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Mathématiques et Sciences et Techniques de l’Information et de la

Communication
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Résumé court

L’étude des ensembles de mots de complexité linéaire joue un rôle très im-
portant dans la théorie de la combinatoire des mots et dans la théorie des
systèmes dynamiques symboliques. Cette famille d’ensembles comprend les en-
sembles de facteurs d’un mot Sturmien ou d’un mot d’Arnoux-Rauzy, d’un
codage d’échange d’intervalles, d’un point fixe d’un morphisme primitif, etc.

L’enjeu principal de cette thèse est l’étude de systèmes dynamiques mini-
maux et de complexité linéaire, définis de façon équivalente comme ensembles
factoriels de mots uniformement récurrents. Comme résultat principal nous
obtenons une hiérarchie naturelle de systèmes minimaux contenant les ensembles
neutres, les ensembles à extension d’arbre (tree sets) et les ensembles spéculaires.
De plus, nous relions ces systèmes au groupe libre en utilisant les mots de re-
tour et les bases de sous-groupes d’indice fini. Nous étudions aussi les systèmes
symboliques dynamiques engendrés par les échanges d’intervalles et les involu-
tions linéaires, ce qui nous permet d’obtenir des exemples et des interprétations
géométriques des familles d’ensembles définis dans notre hiérarchie.

L’un des outils principaux utilisés est l’étude des extensions possibles d’un
mot dans un ensemble, ce qui nous permet de déterminer des propriétés telles
que la complexité factorielle. Dans ce manuscrit, nous définissons le graphe
d’extension, un graphe non orienté associé à chaque mot w dans un ensemble
S qui décrit les extensions possibles de w dans S à gauche et à droite. Dans
cette thèse, nous présentons plusieurs classes d’ensembles de mots définis par
les formes possibles que les graphes d’extensions des éléments dans l’ensemble
peuvent avoir.

L’une des conditions les plus faibles que nous allons étudier est la condition
de neutralité: un mot w est neutre si le nombre de paires (a, b) de lettres telles
que awb ∈ S est égal au nombre de lettres a tel que aw ∈ S, plus le nombre de
lettres b tel que wb ∈ S, moins 1. Un ensemble tel que chaque mot non vide
satisfait la condition de neutralité est appelé un ensemble neutre.

Une condition plus forte est la condition de l’arbre: un mot w satisfait cette
condition si son graphe d’extension est à la fois acyclique et connexe. Un en-
semble est appelé un ensemble à extension d’arbre si tout mot non vide satisfait
cette condition. La famille des ensembles à extension d’arbre récurrents apparâıt
comme fermeture naturelle de deux familles d’ensembles très importantes : les
facteurs d’un mot d’Arnoux-Rauzy et les ensembles d’échange d’intervalles.

Nous présentons également les ensembles spéculaires, une sous-famille remar-
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quable d’ensemble à extension d’arbre. Il s’agit également de sous-ensembles de
groupes qui forment une généralisation naturelle des groupes libres. Ces ensem-
bles de mots sont une généralisation abstraite des codages naturels d’échanges
d’intervalles et d’involutions linéaires.

Pour chaque classe d’ensembles considérée dans cette thèse, nous montrons
plusieurs résultats concernant les propriétés de fermeture (par décodage bifixe
maximal ou par rapport aux mots dérivés), la cardinalité des codes bifixes et
celle des mots de retour, la connexion entre mots de retour et bases du groupe
libre, ainsi qu’entre les codes bifixes et les sous-groupes du groupe libre. Chacun
de ces résultats est prouvé en utilisant les hypothèses les plus faibles possibles.

Mots clés. Informatique théorique ; combinatoire des mots ; systèmes sym-
boliques dymaniques ; ensembles neutres ; ensembles à extension d’arbre ; en-
sembles spéculaires ; mots de retour ; codes bifixes ; groupe libre ; échanges
d’intervalles ; involutions linéaires.
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Abstract

Sets of words of linear complexity play an important role in combinatorics on
words and symbolic dynamics. This family of sets includes set of factors of Stur-
mian and Arnoux-Rauzy words, interval exchange sets and primitive morphic
sets, that is, sets of factors of fixed points of primitive morphisms.

The leading issue of this thesis is the study of minimal dynamical systems
of linear complexity, also defined equivalently as uniformly recurrent sets of
words. As a main result, we obtain a natural hierarchy of minimal systems
containing neutral sets, tree sets and specular sets. Moreover, we connect the
minimal systems to the free group using the notions of return words and basis
of subroups of finite index. Symbolic dynamical systems arising from interval
exchanges and linear involutions provide us geometrical examples of this kind
of sets.

One of the main tool used here is the study of possible extensions of a word
in a set, that allows us to determine properties such as the factor complexity. In
this manuscript we define the extension graph, an undirected graph associated
to each word w in a set S which describes the possible extensions of w in S on
the left and the right. In this thesis we present several classes of sets of words
defined by the possible shapes that the graphs of elements in the set can have.

One of the weakest condition that we will study is the neutrality condition:
a word w is neutral if the number of pairs (a, b) of letters such that awb ∈ S is
equal to the number of letters a such that aw ∈ S plus the number of letters b
such that wb ∈ S minus 1. A set such that every nonempty word satisfies the
neutrality condition is called a neutral set.

A stronger condition is the tree condition: a word w satisfies this condition if
its extension graph is both acyclic and connected. A set is called a tree set if any
nonempty word satisfies this condition. The family of recurrent tree sets appears
as a the natural closure of two known families, namely the Arnoux-Rauzy sets
and the interval exchange sets.

We also introduce specular sets, a remarkable subfamily of the tree sets.
These are subsets of groups which form a natural generalization of free groups.
These sets of words are an abstract generalization of the natural codings of
interval exchanges and of linear involutions.

For each class of sets considered in this thesis, we prove several results con-
cerning closure properties (under maximal bifix decoding or under taking de-
rived words), cardinality of the bifix codes and set of return words in these sets,
connection between return words and basis of the free groups, as well as between
bifix codes and subgroup of the free group. Each of these results is proved under
the weakest possible assumptions.

Keywords. Theoretical Computer Science; Combinatorics on Words; Sym-
bolic Dynamical Systems; Neutral sets; Tree sets; Specular sets; Return words;
Bifix codes; Free group; Interval Exchange Transformations; Linerar Involu-
tions.
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Résumé de la thèse

Dans cette thèse, nous étudions les liens entre trois sujets: la dynamique sym-
bolique, la théorie des codes et la théorie combinatoire des groupes.

Les ensembles de mots de complexité linéaire jouent un rôle très important
dans la combinatoire des mots ainsi que dans la dynamique symbolique. Cette
famille d’ensembles comprend les ensembles de facteurs d’un mot Sturmien, les
ensembles de facteurs d’un mot d’Arnoux-Rauzy, les ensembles de facteurs de
points fixes d’un morphisme primitif et les ensembles d’échanges d’intervalles.

Ce manuscrit est consacré à l’étude de ce genre d’ensembles. Comme résultat
principal, nous établissons une hiérarchie naturelle des systèmes minimaux (en-
sembles uniformément récurrents de mots) contenant les ensembles neutres, les
ensembles à extension d’arbre et les ensembles spéculaires.

La plupart des résultats ont déjà été publiés ou soumis dans une série
d’articles signés par moi et d’autres co-auteurs. Dans la Conclusion sont présentés
les références à ces articles, la structure d’ensemble du travail et une note ex-
plicative sur ma contribution personnelle.

Mots Sturmien et échanges d’intervalles

Le mots Sturmiens sont des mots infinis sur un alphabet binaire qui ont exacte-
ment n + 1 facteurs de longueur n pour tout n ≥ 0. Leur origine remonte à
l’astronome J. Bernoulli III et leur première étude approfondie a été réalisée par
Morse et Hedlund [56]. Dans un autre travail Coven et Hedlund [27] décrivent
des nombreuses propriétés combinatoires des mots sturmiens.

Les mots d’Arnoux-Rauzy sont une généralisation sur un alphabet de taille
arbitraire des mots Sturmiens classiques sur deux lettres (voir [42]). Un en-
semble d’Arnoux-Rauzy est l’ensemble des facteurs d’un mot d’Arnoux-Rauzy.
Pour plus de détails, voir [41, 52].

Les mots Sturmiens sont étroitement liés au groupe libre (voir, par exem-
ple, [7]). Les ensembles Sturmiens satisfont, par exemple, la propriété de base
indice fini, c’est-à-dire : un code bifixe fini est S-maximal (avec S l’ensemble
des mots considéré) si et seulement si il est une base d’un sous-groupe d’indice
fini du groupe libre sur A.

Les transformations d’échange d’intervalles ont été introduites par Oseledec
(voir [59]), d’après une idée d’Arnold (voir [2]). La classe des transformations
régulières d’échanges d’intervalles, quant à elle, a été introduite par Keane [47]
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qui a montré que ces transformations sont minimales dans le sens topologique
dynamique. Le codage naturel d’un échange d’intervalles donne un ensemble de
mots de complexité linéaire, tel que, par exemple, le language d’un mot Sturmien
(voir, par exemple [39] ou [4]). L’ensemble des facteurs de codages naturels
d’une transformation régulière d’échange d’intervalles est appelé un ensemble
d’échange d’intervalles. Une généralisation des échanges d’intervalles est donnée
par les involutions linéaires [29] (pour d’autres généralisations, voir [63]).

On remarque que la classe des facteurs d’un mot Sturmien est contenue à la
fois dans la classe des ensembles réguliers d’échanges d’intervalles et dans celle
des ensembles d’Arnoux Rauzy. En plus, on peut démontrer que l’intersection
de ces deux classes est réduite aux ensembles Sturmiens. Même si les deux
classes ont la même complexité factorielle (c’est-à-dire, le même nombre de
facteurs pour une longueur donnée), elles ont des comportements combinatoires
très distincts, par exemple en ce qui concerne le comportement des facteurs
spéciaux, ou les propriétés d’équilibre, etc. (voir [23, 69]).

Ensembles neutres

Dans cette thèse, nous étudions plusieurs familles d’ensembles de mots de com-
plexité linéaire définies par des propriétés d’un graphe E(w), appelé le graphe
d’extension de w. Ce graphe décrit les possibles extensions de w à droite et à
gauche par une lettre de l’alphabet A. Un ensemble S est dit neutre si la car-
actéristique d’Euler du graphe d’un mot non vide est égale à 1. Lens ensembles
à extension d’arbre forment une famille particulière d’ensembles neutres. Ces
ensembles sont tels que le graphe E(w) est un arbre pour tout mot non vide, et
il est acyclique pour le mot vide. La caractéristique d’Euler du graphe E(ε) est
appelé la caractéristique de S et est notée χ(S). Ces ensembles ont été étudiés
dans [5].

La motivation pour l’étude des ensembles neutres et à extension d’arbre est la
suivante : tout d’abord, la famille des ensembles à extension d’arbres récurrents
apparâıt comme la fermeture naturelle de deux familles d’entropie zero, à savoir
les ensembles Sturmiens et les ensembles d’échanges d’intervalles. Ensuite, la
famille d’ensembles neutres peut être vue comme une généralisation naturelle
des ensembles à extension d’arbre, du fait que plusieures propriétés vraies pour
ces dernières sont valides aussi pour les ensembles neutres.

La complexité factorielle d’un ensemble neutre S sur k lettres est égale, pour
n 6= 1 à

pn = n(k − χ(S)) + χ(S). (1)

Plus généralement, on prove que pour un ensemble S neutre de caractéristique
1, tout code bifixe S-maximal fini de S-degré d a exactement d(Card(A)−1)+1
éléments. Le fait remarquable est que, pour un ensemble S fixé, la cardinalité
de X ne dépend que de son S-degré. Dans le cas particulier où X est l’ensemble
de tous les mots de S de longueur n, on retrouve l’équation (1).

Un autre résultat concerne l’ensemble des mots de retour sur un mot x
dans un ensemble factoriel S, notée RS(x). Cela est l’ensemble des mots non
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vides u tel que xu est dans S et il se termine par x, sans qu’aucun de ses
préfixes ait la même propriété. Dans plusieurs familles d’ensembles de com-
plexité linéaire, il est connu que l’ensemble des mots de retour sur x a cardi-
nalité fixée et indépendante de x. Cela a été prouvé pour les mots Sturmiens
dans [45], pour les ensembles d’échanges d’intervalles dans [67] (voir aussi [17])
et pour les ensembles neutres de caractéristique 1 dans [5].

Ici, nous montrons d’abord que l’ensemble CRS(X) des mots de retour com-
plet sur un code bifixe X (satisfaisant certaines hypothèses) dans un ensemble
neutre récurrent S sur k lettres satisfait Card(CRS(X)) = Card(X)+k−χ(S) et
que cette quantité est une borne supérieure pour Card(CRS(X)) pour tout en-
semble neutre (Théorème 2.2.8). Le fait remarquable ici est que, pour un ensem-
ble neutre S fixé, la cardinalité de CRS(X) ne dépend que de Card(X). Quand
X contient un seul élément x, nous avons CRS(x) = xRS(x) et on récupère le
résultat de [5]. En plus, lorsque X = S ∩ An, alors CRS(X) = S ∩ An+1. Cela
implique que pn+1 = pn + k − χ(S) et donne également l’Équation (1). Les
preuves de ces formules utilisent une distribution de probabilité naturellement
définie sur un ensemble neutre.

Comme corollaire du Théorème 2.2.8 nous prouvons que dans un ensem-
ble neutre les notions de récurrence et uniforme récurrence cöıncident (Corol-
laire 2.2.9).

Un autre résultat concerne le décodage d’un ensemble neutre par un code
bifixe. Nous montrons que le décodage d’un ensemble neutre récurrent S par
un code bifixe S-maximal est encore un ensemble neutre.

Ensembles à extension d’arbre

Les ensembles à exstension d’arbre ont plusieures propriétés particulièrement
intéressantes, concernant les groupes libres, la dynamique symbolique associée
aux ensembles et les codes bifixes contenus dans ces ensembles. En particulier,
les ensembles à exstension d’arbre permettent de trouver des bases du groupe
libre, ou des sous-groupes du groupe libre. En effet, dans un ensemble à exsten-
sion d’arbre récurrent, les ensembles de mots de premier retour sur un mot
donné sont des bases du groupe libre sur l’alphabet. Par ailleurs, les codes bi-
fixes maximaux qui sont inclus dans un ensemble à extension d’arbre récurrent
sont des bases de sous-groupes d’indice fini du groupe libre. On démontre aussi
que les ensembles à extension d’arbre sont fermés par décodage bifixe maximal
et par décodage par rapport aux mots de retour.

Nous étudions les ensembles des mots de premier retour contenus dans un
ensemble à extension d’arbre S. Notre résultat principal concernant les mots
de retour est que si S est un ensemble à extension d’arbre récurrent, l’ensemble
des mots de premier retour sur un mot de S est une base du groupe libre sur
A. Pour cela, nous utilisons les graphes de Rauzy, que sont obtenus à partir
des graphes de Bruijn en utilisant comme sommets que les mots de longueur
donnée dans un ensemble S. D’abord, nous montrons que si S est un ensemble
connexe récurrent, le groupe décrit par un graphe de Rauzy de S avec base un
de ses sommets est le groupe libre sur A. Ensuite, nous montrons que dans
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un ensemble connexe recurrent S contenant A, l’ensemble des mots de premier
retour sur un mot dans S engendre le groupe libre sur A. La preuve utilise
le fait que, dans un ensemble neutre uniformément récurrent S, le nombre des
mots de premier retour sur un mot de S est égal à Card(A), un résultat obtenu
dans [5].

Un résultat intéressant concernant les codes bifixes dans ce contexte est
qu’un ensemble S est acyclique si et seulement si tout code bifixe contenu dans
S est une base du sous-groupe qu’il engendre. Ceci est lié à la propriété de la
base d’indice fini et au Théorème 4.2.1, prouvant qu’un code bifixe fini est S-
maximal de S-degré d si et seulement s’il est une base d’un sous-groupe d’indice
d. Dans le cas d’un ensemble acyclique, le sous-groupe engendré par un code
bifixe peut ne pas être d’indice fini, même si le code bifixe est S-maximal (et
même si l’ensemble S est uniformément récurrent).

Nous démontrons également un résultat plus technique. On dit qu’un sous-
monöıde M du monöıde libre est saturé dans un ensemble S si le sous-groupe
H du groupe libre engendré par M satisfait M ∩ S = H ∩ S. Nous montrons
que si S est acyclique, le monöıde engendré par un code bifixe contenu dans S
est saturé dans S.

Les ensembles à extension d’arbre récurrents satisfont la propriété de la base
d’indice fini. Cela généralise le résultat concernant les mots Sturmiens de [7]
cité ci-dessus. Comme exemple d’une conséquence de ce résultat, si S est un
ensemble à extension d’arbre récurrent sur l’alphabet A, alors pour tout n ≥ 1,
l’ensemble S ∩ An est une base du sous-groupe formé des mots de longueur un
multiple de n.

Notre résultat principal concernant les ensembles à extension d’arbre est que
la classe des ensembles à extension d’arbre récurrents est fermée par décodage
bifixe maximal. Cela signifie que si S est un ensemble à extension d’arbre
uniformément récurrent et f un morphisme de codage pour un code bifixe S-
maximal fini, alors f−1(S) est un ensemble à extension d’arbre uniformément
récurrent. La famille d’ensembles réguliers d’échanges intervalles est fermée par
décodage bifixe maximal tandis que la famille des ensembles Sturmiens ne l’est
pas. Ainsi, ce résultat montre que la famille d’ensembles à extension d’arbre
récurrents est la fermeture naturelle de la famille des ensembles Sturmiens.

La preuve de ce dernier résultat utilise la propriété de base d’indice fini des
ensembles à extension d’arbre uniformément récurrents. Elle utilise également
la fermeture des ensembles à extension d’arbre récurrents par décodage par
rapport aux mots de retour. Cette propriété, qui est elle même intéressante
en soi, généralise le fait que le mot dérivé d’un mot Sturmien est lui aussi
Sturmien [45].

Nous montrons aussi deux résultats qui permettent d’obtenir d’autres exe-
mples d’ensembles à extension d’arbre d’origine géométrique, à savoir en util-
isant des transformations d’échanges d’intervalles ou des involutions linéaires.
Plus précisément, nous montrons que le codage naturel d’une transformation
d’échange d’intervalles sans connexions de longueur ≥ 1 est un ensemble à ex-
tension d’arbre et que le codage naturel d’une involution linéaire sans connexions
est un ensemble à extension d’arbre de caractéristique 2.
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Ensembles spéculaires

Les groupes spéculaires sont des généralisations naturelle des groupes libres:
ils sont des produits libres d’un nombre fini de copies de Z et Z/2Z. Un en-
semble spéculaire est un sous-ensemble d’un groupe spéculaire. Cela peut être
vu comme une généralisation du language du codage naturel d’une involution
linéaire. Plus précisément, nous considérons un alphabet A avec une involution
θ qui agit sur A, possiblement avec des points fixes, et le groupe Gθ engendré
par A avec relations aθ(a) = 1 pour toute lettre a ∈ A. Dans ce contexte on
peut considérer des mots réduits, des ensembles symétriques de mots. De plus,
on peut définir les ensembles laminaires, c’est-à-dire des ensembles factoriels
contenant l’inverse de tous leurs éléments. Dans le cas où θ n’a pas de point
fixe, on retrouve exactement le groupe libre. On peut donc définir un ensem-
ple spéculaire comme un ensemble laminaire tel que le graphe d’extension de
tout mot non vide est un arbre et le graphe d’extension du mot vide a deux
composantes connexes qui sont des arbres.

Les groupes spéculaires apparaissent à plusieurs endroits dans [30]. Ils sont
appelés free-like dans [6]. Ces groupes sont proches des groupes libres et, en
particulier, la notion de base dans ces groupes est bien définie. D’après le
théorème de Kurosh pour les sous-groupes, on sait que tout sous-groupe d’un
groupe spéculaire est spéculaire. Un ensemble spéculaire peut être défini comme
un sous-ensemble d’un tel groupe fermé par l’inverse et défini en termes de
restrictions sur les extensions de ses éléments.

De même que pour les ensembles à extension d’arbre, nous donnons pour les
ensembles spéculaires deux versions du théorème du retour et du théorème de
la base d’indice fini. La première affirme que l’ensemble des mots de retour sur
un mot donné dans un ensemble spéculaire récurrent forme une base d’un sous-
groupe d’indice 2, appelé le sous-groupe pair. La seconde caractérise les bases
symétriques des sous-groupes d’indice fini de groupes spéculaires contenus dans
un ensemble spéculaire S comme les codes bifixes S-maximaux symétriques finis
contenus dans S.

L’idée de considérer des ensembles récurrents de mots réduits fermés par
inverse est également liée à la notion des mots G-riches présenté dans [60].

Induction de Rauzy

Rauzy a introduit dans [61] une transformation, maintenant appelée induction
de Rauzy (ou induction de Rauzy-Veech), qui agit sur les échanges d’intervalles.
Cette transformation modifie une transformation d’échange d’intervalles dans
un autre définie sur un intervalle plus petit. Son itération peut être considérée
comme une généralisation du développement en fraction continue. L’induction
consiste à prendre le premier retour de la transformation par rapport à un
sous-intervalle de l’intervalle sur lequel l’échange est défini. La transformation
induite d’un échange d’intervalles sur s sous-intervalles est toujours un échange
d’intervalles sur au plus s+2 intervalles. Rauzy a introduit dans [61] la définition
d’admissiblité à droite pour un intervalle et il a caractérisé les intervalles admis-
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sibles à droite comme ceux qui peuvent être atteints par l’induction de Rauzy.
Dans cette thèse, nous généralisons à la fois la notion d’intervalles admissi-
bles et d’induction de Rauzy à une version bilatérale. Nous caractérisons les
intervalles admissibles (Théorème 7.2.3) et montrons, en particulier, que les in-
tervalles associés aux facteurs du codage naturel d’une transformation d’échange
d’intervalles sont admissibles (Proposition 7.1.6).

De plus, nous démontrons une propriété sur les codages naturels de transfor-
mations régulières d’échange d’intervalles en disant que la famille de ces ensem-
bles de mots est fermée par dérivation, une opération qui consiste à considérer
les mots de retour sur un mot donné comme un nouvel alphabet.

Échange d’intervalles sur un corps quadratique

Les transformations d’échange intervalles définis sur un corps quadratique ont
été étudiés par Boshernitzan et Carroll ([20] et [19]). Dans ces hypothèses, ils
ont montré que, en utilisant itérativement la fonction du premier retour sur l’un
des intervalles échangés par la transformation, on obtient seulement un nombre
fini de différentes nouvelles transformations à renormalisation près. Ce résultat
étend le théorème classique de Lagrange selon lequel le développement d’un
irrationnel quadratique est périodique.

Ici, nous montrons que, dans le cas d’échanges d’intervalles définis sur un
corps quadratique, la famille des transformations obtenues à partir d’une trans-
formation régulière d’échange intervalles par induction de Rauzy bilatérale est
finie, à renormalisation près. De plus, nous montrons, comme conséquence,
que l’ensemble d’échange d’intervalles associé à une telle transformation est
l’ensemble des facteurs d’un mot morphique primitif.

Involutions linéaires

Une involution linéaire est une isométrie par morceaux injective définie sur une
paire d’intervalles. Les involutions linéaires ont été introduites par Danthony
et Nogueira dans [29] et [28], en généralisant les échanges d’intervalles avec
retournement(s) [57, 58] (échanges d’intervalles qui inversent l’orientation dans
au moins un intervalle). Les deux auteurs ont étendu à ces transformations
la notion d’induction de Rauzy (introduite dans [61]). L’étude des involutions
linéaires a ensuite été développé par Boissy et Lanneau dans [18].

Le codage naturel d’une involution linéaire est l’ensemble des facteurs des
mots infinis qui codent les séquences de sous-intervalles rencontrés par les orbites
de la transformation. Ils sont définis sur un alphabet A dont les lettres et leur
inverses indexent les intervalles échangés par l’involution. Un codage naturel
est donc un sous-ensemble du groupe libre FA sur l’alphabet A. Une propriété
importante de cet ensemble est sa stabilité par inverse.

Nous étendons aux codages naturels des involutions linéaires la plupart des
propriétés prouvées pour les ensembles à extension d’arbre récurrents, et donc,
pour les codages naturels des échanges d’intervalles. Cette extension n’est pas
triviale ni immédiate. Nous considérons les mots de retour sur l’ensemble
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{w,w−1} ainsi qu’une version tronquée de cet ensemble, que nous appelons
ensemble des mots de retour mixte. Dans ce contexte, nous remplaçons la
base d’un sous-groupe par sa version symétrique contenant les inverses de ses
éléments, appelé base symétrique.

Nous montrons, enfin, que le codage naturel d’une involution linéaire sans
connexion est un ensemble spéculaire.

Le manuscrit est organisé comme suit.

Dans le Chapitre 1, nous donnons quelques notions préliminaires et des
définitions. Nous introduisons les mots et les ensembles à la fois dans le monöıde
libre et dans le groupe libre. Nous définissons le graphe d’extension d’un mot
dans un ensemble factoriel. De plus, nous donnons les définitions de base et
quelques résultats sur les codes bifixes, les automates et les mots de retour.
Tous ces outils seront utilisés dans les chapitres suivants.

Les Chapitres 2 à 5 sont consacrés à l’étude des différentes classes d’ensembles
ordonnés hiérarchiquement. Les plus importants sont les ensembles neutres
(Chapitre 2), les ensembles à extension d’arbre (Chapitres 3 et 4) et les ensem-
bles spéculaires (Chapitre 5).

En particulier, le Chapitre 2 est consacré aux ensembles neutres. D’abord,
nous définissons les notions de faible, fort et neutre, et nous montrons que les
ensembles neutres ont complexité factorielle linéaire (Proposition 2.1.3). Plus
en général, nous prouvons le Théorème de la Cardinalité pour les ensembles
neutres (Théorème 2.2.1) qui dit que tous les codes bifixes S maximaux ayant
le même S-degré ont la même cardinalité. Nous montrons aussi des résultats
sur la cardinalité des ensembles des mots de retour (Théorème 2.2.8 et Corol-
laire 2.2.10) ainsi qu’une propriété de fermeture pour la famille d’ensembles neu-
tres par décodage bifixe maximal (Théorème 2.3.1). En utilisant les résultats
précédents, nous montrons également que dans le contexte des ensembles neu-
tres (et donc pour tous les ensembles définis par une des propriétés plus fortes
comme dans les chapitres suivants) les notions de récurrence et de récurrence
uniforme cöıncident (Corollaire 2.2.9).

Dans les Chapitres 3 et 4 nous définissons et étudions les ensembles à exten-
sion d’arbre.

Le résultat principal du Chapitre ?? est le Théorème de Retour (Théorème 3.2.5),
qui dit que l’ensemble des mots de retour sur un ensemble à extension d’arbre
de caractéristique 1 est une base du groupe libre. Nous donnons également
un résultat de fermeture par dérivation pour les ensembles à extension d’arbre
(Théorème 3.2.9) et montrons comment utiliser des fonctions dites fonctions
de multiplication pour construire de nouveaux ensembles à extension d’arbre
(Théorème 3.3.1). Nous terminons le chapitre avec un résultat concernant les
palindromes: nous montrons que les ensembles à extension d’arbre récurrents
de caractéristique 1 fermés par image miroir sont riches (Proposition 3.4.1).
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Dans le Chapitre 4, consacré également aux ensembles à extension d’arbre,
nous nous intéressons particulièrement à l’étude des codes bifixes dans les en-
sembles à extension d’arbre et à leur connexion avec les sous-groupes du groupe
libre. En relaxant l’hypothèse, quand cela est possible, nous montrons le Free-
ness Théorème, indiquant que les codes bifixes dans les ensembles à extension
d’arbre sont des bases du sous-groupe qu’ils engendrent (Théorème 4.1.1) et le
Théorème de Saturation, disant que le monöıde engendré par un code bifixe fini
est saturé (Théorème 4.1.2). Un autre résultat principal de ce chapitre est le
Théorème de la Base d’Indice Fini, qui dit qu’un code bifixe fini dans un ensem-
ble à extension d’arbre S est S-maximal de S-degré d si et seulement si il est
un sous-groupe d’indice d du groupe libre. Dans ce contexte, nous définissons
également des bases tame et nous montrons que chaque ensemble récurrent à
extension d’arbre de caractéristique 1 a une réprésentation S-adique primitive,
avec S fini et contenant seulement des automorphismes positifs. Nous termi-
nons le chapitre en montrant plusieures propriétés de fermeture d’ensembles à
extension d’arbre par décodage bifixe maximal (Théorèmes 4.3.1, 4.3.3, 4.3.5
et 4.3.17).

Dans le Chapitre 5 nous étudions les ensembles spéculaires, une famille
d’ensembles à extension d’arbre de caractéristique 2 ayant, en outre, des pro-
priétés symétriques. Nous pouvons, par exemple, définir dans ce contexte la
notion de parité d’un mot. Ces ensembles sont des ensembles laminaires et
ils sont liés aux groupes virtuellement libres appelés groupes spéculaires. Après
avoir donné les définitions nécessaires, nous construisons une importante famille
d’ensembles spéculaires, obtenue en doublant les ensembles à extension d’arbre
de caractéristiques 1, et nous montrons que cette famille est G-riche (Proposi-
tion 5.2.26). De plus, nous donnons des versions plus précises des principaux
résultats du Chapitre 4, tels que le Théorème du Retour et le Théorème de
la Base d’Indice Fini (Théorèmes 5.3.11 et 5.5.1), ainsi que plusieurs résultats
de cardinalité concernants les mots de retour dans ces ensembles (par exemple,
Théorèmes 5.3.2, 5.3.5 et 5.3.9).

La partie du manuscrit du Chapitre 6 au Chapitre 8 est consacrée à l’étude
des familles provenant de systèmes dynamiques géométriques: en particulier les
échanges d’intervalles (Chapitres 6 et 7) et les involutions linéaires (Chapitre 8).

Dans le Chapitre 6, nous montrons que les ensembles factoriels résultant du
codage naturel des transformations d’échange d’intervalles, sont des ensembles
à extension d’arbre. Plus particulièrement, nous montrons que si la transfor-
mation est régulière, alors le language associé satisfait une propriété plus forte
: l’extension d’arbre planaire (Théorème 6.1.16). En effet, cette propriété car-
actérise ces ensembles. Cette famille d’ensembles est fermée par décodage bifixe
maximale (Théorème 6.2.11 et Corollaire 6.2.13).

Dans le Chapitre 7 nous continuons l’étude des échanges d’intervalles en in-
troduisant l’induction à ramification, une généralisation de l’induction de Rauzy
classique : une fonction qui associe à un échange d’intervalles un autre échange
d’intervalles et préserve certaines de ses propriétés (par exemple la régularité).
Nous donnons la définition d’admissibilité pour un sous-intervalle et nous car-
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actérisons les semi-intervalles admissibles pour une transformation d’échange
d’intervalles (Théorème 7.2.3). Enfin, nous étudions le cas d’un échange inter-
valles défini sur un corps quadratique. En suivant le travail de Boshernitzan et
Carroll dans [19], nous montrons que, sous certaines hypothèses, il existe qu’un
nombre fini de transformations obtenues par l’induction de Rauzy à ramification
(Théorème 7.3.1). Nous utilisons ce résultat pour prouver que le language d’une
transformation régulière d’échange d’intervalles définie sur un corps quadratique
est un ensemble primitif morphique (Théorème 7.3.12).

On a vu que les échanges d’intervalles nous donnent des exemples d’ensembles
à extension d’arbre. De même, dans le Chapitre 8, nous introduisons les involu-
tions linéaires et nous montrons que le language associé à un système dynamique
de ce type est un ensemble spéculaire. Dans ce chapitre, nous étudions d’abord
les propriétés dynamiques des involutions linéaires, définissant certaines classes
remarquables de ces systèmes, telles que les involutions linéaires orientables,
les involutions linéaires cohérentes ou les involutions linéaires minimales. Par
la suite, nous définissons le codage naturel d’une involution linéaire et mon-
trons que, sous certaines hypothèses, cet ensemble est un ensemble spéculaire
(Théorème 8.2.11). Nous donnons aussi des résultats concernant l’orientabilité
(Proposition 8.2.5), les mots de retour mixte et les intervalles admissibles pour
une involution linéaire, notion qui généralise la notion analogue vue dans le
Chapitre 7 pour les échanges d’intervalles.

Enfin, nous terminons le manuscrit avec la Conclusion, où nous parlons de
problèmes ouverts et de certaines directions de recherche possibles.
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Introduction

In this thesis we study the connections between three subjects: symbolic dy-
namics, theory of codes and combinatorial group theory.

Sets of words of linear complexity play an important role in combinatorics
on words and symbolic dynamics. This family of sets includes set of factors
of Sturmian and Arnoux-Rauzy words, interval exchange sets and primitive
morphic sets, that is, sets of factors of fixed points of primitive morphisms.

This manuscript is devoted to the study of this kind of sets. As a main
result, we establish a natural hierarchy of minimal systems (uniformly recurrent
sets of words) containing neutral sets, tree sets and specular sets.

Most of the results are already been published or submitted in a series of
papers by me and other authors. The references to these papers and their archi-
tecture as well as the mentions, as much as possible, of my personal contribution
are presented in the Conclusion.

Sturmian words and interval exchanges

Sturmian words are infinite words over a binary alphabet that have exactly
n+ 1 factors of length n for each n ≥ 0. Their origin can be traced back to the
astronomer J. Bernoulli III and their first in-depth study was done by Morse and
Hedlund [56]. Another important work is the paper by Coven and Hedlund [27]
which describes many combinatorial properties of Sturmian words.

Arnoux-Rauzy words are a generalization to arbitrary alphabets of the clas-
sical Sturmian words on two letters (see the survey [42]). An Arnoux-Rauzy set
is the set of factors of an Arnoux-Rauzy word. For more details, see [41, 52].

Sturmian words are closely related to the free group (see, for example, [7]).
Sturmian sets satisfy, for instance, the finite index basis property, in the sense
that given a set S of words on an alphabet A, a finite bifix code is S-maximal
if and only if it is the basis of a subgroup of finite index of the free group on A.

Interval exchange transformations were introduced by Oseledec [59] following
an earlier idea of Arnold [2]. The class of regular interval exchange transforma-
tions was introduced by Keane [47] who showed that they are minimal in the
topological dynamics sense. The natural coding of interval exchange produces
sequences of linear complexity, including Sturmian sequences which have been
widely studied (see, for example [39] or [4] for small alphabets). The set of fac-
tors of the natural codings of a regular interval exchange transformation is called
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an interval exchange set. Interval exchange transformations have been gener-
alized to transformations called linear involutions by Danthony and Nogueira
in [29] (for other generalizations, see [63]).

Note that the class of factors of a Sturmian word is contained both in the
class of regular interval exchange sets and of Arnoux Rauzy sets. Moreover,
it can be shown that the intersection of regular interval exchange sets and the
class of Arnoux-Rauzy sets is reduced to binary Sturmian sets. Indeed, Arnoux-
Rauzy sets on more than two letters are not the set of factors of an interval
exchange transformation with each interval labeled by a distinct letter (the
construction in [3] allows one to obtain the Arnoux-Rauzy sets of 3 letters as
an exchange of 7 intervals labeled by 3 letters).

Even though they have the same factor complexity (that is, the same num-
ber of factors of a given length), Arnoux-Rauzy words and codings of interval
exchange transformations have a priori very distinct combinatorial behaviours,
whether for the type of behaviour of their special factors, or for balance prop-
erties and deviations of Birkhoff sums (see [23, 69]).

Neutral sets

In this thesis, we study several families of sets of words of linear complexity
defined by properties of a graph E(w), called the extension graph of w. This
graph expresses the possible extensions of w on both sides by a letter of the
alphabet A. A set S is neutral if the Euler characteristic of the graph of any
nonempty word is equal to 1. Tree sets form a special family of neutral sets.
These sets are such that the graph E(w) is a tree for every nonempty word and
acyclic for every word. The Euler characteristic of the graph E(ε) is called the
characteristic of S and is denoted by χ(S). These sets were first considered
in [5].

The motivation for studying neutral and tree sets is the following: First,
the family of recurrent tree sets appears as the natural closure of two known
families of languages of classical shifts of zero entropy, namely the Sturmian sets
and the interval exchange sets. Next, the family of neutral sets is a naturally
defined generalization of tree sets for which a number of properties true for tree
sets still hold.

The factor complexity of a neutral set S on k letters is shown to be given
for n 6= 1 by the formula

pn = n(k − χ(S)) + χ(S). (2)

More generally, we prove that under the neutrality condition of character-
istic 1, any finite S-maximal bifix code of S-degree d has d(Card(A) − 1) + 1
elements (Cardinality Theorem). The remarkable feature is that, for fixed S,
the cardinality of X depends only on its S-degree. In the particular case where
X is the set of all words of S of length n, we recover Equation (2).

Another result concerns the set of right return words to a word x in a factorial
set S, denoted by RS(x). It is the set of nonempty words u such that xu is in
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S and ends with x for the first time in a left to right scan. In several families
of sets of linear complexity, the set of return words to x is known to be of fixed
cardinality independent of x. This was proved for Sturmian words in [45], for
interval exchange sets in [67] (see also [17]) and for neutral sets of characteristic
1 in [5].

Here, we first prove that the set CRS(X) of complete return words to a
bifix code X (satisfying additional hypotheses) in a recurrent neutral set S on
k letters satisfies Card(CRS(X)) = Card(X) + k − χ(S) and that this quantity
is an upper bound for Card(CRS(X)) for every neutral set (Theorem 2.2.8).
The remarkable feature here is that, for fixed S, the cardinality of CRS(X)
depends only on Card(X). When X is reduced to one element x we have
CRS(x) = xRS(x) and we recover the result of [5]. When X = S ∩ An, then
CRS(X) = S ∩ An+1. This implies pn+1 = pn + k − χ(S) and also gives
Equation (2) by induction on n. The proofs of these formulæ use a probability
distribution naturally defined on a neutral set.

As a corollary of Theorem 2.2.8 we prove that in neutral sets the notions of
recurrence and uniformly recurrence coincide (Corollary 2.2.9).

Another result concerns the decoding of a neutral set by a bifix code. We
prove that the decoding of any recurrent neutral set S by an S-maximal bifix
code is a neutral set.

Tree sets

Tree sets have particularly interesting properties relating free groups, symbolic
dynamics and bifix codes. In particular tree sets allow one to exhibit bases of
the free group, or of subgroups of the free group. Indeed, in a recurrent tree
set, the sets of first return words to a given word are bases of the free group
on the alphabet. Moreover, maximal bifix codes that are included in recurrent
tree sets provide bases of subgroups of finite index of the free group. Tree sets
are also proved to be closed under maximal bifix decoding and under decoding
with respect to return words.

We study sets of first return words in a tree set S. Our main result on return
words is that if S is a recurrent tree set, the set of first return words to any word
of S is a basis of the free group on A (Return Theorem). For this, we use Rauzy
graphs, obtained by restricting de Bruijn graphs to the set of vertices formed
by the words of given length in a set S. We first show that if S is a recurrent
connected set, the group described by any Rauzy graph of S with respect to
some vertex is the free group on A. Next, we prove that in a recurrent connected
set S containing A, the set of first return words to any word in S generates the
free group on A. The proof uses the fact that in a uniformly recurrent neutral
set S, the number of first return words to any word of S is equal to Card(A), a
result obtained in [5].

An interesting result concerning bifix codes in this framework is that a set S
is acyclic if and only if any bifix code contained in S is a basis of the subgroup
that it generates (Freeness Theorem). This is related to the Finite Index Basis
Theorem, proving that a finite bifix code is S-maximal of S-degree d if and only
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if it is a basis of a subgroup of index d. The proof uses the Return Theorem.
In the case of an acyclic set, the subgroup generated by a bifix code need not
be of finite index, even if the bifix code is S-maximal (and even if the set S is
uniformly recurrent).

We also prove a more technical result. We say that a submonoid M of the
free monoid is saturated in a set S if the subgroup H of the free group generated
by M satisfies M ∩ S = H ∩ S. We prove that if S is acyclic, the submonoid
generated by a bifix code contained in S is saturated in S (Saturation Theorem).
This property plays an important role in the proof of the Finite Index Basis
Theorem.

Recurrent tree sets satisfy the finite index basis property. This generalizes
the result concerning Sturmian words of [7] quoted above. As an example of a
consequence of this result, if S is a recurrent tree set on the alphabet A, then
for any n ≥ 1, the set S ∩An is a basis of the subgroup formed by the words of
length multiple of n.

Our main result concerning tree sets is that the class of recurrent tree sets
is closed under maximal bifix decoding. This means that if S is a uniformly
recurrent tree set and f a coding morphism for a finite S-maximal bifix code,
then f−1(S) is a uniformly recurrent tree set. The family of regular interval
exchange sets is closed under maximal bifix decoding but the family of Sturmian
sets is not. Thus, this result shows that the family of recurrent tree sets is the
natural closure of the family of Sturmian sets.

The proof of Maximal Bifix Decoding Theorem uses the finite index basis
property of uniformly recurrent tree sets. It also uses the closure of recurrent
tree sets under decoding with respect to return words. This property, which is
interesting in its own, generalizes the fact that the derived word of a Sturmian
word is Sturmian [45].

We also prove two results which allows one to obtain a large family of tree sets
of geometric origin, namely using interval exchange transformations or linear
involutions. More precisely, we prove that the natural coding of an interval
exchange transformation without connections of length ≥ 1 is a tree set and
that the natural coding of a linear involution without connections is a tree set
of characteristic 2.

Specular sets

Specular groups are natural generalizations of free groups: they are free products
of a finite number of copies of Z and Z/2Z. A specular set is a subset of a
specular group which generalizes the natural codings of linear involutions. More
precisely, we consider an alphabet with an involution θ acting on A, possibly
with some fixed points, and the group Gθ generated by A with the relations
aθ(a) = 1 for every letter a in A. We can thus consider, in this extended
framework, reduced words, symmetric sets of words and define laminary sets as
factorial sets containing the inverse of all their elements. In the case where θ
has no fixed point, we recover the free group. A specular set is then defined as a
laminary set such that the extension graph of any nonempty word is a tree and
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the extension graph of the empty word has two connected components which
are trees.

In this manuscript, we continue this investigation in a situation which in-
volves groups which are not free anymore. These groups, named here specular,
are free products of a free group and of a finite number of cyclic groups of order
two. They are called free-like in [6] and appear at several places in [30]. These
groups are close to free groups and, in particular, the notion of a basis in such
groups is clearly defined. It follows from the Kurosh subgroup theorem that
any subgroup of a specular group is specular. A specular set is a subset of such
a group stable by taking the inverse and defined in terms of restrictions on the
extensions of its elements.

As for the tree sets, we give two versions of the First Return Theorem and
the Finite Index Basis Theorem also for specular sets. The first one asserts that
the set of return words to a given word in a recurrent specular set is a basis of
a subgroup of index 2, called the even subgroup. The last one characterizes the
symmetric bases of subgroups of finite index of specular groups contained in a
specular set S as the finite S-maximal symmetric bifix codes contained in S.

The idea of considering recurrent sets of reduced words invariant by taking
inverses is also connected with the notion of G-full words of [60].

Rauzy induction

Rauzy introduced in [61] a transformation, now called Rauzy induction (or
Rauzy-Veech induction), which operates on interval exchange transformations.
This transformation changes an interval exchange transformation into another
one operating on a smaller interval. Its iteration can be viewed as a general-
ization of the continued fraction expansion. The induction consists in taking
the first return map of the transformation with respect to a subinterval of the
interval on which the exchange is defined. The induced map of an interval ex-
change on s intervals is still an interval exchange with at most s+ 2 intervals.
Rauzy introduced in [61] the definition of right-admissibility for an interval and
characterized the right-admissible intervals as those which can be reached by
the Rauzy induction. In this thesis, we generalize both the notion of admissible
intervals and of Rauzy induction to a two-sided version. We characterize the
admissible intervals (Theorem 7.2.3) and show, in particular, that intervals asso-
ciated with factors of the natural coding of an interval exchange transformation
are admissible (Proposition 7.1.6).

Moreover, we prove a property of the natural codings of regular interval
exchange transformations saying that the family of these sets of words is closed
by derivation, an operation consisting in taking the first return words to a given
word as a new alphabet.

Interval exchanges over a quadratic field

Interval exchange transformations defined over quadratic fields have been stud-
ied by Boshernitzan and Carroll ([20] and [19]). Under this hypothesis, they
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showed that, using iteratively the first return map on one of the intervals ex-
changed by the transformation, one obtains only a finite number of different new
transformations up to rescaling, extending the classical Lagrange’s theorem that
quadratic irrationals have a periodic continued fraction expansion.

Here we prove that, in the case of interval exchanges defined over a quadratic
field, the family of transformations obtained from a regular interval exchange
transformation by two-sided Rauzy induction is finite up to rescaling. Moreover,
we show as a consequence that the related interval exchange set is obtained as
the set of factors of a primitive morphic word.

Linear involutions

A linear involution is an injective piecewise isometry defined on a pair of in-
tervals. Linear involutions were introduced by Danthony and Nogueira in [29]
and [28], generalizing interval exchanges with flip(s) [57, 58] (these are inter-
val exchange transformations which reverse orientation in at least one interval).
They extended to these transformations the notion of Rauzy induction (intro-
duced in [61]). The study of linear involutions was later developed by Boissy
and Lanneau in [18].

The natural coding of a linear involution is the set of factors of the infinite
words that encode the sequences of subintervals met by the orbits of the trans-
formation. They are defined on an alphabet A whose letters and their inverses
index the intervals exchanged by the involution. A natural coding is thus a
subset of the free group FA on the alphabet A. An important property of this
set is its stability by taking inverses.

We extend to natural codings of linear involutions most of the properties
proved for recurrent tree sets, and thus, for natural codings of interval exchanges.
The extension is not completely immediate. We consider return words to the set
{w,w−1} and we consider a truncated version of them, that we call mixed first
return words. We also have to replace the basis of a subgroup by its symmetric
version containing the inverses of its elements, called a symmetric basis.

We actually prove that the natural coding of a linear involution without
connection is a specular set.

The manuscript is organized as follows.
In Chapter 1 we give some preliminary notions and definitions. We intro-

duce words and sets both in the free monoid and in the free group. We define
the extension graph of a word in a factorial set. Moreover, we give the basic
definitions and a few results about bifix codes, automata and return words, all
tools that will be used in the following chapters.

Chapters 2 to 5 are dedicated to the study of different classes of sets, ordered
hierarchicaly. The most important ones are neutral sets (Chapter 2), tree sets
(Chapters 3 and 4) and specular sets (Chapter 5).
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In particular, Chapter 2 is devoted to neutral sets. First we define the notions
of weakness, strongness and neutrality, and we show that neutral sets have linear
factor complexity (Proposition 2.1.3). More generally, we prove the Cardinality
Theorem for neutral sets (Theorem 2.2.1) stating that all S-maximal bifix codes
of the same S-degree have the same cardinality. We also prove some cardinality
results for the set of return words (Theorem 2.2.8 and Corollary 2.2.10) and
a closure property for the family of neutral sets under maximal bifix decoding
(Theorem 2.3.1). Using the previous results we also show that in the framework
of neutral sets (and thus for all sets defined by a stronger properties in the
next chapters) the notions of recurrence and of uniformly recurrence coincide
(Corollary 2.2.9).

In Chapters 3 and 4 we define and study tree sets.

In the first of the these two chapters we give the definition of the tree condi-
tion. The main result of this chapter is the Return Theorem (Theorem 3.2.5),
stating that the set of return word on a tree set of characteristic 1 is a basis
of the free group. We also give a closure result for tree sets under derivation
(Theorem 3.2.9) and show how to use multiplying maps to construct new tree
sets (Theorem 3.3.1). We close the chapter with a result about palindromes:
namely we show that recurrent tree sets of characteristic 1 closed under reversal
are full (Proposition 3.4.1).

In the second chapter devoted to tree sets, Chapter 4, we concentrate on the
study of bifix codes in tree sets and their connection to subgroups of the free
group. Relaxing the hypothesis when possible, we show the Freeness Theorem,
stating that that bifix codes in tree sets are bases of the subgroup that they
generate (Theorem 4.1.1), and the Saturation Theorem, stating that the sub-
monoid generated by a finite bifix code is saturated (Theorem 4.1.2). Another
main result of this chapter is the Finite Index Basis Theorem, which states that
a finite bifix code in a tree set S is S-maximal of S-degree d if and only if it is
a subgroup of index d of the free group. In this context, we define also tame
bases and we show that every recurrent tree set of characteristic 1 has a primi-
tive S-adic representation, with S finite and containing positive automorphisms
only. We close the chapter showing several closure properties of tree sets under
maximal bifix decoding (Theorems 4.3.1, 4.3.3, 4.3.5 and 4.3.17).

In Chapter 5 we study specular sets, a family of tree sets of characteristic
2 having, additionally, symmetric properties. We can, for example, define the
notion of parity of a word. These sets are laminary sets and they are related to
virtually free groups called specular groups. After giving the needed definitions,
we show an important family of specular sets, obtained by doubling tree sets
of characteristic 1, and we show that this family is G-full (Proposition 5.2.26).
Moreover, we give more precise versions of the main results of Chapter 4, such as
the First Return Theorem and the Finite Index Basis Theorem (Theorems 5.3.11
and 5.5.1), as well as several cardinality results concerning return words in these
sets (e.g. Theorems 5.3.2, 5.3.5 and 5.3.9).

The part of the manuscript from Chapter 6 to Chapter 8 is devoted to the
study of families arising from geometrical dynamical systems: in particular from
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interval exchange transformations (Chapters 6 and 7) and linear involutions
(Chapter 8).

Intervar exhanges are defined in Chapter 6. Here, we show that interval
exchange sets, factorial sets arising from the natural coding of interval exchange
transformations, are tree sets. More in particular, we show that if the transfor-
mation is regular, then the language associated satisfies a stronger property: the
planar tree condition (Theorem 6.1.16), and that actually this property char-
acterize these sets. This family of sets is closed under maximal bifix decoding
(Theorem 6.2.11 and Corollary 6.2.13).

In Chapter 7 we continue the study of interval exchanges introducing the
branching induction, a generalization of the classical Rauzy induction: a map
that associates to an interval exchange another intervale exchange and that
preserve some of its properties (such as the regularity). We give the definition of
admissibility for a sub-interval and we characterize the admissible semi-intervals
for an interval exchange transformation (Theorem 7.2.3). Finally, we study the
case of an interval exchange defined over a quadratic field. Following the path of
Boshernitzan and Carroll in [19], we prove that under certains hypothesis, there
are finitely many transformations obtained by the branching Rauzy induction
(Theorem 7.3.1). We use this result to prove that the language of a regular
interval exchange transformation defined over a quadratic field is a primitive
morphic set (Theorem 7.3.12).

If interval exchanges give us examples of tree sets, in Chapter 8 we introduce
linear involutions and we show that the language associate to a similar dynam-
ical system satisies the specular condition. In this chapter we first study the
dynamical properties of linear involutions, defining some remarkable classes of
these systems, such as coherent, orientable, minimal linear involutions. After-
ward, we define the natural coding of linear involutions and show that, under
certain hypothesis, this set is a specular set (Theorem 8.2.11). We also give
some results about orientability (Proposition 8.2.5), mixed return words in this
framework and admissible interval for a linear involution, notion that generalize
the analougous notion seen in Chapter 7 for interval exchanges.

Finally, we close the manuscript with the Conclusions, where we talk about
some open research directions.
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Chapter 1

Preliminaries

In this chapter we fix the notation we will use in the rest of the manuscript and
we give some preliminary result.

In Section 1.2.1 we give the definitions concerning words and set of words.
We discuss both about the free monoid (positive words) and about the free
group. We also define the extension graph of a word in a factorial set, one of
the main notion that we will develop in the next chapters.

Section 1.2 is about bifix codes. We define the degree of a bifix code, its set
of internal factors and its kernel. We also give the definition of derived code
and of coding morphism. This last notion is related to some of the main results
of this manuscript. Moreover, we define two tranformations on the set of codes:
the internal transformation that given a bifix code give us another bifix code
on the same alphabet, and the composition of codes, dealing with codes on (in
general) different alphabets and that given two codes allow us to construct a
third one.

In Section 1.3 we introduce a few kind of automata. We show the connection
between automata and free group. Moreover, we define the Rauzy graph of a
set of words.

Finally, in Section 1.4 we define return words, another fundamental notion
that we will use for some of the main results of this manuscript.

1.1 Words and sets

Let A be a finite nonempty alphabet. We denote by A∗ the free monoid on A,
that is the set of all finite words on A. We denote by ε the empty word and by
A+ = A∗ \ {ε}.

We denote by |w| the length n of a word w and by |w|a the number of
occurrences of the letter a ∈ A in the word w. Of course, one has |w| =∑

a∈A |w|a.
The reversal of a word w = a0a1 · · · an−1 with ai ∈ A is the word w̃ =

an−1 · · · a1a0. A word w is said to be a palindrome if w = w̃.
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A factor of a word x is a word v such that x = uvw. If u = ε (resp. w = ε)
we say that v is a prefix (resp. suffix ) of x. If both u and w are nonempty, we
say that v is an internal factor of x. A set of words on the alphabet A is said
to be factorial if it contains the factors of its elements as well as the alphabet
A.

Two words u, v are said to overlap if a nonempty suffix of one of them is a
prefix of the other. In particular a nonempty word overlaps with itself.

We denote by AN the set of infinite words on the alphabet A. The notions
of factor, prefix and suffix are naturally extendend to infinite words. For a set
X ⊂ AN, we denote by Fac(X) the set of factors of the words of X . For an
infinite word x ∈ AN, we simply denote Fac(x) the set of factors of x.

The set AN is equipped with a distance defined for every u, v ∈ AN by
d(u, v) = 2−n with n = min{k ≥ 0 | xk 6= yk}, with the convention that
d(x, y) = 0 if x = y. With respect to this distance, the set AN becomes a
topological space, often called the Cantor space (see, for example, [52]).

Example 1.1.1 Let A = {a, b}. Let x = abω = limn→∞ abn be an infinite
word on A. One has Fac(x) = {abn |n ∈ N} ∪ {bn |n ∈ N}.

A set of words S 6= {ε} is recurrent if it is factorial and if for any u,w ∈ S,
there is a v ∈ S such that uvw ∈ S.

We say that an infinite word x is recurrent if for any u ∈ Fac(x) there is
a v ∈ Fac(x) such that uvu ∈ Fac(x). As well known, for any recurrent set S
there is a recurrent infinite word x such that S = Fac(x) and conversely, for any
recurrent infinite word x, the set Fac(x) is recurrent (see for example [48]).

An infinite factorial set is said to be uniformly recurrent if for any word
u ∈ S there is an integer n ≥ 1 such that u is a factor of any word of S of length
n. A uniformly recurrent set is recurrent.

