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apporté des conseils de qualités (avec gentillesse) tout au long de la thèse.
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1.1 Introduction

Context

In 1945, on board of the Bell X-1, Chuck Yeager became the first human to break the sound
barrier even though the knowledge of the flight mechanics and aircraft control in transonic flight
regime was limited at that time. Since then, intense efforts within the aerospace community
have been devoted to improve the understanding of the underlying flow physics. In particular,
significant advances have been made regarding the aircraft design leading to more reliable and
safer high speed vehicles.

Interactions between shock-waves and turbulent boundary layers are one of the most common and
often unavoidable feature of high speed flights (transonic, supersonic or hypersonic). For more
than 70 years, their role in limiting the aerodynamic performances have been widely investigated
in both internal and external flow systems such as transonic wings, air intakes and supersonics
diffusers. In all cases, the interaction between the turbulent boundary layer and the shock-wave
produces intense aerodynamic and thermal loads that may lead to structural damages.

Focusing in particular on internal flows, the physical phenomena associated with shock-wave tur-
bulent boundary layer interactions (SWBLI) play an essential role in catastrophic failure modes
such as engine unstart. These interactions appear in a wide variety of internal systems, including
ducts or supersonic inlets of aircraft engines. They produce complex flow structures which may
involve multiple oblique or normal shock-waves depending, for example, on the engine’s shape,
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Figure 1.1: (a) Picture of a MIG-29K aircraft. Two squared air intakes can be observed
under the aircraft. Retrieved from Wikipedia. (b) Schematic of the generation and
propagation of shock-waves in supersonic aircraft engine. The shock-waves are drawn
in red.

the upstream and downstream pressure conditions, the state of the upstream boundary layer,
etc.

A simplified illustration of SWBLI occurring in supersonic air intakes is shown in figure 1.1. Due
to the geometry constraints, the flow is first deflected though the formation of an oblique shock
(in red), leading to a pressure rise and to a variation of the flow properties. Then, inside the air
intake, a series of incident and reflected shocks form that produce a decrease of the Mach number
and an increase of the pressure. Depending on the Mach number and on the Reynolds number
of the flow (which have an influence on the properties of the boundary layer that develops along
the air intake walls), as well as on the aspect ratio of the air intake (the ratio of the width over
the height), either an oblique or normal shock-train forms [66].

In the present work we focus our attention on the so-called transonic interactions resulting
from normal shock-train interacting with a turbulent boundary layer (ST) While significant ad-
vances have been made, especially regarding the 2.5D steady features of these interactions in the
transonic regime, many aspects concerning the unsteady properties and their three-dimensional
character of have not yet been fully explored [23, 29]. In particular, in order to reduce structural
damages and dynamic loads, an accurate estimation of the temporal evolution of the wall pressure
signature is of fundamental importance. Similarly, the unsteadiness and three-dimensionality of
the flow and its topology are also strongly affected by the occurrence of secondary flows associated
with corner effects typical of rectangular supersonic diffuser.

These phenomena being characterized by large disparate scales (both temporal ans spatial), the
use of high-fidelity calculations including Direct Numerical Simulations or Large Eddy Simula-
tions (referenced hereafter as DNS and LES, respectively) are essential for their physical under-
standing. A first preliminary attempt of high fidelity simulations of internal transonic shock-
wave/turbulent boundary layer interaction has recently been conducted only by Morgan et al [67]
in a rectangular duct, successfully exhibiting the most important flow features as observed in a
realistic configuration.

The major challenge of transonic interactions in comparison with supersonic ones from the strong
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sensitivity to the downstream subsonic flow conditions. Moreover, experiments are usually made
at higher Reynolds numbers than the numerical simulations (high Reynolds number simula-
tions [99] are still unaffordable). In addition, many questions remain open regarding the influ-
ence of the confinement and of the aspect ratio on the unsteady features. This thesis investigates
three-dimensional aspects and unsteady features of transonic shock-wave/boundary layer inter-
actions in a rectangular duct by means of wall resolved LES aiming to provide some insight into
the full range of turbulence flow scales, wall pressure signature and corner flow effects.

The literature on shock-wave boundary layer interaction in internal flows is much less abundant
than external configurations. For this reason, the first part of the state of the art is dedicated to
the presentation of other types of interactions that have encountered much more interest these
last decades and that share many similarities with the thesis subject. In order to illustrate the
physical mechanisms involved in shock-wave turbulent boundary layer interactions in a duct, we
first introduce the most widely seen SWBLI configurations. In an attempt to summarize the
main properties of those configurations, we then expose the two main states of SWBLI (with or
without a detached boundary layer) and its main unsteady characteristics. After this introduction
to some of the general key aspects of SWBLI, a description of transonic interaction is given and
the effects of side walls are detailed. Finally we conclude with the specificities of shock-trains
which are a case of multiple shock-wave boundary layer interaction in duct flows.

SWBLI: first experiments and the need of classification

The first visual evidence of a shock-wave, provided by Mach [3] in 1887, has stimulated many
researchers to investigate in more details shock-related phenomena. More than 50 years after
Mach’s pioneer work, the first1 published experiment on SWBLI is presented by Ferri [40].
Shortly after Ferri’s work [40], many published results are about the understanding of the main
issues of SWBLI (see for instance, [30, 39, 62]. . . and [95] for more detailed list). However,
the first configurations used by the previous authors involved too many factors to insure a clear
understanding of the main mechanisms involved in SWBLI.

Since the 1950’s[95] and until now, in order to clarify the role of the phenomena involved in
SWBLI, simplified geometries and configurations are designed. Five main categories are defined
that best describe and gather the most current elemental configurations of SWBLI [5, 27]. Ex-
perimental Schlieren visualisation of the instantaneous flow field for the five configurations are
shown in figure 1.2. The differences between canonical flow configurations are mainly driven by
the way the shock-waves are formed, either by a deflected surface, an external shock generator
or an imposed pressure gradient. These configurations regard quasi two-dimensional flows (i.e.
the flow is assumed to be periodic in the spanwise direction) and their descriptions are given
below:

a) Normal shock
A normal shock is generated by an increased back pressure. Downstream of the shock the flow
is subsonic and the incoming flow is supersonic so the interaction is transonic. One peculiarity
is that all perturbations downstream of the shock may influence the interaction whereas in
supersonic interactions, only a near-wall zone is subsonic.

b) Impinging-reflecting oblique shock
An oblique shock is generated upstream of the interaction and impacts the boundary layer.
The shock-induced pressure gradient thickens the boundary layer upstream of the impinging
point. The thickening of the boundary layer deflects the flow and produces a reflected shock.

c) Ramp flows
The flow trajectory is modified caused by a bending of the wall (a compression corners).
The bending angle may be sufficiently small to keep the boundary layer attached but the
deflection of the flow produces a shock-wave. The incoming boundary layer is thickened by

1According to Adamson and Messiter [2] and Dolling [29]
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(a) (b)

(c) (d)

(e)

Figure 1.2: Experimental Schlieren visualization of the different categories of SWBLI:
(a), a transonic interaction over a bump [34]; (b), an oblique shock-wave boundary layer
interaction [34]; (c), a compression corner interaction [37]; (d), a shock-wave boundary
layer interaction in an over expanded diffuser [14]; (e), an oblique shock induced by the
separation in front of a forward-facing step [55]

the shock-wave induced pressure gradient. The compression are moved downstream of the
corner, where the boundary layer thicken.

d) Imposed pressure jump
An imposed pressure jump modifies the trajectory of the flow leading to the production of an
oblique shock. This case is characteristic of supersonic diffuser.

e) Oblique shock induced by a forward-facing step
The shock encounters an obstacle that produces a separation upstream of the flow. The
upstream separation deflects the flow and generates an oblique shock. The oblique shock
interacts with the incoming boundary layer.

These configurations share general features as underlined by Délery and Dussauge [27]. In
particular, the mean flow properties, the scaling laws and the flow unsteadiness are strongly
governed by the presence or absence of a detached boundary layer. Thus in the following we first
summarize some of the main characteristics of attached and detached interactions that are most
likely common between any SWBLI (including the interactions studied in this document).
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1.2 Shock-wave turbulent boundary layer interaction: is-
sues and general properties

1.2.1 Detached and attached interactions, inviscid and viscous theo-
retical approach

A common aspect of SWBLI is the occurrence of a separated area when the pressure gradient
induced by the presence of the shock is strong enough. In figure 1.3, we show a comparison of
the wall pressure distribution between an inviscid theory and an analysis that incorporates the
viscous effects. On the left, the wall pressure distribution for an attached SWBLI (i.e without
separation) or also called a “weak” interaction is shown. The word “weak” is used to indicate
that the solution is “weakly affected by the viscous effect” [5]. The main difference between
the viscous and inviscid wall pressure distribution is that in the viscous case, the origin of the
interaction is moved slightly upstream due to the presence of a subsonic zone in the boundary
layer that produces an upstream (with respect to the nominal shock position) propagation of
pressure disturbances associated with the pressure jump across the shock. The boundary layer
remains attached through out the whole interaction.

For strong interaction i.e the boundary layer is detached from the wall (see figure 1.3b), the wall
pressure distribution exhibits a plateau (no such a characteristic is observed for attached flows)
between the separation point of the boundary layer (S) and its reattachment (R). Separation of
the boundary layer occurs in the vicinity of the first pressure increase while a second pressure
rise is observed during the reattachment of the flow.

(a) attached flows (b) separated flows

Figure 1.3: Typical wall pressure distributions for SWBLI. Reprinted from Délery and
Dussauge [27].

For both laminar and turbulent regimes, a theory that relies on a multiple-deck analysis emerged
in the middle of 20th century to model mean flow properties of shock-wave boundary layer
interaction. As proposed by Lighthill [63], the structure of the boundary can be divided into
multiple sub-layers. In figure 1.4, an illustration of the triple deck structure is shown: 1) the
outer part of the boundary layer is mostly potential and irrotational; 2) the middle deck is
rotational and inviscid; and 3) the inner deck is viscous and rotational. While the viscous time
and length scale are greater than the flow characteristic scales, this approach remains valid.
When the boundary layer is submitted to an adverse pressure gradient imposed by the shock,
it undergoes modification over a time and length scale that are shorter than the viscous ones,
except in the viscous layer where viscous effects are dominant ([5, 27]). The shock is modelled as
a forcing function that is applied on the outer deck system of equations. The disturbed system
of equations is simplified, keeping only the leading order scales (see [5] for more details).

While for a wide range of two dimensional configurations an attached flow can be approximated
with such an analysis, the separated interaction remains a hard task since viscous scales dominate
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Figure 1.4: The interaction flow multi-layer structure or triple deck [27]

and the assumption of minor viscous effect is not valid. In that respect, the determination of
critical parameters that induce the flow separation and the separation extent or separation length
L have been the topic of many theoretical investigations.

A major reference to determine the onset of separation, based on the triple deck approach, is the
work of Stewartson and Williams [100], and is approach. This theory, usually called “the free
interaction theory” (name proposed by Chapman et al [22]), assumes that “the pressure rise at
separation and the extent of the first part of the interaction depend only on the flow properties
at the separation onset and not on the downstream condition” [27]. This property is well verified
experimentally for quasi two-dimensional flow (3D flow with mean properties homogeneous in
the spanwise direction, also noted 2.5D flow).

Apart from the critical parameters associated with the onset of flow separation, the knowledge
of the interaction extent, is also of fundamental interest due to the strong effect of the SWBLI
unsteadiness on the wall pressure loads. Using the free interaction theory, the interaction length

L is proportional to L ∝ δ∗0 .C−1/2
f0

.(M2
0 − 1)−1/4 [5], where the boundary displacement thickness

(δ∗0), the skin friction coefficient (Cf0 ), the Mach number (M0) are evaluated at the origin of
the interaction. Upstream of the interaction the flow is undisturbed by the shock and the skin
friction can be related to the Reynolds number. Thus, the interaction length scales with the
Reynolds number, the boundary layer displacement thickness and the Mach number upstream
of the interaction. For the case of transonic interactions, Delery & Marvin [28] show that L ∼
70δ∗0(Hi0 − 1), where Hi0 denotes the incompressible shape factor (defined as the ratio of the
incompressible displacement thickness δ∗i over the incompressible momentum thickness θi). To
summarize, the main parameters [5] that are likely to influence the interaction length are:

• Mach number

• Shock intensity parameter (ramp angle, angle of flow deflection. . . )

• Boundary layer thickness

• The Shape factor Hi0

• Local Reynolds number

The first two parameters are a measure of the strength of the “inviscid disturbance”, and; the
last three parameters characterize the state of the boundary layer and its ability to resist sepa-
ration [23].

Despite the valuable informations provided by the free interaction theory, data scattering be-
tween analytical and experimental approaches and the impossibility for analytical approaches
to describe three-dimensional aspects and unsteadiness of SWBLI motivate the use of both ex-
perimental approach and simulations to increase the understanding of SWBLI. Regarding the
numerical simulation issues, the absence or presence of boundary layer separation, conditions the
choice of the numerical model. For example, the averaged solutions obtained by means of the
Reynolds-averaged Navier-Stokes (RANS) equations may produce acceptable results as long as
the boundary layer remains attached through the whole interaction. Nonetheless, to close the
RANS system of equations a model is required, and as soon as the boundary layer is detached
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no general modelling has been been proposed that makes it possible to predict the SWBLI flow
properties with an acceptable error [29, 58]. Moreover, RANS only provides a stationary flow
field. To increase our understanding of SWBLI via simulation tools, other mathematical/numer-
ical models have to be used. In particular, due to change of the interaction dynamics and scales,
high-fidelity models are needed to simulate interaction with separated flows.

The increase of the available computational power and development of improved compressible
numerical schemes have made possible to simulate SWBLI either by DNS or by LES. Due to their
expensive computational costs, direct and large-eddy simulations are often restricted to cases
with Reynolds number values lower than the experimental ones. Since 1990’s, both methods
have shown to be able to forecast most of the SWBLI properties with or without separation of
the boundary layer2 [1, 45, 53, 91, 103] We now details some general aspects of the mean and
unsteady properties of SWBLI based on experiments and numerical simulations.

1.2.2 Mean flow and broadband unsteadiness in supersonic detached
interactions

Most of the recent numerical work on the SWBLIs focus on the study of impinging-reflecting
shock and ramp flow. In these cases, the outer flow (i.e. outside the boundary layer) remains
supersonic through out the SWBLI. This subsection presents briefly the findings on supersonic
interactions.

If the pressure jump across the shock is sufficiently large, the resulting pressure gradient may
lead to the separation of the incoming boundary layer. For ramp flow configuration [81, 82],
the deflection of the flow leads to the generation of compression waves, upstream of the ramp,
that coalesce to generate an oblique compression shock. If the ramp angle is large enough, the
resulting separated flow at the foot of the shock exhibits complex flow features, with different
characteristics length scales such as the incoming boundary layer thickness, the separation length,
the mixing layer thickness, and, velocity scales such as the friction and convection velocity.

In the case of impinging shock-wave/supersonic boundary layer interaction [16, 27, 49, 69, 71,
77, 101], the boundary layer separates if the pressure jump across the shock is strong enough.
The interaction thus leads to compression waves behind the bubble that coalesce producing
the separation shock. The mean flow exhibits similar phenomena as in the compression ramp
interaction.

2 More precisely, Hunt and Nixon [53] in 1995 and Urbin et al. [103] in 2000 have simulated the first VLES
(very large eddy simulation) and LES of a SWBLI over compression ramp, the first published LES of an impinging
shock-wave and of a transonic interaction are made by Garnier et al. [45] in 2002 and by Sandham et al. [91] in
2003, respectively. The first DNS of a SWBLI over a compression ramp is published by Adams [1] in 2000.

19



Shock-wave turbulent boundary layer interaction: issues and general properties

Figure 1.5: Diagrammatic representation of the different mechanisms involved in quasi
two-dimensional SWBLI. Reprinted from Dussauge [34]

Regarding the unsteadiness, multiple phenomena may interact inside the SWBLI as noted by
Dussauge [34]: “the amplification of incident turbulence through the shock, the properties of the
separated bubbles, [. . . ] the response of the shock-wave to these excitations, the vortex shedding
of large scale structure into the reattached layer, and finally the merging of these vortices into a
new boundary layer relaxing to a new equilibrium.” (illustrated in figure 1.5).

Based on the previous mean flow considerations, if we assume that the flow coherent motion
are driven by characteristic length and velocity scales, the different flow cases may exhibit simi-
lar characteristic unsteadiness, when using an appropriate scaling Dussauge [34]. In particular,
both numerical simulations and experiments have shed some light on the broadband activity of
the SWBLI. In that respect, the power spectra exhibits a broadband bump in the mixing layer
region of the order O(0.1u∞/δ) as well as characteristics high frequencies (O(u∞/δ)) associated
with near wall turbulent boundary layer region [81]. Furthermore, in addition to mean flow
separation developing with increasing interaction strength, an unsteadiness appears at frequen-
cies (O(0.01u∞/δ)) much lower than the characteristic frequency of the energetic eddies in the
incoming boundary layer [81]. To illustrate this comment, in figure 1.6 we report the fluctua-
tions of the streamwise velocity component for the oblique SWBLI of [101]. The figure shows
that the flow is dominated by near wall streaks structures upstream of the incident shock while
downstream of the shock it is populated by larger scale motions associated with the eddies along
the shear layer.
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Figure 1.6: Visualisation of the streamwise velocity fluctuations in the plane y = 0.01δ0.
Reprinted from Touber and Sandham [101].

While the high and medium frequencies are well understood, the physical origin of the low-
frequency shock motion is still not fully explained. Previous works have correlated the low-
frequency shock motion with fluctuations in the incoming boundary layer (upstream influence
of superstructures O(10δ) associated with the turbulent boundary layer [41, 42]) or with the
eddies developing along the separated flow leading to a low frequency breathing of the bubble
[23, 71]. Different conclusions have been drawn as to whether the shock motion is caused by a
low-frequency mechanism in the upstream or downstream flow.

When considering an equilibrium state corresponding to a mean flow, a linear behaviour of the
dynamical system based on a global intrinsic phenomenon is sometime observed (i.e. emergence
of a global mode). The low-frequency unsteadiness has been suggested to be a global response
to an external forcing perturbation [48, 92]. Nonetheless, no global mode clearly emerged from
those analysis. Consistent with the findings of Plotkin [78], Touber and Sandham [102] recently
proposed a low order model that shows that the dynamical system, composed of the shock foot
and the upstream turbulent boundary layer, behaves as a low-pass filter. In their approach, the
physical mechanism at the origin of the external perturbations (which trigger the low-frequency
unsteadiness) is not specified.

Independently of the scenario, as initially suggested 3 by Dussauge [34], these low-frequency
unsteadiness scales with the upstream velocity u∞ and the interaction length scale L. Hence
introducing a Strouhal number StL = f.L/u∞, three main sources of unsteadiness are observed
and associated with: the upstream turbulence of the boundary layer of relatively high frequency
StL ∼ O(100); “medium” frequencies in the range 0.1 ≤ StL ≤ 0.5 characteristic of the shear
layer (associated with Kelvin-Helmholtz instability for fully separated flow); and the displacement
of the shock foot whose frequency is generally spanning the range 0.02 ≤ StL ≤ 0.05 [33].

In figure 1.8 we report the LES results of Ref [4] for impinging shock interaction (panel a) and
the DNS results of Ref [81] (panel b) for a compression ramp SWBLI. In figure 1.8 we report
the experimental results of Ref [33] for impinging shock interaction with different shock angles.
The figure shows that the Strouhal number StL associated with the low-frequency motion of the
shock is similar.

3“independently of the geometry of the particular configurations, these situations seem to share some common
properties, like frequency of the shock system motion conveniently normalized” [34].
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(a)

(b)

Figure 1.7: Isocontour of the spanwise averaged pre-multiplied PSD of the wall pressure
(arbitrary scale) with x∗ = (x− x0)/L the streamwise position defined as the distance
to the shock rescaled by the interaction length and StL the Strouhal number based on
the interaction length. (a) Large eddy simulation of a oblique shock-wave boundary
layer interaction. The shock impact the wall with an angle of 30.8 degree in Mach
2.15 flow. The blue line indicate a Strouhal number of 0.03 (StL = 0.03). Reprinted
from [4]. (b) Direct numerical simulation of a shock-wave–turbulent boundary layer
interaction generated by 24 degree compression ramp in Mach 2.9 flow. Adapted from
[81]
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Figure 1.8: Power spectral density of the wall pressure fluctuations and the stream-
wise momentum fluctuations measured with hot wire anemometry (HWA). Date are
obtained at the mean location of the foot shock for different angles of deflection of the
initial impinging shock. Reprinted from Dupont et al. [33]

1.2.3 Transonic interactions

In the following, the case of transonic interactions are detailed.

Shown in figure 1.9 is a sketch of the normal SWBLI (without separation) is drawn. Outside the
boundary layer, the upstream supersonic flow becomes subsonic as it goes through the shock.
Closer to the boundary layer edge the shock is slightly curved and as it enters the upper part of
the boundary layer it gives rise to compression waves that progressively compress the flow. As a
consequence, the flow passing through the “shock foot” undergoes a near-isentropic compression
over a finite streamwise extent. Since the boundary layer is submitted to an adverse pressure
gradient, it thickens and the flow is deflected from the wall.

