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Au cours de cette thèse, un modèle potentiel résolvant les équations d'Euler-Zakharov a été développé dans le but de simuler la propagation de vagues et d'états de mer irréguliers et multidirectionnels, du large jusqu'à la côte, sur des bathymétries variables. L'objectif est de représenter les e ets non-linéaires et dispersifs le plus précisément possible pour des domaines côtiers bidimensionnels (dans le plan horizontal) de l'ordre de quelques kilomètres.

La version 1DH initiale du modèle, résolvant le problème aux limites de Laplace à l'aide de schémas aux di érences nies d'ordre élevé dans la direction horizontale combinés à une approche spectrale sur la verticale, a été améliorée et validée. L'implémentation de conditions aux limites de type Dirichlet et Neumann pour générer des vagues dans le domaine a été étudiée en détail.

Dans la pratique, une zone de relaxation a été utilisée en complément de ces conditions pour améliorer la stabilité du modèle.

L'expression analytique de la relation de dispersion a été établie dans le cas d'un fond plat. Son analyse a montré que la représentation des e ets dispersifs s'améliorait signi cativement avec l'augmentation de la résolution sur la direction verticale (i.e. avec le degré maximal de la base de polynômes de Tchebyshev utilisée pour projeter le potentiel des vitesses sur la verticale). Une étude de convergence menée pour des ondes solitaires modérément à fortement non-linéaires a con rmé la convergence exponentielle avec la résolution verticale grâce à l'approche spectrale, ainsi que les convergences algébriques en temps et en espace sur l'horizontale avec des ordres d'environ 4 (ou plus) en accord avec les schémas numériques utilisés.

La comparaison des résultats du modèle à plusieurs jeux de données expérimentales a démontré les capacités du modèle à représenter les e ets non-linéaires induits par les variations de bathymétrie, notamment les transferts d'énergie entre les composantes harmoniques, ainsi que la représentation précise des propriétés dispersives. Une formulation visco-potentielle a également été implémentée a n de prendre en compte les e ets visqueux induits par la dissipation interne et le frottement sur le fond. Cette formulation a été validée dans le cas d'une faible viscosité avec un fond plat ou présentant une faible pente.

Dans le but de représenter des champs de vagues 2DH, le modèle a été étendu en utilisant une discrétisation non-structurée (par nuage de points) du plan horizontal. Les dérivées horizontales ont été estimées à l'aide de la méthode RBF-FD (Radial Basis Function-Finite Di erence), en conservant l'approche spectrale sur la verticale. Une étude numérique de sensibilité a été menée a n d'évaluer la robustesse de la méthode RBF-FD, en comparant di érents types de RBFs, avec ou sans paramètre de forme et l'ajout éventuel d'un polynôme. La version 2DH du modèle a été utilisée pour simuler deux expériences en bassin, validant ainsi l'approche choisie et démon-iv RÉSUMÉ trant son applicabilité pour simuler la propagation 3D des vagues faisant intervenir des e ets non-linéaires. Dans le but de réduire le temps de calcul et de pouvoir appliquer le code à des simulations sur de grands domaines, le code a été modi é pour utiliser le solveur linéaire direct en mode parallèle.

moderate to highly nonlinear solitary waves con rmed the exponential convergence in the vertical dimension owing to the spectral approach, and the algebraic convergence in time and in space (horizontal dimension) with orders of about 4 (or higher) in agreement with the numerical schemes used.

The capability of the model to represent nonlinear e ects induced by variable bathymetry, such as the transfer of energy between harmonic components, as well as the accurate representation of dispersive properties, were demonstrated with comparisons to several experimental data sets.

A visco-potential ow formulation was also implemented to take into account viscous e ects induced by bulk viscosity and bottom friction. This formulation was validated in the limit of small viscosity for mild slope bathymetries.

To represent 2DH wave elds in complex nearshore domains, the model was extended using an unstructured discretization (scattered nodes) in the horizontal plane. The horizontal derivatives were estimated using the RBF-FD (Radial Basis Function -Finite Di erence) method, while the spectral approach in the vertical remained unchanged. A series of sensitivity tests were conducted to evaluate numerically the robustness of the RBF-FD method, including a comparison of a variety of RBFs with or without shape factors and augmented polynomials. The 2DH version of the model was used to simulate two wave basin experiments, validating the approach and demonstrating the applicability of this method for 3D wave propagation, including nonlinear xvi LIST OF FIGURES 2.3 Shape of the coe cient 1-C r (x) for several values of the α parameter considered in the second set of simulations for the absorption relaxation zone. . . . . . . .
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Introduction

La modélisation de la transformation des vagues au cours de leur propagation depuis leur zone de génération jusqu'à la côte est d'intérêt majeur pour un grand nombre d'applications d'ingénierie marine et côtière. Selon la zone d'intérêt, les processus physiques à l'origine de ces transformations sont divers avec des échelles caractéristiques de temps et d'espace variées, qui requièrent des approches de modélisation différentes. Les modèles dits "spectraux" représentent des quantités moyennes caractéristiques de l'état de mer et sont généralement utilisés pour de grands domaines et par grande profondeur. Au contraire, les modèles dits "à résolution de phase" donnent l'évolution de l'élévation de surface libre au cours du temps et nécessitent une discréti-

INTRODUCTION Context and objectives of the PhD thesis

Waves generated by the wind at the surface of seas and oceans can propagate over several thousand kilometers from their generation zone to the coast. To be able to simulate wave propagation and transformation is of major interest for a wide variety of applications in marine and coastal environments. For example, coastal and marine engineers seek accurate descriptions of wave conditions for the construction of o shore facilities, the study of sediment transport to evaluate coastal erosion risks, the design of protective coastal structures to prevent overtopping and to reduce ooding risks, the study of wave agitation in harbors, or the estimation of the potential for marine renewable energy devices.

All of these applications require accurately modeling nearshore waves. Depending on the domain of interest, from the o shore, deep water wave conditions to the surf zone, a variety of di erent physical processes control wave transformation. In the deep ocean, interactions with the atmosphere are predominant, including wave generation from wind and wave energy dissipation by white-capping. Quadruplet wave interactions (between four wave components) are an important cause of deep-water wave spectrum transformation, usually leading to a frequency downshift in the wave spectrum and an increase in the wave period.

When approaching the shore, bottom interactions become non-negligible causing shoaling, refraction, and energy dissipation from bottom friction and depth-induced wave breaking. As waves propagate over variable bathymetric pro les, triplet wave interactions (between three wave components) become important in intermediate and shallow water, causing a decrease in the mean wave period. Currents may also interact with waves causing refraction or even wave blocking for speci c conditions. In the vicinity of the coastline or marine structures, such as o shore platforms, dykes or breakwaters, run-up, swash, overtopping, di raction and re ection from obstacles must also be considered.

These physical processes have di erent characteristic temporal and spatial scales, requiring different modeling approaches, which can be divided into two categories: phase-averaged (or spectral) models and phase-resolved (or deterministic) models.
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only mean (phase-averaged) wave properties and do not resolve the dynamics of each wave pro le. For example, a spectral wave model can predict the wave height in front of a coastal structure but is unable to predict the spatially varying modulation of the wave amplitude caused by wave re ection from the structure.

2. Phase-resolved (or deterministic) models simulate the evolution of the free surface elevation and the associated kinematics in a deterministic manner. These models simulate the evolution of the free surface as a function of time and space, requiring ner spatial and temporal resolutions (on the order of 10-100 points per wavelength and 10-100 time steps per wave period) and thus longer computational times. In comparison to large-scale spectral models, their use is limited to more local scales of the order of kilometers. Moreover, until recently, to meet the e ciency requirements of operational engineering studies, many simplifying assumptions were often made for the derivation of these models: linear theory (i.e. Berkho equations) or long wave assumption (shallow water equations), which leads only to a partial representation of the nonlinear and dispersive e ects. With a growing need for a more accurate representation of these e ects that are non-negligible in the nearshore area, more complex wave models were developed to take into account the nonlinear and dispersive properties of waves (i.e. Boussinesq, Green-Naghdi, Euler equations)

as discussed in the next section.

This PhD thesis falls within the scope of the latter type of models with the objective of developing a deterministic model capable of simulating the propagation of irregular and directional wave elds over variable bathymetries from the o shore to the coast with a highly accurate representation of the nonlinear and dispersive e ects for bidimensional models on the order of kilometers. To achieve this goal, several approaches are possible, and a brief review of existing phase-resolving models is presented in the following section.

Brief review of phase-resolved numerical wave models

Most uid ow problems can be described by the Navier-Stokes equations since they account for nonlinearities, vorticity and viscosity. Models based on these equations can be very accurate when studying wave interactions with structures in the surf zone (e.g. [START_REF] Lara | RANS modelling applied to random wave interaction with submerged permeable structures[END_REF]; [START_REF] Shao | Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling[END_REF]). These equations can be solved with two very di erent approaches. Either with an Eulerian approach tracking the free surface position with a volume of uid method, as for example, in the widely used code OpenFOAM® (Higuera et al., 2013a,b), solving the RANS (Reynolds Averaged Navier-Stokes) equations for two incompressible phases. Another option is to use a Lagrangian approach where the uid is represented as particles and the trajectories of each particles is computed considering their interactions, as for instance with the SPH (Smoothed Particle Hydrodynamics) method (e.g. [START_REF] Dalrymple | Numerical modeling of water waves with the SPH method[END_REF]). These models are highly accurate
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when studying local-scale processes, but the domain size and resolution are limited due to the computational time, even with the use of GPU parallelized codes [START_REF] Dalrymple | GPU-Accelerated SPH model for water waves and free surface ows[END_REF]. Moreover, these models usually su er from a signi cant level of numerical di usion, which prevents them from being used for propagating waves over long distances. For both of these reasons, to model large spatial domains, these codes are usually coupled with more computationally e cient models, such as potential ow models, to simulate the far-eld processes [START_REF] Narayanaswamy | SPHysics-FUNWAVE hybrid model for coastal wave propagation[END_REF].

Some assumptions can be made to simplify the problem and thus reduce the computational time.

For example, the nonlinear shallow water equations (NLSWE) are derived by depth integrating the Navier-Stokes equations to model waves with a wavelength signi cantly longer than the water depth (e.g.tidal waves, storm surges), but this set of equations does not take into account wave dispersion, and therefore they cannot be applied to model accurately short waves.

However, by including non-hydrostatic pressure in the NLSWE and dividing the water depth into a su cient number of layers, the frequency dispersion of waves can be greatly improved [START_REF] Stelling | An accurate and e cient nite-di erence algorithm for nonhydrostatic free-surface ow with application to wave propagation[END_REF]Zijlema andStelling, 2005, 2008;[START_REF] Zijlema | SWASH: An operational public domain code for simulating wave elds and rapidly varied ows in coastal waters[END_REF]. For example, with only two layers, the accuracy of the deep water dispersion relation is similar to that of extended Boussinesq-type models. The dispersion of such non-hydrostatic models can be further improved by optimizing the location of the levels [START_REF] Zhu | Optimization of non-hydrostatic Euler model for water waves[END_REF].

When viscous and turbulent e ects are negligible, the ow can be represented well by potential ow theory, which consists of solving the Laplace problem in the uid domain, supplemented by nonlinear free surface boundary conditions. One way of solving this problem is to use the Boundary Integral Equations Method (BIEM), which projects the problem on the boundary surface of the uid domain using Green's formula [START_REF] Grilli | An e cient boundary element method for nonlinear water waves[END_REF][START_REF] Wang | An e cient numerical tank for nonlinear water waves, basedon the multi-subdomain approach with BEM[END_REF]. These models enable an accurate description of nonlinear and even overturning waves and are well adapted to simulate wave-structure interactions (e.g [START_REF] Dombre | Simulation of oating structure dynamics in waves by implicit coupling of a fully non-linear potential ow model and rigid body motion approach[END_REF]). This method is mainly used for calculating local-scale interactions owing to the long computational times. However, with the use Fast Fourier Transform (FFT) [START_REF] Fructus | An explicit method for the nonlinear interaction between water waves and variable and moving bottom topography[END_REF][START_REF] Newman | Boundary-Element Methods in o shore structure analysis[END_REF] or Fast Multipole Algorithm methods [START_REF] Fochesato | Numerical modeling of extreme rogue waves generated by directional energy focusing[END_REF], the computational time can be reduced considerably.

Another way of solving the problem is to make additional assumptions about the nonlinear and dispersive properties of waves. By doing a Taylor expansion of the vertical velocity about a speci ed level and truncating it to a nite number of terms, Boussinesq-type models assume a polynomial variation of the vertical velocity, thus reducing the problem by one dimension.

Boussinesq-type models are derived with the assumption that nonlinearity and frequency dispersion are weak or moderate [START_REF] Kirby | Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents[END_REF][START_REF] Madsen | Higher order Boussinesq-type equations for surface gravity waves: derivation and analysis[END_REF]. Using only a quadratic polynomial approximation of the vertical ow distribution gives poor results for wave propaga-tion in intermediate depths. A lot of work has been done to improve the frequency dispersion following various approaches such as: using higher degree polynomials for the vertical approximation with the Green-Naghdi equations [START_REF] Zhao | On the steady solitary-wave solution of the Green-Naghdi equations of di erent levels[END_REF], using Padé approximants [START_REF] Agnon | A new approach to high-order Boussinesq models[END_REF] combined with an expansion of the Laplace solution from an arbitrary level [START_REF] Madsen | A new Boussinesq method for fully nonlinear waves from shallow to deep water[END_REF], and resolving in two arbitrary layers to maintain low-order spatial derivatives [START_REF] Chazel | A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[END_REF][START_REF] Lynett | A two-layer approach to wave modelling[END_REF]. Additional modeling approaches include those of [START_REF] Kennedy | Boussinesq-type equations with improved nonlinear performance[END_REF], Fuhrman and[START_REF] Fuhrman | Numerical solution of fully non-linear and highly dispersive Boussinesq equations in two horizontal dimensions[END_REF][START_REF] Engsig-Karup | Nodal DG-FEM solution of high-order Boussinesq-type equations[END_REF].

The system of potential ow equations can also be reformulated as a function of free surface quantities, also known as the Zakharov equations [START_REF] Zakharov | Stability of periodic waves of nite amplitude on the surface of a deep uid[END_REF]. The temporal evolution of the free surface elevation η and the free surface velocity potential Φ are given as a function of these two variables and the vertical velocity at the free surface w. The primary challenge is to express the vertical velocity w as a function of η and Φ, a problem commonly called 'Dirichlet-to-Neumann' or DtN. One possibility is to solve directly the Laplace equation using nite element [START_REF] Ma | Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure[END_REF][START_REF] Wu | Numerical simulation of sloshing waves in a 3D tank based on a nite element method[END_REF] or nite di erence [START_REF] Engsig-Karup | An e cient exible-order model for 3D nonlinear water waves[END_REF][START_REF] Li | A three dimensional multigrid model for fully nonlinear water waves[END_REF] methods. When using nite di erence methods, [START_REF] Kreiss | Comparison of accurate methods for the integration of hyperbolic equations[END_REF] and [START_REF] Bingham | On the accuracy of nite-di erence solutions for nonlinear water waves[END_REF] recommend using fourth-order schemes with a stretched vertical grid (clustering points near the free surface) instead of using second-order schemes with a regular grid. When considering rectangular domains with a at bottom, a high-order spectral approach (HOS) is optimal [START_REF] Dommermuth | A high-order spectral method for the study of nonlinear gravity waves[END_REF]Ducrozet et al., 2012a;[START_REF] West | A new numerical method for surface hydrodynamics[END_REF]. This method is faster than nite di erence methods but less exible with regard to the domain geometry and bathymetry, even if progress has been made in taking into account variable and moving bottoms [START_REF] Gouin | Development and validation of a non-linear spectral model for water waves over variable depth[END_REF][START_REF] Guyenne | A high-order spectral method for nonlinear water waves over moving bottom topography[END_REF][START_REF] Smith | An operator expansion formalism for nonlinear surface waves over variable depth[END_REF]. However, one limitation of this approach is the need to work with periodic domains in the horizontal plane, which can restricts some applications to coastal and harbor domains.

An additional approach is to use a spectral method only in the vertical dimension either by expanding the velocity potential with a local mode series [START_REF] Belibassakis | A coupled-mode system with application to nonlinear water waves propagating in nite water depth and in variable bathymetry regions[END_REF] or by projecting it on a polynomial basis [START_REF] Kennedy | A fully-nonlinear computational method for wave propagation over topography[END_REF][START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF]. By using high-order nite di erence schemes in the horizontal, these models maintain a exible approach for variable domain geometries and bathymetry. A comparison between a vertical spectral approach and a nite di erence approach in the vertical dimension shows the improved accuracy and e ciency of the spectral method in 1DH [START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF] and 2DH [START_REF] Christiansen | Hybrid-spectral model for fully nonlinear numerical wave tank[END_REF]. Others approaches can be used, such as the extension of the DtN operator as a sum of global convolution terms and local integrals with kernels decaying quickly in space [START_REF] Clamond | A fast method for fully nonlinear water-wave computations[END_REF][START_REF] Fructus | An e cient model for three-dimensional surface wave simulations: Part I: Free space problems[END_REF]. A more complete review and discussion of nonlinear potential ow models for wave simulation can be found in [START_REF] Gouin | Modélisation déterministe d'états de mer à grande échelle en profondeur variable[END_REF].

Based on this analysis, the nonlinear potential ow approach is attractive, as it is in principle more accurate than Boussinesq or Serre-Green-Naghdi models in representing nonlinear and
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dispersive wave e ects in large water depths, while is does not su er from the shortcomings of CFD Navier-Stokes codes for large-scale applications. Furthermore, under the assumption of non-overturning waves, a spectral approach in the vertical can be adopted, which results in both an accurate and exible model, as mentioned above.

Content and organization of the PhD dissertation

In this work, a potential ow theory numerical model, based on the Zakharov equations, is validated and extended. The existing model, called Misthyc, solves the Laplace boundary problem (based on previous work [START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF]) with a combination of high-order nite di erence schemes for the horizontal dimension (1DH version) and a spectral approach using Chebyshev polynomials in the vertical dimension [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF]. In this work, this approach was extended to two horizontal dimensions, using a Radial Basis Function-Finite Di erence (RBF-FD) approach to estimate the horizontal derivatives to enable using an unstructured discretization of the domain by a set of scattered nodes.

A variety of numerical and physical aspects of wave modeling were addressed during this PhD and are presented in the following chapters. In the Chapter 1, the mathematical model is derived with emphasis on the underlying assumptions. The resolution of the Laplace boundary value problem using a spectral approach in the vertical is presented, and the accuracy of the linear dispersion relation resulting from this approximation is studied. In Chapter 2, the numerical 

From the Navier-Stokes equations to the Zakharov equations

In this section we consider a domain Ω, with a uid of density ρ, submitted to the atmospheric pressure p atm (x, y, t) and the acceleration of gravity g, moving with a velocity v ¯(x, y, z, t) = (u, v, w) T . The domain is delimited in the vertical by the free surface at elevation z = η(x, y, t) and the bottom (which can also vary in time) at elevation z = -h(x, y, t). 

The Euler equations and boundary conditions

The starting point is the classical Navier-Stokes system of equations for a Newtonian uid:

       ∂ρ ∂t + ∇.(ρ v ¯) = 0 in Ω ∂ρv ∂t + ∇.(ρv ¯⊗ v ¯) = -∇p + ∇.τ + ρg in Ω (1.1a) (1.1b)
where p is the pressure, and τ is the viscous stress tensor. It is rst assumed that the ow is incompressible, meaning that the uid density is considered constant and homogeneous. In this case, system (1.1) can be simpli ed to:

     ∇.v ¯= 0 in Ω ∂v ∂ t + (v ¯.∇)v ¯= - 1 ρ ∇p + ν∆v ¯+ g in Ω (1.2a) (1.2b)
where ∇ ≡ ( ∂ ∂x , ∂ ∂y , ∂ ∂z ) T denotes the gradient operator.

Making the additional assumption of an inviscid uid, the momentum equations (Eq.(1.2b))

reduce to the Euler equations:

∂v ∂ t + v ¯• ∇v ¯= - 1 ρ ∇p + g in Ω (1.3)
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To resolve the uid dynamics, in addition to Eq.(1.2a)-(1.3) in the uid domain Ω, boundary conditions must be speci ed. The kinematic free surface boundary condition (KFSBC) expresses the impermeability of the free surface (a particle of uid cannot go through the free surface). Mathematically, the free surface is de ned as F (x, y, z, t) ≡ zη(x, y, t) = 0, and the impermeable condition is then expressed by the zero Lagrangian (or material) derivative of F :

DF Dt = 0 ⇔ ∂F ∂t + v ¯• ∇F = 0.
(1.4)

⇔ - ∂η ∂t -u ∂η ∂x -v ∂η ∂y + w = 0 at z = η(x, y, t).
(1.5)

Introducing the outward unit normal vector at the free surface n ¯:

n ¯=

1 1 + |∇ H η| 2 - ∂η ∂x , - ∂η ∂y , 1 T (1.6)
where ∇ H is the horizontal gradient operator, Eq.(1.5) can be rewritten as:

- ∂η ∂t + v ¯• n ¯ 1 + |∇ H η| 2 = 0 at z = η(x, y, t). (1.7)
Usually, the dynamic boundary condition at the free surface (DFSBC) is derived from the continuity of the normal stress at the interface meaning that if the free surface is only subjected to atmospheric pressure, the pressure at the free surface position equal the atmospheric pressure.

Nevertheless, a discontinuity of the normal stress can appear due to a normal force generated by surface tension. This force is proportional to the mean curvature of the interface and acts in the direction towards the center of curvature of the surface. Taking into account the e ects of surface tension, the DFSBC can be written as (Dingemans, 1997b):

p(x, y, η(x, y, t), t) = p atm (x, y, t) -σ∇ H . ∇ H η 1 + |∇ H η| 2 . (1.8)
where σ is the coe cient of surface tension expressed as a force per unit length (N/m). For a water-air interface at 20 ℃, σ = 0.074 N/m.

At the bottom z = -h(x, y, t), an impermeability condition is applied. Following the treatment of the KFSBC, the function G(x, y, z, t) ≡ z + h(x, y, t) is introduced, and the impermeability condition is expressed by setting the Lagrangian derivative of G to zero.

DG Dt = 0 ⇔ ∂G ∂t + v ¯• ∇G = 0.
(1.9)

CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL ⇔ ∂h ∂t + u ∂h ∂x + v ∂h ∂y + w = 0 at z = -h(x, y, t).
(1.10)

The ow is then described by the following set of equations:

                               ∇.v ¯= 0 in Ω ∂v ∂ t + (v ¯.∇)v ¯= - 1 ρ ∇p + g ¯in Ω - ∂η ∂t -v ¯H.∇ H η + w = 0 at z = η(x, y, t) p(x, y, η(x, y, t), t) = p atm (x, y, t) -σ∇ H . ∇ H η 1 + |∇ H η| 2 at z = η(x, y, t) ∂h ∂t + v ¯H.∇ H h + w = 0 at z = -h(x, y, t) (1.11a) (1.11b) (1.11c) (1.11d) (1.11e)
where v ¯H = (u, v) T is the horizontal part of the uid velocity. At the lateral boundaries (denoted as ∂Ω lat ), periodic, Dirichlet or Neumann boundary conditions must be imposed to close the system.

Potential ow equations: the water wave problem

By assuming irrotational ow, potential ow theory can be used. The velocity potential Φ(x, y, z, t) is introduced such that v ¯= ∇Φ. The preceding set of equations (1.11) can be rewritten in terms of the new variable Φ.

The continuity equation (Eq.(1.11a)) becomes the Laplace equation:

∇.v ¯= 0 ⇒ ∇.∇Φ = 0 ⇒ ∆Φ = 0 in Ω.
(1.12)

where ∆ is the Laplacian operator.

