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Abstract

The use of multilayer is becoming increasingly important in the field of engineering, first in the
industry, and more recently more and more in Civil Engineering. Whether complex blend of
polymers, wood or concrete, significant efforts are required for accurate modeling of such materials.
Indeed, phenomena induced anisotropy and heterogeneity are associated with these multi-material:
edge effects, differential thermal expansion, delamination/detachment or nonlinearities viscosity
type damage, plasticity in layers or interfaces. Among the models proposed in the literature, we
found for example equivalent monolayer model or of "LayerWise" type (a kinematic per layer).
Belonging to the second category, models have been developed in recent years in Navier allow a
sufficiently detailed description to address specific issues mentioned above while maintaining a
surgical nature. By introducing interface forces as generalized forces of the model, these approaches
have demonstrated their effectiveness with regard to the representation of details at inter- and
intra-layers. It is then easy to offer behaviors and interfaces criteria and to be effective for modeling
delamination or detachment, phenomenom very present in multilayered composites assembled and
glued together. Therefore, a finite element program MPFEAP was developed in Navier laboratory.
The model was also introduced as a User Element in ABAQUS, in its simplest form (perfect
interfaces).

A new layerwise model for multilayered plates is proposed in this dissertation, named Statically
Compatible Layerwise Stresses with first-order membrane stress approximations per layer in
thickness direction SCLS1. The model complies exactly with the 3D equilibrium equations and the
free-edge boundary conditions. Also, a refined version of the new model is obtained by introducing
several mathematical layers per physical layer. The new model has been implemented in a new
version of the in-house finite element code MPFEAP.

In parallel, a finite element program based on the Bending-Gradient theory which was developed
in Navier laboratory, is proposed here. The model is a new plate theory for out-of-plane loaded thick
plates where the static unknowns are those of the Love-Kirchhoff theory, to which six components
are added representing the gradient of the bending moment. The Bending-Gradient theory is
obtained from the Generalized-Reissner theory: the Generalized-Reissner theory involves fifteen
kinematic degrees of freedom, eight of them being related only to out-of-plane Poisson’s distortion
and thus, the main idea of the Bending-Gradient plate theory is to simplify the Generalized-Reissner
theory by setting these eight d.o.f. to zero and to neglect the contribution of the normal stress σ33 in
the plate model constitutive equation. A finite element program called BGFEAP has been developed
for the implementation of the Bending-Gradient element. A User Element in Abaqus was also
developed for the Bending-Gradient theory.

Keywords : Multilayered material, composites, layerwise model, Bending-Gradient model,
finite element, plate theory.
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Résumé

L’utilisation des multicouches prend de plus en plus d’ampleur dans le domaine des sciences
de l’ingénieur, tout d’abord dans l’industrie, et plus récemment de plus en plus en Génie Civil.
Qu’il s’agisse de complexes mêlant des polymères, du bois ou du béton, des efforts importants
sont nécessaires pour la modélisation fine de ce type de matériaux. En effet, des phénomènes
induits par l’anisotropie et l’hétérogénéité sont associés à ces multi-matériaux : effets de bords,
dilatations thermiques différentielles, délaminages/décollements ou non linéarités de type viscosité,
endommagement, plasticité dans les couches ou aux interfaces. Parmi les modèles proposés dans la
littérature, on trouve par exemple des modèles monocouche équivalente ou de type "Layerwise" (une
cinématique par couche). Appartenant à cette deuxième catégorie, des modèles ont été développés
depuis quelques années dans le laboratoire Navier et permettent une description suffisamment
fine pour aborder les problématiques spécifiques citées plus haut tout en conservant un caractère
opératoire certain. En introduisant des efforts d’interfaces comme des efforts généralisés du modèle,
ces approches ont montré leur efficacité vis-à-vis de la représentation des détails au niveau inter-
et intra-couches. Il est alors aisé de proposer des comportements et des critères d’interfaces et
d’être efficace pour la modélisation du délaminage ou décollement, phénomène très présent dans
les composites multicouches assemblés et collés. Par conséquent, un programme éléments finis
MPFEAP a été développé dans le laboratoire Navier. Le modèle a également été introduit sous la
forme d’un User Element dans ABAQUS, dans sa forme la plus simple (interfaces parfaites).

Un nouveau model layerwise est proposé dans ce mémoire pour les plaques multicouches,
appelé "Statically Compatible Layerwise Stresses with first-order membrane stress approximations
per layer in thickness direction" SCLS1. Le modèle est conforme aux équations d’équilibre 3D ainsi
qu’aux conditions aux limites de bord libre. En outre, une version raffinée du nouveau modèle est
obtenu en introduisant plusieurs couches mathématiques par couche physique. Le nouveau modèle
a été mis en œuvre dans une nouvelle version du code éléments finis MPFEAP.

En parallèle, un programme d’éléments finis basé sur la théorie Bending-Gradient développée
dans le laboratoire Navier est proposé ici. Le modèle est une nouvelle théorie de plaque épaisse
chargée hors-plan où les inconnues statiques sont celles de la théorie Love-Kirchhoff, à laquelle
six composantes sont ajoutées représentant le gradient du moment de flexion. La théorie Bending-
Gradient est obtenue à partir de la théorie Generalized-Reissner: cette dernière implique quinze
degrés de liberté cinématiques, huit d’entre eux étant lié uniquement à la déformation de Poisson
hors-plan, et donc l’idée principale de la théorie de plaque Bending-Gradient est de simplifier la
théorie Generalized-Reissner en réglant ces huit d.d.l. à zéro et de négliger la contribution de la
contrainte normale σ33 dans l’équation constitutive du modèle de plaque. Un programme éléments
finis appelé BGFEAP a été développé pour la mise en œuvre de l’élément de Bending-Gradient. Un
User Element dans Abaqus a été aussi développé pour la théorie Bending-Gradient.

Mots clefs : Matériaux multicouches, composites, modèle "layerwise", modèle Bending-
Gradient, éléments finis, théorie de plaque.
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Thanks to the recent research, composite materials are rapidly developing in the world, in several
sectors including industrial aerospace, automotive, sports and leisure, civil engineering and navy.
Given that this material is both lighter and more resilient to mechanical and chemical constraints
than other materials, in addition to costing less and needs much less maintenance, composite
materials have proven to be the best choice for engineers.

On the other hand, composite materials bring specific internal problems due to their structures.
Therefore, it is necessary to study their behavior, damage and mode of failure (delamination in
matrices or fibers, ...) (Giunta et al., 2012; Abisset et al., 2016; Sun et al., 2016). Numerical methods,
especially finite elements calculations are essential for the design of such complex structures in
order to cope with their peculiar heterogeneous structure and anisotropy.

However, the modeling of these composites using three-dimensional models of finite elements
(FE) is very expensive in terms of computational time and memory. Consequently, this method
of calculation is limited to specific regions and to provide reference results for some specific
configurations. They also present the disadvantage of non-converging results in the vicinity of the
edges at the interfaces between layers due to the presence of singularities (Leguillon and Sanchez-
Palencia, 1987; Ting and Chou, 1981; Wang and Choi, 1982; Leguillon, 1999; Chue and Liu, 2002;
Mittelstedta and Becker, 2005). It has been demonstrated that differences in elastic properties of
adjacent layers generally result in a highly concentrated interlaminar stresses near free edges. This
phenomenon can lead to interlaminar failures (delaminations) which may cause global failure of the
multilayered structure. In addition, to take well into account the effect of the interface, such as the
gradients of stresses in the thickness, delamination, slip or other damages, the mesh in thickness
direction should be very refined. For these reasons, and by taking into account the relatively small
thickness of multilayered structures, the existence of specific models for composite materials has
proven to be essential.

The purpose of this dissertation is to provide simple finite element and operational tools for
global and local analysis of multilayered structures.

It is well known that the theories of conventional plates based on the assumptions of Kirchhoff,
neglecting the transverse shear (Yang et al., 1966; Reissner and Stavsky, 1961) are only adequate
for the analysis of thin composite plates. These theories predict badly the responses of thick modern
multilayered structures with a high degree of anisotropy; the transverse shear has a more important
role in anisotropic plates than in isotropic plates.

Several 2D plate models have been proposed to take into account the effect of transverse shear.
We can regroup these theories of 2D plate into two general categories: equivalent monolayer models
(global approximation) and discrete layer models (local approximation).

The first category contains the theory of Reissner-Mindlin type (R.D., 1951) extended to mul-
tilayers by replacing the multilayer by an equivalent homogeneous anisotropic plate. First order
theories postulate a kinematics of the first degree in z (Whitney and Pagano, 1970; REISSNER,
1972); and several developments have been made based on the so called First-order Shear Deforma-
tion Theory Daghia et al. (2008). Higher-order theories are based on non-linear approximation in z
of 3D displacement, 3D constraints or mixed (Tarun et al., 1982; Reissner, 1984; Reddy, 1984). An
extension to multilayered plates of the Reissner-Mindlin theory has been developed in the Navier
Laboratory and named Bending-Gradient. The Bending-Gradient theory (Lebée and Sab, 2011a,b)
is obtained from the Generalized-Reissner theory and several projections as a Reissner-Mindlin
theory are introduced.

In the second category, the models ; based on the approach by layer ; are characterized by
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linearity, quadratic ... of the fields in the thickness of each layer (Di Sciuva, 1984; Pagano and Soni,
1983; Carrera, 2000, 2002, 1998, 1999a,b). These are sophisticated models that allow to study local
responses, especially at the interface between layers. Of course the number of variables depends on
the number of layers, which significantly increases the amount of computation. Di Sciuva proposed
the model "zig-zag", source of numerous additional work, which is based on a layered approach
but with a number of variables independent from the number of layers (di Sciuva, 1986; Marco
and Ugo, 1993; Di Sciuva, 1984). By taking a direct inspiration from Pagano’s model (Pagano,
1978), a layerwise stress model was proposed in (Naciri et al., 1998; Carreira et al., 2002; Diaz Diaz
et al., 2002; Caron et al., 2006; Nguyen and Caron, 2006; Dallot and Sab, 2008; Saeedi et al.,
2012a,b, 2013a,b; Lerpiniere et al., 2014). In this model, the multilayered material is considered as a
superposition of Reissner-Mindlin plates linked together by interfacial stresses which are considered
as additional generalized stresses. In order to make reference to Carrera’s nomenclature proposed
in (Carrera, 2004), this model, previously called Multi-particle Model of Multilayered Materials
(M4), was renamed as LS1 which means Layerwise Stress approach with first-order membrane
stress approximations per layer in the thickness direction.

The main difference between the LS1 model and other existing layerwise models is that, most
often, the other layerwise models are either displacement approaches or mixed displacement-stress
approaches while the LS1 model, derived by means of the Hellinger-Reissner mixed principle, is a
pure layerwise stress approach where there are no assumptions on the displacement fields. Diaz Diaz
et al. (2002) used the LS1 model to evaluate interfacial stresses in symmetrical laminates under
tensile loading with free edges. Caron et al. (2006) applied this model to the prediction of mode III
delamination in multilayered materials. In (Dallot and Sab, 2008), the authors employed the LS1
model for analyzing a sandwich plate under cylindrical bending and demonstrated the capacity of
this model to capture the plastic collapse modes. In (Saeedi et al., 2012b), the authors proposed the
refined LS1 model by introducing several mathematical layers per physical layer in order to capture
the stress concentrations occurring in delaminated multilayered plates under uniaxial tension. It
was proven that the proposed layerwise mesh strategy improves considerably stress and energy
release rate estimations given by the non refined LS1 model considered in (Saeedi et al., 2012a).
Nevertheless, the non refined LS1 model reveals itself to be very effective in the simulation of mode
I (Double Cantilever) and mode II (End Notched Flexure) delamination tests on multilayered plates
(Saeedi et al., 2013a), and in the simulation of delamination propagation in multilayered materials
at 0◦/θ◦ interfaces (Lerpiniere et al., 2014).

Thanks to its universal character, the method of finite elements is the essential engineering tool
for the analysis of composite structures by the models described above. Most refined FE models
based on higher order theories or discrete layers present a number of nodal variables which increase
with the number of layers or the unconventional degrees of freedom. They are efficiently used for
dimensioning of multilayered structures at a local level. In Navier laboratory, a refined FE called
MPFEAP based on the LS1 model was developed (Nguyen and Caron, 2006; Nguyen, 2004). LS1
model uses a 2D description and a 2D meshing, for 3D structures. In this 2D plate model, each
node has 5 kinematic fields per layer. Its formulation is based on the variational formulation of
Hellinger-Reissner of 3D elasticity problems (Reissner, 1950), which has the advantage of giving at
the same time, the generalized stresses, generalized displacement associated, equilibrium equations,
boundary conditions and the behavior of the approached model. This approach has been validated by
3D FE and by comparisons with analytical solutions (Carreira et al., 2002; Nguyen and Caron, 2006).

This dissertation consists of five chapters:
First, a bibliographical synthesis citing the different approaches of existing multilayered plates

along with their advantages and disadvantages.
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In the second chapter, a formulation of the LS1 model is recalled. The model considers
the multilayered materials as the superposition of Reissner plates linked together with interface
forces. The construction of the model is based on the approximation method of Hellinger-Reissner
(Reissner, 1950). The introduction of approached stresses from generalized forces in a functional
adaptation of Hellinger-Reissner helped in identifying the displacements and generalized strains.
The application of Reissner theorem and with some energetic assumptions, result in the constitutive
law, the equilibrium equations and the boundary conditions. The imperfect interface for the LS1
model is summarized, and the last part of this chapter consists of presenting the finite element
MPFEAP of LS1 model and the contributions made to the model and its finite element program.

In the third chapter, an application for the predimensioning of a complex structure made of
wood-concrete is presented. We present the 3D FE calculation of a complex structure, due to the
hollow geometry of the object but also to the structural and material anisotropy. In particular, the
wood has a very weak transverse rolling shear modulus. The effects of these transverse shears
are important and cannot be fully accounted for an equivalent homogeneous layer that can be
found in composite codes. LS1 model based on a layerwise approach, improves the shear behavior
predictions, and analyzes local responses, especially at the interface between the layers. Its finite
element code MPFEAP allows estimating the intensity of 3D singularities using a 2D plane mesh,
even for this complex 3D structure. The performance of this approach is compared with Abaqus,
2D composite shell element, and with a beam analytical model. Also comparisons are made with
experimental results.

In the fourth chapter, a new layerwise model for multilayered plates is introduced. The model,
called SCLS1 for Statically Compatible Layerwise Stresses with first-order membrane stress ap-
proximations per layer in thickness direction, complies exactly with the 3D equilibrium equations
and with the free-edge boundary conditions. As in the LS1 model initially proposed in (Naciri
et al., 1998), the laminated plate is considered as a superposition of Reissner plates coupled by
interfacial stresses which are considered as generalized stresses. However, the divergences of the
interlaminar transverse shears are introduced as additional generalized stresses in the SCLS1 model.
Also, a refined version of the new model is obtained by introducing several mathematical layers per
physical layer. Unlike the LS1 model which is derived by means of the Hellinger-Reissner principle,
the new model is derived by means of the minimum of the complementary energy principle. This
ensures the convergence of the refined SCLS1 solution to the exact 3D solution as the number of
mathematical layers per physical layer increases. The new model has been implemented in a new
version of the in-house finite element code MPFEAP. Several comparisons are made between LS1,
SCLS1 and full 3D FE models in order to assess the performances of the new model which reveals
to be very effective.

The last chapter is intended for the presentation of a finite-element modeling of a recent plate
theory for out-of-plane loaded thick plates, named the Bending-Gradient theory (Lebée and Sab,
2011a,b; Sab and Lebée, 2015; Lebée and Sab, 2017). This theory, which has seven degrees
of freedom (one transverse displacement and six generalized rotations), is a simplification of the
Generalized-Reissner theory (Lebée and Sab, 2016a,b) which extends to arbitrary multilayered plates
the Reissner theory (Reissner, 1944) initially introduced for homogeneous plates. A finite-element
program called BGFEAP has been developed here for the implementation of a new eight-node
element dedicated to Bending-Gradient theory. The proposed finite element model is capable of
computing transverse shear stress distribution in the plate thickness. Several comparisons are made
between the new Bending-Gradient finite-element, LS1 layerwise finite-element model (Naciri et al.,
1998; Caron et al., 2006; Nguyen and Caron, 2006), exact solutions and Abaqus plate finite-element
model in order to assess the performances of the new model which reveals to be very effective for
complex structures.
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Finally, this dissertation proposes some conclusions and perspectives for this work.
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1.1 Existing models of multilayered structures
A multilayer composite structure can be considered as a heterogeneous body consisting of a finite
number of anisotropic homogeneous layers bonded together. The geometric characteristic of a plate
is a weak thickness compared to the other dimensions. Modeling of modern multilayered structures
with a strong anisotropy (for example, low ratio of the transverse shear modulus of the web with
respect to the longitudinal modulus of elasticity of the skin in the case of sandwich structures)
requires refined theories that take into account a good description of the transverse shears. We
can find in (Kant and Swaminathan, 2000; Carrera, 2000, 2002) complete reviews on the various
existing models of 3D or 2D models.

In general, two types of approaches are proposed for multilayered structures:

• Three-dimensional approaches (3D)

• Plate models (2D)

The interest of a three-dimensional approach resides in obtaining accurate three-dimensional
results, useful as reference. Adopting a three-dimensional approach is useful in case the differential
equations finally obtained can be resolved. The three-dimensional (3D) approach is therefore limited
to certain cases of geometry, stacking and simple loading (Pagano, 1969, 1970; Srinivas and Rao,
1970, 1973).

Similarly, taking into account specific laminates damage (delamination, transverse crack, ...)
requires a good description of the fields in the vicinity of interfaces, privileged sites of these
damages. Here again a 3D approach may provide information in some cases (free edge, plate hole...)
but it is preferable to consider two-dimensional (2D) approaches of plate type. In the following,
these are the 2D approaches that will be mentioned.

1.1.1 2D Plate model
During the past years, several two-dimensional models have been developed for modeling of
multilayered structures taking into account the transverse shears or damages. They are grouped
according to the type of the adopted approach:

• Monolayer equivalent approach

• Layered approach

1.1.1.1 Monolayer equivalent approach

In the monolayer equivalent approach, the number of degrees of freedom, which equals the number
of equations, does not depend on the number of layers. The multilayered plate is homogenized
and is considered as a single layer. The transverse shear can be taken into account through the
inclination of the transverse section.

Among the family of the equivalent monolayers, we cite:

• The classical model of Love-Kirchhoff

• The model of Reissner-Mindlin

• The models of higher order
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1.1.1.1.1 The classical model of Love-Kirchhoff
The classical model of Love-Kirchhoff is based on the assumption that the transverse section

remains flat and perpendicular to the middle section after being deformed (Fig. 1.1). This means
that the transverse shear is neglected and the effects due to shear are also neglected.

Fig. 1.1. Kinematics of Love-Kirchhoff.

The displacement field of a Love-Kirchhoff’s plate is written:

uα(x1, x2, z) = u0
α(x1, x2) − zω,α(x1, x2) α = 1, 2

u3(x1, x2, z) = ω(x1, x2) (1)

with
1, 2: the directions in the plane of the plate
3: the normal to the plate (Fig. 1.1)
u0
α: the membranar displacement in direction α
ω: the deflection of the plate
ω,α: the rotation due to bending (without shear)

1.1.1.1.2 The classical model of Reissner-Mindlin (FSDT, First order Shear Deformation
Theory)

To introduce the transverse shear, the kinematic assumption is made (R.D., 1951) that the section
remains flat but it is no more normal to the middle section in the deformed configuration (Fig. 1.2).
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Fig. 1.2. Kinematics of Reissner-Mindlin.

The displacement field of Reissner-Mindlin’s plate is written:

uα(x1, x2, z) = u0
α(x1, x2) + zφα(x1, x2) α = 1, 2

u3(x1, x2, z) = ω(x1, x2) (2)

with
u0
α: the membranar displacement of direction α
ω: the deflection of the plate
φα: the rotation of the section around axis xα

Therefore, the transverse shear strain is not null. u3 is constant in z and so ε13 and ε23 are constant
in z and ε33=0. Thus, σ13 and σ23 are constant by layer, which is a bad approximation. In fact if
σαβ is refined by layer as εαβ then σα3 should be of second degree according to the equilibrium
equations.

In addition, ε33=0 is incompatible with the classical hypothesis of plate made in the model, i.e.
σ33=0. All this means that the model poorly predicts the transverse shear behavior, as soon as the
slenderness ratio L/h decreases or important gradients of material properties exist in the multilayer
(sandwiches).

Thus the notion of corrector coefficient is introduced to better take into account these effects of
transverse shear (Whitney, 1973). The obtained results depend mainly on the empirical choice in
complex situations of corrector coefficients and the study of thick composites remains random by
this type of kinematic approach.

1.1.1.1.3 Models of higher order
To consider the drawbacks of first order theories, many authors (Whitney and Sun, 1973;

Reddy, 1984; Cho and Parmerter, 1993; Swaminathan and Ragounadin, 2004; Cecchi and Sab,
2007; Nguyen et al., 2008) suggest theories of higher order where the fields distribution across the
thickness is non-linear (Fig. 1.3).
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Fig. 1.3. Kinematics of higher-order.

Most of the higher-order models use a development in Taylor series of the displacement fields
in order to approach the three-dimensional theory. The displacement is assumed to be of the form:

ui(x1, x2, z) = ui(x1, x2) + zφ(1)
i (x1, x2) + z2φ(2)

i (x1, x2) + z3φ(3)
i (x1, x2) + . . . (3)

with i = 1 . . . 3.

The theory of the first order of Reissner-Mindlin corresponds to the Taylor series up to order
j=1 and φ(1)

3 =0.
(Hildebrand et al., 1938) are the first to have introduced this sophistication in the classical theory

of plates. (Nelson and Lorch, 1974; Librescu, 1975) have applied this theory of higher-order to
analyze the multilayered plates. (Lo et al., 1977a,b) have considered the effect of the transverse
normal strain: φ0(4)

i =0 and φ0(3)
3 =0. (Kant et al., 1982) are the first to propose a finite element of

higher order. This theory considers the three-dimensional Hooke’s law, it incorporates the effect of
transverse normal strain and transverse shear strain. (Noor and Burton, 1989) presented a complete
list of studies on theories of first-order and higher-order for the static analysis and free vibration of
composite plates. (Kant and Swaminathan, 2002) gave analytical solution of different models of
higher order.

In principle, these higher order models are more accurate than the first order models. However,
to increase the accuracy of the theory, the number of degrees of freedom must be higher. To
reduce the number of displacement parameters, several simplifications are proposed. One of the
simplifications shortens the last terms of the Taylor series by introducing a "shear function". The
form of the displacement through the thickness is:

uα(x1, x2, z) = uα(x1, x2) − zw,α(x1, x2) + f (z)γα(x1, x2) α = 1, 2
u3(x1, x2, z) = w(x1, x2) (4)

Some important shear functions f (z) are considered:

• Ambartsumyan (1969)

f (z) =
z
2

(
h2

4
−

z2

3

)
(5)
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• Reissner (1945); Panc (1975)

f (z) =
5
4

z
(
1 −

4z2

3h2

)
(6)

• Kassapoglou and Lagace (1987); Levinson (1980); Murthy (1981)

f (z) = z
(
1 −

4z2

3h2

)
(7)

with h: the thickness of the plate.

A comparison of reference models of higher order is made by (Kant and Swaminathan, 2002).
The model of (Reddy, 1984) whose membranar displacement field is cubic and normal displacement
w is constant through the thickness, gives a good approximation for transverse shear stresses with
respect to the three-dimensional elastic solution for the homogeneous case. However, it is noted
that with such a choice for w(x, y) independent of z, ε33=0 (σ33=0 taken in general by the plates).

The distribution of transverse shear stresses is parabolic through the thickness (it is actually
parabolic by layer). On the free surfaces, boundary conditions are matched.

Reddy model’s results are also very close to the two models of higher order proposed by (Kant
and Swaminathan, 2002) where the Taylor series applied to displacements extends to order 3 for the
three directions of model 1 and both directions x, y for model 2. The normal displacement of model
2 remains constant through the thickness.

Using the theory of Reddy, (Senthilnathan et al., 1987) presented a simplified theory of higher-
order. It consists in introducing a further reduction of the number of the degrees of freedom by
taking into account the contributions of shear and bending.

The vertical displacement u3 is considered to be the sum of the vertical displacement due to
the transverse shear w f and the deflection due to bending wc. The description of displacements is
written:

uα(x1, x2, z) = uα(x1, x2) − zw f
,α(x1, x2) − 4z3

3h2 wc
,α(x1, x2) α = 1, 2

u3(x1, x2, z) = w f (x1, x2) + wc(x1, x2)
(8)

where f and c notations mean the contributions of bending and transverse shear to normal
displacement.

Polit and Touratier (1997, 2002); Touratier (1991); Idlbi et al. (1997) give the form "sinus" to
the shear function f (z). This function is expressed in trigonometric sinusoidal form. The function
of transverse shear is written:

f (z) =
h
π

sin
(
πz
h

)
=

h
π

∞∑
n=0

(−1)n

(2n + 1)!

(
πz
h

)2n+1

= z
(
1 −

π2

3!
z2

h2 +
π4

5!
z4

h4 −
π6

7!
z6

h6 + . . .

) (9)

This model is very similar to the models of higher order of Taylor series type. The transverse
shear stresses determined by this model take a cosinusoidal form across the thickness.

Compared to the exact solution, the model "sinus" gives better results than the model of Reddy.
Based on the work of Touratier, a triangular finite element with six nodes, is built for nonlinear
multilayered structures (Polit and Touratier, 1997).
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Despite the fact that the models of higher order ensure a continuity of displacement and strain at
the interface, the stresses σα3 and σ33 of the interface remain discontinuous. This has a disadvantage
in the local analysis of the interface of multilayered structures that the properties of the layers are
very different (edge effects on the stresses, delamination, ...).

1.1.1.2 Layered approach

1.1.1.2.1 Zig-Zag models
For the models equivalent monolayer, the number of unknowns is independent of the number

of layers. Another track of development is the use of models in which we introduce a function
that takes into account the distributions of the displacement field on the interfaces. This allows to
refine ESL models by keeping the number of unknowns independent of the number of layers. These
models are known as zig-zag (Carrera, 2002).

History of the zig-zag model is the dominating topic of Carrera’s review (Carrera, 2003). In
zig-zag model, the displacement of a structure is continuous along the thickness, however, the slope
of the displacement function of each layer is different. This change in two adjacent perfectly glued
layers is considered to be a zig-zag due to the difference of deformation of layers. The conditions of
continuity of the transverse stresses on the interfaces are respected in some works. The development
of the type zig-zag is performed for monolayer equivalent approaches and also for discreet layer
approaches.

In the family of the zig-zag theories applied in monolayer equivalent approaches, three in-
dependent main approaches are known: Lekhnitskii multilayered theory (LMT), Ambartsumian
multilayered theory (AMT) and Reissner multilayered theory (RMT). The LMT and AMT describe
the effect zig-zag through the introduction of conditions of continuity of transverse stresses through
the constitutive equations of each layer and the relation between strain and displacement. On the
other hand, the RMT uses independent equations in the theory. Based on the RMT, Murakami
(Murakami, 1986) introduced a zig-zag function of variable z to describe the effect of zig-zag
displacement. The zig-zag function of Murakami (Fig. 1.4) is written:

M(zi) = (−1)i zi

2hi
(10)

where
zi: coordinate of the considered point in the local axes of the layer i of which the abscissa is

located in the middle of the layer. hi: thickness of layer i
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Fig. 1.4. Geometry of the zig–zag function of Murakami.

By adding the zig-zag of Murakami (MZZF) function, the shape of the displacement of the first
order theory is shown on Fig. 1.5. In the same way, the function of the displacement form of the
theory of higher-order becomes (Fig. 1.6):

Fig. 1.5. Field of displacements of the zig-zag models of first-order.
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Fig. 1.6. Introduction of the function zig-zag of Murakami in the non-linear distribution.

ui(x1, x2, z) = ui(x1, x2) + zφ(1)
i (x1, x2) + z2φ(2)

i (x1, x2) + z3φ(3)
i (x1, x2) + · · · + CM M(z) (11)

where CM is constant.
The main advantage of the displacement field of zig-zag models lies in the verification of the

conditions of continuity without increasing the number of order of the fundamental equations of the
theory of equivalent layer. The correction factor of the transverse shear is avoided. Based on this
concept, a large number of authors improve the zig-zag model (Averill, 1994; Carrera, 2004; Cho
and Parmerter, 1993; He, 1994; Icardi, 2001).

In the works of Ossadzow and Touratier (2001) and Karama et al. (1998), the zig-zag function
is added to the function "sinus" of displacement to refine the effects of shear.

Zig-zag model provides a good compromise between the accuracy of solutions and the computa-
tional cost.

However, the zig-zag models are rarely used in the analysis of delamination. When the slen-
derness ratio L/h decreases, the calculation of the transverse shear stresses becomes less accurate
(Icardi, 2001). The continuity of type C0 of the zig-zag theory complicates their numerical imple-
mentation.

1.1.1.2.2 Layer approach - discrete layers models
This approach increases the number of unknowns as well as the complexity of the analysis, and

consequently the number of degrees of freedom depends on the number of layers of composite plate.
To overcome the limitations of stresses σα3 and σ33 discontinuity at the interface of multilayered
structures of higher order models, the new proposed approaches impose conditions of continuity on
stresses at the interface between two adjacent layers. Layer approaches allow to introduce them.
In fact, with the models discrete layers, the multilayer is represented by a set of plates coupled by
interfacial efforts.

