, a characteristic distance L d , at which the dispersive effects become important, can be defined. Beginning with the dispersion relation obtained in the general Euler-potential case, ω 2 = gk tanh kh, the group velocity is defined as

C g = ω k = g( kh cosh 2 kh + tanh kh) 2 √ gk tanh kh .
Where ω k means ∂ω/∂k. Then, the distance L d corresponds to long waves velocity multiplied by the time t d for which the wave packet is dispersed over the length λ [START_REF] Levin | Physics of tsunamis[END_REF]):

L d = ght d = λ 1 - Cg √ gh
.

(1.10) Thus, after propagated along a distance L d , the dispersive effects should affect the considered wave train.

Another possibility, that was first explored in the literature then later criticized, is to consider a balance between the dispersive and nonlinear effects and thus to assimilate tsunamis to solitary waves. This assumption was done either during experiments [START_REF] Liu | Runup of solitary waves on a circular island[END_REF], [START_REF] Lin | Runup and rundown of solitary waves on sloping beaches[END_REF], [START_REF] Gedik | Laboratory investigation on tsunami run-up[END_REF]) or in theory [START_REF] Synolakis | The runup of solitay waves[END_REF], [START_REF] Kânoglu | Nonlinear evolution and runup-rundown of long waves over a sloping beach[END_REF], [START_REF] Per | Analytical solutions for tsunami runup on a plane beach: single waves, n-waves and transient waves[END_REF]). Solitary waves are solutions of the Korteweg-de Vries (KdV) equations that are obtained from the Euler equations by considering that nonlinear and dispersive effects balance themselves, in other words: = O(µ 2 ), see [START_REF] Johnson | A modern introduction to the mathematical theory of water waves[END_REF].

A solitary wave propagates with constant velocity and amplitude. This assimilation for tsunamis came from some observations, among them Russell [1844] and [START_REF] Hammack | Tsunami-A model of their generation and propagation[END_REF].

Nowadays, this assumption is contested due to non-conformed geophysical scales between tsunamis and solitons, Madsen et al. [2008], Madsen and Schaeffer [2010].

Run-up

The run-up may be the most important part of tsunamis due to its direct impact on humans. In a wider context, [START_REF] Pelinovsky | Tsunami wave hydrodynamics[END_REF] defined three types of wave run-ups: spilling when only the crest breaks, plunging when the wave curls and surging when a wave flood arrives on the coast without breaking. These types of wave run-up can be parametrized by the Iribarren number [START_REF] Battjes | Surf-zone dynamics[END_REF]):

I r = tan β √ a/λ
, where λ and a are the wavelength and the wave amplitude far from the coast, and β the slope of the beach, see Figure 1.12.

a Figure 1.12: Run-up -Geometry and parameters of the model.

The difficulties here come from the strong nonlinearity and the moving boundary (the shoreline). The important contribution of [START_REF] Pelinovsky | Tsunami wave hydrodynamics[END_REF] lies in the analytical approaches of the run-up problem. In a case of a run-up on a vertical wall (β = 90 • ), the run-up R can be estimated by:

R = 4h(1 + a h -1 + a h
).

(1.11)

From Equation 1.11, one can see the strong influence of the nonlinear effects η 0 h on the run-up. Thus, usually, the Nonlinear Shallow Water Equations are used to model this phenomenon. However [START_REF] Carrier | Water waves of finite amplitude on a slopping beach[END_REF] succeeded to reduce this problem to a linear wave equation, with the so-called Carrier-Greenspan transformation as described below. The domain considered is the same as presented in Figure 1.12, t is the time, u is the vertical averaged horizontal velocity and a reference length that can be different to λ. The dimensionless variables are:

x * = x h * = h tanβ η * = η tanβ u * = u √ g tanβ t * = t g tanβ (1.12)
Thus, dropping the * for sake of clarity, the non-dimensional Nonlinear Shallow Water Equations are:

u t + uu x + η x = 0 (1.13a) (u(h + η)) x + η t = 0 (1.13b)
The Equations 1.13 correspond to the Equations 1.9 by considering a 1D domain and that there is not sea floor deformation, ζ = 0. The Carrier-Greenspan transformation is an hodograph transformation in a new domain (σ, γ) with a potential φ. The transformation is:

u = ∂σφ σ η = 1 4 ∂ γ φ -1 2 u 2 x = 1 16 σ 2 -1 4 ∂ γ φ + 1 2 u 2 t = u -1 2 γ (1.14)
Applying 1.14 to 1.13, the following linear equation is obtained:

σ∂ 2 γγ φ -∂ σ (σ∂ σ φ) = 0.
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Its solution is:

φ(σ, γ) = - ∞ 0 ∞ 0 1 ω ξ 2 Φ(ξ)J 0 (ωσ)J 1 (ωξ)sin(ωγ)dωdξ, with Φ(σ) = ∂ γ u(σ, 0) = 4 ∂ση(σ,0)
σ the initial data, and J 0 and J 1 Bessel functions of the first kind. Thus, the free surface deformation is given by :

η(σ, γ) = 1 4 ∂ γ φ - 1 2 u 2 = - 1 4 ∞ 0 ξ 2 Φ(ξ) ∞ 0 J 0 (ωσ)J 1 (ωξ)cos(ωγ)dωdξ - 1 2 ∞ 0 ξ 2 Φ(ξ) ∞ 0 J 1 (ωσ) σ J 1 (ωξ)sin(ωγ)dωdξ 2
From here, two major difficulties arise. First, the expression of the initial condition in the (σ, γ) space for which [START_REF] Kânoglu | Nonlinear evolution and runup-rundown of long waves over a sloping beach[END_REF] proposed a linearisation of the transformation

x 1 16 σ 2 .
And the second difficulty is to obtain the solution for a given time and location. This problem was treated by [START_REF] Synolakis | The runup of solitay waves[END_REF] and then [START_REF] Per | Analytical solutions for tsunami runup on a plane beach: single waves, n-waves and transient waves[END_REF]. The latter provided analytical solutions for single wave and N -waves on a plane beach.

Beyond the analytical studies, numerous numerical and experimental works were also performed. The experimental studies cover run-up from a simple wave on plane beach [START_REF] Synolakis | The runup of solitay waves[END_REF], [START_REF] Li | Breaking criterion and characteristics for solitary waves on slopesdiscussion[END_REF], [START_REF] Li | Energy balance model for breaking solitary wave runup[END_REF], [START_REF] Jensen | An experimental study of wave run-up at a steep beach[END_REF]), to more complex bathymetry [START_REF] Liu | Runup of solitary waves on a circular island[END_REF], [START_REF] Lynett | Experimental study of solitary wave evolution over a 3d shallow shelf[END_REF]), and to more realistic cases as run-up and flood in a city [START_REF] Liu | Advanced numerical models for simulating tsunami waves and runup[END_REF], [START_REF] Park | Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux[END_REF]). The previous works are often used to validate numerical codes. As detailed by [START_REF] Kânoglu | Tsunamis: bridging science, engineering and society[END_REF], the validation process of numerical codes, combining generation, propagation and run-up, is important to justify the use of the latter for real time forecast and alert systems, as well as the elaboration of tsunami scenarios with inundation maps for civil preparedness.

Examples of the latter are the work of [START_REF] Borrero | Tsunamis within the eastern santa barbara channel[END_REF] and [START_REF] Borrero | Tsunami sources in the southern california bight[END_REF].

The authors identified possible seismic and landslide sources and tested them along the Californian coast. Figure 1.13 sums up their results.

Seismic generation of tsunami

The description of research devoted to tsunamis generated by seismic sources is addressed in this section. Particular attention is given to this kind of event because they are the only source considered in this thesis. First, the seismic process is described in Para-Figure 1.13: Run-up -Inundation studies performed by [START_REF] Borrero | Tsunami sources in the southern california bight[END_REF] along the Californian coast. Five sources (two landslides and three earthquakes) are identified as possible generation. The estimated run-ups are plotted in the upper graphs while the geographical context is represented in the second figure. The contours plots represent the initial free surface deformation of the hydraulic models, solid for uplift and dashed for subsidence. graph 1.2.1, before detailing the traditional hydraulic mothod for these kind of events in Paragraph 1.2.2.1. Finally, alternative kinematic models are outlined in Paragraph 1.2.2.2. This last paragraph summerizes the background of Chapters 2 and 3 that focus on the impact of timescale during the generation.

Seismic origin

Among all the tsunamigenic generation mechanisms, the seismic source is far more frequent Even if the forces responsible for the plate motions are exerted continuously, initially the fault stays at rest until the stress is too large for the material to handle and causing the latter to rip up. This is the rupture. During this stage, all the conserved energy is suddenly released. Then the fault comes back to a static state and the cycle begins again. Among the parameters defining the rupture, there are the propagation rupture velocity on the fault plane v p and the rise time t f . Special attention is paid to this rise time, that is the duration of the rupture at one point of the fault plane. It is a seismic rise time and is different from the hydraulic rise time defined later. The rupture velocity v p permits to identify different types of earthquakes. For ordinary earthquake v p ∈ [1, 10]km/s, but slower events exist:

slow earthquake or tsunami earthquake [START_REF] Kanamori | Mechanism of tsunami earthquakes[END_REF]) with v p ∈ [0.1, 1]km/s and silent earthquake with v p ∈ [0.01, 0.1]km/s have already been observed. A tsunami event of a slow earthquake will be studied in Chapter 3.

Not all the earthquakes generate a tsunami. Indeed the water perturbation is created by the ground motion, that depends on the energy released and on the fault depth. Usually, an earthquake of magnitude 6 is at least necessary to cause a deformation of the sea floor.

Hydraulic models

Nosov [2014] gave a complete review of the physical processes that interact during a seismic tsunami event, but also of forecasting and recording systems. In the present section, the traditional way to model this kind of events will be first approached before focusing on the generation kinematics.

Traditional way to model seismic tsunami

For a seismic generation, the tsunami is triggered by the spatiotemporal deformation of the sea floor. This generation has been the subject of numerous studies and several models have been developed as explained below. Usually, to model the generation of a tsunami, a data inversion is first performed. This inversion permits from seismic (mostly) or hydraulic information, measured by gauges or satellites, to recover some characteristics of the source.

The magnitude, epicenter, slip amplitude and main geometrical parameters of the fault are usually determined by inversion directly, see [START_REF] Ji | Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[END_REF], [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF], Yagi and Fukahata [2011a].

The second step is to calculate, from the source parameters, the vertical deformation of the sea floor. It is important to represent precisely these deformations because they directly trigger the wave. A famous model is the one of [START_REF] Okada | Internal deformation due to shear and tensile faults in a half-space[END_REF] that calculates the deformation in the ground from the seismic data using the elasticity theory in a idealised homogeneous half-space (corresponding to the crust). In Figure 1.16, a sketch of the domain with the main parameters is represented.

The fault is considered as a finite rectangle of length L, width W and situated at a depth d in the ground. The axis O x is parallel to the fault. The block motion is represented by the Burger vector D = (U 1 , U 2 , U 3 ), U i being the elementary motion. Four angles are defined:

the strike angle ϕ, the dip angle δ, the rake or slip angle θ, and γ the angle between D and the fault plane. From these parameters, the calculations performed by Okada permit to find the vertical displacement of the sea floor surface, see [START_REF] Okada | Internal deformation due to shear and tensile faults in a half-space[END_REF] or [START_REF] Levin | Physics of tsunamis[END_REF] for detail and the final solution.

However, seismic events are not made of a unique fault that is moreover considered as a rectangle. To better represent the complexity of the ground dynamics, a finite fault model is prefered as described and suggested by [START_REF] Ji | Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[END_REF], [START_REF] Yagi | Source rupture process of the 2003 tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data[END_REF] or [START_REF] Dutykh | On the use of the finite fault solution for tsunami generation problems[END_REF]. The aim is to create not a single fault but a patch of small faults (subfaults) with their own characteristics. An example, issued from the work of [START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF], is illustrated in Figure 1.17. It represents the finite fault model proposed for the event of Tohoku, 2011 in Japan.

Once the vertical deformation of the sea floor is calculated, the last part of the seismic generation modeling process is to assume that the initial perturbation of the free surface is equal to the final vertical perturbation sea floor. Thus the initial condition is given by this free surface deformation with a null velocity field, which then propagates in the considered spatial domain. This traditional approach neglects a certain number of effects as horizontal displacements, compressibility of water, nonlinear effects, rotation of the Earth and dynamics of the bottom deformation, see [START_REF] Nosov | Tsunami waves of seismic origin: The modern state of knowledge[END_REF]. The present work only concerns the impact of some timescale parameters as described in the next paragraph and Chapter 2.

Figure 1.17: Seismic tsunami source -Finite fault model proposed by [START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF] to represent the generation of the Tohoku event, 2011 in Japan. The blue star is the epicenter and red dots are secondary earthquakes.

Kinematics seismic generation of tsunami

The influence of the temporal history of the bottom on the waves has been studied several times. However, the authors usually took into account only one temporal parameter, the rise time t r or the rupture velocity v p . The rise time concerns the time of the vertical elevation of the bottom deformation; it is the hydraulic rise time. The rupture velocity is the speed of the evolution of the deformation on the horizontal direction (in our case along the fault).

One of the major contributions about the influence of the rise time t r is the work from [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]. The author confronted an experimental study and an analytical solution from a linearised theory about the wave generation by a moving up or down a 1D step at different velocities and temporal displacement histories. In Figure 1.18, the geometry of the domain and the experimental set up are represented. This experiment was chosen as a test case for the TANDEM project benchmark, thus a more complete description of the case will be presented in Section 4.3.

One of the main conclusions of the approach of Hammack is the definition of three dimensionless parameters: 1, the motion is creeping. From these parameters, Hammack estimated thresholds for which the linear theory accurately represents the wave generation. Besides, the study was done for two kinds of motions. It appears that for impulsive motions, the wave structure is equivalent to the shape deformation and does not depend on the time displacement history, contrary to the creeping motion, see Figure 1.19. This conclusion will be used in Chapter 3: the displacement history chosen to represent the ground motion of the event should not impact the result. 

/h = 12.2, ζ 0 /h = 0.2, t r √
gh/b = 0.069 for the impulsive motion and t r √ gh/b = 106.14 for the creeping motion. The figure is adapted from the work of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]. [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] also remarked that the maximal elevation reached by the wave at the edge of the generation and propagation zones remains constant for impulsive motion while Hammack only considered the so-called "piston" motions, meaning with residual displacement. Later, [START_REF] Dotsenko | On the role of residual displacements of ocean bottom in tsunami generation by underwater earthquakes[END_REF] and [START_REF] Levin | Physics of tsunamis[END_REF] developed also theory about "membrane" motions, meaning that the sea floor comes back to its initial position at the end of the deformation. Both works showed differences between the two types of motion.

By comparing the energies, they concluded that for oceanic conditions, "piston" motions are more energetic while for small generation area or large depth, the "membrane" motions are stronger. However, important tsunamis are usually initiated by "piston" motion. More recently, [START_REF] Stefanakis | Tsunami generation above a sill[END_REF] and [START_REF] Jamin | Experiments on generation of surface waves by an underwater moving bottom[END_REF] gave more details on the impact on generated waves of a cylindrical piston. The first, using a theoretical approach, showed a wave trapping phenomenon that can also be associated to seamount. The authors of the second work built up an experimental study and highlighted that the motion of the sea floor is transferred to the sea surface through temporal high-pass and spatial low-pass filters properties.

Another parameter that deserved investigation is the rupture velocity v p . In this thesis, the work of reference is the one from [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF]. As done by Hammack [1973] with the parameter t r , the authors developed a 2D solution for a linearised system taking into account this parameter v p . The domain they considered is represented in Figure 1.20.

Figure 1.20: Kinematic generation -Geometry of the domain considerated by [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF] at a time smaller than the generation duration. The solid line is the instant deformation (propagation at velocity v p ) while the dashed line is the final deformation. The graph is a vertical cut of their 2D domain.

As emphasized also by [START_REF] Lee | Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances[END_REF] and [START_REF] Levin | Physics of tsunamis[END_REF], a Froude number

v * p = v p / √
gh can be identified. When v * p tends to 1, the authors noted a wave focusing phenomenon that provided a wave larger than the ground deformation. Besides the dependency on the rupture velocity, this amplification and the amplitude wave maximum vary with the size of the deformation: larger the size, larger the amplification is. This study corresponds to a particular case of the problem addressed in the Chapter 2, thus more details will be given there.

For now, only simplified deformations have been presented, however the long term aim of these studies is to improve the numerical tsunami model for real cases, taking into account the different aspects of a kinematic generation. In their study, [START_REF] Dutykh | On the use of the finite fault solution for tsunami generation problems[END_REF] proposed the use of the finite fault model to introduce the temporal deformation.

Instead of simply superposing the contribution of each subfaults, the latter are triggered as a function of the rupture velocity v p and for each subfault, the deformation ζ(x, t) is then controlled by the rise time t r :

ζ(x, t) = N i=1 H(t -t i )T (t -t i )O i (x) (1.15)
Where N is the number of subfaults, O i (x) is the amplitude of the deformation calculated with Okada method for subfault i. The activation time t i corresponds to the rupture starting time of the subfault deduced from the rupture velocity v p . H is the Heaviside step function. T (t) corresponds to the temporal history of the deformation: In the next chapter, Chapter 2, the works of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] and [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF] are combined and extended. A new analytical version of an 1D idealised deformation of the sea floor is defined depending on the rise time t r and the rupture velocity v p . Thus, the cases studied by [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] and [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF] are particular cases of the new deformation. Similar to their works, a theoretical linear solution is developed to measure the impact of simultaneously both parameters and the influence that has one on the other. To go further, this study is also performed by a theoretical Linear Shallow Water model and an accurate numerical nonlinear model. To illustrate this study, a real event is simulated in Chapter 3. In this case the kinematic finite fault model suggested by [START_REF] Dutykh | On the use of the finite fault solution for tsunami generation problems[END_REF] will be chosen, due to its simplicity.