From the Euler equations (Eq.(1.11b)), the Bernoulli equation can be obtained:

∂v ∂ t + (v ¯.∇)v ¯= - 1 ρ ∇p + g in Ω (1.13) ⇔ ∂∇Φ ∂t + ∇Φ.∇(∇Φ) = - 1 ρ ∇p -∇(gz) in Ω (1.14) ⇔ ∇ ∂Φ ∂t + 1 2 (∇Φ) 2 + p ρ + gz = 0 in Ω (1.15)
The zero gradient in Eq.(1.15) means that the scalar argument in parenthesis is independent of the variables x, y and z and therefore is an arbitrary function of time only, here chosen to be zero.
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Thus it is noted that Φ is de ned up to a constant, which will be discussed further in Section 2.2.2.3. Eq.(1.15) then becomes:

p(x, y, z, t) = -ρ gz + ∂Φ ∂t + 1 2 (∇Φ) 2 (1.16)
At the free surface, the KFSBC (Eq.(1.11c)) becomes:

∂η ∂t + ∇ H Φ.∇ H η - ∂Φ ∂z = 0, at z = η(x, y, t) (1.17)
and the DFSBC (Eq.(1.11d)), is reformulated using the Bernoulli equation (Eq.(1.16)) at the free surface:

∂Φ ∂t + 1 2 (∇Φ) 2 + gη = - p atm (x, y, t) ρ + σ ρ ∇ H . ∇ H η 1 + |∇ H η| 2 at z = η(x, y, t) (1.18)
The bottom impermeability boundary condition (Eq.(1.11e)) becomes:

∂h ∂t + ∇ H Φ.∇ H h + ∂Φ ∂z = 0 at z = -h(x, y, t) (1.19)
The nonlinear potential ow problem is thus:

                       ∆Φ = 0 in Ω ∂η ∂t + ∇ H Φ.∇ H η - ∂Φ ∂z = 0 at z = η(x, y, t) ∂Φ ∂t + 1 2 (∇Φ) 2 + gη = - p atm (x, y, t) ρ + σ ρ ∇ H . ∇ H η 1 + |∇ H η| 2 at z = η(x, y, t) ∂h ∂t + ∇ H Φ.∇ H h + ∂Φ ∂z = 0 at z = -h(x, y, t) (1.20a) (1.20b) (1.20c) (1.20d)
This is usually called the "water wave problem". Note that the pressure does not appear explicitly in this problem, but can be computed from Eq.(1.16) once Φ is known. One of the main di culties encountered during the resolution of this set of equations is related to the fact that it is a free boundary problem: the uid domain is bounded by the free surface η, which is also an unknown of the problem.

Expression as a function of surface quantities

By making the assumption that the water column is continuous from the bottom to the free surface (η(x, y, t) is single-valued), the velocity potential at the free surface can be de ned as Φ(x, y, t) ≡ Φ(x, y, η(x, y, t), t).

Using the chain rule, the following equations express the link between the derivatives of the free surface velocity potential Φ and the derivatives of the global velocity potential Φ:

∂ Φ ∂α = ∂Φ ∂α + ∂η ∂α ∂Φ ∂z , (1.21) 
where α = x, y or t.

Expressing the KFSBC (Eq.(1.20b)) and the DFSBC (Eq.(1.20c)) as a function of the free surface potential Φ(x, y, t) using the above expressions, the following set of equations is obtained:

         ∂η ∂t = -∇ H Φ• ∇ H η + w(1 + (∇ H η) 2 ) ∂ Φ ∂t = -gη - 1 2 (∇ H Φ) 2 + 1 2 w2 (1 + (∇ H η) 2 ) - p atm (x, y, t) ρ + σ ρ ∇ H . ∇ H η 1 + |∇ H η| 2 (1.22) (1.23)
with w the vertical velocity at the free surface:

w(x, y, t) ≡ ∂Φ ∂z (x, y, η(x, y, t), t) (1.24)
These two coupled equations Eq.(1.22) and (1.23) involve only free surface quantities: the rst one describing the temporal evolution of the free surface elevation η and the second one expressing the evolution of the free surface potential Φ. In order to integrate these equations in time, it is necessary to determine w(x, y, t) at each time step from η(x, y, t) and Φ(x, y, t), which is called a Dirichlet-to-Neumann (DtN) problem. Di erent approaches have been proposed to solve this problem, for example using a high-order spectral approach (HOS) [START_REF] Dommermuth | A high-order spectral method for the study of nonlinear gravity waves[END_REF][START_REF] West | A new numerical method for surface hydrodynamics[END_REF], which is e cient for rectangular domains with a at bottom. Other approaches can be used, such as the extension of the DtN operator as a sum of global convolution terms and a local integral with kernels decaying quickly in space [START_REF] Clamond | A fast method for fully nonlinear water-wave computations[END_REF][START_REF] Fructus | An e cient model for three-dimensional surface wave simulations: Part I: Free space problems[END_REF], or the expansion of the Laplace solution from an arbitrary level combined with the use of Padé approximant, based on a Boussinesq approximation [START_REF] Madsen | A new Boussinesq method for fully nonlinear waves from shallow to deep water[END_REF]. See also the recent review and discussion by [START_REF] Wilkening | Comparison of ve methods of computing the Diriclet-Neumann Operator for the water wave problem[END_REF]. Here, as presented in the next section, the DtN problem will be resolved by solving a Laplace boundary value problem (BVP)

for the potential Φ in the entire domain Ω using a spectral approach in the vertical direction [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF][START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF].

Discussion of the assumptions

To build the mathematical model Eq.(1.22)-(1.23), four assumptions were made. The consequences of these assumptions and their validity are discussed.

• assumption 1: incompressible ow

This assumption means that the density of the uid is homogeneous in space and constant in time. In the ocean, the water density varies with temperature and salinity with typical scales of variation on the order of tens of kilometers in the horizontal. These scales of variability are
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much larger than the domain over which the evolution of the free surface elevation is aimed to be modeled. Vertical variations of the density do not have a signi cant impact on free surface gravity waves, except in estuarine environments where vertical density gradients, due to the over ow of freshwater in saltwater, can be important. This assumption seems reasonable.

• assumption 2: inviscid uid

Internal forces due to the uid viscosity are generally negligible for the considered wavelengths.

A viscous uid tends to generate friction on the bottom or other solid walls with the development of a boundary layer where energy is dissipated. In deep water, the boundary layer thickness is very small in comparison with the water depth, so the e ects of bottom friction are negligible.

With decreases in the water depth approaching the coast, this assumption becomes less valid since the boundary layer may impact wave propagation. Therefore, viscous e ects may become non-negligible in shallow water. The introduction of some dissipative e ects will be discussed in Chapter 5.

• assumption 3: irrotational ow

This assumption implies that the particles of uid do not have a rotational movement. It is a reasonable assumption in case of low viscosity and/or when the bottom friction, which creates turbulence and induces vorticity, can be neglected. This assumption is no longer true in the breaking and swash zones.

• assumption 4: continuity of the water column from the bottom to the surface Since the free surface is single-valued, it is not possible to simulate directly wave overturning.

This assumption is justi ed as long as waves are not overturning, so wave breaking cannot be resolved with this approach. Some dissipative terms could be added to Eq.(1.22) and Eq.(1.23) in order to parameterize wave breaking dissipation in the model.

The Zakharov equations

Finally, here, two additional weak assumptions are made:

• The atmospheric pressure is chosen to be homogeneous and constant.

This assumption limits the model to study waves subjected only to gravitational e ects. The e ect of wind on waves (due to gradients in atmospheric pressure) are not considered here. The pressure variations at the free surface are assumed negligible for the spatial scales of the domains of interest, so the atmospheric pressure is held constant. As the pressure is de ned within a constant, it is chosen equal to zero for convenience, without limiting the generality of the problem.

• Surface tension is neglected.

Surface tension e ects become noticeable for short waves with wavelengths on the order of centimeters. For real applications, the wavelengths considered will be on the order of meters and thus the e ects of surface tension can be neglected. For the simulation of small-scales experiments, the e ects of surface tension may become important, as will be shown in Chapter 5.

CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL

Thus, taking into account these two hypotheses, the set of equations resolved by the model (unless otherwise speci ed) is:

       ∂η ∂t = -∇ H Φ• ∇ H η + w(1 + (∇ H η) 2 ) ∂ Φ ∂t = -gη - 1 2 (∇ H Φ) 2 + 1 2 w2 (1 + (∇ H η) 2 ) (1.25) (1.26)
1.2 Resolution of the Laplace BVP using a spectral method in the vertical To integrate the Zakharov equations in time, the estimation of the vertical velocity at the free surface w is necessary. This is achieved by resolving the following Laplace BVP for the potential Φ in the entire uid domain Ω:

             ∆ H Φ + Φ zz = 0 in Ω Φ = Φ at z = η(x, y, t) ∇ H Φ• ∇ H h + Φ z = 0 at z = -h(x, y, t) ∇Φ• n ¯lat = 0 on ∂Ω lat (1.27a) (1.27b) (1.27c) (1.27d)
Here, a Neumann condition is applied at the vertical lateral boundaries (denoted as ∂Ω lat ), to consider the particular case of impermeable lateral boundaries. n ¯lat denotes the unit normal vector at the lateral wall. In the following, spatial derivatives will be denoted by subscripts (i.e. f x ≡ ∂f /∂x).

With a time invariant lateral boundary condition, the problem is dependent on time through the shape of the domain. Lateral boundary conditions can vary in time, for example in the case of wave generation, but this case is not considered in this section. Therefore, at each step of the time integration scheme, the Laplace BVP has to be solved at least once taking into account the new shape of the domain. For instance, using the classical fourth order Runge-Kutta scheme, four resolutions are required. However, no derivatives in time appear in the BVP.

The numerical approach chosen to solve the Laplace BVP is the application of a spectral method in the vertical direction. [START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF] showed that using a spectral method is more accurate and e cient than using nite di erence schemes. Following the work of [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF], the method is divided into three main steps:

1. a change of variables for the vertical coordinate, 2. an expansion of the velocity potential Φ using the basis of orthogonal Chebyshev polyno-
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mials of the rst kind T n (n = 0, 1, ...), truncated at a given order N T , 3. and an application of the Chebyshev-Tau method in the vertical.

An outline of the method is given in [START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF] for the case of a single horizontal dimension (i.e. x ¯= x). Here the method is presented for the case of two horizontal dimensions (i.e. x ¯= (x, y)).

Change of the vertical coordinate

First, a change of the vertical coordinate from z ∈

[-h(x ¯, t), η(x ¯, t)] to s ∈ [-1, 1
] is made to reduce the uneven time varying domain to a constant rectangular domain extending from the bottom at s = -1 to the free surface at s = +1.

s(x ¯, z, t) = 2z + h -(x ¯, t) h + (x ¯, t) (1.28) where h + (x ¯, t) = h(x ¯, t) + η(x ¯, t) and h -(x ¯, t) = h(x ¯, t) -η(x ¯, t).
With this change of variables:

Φ(x ¯, z, t) ≡ ϕ(x ¯, s(x ¯, z, t), t)
Using the chain rule, the system of equations (1.27) is rewritten in terms of ϕ(x ¯, s, t):

                   ϕ xx + ϕ yy + 2(s x ϕ xs + s y ϕ ys ) + (s 2 x + s 2 y + s 2 z ) ϕ ss + (s xx + s yy ) ϕ s = 0 in Ω ϕ(x, y, 1) = Φ(x, y) at s = +1 h + (h x ϕ x + h y ϕ y ) + 2(1 + h 2 x + h 2 y ) ϕ s = 0 at s = -1 (ϕ x + s x ϕ s ) n latx + (ϕ y + s y ϕ s ) n laty = 0 on ∂Ω lat (1.29a) (1.29b) (1.29c) (1.29d)
where n latx and n laty are the components in the (x, y)-plane of the unit vector n ¯lat normal to lateral boundaries.

Expansion of the potential on the basis of Chebyshev polynomials

The second step is based on the assumption that the velocity potential can be approximated by its projection on a subset of the function space of nite dimension. Following the work of [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF], the chosen set of base functions are Chebyshev polynomials of the rst kind (denoted T n , with n the degree of the polynomial). Chebyshev polynomials are easy to compute, are orthogonal for a weighted dot product, and converge rapidly over a large domain.

CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL

By selecting a subset of the N T + 1 rst polynomials, the following approximation is made:

ϕ(x ¯, s, t) ≈ ϕ N T (x ¯, s, t) = N T n=0 a n (x ¯, t)T n (s) (1.30)
where the a n (x ¯, t) coe cients are a set of unknown coe cients to be determined for each x ¯, at each time step. However, since there are no time derivatives in the Laplace BVP, in the following, the a n will be written only as a function of x ¯to lighten the equations. This step allows separating the horizontal variations a n (x ¯) of the velocity potential from the vertical variations T n (s). Chebyshev polynomials of the rst kind are a set of orthogonal polynomials de ned on the interval [-1,1]. They can be de ned in two di erent ways (e.g. [START_REF] Boyd | Chebyshev and Fourier Spectral Methods: Second Edition, Revised[END_REF]):

• by a recurrence relation:

T 0 (s) = 1, T 1 (s) = s, and T n (s) = 2s T n-1 (s) -T n-2 (s)
• or with a trigonometric approach: 

T n (cosθ) = cos(nθ), θ ∈] -∞,
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These polynomials form an orthogonal basis on the interval [-1,1] with respect to the weight 1/ √ 1s 2 . The inner product is then de ned as:

(f, g) ≡ 1 -1 f g ds √ 1 -s 2 .
(1.31) Thus, for two Chebyshev polynomials T n and T p of orders n and p, respectively:

(T n , T p ) =      0 if p = n π 2 if p = n and n ≥ 1 π if p = n = 0 (1.32)
Finally, the inner product of any function f de ned on the interval [-1,1] with a Chebyshev polynomial T p of order p is :

f p ≡ 2 πc p (f, T p ) with c 0 = 2 c p = 1 if p ≥ 1 (1.33)
The coe cient 2 πcp is introduced so that the basis of Chebyshev polynomials is orthonormal (i.e. T n p = δ np , where δ np is the Kronecker symbol).

By substituting the approximation of ϕ (Eq.(1.30)) into the set of equations (1.29), a new set of equations is obtained, that depends only on the a n coe cients, the T n functions, and their respective spatial derivatives.

The Laplace equation (Eq.(1.29a)) in the uid domain becomes:

N T n=0 a n,xx T n + N T n=0 a n,yy T n + 2 s x N T n=0 a n,x T n,s + 2 s y N T n=0 a n,y T n,s + (s 2 x + s 2 y + s 2 z ) N T n=0 a n T n,ss + (s xx + s yy ) N T n=0 a n T n,s = 0 (1.34)
The Dirichlet condition (Eq.(1.29b)) at the free surface (s = +1) is:

N T n=0 a n = Φ(x ¯) (1.35)
The impermeable boundary condition (Eq.(1.29c)) at the bottom (s = -1) is:

h + h x N T n=0 (-1) n a n,x + h + h y N T n=0 (-1) n a n,y + 2(1 + h 2 x + h 2 y ) N T n=0 (-1) n-1 n 2 a n = 0 (1.36)
CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL

The impermeable lateral boundary condition (Eq.(1.29d)) becomes:

N T n=0 a n,x T n + s x N T n=0 a n T n,s n latx + N T n=0 a n,y T n + s y N T n=0
a n T n,s n laty = 0 (1.37)

The terms s x , s y , s z , s xx and s yy can be expressed as polynomial functions of s:

s i = h - i h + -s h + i h + h +2
(i=x or y),

s ii = h - ii h + -2h + i h - i + (2h +2 i -h + ii h + ) s h +2
(i=x or y),

s z = 2 h + .
Replacing the derivatives of s by their expressions, and after some rearrangement, the Laplace equation Eq.(1.34) becomes:

N T n=0 α a n,xx + N T n=0 β a n,yy + N T n=0 γ a n,x + N T n=0 δ a n,y + N T n=0 ζ a n = 0 (1.38)
with :

α = β = T n γ = m 0101 T n,s + m 1101 s T n,s m 0220 δ = m 0011 T n,s + m 1011 s T n,s m 0220 ζ = m 0002 T n,ss -m 1002 s T n,ss + m 2002 s 2 T n,ss + m 0001 T n,s + m 1001 s T n,s m 0220
where the m ijkl terms only depend on h + and h -and their spatial derivatives:

m 0220 = h +2 m 0101 = 2h + h - x m 1101 = -2h + h + x m 0011 = 2h + h - y m 1011 = -2h + h + y 1.2 RESOLUTION OF THE LAPLACE BVP USING A SPECTRAL METHOD IN THE VERTICAL 19 
m 0002 = 4 + h -2 x + h -2 y m 1002 = 2 (h - x h + x + h - y h + y ) m 2002 = h +2 x + h +2 y m 0001 = -2h - x h + x -2h - y h + y + h + h - xx + h + h - yy m 1001 = 2h +2 x + 2h +2 y -h + h + xx -h + h + yy
The impermeability condition at the lateral boundaries (Eq.(1.37)) becomes:

N T n=0 2α n latx a n,x + N T n=0 2β n laty a n,y + N T n=0 (γ n latx + δ n laty ) a n = 0 (1.39)
1.2.3 Application of the Chebyshev-Tau approach to obtain the linear system

The aim of this last step is to obtain a linear system for the a n coe cients, but Eq.(1.38) and (1.39) still depend on x ¯and s. In order to eliminate the dependence on s, both equations can be projected on polynomials T p by applying the inner product . p previously de ned (Eq.(1.33)). Then, the resulting equations only depend on the a n (x ¯). In the case of simple boundary conditions at s = -1 and s = +1 that can be satis ed by the Chebyshev polynomials (the chosen test functions), the projection is done for p from 0 to N T . This is called the Galerkin method. Nevertheless, when the boundary conditions are complicated or for particular problems, it is not always possible to nd a test function verifying them, so a solution is to apply only the projection for p from 0 to N T -2 supplemented by the two equations to account for the surface and bottom boundary conditions Eq.(1.35) and Eq.(1.36). This method, called the Chebyshev-Tau method [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF], will be used here.

Looking at the expressions for α(s), β(s), δ(s), γ(s) and ζ(s), the following terms have to be estimated: T n p , T n,s p , T n,ss p , s T n,s p , s T n,ss p and s 2 T n,ss p . The notation B pikn is introduced:

B pikn ≡ s i d k T n ds k p = 2 πc p s i dT n ds k , T p (1.40)
The B pikn can be determined analytically as a function of n and p using the recurrence relation of the Chebyshev polynomials or from linear combinations of previously de ned B pikn .

T n p = B p00n = δ pn T n,s p = B p01n = 2 cp n if p = n -1, n -3, n -5, ... 0 otherwise T n,ss p = B p02n = 1 cp n (n 2 -p 2 ) if p = n -2, n -4, n -6, ... 0 otherwise s T n,s p = B p11n = n-1 r=0 B r01n 1 2 (B p00(r-1) + B p00(r+1) ) if r ≥1 B p001 if r = 0 s T n,ss p = B p12n = n-2 r=0 B r02n 1 2 (B p00(r-1) + B p00(r+1) ) if r ≥1 B p001 if r = 0 s 2 T n,ss p = B p22n = n-2 r=0 B r02n      1 4 (B p00(r-2) + 2B p00r + B p00(r+2) ) if r ≥2 1 4 (3B p001 + B p003 ) if r = 1 1 2 (B p000 + B p002 ) if r = 0
The B pikn terms are constant, depending only on the Chebyshev polynomials T n , and can be computed once at the beginning of each simulation, after the maximal order of the Chebyshev polynomials N T is chosen.

The nal set of equations to be solved is for the coe cients a n (x ¯), which depend only on x ¯= (x, y) and time (and not on the vertical coordinate s). For each node x, N T + 1 unknown coe cients a n must be determined. When applying the operator . p for p from 0 to N T -2 to Eq.(1.38) for nodes inside the domain or to Eq.(1.39) for nodes on the lateral boundaries, N T -1 equations are obtained. To have a well-posed problem, two additional equations are needed to complete the set of equations at each node. The Dirichlet boundary condition at the surface (Eq.(1.41b)) and the impermeable condition at the bottom (Eq.(1.41c)) are used for this purpose. The horizontal spatial derivatives of the a n coe cients are de ned as linear combinations of the values in the vicinity of the node considered, leading to a set of coupled equations.

                                                 a p,xx + a p,yy + N T n=0 C x pn a n,x + N T n=0 C y pn a n,y + N T n=0 D pn a n = 0 in Ω N T n=0 a n = Φ(x ¯, t) at s = +1 h + h x N T n=0 (-1) n a n,x + h + h y N T n=0 (-1) n a n,y + 2 (1 + h 2 x + h 2 y ) N T n=0 (-1) n-1 n 2 a n = 0 at s = -1 2 n latx a p,x + 2 n laty a p,y + N T n=0 (n latx C x pn + n laty C y pn ) a n = 0 on ∂Ω lat (1.41a) (1.41b) (1.41c) (1.
Once the a n (x ¯) coe cients are determined, the vertical velocity at the free surface w(x ¯) is readily obtained from:

w(x ¯) = Φ z (x ¯, z = η) = s z ϕ s (s = +1) ≈ 2 h + (x ¯) N T n=0 a n (x ¯) n 2
(1.42)

The vertical velocity can then be used to evaluate the right hand side of Eq.(1.25) and Eq.(1.26), required by the numerical scheme to integrate in time.

Computation of ow properties

The main results obtained with the model are surface quantities: the free surface elevation η and the free surface velocity potential Φ. Nevertheless, it also can be of interest to calculate other properties inside the uid domain. Since the Laplace BVP is resolved for the velocity potential Φ(x ¯, z, t) in the entire domain, it is possible to compute some properties of the ow at a given time t, such as the velocity pro le or the pressure eld, or the depth-averaged velocity. For convenience, the derivation of these expressions is done hereafter for the 1DH case (x ¯= x). Extension to the 2DH case is straightforward.

Horizontal and vertical velocities in the uid domain

To visualize the ow inside the uid domain v ¯= (u, w), one must compute the gradient of the velocity potential Φ(x, z, t) at a number of points discretizing the domain:

       u = ∂Φ ∂x = ∂ϕ ∂x + ∂ϕ ∂s ∂s ∂x w = ∂Φ ∂z = ∂ϕ ∂s ∂s ∂z (1.43a) (1.43b)
From the spectral approach used in the vertical in the model, the velocity potential in 1DH is CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL given by Eq.(1.30) repeated here for convenience:

Φ(x, z, t) ≈ ϕ N T (x, s, t) = N T n=0 a n (x, t) T n (s) (1.44)
Expressions for the horizontal and vertical velocities are then deduced:

               u = N T n=0 a n,x T n + h - x -sh + x h + N T n=1 a n T n,s w = 2 h + N T n=1 a n T n,s (1.45a) (1.45b)
To compute the velocity components at a given point (x, z), one must rst compute the coordinates of the point in the (x, s)-plane, with the change of variables from Eq.(1.28), knowing the value of η(x). Values of T n (s) and T n,s (s) are also required and can be obtained analytically, whereas the rst order spatial derivative of the a n coe cients is obtained numerically with a fourth order nite di erence scheme in the 1DH case, using the RBF-FD method in the 2DH case, as explained in the following.

Pressure in the uid domain

The pressure at any point (x, z) of the domain is given by the Bernoulli equation (Eq.(1.16)):

p(x, z, t) = -ρ ∂Φ ∂t + 1 2 ∂Φ ∂x 2 + 1 2 ∂Φ ∂z 2 + gz
The most di cult term to estimate is ∂Φ ∂t at the point x, the Eulerian derivative of the velocity potential Φ, more particularly when the point is such that it is outside the uid domain (i.e. above the free surface) at t -∆t and inside the uid domain at t (or conversely). Because of the time varying limits of the uid domain, it is di cult to estimate directly the time derivative of Φ with a nite di erence scheme. Thus, this derivative will be estimated in the (x, s)-space. Using the spectral approximation of the potential:

∂Φ ∂t (x, z, t) ≈ N T n=0 [a n,t T n + a n T n,s s t ] ,
(1.46)

with s t = 1 h + (h t (1 -s) -η t (1 + s)).
The derivative a n,t (x, t) is computed with a backward nite di erence scheme of rst or second order:

• rst order scheme: a n,t (x, t) = a n (x, t)a n (x, t -∆t) ∆t

• second order scheme:

a n,t (x, t) = 3a n (x, t) -4a n (x, t -∆t) + a n (x, t -2∆t) 2∆t
The accuracy of the results is highly dependent on the approximation of the time derivative and the time step. Other required terms are obtained easily: h t is zero in case of xed bottom or known if the evolution of the bottom elevation is prescribed, and η t is already estimated as the left hand-side of the rst of the two Zakharov equations (Eq.(1.25)). Thus the pressure can be estimated at any point inside the uid domain at any given time t.