Figure 1.9: Schematic of the flow induced by a normal SWBLIs without separation.
Reprinted from Babinsky and Harvey [5]

In the case of a transonic interaction with separation (figure 1.10) a lambda λ shock structure
forms. The normal shock C3 bifurcates above the boundary layer into two shock-waves: C1
and C2. The shock C1 the so-called separation shock resulting from the coalescence of the
compression waves, while the shock C2 is the so-called reattachment shock. Downstream of
C2 the flow can be either subsonic or supersonic with Mach number close to unity. When the
flow Mach number is supersonic, the flow undergoes an almost isentropic compression attaining
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Figure 1.10: Schematic of the flow induced by a normal SWBLIs with separation.
Reprinted from Babinsky and Harvey [5]

Figure 1.11: Instantaneous streamwise velocity fluctuations u′ at y+ = 10.8 of an
incipient transonic interaction. Reprinted from Pirozzoli et al. [76]

subsonic conditions. In this case, the region comprised by C2 and the sonic line is called the
“supersonic tongue”[5].

The λ-pattern of the shock is composed of four states: State 1 corresponds to the upstream
flow state; State 2 is the state corresponding to the Rankine-Hugoniot (RH) jump conditions
across the oblique shock C1; State 3 is the solution of the RH jump conditions across the normal
shock C3; State 4 is the solution of the RH jump conditions connecting state 2 and 4; and in
general differs from state 3; as a consequence, a slip line (Σ) forms. The point “T” is the “triple
point”.

While the above mean flow properties and shock structures of the interaction are specific to
the transonic interaction, global properties are shared with other interactions. For instance,
regarding the evolution of the structure in the inner region of the boundary layer, figure 1.11
shows that before and after the shock the flow exhibits similarities with the supersonic case
(figure 1.6) i.e. the flow is dominated by near wall streaky structures upstream the incident
shock while downstream of the shock it is populated by larger scale motion associated with the
eddies along the shear layer.

Although the flow shares many similarities with supersonic interactions, for transonic flow, the
subsonic region downstream of the shock may also propagates information and influences the
shock motion. As a consequence, the question of a common mechanism that may produces
low-frequency unsteadiness is unanswered.

In fact, for the buffet case, a feedback mechanism between the edge of the wing profile and
the shock might be observed. Slow acoustic waves propagating against the external flow can
influence the unsteadiness of the system [83, 84].
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Figure 1.12: (a) Oil flow measurements and (b) surface flow sketch for a oblique shock-
wave boundary layer interaction at M∞ = 3 from [13]. The flow is from bottom to
top. An important spanwise velocity component is observed that sweep flow from the
centerline towards the side walls.

1.3 Shock-wave boundary layer with side walls effects

For practical reasons, most of the supersonic experiments are carried out in wind tunnels of finite
span where side walls effects are inevitable and estimating the influence of side walls is a major
issue. Furthermore, in the presence of lateral walls the confinement of the flow modifies the
evolution of pressure and velocity outside the boundary layer. In addition, turbulent boundary
layers and secondary flow motions (as identified by Prandtl [15, 80]) introduce new sources of
turbulence and unsteadiness. Side walls also play an important role in determining the size
and shape of the recirculation bubble, which in turn may influence the characteristics of the
interaction dynamics including low-frequency motion.

1.3.1 Supersonic interactions: experimental and numerical observa-
tions

In figure 1.12, we report the oil flow visualization (panel a) and a sketch of the skin friction lines
(panel b) of SWBLI in the presence of side walls. The figure show that the friction lines are curved
in the presence of side walls while in quasi two-dimensional interaction they remain straight
during the interaction. Two counter-rotating vortices (associated with the three-dimensionality
of the interaction) forms. They produce an additional spanwise velocity component inside the
recirculation bubble and modify the dynamics of the interaction. Moreover, the interaction
length vary in the spanwise direction.

The modification of the interaction topology is often coupled with a modification of the shock
structure. The latter is modified as it interacts with the side walls boundaries as shown in the
experiments of Helmer et al. [51] and Wang et al. [107], and in the simulations of Bermejo-Moreno
et al. [7] and Wang et al. [108].

The latter authors have also analysed the influence of the aspect ratio and find that for a width
over height ratio of 4, the flow field in the central plane is close to that of a corresponding
quasi-2D case. As the aspect ratio of the duct is decreased, they observe that the separation and
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Figure 1.13: Distortion of the main shock-waves is illustrated with contours of the
time- averaged streamwise density gradient for a moderately separated oblique shock-
wave/boundary-layer interaction at M∞ = 2.7 in a rectangular duct with an aspect
ratio of 2. (a) Show shock-waves above the interaction region, with shock structures
from five different x–z planes (at y = 49, 40, 30, 20 and 10 mm) superimposed. (b)
Show the shock structures on the x–z plane at y = 6 mm, i.e. close to the location
where the shock impinges on the apex of the recirculation bubble. Reprinted from
Wang et al. [108]

reattachment points on the central plane move upstream simultaneously, while the bubble extent
initially increases and then stabilizes with a length 30 times larger than the quasi-2D case. For
their cases with an aspect ratio smaller than 4, the incident shock on the central plane is found to
be curved and strengthened even before the interaction (figure 1.13, left panel).On the spanwise
edge of the shock, progressive compression waves are visible and look similar to the “λ” pattern
observed in transonic interaction. The impinging shock that interact with the boundary layer on
the duct floor is curved (figure 1.13, right panel) whereas for a two-dimensional interaction the
shock is straight.

Evidence of the influence of corner flows are also found in the experiments by Dupont et al. [33]
who use vorticity detectors placed at different heights to infer the presence of two counter-rotating
vortices near the corners. The rotation frequency of these corner vortices is found to be of the
same order as the low-frequency motion of the reflected shock, suggesting that there is also a
direct link between the two.

To close this subsection, one can remark that studies on the impact of the corner flow on the
unsteadiness of the SWBLI are limited in numbers. A few recent numerical studies have at-
tempted to show the influence of side walls [45, 108] but no wall-resolved LES or DNS have been
performed that assess the effect on the wall pressure signature. The WMLES of Bermejo-Moreno
et al. [7] shows that the frequencies at which these low-frequency motions occur are consistent
with the range found in prior studies in the literature but no clear conclusion can be drawn. And
yet, according to [33, 35], the three-dimensionality in separated SWBLI field has the potential
to contribute to the flow unsteadiness. Recent work [6, 16, 17, 19] shows that the corner effects
may strongly influence the structure of the SWBLI.

1.3.2 Experiment in transonic interactions, confinement effects

As the experimental tools become more precise and quantitative (progress in PIV, LDV . . . )
criteria on the minimum aspect ratio required to obtain a centerline 2D flow has changed, the
understanding of the influence of aspect ratio is progressing. A recent experimental work [104,
105] on a fully developed turbulent incompressible boundary layer in a duct flow (considering
two boundary layers from opposite walls spatially developed and are merged) has investigated
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Figure 1.14: Experimental data for attached (open symbols) and separated (filled sym-
bols) transonic SWBLIs. Reprinted from Bruce et al. [17]

the influence of AR at moderate Reynolds number (Reτ ∈ [200 ; 900]). Comparison with a quasi-
two-dimensional DNS show that side walls effects are always observed. Those authors conclude
that “the conditions observed in the homogeneous region of a high-aspect-ratio turbulent duct
flow do not match the exact ones found in a spanwise-periodic channel”. In this context, it is
possible that some experimental SWBLI are influenced by the presence of side walls, whereas
the interaction was originally assumed to be quasi-two-dimensional.

In figure 1.14, we report data from Ref. [17] that analysed transonic SWBLI experiments origi-
nally collected by Sajben et al. [90] and classified as being nominally two dimensional (i.e. 2.5D).
In the figure, open and full symbols indicate, respectively, attached and separated flow. In panel
a, data is reported as a function of Reθand in panel b data is reported as a function of Hi0 .
As observed by Bruce et al. [17], the data is rather scattered and no clear indication of separa-
tion criteria can be identified when using these parameters introduced to characterize “classical”
SWBLI (i.e. without considering the influence of side walls).

Recent works [6, 16, 17, 19] show that side walls effects associated with the interaction between
secondary flows induced produced by the corners and separation (see figure 1.15), may explain
some of the data scattering observed in figure 1.14. To account for the confinement and/or 3D
effects, Bruce et al [17] introduce the “effective aspect ratio” δ∗/W , where δ∗ is a displacement
thickness and W is the wind tunnel width. Plotting the data reported in figure 1.14 versus the
upstream Mach number and the effective aspect ratio, a better data reduction is obtained. Two
distinct regions are clearly identified (figure 1.16): a region where a fully developed centerline
mean separation is observed from a region where the separation is either intermittent or non-
existent. Furthermore, the free interaction theoretical limit of quasi-two-dimensional-separation
occurring at Mach 1.31 is recovered (which is not the case using the scaling of figure 1.14)
The data are organized in two distinct regions (except for one case out of thirty-two), that has
fully-developed-centerline separation but is located in the attached-boundary-layer region. This
“suggests that geometrical differences between experimental facilities are a significant factor that
can affect the onset of separation” [17].

In the presence of corner flows, the velocity profile is less “full”. As a consequence the boundary
layer in the vicinity of the corner is more prone to separation when subjects to strong adverse
pressure gradient [17]. This causes more extended separation (than the centerline separation)
that can spread upstream and downstream of the zone of the APG. Figure 1.16 shows that
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Figure 1.15: Oil flow patterns on the tunnel floor and sidewalls for a M∞ = 1.4 shock.
Only the bottom half of the tunnel side walls are shown. Reprinted from Bruce et al. [17]

confinement seems to reduce the likelihood of centerline separation.

From this observation Bruce et al [17] propose two scenario: the first one assumes that the
blockage effect generated by the corner flows may be sufficient to decelerate the flow in the
supersonic region and/or to accelerate the flow in the post-shock subsonic region. Thus an
“aerodynamic nozzle” is produced that may smear the adverse pressure gradient imposed by
the normal shock-wave. The other one takes into account the production of compression waves
associated with corner separation (see figure 1.17). When the boundary layer is submitted to an
adverse pressure gradient (APG) it thickens, and in the vicinity of the corner, compression waves
upstream of the centerline interaction are produced. If the shock is sufficiently strong a large
three-dimensional bifurcation of the shock-wave structure can be observed and depending on the
effective aspect ratio the compression waves may cross before or after the shock (figure 1.17).
When the compression waves, originating from the corner cross after the shock-wave it is expected
that the interaction length increases [6]. On the contrary, when corner waves cross upstream of
the shock, it is unclear whether or not the corner waves may be sufficiently strong to trigger the
separation.

1.3.3 Shock-trains and pseudo-shock system

As mentioned above, SWBLI in internal flow are modified and affected by the confinement.
When the confinement effects are sufficiently strong a shock-train forms. At low supersonic Mach
number and with a low confinement parameter (δ/W ), a single straight and normal shock forms
(figure 1.18 (a)). As the Mach number is increased, the normal shock begins to curve (panel b).
If the adverse pressure gradient (APG) imposed by the shock is sufficiently strong the thickening
of the boundary layer upstream of the shock induces a deflection of the flow that generates
compression waves that coalesce and modify the topology of the normal shock producing a
bifurcated shock (panel c). Under stronger APG (panel d), the thickening of the boundary layer
and the local shock curvature produce an “aerodynamic nozzle effect”[50]. Through this nozzle
the flow is accelerated and expansion waves are observed. The core flow becomes supersonic
again. If the triple point distance from the wall is greater than the duct half-height, the leading
oblique shock-waves of each opposite walls cross producing an oblique shock-train. The normal
part of the shock (C3 in figure 1.10) disappears.
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Figure 1.16: Experimental data for attached (open symbols) and separated (filled sym-
bols) transonic SBLIs, plotted against the variable δ∗/w. Reprinted from [17]

Figure 1.17: Babinsky et al [6] proposed variation of separation lengths (along wind
tunnel floor centerline) as a function of wind tunnel ’inverse viscous aspect ratio’.
Reprinted from Babinsky et al. [6]

29



Shock-wave boundary layer with side walls effects

Figure 1.18: Schematic sketch of normal shock-wave/turbulent boundary layer interac-
tion in a constant area duct. Reprinted from Matsuo et al. [66]

For the case (d) of figure 1.18, an example of wall pressure distribution is reported in figure 1.19.
The multiple shock pattern that forms is called a shock-train. It comprised between the position
where pressure starts to rise (point 1) and the position of the final downstream shock (point j).
After the shock-train the flow may undergo a further compression in the mixing region. The
region between point 1 and point 2 is the so-called pseudo-shock. Due to viscous effects, the
pressure decreases downstream of point 2.

A few experimental and numerical studies dealing with shock-trains have been published in the
literature. We recall the LES of a Mach 5 inlet-isolator system of Koo and Raman [59], the LES
of the HyShot combustor system of Ingenito et al. [54], the detached-eddy simulation (DES) of a
supersonic combustor with an isolator shock-train of Cocks et al. [24], the WMLES of an oblique
shock propagating inside a duct of Bermejo-Moreno et al. [7], and, the wall-resolved LES of a
transonic shock-train of Morgan et al. [68].

The latter study is of utmost importance as it is the first wall-resolved LES of a normal shock-
train in a constant area rectangular duct with fully resolved boundary layers. The geometry
and the selected flow conditions correspond to the experiment of Carroll and Dutton [21] In the
experiment, the duct is slightly diverging (divergence angle of both upper and lower section wall
is 0.13 deg) while Ref. [68] assumes a constant area duct. In addition, to ensure adequate mesh
resolution, Morgan et al. choose a Reynolds number of (Reδ ∼ 16200) approximately one order
of magnitude less than the experiment. We point out that performing high fidelity simulations
at the same Reynolds number than the experiment is still not affordable. As a consequence, the
comparison of the numerical results with the experimental ones may be biased by the differences
in the Reynolds number effects. In order to maintain the first shock at a location where the
confinement ratio is equal to 0.32, as in the experiment, they set the outflow pressure is at a
value different than the experiment.

We observe that several issues remain concerning the shock-train interaction both in providing
accurate flow statistics and in understanding the emergence of coherent motions as well as their
spatial and temporal scales. In the present work we will then focus on the analysis of the
statistical properties of the flow, and on the unsteady characteristics of shock-train simulation
(in particular on low and medium frequencies).

The present document is organized as follow. First, we detail the methods and tools used for
the simulations. Then a chapter is devoted to validation. The latter consists of three test cases
that are representative of the inherent difficulties that arise when one deals with the simulation
of a shock train interactions in a rectangular duct. Chapters 4 and 5 discuss on the large eddy
simulations of a shock-train interactions in rectangular duct, focusing on the influence of various
aspect ratios (chapter 4) and on the unsteady analysis for a given aspect ratio (chapter 5).

30



Shock-wave boundary layer with side walls effects

Figure 1.19: Schematic static pressure distribution along duct centerline and wall sur-
face in constant-area duct for condition wherein a “normal” shock is present. Reprinted
from Matsuo et al. [66].

Finally, in Chapter 6 some conclusions are given.
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Shock-wave boundary layer with side walls effects

Chapter Summary

• Shock-wave boundary layer interactions occur in external and internal flows and impact
various devices

• Different classifications of SWBLI are possible
– Depending on the mechanism that generates the shock

∗ Descriptive approach restricted to canonical configurations.
∗ No clear separation of the underlying physic.

– Based on the state of the boundary layer: separated or attached interaction.
∗ Separation of the dominant scales of the flow: weak interactions (i.e. where

viscous effects are weak) and strong interactions.
∗ Different unsteadiness are observed: low-frequency unsteadiness seems spe-

cific to detached interaction.
• Side walls influence strongly the centerline flow

– The separation onset of the boundary layer can be estimated for quasi-two di-
mensional flow only.

– Experiments are usually done inside duct of finite span and theoretical approaches
fail to predict the separation onset.

– The “effective aspect ratio”, defined as the displacement thickness over the width
of the duct (δ∗/W ), accurately estimates the limit of the separation onset.

• Side walls and confinement effects modified the SWBLI topology
– In internal flow, the shock in transonic interaction changes from normal to bi-

furcated as the confinement and Mach number increase. For higher confinement,
secondary shocks appear and the interaction is called a shock-train.

– The confinement is expressed as the boundary layer thickness divided by the duct
half-height: δ/h.

– The duct width and height both impact the shock-train.
– Most results on that type of interaction are experimental.

• One experiment on shock-train have been reproduced numerically by means of wall-
resolved large eddy simulation.

– The experimental and numerical database consist of mean and turbulent statis-
tics.

– High fidelity simulations of transonic interactions are less abundant.
• The current thesis analysed shock-train interaction and contains the following results:

– Four LES with different aspect ratios are carried out and compared.
– For two aspect ratios, comparisons with the LES Morgan et al. [68] and the

experimental results of Carroll and Dutton [21] are provided.
– Analysis of the shock-train unsteadiness for one aspect ratio.
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Chapter 2

Numerical Methods
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2.1 Governing equations

We solve the three-dimensional Navier–Stokes equations for a perfect compressible gas

∂ρ

∂t
+
∂ρ ui
∂xi

= 0 (2.1)

∂ρ ui
∂t

+
∂ρ uiuj
∂xj

+
∂p

∂xj
− ∂σij
∂xj

= 0 (2.2)

∂ρE

∂t
+
∂(ρE + p)uj

∂xj
− ∂(σij uj − qj)

∂xj
= 0 (2.3)

where ρ is the density, ui a component of the velocity vector (i ∈ {1, 2, 3}), and the total energy
E is

ρE =
p

γ − 1
+
ρuiui

2
(2.4)

Considering a Newtonian fluid we obtain under the Stokes hypothesis:

σij = 2µSij −
2

3
µSkkδij (2.5)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.6)

Where Sij is the strain-rate tensor and with the heat flux qj (Fourier model):

qj = −λ ∂T
∂xj

λ =
cpµ

Pr
(2.7)
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Filtered equations

Where Pr = 0, 72 is the molecular Prandlt number and λ is the thermal constant. This system
is closed by the perfect gaz equation.

2.2 Filtered equations

The direct resolution of the Navier-Stokes equations (eq 2.1 to 2.3) up-to the finest scales of
turbulence is prohibitive [99]. To limit the cost, generally expressed in computational hours, we
do not solve directly these equations, instead, we choose to solve solely the ”largest eddies”. Large
Eddy Simulation (LES) has been previously used with shock-wave boundary layer interactions
with [43, 68, 108] and without side walls effects [38, 95, 101]. It introduces a separation between
the various scales of turbulence: the “small” scales are modelled while the “large” scales are
resolved. ”Small” and ”large” are relative to a reference value mostly defined by the mesh. The
grid and the property of the numerical scheme define the resolvability limits and act as a first
implicit filter: eddies too small to be evaluated on the computational grid are modelled. Between
the fully resolved scales and those modelled, some scales are partially evaluated on the grid and
are corrupted by the discretization and numerical errors. A (sharp) explicit filter may be used
to remove the partially resolved scales. An other approach is to use a subgrid model. More
information on LES is accessible in [44, 88].

To remove the smallest unresolved eddies we introduce a spatial filter, for this section, the spatial
filtering operator is noted (̄.). It transforms any quantity φ in its filtered counterpart φ̄. For
compressible flows, to account for the additional density related terms that appear when one uses
a spatial filtering, a “Favre filter” is classically used. This operator transforms ρφ into ρ̄φ̃ where
φ̃ is a Favre filtered quantity. Moreover, in the following, we assume that the filtering operator
commutes with derivatives. Note that these notations are valid solely for this chapter.

Applying the Favre-filtering operator to the continuity equation we obtain:

∂ρ

∂t
+
∂ρũi
∂xi

= 0 (2.8)

Doing the same for the continuity equation:

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

+
∂p̄

∂xi
=
∂τij
∂xj

+
∂σ̃ij
∂xj

(2.9)

Where τij are the subgrid scale (SGS) terms:

τij = ũiuj − ũiũj (2.10)

The quantity ũiui contains unknown quantities (thus it can’t be computed). As a consequence,
filtering the total energy (equation 2.4) leads to an equation that is not computable without
further hypotheses. Following Vreman et al. [106], we note the total computable energy

ρ̄Ě =
p̄

γ − 1
+

1

2
ρ̄ũiũi

Where (̌.) represents a computable quantity. The computable energy equation is:

∂Ě

∂t
+
∂(Ě + p)ũj

∂xj
+

∂p

∂xj
− ∂ ˇ(σij ũj − q̌j)

∂xj
= B (2.11)

Where B corresponds to the subgrid scale terms as exposed in reference [44].

These equations are similar to the Navier-Stokes equations except for a new term, τij , in the
momentum equation and B in the computable energy equation. In the current work, the SGS
terms are either modelled through an explicit Smagorinsky dynamic model, or through the
numerical scheme (implicit LES, abbreviated ILES).
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2.3 Spatial and temporal discretization

The Navier-Stokes filtered equations are discretized on a Cartesian mesh by means of a conser-
vative finite-difference approach. The flow solver relies on central eight-order discretization of
the convective terms of the Navier-Stokes equations cast in fully split form[57, 72] whereas a
seventh-order weighted essentially non-oscillatory (WENO) reconstruction [56] is activated near
shocklets to inhibit spurious Gibbs oscillations. To distinguish smooth zones from shocked ones,
a switch based on the Ducros [76] sensor is used.

The diffusive terms in the Navier-Stokes equations are cast in Laplacian form for improved
numerical stability Pirozzoli [73], and approximated with forth-order central difference formu-
las.

The resulting semi-discrete system of equations is advanced in time by means of a standard, fully
explicit fourth-order Runge-Kutta algorithm.

An explicit 8th order filter is applied every 10 iterations during the time integration of the
statistics.

2.3.1 Spatial discretization of the Euler equations

Kennedy-Gruber skew-symmetric splitting [72]: smooth zones discretization

Standard central differencing schemes are unstable. Due to the non-dissipative property of
those schemes, aliasing errors are not damped and are cumulated during the time integration.
The growth of those mesh-to-mesh oscillations generally leads to an unstable solver except if a
correction is applied to the central scheme or if it is combined with a stabilizing tool (filtering,
artificial viscosity. . . ).

