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A B S T R A C T

The analysis of curvilinear structures in 3D images is a complex and challenging task. Curvi-
linear structures are thin, easily corrupted by noise, and can have a complex geometry. De-
spite the numerous applications in material science, remote sensing and medical imaging,
and the large number of dedicated methods developed the last few years, the detection of
such structures remains a difficult problem.

In this work, we provide an analysis of curvilinear structures. We first propose a new
framework, called RORPO, to characterize such structures via two features: an intensity
feature, which preserves the intensity of curvilinear structures, while decreasing the intensity
of other structures; and a directional feature, providing at each point the direction of the
curvilinear structure. RORPO, unlike state-of-the art methods, is a non-local and non-linear
framework, that is better adapted to the intrinsic anisotropy of curvilinear structures. RORPO
is based on recent advances in Mathematical Morphology: the path operators.

We provide a full description of the structural and algorithmic details of RORPO, and we
also conduct a quantitative comparative study of our features with three popular curvilinear
structure analysis filters: the Frangi Vesselness, the Optimally Oriented Flux, and the Hybrid
Diffusion with Continuous Switch.

Besides the straightforward filtering applications, both RORPO features can be used as
priors to characterize curvilinear structures. We propose a regularization term for variational
segmentation which embed these features. Classical regularization terms are not adapted to
curvilinear structures, and usually lead to the loss of most of the low contrasted ones. Based
on the RORPO features, we propose to only regularize curvilinear structures along their
main axis. This directional regularization better preserves curvilinear structures, but also
reconnects some of the parts of these structures that may have been disconnected by noise.

We present results of the segmentation of retinal images with the Chan et al. model either
with the classical total variation, or with our directional regularization. This confirms that
our regularization term is better suited for images with curvilinear structures.
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R É S U M É

L’analyse des structures curvilignes en 3 dimensions est un problème difficile en analyse
d’images. En effet, ces structures sont fines, facilement corrompues par le bruit et présentent
une géométrie complexe. Depuis plusieurs années, de nombreuses méthodes spécialement
dédiées au traitement d’images contenant des structures curvilignes ont vu le jour. Ces
méthodes concernent diverses applications en science des matériaux, télédétection ou encore
en imagerie médicale. Malgré cela, l’analyse des structures curvilignes demeure une tâche
complexe.

L’objet de ce manuscrit est la caractérisation des structures curvilignes pour l’analyse
d’images. Nous proposons en premier lieu une nouvelle méthode appelée RORPO, à partir
de laquelle deux caractéristiques peuvent être calculées. La première est une caractéristique
d’intensité, qui préserve l’intensité des structures curvilignes tout en réduisant celle des
autres structures. La deuxième est une caractéristique de direction, qui fournit en chaque
point d’une image, la direction (sous la forme d’un vecteur) d’une structure curviligne po-
tentielle.

RORPO, contrairement à la plupart des méthodes de la littérature, est une méthode non lo-
cale, non linéaire et mieux adaptées à l’anisotropie intrinsèque des structures curvilignes. Le
fondement de notre méthode repose sur une notion récente de Morphologie Mathématique:
les opérateurs par chemins.

Dans cette thèse, nous proposons une description complète de RORPO et de ses propriétés
algorithmiques. Nous menons aussi une étude quantitative de ses deux caractéristiques en
les comparant avec trois autres filtres populaires de détection de structures curvilignes: La
Vesselness de Frangi, les Optimally Oriented Flux (OOF) et l’Hybrid Diffusion with Contin-
uous Switch (HDCS).

RORPO peut directement servir au filtrage d’images contenant des structures curvilignes,
afin de spécifiquement les préserver, mais aussi de réduire le bruit. De plus, les deux carac-
téristiques de RORPO peuvent aussi être utilisées comme information a priori sur les struc-
ture curvilignes, afin d’être intégrées dans une méthode plus complexe d’analyse d’image.
Nous proposons une telle application dans la deuxième partie de cette thèse. Nous con-
cevons un terme de régularisation destiné à la segmentation variationnelle, qui est mieux
adapté aux structures curvilignes que la plupart des autres termes de la littérature. Pour ce
faire, nous intégrons les deux caractéristiques de RORPO dans cette régularisation, ce qui
nous permet de régulariser les structures curvilignes seulement dans la direction de leur axe
principal. Nous préservons ainsi mieux ces structures mais nous pouvons aussi reconnecter
certaines structures curvilignes déconnectées par le bruit.

Les résultats de cette nouvelle régularisation sont présentés sur la segmentation de vais-
seaux sanguins du fond d’oeil. Nous comparons aussi ces résultats avec le modèle de seg-
mentation de Chan et al. ce qui nous permet de montrer que notre terme de régularisation
est en effet bien mieux adapté aux structures curvilignes.
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1
I N T R O D U C T I O N

Image analysis consists of extracting information from image data, usually by means of im-
age processing techniques. With digital imaging becoming more prevalent, so has image
analysis over the last few decades. Image analysis is used in many fields involving imag-
ing technologies, including astronomy, medicine, robotics, biology and defense. Most image
analysis methods require, at some point, the detection of various structures in images. These
structures may be complex, like objects or passerby in a scene, or simpler, like round cells
in microscopy images. In any case, suitable prior knowledge, characterizing the structure
of interest, is usually required to be embedded in the detection method. Common priors
describe the shape, color or pose of the structure.

One type of useful prior characterizes the geometry of the structure. In this thesis, we
focus on the detection of structures with a specific geometry: the curvilinear structures. A
curvilinear structure, in a n-dimensional (nD) image, is locally significantly longer in one
dimension than in the n− 1 remaining dimensions (see Figure 1).

Blob Curvilinear

2D

3D

Plane

Figure 1: Illustration of the different type of structures in the 2D and 3D space, according
to their sizes in the different dimensions. The reader should keep in mind that
these illustrations are simplified drawings based on the geometric properties of
each structure. In real applications, curvilinear structures and plane-like structure
are usually not straight.

Many image analysis applications involve the detection of curvilinear structures. For in-
stance, one may want to extract roads in remote sensing images, or fibers in material science
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14 introduction

images. In medical image analysis, the detection of curvilinear structures is often a common
but crucial task: e.g. the segmentation of the respiratory tree or blood vessels both in 2D or
3D (see Figure 2).

(a) (b)

(c) (d)

Figure 2: Example of images involving curvilinear structures. (a) Glass fibers in CT-scan, (b)
roads in remote sensing, (c) the airways in CT-scan, and (d) blood vessels in retinal
images. (a) and (c) are slices of 3D images while (b) and (d) are pure 2D images.

Despite a large field of applications, curvilinear structure characterization remains a diffi-
cult task due to their specific geometry. First of all, the structures of interest are very sparse,
which means that the ratio of pixels containing information on curvilinear structures is very
small. This obviously complicates the task, in particular for statistical methods and learning
approaches.

Moreover, this sparsity makes the evaluation of curvilinear structure detection algorithms
very difficult. This is a frequently underestimated, but crucial, consequence. Indeed, with-
out good performance measures, comparing and improving curvilinear structure detection
methods is impossible.

Due to their low thickness, curvilinear structures are also more sensitive to noise and ar-
tifacts than other structures (see Figure 3). Even a small amount of noise may be sufficient
to disrupt their contours, leading to disconnections or misconnections, which make the de-
tection task even more challenging. Once again, classical quality scores do not measure
the preservation of connectivity. Finally, curvilinear structures in real applications generally
present complex geometries and topology. They can be more or less tortuous, present differ-
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ent orientations and scales inside the same image, and also form a network (possibly with
cycles), making geometric priors very difficult to use.

(a) (b) (c)

Figure 3: A few examples of challenging curvilinear structure detection. (a) An electron mi-
crograph of glass fibers. The difficulty comes from their low-contrast and thinness.
Illustration from [86].(b) an X-ray fluoroscopy taken during an angioplasty. The
detection of the catheter, which is highlighted in green in (c), is interesting to track
the surgery procedure.

In this work, we address the general problem of curvilinear structure characterization
and detection, both through methodological developments and their applications to medical
image analysis. We only focus on solid curvilinear structures, i.e. curvilinear structures
which are not hollow.

In the first part of this work, we propose a new non-linear operator, called the Ranking
Orientation Responses of Path Operators (RORPO), built upon the notion of path operator
in mathematical morphology. From this new operator, two curvilinear characteristics can be
computed: an intensity feature, that can be seen as a curvilinearity measure, and a directional
feature, providing a local orientation estimation of the curvilinear structures. Both features
are low-level curvilinear structure characteristics, and are essentially devoted to be embedded
in more sophisticated image processing methods, like filtering or segmentation.

Secondly, we propose a way to use these features in a variational segmentation frame-
work, where both the intensity and directional features are embedded in a novel directional
regularization term. The results constitute promising perspectives to address the specific
problem of blood vessel segmentation in brain MRA images, which is an essential part of the
VIVABRAIN project.

the vivabrain project

Vascular diseases such as stenoses, aneurysms or arterio-venous malformations, affect mil-
lions of people worldwide. Their diagnosis is of utmost importance, and often involves
medical imaging as angiography. Nonetheless, angiographic images are complex and time
consuming to analyze manually. Since the mid 1990, various tools have been developed to
assist physicians with this task [30, 88]. However this still remains an open problem, partic-
ularly when dealing with 3D images.



16 introduction

The VIVABRAIN project1 is a pluridisciplinary project involving several research fields
like computer science, mathematics, physics and medicine. The VIVABRAIN project aims
at providing tools and data, allowing for a better understanding of Magnetic Resonance
Angiography (MRA) images of vascular networks, especially in the human brain. This project
is articulated around five main steps:

• The acquisition of MRA images;

• The extraction of the vascular volume;

• The design of a vascular model from the volume;

• The simulation of the blood flow inside the model;

• The simulation of MRA acquisitions from the model and the flow simulations.

In addition to the tools developed during this five-year project, the final goal of VIVABRAIN
is to provide to the scientific community a set of MRA images along with their ground truth
(see Figure 4). Indeed, the provided MRA will be the simulated images generated from the
vascular model (the ground truth) and the flow simulations. With these data, scientists will
be able to validate and compare their algorithms on real complex images. The Brainweb
project [19] proposed a similar framework for standard T1 or T2 Magnetic Resonance Imag-
ing (MRI). To the best of our knowledge, there does not exist publicly available ground truth
of the brain vascular network.

Segmentation

ModelisationFlow 
Simulation

MRA 
Simulation

VIVABRAIN
ANR

1

23
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Scientific 
Community

Simulated 
MRA

Ground 
Truth

Figure 4: The VIVABRAIN Project.

The work presented in this thesis was funded by the Agence Nationale de la Recherche
(ANR) that supports the VIVABRAIN project. It is a subset of the second step of the project
that is dealing with the filtering and segmentation of the brain vascular network.

1 http://vivabrain.fr

http://vivabrain.fr
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thesis context

This PhD work started in October 2013, and took place under the supervision of Hugues
Talbot and Nicolas Passat. Most of the time I worked at ESIEE Paris in the Laboratoire
d’Informatique Gaspard Monge (LIGM). However I had the opportunity to spend a few
months in other laboratories.

In June 2014, Leo Grady invited me to spend a month at HeartFlow2 in California, where
I worked under the supervision of Michiel Schaap on the segmentation of the coronaries on
CT-scan images.

I also spent two months, in November 2014 and June 2015, in Strasbourg at the ICube labo-
ratory to work on the VIVABRAIN project. I collaborated with Benoît Naegel on the filtering
and segmentation of the MRA images of the project, using the tools I developed.

During these three years, with collaborators, I published four articles in international con-
ferences (ECCV 2014, ISMM 2015, ICIP 2016 and MICCAI 2016) and a journal article has
undergone a first round of revision with IEEE PAMI. The reader may find a more exhaustive
list in the List of Publications and Communications, at the end of this manuscript.

outline

In the next chapter, we review the state-of-the art on the filtering and segmentation of curvi-
linear structures. Then, this manuscript is divided into two parts.

The first part presents our RORPO operator. We start by introducing the general context
and motivation of this new curvilinear structure detector in Chapter 3, followed by a detailed
presentation of the previous work related to path operators in Chapter 4. Chapter 5 presents
the framework we developed, and the two features derived from RORPO. Algorithmic con-
siderations on the parameters, robustness and computation time are discussed in Chapter 6.
Finally we present a validation and comparison study in Chapter 7.

The second part of the manuscript presents the regularization term we propose for varia-
tional segmentation of curvilinear structures. After a short introduction in Chapter 8, Chap-
ter 9 presents the previous work on the total variation that is the basis of our regularization
term. We present our methodology and segmentation results in Chapter 10. Finally a conclu-
sion and the future work are presented in Chapter 11.

2 https://www.heartflow.com/

https://www.heartflow.com/




2
C U RV I L I N E A R S T R U C T U R E
F E AT U R E S I N T H E L I T E R AT U R E

Curvilinear structure filtering and segmentation in 3D images is an active research area,
which has led to the development of many methods over the last two decades. Most meth-
ods use specific information to detect curvilinear structures. Such information can be an
assumption on the shape, geometry or intensity of curvilinear structures, which is directly
used to filter or segment the images. Alternatively, it can corresponds to features provided
by some other methods embedded into a higher-level filtering or segmentation framework.
In this chapter, we present an overview of the different assumptions and features used in the
literature to specifically deal with curvilinear structures in images. The reader may refer to
[51] [85] for exhaustive reviews on the subject.

Classifying the various approaches that deal with curvilinear structures is not an easy task.
Most methods combine different strategies to achieve their goal, which renders a clear and
consistent classification of these methods difficult. Nonetheless, we decided in this chapter
to divide the different approaches in two classes. The first section presents methods that
focus on local hypotheses characterizing curvilinear structures. These methods exploit local
analyses of the intensity profile and orientation to detect curvilinear structures. The second
section presents non-local methods, usually derived from mathematical morphology. They
aim at detecting curvilinear structures by analyzing the image in larger neighborhoods.

2.1 local approaches

2.1.1 Derivative-based

The vast majority of works dealing with curvilinear structures are based on the derivatives
of the image. Indeed, one of the first straightforward assumption one can make to detect a
structure in an image is to use the variation of its intensity profile.

The second-order derivatives represent the local curvature of the intensity of the image and
the magnitude of each derivative is the degree of the intensity curvature along its axes. By
studying the intensity curvature of a structure, one is able to distinguish between plane-like,
blob-like and curvilinear structures. Indeed, a blob-like structure, at the right scale, has three
high intensity curvatures, while a plane-like structure has two high intensity curvatures, and
a curvilinear structure only has one high intensity curvature (see Figure 5.(a-c)).

However, structures are usually not oriented along one of the 3D image axes. In such
general conditions, an approach consists of performing a spectral analysis of the Hessian

19
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Figure 5: Second-order derivative pattern of a blob (a), a plane (b) and a curvilinear structure
(c) whose main intensity curvatures are oriented in the direction of the image axes.
Each structure is characterized by a different set of second-order derivative mag-
nitudes. (d) presents a curvilinear structure in an arbitrary orientation. The three
eigenvalues of its Hessian matrix correspond to the magnitude of the second-order
derivatives in the direction of the associated eigenvectors.
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matrix (see Figure 5.(d)). The Hessian matrix, H, is the matrix of all the second derivatives
of the image:

H(Iσ) =
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where Iσ is the convolution of image I with a Gaussian of variance σ2, which introduces the
notion of scale.

Numerous methods use the eigenvalues and eigenvectors of this Hessian matrix to com-
pute measures characterizing curvilinear structures. These measures are often called vessel-
ness, since a common application is the filtering of blood vessels. Lorenz et al. [53] proposed
the first vesselness based on the two first eigenvalues (i.e. those with the highest magni-
tude). In [80], Sato et al. proposed another vesselness also based on the first two eigenvalues,
but which has the ability to discriminate between curvilinear and plane-like structures. The
most commonly used vesselness was proposed by Frangi et al. [33], and is based on the three
eigenvalues of the Hessian matrix. More recently, Li et al. [52] proposed another vesselness
that claims a better specificity than the Frangi’s.

The first-order image derivatives (i.e. the gradient) are also used in edge detection, as in
the pioneer work of Canny [12]. Based on the same principle as the Hessian matrix, several
works use the structure tensor, J, that is built from the first-order derivatives:

J(Iσ) =
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where Iσ is still the convolution of image I with a Gaussian of variance σ2.

The spectral analysis of the structure tensor also provides information on the geometry of
the structure at each point of the image. However this analysis is different from the Hessian’s.
Instead of measuring curvature, the structure tensor measures the intensity variations along
the three principal axes of a structure. In this context, a curvilinear structure is characterized
by two large eigenvalues and a small one, whereas a plane-like and blob-like structure have
one and three large eigenvalues respectively. The eigenvalues of the structure tensor are
always positives both for bright and dark structures, which makes the distinction impossible
unlike the Hessian eigenvalues. Nonetheless, the structure tensor based approaches are
usually considered less noise sensitive than the Hessian based approaches, as they used
lower-order derivatives.

Methods based on the structure tensor for curvilinear structure detection in 3D are typ-
ically more recent. In 2005, Agam and Wu [1] used the structure tensor to estimate the
direction of blood vessels. A modified version of the structure tensor, called the radial struc-
ture tensor, was introduced by Wiemker [101] to better discriminate the various structures
based on the correlation between the gradient and radial vectors. More recently, Moreno and
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Smedby [63] also used the structure tensor and radial vectors, but instead of weighting the
gradient using the radial vectors, they used it to remove the gradients which are not likely
to belong to a curvilinear structure.

Many works combine several derivative-based approaches. Koller et al. [43] proposed
an oriented filter based on the first derivatives. However, the direction of the structure is
computed beforehand using the eigenvectors of the Hessian matrix. In [73] and [3], the
curvilinear structure extraction is performed by analyzing the curvature and directions of
structures computed from the Weingarten matrix. This matrix combines information from
the first and second-order derivatives of the image.

An interesting approach was proposed by Bauer et al. [5] to tackle the problem of the blur-
ring effect induced by the linear scale space (this point will be discussed in the Chapter 3).
They proposed to compute the Hessian matrix based on the gradient vector field (GVF) [106]
instead of the classical gradient. The Frangi vesselness is then computed, but requires only
a single scale. Moreover, it also avoids the fusion of adjacent curvilinear structures, unlike
classical Hessian-based vesselness (see Figure 6). Another contribution by Krissian et al. [46],
proposed to use the eigenvalues of the Hessian matrix to perform a pre-selection of points
likely to be located near the vessel axes.

(a)

(b) (c) (d)

Figure 6: A slice of a synthetic image containing two small close curvilinear structures on the
left and one large curvilinear structure on the right (a). The results of a Gaussian
filter with a small (b) and a larger (c) scale. The magnitude of the GVF (d). Without
careful scale selection, applying a Gaussian filter may cause the two close curvilin-
ear structures to merge. Only one curvilinear structure would be distinguishable
from the resulting derivatives. Using the GVF dispenses with scale section, and
allows the distinction between close curvilinear structures. (Images from [5])

Another class of approaches use the gradient within a diffusion framework to handle curvi-
linear structures. The first anisotropic diffusion filter for images was proposed by Perona and
Malik [70]. They proposed to control the degree of diffusion by a function of the gradient
magnitude. The idea was to apply a high degree of diffusion where the gradient is low,
to smooth/reduce the noise, while reducing the diffusion in the presence of high gradient
(i.e. edges) to preserve the contours. Based on similar principles, specific anisotropic diffu-
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sion filters were proposed to enhance curvilinear structures. Weickert [100] proposed the
Coherence-Enhancing Diffusion (CED) filter. In this method, the diffusion tensor is built
using the structure tensor eigenvalues, so that the diffusion in a curvilinear structure prefer-
ably takes place in the direction of this structure. In 1997, Krissian et al. [45] also proposed
an anisotropic diffusion filter where the diffusion tensor is built upon the direction of the
main curvatures, and the magnitude of the smoothed gradient. Later, Krissian [44] proposed
to replace the magnitude of the smoothed gradient by the first derivatives along each main
intensity curvature and he added a data fidelity term. This results in a more specific filter
which better preserves small curvilinear structures.

The Hessian matrix was also used to build the diffusion tensor. Cañero et al. [13] proposed
such a filter, which also takes into account the image coherence by using both eigenvectors
and eigenvalues of a normalized Hessian matrix. Manniesing et al. [56] designed a similar
method extended to 3D and proposed a smooth version of the Frangi vesselness, which is
required to have good scale-space properties.

A few methods propose to compute a flux on vector fields, based on the image derivatives,
to specifically deal with curvilinear structures. Vasilevskiy and Siddiqi introduced an image
gradient flux to drive the evolution of an active contour model [97]. Maximizing this flux
on the curve makes it converge to locations where the curve normals are aligned with the
gradient field. Later, Descoteaux et al. [27] computed a flux on a vector field which embed
the Frangi vesselness directions in addition to the gradient field. Later, Law and Chung [49]
developed the Optimally Oriented Flux (OOF). They defined the oriented flux as the flux of
the image gradient projected along a direction onto a local sphere. The direction maximiz-
ing the outward oriented flux is the curvilinear structure direction. They showed that this
minimization can be solved by an eigenvalue analysis of a specific matrix, and used these
eigenvalues inside vesselness formulations to filter curvilinear structures. In 2010, Law and
Chung [50] adapted their OOF to drive an active contour with better properties than the
Vasilevskiy et al. model, in particular with regards to flow leaks. The OOF is also used as
curvilinear structure features. For example, Benmansour and Cohen [8] used the eigenvalues
of the OOF matrix to design an anisotropic metric better suited for the curvilinear structure
extraction within a minimal path framework.

All of these methods, based on the derivatives, share the same drawbacks which we discuss
in detail in the next chapter.

2.1.2 Filter banks

Filter banks are a general framework where the output results from the combination of a
set of filters sharing some properties. In general, the filter banks designed for curvilinear
structures are oriented, i.e. each filter of the bank is sensitive to a different orientation. By
combining all the oriented filters, filter banks are able to detect structures in arbitrary ori-
entations. Even if some filter banks are derivative-based, the unifying idea remains the
combination of oriented filters. That is why we chose to dedicate a specific section to this
class of filters.

Most filter banks dedicated to curvilinear structure detection were proposed for 2D images
[4, 47, 92]. Indeed, they usually require to discretize space in many orientations, which can
quickly become unmanageable in 3D. Nonetheless, Rangayyan et al. proposed a 3D filter
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based on the Gabor wavelet to detect blood vessels [74].

Steerable filters [35], are another important type of filter banks. They are characterized by
the structure of their responses. The response at any given orientation of a steerable filter is a
linear combination of a small number of rotated versions of itself. For instance, the first-order
derivatives of a Gaussian are steerable. The first-order Gaussian derivative along orientation
θ, Gθ

1 , can be written as a linear combination of the first-order Gaussian derivatives along

axis x, G0
1 , and along axis y, G

π
2

1 :

Gθ
1 = cos(θ)G0

1 + sin(θ)G
π
2

1

The Hessian filter and the OOF were also proved to be steerable [41, 8]. Steerable filters are
most often used to detect 2D curvilinear structures, however a few contributions can handle
3D curvilinear structures. Amongst them, Gonzales et al. [36] proposed a steerable filter
based on the second and fourth Gaussian derivatives, and use it to train a SVM classifier to
detect dendrites.