In general, the models issued from the layered approach can be classified into two groups:
the zig-zag models developed for layer approaches and the models discrete layers in which each
layer is considered as a first-order or higher-order plate by imposing conditions of continuity on
displacements and stresses on the interfaces. Here, we’re interested only in discrete layers models.
Discrete layers models adopt a finer approximation of the fields, through the thickness of the
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multilayer, than the models of higher-order plate and zig-zag. Indeed they offer a kinematic by layer
rather than a global kinematic. In the discrete layer model, the multilayer is represented by a set
of 2D plates coupled by interfacial efforts. Conditions of continuity of stresses at interfaces are
satisfied. Displacement or stress approaches also exist.

The kinematics of the first order and higher-order on the displacement field are postulated
by Srinivas (1973); Seide (1980); Reddy (1987); Naciri et al. (1998); Tahani and Nosier (2003).
Using stresses approaches by layer, the work of Ren (1986); Kassapoglou (1986); Kassapoglou and
Lagace (1987); Yin (1994) have proposed various forms of stresses by layer. Ren has assumed a
stress field in which the component of transverse shear is quadratic by layer and the displacements
are considered cubic by layer and continuous at the interfaces. Yin used stresses functions of
Lekhnitskii (1981) by layer in order to determine the interlaminar stresses. They are approximated
in polynomial ways through the thickness. These approaches are more accurate than those on
displacement but are underdeveloped because of the difficulty to generate statically admissible
stresses.

A family of models of discrete layers, LS1 was developed in Navier laboratory. The various
works of Caron and Ehrlacher (1997); Chabot (1997); Naciri et al. (1998); Hadj-Ahmed et al.
(2001); Diaz Diaz (2001); Carreira et al. (2002); Baroud et al. (2016) are so inspired from Pagano
(1978) which offers the local model, built from the variational formulation of Hellinger-Reissner
and a polynomial approximation of the stresses fields by layer. The polynomials are of the first
degree for the membrane stresses, quadratic for the shear stresses and cubic for the normal stresses.
The family consists of three models: M4 − 7n, M4 − 5n (LS1), M4 − 2n + 1, which respectively
include a kinematic of the multilayer with 7n, 5n and 2n+1 fields in (x; y), n is the number of layer
of the plate. The M4 − 5n model, recently called LS1, approach each layer by a Reissner plate; on
the other hand, the model M4 − 2n + 1 approach each layer by a membrane. The 7n is too rich to be
used simply. Comparisons of the prediction of these models compared to the three-dimensional
finite elements and experimental testing of delamination (Diaz Diaz, 2001) are very satisfactory.
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2.1 Formulation of LS1 model for multilayered material
In this section, the formulation of LS1 model for multilayered material is recalled.

The static elastic approach with perfect interfaces (infinitely rigid and without thickness) is
presented in this model (Naciri et al., 1998; Carreira et al., 2002; Diaz Diaz et al., 2002; Caron et al.,
2006; Nguyen and Caron, 2006; Dallot and Sab, 2008; Saeedi et al., 2012a,b, 2013a,b; Lerpiniere
et al., 2014; Baroud et al., 2016). The construction method of this model is to offer a family of stress
fields approaches. By introducing this form of stress fields in the functional of Hellinger-Reissner,
we deduce the generalized strains dual of the generalized interior forces. The stationarity of the
Hellinger-Reissner’s functional compared to a variation of generalized displacements fields gives
the equilibrium equations and boundary conditions, as well as when compared to the generalized
forces gives the constitutive laws.

2.1.1 Approximation method of Hellinger-Reissner for a 3D problem
We consider a volume of material Ω of boundary ∂Ω. The material is assumed elastic and is denoted
by

• x: the space variable

•
¯̄̄̄
S : the fourth order compliance tensor in x

• ¯̄σ: the solution tensor of 3D stresses in x

• ¯̄σ∗: a tensor field of second order symmetrical of class C1 by piece on ω

• U: the 3D displacement vector in x

• U∗: a 3D vector field continuous over Ω of class C1 by piece on ω

• ¯̄ε: the tensor of 3D deformations in x

• Ud: the displacements imposed on the part ∂ΩT of the boundary ∂Ω

• f : the volume forces in x

• ρ: the density

The 3D elasticity problem to be solved consists in determining the displacement field U and
stress field ¯̄σ in the three-dimensional domain Ω of boundary ∂Ω satisfying the following equations:

• compatibility equation:

¯̄ε(x) =
1
2

(
gradU +T gradU

)
(12)

• equilibrium equation:

div ¯̄σ(x) + f (x) = ρÜ(x) (13)



CHAPTER 2. DESCRIPTION OF LS1 MODEL 35

• constitutive equation of the linear elastic behavior:

¯̄ε(x) =
¯̄̄̄
S (x) : ¯̄σ(x) (14)

• boundary conditions:

U(x) = Ud(x) on ∂ΩU (15)

( ¯̄σ.n)(x) = T d(x) on ∂ΩT (16)

with ∂ΩU ∩ ∂ΩT = ∅ and ∂ΩU ∪ ∂ΩT = ∂Ω.Ud(x) the imposed displacement on the part ∂ΩU

of the boundary ∂Ω and T d(x) the stress vector imposed on the part ∂ΩT of the boundary ∂Ω.

The functional Hellinger-Reissner on the couple (U∗, ¯̄σ∗) is:

H.R.(U∗, ¯̄σ∗) =

∫
Ω

[
¯̄σ∗(x) : ¯̄ε(U∗)(x) − f (x).U∗(x) −

1
2

¯̄σ∗(x) :
¯̄̄̄
S (x) : ¯̄σ∗(x)

]
dΩ

−

∫
∂ΩU

( ¯̄σ∗.n)(x).
(
U∗ − Ud

)
(x)dS −

∫
∂ΩT

T d(x).U∗(x)dS

= −

∫
Ω

[
div ¯̄σ∗(x).U∗(x) + f (x).U∗(x) +

1
2

¯̄σ∗(x) :
¯̄̄̄
S (x) : ¯̄σ∗(x)

]
dΩ

+

∫
∂ΩU

( ¯̄σ∗.n)(x).Ud(x)dS +

∫
∂ΩT

(
( ¯̄σ∗.n)) − T d

)
(x).U∗(x)dS

(17)

The Reissner theorem (Reissner, 1950) is as follows:

The solution of the elastic problem is the couple
(
U, ¯̄σ

)
that makes stationary the functional

H.R.

The stationarity relative to any variation of the three-dimensional displacement field U∗ gives
the equilibrium equations and boundary conditions expressed in stresses on ∂ΩT :

∀∂U∗

−

∫
Ω

[
div ¯̄σ(x).∂U∗(x) + f (x).∂U∗(x)

]
dΩ +

∫
∂ΩT

(
( ¯̄σ.n)) − T d

)
(x).∂U∗(x)dS = 0

⇐⇒

{
div ¯̄σ(x) + f (x) = 0
( ¯̄σ.n)(x) = T d(x) on ∂ΩT

(18)

The stationarity relative to any variation of the three-dimensional stress field ¯̄σ gives the
constitutive equation of the linear elastic behavior and the boundary conditions expressed in
displacement on ∂ΩU :

∀∂ ¯̄σ∗
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−

∫
Ω

[
div∂ ¯̄σ∗(x) : U(x) + ∂ ¯̄σ∗(x) :

¯̄̄̄
S (x) : ¯̄σ(x)

]
dΩ

+

∫
∂ΩU

(∂ ¯̄σ∗.n)(x).Ud(x)dS +

∫
∂ΩT

(
∂ ¯̄σ∗.n

)
(x).U(x)dS

⇐⇒

 ¯̄ε
(
U(x)

)
=

¯̄̄̄
S (x) : ¯̄σ(x)

U(x) = Ud(x) on ∂ΩU

(19)

2.1.2 Step 1: Stress field of the LS1 model

Consider the multilayer composed of n layers of thickness ei whose interfaces are denoted Γi,i+1.
The volume of the multilayer is denoted Ω = ω× [h−1 ; h+

n ]. Each layer of the LS1 model is considered
a Reissner-Mindlin’s plates.

Fig. 2.1. Multilayered studied.

In this chapter, the following notations are adopted:

• i denotes the layer i and ranges from 1 to n

• j, j + 1 denotes the interface between layers j and j + 1 and ranges from 1 to n

• the Greek indices α and β ranges from 1 to 2 and serve to express the components of the
in-plane field (x, y)

The generalized forces are chosen as follows:

• The second order tensor ˜̃N i for the membrane forces of layer i

Nαβ(x, y) =

∫ h+
i

h−i

σαβ(x, y, z)dz (20)
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• The second order tensor ˜̃Mi for the bending moments of the layer i relative to the mid-plane
of the layer

Mi
αβ(x, y) =

∫ h+
i

h−i

(z − h̄i)σαβ(x, y, z)dz (21)

• The vector Q̃i for shear forces of layer i

Qi
α(x, y) =

∫ h+
i

h−i

σα3(x, y, z)dz (22)

• The vector τ̃i,i+1 for interior interface shear forces at the interface between layers i, i + 1

τi,i+1
α (x, y) = σα3(x, y, h+

i ) (23)

• The scalar νi,i+1 for normal forces at the interface between layers i, i + 1

νi,i+1(x, y) = σ33(x, y, h+
i ) (24)

An orthogonal polynomial basis (Pi
j) is defined:

Pi
0 = 1

Pi
1 =

z − h̄i

ei

Pi
2 = 6(

z − h̄i

ei )2 +
1
2

Pi
3 = −2(

z − h̄i

ei

3

) +
3

10
(
z − h̄i

ei )2

(25)

The stresses in layer i are written:

σαβ(x, y, z) = N i
αβ(x, y)

Pi
0(z)
ei +

12
ei2

Mi
αβ(x, y)Pi

1(z) (26)

σα3(x, y, z) = Qi
α(x, y)

Pi
0(z)
ei +

(
τi,i+1
α (x, y) − τi−1,i

α (x, y)
)

Pi
1(z)

+

(
Qi
α(x, y) −

ei

2

(
τi,i+1
α (x, y) + τi−1,i

α (x, y)
)) Pi

2(z)
ei (27)

σ33(x, y, z) =

(
νi,i+1(x, y) + νi−1,i(x, y)

2
+

ei

12
div

(
τ̃i,i+1(x, y) − τ̃i−1,i(x, y)

))
Pi

0(z)

+

(
ei

12
div

(
τ̃i,i+1(x, y) + τ̃i−1,i(x, y)

)
−

divQ̃i(x, y)
5

+ νi,i+1(x, y) − νi−1,i(x, y)
)

Pi
1(z)

+
ei

12
div

(
τ̃i,i+1(x, y) − τ̃i−1,i(x, y)

)
Pi

2(z)

+

(
ei

2
div

(
τ̃i,i+1(x, y) + τ̃i−1,i(x, y)

)
− divQ̃i(x, y)

)
Pi

3(z) (28)
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NOTE: i = 1..n

τ̃0,1 and τ̃n,n+1: the interface shear stresses on the lower side of layer 1 and the upper
side of layer n

ν̃0,1 and ν̃n,n+1: the normal interface stresses on the lower side of layer 1 and the upper
side of layer n

T−k and T +
k with k = 1..3 the components according to k for the stress vector imposed on

the external lower and upper sides. We have the following relations:


τ0,1

1 (x, y) = −T−1 (x, y)
τ0,1

2 (x, y) = −T−2 (x, y)
ν0,1(x, y) = −T−3 (x, y)

and


τn,n+1

1 (x, y) = T +
1 (x, y)

τn,n+1
2 (x, y) = T +

2 (x, y)
νn,n+1(x, y) = T +

3 (x, y)

2.1.3 Step 2: Generalized displacements and strains of the LS1 model

2.1.3.1 Generalized displacements

By replacing the generalized stresses in the Hellinger-Reissner’s functional (eqn. 17) and by only
taking into account the terms which reveal the displacement field U∗, a functional T is obtained on
(U∗, ¯̄σ∗), and the generalized displacements appear. At this level, the terms involving sliding Γi, i + 1
of the interface Ω j, j+1∗ are injected in order to exploit the stationarity of the Hellinger-Reissner’s
functional.

T (U∗, ¯̄σ∗) = −

∫
Ω

div ¯̄σ∗.U∗dΩ +

∫
∂ΩT

((
¯̄σ∗.n

)
− T d

)
.U∗dS (29)

The functional T on (U∗, ¯̄σ∗) is calculated:

T (U∗, ¯̄σ∗) = −

n∑
i=1

∫
ω


(

˜div ˜̃N i∗(x, y) + τ̃i,i+1∗(x, y) − τ̃i−1,i∗(x, y)
)
.Ũ i∗(x, y)

+
(

˜div ˜̃Mi∗(x, y) − Q̃i∗(x, y) + ei

2

(
τ̃i,i+1∗(x, y) + τ̃i−1,i∗(x, y)

))
.Φ̃i∗(x, y)

+
(
divQ̃i∗ + νi,i+1∗(x, y) − νi−1,i∗(x, y)

)
.U i∗

3 (x, y)



+

n∑
i=1

∫
∂ω


( ˜̃N i∗.n

)
.Ũ i∗ +

(
M̃i∗.n

)
.Φ̃i∗ +

(
Q̃i∗(x, y) − ei

2

(
τ̃i,i+1∗(x, y) + τ̃i−1,i∗(x, y)

))
.nÛ i∗

3

+Q̃i∗(x, y).nU i∗
3 + ei

(
τ̃i,i+1∗(x, y) − τ̃i−1,i∗(x, y)

)
.nŪ i∗

3 −

∫ h+
i

h−i

T d.U∗dz

 (30)

Where:

• Ũ i∗: the membranar displacement field of layer i of components U i∗
α , α = 1, 2 with:

U i∗
α (x, y) =

∫ h+
i

h−i

Pi
0(z)
ei U∗α(x, y, z)dz (31)

U∗: the 3D displacement.
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• Φ̃i∗: the rotation field of layer i of components Φi∗
α , α = 1, 2 with:

Φi∗
α (x, y) =

∫ h+
i

h−i

12
ei2

Pi
1(z)U∗α(x, y, z)dz (32)

• U i∗
3 : the normal average displacement field of layer i:

U i∗
3 (x, y) =

∫ h+
i

h−i

Pi
0(z)
ei U∗3(x, y, z)dz (33)

• U
i∗
3 : the field named the first moment of average and normal displacement of layer i :

U
i∗
3 (x, y) =

1
ei

∫ h+
i

h−i

Pi
1(z)U∗3(x, y, z)dz (34)

• Û i∗
3 : the field named the second moment of average and normal displacement of layer i :

Û i∗
3 (x, y) =

∫ h+
i

h−i

Pi
2(z)
ei U∗3(x, y, z)dz (35)

It is about the 5n fields in (x, y): Ũ i∗, Φ̃i∗ and U i∗
3

2.1.3.2 Generalized strains

Integration by parts on the divergences of the equation 2.1.3.1, gives:

T (U∗, ¯̄σ∗) =

n∑
i=1

∫
ω

[ ˜̃N i∗ : ˜̃εi∗ + ˜̃Mi∗ : ˜̃χi∗ + Q̃i∗.
(
Φ̃i∗ + ˜gradU i∗

3

)]
dω

+

n∑
i=0

∫
ω

τ̃i,i+1∗.

(
Ũ i+1∗ − Ũ i∗ −

ei

2
Φ̃i∗ −

ei+1

2
Φ̃i+1∗

)
dω

+

n∑
i=0

∫
ω

νi,i+1∗
(
U i+1∗

3 − U i∗
3

)
dω

−

n∑
i=1

∫
∂ω

∫ h+
i

h−i

T d.U∗dz
 ds

(36)

Where:



CHAPTER 2. DESCRIPTION OF LS1 MODEL 40

• ˜̃εi∗: the second order tensor field of membrane strain of layer i of components:

εi∗
αβ(x, y) =

1
2

∂U i∗
α

∂xβ
+
∂U i∗

β

∂xα

 (37)

α, β = 1, 2

• ˜̃χi∗: the second order tensor field of curvature of layer i of components:

χi∗
αβ(x, y) =

1
2

∂χi∗
α

∂xβ
+
∂χi∗

β

∂xα

 (38)

α, β = 1, 2

We deduce the energy duality between generalized forces and generalized strains for i = 1..n
and j = 1..n − 1:

˜̃N i ←→ ˜̃εi =
1
2

( ˜̃GradŨ i +T ˜̃GradŨ i
)

˜̃Mi ←→ ˜̃χi =
1
2

( ˜̃GradΦ̃i +T ˜̃GradΦ̃i
)

Q̃i∗ ←→ γ̃i = Φ̃i + ˜GradU i
3

τ̃ j, j+1 ←→ D̃ j, j+1 = Ũ j+1 − Ũ j −
e j

2
Φ̃ j −

e j+1

2
Φ̃ j+1

ν j, j+1 ←→ D j, j+1
ν = U j+1

3 − U j
3

(39)

2.1.4 Step 3: Equilibrium equations and boundary conditions of LS1 model
By varying H.R. (eqn. 2.1.3.1) with respect to the interior generalized displacements, we obtain the
generalized equilibrium equations and the generalized boundary conditions.

2.1.4.1 Equilibrium equations

˜div ˜̃N i(x, y) + τ̃i,i+1(x, y) − τ̃i−1,i(x, y) = 0 on ω
divQ̃i + ν(i, i + 1)(x, y) − νi−1,i(x, y) = 0 on ω

˜div ˜̃Mi(x, y) − Q̃i(x, y) +
ei

2

(
τ(i, i + 1)(x, y) + τ̃i−1,i(x, y)

)
= 0 on ω

(40)

2.1.4.2 Boundary conditions

The relation between the 3D displacements U∗(x, y, z) for z ∈ [h−i , h
+
i ] and the generalized displace-

ments is written:

U∗(x, y, z) =

∣∣∣∣∣∣ U∗α(x, y, z) = Pi
0(z)U i∗

α (x, y) + eiPi
1(z)Φi∗

α (x, y) + ∆U i∗
α (x, y, z)

U∗3(x, y, z) = Pi
0(z)U i∗

3 (x, y) + ∆U i∗
3 (x, y, z) (41)

with ∆U i∗
α (x, y, z) orthogonal to Pi

0(z) and Pi
1(z) and ∆U i∗

3 (x, y, z) orthogonal to Pi
0(z).
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Hypothesis 1 The contribution of disturbance terms ∆U i∗
α (x, y, z) and ∆U i∗

3 (x, y, z) in the boundary
terms is supposed negligible compared with generalized displacements.

The boundary term −
∫ h+

i

h−i

T d.U∗dz is written:

−Ñ i
dŨ i∗ − M̃i

dΦ̃i∗ − Qi
dU i∗

3

Where ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N i
dα =

∫ h+
i

h−i

T d
α.P

i
0(z)dz

Mi
dα =

∫ h+
i

h−i

eiT d
α.P

i
1(z)dz

Qi
d =

∫ h+
i

h−i

T d
3 .P

i
0(z)dz

(42)

Thanks to the stationarity of the functional Hellinger-Reissner (eqn. 2.1.3.1) and by neglecting
the boundary terms involving components Ū i∗

3 and Û i∗∗
3 and being part of the disturbance terms of

the displacement field, the boundary conditions are obtained on the boundary ∂Ω:∣∣∣∣∣∣∣∣∣
˜̃N i.n = Ñ i

d
˜̃Mi.n = M̃i

d
Q̃i.n = Qi

d

(43)

These expressions by layer have the same shape as the boundary conditions of classical Reissner-
Mindlin plates.

2.1.5 Step 4: The constitutive law of LS1 model
The generalized behavior linking the interior generalized forces to the generalized strains is obtained
by writing the stationarity Hellinger-Reissner’s functional relative to a variation of approximate
stresses and thus generalized internal forces. Therefore the functional T ′ is deduced from the
functional HR by only taking into account the terms involving the stress field ¯̄σ:

T ′(U∗, ¯̄σ∗) = −

∫
Ω

[
div ¯̄σ∗(x).U∗(x) +

1
2

¯̄σ∗(x) :
¯̄̄̄
S (x) : ¯̄σ∗(x)

]
dΩ

+

∫
∂ΩT

( ¯̄σ∗.n)(x).U∗(x)dS
(44)

The term
1
2

¯̄σ∗(x) :
¯̄̄̄
S (x) : ¯̄σ∗(x)dΩ is the elastic energy Wa∗

3D written in stress. The fourth order

compliance tensor
¯̄̄̄
S (z) is constant in each layer and equal to the tensor

¯̄̄̄
S i of components S i

mnop
with m, n, o, p = 1..3. We consider orthotropic layers admitting the axis e3 as axis of orthotropy.
Then, the components of the compliance matrix containing an odd number of index 3 are null.

We note
˜̃̃̃
S i

c the in-plane fourth order compliance tensor, S i
ν the compliance scalar of the three-

dimensional normal forces, ˜̃S i
Q the second order tensor, compliance matrix of the three-dimensional

interface shear and ˜̃S i
3 the second order tensor, compliance matrix characteristic of coupling between

the membrane three-dimensional forces and normal force. These tensors have as components:
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(
˜̃̃̃
S i

)
αβγδ

= S i
αβγδ; S i

ν = S i
3333;

( ˜̃S i
Q

)
αβ

= 4S i
α3γ3;

( ˜̃S i
3

)
αβ

= 2S i
αβ33; (αβγδ) = 1, 2

It is shown that the energy of the three-dimensional stress field is expressed on each layer based
on four terms:

Wa∗
3D =

n∑
i=1

∫
ω

[
wai∗

c + wai∗
ν + wai∗

Q + wai∗
3

]
ds (45)

Where:

• wai∗
c is the elastic energy of the membrane stresses σαβ of layer i:

wai∗
c =

1
2

∫ h+
i

h−i

˜̃σa∗ :
˜̃̃̃
S i : ˜̃σa∗dz (46)

• wai∗
ν is the elastic energy of normal stress σ33 of layer i:

wai∗
ν =

1
2

∫ h+
i

h−i

σa∗
33S i

νσ
a∗
33dz (47)

• wai∗
3 is the elastic energy of coupling between membrane stresses σαβ and normal stress σ33

of layer i:

wai∗
3 =

1
2

∫ h+
i

h−i

(
˜̃σa∗ : ˜̃S i

3

)
σa∗

33dz (48)

• wai∗
Q is the elastic energy of the interface shear perpendicular to the plane of layer i:

wai∗
Q =

1
2

∫ h+
i

h−i

σa∗
α3.

( ˜̃S i
Q

)
αβ
.σa∗

β3dz (49)

In order to obtain the constitutive equations in compliance (Chabot, 1997), it is sufficient to
derive the elastic energies, associated with stress fields Wa∗

3D, relative to each generalized interior
forces.

2.1.5.1 Expression of elastic energy written in stress

By injecting the expression of stresses from eqn. 26 to eqn. 28 in the elastic energies expressions
(from eqn. 46 to eqn. 49), we obtain:

w5ni∗

c =
1
2

 ˜̃N i∗ :
˜̃̃̃
S i

ei : ˜̃N i∗ + ˜̃Mi∗ :
12
ei3

˜̃̃̃
S i : ˜̃Mi∗

 (50)



CHAPTER 2. DESCRIPTION OF LS1 MODEL 43

w5ni∗

ν =
1
2

Di
ν



ei

(
νi,i+1∗ + νi−1,i∗

2
+

ei

12
div(τ̃i,i+1∗ − τ̃i−1,i∗)

)2

+
ei

12

(
ei

10
div(τ̃i,i+1∗ + τ̃i−1,i∗) +

6
5

(ν̃i,i+1∗ − ν̃i−1,i∗)
)2

+
ei

5

(
ei

12
div(τ̃i,i+1∗ − τ̃i−1,i∗)

)2

+
ei

700

(
(ν̃i,i+1∗ − ν̃i−1,i∗) +

ei

2
div(τ̃i,i+1∗ + τ̃i−1,i∗)

)2


(51)

w5ni∗

3 =
1
2


˜̃N i∗ : ˜̃S i

3

((
νi,i+1∗ + νi−1,i∗

2

)
+

ei

12
div(τ̃i,i+1∗ − τ̃i−1,i∗)

)
+

˜̃Mi∗

ei : ˜̃S i
3

(
6
5

(ν̃i,i+1∗ − ν̃i−1,i∗) +
ei

10
div(τ̃i,i+1∗ + τ̃i−1,i∗)

)
 (52)

w5ni∗

Q =
1
2


Q̃i∗.

 ˜̃S i
Q

ei

 .Q̃i∗ + (τ̃i,i+1∗ + τ̃i−1,i∗).
ei

12
˜̃S i

Q.(τ̃
i,i+1∗ + τ̃i−1,i∗)

+

(
Q̃i∗ −

ei

12
(τ̃i,i+1∗ + τ̃i−1,i∗)

)
.

˜̃S i
Q

5ei .

(
Q̃i∗ −

ei

12
(τ̃i,i+1∗ + τ̃i−1,i∗)

)
 (53)

The generalized behavior deduced from the above expressions gives too heavy calculations. We
simplify the expression of elastic energy by disregarding certain contributions.

Hypothesis 1 We neglect the energies w5ni∗

3 coupling membrane stresses and stresses perpendicular
to layers. This means neglecting somewhat the Poisson effect due to "pinch" of the layers.
This assumption is usually done in most of plate theories and has been verified and approved
where same results were obtained when comparing LS1 without these terms and full LS1
which takes into account the Poisson effect by coupling membrane stresses and stresses
perpendicular to layers

In addition, the terms div(τ̃i,i+1∗ ± τ̃i−1,i∗) and div(τ̃i,i+1∗ ± τ̃i−1,i∗)2 in the expression wai∗
ν make the

calculations very difficult while multiplied by (ei)2 or (ei)3, their contribution to energy is probably
small thereby:

Hypothesis 2 We neglect the terms in (ei)2div(τ̃i,i+1∗ ± τ̃i−1,i∗) and (ei)3div(τ̃i,i+1∗ ± τ̃i−1,i∗)2 in the
expression of W5n∗

3D

2.1.5.2 The constitutive law of LS1 model

By introducing the expression of W5n∗
3D into the functional of Hellinger-Reissner, and by deriving

with respect to the generalized interior forces, we deduce:

• constitutive law of normal membrane forces of layer i for i = 1..n:

˜̃εi(x, y) =

˜̃̃̃
S i

ei : ˜̃N i(x, y) (54)
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• constitutive law of bending moments and torsion in the plane of layer i for i = 1..n:

˜̃χi(x, y) =
12
ei3

˜̃̃̃
S i : ˜̃Mi(x, y) (55)

• constitutive law of transverse shear forces of layer i for i = 1..n:

γ̃i(x, y) =
6

5ei
˜̃S i

Q.Q̃
i −

1
10

˜̃S i
Q.(τ̃

i,i+1 + τ̃i−1,i) (56)

• constitutive law of interface shear forces at the interface i, i + 1 for i = 1..n − 1:

D̃i,i+1(x, y) = −
1

10
˜̃S i

Q.Q̃
i −

1
10

˜̃S i+1
Q .Q̃i+1 −

ei

30
˜̃S i

Q.τ̃
i−1,i

+
2

15

(
ei ˜̃S i

Q + ei+1 ˜̃S i+1
Q

)
.τ̃i,i+1 −

ei+1

30
˜̃S i+1

Q .τ̃i+1,i+2
(57)

• constitutive law of normal stresses at the interface i, i + 1 for i = 1..n − 1:

Di,i+1
ν (x, y) =

9
70

eiS i
νν

i−1,i +
13
35

(eiS i
ν + ei+1S i+1

ν )νi,i+1

+
9
70

ei+1S i+1
ν νi+1,i+2

(58)

2.1.6 LS1 with imperfect interface
In the previous developments of the LS1 model, the interfaces were considered as perfect and
interface displacements were only due to the elastic generalized displacements in the neighboring
layers. Now, if the role of physical interfaces has to be specifically taken into account (elastic or
plastic sliding (Diaz Diaz et al., 2002), thick elastic or plastic interface (Duong et al., 2011)), the
interface behavior equations (57, 58) and (39) may highlight this new complexity.

2.1.6.1 Interface formulation

Thus, in equations 57 and 58, generalized elastic interface displacements can legitimately be
expressed for i = 1, 2, 3, as interface generalized displacements Dk,k+1

α (x, y) and Dk,k+1
z (x, y) (as

defined in (39)), minus γk,k+1
i which represents local interface displacements (or slips) due to an

own interface behavior:

• Interlaminar shear stress:

Dk,k+1
α − γk,k+1

α = −
1

10

(
S k

Qαβ
Qk
β + S k+1

Qαβ
Qk+1
β

)
−

1
30

(
ekS k

Qαβ
τk−1,k
β + ek+1S k+1

Qαβ
τk+1,k+2
β

)
+

2
15

(
ekS k

Qαβ
+ ek+1S k+1

Qαβ

)
τk,k+1
β

(59)

• Interlaminar normal stress:

Dk,k+1
z − γk,k+1

z =
9
70

(
ek S k

ν ν
k−1,k + ek+1 S k+1

ν νk+1,k+2
)

+
13
35

(
ek S k

ν + ek+1 S k+1
ν

)
νk,k+1 (60)
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The three localized interface displacements or slips γk,k+1
x , γk,k+1

y and γk,k+1
z can be, for instance,

considered as elastic or plastic.

Then, in this approach, two factors may influence the interfacial rigidity between two layers:
the rigidity of adjacent layers (S k

Qαβ
, S k

ν, S k+1
Qαβ

and S k+1
ν ) and the own behavior of the interface.

The role of a thick or/and inelastic adhesive could be then represented by γk,k+1
x , γk,k+1

y and γk,k+1
z .

