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SUMMARY

Sommario esteso
In questa tesi è proposta una metodologia di progettazione e ottimizzazione 2-D per turbine
ORC supersoniche con basso grado di reazione. Sia lo statore che il rotore sono progettati me-
diante un metodo delle caratteristiche (MOC) adattato a equazioni di stato complesse per tener
accuratamente conto degli effetti di gas denso, legati alla complessità molecolare del fluido di
lavoro. Per la progettazione del rotore è stato implementato un approccio a vortice libero e il
problema dell’incidenza unica è stato risolto in modo originale nel regime di gas denso. Inoltre, i
profili statorici e rotorici non viscosi, ottenuti con i metodi precedenti, sono stati corretti tenendo
conto della presenza dello spessore dello strato limite. Gli effetti del modello termodinamico sulla
progettazione sono stati studiati e confrontati con quelli forniti dal modello di gas perfetto. Le
prestazioni di statore e rotore sono state valutate tramite simulazioni numeriche con l’ausilio di
codici fluidodinamici ai volumi finiti.
La caratteristica fondamentale della tecnologia ORC è quella di sfruttare fonti di calore a bassa
temperatura con fluidi organici che lavorano in stati termodinamici vicino alla curva di satu-
razione e la regione critica, dove gli effetti di gas reale sono dominanti. La corretta descrizione
del comportamento del fluido in queste condizioni può essere fatto introducendo un parametro
indicatore della influenza della fase gassosa ad alta densità sulla valutazione dei parametri ter-
modinamici. Questa proprietà è nota come derivata fondamentale (Thompson, 1971):
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, mentre s è l’entropia specifica. Lo

studio di Eqn. (2.1) fornisce informazioni circa il comportamento delle proprietà termodinamiche
e rappresenta una misura della velocità di variazione locale della velocità del suono. Il valore di Γ
e il suo segno sono indicatori della presenza di fenomeni di gas denso. Nelle regioni di flusso in cui
Γ > 1, il gas mostra un comportamento classico: la velocità del suono diminuisce nelle espansioni
isentropiche, aumenta nelle compressioni isentropiche e solo onde d’urto di compressione sono
ammesse. Questo è il caso dei gas perfetti, aventi un valore costante Γ = (γ + 1)/2 > 1. Se
0 < Γ < 1, è possibile osservare un comportamento opposto rispetto al precedente, e solo onde
d’urto di compressione sono consentite anche se le relative perdite d’urto sono inferiori. In questo
lavoro, una metodologia completa di progettazione per turbine ad azione ORC supersoniche ed
assiali è stata sviluppata al fine di tenere adeguatamente conto degli effetti di gas denso. Come
è stato esaminato in passato da Guardone et al. (2013) e Wheeler and Ong (2013), un ugello
supersonico progettato mediante la legge dei gas perfetti non è in grado di fornire le corrette ge-
ometrie e prestazioni attese utilizzando un modello di gas denso e, quindi, è necessaria un’analisi
più accurata. Qui è proposto un design semi-analitico.
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La procedura si basa su un metodo delle caratteristiche (MOC) generalizzato per statori, insieme
a un approccio di progettazione a vortice libero per rotori. Il MOC è uno strumento classico per
risolvere sistemi iperbolici di equazioni differenziali alle derivate parziali e, nel design inverso,
può essere vantaggiosamente utilizzato per progettare la parte supersonica di ugelli (Zucrow and
Hoffman, 1976; Ali et al., 2006; Délery, 2010). Il MOC è stato ampiamente studiato in gasdi-
namica classica, ma solo negli ultimi anni è aumentato l’interesse per problemi di gas reale grazie
ai grandi passi avanti nella modellazione termodinamica. Un primo esempio di progettazione di
ugelli supersonici mediante il MOC per gas reali è stato fornito da Cramer and Crickenberger
(1992), che ha fornito una breve descrizione del comportamento non classico della funzione di
Prandtl-Meyer, che è di grande importanza per la teoria caratteristiche, nel regime di gas denso.
La funzione di Prandtl-Meyer, infatti, diminuisce anziché aumentare, con il numero di Mach a
densità, temperatura, e numeri di Mach tali che Γ < 1. Aldo and Argrow (1993), per la prima
volta, hanno sviluppato un MOC per ugelli bidimensionali e assialsimmetrici con gas di van
der Waals. Più recentemente, Guardone et al. (2013) ha implementato un MOC accoppiato con
modelli termodinamici di gas reale per valutare l’influenza della complessità molecolare del fluido
di lavoro sul disegno della parte supersonica dell’ugello, considerando fluidi diversi per le stesse
condizioni operative, mentre Wheeler and Ong (2013) hanno studiato i flussi di gas reale che si
sviluppano in turbine radiali ORC. Un nuovo metodo, basato su un’estensione del MOC per gas
perfetto ai gas densi per la progettazione di ugelli supersonici, è stato discusso e applicato al
caso di palette di turbina con un alto rapporto di espansione.
Al fine di tenere conto degli effetti di gas denso durante la progettazione degli ugelli statorici, il
MOC classico per i gas perfetti è stato esteso ad una generica equazione di stato (EOS). Qui, le
equazioni multi-parametro fornite da REFPROP (REF per brevità) sono state implementate. Il
metodo di Carriere per gas perfetti è stato modificato considerando un rapporto equivalente dei
calori specifici γeq, calcolato come coefficiente di regressione lineare di un processo politropico, a
entropia costante, per un determinato intervallo di pressioni e densità.
Considerando EOS complesse non lineari per modellare il comportamento del gas, le equazioni di
governo del flusso non possono essere più integrate in modo analitico. Nel seguito, una procedura
numerica è invece presentata seguendo una metodologia simile a quella proposta da Zucrow and
Hoffman (1976). La portata G e la distribuzione di pressione p(x)/p0 lungo l’asse dell’ugello,
sono noti. Anche la pressione e la temperatura nel plenum, p0 e T0, sono conosciute. Ciò per-
mette di calcolare le condizioni termodinamiche soniche in gola per l’ugello (flusso strozzato).
Per calcolare i punti a valle della caratteristica iniziale, viene eseguito un calcolo preliminare
tenendo conto degli effetti di gas denso. I passaggi sono i seguenti:

1. Sono noti i dati iniziali (p0, T0), p(x)/p0 e G, e considerando il flusso strozzato, le condizioni
statiche in gola sono calcolate.

2. Viene calcolata la velocità sui punti all’asse dell’ugello come V =
√

2(h0 − h). L’entalpia
statica h(x) lungo l’asse viene calcolata come h(x) = h(p(x), s), dove l’entropia è costante
per definizione e s = s(p0, T0). Anche l’entalpia totale h0 è costante, essendo l’ugello
adiabatico, ed è data da h0 = h(p0, T0).

3. La velocità del suono sull’asse dell’ugello a(x) è calcolata come a = a(p(x), s) e, quindi, la
distribuzione del numero di Mach M(x) è calcolata.

4. La prima caratteristica ξ0 e calcolata applicando il metodo di Carrière (Délery, 2010),
modificato usando il valore di gas reale γeq per il rapporto dei gas specifici.

Le fasi di inizializzazione precedenti permettono di iniziare il calcolo delle proprietà cinematiche
e termodinamiche per punti lungo le caratteristiche a valle della gola. Il sistema delle equazioni
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di governo del flusso è numericamente integrato con un metodo di Eulero accurato al secondo
ordine.
La procedura iterativa è applicata per ogni punto lungo le caratteristiche fino a quando la con-
vergenza sulla portata non viene raggiunta. In questo modo la forma dell’ugello è determinata. Il
MOC è stato implementato nel codice FORTRAN NODEC. Il codice NODEC è stato verificato
confrontando i risultati MOC con quelli forniti da un solutore CFD dotato di EOS per gas reale
(i risultati sono omessi per brevità e sono mostrati nel manoscritto completo). Sebbene i calcoli
necessari con EOS per gas reale sono più complessi di quelli basati sul modello ideale, questo
algoritmo è molto veloce e pochi secondi sono necessari per l’ottenimento di forme di ugelli ac-
curate su una macchina a singolo processore.
Un contributo originale di questo lavoro di tesi riguarda la metodologia di progettazione di rotori
supersonici con effetti di gas reale. Calcoli viscosi sono stati effettuati per il rotore isolato pro-
gettato con il MOC per verificare l’accuratezza della metodologia di progettazione. Il problema
di periodicità legato all’incidenza unica è stato preso in considerazione ed è stato quindi imposto
in ingresso l’angolo relativo di flusso corretto.
Le condizioni termodinamiche sono leggermente supercritiche, in modo da lavorare in una re-
gione termodinamica ove gli effetti non ideali sono massimizzati e il fluido di lavoro è R245fa.
I risultati sono mostrati nelle Figg. 1 in termini di numero di Mach relativo e deviazione di
entropia, quest’ultima definita come la variazione di entropia relativa (S − Sin)/Sin) rispetto
all’entropia in ingresso Sin. In Fig. 1a si può notare come il design con il RODEC fornisca un
rotore avviato con un bow-shock sul bordo d’attacco che conferma la presenza del problema di
incidenza unica. All’interno dei vani rotorici, il flusso è caratterizzato da riflessioni delle onde
d’urto oblique. Lo strato limite modifica l’effettiva area di passaggio del flusso e influisce sulle
prestazioni della schiera rotorica, che possono essere valutate in termini di grado di reazione Λ
e deviazione di entropia. Il calcolo di Λ si basa sulle entalpie statiche medie in ingresso e uscita
rotore, Λ = ∆hrotore

∆htotale . Dal momento che il rotore è isolato, un valore costante di riferimento è
stato assegnato a ∆htotale al fine di calcolare Λ. Il design MOC fornisce Λ = −0.034, che è
leggermente diverso dal valore nominale (grado di reazione nullo). Il valore negativo implica che
vi è una nuova compressione del flusso supersonico, a causa dello sviluppo dello strato limite,
portando ad una distribuzione non simmetrica dell’area effettiva. La correzione con strato limite
della geometria del rotore potrebbe attenuare questo effetto.
L’analisi della deviazione di entropia, riportato nella Fig. 1b, mostra che le perdite sono local-
izzate nello strato limite turbolento e vicino al bordo di uscita. Una simulazione CFD viscosa è
stata effettuata per il rotore modificato dalla correzione con strato limite ed i risultati sono stati
confrontati con quelli precedentemente ottenuti per un disegno puramente inviscido. Il numero
di Mach e deviazione entropia per il rotore corretto sono riportati in Fig. 2. Il numero di Mach
mostra un modello di shock simile con diverse riflessioni nel vano rotorico fino all’uscita. Il rotore
è di nuovo completamente avviato. Si osserva che il profilo ”viscoso” comporta minori perdite,
in termini di deviazione di entropia, poiché lo strato limite è più sottile (senza compressione in
questo caso), e lo stesso vale per la scia (Fig. 2b). La correzione di strato limite ha un effetto
benefico anche sul grado di reazione (Λ = −0, 011), riducendo in modo significativo gli effetti di
ricompressione dovuta alla variazione della effettiva area di passaggio del flusso. Una valutazione
dei vantaggi della metodologia di progettazione proposta rispetto a disegni classici basati su sem-
plici considerazioni geometriche derivate dai triangoli di velocità del flusso, è stata effettuata.
Questi disegni sono generalmente basati sulla concatenazione di archi di cerchio, senza ulteriori
considerazioni termodinamiche o aerodinamiche. Il design classico basato su archi di cerchio e
triangoli di velocità non fornisce risultati soddisfacenti (Fig. 3a). La soluzione è caratterizzata
da una forte interazione tra il ramo inferiore dell’urto e il lato in depressione della pala adiacente,
oltre ad un’ampia regione subsonica sul lato in pressione. Sulla parte posteriore della paletta, lo
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Figure 1: Contour del numero di Mach per RODEC (a) e deviazione di entropia
(b).

strato limite si separa dalla parete. Questi fenomeni influiscono sulle prestazioni della schiera,
valutate in termini di grado di reazione e deviazione di entropia. Il disegno ad arco di cerchio
fornisce Λ = −0.12, che è un ordine di grandezza inferiore rispetto al disegno MOC. L’analisi
della deviazione di entropia, riportata in Fig. 3b, mostra perdite di entropia molto più elevate
per il design ad arco circolare, in particolare sul lato in depressione posteriore e sulla scia viscosa.
L’analisi della distribuzione di pressione sulla pala rotorica (vedi Fig. 4) conferma che la dis-
tribuzione di riferimento, fornita dalla soluzione MOC non viscoso, è ben approssimata dalla
progettazione MOC, eccetto per alcune oscillazioni sui lati in pressione e depressione dovuti a
riflessioni delle onde d’urto. D’altra parte, il design ad arco circolare non garantisce di poter
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Figure 2: Mach number contour plot (a) and entropy deviation (b) for RODEC
rotors with boundary layer correction.

realizzare la distribuzione di pressione target e, quindi, le prestazioni desiderate.
Un secondo contributo originale di questo lavoro di tesi è stato lo sviluppo di una metodologia
efficiente per l’ottimizzazione robusta di turbine supersoniche. L’ottimizzazione robusta (RDO)
per configurazioni di flusso complesse per mezzo di modelli avanzati CFD si basa spesso su modelli
surrogati per approssimare la risposta della funzione di costo e ridurre il costo computazionale.
La costruzione di surrogati affidabili è un compito difficile, vale a dire per gli spazi di proget-
tazione con un grande numero di dimensioni. In questa tesi è stata sviluppata una strategia
RDO efficiente per la progettazione di espansori ORC 2-D supersonici. Il flusso è caratterizzato
da forti effetti di gas denso, e richiede la soluzione delle equazioni di Navier-Stokes mediate alla
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Figure 3: Contour del numero di Mach per RODEC (a) and archi di cerchio (b).

Reynolds, integrate dalle EOS avanzate. La metodologia di progettazione si basa su due livelli
di surrogati Kriging Bayesiano: il surrogato di primo livello dipende solo dai parametri incerti,
e viene utilizzato per approssimare le statistiche necessarie (media e varianza) della funzione di
costo; il modello surrogato di secondo livello nello spazio di progettazione è accoppiato con un
algoritmo genetico multi-obiettivo (NSGA). Una strategia di allenamento adattativa della super-
ficie di risposta viene utilizzata per arricchire il surrogato durante la convergenza NSGA. Pochi
step di arricchimento sono sufficienti per migliorare la precisione del fronte di Pareto finale in
modo notevole, in modo che l’algoritmo adattativo RDO conservi una prestazione soddisfacente
in parallelo. La strategia proposta è stata prima verificata per un problema modello e quindi
applicata alla progettazione dello statore di una turbina supersonica ORC.
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con correzione di strato limite e confronto con la distribuzione di riferimento.

Per questa applicazione, possono essere considerate tre principali fonti di incertezza: il modello
termodinamico, la geometria e le condizioni operative. Il numero di parametri in ogni categoria
ha una forte influenza sulla fattibilità dell’analisi UQ e, conseguentemente, del processo RDO.
Per ridurre la dimensione dello spazio parametrico, un’analisi preliminare di sensibilità viene ef-
fettuata, dimostrando che i parametri più influenti sono due parametri operativi (pressione totale
e temperatura) e un parametro geometrico (spessore della paletta). La paletta è parametrizzata
mediante un approccio a deformazione libera (FFD), che consente di gestire facilmente qualsiasi
tipo di forma indipendentemente dalla complessità geometrica. La parametrizzazione risultante
della paletta dipende da un numero relativamente basso di parametri. In questo studio, le de-
formazioni massime consentite con l’FFD sono impostate a 20% nel sistema di riferimento del
reticolo, e 8 punti di controllo sono usati per descrivere la geometria. Il rendimento isoentropico
è calcolato risolvendo le equazioni RANS sulla base di uno schema ai volumi finiti accurato al
terzo ordine e il modello di turbolenza Spalart-Allmaras. I calcoli CFD sono effettuati su una
griglia strutturata 384 × 128 , tale che y+ < 1. Una ottimizzazione deterministica viene prima
applicata alla geometria di base. I parametri di progetto nominali sono definiti in termini di
pressione totale e temperatura ridotti (p0r = 1,1, T0r = 0,98) normalizzate rispetto alle con-
dizioni critiche, e rapporto di espansione (β = 5) per il fluido R245fa.
L’ottimizzazione deterministica migliora l’efficienza isoentropica da 0.879 fino a 0,962 (8,6 %),
abbassando le perdite viscose e dell’urto, situate sulla scia e vicino al bordo di uscita, rispet-
tivamente (osservare 5a e 5b). Successivamente, è stata eseguita una ottimizzazione robusta
massimizzando la media µηs e minimizzando la varianza σ2

ηs del rendimento isoentropico. Le
condizioni totali ridotte in ingresso (p0r , T0r ) e lo spessore della paletta ε sono impostate come
variabili incerte, con la distribuzione mostrata in 5.3. La scelta di una pdfs di tipo beta, con
un calcolo dei parametri di forma basati sulla media e deviazione standard assegnati, permette
di evitare espansioni nella regione liquido-vapore. Le funzioni obiettivo sono valutate mediante
un’analisi di incertezza tramite Kriging con 24 campioni. Il surrogato multi-obiettivo Kriging con
campionamento adattativo è attivato per accelerare l’NSGA. Il ciclo di ottimizzazione è eseguito
sino a 60 generazioni e con 3 campioni aggiuntivi (uno ogni 20 generazioni).
Per valutare l’effetto della ottimizzazione robusta, la variazione delle prestazioni rispetto ai val-
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Figure 5: Contour plots del numero di Mach per la baseline (a); Contour plots del
numero di Mach per il profilo ottimizzato deterministicamente (b).

ori medi viene analizzato e confrontato con gli altri disegni. In 6 il coefficiente di variazione (in
percentuale) del numero di Mach è indicato per il profilo base (6a), deterministico (6b) e robusto
(6c). Il profilo di base è caratterizzato da elevati livelli di incertezza localizzati all’interno dello
strato limite turbolento e sulla scia viscosa, con variazioni massime di 8 %. L’ottimizzazione de-
terministica fornisce una forma con alte prestazioni medie, grazie alla minimizzazione degli strati
viscosi, ma i risultati sono caratterizzati da bassa robustezza e varianza elevata in prossimità del
bordo di uscita, corrispondente ad una variazione massima di 7.4 %. Il design robusto riduce la
variazione massima del numero di Mach del 2 %.
Le prestazioni dei diversi design sono state confrontate. L’ottimizzazione deterministica fornisce
un valore medio del efficienza isoentropica pari a µηis,det = 0, 946, vale a dire leggermente infe-
riore rispetto al valore deterministico ηis,det = 0.962, con una variazione di 1, 5%. La soluzione
deterministica ha una varianza del 50% superiore per gli individui robusti, fornendo cos̀ı una
geometria meno robusta, pur con prestazioni medie più elevate. L’ottimizzazione robusta mostra
un rendimento isoentropico medio dall’1% al 7% più alto del disegno di base, mentre la devi-
azione standard è da 4% a 45% inferiore.

Table 1: Variabili incerte. Pressione e temperatura totali ridotte (p0r , T0r ), spes-
sore della pala ε.

Parameter Mean CoV% pdf
p0r 0.98 8% BETA
T0r 1.13 8% BETA
ε 1 1% UNIFORM
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Résumé étendu
Dans cette thèse, nous avons proposé une méthodologie pour la conception et l’optimisation
2-D des turbines ORC (Organic Rankine Cycle) supersoniques avec degré de réaction faible. Le
stator et le rotor sont conçus à l’aide d’une méthode des caractéristiques (MOC) étendu aux
équations d’etat complexes pour prendre en compte attentivement les effets de gaz dense, liés à
la complexité moléculaire du fluide de travail. La conception du rotor est basée sur une modèle
de vortex libre et le problème d’incidence unique a été résolu d’une manière originale dans le
régime de gaz dense. En outre, les profils des aubes de stator et de rotor obtenus par les modèles
non visqueux ci-dessus, ont été corrigées en tenant compte de l’épaisseur de la couche limite.
Les effets du modèle thermodynamique ont été étudiés et les résultats ont été comparés à celles
fournis par le modèle de gaz idéal. Les performances du stator et rotor ont été évaluées au moyen
de simulations numériques. La la fonction principale des machines ORC est l’exploitation des
sources de chaleur à basse . Dans ces conditions, les fluides de travail choisis sont des fluides
organiques travaillent dans des états thermodynamiques proches de la courbe de saturation et
de la région critique, où les effets de gaz réels sont dominants. La description du comportement
du fluide dans ces conditions peut être effectué en introduisant un paramètre connu sous le nom
dérivée fondamentale (Thompson, 1971):

Γ = a4

2v3

(
∂2v

∂p2

)
s

= 1 + ρ

a

(
∂a

∂ρ

)
s

(2)

où a est la vitesse du son définie comme
[
−v2

(
∂p
∂v

)
s

]0.5
et s est l’entropie spécifique. L’équation.

(2) fournit des informations sur le comportement des propriétés thermodynamiques et représente
une mesure de la vitesse locale du changement de la vitesse du son. La valeur de Γ et son signe
sont des indicateurs de la présence de phénomènes de gaz denses. Dans les régions d’écoulement
où Γ > 1, le gaz se comporte de manière classique: la vitesse du son diminue dans l’expansion
isentropique, et augmente lors d’une compression isentropiques. Tel est le cas des gaz parfaits,
ayant une valeur constante de Γ = (γ + 1)/2 > 1. Si 0 < Γ < 1, la vitesse du son se comporte de
manière opposée et augmente lors d’une détente isentropique. Ceci tend à réduire le nombre de
Mach maximal atteint par l’écoulement et, par conséquent, donne lieu à des ondes de choc plus
faibles que celles qui peuvent apparâıtre dans les écoulements supersoniques de gaz parfait. Par
ailleurs, pour un même nombre de Mach amont, un choc dans des conditions où Γ est proche de
zéro induit moins de pertes. Dans cette these, une méthodologie de conception complète pour
turbines ORC axiale supersonique a été développé afin de tenir compte des effets de gaz denses.
Comme cela a été discuté dans le passé par Guardone et al. (2013) et Wheeler and Ong (2013),
une tuyère supersonique conçue en utilisant la loi des gaz parfaits ne donne pas de performances
satisfaisantes en régime de gaz dense. Pour pallier à cet inconvénient, nous proposons ici une
méthode de design semi-analytique basée sur des modèles de gaz dense avancés.
La procédure est basée sur un méthode des caractéristiques (MOC) étendue à des gaz régis par
une loi d’état quelconque. Nous utilisons notamment les lois d’état de référence disponibles
dans la bibliothèque de modèles thermodynamiques REFPROP du NIST. Le MOC est un outil
classique pour résoudre des systèmes hyperboliques d’équations différentielles partielles et, dans
la conception inverse, peut être avantageusement utilisée pour concevoir la partie supersonique de
la tuyère (Zucrow and Hoffman, 1976; Ali et al., 2006; Délery, 2010). Le MOC a été largement
étudié dans la dynamique des gaz classiques, mais seulement au cours des dernières années a
augmenté l’intérêt en problèmes des gaz réel grâce à de grands progrès dans la modélisation
thermodynamique. Un excellent exemple de la conception des avions supersoniques en utilisant
la MOC pour les gaz réels a été fourni par Cramer and Crickenberger (1992), qui ont fourni une
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brève description du comportement non-classique de la fonction Prandtl-Meyer, qui est d’une
grande importance pour la théorie des caractéristiques, dans le régime de gaz dense. La fonction
Prandtl-Meyer, en effet, diminue au lieu d’augmenter, avec le nombre de Mach, de la densité,
de la température, pour une nombre de Mach tels que Γ < 1. Aldo and Argrow (1993), pour la
première fois, ont mis au point un MOC pour les tuyères à deux dimensions et axisymétriques
pour un gaz de van der Waals. Plus récemment, Guardone et al. (2013) a mis en place une
MOC couplée avec des modèles thermodynamiques de gaz réel pour évaluer l’influence de la
complexité moléculaire du fluide de travail sur la conception de la partie supersonique de la
tuyère, avec différents fluides pour les mêmes conditions de fonctionnement, alors que Wheeler
and Ong (2013) ont étudié les flux de gaz réels qui se développent dans les turbines radiales ORC.
Une nouvelle méthode, basée sur une extension de la MOC pour le gaz parfait a été discutée et
appliquée au cas des aubes de turbine avec un taux d’expansion élevé.
Afin de tenir compte des effets de gaz denses lors de la conception des tuyères de stator, le MOC
classique des gaz parfaits a été étendue a une équation d’etat générique (EOS). Ici, les équations
multi-paramètres fournis par REFPROP ont été mises en ouvre. La méthode du Carrière pour
gaz parfaits a été modifié avec un rapport équivalent des chaleurs spécifiques γeq, calculé comme
un coefficient de régression linéaire d’un processus polytropique, à entropie constante, pour une
gamme donnée de pressions et de densités.
Considérant EOS complexe pour modéliser le comportement non-linéaire du gaz,les équations
régissant le flux ne peut pas être intégré analytiquement. Dans ce qui suit, une procédure
numérique est présenté suivant une méthode similaire à celle proposée par Zucrow and Hoffman
(1976). Le debit de masse G et la distribution de la pression p(x)/p0 le long de l’axe de tuyère,
sont connus. En outre, la pression et la température totoale, p0 et T0, sont connus. Ceci permet
de calculer les conditions thermodynamiques de la gol sonique à la tuyère.
Pour calculer les points aval de la première caractéristique, il effectue un calcul préliminaire en
tenant compte des effets du gaz dense. Les étapes sont les suivantes:

1. sont connus les données initiales (p0, T0), p(x)/p0 et G, et compte tenu du débit, les con-
ditions statiques dans la gol sont calculées .

2. Il est calculé la vitesse sur la tuyère de points d’axe V =
√

2(h0 − h). L’enthalpie static
h(x) le long de l’axe est calculé comme h(x) = h(p(x), s), où l’entropie est constante et.
Même l’enthalpie total h0 est constante, étant la tuyère adiabatique, et est donné par
h0 = h(p0, T0).

3. La vitesse du son dans l’axe de la tuyère a(x) est calculée comme a = a(p(x), s) et, par
conséquent, la distribution du nombre de Mach M(x) est calculé.

4. La première caractéristique ξ0 et calculée en appliquant le méthode Carrière (Délery, 2010),
modifié en utilisant la valeur de gaz réelle γeq pour le ratio de gaz spécifique.

Les étapes d’initialisation précédentes permettent de démarrer le calcul des propriétés cinématiques
et thermodynamiques pour les points le long des caractéristiques en aval de la gol. Les équations
du système d’écoulement est numériquement intégrée avec une méthode d’Euler précise au sec-
ond ordre.
La procédure itérative est appliquée à chaque point le long des caractéristiques jusqu’à atteindre
la convergence sur la debit massique. De cette manière, la forme de la tuyère est déterminée. Le
MOC a été mis en ouvre dans une code FORTRAN NODEC. Le code NODEC a été vérifiée en
comparant les résultats avec ceux MOC fournies par un solveur CFD equippée avec EOS pour
le gaz réel. Bien que les calculs nécessaires avec EOS pour les gaz réels sont plus complexes
que celles fondées sur le modèle idéal, cet algorithme est très rapide et quelques secondes sont
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nécessaires pour obtenir des formes précises de tuyères sur une PC mono-processeur.
Une contribution originale de cette thèse porte sur la méthodologie de conception du rotor su-
personique avec des effets de gaz réel. Des calculs visqueux ont été faites pour le rotor isolé
conçu avec le MOC pour vérifier l’exactitude de la méthodologie de conception. L’incidence du
problème de la périodicité a été pris en compte.
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Figure 7: Contour du nombre de Mach pour RODEC (a) et deviation d’entropie
(b).

Les conditions thermodynamiques sont légèrement supercritique dans une région thermody-
namique où les effets non idéales sont maximisés et le fluide de travail est R245fa. Les résultats
sont présentés sur les Fig. 7 en termes de nombre de Mach et écart relatif de l’entropie, cette
dernière étant définie comme le changement de rapport entropie (S − Sin)/Sin) par rapport à
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l’entropie d’entrée Sin. Dans la Fig. 7 on peut noter comment la conception avec le RODEC
fournir un rotor avec un bow-shock sur le bord d’attaque qui confirme la présence du problème
d’incidence unique. A l’intérieur du rotor, le flux est caractérisée par des réflexions des ondes de
choc obliques. La couche limite modifier la zone de passage efficace de l’écoulement et affecte les
performances du rotor, qui peut être évaluée en termes de degré de réaction Λ et la déviation
de l’entropie. Le calcul est basé sur l’enthalpie statique moyenne à l’entrée et la sortie du rotor,
Λ = ∆hrotore

∆htotale . Le design MOC fournit Λ = −0.034, ce qui est légèrement différente de la valeur
nominale (degré de réaction zéro). La valeur négative implique qu’il y a une nouvelle compression
de l’écoulement supersonique, en raison du développement de la couche limite, ce qui conduit
à une distribution non symétrique de la surface réelle. La correction de la couche limite de la
géométrie du rotor pourrait atténuer cet effet.
L’analyse de l’écart de l’entropie, représentée sur la Fig. 7b, montre que les pertes sont lo-
calisée dans la couche limite turbulente et à proximité du bord de fuite. Une simulation CFD
visqueuse a été réalisée pour le rotor modifié par correction avec la couche limite et les résultats
ont été comparés avec ceux obtenus précédemment pour une méthodes purement non-visqueux.
Le nombre de Mach et l’écart d’entropie pour le rotor sont présentés sur la Fig. 8. Le nombre
de Mach montre une situation similaire avec différentes réflexions dans le rotor à la sortie. Le
rotor est entièrement démarré. La correction de la couche limite a un effet bénéfique également
sur le degré de réaction (Λ = −0.011), ce qui réduit considérablement les effets de recompression
en raison de la variation de la surface effective du passage d’écoulement. Une évaluation des
avantages de la méthodologie proposée par rapport aux conceptions classiques basées sur des
considérations géométriques simples dérivées des triangles de vitesse d’écoulement, a été réalisée.
Ces modèles sont généralement basées sur la concaténation des arcs de cercle, sans autres con-
sidérations thermodynamiques ou aérodynamiques. La conception classique basé sur des arcs de
cercle et des triangles de vitesse ne fournit pas de résultats satisfaisants (Fig. 9a). La solution
est caractérisée par une forte interaction entre la bosse de branche inférieure et le côté aspiration
de l’aube adjacente, et aussi d’une grande région subsonique sur le côté en pression. Sur le dos
de la palette, la couche limite se sépare de la paroi. Ces phénomènes affectent la performance,
mesurée en termes de degré de réaction et de déviation de l’entropie. L’arc de cercle fournit
Λ = −0.12, ce qui est un ordre de grandeur inférieur à la conception MOC. L’analyse de l’écart
d’entropie, représentée sur la Fig. 9b, présentent des pertes de l’entropie beaucoup plus élevé
pour la conception d’arc de cercle, en particulier sur le côté en dépression arrière et le sillage
visqueux.
L’analyse de la répartition de la pression sur la pale de rotor (voir Fig. 10) confirme que la dis-
tribution de référence, fourni par la solution MOC, est bien approchée par la conception MOC, à
l’exception de certaines oscillations de pression sur les côtés en dépression due à des réflexions des
ondes de choc. D’autre part, le design en arc de cercle ne permet pas de vérifier la distribution
de la pression cible et, par conséquent, la performance souhaitée.
Une deuxième contribution originale de cette thèse est le développement d’une méthodologie
efficace pour l’optimisation robuste des turbines supersonique. L’optimisation robuste (RDO)
pour les configurations d’écoulement complexes au moyen de modèles CFD avancés est souvent
basée sur des modèles de substitution pour l’approximation de la réponse de la fonction de coût
et de réduire le coût de calcul. La construction de surfaces précises est une tâche difficile, à
savoir pour des espaces de design avec un grand nombre de dimensions. Dans cette thèse nous
avons développé une stratégie efficace pour la conception de expandeurs ORC 2-D supersonique
robustes. L’écoulement se caractérise par de forts effets de gaz denses et nécessite la solution
des equations RANS, complétées par une loi d’état avancée. La méthodologie de conception est
basée sur deux niveaux de krigeage bayésien : le krigeage de haut niveau ne dépend que des
paramètres incertains, et est utilisé pour rapprocher les statistiques requises (moyenne et vari-
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Figure 8: Contour du nombre de Mach contour (a) et deviation de l’entropie (b)
pour les rotors RODEC avec correction de la couche limite.

ance) de la fonction de coût; le modèle de substitution de second niveau dans l’espace de design
est couplé avec un algorithme génétique multi-objectif (NSGA). Une surface de réponse adap-
tative de la stratégie de formation est utilisée pour enrichir le krigeage pendant la convergence
NSGA. Quelques étapes d’enrichissement sont suffisantes pour améliorer la précision du front
final de Pareto d’une manière remarquable, de sorte que l’algorithme adaptatif RDO conserve
une performance satisfaisante en parallèle. La stratégie proposée a été testée pour un problème
modèle, puis appliqué à la conception de stator d’une turbine ORC supersonique.
Pour cette application, il peut être considéré comme trois principales sources d’incertitude: le
modèle thermodynamique, les conditions de géométrie et de fonctionnement. Le nombre de
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Figure 9: Contour du nombre de Mach pour RODEC (a) et des arcs de cercle (b).

paramètres dans chaque catégorie a une forte influence sur la faisabilité d’analyse UQ et, par
conséquent, sur le processus RDO. Pour réduire la taille de l’espace des paramètres, une anal-
yse préliminaire de la sensibilité est réalisée, montrant que les paramètres les plus influents sont
deux paramètres de fonctionnement (pression totale et température) et un paramètre géométrique
(l’épaisseur de l’aube). L’aube est paramétrisée par une approche FFD (Free Form Deforma-
tion), qui permets de gérer facilement tout type de forme indépendamment de la complexité
géométrique. Le paramétrage de la pale résultant dépend d’un nombre relativement restreint de
paramètres. Dans cette étude, les déformations maximales autorisées par le FFD sont fixés à
20 % du réseau dans le système de référence, et 8 points de contrôle sont utilisés pour décrire
la géométrie. Le rendement isentropique est calculé en résolvant les équations RANS sur la
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Figure 10: Répartition de la pression de la paroi sur le rotor pour la simulation
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base d’un système à volume fini précis au troisième ordre avec le modèle de turbulence Spalart-
Allmaras. Les calculs CFD sont effectués sur une grille structurée 384 × 128 , tel que y+ < 1.
Une optimisation déterministe est d’abord appliquée à la géométrie de base. Les paramètres de
conception nominaux sont définis en termes de pression totale et température (p0r , T0r ) nor-
malisées par rapport à des conditions critique, et le rapport d’expansion ( beta = 5) pour le
fluide R245fa.
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Figure 11: Contour du nombre de Mach pour la ligne de base (a); Contour du
nombre de Mach pour le profil optimisé déterministe (b).