Wavelet based filters, and in particular those designed to handle curvilinear structures, can
also be seen as filter banks. Again, only a few of them can handle 3D images. Beamlets were
proposed by Donoho et al. [28] to detect curvilinear structures in large 3D images. Later,
Woiselle et al. [105] extended Beamlets to BeamCurvelets, which are able to deal with curvi-
linear structures of different sizes, unlike Beamlets.

2.2 non-local approaches

In this section, we discuss other types of methods, generally less known, based on non-local
approaches. Non-local approaches focus on more global curvilinear structure characteristics.
A first class of methods assume that curvilinear structures are composed of a basic shape
called Structuring Element (SE), whereas a second class of methods focus on characteristics
that describe curvilinear structures more globally. A third and last type of approach models
curvilinear structures with paths.

2.2.1 SE-based approaches

Many basic operators in mathematical morphology (erosions, dilations, openings, closings,
etc.) use SEs (see Chapter 4 for a presentation). The advantage of such operators is that
the SE shape can be precisely adapted to the structure one wants to preserve. Several ap-
proaches have been proposed to specifically handle curvilinear structures. A first approach
consists of modeling curvilinear structures by small straight lines, and performs openings or
closings with these SE in sufficiently many different orientations [90, 108]. The efficiency and
robustness to noise of these approaches was studied in [82]. Another approach is to use a SE
modeling both the curvilinear structure and its local background, and perform an hit-or-miss
transform [69, 64].

An SE-based approach was also investigated in order to reconnect curvilinear structures
which may have been disconnected by noise [87] (see Figure 7). This approach, called Morpho-
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Hessian, computes the direction of blood vessels with an Hessian-based approach and per-
forms modified openings or closings with segments oriented in these directions.

(a) (b)

Figure 7: 2D image of a neurite (a) and the result from filtering with the Morpho-Hessian (b).
Images from [87].

Even though these approaches showed good results, the fixed straight geometry of such SE
remains a limitation for handling curvilinear structures which may present local tortuosities.
This leads to the development of more flexible SEs [10], which we extensively present in
Chapter 4.

2.2.2 Connectivity-based approaches

A few methods in mathematical morphology are based on the notion of connectivity on
graphs. Instead of working with fixed-shape SE, these methods focus on connected com-
ponents. This is the case of component-trees [78], which losslessly represent an image as a
tree. Each node is a connected component and each level in the tree correspond to all the
connected components of the image thresholded at a given intensity value (see Figure 8).

In this framework, it is possible to compute various attributes on the connected compo-
nents, and further remove all the components of the image which do not reach a given value
in an attribute (under certain conditions). Several attributes were investigated to character-
ize curvilinear structures. The majority considers scalar attributes; one can cite the ratio
inertia/volume [103] or an elongation criteria [107]. Geodesic attributes were also proposed
such as the geodesic tortuosity [62] or the geodesic elongation [48]. More recently, vectorial
attributes were proposed, which consist of a vector of scalar attributes. A connected compo-
nent is removed if its attribute vector significantly differs from a reference vector according
to a designed distance measure [94]. Vector attributes were applied, for instance, on 3D
PC-MRA of the brain by Caldairou et al. [11].

By construction, connected filters cannot split connected components, which may result
in erroneous connections between curvilinear structures and artifacts, or at the junctions of
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Figure 8: Filtering principle on component tree. Illustration from [79].

curvilinear structures. Some attempts to minimize these drawbacks were proposed, either
via tilling approaches [11], or with asymmetric notions of connectivity [71].

2.2.3 Path-based approaches

The links between connectivity-based and path-based approaches (described below) were
also investigated in [102].

The SE and connectivity-based approaches present dual intrinsic strengths and weaknesses.
SE-based approaches can naturally handle anisotropy, which is highly desirable for curvilin-
ear structure filtering, but require explicitly defined families of SEs for orientation sampling.
By contrast, connectivity-based approaches lead to more global descriptors; unfortunately
the anisotropy of curvilinear structures is not really taken into account. To address this prob-
lem, geodesic paths [20] were introduced to consider long-range, anisotropic neighborhoods,
while still being flexible. A few approaches used the notion of geodesic paths on curvilinear
structures [26, 104]. In these methods, metrics are designed so that a curvilinear structure
corresponds to a geodesic path. These methods generally require some user interaction as at
least the starting point must be set by the user.

Recently, Rouchdy and Cohen introduced a new curvilinear structure detector called geodesic
voting [75]. The idea is to compute several geodesic paths from a starting point to different
points in the image. The curvilinear structures are those which present a high geodesic path
density. Geodesic voting was initially proposed in 2D, but recent applications were extended
to 3D for blood vessel segmentation [76]. Inspired by the same idea, Bismuth et al. proposed
the Polygonal Path Image (PPI) [9]; however, due to computational cost, only 2D implemen-
tations were proposed.

In 1998, Vincent proposed the pioneering notion of local optimal path [98]. He proposed
to compute minimal paths inside local oriented cones. This led, to the development of flex-
ible linear operators [10], and later path operators [39]. The reader may find an extensive
presentation of the work on path operators in Section 4.3.

In the next chapter, we present the context and motivation of our work.
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C O N T E X T

3.1 motivation

As part of the VIVABRAIN project, the guiding application for this work is the filtering and
segmentation of 3D brain MRA.

In preliminary work, Dufour et al. [30] proposed a first segmentation method, based on
a morpho-Hessian and component-trees approach. This method is able to reconnect vessels
that appear disconnected due to noise or signal loss. However, some problems remain: (1)
curved plane-like structures, probably from the scalp vascularization, are not removed dur-
ing the filtering/segmentation process (see Figure 9); (2) the component-tree segmentation is
not fully automated and requires the user to provide markers to initialize the segmentation.

Based on these observations, the first motivation of this work was to propose a solution to
the above mentioned problems and improve the segmentation results.

Figure 9: Illustration of a plane-like structure (red ellipse) disturbing the segmentation on a
brain MRA from the VIVABRAIN database.

In the previous chapters, we have seen that the analysis of curvilinear structures, like
blood vessels, has attracted a lot of attention over the past few years, and that most of
these works require a curvilinear prior. We call low-level curvilinear feature all information
specifically characterizing curvilinear structures, such as their direction, diameter or position
in the image. In particular, we call:

• Intensity feature, the map associating high values for pixels belonging to a curvilinear
structure, and low values for pixels belonging to any other structure;

• Directional feature, the map that associates a vector providing the direction of a potential
curvilinear structure to each point of an image.

29
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The vesselness computed by most recent works on filtering and segmentation of blood
vessels may be assimilated to an intensity feature. The main difference is that vesselness,
additionally to the detection of curvilinear structures, also aims at detecting the junctions
between vessels, which are not curvilinear but blob-like structures. This makes these filters
specific to blood vessels and not general low-level curvilinear structure filters as we want to
propose.

Among all the methods dealing with curvilinear structures, only a few provide low-level
features, and even fewer work in practice in 3D. We have seen that the majority of 3D im-
age filters able to characterize curvilinear structures while removing plane-like and blob-like
structures are derivative-based filters. Even though they have interesting properties, they
also present a few drawbacks. These may perturb any curvilinear structure related applica-
tion like segmentation, tracking or classification. Among these drawbacks, we can list the
followings:

• The local neighborhood problem
Derivative-based filters distinguish between structures based on a local neighborhood
analysis. This analysis is often sufficient to make a good decision, but in some tricky
cases, it fails. Particularly, the derivative-based directional feature and, to a lesser
extent the intensity feature, may not be sufficiently reliable on the edge of curvilinear
structures and lead to a lack of consistency in the extracted features (see Figure 10).

Not a curvilinear
structure

Curvilinear
structure

Not a curvilinear
structure

(a) (b)

Figure 10: Illustration of false detections (a) and direction error estimation (b) coming from
a local neighborhood analysis. The red squares represent the considered neigh-
borhood centered on the small red dot. In figure (b), each blue square represent a
pixel and the red arrow is the estimated direction based on the local neighborhood.
The bottom arrow should be vertical but the local neighborhood analysis yields
an incorrect direction estimation.

• The linear scale-space multiscale problem
The classical multiscale approach of most derivative-based filters relies on a linear scale-
space paradigm. At each scale, a Gaussian filter is first applied, its standard deviation
parameter representing the scale, then the derivative-based filter is computed. This
approach allows these filters to detect curvilinear structures at multiple scales, but from
a blurred version of the initial image. On this blurred image, the curvilinear structure



3.2 general strategy 31

edges have been moved, resulting in possible incorrect detections. When curvilinear
structures are brighter than their background, derivative-based filters typically tend to
detect wider curvilinear structures than they actually are. Moreover, this approach can
also connect structures which are not actually connected (see Figure 11).

(a) Initial image (b) Gaussian filter result(c) Hessian-based filter
result

(d) Expected result

Figure 11: Illustration of the linear scale-space problem typical of many derivative-based fil-
ters. (b) the result of applying a Gaussian filter on (a). (c) the result of applying
a derivative-based filter on (b). (d) the expected result of applying a curvilinear
structure filter on (a). Because of the multiscale approach, structures that were
not connected on the initial image become connected on the derivative-based fil-
ter result. Moreover, the curvilinear structure on the Hessian-based filter result is
slightly wider than the expected result.

For all these reasons, the first motivation of our work was to propose a new curvilin-
ear structure feature detector that could be an alternative to the derivative-based filters. This
alternative should share the same advantages of derivative-based filters and avoid their draw-
backs. More specifically, we aimed at:

• Enhancing curvilinear structures, while removing plane-like and blob-like structures;

• Extracting both intensity and directional features;

• Preserving curvilinear structure edges;

• Proposing a method working both in 2D and 3D;

• Relying on a non-local approach.

3.2 general strategy

In this section, we explain our general strategy for distinguishing between curvilinear, plane-
like and blob-like structures and motivate the choice of path operators.

3.2.1 Geometric observation and oriented filters

As presented in Chapter 1, the difference between curvilinear, plane-like and blob-like struc-
tures is geometric. It is based on the size of their main dimensions. A curvilinear structure is
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longer in one of its dimensions, whereas plane-like structures are larger in two dimensions
and blob-like structures have similar sizes in all dimensions. By counting the number of
large sizes in all dimensions, one should be able to distinguish between the different struc-
ture types. To do so, we chose an approach based on oriented filters. We call oriented filter
any filter which response depends on the orientation in which it is computed.

Let F be an oriented filter and O be a set of chosen orientations in the 3D space such that
F o(I), o ∈ O, is the response of filter F in the orientation o on image I. If a bright struc-
ture lies in orientation o, then F o(I) will output a high value for this structure. Let us now
consider a blob, a plane and a curvilinear structure, processed by such filter. The blob-like
structure, as it lies in all orientations, presents a high response for all F o(I). The plane-like
structure will respond highly in almost all orientations except for those along its small size.
In the same way, the curvilinear structure will only respond highly in a few orientations
corresponding to those along its only large size (see Figure 12).

Our strategy to only preserve curvilinear structures relies on the geometric difference be-
tween structures. We propose to filter an image by an oriented filter and to classify each
structures based on the number of high responses.

(a) (b) (c)

Figure 12: (a) A blob-like structure, (b) a plane-like structure and (c) a curvilinear structure
in blue. Arrows represent examples of orientations o ∈ O. A green (resp. red)
arrow represents a high (resp. low) response of the oriented filter along this orien-
tation. The blob-like structure responds in all orientations whereas the plane-like
structure only responds in 4 out of the 8 orientations, and the curvilinear structure
only responds in 1 orientation.

3.2.2 The oriented filter choice

Among the large choice of oriented filters in the literature, we selected the path operators. A
detailed presentation of path operators is proposed in Chapter 4, but we focus, in this section,
on our motivation to chose such an operator.

The major criterion we considered was the non-locality of path operators. Most curvilinear
structure filters compute the response of a structure in an isotropic neighborhood, the size
of which depends on a given scale, chosen according to the size of the structure of interest.
This approach is not optimal for curvilinear structures, since they are highly anisotropic. In
particular, it may lead to false detections (see Figure 10.(a)) and incorrect orientation estima-
tions (see Figure 10.(b)), especially near the structure edges. Path operators, by computing
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the response along an anisotropic neighborhood fitting in the curvilinear structure, avoid this
pitfall.

Path operators are also edge-preserving. Edges are either preserved or removed but in any
case they are neither moved nor blurred. This is a useful property for a filter designed to
provide features for segmentation applications.

Contrary to the major part of oriented filters, path operators also handle local tortuosity.
From a given orientation, path operators are able to detect structures even if they locally
deviate from this orientation. This is especially useful as curvilinear structures are rarely
perfectly straight in real applications.

Recent advances in path operators have proposed versions that are robust to noise which
is also essential when dealing with real images. This noise robustness, combined with the
non-locality approach, allows path operators to reconnect curvilinear structures that may
appear disconnected due to noise.

Last but not least, path operators are almost parameter free. Indeed, the only real param-
eter is the path length, which is related to the length of the structures of interest. No other
weight or parameter tunning is required.

3.2.3 Alternative mathematical morphology based approach

In a preliminary work, partially presented in [59], we first explored an alternative approach
to distinguish between curvilinear structures and plane-like structures, based on mathemati-
cal morphology tools. This approach also relies on path operators but involves, in addition,
radial openings. Figure 13 illustrates this approach. In part due to the incoherence between
the radial and path operators, we showed that this type of approach was not as effective as
purely path-based approches to preserve curvilinear structures while removing other struc-
tures.

L2

L
L2

L/k

P

P

(a)

L

L2

L3

L2

L3 L/k

(b)

Figure 13: A path opening with path length L efficiently preserves a curvilinear structure
(a) but also a plane-like structure (b). To remove the latter, a radial opening with
a line of size L

k is performed in the orthogonal plane P of the structure. This
radial opening preserves the structures which are larger than L

k i.e. the plane-like
structures. A top-hat is then performed to only preserve curvilinear structures.
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P R E V I O U S W O R K O N PAT H
O P E R AT O R S

In this chapter, we present a brief overview of the basic operators and notions of mathemati-
cal morphology, that we will require in subsequent sections. For an up to date presentation
of the topic, the reader may refer to [65]. Then, we propose an exhaustive review on the path
operators.
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4.1 mathematical morphology basic operators

In the following, we consider an image I as a function I : X → G, where X is the set of points
of I and G is its set of possible values (grey-levels).

4.1.1 Structuring elements

In mathematical morphology, operators are often associated with SEs. A SE, Bp, is a set of
generally connected image points, which is known a priori and whose origin point is p. This
origin point does not necessarily belong to Bp.

SEs may present various shapes and sizes, depending on the application. If a structure
with specific geometric properties is sought, one can adapt the shape, spatial orientation and
size of the SE. For example, in road detection applications, using a set of line-like SEs may
be a good choice.

The rotational symmetric of SE is often used in mathematical morphology in association
with the notion of operator duality. The center of symmetry is the origin of the SE. In the
following, we call B̌p the symmetric Bp. Figure 14 shows examples of SE and their symmetric.

Figure 14: Examples of a few 2D structuring elements, Bp, and their symmetric B̌p. Each
square represents an image point, and the square with the red cross is the origin
point p of the SE.

4.1.2 Dilation and erosion

4.1.2.1 Binary operators

A binary image is an image that only has two grey-levels: black pixels with value 0 and white
pixels with value 1. A binary image can also be considered a subset of the image support.
Let Ib be a binary image and X its support, if Ib is an entirely white image, then Ib = X
otherwise Ib ⊂ X.
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The dilation of image Ib by the structuring element Bp, noted δBp(Ib), may be defined as
the union of all the Bp such that p belongs to Ib:

δBp(Ib) =
⋃

p∈Ib

{
Bp
}

(2)

The erosion, noted εBp(Ib) may be defined as the set of all the origin points p such that Bp

is entirely included in Ib :
εBp(Ib) = {p, Bp ⊆ Ib} (3)

However, the erosion may also be seen as an intersection:

εBp(Ib(x)) =
⋂

b∈Bp

X(x + b) (4)

where x + b is a vector addition. Figure 15 illustrates and compares the binary dilation and
erosion.

(a) Dilation (b) Erosion (c) Comparison dilation/erosion

Figure 15: Illustration of (a) a dilation (green), and (b) an erosion (orange) with the same SE
Bp (red). The comparison between both results is shown in (c) where the dotted
black line is the initial image.

4.1.2.2 Grey-level operators

One way to easily extend binary operators to grey-scale is to consider the set of all the
successive thresholds of a grey-scale image. Let It be the result of the thresholding of image
I at level t:

It =
{

x ∈ X, I(x) ≥ t
}

(5)

Then, the grey-level dilation (resp. erosion) of I by Bp may be seen as the result of applying
the same binary dilation (resp. erosion) at each threshold of I (see Eqs. (6) and (7)).

δBp(I(x)) = max
{

t ∈ G, x ∈ δBp(It)
}

(6)

εBp(I(x)) = max
{

t ∈ G, x ∈ εBp(It)
}

(7)

This way of defining the dilation and erosion is not efficient. In practice, the erosion
and dilation are computed by taking a minimum or maximum over the structuring element,
considered as a sliding window, as follows:

δBp(I(x)) = max
b∈Bp

I(x− b) (8)
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and
εBp(I(x)) = min

b∈Bp
I(x + b) (9)

Following these definitions, the erosion and dilation are computed by taking respectively
a minimum or maximum over the structuring element, considered as a sliding window. Fig-
ure 16 shows an example of grey-level dilation and erosion.

(a) Initial image (b) Dilation (c) Erosion

Figure 16: An image (a) and its dilation (b) and erosion (c) by a square of size 4 pixels

4.1.2.3 Properties

• Duality
Dilation and erosion are dual operators by complementation. Let A ⊆ X, be a set of
image points, we refer to Ac as the complement of A such that Ac = X \ A, then:

[εBp(Ib)]
c = δB̌p

(Ib
c) (10)

[δBp(Ib)]
c = εB̌p

(Ib
c) (11)

• Extensivity
The dilation is extensive whereas the erosion is anti-extensive:

Ib ⊆ δBp(Ib) (12)

εBp(Ib) ⊆ Ib (13)

• Commutativity
The dilation is commutative whereas the erosion is not:

δBp(Ib) = δIb(Bp) (14)

The dilation also commutes with the union while the erosion commutes with the inter-
section:

δBp

(⋃
Ib

)
=
⋃

δIb(Bp) (15)

εBp

(⋂
Ib

)
=
⋂

εIb(Bp) (16)
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• Associativity
The dilation is associative whereas the erosion is not. Let A, B, C ⊆ X:

δA(δB(C)) = δδA(B)(C) (17)

• Monotonicity
The dilation and erosion are both increasing. If A ⊆ C, then:

δBp(A) ⊆ δBp(C) (18)

εBp(A) ⊆ εBp(C) (19)

• Adjunct
The dilation and erosion, using the same structuring element, are adjunct operators:

X ⊆ εB(Y)⇐⇒ δB(X) ⊆ Y (20)

4.1.3 Opening and closing

4.1.3.1 Binary operators

Opening and closing are two dual operators resulting from the combination of erosion and
dilation. The opening γBp(Ib) of a binary image Ib with the SE Bp is defined as the composi-
tion of an erosion followed by an adjunct dilation. However, it may also be seen as the union
of the SE which are included in the binary image:

γBp(Ib) = δBp(εBp(Ib)) (21)

= ∪
{

Bp , Bp ⊆ Ib
}

(22)

The closing ϕBp(Ib) of a binary image Ib with the SE Bp is defined as the composition of a
dilation followed by an adjunct erosion:

ϕBp(Ib) = δBp(εBp(Ib)) (23)

Intuitively, for white objects on dark background, an opening tends to remove objects
smaller than the chosen SE, whereas a closing tends to fill holes smaller than the chosen SE.
Figure 17 shows a comparison of binary dilation, erosion, openings and closings.

4.1.3.2 Grey-level operators

Similarly to grey-level dilation and erosion, grey-level opening and closing are defined by
applying the same binary opening or closing on each threshold of the grey-level image I (see
Eqs. (24) and (25)). We note that in practice, more efficient algorithms were developed to
compute these operators. An illustration of such operators is presented in Figure 18.

γBp(I(x)) = max
{

t ∈ G, x ∈ γBp(It)
}

(24)

ϕBp(I(x)) = max
{

t ∈ G, x ∈ ϕBp(It)
}

(25)
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(a) Initial image

(b) Dilation (c) Erosion (d) Opening (e) Closing

Figure 17: Illustration of basic binary mathematical morphology operators on a 50× 50 pixel
image by a square of size 4 pixels.

4.1.3.3 Properties

• Duality
Opening and Closing are dual operators:

[ϕBp(Ib)]
c = γB̌p

(Ib
c) (26)

[γBp(Ib)]
c = ϕB̌p

(Ib
c) (27)

• Extensivity
The closing is extensive whereas the opening is anti-extensive:

Ib ⊆ ϕBp(Ib) (28)

γBp(Ib) ⊆ Ib (29)

• Idempotence
The closing and opening are both idempotent:

γBp(γBp(Ib)) = γBp(Ib) (30)

ϕBp(ϕBp(Ib)) = ϕBp(Ib) (31)

• Monotonicity
The closing and opening are both increasing. If A ⊆ C, then:

γBp(A) ⊆ γBp(C) (32)

ϕBp(A) ⊆ ϕBp(C) (33)

• Composition
The maximum of several openings is an opening, and the minimum of several closings
is a closing.
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(a) Initial image (b) Opening (c) Closing

Figure 18: An image (a) and its opening (b) and closing (c) by a square of size 4 pixels

4.1.3.4 Algebraic opening and closing

Based on the previous properties, more general definitions of the opening and closing may be
given. Any filter which is increasing, idempotent and anti-extensive is an algebraic opening.
In the same way, any filter which is increasing, idempotent and extensive is an algebraic
closing.

4.2 filtering curvilinear structures with line

segments as structuring elements

A common approach to filter curvilinear structures in mathematical morphology is to use
openings or closings with line segments as SE. For the sake of clarity, we only present this
approach with openings as we consider bright structures of interest on a dark background.
However, it is easily transposable to dark structures on a bright background using closings
instead of openings.

Filtering an image by an opening with a line segment preserves curvilinear structures, but
only those that everywhere include the SE. The SE length is a parameter that is chosen ac-
cording to the application, but the orientation issue remains. In order to filter curvilinear
structures with a arbitrary orientations, the classical approach is to use a bank of line seg-
ments with the same length, but with varying orientations. Openings with each of these SEs
are applied and the final result is the union of all the openings (see Figure 19). This approach
is sometimes called Radial Opening.

Radial opening requires the computation of many erosions/dilations with line segments.
Van Herk et al. [96] proposed in 1992 an efficient algorithm to perform 2D erosions and
dilations with a line segment of arbitrary size, but only in the main natural orientations of
a 2D image (horizontal, vertical and the two diagonals). In 1996, Soille et al. [83] extended
this work by proposing an algorithm to compute erosions and dilations along discrete lines
at arbitrary angles. Nevertheless, this algorithm results in erosions and dilations which are
not translation invariant. Finally, a translation invariant algorithm, with the same complexity
as the latter, was proposed in 2001 [82]. Recently, Van Droogenbroeck and Buckley [95]
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Opening 
with
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with

Union

Figure 19: Illustration of a radial opening. Only the three useful SE are shown here.

proposed a novel algorithm to compute erosions but also openings with line segments. This
is currently the fastest known algorithm.