Depth averaged horizontal velocity

The depth averaged horizontal velocity u(x) at a location x, is obtained by integrating the vertical pro le of the horizontal velocity from the bottom to the top of the water column:

u(x) = 1 h(x) + η(x) η(x) -h(x) u(x, z) dz = 1 2 1 -1 u(x, s) ds (1.47)
Using the expression of the horizontal velocity in the (x, s)-space, obtained from the spectral approximation of the potential (Eq.(1.43a)), this expression becomes:

u(x) = 1 2 N T n=0 a n,x 1 -1 T n ds + N T n=1 a n h - x h + 1 -1 T n,s ds - h + x h + 1 -1 s T n,s ds (1.48)
By de ning S i j (n) = 1 -1 s j T n,s i ds, Eq.(1.48) can be rewritten as:

u(x) = 1 2 N T n=0 a n,x S 0 0 + N T n=1 a n h - x h + S 1 0 - h + x h + S 1 1 (1.49)
For any value of n the expressions of S 0 0 (n), S 1 0 (n) and S 1 1 (n) are the following:

S 1 0 (n) = 1 -1 T n,s ds = [T n ] 1 -1 = 1 -(-1) n = 0 if n is even 2 if n is odd S 0 0 (n) = 1 -1 T n ds =    [T 1 ] 1 -1 = 2 if n = 0 1 2 T n+1 n+1 -T n-1 n-1 1 -1 for n > 0 = 0 if n = 2p + 1, p ≥ 0 -2 n 2 -1 if n = 2p, p ≥ 0 CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL S 1 1 (n) = 1 -1 s T n,s ds = [s T n ] 1 -1 - 1 -1 T n ds = T n (1) + T n (-1) -S 1 0 = 0 if n is odd 2n 2 n 2 -1 if n is even
Finally, Eq.(1.49) becomes:

u(x) = 1 2   N T /2 p=0 a 2p,x 2 1 -(2p) 2 + 2 h - x h + (N T +1)/2 p=1 a 2p-1 - h + x h + N T /2 p=1 a 2p 2(2p) 2 (2p) 2 -1   (1.50)
1.4 Linear properties of the model 1.4.1 Linearization of the equations for a at bottom In this section, the linear version of the model is considered for only one horizontal dimension (x ¯= x). It is derived by assuming that the amplitude of free surface deformation is small. It is obtained: (i) by neglecting the non-linear terms in the Zakharov equations (Eq.(1.22) and Eq.(1.23)), and (ii) by taking the upper limit of the uid domain to be the elevation z = 0 (free surface elevation at rest) instead of z = η(x, t). The water depth is held constant (i.e. the bottom is xed and at). By introducing Φ0 ≡ Φ(x, z = 0, t) and w0 ≡ ∂Φ ∂z (x, z = 0, t), the velocity potential and the vertical velocity at z = 0, respectively, the linear version of the model can be written as:

                     ∂η ∂t = w0 at z = 0 ∂ Φ0 ∂t = -gη at z = 0 ∆Φ = 0 in Ω, for -h < z < 0 ∂Φ ∂z = 0 at z = -h (1.51a) (1.51b) (1.51c) (1.51d)

The rst order Stokes solution

When considering regular progressive waves with period T (or angular frequency ω = 2π T ), wavelength L (or wave number k = 2π L ) and amplitude A, the exact solution of the set of linear equations Eq.(1.51a)-Eq.(1.51d) is given by rst-order Stokes theory [START_REF] Dean | Water Wave Mechanics for Engineers and Scientists[END_REF]:

Φ(x, z, t) = gA ω cosh(k(h + z)) cosh(kh) sin(kx -ωt), (1.52)
which is used as the analytical reference to study the accuracy of the results obtained with the model. The proposed model solves the same set of equations, but because of the numerical approach and the discretization of the problem, the model solution may di er from the exact analytical solution. Particular attention is paid to the dispersion relation:

ω 2 Stokes = gk tanh(kh) or ω2 Stokes = µ tanh(µ) (1.53)
with µ ≡ kh, the relative water depth, and ω ≡ ω h g , the non-dimensional angular frequency. The phase celerity of the wave can be deduced from Eq.(1.53):

C √ gh 2 Stokes = ωStokes µ 2 = tanh µ µ (1.54)
The relative water depth µ is also known as a parameter measuring frequency dispersion. From the expression of the phase celerity, one can notice that: (i) in shallow water ("small" µ i.e. 

µ i.e. h L > 1 2 ⇔ µ > π) C √ gh ≈ 1 √ µ or C ≈ g k = g ω .
Thus, frequency dispersion becomes important for large values of µ (deep water or short waves). Even if the relative water depth of the wave is not very large, the relative water depth corresponding to its higher harmonics may become large. Therefore, it is important to have high accuracy for large values of µ.

Derivation of the linear dispersion relation of the proposed model 1.4.3.1 Analytical expression of the dispersion relation

To derive the dispersion relation of the linearized model, a progressive wave solution of a sinusoidal form is sought:

Φ(x, z, t) = gA ω f (z) sin(kx -ωt), (1.55)
where f (z) represents the vertical variation of the velocity potential (in the case of rst-order Stokes wave theory, f (z) = cosh(k(h+z)) cosh(kh) from Eq.(1.52)). The accuracy of the model is veri ed in comparison to the vertical variation of the Stokes theory velocity potential. In particular, according to Stokes theory, f (z = 0) = 1 must be satis ed.

From the expression of the velocity potential (Eq.(1.55)), Φ0 and its time derivative are obtained: (1.57) By introducing Eq.(1.57) into Eq.(1.51b), the following expression for η is deduced :

Φ0 = gA ω f (0) sin(kx -ωt) (1.56)
η = - 1 g ∂ Φ0 ∂t = Af (0) cos(kx -ωt) (1.58)
If the condition f (0) = 1 is true, this expression of the free surface elevation corresponds to a sinusoidal wave of amplitude A propagating in the x-direction.

Then, w0 can be expressed as:

w0 = ∂Φ ∂z (x, z = 0, t) = gA ω f (0) sin(kx -ωt) (1.59)
where f (0) ≡ df dz (z = 0).

Finally, replacing ∂η ∂t and w0 by Eq.(1.58) and Eq.(1.59) their expressions in Eq.(1.51a), the dispersion relation of the linear version of the model is obtained:

ω 2 g f (0) = f (0), (1.60)
which in the non dimensional space, corresponds to:

ω2 = f (0) f (0) h.
(1.61)

Expression of the dispersion relation as a function of the a n

The dispersion relation is determined from the vertical variation of the velocity potential. The accuracy of estimation of this vertical variation is related to the spectral resolution of the numerical method. Thus, the decomposition of f (z) on the basis of the Chebyshev polynomials is studied. First, a change of variables of the vertical coordinate from z to s is completed (Eq.(1.28 for a at bottom h = cst and η = 0) following the steps previously shown in Section 1.2.1.

Derivatives of s with respect to x are zero because of the at bottom assumption.

s x = s xx = s zz = s zx = 0 and s z = 2 h .
Following the change of variables, f (z) becomes f (s). Using the chain rule ( df dz = d f ds s z ), Eq.(1.61) can be rewritten in terms of f :

ω2 = 2 f (1) f (1)
.

(1.62)

The function f can then be expanded on the basis of the N T + 1 rst Chebyshev polynomials:

f (s) ≈ N T n=0
a n T n (s).

(1.63)

Contrary to the expansion of the velocity potential in the non-linear version of the model, the coe cients a n are now constant. The dependence on x does not appear in the function f , that only depends on s, but in the argument (k.xωt) of the sine functions.

Furthermore, the properties of the Chebyshev polynomials give the following expressions for f (1) and f (1):

f (1) = N T n=0 a n and f (1) = N T n=0 a n n 2 .
Thus the approximation of ω2 for a polynomial of maximum order N T (ω 2 N T ) can be expressed as a function of the a n coe cients:

ω2 N T = 2 N T n=0 a n n 2 N T n=0 a n .
(1.64)

Resolution of the Laplace BVP

To get the a n coe cients, the Laplace BVP is solved in the uid domain. In the coordinate system (x, s), where ϕ(x, s) ≡ Φ(x, z), the Laplace equation (Eq.(1.51c)) is written as:

ϕ xx + 2s x ϕ xs + (s 2 x + s 2 z )ϕ ss + s xx ϕ s = 0.
(1.65)

In the case of a at bottom, Eq.(1.65) can be simpli ed to:

ϕ xx + 4 h 2 ϕ ss = 0.
(1.66)

By substituting for ϕ, this simpli es to:

µ 2 f (s) -4 f (s) = 0. (1.67)
in which the square of the dispersion parameter µ appears.

CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL When f (s) is replaced by its approximation (Eq.(1.63)), Eq.(1.67) becomes:

N T n=0 a n (µ 2 T n -4 T n,ss ) = 0. (1.68)
Finally, in order to eliminate the s coordinate, the Chebyshev-Tau operator (Eq.(1.33)) can be applied to Eq.(1.68) for 0 ≤ p ≤ N T :

N T n=0 a n (µ 2 < T n > p -4 < T n,ss > p ) = 0 ⇒ N T n=0 a n (µ 2 B p00n -4B p02n ) = 0 (1.69)
where B p00n = δ pn and B p02n =

1 c p n(n 2 -p 2 ) if p = n -2, n -4, n -6, .
.. 0 0 otherwise. with c p de ned in Eq.(1.33).

A linear system of N T +1 equations is then formed for the unknown coe cients a n . This system is made of:

• an equation imposing the free surface boundary condition (following Stokes theory):

f (0) = 1 ⇔ f (1) = 1 ⇒ N T n=0 a n = 1,
(1.70)

• an equation imposing the impermeability of the bottom:

∂Φ ∂z z=-h = 0 ⇒ f (-1) = 0 ⇒ N T n=0
(-1) n-1 a n n 2 = 0, and (1.71)

• the N T -1 equations corresponding to the inner product of the Laplace equation with T p for p from 0 to N T -2:

N T n=0 a n (µ 2 B p00n -4B p02n ) = 0 for p = 0, ..., N T -2.
(1.72)

An example of the linear system, in matrix format, for N T =4 is:

        1 1 1 1 1 0 1 -4 9 - 16 
µ 2 0 -16 0 - 128 
0 µ 2 0 -96 0 0 0 µ 2 0 -192         .         a 0 a 1 a 2 a 3 a 4         =         1 0 0 0 0        
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The solution of the system gives the expression of the a n coe cients as a function of µ 2 , from which the non-dimensional dispersion relation can be deduced:

ω2 N T = 2 N T n=1 a n n 2 .
(1.73)

1.4.3.4 Analytical resolution of the linear system

The linear system of the a n coe cients can be solved "by hand" for small values of N T (2 to 4), but for larger values of N T the calculations become cumbersome. Therefore, a computer algebra program wxMaxima (http://andrejv.github.io/wxmaxima/) is used to nd the analytical expression of the non-dimensional angular frequency corresponding to the linearized model with a at bottom as a function of the dispersion parameter µ for several values of N T . The results can be expressed as a rational function of µ:

ω2 N T µ 2 = C √ gh 2 N T = 1 + N T -2 p=1 α p µ 2p 1 + N T -1 p=1 β p µ 2p
.

(1.74)

The values of the coe cients α p and β p for N T = 7 are given as an example (Table 1.1). The coe cients for N T from 2 to 15 are shown in Appendix A and will be compared to the theoretical expression in the next section. For values of N T greater than 15, there was not su cient computer memory (within a desktop linux machine) to obtain the analytical expressions. 

Accuracy of the dispersion relation of Misthyc

To study the accuracy of the dispersive properties of the model, the dispersion relation of Misthyc is compared with Stokes' analytical expression. Dispersion relations obtained with Boussinesqtype models are also compared to these results. Boussinesq models are often used to simulate water wave propagation. They do not resolve exactly the same set of equations, and their dispersion relation is di erent from Stokes analytical solution. Some Boussinesq models have a dispersion relation corresponding to a rational approximation of Padé type, which means that CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL tanhµ/µ is approximated as a rational function of µ. Rational functions with the same order in the numerator and denominator are known to give more accurate results. Relations for the order (2,2) and (4,4) Padé approximants are considered in this comparison:

• the dispersion relation using a (2,2) Padé approximant is:

C √ gh 2 = tanh µ µ ≈ 1 + 1 15 µ 2 1 + 2 5 µ 2 ,
(1.75)

• the dispersion relation using a (4,4) Padé approximant is:

C √ gh 2 = tanh µ µ ≈ 1 + 1 9 µ 2 + 1 945 µ 4 1 + 4 9 µ 2 + 1 63 µ 4 .
(1.76)

The Padé approximants may not be accurate enough to simulate well waves propagating in deep water conditions (kh > π). Higher-order models have been proposed by several authors. Here, two models are considered for further comparison. Their derived linear dispersion relations are:

• from the linearized two-layer Boussinesq model of [START_REF] Chazel | A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[END_REF]:

C √ gh 2 = 1 + a 2 µ 2 + a 4 µ 4 + a 6 µ 6 1 + b 2 µ 2 + b 4 µ 4 + b 6 µ 6 + b 8 µ 8 , (1.77)
One can notice that this corresponds to the analytical expression for the dispersion relation of Misthyc (Eq.(1.74)) for N T = 5 but with di erent coe cients:

a 2 = 2S + 1 12 , a 4 = S(2S + 1 12 ) , a 6 = S 3 b 2 = 2S + 5 12 , b 4 = 3S 2 + 2 3 S + 1 144 , b 6 = S 2 (2S + 5 12 ) , b 8 = S 4
and with S = σ(1σ)/12 where σ = 0.314 is the recommended value.

• from the linearized extended Boussinesq model of [START_REF] Madsen | A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry[END_REF]:

C √ gh 2 = 1 + a 2 µ 2 + a 4 µ 4 + a 6 µ 6 + a 8 µ 8 1 + b 2 µ 2 + b 4 µ 4 + b 6 µ 6 + b 8 µ 8 + b 10 µ 10 , (1.78)
One can notice that this corresponds to the analytical expression for the dispersion relation of Misthyc (Eq.(1.74)) for N T = 6 but with di erent coe cients: where σ = 0.5 is the recommended optimal value. The dispersion relations are compared by plotting the ratio between the phase velocity obtained by each model and the phase velocity of rst-order Stokes theory (Figure 1.3) for kh in the range [10 -2 , 10 2 ] (where kh = 10 2 is approximately 30 times the value usually taken as the in nite depth limit). All of the models eventually diverge from C/C Stokes = 1 for di erent large values of kh, with di erent trends. Both Padé approximants diverge with larger values of the phase velocity whereas the two "improved" Boussinesq models of [START_REF] Chazel | A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[END_REF] and [START_REF] Madsen | A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry[END_REF] diverge with lower values of the phase velocity. The phase velocities obtained with Misthyc do not diverge monotonically. For shallow and intermediate water conditions, the models are nearly equivalent, and di erences become visible only for deep water conditions. The phase velocity obtained with Misthyc using N T = 3 diverges for kh ≈ 0.4 and the (2,2) Padé approximants diverge for kh ≈ 2. Then, the curves corresponding to Misthyc with N T = 5 and N T = 7 begin to diverge for smaller kh than the Boussinesq models of [START_REF] Chazel | A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[END_REF] and [START_REF] Madsen | A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry[END_REF]. With N T = 20, C/C Stokes ≈ 1 for the range of kh values considered here (0.01 ≤ kh ≤ 100).

a 2 = 1 6 - σ 2 9 , a 4 = 1 120 - σ 2 54 +
The relative error is also evaluated in comparison to the phase velocity given by rst-order Stokes theory (Figure 1.4). By setting a threshold of 2.5% error with respect to the Stokes phase velocity, this error level is exceeded for increasing values of kh, when N T increases: kh ≈ 6.9 for N T = 3, and kh ≈ 56 for N T = 7, and the threshold is not exceeded for N T > 15 (for kh ≤ 100). The 
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accuracy of the dispersion relation is thus improved with larger N T . Moreover, the relative error of [START_REF] Chazel | A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[END_REF] is larger than the error obtained with the (2,2) and (4,4) Padé approximants in shallow and intermediate water, but the trend reverses for a narrow range of kh for deep water conditions.

Misthyc is then compared with the two "improved" Boussinesq models considered here in deep water conditions (π ≤ kh ≤ 100). The phase velocity ratios are plotted for N T = 7 -12 in Figure 1.5. Considering the value of kh where C/C Stokes diverges from 1, Misthyc obtains results similar to those of the two Boussinesq models for values of N T of about 8-9. Looking at the phase velocity ratio relative error (Figure 1.6) for kh < 6 the relative error of the Boussinesq model of [START_REF] Chazel | A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[END_REF] is larger than for Misthyc with N T = 7 but becomes smaller for a narrow range of kh in deep water conditions. For kh < 30, the relative error of the Boussinesq model of [START_REF] Madsen | A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry[END_REF] is smaller than the errors for Misthyc with N T = 7. For kh > 30 both considered Boussinesq models have a larger relative error than Misthyc with N T > 10. For both Boussinesq models, the 2.5% error limit is exceeded at kh ≈ 30 -33 and at kh ≈ 55 for Misthyc with N T > 7.

Thus, the dispersive properties of the linear version of Misthyc improve with an increasing value of N T . This exibility is an advantage when using the model in shallow or intermediate water because a smaller value of N T can be used to reduce the computational time signi cantly. For N T > 10 the relative error remains under the 2.5% threshold for kh ∈ [0.01, 100]. 

Integration in time

To integrate the Zakharov equations in time, the classical fourth order Runge Kutta (RK4) scheme, with a constant time step, is chosen. This explicit method estimates the value of f (t + ∆t) from the value of f (t) and an approximation of the derivative through a weighted average of the derivative at t, t + ∆t/2 and t + ∆t. At each time step the error is of the order O(∆t 5 ) and the cumulative error is of the order O(∆t 4 ). This common method is used for a wide range of applications, because of its stability and e ciency.

For an equation of the type ∂y ∂t = f (t, x, y) (here, y=η or y= Φ), the RK4 scheme gives the following expression for y t+∆t :

y t+∆t = y t + ∆t 6 (k 1 + 2k 2 + 2k 3 + k 4 ) (2.1) with                k 1 = f (t, x, y(x, t)) k 2 = f (t + ∆t 2 , x, y(x, t) + k 1 ∆t 2 ) k 3 = f (t + ∆t 2 , x, y(x, t) + k 2 ∆t 2 ) k 4 = f (t + ∆t, x, y(x, t) + k 3 ∆t)
A RK4 scheme with a constant time step is currently used because the given accuracy is sufcient for the current applications. Nevertheless, a scheme with an adaptive time step (see e.g. [START_REF] Clamond | A note on time integrators in water-wave simulations[END_REF] or another iterative scheme may improve the accuracy and/or computational time. Symplectic schemes could also be considered as the Zakharov system is Hamiltonian (e.g. [START_REF] Xu | Numerical simulation of three-dimensional nonlinear water waves[END_REF]. [START_REF] Clamond | A note on time integrators in water-wave simulations[END_REF] have shown however that a strategy using a high-order explicit scheme with adaptive an time-step seems more appropriate for practical integration of such systems. This topic deserves additional study and tests, but in this work, the well-known and robust RK4 scheme is retained.

Derivatives in space

To calculate the spatial derivatives in the system of equations, so-called collocation methods are used. The derivatives at computational nodes are replaced by algebraic approximations involving a set of neighboring nodes. The m th order derivative of a function f at a node x = x i is expressed as a linear combination of the values of the function f at the node x i and at its n closest neighbors. n is related to the targeted approximation order in the Taylor series expansion:

d m f dx m x=x i = n k=0 α m k f (x k ) (2.2)
where i ∈ [0, n], and the α m k coe cients are the optimal weights, for the m th order derivative, depending on the number of nodes (n + 1) used to obtain the derivative estimate at node x = x i .

In the following, the optimal weights for a stencil of size n + 1 are denoted α m k,n . [START_REF] Fornberg | Generation of nite di erence formulas on arbitrarily spaced grids[END_REF] developed a recursive algorithm to compute the optimal weights using the Lagrange interpolator polynomials. The n th order Lagrange polynomial is de ned from the n + 1

values of f (x k ) (k = 0 to n): p n (x) = n k=0 L k,n (x)f (x k ) (2.3) with L k,n (x) = (x -x 0 )...(x -x k-1 )(x -x k+1 )...(x -x n ) (x k -x 0 )...(x k -x k-1 )(x k -x k+1 )...(x k -x n ) (2.4)
The following approximation is obtained:

d m f (x) dx m x=x i ≈ d m p n dx m x=x i = n k=0 d m L k,n (x) dx m x=x i f (x k ) = n k=0 α m k,n f (x k ) (2.5)
From the de nition of L k,n (x) (Eq.(2.4)), recurrence relations can be derived. The rst one is the

relation between L k,n and L k,n-1 when k = n: L k,n (x) = (x -x n ) (x k -x n ) L k,n-1 (x) (2.6)
The second relation is obtained for k = n, making the link between L n,n and L n-1,n-1 :

L n,n (x) = n-2 l=0 (x n-1 -x l ) n-1 l=0 (x n -x l ) (x -x n-1 )L n-1,n-1 (x) (2.7)
Now, the n th order Taylor series expansion of L k,n (x) at x = x i is considered:

L k,n (x) ≈ n m=0 d m L k,n (x) dx m x=x i (x -x i ) m m! = n m=0 α m k,n (x -z) m m! (2.8)
When introduced into Eq.(2.6) and Eq.(2.7), two recurrence relations for the α m k,n coe cients (m > 0) are obtained by equating the terms (xz) m with the same order m:

         α m k,n = 1 (x k -xn) [kα m-1 k,n-1 -(x n -x i )α m k,n-1 ] for k = n α m n,n = n-2 l=0 (x n-1 -x l ) n-1 l=0 (xn-x l ) [mα m-1 n-1,n-1 -(x n-1 -x i )α m n-1,n-1 ] for k = n (2.9)
In the model, the fortran code provided by [START_REF] Fornberg | Generation of nite di erence formulas on arbitrarily spaced grids[END_REF] is used. It computes recursively the optimal weights to estimate the rst and second derivatives at a given node x i , given the abscissa coordinates of the n + 1 nodes forming the stencil (x k , k = 0, n) and the maximal order of the targeted derivative. Misthyc is coded to allow the exibility to choose the order of spatial derivatives. However, to obtain high accuracy, n = 4 is used in all of the following applications of the 1DH version of the model. The rst and second order derivatives are then approximated with an error of order O(∆x 5 ) in the case of a centered stencil, i.e. with two points on both side of the node where the derivatives are estimated. When the stencil is not centered (for nodes on or close to the boundaries of the domain), rst order derivatives are estimated with an accuracy of order O(∆x 4 ) but second order derivatives are only O(∆x 3 ) accurate. To recover the O(∆x 4 ) accuracy for nodes on the boundaries, one must take n = 5.

Resolution of the linear system

At each sub-step of the RK4 scheme, the discretization of the Laplace BVP in (x, s), with N P X nodes in x and N T the maximum order of the Chebyshev polynomials, results in a system of N P X(N T +1) linear equations for the coe cients a n (x i ), for n = 0, .., N T and i = 1, .., N P X.

The corresponding matrix is sparse, and the system is currently solved in Misthyc using the direct solver MUMPS ("MUltifrontal Massively Parallel Solver", v4.10.0) [START_REF] Amestoy | A fully synchronous multifrontal solver using distributed dynamic scheduling[END_REF][START_REF] Amestoy | Hybrid scheduling for the parallel solution of linear systems[END_REF], using the default settings. Iterative solvers could be also used, and will be tested in the future.

Boundary conditions for wave generation and absorption

2.2.1 Wave absorption

Brief review of wave absorption in numerical models

Wave absorption is necessary in numerical models to prevent full re ection of waves from the lateral (numerical) boundaries. In many cases, this numerical absorption is designed to take into account physical dissipative processes (e.g. wave breaking or bottom friction) or simply to simulate fully open (radiative) boundary conditions without wave re ection. There are several methods used to absorb waves in numerical models, which can be classi ed into two main groups:

1. Wave absorption is located at the boundary and is achieved with adapted boundary conditions. It can be either a radiative boundary condition that allows waves to propagate out of the domain or "active" absorption that adapts the boundary condition such that a wave is generated to cancel out the incoming wave. These two options require knowing the characteristics of the waves to be absorbed (celerity, direction of propagation). These methods can be very e cient for regular waves but are di cult to extend and to optimize for irregular waves with a wide range of wavelengths and directions.