Poor interfacial stiffness or sliding may cause a remarkable decrease of the structure rigidity when
a perfect interface (infinite stiffness) provides the expected theoretical and ideal stiffness of the
structure. The different interface representations can be summarized as follows in (Table 2.1) with
the main governing equations and the application cases.

Type Denomination Details and references
A Elastic composite (LS1) Perfect interface (39) (Carreira et al., 2002)
B Elastic composite with Interface with zero thickness and

elastic interface isotropic stiffness (Duong et al., 2011)
C Elastic composite with Interface with zero thickness and a perfectly plastic

plastic slips law for interfacial slips (Diaz Diaz and Caron, 2006)
D Elastic composite with Interface with non-zero thickness and

elastoplastic interface elastoplastic behavior (Duong et al., 2011)

Tab. 2.1. Type of interfacial behaviors and LS1 corresponding references

2.2 Presentation of the finite element of LS1
Viet Tung NGUYEN, in his thesis and in Nguyen and Caron (2006), proposed a finite element
program called MPFEAP for the LS1 model. The validation and the numerical tests in statics show
that this model calculates well the interfacial stresses at free edges for multilayered material.

2.2.1 Approximation of nodal displacement
The numerical implementation of the LS1 model will be performed by using an two-dimensional
parametric element with 8 nodes (fig. 2.2).
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Fig. 2.2. The eight-node element and its four second-order Gaussian stations.

The parametric coordinate are denoted ξ et η. Each element’s node has 5n d.o.f. per layer (n is
the number of layers of the plate). The x(ξ, η) and y(ξ, η) coordinate of any point (ξ, η) is defined
by:

x(ξ, η) =

8∑
i=1

Ni(ξ, η).xi

y(ξ, η) =

8∑
i=1

Ni(ξ, η).yi

(61)

Where (xi, yi) are the coordinates of the node i, and quadratic shape functions are written :

N1(ξ, η) =
1
4

(1 − ξ)(1 − η)(−1 − ξ − η)

N2(ξ, η) =
1
2

(1 − ξ2)(1 − η)

N3(ξ, η) =
1
4

(1 + ξ)(1 − η)(−1 + ξ − η)

N4(ξ, η) =
1
2

(1 + ξ)(1 − η2)

N5(ξ, η) =
1
4

(1 + ξ)(1 + η)(−1 + ξ + η)

N6(ξ, η) =
1
2

(1 − ξ2)(1 + η)

N7(ξ, η) =
1
4

(1 − ξ)(1 + η)(−1 − ξ + η)

N8(ξ, η) =
1
2

(1 − ξ)(1 − η2)

(62)

Nodal approximation for the displacement field is written using the same shape functions as
geometric approximation (continuity Co)

δ =

8∑
i=1

Niδi (63)

where the shape function matrix associated with node i is

Ni = NiI5n
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I5n is the unit matrix of dimension 5n × 5n. The displacement vector at node i is written:

δT
i = < U1

i V1
i W1

i φ
1
xi φ

1
yi, U2

i V2
i W2

i φ
2
xiφ

2
yi, . . . ,U

n
i Vn

i Wn
i φ

n
xiφ

n
yi︸                                                               ︷︷                                                               ︸ >

5n
(64)

The derived interpolation functions are calculated using the formula:

∂Ni

∂x
=

∂Ni

∂ξ
.
∂ξ

∂x
+
∂Ni

∂η
.
∂η

∂x
∂Ni

∂y
=

∂Ni

∂ξ
.
∂ξ

∂y
+
∂Ni

∂η
.
∂η

∂y

(65)

2.2.2 Strains and stresses
The strains vector ε of dimension 11n − 3 is defined by separating the components for membrane
behavior εc, normal behavior εν and interface shear behavior εQ:

εT =
〈
εc, εν, εQ

〉
(66)

The generalized membrane strains are written:

εc = < ε1
xx ε

1
yy 2ε1

xy χ
1
xx χ

1
yy 2χ1

xy, . . . , ε
n
xx ε

n
yy 2εn

xy χ
n
xx χ

n
yy2 χ

n
xy︸                                                             ︷︷                                                             ︸ >T

6n
(67)

The generalized normal strains are written:

εν = < D1,2
ν D2,3

ν . . .Dn−1,n
ν︸                  ︷︷                  ︸ >T

n − 1
(68)

The generalized shear strains are written:

εQ = < γ1
x γ

1
y D1,2

x D1,2
y γ2

x γ
2
y , . . . , γ

n−1
x γn−1

y Dn−1,n
x Dn−1,n

y γn
x γ

n
y︸                                                               ︷︷                                                               ︸ >T

4n − 2
(69)

The expression of these generalized strains defined by Equation 39 can be written explicitly as
shown below, for i = 1..n:

εi
xx =

∂U i

∂x
εi

xy =
1
2

(
∂Uk

∂y
+
∂Vk

∂x

)
εi

yy =
∂V i

∂y

χi
xx =

∂φi
x

∂x
χi

xy =
1
2

∂φk
x

∂y
+
∂φk

y

∂x

 χi
yy =

∂φi
y

∂y

γi
x =

∂W i

∂x
+ φi

x γi
y =

∂W i

∂y
+ φi

y

(70)

and for j = 1..n − 1:

D j, j+1
x = U j+1 − U j −

e j

2
φ

j
x −

e j+1

2
φ

j+1
x

D j, j+1
y = V j+1 − V j −

e j

2
φ

j
y −

e j+1

2
φ

j+1
y

D j, j+1
ν = W j+1 −W j

(71)

The vector of stresses associated with ε is defined as
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σT =< σc, σν, σQ > (72)

where

σc =< N1
xx N1

yy N1
xy M1

xx M1
yy M1

xy, . . . ,N
n
xx Nn

yy Nn
xy Mn

xx Mn
yy Mn

xy >
T (73)

σν =< ν1,2 ν2,3, . . . , νn−1,n >T (74)

σQ =< Q1
x Q1

y τ
1,2
x τ1,2

y Q2
x Q2

y , . . . ,Q
n−1
x Qn−1

y τn−1,n
x τn−1,n

y Qn
x Qn

y >
T (75)

2.2.3 Nodal approximation of strains and stresses - matrix B

The nodal approximation of the strains field of the element is written as:

ε =

8∑
i=1

Biδi = [B1, . . . , B8]δ (76)

With:

εc =

8∑
i=1

Bc
i δi = [Bc

1, . . . , B
c
8]δ (77)

εν =

8∑
i=1

Bν
i δi = [Bν

1, . . . , B
ν
8]δ (78)

εQ =

8∑
i=1

BQ
i δi = [BQ

1 , . . . , B
Q
8 ]δ (79)

The matrices Bi consist of n unit matrices Bik (k = 1 . . . n) for each layer:

• The matrix Bc
ik is written:

Bc
ik =



Ni,x 0 0 0 0
0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0
0 0 0 Ni,x 0
0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x


(80)

• The matrix Bν
ik is written:

Bν
ik =

[
0 0 −Ni 0 0 0 0 Ni 0 0

]
=

[
Bν1

ik Bν2
ik

] (81)

where the matrices Bν1
ik and Bν2

ik are of dimension 1× 5. They serve to better explain the matrix
Bi building in the equation below.
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• The matrix BQ
ik is written:

BQ
ik =


0 0 Ni,x Ni 0 0 0 0 0 0
0 0 Ni,y 0 Ni 0 0 0 0 0
−Ni 0 0 −

ek
2 Ni 0 Ni 0 0 −

ek+1
2 Ni 0

0 −Ni 0 0 −
ek
2 Ni 0 Ni 0 0 −

ek+1
2 Ni


=

[
BQ1

ik BQ2
ik

] (82)

where BQ1
ik and BQ2

ik are the matrices of dimension 4 × 5 and are used for the same reason as
Bν1

ik and Bν2
ik .

In fact, the matrix Bc
i of dimension 6n × 5n is defined by

Bc
i =


Bc

i1 0 . 0
0 Bc

i2 . 0
. . . .
0 0 . Bc

in



=



Ni,x 0 0 0 0 . 0 0 0 0 0
0 Ni,y 0 0 0 . 0 0 0 0 0

Ni,y Ni,x 0 0 0 . 0 0 0 0 0
0 0 0 Ni,x 0 . 0 0 0 0 0
0 0 0 0 Ni,y . 0 0 0 0 0
0 0 0 Ni,y Ni,x . 0 0 0 0 0
. . . . . . . . . . .
. . . . . . . . . . .
0 0 0 0 0 . Ni,x 0 0 0 0
0 0 0 0 0 . 0 Ni,y 0 0 0
0 0 0 0 0 . Ni,y Ni,x 0 0 0
0 0 0 0 0 . 0 0 0 Ni,x 0
0 0 0 0 0 . 0 0 0 0 Ni,y

0 0 0 0 0 . 0 0 0 Ni,y Ni,x



(83)

and the matrix Bν
i of dimension (n − 1) × 5n is defined by

Bν
i =


Bν1

i1 Bν2
i1 0 . 0 0

0 Bν1
i2 Bν2

i2 . 0 0
. . . . . .
0 0 0 . Bν1

i n−1 Bν2
i n−1


=


0 0 −Ni 0 0 0 0 Ni 0 0 . . . . . .
. . . . . 0 0 −Ni 0 0 . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . 0 0 Ni 0 0


(84)

Finally, the matrix BQ
i of dimension (4n − 2) × 5n is defined by
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BQ
i =


BQ1

i1 BQ2
i1 0 . 0 0

0 BQ1
i2 BQ2

i2 . 0 0
. . . . . .

0 0 0 . BQ1
i n−1 BQ2

i n−1
0 0 0 . 0 First 2 lines of BQ1

i n



=



0 0 Ni,x Ni 0 0 0 0 0 0 . . .
0 0 Ni,y 0 Ni 0 0 0 0 0 . . .

−Ni 0 0 − e1

2 Ni 0 Ni 0 0 − e2

2 Ni 0 . . .

0 −Ni 0 0 − e1

2 Ni 0 Ni 0 0 − e2

2 Ni . . .
. . . . . . . . . . . . .
. . . . . . . . 0 0 Ni,x Ni 0
. . . . . . . . 0 0 Ni,y 0 Ni



(85)

2.2.4 Behavior - stiffness matrix D
Behavior in compliance

The behavior of LS1 model in compliance can be written in matrix form

ε = Sσ + εo (86)

The vector εo contains the terms related to surface tractions T− and T +. In this case, we are
dealing with a problem with initial deformation. Its resolution is the subject of the next section.
In eqn. 86, S is the compliance matrix of dimension (11n − 3) × (11n − 3)

S =

 S c 0 0
0 S ν 0
0 0 S Q

 (87)

The compliance matrices S c, S ν and S Q correspond to the compliance matrices of each layer
S c

k, S ν
k and S Q

k (k = 1 . . . n). These matrices are formulated from the constitutive equations of the
model (eqns. 54-58):

S c
k =



S k
11

ek

S k
12

ek

S k
16

ek 0 0 0
S k

21
ek

S k
22

ek

S k
26

ek 0 0 0
S k

16
ek

S k
26

ek

S k
66

ek 0 0 0

0 0 0 12S k
11

(ek)3
12S k

12
(ek)3

12S k
16

(ek)3

0 0 0 12S k
21

(ek)3
12S k

22
(ek)3

12S k
26

(ek)3

0 0 0 12S k
16

(ek)3

12S k
26

(ek)3

12S k
66

(ek)3


(88)

S ν
k =

[
9ekS k

33
70

13(ekS k
33+ek+1S k+1

33 )
35

9ek+1S k+1
33

70

]
(89)

S Q
k =

 0
−S k

Q

10

6S k
Q

5ek

−S k
Q

10 0 0

0
−ekS k

Q

30

−S k
Q

10

2(ekS k
Q+ek+1S k+1

Q )

15

−S k+1
Q

10

−ek+1S k+1
Q

30

 (90)

By combining the matrices of each layer, we obtain the elementary compliance matrices below:
S c matrix of dimension 6n × 6n defined by
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S c =



S 1
11

e1
S 1

12
e1

S 1
16

e1 0 0 0 . . . . . . . .
S 1

21
e1

S 1
22

e1

S 1
26

e1 0 0 0 . . . . . . . .
S 1

16
e1

S 1
26

e1

S 1
66

e1 0 0 0 . . . . . . . .

0 0 0 12S 1
11

(e1)3
12S 1

12
(e1)3

12S 1
16

(e1)3 . . . . . . . .

0 0 0 12S 1
21

(e1)3
12S 1

22
(e1)3

12S 1
26

(e1)3 . . . . . . . .

0 0 0 12S 1
16

(e1)3

12S 1
26

(e1)3

12S 1
66

(e1)3 . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . .
S 1

11
en

S 1
12

en

S 1
16

en 0 0 0

. . . . . . . .
S 1

21
en

S 1
22

en

S 1
26

en 0 0 0

. . . . . . . .
S 1

16
en

S 1
26

en

S 1
66

en 0 0 0

. . . . . . . . 0 0 0 12S 1
11

(en)3
12S 1

12
(en)3

12S 1
16

(en)3

. . . . . . . . 0 0 0 12S 1
12

(en)3
12S 1

22
(en)3

12S 1
26

(en)3

. . . . . . . . 0 0 0 12S 1
16

(en)3

12S 1
26

(en)3

12S 1
66

(en)3



(91)

S ν matrix of dimension (n − 1) × (n − 1) defined by

S ν =



13(e1S 1
33+e2S 2

33)
35

9e2S 2
33

70 . . .
9e2S 2

33
70

13(e2S 2
33+e3S 3

33)
35

9e3S 3
33

70 . .
. . . . .

. .
9en−2S n−2

33
70

13(en−2S n−2
33 +en−1S n−1

33 )
35

9en−1S n−1
33

70

. . .
9en−1S n−1

33
70

13(en−1S n−1
33 +enS n

33)
35


(92)

S Q matrix of dimension (4n − 2) × (4n − 2) defined by

S Q =

6S 1
Q

5e1

−S 1
Q

10 0 0 . . . . . . .
−S 1

Q

10

2(e1S 1
Q+e2S 2

Q)

15

−S 2
Q

10

−e2S 2
Q

30 . . . . . . .

0
−S 2

Q

10

6S 2
Q

5e2

−S 2
Q

10 0 0 . . . . .

0
−e2S 2

Q

30

−S 2
Q

10

2(e2S 2
Q+e3S 3

Q)

15

−S 3
Q

10

−e3S 3
Q

30 . . . . .

. . 0
−S 3

Q

10

6S 3
Q

5e3

−S 3
Q

10 0 0 . . .

. . 0
−e3S 3

Q

30

−S 3
Q

10

2(e3S 3
Q+e4S 4

Q)

15

−S 4
Q

10

−e4S 4
Q

30 . . .

. . . . . . . . .
−S n

Q

10

6S n
Q

5en


(93)

where S j
Q is the interface shear compliance of layer j.

The vector of initial deformations due to imposed surface stresses εo, of dimension 11n − 3 with
n > 2 is defined by
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εo =



0
.
.
0

9
70e1S 1

33ν
0,1

0
.
.
0

9
70enS n

33ν
n,n+1

− 1
10 (S 1

55τ
0,1
x + S 1

54τ
0,1
y )

− 1
10 (S 1

45τ
0,1
x + S 1

44τ
0,1
y )

− e1

30 (S 1
55τ

0,1
x + S 1

54τ
0,1
y )

− e1

30 (S 1
45τ

0,1
x + S 1

44τ
0,1
y )

0
.
.
0

− en

30 (S n
55τ

n,n+1
x + S n

54τ
n,n+1
y )

− en

30 (S n
45τ

n,n+1
x + S n

44τ
n,n+1
y )

− 1
10 (S n

55τ
n,n+1
x + S n

54τ
n,n+
y )

− 1
10 (S n

45τ
n,n+1
x + S n

44τ
n,n+
y )



=



0
.
.
0

9
70e1S 1

33T−3
0
.
.
0

9
70enS n

33T +
3

− 1
10 (S 1

55T−1 + S 1
54T−2 )

− 1
10 (S 1

45T−1 + S 1
44T−2 )

− e1

30 (S 1
55T−1 + S 1

54T−2 )
− e1

30 (S 1
45T−1 + S 1

44T−2 )
0
.
.
0

− en

30 (S n
55T +

1 + S n
54T +

2 )
− en

30 (S n
45T +

1 + S n
44T +

2 )
− 1

10 (S n
55T +

1 + S n
54T +

2 )
− 1

10 (S n
45T +

1 + S n
44T +

2 )



|

|

|

↓

6n + 1
|

|

|

↓

7n − 1
|

|

|

|

|

|

|

|

|

|

↓

11n − 3

(94)

Behavior in stiffness

The behavior in stiffness of the model is written

σ = S −1(ε − εo) = D(ε − εo) (95)

where D is the compliance matrix of dimension (11n − 3) × (11n − 3)

D = S −1 =

Dc 0 0
0 Dν 0
0 0 DQ

 =

S
c−1 0 0
0 S ν−1 0
0 0 S Q−1

 (96)

2.2.5 A calculation method for a problem with initial deformation
Consider an element submitted to nodal solicitations Fe and volume solicitations p. The element is
in equilibrium and is subjected to a stress field σ. It is assumed that the element is subjected to a
virtual field of arbitrary nodal displacements δe

∗. The displacement field and the internal deformation
field compatibles are δ∗ and ε∗. At the element level, the principle of virtual work is written:

δeT
∗ Fe +

∫
Ωe
δT
∗ pdΩ =

∫
Ωe
εT
∗ σdΩ (97)

In the displacement formulation of the finite element method, the displacement field is obtained
by a nodal interpolation

δ = Nδe (98)
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where N is the set of interpolation functions called shape functions and δe is the vector of nodal
elementary displacements. The deformations in the element can be expressed in terms of nodal
displacements as shown below

ε = Bδe (99)

By using eqns. 99 and 98, we obtain:

δeT
∗

(
Fe +

∫
Ωe
NT pdΩ

)
= δeT

∗

∫
Ωe
BTσdΩ (100)

As the virtual nodal displacements field is arbitrary, the above expression must be true for all
values δe

∗. Then

Fe +

∫
Ωe
NT pdΩ =

∫
Ωe
BTσdΩ. (101)

By replacing σ by D(ε − ε0), with ε0 the initial deformation field

Fe +

∫
Ωe
NT pdΩ =

(∫
Ωe
BT DBdΩ

)
δe −

∫
Ωe
BT Dε0dΩ, (102)

or

Fe + Fe
p + Fe

ε0 = Keδe, (103)

where

Ke =

∫
Ωe
BT DBdΩ, (104)

Fe
p =

∫
Ωe
NT pdΩ, (105)

Fe
ε0 =

∫
Ωe
BT Dε0dΩ. (106)

2.3 Contribution to LS1 model and its finite element program
MPFEAP

In this thesis work, several contributions and improvements were made regarding LS1 model and its
finite element program MPFEAP :

• Implementation of a full LS1 version which takes into account the coupling between mem-
brane stresses and perpendicular stresses (Poisson effect). By comparing full LS1 and LS1,
the same results were obtained.

• Increase the number of stored variables and the way they are stored which reduces significantly
the computation time (more than 5 times). Regarding the dimension or size of the problem
(refinement of the mesh and number of layers) that can be processed by MPFEAP, with these
improvements, a bigger multilayered structure, with more layers and a more refined mesh,
can be studied.

• Program debugging, with correction of some minor bugs.
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3.1 Introduction
The modeling of a hybrid, innovative and complex structure for civil engineering is proposed
here. A concrete slab is connected to an openwork (hollow) crossed plywood panel PANOBLOC
(Techniwood) (Fig. 3.1). The 3D finite element of this kind of structure is extremely complex due
to the non-continuous aspects and also to the strong anisotropy of the pieces of wood, especially in
term of transverse shear behavior (a very weak rolling shear). The effects of these transverse shears
are extremely important for the panel stiffness and have to be correctly taken into account. From a
resistance point of view, the stress singularities along the holes of the hollow structure are difficult
to be estimated with 3D finite element, even with very refined mesh, since non convergent. Real
scale tests, on 6-meter-long panels, have shown that the rupture initiates precisely at these locations,
the free edges of wood parts. The estimation of these stress intensities remains consequently an
important goal for the design of these structures.

Fig. 3.1. An openwork (hollow) plywood cross-ply (Panobloc) connected to a concrete slab.

Several approaches and models are compared, in terms of both stiffness and resistance, a shell
composite element of Abaqus, an analytical beam method, and MPFEAP (Multi particular Finite
Element Approach Program) from Navier laboratory. Based on the layerwise approach LS1, it
permits a 2D description and a 2D meshing of 3D structures, as shown in Fig. 3.2. For the MPFEAP
approach, two variants are tested: one with an equivalent homogeneous and continuous description
of the hollow multilayer, and another one, complete, more precise, where the hollow parts are
integrated in the thickness of the local 2D description. Experimental results are also used for
comparisons.

Fig. 3.2. Equivalent 2D meshing (right) of the 3D structure (left).

The objective is to promote this 2D approach versus 3D calculations, since the cost of 3D
calculations is too high for a pre-design phase. In addition, 3D FE are not always fully relevant in
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the presence of singularities, for example at the interfaces and in the vicinity of the free edges, since
not convergent and mesh dependent.

3.2 The slab modeling
The slab considered in this study is 6 meters length and 1 meter width. The 6 layers stacking
sequence is relatively complex. The first layer, on the top of the slab, is made by a high performance
concrete plate of a thickness of 5 cm. The 5 next layers are constituted by wooden strips, non-
contiguous, and alternatively in the axial and transverse directions. The loading case is a 3 points
bending test and the materials properties experimentally identified and used in the simulations, are
for concrete:
E = 37 GPa,
G = 15.417 GPa,
ν = 0.2.

and for wood:
E1 = 11 GPa, E2 = E3 = 0.5 GPa,
G12 = G13 = 0.7 GPa, G23 = 0.04 GPa,
ν12 = ν13 = ν23 = 0.35.

Note the very weak rolling transverse shear G23, which plays an important role in the design,
and seen in the tests, may induce the first rupture of the multilayer.

3.2.1 The four models
Several methods of calculation are used for the modeling of the plywood-concrete slab, and
comparisons are made between these models. The rigidity of the slab is firstly estimated with
homogeneous approaches. The resistance estimation needs more precise approaches since the
transverse shear at the interfaces between the layers has to be estimated, taking into account the
porosity and the actual position of the strips of wood in the longitudinal and transverse directions.
The four models are described now:

(a) Analytical estimation: the Timoshenko beam model is used to calculate structural stiffness
and resistance of the multilayer since the beam is quite thick, and since large differences exist
between the different material constants, increasing the transverse shear effects. Regarding
stiffness, and to estimate the deflection of the slab, the porosity is just integrated by an ad-hoc
and proportional decrease of equivalent layer stiffnesses. For shear strength, the approach of
Jourasky (1856) allows to estimate the distribution of shear in the thickness of a continuous
multilayered beam. In the case of an uniform porosity along the beam, the method can give
an estimation of transverse shear (not taking into account the singularities)

(b) Standard Finite Element calculation: the S8R (Abaqus) standard thick plate element for
composite materials is used for the slab stiffness estimation. The porosity is again integrated by
an ad-hoc and proportional decrease of equivalent layer stiffnesses. The 3D finite element has
not been used since very heavy to implement for this quite complex structure, and according
to the author’s experience, gives very close results to MPFEAP’s ones, as demonstrated
several times in publications (Carreira et al., 2002; Nguyen and Caron, 2006, 2009; Thai
et al., 2013)
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(c) MPFEAP analysis with equivalent homogeneous layers description: similar in spirit to the b)
approach (Abaqus), this model integrates however more precisely transverse shear behaviors,
introducing no correction factors for these stiffnesses. However, as previous models, it
provides no information on the stress concentrations due to porosities, that it doesn’t describe

(d) MPFEAP complete analysis: describing porosities and the wooden strips in the 2 longitudinal
and transverse directions, it is a rich 2D model, but easier to manage than 3D approach, and
allowing the stress concentrations estimation

3.2.2 Slab rigidity
A calculation of slab stiffness is performed with the a), b) and c) approaches and compared with the
results of experimental tests. A force is applied in the middle of the slab, up to 64 KN, provoking
the rupture of the slab. Fig. 3.3 shows the different mid-pan deflections obtained with the different
models and measured on the intrados of the panel.
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Fig. 3.3. Experimental and simulated mid-pan deflections (mm).

The best fit is realized with the c) model, the homogeneous equivalent MPFEAP without the
precise openwork description. It takes accurately into account the high gradient of properties
between the different layers, especially concerning the transverse shear phenomenon. The model d),
the complete MPFEAP, not reported here, doesn’t improve this rigidity prediction. The analytical
approach provides a not so bad estimation, but this is only for very simple cases, 1D beams with
simple loadings, elastic behavior, and uniform distribution of strips and porosities. The more
interesting aspect is perhaps the difficulty for the 2D plate elements from ABAQUS to simulate
this situation. It’s mainly due to the hazardous estimation of correction factors for transverse shear
stiffnesses, depending, moreover, on the case loading.

To confirm the important role of transverse shear G23 in such structures, and that it should be
well considered, we present in Fig. 3.4, simulations for different values of shear plane G12 and G13

and in Fig. 3.5 for different values of transverse shear G23. If G12 and G13 hardly influence the
deflection, weak G23 decreases strongly and quickly the stiffness.
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Fig. 3.4. Mid-plane deflection depending on G12 and G13 (mm).
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Fig. 3.5. Mid-pan deflection depending on G23 (mm).

3.2.3 Resistance and transverse shear stresses estimation
Here we compare the numerical results a), c) and d), with the experimental rupture of the slab. Fig.
3.6 shows the slab after rupture. The rupture appears between layers 2 and 3 (layer 5 is the intrados
one). The ultimate load is 64 KN. The maximum transverse shear stresses σ13 calculated for this
loading, with the different models a), c) and d) and for each interface, are reported in table 3.1.
Some tests were also made on the wood strips alone, to estimate the transverse shear strengths of
the wood, and especially in the Transverse Normal direction (rolling shear). An average value of
1.73 MPa has been found.
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Fig. 3.6. Transverse shear cracking (blue circle) between layers 2 and 3 in a transverse wooden strip.

Interface Analytical model a) Equivalent MPFEAP c) Complete MPFEAP d)
0-1 0.46 0.48 0.52
1-2 0.68 0.63 0.81
2-3 2.01 1.86 1.77
3-4 1.71 1.55 1.48
4-5 0.55 0.52 0.7

Tab. 3.1. Maximum transverse shear stresses σ13 (MPa), for each interface and for the different models a), c)
and d)

The three approaches are consistent and locate correctly the rupture. The analytical approach
is however reserved to very simple cases, 1D beams with simple loading, elastic behavior, and
uniform distribution of strips and porosities. For more complex cases, local densification of strips,
2D slabs, complex loading or boundary conditions, the homogeneous MPFEAP model c) permits a
good first estimation of the ultimate limit state of the slab. Soon, it will be also possible to take into
account inelastic phenomenon, as the compression damage of concrete for instance.

Finally the complete model d), which describes the exact geometrical positions of the strips
of wood in the 2 longitudinal and transverse directions as well as porosity, locates correctly too
the stress concentration and the weak area of the slab, but allows also a better estimation of the
transverse shear stress in these quite difficult conditions. The experimental strength is very close
to the numerical estimation, 1.77 MPa. We highlight once again that this model remains a 2 FE
approach, involving only plane elements.

3.2.4 Conclusion
In this chapter, the relevance of an original 2D plate approach is demonstrated through the calculation
of a highly complex structure combining several materials, wood, high performance concrete and
an openwork design (Techniwood). The model is Layerwise, named LS1 (Thai et al., 2013) since
it involves first-order membrane stresses. The 2D associated finite element code MPFEAP easily
allows the description of the 3D complex structure and the estimation of the transverse shear effects
and the intensity of the singularities along the free edges. The performance of this approach is
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compared with classical homogeneous solutions, obtained analytically or numerically (Abaqus). For
the estimation of the structure rigidity, the homogeneous equivalent MPFEAP without the precise
openwork description (c) takes accurately into account the high gradient of properties between the
different layers, especially concerning the transverse shear phenomenon. The analytical approach
can only be applied to very simple cases, 1D beams with simple loading, elastic behavior, and
uniform distribution of strips and porosities, and the 2D plate elements from ABAQUS doesn’t
estimate correctly the transverse shear behavior. Concerning the ultimate behavior, all the models
locate correctly the rupture, but once again, the analytical approach can treat only very simple cases.
For real and complex cases, local densification of strips, 2D slabs, complex loading or boundary
conditions, the homogeneous MPFEAP model permits a good first estimation of the ultimate limit
state of the slab. If a more precise estimation is needed the model d), which describes the exact
geometrical positions of the wooden strips as well as porosity, allows a better estimation of the
transverse shear stress in these quite difficult conditions. The experimental strength is very close to
the numerical estimation. Note that this fine description remains a 2D plane description, a quite
interesting alternative to the heavy 3D descriptions, and relevant for real and complex material and
geometries.
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4.1 Introduction
For the analysis of multilayered structures, although ESL models can provide acceptable results
for global response of multilayers, they may lead to very inaccurate estimations of local response
especially near free-edges. Layerwise models have been proposed to overcome the drawbacks
of ESL models (Barbero and Reddy, 1991; Robbins and Reddy, 1993; Gaudenzi et al., 1995;
Dakshina Moorthya and Reddy, 1998; Carrera, 1998; Botello et al., 1999). In these approaches,
each layer of the multilayered structure is considered as an independent plate. Therefore, the
number of governing equations depends on the number of the layers. This increases significantly
the computational cost in layerwise approaches. However, thanks to their accuracy with respect to
ESL models and their efficiency with respect to full 3D models, layerwise models have been proven
to be very good alternatives to 3D models. In Navier laboratory, a layerwise stress model was
proposed and is named LS1 which means a Layerwise Stress approach with first-order membrane
stress approximations per layer in the thickness direction.