Radial opening presents many advantages. First, as the opening is anti-extensive, this
approach only decreases the signal of non-curvilinear structures. This means that it neither
creates false positives nor moves edges of the sough structures. Moreover, this approach is
non-local since it looks into a neighborhood of the size of the SE. This certainly avoids false
detections, which may be caused by local analysis. Finally, the only parameters of a radial
opening are the SE length and the number of different orientations.

However, this approach assumes that curvilinear structures are locally straight. This is a
restrictive hypothesis. Indeed, to filter tortuous parts of curvilinear structures, the SE length
should be reduced to a length small enough for the straight SE to fit the tortuous parts of the
curvilinear structure. Nevertheless, all the non-curvilinear structures into which the line SE
can fit are also preserved by openings. Consequently, the smaller the SE length, more both
tortuous curvilinear structures and non-curvilinear structures are preserved (see Figure 20).

4.3 path operators

We have seen that openings (or closings) may be used with line segment SE to filter straight
curvilinear structures. In the case of curved curvilinear structures this approach may still
be used but tends to also preserve many isotropic structures since the SE length needs to be
small.

To address this problem, Buckley and Talbot proposed flexible linear openings and closings
[10] which were later better formalized and called path operators [39]. Path operators include
two dual operators: path opening and path closing. As in the previous section, without loss
of generality, we focus the following explanations on path openings.

Contrary to a classical opening which use one SE with a fixed shape and length, a path
opening uses a set of flexible segments, defined by their length and orientation, called paths.
If at least one path fits a structure, this structure is preserved by the path opening. Conse-
quently, path openings do not require a strong hypothesis on the shape of the structure of
interest as classical openings, only a general orientation is required.



4.3 path operators 43

(a) Initial image

(b) l = 30 (c) l = 20 (d) l = 15 (e) l = 10

Figure 20: An image (a) and its radial openings for several SE lengths l (b-e). For large values
l, only the straight structure is preserved as no line SE fit in the curved curvilinear
structures. When l increases, curved structures are better preserved, but so are
non-curved curvilinear structures.

In this section, we first define paths and the adjacency relation required to compute a path
opening (Section 4.3.1). Then we properly define the path opening operator (Section 4.3.2).
The sets of classically chosen orientations are described in Section 4.3.3. Finally we present
the different algorithms proposed in the literature to compute path openings in Section 4.3.4.

4.3.1 Paths

A path is a flexible linear structure defined as a set of L connected points on a directed
graph G = (X, E). X is the set of pixels of an image and E the set of edges representing the
connectivity between pixels. Let→ be an irreflexive, non-symmetric binary relation. For two
points x and y of X, x → y means that there is an edge from x to y.

More formally, we define a path π of length L as a set σ(π) of L successively connected
pixels on a graph G:

σ(π) =
{
{x1, x2, . . . , xL}, xi → xi+1

}
∀i ∈ [1, L− 1], i ∈ N (34)

Practically, the set of edges, E, is generated from an elementary adjacency relation, Γ,
which is periodically reproduced over X (see Figure 21). We note ΠΓ

L(X) the set of all the
paths of length L on X with adjacency relation Γ.

The adjacency relation, Γ, defines a global orientation for all the paths ΠΓ
L(X). For example,

Γ1 (see Figure 21.(a)) only define globally vertical paths, whereas Γ2 (see Figure 21.(c)) only
defines globally diagonal paths. In the following, we call Γ the (global) orientation of the
path opening.
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(a) Γ1 (b) G1 = (X, E1) (c) Γ2 (d) G2 = (X, E2)

Figure 21: Illustration of two 2D adjacency relations, resp. (a) and (c), and their associated
graph, resp. (b) and (d) on the same image support E. Ei is the set of edges
generated from Γi. Examples of paths of length 3 are represented in red and paths
of length 4 in blue.

Adjacency relation and symmetry

We defined → as a non-symmetric binary relation. Indeed, it is important that paths be
defined with a non-symmetric relation, otherwise they could present loops or could not all
have the same global orientation (see Figure 22.a). Nonetheless, the paths defined with this
asymmetric relations are themselves symmetric.

For a given global orientation, two equivalent adjacency relations may be defined. For
example, in Figure 21.(a), we chose to represent Γ1 as 3 vectors from a pixel to its 3 upward
neighbors, but exactly the same paths could be defined with the symmetric of Γ1 (i.e. 3
vectors from a pixel to its 3 downward neighbors), see Figure 22.(b-c).

More formally, let −Γ be the symmetric of Γ, then ΠΓ
L = Π−Γ

L and αΓ
L = α−Γ

L .
To represent the symmetry of the adjacency relation, we illustrate a path opening orienta-

tion as an hourglass shape (see Figures 25 and 26).

4.3.2 Binary and grey-level path opening

The binary path opening, αΓ
L, of length L along orientation Γ, is defined as the union of all

the paths of length L on the binary image Ib (see Eq. (35)). This operator preserves each point
of Ib belonging to at least one path of ΠΓ

L(Ib) and removes the others. An example is shown
in Figure 23.

αΓ
L(Ib) =

⋃ {
σ(π), π ∈ ΠΓ

L(Ib)
}

(35)

Path openings may be easily extended to grey-levels in the same manner as classical open-
ings. Let I be a grey-level image, I : X → G, where X is the set of points of I and G is its
set of grey-levels. As previously defined, Iλ is the thresholding of I at grey-level λ, ( λ ∈ G).
The grey-level path opening, AΓ

L with length L along orientation Γ is defined by:

AΓ
L
(

I(x)
)
= max

λ∈G

{
λ, x ∈ αΓ

L(Iλ)
}

(36)

An illustration of a grey-level path opening compared with a classical opening is shown in
Figure 24. The main advantage of path operators is that the SE may deviate from the global
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(a)

(b) (c)

Figure 22: Example of 2 paths (red and blue) with a symmetric binary relation (a). Both
paths do not have the same global orientation and one presents a loop. On graphs
defined with a non-symmetric binary relation, the same paths can be defined on
a graph generated from Γ1 (b) or its symmetric −Γ1 (c).

orientation Γ. Consequently, path openings are more flexible than the classical openings as
they can handle locally tortuous curvilinear structures.

4.3.3 Space discretization

We have seen that a path opening is computed according to a global orientation Γ. In order to
recover curvilinear structures in all orientations, several path openings must be applied with
various global path orientations. Since the more path opening orientations are applied, the
longer the computation time, one generally choose the sparsest but isotropic discretization,
which preserves all curvilinear structures . For 2D images, a discretization with 4 path open-
ing orientations is generally chosen [10] whereas for 3D images, 7 path opening orientations
are usually enough [22]. These two space discretizations are shown in Figures 25 and 26.
Each path opening orientation (both in 2D and 3D) consists of a cone centered on a main
vector (represented in red on the Figures). This vector represents the global orientation of
any path lying in its path opening orientation.

Let O be the set of the chosen 2D or 3D orientations, the final result of a path opening is
the union of all the path openings along the different orientations of O. The union of these
path openings with a path length L, AL(I) is then defined as follows:

AL(I) =
⋃ {

Ao
L, o ∈ O

}
(37)
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(a) Initial image Ib (b) Binary path opening αΓ1
4 (Ib)

Figure 23: Example of a vertical path opening of length 4. Each disc represents a pixel of X.
The white discs are the white pixels and the set of white discs is the binary image
Ib. The arrows represent the connectivity of the image generated from Γ1. For
example, the white pixel at row 2 and column 3 does not belong to any path of at
least 4 pixels. Consequently, it is not part of the path opening result.

(a) Initial image (b) Radial opening (c) Path Opening

Figure 24: Comparison of a radial opening (b) and a path opening (c) on an image (a). The
length of the SE is 10 pixels. Forty orientations are considered for the radial
opening versus 4 for the path opening.

4.3.4 Path opening algorithms

Several algorithms have been proposed in the last few years to compute path openings. The
first algorithm was proposed by Heijmans et al. in 2005 [39]. It is based on a recursive
implementation. In 2007, Talbot et al. proposed an efficient path opening algorithm, based on
an ordered implementation, which reduces the complexity and memory cost of the algorithm
[86]. Both algorithm implementations are only available for 2D images. A dimensionality
independent path opening algorithm was first proposed by Luengo Hendriks in 2010. More
recently, a fast path opening algorithm was proposed by van de Gronde et al. [37] based
on the Talbot et al. algorithm, but improved to make it dimensionality-independent.. A
summary of the different algorithms and their properties is presented in Table 1.

Other algorithms have also been proposed to compute modified version of path openings.
Luengo Hendriks [54] proposed a constrained path opening, where paths can no longer zig
zag inside a given orientation. Indeed, the zig zag artificially increases the length of a path
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(a) o1: vertical orienta-
tion

(b) o2 : horizontal ori-
entation

(c) o3: South/West -
North/East diago-
nal orientation

(d) o4: South/East -
North/West diag-
onal orientation

Figure 25: The 4 path opening orientations in 2D. The arrows represent the adjacency relation.
A path in a given orientation, going through the center point of the square, lies
in the light blue shape. The red arrow is also the main vector (i.e. the global
orientation of any path lying in this path opening orientation).

Algorithm Complexity Running time Memory cost Dimensionality

Heijmans et al. [39] o(NL) � 4t o(NL) 2D

Talbot et al. [86] o(N log(L)) 4t o(N) 2D

Luengo Hendriks [54] o(N log(L)) > 4t o(N) nD

Van de Gronde et al. [37] o(N log(L)) t o(NL) nD

Table 1: Comparison of the different path opening algorithms. N is the number of pixels of
the image and L the path lenght.

inside a structure. This improvement slightly increases the running time and the memory
cost.

In 2013, Morard et al. proposed a parsimonious path opening [61]. Instead of comput-
ing paths in all the image, this approach cuts images in non-overlapping blocks, and pre-
computes shortest paths from block borders to their opposite sides; then a 1D opening is
applied only along these pre-computed paths. Pixels that are not involved in a path are set
to the minimal grey-level value of the image. The final result is given by a morphological
reconstruction under the initial image. Parsimonious path openings considerably reduce the
computation time (the complexity is in O(N)). However, the result is similar but not the
same as classical path openings.

4.4 robust to noise path opening

We have seen that the path opening is a powerful tool for curvilinear structure filteringn, since
it presents all advantages of a radial opening, but also allows flexible structuring elements
more suitable for real curvilinear structures . Nonetheless, the sensitivity to noise remains.
As seen in Chapter 1, curvilinear structures are highly sensitive to noise as a few noise pixels
are often sufficient to disconnect such structures. As path openings assume connected SEs,
a path opening with a path length equal to the whole curvilinear structure length does not
preserve this structure. The only way to still preserve it is to reduce the path length in order



48 previous work on path operators

(a) o1: horizontal orien-
tation

(b) o2: vertical orienta-
tion

(c) o3: depth orientation

(d) o4: first diagonal ori-
entation

(e) o5: second diagonal
orientation

(f) o6: third diagonal ori-
entation

(g) o7: fourth diagonal
orientation

Figure 26: The 7 path opening orientations in 3D. The arrows represent the adjacency relation.
A path in a given orientation, going through the center point of the cube, lies in the
light blue shape. The red arrow is also the main vector (i.e. the global orientation
of any path lying in this path opening orientation).

to fit each disconnected part of the curvilinear structure. However, doing so reduces the
discriminative power of path opening between isotropic and curvilinear structures, since it
preserves all the isotropic structures for which the longest size lies in between the reduced
length and the true one (see Figure 27). This problem is particularly important as the longer
the curvilinear structure, the higher the probability of disconnections.

To cope with this problem, several solutions were proposed to make path openings robust
to noise.

4.4.1 Incomplete path opening (IPO)

Incomplete Path Opening (IPO) was first proposed by Heijmans et al. in 2005 [39]. They
introduced a new parameter K which is the number of allowed disconnections inside a path
of length L. Let Ib be a binary image on the image support X (Ib ⊂ X) and ΠL(X) be the set
of paths on X. The set of paths of an IPO with K accepted noise pixels on image Ib, ΠK

L (Ib) ,
is defined as follows:

ΠΓ
L,K(Ib) =

{
a ∈ ΠΓ

L(X), |σ(a) ∩ Ib
c| ≤ K

}
(38)

where |.| is the cardinality of a set, i.e. the number of points, and Ib
c is the complementary

set of Ib (Ib
c = X\Ib). The IPO, αΓ

L,K with path length L, K allowed noise pixels and along
orientation Γ is then defined by:

αΓ
L,K(Ib) =

⋃ {
σ(π), π ∈ ΠΓ

L,K(Ib)
}

(39)
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L1

(a) I1 (b) αL1 (I1)

L2

L3

(c) I2 (d) αL1 (I2) (e) αL2 (I2)

Figure 27: The noise problem of path opening. A binary image (a) and the same binary
image where the curvilinear structure is disconnected by a noise pixel (c). Lengths
of curvilinear structure parts are shown in red. The result of the path opening on
(a) and (c) with different length (b,d,e). To preserve the noisy curvilinear structure,
a path opening with length L2 should be applied, but this opening also preserves
an isotropic structure.

The IPO may be seen as a path opening which is more flexible as it allows more paths
than a regular path opening. If ΠΓ

L(Ib) is the set of allowed paths of a path opening, then
ΠΓ

L(Ib) ⊆ ΠΓ
L,K(Ib)).

The algorithm proposed by Heijmans et al. has a complexity in O(NLK) where N is the
number of pixels, L the path length and K the number of allowed noise pixels per path. In
2007, Talbot et al. proposed an efficient algorithm to compute the IPO. Its complexity is
O(N log(L)), which is better; however, the Talbot et al. algorithm requires an extra memory
cost of about K times the memory cost of the Heijmans et al. algorithm. Consequently, both
algorithms are too expensive in 3D, and have never been implemented, to the best of our
knowledge.

4.4.2 Robust path opening (RPO)

In 2013, Cokelear et al. proposed a new method to make the path opening robust to noise
and tractable in 3D and called it Robust Path Opening (RPO) [21]. Their idea to reduce the
complexity is to introduce a noise parameter, Q (Q ∈ N), to handle the robustness as for the
incomplete paths, but which is independent of the path length.

Instead of allowing K disconnections per path, RPO allows paths to present any discon-
nections of at most Q noise pixels. Consequently the number of noise pixels in a path of
length L could vary between 0 and Q× L−1

2 . RPO is even more flexible than the IPO, as the
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set of paths of a RPO is larger than the set of incomplete path opening. Let ΠΓ
L,Q(X) be the

set of paths of RPO on X, then ΠΓ
L(X) ⊆ ΠΓ

L,K(X) ⊆ ΠΓ
L,Q(X). Figure 28 shows examples of

paths for the path opening, the incomplete path opening and the RPO and Figure 29 shows
a comparison of the three algorithms on a grey-level image.

(a) (b) (c)

Figure 28: Examples of possible paths of length 8 for the classical path opening (a), the IPO
with K = 2 (b) and the RPO with Q = 2. The black squares represent the noise
pixels.

The RPO algorithm of Cokelear et al. is based on the path opening algorithm of Luengo
Hendriks [54]. The complexity of the RPO was experimentally assessed to be O(QN log(L)).
This is significantly better than the IPO but worse than the complexity of the efficient IPO.
However, the memory cost of RPO is constant, unlike the efficient incomplete path opening.
Moreover, in practice, since the noise parameter Q is more permissive in terms of noise
proportion in a path, than the noise parameter K of the IPO, Q is generally set to 1 or 2
whereas K may be much larger. A comparison of both robustness to noise path opening is
shown in Figure 29

(a) Initial image (b) Path opening (c) IPO (d) RPO

Figure 29: Comparison of a path opening (b), an IPO with K = 2 (c) and a RPO with Q = 2
(d) with path length 40 on a synthetic image (a). The classical path opening does
not preserve the disconnected curvilinear structures. The curvilinear structures
are slightly brighter in the RPO result than in the IPO result as the set of paths is
less restrictive, which allows the RPO to find a fitting path in a higher grey-level.
However, the RPO also preserves more noise and isotropic structures than IPO.

RPO is the only robust to noise path opening version that is available for 3D images.
However, the computational cost and memory cost are still fairly high. As our work lies
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on path openings, we have proposed a simplified robust path opening which gives similar
results in 3D as RPO, but requires significantly less computational and memory cost (see
Chapter 6.2). In the following we shall always use our simplified robust to noise version of
the path opening.





5
T H E R O R P O F R A M E W O R K

So far, we have presented our strategy, which is to distinguish curvilinear structures from
plane and blob-like structures, using their number of high responses to path opening. In this
chapter, we present the framework we developed to achieve this goal (Section 5.1), as well as
how we derive both intensity and directional features from it (Section 5.2 and 5.3). Finally,
we present a multiscale approach of this framework (Section 5.4).
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5.1 ranking orientations

In Section 3.2, we have observed that counting the number of high responses of path open-
ings may allow us to distinguish between curvilinear structures, plane-like and blob-like
structures. In order to count these high responses, we use rank filters. In the following, we
first define the pointwise rank filter PRF, then we explain how we use it to count high path
opening responses.

5.1.1 Pointwise rank filter (PRF)

The rank filter in image processing was first proposed by Heygster [40]. Applying a rank
filter RFk of order k on an image assigns, at each pixel x, the kth smallest grey-level value
amongst neighbors pixels of x. The neighborhood is defined by a window of a given size,
centered on x. In particular, RF1 returns the smallest value while RFn returns the highest
value in the window of size n pixels.

Let X be the support of an image and G its set of grey-levels. Instead of ranking grey-level
values inside the same image, we define the Pointwise Rank Filter (PRF), PRFk : Xn → X, of
order k, of a set of images as the filter that assigns, for each pixel x, the kth highest grey-level
value amongst the pixels at the same position of every image of the set.

More formally, let A = {A1, A2, . . . , An}, A ∈ Xn, be a set of n images of the same size,
and fk : Gn → G, k ∈ [1, n], be a function returning the kth highest value amongst n values,
then the Pointwise Rank Filter (PRF) of order k is defined as follows:

PRFk(A)(x) = fk

(
A1(x), A2(x), . . . , An(x)

)
(40)

In particular, PRF1(A) is the pointwise maximum filter (see Eq. (41)), PRFn(A) is the point-
wise minimum filter (see Eq. (42)) and RFn+1

2
the pointwise median filter (if n is odd). Fig-

ure 30 illustrates the difference between the rank filter and the pointwise rank filter.

PRF1(A)(x) = max
i∈[1,n]

Ai(x) (41)

PRFn(A)(x) = min
i∈[1,n]

Ai(x) (42)

We now define the Pointwise Rank Filter (PRF), PRF(A), of a set of n images A (PRF :
Xn → Xn), as the filter returning n ranked images, each resulting of applying one of the n
PRF of order k:

PRF(A) =
{

PRFi(A) ∈ X, ∀i ∈ [1, n]
}

(43)

At each point x, we have the relation: PRF1(A)(x) ≥ PRF2(A)(x) ≥ . . . ≥ PRFn(A)(x).
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Figure 30: Comparison between the rank filter of order 3 (a) and the pointwise rank filter of
order 3 (b). The rank filter RF3 centered on the grey-level 9 return the 3th smallest
value inside the red window, which is 1. The pointwise rank filter PRF3 returns the
3th largest value amongst the 4 pixels at the same position in each image, which is
2. Note that RF counts from the minimum and PRF counts from the maximum.

5.1.2 Counting high path opening responses

Let O be a set of n path opening orientations (see Section 4.3.3), then
(

Ao
L(I)

)
o∈O is the set

of the n path opening responses with path length L of the image I. Applying the PRF on(
Ao

L(I)
)

o∈O provides n ranked path opening images
(
γi

L(I)
)

i∈[1,n]:(
γi

L(I)
)

i∈[1,n]
= PRF

((
Ao

L(I)
)

o∈O

)
(44)

Interpretation in the binary case

Let us consider a binary image Ib, and its n responses to a path opening
(

Ao
L(Ib)

)
o∈O . To

simplify the explanation, we suppose that Ib contains several structures which are either pre-
served or removed entirely by a path opening. A structure which appears in p out of the n
Ao

L(Ib) responses, only appears in the first p ranked path opening images
(
γi

L(Ib)
)

i∈[1,p]. In

this way, γi
L(Ib) contains all structures preserved in at least i out of the n path opening orienta-

tions. An illustration in the 2D case with the 4 orientations of Figure 35 is shown in Figure 31.

5.2 intensity feature

5.2.1 The generic RORPO intensity operator

We have observed that curvilinear structures are preserved in fewer path opening orienta-
tions than other structures. We have also proposed, in the previous section, a method for
counting the number of orientations detecting each structure. Indeed, γi

L contains all struc-
tures preserved in at least i path opening orientations.

Let itube be the maximal number of path opening orientations preserving a curvilinear
structure (itube ∈ [1, n− 1]) and iplane be the minimal number of path opening orientations
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Figure 31: Illustration of the ranking procedure on a binary image Ib. First, the path openings
are applied (Ao

L), then the PRF is computed to obtain the ranked path opening
imaged γi

L(I). The curvilinear structures appearing in 2 Ao
L are present in γ1

L(I)
and γ2

L(I). The disc appears in all path opening responses because L is smaller
than its diameter.

preserving a plane-like structure (iplane ∈ [1, n]). Let it be a threshold value such as iplane ≥
it > itube, it ∈ [1, n]. We define the RORPO intensity feature, ΦL as follows:

ΦL(I) = γ1
L(I)− γit

L(I) (45)

Indeed, γit
L does not contain any curvilinear structures , as it > itube, but contains all plane-

like structures, as it ≤ iplane. Moreover, γ1
L contains all structures detected by at least one path

opening orientation. By subtracting γit
L from γ1

L, RORPO only preserves structures detected
in at most it − 1 orientations, namely, the curvilinear structures.

So far we have presented arguments based on a binary image, however, the same reasoning
remains valid for gray-level images. Assuming bright structures on dark background, a grey-
scale curvilinear structure presents a high value in γ1

L and a smaller one in γit
L , whereas a

plane-like structure presents both high values in γ1
L and γit

L (not necessarily equal, γ1
L ≥ γit

L).
Consequently, the RORPO intensity response is higher for the curvilinear structures than for
the plane-like structures.

Beyond the preservation of curvilinear structures, the RORPO intensity feature also re-
duces the intensity of non-curvilinear structures and the mean background intensity.

In the following we present how we set the threshold value it in the 2D and 3D case.
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(a) o1 (b) o2 (c) o3

(d) o4 (e) o5 (f) o6 (g) o7

Figure 32: The 7 path opening orientations in 3D.

5.2.2 Setting the it threshold

5.2.2.1 The 3D case

In the 3D case, we use the 7 path opening orientations, (oi)i∈[1,7] of Figure 32. To experi-
mentally determine the it threshold value, we have uniformly sampled the 3D space in N
different orientations, and generated for each of them, a synthetic straight binary tube of
length 40 pixels and width 3 pixels. Using a uniform sampling strategy, we also have gener-
ated N′ binary plane-like structures of length 40× 40 pixels and of width 3 pixels. Examples
of these samplings are shown in Figure 33.(a-b).

(a) (b) (c)

Figure 33: Illustration of the 3D space sampling with N = 362 tubes (a), and with N′ = 34
plane-like structures (b). The 2D space sampling with N = 12 lines is presented
in (c).

For each structure, we computed the 7 path openings along the (oi)i∈[1,7], and we evaluated
the number of path opening orientations which detects this structure. A structure may be
partially detected by a path opening, so we need to set a threshold on the ratio of pixels
required to call the structure "detected" in a given orientation. In these experiments, we
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present the results for several thresholds: 99%, 80% and 50%. For example, if the detection
threshold is 80%, a structure is said to be detected if at least 80% of its pixels are detected by
the path opening in a given orientation.