T (t) = H(t -t r ) + 1 2 H(t)H(t r -t)(1 -cos(πt/t r )).
Chapter 2

Theoretical study

Dans le cadre de la théorie potentielle et linéaire d'un écoulement, une solution semi-analytique est développée pour la génération de vagues de type tsunamis, par une déformation cinématique du fond. Cette déformation est idéalisée et représente une déformation simplifiée généralement engendrée par certains séismes. Cette étude tend à étendre le travail déjà fourni par [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] et [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF] 

Dimensional analysis

In order to identify the dominant parameters of schematic seismic tsunami generation, a dimensional analysis is first applied. The considered fluid domain is presented in Fig- To simplify the problem, the ground motion can be reduced to an uplift of a rectangular The movement of the sea bottom is defined by the parameters: ζ 0 , t r , L and v p . The variables of the problem in the gravity field g are these four parameters with the free surface 

2.1 DIMENSIONAL ANALYSIS Variables η h g ζ 0 t r L v p units [m] [m] [m.s -2 ] [m] [s] [m] [m.s -1 ]
η * = η h , ζ * 0 = ζ 0 h t * r = t r g h , L * = L h v * p = vp √ gh .
(2.1) To be consistent with previous studies, the non-dimensional temporal parameters are

τ * = t * r L * = tr L √
gh, as chosen by [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] and v * p , as in [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF]. τ * represents the ratio between the vertical timescale t r and the time that the wave takes to propagate over the distance of deformation L, and v * p is the ratio between the horizontal timescale v p and the long wave celerity c = √ gh. The free surface elevation depends on x and t, thus non-dimensional space and time: x * = x h and t * = t g h should be included in the parameters of the system. We will thus seek to express the free surface elevation as:

η * = Φ ζ * , L * , τ * , v * p , t * , x * . (2.2)
In this study, the effects of both τ * and v * p are investigated. [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] worked only on the effects of τ * , and [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF] only on the effects of v * p . In this study, the effects of both τ * and v * p are simultaneously investigated. Note that [START_REF] Dutykh | Mathematical modelling of tsunami waves[END_REF] also studied the impact of the Ursell number, defined by S = η * L * 2 with our notations.

Usually, the horizontal dimension of the seismic source exceeds the water depth:

L * 1.
Based on the analysis of past events, L * can vary between 16 as for the 1946 Aleutian event [START_REF] Johnson | Estimation of seismic moment and slip distribution of the April 1, 1946, Aleutian tsunami earthquake[END_REF]] and 300 as for the 2004 Sumatra-Andaman event [START_REF] Fujii | Tsunami source of the 2004 sumatra-andaman earthquake inferred from tide gauge and satellite data[END_REF]. If the wavelength of the generated wave is considered equivalent to L as suggested by [START_REF] Levin | Physics of tsunamis[END_REF] and [START_REF] Wu | Long waves in ocean and coastal waters[END_REF], L * varies between 10 and 5000 in deep ocean [START_REF] Wu | Long waves in ocean and coastal waters[END_REF]. Then, a long wave theory could be used to study long waves in the spectrum of the tsunami, as done by [START_REF] Wu | Long waves in ocean and coastal waters[END_REF] among others, but we will not restrict ourselves to this assumption in this work. Moreover, the drawback of such an approach will be discussed in section 2.4 with the analysis of consequences implied by the Shallow Water approximation. The present study will not consider any restriction on the wave lengths and periods. The particular case of long waves is investigated in Section 2.6.

Linear theory

Methodology

We review here the method presented by [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] and also described by Todorovska and [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF] and [START_REF] Dutykh | Mathematical modelling of tsunami waves[END_REF], among others. We consider the motion of the fluid domain defined in the previous section. Since the fluid is assumed to be incompressible and the flow irrotational, there exists a velocity potential φ(x, z, t) that satisfies the Laplace equation and the boundary conditions as follows:

2 φ = 0, (2.3a)

φ z = η t + φ x η x z = η(x, t),
(2.3b)

φ t + 1 2 | φ| 2 + gη = 0 z = η(x, t), (2.3c 
)

φ z = ζ t + φ x ζ x z = -h + ζ(x, t), (2.3d) 
where subscripts t, x indicate partial derivatives. Equations 2.3b and 2.3c are the kinematic and dynamic free surface boundary conditions, respectively, and equation 2.3d is the kinematic bottom boundary condition. By assuming small perturbations of the free surface and the bottom, the boundary conditions are linearised and the previous system of equations becomes:

2 φ = 0, (2.4a) φ z = η t z = 0, (2.4b) φ t + gη = 0 z = 0, (2.4c) φ z = ζ t z = -h. (2.4d)
Note that the three linearised boundary conditions now apply at the undisturbed horizontal surfaces, i.e. at z = 0 for 2.4b and 2.4c and z = -h for 2.4d. Combining 2.4b and 2.4c, the following free surface boundary condition is obtained:

φ tt + gφ z = 0 at z = 0. (2.5)
The 1D space Fourier transform of a function f (x) is defined as:

F (f ) = f (k) = R f (x)e -ikx dx, (2.6) F -1 ( f ) = f (x) = 1 2π R f (k)e ikx dk,
(2.7)

LINEAR THEORY

and the Laplace transform of f (t) for t > 0 is:

L (f ) = f(s) = +∞ 0 f (t)e -st dt, (2.8) L -1 (f) = f (t) = 1 i2π γ+i∞ γ-i∞ f(s)e st ds,
(2.9)

where γ is a real constant that insures the existence of the integral. Following [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], the Laplace-Fourier transform is built for a function f (x, t) combining these two transforms:

F L (f ) = f (k, s) = R e -ikx dx +∞ 0 f (x, t)e -st dt, (2.10) F L -1 ( f ) = f (x, t) = 1 2π R e ikx 1 i2π γ+i∞ γ-i∞ f (k, s)e st dkds.
(2.11)

This transform is applied to the system 2.4a, 2.4d, 2.5, giving:

φzz -k 2 φ = 0, (2.12a) φz = -s 2 g φ z = 0, (2.12b) φz = s ζ z = -h, (2.12c 
)

s φ = -g η z = 0.
(2.12d)

This system can be solved analytically in (k, s) space to obtain:

φ(k, z, s) = -sg ζ(k, s) cosh kh[s 2 + gk tanh kh] cosh kz - s 2 gk sinh kz , (2.13) thus, η(k, s) = s 2 ζ(k, s) (s 2 + ω 2 ) cosh kh , (2.14) 
where ω = gk tanh kh is the linear dispersion relation.

The final formula for the free surface deformation as a function of the bottom deformation is obtained in the physical space by taking the inverse Fourier-Laplace transform of 2.14:

η(x, t) = 1 2π R e ikx cosh kh 1 i2π γ+i∞ γ-i∞ s 2 ζ(k, s)e st (s 2 + ω 2 )
dsdk.

(2.15)

Solution for a schematic uplift

To go further we need to choose a schematic bed deformation ζ(x, t). Of special interest in the present study is the impact of t r and v p , as described in section 2. The area of deformation is a segment of length L, horizontally deformed at the velocity v p and taking a time t r of uplift. This leads to:

ζ(x, t) = ζ 0 H(L -x)H(x)T (x, t) (2.16) T (x, t) = H(t - x v p )H( x v p + t r -t) 1 2 (1 -cos ω r (t - x v p )) (2.17) +H(t - x v p -t r ), (2.18)
where ω r = π tr . Unlike [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] or [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF], both parameters are included in the present definition of T (x, t). This definition coincides with that of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] when v p → ∞ (i.e. the horizontal movement of the bottom deformation is assumed to occur instantaneously). On the other hand, if t r vanishes (i.e. instantaneous vertical displacement), this definition corresponds to the 1D solution of [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF].

The Laplace-Fourier transform 2.10 is applied to ζ, and we find:

ζ(k, s) = ζ 0 2 (1 + e -str ) ω 2 r s(s 2 + ω 2 r ) 1 -e -L(ik+ s vp ) ik + s vp , (2.19) 
Substituting ζ into 2.14, we obtain:

η(k, s) = ζ 0 2 s (s 2 + ω 2 ) cosh kh (1 + e -str ) ω 2 r s 2 + ω 2 r 1 -e -L(ik+ s vp ) ik + s vp .
(2.20)

From here, only the Fourier transform of η, η, can be found analytically. The analytical solution of the integration over k can only be performed in particular cases or by invoking some approximations, see [START_REF] Mei | Theory and applications of ocean surface waves[END_REF]. This limitation is due to the complexity of the expression associated to the dispersion relation. To determine η, we used the inverse Laplace transform and its properties (details of the calculations can be found in A). The non-dimensional variables are noted with * . We define: k * = kh in addition to the definitions 2.1, leading to:

η * (k * , t * ) = ζ * 0 2 v * p cosh k * ω * 2 r ω * 2 r -ω * 2       f * (k * , t * ) +H(t * -t * r )f * (k * , t * -t * r ) -H(t * -L * v * p )e -ik * L * f * (k * , t * -L * v * p ) -H(t * -t * r -L * v * p )e -ik * L * f * (k * , t * -t * r -L * v * p )       , (2.21)
where:

f * (k * , t * ) = 1 ω * 2 -k * 2 v * 2 p ik * v * p cos ω * t * + ω * sin ω * t * -ik * v * p e -ik * v * p t * (2.22) - 1 ω * 2 r -k * 2 v * 2 p ik * v * p cos ω * r t * + ω * r sin ω * r t * -ik * v * p e -ik * v * p t * .
And the non-dimensional free surface is:

η * (x * , t * ) = 1 2π R e ik * x * η * dk * . (2.23)
Again, one can verify that if t r tends to 0, this solution tends to the 1D solution of [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF], and if v p tends to infinity, the solution of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] is recovered. As previously stated, this integral is difficult to perform or cannot be performed in a closed form, thus a numerical inverse Fourier transform is used to obtain the resulting free surface η(x, t). In particular in this study, the integral is calculated numerically using Simpson's method.

Treatment of singularities

We note that the previous solution (2.21-2.23) of the Fourier transform of the free surface has some singularities that should be addressed. For this purpose, we take the limit of η * at the critical values of k * , defined by:

1. k * 1 = ± ω * r v * p , 2. k * 2a = 0, 3. if |v * p | < 1, k * 2b = p -1 ( 1 v * 2 p ), 4. k * 3 = q -1 (ω * r ),
where p(x) = x tanh x and q(x) = gx tanh x. The limits are computed in Appendix B. 

Free surface deformation analysis

The linear solution derived in the previous section is now used to study the wave trains generated by a dynamical bottom deformation of the form 2.16. First (Section 2.3.1), the impact of the temporal parameters is investigated by looking the free surface deformation at the end of the ground motion, then particularly by looking the maximum amplitude in 

* 1 , k * 2 , k * 3 , respectively.
x. In a second step (Section 2.3.2), the propagation of the wave is studied in order to see if the impact of v * p and τ * remains during this stage. Section 4.3. addresses the comparisons of the previous developed solution and numerical results from the code Misthyc. At this point of the study, these comparisons permit to validate the solution obtained with the calculations from the theory.

At the end of the bottom deformation

By convention, we define the end of the generation period (and thus the beginning of the propagation period) as the time when the sea floor stops moving, or

t * = T * = L * v * p + t *
r . In the following analysis, the geometric parameter representing the horizontal extent of the bottom deformation is chosen as L * = 50. Since the model is linear, the value of ζ * 0 is not important (provided it is small), and therefore all subsequent results will show the ratio η * /ζ * 0 . The horizontal velocity v * p is varied between 0.5 and 50, and the rising time τ * is varied between 0 and 5. As an example, if the dimensions of the 1992 Nicaragua event are considered [START_REF] Satake | Mechanism of the 1992 Nicaragua Tsunami Earthquake[END_REF] the wave propagates in both directions (±x). When v * p decreases, an asymmetry appears: the wave propagating in the same direction as the ground deformation (+x) is larger. In this direction the wave and the deformation propagate in parallel. Moreover when the deformation moves at the same velocity of the wave, v * p = 1, then the energy created is directly injected in the initial wave, that amplified the lattest. A resonance is observed. [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], for slow motions with τ * 1, the maximum is inversely proportional to τ * . However,

0.1 1 10 100 0 1 2 3 4 5 η * max /ζ 0 * τ * 1/τ * v p * =50 v p * =20 v p * =10 v p * =2 v p * =1.5 v p * =1.2 v p * =1 v p * =0.7 v p * =0.5 (a) 0 1 2 3 4 5 6 1 10 η * max /ζ 0 * v p * τ * =5 τ * =3 τ * =2.5 τ * =2 τ * =1.5 τ * =1.2 τ * =1 τ * =0.7 τ * =0.5 τ * =0.25 τ * =0 ( 
where [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] had a constant maximum for impulsive motion, the maximum here is strongly impacted by the rupture velocity v p . If τ * > 2, the influence of v * p is negligible. For v * p = 10, 20, 50, the free surface profiles are almost identical, except when τ * ∼ 1. Thus for v * p > 10, the motion in the x direction can be considered as nearly instantaneous. In p has a strong influence on the maximum amplitude as previously shown. As in the particular case studied by [START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF], a resonance appears for v * p in the range 0.7 to 2 (i.e. close to v * p = 1) generating a wave that reaches an amplitude η * max /ζ * 0 larger than 1. The maximum free surface amplitude can reach six times the bottom deformation amplitude at v * p = 1 as shown in Figure 2.5. Thus, when the rupture velocity is close to the wave velocity, the amplitude of the generated wave is much larger than the amplitude of the sea floor deformation at the beginning of the propagation phase. This resonance only exists for small values of τ * .

The deformation length is then varied, and η * /ζ * 0 and η * max /ζ * 0 are compared to the case L * = 50 for v * p = 1 and τ * = 0. In Figure 2.7a, wave profiles are plotted for different L * : while the wave in the negative direction keeps a constant amplitude, the wave in the positive direction increases with L * . This is consistent with the fact that a larger volume of water is displaced. The maximum amplitude of the deformation is also sensitive to L * (Figure 2.7b). The maxima can be reasonably well fit with a power law of the form:

η * max /ζ * 0 = 0.414(L * ) 0.669 for L * ∈ [0; 5000]. (2.24)
According to the fitting law (2.24), η * max /ζ * 0 increases with L * , as said earlier. However, by looking at the expression of the free surface Fourier transform (2.21), η is modulated by the low pass filter factor 1/ cosh k * , giving this property (low pass filter) to the water layer [START_REF] Jamin | Experiments on generation of surface waves by an underwater moving bottom[END_REF]. If this property is not taken into account, the generation and propagation of short waves can be expected. In a favourable case, as L * is small enough, a spatial frequency dispersion could appear and reduce η * max /ζ * 0 .

- 

Propagation stage

The propagation of the generated wave is analysed as a function of v * p and τ * , with fixed L * = 50. The spatial profiles of the free surface at t * = 100, 500 and 1000 are shown in Figures 2.8, 2.9, 2.10, respectively, for v * p = 0.5, 1, 2, 10, 50 and τ * = 0, 1, 2. Note that t * may be interpreted as the ratio of the propagation distance to the initial water depth.

At t * = 100 (Figure 2.8), two waves propagate in both directions for all parameters values. For v * p = 50, the two waves are almost symmetrical. When τ * decreases, the amplitude decreases. For v * p = 1 and 2, the asymmetry of the propagation appears clearly. The wave propagating in the positive direction is larger. By superimposing the curves of v * p = 10 and v * p = 50 (not shown here), the results from v * p = 10 appear weakly non symmetrical, which confirms that the free surface deformation is asymmetrical when v * p decreases. These conclusions are also valid for t * = 500 (Figure 2.9) and t * = 1000 (Figure 2.10). Moreover, for τ * = 0, the free surface deformations show the development of frequency dispersion increasing in time as shown by [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] and [START_REF] Stefanakis | Tsunami generation above a sill[END_REF]. Except for τ * = 1 and v * p = 1 at t * = 1000, this dispersion does not exist for larger τ * . In the general case, each wave has the shape of a single hump of water, and the maximum amplitude does not change with time. For v * p = 1 and τ * = 0 (resonance condition), the maximum amplitude decreases in time, but even at t * = 1000, this maximum is still greater than 1: the impact of the resonance at the generation is still present. appear clearly. In the -x direction, a smaller but wider wave propagates almost with a constant amplitude. In the +x direction, the amplified wave propagates with strong dispersion, and its maximum amplitude decreases during propagation. time, except for small v * p and large τ * because their T * is over 100, or around v * p = 1 and small τ * , where the amplitudes are greater than 1 (see the spatial profiles in Figures 2.8, 2.9, 2.10). The resonance is preserved but these maxima decrease in time, which confirms the previous conclusion. 

Comparison with numerical results

In order to verify the proposed analytical solution, a cross validation is used: these results are compared to simulation results from a numerical model called Misthyc [START_REF] Yates | Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves[END_REF], which solves the Euler-Zakharov equations [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] for a homogeneous incompressible and inviscid fluid in an irrotational flow:
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η t = -φ. η + w(1 + ( η) 2 ), φt = -gη -1 2 ( φ) 2 + 1 2 w2 (1 + ( η) 2 ),
where φ is the potential at the free surface and w is the vertical velocity at the free surface.

These equations correspond to 2.3a-2.3d, rewriting the system using free surface variables.

These equations are solved by using a 4th order Runge-Kutta (RK4) scheme in time, a spectral approach in the vertical direction, and high-order finite difference schemes (4 th order) in the x direction. The spectral approach uses a base of Chebyshev polynomials of the first kind, and for the present simulations, the maximum polynomial order is 7. The choice of this model is justified by its capacity to represent correctly the propagation of non-linear and dispersive waves, see [START_REF] Raoult | Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments[END_REF]. However, first, in the following paragraph, the linear version of the code is used.

Figures 2.4, 2.8, 2.9 and 2.10 show comparisons between the present linear solution and the results from the linear version of Misthyc. On the overall, the curves globally match very well indicating a very good agreement between the theoretical solution and the results of the numerical simulations. At t * = T * , the relative errors e r (x * , t * ) (see Figure 2.13) are found to be less than 1% for every v * p as soon as τ * > 0.

The cases with τ * = 0 correspond to an instantaneous vertical uplift speed, which can be represented only approximately in the numerical model. In practice a small but finite value of τ * was used in Misthyc (τ * = 0.001), leading to slightly larger errors in these cases. The results are thus consistent, which provides an independent validation of the solution developed in the previous section.