L’optimisation déterministe améliore l’efficacité isentropique de 0.879 à 0.962 (8.6%), en abaissant
les pertes visqueuses et bosse, situées à l’arrière et à proximité du bord de fuite, respectivement
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Figure 12: Variation du nombre de Mach pour: Baseline (a); profil déterministe
optimisé (b); profil robuste optimisé (c).

(note Figg. 11a et 11b). Par la suite, une optimisation robuste a été réalisée en maximisant la
moyenne µηis et en minimisant la variance σ2

ηis de l’efficacité isentropique. Les conditions totales
en entrée, normalisées par les valeurs au point critique (p0r , T0r ) et l’épaisseur de l’aube ε sont
traités comme des variables incertaines, avec la distribution indiqué dans 2. Le choix d’un type
pdfs bêta permet d’éviter l’expansion dans la région liquide-vapeur. Les fonctions objectif sont
évaluées par une analyse de l’incertitude en utilisant le krigeage avec 24 échantillons. Le krigeage
avec échantillonnage adaptatif est activé pour accélérer la NSGA. La boucle d’optimisation est
exécutée jusqu’à 60 générations avec 3 échantillons supplémentaires (un toutes les 20 générations).
Pour évaluer l’effet de l’optimisation robuste, la variation du rendement par rapport aux valeurs
moyennes sont analysées et comparées avec d’autres conceptions. Dans 12 le coefficient de vari-
ation (en pourcentage) du nombre de Mach est indiqué pour le profil de base (12a) déterministe
(12b ) et robuste (12c). Le profil de base est caractérisée par des niveaux élevés d’incertitude
localisée dans la couche limite turbulente et sillage visqueux, avec des variations maximales de
8 %. L’optimisation déterministe fournit une forme avec des performances moyennes élevées,
grâce à la minimisation des couches visqueuses, mais les résultats sont caractérisés par une faible
résistance et une forte variance dans le voisinage du bord de fuite, ce qui correspond à une vari-
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ation maximale de 7.4 %. La conception robuste réduit la variation maximale du nombre de
Mach de 2 %.
La performances ont été comparés. L’optimisation déterministe donne une valeur moyenne de
l’efficacité isentropique de µηis,det = 0.946, ce qui est légèrement inférieur à la valeur déterministe
de ηis,det = 0.962, avec une variation de 1.5 %. La solution déterministe a une variance de 50
% plus haut pour les individus robustes, offrant ainsi une géométrie moins robuste, bien que la
performance moyenne plus élevée. L’optimisation robuste permet d’obtenir une efficacité isen-
tropique moyenne de 1 % à 7% de plus que la conception de base, tandis que l’écart type est 4%
à 45 % de moins.

Table 2: Variables incertaine: pression et température réduite totale (p0r , T0r ),
épaisseur de la lame ε.

Parameter Mean CoV% pdf
p0r 0.98 8% BETA
T0r 1.13 8% BETA
ε 1 1% UNIFORM
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Chapter 1

INTRODUCTION

1.1 General overview
In recent years, the Organic Rankine Cycle (ORC) technology has received great interest from
the scientific and technical community because of its capability to recover energy from low-grade
heat sources. ORC is similar to a Rankine steam cycle, but uses an organic working fluid instead
of water. A sketch of an ORC layout is shown in 1.1a. The working fluid is compressed and
pumped in the evaporator by the feed pump. Before evaporation it is also pre-heated by the
recuperator which exploits the heat of the expanded fluid. After evaporation, the enthalpy drop
is converted into electric energy by means of a turbine expander coupled with a generator. In co-
generation applications this energy can be converted also into thermal power output. The fluid is
then cooled in the condenser in order to close the thermodynamic cycle. The thermal oil loop rep-
resents here the low-grade heat-transfer fluid which extracts energy from different sources. The
most widespread and promising fields of application of ORC are: waste heat recovery (WHR),
biomass power plant, geothermal plants and solar thermal power (Quoilin et al., 2013). The
working fluid is usually a low boiling organic fluid, e.g. a refrigerant, a hydrocarbon or a sili-
con oil, which allows exploiting lower-temperature heat sources (Lemort et al., 2012). Indeed,
due to its thermodynamic and physical properties, steam is not suitable for these applications
(Colonna et al., 2015). Specifically, the low specific heat of water, if compared with an organic
working fluid at the same power input, would provide smaller massflows and higher enthalpy
drops, leading to a larger number of expansion stages and to small flow passages. Besides, steam
does not provide lubrication of the expander inner contact surfaces implying the use of external
lubricants with loss of overall efficiency. Finally, the steam expander design becomes challenging
in this conditions and the efficiency improvement margins are very narrow. On the other hand,
the use of a fluid with high molecular mass and a lower boiling point than water can provide
lower enthalpy drops, higher expander flow passages and the friction losses minimized by the in-
trinsic lubricating properties of some organic working fluids. Other advantages of organic fluids
commonly used in ORC applications are their lower critical temperatures and pressures, high
thermal conductivity, high thermal stability, low corrosivity and toxicity, and compatibility with
cycle component materials (Kandathil, 2015). As it has been widely investigated (Yamamoto
et al., 2001; Karellas and Schuster, 2008), thermo-physical properties of the organic fluid play a
fundamental role for system efficiency. Specifically, low boiling point, high density in gas phase,
low critical temperature and low latent heat are the main characteristics required for an optimal
usage of the low-grade heat sources. Efficiency improvement techniques like the introduction of
superheaters, are not always profitable for these high specific heat fluids, because of the huge
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(a) (b)

Figure 1.1: (a) Scheme of an Organic Rankine Cycle. (b) Comparison between
steam and generic organic working fluid saturation curves. Figures extracted from
(Karellas and Schuster, 2008).

exchange surfaces that would be required (Chen et al., 2010). However, superheating is generally
not necessary for working fluids of the ”retrograde” or ”dry” type (i.e. with a positive slope of
the liquid/vapor coexistance curve, see Fig.1.1b). Indeed the expansion, starting from saturated
vapor conditions, leads to dry final conditions and does not produce any liquid phase. For these
reasons, most working fluids used in ORC, such as R245fa, R134a, R227ea (refrigerants) or MM,
MDM, MD2M (silicon oils) are dry fluids (Maizza and Maizza, 1996; Saleh et al., 2007; Mago
et al., 2007; Schuster et al., 2010; Hung et al., 2010).
In some applications, as WHR, ORC plants need to be as compact as possible because of geo-
metrical and weight constraints. Recently, these issues have been studied in order to promote the
ORC technology for Internal Combustion Engine (ICE) applications. It has been estimated that
only about one-third of the fuel energy is converted into mechanical power on typical driving cy-
cles at full load (El Chammas and Clodic, 2005; Quoilin et al., 2013), see Fig. 1.2. For example,
a typical 1.4 l spark ignition ICE, with a thermal efficiency ranging from 15% to 32%, releases
1.7–45 kW of heat through the radiator (at a temperature close to 80–100 ◦C) and 4.6–120 kW via
the exhaust gas (400–900 ◦C). The idea to recover this residual energy is not new and the 1970s
energy crisis encouraged the development of feasible ORC small-scale plants (1-10 kWe) (Platell,
1976; Doyle et al., 1979). A practical solution was found for the first time by Mack Trucks (Patel
and Doyle, 1976) for a 288 HP truck engine by using a fluorinol mixture as working fluid. In
recent years other more effective solutions have been proposed by Honda (Strobl et al., 2008) and
BMW (Ibaraki et al., 2007) for passenger cars and Cummins (Nelson, 2008) for long-haul trucks.
Even if the performances of recently developed prototypes of ORC for automotive applications
seem promising (El Chammas and Clodic, 2005; Endo et al., 2007; Teng and Regner, 2009), with
reduction of fuel consumption up to 12% and engine thermal efficiency improvements of 10%,
currently no commercial ORC solutions in the automotive field are available. This is mainly due
to the low robustness of the present technology to the large range of operational conditions on
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Figure 1.2: Energy balance of a 1.4 l spark ignition engine. Figures extracted
from (El Chammas and Clodic, 2005).

typical duty driving cycles and the subsequent low improvements of engine global performances
compared to the economic effort to realize the ORC components. On the other hand, the research
in this field remains fertile and the challenge of a cost-effective WHR for automotive applications
implies the development of contributions on many other subjects. In this sense, a key compo-
nent of the ORC is the working fluid which have to satisfy engineering, legislations and, where
applicable, health and safety requirements. Depending on the application, a widespread set of
organic fluids is available. A comprehensive analysis on the most suitable fluid for solar plant
applications is provided by Rayegan and Tao (2011) who experimentally compare the perfor-
mances of 115 fluids of the REFPROP 8.0 library, while Jing et al. (2010) focus the attention on
the R123 refrigerant. Borsukiewicz-Gozdur and Nowak (2007) found the R236ea to be the best
choice for a geothermal application in the 80-120 ◦C temperature range. For WHR, Glover et al.
(2015) provide a rational selection of 16 suitable fluids among 105 candidates, focusing attention
on R144a and R245fa. They show the importance of shape and slope of the isothermal curves
close and away from the wet region to WHR ORC performance. Dai et al. (2009) carrie out
a parametric study of ORC performances under different working fluids, whose thermodynamic
properties are optimized with exergy efficiency as an objective function by means of a genetic
algorithm, leading to the selection of R236ea as the best candidate for this application. In many
other studies (Maizza and Maizza, 1996, 2001; Gu et al., 2009) a thorough selection of working
fluids for WHR, made both with experimental and numerical techniques, can be found.
Supercritical and transcritical ORC cycles, i.e. cycles for which the expander inlet conditions are
characterized by pressures and temperatures beyond the liquid/vapour critical point, have also
been studied extensively. In this way, the low-grade heat source is better exploited thanks to a
better thermal matching (see Fig. 1.3), improving the heat exchange efficiency and avoiding the
use of regeneration, simplifying the plant layout (Saleh et al., 2007).
Most organic fluids of interest for ORC are characterized by a complex thermodynamics be-
haviour and exhibit considerable deviations from perfect gases. Specifically, several ORC work-
ing fluids fall within the category of so-called dense gases.
This may lead to uncommon fluid dynamic behaviours, namely in transonic and supersonic
regimes, as discussed, e.g., by Thompson (1971). Further developments of dense gas dynamics
have been made in the years (see (Aldo and Argrow, 1995; Monaco et al., 1997; Brown and
Argrow, 2000; Guardone et al., 2004) for a review). Especially, the role of dense gas dynamics in
transonic internal flows has been widely studied (Kluwick, 2004; Cinnella and Congedo, 2005b;
Wheeler and Ong, 2013; Guardone et al., 2013; Guardone and Vimercati, 2016), due to its im-

30



General overview

Figure 1.3: Enthalpy diagram showing thermal match in a supercritical ORC. (a)
Heating R152a in a subcritical ORC at 20 bar from 31.16 ◦C to 100 ◦C. (b) Heating
R143a in a supercritical ORC at 40 bar from 33.93 ◦C to 100 ◦C. Figures extracted
from (Saleh et al., 2007).

portance for turbomachinery applications involved in low-grade energy exploitation, such as the
ORC. The peculiar behaviour of dense gases observed in transonic and supersonic regimes, needs
to be taken accurately into account when designing ORC components, as namely the expander,
whose performance strongly influences that of the global cycle. Depending on the operating con-
ditions and the size of the system, a turbine or a volumetric expander can be used. Historically,
the positive-displacement expanders have found a widespread diffusion for ORC applications
thanks to their low cost and manufacturing simplicity due to their conversion from volumetric
compressors (e.g. scroll, screw, piston, vane expanders) (Song et al., 2015; Potenza et al., 2014).
They assure low flow rates, high pressure ratios and low rotational speeds which allow to avoid
the use of gear-boxes, reducing weight and mechanical complexity. However, for small-scale ap-
plications as automotive WHR, they do not show high performances due to volumetric expander
intrinsic problems as low adaptivity to volumetric ratios different from the nominal ones, result-
ing in losses for under- or over-expansions, internal leakages and lubricating issues (Quoilin et al.,
2013). On the other hand, turbo-expanders could provide higher performances in a wide range
of operating conditions, but the high rotational velocities, high pressure ratios, complexity of the
working fluids and the need for a compact geometry make the design of an efficient ORC turbine
challenging. The mean-line preliminary design by means of 1-D analysis has been carried out for
centrifugal expanders (Pini et al., 2013; Casati et al., 2014). On the base of these results, Persico
et al. (2015) has investigated the aerodynamic performance of a fixed and a rotating cascade of
centrifugal turbine by applying a three-dimensional CFD model.
Few authors have proposed more accurate 2-D mean-line design solutions, by focusing attention
on radial expanders (Wheeler and Ong, 2013; Rinaldi et al., 2015), which allow to develop higher
enthalpy drops than axial expander. However, for WHR with ORC, the attention has been re-
cently focused on axial turbines, which reduce the average system size, if compared with radial
solutions at the same pressure ratios and enthalpy drops. Especially, the axial configuration with
low degree of reaction is well known to be able, for steam turbine applications, to elaborate high
pressure ratios in a minimum number of stages (generally one ore two, see e.g. the Curtis turbine
wheels) ensuring high performances and high specific work at the nominal point. Unfortunately,
these characteristics are challenging to realize for an organic working fluid, due to its thermo-
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physical properties and operating conditions. Indeed, the pressure ratios, combined with the low
speed of sound, leads the flow to be transonic or supersonic resulting in strong shock waves.
In this thesis work, a novel design methodology for supersonic ORC axial impulse turbine stages
is proposed. It consists in a fast, accurate two-dimensional design which is carried out for the
mean-line stator and rotor blade rows of a turbine stage by means of a method of characteristic
(MOC) extended to a generic equation of state. The viscous effects are taken into account by
introducing a proper turbulent compressible boundary layer correction to the inviscid design
obtained with MOC. A first study of the influence of dense gas effects on the design of nozzles
by means of MOC was provided by Aldo and Argrow (1995), who implemented the Van der
Waals equation of state into the design process of minimum length nozzles. To the authors
knowledge, only recently a MOC equipped with complex equations of state has been proposed to
study the influence of the molecular complexity of the working fluid on planar supersonic nozzles
(Guardone, 2010; Guardone et al., 2013), while a MOC with a Prandtl-Meyer function modified
for real gases has been proposed to design supersonic radial nozzle guide vanes (Wheeler and
Ong, 2013). For the first time, a thorough approach for axial supersonic ORC turbine stages is
described and tested.
The design methodology mentioned above, however, is insufficient to design efficient turbines
if other aspects are not taken into account. Proposed heat sources for ORC turbines typically
include variable energy sources such as WHR from industrial processes or automotive applica-
tions. As a result, to improve the feasibility of this technology, the resistance to variable input
conditions must be taken into account at an early stage of the development process. Robust
design has been developed to improve the product quality and reliability in industrial Engineer-
ing. The concept of robust design had been introduced by Taguchi in the late 1940s and his
technique has become commonly known as the Taguchi method or robust design (Fowlkes and
Creveling, 1995; Park et al., 2004). Since 1980s, the Taguchi method has been applied to nu-
merical optimization under uncertainties. This newly developed method is often called robust
optimization and it overcomes the limitation of deterministic optimization that neglects the ef-
fect of uncertainties in design variables and design parameters. The robustness is determined by
a measure of insensitivity of the design with respect to variations of the design parameters, like
geometrical tolerances or fluctuations of the operating conditions. To measure the robustness of
a new design, statistics such as mean and variance (or standard deviation) of a response are cal-
culated in the robust optimization process. Currently, there are significant difficulties associated
with calculation of statistics of the objective function, especially in fluid dynamics, where each
evaluation of the cost functions requires solving a complex non-linear problem with many degrees
of freedom. In recent years, several robust optimization techniques for aerodynamic problems
have been proposed (Duvigneau, 2007; Cinnella and Hercus, 2010; Tang and Périaux, 2012). In
most cases, applications have been limited to problems like flow around isolated airfoils. Some
applications to 2D compressor blades have also been investigated (Kumar et al., 2008; Hercus
and Cinnella, 2011). Additionally, the computational cost of robust optimizations needs to be
drastically reduced to make it feasible for configurations of practical interest.
This work is a contribution to the development of an efficient methodology for the design and
the robust optimization of ORC turbine blades. It is part of the project TRENERGY (TRain
ENergy Efficiency via Rankine-cycle exhaust Gas heat recoverY), funded by the French Agence
Nationale de la Recherche, and involving partners as IFPEN (Institut Français du Pétrole Ener-
gies Nouvelles), ALSTOM, and ENOGIA (French constructor for ORC engines). In this context,
the project aims at evaluating the interest of using a Rankine Cycle in order to recover some
lost heat and to increase the efficiency of the Diesel power packs used as engine of a new concept
train, namely the Regiolis, built by ALSTOM. In Fig. 1.4 a scheme of the ORC system is shown.
The use of Rankine cycle systems has already been investigated in the past for transportation
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Figure 1.4: Schematic sketch of the Organic Rankine Cycle used to recover the
heat discharged by the exhaust gases of the Diesel power pack in the project TREN-
ERGY.

means (train, trucks and more recently cars), but the fact is that up to now they are mainly
used for stationary equipments (power plants, heat recovery for boilers, furnaces and ovens etc.)
or for heavy ships. For lighter transportations, several scientific and technical bottlenecks still
have to be addressed before Rankine cycles may represent profitable devices for increasing en-
ergy efficiency. This is especially due to the highly variable behaviour of the heat source that
characterizes this kind of applications.
In this framework, the collaboration with the DynFluid Laboratory ParisTECH has aimed to de-
velop the tools for the design of a compact high efficient low-power turbine and the contribution
is reported in this thesis work.

1.2 Thesis outline
This work aims at providing a complete description of the turbine design process, starting from
the definition of the baseline geometry up to the robust optimization step.
The manuscript is organised as follows:

• Chapter 2:

– Governing equations and numerical models provides a description of the equa-
tions of state for real gases and the numerical methods used to evaluate the ther-
modynamic properties of the organic working fluids and to solve the turbulent flow
governing equations, respectively;

• Chapter 3:

– Fast design methodology for supersonic turbines with strong real gas effects
describes the design methodology for the ORC nozzle guide vane and supersonic rotor
at mean-line. A ORC turbine stage 2-D steady simulation is provided in order to
evaluate the main performances for operating conditions in the dense gas region.

• Chapter 4:
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– Uncertainty Quantification describes some state-of-the-art tools for the non-intrusive
uncertainty quantification (UQ) and assesses their performance for ORC nozzle blade
design. A sensitivity analysis of the nozzle design to fluctuating operating conditions
is carried out and efficient comparison of the different UQ methodologies is provided.

• Chapter 5:

– Robust Optimization of supersonic ORC nozzle guide vanes discusses the
Robust Optimization (RO) strategy for ORC nozzle guide vanes. The nozzle mean-
line design is used as baseline whereas the UQ tool selected in the previous section is
implemented during the optimization process to evaluate the statistics of the quantity
of interest. A comparison of the robust shape with a deterministically optimized one
is carried out in terms of performances and geometric differences.

• Conclusions and perspectives: the conclusions about the thesis work are drawn and
the future perspectives are provided.
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Chapter 2

GOVERNING EQUATIONS
AND NUMERICAL MODELS

2.1 Dense gas dynamics
The key feature of the ORC technology is to exploit low-temperature heat sources with organic
fluids which work in thermodynamic states close to the saturation curve and the critical region,
where the real gas effects are dominant. The proper description of the fluid behaviour in these
conditions can be done by introducing a parameter as indicator of the influence of the high
density gas phase on the thermodynamic parameters evaluation. The dynamics of dense gases
can be described through the thermodynamic property known as the fundamental derivative
(Thompson, 1971):

Γ = a4

2v3

(
∂2v

∂p2

)
s

= 1 + ρ
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(
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∂ρ

)
s

(2.1)

where a is the speed of sound defined as
[
−v2

(
∂p
∂v

)
s

]0.5
, whereas s is the specific entropy. The

study of Eq. (2.1) provides informations about the behaviour of thermodynamic properties and
represents a measure of the rate of change for the local speed of sound. The value of Γ and
its sign are good revealers of local dense gas phenomena. In flow regions where Γ > 1, the gas
shows a classical behaviour: the speed of sound drops in isentropic expansions, rises in isentropic
compressions and only compression shock waves are allowed. This is the case of ideal gases,
having a constant Γ = (γ + 1)/2 > 1. If 0 < Γ < 1, it is possible to observe a reverse behaviour
with respect to the previous one, but still only compression shock waves are allowed although
the related shock losses are lower.
To better understand this point, it is useful to write the entropy variation across a discontinuity
as series development. As shown in (Bethe, 1998), the latter can be written in the form below:

∆s = −
(
∂2p

∂v2

)
s

(∆v)3

12T +O((∆v)4) (2.2)

where ∆v is the specific volume variation across the shock. The above equation shows that for
positive values of

(
∂2p
∂v2

)
s

only negative volume variations, i.e. compression shocks, are allowed
in order to not violate the entropy condition ∆s > 0. This behaviour is typical of fluids in
dilute gas conditions, characterized by isentropes with a positive concavity shape, far from the
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critical region, which are well described by the ideal gas law. By reformulating the Eq. (2.2) in
function of Γ it is possible to get a deeper insight into the role of the dense gas dynamics for
ORC turbines:

∆s = − a2

6v3T
Γ(∆v)3 +O((∆v)4) (2.3)

For Γ > 1, as for ideal gases, the entropy variation is of order O((∆v)3), but in the dense gas
region, close to the critical point and the saturation curve, is Γ < 1 which implies ∆s ∼ O((∆v)4).
Then, in dense gas conditions the shocks are one order less dissipative than in dilute conditions,
which is an advantage for ORC turbomachinery applications thanks to the minimization of the
shock-wave drag losses. In Fig. 2.1 a typical ORC turbine start condition is shown by the black
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Figure 2.1: Clapeyron diagram in terms of reduced variables for the R245fa fluid,
ruled by the Peng-Robinson-Stryjek-Vera EOS. The grey area represents the dense-
gas region, delimited by the unit iso-Γ line. The dotted line represents the critical
isoterm, whereas the black dot a typical ORC turbine start condition.

dot in the Clapeyron diagram in terms of reduced variables for the R245fa fluid described by the
Peng-Robinson-Stryjek-Vera EOS. It is possible to see that the expansion would occur entirely
in the dense gas region and, even though higher performances with respect to the dilute gas
conditions are achieved, the thermodynamic modelling is much more complex and expensive in
terms of computational costs.
For some fluids exists a region of negative Γ values in the vapor phase and they are called Bethe-
Zel’dovich-Thompson (BZT) fluids which show strongly non-linear behaviour close to the critical
conditions and the saturation curves. When Γ < 0, compression shock waves are forbidden
and only expansion shock waves are physically possible (Cramer and Tarkenton, 1992). This
phenomenon is theoretically predicted for a small amount of organic fluids (siloxanes, heavy
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hydrocarbons, heavy fluorocarbon such as PP10, PP11, PP25 etc.) in particular thermodynamic
conditions and it will not be investigated here.
Another important feature of dense gases resides in the viscous behaviour, that is very different
from the light gases one. Indeed, this is intermediate between that of liquids, for which viscosity
tends to decrease with increasing temperature, and that of gases, with an opposite variation.
The dynamic viscosity µ and the thermal conductivity κ cannot be considered independent from
temperature and pressure in the real gas regions. In a similar way, the approximation of a
constant Prandtl number Pr does not hold any more. Its behaviour tends to be controlled by
variations of the specific heat cp , the thermal conductivity showing variations with temperature
and pressure similar to viscosity. In the supercritical regime, where cp becomes large, strong
variations of Pr can be observed, in contrast with the behaviour of perfect gases. The fluid
viscosity and thermal conductivity are evaluated using the method proposed by Chung et al.
(1984), who provided equations based on kinetic gas theories and correlated with experimental
data. The viscosity (measured in µPoise) is related to the absolute temperature as follows:

µ = 40.785FcM
1/2
w T 1/2

V 2/3Ωv
(2.4)

where Mw (g/mol) is the fluid molecular weight and Vc (cm3/mol) the critical volume. The
coefficient Fc is calculated as Fc = 1− 0.2756ω + 0.059035δ4

r + ξ, where ω is the acentric factor,
δr a dimensionless dipole moment δr = 131.3δ/(VcTc)1/2 and ξ a correction for polar fluids.
In Eq. (2.4), the term Ωv represents the viscosity collision integral, evaluated as:

Ωv = A(T ∗)−B + C exp(−DT ∗) + E exp(−FT ∗) (2.5)

where T ∗ = 1.2593(T/Tc), A = 1.16145, B = 0.14874, C = 0.52487, D = 0.77320, E = 2.16178
and F = 2.43787.
The thermal conductivity κ is calculated with the following formula:

κ = µCv
Mw

· 3.75Ψ
Cv/R

(2.6)

where now Mw is in kg/mol, cv is the constant specific volume heat in J/(mol · K), R the
universal gas constant and Ψ a coefficient given by Ψ = 1 + α1

0.215+0.28288α1−1.061β+0.26665Ξ
0.6366+β·Ξ+1.061α1β

,
with α1 = (Cv/R)− 3/2,β = 0.7862− 1.7109ω + 1.3168ω2 and Ξ = 2.0 + 10.5(T/Tc)2.
The viscous behaviour of dense gas flows has been discussed in (Cinnella and Congedo, 2007).

2.2 Governing equations and numerical solver
Here the conservation equations for single-phase, viscous, non reacting flow, written in integral
form for a control volume Ω with boundary ∂Ω are considered:

d

dt

∫
Ω

wdΩ +
∫
∂Ω

(f − fv) · ndS = 0 (2.7)

In Eq. (2.7), w is the conservative variable vector:

w = (ρ, ρv, ρE)T (2.8)

where n is the outer normal to ∂Ω, f the inviscid flux density:

f = (ρv,−pI + ρvv, ρvH)T (2.9)
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and fv the viscous fluxes:
fv =

(
0,=τ ,=τ · v− q

)T
(2.10)

In Eq. (2.10), =
τ = 2µ

(
∇v +∇vT) − 2

3µ (∇ · v) I is the stress tensor and q = −κ∇T the heat
flux vector, with κ the thermal conductivity and µ the dynamic viscosity. If fv = 0, the Euler
equations are obtained.
In the above equations, v is the velocity vector, E the specific total energy, H = E + p/ρ the
specific total enthalpy, p is the pressure, ρ is the density and I is the unit tensor.
The Eq. (2.7) are completed by a thermal EOS:

p = p(ρ(w), T (w)) (2.11)

In Eq. (2.11), T is the absolute temperature, and a caloric EOS for the specific internal energy
e is also derived in order to satisfy the compatibility relation:

e = e (ρ(w), T (w))

= er +
∫ T

Tr

cv,∞(T ′) dT ′ −
∫ ρ

ρr

[
T

(
∂p

∂T

)
ρ

− p

]
dρ′

ρ′ 2
(2.12)

In equation ((2.12)), cv,∞ is the ideal gas specific heat at constant volume, quantities with a
prime superscript are auxiliary integration variables, and subscript r indicates a reference state.
The caloric equation of state is completely determined once a variation law for cv,∞ has been
specified.

2.2.1 Spatial discretisation
The governing equations above are discretized using a cell-centred finite volume scheme for
structured multi-block meshes of third-order accuracy, which allows the computation of flows
governed by arbitrary EOS (Cinnella and Congedo, 2005b). The scheme is obtained by correcting
the dispersive error of the classical second-order-accurate Jameson’s scheme (Jameson et al.,
1981). To preserve the high accuracy on non-Cartesian grids, the numerical fluxes are constructed
by using weighted discretization formulas, which take into account the mesh deformations (Rezgui
et al., 2001). This ensures to achieve third-order accuracy on moderately distorted meshes and
second-order accuracy at least on highly deformed mesh. The equations are then integrated in
time using a four-stage Runge-Kutta scheme. Local time stepping, implicit residual smoothing
and multi-grid acceleration are used in order to drive the solution to the steady state. The
accuracy of the numerical solver has been already demonstrated in previous works (Cinnella and
Congedo, 2005a,b). Further details about the numerical method are provided below.
If the viscous fluxes fv are neglected and a one-dimensional problem is considered for simplicity,
the flow is governed by the Euler equation, which can be written in the conservative form as:

∂ω

∂t
+ ∂f(ω)

∂x
= 0, (2.13)

where: {
ω = (ρ, ρu, ρE)T is the vector of the conservative variables,
f(ω) =

(
ρu, ρu2 + p, ρH

)T is the flux function.
(2.14)

The equation (2.13) can be rewritten as:

∂ω

∂t
+ ∂f

∂ω

∂ω

∂x
= 0. (2.15)
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We define thus the Jacobian matrix of the flux:

A(ω) := ∂f(ω)
∂ω

. (2.16)

Considering the fundamental equation of state p = p(e(w), ρ(w)), the Jacobian matrix can be
written in the matricial form:

A =


0 1 1

a2 − u2 − pc
ρ

(
H − u2) 2u− upc

ρ
pc
ρ

u
(
a2 −H

)
− upc

ρ

(
H − u2) h− u2pc

ρ u+ upc
ρ

 . (2.17)

The eigenvalues of the flux Jacobian matrix are the characteristic velocities of the fluid, i.e.:
λ1 = u− a
λ2 = u

λ3 = u+ a.

(2.18)

In order to solve the hyperbolic system (2.13), the scheme proposed in (Huang et al., 1998) has
been used. The differential operator δ upon one cell is defined:

(δ·)j+ 1
2

= (·)j+1 − (·)j , (2.19)

where j is a given mesh point, and the average operator upon one cell:

(µ·)j+ 1
2

= (·)j + (·)j+1

2 . (2.20)

At the interface of adjacent cells, the flux function is initially approximated with a second-order
classical centered numerical flux:

hj+ 1
2

= (µf)j+ 1
2
, (2.21)

where h is the numerical flux. In this way a second-order semi-discrete scheme is obtained:

∂ω

∂t

∣∣∣∣
j

+ 1
δx
δµf |j = 0. (2.22)

The fourth-order equivalent equation of (2.22) is given by:

∂ω

∂t
+ ∂f(ω)

∂x
+ δx2

6
∂3f(ω)
∂x3 = 0. (2.23)

The last term represents a phase error (dispersion) which has to be removed in order to increase
the accuracy order of the scheme. It is possible to replace the third-order derivative with a
second-order centered approximation, so that we have a fourth-order, centered, non dissipative
scheme, whose numerical flux is represented by:

hj = µf |j −
1
6δ

2µf |j ; (2.24)

hence, one has:
∂ω

∂t

∣∣∣∣
j

+ 1
δx
δµf |j −

1
6δxδ

3µf |j = 0. (2.25)
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In order to ensure stability and avoid oscillations of the solution, a numerical dissipation term
has to be included. A possible choice is to use the ”artificial viscosity” term of the Jameson
scheme (Jameson et al., 1981), indicated with D:

Dω = 1
δx

[δ(ε2ρ(A)δω)]− 1
δx

[δ(ε4ρ(A)δ3ω)], (2.26)

with

ρ(A) = |u|+ a, (2.27)

a =
(
p

ρ2
∂p

∂e
+ ∂p

∂ρ

) 1
2

, (2.28)

(ε2)j+ 1
2

= k2 max [vj , vj+1], (ε4)j+ 1
2

= max [0, k4 − (ε2)j+ 1
2
], (2.29)

vj =
∣∣∣∣pj+1 − 2pj + pj−1

pj+1 + 2pj + pj−1

∣∣∣∣ , (2.30)

and the numerical flux equal to:

hj+ 1
2

= (µf)j+ 1
2
− 1

6
(
∂2µf

)
j+ 1

2
−
(
ε2ρ(A) (∂ω)− ε4ρ(A)(∂3ω)

)
j+ 1

2
. (2.31)

where k2 and k4 are constant parameters, considered equal to 0.5 and 0.032 for all the executed
computations, ρ(A) the spectral radius of the Jacobian matrix, p is the pressure and a the speed
of sound.
In smooth flow regions, ε2 = O(δx2) and ε4 = O(1), so that the dissipative numerical flux is
Dω = O(δx3) and the scheme

∂ω

∂t

∣∣∣∣
j

+ 1
δx
δµf |j −

1
6δxδ

3µf |j = Dω|j (2.32)

is globally third-order accurate. This scheme can be applied to any fluid: it is sufficient to cal-
culate pressure and speed of sound from the conservative variables.
If the fluid examined has a constitutive law which links directly pressure and internal energy,
the application of this scheme is immediate: the pressure is calculated with p = p(e(w), ρ(w))
and the sound speed with (2.28). Then from (2.27) the spectral radius and all the parameters
are known.
With more complex EoS the use of iterative techniques is required: for fixed values of the con-
servative variables, the temperature is given by the caloric EoS (2.12) using a Newton-Raphson
algorithm. Once obtained, the pressure can be calculated from the thermic EoS (2.11). Then,
the sound speed and the spectral radius are calculated in the some way as the previous case.
The scalar dissipation term simplifies the implementation of the scheme when complex EoS are
used and reduces heavily the total calculation time. This scheme could be seen as a third-order
extension of the classical Jameson scheme (Jameson et al., 1981). Specifically, the high-order
scheme can be derived by correcting the truncation error leading term of the Jameson scheme
(which represents a dispersive error). This correction reduces the tendency of the scheme to
produce spurious oscillations in proximity of the flux discontinuities. Furthermore, also the dis-
persion error is reduced: if the scheme gives less oscillating solutions, the second-order non-linear
dispersive term of (2.26) will remain small. The very low intrinsic dissipation of the third-order
centered scheme has been confirmed by numerical results (Huang et al., 1998; Napolitano et al.,
2002; Cinnella and Congedo, 2004).
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2.2.2 Time discretisation
For steady flows calculations, the time integration is realized through a classical fourth-step
Runge-Kutta method (Jameson et al., 1981) with implicit redistribution of the residuals (Lerat
et al., 1982; Jameson and Baker, 1983). The Runge-Kutta scheme is written as:

ω
(0)
j = ωnj

I
(
ω

(n)
j − ω(0)

)
= −ak∆tRω(k−1)

j , k = 1, . . . , 4
ω

(n+1)
j = ω

(4)
j

(2.33)

where ωn is the numerical solution at the time n∆t, j indicates the grid point of coordinates
xj = jδx, R = L −D is the discretization of the spatial derivatives and a1 = 1/4,a2 = 1/3,a3 =
1/2,a4 = 1 are fixed coefficients. The implicit operator for a one-dimensional problem containing
the Euler and viscous terms contributions, is written:

I = 1− βe
(

∆t
δx

)2
δ(λe

2
δ)− βv ∆t

δx2 δ(λ
vδ), (2.34)

where λe and λv are respectively the spectral radius of the Euler flux and the viscous flux
and the quantities βe and βv are positive parameters. It is possible to show that, for a pure
advection problem the scheme (2.33) coupled to the spatial discretization (2.32) with D = 0 is
unconditionally stable for βe ≥ 1/8. Besides, for a pure diffusion problem, the scheme (2.33)
coupled with a second-order centered discretization for the viscous terms is unconditionally stable
for βv ≥ 2

Ωv , with Ωv ≈ 2.785. The convergence to the steady state is usually accelerated by
means of a variable time integration step from cell to cell (i.e., local time stepping) and a multigrid
algorithm (Collercandy, 1998).