2. Wave absorption can be carried out in a zone leading up to the lateral boundary either by adding dissipative terms in the evolution equations (i.e. [START_REF] Kim | Numerical analysis of various arti cial damping schemes in a three-dimensional numerical wave tank[END_REF][START_REF] Koo | Freely oating-body simulation by a 2D fully nonlinear numerical wave tank[END_REF] 2.2 BOUNDARY CONDITIONS FOR WAVE GENERATION AND ABSORPTION 39 [START_REF] Zhang | Application of desingularized approach to water wave propagation over three-dimensional topography[END_REF] or by imposing a pressure opposing the waves (i.e. [START_REF] Clamond | An e cient model for three-dimensional surface wave simulations. part II: Generation and absorption[END_REF][START_REF] Viotti | Extreme waves induced by strong depth transitions: Fully nonlinear results[END_REF]. These terms are generally added progressively in space to avoid discontinuities and numerical instabilities. Another solution is to implement a relaxation zone where the solution obtained by the model is progressively modi ed to correspond to an imposed solution (i.e. [START_REF] Bingham | A Fourier-Boussinesq method for nonlinear water waves[END_REF][START_REF] Engsig-Karup | Unstructured Nodal DG-FEM Solution of High-order Boussinesq-type Equations[END_REF]. The eciency of this second kind of method strongly depends on several parameters: the length of the relaxation zone, the mathematical formulation of the dissipative terms and its numerical parameters, and the shape of the spatial ramp function. The optimization of these characteristics might depend on the problem considered. Moreover, the lateral boundary condition at the end of the domain still needs to be de ned. Generally it is a fully reective condition or null normal velocity, but it may be a condition of type (1) to absorb long waves that might not have been absorbed well by methods of type (2) (i.e. [START_REF] Clément | Coupling of two absorbing boundary conditions for 2D time-domaine simulations of free surface gravity waves[END_REF][START_REF] Grilli | Numerical generation and absorption of fully nonlinear periodic waves[END_REF][START_REF] Zhang | Numerical study on a hybrid water wave radiation condition by a 3d boundary element method[END_REF]. The main drawbacks of this kind of method are that they require increasing the size of the computational domain and thus the computational time, and they may not be very e cient for absorbing very long waves.

The following paragraphs present a series of tests evaluating the implementation of methods of type ( 2) with rst a relaxation zone and then with the addition of dissipative terms.

Relaxation zones

Relaxation zones are used to impose a known solution with a progressive transition in space to avoid the generation of shocks. The method is applied to both surface variables η and Φ.

Over the length of the relaxation zone, the solution obtained with the model (η, Φ), at the end of each time step, is replaced by a linear combination of the obtained values and the imposed solution (η imp , Φimp ). The linear combination is de ned by the relaxation coe cient C r , which is a monotonic positive function varying between 0 at the entrance of the relaxation zone (x = x relax ) and 1 at the boundary (x = x b ) such that:

η(x, t) = (1 -C r (x)) η(x, t) + C r (x) η imp (x, t) (2.10) Φ(x, t) = (1 -C r (x)) Φ(x, t) + C r (x) Φimp (x, t) (2.11)
If the imposed solution is the null function, the relaxation zone can be used to absorb, but it can also be used in the case of wave generation with values of η and Φ calculated using linear (see Section 2.2.2) or nonlinear wave theory. As previously mentioned, this method depends on adjustable parameters that have to be tuned and may depend on each speci c problem, mainly the length of the relaxation zone L relax and the shape of the relaxation coe cient C r . A good choice of these parameters is necessary to have an e cient relaxation zone, and a series of tests are completed here to study the sensitivity to these parameters.

The rst characteristic to be studied is the shape of the relaxation coe cient C r . The condition to meet for C r can be obtained for various shapes with di erent rates of transition from 0 to 1. A gradual change of the coe cient is important to avoid wave re ection from the relaxation zone. The rst implementation of C r in the model was made following [START_REF] Bingham | A Fourier-Boussinesq method for nonlinear water waves[END_REF], with

C r (x) = 1 -0.6 |x b -x| |x b -x relax | 8
, and |x bx relax | = L relax . However, this shape of coe cient does not ful ll the condition

C r (x = x relax ) = 1, so it was adapted to C r (x) = 1 -|x b -x| |x b -x relax | α
, with α a real number to be determined for the optimization of the relaxation zone. In [START_REF] Engsig-Karup | Unstructured Nodal DG-FEM Solution of High-order Boussinesq-type Equations[END_REF], relaxation zones for wave generation and absorption for high-order

Boussinesq-type models based on unstructured grids are studied, and α = 5 was suggested as the optimal value. In [START_REF] Kim | Numerical analysis of various arti cial damping schemes in a three-dimensional numerical wave tank[END_REF], dissipative terms are added to the free surface boundary conditions. To avoid an abrupt change of the boundary conditions, they tested several ramp functions to increase gradually the magnitude of the damping coe cient. In the following set of tests, the ramp functions used by [START_REF] Kim | Numerical analysis of various arti cial damping schemes in a three-dimensional numerical wave tank[END_REF] are considered. Finally, six shapes of the relaxation coe cient C r are also tested: The e ciency of the relaxation zone is evaluated by the re ection measured inside the domain.

C r1 (x) = 1 - |x b -x| |x b -x relax | 5 (2.12) C r2 (x) = 1 - |x b -x| |x b -x relax | (2.13) C r3 (x) = 1 -cos π 2 x -x relax x b -x relax (2.14) C r4 (x) = 1 2 1 -cos π x -x relax x b -x relax (2.15) C r5 (x) = sin π 2 x -x relax x b -x relax (2.16) C r6 (x) = 1 -e -20 x -x relax x b -x relax (2.17
If waves are fully absorbed, there should be no re ection of the incoming wave eld. Once the periodic steady state is reached, the time series of the free surface elevation at 32 locations between x = 18 m and x = 24 m covering a domain of one wavelength are analyzed to obtain the average wave height at each location. If no re ection occurs (full absorption) the mean wave height is expected to be constant, but as can be seen in Figure 2.2, the resulting normalized wave height pro les obtained for the di erent shape of the relaxation coe cient vary along the domain. The wave height is modulated by the phase di erence between the incoming H I and the re ected H R waves.

From the variations of the mean wave height pro le, the re ection coe cient R can be computed (Table 2.1).

R = H R H I = H max -H min H max + H min ,
where H max and H min are the extreme values reached by the wave pro le at each node. Re ections are minimum with the relaxation coe cient C r1 and maximum with C r6 . The coe cient C r6 makes the free surface elevation zero along a longer part of the relaxation zone in comparison with C r1 , but this does not seem to be the important characteristic to reduce re ections. The main di erence between the studied relaxation coe cients is their derivatives at x = x relax (the beginning of the relaxation zone), and it appears that the steeper the slope at the entrance of the zone, the larger the re ection in the domain. [START_REF] Engsig-Karup | Unstructured Nodal DG-FEM Solution of High-order Boussinesq-type Equations[END_REF] showed that at the interface not

only C r (x relax ) = 0 must be satis ed but also C r (x relax ) = C r (x relax ) = C r (x relax ) = ... = 0
to avoid the generation of spurious waves. Among the options considered here, this is only the case for C r1 , explaining the high re ection coe cients obtained with the other C r shapes.

Relaxation coe cient C r1 C r2 C r3 C r4 C r5 C r6
Re ection coe cient R 0.14 0.40 0.21 0.32 0.52 0.94 Table 2.1: Re ection coe cients for the di erent shapes of the relaxation coe cients considered in the rst set of simulations (Figure 2.1).

Based on this set of tests, a coe cient of the type of C r1 is used for the model implementation of relaxation zones. A sensitivity test on the value of the α parameter is carried out. As can be seen in Figure 2.3, this value has a non negligible in uence on the shape of the relaxation coe cient.

As done previously, the mean wave height is computed from the time series of the free surface elevation for x ∈ [18, 24] m. It is not constant and varies with x (Figure 2.4), showing that re ections occur for all values of α. The amplitude of the variations depends on the parameter α, with higher variations for extreme values of α (both low, α = 1, and high, α = 9). The re ection coe cients calculated from the wave height pro les are plotted in Figure 2.5 (blue line). The optimal value to minimize re ection is approximately α = 3.5.

The same set of simulations was completed for longer relaxation zones of 1.5L and 2L. The evolution of the re ection coe cients R as a function of α are plotted in Figure 2.5. The lengthening of the relaxation zone improves its e ciency for every α, and the dependence on α weakens. The optimal value of α seems to decrease with an optimal value around α = 3 for L relax = 1.5L and α = 2.5 for L relax = 2L. With a relaxation zone of two wavelengths, the re ection is less than 5% for α > 2 and decreases down to 1% in the best cases.

In all test cases where absorption is required, a relaxation zone of two wavelengths of the primary wave in the region is generally applied. The relaxation technique is applied at the end of each if the relaxation zone is applied with the same frequency (i.e. applied every two time steps for ∆t 2 = ∆t 1 2 ), the convergence in time is recovered.

Adding dissipative terms

A second possibility for wave absorption is to include an arti cial damping zone near the end of the domain. In this zone, arti cial damping terms are progressively applied to the free surface boundary conditions. [START_REF] Kim | Numerical analysis of various arti cial damping schemes in a three-dimensional numerical wave tank[END_REF] tested ve di erent schemes to introduce wave absorption in their 3D numerical wave tank, where damping terms such as η-type, Φ-type or Φ n -type (with Φ n = ∂Φ ∂n the normal free surface velocity) were added to the KFSBC and/or the DFSBC. They concluded that adding a Φ n -type term in the DFSBC and a η-type in the KFSBC (their method 5) was the solution minimizing re ections (with a ramp function with shape C r3 ) in their work:

       ∂ Φ ∂t = -gη -µ 1 ∂Φ ∂n DFSBC ∂η ∂t = w -µ 2 η KFSBC (2.18a) (2.18b)
In this system, the rst damping term contributes to the damping of the water particle velocity, 

such that µ 1 = µ 0 C r (x) and µ 2 = µ 0 k C r (x) .
The set of equations (2.18) was implemented in the linear version of Misthyc with a ramp function corresponding to C r3 for a damping zone of one wavelength. A sensitivity test on the value of µ 0 was carried out. The mean wave height for several values of the parameter µ 0 , around the value of 2.5 used by [START_REF] Kim | Numerical analysis of various arti cial damping schemes in a three-dimensional numerical wave tank[END_REF], are presented in Figure 2.6. The in uence of the value of µ 0 is not negligible and the value µ 0 = 2.5 is not the optimal one in that case.

The re ection coe cient as a function of µ 0 is plotted in Figure 2.7. A minimum in re ection is obtained for µ 0 ≈ 1.75. It is important to notice that the re ection coe cient is smaller than 5%

for the range of values of µ 0 considered, with a damping zone of only one wavelength, whereas when using a relaxation zone of one wavelength, the re ection coe cient is over 10% (Figure 2.5). The relaxation zone has to be extended to two wavelengths to obtain comparable re ection coe cients.

Conclusion

From this study, it appears that the use of arti cial damping terms may be more e cient for wave absorption than a relaxation zone since the same re ection coe cients are obtained for a shorter length of the damping zone, allowing a gain of computational time. However, with the chosen arti cial damping scheme a relation linking µ 1 to µ 2 is used, which relies on the wave number k. It is not clear that the e ciency of the damping terms is maintained for a range wavelengths, for example in the case of irregular waves. This has not been tested yet. Moreover, the relation between µ 1 and µ 2 is derived for deep water conditions only but what if this assumption is not veri ed? The values of µ 1 and µ 2 then require being optimized, which may be more tedious than an optimization of µ 0 only. Thus the choice was made, in case where wave absorption is needed, to use a relaxation zone of generally two wavelengths long.

Finally, all the tests here were completed with the linear version of the model. [START_REF] Kim | Numerical analysis of various arti cial damping schemes in a three-dimensional numerical wave tank[END_REF] studied the e ects of non-linearity on the arti cial damping scheme by applying it to waves of increasing steepness. They showed that even if the total energy ratio of nonlinear simulations to linear simulation diverged from one with the increase in wave steepness, it reaches a steady state indicating that the damping scheme is still e cient for nonlinear waves.

Wave generation 2.2.2.1 Brief review on wave generation in numerical models

When developing a numerical wave model, the focus is generally directed to the accurate representation of wave propagation and kinematics. However, the accurate generation of incident wave elds with speci ed characteristics (height, period, and direction) already presents a numerical challenge.

Wave generation methods can be implemented either by using a moving (impermeable) boundary, similar to what is done in experimental wave tanks (i.e. forcing the motion of uid particles in a Lagrangian manner) [START_REF] Contento | Numerical wave tank computation of nonlinear motions of two-dimensional arbitrarily shaped free oating bodies[END_REF]Ducrozet et al., 2012b), or using numerical algorithms to create the desired wave eld by adapting the lateral or free surface boundary conditions or the momentum equations. This second option can be divided into ve main categories, most of which were compared and discussed in [START_REF] Schmitt | A review of wave makers for 3D numerical simulations[END_REF], with respect to developing a model using the Volume of Fluid method:

1. lateral boundary forcing method: analytical solutions are prescribed at the incident, xed boundary in an Eulerian manner, for example the incident velocity pro le [START_REF] Ning | Numerical simulation of fully nonlinear irregular wave tank in three dimensions[END_REF][START_REF] Xiao | A meshless numerical wave tank for simulation of nonlinear irregular waves in shallow water[END_REF]. Variations of this method exist, and they are categorized based on how the wave conditions are imposed, including: Dirichlet-type conditions corresponding to imposing the unknown variable itself at the boundary, Neumann-type conditions corresponding to imposing its derivative (usually the normal derivative), or Robin-type conditions that are a mix of Dirichlet and Neumann conditions.

2. mass source method: based on the observation that the in ow and out ow of water in the domain can lead to a free surface displacement, the continuity equation is augmented with a source term in a given region of the domain [START_REF] Liam | Embedded wave generation for dispersive surface wave models[END_REF].

3. impulse source method: similar to the mass source method, this method consists in adding source terms to the momentum equation [START_REF] Lee | Internal generation of waves for time-dependent mild-slope equations[END_REF].

4. surface pressure method: the wave motion is forced by applying a free surface pressure term in the DFSBC [START_REF] Clamond | An e cient model for three-dimensional surface wave simulations. part II: Generation and absorption[END_REF] that is variable in space and time.

5. relaxation method: similar to what was presented in Section 2.2.1.2, a relaxation zone can be implemented for wave generation using linear (or any high-order) wave theory to impose progressively over a given distance the reference solution [START_REF] Engsig-Karup | Unstructured Nodal DG-FEM Solution of High-order Boussinesq-type Equations[END_REF]. This is done by replacing the computed solution at the end of each time step by a linear combination of this computed solution and the reference solution.

According to [START_REF] Schmitt | A review of wave makers for 3D numerical simulations[END_REF], the relaxation method could lead to instabilities in the cases they studied, whereas mass and impulse source methods proved to be quite accurate and stable. Nevertheless, although the mass source method is simple to implement, it is limited in the range of wave heights that can be created. The impulse source method is more complex to implement and more computationally demanding, but it does not su er from limitations on the maximum possible wave height. Finally, methods 2-5 require increasing the domain size to create a zone for waves to develop progressively, while method 1 (forcing at the boundary only) allows minimizing the size of the computational domain. For a more complete study, these methods could be compared with respect to the generation of spurious free waves, which can be a limitation factor.

Wave generation using a boundary forcing condition method is studied in the Misthyc model in the following section, in combination with the application of a relaxation zone.

Boundary conditions at the wave generator

To solve the Laplace problem, boundary conditions must be imposed at the lateral boundaries. At the wave maker boundary (located at x = x b ) either a Dirichlet condition (imposing the velocity potential Φ) or a Neumann condition (imposing the horizontal velocity u, which is the boundary normal velocity) can be used. In the following sections, the expression for both conditions applied at x = x b at time t are presented when linear theory is used to de ne Φ and u for a 1DH domain (x, z).

Linear representation of incident waves

The simplest way to generate regular or irregular progressive waves is to consider a linear model such that the wave signal can be decomposed into N c independent sinusoidal waves. Each component i is characterized by its height H i , angular frequency ω i , wave number k i (obtained from the linear dispersion relation), phase speed C i and phase ψ i . Using linear wave theory, the phases ψ i are assumed uncorrelated. Thus every component i can be treated separately as a solution of the linearized problem for a at bottom (where h is the water depth). The free surface elevation η(x, t), velocity potential Φ(x, z, t) and horizontal speed u(x, z, t) of the wave train are obtained by the superposition of each wave component.

η(x, t) = Nc i=1 H i 2 cos(k i x -ω i t + ψ i ), (2.19) Φ(x, z, t) = Nc i=1 H i 2 g ω i cosh(k i (z + h)) cosh(k i h) sin(k i x -ω i t + ψ i ), (2.20) u(x, z, t) = Nc i=1 H i 2 g C i cosh(k i (z + h)) cosh(k i h) cos(k i x -ω i t + ψ i ).
(2.21)

All of the results presented in this chapter use a linear representation of the incident wave eld.

Then during propagation, the waves adapt to be consistent with the nonlinear model. When the incident wave is too far from a linear wave, the linear generation can lead to the creation of parasitic waves and instabilities. In such cases, it is possible to generate second or higher-order regular waves (i.e. [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF]. It becomes more complicated when dealing with irregular waves because of nonlinear interactions between all of the components that have to be taken into account. Nevertheless, a second order generation is possible by using [START_REF] Dalzell | A note on nite depth second-order wave-wave interactions[END_REF].

Dirichlet boundary condition

To derive the equations accounting for the Dirichlet boundary condition, the equality between the imposed velocity potential and the one given by the model is expressed at the boundary x = x b in the transformed (x, s)-plane. The imposed velocity potential ϕ I (x b , s, t) given by linear theory is:

ϕ I (x b , s, t) = Nc i=1 A i cosh(B i (1 + s)), (2.22) 
where A i and B i are functions depending on x b and t:

A i = H i 2 g ω i cosh(k i h) sin(k i x b -ω i t + ψ i ), i = 1, ..., N c (2.23) B i = k i h + 2 = k i 2 (h + η(x b , t)), i = 1, ..., N c . (2.24)
At the same time, the spectral approach used in the vertical direction in the model, gives the following expression for the velocity potential:

ϕ(x, s) = N T n=0 a n (x)T n (s), (2.25)
Writing that at the wave maker boundary x = x b , both expressions must be equal ϕ I = ϕ N T :

N T n=0 a n (x b )T n (s) = Nc i=1 A i cosh(B i (1 + s)) ∀s ∈ [-1; 1], (2.26)
This expression is then projected on the Chebyshev polynomial basis by applying the operator

< f > p ≡ 2 πCp < f, T p > for p = 0, 1, ..., N T to (2.26): N T n=0 a n (x b ) < T n > p = Nc i=1 A i < cosh(B i (1 + s)) > p , p = 0, 1, ...., N T .
(2.27)

The left-hand-side of Eq.( 2.27) can be rewritten as:

N T n=0 a n (x b ) < T n > p = N T n=0 a n (x b )δ np = a p (x b ), (2.28)
Moreover, it can be shown that the right-hand-side of Eq.( 2.27) can be expressed using I p , the modi ed Bessel function of the rst kind of order p (Tian and Sato, 2008):

Nc i=1 < cosh(B i (1 + s)) > p = 2 C p Nc i=1 I p (B i ) cosh B i if p is even, sinh B i if p is odd.
(2.29)

Finally, combining Eq.(2.28) and Eq.(2.29), Eq.(2.27) is equivalent to:

a p (x b ) = Nc i=1 A i 2 C p I p (B i ) cosh B i if p is even, sinh B i if p is odd.
(2.30)

Thus, the a p (x b ) coe cients can be computed analytically for any time t, for p = 0, 1, ..., N T .

When the incident waves cannot be decomposed as a sum of linear sinusoidal waves as in the case for a solitary wave, for instance, the modi ed Bessel function of the rst kind (I p ) can no longer be used to compute the a p (x b ) for p = 0, 1, ..., N T . For more general cases, the vertical pro le of the velocity potential φ(x b , s, t), at x = x b for time t, has to be "directly"projected on the Chebyshev polynomial basis by applying the operator < f > p . A Gauss-Chebyshev quadrature (Eq.((2.31))) is used to compute the operator integral.

< f > p ≡ 2 πC p 1 -1 f (s)T p (s) √ 1 -s 2 ds ≈ N k=1 w k f (s k )T p (s k ) (2.31) with s k = cos (2k-1)π 2N , w k = π N
, where N is the number of nodes discretizing the vertical pro le of the velocity potential.

Thus the equivalent of Eq.(2.30) for an incident wave eld that cannot be decomposed into sinu-
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soidal waves is:

a p (x b ) =< φ(x b , s, t) > p .
(2.32)

Neumann boundary condition

The method is used to obtain the expression for the Neumann boundary condition is quite similar to the one used for the Dirichlet boundary condition, but now the horizontal velocity pro le u I at the wave maker (x = x b ) is considered:

u I (x b , s, t) = Nc i=1 A i cosh(B i (1 + s)), (2.33) with A i = H i 2 gk ω i cosh(k i h) cos(k i x b -ω i t + ψ), i = 1, ..., N c (2.34) B i = k i h + 2 = k i 2 (h + η(x b , t)) i = 1, ..., N c . (2.35)
The spectral approach in the vertical leads to the following expression for the horizontal velocity pro le.

u(x, s) = N T n=0 a n (x)T n (s) + N T n=1 a n (x) h - x h + -sh + x h + h +2
T n (s).

(2.36)

Similar to what was done previously for the velocity potential, the equality of the two expressions of the horizontal velocity at the wave maker boundary (x = x b ) gives:

N T n=0 a n (x b )T n (s) + N T n=1 a n (x b ) h - x h + -sh + x h + h +2 T n (s) = Nc i=1 A i cosh(B i (1 + s)) ∀s ∈ [-1; 1], (2.37)
Then the operator < f > p is applied to Eq.(2.37) for p = 0, 1, ..., N T :

N T n=0 a n (x b ) < T n > p + N T n=1 a n (x b ) h - x h + h +2 < T n > p - h + x h + h +2 < sT n > p = Nc i=1 A i < cosh(B i (1 + s)) > p , p = 0, 1, ...., N T . (2.38)
The left-hand side of Eq.(2.38) can be rewritten as:

N T n=0 a n (x b ) < T n > p + N T n=1 a n (x b ) h - x h + h +2 < T n > p - h + x h + h +2 < sT n > p = 2a p (x b ) + N T n=0 C pn a n (x b ), p = 0, 1, ...., N T , (2.39)
where

C pn = m 011 B p01N + m 111 B p11n m 020 with m 011 = 2h + h - x , m 111 = -2h + h + x and m 020 = h +2 .
The right-hand side term is the same as in Eq.(2.29), so Eq.(2.38) can nally be rewritten as:

2a p (x b ) + N T n=0 C pn a n (x b ) = 2 Nc i=1 A i 2 C p I p (B i ) cosh B i if p is even, sinh B i if p is odd.
(2.40)

The right-hand side of Eq.( 2.40) can be analytically computed for any time t, for p = 0, 1, ..., N T .

Just as for the Dirichlet boundary condition, if the incident waves cannot be decomposed as a sum of linear waves, the vertical pro le of the horizontal velocity u(x b , s, t) has to be "directly"projected on the Chebyshev polynomial basis through the Gauss-Chebyshev quadrature (Eq.(2.31)).

Numerical implementation

Once the set of equations corresponding to Dirichlet or Neumann boundary conditions are derived, and in particular the associated right-hand side coe cients, the question is how to implement it. With the spectral approach in the vertical, the N T + 1 coe cients of the decomposition on the Chebyshev polynomial basis have to be determined from a set of N T + 1 equations. In Two other options are also tested, based on the fact that the velocity potential is de ned up to a constant. In the case of option B, with a Dirichlet lateral boundary condition, the rst N T -2 a n coe cients are xed leaving only two degrees of freedom through the a n related to higher order polynomials to make the velocity potential to verify the free surface and the bottom condition.

As it will be shown in the following part, this can lead to vertical oscillations in the pro les of the velocity potential. Here, the coe cient a 0 (related to the constant polynomial T 0 ) is left free so that the adaptation to the vertical boundary condition (particularly the free surface boundary condition) is mainly obtained through the a 0 coe cient. Thus, for the third option of implementation (option C), the set of equations for the node on the boundary includes Eq.(2.30) or Eq.( 2 2.2.

Another question concerning the implementation is the introduction of the lateral boundary condition in time. The goal here is to generate waves in a domain were the uid is initially at rest (η(x, t = 0) = 0, φ(x, t = 0) = 0), but in linear theory, η and φ have a phase di erence of π/2 so when η reaches an extremum, φ is zero. So, for a Dirichlet lateral boundary condition, the initial condition on φ has to be set constant with a value consistent with the lateral condition.

With proper initial conditions to assure the consistency with imposed lateral conditions, it is possible to apply "directly" the Dirichlet or the Neumann boundary condition at x = x b . Nevertheless, it is an abrupt manner to introduce the lateral condition, and the discontinuity caused by the di erences between the conditions applied at the boundary and the interior nodes can grow, causing the simulation to end prematurely or long waves can be generated that interfere with the primary wave if not absorbed properly.