Even if the LS1 model and its refined version are very effective models, they can be still
improved. Indeed, firstly, the 3D stress free boundary conditions cannot be exactly met by these
models, and secondly, as these models are derived by means of the Hellinger-Reissner mixed
variational principle, there is no theoretical guarantee of the convergence of the refined LS1 model
to the 3D model, as the number of mathematical layers per physical layer increases.

The objective of this chapter is to improve the LS1 model by removing these drawbacks. For
this purpose, a new layerwise model, called Statically Compatible LS1 (SCLS1), is introduced.
As in LS1, the laminated plate is still considered as a superposition of Reissner plates coupled by
interfacial stresses. However, the divergences of the interlaminar transverse shears are introduced
as new generalized efforts. Moreover, the new model is derived by means of the minimum of the
complementary potential energy ensuring the convergence of its refined version to the exact 3D
model, as the number of mathematical layers per physical layer increases.

Furthermore, the new model has been implemented in a new version of the in-house finite
element code called MPFEAP (for MultiParticle Finite Element Analysis Program). The new 2D
finite element has eight nodes with 6n−1 degrees of freedom per node, n being the number of layers
constituting the laminate. Finally, several comparisons are made between LS1, SCLS1, refined
LS1, refined SCLS1 and full 3D FE models for straight free edge plate and notched laminate under
uniaxial tension.

This chapter is organized as follows: the next section is dedicated to the theoretical formulation
of the SCLS1 model referring also to the original LS1 model, highlighting the differences. Section 3
discusses the FE discretization of the new model and its implementation. Section 4 presents the
numerical comparisons between the different models. The chapter ends with a conclusion which
synthesizes the main results and discusses prospects for future developments.

4.2 Theoretical formulation of the statically compatible model
SCLS1

In this section, the new model for linear elastic multilayered plates called SCLS1 is described. It is
derived from the 3D exact model by considering Statically Compatible Layerwise Stresses with
first-order membrane stress approximations per layer in the thickness direction. The generalized
stresses of the proposed model are actually those of a Reissner-Mindlin plate per layer in addition
to inter-laminar shear and normal stresses at the interfaces between layers and the divergences of
these inter-laminar shear stresses. The exact 3D equilibrium equations lead to 6n − 1 equilibrium
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equations on the generalized stresses, where n is the number of layers. Therefore, the kinematics
of the SCLS1 model, obtained by dualization of the equilibrium equations, has 6n − 1 degrees
of freedom at each point of the middle surface of the plate. Finally, the generalized constitutive
equations of the SCLS1 model linking the generalized stresses to the generalized strains are derived
by using the stress energy formulation.

4.2.1 Problem description and notations
The multilayered plate under consideration is composed of n perfectly bonded orthotropic elastic
layers (fig. 4.1). The plate occupies the 3D domain Ω = ω×]h−1 , h

+
n [ where ω is the middle surface of

the plate. In the following, x and y are the in-plane coordinates and z is the out-of-plane coordinate.
The following notations are introduced:

Fig. 4.1. Description of the multilayered plate.

• The superscripts i and j, j + 1 indicate layer i and the interface between layer j and j+1 with
1 6 i 6 n and 1 6 j 6 n− 1, respectively. By extension, the superscript 0, 1 refers to the lower
face ω− = ω × h−1 and the superscript n, n + 1 refers to the upper face ω+ = ω × h+

n .

• In each layer i, h−i , h+
i and h̄i are , respectively, the bottom, the top and the mid-plane z

coordinates of the layer, and ei = h+
i − h−i is its thickness. Hence, we have h−i+1 = h+

i for all
1 6 i 6 n − 1. By convention, we set h+

0 = h−1 and h−n+1 = h+
n .

• Greek subscripts α, β, γ, δ,... indicate the in-plane components (x,y) and go through 1, 2.

• Latin subscripts k, l, m, n,... indicate the components (x,y,z) and go through 1, 2, 3.

• Si = (S i
klmn) is the fourth-order compliance tensor of layer i with the minor and major

symmetries: S i
klmn = S i

lkmn = S i
klnm = S i

mnkl. Si is monoclinic in direction z: S i
αβγ3 = S i

α333 = 0.

• σαβ(x, y, z) are the in-plane stress components, σα3(x, y, z) are the transverse shear stresses
and σ33(x, y, z) is the normal stress.

• εαβ(x, y, z) are the in-plane strain components, εα3(x, y, z) are the transverse strain stresses and
ε33(x, y, z) is the normal strain.

• uα(x, y, z) are the in-plane 3D displacement components, u3(x, y, z) is the out-of-plane 3D
displacement component.
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• The Einstein’s convention of summation over repeated indexes is adopted.

The plate is loaded on its upper face ω+ and lower face ω− with the distributed surface forces
T+ = (T +

k ) and T− = (T−k ), respectively. The lateral boundary is decomposed into two complemen-
tary parts: a free part ∂ΩT = ∂ωT×]h−1 , h

+
n [ where T = (Tk) = (σklnl) is set to zero, and a restrained

part ∂Ωu = ∂ωu×]h−1 , h
+
n [ where the displacement u = (uk) is set to zero . Here, the subsets ∂ωT and

∂ωu are a partition of ∂ω, ∂ω = ∂ωT ∪ ∂ωu with ∂ωT ∩ ∂ωu = ∅, and n = (nk) is the outer normal to
∂ΩT .

4.2.2 Governing equations of the 3D model
The 3D problem is to find a statically compatible stress field σ = (σkl) and a kinematically strain
field ε = (εkl) which comply with the constitutive equation:

εkl(x, y, z) = S klmn(z)σmn(x, y, z) on Ω. (107)

A stress field σ is statically compatible if it complies with the equilibrium equations:

σkl,l = 0 on Ω, (108)

and the stress conditions on the lower and upper faces:

σk3 = −T−k on ω−, σk3 = T +
k on ω+, (109)

and on the lateral boundary:

σklnl = 0 on ∂ΩT . (110)

A strain field ε is kinematically compatible if there exists a displacement field u = (uk)
complying with the displacement conditions on the lateral boundary:

uk = 0 on ∂Ωu, (111)

and such that:

εkl =
1
2

(
uk,l + ul,k

)
on Ω. (112)

It is well-known that, according to the theorem of the minimum of the complementary energy, the
solution stress field minimizes the following stress energy among all possible statically compatible
stress fields:

W∗ =
1
2

∫
Ω

S klmn(z)σmnσkl dxdydz (113)

The main idea of the proposed model is to restrict the above minimization problem to those
statically compatible stress fields whose in-plane components, σαβ, are layerwise linear functions of
z. Those fields define the SCLS1 subset of statically compatible stress fields.
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4.2.3 The static of the SCLS1 model
Since in the SCLS1 model σαβ are layerwise linear functions of z, then, by virtue of the 3D
equilibrium equations, the transverse shear stresses σα3 are necessarily layerwise quadratic functions
of z and the normal stress σ33 is necessarily a layerwise third-order polynomial function of z. Taking
into account the continuity of the stresses σα3 and σ33 at the interfaces between the layers, it can be
easily established that such stress fields have the following expressions in layer i: for 1 6 i 6 n,

σ3D
αβ (x, y, z) = N i

αβ(x, y)
Pi

0(z)
ei +

12
ei2

Mi
αβ(x, y)Pi

1(z) (114)

σ3D
α3 (x, y, z) =Qi

α(x, y)
Pi

0(z)
ei +

(
τi,i+1
α (x, y) − τi−1,i

α (x, y)
)

Pi
1(z)+(

Qi
α(x, y) −

ei

2

(
τi,i+1
α (x, y) + τi−1,i

α (x, y)
)) Pi

2(z)
ei

(115)

σ3D
33 (x, y, z) =

(
1
2

(
νi,i+1(x, y) + νi−1,i(x, y)

)
+

ei

12

(
πi,i+1(x, y) − πi−1,i(x, y)

))
Pi

0(z)+(
ei

10

(
πi,i+1(x, y) + πi−1,i(x, y)

)
+

6
5

(
νi,i+1(x, y) − νi−1,i(x, y)

))
Pi

1(z)+

ei

12

(
πi,i+1(x, y) − πi−1,i(x, y)

)
Pi

2(z)+(
ei

2

(
πi,i+1(x, y) + πi−1,i(x, y)

)
+

(
νi,i+1(x, y) − νi−1,i(x, y)

))
Pi

3(z)

(116)

where N i
αβ, Mi

αβ and Qi
α are generalized stresses associated to layer i, τi,i+1

α , νi,i+1 and πi,i+1 are
generalized stresses associated to the interface between layer i and layer i + 1, and Pi

k, k = 0, 1, 2, 3,
are the orthogonal Legendre-like polynomials basis defined on layer i by: for h−i ≤ z ≤ h+

i ,

Pi
0(z) = 1

Pi
1(z) =

z − h̄i

ei

Pi
2(z) = −6

(
z − h̄i

ei

)2

+
1
2

Pi
3(z) = −2

(
z − h̄i

ei

)3

+
3

10

(
z − h̄i

ei

) (117)

The interpretation of the generalized stresses defined on layer i is as follows: Ni = (N i
αβ) is the

in-plane stress resultant tensor, Mi = (Mi
αβ) is the moment resultant tensor and Qi = (Qi

α) is the
out-of-plane shear stress resultant vector. They can be expressed in terms of the 3D stress field σ3D

in layer i as follows:

N i
αβ(x, y) =

∫ h+
i

h−i

σ3D
αβ (x, y, z)dz

Mi
αβ(x, y) =

∫ h+
i

h−i

(z − h̄i)σ3D
αβ (x, y, z)dz

Qi
α(x, y) =

∫ h+
i

h−i

σ3D
α3 (x, y, z)dz

(118)
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The interlaminar shear and normal stresses at the interface between layer j and layer j + 1, for
0 6 j 6 n, are given by:

τ
j, j+1
α (x, y) = σ3D

α3 (x, y, h+
j ) = σ3D

α3 (x, y, h−j+1)
ν j, j+1(x, y) = σ3D

33 (x, y, h+
j ) = σ3D

33 (x, y, h−j+1)
(119)

Note that, unlike all the other introduced generalized stresses, π j, j+1 defined on the interface
between layer j and layer j + 1 is a new generalized stress which was not considered in the LS1
model. Its interpretation will be given in the sequel.

Now, we seek for conditions on the generalized stresses which enforce statical compatibility of
σ3D. Let us compute the 3D equilibrium equations σ3D

kl,l in layer i, we obtain:

σ3D
αl,l =

(
N i
αβ,β + τi,i+1

α − τi−1,i
α

) Pi
0(z)
ei +(

Mi
αβ,β − Qi

α +
ei

2

(
τi,i+1
α + τi−1,i

α

)) 12Pi
1(z)

ei2

σ3D
3l,l =

(
Qi
β,β + νi,i+1 − νi−1,i

) Pi
0(z)
ei +(

τi,i+1
β,β − τ

i−1,i
β,β − π

i,i+1 + πi−1,i
)

Pi
1(z) +((

Qi
β,β + νi,i+1 − νi−1,i

) 2
ei − τ

i,i+1
β,β − τ

i−1,i
β,β + πi,i+1 + πi−1,i

)
Pi

2(z)
2

(120)

Hence, the σ3D stress field will comply with the 3D equilibrium equations (108), if, and only if,
the following equations hold true for all (x, y) in ω and for all i = 1, ..., n and j = 0, ..., n:

N i
αβ,β + τi,i+1

α − τi−1,i
α = 0

Qi
α,α + νi,i+1 − νi−1,i = 0

Mi
αβ,β − Qi

α +
ei

2

(
τi,i+1
α + τi−1,i

α

)
= 0

τ
j, j+1
α,α − π

j, j+1 = 0

(121)

The last equation gives the interpretation of πi,i+1 which is equal to the divergence of the
interlaminar shear stress vector τi,i+1 = (τi,i+1

α ). Now, if we seek for the statically compatibility of
σ3D

i j , we have to enforce the stress boundary conditions in addition to equations (121). The lateral
boundary conditions σ3D

i j n j = 0 on ∂ΩT are equivalent to the following equations for i = 1, ..., n and
j = 0, ..., n:

N i
αβnβ = 0, Mi

αβnβ = 0, Qi
αnα = 0, τ j, j+1

α nα = 0, on ∂ωT . (122)

The boundary conditions (109) on the lower and upper faces are, respectively,


τ0,1

1 (x, y) = −T−1 (x, y)
τ0,1

2 (x, y) = −T−2 (x, y)
ν0,1(x, y) = −T−3 (x, y)

and


τn,n+1

1 (x, y) = T +
1 (x, y)

τn,n+1
2 (x, y) = T +

2 (x, y)
νn,n+1(x, y) = T +

3 (x, y)
(123)

It should be noticed that the boundary conditions (122) and (123) cannot be simultaneously
verified unless T±αnα = 0 on ∂ωT , which will be assumed in the sequel. Moreover, from the last
equation of (121) for j = 0 and j = n, we see that:
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π0,1 = −T−α,α and πn,n+1 = T +
α,α (124)

Finally, we have established that the stress field σ3D is statically compatible when it complies
with the generalized equilibrium equations on ω: (121) for i = 1, ..., n and j = 1, ..., n − 1, (123) and
(124), and with the generalized stress free boundary conditions on ∂ωT : (122) for i = 1, ..., n and
j = 1, ..., n − 1.

It should be emphasized that in the LS1 model, the authors considered 3D stresses of the form
(114-115-116) where τ j, j+1

α,α is substituted for π j, j+1. Hence, the last equation of (121) is absent
from the LS1 model. Moreover, the free boundary conditions τ j, j+1

α nα = 0 in (122) cannot be
mathematically enforced by the model so that the 3D stresses of the LS1 model are not statically
compatible in this case.

4.2.4 The kinematics of the SCLS1 model

It is obtained by writing the weak form of the statically compatibility conditions on σ3D. First, the
weak form of the 3D equilibrium equation (108):∫

Ω

σ3D
kl,luk dxdydz = 0 (125)

is written for any trial displacement field u = (uk). Using conditions (123) and (124) and
introducing the following notations for i = 1, ..., n and j = 1, ..., n − 1:

U i
α(x, y) =

∫ h+
i

h−i

Pi
0(z)
ei uα(x, y, z) dz, (126)

Φi
α(x, y) =

∫ h+
i

h−i

12
ei2

Pi
1(z)uα(x, y, z) dz, (127)

U i
3(x, y) =

∫ h+
i

h−i

(
Pi

0(z)
ei +

Pi
2(z)
ei

)
u3(x, y, z) dz, (128)

W i
±(x, y) =

∫ h+
i

h−i

(
Pi

1(z) ±
Pi

2(z)
2

)
u3(x, y, z) dz (129)

and

V j, j+1(x, y) = W j
−(x, y) −W j+1

+ (x, y) (130)

we obtain:

∫
Ω

σ3D
kl,luk dxdydz =

n∑
i=1

∫
ω

(
N i
αβ,β + τi,i+1

α − τi−1,i
α

)
U i
α dxdy +

n∑
i=1

∫
ω

(
Qi
α,α + νi,i+1 − νi−1,i

)
U i

3 dxdy +

n∑
i=1

∫
ω

(
Mi

αβ,β − Qi
α +

ei

2

(
τi,i+1
α + τi−1,i

α

))
Φi
α dxdy +

n−1∑
j=1

∫
ω

(
τ j, j+1
α,α − π

j, j+1
)

V j, j+1 dxdy = 0.

(131)



CHAPTER 4. SCLS1 MODEL FOR THE ANALYSIS OF MULTILAYERED PLATES 70

Actually, U i
α(x, y), U i

3(x, y), Φi
α(x, y) are the five Reissner-Mindlin generalized displacements

of layer i already introduced in the LS1 model: respectively, the two in-plane displacements, the
vertical displacement and the two bending rotations. In contrast, V j, j+1(x, y) is a new kinematical
variable, having the dimension of an area, which is dual of the static variable π j, j+1(x, y) defined on
interface j, j + 1.

Integrating by parts the second term of (131), restricting the trial fields u to those which are
null on the lateral boundary ∂Ωu, and hence the following generalized boundary conditions are
prescribed for i = 1, ..., n and j = 0, ..., n:

U i
α = 0, U i

3 = 0, Φi
α = 0, V j, j+1 = 0, on ∂ωu, (132)

and taking into account the generalized stress free boundary conditions on ∂ωT , (122), then we
obtain:

n∑
i=1

∫
ω

N i
αβε

i
αβ + Mi

αβχ
i
αβ + Qi

αγ
i
α dxdy +

n−1∑
j=1

∫
ω

τ j, j+1
α D j, j+1

α + ν j, j+1D j, j+1
ν + π j, j+1λ j, j+1 dxdy =∫

ω

T +
α ×

(
Un
α +

en

2
Φn
α

)
+ T−α ×

(
U1
α −

e1

2
Φ1
α

)
+ T +

3 Un
3 + T−3 U1

3 dxdy

(133)

where the generalized strains dual of the generalized stresses N i
αβ,M

i
αβ,Q

i
α, τ

j, j+1
α , ν j, j+1, π j, j+1 for

i = 1, ..., n and j = 1, ..., n − 1 are respectively expressed in terms of the generalized displacements
as:

εi
αβ =

1
2

(
U i
α,β + U i

β,α

)
,

χi
αβ =

1
2

(
Φi
α,β + Φi

β,α

)
,

γi
α = Φi

α + U i
3,α,

D j, j+1
α = U j+1

α − U j
α −

e j

2
Φ

j
α −

e j+1

2
Φ

j+1
α + V j, j+1

,α ,

D j, j+1
ν = U j+1

3 − U j
3,

λ j, j+1 = V j, j+1.

(134)

By comparison, if the terms π j, j+1λ j, j+1 are omitted in (133) and the terms V j, j+1
,α are omitted in

(1344), then the kinematical compatibility conditions of the LS1 model are retrieved.

4.2.5 The SCLS1 model constitutive equations

The 3D elastic stress energy of the stress field σ3D can be written in the following form:

W∗
3D =

∫
Ω

1
2

S klmn(z)σ3D
mnσ

3D
kl dxdydz

=

∫
ω

w∗3D dxdy
(135)

where w∗3D is the generalized stress energy density per unit area of the plate defined by:



CHAPTER 4. SCLS1 MODEL FOR THE ANALYSIS OF MULTILAYERED PLATES 71

w∗3D =

∫ h+
n

h−1

1
2

S klmn(z)σ3D
mnσ

3D
kl dz (136)

Inserting equations (114-115-116) into the above definition, an explicit expression of w∗3D in
terms of the generalized stresses is derived. See Appendix A.1.

Using the weak formulation (133) and standard variational calculus reasoning, it can be estab-
lished that the generalized stresses which realize the minimum of W∗

3D over all statically compatible
stress fields of the form (114-115-116) are such that the partial derivatives of w∗3D, with respect
to these generalized stresses, are the generalized strains (134) generated by some generalized
displacement fields U i

α, U i
3, φi

α, V j, j+1, i = 1, ..., n, j = 1, ..., n − 1, which are null on ∂ωu. Hence,
the constitutive equations write:

• Membrane constitutive equation of layer i:

εi
αβ =

∂w∗3D

∂N i
αβ

=
1
ei S

i
αβγδN

i
γδ + S i

αβ33

(
1
2

(
νi,i+1 + νi−1,i

)
+

ei

12

(
πi,i+1 − πi−1,i

)) (137)

• Bending constitutive equation of layer i:

χi
αβ =

∂w∗3D

∂Mi
αβ

=
12
ei3

S i
αβγδM

i
γδ +

1
ei S

i
αβ33

(
6
5

(
νi,i+1 − νi−1,i

)
+

ei

10
(πi,i+1 + πi−1,i)

) (138)

• Transverse shear constitutive equation of layer i:

γi
α =

∂w∗3D

∂Qi
α

=
24
5ei S

i
α3β3Qi

β −
2
5

S i
α3β3

(
τi,i+1
β + τi−1,i

β

)
(139)

• Shear constitutive equation of interface j, j + 1:

D j, j+1
α =

∂w∗3D

∂τ
j, j+1
α

= −
2
5

S j
α3β3Q j

β −
2
5

S j+1
α3β3Q j+1

β −
2

15
e jS j

α3β3τ
j−1, j
β

+
8

15

(
e jS j

α3β3 + e j+1S j+1
α3β3

)
τ

j, j+1
β −

2
15

e j+1S j+1
α3β3τ

j+1, j+2
β

(140)

• Normal constitutive equation of interface j, j + 1:

D j, j+1
ν =

∂w∗3D

∂ν j, j+1

=
9

70
e jS j

3333ν
j−1, j +

13
35

(
e jS j

3333 + e j+1S j+1
3333

)
ν j, j+1 +

9
70

e j+1S j+1
3333ν

j+1, j+2

−
13

420
(e j)2S j

3333π
j−1, j +

11
210

(
(e j)2S j

3333 − (e j+1)2S j+1
3333

)
π j, j+1

+
13

420
(e j+1)2S j+1

3333π
j+1, j+2

+
1
2

S j
αβ33N j

αβ +
1
2

S j+1
αβ33N j+1

αβ +
6

5e j S
j
αβ33M j

αβ −
6

5e j+1 S j+1
αβ33M j+1

αβ

(141)
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• Constitutive equation for the π generalized stress at interface j, j + 1:

λ j, j+1 =
∂w∗3D

∂π j, j+1

= −
1

140
(e j)3S j

3333π
j−1, j +

1
105

(
(e j)3S j

3333 + (e j+1)3S j+1
3333

)
π j, j+1

−
1

140
(e j+1)3S j+1

3333π
j+1, j+2

+
13

420
(e j)2S j

3333ν
j−1, j +

11
210

(
(e j)2S j

3333 − (e j+1)2S j+1
3333

)
ν j, j+1

−
13

420
(e j+1)2S j+1

3333ν
j+1, j+2

+
1

12
e jS j

αβ33N j
αβ −

1
12

e j+1S j+1
αβ33N j+1

αβ +
1

10
S j
αβ33M j

αβ +
1

10
S j+1
αβ33M j+1

αβ

(142)

By comparison, the constitutive equations of the LS1 model are retrieved if the last equation
(142) is omitted and if the coupling terms ν and π are neglected in (137) and (138), and the coupling
terms Nαβ, Mαβ and π are neglected in (141).

In summary, the SCLS1 problem is to find the 6n − 1 generalized displacement fields U i
α(x, y),

U i
3(x, y), φi

α(x, y) and V j, j+1(x, y) and the 12n − 4 generalized stress fields N i
αβ, Mi

αβ, Qi
α, ν j, j+1, τ j, j+1

α

and π j, j+1 defined on ω for i = 1, ..., n and j = 1, ..., n − 1 complying with the equilibrium equations
(121), the compatibility equations (134), the constitutive equations (137-142) and the boundary
conditions (122) and (132). To be complete, the description of the LS1 problem is given in the
previous Chapter 1.

4.2.6 The refined SCLS1 model as a static discretization of the 3D model
As it has been explained above, the SCLS1 model is obtained by restricting the minimization
of the total stress energy over the set of statically compatible 3D stress fields having in-plane
components σαβ which are piece-wise linear in the thickness of each physical layer. Now, if we
discretize each physical layer in p mathematical layers as shown in Fig. 4.2, resulting in a total of
np mathematical layers, then the new statically compatible 3D stress field obtained by this refined
model, called refined SCLS1, will be a better approximation of the real 3D stress field than the
non refined SCLS1. Moreover, it will asymptotically coincide with the exact 3D stress field as the
number p of mathematical layers per physical layer increases to infinity. Indeed, for sufficiently
large p, the in-plane components σαβ of the real 3D stress field can be accurately represented by
piece-wise linear functions in the thickness of each mathematical layer. Hence, the refined SCLS1
model appears as a consistent static discretization of the 3D model in the z co-ordinate. A rigorous
mathematical proof of the convergence of the refined SCLS1 model to the 3D model, as p increases,
is beyond the scope of this chapter.
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Fig. 4.2. The same multilayered plate refined through the thickness (irregular layerwise mesh through the
thickness).

Actually, as pointed out in (Saeedi et al., 2012b) for the LS1 model, an irregular discretization
of the physical layers is more suitable than a regular one because of the stress concentration at the
interfaces between the physical layers. Thus, one must refine the mesh near the interfaces. That
is why the geometric discretization proposed by Saeedi et al. (2012b) will be adopted. According
to this layerwise mesh strategy, the thicknesses of the mathematical layers are in the form of a
geometric progression. In other words, if the thickness of the mathematical layers at the vicinity of
the physical interface are set equal to hmin, then the thicknesses of the next layers will be equal to
r × hmin, r2 × hmin, ... where r is the common ratio of the geometric progression in the considered
layer. The determination of r in terms of hmin, e, the thickness of the physical layer, and p, the
number of mathematical layers per physical layer, is obtained by solving the following equation
which depends on the considered case:

• Physical layer with one physical interface (top or bottom layer) and p > 1

h1 = hmin; h2 = r × hmin ... hp = rp−1 × hmin

p∑
i=1

hi = e⇒ 1 + r + r2 + ... + rp−1 =
e

hmin

• Physical layer with two physical interfaces (inside layer) and p > 2

p is an even number

h1 = hp = hmin; h2 = hp−1 = r × hmin ... h p
2

= h p
2 +1 = r

p
2−1 × hmin

p∑
i=1

hi = e⇒ 2 × (1 + r + r2 + ... + r
p
2−1) =

e
hmin
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p is an odd number

h1 = hp = hmin; h2 = hp−1 = r × hmin ... h p+1
2

= r
p−1

2 × hmin

p∑
i=1

hi = e⇒ 2 × (1 + r + r2 + ... + r
p−3

2 ) + r
p−1

2 =
e

hmin

So, the discretization of a physical layer is completely determined once the two non dimensional
parameters p and R =

e
hmin

are given. A possible strategy is to adopt the same values of (p,
e

hmin
)

for all the physical layers.

4.3 Finite element discretization of the SCLS1 model
This section deals with the displacement finite element formulation of the SCLS1 presented in the
previous section. An eight-node isoparametric quadrilateral element with 6n− 1 d.o.f. at each nodal
point will be formulated as follows. This element has the same interpolation functions as the LS1’s
element which is integrated in the MPFEAP in-house software described in (Nguyen and Caron,
2006).

4.3.1 Weak formulation of the SCLS1 model
The following notations are introduced:

• The 6n − 1 generalized displacement vector [δi] is defined as:

[δi]T =

(
U1

1 , U1
2 , U1

3 , Φ1
1, Φ1

2, . . . ,U
n
1 , Un

2 , Un
3 , Φn

1, Φn
2, V1,2, . . . ,Vn−1,n︸                                                                             ︷︷                                                                             ︸

)
,

6n − 1

where [X]T is the transpose of [X]

• The 12n-4 generalized strain vector [E] is defined as:

[E]T =

([
EK

]T
, [Eν]T ,

[
EQ

]T
,
[
Eλ

]T
)

where the generalized Kirchhoff strain vector is:

[
EK

]T
=

(
ε1

11, ε
1
22, 2ε1

12, χ
1
11, χ

1
22, 2χ1

12, . . . , ε
n
11, ε

n
22, 2εn

12, χ
n
11, χ

n
22, 2χn

12︸                                                                             ︷︷                                                                             ︸
)
,

6n

the generalized normal strain vector is:

[Eν]T =

(
D1,2
ν , D2,3

ν , . . . ,Dn−1,n
ν︸                      ︷︷                      ︸

)
,

n − 1

the generalized shear strain vector is:
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[
EQ

]T
=

(
γ1

1, γ
1
2, D1,2

1 , D1,2
2 , γ2

1, γ
2
2, . . . , γ

n−1
1 , γn−1

2 , Dn−1,n
1 , Dn−1,n

2 , γn
1, γ

n
2︸                                                                             ︷︷                                                                             ︸
)
,

4n − 2

and the strain related to the λ variables is:

[
Eλ

]T
=

(
λ1,2, λ2,3, . . . , λn−1,n︸                   ︷︷                   ︸)

n − 1

• Finally, the 12n-4 generalized strain vector [Σ] is defined as:

[Σ]T =

([
ΣK

]T
, [Σν]T ,

[
ΣQ

]T
, [Σπ]T

)
where

[
ΣK

]T
=

(
N1

11, N1
22, N1

12, M1
11, M1

22, M1
12, . . . ,N

n
11, Nn

22, Nn
12, Mn

11, Mn
22, Mn

12

)
,

[Σν]T =
(
ν1,2, ν2,3, . . . , νn−1,n

)
,

[
ΣQ

]T
=

(
Q1

1, Q1
2, τ

1,2
1 , τ1,2

2 , Q2
1, Q2

2, . . . ,Q
n−1
1 , Qn−1

2 , τn−1,n
1 , τn−1,n

2 , Qn
1, Qn

2

)
,

and

[Σπ]T =
(
π1,2, π2,3, . . . , πn−1,n

)
.