Discussion of the validity of the shallow water equations

The next point of discussion is the validity of using the Shallow Water Equations (SWE)

to model dynamic tsunami generation and propagation. Indeed, it is commonly proposed that the wavelength of a seismic tsunami is equivalent to the horizontal dimension of the source (see section 2 and [START_REF] Wu | Long waves in ocean and coastal waters[END_REF]), thus the wavelength is much larger than the water depth. However, the question about dispersion effects during the tsunami process is fully relevant and has already been asked and explored. [START_REF] Glimsdal | Dispersion of tsunamis: does it really matter?[END_REF] proposed a "dispersion time" depending mainly on the initial water depth, the source width and the distance from the source region to the shore. This "dispersion time" gives a glimpse of the magnitude of the dispersive effects. With a similar aim, in this study, a parameter ε is defined as function of v * p and τ * using the potential energy, as explained below, to measure the part of the energy lying in the dispersive range of k * poorly represented with Until kh ∼ 0.2, the relative error between the long wave celerity and the exact celerity is less than 1%. Thus, we assume here that the long wave theory, and consequently the SWE assumptions are acceptable for k * ≤ 0.2. This threshold corresponds to wave lengths greater than approximately 30h. Figure 2.15 illustrates the validity of this approximation for v * p = 50 and τ * = 0 at t * = T * on the modulus of the free surface Fourier transform η * of the linear solution. Outside of the grey striped zones, the long wave approximation is no longer valid, and the energy is not properly modelled by the SWE. To estimate the impact of the SWE approximations on the present tsunami waves, we study the total potential energy. The amount of energy that lies outside the range of validity of the SWE is simply called "residual" energy hereafter. The ratio ε between the residual energy E l and the total energy E t is estimated. The total potential energy is calculated numerically by integrating η * 2 (k * ) over ] -∞; ∞[, and the "residual" energy is calculated by integrating η * 2 (k * ) over ] -∞; -0.2] ∪ [0.2; ∞[ (i.e. the part of the spectrum not properly handled by the SWE):

ε(t * ) = E l (t * ) E t (t * ) = |k * |≥0.2 (η * ) 2 dk * +∞ -∞ (η * ) 2 dk * .
(2.26)

In the present study, only the potential energy is considered. We can suppose that the nonlinear part of the total energy (kinematic energy) can be added by integrating u * 2 .

However this possibility is not developped here. In Figure 2.16, the ratio ε(t * ) is presented as a function of v * p and τ * at t * = T * . Here again, the resonance around v * p = 1 and small τ * is visible. The energy ratio ε for v * p = 1 and τ * = 0 reaches 0.61, which means that more than half of the potential energy is not properly accounted for at the end of the deformation if a shallow water model is used for the spatial parameters taken here. For larger τ * and v * p , the ratio is typically less than 0.1, indicating that shallow water models are more appropriate. Globally, the energy ratio ε decreases when τ * increases.

Profiles of ε as function of time for v * p = 0.5, 1, 2, 10 and 50 and τ * = 0, 1, 2 are shown in Figure 2.17. For sake of clarity, profiles for different τ * are plotted on different graphs, and each colour line represents a rupture velocity v * p . In all cases, three phases can be identified in the evolution of ε: an initial steady phase is followed by a decrease and then by a second steady state. The first phase, with t * < L * , is
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nearly independent of τ * and slightly sensitive to v * p : for v * p = 0.5, 1, 2, the initial value of ε is above 0.5, and decreases when v * p increases. During this phase, ε remains high (> 0.1) thus SWE models are not recommended for this range of parameters.

The transition phase, around t * = (L/ √ gh) * , shows a rapid decrease of ε. Its value oscillates before it reaches an asymptotic value in the third phase (t * > L * ). Except for v * p = 1, this limit value is the same for all v * p but varies with τ * . When τ * increases, this limit decreases: for τ * = 0, ε is close to 0.05, for τ * = 1, ε is around 10 -4 ; and for τ * = 2, ε reaches 5 10 -5 . During this phase, and for these values of v * p , SWE models are appropriate. For v * p = 1 and τ * = 1, 2, ε follows the same pattern but with a higher asymptotic value in the third phase than for the other rupture velocities. The evolution of ε is different when τ * = 0. In this case, ε remains above 0.5 and seems to increase slightly. The resonance is still observed. Thus, when v * p = 1 and τ * is very small, SWE models should not be used. 

* t * =(L/√gh) * v p * =0.5 v p * =1 v p * =2 v p * =10 v p * =50 ( 

Numerical simulation of non-linear propagation

In this section, we investigate how the resonance observed in the linear model behaves when non-linear effects are taken into account. The previous problem is now solved with the non-linear version of Misthyc (see Paragraph 2.3.3).

Initially the deformation is nearly linear with ζ * 0 = 0.001 (small deformation of the sea floor compared to the water depth). As expected, the amplitude of the motion with v * p = 1.1 is larger than the one with v * p = 1. However, for sake of simplicity, we keep v * p = 1 thereafter. Figure 2.20 shows the deformation of the free surface for different values of ζ * 0 at t * = T * .

We can see that η * max varies from 5.10 -3 to 6.10 -1 , increasing non-linear effects. Temporal profiles of the maximum free surface amplitude are drawn in Figure 2.21 for a range of ζ * 0 (from 0.001 to 0.1). Until the end of the ground deformation (t * = T * = 50 here), η * max /ζ * 0 increases similarly, reaching an almost identical maximum for all the ground deformation amplitudes ζ * 0 (η * max ∼ 6ζ * 0 ). Thus, the resonance remains when non-linear effects are included. However, the decrease of η * max is different. The slope is smaller for larger ζ * 0 . In addition, for ζ * 0 > 0.05, η * max remains nearly constant in time. The free surface deformation after the end of the ground deformation: t * = 100 and t * = 500, is shown in Figure 2.22. For small ζ * 0 , the shape of the waves generated by the non-linear numerical model is similar to the linear solution, even though the propagation velocity is slightly higher for ζ * 0 = 0.005 and 0.01. However, for ζ * 0 = 0.05 and 0.1, a different pattern is observed. Solitary waves appear, which explains the constant value of η * max in time after some duration (Figure 2.21) as solitary wave solutions amplitude does not vary during their propagation. A more in-depth analysis of the transition between the two regimes illustrated in Figures 2.21 and 2.22. A first comparison is done with numerical results from the algorithm of [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF]. The shapes of solitary wave created for a same η * max are superimposed in Figure 2.23 on the free surface profile of the generated wave with a deformation of ζ * 0 = 0.05, 0.1 at t * = 993. Qualitatively, the shapes match very well, which confirms that these leading waves are of solitary type. The generation of solitary waves by moving disturbance has already been studied by [START_REF] Wu | Generation of upstream advancing solitons by moving disturbances[END_REF] and [START_REF] Lee | Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances[END_REF] for a continuous running deformation. The latter compared numerical Boussinesq and KdV models with experiments. They defined the Froude number as the disturbance velocity and √ gh ratio and showed its importance on the wave signal generated: solitons appear only for trans-critical speeds. However, as the linear theory does not permit the creation of soliton, they only used a width disturbance ζ 0 of 0.15 and 0.2.

Linear Shallow Water equations model

As Section 2.2, a solution for the Linear Shallow Water Equations (LSWE) is developed in this section. Indeed, one of the codes of reference is Telemac 2D that solves the Non-Linear Shallow Water Equations. To estimated the relevance of its use, it is compared in Chapter 3 to the theoretical solution developped here that should also represent the resonance. Thus, the aim in this paragaph is to observe the evolution of the resonance on the maximal amplitude of the wave. The non-linear shallow water equations are: If the equations (2.27) and (2.28) are linearised, the previous system becomes:

η t -ζ t + ((η -ζ)U ) x + hU x = 0, (2.27) U t + U.U x = -gη x , ( 2 
η t -ζ t + hU x = 0 (2.29) U t = -gη x (2.30)
Differentiating equation (2.29)with respect to t and equation (2.30) with respect to x and combining both expressions, the following expression is obtained:

η tt -ζ tt -hgη xx = 0.
(2.31)

The Fourier-Laplace transform (2.10) is applied to (2.31), giving the solution η in the Fourier-Laplace space: .34) where:

η(k, s) = s 2 ζ(k, s) s 2 + ω 2 , ( 2 
η(k, s) = ζ 0 2 s (s 2 + ω 2 ) (1 + e -str ) ω 2 r s 2 + ω 2 r 1 -e -L(ik+ s vp ) ik + s vp . (2.33) Thus, η(k, t) = ζ 0 2 v p ω 2 r ω 2 r -ω 2       f (k, t) +H(t -t r )f (k, t -t r ) -H(t -L vp )e -ikL f (k, t -L vp ) -H(t -t r -L vp )e -ikL f (k, t -t r -L vp )       , ( 2 
f (k, t) = 1 ω 2 -k 2 v 2 p ikv p cos(ωt) + ω sin(ωt) -ikv p e -ikvpt
(2.35)

-1 ω 2 r -k 2 v 2 p ikv p cos(ω r t) + ω r sin(ω r t) -ikv p e -ikvpt .
As for the linearised Eulerian solution, this expression presents some singularities. Except for v * p = 1 and τ * > 0, a limit can analytically be found. Spatial free surface deformation profiles for both theoretical solutions are plotted in Figure 2.24 for τ * = 0 and v * p = 0.5, 1, 2, 10 and 50. For τ * = 0 (not shown), no important differences appear between the solutions, while for τ * = 0, the form and amplitude of the wave more or less differ. When a strong frequency dispersion appears for the linearised Eulerian solution,

i.e. v * p = 1 and τ * = 0, as expected the LSWE solution does not reproduce it and the amplitude of the wave is higher. 

Conclusions

A semi-analytical expression of the free surface elevation induced by a simple seismic-like motion of the sea ground has been established in a linear theory framework as a function of τ * (rise time in the vertical direction) and v * p (rupture velocity along the horizontal direction), which are the dimensionless temporal parameters of a schematic fault revealed by the dimensional analysis. The derived solution permits to study and conclude about two aspects: the maximal amplitude η * max reached by the first wave (as a function of the amplitude of bottom upthrust ζ * 0 ) and the validity of the long-wave assumption of the shallow water equations (SWE).

Regarding the maximal amplitude η * max /ζ * 0 , it was observed that:

1. when τ * is large (i.e. slow vertical motion), v * p does not impact the maximal amplitude. On the contrary, when τ * is small (i.e. rapid vertical motion), v * p influences it a lot.

Around the particular values v *

p = 1 and τ * = 0, there is a resonance phenomenon. The free surface amplitude is amplified compared to the deformation of the ground, by a factor depending of the deformation's length within the considered range of conditions. The maximal amplitude could be approximated by a power function of L * (see equation 2.24).

3. The resonance remains during the propagation phase even if it is slightly reduced.

It has been verified that this resonance phenomenon remains when non-linear effects are included by using a fully non-linear and dispersive numerical model. Furthermore, if ζ * 0 is large enough, solitary waves appear after a certain time/distance and remain stable in time.

To evaluate the impact of timescales on the validity of the shallow water equations, an energy ratio ε was defined evaluating the fraction of potential energy which is not properly handled by the SWE (as this energy is associated with wave lengths shorter that the nondispersive limit L ≈ 30h) over the total potential energy. It comes that:

1. There is also a resonance around v * p = 1 and τ * = 0. With these exact values and L * = 50, the energy outside the shallow-water range is more than half of the total energy.

2. During the propagation, ε reaches an asymptotic state which depends of τ * : the larger τ * , the smaller ε, except for v * p = 1 and τ * = 0 where ε remains important. This analysis has thus permitted to better identify in which cases models based on the SWE can be employed, or conversely should not be used.

Finally, a solution for the Linear Shallow Water Equations was developed. Compared to the linearised Eulerian solution, the differences are important when the frequency dispersion effects are more important i.e. τ * = 0 and v * p = 1. For the latter, the amplitude of the generated wave is higher.

Chapter 3

Application to the March 1947 New Zealand event

Le but de l'analyse théorique, développée dans le Chapitre 2, est de pouvoir l'appliquer à des évènements réels, et de rapidement estimer si une génération cinématique permet d'améliorer les modèles numériques. Ainsi en premier, on teste si les codes issus de Telemac2D sont bien capables de représenter le phénomène de résonance dans le cas théorique avant de l'appliquer à un cas réel: celui du tsunami de mars 1947 qui frappa la Nouvelle Zélande. Ce tsunami fut généré par une source sismique particulièrement lente. En effet, cet événement est associé à un "tsunami earthquake" avec une vitesse de rupture de l'ordre de 300m/s. En idéalisant cette source, les paramètres temporels adimensionnels v * p et t * r rentrent dans la zone de résonance définie au Chapitre 2. Cet événement est modélisé avec le modèle Saint-Venant de Telemac2D afin d'illustrer le possible impact de ces paramètres. Plusieurs types de déformation du fond marin sont testés: un modèle instantané et trois modèles cinématiques avec v p = 300m/s et différentes valeurs de t r . Au final, il s'avère que la vitesse de rupture a une grande influence sur les hauteurs de vagues générées corroborant les résultats de l'analyse théorique. Les vagues sont amplifiées. t r n'influence que peu les résultats. Pour aller plus loin, le cas avec v p = 300m/s et t r = 0s est simulé avec le modèle de Boussinesq de Telemac2D. En se basant sur la théorie, des effets dispersifs sont attendus dès la génération. Cependant peu de différences apparaissent entre les modèles numériques de Boussinesq et de Saint-Venant, même en diminuant la vitesse de rupture à v p = 150m/s. Trois suppositions peuvent être suggérées pour ce résultat: la théorie a surestimé les effets dispersifs, la distance de propagation n'est pas suffisante pour les laisser se développer, ou encore le maillage utilisé n'est pas adapté pour modéliser ce type de phénomène.

Case of resonance with Telemac2D

To justify the use of Telemac models to simulate events close to the resonance zone as defined in Chapter 2, the analytical case of a generation of waves by an idealised sea floor deformation with v * p = 1 and τ * = 0 is reproduced with Telemac2D. First the numerical results from the Non-Linear Shallow Water Equations (NLSWE) model of Telemac2D, are compared to the theoretical free surface obtained with the Linear Shallow Water theory (see section 2.6) in a linear situation. The same case is treated with the Boussinesq model of Telemac2D, and compared to the theoretical potential Euler model (see section 2.2).

Non-linear Shallow Water model

We start with the NLSWE model of Telemac2D. For this case, five regular meshes are built with dx * = dx h = 0.01; 0.1; 0.3; 0.5; 1, where dx is the mesh element size and h the uniform water depth. The non-dimensionalisation used here is the same as in the previous Chapter 2. We supposed than the amplitude of the ground deformation is small enough (ζ * 0 = 0.001) to neglect the non-linearity and we define the CF L number (Courant, Friedrichs and Lewy) as: CF L = √ gh dt dx , dt the numerical time step. The latter is adapted in order to get CF L = 1; 0.8; 0.5; 0.1. To evaluate the numerical model, the numerical free surface deformation obtained at the end of the ground deformation (t * = T * ) is compared to the theoretical one. For each value of the CF L, a study of convergence is performed.

The values of dx * is decreased adapting dt * to keep a constant value of CF L. For every value of the CF L, the convergence is not reached before the appearance of a non-physical deformation of the free surface at dx * = 0.01. The time step has an important impact on the result. Indeed, if we focus only on the meshes of dx * = 0.3 and dx * = 0.5, Figure 3.2, the amplitude strongly varies with the CF L.

Following the work of [START_REF] Burwell | Diffusion and dispersion characterization of a numerical tsunami model[END_REF], a precise analytical study of the numerical model of Telemac would permit to explain this behaviour, that is similar to the case of the propagation of a solitary wave (presented later in section 4.4). Even if the case here does not really treat the propagation of a wave (it is more like a generation) and the numerical scheme is different, the results tend toward the same behaviour of the propagation of short waves in the study of Burwell et al.. For CF L < 0.7, the numerical diffusion seems to decrease with the CF L while the numerical dispersion increases. In the study of Burwell et al., they considered that waves are not very well resolved for k.dx > 0.2. In our case, two wavelengths (L i ) can be drawn: one for the global deformation of the free surface, 13. The corresponding wave number k 1 .dx is included between 0.0007 and 0.07 and k 2 .dx between 0.005 and 0.5. Only the first wave should be badly represented with dx * = 0.5 and dx * = 1. The case where CF L = 0.8 and dx * = 0.3 is identified as the best result. However, it can be noticed that the amplification of the first wave is reproduced for every case, thus, the NLSWE model of Telemac is capable to model events close to the resonance zone. However, a study of numerical convergence should be done in the future.

Boussinesq model

This theoretical case is performed again with the Boussinesq model of Telemac2D. This time only four meshes are tested with dx * = 1, 0.5, 0.3, 0.1 and the four previous values of CF L. As for the NLSWE, numerical free surfaces are compared to the analytical free surface from the linear theory (section 2.2) at the end of the ground motion, see Figure 3.3. 

The 1947 New Zealand event

Context and data

"Tsunami earthquake" is a category of events proposed by [START_REF] Kanamori | Mechanism of tsunami earthquakes[END_REF], which generates larger tsunamis than suggested by the seismic magnitude. Generally, they invoke slow rupture velocities, 1km/s or less. A few of these events are presented in Table 3.1, for which the temporal parameters v * p and τ * are estimated. When the data is available, the rise time is estimated here with: t r = event's duration -fault's length/v p .

In light of our special interest, we illustrate the present study with the 25 th March 1947 event that occurred near New Zealand (seismic magnitude M w = 7.1) [see [START_REF] Bell | Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount[END_REF][START_REF] Downes | Groundwork for development of a probabilistic tsunami hazard model for New Zealand[END_REF]. Figure 3.5 shows the domain of application and the location of the event. The fault rupture is close to the Hikurangi subduction margin and the tsunami was observed along the coast from Tokomaru Bay to Mahia Peninsula. The fault characteristics and information are summed up in Table 3.2. With a water depth near the source around 1500m and a sea floor deformation ζ 0 around 1m, the ratio ζ 0 h ∼ 6 10 -4 is much smaller than 1, thus this generation can be considered as linear.

The water depth h is considered varying between 100 and 3000m at the fault area. Following the study developed in Chapter 2, the amplification of the generated wave η max /ζ 0 of the 1D theoretical solution is calculated for an idealized step deformation with the spatial parameters of this event. 3.2).

The corresponding panel is plotted in Figure 3.6 as function of v * p and τ * . Considering CHAPTER 3: APPLICATION TO 1947 NEW ZEALAND EVENT the range of temporal parameters described earlier, this event could enter in the resonance zone as previously defined in Chapter 2. Hence, we can suspect that generated water waves should be larger than the numerical ones generated by an instantaneous model of generation, as suggested by [START_REF] Bell | Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount[END_REF]. This hypothesis may also explain the high water waves observed for this event. To confirm this conclusion, this event is simulated with numerical models, varying the temporal parameters of the source (v p and t r ) and using the NLSWE then Boussinesq models of Telemac2D.

Resolution grid and mesh

The bathymetry grid is provided by the National Institute of Water and Atmospheric The mesh is built such as the element size is adapted to the bathymetric gradient: more important the gradient, smaller the elements are. Using this method, the shoreline and 

Kinematic generations

The co-seismic source parameters were given by [START_REF] Bell | Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount[END_REF]. Four configurations of generation are tested. The four models are finite fault models: the global fault is divided into 191 subfaults with their own characteristics. Then, as suggested by Dutykh et al.