Given two words u, v ∈ A∗, with u a prefix of v, we define u−1v as the unique
word w such that uw = v. The residual of a set X ⊂ A∗ with respect to a word
u as the set

u−1X = {v ∈ A∗ | uv ∈W}.
The definitions of vu−1 and Xu−1 for two words u, v and a set X are symmetric.
We will use this notion in Section 1.3

1.1.1 Free groups and laminary sets

We fix our notation concerning free groups (see, for example, [53]). Given an
alphabet A be an alphabet we denote by A−1 = {a−1 | a ∈ A} a new alphabet
called the inverse of A. Given a word w = a0a1 · · · an−1 its inverse is the word
w−1 = a−1

n−1a
−1
n−2 · · · a−1

0 .
We denote by FA the free group on the alphabet A. It is identified with the

set of all words on the alphabet A ∪ A−1 which are reduced, in the sense that
they do not have any factor aa−1 or a−1a for a ∈ A. Sometimes we also denote
by ā the inverse a−1 of a letter a ∈ A.

2



Note that when u is a prefix of v, we recover the definition of u−1v given at
the end of the previous subsection.

We extend the bijection a 7→ a−1 to an involution on A ∪ A−1 by defining
(a−1)−1 = a. For any word w on A ∪ A−1 there is a unique reduced word
equivalent to w modulo the relations aa−1 ≡ a−1a ≡ ε for a ∈ A. If u is the
reduced word equivalent to w, we say that w reduces to u and we denote w ≡ u.
We also denote u = ρ(w). The product of two elements u, v ∈ FA is the reduced
word w equivalent to uv, namely ρ(uv).

A set of reduced words on the alphabet A ∪ A−1 is said to be symmetric
if it contains the inverses of its elements. A symmetric factorial set of reduced
words on the alphabet A ∪ A−1 is called a laminary set on A.

An infinite laminary set S is called semi-recurrent if for any u,w ∈ S, there
is a v ∈ S such that uvw ∈ S or uvw−1 ∈ S. Likewise, it is said to be uniformly
semi-recurrent if for any word u ∈ S there is an integer n ≥ 1 such that for any
word w of length n in S, u or u−1 is a factor of w. A uniformly semi-recurrent
set is semi-recurrent.

Following the terminology of [26], we say that a laminary set S is orientable
if there exist two factorial sets S+, S− such that S = S+∪S− with S+∩S− = {ε}
and for any x ∈ S, one has x ∈ S− if and only if x−1 ∈ S+. Note that if S
is a semi-recurrent orientable laminary set, then the sets S+, S− as above are
unique (up to their interchange). The sets S+, S− are called the components of
S. Moreover a uniformly recurrent and orientable laminary set is a union of two
uniformly recurrent sets. Indeed, S+ and S− are uniformly recurrent.

1.1.2 Morphisms

A morphism f : A∗ → B∗ is a monoid morphism from A∗ into B∗. If a ∈ A
is such that the word f(a) begins with a and if |fn(a)| tends to infinity with
n, there is a unique infinite word denoted fω(a) = limn→∞ fn(a) which has all
words fn(a) as prefixes. It is called a fixed point of the morphism f .

A morphism f : A∗ → A∗ is called primitive if there is an integer k such that
for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism, the
set of factors of any fixed point of f is uniformly recurrent (see [41] Proposition
1.2.3 for example).

An infinite word y over an alphabet B is called morphic if there exists a
morphism f on an alphabet A, a fixed point x = fω(a) of f and a morphism
σ : A∗ → B∗ such that y = σ(x). If A = B and σ is the identity map, we call y
purely morphic. If f is primitive we say that the word is primitive morphic.

Extending the definition, we say that a set Fac(x) is morphic (resp. purely
morphic, primitive morphic) if the infinite word x is morphic (resp. purely
morphic, primitive morphic).

Example 1.1.2 Let A = {a, b}. Let A = {a, b} and let ϕ be the morphism
from A∗ to itself defined by ϕ : a 7→ ab, b 7→ a. The Fibonacci word

x = abaababaabaababaababa . . .
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is the fixed point x = ϕω(a) of the Fibonacci morphism. The set Fac(x) of
factors of x is called the Fibonacci set.

Example 1.1.3 Let A = {a, b, c}. The Chacon word on three letters is the fixed
point x = fω(a) of the morphism f from A∗ into itself defined by f(a) = aabc,
f(b) = bc and f(c) = abc. Thus x = aabcaabcbcabc · · · . The Chacon set is the
set S of factors of x. The element of lenght at most 4 are the labels of the paths
starting at the root of the tree represented in Figure 1.1.
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c

a

b

b

c

a

b

a

b

c

c

a
b

a
b

c

b

a

a

Figure 1.1: The words of lenght ≤ 4 of the Chacon set.

1.1.3 Extension graphs

Let S be a factorial set on the alphabet A. For a word w ∈ S, we define

LS(w) = {a ∈ A | aw ∈ S},
RS(w) = {a ∈ A | wa ∈ S},
BS(w) = {(a, b) ∈ A×A | awb ∈ S}

and furthermore

ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), bS(w) = Card(BS(w)).

We omit the subscript S when it is clear from the context. A word w is
right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if
b(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.
biextendable) if every word in S is right-extendable (resp. left-extendable, resp.
biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥
2. A bispecial word is a word that is both left-special and right-special.

An infinite word is episturmian if the set of its factors is closed under reversal
and contains for each n at most one word of length n which is right-special
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(see [7] for more references). It is a strict episturmian word if it has exactly
one right-special word of each length and moreover each right-special factor u
is such that r(u) = Card(A).

An Arnoux-Rauzy set is the set of factors of a strict episturmian word. Any
Arnoux-Rauzy set is uniformly recurrent (see [7]).

Example 1.1.4 The Fibonacci word defined in Example 1.1.2 is a Sturmian
word (see [52]). Thus the Fibonacci set is an Arnoux-Rauzy set.

For a word w ∈ S, we define the multiplicity

mS(w) = bS(w)− ℓS(w) − rS(w) + 1. (1.1)

The word w is called weak if m(w) < 0, neutral if m(w) = 0 and strong if
m(w) > 0.

A biextendable word w is called ordinary if B(w) ⊂ (a×A) ∪ (A× b) for
some (a, b) ∈ B(w) (see [16, Chapter 4]). If S is biextendable any ordinary word
is neutral. Indeed, one has B(w) = (a × (R(w) \ b)) ∪ ((L(w) \ a) × b) ∪ (a, b)
and thus b(w) = ℓ(w) + r(w) − 1.

Example 1.1.5 In a Sturmian set, any word is ordinary. Indeed, for any bispe-
cial word w, there is a unique letter a such that aw is right-special and a unique
letter b such that wb is left-special. Then awb ∈ S and B(w) = (a×A)∪(A× b).

Let S be a biextendable set of words. For w ∈ S, we consider the undirected
bipartite graph ES(w) with vertices the disjoint union of LS(w) and RS(w) with
edges the pairs (a, b) ∈ BS(w). This graph is called the extension graph of w.
We sometimes denote by 1⊗L(w) and R(w)⊗1 the copies of L(w) and R(w) used
to define the set of vertices of E(w). We note that since E(w) has ℓ(w) + r(w)
vertices and bS(w) edges, the number 1−m(w) is the Euler characteristic of the
graph E(w) 1.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and tn = sn+1 − sn be
respectively the first and second order differences sequences of the sequence pn.

The following result is [21, Proposition 3.5] (see also [16, Theorem 4.5.4]).

Proposition 1.1.6 Let S be a factorial set on the alphabet A. One has tn =∑
w∈S∩An m(w) and sn =

∑
w∈S∩An(r(w) − 1) for all n ≥ 0.

A classical theorem by Morse and Hedlund (see [56]) states that the set of
factors of an infinite word is either eventually constant or strictly increasing.
The first case corresponds to set of factors of ultimately periodic words, i.e.
words of the form uvω with u, v ∈ A∗. In the other case, one has pn ≥ n+1 for
all n ∈ N.

Arnoux-Rauzy sets are exactly factorial sets with minimal non-constant fac-
tor complexity, that is such that pn = n+ 1.

1We consider here graphs as 1-dimensional complexies and thus they have no faces.
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Example 1.1.7 Let A = {a, b, c}. The Tribonacci word

x = abacabaabacababacabaabacaba · · ·
is the fixed point x = fω(a) of the morphism f : A∗ → A∗ defined by f(a) = ab,
f(b) = ac, f(c) = a. It is a strict episturmian word (see [45]). The set Fac(x)
of factors of x is the Tribonacci set.

In Chapter 3 we will see that any Arnoux-Rauzy set is a recurrent neutral
set of characteristic 1.

Example 1.1.8 The Fibonacci set defined (Example 1.1.2) and the Tribonacci
set (Example 1.1.7) are both neutral sets of characteristic 1. Indeed one can
prove that every word, including the empty word, is neutral.

1.2 Bifix codes

A set of nonempty words X ⊂ A+ is said a code if the relation x1 · · ·xn =
y1 · · · ym with n,m ≥ 1 and x1, . . . xn, y1, . . . ym ∈ X implies n = m and xi = yi
for every 1 ≤ i ≤ n.

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. Clearly, a prefix code is a code. A suffix code is defined
symmetrically. A bifix code is a set which is both a prefix code and a suffix code
(see [8] for a more detailed introduction).

We denote by X∗ the submonoid generated by a set X of words. The
submonoid M generated by a prefix code satisfies the following property: if
u, uv ∈M , then v ∈M . Such a submonoid is said to be right unitary. The def-
inition of a left unitary submonoid is symmetric and the submonoid generated
by a suffix code is left unitary. Conversely, any right unitary (resp. left unitary)
submonoid of A∗ is generated by a unique prefix code (resp. suffix code) (see [8]).

Let S be a recurrent set of words. A prefix code X ⊂ S is S-maximal if it
is not properly contained in any prefix code Y ⊂ S. Note that if X ⊂ S is an
S-maximal prefix code, any word of S is comparable for the prefix order with a
word of X .

A set X ⊂ S is right S-complete if any word of S is a prefix of a word in
X∗. For a factorial set S, a prefix code is S-maximal if and only if it is right
S-complete (see [7, Proposition 3.3.2]).

Example 1.2.1 Let S be the Fibonacci set defined in Example 1.1.2. The set
X = {a, ba} is an S-maximal prefix code, since X is right S-complete.

Similarly a bifix code X ⊂ S is S-maximal if it is not properly contained in
a bifix code Y ⊂ S. For a recurrent set S, a finite bifix code is S-maximal as a
bifix code if and only if it is an S-maximal prefix code (see [7, Theorem 4.2.2]).
For a uniformly recurrent set S, any finite bifix code X ⊂ S is contained in a
finite S-maximal bifix code ([7, Theorem 4.4.3]).
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1.2.1 Parses and degree

A parse of a word w with respect to a bifix code X is a triple (v, x, u) such that
w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗. We
denote by dX(w) the number of parses of a word w with respect to X . The
S-degree of X , denoted by dX(S) is the maximal number of parses with respect
to X of a word of S. It can be finite or infinite.

Let X be a bifix code. The number of parses of a word w with respect to
X , denoted by δX(w), is also equal to the number of suffixes of w which have
no prefix in X and to the number of prefixes of w which have no suffix in X
(see [8, Proposition 6.1.6]).

If X is a prefix code, by [7, Proposition 4.1.6], for any u ∈ A∗ and a ∈ A,
one has

δX(ua) =

{
δX(u) if ua ∈ A∗X,

δX(u) + 1 otherwise.
(1.2)

Example 1.2.2 Let S be a recurrent set. For any integer n ≥ 1, the set S∩An

is an S-maximal bifix code of S-degree n.

The set of internal factors of a set of words X , denoted I(X) is the set of
words w such that there exist nonempty words u, v with uwv ∈ X (recall also
Section ).

Let S be a set of words. A set X ⊂ S is said to be S-thin if there is a word
of S which is not a factor of X . If S is biextendable any finite set X ⊂ S is
S-thin. Indeed, any long enough word of S is not a factor of X . The converse
is true if S is uniformly recurrent. Indeed, let w ∈ S be a word which is not a
factor of X . Then any long enough word of S contains w as a factor, and thus
is not itself a factor of X .

Let S be a recurrent set and let X be a finite bifix code. By [7, Theorem
4.2.8], X is S-maximal if and only if its S-degree dS(X) is finite. Moreover,
in this case, a word w ∈ S is such that dX(w) < dS(X) if and only if it is an
internal factor of X , that is

I(X) = {w ∈ S | dX(w) < dS(X)}.

Thus any word of S which is not an internal factor of X has dS(X) parses. In
particular, any word of X of maximal length has dS(X) parses.

The kernel of a bifix code X is the set K(X) = I(X)∩X . Thus it is the set
of words of X which are also internal factors of X . By [7, Theorem 4.3.11], a
finite S-maximal bifix code is determined by its S-degree and its kernel.

Example 1.2.3 Let S be a recurrent set containing the alphabet A. The only
S-maximal bifix code of S-degree 1 is the alphabet A. This is clear since A is
the unique S-maximal bifix code of S-degree 1 with empty kernel.
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Example 1.2.4 Let S be the Fibonacci set. The set X = {a, baab, bab} is the
unique S-maximal bifix code of S-degree 2 with kernel {a}. Indeed, the word
bab is not an internal factor and has two parses, namely (1, bab, 1) and (b, a, b).

Example 1.2.5 Let S be the Fibonacci set. The set X = {aaba, ab, baa, baba}
is a S-maximal bifix code of S-degree 3 with kernel {ab}. Indeed, the word aaba,
that is not an internal factor, has three parses, namely (1, aaba, 1), (a, ab, a),
and (aa, 1, ba).

The following result is [7, Theorem 4.3.12].

Theorem 1.2.6 Let S be a recurrent set. A bifix code Y ⊂ S is the kernel of
some S-thin S-maximal bifix code of S-degree d if and only if Y is not S-maximal
and δY (y) ≤ d− 1 for all y ∈ Y .

The following proposition allows one to embed an S-maximal bifix code in
a maximal one of the same degree.

Proposition 1.2.7 Let S be a recurrent set. For any S-thin and S-maximal
bifix code X of S-degree d, there is a thin maximal bifix code X ′ of degree d such
that X = X ′ ∩ S.

Proof. Let K be the kernel of X and let d be the S-degree of X . By Theo-
rem 1.2.6, the set K is not S-maximal and δK(y) ≤ d− 1 for any y ∈ K. Thus,
applying again Theorem 1.2.6 with S = A∗, there is a maximal bifix code X ′

with kernel K and degree d. Then, by [7, Theorem 4.2.11], the set X ′ ∩ S is an
S-maximal bifix code.

Let us show that X ∪ X ′ is prefix. Suppose that x ∈ X and x′ ∈ X ′ are
comparable for the prefix order. We may assume that x is a prefix of x′ (the
other case works symmetrically). If x ∈ K, then x ∈ X ′ and thus x = x′.
Otherwise, δX(x) = d. Set x = pa with a ∈ A. Then, by Equation (1.2),
δX(x) = δX(p) and thus δX(p) = d. But since all the factors of p which are
in X are in K, we have δX(p) = δK(p). Analogously, since all factors of p
which are in X ′ are in K, we have δK(p) = δX′(p). Therefore δX′(p) = d. But,
since X ′ has degree d, δX′(x) ≤ d. Then, by Equation (1.2) again, we have
δX′(x) = dand x ∈ A∗X ′. Let z be the suffix of x which is in X ′. If x 6= x′, then
z = x or z ∈ K and in both cases z ∈ X . Since X ′ is prefix and X is suffix, this
implies z = x = x′.

Since X and X ′ ∩ S are S-maximal prefix codes included in (X ∪ X ′) ∩ S,
this implies that X = X ′ ∩ S.

Example 1.2.8 Let S and X as in Example 1.2.4. Then X ′ = a ∪ ba∗b is the
maximal bifix code with kernel {a} of degree 2 such that X ′ ∩ S = X .
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1.2.2 Derived codes and coding morphisms

The following result, that we will use in Chapter 3, is the dual of [7, Theorem
4.3.7].

Theorem 1.2.9 Let S be a recurrent set and let X be a finite S-maximal bifix
code of S-degree n. The set of nonempty proper prefixes of X is a disjoint union
of n− 1 S-maximal suffix codes.

Let now S be a recurrent set and X be a finite S-maximal bifix code of S-
degree d ≥ 2. Let us define the sets G = (IA∩S)\I and D = (AI∩S)\I, where
I = I(X) and K = K(X). By [7, Theorem 4.3.1] the set X ′ = K ∪ (G ∩D) is
an S-maximal bifix code of S-degree d− 1, called the derived code of X .

Example 1.2.10 Let S the Fibonacci set and X be the S-maximal bifix code
of S-degree 2 defined in Example 1.2.4. The kernel and the set of internal factors
of X are respectively K = {a} and I = {ε, a, aa}. We have G = {aab, ab, b},
D = {b, ba, baa} and thus the derived code is X ′ = {a, b}, the only S-maximal
bifix code of S-degree 1.

Example 1.2.11 Let S the Fibonacci set and X be the S-maximal bifix code
of S-degree 3 defined in Example 1.2.5. The kernel and the set of internal
factors of X are respectively K = {ab} and I = {ε, a, ab, b}. The derived code
is X ′ = A2 ∩ S.

A coding morphism for a prefix code X ⊂ A+ is a morphism f : B∗ → A∗

which maps bijectively B onto X .

Let S be a factorial set and let f be a coding morphism for a finite bifix
code X ⊂ S. The set f−1(S) is called a bifix decoding of S. When X is an
S-maximal bifix code, it is called a maximal bifix decoding of S.

Example 1.2.12 Let S be the Fibonacci set over the alphabet A = {a, b} and
let B = {α, β, γ}. Let us consider the S-maximal bifix code code X = S ∩A2 =
{aa, ab, ba} and the morphism f : B∗ → A∗ defined by f : α 7→ aa, β 7→ ab
and γ 7→ ba. Thus, the set f−1(S) is a maximal bifix decoding of the Fibonacci
set. Moreover, we can see that f−1(S) is the set of factors of the infinite word
f−1(x) = f−1(ab aa ba ba ab aa · · · ) = βαγγβα · · · , where x is the Fibonacci
word defined in Example 1.1.2.

1.2.3 Internal transformations

In this section we describe an operation on bifix codes called internal transfor-
mation and prove a property of this transformation (Proposition 1.2.14). For a
more detailed presentation see [8, Chapter 6]. It will be used in Section 2.2.
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Let X ⊂ S be a set of words and w ∈ S a word. Let

G = Xw−1, D = w−1X, (1.3)

G0 = (wD)w−1 D0 = w−1(Gw), (1.4)

G1 = G \G0, D1 = D \D0. (1.5)

Note that Gw ∩ wD = G0w = wD0. Consequently G
∗
0w = wD∗

0 . The set

Y = (X ∪ w ∪ (G1wD
∗
0D1 ∩ S)) \ (Gw ∪ wD) (1.6)

is said to be obtained from X by internal transformation with respect to w.
When Gw ∩ wD = ∅, the transformation takes the simpler form

Y = (X ∪ w ∪ (GwD ∩ S)) \ (Gw ∪ wD). (1.7)

It is this form which is used in [7] to define the internal transformation.

Example 1.2.13 Let S be the Fibonacci set. Let X = S ∩ A2. The internal
transformation applied to X with respect to b gives Y = {aa, aba, b}. The
internal transformation applied to X with respect to a gives Y ′ = {a, baab, bab}.

The following result is proved in [7, Proposition 4.4.5] in the case G0 = ∅.

Proposition 1.2.14 Let S be a uniformly recurrent set and let X ⊂ S be a
finite S-maximal bifix code of S-degree d. Let w ∈ S be a nonempty word such
that the sets G1, D1 defined by Equation (1.5) are nonempty. Then the set Y
obtained as in Equation (1.6) is a finite S-maximal bifix code with S-degree at
most d.

Proof. By Proposition 1.2.7 there is a thin maximal bifix code X ′ of degree
d such that X = X ′ ∩ S. Let Y ′ be the code obtained from X ′ by internal
transformation with respect to w. Then

Y ′ = (X ′ ∪ w ∪ (G′
1wD

′
0
∗
D′

1)) \ (G′w ∪ wD′)

with G′ = X ′w−1, D′ = w−1X ′, and G′
0 = (wD′)w−1, D′

0 = w−1(G′w), G′
1 =

G′ \ G′
0, D

′
1 = D′ \ D′

0. We have G = G′ ∩ Sw−1, D = D′ ∩ w−1S, and
Di = D′

i∩w−1S, Gi = G′
i∩Sw−1 for i = 0, 1. In particular G1 ⊂ G′

1, D1 ⊂ D′
1.

Thus G′
1, D

′
1 6= ∅. This implies that Y ′ is a thin maximal bifix code of degree d

(see [8, Proposition 6.2.8]).
Since w ∈ S, we have Y = Y ′∩S. By [7, Theorem 4.2.11], Y is an S-maximal

bifix code of S-degree at most d. Since S is uniformly recurrent, this implies
that Y is finite.

Note that when G0 = ∅, the bifix code Y has S-degree equal to d (see [7,
Proposition 4.4.5]). We will see in the proof of Proposition 2.2.5 another case
where it is true. We have no example where it is not true.

Example 1.2.15 Let S be the Fibonacci set, and let X = S ∩A2, as in Exam-
ple 1.2.13. Let w = a. Then Y = {a, baab, bab} is the S-maximal bifix code of
S-degree 2 already considered in Example 1.2.13.
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1.2.4 Composition of codes

We introduce the notion of composition of codes (see [8] for a more detailed
presentation).

For a set X ⊂ A∗, we denote by alph(X) the set of letters a ∈ A which
appear in the words of X .

Let Z ⊂ A∗ and Y ⊂ B∗ be two finite codes with B = alph(Y ). Then the
codes Y and Z are composable if there is a bijection from B onto Z. Since Z
is a code, this bijection defines an injective morphism from B∗ into A∗. If f is
such a morphism, then Y and Z are called composable through f . The set

X = f(Y ) ⊂ Z∗ ⊂ A∗ (1.8)

is obtained by composition of Y and Z (by means of f). We denote it by
X = Y ◦f Z, or by X = Y ◦Z when the context permits it. Since f is injective,
X and Y are related by bijection, and in particular Card(X) = Card(Y ). The
words in X are obtained just by replacing, in the words of Y , each letter b by
the word f(b) ∈ Z.

Example 1.2.16 Let A = {a, b} and B = {u, v, w}. Let f : B∗ → A∗ be
the morphism defined by f(u) = aa, f(v) = ab and f(w) = ba. Let Y =
{u, vu, vv, w} and Z = {aa, ab, ba}. Then Y, Z are composable through f and
Y ◦f Z = {aa, abaa, abab, ba}.

If Y and Z are two composable codes, then X = Y ◦ Z is a code [8, Propo-
sition 2.6.1] and if Y and Z are prefix (suffix) codes, then X is a prefix (suffix)
code. Conversely, if X is a prefix (suffix) code, then Y is a prefix (suffix) code.

We extend the notation alph as follows. For two codes X,Z ⊂ A∗ we denote
alphZ(X) the set of z ∈ Z such that uzv ∈ X for some u, v ∈ Z∗. The following
is [8, Proposition 2.6.6].

Proposition 1.2.17 Let X,Z ⊂ A∗ be codes. There exists a code Y such that
X = Y ◦ Z if and only if X ⊂ Z∗ and alphZ(X) = Z.

The following statement generalizes [8, Propositions 2.6.4 and 2.6.12] for
prefix codes.

Proposition 1.2.18 Let Y, Z be finite prefix codes composable through f and
let X = Y ◦f Z.

(i) For every set T such that Y ⊂ T and Y is a T -maximal prefix code, X is
an f(T )-maximal prefix code.

(ii) For every set S such that X,Z ⊂ S, if X is an S-maximal prefix code, Y
is an f−1(S)-maximal prefix code and Z is an S-maximal prefix code. The
converse is true if S is recurrent.
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Proof. (i) Let w ∈ f(T ) and set w = f(v) with v ∈ T . Since Y is T -maximal,
there is a word y ∈ Y which is prefix-comparable with v. Then f(y) is prefix-
comparable with w. Thus X is f(T )-maximal.
(ii) Since X is an S-maximal prefix code, any word in S is prefix-comparable
with some element of X and thus with some element of Z. Therefore, Z is
S-maximal. Next if u ∈ f−1(S), v = f(u) is in S and is prefix-comparable with
a word x in X . Assume that v = xt. Then t is in Z∗ since v, x ∈ Z∗. Set
w = f−1(t) and y = f−1(x). Since u = yw, u is prefix-comparable with y which
is in Y . The other case is similar.

Conversely, assume that S is recurrent. Let w be a word in S of length
strictly larger than the sum of the maximal length of the words of X and Z.
Since S is recurrent, the set Z is right S-complete, and consequently the word
w is a prefix of a word in Z∗. Thus w = up with u ∈ Z∗ and p a proper prefix
of a word in Z. The hypothesis on w implies that u is longer than any word of
X . Let v = f−1(u). Since u ∈ S, we have v ∈ f−1(S). It is not possible that
v is a proper prefix of a word of Y since otherwise u would be shorter than a
word of X . Thus v has a prefix in Y . Consequently u, and thus w, has a prefix
in X . Thus X is S-maximal.

Note that the converse of (ii) is not true if the hypothesis that S is recurrent
is replaced by factorial. Indeed, for S = {ε, a, b, aa, ab, ba}, Z = {a, ba}, Y =
{uu, v}, f(u) = a and f(v) = ba, one has f−1(S) = {ε, u, uu, v} and X =
{aa, ba}, which is not an S-maximal prefix code.

Note also that when S is recurrent (or even uniformly recurrent), the set
T = f−1(S) need not be recurrent.

Example 1.2.19 Let S = Fac ((ab)∗) be the set of factors of (ab)∗. Let B =
{u, v} and let f : B∗ → A∗ be defined by f(u) = ab, f(v) = ba. Then T = u∗∪v∗
which is not recurrent.

1.3 Automata

We denote by A = (Q, 1, T, E) a deterministic automaton with a set Q of states,
1 ∈ Q as initial state and T ⊂ Q as set of terminal states. The set E of edges
is a subset of Q×A×Q. Following the notation of [8], we usually omit the set
of edges and just denote an automaton A as the triple (Q, 1, T ).

For p ∈ Q and w ∈ A∗, we denote p ·w = q if there is a path labeled w from
p to the state q and p · w = ∅ otherwise. The automaton is finite when Q is
finite.

The set recognized by the automaton is the set of words w ∈ A∗ such that
i · w ∈ T .

All automata considered here are deterministic and we simply call them
‘automata’ to mean ‘deterministic automata’.

The automaton A is trim if for any q ∈ Q, there is a path from 1 to q and
a path from q to some t ∈ T .
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An automaton is called simple if it is trim and if it has a unique terminal
state which coincides with the initial state. The set recognized by a simple
automaton is a right unitary submonoid. Thus it is generated by a prefix code
(see Section 1.2).

An automaton A = (Q, 1, T ) is complete if for any state p ∈ Q and any letter
a ∈ A, one has p · a 6= ∅.

For a nonempty set L ⊂ A∗, we denote by A(L) the minimal automaton
of L. The states of A(L) are the nonempty residuals u−1L for u ∈ A∗ (recall
Section 1.2.1). For u ∈ A∗ and a ∈ A, one defines (u−1L) · a = (ua)−1L. The
initial state is the set L itself and the terminal states are the sets u−1L for
u ∈ L.

Let X be a prefix code and let P be the set of proper prefixes of X . The
literal automaton of X∗ is the simple automaton A = (P, ε, ε) with transitions
defined for p ∈ P and a ∈ A by

p · a =





pa if pa ∈ P ,

ε if pa ∈ X ,

∅ otherwise.

One verifies that this automaton recognizes X∗. Thus for any prefix code
X ⊂ A∗, there is a simple automaton A = (Q, 1, 1) which recognizes X∗. More-
over, the minimal automaton of X∗ is simple. Note that, in general, the literal
automaton is not minimal in general (see Example 1.3.1).

Example 1.3.1 Let X = {aa, ab, bba, bbb} a prefix code over the alphabet A =
{a, b}. The literal and the minimal automata ofX∗ are represented in Figure 1.2
(the initial state is indicated by an incoming arrow and the terminal states by
a double circle).

a 1 b

bb

a

a, b b

ba, b

2 1

3

a

a, b

bb

Figure 1.2: The literal and the minimal automata of X∗.

1.3.1 Groups and automata

A simple automaton A = (Q, 1, 1) is said to be reversible if for any a ∈ A, the
partial map ϕA(a) : p 7→ p ·a is injective. This condition allows to construct the
reversal of the automaton as follows: whenever q ·a = p in A, then p·a = q in the
reversal automaton. The state 1 is the initial and the unique terminal state of
this automaton. Any reversible automaton is minimal [62] (but not conversely).
The set recognized by a reversible automaton is a submonoid generated by a
bifix code.
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The following result is from [62]. We denote by 〈X〉 the subgroup of the free
group FA generated by X .

Proposition 1.3.2 Let X ⊂ A+ be a bifix code. The following conditions are
equivalent.

(i) X∗ = 〈X〉 ∩ A∗;

(ii) the minimal automaton of X∗ is reversible.

A simple automaton A = (Q, 1, 1) is a group automaton if for any a ∈ A
the map ϕA(a) : p 7→ p · a is a permutation of Q. Thus, in particular, a group
automaton is reversible. A finite reversible automaton which is complete is a
group automaton.

The following result is proved in [7, Proposition 6.1.5].

Proposition 1.3.3 The following conditions are equivalent for a submonoid M
of A∗.

(i) M is recognized by a group automaton with d states.

(ii) M = ϕ−1(K), where K is a subgroup of index d of a group G and ϕ is a
surjective morphism from A∗ onto G.

(iii) M = H ∩ A∗, where H is a subgroup of index d of the free group on A.

If one of these conditions holds, the minimal generating set of M is a maximal
bifix code of degree d.

A bifix code Z such that Z∗ satisfies one of the equivalent conditions of
Proposition 1.3.3 is called a group code of degree d.

Let A = (Q, 1, T ) be a deterministic automaton. A generalized path is a
sequence (p0, a1, p1, a2, . . . , pn−1, an, pn) with ai ∈ A ∪ A−1 and pi ∈ Q, such
that for 1 ≤ i ≤ n, one has pi−1 ·ai = pi if ai ∈ A and pi ·a−1

i = pi−1 if ai ∈ A−1.
The label of the generalized path is the reduced word equivalent to a1a2 · · · an.
It is an element of the free group FA. The set described by the automaton is
the set of labels of generalized paths from 1 to a state in T . Since a path is a
particular case of a generalized path, the set recognized by an automaton A is
a subset of the set described by A.

The set described by a simple automaton is a subgroup of FA. It is called
the subgroup described by A.

Example 1.3.4 Let A = (Q, 1, 1) be the automaton represented in Figure 1.3.

1 2a

b

a

Figure 1.3: A simple automaton describing the free group on {a, b}.
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The submonoid recognized by A is {a, ba}∗. Since {a, ba} is a basis of the
free group on A, the subgroup described by A is the free group on A.

The following result is [7, Proposition 6.1.3].

Proposition 1.3.5 Let A be a simple automaton and let X be the prefix code
generating the submonoid recognized by A. The subgroup described by A is
generated by X. If moreover A is reversible, then X∗ = 〈X〉 ∩ A∗.

For any subgroup H of the free group FA, the submonoid H ∩ A∗ is right
and left unitary and thus it is generated by a bifix code (see [8, Example 2.2.6]).
A subgroup H of FA is positively generated if there is a subset of A∗ which
generates H . In this case, the set H ∩A∗ generates the subgroup H . Let X be
the bifix code which generates the submonoid H ∩ A∗. Then X generates the
subgroup H . This shows that, for a positively generated subgroup H , there is
a bifix code which generates H .

It is well known that a subgroup of finite index of the free group is positively
generated (see, e.g, [7, Proposition 6.1.6]).

The following result is contained in [7, Propositions 6.1.4 and 6.1.5].

Proposition 1.3.6 For any positively generated subgroup H of the free group
on A, there is a unique reversible automaton A such that H is the subgroup
described by A. The subgroup is of finite index if and only if this automaton is
a finite group automaton.

The reversible automaton A such that H is the subgroup described by A is
called the Stallings automaton of the subgroup H . It can also be defined for a
subgroup which is not positively generated (see [46]).

The Stallings automaton of the subgroup H generated by a bifix code X ⊂
A∗ can be obtained as follows. Start with the minimal automaton A = (Q, 1, 1)
of X∗. Then, if there are distinct states p, q ∈ Q and a ∈ A such that p ·a = q ·a,
merge p, q (such a merge is called a Stallings folding). Iterating this operation
leads to a reversible automaton which is the Stallings automaton of H (see [46]).

A subgroup H of the free group has finite index if and only if its Stallings
automaton is a finite group automaton (see Proposition 1.3.6). In this case, the
index of H is the number of states of the Stallings automaton.

Example 1.3.7 Let X = {aa, ab, ba}. The minimal automaton of X∗ is repre-
sented in Figure 1.4 on the left. It is not reversible because 2 ·a = 3 ·a. Merging
the states 2 and 3, we obtain the reversible automaton of Figure 1.4 on the
right. It is actually a group automaton, which is the Stallings automaton of the
subgroup H = 〈X〉.

Since the automaton describes the group Z/2Z, we conclude that the sub-
group generated by X is of index 2 in the free group on A. It is actually formed
of the reduced words of even length.
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Figure 1.4: A Stallings folding.

1.3.2 Rauzy graphs

We first introduce the notion of a Rauzy graph (for a more detailed exposition,
see [16]). Let S be a factorial set. The Rauzy graph of S of order n ≥ 0 is the
following labeled directed graph Gn(S). Its vertices are the words in the set
S ∩ An. Its edges are the triples (x, a, y) for all x, y ∈ S ∩ An and a ∈ A such
that xa ∈ S ∩ Ay.

Let u ∈ S ∩An. The following properties follow easily from the definition of
the Rauzy graph.

(i) For any word w such that uw ∈ S, there is a path labeled w in Gn(S)
from u to the suffix of length n of uw.

(ii) Conversely, the label of any path of length at most n+1 in Gn(S) is in S.

When S is recurrent, all Rauzy graph Gn(S) are strongly connected. Indeed,
let u,w ∈ S ∩ An. Since S is recurrent, there is a v ∈ S such that uvw ∈ S.
Then there is a path in Gn(S) from u to w labeled vw by property (i) above.

The Rauzy graph Gn(S) of a recurrent set S with a distinguished vertex
v can be considered as a simple automaton A = (Q, v, v) with set of states
Q = S ∩ An.

Example 1.3.8 Consider again the Chacon set (see Example 1.1.3). The
Rauzy graph G1(S) corresponding to the Chacon set is represented in Fig-
ure 3.11 on the left. The graph represented on the right is obtained by a Stalling
folding of the graph G1(S).

a

b

c

a

b

c

a

b a ba

b

c

Figure 1.5: The graphs G1(S) (on the left) and the graph obtained by a Stalling
folding (on the right).

We will prove in Chapter 3 that, for some particular class of sets, the group
described by the Rauzy graph (seen as a simple automata) is the free group.
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1.4 Return words

Let S be a set of words over an alphabet A. Given a word w ∈ S, we define

ΓS(w) = {u ∈ S | wu ∈ S ∩ A+w} and Γ′
S(w) = {u ∈ S | uw ∈ S ∩ wA+}.

When S is recurrent, the sets ΓS(w) and Γ′
S(w) are nonempty. Actually, in that

case, both of them are infinite. Let

RS(w) = ΓS(w) \ ΓS(w)A
+ and R′

S(w) = Γ′
S(w) \A+Γ′

S(w)

be respectively the set of (first) right return words and the set of (first) left
return words to w. Thus, a right return word to w in S is a word u such that
wu is a word of S which ends with w and has no internal factor equal to w.

Note that ΓS(w) ∪ {ε} = RS(w)
∗ ∩w−1S. By definition, the set RS(w) s a

prefix code for every w ∈ S. If S is recurrent, it is a w−1S-maximal prefix code.
Note that wRS(w) = R′

S(w)w.

Example 1.4.1 Let S be a set of words whose factors of length at most 6 are
the labels of the paths starting at the root of the tree represented in Figure 6.5
(we will see in Example 6.1.13 an infinite set of words having such factors).

We have

RS(a) = {cbba, ccba, ccbba},
RS(b) = {acb, accb, b},
RS(c) = {bac, bbac, c}.

We colored in Figure 6.5 the words of αRS(α) for α ∈ A.

a

b

c

c

a

b

b

c

b

c

c

a

a
b

b

b

b

b
c

c

c

a c

a
b

a

a
b

b

b

b
c

c

c
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c
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b
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b
c
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Figure 1.6: The words of length ≤ 6 of the set S.
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Proposition 1.4.2 A recurrent set S is uniformly recurrent if and only if the
set RS(w) is finite for all w ∈ S.

Proof. Assume that all sets RS(w) for w ∈ S are finite. Let n ≥ 1. Let N be
the maximal length of the words in RS(w) for a word w of length n. Then, any
word of length N + n contains an occurrence of w. Indeed, assume that u is a
word of length N + n without factor equal to w. Let r be the word of minimal
length such that ru beghins with w and set ru = ws. Then |s| ≥ N although s
is a proper prefix of a word in Rs(w), a contradiction.

Conversely, for w ∈ S, let N be such that w is a factor of any word in S of
length N . Then the words of RS(w) have length at most N .

For neutral sets we can give a more precise result. The following result has
been proved in [5], generalizing a property proved for Sturmian words in [45]
and for interval exchange in [67].

Theorem 1.4.3 Let S be a uniformly recurrent neutral set containing the al-
phabet A. Then for every w ∈ S,the set RS(w) has Card(A) elements.

One can actually prove more generally, for a uniformly recurrent set S, that
if S is strong (resp. weak, resp. neutral), then for every w ∈ S, the set RS(w)
has at least (resp. at most, resp. exactly) Card(A) elements.

The following example shows that in a set of complexity kn+1 the number
of first right return words need not be equal to k + 1.

Example 1.4.4 Let S be the Chacon set (see Example 1.1.3). We haveRS(a) =
{a, bca, bcbca} but RS(ab) = {caab, cbcab}.

Let X ⊂ A+ be a set of words. A complete return word to X is a word of
S which has a proper prefix in X , a proper suffix in X and no internal factor
in X . We denote by CRS(X) the set of complete return words to X . The set
CRS(X) is a bifix code. If S is uniformly recurrent, CRS(X) is finite for any
finite set X . For w ∈ S, we denote by CRS(w) instead of CRS({w}). Thus
CRS(x) is the usual notion of a complete return word (see [36] for example).

Example 1.4.5 Let n ≥ 1 and let X = S ∩ An. Then CRS(X) = S ∩An+1.

Since CRS(w) = wRS(W ), the sets CRS(w) and RS(w) have the same
number of elements.

1.4.1 Derived sets

Let S be a recurrent set and let w ∈ S. Let us consider a coding morphism
for the set RS(w), that is a morphism f : B∗ → A∗ which maps bijectively
the (possibly infinite) alphabet B onto RS(w). The set f−1(w−1S), denoted
Df (S), is called the derived set of S with respect to f .
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We can also define it as Df (S) = f ′−1
(
Sw−1

)
, where f ′ : B∗ → A∗ is

the morphism defined for b ∈ B by f ′(b)w = wf(b). Note that f ′ is a coding
morphism for R′

S(w) (in [14] it is called the morphism associated with f).
The following result gives an equivalent definition of the derived set.

Proposition 1.4.6 Let S be a recurrent set. For w ∈ S, let f be a coding
morphism for the set RS(w). Then

Df (S) = f−1(ΓS(w)) ∪ {ε}.

Proof. Let z ∈ Df (S). Then f(z) ∈ w−1S∩RS(w)
∗ and thus f(z) ∈ ΓS(w)∪{ε}.

Conversely, if u ∈ ΓS(w), then u ∈ RS(w)
∗. Thus u = f(z) for some z ∈ Df (S),

whence the result.

An immediate result of Proposition 1.4.6 is the following.

Corollary 1.4.7 If S is recurrent then Df (S) is recurrent.

Proof. Consider two nonempty words u, v ∈ Df (S). By Proposition 1.4.6, we
have f(u), f(v) ∈ ΓS(w). Since S is recurrent, there is a word t such that
wf(u)twf(v) ∈ S. Then tw ∈ ΓS(w) and thus uf−1(tw)v ∈ Df (S) by Proposi-
tion 1.4.6 again. This shows that Df (S) is recurrent.

Let S be a recurrent set and x be an infinite word such that S = Fac(x).
Let w ∈ S and let f be a coding morphism for the set RS(w). Since w appears
infinitely often in x, there is a unique factorization x = vwy with y ∈ RS(w)

ω

and v such that vw has no proper prefix ending with w. The infinite word
f−1(y) is called the derived word of x relative to f , denoted Df (x).

Since the set of factors of a recurrent infinite word is recurrent, the following
Proposition, that results easily from Proposition 1.4.6 and Corollary 1.4.7, shows
that the derived set of a recurrent set is recurrent.

Proposition 1.4.8 Let S be a recurrent set and let x be an infinite word such
that S = Fac(x). Let w ∈ S and let f be a coding morphism for the set RS(w).
The derived set of S with respect to f is the set of factors of the derived word
of x with respect to f , that is Df (S) = Fac(Df (x)).

Example 1.4.9 Let F be a recurrent set having as factors of length at most 6
the set represented in Figure 6.5 (we will see such a set in Example 6.1.13).

Let f be the coding morphism for the set RS(c) given by f(a) = bac, f(b) =
bbac, f(c) = c. The derived set of S with respect to f is represented in Figure 1.7.
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Figure 1.7: The words of length ≤ 3 of Df (F ).
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Chapter 2

Neutral sets

In this chapter we study an important family of sets: neutral sets.
Generalizing to sets the notions of weakness, strongness and neutrality seen

for words in Chapter 1, we find hypotheses weak enough to contain all families
of sets studied later in this manuscript, but strong enough to allow us to give
several non-trivial results.

In Section 2.1, we define neutral sets and we show that such sets have lin-
ear factor complexity (Proposition 2.1.3). Moreover, we define the probability
distribution of a factorial set and we give some results concerning bifix codes in
neutral sets (Propositions 2.1.8, and 2.1.12).

In Section 2.2 we prove some cardinality results. In particular, in Sec-
tion 2.2.1 we prove the Cardinality Theorem for neutral sets (Theorem 2.2.1),
stating that all S-maximal bifix code of the same S-degree have the same car-
dinality, and a converse of this result (Theorem 2.2.4). Return words in neutral
sets are covered in Section 2.2.2. We prove some cardinality results for the
sets of return words (Theorem 2.2.8 and Corollary 2.2.10). In the same Section
we also prove that recurrence and uniformly recurrence coincide in the case of
neutral sets (Corollary 2.2.9).

Finally, in Section 2.3, we prove a closure property of the family of (recur-
rent) neutral sets under maximal bifix decoding (Theorem 2.3.1).

2.1 Strong, weak and neutral sets

Recall from Chapter 1 that the multiplicity of a word w in a factorial set S is
the quantity

mS(w) = bS(w)− ℓS(w) − rS(w) + 1,

and that a word w is called neutral if mS(w) = 0, weak if mS(w) < 0, and
strong if m(w) > 0.

We say that a set S is neutral if it is factorial and every nonempty word
w ∈ S is neutral. A factorial set is said to be weak (resp. strong) if every word
in it, including ε, is weak or neutral (resp. strong or neutral). Note that a

21



neutral set could be a weak set, a strong set or both. This last case is true when
the empty word is also neutral.

The characteristic of a neutral set S is the integer χ(S) = 1−mS(ε). Thus, a
neutral set of characteristic 1 is such that all words (including the empty word)
are neutral.

Example 2.1.1 The Fibonacci set defined in Example 1.1.2 is a neutral set of
characteristic 1. Indeed one can prove that every word, including the empty
word, is neutral.

The following example of a neutral set of characteristic larger than 1 is due
to Julien Cassaigne. We will study this example more carefully in Chapter 3

Example 2.1.2 Let A = {a, b, c, d} and let σ be the morphism from A∗ into
itself defined by σ : a 7→ ab, b 7→ cda, c 7→ cd, d 7→ abc. Let S be the set of
factors of the infinite word x = σω(a). One has S ∩ A2 = {ab, ac, bc, ca, cd, da}
and thus m(ε) = −1. We will see in Example 3.1.5 that every nonempty word
is neutral (actually the set satisfies a stronger property). Thus S is neutral of
characteristic 2.

One deduces easily from Proposition 1.1.6 the following result which shows
that a neutral set has linear complexity.

Proposition 2.1.3 The factor complexity of a factorial set S is given by p0 = 1
and for every n ≥ 1 satisfies :

(i) pn = n(Card(A) − χ(S)) + χ(S) if S is neutral;

(ii) pn ≤ n(Card(A) − χ(S)) + χ(S) if S is weak;

(iii) pn ≥ n(Card(A) − χ(S)) + χ(S) if S is strong.

Proof. Since S contains the empty word and the alphabet, we have p0 = 1 and
p1 = k. Thus s0 = k − 1.

By Proposition 1.1.6 one has t0 = m(ε) = 1 − χ(S) and tn = 0 for every
n > 0. Thus sn = k−χ(S) for every n > 0. The conclusion immediately follows
by induction on n.

The inequalities for weak and strong sets are proved in the same way.

We now give an example of a set of complexity 2n+ 1 on an alphabet with
three letters which is not neutral.

Example 2.1.4 Let S be the Chacon set (see Example 1.1.3). The set S is of
complexity 2n+ 1 (see for example [41, Section 5.5.2]).

It contains strong, neutral and weak words. Indeed, S∩A2 = {aa, ab, bc, ca, cb}
and thus m(ε) = 0 showing that the empty word is neutral. Next m(abc) = 1
and m(bca) = −1, showing that abc is strong while bca is weak.
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2.1.1 Probability distributions

Let S be a factorial set. A left probability distribution on S is a map ρ : S → [0, 1]
such that

(i) ρ(ε) = 1,

(ii)
∑

a∈LS(w) ρ(aw) = ρ(w), for any w ∈ S.

For a left probability distribution ρ on S and a set X ⊂ S, we denote ρ(X) =∑
x∈S ρ(x).
Symmetrically, a right probability distribution on S is a map σ : S → [0, 1]

satisfying condition (i) above and

(iii)
∑

a∈RS(w) σ(aw) = σ(w), for any w ∈ S.

See [8, Chapters 1.11 and 13] for elementary properties of probability dis-
tributions and their connections with probability measures. Note in particular
that for any w ∈ S and n ≥ 0 one has, as a consequence of (ii) and (iii),

ρ (Anw ∩ S) = ρ(w) and σ (wAn ∩ S) = σ(w).

For w ∈ S, we define

ρS(w) = bS(w) − ℓS(w), λS(w) = bS(w) − rS(w).

Thus, when w is neutral, ρS(w) = rS(w) − 1 and λS(w) = ℓS(w) − 1. The
following result shows that in a biextendable neutral set, ρS is a left probability
distribution on S (and λS is a right probability), except for the value on ε which
is ρ(ε) = b(ε) − ℓ(ε) = m(ε) + r(ε) − 1 = Card(A) − χ(S) and can be different
from 1.

Proposition 2.1.5 Let S be a biextendable set. Then, for any w ∈ S, one has
λS(w), ρS(w) ≥ 0 and

∑

a∈LS(w)

ρS(aw) = ρS(w) +
∑

a∈LS(w)

mS(aw),

and ∑

a∈RS(w)

λS(wa) = λS(w) +
∑

a∈RS(w)

mS(wa).

Proof. Since S is biextendable, we have ℓS(w), rS(w) ≤ bS(w). Thus, λS(w), ρS(w) ≥
0. Next, since by Equation 1.1 one has b(w)− ℓ(w) = m(w) + r(w)− 1, one has

∑

a∈LS(w)

ρ(aw) =
∑

a∈LS(w)

(
m(aw) + r(aw) − 1

)

=
∑

a∈LS(w)

m(aw) +
(
b(w)− ℓ(w)

)

=
∑

a∈LS(w)

m(aw) + ρS(w).
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The proof for λS is symmetric.

An immediate corollary of Proposition 2.1.5 is the following.

Corollary 2.1.6 Let S be a biextendable neutral set. Then for any w ∈ S, one
has ∑

a∈LS(w)

ρS(aw) = ρS(w),
∑

a∈RS(w)

λS(wa) = λS(w).

If in a neutral set S we have ρS(ε) = 0, then ρS(x) = 0 for all x ∈ S.
Otherwise, ρ′S(x) = ρS(x)/ρS(ε) is a left probability distribution. A symmetric
result holds for λS .

Given a set X , we denote by mS(X) =
∑

x∈X m(x). We now prove the fol-
lowing result. It accounts for the fact that, in an Arnoux-Rauzy set S, any finite
S-maximal suffix code contains exactly one right-special word [7, Proposition
5.1.5].

Lemma 2.1.7 Let S be a biextendable set, let X be a finite S-maximal suffix
code and let Q be the set of nonempty suffixes of X. Then ρS(X) = m(Q) +
ρS(ε).

Proof. The theorem is trivially true for Card(A) = 1, so let us suppose that
Card(A) ≥ 2. We show by induction on Card(X) that for any word w, we have
ρS(Xw ∩ S) = mS(Qw ∩ S) + ρS(w). The statement follows for w = ε.

For X = A, the statement follows from Proposition 2.1.5. We may assume
that that the words of X do not all end with the same letter. For every a ∈ A,
the set Xa = Xa−1 is an Sa−1-maximal suffix code. Moreover, Card(Xa) ≤
Card(X). Let Qa be the set of its nonempty suffixes. Clearly Q =

⋃
a∈AQaa.

Then, using the induction hypothesis for each Xa and Proposition 2.1.5, we
have

ρS(Xw ∩ S) =
∑

a∈LS(w)

ρS(Xaaw ∩ S) =

=
∑

a∈LS(w)

(
mS(Qaaw ∩ S) + ρS(aw)

)

=
∑

a∈LS(w)

mS(Qaaw ∩ S) +
∑

a∈LS(w)

mS(aw) + ρS(w)

= mS(Qw ∩ S) + ρS(w).

Using Lemma 2.1.7 we can easily prove the following result.

Proposition 2.1.8 Let S be a neutral set and let X be a finite S-maximal suffix
code. Then ρS(X) = Card(A) − χ(S).
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Proof. The formula easily follows from Lemma 2.1.7 and the fact that in a
neutral set S, every nonempty word w satisfies mS(w) = 0.

Example 2.1.9 Let S be the neutral set of characteristic 2 of Example 2.1.2.
The set X = {a, ac, b, bc, d} is an S-maximal suffix code (its reversal is the
S̃-maximal prefix code X̃ = {a, b, ca, cb, d}). The values of ρS on X are rep-
resented in Figure 2.1 on the left. One has ρS(X) = 2, in agreement with
Proposition 2.1.8.
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Figure 2.1: An S-maximal suffix code (left) and an S-maximal bifix code rep-
resented as a prefix code (center) and as a suffix code (right).

Example 2.1.10 Let S be the neutral set of characteristic 2 of Example 2.1.2.
The set X = {ab, acd, bca, bcd, c, da} is an S-maximal bifix code of S-degree 2
(see Figure 2.1 on the center and the right).

Note that the set on nonempty proper prefixes ofX is exactly the S-maximal
suffix code of the previous example and represented in Figure 2.1 on the left.

The following statement is closely related with a similar statement concern-
ing the average length of a bifix code (see [7, Corollary 4.3.8]).

Lemma 2.1.11 Let S be a recurrent biextendable set and let X be a finite S-
maximal bifix code S of S-degree d. Let F = Fac(X). The set P of proper
prefixes of X satisfies ρS(P ) = dρS(ε) + α(F ), where α(w) = δ(w)mS(w) with
δ(ε) = 0, δ(w) ≥ 0 for w 6= ε and δ(w) ≥ 1 for w ∈ P \ {ε}.

Proof. By Theorem 1.2.9, we have P \ {ε} = ∪n−1
i=1 Yi, where the Yi are S-

maximal suffix codes. By Lemma 2.1.7, we have ρS(Yi) = m(Qi)+ρS(ε), where
Qi is the set of nonempty suffixes of Yi. Thus ρS(P ) = dρS(ε) + α(F ), where
α(w) = δ(w)mS(w) with δ(w) the number of i such that w is a nonemtpy suffix
of Yi.

We will use this consequence of Lemma 2.1.11 in the next section.

Proposition 2.1.12 Let S be a recurrent set and let X be a finite S-maximal
bifix code of S-degree d. The set P of proper prefixes of X satisfies
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1. ρS(P ) = d(Card(A)− χ(S)) if S is neutral,

2. ρS(P ) ≤ d(Card(A)− χ(S)) if S is weak,

3. ρS(P ) ≥ d(Card(A)− χ(S)) if S is strong,

Proof. Let F and α be as in Lemma 2.1.11. Since δ(w) ≥ 0 for every word w,
the sign of of α(F ) only depends on the values of mS(w).

In a neutral set the only word having non zero multiplicity is ε, thus, by
Lemma 2.1.11, ρS(P ) = dρS(ε) = d

(
Card(A)− χ(S)

)
. The two other cases are

proved in a similar way.

2.2 Cardinality Theorems

2.2.1 Bifix codes

In the following we prove a result referred to as the Cardinality Theorem. This
is a generalization of a result proved in [7] in the less general case of an Arnoux-
Rauzy set. Since S ∩ An is an S-maximal bifix code of S-degree n (see Exam-
ple 1.2.2)

Theorem 2.2.1 (Cardinality Theorem) Let S be a recurrent set containing
the alphabet A and let X ⊂ S be a finite S-maximal bifix code.

1. If S is neutral, then Card(X) = dS(X) (Card(A) − χ(S)) + χ(S).

2. If S is weak, then Card(X) ≤ dS(X) (Card(A)− χ(S)) + χ(S).

3. If S is strong, then Card(X) ≥ dS(X) (Card(A)− χ(S)) + χ(S).

Note that, for a recurrent neutral set S, a bifix code X ⊂ S may be infinite
since this may happen for an Arnoux-Rauzy set S (see [7, Example 5.1.4]).

Proof of Theorem 2.2.1. Since X is a finite S-maximal bifix code, it is an S-
maximal prefix code (see Section 1.2). By a well-known property of trees, this
implies that Card(X) = 1 +

∑
p∈P

(
r(p) − 1

)
, where P is the set of proper

prefixes of X . Since r(p) − 1 = ρ(p)−m(p), we have

Card(X) = 1 +
∑

p∈P

(
r(p)− 1

)
= 1 +

∑

p∈P

(
ρ(p)−m(p)

)

= 1 + ρ(P )−m(P )

= 1 +
(
dρ(ε) + α(F )

)
−m(P )

= dρ(ε) +
(
1−m(ε)

)
+
(
α(F ) −m (P \ {ε})

)
,

where the fourth equality and the definition of F and α come from Lemma 2.1.11,
while d = dS(X). From what we have seen in Section 2.1.1, we have ρ(ε) =
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Card(A)−χ(S), and by definition of the characteristic one has 1−m(ε) = χ(S).
Thus,

Card(X) = d
(
Card(A)− χ(S)

)
+ χ(S) + α,

with α = α(F ) −m (P \ {ε}). The quantity α is a nonnegative linear combi-
nation of multiplicities of nonempty words, thus it is nonnegative when S is
strong, nonpositive when S is weak and zero when S is neutral, whence the
result.