With these notations, the SCLS1 constitutive equations (137-142) can be rewritten as:

[E] = [S ] [Σ] +
[
EP

]
(143)

where the generalized compliance matrix [S ] of dimension (12n−4)×(12n−4) has the following
block form:

[S ] =



[
S K

] [
S Kν

]
0

[
S Kπ

][
S νK

]
[S ν] 0 [S νπ]

0 0
[
S Q

]
0[

S πK
]

[S πν] 0 [S π]

 , (144)

and the generalized prestrain vector
[
EP

]
contains the contributions to the generalized strain

vector of the applied surface forces T− and T + . More precisely, explicit expression of
[
EP

]
can be

obtained by using equations (123-124) in (137-142) while setting all the components of [Σ] to zero.
The constitutive equation (143) can be inverted leading to:

[Σ] = [S ]−1
(
[E] −

[
EP

])
= [D]

(
[E] −

[
EP

])
(145)

where [D] = [S ]−1 is the generalized stiffness matrix of dimensions (12n− 4)× (12n− 4) having
the same block form as [S ].
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Using the above constitutive equation into the weak form of the equilibrium equations (133),
the weak formulation of the SCLS1 problem is obtained: Find a generalized displacement vector [δ]
complying with the boundary conditions (123) such that:∫

ω

[
E′

]T [D] [E] dxdy =

∫
ω

[
δ′
]T [F] +

[
E′

]T [D]
[
EP

]
dxdy (146)

for any generalized displacement field vector [δ′] complying with the boundary conditions (132).
Here, [E] and [E′] are, respectively, the generalized strain fields associated to [δ] and [δ′] via the
compatibility equations (134), and [F] is the generalized force vector of dimension 6n − 1 given by:

[F]T =

(
T−1 , T−2 , T−3 , −

e1

2
T−1 , −

e1

2
T−2 , 0, . . . , 0,T

+
1 , T +

2 , T +
3 ,

en

2
T +

1 ,
en

2
T +

2 , 0, . . . , 0
)

4.3.2 Geometry and displacement interpolations
The representation of the geometry of the finite element mesh is based on a quadrilateral master
element defined in the (ξ,η) space as shown in Fig. 4.3.

Fig. 4.3. The eight-node element and its four second-order Gaussian stations.

The geometry interpolation can be written as

x(ξ, η) =

8∑
i=1

Ni(ξ, η)xi

y(ξ, η) =

8∑
i=1

Ni(ξ, η)yi

(147)

where (xi, yi) are the co-ordinates of node i, i = 1, . . . , 8, and Ni(ξ, η) its shape function given
by: for −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1,
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N1(ξ, η) =
1
4

(1 − ξ)(1 − η)(−1 − ξ − η)

N2(ξ, η) =
1
2

(1 − ξ2)(1 − η)

N3(ξ, η) =
1
4

(1 + ξ)(1 − η)(−1 + ξ − η)

N4(ξ, η) =
1
2

(1 + ξ)(1 − η2)

N5(ξ, η) =
1
4

(1 + ξ)(1 + η)(−1 + ξ + η)

N6(ξ, η) =
1
2

(1 − ξ2)(1 + η)

N7(ξ, η) =
1
4

(1 − ξ)(1 + η)(−1 − ξ + η)

N8(ξ, η) =
1
2

(1 − ξ)(1 − η2)

(148)

In order to achieve the general applicability, an isoparametric finite element formulation is
adopted, which interpolates the co-ordinates and element displacements using the same shape
functions. The displacement field interpolation is hence expressed as:

[δ] (x, y) =

8∑
i=1

Ni(ξ, η) [δi] (149)

where [δi] is the value of the 6n − 1 generalized displacement vector at node i.
Using the compatibility conditions (134) and the following derivation rules for the interpolation

functions:

∂Ni

∂x
=

∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x
,

∂Ni

∂y
=

∂Ni

∂ξ

∂ξ

∂y
+
∂Ni

∂η

∂η

∂y
,

(150)

one can explicitly express the generalized strain vector as:

[E] (x, y) =

8∑
i=1

[Bi] (ξ, η) [δi] (151)

where [Bi] is of dimension (12n − 4) × (6n − 1).

4.3.3 Element stiffness matrix and nodal forces
Inserting (149) and (151) into the weak formulation of the problem (146), and restricting the
integration over the considered element ωe, it is found that the strain energy stored in the element is:

We =

8∑
i=1

8∑
j=1

1
2

∫
ωe

[δi]T [Bi]T [D]
[
B j

] [
δ j

]
dxdy =

8∑
i=1

8∑
j=1

1
2

[δi]T
[
Ke

i j

] [
δ j

]
where the element stiffness matrix

[
Ke

i j

]
is given by:[

Ke
i j

]
=

∫
ωe

[Bi]T [D]
[
B j

]
dxdy,

and that the work of the external forces in the element ωe is:
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8∑
i=1

[δi]T [
Fe

i
]

where the element nodal force
[
Fe

i

]
is given by:

[
Fe

i
]

=

∫
ωe

Ni [F] + [Bi]T [D]
[
EP

]
dxdy

By assembling all the element stiffness matrices and all the element nodal forces, and by taking
into account the kinematic boundary conditions, a system of linear equations is obtained the solution
of which is the vector of the nodal d.o.f. From the latter, the corresponding strain and stresses can
be deduced from, respectively, equations (151) and (145).

In appendix A.2, matrices and equations of SCLS1 model are detailed.

4.3.4 MPFEAP code description
MPFEAP (MultiParticle Finite Element Analysis Program) is an in-house code of the Laboratoire
Navier which has been developed during the last years. It was initially dedicated to find a Finite
Element solution of the LS1 model. The code is written using standard Fortran 77 and is a
development of the program MEF presented in (Dhatt and Touzot, 1984). The program MPFEAP
uses text files for data input and results output can be visualized using GID program described in
(CIMNE and GID). A new version of MPFEAP has been written. It calculates the Finite Element
solution of the new SCLS1 model described above.

4.4 Examples and numerical results
In this part, comparisons are made between LS1, enhanced LS1, SCLS1, enhanced SCLS1 and full
3D FE models in order to assess the performances of the new model. The 3D FE calculations
are performed with the commercial ABAQUS software. The new verison of the MPFEAP code
is used for SCLS1 and enhanced SCLS1 models, while the old version of MPFEAP described in
(Nguyen and Caron, 2006) is used for LS1 and enhanced LS1 models. Two different case studies on
a (90◦, 0◦, 90◦) laminate under uniaxial tension are considered: the interlaminar shear stress is first
studied at a straight free-edge and then, the stress distribution is studied in the vicinity of a circular
hole situated at the plate’s center. The material properties are as in (Wang and Crossman, 1977b)
and (Pagano and Pipes, 1970).

For the first and third layer, the thickness is e1 = e3 =1mm, the fiber orientation is 90◦ and the
elastic constants are:
E1 = 140 GPa, E2 = E3 = 15 GPa,
G12 = G13 = G23 = 5.85 GPa,
ν12 = ν13 = ν23 = 0.21.
where 1, 2 and 3 refer , respectively, to the fiber, transverse, and thickness direction as shown in Fig.
4.4.

For the layer 2, the thickness is e2 =0.8mm, the fiber orientation is 0◦ and the elastic constants
are:
E1 = 160 GPa, E2 = E3 = 8.5 GPa,
G12 = G13 = 4.1 GPa, G23 = 2.8 GPa,
ν12 = ν13 = 0.33 , ν23 = 0.5.
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Fig. 4.4. Description of fiber orientation axes and angle.

4.4.1 Straight free-edge
The laminate under consideration is a plate with a length of 2l and a width of 2b respectively in
the x and y directions (Fig. 4.5). The thickness of the laminate following z direction is equal to
2h = 2e1 + e2 and the middle plane of the plate is located at z=0. Uniform displacements ±∆ in the
x direction are imposed at the edges x = ±l while the other edges remain free. The applied strain
in the x axis direction is ∆/l = 0.05. The dimension of 2b is set to 56mm, hence the slenderness
ratio b/h is 20, whereas the plate is assumed to be so long in the x direction (l >> b) that the stress,
strain components are independent of the x-coordinate far from the ends x = ±l. As a consequence,
instead of modeling the whole plate, it is sufficient to use only one 3D finite element in the x
direction, the size of this element in the x axis direction being irrelevant.

Fig. 4.5. Laminate geometry, imposed displacements and coordinate system.

It is well-known that, in this configuration, the normal stress σ33 is singular at the 90◦/0◦ inter-
face near the free edges, while the shear stress σ23 is null at the free edges and highly concentrated
in the vicinity of these edges. Hence, it is a real challenge for numerical methods to capture the
shear stress distribution near the free edges.

4.4.1.1 3D FE Discretization

The commercial ABAQUS software has been used with C3D8R element (3D, 8-node, linear,
isoparametric element with reduced integration). In order to obtain accurate results, a very strong
mesh refinement is applied near the free edges and at the interfaces between layers (see Fig. 4.6).
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Element sizes in y and z axis follow geometric progressions and the smallest elements are located at
the intersection of the free edges with the interfaces between layers. The smallest element size in
the y axis direction is set to Y = 0.71µm. Let Z be the smallest element size in the z axis direction.
The following table 4.1 shows, for different values of Z, the maximum value σmax−

23 (resp. σmax+
23 ) of

the shear stress σ23 taken at the interface 90◦/0◦ in the 90◦ layer (resp. in the 0◦ layer) and its value
σed−

23 (resp. σed+
23 ) taken at the intersection of the free edge with the 90◦/0◦ interface in the 90◦ layer

(resp. in the 0◦ layer).

Fig. 4.6. Finite Element model of the laminate - 3D model (top); mesh in the yz plane (bottom).

Z(µm) 150 80 10 7.5 4 1 0.71
σmax−

23 (MPa) 63.15 69.74 80.81 81.77 83.61 86.76 87.63
σmax+

23 (MPa) 49.37 58.47 75.66 77.13 79.81 84.13 84.95
σed−

23 (MPa) 1.036 0.966 9.536 15.035 23.222 48.327 54.997
σed+

23 (MPa) -0.104 1.577 3.084 6.206 10.934 29.68 35.896

Tab. 4.1. 3D Finite Element results for Y = 0.71µm and various values of Z

It is seen that as Z decreases, σmax−
23 and σmax+

23 increase, and σed−
23 and σed+

23 depart from the
theoretical value (zero). We consider that the values of σed−

23 and σed+
23 are both acceptable for

Z = 7.5µm .

4.4.1.2 LS1 and SCLS1 discretization

For LS1 and SCLS1 models, element size in the y axis direction follows geometric progression with
the smallest element size located near free edges. In Fig. 4.7 and 4.8, we plot the distribution of
the interlaminar shear stresses σ23 at the 90◦/0◦ interface for the non refined SCLS1 model with
two different mesh refinements: Y = 250µm for a total of 100×1 mesh and Y = 40µm for a total
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of 350×1 mesh. We have found that the results are actually completely coincident for the mesh
size varying from Y = 40µm for a total of 350×1 mesh to Y = 0.71µm for a total of 13050×1 mesh.
Hence, only the stress distributions of the 100×1 mesh and the 350×1 mesh are represented in Fig.
4.7 and 4.8.
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Fig. 4.7. Distribution of the interlaminar shear stress σ23 predicted by the non refined SCLS1 model for two
finite element meshes.
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Fig. 4.8. Zoom near the free edge on the distribution of the interlaminar shear stress σ23 predicted by the non
refined SCLS1 model for two finite element meshes.

4.4.1.3 Comparison between non refined SCLS1, non refined LS1 and 3D FE models

The non refined LS1 and SCLS1 models with Y = 40µm discretization are compared to the 3D FE
with (Y = 0.71µm,Z = 7.5µm) discretization. These three models give identical stress distributions
except near the free edges. In Fig. 4.9, we plot a zoom of the distribution of the interlaminar shear
stresses σ23 near the free edge. Here, EF− (resp. EF+) is the shear stress σ23 taken at the interface
90◦/0◦ in the 90◦ layer (resp. in the 0◦ layer). Note that the SCLS1 and 3D FE models reproduce
correctly the free-edge boundary condition σ23 = 0, whereas the LS1 model does not. On the other
side, SCLS1 and 3D FE models do not predict the same maximum value of the interlaminar shear
stress. This is due to the lack of sufficient discretization in the thickness (z axis) of the non refined
SCLS1 model.
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Fig. 4.9. Zoom near the free edge on the distribution of the interlaminar shear stress σ23 predicted by the non
refined LS1 model with Y = 40µm, the non refined SCLS1 model with Y = 40µm and the 3D finite element
model with (Y = 0.71µm,Z = 7.5µm).

4.4.1.4 Comparison between non refined SCLS1 and refined SCLS1 models

Now, the refined SCLS1 model with Y = 0.71µm discretization is considered. Recall that there
are two additional parameters in this model: p, the number of mathematical layers per physical
layer, and the ratio R of the physical layer thickness to the smallest mathematical layer thickness
in this physical layer, this ratio being the same for all the physical layers. Choosing R = 10, so
hmin = 80µm in layer 2, a parametric study on p has been performed. It can be seen in Fig. 4.10 that
the convergence is quickly reached for p ≥ 3.
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Fig. 4.10. Zoom near the free edge on the distribution of the interlaminar shear stress σ23 predicted by
the refined SCLS1 model with Y = 0.71µm, for e2/hmin = 10 and different values of p, the number of
mathematical layers per physical layer.

4.4.1.5 Parametric study of the refined SCLS1 model

In this section, the influence of both parameters R and p is studied. The considered values for R
are 10, 20, 30, 50 and 100 corresponding to the following values in µm for hmin in layer 2: 80, 40,
26.67, 16 and 8, respectively. Table 4.2 gives the values of the maximum interlaminar shear stress
σmax

23 predicted by the refined SCLS1 model with Y = 0.71µm, and table 4.3 gives σed
23, the predicted
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value at the free edge. It can be seen that for fixed R, the convergence of σmax
23 always occurs as p is

increased, and that the limit value is independent of R with an error less than 4%. Moreover, σed
23 is

clearly negligible when compared to σmax
23 .

p = 3 p = 4 p = 5 p = 6
hmin = 80µm 85.6 85.8 - -
hmin = 40µm 85.71 87.07 87.26 -

hmin = 26.67µm 84.91 87.24 87.89 -
hmin = 16µm 83.29 86.81 88.49 88.56
hmin = 8µm 80.47 85.31 89.03 89.26

Tab. 4.2. σmax
23 (MPa) predicted by the refined SCLS1 model with Y = 0.71µm for various values of hmin in

layer 2 and p.

p = 3 p = 4 p = 5 p = 6
hmin = 80µm 0.051 0.053 - -
hmin = 40µm 0.146 0.152 0.158 -

hmin = 26.67µm 0.284 0.292 0.303 -
hmin = 16µm 0.655 0.683 0.713 0.729
hmin = 8µm 2.087 2.184 2.276 2.322

Tab. 4.3. σed
23(MPa) predicted by the refined SCLS1 model with Y = 0.71µm for various values of hmin in

layer 2 and p.

4.4.1.6 Parametric study of the refined LS1 model

For the seek of completeness, the same parametric study is conducted for the refined LS1 model
with Y = 0.71µm. In this case, σed

23 and σmax
23 are coincident. It can be seen in Table 4.4 that, for fixed

R, the convergence of σmax
23 always occurs as p is increased, and that the limit value is independent

of R. However, this value is 7% higher than the limit value of σmax
23 predicted by the refined SCLS1

model.

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
hmin = 80µm 94.67 97.13 98.13 98.35 - -
hmin = 40µm 91.77 95.39 97.55 97.95 - -

hmin = 26.67µm 89.94 94.14 97.09 97.62 98.02 -
hmin = 16µm 87.81 92.37 96.38 97.04 97.67 97.88
hmin = 8µm 84.85 89.88 95.2 96.07 97.03 97.34

Tab. 4.4. σmax
23 = σed

23(MPa) predicted by the refined LS1 model with Y = 0.71µm for various values of hmin

in layer 2 and p.

4.4.1.7 Comparison between refined SCLS1, refined LS1 and 3D FE models

In Fig. 4.11, we plot the distribution of the interlaminar shear stresses σ23 at the 90◦/0◦ interface
between layer 1 and 2 as predicted by 3D FE with Y = 0.71µm and Z = 7.5µm and by the refined
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LS1 and SCLS1 models with hmin = 8µm in layer 2 and p = 6. It is seen that the refined SCLS1
model is the only model which can efficiently predict both stress concentration and free boundary
conditions. It must be highlighted that even if the refined LS1 model doesn’t comply with the exact
3D boundary conditions at free edges, nevertheless, it predicts the stress concentration with good
accuracy (8%).
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Fig. 4.11. Zoom near the free edge on the distribution of the interlaminar shear stress σ23 predicted by the
refined LS1 and SCLS1 models with Y = 0.71µm, hmin = 8µm in layer 2 and p = 6, and by the 3D FE model
with (Y = 0.71µm,Z = 7.5µm).

4.4.1.8 Discussion

According to the results obtained, we can conclude that the refined SCLS1 model converges to
the exact value for both σed

23 and σmax
23 . It predicts 89Mpa for σmax

23 . On the other hand, the 3D FE
model cannot predict correctly both values of σed

23 and σmax
23 for the same refinement, see Table 1.

By construction, the refined LS1 model cannot predict the exact value of σed
23. It predicts 97MPa for

σmax
23 which is 8% higher than the value computed using the refined SCLS1 model. Hence, the LS1

model can be considered as an acceptable approximation of the SCLS1 model, and thus of the 3D
model, for the prediction of stress concentration near free edge boundaries.
When considering the n umber of degrees of freedom (d.o.f.), the refined SCLS1 model has 6np − 1
degrees of freedom in the thickness direction to be compared to 3N where N is the number of FE
nodes in the thickness direction. In the present study, N was up to 200. So, for p=3 (n=3 in our
case), the d.o.f. for the refined SCLS1 model are more than 10 times less than for Abaqus 3D FE.
In the light of the foregoing, it can be concluded that the best mesh strategy for the refined models
is as follows:

• For the refined SCLS1 model, we recommend using p = 3 and R = e/hmin = 10.

• For the refined LS1 model, we recommend using p = 4 and R = e/hmin = 10.

4.4.2 Notched laminate under uniaxial tension
A (90◦, 0◦, 90◦) laminate with a circular hole is subjected to a tensile load. The mechanical
properties of the plies are the same as in the previous section, whereas the thicknesses are all equal:
e1 = e2 = e3 = e =1mm. In Fig. 4.12 this three-ply laminate with a thickness of 3e, a length of
2l = 160e and a width of 2b = 80e is shown. The central circular hole has a radius R = 10e. The
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ends of the laminate are subjected to a uniform displacement in the x direction so that an overall
uniaxial longitudinal strain εxx=0.0375 is applied in the x direction. The reference Oxyz is located
at the center of the hole.

Fig. 4.12. Notched laminate plate geometry and loading.

Because of the symmetries of the problem, only one quarter of the laminate was analyzed using
the non refined SCLS1 model with (X = Y = 2.5µm) discretization, the refined SCLS1 model with
(X = Y = 2.5µm, hmin = 100µm, p = 3) discretization and compared to the 3D FE calculations with
(X = Y = 2.5µm,Z = 100µm) and (X = Y = 2.5µm,Z = 50µm) discretization. Fig. 4.13 shows
the interlaminar shear stress σ13 for y = 0 at the interface 90◦/0◦ between the first and second
layers as predicted by 3D FE with Z = 100µm and by the SCLS1 models. Here, FE− (resp. FE+)
corresponds to the shear stress σ13 taken at the interface 90◦/0◦ in the 90◦ layer (resp. in the 0◦

layer); Fig. 4.14 and 4.15 show the interlaminar shear stress σ23 for x = 0 at the interface 90◦/0◦

between the first and second layers, with the same convention for FE− and FE+, as predicted by
3D FE with Z = 100µm and by the SCLS1 models. Fig. 4.16 shows the σ23 predicted near the free
boundary by the SCLS1 models and the 3D FE with Z = 50µm.
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Fig. 4.13. Shear stress σ13 at the interface between layers 1 and 2 for y=0 predicted by the non refined SCLS1
and the refined SCLS1 model with (X = Y = 2.5µm, hmin = 100µm and p = 3), and by the 3D FE model with
(X = Y = 2.5µm,Z = 100µm).
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Fig. 4.14. Shear stress σ23 at the interface between layers 1 and 2 for x = 0 predicted by the non refined
SCLS1 and the refined SCLS1 model with (X = Y = 2.5µm, hmin = 100µm and p = 3), and by the 3D FE
model with (X = Y = 2.5µm,Z = 100µm)..
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Fig. 4.15. Zoom on the shear stress σ23 at the interface between layers 1 and 2 for x = 0 predicted by the non
refined SCLS1 and the refined SCLS1 model with (X = Y = 2.5µm, hmin = 100µm and p = 3), and by the 3D
FE model with (X = Y = 2.5µm,Z = 100µm).
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Fig. 4.16. Zoom on the shear stress σ23 at the interface between layers 1 and 2 for x = 0 predicted by the non
refined SCLS1 and the refined SCLS1 model with (X = Y = 2.5µm, hmin = 100µm and p = 3), and by the 3D
FE model with (X = Y = 2.5µm,Z = 50µm).

Here again, as for the case of the un-notched plate, it is seen that the 3D FE model is unable
to capture accurately and effectively both the boundary condition and the stress concentration at a
free edge. On the other hand, this example shows the robustness of the refined SCLS1 model on
a complex example such as the considered notched plate. When comparing the number of d.o.f,
a ratio of 9 is found between Abaqus 3D FE and the refined SCLS1 model leading to a drastic
reduction in the computational time.

4.5 Conclusion
In this chapter, a new statically compatible layerwise stress model for laminated plates, called
SCLS1, has been presented. To the authors’ knowledge, this is the first fully static model dedicated
to multilayered plates which can exactly comply with the 3D equilibrium equations and the 3D
free edge boundary conditions. As in the LS1 model initially proposed by Naciri et al. (1998),
the laminated plate is considered as a superposition of Reissner plates coupled by interlaminar
stresses which are considered as generalized stresses. However, the divergences of the interlaminar
transverse shears are introduced as additional generalized stresses in the proposed SCLS1 model.
Also, a refined version of the new model is obtained by introducing several mathematical layers
per physical layer. The refined version is specially designed to effectively capture both stress
concentration and boundary conditions at the free edges.

In addition to that, an eight-node isoparametric quadrilateral finite element with 6np− 1 d.o.f. at
each nodal point has been formulated. Here, n is the number of physical layers and p is the number
of mathematical layers per physical layer. In this finite element formulation, the interlaminar
stresses are given in a straightforward manner using the constitutive equations, and without any
post-processing work. The existing finite element program called MPFEAP initially dedicated to
the LS1 model has been updated in order to take into account the new model. The proposed new
finite element program presents a 2D type data structure that provides several advantages over a
conventional 3D finite element model: simplified input data, ease of results’ interpretation and big
reduction of calculation time.

The performances of this new element have been compared with those of a standard 3D FE
for free edge problems including geometric effects (presence of a hole). It has been demonstrated
that the proposed SCLS1 model has better performances because it is able to reproduce both stress



CHAPTER 4. SCLS1 MODEL FOR THE ANALYSIS OF MULTILAYERED PLATES 88

concentration and free edge boundary conditions at a reduced cost. Another important point is that,
although the refined LS1 model cannot comply with the exact free edge boundary conditions, it can
still be considered as an acceptable approximation of the SCLS1 model, and thus of the 3D model,
for the prediction of stress concentration near free edge boundaries.

Following the ideas of Chataigner et al. (2011), Duong et al. (2011) and Alvarez-Lima et al.
(2012) it would be interesting to extend the SCLS1 model to the case where the interfaces between
the layers are not perfectly bonded showing an elastic or inelastic behavior.
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5.1 Introduction
The Kirchhoff-Love plate model (classical plate theory), is easy to implement and gives good
estimates when the plate slenderness ratio L/h (h: plate thickness and L: plate span) is large enough
(thin plate). In this theory, the contribution of out-of-plane stress components to the stress energy is
neglected. However, for thick plates, transverse shear stresses have an increasing influence on the
plate deflection.
Two main approaches can be found in the literature to handle the effects of transverse shear stresses:
asymptotic approaches and axiomatic approaches. The first class of approaches is mainly based
on asymptotic expansions in the small parameter h/L (Caillerie and Nedelec, 1984; Lewinski,
1991a,b,c). However, higher-order terms yield only intricate Kirchhoff-Love plate equations and
no distinction between relevant fields and unknowns is made. Such asymptotic approaches lead to
models which are not simple to implement.
The second main class of approaches is based on assuming ad hoc displacement or stress 3D
fields and it seems easier to implement in finite element codes. These models can be Equivalent
Single Layer (ESL) or Layerwise. Equivalent Single Layer models treat the whole laminate as
an equivalent homogeneous plate. However, when dealing with laminated plates, these models
lead systematically to discontinuous transverse shear stress distributions through the thickness
as indicated by Reddy (1989). The most refined Equivalent Single Layers models, which finally
led to continuous shear stress are zigzag models (Ambartsumian, 1960; Whitney, 1969; Carrera,
2003). However, these models are restricted to some specific configurations (symmetry of the plate
and material constitutive equation) and involve higher-order partial derivative equations than the
simple Reissner-Mindlin plate model. The difficulties encountered with transverse stress fields
instigated the consideration of layerwise models. In layerwise models, all plate degrees of freedom
are introduced in each layer of the laminate and continuity conditions are enforced between layers.
Layerwise models lead to correct estimates of local 3D fields. However, their main drawback
is that they involve a number of degrees of freedom proportional to the number of layers than
Equivalent Single Layer models. The limitation is immediately pointed out with functionally graded
materials, where the plate constituent’s properties vary continuously through the thickness Nguyen
et al. (2008).
On the other hand, the extension of the original approach from Reissner (Reissner, 1944) based on
the principle of minimum complementary energy led to an Equivalent Single Layer plate theory
called the Generalized-Reissner theory (Lebée and Sab, 2016a,b). This theory takes accurately
into account shear effects and does not require any specific constitutive material symmetry. When
suitably simplified, this theory becomes the Bending-Gradient theory already introduced in (Lebée
and Sab, 2011a,b, 2012; Sab and Lebée, 2015; Lebée and Sab, 2017). Here, shear forces are replaced
by the gradient of the bending moment R

_
= M
∼
⊗∇-. Hence, the Bending-Gradient theory belongs to

the family of higher-order gradient models. The mechanical meaning of the R
_

was identified as
self-equilibrated static unknowns associated to warping functions in addition to conventional shear
forces. The kinematic degrees of freedom (d.o.f.) are the deflection, and the generalized rotation
which may have between two and six d.o.f.. Indeed, it was also established that, when the plate
is homogeneous, then the original theory from Reissner (Reissner, 1944) with three d.o.f. (one
deflection, two rotations) is fully recovered.
Since the Bending-Gradient model is not yet implemented in a finite element program and its usage
is limited to analytical solutions (Lebée and Sab, 2011b) used to calculate 1D models with some
restrictions; for this, the purpose of this chapter is to present the finite element implementation
of the Bending-Gradient model and to show its accuracy when compared to Bending-Gradient
analytical model, ABAQUS composite layup plate finite element model, and LS1 finite element
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layerwise model (Naciri et al., 1998; Carreira et al., 2002; Diaz Diaz et al., 2002; Caron et al., 2006;
Nguyen and Caron, 2006; Dallot and Sab, 2008; Saeedi et al., 2012a,b, 2013a,b; Lerpiniere et al.,
2014; Baroud et al., 2016)
This chapter is organized as follows. The notations of (Sab and Lebée, 2015)) and the definition of
the 3D problem for the laminated plate are introduced in Sections 5.2 and 5.3, respectively. Then,
the Bending-Gradient theory is recalled in Section 5.4, and Section 5.5 discusses the finite element
discretization of the Bending-Gradient model and its implementation. Finally, Section 5.6 presents
numerical comparisons between the different models. The chapter ends with a conclusion which
synthesizes the main results.

5.2 Notations
First, second, third, fourth and sixth order tensors are respectively noted: X-, X

∼
, X
_

, X
∼∼

and X
__

. When
dealing with plates, both 2D and 3D tensors are utilized. Thus, X- will denote a 3D vector or a 2D
vector depending on its nature. The same convention is used for higher-order tensors. When using
tensor components, the indices typeface specify the dimension: (Xi j) denotes the 3D tensor X

∼
with

Latin indices i, j, k.. = 1, 2, 3 while (Xαβ) denotes the 2D tensor X
∼

with Greek indices α, β, γ.. = 1, 2.
The transpose operation T• is applied to any order tensors as follows: (TX)αβ...ψω = Xωψ...βα. Five

symbols are defined: (·), (:), (...), (...
.), and (......) for contraction on, respectively, one, two, three, four

and six indices. By convention, the closest indices are successively summed together in contraction
products. Thus, X

__
... Y
_

= (XαβγδλµYµλδ) and X
_
· Y- = (XαβγYγ) is different from Y- · X_ = (YαXαβγ).

The identity for 2D vectors is δ
∼

= (δαβ) where δαβ is Kronecker symbol (δαβ = 1 if α = β,
δαβ = 0 otherwise). The identity for 2D symmetric fourth order tensors is i

∼∼
where

iαβγδ =
1
2

(
δαγδβδ + δαδδβγ

)
.

The reader may check this:

i
∼∼

: i
∼∼

= i
∼∼
, i
∼∼
... i
∼∼

=
3
2
δ
∼
, i
∼∼
...
. i
∼∼

= 3,

and that
i
∼∼
· i
∼∼

= (iαβγδiδεζη)

is a sixth-order tensor.
The gradient of a scalar field X writes X∇- = (X,β) and the gradient of vectors or higher order

tensor fields writes X
∼
⊗∇- = (Xαβ,γ), where⊗ is the dyadic product. The divergence of a vector field,

a second-order tensor field, a third-order tensor field is noted X- · ∇- = (Xα,α), X
∼
· ∇- = (Xαβ,β) and

X
_
· ∇- = (Xαβγ,γ), respectively.