The chosen approach relies on a splitting of the derivatives [57, 72]. As shown by Ducros et al [32],
the splitting of the convective derivative have stabilizing properties. This result was confirmed
by Pirozzoli [72] who also proposed an efficient formulation using a discrete local averaging
operator.

From splitting of the convective derivative [57] we have:

∂ρuiφ

∂xi
= α

∂ρuiφ

∂xi
+ β

(
ui
∂ρφ

∂xi
+ ρ

∂uiφ

∂xi
+ φ

∂ρui
∂xi

)

+(1− α− β)

(
ρui

∂φ

∂xi
+ ρφ

∂ui
∂xi

+ φui
∂ρ

∂xi

) (2.12)

where φ is a generic transported scalar quantity.

This expression formally requires the computation of 6 additional derivatives. To decrease the
computational cost, the above formulation is modified [72]. A locally conservative approximation
is obtained from the previous skew-symmetric form (with α = β = 1/4):

fj+1/2 = 2

L∑

l=1

al

l−1∑

m=0

˜(ρ, u, φ)j−l;l (2.13)

Where al are coefficients that maximize the formal order of accuracy and the operator ˜(f, g, h)j;l
is the three-variable discrete averaging operator that is defined as:

˜(f, g, h)j;l =
1

8
(fj + fj+l)(gj + gj+l)(hj + hj+l). (2.14)

This formulation yields semi-discrete preservation of kinetic energy when applied to both the
continuity and momentum equations Pirozzoli [72].
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WENO scheme [56]: discontinuous zones discretization

WENO schemes consist of a polynomial combination between multiple numerical flux. Those
flux are computed using a low order flux splitting scheme, called the “building block”. The
building block scheme dictates how the flux is (re)-constructed. It gives some of its properties
to the WENO scheme. Once all the low-order flux in the characteristic area are computed a
WENO polynomial reconstruction procedure can be applied to obtained the smoothest solution.
This is done through a weighted sum of the flux over the candidate stencils:

f
(r)
i+1/2 =

k−1∑

r=0

Crl fi−r+l (2.15)

where f
(r)
i+1/2 are the reconstructed flux and Crl are the polynomial coefficients.

WENO scheme have been introduced by Liu et al. [64], and then generalized by Jiang and
Shu [56]. The first one uses Roe [85] flux splitting scheme as a building block and the second
one uses the Lax-Friedrich flux splitting.

Ducros sensor: coupling two discretizations

The Ducros sensor [31] consists of a ratio between a quantity that is higher in region of strong
velocity gradient, such as shocks, divided by a second quantity that is higher in turbulent region
or in vortex-like structures. The sensor, noted Θ, tends to 1 in region where pressure gradient
dominates (for instance in shocks and acoustic waves) and 0 otherwise.

Θ =
(∇ · U)2

(∇ · U)2 + (∇× U)2 + ε
(2.16)

It can be checked that 0 ≤ Θ ≤ 1, with ε a constant to avoid invalid floating point opera-
tions.

2.3.2 Spatial discretization of the viscous terms

To improve the numerical stability, viscosity flux are cast in a Laplacian form [73, 74]. To be
more precise, the quantity :

∂σij
∂xj

=
∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)]
(2.17)

can be rewritten as:

∂σij
∂xj

=

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
∂µ

∂xj
+ µ

[
∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)]

Let A = ∂
∂xj

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)

Then

A =
∂2ui
∂x2

j

+
∂2uj
∂xixj

− 2

3

∂2uk
∂xkxi

δij

A =
∂2ui
∂x2

j

+
∂2uj
∂xixj

− 2

3

∂2uj
∂xjxi

δij

A =
∂2ui
∂x2

j

+
1

3

∂2uj
∂xjxi

δij

Finally, the diffusive terms are expanded in the form:

∂σij
∂xj

=

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

)
∂µ

∂xj
+ µ

∂2ui
∂x2

j

+ µ

(
1

3

∂2uj
∂xjxi

)
(2.18)
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Explicit filter

2.3.3 Scheme for the temporal integration: 4th Runge-Kutta

A Runge-Kutta scheme with p sub-steps to solve the Cauchy’s problem (on Φ) defined by the
equation ∂Φ/∂t = F (Φ, t) and by an initial condition (Φ0), can be written as:

Φn+1 = Φn + ∆t

p∑

i=1

bik
i with ki = F


Φn +

i−1∑

j=1

aijk
j , tn + ci∆t




Φ0 = Φ0

where ci =
∑i−1
j=1 aij for i = 1, ...p. For any standard Runge-Kutta scheme, coefficients are

obtained thanks to the Taylor series expansion of Φ.

The 4th Runge-Kutta scheme is used in all of our simulations:

Φn+1 = Φn + ∆t

[
1

6
(k1 + 2k2 + 2k3 + k4)

]





k1 = F (Φ, t)
k2 = F (Φ + h

2 , t+ h
2k1)

k3 = F (Φ + h
2 , t+ h

2k2)
k4 = F (Φ + h, t+ hk3)

2.4 Explicit filter

Filters are commonly used to damp the aliasing errors (thus stabilizing the spatial scheme) or as
an implicit model. Many filters are found in the literature: compact ones [60], explicit filters with
standard or modified coefficients (for instance DRP schemes [9]), non-linear selective filters (for
example, the Adaptive Nonlinear Selective Filtering or ANSF [10, 11]) . . . In our simulation, the
solver is stable without the need for an additional dissipation. The filter is solely used to remove
weak mesh-to-mesh oscillations of finite amplitude increase the noise during the visualization
of gradient related quantities. Thus, it was checked that the filter can be removed with no
consequence on the total (measurable) dissipation.

A 2N + 1 points stencil filter applied to variable u on a uniform mesh gives:

û(x) = u(x)− σDu(x) with Du(x) =

N∑

j=−N
cju(x+ j∆x) (2.19)

where the symbol .̂ indicates the obtained filtered quantity, 0 ≤ σ ≤ 1 is a parameter to control
the amplitude of the filter, and cj = c−j are coefficients:

cj c0 c1 c2 c3 c4
value 35/128 -7/32 7/64 -1/32 1/256

2.5 Sub-grid stress: explicit and implicit modeling

“The problem of subgrid modeling consists in taking the interaction with the fluctuating field
into account in the evolution equation of the filtered field”[44]. Two approaches for modeling
the subgrid terms are used [88]:

• functional modeling
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Sub-grid stress: explicit and implicit modeling

• structural modeling

Structural modeling focuses on making the best approximation of a given quantity. Functional
modeling intents to reproduce the effects, i.e. to mimic different physical properties and be-
haviors on a given quantity. This second type of modeling does not constraint the underlying
mathematical structure of the model (i.e. the structure of the phenomena and of the modeled
may be different). These models are constructed with the following assumptions [88]:

• energy transfer between resolved scale and subgrid scale is sufficient to describe the action
of the subgrid scale. As a consequence, the action of the subgrid scales on the resolved is
mostly energetic,

• a total separation between resolved scale and sub-grid scale exist,

• The Boussinesq hypothesis is assumed. The energy transfer from resolved scales to the
sub-grid scales is similar to a molecular mechanism (diffusion). This effect can be modeled
through the addition of a subgrid viscosity νt. In Smagorinsky models, under Boussinesq
hypothesis, the deviatoric part of the subgrid tensor τdij is defined as:

τdij = τij −
1

3
δijτkk = −2ρνt

(
S̃ij −

1

3
δijS̃kk

)
(2.20)

• the flow is in constant spectral equilibrium so there is no accumulation of energy at any
frequency and the energy spectrum remains invariant with time.

The Dynamic Smagorinsky model (SMD) belongs to the family of the functional modeling
whereas the implicit modeling belongs to the structural modeling. In the following two Smagorin-
sky models are briefly introduced. The numerical scheme used for the implicit modeling are
detailed in previous section.

2.5.1 Subgrid explicit modeling: Dynamic Smagorinsky

Smagorinsky [96] model (SM)

For the Smagorinsky model, the smallest scales are assumed to be isotropic. In the figure 2.1, a
spectrum of homogeneous turbulence (THI) is drawn. This sketch shows the different hypothesis
require to use a Smagorinsky model: the THI spectrum is not modified by the presence of the
filter, so, the resolved and modeled scales are solely linked through energetic transfer. The
production of energy is achieved by the resolved scales and spectral equilibrium is maintained
by energy transfer to the modeled scales (there is no backscattering). Those scales are supposed
to be isotropic, mostly dissipative and are not in the inertial range.
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Figure 2.1: Spectrum of homogeneous turbulence with an ideal spectral filter cut-off at
kc that separates large scales from smaller mostly dissipative scales. Backscattering is
(by hypothesis) neglected.

In Smagorinsky [96] model, the eddy viscosity is obtained by assuming that the small scales are
in equilibrium. The consequence is that the eddy viscosity νt is approximate by:

νt = C2
s∆

2
(2S̃ijS̃ij)

1/2 (2.21)

Where Cs is the Smagorinsky constant, ∆ is the filter width, and (2S̃ijS̃ij) is the magnitude of
the (resolved) large-scales strain-rate tensor:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.22)

Dynamic Smagorinsky model (DSM)

The Germano et al. [46] Dynamic Smagorinsky model is a modified Smagorinsky [96] model where
the Smagorinsky constant Cs is locally evaluated. In order to defined a local constant that best
approximates the effect of the unresolved scales at a given coordinate, we need to obtain further
information on the local properties of the flow. One approach consists of extracting information
from the smallest resolved scales and to use this information to approximate the unresolved
scales. To do so, a test filter is applied on the resolved scales.

Let .̂ be the test filter operator that transformed a quantity ρφ into ρ̂φ̂. The sub-grid stress
τij = ũiuj − ũiũj becomes:

Tij = ̂̃uiuj −
(
̂̃ui ̂̃uj

)
(2.23)

The resolved turbulent stresses are defined as[46]:

Lij = ̂̃uiũj − ̂̃ui ̂̃uj (2.24)

And
Lij = Tij − τ̂ij (2.25)

We can write:
τdij = −2ρCd∆

2
∣∣∣S̃ij

∣∣∣ S̃dij (2.26)
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Tij = −2ρCd∆̂
2

∣∣∣∣
̂̃
Sij

∣∣∣∣
̂̃
Sdij (2.27)

A least square procedure is applied:

Cd =
〈
(
Lij − 1

3Lijδij
)
Mij〉

〈MpqMpq〉
(2.28)

CI =
〈Lij〉

〈2∆̂ρ̂
∣∣∣ ˆ̃S
∣∣∣
2

− 2∆
̂
ρ
∣∣∣S̃
∣∣∣
2

〉
(2.29)

Prt = C
〈NiNi〉
〈−KjNj〉

(2.30)

The value of ∆̂ = (∆̂1∆̂2∆̂3)1/3 is set to 2∆, Lij and:

Mij = −2∆̂2ρ̂
∣∣∣ ˆ̃S
∣∣∣
(

ˆ̃Sij − 1
3

ˆ̃Skkδij

)
+ 2∆

2
[
ρ
∣∣∣S̃
∣∣∣
(
S̃ij − 1

3 S̃kkδij

)]∧
(2.31)

Ni = ∆̂2ρ̂
∣∣∣ ˆ̃S
∣∣∣ ∂

ˆ̃T

∂xi
−∆

2

[
ρ
∣∣∣S̃
∣∣∣ ∂T̃
∂xi

]∧
(2.32)

Ki = ρ̂ũiT̃ −
(
1/ρ̂
)
ρ̂ũiρ̂T̃ (2.33)

2.6 Boundary conditions

In all simulations the computational domain consists of a rectangular box as shown in fig-
ure 2.2.

1 2

3

4

5

6

x

y
z

Figure 2.2: Schematic of the computational domain.

The boundary conditions are numbered from 1 to 6.

At the inflow plane (1), a turbulent inflow condition is applied. The recycling-rescaling methods
used to produce the turbulent inflow condition are described in section 3.2.1
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At the outflow plane (2), a non-reflecting subsonic or supersonic outflow [79] boundary condition
is imposed. For the simulations of shock-trains, the pressure is forced to relax to a given value.

In all simulations at the plane y = 0 (3), a non-slip adiabatic wall boundary condition corrected
to be perfectly reflecting [79] is enforced. This boundary condition is enforced by prescribing
zero wall-normal gradient for temperature, and homogeneous Dirichlet boundary conditions for
all velocity components.

For external flow simulations at the plane y = Ly (4), a non-reflecting supersonic outflow bound-
ary condition is prescribed. For internal flow simulations at the plane y = Ly (4), a non-slip
adiabatic wall boundary condition corrected to be perfectly reflecting [79] is enforced.

At the plane (5) and (6), for all simulations except those with side walls, a periodic boundary
condition is applied. Otherwise a non-slip adiabatic wall boundary condition corrected to be
perfectly reflecting [79] is applied.

Simulation of internal flows: inlet body force

In internal flow, in order to minimize and to prevent the leading edge shock from interacting
with the boundary layer, a body force (F ) is added to the right-hand side of the Navier-Stokes
equations as suggested by Morgan et al [68].

F = ξ(x, y, z)




ρ∞ − ρ
ρ∞u∞ − ρu
ρ∞v∞ − ρv
ρ∞v∞ − ρw
ρ∞E∞ − ρE




(2.34)

Where ξ(x/δin, y/δin, z/δin) is defined as 0 if y/δin /∈ [2δin, Ly/δin − 2δin] otherwise:

ξ(x/δin, y/δin, z/δin) = ξ0 × ξ1(x/δin)× ξ2(y/δin)× ξ3(z/δin)

where ξ0 = 1.0e−5

ξ1(x/δin) =
1− tanh(x/δin − xrec/δin + 3δin)

2

ξ2(y/δin) =

(
(y/δin − 2δin)(Ly/δin − y/δin − 2δin)

Ly/δin/2− 2δin

)4

ξ3(z/δin) =

(
tanh 2(z/δin − 2δin) + tanh 2(Lz/δin − z/δin − 2δin)

2

)2
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Chapter Summary

• We numerically solve the Navier-Stokes equations for compressible flows
– These equations are filtered and only the largest eddies are resolved.
– The filtering of the Navier-Stokes equations produces additional terms, the sub-

grid terms.
– Subgrid terms are modeled:

∗ by a dynamic Smagorinsky (explicit modeling).
∗ by the numerical scheme: no explicit model is used.

• To solve the filtered Navier-Stokes equations a finite-difference solver is used
– For the spatial discretization:

∗ 8th-order central discretization of the convective terms cast in fully split form
[72].

∗ 7th-order weighted essentially non-oscillatory (WENO) reconstruction near
shocks and shocklets.

∗ To distinguish smooth zones from shocked ones, a switch based on the Ducros
sensor is used.

∗ A 8th-order filter may be used to remove small finite amplitude mesh-to-mesh
oscillations.

– For the temporal time integration:
∗ A 4th-order Runge-Kutta scheme is used.

• The boundary conditions are given on the computational domain.
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Chapter 3

Turbulence initialisation

Contents
3.1 Turbulent boundary layer: a priori properties . . . . . . . . . . . . 43

3.1.1 Streamwise distribution of the boundary layer thickness . . . . . . . . 44

3.1.2 Estimation of the inner length scale for an incompressible flow . . . . 44

3.1.3 Estimation of the inner length scale for a compressible flow . . . . . 46

3.2 Generation of turbulent inflow . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Recycling/rescaling on a single wall . . . . . . . . . . . . . . . . . . . 49

3.2.2 Multi-wall recycling/rescaling . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Turbulent boundary layer: a priori properties

At the beginning of the simulation, t = 0, we solely know the upstream inflow quantities such
as the static pressure, T∞; the Mach number, M∞; and the Reynolds number, here expressed
at the inflow of the computational domain based on the boundary layer thickness, Reδin (the
boundary layer thickness being defined as the wall-distance where the velocity reaches 99% of
u∞). In order to generate an initial solution and/or an initial mesh, the characteristic length
scales of the turbulent boundary layer have to be estimated. Since no direct equation relates at
a chosen Reynolds number the inner length scales of the turbulent boundary layer with the outer
ones, an iterative process is proposed hereafter to obtain such relation. This iterative process is
stopped when the skin friction coefficient reaches a constant value. The skin friction coefficient
is by definition:

cf =
τw

1
2ρu

2
∞

(3.1)

where τw is the tangential stress at the wall. We also define the friction velocity, uτ =
√
τw/ρ,

and the wall unit that is lν = νw/uτ . We then proceed in the following steps:

1. We estimate the distribution of the boundary layer thickness on the flat plate δ(x), where
x is the streamwise distance from the inflow of the computational domain.

2. Knowing Reδin , the inflow Reynolds number based on the boundary layer thickness, we
determine for each value of the streamwise position x a local Reynolds number
Reδ(x) = (Reδin/δin).δ(x)

3. At a given value of x, using δ(x) and Reδ(x), we estimate the inner length scale of the
turbulent boundary layer lν via an iterative process.

4. The relation between the inner and outer length scales being estimated, a first mesh and
solution may be computed.
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Turbulent boundary layer: a priori properties

In the following we first describe the method for incompressible cases. Then, the method is
generalized and detailed for compressible flows.

3.1.1 Streamwise distribution of the boundary layer thickness

Considering a viscous flow over a flat plate, a boundary layer spatially develops from the leading
edge of the plate. The distance from the leading edge is noted X0. Our computational domain
is a rectangular box whose inflow plane is located at a virtual length X0 from the origin of
the boundary layer. At the inflow plane (subscript “in”), the Reynolds number based on the
boundary layer thickness is equal to a targeted value, noted Reδin , where δin is the boundary
layer thickness.

The value of X0 is usually unknown. In order to estimate it, we assume that the velocity is

approximated by a power law profile, u/u∞ = (y/δ)
1/n

. We use the following relations1:

X0/δin =
1

0.16
(ReX0

)
1/7

(3.2)

X0/δin =
1

0.16

(
X0

δin
Reδin

)1/7

(3.3)

We then estimate δ(x)/δin with the equation:

X0 + x

X0
=

(
δ(x)

δin

)7/6

(3.4)

Where we remind that δ(x) is the boundary layer at a distance x from the inflow (i.e the boundary
layer at a virtual length X0 + x from the origin of the boundary layer).

We deduce an approximation of δ(x)

δ(x)/δin = (1 + x/X0)6/7 (3.5)

We obtain for each value of x a value of δ, knowing the value of Reδin we thus have Reδ =
δ.Reδin/δin.

3.1.2 Estimation of the inner length scale for an incompressible flow

An iterative approach is used to approximate the skin friction coefficient (cf ). The approach is

initialized with an empirical value c
(0)
f . From this value we compute the inner length scales of

the boundary layer. The boundary layer thickness (obtained previously) and the inner length
scales of the boundary layer are then used to produce a mean (empirical) velocity profile. Then,
we compute the boundary layer thicknesses (including the momentum thickness θ) associated
with this velocity profile. Thus, we obtain an estimation of the Reynolds number based on the
momentum thickness Reθ. The latter value is used to estimate the skin friction coefficient cf by
applying the Karman-Schoenherr correlation 2. This process is applied until convergence occurs
on the skin friction coefficients (see figure 3.1).

1See Prandtl, 1961, vol II, pp 620-626 or White, Viscous Fluid Flow, pp 430 equation (6-70)
2This correlation is classically used. See for instance [52]
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Figure 3.1: Block diagram describing the algorithm used to estimate the initial skin
friction coefficient.

Step 1: mean velocity profile estimation for a chosen Reynolds number

The initial value of the skin friction coefficient is unknown, we assume an initial value either
guessed or from the literature. This value is usually order of O(10−4). By definition we have for
an incompressible flow:

uτ = u∞

√
c
(0)
f /2 (3.6)

The density is constant and fixed (ρ = ρ∞) and we suppose, in a first approach, a constant
pressure for the whole domain p(x, y, z) = p∞.

The turbulent boundary layer consists of an inner and outer layer [25]. For an incompressible
turbulent boundary layer a mean velocity profile is shown in figure 3.2 (the wall-normal direction
being y).

Figure 3.2: Time-averaged incompressible velocity profile u(y). Translated from [26]
.

The estimation of the velocity profile is composed of an inner layer (where we use the laws of
Reichardt and Finley) and an outer layer split in a logarithmique sub-layer and a wake law. Let
η = y/δ(x) and y+ = y/(uτ/ν) be the normalized-wall distance expressed in outer and inner
scaling , we have for the mean velocity:





u+ = 1/κ log(1 + κy+)
+ c1(1− exp(−y+/c2)− y+/c2 exp(−by+))
+ 2kp/κ(sin(π2 η))2 η < 1

u+ = u∞/uτ η > 1

(3.7)
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where κ = 0.41 is the von Karman coefficient, c1 = −1/κ. log(κ) + c, b = 0.33, c2 = 11.0 and
c = 5.2 are constant, and for each value of x we define the coefficient kp at y = δ as

kp = κkp0/2 (3.8)

kp0 =
u∞
uτ
− 1

κ
log(1 + κy+)− c1(1− exp(−y

+

c2
)− y+

c2
exp(−by+)) (3.9)

We have obtained an estimation of u(x, y)+ from an initial value of the skin friction coefficient.
We now check the validity of the initial skin friction coefficient.

Step 2: computation of the integral boundary layer thicknesses

From the mean velocity profile, we compute the boundary layer thicknesses δ, δ∗, θ.

For the sake of completeness, we remind the definition of boundary layer thicknesses and of the
incompressible shape factor for an incompressible flow:

δ∗i =

∫ δ

0

(
1− u

ue

)
dy (3.10)

θi =

∫ δ

0

u

ue

(
1− u

ue

)
dy (3.11)

Hi = δ∗i /θi (3.12)

where subscript “i” indicates the incompressible definition a given quantity. Where δ is the δ99

boundary layer thickness (wall-distance where ue = 0.99u∞), δ∗i is the incompressible displace-
ment thickness, θi is the incompressible momentum thickness, and, Hi is the incompressible
shape factor. ue, ρe correspond to the velocity and, respectively, the density at the edge of the
boundary layer.