Note that we recover, as a particular case of Theorem 2.2.1 applied to the set
X of words of length n in S, the fact that for a set S satisfying the hypotheses of
the theorem, the factor complexity is p0 = 1 and pn = n(Card(A)−χ(S))+χ(S)
(see Proposition 2.1.3).

Example 2.2.2 Let S be the neutral set of Example 2.1.2 and let X be the
S-maximal bifix code of Example 2.1.10. We have Card(X) = 2(4− 2) + 2 = 6
according to Theorem 2.2.1.

The following example illustrates the necessity of the hypotheses in Theo-
rem 2.2.1.

Example 2.2.3 Consider again the Chacon set S of Example 1.1.3. Let X =
S ∩ A4 and let Y, Z be the S-maximal bifix codes of S-degree 4 represented
in Figure 2.2. The first one is obtained from X by internal transformation
with respect to abc, the second one with respect to bca (for the definition of an
internal transformation recall Section 1.2).
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Figure 2.2: Two S-maximal bifix codes of S-degree 4.

We have Card(Y ) = 10 and Card(Z) = 8 showing that Card(Y )− 1 > 8 and
Card(Z)− 1 < 8, illustrating the fact that S is neither strong nor weak.

The following statement is a converse of Theorem 2.2.1 for uniformly recur-
rent sets.
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Theorem 2.2.4 Let S be a uniformly recurrent set containing the alphabet A.
If every finite S-maximal bifix code of S-degree d has d(Card(A)−c)+c elements,
then S is neutral of characteristic c.

To prove Theorem 2.2.4, we use the following result, using internal transfor-
mations (recall Section 1.2).

Proposition 2.2.5 Let S be a uniformly recurrent set containing the alphabet
A and let d0 ≥ 2. If all finite S-maximal bifix codes of S-degree d ≥ d0 have
the same cardinality, then any word of length greater than or equal to d0 − 1 is
neutral.

Proof. We argue by contradiction. Let w ∈ S be a word of length n ≥ d0 − 1
which is not neutral.

Set X = S ∩An+1. The set X is an S-maximal bifix code of S-degree n+1.
Let Y be the code obtained by internal transformation from X with respect to
w and defined by Equation (1.6). Note that G = L(w) and D = R(w). Recall
that, by Proposition 1.2.14, the S-degree of Y is at most n+ 1.

We distinguish two cases.

Case 1. Assume that Gw ∩ wD = ∅.
The code Y is defined by Equation (1.7) and we have Card(GwD∩S) = b(w).

Moreover, we have D0 = G0 = ∅. By [7, Proposition 4.4.5]) Y has the same
S-degree as X , that is n + 1. This implies Card(X) = Card(Y ). On the other
hand

Card(Y ) = Card(X) + 1 + b(w) − ℓ(w)− r(w) = Card(X) +m(w).

Since w is not neutral, we have m(w) 6= 0 and thus we obtain a contradiction.

Case 2. Assume next that Gw ∩ wD 6= ∅. Then w = an with n > 0 for
some letter a and the sets G0, D0 defined by Equation 1.4 are G0 = D0 = {a}.
Moreover an+1 ∈ X .

Since w is not neutral, it is bispecial. Thus the sets G1, D1 are nonempty
and the hypotheses of Proposition 1.2.14 are satisfied. Since S is uniformly
recurrent and since S 6= a∗, the set a∗ ∩ S is finite. Set a∗ ∩ S = {1, a, . . . , am}.
Thus m ≥ n + 1. Then, δY (a

m) = n since am has n suffixes which are proper
prefixes of Y .

Let b ∈ R(am). By construction, b 6= a. The word amb has no suffix in Y .
Indeed, if atb ∈ Y , we cannot have t ≥ n since an ∈ Y and Y is a bifix code
by Proposition 1.2.14. Moreover, since all words in Y except an have length
greater than n, t < n is also impossible. Thus by Equation (1.2), we have
δY (a

mb) = δY (a
m)+1 and thus δY (a

mb) = n+1. This shows that the S-degree
of Y is n+ 1 and thus that Card(Y ) = Card(X) as in Case 1.

If am is not neutral, Case 1 applies toX = S∩Am+1 and w = am. Otherwise,
we can assume, without loss of generality, that n is chosen maximal such that
an is not neutral.
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For n ≤ i ≤ m− 2 (there may be no such integer i if n = m− 1), since ai+1

is neutral, we have

Card(G1a
iD1 ∩ S) = b(ai)− ℓ(ai+1)− r(ai+1) + 1 = b(ai)− b(ai+1).

Moreover, Card(G1a
m−1D1 ∩ S) = b(am−1) − ℓ(am) − r(am) = b(am−1) −

b(am)− 1 and Card(G1a
mD1 ∩ S) = b(am).

Thus

Card(G1a
na∗D1 ∩ S) =

m−2∑

i=n

(
b(ai)− b(ai+1)

)
+ b(am−1)− b(am)− 1 + b(am)

= b(an)− 1.

Thus Card(Y )− Card(X) evaluates as

1 + Card(G1a
na∗D1 ∩ S)− Card(Gan)− Card(anD) + 1

= 1 + b(an)− 1− ℓ(an)− r(an) + 1

= m(an),

where the last +1 on the first line comes from the word an+1 counted twice in
Card(Gan+1) + Card(an+1D). Since m(an) 6= 0, this contradicts the fact that
X and Y have the same number of elements.

We can now prove Theorem 2.2.4.
Proof of Theorem 2.2.4. We first apply the statement to the S-maximal bifix
code X = S ∩A2 which has S-degree 2. Since Card(X) = 2(Card(A)− c) + c =
2Card(A) − c, we conclude that mS(ε) = 1 − c. On the other hand, applying
Proposition 2.2.5 with d0 = 2, we conclude that every nonempty word is neutral.
Thus S is neutral of characteristic c.

We also note that Theorem 2.2.1 can be formulated in an equivalent way
using the notion of derived code of a maximal bifix code.

Theorem 2.2.6 Let S be a recurrent neutral set, let X be a finite S-maximal
bifix code of S-degree d ≥ 2 and let X ′ be the derived code of X. One has

Card(X) = Card(X ′) + Card(A)− χ(S). (2.1)

Proof. Since X ′ has degree dS(X)− 1, by Theorem 2.2.1, we have Card(X)−
Card(X ′) = Card(A)− χ(S).

Conversely, we may prove Theorem 2.2.1 by induction on n, assuming The-
orem 2.2.6. We just prove the case of a neutral set.

Theorem 2.2.1 holds for n = 1 since in this case X = A. Next, assume that
it holds for d− 1. Then, by Equation (2.1), we have

Card(X) = Card(X ′) + Card(A)− χ(S)

= (d− 1)(Card(A) − χ(S)) + χ(S) + Card(A) − χ(S)

= d(Card(A)− χ(S)) + χ(S).
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Example 2.2.7 Let S be the neutral set of Example 2.1.2 and let X be the
S-maximal bifix code of Example 2.1.10. We have X ′ = A and accordingly
Card(X) = Card(A) + Card(A)− 2 = 6.

2.2.2 Return words

Let S be a factorial set of words. Recall from Section 1.4 that a complete return
word to a set X ⊂ S is a word of S which has a proper prefix in X , a proper
suffix in X and no internal factor in X . Recall also that the set of complete
return words to X , denoted by CR(X), is a bifix code and that, if S is uniformly
recurrent, it is finite for any finite set X .

Theorem 2.2.8 Let S be a neutral set. For any finite nonempty bifix code
X ⊂ S with empty kernel, we have

Card(CRS(X)) ≤ Card(X) + Card(A)− χ(S) (2.2)

with equality if S is recurrent.

Proof. Let P be the set of proper prefixes of CRS(X). For q ∈ P , we define
α(q) = Card{a ∈ A | qa ∈ P ∪ CRS(X)} − 1. For P ′ ⊂ P , we set α(P ′) =∑

p∈P ′ α(p).
Since CRS(X) is a finite prefix code, we have, by a well-known property of

trees, Card(CRS(X)) ≤ 1 + α(P ) with equality if CRS(X) is nonempty (that
is, if S is recurrent).

Let P ′ be the set of words in P which are proper prefixes of X and let Y =
P \P ′. Since P ′ is the set of proper prefixes of X , we have α(P ′) = Card(X)−1.

Since P ∪ CRS(X) ⊂ S, one has α(q) ≤ ρS(q) for any q ∈ P . Moreover, if
S is recurrent, and since X has empty kernel, any word of S with a prefix in X
is comparable for the prefix order with a word of CRS(X). This implies that
for any q ∈ Y and any b ∈ RS(q), one has qb ∈ P ∪ CRS(X). Consequently, we
have α(q) = ρS(q) for any q ∈ Y . Thus we have shown that

Card(CRS(X)) ≤ 1 + α(P ′) + ρ(Y ) ≤ Card(X) + ρ(Y )

with equality if S is recurrent. Let us show that Y is a suffix code which is S-
maximal if S is recurrent. This will imply our conclusion by Proposition 2.1.8.
Suppose that q, uq ∈ Y with u nonempty. Since q is in Y , it has a proper prefix
in X . But this implies that uq has an internal factor in X , a contradiction.
Thus Y is a suffix code. Assume next that S is recurrent. Consider w ∈ S.
Then, for any x ∈ X , there is some u ∈ S such that xuw ∈ S. Let y be the
shortest suffix of xuw which has a proper prefix in X . Then y ∈ Y . This shows
that Y is an S-maximal suffix code.

Recall, from Section 1.4, that the sets CRS(x) and RS(x) have the same
number of elements.

Since a recurrent set S is uniformly recurrent if and only if the set of re-
turn words is finite (see Proposition 1.4.2), we have the following important
consequence of Theorem 2.2.8.
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Corollary 2.2.9 A recurrent neutral set is uniformly recurrent.

Proof. By Theorem 2.2.8, the set CRS(x) is finite for any x ∈ X . Thus, S is
uniformly recurrent.

Another consequence of Theorem 2.2.8 is that the number of right return
words to a word x in a recurrent neutral set is always the same.

Corollary 2.2.10 Let S be a recurrent neutral set. For any x ∈ S, the set
RS(x) has Card(A) − χ(S) + 1 elements.

Example 2.2.11 Consider again the neutral set S of Example 2.1.2. We have
Card (RS(a)) = Card ({bca, bcda, cad}) = 4 − 2 + 1 = 3, according to Corol-
lary 2.2.10.

The following statement, which holds under fairly general hypotheses, shows
an interesting connection between complete return words to a bifix code and the
derived code (see Section 1.2). It explains the similarity between Formulae (2.1)
and (2.2) (with equality).

Proposition 2.2.12 Let S be a recurrent set. Let X be a finite S maximal bifix
code, let X ′ be the derived code of X and let K,K ′ be the kernels of X and X ′

respectively. Then
CRS(X

′ \K) = X \K. (2.3)

Proof. Let us first show the inclusion from right to left. Let x ∈ X \K. Then
x has a proper prefix in X ′ \ K, namely the shortest prefix of x which is not
an internal factor of X (see [7, Lemma 4.3.3]). Similarly, x has a proper suffix
which is in X ′\K. Moreover x cannot have an internal factor in X ′\K. Indeed,
by definition of X ′, the words in X ′ \ K are not internal factors of X . This
shows that x ∈ CRS(X

′ \K).
Conversely, consider x ∈ CRS(X

′ \K). Let P be the set of proper prefixes
of X . Let y (resp. z) be the proper prefix (resp. suffix) of x which is in X ′ \K.
Since x′ is in X ′, it is in P . We cannot have x ∈ P since otherwise z would be
in K. Thus x has a prefix yu in X . By the first part of the proof, yu has a suffix
in CRS(X

′ \ K, and thus x has an internal factor in X ′ \ K, a contradiction
unless x = yu. Thus x ∈ X .

If S is assumed to be recurrent and neutral, Formulæ (2.1) and (2.2) (with
equality) show that both sides of Equation (2.3) have the same cardinality. Thus
the inclusion implies the equality.

Example 2.2.13 Let S and X be as in Example 2.1.10. We have K = {c} and

X \K = {ab, acd, bca, bcd, da} = CRS({a, b, d})

in agreement with Proposition 2.2.12.
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2.3 Bifix decoding of neutral sets

Recall from Section 1.2 the definitions of coding morphism and maximal bifix
decoding.

We prove show the following closure properties for the family of neutral sets.

Theorem 2.3.1 Any maximal bifix decoding of a recurrent neutral set is a neu-
tral set with the same characteristic.

In order to prove Theorem 2.3.1 we need some preliminary results. We also
generalize the notation of left extensions, right extensions and biextensions of
Section 1.2.1.

Let S be a factorial set. For two sets of words X,Y and a word w ∈ S, we
set

LX
S (w) = {x ∈ X | xw ∈ S},

RY
S (w) = {y ∈ A | wy ∈ S},

BX,Y
S (w) = {(x, y) ∈ X × Y | xwy ∈ S}

and furthermore

bX,Y
S (w) = Card(BX,Y

S (w)), ℓXS (w) = Card(LX
S (w)), rYS (w) = Card(RY

S (w)).

Finally, for a word w, we define

mX,Y
S (w) = bX,Y

S (w) − ℓXS (w) − rYS (w) + 1.

Note that BA,A
S (w) = BS(w), m

A,A
S (w) = mS(w), and so on.

Proposition 2.3.2 Let S be a neutral set, let X be a finite S-maximal suffix
code and let Y be a finite S-maximal prefix code. Then mX,Y

S (w) = mS(w) for
every w ∈ S.

Proof. We use an induction on the sum of the lengths of the words in X and in
Y . If X,Y contain only words of length 1, since X (resp. Y ) is an S-maximal
suffix (resp. prefix) code, we have X = Y = A and there is nothing to prove.

Assume next that one of them, say Y , contains words of length at least 2.
Let p be a nonempty proper prefix of Y of maximal length. Set Y ′ = (Y \pA)∪p.
If wp /∈ S, then mX,Y (w) = mX,Y ′

(w) and the conclusion follows by induction
hypothesis. Thus we may assume that wp ∈ S. Then

mX,Y (w) −mX,Y ′

(w) = bX,A(wp)− ℓX(wp)− rA(wp) + 1 = mX,A(wp).

By induction hypothesis, we havemX,Y ′

(w) = m(w) andmX,A(wp) = 0, whence
the conclusion.

We can now prove the main result of the section.
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Proof of Theorem 2.3.1. Let S be a recurrent neutral set and let f : B∗ → A∗ be
a coding morphism for a finite S-maximal bifix code X . Set U = f−1(S). Let

v ∈ U \ {ε} and let w = f(v). Then mU (v) = mX,X
S (w). Since S is recurrent,

X is an S-maximal suffix code and prefix code. Thus, by Proposition 2.3.2,
mU (v) = mS(w), which implies our conclusion.

The following example shows that the maximal decoding of a recurrent neu-
tral set need not be recurrent.

Example 2.3.3 Let S be the set of factors of the infinite word (ab)ω. S is a
recurrent neutral set of characteristic 2. The set X = {ab, ba} is a bifix code
of S-degree 2. Let f : u 7→ ab, v 7→ ba. The set f−1(S) is the set of factors of
uω ∪ vω and it is not recurrent.

The following example shows that the class of sets of factor complexity kn+c
is not closed by maximal bifix decoding.

Example 2.3.4 Let S be the Chacon set and let f : B∗ → A∗ be a coding
morphism for the S-maximal bifix code Z of S-degree 4 with 8 elements of
Example 2.2.3. One may verify that Card(B2 ∩ f−1(S)) = Card(Z2 ∩ S) = 17.
This shows that the set f−1(S) does not have factor complexity 7n+ 1.
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Chapter 3

Tree sets

In this chapter we define acyclic, connected and tree sets. The last one is a
particular family of neutral sets, large enough to contain well-studied families
as, for example, Arnoux-Rauzy sets and interval exchange sets (that we will
introduce in Chapter 6).

In Section 3.1 we give the basic definitions (acyclic sets, connected sets, trees,
planar trees) as well as some examples. Moreover, we generalize the extension
graphs defined in Section 1.2.1 and give conditions under which this generalized
extension graphs are acyclic (Proposition 3.1.13). Using this generalization we
can work with longer extensions to a given word, namely using elements of a
maximal bifix code instead of letters.

Return words are the topic of Section 3.2. The main result of this section is
the Return Theorem (Theorem 3.2.5), stating that the set of return words on a
tree set of characteristic 1 is a basis of the free group. In Section 3.2.3 we show
a closure property under derivation (Theorem 3.2.9).

In Section 3.3 we introduce a technique to construct tree sets of characteristic
c starting from a tree set of characteristic a divisor of c (Theorem 3.3.1).

Finally, in Section 3.4 we show that a recurrent tree set of characteristic
1, closed under reversal, contains the maximal possible number of palindromic
factors (Proposition 3.4.1).

3.1 The tree condition

Recall from Section 1.2.1 that, given a set S of words and a word w ∈ S,
the extension graph of w is the undirected bipartite graph ES(w) on the set of
vertices which is the disjoint union of LS(w) and RS(w) with edges the pairs
(a, b) ∈ BS(w). An edge (a, b) ∈ BS(w) goes from a ∈ LS(w) to b ∈ RS(w).
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3.1.1 Acyclic, connected and tree sets

Let S be a biextendable set. We say that S satisfies the acyclicity condition,
or simply that S is acyclic if for every word w ∈ S, the graph ES(w) is acyclic.
A set S satisfies the connection condition, or simply S is connected, if for every
word w ∈ S, the graph ES(w) is connected.

Example 3.1.1 Let S be the Tribonacci set (see Example 1.1.7). The graphs
ES(ε) and ES(ab) are represented in Figure 3.1.

a

b

c

a

b

c

a

b

c

a

Figure 3.1: The extension graphs ES(ε) and ES(ab) in the Tribonacci set.

Note that a biextendable set S is acyclic (resp. connected) if and only if the
graph ES(w) is acyclic (resp. connected) for every bispecial word w. Indeed, if
w is not bispecial, then ES(w) ⊂ a×A or ES(w) ⊂ A× a, for some letter a ∈ A,
thus it is always acyclic and connected.

If the extension graph ES(w) of w is acyclic, then mS(w) ≤ 0. Thus w is
weak or neutral. More precisely, one has in this case, mS(w) = 1− c where c is
the number of connected components of the graph ES(w).

Similarly, if ES(w) is connected, then w is strong or neutral. Thus, if S is
an acyclic (resp. a connected) set, then S is a weak (resp. strong) set.

Recall that an undirected graph is a tree if it is connected and acyclic. A
biextendable set is called a tree set of characteristic c (or equivalently it satisfies
the tree condition) if for every nonempty w ∈ S, the graph ES(w) is a tree and
if ES(ε) is a union of c trees.

The following proposition is straigthforward.

Proposition 3.1.2 A tree set of characteristic c is a neutral set of character-
istic c.

We use the same notation χ(S) for the characteristic of a tree set S.
The following result is easy to prove. Recall that a recurrent neutral set is

uniformly recurrent (Corollary 2.2.9).

Proposition 3.1.3 An Arnoux-Rauzy set S is a (uniformly) recurrent tree set
of characteristic 1.

Proof. It is known that an Arnoux-Rauzy set is uniformly recurrent (see, for
example, [7]). Let us show that for every word w, including the empty one,
the extension graph ES(w) is a tree. Consider w ∈ S. If w is not left-special
there is a unique a ∈ A such that aw ∈ S. Then BS(w) ⊂ {a} × A and thus
ES(w) is a tree. The case where w is not right-special is symmetrical. Finally,
assume that w is bispecial. Let a, b ∈ A be such that aw is right-special and wb
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is left-special. Then BS(w) = ({a} × A) ∪ (A × {b}) and thus ES(w) is a tree.
Thus, the set is a tree set of characteristic 1.

Since a tree set is neutral, we deduce from Proposition 2.1.3 the following
statement.

Proposition 3.1.4 The factor complexity of a tree set is pn = n(Card(A) −
χ(S)) + χ(S), for all n > 0.

We now present two examples, due to Julien Cassaigne [22]. The first one is
a recurrent tree set of characteristic 2, and thus, in particular, an acyclic set.

Example 3.1.5 Let A = {a, b, c, d} and let σ be the morphism from A∗ into
itself defined by

σ(a) = ab, σ(b) = cda, σ(c) = cd, σ(d) = abc.

Let S be the set of factors of the infinite word x = σω(a). Since σ is primitive,
S is uniformly recurrent. The graph ES(ε) is represented in Figure 3.2.

a

ab

b

c

c

d

d

Figure 3.2: The graph ES(ε).

It is acyclic with two connected components (and thus mS(ε) = −1). We
will show that for any non empty word w ∈ S, the graph ES(w) is a tree. This
will prove that S is a tree set of characteristic 2. Actually, let π be the morphism
from A∗ onto {a, b}∗ defined by π(a) = π(c) = a and π(c) = π(d) = b. The
image of x by π is the Sturmian word y which is the fixpoint of the morphism
τ : a 7→ ab, b 7→ aba. The word x can be obtained back from y by changing one
every other letter a into a c and any letter b after a c into a d. Set S′ = Fac(y).
Thus every word of the set S′ gives rise to 2 words in S.

In this way every bispecial word w of S′ gives two bispecial words w′, w′′ of
S and their extension graphs in S are isomorphic to ES′(w). For example, the
word ababa is bispecial in S′. It gives the bispecial words abcda and cdabc in S.
Their extension graphs are shown below.

b

a
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b

d

c

c

b

b

a

a

d

Figure 3.3: The graphs ES′(ababa), ES(abcda) and ES(cdabc).

This proves that S is a tree set of characteristic 2.

The second example is a recurrent set which is neutral but is not a tree set
(it is actually not even acyclic).
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Example 3.1.6 Let B = {1, 2, 3} and let τ : A∗ → B∗ be defined by

τ(a) = 12, τ(b) = 2, τ(c) = 3, τ(d) = 13.

Let T = τ(S) where S is the set of Example 3.1.5. Thus T is also the set of
factors of the infinite word τ(σω(a)).

The set Y = τ(A) is a prefix code. It is not a suffix code but it is weakly
suffix in the sense that if x, y, y′ ∈ X and x′ ∈ X∗ are such that xy is a suffix
of x′y′, then y = y′.

Let g : {a, c}A∗ ∩A∗{a, c} → B∗ be the map defined by

g(w) =





3τ(w) if w begins and ends with a

3τ(w)1 if w begins with a and ends with c

2τ(w) if w begins with c and ends with a

2τ(w)1 if w begins with c and ends with c

It can be verified, using the fact that Y is a prefix and weakly suffix code,
that the set of nonempty bispecial words of T is the union of 2, 31 and of the
set g(S) where S is the set of nonempty bispecial words of S. One may verify
that the words of g(S) are neutral. Since the words 2, 31 are also neutral, the
set T is neutral. Its characteristic is χ(T ) = 1, as one can easily see from the
extension graph of the empty word (see Figure 3.4).

It is recurrent since S is recurrent and τ is a nontrivial morphism. The set
T is not a tree set since the graph ET (ε) is neither acyclic nor connected (see
Figure 3.4).

1

1

2

2

3

3

Figure 3.4: The graph ET (ε).

The following is another example of a neutral set which is not a tree set.

Example 3.1.7 LetA = {a, b, c} and let S be the set of factors of a∗{bc, bcbc}a∗.
The set S is biextendable. One has S ∩A2 = {aa, ab, bc, cb, ca}. It is neutral of
characteristic 1. Indeed the empty word is neutral since bS(ε) = Card(S∩A2) =
5 = ℓS(ε) + rS(ε) − 1. Next, the only nonempty bispecial words are bc and
an for n ≥ 1. They are neutral since bS(bc) = 3 = ℓS(bc) + rS(bc) − 1 and
bS(a

n) = 3 = ℓS(a
n) + rS(a

n) − 1. However, S is not acyclic since the graph
ES(ε) contains a cycle (and has two connected components, see Figure 3.5).

Note that, even if the extension graph of the empty word is the same as the
one in Example 3.1.6, the two sets are different. Indeed, in this last example,
the set is not recurrent.
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a a

b

bc

c

Figure 3.5: The graph ES(ε).

3.1.2 Planar trees

Let <1 and <2 be two total orders on A. For a set S and a word w ∈ S, we
say that the graph ES(w) is compatible with <1 and <2 if for any (a, b), (c, d) ∈
BS(w), one has

a <2 c =⇒ b ≤1 d.

Thus, placing the vertices of LS(w) ordered by <2 on a line and those of RS(w)
ordered by <1 on a parallel line, the edges of the graph may be drawn as straight
noncrossing segments, resulting in a planar graph.

We say that a biextendable set S is a planar tree set of characteristic c with
respect to two total orders <1 and <2 on A if for any nonempty w ∈ S, the
graph ES(w) is a tree compatible with <1, <2, while ES(w) is a union of c trees
compatible with the two orders. Obviously, a planar tree set is a tree set.

Example 3.1.8 Let S be the Fibonacci set (see Example 1.1.2). As we will
prove in Section 6.1.4, S is a planar tree set with respect to <1 and <2 on A
defined by: a <1 b and b <2 a. The graphs ES(ε), ES(a), ES(b) and ES(ab) are
shown in Figure 3.6.

b

a b

a b

a b

a

a a

a

b

a

Figure 3.6: The extension graphs of ε, a, b, ab in the Fibonacci set.

We will study in Chapter 6 an important family of planar tree sets containing
the Fibonacci set as well as the class of Arno ux-Rauzy sets.

The following example shows that the Tribonacci set is not a planar tree set.

Example 3.1.9 Let S be the Tribonacci set (see Example 1.1.7). The words
a, aba and abacaba are bispecial. Thus the words ba, caba are right-special and
the words ab, abac are left-special. The graphs ES(ε), ES(a) and ES(aba) are
shown in Figure 3.7.
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Figure 3.7: The graphs ES(ε), ES(a) and ES(aba) in the Tribonacci set.
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One sees easily that it not possible to find two total orders on A making the
three graphs planar.

3.1.3 Generalized extension graphs

In this section we consider a variant of the extension graph.
Let S be a set. For w ∈ S, and U, V ⊂ S, let US(w) = {ℓ ∈ U | ℓw ∈ S} and

let VS(w) = {r ∈ V | wr ∈ S}. The generalized extension graph of w relative

to U, V is the following undirected graph EU,V
S (w). The set of vertices is made

of two disjoint copies of US(w) and VS(w). The edges are the pairs (ℓ, r) for
ℓ ∈ US(w) and r ∈ VS(w) such that ℓwr ∈ S. The extension graph ES(w)
defined previously corresponds to the case where U, V = A.

Example 3.1.10 Let S be the Fibonacci set (Example 1.1.2). Let w = a,

U = {aa, ba, b} and let V = {aa, ab, b}. The graph EU,V
S (w) is represented in

Figure 3.8.

b

ba

ab

b

Figure 3.8: The graph EU,V
S (w).

The following property shows that in an acyclic set, not only the extension
graphs but, under appropriate hypotheses, all generalized extension graphs are
acyclic.

Proposition 3.1.11 Let S be an acyclic set. For any w ∈ S, any finite suffix
code U and any finite prefix code V , the generalized extension graph EU,V

S (w) is
acyclic.

The proof uses the following lemma.

Lemma 3.1.12 Let S be a biextendable set. Let w ∈ S and let U, V, T ⊂ S.

Let ℓ ∈ S \U be such that ℓw ∈ S. Set U ′ = (U \T ℓ)∪ ℓ. If the graphs EU ′,V
S (w)

and ET,V
S (ℓw) are acyclic then EU,V

S (w) is acyclic.

Proof. Assume that EU,V
S (w) contains a cycle C. If the cycle does not use a

vertex in U ′, it defines a cycle in the graph ET,V
S (ℓw) obtained by replacing each

vertex tℓ for t ∈ T by a vertex t. Since ET,V
S (ℓw) is acyclic, this is impossible. If it

uses a vertex of U ′ it defines a cycle of the graph EU ′,V
S (w) obtained by replacing

each possible vertex tℓ by ℓ (and suppressing the possible identical successive

edges created by the identification). This is impossible since EU ′,V
S (w) is acyclic.

Thus EU,V
S (w) is acyclic.
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Proof of Proposition 3.1.11. We show by induction on the sum of the lengths
of the words in U, V that for any w ∈ S, the graph EU,V

S (w) is acyclic.

Let w ∈ S. We may assume that U = US(w) and V = V(w) and also that
U, V 6= ∅. If U, V ⊂ A, the property is true since S is acyclic.

Otherwise, assume for example that U contains words of length at least 2.
Let u ∈ U be of maximal length. Set u = aℓ with a ∈ A. Let T = {b ∈ A | bℓ ∈
U}. Then U ′ = (U \ T ℓ) ∪ ℓ is a suffix code and ℓw ∈ S since U = US(w).

By induction hypothesis, the graphs EU ′,V
S (w) and ET,V

S (ℓw) are acyclic. By

Lemma 3.1.12, the graph EU,V
S (w) is acyclic.

We prove now a similar statement concerning tree sets.

Proposition 3.1.13 Let S be a tree set. For any w ∈ S, any finite S-maximal
suffix code U ⊂ S and any finite S-maximal prefix code V ⊂ S, the generalized
extension graph EU,V

S (w) is a tree.

The proof uses the following lemma, analogous to Lemma 3.1.12.

Lemma 3.1.14 Let S be a biextendable set. Let w ∈ S and let U, V ⊂ S. Let
ℓ ∈ S \ U be such that ℓw ∈ S and Aℓ ∩ S ⊂ U . Set U ′ = (U \ Aℓ) ∪ ℓ. If the

graphs EU ′,V
S (w) and EA,V

S (ℓw) are connected then EU,V
S (w) is connected.

Proof. Since S is left extendable, there is a letter a such that aℓw ∈ S and thus
aℓ ∈ US(w). We proceed by steps.

Step 1. As a preliminary step, let us show that for each b ∈ A such that
bℓw ∈ S, and each v ∈ V (ℓw), there is a path from bℓ to v in EU,V

S (w). Indeed,

since the graph EA,V
S (ℓw) is connected there is a path from b to v in this graph.

Thus, since bℓ ∈ US(w), there is a path from bℓ to v in EU,V
S (w).

Step 2. As a second step, let us show that for anym ∈ U ′(w)\ℓ and v ∈ V(w),

there is a path from m to v in EU,V
S (w). Indeed there is a path from m to v in

EU ′,V
S (w). For each edge of this path of the form (ℓ, s), s is also in V (ℓw) and

thus, by Step 1, there is a path from aℓ to s in the graph EU,V
S (w). Thus there

is a path from m to v in EU,V
S (w).

Step 3. For each b ∈ A such that bℓ ∈ US(w), for each v ∈ V(w), there is a

path from bℓ to v in EU,V
S (w). Indeed, since EA,V

S (ℓw) is connected, there is a

path from b to a in EA,V
S (ℓw), thus a path from bℓ to aℓ in EU,V

S (w). Then there

is a path from ℓ to v in EU ′,V
S (w) and, in the same way as in Step 2, there is a

path from aℓ to v in EU,V
S (w).
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Step 4. Consider nowm ∈ US(w) and v ∈ V(w). Ifm /∈ Aℓ, thenm ∈ U ′(w)\ℓ
and thus, by Step 2, there is a path from m to v in EU,V

S (w). Next, assume that

m = bℓ with b ∈ A. By Step 3, there is a path from m to v in EU,V
S (w). This

shows that the graph EU,V
S (w) is connected.

Proof of Proposition 3.1.13. The fact that EU,V
S (w) is acyclic follows from Propo-

sition 3.1.11.
We show by induction on the sum of the lengths of the words in U, V that

for any w ∈ S, the graph EU,V
S (w) is connected.

Assume first that US(w), VS(w) ⊂ A. Since U is an S-maximal suffix code,
we have US(w) = LS(w). Similarly, VS(w) = RS(w). Thus the property is true
since S is a tree set.

Otherwise, assume for example that US(w) contains words of length at least
2. Let u ∈ US(w) be of maximal length. Set u = aℓ with a ∈ A. Then
U ′ = (U \ Aℓ) ∪ ℓ is an S-maximal suffix code and ℓw ∈ S since aℓ ∈ US(w).
Moreover, we have Aℓ ∩ S ⊂ U since U is an S-maximal suffix code. Thus ℓ
satisfies the hypotheses of Lemma 3.1.14.

By induction hypothesis, the graphs EU ′,V
S (w) and EA,V

S (ℓw) are connected.

By Lemma 3.1.14, the graph EU,V
S (w) is connected.

3.2 Return words in tree sets

We study sets of return words in tree sets. We first show that if S is a recurrent
connected set, the group described by any Rauzy graph of S containing the
alphabet A, with respect to some vertex is the free group on A (Theorem 3.2.1).
Next, we prove the Return Theorem, that is that in a recurrent tree set con-
taining A, the set of return words to any word of S is a basis of the free group
on A (Theorem 3.2.5).

3.2.1 Rauzy graphs

Recall from Section 1.3.2 that, given a factorial set S, the Rauzy graph of S
of order n ≥ 0 is the labeled graph Gn(S) with vertices the words in the set
S ∩ An and edges the triples (x, a, y) for all x, y ∈ S ∩ An and a ∈ A such that
xa ∈ S ∩ Ay.

Let G be a labeled graph on a set Q of vertices. The group described by G
with respect to a vertex v is the subgroup described by the simple automaton
(Q, v, v). We will prove the following statement.

Theorem 3.2.1 Let S be a recurrent connected set. The group described by a
Rauzy graph of S with respect to any vertex is the free group on A.

A morphism ϕ from a labeled graph G onto a labeled graph H is a map
from the set of vertices of G onto the set of vertices of H such that (u, a, v) is
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an edge of H if and only if there is an edge (p, a, q) of G such that ϕ(p) = u and
ϕ(q) = v. An isomorphism of labeled graphs is a bijective morphism.

The quotient of a labeled graph G by an equivalence θ, denoted G/θ, is the
graph with vertices the set of equivalence classes of θ and an edge from the class
of u to the class of v labeled a if there is an edge labeled a from a vertex u′

equivalent to u to a vertex v′ equivalent to v. The map from a vertex of G to
its equivalence class is a morphism from G onto G/θ.

We consider on a Rauzy graph Gn(S) the equivalence θn formed by the pairs
(u, v) with u = ax, v = bx, a, b ∈ LS(x) such that there is a path from a to b in
the extension graph ES(x) (and more precisely from the vertex corresponding
to a to the vertex corresponding to b in the copy corresponding to LS(x) in the
bipartite graph ES(x)).

Proposition 3.2.2 If S is connected, for each n ≥ 1, the quotient of Gn(S) by
the equivalence θn is isomorphic to Gn−1(S).

Proof. The map ϕ : S ∩ An → S ∩ An−1 mapping a word of S of length n
to its suffix of length n − 1 is clearly a morphism from Gn(S) onto Gn−1(S).
If u, v ∈ S ∩ An are equivalent modulo θn, then ϕ(u) = ϕ(v). Thus there
is a morphism ψ from Gn(S)/θn onto Gn−1(S). It is defined for any word
u ∈ S ∩ An by ψ(ū) = ϕ(u), where ū denotes the class of u modulo θn. But
since S is connected, the class modulo θn of a word ax of length n has ℓS(x)
elements, which is the same as the number of elements of ϕ−1(x). This shows
that ψ is a surjective map from a finite set onto a set of the same cardinality
and thus that it is one-to-one. Thus ψ is an isomorphism.

Let G be a strongly connected labeled graph. Recall from Section 1.3 that a
Stallings folding at vertex v relative to letter a of G consists in identifying the
edges coming into v labeled a and identifying their origins. A Stallings folding
does not modify the group described by the graph with respect to some vertex.

Indeed, if p
a→ v, p

b→ r and q
a→ v are three edges of G, then adding the edge

q
b→ r does not change the group described since the path q

a→ v
a−1

→ p
b→ r has

the same label. Thus merging p and q does not add new labels of generalized
paths.

Proof of Theorem 3.2.1. Let us first prove that the quotient Gn(S)/θn can
be obtained by a sequence of Stallings foldings from the graph Gn(S). Let H
be graph obtained by Gn(S) by applying all possible Stalling foldings and let
ϕ : Gn(S) → H be the natural projection, that is such that v and all the other
vertices merged with v are sended to ϕ(v). Let now ψ : Gn(S)/θn → H be the
map ψ : ū 7→ ϕ(u), where ū is the class of u modulo θn.

The map ψ is well defined. Indeed, consider u, v ∈ Gn(S) be equivalent
modulo θn. Thus, we can write u = ax and v = bx, with u, v ∈ S ∩ An and
a, b ∈ A such that a and b (considered as elements of LS(x)), are connected
by a path in ES(x). Let a0, . . . ak and b1, · · · bk with a = a0 and b = ak be
such that (ai, bi+1) for 0 ≤ i ≤ k − 1 and (ai, bi) for 1 ≤ i ≤ k are in ES(x).
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The successive Stallings foldings at xb1, xb2, . . . , xbk identify the vertices u =
a0x, a1x, . . . , akx = v. Indeed, since aixbi+1, ai+1xbi+1 ∈ S, there are two edges
labeled bi+1 going out of aix and ai+1x which end at xbi+1. The Stallings
folding identifies aix and ai+1x. By induction, we have that the two vertices u
and v are merged in the same vertex of H , that is that ϕ(u) = ϕ(v).

The map ψ is clearly surjective. Moreover, it is a morphism from Gn(S)/θn
onto H . Indeed, (ϕ(u), a, ϕ(v)) is an edge of H if and only if there exist u′ ∈
ϕ−1(ϕ(u)) and v′ ∈ ϕ−1(ϕ(v)) such that (u′, a, v′) is an edge of Gn(S), and
this implies that (ū, a, v̄) is an edge of Gn(S)/θn. The other direction is proved
symmetrically.

Since Gn(S) and H are finite, the map ψ is an isomorphism.
Since the Stallings foldings do not modify the group described, we deduce

from Proposition 3.2.2 that the group described by the Rauzy graph Gn(S) is
the same as the group described by the Rauzy graph G0(S). Since G0(S) is the
graph with one vertex and with loops labeled by each of the letters, it describes
the free group on A.

Example 3.2.3 Let S be the tree set obtained by decoding the Fibonacci set
into blocks of length 2 (see Example 4.3.4). Set u = aa, v = ab, w = ba. The
graph G2(S) is represented on the right of Figure 3.9.

vv

wv

vu uw

wwv

u
w

v w

v

uv

u

wv

u w

w

v

Figure 3.9: The Rauzy graphs G1(S) and G2(S) for the decoding of the Fi-
bonacci set into blocks of length 2.

The classes of θ2 are {wv, vv}, {vu} and {ww, uw}. The graph G1(S) is
represented on the left.

The graph G0(S) is represented in Figure 3.10. The group described is the
free group on 3 letters.

ε
u

v

w

Figure 3.10: The Rauzy graph G0(S) for the decoding of the Fibonacci set into
blocks of length 2.

The following example shows that Proposition 3.2.2 is false for sets which
are not connected.
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Example 3.2.4 Consider again the Chacon set (see Example 1.1.3). The
Rauzy graph G1(S) corresponding to the Chacon set is represented in Fig-
ure 3.11 on the left. The graph G1(S)/θ1 is represented on the right (note that
a and c are θ1-equivalent). It is not isomorphic to G0(S) since it has two vertices
instead of one.

a

b

c

a

b

c

a

b
a ba

b

c

Figure 3.11: The graphs G1(S) and G1(S)/θ1.

3.2.2 The Return Theorem

We can now prove the main result of this section, referred to as the Return
Theorem.

Theorem 3.2.5 (Return Theorem) Let S be a recurrent tree set of charac-
teristic 1. Then for any w ∈ S, the set RS(w) is a basis of the free group on
A.

We first show an example of a neutral set which is not a tree set and for
which Theorem 3.2.5 does not hold.

Example 3.2.6 Consider the set S of Example 3.1.6. Then, one has RS(1) =
{2231, 31, 231}. This set has 3 elements, in agreement with Corollary 2.2.10 but
it is not a basis of the free group on {1, 2, 3} since it generates the same group
as {2, 31}.

The proof of Theorem 3.2.5 uses Corollary 2.2.10 and the following result.

Theorem 3.2.7 Let S be a uniformly recurrent connected set. For any w ∈ S,
the set RS(w) generates the free group on A.

Proof. Since S is uniformly recurrent, the set RS(w) is finite. Let n be the
maximal length of the words in wRS(w). In this way, any word in S ∩ An

beginning with w has a prefix in wRS(w). Moreover, recall from Property (ii)
of Rauzy graphs (Section 1.3.2), that the label of any path of length n + 1 in
the Rauzy graph Gn(S) is in S.

Let x ∈ S be a word of length n ending with w. Let A be the simple
automaton defined by Gn(S) with initial and terminal state x. Let X be the
prefix code generating the submonoid recognized by A. Since the automaton A
is simple, by Proposition 1.3.5, the set X generates the group described by A.
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We show that X ⊂ RS(w)
∗. Indeed, let y ∈ X . Since y is the label of

a path starting at x and ending in x, the word xy ends with x and thus the
word wy ends with w. Let Γ = ΓA+(w) = {z ∈ A+ | wz ∈ A+w} and let
R = RA+(w) = Γ \ ΓA+. Then R is a prefix code and Γ ∪ {ε} = R∗ (see
Section 1.4). Since y ∈ Γ, we can write y = u1u2 · · ·um where each word ui
is in R. Since S is recurrent and since x ∈ S, there is v ∈ S ∩ An such that
vx ∈ S and thus there is a path labeled x ending at the vertex x by property (i)
of Rauzy graphs. Thus there is a path labeled xy in Gn(S). This implies that
for 1 ≤ i ≤ m, there is a path in Gn(S) labeled wui (see Figure 3.12).

x y

u1 u2 um

w w w w

Figure 3.12: The word xy in Gn(S).

Assume that some ui is such that |wui| > n. Then the prefix p of length n
of wui is the label of a path in Gn(S). This implies, by Property (ii) of Rauzy
graphs, that p is in S and thus that p has a prefix in wRS(w). But then wui
has a proper prefix in wRS(w), a contradiction. Thus we have |wui| ≤ n for all
i = 1, 2, . . . ,m. But then the wui are in S by property (i) again and thus the
ui are in RS(w). This shows that y ∈ RS(w)

∗.
Thus the group generated by RS(w) contains the group generated by X .

But, by Theorem 3.2.1, the group described by A is the free group on A. Thus
RS(w) generates the free group on A.

We illustrate the proof in the following example.

Example 3.2.8 Let S be the Fibonacci set. We have RS(aa) = {baa, babaa}.
The Rauzy graph G7(S) is represented in Figure 3.13. The set recognized by
the automaton obtained using x = aababaa as initial and terminal state is X∗

with X = {babaa, baababaa}. In agreement with the proof of Theorem 3.2.7, we
have X ⊂ RS(aa)

∗.

abaabab baababa aababaa ababaab babaaba

abaabaa

baabaab

aabaabab

a a b a

a

b

ba

Figure 3.13: The Rauzy graph G7(S)

Proof of Theorem 3.2.5. When S is a tree set of characteristic 1, we have
Card(RS(w)) = Card(A) by Corollary 2.2.10, which implies the conclusion since
any set with Card(A) elements generating FA is a basis of FA.
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3.2.3 Derived sets of tree sets

We will use the following closure property of the family of recurrent tree sets.
It generalizes the fact that the derived word of a Sturmian word is Sturmian
(see [45]).

Theorem 3.2.9 Any derived set of a recurrent tree set of characteristic 1 is a
recurrent tree set of characteristic 1.

Proof. Let S be a uniformly recurrent tree set. Let v ∈ S and let f be a coding
morphism for X = RS(v). By Theorem 3.2.5, X is a basis of the free group on
A. Thus f : B∗ → A∗ extends to an isomorphism from FB onto FA.

Set H = f−1(v−1S). By Proposition 1.4.6, the set H is recurrent and
H = f−1(ΓS(v)) ∪ {ε}.

Consider x ∈ H and set y = f(x). Let f ′ be the coding morphism for
X ′ = R′

S(v) associated with f . For a, b ∈ B, we have

(a, b) ∈ BS(x) ⇐⇒ (f ′(a), f(b)) ∈ BX′,X
S (vy),

where BX′,X
S (vy) is the set of edges of the generalized extension graph EX′,X(vy)

(see Section 3.1.3). Indeed,

axb ∈ H ⇔ f(a)yf(b) ∈ ΓS(v) ⇔ vf(a)yf(b) ∈ S ⇔ f ′(a)vyf(b) ∈ S.

The set X ′ is an Sv−1-maximal suffix code and the set X is a v−1S-maximal
prefix code. By Proposition 3.1.13 the generalized extension graph EX′,X(vy)
is a tree. Thus the graph ES(x) is a tree. This shows that H is a tree set of
characteristic 1.

Let us now prove that H is (uniformly) recurrent. Consider x ∈ H \ ε. Set
y = f(x). Let us show that ΓH(x) = f−1(ΓS(vy)) or equivalently f(ΓH(x)) =
ΓS(vy). Consider first r ∈ ΓH(x). Set s = f(r). Then xr = ux with u, ux ∈ H .
Thus ys = wy with w = f(u).

Since u ∈ H \ {ε}, w = f(u) is in ΓS(v), we have vw ∈ A+v ∩ S. This
implies that vys = vwy ∈ A+vy ∩ S and thus that s ∈ ΓS(vy). Conversely,
consider s ∈ ΓS(vy). Since y = f(x), we have s ∈ ΓS(v). Set s = f(r). Since
vys ∈ A+vy∩S, we have ys ∈ A+y∩S. Set ys = wy. Then vwy ∈ A+vy implies
vw ∈ A+v and therefore w ∈ ΓS(v). Setting w = f(u), we obtain f(xr) = ys =
wy ∈ X+y ∩ ΓS(v). Thus r ∈ ΓH(x). This shows that f(ΓH(x)) = ΓS(vy) and
thus that RH(x) = f−1(RS(vy)).

Since S is uniformly recurrent, the set RS(vy) is finite. Since f is an isomor-
phism, RH(x) is also finite, which shows that H is uniformly recurrent.

Example 3.2.10 Let S be the Tribonacci set (see Example 1.1.7), which is is
the set of factors of the infinite word x = abacabaabacababacabaabacaba · · · . We
have RS(a) = {a, ba, ca}. Let g be the coding morphism for RS(a) defined by
g(a) = a, g(b) = ba, g(c) = ca and let g′ be the associated coding morphism for
R′

S(a). We have f = g′π where π is the circular permutation π = (abc). Set
z = g′−1(x). Since g′π(x) = x, we have z = π(x). Thus the derived set of S
with respect to a is the set π(S).
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3.3 Multiplying maps

We now introduce a construction which allows one to build tree sets of charac-
teristic m starting from a tree set of characteristic 1. We will use this method
in Chapter 5 to construct a family of specular sets.

Recall from Section 1.3 the definition of automaton. A transducer is a labeled
graph with vertices in a set Q and edges labeled in Σ× A. The set Q is called
the set of states, the set Σ is called the input alphabet and A is called the
output alphabet. The automaton obtained by erasing the output letters is called
the input automaton (with an unspecified initial state). Similarly, the output
automaton is obtained by erasing the input letters.

Let A be a transducer with set of states Q = {0, 1, . . . ,m− 1} on the input
alphabet Σ and the output alphabet A. We assume that

1. the input automaton is a group automaton, that is, every letter of Σ acts
on Q as a permutation,

2. the output labels of the edges are all distinct.

We define m maps δk : Σ∗ → A∗ corresponding to the initial state k, for
k = 0, 1, . . . ,m−1. Let δk(u) = v if the path starting at state k with input label
u has output v. An m-tuple δ = (δ0, δ1, . . . , δm−1) is called a m-multiplying map
and the transducer A a m-multiplying transducer. The image of a set of words
T on the alphabet Σ by the m-multiplying map δ is the set δ0(T )∪ δ1(T )∪· · ·∪
δm−1(T ).

Theorem 3.3.1 For any tree set T of characteristic c on the alphabet Σ and
any m-multiplying map δ, the image of T by δ is a tree set of characteristic mc.

Proof. Set S = δ0(T )∪ δ1(T )∪ · · · ∪ δm−1(T ). The set S is clearly biextendable
since T is biextendable by definition.

Let us consider a nonempty word x = δi(y), with 0 ≤ i ≤ m− 1. The graph
ES(x) is isomorphic to the graph ET (y). Indeed, let j be the end of the path
with origin i and input label y in the m-multiplying transducer. For ai, bj ∈ A,
one has aixbj ∈ S if and only if ayb ∈ T where a (resp. b) is the input label of
the edge with output label ai (resp. bj) ending in i (resp. with origin j). Thus,
ES(x) is a tree for any nonempty word x ∈ S.

Finally, the graph ES(ε) is, up to orientation, the union of m graphs, all
of them isomorphic to ET (ε). Indeed, consider the map π from S ∩ A2 onto
{0, 1, · · · ,m − 1} which assigns to ab ∈ S ∩ A2 the state i which is the end of
the edge of A with output label a (and the origin of the edge with output label
b). Set Si = π−1(i). We have a partition S ∩ A2 = S0 ∪ S1 ∪ · · · ∪ Sm−1 such
that each graph having Si as set of edges is isomorphic to ET (ε). Since ET (ε) is
a forest of c trees, the graph ES(ε) is a forest of mc trees.

Example 3.3.2 Let B = {α} and let T = Fac (α∗). Let δ be the doubling map
given by the transducer of Figure 3.14.
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0 1

α | a

α | b
Figure 3.14: A doubling automaton.

The image of T by δ is the set S = Fac ((ab)∗) of Example 2.3.3. The graph
ES(ε) is represented in Figure 3.15.

a

b

b

a

Figure 3.15: The graph ES(ε).

The set S is a tree set of characteristic 2 according to Theorem 3.3.1.

Example 3.3.3 Let B = {α, β} and let T be the Fibonacci set (see Exam-
ple 1.1.2). Let δ be the doubling map given by the transducer of Figure 3.16.

0 1β | d
α | a

α | c
β | b

Figure 3.16: A doubling automaton.

The graph ES(ε) is represented in Figure 3.2.

3.4 Palindromes

We close this chapter with a connection between tree sets and palindromes.
The notion of palindromic complexity originates in [35] where it is proved

that a word of length n has at most n+1 palindrome factors. A word of length n
is full if it has n+1 palindrome factors and a factorial set is full (or rich) if all its
elements are full. By a result of [43], a recurrent set closed under reversal is full
if and only if every complete return word to a palindrome in S is a palindrome.
It is known that all Sturmian sets are full [35] and also all natural codings of
interval exchange defined by a symmetric permutation [4].

The fact that a tree set of characteristic 1 is full in the following result
generalizes results of [35, 4].

Proposition 3.4.1 Let T be a recurrent tree set of characteristic 1, closed un-
der reversal. Then T is full.

Proof. We use the following equivalent definition of full sets (see [60]): for any
x ∈ T ,
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(i) if x is not a palindrome, it is neutral;

(ii) otherwise, m(x) + 1 is equal to the number of letters a such that axa is a
palindrome in T (the so-called palindromic extensions).

Since T is a tree set of characteristic 1, every word is neutral. We thus only
have to show that every palindrome has exactly one palindromic extension. Let
x ∈ T be a palindrome. It may be verified that since x is palindrome and T is
closed under reversal, the graph ET (x) is closed under reversal in the sense that
it contains an edge (1⊗ a, b⊗ 1) if and only if it contains the edge (1⊗ b, a⊗ 1).
One may verify that, as a consequence, there is at least one a ∈ A such that
axa ∈ T . Indeed, this can be proved as follows by induction on Card(A). It is
true if Card(A) = 1. Otherwise, let a ∈ A be such that 1⊗ a is a leaf of ET (x).
Then, since the graph is closed under reversal, the vertex a ⊗ 1 is also a leaf.
Set A′ = A \ {a}. The restriction of the graph to the vertices in A′ is a tree
closed under reversal, and thus the property follows by induction. But if there
is another one, the graph would have a cycle. Indeed, assume that axa, bxb ∈ T .
Consider a simple path γ of minimal length from one of 1 ⊗ a, a ⊗ 1 to one of
1⊗b, b⊗1. This path cannot contain the edges corresponding to axa, bxb. Using
these edges and the symmetric of γ, one obtains a cycle. Thus T is full.
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Chapter 4

Bifix codes in tree sets

In this chapter we concentrate on the study of bifix codes in tree sets and their
connection to subgroups of the free group. Some results are true for acyclic sets,
some for tree sets of an arbitrary characteristic and others only for tree sets of
characteristic 1. When it is possible we state and prove the result using the
weakest hypothesis.

In Section 4.1 we prove that bifix codes in acyclic sets are bases of the sub-
group that they generate (Theorem 4.1.1, referred to as the Freeness Theorem).
Moreover, we prove that the submonoid generated by a finite bifix code X in-
cluded in an acyclic set S is such that X∗∩S = 〈X〉∩S (Theorem 4.1.2, referred
to as the Saturation Theorem). In order to prove the Freeness and the Satu-
ration Theorems we introduce some tools: incidence graphs (Section 4.1.1) and
coset automata (Section 4.1.2).

In Section 4.2 we define the finite index basis property that connects bifix
codes with subgroups, and we prove the Finite Index Basis Theorem (Theo-
rem 4.2.1) which states that a recurrent tree set of characteristic 1 has this
property. In the same section we also discuss about tame bases and S-adic
representations.

Section 4.3 is devoted to the study of maximal bifix decoding in tree sets.
we states several closure properties (Theorems 4.3.1, 4.3.3, 4.3.5 and 4.3.17)
showing that the stronger is the hypothesis, the stronger is the result. We also
give a result about the composition of bifix codes in a tree set (Theorem 4.3.11)
and introduce modular codes (Section 4.3.3).

4.1 Bifix codes in acyclic sets

Let X be a subset of the free group. We say that X is free if it is a basis of the
subgroup 〈X〉 generated by X . This means that if x1, x2, . . . , xn ∈ X ∪X−1 are
such that x1x2 · · ·xn is equivalent to ε, then xixi+1 is equivalent to ε for some
1 ≤ i < n.

We will prove the following result (Freeness Theorem).
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Theorem 4.1.1 (Freeness Theorem) A set S is acyclic if and only if any
bifix code X ⊂ S is a free subset of the free group FA.

Let M be a submonoid of A∗ and let H be the subgroup of FA generated
by M . Given a set of words S, the submonoid M is said to be saturated in S
if M ∩ S = H ∩ S. Note that the inclusion M ∩ S ⊂ H ∩ S is always satisfied.
Thus M is saturated if taking the subgroup generated we do not have additional
words of S.

If M is generated by X , then M is saturated in S if and only if X∗ ∩ S =
〈X〉 ∩ S.

Thus, for example, the submonoid recognized by a reversible automaton is
saturated in A∗ (Proposition 1.3.5).

We will prove the following result (Saturation Theorem).

Theorem 4.1.2 (Saturation Theorem) Let S be an acyclic set. The sub-
monoid generated by a bifix code included in S is saturated in S.

As a preliminary to the proof of The Freeness Theorem and the Saturation
Theorem, we first define, in Section 4.1.1, the incidence graph of a finite bifix
code (already used in [7]). We prove a result concerning this graph, implying in
particular that it is acyclic (Proposition 4.1.3).