The results of applying a path opening with path length L = 40 are shown in Table 2 for
curvilinear structures and Table 3 for planes.

Percentage of tubes detected in i orientations

detection threshold 1 2 3 4 5 6 7

99% 0 82.92 17.08 0 0 0 0

80% 0 66.94 29.20 3.31 0.55 0 0

50% 0 54.27 41.32 3.58 0.83 0 0

Table 2: Percentage of tubes detected in i path opening orientations (i ∈ [1, 7]) for N = 363
tubes, each in a different orientation, and considering several detection thresholds.

Percentage of planes detected in i orientations

detection threshold 1 2 3 4 5 6 7

99% 0 0 0 31.13 12.58 56.29 0

80% 0 0 0 0 0 81.45 18.55

50% 0 0 0 0 0 78.93 21.07

Table 3: Percentage of planes detected in i path opening orientations (i ∈ [1, 7]) for N = 323
planes, each in a different orientation, and with several detection thresholds.

Results with the varying detection thresholds show the same trend: curvilinear structures
are mostly detected in 2 or 3 path opening orientations (in 95% of the cases), whereas plane-
like structures are detected in at least 4 path opening orientations. In other words, that means
that iplane = 4 and itube = 3. Consequently, we choose it = 4 which satisfies iplane ≥ it > itube.
In 3D, the RORPO intensity feature is then defined by:

ΦL(I) = γ1
L(I)− γ4

L(I) (46)

An illustration of the RORPO intensity feature is presented in Figure 34 on a synthetic
image. This image was designed to contain the 3 types of structures in 3D: a plane-like
structure, blob-like structures and a spiral (i.e. a curvilinear structure) with varying radius
and width. We can see that the RORPO intensity feature successfully removes the plane-like
structure and most of the blob-like structures, while preserving the spiral. Moreover, the
mean background intensity is also decreased, resulting in a more contrasted spiral. More
results, validations and comparisons are presented in Chapter 7.

With this definition, up to 5% of curvilinear structures may be lost by RORPO; i.e. the
curvilinear structures detected in 4 and 5 path opening orientations. In order to preserve
these, we propose a post processing procedure, which is described in Section 5.2.3.
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(a) MIP of the initial image (b) MIP of the RORPO intensity result

(c) Isosurface of the initial image (d) Isosurface of the RORPO intensity result

Figure 34: Illustration of the RORPO intensity feature on a 3D synthetic image containing
a plane-like structure, blob-like structures and a spiral with varying radius and
width. The initial image and the RORPO intensity result are both shown with a
projection view (MIP) (a–b) and an isosurface view (c–d).

(a) o1 (b) o2 (c) o3 (d) o4

Figure 35: The 4 path opening orientations in 2D.

5.2.2.2 The 2D case

In the 2D case, there are no plane-like structure. The only condition on the threshold value
it is: it > itube. To determine this threshold in 2D, we performed the same experiment as
in the 3D case, but solely on tubes. We used the 4 path opening orientations, (oi)i∈[1,4] of
Figure 35 and also sampled the 2D space to generate synthetic tubes in different orientations
(see Figure 33.(c)). The results of the experiment are shown in Table 4.
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Percentage of tubes detected in i orientations

detection threshold 1 2 3 4

99% 0 98.73 1.27 0

80% 0 98.73 1.27 0

50% 0 93.67 6.33 0

Table 4: Percentage of tubes detected in i path opening orientations (i ∈ [1, 4]) for N = 157
tubes, each in a different orientation, and with several detection thresholds.

We can see that curvilinear structures are detected in 2 or 3 path opening orientations,
irrespective of the detection threshold. Based on these results, itube = 3. Consequently, we
set it = 4 which satisfies it > itube. In 2D, the RORPO intensity feature is then also defined
by:

ΦL(I) = γ1
L(I)− γ4

L(I) (47)

The reader should note that the it threshold value is the same in 2D and 3D. This is
serendipitous as its value only depends on the choice of the set of path opening orientations.
With the choice we made, it = 4 both in 2D and 3D, but with other path opening orientation
sets, the value of it may be different in 2D and 3D.

An illustration of the RORPO intensity feature in 2D is presented in Figure 36 on a syn-
thetic image.

(a) Initial image (b) the RORPO intensity result

Figure 36: Illustration of the RORPO intensity feature on a 2D synthetic image.
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5.2.3 Limit orientations in 3D

5.2.3.1 Origin

In the previous section we saw that a few curvilinear structures seemed to be detected in 4
or 5 path opening orientations in the 3D case. Theses curvilinear structures lie in boundary
orientations, resulting from the overlap of the path opening orientations we chose.

Path opening orientations need to overlap in order to preserve tortuous structures lying in
several orientations. At each point of the image, only two path opening orientations should
overlap, which is the case for most of the image points. However, as the path opening ori-
entations are discrete closed cones, two adjacent orientations, which should be distinct, still
overlap at their boundaries. The limit orientation problem appears when these boundaries
are shared by more than 3 cones. Indeed, curvilinear structures lying in these boundaries
yield a high response in more than 3 path opening orientations, and thus, are not preserved
by RORPO. In this section we propose a post-processing approach to preserve these curvilin-
ear structures .

5.2.3.2 Post-processing

We call 4-orientation (resp. 5-orientation) tubes, curvilinear structures that are detected in 4
(resp. 5) path opening orientations. Examples of such tubes are shown in Figure 37. In
the following, we call main orientations the first three path opening orientations o1, o2 and
o3 corresponding to the horizontal, vertical and depth orientation, and we call diagonal orien-
tations the remaining four path opening orientations o4, o5, o6 and o7. The post-processing
procedure is composed of 3 steps:

• Detection of the 4 or 5-orientation tubes;

• Removal of the remaining plane-like structures;

• Supremum with the RORPO intensity feature result.

In the first step, we isolate the 4 and 5-orientation tubes from the other structures.

The 5-orientation tubes are detected in one main orientation and the four diagonal orienta-
tions. Consequently, the intersection between the path opening results with the four diagonal
orientations preserve these tubes. We call this intersection Γ5

L(I):

Γ5
L(I) = min

i∈[4,7]
Aoi

L (I) (48)

The 4-orientation tubes are detected either in two main and two diagonal orientations
(pattern 1) or in three main and one diagonal orientations (pattern 2). Consequently, the
union of the combinations, C, of intersections between four of theses orientations, detects the
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(a) 5-orientation tube

(b) 4-orientation tubes, pattern 1

(c) 4-orientation tubes, pattern 2

Figure 37: Example of 4 and 5-orientation tubes. The red tube lies in the boundary between
5 (a) or 4 (b) and (c) path opening orientations.

4-orientation tubes. There are ten different combinations of interest: six for pattern 1 and
four for pattern 2 (see Eq. (49)). We call this union Γ4

L(I) (see Eq. (50)).

C1 = {o1, o2, o4, o7}
C2 = {o1, o2, o5, o6}
C3 = {o1, o3, o5, o7}
C4 = {o1, o3, o4, o6}
C5 = {o2, o3, o6, o7}
C6 = {o2, o3, o4, o5}

C7 = {o1, o2, o3, o4}
C8 = {o1, o2, o3, o5}
C9 = {o1, o2, o3, o6}
C10 = {o1, o2, o3, o7}

(49)

Γ4
L(I) = max

i∈[1,10]
min
c∈Ci

Ac
L(I) (50)

Γ5
L(I) and Γ4

L(I) preserve both 5 and 4-orientation tubes, but they may also preserve plane-
like structures that lie in the same limit orientations. The second step of this post-processing
removes these remaining plane-like structures. To this end, we need to isolate these plane-like
structures. We define ∆i

L as the first ranked path opening orientation that does not contain
i-orientation tubes. In particular, ∆4

L(I) = γ5
L and ∆5

L(I) = γ6
L(I). Then min

{
Γi

L(I), ∆i
L(I)

}
contains only these remaining plane-like structures. However, it may happen that ∆i

L(I) only
contains subsets of plane-like structures. To recover the totality of these plane-like structures,
we also add a geodesic dilation step ρ of ∆i

L(I) in γ4
L; since γ4

L is the first ranked path opening
orientation containing all plane-like structures. Finally the removal of the remaining plane-
like structures is simply performed as follows:

RPi
L(I) = Γi(I))−min

{
Γi

L(I), ρ(∆i
L(I), γ4

L(I))
}

(51)

The final step of this post-processing consists of adding the i-orientation tubes to the
RORPO intensity feature result (see Eq. (52)). Even though this post-processing procedure



5.2 intensity feature 63

includes several operators, all of them are easily computed, and the additional computational
cost of this post-processing is negligible compared to RORPO. An illustration of the complete
post processing procedure in the case of the 5-orientation tubes is shown in Figure 38.

Φpost
L (I) = max

{
ΦL(I), RP4

L(I), RP5
L(I) (52)
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as the 5-orientation tube

Any tube
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Figure 38: Post-processing pipeline for the 5-orientation tubes.
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5.3 directional feature

Since RORPO is based on oriented path operators, it intrinsically carries information on the
direction of the detected curvilinear structures. In order to retrieve this directional infor-
mation, we have to identify which path opening orientation locally best fits the curvilinear
structure. Typically, there is more than one path opening orientation detecting a curvilinear
structure (generally 2 or 3, as seen in Section 5.2.2). In the following, we will refer to these
orientations as orientation(s) of interest. By combining the orientation(s) of interest, we may ob-
tain a reasonably accurate evaluation of the curvilinear structure orientation (see Figure 39).

RPO with 
orientation

Find orientation(s) 
of interest

Combine 
orientations

Direction found by
RORPO

Figure 39: Principle of the directional feature extraction.

5.3.1 Finding the orientations of interest

Finding the orientations of interest requires to take a binary decision for each path opening
orientation: either the path opening orientation preserves a curvilinear structure or it does
not. However, the output of each path opening is not binary, but a grey-level response. A
non-trivial classifying rule is then required to find which path opening orientation is an
orientation of interest.

An orientation of interest, o, is characterized by a high path opening value Ao
L(I) compared

to the other path opening orientations, which do not detect the curvilinear structure. A first
solution to detect these orientations of interest would be to set a threshold t (t ∈ G), such that
if Ao

L(I) > t, the orientation o detects the curvilinear structure. Nonetheless, this solution is
not robust. Indeed, the intensity of the path opening response at each pixel depends on its
initial grey-level, and on those of its neighbors, which means that such a unique threshold
does not exist.

Consequently, we propose, for each pixel, to classify the n path opening orientations in
two classes: the orientations of interest and the remainder, which do not detect a curvilinear
structure, based on an homogeneity criterion. Indeed, we expect that all orientations of
interest have similar high responses, Ao

L(I), while all the other path opening orientations
have similar low responses. For simplicity and efficiency, we chose the standard deviation
as the homogeneity criterion and we reformulate the problem as a minimization of the intra-
class standard deviation. This is a similar approach to the Otsu thresholding method [67].
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More formally, we recall that O is the set of the n path opening orientations. Let C be the
set of all the combinations of 1, 2 and 3 path opening orientations. One of the combinations
of C is the set of the orientations of interest we seek. Let P = {p1, p2, . . . , pk}, 1 ≤ k ≤ 3, be
one of these combinations (P ∈ C); we note σP(x) the standard deviation of the path opening
responses with the orientations of P at pixel x such as:

σP =

√√√√1
k

k

∑
j=1

(A
pj
L − µ)2, µ =

1
k

k

∑
j=1

A
pj
L (53)

Then, we find the orientations of interest by solving the following problem:

minimize
P∈C

σP + σO\P (54)

To solve this problem, we could compute the intra-class standard deviation of each combi-
nation of C (14 combinations in 2D and 63 in 3D), or we can use the information provided by
the Pointwise Rank Filter previously computed for the RORPO intensity feature, to reduce
the possible number of combinations.

We remember that (γi
L)i∈[1,n] are the n ranked path opening orientations previously com-

puted. We call Oi the orientation along which the ranked path opening γi
L was computed

(γi
L = AOi

L ). We have seen that curvilinear structures are detected by at most 3 path opening
orientations (both in 2D and 3D), which means that only γ1

L, γ2
L or γ3

L may contain curvilin-
ear structures. In this way, only O1, O2 or O3 may be orientations of interest and if Oi is an
orientation of interest, so is Oi−1, if i > 1 (due to the ranking).

Consequently, by using the ranked path opening orientations from RORPO, we can reduce
the number of useful combinations of C to three: {O1}, {O1, O2}, {O1, O2, O3}. An illustration
of the choice of orientation of interest is shown in Figure 40.

200 25 40 51 233 12 37

Pointwise Rank Filter
 (PRF)

233 200 51 40 37 25 12

Figure 40: At each pixel of an image (red square), 7 path opening responses Aoi
L are computed.

A high value Aoi
L , means that orientation oi is likely to be an orientation of interest.

After applying the PRF, only 3 possible sets of path opening orientations may be
the orientations of interest (here {o5}, {o5, o1} or {o5, o1, o4}) depending on which
one minimizes the intra-class standard deviation. In this case the orientations of
interest are o5 and o1.
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5.3.2 Combining the orientations

Once the orientations of interest are found, we have to combine them in order to compute the
final direction of the curvilinear structure. Each path opening orientation (both in 2D and 3D)
are cones, generated from a main vector (represented in red in Figure 35 and 32). These main
vectors constitute the global orientation of any path lying in their path opening orientation.
Consequently, the combination of orientations of interest is performed by combining the
main vectors of each orientation of interest.

The combination of the main vectors can not be performed by a simple vector sum. We
encode the orientation of a curvilinear structure by a vector. However, a vector has a direction,
which is more specific than an orientation. Indeed, each orientation may be encoded by 2 dif-
ferent vectors. For example, if a 3D curvilinear structure has an horizontal orientation, both
vectors (i.e. direction) [0, 0, 1] and [0, 0,−1] encode its orientation. Nonetheless, a vector sum
with one vector or the other would not be the same. An illustration is shown in Figure 41.

Find orientations
 of interest

Combine orientations
 of interest

+

=

[1,-1] [0,1]

[1,0]

Combine orientations
 of interest after correction

+

=

[-1,1] [0,1]

[-1,2]

Figure 41: Without correction of the principal vectors, the final curvilinear structure direction
is incorrect ([1, 0]). We first need to switch one of the principal vectors from [1,−1]
to [−1, 1] (both have the same orientation), and sum them to obtain the correct
curvilinear structure direction ([−1, 2]).

To deal with this issue, when performing the combination of the main vectors of the orien-
tations of interest, we first need to ensure to chose the correct main vector for each orientation
of interest. Then we can sum these corrected main vectors to obtain the final direction of the
curvilinear structure. In practice, we chose the main vectors for which the sum of their
pairwise angle is minimal. An example of the RORPO directional feature is presented in
Figure 42.

5.4 multiscale approach

One of the difficulties in curvilinear structure analysis is dealing with multiple scales. Real
applications need to cope with varying diameters, lengths and curvatures, which are gen-
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(a) (b)

Figure 42: A 2D synthetic image (a) and its directional feature (b) (only represented inside
the curvilinear structures).

erally highly correlated. To tackle this issue, various multiscale approaches have been de-
veloped. A common multiscale approach consists of applying the same filter several times,
while changing a scale-related parameter and merging the results. In this section, we pro-
pose a multiscale version of RORPO, for both directional and intensity features, based on the
length of the structures.

5.4.1 Length based multiscale approach

In the literature on multiscale curvilinear structure analysis, the scale parameter is usually
related to the diameter of the curvilinear structure [33]. Indeed, whether considering blood
vessels or roads, a small curvilinear structure is generally a curvilinear structure with a small
diameter as opposed with a large curvilinear structure endowed with a large diameter.

However, in the case of RORPO, the length of the underlying paths, is the only tunable
parameter. Had we wanted to vary the diameter, we would have had to combine RORPO
with another filter. As it turns out, in many applications, the diameter, curvature and length
of curvilinear structures are highly correlated, for physical reasons. For example, small blood
vessels are generally more tortuous and shorter than large vessels like the aorta. The same
argument can be made for insulation glass fibers or country roads vs. highways.

In the RORPO framework, the path length should not only be set depending on the length
of the sought curvilinear structures, but also on its curvature. Indeed, to be preserved, a
structure of a given length must lie entirely within a single path opening orientation. This
structure may present small-scale curvatures and still be preserved, as the path opening
orientations are cones. However, if the structure presents a curvature larger than the cone
aperture (here called large-scale curvature), then the structure will not be preserved. In order
to still preserve it, more than one path openings with different path opening orientations are
required, both with a path length smaller than the real curvilinear structure length (see
Figure 43).
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To summarize, let us consider two curvilinear structures with the same length L, but one
presents a large-scale curvature. The maximal path length preserving the latter is smaller
than the maximal path length preserving the straight curvilinear structure. Moreover, we
assume that in real applications, the diameter is highly correlated to the curvature of curvi-
linear structures: the smaller the diameter, the higher the curvature and so the smaller the
allowable path length.

Large scale
curvature

Small scale
curvature

Orientation  Orientation  

RORPO with several 
orientations and path lengths

Figure 43: A curvilinear structure with a large-scale curvature cannot be preserved by only
one path opening. Path openings with several orientations and a path length
smaller than the real curvilinear structure length are required.

5.4.2 Methodology

With our assumption, using the path length as scale parameter is similar to using the diame-
ter for the multiscale filtering of curvilinear structures in real applications. In order to merge
the RORPO intensity results with varying path lengths, we propose to use the same approach
as for merging the different path opening orientations results: the maximum operator. More
formally, let S = {L1, L2, . . . , Ln} be a set of path length. The multiscale RORPO intensity
filter Φ(I) is defined as follows:

Φ(I) =
∨
L∈S

ΦL(I) (55)

This multiscale paradigm is also applied to the RORPO directional feature. For each
RORPO scale (i.e. path length), a direction can be computed; the final direction is the one
associated with the highest RORPO intensity response and with the lowest scale.

In the next chapter we present a few algorithmic considerations regarding RORPO.
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A L G O R I T H M I C C O N S I D E R AT I O N S

In this chapter, we present a few algorithmic considerations. The first section provides a sum-
mary of the RORPO algorithm. Section 6.2 presents our simpler, faster version of the path
openings with noise robustness that we developed. Section 6.3 presents the different param-
eters of the RORPO framework and discusses our choices for the non-tunables parameters.
Finally, we discuss in Section 6.4 the computational cost of our algorithm.
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6.1 rorpo algorithm

In this section we provide a summarize algorithm for the computation of both RORPO fea-
tures. The algorithm is presented in Algorithms 1 and 2. We recall that we use the algorithm
of Luengo Hendriks [54] to compute the path openings (which is called compute_PO in Algo-
rithm 1).

We released our C++ code to compute the RORPO intensity feature on github https:

//github.com/path-openings/RORPO, and we will soon release a new version that also com-
pute the RORPO directional feature, on the same repository.

Algorithme 1 : RORPO algorithm without limit orientation correction
Data : Image I, set of scales S = {L1, L2, . . . , Ln},
set of the 7 orientations O = {o1, o2, . . . , o7}
Result : Intensity feature Φ and directional feature d
begin

for each scale L in S do
Id = δ(I) Dilation of I

begin
for o in O do

Ao
L = compute_PO(Id, o, L) Compute the 7 RPO

end
end

(γi
L)i∈[1,7], (Oi

L)i∈[1,7] = ranking
(
(Aoi

L )i∈[1,7]

)
Pointwise rank filter

ΦL = min(I, γ1
L − γ4

L) Intensity feature at scale L
Φ = max(ΦL, Φ) Multiscale intensity feature

dL = compute_directions
(
(γi

L)i∈[1,7], (Oi
L)i∈[1,7]

)
Directional feature at scale L

if ΦL(x) > Φ(x) then
d(x) = dL(x) Multiscale directional feature

end
end

end

6.2 simplified robust path opening

RORPO is based on path openings which can be sensitive to noise. We have seen in Chapter 4

that two solutions have been proposed to improve the noise robustness of path openings: the
Incomplete Path Opening (IPO) an the Robust Path Opening (RPO). Only the latter has been
implemented in 3D. In addition, the algorithmic layer handling the robustness is complex,
and time and memory consuming. To cope with this problem, we proposed a simplified
robust path opening, which yields similar results with only a small extra computation and
memory cost.

https://github.com/path-openings/RORPO
https://github.com/path-openings/RORPO
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Algorithme 2 : compute_directions

Data : (γi
L)i∈[1,7], and (Oi

L)i∈[1,7]
Result : Directional feature d
begin

for each pixel x of I do

g1 = std
(
(γi

L(x))i∈[2,7]

)
Compute the

g2 = std
(
(γi

L(x))i∈[1,2]

)
+ std

(
(γi

L(x))i∈[3,7]

)
standard deviation

g3 = std
(
(γi

L(x))i∈[1,3]

)
+ std

(
(γi

L(x))i∈[4,7]

)
of the 3 useful classes

g? = argmin(gi)
i∈[1,3]

Keep the class with the lowest std

d(x) = combine
(
(Oi

L)i∈[1,g?]

)
Compute the final direction

end
end

Our method relies on a mask-based second-generation connectivity strategy [68] in order
to reconnect the curvilinear structure parts disconnected by noise. A dilation by a cubical
structuring element of size N × N × N is first performed on the initial image I. This dilated
image is later used to compute the regular path openings. This is equivalent to the RPO
strategy which uses paths where some pixels can be darker due to noise. Roughly speaking,
instead of allowing for noisy pixels inside paths, we compute paths on the dilation, which
has already turns the noisy pixels into structure pixels (see Figure 44).

Dilation Path Opening
1 2

Min3

Figure 44: Illustration of the simplified robust path opening. A curvilinear structure is dis-
connected by a noisy pixel. After dilation this pixel is no longer consider as noise,
but belongs to the curvilinear structure , which allows the path opening to pre-
serve the whole curvilinear structure. A minimum operator is finally applied to
ensure anti-extensivity.
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To preserve the anti-extensivity of the path opening, a minimum operator is applied be-
tween the path opening result and the initial image. More formally, let δCN be a dilation by a
cube of size N, the simplified robust path opening, Ao

L,N , with path length L and orientation
o is then defined as follows:

Ao
L,N(I) = min{I, δCN

(
Ao

L(I)
)
} (56)

This simplified robust path opening only requires to compute an extra dilation by a cube,
which may be computed with a constant complexity. It requires no additional complex algo-
rithmic layer, and yields similar results to RPO. In term of paths, our method is equivalent
to allowing noisy pixels inside paths, however, the noisy pixels may be located at the path
extremities which is not the case for RPO. For large values of N, using the simplified robust
path opening may preserve more noise and false positive structures than RPO. Nonethe-
less, in real applications, as for RPO, we rarely use values larger than N = 5 (equivalent to
Q = N−1

2 = 2 for RPO). A comparison between these two versions of robust path openings
is presented in Figure 45.

(a) Initial image (b) RPO (c) Simplified RPO

Figure 45: Comparison of a RPO with Q = 5 (b) and the simplified RPO with N = 5 (c) both
with path length L = 50 on a synthetic image (a).