5.3 The 3D Problem
The plate occupies the volume Ω = ω × T where ω denotes the mid-plane surface of the plate and
T =

]
− t

2 ,
t
2

[
is the transverse coordinate range. The boundary, ∂Ω, is decomposed into three parts

(Figure 5.1):

∂Ω = ∂Ωlat ∪ ∂Ω+
3 ∪ ∂Ω−3 ,

with ∂Ωlat = ∂ω × T and ∂Ω±3 = ω ×
{
±

t
2

}
.

(152)
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Fig. 5.1. Plate Configuration.

It is assumed that the local stiffness tensor C
∼∼

=
(
Ci jkl

)
at every point x- = (x1, x2, x3) of

Ω is invariant with respect to translations in the (x1, x2) plane and is an even function of x3:
C
∼∼

(x3) = C
∼∼

(−x3). The plate is clamped on its lateral boundary ∂Ωlat (other conditions can be also
considered) and is loaded with the out-of-plane distributed surface force along x3 direction on both
faces ∂Ω±3 :

T-± (x1, x2) =
1
2

p3 (x1, x2) e-3

The compliance tensor S
∼∼

= C
∼∼

−1 follows the classical symmetries of linear elasticity and it is
positive definite. In addition, monoclinic symmetry is assumed:

S 3αβγ = S α333 = 0. (153)

Thus, the constitutive equation writes as:

εαβ = S αβγδσδγ + S αβ33σ33,

εα3 = 2S α3β3σ3β,

ε33 = S 33αβσβα + S 3333σ33,

(154)

where σ
∼

=
(
σi j

)
is the stress tensor and ε

∼
=

(
εi j

)
is the strain tensor. The following notations

are needed for the partial compliance tensors:

S
∼∼

σ =
(
S αβγδ

)
, C
∼∼

σ =

(
S
∼∼

σ

)−1
, S
∼
γ =

(
4S α3β3

)
, S
∼
ν =

(
S αβ33

)
, (155)
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where S
∼∼

σ corresponds to plane stress compliance, C
∼∼

σ to plane stress stiffness, S
∼
γ to transverse shear

compliance and S
∼
ν is the out-of-plane Poisson coupling.

From the symmetries of the problem it can be established that the 3D solution components
σ3D
αβ , σ3D

33 , ε3D
αβ , ε3D

33 and u3D
α are odd in x3 while σ3D

α3 , ε3D
α3 and u3D

3 are even in x3. Here, u-3D is the 3D
displacement.

5.4 The Bending-Gradient theory
The Generalized-Reissner theory of Lebée and Sab (2016a,b) is the extension to laminates of
Reissner theory for homogeneous and isotropic plates (Reissner, 1944). However, it involves
fifteen kinematic degrees of freedom (d.o.f.), eight of them being related only to out-of-plane
Poisson’s distortion, not really interesting for engineering applications. Thus, the main idea of the
Bending-Gradient plate theory, initially introduced in (Lebée and Sab, 2011a,b), is to simplify the
Generalized-Reissner theory by setting these eight d.o.f. to zero and to neglect the contribution of
the normal stress σ33 in the plate model constitutive equation.

5.4.1 The Bending-Gradient equations

Hence, the Bending-Gradient theory has only seven d.o.f.:
(
U3,Φ_

)
where the scalar U3 is the

out-of-plane displacement of the plate (or deflection) and Φ
_

=
(
Φαβγ

)
with Φαβγ = Φβαγ is the

generalized third-order rotation tensor.
The generalized stresses in the Bending-Gradient theory are the bending moment tensor M

∼
=(

Mαβ

)
, with Mαβ = Mβα, and the generalized shear force R

_
=

(
Rαβγ

)
with Rαβγ = Rβαγ. In this theory,

the 3D stress is approximated by:

σ
∼

BG =


σBG
αβ = sM

αβγδ (x3) Mδγ(x1, x2),

σBG
α3 = sR

αβγδ (x3) Rδγβ(x1, x2),

σBG
33 = 0.

(156)

Here, the in-plane stress localization fourth-order tensor s
∼∼

M related to bending moment M
∼

writes
as:

s
∼∼

M (x3) = x3C
∼∼

σ (x3) : D
∼∼

−1, (157)

where D
∼∼

=
(〈

x2
3C

σ

αβγδ(x3)
〉)

is the bending stiffness tensor and the integration through the thickness
of the plate is noted:

〈 f (x3)〉 =

∫ t
2

− t
2

f (x3) dx3.

Note that, by definition of s
∼∼

M, we have Mαβ =
〈
x3σ

BG
αβ

〉
.

The transverse shear stress localization fourth-order tensor s
∼∼

R related to the generalized shear
force R

_
writes as:

s
∼∼

R (x3) =

∫ x3

− t
2

−s
∼∼

M(y3) dy3. (158)
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Because some components of R
_

might not contribute to σBG
α3 , it will be assumed that R

_
belongs to

subspace S
_

defined as:

S
_

= Span
{
s
_

M1(x3), s
_

M2(x3), ∀x3 ∈ T
}
, (159)

where
sM1
αβγ(x3) = sM

1γβα(x3) and sM2
αβγ(x3) = sM

2γβα(x3). (160)

Indeed, it can be shown that if s
∼∼

R (x3) : R
_

= 0 for all x3, then R
_

belongs necessarily to the orthogonal
of S

_
. Hence, restricting R

_
to S

_
ensures that σBG

α3 = 0 for all x3 is equivalent to R
_

= 0.

Note that the conventional shear force Qα =
〈
σBG
α3

〉
is derived from the generalized shear force

through:
Q
-

= i
∼∼
... R
_

or Qα = Rαββ. (161)

Another important property is that the dimension of subspace S
_

is at least two. Indeed, let us
introduce the following two-dimensional subspace:

S
_

(i)
= Span

{
i
_

(1), i
_

(2)
}

(162)

where

i
_

(1) =
(
i(1)
αβγ

)
=

(
i1γβα

)
and i

_
(2) =

(
i(2)
αβγ

)
=

(
i2γβα

)
(163)

Then, we have S
_

(i)
⊂ S

_
. This means that the two independent tensors i

_
(1) and i

_
(2) are in S

_
.

The equilibrium equations of the Bending-Gradient theory write: R
_
− P

__

S ...
(
M
∼
⊗ ∇-

)
= 0

_
, (164a)(

i
∼∼
... R
_

)
· ∇- + p3 = 0. (164b)

where the sixth-order tensor P
__

S is the projection operator on S
_

.

The Bending-Gradient generalized strains, dual of
(
M
∼
, R
_

)
, are

(
χ
∼
,Γ
_

)
where χ

∼
is the curvature

second order tensor and Γ
_
∈ S

_
is the generalized shear strain third order tensor. These general-

ized strains derive from the generalized displacements
(
U3,Φ_

)
using the following compatibility

conditions on ω: 
χ
∼

= Φ
_
· ∇-,

Γ
_

= Φ
_

+ i
∼∼
· ∇-U3,

(165)

and the clamped boundary conditions on ∂ω:

Φ
_
· n- = 0

∼
and U3 = 0 on ∂ω. (166)

Note that other boundary conditions can be considered. Refer to Appendix B.1.
The condition Γ

_
∈ S

_
is actually equivalent to Φ

_
∈ S

_
since i

∼∼
· ∇-U3 is in S

_

(i), and S
_

(i) is a subset
of S

_
. This means that the kinematic degrees of freedom of the Bending-Gradient model are the

deflection U3 and n generalized rotations, n being the dimension of S
_

with 2 ≤ n ≤ 6 depending on
the 3D elastic properties of the laminated plate.

The Bending-Gradient constitutive equations write as:



CHAPTER 5. FINITE ELEMENT OF BENDING-GRADIENT THEORY 96

 χ
∼

= d
∼∼

: M
∼
,

Γ
_

= h
__
... R
_
.

(167)

where d
∼∼

= D
∼∼

−1 is the bending compliance tensor and h
__

is the shear compliance tensor given by:

h
__

=

〈
Ts
∼∼

R.S
∼
γ.s
∼∼

R
〉

(168)

It should be emphasized that h
__

is symmetric and positive but it is definite only on the subspace
S
_

. In other words, S
_

is the orthogonal of the kernel of h
__

. When the kernel of h
__

is zero, then S
_

coincides with the whole space of third-order tensors which are symmetric with respect to their two
first subscripts.

5.4.2 Localization
Once the solution of the Bending-Gradient plate equations (164-167) is found, it is possible to
derive the 3D stress and displacements fields, respectively approximated by σ

∼
BG given by (156),

and by u-BG as follows:

uBG
3 = UBG

3 + wM
αβMβα and uBG

α = −x3UBG
3,α + uR

αβγδRδγβ. (169)

Here, the transverse Poisson’s effect is carried by the bending moment M
∼

:

wM
αβ(x3) =

∫
R
−y3

C33αβ

C3333
dy3. (170)

where
∫

R
f denotes the unique primitive of the function f of the x3 coordinate such:〈

1
3

s
∼∼

R ...
. i
∼∼

∫
R

f
〉

= 0. (171)

The in-plane warping related to transverse shear effects are carried by the generalized shear
force R

_
:

uR
αβγδ(x3) =

∫ x3

0

(
S γ
αηsR

ηβγδ − δαβw
M
γδ

)
dy3. (172)

5.4.3 The case of homogeneous plates

In this case, the Reissner plate equations are retrieved. Indeed, S
_

is completely generated by i
_

(1)

and i
_

(2). It is hence equal to S
_

(i) of dimension two and we have the following equations:

R
_

=
2
3

i
∼∼
· Q
-
, (173)

and

P
__

S ...
(
M
∼
⊗ ∇-

)
=

2
3

i
∼∼
...
(
M
∼
· ∇-

)
(174)

Thus, the equilibrium equations (164) become:
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{ Q − M
∼
· ∇- = 0 , (175a)

Q · ∇- + p3 = 0. (175b)

Moreover, in the case of homogeneous plates, the generalized shear compliance writes:

h
__

=
6
5t

i
∼∼
· S
∼
γ
· i
∼∼

(176)

The tensor Φ
_

being in S
_

= S
_

(i), it has necessarily the following form:

Φ
_

= i
∼∼
· φ
-
, (177)

where φ
-

= (φα) is the rotation vector. The corresponding constitutive law becomes:

Γ
_

= Φ
_

+ i
∼∼
· ∇-U3 = i

∼∼
·

(
φ
-

+ ∇-U3

)
= h

__
... R
_
, (178)

or equivalently:

φ
-

+ ∇-U3 =
6
5t

S
∼
γ
· Q
-
. (179)

5.4.4 Variational formulation
Like 3D elasticity problems, the Bending-Gradient problem can be given a variational framework.
For this purpose, the set KCBG of kinematically compatible Bending-Gradient displacements are
defined as:

KCBG =
{(

U3,Φ_

)
(x1, x2), Φ

_
∈ S

_
, (x1, x2) ∈ ω, such that (166)

}
, (180)

The theorem of the minimum of the potential energy says that the solution
(
UBG

3 ,Φ
_

BG
)

of the
Bending-Gradient problem achieves the minimum of the potential energy functional PBG defined on
KCBG as:

PBG =

∫
ω

wBG
(
χ
∼
,Γ
_

)
dω −

∫
ω

p3U3dω, (181)

where χ
∼

and Γ
_

are the generalized strains associated to the generalized displacements
(
U3,Φ_

)
through the compatibility equations (165) and wBG is the Bending-Gradient strain energy density
function given by:

wBG
(
χ
∼
,Γ
_

)
=

1
2
χ
∼

: D
∼∼

: χ
∼

+
1
2

TΓ
_
... H
__
... Γ
_
. (182)

where the generalized shear stiffness tensor H
__

is the Moore-Penrose pseudo inverse of h
__

. Indeed,
as mentioned before, the shear compliance tensor h

__
is symmetric and positive but it is definite only

on subspace S
_

. The corresponding generalized shear strain energy density is defined for all Γ
_

in S
_

as:
1
2

TΓ
_
... H
__
... Γ
_

= max
R
_
∈S
_

{
TR
_
... Γ
_
−

1
2

TR
_
... h
__
... R
_

}
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5.4.5 Kelvin Notations
In this section, we introduce Kelvin notation in order to turn contraction products into conventional
matrix products. Brackets [•] are used to denote that a tensor is considered in a matrix form. Thus,
[•] is a linear operator reallocating tensor components. For instance, the bending moment and
curvature second-order tensors are reallocated in a vector form:

[
M
∼

]
=


M11

M22√
2M12

 , [
χ
∼

]
=


χ11

χ22√
2χ12

 , (183)

as well as the fourth-order compliance tensor d
∼∼

is reallocated in a matrix form so that constitutive
equation χ

∼
= d
∼∼

: M
∼

becomes a vector-matrix product:

[
d
∼∼

]
=


d1111 d2211

√
2d1211

d2211 d2222
√

2d1222√
2d1211

√
2d1222 2d1212

 (184)

The same Kelvin notation applied to C
∼∼

σ can be used for the computation of D
∼∼

as:[
D
∼∼

]
=

〈
x2

3

[
C
∼∼

σ (x3)
]〉
, (185)

Similar procedure is applied to shear variables and the corresponding constitutive equation.
Shear unknowns are reallocated in the following vector form:

[
R
_

]
=



R111

R221√
2R121

R112

R222√
2R122


,

[
Γ
_

]
=



Γ111

Γ221√
2Γ121

Γ112

Γ222√
2Γ122


,

[
Φ
_

]
=



Φ111

Φ221√
2Φ121

Φ112

Φ222√
2Φ122


. (186)

The shear constitutive sixth-order tensors h
__

and H
__

are turned into a 6 × 6 matrix of the form:

[
f
__

]
=



f111111 f111122
√

2 f111121 f111211 f111222
√

2 f111221

f221111 f221122
√

2 f221121 f221211 f221222
√

2 f221221√
2 f121111

√
2 f121122 2 f121121

√
2 f121211

√
2 f121222 2 f121221

f112111 f112122
√

2 f112121 f112211 f112222
√

2 f112221

f222111 f222122
√

2 f222121 f222211 f222222
√

2 f222221√
2 f122111

√
2 f122122 2 f122121

√
2 f122211

√
2 f122222 2 f122221


(187)

Finally, when using Kelvin matrices components, the same typeface is used. The number of
indexes indicates unambiguously whether it is the tensor component or the matrix component:

f222221 is the tensor component of f
__

and f56 =
√

2 f222221 is the matrix component of
[

f
__

]
. For more

details about the computation of matrix
[
h
__

]
, refer to Appendix B.2.

5.5 Finite element discretization of the Bending-Gradient model
This section deals with the displacement finite element formulation of the Bending-Gradient model
presented in the previous section. An eight-node isoparametric quadrilateral element with 7 d.o.f. at
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each nodal point will be presented. This element has the same interpolation functions as the LS1
and SCLS1 ’s element which was integrated in the MPFEAP in-house software (Nguyen and Caron,
2006; Baroud et al., 2016).

5.5.1 Methods for calculating shear stiffness matrix
As noted before, the shear compliance tensor h

__
is symmetric and positive. It is definite on the

subspace S
_

whose dimension is between two and six depending on the elastic properties of the
laminated plate. Hence, there are two possible numerical strategies to handle this problem. The first
one is to introduce the constraint Φ

_
∈ S

_
when the dimension of S

_
is strictly lower than six. The

second one, which will be adopted in our computer code, is to regularize the problem by adding a
small strictly positive compliance to the diagonal components of the exact shear compliance tensor
h
__

, which becomes the inversible compliance h
__

ξ :

[
H
__

ξ
]

=
[
h
__

ξ
]−1

=

[h__]
+

√∑
h2
αβγδζη

10ξ
[
I
__

]
−1

(188)

where α = β = γ = δ = ζ = η = 1, 2,
[
I
__

]
is the identity 6×6-matrix and ξ is a positive parameter.

A parametric study was conducted in which the exponent ξ was varied between 1 and 8. We
recommend to set ξ = 3 unless in the case of a concentrated loading force applied on a thick plate
(slenderness ratio L/h between 3 and 10) for which ξ = 5 is recommended.

5.5.2 Geometry and displacement interpolations
The representation of the geometry of the finite element mesh is based on a quadrilateral master
element defined in the (ξ, η) space as shown in Fig. 5.2.

Fig. 5.2. The eight-node element a) with four second-order Gaussian stations b) with nine second-order
Gaussian stations.

The geometry interpolation can be written as
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x(ξ, η) =

8∑
i=1

Ni(ξ, η)xi

y(ξ, η) =

8∑
i=1

Ni(ξ, η)yi

(189)

where (xi, yi) are the co-ordinates of node i, i = 1, . . . , 8, and Ni(ξ, η) its shape function given
by: for −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1,

N1(ξ, η) =
1
4

(1 − ξ)(1 − η)(−1 − ξ − η)

N2(ξ, η) =
1
2

(1 − ξ2)(1 − η)

N3(ξ, η) =
1
4

(1 + ξ)(1 − η)(−1 + ξ − η)

N4(ξ, η) =
1
2

(1 + ξ)(1 − η2)

N5(ξ, η) =
1
4

(1 + ξ)(1 + η)(−1 + ξ + η)

N6(ξ, η) =
1
2

(1 − ξ2)(1 + η)

N7(ξ, η) =
1
4

(1 − ξ)(1 + η)(−1 − ξ + η)

N8(ξ, η) =
1
2

(1 − ξ)(1 − η2)

(190)

In order to achieve the general applicability, an isoparametric finite element formulation is
adopted, which interpolates the co-ordinates and element displacements using the same shape
functions.

5.5.3 Weak formulation of the Bending-Gradient model
• The generalized displacement vector [δ] is defined as:

[δ]T =

(
U3, Φ111, Φ221,

√
2Φ121, Φ112, Φ222,

√
2Φ122︸                                                     ︷︷                                                     ︸)

,

7

where [X]T is the transpose of [X]. The displacement field interpolation is hence expressed
as:

[δ] (x, y) =

8∑
i=1

Ni(ξ, η) [δi] (191)

where [δi] is the value of the 7 generalized displacement vector at node i.

• The generalized strain vector [E] defined as:

[E]T =

([
χ
∼

]T
,
[
Γ
_

]T
)

where the generalized curvature strain vector is:[
χ
∼

]T
=

(
χ11, χ22,

√
2χ12︸              ︷︷              ︸)

,

3
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and the generalized shear strain vector is:[
Γ
_

]T
=

(
Γ111, Γ221,

√
2Γ121, Γ112, Γ222,

√
2Γ122︸                                            ︷︷                                            ︸)

.

6

The expression of these generalized strains (165) may be explicitly written as

χ11 =
∂Φ111

∂x
+
∂Φ112

∂y
, χ22 =

∂Φ221

∂x
+
∂Φ222

∂y
,

χ12 =
∂Φ121

∂x
+
∂Φ122

∂y
,

Γ111 = Φ111 +
∂U3

∂x
, Γ221 = Φ221,

Γ121 = Φ121 +
∂U3

∂y
, Γ112 = Φ112,

Γ222 = Φ222 +
∂U3

∂y
, Γ122 = Φ122 +

∂U3

∂x
,

(192)

Using the following derivation rules for the interpolation functions:

∂Ni

∂x
=

∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x
,

∂Ni

∂y
=

∂Ni

∂ξ

∂ξ

∂y
+
∂Ni

∂η

∂η

∂y
,

(193)

The strain field interpolation can be written as:

[
χ
∼

]
=

8∑
i=1

[
Bχ

i

]
[δi] = [Bχ

1 , . . . , B
χ
8] [δ] (194)

where
[
Bχ

i

]
of dimension 3 × 7 is defined as:

[
Bχ

i

]
=

 0 Ni,x 0 0 Ni,y 0 0
0 0 Ni,x 0 0 Ni,y 0
0 0 0 Ni,x 0 0 Ni,y

 , (195)

and [
Γ
_

]
=

8∑
i=1

[
BΓ

i

]
[δi] = [BΓ

1 , . . . , B
Γ
8] [δ] (196)

where
[
BΓ

i

]
of dimension 6 × 7 is defined as:

[
BΓ

i

]
=



Ni,x Ni 0 0 0 0 0
0 0 Ni 0 0 0 0

Ni,y
√

2
0 0 Ni 0 0 0

0 0 0 0 Ni 0 0
Ni,y 0 0 0 0 Ni 0
Ni,x
√

2
0 0 0 0 0 Ni


(197)
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By assembling
[
Bχ

i

]
and

[
BΓ

i

]
into [Bi], we obtain:

[E] =

8∑
i=1

[Bi] [δi] = [B1, . . . , B8] [δ] (198)

• Finally, the generalized stress vector [Σ] is defined as:

[Σ]T =

([
Σ
∼
χ
]T
,
[
Σ
_

Γ
]T

)
(199)

where [
Σ
_
χ
]T

=
(
M11, M22,

√
2M12

)
. (200)

and [
Σ
∼

Γ
]T

=
(
R111, R221,

√
2R121,R112, R222,

√
2R122

)
, (201)

With these notations, the Bending-Gradient constitutive equations (167) can be rewritten as:

[E] = [S ] [Σ] , [Σ] = [C] [E] , (202)

where [S ] is the generalized compliance matrix and [C] = [S ]−1 is the generalized stiffness
matrix.

5.5.4 Element stiffness matrix and nodal forces
Inserting (198) and (191) into the variational formulation of the problem (181-182), and restricting
the integration over the considered element ωe, it is found that the strain energy stored in the element
is:

We =

8∑
i=1

8∑
j=1

1
2

∫
ωe

[δi]T [Bi]T [C]
[
B j

] [
δ j

]
dxdy =

8∑
i=1

8∑
j=1

1
2

[δi]T
[
Ke

i j

] [
δ j

]
where the element stiffness matrix

[
Ke

i j

]
is given by:[

Ke
i j

]
=

∫
ωe

[Bi]T [C]
[
B j

]
dxdy =

∫
ωe

([
Bχ

i

]T
[D]

[
Bχ

j

]
+

[
BΓ

i

]T [
Hξ

] [
BΓ

j

])
dxdy,

and that the work of the external forces in the element ωe is:

8∑
i=1

[δi]T [
Fe

i
]

where the element nodal force
[
Fe

i

]
is given by:

[
Fe

i
]

=

∫
ωe

Ni [F] dxdy

By assembling all the element stiffness matrices and all the element nodal forces, and by taking
into account the kinematic boundary conditions, a system of linear equations is obtained the solution
of which is the vector of the nodal d.o.f. From the latter, the corresponding strain and stresses can
be deduced from, respectively, equations (198) and (202).
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5.5.5 Bending-Gradient finite element with selective integration technique
It is well-known that the selective integration technique can be used to avoid shear locking in
Reissner-Mindlin finite elements. In order to apply this technique to our model, the idea is to
decompose the elasticity shear matrix into two elasticity shear matrices:[

H
__

ξ
]

=
[
H
__

s,ξ
]

+
[
H
__

d,ξ
]

(203)

where the part of the shear energy 1
2

TΓ
_
...H
__

ξ ...Γ
_

associated to matrix
[
H
__

s,ξ
]

is numerically integrated

with four Gauss points while the part associated to matrix
[
H
__

d,ξ
]

is subjected to full integration with
nine Gauss points (or more, the results are the same).

The construction of
[
H
__

s,ξ
]

and
[
H
__

d,ξ
]

is as follows: The space generated by all possible Φ
_

is
orthogonally decomposed, in the sense of the scalar product defined by H

__

ξ, into the subspace S
_

(i)

introduced in (162) which is generated by the Φ
_

of the form i
∼∼
· ∇-U3, and its orthogonal counterpart.

In order to achieve this orthogonal decomposition, the standard Schmidt orthogonalization technique
is used. Using the matrix Kelvin notation, we have:[

i
∼∼
· ∇-U3

]
= U3,1

[
i
_

(1)
]

+ U3,2

[
i
_

(2)
]

(204)

where

T[
i
_

(1)
]
=

[
1, 0, 0, 0, 0,

1
√

2

]
,

T[
i
_

(2)
]
=

[
0, 0,

1
√

2
, 0, 0, 1

]
. (205)

We define the following two orthonormal basis vectors
{[
Γ
_

(1)
]
,
[
Γ
_

(2)
]}

as:[
Γ
_

(1)
]
=

1
√

a11

[
i
_

(1)
]
,[

Γ
_

(2)
]
=

−a12

√
a11

√
a11a22 − a2

12

[
i
_

(1)
]

+

√
a11√

a11a22 − a2
12

[
i
_

(2)
] (206)

with

aαβ =
T[

i
_

(α)
] [

H
__

ξ
] [

i
_

(β)
]
, α, β = 1, 2. (207)

The following properties hold true:

a11 > 0, a11a22 − a2
12 > 0, a12 = a21,

T[
Γ
_

(α)
] [

H
__

ξ
] [
Γ
_

(β)
]

= δαβ (208)

Moreover, S
_

(i) is equal to the subspace generated by vectors
{[
Γ
_

(1)
]
,
[
Γ
_

(2)
]}

. Hence, the orthog-

onal projection operator
[
P
__

]
of

[
Φ
_

]
on S

_

(i) the is the 6×6 matrix whose components are given
by:

Pi j =
(
Γ

(1)
i Γ

(1)
k + Γ

(2)
i Γ

(2)
k

)
Hξ

k j (209)

where Hξ
k j are the components of the 6×6 matrix

[
H
__

ξ
]

with i, j, k = 1, 2, ...6.
We easily check that:

1.
[
P
__

] [
Γ
_

(α)
]

=
[
Γ
_

(α)
]
, α=1, 2

2.
T[

P
__

] [
H
__

ξ
] [

P
__

]
=

[
H
__

ξ
] [

P
__

]
=

T[
P
__

] [
H
__

ξ
]
≡

[
H
__

s,ξ
]
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Thus, each
[
Φ
_

]
is uniquely decomposed as follows:[

Φ
_

]
=

[
Φ
_

s
]

+
[
Φ
_

d
]

with [
Φ
_

s
]

=
[
P
__

] [
Φ
_

]
,

[
Φ
_

d
]

=
[
I
__
− P

__

] [
Φ
_

]
,

T[
Φ
_

s
] [

H
__

ξ
] [
Φ
_

d
]

= 0.

Finally, the matrix [H
__

ξ] is decomposed as in (203) with:[
H
__

s,ξ
]
=
[
H
__

ξ
] [

P
__

]
,

[
H
__

d,ξ
]

=
[
H
__

ξ
] [

I
__
− P

__

]
. (210)

5.5.6 BGFEAP code description
BGFEAP (Bending-Gradient Finite Element Analysis Program) is a code developed in the Labora-
toire Navier. The code is written using standard Fortran 77 and is a development of the program
MEF presented in Dhatt and Touzot (1984). The program BGFEAP uses text files for data input and
results output can be visualized using GID program described in CIMNE and GID. In parallel, a
user element for Abaqus was developed, and it is based on BGFEAP.

5.6 Examples and numerical results
In this part, comparisons are made between Bending-Gradient finite element, Bending-Gradient
analytical solution, exact solution for multilayered plates, LS1 finite element and plate bending FE
model in order to assess the performances of the new model. Moreover, patch tests for constant
shear and moment were performed with Bending-Gradient finite element. The 2D FE calculations
are performed with the commercial ABAQUS software.

5.6.1 Patch tests
The patch tests can prove, in addition to consistency requirements (which were initially the only item
tested), the stability of the approximation by requiring that for a patch consisting of an assembly of
one or more elements the stiffness matrices are non-singular whatever the boundary conditions are.
Patch tests performed on plates with meshes of arbitrary quadrilaterals of the type shown in Fig. 5.3
can represent fields of constant moment or shear for both thick and thin plates.

Fig. 5.3. Patch test: a patch of elements is considered in the load cases.
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In this section, 3 multilayered plates were studied: the first case with one layer, the second one
with 4 symmetric layers and the third case with 6 symmetric layers. The material properties and
fiber orientation have no influence on the results. The total layers thickness is noted h.
For the first case with one layer, the fiber orientation is 0◦.
For the second case with 4 layers, the fiber orientation is 0◦/90◦/90◦/0◦.
For the third case with 6 layers, the fiber orientation is 45◦/0◦/90◦/90◦/0◦/45◦.

5.6.1.1 Bending patch test

In the bending patch test, a distributed edge couple of constant intensity, equal to 1, is applied with
the suitable boundary conditions:

U3 is set equal to zero on 3 nodes on the corners. On X=0 and 10, a linear load along φ111 is
applied equal to -1 and 1 respectively. On Y=0 and 10, a linear load along φ112 is applied equal to -1
and 1 respectively.

In table 5.1, results for bending patch are shown for the 3 cases cited above and for different
slenderness ratio L/h.

L/h 5 10 20
6 layers 0.988 0.963 0.913
4 layers 0.997 0.989 0.971
1 layer 0.999 0.999 0.995

Tab. 5.1. The average value of moment M11 intensity calculated throughout the plate.

5.6.1.2 Twisting patch test

In the twisting patch test, a distributed edge couple that generate a constant twisting, with an
intensity equal to 1, is applied with the suitable boundary conditions:

U3 is set equal to zero on 3 nodes. On X=0 and 10, a linear load along φ121 is applied equal to -1
and 1 respectively. On Y=0 and 10, a linear load along φ122 is applied equal to -1 and 1 respectively.

In table 5.2, results for twisting patch test are shown for the 3 cases cited above and for different
slenderness ratio L/h.

L/h 5 10 20
6 layers 0.998 0.993 0.99
4 layers 0.998 0.993 0.984
1 layer 0.996 0.984 0.941

Tab. 5.2. The average value of moment M12 intensity calculated throughout the plate.