We then define, in Section 4.1.2, the coset automaton whose states are con-
nected components of the incidence graph. We prove that this automaton is the
Stallings automaton of the subgroup 〈X〉 (Proposition 4.1.7).

Finally, in Sections 4.1.3 and 4.1.4, we prove the Freeness and the Saturation
Theorem and we show some corollaries and examples.

4.1.1 Incidence graph

Let X be a set, let PX be the set of its nonempty proper prefixes and SX be
the set of its nonempty proper suffixes. Recall from [7] that the incidence graph
of X is the undirected graph GX defined as follows. The set of vertices is the
disjoint union of PX and SX . The edges of GX are the pairs (p, s) for p ∈ PX and
s ∈ SX such that ps ∈ X As in any undirected graph, a connected component
of GX is a maximal set of vertices connected by paths.

The following result is proved in [7, Lemma 6.3.3] in the case of an Arnoux-
Rauzy set. We give here a proof in the more general case of an acyclic set. We
call a path reduced if it does not use equal consecutive edges.

Proposition 4.1.3 Let S be an acyclic set, let X ⊂ S be a bifix code and let
GX be the incidence graph of X. Then the following assertions hold.

(i) The graph GX is acyclic.

(ii) The intersection of PX (resp. SX) with each connected component of GX

is a suffix (resp. prefix) code.
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(iii) For every reduced path (v1, u1, . . . , un, vn+1) in GX with u1, . . . , un ∈ PX

and v1, . . . , vn+1 in SX , the longest common prefix of v1, vn+1 is a proper
prefix of all v1, . . . , vn, vn+1.

(iv) Symmetrically, for every reduced path (u1, v1, . . . , vn, un+1) in GX with
u1, . . . , un+1 ∈ PX and v1, . . . , vn ∈ SX , the longest common suffix of
u1, un+1 is a proper suffix of u1, u2, . . . , un+1.

Proof. Assertions (iii) and (iv) imply Assertions (i) and (ii). Indeed, assume
that (iii) holds. Consider a reduced path (v1, u1, . . . , un, vn+1) in GX with
u1, . . . , un ∈ PX and v1, . . . , vn+1 in SX . If v1 = vn+1, then the longest com-
mon prefix of v1, vn+1 is not a proper prefix of them. Thus GX is acyclic and
(i) holds. Next, if v1, vn+1 are comparable for the prefix order, their longest
common prefix is one of them, a contradiction with (iii) again. The assertion
on PX is proved in an analogous way using Assertion (iv).

We prove (iii) and (iv) by induction on n ≥ 1.

The assertions holds for n = 1. Indeed, if u1v1, u1v2 ∈ X and if v1 ∈ SX

is a prefix of v2 ∈ SX , then u1v1 is a prefix of u1v2, a contradiction with
the hypothesis that X is a prefix code. The same holds symmetrically for
u1v1, u2v1 ∈ X since X is a suffix code.

Let n ≥ 2 and assume that the assertions hold for any path of length at
most 2n − 2. We treat the case of a path (v1, u1, . . . , un, vn+1) in GX with
u1, . . . , un ∈ PX and v1, . . . , vn+1 in SX . The other case is symmetric.

Let p be the longest common prefix of v1 and vn+1. We may assume that p
is nonempty since otherwise the statement is obviously true. Any two elements
of the set U = {u1, . . . , un} are connected by a path of length at most 2n − 2
(using elements of {v2, . . . vn}). Thus, by induction hypothesis, U is a suffix
code. Similarly, any two elements of the set V = {v1, . . . , vn} are connected by
a path of length at most 2n− 2 (using elements of {u1, . . . un−1}). Thus V is a
prefix code. We cannot have v1 = p since otherwise, using the fact that unp is a
prefix of unvn+1 and thus in S, the generalized extension graph EU,V (ε) would
have the cycle (p, u1, v2, . . . , un, p), a contradiction since EU,V (ε) is acyclic by
Proposition 3.1.13. Similarly, we cannot have vn+1 = p.

SetW = p−1V and V ′ = (V \pW )∪p. Since V is a prefix code and since p is
a proper prefix of V , the set V ′ is a prefix code. Suppose that p is not a proper
prefix of all v2, . . . , vn. Then there exist i, j with 1 ≤ i < j ≤ n+1 such that p is
a proper prefix of vi, vj but not of any vi+1, . . . , vj−1. Then vi+1, . . . , vj−1 ∈ V ′

and there is the cycle (p, ui, vi+1, ui+1, . . . , vj−1, uj−1, p) in the graph EU,V ′

(ε).
This is in contradiction with Proposition 3.1.13 because, V ′ being a prefix code,
EU,V ′

(ε) is acyclic. Thus p is a proper prefix of all v2, . . . , vn.

Let X be a bifix code and let PX be the set of nonempty proper prefixes of
X . Consider the equivalence θX on PX ∪ {ε} which is the transitive closure of
the relation formed by the pairs p, q ∈ PX ∪ {ε} such that ps, qs ∈ X for some
s ∈ A+. Such a pair corresponds, when p, q 6= ε, to a path p → s → q in the
incidence graph of X . We call the equivalence θX the coset equivalence of X .

53



Thus a class of θX is either reduced to the empty word or it is the intersection
of PX with a connected component of the incidence graph of X .

The following property, proved in [7, Proposition 6.3.5], relates the equiva-
lence θX with the right cosets of H = 〈X〉.

Proposition 4.1.4 Let X be a bifix code, let P = PX ∪{ε} be the set of proper
prefixes of X and let H be the subgroup generated by X. For any p, q ∈ P ,
p ≡ q mod θX implies Hp = Hq.

The following result is proved in [7, Lemmas 6.3.6 and 6.4.2] in the case of
an Arnoux-Rauzy set S. It shows that the equivalence θX is compatible with
the transitions of the literal automaton A = (P, ε, ε) of X∗.

Proposition 4.1.5 Let S be an acyclic set. Let X ⊂ S be a bifix code and let
P = PX ∪{ε} be the set of proper prefixes of X. Let p, q ∈ P and a ∈ A be such
that pa, qa ∈ P ∪X. Then in the literal automaton of X∗, one has p ≡ q mod θX
if and only if p · a ≡ q · a mod θX .

Proof. Assume first that p ≡ q mod θX . We may assume that p, q are nonempty.
Let (u0, v1, u1, . . . , vn, un) be a reduced path in the incidence graph GX ofX with
p = u0, un = q. The corresponding words in X are u0v1, u1v1, u1v2, . . . , unvn.
We may assume that the words ui are pairwise distinct, and that the vi are
pairwise distinct. Moreover, since pa, qa ∈ P ∪ X there exist words v, w such
that pav, qaw ∈ X . Set v0 = av and vn+1 = aw.

By Proposition 4.1.3, a is a proper prefix of v0, v1, . . . , vn+1. Set vi = av′i
for 0 ≤ i ≤ n+ 1.

If pa, qa ∈ P , then (u0a, v
′
1, u1a, . . . , v

′
n, una) is a path from pa to qa in GX .

This shows that pa ≡ qa mod θX .
Next, suppose that pa ∈ X and thus that v0 = a. By Proposition 4.1.3, we

have w = ε since otherwise v0 = a is a proper prefix of vn+1. Thus qa ∈ X and
p · a = q · a.

Conversely, if p · a ≡ q · a mod θX , assume first that pa, qa ∈ P . Then
pa ≡ qa mod θX and thus there is a reduced path (u0, v1, . . . , vn, un) in GX

with u0 = pa and un = qa. By Proposition 4.1.3, a is a proper suffix of
u1, . . . , un. Set ui = u′ia. Thus (p, av1, u

′
1, . . . , q) is a path in GX , showing that

p ≡ q mod θX .
Finally, if pa, qa ∈ X , then (p, a, q) is a path in GX and thus p ≡ q mod θX .

4.1.2 Coset automaton

Let S be an acyclic set and let X ⊂ S be a bifix code. Let P be the set of
poper prefixes of X . We introduce a new automaton denoted BX and called the
coset automaton of X . Let Q be the set of classes of θX with the class of ε still
denoted ε. The coset automaton of X is the automaton BX = (Q, ε, ε) with set
of states Q and transitions induced by the transitions of the literal automaton
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A = (P, ε, ε) of X∗. Formally, or r, s ∈ Q and a ∈ A, one has r · a = s in
the automaton BX if there exist p in the class r and q in the class s such that
p · a = q in the automaton A.

Observe first that the definition is consistent since, by Proposition 4.1.5, if
p ·a and p′ ·a are nonempty and p, p′ are in the same class r, then p ·a and p′ ·a
are in the same class.

Observe next that if there is a path from p to p′ in the automaton A labeled
w, then there is a path from the class r of p to the class r′ of p′ labeled w in
BX .

Example 4.1.6 Let S be the Fibonacci set and let

X = {a, baab, babaabab, babaabaabab}.

The set X is an S-maximal bifix code of S-degree 3 (see [7, Example 6.3.1]).
The automaton BX has three states, as shown in Figure 4.1.

1 2 3

b

b

a

a

a b

Figure 4.1: The automaton BX .

It is a group automaton. State 2 is the class containing b, and state 3 is the
class containing ba. The bifix code generating the submonoid recognized by this
automaton is Z = a ∪ b(ab∗a)∗b.

The following result shows that the coset automaton of X is the Stallings
automaton of the subgroup generated by X (recall Section 1.3).

Proposition 4.1.7 Let S be an acyclic set, and let X ⊂ S be a bifix code. The
coset automaton BX is reversible and describes the subgroup generated by X.
Moreover X ⊂ Z, where Z is the bifix code generating the submonoid recognized
by BX.

Proof. Let A = (P, ε, ε) be the literal automaton of X∗ and set BX = (Q, ε, ε).
By Proposition 4.1.5, the automaton BX is reversible.

Let Z be the bifix code generating the submonoid recognized by BX . To
show the inclusion X ⊂ Z, consider a word x ∈ X . There is a path from ε to ε
labeled x in A, hence also in BX . Since the path in A does not pass by ε except
at its ends and since the class of ε modulo θX is reduced to ε, the path in BX

does not pass by ε except at its ends. Thus x is in Z.
Let us finally show that the coset automaton describes the group H = 〈X〉.

By Proposition 1.3.5, the subgroup described by BX is equal to 〈Z〉. Set K =
〈Z〉. Since X ⊂ Z, we have H ⊂ K. To show the converse inclusion, let us
show by induction on the length of w ∈ A∗ that if, for p, q ∈ P , there is a path
from the class of p to the class of q in BX with label w then Hpw = Hq. By
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Proposition 4.1.4, this holds for w = ε. Next, assume that it is true for w and
consider wa with a ∈ A. Assume that there are states p, q, r ∈ P such that there
is a path from the class of p to the class of q in BX with label w, and an edge from
the class of q to the class of r in BX with the label a. By induction hypothesis,
we have Hpw = Hq. Next, by definition of BX , there is an s ≡ q mod θX such
that s · a ≡ r mod θX . If sa ∈ P , then s · a = sa, and by Proposition 4.1.4,
we have Hs = Hq and Hsa = Hr. Otherwise, sa ∈ X ⊂ H and s · a = r = ε
because the class of ε is a singleton and thus Hqa = Hsa = H = Hr. In both
cases, Hpwa = Hqa = Hsa = Hr. This property shows that if z ∈ Z, then
Hz = H , that is z ∈ H . Thus Z ⊂ H and finally H = K.

4.1.3 Freeness Theorems

We can now prove Theorem 4.1.1. The proof uses Proposition 4.1.3.

Proof of the Freeness Theorem. To prove the necessity of the condition, assume
that for some w ∈ S the graph ES(w) contains a cycle (a1, b1, . . . , ap, bp, a1)
with p ≥ 2, ai ∈ LS(w) and bi ∈ RS(w) for 1 ≤ i ≤ p. Consider the bifix code
X = AwA ∩ S. Then a1wb1, a2wb1, . . . , apwbp, a1wbp ∈ X . But

a1wb1(a2wb1)
−1a2wb2 · · ·apwbp(a1wbp)−1 ≡ ε,

contradicting the fact that X is free.
Let us now show the converse. Assume that S is acyclic and let X ⊂ S be

a bifix code. Set Y = X ∪ X−1. Let y1, . . . , yn ∈ Y . We intend to show that
provided yiyi+1 6≡ ε for 1 ≤ i < n, we have y1 · · · yn 6≡ ε. We may assume n ≥ 3.
We say that a sequence (ui, vi, wi)1≤i≤n of elements of the free group on A is
admissible with respect to y1, . . . , yn if the following conditions are satisfied (see
Figure 4.2):

(i) yi = uiviwi for 1 ≤ i ≤ n,

(ii) u1 = wn = ε and v1, vn 6= ε,

(iii) wiui+1 ≡ ε for 1 ≤ i ≤ n− 1,

(iv) for 1 ≤ i < j ≤ n, if vi, vj 6= ε and vk = ε for i + 1 ≤ k ≤ j − 1, then vivj
is reduced.

Note that if the sequence (ui, vi, wi)1≤i≤n is admissible with respect to
y1, . . . , yn, then y1 · · · yn is equivalent to the word v1 · · · vn which is a reduced
nonempty word. Thus, in particular y1 · · · yn 6≡ ε.

v1 w1 ui vi wi ui+1 vi+1 wi+1 un vn

y1 yi yi+1 ynFigure 4.2: The word y1 · · · yn.
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Let us show by induction on n that for any y1, . . . , yn such that yiyi+1 6≡ ε
for 1 ≤ i ≤ n− 1, there exists an admissible sequence with respect to y1 . . . , yn.

The property is true for n = 1. Indeed, we take u1 = w1 = ε.

Assume that the property is true for n. Among the possible admissible
sequences with respect to the y1, . . . , yn, we choose one such that |vn| is maximal.

Set vn = v′nw
′
n and yn+1 = un+1vn+1 with |w′

n| = |un+1| maximal such that
w′

nun+1 ≡ ε. Note that vn+1 6= ε since otherwise yn+1 would cancel completely
with yn.

If v′n 6= ε, the sequence

(ε, v1, w1), . . . , (un−1, vn−1, wn−1), (un, v
′
n, w

′
n), (un+1, vn+1, ε)

is admissible with respect to y1, . . . , yn+1.

Otherwise, let i with 1 ≤ i < n be the largest integer such that vi 6= ε.
Observe that wi, wi+1, . . . , wn−1, w

′
n are nonempty. Indeed, if wj = ε with

i ≤ j ≤ n− 1, then uj+1 = ε and thus yj+1 cancels completely with yj+2. Next,
if vn = w′

n = ε, then yn cancels completely with yn−1.

Assume that yi ∈ X (the other case is symmetric). If yn+1 ∈ X (and thus
n− i is odd), then vivn+1 is reduced because they are both in A∗ and vn+1 6= ε
as we have already seen. Thus the sequence

(ε, v1, w1), . . . , (un−1, vn−1, wn−1), (un, ε, w
′
n), (un+1, vn+1, ε)

is admissible with respect to y1, . . . , yn+1.

uivi wi = u−1
i+1

ui+2 = w−1
i+1 wi+2 = u−1

i+3

un = w−1
n−1 vn = u−1

n+1

v−1
n+1

Figure 4.3: The graph GX .

Otherwise, let s be the longest common suffix of uivi and v
−1
n+1.

There is a path in the incidence graph GX from uivi to v
−1
n+1 (see Figure 4.3).

By Proposition 4.1.3, s is a proper suffix of uivi, w
−1
i+1, . . . , w

−1
n−1, v

−1
n+1. This

implies that s−1 is a proper prefix of wi+1, . . . , wn−1, vn+1.
It is not possible that vi is a suffix of s. Indeed, this would imply that

v−1
i is a proper prefix of wi+1, . . . , wn−1, vn+1. But then we could change
the n − i + 1 last terms of the sequence (uj , vj , wj)1≤j≤n into (ui, ε, viwi),
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(ui+1v
−1
i , ε, ρ(viwi+1)), . . . , (ρ(unv

−1
i ), vivn, ε) resulting in an admissible sequence

with a longer vn.
Thus s is a proper suffix of vi. Since s is a proper suffix of vi and v−1

n+1,

there are nonempty words p, q ∈ A∗ such that vi = ps and v−1
n+1 = qs. More-

over, the word pq−1 is reduced since s is the longest common suffix of vi and
v−1
n+1. Thus we can change the last n − i + 2 terms of the sequence formed by
(uj , vj , wj)1≤j≤n−1 followed by (un, ε, vn), (un+1, vn+1, ε) into

(ui, p, swi), (ui+1s
−1, ε, ρ(swi+1)), . . . , (ρ(uns

−1), ε, svn), (un+1s
−1, q−1, ε)

(see Figure 4.4).

ui vi wi ui+1 wi+1 ui+2 wi+2 un vn un+1 vn+1

p s s−1 s s s−1q−1

Figure 4.4: The word yi · · · yn+1.

Since the word pq−1 is reduced, the new sequence is admissible.
This shows that y1 · · · yn 6≡ ε for any sequence y1, . . . , yn ∈ X ∪ X−1 such

that yiyi+1 6≡ ε for 1 ≤ i < n. Thus X is free.

We illustrate Theorem 4.1.1 in the following example.

Example 4.1.8 Let S be as in Example 3.1.5 and let X = S ∩ A2. We have

X = {ab, ac, bc, ca, cd, da}.

The set X is an S-maximal bifix code. It is a basis of a subgroup of infinite
index. Indeed, the minimal automaton of X∗ is represented in Figure 4.5 on the
left. The Stallings automaton of the subgroup H generated by X is obtained by
merging 3 with 4 and 2 with 5 (recall Section 1.3). It is represented in Figure 4.5
on the right. Since it is not a group automaton, the subgroup has infinite index
(see Proposition 1.3.6).

2 1 3

4

5

c

a, d a

b, c

b c

da

2 1 3

c, d

a, d a, b

b, c

Figure 4.5: The minimal automaton of X∗ (on the left) and the Stallings au-
tomaton of 〈X〉 (on the right).
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The setX is a basis ofH by Theorem 4.1.1. This can also be seen by perform-
ing Nielsen transformations on the set X (see [53] for example). Indeed, replac-
ing bc and da by bc(ac)−1 and da(ca)−1, we obtainX ′ = {ab, ac, ba−1, ca, cd, dc−1}
which is Nielsen reduced. Thus X ′ is a basis of H and thus also X .

Note that, in agreement with Theorem 4.1.2, the two words of length 2 which
are in H but not in X∗, namely bb and dd, are not in S.

Theorem 4.1.1 is false if X is prefix but not bifix, as shown in the following
example.

Example 4.1.9 Let S be the Fibonacci set and let X ⊂ S be the prefix code
X = {aa, ab, b}. Then a = (ab)b−1 is in 〈X〉 and thus X generates the free
group on A. Thus X is not a basis and X∗ ∩ S is strictly included in 〈X〉 ∩ S
(for example a /∈ X∗).

The proof of Theorem 4.1.1 proves not only that bifix codes in acyclic sets
are free, but also that, in a sense made more precise below, the associated
reductions are of low complexity.

We define the height of a word on A ∪ A−1 in the following recursive way.
The reduced words (including the empty word) are the only words of height 0.
The height of a word w on A ∪ A−1 equivalent to ε is the least integer h such
that w is a concatenation of words of the form w = uvu−1 where u is a word on
A ∪ A−1 and v is a word of height h− 1 equivalent to ε.

We define the height of an arbitrary word w on A∪A−1 as the least integer
h such that w = z0v1z1 · · · vnzn with z0, . . . , zn equivalent to ε of height at most
h and v1 · · · vn reduced.

In this way, any word on A ∪ A−1 has finite height. For example, the word
aa−1cbb−1 has height 1 and aaa−1bb−1a−1 has height 2.

Proposition 4.1.10 Let S be an acyclic set and let X ⊂ S be a bifix code. Any
word y = y1 · · · yn with yi ∈ X ∪ X−1 for 1 ≤ i ≤ n such that yiyi+1 6≡ ε for
1 ≤ i ≤ n− 1 has height at most 1.

Proof. The proof of Theorem 4.1.1 shows that y = z0v1z1 · · · zn−1vnzn where

(i) z0, . . . , zn have height at most 1,

(ii) v1 · · · vn is reduced.

Thus y has height at most 1.

Example 4.1.11 Let X be as in Example 4.1.8. The word bc(ac)−1ab, which
reduces to bb, has height 1.
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4.1.4 Saturation Theorem

We now give a proof of Theorem 4.1.2. It uses Proposition 4.1.7.

Proof of the Saturation Theorem. Let S be an acyclic set and let X ⊂ S be a
bifix code. We have to prove that X∗ ∩ S = 〈X〉 ∩ S. Since X∗ ∩ S ⊂ 〈X〉 ∩ S,
we only need to prove the reverse inclusion.

Consider the bifix code Z generating the submonoid recognized by the coset
automaton BX associated to X . Set Y = Z ∩S. By Theorem 4.1.1, Y is a basis
of 〈Y 〉.

By Proposition 4.1.7, we have X ⊂ Z and thus X ⊂ Y .
Since any reversible automaton is minimal and since the automaton BX is

reversible by Proposition 4.1.7, it is equal to the minimal automaton of Z∗. Let
K be the subgroup generated by Z. By Proposition 1.3.2, we have K∩A∗ = Z∗.

This shows that

〈X〉 ∩ S ⊂ K ∩ S = K ∩ A∗ ∩ S = Z∗ ∩ S = Y ∗ ∩ S ⊂ Y ∗.

The first inclusion holds because X ⊂ Z implies 〈X〉 ⊂ K. The last equality
follows from the fact that if z1 · · · zn ∈ S with z1, . . . , zn ∈ Z, then each zi is in
S (because S is factorial) and hence in Z∩S = Y . Thus 〈X〉∩S ⊂ Y ∗. Consider
x ∈ 〈X〉 ∩ S. Then x ≡ x1 · · ·xn with xi ∈ X ∪X−1. But since 〈X〉 ∩ S ⊂ Y ∗,
we have also x = y1 · · · ym with yi ∈ Y . Since X ⊂ Y and since Y is free, this
forces n = m and xi = yi. Thus all xi are in X and x is in X∗. This shows that
〈X〉 ∩ S ⊂ X∗ which was to be proved.

We note the following corollary of Theorem 4.1.2, which shows that bifix
codes in acyclic sets satisfy a property which is stronger than being bifix (or
more precisely that the submonoid X∗ satisfies a property stronger than being
right and left unitary).

Corollary 4.1.12 Let S be an acyclic set, let X ⊂ S be a bifix code and let
H = 〈X〉. For any u, v ∈ S,

(i) if u, uv ∈ H ∩ S, then v ∈ X∗,

(ii) if v, uv ∈ H ∩ S, then u ∈ X∗.

Proof. Assume that u, uv ∈ H ∩ S. Since v ≡ u−1(uv), we have v ∈ H . But
v ∈ H ∩ S implies v ∈ X∗ by Theorem 4.1.2. This proves (i). The proof of (ii)
is symmetric.

We can express Corollary 4.1.12 in a different way. Let S be an acyclic set
and let X ⊂ S be a bifix code. Then no nonempty word of 〈X〉 can be a proper
prefix (or suffix) of a word of X . Indeed, assume that u ∈ 〈X〉 is a prefix of a
word of X . Then u is in 〈X〉 ∩ S and thus in X∗ since X∗ is saturated in S.
This implies u = ε or u ∈ X .
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4.2 Finite index basis property

In this Section we study the connection between tree sets and subgroups of the
free set. The main result of the Section, namely the Finite Index Basis Theorem,
is given in Section 4.2.1. In the same section we also show a converse of this
theorem (Corollary 4.2.6).

In Section 4.2.2 we define tame bases and prove that in a recurrent tree set
of characteristic 1 any basis of the free group is tame (Theorem 4.2.11).

Finally, we define in Section 4.2.3 S-adic representations and show that every
recurrent tree set of characteristic 1 has a primitive S-adic representation with
S finite and containing positive automorphisms only.

4.2.1 The Finite Index Basis Theorem

Let S be a recurrent set containing the alphabet A. We say that S has the
finite index basis property if the following holds. A finite bifix code X ⊂ S is
an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup
of index d of the free group on A.

We refer to the nex result as the Finite Index Basis Theorem.

Theorem 4.2.1 (Finite Index Basis Theorem) A recurrent tree set of char-
acteristic 1 has the finite index basis property.

Note that the Cardinality Theorem (Theorem 2.2.1) holds for a set S satis-
fying the finite index basis property. Indeed, by Schreier’s formula a basis of a
subgroup of index d of a free group on s generators has (s − 1)d + 1 elements.
Since a tree set of characteristic 1 is in particular a neutral set of characteristic
1, the formula (1) of Theorem 2.2.1 is verified.

Proof of the Finite Index Basis Theorem. Let S be a recurrent tree set of
characteristic 1. Assume first that X is a finite S-maximal bifix code of S-
degree d. Let P be the set of proper prefixes of X . Let H be the subgroup
generated by X .

Let u ∈ S be a word such that δX(u) = d, or, equivalently, which is not
an internal factor of X (recall Section 1.2). Let Q be the set formed of the d
suffixes of u which are in P .

For any v ∈ V the map p 7→ q from Q into itself defined by pv ∈ Hq is a
permutation of Q. Indeed, suppose that for p, p′ ∈ Q, one has pv, p′v ∈ Hq for
some q ∈ Q. Then qv−1 is in Hp∩Hp′ and thus p = p′ by the above argument.

The set V is a subgroup of FA. Indeed, ε ∈ V . Next, let v ∈ V . Then
for any q ∈ Q, since v defines a permutation of Q, there is a p ∈ Q such that
pv ∈ Hq. Then qv−1 ∈ Hp. This shows that v−1 ∈ V . Next, if v, w ∈ V , then
Qvw ⊂ HQw ⊂ HQ and thus vw ∈ V .

We show that RS(u), the set of right return words to u in S, is contained
in V . Indeed, let q ∈ Q and y ∈ RS(u). Since q is a suffix of u, qy is a suffix
of uy, and since uy is in S (by definition of RS(u)), also qy is in S. Since X
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is an S-maximal bifix code, it is an S-maximal prefix code and thus it is right
S-complete (recall Section 1.2). This implies that qy is a prefix of a word in
X∗ and thus there is a word r ∈ P such that qy ∈ X∗r. We verify that the
word r is a suffix of u. Since y ∈ RS(u), there is a word y′ such that uy = y′u.
Consequently, r is a suffix of y′u, and in fact the word r is a suffix of u. Indeed,
one has |r| ≤ |u| since otherwise u is in the set I(X) of internal factors of X ,
and this is not the case. Thus we have r ∈ Q (see Figure 4.6). Since X∗ ⊂ H
and r ∈ Q, we have qy ∈ HQ. Thus y ∈ V .

u

u y

q

r

Figure 4.6: A word y ∈ RS(u).

Let us first show that the cosetsHq for q ∈ Q are disjoint. Indeed, Hp∩Hq 6=
∅ implies Hp = Hq. Any p, q ∈ Q are comparable for the suffix order. Assuming
that q is longer than p, we have q = tp for some t ∈ P . Then Hp = Hq implies
Ht = H and thus t ∈ H ∩ S. By Theorem 3.2.5, since S is acyclic, this implies
t ∈ X∗ and thus t = ε. Thus p = q. Let

V = {v ∈ FA | Qv ⊂ HQ}.

By Theorem 3.2.5, the group generated by RS(u) is the free group on A. Since
RS(u) ⊂ V , and since V is a subgroup of FA, we have V = FA. Thus Qw ⊂ HQ
for any w ∈ FA. Since ε ∈ Q, we have in particular w ∈ HQ. Thus FA = HQ.
Since Card(Q) = d, and since the right cosets Hq for q ∈ Q are pairwise disjoint,
this shows that H is a subgroup of index d. Since S is a recurrent neutral set,
by Theorem 2.2.1, we have Card(X) = d(Card(A)−1)+1. In view of Schreier’s
Formula, this implies that X is a basis of H .

Assume conversely that the finite bifix code X ⊂ S is a basis of the group
H = 〈X〉 and that H has index d. Since X is a basis of H , by Schreier’s
Formula, we have Card(X) = (Card(A) − 1)d + 1. The case Card(A) = 1 is
straightforward, thus we assume Card(A) ≥ 2. Recall that a recurrent tree
set is uniformly recurrent (Corollary 2.2.9). By [7, Theorem 4.4.3], if S is a
uniformly recurrent set, any finite bifix code contained in S is contained in a
finite S-maximal bifix code. Thus there is a finite S-maximal bifix code Y
containing X . Let e be the S-degree of Y . By the first part of the proof, Y
is a basis of a subgroup K of index e of the free group on A. In particular, it
has (Card(A)− 1)e+ 1 elements. Since X ⊂ Y , we have (Card(A)− 1)d+ 1 ≤
(Card(A) − 1)e + 1 and thus d ≤ e. On the other hand, since H is included in
K, d is a multiple of e and thus e ≤ d. We conclude that d = e and thus that
X = Y .

The following examples shows that Theorem 4.2.1 may be false for a set S
which does not satisfy some of the hypotheses.
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The first example is a recurrent set which is not neutral.

Example 4.2.2 Let S be the Chacon set (see Example 1.1.3). We have seen
that S is not neutral and thus not a tree set. The set S∩A2 = {aa, ab, bc, ca, cb}
is an S-maximal bifix code of S-degree 2. It is not a basis since ca(aa)−1ab = cb.
Thus S does not satisfy the finite index basis property.

In the second example, the set is neutral but not a tree set and is not
recurrent.

Example 4.2.3 Let S be the set of Example 3.1.7. It is not a tree set (and it
is not either recurrent). The set S ∩A2 is the same as in the Chacon set. Thus
S does not satisfy the finite index basis property.

In the last example we have a recurrent set which is neutral but not a tree
set.

Example 4.2.4 Let S be the set on the alphabet B = {1, 2, 3} of Exam-
ple 3.1.6. We have seen that S is neutral but not a tree set.

Let X = S ∩B2. We have X = {12, 13, 22, 23, 31}. The set X is not a basis
since 13 = 12(22)−123. Thus S does not satisfy the finite index basis property.

We close this section with a converse of Theorem 4.2.1.

Proposition 4.2.5 A biextendable set S such that S ∩ An is a basis of the
subgroup 〈An〉 for all n ≥ 1 is a tree set of characteristic 1.

Proof. Set k = Card(A) − 1. Since An generates a subgroup of index n, the
hypothesis implies that Card(An ∩ S) = kn+ 1 for all n ≥ 1. Consider w ∈ S
and set m = |w|. The set X = AwA ∩ S is included in Y = S ∩Am+2. Since Y
is a basis of a subgroup, X ⊂ Y is a basis of the subgroup 〈X〉.

This implies that the graph ES(w) is acyclic. Indeed, assume that the path
(a1, b1, . . . , ap, bp, a1) is a cycle in ES(w) with p ≥ 2, ai ∈ LS(w), bi ∈ RS(w)
for 1 ≤ i ≤ p and a1 6= ap. Then a1wb1, a2wb1, . . . , apwbp, a1wbp ∈ X . But

a1wb1(a2wb1)
−1a2wb2 · · ·apwbp(a1wbp)−1 = ε

contradicting the fact that X is a basis.
Since ES(w) is an acyclic graph with ℓS(w)+rS(w) vertices and bS(w) edges,

we have bS(w) ≤ ℓS(w) + rS(w) − 1. But then

Card(Am+2 ∩ S) =
∑

w∈Am∩S

bS(w) ≤
∑

w∈Am∩S

(ℓS(w) + rS(w) − 1)

≤ 2Card(Am+1 ∩ S)− Card(Am ∩ S)
≤ k(m+ 2) + 1.

Since Card(Am+2 ∩ S) = k(m + 2) + 1, we have bS(w) = ℓS(w) + rS(w) − 1
for all w ∈ Am. This implies that ES(w) is a tree for all w ∈ S, including the
emptyword. Thus S is a tree set of characteristic 1.
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Corollary 4.2.6 A recurrent set which has the finite index basis property is a
tree set of characteristic 1.

Proof. Let S be a recurrent set having the finite index basis property. For any
n ≥ 1, the set S∩An is an S-maximal bifix code of S-degree n (Example 1.2.2).
Thus it is a basis of a subgroup of index n. Since it is included in the subgroup
generated by An, which has index n, it is a basis of this subgroup. This implies
that S is a tree set by Proposition 4.2.5.

4.2.2 Tame bases

An automorphism α of the free group on A is called positive if α(a) ∈ A+ for
every a ∈ A. We say that a positive automorphism of the free group on A is
tame 1 if it belongs to the submonoid generated by the permutations of A and
the automorphisms αa,b, α̃a,b defined for a, b ∈ A with a 6= b by

αa,b(c) =

{
ab if c = a,

c otherwise
and α̃a,b(c) =

{
ba if c = a,

c otherwise.

Thus αa,b places a letter b after each a and α̃a,b places a letter b before each a.
The above automorphisms and the permutations of A are called the elementary
positive automorphisms on A. The monoid of positive automorphisms is not
finitely generated as soon as the alphabet has at least three generators (see [64]).

A basis X of the free group is positive if X ⊂ A+. A positive basis X of the
free group is tame if there exists a tame automorphism α such that X = α(A).

Example 4.2.7 The set X = {ba, cba, cca} is a tame basis of the free group on
{a, b, c}. Indeed, one has the following sequence of elementary automorphisms.

(b, c, a)
αc,b→ (b, cb, a)

α̃2
a,c→ (b, cb, cca)

αb,a→ (ba, cba, cca).

The fact that X is a basis can be checked directly by the fact that (cba)(ba)−1 =
c, c−2(cca) = a and finally (ba)a−1 = b.

The following result will play a key role in the proof of the main result of
this section (Theorem 4.2.11).

Proposition 4.2.8 A set X ⊂ A+ is a tame basis of the free group on A if and
only if X = A or there is a tame basis Y of the free group on A and u, v ∈ Y
such that X = (Y \ v) ∪ uv or X = (Y \ u) ∪ uv.

1The word tame (as opposed to wild) is used here on analogy with its use in ring theory
(see [24]). The tame automorphisms as introduced here should, strictly speaking, be called
positive tame automophisms since the group of all automorphisms, positive or not, is tame in
the sense that it is generated by the elementary automorphisms.
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Proof. Assume first that X is a tame basis of the free group on A. Then
X = α(A) where α is a tame automorphism of 〈A〉. Then α = α1α2 · · ·αn where
the αi are elementary positive automorphisms. We use an induction on n. If
n = 0, then X = A. If αn is a permutation of A, then X = α1α2 · · ·αn−1(A)
and the result holds by induction hypothesis. Otherwise, set β = α1 · · ·αn−1

and Y = β(A). By induction hypothesis, Y is tame. If αn = αa,b, set u = β(a)
and v = β(b) = α(b). Then X = (Y \u)∪uv and thus the condition is satisfied.
The case were αn = α̃a,b is symmetrical.

Conversely, assume that Y is a tame basis and that u, v ∈ Y are such that
X = (Y \ u) ∪ uv. Then, there is a tame automorphism β of 〈A〉 such that
Y = β(A). Set a = β−1(u) and b = β−1(v). Then X = βαa,b(A) and thus X is
a tame basis.

We note the following corollary.

Corollary 4.2.9 A tame basis of the free group which is a bifix code is the
alphabet.

Proof. Assume that X is a tame basis which is not the alphabet. By Proposi-
tion 4.2.8 there is a tame basis Y and u, v ∈ Y such that X = (Y \ v) ∪ uv or
X = (Y \ u) ∪ uv. In the first case, X is not prefix. In the second one, it is not
suffix.

The following example is from [64].

Example 4.2.10 The set X = {ab, acb, acc} is a basis of the free group on
{a, b, c}. Indeed, accb = (acb)(ab)−1(acb) ∈ 〈X〉 and thus b = (acc)−1accb ∈
〈X〉, which implies easily that a, c ∈ 〈X〉. The set X is bifix and thus it is not
a tame basis by Corollary 4.2.9.

The following result is a remarkable consequence of Theorem 4.2.1.

Theorem 4.2.11 Any basis of the free group included in a recurrent tree set is
tame.

Proof. Let S be a recurrent tree set. Let X ⊂ S be a basis of the free group on
A. Since A is finite, X is finite (and of the same cardinality as A). We use an
induction on the sum λ(X) of the lengths of the words of X . If X is bifix, by
Theorem 4.2.1, it is an S-maximal bifix code of S-degree 1. Thus X = A (see
Example 1.2.3). Next assume for example that X is not prefix. Then there are
nonempty words u, v such that u, uv ∈ X . Let Y = (X \ uv) ∪ v. Then Y is a
basis of the free group and λ(Y ) < λ(X). By induction hypothesis, Y is tame.
Since X = (Y \ v) ∪ uv, X is tame by Proposition 4.2.8.

Example 4.2.12 The setX = {ab, acb, acc} is a basis of the free group which is
not tame (see Example 4.2.10). Accordingly, the extension graph EX(ε) relative
to the set of factors of X is not a tree (see Figure 4.7).
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Figure 4.7: The graph EX(ε).

4.2.3 S-adic representations

In this section we study S-adic representations of tree sets. This notion was
introduced in [38], using a terminology initiated by Vershik and coined out
by B. Host. We first recall a general construction allowing to build S-adic
representations of any recurrent aperiodic set (Proposition 4.2.14) which is based
on return words. Using Theorem 4.2.11, we show that this construction actually
provides Se-representations of recurrent tree sets (Theorem 4.2.15), where Se is
the set of elementary positive automorphisms of the free group on A.

Let S be a set of morphisms and h = (σn)n∈N be a sequence in SN with
σn : A∗

n+1 → A∗
n and A0 = A.

We let Th denote the set of words
⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)). We call a
factorial set T an S-adic set if there exists h ∈ SN such that T = Th. In this
case, the sequence h is called an S-adic representation of T .

Example 4.2.13 Any Arnoux-Rauzy set is S-adic with a finite set S. This
results from the fact that any Arnoux-Rauzy word is obtained by iterating a
sequence of morphism of the form ψa for a ∈ A defined by ψa(a) = a and
ψa(b) = ab for b 6= a (see [3] or [7]).

A sequence of morphisms (σn)n∈N is said to be everywhere growing if mina∈An

|σ0 · · ·σn−1(a)| goes to infinity as n increases. A sequence of morphisms (σn)n∈N

is said to be primitive if for all r ≥ 0 there exists s > r such that all letters of
Ar occur in all images σr · · ·σs−1(a), a ∈ As. Obviously any primitive sequence
of morphisms is everywhere growing.

A uniformly recurrent set T is said to be aperiodic if it contains at least one
right-special factor of each length. The next (well-known) proposition provides
a general construction to get a primitive S-adic representation of any aperiodic
uniformly recurrent set T .

It complements the main result of [38] asserting that any minimal symbolic
system on a finite alphabet A with at most linear factor complexity has an
everywhere growing S-adic representation with S finite.

Proposition 4.2.14 An aperiodic factorial set T ⊂ A∗ is uniformly recurrent
if and only if it has a primitive S-adic representation for some (possibly infinite)
set S of morphisms.

Proof. Let S be a set of morphisms and h = (σn : A∗
n+1 → A∗

n)n∈N ∈ SN be
a primitive sequence of morphisms such that T =

⋂
n∈N

Fac(σ0 · · ·σn(A∗
n+1)).

Consider a word u ∈ T and let us prove that u ∈ Fac(v) for all long enough
v ∈ T . The sequence h being everywhere growing, there is an integer r > 0
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such that mina∈Ar
|σ0 · · ·σr−1(a)| > |u|. As T =

⋂
n∈N

Fac(σ0 · · ·σn(A∗
n+1)),

there is an integer s > r, two letters a, b ∈ Ar and a letter c ∈ As such that u ∈
Fac(σ0 · · ·σr−1(ab)) and ab ∈ Fac(σr · · ·σs−1(c)). The sequence h being primi-
tive, there is an integer t > s such that c occurs in σs · · ·σt−1(d) for all d ∈ At.
Thus u is a factor of all words v ∈ T such that |v| ≥ 2maxd∈At

|σ0 · · ·σt−1(d)|
and T is uniformly recurrent.

Let us prove the converse. Let (un)n∈N ∈ TN be a non-ultimately periodic
sequence such that un is suffix of un+1. By assumption, T is uniformly recurrent
so RT (un+1) is finite for all n. The set T being aperiodic, RT (un+1) also has
cardinality at least 2 for all n. For all n, let An = {0, . . . ,Card(RT (un))−1} and
let αn : A∗

n → A∗ be a coding morphism forRT (un). The word un being suffix of
un+1, we have αn+1(An+1) ⊂ αn(A

+
n ). Since αn(An) = RT (un) is a prefix code,

there is a unique morphism σn : A∗
n+1 → A∗

n such that αnσn = αn+1. For all n
we get RT (un) = α0σ0σ1 · · ·σn−1(An) and T =

⋂
n∈N

Fac(α0σ0 · · ·σn(A∗
n+1)).

Without loss of generality, we can suppose that u0 = ε and A0 = A. In that
case we get α0 = id and the set S thus has an S-adic representation with
S = {σn | n ∈ N}.

Let us show that h = (σn)n∈N is everywhere growing. If not, there is a
sequence of letters (an ∈ An)n≥N such that σn(an+1) = an for all n ≥ N for
some N ≥ 1. This means that the word v = σ0 · · ·σn(an) ∈ T is a return word
to un for all n ≥ N . The sequence (|un|)n∈N being unbounded, the word vk

belongs to T for all positive integers k, which contradicts the uniform recurrence
of T .

Let us show that h is primitive. The set T being uniformly recurrent, for
all n ∈ N there exists Nn such that all words of T ∩ A≤n occur in all words of
T∩A≥Nn . Let r ∈ N and let u = σ0 · · ·σr−1(a) for some a ∈ Ar. Let s > r be an
integer such that minb∈As

|σ0 · · ·σs−1(b)| ≥ N|u|. Thus u occurs in σ0 · · ·σs−1(b)
for all b ∈ As. As σ0 · · ·σs−1(As) ⊂ σ0 · · ·σr−1(A

+
r ) and as σ0 · · ·σr−1(Ar) =

RT (ur) is a prefix code, the letter a ∈ Ar occurs in σr · · ·σs−1(b) for all b ∈ Ar.

Note that even for uniformly recurrent sets with linear factor complexity, the
set of morphisms S = {σn | n ∈ N} considered in Proposition 4.2.14 is usually
infinite as well as the sequence of alphabets (An)n∈N is usually unbounded
(see [37]). For tree sets T , the next theorem significantly improves the only
if part of Proposition 4.2.14. For such sets, the set S can be replaced by the set
Se of elementary positive automorphisms. In particular, An is equal to A for all
n. The following theorem also improve the main result of [38], because under
our hypothesi, we obtain the primitivity of the representation.

Theorem 4.2.15 If T is a recurrent tree set of characteristic 1 over an alphabet
A, then it has a primitive Se-adic representation.

Proof. For any non-ultimately periodic sequence (un)n∈N ∈ TN such that u0 = ε
and un is suffix of un+1, the sequence of morphisms (σn)n∈N built in the proof
of Proposition 4.2.14 is a primitive S-adic representation of T with S = {σn |
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n ∈ N}. Therefore, all we need to do is to consider such a sequence (un)n∈N

such that σ is tame for all n.
Let u1 = a(0) be a letter in A. Set A0 = A and let σ0 : A∗

1 → A∗
0 be a coding

morphism for RT (u1). By Theorem 3.2.5, the set RT (u1) is a basis of the free
group on A. By Theorem 4.2.11, the morphism σ0 : A∗

1 → A∗
0 is tame (A0 = A).

Let a(1) ∈ A1 be a letter and set u2 = σ0(a
(1)). Thus u2 ∈ RT (u1) and u1 is a

suffix of u2. By Theorem 3.2.9, the derived set T (1) = σ−1
0 (T ) is a (uniformly)

recurrent tree set on the alphabet A. We thus reiterate the process with a(1)

and we conclude by induction with un = σ0 · · ·σn−2(a
(n−1)) for all n ≥ 2.

The converse of Theorem 4.2.15 is not true, as shown by Example 4.2.16
below.

Example 4.2.16 Let A = {a, b, c} and let f : a 7→ ac, b 7→ bac, c 7→ cb. The
set S of factors of the fixed point fω(a) is not a tree set since bb, bc, cb, cc ∈ S
and thus GS(ε) has a cycle although f is a tame automorphism since f =
αa,cαc,bαb,a.

In the case of a ternary alphabet, a characterization of tree sets by their
S-adic representation can be proved [50], showing that there exists a Büchi
automaton on the alphabet Se recognizing the set of S-adic representations of
recurrent tree sets.

4.3 Bifix decoding of tree sets

In this Section we introduce several results concerning maximal bifix decoding.
In Section 4.3.1 we prove that the family of acyclic sets are closed under maximal
bifix decoding (Theorem 4.3.1), and that the same closure property is true for
tree set, provided the original set is recurrent (Theorem 4.3.3). Moreover, we
focus in the case of a tree set of characteristic 1, proving that in that case the
recurrence is preserved (Theorem 4.3.5).

Composition of bifix codes is treated in Section 4.3.2, while modular codes
are introduced in Section 4.3.3. In this last section we also consider the case of
a decoding under a special family of maximal bifix codes (Theorem 4.3.17).

4.3.1 Maximal bifix decoding

In this section we prove the counterpart of Theorem 2.3.1 for acyclic and tree
sets.

Recall, from Section 1.2 that given a coding morphism f for a finite (S-
maximal) bifix code X ⊂ S, the set f−1(S) is a (maximal) bifix decoding of
S.

Theorem 4.3.1 Any biextendable set which is the bifix decoding of an acyclic
set is acyclic.
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Proof. Let S be an acyclic set and let f : B∗ → A∗ be a coding morphism for a
finite bifix codeX ⊂ S such that f−1(S) is biextendable. Let u ∈ f−1(S) and let
v = f(u). Since X is a finite bifix code, it is both a suffix code and a prefix code.
Thus the generalized extension graph EX,X(v) is acyclic by Proposition 3.1.11.
Since E(u) is isomorphic with EX,X(v), it is also acyclic. Thus f−1(S) is acyclic.

The previous statement is not satisfactory because of the assumption that
f−1(S) is biextendable which is added to obtain the conclusion. The following
example shows that the condition is necessary.

Example 4.3.2 Let S be the Fibonacci set and let f be the coding morphism
for X = {aa, ab} defined by f(u) = aa, f(v) = ab. Then f−1(S) is the finite
set {u, v, vu, vv, vvu} and thus not biextendable. Note however that for any
w ∈ f−1(S), the graph E(w) is acyclic.

One may verify that a sufficient condition for f−1(S) to be biextendable is
that X is an S-maximal prefix code and an S-maximal suffix code (when S is
recurrent, this is equivalent to the fact that X is an S-maximal bifix code).

The following result is a consequence of Proposition 3.1.13.

Theorem 4.3.3 Any maximal bifix decoding of a recurrent tree set is a tree set
with the same characteristic.

Proof. Let S be a recurrent tree set of characteristic c and let f : B∗ →
A∗ be a coding morphism for a finite S-maximal bifix code X . By definition
S is acyclic. By Theorem 4.3.1, the set U = f−1(S) is also acyclic. From

Proposition 2.3.2, we have that mU (f
−1(w)) = mX,X

S (w) = mS(w) for every
w ∈ S. Thus mU (u) = 0 for every nonempty word u and mU (ε) = χ(S). By
an elementary result of graph theory it follows that EU (u) is a tree for every
nonempty u ∈ U and EU (ε) is a forest of χ(S) trees. Hence U is a tree set of
characteristic χ(U) = χ(S).

Example 4.3.4 Let S be the Fibonacci set and let X = A2 ∩ S = {aa, ab, ba}.
Let B = {u, v, w} and let f be the coding morphism for X defined by f(u) = aa,
f(v) = ab and f(w) = ba. Then the set f−1(S) is a recurrent tree set (we will
see in Chapter 6 that it is actually a regular interval exchange set).

Note that, in general, the maximal bifix decoding of a recurrent tree set is
not recurrent anymore. Anyway, for tree sets of characteristic 1 we can prove a
stronger result.

Theorem 4.3.5 The family of recurrent tree sets of characteristic 1 is closed
under maximal bifix decoding.
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In Chapter 6 we will see an analogous for the family of planar tree sets of
characteristic 1 (Corllary 6.2.13). Another important result concerning maximal
bifix decoding of tree sets is given at the end of the section (Theorem 4.3.17).

In order to prove Theorem 4.3.5, we prove first some preliminary results
concerning the restriction to a recurrent tree set of a morphism onto a finite
group (Propositions 4.3.7 and 4.3.9). Recall from Section 1.3 that a group code
of degree d is a bifix code X such that X∗ = ϕ−1(H) for a surjective morphism
ϕ : A∗ → G from A∗ onto a finite group G and a subgroup H of index d of G.

The following result is stated for an Arnoux-Rauzy set S in [7, Theorem
7.2.5] but the proof only uses the fact that S is uniformly recurrent and satisfies
the finite index basis property. We reproduce the proof for the sake of clarity.

Theorem 4.3.6 Let Z ⊂ A+ be a group code of degree d. For every recurrent
tree set S of characteristic 1, the set X = Z∩S is a basis of a subgroup of index
d of FA.

Proof. By [7, Theorem 4.2.11], the code X is an S-maximal bifix code of S-
degree e ≤ d. Since S is recurrent, by [7, Theorem 4.4.3], X is finite. By
Theorem 4.2.1, X is a basis of a subgroup of index e. Since 〈X〉 ⊂ 〈Z〉, the
index e of the subgroup 〈X〉 is a multiple of the index d of the subgroup 〈Z〉.
Since e ≤ d, this implies that e = d.

As an example of this result, if S is a recurrent tree set, then S ∩ An is a
basis of the subgroup of the free group which is the kernel of the morphism onto
Z/nZ sending any letter to 1.

Proposition 4.3.7 Let S be a recurrent tree set of characteristic 1 and let
ϕ : A∗ → G be a morphism from A∗ onto a finite group G. Then ϕ(S) = G.

Proof. Let 1G be the identity element of the group G. Since the submonoid
ϕ−1(1G) is right and left unitary, there is a bifix code Z such that Z∗ = ϕ−1(1G).
Let X = Z∩S. By Theorem 4.3.6, X is a basis of a subgroup of index Card(G).
Let x be a word of X of maximal length (since X is a basis of a subgroup of
finite index, it is finite). Then x is not an internal factor of X and thus it has
Card(G) parses. Let S(x) be the set of suffixes of x which are prefixes of X . If
s, t ∈ S(x), then they are comparable for the suffix order. Assume for example
that s = ut. If ϕ(s) = ϕ(t), then u ∈ X∗ which implies u = ε since s is a prefix
of X . Thus all elements of S(x) have distinct images by ϕ. Since S(x) has
Card(G) elements, this forces ϕ(S(x)) = G and thus ϕ(S) = G since S(x) ⊂ S.

We illustrate the proof on the following example.

Example 4.3.8 Let A = {a, b} and let ϕ be the morphism from A∗ onto the
symmetric group G on 3 elements defined by ϕ(a) = (12) and ϕ(b) = (13). We
denote by (1) the identity permutation. Let Z be the group code such that Z∗ =
ϕ−1

(
(1)

)
. The group automaton corresponding to the regular representation

70



of G is represented in Figure 4.8 (this automaton has G as set of states and
g · a = gϕ(a) for every g ∈ G and a ∈ A).

(13) (1) (12) (123)

(132) (23)

b

b

a

a

b

b

a

a b

b

a

a

Figure 4.8: The group automaton corresponding to the regular representation
of G.

Let S be the Fibonacci set. The code X = Z∩S is represented in Figure 4.9.
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b
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a

a

a

b

b

a

Figure 4.9: The code X = Z ∩ S.

The word w = ababa is not an internal factor of X . All its 6 suffixes (indi-
cated in black in Figure 4.9) are proper prefixes of X and their images by ϕ are
the 6 elements of the group G.

Proposition 4.3.9 Let S be a recurrent tree set of characteristic 1 and let
ϕ : A∗ → G be a morphism from A∗ onto a finite group G. For any w ∈ S, one
has ϕ(ΓS(w) ∪ {ε}) = G.

Proof. Let α : B∗ → A∗ be a coding morphism for RS(w). Then β = ϕ ◦ α :
B∗ → G is a morphism fromB∗ toG. By Theorem 3.2.5, the setRS(w) is a basis
of the free group on A. Thus 〈α(B)〉 = FA. This implies that β(FB) = G. Thus
β(B) generates G. Since G is a finite group, β(B∗) is a subgroup of G and thus
β(B∗) = G. By Theorem 3.2.9, the set H = α−1(w−1S) is a recurrent tree set.
Thus β(H) = G by Proposition 4.3.7. This implies that ϕ(ΓS(w) ∪ {ε}) = G.

We can now prove Theorem 4.3.5
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Proof of Theorem 4.3.5. Let S be a recurrent tree set of characteristic 1 and let
f : B∗ → A∗ be a coding morphism for a finite S-maximal bifix code X . Set
T = f−1(S). By Theorem 4.3.3 we know that T is a tree set. We now prove
that T is recurrent.

Let r, s ∈ T . Since S is recurrent, there exists u ∈ S such that f(r)uf(s) ∈ S.
Set t = f(r)uf(s). Let G be the representation of FA on the right cosets of 〈X〉.
Let ϕ : A∗ → G be the natural morphism from A∗ onto G. By Proposition 4.3.9,
we have ϕ(ΓS(t) ∪ {ε}) = G. Let v ∈ ΓS(t) be such that ϕ(v) is the inverse of
ϕ(t). Then ϕ(tv) is the identity of G and thus tv ∈ 〈X〉.

Since S is a tree set, it is acyclic and thus X∗ is saturated in S by the
Saturation Theorem (Theorem 4.1.2). Thus X∗ ∩ S = 〈X〉 ∩ S. This implies
that tv ∈ X∗. Since tv ∈ A∗t, we have f(r)uf(s)v = f(r)qf(s) and thus
uf(s)v = qf(s) for some q ∈ S. SinceX∗ is right unitary, f(r), f(r)uf(s)v ∈ X∗

imply uf(s)v = qf(s) ∈ X∗. In turn, since X∗ is left unitary, qf(s), f(s) ∈ X∗

imply q ∈ X∗ and thus q ∈ X∗ ∩ S. Let w ∈ T be such that f(w) = q. Then
rws is in T . This shows that T is recurrent.

The following example shows that the condition that S is a tree set of char-
acteristic 1 is necessary.

Example 4.3.10 Let S = Fac ((ab)∗)) and f be as in Example 2.3.3 (see also
Example 3.3.2). It is easy to see that S is a tree set of characteristic 2. Let
X = {ab, ba}. The set X is a finite S-maximal bifix code. It follows from
Example 2.3.3 that the maximal bifix decoding f−1(S) is not recurrent.

4.3.2 Composition of bifix codes

In this section proving a result showing that in a recurrent tree set, the degrees
of the terms of a composition of maximal bifix codes are multiplicative (Theo-
rem 4.3.11). The following result is proved in [8, Proposition 11.1.2] for a more
general class of codes (including all finite codes and not only finite bifix codes),
but in the case of S = A∗.