From the mean velocity profile we now have an estimate of θi(x)

Step 3 and 4: validation of the initial value for the skin friction coefficient and
stopping criterion

From these thicknesses, an empirical equation relates the skin friction coefficient to the Reynolds
number based on the momentum thickness.

c
(1)
f = 1./(17.08 [log10(Reθi)]

2
+ 25.11 log10(Reθi) + 6.012) (3.13)

We recognize in the previous equation the Karman–Schoenherr correlation for an incompressible
boundary layer without pressure gradient. If the initial guess for the skin friction coefficient is far
from the one obtain through the Karman–Schoenherr correlation, the initial value is modified:

c
(0)
f ← c

(1)
f . The procedure is applied again until convergence of the skin friction coefficient is

reached.

3.1.3 Estimation of the inner length scale for a compressible flow

In this subsection we generalize the previous method for compressible flows. Let us assume
that the density fluctuations and their derivative are weak. So, the effects of compressibility are
mostly due to a change in the mean density profile. This hypothesis is similar to the Morkovin
hypothesis [97] and is well verified for low supersonic number (i.e Mach number lower than 3).
As a consequence, using an appropriate scaling and transformation, the previous approach is
easily generalized for compressible flow.
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Step 1: mean velocity and mean temperature profile estimation for a chosen Reynolds
number

Different time-averaged and scaling are used for compressible flows and are introduced hereafter.
For a quantity φ(t) the time-averaged between t0 and t1, is defined as:

φ =

∫ t1

t0

φ(t)dt

For compressible flows, the time-averaged operator is replaced by the Favre-averaged opera-
tor:

φ̃ =

∫ t1
t0
ρφ(t)dt
∫ t1
t0
ρdt

=
ρφ

ρ

For a turbulent boundary layer in a M∞ < 3 flow, the compressible velocity profile can be
obtained from an incompressible one, via a van Driest transformation.

uvd =

∫ ũ

0

(
ρ

ρw

)1/2

du (3.14)

where uvd is the van Driest transformation of ũ (Favre-averaged value of u).

An inverse van Driest transformation exist to convert a incompressible quantity into a compress-
ible one. The incompressible velocity profile defined in subsection 3.1.2 is then transformed into a
compressible velocity profile. In addition, the wall temperature and wall density remain unknown
and should be defined. Two equations are used to estimate the wall temperature (including the
Crocco-Buseman equation [25]):

r = Pr1/3 (3.15)

Tw = T∞ +
u2
∞

2cp
r (3.16)

Where cp is the heat capacity at constant pressure, r is the recovery factor for a turbulent
boundary layer and Pr ∼ 0.72 is the Prandtl number. If we suppose that the pressure is constant
inside the boundary layer, p(x, y, z) = p∞, then the wall density is defined as: ρw = p∞/RTw
which is set constant for the whole flat plate.

The value of the skin friction coefficient is unknown – this is similar to the incompressible
case. We initialize the skin friction coefficient with a theoretical or empirical value, for instance,

c
(0)
f = 5× 10−4. For each streamwise position we have:

uτ = u∞

√
c
(0)
f /2

√
ρ∞/ρw (3.17)

As in the incompressible case, for each streamwise position we define a coefficient kp, at y = δ
we have,

kp0 =
uvd∞
uτ
− 1

κ
log(1 + κy+)− c1(1− exp(−y

+

c2
)− y+

c2
exp(−by+)) (3.18)

kp = κkp0/2 (3.19)

We apply the van Driest transformation on the mean incompressible velocity profile: u becomes
uvd. The same layers and constants are used to define the current velocity profile than the
one used previously (see equation 3.7). The streamwise evolution of the temperature and den-
sity at the wall are neglected. We now have an estimate of the van Direst velocity, in inner

unit uvd(x, y)+, obtained from the initial value of the skin friction coefficient c
(0)
f . We end the

procedure by checking the initial value of the skin friction coefficient.
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Step 2: computation of the integral boundary layer thicknesses

We use the inverse van Driest transformation to obtain the mean velocity profile ũ(x, y, z).

avd =
√
Tw/T∞ − 1 (3.20)

ũ =
u∞
avd

sin(avd.uvd(x, y)/u∞) (3.21)

(3.22)

From the velocity profile we compute the boundary layer thicknesses: δ, δ∗, θ. For the sake
of completeness, we remind the definition of boundary layer thicknesses for a compressible
flow.

δ = y|u=0.99u∞
(3.23)

δ∗ =

∫ δ

0

(
1− ρ

ρe

u

ue

)
dy (3.24)

θ =

∫ δ

0

ρ

ρe

u

ue

(
1− u

ue

)
dy (3.25)

H = δ∗/θ (3.26)

Where δ∗ is the displacement thickness, θ is the momentum thickness, and, H is the shape factor.
Setting the density ratio ρ/ρe equal to unity, one obtains the incompressible definitions.

Step 3 and 4: validation of the initial value for the skin friction coefficient and
stopping criterion

As in the previous subsection, we use an empirical equation that relates the skin friction coefficient
to the Reynolds number based on the momentum thickness. This equation being valid solely
for incompressible turbulent boundary layer, to apply it, we need to convert the compressible
quantities into incompressible ones.

The incompressible value for the skin friction coefficient is approximated and need to be trans-
formed into a compressible one in order to compare the current approximation with the initial
guess. To avoid confusion between quantities obtained using incompressible definitions (such as
θi for instance) and compressible quantities modified by van Driest transformation, the subscript
“inc” denotes transformation compressible quantity whereas the “i” subscript denotes quantities
defined using incompressible definitions. For the skin friction coefficient cf , we use the van Driest
II transformed:

cf = cf inc/Fc (3.27)

Fc =
Tw/T∞ − 1

arcsin2 α
(3.28)

α =
Tw/T∞ − 1√

Tw/T∞
(
Tw/T∞ − 1

) (3.29)

Using the Karman-Schoenherr correlation, we have:

f = µ∞/µw (3.30)

Reθinc = f.Reθ (3.31)

cfinc = 1./(17.08 [log10(Reθinc)]
2

+ 25.11 log10(Reθinc) + 6.012) (3.32)

As long as the initial skin friction coefficient c
(0)
f is not close from the estimated value cf , the

initial value is replaced c
(0)
f ← cf and the previous procedure is applied again (until convergence

is reached). The stopping criterion is such that for a chosen arbitrary value ε we should have

ε ≥ ||c(0)
f − cf || Compressible turbulent flows are deeply described in reference [97].
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Density and pressure profile

From the previous velocity profile, using the Crocco-Buseman equation [25], the density profile
can be computed ρ(x, y). Under boundary layer assumptions, the pressure is constant inside the
turbulent boundary layer and it is set to p∞.

T = Tw −
ũ2
∞

2cp
r (3.33)

ρ(x, y) = p∞/RT (3.34)

3.2 Generation of turbulent inflow

3.2.1 Recycling/rescaling on a single wall

The recycling-rescaling method used in the present work relies on the one developed by Piroz-
zoli et al [76] that is based on the approach of Lund et al [65], and Xu et al [109]. At the rescaling
plane, which coincides with the inlet plane, the fluctuations, extracted at xrec, are injected at the
inlet plane (i.e. they are added to the mean flow component) to produce a realistic turbulence
inflow boundary condition.

At the inflow (xin) we then impose:

ρ(xin, y, z, t) = ρ̄(y) + ρ′recy(y, z, t)
u(xin, y, z, t) = ū(y) + u′recy(y, z, t)
v(xin, y, z, t) = v̄(y) + v′recy(y, z, t)
w(xin, y, z, t) = w′recy(y, z, t)
p(xin, y, z, t) = p∞

(3.35)

where the subscript ”recy” indicates the value of any variable rescaled from the recycling plane.

To avoid numerical ”drift” phenomena (Sagaut et al [89]), the mean field at the inflow is kept
constant, and only density and velocity fluctuations are reintroduced to the inflow. The rescaling
procedure is applied by dividing the boundary layer into two sub-layers: 1) the inner layer
(subscript ‘inn’) where velocity is assumed to scale in wall coordinatesand 2) the outer layer
(subscript ‘out’) where flow properties scale in outer units. The fluctuation of a generic quantity
(φ) is assumed to be a weighted combination of the inner- and outer-layer fluctuations where the
weight function W (η) is defined as[65]:

W (η) =
1

2



1 +

tanh
[

α.(η−b)
(1−2b)η+b

]

tanh(α)



 (3.36)

with α = 4 and b = 0.2.
The inflow density and velocity fluctuations in each sub-layer are rescaled from the recycling
station xrec according to:

ρ′inn(xin, y
+, z, t) = ρ′(xrec, y

+, z, t)
ρ′out(xin, η , z, t) = ρ′(xrec, η , z, t)
u′i,inn(xin, y

+, z, t) = γ u′i(xrec, y
+, z, t)

u′i,out(xin, η , z, t) = γ u′i(xrec, η , z, t)

(3.37)

where γ is the rescaling parameter:

γ =
uτ,in
uτ,rec

√
ρw,in
ρw,rec

(3.38)
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The whole flow field is initialized at t = 0 by assuming a mean turbulent boundary layer as de-
scribed in the previous section and with superposed deterministic perturbations mimicking inner-
and outer-layer coherent structures (Li & Coleman[61], Pirozzoli et al [75]), and the rescaling
parameters at the recycled station (uτ,rec, δv,rec, δrec) are defined using analytical laws:

δrec
δin

=

[
1 +

(
xrec − xin

δin

)
0.27

6
5Re

− 1
5

δin

]5/6

(3.39)

uτ,rec
uτ,in

=

(
δrec
δin

)1/10

(3.40)

3.2.2 Multi-wall recycling/rescaling

Extension of RR methods to multiple walls

Following Boles et al [12], we assume that the boundary layers evolving along each wall are
independent of each other. We can apply the rescaling separately along each wall. For any
turbulent quantity φ we obtain nwalls rescaled quantities φn (nwalls being the number of walls
and φn the quantity rescaled along the nth wall). The method is illustrated in 3.3 where we
assume four turbulent boundary layers developing inside a rectangular duct. The turbulent
quantities at a given streamwise plane x (illustrated in subfigure (a)) are rescaled along each
wall. This produces four rescaled planes, φn, that are each a rescaling of the original flow in one
direction as shown in 3.3 (b).

Then, in order to reconstruct φ at the inlet, the rescaled quantity φn are summed

φ =

nwalls∑

n=1

Wn.φn (3.41)

where Wn is a weighting function based on the inverse squared wall distance (d) to ensure the
coupling and is given by:

Wn =
1

d2
n

(
nwalls∑

m=1

1

d2
m

)−1

(3.42)

Modification of the mean flow at the recycled plane

Regarding the mean flow at the recycling plane, we assume that the flow exhibits a quadrant
symmetry in the transverse plane. A time and quadrant averaging procedure is used to force the
mean flow to be symmetric (see also [12, 67]).

Mean flow conditions at the inflow

At the inflow plane, the mean flow that is estimated during the initialization is used, unless
otherwise specified. Its computation in presence of multiple-walls have not been detailed yet.
It consists of two steps: in a first step, each wall is treated separately and n mean flows are
computed using the method given in section 3.1; in a second step, the mean flows are merged
according to equations 3.41 and 3.42 where φ is a mean quantity and φn is the mean flow along
the nth wall.
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Figure 3.3: Schematic of the extraction and rescaling of a quantity φ [12]. (a) Extraction
of turbulent quantity φ in the duct cross section at the recycling location. The walls
are numbered from 1 to 4; (b) Rescaling along each wall. The quantity φ rescaled in
the direction normal to the nth wall becomes the rescaled quantity φn.

Chapter Summary

• The method used to initialized the mean flow is detailed
– The boundary layer inner and outer length scales are estimated using an iterative

approach
– A composite empirical velocity profile is computed in the process
– The approach is described for incompressible and compressible flows

• The method used to produce the turbulence at the inflow (x = 0) is described
– For external flow, it consists of a recycling-rescaling inflow method generalized

for compressible flow
– For internal flow, the external recycling-rescaling approach is generalized to

multiple-walls
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Chapter 4

Validations
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This thesis concerns the interaction of a supersonic turbulent boundary layer with normal shock-
waves inside a rectangular duct (with corner flows). The validation consists of large eddy simula-
tions of three test cases: first, simulations of a Mach-two-adiabatic-turbulent-boundary-layer are
carried out with and without an explicit sub-grid model; then, LES of transonic interaction in
an Mach 1.3 external flow are carried out; and finally, a sensitivity analysis on the effects of the
mean inflow condition onto the corner flows is investigated. The latter point has been detailed
during an AIAA conference [86]. For the sake of clarity and conciseness only the main results
are exposed hereafter, mesh convergence, assessments of the boundary conditions . . . are not
shown.

4.1 Supersonic turbulent boundary layer

As explained by Smits and Dussauge [97], obtaining accurate statistics in experiments of super-
sonic flows is a difficult task. A standard approach is to compare supersonic compressible results
with incompressible results under the assumption that the Morkovin’s hypothesis [70] hold. Two
large eddy simulations of an adiabatic Mach-two-turbulent-boundary-layer have been carried out,
one with a Dynamic Smagorinksy sub-grid model (LES SMD) and one without sub-grid model
(ILES). Our results are compared with the DNS data of Pirozzoli and Bernardini [74] that has
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been done in a similar configuration, and, with the incompressible DNS data of Schlatter and
Örlü [93]. The comparison of our results with these two databases are done at a reference station
where we have similar Reynolds numbers. Information on the boundary layer at this reference
station is given in table 4.1.

Case Mach Reθi Reτ Legend
DNS of Pirozzoli and Bernardini [74] 2.0 1327 447 4

DNS of Schlatter and Örlü [93] × 1420 492 �
LES SMD 2.0 1212 450 back curve
ILES 2.0 1200 450 coloured curve

Table 4.1: Mach and Reynolds number at a reference station for our LES and the DNS of
Pirozzoli and Bernardini [74] and Schlatter and Örlü [93]. Two simulations have been carried
out one with a Smagorinksy sub-grid model (LES SMD) and one without sub-grid model (ILES).

4.1.1 Mesh and resolution

For the LES SMD and ILES simulations the same mesh have been used. A convergence study
was previously done. In the wall-normal direction (y) the mesh is stretched whereas in the
streamwise (x) and spanwise (z) directions a constant grid-spacing is used. It was shown that
the current resolution is sufficiently fine to resolve a turbulent boundary layer (with the current
numerical schemes and models). The current LES resolution is ∆+

x ×∆+
yw ×∆+

z = 30× 1.1× 15
and the computational domain extent is Lx × Ly × Lz = 100δin × 10δin × 5δin, where δin is the
boundary layer thickness at the inflow. The resolution and extent for the DNS of reference[74]
are ∆+

x ×∆+
yw×∆+

z ' 5×0.7×5 and Lx×Ly×Lz = 106δin×8.3δin×9.6δin, respectively.

For both cases an 8th order finite difference scheme is used to compute the Eulerian flux and
standard 4th order finite difference scheme is used for the viscous flux. A 8th order standard
explicit filter is applied every 5 interations with an amplitude coefficient of 0.4 in x and 0.05 in y.
Time integration is obtained by a 4th order standard Runge-Kutta scheme in time with a CFL
equals to 0.9. The numerical tools have been described with more details in chapter 2.

4.1.2 Skin friction coefficient and boundary layer thicknesses

The van Driest transformation and the Kármán-Schoenherr correlation have been introduced
in the previous chapter. In order for the compressible data to collapse on the incompressible
ones, we use the van Driest transformation (as usually done [67, 74, 98]. . . ). In figure 4.1,
the skin friction coefficient is compared with the Blasius and Kármán-Schoenherr correlation.
Evolution of the skin friction coefficient is given in function of the streamwise station x/δin and
Reθinc = ρeueθ/µw.
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Figure 4.1: Incompressible skin friction coefficient (see table 4.1 for nomenclature).

In figure 4.2, we compare the incompressible shape factor obtained by LES with the two DNS
[74, 93] and an empirical correlation. Our data lays between Schlatter and Örlü [93] DNS
data and an incompressible empirical correlation that holds for an incompressible equilibrium
turbulent boundary layer [25]:

Hth =
1

1−G
( cf

2

)1/2 (4.1)

where G = 6.3 is the Clauser shape factor.
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Figure 4.2: Mean incompressible shape factor Hi with Hth defined in (4.1). See table
4.1 for nomenclature.

.
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4.1.3 Mean flow and turbulence statistics
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Figure 4.3: Favre-averaged van Driest velocity profile uvd in inner scaling: u+ = uvd/uτ
and y+ = yuτ/ν (see table 4.1 for nomenclature)

In figure 4.3, the van Driest transformation of the velocity in the streamwise direction is plot-
ted. This transformation accounts for compressibility effects and thus allowing compressible and
incompressible velocity data to match (see section 5.2c). A similar scaling is provided for the
fluctuating quantities (figure 4.4). Time-averaged root mean square is replaced with density
weighted Favre-averaged root-mean square

φrms =

√
φ′′φ′′ → φ̃rms =

√
ρ

ρw

√
φ̃′′φ′′

We observe that the current LES results are mostly in the interval define by the two DNS
references.
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Figure 4.4: uirms and u′′v′′ in inner scaling. (see table 4.1 for nomenclature)

4.1.4 Turbulent Kinetic Energy budget

In figure 4.5, we compare the density scaled TKE budget terms with those of Schlatter and
Örlü [93]. The terms T ,P ,V , and D reported in figure 4.5, represent the different contributions
to the turbulence kinetic energy budget.

C =
∂ρ̄ũjk

∂xj
(4.2)

T = − ∂

∂xj

[
1

2
ρ̄ũ′′i u

′′
i u
′′
j + p′u′′j

]
(4.3)

P = −ρ̄ũ′′i u′′j
∂ũi
∂xj

(4.4)

V =
∂σ′iju

′′
i

∂xj

D = σ′ij
∂u′′i
∂xj

+ F +M (4.5)

Where F and M are the explicit filter and the sub-grid model contribution to the dissipation. We
observe a good collapse of our data indicating that the compressibility effects are weak when we
account for the density variation effects (as mentioned by Pirozzoli and Bernardini [74]).
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Figure 4.5: Turbulent kinetic energy budget in the TBL (see table 4.1 for nomencla-
ture)

4.2 Transonic shock-wave turbulent boundary layer inter-
action

To check the validity of our approach for the simulation of an incipient transonic interaction, we
carry out an LES under the conditions corresponding to the DNS of Pirozzoli et al. [76]. The
parameters of the simulation are given in table 4.2.

Case Mach Reθi Hi0 legend
DNS of Pirozzoli et al. [76] 1.3 1215 1.44 dash-dot
Exp. of Delery and Marvin [28] 1.3 7526 1.30 circle
Current LES 1.3 1300 1.43 line

Table 4.2: Boundary layer and flow properties at the origin of the interaction (subscript 0).

4.2.1 Scaling parameters

Let Lint be the interaction length scale, it is defined as the distance between the sonic point
location (where the isentropic wall Mach number equal one, Mw = 1) and the origin of the
interaction. The origin of the interaction is defined as the point where the pressure “starts to
rise and attains pw = 1.005p∞”[76].

In order to account for the variation of the pressure upstream of the shock due to the pressure
interaction effects (a leading edge followed by expansion waves), we take for p∞ the value of the
wall-pressure at a distance of the leading edge of 15δin. Lint is then use to scale the streamwise
coordinate x∗ = (x− x0)/Lint.

For the zero-pressure-gradient boundary layer a useful length scale is the boundary layer thickness
defined as the distance from the wall where the velocity is 99% of the undisturbed upstream
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velocity. This length scale is not well defined if the velocity at the edge of the boundary layer
(ue) vary in x. In the DNS used for the comparison [76], the edge of the boundary layer is defined
as the wall-normal (y) station where the vorticity is equal to 0.005u∞/δin. For the purpose of
doing meaningful comparisons, we use this definition hereafter.

4.2.2 Mesh and resolution

We report in figure 4.6 the grid spacing in the streamwise direction scales in wall units . One can
see that the mesh is stretched before and after the shock to decrease the computational cost. The
streamwise grid spacing is near or lower than 30 wall units in the undisturbed turbulent boundary
layer (∆+

x ' 30) and reaches 10 wall units around the shock location (∆+
x . 10). It remains

lower than 25 past the interaction region. The current LES resolution is ∆+
x ×∆+

yw ×∆+
z ' 30−

10−25×1.0×15 and the computational domain extent is Lx×Ly×Lz = 110δin×350δin×7/δin,
where δin is the boundary layer thickness at the inflow.

Indeed, previous computation with a coarser resolution (∆+
x ' 20 around the shock) were not

perfectly collapsing with the DNS dataset. In order to validate our code and to remove any
possible doubt, we decide to compute the solution on a finer mesh (in x) and the results are
shown in the section. Solely a slight difference has been observed with the mesh whose resolution
is ∆+

x ' 20.

For the DNS, the resolution and computational domain extent are ∆+
x ×∆+

yw ×∆+
z ' 4.5−7.5×

1.1× 5 and Lx× Ly × Lz = 106.8δin × 427δin × 12.8δin, respectively.

Figure 4.6: Evolution in the streamwise direction of the streamwise spacing in wall
units.

4.2.3 Wall statistics

An excellent collapse with the DNS dataset of Pirozzoli and Bernardini [74] is obtained on
“isentropic” wall Mach number1 (figure 4.8), mean wall pressure (figure 4.7) distribution and
skin friction coefficient (figure 4.9).