[2013], kinematic finite fault models are used: each subfault is activated according to the rupture velocity v p and the motion of the seafloor is regulated by the rise time t r . Only the v p = 300m/s value of rupture velocity is used because it is the most plausible from seismic data. The different source models and their designation are presented in Table 3.3.

Theoretically, τ * < 1, thus, the time history function of the ground motion should not impact the generated wave, see [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]. In Telemac, the motion of the seafloor is initiated by uplifting the bathymetry:

Type of deformation

v p [m/s] v * p t r [s] τ * Generation duration [s] Model designation Instantaneous → ∞ → ∞ 0 0 0 ID
• if t r = 0 then z f (i, t) = z f (i, 0) + k O k (i) 1 2 (1 -cos(π t-t k tr )), • if t r = 0 then z f (i, t) = z f (i, 0) + k O k (i)H(t -t k ),
• if the deformation is instantaneous then

z f (i, t) = z f (i, 0) + k O k (i).
Where z f is the sea floor elevation, O k (i) is the amplitude of the sea floor deformation generated by the subfault k at the point i, estimated with the calculation of [START_REF] Okada | Internal deformation due to shear and tensile faults in a half-space[END_REF].

The activation time t k corresponds to the rupture start time of the subfault taking into account the value of the rupture velocity v p . H is the Heaviside step function. Applying this method, the four free surface deformations are obtained at the end of the ground motion, see Figure 3.9.

For the kinematic models (models KD 0, KD 60, KD 120), as the generation duration is longer, the wave already begins to propagate creating a principal wave in the direction of the coast. To compare the same thing, the spatial free surface deformation is observed for the same time, t = 310s, when the ground motion has stopped for all models, see Figure 3.10.

At this time, differences between models appear not due to propagation time but due to the generation model nature. The free surface deformation obtained for the model ID is smaller and more diffused than the one from kinematic models. The signal is concentrated towards the coast and diametrically opposed while for the kinematic generations, the signal is focused towards the coast and the North. Moreover, the depression in front of the main wave is smaller for the instantaneous model than the others. The impact of the rupture velocity v p is significant while the rise time t r does not seem to have an important role:

qualitatively, there is no difference between the models KD 60 and KD 120. Between the models KD 0 and KD 60, the second wave towards offshore is more diffused for the second model: two waves are distinct for KD 0 while only one wider appear for KD 60.

Numerical results from Non-Linear Shallow Water models

The numerical simulations include the generation part and one hour of propagation. As there are no measurements during this event, the quality of the propagation of the numerical wave can not be evaluated. However, in Figure 3.11, snapshots of the propagation of the free surface deformation are presented for the model ID.

We can see that one hour of propagation is enough to visualise the run-up of the leading wave on the coast.

To compare the different generation models, the temporal maximal free surface deformation is calculated during the entire event and plotted in Figure 3.12.

The transect A-A is defined as shown in Figure 3.12. To permit quantitative comparison between models, the maximal free surface elevations reached during the propagation are plotted along this transect in Figure 3.13, only for negative bathymetry. Excepted at the fault area, the model ID produces smaller maximal amplitudes than kinematic models. The maximum are focused on the area of generation and the Waihou Bay (see map in Figure 3.5). While for the kinematic generations, the maxima are bigger, closer to the coast and cover a larger area. There are no significant differences between the maximal results obtained by kinematic models, excepted at the initial generation zone where the maximum are slightly higher for KD 0 than for KD 60 and KD 120 models.

Moreover, the curves issued of KD 60 and KD 120 are superimposed, confirming the similitude between both models. As previously observed for the initial free surface ele- vation, the impact of the rupture velocity v p clearly appears and the rise time t r slightly influences the wave generated. For each value of t r , the associated τ * stays small, less than 1 (see Table 3.2), which explains its minor role.

Finally, the impact on the coast can be quantified by comparing numerical results to observed data from [START_REF] Downes | Groundwork for development of a probabilistic tsunami hazard model for New Zealand[END_REF]. However, there is a vagueness about the nature of the data: [START_REF] Downes | Groundwork for development of a probabilistic tsunami hazard model for New Zealand[END_REF] considered them as estimated run-ups [START_REF] Downes | Groundwork for development of a probabilistic tsunami hazard model for New Zealand[END_REF] corresponds to run-up heights. The height measured in the numerical models is the inundation height at the shoreline. The blue line corresponds to the temporal maximal free surface elevation reached during the event.

However, the inundation heights at the initial shoreline, corresponding to the temporal maximal water depth reached during the simulation, can be measured. Thus, the inundation heights issued from the different generation models are compared to the data in Figure 3.15. This comparison can be inappropriate thus it has to be considered with caution. Between the latitudes -38.6 • and -38.3 • , the inundation height differs between the models. This height is more important for the kinematic models and slightly smaller when t r differs from 0s. These results are coherent with the one found by [START_REF] Bell | Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount[END_REF] and the observations done in Chapter 2. This zone corresponds to the area around the Waihou Bay. These results are also consistent with the comparison of the maximal free surface amplitude in Figure 3.12. In Figure 3.11, we can see that the wave first hits this part of the coast. Outside this zone, the models give similar results. The numerical models globally follow well the tsunami wave height data with some differences sometimes that CHAPTER 3: APPLICATION TO 1947 NEW ZEALAND EVENT can be issued from an error of the observation location.

Boussinesq model

From the theory described in Section 2.4, an energetic ratio ε has been defined between the potential energy poorly represented by LSWE and the total potential energy as a function of v * p and τ * (Equation 2.26). This ratio ε is calculated at the end of the sea floor motion for this event with the parameters in Table 3.2. The panel of ε values is represented in 3.2).

The temporal range that interests us is the grey zone for which ε varies between 1% to 60% approximately. For the KD 0 model of generation, the ratio varies between 4 and 9%. The Boussinesq model of Telemac2D is used to simulate this event with v p = 300m/s and t r = 0s. At the end of the sea floor motion, differences appear between the Boussinesq and the NLSWE models, as shown in Figure 3.17.

Even if the global form of the generated waves are similar with a depression near the coast and a principal wave oriented North-West, the Boussinesq model gives a more complex pattern. The amplitude of the main wave is smaller with the Boussinesq model than the NLSWE model but wider. During this simulation, a strong increase of the free surface amplitude appears at the South part of the coast. This increase does not seem physical but numerical, as the Boussinesq model of Telemac2D can be more sensitive to the numerical parameters [START_REF] Hervouet | Hydrodynamics of free surface flows: modelling with the finite element method[END_REF]). Thus to calculate the maximum free surface, only 30 min. of propagation is used (this time well covers the propagation until the coast), and to compare the same thing, in this section this restriction is also applied to the NLSWE model.

The amplitude of waves during the propagation seems similar as we can see with the qualitative comparison between the spatial maximal amplitude reached in Figure 3.18 and more precisely along the transect A -A in Figure 3.19. We can note that for the Boussinesq model, even if the duration of propagation has been decreased, the beginning of the numerical error is visible in the Gisborne Bay. Exempting this numerical error, small differences appear at the source area, where the Boussinesq model gives smaller waves. Moreover, there is not a distinct wave toward the North unlike for the NLSWE model. However, as

shown by the spatial profile along A -A , globally, the models behaves similarly even if the Boussinesq model gives slightly smaller maximal amplitude.

In front of this conclusion, we can suppose that ε ∼ 4 -9% is not big enough to say that the contribution of the dispersive effects is visible.

Thus, even if this kind of generation is seismically less probable, the generation with v p = 150m/s is tested with the NLSWE model and the Boussinesq model in order to possibly note some improvement with the latter. In Figure 3.20, we can see the initial free surface deformation, and in Figure 3.21 the propagation of the waves.

Contrary to what was expected, no wave packets develop during the propagation.

Few hypothesis can be given to justify this behaviour: as the dispersive effect is a cumula- tive phenomenon, the distance of propagation may not be large enough, or the estimated ε over-predicts the importance of the dispersion. Another hypothesis about the mesh can be suggested: the element sizes are too large to represent the deconstruction of the wave.

Up to 25km of the coasts, the sizes of elements are included between 15m and 400m, with a majority of 30 -40m (see Figure 3.22) that can be too rough to represent a dispersive wave packet.

The maximal free surface amplitude reached during the propagation is plotted in The maxima area is much larger for v p = 150m/s than for v p = 300m/s (Figure 3.18).

The tsunami heights modeled at the coastline with the v p = 150m/s and t r = 0s generation model are compared to the one from the v p = 300m/s and t r = 0s generation model (KD 0 model) in Figure 3.25.

The rupture velocity v p = 150m/s gives a v * p closer to 1 than v p = 300m/s, thus, as supposed, the tsunami heights are bigger in the impacted zone concerned by the wave amplification (between the latitudes -38.6 and -38.2). However, they are in a poor agreement with data in this zone and over-predicts the tsunami heights, that consolidates the idea that v p = 300m/s is more probable than v p = 150m/s. 

Conclusions

In Chapter 2, it has been shown that for an idealised deformation, the temporal parameters can have an important impact on generated waves if they respected some particular conditions: the rise time should be short and the propagation rupture velocity close to the long wave velocity. We defined a theoretical resonance zone depending of both of these parameters. To illustrate this phenomenon, we choose to simulate the tsunami that occurred in March 1947 in New Zealand. The temporal parameters of this event are close to the values of interest: its v * p varies between 2.47 and 9.57 if the initial rupture velocity is set to 300m/s; and the rise time associated is supposed to be short, τ * < 1. Thus, four generation models, that differ with the values of v p and t r , are tested to measure the impact of the timescale with the NLSWE model of Telemac2D. It appeared that the rupture velocity v p has an important impact on the tsunami heights along a localised coast (latitudes between -38.6 • and -38.2 • ): when v p = 300m/s the estimated tsunami heights are larger than for v p = ∞ (instantaneous deformation). Also, when t r is non null, the heights slightly decrease but its influence is limited.

After the impact on the wave amplitude, we wanted to quantify the dispersive effects by building a Boussinesq model. For this model, only the case with v p = 300m/s and t r = 0s is considered. The aim is to compare the numerical results issued from the Boussinesq model to the previous one of the NLSWE model of Telemac2D. Following the theoretical study, the energy ratio ε is defined to evaluating the quantity of potential energy poorly represented by the LSWE. ε is estimated at 4 -9% for this idealised event. This value is small and indeed the models give similar numerical results. Thus, to force the appearance of dispersive effects and to observe the front wave decomposites into smaller waves, the value of the rupture velocity is decreased to v p = 150m/s for which ε is estimated at 40%. However, again, the dispersive effect does not manifest and three conclusions can be drawn: ε overpredicts the dispersive effect, the propagation length considered is too small 

Context

Following the work of [START_REF] Synolakis | Standards, criteria, and procedures for noaa evaluation of tsunami numerical models[END_REF], one objective of the TANDEM project is to build a benchmark evaluating different codes for modeling tsunamis. The entire benchmark is available in [START_REF] Violeau | Wp1: Qualifying numerical tools for tsunami studies contribution of wp1 to the project's 1st year[END_REF] and [START_REF] Violeau | A database of validation cases for tsunami numerical modelling[END_REF]. This chapter gathers my own contribution with the evaluation of the models of the Telemac system.

Tsunami life can be split into three phases: the generation of the wave, its propagation in deep ocean and its run up on the ocean shore. In the TANDEM project, the test cases are chosen to fit in these different steps, and permit to study one of these processes. The [2015]. The present chapter will study whether the Telemac system is capable of modeling tsunamis, in view of the real-world applications proposed in Chapters 3 and 5.

1D analytical sliding mass

Liu et al. [2003] proposed a 1D analytic solution for tsunami wave generated by landslide using the Linear Shallow Water Equation (LSWE). Figure 4.1 shows the considered domain, where h is the initial water depth, d the thickness of the moving layer, representing the landslide, β = 5.7 • the angle of the steady ground and η the deformation of the free surface.

The thickness of the landslide is defined as:

d(x, t) = δ exp   -2 xµ 2 δ tan β - g δ µt 2   , (4.1) 
with δ = 1m the maximum thickness of the slide and µ = δ L the ratio between δ and the length L of the slide, g the gravitational acceleration and µ a parameter defined later. In µ is fixed at 0.01, such that tan β µ = 10. Due to the small value of µ, the motion can be considered as linear, as required by the analytical solution. The simulation is performed with the NLSWE model of T2D. An irregular mesh is built for this case with element size around 1m. Spatial free surface profiles are visible in Figure 4.2 and compared with the linear solution of [START_REF] Liu | Analytical solutions for forced long waves on a sloping beach[END_REF] at t * = 0.5; 1; 1.5. Numerical results are in very good agreement with the analytical solution: the curves seem superposed. Thus with these conditions and parameters, NLSWE model of Telemac2D is capable of simulating the generation of a wave by a schematic landslide.

In the frame of the project TANDEM, a second case was proposed with µ = 0.1, tan β µ = 1. With this value, the numerical results were strongly different to the analytical solution.

The explanation was found directly in the work of [START_REF] Liu | Analytical solutions for forced long waves on a sloping beach[END_REF]: indeed the authors remarked that the omission of the nonlinearity, and the approximation on the water depth are acceptable only for tan β µ > 10, thus small µ. They concluded also that for tan β µ < 1 nonlinear effects should deeply impact the evolution of the wave. This behaviour was also observed with other numerical codes used within TANDEM, [START_REF] Violeau | Wp1: Qualifying numerical tools for tsunami studies contribution of wp1 to the project's 1st year[END_REF].

Generation and propagation from a moving bed

The aim of this test case is to reproduce the experiment of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]. As described in Chapter 2, this experiment consists of a long flume with constant uniform bed and a small segment moving up vertically at different velocities. A wave is generated and propagates along the flume. [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] proposed an analytical linear solution. However, in this benchmark, only the measures are taken as reference. Indeed while during the generation the linear solution remains close to the measurements, it develops differently during the propagation for which the nonlinear effects grow, see [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]. [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], not at scale. The top frame is a top view and the bottom frame is a slice view. The gray zone is the moving area of length b. The red crosses are locations of measurement gauges.

Two temporal functions are considered to model the motion of the moving section:

• exponential motion, α = ln 3 tr :

ζ e (x, t) = ζ 0 (1 -e -αt )H(b 2 -x 2 )
• sinusoidal motion:

ζ s (x, t) = ζ 0 1 2 1 -cos πt t r H(t r -t) + H(t -t r ) H(b 2 -x 2 ).
Where H is the Heaviside step function and ζ i,(i=e,s) the amplitude of the deformation of the motion. The dimensionless variables are defined as [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] 1 and a transitional motion between the latter two. First, these three motions are studied here during the generation stage for both time history functions (parameter values are in Table 4.1). Then the propagation of a wave generated by an impulsive exponential motion is studied.

x * = x h , b * = b h , ζ * 0 = ζ 0 h , η * = η h , t * = t g h , t * r = t r √ gh b .
For this case, the Boussinesq model of Telemac2D and the NS model Telemac3D are tested with a Strickler friction law (coefficient set at 100 m 1/3 s -1 in order to minimize the bottom friction) and without viscosity. Numerical results from the code Misthyc are added to the comparison, see [START_REF] Bibliography | Fully nonlinear and dispersive modeling of surf zone waves: Non-breaking tests[END_REF]. The mesh and time step used satisfy √ gh dt dx < 1. Figure 4.4 shows comparisons between the numerical simulations and measures during the generation for an exponential motion.

At x * = 0, all the numerical models give a correct estimation of the free surface deformation. At x * = b, the motion velocity impacts the Boussinesq numerical result. While the other numerical models still give correct deformation, the Boussinesq model creates numerical dispersion with apparition of spurious oscillations for the transitional and impulsive motion. The amplitudes of these oscillations are small for the first motion but become important for the second one. Similar results are obtained for the sinusoidal motion, Figure 4.5.

With the sinusoidal time function, the numerical models of Telemac have more difficulties to represent the generation of the wave. For the creeping motion at x * = 0, the models represent well the deformation of the free surface while the numerical code Misthyc gives a too strong decrease. At x * = b, only the result from Telemac3D well matches the measures, Misthyc and Boussinesq model of Telemac2D giving an earlier or delayed decrease. However all the numerical results are globally correct. That is not the case for the transitional motion, where the Boussinesq model does not capture the right deformation of the free surface by creating too much numerical dispersion, especially at x * = b.

The NS model of Telemac3D seems better even if the amplitude of the second wave is over-predicted while the result of Misthyc is consistent with the data. For the impulsive motion at x * = 0, the height of the wave is under-predicted by all the numerical models. A more in depth study of this case with this model is depicted in [START_REF] Raoult | Nonlinear and dispersive numerical modeling of nearshore waves[END_REF]. It is shown that the results from Misthyc are close to Furhman and Madsen's numerical predictions [START_REF] Fuhrman | Tsunami generation, propagation, and run-up with a high-order boussinesq model[END_REF]), using a nonlinear Korteweg-de Vries model and a nonlinear Boussinesq model. None of these models include dissipation, which is suspected to explain the difference with the data. Here, the wave resulting from the Boussinesq model is higher than expected and late. However the global form of the wave is respected for all the numerical models. At x * = 400, all models over-predict the amplitude of the wave. The gap widened between them: the result from Telemac3D is still the closest to the measures but represents less the frequency dispersion than Misthyc for which every small oscillation is well estimated. The wave velocity from the Boussinesq model seems to be more correct than the others but the amplitude is over-predicted (almost twice) and except the second peak, the numerical wave does not match in detail the measured one.

Globally, this case is well handled by the numerical models. In detail, Misthyc gives a good approximation of the generated wave regardless of the time behaviour imposed to the ground motion. The models of Telemac are more sensitive to this temporal motion, especially the Boussinesq model of Telemac2D that tends to create too much numerical dispersion, as one can see for the transitional sinusoidal generation of the wave and during the propagation stage. The NS model of Telemac3D gives a good estimation of the free surface deformation for the different generations, however it slightly under-predicts the frequency dispersion after a long propagation time.

PROPAGATION OF A SOLITARY WAVE 99

Propagation of a solitary wave

The aim of this case is to propagate a solitary wave of height H, along a great distance on a uniform depth h. During its propagation, the wave keeps its shape and move with constant velocity. The solitary wave is a solution of selected mathematical models (Boussinesq, Serre, Korteweg-de Vries equations, etc.., see [START_REF] Malfliet | Solitary wave solutions of nonlinear wave equations[END_REF]). Here the Euler model is chosen even not a closed-form solution is known. However, it can be efficiently approached by numerical model as the one from [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF] that is taken as reference. This test is simulated with the NS model Telemac3D and compared with the initial amplitude and its expected position, and numerical result issued of Misthyc which agrees very well with the reference (see [START_REF] Bibliography | Fully nonlinear and dispersive modeling of surf zone waves: Non-breaking tests[END_REF]).