2.2.3 Boundary Conditions
The boundary conditions used for the CFD simulations of the ORC turbine nozzle guide vanes
and rotors are:

• A condition of non-permeability on each wall;

• Periodic conditions on the upper and lower side of the computational domains in order to
limit the study to a single blade;

• Total thermodynamic conditions applied at flow inlet for the nozzle guide vanes, along with
a non-reflecting condition for isolated supersonic rotors;

• Static pressure imposed as outlet condition;

• Non coincident joints are imposed in the ORC nozzleguide vane in order to use a single block
C-type mesh: the conservative variables are averaged at the interface so that information
can pass through the joint; for the rotor an H-type multi-block mesh with a O-block around
the blade to build the boundary layer is used without the need to define no-match joints.

2.3 Thermodynamic models
In thermodynamic conditions close to the saturation curve or of the same order of the critical
parameters, the validity of the ideal gas equation, which is suitable for low-density states, does not
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hold anymore. In order to take into account the complex behaviour of the working fluids analysed
in this thesis work, more accurate EOS than the perfect gas law have been considered: the Peng-
Robinson equation with the Stryjek-Vera correction and the multi-parameter equations available
through the NIST-REFPROP library ver. 9.1. More details about these thermodynamic models
are provided below.

2.3.1 The Peng-Robinson-Stryjek-Vera EOS
The PRSV EOS (Stryjek and Vera, 1986) is a cubic EOS (CEOS) developed as an improvement
of the well known Peng-Robinson equation (Peng and Robinson, 1976). The CEOS are written
as a cubic function of the volume V and different models have been proposed in the years. The
first, simplest cubic model was presented by Van der Waals in his doctoral dissertation (Van der
Waals, 1873) on 1873, where two fluid-dependent constants were introduced as modification of
the ideal gas law. These constants, known as repulsive or co-volume b and attraction term a,
take into account the real gas effects by considering the molecular interactions which occur at
high pressures and low temperatures. However, it fails to describe the fluid properties in the
vicinity of the liquid-vapor equilibrium (VLE) or the critical point. A substantial improvement
was provided by the Redlick-Kwong (RK) (Redlich and Kwong, 1949) and the further correction
Soave-Redlich-Kwong (SRK) (Soave, 1972) CEOS, which provided higher accuracy in the critical
region and introduced the acentric factor ω as representative of the deviation of the fluid molecule
structure from a spheric one, typical of polar fluids. Nevertheless, the SRK model still suffered
of low accuracy in the VLE region, which was improved by the PRSV CEOS. In this model, the
thermal EOS is given by:

p = RT

v − b
− a

v2 + 2bv − b2 . (2.35)

where p and v denote respectively the fluid pressure and its specific volume, a and b are substance
specific parameters related to the fluid critical-point properties pc and Tc. To achieve high
accuracy for saturation pressure estimates of pure fluids, the temperature-dependent parameter
a in Eq. (2.35) is expressed as:

a =
(
0.457235R2T 2

c /p
2
c

)
· α (T ) (2.36)

while
b = 0.077796RTc/pc. (2.37)

These properties are not completely independent, since the EOS should satisfy the conditions of
zero curvature and zero slope at the critical point. Such conditions allow computing the critical
compressibility factor Zc = (pcvc)/(RTc) as the solution of a cubic equation. The correction
factor α is given by:

α (Tr) =
[
1 +K

(
1− T 0.5

r

)]2 (2.38)

with
K = 0.378893 + 1.4897153ω − 0.1713848ω2 + 0.0196554ω3. (2.39)

The caloric behaviour of the fluid is approximated through a power law for the isochoric specific
heat in the ideal gas limit:

cv,∞ (T ) = cv,∞ (Tc)
(
T

Tc

)n
(2.40)

with n a fluid-dependent parameter.
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2.3.2 Helmholtz free-energy multi-parameter EOS
The thermodynamic models based on the Helmholtz free energy A are the most accurate to
describe the fluid behaviour close to the critical point and the saturation curves. They are
developed starting from the relationship:

p =
(
∂A

∂V

)
T

(2.41)

The previous equation can be integrated between the actual volume V and the ideal gas state
∞ in order to get an explicit relationship in term of the residual property Ar, as follows:

Ar = A−A0 = −
∫ ∞
V

(p− ρRT )dV (2.42)

where A0 is the ideal part of the Helmholtz free-energy, whereas Ar can be intended as the
residual part representative of the real gas effects. By differentiation of Eq. (2.42) it is possible
to evaluate all the thermodynamic properties. Usually this equation is rewritten in terms of the
reduced Helmholtz free-energy Φ(δ, τ) = A(ρ,T )

RT , with δ = ρ/ρ∗ and τ = T ∗/T being the reduced
density and temperature with respect to the critical parameters ρ∗ = ρc e T ∗ = Tc. Wagner
(Setzmann and Wagner, 1989) proposed the following form:

Φ(δ, τ) = Φr(δ, τ) + Φ0(δ, τ) (2.43)

where the ideal and residual parts are expressed as:

Φ0(δ, τ) = ln δ + a1 ln τ +
M1∑
m=1

amτ
jm +

M2∑
m=M1+1

am ln[1− e(−umτ)] (2.44)

Φr(δ, τ) =
M3∑

m=M2+1
amδ

imτ jm +
M4∑

m=M3+1
amδ

imτ jme(−δkm )+

+
M5∑

m=M4+1
amδ

imτ jme[−αm(δ−εm)2−βm(τ−γm)2]

(2.45)

The last term of Eq. (2.45) expresses the real-gas effects close to the critical point region.
All the coefficients and exponents in the Eqs. (2.44),(2.45) are fluid-dependent and are fitted
on experimental data by means of an optimization algorithm, as explained in (Setzmann and
Wagner, 1989).
For some fluids, as R245fa, no data are available to fit the previous coefficients, then Lemmon
and Span proposed a short technical multiparameter EOS (Lemmon and Span, 2006), where the
residual part is written as:

Φr(δ, τ) = n1δτ
0.25 + n2δτ

1.25+
+ n3δτ

1.5 + n4δ
3τ0.25+

+ n5δ
7τ0.875 + n6δτ

2.375e−δ+
+ n7δ

2τ2.0e−δ + n8δ
5τ2.125e−δ+

+ n9δτ
3.5e−δ

2
+ n10δτ

6.5e−δ
2
+

+ n11δ
4τ4.75e−δ

2
+ n12δ

2τ12.5e−δ
3

(2.46)
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The coefficients ni are fluid-dependent and fitted on a wide set of polar and non-polar fluids
simultaneously. Since the bell-shape terms for the description of the critic region are not present,
this equation is not so accurate as the reference EOS, however it provides higher accuracy and
stability than the CEOS. In order to evaluate the caloric properties, the Helmholtz free energy
based models need an ancillary equation to evaluate the isobaric specific heat. The latter consists
of an ideal part that is usually written in a cubic form in function of the temperature, as follows:

cp,∞ = cv,∞ +R = A+B · T + C · T 2 +D · T 3 (2.47)

where A, B, C, D are fluid-dependent coefficients.
The working fluids of interest used in this thesis work are listed in Tab. 2.1, where the thermo-
physical properties are shown in terms of critical pressure, temperature and density (pc, Tc, ρc),
molecular weight (Mw), acentric factor (ω) and ideal specific heat ratio (γ), the latter calculated
in the dilute gas region along the critical isotherm curve, as:

γ = (lim
ρ→0

cp
cv

)Tc (2.48)

A fluid for ORC applications is the R245FA, namely pentafluoropropane, which is a hydrofluoro-
carbon used primarily for closed-cell spray foam insulation. It has no ozone depletion potential
and is nearly non-toxic. The ORC nozzle guide vane performances obtained with this fluid have
been compared with those provided by other three engineered fluids: NOVEC649, RE347mcc
and R449. These are effective heat transfer fluids with a very low boiling point and are useful in
heat transfer particularly where non-flammability or environmental factors are a consideration.

Table 2.1: Thermophysical properties for different organic substances, based on
reference EOS (from REFPROP ver. 9.1).

R245fa Novec649 RE347mcc R449
pc[MPa] 3.651 1.869 2.476 2.225
Tc[K] 427.16 441.81 437.7 466.15

ρc[kg/m3] 516.08 606.80 524.14 555.00
Mw[g/mol] 134.05 316.04 200.05 250.00

ω 0.378 0.471 0.403 0.444
γ 1.061 1.027 1.039 1.030

For the R245fa, the technical EOS, Eq. (2.47), holds and the 12 parameters are listed in Tab.
2.2. The coefficients used in Eq. (2.44) are given in Tab. 2.3.
For the other three fluids, a specific reference multi-parameter EOS has been developed by fitting
the coefficients on experimental data. The ideal contribution to the gas heat capacity is provided
by the following equation:

c0p
R

= c0 +
j∑
i=1

vi

(ui
T

)2 exp(ui/T )
[exp(ui/T )− 1]2 (2.49)

where j = 1 for NOVEC649 and R449, and j = 2 for RE347mcc, R is the universal gas constant
in J/mol ·K. The values of coefficients c0, ui and vi are reported in Tab. 2.4.
The residual part of the Helmholtz free energy is evaluated by means of Eq. (2.45), and the
number of terms for the three fluids are shown in Tab. 2.5. The coefficients in Eq. (2.45) are
fluid dependent and are provided by the NIST-REFPROP library, ver. 9.1. As references, full
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Table 2.2: R245fa coefficients for the technical EOS, Eq. (2.47).

n1 1.2904
n2 -3.2154
n3 0.50693
n4 0.093148
n5 0.00027638
n6 0.71458
n7 0.87252
n8 -0.015077
n9 -0.40645
n10 -0.11701
n11 -0.13062
n12 -0.022952

Table 2.3: R245fa coefficients for the ideal-gas state reduced Helmholtz free-energy,
Eq. (2.44), with M1 = 2 and M2 = 3.

a1 3.00
a2 -13.438
a3 9.8724
a4 5.5728
a5 10.385
a6 12.554

Table 2.4: Coefficient for the calculation of the ideal heat capacity, Eq. (2.49).

Novec649 R449 RE347mcc
c0 30.8 17.8 13.09

ui [K] 1940.00 1013.26 2045.00/850.00
vi 29.80 23.76 13.78/14.21

Table 2.5: Number of elements in the sums of Eq. (2.45) for the three working
fluids.

Novec649 R449 RE347mcc
M3 7 4 7
M4 10 10 10
M5 17 14 17

details about the reference EOS and the data fitting are provided only for the NOVEC649 fluid
in (McLinden et al., 2015), whereas for the R449 and RE347mcc results have not been published
yet.
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2.4 Conclusions
In this section, the thermodynamic and numerical methods used in the following of this thesis
have been described. A focus has been put on the dense gas effects which are present in ORC
turbomachinery applications, and on the needs for an accurate description of the fluid thermo-
dynamic behaviour by means of more complex EOS with respect to the ideal gas law. Finally,
the numerical methodology used to discretise the flow governing equations has been shown. The
accuracy preserved on deformed computational meshes is a feature useful for the simulation of
highly staggered turbine blades, such as those designed and tested in this work.
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Chapter 3

FAST DESIGN
METHODOLOGY FOR
SUPERSONIC TURBINES
WITH STRONG REAL GAS
EFFECTS

3.1 Introduction
In this thesis work, a complete methodology to get a fast and as accurate as design of axial
supersonic ORC impulse turbines has been developed, in order to take properly into account the
dense gas effects. The aim is to design a proper mean-line shape of the turbine blades in order
to obtain a baseline suitable for optimization purposes. Indeed, as previously investigated by
Guardone et al. (2013) and Wheeler and Ong (2013), a supersonic nozzle designed by means of
the perfect gas law is not able to provide the proper geometries and performances expected by
using a dense gas model and, then, a more accurate analysis is required. In the optimization
framework, the design of a more accurate baseline geometry provides a reduction of the design
parameter space size and allows to consider a shorter range of variations for the design param-
eters, thus improving the convergence of the optimization towards a proper optimized shape in
dense gas conditions. Here a semi-analytic design is proposed.
The procedure is based on a generalized method of characteristics (MOC) for stators, along with
a free-vortex design approach for the rotors. The MOC is a classical tool to solve hyperbolic
partial differential equations system and, in inverse design, can be advantageously used to design
the supersonic portion of nozzle shapes (Zucrow and Hoffman, 1976; Ali et al., 2006; Délery,
2010). The MOC has been widely studied in classical gasdynamics, however only in recent years
it has gained interest for real gas problems due to the great improvements in the dense gases
thermodynamic modelling. A first insight into the dense gas design of supersonic nozzles by
means of the MOC was provided by Cramer and Crickenberger (1992) who gave a brief descrip-
tion of the non-classical behavior of the Prandtl-Meyer function, which is of importance for the
characteristics theory, in the dense gas regime. The Prandtl-Meyer function was seen to de-
crease, rather than increase, with Mach number at densities, temperatures, and Mach numbers
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such that Γ < 1 (see Eq. (2.1)). Aldo and Argrow (1993), for the first time, developed a MOC
for two-dimensional (planar) and axisymmetric flow of a van der Waals gas into minimum length
nozzles. Using a straight sonic line assumption, a centered expansion was used to generate an
inviscid wall contour. More recently, Guardone et al. (2013) implemented a MOC coupled with
the state-of-the-art thermodynamic models to assess the influence of the molecular complexity
of the working fluid on the design of the supersonic portion of the nozzle by considering different
fluids at the same real-gas operating conditions, Uusitalo et al. (2014) carried out the design
and flow analysis of a small scale ORC turbine stator adopting high molecular complexity fluid,
namely siloxane MDM, characterized by dry expansion, high pressure ratio over the stator and
low speed of sound, resulting into a highly supersonic flow, whereas Wheeler and Ong (2013)
studied the real gas flows which occur within radial ORC turbines. A new method, based on
an extension of the perfect gas MOC to dense gases, for the design of nozzles was discussed and
applied to the case of a high pressure ratio radial turbine vanes.
In this framework, the MOC generalised to dense gases described by the state-of-the-art ther-
modynamic models is implemented in this thesis work to design, for the first time to the author
knowledge, axial supersonic nozzle guide vanes. Besides, a new methodology to design supersonic
rotor blade vanes by taking into account the dense gas effects has been developed and tested. It
is based on a generalised MOC along with a free-vortex design criterion.
In the following, the theory of the MOC is presented and the analytical generalisation to dense
gases is shown. Then, the MOC algorithm is tested and validated by comparison of the results
obtained with the finite volume solver equipped with complex multi-parameter EOS (see Eq.
(2.41)). The performances of the nozzle guide vane shapes obtained with the MOC are then
assessed by using the dense gas numerical solver for different gas models and fluids.

3.2 Method of characteristics for supersonic stator design
The MOC is classically employed for the design of the divergent part of supersonic nozzles under
the hypotheses of 2D, steady and homentropic flow (Zucrow and Hoffman, 1976; Délery, 2010).
Such a flow is governed by the 2D isentropic Euler equations, which represent an hyperbolic
system of conservation laws characterized by two families of characteristic lines. These are
described by equations of the form:

dy

dx
= tan(ϕ± α) (3.1)

where ϕ is the local flow angle and α = arcsin(M−1) is the Mach angle (see Fig. 3.1). Rewrit-
ing the governing equations in the characteristic reference frame, the so-called compatibility
equations are obtained, which are just ordinary differential equations, of the form:

dϕ±
√
M2 − 1dV

V
= 0 (3.2)

where V is the velocity magnitude and the sign + or − denotes a left-running or − a right-running
characteristic line, respectively. For a perfect gas, the Eq. (3.2) can be integrated analytically
after rewriting dV/V in terms of the Mach number and by using the equation of state, leading
to the well-known Prandtl-Meyer relations (Délery, 2010):

ϕ± ν(M,γ) = constant (along a characteristic) (3.3)

ν(M,γ) = 1
λ

tan−1(λβ)− tan−1 β (3.4)
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where λ =
√

γ−1
γ+1 and β =

√
M2 − 1. The previous equations, along with the equations of the

characteristic lines, Eq. (3.1), are then used as described by Délery (2010) to design the nozzle
wall contour.
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Figure 3.1: Characteristic line patterns and nozzle divergent shape design.

The pattern of characteristic lines in the supersonic part of an adapted nozzle is depicted in Fig.
3.1. Given the inlet massflow rate G (kg/s), the upstream total pressure p0 (Pa) and temperature
T0 (K), and the pressure (or Mach number) distribution along the nozzle axis p(x)/p0, the MOC
allows to perform an inverse design and calculate, in a quasi-analytic way for ideal gases, the
inviscid wall contour that realizes the desired operating conditions.
The first step of the design procedure is the treatment of the throat region. Here the flow is
transonic and it is governed by an elliptic equation, namely the compressible transonic potential
equation for 2-D flows:[

a2 −
(
∂Φt
∂x

)2
]
∂2Φt
∂x2 +

[
a2 −

(
∂Φt
∂y

)2
]
∂2Φt
∂y2 − 2

(
∂Φt
∂x

)(
∂Φt
∂y

)(
∂2Φt
∂x∂y

)
= 0 (3.5)

where a is the speed of sound, x and y the spatial coordinate, Φt the potential function such
that the relations u = ∂Φt/∂x and v = ∂Φt/∂y (with u and v the velocity components in the
physical reference system) are verified. The Eq. (3.5) is a strongly non-linear partial differential
equation which is difficult to solve analytically.
Different methodologies have been proposed in the years to solve Eq. (3.5). The Sauer’s method
(Sauer, 1947) is based on the theory of small disturbances. It solves the equation of the small
disturbances for a compressible flow for a two-dimensional as well as an axially symmetric flow.
Hall (1962) developed a transonic solution based on the small perturbation theory applying it to
an irrotational, perfect gas. The velocity components were expressed in cylindrical coordinates
in terms of inverse powers of the normalized throat wall radius of curvature. Kliegel and Levine
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(1969) proposed a correction to the Hall’s method by developing a solution in a system of toroidal
coordinates, in which both nozzle axis and wall were coordinate lines.
In this thesis work, the Carriere’s method (Délery, 2010) is implemented. It is based on the
solution of Eq. (3.5) in the form of a limited expansion in the vicinity of the sonic point on the
nozzle axis. Firstly, the variables are normalised with respect to the critical speed of sound, ac,
such that ā = a/ac, ū = u/ac, v̄ = v/ac. Then, by writing the energy equation in the well-known
form:

2
γ − 1 ā

2 + ū2 + v̄2 = γ + 1
γ − 1 (3.6)

the Eq. (3.5) can be rewritten in dimensionless form as:

(
ū2 − ā2) ∂2Φ̄t

∂x̄2 + 2ūv̄ ∂
2Φ̄t

∂x̄∂ȳ
+
(
v̄2 − ā2) ∂2Φ̄t

∂ȳ2 = 0 (3.7)

The geometric coordinates x̄ and ȳ are evaluated in a reference system with origin in the sonic
point on the axis, point C in Fig. 3.1, where M = 1. They are scaled such that x̄ = βx and
ȳ = βy, whit β a scale factor which can be defined in a successive step.
On the nozzle axis a solution in the form ū(x̄, 0) = 1 + x̄ is imposed, and the dimensionless
potential function is considered to have the form of the expansion close to the sonic point, as:

Φ̄t(x̄, ȳ) =
∑
m,n

εm,nx̄
mȳn (3.8)

By differentiating the preceding equation, the dimensionless solutions of the potential equation,
Eq. (3.7), are evaluated, as ū = ∂Φ̄t/∂x̄ =

∑
m,nm · εm,nx̄m−1ȳn and v̄ = ∂Φ̄t/∂ȳ =

∑
m,n n ·

εm,nx̄
mȳn−1, where εm,n are expansion coefficient to calculate. Given the symmetry condition

with respect to the nozzle axis, such that to a sign variation of ȳ corresponds the same change
for v̄, all coefficients εm,n are zero if n is odd. Besides, on the axis the conditions: ε1,0 = 1,
2ε2,0 = 1, ε3,0, ε4,0 = ... = 0, hold and, by substituting them into Eq. (3.7), the other unknown
coefficients can be calculated and, finally, the form of the dimensionless flow variables can be
found as function of the coordinates (x̄,ȳ), as:

ū =1 + x̄+ γ + 1
2 ȳ2[1 + (2γ − 1)x̄+ 3γ(γ − 1)x̄2 + (γ − 1)(4γ2 − 2γ − 1)x̄3]+

+ (γ + 1)2

64 ȳ4[3.387(6γ − 1) + 3.788(36γ2 − 19γ − 4)x̄]
(3.9)

v̄ =(γ + 1)ȳ
[
x̄+ 2γ − 1

2 x̄2 + γ(γ − 1)x̄3 + (γ − 1)(4γ2 − 2γ − 1)
4 x̄4

]
+

+ (γ + 1)2

16 ȳ3
[
2.667 + 3.468(6γ − 1)x̄+ 3.78836γ2 − 19γ − 4

2 x̄2
]

+

+ 4.844(γ − 1)3(6γ − 1)
128 ȳ5

(3.10)

Thanks to these equations, it is possible to determine all the flow properties as function of the
geometric position in the dimensionless plane. For a two-dimensional transonic flow, two curves
can be defined: the sonic and throat lines, which are the locus of points where M = 1 or, by
definition of Mach number, ū2 + v̄2 = 1, and v̄ = 0 (flow parallel to the nozzle axis), respectively.
These two curves are represented in Fig. 3.1.
The equation of the throat line, v̄ = 0, is a quadratic function of the type ȳ = f(x̄), that can
be easily handle in an analytic way. Especially, since it represents the condition of parallel flow,
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which is proper of the wall nozzle throat point, and depends only by the dimensionless variables,
it is possible to choose a suitable point for the throat location in the plane (x̄,ȳ). Here, the
location (x̄ = −0.1, ȳ(−0.1)) is chosen such that the wall throat point lies between x̄ = 0 and
the throat line maximum x̄ȳmax = −0.25.
By knowing the massflowG and the upstream total conditions, which allow to calculate the throat
critical parameters ρc and ac, the nozzle throat semi-height is calculated as ht = G/(2 ·ρc ·ac). In
this way, a metric for the length scale factor β is defined. Indeed, by knowing the dimensionless
nozzle throat semi-height ht,adim = ȳ(−0.1), the scale factor is evaluated as β = ht,adim/ht.
Hence, the coordinates of the first point of the initial characteristic ξ0 on the nozzle wall (point
B in Fig. 3.1) are calculated in the physical plane as (xB = x̄B/β, yB = ht), with x̄B = −0.1.
Besides, all the flow properties can be calculated in the throat region by means of the Eq. (3.9)
and (3.10). Especially, the Mach number is evaluated as:

M =
√

(ū2 + v̄2)(
γ+1

2 −
γ−1

2 (ū2 + v̄2)
) (3.11)

By starting from the point B, the initial characteristic ξ0 is then reconstructed as a piecewise line
by calculating the potential flow solution step-by-step. All the flow properties are evaluated and
renormalized in the physical plane. On the nozzle axis, a smooth cubic distribution is prescribed
for the normalised static pressure, p(x)/p0, evaluated on 100 points, in order to reach the desired
exit conditions without discontinuities or too rapid accelerations, which could cause disturbances
or shock waves. Besides, the characteristic ξ0 is discretised in 50 intervals. Given all the previous
elements, the MOC procedure is started to calculate the supersonic flow inside the nozzle.
The procedure to calculate the solution, for perfect gases, on the generic point Pij (see Fig. 3.1),
is shown below:

1. The Eq. (3.3), is used to evaluate the flow properties by solving the system equation
provided by the right- and left-running characteristic lines:

νij + ϕij = νi,j−1 + ϕi,j−1 = k1 (3.12)

νij − ϕij = νi−1,j − ϕi−1,j = k2 (3.13)

The k1 and k2 are integration constants depending on the initial data;

2. Eqs. 3.12, 3.13 have to be both satisfied. Then, they are simultaneously solved as an
algebraic system providing the unknowns flow angle ϕij and νij(M,γ) on the point Pij ;

3. The datum νij(M,γ) is used to invert the non-linear Eq. (3.4) and find Mij . Then all the
thermodynamic properties are determined in Pij by means of the isentropic relations.

The procedure described above is carried out along a characteristic line ξi until the massflow
exceeds the assigned value G. Then, an interpolation for the calculation of the wall points (the
red squares in Fig. 3.1) is carried out, in order to account for the imposed massflow, by solving
the continuity equation written on a characteristic:

G =
∫ Pi,j

Pi,0

ρ · a · dξ (3.14)

In this work, the nozzle design has been carried out for four different organic working fluids, as
explained in Section 2.3.2. Here, the ideal specific heat ratio is recalled in Tab. 3.1 for each of
them.
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Table 3.1: γ for the four organic substances used in this Section.

R245fa Novec649 RE347mcc R449
1.061 1.027 1.039 1.030

3.2.1 MOC for real gases
In order to account for dense gas effects during the nozzle design, the classic MOC for perfect
gases showed previously, has been extended to a generic EOS. Here, two real gas models have
been implemented. The first one relies on an equivalent-γ model (Wheeler and Ong, 2013) and
the multi-parameter equations provided by REFPROP (REF for brevity). The second one makes
no assumptions on the specific form of the EOS and is applicable to any thermodynamic model.

Equivalent-γ gas model
A non-expensive and easy way to account for dense gas effects is the equivalent-γ model. This
model is quite similar to the ideal one, with the difference that the organic gas is supposed to go
through a polytropic transformation along the nozzle, obeying to the polytropic relationship:

p

ργeq
= p0

ρ
γeq
0

(3.15)

In this way it is possible to take into account the real gas effects with small variations on the ideal
gas model algorithm. The accuracy of such a model has been already evaluated in (Wheeler and
Ong, 2013). The polytropic exponent γeq, that can be less than 1 and reduces approaching the
critical conditions, is held constant and can be evaluated exploiting the linearity of Eq. (3.15)
passing to the logarithmic relationship log p

p0
= γeq · log ρ

ρ0
and treating it as the slope of the best

fit straight line of a linear regression over an isentropic expansion process. The isentropes evolve
over a pressure ratio of 10 for reduced stagnation conditions near the critical point, in order to
maximize real gas effects, pr=1.28 and Tr=1.05 for four different organic fluids (Fig. 3.2), and
the data fitting is performed on the REFPROP model using the least squares regression:

γeq =
∑
xy −

∑
x
∑

y

n∑
x2 − (

∑
x)2

n

(3.16)

In Eq. 3.16 is n=1000, x = log(ρ/ρ0) and y = log(p/p0). The results are shown in Tab. 3.2.

Table 3.2: Polytropic coefficient γeq for different organic substances at total re-
duced conditions pr=1.28, Tr=1.05.

R245fa Novec649 RE347mcc R449
0.748 0.753 0.744 0.742

When γeq is less than 1, Eq. (3.4) can not be used anymore, due to the appearance of complex
solutions. The analytical integration of Eqs. (3.1), (3.2) results in a modified Prandtl-Meyer
function:

ν = 1
z
tanh−1(zβ)− tan−1β (3.17)

where z is the complex part of λ = iz, i being the imaginary unit. Then, the ideal gas model
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Figure 3.2: Pressure-density plots along isentropes for four organic fluids at total
reduced conditions pr=1.28, Tr=1.05.

algorithm can be applied by using 3.17 instead of (3.4). The solution algorithm is the same as
described for the ideal gas.
The consequences of having γeq < 1 can be directly observed on thermodynamic properties,
as the speed of sound. Combining Eq. 3.17 with the energy equation, it can be shown that
a2 = γeqp/ρ = γeqp0/ρ0

1
γeq−1

2 M2+1
. Then, a polytropic exponent less than 1 implies the speed

of sound to reduce across compression waves (i.e. M reduces) and rise for expansion fans, which
is typical of the dense gas behaviour.

Advanced gas models
When complex non-linear EOS are used to model the gas behaviour, Eqs. (3.1), (3.2) cannot be
integrated analytically. In the following, a numerical procedure is instead presented by following
a methodology similar to the one in Zucrow and Hoffman (1976).
As in the standard MOC, the target massflow G and the target pressure distribution p(x) along
the nozzle axis, are known data. In addition, the plenum pressure and temperature, p0 and T0,
are also given. This allows to calculate the sonic state thermodynamic conditions at the nozzle
throat (choked flow). The transonic flow in the throat region is solved by means of the Carriere’s
method presented in the previous Section and the initial characteristic ξ0 is then obtained. In
order to account for the real gas effects, the ideal heat specific ratio γ in Eq. (3.9) and (3.10)
is replaced by the equivalent real gas value γeq, evaluated for the selected total conditions and
working fluid.
In order to compute for points downstream of the initial characteristic, preliminary calculations
are performed for the definition of the initial data in the dense gas framework. These steps are
given below:
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1. Given the initial data (p0, T0), p(x)/p0 and G, and considering a chocked nozzle flow, the
sonic static thermodynamic conditions in the nozzle throat are evaluated, ;

2. The velocity magnitude on the points of the nozzle axis is then calculated as V =
√

2(h0 − h).
The static enthalpy h(x) along the axis is calculated as h(x) = h(p(x), s), where the en-
tropy is constant by definition and given by s = s(p0, T0). Also the total enthalpy h0 is
constant, being the nozzle adiabatic, and it is given by h0 = h(p0, T0).

3. The speed of sound on the nozzle axis a(x) is calculated as a = a(p(x), s) and, then, the
Mach number distribution M(x) is determined.

4. The initial characteristic ξ0 is calculated applying the Carrière’s method (Délery, 2010),
modified by replacing the real gas γeq in Eq. (3.9) and (3.10).

The preceding initialization steps allow to start the calculation of the kinematic and thermody-
namic properties for points along the characteristics downstream of the throat. The system of
Eqs. (3.1), (3.2) is numerically integrated by an Euler corrector algorithm with iteration (Zucrow
and Hoffman, 1976) algorithm, which assures a second order accuracy. By considering a generic
point Pij in the supersonic nozzle flow (see Fig. 3.1), the discretised form of the compatibility
equation along a characteristic line ξi, Eq. (3.2), is carried out by means of a finite-difference
scheme, as:

A(Vij − Vi,j−1)± (ϕij − ϕi,j−1) = 0 (3.18)

where A = (Aij−Ai,j−1)/2, with A =
√
M2 − 1/V . The solution of Eq. (3.18) coupled with Eq.

(3.1), results in an iterative procedure that provides the variables (Vij , ϕij) and the coordinates
(xij , yij) of subsequent points on the same characteristic line. Given the point Pij in Fig. 3.1, the
nth iteration of the algorithm to calculate the flow and thermodynamic properties is performed
as follows:

1. Predictor step: V (n)
ij = Vi,j−1, ϕ

(n)
ij = ϕi,j−1

• Calculation of the static quantities:

h
(n)
ij = h0 −

(
V

(n)
ij

)2

2 ⇒ a
(n)
ij = a (h, s)⇒M

(n)
ij , α

(n)
ij , A

(n)
ij

The total enthalpy h0 and the entropy s are constant flow properties.
• Calculation of the P (n)

ij coordinate (xij , yij) as intersection of the two characteristics,
which are locally considered as simple-waves and, then, straight lines:

(yij − yi,j−1) = λr(xij − xi,j−1) (3.19)

(yij − yi−1,j) = λl(xij − xi−1,j) (3.20)

where λr and λl are the local slope of the right- and left-running lines, calculated as:

λr = tan
ϕi,j−1 − αi,j−1 + ϕ

(n)
ij − α

(n)
ij

2

λl = tan
ϕi−1,j + αi−1,j + ϕ

(n)
ij + α

(n)
ij

2
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2. Corrector step:

• The coefficients Aij along the right- (r) and left-running (l) lines are estimated, as:

(
Aij
)
r

=
Ai,j−1 +A

(n)
ij

2

(
Aij
)
l

=
Ai−1,j +A

(n)
ij

2

• Solution of the algebraic system in the two unknowns (V (n+1)
ij , ϕ

(n+1)
ij ) by means of

the Cramer method:(
Aij
)
r

(
V

(n+1)
ij − Vi,j−1

)
−
(
ϕ

(n+1)
ij − ϕi,j−1

)
= 0 (3.21)

(
Aij
)
l

(
V

(n+1)
ij − Vi−1,j

)
+
(
ϕ

(n+1)
ij − ϕi−1,j

)
= 0 (3.22)

3. Check for convergence, such that: ∣∣∣V (n+1)
ij − V (n)

ij

∣∣∣ < ε∣∣∣ϕ(n+1)
ij − ϕ(n)

ij

∣∣∣ < ε

where ε is a pre-set accuracy threshold. If no convergence is reached, the iterative process
restarts from point 1 by using the new values as initial conditions.