Theorem 4.3.11 Let S be a recurrent tree set and let X,Z ⊂ S be finite bifix
codes such that X decomposes into X = Y ◦f Z where f is a coding morphism
for Z. Set T = f−1(S). Then X is an S-maximal bifix code if and only if Y
is a T -maximal bifix code and Z is an S-maximal bifix code. Moreover, in this
case

dX(S) = dY (T )dZ(S). (4.1)

Proof. Assume first that X is an S-maximal bifix code. By Proposition 1.2.18
(ii), Y is a T -maximal prefix code and Z is an S-maximal prefix code. This
implies that Y is a T -maximal bifix code and that Z is an S-maximal bifix
code.

The converse also holds by Proposition 1.2.18.
To show Formula (4.1), let us first observe that there exist words w ∈ S

such that for every parse (v, x, u) of w with respect to X , the word x is not a
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factor of X . Indeed, let n be the maximal length of the words of X . Assume
that the length of w ∈ S is larger than 3n. Then if (v, x, u) is a parse of w, we
have |u|, |v| < n and thus |x| > n. This implies that x is not a factor of X .

Next, we observe that by Theorem 4.3.3, the set T is a recurrent tree set.

Let w ∈ S be a word with the above property. Let ΠX(w) denote the set of
parses of w with respect to X and ΠZ(w) the set of its parses with respect to Z.
We define a map ϕ : ΠX(w) → ΠZ(w) as follows. Let π = (v, x, u) ∈ ΠX(w).
Since Z is a bifix code, there is a unique way to write v = sy and u = zr with
s ∈ A∗\A∗Z, y, z ∈ Z∗ and r ∈ A∗\ZA∗. We set ϕ(π) = (s, yxz, r). The triples
(y, x, z) are in bijection with the parses of f−1(yxz) with respect to Y . Since
x is not a factor of X by the hypothesis made on w, and since T is recurrent,
there are dY (T ) such triples. This shows Formula (4.1).

Example 4.3.12 Let S be the Fibonacci set. Let B = {u, v, w} and A = {a, b}.
Let f : B∗ → A∗ be the morphism defined by f(u) = a, f(v) = baab and
f(w) = bab. Set T = f−1(S). The words of length at most 3 of T are represented
on Figure 4.10.

u

v

w

u
v
w

u

u

v
w

u

u

u
v

u

Figure 4.10: The words of length at most 3 in T .

The set Z = f(B) is an S-maximal bifix code of S-degree 2 (it is the unique
S-maximal bifix code of S-degree 2 with kernel {a}). Let Y = {uu, uvu, uw, v, wu},
which is a T -maximal bifix code of T -degree 2 (it is the unique T -maximal bifix
code of T -degree 2 with kernel {v}).

The code X = f(Y ) is the S-maximal bifix code of S-degree 4 shown on
Figure 4.11.

The following example shows that Formula (4.1) does not hold if S is not a
tree set of characteristic 1.

Example 4.3.13 Let S = Fac(ab)∗ (see Example 2.3.3). Let Z = {ab, ba} and
let X = {abab, ba}. We haveX = Y ◦fZ for B = {u, v}, f : B∗ → A∗ defined by
f(u) = ab and f(v) = ba with Y = {uu, v}. The codes X and Z are S-maximal
bifix codes and dZ(S) = 2. We have dX(S) = 3 since abab has three parses.
Thus dZ(S) does not divide dX(S).
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Figure 4.11: An S-maximal bifix code of S-degree 4.

4.3.3 Modular codes

For some special bifix code, we can give a more precise description of the bifix
decoding and of Theorem 4.3.3.

Let S be a tree set of characteristic c. Since S is biextendable, any letter
a ∈ A occurs exactly twice as a vertex of E(ε), one as an element of L(ε) and
one as an element of R(ε).

Denote by T0, . . . Tc−1 the c trees such that E(ε) = T0∪· · ·∪Tc−1. We define
the modular weight of a letter a as ‖a‖ = j − i (mod c), where Ti is the tree
containing a as a left extension and Tj the tree containing a as a right extension.

Given a word w = a0a1 · · · am, we define the modular weight of w as ‖w‖ =∑m
k=0 ‖ak‖ (mod c).
Note that the modular weight of a word depends on the choice of the order

for the trees Ti.
The set of words having modular weight equal to zero has the form X∗ ∩ S

for some special bifix code X ⊂ S called the modular code. The set X is the
set of words having modular weight 0 such that all nonempty proper prefixes
(or suffixes) have positive modular weight. It is easy to see that X is actually a
S-maximal bifix code.

Another way to define the modular code is by using the modular graph. This
graph is defined as the directed graph G with vertices 0, 1, . . . , c − 1 and edges
all triples (i, a, j) for 0 ≤ i, j ≤ c− 1 and a ∈ A such that (1⊗ b, a⊗ 1) ∈ Ti and
(1⊗ a, c⊗ 1) ∈ Tj for some b, c ∈ A. Observe that for every letter a ∈ A there is
exactly one edge labeled a because a appears exactly one as a left (resp. right)
vertex in E(ε).

Note that, when S is a tree set of characteristic c obtained by a multiplying
map using a transducer A (recall Section 3.3), the modular graph of S is the
output automaton of A.

Example 4.3.14 Let S be the tree set of characteristic 2 of Example 2.3.3 (see
also Example 3.3.2). The modular graph of S is represented in Figure 4.12. It
is the output automaton of the 2-multiplying transducer of Figure 3.14.

Example 4.3.15 Let S be the tree set of characteristic 2 of Example 5.2.22.
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0 1

b

a

Figure 4.12: The modular graph of Fac ((ab)∗).

The modular graph of S is represented in Figure 4.13. It is the output automaton
of the 2-multiplying transducer of Figure 3.16.

0 1d

a

c
b

Figure 4.13: The modular graph of S.

Proposition 4.3.16 Let S be a tree set of characteristic c and let G be its
modular graph. Let Si,j be the set of words in S which are the label of a path
from i to j in the graph G.
(1) The family (Si,j \ {ε})0≤i,j≤c−1 is a partition of S \ {ε}.
(2) For u ∈ Si,j \ {ε} and v ∈ Sk,ℓ \ {ε}, if uv ∈ S, then j = k.

(3) ‖w‖ = 0 if and only if w ∈ Sk,k for some 0 ≤ k ≤ c− 1.

Proof. We first note that for a, b ∈ A such that ab ∈ S, there is a path in G
labeled ab. Since (a, b) ∈ E(ε), there is a k such that (1 ⊗ a, b ⊗ 1) ∈ Tk. Then
we have a ∈ Si,k and b ∈ Sk,j for some 0 ≤ i, j ≤ c− 1}. This shows that ab is
the label of a path from i to j in G.

Let us prove by induction on the length of a nonempty word w ∈ S that
there exists a unique pair i, j such that w ∈ Si,j . The property is true for a
letter, by definition of the extension graph E(ε) and for words of length 2 by
the above argument. Let next w = ax be in S with a ∈ A and x nonempty.
By induction hypothesis, there is a unique pair (k, j) such that x ∈ Sk,j . Let b
be the first letter of x. Then the edge of G with label b starts in k. Since ab is
the label of a path, we have a ∈ Si,k for some i and thus ax ∈ Si,j . The other
assertions follow easily.

Note that point (3) of Proposition 4.3.16 says that the modular code does
not depend on the choice of the order of the states in the modular graph (or of
the trees Ti in E(ε)).

The following theorem improves Theorem 4.3.3 in the case of a bifix decoding
by the modular code.

Theorem 4.3.17 The decoding of a recurrent tree set S of characteristic c by
the modular code is a union of c recurrent tree sets of characteristic 1. More
precisely, if f is the coding morphism for the modular code, then f−1(S0,0),
f−1(S1,1), . . . , f

−1(Sc−1,c−1) are recurrent tree sets of characteristic 1.
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Proof. Let us define Tk = f−1(Sk,k) for every 0 ≤ k ≤ c − 1. Fixed a k, we
show that Tk is a recurrent tree set of characteristic 1.

First, it is easy to verify that Tk is biextendable.
Next, since S is recurrent, for every u, v ∈ Sk,k ⊂ S there exists a w ∈ S

such that uwv ∈ S. From point (2) of Proposition 4.3.16 follows that w ∈ Sk,k.
Thus Tk is recurrent.

Let now X be the modular code and set Xk = X ∩ Sk,k. In order to prove

that Tk is a tree set it is enough to show that ESk,k
(w) = EXk,Xk

S (w) is a tree

for any w ∈ Sk,k. Note first that ESk,k
(w) = EX,X

S (w) for any w ∈ Sk,k \ {ε}.
Indeed, for w ∈ Sk,k and x, y ∈ X such that xwy ∈ S, one has x, y ∈ Xk and
thus xwy ∈ Sk,k.

According to Proposition 3.1.13, the graph EX,X
S (w) is a tree for any word

w ∈ S \ {ε}, whence the result.

Next, let us show that the graph EXk,Xk

S (ε) is also a tree. First, since a tree

set is acyclic, the graph EX,X
S (ε) is acyclic by Proposition 3.1.11 and so is its

subgraph EXk,Xk

S .

Let us prove that for every x, y ∈ Sk,k there is a path in EXk,Xk

S (ε) from x
to y.

If x, y ∈ A, then there is a path from x to y in E(ε) and thus a there is a

path from x to y in EXk,Xk

S (ε) obtained by replacing an edge (a, b) ∈ A× A of

the path by an edge (z, t) in XXk,Xk

S ×XXk,Xk

S such that z ends with a and t
begins with b.

Otherwise, assume for example that y = au with u nonempty. Set Y =
{v ∈ S | av ∈ Xk}. Since Y is an a−1S-maximal prefix code, by 3.1.13, the

graph EXk,Y
S (a) is a tree. Since u ∈ Y , there is a path in EXk,Y

S (a) from x to u.

This implies that there is a path from x to y in EXk,Xk

S (ε). Thus EXk,Xk

S (ε) is
connected.

Example 4.3.18 Let S and f be as in Examples 2.3.3 and 4.3.10. One has
f−1(S0,0) = Fac(uω) and f−1(S1,1) = Fac(vω). Both are recurrent tree sets of
characteristic 1, according with Theorem 4.3.17.
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Chapter 5

Specular sets

In this chapter, we introduce specular groups and specular sets. Specular groups
are free products of a free group and of a finite number of cyclic groups of order
two. These groups are close to free groups and, in particular, the notion of a
basis in such groups is clearly defined.

A specular set is a subset of such a group stable by taking the inverse and
defined in terms of restrictions on the extensions of its elements.

The main results of this chapter are Theorems 5.3.11 and 5.5.1, referred to
as the First Return Theorem and the Finite Index Basis Theorem for specular
sets. The first one asserts that the set of return words to a given word in
a recurrent specular set is a basis of a subgroup of index 2, called the even
subgroup. The last one characterizes the symmetric bases of subgroups of finite
index of specular groups contained in a specular set S as the finite S-maximal
symmetric bifix codes contained in S. These generalize the analogous results
proved for tree sets in Chapter 3 (Theorems 3.2.5 and 4.2.1).

The idea of considering recurrent sets of reduced words invariant by taking
inverses is connected with the notion of G-full words of [60] (see Section 5.2.4).

This chapter is organized as follows. In Section 5.1, we introduce specular
groups, which form a family with properties very close to free groups. We deduce
from the Kurosh subgroup theorem that any subgroup of a specular group is
specular (Theorem 5.1.3).

In Section 5.2 we introduce specular sets. We introduce odd and even words
and the even code. We prove that the decoding of a recurrent specular set by this
code is a union of two recurrent tree sets of characteristic 1 (Theorem 5.2.15).
Moreover, we give a construction which allows to build specular sets from a tree
set of characteristic 1 using a multiplying transducer, called doubling transducer
(Theorem 5.2.20). We finally make a connection with the notion of G-full words
introduced in [60] and related to the palindromic complexity of [35].

In Section 5.3 we prove several cardinality results concerning sets of return
words on a specular set (Theorems 5.3.2, 5.3.5, 5.3.9). We also prove that
the set of return words to a given word forms a basis of the even subgroup
(Theorem 5.3.11 referred to as the First Return Theorem for specular sets)

77



and that the mixed return words form a monoidal basis of the specular group
(Theorem 5.3.13).

In Section 5.4 we prove several results concerning subgroups generated by
bifix codes. Namely, we prove give new versions of the Freeness Theorem and
of the Saturation Theorem for specular sets (Theorems 5.4.1 and 5.4.6).

Finally, in Section 5.5, we prove a version of the Finite Index Basis Theorem
and a converse for specular sets (Theorem 5.5.1 and Theorem 5.5.6).

5.1 Specular groups

In this section, we introduce specular groups and we prove some properties of
this family of groups. In particular, using the Kurosh subgroup theorem, we
prove that any subgroup of a specular group is specular (Theorem 5.1.3).

We consider an alphabet A with an involution θ : A→ A, possibly with some
fixed points. We also consider the group Gθ generated by A with the relations
aθ(a) = ε for every a ∈ A. Thus θ(a) = a−1 for a ∈ A. The set A is called a
natural set of generators of Gθ.

When θ has no fixed point, we can set A = B ∪ B−1 by choosing a set of
representatives of the orbits of θ for the set B. The group Gθ is then the free
group on B, denoted FB . In general, the group Gθ is a free product of a free
group and a finite number of copies of Z/2Z, that is Gθ = Z∗i ∗ (Z/2Z)∗j where
i is the number of orbits of θ with two elements and j the number of its fixed
points. Such a group will be called a specular group of type (i, j). These groups
are very close to free groups, as we will see. The integer Card(A) = 2i + j is
called the symmetric rank of the specular group Z∗i ∗ (Z/2Z)∗j .

Proposition 5.1.1 Two specular groups are isomorphic if and only if they have
the same type.

Proof. The commutative image of a group of type (i, j) is Zi× (Z/2Z)j and the
uniqueness of i, j follows from the fundamental theorem of finitely generated
Abelian groups.

Example 5.1.2 Let A = {a, b, c, d} and let θ be the involution which exchanges
b, d and fixes a, c. Then Gθ = Z∗ (Z/2Z)2 is a specular group of symmetric rank
4.

The Cayley graph of a specular group Gθ with respect to the set of natural
generators A is a regular tree where each vertex has degree Card(A). The
specular groups are actually characterized by this property (see [30]).

5.1.1 Subgroups

By the Kurosh subgroup theorem, any subgroup of a free productG1∗G2∗· · ·∗Gn

is itself a free product of a free group and of groups conjugate to subgroups of
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the Gi (see [54]). Thus, we have, replacing the Nielsen-Schreier Theorem of free
groups, the following result.

Theorem 5.1.3 Any subgroup of a specular group is specular.

It also follows from the Kurosh subgroup theorem that the elements of order
2 in a specular group Gθ are the conjugates of the j fixed points of θ and this
number is thus the number of conjugacy classes of elements of order 2. Indeed,
an element of order 2 generates a subgroup conjugate to one of the subgroups
generated by the letters of order 2.

Any specular group G = Gθ has a free subgroup of index 2. Indeed, let H be
the subgroup formed of the reduced words of even length. It has clearly index
2. It is free because it does not contain any element of order 2 (such an element
is conjugate to a fixed point of θ and thus is of odd length).

A group having a free subgroup of finite index is called virtually free (see
[30]).

A group G is called residually finite if for every element g 6= ε of G, there is
a morphism ϕ from G onto a finite group such that ϕ(g) 6= ε.

Proposition 5.1.4 Any specular group is residually finite.

Proof. Let K be a free subgroup of index 2 in the specular group G. Let g 6= 1
be in G. If g /∈ K, then the image of g in G/K is nontrivial. Assume g ∈ K.
SinceK is free, it is residually finite. Let N be a normal subgroup of finite index
of K such that g /∈ N . Consider the representation of G on the right cosets of
N . Since g /∈ N , the image of g in this finite group is nontrivial.

A group G is said to be Hopfian if any surjective morphism from G onto G
is also injective. By a result of Malcev, any finitely generated residually finite
group is Hopfian (see [53, p. 197]). We thus deduce from Proposition 5.1.4 the
following result.

Proposition 5.1.5 A specular group is Hopfian.

5.1.2 Monoidal basis

A word on the alphabet A is θ-reduced (or simply reduced) if it has no factor
of the form aθ(a) for a ∈ A. It is clear that any element of a specular group is
represented by a unique reduced word.

A subset of a group G is called symmetric (with respect to θ) if it is closed
under taking inverses (with respect to θ). A set X in a specular group G is
called a monoidal basis of G if it is symmetric, if the monoid that it generates
is G and if any product x1x2 · · ·xm of elements of X such that xkxk+1 6= ε for
1 ≤ k ≤ m− 1 is distinct of ε.

Example 5.1.6 The alphabet A is a monoidal basis of Gθ.
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The previous example shows that the symmetric rank of a specular group
is the cardinality of any monoidal basis (two monoidal bases have the same
cardinality since the type is invariant by isomorphism by Proposition 5.1.1).

Let H be a subgroup of a specular group G. Let Q be a set of reduced words
on A which is a prefix-closed set of representatives of the right cosets Hg of H .
Such a set is traditionally called a Schreier transversal for H (the proof of its
existence is classical in the free group and it is the same in any specular group).

Let

X = {paq−1 | a ∈ A, p, q ∈ Q, pa 6∈ Q, pa ∈ Hq}. (5.1)

Each word x of X has a unique factorization paq−1 with p, q ∈ Q and a ∈ A.
The letter a is called the central part of x. The set X is a monoidal basis of H ,
called the Schreier basis relative to Q.

Proposition 5.1.7 Let H and Q be as above and let X be a Schreier basis
relative to Q. Then X is closed by taking inverses.

Proof. Let x = paq−1 ∈ X , then x−1 = qa−1p−1. We cannot have qa−1 ∈
Q since otherwise p ∈ Hqa−1 implies p = qa−1 by uniqueness of the coset
representative and finally pa ∈ Q. It generates H as a monoid because if
x = a1a2 · · ·am ∈ H with ai ∈ A, then x = (a1p

−1
1 )(p1a2p

−1
2 ) · · · (pm−1am)

with a1 · · · ak ∈ Hpk for 1 ≤ k ≤ m − 1 is a factorization of x in elements of
X ∪ {ε}. Finally, if a product x1x2 · · ·xm of elements of X is equal to ε, then
xkxk+1 = 1 for some index k since the central part a never cancels in a product
of two elements of X .

One can deduce directly Theorem 5.1.3 from these properties of X .

Proof of Theorem 5.1.3. Let H be a subgroup of a specular group G, Q be
a Schreier transversal for H and X be the Schreier basis relative to Q. Let
ϕ : B → X be a bijection from a set B onto X which extends to a morphism
from B∗ onto H . Let σ : B → B be the involution sending each b to c where
ϕ(c) = ϕ(b)−1. Since the central parts never cancel, if a nonempty word w ∈ B∗

is σ-reduced then ϕ(w) 6= ε. This shows that H is isomorphic to the group Gσ.
Thus H is specular.

If H is a subgroup of index n of a specular group G of symmetric rank r,
the symmetric rank s of H is

s = n(r − 2) + 2. (5.2)

This formula replaces Schreier’s Formula (which corresponds to the case
j = 0). It can be proved as follows. Let Q be a Schreier transversal for H
and let X be the corresponding Schreier basis. The number of elements of X
is nr − 2(n− 1). Indeed, this is the number of pairs (p, a) ∈ Q × A minus the
2(n − 1) pairs (p, a) such that pa ∈ Q with pa reduced or pa ∈ Q with pa not
reduced. This gives Formula (5.2).
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Example 5.1.8 Let G be the specular group of Example 5.1.2. Let H be the
subgroup formed by the elements represented by a reduced word of even length.
The set Q = {ε, a} is a prefix-closed set of representatives of the two cosets of
H . The representation of G by permutations on the cosets of H is represented
in Figure 5.1.

ε a

a, b, c, d

a, b, c, d

Figure 5.1: The representation of G by permutations on the cosets of H .

The monoidal basis corresponding to Formula (5.1) isX = {ab, ac, ad, ba, ca, da}.
The symmetric rank of H is 6, in agreement with Formula (5.2) and H is a free
group of rank 3.

Example 5.1.9 Let again G be the specular group of Example 5.1.2. Consider
now the subgroup K stabilizing 1 in the representation of G by permutations
on the set {1, 2} of Figure 5.2.

1 2a, c

b, d

b, d

a, c

Figure 5.2: The representation of G by permutations on the cosets of K.

We choose Q = {ε, b}. The set X corresponding to Formula (5.1) is X =
{a, bad, bb, bcd, c, dd}. The group K is isomorphic to Z ∗ (Z/2Z)∗4.

The following result, which will be used later (Section 5.3), is a consequence
of Proposition 5.1.5.

Proposition 5.1.10 Let G be a specular group of type (i, j) and let X ⊂ G be
a symmetric set with 2i+ j elements. If X generates G, it is a monoidal basis
of G.

Proof. Let A be a set of natural generators of G. Considering the commutative
image of G, we obtain that X contains j elements of order 2. Thus there is a
bijection ϕ from A onto X such that ϕ(a−1) = ϕ(a)−1 for every a ∈ A. The
map ϕ extends to a morphism from G to G which is surjective since X generates
G. Then ϕ being surjective, it also injective since G is Hopfian, and thus X is
a monoidal basis of G.

81



5.2 Specular sets

In this section, we introduce specular sets. We introduce odd and even words
and the even code which play an important part in the sequel. We prove that
the decoding of a recurrent specular set by the even code is a union of two
recurrent tree sets of characteristic 1 (Theorem 5.2.15). We exhibit a family of
specular sets obtained as the result of a transformation called doubling, starting
from a tree set of characteristic 1 and invariant by reversal (Theorem 5.2.20). In
the last part, we relate specular sets with full and G-full words, a notion linked
with palindromic complexity and introduced in [60].

We assume given an involution θ on the alphabet A generating the specular
group Gθ.

A symmetric biextendable (and thus factorial) set S of reduced words on the
alphabet A is called a laminary set on A relative to θ (following [26] and [51]).
Thus the elements of a laminary set S are elements of the specular group Gθ

and the set S is contained in Gθ.
A specular set is a laminary set on A which is a tree set of characteristic 2.

Thus, in a specular set, the extension graph of every nonempty word is a tree
and the extension graph of the empty word is a union of two disjoint trees.

The following is a very simple example of a specular set.

Example 5.2.1 Let A = {a, b} and let θ be the identity on A. Then the set of
factors of (ab)ω is a specular set.

Example 5.2.2 Let S be the set defined in Example 3.1.5. The set S is a tree
set of characteristic 2. The extension graph of ε is shown in Figure 3.2.

We will see later (Example 5.2.23) that S is a specular set relative to the
involution θ fixing a, c and exchanging b and d.

Example 5.2.3 The set S be the set of factors of the substitution

f : a 7→ cb−1, b 7→ c, c 7→ ab−1.

which extends to an automorphism of the free group on {a, b, c}. The set S is a
specular set (it is actually the natural coding of a linear involution, as we will
see in Example 8.1.4).

The words of length at most 3 of S = L(T ) are represented in Figure 5.3.

The following result shows in particular that in a specular set the two trees
forming E(ε) are isomorphic since they are exchanged by the bijection (a, b) →
(b−1, a−1).

Proposition 5.2.4 Let S be a specular set. Let T0, T1 be the two trees such
that E(ε) = T0 ∪ T1. For any a, b ∈ A and i = 0, 1, one has (1⊗ a, b⊗ 1) ∈ Ti if
and only if (1⊗ b−1, a−1 ⊗ 1) ∈ T1−i.
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a

b

c

b−1

a−1

c−1

b

b−1

c

c−1

c

a

a−1

c−1

a−1

b−1

c−1

c

c

c−1

a

b

b

a

b

b

b−1

c−1

b−1

a−1

Figure 5.3: The words of length at most 3 of S.

Proof. Assume that (1 ⊗ a, b ⊗ 1) and (1 ⊗ b−1, a−1 ⊗ 1) are both in T0. Since
T0 is a tree, there is a path from 1 ⊗ a to a−1 ⊗ 1. We may assume that
this path is reduced, that is, does not use consecutively twice the same edge.
Since this path is of odd length, it has the form (u0, v1, u1, . . . , up, vp) with
u0 = 1 ⊗ a and vp = a−1 ⊗ 1. Since S is symmetric, we also have a reduced
path (v−1

p , u−1
p , · · · , u−1

1 , u−1
0 ) which is in E(ε) (for ui = 1 ⊗ ai, we denote

u−1
i = a−1

i ⊗1 and similarly for v−1
i ) and thus in T0 since T0 and T1 are disjoint.

Since v−1
p = u0, these two paths have the same origin and end. But if a path of

odd length is its own inverse, its central edge has the form (x, y) with x = y−1, as
one verifies easily by induction on the length of the path. This is a contradiction
with the fact that the words of S are reduced. Thus the two paths are distinct.
This implies that E(ε) has a cycle, a contradiction.

Example 5.2.5 Let S be the specular set of Example 5.2.3. The extension
graph of the empty word of S is represented in Figure 5.4.

a

c

c−1

b−1

b

a

b

b−1

a−1

a−1

c−1

c

Figure 5.4: The extension graphs ES(ε).

Recall from Chapter 1 that a laminary set S is orientable if there exist two
factorial sets S+, S− such that S = S+ ∪ S− with S+ ∩ S− = {ε} and for any
x ∈ S, one has x ∈ S− if and only if x−1 ∈ S+ (where x−1 is the inverse of x in
Gθ).

The following result shows in particular that for any tree set T of charac-
teristic 1 on the alphabet B, the set T ∪ T−1 is a specular set on the alphabet
A = B ∪B−1.
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Theorem 5.2.6 Let S be a specular set on the alphabet A. Then, S is ori-
entable if and only if there is a partition A = A+ ∪A− of the alphabet A and a
tree set T of characteristic 1 on the alphabet B = A+ such that S = T ∪ T−1.

Proof. The condition is trivially sufficient. Let us prove it is necessary and sup-
pose that S is a specular set on the alphabet A which is orientable. Let (S+, S−)
be the corresponding pair of subsets of S. The sets S+, S− are biextendable,
since S is. Set A+ = A ∩ S+ and A− = A ∩ S−. Then A = A+ ∪ A− is a
partition of A and, since S−, S+ are factorial, we have S+ ⊂ A∗

+ and S− ⊂ A∗
−.

Let T0, T1 be the two trees such that E(ε) = T0 ∪ T1. Assume that a vertex
of T0 is in A+. Then all vertices of T0 are in A+ and all vertices of T1 are in
A−. Moreover, ES+(ε) = T0 and ES−

(ε) = T1. Thus S+, S− are tree sets of
characteristic 1.

Since a specular set is, in particular, a tree set of characteristic 2, we have
the following immediate consequence of Proposition 3.1.4.

Proposition 5.2.7 The factor complexity of a specular set is given by p0 = 1
and pn = n(Card(A)− 2) + 2 for n ≥ 1.

5.2.1 Odd and even words

We introduce a notion which plays, as we shall see, an important role in the study
of specular sets. Let S be a specular set. Since a specular set is biextendable,
any letter a ∈ A occurs exactly twice as a vertex of E(ε), one as an element of
L(ε) and one as an element of R(ε). A letter a ∈ A is said to be even if its two
occurrences appear in the same tree. Otherwise, it is said to be odd. Observe
that if a specular S is recurrent, there is at least one odd letter.

Example 5.2.8 Let S be the set of factors of (ab)ω as in Example 5.2.1. Then
a and b are odd.

Example 5.2.9 Let S be the set of Example 5.2.2. The letters b, d are even,
while a and c are odd.

Let S be a specular set. A word w ∈ S is said to be even if it has an even
number of odd letters. Otherwise it is said to be odd. The set of even words has
the form X∗ ∩ S where X ⊂ S is a bifix code, called the even code. The set X
is the set of even words without a nonempty even prefix (or suffix). Note that,
since a specular set is in particular a tree set of characteristic 2, the even code
coincides with the modular code seen in Section 4.3.3.

Proposition 5.2.10 Let S be a recurrent specular set. The even code is an
S-maximal bifix code of S-degree 2.
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Proof. Let us verify that any w ∈ S is comparable for the prefix order with an
element of the even code X . If w is even, it is in X∗. Otherwise, since S is
recurrent, there is a word u such that wuw ∈ S. If u is even, then wuw is even
and thus wuw ∈ X∗. Otherwise wu is even and thus wu ∈ X∗. This shows that
X is S-maximal. The fact that it has S-degree 2 follows from the fact that any
product of two odd letters is a word of X which is not an internal factor of X
and has two parses.

Example 5.2.11 Let S be the specular set of Example 5.2.2 (see also Exam-
ple 5.2.9). The even code is

X = {abc, ac, b, ca, cda, d}.

Denote by T0, T1 the two trees such that E(ε) = T0 ∪ T1. We consider the
directed graph G with vertices 0, 1 and edges all the triples (i, a, j) for 0 ≤ i, j ≤ 1
and a ∈ A such that (1⊗ b, a⊗ 1) ∈ Ti and (1⊗ a, c⊗ 1) ∈ Tj for some b, c ∈ A.
The graph G is called the parity graph of S. Observe that for every letter a ∈ A
there is exactly one edge labeled a because a appears exactly once as a left (resp.
right) vertex in E(ε).

Note that the parity graph of a specular set S coincides with the modular
graph defined in Section 4.3.3.

Example 5.2.12 Let S be the specular set of Example 5.2.2. The parity graph
of S is represented in Figure 4.13, where we assume that T0 is the tree on the
left of Figure 3.2 and T1 is the tree on the right of Figure 3.2.

The following result is an easy generalization of Proposition 4.3.16.

Proposition 5.2.13 Let S be a specular set and let G be its parity graph. Let
Si,j be the set of words in S which are the label of a path from i to j in the graph
G.

(1) The family (Si,j \ {ε})0≤i,j≤1 is a partition of S \ {ε}.

(2) For u ∈ Si,j \ {ε} and v ∈ Sk,ℓ \ {ε}, if uv ∈ S, then j = k.

(3) S0,0 ∪ S1,1 is the set of even words.

(4) S−1
i,j = S1−j,1−i.

Proof. Assertsions (1)-(3) follow from Proposition 4.3.16, while assertion (4)
follows from Proposition 5.2.4).

Note that Assertion (4) implies that no nonempty even word is its own
inverse. Indeed, S−1

0,0 = S1,1 and S−1
1,1 = S0,0.

Proposition 5.2.14 Let S be a specular set. If x, y ∈ S are nonempty words
such that xyx−1 ∈ S, then y is odd.
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Proof. Let i, j be such that x ∈ Si,j . Then x−1 ∈ S1−j,1−i by Assertion (4)
of Proposition 5.2.13 and thus y ∈ Sj,1−j by Assertion (2). Thus y is odd by
Assertion (3).

The following result is just Theorem 4.3.17 applied to a specular set.

Theorem 5.2.15 (Even code decoding Theorem) The decoding of a re-
current specular set by the even code is a union of two recurrent tree sets of
characteristic 1. More precisely, let S be a recurrent specular set and let f be a
coding morphism for the even code. Then f−1(S0,0) and f

−1(S1,1) are recurrent
tree sets of characteristic 1.

Example 5.2.16 Let S be the set of Example 3.1.6. Recall that it is the set
of factors of the fixed point of the morphism σ(a) = ab, σ(b) = cda, σ(c) =
cd, σ(d) = abc. The even code X is given in Example 5.2.11.

Let Σ = {a, b, c, d, e, f} and let g be the coding morphism for X given by

a 7→ abc, b 7→ ac, c 7→ b, d 7→ ca, e 7→ cda, f 7→ d.

The decoding of S by X is a union of two tree sets of characteristic 1 which are
the set of factors of the fixed point of the two morphisms

a 7→ afbf, b 7→ af, f 7→ a

and

c 7→ e, d 7→ ec, e 7→ ecdc.

These two morphisms are actually the restrictions to {a, b, f} and {c, d, e} of
the morphism g−1σg.

5.2.2 Bifix codes in specular sets

Recall from Chapter 1 that the characteristic of a set S is given by χ(S) =
ℓS(ε) + rS(ε)− bS(ε).

Applying Theorem 2.2.1 to recurrent specular sets we have the following
result.

Theorem 5.2.17 (Cardinality Theorem for bifix codes) Let S be a recur-
rent specular set. For any finite S-maximal bifix code X, one has

Card(X) = dX(S)(Card(A)− 2) + 2. (5.3)

Example 5.2.18 Let S be the specular set of Example 3.1.6. The even code
(given in Example 5.2.11) is an S-maximal code of S-degree 2. We have
Card(X) = 6 in agreement with Theorem 5.2.17.

The following statement is a partial converse of Theorem 5.2.17.
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Theorem 5.2.19 Let S be a uniformly recurrent laminary set. If the graph E(ε)
is acyclic and if any finite S-maximal bifix code of S-degree d has d(Card(A)−
2) + 2 elements, then S is specular.

Theorem 5.2.19 results from Proposition 2.2.5 applied with d0 = 2.

5.2.3 Doubling maps

We now introduce a construction which allows one to build specular sets. This
is a particular case of the multiplying maps introduced in Section 3.3.

Let Q = {0, 1}. We call doubling map a 2-multiplying map δA = (δ0, δ1)
with respect to a transducer A, called doubling transducer.

By Theorem 3.3.1, the image of a tree set of characteristic 1 by a doubling
map is a tree set of characteristic 2. We will show that it is actually a specular
set.

If A is a doubling transducer, we define an involution θA as follows. For any
a ∈ A, let (i, α, a, j) be the edge with input label α and output label a. We
define θA(a) as the output label of the edge starting at 1 − j with input label
α. Thus, θA(a) = δi(α) = a if i+ j = 1 and θA(a) = δ1−i(α) 6= a if i = j.

Recall that the reversal of a word w = a1a2 · · · an is the word w̃ = an · · · a2a1.
One can prove by induction on the length of y ∈ Σ∗ that if x = δi(y) and if j

is the end of the path starting at i and with input label y, then x−1 = δ1−j(ỹ).
Observe that since the input automaton is a group automaton, there is always
a path starting at 1− j with input label ỹ.

Recall that a set S of words is closed under reversal if w ∈ S implies w̃ ∈ S
for every w ∈ S.

Theorem 5.2.20 For any tree set T of characteristic 1 on the alphabet Σ,
closed under reversal and any doubling map δA, the image of T by δA is a
specular set relative to the involution θA.

Proof. Set S = δ0(T )∪δ1(T ). By Theorem 3.3.1, S is a tree set of characteristic
2. By construction, it is also clear the any word in S is θA-reduced.

Let now prove that S is a symmetric language. Assume that x = δi(y) for
i ∈ {0, 1} and y ∈ T . Let j be the end of the path starting at i and with
input label y. Since x−1 = δ1−j(ỹ) and T is closed under reversal, we have
x−1 ∈ δ1−j(T ). This shows that S is symmetric and so that it is laminary.
Thus, S is a specular set.

We now give two examples of specular sets obtained by doubling maps (dou-
bling the Fibonacci set).

Example 5.2.21 Let Σ = {α, β} and let T be the Fibonacci set over Σ (see
Example 1.1.2). Let δ be the doubling map given by the transducer of Figure 5.5
on the left.

Both letters in Σ act as the identity on the two states 0, 1.
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0 1

α | a

β | b

α | c

β | d b

a

a

b

d

c

c

d

Figure 5.5: A doubling transducer (on the left) and the extension graph ES(ε)
(on the right).

Then θA is the involution defined by θ : a 7→ c, b 7→ d, c 7→ a, d 7→ b. The
image of T by δ is a specular set S on the alphabet A = {a, b, c, d}. The graph
ES(ε) is represented in Figure 5.5 on the right. All letters are even.

Note that the set S of Example 5.2.21 is not recurrent. The set S is actually
just a union of two Fibonacci sets, one over the alphabet {a, b} and the second
over the alphabet {c, d}.

Example 5.2.22 Let Σ = {α, β} and let T be the Fibonacci set. Let δ be the
doubling map given by the transducer of Figure 3.16 on the left. The letter α
acts as the transposition of the two states 0, 1, while β acts as the identity.

0 1β | d
α | a

α | c
β | b

b

a

c

b

d

c

a

d

Figure 5.6: A doubling transducer and the extension graph ES(ε).

Then θA is the involution θ of Example 5.1.2 and the image of T by δ is a
specular set S on the alphabet A = {a, b, c, d}. The graph ES(ε) is represented
in Figure 3.16 on the right.

The letters a, c are odd and b, d are even.
Note that S is the set of factors of the fixed point gω(a) of the morphism

g : a 7→ abcab, b 7→ cda, c 7→ cdacd, d 7→ abc.

The morphism g is obtained by applying the doubling map to the cube f3 of
the Fibonacci morphism f in such a way that gω(a) = δ0(f

ω(α)).

In the next example (due to Julien Cassaigne), the specular set is obtained
using a morphism of smaller size.

Example 5.2.23 Let A = {a, b, c, d}. Let T be the set of factors of the fixed
point x = fω(α) of the morphism f : α 7→ αβ, β 7→ αβα. It is a Sturmian set.
Indeed, x is the characteristic word of slope −1 +

√
2 (see [52]). The sequence

sn = fn(α) satisfies sn = s2n−1sn−2 for n ≥ 2. The image S of T by the doubling
automaton of Figure 3.16 is the set of factors of the fixed point σω(a) of the
morphism σ from A∗ into itself defined by

σ(a) = ab, σ(b) = cda, σ(c) = cd, σ(d) = abc.

88



Thus the set S is the same as that of Example 3.1.5 The set S is a specular set
relative to the involution θ fixing a, c and exchanging b and d.

Note that, when S is a specular set obtained by a doubling map using a
transducer A, the parity graph of S is the output automaton of A (see for
instance Figures 4.13 and 3.16).

5.2.4 G-Palindromes

We discussed at the end of Chapter 3 the connection between tree sets and
palindromes. In particular we proved that a recurrent tree set of characteristic
1 closed under reversal is full (Proposition 3.4.1).

In [60], this notion of full set was extended to that of G-full, where G is a
finite group of morphisms and antimorphisms of A∗ (an antimorphism is the
composition of a morphism and reversal) containing at least one antimorphism.
As one of the equivalent definitions, a set S closed under G is G-full if for every
x ∈ S, every complete return word to the G-orbit of x is fixed by a nontrivial
element of G.

Let us consider a tree set T of characteristic 1 and a specular set S obtained
as the image of T by a doubling map δ.

Let us denote by σ the antimorphism u 7→ u−1 for u ∈ Gθ. From Sec-
tion 5.2.3 it follows that both edges (i, α, a, j) and (1 − i, α, σ(a), 1 − j) are in
the doubling transducer. Let us define also the morphism τ obtained by replac-
ing each letter a ∈ A by τ(a) if there are edges (i, α, a, j) and (1−j, α, τ(a), 1−i)
in the doubling transducer.

We denote by GA the group generated by the σ and τ . Actually, we have
GA = Z/2Z× Z/2Z. Indeed, one has στ = τσ.

Example 5.2.24 Let S be the specular set defined in Example 5.2.21. The
group GA is generated by

σ : a 7→ c, b 7→ d, c 7→ a, d 7→ b,

and
τ : a 7→ c, b 7→ d, c 7→ a, d 7→ b.

Note that, even if the images of σ and τ over the alphabet are the same, the
latter is a morphism, while the first is an antimorphism. Moreover, in that case,
we have στ = τσ : w 7→ w̃ for every w ∈ S.

Example 5.2.25 Let S be the recurrent specular set defined in Example 5.2.22.
The group GA is generated by the antimorphism

σ : a 7→ a, b 7→ d, c 7→ c, d 7→ a,

and the morphism
τ : a 7→ c, b 7→ d, c 7→ a, d 7→ b.

We have = {id, σ, τ, στ}, where στ = τσ is the antimorphism fixing b, d and
exchanging a and c.
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We now connect the notions of fullness and GA-fullness, proving an analo-
gous result of Proposition 3.4.1 for specular sets.

Proposition 5.2.26 Let T be a recurrent tree set of characteristic 1 on the
alphabet Σ, closed under reversal and let S be the image of T under a doubling
map. Then S is GA-full.

Proof. By Proposition 3.4.1 we know that T is full.

To show that S is GA-full, we will use several properties of the map δi. We
note that it is injective, that it preserves prefixes and conversely: u is a prefix
of v if and only if δi(u) is a prefix of δi(v). Also, for any y ∈ T and x = δi(y),
the images of y, ỹ by δ0, δ1 form the GA-orbit of x.

Consider x ∈ S and a word w which is a complete return word to the GA-
orbit of x. We may assume that x is a prefix of w and that γ(x) is a prefix of w,
with γ ∈ H . Let y, u ∈ T and i ∈ {0, 1} be such that x = δi(y) and w = δi(u).
Then y is a prefix of u.

We first show that u is a palindrome. First observe that u has a suffix in the
set {y, ỹ}. Indeed, if γ ∈ {id, τ} then y is a suffix of u. Otherwise, if γ ∈ {σ, τσ},
one has that ỹ is a suffix of u. Let now z be the longest palindrome prefix of u.
Then y is a prefix of z since otherwise z would have a second occurrence in u
(in a full set, the longest palindrome prefix of a word is unioccurrent, see [43]).
Consequently ỹ is a suffix of z and z cannot have another occurrence of y or
ỹ except as a prefix or a suffix (otherwise, w would have an internal factor in
the GA-orbit of x). Thus z is a complete return word to {y, ỹ}. Consequently,
δi(z) is a complete return word to the GA-orbit of x and thus δi(z) = w, which
implies that u = z and that u is a palindrome.

Now, the GA-orbit of any word w = δi(u) with u palindrome has two ele-
ments. Indeed, either w is even and w−1 = τ(w), or w is odd and w−1 = w.
Thus such a w is fixed by a nontrivial element of GA.

Example 5.2.27 Let S be the specular set of Example 5.2.21. Since it is
a doubling of the Fibonacci set (which is Sturmian and thus full), it is GA-
full with respect to the group GA generated by the antimorphism σ and the
morphism τ of Example 5.2.24. The GA-orbit of x = a is the set X = {a, c}.
The set of complete return words to X (see also Section 1.4) is given by

CRS(X) = {aa, aba, cc, cdc}.

The four words are palindromes and thus they are fixed by στ .

As another example, consider x = ab. ItsGA-orbit is the setX = {ab, ba, cd, dc}
and the set of complete return words to X is given by

CRS(X) = {aba, baab, bab, cdc, dccd, dcd}.

Each of them is a palindrome, thus is fixed by στ .
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Example 5.2.28 Let S be the specular set of Example 5.2.22. Since it is a
doubling of the Fibonacci set (which is Sturmian and thus full), it is GA-full
with respect to the group GA generated by the map σ taking the inverse (that
is fixing a, c and exchanging b and d) and the morphism τ (which exchanges a, c
and b, d respectively). The GA-orbit of x = a is the set X = {a, c}. We have

CRS(X) = {abc, ac, ca, cda}.
The four words are fixed by στ . As another example, consider x = ab. Then
X = {ab, bc, cd, da} and CRS(X) = {abc, bcad, bcd, cda, dab, dacb}. Each of
them is fixed by some nontrivial element of GA.

5.3 Return words

In this section we introduce three variants of the notion of return words, namely
complete, right and mixed return words. We prove several results concerning
sets of return words (Theorems 5.3.5, 5.3.2, 5.3.9). We also prove that the set of
return words to a given word forms a basis of the even subgroup (Theorem 5.3.11
referred to as the First Return Theorem) and that the mixed return words form
a monoidal basis of the specular group (Theorem 5.3.13).

5.3.1 Cardinality Theorems for return words

In this section, we introduce several notions of return words: complete return
words, right (or left) return words and mixed return words. For each of them,
we prove a cardinality theorem (Theorems 5.3.5, 5.3.2 and 5.3.9).

Complete return words

Let S be a factorial set of words and let X ⊂ S be a set of nonempty words.
Recall from Section 1.4 that a complete return word to X is a word of S with
a proper prefix in X , a proper suffix in X but no internal factor in X . The
set CRS(X) of complete return words to X is a bifix code. If S is uniformly
recurrent, CRS(X) is finite for any finite set X .

Example 5.3.1 Let S be the specular set of Example 5.2.22. One has

CRS(a) = {abca, abcda, acda},
CRS(b) = {bcab, bcdacdab, bcdacdacdab},
CRS(c) = {cabc, cdabc, cdac},
CRS(d) = {dabcabcabcd, dabcabcd, dacd}.

A direct consequence of Theorem 2.2.8 is the following.

Theorem 5.3.2 Let S be a recurrent specular set on the alphabet A. For any
finite nonempty bifix code X ⊂ S with empty kernel, one has

Card(CRS(X)) = Card(X) + Card(A)− 2.
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The following example illustrates Theorem 5.3.2.

Example 5.3.3 Let S be the specular set on the alphabet A = {a, b, c, d} of
Example 5.2.2. We have

CRS({a, b}) = {ab, acda, bca, bcda}.

It has four elements in agreement with Theorem 5.3.2.

We note that when X is a finite S-maximal bifix code of S-degree d with
kernel K(X), the set CRS(X) has the following property. For any set K such
that K(X) ⊂ K ⊂ X with K 6= X , the set Y = K ∪ CRS(X \ K) is an S-
maximal bifix code of S-degree dS(X) + 1. The code X is the derived code of
Y (see [7, Section 4.3]). This gives a connection between Equations (5.3) and
(2.2). Indeed, by Equation (5.3), we have

Card(Y ) = (d+ 1)(Card(A) − χ(S)) + χ(S) = Card(X) + Card(A)− χ(S).

Thus

Card(CRS(X \K)) = Card(Y )− Card(K)

= Card(X)− Card(K) + Card(A) − χ(S)

= Card(X \K) + Card(A)− χ(S)

which is Formula (2.2) since X \K is a bifix code with empty kernel.

Right return words

Let S be a factorial set. For any nonempty word x ∈ S, we defined in Section 1.4
a right return word to x in S as a word w such that xw is a complete return
word to x. We also denoted by RS(x) the set of right return words to x in S.

Note that when S is a laminary set RS(x)
−1 = R′

S(x
−1).

Proposition 5.3.4 Let S be a specular set and let x ∈ S be a nonempty word.
All the words of RS(x) are even.

Proof. If w ∈ RS(x), we have xw = vx for some v ∈ S. If x is odd, assume that
x ∈ S0,1. Then w ∈ S1,1. Thus w is even. If x is even, assume that x ∈ S0,0.
Then w ∈ S0,0 and w is even again.

Theorem 5.3.5 (Cardinality Theorem for right return words) Let S be
a recurrent specular set. For any x ∈ S, the set RS(x) has Card(A)−1 elements.

Proof. This follows directly from Theorem 5.3.2 withX = {x}, since Card(RS(x)) =
Card(CRS(x)).
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Example 5.3.6 Let S be the specular set of Example 5.2.22. We have

RS(a) = {bca, bcda, cda},
RS(b) = {cab, cdacdab, cdacdacdab},
RS(c) = {abc, dabc, dac},
RS(d) = {abcabcd, abcabcabcd, acd}.

By Theorem 3.2.5, if S is a recurrent tree set of characteristic 1 on the
alphabet B, then for any x ∈ S, one has Card(RS(x)) = Card(B). The relation
with Theorem 5.3.5 is as follows. Let X be the even code and let X0 = X ∩
S0,0, X1 = X ∩ S1,1. Thus X = X0 ∪X1.

One has Card(X0) = Card(A) − 1 by Theorem 5.3.5 (indeed, Card(X) =
2Card(A)− 2 and Card(X0) = Card(X1)).

Let f be a coding morphism for X . Then for any x ∈ S0,0, the set RS(x)
is in bijection, via the decoding by X0, with the set of right return words to
f−1(x). Since f−1(S0,0) is a tree set on B0 = f−1(X0), the set RS(x) has
Card(A)− 1 elements, in agreement with Theorem 5.3.5.

Mixed return words

Let S be a laminary set. For w ∈ S such that w 6= w−1, we consider complete
return words to the set X = {w,w−1}.

Theorem 5.3.7 Let S be a recurrent specular set. For any w ∈ S such that
w 6= w−1, the set of complete return words to {w,w−1} has Card(A) elements.

Proof. The statement results directly of Theorem 5.3.2.

Example 5.3.8 Let S be the specular set of Example 5.2.22. In view of the
values of CRS(b) and CRS(d) given in Example 5.3.1, we have

CRS({b, d}) = {bcab, bcd, dab, dacd}.

Two words u, v are said to overlap if a nonempty suffix of one of them is a
prefix of the other. In particular a nonempty word overlaps with itself.

We now consider the return words to {w,w−1} with w such that w and
w−1 do not overlap. This is true for every w in a laminary set S where the
involution θ has no fixed point (in particular when S is the natural coding of a
linear involution, as we will see in Chapter 8). In this case, the group Gθ is free
and for any w ∈ S, the words w and w−1 do not overlap.

With a complete return word u to {w,w−1}, we associate a word N(u)
obtained as follows. If u has w as prefix, we erase it and if u has a suffix w−1,
we also erase it. Note that these two operations can be made in any order since
w and w−1 cannot overlap.

The mixed return words to w are the words N(u) associated with complete
return words u to {w,w−1}. We denote by MRS(w) the set of mixed return
words to w in S.
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Note that MRS(w) is symmetric and that wMRS(w)w
−1 = MRS(w

−1).
Note also that if S is orientable, then

MRS(w) = RS(w) ∪RS(w)
−1 = RS(w) ∪R′

S(w
−1).

The reason for this definition comes from the case where S is the natural
coding of a linear involution, as we will see in Chapter 8.

Observe that any uniformly recurrent biinfinite word x such that F (x) = S
can be uniquely written as a concatenation of mixed return words (see Fig-
ure 5.7). Note that successive occurrences of w may overlap but that successive
occurrences of w and w−1 cannot.

. . . w w

r

w−1

ts

w−1 w

u

. . .

Figure 5.7: A uniformly recurrent infinite word factorized as an infinite product
· · · rstu · · · of mixed return words to w.

We have the following cardinality result.

Theorem 5.3.9 (Cardinality Theorem for mixed return words) Let S be
a recurrent specular set on the alphabet A. For any w ∈ S such that w,w−1 do
not overlap, the set MRS(w) has Card(A) elements.

Proof. This is a direct consequence of Theorem 5.3.7 since Card(MRS(w)) =
Card(CRS({w,w−1}) when w and w−1 do not overlap.

Note that the bijection between CRS(w,w
−1) and MRS(w) is illustrated in

Figure 5.7.

Example 5.3.10 Let S be the specular set of Example 5.2.22. The value of
CRS(b, d) is given in Example 5.3.8. Since b, d do not overlap,

MRS(b) = {cab, c, dac, dab}

has four elements in agreement with Theorem 5.3.9.

5.3.2 First Return Theorem for specular sets

By Theorem 3.2.5, the set of right return words to a given word in a recurrent
tree set of characteristic 1 is a basis of the free group on A. We will see a
counterpart of this result for recurrent specular sets.

Let S be a specular set. The even subgroup is the group formed by the even
words. It is a subgroup of index 2 of Gθ with symmetric rank 2(Card(A) − 1)
by (5.1) generated by the even code. Since no even word is its own inverse (by
Proposition 5.2.13), it is a free group. Thus its rank is Card(A)− 1.
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Theorem 5.3.11 (First Return Theorem for specular sets) Let S be a
recurrent specular set. For any w ∈ S, the set of right return words to w is
a basis of the even subgroup.

Proof. We first consider the case where w is even. Let f : B∗ → A∗ be a
coding morphism for the even code X ⊂ S. Consider the partition (Si,j), as in
Proposition 5.2.13, and set X0 = X ∩ S0,0, X1 = X ∩ S1,1. By Theorem 5.2.15,
the set f−1(S) is the union of the two recurrent tree sets of characteristic 1,
T0 = f−1(S0,0) and T1 = f−1(S1,1) on the alphabets B0 = f−1(X0) and B1 =
f−1(X1) respectively. We may assume that w ∈ S0,0. Then RS(w) is the image
by f of the set R = RT0(f

−1(w)). By Theorem 3.2.5, the set R is a basis of the
free group on B0. Thus RS(w) is a basis of the image of FB0 by f , which is the
even subgroup.

Suppose now that w is odd. Since the even code is an S-maximal bifix code,
there exists an odd word u such that uw ∈ S. Then RS(uw) ⊂ RS(w)

∗. By
what precedes, the set RS(uw) generates the even subgroup and thus the group
generated by RS(w) contains the even subgroup. Since all words in RS(w) are
even, the group generated by RS(w) is contained in the even subgroup, whence
the equality. We conclude by Theorem 5.3.5.

Example 5.3.12 Let S be the specular set of Example 5.2.22. The sets of right
return words to a, b, c, d are given in Example 5.3.6. Each one is a basis of the
even subgroup.

Concerning mixed return words, we have the following statement.

Theorem 5.3.13 Let S be a recurrent specular set. For any w ∈ S such that
w,w−1 do not overlap, the set MRS(w) is a monoidal basis of the group Gθ.

Proof. Since w and w−1 do not overlap, we have RS(w) ⊂ MRS(w)
∗. Thus,

by Theorem 5.3.11, the group 〈MRS(w)〉 contains the even subgroup. But
MRS(w) always contains odd words. Indeed, assume that w ∈ Si,j . Then
w−1 ∈ S1−j,1−i and thus any u ∈ MRS(w) such that wuw−1 ∈ S is odd.
Since the even group is a maximal subgroup of Gθ, this implies that MRS(w)
generates the group Gθ. Finally since MRS(w) has Card(A) elements by The-
orem 5.3.9, we obtain the conclusion by Proposition 5.1.10.

Example 5.3.14 Let S be the specular set of Example 5.2.22. We have seen
in Example 5.3.10 that

MRS(b) = {c, cab, dab, dac}.

This set is a monoidal basis of Gθ in agreement with Theorem 5.3.13.
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5.4 Freeness and Saturation Theorems

In this section we consider two notions concerning sets of generators of a sub-
group H in a specular group, namely free subsets and the set of prime words
with respect to H . We prove that a set closed by taking inverses is acyclic if and
only if any symmetric bifix code is free (Theorem 5.4.1). Moreover, we prove
that in such a set, for any finite symmetric bifix code X , the free monoid X∗

and the free subgroup 〈X〉 have the same intersection with S (Theorem 5.4.6).
We can see these two results as a generalization of the Freeness Theorem

and Saturation Theorem (Theorems 4.1.1 and 4.1.2) in the case of a specular
set. Indeed, when the involution θ is the identity we recover the original results
of Chapter 4.

5.4.1 Freeness Theorem

Let θ be an involution on A and let Gθ be the corresponding specular group. A
symmetric set X is free if it is a monoidal basis of a subgroup H of the group
Gθ. Thus a symmetric set X ⊂ Gθ is free if for x1, x2, . . . , xn ∈ X , the product
x1x2 · · ·xn cannot reduce to 1 unless xi = x−1

i+1 for some i with 1 ≤ i < n (see
also Section 4.1.

The following is a consequence of Theorem 4.1.1.

Theorem 5.4.1 (Freeness Theorem for laminary sets) A laminary set S
is acyclic if and only if any symmetric bifix code X ⊂ S is free.

The proof is identical with that of Theorem 4.1.1, using the incidence graph
GX of a bifix code X .