Different resolution grids are tested: the dimensionless element size is defined as dx h = 1 Mx and dimensionless time step

dt g h = 1 Mt , thus the CF L = √ gh dt dx can defined as CF L = Mx
Mt . The simulations were performed with M x = 5, 10, 20, 40 and a constant CF L. Preliminary tests are performed with M x = 5 and H h = 0.5 in order to test the sensitivity of the model to the time step. Then, the others grids are used. For each grid, a convergence study is performed on the vertical resolution, giving the maximal element size on the vertical (dz) to have the converged numerical result. It was observed that the converged result is reached faster for the finer horizontal grids . Thus, the relative vertical resolutions are: dz dx = 1 2 for M x = 5 and 10, dz dx = 1 for M x = 20 and dz dx = 2 for M x = 40. The numerical parameters are kept for H h = 0.3; 0.7. The wave is generated by giving an initial free surface deformation, vertical and horizontal velocity profiles. The propagation of the wave is modeled until t * ≈ 159.64s (t g h = 500) giving the approximated traveled distance d h ≈ 608 (this distance is calculated with an accurate velocity and provided by the algorithm of [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF]). Preliminary tests for different values of One can see that this case is difficult for the NS model T3D. When M t increases, the time step and the CF L decrease. For lower CF L, convergence seems to appear but far away from expected result. It can be concluded that the time step influences significantly the numerical results, and that for the lower time steps, i.e. the bigger M t , the wave amplitude is much smaller than expected. This may be due to numerical diffusion, and a theoretical study of the numerical scheme, as done by [START_REF] Burwell | Diffusion and dispersion characterization of a numerical tsunami model[END_REF] for another model, should be done to understand this behaviour. Also, a small non-physical plateau is created on the tail of the wave, with lengths increasing with the time step. For now on, we observe that an optimal result is obtained for M t = 12, thus CF L = 0.41. We will keep this value in the following. We understand this approach may be criticized, but it is the best available one in the current state of the Telemac3D code. Numerical results for The numerical free surface deformations obtained for the finer grids are similar and give a better approximation of the wave than for M x = 5, the NS Telemac3D model converges with the CF L as soon as M x = 10. Also, the non-physical plateau created for M x = 5 decreases in amplitude and finally disappears with the finest meshes. However, the wave moves slightly faster than predicted by the algorithm of [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF]. It also clearly appears that the code Misthyc gives better result even with M x = 5 resolution (M x = 10 in Figure 4.8).

Free surface deformation for H h = 0.3, 0.7 are visible in Figure 4.9. The position of the peak of the wave is unknown for H h = 0.3, 0.7, thus the comparisons are only based on the amplitude of the wave. The numerical result for H h = 0.3 converges faster than for H h = 0.5, 0.7. Indeed, smaller is H h , smaller are the nonlinear effects. Moreover, for H h = 0.7, regardless of the grid, the wave is smaller than expected. Performing a To conclude, this case is a conundrum for Telemac. It seems that the numerical parameters of NS model of Telemac3D has to be adapted to each case and that the user should be very careful of the spatial and temporal parameters, especially when the nonlinearity is important. The NS model of Telemac3D tends to decrease the wave amplitude and thus the propagation velocity, probably because of numerical diffusion. However, an ad hoc CFL choice (though questionable) allows us to approach a correct solution as seen 

Parabolic basin

This theoretical case concerns water oscillations in a perfect parabolic basin. The aim is to conserve the motion without loss of amplitude nor time delay, and to address the ability of a numerical model to predict wave run-up (dry/wet area). The solution of this motion is given by [START_REF] Thacker | Some exact solutions to the nonlinear shallow-water wave equations[END_REF] for the NLSWE. The topography basin is defined by a function d, as shown in Figure 4.10, d(r) = -h 0 (1 -r 2 a 2 ) where r is the radius of the basin, r = x 2 + y 2 . The parameters h 0 and a are fixed respectively to 4m and 2000m, and [x; y] ∈ [-3000m; 3000m] 2 . The mesh is imposed to be regular with a 10m grid resolution and the time step is chosen such as CF L 0.5. Two initial conditions are proposed. First a paraboloid configuration is tested: the initial free surface deformation, η 0 (r), is fixed as (see Figure 4.11a): with A = (h 0 +η 1 ) 2 -h 2 0 (h 0 +η 1 ) 2 +h 2 0 and η 1 = 1m. Vertical and horizontal initial velocities are null. The solution given by [START_REF] Thacker | Some exact solutions to the nonlinear shallow-water wave equations[END_REF] is:

η 0 (r) = h 0 √ 1 -A 2 1 -A -1 - r 2 a 2 1 -A 2 (1 -A) 2 -1 (4.
                 η(r, t) = h 0 √ 1 -A 2 1 -A cos(ω 1 t) -1 - r 2 a 2 1 -A 2 (1 -A cos(ω 1 t)) 2 -1 , u(r) = 1 1 -A cos(ω 1 t) 1 2 ω 1 xA sin(ω 1 t), v(r) = 1 1 -A cos(ω 1 t) 1 2 ω 1 yA sin(ω 1 t)
with ω 1 = 8gh 0 a 2 . The numerical results on the slice y = 0 of the free surface deformation and horizontal velocity obtained with the NLSWE model of Telemac2D are plotted in Figure 4.11.

The numerical results are in good agreement with the analytical solution. The transition between the wet and dry zones is well represented except for the last times where a small instability appears in the velocity field. The amplitude of the oscillation is then observed at the center of the basin, see Figure 4.12. After five oscillations, the amplitude of the motion does not decrease, the free surface deformation still corresponds to the analytical solution. Moreover, no delay is detected.

The second configuration corresponds to an initially flat free surface with: a , η 2 = 250m. The analytical solution given by [START_REF] Thacker | Some exact solutions to the nonlinear shallow-water wave equations[END_REF] is: It can be concluded, for both configurations, than the NLSWE model of Telemac2D well represents this kind of wet-dry transitions and oscillations. A graph representing the L 2 error for each codes used in the TANDEM project is available in [START_REF] Violeau | Wp1: Qualifying numerical tools for tsunami studies contribution of wp1 to the project's 1st year[END_REF], in which one can see that for this case, Telemac2D gives one of the lower errors for both configurations.

         η(x, y) = η 2 h 0 a 2 (2x -η 2 ), u(x, y) = 0, v(x, y) = η 2 ω 2
         η(x, y, t) = η 1 h 0 a 2 (2x cos(ω 2 t) + 2y sin(ω 2 t) -η 2 ), U (x, y) = -η 2 ω 2 sin(ω 2 t), V (x, y) = η 2 ω 2 cos(ω 2 t)

Run up of a Gaussian wave on a uniform slope

The aim of this benchmark is to model a real dimension tsunami run-up case on a beach proposed by [START_REF] Carrier | Tsunami run-up and draw-down on a plane beach[END_REF]. Numerical results issued of the NLSWE model of Telemac2D are compared to a theoretical solution. The domain is considered 1D with a plane beach of uniform slope of angle β = 0.1. The origin of the domain is fixed at the initial shoreline. The mesh used in this case is progressively refined from offshore (element length ∼ 40m) to the shoreline (element length ∼ 0.5m). The dimensionless variables are defined as following: u * = u √ gβL , t * = t βg L , x * = x L and η * = η βL , where L is the horizontal length scale. The free surface elevation is initiated by a N-wave shape deformation, typical from submarine landslide generation:

η * (x * , 0) = a 1 exp -k 1 (x * -x 1 ) 2 -a 2 exp -k 2 (x * -x 2 ) 2 , (4.4)
with a 1 = 0.006, a 2 = 0.018, k 1 = 0.4444, k 2 = 4.0, x 1 = 4.1209 and x 2 = 1.6384. These parameters correspond to a wave with an approximated 9m depression generated by a landslide L = 5km offshore.

First, comparisons are performed on spatial free surface deformation and velocity profiles, 

Run-up of a solitary wave on a uniform beach

The aim of this test case is to reproduce the experiment of [START_REF] Synolakis | The runup of solitay waves[END_REF] of a 1D run-up of a solitary wave on a plane sloping beach of angle β. The set up of the experiment is shown in Figure 4.16.

Figure 4.16: Run-up of a solitary wave on a uniform beach -Set up of the experiment of [START_REF] Synolakis | The runup of solitay waves[END_REF]. Not at scale.

The size of the canal is 37.76m × 0.61m × 0.39m and the wave generator is at one end of it. The sloping beach begins after 14.68m of flat bottom, and tan β = 1 : 19.85. With a NLSWE model, the solitary wave would become distorted during the propagation, thus this part of the canal is not included in the numerical domain, the latter taking into account only the beach, shown in Figure 4.17. The element sizes of the mesh are between dx = 0.1m and dx = 0.025m from the beginning of the beach to the shoreline, respectively.

Figure 4.17: Numerical domain for the test case of the solitary wave run up on a plane beach associated to the experiment of [START_REF] Synolakis | The runup of solitay waves[END_REF]. The variation of the bathymetry used is colourfully denoted.

The incoming wave has the following free surface profile:

η(x, 0) = H sech 2 γ(x -x 1 ) (4.5)
with γ = 3H 4 , H the amplitude of the wave: H = 0.0185d m where d is the initial water depth at the flat bottom, and x 1 is the initial position of the wave.

A friction law at the bottom is applied during the simulation, the law of Strickler with a coefficient of 100m 1/3 s -1 . Both NLSWE and Boussinesq models are tested. Temporal For all times, the numerical results are in good agreement with data. The modeled run-up is close to the one measured: Run -up T 2D /d = 0.077 while Run -up measured /d = 0.078 (see [START_REF] Synolakis | The runup of solitay waves[END_REF]). For the NLSWE model the wave is faster than the data and the draw-down is over-predicted. Indeed, the NLSWE model assumes hydrostatic pressure, thus the error on the free surface is bigger for arched waves. Expectedly, the Boussinesq model gives closer result to the data, the draw-down is slightly over-predicted and the free surface displacement matches the measurements. For this part of the simulation the Boussinesq model gives better result than NLSWE.

To conclude, both numerical models well represent the run-up of a solitary wave on a plane beach with a correct estimation of the run-up. However the Boussinesq model give better spatial results while the NLSWE over-predicts the draw-down. waves and far field dispersive wave trains, more typical for submarine slides than earthquake source [START_REF] Trifunac | A note on differences in tsunami source parameters for submarine slides and earthquakes[END_REF]). [START_REF] Tappin | Did a submarine landslide contribute to the 2011 tohoku tsunami?[END_REF] proposed a model with the combination of a co-seismic source and a SMF. This model provided better result for the run-ups and waveforms than for an alone co-seismic source.

Conclusions

However, in this study only co-seismic sources are considered: numerical models are built from the source generation of [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] and the kinematic model of [START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF]. the lattest is built with only data obtained from tsunami records. Both source models are presented in Section 5.3.

An other aspect, also studied by [START_REF] Chen | The march 11, 2011 tohoku m9.0 earthquake-induced tsunami and coastal inundation along the japanese coast: A model assessment[END_REF] and [START_REF] Grilli | Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: Comparison to far-and near-field observations[END_REF], is the nondispersive/dispersive, hydrostatic/non-hydrostatic importance of this event. While Chen et al. watched the impact of a non-hydrostatic model on the FDNPP, concluding that its effect became important for water depth around 10m and shallower but did not change the inundation result, [START_REF] Grilli | Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: Comparison to far-and near-field observations[END_REF] compared a Boussinesq-type model with a nonlinear shallow water model (same code but without the dispersion terms). They concluded that the dispersion phenomenon is small near-field and takes importance only far-field.

This chapter follows the construction of the numerical model of the 2011 Tohoku-Oki event with the system Telemac. First, in Section 5.2 the bathymetry and the mesh are described. Secondly, as said in the previous paragraph, the source models of Shao et al.

[2011] and [START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF] are detailed. Then, the numerical results for a Nonlinear Shallow Water Equation model (NLSWE of T2D) are compared to observed data in Section 5.4. These results concern the propagation of the tsunami near-field and far-field (see Section 5.4.1), and the inundation (see Section 5.4.2). Finally, the issue of the dispersion effects is addressed Section 5.5 with the analytical analysis developed in chapter 2, and completed with a numerical Boussinesq model (T2D).

Construction of the mesh and bathymetry

Four grids of bathymetric data were used to build the final mesh, the resolution is given in the Mercator projection:

1. a general grid, covering a large part of the Pacific Ocean with a bathymetry from Pr. Sasaki [START_REF] Sasaki | Behavior of the 2011 tohoku earthquake tsunami and resultant damage in tokyo bay[END_REF]), 2. a medium grid embracing the East Japan with a resolution of ∼ 2km, 3. a small grid including the East coast of the Japan with a resolution around ∼ 500m, 4. a grid focusing on the South Iwate prefecture coast, so called here after the bay of Iwate, with a resolution of ∼ 120m.

The last three grids are DTM built from data given by the MRI (Meteorological Research Institute) within the scope of the project TANDEM. This mesh counts around 680, 000 nodes. The choice of a unique static numerical mesh is questionable because it is expensive in memory and computational time. A model with nested grids [START_REF] Chen | The march 11, 2011 tohoku m9.0 earthquake-induced tsunami and coastal inundation along the japanese coast: A model assessment[END_REF], [START_REF] Grilli | Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: Comparison to far-and near-field observations[END_REF]) or an adaptive model [START_REF] Popinet | Adaptive modelling of long-distance wave propagation and fine-scale flooding during the tohoku tsunami[END_REF], [START_REF] Pons | Adaptive mesh refinement method. part 2: Application to tsunamis propagation[END_REF], [START_REF] Arpaia | r-adaptation for shallow water flows: conservation, well balancedness, efficiency[END_REF]) may be preferable. However, these two methods are not yet available with the Telemac system, which justifies the present choice. The initial free surface deformation is calculated using the traditional way to generate A qualitative comparison permits us to validate this initial state.

Initial condition and seismic sources

However, [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] estimated a propagation rupture velocity around 1.5km/s with rupture starting times proper to each subfault. A second model for the generation is proposed using this kinematics. The duration of the generation is estimated here at 180s. //iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html).

The vertical deformation of the seafloor is estimated at each update with the Okada calculations [START_REF] Okada | Internal deformation due to shear and tensile faults in a half-space[END_REF]). Snapshots in Figure 5.8 show the temporal evolution of the seafloor, and Figure 5.9 represents the free surface deformation calculated with NLSWE model of Telemac2D at the end of the ground deformation at t = 5min and t = 4min in comparison with the free surface deformation obtained by [START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF]. Some small differences appear in the North of the deformation, but globally, the numerical free surface elevation obtain with Telemac2D matches well the one of Satake et al.. 

Numerical results

Propagation and comparisons with data

The simulations are performed with NLSWE model of T2D. Some snapshots of the numerical propagation of the wave generated are shown in Figure 5.10.

During the event, as said in Section 5.1, many data were recorded. Among them, six GPS buoys situated along the Japan East coast measured the variation of the free surface.

Their location are plotted on a simplified map in Figure 5.11.

The comparisons between numerical results of free surface deformation and data are plotted in Figure 5.12.

The measures and numerical results are temporally adjusted by considering the 10 th March 2011 at 00 : 00 : 00 as the origin time. Thus, the numerical time of the earthquake is 38.7h. The simulations concern only the first four hours of the event. The kinematic and static source models from [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] give similar results. The amplitude of the free surface deformation of the kinematic model is slightly more important than the one from the static model. Also, there is a small phase difference between the models, this delay 52405, the numerical models globally catch the waveform and have an approximately good amplitude, while for the buoy 52402, the numerical signal does not correspond anymore to the measures. The buoy 52402 being the furthest to the source (∼ 3500km), at this stage we can suppose that the propagation model is not good enough for such a distance, and dispersive effects may develop.

Run-ups and inundations

In this section, we come back to local results with flooded and run-up measurements.

Run-ups

In their work [START_REF] Mori | Nationwide post event survey and analysis of the 2011 tohoku earthquake tsunami[END_REF] lead a survey on the inundations and run-ups.

They provide inundation distances, and run-up heights with their locations and dates. However, numerical models do not consider a bottom friction, thus this over-prediction was expected.

At the South Iwate bay, the numerical results are close to the survey. The model from [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] again overestimates the flooded area while the model from Satake et al.
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Dispersion

In this section, the issue of the dispersion phenomena is addressed. Usually, the NLSWE are used to model tsunami event. Nevertheless, recent works pointed out that dispersion may appear, including during the case of the Tohoku-Oki event, see Paragraph 5.1. First an analytical study is performed using the linear solution developed in Chapter 2. Then, numerical simulation is done using the Boussinesq Equation available with Telemac2D. Its results are compared to data and NLSWE results.

Theoretical analysis

The Japan Meteorological Agency provided the epicenter location: at 38 19a,5.19c and Figures 5.19b,5.19d, respectively. The friction law is the Strickler law with a coefficient of 30m 1/3 /s. The white line is the initial coastline.

and [START_REF] Koketsu | A unified source model for the 2011 tohoku earthquake[END_REF]:

v p1 = 1.8km.s -1 , v p2 = 1.5km.s -1 , v p3 = 2.5km.s -1 .
The instruments of measurement did not catch the vertical deformation of the floor, thus it is supposed instantaneous and t r small. With these parameters we can define the quantities of interest as described in Chapter 2, being: [12.36, 20.60] and τ *

ζ * 0 = 3.10 -3 , L * = 267, v * p ∈
1. These values are summed up in Table 5.2. The energetic ratio ε is defined as in Chapter 2 for an idealized deformation of the sea floor, Equation 2.26. The spectrum of ε is calculated for L * = 267, it is represented in Figure 5.20. The striped grey zone shows the possible temporal parameter values for the Tohoku-Oki event. In this zone, ε has a maximal value around 1% for τ * = 0, and when τ * slightly increases, ε value quickly drops to 10 -6 . Thus for this event we can say that the NLSWE could be locally used.

This conclusion can be verified by modeling this event with the Boussinesq model of T2D. close to the source. The selected source for this simulation is the kinematic Shao et al.

Real values Non-dimensional

ζ 0 = 5m ζ * 0 = 3.10 -3 L = 400km L * = 267 v p1 = 1.8km.s -1 v p2 = 1.5km.s -1 v * p ∈ [12.36, 20.60] v p3 = 2.5km.s -1 t r almost τ * 1 null
[2011] model. This choice is justified by the fact that the source model from Satake et al.