The procedure described above is applied for each point along the characteristics until the con-
vergence on the massflow is checked for each curve. In this way the nozzle shape is determined.
Although the calculations required for the advanced EOS are more complex than those based on
the ideal and equivalent-γ models, this algorithm is very fast and only few seconds are required
for obtaining accurate nozzle shapes on a single-processor machine.

3.2.2 Nozzle guide vane design
The nozzle geometry generated by the MOC is geometrically post-processed to obtain the super-
sonic guide vane of an axial ORC turbine. The guide vanes are designed as a two dimensional
linear cascade. Given the main turbine geometrical characteristics, such as the axial chord ch,
the flow angle Θf and the blade pitch lpitch (see Fig. 3.3), the blade vane is designed in the
following way: the suction side (d-e) is obtained by rotating the MOC nozzle geometry by the
angle Θf in clockwise direction. Then, given ch and the coordinates of point (c), the leading edge
(d-b) is designed as a circular arc with radius R1. The latter is chosen such that R1/2ht > 6, as
proposed by Délery (2010), in order to avoid high flow deflections which could induce separation.
The pressure side part of leading edge (c-b) is a circular arc of radius R2, whose angular extension
φr is a free parameter. The pressure side (b-a) is designed as a third order polynomial verifying
the constraints given by the end-points coordinates (a)-(b) and the angles φ and Θ. The aft part
(a-f) is determined by translating and cutting the nozzle profile by a distance equal to the pitch
lpitch. Finally, a third order polynomial fits the points (f)-(e) in order to obtain the trailing edge.
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Figure 3.3: Schematic geometrical post-processing for the ORC turbine blade vane
generation.

3.2.3 Numerical implementation of the MOC
In this work, the MOC presented in the previous Sections has been fully implemented in the
FORTRAN code NODEC (acronym of ”NOzzle DEsign with method of Characteristics”).
The structure of the algorithm is shown in Fig. 3.4 as flow-chart. In order to start the MOC, the
following initial design parameters need to be defined: the gas model; upstream total conditions
(p0 (Pa) ,T0 (K); pressure target distribution on the nozzle axis p(x)/p0 (see Fig. 3.1); design
massflow rate G (kg/s). The NODEC code is validated by comparison of MOC results with those
provided by the in-house CFD solver equipped with a set of EOS suitable for real gas calculations
(see Section 2). Hereafter, the REF and the PRSV models are considered. Calculations are
carried out for the hypotheses of 2-D, inviscid flow in order to allow direct comparison with the
MOC results. A slip condition is imposed at the nozzle wall and a symmetry condition on the
nozzle axis. At the subsonic inlet the total pressure, the total temperature and the flow direction
are prescribed. At the supersonic outlet, the conservative variables are extrapolated from the
inner cells.

Verification results
The flow conditions considered for the verification test case are representative of a typical small
scale axial ORC impulse turbine, where the entire enthalpy jump is elaborated in one single
stage. As a consequence, the turbine is heavily loaded and strongly supersonic flow develops in
the nozzle blade vanes. Besides, the inlet conditions are chosen above the critical point, so that
strong real gas effects are present. These choices aim to better highlight the differences among
the different gas models implemented in the NODEC.
The reduced (i.e. normalised with the critical-point values) operating conditions are reported
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Figure 3.4: Flow-chart of the MOC algorithm for stator designs.

in Tab. 3.3, along with the massflow, defined per unit of length in the spanwise direction, and
the design exit Mach number. The calculations are carried out for a typical ORC working fluid,
namely, the R245fa. The nozzle shapes calculated by using the three different thermodynamic

Table 3.3: Test case reduced operating conditions and design parameters

p0
r T 0

r G [kg/s ·m] Me Fluid
1.24 1.05 20.0 2.06 R245fa

models are reported in Fig. 3.5. The geometries are normalized with respect to the nozzle throat
half-height ht in order to highlight the differences in terms of exit-to-throat area ratios, which
has a direct impact on the resulting expansion pressure ratio. For a given exit Mach number and
massflow rate, the ideal gas model provides a smaller nozzle, compared to REF and equivalent-γ
models. Especially, the nozzle is shorter and characterised by a smaller exit-to-throat area ratio.
The need for a longer nozzle when real gas effects are considered can be explained analysing the
quasi-one-dimensional relations, rewritten in a general form valid for dense gases by introducing
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Figure 3.5: Nozzle divergent shape calculated for the three gas models and R245fa
fluid. The axis are normalized respect to the nozzle throat half-height Ht.

Table 3.4: Expansion pressure ratio β = pt/pout results for Me = 2.06 and G =
20kg/s ·m.

Ideal Equivalent-γ REF
β 4.23 5.19 7.32

the fundamental derivative Γ (Guardone et al., 2013):

dp

dx
= ρu2

P

1
1−M2

p

H

dH

dx
(3.23)

dM

dx
= −1 + (Γ− 1)M2

1−M2
M

H

dH

dx
(3.24)

Since, for a dense gas, Γ is less than 1 in some flow regions, close to the saturation curve, then
dM
dx (and dp

dx ), are lower than in the perfect-gas case, for which Γ is constant and always greater
than 1 and, when Γ < 1, the speed of sound increases during the expansion thus counteracting
the Mach number growth. Then, given the exit Mach number, the dense gas requires longer
nozzles to reach the same target Mach number. The equivalent-γ model gives a more accurate
evaluation of the nozzle geometry with respect to the ideal gas model, leading to an exit-to-throat
area ratio similar to that provided by REF. However, considerable differences can still be noticed
in the resulting expansion ratio β (see Tab. 3.4). This demonstrates that care must be taken in
the gas model choice, depending on the considered operating conditions.
In order to compare the NODEC results with the CFD dense gas solver, the nozzle design
is completed by adding the convergent part. By considering that the supersonic flow in the
divergent is not influenced by the upstream nozzle geometry, the convergent is designed by
means of circular arcs (see Fig. 3.3). With this choice the flow is almost uniform in the throat
region and the Carriere’s method constraints are verified for the throat transonic region design.
The resulting geometry for the REF model is shown in Fig. 3.6a. The computational domain is
then discretised by a structured mesh of 196 · 128 cells. The inviscid simulations are carried on
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until a convergence level of 10−8 is reached for all the conservative variables.

(a) (b)

Figure 3.6: (a) Sketch of the nozzle convergent design procedure (b) Computa-
tional grid used for the calculations.

The CFD results are compared to the MOC distribution of the reduced pressure pr and Mach
number M along the nozzle center-line in Fig. 3.7. A very good agreement is observed, except
for some slight differences in the initial straightening part of the nozzle. The maximum difference
for the Mach number is below 1%.
The presence of dense gas effects can be recognised from the plot of the fundamental derivative
Γ and the speed of sound (Figs. 3.8b, 3.8c, respectively). For the chosen inlet thermodynamic
conditions, Γ has initially values slightly greater than 1 in the convergent and the speed of
sound a decreases as in classical gas dynamics; however, as the expansion continues through the
divergent, the Fundamental Derivative falls below 1 and the speed of sound rises, leading to
non-classical behaviour.
The use of complex EOS during the CFD inviscid calculations, leads to higher computational
costs (up to 10 ten times) than the ideal gas law or cubic EOS, such as the PRSV equation.
Besides, no multi-processor calculations can be performed with the present dense gas solver.
Because of the high number of simulations performed in this work, the PRSV model is adopted
in order to save calculation time. A comparison between complex multi-parameter EOS and
the PRSV results has been carried out. The maximum error is approximately 2% with a slight
under-estimation of the exit Mach number, as shown in Fig. 3.9.

3.2.4 Nozzle guide vane performance
Computational inviscid simulations have been carried out with the dense gas solver equipped
with the PRSV EOS. In this work a small scale action axial ORC turbine is investigated. Four
alternative organic working fluids suitable for ORC applications have been considered. For each
fluid, three nozzle guide vanes geometries (based on the perfect, equivalent-γ and REF gas mod-
els) have been designed. The performance of the different designs is then investigated by means
of inviscid CFD calculations. For one of the geometries designed for the R245fa working fluid, a
viscous calculation has been carried out. The designs have been have been carried out using the
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(a) (b)

(c) (d)

Figure 3.7: Comparison among the Euler calculations and NODEC results: (a)
Reduced pressure evolution along the nozzle axis. (b) Reduced pressure evolution
along the nozzle wall. (c) Mach number evolution along the nozzle axis. (d) Mach
number evolution along the nozzle wall.

Table 3.5: Main settings for the computational simulations and the nozzle blade
vane design.

p0
r T 0

r Θ R/(2ht) Me G[kg/s ·m]
1.28 1.05 77.8◦ 7.5 2.0 20.0

geometrical and operational parameters of Tab. 3.5. The same inlet total reduced conditions are
imposed in order to conserve the relative position of the expansion starting point with respect
to the saturation curves.
The simulations have been performed on structured single-block C-type grids, created by means
of an in-house elliptic grid generator, composed by 384×64 cells for the inviscid calculations and
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Figure 3.8: Results for the inviscid simulation for fluid R245fa: (a) Mach number
contour plot. (b) Speed of sound contour plot. (c) Fundamental Derivative Γ. The
nozzle geometry is normalised with respect to the throat height. (d) Mach number
contour plot provided by the NODEC algorithm. Only the divergent part of the
nozzle has been computed with the MOC.

by 384×128 cells for the viscous calculations. In the latter case, the grid has been clustered close
to the blade wall, in order to get a first cell height such that y+ ≈ 1. The inviscid simulations
have been performed by imposing the nominal inlet reduced total pressure and temperature, and
an azimuthal periodicity at inter-blades boundaries. A no-match joint condition is applied to the
branch-cut behind the trailing edge, whereas an extrapolation condition is used at the supersonic
outlet.
In addition to the inviscid calculations, viscous simulations have been also carried out by as-
suming an adiabatic wall condition. The flow is highly turbulent with a Reynolds number equal
to 5.3 · 107 referred to the chord and exit conditions, a typical value for small scale ORC axial
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(a) (b)

Figure 3.9: REF Vs PRSV model results for inviscid simulations: (a) Nozzle axis
Mach number distribution. (b) Wall nozzle Mach number distribution.

turbines. The Spalart-Allmaras one-equation turbulence model is used to model the turbulent
stresses.
In the following we analyse the numerical results obtained for the different nozzle designs in
terms of the following quantities of interest:

• the isentropic efficiency ηis (computed as the real-to-ideal static enthalpy drop ratio);

• the Carnot factor ΘC = 1 − T0/T , defined as the Carnot efficiency of a thermal machine
operating between the total temperature T0 and the local static temperature T ;

• the static enthalpy drop between the outlet and the inlet of the nozzle guide vane;

• the expansion pressure ratio β = pe/pt, evaluated between the nozzle throat At and the
nozzle exit area Ae.

All the simulations have been performed for the design conditions listed in Tab. 3.5 and used
also for the nozzle guide vane design with NODEC.
The overall flow field obtained for the various working fluids are qualitatively similar. In Fig.
3.10 the results obtained for R245fa are showed. The main performance results for all the fluids
are summarized in Tab. 3.6.
The flow in the divergent is, as expected, supersonic and a weak oblique shock wave departs from
the trailing edge. No shock waves are present in the divergent part of the vane, confirming that
the nozzle design with NODEC is respectful of the adaptation conditions.
In the inviscid calculations the main losses are associated with the oblique shocks and, to a lesser
extent, with numerical dissipation errors due to the CFD solver.
The flow accelerates up to M = 2 in the nozzle exit section Ae, which is close to the design
exit Mach number. Then, the flow expands guided by the suction side wall on the bottom and
from a free stream surface on the top. This leads to exit Mach numbers higher than expected
(maximum M ≈ 2.7 for R245fa). The flow is then weakly decelerated across the oblique shock.
The latter introduces a significant flow deviation, leading to an exit flow angle (see Fig. 3.10d),
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which differs of about 7.32◦ from the geometrical one. These phenomena needs to be taken
carefully into account during the design stage of the complete turbine stage, because a design
based on the theoretical velocity triangles could lead to misleading results and to overestimation
of the performances.
Dense gas effect have a considerable influence on system performances. As shown in Fig. 3.11, the
flow starts to expand from a supercritical condition, subsequently it crosses a region characterised
by values of Γ < 1.
The presence of dense gas effects has a strong influence on the blade vane performances (as
reported in Tab. 3.6), and specifically in the resulting pressure ratio (and subsequently the
massflow per unit span).
It is observed that, independently on the considered working fluid, the guide vane performance
(and namely the isentropic efficiency and the enthalpy drop) improve considerably for blades
designed by using a more realistic gas model. In particular, the ideal gas model is shown to
be inadequate for the design of ORC nozzle guide vanes. The equivalent-γ model provides a
reasonably accurate design for Novec649 and the RE347mcc fluids, whereas for R245fa and R449
the design made with the simplified model results in lower efficiency.
Considering only the REF blade shapes, the best performances (for the present choice of the
reduced inlet conditions) in terms of isentropic efficiency are shown by the R449 fluid with
ηis = 0.984 that, compared to the R245fa (classically used in ORC applications), provides an
increase of 4%. Fig. 3.11e shows the Γ profile along the nozzle blade vane centerline both for R449
and R245fa. The R449 molecular complexity, greater than R245fa, results in lower Γ, implying
stronger dense gas effects. Especially, it exhibits lower shock losses and, as a consequence, greater
isentropic efficiencies.
For all of the fluids the Carnot factor ΘC and the enthalpy drop increase for designs based on
more advanced gas models. Greater ΘC results in better exploitation of heat source. Under this
point of view, the R245fa provides the best results compared to all other fluids. However, the
higher enthalpy drop and, then, the higher power output (for the same massflow) is provided by
R449, which definitely remains the best candidate for this application.

Table 3.6: Summary of the guide vane performances for different working fluids
and blade designs based on various gas models.

Fluid ηis ΘC ∆H[kJ/mol ·K] β (Me,design = 2) G [kg/s]
R245FA
Ideal 0.931 0.230 23.6 5.2 (βdes = 7.5) 10.2
γeq 0.938 0.242 25.6 9.5 (βdes = 10.1) 18.6
REF 0.947 0.246 26.3 10.2 (βdes = 10.5) 19.8

NOVEC649
Ideal 0.926 0.100 28.2 6.3 (βdes = 7.3) 12.8
γeq 0.952 0.120 31.7 9.8 (βdes = 10.1) 19.2
REF 0.953 0.123 32.6 9.9 (βdes = 10.3) 19.7
R449
Ideal 0.927 0.125 29.2 5.6 (βdes = 8.1) 10.6
γeq 0.968 0.133 32.2 10.5 (βdes = 10.9) 18.8
REF 0.984 0.132 32.5 11.2 (βdes = 11.3) 20.1

RE347MCC
Ideal 0.926 0.160 26.5 5.5 (βdes = 7.9) 9.9
γeq 0.941 0.166 28.4 10.4 (βdes = 10.8) 18.6
REF 0.943 0.169 29.1 11.2 (βdes = 11.1) 20.2
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Figure 3.10: Numerical results for inviscid calculations with fluid R245fa: (a)
Mach number contour plot. (b) Reduced static pressure p/pc contour plot. (c)
Fundamental Derivative Γ contour plot. (d) Stream traces on the trailing edge with
Mach number contour plot.

Fig. 3.12 shows the overall solution for R245fa, based on a viscous simulation. The operating
condition are the same used for the inviscid calculations (see Tab. 3.5). The attention is focused
on nozzle guide vanes designed with the REF model. The performances are summarised in Tab.
3.7.
The isentropic efficiency drops by 10% with respect to the inviscid simulation. Besides, the
enthalpy drop is 6% lower. This effect can be explained by viscous losses in the attached boundary
layer and in the wake, as well as to the formation of a separation bubble at the suction side,
close to trailing edge, leading to a significant reduction of the effective exit-to-throat area ratio.

Table 3.7: Summary of the guide vane performances for R245fa fluid, viscous
calculations and blade shape calculated with REF model.

Fluid ηis ΘC ∆H[kJ/mol ·K] β
R245FA 0.843 0.237 24.7 5.2
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The trailing-edge oblique shock is also present in the viscous simulation, but it is weaker than
in the inviscid case. As a consequence, the increased losses are essentially due to the viscous
phenomena.
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Figure 3.11: Clapeyron diagram with iso-Γ and nominal isentrope lines for: (a)
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along the blade vane centerline for fluids R245fa and R449 (e).
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Figure 3.12: Viscous results for R245fa: (a) Mach number contour plot. (b)
Stream traces underlining the presence of a recirculation bubble.
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3.3 Method of characteristics for rotor design
The need for a compact turbine working with high pressure ratios implies the choice of an impulse
turbine architecture (see e.g. (Kunte and Seume, 2015)). This can be justified by considering a
typical impulse rotor blade and its velocity triangles (Fig. 3.15). By imposing an axial outlet

Figure 3.13: Example of impulse blade geometry and velocity triangles

flow for the impeller (α2 = 0), with the axial absolute velocity component kept constant, the
work coefficient can be expressed as:

ψ = ∆H0

U2 = 2(1− Λ) (3.25)

In equation ((3.25)), U represents the peripheral velocity at a specified radius, ∆H0 the total
enthalpy drop per unit mass across the turbine stage and Λ the degree of reaction. For an impulse
turbine (Λ = 0) and a given U , the total enthalpy drop is two times greater than for a 0.5 reaction
degree turbine. This property allows extracting a large amount of work from a single stage, with
a maximum for a vane outlet swirl equal to 67◦ and rotor turning to 116◦ (β1 = β2 = 58◦)
(Paniagua et al., 2014). However, particular care must be addressed to the rotor and stator
blades aerodynamic design because both behave as supersonic nozzles. Moreover, the typical
operating conditions for an ORC turbine are in the proximity of the working fluid saturation
curve or sometimes supercritical. Due to the presence of strong dense gas effects, models used
to design the blade shapes have to be modified accordingly. Several authors in the past have
addressed the design of dense gas nozzles and stator blades (Cramer and Fry, 1993; Guardone
et al., 2013; Wheeler and Ong, 2013; Bufi et al., 2015). All of them generally rely on extended
version of the Method of Characteristics (MOC) for 2D supersonic flows, as seen in the previous
Section. The aim of this Section is to develop a methodology for the design of rotor blades of
an axial supersonic ORC impulse turbine which takes properly into account dense gas effects.
The procedure is also based on the MOC, along with a vortex flow field approach, and was
previously introduced for perfect gas flows by Goldman (1968) and Paniagua et al. (2014). Here,
the approach is extended, for the first time to the author’s knowledge, to the dense gas case.

68



Method of characteristics for rotor design

The performances of the rotor blade shapes obtained with MOC using different organic working
fluids have been evaluated by means of numerical simulations carried out using the dense gas
solver equipped with the PRSV EOS described in Section 2.2.

3.3.1 Design of dense gas supersonic rotor blades
For the design of supersonic rotor blades the procedure described in (Paniagua et al., 2014;
Goldman, 1968) for perfect gas flows has been followed and extended to dense gases.
The flow at the rotor inlet is assumed to be an uniform one that is simply deflected by the
rotor blades. To achieve this deflection, the flow passes through a transition region delimited by
upper and lower transition arcs and by characteristic lines. For clarity, the transition region is

Figure 3.14: Scheme of the system of characteristic lines in the rotor vane. (Gold-
man, 1968)

sketched in figure 3.14, where AB and CD are transition arcs and the dashed lines are used to
represent the characteristics. Through this region, the uniform inlet flow is converted into a free
vortex flow, for which V · R = constant, with R the radius of curvature of a streamline and V
the (constant) velocity magnitude, following an isentropic transformation.
Figure 3.15 shows a schematic description of the rotor blade geometry designed with MOC. The
same notation of the MOC for perfect gases reported in Paniagua et al. (2014) and Goldman
(1968) has been used. The reader may refer to those references for more details.
In order to start with the new design procedure for dense gases, the following input parameters
are defined: inlet relative total pressure and temperature; inlet/outlet relative flow angle βi/βo;
inlet/outlet relative Mach number Mi/Mo; the lower arc Mach number Ml, assigned on the lower
circular arc b-b’; the upper arc Mach number Mu, assigned on the upper circular arc d-d’. As for
the perfect gas model, the lower and upper transition arcs (a-b/a’-b’ and d-e/d’-e’ for inlet and
outlet, respectively) are determined in the unrotated lower/upper reference systems (denoted
with subscripts l and u).
For the sake of brevity, the design procedure is sketched in Fig. 3.16 only for the lower transition
arc. The same procedure can be applied to the upper arc. The arcs are designed by starting
from the vortex region up to the uniform region, in order to match the input inlet conditions.
The vortex flow is described by the general equation V ·R = cost, with V the velocity magnitude
and R the curvature radius of the relative streamline, but it can be re-written in non-dimensional
form by normalizing with respect to the product a∗ · r∗ = cost, where the super-script ∗ denotes
critical (sonic) parameters. Specifically, a∗ represents the critical speed of sound and r∗ the
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radius of the sonic streamline. The vortex equation becomes: M ∗ ·R∗ = 1, with M∗ = V/a∗ and
R∗ = R/r∗.
While the MOC for perfect gas provides the analytical Prandtl-Meyer function ν = ν(M) and
the critical Mach number M∗ = M∗(M) (with M∗ = V/a∗), for a dense gas no such analytical
expressions are available.
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Then, the calculation of the critical Mach number is replaced by the following iterative procedure:

1. The critical speed of sound is first computed from the known values of the total pressure
p0 and temperature T0 (for a constant height blade) by using the EOS

2. A tentative value M∗(0) for the critical Mach number is prescribed

3. At each iteration of the method, an updated value of the velocity magnitude is computed
as V (m) = M∗(m−1)a∗

4. The latter is used to compute an updated value of the specific static enthalpy h(m), given
the total enthalpy h0 = h0(p0, T0).

5. The speed of sound is then updated by using the thermodynamic relation a(m) = f(h(m), s),
where the entropy s is constant everywhere and is known from the prescribed inlet condi-
tions.

6. Finally, an updated value of the Mach number M (m) = V (m)/a(m) is obtained.

7. If M (m)−M (m−1) is below a given tolerance (here taken equal to 0.001%), the procedure is
stopped. Otherwhise, a new value is assigned for M∗(m+1) (by using a bisection procedure)
and the iteration is started again.

By applying the procedure above to calculate M ∗l knowing Ml, the position of the first point on
the lower arc in the reference frame (xl, yl) is (0,R∗l ), where R∗l = 1/M ∗l . The flow is horizontal
at location l, then ϕl = 0 and the flow angle at the new point (x∗k, y∗k) is obtained by adding a
small step ∆ϕ to the preceding location.
Also, knowing Ml, the local slope of the left-running characteristic line is µl = arcsin(1/Ml). The
coordinates of location k on the major vortex characteristic are then calculated as intersection
between the straight lines of slopes tan(ϕk) and tan(µl), respectively .
By knowing the coordinates of location k, the new radius R∗k is evaluated and M ∗k = 1/R∗k. Then,
the Mach number at location k, Mk , can be calculated by means of an iterative procedure similar
to the one previously used to calculate M ∗.
In a similar manner, all the other points of the major vortex-expansion characteristic are calcu-
lated until the condition Mk+1 = Min is verified with an assigned tolerance.
The geometry is afterwards rotated in the X∗ − Y ∗ reference system and completed with the
straight line parts c-d/c’-d’ and the circular arcs b-b’/d-d’ (see Fig. 3.15). Finally, a finite
leading-edge/trailing-edge thickness is added. Besides, non-symmetrical blades with various de-
grees of reaction can be designed if different inlet/outlet input parameters are imposed.
The preceding design procedure has been implemented is a FORTRAN code named RODEC
(ROtor DEsign with method of Characteristics).
In this thesis work, typical phenomena of supersonic rotor cascades have been investigated and
analysed. Specifically, the unique incidence problem, related to the supersonic relative flow at the
rotor inlet and extended for the first time to the dense gas regime, has been taken into account
in a second design step. Further details are provided in Section 3.3.4.

3.3.2 Examples of rotor blade designs
The RODEC algorithm has been run for different fluids and design conditions to investigate the
impact of real gas effects on the resulting geometry. The degree of reaction is set to zero so that
the resulting blade is always symmetric. Figs. 3.17a-b show a comparison of geometries calculated
for R245fa (see Tab. 2.1 for properties) with different operating conditions and gas models. The
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Figure 3.17: Blade designs for R245FA at operating conditions (p0
r = 1.05, T 0

r =
1.05,Min = Mout = 1.5) (a) and at dilute conditions (p0

r = 0.055, T 0
r = 1.15,Min =

Mout = 1.5)(b). Dashed lines represent designs obtained under the perfect gas
model.

operating conditions considered for the design, are given in Tab. 3.8. The first operation point
is very close to the R245fa upper saturation curve and this affects the rotor geometry leading
to larger cross section variations with respect to perfect gas. Specifically, the dense gas design
is characterised by a greater exit-to-throat area ratio. This is a typical behaviour observed for
supersonic stators(see Section 3.2.3).
In figure 3.17b the test is repeated by lowering the total pressure and increasing the total tem-
perature in order to reach the dilute dense gas region. In this region, the blade designed with
a dense gas EOS is very similar to that obtained with the perfect gas model. Indeed, the two
blade geometries are practically overlapped. Then, a parametric study for several working fluids

Table 3.8: Operating and design conditions for the rotor design.

p0
r T 0

r Min Mout Ml Mu βin βout
1.05 1.05 1.5 1.5 1.0 2.0 65◦ 65◦

Table 3.9: Geometrical output parameters for four different organic fluids under
the same operating condition (p0

r = 1.05, T 0
r = 1.05, Min = Mout = 1.5, Ml = 1,

Mu = 2 ,βin = βout = 65◦).

R245fa Novec649 RE347mcc R449
σ 1.67 1.61 1.62 1.60
ch∗ 2.45 2.51 2.50 2.53
ph∗ 1.47 1.56 1.54 1.58

suitable for ORC applications at the same reduced input conditions has been carried out. In
Tab. 3.9 the following output geometrical parameters are shown: blade solidity σ, defined as the
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axial chord to pitch ratio; the axial chord ch∗ and pitch ph∗ normalized respect to the critical
radius r∗, the latter defined as the radius of the sonic streamline in the vortex flow field. It can
be noticed that the lower is the fluid molecular complexity (as for the R245FA fluid) the higher
is the solidity.
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Figure 3.18: Examples of blade design for R245FA at operating conditions (p0
r =

1.05, T 0
r = 1.05) for different inlet and outlet Mach numbers and flow turning angles.

Finally, three blade shapes have been designed for R245fa fluid using different inlet/outlet Mach
numbers (precisely, 1.5 and 2.5) and flow turning angles in order to show the variety of the
cascade geometries provided by the RODEC algorithm. The resulting geometries are reported
in Fig. 3.18. It can be noticed that the higher is Mach number imposed on the suction side the
lower is the extension of the upper transition arc, resulting in very narrowed rotor blades. In
this way, the expansion required to reach the desired Mach number in the vortex region, can be
realised by means of the higher inlet-to-throat area ratio.
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3.3.3 Started and unstarted supersonic rotors
The ideal design provided by the procedure described in the previous Section is corrected in
order to provide a feasible leading-trailing edge thickness by means of circular arcs. Since the
inlet flow is fully supersonic, the rounded leading edge behaves as a bluff body immersed in a
supersonic flow. This leads to the formation of a bow-shock upstream of the leading edge. The
strength and the stand-off distance of the shock from leading edge are function of the inlet Mach
number and the leading edge radius. In the case of the supersonic rotor row designed by means
of the RODEC algorithm, the shocks pattern is similar to that provided by Fig. 3.19.

M>1

Bow shocks

Figure 3.19: Bow-shocks pattern for a supersonic rotor row.

Under the hypotheses of steady, two-dimensional flow, after a short transient due to the start of
the turbine, different steady shock configurations can be considered. In order to analyse them,
it is possible to assume that a rotor blade vane behaves as a supersonic diffuser with respect to
the relative inlet flow.
As well known, in a Laval nozzle the gases can be accelerated isentropically up to the super-
sonic condition in the divergent through the sonic throat. An inversion of the process, i.e. a
shock-free deceleration of a supersonic flow up to the subsonic condition, could be possible in
principle but unattainable in practice for stability reasons (Kantrowitz and Donaldson, 1948).
This point can be understood by considering a supersonic flow initially decelerated through a
convergent-divergent diffuser by means of an ideal smooth isentropic process. In this configu-
ration, no information can travel from the sonic throat up to the inlet, however disturbances
can be transmitted in the divergent, where the flow is subsonic, up to the throat. Because of
this, a disturbance in the sonic region causes a temporary reduction of the massflow but, since
the diffuser elaborates the maximum allowable massflow for the given upstream conditions, an
accumulation of mass is settled ahead of the throat. This phenomenon is unstable and leads
the flow to adapt to the new condition by means of a shock ahead of the diffuser. Then, it can
be concluded that a supersonic flow can not be isentropically decelerated up to the subsonic
condition in a diffuser designed to produce it.
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As shown by Kantrowitz and Donaldson, the strength of the shock in the divergent, its position
and, subsequently, the flow properties downstream of it depend on the diffuser geometry and
Mach number upstream. By enlarging the throat-to-inlet area ratio, which defines the contrac-
tion ratio CR, it can be seen that the shock jumps from ahead the diffuser up to the divergent
part. For a given limit of CR, the shock could be totally swallowed from the diffuser and the
flow would be supersonic without shocks. In these conditions the supersonic diffuser is said to
be started, unstarted otherwise.
In the supersonic rotor framework, a started conditions is strongly desirable. Indeed, a dramatic
abatement of the dynamic pressure in turbine cascades is provided by normal shock-waves stand-
ing ahead the row, and the higher is the inlet Mach number the higher are the losses, see Fig.
3.20. Then, the ideal working condition would be to have a started solution with oblique shock

Figure 3.20: Total pressure losses across a shock as function of the wall deflection
δ for a perfect gas. Figure extracted from (Paniagua et al., 2014).

waves originated at the leading edge, and the normal shocks swallowed by the blade vanes. In
this configuration, not only the total pressure losses would be minimized, but also the effects of
the shock-boundary layer interactions (e.g. boundary layer separation) on the suction side would
be reduced thanks to the weaker shocks impinging on the adjacent blade surface.
In order to better visualize the starting problem for the rotor, it is useful to analyse the relative
flow in the reference frame rotated by the relative inlet flow angle. For an unstarted turbine the
flow configuration is depicted in Fig. 3.21.
The inlet Mach number M1 and the contraction factor of the rotor blade vane are such that the
normal shock ahead the blade can not be swallowed, causing a subsonic flow downstream the
shock with high total pressure losses. Besides, a spillage of massflow appears at the leading edge
due to the fact that the flow is subsonic and it can turn around the inlet. Then, a shock-induced
blockage effect contributes to the loss of performances.
The best achievable working condition is shown in Fig. 3.22 for a started rotor configuration. In
this case, the normal shock is completely swallowed through the vane and only a weak oblique
shock is generated at the leading edge. In this way, the flow downstream of the shock wave is
always supersonic and the best rotor turbine performances can be obtained.
Given the blade geometry and inlet flow conditions, is quite simple to assess if the row is started
or not for a perfect gase, by determining the limit contraction ratio by applying the well-known
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Figure 3.21: Unstarted configuration for a supersonic rotor blade row.
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Figure 3.22: Started configuration for a supersonic rotor blade row.

isentropic relations upstream and downstream the shock wave (Paniagua et al., 2014; Kantrowitz
and Donaldson, 1948). However, for a real gas these relations do not hold anymore and a more
general model is required.
Fig. 3.23 shows the bow shock structure close to the leading edge of the rotor. As known, the
field downstream the bow shock is characterized by a subsonic zone whose extension is generally
restricted to the vicinity of the stagnation point. This zone is necessary in order to transfer at
the flow the informations about the presence of the leading edge as a finite body (Landau, 1959).
To a first approximation, the central portion A−B of the detached shock wave can be considered
as a normal shock, which decelerates the flow up to a subsonic condition; subsequently, then the
flow accelerates again, crossing the sonic lines, and the acceleration continues in the supersonic
region by means of Prandtl-Meyer expansion fans. Since this process is isentropic, the total
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pressure downstream the normal shock A− B is conserved across the sonic lines.
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Figure 3.23: Bow shock schematic representation on the leading edge of a super-
sonic rotor.

If the flow conditions upstream of the shock wave are known and an isoenthalpic transformation
is considered, the steady isentropic conservation equations across the discontinuity A−B can be
written as:

ρ1u1 = ρ2u2 (3.26)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (3.27)

h1 + u2
1/2 = h2 + u2

2/2 (3.28)

where 1 and 2 refers to the thermodynamic states upstream and downstream the shock, respec-
tively. Since usually the rotor inlet Mach number is provided as an input data, the velocity
magnitude u1 and all the static properties in zone 1 are evaluated as follows:

1. Given M1 and the inlet total conditions, the critical speed of sound a∗1 and Mach number
M∗1 are evaluated by means of the iterative procedure described in Section 3.3.1;

2. The inlet velocity magnitude is u1 = M∗1 · a∗1, which provides the static enthalpy as h1 =
h0 − u2

1/2;

3. Pressure and density are then calculated by means of the complex EOS as p1 = p(h1, s0,1)
and ρ1 = ρ(h1, s0,1).

By defining the contraction factor CR as the isentropic area-contraction ratio from a Mach
number M to the local speed of sound, it is possible to re-write the continuity equation as:

CR,is = A∗

A
= ρu

(ρu)∗
(3.29)

The product (ρu)∗ is calculated by a similar procedure to steps 1-3, using M = 1. This allows
to evaluate CR by means of Eq. (3.29) for the given inlet Mach number. Unfortunately, the
contraction factor calculated with the previous equation is an isentropic quantity that does not
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take into account the total pressure loss across the shock.
In order to take into account the shock losses and obtain a more realistic value of CR, the
contraction factor is now defined with respect to the properties downstream of the shock-wave,
as follows:

CR = A∗2
A

= ρu

(ρu)∗2
= p0,2

p0,1

(ρu)∗1
(ρu) 1

= p0,2

p0,1

1
CR,is

(3.30)

The previous equation is also known as the Kantrowitz contraction factor and usually is given
for perfect gases by re-writing the ratios above as explicit function of the Mach number and
specific heat ratio γ. For real gases the evaluation of the properties downstream the shock wave
is provided by solving iteratively the system of Eqs. (3.26), (3.27) and (3.28):

1. An initial tentative value for the velocity magnitude downstream the shock, ui2 with i = 0,
is prescribed in the interval (0, u1);

2. By knowing the properties upstream the shock, the density ρi2 and enthalpy hi2 are calcu-
lated from the continuity and energy equations (3.26), (3.28) respectively ;

3. The static pressure downstream the shock is calculated by means of the complex EOS, as
pi2 = p(ρi2, hi2);

4. If pi2 does not satisfy the momentum equation (Eq. (3.27)), another value for u2 is guessed
by means of a biseption method and the procedure is repeated from point 2 as a (i+ 1)th
iteration.