5.6.1.3 Shear patch test

In the patch test for shear shown in Fig. 5.4, a lateral distributed edge load of constant intensity,
equal to 1, is applied at the right-hand edge of the patch of elements which is fully clamped at the
left-hand edge. It is also necessary to constrain all of the rotations to zero in order to prevent a field
of bending moments developing.
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Fig. 5.4. Shearing case.

In table 5.3, results for shear patch test are shown for the 3 cases cited above and for different
slenderness ratio L/h.

L/h 5 10 20
6 layers 1.001 1.001 1.001
4 layers 1.001 1.001 1.001
1 layer 1.001 1.001 1.001

Tab. 5.3. The average value of shear Q1 intensity calculated throughout the plate.

5.6.1.4 Discussion

According to the results obtained, we can conclude that the Bending-Gradient finite element model
converges to the exact constant value for bending, twisting and shear patch tests, specially for small
slenderness ratio (L/h). Therefore, the best performance range for the Bending-Gradient finite
element is for a slenderness ratio lower than 20.

5.6.2 Comparison between analytical solution and Bending-Gradient finite
element

5.6.2.1 Problem description

The laminate used in this example is composed of 3 layers (Lebée and Sab, 2011b). Each layer is
made of unidirectional fiber-reinforced material oriented at θ relative to the direction x. All plies are
perfectly bounded. The constitutive behavior of a ply is assumed to be transversely isotropic along
the direction of the fibers and engineering constants are chosen similar to those of Pagano (1969):

For the first and third layer, the thickness is e1 = e3 = 1, the fiber orientation is 90◦ and the
elastic constants are:
E1 = 25E, E2 = E3 = 1E,

G12 = G13 = 0.5E, G23 =
E2

2(1 + ν32)
= 0.4E,

ν12 = ν13 = ν23 = 0.25 .
where 1, 2 and 3 refer, respectively, to the fiber, transverse, and thickness direction as shown in Fig.
5.5.

For the layer 2, the thickness is e2 = 2, the fiber orientation is 0◦ and the elastic constants are
the same as the first and third layer.

The plate slenderness ratio (L/h) is set equal to 5.
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Fig. 5.5. Description of fiber orientation axes and angle.

The laminate is subjected to a cylindrical bending with a simply supported edges (Fig. 5.6)
with L=20, and where the plate is invariant and infinite in Y direction and transversely loaded with
a uniformly distributed load applied along z axis, equal to 0.003E. The particular choice of 3D
boundary conditions is shown on Fig. 5.6 and the invariance of the solution in Y direction enable
a variable separation between Y and X, and the derivation of a closed form solution. It should be
mentioned that Y=0 and Y=150 are free edges. It is important to note that this solution does not
present any boundary layer in the region near the simple support.

The following notation is used:

U3 =
U3

L
,

Rαβγ =
Rαβγ

EL2 , Mαβ =
Mαβ

EL

Fig. 5.6. Description of laminated plate configuration for cylindrical bending.

5.6.2.2 Results and interpretation

In the following section, comparisons are made between Bending-Gradient finite element and the
analytical solution of the Bending-Gradient theory:
In Fig. 5.7, deflection U3, φ111, φ221 and φ122 are plotted for the Bending-Gradient finite element
and the analytical solution. It should be noted that φ121, φ112 and φ222 are equal to zero in both
Bending-Gradient finite element and the analytical solution of the Bending-Gradient model. In Fig.
5.8, the distribution of M11, M22, R111 and R221 are plotted for the Bending-Gradient finite element
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and the analytical solution. It should be noted that M12,R221,R121,R112 and R222 are equal to zero in
both Bending-Gradient finite element and the analytical solution of the Bending-Gradient model.
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Fig. 5.7. Displacement: U3, φ111, φ221 and φ122, predicted by the Bending-Gradient finite element and the
analytical solution.
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Fig. 5.8. Distribution of M11, M22, R111 and R221 predicted by the Bending-Gradient finite element and the
analytical solution.

According to the results obtained, we can conclude that the Bending-Gradient finite element
converge to the exact analytical solution for both displacements and stresses.
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5.6.3 Comparison between Bending-Gradient FE and exact solution for mul-
tilayered plates

We present in this section tests on a multilayered plates composed of 3 and 9 layers.

5.6.3.1 Problem description

We consider a simply supported plate and subjected to a double sinusoidal load. We study two
sequences of stack of layers: the first sequence of three layers of 0◦ / 90◦ / 0◦ and the second is nine
layers of 0◦ / 90◦ / 0◦ / 90◦ / 0◦ / 90◦ / 0◦ / 90◦ / 0◦. The mechanical characteristics of the layers are
shown in Fig. 5.9 with L = 10. The constitutive behavior of a ply is assumed to be transversely
isotropic along the direction of the fibers and engineering constants are chosen as follows:
E1 = 25E, E2 = E3 = 1E,
G12 = G13 = 0.5E, G23 = 0.2E,
ν12 = ν13 = ν23 = 0.25.
where 1, 2 and 3 refer, respectively, to the fiber, transverse, and thickness direction as shown in Fig.
5.5.

Fig. 5.9. Multilayered square plate configuration: a) stack of 3 layers 0◦/90◦/0◦, b) stack of 9 layers
0◦/90◦/0◦/90◦/0◦/90◦/0◦/90◦/0◦.

We dispose for this test a reference solution based on the 3D elasticity PAGANO and HATFIELD
(1972).
The following notation is used:

W = W
π4Q

12S 4hq0
, S=

L
h

, Q=4G12 +
E1 + E2(1 + 2ν23)

1 − ν12ν21
,

(σ11 σ22) =
1

q0S 2 (σ11 σ22), (σ13 σ23) =
1

q0S
(σ13 σ23),
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5.6.3.2 3 Layers plate

In this section, results of the Bending-Gradient finite element and the reference solution, for a
square plate with 3 layers 0◦/90◦/0◦, are presented in table 5.4.

L/h Model σ11 σ22 σ13 σ23 W
(L/2, L/2, -h/2) (L/2, L/2, -h/4) (0, L/2, 0) (L/2, 0, 0) (L/2, L/2, 0)

4 BG FE 0.374 0.67497 0.26739 0.313 4.868
4 3D Elasticity 0.72 0.663 0.219 0.292 4.491
4 2D Abaqus 0.38 0.6726 - - 4.9
10 BG FE 0.4874 0.403 0.325 0.206 1.745
10 3D Elasticity 0.559 0.403 0.301 0.196 1.709
20 BG FE 0.525 0.308 0.343 0.18 1.2
20 3D Elasticity 0.543 0.308 0.328 0.156 1.189
50 BG FE 0.5363 0.276 0.348 0.166 1.033
50 3D Elasticity 0.539 0.276 0.337 0.141 1.031

100 BG FE 0.538 0.271 0.347 0.159 1.008
100 3D Elasticity 0.539 0.271 0.339 0.139 1.008

Tab. 5.4. Validation of the Bending-Gradient finite element on a square plate with 3 layers.

5.6.3.3 9 layers plate

In this section, results of the Bending-Gradient finite element and the reference solution, for a
square plate with 9 layers 0◦/90◦/0◦/90◦/0◦/90◦/0◦/90◦/0◦, are presented in table 5.5.

L/h Model σ11 σ22 σ13 σ23 W
(L/2, L/2, -h/2) (L/2, L/2, -2h/5) (0, L/2, 0) (L/2, 0, 0) (L/2, L/2, 0)

4 BG FE 0.493 0.4914 0.244 0.246 4.245
4 3D Elasticity 0.684 0.628 0.223 0.223 4.079
4 2D Abaqus 0.497 0.0234 - - 4.2645

10 BG FE 0.5225 0.459 0.261 0.239 1.534
10 3D Elasticity 0.551 0.477 0.247 0.226 1.512
20 BG FE 0.5346 0.441 0.268 0.237 1.139
20 3D Elasticity 0.541 0.444 0.255 0.221 1.129
50 BG FE 0.538 0.433 0.269 0.235 1.023
50 3D Elasticity 0.539 0.433 0.258 0.219 1.021
100 BG FE 0.538 0.431 0.268 0.232 1.006
100 3D Elasticity 0.539 0.431 0.259 0.219 1.005

Tab. 5.5. Validation of the Bending-Gradient finite element on a square plate with 9 layers.

5.6.3.4 Discussion

An analysis of the results shows that the Bending-Gradient finite element works well in the case of
three layers with large slenderness: the error found on the deflection and the normal stresses (σ11

and σ22) is less than 1%. For small slenderness, there is a significant deviation from the reference
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solution which is 48% on the normal stresses σ11, 1.8% on σ22 and 8% on the deflection for both
Bending-Gradient FE and Abaqus 2D FE. For the plate with nine layers, it is observed the same
trend with smaller errors in the case of small slenderness: the error is 27% on the normal stresses
σ11, 21% on σ22 and 4% on the deflection for both Bending-Gradient FE and Abaqus 2D FE.
Shear stresses are relatively well calculated for the two stacking sequences and for different values
of slenderness. Indeed, the average error observed is of the order of 10%. It decreases with the
reduction in the thickness and increasing the number of layers.

It should be noted that the exact solution for multilayered plates is more accurate for thin plates.

5.6.4 Mesh control: Comparison between Bending-Gradient FE, LS1 and
Abaqus 2D FE

5.6.4.1 Problem description

The plate under consideration is a simply supported square plate with a length of its sides equal
to L=10. The plate is subjected to a concentrated load P=-0.0002EL2 applied in the middle of the
plate, it is composed of 1 layer with a thickness equal to h. The plate slenderness ratio is denoted by
L/h. The material properties are isotropic:

The elastic constants are:
E = 138 000 E,

G =
E

2(1 + ν)
= 57 000 E,

ν = 0.21.

5.6.4.2 Results and discussion

We will study in this section the convergence of the Bending-Gradient finite element in terms of
displacement. The square plate is modeled with different meshes. Reference values are given by
the Abaqus 2D FE composite layup module. We present in Fig. 5.10 the percentage of relative
difference for deflection at the middle of the plate, calculated between Bending-Gradient finite
element and Abaqus 2D finite element for different meshes, and between LS1 and Abaqus 2D finite
element for different meshes.
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Fig. 5.10. Convergence of deflection calculated between: A) BG FE and 2D FE Abaqus, B) LS1 and 2D FE
Abaqus.

Based on the results shown above, a good behavior of the Bending-Gradient finite element is
found. For Bending-Gradient at convergence, deviation error from the exact solution is 0.03% and
0.0244% in the case of thick plate (L/h = 4) and thin (L/h = 50), respectively. Same results are
approximately obtained for Bending-Gradient finite element and the reference values, which leads
to the conclusion that our model passes well the convergence test for thin and thick plates.
It should be noted that for LS1 at convergence, deviation from the exact solution is 0.041% and
0.004% in the case of thick plate (L/h = 4) and thin (L/h = 50), respectively. Same results and
conclusion for the LS1 model.

5.6.5 Comparison between Bending-Gradient FE, LS1 and Abaqus 2D FE
In this section, we present 4 different cases, the first case is a simply supported square plate with a
uniformly distributed load; the second case is a simply supported square plate with a concentrated
load applied in the middle of the plate as a uniformly distributed load on a very small surface, the
third case is a rectangular plate fixed on one side and subjected to a linear load on the opposed side
causing the twisting of the plate and the fourth case is a cylindrical bending of a simply supported
plate. The commercial ABAQUS software has been used with S8R element (2D 8-node quadratic
shell element with reduced integration). Comparisons are made between Bending-Gradient FE, LS1
and Abaqus 2D FE composite layup module with the same mesh refinement.

The following notation is used:

U3 =
U3

L
,

Qα =
Qα

EL2 , Mαβ =
Mαβ

EL
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5.6.5.1 First case

The laminate under consideration is a square plate with a length and width of L=10 in the x and y
directions. The thickness of the laminate, following z direction, is equal to h=4e and the middle
plane of the plate is located at z=0. The plate is simply supported on its 4 edges, and is subjected to
a uniform load equal to 0.48E . The slenderness ratio L/h is set equal to 4 and 10.

The material properties are as in Wang and Crossman (1977a) and Pagano and Pipes (1970).
For the first and fourth layers, the fiber orientation is 30◦ and the elastic constants are:
E1 = 140 000 E, E2 = E3 = 15 000 E,
G12 = G13 = G23 = 5 850 E,
ν12 = ν13 = ν23 = 0.21 .
where 1, 2 and 3 refer, respectively, to the fiber, transverse, and thickness direction as shown in Fig.
5.5.

For the second and third layers, the fiber orientation is −30◦ and the elastic constants are:
E1 = 160 000 E, E2 = E3 = 8 500 E,
G12 = G13 = 4 100 E, G23 = 2 800 E,
ν12 = ν13 = 0.33 , ν23 = 0.5 .

For L/h=10: In Fig. 5.11, we plot the distribution of moments M11 and M22 and shear forces
Q1 and Q2, at Y = L/2 as predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE. In Fig. 5.12,
we plot the deflection U3 at Y = L/2 as predicted by Bending-Gradient FE, LS1 and Abaqus 2D
FE. In Fig. 5.13, we plot the distribution of moment of torsion M12, at A) diagonal between X=0,
Y=0 and X = L, Y = L and B) diagonal between X=0, Y = L and X = L, Y=0, as predicted by
Bending-Gradient FE, LS1 and Abaqus 2D FE.
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Fig. 5.11. Distribution of moments M11 and M11 and shear forces Q1 and Q2 at Y = L/2 for L/h=10,
predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE for 30◦/ − 30◦/ − 30◦/30◦.
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Fig. 5.12. Deflection U3 at Y = L/2 for L/h=10, predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE
for 30◦/ − 30◦/ − 30◦/30◦.

0 2 4 6 8 10 12 14 16

Diagonal X=0 Y=0 - X=10 Y=10

−100

−50

0

50

100

M
12

(1
e-

4)

A) Diagonal between X=0 Y=0 and X=10 Y=10

0 2 4 6 8 10 12 14 16

Diagonal X=0 Y=10 - X=10 Y=0

−160
−140
−120
−100
−80
−60
−40
−20

0

M
12

(1
e-

4)

B) Diagonal between X=0 Y=10 and X=10 Y=0

BG FE LS1 Abaqus 2D FE

Fig. 5.13. Distribution of moment of torsion M12 at A) diagonal between X=0, Y=0 and X = L, Y = L and
B) diagonal between X=0, Y = L and X = L, Y=0, for L/h=10, predicted by Bending-Gradient FE, LS1 and
Abaqus 2D FE for 30◦/ − 30◦/ − 30◦/30◦.

For L/h=4: In Fig. 5.14, we plot the distribution of moments M11 and M22 and shear forces Q1
and Q2, at Y = L/2 as predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE. In Fig. 5.15,
we plot the deflection U3 at Y = L/2 as predicted by Bending-Gradient FE, LS1 and Abaqus 2D
FE. In Fig. 5.16, we plot the distribution of moment of torsion M12, at A) diagonal between X=0,
Y=0 and X = L, Y = L and B) diagonal between X=0, Y = L and X = L, Y=0, as predicted by
Bending-Gradient FE, LS1 and Abaqus 2D FE.
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Fig. 5.14. Distribution of moments M11 and M22 and shear forces Q1 and Q2 at Y = L/2 for L/h=4, predicted
by Bending-Gradient FE, LS1 and Abaqus 2D FE for 30◦/ − 30◦/ − 30◦/30◦.
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Fig. 5.15. Deflection U3 at Y = L/2 for L/h=4, predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE
for 30◦/ − 30◦/ − 30◦/30◦.
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Fig. 5.16. Distribution of moment of torsion M12 at A) diagonal between X=0, Y=0 and X = L, Y = L and
B) diagonal between X=0, Y = L and X = L, Y=0, for L/h=4, predicted by Bending-Gradient FE, LS1 and
Abaqus 2D FE for 30◦/ − 30◦/ − 30◦/30◦.

5.6.5.2 Second case

The laminate under consideration is a square plate with a length and width of L=10 in the X and Y
directions. The thickness of the laminate, following z direction, is equal to h=4e and the middle
plane of the plate is located at z=0. The plate is simply supported on its 4 edges, and is subjected to
a concentrated load equal to 5EL2 applied in the middle of the plate as a uniformly distributed load
on a small surface (2×2). The slenderness ratio L/h is set equal to 4.

The material properties are the same as the first case.
In Fig. 5.17, we plot the distribution of moments M11 and M22 and shear forces Q1 and Q2, at

Y = L/2 as predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE. In Fig. 5.18, we plot the
deflection U3 at Y = L/2 as predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE. In Fig. 5.19,
we plot the distribution of moment of torsion M12, at A) diagonal between X=0, Y=0 and X = L,
Y = L and B) diagonal between X=0, Y = L and X = L, Y=0, as predicted by Bending-Gradient FE,
LS1 and Abaqus 2D FE.
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Fig. 5.17. Distribution of moments M11 and M22 and shear forces Q1 and Q2 at Y = L/2 for L/h=4, predicted
by Bending-Gradient FE, LS1 and Abaqus 2D FE for 30◦/ − 30◦/ − 30◦/30◦.
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Fig. 5.18. Deflection U3 at Y = L/2 for L/h=4, predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE
for 30◦/ − 30◦/ − 30◦/30◦.
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Fig. 5.19. Distribution of moment of torsion M12 at A) diagonal between X=0, Y=0 and X = L, Y = L and
B) diagonal between X=0, Y = L and X = L, Y=0, for L/h=4, predicted by Bending-Gradient FE, LS1 and
Abaqus 2D FE for 30◦/ − 30◦/ − 30◦/30◦.

5.6.5.3 Third case

The laminate under consideration is a plate with a length of L=10 and a width of b=5 respectively in
the X and Y directions and made up of 4 layers. The thickness of the laminate, following z direction,
is equal to h = 4e and the middle plane of the plate is located at z=0. The slenderness ratio b/h is
set equal to 6.25. The plate is fixed on its X=0 edge, and is subjected to a linear load on the X = L
edge and equal to 9EL between Y=0 and Y = b/2 and -9EL between Y = b/2 and Y = b. This load
type causes the plate to twist.

The material properties are as in (Wang and Crossman, 1977a) and (Pagano and Pipes, 1970).
For the first and fourth layer, the fiber orientation is 0◦ and the elastic constants are:
E1 = 140 000 E, E2 = E3 = 15 000 E,
G12 = G13 = G23 = 5 850 E,
ν12 = ν13 = ν23 = 0.21.
where 1, 2 and 3 refer, respectively, to the fiber, transverse, and thickness direction as shown in Fig.
5.5.

For the second and third layer, the fiber orientation is 90◦ and the elastic constants are:
E1 = 160 000 E, E2 = E3 = 8 500 E,
G12 = G13 = 4 100 E, G23 = 2 800 E,
ν12 = ν13 = 0.33 , ν23 = 0.5.

In Fig. 5.20, we plot the distribution of moment of torsion M12 at Y = b/2 as predicted by
Bending-Gradient FE, LS1 and Abaqus 2D FE. In Fig. 5.21, we plot the deflection U3 at X = L as
predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE.
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Fig. 5.20. Distribution of moment of torsion M12 at Y = b/2, predicted by Bending-Gradient FE, LS1 and
Abaqus 2D FE for 0◦/90◦/90◦/0◦.

0.0 0.2 0.4 0.6 0.8 1.0

y/b

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

U
3

BG FE
LS1
Abaqus 2D FE

Fig. 5.21. Deflection U3 at X = L, predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE for
0◦/90◦/90◦/0◦.

The same problem and plate is now studied with the same material properties of the previous
example, but with the following fiber orientation: for the first and fourth layer, the fiber orientation
is 60◦, and for the second and third layer, the fiber orientation is −60◦.
In Fig. 5.22, we plot the distribution of moment of torsion M12 at Y = b/2 as predicted by Bending-
Gradient FE, LS1 and Abaqus 2D FE. In Fig. 5.23, we plot the deflection U3 at X = L as predicted
by Bending-Gradient FE, LS1 and Abaqus 2D FE.
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Fig. 5.22. Distribution of moment of torsion M12 at Y = b/2, predicted by Bending-Gradient FE, LS1 and
Abaqus 2D FE for 60◦/ − 60◦/ − 60◦/60◦.
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Fig. 5.23. Deflection U3 at X = L, predicted by Bending-Gradient FE, LS1 and Abaqus 2D FE for
60◦/ − 60◦/ − 60◦/60◦.

5.6.5.4 Fourth case

The laminate used in this example is composed of 8 layers. Each layer is made of unidirectional
fiber-reinforced material oriented at θ relative to the direction x. All the plies are perfectly bounded.
The constitutive behavior of a ply is assumed to be transversely isotropic along the direction of the
fibers and engineering constants are chosen similar to those of Pagano (1969):

The thickness of each layer is set equal to 0.625, the fiber orientation is [0◦,−45◦, 90◦, 45◦]s and
the elastic constants are:
E1 = 25E, E2 = E3 = 1E,

G12 = G13 = 0.5E, G23 =
E2

2(1 + ν32)
= 0.4E,

ν12 = ν13 = ν23 = 0.25.
where 1, 2 and 3 refer, respectively, to the fiber, transverse, and thickness direction as shown in Fig.
5.5. The plate slenderness ratio (L/h) is set equal to 4.

The laminate is subjected to a cylindrical bending of a simply supported composite laminates
(Fig. 5.6), with L=20 and where the plate is invariant and infinite in Y direction and a uniformly
distributed load equal to 0.05E is applied. The particular choice of 3D boundary conditions on Fig.
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5.6 and the invariance of the solution in Y direction enable a variable separation between z and
X, and the derivation of a closed form solution. It is important to note that this solution does not
present any boundary layer in the region near the simple support.

In this example, the plate is studied with respect to the bending direction which is the plate’s
overall configuration rotated relative to z axis. In table 5.6, the relative difference for deflection and
moments M22 and M12 are presented at X = L/2 for LS1 (reference solution), Bending-Gradient
and Abaqus 2D FE.

It should be noted that the relative difference between LS1 and Bending-Gradient FE is calculated
as follows:

∆BG/LS 1 =
BG − LS 1

LS 1

[0◦,−45◦, 90◦, 45◦]s Model U3 M22 M12

+0◦
∆BG/LS 1 0.003475936 -0.00754134 -0.013216837

∆Abaqus 2D FE/LS 1 0.00155615 0.087379228 0.036639273

+15◦
∆BG/LS 1 0.004379947 -0.003530737 0.014864941

∆Abaqus 2D FE/LS 1 0.009343008 0.113267216 -0.447439409

+30◦
∆BG/LS 1 0.005373494 0.000160823 0.008319649

∆Abaqus 2D FE/LS 1 0.045862651 -0.013292055 -0.392058748

+45◦
∆BG/LS 1 0.006357895 0.002014597 0.00720255

∆Abaqus 2D FE/LS 1 0.058105263 -0.125204338 -0.363731131

Tab. 5.6. Relative difference between LS1 (reference solution) and Bending-Gradient FE and Abaqus 2D FE
for plate’s overall configuration and bending direction.

It should be noted that the values obtained for M11, Q1 and Q2 are the same for the 3 different
models.

According to the results obtained, we can conclude that the Bending-Gradient finite element
converge to the reference LS1 solution with a good accuracy for deflection, moments and shear
forces for all plate’s configuration and bending direction, unlike Abaqus 2D FE which cannot
predict plate’s behavior for all cases.

5.6.5.5 Discussion

It is seen that for these extreme four cases, the Bending-Gradient FE model can efficiently predict
the same response solution as the LS1 (which was validated in (Naciri et al., 1998; Carreira et al.,
2002; Diaz Diaz et al., 2002; Caron et al., 2006; Nguyen and Caron, 2006; Dallot and Sab, 2008;
Saeedi et al., 2012a,b, 2013a,b; Lerpiniere et al., 2014; Baroud et al., 2016)) and Abaqus 2D FE. It
should be noted, for thick plate (L/h=4), that Abaqus 2D FE is not very efficient as shown by the
results above. We have found that the results are actually completely coincident for the 3 models
for thin plates (L/h>5). Accordingly, the new Bending-Gradient finite element has been proved
as an efficient and reliable model for the study of complex multilayered structures (thick and thin
plates) with minimum computational time.
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5.7 Conclusion
In this chapter, the Bending-Gradient model for laminated plates, dedicated for out-of-plane load,
and its finite element, are presented. An eight-node isoparametric quadrilateral finite element with 7
degrees of freedom at each nodal point has been formulated. The current finite element program
called BGFEAP has been developed in order to take into account the Bending-Gradient theory.
The new proposed finite element program presents a 2D type data structure that provides several
advantages over a conventional 3D finite element model: simplified input data, ease of results’
interpretation and a huge reduction of calculation time. When comparing the number of degree of
freedom, regardless of the number of layers of the laminate, just 7 d.o.f. per node are sufficient
which leads to a drastic reduction in the computational time when compared to a 3D FE or even to
layerwise models. In view of the previous results, this new model has passed patch test for bending,
twisting and shear, and similar results have been obtained when comparing Bending-Gradient
FE to analytical solution of the Bending-Gradient model. Also, the Bending-Gradient FE model
was compared to exact solution for multilayered plates, where the results of Bending-Gradient FE
model has converged to the exact solution for difference slenderness ratio and with multilayer plates
with 3 and 9 layers. In addition, the performances of this new element has been compared with
those of a standard 2D FE and LS1 layerwise model. It has been demonstrated that the proposed
Bending-Gradient FE model has better performances because it is able to reproduce almost the
same results as conventional FE and layerwise model, at a reduced cost. Thus, this new FE model
can be used for the predimensioning of highly complex multilayered structures where very good
and reliable results are obtained.

In summary, all the comparisons made between the new Bending-Gradient finite element
model and different reference solutions, clearly show the usefulness, lightness and efficiency of
the Bending-Gradient model as an ESL model for the analysis of complex and huge multilayered
structures.
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An efficient design of multilayered structures requires dedicated numerical tools that cope with their
peculiar heterogeneous structure and anisotropy. For the structural engineer, the multilayered plate
is conveniently represented as a stack of homogeneous, anisotropic plies. One of the major issues in
design and analysis of such plate is related to free-edge effects. It has been demonstrated that differ-
ences in elastic properties of adjacent layers generally result in a highly concentrated interlaminar
stresses near free edges. This phenomenon can lead to interlaminar failures (delaminations) which
may cause global failure of the multilayered structure.

In the light of a solid interest from industry for reliable models, numerous recommendations
have been made. We present some crucial necessities for such a model: the principal objective is to
simplify a computationally heavy 3D model into a 2D plate model without losing local 3D fields’
accuracy. First, good estimation of macroscopic deflection, with no limitation on local material
symmetries, the plate theory should be easy to implement with standard finite element program and
a good relocalization of 3D fields in order to calculate local stresses.

In this dissertation, two different approaches for the study of multilayered materials have been
proposed, implemented and validated: these two 2D models can be classified as layerwise theories
and equivalent single layer (ESL) theories.

A layerwise stress model named LS1, was proposed in Navier Laboratory. In this model, the
multilayered material is considered as a superposition of Reissner-Mindlin plates linked together by
interfacial stresses. Even if the LS1 model is very effective model, it can be still improved: the 3D
stress free boundary conditions cannot be exactly met by this model and stresses concentration near
free edges.

In order to improve the LS1 model by removing these drawbacks, a new layerwise model, called
Statically Compatible LS1 (SCLS1) is developed and presented in this dissertation. As in LS1,
the laminated plate is still considered as a superposition of Reissner plates coupled by interfacial
stresses. However, the divergences of the interlaminar transverse shears are introduced as new
generalized efforts.

This model has been implemented in a new version of the in-house finite element program
MPFEAP. An eight-node and 4 Gauss points isoparametric quadrilateral element with 6n-1 d.o.f. at
each nodal point is formulated (n is the number of layers of the laminate). It should be mentioned
that in order to study 3D structures, LS1 and SCLS1 models use a 2D description and a 2D planar
mesh for the design of such complex structures. In order to validate the new model, different
comparisons were made between the new SCLS1 model, LS1, their refined version and Abaqus 3D
FE, for laminate under uniaxial tension: the interlaminar shear stresses is studied at a straight free
edge, and in the vicinity of a circular hole located in the middle of the plate. Accurate estimations
of local response especially near free-edges have been found with SCLS1 model. The new SCLS1
model, that has been validated in this dissertation, has shown efficiency with respect to full 3D FE
models and has been proven to be very good alternatives to 3D FE models. Several advantages were
found for this new layerwise model over a conventional 3D finite element model: simplified input
data, ease of results’ interpretation and a huge reduction of calculation time; in addition, SCLS1
model has better performances because it is able to reproduce both stress concentration and free
edge boundary conditions at a reduced cost.

Therefore, in this model, the number of governing equations depends on the number of the
layers. This increases significantly the computational cost in layerwise approaches. Consequently,
a theory belonging to the ESL family is taken into consideration in order to study the multilayer
with a limited number of degree of freedom. In ESL theories, the multilayer is considered as a one-
layer homogeneous plate with an equivalent global behavior. Therefore, the number of governing
equations is independent of the number of plate layers. This theory, called the Bending-Gradient
plate theory, dedicated for out-of-plane load, is an extension of the Reissner-Mindlin plate theory
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and improves the predictions of shear stress distributions in laminated plates.
The Bending-Gradient model for laminated plates, and its finite element, are presented. The

in-house finite element program for Bending-Gradient model, called BGFEAP and in parallel an
Abaqus User element, have been developed, implemented and validated in this work. An eight-node
isoparametric quadrilateral element with 7 d.o.f. at each nodal point with selective integration
technique is implemented. The new proposed finite element program presents a 2D type data
structure that provides several advantages over a conventional 3D finite element model: simplified
input data, ease of results’ interpretation and an enormous reduction of calculation time. When
comparing the number of degree of freedom, regardless of the number of layers of the laminate,
7 d.o.f. per node are present which lead to a drastic reduction in the computational time when
compared to a 3D FE or even to layerwise models. The Bending-Gradient finite element has shown
good and reliable results when compared to analytical solution, exact solution, standard 2D FE and
LS1 model, as well as Bending-Gradient finite element has passed patch test for bending, twisting
and shear: this proves the usefulness, lightness and efficiency of the Bending-Gradient model as an
ESL model for the analysis of complex and huge multilayered structures.