[2013] was built only on water waveform data and the inversion of data is done using a Shallow Water model. Thus, it seemed more honest to keep the [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] model for this propagation model. A second mesh is constructed with a finer approach to the Japanese coasts (900, 000 nodes at the end). Indeed, the Boussinesq model is more sensitive to the mesh than the NLSWE model, see [START_REF] Hervouet | Hydrodynamics of free surface flows: modelling with the finite element method[END_REF]. However, how far the mesh's refinement is pushed in the material capacity, only one hour of propagation with the Boussinesq model could be calculated before a numerical divergence of the code occured. Thus in this section only a comparison to the GPS gauges is possible as shown in Figure 5.21. It is also important to note that these numerical models do not integrate the bottom friction. Thus, an over-prediction of the phenomena at the coast, where the friction may become important, is expected. From now, the Satake et al. generation model gives the best result, however, taking into account the bottom friction may reverse the current trend and finally the Shao et al. generation model may give better results.

To go further, Telemac2D's Boussinesq model was also tested. However, due to numerical issues, only one hour of physical propagation was obtained, that only permited a comparison to the GPS gauges. For this model, the source of [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] was preferred because built independently of the water wave signal. Matching with the theoretical analysis, the Boussinesq model does not really improve the results. However, some dispersive effects are expected further off shore or at some local bays, that only can be verified with a more sophisticated numerical model, as a nested grids.

Conclusions

Cette thèse a permis de mettre en avant l'influence notable des échelles temporelles lors de la génération sismique des tsunamis dans certaines conditions.

Pour cela, deux paramètres ont été définis : la vitesse de propagation de rup- 

First concluding remarks

This thesis was shared between the theoretical approach of an idealised generation and concrete applications with codes issued from the Telemac system.

First, the dynamics of the source was identified as the least known part of the tsunami life, leading the research on the kinematic deformation induced by seismic activity. In this aim, a linear potential solution was developed for an idealised deformation of the sea floor as a moving step. This deformation, and thus the solution of the free surface, depends on two temporal parameters, the rise time t r and the rupture velocity v p . The novelty of this approach was the study of both t r and v p simultaneously. Moreover, the linear Zealand. This event is associated to a tsunami earthquake, meaning with slow ruptures.

Indeed, if the sea floor is idealised, its temporal parameters are included in the theoretical resonance zone. This event was modeled with the NLSWE model of Telemac2D using four generation models varying by the value of v p and t r . In concordance with the theory, the rupture velocity v p has an important impact on the tsunami heights while the rise time t r has little effect. To go further, this case was also modeled with the Boussinesq model of Telemac2D to test the dispersive effect theory. However, at this point, no dispersive effect was detected. Three assumptions were drawn to explain this behaviour: the energetic ratio ε over-predicted this phenomenon, the distance of propagation considered was too small to allow the development of dispersive effects, and the most probable, the mesh was not adapted to represent the evolution of dispersive waves.

The second aspect of this thesis is the validation of the numerical models issued from Telemac system to simulate test cases about tsunami phenomena. Whether about generations (landslide or seismic types) or run-ups, the models give satisfactory results. However, the test case about the propagation along a long distance of a solitary wave was more difficult to handle. It reveals a strong dependence of the result to the numerical parameters (CF L). The behaviour of the model would be explained by an analytical study of the numerical schemes, taking as example the work of [START_REF] Burwell | Diffusion and dispersion characterization of a numerical tsunami model[END_REF].

The real event of Tohoku-Oki 2011 was successfully simulated by the NLSWE model of 

Perspectives

The theoretical study and the real application of the 1947 New Zealand event show us the possible strong influence of timescales during seismic generation. This conclusion raises the issue of the limit of the traditional static generation model. Moreover, the Shallow Water Equations are usually used for tsunami modelling, but dispersive effects were locally detected by the theory in certain cases. For this aspect, the numerical model failed to illustrate it, but it can be due to numerical limitation here and a more sophisticate model may improve this result. These conclusions concern a small part of the seismic event, the slow ones that are associated to tsunami earthquakes. Even if they stay rare events, they happen. Also, in the numerical model, the choice of the kinematic finite fault method, that is a discrete method, to represent the source is still an approximation of the reality, to better model it a continuous model may be more appropriate.

As far as I am concerned, until now, no advanced studies have been done about tsunamis with the models from the Telemac system. This thesis shows the capacity of the code to model well this kind of events from source to inundation, but also its limitations. An advanced analytical study of the numerical schemes of the models would permit to explain 5.9 MAIN CONTRIBUTIONS 137 its behaviour for the delicate cases (propagation of a solitary along a long distance with Telemac3D, theoretical resonance generation with NLSWE model of Telemac2D).

Moreover, for the real event cases, I met some numerical difficulties with the Boussinesq model of Telemac2D. More sophisticate numerical models (finer meshes) may overcome this difficulty. However, this solution is heavy, and using embedded models, as done by other codes within the dedicated scientific community, seems to be a better idea in my opinion.

Finally, during this thesis, the bottom friction is not included in numerical models while some piecewise homogeneous laws are available in the Telemac system, a preliminary model was done but not conclusive. The bottom friction slightly influences the tsunami propagation but can modify the flood prediction. Using heterogeneous friction pattern will be a good improvement, needing a more precise resolution of the coast than done in the present numerical models.

Main contributions

To conclude this manuscript, this paragraph summarizes the main contributions I performed during these three years. First, theoretically:

• A new formulation was defined for an idealized sea floor deformation depending on two temporal parameters, t r and v p .

• Then, a linear solution was developed from the Euler equations with an analytical Fourier transform of the free surface elevation that was numerically transformed in the real space. The numerical inverse Fourier transform was computed with a short program in Fortran using a Simpson integration method.

• The behaviour of wave generation was studied as function of v p an t r , numerically extended to nonlinear wave and finally applied to real events.

Secondly, using the Telemac system:

• The six test cases presented in Chapter 4 were performed and one was personally handled in the frame of the TANDEM project.

• For the first time, the real cases of the New Zealand 1947 and Tohoku-Oki 2011 tsunamis were deeply studied at the Saint-Venant Hydraulics Laboratory:

until now, the codes of the Telemac system were not adapted to generate real seismically generated tsunamis, even if the Okada's calculations were already computed. Thus, for these events, a kinematic finite fault model was implemented,

We then define A as:

A = cos(ωt)H(t) * sin (ω r t) H (t) = ω r ω 2 r -ω 2 (cos(ωt) -cos(ω r t))

(A.9)

A * e -ikvpt 

 

For case (iii), we define:

F = ω 2 r ω 2 r -ω 2 1 ω 2 -k 2 v 2 p 1 ω 2 r -k 2 v 2 p      
ikv p e(-ikv p t)(ω 2 -ω 2 r ) +ikv p ω 2 r cos(ωt) -ω 2 cos(ω r t) + k 2 v 2 p (cos(ω r t) -cos(ωt)) +ωω 2 r sin(ωt) -ω r ω 2 sin(ω r t) +k 2 v 2 p (ω r sin(ω r t) -ω sin(ωt))

     
When ω → ω r , we get: 

F → ω 2 r (ω 2 r -k 2 v 2 p ) 2        -ikv

  figure. The contours plots represent the initial free surface deformation of the hydraulic models, solid for uplift and dashed for subsidence. . . . . . .

  at scale. The top frame is a top view and the bottom frame is a side view. The gray zone is the moving area of length b. The red crosses are locations of measurement gauges. . . . . . . . . . . . . . . . . . . . . . . . . 1.19 Kinematic generation -Free surface elevation comparison at x h = b h between the exponential and the sinusoidal time history deformation for an impulsive motion (left) and a creeping motion (right). The geometrical parameters are: b/h = 12.2, ζ 0 /h = 0.2, t r √ gh/b = 0.069 for the impulsive motion and t r √ gh/b = 106.14 for the creeping motion. The figure is adapted from the work of Hammack [1973]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.20 Kinematic generation -Geometry of the domain considerated by Todorovska and Trifunac [2001] at a time smaller than the generation duration. The solid line is the instant deformation (propagation at velocity v p ) while the dashed line is the final deformation. The graph is a vertical cut of their 2D domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.21 Kinematic generation -Numerical results obtained by Dutykh et al. [2013] (Figure adapted from their work). The free surface elevation is measured at different gauges and compared between static generation model (solid thick line, model WN static) and kinematic generation model (dashed and blurred line, models WN (active), linearized model and BBM-BBM). . . . .

  Figure 2.24b is different from the others, the encapsulate figure is a zoom.

Figure 3 .

 3 Figure 3.7b is the mesh built for the case. Yellow box is the boundary of the zoom plotted in Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . .
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 123 Figure 1: Introduction -Pictures from the NOAA website (http://www.ngdc.noaa. gov/hazardimages/event/show/256) of the Otsushi city in the wake of the March 2011 tsunami.

Figure 4 :

 4 Figure 4: Introduction -First year annual meeting of the project TANDEM.

Figure 1 . 1 :

 11 Figure 1.1: Landslide generation -Pictures of the laboratory experiment of Enet and Grilli [2007]. The left picture shows the general view of the set up while the right picture shows the experimental landslide model moving only by gravity.

Figure 1 . 2 :

 12 Figure 1.2: Landslide generation -First wave crest classification as function of the slide Froude number F r = v s / √ gh and the slide thickness S = s/h with weakly nonlinear oscillatory wave, ♦ nonlinear transition wave, solitary-like wave, dissipative transient bore. Light-shaded square corresponds to the nonlinear transition region, the dark-shaded square to solitary-like region, and the black square to bore region. Result issued from the work of Fritz et al. [2004].

Figure 1 . 3 :

 13 Figure 1.3: Landslide generation -Comparison between linear theoretical solution (solid line) to numerical linear model (dashed line) and nonlinear numerical model (dotted line) for tan β/µ = 0.87 (left) and tan β/µ = 3.5. Result issued from the work of Liu et al. [2003].

  Figure 1.3 shows a comparison between the linear analytical solution and numerical results. Unlike the theoretical solution, the numerical linear model uses an algorithm to track the real shoreline, see Liu et al. [2003].

Figure 1

 1 Figure 1.4: Landslide generation -Numerical result from a Navier-Stokes three-phase model considering a solid landslide (left) or a deformable landslide (right) at a) t = 0.5s, b) t = 1s, c) t = 1.5s and d) t = 2s. These results are issued from the work of Abadie et al. [2010].

Figure 1

 1 Figure 1.7: Meteotsunami -Atmospheric pressures record on the 15 June 2006 at two ports in the Balearic Island: Mallorca and Mahon. The "PM" and "P" arrows indicate the suddenly change. Figure issued from the work of Monserrat et al. [2006].

Figure 1

 1 Figure 1.8: Meteotsunami -Pictures taken during the meteotsunami that occurred the 15 June 2006 at Ciutadella Harbour (Balearic Islands). Anonymous photographs on-line (http://ichep.blogspot.fr/2006/06/rissaga-ciutadella.html).

  Figure1.9: Cosmogenic tsunami -Comparison between the idealized impact cavity 1.4 (solid line) and numerical simulation of[START_REF] Ward | Asteroid impact tsunami of 2880 march 16[END_REF] at t = 25s (dot line). The thin line is the sea ground. Graph adapted from[START_REF] Levin | Physics of tsunamis[END_REF].

Figure 1 .

 1 Figure 1.10: Cosmogenic tsunami -Numerical propagation of the tsunami generated by the impact of the Eltanin asteroid 2.15M a ago. The yellow dots show numerical tsunami heights. Work issued from Ward and Asphaug [2002].

Figure 1 .

 1 Figure 1.11: Propagation -Tsunami hitting the Koh Jum island during the event of 26 december 2004. Photo of Anders Grawin (www.kohjumonline.com/anders.html).

  than the others. Earthquakes take part in the fault life cycle. A fault is a fracture in the Earth crust. The largest faults join the tectonic plates, they are represented on the map in Figure1.14. Thus, they behave in function of the tectonic plate motion. The life cycle of a convergent fault, that is the main source of tsunamigenic earthquakes, is represented in Figure1.15.

Figure 1 .Figure 1

 11 Figure 1.14: Seismic source -World map of the main faults between the tectonic plates available on the website of the NOAA. The red, green and yellow faults correspond to the divergent, convergent and transform motion of the plates respectively.

Figure 1 .

 1 Figure 1.16: Seismic tsunami source -Definition of the geometrical parameters of the fault for the Okada method.

  Figure1.18: Kinematic generation -Geometry of the experiment of[START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], not at scale. The top frame is a top view and the bottom frame is a side view. The gray zone is the moving area of length b. The red crosses are locations of measurement gauges.

Figure 1

 1 Figure 1.19: Kinematic generation -Free surface elevation comparison at x h = b h between the exponential and the sinusoidal time history deformation for an impulsive motion (left) and a creeping motion (right). The geometrical parameters are: b/h = 12.2, ζ 0 /h = 0.2, t r √ gh/b = 0.069 for the impulsive motion and t r √ gh/b = 106.14 for the creeping motion. The figure is adapted from the work of Hammack [1973].

  Dutykh et al. applied this method to the Java 2006 tsunami event and compared the numerical result of the static and kinematic method at some gauges as presented in Figure 1.21. From this study, it clearly appears that taking into account the kinematic deformation influences the results.An alternative to improve the generation model is to use a Finite Element Model (FEM) of the subduction zone considered. This method was first proposed by[START_REF] Masterlark | Next generation of deformation models for the 2004 m9 sumatra-andaman earthquake[END_REF] for the 2004 Sumatra-Anderman earthquake and then also used by[START_REF] Romano | Structural control on the tohoku earthquake rupture process investigated by 3d fem, tsunami and geodetic data[END_REF] and[START_REF] Grilli | Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: Comparison to far-and near-field observations[END_REF] for the 2011 Tohoku event. The principle of this method is to couple the hydraulic model to a 3D FEM that simulates the deformation in the crust. For the model used by[START_REF] Masterlark | Next generation of deformation models for the 2004 m9 sumatra-andaman earthquake[END_REF] and[START_REF] Grilli | Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: Comparison to far-and near-field observations[END_REF], the developed FEM permits the authors, besides to impose a time sequence, to construct different regions with different material properties, taking into account the forearc of the trench and the inhomogeneities of the subduction zone as illustrated in Figure1.22.In their work,[START_REF] Grilli | Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: Comparison to far-and near-field observations[END_REF] compared the numerical free surface elevations issued from the coupled model to the only hydraulic model (with the generation model of[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF]) with a traditional generation at GPS buoys near the Japan and far field DART buoys. The authors concluded by finding a better agreement between the coupled model and the data than the traditional model. More recently,[START_REF] Ide | Modeling earthquakes using fractal circular patch models with lessons from the 2011 tohoku-oki earthquake[END_REF] proposed to use a fractal circular patch models to better describe the rupture propagation.However, these latter works are complex and more expensive to calculate. They need the development of a new coupled model while the proposition of[START_REF] Dutykh | On the use of the finite fault solution for tsunami generation problems[END_REF] with the kinematic finite fault method is easier to apply.

Figure 1 .

 1 Figure 1.21: Kinematic generation -Numerical results obtained by Dutykh et al. [2013] (Figure adapted from their work). The free surface elevation is measured at different gauges and compared between static generation model (solid thick line, model WN static) and kinematic generation model (dashed and blurred line, models WN (active), linearized model and BBM-BBM).

Figure 1 .

 1 Figure 1.22: Kinematic generation -Numerical domain defined by Grilli et al. [2013] for the subduction zone that is resolved by the FEM. The different part of the domain has their own material properties. Figure issued from the above-cited study.

  ure 2.1. The analysis is limited to one horizontal direction, with an unbounded domain in the wave propagation direction x. The same assumptions considered in Section 1.1.2 are applied here, i.e. no-viscous and incompressible fluid, irrotational flow, no-tension surface and no Coriolis effects. The fluid is bounded above by the free surface at z = η(x, t), and below by the sea bottom at z = -h + ζ(x, t), where h is the initial water depth and ζ the deformation of the sea bottom. Initially, the fluid is at rest, with a flat free surface and bottom: η(x, t = 0) = 0 and ζ(x, t = 0) = 0.

Figure 2 . 1 :

 21 Figure 2.1: Definition of the fluid domain and coordinate system (x, z), with h the initial depth, ζ(x, t) the deformation of the sea floor and η(x, t) the deformation of the free surface.

  Figure 2.3 shows an example of these critical wavenumbers in the spectrum. One can see that |η * | remains continuous everywhere.

Figure 2

 2 Figure 2.3: An example of the free surface Fourier transform η * with critical k * for v * p = 10 and τ * = 0.5 at t * = T * = L * v * p + t * r . The black line is the modulus of the Fourier transform |η * |. The vertical blue, green and red lines represent the locations of the singularities k * 1 , k * 2 , k * 3 , respectively.

  , L = 250 km in an ocean of depth h = 5 km, the dimensionless numbers correspond to rupture velocities v p ∈ [110; 11000] m.s -1 and rise times t r ∈ [0; 5644] s.

Figure 2 .

 2 Figure2.4 shows the free surface profiles for: v * p = 0.5, 1, 2, 10 and 50, and τ * = 0, 1 and 2. The maximum free surface elevation η * max /ζ * 0 varies with v * p and τ * . If v * p = 50 (i.e. very large) and τ * = 0, the free surface deformation is almost identical to the sea floor deformation (i.e. η * max /ζ 0 1) since the deformation is nearly instantaneous in both horizontal and vertical directions. When τ * increases, the wave begins to propagate before the end of the ground motion as noted by[START_REF] Jamin | Experiments on generation of surface waves by an underwater moving bottom[END_REF], the wave amplitude is smaller, and

  Figure 2.6: The maximum free surface amplitude, η * max /ζ * 0 as function of v * p and τ * for L * = 50 at t * = T * (colour in log scale).Figure 2.6a represents the original values while Figure 2.6b is an interpolation using a weighted average of the data.

  Figure 2.6: The maximum free surface amplitude, η * max /ζ * 0 as function of v * p and τ * for L * = 50 at t * = T * (colour in log scale).Figure 2.6a represents the original values while Figure 2.6b is an interpolation using a weighted average of the data.

Figure 2 .

 2 Figure 2.6 shows the dependency of η * max /ζ * 0 on the temporal parameters in v * p -τ * space. For small τ * , the parameter v *p has a strong influence on the maximum amplitude as previously shown. As in the particular case studied by[START_REF] Todorovska | Generation of tsunamis by a slowly spreading uplift of the sea floor[END_REF], a

  Figure 2.7: Impact of the deformation length L * for v * p = 1 and τ * = 0 at the end of the generation. 2.7a Spatial profiles of the free surface for different values of L * . 2.7b Red crosses represent the η * max /ζ * 0 of the linear solution and the black line is the trend line 0.414(L * ) 0.669 .