The method converges very quickly and all the static and total properties are calculated across
the shock wave. Then, the Kantrowitz contraction factor CR can be evaluated. By defining the
inlet area of the rotor blade vane Ainlet as shown in Fig. 3.24, the contraction factor is defined as
CR = A∗/Ainlet, where A∗ represents the critical area downstream the bow-shock. As example,
the procedure explained above has been applied to compute CR, for R245fa fluid at a reduced
relative total pressure and temperature p0

r = 0.1 and T 0
r = 0.95 respectively, in order to be in

the dense gas region. The results are shown in Fig. 3.25 in terms of both the Kantrowitz and
isentropic contraction factor.
Above the CR curve the rotor is said self-started, which means that the turbine is able to ingest the
normal shock that occurs at the inlet of the passage during the start-up. Between the Kantrowitz
and isentropic contraction factor lines the turbine could be started, but not spontaneously (a
variation of the outlet pressure is required). Below the isentropic limit the turbine can not be
started and the normal shock is necessary to adapt the massflow at the downstream conditions.
In order to evaluate the influence of the dense gas effects on the Kantrowitz limit, a comparison
has been carried out for CR in dense (p0

r = 0.1, T 0
r = 0.95) and dilute (p0

r = 0.01, T 0
r = 1.18)

gas conditions for the R245fa fluid. The results are shown in Fig. 3.26. For a dense gas, the
contraction factor curve is lower than the one corresponding to a perfect gas. As a consequence,
the dense gas has a larger self-started region than the ideal gas. A rotor designed with a CR
close to the dense gas Kantrowitz curve would provide a wider range of started configurations
for the same inlet Mach number, implying higher inlet-to-throat area ratios, higher turning flows
and, then, higher performances.
The RODEC code has been equipped with a verification of self-starting of the designed geometry,
by comparing the design throat-to-inlet area ratio (where the throat area for a rotor is defined
as in Fig. 3.24) with the corresponding Kantrowitz limit.
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A
throat

A
inlet

Figure 3.24: Definition of the area sections for a supersonic rotor.
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Figure 3.25: Kantrowitz contraction factor as function of the inlet Mach number
for the R245fa fluid.

3.3.4 The unique incidence problem in dense gas regime
Even though a fully supersonic flow and a started rotor are the most desirable working conditions
for an impulse turbine, some cautions have to be taken into account due to the more complicated
aerodynamic phenomena involved in this case.
From perfect-gas aerodynamics of supersonic blade cascades, it is known that in a started turbine
the relative inlet flow angle is not always a free parameter, but for some flow configurations it is
a function of the inlet Mach number (Budugur, 1995).
In the case of study of this thesis, the flow pattern is that shown in Fig. 3.19. It is possible to
see that the inlet relative flow angle is set by the leg of the bow-shock generated on the adjacent
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Figure 3.26: Comparison of the Kantrowitz contraction factor as function of the
inlet Mach number for the R245fa fluid in dense and dilute gas conditions.

blade leading-edge. For sake of completeness, it should be considered that, for an infinite cascade,
the inlet flow is indeed influenced by the action of all the bow-shock legs coming from below,
however, since the strength of the shock generated by blades farer than the first adjacent blade
becomes quickly negligible, this effect is not taken into account.
A complete list of possible flow configurations is provided by Starken (1993) and sketched in Fig.
3.27. Since the rotors are designed in order to have an a subsonic inlet axial relative velocity
component, the inlet relative flow angle β1 is always a function of the inlet relative Mach number.
This behaviour has consequences on the definition of the inlet boundary condition and is known
as the unique incidence problem.
This problem can be described (Starken et al., 1984) by studying the pattern of characteristic lines
departing from the leading edge of a rotor with an incident supersonic and axial subsonic flow (see
Fig. 3.28a). The analysis is carried out by making the hypotheses of simple wave characteristic
lines, which means that all the characteristics are considered as straight lines. Besides, the bow-
shocks are considered to become Mach lines far from the leading edges and only the influence
of the first adjacent shock leg is taken into account. In this framework, the supersonic flow is
slightly decelerated by the bow-shock, then the deflection imposed by the suction side part of
the rounded leading edge leads the flow to expands by means of an expansion fan. The flow,
which is subsonic in region close to the leading edge, accelerates again to supersonic conditions
after crossing the sonic line S − Sle. Then, it further accelerates on the suction side through
a supersonic expansion fan and reaches the Mach number defined by the limiting characteristic
emanating from point E. The latter, known also as the last captured Mach wave, connects the
intersecting point between the detached shock wave C and the stagnation streamline with point
E on the suction surface of the adjacent blade. Besides, it sets the limit for the maximum
massflow allowable for the given flow configuration.
Inside the pattern of characteristic lines it can be shown that only one exists (the ”unique”)
which does not intersect the bow-shocks. Then, this characteristic has the property to meet the
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Figure 3.27: Flow patterns and related boundary conditions of possible cascade
flow configurations, where β1 and β2 are the inlet and outlet relative flow angles,
respectively. Figure extracted from (Starken, 1993).

far field without disturbances and all the properties of the homogeneous supersonic inlet flow
are conserved along this line, called the neutral characteristic. By considering this feature, the
functional dependency of the unknown inlet flow angle from the inlet Mach number M1 can be
deduced from the mass conservation across the bow-shock. The control volume, as proposed by
(Starken et al., 1984), is chosen as limited far upstream the shock wave by a straight surface of
extension equal to the cascade pitch s = A1−A2, and downstream by the limiting characteristic
of length lE = E − C, see Fig. 3.28b.
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Figure 3.28: Characteristics pattern and expansion fan lines for a supersonic rotor
(a); definition of the control volume upstream and downstream of the bow-shock
(b).

Depending on the Mach number M1, the limiting characteristic point E on the adjacent suction
side could be either on the straight part, where the flow is horizontal in the rotated reference
frame with flow angle φE = 0 (see Fig. 3.28a) and on the rounded leading edge , with φE > 0 (see
Fig. 3.28b). Besides, the position of the stagnation point C is dependent from the incident flow
direction. For the sake of generality, these configurations are taken into account in the following
analysis.
By using the notation defined in Figs. 3.28 (here the flow angle is evaluated as φ1 = (π/2 −
βs) − βi,1, where βs is the stagger angle and βi,1 the incidence angle) and applying the mass
conservation on the control volume defined previously, the following equation holds:

ρ1(V1 sinφ1)s = ρE(VE sinαE)lE (3.31)

In the preceding equation, V1 and VE are the velocity magnitudes of the flow at the control
volume surfaces, whereas αE is the Mach angle associated to the limiting characteristic. This
equation can provide the unknown inlet flow angle φ1, which is the solution to the unique
incidence problem, if all the quantities on the right hand side are calculated in advance.
Firstly, the limiting characteristic line length lE , defined as the distance between the stagnation
point on the bow-shock C and the point E, requires the definition of the point C position. This
is a function of the bow-shock stand-off distance from the stagnation point on the leading edge
B, B −C, depending on the intensity of the shock (i.e. on M1), and on the leading edge radius.
In order to estimate it, the procedure proposed by Moeckel is followed (Moeckel, 1949), with
modifications in order to take into account the real gas effects.
This methodology is based on the assumption that the form of the shock between its foremost
point and its sonic point is adequately represented by an hyperbola asymptotic to the free-stream
Mach lines. Besides, the sonic line, delimiting the sonic region in front of the leading edge, is
considered to be a straight one and the flow downstream to be normal to it. The geometrical
configuration of the bow-shock and of the oblique shock leading the flow to the sonic condition
is depicted in Figs. 3.29a and 3.29b, respectively.
By following this scheme, the first quantity to be evaluated is the position of the sonic point
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Figure 3.29: Geometric scheme of the bow-shock and sonic line (Moeckel, 1949)
(a); oblique shock geometric scheme and reference system (b).

on the leading edge Sle, which depends on the deflection θ of the flow due to the sonic oblique
shock. In this analysis the inlet flow is considered to be horizontal since the flow angle is supposed
to have just a rotation effect on the reference system without affecting the value of the shock
stand-off distance from the leading edge.
For real gases the calculation of θ can not be carried out by means of analytical functions, as for
the perfect gas case, then the following iterative procedure is followed by considering the scheme
of Fig. 3.29b as reference system:

1. An initial tentative value for the shock inclination β is assigned in the range (0,π/2), then
the normal component of the inlet velocity V1 is calculated in terms of Mach number as
M1,n = M1 sin β;

2. All the flow properties downstream the normal shock are evaluated by means of the iterative
procedure shown in Section 3.3.3, then the normal downstream Mach number is M2,n =
u2/a2, with a2 being the speed of sound;

3. The value of θ is calculated by inversion of the general geometric relation tan(β − θ) =
u2/u1 tan β, with u1 = V1 sin β;

4. The downstream Mach number, at iteration i, is finally calculated as M i
2 = M2,n/ sin(β−θ);

5. Since the sonic condition is searched, the target Mach number is M t
2 = 1. If the quantity

|M i
2 −M t

2| is greater than a prescribed accuracy the iterative procedure is repeated from
point 2 by means of the biseption method.

With the previous procedure, the position of point Sle in the reference frame of Fig. 3.29a can
be determined as xSle = −r · sin θ and ySle = r · cos θ, where r is the radius of the leading edge.
By following Moeckel, the ordinate of the sonic point on the bow-shock yS and the bow-shock
stand-off distance from the leading edge L, as defined in Fig. 3.29, are:

yS = ySle (1− CR cos θ)−1 (3.32)

L = ySle [yS/ySle(Cβ + tan θ)− tan θ] (3.33)
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Cβ = βM

(
βM tan β −

√
β2
M tan2 β − 1

)
βM =

√
M2

1 − 1

In Eq. (3.32), the parameter CR is the Kantrowitz contraction factor evaluated for real gases at
the given free stream conditions, as described in Section 3.3.3.
Once that the coordinates of point C have been determined (see Fig. 3.28b), it is required to
calculate those of point E, located on the adjacent blade suction side, which gives the length
lE along the limiting characteristic. However, this problem can not be considered as decoupled
from the solution of the unique incidence one, since the position of E depends on the inlet flow
angle. Besides, in Eq. 3.31, the angle φ1 is still unknown and another information is required in
order to get the solution.
Then, the last equation is provided by considering the properties of the neutral characteristic.
By considering the scheme of Fig. 3.30, it exists a right-running characteristic which connects the
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Figure 3.30: Main characteristic lines on the rotor leading edge.

point P on the neutral characteristic, where all the inlet free stream informations are transferred,
with E. The equation of this line is the last one required to solve the unique incidence problem.
Since no analytical solution for the Prandtl-Meyer function exists in the dense gas case, the
discretised form is used, as for Eq. (3.18):

(βi,1 − φE) = A (VE − V1) (3.34)

A = (A1 +AE)/2

A =
√
M2 − 1/V

By calculating βi,1, the flow angle φ1 can be easily evaluated by means of its definition.
Eqs. (3.31) and (3.34), along with the unique incidence problem, can now be solved by means
of the following iterative procedure:
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1. An initial tentative value for the position of the point E, (xE ,yE), is assigned between the
position of the sonic point Sle and the abscissa of the stagnation point on the adjacent
bow-shock, C. Then, φE can be calculated by geometrical considerations;

2. By knowing φE , the actual position of point C is evaluated (see Fig. 3.28b) and the limiting
characteristic length lE is calculated, along with the Mach angle on point E, αE , by means
of geometrical considerations. Then, ME = 1/ sinαE ;

3. By means of the complex EOS, the critical Mach number and critical speed of sound
downstream the shock, M∗E and a∗2 respectively, are evaluated with the iterative procedure
shown in Section 3.3.1. Then, VE = M∗E · a∗2;

4. The information on the velocity VE , along with the static and total properties downstream
the shock previously calculated, provides the density ρE by means of the complex EOS;

5. The flow angle φ1 is calculated from the Eq. (3.31) and compared with that provided by
the characteristic equation, Eq. (3.34). If the difference is greater than a pre-set accuracy
level, the iterative procedure is repeated from point 2 by assigning another value of the
abscissa xE by means of the biseption method.

The methodology above, also implemented in the RODEC code, converges quickly to a solution
which provides the actual inlet relative flow angle, useful to solve the periodicity problem re-
lated to the unique incidence of isolated supersonic rotors and the correct definition of the inlet
boundary condition.
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Figure 3.31: Unique incidence solution and comparison of the inlet and incidence
flow angles, φ1 and βi,1 respectively, as functions of the inlet Mach number M1 for
the R245fa fluid in dense (p0

r = 0.1, T 0
r = 0.95) and dilute (p0

r = 0.01, T 0
r = 1.18)

gas conditions. The solution is evaluated for a r/s ratio of 0.05 (with r the leading
edge radius and s the cascade pitch) and a stagger angle βs = π/3.

In Fig. 3.31 a comparison between the inlet and incidence flow angles, φ1 and βi,1 respectively,
calculated with the procedure described above for the R245fa fluid, in dense (p0

r = 0.1, T 0
r = 0.95)

and dilute (p0
r = 0.01, T 0

r = 1.18) gas conditions, has been carried out for a blade with r/s 0.05
(with r the leading edge radius and s the cascade pitch) and a stagger angle βs = π/3. It can
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be noticed that the dense gas solution provides higher values of φ1 for the same M1. Since
0 < φ1 < βs, being φ1 = 0 and φ1 = βs the limits of the strongest and weakest admissible
bow-shock respectively, the dense gas solution provides a less shock-influenced inlet flow angle
than the dilute one. This behaviour can be explained by the fact that dense gas effects decrease
the strength of the bow-shock.

3.3.5 RODEC: code verification
A numerical test of the rotor cascade designed with the RODEC has been carried out in order
to verify the advantages of the proposed design methodology with respect to classical designs
based on simple geometrical considerations derived from the flow velocity triangles (see Capetti
(1967) for further details). These designs are generally based on the concatenation of circular
arcs, without any further consideration on thermodynamic or aerodynamic consideration.

Table 3.10: Rotor blade design parameters for R245fa fluid.

Parameters Values
Inlet total relative reduced pressure 1.05

Inlet total relative reduced temperature 1.05
Inlet relative Mach number 1.7

Inlet relative flow angle 60
Suction side circular arc Mach number 1.9
Pressure side circular arc Mach number 1.1
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Figure 3.32: Mach number contour plot for RODEC (a) and circular arcs (b)
designs.

Tab. 3.10 provides the main parameters used for the design of the rotor cascade. The thermody-
namic conditions are slightly supercritical in order to work in a highly non-ideal thermodynamic
region and the working fluid is R245fa. The viscous CFD calculations have been performed by
means of the numerical solver described in Section 2.2. Pressure and temperature total conditions
at the supersonic inlet along with the inlet relative Mach number (M1 = 1.7) and the flow angle
corresponding to the unique incidence condition are prescribed. On the outlet and peripheral
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Figure 3.33: Entropy deviation (S − Sin)/Sin) (with S the specific entropy and
Sin an inlet entropy reference) contour plot for RODEC (a) and circular arcs (b)
designs.

boundaries, a supersonic exit and periodicity conditions have been imposed, respectively.
The results are shown in Figs. 3.32 and 3.33 in terms of relative Mach number and entropy
deviation, the latter defined as the relative entropy variation (S − Sin)/Sin) with respect to the
entropy inlet Sin. In Fig. 3.32a the RODEC design provides a started rotor with a bow-shock on
the leading edges that confirms the presence of the unique incidence problem. Inside the rotor
vane, the flow pattern characterised by reflections of the bow-shock. Two oblique shocks depart
from the trailing edge and interact with the viscous wake.
On the other hand, the classical design based on circular arcs and velocity triangles does not
provide satisfactory results (Fig. 3.32b). The solution is characterised by a strong interaction
between the lower leg of the bow-shock and the suction side of the adjacent blade, along with
a large subsonic region on the pressure side. On the rear part of the blade, the boundary layer
separates from the wall. These phenomena affect the performance of the cascade, which can be
evaluated in terms of degree of reaction Λ and entropy deviation. The calculation of Λ is based
on the average static enthalpies at the rotor inlet and outlet:

Λ = ∆hrotor
∆htotal

(3.35)

Since the rotor is isolated, a reference constant value has been assigned to ∆htotal in order
to calculate Λ. For the RODEC design Λ = −0.034 which is very close to the nominal value
(zero reaction degree), whereas for the circular arc design Λ = −0.12. This implies that a re-
compression of the supersonic flow happens in both cases, however it is one order of magnitude
lower in the first case. The non-zero reaction degree is due to the development of the boundary
layer, leading to a non symmetric effective area distribution. The effect is larger for the circular
arc design due to boundary layer separation. Boundary layer corrections of the blade geometry
are proposed in the next Section.
The analysis of the entropy deviation, reported in Figs. 3.33a and 3.33b, shows much higher
entropy losses for the circular arc design, especially on the rear suction side part and the viscous
wake. For the RODEC design, the losses are localised in the boundary layer and close to the
trailing edge.
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3.4 Full stage design and simulation
3.4.1 ORC turbine stage design methodology
In this section the procedure to design and calculate a full stage (stator and rotor) of the ORC
turbine with the in-house utilities NODEC and RODEC, is described.
The following input parameters are known: total plenum conditions (pressure and temperature),
massflow rate, shaft angular velocity, interstage pressure ratios. By knowing this data, the
design is performed by means of the iterative procedure described below. With subscript 1,2,3
the stator inlet, the stator-rotor interface and the rotor exit conditions are indicated, respectively.
The velocity triangles are evaluated by using the convention showed in figure 3.34.

Figure 3.34: Typical velocity triangles for an axial turbine stage. Figure extracted
from (Cohen et al., 1987).

Design procedure:

1. An initial tentative value for the peripheral velocity of the rotor at the middle blade height,
U [m/s], is chosen

2. Set the desired number of blades for the stator nbs. In this way the massflow rate across a
single stator blade vane will be G/nbs

3. By knowing the conditions at section 1 (total pressure p0, total temperature T0), massflow
rate G, pressure ratio β and the organic working fluid, calculations of the nozzle convergent-
divergent geometry and thermodynamics/cinematics of the supersonic flow are performed
with the NODEC software. In this way C2, density ρ2, Mach number M2 and static
enthalpy h2 are known

4. The design is carried out by considering a constant axial velocity component Ca across the
rotor. The value of the flow coefficient φ = Ca

U is set to 0.8

5. The Zweifel empirical coefficient (Zweifel, 1945), useful to evaluate an optimal value for
the rotor blade solidity s/b (s is the blade spacing and b the axial chord), is set to ΨT =
2(s/b)cos2α2(tanα1 + tanα2) = 0.8

6. The degree of reaction is set to Λ = 0. Calculation of velocity triangles at blade middle
height, thermodynamic and cinematic flow properties is provided below:

α2 = cos−1
(
Ca
C2

)

88



Full stage design and simulation

β2 = tan−1
(
tanα2 − 1

φ

)
W2 = Ca

cosβ2

h02r = h2 + W 2
2

2
T02r = f(h02r, S)
p02r = f(h02r, S)
β3 = β2 (Λ = 0)
α3 = tan−1

(
tanβ3 − 1

φ

)
M2a = M2cosα2
M2r = M2a

cosβ2
= M3r (Λ = 0)

Rm = U 60
2πNRPM [m]

Aannulus = G
ρ2Ca

[m2]
H = Aannulus

2πRm [m]

With subscripts r and a the relative and axial properties are indicated, respectively, whereas
Rm, NRPM , Aannulus and H are the middle blade radius , the design shaft angular velocity
in RPM, annulus area (see figure 3.34) and blade height (which is considered to be the same
for stator and rotor blades). The function f used in the previous procedure states the use
of complex equation of state to compute the thermodynamic properties.

7. By knowing the relative total reservoir conditions (p02r,T02r), the inlet-outlet relative flow
angles β2,β3 and inlet-outlet relative Mach numbers the rotor geometry can be calculated
by means of the RODEC software.

8. The new stator number of blades is evaluated, as: nbs,new = 2πRm/ss, where ss is the
stator blade spacing calculated by NODEC. If nbs,new greatly differs from nbs then a new
value of the peripheral velocity U has to be set and the procedure is repeated from point
1 until convergence is reached

9. Once get the convergence on nbs, the rotor solidity is calculated by using the Zweifel
formula: sr/br = ΨT /(2cos2α2(tanα1 + tanα2)), where ΨT = 0.8

10. By knowing the geometrical constraints, it is possible to evaluate the desired rotor axial
chord br and, from the sr/br ratio, the rotor blade spacing sr

11. Finally, the rotor number of blades is evaluated as nbr = 2πRm/sr

12. The stage power output is evaluated as P = G∆h0S , where ∆h0S is the ideal total enthalpy
drop across the turbine stage, calculated as:∆h0S = ψU

2

2 , where ψ is the work factor,
calculated as (for Λ = 0): ψ = 4φ(tanβ3)

3.4.2 Full stage numerical simulations
Viscous 2-D numerical simulations have been carried out for a full turbine stage designed using
the preceding methodology, without implementation of the boundary layer correction. The
subsonic part of the stator blade has been designed in a slightly different way in order to reduce
the blade length. The CFD software used is the commercial code Ansys CFX 16.0, due to the
possibility to run it in parallel and the easier management of the multiblock grids with respect to
the in-house solver. The turbulence model used is k-omega SST (Shear Stress Transport). The
thermodynamic properties of the fluids are modelled using the real gas properties (rgp) library.
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The rgp files contain property tables mapped as a function of temperature and pressure along
the turbine expansion and allow accurately taking into account dense gas effects.
Tab. 3.11 provides the parameters used to design the blade shapes and to perform the simulations
with the R245fa working fluid. In order to assess the presence of dense gas effects it is important

Table 3.11: Rotor blade design parameters.

Parameters Values
Inlet total relative pressure [bar] 6

Inlet total relative temperature [K] 393.15
Inlet relative Mach number 1.5

Inlet relative flow angle 60
Suction side circular arc Mach number 1.9
Pressure side circular arc Mach number 1.1

to evaluate the position of the operating point on the working fluid state diagram. In Fig. 3.35a
the isentropic evolution of the expansion on the T-S diagram is shown. The presence of strong
dense gas effects is expected, since fundamental derivative Γ is below 1 throughout the expansion
(see Fig. 3.35b). It can be noticed that, for this application, the strongest dense gas effects occur
mainly inside the nozzle, where the enthalpy drop is elaborated. This is due to the ”dry” nature
of R245fa fluid which allows to have the last part of expansion farther from the saturation curve.
By using the Zweifel empirical coefficient (Zweifel, 1945), the number of rotor to stator blades
ratio is set to 2. The 2-D computational grid for the full stage simulation is composed of C-
shaped blocks around the blades and of H-shaped blocks at stage inlet and outlet as shown in
Fig. 3.36a. The grid is clustered in order to obtain y+ values less than 1 at the blade walls. The
total number of elements is 330066 total number of elements (121704 overall elements for the
rotor row and 208362 elements for the stator row). Simulations for a full turbine stage involving
a supersonic rotor blade row and a supersonic stator blade row both designed by the means
of the MOC procedures described previously are carried out. The total temperature, the total
pressure and the velocity components are imposed at the inlet. Average static pressure is set at
the outlet and a mixing-plane boundary condition is set at the stator-rotor interface. Tab. 3.12
presents the main turbine working parameters, taken from a real-world application. In order to
maximize the impact of dense gas effects, supercritical turbine inlet conditions (see Fig. 3.35a)
have been chosen. Fig. 3.36b presents the relative Mach number distribution for the full turbine
stage simulation. The flow is accelerated in the stator vanes up to the design absolute Mach
number of 2.4 and, thanks to the accurate design with the MOC algorithm, no normal shocks are
formed in the divergent part of the nozzle. However, a set of weak oblique shocks departs outside
the stator due the presence of the rounded trailing edge and its non-zero thickness. These shocks
interact with the viscous wake. Due to the mixing plane interface, interactions of the latter with
the rotor row can not be observed. The flow in the relative reference frame is then deflected by
the blade vanes up to a relative Mach number slightly lower than the design one due to the set
of oblique shocks departing both from leading and trailing edge. The turbine is found to be in
a ”started” configuration, so that a normal shock at the inlet is avoided and the flow inside the
rotor vanes is supersonic. The calculated total to total isentropic efficiency for this turbine is
92.9%. In order to assess the main source of losses in the turbine stage, the entropy deviation
(S − Sin)/Sin is evaluated. It is shown in Fig. 3.37a for the isolated rotor. Entropy is mainly
generated with the viscous boundary layers and wakes, whereas entropy generation across shocks
is extremely weak. This demonstrates that the proposed methodology provides blade designs
with negligible shock losses. The presence of viscous effects also modifies the design degree of
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(a)

(b)

Figure 3.35: Isentropic turbine expansion on the R245FA T-S diagram (a); Fun-
damental Derivative of gas dynamics Γ evaluated along the turbine expansion (b).

reaction, set to zero for the design here proposed. The actual degree of reaction evaluated after
simulations is found to be -0.042. This effect can be addressed to the modification of the effective
blade vane geometry due to the boundary layer thickness, which leads to lower passage sections
going from inlet to outlet.

Table 3.12: Main turbine full stage working parameters.

Parameters Values
Inlet total reduced pressure 1.2

Pressure ratio 20.6
Inlet total reduced temperature 1.1

Stator nozzle outlet design Mach number 2.4
Stator stager angle 70

Rotor blade speed [m/s] 141.37
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(a)

(b)

Figure 3.36: Computational block structured grid for full turbine stage (330066
elements) (a); relative Mach number distribution for R245FA fluid (b).
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(a)

(b)

Figure 3.37: Entropy deviation contour plot for the isolated rotor (R245FA fluid)
(a); Mach number distribution for the isolated rotor (R245FA fluid) (b).

3.5 Boundary layer correction
In the preceding Sections we have seen that viscous effect have a considerable influence on the
performance of nozzle guide vanes and rotor blade designed by using the inviscid MOC. Specif-
ically, for nozzle guide vanes, viscous losses reduce the ideal isentropic efficiency by about 10%.
Additionally, the boundary layer development reduces the effective exit-to-throat area of the
nozzle, leading to an expansion ratio below the target one. For rotor blades, the boundary layer
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reduces the degree of reaction and increases losses. To palliate these kind of problems, the pres-
ence of boundary layer should be taken into account in the preliminary design. The idea is to
use the ideal pressure distribution to evaluate the development of the boundary layer thickness
and to correct the inviscid design accordingly.
In order to take into account these effects in a preliminary design stage, an approximate calcu-
lation of the compressible turbulent boundary layer subject to an arbitrary pressure gradient is
carried out by following the Reshotko-Tucker method (Reshotko and Tucker, 1957). The latter
involves the momentum integral and momentum-of-momentum equations as simplified by using
the Stewartson-Illingworth’s transformation. The Ludwieg-Tillmann skin-friction relation is used
in these equations in a form suitable for compressible flows. A power-law is used for the turbulent
velocity profile close to the wall, whereas a quadratic Crocco’s law is used for the temperature
distribution. The equations above are written such that no hypotheses on the equation of state
are done.

3.5.1 Boundary layer integral equations
The method is developed under the assumption of a constant turbulent Prandtl number of the
order of 1, constant pressure along the direction normal to the wall and flat plane adiabatic
surface. In this case it is possible to write the boundary layer integral momentum equation,
along with the auxiliary momentum-of-momentum equation in terms of the incompressible form
factor Hi, as follow:

dΘtr

dx
+ Θtr

Me

dMe

dx
[2 +Hi] = 0.5× Cf (3.36)

dHi

dx
= − 1

Me

dMe

dx

[
Hi (Hi + 1)2 (Hi − 1)

2

]
− 0.03Hi

(
H2
i − 1

)
0.5× Cf

Θtr
(3.37)

where Θtr is a ”transformed” momentum thickness by means of the Stewartson-Illingworth trans-
formation (Culick, 2012), Me is the external Mach number (obtained from the inviscid MOC
calculation) and Cf is the skin friction.
The coefficient −0.03 in Eq. (3.37) results by introducing the Maskell empirical approxima-
tion (Maskell, 1951) for the shear stress integral term in the original momentum-of-momentum
equation: ∫ 1

0

τ

τw
d

(
Y

∆

)
= 1.03 Hi

Hi + 1 (3.38)

where τ is the shear stress, τw the wall shear, Y and ∆ are the transformed wall distance and
boundary layer thickness, respectively.
The transformed momentum thickness Θtr is related to the compressible one as follows:

Θ = Θtr
p0

pe

ae
a0

(3.39)

where p0 and a0 are the free stream total pressure and speed of sound, respectively.
In order to close the problem, the skin friction coefficient Cf needs to be evaluated. For this
purpose, the transformed compressible form of the Ludwieg-Tillmann equation for turbulent
boundary-layer is used. Besides, it is written such that all the thermodynamic variables are
explicitly calculated by using a generic EOS. By writing the skin friction in terms of transformed
variables and applying the Eckert’s (Eckert, 1955) reference enthalpy method the following form
is obtained:

Cf = τw
0.5ρrefu2

e

= 0.246e−1.561Hi
(
Mea0Θtr

νref

)−0.268(
ρe
ρref

)(
pe
p0

)−0.268
(3.40)
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In the above equation the subscript ”ref” states a variable calculated at a reference temperature.
Here the Eckert method is applied, such that the reference temperature is calculated as:

T
ref

= 0.72T0 + 0.28Te (3.41)

In this way the variation of viscosity with temperature is taken into account and its value
is calculated at the local T

ref
with the selected EOS. Finally, the velocity and temperature

distribution close to the wall are approximated by a power-law and quadratic Crocco’s equation,
respectively, leading to the following relations:

u

ue
=
(y
δ

) 1
7 (3.42)

T = T0 + (Te − T0)
(
u

ue

)2
(3.43)

3.5.2 Numerical solution of the boundary layer integral equations
Equations (3.36) and (3.37) represents a system of coupled first order ordinary differential equa-
tions which can be numerically solved by means of fourth order Runge-Kutta method. The
method is carried out starting from the throat section of the inviscid nozzle throat and the lead-
ing edge of the inviscid rotor blade. In the first case, it is supposed that the boundary layer
thickness is not zero (due to the development of the convergent), but reaches an extremum. This
corresponds to imposing the initial condition:

dΘtr

dx throat
= 0 (3.44)

From Eqs. (3.44) and (3.36) the initial value for Θtr is then evaluated. For the rotor, the
boundary condition Θtr(x = 0) = 0 is imposed. For both rotor and nozzle the initial value
Hi = 1.1 is selected. Indeed, as explained in (Reshotko and Tucker, 1957), for blunt bodies a good
initial guess value for the form factor is between 1.0 and 1.3. The error committed in this choice
is inconsequential, since the form factor will tend to reach its proper value in the first few steps
of calculation. The integration of equations (3.36)-(3.37) leads to the Θtr(x) distribution along
the nozzle/rotor blade wall. By using equation (3.39) the compressible momentum thickness is
calculated and, by using its definition, the boundary layer thickness δ is evaluated, along with
all the integral parameters:

Θ =
∫ δ

0

ρu

ρeue

(
1− u

ue

)
dy (3.45)

δ∗ =
∫ δ

0

(
1− ρu

ρeue

)
dy (3.46)

The above equations for the displacement thickness δ∗ and momentum thickness Θ are solved
by numerical integration with a 16 point Gauss-Legendre quadrature method.
Finally, the inviscid shape S(x)inviscid calculated with the MOC is corrected as [S(x)inviscid+δ∗].
In order to ensure convergence of the numerical methodology, the inviscid shape is used as base
for an interpolated curve passing from a high number of point equally spaced. As shown in
(Sivells, 1978), the success of the above integration method depends strongly upon the spacing
of the shape points.
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3.5.3 Application to supersonic nozzles
The above methodology is applied to the design of a nozzle guide vane with R245fa. The oper-
ating conditions are reported in Tab. 3.13.

Table 3.13: Main turbine working parameters.

Parameters Values
Inlet total reduced pressure 1.2

Pressure ratio 20.6
Inlet total reduced temperature 1.1

Stator nozzle outlet design Mach number 2.4
Stator stager angle 70

Figure 3.38: Comparison between inviscid (red) and viscous (green) shape for
nozzle calculation with R245FA fluid.

Numerical simulations are carried out by using the in-house CFD solver. As shown in Figs. 3.38-
3.39, the viscous shape takes into account the boundary layer thickness which has an influence
on the effective flow passage and, then, the enthalpy drop and power output.
Fig. 3.41 shows the results of the Eqs. (3.36)-(3.37) integration in terms of displacement, momen-
tum and boundary layer thickness (Fig. 3.41a) and Ludwieg-Tillmann skin friction coefficient
(Fig. 3.41b). Fig. 3.42 shows the enthalpy drop across the ”inviscid” and ”viscous” designs
for the guide vane center-line, whereas Fig. 3.40 show a comparison of the Mach number field
between the two designs. For the ”inviscid” design, the boundary layer reduces the effective
flow passage, leading to massflow and exit Mach number to lower than the nominal ones, and
consequently to a lower pressure ratio and power output. With the boundary layer correction a
significant increase of the enthalpy drop is obtained, as well as improvements in terms of massflow
and power output (the latter evaluated as the enthalpy drop times the massflow). The viscous
wake and the separation region on the trailing edge are reduced. Performance parameters for
the two designs are reported in Tab. 3.14. The isentropic efficiency ηis and the power output for
the corrected shape are higher than those of the inviscid design and close to those obtained for
the latter by using an inviscid flow model.
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Figure 3.39: Comparison between inviscid and viscous nozzle guide vane shapes
with view enlargement of the exit section.

Table 3.14: Main nozzle performances with and without boundary layer correction.