One solution to reduce this phenomenon is to introduce the boundary condition progressively in time. The incident condition ϕ I , u I and η I are multiplied by a coe cient varying linearly from 0 to 1 over a certain duration generally equal to one or two wave periods. Second solution is, instead of introducing the boundary conditions progressively in time, to introduce them progressively in space through the addition of a relaxation zone where the reference solution is

given by linear wave theory.

These options for wave generation in a domain where the uid is initially at rest are tested for regular waves propagating in deep water conditions. option set of equations for

x = x b A a p (x b ) =< φ I (x b , s) > p for p = 0, N T (Dirichlet) 2a p (x b ) + N T n=0 C pn a n (x b ) =< u I (x b , s) > p for p = 0, N T (Neumann) B a p (x b ) =< φ I (x b , s) > p for p = 0, N T -2 (Dirichlet) 2a p (x b ) + N T n=0 C pn a n (x b ) =< u I (x b , s) > p for p = 0, N T -2 (Neumann) N T n=0 a n (x b ) = Φ(x b ) for s = 1 N T n=0 h + h x (-1) n a n (x b ) + N T n=0 2(1 + h 2 x ) (-1) n-1 n 2 a n (x b ) = 0 for s = -1 C a p (x b ) =< φ I (x b , s) > p for p = 1, N T -1 (Dirichlet) 2a p (x b ) + N T n=0 C pn a n (x b ) =< u I (x b , s) > p for p = 1, N T -1 (Neumann) N T n=0 a n (x b ) = Φ(x b ) for s = 1 N T n=0 h + h x (-1) n a n (x b ) + N T n=0 2(1 + h 2 x ) (-1) n-1 n 2 a n (x b ) = 0 for s = -1 D a p (x b ) =< φ I (x b , s) > p for p = 1, N T (Dirichlet) 2a p (x b ) + N T n=0 C pn a n (x b ) =< u I (x b , s) > p for p = 1, N T (Neumann) N T n=0 a n (x b ) = Φ(x) for s = 1
Table 2.2: Description of the four options considered to implement the lateral boundary condition for wave generation. The set of equations accounting for the node on the lateral boundary for the Laplace resolution is detailed.

Tests and analysis

To study and compare the di erent ways to generate waves, tests are conducted for the case of a small amplitude regular wave (a = 0.001 m, L = 2 m and T ≈ 1.132 s) propagating in deep for option B) pro les. Even for option A, the a n coe cients are not equal to those of the linear solution, indicating that the wave that propagates is not exactly a linear wave. This may be due to the propagation of an additional long wave involuntarily generated. The vertical pro le of the horizontal velocity for option B has larger oscillations than the one obtained with option A.

Nevertheless, the free surface pro les are very similar, because η and Φ and their propagation in time depend on the vertical velocity at the free surface w, which is very similar for both options.

Conclusion

When applying a relaxation zone for the wave generation, similar results for the vertical pro- For irregular wave cases, the wavelength is calculated using the peak frequency. [START_REF] Chapalain | Observed and modeled resonantly interacting progressive water-waves[END_REF], la génération de vagues par un mouvement impulsif du fond [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], la propagation de vagues régulières au-dessus d'une barre submergée [START_REF] Dingemans | Comparison of computations with Boussinesq-like models and laboratory measurements[END_REF] The model is rst validated by comparing the simulation results of the linear version to analytical solutions of the linearized problem for the re ection of regular waves propagating over a particular bathymetric pro le proposed by [START_REF] Roseau | Asymptotic Wave Theory[END_REF]. Secondly, an advanced study of convergence is carried out for the case of a nonlinear solitary wave propagating over a at bottom, for the three numerical parameters ∆t, ∆x and N T controlling the accuracy of the solution. The model is then compared with measurements from four laboratory experiments of non-breaking waves:

nonlinear dynamics of free and bound second-order components in a wave train generated by a piston-type wave maker in constant water depth [START_REF] Chapalain | Observed and modeled resonantly interacting progressive water-waves[END_REF], wave generation from an impulsive upthrust of the bottom [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF], propagation of a regular waves over a submerged bar [START_REF] Dingemans | Comparison of computations with Boussinesq-like models and laboratory measurements[END_REF], and propagation of irregular waves over a barred beach [START_REF] Becq-Girard | Non-linear propagation of unidirectional wave elds over varying topography[END_REF].

The majority of these test cases were presented in journal papers or conference proceedings.

Case 2 (solitary waves) was presented at the conference Journées Nationales Génie Côtier Génie Civil 2014 in Dunkerque, while the third case was presented at the ICCE conference 2014 in Seoul [START_REF] Benoit | Fully nonlinear and dispersive modeling of surf zone waves: non breaking tests[END_REF], and the last three test cases were published in Coastal Engineering [START_REF] Raoult | Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments[END_REF].
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3.1 Re ection of linear waves propagating over Roseau-type bathymetric pro le

In [START_REF] Roseau | Asymptotic Wave Theory[END_REF], the propagation of gravity waves in a in nite channel of variable depth h(x) is studied using the linear potential ow theory, in one horizontal dimension (x, z). The bathymetry varies between two at regions h 0 (for x → -∞) and h 1 (for x → +∞) with h 0 > h 1 .

Monochromatic waves are considered, with angular frequency ω. The motion is described by the velocity potential Φ(x, z, t) = Re[φ(x, z)e iωt ] where φ satis es the Laplace equation in the uid domain, and a mixed condition at the (linearized) free surface (z = 0), and an impermeable boundary condition at the bottom (z = -h(x)):

           φ xx + φ zz = 0 for -∞ < x < +∞ and -h(x) ≤ z ≤ 0 - ω 2 g φ + φ z = 0 at z = 0 h x φ x + φ z = 0 at z = -h(x) (3.1a) (3.1b) (3.1c)
The uid domain (x, z) is transformed using conformal mapping (Z = F (ζ)) into a rectangular domain in the (ξ, χ)-plane, where Z = x + iz and ζ = ξ + iχ. Thus z = 0 becomes χ = 0, and z = -h(x) becomes χ = -1. The boundary value problem expressed in the (ξ, χ)-plane for ϕ(ξ, χ) = φ(x, z) is then written as:

           ϕ ξξ + φ χχ = 0 for -∞ < ξ < +∞ and -1 ≤ χ ≤ 0 - ω 2 g F (ξ)ϕ + ϕ χ = 0 at χ = 0 ϕ χ = 0 at χ = -1 (3.2a) (3.2b) (3.2c)
The choice of the conformal mapping function is important in the de nition of the problem since it determines the family of the bottom topography in the (x, z)-plane that can be mapped. Here, the conformal mapping function is (following [START_REF] Roseau | Asymptotic Wave Theory[END_REF]):

F (ζ) = h 0 ζ + -1 πβ ln 1 + e βπζ , (3.3)
where the parameter β ∈]0, 1[, ∈]0, 1[ since it is assumed that h 0 > h 1 , and = h 1 /h 0 is the far eld depth ratio. This conformal mapping corresponds to a bottom pro le varying smoothly from the depth h 0 to h 1 . The width of the transition zone is controlled by the parameter β.

The bed slope steepens when β increases. Thus the bottom pro le is de ned by the two non dimensional quantities and β.

The bottom elevation is de ned parametrically using the conformal mapping function ξ-i) .

F (ζ) for ξ describing ] -∞, +∞[:          x(ξ) h 0 = Re 1 h 0 F (ξ -i) = ξ - 1 - βπ Re ln 1 + e βπ(ξ-i) , y(ξ) h 0 = Im 1 h 0 F (ξ -i) = -1 - 1 - βπ Im ln (1 + e βπ(
This particular form of the mapping was chosen by [START_REF] Roseau | Asymptotic Wave Theory[END_REF] because it gives an explicit and exact expression for the modulus of the re ection coe cient R due to the bottom transition:

R = sinh k 0 h 0 -k 1 h 1 β sinh k 0 h 0 +k 1 h 1 β , (3.4)
where k i are calculated from the linear dispersion relation

ω 2 = gk i tanh(k i h i ).
The transmission coe cient T is obtained by conserving the energy ux: 

T = cosh(k 1 h 1 ) cosh(k 0 h 0 ) (1 -R 2 ) 2k 0 h 0 + sinh(2k 0 h 0 ) 2k 1 h 1 + sinh(2k 1 h 1 ) . ( 3 
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The re ection and transmission properties depend on the wave frequency. Two conditions for the incident wave are therefore considered: one corresponding to a small relative water depth (k 0 h 0 ≈ 0.87), and a second one corresponding to deep water condition (k 0 h 0 = 3.14). The impact of the bathymetric variation on wave propagation is expected to be more important in the case with smaller relative depth. Nevertheless, the case with larger relative water depth is more challenging. Finally, four con gurations are tested, the corresponding parameters are shown in Table 3.1. For the simulations, the domain is regularly meshed with ∆x = 0.4 m (≈ L/108) for the longer wave and ∆x = 0.1 m (≈ L/120) for the shorter wave. The origin of the horizontal axis is taken where the bottom elevation is z = -(h 0 + h 1 )/2. Waves are generated at the left end of the domain in a relaxation zone that is two wavelength long. The right end of the domain is extended so that the waves never reach the boundary to avoid re ections on the right side where an impermeable boundary condition is imposed. The time step is chosen so that CF L ≈ 1 with CF L = C 0 ∆t ∆x for C 0 = L 0 /T , which gives ∆t = 0.057 s and ∆t = 0.023 s, for the longer and shorter waves respectively. Waves are propagated during a period long enough to reach a steady state over the zone encompassing the bottom transition. The vertical resolution is set to N T =7. This choice of N T is validated by the convergence study of the re ection and transmission coecient as a function of N T for cases 3 and 4 (presented below). The same horizontal discretization of the domain was used for the coupled-mode model of A&B1999 and 5 modes were found to be su cient to represent accurately the vertical variation of the velocity potential. Once the steady state is obtained, the wave height is computed from free surface elevation timeseries at each node in the domain. The wave height pro les are compared with those obtained with the coupled-mode model of A&B1999 (Figures 3.2 and 3.3). For the four cases with di erent physical parameters, both models give comparable results. They produce the same oscillation pattern of the wave height before the transition caused by the re ection at the transition except for case 2 where the re ection is very small and hardly visible (Figure 3.2b). The incident wave height H I is modulated because of its interaction with the re ected wave (H R ) traveling in the opposite direction. After the bathymetric transition, the wave height becomes homogeneous, and is denoted as H T . Small di erences are mainly visible for case 3 (Figure 3.3a) where the model of A&B1999 gives a higher transmitted wave height than Misthyc. On the contrary, for case 4 (Figure 3.3b), the wave height pro le from the Misthyc simulations is slightly shifted vertically, showing larger wave heights than A&B1999.

Wave characteristics

Bottom case T (s) L (m) k 0 h 0 k 1 h 1 β 1 6.
From the wave height pro le, the re ection (R) and transmission (T ) coe cients can be calculated as:

R = H R H I = H max -H min H max + H min and T = H T H I
where H max and H min are the extremum values reached by the wave pro le before the bottom transition.

A convergence study of these two coe cients as a function of N T was carried out for cases 3 and 4 with the more re ective bottom pro le ( = 0.1 et β = 0.5). For both cases, the values obtained for the re ection and transmission coe cients appear to have converged (Figure 3.4 and Figure 3.5, respectively) for N T = 6, validating the choice of N T = 7 in the previous simulations.

The re ection and the transmission coe cients are then compared with those obtained with the model of A&B1999 and those obtained with the analytical expression Eq.(3.4) and Eq.(3.5) (Table 3.2). The re ection coe cient for case 2 was too small (only about 0.005%) to be determined accurately from the wave height pro le obtained with Misthyc using the method described above.

For the rst bathymetric pro le, both models produce coe cients close to the analytical ones.

For the second bathymetric pro le, Misthyc shows more accurate results for long waves, whereas the model of A&B1999 is more accurate for short waves.

This rst test case shows that the linear version of the model (with N T = 7) reproduces well the re ection and transmission phenomena occurring when waves propagate over a steep transition between two at regions. Some di erences with the analytical solution are obtained for the steepest slope for the smallest wavelength, but the di erences remain small. Solitary waves are also a particular solution of the Euler equations with nonlinear free surface boundary conditions in the constant depth case. The expression of the wave can not be given in closed analytical form, but it can be computed with high accuracy using speci c numerical algorithms (see e.g. [START_REF] Tanaka | The stability of solitary waves[END_REF], [START_REF] Clamond | Fast accurate computation of the fully non linear solitary surface gravity waves[END_REF])

Solitary waves are characterized by a single parameter, the nondimensional height δ = H/h, which is the ratio of the wave height (H) to the water depth (h). In this study, three values of δ are investigated, from the least nonlinear to the most nonlinear: δ = 0.3, 0.5, and 0.7.

Description

Model domain and numerical parameters

In these tests, the water depth is uniform (h = 1 m) and the horizontal length of the model domain (L x ) is 700h (= 700 m). The horizontal domain extends from x/h = -25 to x/h = 675, and the solitary wave is initially centered at x/h = 0 (e.g. Figure 3.6). The height H of each solitary wave is determined from δ = H/h = 0.3, 0.5 or 0.7.

The horizontal domain consists of a regularly-spaced mesh of size ∆x, and the simulations are advanced in time with a xed time step ∆t. The spatial and temporal discretizations are controlled by the parameters M x and M t , respectively, such that ∆x ≡ ∆x/h ≡ 1/M x and

∆ t ≡ ∆t g/h = 1/M t .
Each wave is propagated during a nondimensional time T ≡ T g/h set to T = 500, corre- The CFL number is de ned here as CFL ≡ C 0 ∆t/∆x, which can be rewritten as CFL = M x /M t . 

Boundary conditions

In the vertical, the bottom boundary condition is a xed, impermeable bottom at z = -h (constant depth). The lateral boundary conditions are impermeable vertical walls at the domain extremities (x/h = -25 and x/h = 675).

Initial conditions

To initialize the model, it is necessary to calculate the free surface elevation (η) and the free surface velocity potential ( φ = φ| z=η ) corresponding to the Euler equations with nonlinear boundary conditions at the surface. The algorithm of [START_REF] Clamond | Fast accurate computation of the fully non linear solitary surface gravity waves[END_REF] is adapted to calculate these parameters and the Froude number F using the nondimensional height δ as an input parameter.

Simulations and evaluation criteria

Simulation parameters

The ability of the model to simulate accurately the propagation of a solitary wave depends on the horizontal spacing of the model grid (characterized by ∆x or M x ), time step size (characterized by ∆t or M t ), and the maximum order N T of the Chebyshev polynomials used to resolve the vertical variations.

To evaluate the impact of these parameters on the simulation results, three convergence studies were carried out:

1. convergence as a function of the size of the time step, with M t varying from 4 to 12 (M x = 10 and N T = 7 held constant), 2. spatial convergence at a constant CFL number with M x varying from 5 to 30, (CFL = 1.25

and N T = 7 held constant), and 3. convergence as a function of the maximum order of the Chebyshev polynomials with N T varying from 3 to 15 (M x = 10 and M t = 8 held constant).

Quantities analyzed from model results

The performance of the model is evaluated as a function of four quantities that can be computed at each time step:

1. the total volume of the uid domain (V ), 2. the total mechanical energy of the uid domain (E), 3. the solitary wave crest height (η max ), 4. the phase di erence, or di erence between the simulated and theoretical wave crest positions x max (as η max = η(x max )).

The simulated wave crest height (η max ) and position (x max ) do not in general occur at grid points.

Therefore, they are estimated by tting a quadratic polynomial to node with the maximum free surface elevation and the two neighboring nodes.

Errors as a function of time

The rst three quantities should be conserved during the simulation, and relative errors are calculated in comparison to the values at the initial time:

Err Y (t) = Y (t) -Y 0 Y 0 ,
where Y = V, E, η max .

The phase di erence at time t is calculated by comparing the simulated wave crest position to the theoretical wave crest position calculated using the wave celerity given by the algorithm of [START_REF] Clamond | Fast accurate computation of the fully non linear solitary surface gravity waves[END_REF]:

Err phase(t) = x max (t) -Ct Ct .

Global errors

As described above, errors in four di erent quantities are calculated as a function of time during the simulation period. Global errors are then de ned to quantify the total error for each simulation.

For the temporal and horizontal step size convergence tests, global volume and energy errors are calculated as the arithmetic mean of the relative volume and energy evolution:

Err Y = Y (t) -Y 0 Y 0 t = Y (t) t -Y 0 Y 0 ,
where

Y (t) t = 1 N DT N DT i=1 Y (t i ),
NDT is the number of time steps, and Y = E or V .

The wave amplitude and phase errors are calculated relative to the initial amplitude and to the theoretical position of the wave at the end of the simulation (at t = T ) :

Err ampl = η max (T ) -H H , Err phase = x max (T ) -CT CT .
For the vertical convergence tests, the maximum order N T of the Chebyshev polynomial is varied from N T = 3 to 15, and the relative error is calculated using the results of the simulation with the highest order as the reference value (here N T = 15). In this case, the relative volume and energy errors are given by:

Err Y = Y (t) t -Y 15 (t) t Y 15 (t) t ,
where Y = E or V . Likewise, the relative wave amplitude and wave errors at the nal time step are de ned as:

Err ampl = η max (T ) -η max15 (T ) η max15 (T ) , Err phase = x max (T ) -x max15 (T )
x max15 (T ) .

Results

The simulation results are evaluated with respect to the convergence as a function of the time step ∆t, horizontal grid spacing ∆x, and maximum order of the Chebyshev polynomial N T for three relative wave heights δ = 0.3, 0.5, and 0.7. The e ciency of the model is also evaluated by quantifying the dependence of the CPU time on these three parameters. For the more nonlinear cases, a decrease in the wave crest height is observed at the end of the simulations for larger time steps (e.g. M t = 4, 5 in Figure 3.7(b) and M t = 5, 6, 8 in Figure 3.7(c)). In addition, phase di erences, caused by an underestimation of the wave celerity (which is directly related to the underestimation of the wave height), are also observed for these cases.
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As a function of the time step, the more nonlinear waves require a smaller time step to represent accurately the wave height and propagation speed. For the case with δ = 0.7 (Figure 3.7(c)), there is a small phase and wave height di erence in comparison to the reference solution even for the smallest tested time step (∆t ≈ 0.0266 s for M t = 12).

All simulations were stable for the length of the simulation period ( T = 500), except for the case with δ = 0.7 and CFL = 2.5, which became unstable before reaching the end.

Conservation of volume and energy. Energy and volume are conserved well during the simulations with the smallest errors for the smallest time steps. Both quantities decrease monotonically throughout the simulation period, with a more rapid decrease for larger time steps (Figure 3.8). For the largest time step, the nal relative volume errors are of the order 10 -11 , 10 -8 and 10 -6 , and the nal relative energy errors are of the order 10 -3 , 10 -2 , and 10 -2 for δ = 0.3, δ = 0.5 and δ = 0.7, respectively. To evaluate the convergence of the model as a function of the horizontal spatial resolution, a series of simulations were run with M x varying from 30 to 5, corresponding to ∆x varying from 0.033 to 0.2 m. For each simulation, the time step was calculated to maintain a constant CFL number equal to 1.25, and N T = 7 was held constant (Table 3.4). For δ = 0.3 and δ = 0.5, the energy appears to decrease nearly linearly in time. However, for δ = 0.7 and large values of ∆x, the errors increase more rapidly and have larger nal errors than for smaller ∆x, but the rate of increase in error slows in time (e.g. Final free surface pro les. The nal (at T = 500) free surface pro les converges for intermediate values of N T , and the particular value of N T increases with increasing δ (Figure 3.13).

M x ∆x ∆x(m) M t ∆ t ∆t(s) 30 
For example, the curves converge for N T ≥ 4 for δ = 0.3, and for N T ≥ 7 for δ = 0.5 and 0.7.

For δ = 0.3 and δ = 0.5, the free surface pro le converges to the reference solution. However, for δ = 0.7, the most nonlinear test case, the free surface pro le converges to a solution with a slightly smaller wave height and slower propagation speed than the reference solution. This The relative energy error does not show the same trend for δ = 0.3 as for δ = 0.5 and 0.7: for δ = 0.3 the convergence is more rapid for values of N T smaller than 7, and then the convergence rate decreases rapidly. For this case, however, the relative phase and amplitude errors are equal to 0 for N T > 9 (and are thus not visible in Figure 3.15), which indicates that the model has converged to a solution (for the given ∆x and ∆t).

For the test case with δ = 0.5, the energy error decreases monotonically with N T for N T ≤ 14, but the errors in relative phase and amplitude appear to reach a plateau for N T > 12. This behavior is similar to that with δ = 0.3, but with a higher threshold of N T above which the error is only marginally decreased by an increase of N T . Again, in this range, the error is likely dependent on the choice of ∆x and ∆t.

The volume errors also present an unusual trend as a function of N T , such that for a given even value of N T , the error is lower than for N T + 1. This is hypothesized to be related to the method used to calculate the relative volume error, which is essentially a simple arithmetic mean of the di erence in the free surface elevation pro le for a given value of N T and N T = 15.

Therefore, positive and negative errors compensate partially over the length of the domain. This compensation varies as a function of N T , leading to the observed step-like behavior in volume errors. For the three values of δ, the simulation times for the same values of ∆t, ∆x, or N T are very similar, as expected. The CPU time depends on ∆t, ∆x and N T , and it is observed that this dependence has the following form:

T CP U ≈ ∆t α ∆x β N γ T .
In the log-log plots (Figure 3.16), the CPU time is linearly dependent on ∆t, ∆x, and N T , with slopes of approximately -1, -2, and 1.5, respectively. Therefore, the CPU time is proportional to :

T CP U ≈ N 1.5 T ∆t∆x 2 .
showing the importance in minimizing N T and that the dependency on Deltax is stronger than the dependency on ∆t and N T .

Conclusions

This test case shows that the model is very accurate even in the limit of highly nonlinear waves (δ = H/h up to 0.7). For the same value of ∆x, ∆t or N T , relative errors in volume, energy, phase and amplitude increase with increasing nonlinearity. This may be explained partly by the fact that for a given CFL number as de ned here, the true CFL number (taking into account the actual wave celerity) is larger for δ = 0.7 than for δ = 0.3 due to the di erence in the corresponding Froude number.

The order of temporal and spatial convergence are approximately 4-5 for δ = 0.3 and 0.5 and 3-4 for δ = 0.7, in good agreement with the fourth-order Runge-Kutta temporal integration scheme and the fourth-order nite di erence schemes used in the model. The model shows exponential convergence in the vertical dimension due to the applied spectral approach, which enables obtaining highly accurate results for small to moderate values of the maximum order of Chebyshev polynomials N T (typically smaller than 10). A harmonic analysis of free surface elevation time series (after steady state is reached) decomposes the signal into a discrete sum:
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η(t) = a 0 + N n=1 a n cos(nωt + ϕ n ), (3.6) 
where ω = 2π T is the angular frequency of the wavemaker, and a n and ϕ n are the amplitude and phase of the harmonic component n. The phase di erence between the rst and the second harmonic is de ned as ∆ ϕ 1,2 ≡ ϕ 2 -2ϕ 1 , following [START_REF] Chapalain | Observed and modeled resonantly interacting progressive water-waves[END_REF]. The simulated spatial evolution of the amplitudes of the rst four harmonics agrees well with the experiments (Figure 3.17a). Overall, the model correctly represents the energy transfers between the di erent harmonic components, as well as the resultant beat lengths. However, a decrease in the second harmonic amplitude (after x = 19 m) is observed in the experimental data but is not reproduced in the simulations. This could be explained by dissipation in the experiments that is not taken into account in the model. This phenomenon is more noticeable for short waves, hence more visible for the higher harmonics. The spatial evolution of the phase di erence between the rst and second harmonic is also reproduced well (Figure 3.17b). The phase di erence oscillates between -π/2 and +π/2 with the same periodicity as the harmonic amplitudes. Zero phase di erence occurs when either the rst harmonic is maximum and the second harmonic is minimum, or the contrary.