5.4.2 Cosets

Let X be a symmetric set with respect to an involution θ. Recall from Sec-
tion 4.1.1 the definition of incidence graph GX . The set of vertices of GX is the
disjoint union of the set PX of nonempty proper prefixes of X and the set SX

of nonempty proper suffixes of X . As for extension graphs (see Chapter 1), we
use the notation 1⊗ w for a vertex w ∈ PX and w ⊗ 1 for a vertex w ∈ SX .

We define an equivalence relation γX on the set P of proper prefixes of X ,
called the θ-coset equivalence, or simply coset automaton when θ is understood,
of X , as follows. It is the relation defined by p ≡ q mod γX if there is a path
(of even length) from 1 ⊗ p to 1 ⊗ q or a path (of odd length) from 1 ⊗ p to
q−1 ⊗ 1 in the graph GX . It is easy to verify that, since X is symmetric, γX
is indeed an equivalence. The class of the empty word ε is reduced to {ε}.
This definition is an extension to symmetric sets of the equivalence denoted θX
defined in Section 4.1.1. Indeed, when the involution is just the identity, the
two equivalence relations coincide for all elements in A∗.

The following statement is the generalization to symmetric bifix codes of
Proposition 4.1.4. We denote by 〈X〉 the subgroup generated by X .
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Proposition 5.4.2 Let X be a symmetric bifix code and let P be the set of its
proper prefixes. Let γX be the coset equivalence of X and let H = 〈X〉. For any
p, q ∈ P , if p ≡ q mod γX , then Hp = Hq.

Proof. Assume that there is a path of even length from p to q. If the path has
length 2, then we have pr, qr ∈ X for some suffix r of X . This implies pq−1 ∈ H
and thus Hp = Hq. The general case follows by induction. In the case where
there is a path of odd length from p to q−1, there is a path of even length from
p to r and an edge from r to q−1 for some r ∈ P . Then Hp = Hr by the
preceding argument. Since rq−1 ∈ X , we have Hr = Hq and the conclusion
follows.

We now use the coset equivalence γX to define the θ-coset automaton, or
simply coset automaton when θ is understood, CX of a symmetric bifix code X
as follows. The vertices of CX are the equivalence classes of γX . We denote by
p̂ the class of p. There is an edge labeled a ∈ A from s to t if for some p ∈ s
and q ∈ t (that is, s = p̂ and t = q̂), one of the following cases occurs (see
Figure 5.8):

(i) pa ∈ P and pa ≡ q mod γX ,

(ii) or pa ∈ X and q = ε.

ε̂ p̂ p̂a
p a

(i)

p̂ ε̂
a

(ii)

Figure 5.8: The edges of the coset automaton.

Note that, when the involution θ is the identity, the coset automaton CX
coincides with the automaton BX defined in Section 4.1.2.

Proposition 5.4.3 Let X be a symmetric bifix code, let P be its set of proper
prefixes and let H = 〈X〉. If for p, q ∈ P and a word w ∈ A∗ there is a path
labeled w from the class p̂ to the class q̂, then Hpw = Hq.

Proof. Assume first that w is a letter a ∈ A. It is easy to verify using Propo-
sition 5.4.2 that in the two cases of the definition of an edge (p̂, a, q̂), one has
Hpa = Hq. Since the coset does not depend on the representative in the class,
this implies the conclusion. The general case follows easily by induction.

Let A be an alphabet with an involution θ. A directed graph with edges
labeled in A is called symmetric if there is an edge from p to q labeled a if and
only if there is an edge from q to p labeled a−1.

If G is a symmetric graph and v is a vertex of G, the set of reductions of the
labels of paths from v to v is a subgroup of Gθ called the subgroup described
by G with respect to v.
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A symmetric graph is called reversible if for every pair of edges of the form
(v, a, w), (v, a, w′), one has w = w′ (and the symmetric implication since the
graph is symmetric).

The following proposition is a generalization to specular sets of Proposi-
tion 4.1.7.

Proposition 5.4.4 Let S be a specular set and let X ⊂ S be a finite symmetric
bifix code. The coset automaton CX is reversible. Moreover the subgroup de-
scribed by CX with respect to the class of the empty word is the group generated
by X.

Proof. It is easy to verify that the words of X are labels of paths from ε̂ to
ε̂ which do not pass by ε̂ in between. Thus the group described by CX with
respect to ε̂ contains H = 〈X〉.

By Proposition 5.4.3, if there is a path from the class of p to the class of q
labeled w, then Hpw = Hq. Thus if w belongs to the group described by CX
(w.r.t. ε̂), it is in H . We have thus proved that the coset automaton describes
H .

Let us show now that CX is reversible. First, it is symmetric since X is
symmetric. Let us show that if (v, a, w) and (v, a, w′) are edges of CX , then
w = w′. Consider p, p′ ∈ P such that p ≡ p′ mod γX . Assume that there is an
edge labeled a from p̂ = p̂′ to q̂ and to q̂′.

Case 1 Suppose that pa, p′a ∈ P . We have to show that pa ≡ p′a mod γX .
Let u, v be such that pau, p′av ∈ X . It is not possible that there exists a path
of odd length from p to p′−1 in the incidence graph GX . Indeed, assume that
p ∈ Si,j and a ∈ Sj,k. Let (p, u1, . . . , u2m, p

′−1) with m ≥ 0 be a path of odd
length from p to p′−1. Then each u2t for 1 ≤ t ≤ m is in Sit,j and each u2t+1

for 0 ≤ t ≤ m− 1 is in Sj,ℓt for some it, ℓt ∈ {0, 1}. Then p′−1 ∈ Sj,ℓm and thus
p′ ∈ S1−ℓm,1−j . But then we cannot have p′a ∈ S. Thus there is a path of even
length from p to p′ in GX . This implies that there is a path of even length of
the form (au, p, . . . , p′, av). Thus by Proposition 4.1.3 (iii), there is a path of
even length from pa to p′a. This implies that pa ≡ p′a mod γX .

Case 2 Assume now that pa ∈ P and p′a ∈ X . For the same reason as in
Case 1, there cannot exist a path of odd length from p to p′. Thus there is a
path of even length from p to p′. By Proposition 4.1.3 (iii), this is not possible
since otherwise we would have for some word u, a path (au, p, . . . , p′, a) and a
is not a proper prefix of the last term of the sequence.

The case where pa ∈ X and p′a ∈ P is symmetrical. Finally, if pa, p′a ∈ X ,
we have q = q′ = ε.

This shows that if (v, a, w) and (v, a, w′) are edges of CX , then w = w′. Since
CX is symmetric, it follows that if (v, a, w) and (v′, a, w) are edges of CX , then
v = v′. Thus CX is reversible.
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Example 5.4.5 Let S be the specular set of Example 5.2.3. Let X be the set
of words of length 3 of S (see Figure 5.3), which is a symmetric bifix code. The
incidence graph GX is represented in Figure 5.9.

a b−1c

c b−1c−1

bc−1

c−1 ba−1

ab−1

a−1c−1b

c−1cb

cb−1

cab−1

ba−1

b a−1c

b−1 c−1a

c−1b

a−1 cb

cb−1

b−1c−1a

ba−1c

b−1c

ab−1c−1

bc−1

Figure 5.9: The incidence graph of X .

The coset automaton CX is represented in Figure 5.10 (we only represent
one of the edges labeled a and a−1, the other one is understood). The vertex
2 is the class corresponding to the first two trees in Figure 5.9. The vertex 3
corresponds to the two last ones.

1

2

3

a, c

c

b

a, b

a

b

c

Figure 5.10: The coset automaton.

5.4.3 Saturation Theorem

Let H be a subgroup of the specular group Gθ and let S be a specular set on
A relative to θ. The set of prime words in S with respect to H is the set of
nonempty words in H∩S without a proper nonempty prefix in H∩S. Note that
the set of prime words with respect to H is a symmetric bifix code. One may
verify that it is actually the unique bifix code X such that X ⊂ S ∩H ⊂ X∗.

The following statement is a generalization of the Saturation Theorem (The-
orem 4.1.2).

Theorem 5.4.6 (Saturation Theorem for laminary sets) Let S be an acyclic
laminary set. Any finite symmetric bifix code X ⊂ S is the set of prime words
in S with respect to the subgroup 〈X〉. Moreover 〈X〉 ∩ S = X∗ ∩ S.
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Proof. Let H = 〈X〉 and let Y ⊂ S be the set of prime words with respect to H .
Then Y is a symmetric bifix code and thus it is free by Theorem 5.4.1. Since, by
Proposition 5.4.4, the coset automaton CX is reversible, any reduced word is the
label of at most one reduced path in CX . Since any word of X is the label of a
reduced path from ε̂ to ε̂ in CX which does not pass by ε̂ inbetween, this implies
that X ⊂ Y . But any y ∈ Y is the reduction of some product x1x2 · · ·xn with
xi ∈ X . Since Y is free and contains X , this implies n = 1 and y ∈ X . Thus
X = Y .

The last assertion follows from the fact that, since X is the set of prime
words in S with respect to H , one has H ∩ S ⊂ X∗.

Note that the hypothesis that X is symmetric is necessary, as shown in the
following example.

Example 5.4.7 LetA = {a, b, a−1, b−1}. Let S be the set of factors of (ab−1)ω∪
(a−1b)ω (we denote as usual by xω the infinite word xxx · · · ). Then S is an
acyclic laminary set. The set X = {a, ba−1} is a bifix code but it is not the set
of prime words with respect to 〈X〉 since b ∈ 〈X〉 ∩ S.

5.5 The Finite Index Basis property

In this section we prove a cunterpart of the Finite Index Basis Theorem for
specular sets (Theorem 5.5.1) and a converse (Theorem 5.5.6).

5.5.1 Finite Index Basis Theorem

The following result is the counterpart for specular sets of the result holding
for recurrent tree sets of characteristic 1 (see Theorem 4.2.1). The proof is very
similar to that of Theorem 4.2.1 and we omit some details.

Theorem 5.5.1 (Finite Index Basis Theorem for specular sets) Let S be
a recurrent specular set and let X ⊂ S be a finite symmetric bifix code. Then
X is an S-maximal bifix code of S-degree d if and only if it is a monoidal basis
of a subgroup of index d.

The following result is a complement to [7, Theorem 4.4.3], asserting that if
S is a recurrent set, any finite bifix code X ⊂ S is contained in a finite S-
maximal bifix code Z. It shows that when X is symmetric, then Z can be
chosen symmetric.

Theorem 5.5.2 Let S be a recurrent laminary set. Any finite symmetric bifix
code X ⊂ S is contained in a finite symmetric S-maximal bifix code.

Proof. LetX ⊂ S be a finite symmetric bifix code which is not S-maximal. Since
X is finite, the number d = max{dX(w) | w ∈ X} is finite. By [7, Theorem
4.3.12],X is the kernel of some S-maximal bifix code Z of S-degree d+1. Since S
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is recurrent, by [7, Theorem 4.4.3], Z is finite. Let us show that Z is symmetric.
Indeed, we have by [7, Theorem 4.3.11], dZ(w) = min{d+1, dX(w)}. Since X is
symmetric, we have dX(w) = dX(w−1) for any w ∈ S. Indeed, (q, x, p) is a parse
of w if and only if (p−1, x−1, q−1) is a parse of w−1. Thus dZ(w) = dZ(w

−1).
This implies that Z is symmetric.

Proof of Theorem 5.5.1. Assume first that X is a finite symmetric S-maximal
bifix code of S-degree d. Let P be the set of proper prefixes of X . Let H be
the subgroup generated by X .

Let u ∈ S be a word such that dX(u) = d, or, equivalently, which is not an
internal factor of X . Since u can be replaced by any of its right extensions, we
may assume that u is odd. Let Q be the set formed of the d suffixes of u which
are in P .

Let us first show that the cosetsHq for q ∈ Q are disjoint. Indeed, Hp∩Hq 6=
∅ implies Hp = Hq. Any p, q ∈ Q are comparable for the suffix order. Assuming
that q is longer than p, we have q = tp for some t ∈ P . Then Hp = Hq implies
Ht = H and thus t ∈ H ∩ S. By Theorem 5.4.6, since S is acyclic and X is
symmetric, this implies t ∈ X∗ and thus t = ε. Thus p = q.

Let
V = {v ∈ Gθ | Qv ⊂ HQ}

where the products Qv and HQ are understood in the group Gθ (that is, with
reduction).

For any v ∈ V the map p 7→ q from Q into itself defined by pv ∈ Hq is a
permutation of Q. Indeed, suppose that for p, q ∈ Q, one has pv, qv ∈ Hr for
some r ∈ Q. Then rv−1 is in Hp ∩Hq and thus p = q by the above argument.

The set V is a subgroup of Gθ. Clearly, ε = 1Gθ
∈ V . Next, let v ∈ V . Then

for any q ∈ Q, since v defines a permutation of Q, there is a p ∈ Q such that
pv ∈ Hq. Then qv−1 ∈ Hp. This shows that v−1 ∈ V . Next, if v, w ∈ V , then
Qvw ⊂ HQw ⊂ HQ and thus vw ∈ V .

We show that the set RS(u) is contained in V . Let y ∈ RS(u). Since uy
ends with u, and since u is not an internal factor of X , for any p ∈ Q, we have
py = xq for some x ∈ X∗ and q ∈ Q. Therefore y ∈ V .

By Theorem 5.3.11, the group generated by RS(u) is the even subgroup.
Thus V contains the even subgroup. But V contains odd words. Indeed, let
v ∈ S be such that uvu−1 ∈ S. Then v is odd by Proposition 5.2.14. Moreover,
for any p ∈ Q there is some q ∈ Q such that pvq−1 ∈ X∗. This implies that
pv ∈ X∗q and thus v is in V . Since the even subgroup is of index 2, it is maximal
in Gθ and we conclude that V = Gθ.

Thus Qw ⊂ HQ for any w ∈ Gθ. Since ε ∈ Q, we have in particular w ∈ HQ
for any w ∈ Gθ. Thus Gθ = HQ. Since Card(Q) = d, and since the right cosets
Hq for q ∈ Q are pairwise disjoint, this shows that H is a subgroup of index
d. By Theorem 5.3.2, we have Card(X) − 2 = d(Card(A) − 2). But since X
generates H , and since X contains the inverses of its elements, this implies by
Proposition 5.1.10 that X is a monoidal basis of H .

Assume conversely that the finite bifix code X ⊂ F is a monoidal basis of
the group H = 〈X〉 and that 〈X〉 has index d. Since X is a monoidal basis, by
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Schreier’s Formula, we have Card(X) = (k − 2)d+ 2, where k = Card(A). The
case k = 1 is straightforward; thus we assume k ≥ 2. By Theorem 5.5.2, there is
a finite symmetric S-maximal bifix code Y containing X . Let e be the S-degree
of Y . By the first part of the proof, Y is a monoidal basis of a subgroup K of
index e of Gθ. In particular, it has (k − 2)e + 2 elements. Since X ⊂ Y , we
have (k − 2)d+ 2 ≤ (k− 2)e+ 2 and thus d ≤ e. On the other hand, since H is
included in K, d is a multiple of e and thus e ≤ d. We conclude that d = e and
thus that X = Y .

Note that when X is not symmetric, the index of the subgroup generated
by X may be different of dS(X), as shown in the following example.

Example 5.5.3 Let S be the specular set of Example 5.2.3. The set X =
{a, ba−1, bc−1, b−1c, b−1c−1, a−1c, cb, cb−1, c−1ab−1, c−1b} is an S-maximal bifix
code of S-degree 2. Since b, c ∈ 〈X〉, the group generated by X is the free group
on A.

The following consequence of Theorem 5.5.1 is the counterpart for specular
sets of Theorem 4.3.6.

Theorem 5.5.4 Let S be a recurrent specular set. For any subgroup H of
finite index of the group Gθ, the set of prime words in S with respect to H is a
monoidal basis of H.

Proof. Let X be the set of prime words in S with respect to H . The set X is a
symmetric bifix code and the number of parses of a word of S is at most equal
to the index d of H in Gθ. Indeed, let (v, x, u) and (v′, x′, u′) be two parses of a
word w ∈ S. If v, v′ are in the same left coset of H , then the two interpretations
are equal. Indeed, assume that |v| ≥ |v′| and set v = v′s. Then s ∈ H and
thus s ∈ X∗, which implies s = 1 by definition of a parse. Therefore X is an
S-maximal bifix code by [7, Theorem 4.2.8].

By Theorem 5.5.1, X is a monoidal basis of a subgroup K of index e. Since
K ⊂ H , the index of K is a multiple of the index of H . Since e ≤ d, we conclude
that e = d and that K = H .

We illustrate Theorem 5.5.4 with the following interesting example.

Example 5.5.5 Let S be the specular set of Example 5.2.3. Let G be the group
of even words in FA. It is a subgroup of index 2. The set of prime words in S
with respect to G is the set Y = X ∪X−1 with

X = {a, ba−1c, bc−1, b−1c−1, b−1c}.

5.5.2 A converse of the Finite Index Basis Theorem

The following is a converse of Theorem 5.5.1. It is also the counterpart for
specular sets of Corollary 4.2.6.
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Theorem 5.5.6 Let S be a recurrent laminary set of factor complexity pn =
n(Card(A)− 2) + 2. If S ∩ An is a monoidal basis of the subgroup 〈An〉 for all
n ≥ 1, then S is a specular set.

Proof. Consider w ∈ S and set m = |w|. The set X = (AwA ∪ Aw−1A) ∩ S
is closed by taking inverses and it is included in Y = S ∩ Am+2. Since Y is a
monoidal basis of a subgroup, X ⊂ Y is a monoidal basis of the subgroup 〈X〉.

This implies that the graph E(w) is acyclic. Indeed, assume that the path
(a1, b1, . . . , ap, bp, a1) is a cycle in E(w) with p ≥ 2, ai ∈ L(w), bi ∈ R(w) for
1 ≤ i ≤ p and a1 6= ap. Then a1wb1, a2wb1, . . . , apwbp, a1wbp ∈ X . But

a1wb1(a2wb1)
−1a2wb2 · · · apwbp(a1wbp)−1 = ε,

with ajwbj(aj+1wbj)
−1 = aja

−1
j+1 6= ε (otherwise aj = aj+1), contradicting the

fact that X is a monoidal basis.
Since pn = n(Card(A)− 2)+2, we have sn = Card(A)− 2 and tn = 0 for all

n > 0. By Proposition 1.1.6, it implies that m(w) = 0 for all nonempty words
w. Since E(w) is acyclic, we conclude that E(w) is a tree.

Finally, since E(ε) is acyclic, and since m(ε) = −1, the graph E(ε) has two
connected components which are trees.
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Chapter 6

Interval exchanges

In this chapter we study interval exchange sets. These sets are a particular
example of tree sets arising from a family of dynamical system called interal
exchange transformations.

In Section 6.1 we introduce interval exchange transformations and interval
exchange sets. We concentrate on the study of minimal and regular interval
exchanges, showing the connection between these two families (Theorem 6.1.6).
We prove that an interval exchange set satisfying some natural condition is a
planar tree set (Theorem 6.1.16). This generalize a result from Ferenczi and
Zamboni (see [39]).

In Section 6.2 we study the connection between regular interval exchange
sets and bifix codes. Given an interval exchange, we define a transformation
associated to a maximal bifix decoding and we prove that this transformation
is regular provided the original one was regular (Theorem 6.2.10). We finally
prove that the family of regular interval exchange sets is closed under maximal
bifix decoding (Theorem 6.2.11) and, as a corollary, so is the family of recurrent
planar tree sets of characteristic 1 (Corollary 6.2.13).

6.1 Interval exchange transformations

Let us recall the definition of an interval exchange transformation (see [25], [68]
or [66] for a more detailed presentation).

A semi-interval is a nonempty subset of the real line of the form [α, β[=
{z ∈ R | α ≤ z < β}. Thus it is a left-closed and right-open interval. For two
semi-intervals ∆,Γ, we denote ∆ < Γ if x < y for any x ∈ ∆ and y ∈ Γ.

Let A be a finite, nonempty and ordered alphabet. Given an order < on A,
a partition (Ia)a∈A of a semi-interval [ℓ, r[ in semi-intervals is ordered if a < b
implies Ia < Ib.

Let now <1 and <2 be two total orders on A. Let (Ia)a∈A be a partition
of [ℓ, r[ in semi-intervals ordered for <1. Let λa be the length of Ia. Let
µa =

∑
b≤1a

λb and νa =
∑

b≤2a
λb. Set αa = νa − µa. The interval exchange
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transformation relative to (Ia)a∈A is the map T : [ℓ, r[→ [ℓ, r[ defined by

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that
µa is the right boundary of Ia and that νa is the right boundary of Ja. We
additionally denote by γa the left boundary of Ia and by δa the left boundary
of Ja. Thus

Ia = [γa, µa[, Ja = [δa, νa[.

Since a <2 b implies Ja <2 Jb, the family (Ja)a∈A is a partition of [ℓ, r[
ordered for <2. In particular, the transformation T defines a bijection from
[ℓ, r[ onto itself.

An interval exchange transformation relative to (Ia)a∈A is also said to be
on the alphabet A. The values (αa)a∈A are called the translation values of the
transformation T .

Example 6.1.1 Let R be the interval exchange transformation corresponding
to A = {a, b}, a <1 b, b <2 a, Ia = [0, 1− α[, Ib = [1− α, 1[ (see Figure 6.1).

0 1− α 1

a b
0 α 1

b a

Figure 6.1: A rotation.

The transformation R is the rotation of angle α on the semi-interval [0, 1[
defined by R(z) = z + α mod 1.

Since <1 and <2 are total orders, there exists a unique permutation π of A
such that a <1 b if and only if π(a) <2 π(b). Conversely, <2 is determined by
<1 and π and <1 is determined by <2 and π. The permutation π is said to be
associated to T .

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as. The pair (λ, π) formed
by the family λ = (λa)a∈A and the permutation π determines the map T . We
will also denote T as Tλ,π. The transformation T is also said to be an s-interval
exchange transformation.

It is easy to verify that the family of s-interval exchange transformations is
closed by taking inverses.

Example 6.1.2 Let T = R2 where R is the rotation of Example 6.1.1. The
transformation T , represented in Figure 6.2 is a 3-interval exchange transforma-
tion. One has A = {a, b, c} with a <1 b <1 c and b <2 c <2 a. The associated
permutation is the cycle π = (abc).
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0 1− 2α 1− α 1

a b c

0 α 2α 1

b c a

Figure 6.2: A 3-interval exchange transformation.

Example 6.1.3 Let A = {a, b, c}. Consider the rotation of angle α with α
irrational as in Example 6.1.1, but as a 3-transformation relative to the partition
(Ia)a∈A of the interval ]0, 1[, where

Ia =]0, 1− 2α[, Ib =]1− 2α, 1− α[ and Ic =]1− α, 1[,

while
Jc =]0, α[, Ja =]α, 1− α[ and Jb =]1− α, 1[

(see Figure 6.3). Then, for each letter a, the restriction to Ia is a translation to
Ja. Note that one has a <1 b <1 c and c <2 a <2 b.

0 1− 2α 1− α 1

a b c

0 α 1− α 1

c a b
Figure 6.3: A 3-interval exchange transformation.

6.1.1 Regular interval exchanges

The orbit of a point z ∈ [ℓ, r[ is the set O(z) = {T n(z) | n ∈ Z}. The transfor-
mation T is said to be minimal if for any z ∈ [ℓ, r[, the orbit of z is dense in
[ℓ, r[.

From now on, set γi = γai
, δi = δai

, µi = µai
and νi = νai

. The points
0 = γ1, µ1 = γ2, . . . , µs−1 = γs form the set of separation points of T , denoted
Sep(T ). Note that the transformation T has at most s− 1 singularities (that is
points at which it is not continuous), which are among the nonzero separation
points γ2, . . . , γs.

A connection of an interval exchange transformation T is a triple (x, y, n)
where x is a singularity of T−1, y is a singularity of T , n ≥ 0 and T n(x) = y.
We also say that (x, y, n) is a connection of length n ending in y. When n = 0,
we say that x = y is a connection.

Example 6.1.4 Let T be the transformation of Example 6.1.3. The point γc
is a connection of length 0. This connection is represented with a dotted line in
Figure 6.3.

Let T be an interval exchange transformation with exactly c connections all
of length 0. Denote by γk0 = ℓ and γk1 , . . . , γkc

the c connections of T . For
every 0 ≤ i < c the interval ]γki

, γki+1 [ is called a component of I.
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Example 6.1.5 Consider again the transformation T of Example 6.1.3. The
two components of ]0, 1[ are the two intervals ]0, 1− α[ and ]1− α, 1[.

An interval exchange transformation Tλ,π is called regular if the orbits of
the nonzero separation points γ2, . . . , γs are infinite and disjoint. Note that the
orbit of 0 cannot be disjoint from the others since one has T (γi) = 0 for some i
with 2 ≤ i ≤ s. This condition is sometimes called idoc, where idoc stands for
infinite disjoint orbit condition).

Equivalently, an interval exchange is called regular if it has no conection
(see [18]).

As an example, the 2-interval exchange transformation of Example 6.1.1
which is the rotation of angle α is regular if and only if α is irrational.

The following result is due to Keane [47].

Theorem 6.1.6 (Keane) A regular interval exchange transformation is min-
imal.

The converse is not true. Indeed, the transformation of Example 6.1.3. The
transformation is minimal as any rotation of irrational angle but it is not regular
since µ1 = 1− 2α, µ2 = 1− α and thus µ2 = T (µ1).

Example 6.1.7 Let T be the 3-interval exchange transformation of Exam-
ple 6.1.2 with α = (3 −

√
5)/2. The transformation T is regular since α is

irrational. Note that 1−α is a separation point which is not a singularity since
T is also a 2-interval exchange transformation.

The following necessary condition for minimality of an interval exchange
transformation is useful. A permutation π of an ordered set A is called de-
composable if there exists an element b ∈ A such that the set B of elements
strictly less than b is nonempty and such that π(B) = B. Otherwise it is called
indecomposable. If an interval exchange transformation T = Tλ,π is minimal,
the permutation π is indecomposable. Indeed, if B is a set as above, the set of
orbits of the points in the set S = ∪a∈BIa is closed and strictly included in [ℓ, r[.
The following example shows that the indecomposability of π is not sufficient
for T to be minimal.

Example 6.1.8 Let A = {a, b, c} and λ be such that λa = λc. Let π be the
transposition (ac). Then π is indecomposable but Tλ,π is not minimal since it
is the identity on Ib.

The iteration of an s-interval exchange transformation is, in general, an
interval exchange transformation operating on a larger number of semi-interval.

Proposition 6.1.9 Let T be a regular s-interval exchange transformation. Then,
for any n ≥ 1, T n is a regular n(s− 1) + 1-interval exchange transformation.
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Proof. Since T is regular, the set ∪n−1
i=0 T

−i(µ) where µ runs over the set of s− 1
nonzero separation points of T has n(s−1) elements. These points partition the
interval [ℓ, r[ in n(s− 1) + 1 semi-intervals on which T is a translation.

We close this subsection with a lemma that will be useful in the nex chapter.
Let T be an interval exchange transformation relative to a partition (Ii)

s
i=1

and let (αi)
s
j=1 be the translations values of T . We say that αm1 +αm2 + . . .+

αmm
is an m-translation value of T if there exists a point z0 ∈ Im1 ∩T−1 (Im2)∩

· · · ∩ T−m+1 (Imm
). Roughly speaking, iterating T we can start from Im1 and

arrive to Imm
in exactly m steps, passing (in order) through Im2 , . . . Imm−1 .

Moreover, αm1+αm2+. . .+αmm
is one of the translation values of the trans-

formation Tm (namely the one corresponding to the semi-interval containing the
point z0).

Note that when T is minimal, every m-translation value of T , with m > 0,
is different from zero.

Lemma 6.1.10 Let T be a minimal interval exchange transformation over an
interval I. For every N > 0 there exists an ε > 0 such that for every z ∈ I and
for every n > 0, one has

|T n(z)− z| < ε =⇒ n ≥ N.

Proof. Let α1, α2, . . . , αs be the translation values of T . For every N > 0 it is
sufficient to choose

ε = min
{∣∣∣
∑M

j=1 αij

∣∣∣ | M ≤ N and
∑M

j=1 αij ∈ VM (T )
}
.

where VM (T ) denotes the set of M -translation values of T .

6.1.2 Natural coding

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given
real number z ∈ [ℓ, r[, the natural coding of T relative to z is the infinite word
ΣT (z) = a0a1 · · · on the alphabet A defined by

an = a if T n(z) ∈ Ia.

Example 6.1.11 Let α = (3 −
√
5)/2 and let R be the rotation of angle α on

[0, 1[ as in Example 6.1.1. The natural coding of R relative to α is the Fibonacci
x = abaab · · · definen in Example 1.1.2.

For a word w = b0b1 · · · bm−1, let Iw be the set

Iw = Ib0 ∩ T−1(Ib1 ) ∩ . . . ∩ T−m+1(Ibm−1). (6.1)

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter.
Next, assume that Iw is a semi-interval. Then for any a ∈ A, T (Iaw) = T (Ia)∩
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Iw is a semi-interval since T (Ia) is a semi-interval by definition of an interval
exchange transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw, which
is therefore also a semi-interval. This proves the property by induction on the
length. The semi-interval Iw is the set of points z such that the natural coding
of the transformation relative to z has w as a prefix, that is for any n ≥ 0

anan+1 · · · an+m−1 = w ⇐⇒ T n(z) ∈ Iw. (6.2)

Set Jw = Tm(Iw). Thus

Jw = Tm(Ib0 ) ∩ Tm−1(Ib1 ) ∩ . . . ∩ T (Ibm−1). (6.3)

In particular, we have Ja = T (Ia) for a ∈ A. Note that each Jw is a semi-
interval. Indeed, this is true if w is a letter. Next, for any a ∈ A, we have
T−1(Jwa) = Jw ∩ Ia. This implies as above that Jwa is a semi-interval and
proves the property by induction. We set by convention Iε = Jε = [0, 1[. Then
one has for any n ≥ 0

anan+1 · · · an+m−1 = w ⇐⇒ T n(z) ∈ Iw (6.4)

and
an−man−m+1 · · · an−1 = w ⇐⇒ T n(z) ∈ Jw (6.5)

Let (αa)a∈A be the translation values of T . Note that for any word w,

Jw = Iw + αw (6.6)

with αw =
∑m−1

j=0 αbj as one may verify by induction on |w| = m. Indeed
it is true for m = 1. For m ≥ 2, set w = ua with a = bm−1. One has
Tm(Iw) = Tm−1(Iw)+αa and Tm−1(Iw) = Iw+αu by the induction hypothesis
and the fact that Iw is included in Iu. Thus Jw = Tm(Iw) = Iw + αu + αa =
Iw + αw. Equation (6.6) shows in particular that the restriction of T |w| to Iw
is a translation.

Note that the semi-interval Jw is the set of points z such that the natural
coding of T−|w|(z) has w as a prefix.

6.1.3 Interval exchange sets

Let T be an interval exchange set. The set L(T ) = Fac
(⋃

z∈[ℓ,r[ΣT (z)
)

is

called the interval exchange set relative to T . An interval exchange set is clearly
biextendable.

If T is minimal, one has w ∈ Fac(ΣT (z)) if and only if Iw 6= ∅. Thus the set
Fac(ΣT (z)) does not depend on z and we have L(T ) = Fac (ΣT (z)) for all z (as
for Sturmian words, see [52]). Since this set depends only on T , we denote it by
L(T ). When T is regular (resp. minimal), such a set is called a regular interval
exchange set (resp. a minimal interval exchange set).

Let X be the closure of the set of all ΣT (z) for z ∈ [ℓ, r[ and let S be the
shift on X defined by S(x) = y with yn = xn+1 for n ≥ 0. The pair (X,S) is a
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symbolic dynamical system, formed of a topological space X and a continuous
transformation S. Such a system is said to be minimal if the only closed subsets
invariant by S are ∅ or X . It is well-known that (X,S) is minimal if and only if
the language of S, denoted by L(S), is uniformly recurrent (see for example [52,
Theorem 1.5.9]).

Then we have the following commutative diagram of Figure 6.4.

[ℓ, r[ [ℓ, r[

X X

T

ΣT

S

ΣT

Figure 6.4: A commutative diagram.

The map ΣT is neither continuous nor surjective. This can be corrected by
embedding the interval [ℓ, r[ into a larger space on which T is a homeomorphism
(see [47] or [16, page 349]). However, if the transformation T is minimal, the
symbolic dynamical system (X,S) is minimal (see [16, page 392]). Thus, we
obtain the following statement.

Proposition 6.1.12 For any minimal interval exchange transformation T , the
set L(T ) is uniformly recurrent.

Note that for a regular interval exchange transformation T , the map ΣT is
injective (see [47, page 30]).

Example 6.1.13 Let T be the transformation of Example 6.1.7. Since T is
minimal, the set L(T ) is uniformly recurrent. The words of length at most 5 of
the set S = Fac(T ) are represented in Figure 6.5 on the left.

a

b

c

c

a

b

b

c

b
c

c

a

a
b

b

b

b

b
c

c

c

a c

a

a
b

b

b

b
c

c

c

a
b

c

a

a

b

c

c

b
c

a
b

a
b

b
c
c

c

b

Figure 6.5: The words of length ≤ 5 of the set S and the words of length ≤ 3
of its derived set.

111



Since T = R2, where R is the transformation of Example 6.1.1, the natural
coding of T relative to α is the infinite word y = γ−1(x) where x is the Fibonacci
word and γ is the morphism defined by γ(a) = aa, γ(b) = ab, γ(c) = ba. One
has

y = baccbaccbbacbbacbbacc · · · (6.7)

Actually, the word y is the fixed point gω(b) of the primitive morphism

g : a 7→ baccb b 7→ bacc c 7→ bacb.

This follows from the fact that the cube of the Fibonacci morphism f : a 7→
ab, b 7→ a sends each letter on a word of odd length and thus sends words of
even length on words of even length.

In Section 7.3 we will give a sufficient condition for an interval exchange set
to be primitive morphic (Theorem 7.3.12).

The following is an elementary property of the intervals Iu which will be
used below. We denote by <1 the lexicographic order on A∗ induced by the
order <1 on A.

Proposition 6.1.14 One has Iu < Iv if and only if u <1 v and u is not a
prefix of v.

Proof. For a word u and a letter a, it results from (6.1) that Iua = Iu∩T−|u|(Ia).
Since (Ia)a∈A is an ordered partition, this implies that (T |u|(Iu) ∩ Ia)a∈A is an
ordered partition of T |u|(Iu). Since the restriction of T |u| to Iu is a translation,
this implies that (Iua)a∈A is an ordered partition of Iu. Moreover, for two words
u, v, it results also from (6.1) that Iuv = Iu ∩ T−|u|(Iv). Thus Iuv ⊂ Iu.

Assume that u <1 v and that u is not a prefix of v. Then u = pas and
v = pbt with p ∈ A∗ and a, b two letters such that a <1 b. Then we have
Ipa < Ipb, with Iu ⊂ Ipa and Iv ⊂ Ipb whence Iu < Iv.

Conversely, assume that Iu < Iv. Since Iu∩Iv = ∅, the words u, v cannot be
comparable for the prefix order. Set u = pas and v = pbt with a, b two distinct
letters. If b <1 a, then Iv < Iu as we have shown above. Thus a <1 b which
implies u <1 v.

We denote by <2 the order on A∗ defined by u <2 v if u is a proper suffix
of v or if u = waz and v = tbz with a <2 b. Thus <2 is the lexicographic order
on the reversal of the words induced by the order <2 on the alphabet.

We denote by π the morphism from A∗ onto itself which extends to A∗ the
permutation π on A. Then u <2 v if and only if π−1(ũ) <1 π

−1(ṽ), where ũ
denotes the reversal of the word u.

The following statement is the analogue of Proposition 6.1.14.

Proposition 6.1.15 Let Tλ,π be an interval exchange transformation. One has
Ju < Jv if and only if u <2 v and u is not a suffix of v.
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Proof. Let (I ′a)a∈A be the family of semi-intervals defined by I ′a = Jπ(a). Then
the interval exchange transformation T ′ relative to (I ′a) with translation values
−αa is the inverse of the transformation T . The semi-intervals I ′w defined by
Equation (6.1) with respect to T ′ satisfy I ′w = Jπ(w̃) or equivalently Jw =
I ′
π−1(w̃). Thus, Ju < Jv if and only if I ′

π−1(ũ) < I ′
π−1(ṽ) if and only if (by

Proposition 6.1.14) π−1(ũ) <1 π
−1(ṽ) or equivalently u <2 v.

6.1.4 Planar tree sets

Recall from Chapter 3 that a tree set S is called a planar tre set with respect to
two orders <1 and <2 if for for any w ∈ S the graph E(w) is compatible with
<1 and <2 (see Section 3.1.1), that is if for any (a, b), (c, d) ∈ B(w), one has

a <2 c =⇒ b ≤1 d.

Let us consider the two orders <1 and <2 on A∗ defined in Section 6.1.3.
The following result is a generalization of a result from [39] with a converse

(see below).

Theorem 6.1.16 Let T be an interval exchange transformation with exactly C
connections, all of length 0. Then L(T ) is a planar tree set of characteristic
C + 1 with respect to <1 and <2.

In order to prove Theorem 6.1.16 we need some preliminary result.

Lemma 6.1.17 Let T be an interval exchange transformation. For every nonempty
word w and letter a ∈ A, one has

(i) a ∈ L(w) ⇐⇒ Iw ∩ Ja 6= ∅,

(ii) a ∈ R(w) ⇐⇒ Ia ∩ Jw 6= ∅.

Proof. A letter a is in the set L(w) if and only if aw ∈ L(T ). As we have seen
before, this is equivalent to Jaw 6= ∅. One has Jaw = T (Iaw) = T (Ia) ∩ Iw =
Ja ∩ Iw, whence point (i). Point (ii) is proved symmetrically.

We say that a path in a graph is reduced if it does not use twice consecutively
the same edge.

Lemma 6.1.18 Let T be an interval exchange transformation over I without
connection of length ≥ 1. Let w ∈ L(T ) and a, b ∈ L(w) (resp. a, b ∈ R(w)).
Then 1 ⊗ a, 1 ⊗ b (resp. a ⊗ 1, b ⊗ 1) are in the same connected component of
E(w) if and only if Ja, Jb (resp. Ia, Ib) are in the same component of I.

Proof. Let a ∈ L(w). Since the set L(T ) is biextendable, there exists a let-
ter c such that (1 ⊗ a, c ⊗ 1) ∈ E(w). Using the same reasoning as that in
Lemma 6.1.17, one has Ja ∩ Iwc 6= ∅. Since Iwc ⊂ Iw , one has in particular
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Ja ∩ Iw 6= ∅. This proves that Ja and Iw belong to the same component of I for
every a ∈ L(w).

Conversely, suppose that a, b ∈ L(w) are such that Ja and Jb belong to the
same component of I. We may assume that a <2 b. Then, there is a reduced
path (1⊗ a1, b1 ⊗ 1, . . . , bn−1 ⊗ 1, 1⊗ an) in E(w) (see Figure 6.6) with a = a1,
b = an, a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn1 . Indeed, by hypothesis,
we have no connection of length ≥ 1. Thus, for every 1 ≤ i < n, one has
Jai

∩ Iwbi 6= ∅ and Jai+1 ∩ Iwbi 6= ∅. Therefore, a and b are in the same
connected component of E(w).

The symmetrical statement is proved similarly.

We can now prove the main result of this section.
Proof of Theorem 6.1.16. Let us first prove that for any w ∈ L(T ), the graph
E(w) is acyclic. Assume that (1⊗a1, b1⊗1, . . . , 1⊗an, bn⊗1) is a reduced path
in E(w) with a1, . . . , an ∈ L(w) and b1, . . . , bn ∈ R(w). Suppose that n ≥ 2
and that a1 <2 a2. Then one has a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn (see
Figure 6.6). Thus one cannot have an edge (a1, bn) in the graph E(w).

· · ·

Iwb1 Iwb2
Iwbn−1 Iwbn

Ja1 Ja2
Jan−1 Jan

Figure 6.6: A path from a1 to an in E(w).

Let us now prove that the extension graph of the empty word is a union of
C + 1 trees. Let a, b ∈ A. If Ja and Jb are in the same component of I, then
1 ⊗ a, 1 ⊗ b are in the same connected component of E(ε) by Lemma 6.1.18.
Thus E(ε) is a union of C + 1 trees.

If w ∈ L(T ) is a nonempty word and a, b ∈ L(w), then Ja and Jb are in
the same component of I, by Lemma 6.1.17, and thus a and b are in the same
connected component of E(w) by Lemma 6.1.18. Thus E(w) is a tree.

Finally, the set L(T ) is compatible with the orders <1 and <2. Indeed, let
(a, b), (c, d) ∈ B(w) for a word w ∈ L(T ). Let us suppose that a <2 c. By
Proposition 6.1.15, one has Ja < Jc.

Moreover, by Lemma 6.1.17, one has Iwb ∩ Ja 6= ∅ and Iwd ∩ Jc 6= ∅. This
implies that Iwb < Iwd (see Figure 6.6). By Proposition 6.1.14, one has wb <1

wd. Hence b <1 d.

Example 6.1.19 Let T be the interval exchange transformation of Exam-
ple 6.1.3. The set L(T ) is a tree set of characteristic 2. In Figure 6.7 are
represented the extension graphs of the empty word (left) and of the letters a
(center) and b (right).

By Theorem 6.1.16, a regular interval exchange set is a planar tree set of
characteristic 1, and thus in particular a tree set of characteristic 1.
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a b
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c
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Figure 6.7: The extension graphs of ε (left), a (center) and b (right).

The main result of [39] states that a (uniformly) recurrent set S on an
alphabet A is a regular interval exchange set if and only if A ⊂ S and there
exist two orders <1 and <2 on A such that the following conditions are satisfied
for any word w ∈ S.

(i) The set L(w) (resp. R(w)) is formed of consecutive elements for the order
<2 (resp. <1).

(ii) For (a, b), (c, d) ∈ B(w), if a <2 c, then b ≤1 d.

(iii) If a, b ∈ L(w) are consecutive for the order <2, then the set R(aw)∩R(bw)
is a singleton.

It is easy to see that a biextendable set S containing A satisfies (ii) and (iii)
if and only if it is a planar tree set of character of characteristic 1. Actually, in
this case, it automatically satisfies also condition (i). Indeed, let us consider a
word w and a, b, c ∈ A with a <1 b <1 c such that wa,wc ∈ S but wb /∈ S. Since
b ∈ S there is a (possibly empty) suffix v of w such that vb ∈ S. We choose v
of maximal length. Since wb /∈ S, we have w = uv with u nonempty. Let d be
the last letter of u. Then we have dva, dvc ∈ S and dvb /∈ S. Since E(v) is a
tree and b ∈ R(v), there is a letter e ∈ L(v) such that evb ∈ S. But e <2 d and
d <2 e are both impossible since E(v) is compatible with <2 and <1. Thus we
reach a contradiction.

This shows that the original reformulation of the main result of [39] is equiv-
alent to the following one.

Theorem 6.1.20 (Ferenczi, Zamboni) A set S is a regular interval exchange
set on the alphabet A if and only if it is a recurrent planar tree set of charac-
teristic 1.

We have already seen that the Tribonacci set is a tree set which is not
a planar tree set (Example 3.1.9). The next example shows that there are
recurrent tree sets which are neither Sturmian nor regular interval exchange
sets.

Example 6.1.21 Let S be the Tribonacci set on the alphabet A = {a, b, c}
and let f : {x, y, z, t, u}∗ → A∗ be the coding morphism for X = S ∩ A2

defined by f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca. By
Theorem 4.3.5, the set W = f−1(S) is a recurrent tree set of characteristic 1.
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It is not Sturmian since y and t are two right-special words. It is not either a
regular interval exchange set. Indeed, for any right-special word w of W , one
has Card(R(w)) = 3. This is not possible in a regular interval exchange set T
since, ΣT being injective, the length of the interval Jw tends to 0 as |w| tends
to infinity and it cannot contain several separation points. It can of course also
be verified directly that W is not a planar tree set.

6.2 Bifix codes and interval exchanges

In this section we study the connection between regular interval exchange sets
and bifix codes. Firstly, we introduce in Section 6.2.1 a result concerning an
invariant probability distribution on an interval exchange set (Proposition 6.2.2).
We use this result to show that we can refine the partition of subintervals (Ia)a∈A

defining an interval exchange (Proposition 6.2.3).
In Section 6.2.2 we generalize this result also for the subintervals (Ja)a∈A

(Proposition 6.2.5). Next, given an interval exchange T , we define a transfor-
mation Tf associated to a maximal bifix decoding and we show the connection
of the natural codings with respect to T and Tf (Proposition 6.2.8).

In Section 6.2.3 we prove that Tf is regular provided the original transfor-
mation T is regular (Theorem 6.2.10). Moreover, we prove that the family of
regualar interval exchange sets is closed under maximal bifix decoding (Theo-
rem 6.2.11) and, as a corollary, so is the family of recurrent planar tree sets of
characteristic 1 (Corollary 6.2.13).

Finally, in Section 6.2.4, we use the Finite Index Basis Theorem 4.2.1 to
define interval exchanges on a stack and to give an alternative proof of Theo-
rem 6.2.10.

6.2.1 Prefix and bifix codes

Recall from Section 1.2 the definition of prefix, suffix and bifix code. Following
the terminology of Section 2.1.1, we define a (left and right) invariant probability
distribution on an alphabet A∗ a map λ : A∗ → [0, 1] such that λ(ε) = 1 and,
for any word w ∑

a∈A

λ(aw) =
∑

a∈A

λ(wa) = λ(w). (6.8)

Let Tλ,π be an interval exchange transformation on an interval [ℓ, r[ For
any word w ∈ A∗, denote by |Iw| the length of the semi-interval Iw defined by
Equation (6.1). Set λ(w) = |Iw|/ (r − ℓ). Then λ(ε) = 1 and for any word w,
Equation (6.8) holds and thus λ is an invariant probability distribution.

The fact that λ is an invariant probability measure is equivalent to the fact
that the Lebesgue measure on [ℓ, r[ is invariant by T . It is known that almost
all regular interval exchange transformations have no other invariant probability
measure (and thus are uniquely ergodic, see [16] for references).
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Example 6.2.1 Let S be the set of factors of the Fibonacci word (see Exam-
ple 1.1.2). As seen in Example 6.1.11, it is an interval exchange set relative to
the rotation R defined in Example 6.1.1. The values of the map λ on the words
of length at most 4 in S are indicated in Figure 6.8.

1

1− α

α

1− 2α

α

α

1− 2α

α

1− 2α

3α− 1

1− 2α

1− 2α

3α− 1

1− 2α

3α− 1

a

b

a

b

b

a

a

a

b

a
a

b

b

a

Figure 6.8: The invariant probability distribution on the Fibonacci set.

The following result is a particular case of [7, Proposition 3.3.4].

Proposition 6.2.2 Let T be a minimal interval exchange transformation, let
S = L(T ) and let λ be an invariant probability distribution on S. For any finite
S-maximal prefix code X, one has

∑
x∈X λ(x) = 1.

The following statement is connected with Proposition 6.2.2.

Proposition 6.2.3 Let T be a minimal interval exchange transformation rela-
tive to (Ia)a∈A, let S = L(T ) and let X be a finite S-maximal prefix code ordered
by <1. The family (Iw)w∈X is an ordered partition of [ℓ, r[.

Proof. By Proposition 6.1.14, the sets (Iw) for w ∈ X are pairwise disjoint. Let
π be the invariant probability distribution on S defined by π(w) = |Iw |/(r− ℓ).
By Proposition 6.2.2, we have

∑
w∈X π(w) = 1. Thus the family (Iw)w∈X is a

partition of [ℓ, r[. By Proposition 6.1.14 it is an ordered partition.

Example 6.2.4 Let R be the rotation of angle α = (3 −
√
5)/2. The set

S = L(T ) is the Fibonacci set. The set X = {aa, ab, b} is an S-maximal prefix
code (see the grey nodes in Figure 6.8).The partition of [0, 1[ corresponding to
X is

Iaa = [0, 1− 2α[, Iab = [1− 2α, 1− α[, Ib = [1− α, 1[.

The values of the lengths of the semi-intervals (the invariant probability distri-
bution) can also be read on Figure 6.8.

A symmetric statement holds for an S-maximal suffix code, namely that the
family (Jw)w∈X is an ordered partition of [ℓ, r[ for the order <2 on X .
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6.2.2 Maximal bifix codes

The following result shows that bifix codes have a natural connection with in-
terval exchange transformations.

Proposition 6.2.5 If X is a finite S-maximal bifix code, with S as in Propo-
sition 6.2.3, the families (Iw)w∈X and (Jw)w∈X are ordered partitions of [ℓ, r[,
relatively to the orders <1 and <2 respectively.

Proof. This results from Proposition 6.2.3 and its symmetric and from the fact
that, since S is recurrent, a finite S-maximal bifix code is both an S-maximal
prefix code and an S-maximal suffix code.

Let T be a regular interval exchange transformation relative to (Ia)a∈A. Let
(αa)a∈A be the translation values of T . Set S = L(T ). Let X be a finite
S-maximal bifix code on the alphabet A.

Let TX be the transformation on [ℓ, r[ defined by

TX(z) = T |u|(z) if z ∈ Iu

with u ∈ X . The transformation is well-defined since, by Proposition 6.2.5, the
family (Iu)u∈X is a partition of [ℓ, r[.

Let f : B∗ → A∗ be a coding morphism for X . Let (Kb)b∈B be the family
of semi-intervals indexed by the alphabet B with Kb = If(b). We consider B as
ordered by the orders <1 and <2 induced by f . Let Tf be the interval exchange

transformation relative to (Kb)b∈B. Its translation values are βb =
∑m−1

j=0 αaj

for f(b) = a0a1 · · ·am−1. The transformation Tf is called the transformation
associated with f .

Proposition 6.2.6 Let T be a regular interval exchange transformation relative
to (Ia)a∈A and let S = L(T ). If f : B∗ → A∗ is a coding morphism for a finite
S-maximal bifix code X, one has Tf = TX .

Proof. By Proposition 6.2.5, the family (Kb)b∈B is a partition of [ℓ, r[ ordered
by <1. For any w ∈ X , we have by Equation (6.6) Jw = Iw + αw and thus
TX is the interval exchange transformation relative to (Kb)b∈B with translation
values βb.

In the sequel, under the hypotheses of Proposition 6.2.6, we consider Tf as
an interval exchange transformation. In particular, the natural coding of Tf
relative to z ∈ [ℓ, r[ is well-defined.

Example 6.2.7 Let S be the Fibonacci set. It is the set of factors of the
Fibonacci word, which is a natural coding of the rotation R of angle α = (3 −√
5)/2 relative to α (see Example 6.1.11). Let X = {aa, ab, ba} and let f be

the coding morphism defined by f(u) = aa, f(v) = ab, f(w) = ba. The two
partitions of [0, 1[ corresponding to Tf are

Iu = [0, 1− 2α[, Iv = [1− 2α, 1− α[ Iw = [1− α, 1[
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and
Jv = [0, α[, Jw = [α, 2α[ Ju = [2α, 1[.

The transformation Tf is the same as the one represented in Figure 6.2 where
u, v, w instead of, respectively, a, b, c.

It is actually a representation on 3 intervals of the rotation of angle 2α. Note
that the point z = 1− α is a separation point which is not a singularity of Tf .

The first row of Table 6.1 gives the two orders on X . The next two rows
give the two orders for each of the two other S-maximal bifix codes of S-degree
2 (there are actually exactly three S-maximal bifix codes of S-degree 2 in the
Fibonacci set, see [7]).

(X,<1) (X,<2)
aa, ab, ba ab, ba, aa
a, baab, bab bab, baab, a
aa, aba, b b, aba, aa

Table 6.1: The two orders on the three S-maximal bifix codes of S-degree 2.

Let T be a minimal interval exchange transformation on the alphabet A.
Let x be the natural coding of T relative to some z ∈ [ℓ, r[. Set S = Fac(x).
Let X be a finite S-maximal bifix code. Let f : B∗ → A∗ be a morphism which
maps bijectively B onto X . Since S is recurrent, the set X is an S-maximal
prefix code. Thus x has a prefix x0 ∈ X . Set x = x0x

′. In the same way x′

has a prefix x1 in X . Iterating this argument, we see that x = x0x1 · · · with
xi ∈ X . Consequently, there exists an infinite word y on the alphabet B such
that x = f(y). The word y is the decoding of the infinite word x with respect
to f .

Proposition 6.2.8 The decoding of x with respect to f is the natural coding of
the transformation associated with f relative to z: ΣT (z) = f

(
ΣTf

(z)
)
.

Proof. Let y = b0b1 · · · be the decoding of x with respect to f . Set xi = f(bi)
for i ≥ 0. Then, for any n ≥ 0, we have

T n
f (z) = T |un|(z) (6.9)

with un = x0 · · ·xn−1 (note that |un| denotes the length of un with respect to
the alphabet A). Indeed, this is is true for n = 0. Next T n+1

f (z) = Tf(t) with t =

T n
f (z). Arguing by induction, we have t = T |un|(z). Since x = unxnxn+1 · · · ,
t is in Ixn

by (6.2). Thus by Proposition 6.2.6, Tf(t) = T |xn|(t) and we obtain
T n+1
f (z) = T |xn|(T |un|(z)) = T |un+1|(z) proving (6.9). Finally, for u = f(b)

with b ∈ B,

bn = b⇐⇒ xn = u⇐⇒ T |un|(z) ∈ Iu ⇐⇒ T n
f (z) ∈ Iu = Kb

showing that y is the natural coding of Tf relative to z.
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Example 6.2.9 Let T, α,X and f be as in Example 6.2.7. Let x = abaababa · · ·
be the Fibonacci word. We have x = ΣT (α). The decoding of x with respect to
f is y = vuwwv · · · .

6.2.3 Maximal bifix decoding

The following result shows that, for the coding morphism f of a finite S-maximal
bifix code, the map T 7→ Tf preserves the regularity of the transformation.

Theorem 6.2.10 Let T be a regular interval exchange transformation and let
S = L(T ). For any finite S-maximal bifix code X with coding morphism f , the
transformation Tf is regular.

Proof. Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as. We denote
δi = δai

. By hypothesis, the orbits of δ2, . . . , δs are infinite and disjoint. Set
X = {x1, x2, . . . , xt} with x1 <1 x2 <1 · · · <1 xt. Let d be the S-degree of X .

For x ∈ X , denote by δx the left boundary of the semi-interval Jx. For each
x ∈ X , it follows from Equation (6.3) that there is an i ∈ {1, . . . , s} such that
δx = T k(δi) with 0 ≤ k < |x|. Moreover, we have i = 1 if and only if x = x1.
Since T is regular, the index i 6= 1 and the integer k are unique for each x 6= x1.
And for such x and i, by (6.5), we have ΣT (δi) = uΣT (δx) with u a proper suffix
of x.