Parameters BL-correction Without BL-correction
ηis [%] 91.86 88.64

Power output [kW] 1.697 1.640
Massflow [kg/s] 0.452 0.447

3.5.4 Application to supersonic rotors
In Fig. 3.43 the boundary layer correction is applied to the design of a rotor blade shape. It
can be noticed that after the correction the exit flow angle is slightly different from the design
one, thus providing a slightly positive degree of reaction. A viscous CFD simulation has been
carried out for the rotor of Section 3.3.5 modified by the boundary layer correction and the results
are compared to those previously obtained for a purely inviscid design. The Mach number and
entropy deviation distributions for the corrected rotor are reported in Fig. 3.44. The Mach
number shows a similar shock pattern with sevral reflections through the blade vane up to the
exit. The rotor is again fully started. We observed that the ”viscous” design leads to lower losses,
in terms of entropy deviation, since the boundary layer remains thinner (no compression in this
case), and so does the wake (Fig. 3.44b). The boundary layer correction has a beneficial effect
also on the degree of reaction (Λ = −0.011), significantly reducing re-compression effects due to
the change of the effective flow passage area.
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Figure 3.40: Comparison between inviscid (a) and viscous (b) nozzle blade shapes
Mach number contour plot.
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Figure 3.41: Integral boundary layer parameters (a); Compressible Ludwieg-
Tillmann skin friction coefficient (b).
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Figure 3.42: Comparison between inviscid and viscous nozzle shape of the static
enthalpy evolution along the guide vane center-line.
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Figure 3.44: Mach number contour plot (a) and entropy deviation (b) for RODEC
rotors with boundary layer correction.
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3.6 Conclusions
In this Section, a fast design methodology based on the method of characteristics for supersonic
ORC nozzle guide vanes and rotors has been developed and tested. The design process, takes
into account the complex behaviour of the complex organic working fluids for ORC applications,
which show dense gas dynamics effects under the given operating conditions.
Three different gas models, namely the perfect-gas, equivalent-γ and multi-parameter EOS mod-
els, have been proposed and compared for the nozzle guide vane design. Four fluids of industrial
interest for ORC applications (R245fa, Novec649, RE347mcc, R449) have been considered both
for stator and rotor designs. The performances have been assessed by means of CFD calculations.
In this framework, the R449 provided the best efficiencies and the higher enthalpy drop, assuring
the higher power output if coupled with an impeller. It has been investigated the effect of the
viscous phenomena, showing that they are responsible of high losses of performances. Indeed,
the viscous numerical simulations showed an impact of 10% on the efficiency. The main source of
losses are located in the long wake downstream the blade and of in the boundary layer separation
zone.
The MOC has been applied also for the rotor design and generalised to complex EOS. The design
methodology has been enriched with an investigation of the unique incidence problem, which has
been solved in the dense gas regime. Numerical simulations have shown that the MOC design
provides a started configuration of the supersonic flow in the blade vane and, subsequently, the
rotor performances are improved.
A further improvement in the design approach has been carried out by correcting the ”inviscid”
nozzle and rotor shapes by means of the boundary layer thickness. It has been showed, with nu-
merical simulations, that the isentropic efficiency and the power output improved by approaching
the values provided by the inviscid CFD calculations.
Finally, a full stage calculation has been carried out in order to evaluate the main stage perfor-
mances.
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Chapter 4

UNCERTAINTY
QUANTIFICATION

4.1 Introduction
Uncertainty Quantification (UQ) has been recognized in the last decade as a key component
in industrial design and risk management. Indeed, fluid systems may be governed by input
parameters, like the operating conditions or the geometry, that are not perfectly known or can
be subjected to random fluctuations. These random variations can be modelled by means of
probability distribution functions and have to be taken into account. However, introducing the
probabilistic nature of the uncertainties in a simulation software system, is a highly challenging
undertaking, as the whole process transforms the resolution of deterministic physical conservation
laws, to non-deterministic methods, governed by stochastic partial differential equations. As a
consequence, predicted quantities, such as loads, lift, drag, efficiencies, temperatures etc., are now
represented by a probability density function (pdf), providing a domain of confidence, associated
to the considered uncertainties and introducing a new concept of design with respect to classical
deterministic methodologies.
In a general way, it exists a distinction between error and uncertainty. By following the guidelines
of the aerospace community (AIAA-Standards, 1998), the first is ”a recognizable deficiency in
any phase or activity of the modeling process that is not due to the lack of knowledge” whereas
the second is ”a potential deficiency in any phase or activity of the modeling process that is due
to the lack of knowledge”. In this sense, the uncertainty can then be seen as a way to assess
the inability to deal deterministically with the chaotic, unpredictable working conditions of the
real world applications. Two kind of uncertainties can be considered: aleatory uncertainties,
that are related to the inherent randomness of the system being analyzed, such as variability of
operational conditions, geometrical randomness from the manufacturing process, which cannot
be reduced by further data and, then, are known also as irreducible; epistemic uncertainties,
that are globally generated by numerical errors due to discretisation approximations and grid
dependences, as well as lack of knowledge associated to the imperfect physical models, such as
turbulence, combustion or multiphase models. They are known also as reducible uncertainties
since can be reduced by improving the knowledge about the system under analysis.
The probabilistic nature of the uncertainties has been taken into account in this thesis work in
order to consider the aleatory variability of the operating and geometrical parameters of an ORC
system for WHR applications. For this purpose we consider several non-intrusive UQ techniques
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which require no modification to the existing deterministic models (see e.g. (Hosder and Walters,
2010; Eldred and Burkardt, 2009) for applications based on the Polynomial Chaos). However,
the non-intrusiveness property implies an exponential increase of the computational cost for the
estimation of the statistics by increasing the number of uncertainties. This problem is known in
UQ as curse of dimensionality (De Baar et al., 2012; Congedo et al., 2011b) and it needs to be
taken into account in order to maintain a feasible computational cost.
The methods selected as candidate UQ methods for the present application are the Probabilistic
Collocation Method (PCM), the Simplex Stochastic Collocation (SSC), the mean value Second
Order Second Moment (SOSM) and the Bayesian Kriging (BK), which are considered as the
state-of-the-art for non-intrusive UQ. Further details are provided below.

4.2 UQ methodologies
4.2.1 Probabilistic Collocation Method
The stochastic analysis used to determine the system response to input parameter variation
by means of the PCM is based on the work of (Loeven et al., 2007). To illustrate the non-
intrusive PCM implementation procedure, the following uncertain differential equation system
is considered:

L (x, θ, φ) = f (x, θ) (4.1)

where L is an operator, x are the deterministic variables, θ the random parameter and φ the
solution. The latter is decomposed into deterministic: φi(x, t), and stochastic: hi(ξξξ(θ)), compo-
nents:

φ (x, t, ξξξ(θ)) =
PPCM∑
i=1

φi(x, t)hi(ξξξ(θ)) (4.2)

where ξξξ(θ) are the random variables and φi(x, t) is the deterministic solution at the collocation
point ξs(θi). The multi-dimensional random space parameters is then discretized in a full-factorial
way by means of multiple one-dimensional tensor products.
In the PCM, p is the order of the quadrature polynomial and the number of collocation points
is given by PPCM = pnξ , where nξ represents the total number of random input variables. The
term hi is the Lagrange interpolated chaos polynomial of order Np = p− 1 that passes through
the PPCM collocation points:

hi(ξξξ(θ)) =
n∏
s=1

 Np∏
k=1
k 6=i

ξs(θ)− ξs(θk)
ξs(θi)− ξs(θk)

 (4.3)

The collocation points are chosen as the roots of a quadrature polynomial of the same type of
chaos polynomials adapted for the solution expansion. The solution has to be integrated in order
to obtain for instance the mean or variance. To find the Gaussian quadrature points and weights
the Golub-Welsch (Golub and Welsch, 1969) algorithm is followed. In order to perform it, firstly
the recurrence coefficients of the polynomials orthogonal to the probability distribution of the
weighting function have to be calculated. The exponential convergence property of the PCM
is guaranteed if w(ξ) = fξ(ξ), where w(ξ) and fξ(ξ) are the orthogonal polynomial weighting
functions and the probability distribution associated to the uncertain parameters, respectively.
The recurrence coefficients αi and βi, for i = 1, ..., PPCM , are computed using the discretized
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Stieltjes procedure (Gander and Karp, 2001), which is a stable method for arbitrary distribution
functions, and used to construct the matrix J defined as

J =



α1
√
β2 ... 0 0√

β2 α1
√
β3 ... 0√

β3 α3
√
β4

... ... ...

0 ...
√
βPPCM−1 αPPCM−1

√
βPPCM

0 0 ...
√
βPPCM αPPCM


It can be shown that the eigenvalues of J are the collocation points ξi, i = 1, ..., PPCM , whereas
the weights are found by wi = β1v

2
1,i, where v1,i is the first component of the normalized eigen-

vector corresponding to eigenvalue ξi (Loeven et al., 2007).
A Galerkin projection is performed on each basis polynomial hk(ξ), for k = 1, ..., PPCM , by
means of the substitution of Eq. (4.2) into Eq. (4.1) and further Gaussian quadrature which
provides a fully decoupled system of deterministic equations.
This results in the solution of decoupled deterministic CFD simulations which are carried out
at the p collocation points for each uncertain parameter, permuted by a full factorial design,
resulting in PPCM = pn independent deterministic simulations. Finally, the statistics can be
evaluated with the following formulas derived from the definition of mean µ and variance σ2:

µφ =
PPCM∑
i=1

φi(x, t)wi (4.4)

σ2
φ =

PPCM∑
i=1

(φi(x, t))2wi −

(
PPCM∑
i=1

φi(x, t)wi

)2

(4.5)

As shown in previous works (Congedo et al., 2011b; Cinnella and Hercus, 2010) a chaos poly-
nomial of order Np = 2 provides good results for dense gas applications with a reasonable
computational cost. Based on that, this value is retained for the further analysis.

4.2.2 Simplex Stochastic Collocation
To alleviate the high computational cost associated to a full-factorial sampling, a more efficient
technique has been proposed in (Witteveen and Iaccarino, 2012). The hypercubic parameter
space is now discretized in a unstructured way under the form of simplexes by means of an
adaptive Delaunay triangulation. A random sampling is performed in order to avoid clustering
of points and high order polynomial interpolation allows to reconstruct the random solution for
each simplex.
Given the multidimensional uncertain parameter space Ξ, the Delaunay triangulation on ns
sampling points divides it into ne disjoint simplex sub-domains Ξj , with j = 1, ...,ne. Each
sub-simplex is defined by its (nξ+1) vertices, where nξ is the number of uncertain variables or,
alternatively, the cardinality of the parameter space. The initial discretization consists of 2nξ
sampling points ξk, with k = 1, ..., ns, in the vertexes of a hypercube parameter space Ξ and one
point in the interior of Ξ.
An example of a initial grid in two dimensions (nξ=2) is shown in Fig. 4.1a, with an initial
number of simplexes ne,i = 4. Then, the parameter space discretization is refined by randomly
adding new points ξk and the new grid is provided by means of a new Delaunay triangulation
(see Fig. 4.1b).
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(a) (b)

Figure 4.1: Delaunay triangulation of randomized sampling points in a two-
dimensional parameter space Ξ with nξ = 2 before (a) and after (b) refinement.

The approximation of a generic statistical moment µ of order i is performed as:

µφi(x, t) ≈
ne∑
j=1

∫
Ξj
wj(x, t, ξ)ifξ(ξ)dξ (4.6)

where φ = φ(x, t, ξ) is the quantity of interest and wj(x, t, ξ) is a piecewise polynomial approxi-
mation for ξ ∈ Ξj .
The triangulation methodology introduces an unstructured discretization and interpolation of
the parameter space. The refinement of the SSC grid is carried out based on the introduction of
an error measure. By following (Witteveen and Iaccarino, 2012), the error estimates are based
on the difference ε(ξ) = wj(ξ)−vkj,ref between the piecewise approximation wj(ξ) and the exact
value vk in the new sampling point ξkj,ref at the refinement of simplex Ξj . Then, by defining the
approximation of the absolute error ε̃ in a simplex Ξj as the absolute value of the error εk at the
most recently added sampling point ξk, with the highest value of k denoted by k∗, the following
relation between the error before and after refinement, ε̃ and ε̂ respectively, can be written:

ε̂j ≈ ε̃j

 ∣∣Ξ̄j∣∣∣∣∣Ξ̄k∗
ref

∣∣∣


pj+1
nξ

(4.7)

where
∣∣Ξ̄j∣∣ represents the volume measure of the current element j,

∣∣∣Ξ̄k∗
ref

∣∣∣ the volume measure
of the old simplex which is refined by adding the last added sample ξk∗ and pj is the local
polynomial order of the j − th simplex. Then, the ratio |Ξ̄j|∣∣∣Ξ̄k∗

ref

∣∣∣ is the relative volume variation

of the current refined simplex with respect to the old one before refinement. The preceding
equation states that the error estimates after refinement is proportional to the variation of the
local element volume between its current size Ξ̄j and the size after adding the new sample ξk∗ .
This method is suitable for dealing with discontinuities, such as shocks, thanks to the introduction
of a local smoother based on a Local Extremum Conserving (LEC) criterion. A super-linear
convergence is reached during the simplex refinement process. The adaptive random sampling
of the space parameters is expected to improve the efficiency, leading to a lower overall number
of deterministic calculations than the full-factorial sampling.
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More advanced versions of the SSC algorithm exists (Edeling et al., 2016), even if they are not
applied here, given the relatively low number of uncertain parameters involved in the present
study.

4.2.3 Bayesian-Kriging
A surface-response method based on the Bayesian-Kriging approach has been implemented in
order to evaluate mean and variance of a Quantity of Interest (QoI), (e.g. the isentropic efficiency
of the ORC expander), by means of a surrogate model of the output response. The Kriging mod-
els are exact interpolation models based on the modelling of the response as the realization of a
Gaussian process. In general, the unknown QoI y is modelled as a regression function of the form
y(ξ) =

∑
i f(ξ)iβi + Z(ξ), where ξ is the vector of coordinates of a generic point in the multi-

dimensional parameter space, fi the basis functions of the regression model, βi the regression
coefficients to be calculated and Z(ξ) a zero mean Gaussian process. Usually, a zero-order poly-
nomial (constant) is adopted as regression model, defining the so-called ordinary Kriging model.
The Gaussian process Z is considered as a multi-variate normal distribution Z ∼ N(0,P), with
mean zero and covariance matrix P .
The preceding kriging formulation can be revised in the Bayesian framework. In this case, the
kriging surrogate predicts a set of M values of the QoI y(ξ), conditional on N observed data y∗,
where the data y∗ are a subset of y selected by the observation matrix H. The vector of the
unknown QoI y(ξ) is supposed to follow a prior normal distribution p(y), y ∼ N(0,P), where
the multi-variate covariance matrix P needs to be evaluated. Besides, the conditional probability
to observe the N data y∗ given the unknowns y (known as likelihood probability) is considered
to be a normal distribution of the form:

y∗|y ∼ N(Hy∗,R) (4.8)

where H is the observation matrix of M · N dimensions which allows to select the values of y
among the data y∗, by means of the following formulation:

Hij =
{

1, if i = j
0, otherwise

(4.9)

for i = 1, ...,M and j = 1, ..., N . The observation error covariance matrix R is modelled as
uniform and uncorrelated, such that:

R = ε2I (4.10)
where I is the identity matrix and ε a pre-defined error of the observed variable values.
The posterior distribution of the unknowns, conditional to the observed data, can be inferred by
means of the Bayes theorem, such that:

p(y|y∗) ∼ p(y∗|y)p(y) (4.11)

Given that the product in the preceding equation is performed between two normal distributions,
the posterior will be of the same normal form. However, before to define it, the expression of
the covariance matrix P has to be evaluated.
Assuming that y and y∗ are normalized such that y∗ has zero mean and unit variance, the
covariance matrix P of the prior distribution p(y) is defined such that its elements are generated
by the Gaussian function (reported below in the 1-D case, for simplicity):

P = [Pij(θ)] =
[
exp

(
−
h2
ij

2θ2

)]
(4.12)
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where hij = ξi − ξj is the correlation range, ξi the generic coordinate of the prediction y and
θ an hyperparameter which need to be estimated (for multi-dimensional problems it is a vector
whose dimension is the cardinality of the parameter space). By following Wikle and Berliner
(2007), the kriging predictor mean and variance are:

E(y|y∗) = PHT (R + HPHT )−1y∗ (4.13)

var(y|y∗) = [I−PHT (R + HPHT )−1]P (4.14)

The advantage of this methodology is to obtain directly an estimation of the surrogate model
accuracy by means of the kriging variance. Because we deal with an ordinary kriging model where
the hyperparameters need to be estimated, the Maximum Likelihood Estimation (MLE) approach
is implemented in order to evaluate the hyperparameter θ as the solution of the optimization
problem:

maxθ

{
−
(
ln |A|+ y∗TA−1y∗

)}
(4.15)

where A = (R +HPHT ). Since the problem in Eq. (4.15) is performed over a multidimensional
space whose cardinality is given by the number of uncertain variables and the cost varies as
O(nsN 3 ), where ns is the number of optimization steps and N is the number of observed samples,
it represents a bottleneck for the above methodology. The MLE problem is classically solved by
means of the Nelder-Mead downhill simplex method. Here a global-search algorithm based on
a differential genetic evolution approach has been implemented, providing an improvement in
term of computation time. Besides, the inversion of the matrix A is improved with a Cholesky
decomposition.
More efficient methodologies for estimating the hyperparameters could be implemented, such as
the fast estimation in the frequency domain proposed by De Baar et al. (2013), who speeded-
up the Kriging by solving the MLE by means of a Fourier Transform and reducing the cost to
O(N 2 + nsN ).
Finally, once the Kriging surrogate has been trained and the hyperparameters estimated, the
statistics are calculated by means of a Montecarlo simulation of the model by randomly sampling
the uncertain variable distributions.
In order to test the algorithm, a test with the well-known 2-D Rosenbrock function is shown
(see Figs. 4.2). The domain is reduced such that 0 < x1, x2 < 0.8, where is located the global
minimum. It can be seen that by choosing 20 samples uniformly distributed by means of the
Latin Hypercube Sampling (LHS), the function reconstruction is acceptable, with a maximum
Kriging error of 0.042 located on the domain boundaries.

4.2.4 Mean Value Second Order Second Moment
The Mean Value Second Order Second Moment method (MVSOSM or simply SOSM) is a de-
terministic UQ model which computes the statistics of the random QoI by means of a Taylor
expansion around the mean value. In this work the mean and variance are obtained with a
second and a first order truncated expansion respectively, according to equations:

µφ = φ(µξ) + 1
2
∑
i

∂2φ (µξ)
∂ξ2
i

σ2
ξ (4.16)

σ2
φ =

∑
i

(
∂φ(µξ)
∂ξi

σξ

)2
(4.17)
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Figure 4.2: Bayesian-Kriging algorithm test for the 2-D Rosenbrock function. (a)
True function; (b) surrogate function with 20 samples; (c) surrogate error in terms
of Kriging variance.

where µξ and σξ are the mean and standard deviation of the uncertain variable ξ.
Here a second order variance formulation is adopted in order to avoid the definition of additional
parameters of the input distributions, such as skewness and kurtosis.
The cross derivatives are neglected in the Taylor expansion, i.e. the interaction among the
random parameters are not considered here, such that a cheap estimation of the statistics can
be carried out. If a centred scheme is used for all the derivatives, the number of deterministic
calculations PSOSM varies linearly with the number of random variables nξ, as PSOSM = 2nξ+1.
The increments ∆ξi for the numerical calculation of the derivatives have been chosen as 1% of
the QoI mean value.
The method requires a relatively low number of samples and is expected to be cheap in terms of
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computational costs. An additional deterministic calculation is required in order to evaluate the
QoI at the mean value of the random inputs.

4.3 Sensitivity of supersonic ORC nozzle guide vane de-
signs to fluctuating operating conditions

In this Section, the NODEC algorithm for dense gas nozzle designs previously described has
been coupled with the PCM. Here, inviscid calculations are performed, by means of the solver
described in Section 2.2, and used to carry out the UQ analysis.
The purpose is to evaluate the sensitiveness of the performances of ORC expanders designed
with the new methodology to stochastic variations of the design parameters and quantify the
variability of the nozzle shape geometries and performances under variable operating conditions.
Also, an UQ analysis has been carried out by coupling the dense gas numerical solver (see Section
2.2) with the PCM algorithm and evaluating the sensitivity of nozzle guide vane performances
to variability of operational, geometrical and thermodynamic parameters.
In the following, it is assumed that all of the input random parameters, like the total pressure
and temperature upstream of the turbine, are independent. If some of the parameters were to
be correlated, the method could be still applied by treating one of the parameters as random
and by computing the other ones using the correlation law.

4.3.1 Sensitivity of supersonic convergent-divergent nozzle designs
In this section the nozzle geometries are designed by means of the NODEC. We assume that the
inlet total pressure p0 and inlet total temperature T0 behave as random functions (then, nξ = 2).
The nozzles are designed such that the mass-flow G = 20 kg/s and the pressure distribution
along the nozzle axis p(x) (such that the exit Mach number is M = 2) are kept constant. As first
approximation, a uniform continuous distribution has been considered. Then, once defined the
input parameters range variability (a, b), the main statistics mean µ and variance σ have been
calculated, as follows:

µ = a+ b

2 (4.18)

σ2 = (b− a)2

12 (4.19)

Another quantity of interest for the statistical analysis is the coefficient of variation (CoV), cal-
culated as CoV = σ

µ .
A variation of ±3% of the reduced inlet total conditions around the nominal point (p0

r =
0.98, T 0

r = 1.13) has been preliminarily considered. This choice allows to avoid the gas-liquid
co-existence region of the state diagram during the gas expansion, which could implies issues
from the numerical point of view. Indeed, for the ORC application here considered, the nominal
operating conditions are close to the saturation curves and their perturbations have to be defined
in such a ways as to avoid multi-phase expansions.
By considering a second-order Lagrange interpolated chaos polynomial, the total number of col-
location points (and, then, of deterministic simulations) is PPCM = 9. The results are obtained
for the R245fa. Our goal is to investigate the sensitivity of the resulting geometry to the fluc-
tuating inlet conditions. The variability of the operating conditions induces a variability in the
output nozzle design. In this case, the prescribed variation of operating condition results only in
a slight modification of the nozzle geometry with respect to the one obtained at nominal operat-
ing conditions (see Fig. 4.4), with a maximum variation of only 0.01% of the exit-to-throat area
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Figure 4.3: Coefficient of Variation (a) and mean value (b) of the Mach number
for uniformly distributed input parameters (±3% of variation around the nominal
point).
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Figure 4.4: Variability of the nozzle shape geometry for uniformly distributed
input parameters (±3% of variation around the mean value).

ratio with respect to the mean value (nominal point). This shows that the MOC design is not
strongly affected by the variability of the reservoir conditions when the mass-flow ratio is kept
constant, which was expected for a perfect gas. For real gases, these variations lead essentially
to modifications of the nozzle shape in the throat region.
Due to this considerations, we should expect that the sensitivity to variations of the main flow
quantities, such as the Mach number, is very low. Indeed, inspection of top Fig. 4.3, displaying
the percent coefficient of variation of the Mach number, the peak of variability of the solution,
located close to the nozzle center-line, is of about 0.01%, which is negligible.
Bottom Fig. 4.3 shows the mean Mach number field applied to the mean nozzle shape and it is
very similar to the one obtained for the nominal operating conditions.
In order to investigate the effect of large perturbations of the inputs conditions while avoiding
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to cross two-phase regions during the expansion, the Beta continuous distribution is selected be-
cause of its higher versatility. Indeed, by setting up its parameters to generate a non-symmetrical
distribution, the Beta pdf can be advantageously used for increasing the inputs variability ob-
taining collocation points quite far from the saturation curves.
The four Beta parameters α̂, β̂, ā, b̄ (with α̂, β̂ the pdf shape parameters and ā, b̄ the lower and
upper base interval limits) are estimated and fitted on the imposed input mean and variance.
Now, a coefficient of variation of 8% respect to the nominal point (p0

r = 0.98, T 0
r = 1.13) is

considered. In Fig. 4.5 an increase of the geometric variability is shown. However, it remains
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Figure 4.5: Variability of the nozzle shape geometry for beta distributed input
parameters (8% Coefficient of Variation).
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Figure 4.6: Coefficient of Variation of the nozzle Mach number for beta distributed
input parameters (8% Coefficient of Variation).

still quite low with variations of the shape below 1%, even if the percent variation (see Fig. 4.6)
is one order higher than before. This effect could be related to a substantial insensitivity of the
MOC algorithm to input variations. Besides, the choice to impose a constant design massflow for
all the calculations implies to keep the exit-to-throat nozzle area ratio constant. Then, the only
variations for real gas applications are due to the termodynamic model and to the variability
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of the specific heats ratio inside the nozzle. This results only in slight variations of the nozzle
geometry in the accelerating part.

4.3.2 Sensitivity of supersonic nozzle guide vane designs
Here an analysis similar to the previous one has been carried out for the stator blade vane
geometry, by means of the coupling of the inviscid dense gas solver with the PCM algorithm.
The design is provided for the nominal operating conditions shown in Tab. 4.1. The mean flow
configuration is very similar to that provided in Section 3.2.4 and the same observations can
be addressed. Especially, the flow experiences dense gas effects, has shown in Fig. 3.10c. In

Table 4.1: Nominal nozzle operating conditions.

p0
r T 0

r G [kg/s-m] Me Fluid
0.98 1.13 20.0 2.06 R245fa

this case, the inlet total conditions are varied with a fixed outlet pressure, leading to mass-flow
variations. We then expect to observe a stronger impact of input uncertainties on the output
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Figure 4.7: Coefficient of Variation of Mach number for beta distributed input
parameters (8% Coefficient of Variation) for an inviscid stochastic calculation (a);
mean Mach number contour plot for beta distributed input parameters ((8% Coef-
ficient of Variation) for an inviscid stochastic calculation.

Table 4.2: Means and variations of nozzle guide vane performances (two uncer-
tainties case).

µηis µP [kW/m] CoVηis [%] CoVP [%]
0.942 195.12 0.38 6.88
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solution. The results are shown in Fig. 4.7a and Fig. 4.7b under the form of percent coefficient of
variation and mean Mach number, respectively. Nevertheless, significant variability of the Mach
number can be observed by analysing the coefficient of variation. Some zones of high uncertainty
are located in correspondence of the oblique shocks and wake departing from the trailing edge,
with contributions between 4% and 10%. The highest variability zone is located on the stagna-
tion point at the blade leading edge, with a contribution of about 16%.
Here an ANalysis Of VAriance (ANOVA) decomposition is proposed in order to carry out a sensi-
tivity analysis. The procedure is applied at the Mach number variance evolution and implements
the evaluation of the Sobol’ indices for each source of uncertainty (Tang et al., 2010) and aims
to identify the main contributors to the total variance estimated with the full-factorial PCM
algorithm. Even though the PCM represents a numerically expensive method, it is very accurate
(Congedo et al., 2011b) and is here implemented for obtaining a reference solution. Comparisons
with other more efficient uncertainty quantification methods are provided in the next Section.
In this problem five uncertain input parameters are taken into account: two operating condi-
tions (p0

r, T
0
r ) and three geometric factors (angle of attack βa, blade stagger angle θ and blade

thickness ε). In this set the thermodynamic parameters have been neglected in order to reduce
the parameter space and save computational cost. Indeed, as shown by other authors (Congedo
et al., 2011b), the thermodynamic model plays a marginal role in this kind of application. In
this way, by considering a second order Lagrange interpolated chaos polynomial, the total num-
ber of collocation points (and, then, of deterministic simulations) is PPCM = 35 = 243. The
results are obtained in the same hypotheses of the two-parameter calculations: uniformly dis-
tributed input parameters; operating conditions variability of 3% respect to the nominal point
(p0
r = 0.98, T 0

r = 1.13). It has been imposed a variability of 1% around the base nozzle guide vane
shape for the geometric parameters. These values agree with the common geometric tolerances
for turbomachinery applications.
In Fig. 4.8b the mean Mach number field is shown. It is qualitatively similar to those previ-
ously obtained with other simulations and no further considerations will be carried out. More
significant informations are provided by Fig. 4.8a, where the Mach number percent coefficient of
variation is shown. The average of the amplification factor given by the output-to-input variables
CoVM ratio, evaluated for the Mach number, is about 0.537 with a maximum value of 5.2. These
values state the existence of a global damping effect of the upstream uncertainties provided by
the nozzle blade vane system, with spot values higher than unity which, however, remain still
low.
Besides, even though the level of uncertainty for the operational input parameters is the same
of the uniform two-parameter case, the variability of the output reaches higher level which are
comparable with those obtained with the Beta distribution calculation. This behaviour is ob-
served also for the statistics of isentropic efficiency and power output. By comparing the data
provided by Tab. 4.3 with Tab. 4.2, it can be noticed that the mean performances are slightly
increased, however the percent variation with respect to the mean values is 4% and 10% higher
for ηis and P , respectively. These results could be explained by asserting that the introduction of
variations of the pressure ratio have increased the global level of uncertainty. To verify this claim
the ANOVA analysis can help to evaluate the contribution of the single uncertain parameters to
the global variance.
Here only first order Sobol’ indices are evaluated and the second order parameter interactions
are neglected. In Fig. 4.9a the five Sobol’ indices are shown as evaluated along center line. The
operating conditions (p0

r, T
0
r ), with higher importance of the inlet total pressure, and the geo-

metric parameters (βa, ε) give a substantial contribution to the final value of the Mach number
variance. On the other hand, the stagger angle θ seems to have a negligible action. In Fig. 4.9b
the percent contribution to the variability of the nozzle blade performances by means of isen-
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tropic efficiency and power output, in terms of Sobol’ indices for each input parameter, is shown.
The histogram confirms the importance of the operating conditions on the final results, along
with minor contributions given by the blade thickness and the angle of attach.
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Figure 4.8: Coefficient of Variation (a) and mean (b) of Mach number contour plot
for five uniformily distributed input parameters for an inviscid stochastic calculation
(a).

Table 4.3: Means and variations of nozzle guide vane performances (five uncer-
tainties case).

µηis µP [kW/m] CoVηis [%] CoVP [%]
0.950 196.86 4.94 17.54
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Figure 4.9: ANOVA of the contribution of the five input parameters to the variance
of the Mach number along the vane axis (a) and of the nozzle blade performances
in terms of efficiency and power output (b).
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4.4 Selection of an efficient uncertainty quantification method
for ORC applications

In this Section the assessment of different UQ methodologies for the stochastic analysis and ro-
bust design of Organic Rankine Cycle (ORC) turbines under multiple uncertainties is carried out.
Precisely, the capability of the state-of-the art UQ methods previously described is explored to
efficiently and accurately compute the average and standard deviation of the aerodynamic per-
formance of supersonic ORC turbine expanders, whose geometry is preliminarily designed by
means of the NODEC algorithm. Stochastic solutions provided by the adaptive SSC, BK, and
SOSM are compared to a baseline solution obtained by running a full-factorial PCM analysis.
Here, viscous CFD calculations are carried out to evaluate the statistics. The computational cost
required to estimate the average adiabatic efficiency, as well as its standard deviation, to stay
within a given tolerance level, are compared and conclusions are drawn about the more suitable
method for the robust design of ORC turbines.
Indeed, problems involving a high number of uncertain parameters suffer from the ”curse of
dimensionality” problem, since the number of code runs required to approximate the statisti-
cal moments of the probability density functions associated to the output quantities of interest
increases exponentially with the number of parameters. Besides, due to the complexity of the
geometry and computational cost associated with the ORC geometries and working fluids, no
advanced UQ method has been applied so far to these turbines and little work has been done on
uncertainty quantification in turbomachinery in general (Zou et al., 2015). A few applications of
non-intrusive, sparse grid Generalized Polynomial Chaos methods to simple ORC turbine simu-
lations exist (Hercus and Cinnella, 2011; Congedo et al., 2011b), generally under an inviscid flow
assumption. For somewhat more realistic applications such the ORC turbines considered here,
the overall computational cost of an UQ calculation becomes prohibitive. Computational cost
is especially crucial when the aim is using robust design techniques in an industrial context. To
overcome these limitations, the selection of efficient sampling techniques of the parameter space
is of vital importance. Then, the aim is to assess and compare very different UQ techniques, in
terms of accuracy and efficiency, for a realistic ORC nozzle configuration and to suggest useful
guidelines to engineers and designers for selecting an efficient UQ method for this kind of prob-
lems.
Firstly, the performances of the supersonic turbulent nozzle guide vane at nominal operating
conditions have been evaluated by means of the dense gas solver. By considering the highly de-
formed computational mesh and the requirement for a low CFL number (≈0.4) to get stability
and convergence, a deterministic run requires about 10 hours of CPU time on a single processor
machine. This high computational cost is required to reach the desired level of convergence of
the solution. Indeed, the rate of convergence is affected by the presence of viscous effects coupled
with the real-gas EOS and by the development of the supersonic flow along with the shock wave
pattern. Besides, the high cell skewness in the suction side region does not allow to use a high
CFL number, which is set to a value of νCFL = 0.4.
The RANS equations are solved on a structured C-shaped mesh with 384·128 cells (see Appendix
for details). The inlet total thermodynamic conditions, periodicity in peripheral direction and
a supersonic outlet are imposed as boundary conditions. As usual, the working fluid is R245fa
and the operating conditions are chosen close the saturation curves in the supercritical region,
characterized by significant dense gas effects. The nozzle guide vane geometry has been prelimi-
narily designed by means of the NODEC, with the inlet total reduced pressure and temperature
(p0
r, T

0
r ), the target massflow G and the Mach number Me at exit section as input conditions

(see Tab. 4.4). Differently from previous viscous calculations, here the effect of the trailing
edge thickness is taken into account in order to simulate a feasible stator blade vane. The flow
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Table 4.4: Nozzle main design parameters.

T0
r p0

r G Me

1.28 1.15 20 1.8

Table 4.5: Input uncertain parameters and their distributions.