1Mach number related to the mean wall pressure through isentropic relation
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Figure 4.7: Wall pressure distribution along the streamwise direction (x) for the tran-
sonic shock-wave turbulent boundary layer interaction at M∞ = 1.3 and Reθin = 750.

Figure 4.8: Isentropic wall Mach number for the transonic shock-wave turbulent bound-
ary layer interaction at M∞ = 1.3 and Reθin = 750.

As we can see in figure 4.9, between x∗ ∈ [−2;−1] the present LES skin friction increases and
approaches the DNS result. Looking at figure 4.6, it seems that an increase in resolution is
the cause of this phenomenon (our turbulent inflow being done with a coarser mesh to reduce
the computational cost.) Finally, considering that the present LES Reynolds number is slightly
different at the reference station (we have Reθi = 1300 against Reθi = 1215 for the DNS of
reference of Pirozzoli et al. [76]), this explains the small difference in the skin friction at the
reference station. The figure confirms that our resolution is sufficiently fine in the interaction
area to reproduce the skin friction since our results are matching the one of the DNS of reference
in the area downstream of x∗ = 0.
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Figure 4.9: Skin friction coefficient for the transonic shock-wave turbulent boundary
layer interaction at M∞ = 1.3 and Reθin = 750.

4.2.4 Boundary layer thickness trough the shock

In figure 4.10, we plot the boundary layer displacement and momentum thickness divided by
their respective values at the beginning of the interaction. Results are almost collapsing with
the DNS results in both amplitude and behaviour. The vertical lines show the location of the
refined mesh in x where a constant spacing of ∆+

x = 10 is applied (see figure 4.6).

(a) (b)

Figure 4.10: Boundary layer thickness for the transonic shock-wave turbulent boundary
layer interaction at M∞ = 1.3 and Reθin = 750.

The small differences in the shape factors are likely due to differences in the inflow boundary
layer thickness.
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(a) (b)

Figure 4.11: Shape factors for the transonic shock-wave turbulent boundary layer
interaction at M∞ = 1.3 and Reθin = 750.

4.2.5 Pressure gradient and velocity profile

The streamwise distribution of the velocity profile at the edge of the vorticity boundary layer is
the same. This is illustrated in figure 4.12.

Figure 4.12: Mach number at the edge of the vorticity boundary thickness for the
transonic shock-wave turbulent boundary layer interaction at M∞ = 1.3 and Reθin =
750.

In figure 4.13, we compare the velocity profile at two streamwise positions x1 (upstream of the
interaction, x∗ = −0.2) and x5 (downstream of the interaction, x∗ = 1.69). The results shows
that the LES results collapse with the DNS ones.
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Figure 4.13: Velocity profile normalized by local boundary-layer thickness and local
mean external velocity at x1 = −0.2 and x5 = 1.69 for the transonic shock-wave
turbulent boundary layer interaction at M∞ = 1.3 and Reθin = 750. Lines, current
LES; symbols, DNS of Ref. [76]

4.2.6 Fluctuations and turbulent kinetic energy budget

In this section we compare the turbulent statistics beginning with the Reynolds stresses at x1

and x5. In order to underline the streamwise evolution of the Reynolds stresses Rij = −ũ′′i u′′j
and TKE, the reference inner velocity length scale is taken at the reference station (x∗ = 0,
subscript “ref”). In Figures 4.14 and 4.15, all terms are scaled by the density ratio ρ/ρw,ref and
non-dimensionalised by uτ,ref .
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Figure 4.14: Reynolds stresses for the transonic shock-wave turbulent boundary layer
interaction at M∞ = 1.3 and Reθin = 750. Red curve, uu∗, blue curve vv∗, cyan curve
ww∗ and green curve uv∗. Lines, current LES; symbols, DNS of Ref. [76]

The terms C,T ,P ,V , and D reported in figure 4.15, represent the different contributions to the
turbulence kinetic energy budget. Upstream of the interaction, the LES collapses with the DNS
while downstream of the interaction figure 4.14b, the differences are likely to be due to differences
in the streamwise evolution of the skin friction velocity.
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(a) x1 (advection is not shown) (b) x5 (viscous diffusion is not shown)

Figure 4.15: TKE budget for the transonic shock-wave turbulent boundary layer
interaction atM∞ = 1.3 andReθin = 750. Red curve, production, blue curve, turbulent
transport, cyan curve, dissipation, green curve, diffusion and brown curve, advection.
Lines, current LES; symbols, DNS of Ref. [76]

4.2.7 Qualitative visualisation

A more complete representation of the flow is reported in the following figures where the isosurface
of Q criterion is represented.

Figure 4.16: Q criterion (Q = −0, 15(U∞/δ0)2), coloured with the local Mach number
(M = [0 ; 1.0] blue to red, M = [1.0 ; 1.3[ white to black, M = 1.0 is in white). Shock
position is shown in black with an isosurface of the streamwise velocity derivative.
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Figure 4.17: Zoom on the interaction area. Q criterion (Q = −0, 15(U∞/δ0)2), coloured
with the local Mach number (M = [0 ; 1.0[ blue to red, M = [1.0 ; 1.3] white to black,
M = 1.0 is in white). Shock position is shown in black with an isosurface of the
streamwise velocity derivative.

4.3 Supersonic turbulent boundary layer in a rectangular
duct: influence of the mean inflow conditions on the
wall bisector and the corner flows

This last validation case has lead to a presentation at the AIAA conference. In the following, we
consider the undisturbed flow in a rectangular duct at M = 1.61. The geometry and the selected
inflow conditions correspond to the case of the experiment of Carroll and Dutton [21] and of
the wall-resolved LES of Morgan et al [67, 68]. To inhibit the formation of shocks, (supersonic)
non reflecting outflow conditions are imposed at the exit plane. The length (Lx) of the duct (of
interest for the analysis) is 400mm; the width (Lz) and the height (Ly = 2h) are, respectively,
76.2mm and 33.75mm.

The simulations have been carried out on a Cartesian non uniform grid consisting of 1402 ×
279 × 515 points. The streamwise extent (Lx), the spanwise length (Lz) and the duct height
(Ly), expressed in δin units, are, 109.3, 9.2 and 20.7 respectively; the mesh resolution in wall
units is ∆+

x ' 20, and ∆+
y and ∆+

z vary between 1 and 15.
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xin, exp = 264.8mm xout

Lx = 400mm

Lz = 76.2mm

Ly = 33.75mm

Figure 4.18: Schematic of the rectangular duct geometry.

The present work deals with supersonic flow in a rectangular duct, and focuses on the use of
a RR strategy and on the sensitivity of the flow topology upon the turbulence properties at
the inflow by considering two different mean inflow conditions. One (Case A) is based on the
assumption that the boundary layers developing along adjacent walls are loosely coupled. The
other (Case B) is based on a strategy that accounts for near-corner effects by injecting at the
inlet the rescaled mean flow extracted at the recycling station, as is done for the turbulence
inflow generation.

Case A:
At the inflow, the van Driest transformation mean velocity distribution is computed assuming

a turbulent flat plate boundary layer profile. For the wall-binormal direction y we have:

u+
vd =





1

κ
log(1 + κy+) + C1

(
1− exp(−y

+

η1
)− y+

η1
exp(−by+)

)
+ k0 sin

(π
2
y/δin

)2

(y < δ)

uvd∞/uτ (y ≥ δ)
(4.6)

where b = 0.33, C1 = − 1
κ log(κ) + C, C = 5.2, η1 = 11, κ = 0.41 is von Karman constant and

k0 = uvd∞/uτ − 1
κ log(1 + κδ/δν) + C1

(
1− exp(− δ/δνη1 )− δ/δν

η1
exp(−bδ/δν)

)
.

The mean velocity along the wall-binormal direction y is then obtained by the inverse van
Driest transformation. Similar distributions are used for the other wall-binormal directions.
The coupling between adjacent walls is then enforced through a weighting function based on the
inverse squared wall distances. The pressure is assumed to be uniform and the mean density is
determined from the Crocco-Busemann integral.

Case B:
In Case B we account for near-corner secondary flow by redistributing at the inlet the “Case

A” mean variables extracted at the recycling plane and rescaled in the units of the inflow plane,
as done for the generation of the fluctuating field. This treatment is similar to the one described
by Morgan et al [67] where the mean flow component is recycled and imposed as an inflow
condition.

To highlight the influence of the mean inflow component, we analyze the flow properties at the
centerline (z = Lz/2), and in two transverse planes located, respectively, at x/δin = 25 and
x/δin = 60. For all cases, the recycling station is fixed at xrec = 18.5δin.
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4.3.1 Analysis along the wall bisector (z = Lz/2)

In figures 4.19 and 4.20 we report the distribution of the van Driest mean velocity component
(in wall unit, left panel) and the normal Reynolds stress (in outer unit, right panel) at various
distances from the inlet; in figure 4.19 we also report the results of the undisturbed flow analysis
of Morgan [67]. At a given location (x/δin = 25) we observe that the mean inflow conditions
have some influence on the evolution of the boundary layer, as inferred both from the differences
in the velocity and Reynolds stress distributions reported in figure 4.19. The figure also shows
that Case B results compare most favorably with the LES reference of Morgan[67]. At a distance
from the inlet where the Reτ is the same both for Case A and Case B the dependence on the
mean inflow conditions is weak (see figure 4.20).

In figure 4.21 we report the distributions of the displacement and momentum thicknesses (nor-
malized by δin, left panel) and of the skin friction coefficient (right panel) at the mid-longitudinal
plane as a function of the streamwise coordinate (x) scaled by the inflow boundary layer thick-
ness. The figure shows that the growth rate of the boundary layer thicknesses and the skin
friction coefficient are weakly dependent of the mean inflow conditions.
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Figure 4.19: Undisturbed flow simulation. Sensitivity to mean inflow conditions. Dis-
tribution of the van Driest mean velocity u+

vd (left panel) and of the normal Reynolds
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′
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τ ))1/2 in inner unit. Dashed line, Case A (x/δin = 25,
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Figure 4.20: Undisturbed flow simulation. Sensitivity to mean inflow conditions. Dis-
tribution of the van Driest mean velocity u+

vd (left panel) and of the normal Reynolds

stress components (ρũ′iu
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2
τ ))1/2 in inner unit. Dashed line, Case A (x/δin = 63,

Reτ = 380); solid line, Case B (x/δin = 56, Reτ = 380).
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Figure 4.21: Distribution of the displacement δ∗, and momentum θ thicknesses normal-
ized by δin (left panel) and of the skin friction coefficient (right panel) as a function of
x/δin. Dashed line, Case A; solid line, Case B.

4.3.2 Analysis in the transverse plane

Turbulent flows in non circular ducts (either squared or rectangular) are characterized by sec-
ondary motions where fluid elements possess an angular velocity in the streamwise flow direction.
Secondary flows are associated with non-zero streamwise vorticity component that exists only if
the transverse velocity components are non zero. The main streamwise flow determines trans-
verse turbulence components and correlations, while the streamwise vorticity is the result of
convection, diffusion due to molecular effects, vortex stretching, baroclinic torque (associated
with the pressure gradient and density variations) and stress-induced mechanism due to turbu-
lence.

In order to further elucidate the influence of the near-corner secondary flow and the dependence
upon the mean inflow condition, we analyze the distribution of the Reynolds stress components
(both the normal and the off-diagonal ones) and the mean streamwise vorticity component in
the transverse plane. For the analysis, as proposed by Morgan [67], all quantities are time and
quadrant averaged.

In figure 4.22 we report the mean streamwise velocity component ũ (panel (a)), the mean trans-
verse velocity components ṽ (panel (b)) and w̃ (panel (c)) at x/δin = 60. The figure shows that ũ
varies along the corner bisector and that secondary flows due to corner effects induce transverse
flow parallel to each wall, and consequently,ṽ and w̃ are non-zero. As observed by Brundrett
and Baines[18] and also found by Morgan[67], near-corner secondary flow produces two counter
rotating vortices per quadrant, which are fed by the induced motion of fluid elements that move
toward the corner in the bisector direction and divert around the corner in the directions parallel
to the walls.

The mechanism of streamwise vorticity generation is of primary importance for the establishment
of secondary flows. The Mach number of the simulation being rather low, the compressibility
effects are negligible[67] and the streamwise vorticity budget[18] reduces to

ρ̄v̄
∂ωx
∂y

+ ρ̄w̄
∂ωx
∂z

=
∂2ρ(w′2 − v′2)

∂y∂z
−
(
∂2

∂y2
− ∂2

∂z2

)
ρv′w′ + µ

(
∂2ωx
∂y2

+
∂2ωx
∂z2

)
(4.7)

where we have assumed that µ is constant. The equation shows that the streamwise vorticity
budget depends on the transverse motion (mean velocity components and their gradient on the
transverse plane) and on the effects of the turbulent stresses (the stress-induced generation) as
well as on viscous effects.

Figures 4.23 and 4.24 show, respectively, the iso-contours of the streamwise vorticity and the
stress-induced generation at two transverse planes (x/δin = 25 and x/δin = 60). The figures
show that the flow pockets (the near-corner counter-rotating vortices) are associated with the
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region where the streamwise vorticity is largest due to the dominant effect of the stress-induced
contribution, and confirms that the flow topology is weakly affected by the mean inflow condi-
tions.

The Reynolds stress tensor (whose components are reported in figures 4.25–4.30) is anisotropic.
From the figures, it can be seen that there is a reduction of the streamwise normal component
ũ′u′ close to the corner. Secondary flows induce a motion parallel to each wall, and both normal

stress components ṽ′v′ and w̃′w′ increase along each wall on a scale o(δ) from the corner. The

off-diagonal components ũ′v′, and ũ′w′ vary in the wall bisector direction and increase near the
corner. The ṽ′w′ component is one order of magnitude smaller; and it varies along the corner
bisector direction and exhibits a peak in the vicinity of the corner. Despite some differences in
the local friction Reynolds number at x/δin = 60 (Case A: Reτ = 362, Case B: Reτ = 395), the
topology of the transverse flow is not significantly affected by the inflow conditions when scaled
in outer units.

Further analysis on the dynamic of the secondary flows in the corner are not carried out. We
remind that the inflow used for case b is based on the results obtained for case a. We can assume
that one of the reason why case a and case b flows are similar is caused by the mean flow at
the inflow that are somehow correlated. This correlation biased the comparison and prevents us
from doing a deeper analysis. In order to continue the analysis, the two mean flow should be
uncorrelated and for instance obtained through RANS simulation with a linear eddy viscosity
and a non-linear one (in order to obtain secondary flows).
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Figure 4.22: Eleven evenly spaced contours of the velocity components in the transverse
plane, x/δin = 60. Dashed line, Case A; solid line and the background iso-contour, Case
B. (a) ũ/u∞ from 0 to 1; (b) ṽ/u∞ from −0.02 to 0.02; (c) w̃/u∞ from −0.02 to 0.02.
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Figure 4.23: Fifteen evenly spaced contours the mean streamwise vorticity (ω̃xδ/u∞)
from −2 to 2 at x/δin = 25 (left panel) and x/δin = 60 (right panel). Dashed line,
Case A; solid line and background iso-contours, Case B.
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Figure 4.25: Eleven evenly spaced contours of ũ′u′
1/2
/u∞ from 0 to 0.14 at x/δin =

25 (left panel) and x/δin = 60 (right panel). Dashed line, Case A; solid line and
background iso-contours, Case B.
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Figure 4.26: Eleven evenly spaced contours of ṽ′v′
1/2
/u∞ from 0 to 0.07 at x/δin =

25 (left panel) and x/δin = 60 (right panel). Dashed line, Case A; solid line and
background iso-contours, Case B.
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Figure 4.27: Eleven evenly spaced contours of w̃′w′
1/2
/u∞ from 0 to 0.07 at x/δin =

25 (left panel) and x/δin = 60 (right panel). Dashed line, Case A; solid line and
background iso-contours, Case B.
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Figure 4.28: Eleven evenly spaced contours of ṽ′w′/u2
∞ from −0.0005 to 0.0005 at

x/δin = 25 (left panel) and x/δin = 60 (right panel). Dashed line, Case A; solid line
and background iso-contours, Case B.
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Figure 4.29: Eleven evenly spaced contours of ũ′v′/u2
∞ from −0.002 to 0.002 at x/δin =

25 (left panel) and x/δin = 60 (right panel). Dashed line, Case A; solid line and
background iso-contours, Case B.
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Figure 4.30: Eleven evenly spaced contours of w̃′u′/u2
∞ from −0.002 to 0.002 at x/δin =

25 (left panel) and x/δin = 60 (right panel). Dashed line, Case A; solid line and
background iso-contours, Case B.
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Chapter Summary

• Multiples Large-Eddy-Simulations have been carried out to validate the numerical
tools on three test cases.

1) LES of a Mach-two-adiabatic-turbulent-boundary-layer
– The effect of the subgrid model is assessed: ILES is efficient and precise.
– The results match the reference compressible DNS and incompressible DNS,

where appropriate.
– Using the van Driest transformation compressible results collapse on the in-

compressible ones
2) LES of transonic interaction in a Mach 1.3 external flow

– The case is designed to test the outflow boundary condition that impose the
outflow pressure

– A DNS of a transonic interaction is successfully reproduced in LES with a
coarser mesh

3) LES of boundary layers spatially developing inside a rectangular duct
– Similar results are observed with two different mean inflow conditions
– The turbulent inflow boundary condition gives satisfying results

• The results of those LES have shown our capacity to carried out LES of turbulent
wall-bounded flow: 1) without shock on a flat plate, 2) with a normal shock and 3)
inside a diffuser without shock.

→ all the required ingredients have been tested.
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Chapter 5

Side walls effect on shock-train
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In this chapter, we discuss large eddy simulations of a Mach 1.61 shock-train in constant rectan-
gular ducts at various aspect ratios (AR=W/H), W and H being the spanwise extent and the
height respectively. Four aspect ratios are considered AR=∞; 5; 2.257; 1.5 (The AR=∞ case
corresponds to a simulation where periodic boundary conditions are imposed in the spanwise
direction). Simulations are carried out without sub-grid model corresponding to the approach
previously called ILES. Results are compared with the simulations of Morgan et al. [68] and with
the experiment of Carroll and Dutton [21], where appropriate.

5.1 Parameters of the study

In the present thesis we focus on the experiment of Carroll and Dutton [21] of a Mach 1.61 shock-
train in a slightly diverging rectangular duct. The divergence angle of both inner and upper walls
being very small (0.13◦ for each wall), as in Ref. [68], we assume a constant rectangular duct whose
length, height and width (Lx×Ly×Lz) are set equal to 400mm×33.75mm×76.2mm. Similarly,
to ensure adequate mesh resolution, the Reynolds number based on the boundary layer thickness
at the beginning of the interaction is set one order of magnitude less than the experimental value
(Reδ ∼ 15000, that is approximately the same value than in Morgan et al. [68]). As described
in section 3.2.2, we use a recycling-rescaling method for the turbulence generation at the inflow
according to the approach proposed by Boles et al. [12] and used by Morgan et al. [68]. The
latter introduces a separate mesh to simulate the undisturbed boundary layers developing on
the wall to generate the inflow turbulence on the so-called interaction mesh (i.e. the one used
for the shock-train simulation). By doing-so, the effect of the leading edge shock on the inflow
turbulence are weakened.

A confinement parameter is defined as the ratio of the boundary layer thickness at the beginning
of the interaction δ2 divided by the half-height h. In order to match the confinement parameter
of Ref. [21], as done by Morgan et al. [68], we have varied the outflow pressure so as to match
the location of the initial shock (AR = 2.257 and AR = 1.5). For the higher aspect ratio
cases (AR=5; ∞), we have let the shock-train system adapt to the outflow conditions that are
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unchanged with respect to the experiment. The parameters of the study are reported in table 5.1
including the values of Morgan et al. [68] and Carroll and Dutton [21]; observe that subscript 1
and 2 indicate, respectively, the location where the confinement is equal to 0.32 and the beginning
of the interaction where the pressure starts to rise. A schematic summarized the main parameter
in figure 5.1.

Between the various AR cases we observe that the Reynolds number and the ratio δ2/h are not
equal between all cases. Differences in the Reynolds number at the beginning of the interaction
are small and are assumed to be negligible. The variation of the parameter δ2/h has been
studied experimentally by Dutton and Carroll [36] and may modify the shock-train (length,
recovery pressure . . . ). Nonetheless, due to the fact that the width variation is one order of
magnitude higher than the variation of δ2/h, we may assume that the dominant effect is the
variation of the width. For AR = 1.5 and AR = 2.257 the parameter δ2/h is constant and for
cases AR = 5 and AR =∞ it varies less than 10%.

Lx = 400mm

Lz = 76.2mm=W

Ly = 33.75mm=H

midplane z = Lz/2

h=Ly/2

x2x1

δ

xin

δ = 0.32h δ2

Figure 5.1: Schematic of the duct geometry. Subscript 1 and 2 indicate, respectively,
the location where the confinement (δ/h) is equal to 0.32 and the beginning of the
interaction (the location where the pressure starts to rise).

The mesh parameters (number of nodes Nx, Ny and Nz, mesh extent Lx, Ly and Lz normalized
by the boundary layer thickness at x1, and grid-spacing in wall units at the beginning of the
interaction) are given in table 5.2. In table 5.3 we report the initial time (t0) at which data is
collected for statistics and the period of integration (T) both in the boundary layer outer units
δ1/u∞ and in throughput time units

√
γM∞.Lx/u∞.