The variation of the free surface elevation thus depends on the position in the wave channel, as shown in Figure 3.18 at x = 4 m, 7 m, 10 m and 14 m (the simulated free surface position qualitatively agrees well with the measurements, when compared to Figure 3 of [START_REF] Chapalain | Observed and modeled resonantly interacting progressive water-waves[END_REF]). When the rst and second harmonics are in phase, the free surface pro le is either quasisinusoidal when the rst harmonic is maximal and the second minimal (e.g. x = 14 m), or cnoidal when the second harmonic is maximal and the rst minimal (e.g. x = 7 m). However, when the rst and second harmonics are out of phase, the waves are vertically asymmetrical with either a This test case demonstrates the ability of the model to simulate accurately the nonlinear resonant interactions occurring when waves are generated with a piston-like wavemaker and propagate over a at bottom. The transfer of energy from the principal wave to the second harmonic was reproduced well, including the beat length of the resonant interaction. 2), and the water depth (h(x, t)) evolves following: 3.4.1 The linear solution [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF] derived an analytical solution for the associated linearized potential ow problem. The free surface elevation resulting from an exponential bed movement is given by Eq.( 22)

h(x, t) = h 0 -ζ(x, t) with ζ(x, t) = ζ 0 (1 -e -αt )H(b -x), (3.7) 
of [START_REF] Hammack | A note on tsunamis: their generation and propagation in an ocean of uniform depth[END_REF]:

η(x, t) = -2 ζ 0 π ∞ 0 cos(kx)sin(kb) kcosh(kh 0 ) α 2 α 2 + ω 2 e -ωt -cos(ωt) - ω α sin(ωt) dk (3.8)
This solution is numerically computed using the trapezoidal rule to estimate the integral to ob- (3.9)

tain
The evolution of this error as a function of N T shows that a constant value is reached for N T ≥ 6 (Figure 3.21). For N T = 3, the error is larger for the two last probes where the e ects of dispersion become apparent, and the dispersion relation obtained with N T = 3 is less accurate (as shown in Section 1.4.3). 

Comparison with the experimental data

Random waves over a barred beach

The last 1DH test case simulates the propagation of irregular nonlinear waves over a barred beach, reproducing the wave ume experiments of Becq-Girard et al. (1999) (B99). The bathymetric pro le of these experiments (Figure 3.28) was speci cally designed to study nonlinear wave interactions in shallow water. Irregular waves were generated with a piston-type random wavemaker using a JONSWAP wave spectrum with a peak-enhancement factor of γ = 3.3. The bottom pro le was created with smooth metal sheets to minimize bottom friction dissipation, and a beach absorber was included on the upper part of the beach to reduce wave re ection.

Resistive-type wave probes measured the free surface elevation at 16 locations in the wave ume (black dots, Figure 3.28) during the 40-minute experiment with a sampling time step ∆t = 0.07 s. The measured and simulated wave variance spectra agree well (Figure 3.29, spectra shown for probes 2, 5, 7, 9, 11, 13, 15, and 16). The main spectral peak increases from probes 2 to 5 due to wave shoaling. In addition, energy is transferred from lower to higher frequencies, particularly from the peak frequency to its super-harmonics. This phenomenon is visible at probe 5 with the appearance of the second harmonic peak (2f p ). When the water depth becomes nearly constant (probes 7, 9, and 11), the second and higher harmonic peaks become more pronounced. A peak at the fth harmonic (5f p ) becomes visible in the spectra at probes 9 and 11, and its amplitude
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105 is reproduced well by the model. On the back side of the bar, the energy transfer reverses back to the lower harmonics (in particular to the second harmonic). At probe 13, the peak of the fth harmonic has disappeared, and at probe 15, the peaks of the third and fourth harmonics have also nearly disappeared. Only the second harmonic and main spectral peaks remain visible in the trough. Finally, at probe 16, the third harmonic (3f p ) peak reappears due to the new decrease in the water depth.

The simulated spatial evolution of the rst ve harmonic amplitudes agrees well with the experimental observations (Figure 3.30). In the deepest region, the amplitude of the rst harmonic is dominant, and between 0 m and 5 m, its amplitude increases due to shoaling, while the higher harmonic amplitudes remain constant. After 5 m, the rst harmonic amplitude decreases while the higher harmonic amplitudes increase due to transfers of energy from lower to higher frequencies. Around 9 m, the water depth increases again, the rst harmonic amplitude continues decreasing, and the third, fourth, and fth harmonic amplitudes also begin to decrease, with an energy transfer to the second harmonic. Finally, in the shallowest part of the domain, the energy transfer from the second to the third harmonic begins again. The oscillations visible in the rst and second harmonic amplitudes are likely caused by re ections from the lateral boundaries.

To further evaluate the spatial spectral evolution, a set of integral wave parameters are calculated.

From the variance density spectrum E(f ), the signi cant wave height H m0 = 4 √ m 0 and mean wave period

T e = T m-1,0 = m -1 m 0 or T m0,2 = ( m 0 m 2 )
1 2 can be expressed in terms of the n-th moment (m n ) of the variance density spectrum:

m n = ∞ 0 f n E(f ) df (3.10)
The 0 th moment corresponds to the free surface elevation variance or σ 2 = (ηη ) 2 where denotes the time-average operator.

Nonlinear e ects are also visible in the spatial evolution of these parameters, which are globally estimated well by the model (Figure 3.31). The signi cant wave height evolves similarly to the rst harmonic amplitude shown in Figure 3.30. It increases as the waves shoal, decreases in the trough and nally increases again as the water depth decreases approaching the beach. The simulated H m0 agrees well with the measured values, with only a slight overestimation for x > 7 m, and a maximum di erence of 8.8%. The evolution of the mean wave period is similar for the two de nitions considered (T m-1,0 and T m0,2 ). The mean period initially decreases when a reduction in the energy in the low frequency range of the spectrum is compensated for by an increase in the high frequency range. The subsequent release of higher harmonics in the trough leads to an increase in the mean wave period that persists along the tank. The largest di erences in mean period occur near the end of the tank, with errors of less than 3.5% and 7% for T m-1,0 and T m0,2 , respectively.

To further analyze the simulated wave nonlinearity, higher order statistical moments were cal- culated from the free surface elevation time series, including:

• the skewness (S) or horizontal asymmetry coe cient, de ned as the normalized, centered, third-order moment of the free surface elevation:

S = (η -η ) 3 σ 3 . (3.11)
It can also be de ned as:

S = +∞ m=-∞ +∞ n=-∞ Re[B m,n ] m 3/2 0 , (3.12)
where B m,n is the complex bispectrum.

• the vertical asymmetry coe cient (A): wave period (T m-1,0 ), and (c) mean wave period (T m0,2 ).

A = +∞ m=-∞ +∞ n=-∞ Im[B m,n ] m 3/2 0 , ( 3 
• the kurtosis, which measures the atness of the free surface elevation distribution and is related to the probability of occurrence of high waves, is de ned as the normalized, centered, fourth-order moment of the free surface elevation:

K = (η -η ) 4 σ 4 . (3.14)
For a linear sea state, both the horizontal and vertical asymmetries are zero. Here (Figure 3.32), the simulated skewness and vertical asymmetry are approximately zero in the deepest part of the domain and evolve along the bathymetric pro le in close agreement with the measurements.

The spatial evolution of the kurtosis also begins with a value of approximately 3, typical of a linear (Gaussian) sea state, and then increases in shallower water, reaching a maximum in the shallowest zone. The model reproduces well the spatial evolution of the kurtosis, only slightly underestimating the maximum.

This last test case validates the ability of the model to simulate the generation, propagation, and absorption of irregular, non-breaking waves, including wave shoaling and nonlinear wave interactions causing the transfer of energy between higher and lower harmonics. Aside from wave breaking, wave amplitudes decrease during propagation in the open ocean as well as in laboratory experiments. For non-breaking waves, three main processes lead to energy dissipation [START_REF] Lighthill | Waves in Fluids[END_REF].

1. Near-surface dissipation is related to the di erence between the instantaneous and equilibrium surface tension. This e ect is usually negligible when the water surface is clean, but when it is fully contaminated (e.g. lm of oil,...), the presence of a thin lm at the surface changes the attenuation properties of the free surface (zero tangential velocity), and energy dissipation may become signi cant. The damping rate due to near surface dissipation can be even more important for partial contamination when a resonance occurs between capillary-gravity waves and elastic waves (Marangoni waves) on the surface lm [START_REF] Henderson | The role of dissipation in the evolution of ocean swell[END_REF][START_REF] Przadka | Fourier transform pro lometry for water waves: how to achieve clean water attenuation with di usive re ection at the water surface?[END_REF]. In laboratory experiments, the pollution of the water surface from ambient air conditions can modify the nature of the physical processes at the origin of the damping and may explain extra dissipation occurring in experiments where dissipation rates are too large to be attributed only to boundary layer e ects [START_REF] Henderson | The role of dissipation in the evolution of ocean swell[END_REF][START_REF] Nicolás | A note on the e ect of surface contamination in water wave damping[END_REF]. This can be avoided by cleaning the surface. When considering the dissipation of ocean swell, [START_REF] Henderson | The role of dissipation in the evolution of ocean swell[END_REF] showed that a linear inextensible lm model produces a better decay rate prediction than a clean surface model (i.e. [START_REF] Lamb | Hydrodynamics[END_REF] or a two-phase model (taking into account the air-water interface). The stress due to the action of the wind at the surface may induce additional energy dissipation [START_REF] Dore | Some e ects of the air-water interface on gravity wave[END_REF].

2. Internal dissipation by viscous stresses acting throughout the water volume (also called bulk viscosity) is generally small for water waves but may be comparable with boundary layer damping in some cases [START_REF] Miles | A note on interior vs. boundary-layer damping of surface waves in a circular cylinder[END_REF]. These internal viscous e ects can be estimated from the decrease in the wave height of deep water waves propagating 

Review of wave attenuation due to viscous e ects

Di erent theoretical estimations of the wave damping have been derived depending on which sources of energy dissipation are taken into account: in in nite depth, only bulk viscosity is important, whereas in nite depth, solid boundary interactions must be also considered.

First, [START_REF] Lamb | Hydrodynamics[END_REF] derived the decay rate for a wave amplitude a in in nite depth, assuming small viscosity, using two methods: rst by a dissipation calculation and then by a direct calculation using the linearized Navier-Stokes equations, and obtained the same result. When the wave amplitude varies in time but is homogeneous in the entire domain (i.e. periodic waves in space), he estimated the following decay rate:

da dt = -2νk 2 a (4.1)
where k is the wave number. The wave amplitude at time t is therefore a(t) = a(t = 0) e -2νk 2 t .

The amplitude decrease is exponential in time and faster for shorter waves (i.e. large k).

Later, [START_REF] Biesel | Calcul de l'amortissement d'une houle dans un liquide visqueux de profondeur nie[END_REF] considered the nite depth case, using zero normal pressure and zero tangential stress free surface boundary conditions, plus zero velocity at the bottom to derive an expression of the decay rate for the wave amplitude assuming very small viscosity and laminar ow. The obtained dispersion relation, expressing the complex angular frequency is expanded as a function of the viscosity ν, and only the terms of order O( √ ν) and O(ν) are kept. Surprisingly, [START_REF] Biesel | Calcul de l'amortissement d'une houle dans un liquide visqueux de profondeur nie[END_REF] found that in deep water conditions, even when the movement close to the bottom is very weak, the e ect of bottom friction is not negligible. [START_REF] Hunt | Viscous damping of waves over an inclined bed in a channel of nite width[END_REF] then derived an expression for wave damping in a nite and uniform width b channel, in shallow water, to be able to estimate the total energy dissipation observed in laboratory experiments. He took into account the dissipation of energy in the boundary layers near the bottom and the lateral walls.

a(t) = a(t = 0) e -αt with α = 2k b ν 2ω kb + sinh(2kh) 2kh + sinh(2kh) (4.2)
In [START_REF] Hunt | Viscous damping of waves over an inclined bed in a channel of nite width[END_REF], the case where the bottom has a mild slope is also considered.

More recently, [START_REF] Behroozi | Fluid viscosity and the attenuation of surface waves: a derivation based on conservation of energy[END_REF] used the conservation of energy ux to derive a relationship between the uid viscosity and waves attenuation, for a wave amplitude that varies in space, contrary to [START_REF] Lamb | Hydrodynamics[END_REF]. He considered that the wave amplitude is constant in time at a given location but varies in space as the waves propagate in the domain by using a complex wave number. The power loss per unit area due to viscous dissipation was estimated and equated to the power loss per unit area of the spatial decay in wave amplitude. The results were generalized to take into account the e ects of surface tension.

With the objective of extending Lamb's results, [START_REF] Antuono | The damping of viscous gravity waves[END_REF] derived a new approximation of the decay rate of gravity waves in viscous uid using the linearized Navier-Stokes equations. The objective was to both remove the assumption of in nite depth, making the approximation valid for waves propagating in intermediate and shallow water, and to relax the assumption of small viscosity. They completed a perturbation expansion of the angular frequency as a function of the Reynolds number Re (Re = U L/ν, dimensionless quantity de ned as the ratio of inertial forces to viscous forces) to obtain a complex expression for the wave damping.

In deep water and at rst order their decay rate corresponds to the one obtained by [START_REF] Lamb | Hydrodynamics[END_REF].

However, the second order term in their development is negative, such that Lamb's rst-order solution overestimates the decay rate. In nite depth, the di erences with Lamb's solution are even larger since Lamb's solution does not consider dissipation through bottom friction.

On the inclusion of viscous dissipation in potential modeling approaches

Potential ow theory (inviscid uid and irrotational ow) reproduces well water wave propagation and is therefore a commonly used approach. However, it does not contain natural dissipation terms, as shown in the corresponding set of equations repeated from Section 1.1.2 (here, neglecting surface tension and with p atm = 0):

4.1 INTRODUCTION 115                      ∆Φ = 0 in the uid domain ∂Φ ∂t + 1 2 (∇Φ) 2 + gη + p atm ρ = 0 at z = η(x, y, t) ∂η ∂t + ∇ H Φ.∇ H η - ∂Φ ∂z = 0 at z = η(x, y, t) ∇ H Φ.∇ H h + ∂Φ ∂z = 0 at z = -h(x, y) (4.3) (4.4) (4.5) (4.6)
Here, the bottom is assumed to be xed in time (but is variable in space).

In certain cases (long propagation times, shallow water...), viscous e ects cannot be neglected to reproduce correctly wave evolution during propagation. Viscosity causes a decrease in the wave amplitude but also alters the speed and shape of the wave. Moreover, to estimate accurately the bottom shear stress and to compute sediment transport uxes and the induced changes in the bathymetry, viscous e ects must be taken into account. One alternative is to resolve the full Navier-Stokes equations using a three-phase (air, water and sediment) model, but this approach is generally computationally expensive and only allows simulating a few wavelengths. Lu et al.

(2010) studied the resonance of incident waves in narrow gaps between identical bodies. They compared the results obtained with (i) a viscous uid model and (ii) a potential ow model including arti cial viscous damping, and showed that the results obtained with both models are similar. The wave height in the narrow gap can be predicted correctly as long as the damping coe cient is properly calibrated. Two important questions are then, how to narrow the gap between the Navier-Stokes equations and the potential ow equations, and what kind of physically relevant dissipative terms should be included?

In in nite depth, potential ow is a solution of the Navier-Stokes equations, but to take into account the e ects of viscosity, the boundary conditions of the potential ow problem have to be modi ed. The zero normal stress condition at the free surface can be still satis ed with irrotational ow. This is not the case for the zero tangential stress condition, thus vorticity has to be introduced in the model. [START_REF] Dias | Theory of weakly damped free-surface ows: A new formulation based on potential ow solutions[END_REF], following the work of [START_REF] Lamb | Hydrodynamics[END_REF], introduced a Helmholtz decomposition of the velocity in the linearized Navier-Stokes equations to separate the vortical and potential ow contributions. They showed that the vortical velocity can be expressed asymptotically as a function of the velocity potential and the free surface elevation. A new set of equations was derived with viscous correction terms added in the KFSBC and DFSBC.

They extended their set of equations with the addition of nonlinear terms by conjecturing that the expression of the dissipative term as a function of the surface elevation in the KFSBC is still valid when the viscosity is small. By deriving the Non Linear Schrödinger (NLS) equation from their model, they obtained the widely used damped NLS equation. This set of equations has been used by [START_REF] Chen | Visco-potential ow and time-harmonic ship wave[END_REF] to study time harmonic ship waves (after deriving a new boundary condition only satis ed by the velocity potential by combining the linear KFSBC and DFSBC of [START_REF] Dias | Theory of weakly damped free-surface ows: A new formulation based on potential ow solutions[END_REF] and introducing the e ects of surface tension). In the limit of small viscosity, the solution of Chen and Dias (2010) leads to the same decay rate as that of [START_REF] Lamb | Hydrodynamics[END_REF].

Longuet-Higgins (1992) also re-derived the same decay rate but with another physical interpretation. By assuming that viscous e ects are con ned to a vortical boundary layer close to the free surface, the zero tangential stress condition at the free surface leads to an increase in the surface elevation that contributes to the normal stress, in addition to the classic viscous component of the normal stress. Thus, the zero normal stress condition applied at the free surface boundary corresponds to a pressure correction that is twice the one obtained when not taking into account the vortical boundary layer at the free surface.

Joseph and Wang ( 2004) rst derived the decay rate of gravity waves by solving the stability problem corresponding to the set of equations formed by the Laplace equation in the domain, the Bernoulli equation at the free surface and the normal stress balance at the free surface. The decay rate obtained with this method is half the one found by [START_REF] Lamb | Hydrodynamics[END_REF] in the limit of long waves.

The authors discovered that for long waves, a vorticity layer is created close to the surface, and a correction to the irrotational pressure is needed to satisfy the zero shear stress boundary condition and compensate for the irrotational shear stress. With this correction, [START_REF] Joseph | The dissipation approximation and viscous potential ow[END_REF] obtained the same decay rate as Lamb.

In the case of nite depth, a boundary layer approach is applied at the bottom. This condition can be seen as a correction of the vertical velocity at the bottom, corresponding to the potential ow problem, due to the vertical rotational velocity induced in the boundary layer.

The derived model with the Boussinesq approximation has been validated with comparison to experimental data to study viscous damping and shoaling of a solitary wave in a wave tank [START_REF] Liu | Experimental and numerical investigation of viscous e ects on solitary wave propagation in a wave tank[END_REF]. For this study the derived expression was extended from constant water depth to slowly varying water depth. The study of the laminar bottom boundary layer ow under a solitary wave (Liu et al., 2007) shows that the nonlinear advection terms have a weak impact on the results. The model was further improved to take into account a turbulent bottom boundary layer [START_REF] Simarro | Bottom friction e ects on linear wave propagation[END_REF]. In parallel, [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF] derived the same bottom boundary condition with the addition of to bulk viscosity dissipative terms scaling as O(ν)). The study of the time-dependent dispersion relation associated with the long wave model derived from the new potential ow equations rst is complete assuming a slowly varying rotational frequency with time (Dutykh, 2009a), and then with a relaxation of this assumption (Dutykh, 2009b). The Generally, the new sets of visco-potential equations [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF][START_REF] Liu | Viscous e ects on transient long-wave propagation[END_REF] are not solved directly. Boussinesq-type "lighter" long wave models are often derived, since the derivation from the inviscid potential equations is easier than that from the complete Navier- 

Mathematical modeling of visco-potential ows 4.2.1 Linearized Navier-Stokes system

The derivation of the dissipative terms is carried out for the simpli ed case of linear theory.

In this context, the free surface ow in a uid layer of constant depth (h), whose free surface displacement is denoted by η, can be described by the continuity equation and the linearized 3D

incompressible Navier-Stokes equations in the uid domain (Ω):

     ∇.v ¯= 0 ∂v ∂ t = - ∇p ρ + g + ν∆v ¯(4.7) (4.8)
where v ¯is the velocity vector. These equations are supplemented by appropriate boundary conditions:

-a no-slip condition at the bottom : v ¯(z = -h) = 0, -a linearized kinematic condition at the free surface ∂η ∂t = w, and -a dynamic condition at the free surface [σ.n] = 0, where σ = -pn + τ .n is the stress tensor and τ = (τ i,j ) = ρν(∂v i /∂x j + ∂v j /∂x i ) is the viscous tensor.

[f ] denotes the jump of the function f across the interface, and n is the unit vector normal to the interface. The dynamic condition at the free surface is decomposed into three conditions corresponding to the tangential components (σ xz and σ yz ) and the normal component (σ zz ) of the stress at the free surface.

Dissipation due to bulk viscosity

In this section, the derivation of dissipative terms to model dissipation due to bulk viscosity in potential ow equations is shown, following the work of [START_REF] Dias | Theory of weakly damped free-surface ows: A new formulation based on potential ow solutions[END_REF], who derived this new set of equation for 1DH cases in in nite depth, and of [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF] who extended it to 3D cases in nite depth. The main contribution of the vortical component of the velocity in the KFSBC can be expressed as a dissipative term that depends only on the free surface elevation, and is negligible in comparison to the velocity potential contribution in the DFSBC.

Velocity decomposition

In order to decouple the problem, the Helmholtz-Leray decomposition is applied to the velocity eld v ¯= (u, v, w) dividing it into a potential (irrotational) component and a rotational component:

v ¯= ∇Φ + ∇ ∧ Ψ with Ψ = (Ψ 1 , Ψ 2 , Ψ 3 ) (4.9) (4.10) hence v ¯= ∂Φ ∂x + ∂Ψ 3 ∂y -∂Ψ 2 ∂z ∂Φ ∂y + ∂Ψ 1 ∂z -∂Ψ 3 ∂x ∂Φ ∂z + ∂Ψ 2 ∂x -∂Ψ 1 ∂y (4.11)
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where Φ is the velocity potential and Ψ the vector stream function. Substitution of this decomposition (Eq.(4.11)) into the continuity equation (Eq.(4.7)) gives:

∇.(∇Φ + ∇ ∧ Ψ) = 0 ∆Φ + ∇.(∇ ∧ Ψ) =0 by def = 0, ∆Φ = 0. (4.12)
Similarly, the momentum equation (Eq.(4.8)) can be rewritten as:

∂(∇Φ + ∇ ∧ Ψ) ∂t = - ∇p ρ + g + ν∆(∇Φ + ∇ ∧ Ψ) ∂∇Φ ∂t + ∇p ρ + ∇gz + ν∆(∇Φ) = - ∂∇ ∧ Ψ + ν∆(∇ ∧ Ψ) ∂t ∂∇Φ ∂t + ∇p ρ + ∇gz + ν[∇( ∇.(∇Φ)
= 0 by (4.12)

-∇ ∧ (∇ ∧ (∇Φ) = 0 by def ] = -∇ ∧ ∂Ψ ∂t + ν∇ ∧ (∆Ψ) ∇( ∂Φ ∂t + p ρ + gz) = ∇ ∧ (- ∂Ψ ∂t + ν∆Ψ) (4.13)
One can notice that Eq.(4.13) is satis ed, if Φ and Ψ also satisfy:

                 ∂Φ ∂t + p ρ + gz = 0 (a) ∂Ψ ∂t -ν∆Ψ = 0 (b) (4.14)
To determine the structure of Φ and Ψ, the Fourier-Laplace transform of Eq.(4.12) and Eq.(4.14b) 120 CHAPTER 4: MODELING VISCOUS DISSIPATION is taken to work in (k, s) space. The Fourier-Laplace transform is de ned as:

L F = L • F such that f (x, t) -→ f (k, s), with k = (k x , k y ) and k = |k|
Applying the Fourier-Laplace transform to the continuity equation gives:

∆Φ = 0 -→ -k 2 Φ + ∂ 2 Φ ∂z 2 = 0
The solution to this equation can be written as:

Φ(k, s) = φ+ 0 (k, s)e kz + φ- 0 (k, s)e -kz ,
where φ+ 0 and φ-0 are unknown functions of k and s. The Fourier-Laplace transform applied to Eq.(4.14b) gives:

∂Ψ ∂t = ν∆Ψ -→ s ψ = ν(-k 2 ψ + ∂ 2 ψ ∂z 2 ),
whose solution is:

ψi (k, s) = ψi0 (k, s) e |m|z + C i (k, s)e -|m|z ,
with m 2 = k 2 + s/ν, and ψi0 (i = 1, 3) and C i (i = 1, 3) are unknown functions that will be determined by using the initial and boundary conditions.