6.3 parameters

The behaviour of the RORPO framework is controlled by several parameters: The path length,
the robustness to noise parameter, and the set of chosen path opening orientations. In prac-
tice, the set of path opening orientations is fixed according the dimension of the image (2D
or 3D). The robustness to noise parameter is usually set to 0, 3 or 5 depending on the degree
of noise in the image; and the path length should be set according to the size of the curvi-
linear structures one wants to preserve. In this section, we present the behavior of RORPO
according to these parameters and how to set them.
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6.3.1 Path length

The path length is de factor th only real tunable parameter. As the paths can be tortuous, the
path length is not exactly the length of the structure one wants to preserve. Nonetheless an
obvious correlation exists between the length and diameter of the structure of interest and
the path length. This correlation makes the path length a meaningful parameter, which can
be set according to the dimensions of the curvilinear structures to be detected.

In the following, we present a few experiments, which shed some light on how to set the
path length according to the length, diameter and curvature of the curvilinear structures of
interest.

Path lenght vs. diameter and length of the curvilinear structures

We computed the RORPO intensity on a straight curvilinear structure in 2D, with either a
varying diameter or length. The results are shown in Figure 46. This experiment shows
that the minimal path length preserving a straight curvilinear structure only depends on
its diameter. Indeed, the minimal path length should be higher than the diameter of the
curvilinear structure. Otherwise, all path opening orientations would preserve the structure,
and would be considered as a blob-like structure.

The maximal path length detecting a straight curvilinear structure obviously depends on
the curvilinear structure length but also on its diameter. Indeed, the path can be tortuous
inside the curvilinear structure ; the degree of tortuosity depending on its diameter. This is
why the maximal path length is usually larger than the true curvilinear structure length; the
larger the diameter, the larger the maximal path length.

Path length vs. curvature of the curvilinear structures

All these experiments assumed straight curvilinear structures , which is rarely the case in
real applications. Consequently, we also endeavored to assess the RORPO intensity feature
behavior with respect to curvilinear structures presenting curvatures. We computed the
RORPO intensity feature on a curvilinear structure with a fixed length and diameter, but
with a varying curvature. The degree of curvature is measured by the angle between the two
curvilinear structure extremities (see Figure 47). The results of this experiment are shown in
Figure 48.

This experiment shows that the range of suitable path lengths decreases as the degree of
curvature of the curvilinear structure increases.

A curvilinear structure with a large-scale curvature is usually preserved by more than one
path opening orientation each of them preserving a part of the curved curvilinear structure
(cf Figure 43). The maximal path length is then relative to the length of the parts detected,
which is obviously smaller than the whole curvilinear structure. In this case, when the
curvature is sufficiently high (more than 80◦), each orientation only preserves half of the 120
pixel longcurvilinear structure . Consequently, the maximal path length is around 60 pixels.

The minimal path length increases with the curvature of the curvilinear structure. The
reason is less intuitive because this is an artifact of the limit orientations in 2D. We did not
handle them in 2D as their only impact is on this minimal path length. In 3D the minimal
path length would not vary with the curvature.
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Figure 46: Suitable path length range for the detection of a binary tube with varying lengths
(a) or diameters (b). The blue (resp. red) curve shows the minimal (resp. maximal)
path length which detects the curvilinear structure for different lengths or diame-
ters. All path length values between the blue and red curves may be used to detect
the given curvilinear structure. The green curve indicates the fixed value of the
other curvilinear structure dimension . (a) A curvilinear structure with varying
diameter but a fixed length of 60 pixels (left) or 80 pixels (right). (b) A curvilinear
structure with varying length but a fixed diameter of 5 pixels (right) or 15 pixels
(left).

6.3.2 Noise robustness parameter

The noise robustness parameter, N, corresponds to the size of the structuring element of
the dilation (see Section 6.2). It is a tunable parameter but only with a short range, as we
recommend to set it to 0, 3 or 5 depending on the degree of noise of the initial image. Setting
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(a) 0◦ (b) 30◦ (c) 60◦ (d) 90◦

Figure 47: Curvilinear structures with varying curvatures.
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Figure 48: Suitable path length range for the detection of a binary tube with varying degree
of curvature. The blue (resp. red) curve shows the minimal (resp. maximal) path
length which detects the curvilinear structure for different lengths or diameters.
All path length values between the blue and red curves may be used to detect
the given curvilinear structure. The curvilinear structure has a fixed length of 120
pixels and a fixed diameter of 10 pixels.

the robust to noise parameter to a larger value tends to increase the detection of false positives
more than it tends to preserve disconnected curvilinear structures. Setting N = 3 preserves
curvilinear structures with disconnection that are at most 2 pixel long, while setting N = 5
preserves curvilinear structures with disconnections of at most 4 pixels. Nonetheless, it can
also incorrectly preserve noise structures close (2 or 4 pixels) to a real curvilinear structure
(see Figure 49).
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(a) Image (b) N = 0 (c) N = 3 (d) N = 5

Figure 49: An image (a) and its simplified robust path opening with path length L and with
N = 0 (b), N = 3 (c) or N = 5 (d). The higher N, the more disconnected tubular
parts are preserved but the more false positives are also detected.

6.3.3 Orientations

The path opening orientation set is a fixed parameter. The RORPO framework is proposed
based on a given orientation set (one in 2D and one in 3D). In this section we motivate the
choice of these specific sets of orientations.

Working with a finite number of orientations implies to choose a sampling policy, in order
to determine the number and the shape of the orientations for the computation of the path
openings. A path opening orientation is defined based on an adjacency relation. We have
seen that this adjacency relation is a set of irreflexive, non-symmetric binary relations defin-
ing the local connexity in its 8 (in 2D) or 26 (in 3D) neighborhood. Each adjacency relation is
composed of a principal vector, defining the global orientation, and other vectors surround-
ing the principal vector, in a cone shape, to allow local deviation from the global orientation.
Based on these hypothesis, 4 unique global orientations can be defined in 2D and 13 in 3D.

In 2D we chose to use all 4 of global orientations. Using fewer orientations (i.e. 2) would
obviously not have been sufficient either because of the low overlap or the lack of precision
in the directional feature.

In 3D, several combinations are possible among the 13 unique global orientations while
keeping a complete cover of the 3D space and a significant overlap of homogeneous orienta-
tions: 3, 7 or 13 orientations (see Figure 50). As in the 2-orientation case in 2D, considering
only 3 orientations in 3D would not be enough. We showed in the previous chapter that 7
orientations are sufficient to compute both intensity and directional features. However, we
may assume that 13 orientations also works.

We have performed the same experiments as in Section ?? but with 13 path opening ori-
entations to set the threshold value, it, leading to a correct RORPO intensity feature. Based
solely on these synthetic experiments it appears that setting it = 8 is a good choice since it
allows for the preservation of more than 90% of curvilinear structures while removing all
plane-like structures. In Chapter , we quantitatively compare the RORPO results with 7 and
13 orientations. Nonetheless, using 13 orientations implies several drawbacks:

• More path opening orientations means a higher computation cost. Indeed, 13 orienta-
tions instead of 7 would increase the computation time of RORPO by almost 2.
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(a) 3 orientations (b) 7 orientations (c) 13 orientations

Figure 50: The 3 possible set of path opening global orientations in 3D. We only represent
the main vector of each orientation.

• In 3D, the memory consumption can be significant. Indeed, images may easily contain
several millions of pixels and to compute the PRF, each path opening orientation result
must be stored in memory. 13 orientations means nearly doubling the memory usage
of the algorithm.

• Increasing the number of orientations means reducing the aperture of each cone and
so reducing the flexibility of paths inside each orientation. To preserve a curvilinear
structure with high curvature, a smaller path length should then be used with 13 path
opening orientations than with 7. Consequently, with 13 path opening orientations the
path length become less meaningful.

• Based on the synthetic experiment to set the threshold it, more limit cases would appear
with 13 path opening orientations. To preserve these limit cases, a post processing
step would also be required and should be more complex than with 7 path opening
orientations.

To conclude, we chose a 3D space discretization in 7 path opening orientations because
it constitute the best trade-off between computational efficiency and accuracy.

In a previous work [?], we tried to reduce the aperture of the 7 path opening orienta-
tions to reduce the overlap between orientations in order to suppress the limit cases
presented in the previous Chapter. However, this is not practical since the reduction of
the overlap between orientations leads to the non detection of some curvilinear struc-
tures orientations. Indeed, parts of the curvilinear structures was not detected with
such path opening set.

6.4 computational cost

The computational cost of RORPO is dominated by the path opening. Indeed, the robustness
step only requires infimum/supremum operations which have a linear cost O(|Ω|) with
respect to the size of the image Ω, and the pointwise rank filter is also in O(|Ω|). We recall
that we use the Luengo algorithm to compute the path opening, which has a complexity in
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O(|Ω| log(L)) with L the path length. To experimentally assess that our RORPO algorithm
really obeys these complexity, we computed RORPO on 3D images with increasing sizes
or path lengths. As the density of curvilinear structures may influence the computational
time of the algorithm, we use Vascusynth [38] to generate synthetic images. Vascusynth
generates synthetic images of vascular trees, where the density of curvilinear structures may
be controlled. We generated several images with increasing size but with the same density
of curvilinear structures. The computation time of both experiments is shown in Figure 51.
Results show that the RORPO algorithm has a linear complexity with respect to the image
size and logarithmic complexity with respect to the path chosen path length.
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Figure 51: The computation time of RORPO according to the image size with a fixed density
of curvilinear structures and path length (a) or according to the path length with
a fixed image size and density of curvilinear structures (b).
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R E S U LT S A N D C O M PA R I S O N S

In this chapter, we validate experimentally the RORPO approach and we present a compar-
ison study with three state of the art methods. We compare our results both on synthetic
(Section 7.2) and real images (Section 7.3). The three compared methods along with the com-
parison framework are presented in Section 7.1. Even though RORPO works both in 2D and
3D, we only present results and comparisons on 3D images.
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7.1 comparison framework

7.1.1 Compared methods

We compared our results with different methods designed to detect or characterize curvilin-
ear structures. We chose a vesselness measure, namely the Frangi vesselness, which is one
of the most common. We also compare our results with a filter based on the structure tensor,
called Hybrid Diffusion Filter with Continuous Switch (HDCS), and a filter based on image
gradient flux called OOF. Finally, we also decided to compare our results with the RORPO
variant using 13 orientations instead of 7 which we call the RORPO13. This last comparison
allows us to verify if the choice of 7 orientations instead of 13 really is the best trade-off
between efficiency and accuracy.

In the following, we first describe each method.

7.1.1.1 RORPO13

In Section 6.3.3, we proposed a variant to RORPO using 13 orientations instead of 7. This
variant, called RORPO13, is based on the very same principle as RORPO, but uses a different
threshold value it as the number of path opening orientations is different. Let γi

L(I) be the ith

ranked path opening with path length L, then RORPO13 intensity feature, Φ13
L (I), is defined

by:

Φ13
L (I) = γ1

L(I)− γ7
L(I) (57)

7.1.1.2 Frangi Vesselness (FV)

The Frangi Vesselness (FV) was proposed by Frangi et al. [33]. This filter provides a local,
linear and multiscale measure of the "curvilinearity" of a structure, relying on the second
derivatives of the image. A directional feature can also be derived from this filter. Let
I(x, y, z) be a 3D image, and Iσ be the convolution of I with a Gaussian of variance σ2. The
Hessian matrix of Iσ, H(Iσ), is the square matrix of its second-order derivatives:

H(Iσ) =



∂2 Iσ

∂x2
∂2 Iσ

∂x∂y
∂2 Iσ

∂x∂z
∂2 Iσ

∂y∂x
∂2 Iσ

∂y2
∂2 Iσ

∂y∂z
∂2 Iσ

∂z∂x
∂2 Iσ

∂z∂y
∂2 Iσ

∂z2

 (58)

We have seen in Chapter 2, that the analysis of the eigenvalues and eigenvectors of the
Hessian matrix allows to distinguish between curvilinear structures , plane-like and blob-
like structures.

Based on this interpretation, Frangi et al. proposed a vesselness measure. Let λ1, λ2 and
λ3 be the three eigenvalues of H such that |λ1| ≤ |λ2| ≤ |λ3|, and e1, e2 and e3 be their
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associated eigenvectors. Then, for bright curvilinear structures on a dark background, the
Frangi vesselness, V(p), at point p is defined by:

V(p) =

 0 if λ2 > 0 or λ3 > 0

(1− exp(−RA
2

2α2 )) exp(−RB
2

2β2 )(1− exp(− S2

2c2 )) otherwise
(59)

with RA =
|λ2|
|λ3|

RB =
|λ1|√
|λ2λ3|

S =
√

λ1 + λ2 + λ3 (60)

The two terms RA and RB of this measure have different behaviours depending on the
local structure:

• For any p belonging to a curvilinear structure, RA is close to 1 and RB is close to 0,
which results in V(p) ' 1

• For any p belonging to a plane-like structure, RA is close to 0 and RB is close to 1,
which results in V(p) ' 0

• For any p belonging to a blob-like structure, RA is close to 1 and RB is close to 1 which
results in V(p) ' 0

The term S measures the presence of second-order structure in the image. Indeed, S is
close to 0 if the local neighborhood does not contain any structure. A directional feature can
easily be extracted from the Frangi filter. The direction of a possible curvilinear structure is
that of the eigenvector associated to the smallest eigenvalue magnitude.

7.1.1.3 Hybrid Diffusion Filter with Continuous Switch (HDCS)

The Hybrid Diffusion Filter with Continuous Switch (HDCS) is a noise reduction filter pro-
posed by Mendrik et al. [58]. HDCS aims at reducing the noise in 3D images while preserving
edges of curvilinear and small blob-like structures. This filter introduces a continuous switch,
which acts as a balance between two anisotropic diffusion filters, called Edge-Enhancing Dif-
fusion (EED) and Coherence-Enhancing Diffusion (CED) [99, 100]. Both filters are based on
the diffusion equation:

∂u
∂t

= div(D∇u) (61)

where div is the divergence operator, ∇u is the gradient of the image u and D is the diffusion
tensor. Iteratively solving a finite difference version of this equation for a finite time results in
a new image where diffusion takes place along the three axes of the 3D space. If D is constant,
the diffusion is isotropic and identical whichever the point in the image. This results in a
Gaussian blur. In the case of CED and EED, the diffusion is anisotropic and depends on the
structure present in the image. The analysis of the image structures relies on the structure
tensor.

Let Ks be a Gaussian kernel with standard deviation s and Iσ = I ∗ Kσ be a smooth image.
The structure tensor of an image I, S(I), is the matrix derived from the gradient as follows:

S(I) = Kρ ∗ (∇Iσ∇Iσ
T) (62)
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A spectral analysis of the structure tensor can be carried out. It is similar to that of the
Hessian matrix, and can serve to locally characterize a structure. For both CED and EED,
the diffusion tensor D depends on the three eigenvalues of the structure tensor, µ1, µ2 and
µ3, (µ1 ≤ µ2 ≤ µ3). The 3D EED filter enhances the plane-like structures while reducing the
noise. The three eigenvalues of its diffusion tensor are defined by:

λe1 =


1 if µ1 ≤ 0

1− exp
(
−C

(
µ1
le )4

)
if µ1 > 0

λe2 = 1

λe3 = 1

(63)

where C = 3.31488, and le ∈ R, the EED contrast parameter.
The 3D CED filter enhances curvilinear structures and small blob-like structures. The three

eigenvalues of its diffusion tensor are defined by:

λc1 = α

λc2 = α

λc3 =

1 if µ2 = 0 or µ3 = 0

α + (1− α) exp
(
−lc2 ln 2

κ

)
otherwise

(64)

where κ = ( µ2
α+µ3

)4, α = 0.001 and lc ∈ R is the CED contrast parameter.

Several methods have been proposed that use either EED or CED, depending on the struc-
ture of the image [32, 31]. However, HDCS aims at merging both methods by computing a
linear combination of the eigenvalues of the filters. The eigenvalues λhi (1 ≤ i ≤ 3), of the
HDCS diffusion tensor are defined by:

λhi = (1− ε)λci + ελei (65)

with ε = exp
(µ2(lh

2(ξ − |ξ|)− 2µ3)

2lh
4

)
; ξ =

( µ1

α + µ2
− µ2

α + µ3

)
where λh ∈ R is the HDCS contrast parameter. The value ξ is the ratio distinguishing
between plane-like structure (ξ � 0), blob-like structures (ξ ' 0) and curvilinear structures
(ξ � 0).

7.1.1.4 OOF

Optimally Oriented Flux (OOF) [49] is a curvilinear structure detector based on the image
gradient. The oriented flux is the amount of the gradient, projected along a direction, flowing
out from a sphere. The direction minimizing the oriented flux is the direction of a possible
curvilinear structure. More formally, let f (x, r, ρ) be the outward oriented flux along direction
ρ, flowing from a sphere Sr of radius r centered at point x:

f (x, r, ρ) =
∫

∂Sr

((
v(y). ρ

)
ρ
)

. ndA (66)
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where ∂Sr is the surface of the sphere, v is the image gradient, n is the outward unit normal
of ∂Sr at y = x + rn and dA is an infinitesimal area on ∂Sr.

The oriented flux can be rewritten as f (x, r, ρ) = ρTQρT, where Q is a symmetric 3× 3
matrix which each term results from the convolution of the image with a set of specifically
designed filter. Law et al. [49] proposed to compute the optimal direction, ρ? by minimizing
the inward oriented flux subject to the constraint ||ρ|| = ρTρ = 1 (see Figure 52):

ρ? = minimize
ρ

(
ρTQρ + λ(1− ρTρ)

)
(67)

(a) g(y1) = −‖v‖ � 0 (b) g(y1) ' 0 (c) g(y1) = −‖v‖ � 0

(d) g(y1) ' 0 (e) g(y1) = −‖v‖ ' 0 (f) g(y1) ' 0

Figure 52: The direction ρ maximizing the total outward flux is the curvilinear structure
direction. Each image represents a curvilinear structure and a sphere centered at
x, on which the flux can be computed. (a-c) represent the case of a flux computed
along a direction ~ρ, which is not the direction of the curvilinear structure; (d-e)
represent the case of a flux computed along the curvilinear structure direction.
~v(y) is the image gradient at point y and ‖v‖ its norm. For y on the edge of the
curvilinear structure , ‖v‖ � 0 while everywhere else, ‖v‖ ' 0. If the flux is
computed from these 3 cases, f (x, r, ρ) = ∑3

i=1(g(yi)) = ∑3
i=1(~v(yi).~ρ)~ρ).~n. The

direction ρ maximizing the outward flux is the curvilinear structure direction.

The solution of the previous equation turns out to be a generalized eigenvalue problem
where ρ? is the eigenvector of matrix Q:

Qρ? = λρ? (68)

The matrix Q may play the same role as the Hessian matrix in the detection of curvilinear
structures, as vesselness measures can be derived from its eigenvalues. For example, Law et
al. embedded the OOF eigenvalues into the Sato vesselness [49] to detect blood vessels.
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Value of the binary result

0 1

Value of the
ground-truth

0 TN FP

1 FN TP

Table 5: Classification of the errors according to the value of the result and the ground-truth.

The multiscale version of OOF consists of computing the eigenvalues of Q using different
radie of spheres. To ensure a coherence between scales, each eigenvalue is normalized by
4πr2.

7.1.2 Evaluation criteria

To compare and analyze the results of both intensity and directional RORPO features, quan-
titative measures as long, as ground-truth are required. Several classical measures have been
developed in the literature, depending on the type of image, ground-truth and problem to
dealt with. This section presents several quantitative criteria and motivates their choice.

7.1.2.1 The ground-truth

Computing a quantitative criterion requires a ground-truth, i.e. a certified image of the
expected result. The RORPO intensity feature aims at providing a grey-level image which
has a high intensity for curvilinear structures and a low intensity for any other structures.
The natural ground-truth for such a feature is a binary image composed of white pixels for
curvilinear structures and black pixels, for the rest.

The RORPO directional feature provides for each pixel the direction (i.e. a vector) of
a possible curvilinear structure going through this pixel. Consequently, the ground-truth
is composed of a vector for each pixel belonging to a curvilinear structure. We note that
the directional ground-truth is thus related to the intensity ground-truth. Moreover, in all
directional ground-truths, we removed the junctions between several curvilinear structures,
like the vessels bifurcations. Indeed, these junctions are locally not curvilinear structure but
blob-like structure.

7.1.2.2 Intensity feature quantitative criteria

Quantifying the similarity of a grey-level RORPO intensity feature with a binary ground-
truth requires a thresholding procedure. The RORPO intensity feature is thresholded at all
its grey-level values, resulting in several binary images. Each of these binary images are
compared pixel-wise to the ground-truth and the total number of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) are computed (see Table 5).

The sum of the TP and FN is the total number of positives (PGT) in the ground-truth
whereas the sum of the TN and FP is the total number of negatives (NGT) in the ground-truth.
Images containing curvilinear structures are usually sparse, which means that PGT � NGT.
Consequently, the number of FP and TN are potentially much higher than the maximum
number of TP and FN. To present meaningful results, we define the false positive rate (FPR),
true positive rate (TPR), false negative rate (FNR) and true negative rate (TNR) as follows:
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FPR =
FP
PGT

TPR =
TP
PGT

FNR =
FN
PGT

TNR =
TN
PGT

The TPR is also called the sensitivity while the FPR is also called the fall-out. The closer
the TPR to 1 and FPR to 0, the best result. It is important to note that with these definitions,
the FPR can exceed 1. For example, if FPR = 2, the evaluated method detected twice as
many false positives as possible true positives.

Based on these error measures, several quantitative similarity criteria have been proposed.
The two widely used criteria to compare filtering and segmentation results are the Accuracy
(Eq. 69) and the Dice coefficient (Eq. 70). The closer these coefficients are to 1, the more
similar the result to the ground-truth.

Acc =
TP + TN

TP + FP + FN + TN
(69)

Dice =
TP

2TP + FN + FP
(70)

However, these coefficients assume that PGT ' NGT which is clearly untrue for sparse im-
ages of curvilinear structures . To cope with this problem, we chose a similarity criterion spe-
cially designed to deal with unbalance classes: the Matthews Correlation Coefficient (MCC)
[57]. The MCC is defined as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(71)

Similarly to the Accuracy and Dice, the closer to 1 the MCC is, the more similar the re-
sult is to the ground-truth. To illustrate the better behaviour of the MCC compared with
the Accuracy and the Dice coefficient, we computed the three of them on synthetic images
(see Figure 53). Whereas the Accuracy and the Dice coefficients evaluate the images to be
equivalently similar to the ground-truth, the MCC highlights the differences.

The TPR, FPR and MCC are representative of one threshold of the evaluated result. To
obtain a global vision of a grey-level result, a Receiver Operating Characteristic (ROC) curve
is usually computed. A ROC curve is the curve of the TPR against the FPR at every grey-level
value of the evaluated result. The closer the curve to the point [0, 1] (FPR = 0 and TPR = 1),
the more similar the result is to the ground-truth.

7.1.2.3 Directional Feature quantitative criteria

The directional feature is a vector field. The evaluation of this feature requires to compare
two vector fields. At each pixel, we compare the vector of the directional feature with the
vector of the ground-truth. The criterion we use is the error angle in degree. It is important
to note that we look for the orientation of curvilinear structures , which means that the max-
imum error angle is 90◦.
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(a) (b) Acc = 0.97
Dice = 0.90
MCC = 0.89

(c) Acc = 0.97
Dice = 0.90
MCC = 0.90

Figure 53: Illustration of the better behavior of the MCC for sparse images. (a) the ground
truth, (b,c) two different segmentation results. Although (c) is qualitatively the
best result, the Accuracy and Dice coefficients provide the same quantitative mea-
sure.The MCC is better able to compare these results as the MCC of (c) is higher
than the one of (b). The difference is small in this case, but the larger (and sparser)
the image, the larger the difference is.