AR x1/δ1 x2/δ1 δin/h δ1/h δ2/h Reδ2 pout/pin
∞ 14.2 25.3 0.24 0.32 0.39 19000 2.23170
5.0 14.0 19.0 0.24 0.32 0.35 16400 2.23102
2.257 14.0 14.0 0.24 0.32 0.32 15300 2.04967
1.5 12.9 12.0 0.24 0.32 0.31 15000 1.93472

∞, case ’L3’ of Ref [68] 9.96 18.9 0.27 0.32 0.36 18200 2.23085
2.257, case ’L2’ of Ref [68] 6.15 6.15 0.27 0.32 0.32 16200 2.04623

2.257, experiment of [21] 0 0 0.32 0.32 0.32 O(106) 2.23085

Table 5.1: Confinement parameters for the current LES of periodic shock-train and LES of shock-
trains in ducts of various aspect-ratio, and, for the two LES of Morgan et al. [68] that consist of
a periodic shock-train and a shock-train with an aspect ratio of 2.257; and for the experiment of
Carroll and Dutton [21].
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Centreline flow properties (z = Lz/2)

For comparison, all data are reported in the rescaled coordinate (x − x2)/δ1. The LES being
highly resolved, to meet storage constraints, only data at the spanwise mid-plane z = Lz/2 and
at the upper walls are stored at all times at a sampling rate of 0.19δ1/u∞. We observe that for
the case AR=5, the period over which the data are collected is rather short (due to shortage
on computational time), hence, an 8th order filter is applied to the data for post-treatment. A
similar filter is applied for the post-treatment of the wall normal derivatives used to draw the
friction lines (see the following section).

AR Nx Ny Nz Lx/δ1 Ly/δ1 Lz/δ1 ∆+
x ∆+

y ∆+
z Points (×106)

∞ 1402 279 188 74 6.25 6.45 21 0.9-13-0.9 13 73.5
5.0 1402 279 1023 74 6.25 31.25 21 0.9-13-0.9 0.9-13-0.9 400.1
2.257 1402 279 515 74 6.25 14.1 21 0.9-13-0.9 0.9-13-0.9 201.4
1.5 1402 279 375 74 6.25 9.39 21 0.9-13-0.9 0.9-13-0.9 146.7

∞, Ref [68] 1601 401 131 74 6.25 3.0 20 1-10-1 10 85.4
2.257, Ref [68] 1072 289 515 74 6.25 14.1 30 1-15-1 1-15-1 159.6

Table 5.2: Mesh parameters for the current LES of periodic shock-train and LES of shock-trains
in ducts of various aspect-ratio, and, for the two LES of Morgan et al. [68] that consist of a
periodic shock-train and a shock-train with an aspect ratio of 2.257. For our simulations the
spacing is given in inner unit at the location x2. Region of stretching are indicated with a dash.

AR 1.5 2.257 5.0 ∞
T 104 300 52 300
t0 1242 867 660 760

(a)

AR 1.5 2.257 5.0 ∞
T 0.8 2.2 0.4 2.2
t0 8.8 6.1 4.7 5.4

(b)

Table 5.3: Time-integration parameters for the statistics of the current LES, where t0 is the
initial time at which data is collected for statistics and T is the period of integration. (a) time
is normalized by δ1/u∞; (b) time is normalized in throughput time (

√
γM∞.Lx/u∞).

5.2 Centreline flow properties (z = Lz/2)

In figure 5.2 we report the contours of the mean gradient density magnitude at various aspect
ratios (AR=∞, panel a; AR=5, panel b; AR=2.257, panel c; AR=1.5, panel d)

For all cases, the flow is propagating from left to right and an initial shock, which is curved,
is located between (x − x2)/δ1 = 3 and 4. The flow is compressed by a second and a third
shocks located between (x − x2)/δ1 = 8 and 9, and around (x − x2)/δ1 = 13, respectively.
Along the bottom and top walls (y = 0 and y = 6.25)the boundary layers thicken just after
x2, where oblique compression waves are progressively imposing an adverse pressure gradient,
and secondary shocks become weaker and are straighter in the streamwise direction. During the
compression, the thickening of the boundary layers reduces the effective section. This reduction
acts as an aerodynamic nozzle making the flow to accelerate.

Careful examination reveals evidence of slip lines close to the core of the flow (at wall distance
where the compression waves and the initial shock merge). Weaker secondary shocks are visible,
increasing of number as the aspect ratio is decreased (for AR=1.5 secondary shocks can be seen
until at least (x − x2)/δ1 ∼ 40). In the case AR=1.5, the shocks are stronger. As observed
by Morgan et al. [68], the farther the initial shock is located downstream, the weaker is the
second shock and the confinement ratio δ/h is higher. We observe that the secondary shock of
the AR=2.257 case is slightly stronger than the cases with larger aspect ratio (however, those
cases have higher confinement parameter). The AR=1.5 case has the same confinement than the
AR=2.257 case, and it exhibits stronger secondary and tertiary shocks.
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(a)

(b)

(c)

(d)

Figure 5.2: Contours of the density gradient magnitude between 0 (white) and 1.5
(black). (a) periodic boundary conditions in the spanwise direction (AR=∞); (b)
AR=5; (c) AR=2.257; (d) AR=1.5

5.2.1 Boundary layer scales and wall pressure signature

In this subsection we compare the different boundary layer scales with the experimental results
of Carroll and Dutton [21] and the LES results of Morgan et al. [68].

Various definitions of the boundary layer thickness can be found in the literature. In the previous
chapter, we have used two of those definitions: for the supersonic boundary layer, the boundary
layer thickness is usually defined as the wall distance where the velocity reaches the value of 99%
of u∞; for the transonic case, it is defined as the wall distance where the vorticity magnitude
reaches 0.005. In this section, the boundary layer thickness δ is defined as the wall-distance
where the velocity reaches 99% of the velocity at the center of the duct, noted uc(x), and the
momentum and displacement thicknesses are computed through equations 3.10 and 3.11 that
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become

δ∗(x, z) =

∫ δ

0

(
1− u(x, y, z)

uc(x)

)
dy (5.1)

θ(x, z) =

∫ δ

0

(
1− u(x, y, z)

uc(x)

)
u(x, y, z)

uc(x)
dy (5.2)

The streamwise distribution of the characteristic boundary layer scales are reported in figure 5.3
(AR=∞ and AR=5 cases) and in figure 5.4 (AR=2.257 and AR=1.5 cases). The results are com-
pared with the simulation of Morgan et al. [68] and the experiment of Carroll and Dutton [21].
The quantities are normalized by the duct height (panels a,c,d) and by the corresponding value
at the origin of the interaction (panels e,f). From the experimental distribution we observe that:
1) the boundary layer thickness is continuously increasing; 2) the displacement thickness is max-
imum close to the initial shock location and then continuously decreases; and 3) the momentum
thickness is still growing downstream of the initial shock until a location (x− x2)/δ1 ∼ 30. The
results show that higher aspect ratios geometries tend to have thicker boundary layer down-
stream of the shock-train than cases with smaller aspect ratios. The boundary layer scales have
an oscillatory behaviour through the shock-train and a rather smooth distribution downstream.
Three local minimum are observed at the location of the primary, secondary and tertiary shock
((x− x2)δ1 ∼ 3.5; ∼ 5; ∼ 13, respectively).

A possible explanation for this behaviour is that the boundary layers developing along each
wall are submitted to successive variations of the pressure gradient, and multiple compressions
and expansions lead to oscillations of the boundary layer thicknesses. During compressions,
the boundary layer is thickened by the adverse pressure gradient, while in the expansion, the
favorable pressure gradient makes it thinner. Nonetheless, the shocks seem to be localized close
to the local minima of the boundary layer thicknesses. This is probably caused by the use of the
centreline velocity in the definition of the boundary layer thicknesses (equations 5.1 and 5.2).
Curvatures of the shocks are minimum at the centre of the duct. This induces a local minimum in
the velocity profile at the centre of the duct1 and consequently for these minima in the boundary
layer thicknesses. The minima of the first oscillations are located just downstream of the first
shocks or at the end of strong compression waves.

We can see that the position of the end of the first shock is the same for all cases. Nonetheless,
a progressive lag appears in the position of the downstream compressions. This may be due to
the use of δ1 for the normalization which is a fixed value (δ1 = 0.32h) independent of the physics
of the flow.

The distributions of the incompressible displacement and momentum thicknesses show some
discrepancies with respect to the experimental results and those of Morgan et al. [68] (panel c
and d of figures 5.3 and 5.4). When rescaling δ∗i and θi by their values at the beginning of the
interaction, a better agreement with the experiment is observed (panel e and f of figures 5.3
and 5.4). In particular, this result seems to indicate that the half-height of the duct is not the
appropriate length to scale the boundary layer thicknesses. The displacement and momentum
thicknesses of AR=2.257 case nearly matches the experimental values of Carroll and Dutton [21].
The case AR=5 exhibits an oscillation at the end of the computational domain that is likely
caused by the short time of integration of the statistics.

For all cases, the incompressible shape factor (panel b of figures 5.3 and 5.4) exhibits a first peak
at (x−x2)δ1 ∼ 5 with an amplitude ∼ 2.5−2.8. After this peak, it decreases with different slopes
depending on the value of the aspect ratio. Cases with higher aspect ratio tend to have an higher
incompressible shape factor past the first shock. The collapsing of the data tends to indicate that
the incompressible shape factor downstream of the initial shock may not be strongly influenced
by the initial Reynolds number, at least for the lower AR cases (panel b figure 5.4).

Morgan et al. [68] point out that the observed discrepancies with respect to the experimental
results may be ascribed either to differences in the geometry (constant section versus diverging)

1This is observed in the next subsection in subfigures 5.9 (e) and 5.10 (e)

78



Centreline flow properties (z = Lz/2)

and/or in the assumed Reynolds number of the simulation. The better matching of the present
simulations with the experimental data seems to indicate that this conclusion has to be taken
with caution and that other factors may be at the origin of the discrepancies.

In figure 5.5 we report the mean wall pressure distribution (panel a, AR=∞ and AR=5 cases;
and panel b, AR=2.257 and AR=1.5 cases) as a function of the rescaled variable (x − x2)/δ1
at the centerline plane (z = Lz/2). We observe that due to differences in the outflow pressure,
the mean wall pressure relaxes to a value lower than the experimental one (figure 5.5). However,
the pressure increase across the initial shock-train well compares with the experiment. For the
higher AR cases, having imposed the same outflow pressure condition, the mean wall pressure
distribution is very close to the periodic shock-train simulation of Morgan et al. [68]. Figure 5.5
(b) shows that mean wall pressure distribution is lower than in the simulation of Morgan et al. [68]
The AR=2.257 case exhibits a mean wall pressure distribution lower than the one reported by
Morgan et al. [68]. The distance between the inflow plane and the beginning of the interaction
being greater than in Ref. [68] and the side wall effects being greater for AR=2.257 and AR=1.5
may explain such difference. However, the extent of the shock-train is of the same order as the
one of Ref. [68]. As predicted in the case of an axisymmetric shock-train by Billig [8], our results
indicate that the pseudo-shock is affected by the aspect ratio. In particular, it decreases as the
aspect ratio decreases (varying between (x− x2)/δ1 ' 35 and 50).

Shown in figure 5.6 is the distribution of the skin friction as a function of (x − x2)/δ1 at the
centerline plane (z = Lz/2). The minimum value of Cf attained across the initial shock is
equal to the value of Ref. [21] and does not depend on the aspect ratio. This result may be
partially biased by the fact that the vertical confinement between the cases is slightly different.
Past the initial shock, the skin friction coefficient reaches higher values as the aspect ratio is
reduced.
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Figure 5.3: Streamwise distribution of the characteristic boundary layer scales for var-
ious aspect ratios evaluated at the centerline (z = Lz/2). (a) boundary layer thickness
scaled by the duct height; (b) incompressible shape factor; (c) displacement thick-
ness scaled by the duct height; (d) momentum thickness scaled by the duct height;
(e) displacement thickness scaled by its value at the beginning of the interaction; (f)
momentum thickness scaled by its value at the beginning of the interaction.
, AR=∞ current simulation; , AR=5 current simulation; × , AR=∞ LES
Ref. [68]; •, exp. Ref. [21], AR=2.257.
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Figure 5.4: Streamwise distribution of the characteristic boundary layer scales for var-
ious aspect ratios evaluated at the centerline (z = Lz/2). (a) boundary layer thickness
scaled by the duct height; (b) incompressible shape factor; (c) displacement thick-
ness scaled by the duct height; (d) momentum thickness scaled by the duct height;
(e) displacement thickness scaled by its value at the beginning of the interaction; (f)
momentum thickness scaled by its value at the beginning of the interaction. ,
AR=2.257 current simulation; , AR=1.5 current simulation; × , AR=2.257
LES Ref. [68]; •, exp. Ref. [21], AR=2.257.
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Figure 5.5: Wall pressure distribution along the centerline (z = Lz/2) scaled by the wall
pressure at the beginning of the interaction p2 for various shock-train configurations.
(a) , AR=∞ current simulation; , AR=5 current simulation; × ,
AR=∞ LES Ref. [68]; (b) , AR=2.257 current simulation; , AR=1.5 cur-
rent simulation; × , AR=2.257 LES Ref. [68]; •, exp. Ref. [21], AR=2.257.
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Figure 5.6: Streamwise distribution of the skin friction coefficient evaluated at the
centerline (z = Lz/2) for various shock-train configurations. Panel a, , AR=∞
current simulation; , AR=5 current simulation; × , AR=∞ LES Ref. [68];
Panel b, , AR=2.257 current simulation; , AR=1.5 current simulation;
× , AR=2.257 LES Ref. [68]; •, exp. Ref. [21], AR=2.257.
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5.2.2 Influence of the aspect ratio on the mean flow and turbulence
statistical properties

In this subsection we report mean and statistical turbulence properties evaluated at the mid-
plane for various aspect ratios and, where appropriate, the results are compared with the LES
data of Morgan et al. [68]. In particular we report the contours of the normalized mean
streamwise and wall-normal direction (y) velocity components u/u∞ and v/u∞, respectively,

the local Mach number (M =
√
ũ2 + ṽ2 + w̃2/

√
γRT̄ ), and the mean total pressure (defined

as pt = p̄
(
1 + 0.5(γ − 1)M2

) γ
γ−1 ), as well as their distributions as a function of y at various

streamwise locations.

From the contour of the mean velocity components (reported in figures 5.7 and 5.8) we observe
similarities in the flow topology independently of the aspect ratio. However, the scales and the
intensity of the shocks are affected by AR. The extent of the shock-train increases by reducing
the AR, while the length of the pseudo shock decreases (as already mentioned in subsection
5.2.1). The current results compare very well with the LES data of Morgan et al. [68] both in
the case of periodic spanwise boundary condition (AR=∞) and in the case corresponding to
the conditions of the experiment of Carroll and Dutton [21] (AR=2.257). Similarly, the velocity
profiles well compare with the results of Ref. [68] (figures 5.9 and 5.10).

We also observe that reducing the aspect ratio increases the effective aspect ratio parameter
(δ∗/W ) introduced by Ref. [17] and the “aerodynamic nozzle effect” is enhanced producing
stronger expansions of the core flow past the primary, secondary and tertiary shocks (Fig. 5.13).
The pressure losses (measured in terms of the local mean total pressure) are also strongly affected
by the width-to-height ratio. In particular, a decrease of the total pressure in the core of the flow
is observed when reducing the aspect ratio (Fig. 5.14, some doubt remain regarding the results
observed in the latter figure). Shown in figure 5.15, is the streamwise distribution of the total
pressure at various aspect ratios evaluated at the mid-plane (z = Lz/2) and at the duct centerline
(y = Ly/2). As discussed in a latter section2 a decrease in the aspect ratio affects the structure
of the interaction of the shocks steaming from the upper and the lower walls that changes from
regular to irregular thus affecting the pressure losses as observed in figure 5.15.

2See section 5.4
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.7: Contours of the streamwise mean velocity component in the longitudinal
midplane (z = Lz/2). Eleven evenly spaced contours from 0 to 1. Color contours,
current simulation; black contour lines, LES data of [68] for the same aspect ratio.
Panel a, AR=∞; panel b, AR=5; panel c, AR=2.257; panel d, AR=1.5
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.8: Contours of the mean velocity component in the wall-normal direction (y)
in the longitudinal midplane (z = Lz/2). Eleven evenly spaced contours from −0.1
to 0.1. Color contours, current simulation; black contour lines, LES data of [68] for
the same aspect ratio. Panel a, AR=∞; panel b, AR=5; panel c, AR=2.257; panel d,
AR=1.5
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Figure 5.9: Distribution of u/u∞ in the wall-normal direction (y) at twelve streamwise
locations in the longitudinal midplane (z = Lz/2). , AR=∞ current simulation;

, AR=5 current simulation; × , AR=∞ LES Ref. [68]
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Figure 5.10: Distribution of u/u∞ in the wall-normal direction (y) at twelve stream-
wise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 current
simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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Figure 5.11: Distribution of v/u∞ in the wall-normal direction (y) at twelve streamwise
locations in the longitudinal midplane (z = Lz/2). , AR=∞ current simulation;

, AR=5 current simulation; × , AR=∞ LES Ref. [68]
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Figure 5.12: Distribution of v/u∞ in the wall-normal direction (y) at twelve stream-
wise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 current
simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.13: Contours of the local Mach number in the longitudinal midplane (z =
Lz/2). Eleven evenly spaced contours from 0 to 1.61. (a) AR=∞; (b) AR=5; (c)
AR=2.257; (d) AR=1.5
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.14: Contours of the total pressure in the longitudinal midplane (z = Lz/2).
Eleven evenly spaced contours from 0.8 to 4.8. (a) AR=∞; (b) AR=5; (c) AR=2.257;
(d) AR=1.5
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Centreline flow properties (z = Lz/2)

Figure 5.15: Streamwise distribution of the total pressure at various aspect ratios
evaluated at the mid-plane (z = Lz/2) and at the duct centerline (y = Ly/2).

Shown in figure 5.16 to 5.30 are the Reynolds stress components (ũ′′u′′, ṽ′′v′′, w̃′′w′′, ũ′′v′′), and

the turbulent kinetic energy (k = (ũ′′u′′ + ṽ′′v′′ + w̃′′w′′)/2.0). The results of the 4 different
aspect ratio cases are reported in panel a, ,b, c, d (corresponding, respectively to AR=∞;5
;2.257; 1.5). The AR=∞ and AR=2.257 cases are also compared with the LES data of Morgan
et al. [68]. Twelve sections within the pseudo-shock region are selected, corresponding to the
rescaled positions (x− x2)/δ1 = [−1 , 0 , 1 , 2 , 4. , 6 , 8 , 10 , 15 , 20 , 30 , 40].

The figures show that the streamwise Reynolds stress component is mostly affected by the pri-
mary shock and its interaction with the boundary layer, and the pattern is similar independently

of AR (5.16). The wall normal and spanwise component ṽ′′v′′ and w̃′′w′′ are more affected by
the shear layer than by the shocks (figures 5.17 and 5.18). Generally very good qualitative and
quantitative agreement with the result of Morgan et al. [68] is observed both for the Reynolds
stress and the turbulent kinetic energy. Similar generally good comparison is observed for the
distributions at the various streamwise locations.