T0
r p0

r ε β θ
CoV [%] 5 5 2 2 2

µ 1.15 1.28 1 0 0
pdf beta beta uniform uniform uniform

is expected to accelerate guided by the suction side wall and then decelerated by a weak oblique
shock departing from the trailing edge. Besides, the viscous wake at the exit should be a source
of high uncertainty.
In order to perform the UQ analysis, five uncertain input parameters, such as the total pressure
and temperature, the nozzle thickness ε and stagger angle θ, and the flow angle β, are taken into
account with their probability distributions, mean and variances (see Tab. 4.5). A full-factorial

x/ch

y
/c
h

0 0.5 1 1.5 2 2.5

0

1

2

µ
M

1.9

1.6

1.3

1

0.7

0.4

0.1

(a)

x/ch

y
/c
h

0 0.5 1 1.5 2 2.5

0

1

2

CoV
M
[%]

14

10

6

2

(b)

Figure 4.10: Mean (a) and Coefficient of Variation (b) of the Mach number for a
viscous supersonic nozzle blade vane evaluated by means of the full-factorial PCM
with five uncertainties. The wake is visible at the vane exit, which is source of high
levels of uncertainty.

analysis via PCM has been preliminarily carried out and the results are shown in Fig.4.10. By
considering a second order polynomial chaos expansion and the five uncertain parameters, the
number of deterministic calculations is PPCM = 243, requiring 3000 hours of total calculation
time. Second-order polynomial chaos was found to provide a good compromise between accuracy
and computational cost (Hercus and Cinnella, 2011). In Fig. 4.10a and 4.10b the distribution of
mean and percent CoV of the Mach number are shown. The CoV shows the presence of regions
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with high uncertainty close to the wall of the divergent part and to the trailing edge, which can
be addressed to the viscous effects and to the wake, with CoV ≈ 15%.
In a second step the random space parameters cardinality has been lowered by means of the
ANOVA in order to take into account only the most influential random parameters. The uncer-
tain parameter space is then reduced by retaining only the total conditions and blade thickness as
uncertain variables. The four candidate UQ models are applied to the reduced space in order to
compare their performances in terms of accuracy and calculation time requirements. By taking

Table 4.6: Performance analysis of the UQ models.

UQ model NCFD Polynomial order Time [h] Time/NCFD [h]
PCM 27 2 264 9.78
SSC 25 83%=3,17%=2 270 (2.1% due to LEC) 10.8
BK 30 - 296 9.87

SOSM 7 - 73 10.42

Figure 4.11: Mean and Coefficient of Variation of the blade vane isentropic effi-
ciency for the four UQ models.

Figure 4.12: Comparison of the different UQ models sampling strategy in terms
of maximum Kriging error.

into account the full-factorial PCM reduced to three uncertainties as the baseline solution, the
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comparison among the different models is provided in Fig. 4.11 under the form of mean (along
the blade wall) and variance (on the nozzle blade axis) of the isentropic efficiency. The mean
values provided by the SSC and B-K models show similar results, with variations below 2% with
respect to the PCM, whereas the SOSM provides an over-estimation of almost 15%. Also the
SOSM variance of the isentropic efficiency, which is affected by the first order approximation and
neglecting cross interactions, results in a value which differs of 7− 8% from the other models.
An analysis of the UQ models performances (see Tab. 4.6) in terms of calculation timecomputa-
tional costs is carried out. The comparison is provided by means of the CPU time normalised by
means of the number of samples for each UQ model. In this way, the additional time required
by the SSC and B-K models, for the LEC and MLE procedures respectively, can be distributed
among the samples and a more direct comparison with the PCM and SOSM can be performed.
The B-K provides a calculation time of 9.87 hours for each sample, which is slightly higher than
that required by the PCM. Both the SSC and SOSM provide higher computational time. The
SSC is affected by the computation of the LEC procedure, which is a bottleneck of the present
algorithm that required 2.1% of the total computational cost to be performed. On the other
hand, the SSC provides higher accuracy than the PCM, by means of a third order polynomial
reconstruction of the solution which is obtained on 83% of the total simplexes after refinement,
against the 2th global order of PCM. The SOSM has required an additional cost due to the
automatic recalculation of one sample which did not reach convergence.
By considering only the UQ models based on a polynomial reconstruction of the QoI, a compari-
son has been performed with the BK surrogate model in terms of the sampling strategy. For PCM
and SSC, the full-factorial and adaptive unstructured refined grids (in the three-dimensional pa-
rameter space (p0,T0,ε) have been used has training set of two new BK surrogates, respectively.
Besides, a classic Latin Hypercube Sampling strategy has been used to train a third surrogate.
The resulting Kriging variance as error criterion (see Eq. (4.14)) has been used as metric to
compare the three different sampling strategies.
The results have been compared in terms of maximum Kriging variance, as shown in Fig. 4.12.
The SSC provides the lower error, with a value slightly below the BK one. This analysis shows
that the random adaptive unstructured grid refinement is very accurate for this application, even
though the number of samples is the lower. This behaviour can be addressed to the accurate
discretisation of the parameter space by means of the adaptive Delaunay triangulation.
By discarding the SOSM method without cross derivatives and first order variance, which is suit-
able only for fast preliminary analyses, the BK model results to be a good compromise between
computational costs and accuracy, even if it results to be slightly expensive than the PCM.
Besides, the higher is the cardinality of the parameter space the higher is the advantage to use
the BK with respect to the PCM or SSC. For example, for nξ = 8 uncertain variables, the PCM
would require 6561 deterministic calculations against 80-100 samples for the BK.

4.5 Conclusions
In this Section, the uncertainty quantification framework has been presented with a focus on the
ORC turbines. Especially, the MOC design methodology for nozzle guide vanes, presented in the
preceding Sections, has been coupled with a full-factorial collocation method (PCM) which has
allowed to perform a sensitivity analysis of 2-D ORC supersonic nozzles to fluctuating operating
conditions. It has been shown that the design is quite insensitive to variation of 8% of the op-
erational parameters as pressure and temperature in the plenum. A more accurate UQ analysis
has been carried out for the design of the nozzle guide vanes, where also geometrical parameter
as blade thickness, stagger angle and flow incidence angle, have been taken into account. A vari-
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ability of 8% and 1% for the operating conditions and geometrical parameters, respectively, has
provided a good robustness of the baseline to the fluctuations of the design parameters, showing
a dumping effect of the output variance with respect to inlet values. An ANOVA analysis has
shown that the plenum conditions and the blade thickness, give the highest contribution to the
global variance. In this way, it has been possible to reduce the parameter space cardinality from
5 to 3, with advantages in terms of computational costs.
As second analysis, the MOC design has been tested with other three different UQ algorithm,
namely SSC, BK and SOSM, in order to carry out a comparison in terms of integral parameters,
such as the isentropic efficiency, and computational performances. As results, the surrogate-based
BK model has provided a compromise between accuracy and computational costs, if compared
with the PCM and SSC methods. The SOSM method, developed in a cheap form without consid-
eration of higher order terms in the variance calculation, has provided results very different from
the other three methods, thus resulting as a good approach only for preliminary considerations.
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Chapter 5

ROBUST OPTIMIZATION OF
SUPERSONIC ORC NOZZLE
GUIDE VANES

5.1 Introduction
The seek for high quality with minimum costs for the manufacture of industrial products is a de-
sirable requirement which is not always easily achievable. Typically, this problem is treated as the
engineer’s task to evaluate different designs by changing some parameters and to choose the best
solution depending on some production requirements. The process of finding the ”right” design
parameters according to one or more predefined criteria, is usually referred to as optimization
(Beyer and Sendhoff, 2007). The optimization process needs the definition of one or multiple
requirements (the objectives) to be minimized or maximized on a set of design variables (the
design parameters). An important aspect to take into account is that the choice of the objec-
tives implies the approximation of the real-world application by means of mathematical models.
Then, by considering the modelling errors, the search for the optimum could lead the user to
find a solution very different from the true one. Besides, even in the case of a perfect model
prediction, the realization of the predicted optimum design would be affected by manufacturing
and operative uncertainties (geometric tolerances, environmental conditions etc.), thus providing
very different performances during the prototype tests with respect to the predicted ones. In this
framework, by considering that a classical optimization design would be too sensitive to small
changes of the model inputs, the concept of robustness has to be introduced.
Robust optimization (RO) is a relatively recent idea developed by Taguchi on 1960s, with the
introduction of a new paradigm for the design of an industrial product. By citing Marczyk (Mar-
czyk, 2000), ”optimization is actually just the opposite of robustness”. This statement means
that classical and robust optimizations lead to different solutions which are sensitive or insensi-
tive to uncertain conditions, respectively. By following Taguchi (Taguchi, 1986), the ”father” of
RO, a design process can be divided into three stages:

• System design: determines the basic performance parameters of the product and its gen-
eral structure;

• Parameter design: optimizes the design parameters in order to meet the quality require-
ments;
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• Tolerance design: fine-tuning of the design parameters obtained in the second stage.

For the first time, Taguchi introduced the notion of noisy parameters in the second design stage.
In this way, a general quantity of interest y, classically defined as a function of the design vector
parameters x only, became also function of some noise factors ξi, representing the presence of
uncertainties, y = y(x, ξ). For the optimization process, a new objective function was defined,
the signal-to-noise measure. By minimising the latter, defined as a function of the variance with
respect to the true value of the quantity of interest, and maximising the quality function in the
design parameter space, the robust design was achieved. Taguchi implemented a statistical data
analysis based on a full-factorial exploration of the parameter space by means of a Design Of
Experiment (DOE) plan, which provided a set of vectors x. For each of these designs, a new set
of noise variables ξi=1,...,k was selected, thus generating at least k ·2N experiments (or numerical
simulations), if the minimum number of 2 points for each design space dimension is considered
and N elements for the vector x are taken into account.
Despite the successful implementation of this methodology for real world applications (Hwang
et al., 2001), it lacks of numerical feasibility for large dimension parameter spaces and moderate
number of uncertainties because of the curse of dimensionality due to the full-factorial approach.
To circumvent this problem, other methodologies have been developed during the years.
Two main classes of RO approaches can be distinguished:

• Deterministic approach : the robustness measures are calculated by means of direct and
explicit numerical techniques (see e.g. (Sundaresan et al., 1995));

• Randomized approach : the optimization process is applied directly to the noisy func-
tions and constraints by taking into account the probabilistic nature of the design inputs
and their uncertainties.

This thesis work relies with the second class of RO method and no further discussions are
provided about the first one. Especially, a subclass of the randomized approaches, namely the
meta-model approach, is here followed. Indeed, a surrogate model is constructed using a set of
design points x carefully chosen. The optimization of this model is then used as an estimate of
the real robust design.
In the framework of the RO without meta-model approach, Congedo et al. (2009) investigated
optimal shapes for dense gas turbines with BZT effects by using the NSGA genetic algorithm.
Cinnella and Hercus (2010) performed RO of airfoils subject to transonic dense gas flows by
coupling a PCM UQ method and the NSGA algorithm. Congedo et al. (2011a) also optimized
airfoils in dense gas flows by performing ANOVA analysis, whereas Hercus and Cinnella (2011)
carried out for the first time RO of a transonic turbine blade in the dense gas regime, by coupling
PCM and NSGA. Massive parallelisation was used to partly alleviate the curse of dimensionality.
Congedo et al. (2011b) compared RO based on full-factorial PCM and sparse grid methods,
showing that the latter may partly alleviate the computational cost problems while keeping
almost the same accuracy.
Recently, the randomized approach has gained interest with respect to other techniques, such
as the adjoint methods (see e.g. Pini et al. (2014) for application to supersonic turbomachinery
cascades, Papoutsis-Kiachagias et al. (2011) for the adjoint formulation of the solution of robust
design problems in aerodynamic shape optimization), thanks to its versatility and the possibility
to use the same algorithm for several applications.
Park and Lee (2005) performed robust optimizations on mathematical models by training a
Kriging surrogate of the real function and searching for the global optimum (in the Taguchi
sense) by means of the simulated annealing algorithm. In the turbomachinery optimization
framework, Harinck et al. (2005) proposed a global optimization approach by means of the
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Multiobjective Genetic Algorithm (MOGA-II) developed by Poloni et al. (1998) coupled with
an Artificial Neural Network used as the inexpensive predictive method for the optimization
of a radial turbine. Congedo et al. (2013) developed a surrogate-based multi-objective robust
optimization technique by reconstructing response surfaces for sensitivity indexes in the design
variables plan. The methodology was applied to an ORC cascade with the VKI LS-59 as baseline.
The seek for more efficient and accurate ways to get higher fidelity surrogate models has led
some authors to propose adaptive surrogate training methodologies. Recently, in the global
optimization framework, Rodriguez-Fernandez and Persico (2015) proposed an automatic design
of ORC supersonic turbines by means of a Kriging-based genetic optimization with surrogate
improvement during iterations. The enlargement of the surrogate training set with the best
individual of each generation, recomputed with the high fidelity model, led the solution very
close to the true optimum. This approach, however, breaks the scalability of the algorithm.
Persico (2016) performed optimization of centrifugal nozzles for ORC applications, by means of
a genetic algorithm coupled with a Kriging surrogate-based strategy. To improve the reliability
of the surrogate model, a Surrogate-Based Global Optimization approach was applied.
In general, the cost of RO increases quickly with the number of uncertain parameters and design
variables. This is particularly problematic for ORC applications, due to the high computational
cost of the CFD simulations (especially, if accurate EOS are used, and the number of uncertain
parameters to be accounted for (thermodynamic parameters, operating conditions, geometrical
tolerances etc) is high).
In this Section, a RO of a supersonic ORC nozzle guide vane is performed with the aim to
minimize the variance and maximize the mean value of the isentropic efficiency. An original global
optimization methodology has been developed in order to overcome the numerical issues typical
of CFD dense gas calculations, which affect convergence and time calculation. A Non-dominated
Sorted Genetic Algorithm (NSGA) (Deb et al., 2002) is coupled with a non-intrusive Uncertainty
Quantification (UQ) model which provides the statistics (mean and variance). The UQ subloop
is based on the Bayesian-Kriging surrogate trained with the system response to the uncertain
variables. As shown in the previous Section, for ORC applications it is possible to consider
only operational (total pressure and temperature) and geometrical (blade thickness) parameters
as the main contributors to the total variance of the system output and, then, to reduce the
dimensions of the parameter space to 3. The nozzle guide vane baseline is designed by means
of the NODEC software and a Free Form Deformation (FFD) approach, which allows to easily
handle any kind of shape independently from the geometrical complexity, is applied to generate a
variety of nozzle designs. The resulting parametrization of the nozzle guide vane shape depends
on a relatively low number of parameters. The evaluation of the isentropic efficiency is carried out
by means of 2D RANS simulations. Given the computational cost of viscous CFD simulations,
an original approach to speed-up the RO by training a second surrogate Kriging model for the
multi-objective fitness function is here developed and tested. To do so, an adaptive sample infill
strategy based on the Multi Objective Expected Improvement (MOEI) is implemented in order
to improve the surrogate accuracy during the genetic optimization, with a minimal additional
cost.

5.2 Shape parametrization: FFD method
The FFD methods are widely used in computer graphics to model 3D objects. The term ”free-
form” designates: ”whatever the object is, whatever its description and topology, we are able to
deform it” (Raffin, 2013). In this sense, these methods are useful when the geometrical complexity
is high and a low number of control parameters are required to deform the object. Besides, the
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use of a combination of Bernstein polynomials allows to take easily into account geometrical
singularities, control smoothness and represent the baseline exactly. This approach has been
successfully applied in the past to airfoil optimization in external Aerodynamics (Duvigneau,
2007). The FFD is performed by parametrizing the space surrounding the object of interest
(the blade, in our case). A lattice is created, whose node coordinates represent the control
points and a deformation space is defined by means of a trivariate (bivariate for 2D case) tensor
product Bernstein polynomial. For the 2D case, a baseline point X can be described in the
lattice reference system as (Sederberg and Parry, 1986):

X = X0 + sS + tT (5.1)

where the (s,t) lattice coordinates are limited in the [0,1] intervals and can be related to the
baseline reference system as s = T×U(X−X0)

T×U·S , t = S×U(X−X0)
S×U·T , where U is the direction normal

to the object plane. Given a (l × m) lattice (where l and m are the number of interval along
the horizontal and vertical direction, respectively) the node locations (i.e. the control points)
are calculated as Pij = X0 + i

lS + j
mT. Then, once the (s,t) coordinates are calculated and the

deformation specified by the new Pij position, the deformed location of a point X will be given
by:

XFFD =
l∑
i=0

(
l
i

)
(1− s)l−isi

 m∑
j=0

(
m
j

)
(1− t)m−jtjPij

 (5.2)

An application of the above method to the parametrization of an ORC nozzle guide vane is
illustrated in Fig. 5.1a for a lattice with 12 nodes. The four corners are fixed and only vertical
shifts are allowed, leading 8 control parameters, which are the design variables of the subsequent
optimization step.
If compared to a classical parametrization by means of Bezier’s curves, the FFD method shows its
great advantages. In Fig. 5.1b the nozzle blade pressure side is used as base-line and parametrized
by means of a 8th and 30th order Bezier’s curves. The control point coordinates have been calcu-
lated by solving a minimum squares problem which minimize the error between the approximated
curve and the base shape. It can be seen that, in order to have an adequate approximation of the
pressure side, a high order polynomial curve is required with 30 control points. Besides, during
the optimization the Bezier’s curves could provide highly deformed shapes which would result
in an unfeasible CFD calculation with loss of convergence time of the process. Differently, the
FFD avoids all these issues thanks to its intrinsic properties described above.
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Figure 5.1: Application of FFD to a supersonic nozzle blade for a l × m lattice
(l = 6,m = 1) with 8 control parameters. (a); classical parametrization by means
of Bezier’s curves of the nozzle blade pressure side (b).

126



Robust Optimization strategy

5.3 Robust Optimization strategy
The RO is carried out by coupling the NSGA with the Kriging-based UQ method. The ob-
jective functions are the statistical expectancy and variance of a QoI, here the isentropic effi-
ciency. The NSGA is then used to construct a Pareto front of optimal solutions to the prob-
lem ”find a shape for which the expectation of the QoI is maximal and its variance is minimal”.
A straightforward coupling of the NSGA with UQ solver is overly costly for the present applica-
tion, due to the high number of function evaluations, each one involving a CFD simulation. If we
consider a Kriging surrogate trained with 10ndim samples, where ndim is the number of uncertain
variables, and a population of 30 individuals in each genetic generation, it results that 300ndim
CFD calculations have to be performed for a single genetic step. To reduce the computational
cost, a second Kriging surrogate has been developed to predict the response of the multi-objective
fitness function, i.e. the mean and variance of the QoI, to the design variables. Since a single
output Kriging model is used, the multi-output response is obtained by training two independent
surrogates, one for each fitness component. Fig. 5.2 presents a flow chart of the RO algorithm.
The first step consists of a Design Of Experiments (DOE) plan based on Latin Hypercube Sam-

DOE

UQ

Multioutput
Kriging training NSGA Adaptive infill

sampling?

Surrogate retraining
and improvement

END

NO

YES

Figure 5.2: Flow chart of the RO algorithm.

pling (LHS) of the design space. A large training set is sampled with N > 10ndim samples and,
after the evaluation of mean and variance through the UQ, the multi-output Kriging surrogate
is trained. This is then used in the genetic algorithm to evaluate the bi-objective fitness func-
tion. A convergence criterion is used by comparing the fitness average of the current individuals
with that of the best individuals and stopping the optimization process if a tolerance of 0.001 is
reached. Also a maximum number of generation is imposed in order to avoid waste of calculation
time if convergence is not reached. The cost of the surrogate RO is reduced to 10npar10ndim
CFD calculations, with respect to the (ngennindividuals10ndim) required by the straightforward
RO, where ngen, nindividuals and npar are the number of genetic generations, individuals and
design parameters, respectively. Since the Kriging surrogate automatically provides a surrogate
accuracy criterion through the Kriging error estimate, a sample infill strategy can be used to
improve the model during the NSGA loop. However, an approach based only on the mean value
of the Kriging error can mislead the improvement procedure. This is avoided through a more
sophisticated method, described in the next Section.
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5.3.1 Adaptive sample infill strategy
The adaptive infill sampling consists of adding to the initial DOE new samples selected during
the NSGA iteration, and to retrain the Kriging model in order to improve its accuracy (see Fig.
5.2). A possible approach consists in selecting some individuals from the Pareto front according
to performances criteria. Unfortunately, this method does not ensure to explore the design
parameter space in such a way that the direction of the optimization process is preserved. Besides,
the number of samples chosen among the individuals of the Pareto front influences the Kriging
accuracy. To overcome these issues, a more efficient approach is to exploit the probabilistic
nature of the surrogate error estimate to adapt it in regions where the expected improvement
(EI) of the global minimum is maximised (Dwight et al., 2012; Keane, 2006). The EI quantifies
the probability to improve the surrogate on the design space parameters and, then, a global
optimization process of the EI function provides the most suitable location for the new surrogate
training. The analytic approach followed by Keane (2006) has been implemented in the RO
presented in this thesis and it is described below.

Figure 5.3: Probability of improvement and expected improvement for one-
dimensional test function: solid line, true function fe(x); x , sample points; dashed
line, Kriging surrogate. Figure extracted from (Keane, 2006).

In order to visualize the effect of the EI optimization, it is useful to consider a one-dimensional
function fe(x) which is reconstructed by means of the Kriging surrogate, based on an initial
training set of N0 samples (see Fig. 5.3). In the optimization framework, the aim is to minimize
the prediction ŷ(x) which, since the Kriging model is a Gaussian process, is described by a normal
distribution. Then, by defining the probability of improvement P [I] as the probability that a new
sample x(N0+1) provides a lower function response y(x(N0+1)) with respect to the current best
value fmine (x), the following formulation holds:

P [I] = Φ
[
fmine (x)− µ(xN0+1)

σ(xN0+1)

]
(5.3)

where Φ is the normalized Gaussian cumulate function, I the magnitude of improvement, µ and
σ the mean and variance of the Kriging prediction, respectively. The value of P [I] is represented
by the hatched area in Fig. 5.3 and can be interpreted as an indicator of how far from the true
optimum is the current surrogate model. Then, by supposing to carry out a global maximization
of this area in the design space, it should be possible to find the point with the higher probability
to improve the surrogate. However, P [I] has just the properties of a probability distribution and,
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in order to have a quantity to maximise, it is convenient to evaluate its expectancy E[I(xN0+1)]
(where I(x(N0+1)) = max[fmine (x)− y(x(N0+1)), 0]), as:

E[I(x(N0+1))] = [fmine (x)− ŷ(x(N0+1))] ·Φ
[
fmine (x)− ŷ(x(N0+1))

σ(x(N0+1))

]
+

σ(x(N0+1))φ
[
fmine (x)− ŷ(x(N0+1))

σ(x(N0+1))

] (5.4)

where φ is the normalized Gaussian density function. The preceding quantity is the first moment
of the hatched area of Fig. 5.3 and is referred-to as expected improvement. It gives a measure
of how large an improvement will be achieved and, then, can be used to perform a global opti-
mization in order to evaluate the best point for updating the surrogate.
Since the RO is a multi-objective optimization process, the EI function will be a surface on a
hyper-dimensional parameter space, and a more complicated formulation is implemented with
respect to Eq. (5.4). A Multi Objective Expected Improvement (MOEI) approach is here carried
out and the main features of this approach are explained below.
In the first step of the optimization process, a DOE is carried out in order to construct the
surrogate, which now provides two outputs, ŷ1(x) and ŷ2(x) (mean and variance in the RO
case), where x is the design variable on a ndim-dimensional space. In the first iteration of the
optimizer, the first set of M0 non-dominated individuals f∗1,2(x(i))i=1,...,M0 can be detected on
the true Pareto front. In Fig. 5.4a this step is depicted and the hatched area represents the set
of possible improvement individuals which could dominate the members of the current Pareto
front.
Given the initial training set, a two-output Kriging surrogate is built on the values of the two
objective functions (mean and variance of the QoI). These values are considered as uncorrelated
and, then, the model prediction is constructed as a 2-D Gaussian pdf of the form:

φ(ŷ1, ŷ2) = 1
σ1(x)

√
2π
exp

{
−1

2
[ŷ1 − µ1(x)]2

σ2
1(x)

}
· 1
σ2(x)

√
2π
exp

{
−1

2
[ŷ2 − µ2(x)]2

σ2
2(x))

}
(5.5)

where ŷi=1,2 are the predictions of the QoI, whereas µi=1,2 and σi=1,2 are the Kriging-surrogate
mean and variance.
Given a new design point to add at the existing training set, for a two-objective optimization it
can improve the surrogate in the direction of the first fitness, the second fitness or both (see Fig.
5.4b). In terms of probability measure, the probability of improvement of a new sample xN0+1

with respect to the Pareto front individuals is:

P [I] = P [ŷ1(x(N0+1)) ≤ f∗1e(x) ∪ ŷ2(x(N0+1)) ≤ f∗2e(x)] (5.6)

which can be calculated by integrating the volume under the joint pdf of Eq. (5.5), i.e. integrating
over the hatched area of Fig. 5.4a. By dividing this area in the contributions of the left, center
and right part with respect to the Pareto front, the integral is written as:

P [I] =
∫ f

∗(1)
1e

−∞

∫ ∞
−∞

φ(ŷ2, ŷ1)dŷ2dŷ1+

M0−1∑
i=1

∫ f
∗(i+1)
1e

f
(i)
1e

∫ f
∗(i)
2e

−∞
φ(ŷ2, ŷ1)dŷ2dŷ1+

∫ ∞
f

∗(M0)
1e

∫ f
∗(M0)
2e

−∞
φ(ŷ2, ŷ1)dŷ2dŷ1

(5.7)
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(a) (b)

(c)

Figure 5.4: Example of Pareto fronts of a two-objective optimization process.
(a) Pareto front with augmenting (shaded area) and dominating (hatched area)
designs; (b) possibilities of improvement during optimization; (c) centroid of prob-
ability integral and moment arm used for calculating the multi-objective expected
improvement. Figures extracted from (Keane, 2006).

In order to get an improvement metric, as for the one-dimension function cited above, the first
moment of the previous pdf integral, called Multi-Objective Expected Improvement moE[I], is
evaluated. The arm of this moment can be calculated as the shortest euclidean distance of the
front members from the centroid of the volume integral, Eq. (5.7), as dMOEI = moE[I]/P [I].
Then, by evaluating dMOEI , the improvement metric moE[I] can be determined.
By following the scheme of Fig. 5.4c, the centroid coordinates (¯̂y1(x(N0+1)),¯̂y2(x(N0+1))) of the
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current integral volume after adding a new sample x(N0+1) at the training set, are calculated as:

¯̂yj(x(N0+1)) =[
∫ f

∗(1)
1e

−∞

∫ ∞
−∞

ŷjφ(ŷ1, ŷ2)dŷ1dŷ2+

M0−1∑
i=1

∫ f
∗(i+1)
1e

f
(i)
1e

∫ f
∗(i)
2e

−∞
ŷjφ(ŷ1, ŷ2)dŷ1dŷ2+

∫ ∞
f

∗(M0)
1e

∫ f
∗(M0)
2e

−∞
ŷjφ(ŷ1, ŷ2)dŷ1dŷ2 ] /P [I]

(5.8)

with j = 1, 2. The integrals of Eq. (5.7) and Eq. (5.8) can be analytically calculated (see Keane
(2006) for details).
The distance of a Pareto front member from the centroid is the euclidean distance dMOEI =√[¯̂y1(x(N0+1))− f∗1e(x∗)

]2 +
[¯̂y2(x(N0+1))− f∗2e(x∗)

]2, where x∗ is the design which provides the
front member closest to the centroid. Finally, the expected improvement for a multi-objective
optimization is given by:

moE[I] = P [I] · dMOEI (5.9)

If a global optimization is performed by maximisation of the functional above in the design
parameter space, the sample which would provide the best improvement for the multi-output
surrogate can be evaluated. This step is performed by means of the stochastic differential evo-
lution algorithm (Storn and Price, 1997). Once the best MOEI is found in the design space,
its fitness is calculated using the UQ solver and added to the training set. The accuracy of
the surrogate is rapidly improved with a few MOEI evaluations, then it is possible to have
accurate predictions of the Pareto fronts by using a number of MOEI (i.e. UQ) evaluations
nMOEI << ngen, as shown in the next Section. The cost of the RO based on the adaptive infill
strategy is of (10npar + nMOEI )10ndim CFD calculations.

5.3.2 Parallelisation of the RO on cluster
The RO calculations have been performed by means of parallelisation on the high-performance
supercomputer OCCIGEN, the CINES machine equipped with 50544 cores, divided into 2106
nodes, each one composed by 2 processors Intel 12-Cores (E5-2690 at 2.6 GHz). The algorithm is
characterised by two parallelisation steps for one NSGA generation: a first step for the calculation
of the individuals and a second step for the UQ samples of each individual. The parallelisation
of the RO algorithm has been performed by means of the ParallelPython utility.
A disadvantage of the RO with surrogate equipped with MOEI sampling is that the global
optimization step for the MOEI maximisation is performed on a single core of the machine and
the global parallelisation process is temporary blocked. Then, the MOEI procedure can not be
applied at each generation of the genetic algorithm, but only for a pre-defined number of genetic
iterations.

5.4 Numerical verifications
In this Section the MOEI procedure is first tested on the analytic multi-dimensional Kursawe
function in order to show the feasibility and accuracy of the adaptive infill strategy. Then, the
surrogate-based RO algorithm is applied to a supersonic 1D inviscid nozzle with real gas flow,
for which it is possible to carry out a reference CFD-based RO.
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5.4.1 Surrogate-based optimization of the multi-dimensional Kursawe
function

The adaptive sampling strategy through MOEI is validated against the analytic Kursawe func-
tion, of the form F = (f1(x), f2(x)), where f1 and f2 are expressed as:

f1(x) =
ndim−1∑
i=1

−10e−0.2
√
x2
i
+x2

i+1

f2(x) =
ndim∑
i=1

(|xi|0.8 + 5 sin(x3
i ))

where −5 < xi < 5 for i = 1, ..., ndim.
This is a multi-dimensional function with two outputs, widely used for global optimization tests
in the form of multi-objective minimization problem. Here the two-dimensional form is used to
perform the cycle shown in Fig. 5.2, without the UQ loop. The Kriging surrogate is trained on an
initial LHS training set of 20 samples and used to perform the NSGA. Two calculations, with and
without the activation of the MOEI, are carried-out and compared with the exact Pareto front.
The maximum number of individuals and generations are set to 50 and 60, respectively, and the
MOEI is activated every 20 generations. As a consequence, the Kriging surrogate is updated
with only 3 new samples during the genetic loop. Figure 5.5a compares the exact Pareto front
with those provided by the Kriging surrogates with and without MOEI. In the first case the
discrepancy is high, whereas the MOEI front is well predicted. To verify the exact position of
the two Kriging surrogates respect to the exact Pareto front, the fitness of individuals laying on
the approximate Pareto fronts is recalculated with the Kursawe function. Fig. 5.5b shows that
the MOEI strategy greatly improves accuracy compared to Kriging without adaptive sampling.
Other tests have been performed by increasing the space parameter up to 8 dimensions, showing
that the MOEI suffers of a curse of dimensionality problem. Indeed the higher is the cardinality,
the higher are the number of MOEI calculations required to reach good results by providing
more samples to the updated training set. Despite of these issues, the total cost of the algorithm
in terms of function evaluations remains much lower than a high-fidelity RO. The results for the
8-D Kursawe function are shown in Fig. 5.6, where the exact Pareto front is compared with
the predicted one by means of the MOEI. The best individuals have been recalculated with the
exact function. To reach these results, 9 MOEI evaluations have been performed and 9 additional
points have been added to the surrogate training set.

5.4.2 RO of a quasi-1D supersonic nozzle
The RO methodology described in the previous section is first applied to a supersonic quasi-1D
inviscid nozzle. The flow is modelled by the Euler equations supplemented by the PRSV EOS.
More details about the solver can be found in (Pini and Cinnella, 2012). The working fluid is
MDM and the uncertain parameters in terms of mean, percent coefficient of variation (CoV)
and probability density function (pdf) are shown in Tab. 5.1. Three uncertainties are taken
into account: two operational (total pressure and temperature p0 ,T0 ) and one geometrical (wall
nozzle displacement ε) parameters. The nominal operating conditions are normalized with the
critical values and are chosen such that a normal shock is set in the nozzle divergent. The
chosen CoV ensures that a shock is always present in the divergent, while allowing a significant
variation of the shock position. The latter is treated a random QoI, whose mean and variance
are estimated through UQ. The RO problem is defined as follows:
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min
α
|µ(xs)− µ(xs)target| ,min

α

∣∣σ(xs)2 − σ(xs)2
target

∣∣ (5.10)

where α is the vector of design parameters, xs the shock position normalised with the nozzle
length, µtarget = 0.7 and σ2

target = 1.0× 10−4 two target values to which to converge during the
optimization (see Fig. 5.7). The nozzle geometry is deformed by means of the FFD and npar = 8
control parameters are defined by a 6 × 1 lattice around the nozzle with the four corners blocked
and only vertical shifts are allowed. The accuracy of the Kriging-based UQ solver is first assessed
by means of a convergence study. The QoI is the shock location and the maximum Kriging error
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Figure 5.7: Scheme of the quasi-1D nozzle optimization problem.

Table 5.1: Uncertain variables for the 1D supersonic nozzle. Total pressure and
temperature are normalised respect to the critical values, ε is the wall nozzle dis-
placement.