The pointwise vector comparison is only possible where both the ground-truth and the
directional feature are defined. Nonetheless, at some point, the directional feature can be
defined whereas the ground-truth is not (i.e. , the point does not belong to a curvilinear
structure). Conversely, the directional feature may not be defined whereas the ground-truth
is. The first case is a FP and the second case a FN. Both cases are not taken into account
by the error angle, but they are counted by the intensity feature criterion. Consequently, the
FPR and FNR are also criteria for the evaluation of the directional feature.

7.1.3 Parameters Optimization

In the following experiments, we always present the results of each method with optimized
parameters. The optimization was performed by an exhaustive search on the range of rea-
sonable values for each parameter according the MCC: the best set of parameters is the one
maximizing the MCC. A few methods use a several parameters, some of them are only scalar
weights, with no physical meaning or are not relevant for our applications. Table 6 shows,
for each method, which parameter we optimized and the value we took for the others.

7.2 synthetic images

Publicly available databases of 3D images of curvilinear structures and their associated
groud-truth are rare. To cope with this problem in the case of tree-like curvilinear structures,
a software package called VascuSynth [38] was proposed by Hamarneh et al.. VascuSynth
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Optimized parameters Fixed parameters and their values

RORPO Lmin , Lmax , nbScales

Frangi σmin , σmax , nbScales α = 0.5 , β = 0.5 , c = 0.5

OOF rmin , rmax , nbScales

HDCS ρ , λh , λc , λe η = 1 , τ = 0.11 , α = 0.001

Table 6: Optimization of the parameters. ?min (resp. ?max) is the minimum (resp. maximum)
value of the scale parameter ?. nbScales is the number of scales chosen for the
multiscale framework. η is the number of iterations and τ is the time step. Each
fixed parameter is set according to the default value used by their authors.

(a) σ = 0 (b) σ = 10 (c) σ = 18

(d)

Figure 54: First row: 2D slices of one of the synthetic grey-level image generated with Vas-
cuSynth, with background inhomogeneity, and various levels of Gaussian white
noise (σ = 0, 10 and 18). Second row: the associated ”vascular model” ground-
truth.
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simulates 3D images of vessels in the presence of various amounts of noise, and provides
their corresponding ground-truth.

Using this software, we produced 10 images of size 100 × 100 × 100. Each image was
degraded by 7 levels of additive white Gaussian noise, resulting in a database of 70 images.
We also added to each image the same Gaussian Random Field background, in order to
simulate undesired, non-homogeneous, smooth, blob-like features. An illustration of these
images is presented in Figure 54.

In the following, we compare both our intensity and directional features with the results
from the different methods presented above on this database.

7.2.1 Intensity feature comparison

We compare the intensity feature of RORPO7 and RORPO13 with the results from OOF,
HDCS and FV. The parameters of all these methods were independently optimized for
each method and each noise level on the first VascuSynth image (see Section 7.1.3). These
parameters were then used to process the remaining nine images.

As the results are gray-level images, we thresholded each of them at every gray-level values
and kept, for each result, the binary image maximizing the MCC . Table 7 shows the mean
best MCC, over the 10 images, for each noise level, and Table 8 shows their associated mean
TPR and mean FPR. The ROC curve of one of the 10 images is shown in Fig. 55, and the
corresponding results for the best MCC are shown in Figure 56.

Noise (σ) 0 5 8 10 12 15 18

RORPO7 0.869 0.873 0.844 0.835 0.829 0.771 0.743

RORPO13 0.871 0.875 0.848 0.838 0.832 0.775 0.746

FV [33] 0.197 0.192 0.193 0.197 0.199 0.187 0.185

OOF [49] 0.825 0.829 0.818 0.813 0.811 0.772 0.755

HDCS [58] 0.798 0.807 0.792 0.777 0.780 0.725 0.700

Table 7: Filtering performances on synthetic images, for various levels of Gaussian white
noise – MCC scores.

Noise (σ) 0 5 8 10 12 15 18

RORPO 7 0.784/0.026 0.795/0.031 0.753/0.038 0.743/0.043 0.732/0.040 0.646/0.052 0.613/0.062

RORPO 13 0.790/0.029 0.798/0.030 0.756/0.035 0.744/0.040 0.739/0.045 0.657/0.057 0.622/0.066

FV [33] 0.682/8.766 0.713/9.981 0.567/6.577 0.613/7.238 0.624/7.238 0.580/7.092 0.641/8.763

OOF [49] 0.733/0.053 0.745/0.058 0.727/0.059 0.716/0.055 0.714/0.057 0.654/0.058 0.626/0.056

HDCS [58] 0.684/0.045 0.699/0.046 0.677/0.047 0.656/0.050 0.659/0.050 0.589/0.065 0.554/0.065

Table 8: Filtering performances on synthetic images, for various levels of noise (Gaussian) –
TPR/FPR scores.

We can see that RORPO generally performs better at detecting curvilinear structures, as
it detects much less false positives than the other methods, while preserving a high TPR. It
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Figure 55: The ROC curves comparing the filtering of one of the ten VascuSynth images with
a noise level of σ = 10.

is only with a high level of Gaussian noise that OOF performs slighly better than RORPO.
However, this degree of artificial noise is not representative of the noise in real images. The
intensity feature results of RORPO13 are slightly better than those of RORPO7, but at the
cost of a computation time almost double.

7.2.2 Directional feature comparison

The comparison of the directional feature was performed according to Section 7.1. Since
the VascuSynth ground-truth consists of a union of cylinders of various orientations and
diameters, its local directions can be computed easily and constitute the directional ground-
truth.

Because OOF and HDCS do not provide directional information, we compare the results
from RORPO7 and RORPO13 only with FV. We kept the same parameters as for the compar-
ison of the intensity feature, and computed the directional feature from the three methods
for each point belonging to a curvilinear structure according to its best threshold intensity
feature result. For a fair comparison, we only compared directions at pixels which were de-
tected as belonging to a curvilinear structure both by FV and RORPO. The FP and FN were
already taken into account in the evaluation of the intensity feature.

The results are shown in Table 9. The best directions are provided by RORPO 7 at all
noise levels. We note that the RORPO results are very stable with respect to noise. Indeed,
RORPO uses paths, which are semi-global structures. The RORPO directions integrate the
orientation information over the whole path which are, by their non-locality and anisotropy,
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(a) (b) (c)

(d) (e) (f)

Figure 56: Intensity feature computed on one of the VascuSynth image with noise level σ =

10 (a), by RORPO (b), RORPO13 (c), FV (d), OOF (e) and HDCS (f).

a more meaningful neighborhood for the analysis of curvilinear structures than the isotropic
neighborhood used by Frangi.

We also note that augmenting the number of sampling directions with RORPO 13 does not
improve the results. We experimentally observed that the best selected scale is usually larger
for RORPO 13 than RORPO 7, which induces worse results for RORPO 13. Indeed, a longer
path length implies a poorer local adaptation to curvilinear structures.

Table 9: Directional feature performances on synthetic images, for various levels of noise –
Mean values (standard deviation into brackets).

Noise (σ) 0 5 8 10 12 15 18

RORPO 7 15.23 (13.83) 15.86 (13.67) 16.16 (14.15) 14.91 (13.40) 15.04 (13.35) 15.13 (13.55) 15.66 (13.66)

RORPO 13 20.86 (14.38) 22.75 (14.93) 21.90 (15.20) 19.86 (14.06) 19.77 (13.86) 19.98 (13.88) 21.05 (14.23)

FV [33] 16.26 (13.28) 16.44 (13.64) 16.95 (13.93) 17.64 (14.85) 17.93 (15.14) 18.16 (15.19) 19.91 (16.96)
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7.3 real images

Real images of curvilinear structures , with their associated ground-truth are difficult to
find or produce. In one of our article [59], we used CTA images of coronary arteries of the
Rotterdam Repository [81]. However, this database only provides the centerline of the vessels,
which does not allow for a comparison as accurate as with a full segmentation ground-
truth. To cope with this issue, the HeartFlow company kindly provided us a coronary CT
scan image with its associated high-quality, manually defined full segmentation ground-
truth. The directional ground-truth was computed by reference to that of the centerline, also
provided by HeartFlow.

The evaluation of both intensity and directional features were performed in an area of 70
pixels around the coronaries ground-truth, to avoid the other curvilinear structure like the
ribs. We also optimized the parameters of both methods on this image according to the MCC.

7.3.1 Intensity feature comparison

We performed the same experiment as for the synthetic data, except that we did not use
HDCS. Indeed, HDCS is more a noise filtering method than a true curvilinear structure
detector. It is relevant to compare HDCS with RORPO, OOF and FV on images containing
only curvilinear structures, such as VascuSynth images, but on a cardiac CT scan images
presenting other structures than blood vessels, HDCS does not perform well enough.

The quantitative results of the intensity feature are shown in Table 10 and the volume
rendering of each result is presented in Fig. 57.

The FV yields the worst results as it detects much more FP. However it performs compar-
atively better than on the synthetic data. OOF and RORPO both present good results, but
RORPO again performs the best as it detects less FP than OOF for a similar TPR, which is
confirmed by the better MCC value.

7.3.2 Directional feature comparison

With optimal parameters, we computed both RORPO and FV directional features on this
image and evaluated the direction error. Once again, we only compare directions for pixels
detected as curvilinear structures both by RORPO and FV. An example of results is shown
in Fig. 58 and quantitative results of the comparison are shown in Table. 10.

MCC TPR FPR mean direction error (std)

RORPO 7 0.541 0.557 0.475 16.9 (13.3)

FV [33] 0.405 0.492 0.911 14.8 (13.4)

OOF [49] 0.529 0.582 0.594 -

Table 10: Comparison of RORPO, OOF and FV results on a coronary CT scan.

We see that FV performs slightly better on the accuracy of directions. However it is impor-
tant to note that this error is computed only for the voxels inside the segmentation ground-



92 results and comparisons

(a) (b) MCC = 0.541

(c) MCC = 0.529 (d) MCC = 0.405

Figure 57: The coronary ground-truth (a) and the filtering results with RORPO (b), OOF (c),
FV (d) (volume rendering).

truth. This means that all the false positive directions detected are not taken into account in
the error. Indeed, FV provides about two times more false directions. In contrast, RORPO
provides a slightly worse error (17

◦ vs. 15
◦) for the orientation of blood vessels but conversely

computes far fewer false positives directions.

In real image processing applications, a directional feature can usually be used at two
different stages: either to guide a segmentation method directly on the grey-level image,
or to guide a post processing pipeline on a segmentation image. In the first case, RORPO
provides better results than FV, as it computes directions with a similar error but many
fewer FP, and so resulting in generally more accurate directions. In the second case, when
the segmentation is already available, FV is preferable, but it was not the problem we sought
to address.
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(a)

(b)

Figure 58: Illustration of the RORPO (a) and FV (b) direction feature on the coronary CT scan
provided by the HeartFlow company [89]
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8
I N T R O D U C T I O N

In the previous part, we presented a new framework called RORPO, which extracts from
an image two features characterizing curvilinear structures. In this second part, we propose
a strategy for embedding these two features into a segmentation method to better handle
curvilinear structures in images. Even though the two RORPO features are generic and can
be embedded into any general frameworks, like machine learning or mathematical morphol-
ogy, we chose to illustrate the possibilities of RORPO in a variational framework.

Many image processing problems can be expressed in the context of a variational formula-
tion. Such approach consists of designing an energy functional, so that its minimization over
a space of images provides the desired resulting image. More formally, let u be a 2D image
of size N × N in the Euclidean space X = RN×N (u ∈ X). The general variational problem is
defined as follows:

u? = argmin
u∈X

E(u) (72)

wWith E(u) (E : X → R) an energy formulation of image u.
We usually distinguish two distinct components inside the energy: a data fidelity D(u)

and a regularization term R(u):

E(u) = D(u) +R(u) (73)

The data fidelity term drives the solution to the expected result (e.g. a noise free image or
a binary segmentation), depending on the input image. Conversely the regularization term
represents other constraints, which are not a function of the input image, but depend on
intrinsic properties of the sought solution, such as the smoothness of the solution, geometric
or domain priors.

Our contribution focuses on the regularization term. A classical regularization term gen-
erally used in denoising and segmentation applications is the norm of the image gradient.
When the `1 norm is involved, the regularization term is called the total variation. We pro-
pose to embed both RORPO features into the gradient of the total variation, in order to obtain
a directional regularization term. We show that this regularization term, by embedding the
RORPO features, is better suited than classical regularization terms for the detection and
segmentation of curvilinear structures in images.

In the following, we come back on the general variational problem and we explain why
a regularization term is required; then we present previous work on total variation and the
segmentation model we use ( see Chapter 9). Then, we develop our directional total variation
regularization term and present some experimental results in Chapter 10.

97
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P R E V I O U S W O R K

In this chapter, we begin by introducing the historical inverse problem behind numerous
variational problems in image processing. Then, we introduce the regularization and why it
is an essential term in such problems (Section 9.1). In Section 9.2, we present both the
Tikhonov and the Total variation regularizations, and we explain the different approaches
which were developed to handle the non-smooth total variation term. Finally, Section 3

presents the Chan et al. segmentation model and a few algorithms developed to solve it.
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9.1 inverse problem and the need of a regular-
ization term

The formation of an image can be modeled as a linear inverse problem:

Hu + b = o (74)

where o ∈ X is the formed image (the observation), u ∈ X is the unknown true image, b ∈ X
is a random noise, and H (H : X → X) is a transformation depending on the application. For
example, in image denoising H is the identity matrix, in image debluring H is a convolution
with a bluring kernel and in image reconstruction H can be the Radon transform for CT-scan
images or the Fourier transform in the case of MRI images.

However, this problem is only solvable if it is well-posed, i.e. if Eq. 74 satisfies the three
conditions of Hadamard:

• the solution exists;

• the solution is unique;

• the solution depends continuously on the data.

In reconstruction applications H is generally not invertible, as it is not a squared matrix,
making the problem ill-posed. A classical approach to still solve this type of problem is
the least square method. The solution, u?, of Eq. 74 is found by minimizing a functional
F : X → R:

u? = argmin
u

F(u) (75)

such that:
F(u) = ‖Hu− o‖2

2 (76)

Admitting Eq. 75 is solvable, its solution is obtained using the pseudo inverse H+ =

(HT H)−1HT:
u? = H+o (77)

It is interesting to note that if H is invertible, the pseudo inverse H+ of H is its inverse
(H+ = H−1). Consequently, solving Eq. 75 is exactly equivalent to solving Eq. 74.

Even though solving Eq. 75 instead of Eq. 74 ensures the existence of the solution, the
problem can still be ill-posed (e.g. HT H not invertible). Moreover, in order to find a numerical
solution, these problems are discretized, leading to possible discretization errors. Depending
on the problem, the discretization errors may be so important that the numerical solution
strongly deviates from the true (analytical) solution. Such problems are called ill-conditioned.

To deal with both ill-posed and ill-conditioned problems, a regularization term,R(u), is
classically added to the functional F(u) resulting in a new minimization problem (see Eq. 78).
The regularization term selects a unique and continuous solution while ensuring good nu-
merical properties.

u? = argmin
u

F(u) + R(u) (78)
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9.2 previous work on total variation in image

analysis

The historic regularization term in denoising and segmentation applications is the Tikhonov
regularization [91]. Later, Rudin, Osher and Fatemi [77], proposed to use the total variation
to better preserve the image contours. Section 9.2.1 introduces the Tikhonov regularization
term. Then, we present the total variation in Section 9.2.2 and the various approaches in
the literature to solve it (Section 9.2.4). The reader is referred to [15] for an exhaustive
presentation of the total variation in image analysis.

9.2.1 Tikhonov regularization

The Tikhonov regularization TΓ(u) [91] is a quadratic prior defined as follows:

TΓ(u) = ‖Γu‖2
2 (79)

where ‖.‖2 is the `2 norm of an image, also called the Frobenius norm (see Appendix A) and
Γ is the Tikhonov matrix. In practice, three different Γ are often used, each used for a specific
regularization purpose:

• Γ = I, the identity operator, aiming at minimizing the norm of u;

• Γ = ∇, the gradient, aiming at minimizing the variation of u;

• Γ = ∆, the Laplacian, which minimizes the curvature of u.

The Tikhonov regularization with the gradient operator is widely used in denoising and
segmentation applications as it is easy to optimize. An example of denoising with the
Tikhonov gradient regularization is shown in Figure 59.b.

(a) (b) (c)

Figure 59: Comparison of the denoising of image (a) with a Tikhonov regularization (b) and
a TV regularization (c); image from [93].
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9.2.2 Total variation

The Tikhonov regularization tends to induce a blur in the resulting image due to its quadratic
nature (see Section 9.2.3). This is not ideal in a segmentation purpose where the position of
the contours is crucial. To cope with this problem, Rudin, Osher and Fatemi (ROF) [77]
proposed to replace the Tikhonov regularization by the total variation (TV). We first define
the general continuous total variation, then we present its discrete expression.

9.2.2.1 Continuous definition

Let f : Ω→ R, Ω ∈ Rn, be a functional belonging to L1
loc(Ω). The total variation of f , TV( f ),

is defined as:

TV( f ) = sup
{
−
∫

Ω
f (x)div φ(x) dx, φ ∈ C1

c (Ω, Rn), ‖φ(x)‖2,2 ≤ 1, ∀x ∈ Ω
}

(80)

where C1
c (Ω, Rn) is the set of continuously differentiable vector functions of compact support

contained in Ω.

The TV may have other expressions depending on the nature of f :

tv of a differentiable function Let f ∈ C1(Ω, R), the total variation of such differ-
entiable functional reduces to the following (see the proof in Appendix C.1):

TV( f ) =
∫

Ω

√
( f x)2 + ( f y)2 dx (81)

where f x =
d f
dx

and f y =
d f
dy

.

tv of the indicator function Let E be a set with smooth boundary (E ∈ C1,1) and
ιE the indicator function of E such that:

ιE(x) =

{
1 if x ∈ E

0 otherwise

The total variation of ιE, TV(ιE) is the perimeter of E (see the proo in Appendix C.2):

TV(ιE) =
∫

∂Ω
1 dx (82)

where ∂Ω is the boundary of Ω.
This result may be interpreted in terms of image segmentation. Indeed, a binary segmen-

tation image can be seen as an indicator function. In this case, minimizing the total variation
of the segmentation is equivalent to the minimization of the perimeter of the segmentation.

9.2.2.2 Discrete definition for images

As we work on images, we are interested in the discrete expression of the TV. The discrete
spatial derivatives (i.e. the gradient, see Appendix A.4) of an image are always defined. Then,
the TV definition generally used is the discrete equivalent of Eq.(81).
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Let u be a 2D image of size N × N on the Euclidean space X = RN×N , u ∈ X. The total
variation of u, TV(u) is defined as follows:

TV(u) = ‖∇u‖2,1 (83)

where ∇u =
(

ux, uy

)
is the discrete gradient of u and ‖.‖2,1 is the `1 norm of the `2 norm of

the gradient (see Appendix A.6).

9.2.3 TV vs. Tikhonov regularization

ROF proposed a denoising model with TV instead of the Tikhonov regularization, to remove
its blurring effect.

Let us recall both regularizations, and focus on the norm which differs:

TV(u) =
M−1

∑
i=0

N−1

∑
j=0

∣∣∣∣∣∣∣∣
√
(ux

ij)
2 + (uy

ij)
2︸ ︷︷ ︸

`2 gradient norm

∣∣∣∣∣∣∣∣ T∇(u) =
M−1

∑
i=0

N−1

∑
j=0

√(ux
ij)

2 + (uy
ij)

2︸ ︷︷ ︸
`2 gradient norm


2

The TV regularization aims at minimizing the absolute value, |.|, of the `2 gradient norm,
whereas the Tikhonov regularization minimizes its square. Figure 60 illustrates the behavior
of both regularization terms.

TV penalizes small gradient variations more than Tikhonov. This is why TV results present
larger "flat" zones (i.e. with constant intensity). Nonetheless, high gradient variations are
more penalized by Tikhonov than TV. Large gradient variations generally correspond to
the contours of objects in the image. Highly penalizing the contours tends to smooth them,
which explains the blurring effect of the Tikhonov regularization. Conversely, the small
penalization of high gradient variations of TV better preserves the contours of objects.

Large
gradient

variations

Small 
gradient

variations

Figure 60: Illustration of the different behaviors of the TV and Tikhonov regularizations.
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9.2.4 Solving the total variation

We recall the general variational problem we are studying:

minimize
u∈X

D(u) + λR(u) (84)

where D(u) is a data fidelity prior depending on the application (e.g. denoising or segmenta-
tion), R(u) is the regularization term, and λ ∈ R is the regularization parameter which acts
like a balance between both terms.

The classical approach to solve Eq. 84 is to solve its associated Euler-Lagrange equation.

∂D(u) + λ∂R(u) = 0 (85)

where ∂D and ∂R are respectively the subgradients of D and R (see Appendix B.1).
Generally, D(u) is a quadratic function which makes its subgradient equal to its derivative.

Nonetheless, in our case, R(u) = TV(u), which is not differentiable in zero because of
the `1 norm. In the literature, two approaches have been proposed to deal with this non-
differentiability issue: the TV approximation and the Chambolle approach [14].

9.2.4.1 TV approximation approach

As the TV is not differentiable in zero, a classical approach is to replace TV by an approxima-
tion which is differentiable. The differentiability problem lies in the absolute value function
that composes the `1 norm. A good differentiable approximation of the absolute value is:
|x| '

√
x2 + ε, where ε ∈ R, is a fixed constant. The differentiable TV approximation, called

TVdiff, is then defined as follows:

TVdiff(u) '
M−1

∑
i=0

N−1

∑
j=0

√
‖∇u‖2

2 + ε (86)

On can note that the smaller ε, the closer the approximation to the real TV (see Figure 61).
The functional derivative of this approximation is given by:

∇TVdiff(u) = −div

(
∇u√

‖∇u‖2 + ε

)
(87)

With this differentiable regularization term, the solution of Eq. 84 can be obtained by a
simple gradient descent:

un+1 = un − τ

(
∇D(un)− div

(
∇un√

‖∇un‖2 + ε

))
(88)

where τ ∈ R is the gradient descent step.
This approach avoids the differentiability problem by approximating the TV. This leads

to good results, but the computed solution remains an approximation. To get closer to the
initial solution, ε should tend to zero. Nonetheless, the smaller ε the longer the gradient
descent algorithm takes to converge. Indeed the smaller ε the higher the curvature of TVdi f f
which requires smaller gradient descent steps.
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Figure 61: Various approximations of the total variation (red) for various values of ε (blue).

9.2.4.2 Chambolle approach

In 2004, Chambolle proposed an algorithm to minimize the total variation exactly. The TV
minimization is performed by computing its proximity operator, proxTV .

proxλ TV(g) = min
u∈X

‖u− g‖2
2

2
+ λ TV(u) (89)

where λ ∈ R. Chambolle proposed to solve this problem by a duality approach. We only
present the outlines of this approach, but the reader is refered to [14] for the complete de-
scription.