Overall, the mean statistical turbulent properties exhibits similarities in the distributions at the
various aspect ratio. The figure also show that the peak of the turbulence kinetic energy moves
away from the wall past the shock train in the mixing region.
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.16: Contours of the Reynolds stress ũ′′u′′/u2
∞ in the longitudinal midplane

(z = Lz/2). Eleven evenly spaced contours from 0 to 0.016. Color contours, current
simulation; black contour lines, LES data of Morgan et al. [68] for the same aspect
ratio. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.17: Contours of the Reynolds stress ṽ′′v′′/u2
∞ in the longitudinal midplane

(z = Lz/2). Eleven evenly spaced contours from 0 to 0.08. Color contours, current
simulation; black contour lines, LES data of Morgan et al. [68] for the same aspect
ratio. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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Centreline flow properties (z = Lz/2)

(a)

(b)

(c)

(d)

Figure 5.18: Contours of the Reynolds stress w̃′′w′′/u2
∞ in the longitudinal midplane

(z = Lz/2). Eleven evenly spaced contours from 0 to 0.08. Color contours, current
simulation; black contour lines, LES data of Morgan et al. [68] for the same aspect
ratio. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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(a)

(b)

(c)

(d)

Figure 5.19: Contours of the Reynolds stress ũ′′v′′/u2
∞ in the longitudinal midplane

(z = Lz/2). Eleven evenly spaced contours from −4.0 10−3 to 4.0 10−3. Color contours,
current simulation; black contour lines, LES data of Morgan et al. [68] for the same
aspect ratio. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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(a)

(b)

(c)

(d)

Figure 5.20: Contours of the turbulent kinetic energy k/u2
∞ in the longitudinal mid-

plane (z = Lz/2). Eleven evenly spaced contours from 0 to 0.018. Color contours,
current simulation; black contour lines, LES data of Morgan et al. [68] for the same
aspect ratio. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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Figure 5.21: Distribution of ũ′′u′′/u2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=∞ current
simulation; , AR=5 current simulation; × , AR=∞ LES Ref. [68]

0.0

1.0

2.0

3.5

y
/δ

1

(x− x2)/δ1 = −1.0 (x− x2)/δ1 = 0.0 (x− x2)/δ1 = 1.0

0.0

1.0

2.0

3.5

y
/δ

1

(x− x2)/δ1 = 2.0 (x− x2)/δ1 = 4.0 (x− x2)/δ1 = 6.0

0.0

1.0

2.0

3.5

y
/δ

1

(x− x2)/δ1 = 8.0 (x− x2)/δ1 = 10.0 (x− x2)/δ1 = 15.0

0.0 0.5 1.0
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Figure 5.22: Distribution of ũ′′u′′/u2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 current
simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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Figure 5.23: Distribution of ṽ′′v′′/u2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=∞ current
simulation; , AR=5 current simulation; × , AR=∞ LES Ref. [68]
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ṽ”v”/u2
∞
×10−1

0.0

1.0

2.0

3.5

y
/δ

1

(x− x2)/δ1 = 20.0

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5.24: Distribution of ṽ′′v′′/u2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 current
simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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Figure 5.25: Distribution of w̃′′w′′/u2
∞ in the wall-normal direction (y) at twelve

streamwise locations in the longitudinal midplane (z = Lz/2). , AR=∞ current
simulation; , AR=5 current simulation; × , AR=∞ LES Ref. [68]
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Figure 5.26: Distribution of w̃′′w′′/u2
∞ in the wall-normal direction (y) at twelve

streamwise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 cur-
rent simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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Figure 5.27: Distribution of ũ′′v′′/u2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=∞ current
simulation; , AR=5 current simulation; × , AR=∞ LES Ref. [68]
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Figure 5.28: Distribution of ũ′′v′′/u2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 current
simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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Figure 5.29: Distribution of k/u2
∞ in the wall-normal direction (y) at twelve streamwise

locations in the longitudinal midplane (z = Lz/2). , AR=∞ current simulation;
, AR=5 current simulation; × , AR=∞ LES Ref. [68]
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Figure 5.30: Distribution of k/ρ∞u
2
∞ in the wall-normal direction (y) at twelve stream-

wise locations in the longitudinal midplane (z = Lz/2). , AR=2.257 current
simulation; , AR=1.5 current simulation; × , AR=2.257 LES Ref. [68]
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5.3 Skin frictions patterns

In figures 5.31, 5.32 and 5.33, we report, respectively, the contours of the skin friction coefficient,
the skin friction lines and the contours of the spanwise shear (∂w/∂y) at various aspect ratios
in figures Contour lines of the wall pressure are also overlaid on the figures. The figures show
that the flow is not separated in the mean and that strong three dimensionality arise due to the
influence of side walls (Fig. 5.33). A deflection of the streamlines on a scale o(2−3δ1) is observed
and due to corner effects. Good comparison is observed between the AR=2.257 case (figure 5.32,
panel c) and the oil flow visualization of Ref. [21] (panel e). As the aspect ratio decreases
the expansions strengthen and, consequently, the skin friction exhibits stronger oscillations in
the streamwise direction. Due to side walls effects the flow separate in the proximity of the
corner.
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Figure 5.31: Contours of the skin friction coefficient in the plane y = Ly between −0.1
to 3.7 (×10−3) overlay with 8 isocontours of the wall pressure scaled by p2 (black
contour lines) from 1 to 1.7. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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(e)

Figure 5.32: Skin friction lines overlay with 8 contours of the wall pressure rescaled
by the wall pressure at the beginning of the interaction p2 (red contour lines) from 1
to 1.7. (a) AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5; (e) AR=2.257, Oil flow
visualization Ref. [21]
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Figure 5.33: Contours of ∂w/∂y for various shock-train configurations overlay with 8
isocontours of the wall pressure scaled by p2 (black contour lines) from 1 to 1.7. (a)
AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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5.4 Flow organization

The instantaneous contours of the density gradient at various aspect ratios at the y = Ly/2
plane and at the mid-plane z = Lz/2 are reported, respectively, in figures 5.34 and 5.35. The
figures show the strong influence of the aspect ratio on the flow topology. The structure of the
interaction between the shocks between the left (lower on the figure) and right walls changes
from irregular to quasi-regular when decreasing the aspect ratio (Fig. 5.34). The topology of
the shock-train in the mid-plane weakly affect by the aspect ratio and it remains similar for all
cases. The figure also show that bulgy turbulent structures inclined with respect to the wall
(typical of boundary layer under adverse pressure gradient) become stronger as the aspect ratio
decreases.
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(a) AR=∞

(b) AR=5

(c) AR=2.257

-5 0 10 20 30 40 50

(d) AR=1.5

(x− x2)/δ1

Figure 5.34: Instantaneous contours of the density gradient at various aspect ratios at
the y = Ly/2 plane as a function of the normalized streamwise variable x∗ = (x−x2)/δ1.
(a) AR=∞. (b) AR=5.0. (c) AR=2.257. (d) AR=1.5
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(a) AR=∞

(b) AR=5

(c) AR=2.257

-5 0 10 20 30 40 50

(d) AR=1.5

(x− x2)/δ1

Figure 5.35: Instantaneous contours of the density gradient at various aspect ratios at
the z = Lz/2 plane as a function of the normalized streamwise variable x∗ = (x−x2)/δ1.
(a) AR=∞. (b) AR=5.0. (c) AR=2.257. (d) AR=1.5
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Chapter Summary

• LES of a Mach 1.61 shock-train in constant rectangular duct with various aspect ratios
(AR=W/H) have been carried out. We have considered four aspect ratios AR=∞; 5;
2.257; 1.5

• The results are compared with the experiment of Carroll and Dutton [21] (AR=2.257)
and the two LES of Morgan et al. [68] (AR=∞ and 2.257).

– The displacement and momentum thicknesses of AR=2.257 case match the ex-
perimental values.

– Generally very good qualitative and quantitative agreement with the result of
Morgan et al. [68] is observed for the mean and turbulent quantities.

– Different outflow pressure are required to maintain the initial shock at a location
where the same confinement is observed

– We observe a better agreement with the experiment when rescaling δ∗ and θ by
their values at the beginning of the interaction

• Aspect-ratio and confinement effects
– The number of secondary shocks increases with confinement [20] and the shock-

train becomes shorter [8]. Our studies confirmed this findings except the AR=5
case for which small deviations are observed in the length of the pseudo-shock.

– Reducing the width, the “aerodynamic nozzle effect” is enhanced producing
stronger expansions of the core flow past the primary, secondary and tertiary
shocks.

– The minimum value of the centerline skin friction coefficient is not strongly af-
fected by the distance between side walls. This tends to indicate that the domi-
nant geometric scale to determine the minimum value of the skin friction, and so
the onset of separation, is the minimum between the height and the width.

– Further investigation are required as the vertical confinement δ2/h is slightly
higher for cases with larger width (smaller horizontal confinement). As shown by
Dutton and Carroll [36], this variation may change the final downstream pressure.

• Visualisations of the instantaneous density gradient magnitude show that the structure
of the shocks in the interaction on the upper and lower walls changes from irregular
to quasi-regular structures when decreasing the aspect ratio thus affecting the total
pressure losses.
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Chapter 6

Unsteady analysis of shock-train
interactions
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In the present chapter we focus on the unsteady effects of shock-train interactions. In particu-
lar, the interpretation focuses on the interpretation of low-medium frequency dynamics for the
AR=2.257 case, corresponding to the experimental conditions. For this test case, 13098 samples
are collected over a period of 2495δin/u∞ with a sampling frequency of u∞/0.19δin.

6.1 Wall pressure dynamics

In order to estimate the unsteady characteristics of shock-train, we have analysed the wall pres-
sure signatures. For that purpose, we define the Strouhal number in terms of characteristic scales
based on the interaction length (L) and the free-stream velocity. In the 2.5D interactions, L is
generally defined as the distance between the beginning of the interaction and the streamwise
station where isentropic Mach number 1 decreases to unity.

In shock-train interactions, due to aerodynamic nozzle effects that produce compressions and
expansions of the flow through the shocks, the isentropic Mach number remains above unit value.
As a consequence, the “classical” definition of L is not appropriate for the current analysis. We
have the used the empirical definition proposed by Delery and Marvin [28]

L ∼ 70δ∗2(1−Hi2) (6.1)

where subscript 2 indicates the position where the pressure starts rising (and Hi is the in-
compressible shape factor). This latter definition has also been used by Pirozzoli et al. [76] in
transonic interactions at M = 1.3. Computing the displacement thickness δ∗2 and momentum
one θ2 at the midplane (z = Lz/2) we obtain L ∼ 6.8δ1 ∼ 10δin. We then introduce the
rescaled variables x∗ = (x− x2)/L and the reduced frequency StL = fL/u∞. We also used the
reduce frequency based on the boundary layer thickness at the beginning of the interaction δ2
(Stδ2 = fδ2/u∞). Using 4 points per wavelength to resolve the smallest frequencies we obtain
the following resolvability limits: 4.10−3 < StL < 13 and 6.10−4 < Stδ2 < 1.9.

1the Mach number corresponding to the local mean wall pressure through the isentropic relations
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(a) (b)

Figure 6.1: Contour of the power spectral density of the wall pressure (PSD(pw)) on
the upper wall y = Ly (a) at a distance of 2 wall units from the lateral wall (z+ = 2);
(b) at the mid-plane (z = Lz/2). x∗ being the rescaled streamwise variable (x− x2)/L
and StL = fL/u∞.

In figure 6.1 we report the contour of the power spectral density of the wall pressure (PSD(pw)) at
a distance of 2 wall units from the lateral wall (z+ = 2, panel a) and at the mid-plane (z = Lz/2,
panel b) on the upper wall y = Ly. As in Ref. [4], we have used Welch’s method to compute the
PSD. The pressure signal is split into in twelve segments with 50% overlap and Hann windows.
From the figures, we observe that downstream of the initial shock (x∗ < 1) the dynamics is
mainly of broadband type. Some low-frequency activity seems to occur (both at the sidewall
and at the midplane) likely due to a very low motion of the initial shock. From the computed
results, we find that the shock displacement over the sampling period T is o(δ2), which yields a
reduced frequency o(10−2).

The shock-train interaction region (0 < x∗ < 4) is characterised by medium frequency activity
of tonal type. Downstream, in the mixing region, broadband dynamics is recovered.

To better characterise the medium frequencies we report the PSD in linear scales (figure 6.2).
From the figure two distinct tones at Stδ2 ∼ 0.071 and 0.142 are observed. Two less intense lines
are also visible at Stδ2 ∼ 0.21 and 0.28. This observation seems to indicate the occurrence of
acoustic resonance typical of cavity flows. For a closed box of dimensions Lx×Ly×Lz, resonant
frequencies can be determined through the relation

fl,m,n =
c∞
2

√(
`

Lx

)2

+

(
m

Ly

)2

+

(
n

Lz

)2

(6.2)
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(a) (b)

Figure 6.2: Contour of the power spectral density of the wall pressure (PSD(pw)) on
the upper wall y = Ly (a) at a distance of 2 wall units from the lateral wall (z+ = 2);
(b) at the mid-plane (z = Lz/2). x∗ being the rescaled streamwise variable (x− x2)/L
and Stδ2 = fδ2/u∞. Red lines indicate the first four tones given by equation 6.3.

where `, m, n are integer numbers.

For the present case, we then define the frequency of a resonant wave establishing in the y and
z directions

fn = n
c∞
2

√(
1

Ly

)2

+

(
2

Lz

)2

= n
c∞
2W

√
1 + 2AR2. (6.3)

The first 4 resonant tones (St
(1)
δ2

= 0.0071, St
(1)
δ2

= 0.0142, St
(1)
δ2

= 0.0213, St
(1)
δ2

0.0284, ) are re-
ported in figure 6.2 (indicated with the red lines). The collapse of the observed tones and the ones
computed through equation 6.3 indicates the establishment of an acoustic resonant phenomenon
associated with the combined effect due to confinement and shock train interactions.

In figure 6.3 we report the distribution of the amplitude of the wall pressure PSD at a reduced
frequency Stδ2 = 0.071 as a function of the normalized streamwise variable x∗ = (x − x2)/L
at the upper wall (y = Ly) and at various spanwise locations ranging between z/δ1 = 0 and
z/δ1 = 7. The figures show that the amplitude of the PSD obeys a power-law scaling. In
the interaction region, between the initial shock and immediately past the tertiary shock, the

amplitude approximately grows as x∗
1/2

and it then decays as x∗
0.7

in the proximity of the corner
(figure 6.3 panel a). A similar double power-law scaling is observed away from the side walls

at various spanwise locations. The amplitude of the PSD increases as x∗
0.85

for x∗ . 2.5, and
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decreases as x∗
−5/3

afterwards (panels b and c).

(a)

(b) (c)

Figure 6.3: Distribution of the amplitude of the wall pressure power spectral density
at Stδ2 = 0.71 as a function of the normalized streamwise variable x∗ = (x− x2)/L at
various spanwise locations and at the upper wall (y = Ly). (a) z/δ1 =0; 0.05; 0.2. (b)
z/δ1 =1; 2; 3. (c) z/δ1 =3.5; 5; 7.

A second power-law scaling is found for the amplitude of the PSD at the second resonant fre-
quency near the lateral walls, where corner effects are more important. However, no clear power-
law scaling is identified away from the lateral wall.
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(a)

(b) (c)

Figure 6.4: Distribution of the amplitude of the wall pressure power spectral density
at Stδ2 = 0.142 as a function of the normalized streamwise variable x∗ = (x − x2)/L
at various spanwise locations and at the upper wall (y = Ly). (a) z/δ1 =0; 0.05; 0.2.
(b) z/δ1 =1; 2; 3. (c) z/δ1 =3.5; 5; 7.

6.2 Dynamic Mode Decomposition

In order to further characterise the unsteadiness we have also analysed the flow by means of
dynamic modes decomposition (DMD). The method is based on a singular value decomposition
of the snapshots of the flow following Schmid [94].

6.2.1 Description of the method

Considering a given period T , series of snapshots are extracted every ∆T . Let i identified a
generic snapshot ui composed of a total of m points. We introduce the linear discrete operator
A (A ∈Mm,m(R)) that maps the field ui−1 to ui−1 according to

ui = Aui−1 = Aiu1 (6.4)

The matrix A is not known a priori and is supposed to be constant over the period T .

We look for a matrix S, obtained a posteriori, that has the same eigenvalues and eigenvectors
than A. This data sequence is noted Xn+1

1 = [u1, u2, . . . un+1] and is stored on disk. The sub-
sequence Xn

1 = [u1, u2, . . . un] is the sequence of observables that are used to determine the
approximation of A. The number of dimensions in time is usually lower than the number of
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dimensions in space (n < m) and consequently the size of S (n × n) is much smaller than the
size of A.

From equation 6.4, we can write :

Xn
1 =

{
u1, Au2, A

2 · · · An−1un
}

(6.5)

which is valid under the assumption of a constant mapping between snapshots. The latter
equation expresses the sequence of observables as a Krylov sequence [47].

As the number of snapshots increases, the n vectors of Xn
1 become linearly dependent leading

to
un+1 = c1u1 + c2u2 + · · ·+ cnun + r (6.6)

where ci are coefficients, r is the residual vector and i ∈ {1, 2, · · · , n}. Let C be the companion
matrix (also called the Frobenius matrix) that is defined as:

C =




0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

...
...

...
...

0 0 . . . 1 cn




(6.7)

In matrix form, equation 6.6 becomes:

AXn
1 = Xn+1

2 = Xn
1 C + reTn−1 (6.8)

where eTn−1 ∈ Rn−1 is the (n-1)th unit vector. The companion matrix C being similar to the
discrete propagator operator A, its eigenvalues are approximated by the eigenvalues of C. Some
of the eigenvalues of A are approximated by the eigenvalues of C and a first possible choice for
S is C. The companion matrix is determined through minimization of the residual (see Rowley
et al. [87] for details).

In the present work, we have followed the approach based on the Singular Value Decomposition
of Xn

1 proposed by Schmid [94]. By definition, the SVD of Xn
1 is:

Xn
1 = UΣWH (6.9)

(6.10)

where U is the right singular vector of the snapshot sequence and WH is the transposed-conjugate
of the left singular vector, W . Note that U and W are unitary vectors (i.e. UUH = I and
WWH = I). Hence we can write:

AXn
1 = AUΣWH (6.11)

Xn+1
2 = AUΣWH (6.12)

UH Xn+1
2 WΣ−1 = UHAUΣWHWΣ−1 (6.13)

M = UHAU (6.14)

where M = UHXn+1
2 WΣ−1 and M ∈ Mn,n(C). The matrix A and M being similar, the

eigenvalues of A are approximated by the eigenvalues of M. According to Schmid [94], the main
advantages of this method is its robustness against spurious noise in the data sequence Xn

1

and the possibility to account for a rank deficiency in the sequence. This can be done by
removing the singular values that are lower than a prescribed threshold and modifying the basis
U accordingly.

Let T and Λ be the eigenvectors and eigenvalues of M , by definition we have:

Λ = T−1MT (6.15)
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Hence:

T−1UHAUT = T−1MT (6.16)

(T−1UH)A(UT ) = Λ (6.17)

The eigenpairs of A are approximated by (Φ,Λ), where Φ = UT are the dynamic modes.

For a field governed by 1st order, linear ordinary differential equation

du(t)

dt
= Acu(t), (6.18)

whose solution yields

u(t+ ∆t) = eAc∆t u(t) = ΨeΛc∆tΨ−1 u(t) (6.19)

Where (Ψ, Λc) are the eigenpairs of Ac.

In the case of a discrete problem governed by the linear mapping A, we have

ui+1 = Aui = ΦΛΦ−1ui (6.20)

which shows the analogy between the field reconstructed through DMD and the “continous”
problem.

If one then approximate the jth continuous eigenpair by the jth discrete eigenpair, one has

λc, j = σc, j + iωc, j (6.21)

λc, j ' log(|λj |)
∆t

+ i
arg(λj)

∆t
(6.22)

where for the discrete system σj + iωj = log(|λj |)/∆t+ i arg(λj)/∆t.

Note that the jth dynamic mode (φj) is damped if |λj | < 1, and is amplified if |λj | > 1. For
statistically stationary flow, |λj | = 1 (and the eigenvalues λj are on the unit circle). The
discrete eigenpairs are called Ritz eigenpairs and the frequency of the jth mode is fj = ωj/2π =
arg(λj)/(2π∆t).

6.2.2 Flow analysis

The flow characteristics are here analysed through the dynamic mode decomposition based on
the 1309 snapshots, each ones corresponding to the average of ten samples collected over ten
time intervals. The real (λr) and imaginary (λi) parts of the Ritz eigenvalues are represented in
figure 6.5. The figure shows that all eigenvalues fall in the unit circle.

The amplitude and the reduced frequency of the modes are reported in figure 6.6. The red lines
indicate the resonant frequencies of the first two resonant tones and the dashed blue lines corre-
spond to the resolvability limits of the DMD assuming 5 points per wavelength. In the following,
we analyse the two modes flanking the first resonant tone (Stδ2 = 0.071) and having a reduced

frequency of Stleft
δ2

= 7.04.10−2 and Stright
δ2

= 7.16.10−2. Their amplitudes are approximately
0.71.
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Figure 6.5: Ritz eigenvalues of the DMD modes where λr and λi are the real and
imaginary parts, respectively. Green diamond symbols indicate that the corresponding
modes are plotted.
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Figure 6.6: Amplitude of the modes as a function of the reduced frequency (Stδ2 =
fu∞/δ2). Red lines indicate the resonant frequencies and dashed blue lines correspond
to the resolvability limits of the DMD (assuming 5 points per wavelength). Green
diamond symbols indicate the two modes flanking the first resonant tone. (a) Resolved
modes (b) zoom between Stδ2 = 0.06 and 0.08.

In figure 6.7 we report the contours of the modal quantities to left of the first resonant mode tone.
In particular, shown in figure 6.7 (a) is the modal streamwise velocity at mid-plane (z = Lz/2).
The modal pressure at the upper wall is reported in figure 6.7 (b). The modal y- and z- velocities
components (at a location downstream of the beginning of the interaction x∗ = 0.5) are plotted
in figure 6.7 (c) and (d), respectively. The figures 6.7 (a) and (b), show that the streamwise
velocity- and the pressure modes exhibit significant coherence within the interaction zone, Further
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downstream in the mixing region they become less organized and weaker. The influence of the
lateral walls are clearly observed from the contours of the modal velocity components in the cross
plane (panel c and d). Similar topology is shown for the modes to the right of the resolved first
resonant tones (see figure A.3).

(a)

(b)

(c) (d)

Figure 6.7: Contours of the modal quantities to left of the first resonant mode tone
(Stδ2 = 7.04.10−2; StL = 0.478) (a) Modal streamwise velocity at mid-plane (z =
Lz/2). (b) Modal pressure at the upper wall. (c) Modal y-velocity component at
x∗ = 0.5. (d) Modal z-velocity component at x∗ = 0.5.
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(a)

(b)

(c) (d)

Figure 6.8: Contours of the modal quantities to right of the first resonant mode tone
(Stδ2 = 7.16.10−2; StL = 0.486) (a) Modal streamwise velocity at mid-plane (z =
Lz/2). (b) Modal pressure at the upper wall. (c) Modal y-velocity component at
x∗ = 0.5. (d) Modal z-velocity component at x∗ = 0.5.

In figure 6.9 we report the streamwise distribution (panel a) and the PSD in the streamwise
direction (panel b) of the two pressure modes flanking the resolved acoustic tone. The modal
pressure exhibits a strong oscillatory pattern with a peak at approximately x∗ ∼ 2.5 and the
most significant, reduced wave numbers of the left and right modes varies between kxL = 9.5
and 10, respectively, as inferred from the PSD of these pressure modes. Introducing the phase
speed uph = 2πf/kx, and recalling that the reduced frequency of the left and right DMD modes

are StleftL = 0.478 and StleftL = 0.489, we obtain that uph varies between 0.31u∞ and 0.32u∞
that is nearly equal to the value found by Aubard et al. [4] in shear layer of 2.5D SWBLI. (the
value reported by those is approximately 0.35u∞). In appendix A.3, we report the contour of a
low frequency dynamic mode.
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Figure 6.9: (a) Streamwise distribution and (b) PSD in the streamwise direction of the
two pressure modes flanking the resolved first acoustic tone

Shown in figure 6.10, are the contours of the modal y- and z-velocity components associated with
the mean flow (the zero-frequency dynamic mode) at x∗ = 0.5. The mode exhibit symmetry
at x∗ = 0.5 in the duct cross section and the effects of the lateral walls and corner are clearly
observed.