We now show that the orbits of δx2 , . . . , δxt
for the transformation Tf are

infinite and disjoint. Assume that δxp
= T n

f (δxq
) for some p, q ∈ {2, . . . , t}

and n ∈ Z. Interchanging p, q if necessary, we may assume that n ≥ 0. Let
i, j ∈ {2, . . . , s} be such that δxp

= T k(δi) with 0 ≤ k < |xp| and δxq
= T ℓ(δj)

with 0 ≤ ℓ < |xq|. Since T k(δi) = T n
f (T

ℓ(δj)) = Tm+ℓ(δj) for some m ≥ 0,
we cannot have i 6= j since otherwise the orbits of δi, δj for the transformation
T intersect. Thus i = j. Since δxp

= T k(δi), we have ΣT (δi) = uΣT (δxp
)

with |u| = k, and u a proper suffix of xp. And since δxp
= T n

f (δxq
), we have

ΣT (δxq
) = xΣT (δxp

) with x ∈ X∗. Since on the other hand δxq
= T ℓ(δi), we

have ΣT (δi) = vΣT (δxq
) with |v| = ℓ and v a proper suffix of xq . We obtain

ΣT (δi) = uΣT (δxp
)

= vΣT (δxq
) = vxΣT (δxp

).

Since |u| = |vx|, this implies u = vx. But since u cannot have a suffix in X ,
u = vx implies x = ε and thus n = 0 and p = q. This concludes the proof.

Let f be a coding morphism for a finite S-maximal bifix code X ⊂ S. The
set f−1(S) is called a maximal bifix decoding of S (see Chapter 1).

Theorem 6.2.11 The family of regular interval exchange sets is closed under
maximal bifix decoding.
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Proof. Let T be a regular interval exchange transformation over [ℓ, r[ and let
S = L(T ). By Theorem 6.2.10, Tf is a regular interval exchange transformation.
We show that f−1(S) = L(Tf ), which implies the conclusion.

Let x = ΣT (z) for some z ∈ [ℓ, r[ and let y = f−1(x). Then S = L(x)
and L(Tf ) = Fac(y). For any w ∈ Fac(y), we have f(w) ∈ Fac(x) and thus
w ∈ f−1(S). This shows that L(Tf ) ⊂ f−1(S). Conversely, let w ∈ f−1(S) and
let v = f(w). Since S = Fac(x), there is a word u such that uv is a prefix of x.
Set z′ = T |u|(z) and x′ = ΣT (z

′). Then v is a prefix of x′ and w is a prefix of
y′ = f−1(x′). Since Tf is regular, it is minimal and thus Fac(y′) = L(Tf ). This
implies that w ∈ L(Tf ).

We illustrate the proof of Theorem 6.2.10 in the following example.

Example 6.2.12 Let T be the rotation of angle α = (3 −
√
5)/2 (see Exam-

ple 6.1.1). The set S = L(T ) is the Fibonacci set. LetX = {a, baab, babaabaabab, babaabab}.
The set X is an S-maximal bifix code of S-degree 3 (see [7]). The values of the
µxi

(which are the right boundaries of the intervals Ixi
) and δxi

are represented
in Figure 6.9.

0 µx1 µx2 µx3µx4

δx4 δx3 δx2 δx1 1

Figure 6.9: The transformation associated with a bifix code of S-degree 3.

The infinite word ΣT (0) is represented in Figure 6.10. The value indicated
on the word ΣT (0) after a prefix u is T |u|(0). The three values δx4 , δx2 , δx3

correspond to the three prefixes of ΣT (0) which are proper suffixes of X .

ΣT (0) =

δx4

a a b

δx2

a a b a b

δx3

a · · ·

Figure 6.10: The infinite word ΣT (0).

A consequence of Theorem 6.2.11 is the following result.

Corollary 6.2.13 The family of recurrent planar tree sets of characteristic 1
is closed under maximal bifix decoding.

Proof. The result easily follows from Theorems 4.3.5 and 6.2.11.

The following example shows that Theorem 6.2.11 is not true when X is not
bifix.
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Example 6.2.14 Let S be the Fibonacci set and let X = {aa, ab, b}. The set
X is an S-maximal prefix code. Let B = {u, v, w} and let f be the coding
morphism for X defined by f(u) = aa, f(v) = ab, f(w) = b. The set W =
f−1(S) is not an interval exchange set. Indeed, we have vu, vv, wu,wv ∈ W .
This implies that both Jv and Jw meet Iu and Iv, which is impossible in an
interval exchange transformation.

6.2.4 Subgroups of finite index

Let S be a recurrent set containing the alphabet A. Recall from Chapter 3 that
S has the finite index basis property if the following holds: a finite bifix code
X ⊂ S is an S-maximal bifix code of S-degree d if and only if it is a basis of a
subgroup of index d of the free group FA.

Since a regular interval exchange set is a tree set of characteristic 1, we have
the following immediate consequence of Theorem 4.2.1.

Theorem 6.2.15 A regular interval exchange set has the finite index basis
property.

We use Theorem 6.2.15 to give another proof of Theorem 6.2.10. For this,
we recall the following notion.

Let T be an interval exchange transformation on I = [ℓ, r[ relative to (Ia)a∈A.
Let G be a transitive permutation group on a finite set Q. Let ϕ : A∗ → G be a
morphism and let ψ be the map from I into G defined by ψ(z) = ϕ(a) if z ∈ Ia.
The skew product of T and G is the transformation U on I ×Q defined by

U(z, q) = (T (z), qψ(z))

(where qψ(z) is the result of the action of the permutation ψ(z) on q ∈ Q).
Such a transformation is equivalent to an interval exchange transformation via
the identification of I×Q with an interval obtained by placing the d = Card(Q)
copies of I in sequence. This is called an interval exchange transformation on a
stack in [19] (see also [65]). If T is regular, then U is also regular.

Let T be a regular interval exchange transformation and let S = L(T ). Let
X be a finite S-maximal bifix code of S-degree d = dX(S). By Theorem 6.2.15,
X is a basis of a subgroup H of index d of FA. Let G be the representation
of FA on the right cosets of H and let ϕ be the natural morphism from FA

onto G. We identify the right cosets of H with the set Q = {1, 2, . . . , d} with 1
identified to H . Thus G is a transitive permutation group on Q and H is the
inverse image by ϕ of the permutations fixing 1.

The transformation induced by the skew product U on I × {1} is clearly
equivalent to the transformation Tf = TX where f is a coding morphism for the
S-maximal bifix code X . Thus TX is a regular interval exchange transformation.

Example 6.2.16 Let T be the rotation of Example 6.1.11. Let Q = {1, 2, 3}
and let ϕ be the morphism from A∗ into the symmetric group on Q defined by
ϕ(a) = (23) and ϕ(b) = (12). The transformation induced by the skew product
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of T and G on I × {1} corresponds to the bifix code X of Example 6.2.12. For
example, we have U : (1 − α, 1) → (0, 2) → (α, 3) → (2α, 2) → (3α − 1, 1) (see
Figure 6.11) and the corresponding word of X is baab.

(0, 3) (1− α, 3) (1, 3)

a b

(0, 2) (1− α, 2) (1, 2)

a b

(0, 1) (1− α, 1) (1, 1)

a b

(α, 3)

(2α, 2)

(3α− 1, 1)

Figure 6.11: The transformation U .
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Chapter 7

Branching Rauzy induction

In this chapter we continue our study of interval exchanges started in Chapter 6.
The main tool introduced here is the branching Rauzy induction, a generaliza-
tion of the one-side Rauzy induction defined in [61].

In Section 7.1 we introduce the definition of admissible semi-interval. This
generalize in a natural way the notion of (one-side) admissibility introduced
in [61]. We show that all semi-intervals of the form Iw and Jw are admissible
(Proposition 7.1.6) and that the induction on any admissible semi-interval pre-
serve regularity (Theorem 7.1.7). Moreover, we prove that the family of regular
s-interval exchanges is closed by derivation (Theorem 7.1.9).

In Section 7.2 we define the branching Rauzy induction which operates on
regular interval transformations. This trasformation generalize the (one-sided)
Rauzy induction defined in [61]

We recall the results concerning this classical case (Theorems 7.1.3 and 7.2.1)
and we generalize them the branching case (Theorems 7.1.7 and 7.2.3). In
particular we characterize the admissible semi-intervals for an interval exchange
transformation (Theorem 7.2.3).

Finally, in Section 7.3 we study the case of an interval exchange defined over
a qaudratic field. Following the path of Boshernitzan and Carroll in [19], we
prove that under certains hypothesis, there are finitely many transformations
obtained by the branching Rauzy induction (Theorem 7.3.1). We use this result
to prove that the language of a regular interval exchange transformation defined
over a quadratic field is a primitive morphic set (Theorem 7.3.12).

7.1 Induced transformations and admissible in-

tervals

In this section we define the trasformation induced by an interval exchange on
a sub-interval. We also introduce the definition of admissibility for an interval.
It generalizes in a natural way the notion of admissibility defined in [61].
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We show that all semi-intervals of the form Iw and Jw are admissible (Propo-
sition 7.1.6) and that the induction on any admissible semi-interval preserve
regularity (Theorem 7.1.7).

We close this section with a closure property, namely we prove that the
family of regular s-interval exchanges is closed by derivation (Theorem 7.1.9).

7.1.1 Induced transformations

Let T be a minimal interval exchange transformation. Let I ⊂ [ℓ, r[ be a semi-
interval. Since T is minimal, for each z ∈ [ℓ, r[ there is an integer n > 0 such
that T n(z) ∈ I.

The transformation induced by T on I is the transformation S : I → I
defined for z ∈ I by S(z) = T n(z) with n = min{n > 0 | T n(z) ∈ I}. We also
say that S is the first return map (of T ) on I. The semi-interval I is called the
domain of S, denoted D(S).

Example 7.1.1 Let T be the transformation of Example 6.1.7. Let I = [0, 2α[.
The transformation induced by T on I is

S(z) =

{
T 2(z) if 0 ≤ z < 1− 2α

T (z) otherwise.

Let T = Tλ,π be an interval exchange transformation relative to (Ia)a∈A.
For ℓ < t < r, the semi-interval [ℓ, t[ is right admissible for T if there is a k ∈ Z

such that t = T k(γa) for some a ∈ A and

(i) if k > 0, then t < T h(γa) for all h such that 0 < h < k,

(ii) if k ≤ 0, then t < T h(γa) for all h such that k < h ≤ 0.

We also say that t itself is right admissible. Note that all semi-intervals [ℓ, γa[
with ℓ < γa are right admissible. Similarly, all semi-intervals [ℓ, δa[ with ℓ < δa
are right admissible.

Example 7.1.2 Let T be the interval exchange transformation of Example 6.1.7.
The semi-interval [0, t[ for t = 1 − 2α or t = 1 − α is right admissible since
1 − 2α = γb and 1 − α = γc. On the contrary, for t = 2 − 3α, it is not right
admissible because t = T−1(γc) but γc < t contradicting (ii).

The following result is Theorem 14 in [61].

Theorem 7.1.3 (Rauzy) Let T be a regular s-interval exchange transforma-
tion and let I be a right admissible interval for T . The transformation induced
by T on I is a regular s-interval exchange transformation.

Example 7.1.4 Consider again the transformation of Example 6.1.7. The
transformation induced by T on the semi-interval I = [0, 2α[ is the 3-interval
exchange transformation represented in Figure 7.1.
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0 1− 2α 1− α 2α

a b c

0 α 4α− 1 2α

b c a

Figure 7.1: The transformation induced on I.

The notion of left admissible interval is symmetrical to that of right admis-
sible. For ℓ < t < r, the semi-interval [t, r[ is left admissible for T if there is a
k ∈ Z such that t = T k(γa) for some a ∈ A and

(i) if k > 0, then T h(γa) < t for all h such that 0 < h < k,

(ii) if k ≤ 0, then T h(γa) < t for all h such that k < h ≤ 0.

We also say that t itself is left admissible. Note that, as for right induction, the
semi-intervals [γa, r[ and [νa, r[ are left admissible. The symmetrical statements
of Theorem 7.1.3 also hold for left admissible intervals.

7.1.2 Admissible semi-intervals

Let now generalize the notion of admissibility to a two-sided version. For a
semi-interval I = [u, v[ ⊂ [ℓ, r[, we define the following functions on [ℓ, r[:

ρ+I,T (z) = min{n > 0 | T n(z) ∈ ]u, v[}, ρ−I,T (z) = min{n ≥ 0 | T−n(z) ∈ ]u, v[}.

We then define three sets. First, let

EI,T (z) = {k | −ρ−I,T (z) ≤ k < ρ+I,T (z)}.

Next, the set of neighbors of z with respect to I and T is

NI,T (z) = {T k(z) | k ∈ EI,T (z)}.

The set of division points of I with respect to T is the finite set

Div(I, T ) =

s⋃

i=1

NI,T (γi).

We now formulate the following definition. For ℓ ≤ u < v ≤ r, we say that
the semi-interval I = [u, v[ is admissible for T if u, v ∈ Div(I, T ) ∪ {r}.

Note that a semi-interval [ℓ, v[ is right admissible if and only if it is admissible
and that a semi-interval [u, r[ is left admissible if and only if it is admissible.
Note also that [ℓ, r[ is admissible.

Note also that for a regular interval exchange transformation relative to a
partition (Ia)a∈A, each of the semi-intervals Ia (or Ja) is admissible although
only the first one is right admissible (and the last one is left admissible). Ac-
tually, we can prove that for every word w, the semi-intervals Iw and Jw are
admissible. In order to do that, we need the following Lemma.
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Lemma 7.1.5 Let T be a s-interval exchange transformation on the semi-
interval [ℓ, r[. For any k ≥ 1, the set Pk = {T h(γi) | 1 ≤ i ≤ s, 1 ≤ h ≤ k}
is the set of (s − 1)k + 1 left boundaries of the semi-intervals Jy for all words
y ∈ F (T ) ∩ Ak.

Proof. Let Qk be the set of left boundaries of the intervals Jy for |y| = k. Since
Card(L(T ) ∩ Ak) = (s − 1)k + 1 by Proposition 6.1.9, we have Card(Qk) =
(s− 1)k + 1. Since T is regular the set Rk = {T h(γi) | 2 ≤ i ≤ s, 1 ≤ h ≤ k} is
made of (s− 1)k distinct points. Moreover, since

γ1 = T (γπ(1)), T (γ1) = T 2(γπ(1)), . . . , T
k−1(γ1) = T k(γπ(1)),

we have Pk = Rk ∪ {T k(γ1)}. This implies Card(Pk) ≤ (s − 1)k + 1. On the
other hand, if y = b0 · · · bk−1, then Jy = ∩k−1

i=0 T
k−i(Ibi ). Thus the left boundary

of each Jy is the left boundary of some T h(Ia) for some h with 1 ≤ h ≤ k and
some a ∈ A. Consequently Qk ⊂ Pk. This proves that Card(Pk) = (s− 1)k + 1
and that consequently Pk = Qk.

A dual statement holds for the semi-intervals Iy.

Proposition 7.1.6 Let T be a s-interval exchange transformation on the semi-
interval [ℓ, r[. For any w ∈ L(T ), the semi-interval Jw is admissible.

Proof. Set |w| = k and Jw = [u, v[. By Lemma 7.1.5, we have u = T g(γi) for
1 ≤ i ≤ s and 1 ≤ g ≤ k. Similarly, we have v = r or v = T d(γj) for 1 ≤ j ≤ s
and 1 ≤ d ≤ k.

For 1 < h < g, the point T h(γi) is the left boundary of some semi-interval
Jy with |y| = k and thus T h(γi) /∈ Jw. This shows that g ∈ EJw,T (γi) and thus
that u ∈ Div(Jw, T ).

If v = r, then v ∈ Div(Jw , T ). Otherwise, one shows in the same way as
above that v ∈ Div(Jw, T ). Thus Jw is admissible.

Note that the same statement holds for the semi-intervals Iw instead of the
semi-intervals Jw (using the dual statement of Lemma 7.1.5).

It can be useful to reformulate the definition of a division point and of an
admissible pair using the terminology of graphs. Let G(T ) be the graph with
vertex set [ℓ, r[ and edges the pairs (z, T (z)) for z ∈ [ℓ, r[. Then, if T is minimal
and I is a semi-interval, for any z ∈ [ℓ, r[, there is a path PI,T (z) such that its
origin x and its end y are in I, z is on the path, z 6= y and no vertex of the
path except x, y are in I (actually x = T−n(z) with n = ρ−I,T (z) and y = Tm(z)

with m = ρ+I,T (z)). Then the division points of I are the vertices which are on
a path PI,T (γi) but not at its end (see Figure 7.2).

The following is a generalization of Theorem 7.1.3. Recall that Sep(T ) de-
notes the set of separation points of T , i.e. the points γ1 = 0, γ2, . . . , γs (which
are the left boundaries of the semi-intervals I1, . . . , Is).

128



u x v

z

u y v

T n

Tm

Figure 7.2: The neighbors of z with respect to I = [u, v[.

Theorem 7.1.7 Let T be a regular s-interval exchange transformation on [ℓ, r[.
For any admissible semi-interval I = [u, v[, the transformation S induced by
T on I is a regular s-interval exchange transformation with separation points
Sep(S) = Div(I, T ) ∩ I.

Proof. Since T is regular, it is minimal. Thus for each i ∈ {2, . . . , s} there are
points xi, yi ∈]u, v[ such that there is a path from xi to yi passing by γi but not
containing any point of I except at its origin and its end. Since T is regular,
the xi are all distinct and the yi are all distinct.

Since I is admissible, there exist g, d ∈ {1, . . . , s} such that u ∈ NI,T (γg)
and v ∈ NI,T (γd). Moreover,since u is a neighbor of γg with respect to I, u is
on the path from xg to yg (it can be either before or after γg). Similarly, v is on
the path from xd to yd (see Figure 7.3 where u is before γg and v is after γd).

u xg xj xd v

γg γj γd

u yg yj

xd

yd v

Figure 7.3: The transformation induced on [u, v[.

Set x1 = y1 = u. Let (Ij)1≤j≤s be the partition of I in semi-intervals such
that xj is the left boundary of Ij for 1 ≤ j ≤ s. Let Jj be the partition of I
such that yj is the left boundary of Jj for 1 ≤ j ≤ s. We will prove that

S(Ij) =





Jj if j 6= 1, g

J1 if j = g

Jg if j = 1

and that the restriction of S to Ij is a translation.
Assume first that j 6= 1, g. Then S(xj) = yj . Let k be such that yj = T k(xj)

and denote I ′j = Ij \xj . We will prove by induction on h that for 0 ≤ h ≤ k−1,

the set T h(I ′j) does not contain u, v or any xi. It is true for h = 0. Assume that
it holds up to h < k − 1.
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For any h′ with 0 ≤ h′ ≤ h, the set T h′

(I ′j) does not contain any γi. Indeed,

otherwise there would exist h′′ with 0 ≤ h′′ ≤ h′ such that xi ∈ T h′′

(I ′j), a

contradiction. Thus T is a translation on T h′

(Ij). This implies that T h is
a translation on Ij . Note also that T h(I ′j) ∩ I = ∅. Assume the contrary.

We first observe that we cannot have T h(xj) ∈ I. Indeed, h < k implies that
T h(xj) /∈]u, v[. And we cannot have T h(xj) = u since j 6= g. Thus T h(I ′j)∩I 6= ∅
implies that u ∈ T h(I ′j), a contradiction.

Suppose that u = T h+1(z) for some z ∈ I ′j . Since u is on the path from

xg to yg, it implies that for some h′ with 0 ≤ h′ ≤ h we have xg = T h′

(z),
a contradiction with the induction hypothesis. A similar proof (using the fact
that v is on the path from xd to yd) shows that T h+1(I ′j) does not contain v.

Finally suppose that some xi is in T
h+1(I ′j). Since the restriction of T h to Ij is

a translation, T h(Ij) is a semi-interval. Since T h+1(xj) is not in I the fact that
T h+1(Ij) ∩ I is not empty implies that u ∈ T h(Ij), a contradiction.

This shows that T k is continuous at each point of I ′j and that S = T k(x) for
all x ∈ Ij . This implies that the restriction of S to Ij is a translation into Jj .

If j = 1, then S(x1) = S(u) = yg. The same argument as above proves that
the restriction of S to I1 is a translation form I1 into Jg. Finally if j = g, then
S(xg) = x1 = u and, similarly, we obtain that the restriction of S to Ig is a
translation into I1.

Since S is the transformation induced by the transformation T which is one
to one, it is also one to one. This implies that the restriction of S to each of
the semi-intervals Ij is a bijection onto the corresponding interval Jj , J1 or Jg
according to the value of j.

This shows that S is an s-interval exchange transformation. Since the orbits
of the points x2, · · · , xs relative to S are included in the orbits of γ2, . . . , γs,
they are infinite and disjoint. Thus S is regular.

Let us finally show that Sep(S) = Div(I, T ) ∩ I. We have Sep(S) =
{x1, x2, . . . , xs} and xi ∈ NI,T (γi). Thus Sep(S) ⊂ Div(I, T ) ∩ I. Conversely,
let x ∈ Div(I, T )∩ I. Then x ∈ NI,T (γi)∩ I for some 1 ≤ i ≤ s. If i 6= 1, g, then
x = xi. If i = 1, then either x = u (if u = ℓ) or x = xπ(1) since γ1 = T (γπ(1)).
Finally, if i = g then x = u or x = xg . Thus x ∈ Sep(S) in all cases.

Note that for any s-interval exchange transformation on [ℓ, r[ and any semi-
interval I of [ℓ, r[, the transformation S induced by T on I is an interval exchange
transformation on at most s + 2-intervals (see [25, Chapter 5]). Actually, it
follows from the proof of [25, Lemma 2] that, if T is regular and S is an s-interval
exchange transformation with separation points Sep(S) = Div(I, T )∩ I, then I
is admissible. Thus the converse of Theorem 7.1.7 is also true.

7.1.3 Derived sets

In the following we will prove a closure property of the family of regular interval
exchange sets. The same property holds for Sturmian sets (see [45]) and for
recurrent tree sets of characteristic 1 (Theorem 3.2.9).
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Lemma 7.1.8 Let T be a regular interval exchange transformation and let F =
L(T ). For w ∈ F , let S be the transformation induced by T on Jw. One has
x ∈ RF (w) if and only if

ΣT (z) = xΣT (S(z))

for some z ∈ Jw.

Proof. Assume first that x ∈ RF (w). Then for any z ∈ Jw ∩ Ix, we have
S(z) = T |x|(z) and

ΣT (z) = xΣT (T
|x|(z)) = xΣT (S(z)).

Conversely, assume that ΣT (z) = xΣT (S(z)) for some z ∈ Jw. Then T |x|(z) ∈
Jw and thus wx ∈ A∗w which implies that x ∈ ΓF (w). Moreover x does not
have a proper prefix in ΓF (w) and thus x ∈ RF (w).

Since a regular interval exchange set is recurrent, the previous lemma says
that the natural coding of a point in Jw is a concatenation of first return words
to w. Moreover, note also that T n(z) ∈ Jw if and only if the prefix of length n
of ΣT (z) is a return word to w.

We have thus the following result, who is a counterpart for interval exchange
sets of Theorem 3.2.9.

Theorem 7.1.9 Any derived set of a regular s-interval exchange set is a regular
s-interval exchange set.

Proof. Let T be a regular s-interval exchange transformation and let F = L(T ).
Let w ∈ F . Since the semi-interval Jw is admissible according to Proposi-

tion 7.1.6, the transformation S induced by T on Jw is, by Theorem 7.1.7, an
s-interval exchange transformation. The corresponding partition of Jw is the
family (Jwx)w∈RF (w).

Using Lemma 7.1.8 and the observation following, it is clear that ΣT (z) =
f(ΣS(z)), where z is a point of Jw and f : A∗ → RF (w)

∗ is a coding morphism
for RF (w).

Set x = ΣT (T
−|w|(z)) and y = ΣT (z). Then x = wy and thus ΣS(z) =

Df (x). By Proposition 1.4.8, this shows that the derived set of F with respect
to f is L(S).

Theorem 3.2.9 implies, in particular that Card(RF (w)) = Card(A), accord-
ingly with Corollary 2.2.10 (see also [67] and [5]).

7.2 Rauzy induction

In this section we describe the transformation called Rauzy induction defined
in [61] which operates on regular interval transformations and recall the results
concerning this transformation (Theorems 7.1.3 and 7.2.1). We also introduce
a branching version of this transformation and generalize Rauzy’s results to
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the two-sided case (Theorems 7.1.7 and 7.2.3). In particular we characterize in
Theorem 7.2.3 the admissible semi-intervals for an interval exchange transfor-
mation.

7.2.1 One-side Rauzy induction

Let T = Tλ,π be a regular s-interval exchange transformation on [ℓ, r[. Set
Z(T ) = [ℓ,max{γs, δπ(s)}[.

Note that Z(T ) is the largest semi-interval which is right-admissible for T .
We denote by ψ(T ) the transformation induced by T on Z(T ).

The following result is Theorem 23 in [61].

Theorem 7.2.1 (Rauzy) Let T be a regular interval exchange transformation.
A semi-interval I is right admissible for T if and only if there is an integer n ≥ 0
such that I = Z(ψn(T )). In this case, the transformation induced by T on I is
ψn+1(T ).

The map T 7→ ψ(T ) is called the right Rauzy induction. There are actually
two cases according to γs < δπ(s) (Case 0) or γs > δπ(s) (Case 1). We cannot
have γs = δπ(s) since T is regular.

In Case 0, we have Z(T ) = [ℓ, δπ(s)[ and for any z ∈ Z(T ),

ψ(T )(z) =

{
T 2(z) if z ∈ Iaπ(s)

T (z) otherwise.

The transformation S = ψ(T ) is the interval exchange transformation relative to
(Ka)a∈A with Ka = Ia∩Z(T ) for all a ∈ A. Note that Ka = Ia for a 6= as. The
translation values βa are defined as follows, denoting αi, βi instead of αai

, βai
,

βi =

{
απ(s) + αs if i = π(s)

αi otherwise.

In summary, in Case 0, the semi-interval Jaπ(s) is suppressed, the semi-interval
Jas

is split into S(Kas
) and S(Kaπ(s)

). The left boundaries of the semi-intervals
Ka are the left boundaries of the semi-intervals Ia. The transformation is rep-
resented in Figure 7.4, in which the left boundary of the semi-interval S(Kaπ(s)

)
is denoted δ′

π(s).

In Case 1, we have Z(T ) = [ℓ, γs[ and for any z ∈ Z(T ),

ψ(T )(z) =

{
T 2(z) if z ∈ T−1(Ias

)

T (z) otherwise.

The transformation S = ψ(T ) is the interval exchange transformation relative
to (Ka)a∈A with

Ka =

{
T−1(Ia) if a = as

T−1(T (Ia) ∩ Z(T )) otherwise.
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ℓ γπ(s) γs r
aπ(s) as

δs δπ(s)

as aπ(s)

↓
ℓ γπ(s) γs

aπ(s) as
δs δ′π(s)

as aπ(s)

Figure 7.4: Case 0 in Rauzy induction.

Note that Ka = Ia for a 6= as and a 6= aπ(s). MoreoverKa = S−1(T (Ia)∩Z(T ))
in all cases. The translation values βi are defined by

βi =

{
απ(s) + αs if i = s

αi otherwise.

In summary, in Case 1, the semi-interval Ias
is suppressed, the semi-interval

Iaπ(s)
is split into Kaπ(s)

and Kas
. The left boundaries of the semi-intervals

S(Ka) are the left boundaries of the semi-intervals Ja. The transformation is
represented in Figure 7.5, where the left boundary of the semi-interval Kas

is
denoted γ′s.

ℓ γπ(s) γs r
aπ(s) as

δs δπ(s)

as aπ(s)

↓
ℓ γπ(s) γ′s

aπ(s) as
δs δπ(s)

as aπ(s)

Figure 7.5: Case 1 in Rauzy induction.

Example 7.2.2 Consider again the transformation T of Example 6.1.7. Since
Z(T ) = [0, 2α[, the transformation ψ(T ) is represented in Figure 7.1. The
transformation ψ2(T ) is represented in Figure 7.6.

The symmetrical notion of left Rauzy induction is defined similarly.
Let T = Tλ,π be a regular s-interval exchange transformation on [ℓ, r[. Set

Y (T ) = [min{µ1, νπ(1)}, r[. We denote by ϕ(T ) the transformation induced by
T on Y (T ). The map T 7→ ϕ(T ) is called the left Rauzy induction.

Note that one has also Y (T ) = [min{γ2, δπ(2)}, r[.
The symmetrical statements of Theorem 7.2.1 also hold for left admissible

intervals.
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0 2− 5α 1− 2α 1− α

a c b
0 α 4α− 1

b c a

Figure 7.6: The transformation ψ2(T ).

7.2.2 Branching induction

The following is a generalization of Theorem 7.2.1.

Theorem 7.2.3 Let T be a regular s-interval exchange transformation on [ℓ, r[.
A semi-interval I is admissible for T if and only if there is a sequence χ ∈
{ϕ, ψ}∗ such that I is the domain of χ(T ). In this case, the transformation
induced by T on I is χ(T ).

We first prove the following lemmas, in which we assume that T is a regular
s-interval exchange transformation on [ℓ, r[. Recall that Y (T ), Z(T ) are the
domains of ϕ(T ), ψ(T ) respectively.

Lemma 7.2.4 If a semi-interval I strictly included in [ℓ, r[ is admissible for T ,
then either I ⊂ Y (T ) or I ⊂ Z(T ).

Proof. Set I = [u, v[. Since I is strictly included in [ℓ, r[, we have either ℓ < u
or v < r. Set Y (T ) = [y, r[ and Z(T ) = [ℓ, z[.

Assume that v < r. If y ≤ u, then I ⊂ Y (T ). Otherwise, let us show that
v ≤ z. Assume the contrary. Since I is admissible, we have v = T k(γi) with k ∈
EI,T (γi) for some i with 1 ≤ i ≤ s. But k > 0 is impossible since u < T (γi) < v
implies T (γi) ∈ ]u, v[, in contradiction with the fact that k < ρ+I (γi). Similarly,
k ≤ 0 is impossible since u < γi < v implies γi ∈ ]u, v[. Thus I ⊂ Z(T ).

The proof in the case ℓ < u is symmetric.

The next lemma is the two-sided version of Lemma 22 in [61].

Lemma 7.2.5 Let T be a regular s-interval exchange transformation on [ℓ, r[.
Let J be an admissible semi-interval for T and let S be the transformation
induced by T on J . A semi-interval I ⊂ J is admissible for T if and only if it
is admissible for S. Moreover Div(J, T ) ⊂ Div(I, T ).

Proof. Set J = [t, w[ and I = [u, v[. Since J is admissible for T , the transfor-
mation S is a regular s-interval exchange transformation by Theorem 7.1.7.

Suppose first that I is admissible for T . Then u = T g(γi) with g ∈ EI,T (γi)
for some 1 ≤ i ≤ s, and v = T d(γj) with d ∈ EI,T (γj) for some 1 ≤ j ≤ s or
v = r.

134



Since S is the transformation induced by T on J there is a separation point
x of S of the form x = Tm(γi) with m = −ρ−J,T (γi) and thus m ∈ EJ,T (γi).

Thus u = T g−m(x).

Assume first that g − m > 0. Since u, x ∈ J , there is an integer n with
0 < n ≤ g −m such that u = Sn(x).

Let us show that n ∈ EI,S(x). Assume by contradiction that ρ+I,S(x) ≤ n.

Then there is some k with 0 < k ≤ n such that Sk(x) ∈]u, v[. But we cannot
have k = n since u /∈ ]u, v[. Thus k < n.

Next, there is h with 0 < h < g − m such that T h(x) = Sk(x). Indeed,
setting y = Sk(x), we have u = T g−m−h(y) = Sn−k(y) and thus h < g −m. If
0 < h ≤ −m, then T h(x) = Tm+h(γi) ∈ I ⊂ J contradicting the hypothesis that
m ∈ EJ,T (γi). If −m < h < g −m, then T h(x) = Tm+h(γi) ∈ I, contradicting
the fact that g ∈ EI,T (γi). This shows that n ∈ EI,S(x) and thus that u ∈
Div(I, S).

Assume next that g−m ≤ 0. There is an integer n with g−m ≤ n ≤ 0 such
that u = Sn(x). Let us show that n ∈ EI,S(x). Assume by contradiction that
n < −ρ−I,S(x). Then there is some k with n < k < 0 such that Sk(x) = T h(x).

Then T h(x) = T h+m(γi) ∈ I with g < h +m < m, in contradiction with the
hypothesis that m ∈ EI,T (γi).

We have proved that u ∈ Div(I, S). If v = r, the proof that I is admissible
for S is complete. Otherwise, the proof that v ∈ Div(I, S) is similar to the proof
for u.

Conversely, if I is admissible for S, there is some x ∈ Sep(S) and g ∈ EI,S(x)
such that u = Sg(x). But x = Tm(γi) and since u, x ∈ J there is some n such
that u = T n(γi).

Assume for instance that n > 0 and suppose that there exists k with 0 <
k < n such that T k(γi) ∈]u, v[. Then, since I ⊂ J , T k(γi) is of the form Sh(x)
with 0 < h < g which contradicts the fact that g ∈ EI,S(x). Thus n ∈ EI,T (γi)
and u ∈ Div(I, T ).

The proof is similar in the case n ≤ 0.

If v = r, we have proved that I is admissible for T . Otherwise, the proof
that v ∈ Div(I, T ) is similar.

Finally, assume that I is admissible for T (and thus for S). For any γi ∈
Sep(T ), one has

ρ−I,T (γi) ≥ ρ−J,T (γi) and ρ+I,T (γi) ≥ ρ+J,T (γi)

showing that Div(J, T ) ⊂ Div(I, T ).

The last lemma is the key argument to prove Theorem 7.2.3. It is a branching
version of the argument used by Rauzy in [61].

Lemma 7.2.6 For any admissible interval I ⊂ [ℓ, r[, the set F of sequences
χ ∈ {ϕ, ψ}∗ such that I ⊂ D(χ(T )) is finite.
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Proof. The set F is suffix-closed. Indeed it contains the empty word because
[ℓ, r[ is admissible. Moreover, for any ξ, χ ∈ {ϕ, ψ}∗, one has D(ξχ(T )) ⊂
D(χ(T )) and thus ξχ ∈ F implies χ ∈ F .

The set F is finite. Indeed, by Lemma 7.2.5, applied to J = D(χ(T )), for
any χ ∈ F , one has Div(D(χ(T )), T ) ⊂ Div(I, T ). In particular,the boundaries
of D(χ(T )) belong to Div(I, T ). Since Div(I, T ) is a finite set, this implies that
there is a finite number of possible semi-intervals D(χ(T )). Thus there is is no
infinite word with all its suffixes in F . Since the sequences χ are binary, this
implies that F is finite.

Proof of Theorem 7.2.3. We first prove by induction on the length of χ that the
domain I of χ(T ) is admissible and that the transformation induced by T on I is
χ(T ). It is true for |χ| = 0 since [ℓ, r[ is admissible and χ(T ) = T . Next, assume
that J = D(χ(T )) is admissible and that the transformation induced by T on
J is χ(T ). Then D(ϕχ(T )) is admissible for χ(T ) since D(ϕχ(T )) = Y (χ(T )).
Thus I = D(ϕχ(T )) is admissible for T by Lemma 7.2.5 and the transformation
induced by T on I is ϕχ(T ). The same proof holds for ψχ.

Conversely, assume that I is admissible. By Lemma 7.2.6, the set F of
sequences χ ∈ {ϕ, ψ}∗ such that I ⊂ D(χ(T )) is finite.

Thus there is some χ ∈ F such that ϕχ, ψχ /∈ F . If I is strictly included
in D(χ(T )), then by Lemma 7.2.4 applied to χ(T ), we have I ⊂ Y (χ(T )) =
D(ϕχ(T )) or I ⊂ Z(χ(T )) = D(ψχ(T )), a contradiction. Thus I = D(χ(T )).

We close this subsection with a result concerning the dynamics of the branch-
ing induction.

Theorem 7.2.7 For any sequence (Tn)n≥0 of regular interval exchange trans-
formations such that Tn+1 = ϕ(Tn) or Tn+1 = ψ(Tn) for all n ≥ 0, the length
of the domain of Tn tends to 0 when n→ ∞.

Proof. Assume the contrary and let I be an open interval included in the domain
of Tn for all n ≥ 0. The set Div(I, T ) ∩ I is formed of s points. For any pair
u, v of consecutive elements of this set, the semi-interval [u, v[ is admissible. By
Lemma 7.2.6, there is an integer n such that the domain of Tn does not contain
[u, v[, a contradiction.

7.2.3 Equivalence relation

Let [ℓ1, r1[, [ℓ2, r2[ be two semi-intervals of the real line. Let T1 = Tλ,π1 be an s-
interval exchange transformation relative to a partition of [ℓ1, r1[ and T2 = Tµ,π2

another s-interval exchange transformations relative to [ℓ2, r2[. We say that T1
and T2 are equivalent if π1 = π2 and λ = cµ for some c > 0. Thus, two
interval exchange transformations are equivalent if we can obtain the second
from the first by a rescaling following by a translation. We denote by [Tλ,π] the
equivalence class of Tλ,π.
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Example 7.2.8 Let S = Tµ,π be the 3-interval exchange transformation on
a partition of the semi-interval [2α, 1[, with α = (3 −

√
5)/2, represented in

Figure 7.7. S is equivalent to the transformation T = Tλ,π of Example 6.1.7,
with length vector λ = (1− 2α, α, α) and permutation the cycle π = (132).
Indeed the length vector µ = (8α− 3, 2− 5α, 2− 5α) satisfies µ = 2−5α

α
λ.

2α 10α− 3 5α− 1 1

a b c

2− 3α 4− 8α

b c a

Figure 7.7: The transformation S.

Note that if T is a minimal (resp. regular) interval exchange transformation
and [S] = [T ], then S is also minimal (resp. regular).

For an interval exchange transformation T we consider the directed labeled
graph IG(T ), called the induction graph of T , defined as follows. The ver-
tices are the equivalence classes of transformations obtained starting from T
and applying all possible χ ∈ {ψ, ϕ}∗. There is an edge labeled ψ (resp. ϕ)
from a vertex [S] to a vertex [U ] if and only if U = ψ(S) (resp ϕ(S)) for two
transformations S ∈ [S] and U ∈ [U ].

Example 7.2.9 Let α = 3−
√
5

2 and R be a rotation of angle α. By Exam-
ple 6.1.1, R is a 2-interval exchange transformation on [0, 1[ relative to the par-
tition [0, 1 − α[, [1 − α, 1[. The induction graph IG(R) of the transformation
is represented in the left of Figure 7.9.

Note that for a 2-interval exchange transformation T , one has [ψ(T )] =
[ϕ(T )], whereas in general the two transformations are not equivalent.

The induction graph of an interval exchange transformation can be infinite.
A sufficient condition for the induction graph to be finite is given in Section 7.3.

Let now introduce a variant of this equivalence relation (and of the related
graph). We consider the case of two transformations “equivalent” up to reflec-
tion (and up to the separation points). This choice allows us to obtain the same
natural coding for an interval exchange transformation relative to a point, and
for the mirror transformation relative to the specular point (with respect to the
midpoint of the of the interval).

For an s-interval exchange transformation T = Tλ,π, with length vector

λ = (λ1, λ2, . . . , λs), we define the mirror transformation T̃ = T
λ̃,τ◦π of T ,

where λ̃ = (λs, λs−1, . . . , λ1) and τ : i 7→ (s − 1 + 1) is the permutation that
reverses the names of the semi-intervals.

Given two interval exchange transformations T1 and T2 on the same alphabet
relative to two partitions of two semi-intervals [ℓ1, r1[ and [ℓ2, r2[ respectively,
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we say that T1 and T2 are similar either if [T1] = [T2] or [T1] = [T̃2]. Clearly,
similarity is also an equivalent relation. We denote by 〈T 〉 the class of transfor-
mations similar to T .

Example 7.2.10 Let T be the interval exchange transformation of Exam-
ple 6.1.7. The transformation U = ϕ6(T ) is represented in Figure 7.8 (see
also Example 7.2.18). It is easy to verify that U is similar to the transformation
S of Example 7.2.8. Indeed, we can obtain the second transformation (up to
the separation points and the end points) by taking the mirror image of the
domain.

Note that the order of the labels, i.e. the order of the letters of the alphabet,
may be different from the order of the original transformation.

2α 2− 3α 4− 8α 1

b a c

10α− 3 5α− 1

c b a

Figure 7.8: The transformation U .

As of the equivalence relation, also similarity preserves minimality and reg-
ularity.

Let T be an interval exchange transformation. We denote by

S(T ) =
⋃

n∈Z

T n
(
Sep(T )

)

the union of the orbits of the separation points. Let S be an interval exchange
transformation similar to T . Thus, there exists a bijection f : D(T ) \ S(T ) →
D(S) \ S(S). This bijection is given by an affine transformation, namely a
rescaling following by a translation if T and S are equivalent and a rescaling
following by a translation and a reflection otherwise. By the previous remark, if
T is a minimal exchange interval transformation and S is similar to T , then the
two interval exchange sets L(T ) and L(S) are equal up to permutation, that is
there exists a permutation π such that one for every w = a0a1 · · · an−1 ∈ L(T )
there exists a unique word v = b0b1 · · · bn−1 ∈ L(S) such that bi = π(ai) for all
i = 1, 2, . . . n− 1.

In a similar way as before, we can use the similarity in order to construct a
graph. For an interval exchange transformation T we define ĨG(T ) the modified
induction graph of T as the directed (unlabeled) graph with vertices the similar
classes of transformations obtained starting from T and applying all possible
χ ∈ {ψ, ϕ}∗ and an edge from 〈S〉 to 〈U〉 if U = ψ(S) or U = ϕ(S) for two
transformations S ∈ 〈S〉 and U ∈ 〈U〉.

Note that this variant appears naturally when considering the Rauzy induc-
tion of a 2-interval exchange transformation as a continued fraction expansion.
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There exists a natural bijection between the closed interval [0, 1] of the real line
and the set of 2-interval exchange transformation given by the map x 7→ Tλ,π
where π = (12) and λ = (λ1, λ2) is the length vector such that x = λ1

λ2
.

In this view, the Rauzy induction corresponds to the Euclidean algorithm
(see [55] for more details), i.e. the map E : R2

+ → R2
+ given by

E(λ1, λ2) =
{
(λ1 − λ2, λ2) if λ1 ≥ λ2

(λ1, λ2 − λ2) otherwise.

Applying iteratively the Rauzy induction starting from T corresponds then
to the continued fraction expansion of x.

Example 7.2.11 Let α and R be as in Example 7.2.9. The extension graph
IG(R) and the modified induction graph ĨG(R) of the transformation Are rep-
resented rispectively on the left and on the right of Figure 7.9. Note that the
ratio of the two lengths of the semi-intervals exchanged by T is

1− α

α
=

1 +
√
5

2
= φ = 1 +

1

1 + 1
1+···

.

[R]

ψ, ϕ

ψ, ϕ

〈R〉

Figure 7.9: Induction graph and modified induction graph of the rotation R of
angle α= (3−

√
5)/2.

7.2.4 Induction and automorphisms

Let T = Tλ,π be a regular interval exchange on [ℓ, r[ relative to (Ia)a∈A. Set
A = {a1, . . . , as}. Recall now from Section 6.1.2 that for any z ∈ [ℓ, r[, the
natural coding of T relative to z is the infinite word ΣT (z) = b0b1 · · · on the
alphabet A with bn ∈ A defined for n ≥ 0 by bn = a if T n(z) ∈ Ia.

Denote by η1, η2 the morphisms from A∗ into itself defined by

η1(a) =

{
aπ(s)as if a = aπ(s)

a otherwise
, η2(a) =

{
aπ(s)as if a = as

a otherwise
.

The morphisms η1, η2 extend to automorphisms of the free group on A.
The following result already appears in [44]. We give a proof for the sake of

completeness.

Proposition 7.2.12 Let T be a regular interval exchange transformation on
the alphabet A and let S = ψ(T ), I = Z(T ). There exists an automorphism η
of the free group on A such that ΣT (z) = η(ΣS(z)) for any z ∈ I.

139



Proof. Assume first that γs < δπ(s) (Case 0). We have Z(T ) = [ℓ, δπ(s)[ and for
any x ∈ Z(T ),

S(z) =

{
T 2(z) if z ∈ Kaπ(s)

= Iaπ(s)

T (z) otherwise.

We will prove by induction on the length of w that for any z ∈ I, ΣS(z) ∈ wA∗

if and only if ΣT (z) ∈ η1(w)A
∗. The property is true if w is the empty word.

Assume next that w = av with a ∈ A and thus that z ∈ Ia. If a 6= aπ(s), then
η1(a) = a, S(z) = T (z) and

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T (z)) ∈ η1(v)A
∗ ⇔ ΣT (z) ∈ η1(w)A

∗.

Otherwise, η1(a) = aπ(s)as, S(z) = T 2(z). Moreover, ΣT (z) = aπ(s)asΣT (T
2(z))

and thus

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T
2(z)) ∈ η1(v)A

∗ ⇔ ΣT (z) ∈ η1(w)A
∗.

If δπ(s) < γs (Case 1), we have Z(T ) = [ℓ, γs[ and for any z ∈ Z(T ),

S(z) =

{
T 2(z) if z ∈ Kas

= T−1(Ias
)

T (z) otherwise.

As in Case 0, we will prove by induction on the length of w that for any z ∈ I,
ΣS(z) ∈ wA∗ if and only if ΣT (z) ∈ η2(w)A

∗.
The property is true if w is empty. Assume next that w = av with a ∈ A.

If a 6= as, then η2(a) = a, S(z) = T (z) and z ∈ Ka ⊂ Ia. Thus

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T (z)) ∈ η2(v)A
∗ ⇔ ΣT (z) ∈ η2(w)A

∗.

Next, if a = as, then η2(a) = aπ(s)as, S(z) = T 2(z) and z ∈ Kas
= T−1(Ias

) ⊂
Iaπ(s)

. Thus

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T
2(z)) ∈ η2(v)A

∗ ⇔ ΣT (z) ∈ η2(w)A
∗.

where the last equivalence results from the fact that ΣT (z) ∈ aπ(s)asA
∗. This

proves that ΣT (z) = η2(ΣS(z)).

Example 7.2.13 Let T be the transformation of Example 6.1.7. The automor-
phism η1 is defined by

η1(a) = ac, η1(b) = b, η1(c) = c.

The right Rauzy induction gives the transformation S = ψ(T ) computed in Ex-
ample 7.1.4. One has ΣS(α) = bacba · · · and ΣT (α) = baccbac · · · = η1(ΣS(α)).

We state the symmetrical version of Proposition 7.2.12 for left Rauzy induc-
tion. The proof is analogous.
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Proposition 7.2.14 Let T be a regular interval exchange transformation on
the alphabet A and let S = ϕ(T ), I = Y (T ). There exists an automorphism η
of the free group on A such that ΣT (z) = η(ΣS(z)) for any z ∈ I.

Combining Propositions 7.2.12 and 7.2.14, we obtain the following state-
ment.

Theorem 7.2.15 Let T be a regular interval exchange transformation. For
ξ ∈ {ϕ, ψ}∗, let S = ξ(T ) and let I be the domain of S. There exists an
automorphism η of the free group on A such that ΣT (z) = η(ΣS(z)) for all
z ∈ I.

Proof. The proof follows easily by induction on the length of ξ using Proposi-
tions 7.2.12 and 7.2.14.

Note that if the transformations T and S = ξ(T ), with ξ ∈ {ψ, ϕ}∗ , are
equivalent, then there exists a point z0 ∈ D(S) ⊆ D(T ) such that z0 is a fixed
point of the isometry that transforms D(S) into D(T ) (if ξ is different from the
identity map, this point is unique). In that case one has ΣS(z0) = ΣT (z0) =
η (ΣS(z0)) for an appropriate automorphism η, i.e. ΣT (z0) is a fixed point of
an appropriate automorphism.

By Theorem 3.2.5, every set of return words in a regular interval exchange
set is a basis of the free group. We give now a proof of this result using the
branching Rauzy induction.

Corollary 7.2.16 Let T be a regular interval exchange transformation and set
F = L(T ). For w ∈ F , the set RF (w) is a basis of the free group on A.

Proof. By Proposition 7.1.6, the semi-interval Jw is admissible. By Theo-
rem 7.2.3 there is a sequence ξ ∈ {ϕ, ψ}∗ such that D(ξ(T )) = Jw. Moreover,
the transformation S = ξ(T ) is the transformation induced by T on Jw. By
Theorem 7.2.15 there is an automorphism η of the free group on A such that
ΣT (z) = η(ΣS(z)) for any z ∈ Jw.

By Lemma 7.1.8, we have x ∈ RF (w) if and only if ΣT (z) = xΣT (S(z))) for
some z ∈ Jw. This implies that RF (w) = η(A). Indeed, for any z ∈ Jw, let a is
the first letter of ΣS(z). Then

ΣT (z) = η(ΣS(z)) = η(aΣS(S(z))) = η(a)η(ΣS(Sz)) = η(a)ΣT (S(z)).

Thus x ∈ RF (w) if and only if there is a ∈ A such that x = η(a). This proves
that the set RF (w) is a basis of the free group on A.

We illustrate the this result with the following examples.

Example 7.2.17 We consider again the transformation T of Example 6.1.7
and set F = L(T ). We have RF (c) = {bac, bbac, c} (see Example 1.4.1). We
represent in Figure 7.10 the sequence ξ of Rauzy inductions such that Jc is the
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a

b

c

b

c

a

a

b

c

b

c

a

a

b

c

b

c

a

a
b

w

c

b

a

a 7→ac→ a 7→ba→ b7→ba→

Figure 7.10: The sequence ξ ∈ {ϕ, ψ}∗

domain of ξ(T ) (where we represent the interval exchanges vertically instead
that orizontally as usual).

The sequence is composed of a right induction followed by two left inductions.
We have indicated on each edge the associated automorphism (indicating only
the image of the letter which is modified). We have ξ = ϕ2ψ and the resulting
composition η of automorphisms gives

η(a) = bac, η(b) = bbac, η(c) = c.

Thus RF (c) = η(A).

Example 7.2.18 Let T and F be as in the preceding example. Let U be the
transformation induced by T on Ja. We have U = ϕ6(T ) and a computation
shows that for any z ∈ Ja, ΣT (z) = η(ΣU (z)) where η is the automorphism of
the free group on A = {a, b, c} which is the coding morphism for RF (a) defined
by:

η(a) = ccba, η(b) = cbba, η(c) = ccbba.

One can verify that L(U) = L(S), where S is the transformation obtain from T
by permuting the labels of the intervals according to the permutation π = (acb).

Note that L(U) = L(S) although S and U are not identical, even up to
rescaling the intervals. Actually, the rescaling of U to a transformation on [0, 1[
corresponds to the mirror image of S, obtained by taking the image of the
intervals by a symmetry centered at 1/2.

Note that in the above examples, all lengths of the intervals belong to the
quadratic number field Q[

√
5].

In the next Section we will prove that if a regular interval exchange trans-
formation T is defined over a quadratic field, then the family of transformations
obtained from T by the Rauzy inductions contains finitely many distinct trans-
formations up to rescaling.
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7.3 Interval exchanges over a quadratic field

An interval exchange transformation is said to be defined over a set Q ⊂ R if
the lengths of all exchanged semi-intervals belong to Q.

The following is proved in [19]. Let T be a minimal interval exchange trans-
formation on semi-intervals defined over a quadratic number field. Let (Tn)n≥0

be a sequence of interval exchange transformation such that T0 = T and Tn+1

is the transformation induced by Tn on one of its exchanged semi-intervals In.
Then, up to rescaling all semi-intervals In to the same length, the sequence (Tn)
contains finitely many distinct transformations. In the same paper, an extension
to the right Rauzy induction is suggested (but not completly developed).

In this section we generalize this results and prove that, under the above
hypothesis on the lengths of the semi-intervals and up to rescaling and transla-
tion, there are finitely many transformations obtained by the branching Rauzy
induction defined in Section 7.2.

Theorem 7.3.1 Let T be a regular interval exchange transformation defined
over a quadratic field. The family of all induced transformation of T over an
admissible semi-interval contains finitely many distinct transformations up to
equivalence.

The proof of the Theorem 7.3.1 is based on the fact that for each minimal in-
terval exchange transformation defined over a quadratic field, a certain measure
of the arithmetic complexity of the admissible semi-intervals is bounded.

7.3.1 Complexities

Let T be an interval exchange transformation on a semi-interval [ℓ, r[ defined
over a quadratic field Q[

√
d], where d is a square free integer ≥ 2. Without

loss of generality, one may assume, by replacing T by an equivalent interval
exchange transformation if necessary, that T is defined over the ring Z[

√
d] =

{m + n
√
d | m,n ∈ Z} and that all γi and αi lie in Z[

√
d] (replacing [ℓ, r[ if

necessary by its equivalent translate with γ0 = ℓ ∈ Z[
√
d]).

For z = m+ n
√
d, let define Ψ(z) = max(|m|, |n|).

Let A([ℓ, r[) be the algebra of subsets X ⊂ [ℓ, r[ which are finite unions
X =

⋃
j Ij of semi-intervals defined over Z[

√
d], that is Ij = [ℓj, rj [ for some

ℓj, rj ∈ Z[
√
d]. Note that the algebra A([ℓ, r[) is closed under taking finite

unions, intersections and passing to complements in [ℓ, r[.
Set ∂(X) the boundary of X and |X | the Lebesgue measure of X . Given a

subset X ∈ A([ℓ, r[), we define the complexity of X as Ψ(X) = max{Ψ(z) | z ∈
∂(X)} and the reduced complexity of X as Π(X) = |X |Ψ(X).

A key tool to prove Theorem 7.3.1 is the following result proved in [19,
Theorem 3.1].

Theorem 7.3.2 (Boshernitzan) Let T be a minimal interval exchange trans-
formation on an interval [ℓ, r[ defined over a quadratic number field. Assume
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that (Jn)≥1 is a sequence of semi-intervals of [ℓ, r[ such that the set {Π(Jn) | n ≥
1} is bounded. Then the sequence Tn of interval exchange transformations ob-
tained by inducing T on Jn contains finitely many distinct equivalence classes
of interval exchange transformations.

Thus, in order to prove Theorem 7.3.1, it is sufficient to show that the
reduced complexity of every admissible semi-interval is bounded.

The following Proposition is proved in [19, Proposition 2.1]. It shows that
the complexity of a subset X and of its image T (X) differ at most by a constant
that depends only on T .

Proposition 7.3.3 There exists a constant κ = κ(T ) such that for every X ∈
A([ℓ, r[) and z ∈ [ℓ, r[ one has |Ψ(T (X)) − Ψ(X)| ≤ κ and Ψ(T (z) − z) ≤ κ.
Moreover, one has Ψ(γ) ≤ κ and Ψ(T (γ)) ≤ κ for every separation point γ.

Clearly, by Proposition 7.3.3, one also has |Ψ(T−1(X)) − Ψ(X)| ≤ κ for
every X ∈ A([ℓ, r[) and Ψ(T−1(z)− z) ≤ κ for every z ∈ [ℓ, r[.

Although it is not necessary for our purposes, we can improve the approx-
imation of the reduced complexity of a nonempty subset X ∈ A([ℓ, r|) by the
following proposition. This result, proved in [19, Proposition 2.4], determines a
lower bound on Π(X).

Proposition 7.3.4 Let X ∈ A([ℓ, r[) be a subset composed of n disjoints semi-
intervals. Then Π(X) > n/(4

√
d).