The work presented in this thesis is conceived to study linear elastic behavior for multilayered
plates. It may pave the way to extensions to nonlinear mechanical behaviors for both models SCLS1
and Bending-Gradient.
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A.1 The closed-form expression of the stress energy w∗3D

The constitutive equations derive from the following closed-form expression of w∗3D in terms of the
generalized stresses:

w∗3D =

n∑
i=1

w∗iK + w∗iν + w∗ic + w∗iQ (211)

where:

• w∗iK is the contribution to the elastic energy of the in-plane stresses σ3D
αβ of layer i (Kirchhoff):

w∗iK =

∫ h+
i

h−i

1
2

S i
αβγδσ

3D
αβσ

3D
γδ dz

=
1

2ei S
i
αβγδN

i
αβN

i
γδ +

6
ei3

S i
αβγδM

i
αβMi

γδ

(212)

• w∗iν is the contribution to the elastic energy of the normal stress σ3D
33 of layer i:

w∗iν =

∫ h+
i

h−i

1
2

S i
3333

(
σ3D

33

)2
dz

=
ei

2
S i

3333

(
1
2

(
νi,i+1 + νi−1,i

)
+

ei

12

(
πi,i+1 − πi−1,i

))2

+

ei

24
S i

3333

(
ei

10

(
πi,i+1 + πi−1,i

)
+

6
5

(
νi,i+1 − νi−1,i

))2

+

ei

10
S i

3333

(
ei

12

(
πi,i+1 − πi−1,i

))2

+

ei

1400
S i

3333

((
νi,i+1 − νi−1,i

)
+

ei

2

(
πi,i+1 + πi−1,i

))2

(213)

• w∗c is the contribution to the elastic energy of the coupling between in-plane stresses σ3D
αβ and

the normal stress σ3D
33 of layer i:

w∗c =

∫ h+
i

h−i

1
2
× 2S i

αβ33σ
3D
αβσ

3D
33 dz

=S i
αβ33N i

αβ

(
1
2

(
νi,i+1 + νi−1,i

)
+

ei

12

(
πi,i+1 − πi−1,i

))
+

1
ei S

i
αβ33Mi

αβ

(
6
5

(
νi,i+1 − νi−1,i

)
+

ei

10

(
πi,i+1 + πi−1,i

))
(214)

• w∗Q is the elastic energy of transverse shear of layer i:
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w∗Q =

∫ h+
i

h−i

1
2
× 4S i

α3β3σ
3D
α3σ

3D
β3 dz

=
2
ei S

i
α3β3Qi

αQi
β+

ei

6
S i
α3β3

(
τi,i+1
α − τi−1,i

α

) (
τi,i+1
β − τi−1,i

β

)
+

2
5ei S

i
α3β3

(
Qi
α −

ei

2

(
τi,i+1
α + τi−1,i

α

)) (
Qi
β −

ei

2

(
τi,i+1
β + τi−1,i

β

))
(215)

A.2 The SCLS1 finite element equations and matrices
The strain field interpolation [E] a vector of dimension 12n-4, is written as

[E]T =

([
EK

]T
, [Eν]T ,

[
EQ

]T
,
[
Eλ

]T
)

=

 8∑
i=1

[Bi][δi] = [B1, . . . , B8][δ]

T

(216)

Where the 6n-1 displacement vector [δi] is defined as

[δi]T =

(
U1

1 , U1
2 , U1

3 , Φ1
1, Φ1

2, . . . ,U
n
1 , Un

2 , Un
3 , Φn

1, Φn
2, V1,2, . . . ,Vn−1,n︸                                                                             ︷︷                                                                             ︸

)
,

6n − 1
(217)

[δ] is the total displacement vector of the element, of dimension 48n-8, defined as follows

[δ] = [δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8] (218)

The 12n-4 strain vector [E] is defined by separating the components concerning the membrane
behavior

[
EK

]
vector of dimension 6n, the normal behavior [Eν] vector of dimension n-1, the

shearing behavior
[
EQ

]
vector of dimension 4n-2 and the behavior related to λ,

[
Eλ

]
vector of

dimension n-1 as follows:

[EK] =

8∑
i=1

[BK
i ][δi] = [BK

1 , . . . , B
K
8 ][δ] (219)

[Eν] =

8∑
i=1

[Bν
i ][δi] = [Bν

1, . . . , B
ν
8][δ] (220)

[EQ] =

8∑
i=1

[BQ
i ][δi] = [BQ

1 , . . . , B
Q
8 ][δ] (221)

[Eλ] =

8∑
i=1

[Bλ
i ][δi] = [Bλ

1, . . . , B
λ
8][δ] (222)

The total matrix Btotal of dimension (12n − 4) × (48n − 8) is defined as
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Btotal =


BK

1 BK
2 BK

3 BK
4 BK

5 BK
6 BK

7 BK
8

Bν
1 Bν

2 Bν
3 Bν

4 Bν
5 Bν

6 Bν
7 Bν

8
BQ

1 BQ
2 BQ

3 BQ
4 BQ

5 BQ
6 BQ

7 BQ
8

Bλ
1 Bλ

2 Bλ
3 Bλ

4 Bλ
5 Bλ

6 Bλ
7 Bλ

8

 (223)

The matrix BK
i of dimension 6n×(6n-1) is defined as

BK
i =



Ni,x 0 0 0 0 . . . . . . . 0 . . 0
0 Ni,y 0 0 0 . . . . . . . 0 . . 0

Ni,y Ni,x 0 0 0 . . . . . . . 0 . . 0
0 0 0 Ni,x 0 . . . . . . . 0 . . 0
0 0 0 0 Ni,y . . . . . . . 0 . . 0
0 0 0 Ni,y Ni,x . . . . . . . 0 . . 0
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . Ni,x 0 0 0 0 0 . . 0
. . . . . . . 0 Ni,y 0 0 0 0 . . 0
. . . . . . . Ni,y Ni,x 0 0 0 0 . . 0
. . . . . . . 0 0 0 Ni,x 0 0 . . 0
. . . . . . . 0 0 0 0 Ni,y 0 . . 0
. . . . . . . 0 0 0 Ni,y Ni,x 0 . . 0



(224)

The matrix Bν
i of dimension (n − 1) × (6n − 1) is defined as

Bν
i =


0 0 −Ni 0 0 0 0 Ni 0 0 . . . . . . . . . . 0 . 0
. . . . . 0 0 −Ni 0 0 . . . . . . . . . . 0 . 0
. . . . . . . . . . . . . . . . . . . . 0 . 0
. . . . . . . . . . . . . . . . . . . . 0 . 0
. . . . . . . . . . . . −Ni 0 0 0 0 Ni 0 0 0 . 0


(225)

The matrix BQ
i of dimension (4n − 2) × (6n − 1) is defined as
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BQ
i =



0 0 Ni,x Ni 0 0 0 0 0 0 . . . . .
0 0 Ni,y 0 Ni 0 0 0 0 0 . . . . .

−Ni 0 0 −
e1

2
Ni 0 Ni 0 0 −

e2

2
Ni 0 . . . . .

0 −Ni 0 0 −
e1

2
Ni 0 Ni 0 0 −

e2

2
Ni . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . −Ni 0 0

. . . . . . . . . . . . 0 −Ni 0

. . . . . . . . . . . . 0 0 0

. . . . . . . . . . . . 0 0 0
. . . . . . . 0 . 0
. . . . . . . 0 . 0
. . . . . . . Ni,x . 0
. . . . . . . Ni,y . 0
. . . . . . . . . .
. . . . . . . . . .

−
en−1

2
Ni 0 Ni 0 0 −

en

2
Ni 0 0 . Ni,x

0 −
en−1

2
Ni 0 Ni 0 0 −

en

2
Ni 0 . Ni,y

0 0 0 0 Ni,x Ni 0 0 . 0
0 0 0 0 Ni,y 0 Ni 0 . 0


(226)

The matrix Bλ
i of dimension (n − 1) × (6n − 1) is defined as

Bλ
i =


0 . . 0 Ni . . 0
. . . . . . . .
. . . . . . . .
0 . . 0 0 . . Ni

 (227)

A.2.1 Stress-strain relation
The SCLS1 generalized strains and stresses relationship can be expressed in the matrix from as

[E] = [S ][Σ] + [Eo] (228)

The vector contains terms related to surface stresses T− and T +. These are problem data. So we
are dealing with a problem with initial deformation. Its resolution is the subject of the next section.
where The compliance matrix S of dimension (12n-4)×(12n-4) are

S =


S K S Kν 0 S Kπ

S νK S ν 0 S νπ

0 0 S Q 0
S πK S πν 0 S π

 (229)

Where the compliance matrices S K , S ν, S Q, S π, S Kν, S Kπ, S νK , S νπ, S πK and S πν:
The matrix S K of dimension 6n × 6n is defined as
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S K =


S K

1 0 . . 0
0 S K

2 . . 0
. . . . .
0 0 . . S K

n

 (230)

where

S K =



S 1
11

e1
S 1

12
e1

S 1
16

e1 0 0 0
S 1

21
e1

S 1
22

e1

S 1
26

e1 0 0 0
S 1

16
e1

S 1
26

e1

S 1
66

e1 0 0 0

0 0 0 12S 1
11

(e1)3
12S 1

12
(e1)3

12S 1
16

(e1)3

0 0 0 12S 1
21

(e1)3
12S 1

22
(e1)3

12S 1
26

(e1)3

0 0 0 12S 1
16

(e1)3

12S 1
26

(e1)3

12S 1
66

(e1)3


(231)

The matrix S ν of dimension (n − 1) × (n − 1) is defined as

S ν =



13(e1S 1
33+e2S 2

33)
35

9e2S 2
33

70 . . .
9e2S 2

33
70

13(e2S 2
33+e3S 3

33)
35

9e3S 3
33

70 . .
. . . . .

. .
9en−2S n−2

33
70

13(en−2S n−2
33 +en−1S n−1

33 )
35

9en−1S n−1
33

70

. . .
9en−1S n−1

33
70

13(en−1S n−1
33 +enS n

33)
35


(232)

where S j
33 is flexibility on the snatching forces of the layer j (r.f. section A.2.2.3).

The matrix S Q of dimension (4n − 2) × (4n − 2) is defined as

S Q =



6S 1
Q

5e1

−S 1
Q

10 0 0 . . . . . . .
−S 1

Q

10

2(e1S 1
Q+e2S 2

Q)

15

−S 2
Q

10

−e2S 2
Q

30 . . . . . . .

0
−S 2

Q

10

6S 2
Q

5e2

−S 2
Q

10 0 0 . . . . .

0
−e2S 2

Q

30

−S 2
Q

10

2(e2S 2
Q+e3S 3

Q)

15

−S 3
Q

10

−e3S 3
Q

30 . . . . .

. . 0
−S 3

Q

10

6S 3
Q

5e3

−S 3
Q

10 0 0 . . .

. . 0
−e3S 3

Q

30

−S 3
Q

10

2(e3S 3
Q+e4S 4

Q)

15

−S 4
Q

10

−e4S 4
Q

30 . . .

. . . . . . . . .
−S n

Q

10

6S n
Q

5en


(233)

where S j
Q is the shear flexibility of the layer j (r.f. section A.2.2.2).

The matrix S π of dimension (n − 1) × (n − 1) is defined as
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S π =



1
105

(
e13

S 1
ν + e23

S 2
ν

)
−

e23

140
S 2
ν 0 . . .

− e23

140S 2
ν

1
105

(
e23

S 2
ν + e33

S 3
ν

)
− e33

140S 3
ν . . .

. . . . . .

. . . . . .

. . . . . − en−13

140 S n−1
ν

.

.

.

.
1

105

(
en−13

S n−1
ν + en3

S n
ν

)



(234)

The matrix S Kν of dimension 6n × (n − 1) is defined as

S Kν =



S 1
3

4 0 0 . . . .
3S 1

3
5e1 0 0 . . . .
S 2

3
4

S 2
3

4 0 . . . .
−3S 2

3
5e2

3S 2
3

5e2 0 . . . .

0 S 3
3

4
S 3

3
4 . . . .

0 −3S 3
3

5e3

3S 3
3

5e3 . . . .
. . . . . . .
. . . . . . .

. . . . .
S n−1

3
4

S n−1
3
4

. . . . .
−3S n−1

3
5en−1

3S n−1
3

5en−1

. . . . . 0 S n
3

4

. . . . . 0 −3S n
3

5en



(235)

where S j
3 is the flexibility of coupling between the membrane and snatching stresses of the layer

j (r.f. section A.2.2.4).
The matrix S Kπ of dimension 6n × (n − 1) is defined as

S Kπ =



S 1
3e1

24 0 . . .
S 1

3
20 0 . . .
−S 2

3e2

24
S 2

3e2

24 . . .
S 2

3
20

S 2
3

20 . . .
. . . . .
. . . . .

. . . .
−S n

3en

24

. . . .
S n

3
20


(236)

The matrix S νK of dimension (n − 1) × 6n is defined as
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S νK =



S 1
3

4
3S 1

3

5e1

S 2
3

4
−

3S 2
3

5e2 0 0 . . . . . .

0 0
S 2

3

4
3S 2

3

5e2

S 3
3

4
−

3S 3
3

5e3 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . .
S n−1

3

4
3S n−1

3

5en−1

S n
3

4
−

3S n
3

5en


(237)

The matrix S νπ of dimension (n − 1) × (n − 1) is defined as

S νπ =



11
210

(
e12

S 1
ν − e22

S 2
ν

)
13

420e22
S 2
ν 0 . .

− 13
420e22

S 2
ν

11
210

(
e22

S 2
ν − e32

S 3
ν

) 13
420

e32
S 3
ν . .

. . . . .

. . . . .

. . . . .
. .
. .
. .
. .

− 13
420en−12

S n−1
ν

11
210

(
en−12

S n−1
ν − en2

S n
ν

)



(238)

The matrix S πK of dimension (n − 1) × 6n is defined as

S πK =



e1S 1
3

24
S 1

3

20
−

e2S 2
3

24
S 2

3

20
0 0 . . . . . .

0 0
e2S 2

3

24
S 2

3

20
−

e3S 3
3

24
S 3

3

20
. . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . .
en−1S n−1

3

24
S n−1

3

20
−

enS n
3

24
S n

3

20


(239)

The matrix S πν of dimension (n − 1) × (n − 1) is defined as

S πν =



11
210

(
e12

S 1
ν − e22

S 2
ν

)
− 13

420e22
S 2
ν 0 . .

13
420e22

S 2
ν

11
210

(
e22

S 2
ν − e32

S 3
ν

)
−

13
420

e32
S 3
ν . .

. . . . .

. . . . .

. . . . .

. . . . .
. . .
. . .
. . .
. . .
. . .

13
420en−22

S n−2
ν

11
210

(
en−22

S n−2
ν − en−12

S n−1
ν

)
− 13

420en−12
S n−1
ν

0 13
420en−12

S n−1
ν

11
210

(
en−12

S n−1
ν − en2

S n
ν

)



(240)
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The vector of initial deformations E0 due to surface stresses imposed, of dimension 12n-4 is
defined by

Eo =



EK0

0
.
0

EKn+1

9
70

e1S 1
33ν

0,1 −
13e12

420
S 1

33π
0,1

0
.
0

9
70

enS n
33ν

n,n+1 +
13en2

420
S n

33π
n,n+1

EQ0

0
.
0

EQn+1

13
420

e12
S 1

33ν
0,1 −

e13

140
S 1

33π
0,1

0
.
0

−
13

420
en2

S n
33ν

n,n+1 −
en3

140
S n

33π
n,n+1



1→ 6
7
↓

6n − 6
6n − 5→ 6n

6n + 1
6n + 2
↓

7n − 2

7n − 1
7n→ 7n + 3

7n + 4
↓

11n − 7
11n − 6→ 11n − 3

11n − 2
11n − 1
↓

12n − 3

12n − 4

(241)

where

EK0
=



S 1
13

4
ν0,1 −

e1

24
S 1

13π
0,1

S 1
23

4
ν0,1 −

e1

24
S 1

23π
0,1

S 1
36

4
ν0,1 −

e1

24
S 1

36π
0,1

−
3

5e1 S 1
13ν

0,1 +
1

20
S 1

13π
0,1

−
3

5e1 S 1
23ν

0,1 +
1

20
S 1

23π
0,1

−
3

5e1 S 1
36ν

0,1 +
1

20
S 1

36π
0,1


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EKn+1
=



S n
13

4
νn,n+1 +

en

24
S n

13π
n,n+1

S n
23

4
νn,n+1 +

en

24
S n

23π
n,n+1

S n
36

4
νn,n+1 +

en

24
S n

36π
n,n+1

3
5en S n

13ν
n,n+1 +

1
20

S n
13π

n,n+1

3
5en S n

23ν
n,n+1 +

1
20

S n
23π

n,n+1

3
5en S n

36ν
n,n+1 +

1
20

S n
36π

n,n+1



EQ0
=



−
1

10
(S 1

55τ
0,1
x + S 1

54τ
0,1
y )

−
1

10
(S 1

45τ
0,1
x + S 1

44τ
0,1
y )

−
e1

30
(S 1

55τ
0,1
x + S 1

54τ
0,1
y )

−
e1

30
(S 1

45τ
0,1
x + S 1

44τ
0,1
y )



EQn+1
=



−
en

30
(S n

55τ
n,n+1
x + S n

54τ
n,n+1
y )

−
en

30
(S n

45τ
n,n+1
x + S n

44τ
n,n+1
y )

−
1

10
(S n

55τ
n,n+1
x + S n

54τ
n,n+
y )

−
1

10
(S n

45τ
n,n+1
x + S n

44τ
n,n+
y )


A.2.2 Behavior matrices
Terms definition:

c = cos θ
s = sin θ
EL, ET , EN = Longitudinal, Transverse and Normal Young’s moduli respectively
G = Shear modulus
ν = Poisson’s ratio
L, T and N axes and angle θ = These axes and angle are detailed in Fig. A.1
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Fig. A.1. Description of fiber orientation axes and angle.

A.2.2.1 Membrane behavior

The plane part of S i 3×3, consisting of S αβδγ with α, β, δ, γ = 1,2 that characterize the behavior of
the membrane plate.

S i =

 S 11 S 12 S 16

S 21 S 22 S 26

S 61 S 62 S 66

 (242)

where

S 11 =
c4

EL
−

2c2s2νLT

EL
+

s4

ET
+

c2s2

GLT

S 12 = S 21 =
c2s2

EL
−

c4νLT

EL
−

s4νLT

EL
+

c2s2

ET
−

c2s2

GLT

S 22 =
s4

EL
−

2c2s2νLT

EL
+

c4

ET
+

c2s2

GLT

S 16 = S 61 =
2c3s
EL
−

2cs3νLT

EL
+

2c3sνLT

EL
−

2cs3

ET
−

c3s
GLT

+
cs3

GLT

S 26 = S 62 =
2cs3

EL
−

2c3sνLT

EL
+

2cs3νLT

EL
−

2c3s
ET

+
c3s
GLT

−
cs3

GLT

S 66 =
4c2s2

EL
+

8c2s2νLT

EL
+

4c2s2

ET
+

c4

GLT
+

s4

GLT
−

2c2s2

GLT

A.2.2.2 Transverse shear behavior

We identify the matrix S i
Q 2×2 linking shear and transverse strain.

S i
Q =

[
S 44 S 45

S 54 S 55

]
(243)

where

S 44 =
c2

GT N
+

s2

GLN

S 45 = S 54 =
cs

GLN
−

cs
GT N

S 55 =
c2

GLN
+

s2

GT N
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A.2.2.3 Snatching efforts behavior

We identify the matrix S i
ν 1×1 of the three-dimensional snatching efforts.

S i
ν =

[
S 33

]
=

[
1

EN

]
(244)

A.2.2.4 Coupling behavior between membrane and snatching forces

We identify the matrix S i
3 1×3 or 3×1 characteristic of the coupling between the membrane three-

dimensional and snatching efforts.

S i
3 =

[
S 31 S 32 S 63

]
(245)

or

S i
3 =

 S 13

S 23

S 36

 (246)

where

S 13 = S 31 = −
c2νLN

EL
−

s2νT N

ET

S 23 = S 32 = −
s2νLN

EL
−

c2νT N

ET

S 36 = S 63 = −
2csνLN

EL
+

2csνT N

ET
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B.1 Other boundary conditions
The Bending-Gradient theory has been presented for laminated plates which are clamped at their
lateral boundaries. Nevertheless, this theory can handle other situations where some components of
the boundary conditions (166) can be relaxed on some part of ∂ω.

In this section, n- and t- denote respectively the outer normal to the plate boundary ∂ω and
the tangent vector to ∂ω. It is thus convenient to express directly the component of plate tensor
fields in this local basis. This allows the following shorter notation: n- · M∼ · t-= Mαβnαtβ = Mnt or
t- · (Φ_ · n-) · t-= Φαβγtαtβnγ = Φttn.

One can see from the weak formulation of the equilibrium equations that M
∼

and (i
∼∼
...R
_

) · n- = Q
-
· n-

are respectively in duality with Φ
_
· n- and U3 on the boundary ∂ω. The out-of-plane work (Q

-
· n-)U3

is the same as in Reissner-Mindlin plate theory. However, the work M
∼

: (Φ
_
· n-) is related to the

generalized rotation and needs interpretation.
BecauseΦ

_
is in S

_
, the boundary condition may degenerate depending on the dimension of S

_
.

Hence Φ
_
· n- must be in the subspace S

∼
(n-):

S
∼

(
n-
)

=
{
X
∼
∈ R
∼ s
| ∃X

_
∈ S

_
, X
∼

= X
_
· n-

}
. (247)

Here, R
∼ s

is the usual vector space of symmetric second order tensors:

R
∼ s

=
{
X
∼

=
(
Xαβ

)
∈ R4| Xαβ = Xβα

}
. (248)

Depending on the Bending-Gradient shear compliance tensor, the subspace S
∼

(n-) has only
dimension two or three. Indeed, it has been established in the first part that all Φ

_
of the form

Φ
_

= i
∼∼
· ϕ
-

, where ϕ
-

is a two-component vector, are in S
_

. This form corresponds to the case where
the rank of h

__
is only 2 and the Bending-Gradient is turned into a Reissner-Mindlin theory. We have:(

i
∼∼
· ϕ
-

)
· n- = ϕ

-
⊗n-. Hence, the subspace of S

∼
(n-) generated byΦ

_
= i
∼∼
· ϕ
-

has dimension two. So, if the

dimension of S
∼

(n-) is exactly two, then it is necessarily of the form ϕ
-
⊗n-, or equivalently:

S
∼

(
n-
)

=
{
X
∼
∈ R
∼ s
| Xtt = 0

}
. (249)

In other words, this means that, if the dimension of S
∼

(n-) is 2, then the component Φttn is already
set to 0. Note that when the Bending-Gradient theory is actually a Reissner-Mindlin’s one, all theΦ

_

in S
∼

are of the form i
∼∼
· ϕ
-

. Hence, in this specific case, the dimension of S
∼

(n-) is exactly two.

Free boundary conditions
Free boundary conditions are prescribed vanishing all static degrees of freedom working on the
boundary.

Considering first the case dim S
∼

(n-) = 3 this leads to:

M
∼

= 0
∼

and Q
-
· n- = 0. (250)

Contrary to the Reissner-Mindlin plate theory, there is an additional condition: Mtt = 0 on
the boundary. Since Mtt = 〈x3σtt〉, it seems to involve a 3D stress component to which no 3D
boundary condition should apply. Actually it does through the stress localization: σBG

nn = sM
nnttMtt and

σBG
tn = sM

tnttMtt. Indeed, sM
nntt and sM

tntt do not vanish in general and generate a local stress σBG
nn and σBG

nt
related to Mtt. The requirement Mtt = 0 is thus related to a boundary layer ensuring σBG

nn = σBG
nt = 0.
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Assuming now that dim S
∼

(n-) = 2, it is possible to prove that Mtt is not required to vanish in
order to ensure 3D free boundary condition. Then the free boundary condition becomes identical to
Reissner-Mindlin theory:

M
∼
· n- = 0

∼
and Q

-
· n- = 0. (251)

Simple support boundary condition
With Reissner-Mindlin plate theory, there are two kinds of simple support conditions: soft or
hard simple support. Whereas soft simple support may be interpreted as letting free both in-plane
displacements (un and ut, which also means that σnn = σnt = 0), hard simple support condition
consists in enforcing ut = 0 (and σnt , 0). With the Bending-Gradient plate theory this distinction
does not always make sense because of the introduction of the generalized rotation Φ

_
.

Without further assumption, it appears that each of the three components of Φ
_
· n- mixes

projections of both in-plane displacements un and ut. Consequently, it is not possible to choose
which component of Φ

_
· n- to vanishes in order to selectively enforce ut = 0. Hence, in the general

case, only soft simple support may be applied and the corresponding boundary condition is similar
to the free boundary condition where the transverse displacement is set to 0:

• if dim S
∼

(n-) = 3, M
∼

= 0
∼

and U3 = 0.

• if dim S
∼

(n-) = 2, M
∼
· n- = 0- and U3 = 0.

Let us assume now that the constitutive material is orthotropic with respect to (n-, t-) all through
the thickness. The following hard simple support boundary condition is suggested when the
constitutive material of the plate is orthotropic with respect to (n-, t-):

• if dim S
∼

(n-) = 3, Mnn = 0, Mtt = 0, Φntn = 0 and U3 = 0.

• if dim S
∼

(n-) = 2, Mnn = 0, Φntn = 0 and U3 = 0.

Clamped boundary condition
When the plate is completely clamped on ∂ω0 ⊂ ∂ω, all the kinematic variables Φ

_
· n- and U3 are

set to zero. Equivalently: U3 = 0, Φnnn = 0, Φntn = 0 and Φttn = 0.

B.2 Computation of the generalized shear compliance matrix
An orthotropic material is used, and characterized by c, s, θ, EL, ET , EN ,G, ν and axis L,T and N
already introduced in A.2.2

Membrane behavior
The plane part of S

∼∼

σ 3×3, characterizes the behavior of the membrane plate.

S
∼∼

σ =

 S 11 S 12 S 16

S 21 S 22 S 26

S 61 S 62 S 66

 (252)

where
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S 11 =
c4

EL
−

2c2s2νLT

EL
+

s4

ET
+

c2s2

2GLT

S 12 = S 21 =
c2s2

EL
−

c4νLT

EL
−

s4νLT

EL
+

c2s2

ET
−

c2s2

2GLT

S 22 =
s4

EL
−

2c2s2νLT

EL
+

c4

ET
+

c2s2

2GLT

S 16 = S 61 =
2c3s
EL
−

2cs3νLT

EL
+

2c3sνLT

EL
−

2cs3

ET
−

c3s
2GLT

+
cs3

2GLT

S 26 = S 62 =
2cs3

EL
−

2c3sνLT

EL
+

2cs3νLT

EL
−

2c3s
ET

+
c3s

2GLT
−

cs3

2GLT

S 66 =
4c2s2

EL
+

8c2s2νLT

EL
+

4c2s2

ET
+

c4

2GLT
+

s4

2GLT
−

c2s2

GLT

Transverse shear behavior
We identify the matrix S

∼
γ 2×2 linking shear and transverse deformation.

S
∼
γ =

[
S 44 S 45

S 54 S 55

]
(253)

where

S 44 =
c2

GT N
+

s2

GLN

S 45 = S 54 =
cs

GLN
−

cs
GT N

S 55 =
c2

GLN
+

s2

GT N

The Bending-Gradient shear compliance tensor may be derived as follows:

[
h
__

]
=

〈∫ x3

− h
2

T~y3C
∼∼

σ(y3) : d
∼∼
�dy3

 .S∼γ(x3).
∫ x3

− h
2

~y3C
∼∼

σ(y3) : d
∼∼
�dy3

〉 (254)

By expanding the shear compliance tensor’s equation and taking parts as piecewise constant
functions, we obtain:

[
h
__

]
=

n∑
p=1


T p∑

q=1

S q~C∼∼
σ,qd
∼∼
� −

ep

2

(
lp +

ep

6

)
~C
∼∼

σ,qd
∼∼
�

S∼γ,pep

 p∑
r=1

S r~C∼∼
σ,qd
∼∼
� −

ep

2

(
lp +

ep

6

)
~C
∼∼

σ,qd
∼∼
�


+

e2
p

12

l2
p +

e2
p

60

 T(
~C
∼∼

σ,qd
∼∼
�
)
S
∼
γ,pep

(
~C
∼∼

σ,qd
∼∼
�
)

(255)

where

S p = eplp, lp =
Zp + Zp+1

2
The double stroked brackets ~•

∼∼
� denote here the following matrix representation of a fourth-

order tensor:
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~L
∼∼
� =

(
L1111 L1122

√
2L1121 L1211 L1222

√
2L1221

L2111 L2122
√

2L2121 L2211 L2222
√

2L2221

)
(256)

For instance, this notation enables to rewrite triple contraction products such as i
∼∼
... R
_

= Q
-

as:

~i
∼∼
�.

[
R
_

]
= Q

-
, (257)

where:

~i
∼∼
� =


1 0 0 0 0

1
√

2
0 0

1
√

2
0 1 0

 (258)
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