Let TV?(u) be the convex conjugate (or Legendre-Fenchel transformation) of TV(u). An
interesting property of TV is that its conjugate is the characteristic function of a closed convex
set K such that:

K =
{

div p, p ∈ X2,
∥∥pij

∥∥
2 ≤ 1, 0 ≤ i, j ≤ N − 1

}
(90)

with p = (p1, p2) and
∥∥pi,j

∥∥
2 =

√
(p1

ij)
2 + (p2

ij)
2.

More formally, TV? may be denoted as:

TV?(u) =

0 if u ∈ K

+∞ else
(91)

In his article, Chambolle introduces the dual problem of Eq. 89:

prox TV?
λ
(g/λ) = min

w∈X

‖w− g/λ‖2
2

2
+

1
λ

TV?(w) (92)

Moreover, he shows that the solutions of both problems are linked by the relation:

proxλ TV(g) = g− λ prox TV?
λ
(g/λ) (93)
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In other words, Chambolle proposes to solve Eq. 92, then compute the solution of the
primal problem (Eq. 89) with the above relation. Solving Eq. 92 is much simpler than Eq. 89.
Indeed, one can identify Eq. 92 as the projection of g/λ onto the convex K, πK:

πK(g/λ) = min
w∈K

‖w− g/λ‖2
2

2
+

1
λ

TV?(w) (94)

which can be reformulated using Eq. 90 and 91 as:

πλK(g/λ) = min
p∈X2

{
‖div p− g/λ‖2

2 ,
∥∥pij

∥∥
2 ≤ 1, 0 ≤ i, j ≤ N − 1

}
(95)

The latter equation is a convex optimization problem under constraint, which Chambolle
propose to solve by a semi-implicit gradient descent as there is no longer a differentiability
problem.

9.3 segmentation model

Our main contribution lies in the regularization term we developedd. This term can be used
in several applications like denoising, segmentation or reconstruction. In this work, we chose
to present the interest of our regularization term on segmentations applications. We present
in this section the classical Chan segmentation model we used, and the different approaches
in the literature to solve it.

9.3.1 The Chan et al. model

In this work, we use the segmentation model proposed by Chan, Esedoglu and Nikolova
[17]:

minimize
u∈[0,1]N×N

〈c f , u〉F + λ ‖∇u‖2,1 (96)

where (c f )ij = (c1− fij)
2− (c2− fij)

2, c f ∈ X and 〈u, v〉F = ∑i,j uijvij is the Frobenius product.
The scalar c1 and c2 are respectively the foreground and the background constant of f , the
initial image ( f ∈ X).

The data fidelity term, 〈c f , u〉F, was originally proposed by Chan and Vese in 2001 [18].
However, they proposed to solve the problem with active contours instead of convex opti-
mization.

Eq. 96 is a convex optimization problem under constraint. Chan et al. proposed to han-
dle the constraint with a Lagrangian relaxation. However, this approach introduces a new
parameter, namely the Lagrange multiplier, which requires to be tuned additionally to the
regularization parameter λ. Moreover, to cope with the differentiability problem of TV, they
used the approximation of Eq. 86, which is also not ideal.

9.3.2 Proximal splitting algorithms

Proximal splitting algorithms were introduced to numerically solve convex optimization
problems (see [23] for a presentation of such algorithms). A particularity of these algorithms
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is that the differentiability condition is relaxed. Moreover, a few of them can handle con-
straints explicitly, which makes these algorithms good candidates to improve on the solution
of Chan et al.

Several classes of algorithms have been proposed in the literature. Among the most com-
monly used are the Forward-Backward algorithm [24], the Douglas Rachford algorithm [29]
and the Primal Dual algorithm [16]. In the following, for conciseness, we only present the
Forward-Backward algorithm and two recent variants, namely FISTA and FGP.

9.3.2.1 Forward-Backward

The Forward-Backward algorithm considers the following problem:

minimize
x∈X

f1(x) + f2(x) (97)

where f1 : X → R is a convex differentiable functional with a β-Lipschitz continuous gradient
∇ f1, f2 : X → R is a convex non smooth functional ( f2 ∈ Γ0(X)) and f1(x) + f2(x)→ +∞ as
‖x‖2 → +∞.

Combettes and Wajs showed in [24] that Eq. 97 admits a solution given by the fixed point
equation, suggesting the following iterative scheme:

xn+1 = proxγn f1

(
xn − γn∇ f2(xn)

)
(98)

This algorithm is called Forward-Backward, as it can be seen as an explicit (forward) gradi-

ent descent step
(

xn − γn∇ f2(xn)
)

of the differentiable function f2, followed by an implicit
(backward) step using the proximity operator of the non differentiable function f1.

The full algorithm with a relaxation parameter (λn), which speeds up its convergence, is
presented in Algorithm 3.

Algorithme 3 : Forward-Backward algorithm
Data : ε ∈ ]0, min{1, 1/β}[

x0 ∈ Rn

for n ≥ 0 do
γn ∈ [ε, 2/β− ε]

yn = xn − γn∇ f2(xn)

λn ∈ [ε, 1]

xn+1 = xn + λn

(
proxγn f1

(yn)− xn

)
end

9.3.2.2 FISTA

The convergence of the Forward-Backward algorithm is guaranteed; however, its convergence
rate can be rather slow. Several approaches have been investigated in order to increase its
convergence rate, and amongst them, the Fast Iterative Shrinkage/Thresholding Algorithm
(FISTA) [7] is often used. The full algorithm is presented in Algorithm 4. FISTA is based on
the Nesterov acceleration [66] and achieves a O( 1

k2 ) convergence rate.
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Algorithme 4 : FISTA
Data : x0 ∈ Rn, z1 = x0 and t0 = 1
for n ≥ 1 do

yn = zn − β−1∇ f2(zn)

xn = proxβ−1 f1
(yn)

tn+1 =
1 +

√
4t2

n + 1
2

λn =
tn − 1
tn+1

zn+1 = xn + λn(xn − xn−1)
end

9.3.2.3 FGP

These algorithm are well suited to solve the Chan et al. segmentation problem, i.e. the mini-
mization of a two term energy where one of them is the non differentiable TV. However, the
expression of proxTV is required. Moreover, the constraint u ∈ [0, 1]N×N should also be dealt
with. Both problems can be solved by the FGP algorithm proposed by Beck and Teboulle [6].
We will come back in detail on our methodology in the following chapter (see Section 10.3).

In their work, Beck and Teboulle proposed to solve the constrained TV problem defined as
follows:

minimize
x∈C

‖x− o‖2
2 + 2λ TV(x) (99)

where o ∈ X is the initial image and λ ∈ R is the regularization parameter. The constraint is
expressed as a convex closed set C, and is handled by an orthogonal projection, PC , onto this
set. Even though any convex set would work, Beck and Teboulle focused on the case C = Ba,b
of an n−dimensional cube given by:

Ba,b =
{

x, a ≤ xij ≤ b
}

This results in the following orthogonal projection:

(
PBa,b(x)

)
ij
=


a if xij < a

xij if a ≤ xij ≤ b

b else

(100)

Beck and Teboulle followed a similar approach than Chambolle by constructing the dual
problem of Eq. 99 and solve it with a monotone version of their FISTA algorithm. This
results in an algorithm called the Fast Gradient-Based Projection (FGP) which is presented
in Algorithm 5.

where PP is the projection onto the set P . Beck and Teboulle defined P as the set of
matrix-pairs (p, q) satisfying:
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Algorithme 5 : FGP

Data : o ∈ X, x0 ∈ X2, z1 = x0 and t0 = 1
for n ≥ 1 do

yn = zn +
1

8λ
∇
(

PBa,b

[
o− λ div(zn)

])
xn = PP [yn]

tn+1 =
1 +

√
4t2

n + 1
2

λn =
tn − 1
tn+1

zn+1 = xn + λn(xn − xn−1)
end

p2
ij + q2

ij ≤ 1, 0 ≤ i, j < N − 1

|pi,n| ≤ 1, 0 ≤ i, j < N − 1

|qn,j| ≤ 1, 0 ≤ i, j < N − 1

In the next chapter, we solve the segmentation problem with our directional regulariza-
tion, using a modified version of the FGP algorithm. We will come back in detail on the
modifications in Section 10.3.
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D I R E C T I O N A L T O TA L VA R I AT I O N

We present in this chapter the regularization term we developed to better regularize curvi-
linear structures. Section 10.1 introduces the motivation and our general strategy. The direc-
tional total variation is defined in Section 10.2 and the algorithm to solve the segmentation
model with the directional total variation is presented in Section 10.3. The segmentation
results on retinal images are finally presented in Section 10.4.
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10.1 motivation

We consider the classical Chan et al. segmentation model defined by:

minimize
u∈[0,1]M×N

〈c f , u〉F + λTV(u) (101)

where f is the initial image ( f ∈ X), (c f )ij = (c1 − fij)
2 − (c2 − fij)

2, c f ∈ X and 〈u, v〉F =

∑i,j uijvij is the Frobenius product. The scalar c1 and c2 are respectively the foreground and
the background values, assumed constant, of f .

The regularization term (i.e. TV) is required to achieve a smooth segmentation. Indeed,
we aim at obtaining a result with few low gradient variations, specially the small ones, that
are generally due to noise and not structures of the image. The gradient norm minimization
is performed to remove these "false" contours. However, the main drawback is that "real"
contours may also disappear if the regularization is too strong (i.e. for high λ) or if the
structures are not contrasted enough.

To sum up, TV is a regularization term which penalizes the image contours. Nonetheless,
curvilinear structures are essentially composed of edges (i.e. contours) which makes them
more susceptible to penalization than other structures and may result in their removal. This
is especially the case for contours of low-constrated curvilinear structures, which are the
most difficult to detect, both by human and computer methods. This makes the classical TV
an unsuitable regularization term for images with curvilinear structures .

To cope with this problem, Miraucourt et al. [60] proposed a weighted TV regularization
that includes the Frangi vesselness as tubular prior. They used this vesselness to determine
where a curvilinear structure is likely to be, and proposed to regularize more strongly outside
the putative curvilinear structures than inside. In general, this strategy effectively prevents
curvilinear structures from disappearing, however noise is not dealt with inside the curvilin-
ear structures, leading to many disconnections, and the removal of the smallest ones.

We propose a more suitable regularization term for curvilinear structures, by considering
not only an intensity feature, as Miraucourt et al., but also a directional feature. Instead of
a weaker regularization inside curvilinear structures, we apply a strong regularization but
solely along the local curvilinear structure axis. In other words, we propose an intensity and
directional spatially variant regularization term (see Figure 62).

10.2 the directional total variation

Our directional regularization term is based on the total variation. Its definition is recalled
in Eq. 102.

TV(u) = ‖∇u‖2,1

=
M−1

∑
i=0

N−1

∑
j=0

√
(ux

ij)
2 + (uy

ij)
2

(102)

To achieve a regularization with a spatially variant direction and intensity, we propose to
replace the gradient, ∇, by a new operator, ∇d. This operator includes more spatial deriva-
tives than the gradient, and embeds both intensity and directional information. By extension,
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(a) TV (b) Weighted TV [60] (c) Directional TV

Figure 62: Regularization principle. The dark (resp. bright) blue areas represent a high (resp.
low) isotropic (i.e. with no privileged direction) regularization, whereas the red
color represents a directional regularization. The classical TV regularizes in all
directions with the same intensity everywhere. The weighted TV regularizes with
a low intensity inside curvilinear structures and a high intensity elsewhere, but
always in all directions. Our directional TV regularizes with the same intensity
inside and outside curvilinear structures; however, inside curvilinear structures,
we only regularize along the curvilinear structure direction.

we call this new operator directional gradient, even though it is not strictly a gradient operator.
More precisely, we define a general framework in which intensity and directional features
may be embedded. To the best of our knowledge, the only alternative to our RORPO features
are the Frangi vesselness features. However, as we showed in Part I that the RORPO features
significantly outperformed the Frangi ones, we focus on the RORPO features in the following.

A few works have already proposed to adapt the definition of the gradient to make it
directional. Peyré et al. [72] proposed a gradient computed on a weighted graph, generalized
in [25]. Both the graph and its weights are computed, based on the initial image at each step
of the optimization algorithm, resulting in an algorithm that may be time-consuming. In this
work, we propose a directional TV in which both graph and weights are computed from the
directional and intensity features only once, at the initial stage of the process. This results in
a regularization that is well adapted to curvilinear structures but more efficient in terms of
complexity.

10.2.1 Directional gradient

Let V = (v1, v2, . . . , vp) be a span of p unitary vectors. This span contains all the discrete
undirected orientations in a k× k neighborhood (see Figure 63) resulting in p = 2(n2− n + 1)

with n =
k− 1

2
.

The classical spatial gradient ∇ is defined along two directions, x and y, such that ∇u =(
ux, uy), ∇u ∈ X2. We generalize this notion by introducing the directional gradient ∇d

(∇d ∈ Xp) defined on the span V:

∇du =
(

D1 ◦ uv1 , D2 ◦ uv2 , . . . , Dp ◦ uvp
)

(103)



114 directional total variation

(a) n = 1 (b) n = 2 (c) n = 3

Figure 63: Example of spans for various n. Each square represents a pixel. The span with
n = k, includes the directions of the previous span n = k− 1, plus new ones. The
vector colors depict the directions specific of one n.

where uvq is the discrete derivative along direction vq (by analogy with ux and uy which
are the discrete derivatives along the image axes x and y), ◦ is the Hadamard product of
matrices such that (A ◦ B)ij = AijBij, and D ∈ Xp is a weight matrix embedded the RORPO
features. In other words, the directional gradient is a vector of weighted spatial derivatives.
For example, in the case n = 1 (i.e. p = 4), the directional gradient of u at pixel (i, j) is
defined as follows:

(∇du)ij =
(

D1
iju

v1
ij , D2

iju
v2
ij , D3

iju
v3
ij , D4

iju
v4
ij

)
(104)

The definition of this weight matrix requires to introduce the two features. Let Φ ∈ X
be the RORPO intensity feature defined in Section 5.2, which has been normalized, and
dq ∈ X be the directional coefficients along direction vq extracted from the RORPO directional
feature. We will define d more precisely in the following section. Both features are embedded
into D so that:

Dq
ij = dq

ijΦij + (1−Φij), 1 ≤ q ≤ p
p

∑
q=1

Dq
ij = 1, 0 ≤ i < M and 0 ≤ j < N

(105)

intuitive interpretation

• If a pixel (i, j) does not belong to a curvilinear structure:
The intensity feature of pixel (i, j) is null, Φij = 0; then Dq

ij = 1 ∀q ∈ [1, p]. It results that

(∇du)ij =
(

uv1 , uv2 , . . . , uvp
)

, which is an isotropic gradient. Applying this gradient is
equivalent to the classical spatially gradient ∇u, i.e. a regularization with no privileged
direction.

• If a pixel (i, j) does belong to a curvilinear structure:
The intensity feature of pixel (i, j) is Φij = 1, then Dq

ij = dq
ij ∀q ∈ [1, p], which encodes

the direction of the curvilinear structure. For example, if the curvilinear structure is
oriented along v1, we would have d1

ij = 1 and dq
ij = 0 ∀q ∈ [2, p]. It results that
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(∇du)ij =
(

d1
iju

v1 , d2
iju

v2 , . . . , dp
iju

vp
)

, which is an anisotropic gradient (since all dq
ij are

not equal).

The contours perpendicular to the curvilinear structure direction (i.e. the major part of its
contours) do not appear in the directional gradient, while all the other structure contours
still appear (see Figure 64). Consequently, minimizing this new gradient balances the over
penalization of curvilinear structures, while still applying a regularization.

(a) u (b) ∇u (c) ∇du

Figure 64: Illustration of the classical gradient (b) and the directional gradient (c) of an image
(a). Unlike in the classical gradient, most of the curvilinear structure contours do
not appear in the directional gradient.

The final directional total variation TVd(u) is defined by:

TVd(u) = ‖∇d(u)‖2,1 (106)

where ∇d is the previously defined directional gradient.

10.2.2 Embedding the curvilinear structure features

The previous section presented our directional TV. In the following, we explain how to em-
bed the curvilinear structure features in the case n = 1 (i.e. with the span V = (v1, v2, v3, v4),
see Figure 63.a).

We have seen that the directional gradient requires two curvilinear structure priors: an
intensity feature Φ and a directional feature. We only require to normalize the intensity
feature Φ between 0 and 1. However, the directional feature should be transformed to obtain
the directions coefficients dq.

Intensity feature

The RORPO intensity feature can not be interpreted as a probability of curvilinearity. As dis-
cussed in the previous chapters, RORPO has an anti-extensive behavior, which means that if
a curvilinear structure has a low intensity, Ilow in the initial image, its resulting intensity will
be lower, or in the best case equal to Ilow, but can never exceed it. Consequently, a classical
normalization is not adequate as the low-contrast curvilinear structures would be considered
to be less curvilinear than the high-contrast curvilinear structures.
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We resolved this by thresholding the RORPO intensity feature to obtain a binary image.
The threshold is easily set, and robust, as the intensity feature is generally very contrasted
thanks to the top-hat like framework. In practice, other kinds of policies were experimented,
but the results were similar given the quasi-binary shape of the RORPO intensity feature. The
reader should note that the normalization policy should be adapted to the intensity feature.
For example, in the case of the Frangi vesselness, a classical normalization may be a better
choice.

Directional feature

Let ∆ ∈ X2 be the normalized directional feature such that ∆ij = (∆x
ij, ∆y

ij) is the vector that
gives the local direction of the curvilinear structure at pixel (i, j). We propose to compute the
four (dq)i,j as the decomposition coefficients of ∆ij on the span V. In order to obtain a real
directional gradient, we impose that the decomposition results in null coefficients except for
those of the two span vectors bracketing ∆ij (see Figure 65).

Figure 65: Decomposition of the direction vector at pixel (i, j), δij, on each vector of the span
V.

More formally, let vm and vn be the two span vectors bracketing ∆ij, then:

∆ij =
p

∑
q=1

dq
ijvq = dm

ij vm + dn
ijvn (107)

From Eq. (107), we derive the linear system:

dm
ij vm.vm + dn

ijvn.vm = ∆ij.vm

dm
ij vm.vn + dn

ijvn.vn = ∆ij.vn

As we consider the span V = (v1, v2, v3, v4), we have vm.vn =
√

2
2 because the angle between

adjacent couple vm and vn is π
4 . Then, we simply deduce:

dm
ij = 2∆ij.vm −

√
2∆ij.vn

dn
ij = 2∆ij.vn −

√
2∆ij.vm
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10.3 solving the segmentation model

Our directional TV can be embedded in various variational image processing frameworks. To
illustrate the advantages of this new regularization, we replace the classical TV of the Chan
segmentation model (Eq. 101) by our directional TV (see Eq. 108).

minimize
u∈[0,1]N×N

〈c f , u〉F + λ TVd(u) (108)

This problem is equivalent to the following:

minimize
u

〈c f , u〉F + λ TVd(u) + ι[0,1]N×N (u) (109)

where ι[0,1]N×N is the indicator function defined as follows:

ι[0,1]N×N (u) =

0 if u ∈ [0, 1]N×N

+∞ otherwise

It can be shown from [23], that the problem (108) admits a solution given by the proximal
point splitting algorithm:

un+1 = proxγh(un − γc f ) (110)

where h = λ ‖∇du‖2,1 + ι[0,1]N×N (u), with γ a step-size parameter.
To run this algorithm, the proximity operator of TV, constrained by u ∈ [0, 1]N×N , proxγh,

should be computed. We have seen in Section 9.3.2.3 that Beck and Teboulle [6] proposed
an algorithm to solve the proximity operator of the constrained TV when the constraint is a
closed convex set, as in our problem, namely FGP. Following, the Beck Teboulle notations,
we note our constraint u ∈ B0,1 where B0,1 is the n−dimensional cube given by:

B0,1 =
{

x, 0 ≤ xij ≤ 1
}

The complete FGP algorithm adapted to our directional TV is presented in Algorithm 6.

Algorithme 6 : FGP directional total variation

Data : o ∈ X, x0 ∈ X4, z1 = x0 and t0 = 1
for n ≥ 1 do

yn = zn +
1

8λ
∇d

(
PB0,1

[
o− λ divd(zn)

])
xn = Pp[yn]

tn+1 =
1 +

√
4t2

n + 1
2

λn =
tn − 1
tn+1

zn+1 = xn + λn(xn − xn−1)
end

We recall the discrete gradient expression, ∇du = (uv1 , uv2 , uv3 , uv4) on the span V =

(v1, v2, v3, v4):
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uv1
ij =

{
u(i− 1, j− 1)− u(i, j) if 0 < i, j < N

0 otherwise

uv2
ij =

{
u(i− 1, j)− u(i, j) if 0 < i < N ; 0 ≤ j < N

0 otherwise

uv3
ij =

{
u(i− 1, j + 1)− u(i, j) if 0 < i < N ; 0 ≤ j < N − 1

0 otherwise

uv4
ij =

{
u(i, j + 1)− u(i, j) if 0 ≤ i < N ; 0 ≤ j < N − 1

0 otherwise

And its adjoint discrete divergence, divd(p), p = (p1, p2, p3, p4) ∈ X4:

divd(p) =



p1(i, j)− p1(i + 1, j + 1) + p2(i, j)− p2(i + 1, j)

+ p3(i, j)− p3(i + 1, j− 1) + p4(i, j)− p4(i, j− 1)
if 0 < i, j < N − 1

−p1
i+1,j+1 − p2

i+1,j + p4
i,j if i = 0 ; j = 0

−p1
i+1,j+1 − p2

i+1,j − p3
i+1,j−1 − p4

i,1−1 + p4
i,j if i = 0 ; 0 < j < N − 1

−p2
i+1,j − p3

i+1,j−1 − p4
i,j−1 if i = 0 ; j = N − 1

−p1
i+1,j+1 + p2

i,j − p2
i+1,j + p3

i,j + p4
i,j if 0 < i < N − 1 ; j = 0

p1
i,j + p2

i,j − p2
i+1,j − p3

i+1,j−1 − p4
i,j−1 if 0 < i < N − 1 ; j = N − 1

p2
i,j + p3

i,j + p4
i,j if i = N − 1 ; j = 0

p1
i,j + p2

i,j + p3
i,j − p4

i,j−1 + p4
i,j if i = N − 1 ; 0 < j < N − 1

p1
i,j + p2

i,j − p4
i,j−1 if i = N − 1 ; j = N − 1

Moreover, the projection Pp(k), k = (k1, k2, k3, k4) ∈ X, is defined by:

Pp(k) = l (111)

such that l = (l1, l2, l3, l4) with:

lq
ij =

kq
ij

max (1,N (k))
∀q ∈ [1, 4] (112)

and:

N (k) =



√
(k1

ij)
2 + (k2

ij)
2 + (k3

ij)
2 + (k4

ij)
2 if 1 < i < N ; 1 < j < N − 1

|k4
i,j| if i = 0 ; j = 0

0 if i = 0 ; j = N − 1√
(k2

ij)
2 + (k3

ij)
2 + (k4

ij)
2 if 0 < i < N ; j = 0√

(k1
ij)

2 + (k2
ij)

2 if 1 < i < N ; j = N − 1
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10.4 results and comparisons

In this section, we first present the two methods we compared our results with. Then, we
conduct a quantitative comparison both on synthetic image and real images.