7.3.2 Return times

Let T be an interval exchange transformation. For a subset X ∈ A([ℓ, r[) we
define the maximal positive return time and maximal negative return time for
T on X by the functions

ρ+(X) = min
{
n ≥ 1 |T n(X) ⊂ ⋃n−1

i=0 T
i(X)

}
,

and

ρ−(X) = min
{
m ≥ 1 |Tm(X) ⊂ ⋃m−1

i=0 T−i(X)
}
.

We also define the minimal positive return time and the minimal negative
return time as

σ+(X) = min {n ≥ 1 |T n(X) ∩X 6= ∅} ,
and

σ−(X) = min
{
m ≥ 1 |T−m(X) ∩X 6= ∅

}
.

If T is minimal, it is clear that for every X ∈ A([ℓ, r[), one has

[ℓ, r[ =
⋃ρ+(X)−1

i=0 T i(X) =
⋃ρ−(X)−1

i=0 T−i(X).
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Note that when J is a semi-interval, we have

ρ+(J) = max
z∈J

ρ+J,T (z) and σ+(J) = min
z∈J

ρ+J,T (z).

Symmetrically

ρ−(J) = max
z∈J

ρ−J,T (z) + 1 and σ−(J) = min
z∈J

ρ−J,T (z) + 1.

Let ζ, η be two functions. We write ζ ∈ O(η) if there exists a constant C
such that |ζ| ≤ C|η|. We write ζ ∈ Θ(η) if one has both ζ ∈ O(η) and η ∈ O(ζ).
Note that Θ is an equivalence relation, that is ζ ∈ Θ(η) ⇔ η ∈ Θ(ζ).

Boshernitzan and Carroll give in [19] two upper bounds for ρ+(X) and
σ+(X) for a subset X (Theorems 2.5 and 2.6 respectively) and a more pre-
cise estimation when the subset is a semi-interval (Theorem 2.8). Some slight
modifications of the proofs can be made so that the results hold also for ρ− and
σ−. We summarize these estimates in the following theorem.

Theorem 7.3.5 For every X ∈ A([ℓ, r[) one has ρ+(X), ρ−(X) ∈ O(Ψ(X))
and σ+(X), σ−(X) ∈ O (1/|X |). Moreover, if T is minimal and J is a semi-
interval, then ρ+(J) ∈ Θ(ρ−(J)) = Θ (σ+(J)) = Θ (σ−(J)) = Θ (1/|J |).

An immediate corollary of Theorem 7.3.5 is the following

Corollary 7.3.6 Let T be minimal and assume that

{T i(z) | −m+ 1 ≤ i ≤ n− 1} ∩ J = ∅

for some point z ∈ [ℓ, r[, some semi-interval J ⊂ [ℓ, r[ and some integers
m,n ≥ 1. Then |J | ∈ O (1/max{m,n}).

Proof. By the hypothesis, z /∈ ⋃n−1
i=0 T

−i(J), then we have ρ−(J) ≥ n. By
Theorem 7.3.5, we obtain |J | ∈ Θ(1/ρ−(J)) ⊆ O (1/n). Symmetrically, since
ρ+(J) ≥ m, one has |J | ∈ O (1/m). Then

|J | ∈ O

(
min

{
1

m
,
1

n

})
= O

(
1

max{m,n}

)
.

7.3.3 Reduced complexity of admissible semi-intervals

In order to obtain Theorem 7.3.1, we prove some preliminary results concerning
the reduced complexity of admissible semi-intervals.

Let T be an s-interval exchange transformation. Recall from Section 6.1.1
that we denote by Sep(T ) = {γi | 0 ≤ i ≤ s−1} the set of separation points. For

every n ≥ 0 define Sn(T ) =
⋃n−1

i=0 T
−i
(
Sep(T )

)
with the convention S0 = ∅.
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Since Sep(T−1) = T
(
Sep(T )

)
, one has

Sn(T
−1) = T n−1

(
Sn(T )

)
.

Given two integers m,n ≥ 1, we can define

Sm,n = Sm(T ) ∪ Sn(T
−1).

An easy calculation shows that

Sm,n(T ) =

n⋃

i=−m+1

T i
(
Sep(T )

)
.

Observe also that Sm,n(T ) = T n
(
Sm+n(T )

)
= T−m+1

(
Sm+n(T )

)
.

Denote by Vm,n(T ) the family of semi-intervals whose endpoints are in
Sm,n(T ). Put V(T ) =

⋃
m,n≥0 Vm,n(T ). Every admissible semi-interval belongs

to V(T ), while the converse is not true.

Theorem 7.3.7 Π(J) ∈ Θ(1) for every semi-interval J admissible for T .

Proof. Let m,n be the two minimal integers such that J = [t, w[∈ Vm,n(T ).
Then t, w ∈ {Tm(γi) | 1 ≤ i ≤ s} ∪ {T−n(γi) | 1 ≤ i ≤ s}. Suppose, for instance,
t = TM (γ), with M = max{m,n} and γ a separation point. The other cases
(namely, t = T−M (γ), w = TM (γ) or w = T−M(γ)) are proved similarly.

The only semi-interval in V0,0(T ) is [ℓ, r[ and clearly in this case the theorem
is verified.

Suppose then that J ∈ Vm,n(T ) for some nonnegative integers m,n with
m + n > 0. We have Ψ(J) = max{Ψ(t),Ψ(w)} ≤ Mκ where κ is the constant
introduced in Proposition 7.3.3. Moreover, by the definition of admissibility
one has {T j(γ) | 1 ≤ j ≤ M} ∩ J = ∅. Thus, by Corollary 7.3.6 we have
|J | ∈ O(1/M). Then Π(J) = |J | Ψ(J) ∈ O(1). By Proposition 7.3.4 we have
Π(J) > 1/(4

√
d). This concludes the proof.

Denote by Um,n(T ) the family of semi-intervals partitioned by Sm,n(T ).
Clearly Vm,n(T ) contains Um,n(T ). Indeed every semi-interval J ∈ Vm,n(T )
is a finite union of contiguous semi-intervals belonging to Um,n(T ).

Note that Um,0(T ) is the family of semi-intervals exchanged by Tm, while
U0,n(T ) is the family of semi-intervals exchanged by T−n.

Put

U(T ) =
⋃

m,n≥0

Um,n(T ).

Using Theorem 7.3.7 we easily deduce the following corollary, which is a
generalization of Theorem 2.11 in [19].

Corollary 7.3.8 Π(J) ∈ Θ(1) for every semi-interval J ∈ U(T ).
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We are now able to prove Theorem 7.3.1.
Proof of Theorem 7.3.1. By Theorem 7.2.3, every admissible semi-interval can
be obtained by a finite sequence ξ of right and left Rauzy inductions. Thus we
can enumerate the family of all admissible semi-intervals. The conclusion easily
follows from Theorem 7.3.2 and Theorem 7.3.7.

An immediate corollary of Theorem 7.3.1 is the following.

Corollary 7.3.9 Let T be a regular interval exchange transformation defined
over a quadratic field. Then the induction graph IG(T ) and the modified induc-

tion graph ĨG(T ) are finite.

Example 7.3.10 Let T be the regular interval exchange transformation of Ex-
ample 6.1.7. The modified induction graph ĨG(T ) is represented in Figure 7.11.
The transformation T belongs to the similarity class 〈T1〉 as well as transforma-
tions S of Example 7.2.8 and U of Example 7.2.10. The transformations ψ(T )
and ψ2(T ) of Example 7.2.2 belongs respectively to classes 〈T2〉 and 〈T4〉, while
the two last transformations of Figure 7.10, namely ϕψ(T ) and ϕ2ψ(T ), belongs
respectively to 〈T5〉 and 〈T7〉. Finally, the left Rauzy induction sequence from
T to U = ϕ6(T ) corresponds to the loop 〈T1〉 → 〈T3〉 → 〈T4〉 → 〈T6〉 → 〈T7〉 →
〈T8〉 → 〈T1〉 in ĨG(T ).

〈T1〉

〈T3〉

〈T2〉

〈T4〉〈T5〉

〈T6〉

〈T7〉

〈T8〉

Figure 7.11: Modified induction graph of the transformation T .

7.3.4 Primitive morphic sets

In this final subsection we show an important property of interval exchange
transformations defined over a quadratic field, namely that the related interval
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exchange sets are primitive morphic. Let prove first the following result.

Proposition 7.3.11 Let T, ξ(T ) be two equivalent regular interval exchange
transformations with ξ ∈ {ϕ, ψ}∗. There exists a primitive morphism η and a
point z ∈ D(T ) such that the natural coding of T relative to z is a fixed point of
η.

Proof. By Proposition 6.1.12, the set L(T ) is uniformly recurrent. Thus, there
exists a positive integerN such that every letter of the alphabet appears in every
word of length N of L(T ). Moreover, by Theorem 7.2.7, applying iteratively
the Rauzy induction, the length of the domains tends to zero.

Consider T ′ = χm(T ), for a positive integer m, such that D(T ′) < ε, where
ε is the positive real number for which, by Lemma 6.1.10, the first return map
for every point of the domain is “longer” than N , i.e. T ′(z) = T n(z)(z), with
n(z) ≥ N , for every z ∈ D(T ′).

By Theorem 7.2.15 and the remark following it, there exists an automor-
phism η of the free group and a point z ∈ D(T ′) ⊆ D(T ) such that the natural
coding of T relative to z is a fixed point of η, that is ΣT (z) = η (ΣT (z)).

By the previous argument, the image of every letter by η is longer than N ,
hence it contains every letter of the alphabet as a factor. Therefore, η is a
primitive morphism.

Theorem 7.3.12 Let T be a regular interval exchange transformation defined
over a quadratic field. The interval exchange set L(T ) is primitive morphic.

Proof. By Theorem 7.3.1 there exists a regular interval transformation S such
that we can find in the induction graph IG(T ) a path from [T ] to [S] followed
by a cycle on [S]. Thus, by Theorem 7.2.15 there exists a point z ∈ D(S) and
two automorphisms η, ζ of the free group such that ΣT (z) = η (ΣS(z)), with
ΣS(z) a fixed point of ζ.

By Proposition 7.3.11 we can suppose, without loss of generality, that ζ is
primitive. Therefore, L(T ) is a primitive morphic set.

Example 7.3.13 Let T = Tλ,π be the transformation of Example 6.1.7 (see
also 6.1.13). The set L(T ) is primitive morphic. Indeed the transformation T

is regular and the length vector λ = (1− 2α, α, α) belongs to Q
[√

5
]3
.
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Chapter 8

Linear involutions

In this chapter, we define linear involutions, which are a generalization of interval
exchange transformations seen in Chapters 6 and 7.

As for interval exchanges, we can associate to every linear involution T a
language, its natural coding L(T ). The family of natural codings of linear
involutions without connection is an important class of specular sets.

Section 8.1 is devoted to the dynamical properties of linear involutions. We
study, in particular, some remarkable classes, such as coherent, orientable and
minimal linear involutions.

In Section 8.2 we define the natural coding of a linear involution and we show
that, under certain hypothesis, this set is a specular set (Theorem 8.2.11). We
also give some results about orientability (Proposition 8.2.5) and mixed return
words (Section 8.2.4) in this framework. We end the section with the notion
of admissible interval for a linear involution (Section 8.2.5), that generalize the
analougous notion seen in Chapter 7 for interval exchanges.

8.1 Linear involution

In this section we introduce linear involutions. This family of dynamical systems
is closely related to the family of interval exchanges seen in Chapters 6 and 7.

After giving the basic definitions in Section 8.1.1, we discuss the similarity
between linear involutions and interval exchanges in Section 8.1.2. Sections 8.1.3
and 8.1.4 are devoted to some remarkable classes of linear involutions: coherent,
orientable and minimal ones.

8.1.1 Generalized permutations and linear involutions

Let us consider two copies I × {0} and I × {1} of an open interval I of the real
line and denote Î = I × {0, 1}. We call the sets I × {0} and I × {1} the two
components of Î. We consider each component as an open interval.
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Let A be an alphabet of cardinality k, with k an even number. Let θ be an
involution on A. We denote by a−1 or ā the inverse of a letter a ∈ A.

A generalized permutation on A of type (ℓ,m), with ℓ+m = k, is a bijection
π : {1, 2, . . . , k} → A. We represent it by a two line array

π =

(
π(1) π(2) . . . π(ℓ)

π(ℓ+ 1) . . . π(ℓ +m)

)
.

A length data associated with (ℓ,m, π) is a nonnegative vector λ ∈ RA
+ = Rk

+

such that

λπ(1) + . . .+ λπ(ℓ) = λπ(ℓ+1) + . . .+ λπ(k) and λa = λa−1 for all a ∈ A.

We consider a partition of I × {0} (minus ℓ − 1 points) in ℓ open intervals
Iπ(1), . . . , Iπ(ℓ) of lengths λπ(1), . . . , λπ(ℓ) and a partition of I×{1} (minus m−1
points) in m open intervals Iπ(ℓ+1), . . . , Iπ(ℓ+m) of lengths λπ(ℓ+1), . . . , λπ(ℓ+m).
Let Σ be the set of k − 2 division points separating the intervals Ia for a ∈ A.

The linear involution on I relative to these data is the map T = σ2 ◦ σ1
defined on the set Î \Σ as the composition of two involutions defined as follows.

(i) The first involution σ1 is defined on Î \Σ. It is such that for each a ∈ A, its
restriction to Ia is either a translation or a symmetry from Ia onto Ia−1 .

(ii) The second involution exchanges the two components of Î. It is defined
for (x, δ) ∈ Î by σ2(x, δ) = (x, 1 − δ). The image of z by σ2 is called the
mirror image of z.

We also say that T is a linear involution on I and relative to the alphabet A
or that it is a k-linear involution to express the fact that the alphabet A has k
elements.

Example 8.1.1 Let A = {a, b, c, d, a−1, b−1, c−1, d−1} and

π =

(
a b a−1 c
c−1 d−1 b−1 d

)

Let T be the 8-linear involution corresponding to the length data represented
in Figure 8.1 (we represent I × {0} above I × {1}) with the assumption that
the restriction of σ1 to Ia and Id is a symmetry while its restriction to Ib, Ic is
a translation.

I × {0}

I × {1}

z

T (z)T 2(z)

a b a−1 c

c−1 d−1 b−1 d

Figure 8.1: A linear involution.
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We indicate on the figure the effect of the transformation T on a point z
located in the left part of the interval Ia. The point σ1(z) is located in the
right part of Ia−1 and the point T (z) = σ2σ1(z) is just below on the left of Ib−1 .
Next, the point σ1T (z) is located on the left part of Ib and the point T 2(z) just
below.

8.1.2 Linear involutions and interval exchanges

The notion of linear involution is an extension of the notion of interval exchange
transformation in the following sense. Assume that

(i) ℓ = m,

(ii) for each letter a ∈ A, the interval Ia belongs to I × {0} if and only if Ia−1

belongs to I × {1},

(iii) the restriction of σ1 to each subinterval is a translation.

Then, the restriction of T to I × {0} is an interval exchange (and so is its
restriction to I × {1} which is the inverse of the first one). Thus, in this case,
T is a pair of mutually inverse interval exchange transformations.

It is also an extension of the notion of interval exchange with flip [57, 58].
Assume again conditions (i) and (ii), but now that the restriction of σ1 to at
least one subinterval is a symmetry. Then the restriction of T to I × {0} is an
interval exchange with flip.

Note that for convenience we consider in this chapter interval exchange trans-
formations defined by a partition of an open interval minus ℓ−1 points in ℓ open
intervals, instead that using a partition of a semi-interval in a finite number of
semi-intervals as in Chapter 6.

8.1.3 Coherent and orientable linear involutions

A linear involution T is a bijection from Î \ Σ onto Î \ σ2(Σ). Since σ1, σ2 are
involutions and T = σ2 ◦ σ1, the inverse of T is T−1 = σ1 ◦ σ2.

The set Σ of division points is also the set of singular points of T and their
mirror images are the singular points of T−1 (which are the points where T
(resp. T−1) is not defined). Note that these singular points z may be ‘false’
singularities, in the sense that T can have a continuous extension to an open
neighborhood of z.

Two particular cases of linear involutions deserve attention.
A linear involution T on the alphabet A relative to a generalized permutation

π of type (ℓ,m) is said to be nonorientable if there are indices i, j ≤ ℓ such that
π(i) = π(j)−1 (and thus indices i, j ≥ ℓ + 1 such that π(i) = π(j)−1). In other
words, there is some a ∈ A for which Ia and Ia−1 belong to the same component
of Î. Otherwise T is said to be orientable.

A linear involution T = σ2 ◦ σ1 on I relative to the alphabet A is said to
be coherent if, for each a ∈ A, the restriction of σ1 to Ia is a translation if and
only if Ia and Ia−1 belong to distinct components of Î.
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Example 8.1.2 The linear involution of Example 8.1.1 is coherent.

Linear involutions which are orientable and coherent correspond to interval
exchange transformations, whereas orientable but noncoherent linear involutions
are interval exchanges with flip.

Orientable linear involutions correspond to orientable laminations (see [15]),
whereas coherent linear involutions correspond to orientable surfaces. Thus
coherent nonorientable involutions correspond to nonorientable laminations on
orientable surfaces (see [15]).

8.1.4 Minimal involutions

As for interval exchanges, we define a connection of a linear involution T as a
triple (x, y, n) such that x is a singularity of T−1, y is a singularity of T , n ≥ 0
and T n(x) = y.

Example 8.1.3 Let us consider the linear involution T which is the same as
in Example 8.1.1 but such that the restriction of σ1 to Ic is a symmetry. Thus
T is not coherent. We assume that I =]0, 1[, that λa = λd. Let x = (1 − λd, 0)
and y = (λa, 0).

Then x is a singularity of T−1 (σ2(x) is the left endpoint of Id), y is a
singularity of T (it is the right endpoint of Ia) and T (x) = y. Thus (x, y, 1) is
a connection.

Example 8.1.4 Let T be the linear involution on I =]0, 1[ represented in Fig-
ure 8.2. We assume that the restriction of σ1 to Ia is a translation whereas the
restriction to Ib and Ic is a symmetry. We choose (3−

√
5)/2 for the length of

the interval Ic (or Ib). With this choice, T has no connections.

a b b−1

c c−1 a−1

Figure 8.2: A linear involution without connections.

Let T be a linear involution without connections. Let

O =
⋃

n≥0

T−n(Σ) and Ô = O ∪ σ2(O) (8.1)

be respectively the negative orbit of the singular points and its closure under
mirror image. Then T is a bijection from Î \ Ô onto itself. Indeed, assume
that T (z) ∈ Ô. If T (z) ∈ O then z ∈ O. Next if T (z) ∈ σ2(O), then T (z) ∈
σ2(T

−n(Σ)) = T n(σ2(Σ)) for some n ≥ 0. We cannot have n = 0 since σ2(Σ)
is not in the image of T . Thus z ∈ T n−1(σ2(Σ)) = σ2(T

−n+1(Σ)) ⊂ σ2(O).
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Therefore in both cases z ∈ Ô. The converse implication is proved in the same
way.

A linear involution T on I without connections is minimal if for any point
z ∈ Î \ Ô the nonnegative orbit of z is dense in Î.

Note that when a linear involution is orientable, that is, when it is a pair of
interval exchange transformations (with or without flips), the interval exchange
transformations can be minimal although the linear involution is not since each
component of Î is stable by the action of T . Moreover, it is shown in [29] that
noncoherent linear involutions are almost surely not minimal.

Example 8.1.5 Let us consider the noncoherent linear involution T which is
the same as in Example 8.1.1 but such that the restriction of σ1 to Ic is a
symmetry, as in Example 8.1.3. We assume that I =]0, 1[, that λa = λd, that
1/4 < λc < 1/2 and that λa + λb < 1/2. Let x = 1/2 + λc and z = (x, 0) (see
Figure 8.3). We have then T 3(z) = z, showing that T is not minimal. Indeed,
since z ∈ Ic, we have T (z) = (1− x, 0) = (1/2−λc, 0). Since T (z) ∈ Ia we have
T 2(z) = ((λa + λb) + (λa − 1 + x), 1) = (x − λc, 1) = (1/2, 1). Finally, since
T 2(z) ∈ Id−1 , we obtain (1, 0) − T 3(z) = T 2(z) − (λc, 1) = (1, 0) − z and thus
T 3(z) = z.

z = T 3(z)

T (z)

T 2(z)

a b a−1 c

c−1 d−1 b−1 d

Figure 8.3: A noncoherent linear involution.

Let X ⊂ I ×{0, 1}. The return time ρX to X is the function from I ×{0, 1}
to N ∪ {∞} defined on X by

ρX(x) = inf{n ≥ 1 | T n(x) ∈ X}.

The following result was already proved in [18, Proposition 4.2] for the class
of coherent involutions. The proof uses Keane’s theorem proving that an interval
exchange transformation without connections is minimal (Theorem 6.1.6). The
proof of Keane’s theorem also implies that for each interval of positive length,
the return time to this interval is bounded.

Proposition 8.1.6 Let T be a linear involution without connections on I. If T
is nonorientable, it is minimal. Otherwise, its restriction to each component of
Î is minimal. Moreover, for each interval of positive length included in Î, the
return time to this interval takes a finite number of values.

Proof. Consider the set Ĩ = Î × {0, 1} = I × {0, 1}2 and the transformation T̃
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on Ĩ defined for (x, δ) ∈ Ĩ by

T̃ (x, δ) =

{
(T (x), δ) if T is a translation on a neighborhood of x

(T (x), 1− δ) otherwise.

Let T ′ be the transformation induced by T̃ on I ′ = I × {0, 0}. Note that if

x ∈ I ′ is recurrent, that is, T̃ n(x) ∈ I ′ for some n > 0, then the restriction of T ′

to some neighborhood of x is a translation. Indeed, there is an even number of
indices i with 0 ≤ i < n such that T is a symmetry on a neighborhood of T i(x).

Let us show that T ′ is an interval exchange transformation. Let Σ be the
set of singularities of T . For each z ∈ Σ, let s(z) be the minimal integer s > 0

(or ∞) such that T̃−s(z) ∈ I ′. Let N = {T̃−s(z)(z) | z ∈ Σ with s(z) < ∞}.
The set N divides I ′ into a finite number of disjoint open intervals. If J is such
an open interval, it contains, by the Poincaré Recurrence Theorem, at least one
recurrent point x ∈ I ′ for T̃ , that is such that T̃ n(x) ∈ I ′ for some n > 0.
By definition of N , all the points of J are recurrent. Moreover, as we have
seen above, the restriction of T ′ to J is a translation. This shows that T ′ is an
interval exchange transformation.

We can now conclude the proof. Since T has no connection, T ′ has no
connection. Thus, by Keane’s theorem, it is minimal. This shows that the
intersection with I × {0} of the nonnegative orbit of any point in I × {0} is
dense in I × {0}. A similar proof shows that the same is true for I × {1}. If T
is nonorientable, the nonnegative orbit of any x ∈ I × {0} contains a point in
I×{1}. Thus its nonnegative orbit is dense in Î. The same holds symmetrically
for x ∈ I × {1}.

Let J be an interval of positive length included in I. By Keane’s theorem,
the return time to J×{0, 0} relative to T ′ takes a finite number of values. Thus
the return time to J×{0} with respect to T takes also a finite number of values.
A similar argument holds for an interval included in I × {1}.

8.2 Natural coding

In this section we use the linear involutions defined in the previous part of the
chapter to construct a laminary set of words: the natural coding L(T ) of a linear
involution T .

The definition of natural coding is given in Section 8.2.1. We show that a
word u is in L(T ) if and only if the correspective open interval Iu is nonempty
(Lemma 8.2.2). In Proposition 8.2.3 we show that L(T ) is actually a laminary
set.

Section 8.2.2 is devoted to the study of orientable sets and orientable linear
involutions. In particular we show in Proposition 8.2.5 how the dynamical notion
is related to the one on laminary sets.

In Section 8.2.3 we show that the natural coding of a linear involution with-
out connection is a specular set (Theorem 8.2.11).
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In Section 8.2.4 we return to de notion of mixed return words defined in
Chapter 5. We also give a geometrical characterization of the set of mixed
return words (Lemma 8.2.14).

Finally, in Section 8.2.5 we introduce the notion of admissible interval for a
linear involution and we show that if T is without connection, every interval Iw
is admissible with respect to T (Proposition 8.2.19).

8.2.1 Infinite natural coding

Let T be a linear involution on I, let Î = I ×{0, 1} and let Ô be the set defined
by Equation (8.1).

Given z ∈ Î \ Ô, the infinite natural coding of T relative to z is the infinite
word ΣT (z) = a0a1 . . . on the alphabet A defined by

an = a if T n(z) ∈ Ia.

We first observe that the infinite word ΣT (z) is reduced. Indeed, assume that
an = a and an+1 = a−1 with a ∈ A. Set x = T n(z) and y = T (x) = T n+1(z).
Then x ∈ Ia and y ∈ Ia−1 . But y = σ2(u) with u = σ1(x). Since x ∈ Ia, we have
u ∈ Ia−1 . This implies that y = σ2(u) and u belong to the same component of
Î, a contradiction.

As for the interval exchange sets (see Chapter 6), we denote by L(T ) the set
of factors of the infinite natural codings of T . We say that L(T ) is the natural
coding of T .

Example 8.2.1 Let T be the linear involution of Example 8.1.4. The words of
length at most 3 of S = L(T ) are represented in Figure 5.3.

Similarly that with interval exchanges (see Section 6.1.2), given a word w =
b0b1 · · · bm−1, we define the interval Iw as

Iw = Ib0 ∩ T−1(Ib1 ) ∩ . . . ∩ T−m+1(Ibm−1). (8.2)

By convention, Iε = Î.
For any z ∈ Î \ Ô, one has z ∈ Iu if and only if u is a prefix of ΣT (z).
Each set Iu is a (possibly empty) open interval. Indeed, this is true if u is a

letter. Next, assume that Iu is an open interval. Note that

Iau = Ia ∩ T−1(Iu). (8.3)

Then, by (8.3), for a ∈ A, we have T (Iau) = T (Ia) ∩ Iu and thus T (Iau) is
an open interval. Since Iau ⊂ Ia, T (Iau) is the image of Iau by a continuous
map and thus Iau is also an open interval.

We have the following result.

Lemma 8.2.2 Let T be a linear involution. Let u be a nonempty word. We
have

u ∈ L(T ) ⇐⇒ Iu 6= ∅.
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Proof. If u is a factor of ΣT (z) for some z ∈ Î \ Ô, then T n(z) ∈ Iu for some
n ≥ 0 and thus Iu 6= ∅. Conversely, if Iu 6= ∅, since Iu is an open interval, it
contains some z ∈ Î \ Ô. Then u is a prefix of ΣT (z) and thus u ∈ L(T ).

Observe that if T is nonorientable and without connection, then by Propo-
sition 8.1.6, L(T ) is the set of factors of ΣT (z) for any z ∈ Î \ Ô, that is, the
set of factors of ΣT (z) does not depend on z. Indeed, if Iu 6= ∅, since the orbit
of z is dense in Î, there is an n ≥ 0 such that T n(z) ∈ Iu and thus u is a factor
of ΣT (z).

Proposition 8.2.3 Let T = σ2 ◦ σ1 be a linear involution. For any nonempty
word u ∈ L(T ), one has Iu−1 = σ1T

|u|−1(Iu). Consequently the set L(T ) is
closed under taking inverses. It is thus a laminary set.

Proof. To prove the assertion, we use an induction on the length of u. The
property holds for |u| = 1 by definition of σ1. Next, consider u ∈ L(T ) and
a ∈ A such that ua ∈ L(T ). We assume by induction hypothesis that Iu−1 =
σ1T

|u|−1(Iu).
Since T−1 = σ1 ◦ σ2,

σ1T
|u|(Iua) = σ1T

|u|(Iu ∩ T−|u|(Ia)) = σ1T
|u|(Iu) ∩ σ1(Ia)

= σ1σ2σ1T
|u|−1(Iu) ∩ σ1(Ia) = σ1σ2(Iu−1) ∩ Ia−1

= Ia−1u−1

where the last equality results from the application of Equation (8.3) to the
word a−1u−1.

We easily deduce that the set L(T ) is closed under taking inverses. Further-
more it is a factorial subset of the free group FA. It is thus a laminary set.

Example 8.2.4 Let T be the linear involution of Example 8.1.4. As seen in
Example 5.2.3, the set S = L(T ) can actually be defined directly as the set of
factors of the substitution

f : a 7→ cb̄, b 7→ c, c 7→ ab̄

(where we use the notation ·̄ instead of ·−1 ) which extends to an automorphism
of the free group FA. The verification uses the (one-side) Rauzy induction seen in
Chapter 7 extended to linear involutions (see [18] for more details). The Rauzy
induction applied to T gives the linear involution T ′ represented in Figure 8.4
on the left. It is the transformation induced by T on the interval obtained by
erasing the smallest interval on the right, namely Iā.

The Rauzy induction applied on T ′ is obtained by erasing the smallest in-
terval on the right, namely Ib̄. It gives a transformation T ′′ represented in
Figure 8.4 on the right.

The transformation T ′′ is the same as T up to normalization of the length
of the interval, exchange of the two components and the permutation (written
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in cycle form) π = (a c b ā c̄ b̄) (see Figure 8.4) which sends a to c, c to b and so
on.

a ā b b̄

c c̄

a ā b

b̄ c c̄

Figure 8.4: The transforms T ′ and T ′′ of T by Rauzy induction.

Set S = L(T ), S′ = L(T ′) and S′′ = L(T ′′). Since T ′ is obtained from T
by a Rauzy induction, there is an associated automorphism τ ′ of the free group
such that S = Fac(τ ′(S′)) (see Section 7.2.4). One has actually

τ : a 7→ ab̄, b 7→ b, c 7→ c.

Similarly, one has S′ = Fac(τ ′′(S′′)) with

τ ′′ : a 7→ a, b 7→ bc̄, c 7→ c.

Set τ = τ ′ ◦ τ ′′. It is easy to verify that f = τ ◦ π−1. Since S = Fac(τ(S′′)) =
Fac(τπ−1(S)) = Fac(f(S)), we obtain that S is the set of factors of the fixpoint
of f as claimed above.

8.2.2 Orientability and uniform recurrence

We gather here basic properties of the language L(T ) of a linear involution.
Recall from Section 1.1.1 that a laminary set S is called orientable if S = S+∪S−
with S+, S− two factorial sets such that S+ ∩ S− = {ε} and for any x ∈ S, one
has x ∈ S− if and only if x−1 ∈ S+.

Proposition 8.2.5 Let T be a linear involution. If T is orientable, then L(T )
is orientable. The converse is true if T has no connection.

Proof. Let T be a linear involution and let S = L(T ). Assume that T is
orientable. Set S+ = {u ∈ S | Iu ⊂ I × {0}} ∪ {ε} and S− = {u ∈ S | Iu ⊂
I × {1}} ∪ {ε}. Then S = S+ ∪ S−. Since T is orientable, we have u ∈ S+

(resp. u ∈ S−) if and only if all letters of u are in S+ (resp. in S−). This shows
that S+ ∩ S− = {ε}, that S+, S− are factorial, and that u ∈ S+ if and only if
u−1 ∈ S−. Thus S is orientable.

Conversely, assume that T is nonorientable and has no connection. Let a ∈ A
be such that Ia, Ia−1 ⊂ I × {0}. Since T is minimal by Proposition 8.1.6, there
is some z ∈ Ia and n > 0 such that T n(z) ∈ Ia−1 . Thus S contains a word of
the form aua−1. This implies that S is nonorientable.

The following statement can be easily deduced from the similar statement
for interval exchange transformations (see [16, p. 392]).
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Proposition 8.2.6 Let T be a linear involution without connection. If T is
nonorientable, then L(T ) is uniformly recurrent. Otherwise, L(T ) is uniformly
semi-recurrent.

Proof. Set S = L(T ). Let u ∈ S and let N be the maximal return time to Iu
(this exists by Proposition 8.1.6). Thus for any z ∈ Î such that ρIu(z) is finite,
we have ρIu(z) ≤ N . Let w be a word of S of length N + |u| and let z ∈ Î \ Ô
be such that ΣT (z) begins with w.

If T is nonorientable, by Proposition 8.1.6, it is minimal. Thus there exists
n > 0 such that T n(z) ∈ Iu. This implies that ρIu(z) is finite and thus that
ρIu(z) ≤ N . This implies in turn that u is a factor of w. We conclude that S is
uniformly recurrent.

If T is orientable, then the restriction of T to each component of Î is minimal.
By Proposition 8.2.5, S is orientable. Thus Iu and Iu−1 cannot be included in
the same component of Î, since otherwise S would contain a word of the form
uvu−1, and S would be nonorientable. Thus Iw is in the same component as Iu
or Iu−1 , and we conclude as above that u or u−1 is a factor of w. This shows
that S is uniformly semi-recurrent.

8.2.3 Linear involutions and specular sets

The following theorem is proved in a similar way as Theorem 6.1.16.

Theorem 8.2.7 The natural coding of a linear involution without connection
is a planar tree set set of characteristic 2.

In order to prove Theorem 8.2.7 we need some preliminary results. The
following one is proved in the same way as Lemma 6.1.17 (see also Figure 8.5).

Lemma 8.2.8 Let T be a linear involution. For every nonempty word w and
letter a ∈ A, one has

(i) a ∈ L(w) ⇔ σ2(Ia−1 ) ∩ Iw 6= ∅,

(ii) a ∈ R(w) ⇔ σ2(Ia) ∩ Iw−1 6= ∅.

Proof. By Lemma 8.2.2, we have a ∈ L(w) if and only if Iaw 6= ∅ which is
also equivalent to T (Iaw) 6= ∅. As for interval exchanges, one has T (Iaw) =
T (Ia) ∩ Iw. Since T = σ2 ◦ σ1 and since σ1(Ia) = Ia−1 , a ∈ L(w) if and only if
σ2(Ia−1) ∩ Iw 6= ∅. Next, since L(T ) is closed under taking inverses (see 8.2.3),
aw ∈ S if and only if w−1a−1 ∈ S. Thus a ∈ R(w) if and only if a−1 ∈ L(w−1),
whence the second equivalence.

Recall from Section 6.1 that, given two subsets I, J of the real line, we write
I < J if x < y for any x ∈ I and y ∈ J .

Given a linear involution T on I, we introduce two orders on L(T ) as follows.
For any u, v ∈ L(T ), one has
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w

a−1

w−1

a

Figure 8.5: An illustration of a ∈ L(w) and a ∈ R(w).

(i) u <R v if and only if Iu < Iv,

(ii) u <L v if and only if Iu−1 < Iv−1 .

The following lemma is proved in the same way as Lemma 6.1.18.

Lemma 8.2.9 Let T be a linear involutions on I without connection. Let w ∈
L(T ) and a, a′ ∈ L(w) (resp. b, b′ ∈ R(w)). Then 1⊗a, 1⊗a′ (resp. b⊗1, b′⊗1)
are in the same connected component of E(w) if and only if Ia−1 , Ia′−1 (resp.
Ib, Ib′) are in the same component of I.

Proof. If (1⊗a, b⊗1) ∈ B(w), then σ2(Ia−1)∩Iwb 6= ∅. Thus Ia−1 and Iwb belong
to distinct components of Î. Consequently, if a, a′ ∈ L(w) (resp. R(w)) belong
to the same connected component of E(w), then Ia−1 , Ia′−1 (resp. Iwa, Iwa′)
belong to the same component of Î.

Conversely, let a, a′ ∈ L(w) be such that a, a′ belong to the same component
of Î. We may assume that a <L a

′. There is a reduced path (i.e., it does not use
twice consecutively the same edge) in E(w) from a to a′ which is the sequence
a1, b1, . . . , bn−1, an with a1 = a and an = a′ with a1 <L a2 <L · · · <L an,
wb1 <R wb2 <R · · · <R wbn−1 and σ2(Ia−1

i
) ∩ Iwbi 6= ∅, σ2(Ia−1

i+1
) ∩ Iwbi 6= ∅ for

1 ≤ i ≤ n− 1 (see Figure 8.6 for an illustration).

wb1 wb2 wbn−1

a−1
1 a−1

2 a−1
n−1 a−1

n

Figure 8.6: A path from a1 to an in E(w).

Note that the hypothesis that T is without connection is needed since oth-
erwise the right boundary of σ2(Ia−1

i
) could be the left boundary of Iwbi .

The assertion concerning b, b′ ∈ R(w) is a consequence of the first one since
b, b′ ∈ R(w) if and only if b−1, b′−1 ∈ L(w−1) (see 8.2.3).

We can now prove the main result of this section.
Proof.[ of Theorem 8.2.7] Let T be a linear involution on I without connection
and let S = L(T ). Let us first prove that for any w ∈ L(T ), the graph E(w)
is acyclic. Assume that (1 ⊗ a1, b1 ⊗ 1, . . . , 1 ⊗ an, bn ⊗ 1) is a path in E(w)
with a1, . . . , an ∈ L(w) and b1, . . . , bn ∈ R(w). We may assume that the path
is reduced, that n ≥ 2 and also that a1 <L a2. It follows that a1 <L . . . <L an
and wb1 <R . . . <R wbn (see Figure 8.6). Thus it is not possible to have an
edge (a1, bn), which shows that E(w) is acyclic.
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Let a, a′ ∈ A. If Ia−1 and Ia′−1 are in the same component of Î, then
1⊗ a, 1⊗ a′ are in the same connected component of E(ε). Thus E(ε) is a union
of two trees with 2Card(A) vertices.

If w ∈ S is nonempty and 1 ⊗ a, 1 ⊗ a′ ∈ L(w), then Ia−1 and Ia′−1 are in
the same component of Î (by Lemma 8.2.8), and thus 1 ⊗ a, 1 ⊗ a′ are in the
same connected component of E(w). Thus E(w) is a tree.

Example 8.2.10 Let T be the linear involution of Example 8.1.4. L(T ) is a
tree set of characteristic 2 over the alphabet {a, b, c, a−1, b−1, c−1}. In Figure 8.7
are represented the extension graphs of the empty word (left) and of letters a
(center) and c−1 (right) (where we note ā instead of a−1).

E(ε)
a

c

c̄

b̄

b

a

ā

b̄

b

c

c̄

ā

E(a)

c̄ b̄

E(c̄)

b

b̄

a

b

Figure 8.7: Some extension graphs.

We prove the following result.

Theorem 8.2.11 The natural coding of a linear involution without connections
is a specular set.

Proof. Let T be a linear involution without connections. By Proposition 8.2.3,
the set L(T ) is a laminary set.

By 8.2.7, L(T ) is a tree set of characteristic 2. Thus L(T ) is specular.

We now present an example of a linear involution on an alphabet A where
the involution θ has fixed points.

Example 8.2.12 Let A = {a, b, c, d} be as in Example 5.5.5 (in particular,
d = b−1, a = a−1, c = c−1).

a d

b c

Figure 8.8: A linear involution on A = {a, b, c, d}.

Let T be the linear involution represented in Figure 8.8 with σ1 being a
translation on Ib and a symmetry on Ia, Ic. Choosing (3−

√
5)/2 for the length
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of Ib, the involution is without connections. Thus S = L(T ) is a specular set.
Let us show it is equal to the specular set obtained by the doubling transducer
in Example 5.2.22. Indeed, consider the interval exchange V on the interval
Y =]0, 2[ represented in Figure 8.9 on the right, which is obtained by using
two copies of the interval exchange U defining the Fibonacci set (represented in
Figure 8.9 on the left).

0 1
a b

b−1 a−1

0 1 2
a b c d

d−1 c−1 b−1 a−1

Figure 8.9: Interval exchanges U and V for the Fibonacci set and its doubling.

Let X =]0, 1[×{0, 1} and let α : Y → X be the map defined by

α(z) =

{
(z, 0) if z ∈]0, 1[
(2 − z, 1) otherwise.

Then α◦V = T ◦α and thus L(V ) = L(T ). The interval exchange V is actually
the orientation covering of the linear involution T (see [15]).

8.2.4 Mixed return words

In this section we recall the definition of mixed return words given in Section 5.3.
First, note that in the natural coding of a linear involution, every word w

does not overlap with its inverse w−1. Indeed, in the free group, a reduced word
w and its inverse do not overlap.

Recall that the mixed return words to w are the words N(u) associated with
complete return words u to {w,w−1} obtained erasing w if it appears as a prefix
and w−1 if it appears as a suffix. The convention choses for the transformation
N corresponds to the induction on Iw−1 ∪ σ2 (Iw−1) (see Lemma 8.2.14 below).

We denote by MR(w) the set of mixed return words to w in S. If T is
an orientable linear involution we have, then MR(w) is the union of the set of
right return words to w with the set of left return words to w−1.

Example 8.2.13 Let T be the linear involution of Example 8.1.4. The set of
complete return words to the set of a letter and its inverse are:

CRS({a, ā}) = {ab̄cbā, ab̄cbc̄a, ācb̄c̄a, ab̄c̄bā, ācbc̄a, ācb̄c̄bā}
CRS({b, b̄}) = {bācb, bācb̄, bc̄ab̄, b̄cb, b̄c̄ab̄, b̄c̄b},
CRS({c, c̄}) = {cbāc, cbc̄, cb̄c̄, c̄ab̄c, c̄ab̄c̄, c̄bāc}.

Thus we have the following sets of mixed return words:

MRS(a) = {b̄cb, b̄cbc̄a, ācb̄c̄a, b̄c̄b, ācbc̄a, ācb̄c̄b}
MRS(b) = {ācb, āc, c̄a, b̄cb, b̄c̄a, b̄c̄b},
MRS(c) = {bāc, b, b̄, c̄ab̄c, c̄ab̄, c̄bāc}.
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The reason for introducing the notion of mixed return words comes from the
fact that, when S is the natural coding of a linear involution, we are interested
in the transformation induced on Iw ∪ σ2(Iw). The natural coding of a point
in Iw begins with w while the natural coding of a point z in σ2(Iw) is preceded
by w−1 in the sense that the natural coding of T−|w|(z) begins with w−1. To
be more precise, the convention chosen for the transformation N corresponds
to the induction on Iw−1 ∪ σ2(Iw−1), such as shown with the following lemma.
Recall that the notation ρX stands for the return time to X .

Lemma 8.2.14 Let T be a linear involution with no connection and w a nonempty
word in its natural coding L(T ). Let Kw = Iw−1 ∪ σ2(Iw−1). Then the set of
mixed first return words to w are exactly the prefixes of length ρKw

(z) of the
infinite natural coding of points z ∈ Kw.

Proof. Let u be the prefix of length ρKw
(z) of ΣT (z) for some z ∈ Kw. Let us

first recall that σ2(Iw−1) = T |w|(Iw) (Proposition 8.2.3). Assume first that the
length of u is larger than or equal to the length of w. If z ∈ Iw−1 , then u starts
with w−1 while if z ∈ σ2(Iw−1) then wu is in L(T ). Similarly, if T |u|(z) ∈ Iw−1

then uw−1 is in L(T ) while if T |u|(z) ∈ σ2(Iw−1) then u ends with w. In all
four possible cases, u, wu, uw−1 and wuw−1 are in L(T ).

Let

p =

{
ε if z ∈ Iw−1 ,
w if z ∈ σ2(Iw−1),

and s =

{
w−1 if T |u|(z) ∈ Iw−1 ,

ε if T |u|(z) ∈ σ2(Iw−1).

Since Iw−1 and σ2(Iw−1) are included into two distinct components, there is no
cancellation in the product pus. Moreover, |pus| ≥ |u| and hence pus starts
and ends with an occurrence of w or w−1. It is thus a complete return word to
{w,w−1}. Furthermore one has N(pus) = u.

Let conversely u be a mixed first return word to w and let u′ be the complete
first return word such that u = N(u′). Write u′ = pus. Assume first that
u′ = wu. Then wu ends with w. For any point y ∈ Iu′ , set x = T |w](y). Then
x ∈ T |w]Iw = σ2(Iw−1), x ∈ Iu, and thus T |u|x ∈ σ2(Iw−1) and ρKw

(x) = |w|.
Hence u is the prefix of length ρJw

(x) of ΣT (x). The proof in the three other
cases is similar.

As a corollary of Theorem 5.3.9 we obtain the following results.

Corollary 8.2.15 Let S be the natural coding of a linear involution without
connections on the alphabet A. For any w ∈ S, the set MRS(w) has Card(A)
elements.

A geometric proof and interpretation of the next result is given in [15].

Corollary 8.2.16 Let S be the natural coding of a linear involution without
connections on the alphabet A = A+ ∪A−. For any w ∈ S, the set MRS(w) is
a monoidal basis of FB.
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Example 8.2.17 Let T be the linear involution of Example 8.1.4. We have seen
in Example 8.2.13 thatMRS(b) = {a−1cb, a−1c, c−1a, b−1cb, b−1c−1a, b−1c−1b}.
It is a monoidal basis of the free group on {a, b, c}.

Example 8.2.18 Let S be the specular set of Example 5.2.3. As seen in Ex-
ample 5.5.5, the group of even words G is a subgroup of index 2 and the set of
prime words in S with respect to G is the set Y = X ∪X−1 with

X = {a, ba−1c, bc−1, b−1c−1, b−1c}.

Actually, the transformation induced by T on the set I×{0} (the upper part of Î
in Figure 8.2) is the interval exchange transformation represented in Figure 8.10.
Its upper intervals are the Ix for x ∈ X .

a ba−1c bc−1 b−1c−1 b−1c

c−1b cb cb−1 c−1ab−1 a−1

Figure 8.10: The transformation induced on the upper level.

This corresponds to the fact that the words of X correspond to the first
returns to I × {0} while the words of X−1 correspond to the first returns to
I × {1}.

8.2.5 Admissible intervals

We have introduced in Chapter 7 the notion of an admissible semi-interval.
We give an analogous definition for open intervals in the framework of linear
involutions.

Let T be a linear involution without connection defined on the interval I.
The open interval J =]u, v[ with J ⊂ I is admissible with respect to T if for
each of its two endpoints x = u, v, there is

(i) either a singularity z of T−1 such that x = T n(z) and T k(z) /∈ J for
0 ≤ k ≤ n,

(ii) or a singularity z of T such that z = T n(x) and T k(x) /∈ J for 0 ≤ k ≤ n.

For any admissible interval of I with respect to T , the transformation in-
duced on I is a k-linear involution without connection (see cite[Lemma 4.4]lin-
earinvolutions).

The following is the counterpart for linear involutions of Theorem 7.2.3. The
proof for linear involutions is the same. Recall that the intervals Iw, w ∈ S, are
defined in Equation 8.2.

Proposition 8.2.19 Let T be a linear involution without connection on I. The
interval Iw, seen as a subinterval of I, is admissible with respect to T .
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Proof. Let T be a k-linear involution. Recall that Σ is the set of 2k− 2 division
points separating the intervals Ia for a ∈ A.

Let n ≥ 1. Since T is without connections, T−i(z) is well defined for any
z ∈ Σ and for any i such that 0 ≤ i ≤ n − 1. Let Pn = {T−i(z) | z ∈ Σ | z ∈
Σ, 0 ≤ i ≤ n− 1} ∪ {({λ} × {0, 1}), where λ stands for the left endpoint of the
interval I. One has Card(Pn) = (2k − 2)n + 2. Consider two points z and z′

in Î \ Ô that belong to two different intervals of the partition by open intervals
of I × {0, 1} made by the points of Pn. Then the prefixes of size n of theri
respective infinite natural codings differ. On the other hand, the left boundary
of each Iw, |w| = n, is the left boundary of some T−i(Ia) for some 0 ≤ i ≤ n− 1
and some a ∈ A. This proves that Pn is the set of 2(k− 1)n+2 left boundaries
of the intervals Iw for all words w with |w| = n, and that the family (Iw)|w|=n

forms a partition of I × {0, 1} (up to the points of Pn).
Let Iw =]u, v[ nad w = a0a1 · · · an−1. We assume that u 6= λ. By construc-

tion, there exist a point z ∈ Σ and an integer i with 0 ≤ i ≤ n − 1 such that
u = T−i(z), where Iai

=]z, t[ for some t in I or equal to the right boundary of
I. For any k with 0 ≤ k ≤ n− 1, the point T−k(z) is the left boundary of some
interval Iy, with |y| = n. Thus, in particular, on gets T k(u) /∈ Iw, for 0 ≤ k ≤ i.

The same reasoning applies to the right boundary v of Iw.
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Conclusions

Where do we come from? What are we? Where

are we going?

In this manuscript are contained results from different papers signed by me and
several other people: Jean Berstel, Valérie Berthé, Clelia De Felice, Vincent
Delecroix, Julien Leroy, Dominique Perrin, Christophe Reutenauer, Giuseppina
Rindone.

The story of this thesis starts even before the beginning of my PhD. Back in
2012, I was a master student at the Università degli Studi di Palermo. My mas-
ter thesis supervisor, Antonio Restivo, to “keep me busy” let me study a paper
([7], a preprint at the time) of more than fifty pages in which the five authors
(Jean Berstel, Clelia De Felice, Dominique Perrin, Christophe Reutenauer and
Giuseppina Rindone) discussed bifix codes, episturmian words and subgroups
of the free group. Most of the concept in this paper were completely new to
me. Nevertheless, I became interested in the subject and started to read related
papers. In my master thesis I also manage to give a (minimal) contribution
to the theory with a counterexample disproving a conjecture about a converse
of the Cardinality Theorem for bifix codes in Sturmian (Arnoux-Rauzy) sets,
namely that there exist an infinite word x and a family (Xd)d>0 of maximal
bifix codes satisfying the formula Card(Xd ∩ F (x)) = d(Xd) + 1 with x not a
Sturmian word.

After my master thesis in Palermo I arrived in Marne-la-Vallée, first for a
year as a winner of the scholarship “International Master in Mathematics and
Computer Science - the Bezout Excellence Track”, then as a “natural” continu-
ation of my master internship, as a PhD student with Dominique Perrin as my
supervisor. This opportunity allowed me to join the working group continuing
the work started in [7] (in the same period Valérie Berthé and Julien Leroy
joined the group as well, while Jean Berstel retired).

“Bifix codes and Sturmian words” ([7]) was a seminal paper that already
contained several results extended afterwards to larger classes than Arnoux-
Rauzy sets: the Cardinality Theorem for bifix codes, the Finite Index Basis
Theorem, the Return Theorem, etc.

One of the open question arised from this paper concerned the closure of
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an Arnoux-Rauzy set under maximal bifix decoding. Indeed, the maximal bifix
decoding of the set of factors of a Sturmian (or strict episturmian) word is not
an Arnoux-Rauzy set anymore. But an Arnoux-Rauzy set on a binary alphabet
is also an interval exchange set. This led to the results of “Bifix codes and
interval exchanges”([12]) where we show that the class of natural codings of
regular interval exchange transformations is the natural closure under maximal
bifix decoding of the class of Sturmian (binary Arnoux-Rauzy) sets.

And what about Arnoux-Rauzy sets over an arbitrary alphabet? This ques-
tion led us to define a common generalization of Arnoux-Rauzy sets and reg-
ular interval exchange sets: the tree sets. The first definition of these sets as
well as some generalization of [7] are provided in ”Acyclic, connected and tree
sets“([11]). The study of the maximal bifix decoding of a tree sets is treated in
”Maximal bifix decoding” ([14]), while the paper ”The finite index basis prop-
erty“ ([13]) shows that uniformly recurrent tree sets satisfy the finite index basis
property.

In the wake of the study of tree sets, we tried to generalize some of the results
to a larger class of sets: neutral sets. In the conference paper “Enumeration
formulæ in neutral sets” ([33]) and its longer version “Neutral and tree sets
of arbitrary characteristic” ([34]), we managed to generalize several results as
well as the definition itself of neutral and tree sets, which led to the definition
of characteristic of a neutral set. The results and the new tools introduced in
these two papers allowed us to simplify several proofs from the previous papers.
As a consequence, in this manuscript one can find shorter versions of the main
results of [11, 12, 13, 14]. Further simplifications in the statement and proofs
of several results are obtained using the surprising and unexpected fact, proved
in [34], that in a neutral set (and thus, in particular, in a tree set) the notions of
recurrence and uniformly recurrence coincide. This allows us also to answer an
open question of [11] and [14]: we now know that the maximal bifix decoding
of a recurrent tree set preserve both the recurrence and the tree property.

With the same group of authors of [11, 12, 13, 14] with the addition of
Vincent Delecroix, we studied a family of dynamical systems closed to interval
exchanges: linear involutions. We soon realized that the natural coding of a
linear involution without connections satisfies the tree condition. Moreover,
other peculiar symmetric properties are satisfied by this family of sets. This led
us to the definition of specular sets and specular groups and to the publication
of two papers: “Return words of linear involutions and fundamental groups“
([15]) with a more topological and geometric flavor, devoted to the specific case
of linear involutions, and “Specular sets” ([9], a long version of the conference
paper [10]), whose results are developed in a wider combinatorial context.

In parallel with the previous works, we focused on interval exchanges, gen-
eralizing some results of Rauzy and Boshernitzan concerning the Rauzy induc-
tion and the case of interval exchanges defined over a quadratic field. From
this study comes the paper written by me and Dominique Perrin “Interval ex-
changes, admissibility and branching Rauzy induction” ([32], a longer version
of the conference contribution “A note on regular interval exchange sets over a
quadratic field”).
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In summary, this manuscript could be seen as a revised and unifying versions
of the material contained in [9, 11, 12, 13, 14, 15, 32, 34]. However, note that
there is not a one-to-one correspondence between this thesis and the series of
papers. Indeed, several results published (or submitted) before are here refined
or presented with a shorter and simplified proof.

On the other hand, some notions of the papers are not treated here. Firstly,
in order to give consistency to the manuscript I tried, as far as possible, to
put all the results in a uniform framework. As a second reason, I chose to
include in this thesis the results to which my contribution has been particularly
substantial. This is why, for instance, we do not talk in this manuscript about
the Rauzy fractal (as done in [12]) or foliations and surfaces (as done in [15]).
On the contrary, my own contribution ot the series if papers presented here
is especially strong in what concerns the maximal bifix decoding results, the
theory of specular sets as well as the branching Rauzy induction and the study
of interval exchanges over a quadratic field. Therefore I decided to develop here
these topics as much in detail as possible.

And what’s next? Some of the notions we introduced have been used by other
authors. This is the example of the branching induction and the admissibility
we defined in this thesis for interval exchanges, used by Fickenscher in [40], or
the use of the Return Theorem in profinite semigroups in [1].

The main topic of this thesis, the tree condition and the study of the ex-
tension grahs, also seems to be a promising topic in different fields: words and
palindromes ([49]), Schützenberger groups ([1]), S-adic representations ([50]).
Recently, Julien Leroy and Revekka Kyriakoglou and myself submitted a paper,
“Decidable properties of extension graphs for substitutive languages” ([31]),
where we study the case of minimal dynamical systems arising from a substitu-
tive language and we show that the tree properties is decidable.

It is very likely that in the future we, as well as other people, will continue
the study of these properties and these families of sets.

Paris,
June 2016
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[11] Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Do-
minique Perrin, Christophe Reutenauer, and Giuseppina Rindone. Acyclic,
connected and tree sets. Monatsh. Math., 176(4):521–550, 2015.
(http://dx.doi.org/10.1007/s00605-014-0721-4).
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