(a) (b)

Figure 6.10: Contours of the modal y- and z-velocity components associated with the
mean flow (the zero-frequency dynamic mode) at x∗ = 0.5. (a) y-velocity component
(b) z-velocity component
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Chapter Summary

• Samples have been collected over a long period and power spectral density of the wall
pressure have been computed.

• Low and medium activities are observed.
– The low frequency is likely due to a very low motion of the initial shock.
– Tonal activity is observed at Stδ2=0.07,0.14,0.21 and 0.28.
– The amplitude of the PSD at the first and second tones obeys a power law scaling.
– The frequency are retrieved with an analytical formula:
fn = n(c∞/2)

√
(1/Ly)2 + (2/Lz)2.

→ Establishment of an acoustic resonant phenomenon associated with the combined
effect due to confinement and shock train interactions.

• Dynamical Mode Decomposition has been used to further characterized the flow.
– Two modes flanking the first resonant acoustic tone are analysed.
– A coherent oscillatory pattern is observed.
– Computing the PSD in the streamwise direction, we observe a peak at kxL ∼10.
– A phase velocity of ∼0.32 is found. This value is close to the one found by Aubard

et al. [4] in shear layer dynamics associated with 2.5D SWBLI.
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Chapter 7

Conclusions and Future Work

Side walls effects in shock-wave boundary layer interaction have a major impact on the flow and
only few numerical studies have been carried out in the presence of lateral walls. Strong confine-
ment of transonic shock-wave boundary layer interaction leads to the appearance of additional
shocks. This type of interaction is the so-called shock-train interaction that has been investigated
in the present thesis by means of large eddy simulations.

A key issue of the simulation of turbulent flow is the generation of the initial turbulent quanti-
ties. For a single wall, the mean flow is obtained under the classical turbulent boundary layer
assumption and the turbulent quantities are obtained through a recycling-rescaling method. For
multiple-walls simulations, the approach of Boles et al. [12] has been used assuming that each wall
can be treated separately. The initial turbulent flow is then reconstructed though a combination
of each wall contribution (weighted by the inverse square wall distance).

A validation study has been carried out for an undisturbed wall-bounded flow, a transonic 2.5D
incipient shock-wave boundary layer interaction, and, on the sensitivity of the flow topology in
a rectangular duct by considering two different mean inflow conditions. In particular, we have
observed that the topology of the transverse flow is not significantly affected by the turbulent
inflow conditions (when scaled in outer units).

LES results of a Mach 1.61 shock-train inside rectangular ducts with various aspect ratios have
been reported. The height of the duct is fixed and the influence of the side walls and confinement
is analysed for aspect ratios of ∞; 5; 2.257 and 1.5. The ratio δ2/h is slightly varying between
cases and have similar effects than a width variation. Due to the one order of magnitude stronger
variation of the duct width the effect of δ2/h are assumed to be small. AR=2.257 results are in
good agreement with the experimental data of Carroll and Dutton [21] and the LES database of
Morgan et al. [68]. The results for case AR=5 are likely not fully statistically independent due to
shortage in the computational time. We observe that the number of secondary shocks increases
with higher confinement and the shock-train becomes shorter as respectively found by Carroll
and Dutton [20] and Billig [8]. The minimum value of the centerline skin friction coefficient is
not strongly affected by the distance between side walls. From our results it seems that that the
dominant geometric scale to determine the minimum value of the skin friction, and so the onset
of separation, is the minimum between the height and the width. For the case AR = 2.257 our
ratio of δ∗2/H = 29 should be reduced to 7 to have a separated boundary layer on the centerline
at M = 1.61 (estimated using the representation of separation conditions [17]).

One LES has been run for a (very) long period and a large number of samples has been collected
to characterise the unsteadiness of the shock-train. Those samples have been post-treated both
with Fourier analysis and the dynamical modes decomposition. The Fourier analysis shows that
some low-frequency activity (seems to) occurs both at the sidewall and at the midplane, likely
due to a very low motion of the initial shock. We observe that the shock-train interaction
region (0 < x∗ < 4) is characterised by medium frequency activity of tonal type and that
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downstream, in the mixing region, a broadband dynamic is recovered. The results may indicate
the establishment of an acoustic resonant phenomena associated with the combined effects of
confinement and shock-train interaction. For the two DMD modes flanking the first resonant
tone, we find that the phase velocity varies between 0.31u∞ and 0.32u∞, a value close to the one
obtained by Aubard et al. [4] in shear layer dynamics of 2.5D SWBLI.

7.1 Future Work

Even though still prohibitive for shock-train simulation, assessing the influence of the initial
Reynolds number (usually assumed at least one order of magnitude less than the experiment)
could be the subject of future work. Similarly, the unsteadiness of stronger shock-train inter-
actions exhibiting large mean separation could further show the influence of confinement and
corner flows. Some open issues also remain regarding the possible interaction between the ob-
served tones and the shear layer dynamics.
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Appendix A

Uncommented results

In this chapter are gathered additional results. Those results are not shown in the main document
and are given here without further indications.

A.1 Contours of the static pressure in the longitudinal
midplane (z=Lz/2)
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Contours of the static pressure in the longitudinal midplane (z=Lz/2)

(a)

(b)

(c)

(d)

Figure A.1: Contours of static pressure divided by the wall pressure at x2 in the
longitudinal midplane (z = Lz/2). Eleven evenly spaced contours from 0.9 to 2.4. (a)
AR=∞; (b) AR=5; (c) AR=2.257; (d) AR=1.5
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Instantaneous visualization of the density gradient magnitude

A.2 Instantaneous visualization of the density gradient mag-
nitude

(a)

Figure A.2: Density gradient magnitude for the case AR=2.257.
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Low-frequency DMD mode

A.3 Low-frequency DMD mode

(a)

(b)

(c) (d)

Figure A.3: Contours of the modal quantities to right of the first resonant mode tone
(Stδ2 = 7.4.10−3; StL = 0.05) (a) Modal streamwise velocity at mid-plane (z = Lz/2).
(b) Modal pressure at the upper wall. (c) Modal y-velocity component at x∗ = 0.5.
(d) Modal z-velocity component at x∗ = 0.5.
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Appendix B

Details on the post-process

B.1 Measurable budget of the turbulent Kinetic energy
equation for LES

In this section of the appendix, we show how to obtain the Favre-average-filtered-turbulent-
kinetic energy equation. The final equation contains the contribution from the explicit subgrid
model and the filter, where appropriate.

B.1.1 LES momentum equation

The momentum equation or Navier-Stokes equation hold:

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂p

∂xi
=

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

))
(B.1)

In order to separate sub-grid scales from larger scales a spatial Favre filtering procedure is used,
with:

φ = φ∗+ < φ >f (B.2)

< ρ.φ > =< ρ > . < φ >f (B.3)

The filtering procedure is linear but, it does not commute with spatial or temporal deriva-
tives [44]. The error, induced by the lack of commutativity, is supposed to be small enough and
is, henceforth, neglected. The LES Favre-filtered equations are then:

∂ < ρui >

∂t
+
∂ < ρuiuj >

∂xj
+
∂ < p >

∂xi
=

〈
∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

))〉
(B.4)

After some manipulation, one obtains:

∂ < ρ >< ui >f
∂t

+
∂ < ρ >< uiuj >f

∂xj
+
∂ < p >

∂xi
=

∂

∂xj

(
< µ >

(
∂ < ui >

∂xj
+
∂ < uj >

∂xi
− 2

3
δij
∂ < uk >

∂xk

))

(B.5)

Defining
∂<σij>
∂xj

to be the right member of this equation and the term:

< ρ >< uiuj >f=< ρ >< (< ui >f +u∗i )(< uj >f +u∗j ) >f=< ρ >< ui >f< uj >f +τij
(B.6)

128



Measurable budget of the turbulent Kinetic energy equation for LES

With τij =< ρ > (< uiuj >f − < ui >f< uj >f ) containing the sub-grid terms.
We obtain:

∂ < ρ >< ui >f
∂t︸ ︷︷ ︸

Temporal variation

+
∂ < ρ >< ui >f< uj >f

∂xj︸ ︷︷ ︸
Momentum transport

+
∂ < p >

∂xi︸ ︷︷ ︸
Pressure

=
∂τij
∂xj︸︷︷︸

Sub-Grid terms

+
∂ < σij >

∂xj︸ ︷︷ ︸
Viscosity effects

+ F2︸︷︷︸
Filter

− f2︸︷︷︸
Volume Force

(B.7)
Where F2 is the measurable contribution of an explicit filter that is applied to the momentum
equation. And for the filtered continuity equation we have:

∂ < ρ >

∂t
+
∂ < ρ >< uj >f

∂xj
= F1 + f1 (B.8)

Where F1 is the measurable contribution of an explicit filter that is applied to the continuity
equation.

B.1.2 Kinetic energy

In order to compute the time average value of the turbulent kinetic energy (TKE) we have to
take the mean value of: equation B.7 × < ui >

′′
f

With the Favre-average (in time) procedure defined as:

φ = φ′′ + φ̃ (B.9)

ρ.φ = ρ̄.φ̃ (B.10)

The following properties are used:

φ̃ = φ̃ (B.11)

φ′′ = φ− φ̃ (B.12)

φ′′ = φ′ + φ̄− φ̃ (B.13)

φ̃′′ = 0⇔ φ̃ =
˜̃
φ (B.14)

Momentum contributions

Isolating the time derivative and momentum transport contribution we have:
We express those terms in a non-conservative form. Symbol [.] are used when the tilde .̃ is not
long enough.

∂ρui
∂t

+
∂ρuiuj
∂xj

= ρ
∂ui
∂t

+ ui
∂ρ

∂t
+ ui

∂ρuj
∂xj

+ (ρuj)
∂ui
∂xj

(B.15)

= ρ
∂ui
∂t

+ (ρuj)
∂ui
∂xj

+ ui

(
∂ρ

∂t
+
∂ρuj
∂xj

)

︸ ︷︷ ︸
eq B.8

(B.16)

= ρ
∂ui
∂t

+ (ρuj)
∂ui
∂xj

+ uiF1 (B.17)
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Measurable budget of the turbulent Kinetic energy equation for LES

The time derivative are expressed differently to make ∂ρ̄k
∂t appear.

ρ
∂ui
∂t

u′′i = ρ.
∂ũi + u′′i

∂t
u′′i (B.18)

= ρ.
1

2
.
∂u′′2i
∂t

+
∂ũi
∂t

u′′i (B.19)

=
1

2
ρ.
∂u′′2i
∂t

+ 0 (according to eq B.14) (B.20)

=

(
∂ρ̄.k

∂t

)
− u′′2i

2
.
∂ρ

∂t
(B.21)

The spatial derivatives are reorganized:

(ρuju′′i )
∂ui
∂xj

= ρ.(uju′′i )
∂ui
∂xj

(B.22)

= ρ.(uju′′i )
∂ũi + u′′i
∂xj

(B.23)

= ρ.uj

(
u′′i
∂ũi
∂xj

+
1

2
.
∂u′′2i
∂xj

)
(B.24)

Arguing that uj = ũj + u′′j and:

[
ũju
′′
i

∂ũi
∂xj

]
= ũj [u′′i ]

∂ũi
∂xj

= 0

We then obtain:

(ρuju′′i )
∂ui
∂xj

= ρ.uj

(
u′′i
∂ũi
∂xj

+
1

2
.
∂u′′2i
∂xj

)

= ρ̄.
[
u′′j u

′′
i

] ∂ũi
∂xj︸ ︷︷ ︸

Production

+
1

2
ρ.uj .

∂u′′2i
∂xj︸ ︷︷ ︸

Right terms

(B.25)

Concerning the terms on the right, we note that:

ρũj
∂u′′2i /2

∂xj
+ ρu′′j

∂u′′2i /2

∂xj
=

∂ρũjk

∂xj︸ ︷︷ ︸
TKE transport

+
1

2

∂ρu′′j u
′′2
i

∂xj︸ ︷︷ ︸
turbulent diffusion

−u
′′2
i

2

∂ρuj
∂xj

(B.26)

(B.27)

Using the second term from the time derivative equation B.21, we can simplify this term as:

u′′2i
2
.
∂ρ

∂t
+
u′′2i
2

∂ρuj
∂xj

= F1.
u′′2i
2

Others terms: pressure and a passive scalar φ

For the others terms:
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Measurable budget of the turbulent Kinetic energy equation for LES

Pressure:

∂p

∂xj
.u′′i =

∂p

∂xj
.(u′i − ūi + ũi)

=

(
∂p̄+ p′

∂xj
.u′i

)
+

∂p̄

∂xj
.(−ūi + ũi)

=
∂p′

∂xj
.u′i +

∂p̄

∂xj
.(ũi − ūi)

=
∂u′i.p

′

∂xj
− ∂u′i
∂xj

.p′ +
∂p̄

∂xj
.(u′′i ) (B.28)

φi.u′′i :

φi.u′′i = (φ̄i + φ′i).(u
′
i − ūi + ũi)

= φ̄iu′i + φ′iu
′
i + φ̄i(ũi − ūi)

= φ′iu
′
i + φ̄i(ũi − ūi)

= (φi − φ̄i)u′i + φ̄i(ũi − ūi) (B.29)

Replacing φi with Sub-Grid terms, Viscosity effects, Filter or Volume Force allow a quick com-
putation of all the other component.

TKE equation

∂ρ̄.k

∂t
+
∂ρ̄ũjk

∂xj
=

−ρ̄.ũ′′j u′′i
∂ũi
∂xj︸ ︷︷ ︸

Production

−1

2

∂ρ̄[u′′j u
′′
i u
′′
i ]

∂xj︸ ︷︷ ︸
turbulent diffusion

−F1.
u′′2i
2
− ui.u′′i .F1

︸ ︷︷ ︸
MassFiltering

−∂u
′
i.p
′

∂xi
+
∂u′i
∂xi

.p′ − ∂p̄

∂xi
.(u′′i )

︸ ︷︷ ︸
Pressure(

∂τij
∂xj

+
∂σij
∂xj

+ F2 + fi

)
.u′′i

︸ ︷︷ ︸
Others

(B.30)
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So:

∂ρ̄.k

∂t
+
∂ρ̄ũjk

∂xj
=

−ρ̄.ũ′′j u′′i
∂ũi
∂xj︸ ︷︷ ︸

Production

−1

2

∂ρ̄[u′′j u
′′
i u
′′
i ]

∂xj︸ ︷︷ ︸
turbulent diffusion

−∂u
′′
i .p
′

∂xi
+
∂u′′i
∂xi

.p′ − ∂p̄

∂xi
.u′′i

︸ ︷︷ ︸
Pressure

−
∂u′′i .σ

′
ij

∂xj
+
∂u′′i
∂xj

.σ′ij −
∂σij
∂xi

.u′′i
︸ ︷︷ ︸

Molecular dissipation

−
∂u′′i .τ

′
ij

∂xj
+
∂u′′i
∂xj

.τ ′ij −
∂τij
∂xi

.u′′i
︸ ︷︷ ︸

Turbulence viscosity

−F1.
u′′2i
2
− ui.u′′i .F1

︸ ︷︷ ︸
Explicit filter, Continuity

+F2.u′′i︸ ︷︷ ︸
Explicit filter, Momentum

−f1.
u′′2i
2
− ui.u′′i .f1

︸ ︷︷ ︸
Forcing in the Continuity equation

+f2 i.u′′i︸ ︷︷ ︸
Forcing in the Momentum equation

(B.31)

132



Bibliography

[1] Adams, N. (2000). Direct simulation of the turbulent boundary layer along a compression
ramp at m = 3 and reθ = 1685. Journal of Fluid Mechanics, 420:47–83.

[2] Adamson, T. and Messiter, A. (1980). Analysis of two-dimensional interactions between
shock waves and boundary layers. Annual Review of Fluid Mechanics, 12:103–138.

[3] Anderson, J. D. (1999). History of Aerodynamics: And its impacts on flying machines.
Cambridge University Press, USA.

[4] Aubard, G., Gloerfelt, X., and Robinet, J.-C. (2013). Large-eddy simulation of broadband
unsteadiness in a shock/boundary-layer interaction. AIAA journal, 51(10):2395–2409.

[5] Babinsky, H. and Harvey, J. K., editors (2011). Shock Wave–Boundary-Layer Interactions.
Cambridge Univ Press.

[6] Babinsky, H., Oorebeek, J., and Cottingham, T. G. (2013). Corner effects in reflecting oblique
shock-wave/boundary-layer interactions. In 51st AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition.

[7] Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D., and Eaton, J. K.
(2014). Confinement effects in shock wave/turbulent boundary layer interactions through
wall-modelled large-eddy simulations. Journal of Fluid Mechanics, 758:5–62.

[8] Billig, F. (1993). Research on supersonic combustion. Journal of Propulsion and Power,
9(4):499–514.

[9] Bogey, C. and Bailly, C. (2004). A family of low dispersive and low dissipative explicit
schemes for flow and noise computations. Journal of Computational Physics, 194:194–214.

[10] Bogey, C., de Cacqueray, N., and Bailly, C. (2008). Self-adjusting shock-capturing spatial
filtering for high-order non-linear computations. 14th AIAA/CEAS Aeroacoustics Conference,
5-7 May, Vancouver, Canada, AIAA Paper 2008-2968.

[11] Bogey, C., de Cacqueray, N., and Bailly, C. (2009). A shock-capturing methodology based on
adaptative spatial filtering for high-order non-linear computations. Journal of Computational
Physics, 228(5):1447–146.

[12] Boles, J. A., Choi, J.-I., Edwards, J. R., and Baurle, R. A. (2010). Multi-wall recy-
cling/rescaling method for inflow turbulence generation. In 48th AIAA Aerospace Sciences
Meeting Including the New Horizons Frum and Aerospace Exposition.

[13] Bookey, P., Wyckham, C., and Smits, A. (2005). Experimental investigations of mach 3
shock-wave turbulent boundary layer interactions. AIAA Paper, (2005-4899).
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chevêche edition.

[26] Deck, S. (2002). Simulation numérique des charges latérales instantionnaires sur des con-
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MODELISATION ET SIMULATION DE L'INTERACTION ONDE DE CHOC –
COUCHE LIMITE TURBULENTE EN ÉCOULEMENT INTERNE AVEC EFFETS

DE COINS

RÉSUMÉ :  Afin  de  concevoir  des  systèmes  de  propulsion  innovants,  l'amélioration  des
performances  des  prises  d'air  supersonique  constitue  un  enjeu  majeur.  En  particulier,  les
écoulements intervenant au sein des entrées d'air et/ou de diffuseurs supersoniques mettent en
jeu  des  phénomènes  complexes  associés  aux  diverses  échelles  spatiales  et  temporelles:
dynamique de la turbulence pariétale, interaction entre une onde de choc et une couche limite
turbulente,  décollements  tridimensionnels  et  effets  de  coins.  Malgré  les  contributions
significatives et récentes des simulations numériques de haute fidélité sur les instationnarités de
l'interaction onde de choc/couche limite sans paroi latérales, peu d'études numériques ont été
menées sur l'influence des coins dans la dynamique de l'écoulement. En présence de parois
latérales et à des nombres de Mach suffisamment élevés, l’interaction se modifie et un train de
choc se forme dans le diffuseur. Dans le cadre de cette thèse, les équations de Navier-Stokes
en régime compressible sont résolues à l'aide de schémas d'ordre élevé. Des simulations en
régime supersonique de l'écoulement dans des diffuseurs rectangulaires de largeurs différentes
sont effectuées. L'étude permet la mise en évidence de l'influence du confinement et des effets
de coins. Une deuxième partie de l’étude est consacrée à la compréhension des instationnarités
générées par un train de choc dans un diffuseur rectangulaire à l'aide d'outils de post-traitement
avancés:   décomposition  modale  dynamique  et  périodogramme.  Les  résultats  montrent  la
présence d'un possible phénomène de résonance du diffuseur à des fréquences proches de
celles émises par l'écoulement.

Mots clés : écoulement transsonique, interaction onde de choc/couche limite turbulente, LES,
confinement, écoulement de coin, DMD.

MODELISATION AND SIMULATION OF SHOCK-WAVE TURBULENT BOUNDARY
LAYER INTERACTION IN INTERNAL FLOW WITH CORNER EFFECTS 

ABSTRACT : To  design  innovative  propulsion  systems,  improving  the  performance  of
supersonic air intakes is a major issue. In particular, the flows through the air intakes and/or
supersonic diffusers involve complex unsteady phenomena associated with various spatial and
temporal scales such as: wall-bounded turbulence dynamics, interaction between a shock-wave
and a turbulent boundary layer, three-dimensional separated flows and corners effects. Despite
the  significant  contributions  from  recent  high-fidelity  simulations  of  unsteady  shock-wave
boundary layer interaction in the absence of side walls, few numerical studies were conducted
with secondary flows due to corner effects. In the presence of side walls and at Mach numbers
large enough, the topology of the interaction is modified and a shock-train forms in the diffuser.
In this thesis, the Navier-Stokes compressible equations are solved using high-order schemes.
Simulations of supersonic flows in rectangular diffusers of different widths are carried out. The
study allows to highlight the influence of confinement and corners effects on the mean flow. A
second part of the study is devoted to the understanding of the unsteadiness associated with a
shock-train in a rectangular supersonic diffuser. For that purpose, advanced post-processing
tools have been developed such as: dynamic mode decomposition and Fourier analysis. The
results show the presence of a possible resonance phenomenon in the diffuser at frequencies
close to those associated with the flow.

Keywords : transonic flow, shock wave/turbulent boundary layer interaction, LES, 
confinement, corner flows, DMD.