10.4.1 Compared methods

We compare our results with two other segmentation models: the classical Chan et al. seg-
mentation [17] and the weighted TV of Miraucourt et al. [60]. A comparison of the different
behaviors of our regularization with these models is given in Section 10.1. We recall the
expression of the three models:

10.4.1.1 Chan et al. model

minimize
u∈[0,1]N×N

〈c f , u〉F + λTV(u) (113)

where f , f ∈ X, is the initial image, (c f )ij = (c1 − fij)
2 − (c2 − fij)

2, c f ∈ X and 〈u, v〉F =

∑i,j uijvij is the Frobenius product. The scalar c1 and c2 are respectively the foreground and
the background values, assumed constant. λ ∈ R is the regularization parameter.

10.4.1.2 Weighted TV

minimize
u∈[0,1]N×N

〈c f , u〉+ ∑
0≤i,j≤N

Λ
√
‖∇u‖2 (114)

where Λ =
1

λα + (α− 1)Φij
is the adaptive regularization parameter, λ ∈ R is the classical

regularization parameter, and α ∈ [0, 1]. In the original article, Φ is the Frangi vesselness
feature, however, for a fair comparison, we replace it with our RORPO intensity feature.

10.4.1.3 Directional TV

minimize
u∈[0,1]N×N

〈c f , u〉F + λTVd(u) (115)

where f , f ∈ X, is the initial image, (c f )ij = (c1 − fij)
2 − (c2 − fij)

2, c f ∈ X and 〈u, v〉F =

∑i,j uijvij is the Frobenius product. The scalar c1 and c2 are respectively the foreground and
the background values, assumed constant. λ ∈ R is the regularization parameter.

10.4.2 Synthetic image segmentation

We first compared the three segmentation methods on a synthetic image containing lines
and blob-like structures and corrupted by noise (see Figure 66). This experiment constitutes
a proof of concept for our regularization term. We applied the three methods on this image
with increasing values for the parameter λ. The three models have the same data fidelity
parameter, but differ in their regularization terms. We expect that with low values of λ, the
results of the three methods should be similar, since the regularization term is not important
in the energy, but differences should appear and increase as λ becomes larger.
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Figure 66: The synthetic initial image (a) and its RORPO intensity feature (b) and RORPO
directional feature (c). The directions are encoded with colors, from 0◦ (black) to
180◦ (white).

Figure 67 presents the segmentation results on this synthetic image. We can observe that
with low values of λ, the results are indeed similar, and rather noisy, as expected, since
little regularization takes place. When λ increases, the lines tend to disappear with the
Chan segmentation, as expected, whereas weighted TV succeeds in preserving some of the
lines better. Nonetheless, we can see that our model outperformed both methods, as the
lines are better preserved at all the λ values. This is particularly clear at high values of λ.
Our directional regularization preserves, but also reconnects the line-like structures, as we
expected, which results in better segmentations.
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Chan model Weighted TV Directional TV

Figure 67: Comparison of three segmentation models on the synthetic image. The rows show
the Chan segmentation results (left column), the weighted TV results (middle
column) and our directional TV results (right column) for increasing λ.
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10.4.3 Segmentation of the Drive database

To quantitatively analyze our directional TV, we segmented the 20 images of the testing set of
the Drive database [84]. These are retinal images acquired using a Canon CR5 non-mydriatic
3CCD camera, with a 45 degree field of view (FOV). We only analyzed the green channel,
where the contrast between the vessels and the background is generally higher. Moreover,
we subtracted the median filter result from the green channel, before each segmentation, in
order to homogenize the image background, since the Chan et al. data fidelity assumes ho-
mogeneous background and foreground intensities.

Even though we strongly believe that the MCC is a better similarity criterion than the
accuracy to evaluate images with curvilinear structures, in this experiment we are forced to
use the accuracy (Acc) as the criterion over which to optimize the results. Indeed, most of
the literature on the Drive database segmentation use this criterion. We also computed the
true positives (TP) and true negatives (TN) on each best result. Along with the Drive images,
Staal et al. provided the masks of the FOV. We computed all the quantitative criteria only
inside these masks, to reduce the bias of the excessive number of background pixels.

Using the accuracy as criterion, we optimized the RORPO parameters and the regulariza-
tion parameter, λ, on the first image of the test set, and applied these optimal parameters on
the other images. The quantitative results are shown in Table 68. For comparison, we also
mentioned some of the state-of-the art results (see [34] for a recent survey). The accuracy of
our method is close to state of the art methods that are especially designed to segment these
retinal images, such as learning based methods, whereas we propose a generic directional
regularization term for curvilinear structures. Indeed, our regularization term is designed to
be embedded in more complex variational framework such as [42], in lieu of the classical TV,
to improve the segmentation results.

TP TN Acc

Chan 0.656 0.985 0.9421

Proposed segmentation 0.690 0.981 0.9434

Staal [84] - - 0.9442

Lupascu [55] 0.6728 0.987 0.9597

Al-Rawi [2] - - 0.9535

Human observer - - 0.9470

Figure 68: Quantitative segmentation results on the DRIVE database.

The accuracy and TP of our method are higher than that of the classical Chan model. This
confirms that our directional TV effectively improves the tubular structure segmentation.
Figure 69 shows a visual comparison of the Chan segmentation and ours on the first DRIVE
image. A zoom on a few blood vessels extremities shows that we successfully reconnect
most small vessels. As these reconnections represent only a few pixels within the image, the
accuracy of both methods does not appear quantitatively different, even if the qualitative
improvement is real and significant. Indeed, a connected network is a much desired feature
in blood vessels segmentation.
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(a) Background corrected initial image (b) Ground truth

1

2

3

(c) Chan model

1

2

3

(d) Proposed model

(e) Zoomed box 1 (f) Zoomed box 2 (g) Zoomed box 3

Figure 69: Comparison of the classical Chan et al. model (c) with our directional TV model
(d) on the first DRIVE image (a) and its ground-truth (b). (e–g) Zoom on a few
extremities of blood vessels of the Chan model results (top) and our proposed
model results (bottom).
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C O N C L U S I O N

In this work, we have proposed a new framework, called RORPO, to characterize curvilinear
structures. It consists of an intensity feature which preserves curvilinear structures while
removing other structures, and of a directional feature providing at each point the orienta-
tion of the curvilinear structures. From a methodological point of view, RORPO is a relevant
alternative to the existing methods in the literature. Indeed, most of them rely on local
and isotropic eigen-analysis, which is not adapted to the intrinsic anisotropy of curvilinear
structures. RORPO, by using path operators, considers non-local, flexible and anisotropic
neighborhoods that are better adapted to curvilinear structures.

We have proposed a complete study of RORPO, including experiments on synthetic im-
ages to illustrate its behavior. We also have conducted a quantitative comparison study on
both synthetic and real images. RORPO was compared with three state of the art methods,
namely the Frangi Vesselness, the Optimally Oriented Flux, and the Hybrid Diffusion with
Continuous Switch. This study have shown that the RORPO features outperform these other
methods in almost every cases. In practice, the strength of RORPO are its noise robustness,
its strong specificity to curvilinear structures and its user-friendliness, since it requires only
very few, meaningful and intuitive parameters to tune.

As a low-level operator for the characterization of curvilinear structures, RORPO can be
used, besides filtering, as a prior in higher-level methods. For instance, both RORPO features
can directly be embedded in machine-learning frameworks.

In Part II, we have presented an application of these features for the segmentation of curvi-
linear structures. Indeed, we have developed a regularization term, based on the total vari-
ation, but better suited for curvilinear structures. It replaces the isotropic regularization of
TV by an anisotropic regularization along the curvilinear structures axis using both RORPO
features. This regularization term, unlike TV, is designed to avoid the loss of low-contrast
curvilinear structures and also to reconnect the parts of the curvilinear structures which may
have been disconnected by noise. After assessing the good behavior of this regularization
term on a synthetic image, we have conducted a quantitative study on retinal images of the
Drive database. This confirmed that our regularization term is better suited for curvilinear
structures than the classical TV.

future work

During this work, various questions were raised, which could not be addressed in this work
but represent interesting avenues for future work.
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On RORPO

Recently, Morard et al. [61] proposed a parsimonious version of the path opening. It provides
comparable results than the path opening, but drastically reduces its computation time. It
would be very interesting to adapt RORPO with these parsimonious path openings to take
advantage of their reduced computation time.

In its current version, the RORPO framework relies on a combinatorial analysis of the path
opening responses for the only purpose of detecting curvilinear structures. A straightforward
extension would be to adapt RORPO to specifically detect other structures such as plane-like
structures in 3D or blob-like structures.

On the directional regularization term

We proposed a general definition of our regularization term for a span of n vectors. However,
we only worked with n = 4, which corresponds to the immediate 3× 3 neighborhood. There
is no theoretical limitation in the adaptation of the directional TV to larger neighborhoods,
but only practical decisions to make. For example we have to investigate different projection
policies of the curvilinear structure direction on the span vectors.

Another interesting research lead would be to extend the directional TV for 3D images to
work on the VIVABRAIN project angiography.

For now, we have focused on a binary segmentation framework, where both RORPO fea-
tures are used as constant prior information. We plan to extend this work to a multi-label
segmentation where the different labels would be the RORPO orientations. In this way we
would be able to optimize on the RORPO directions together with the segmentation, which
certainly would improve the segmentation result.

On the segmentation of curvilinear structures

To present results of our directional regularization term, we chose to work on the Chan et
al. segmentation model. During the analysis of these results, we observe that the data fi-
delity term is not very effective. Indeed, the Chan et al. fidelity term can be interpreted as
an optimal thresholding criterion, similar to that of Otsu. While this is interesting, it means
that the Chan et al. formulation is essentially equivalent to apply a denoising followed by
a thresholding. Moreover, the homogeneous background hypothesis and the two constants
required by this data fidelity term are very restrictive. A possible future work would be to re-
place this data fidelity term, and propose a full high-level variational segmentation model for
curvilinear structures. A possibility would be to replace the two constant of the background
and foreground by spatially variant parameters which would relax the homogeneous back-
ground hypothesis.

We began, during my stay at HeartFlow, to work on the segmentation of blood vessels
in 3D images using machine learning. We used random forest with a few features based
on RORPO, in order to segment coronaries in CT-scan images. For now, this work is at an
embryonic stage, but showed encouraging results, which should be pursued.
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A
N O TAT I O N S

We recall here a few notations used in Part II.

a.1 image

We define an image as a 2D matrix of size M× N on the Euclidean space X = RM×N . For
example, let u ∈ X be a 2D image then:

u : [0, M− 1]× [0, N − 1]→ R

(x, y) 7→ u(x, y)

a.2 dot product of images

The Frobenius dot product of two images u and v (u, v ∈ X) is defined by:

〈u, v〉F =
M−1

∑
i=0

N−1

∑
j=0

uijvij (116)

a.3 norms of an image

The `1 norm ‖u‖1 of an image u ∈ X is defined by:

‖u‖1 =
M−1

∑
i=0

N−1

∑
j=0
|uij| (117)

The `2 norm ‖u‖2 of an image u ∈ X is defined by:

‖u‖2 =

√√√√M−1

∑
i=0

N−1

∑
j=0

uij
2 (118)

a.4 gradient of an image

We define the discrete gradient ∇u of an image u ∈ X as:

(∇u)i,j =
(

ux
ij, ux

ij

)
∀i, j ∈ R2 (119)

With ux (resp. uy) the spatial gradient of u in the x direction (resp. in the y direction):
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ux
ij =

{
u(i− 1, j)− u(i, j) i f 0 ≤ i < N − 1

0 i f i = N − 1

uy
ij =

{
u(i, j + 1)− u(i, j) i f 0 ≤ j < N − 1

0 i f j = N − 1

a.5 divergence of an image

The divergence may be defined as the adjoint operator of the gradient. That is, ∀u ∈ X ,
∀p = (p1, p2) ∈ X× X:

〈−div p, u〉X = 〈p,∇u〉X×X (120)

which results in the following expression:

divd(p) =



p1(i, j)− p1(i + 1, j) + p2(i, j)− p2(i, j− 1) if 0 < i, j < N − 1

−p1
i+1,j + p2

i,j if i = 0 ; j = 0

−p1
i+1,j − p2

i,1−1 + p2
i,j if i = 0 ; 0 < j < N − 1

−p1
i+1,j − p2

i,j−1 if i = 0 ; j = N − 1

p1
i,j − p1

i+1,j + p2
i,j if 0 < i < N − 1 ; j = 0

p1
i,j − p1

i+1,j − p2
i,j−1 if 0 < i < N − 1 ; j = N − 1

p1
i,j + p2

i,j if i = N − 1 ; j = 0

p1
i,j − p2

i,j−1 + p2
i,j if i = N − 1 ; 0 < j < N − 1

p1
i,j − p2

i,j−1 if i = N − 1 ; j = N − 1

a.6 norms of the gradient of an image

The `2 norm of the `2 norm of the gradient ∇u = (ux, uy) (∇u ∈ X2) is defined by:

‖∇u‖2,2 =

√√√√M−1

∑
i=0

N−1

∑
j=0

(ux
ij)

2 + (uy
ij)

2 (121)

The `1 norm of the `2 norm of the gradient ∇u = (ux, uy) (∇u ∈ X2) is defined by:

‖∇u‖2,1 =
M−1

∑
i=0

N−1

∑
j=0

√
(ux

ij)
2 + (uy

ij)
2 (122)
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S U B G R A D I E N T A N D P R O X I M I T Y
O P E R AT O R

b.1 subgradient

The subgradient is a generalization of the derivative to convex functions that are not dif-
ferentiable everywhere. We recall that convex functions are always differentiable almost
everywhere. Let f be a convex, proper, real-valued function on the Euclidean space X = Rn,
The subgradient of f , ∂ f , is defined as follows:

∂ f : Rn → 2Rn

x →
{

v ∈ Rn, ∀y ∈ Rn, f (y)− f (x) ≥ 〈v, y− x〉
} (123)

where 2Rn
is the power set of Rn and 〈., .〉 is the dot product.

In the case n = 1, the subgradient can be seen as the set of scalars u such that the line
Tfu(x) = f (x) + (y− x)Tu, is always beneath f . One can see that Tf (x) is a generalization
of the tangent equation when there is not a unique line at point x beneath f . The definition
of the subgradient correspond to that of the normal gradient for smooth functions. In this
case, the set u is reduced to the unique gradient of f , ∇ f . Several examples of subgradients
are illustrated in Figure 70 in the case n = 1. Equations 124 and 125 are respectively the
subgradients of Figure 70.b and 70c.

∂ f2(x) :


−1 if x < 0

1 i f x > 0

[−1, 1] else

(124)

∂ f3(x) :

 1
2 x2 i f x < 0

x else
(125)
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Tfu(x)

x

u

(a) f1(x) = x2

Tfu2(0)

0

u2

Tfu1(0)

u1

(b) f2(x) = |x|

Tfu2(0)

u2

Tfu1(0) u1

(c) f3(x) = x2 i f x < 0 ; x else

Figure 70: Examples of subgradients at x for a smooth function (a) (note that u is a unique
scalar, u = {∇ f (x)}) and at x = 0 for two non smooth functions (b)-(c). The green
color show the areas where a line passing through the point (x, f (x)) (called Tfu )
is permitted while being beneath f , and so correspond to the allowed ui ∈ u.
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b.2 proximity operator

The proximity operator of a convex function is a natural extension of the notion of the pro-
jection operator onto a convex set C.

Let ιC be the indicator function of the convex set C , defined as follows :

ιC(x) =

0 i f x ∈ C

+∞ else
(126)

ιC is a convex but non differentiable function. Finding the projection of x onto C is equiva-
lent to find the closest point to x onto C (see Figure 71). This problem can be formulated as
follows:

y? = argmin
y∈C

{
ιC(y) +

1
2
‖y− x‖2

}
(127)

where y? is the projection of x onto C.

C

x

y

Figure 71: y is the projection of x onto C

The proximity operator is the generalization of this projection to other functions than
indicator functions. Let f ( f ∈ Rn) be a real-valued function, the proximity operator of f ,
prox f is defined by:

prox f : Rn → Rn

x → argmin
y

{
f (y) +

1
2
‖y− x‖2

} (128)

In the following, we present two examples of proximity operators.

Example 1 : 1D convex set
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0 1x1

projection 
to 0

projection 
to 1

projection 
to 1

x2 x3

C1

Figure 72: Projection of several xi on C1

Let C1 be the convex set defined by its indicator function ιC1 :

ιC1 =

0 i f x < [0, 1]

+∞ else
(129)

The proximity operator of C1 is defined by (see Figure 72):

proxιC1
(x) =


0 if x < 0

1 i f x > 1

x else

(130)

Example 2 : 2D convex set

Let C2 be a circle with indicator function ιC2 , its proximity operator is defined in Eq. 131,
see Figure 73.

proxιC2
(x) =


x if ‖x‖2 = 1

a
‖x‖2

b
‖x‖2

 else
(131)

b.3 link between the subgradient and the prox-
imity operator

The proximity operator of a convex non-smooth function f may be computed from the sub-
gradient:

∀(x, p) ∈ RN , p = prox f (x)⇐⇒ x− p ∈ ∂ f (p) (132)
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C2
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b

a

Figure 73: Projection of x on C2

Proof. By definition:

prox f (x) = p = argmin
y

{
f (y) +

1
2
‖x− y‖2

2

}
(133)

The Euler-Lagrange equation of Eq. 133 is given by:

0 ∈ ∂
(

f (p) +
1
2
‖x− p‖2

2

)
⇔ 0 ∈ ∂ f (p) + p− x

⇔ x− p ∈ ∂ f (p)

The reader may note that, for a convex smooth function g, Eq. 132 is equivalent to :

prox f (x) = p = x−∇ f (p)

which may be seen as an implicit gradient descent iteration :

prox f (x) = xn+1 = xn −∇ f (xn+1)

The proximity operator plays the role of an iteration of the gradient descent for non smooth
function
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P R O O F O F S O M E S TAT E M E N T S

c.1 tv of a differentiable function

Let f ∈ C1(Ω, R) be a functional. The total variation of f is defined as follows:

TV( f ) =
∫

Ω
||∇ f (x)||2 dx (134)

Proof. As ∇ and −div are adjoint, then:

〈−divφ(x), f (x)〉 = 〈φ(x),∇ f (x)〉

which is equivalent to:

−
∫

Ω
f (x)divφ(x) dx =

∫
Ω

φ(x).∇ f (x) dx

Consequently,

TV( f ) = sup
{ ∫

Ω
φ(x).∇ f (x) dx, φ ∈ C1

c (Ω, Rn), ‖φ(x)‖2 ≤ 1, ∀x ∈ Ω
}

One can chose a good φ for which the supremum is attained. Let φ(x) = ∇ f
‖∇ f ‖2

then
‖φ(x)‖2 ≤ 1 ∀x ∈ Ω and:

∫
Ω

φ(x).∇ f (x) dx =
∫

Ω

∇ f
‖∇ f ‖2

.∇ f (x) dx

=
∫

Ω
‖∇ f ‖2 d̊x

c.2 tv of the indicator function

Let E be a set with smooth boundary (E ∈ C1,1) and ιE the indicator function of E such that:

ιE(x) =

{
1 if x ∈ E

0 else

The, the total variation of ιE is the perimeter of E:

TV(ιE) =
∫

∂E
1 d̊x

Where ∂Ω is the boundary of Ω and n is the outward pointing unit normal field of ∂Ω.
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Proof. Let recall the definition of TV:

TV(ιE) = sup
{
−
∫

Ω
ιE(x)div φ(x) dx, φ ∈ C1

c (Ω), Rn), ‖φ(x)‖2 ≤ 1, ∀x ∈ Ω
}

Then: ∫
Ω

ιE(x)divφ(x) dx =
∫

E
divφ(x) dx

Applying the divergence theorem (Gauss’s theorem) leads to:∫
E

div φ(x) dx =
∫

∂E
φ(x).ndx

Consequently,

TV(ιE) = sup
{
−
∫

∂E
φ(x).n dx, φ ∈ C1

c (Ω), Rn, ‖φ(x)‖2 ≤ 1, ∀x ∈ Ω
}

One can chose a good φ for which the supremum is attained. Let φ(x) = −n, then
‖φ(x)‖2 ≤ 1 and:

TV(ιE) =
∫

∂E
1 dx



L I S T O F P U B L I C AT I O N S A N D
C O M M U N I C AT I O N S

journal

• O. Merveille, N. Passat, L. Najman and H. Talbot Tubular Structure Analysis by Rank-
ing the Orientation Responses of Path Operators In revision

international conference

• O. Merveille, H. Talbot, L. Najman, and N. Passat. "Tubular structure filtering by rank-
ing orientation responses of path operators" In Proc. Eur. Conf. Comput. Vis. (ECCV),
volume 8690 of Lect. Notes Comput. Sci., pp. 203–218, Springer, 2014

• O. Merveille, H. Talbot, L. Najman, and N. Passat, "Ranking orientation responses of
path operators: Motivations, choices and algorithmics" In Proc. Int. Symp. Mathematical
Morphology (ISMM), ser. Lect. Notes Comput. Sci., vol. 9082. pp. 633– 644, Springer,
2015

• O. Merveille, O. Miraucourt, S. Salmon, N. Passat, and H. Talbot, "A variational model
for thin structure segmentation based on a directional regularization. In IEEE Int. Conf.
on Image Process. (ICIP), pp. 4324-4328, 2016

• N. Passat, S. Salmon, J.-P. Armspach, B. Naegel, C. Prud’homme, H. Talbot, A. Fortin, S.
Garnotel, O. Merveille, O. Miraucourt, R. Tarabay, V. Chabannes, A. Dufour, A. Jezier-
ska, O. Balédent, E. Durand, L. Najman, M. Szopos, A. Ancel, J. Baruthio, M. Delbany,
S. Fall, G. Pagé, O. Génevaux, M. Ismail, P. Loureiro de Sousa, M. Thiriet, and J. Jomier,
"From real MRA to virtual MRA: towards an open-source framework" In Proc. Med.
Image Computing and Comp.-Assist. Intervention (MICCAI), pp. 335–343, Springer, 2016

conference without proceedings

• O. Merveille, H. Talbot and N. Passat, "Nouveaux opérateurs morphologiques pour la
détection d’objets tubulaires", 37ème journée ISS France, 2014 (Oral Presentation)

• O. Merveille, H. Talbot, L. Najman, and N. Passat, "Tubular Structure Filtering by Rank-
ing Orientation Responses of Path Operators" Reims Image 2015 (Poster Presentation)

139





A C R O N Y M S

ANR Agence Nationale de la Recherche

CED Coherence-Enhancing Diffusion

CT-scan Computerized Tomography scanner

EED Edge-Enhancing Diffusion

FGP Fast Gradient-Based Projection

FISTA Fast Iterative Shrinkage/Thresholding Algorithm

FN false negatives

FNR false negative rate

FP false positives

FPR false positive rate

FV Frangi Vesselness

HDCS Hybrid Diffusion Filter with Continuous Switch

IPO Incomplete Path Opening

MCC Matthews Correlation Coefficient

MIP Maximum Intensity Projection

MRA Magnetic Resonance Angiography

MRI Magnetic Resonance Imaging

OOF Optimally Oriented Flux

PRF Pointwise Rank Filter

ROC Receiver Operating Characteristic

RORPO Ranking Orientation Responses of Path Operators

RPO Robust Path Opening

SE Structuring Element

TN true negatives

TNR true negative rate

TP true positives
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TPR true positive rate

TV total variation
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