Modi cation of the kinematic free surface condition

Now the goal is to investigate how the vortical term impacts the KFSBC. With the velocity decomposition presented in 4.2.2.1, the KFSBC becomes:

∂η ∂t = w = ∂Φ ∂z + ∂Ψ 2 ∂x - ∂Ψ 1 ∂y on z = 0
When applying the Fourier-Laplace transform, this expression becomes:

sη = k( φ+ 0 -φ- 0 ) + ik y ψ10 (1 + C 1 ) -ik x ψ20 (1 + C 2 ) (4.15)
To see if the vortical term in Eq.(4.15) can be expressed as a function of Φ and η only, the tangential stresses at the free surface must be continuous across the interface (here at z = 0, following linear theory):

σ xz = ρν( ∂w ∂x + ∂u ∂z ) = 0 (4.16) σ yz = ρν( ∂w ∂y + ∂v ∂z ) = 0 (4.17)
After substitution of the decomposition of v ¯, the Fourier-Laplace transform of Eq.(4.16) and Eq.(4.17) are:

-2ik x ∂ φ ∂z -k 2 x ψ2 + k x k y ψ1 -ik y ∂ ψ3 ∂z - ∂ 2 ψ2 ∂z 2 = 0 (4.18) -2ik y ∂ φ ∂z -k x k y ψ2 + k 2 y ψ1 + ∂ 2 ψ1 ∂z 2 + ik x ∂ ψ3 ∂z = 0 (4.19)
Combining these two equations as (-ik x )(4.18)+(-ik y )(4.19) produces an expression relating the vortical term of Eq.( 4.15) and the irrotational velocity.

ik y ψ10 (1 + C 1 ) -ik x ψ20 (1 + C 2 ) = - 2k 3 ( φ+ 0 -φ- 0 ) k 2 + m 2 (4.20)
Eq.( 4.15) and Eq.( 4.20) can be combined and rearranged to express of the vortical part of the KFSBC as a function of η only: 

ik y ψ10 (1 + C 1 ) -ik x ψ20 (1 + C 2 ) = -2νk 2 η.
sη = k( φ+ 0 -φ- 0 ) -2νk 2 η. (4.22)
By taking the inverse Fourier-Laplace transform of Eq.(4.22), this expression becomes:

∂η ∂t = ∂Φ ∂z + 2ν∆ H η. (4.23)
This expression is the KFSBC of the irrotational linearized Euler problem with an additional di usive term coming from the vortical velocity contribution.

Modi cation of the dynamic free surface condition

The condition for the normal stress at the free surface (σ zz = 0 at z = 0) gives the following expression for the pressure at the free surface:

p = 2ρν ∂ 2 Φ ∂z 2 + ∂ 2 Ψ 2 ∂z∂x - ∂ 2 Ψ 1 ∂z∂y at z = 0. (4.24)
The Fourier-Laplace transform of this equation is:

p = 2ρν -k 2 ( φ+ 0 -φ- 0 ) + m (-ik x ψ20 (1 -C 2 ) + ik y ψ10 (1 -C 1 )) . (4.25)
Now the order of each term is evaluated. Eq.( 4.21) shows that (-ik x ψ20 (1 + C 2 ) + ik y ψ10 (1 + C 1 )) = O(ν). [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF] argue that the second term of the right-hand side of Eq.(4.25) is O(ν 3/2 ), which is negligible in comparison with the rst term which is O(ν), when weak dissipation is considered (typically ν ∈ [10 -6 ; 10 -3 ] m 2 /s). In the following developments, terms of the order of o(ν) will be neglected. Inferring this from Eq.(4.21) is not so immediate but considering both extreme cases where C 1 and C 2 are either

1 or 1, -ik x ψ20 (1 -C 2 ) + ik y ψ10 (1 -C 1 ) can be considered as O(ν). Since m = O(ν -1/2
), the second term of the right hand side of Eq.(4.25) is actually O(ν 3/2 ). Taking the inverse Fourier-Laplace transform of Eq.( 4.25), the pressure at the free surface at the leading order in ν is thus:

p = 2ρν ∂ 2 Φ ∂z 2 at z = 0. (4.26)
This pressure can be considered as a correction of the pressure in the Bernoulli equation, which

is the DFSBC of the potential ow approach. Therefore the new DFSBC can be written as:

∂Φ ∂t + gη + 2 ν ∂ 2 Φ ∂z 2 = 0 at z = 0.
(4.27)

Finally, the two free surface conditions of the linearized irrotational Euler problem can be completed with dissipative terms to take into account the e ects of bulk viscosity: 

∂η ∂t = ∂Φ ∂z + 2ν∆ H η at z = 0, (4.28) ∂Φ ∂t = -gη -2 ν ∂ 2 Φ ∂z 2 at z = 0.

Dissipation due to bottom friction

The two dissipative terms added to the irrotational Euler free surface boundary conditions, derived in the previous section, account for the dissipation due to the bulk viscosity. However, the predominant source of dissipation in shallow water is bottom friction. To take into account this dissipation source, a boundary layer correction is introduced at the bottom. This correction estimates the impacts of the rotational part of the vertical velocity induced in the boundary layer
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on the ow in the interior [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF][START_REF] Liu | Viscous e ects on transient long-wave propagation[END_REF]. Although the uid motion is described well by potential theory in the interior of the uid domain, this is not the case anymore close to the bottom, due to viscous e ects. In potential ow theory, the condition of impermeability at the bottom implies a tangential velocity component, whereas when considering the boundary layer, this condition is replaced by a no-slip condition at the bottom. To full ll this condition, a horizontal rotational velocity component of the same order of magnitude as the horizontal velocity in the interior of the uid domain appears in the bottom boundary layer, which generates a vertical velocity component that persists outside the boundary layer (Liu and [START_REF] Liu | Viscous e ects on transient long-wave propagation[END_REF]. It is this vertical rotational component that is evaluated hereafter to determine the correction of the impermeability condition of the potential problem at the bottom boundary.

Nondimensional equations

Based on the work of Liu and Or la ( 2004), a wave train with surface displacement η, with amplitude a and wavelength l, in a constant water depth h is considered. The following dimensionless variables (denoted by *) are de ned:

(x * , y * ) = (x, y) l z * = z h t * = t √ gh l η * = η a p * = p ρgh (u * , v * ) = (u, v) √ gh w * = w µ √ gh ,
where µ = h/l is a parameter quantifying the dispersion. In comparison to Liu and [START_REF] Liu | Viscous e ects on transient long-wave propagation[END_REF], some slight di erences in the nondimensionalization may be noticed. The small parameter = a/h does not appear here since the problem was already linearized. In addition, here O(w * ) = O(µu * ) which is, in our opinion, more consistent with the physics than the choice of O(w * ) = O(u * /µ) by Liu and [START_REF] Liu | Viscous e ects on transient long-wave propagation[END_REF]. While the intermediate steps di er, this nondimensionalization leads to the same bottom correction term in dimensional space as in Liu and Or la ( 2004) and [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF]. In the following, the dimensionless equations are considered, after dropping the * to facilitate reading. The dimensionless continuity equation remains unchanged:

∇ H .u + ∂w ∂z = 0 (4.30)
with u = (u, v). The dimensionless linear Navier-Stokes equations are:

∂u ∂t = -∇ H p + α 2 ∆ h u + 1 µ 2 ∂ 2 u ∂z 2 , (4.31) µ 2 ∂w ∂t = - ∂p ∂z -1 + µ 2 α 2 ∆ h w + 1 µ 2 ∂ 2 w ∂z 2 , (4.32)
where ∆ h is the horizontal Laplacian operator and α 2 = ν l √ gh is the dimensionless viscosity (i.e. equivalent to the inverse of a Reynolds number).

Bottom boundary layer approximation

The Helmholtz decomposition is again applied to the velocity: v = ∇Φ + v r , where the vortical component is now expressed as v r = (u r , w r ), such that ∇.v r = 0. The rotational part of the velocity is assumed to vary rapidly in the direction normal to the bottom, in the boundary layer of thickness O(α), and the potential ow needs to be corrected at order O(α). Thus the following perturbation expansions of the potential and the velocities are introduced:

Φ = Φ 0 + αΦ 1 + o(α), (4.33) u r = u r 0 + αu r 1 + o(α), (4.34) w r = w r 0 + αw r 1 + o(α). (4.35)
To focus on the ow inside the bottom boundary layer, a new vertical coordinate is introduced:

ξ = z + 1 α , (4.36) 
where ξ = 0 corresponds to the solid boundary. This change of coordinate is only applied for the vortical velocity.

Substituting the expansion of the rotational part of the velocity in the continuity equation gives at zero and rst order in α:

O(1) : ∂w r 0 ∂ξ = 0 (4.37) O(α) : ∇ H u r 0 + ∂w r 1 ∂ξ = 0 (4.38)
Eq.(4.37) shows that w r 0 is independent of the vertical coordinate, and thus with the no-slip condition at the bottom (v = 0), the following relations at the zero and rst order in α can be written:

O(1) : ∇ H Φ 0 = -u r 0 and ∂Φ 0 ∂z = -w r 0 (4.39) O(α) : ∇ H Φ 1 = -u r 1 and ∂Φ 1 ∂z = -w r 1 (4.40)
The no-ux condition at the bottom of the potential ow problem implies that ∂Φ 0 ∂z = 0. Therefore, w r 0 = 0 at the bottom and throughout the whole boundary layer because of Eq.(4.37). The correction to the bottom boundary condition is thus the term -w r 1 . Looking for the leading order in α of the momentum equation for the horizontal rotational velocity gives:

∂u r 0 ∂t = 1 µ 2 ∂ 2 u r 0 ∂ξ 2 .
(4.41)

After the coordinate change β = µξ, Eq.(4.41) becomes:

∂u r 0 ∂t = ∂ 2 u r 0 ∂β 2 .
(4.42)

The boundary conditions for the horizontal rotational ow are known: Eq.( 4.39) at the bottom, and u r 0 → 0 as β → +∞. Following Liu and Or la ( 2004) and [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF], the solution of Eq.(4.42) is:

u r 0 = - β √ 4π t 0 ∇ H Φ(x, z = -1, τ ) √ t -τ 3 e -β 2 4(t-τ ) dτ. (4.43)
Then, from the continuity equation (Eq.(4.38)) and with substitution for β:

w r 1 (ξ = 0) = - 1 µ √ π t 0 ∇ 2 H Φ(x, z = -1, τ ) √ t -τ dτ. (4.44)
From the no-ux bottom boundary condition (Eq.(4.40)), the expression of the correction of the potential vertical velocity at the bottom is obtained:

∂Φ ∂z (z = -1) = -α w r 1 = α µ √ π t 0 ∆ h Φ(x, z = -1, τ ) √ t -τ dτ. (4.45)
In dimensional space, using the continuity equation, Eq.(4.45) becomes:

∂Φ ∂z (z = -h) = - ν π t 0 ∂ 2 Φ ∂z 2 (x, z = -h, τ ) √ t -τ dτ. (4.46)
This term enables accounting for the viscous e ects created by bottom friction in the bottom boundary layer, in the interior of the ow region. As it is a di usion process, the in uence of viscosity is not instantaneous, and a time dependent term appears. The e ect of the boundary layer is cumulative in time but weighted in favor of the current time (through the term 1/ √ tτ in the time integral).

Bottom boundary condition for an uneven bottom

The previous correction term was derived for the constant depth case. For an uneven bottom, the bottom boundary condition has to be modi ed to take into account the slope (γ = O(∇ H h)).

As done by [START_REF] Liu | Experimental and numerical investigation of viscous e ects on solitary wave propagation in a wave tank[END_REF], a local orthonormal coordinate system is introduced (x ,z ) with

x parallel and z normal to the bottom. In this new system of coordinates, u and w are the velocities parallel and normal to the bottom, and the non dimensional continuity and momentum equations for the horizontal speed u are:

∇ H u + ∂w ∂z = 0, (4.47) ∂u ∂t = -∇ H p - 1 µ ∇ H h 1 + (∇ H h) 2 + α 2 ∆ u u + 1 µ 2 ∂ 2 u ∂z 2 . (4.48)
The same methodology as in 4.2.3.2 is then applied: rst a stretched coordinate is de ned in the direction perpendicular to the bottom (ξ = z /α) to focus on the variation of the vortical part of the velocity in the boundary layer, then a Helmholtz decomposition of the velocity eld is completed, followed by a perturbation expansion. The expression of the vortical part of the velocity is substituted in the continuity equation giving at zero and rst order in α the same expressions as Eq.(4.37) and Eq.(4.38). When substituted in the momentum equation, the leading order in α gives:

∂u r 0 ∂t = 1 µ 2 ∂ 2 u r 0 ∂ξ 2 - 1 µ ∇ H h 1 + (∇ H h) 2 = 1 µ 2 ∂ 2 u r 0 ∂ξ 2 + O( γ µ
).

(4.49)

The solution of this equation is known and given by Eq.(4.43). The expression of w r 1 (ξ = 0) can then be deduced (Eq.(4.44)). The no-ux condition at the bottom gives the bottom condition correction term to apply to the potential ow problem in the local coordinate system:

∂Φ ∂z (z = 0) = -α w r 1 = α µ √ π t 0 ∆ h Φ(x , z = 0, τ ) √ t -τ dτ + O( γ µ
).

(4.50)

In the global coordinate system (x, z), this new bottom condition is written as:

∂Φ ∂z (z = -h) = α µ √ π t 0 ∆ h Φ(x, z = -h, τ ) √ t -τ dτ -∇ H h.∇ H Φ + O( γ µ , α γ 2 µ ) (4.51)
According to [START_REF] Liu | Experimental and numerical investigation of viscous e ects on solitary wave propagation in a wave tank[END_REF] this equation is valid under the assumption that the bottom slope satis es O(γ) ∼ O(µ 3 ), necessary for the linearization of the boundary layer momentum equation.

Numerical implementation of the viscous terms

Numerical implementation of the terms in the free surface boundary condition

To take into account of the e ects of bulk viscosity, the two dissipative terms in Eq.(4.28) and 

∂η ∂t = -∇ H Φ.∇ H η + w(1 + (∇ H η) 2 ) + 2ν∆ H η, (4.52) ∂ Φ ∂t = -gη - 1 2 (∇ H Φ) 2 + 1 2 w2 (1 + (∇ H η) 2 ) -2 ν ∂ 2 Φ ∂z 2 .
(4.53)

The rst term ∆ H η is computed with nite di erence schemes whereas the second term ∂ 2 Φ ∂z 2 (x, z = η) is computed at the end of each resolution of the Laplace BVP from the a n (x) coe cients according to:

∂ 2 Φ ∂z 2 (x, z = η) = s 2 z ϕ ss (s = +1) = 4 h +2 N T n=2 (-1) n n 2 (n 2 -1) a n (x) (4.54)

Numerical implementation of the bottom friction term

The bottom friction condition (Eq.( 4.46) or Eq.(4.51)) includes a term with an integral in time of the following form:

B(t, x) = t 0 ∂ 2 Φ ∂z 2 (τ, x) √ t -τ dτ. (4.55)
The evaluation of A(t) is carried out assuming that ∂ 2 Φ ∂z 2 (τ, x) is constant over each (small) time step ∆t. Under this assumption Eq.(4.55) can be evaluated knowing the value of ∂ 2 Φ ∂z 2 (τ, x) at each half-time step (t = k∆t/2, with k = 0, 1, ...), as needed by the fourth-order Runge-Kutta algorithm (RK4).

B(t) ≈ B(k ∆t 2 ) ≈ ∂ 2 Φ ∂z 2 (0) ∆t 4 0 1 k ∆t 2 -τ dτ + ∂ 2 Φ ∂z 2 ( ∆t 2 ) 3∆t 4 ∆t 4 1 k ∆t 2 -τ dτ + ∂ 2 Φ ∂z 2 (∆t) 5∆t 4 3∆t 4 1 k ∆t 2 -τ dτ + ... + ∂ 2 Φ ∂z 2 (k ∆t 2 ) k∆t k∆t-∆t 4 1 k ∆t 2 -τ dτ (4.56)
By de ning:

α 0 = 2 ∆t 2 and α p = 2 (2p + 1) ∆t 4 -(2p -1) ∆t 4 p ≥ 1, (4.57) β p = 2 (2p + 2) ∆t 4 -(2p + 1) ∆t 4 p ≥ 0. (4.58)
Eq.(4.56) can then be rewritten as:

B(k ∆t 2 ) = β k-1 ∂ 2 Φ ∂z 2 (0) + k-1 p=1 α p ∂ 2 Φ ∂z 2 (k -p) ∆t 2 + α 0 ∂ 2 Φ ∂z 2 k ∆t 2 . (4.59)
In Eq.(4.59), the last term is the only one depending on the potential at current time t, which then has to be expanded on the Chebyshev polynomial basis. The other terms in Eq.( 4.59) are evaluated from the values of ∂ 2 Φ ∂z 2 (τ, x) computed for the previous time steps and constitute the right-hand side of the bottom boundary condition. In terms of a n (x, t), Eq.( 4.46) can be written:

2 h + N T n=1 a n n 2 (-1) n-1 + α 0 ν π 4 h +2 N T n=1 a n (-1) n n 2 (n 2 -1) 3 = - ν π t-∆t 4 0 ∂ 2 Φ ∂z 2 √ t -τ dτ(4.60)
The implementation of this term requires storing the values of ∂ 2 Φ ∂z 2 (τ, x) at each sub-time step of the RK4 algorithm at all the nodes of the domain, which may be computationally expensive in terms of both memory and CPU time if the domain is large and the integration time long.

To reduce the memory requirement, [START_REF] Torsvik | An e cient method for the numerical calculation of viscous e ects on transient long waves[END_REF] proposed estimating A(t) from the values of ∂ 2 Φ ∂z 2 (τ, x) for the most recent N time steps only, by applying a correction term to compensate for the truncated series. The correction term is computed from the residual term (accumulation of the discarded values), and a coe cient that has to be calibrated. This method will not be used for the presented test cases since the goal was rst to study the relevance of the additional viscous terms to reproduce physical processes occurring in the experiments. To optimize the inclusion of this term, one must analyze the impact of this approximation of B(t) on the quality of the results, the sensitivity to free parameters in this method, and the computational gain is.

To implement viscous e ects in a domain without any relaxation zones for wave generation, viscous terms are applied in the entire domain. Additional complexities appear when there are relaxation zones, because the solution imposed in the relaxation zone does not take into account viscous e ects. One way to avoid this problem, associated with wave generation, is to apply the viscous terms only outside the relaxation zones. To smooth the discontinuity at the transition, the viscous terms are applied progressively in space. Nevertheless, in areas where the bottom friction is large (in shallow water or for large values of the viscosity), the simulations tend to become unstable at the end of the transition zone. The limit of stability depending on the viscosity value and the water depth is not yet de ned, and it would require additional attention. The rst goal is to determine the bulk viscosity damping rate as a function of time for a regular wave in a periodic domain of constant water depth (h). The wavelength is xed (k is real), and the angular frequency ω is complex (here denoted by the underlined variable): ω = aib, where the real part a is the temporal frequency of the signal and the imaginary part b is the coe cient of the damping factor e -bt . Again, the linearized system of equations describing the problem will be considered here. Both the KFSBC (Eq.(4.28)) and the DFSBC (Eq.(4.29)) free surface boundary conditions are supplemented by terms accounting for the bulk dissipation, which are proportional to the kinematic viscosity of the uid ν. In the following, the viscosity appearing in each of these equations is di erentiated by ν 1 and ν 2 to evaluate their respective contributions:

∂η ∂t = ∂Φ ∂z + 2ν 1 ∆η at z = 0 (4.61) ∂Φ ∂t = -gη -2 ν 2 ∂ 2 Φ ∂z 2 at z = 0 (4.62)
The solution of these equations for a progressive wave of initial complex amplitude A is:

η(x, t) = A e i(kx-ωt) (4.63) Φ(x, z, t) = - igA ω + i 2 ν 2 k 2 cosh(k(h + z)) cosh(kh) e i(kx-ωt) (4.64)
together with the dispersion relation:

ω 2 (1 + i 2ν 1 k 2 ω )(1 + i 2ν 2 k 2 ω ) = ω 2 0 (4.65)
with ω 2 0 ≡ gk tanh(kh).

Depending on the values of ν 1 and ν 2 , three cases can be considered to obtain ω as the roots of Eq.(4.65):

• case 1 :

ν 1 = ν > 0 and ν 2 = 0 : ω = ω 0 1 -( ν 1 k 2 ω 0 ) 2 -i ν 1 k 2 • case 2 : ν 1 = 0 and ν 2 = ν > 0 : ω = ω 0 1 -( ν 2 k 2 ω 0 ) 2 -i ν 2 k 2 • case 3 : ν 1 = ν > 0 and ν 2 = ν > 0 : ω = ω 0 -i 2 νk 2
In the third case where the dissipative term is added in both free surface boundary conditions, the dispersion relation corresponds to that of [START_REF] Lamb | Hydrodynamics[END_REF], and the damping rate is twice that when the dissipation is present in only one boundary condition (case 1 and 2). Thus both terms contribute equally to the damping of the amplitude of the wave. When either ν 1 or ν 2 is equal to zero, the angular frequency (real part of ω) is slightly reduced, whereas it remains unchanged when both dissipative terms are present. The di erences between the three cases are very small but by zooming in one can see that the amplitude decreases faster for case 3 than for cases 1 and 2, and that the decay rate is the same for cases 1 and 2, in agreement with the theory. The decrease of the local maxima follows well the predicted envelop for the three cases. For a 1000-times higher value of the viscosity (ν = 10 -3 m 2 /s, see Figure 4.3) these e ects are even more visible. According to the theory, the angular frequency is reduced for case 1 and case 2. However, the value of the viscosity needed to obtain a signi cant reduction in the angular frequency is large.

To obtain an angular frequency ω = αω 0 (α ∈ [0, 1]), the viscosity must be ν

= ν max √ 1 -α 2 ,
with ν max = ω 0 /k 2 . For the wave characteristics considered here, the viscosity therefore must be ν = 0.2263 m 2 /s (as ν max = 0.7248 m 2 /s) to obtain a 5% reduction of the angular frequency, which is not a physically realistic value. However, in order to check the correct implementation of the dissipative terms in the code, the results of the simulations of the three cases with this value of viscosity are presented in showing good agreement with Lamb's theory [START_REF] Lamb | Hydrodynamics[END_REF]. Moreover, it is shown theoretically and veri ed numerically that the viscous terms contribute equally to the damping of the amplitude of the wave. 

Viscous standing wave in the linear regime

The energy loss due to bulk viscosity following Lamb's theory [START_REF] Lamb | Hydrodynamics[END_REF] Here, the simulations of standing waves, using the linear version of Misthyc, will be compared to this theory. The standing wave has an amplitude a = 0.05 m in depth h = 1 m (Figure 4.5). The periodic domain is one wavelength long (L). The temporal evolution of the total kinetic energy of the uid, normalized by its value at initial time, is de ned as:

E c (t) = 1 2 ρ x y φ(z = η, t) ∂η ∂t (t) dxdy + x y φ(z = -h, t) ∂φ ∂z (z = -h, t) dxdy ,(4.67)
where the rst term is the free surface contribution and the second term is the bottom contribution.

Several values of the viscosity (ν) or Reynolds number, here de ned as Re = h √ gh/ν and relative water depth (kh), are considered. Five combinations of (Re, kh) from deep to shallow water (see In some cases, instabilities develop in time when the bottom friction term is present (e.g. agrees with AC2013. The frequency of the ltering was also tested. For this simulation, applying the lter only every 6 time steps is su cient to avoid the growth of instabilities. However, this is not a general result, and the optimal ltering frequency may vary for each simulation. Thus, the lter is applied at every time step in the following simulations.

Unexpectedly, the time instability develops even more rapidly in the case of deep water (kh = π)

when the bottom friction term should be negligible, and the simulations with and without bottom friction should produce nearly the same results. For simulation 1, ltering the ∂ 2 Φ/∂z 2 (z = -h) term is not su cient. Previous results without viscosity showed that the model accuracy increases for deep water cases with larger N T [START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF]), but increasing the value of N T only caused the divergence to occur earlier (as seen for simulation 4). On the contrary, by decreasing N T to N T = 5, the simulation with bottom friction shows the same kinetic energy evolution as the simulation with only the bulk viscosity (Figure 4.7). In deep water, the simulated vertical pro le of the velocity potential varies signi cantly, and adding higher order polynomials in the decomposition increases the creation of small oscillations in the pro le that are ampli ed by taking the second derivative. These instabilities occur for high values of the viscosity, above the range of validity of the theory (which is roughly ν ∈ [10 -6 , 10 -3 ] m 2 /s). Higher order terms (O(ν)) that were neglected for small viscosities may become important and their absence could destabilize the system. In real application cases, the viscosity will be of maximum value e.g. 10 -3 m 2 /s. For this range of viscosities, the simulations are stable even without ltering (simulation 3).

It is also important to note that ltering enables increasing the simulation time step to that of the same order as the one used for the simulations without viscosity. For example, simulation 5 with bottom friction is stable for ∆t = T /10000 without ltering, and ∆t = T /100 with ltering, producing visually identical curves of the kinetic energy evolution. Table 4. The nonlinear version of the model is used for this test case, simply by adding the linear viscous correction terms to the basic nonlinear equations (Eq.4.5) and (Eq.4.4), and using the no-slip boundary condition at the bottom (Eq.4.51). As noted by [START_REF] Dutykh | Viscous potential free-surface ows in a uid layer of nite depth[END_REF], the derivation of these viscous terms was completed for the linear regime, and it is merely hypothesized that these terms can be generalized directly to the fully nonlinear equations. The application to a case with small ( = 0.091) and moderate ( = 0.409) nonlinearities is a good test of the limits of this hypothesis.