Parameter Mean CoV% pdf
p0 0.212 15% UNIFORM
T0 0.0709 15% UNIFORM
ε 1 1% UNIFORM

estimate εK,max is computed as a function of the number of samples N . The results, displayed
in Figs. 5.8a,5.8b, show that after 30 samples the Kriging error is below 6 × 10−5 and small
variations of mean and and variance are observed. Then, the UQ-Kriging with N = 30 is coupled
to the NSGA. The results are compared with those of a surrogate-based optimization, with and
without MOEI. The initial surrogate is based on a LHS training set of 10npar = 80 samples.
The results of the RO are shown in Figs. 5.9a,5.9b, where f1 =

∣∣σ(xs)2 − σ(xs)2
target

∣∣ and
f2 = |µ(xs)− µ(xs)target|. The first figure compares CFD-based and surrogate-based Pareto
fronts. The ordinary Kriging surrogate, without MOEI, fails to predicts adequately the high-
fidelity Pareto front. On the other hand, by adaptively adding only 3 samples with MOEI (i.e.
one every 5 generations of the NSGA), the prediction is more accurate. To verify if the individuals
of the surrogate-based Pareto front with MOEI lie on the high-fidelity one, the fitness function
of the non-dominated individuals is recalculated with the CFD solver. Fig. 5.9b shows an even
better agreement between the two fronts, which proves the accuracy and efficiency of the MOEI
strategy for the present test case.
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Figure 5.8: Maximum Kriging error estimate convergence plot as function of the
number of samples. (a); Variance and mean convergence plot as function of the
number of samples (b).
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Figure 5.9: Pareto fronts comparison between high-fidelity CFD RO and Kriging
surrogate (with and without MOEI) RO. (a); Pareto individuals recalculation for
the Kriging surrogate with MOEI and comparison with CFD (b).

5.5 Application: RO of ORC nozzle guide vanes
A deterministic optimization is first performed for the baseline geometry of Fig. 5.1, obtained by
applying the accurate MOC based methodology developed in this thesis work. The viscous CFD
calculations are carried out on a structured 384×128 mesh, for which y+ < 1. Grid convergence
is checked for the wall pressure distribution (see the grid check analysis in the Appendix for
further details). The maximum deformations allowed with the FFD are set to 20% in the lattice
reference system, and 8 control points are taken into account, as shown in Fig. 5.1. In this way
the axial chord is kept constant whereas the shape can change freely. The number of control
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points has been chosen as compromise between the variety of nozzle guide vane geometries pro-
vided by the parametrization, and the computational cost of the optimization loop. In Tab. 5.2
the nominal design parameters are shown.

Table 5.2: Nominal nozzle parameters. Total pressure and temperature are nor-
malised with respect to the critical values whereas β is the throat-to-exit static
pressure ratio.

Fluid p0
r T 0

r β
R245FA 1.1 0.98 5
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Figure 5.10: Mach contour plots for the baseline design (a); the deterministically
optimized blade (b); and the robustly optimized blade (individual #A, from Fig.
5.12) (c).

In Figs. 5.10a,5.10b the Mach contour plots are shown for baseline and optimized geometry,
respectively. In the first case, the presence of a weak oblique shock at the trailing edge leads
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the Mach number from 2.37 to 2.31. The optimized blade is narrower and exhibits significantly
different shapes at the leading edge. This shows that the MOC procedure provides already a
satisfactory design for the divergent part, whereas the convergent benefits from CFD optimiza-
tion. The throat area per unit depth is 9% higher, leading to a slightly higher massflow rate.
The expansion pressure ratio through the nozzle is unchanged, and the exit Mach number is 2.1
for both cases. The optimized shape still exhibits oblique shocks on the trailing edge, but with
lower upstream Mach number, so that shocks are weaker. The stagger angle is slightly changed
from 72◦ to 71.4◦ and the viscous wake and the separation zone on the suction side, are reduced.
These improves the isentropic efficiency from 0.879 to 0.962 (8%).
Afterwards, a RO of the baseline blade is also carried out by maximizing mean µηis and mini-
mizing variance σ2

ηis of the isentropic efficiency and using the multi-objective Kriging surrogate
with MOEI adaptive sampling. Total inlet conditions (p0

r ,T 0
r ) and blade thickness ε are set as

uncertain variables, with the distribution shown in Tab. 5.3. The choice of beta pdfs, with a
proper calculation of the shape parameters based on the known mean and standard deviation,
allows to avoid expansions in the liquid-vapor region.
To evaluate the objective function, the UQ Kriging with 24 samples is used. This choice is re-
lated to the need for exploiting in an efficient way the parallelisation of the OCCIGEN machine,
which is characterised by 24 cores for each node. In order to assess the accuracy of the Kriging
trained with 24 samples (instead of 30), an UQ resolution analysis has been carried out for the
nozzle guide vane baseline, by increasing the number of samples. In Fig. 5.11, the hystory of
convergence for the statistics of the QoI (isentropic efficiency) shows that with 24 samples the
mean is almost already converged, whereas the variance shows a difference of 4.6% with respect
to calculation with 58 samples.
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Figure 5.11: Convergence of the UQ Kriging surrogate statistics for the nozzle
guide vane baseline.

The optimization converges after 60 generations with 3 samples adaptively added each 20 gen-
erations. Fig. 5.12a shows the Pareto front. The results are compared with stochastic solutions
obtained for the baseline design and the deterministically optimized blade by running UQ with
the BK (30 samples).
In Fig. 5.12c a comparison between the full CFD RO and the Kriging-based MOEI optimiza-
tion is shown, in terms of Pareto fronts, after 60 generations. The predicted front shows good
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agreement with the high fidelity calculations. Slight differences can be noticed in the region of
the higher mean values, where some additional individuals are computed by the full-CFD RO.
The lack of prediction of these design points by the surrogate can be addressed to the different
convergence rate of the two methods and the consequent evaluation of further non-dominated
individuals by the high fidelity model. Indeed, the latter needs 10 generations less than the
surrogate model to reach convergence and further iterations of the optimizer have generated new
non-dominated individuals which, however, are localised close to the predicted front. Besides,
the recalculated samples of the Pareto front computed by the NSGA-Kriging with MOEI surface
method are in good agreement with those calculated by using CFD only (no Kriging surrogate
for the optimization).
In Fig. 5.10c the contour plot of the mean Mach number distribution is shown for the indi-
vidual #A, selected from the Pareto front, which shows the higher mean efficiency of the front
µηis,#A = 0.872. If compared to the baseline it can be noticed again the reduction of the viscous
wake and of the oblique shocks strength, however these improvements are less effective on the
mean isentropic efficiency with respect to the deterministic optimization, because of the conflict
between mean and variance to be maximised and minimised, respectively. In order to evaluate
the effect of the robust optimization, the variation of performances with respect to the mean
values needs to be analysed and compared with the other designs. In Fig. 5.13 the coefficient
of variation (in percent) of the Mach number is shown for the baseline (5.13a), deterministically
(5.13b) and robustly (5.13c) optimized blade shapes. The baseline provides high levels of un-
certainty localised within the turbulent boundary layer and the viscous wake, with maximum
variations of 8%. The deterministic optimization provides a shape with high mean performance,
due to the minimisation of the viscous layers, but the design results in low robustness with high
variance close to the trailing edge, corresponding to a maximum variation of 7.4%. The robust
design is able to reduce this level of uncertainty by lowering the maximum variation of Mach
number by 2%.
The stochastic performances of the different designs are also represented for comparison in Tab.
5.5 and Fig. 5.12a. The deterministic optimization provides a mean value of the isentropic
efficiency µηis,det = 0.946, i.e. slightly lower than the deterministic value ηis,det = 0.962 with
a variation of 1.5%. The higher variance compared to the robust individuals confirms that the
deterministic optimization provides a less robust blade, in spite of the high performances. The
stochastic performance of the baseline blade shows that the RO provides a 6% average increase
of the isentropic efficiency and a 1% decrease of the standard deviation. Also for the other pa-
rameters, as the Carnot factor ΘC and the specific power output, is observed an improvement
with both the deterministic and robust optimization in terms of mean values, whereas the robust
design provides a reduction by 2% and 1.3% in terms of variation of the Carnot factor and power
output with respect to the baseline. The increased ΘC indicates a better exploitation of the
energy source thanks to the optimization. The massflow shows an increase of the mean value
through the optimization due to the throat area variation, whereas the coefficient of variation is
not changed significantly.
In Fig. 5.12b the robustly optimized shape, selected on the Pareto front (horizontal black arrow
in Fig. 5.12a), is compared with the baseline and deterministic optimized ones. Once again, the
more significant geometrical variations are observed in the subsonic zone.
As described in Section 5.3.2, the calculations have been performed in parallel on the OCCIGEN
(CINES) cluster by exploiting the parallel nature of the NSGA algorithm. At the current gener-
ation of the genetic algorithm, each individual is a UQ computation by means of the BK with 24
samples, thus implying a new set of parallel processes (20 for the present application). In order
to improve the convergence rate of the CFD solver, the converged solution of the baseline has
been used as starting solution for each individual, thus reducing the CPU time for one sample to
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3 hours. By considering the number of generations (60), of individuals (20) and of UQ samples
(24), the number of function evaluations and the related wall-clock time for the computation is
that reported in Tab. 5.5. By comparing the full-CFD with the surrogate-based RO in terms
of computational costs, for the present application the second approach allowed to reduce by 14
times the wall-clock time required to perform a complete RO up to convergence, and by 1 order
magnitude the number of functional evaluations.
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Figure 5.12: Pareto front of the ORC nozzle RO. Horizontal arrow: design com-
pared with the deterministic optimization. (a); Comparison among baseline and
deterministically and robustly optimized shapes. The robust shape is selected from
the center zone of the Pareto front (horizontal arrow in (a)) (b); Pareto front com-
parison between full CFD (red points) and Kriging-surrogate with MOEI (blue
squares) RO. The green diamonds corresponds to the Kriging-MOEI Pareto indi-
viduals (marked with green square) recomputed with Kriging UQ. The individual
marked with #A is used for further comparisons with the other designs (c).
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Figure 5.13: Mach percent variation contour plots of: Baseline (a); Deterministi-
cally optimized shape (b); Robustly optimized shape (individual #A, see Fig. 5.12)
(c).

Table 5.3: Uncertain variables for the ORC supersonic nozzle. Total pressure and
temperature are normalised respect to the critical values, ε is the blade thickness.

Parameter Mean CoV% pdf
p0 0.98 8% BETA
T0 1.13 8% BETA
ε 1 1% UNIFORM
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Table 5.4: Computational costs comparison between the full CFD-based and the
surrogate-based with MOEI RO.

Full CFD-based RO Krig./MOEI RO
No. function eval. 28800 1992
Wall-clock time [h] 86400 6000

Table 5.5: Summary of means and variances for the blade vane performances,
Carnot factor ΘC , specific power per depth unit and massflow per depth unit for the
three nozzle guide vane shapes: baseline, deterministically optimized and robustly
optimized (individual #A of Fig. 5.12).

OPT. CASE ηis ΘC P [kW/(kg ·m)] G [kg/(s ·m)]
BASELINE

µ 0.796 0.376 1.6505 0.365
CoV [%] 2.6 5.3 7.14 4.9

DET. OPT.
µ 0.942 0.398 1.8452 0.419

CoV [%] 1.9 4.7 6.42 4.8
RO #A

µ 0.88 0.387 1.808 0.397
CoV [%] 1.3 3.2 5.84 4.8

5.6 Conclusions
A RO has been carried out for an ORC supersonic nozzle with isentropic efficiency as QoI.
The efficiency of the optimization procedure with the NSGA has been improved by means of a
Kriging surrogate model coupled with the MOEI technique for an adaptive sampling strategy.
The accuracy of the algorithm has been assessed by comparing the Pareto front with the high
fidelity calculation provided by an expensive full CFD RO process, showing good approximation
of the predicted best individuals. The results have been also compared with those obtained
from a deterministic optimization, showing that the deterministic shape provides a less robust
shape. Indeed, the deterministic design exhibits a not negligible sensitivity to the operational and
geometrical uncertain variable variations. The RO provides a good compromise between average
performance and stability. Besides, the calculation performances of the RO methodology are
promising and able to handle the intrinsic high computational cost of dense gas calculations
by reducing the number of CFD simulations. Finally, results show that the initial design of the
nozzle divergent, based on MOC along with boundary layer corrections, is little modified by both
the robust and deterministic optimization, which affect essentially the design of subsonic part.
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CONCLUSIONS AND
PERSPECTIVES

In this thesis, a numerical analysis of supersonic organic Rankine cycle (ORC) turbines has been
carried out. The development of a small-scale turbine with a high aerodynamic load and a low
number of stages, is a solution nowadays followed by several enterprises which would provide a
feasible and efficient ORC turbine for public transportation purposes. In the framework of the
project TRENERGY, the attention has been focused on the design of a robust expander which
could manage the high variability of the heat source without too high performance drops with
respect to the nominal point. Thus, a robust optimization (RO) methodology has been developed
along with an accurate turbine baseline design procedure, which provides the starting point for
the optimization process.
In the first part of the work, a thorough methodology has been developed for the fast mean-line
design of 2-D turbine stages. The molecular complexity of the working fluids typically used in
ORC applications, introduces non-classical real gas effects which are as stronger as the dense
gas region is approached during the expansion. As investigated in the first Section, these effects
have an influence on the geometry of the expander.
In order to develop an accurate design methodology which could allow to perform the analysis
of these phenomena, the method of characteristic (MOC) has been selected as the inverse design
tool. The MOC has been generalised to any equations of state (EOS) and several analysis with
different fluids have been carried out.
Three thermodynamic models have been implemented in the nozzle design tool, namely the
perfect-gas, the equivalent-γ and the multi-parameter EOS. It has been shown that the perfect-
gas model fails to provide the correct nozzle shape for the given target parameter as massflow and
expansion pressure ratio. This behaviour can be addressed to the inadequate thermodynamic
modelling of the organic fluids close to the dense gas region, where the molecular interactions are
not negligible. An improvement is provided by the efficient equivalent-γ method, which allows to
use the same isentropic relations of the perfect-gas case. The real gas behaviour is, in this case,
modelled by means of a polytropic exponent for the expansion whose value, fitted on accurate
multi-parameter EOS and being less than 1, allows to take into account typical dense gas effects
such as the increase of the speed of sound during the expansion. However, by performing CFD
inviscid calculations of the nozzle guide vanes designed with the three thermodynamic mod-
els and comparing the results obtained with the Peng-Robinson-Stryjek-Vera EOS, it has been
shown that the equivalent-γ model is not so accurate as the multi-parameter equations. Indeed,
differences up to 2% on the isentropic efficiency (with respect to the fluid reference EOS) and
5% on the design expansion ratio, have shown that the multi-parameter EOS provide the most
accurate nozzle design with a negligible additional computational cost.
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The comparison among the four organic fluids has shown that the R449 provides the best per-
formances in terms of isentropic efficiency. Even though these results have to be considered
limited at the present application, i.e. 2-D steady inviscid calculations, the general trend of
higher performances provided by the more engineered fluids, as Novec649, RE347mcc and R449,
with respect to the R245fa, has shown an improvement in the development of an advanced heat
transfer fluid suitable for ORC applications, without neglecting the safety and environmental
requirements.
The introduction of the viscous effects in the computational simulations, has provided a dramatic
abatement of the isentropic efficiency up to 10% for all the organic fluids. The presence of a
turbulent boundary layer, a bubble separation on the rear part of the nozzle guide vane suction
side and the viscous wake, have produced losses with an effect on the expected design operating
parameters. Especially, the boundary layer provided a change of the effective nozzle passage area
with reduction of the massflow (with respect to the target value), of the expansion pressure ratio
and, thus, of the enthalpy drop and power output.
In order to design a complete ORC turbine stage, the MOC has been adapted for the design of
supersonic, isolated, axial and low reaction-grade rotors. The methodology, already known for
perfect-gas designs, has been extended to any EOS, with focus on the multi-parameter EOS. The
four organic fluids used for the nozzle guide vanes, have been tested in the rotor design procedure
in thermodynamic conditions close to the dense gas region. The comparisons with a perfect-gas
design have provided important differences in terms of geometry parameters. Especially, the
blade solidity, defined as the chord-to-pitch ratio, resulted overestimated up to 10% with respect
to the accurate multi-parameter EOS design. These differences have an impact on the blade
performances. Indeed, if the flow in the blade vane is not properly guided, i.e. the compatibility
with the thermodynamic behaviour of the working fluid is not respected, the shock/expansion
wave pattern, along with the high flow deflections in the vane, provides high losses and flow
separations close to the wall.
Another feature has been deduced by investigating the effect of the molecular complexity on the
rotor geometry, by selecting the four working fluids of interest. It has been seen that the higher
is the molecular complexity (an index of the low-ideal behaviour of the fluid), the lower is the
blade solidity.
The rotor design procedure has required a verification of the goodness of the methodology by
means of CFD calculations. In this step, an investigation of the correct boundary conditions
to impose at the rotor inlet domain has been conducted. Indeed, by dealing with rotors char-
acterised by a relative supersonic incident flow with a subsonic axial component, the unique
incidence problem has been taken into account in order to evaluate the correct inlet flow angle
and solve the periodicity problem typical of infinite linear cascades.
The unique incidence problem, related to the effect of the bow-shocks on the incident flow, has
been solved in the dense gas framework and the results have been compared with those obtained
in dilute gas conditions. A decrease of the unique incidence angle in the dense gas region, with
respect to the dilute condition for the same inlet Mach number, has been observed. Such a result
is coherent with the damping effect of the dense gases on the bow-shock intensity.
Besides, the proper blade vane design has been shown to have an impact also on the rotor capa-
bility to ingest the initial normal shock-wave and, thus, to provide a self-started configuration. In
dense gas conditions, the results have provided a wider range of self-started designs with respect
to the dilute-gas, showing that the rotor performances could be improved by taking into account
the dense gas effects, for the same operating conditions.
The CFD results for isolated rotor designs with the MOC methodology, have been compared
with those obtained for a typical circular arcs rotor shape. With the new design methodology, a
substantial improvement in terms of losses (entropy deviation decreased of one order magnitude)
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and degree of reaction (still negative but closer to zero) has been assessed.
The stator and rotor designs have been coupled in order to provide a full ORC axial stage. By
performing a 2-D steady calculation with mixing plane as stator-rotor interface, the viscous re-
sults have shown good performances for R245fa, with an isentropic efficiency of 92.9%. However,
a more accurate analysis should be carried out by means of unsteady simulations, in order to
take into account the stator-rotor interactions, which are a supplemental source of not-negligible
losses.
The influence of viscous effects on the global performances of both stator and rotor, has moti-
vated the authors to develop an extension of the design methodology, in order to take them into
account in a preliminary design stage. The attention has been focused on the correction of the
inviscid baseline provided by the MOC design by means of a calculation of the turbulent bound-
ary layer thickness, which affect the effective flow passage area and, then, the vane performances.
The solution of the momentum equation, along with an auxiliary equation for the shape-factor,
has been evaluated with generalisation to any EOS. The stator and rotor shapes with viscous
correction have been compared with the inviscid ones by means of CFD calculations. A reduc-
tion of the viscous wake and an improvement of the enthalpy drop, along with an increase of
massflow and power output, has been observed for the stator, whereas the viscous rotor design
has provided a recuperation of the flow re-compression due to the lower flow passage area.
The turbine design tool has been developed with the aim to provide an accurate baseline design
for optimization purposes. In this way, a starting point not too far from the true optimum, for
the present design configuration, should be achieved with a beneficial effect on the convergence
of the optimization process. By dealing with highly variable heat sources, as typical for ORC ap-
plications, a robust optimization strategy has been adopted in order to perform a multi-objective
optimization by means of maximisation and minimization of mean and variance of the isentropic
efficiency, respectively. In this framework, a preliminary analysis of the sensitivity of the MOC
design for nozzle guide vanes has been carried out by means of an uncertainty quantification
(UQ) model. With this approach, the aleatory variability of design conditions, such as operating
and geometrical parameters, has been modelled by means of suitable probability distributions
and included in the analysis.
In a first step, a UQ analysis with a probabilistic collocation method (PCM) has been carried out
for the nozzle guide vane design. Given a variability of 8% for the plenum operating conditions
and 1% for some geometrical parameters (as model of the manufacturing tolerances), the MOC
design has shown a slight dumping effect on the outputs variance, with a positive influence on
the robustness of the nozzle vane design. The decomposition of the global variance of the output
quantity of interest, provided by the analysis of variance (ANOVA), has allowed to choose the
plenum operating conditions (pressure and temperature), and the blade thickness as the uncer-
tain parameters with the highest influence on the output variability. In this way, a reduction
of the parameter space cardinality has been obtained along with a mitigation of the curse of
dimensionality problem due to the full-factorial sampling of the PCM.
In a second step, the UQ analysis has been extended to other state-of-the-art methods, namely
Simplex Stochastic Collocation (SSC), Second Order Second Moment (SOSM) and Bayesian-
Kriging (BK), with the aim to identify the most suitable to use for ORC nozzle guide vanes
(with limitation to the assumptions considered in the present work). The comparison has been
carried out on the base of accuracy and computational cost considerations. By considering the
isentropic efficiency as integral QoI to investigate, the BK and PCM have provided very similar
results in terms of mean values and slight differences for the variances. The SSC has resulted an
accurate model, with a third order polynomial reconstruction of the QoI for the greatest part
of the parameter space sub-domains and an efficient parameter space discretisation by means of
the adaptive unstructured grid. By using 25 samples, the SSC has provided variation of 2% and
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1% for mean and variance, respectively, with respect to the BK, and slightly lower differences
if compared to the PCM. In terms of computational cost, evaluated as the CPU time spent for
a single sample calculation, the BK has provided a good compromise with respect the other
models, by resulting, thus, the chosen UQ approach for the further analysis. The SOSM has not
provided very reliable data, in comparison with the other methods, mainly due to the first order
variance formulation. For a more accurate comparison with the SOSM, a second order variance
approach should be used in the future.
After the choice of the BK as UQ model, the robust optimization strategy has been defined.
In the last Section, a promising RO methodology, based on the meta-model approach coupled
with a genetic algorithm, has been described and tested. The choice of the BK as meta-model
to reconstruct the two objectives of the optimization, namely mean and variance of the QoI,
has been evaluated in terms of reliability of the response by comparing the Pareto fronts of the
true solution with that provided by the approximated model. This analysis has been carried out
preliminarily for an analytic function test and a simple quasi-1D CFD problem. The results have
shown that the initial design of experiment (DOE) plan, especially its cardinality, has a funda-
mental role on the accuracy of the model predictions. However, during the robust optimization
process, it is not straightforward to reach the true optimum, even though the initial model shows
good performances. In order to help the meta-model to follow the correct direction towards the
robust optimum, the genetic algorithm with Kriging has been equipped with a multi-objective
expected improvement (MOEI) model. In this way, an adaptive improvement strategy has been
set up for the Kriging response, showing promising results during the tests. One of the disadvan-
tages of this methodology is the temporary block of the parallelisation of the genetic optimizer
due to the CPU time required to find the maximum of the MOEI functional by means of a global
optimization process. On the other hand, the results have shown good agreement between the
predicted and the true Pareto front with a small number of additional samples, added during
the optimization trough the MOEI procedure.
The RO strategy has been finally adopted with the nozzle guide vane, with baseline designed
by means of the MOC algorithm. The results have been compared in terms of mean and vari-
ances of the isentropic efficiency as QoI with those provided by a deterministic optimization and
baseline UQ. The RO has provided a 6% average increase of the isentropic efficiency and a 1%
decrease of the standard deviation with respect to the stochastic performances of the baseline
blade, whereas the deterministic optimization has showed high improvements for the mean but
also high variability of the isentropic efficiency. In terms of computational costs, the genetic
optimization with MOEI has shown a wall-clock time 14 times lower than a full-CFD RO, thus
becoming a promising solution for expensive RO with non-intrusive UQ methods. A further
mitigation of the number of dimensions to deal with the optimization has been achieved by using
a free form deformation approach, instead of more classical methods as Bezier curves, for the
parametrization of the baseline, by resulting an efficient way to parametrize complex shapes with
the minimum number of design parameters.
The development of the relatively cheap RO strategy, in terms of computational costs, developed
in this thesis, along with the fast methodology to design accurately the mean-line of ORC su-
personic impulse turbine stages, is of interest when the time-to-market is a variable to minimise
for the realization of a product such as a ORC turbine expander. During the thesis period, sev-
eral collaborations have been settled between the DynFluid and enterprises, namely ENOGIA,
ENERTIME and MAHLE, interested into the fast MOC algorithm to design full ORC turbine
stages for public transportation purposes, without considering the shape optimization.
As future perspectives, further analysis need to be carried out in order to improve the knowledge
of the behaviour of the system under consideration. Especially, in the ORC stage design step,
URANS simulations should be carried out for the mean-line shape in order to assess the influ-
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ence of the stator-rotor interactions on the global performances, such as isentropic efficiency and
power output. In a second step, 3-D CFD simulations could provide an insight on the viscous
phenomena involved into the blade vanes and the effect of the vicinity to the dense gas region
on the secondary flows.
In the UQ framework, more efficient UQ models could be implemented, as the SSC improved
with an High-Dimensional Model-Reduction approach, or the BK with a more efficient maximum
likelihood estimation step by means of an analysis in the Fourier space, as proposed by other
authors.
Finally, the RO methodology proposed in this work will be used for a more thorough analysis
extended to rotors, full ORC turbine stages and 3-D shape designs.
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Appendix

I.1 Spatial grid convergence study
The study performed in this thesis work is based on the elaboration of inviscid and viscous CFD
results. The numerical solution of the problem implies the use of a spatial grid with a pre-defined
refinement level which can be more or less accurate depending on the needs. One of the most
important issues about the choice of the grid refinement is to obtain a grid-independent solution,
which is equivalent to say that the asymptotic solution is approached. In this way, the uncer-
tainties due to the discretization errors are minimized.
An efficient methodology to check the grid convergence is the Roache’s one, based on the Richard-
son’s extrapolation (Roache, 1998). In general, a CFD code uses a numerical algorithm that will
provide a theoretical order of convergence. However, the boundary conditions, numerical models,
and grid will reduce this order so that the observed order of convergence will be lower. Then,
by considering three functional evaluations f1 , f2 , f3 on decreasingly refined grids with a given
constant grid refinement ratio r , the actual order of convergence p can be directly calculated as:

p = ln
(
f3 − f2

f2 − f1

)
/ ln (r) (I.1)

The previous equation would provide an order of convergence slightly lower than the theoretical
one and it could be used to evaluate the convergence level of the solution. To do so, given two
functional evaluations on a coarse and finer grid, the grid convergence index (GCI) for the latter
is:

GCIfine = 1.25 |ε|
(rp − 1) (I.2)

where ε = (f2 − f1)/f1 represents the relative error and 1.25 is a safety factor suitable for a
convergence study based on three functional evaluations.
The GCI for the medium grid will be then:

GCImedium = 1.25 |ε| rp

(rp − 1) (I.3)

where, now, ε = (f3 − f2)/f2.
To check if the computed solutions are in the asymptotic range of convergence, the above two
GCI values can be compared as evaluated on three differently refined grids:

GCI23 = rpGCI12 (I.4)
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If Eq. (I.4) is satisfied, the asymptotic range is reached and the solution can be considered
grid-independent.
In this work, the functional of main interest is the isentropic efficiency µis, then in the following
will be f = µis, whereas the theoretical order of convergence will be set to pinviscid = 3 and
pviscous = 2, for inviscid and viscous calculations, respectively.

I.1.1 Nozzle guide vane
All the computational grids of the nozzle guide vanes analysed in this thesis work, have been
generated as single-block C-grid by means of an automatic grid generator. The flow domain is
sketched in Fig. I.1 along with the boundary conditions. The convergence study has been carried
out for the operating conditions listed in Tab. 3.5.
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Figure I.1: Computational domain of the nozzle guide vane and boundary condi-
tions.

By doubling the number of elements (r = 2) along the two directions, three grids of increasing
refinement level (coarse, medium and fine) have been designed by means of structured blocks
with 192·64, 384·128, 768·256 cells for the viscous case (see Fig. I.2a,b for the medium viscous
mesh), and 192·32, 384·64, 768·128 cells for the inviscid case (see Fig. I.2c,d for the medium
inviscid mesh). For the viscous mesh, the height of the first cell close to the wall is 2 · 10−5,
5 · 10−6, 2 · 10−6 times the axial chord for the coarse, medium and finer grids, respectively.
By using Eq. (I.1) and considering the isentropic efficiency as the functional of interest, the
actual order of convergence for the inviscid case is p = 2.2. The grid convergence indexes for
the finer and medium grids are 0.12 and 0.52, respectively, showing that the solution can be
considered in the asymptotic range in both the cases.
For the viscous grid, an actual order of convergence p = 1.9 has been computed. By using this
value, the finer and medium grid convergence indexes are 0.09 and 0.34, respectively. Also in
this case, the asymptotic convergence is approached for the medium grid. Then, both for the
inviscid and viscous case, the medium grid is used for the CFD calculations. In Fig. I.3, the
comparison in terms of nozzle guide vane wall static pressure distribution is carried out. It can
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be noticed that, between the finer and medium grids, there are differences below 2%.
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Figure I.2: Computational mesh details of the nozzle guide vane leading and
trailing edge, for viscous ((a)-(b), medium mesh with 384· 128 cells), and inviscid
((c)-(d), medium mesh with 384· 64 cells) calculations.

I.1.2 Isolated rotor
The isolated rotor flow domain is sketched in Fig. I.4a. It has been split into 9 structured blocks
by using H-shaped blocks at the inlet and outlet of the domain and one O-shaped block around
the blade for the clustering of cells on the wall, in order to take into account the development of
the boundary layer. Three grids have been generated by doubling the number of elements of the
blocks, thus obtaining a coarse (49152 cells), a medium (98304 cells) and a fine (196604 cells)
grid. The height of the first cell close to the wall has been set equal to 8 · 10−6, 5 · 10−6, 1 · 10−6

times the axial chord for the coarse, medium and finer grids, respectively. In Fig. I.4b a detail
of the rotor leading edge is shown for the medium grid.
The grid convergence has been checked for the viscous grid, with the operating conditions listed
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Figure I.3: Nozzle guide vane wall pressure distributions for the inviscid (a) and
viscous (b) grids.

in Tab. 3.13, by considering a computed order of convergence p = 1.95. The grid convergence
indexes for the finer and medium grids have been found to be 0.21 and 0.58, thus confirming
that the medium grid has approached the asymptotic range. This result is confirmed by the
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comparison of the rotor wall pressure distributions , showed in Fig. I.4.
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Figure I.4: Computational domain of the isolated rotor and multi-block split
strategy (a); leading edge detail of the medium computational viscous mesh of the
rotor (98304 cells) (b); wall rotor pressure distributions for the three computational
grids (c).
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Optimisation robuste de turbines pour les cycle organique de Rankine (ORC)  

RESUME : 

Au cours des dernières années, le cycles organique de Rankine (ORC) ont reçu un grand intérêt par la 

communauté scientifique et technique en raison de sa capacité à récupérer de l'énergie à partir de sources 

de chaleur faible. L'optimisation numérique sous incertitudes est appelé Optimisation robuste (RO) et il 

surmonte la limitation de l'optimisation déterministe qui néglige l'effet des incertitudes dans les variables 

de design et / ou des paramètres de design. Pour mesurer la robustesse d'un nouveau design, les 

statistiques (la moyenne et la variance, ou écart-type) d'une réponse sont calculées dans le processus RO. 

Dans ce travail, la méthode des caractéristiques (MOC) pour le design des aubes ORC supersoniques  est 

utilisé pour créer une profil de référence. Cela est optimisé grâce à une boucle RO. L'optimiseur 

stochastique est basée sur un modèle de krigeage bayésien de la réponse du système aux paramètres 

incertains, utilisé pour l'approximation des statistiques de la sortie du système, couplé à une algorithme 

genetique multi-objectif (NSGA). Une forme optimale qui maximise la moyenne et minimise la variance 

de l'efficacité isentropique  est recherché. L'efficacité isentropique  est évaluée au moyen de simulations 

RANS (Reynolds Average Navier-Stokes) de l'aube. Le comportement thermodynamique du fluide de 

travail est modélisée au moyen de l'équation d'etat de Peng-Robinson-stryjek-Vera. La forme de l'aube est 

paramétrée au moyen d'une approche Free Form Deformation. Pour accélérer le RO processus, une 

modèle de krigeage supplémentaire est construit pour la fonction multi-objectifs et une stratégie adaptif 

de remplissage basée sur le Multi Objective Expected Improvement es prise en compte afin d'améliorer la 

précision de krigeage à chaque génération de la NSGA. La forme robuste optimisé d'aube ORC est 

comparé aux résultats fournis par le MOC et l'optimiseur déterministe. 

Mots clés : (gaz dense, ORC, turbine, optimisation, incertitudes) 

 

Robust optimization of ORC turbine expander 

ABSTRACT :  

In recent years, the Organic Rankine Cycle (ORC) technology has received great interest from the 

scientific and technical community because of its capability to recover energy from low-grade heat 

sources. In some applications, as the Waste Heat Recovery (WHR), ORC plants need to be as compact as 

possible because of geometrical and weight constraints. Recently, these issues have been studied in order 

to promote the ORC technology for Internal Combustion Engine (ICE) applications. Since proposed heat 

sources for ORC turbines typically include variable energy sources such as WHR from industrial 

processes or automotive applications, as a result, to improve the feasibility of this technology, the 

resistance to variable input conditions is taken into account. The numerical optimization under 

uncertainties is called Robust Optimization (RO) and it overcomes the limitation of deterministic 

optimization that neglects the effect of uncertainties in design variables and/or design parameters.  To 

measure the robustness of a new design, statistics such as mean and variance (or standard deviation) of a 

response are calculated in the RO process. In this work, the method of characteristics (MOC) design of 

supersonic ORC nozzle blade vanes is used to create a baseline injector shape. Subsequently, this is 

optimized through a RO loop. The stochastic optimizer is based on a Bayesian Kriging model of the 

system response to the uncertain parameters, used to approximate statistics of the uncertain system 

output, coupled to a multi-objective non-dominated sorting genetic algorithm (NSGA). An optimal shape 

that maximizes the mean and minimizes the variance of the expander isentropic efficiency is searched. 

The isentropic efficiency is evaluated by means of RANS (Reynolds Average Navier-Stokes) simulations 

of the injector. The fluid thermodynamic behavior is modelled by means of the well-known Peng-

Robinson-Stryjek-Vera equation of state. The blade shape is parametrized by means of a Free Form 

Deformation approach. In order to speed-up the RO process, an additional Kriging model is built to 

approximate the multi-objective fitness function and an adaptive infill strategy based on the Multi 

Objective Expected Improvement for the individuals is proposed in order to improve the surrogate 

accuracy at each generation of the NSGA. The robustly optimized ORC expander shape is compared to 

the results provided by the MOC baseline shape and the injector designed by means of a standard 

deterministic optimizer. 

Keywords : (dense gas, ORC, turbine, optimization, uncertainty) 