Figure 2 . 8 :

 28 Figure 2.8: Free surface profiles at t * = 100 for L * = 50 and different values of v * p and τ * . Same legend as Figure 2.4.

Figure 2 .Figure 2 . 9 :

 229 Figure 2.11 shows the evolution of the free surface deformation η * /ζ * 0 as a function of x * and t * for v * p = 1 and τ * = 0. In this graph, the frequency dispersion and wave asymmetry

Figure 2 .Figure 2

 22 Figure 2.12 shows the variations of the maximum amplitude η * max /ζ * 0 as a function of v * p and τ * for t * = 100, 500 and 1000. The shape of the dependence does not change with

Figure 2

 2 Figure 2.11: Evolution in space and time of the free surface deformation η * /ζ * 0 for v * p = 1 and τ * = 0. The colour represents the wave amplitude.

Figure 2

 2 Figure 2.12: Maximum free surface amplitude η * max /ζ * 0 as a function of v * p and τ * for L * = 50 at different times t * .
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 22 Figure 2.13: Spatial relative error of the numerical free surface issued from Misthyc at t * = T * for L * = 50 and different values of v * p and τ * .

Figure 2

 2 Figure 2.15: The blue line represents the modulus of η * for v * p = 50 and τ * = 0 at t * = T * . The grey striped zone shows the domain of validity of the long wave approximation. Waves with wavenumbers outside of this zone are not taken into account properly in the SWE model.

Figure 2

 2 Figure 2.16: Energy ratio ε = E l Et , at t * = T * as a function of v * p and τ * .

Figure 2

 2 Figure 2.17: Time profiles of the energy ratio ε = E l Et for different values of τ * and v * p . The horizontal black line represents ε = 0.5. The vertical black line is at t * = (L/ √ gh) * .

Figure 2

 2 Figure 2.18: The maximum free surface amplitude (η * max /ζ * 0 ) calculated with the nonlinear numerical model as function of v * p and τ * for L * = 50 and ζ 0 = 0.001 at t * = T * (colour in log scale).

Figure 2 .

 2 Figure 2.19: Free surface profiles from non-linear numerical results Misthyc, for ζ * 0 = 0.1 for v * p = 0.8, 0.9, 1, 1.1, 1.26 at the end of the ground motion.

Figure 2 Figure 2

 22 Figure 2.20: Deformation of the free surface at t * = T * and for v * p = 1 and τ * = 0: comparison of the linear solution (black line) and non-linear numerical results. The coloured dashed lines represent the dimensionless non-linear numerical results for different increasing non-linearity levels: ζ * 0 = 0.001, 0.005, 0.01, 0.1.

Figure 2

 2 Figure 2.22: Comparison of the deformation of the free surface at t * = 100 and 500 (2.22a and 2.22b respectively) for v * p = 1 and τ * = 0 of the linear solution and the non-linear numerical results. The thick black line is the theoretical linear solution and the coloured lines represent the non-linear numerical results of Misthyc for different initial deformations: ζ * 0 = 0.001, 0.005, 0.01, 0.1.

Figure 2

 2 Figure2.23: Comparison between the shape of the generated wave with the non-linear numerical result Misthyc (black full curve) and the shape of the solitary wave from the algorithm of[START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF] (dashed green curves) at t * = 993.

  Figure 2.24: Free surface profiles at t * = T * for L * = 50 and different values of v * p and τ * = 0. The black line is the linear Euler solution 2.21-2.23, and the dashed red line is the analytical LSWE solution 2.34-2.35. The scale of the Figure 2.24b is different from the others, the encapsulate figure is a zoom.

  Figure 3.1 shows the different numerical free surfaces modeled for the different values of CF L and meshes.

  Figure 3.1: Resonance phenomenon simulated with Telemac2D and NLSWE -Spatial profiles of the free surface deformation at the end of the ground motion (t * = T * with an accuracy of dt * ) for different values of CF L and dx * . The black line is the analytical free surface calculated from the LSWE theory. The coloured dashed curves represent numerical free surface profiles calculated with the different meshes.

  Figure 3.2: Resonance phenomenon simulated with Telemac2D and NLSWE -Spatial profiles of the free surface deformation at the end of the ground motion (t * = T * ) for dx * = 0.3 and dx * = 0.5 meshes. The black line is the analytical free surface calculated from the LSWE theory. The coloured dashed curves are the different values of the CF L.

  perceptible on graphs) and one for the bigger front wave, around L 2 h

  Figure 3.3: Resonance phenomenon simulated with Telemac2D and Boussinesq model -Spatial profiles of the free surface deformation at the end of the ground motion (t * = T * with an accuracy of dt * ) for different values of CF L and dx * . The black line is the analytical free surface calculated from the linear theory. The coloured dashed curves represent numerical free surface profiles calculated with the different meshes.

  Zealand event -Temporal parameters v * p and τ * estimated for few tsunami earthquakes. The "X" indicates unknown values.

Figure 3

 3 Figure 3.5: 1947 New Zealand event -Locations of the March and May 1947 Gisborne earthquakes, estimated tsunami run-ups, the main features of the plate boundary through New Zealand (inset), and the location of seismographs of the 1947 New Zealand seismograph network (inset). Bathymetry (contour interval 50 m) is from Lewis et al. (1997).Figure reprinted from the paper of Downes and Stirling [2001].

  Figure 3.5: 1947 New Zealand event -Locations of the March and May 1947 Gisborne earthquakes, estimated tsunami run-ups, the main features of the plate boundary through New Zealand (inset), and the location of seismographs of the 1947 New Zealand seismograph network (inset). Bathymetry (contour interval 50 m) is from Lewis et al. (1997).Figure reprinted from the paper of Downes and Stirling [2001].

  Figure 3.6: 1947 New Zealand event -Maximal amplitude of the free surface for L * = 35 at t * = T * . Grey zone represents the ranges of values of the temporal parameters τ * and v * p of the 1947 New Zealand event. (see Table3.2).

  Research (NIWA),[START_REF] Mitchell | Notman[END_REF]. It delivered a 250m (∼ 300m in the Mercator projection) grid resolution of New Zealand and its region. The numerical domain is bounded between the latitudes -39.5 • and -37 • and the longitudes 177.5 • and 180 • , focusing on the Gisborne coast. Figure3.7a shows the bathymetry of the concerned zone in the Mercator projection.

  Figure 3.7: 1947 New Zealand event -Numerical domain considered. Figure 3.7a represents the topography given by the NIWA, the black line is the coastline. Figure 3.7b is the mesh built for the case. Yellow box is the boundary of the zoom plotted in Figure 3.8.

  Figure 3.8: 1947 New Zealand event -Details of the mesh built for the event. The yellow boxes correspond to the boundary of the next zoom. The red line is the initial coast line.

  Figure 3.9: 1947 New Zealand event -Free surface deformation (in m) at the end of the ground motion for the four generation models calculated with the NLSWE model of Telemac2D. The indicated time corresponds to the time of end of ground motion varying between t = 0s for the instantaneous deformation to t = 310s for the generation with v p = 300m/s and t r = 120s.

  Figure 3.10: 1947 New Zealand event -Free surface deformation (in m) for the four generation models calculated with the NLSWE model of Telemac2D at t = 310s.

  Figure 3.11: 1947 New Zealand event -Snapshots of the free surface (in m) every 5 min. during the numerical propagation of the wave generated by an instantaneous sea floor deformation (model ID) with the NLSWE model of Telemac2D.

Figure 3

 3 Figure 3.12: 1947 New Zealand event -Snapshots of the temporal maximal free surface elevation (in m) calculated during one hour with the NLSWE model of Telemac2D for the different generation models.

Figure 3 .

 3 Figure 3.14: 1947 New Zealand event -Definition of the different measures during a runup. The data given by[START_REF] Downes | Groundwork for development of a probabilistic tsunami hazard model for New Zealand[END_REF] corresponds to run-up heights. The height measured in the numerical models is the inundation height at the shoreline. The blue line corresponds to the temporal maximal free surface elevation reached during the event.

Figure 3

 3 Figure 3.15: 1947 New Zealand event -Maximal water depth obtained at the coastline (black line in Figure 3.7a) during the event. The colourful lines represent the different generation models, and the black vertical bars the data of Downes and Stirling [2001]. The horizontal axis corresponds to the latitudes.

FigureFigure 3

 3 Figure 3.16.

  Figure 3.17: 1947 New Zealand event -Free surface deformation (in m) at the end of the sea floor motion, t = 190s, obtained with the NLSWE and the Boussinesq models of Telemac2D for v p = 300m/s and t r = 0s. Same scale as Figure 3.9.
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 33 Figure 3.18: 1947 New Zealand event -Snapshots of the temporal maximal free surface elevation (in m) calculated during one hour obtained with the NLSWE and the Boussinesq models of Telemac2D for v p = 300m/s and t r = 0s. Same scale as Figure 3.12.

  Figure 3.20: 1947 New Zealand event -Snapshots of the free surface elevation (in m) at the end of the generation (t = 380s) with the NLSWE and the Boussinesq models of Telemac2D for v p = 150m/s and t r = 0s. Same scale as Figure 3.9.

Figure 3

 3 Figure 3.21: 1947 New Zealand event -Snapshots of the free surface deformation (in m) during the propagation for NLSWE model (up) and Boussinesq model (down) of Telemac2D for v p = 150m/s and t r = 0s.

Figure 3 .

 3 Figure 3.22: 1947 New Zealand event -Size element repartition in the sea zone up to 25km from the coastline.

Figure 3 Figure 3

 33 Figure 3.24: 1947 New Zealand event -Maximal free surface elevations reached during the propagation along the transect A -A as defined in Figure 3.12. Only result for negative bathymetry is plotted. The black and blue line are the numerical results from the NLSWE and the Boussinesq models of Telemac2D, respectively. The model generation corresponds to v p = 150m/s and t r = 0s. The encapsulated figure is a zoom of the global curve near the coastline (distance∈ [15; 23]km).

  test cases presented here consist of two generation studies: 1D analytical sliding mass, Generation from a moving bed ; one propagation study: Propagation of a solitary wave and three run-up cases: Oscillations in a parabolic basin, Run-up of a Gaussian wave on a uniform slope and Run-up of a solitary wave on plane beach (not included in the TAN-DEM project). The choice of the model is done according to the theoretical solution or data proposed for the comparisons. Three models of Telemac are considered here: two with a 2D resolution, the Nonlinear Shallow Water Equation model of Telemac 2D (NLSWE T2D), the Boussinesq model of Telemac 2D (Boussinesq T2D) and one 3D resolution of the Navier-Stokes equations (NS T3D). Descriptions of these models are available in Appendix C. Numerical results from Telemac are compared to either measurements or analytical solution, and sometimes with numerical result from the code Misthyc, [Yates and Benoit, 2015]. Comparisons with the other codes involved in the project TANDEM are available in Violeau

Figure 4

 4 Figure 4.1: 1D analytical sliding mass -Geometry of the generation of a wave by a landslide. The coloured area represents the moving layer of the ground while the black line is the fixed bed.

Figure 4

 4 Figure 4.2: 1D analytical sliding mass -Comparisons of the spatial free surface profiles between the analytical solution (black line) and the numerical result from NLSWE Model of T2D (red line) at different times.

  Figure 4.3 shows a sketch of the experimental set up.

Figure 4 . 3 :

 43 Figure 4.3: Generation and propagation from a moving bed -Geometry of the experiment of[START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], not at scale. The top frame is a top view and the bottom frame is a slice view. The gray zone is the moving area of length b. The red crosses are locations of measurement gauges.

  Figure 4.4: Generation and propagation from a moving bed -Temporal free surface profiles during the generation at x * = 0 (left) and x * = b * (right) for an exponential motion. The blue lines are the numerical Boussinesq model of Telemac2D while Telemac3D is represented by the green dashed line. The numerical results issued from the code Misthyc are also plotted (black dashed line), Benoit et al. [2014]. The red points are measurements from Hammack [1973].

  Figure 4.6: Generation and propagation from a moving bed -Temporal free surface deformation during the propagation of a wave initiated by an impulsive exponential motion (b * = 12, ζ * 0 = 0.1, t * c = 0.148) at four places along the flume. The time is modified to fit the same scale. Same nomenclature as Figure 4.4.

Figure 4

 4 Figure 4.7: Propagation of a solitary wave -Spatial profiles of free surface deformation obtained with Telemac3D after t * = 500 of propagation of a H h = 0.5 high solitary wave for different values of CF L = Mt Mx with M x = 5. The horizontal and vertical lines show the expected wave height and mean position, respectively.

  M x = 10, 20 and 40 are plotted in Figure 4.8.

Figure 4 . 8 :

 48 Figure 4.8: Propagation of a solitary wave -Spatial profiles of free surface deformation obtained after t * = 500 for the different grid resolutions at CF L = 0.41 and H h = 0.5. The blue, green, orange and red lines are respectively NS Telemac3D results for M x = 5, M x = 10, M x = 20 and M x = 40 grids. The dashed black line is the numerical result from Misthyc with M x = 10. The horizontal and vertical lines show the expected wave height and mean position, respectively.

Figure 4 . 9 :

 49 Figure 4.9: Propagation of a solitary wave -Same nomenclature as Figure 4.8 for H h = 0.3 and 0.7

Figure

  Figure 4.7.

Figure 4 .

 4 Figure 4.10: Parabolic basin -Geometry of the perfect paraboloid basin.

  Figure 4.11: Parabolic basin -Initial paraboloid configuration. Spatial profiles on the slice y = 0 of the free surface deformation and of the horizontal velocity during one period. The dashed black line is the analytical NLSWE solution. The red line represents numerical results issued from the NLSWE model of T2D.

Figure 4 .

 4 Figure 4.12: Parabolic basin -Temporal evolution of free surface elevation at the center of the basin. The thick black line is the analytical NLSWE solution. The red line represents numerical results issued of the NLSWE model of T2D. The L 2 -error on h was calculated by the BRGM, partners of the TANDEM project, for the different codes. The error for the the NLSWE model of Telemac2D is less than 1%, see Violeau [2015].

Figure 4 .

 4 Figure 4.13 shows free surface deformation and horizontal velocity profiles for a half period.

  Figure 4.13: Parabolic basin -Initial flat configuration. Same nomenclature as Figure 4.11.

Figure 4 .Figure 4 Figure 4

 444 Figure 4.14, at t * = 2.24, 2.45, 3.08.

Figure 4

 4 Figure4.18: Run-up of a solitary wave on a uniform beach -Temporal free surface deformation for the solitary wave run-up on a plane beach at different places on the slope. The blue line is the numerical result from the NLSWE Telemac2D model. The dashed green line is the numerical result from the Boussinesq Telemac2D model. The red symbols are the data from[START_REF] Synolakis | The runup of solitay waves[END_REF].

Figure 4

 4 Figure 4.19: Run-up of a solitary wave on a uniform beach -Spatial free surface deformation profiles at different instants. Same nomenclature as Figure 4.18.

Figure 5

 5 Figure 5.1: 2011 Tohoku-Oki event -Figure issued from the work of Koketsu et al. [2011]. Slip distribution pattern obtained from the single inversion of: A. teleseismic data, B. ground acceleration from seismometers, C. geodetic data, D. teleseismic + ground accel-eration+ geodetic data, E. tsunamigram records. The yellow circles are aftershocks and the orange star is the epicenter of the main shock.

  Figure 5.2 represents the boundary of each grid, respectively grid 1 to 4. The boundary of the grid 1 is the boundary of the domain, and thus the boundary of the mesh. In this case, it is considered as wall type. Except the bay of Iwate, the coastlines are considered as wall. The bathymetry and the mesh are represented in Figure 5.3. The mesh is adapted to the variation of bathymetry with smaller elements close to the fault and the coast. The minimum element length is 5.3 INITIAL CONDITION AND SEISMIC SOURCES 115 ∼ 10m close to the coast and the maximum length of the element is ∼ 15km far-field.

Figure 5

 5 Figure 5.2: 2011 Tohoku-Oki event -Limit of the four grids (black lines) used to create the mesh. The blue line represent the boundary of the Japan islands.

5. 3 . 1

 31 Shao et al.'s SourceAs described in the paragraph 5.1, the source issued of the work of[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] considered only teleseismic body and surface waves. The authors used 27 teleseismic P and 18 SH waveform records (body waves) and 53 surface wave records, and follow the procedure of[START_REF] Ji | A teleseismic study of the 2002 denali fault, alaska, earthquake and implications for rapid strong-motion estimation[END_REF]. The model is composed of 190 25km × 20km subfaults.The strike is supposed constant (198 • ) and the dip angle is fixed at 10 • . The length fault is 300km and the width fault is estimated at 90km. The characteristics of each subfault are available on their website (http://www.geol.ucsb.edu/faculty/ji/big_ earthquakes/2011/03/0311_v3/Honshu.html). Figure5.4 shows the slip pattern obtain with this inversion.

  (a) Global view. (b) View of the Iwate bay.

Figure 5

 5 Figure 5.3: 2011 Tohoku-Oki event -Bathymetry (left) and mesh (right) of the domain considered in the projection of Mercator. Figure 5.3a gives a glimpse of the total domain and a closest East part of Japan while figure 5.3b shows more precisely the bathymetry and the mesh of the Iwate bay, the thin black line is the isoline for a ground elevation z = 0, considered as the coastline.

Figure 5 .

 5 Figure 5.6 shows a comparison at t = 180s between the kinematic and static generation.The initial deformation amplitude of the static model is larger than the one with the

  Figure 5.6: 2011 Tohoku-Oki event -Snapshot of the free surface deformation from NL-SWE model of Telemac2D with source models of Shao et al. [2011]. The Figure 5.6a is the initial deformation for the static model. The Figure 5.6b is the free surface deformation at t = 180s from the static initialisation (left) and the kinematic generation (right). The scale is the same for both models.

Figure 5

 5 Figure 5.7: 2011 Tohoku-Oki event -Evolution of the slip pattern during 5min. The interval if each update is 30s. The white star is the epicenter. Figure issued from the work of Satake et al. [2013].

Figure 5

 5 Figure 5.8: 2011 Tohoku-Oki event -Seafloor deformations issued of the model source of Satake et al. [2013] at 30s time intervals.

Figure 5 .

 5 Figure 5.10: 2011 Tohoku-Oki event -Snapshots of the free surface elevation calculated with the NLSWE model of Telemac2D simulation and using the generation issued of Satake et al. [2013]. The snapshots are taken every 5min for the first 35min of the propagation.

Figure 5

 5 Figure5.12: 2011 Tohoku-Oki event -Comparisons between measurements from GPS gauges and numerical results of the free surface deformation. The black thick line is the data. The blue line is Telemac2D result from[START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF] source. The orange and the green lines are respectively the Telemac2D results from the kinematic and static[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] sources.

Figure 5 .

 5 Figure 5.13: 2011 Tohoku-Oki event -Location of the DART buoys. Their measurement are available at https://www.ngdc.noaa.gov/hazard/dart/2011honshu_dart.html.

Figure 5

 5 Figure5.14: 2011 Tohoku-Oki event -Comparisons between measurements from DART buoys and numerical results of the free surface deformation. The black thick line is the data. The blue line is Telemac2D result from[START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF] source. The orange and the green lines are respectively the Telemac2D results from the kinematic and static[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] source.

Figure 5 .

 5 Figure 5.15: 2011 Tohoku-Oki event -Comparison between the inundation heights obtained by the numerical models and the survey measurements at the Iwate Bay. The black dots are data from the 2011 Tohoku Earthquake Tsunami Joint Survey Group, release 20120330, http://www.coastal.jp/ttjt/, the blue dots are numerical result from Telemac2D with the generation from Satake et al. [2013] and the green dots numerical results with the generation from Shao et al. [2011].

Figure 5 .

 5 Figure5.17: 2011 Tohoku-Oki event -Zoom on the Hei River. The grey zone is the land and the blue elements correspond to the flooded area with a minimum water depth of 0.5m. The elements of the mesh are in black, they are of the order of 100m. The white line is the initial coastline.

  Figure 5.18: 2011 Tohoku-Oki event -Snapshots of the flooded area obtained by the numerical models in the South area of the bay of Iwate. Results in Figures 5.18a and 5.18c are obtained respectively from the model of Satake et al. [2013] and Shao et al. [2011].Figure 5.18b is adapted of the work of Chen et al. [2014].

  Figure 5.19: 2011 Tohoku-Oki event -Snapshots of the flooded area obtained in the North and South areas of the Iwate bay by the NLSWE model of Telemac2D without and with friction bottom, Figures 5.19a, 5.19c and Figures 5.19b, 5.19d, respectively. The friction law is the Strickler law with a coefficient of 30m 1/3 /s. The white line is the initial coastline.

Figure 5

 5 Figure 5.20: 2011 Tohoku-Oki event -Potential energy ratio ε at t * = T * for L * = 267. The striped grey zone shows the possible parameter values for the Tohoku, 2011 event.

Figure 5

 5 Figure 5.21: 2011 Tohoku-Oki event -Comparisons between measurements and numerical results of the free surface deformation. The black thick line is the data. The red and blue lines are the result from the NLSWE and Boussinesq models of Telemac2D, respectively.The source is the one from the model of[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF].

  ture v p et le temps d'élévation t r . La nouveauté ici est de travailler avec les deux paramètres simultanément et d'étendre l'étude linéaire théorique au nonlinéaire numérique. Cela a permis l'identification d'une zone de résonance, t r petit et v p proche de la vitesse des ondes longues, pour laquelle les vagues sont amplifiées et dans laquelle des phénomènes dispersifs se développent. Cette étude théorique est illustrée par un évènement réel, celui du tsunami qui frappa la Nouvelle Zélande en 1947. Le modèle numérique construit à cet effet montre d'importantes différences lorsqu'une génération cinématique est utilisée à la place de la traditionnelle génération statique : les vagues générées sont plus grandes. Cependant, le modèle numérique de Boussinesq n'a pas détecté de phénomènes dispersifs, ce qui peut être dû à une surestimation de ces effets par la théorie ou à un maillage pas assez précis près des côtes. Pour conclure, ce travail permet de montrer la nécessité d'utiliser une source cinématique lors des évènements très lents, tel que les "tsunami earthquakes". Parallèlement, la capacité du système Telemac a été testée pour la modélisation de tsunamis. Que ce soit pour la génération ou le run-up, les modèles numériques donnent de bons résultats. Cependant, certains cas, comme la propagation de l'onde solitaire, ont montré une certaine dépendance aux paramètres numériques. La validation du système Telemac pour les tsunamis est finalisée par la modélisation de l'évènement réel de Tohoku-Oki (2011) pour lequel de nombreuses données sont disponibles. Deux modèles de source ont été testés, les deux donnant des résultats très corrects avec le modèle Saint-Venant. Un modèle de Boussinesq a été mis en place mais une limitation numérique a seulement permis la confrontation des résultats numériques à des données proches de la source. A ces endroits, comme attendu par la théorie, le modèle de Boussinesq reste très 134 CONCLUSIONS proche de celui de Saint-Venant pour les conditions de ce cas. Les problèmes rencontrés avec l'utilisation des codes Telemac encouragent à une analyse précise des schémas de discrétisation utilisés, ce qui pourrait expliquer certains comportements. De plus, pour un évènement réel, un modèle global couvrant à la fois la génération, la propagation en haute mer et l'inondation n'est peut être pas le plus pertinent pour utiliser le modèle de Boussinesq. Dans cette optique, un modèle emboîté semble être une bonne alternative. De plus, dans cette thèse le frottement du fond n'est pas pris en compte, or son impact peut être non négligeable lors de la phase d'inondation. Insérer un frottement caractéristique à chaque zone inondée serait une belle amélioration pour l'inondation, mais pour cela un modèle des côtes plus précis que celui utilisé dans cette thèse serait nécessaire. 5.7 FIRST CONCLUDING REMARKS 135

  theoretical study was extended to non linear numerical studies. These different works permit to highlight a resonance zone, independent of the model of equations, as function of the temporal timescales: v p close to the long wave celerity √ gh, and t r small. Two phenomena appeared in this resonance zone. First, a wave focusing leads to the amplification of the amplitude of the wave generated beside the amplitude of deformation. For the particular values of v p = √ gh and t r = 0, an empirical relation was found between the maximal free surface amplitude and the deformation length at the end of the ground motion. The second phenomenon is the development of dispersive effects. An energetic ratio ε, between the potential energy poorly represented by the Shallow Water Equations and the total potential energy, is defined. According to the temporal parameter values and the geometrical aspect, this ratio can reach important values, questioning the use of the Shallow Water Equations to model such events. Moreover, for substantial enough amplitude of the deformation, the non linear effects lead to the formation of what seemed to be solitary waves. This theoretical work was illustrated by the real event of March 1947 that occurred in New

Telemac2D.

  Two source models were tested given different results. The numerical free surface elevation from the[START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF] source is in good agreement with local buoys and inundation data. However, this model looses its precision on far field prediction. On the contrary, the model with the[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] source over-predicts the local leading wave and the flooded areas, but better matches the far field measurements.The bottom friction is not included in the numerical models, which should influence the inundation modelling in favour of the[START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF] source model. An attempt with the Boussinesq model of Telemac2D was done for this event. Locally, according to the theoretical value of ε, the Shallow Water Equations should be sufficient, and thus weak differences should appear between the Boussinesq and the NLSWE models close to the source. Beside, it was shown in few studies that dispersive effects developed in local areas, as close to the Fukushima Nuclear Power Plant[START_REF] Chen | The march 11, 2011 tohoku m9.0 earthquake-induced tsunami and coastal inundation along the japanese coast: A model assessment[END_REF]) or off shore[START_REF] Kirby | Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and coriolis effects[END_REF]). However, a numerical limitation did not permit us to have more than one hour of propagation of this event. During this short duration, only the comparisons with local GPS buoys are possible for which the Boussinesq model gives similar result to the NLSWE model, matching the theory.
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Table 2 .

 2 1: Variables and units of the problem. elevation η and the water depth h. TheVaschy-Buckingham, or Π theorem [see Buckingham, 1914;[START_REF] Vaschy | Sur les lois de similitude en physique[END_REF] is used to identify the non-dimensional parameters. There are two independent units (time [s], and space [m]) and seven variables summarised in Table2.1. Thus five non-dimensional variables can be defined:

Table 3 .

 3 2: 1947 New Zealand event -Estimation of the characteristic parameters of the 25 March 1947 event, which occurred in the Offshore Poverty Bay (NZ). These values were given in personal communication.

	Date	03/25/1947
	Epicentre Location	38.92SS, 178.24E
	Fault Characteristics
	Length	55km
	Width	50km
	Depth of the fault	5 -12km
	Dip angle	8 •
	Rise time (fault's rupture)	10 -20s
	Water depth near the source	∼ 1500m (between 100 and 3000m)
	Rise time t r	∼ 90s (between 60 and 120s)
	Rupture velocity v p	∼ 175m/s (between 150 and 300m/s)
	Deformation of the ground ζ 0	∼ 1m

If we assume that v p ∈ [150; 300]m/s with a mean value of 175m/s, then v * p ∈ [0.87; 9.57] with a mean value of v * p = 1.44. The smallest v * p is reached for v p = 150m/s and a depth of 3000m. The largest v * p is reached for v p = 300m/s and h = 100m. Likewise, if t r ∈ [60; 120]s with a mean value of t r = 90s, we have τ * ∈ [0.034; 0.36] with a mean value of τ * = 0.2. The smallest τ * is reached for t r = 60s and a depth of 100m. The largest τ * is reached for t r = 120s and h = 3000m. These numerical values were provided by Dr. William Power of the Institute of Geological and Nuclear Sciences (GNS Sciences, personal communication).

Table 3

 3 

				0	0	190	KD 0
	Kinematic	300	[2.47; 9.57]	60	[0.034; 0.18]	250	KD 60
				120	[0.068; 0.36]	310	KD 120

.3: 1947 New Zealand event -Generation models considered for this event. The dimensionless parameters are estimated for a water depth varying between 100 and 3000 m.

  defined three velocities, an impulsive motion with t *

	4.3 GENERATION AND PROPAGATION FROM A MOVING BED	95
		Exponential motion Sinusoidal motion
	Velocities	b *	ζ * 0	t * r	b *	ζ * 0	t * r
	Impulsive		0.2	0.069	6.10		0.13
	Transitional	12.2	0.1	0.39	1.22	0.1	0.90
	Creeping		0.3	8.70	0.61		31.4
	Table 4.1: Generation and propagation from a moving bed -Parameter values for the
	different cases.						
	motion with t * r						
						r	1, a creeping

  1/3 /s, corresponding to areas with vegetations. With this first attempt, we can see that the bottom friction strongly influences the extension flooded areas. However,

	126	CHAPTER 5: THE 2011 TOHOKU-OKI EVENT
		39.8
		39.6
	latitude [deg]	39.2 39.4
		39
		38.8
		0 5 10 15 20 25 30 35 40 45
		run up [m]
		T2d -Shao model T2d -Satake model Survey

an uniform friction coefficient seems to be a rough approximation, in this case the model under-predicts the reality. A heterogenous pattern of the friction coefficient may permit a better approach of the phenomenon.

Table 5 .

 5 2: 2011 Tohoku event -non-dimensional temporal and geometric parameters of the Tohoku event. The values are issued ofIto et al. [2011],[START_REF] Satake | Time and space distribution of coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform data[END_REF] and[START_REF] Koketsu | A unified source model for the 2011 tohoku earthquake[END_REF].
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Meteostunami and storm surge are in the same scope, however they have different time and spatial scales as mentionned by[START_REF] Monserrat | Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band[END_REF] and[START_REF] Levin | Physics of tsunamis[END_REF].

Ce travail a été financé par le projet TANDEM, référence ANR-11-RSNR-0023-01 du programme français d'Investissement d'Avenir (PIA 2014-2018).

State of art

The Tohoku-Oki event that occurred the 11 th March 2011 at 14 : 46 : 18, made a lasting impression due to both nuclear disaster and the devastating tsunami. The tsunami was observable all over the Pacific and combining with the earthquake, it killed 15890 people, injured more than 6000 people and cost $220 billion of damage only in Japan (https: //www.ngdc.noaa.gov/hazard/data/publications/2011_0311.pdf). The positive part of this catastrophe is the exceptional number of records: this event is well documented and thus is the subject of numerous studies. For these reasons among others, the members of the French project TANDEM (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modelling) decided to model this event; the present study comes within its scope.

For this event a multitude of data are available: teleseismic body and long period surface waves, static Global Positioning System (GPS) sensors, offshore GPS buoys, Deep-ocean Assessment and Reporting Tsunami (DART) tsunamigrams and tide gauges records. They permit with an inversion of data to build models for the generation source [START_REF] Ji | Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[END_REF]). [START_REF] Toda | Using the 2011 mw 9.0 off the pacific coast of tohoku earthquake to test the coulomb stress triggering hypothesis and to calculate faults brought closer to failure[END_REF] described five possible seismic rupture models given by [START_REF] Wei | Tohoku source model v.1[END_REF] and [START_REF] Simons | The 2011 magnitude 9.0 tohoku-oki earthquake: Mosaicking the megathrust from seconds to centuries[END_REF], [START_REF] Fujii | Tsunami source of the 2011 off the pacific coast of tohoku earthquake[END_REF], [START_REF] Shao | Focal mechanism and slip history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with teleseismic body and surface waves[END_REF], Pollitz et al. [2011], Yagi and Fukahata [2011b]. The origin data of these five models are summarised [START_REF] Chen | The march 11, 2011 tohoku m9.0 earthquake-induced tsunami and coastal inundation along the japanese coast: A model assessment[END_REF] built hydrodynamic models with ocean conditions for these five source models. Depending on the data, the pattern of the ground deformations differs a lot (not shown here). Indeed each data set has an influence on the generated source model. If separated inversions are performed for each single data set as did by [START_REF] Koketsu | A unified source model for the 2011 tohoku earthquake[END_REF],

different patterns of the slip are obtained, as shown in Figure 5.1.

Chen et al. measures the influence of the source by comparing numerical results (performed by FVCOM system) with observed sea-level displacements at tide gauge locations.

The inundation of the coast is also studied at four locations, especially at the Fukushima
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the meshes of the above mentioned models were especially built for this work, from scratch for the New Zealand case and from an existing rough mesh for the Tohoku-Oki event.

Appendix A

Fourier transform of the free surface

In this appendix, the calculations from the Equation 2.20 to the Equation 2.21 are detailed.

An inverse Laplace transform is applied. The latter satisfies:

Where:

Appendix B

Treatment of the singularities

In this appendix, we treat the singularities of η appearing in Equation 2.21. We can identify three critical cases where η is discontinuous:

As said in pragraph 2.2.3, to keep a continuous function, the limit of η is taken when |k -k critical | < 10 -6 h. For case (i), D is defined as:

We have:

Description of the Telemac system

The Telemac system is an open-source code that models the hydrodynamics of free surface flows. This code, initiated by J.-M. Hervout at EDF, is continuously developed and upgraded. The aim of the present Appendix is to briefly describe the modeled equations and the numerical processes. A complete description is available in the book of [START_REF] Hervouet | Hydrodynamics of free surface flows: modelling with the finite element method[END_REF] and in the reference manuals online (http://opentelemac.org/). During this thesis, only two modules have been used: Telemac2D and Telemac3D.

C.1 Telemac2D

Telemac2D can solve the Non-Linear Shallow Water Equations (NLSWE) and the Boussinesq equations. For the NLSWE, the code solves the following equations:

With:

• h (m) water depth (unknown)

• S h (m/s) source or sink of fluid

• S x , S y (m/s 2 ) source terms in momentum equations

• Z (m) free surface elevation For real case events, it is possible to add the Coriolis force and the bottom friction in the definition of S x and S y . The Coriolis force is calculated such as:

with ω the angular velocity of the Earth and λ the latitude of the point. For the bottom friction, several laws are proposed but we choose to use the Strickler law:

with α the steepness of the slope and K (m 1/3 /s) is the coefficient of Strickler. Another important point to take in consideration for real case events as tsunami is the spherical coordinantes. For this case, the differential operator are adapted (see [START_REF] Hervouet | Hydrodynamics of free surface flows: modelling with the finite element method[END_REF]).

If the model needs a non-hydrostatic configuration, it is also possible to solve the Boussinesq equation. Switching from Equations C.1 to the Boussinesq equation is done by adding an extra term, representing the impact of the vertical acceleration, in the momentum equation. The extra term is the following:

where H 0 is an average depth. This new equation corresponds to the weakly dispersive and weakly non linear Boussinesq -Peregrine equations developped by [START_REF] Peregrine | Long waves on a beach[END_REF].

Numerically, to solve the previous equations, Telemac2D uses a finite element (most used in this thesis) or finite volumes methods on unstructured triangular meshes. By default, to solve the convection, the characteristic method is used with a fractional steps method, meaning that the equations are solved by some distinct steps. The characterisic method is a low diffusion method of order 1. If the system C.1 is rewritted in term of effect, it comes:

where f is the unkonwn scalar. Its discretisation in time is defined such as:

The numerical resolution steps are:

1. the advection of the physical quantities using the characteristics method f -f n δt + advection term = 0, C.2 TELEMAC3D 149 2. the diffusion and source term with a Finite Element technique f n+1 - f δt = diffusion term+ source term.

If the characteristics method is not choosen for the advection, only one step is performed using a Finite Element technique. Thus, the choice of the numerical scheme is let to the convenience of the user. The main numerical schemes used in this thesis, besides the characteristic method, are a mass-conservative PSI distributive scheme and an edge by edge implementation mass conservative scheme of order 2 (adapted for dry zone). (see [START_REF] Pavan | New advection schemes for free surface Wows[END_REF]). The time discretization is based on a θ-scheme. It is a semi-implicit formulation, for sake of stability θ ∈]0.5, 1], and if θ is close to 0.5 a nearly second order of discretization. However, with the use of a fractional steps method, the order of the time discritization does not cout.

C.2 Telemac3D

Telemac3D solve the 3D free surface incompressible Navier-Stokes Equations, with hydrostatic hypothesis it gives:

For non-hydrostatic hypothesis, the previous system is completed by a third momentum equation and a dynamic term is added at the equation of the pressure:

w is the third velocity component and P d the dynamic pressure term. Similarly than Telemac2D, Telemac3D uses Finite Element method with a fractional step algorithm:

with f the unknown considered scalar. Thus, the numerical resolution is perfomed in three steps:

• the advection step: f C -fn δt + advection terms = 0,

• the diffusion step: f D -f C δt + diffusion term = source term,

• the pressure term: f n+1 -f D δt + pressure terms = 0

Again, the choice of the advection scheme for each variable is let to the user, however during this thesis only the characteristic method and a so-called MURD PSI scheme are used. The 3D mesh is composed of prisms, Telemac3D builds the 3D domain from a 2D mesh that is extruded.