The domain can be decomposed into two zones of interest where di erent physical processes are important. First, over the at bottom (x ≤ 19.88m), wave dissipation is caused by bulk viscosity and bottom friction. Second, on the slope, the e ects of wave shoaling (increase of the wave amplitude due to the water depth decrease) become important and compete with the energy dissipation (19.88 m≤ x ≤ 25 m). Over the at bottom, the amplitude of the solitary waves decreases (Figure 4.13 a and b for = 0.091 and = 0.409, respectively) due to these dissipative processes. The results of four simulations for each value of are presented in Figure 4.13 to evaluate the in uence of the di erent sources of energy dissipation on the decay rate. Without viscosity (light blue line), the wave amplitude remains constant. The simulations with only the bulk viscosity terms (slip bottom condition) and with ν = 7.10 -6 m 2 /s show only a weak amplitude decay and are close to the simulations without viscosity (ν = 0 m 2 /s). When the bottom friction term (no-slip bottom condition) is added, the soliton amplitudes decrease signi cantly. The primary source of energy dissipation is bottom friction. This e ect becomes more pronounced for larger wave heights that have larger horizontal velocities at the bottom. The value of the viscosity required to best t the experimental data is slightly higher (ν = 7.10 -6 m 2 /s) than the kinematic viscosity of water (ν = 10 -6 m 2 /s). Using a Boussineq model to simulate these experiments, [START_REF] Liu | Experimental and numerical investigation of viscous e ects on solitary wave propagation in a wave tank[END_REF] found the same decay rate with a viscosity of 10 -6 m 2 /s when taking into account the boundary layers on the walls of the wave ume. Here this dissipation is not taken into account, which could explain the higher value of ν adjusted to obtain the same decay rate as in the experiments. The same value of viscosity is used to t the experimental data for the two wave heights, showing the insensitivity of this value to the wave non-linearity, for the considered range of conditions.

Over the sloping bottom, two processes are competing: energy dissipation that decreases the wave amplitude, and wave shoaling that increases the wave amplitude with a decrease in water The last test case simulates the propagation of regular waves over a vertical submerged step, based on a series of small-scale experiments performed by E. Monsalve in the PMMH laboratory, at the ESPCI (Ecole Supérieure de Physique et de Chimie Industrielle de la ville de Paris) [START_REF] Monsalve | Propagation of nonlinear waves passing over submerged step[END_REF]. The goal of these experiments is to study the nonlinearities occuring when waves pass over a submerged obstacle and to compare the observations with Massel's theory [START_REF] Massel | Harmonic generation by waves propagating over a submerged step[END_REF] for a wide range of incident wave frequencies f 1 ∈[1 Hz; 4 Hz]. Massel developed a second order theory to explain the generation of a second harmonic over a step (zone (II), Figure 4.16). The second harmonic can be decomposed into two components: (1) bound waves that propagate at the same celerity as the fundamental mode with frequency f 1 but with a wave number twice the fundamental wave number (2k

(II) 1 = 2k(f 1 , h (II)
)), and (2) free waves with the wave number corresponding to the linear dispersion relation for the frequency 2f 1 (k

(II) 2 = k(2f 1 , h (II)
)) that propagate at the corresponding celerity. These two components interact, creating a beating of the second harmonic amplitude. The beat length is estimated by [START_REF] Massel | Harmonic generation by waves propagating over a submerged step[END_REF]:

D -= 2π k (II) 2 -2k (II) 1 (4.68) 
In the experiments, the nonlinearities are created by the transition between the deep water region (h (I) = 6.5 cm) and the shallow water region (h (II) = 2.0 cm) at a vertical step located at x = 0 m (Figure 4.16). Waves are generated by a ap wavemaker at x = -0.38 m. At the right end of the domain, beginning at x = 0.85 m, an absorbing beach of slope 8% is constructed to prevent wave re ection. The free surface deformation is measured through a non-intrusive method, called Fourier Transformed Pro lometry [START_REF] Cobelli | Global measurement of water waves by Fourier Transform Pro lometry[END_REF]. A sinusoidal pattern is projected on the water surface made opaque by adding T iO 2 particles (Figure 4.15). The free surface is reconstructed from the phase di erence between the deformed fringe pattern due to wave propagation, and the reference pattern measured when the water is at rest. This provides accurate spatial (2D) and temporal measurements of the free surface.

The 1DH nonlinear version of the model (Eq.(1.25) and Eq.(1.26)) that does not include the e ects of viscous dissipation was rst used to simulate the experiments. The vertical step is modeled with a hyperbolic tangent, with a transition of slope 85 degrees in order to avoid creating a discontinuity at the step (see inset in The amplitude of the incident wave was not measured in the experiments (only the motion of the wave maker was prescribed), so the amplitude used in the numerical simulation is determined A secondary crest (in light blue) forms between the two main crests from (x ∈ [0.2 m; 0.4 m]).

In addition, the slope of the secondary crest is even steeper, corresponding to the free component of the second harmonic, which propagates more slowly than the fundamental wave. The free surface elevation time series were decomposed into the amplitudes of the rst ve harmonics. The spatial evolution of these amplitudes were then compared to those obtained from the measurements. In the experiments, the bi-dimensional measurements of the free surface show that transverse variations are not always negligible. Here the simulation results are compared to the transverse average of the amplitudes (dashed lines), and the standard deviation is indicated by the shaded zone. For f 1 = 1.9837 Hz, in the deeper region of the domain before the step, the simulation results agree well with the experiments (Figure 4.18). However, in the shallower water part over the step, the harmonic amplitudes from the experimental data (dashed lines) show signi cant dissipation that is not reproduced by the simulations (that do no include viscous e ects). In addition, the beat length of the second harmonic in the simulations is smaller than in the experiments. To evaluate the importance of viscous e ects, rst, the bulk viscosity terms were added to the model and the optimal value of the bulk viscosity was sought to reproduce the amplitude of the second harmonic (Figure 4.19). The optimal value ν = 4.10 -5 m 2 /s is higher than the viscosity of pure water. This is likely due to the fact that only dissipation through internal friction was included whereas the e ects of bottom friction may also be important. However, adding bulk viscosity to the simulations improves the agreement with the experimental data, but the model still overestimates the harmonic amplitudes for x > 0.2 m. The bulk viscosity terms have no e ect on the beat-length of the second harmonic.

The beat length of the second harmonic is expressed as a function of the di erence between the wave numbers of the free and bound components (Eq.(4.68)), which depend on the dispersion relation for waves. The surface tension (σ) modi es the linear dispersion relation such that (Dingemans, 1997a):

ω 2 = 1 + 1 Bo gk tanh(kh), (4.69) 
where Bo = ρg/(σk 2 ) is the Bond number quantifying the ratio between gravity e ects and surface tension e ects. If Bo 1, surface tension e ects can be neglected and the classical Surface tension impacts short waves with wavelengths on the order of centimeters. The wave lengths associated with the second harmonic over the step are less than 10 cm, so the in uence of surface tension on their associated wavelength is small (Table 4.4), but important enough to modify the beat length. 4.4: Wave number and wavelength of the rst and second harmonics with the associated beat length for the water depth h (II) = 2.0 cm, and for surface tension σ = 0 N/m and σ = 0.071

σ (N/m) k (II) 1 (rad/m) L (II) 1 (m) k (II) 2 (rad/m) L (II) 2 (m) D -(
N/m.
To take into account the e ects of surface tension, the dynamic free surface boundary condition is modi ed with a term proportional to the curvature of the free surface (e.g. Dias and Kharif, 150 CHAPTER 4: MODELING VISCOUS DISSIPATION 1999), Eq.(1.26) becomes:

∂ Φ ∂t = -gη - 1 2 ∂ Φ ∂x 2 + 1 2 w2 1 + ∂η ∂x 2 -2 ν ∂ 2 Φ ∂z 2 + σ ρ ∂ ∂x     ∂η ∂x 1 + ∂η ∂x 2     . (4.70)
With surface tension (σ = 0.071 N/m), the simulated beat length of the second harmonic (red curves, Figure 4.20) is close the measured value. Thus, even with wavelengths at the limit of the range for which surface tension has signi cant e ects, the in uence is visible. Additional experiments were completed with higher incident wave frequencies. Using the same value of the bulk viscosity (ν = 4.10 -5 m 2 /s) in the simulations produces good results for frequencies up to 3 Hz. For higher frequencies, the simulated dissipation is too strong, and the amplitudes decrease even before the step. This is likely due to the fact that the dominant source of energy dissipation is bottom friction.

Bottom friction may become a signi cant source of dissipation for lower frequency waves (L)

(since the dissipation is stronger for longer wavelengths). By taking into account the e ects of bottom friction, the optimal viscosity will likely be reduced. Therefore, a series of tests were run including the bottom friction term. The no-slip condition was rst applied everywhere in the domain, except the generation relaxation zone. However, this did not give satisfactory results in the region around the step. Since the bottom friction term is derived assuming small gradients in the water depth, the theory is likely no longer valid when simulating abrupt changes in depth like a bottom step.

Finally, the no-slip condition was only applied in the shallow water region. To prevent an abrupt change of the bottom boundary condition, the viscosity in the bottom friction term increase slowly in space to reach the targeted value. However, for value of the viscosity required to re- produced the observed amplitude decay, oscillations occur in the viscosity transition zone making the simulation unstable. Therefore, only simulations taking into account the e ects of bulk dissipation are shown here.

In the numerical model, only two sources of energy dissipation are represented. [START_REF] Przadka | Fourier transform pro lometry for water waves: how to achieve clean water attenuation with di usive re ection at the water surface?[END_REF] show that the white pigments added to the water were chosen to avoid surface lm e ects contrary to most other paint pigments that contain surfactants. But if the water is not perfectly clean, a surface lm can form, which changes the attenuation properties at the surface of the uid and increases the damping. This e ect can increase signi cantly owing to a resonance e ect between capillary-gravity waves and elastic waves (also called) Marangoni waves. Thus, the high dissipation observed in the experiments may also be due to the presence of dust on the water surface. This contribution to energy dissipation is not taken into account in the numerical model and may be one additional explanation for the di erences between the experiments and simulations.

With the bulk viscosity and surface tension terms, the model reproduces well the experimental data for a given frequency of the incident wave (e.g. Figure 4.21). However, the value of the bulk 

Conclusions

Dissipation has been introduced into the potential ow model deriving a visco-potential system of equations that contains: (1) two additional terms in the free surface boundary conditions to take into account the predominant contribution of the vortical component of the velocity representing the e ects of bulk viscosity, and (2) the modi cation of the bottom boundary condition to take into account the presence of a boundary layer representing the e ects of bottom friction. The simulation results agree well with the developed theories and experimental data when applied to cases respecting the model assumptions (i.e. ν < 10 -3 , small bottom slope). For the extension of the model to two horizontal dimensions, our aim in the frame of the current PhD work was to modify as little as possible the 1DH version of the code, keeping the RK4 scheme for time integration (section 2.1.1) and the spectral resolution in the vertical dimension (section 1.2). Nevertheless, for the estimation of the horizontal derivatives, nite-di erence schemes are hardly generalizable for two or higher dimensions since polynomial unisolvency is no longer assured. In cases where the geometry of the domain is simple, horizontal dimensions can be treated separately with 1D schemes but then, the model cannot be applied to complex domains requiring geometric exibility with scattered node layout. Here, a meshless method based on the Radial Basis Functions (RBF) is tested and implemented in Misthyc to avoid these kind of restrictions.

5.1 Presentation of the RBF method 

s(x) = N k=1 λ k φ(||x -x k ||) (5.1)
The coe cients λ k in the RBF interpolant can be found by enforcing s(x k ) = f k , which results

in the system of linear equations: gether with the inverse multiquadric (IMQ), and the thin plate spline (TPS). Despite the good results obtained with the multiquadric RBF, [START_REF] Franke | Scattered Data Interpolation: Tests of Some Methods[END_REF] still raised concerns because the nonsingularity of the associated interpolation matrix had not been proven at the time of the study.

      φ(||x 1 -x 1 ||) φ(||x 1 -x 2 ||) • • • φ(||x 1 -x N ||) φ(||x 1 -x 2 ||) φ(||x 2 -x 2 ||) • • • φ(||x 2 -x N ||) . . . . . . . . . . . . φ(||x N -x 1 ||) φ(||x N -x 2 ||) • • • φ(||x N -x N ||)             λ 1 λ 2 . . . λ N       =       f 1 f 2 . . . f N       ( 
Many di erent RBFs can be used, the most common choices are presented in Table 5.1.

Name (Acronyme) Function φ(r) Condition Regularity

Polyharmonic Spline (P HS) r m m odd integer piecewise-smooth Thin Plate Spline (T P S) r m log r m even integer piecewise-smooth

Multiquadric (M Q) √ r 2 + C 2 C ∈ R in nitely-smooth Inverse Multiquadric (IM Q) 1 √ r 2 +C 2 C ∈ R in nitely-smooth Inverse Quadratic (IQ) 1 r 2 +C 2 C ∈ R in nitely-smooth Gaussian (GA) e -r 2 /C 2 C ∈ R in nitely-smooth
Table 5.1: Commonly used RBFs including the form of the function, the necessary constraints on the free parameter, and the regularity of the function.

For in nitely smooth RBFs (typically those with a shape parameter C), the interpolation system will never be singular if the scattered nodes are distinct, and they lead to spectral accuracy.

For GA, IQ and IM Q RBFs, it can be shown that because they have a positive Fourier transform, their interpolation matrices are positive de nite and thus non-singular [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF], but it is not the case with the M Q. However, [START_REF] Micchelli | Interpolation of Scattered Data; Distance Matrices and Conditionally Positive De nite Function[END_REF] proved that the interpolation matrix for M Q has one positive and N -1 negative eigenvalues, ensuring its non-singularity.

Piecewise smooth RBFs do not depend on a shape parameter, but they present a singularity at the origin leading to algebraic rather than spectral convergence. To assure the unique solvability of the linear system for interpolation with piecewise smooth RBF, the interpolant has to be modi ed slightly by including polynomial terms:

s(x) = N k=1 λ k φ(||x -x k ||) + M j=1 β j p j (x), (5.3) 
with p j (x) ( l+d d ) j=1 a basis for polynomials up to degree l in R d (where l+d d is the binomial coecient l+d d ≡ (l+d)! d!l! ). For P HS of degree m, [START_REF] Barnett | A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials[END_REF] showed that a polynomial of degree at least l = (m -1)/2 must be added to meet this condition. The addition of polynomial terms requires additional constraints for the linear system to be well-posed, which tend to minimize far-eld growth (reducing the divergence order when r → ∞):

N i=1 λ i p j (x i ) = 0 j = 1, 2, 3..., M.
(5.4)

In this case, the non-singularity of the matrix becomes more restrictive since it requires the nodes not just to be distinct but also unisolvent with regard to the appended polynomial space [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF].

Use of RBF to solve partial di erential equations (PDE)

The good interpolation results obtained with the RBF method made it of interest for partial derivative estimates on scattered nodes. [START_REF] Stead | Estimation of gradient from scattered data[END_REF] compared partial derivatives obtained from the M Q interpolant and from the least square quadratic approximation. Because RBF interpolants have no polynomial precision (except when adding polynomial terms Eq.( 5.3)), [START_REF] Stead | Estimation of gradient from scattered data[END_REF] recommended the M Q method for surfaces with signi cant curvature. Later, [START_REF] Kansa | Multiquadrics -A scattered data approximation schem with application to computational uid-dynamics -II Solution to parabolic, hyperbolic and elliptic partial di rential equations[END_REF] was the rst to use the M Q method (with a modi ed scheme) to solve PDEs (namely a Poisson equation) with the straight collocation method, by applying the PDE derivative operators to interior nodes and boundary conditions to the nodes on the boundary. The resulting matrix is not symmetric and not proved to be unisolvent. [START_REF] Hon | On unsymmetric collocation by radial basis functions[END_REF] showed that it was possible to nd very rare cases where the matrix was singular and so a general proof of unisolvency is impossible. That is why, [START_REF] Fasshauer | Solving partial di erential equations by collocation with Radial Basis Functions[END_REF] tried to recover the symmetry of the matrix, to ensure non-singularity, by modifying the basis functions following a method based on Hermite interpolation. Another improvement was made by [START_REF] Fedoseyev | Improved multiqudric methods for elliptic partial di erential equations via PDE collocation on the boundary[END_REF], imposing both the PDE and the boundary conditions at boundary nodes. [START_REF] Larsson | A numerical study of some radial basis function based solution methods for elliptic PDEs[END_REF] compared these three collocation methods to solve a Poisson equation for several functions. They found that for in nitely-smooth RBFs, symmetric collocation gave the best results whereas, for piecewise smooth RBFs, extra boundary collocation worked better.

Condition number of the interpolation matrix

The RBF interpolation method is known for generating ill-conditioned interpolation matrices.

The matrix condition number measures how sensitive the solution of the system is to changes in the interpolation matrix. The computation of a solution of a linear system associated with an ill-conditioned matrix is prone to large numerical errors. The interpolation coe cients become oscillatory with large magnitudes that may lead to a poor evaluation of the interpolation because of numerical cancellations. Practically, the matrix is almost singular because the matrix coe cients become very similar. In the case of the global RBF method, the matrix becomes illconditioned either when the size of the matrix increases (i.e. when the number of nodes N in the domain increases) or when the shape parameter C of the in nitely smooth RBFs becomes very large leading to matrix coe cients that depend strongly on C. Overcoming the problem of an ill-conditioned matrix is an important part of the work on RBFs (i.e. [START_REF] Kansa | Circumventing the Ill-Conditioning Problem with Multiquadric Radial Basis Functions: Applications to Elliptic Partial Di erential Equations[END_REF].

Depending on the causes of the ill-conditioned matrix, several types of solutions have been proposed, which are presented brie y in the following sub-sections.

Numerical methods

Even without knowing the cause of an ill-conditioned matrix, some numerical approaches can be used to solve ill-conditioned systems. The rst idea is to increase the arithmetic precision of the calculation, but it is computationally costly and is not usually retained as a "good" solution. Other methods such as using a preconditioner or doing block partitioning have also been tested [START_REF] Kansa | Circumventing the Ill-Conditioning Problem with Multiquadric Radial Basis Functions: Applications to Elliptic Partial Di erential Equations[END_REF]. Additionally, ltering techniques, using the Singular Value Decomposition (SVD) method, which neglects the smallest singular values, is also suggested by [START_REF] Boyd | Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a nite interval[END_REF].

Reduction of the size of the matrix

The interpolation method was rst introduced as a global method taking into account all the nodes of the domain, leading to a full matrix. When the size of the matrix becomes too large, it often becomes ill-conditioned appears. In this case, the size of the matrix can be reduced by considering smaller domains using domain decomposition algorithms [START_REF] Beatson | Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods[END_REF][START_REF] Wong | Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme[END_REF][START_REF] Zhou | Overlapping domain decomposition method by radial basis functions[END_REF]. By extending this idea to the other limit, one can switch to a local approach, de ning stencils centered at each node of the domain, including only its N sten -1 nearest neighbors, for a total of N sten nodes in each stencil. [START_REF] Tolstykh | On using radial basis functions in a ' nite di erence mode' with applications to elasticity problems[END_REF] were the rst to consider this method to estimate derivatives with a nite di erence approach, followed shortly by [START_REF] Wright | Radial Basis Function Interpolation : Numerical and Analytical Developments[END_REF] and [START_REF] Shu | Local radial basis function-based di erential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations[END_REF]. [START_REF] Wright | Scattered node compact nite di erence-type formulas generated from radial basis functions[END_REF] improved the accuracy of this method by including a linear combination of derivatives of the function f at the surrounding nodes. This local method also presents the advantage of reducing considerably the computational time in comparison with the global method, and o ers the possibility of being easily parallelized. The construction of approximate formulas for the derivatives using RBF interpolants, also called the RBF-FD method, will be presented in more detail in Section 5.2.

Nearly at basis functions (C → ∞)

The interpolation matrix becomes ill-conditioned when C → ∞, i.e. in the limit of at basis functions, generally leading to a trade-o between accuracy and numerical conditioning.

Nevertheless, according to [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF], the interpolation problem is not itself illconditioned in the at basis function limit; it is the numerical algorithm corresponding to the "direct" application of the method that leads to an ill-conditioned procedure, whereas the problem is completely well-conditioned. Work has been done to develop stable algorithms to reach accurate results even for high values of C. For example, the Contour Padé algorithm (Fornberg and Wright, 2004) allows numerically stable computations of M Q RBF interpolants for all C values. The interpolant is written as the sum of a rational function and a power series in C whose coe cients are determined in a complex C-plane, removing the restriction that C is real. This method is not really adapted for a large data set. Another stable algorithm valid for larger node sets, called RBF-QR, was developed by [START_REF] Fornberg | A stable algorithm for at radial basis functions on a sphere[END_REF] for data points distributed over the surface of a sphere. It consists in nding an alternative well-conditioned RBF basis spanning exactly the same space. In this case, the new equivalent bases converge to the spherical harmonic basis as C → ∞. The RBF-QR method has been extended to more general domains from 1 to 3 dimensions (Fornberg et al., 2011) mainly for GA RBF (Table 5.1). More recently a simpler and faster algorithm, the RBF-GA algorithm has been developed [START_REF] Fornberg | Stable calculation of Gaussian-based RBF-FD stencils[END_REF], particularly well-suited for RBF-FD applications. Use of a stable algorithm not only improves the accuracy by allowing the use of larger values of C, but also makes the choice of optimal C less critical.

Nevertheless, the modi ed RBFs have much more complicated expressions.

Accuracy of the estimates and choice of the RBF

The choice of RBF to obtain the most accurate estimates is not straightforward. Some tradeo s must be considered. RBFs can be divided into two categories: the in nitely smooth and the piecewise smooth functions. Two characteristics mainly di erentiate these two categories: (1) the type of convergence when reducing the typical node distance, and (2) the dependency on a shape parameter C.

Spectral convergence vs algebraic convergence

Considering global RBF methods, in nitely-smooth RBFs have a spectral convergence when piecewise smooth RBFs only have algebraic convergence, which often leads to a preference for in nitely smooth RBFs [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF]. Nevertheless, when considering local methods (i.e. RBF-FD method), the spectral accuracy of in nitely smooth RBFs is lost, minimizing its advantage with respect to convergence. Moreover, in nitely smooth RBFs feature stagnation errors, meaning that when the inter-node spacing is reduced, the error is not improved indefinitely but reaches a plateau because the matrix becomes ill-conditioned. To counteract this problem, the value of C is generally increased while the inter-node distance is decreased to keep the condition number of the matrix constant. However this increase in C tends to degrade the accuracy and prevents convergence [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF]. The addition of a polynomial of variable degree (at least a constant) to the RBF interpolant may reduce these errors producing a convergence rate corresponding to the degree of the added polynomial. P HS RBFs need the addition of a polynomial to the interpolant to guarantee the unisolvency of the system, thus they do not present this kind of stagnation error. [START_REF] Flyer | On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy[END_REF] recommended for simple local interpolation problems with P HS to increase the degree of the polynomial close the maximum value allowed by the size of the stencil, but for more complex applications, the degree of the added polynomial should be such that there are twice as many RBFs as polynomial terms in the interpolant (i.e N sten ≈ 2M ) [START_REF] Barnett | A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials[END_REF].

Optimal value for the shape parameter C

With in nitely smooth RBFs, the estimation error is very dependent on the value of the shape parameter C: for small values of C, the error is generally quite high and decreases with an increase of C, often reaching a minimum for an intermediate value of C = C opt (called in the following the optimal value of C). Increasing C beyond this optimal value, the error increases and large oscillations may be observed if the matrix becomes ill-conditioned. However, the matrix may already become ill-conditioned for values of C smaller than C opt : in this case, the minimal error is just at the limit of ill-conditioning. In the limit of C → ∞, Fornberg et al. (2004) showed that when the limit exists, the interpolant tends to a multivariate polynomial. Except for GA RBF, the existence of the limit depends on the unisolvency of the node setting with regard to multivariate polynomials. Concerning the estimation of derivatives, [START_REF] Bayona | RBF-FD formulas and convergence properties[END_REF] showed that the formulas obtained with the RBF-FD method approached conventional nite-di erence formulas in the limit of in nitely at RBFs, and that there is a range of values of C that produce more accurate estimates than standard nite di erence schemes.

However, nding C opt is a di cult task. For global methods, there is no mathematical theory to help with the choice of C. Usually, the choice of C is based on the inter-node spacing, for convenience, but [START_REF] Carlson | The parameter r 2 in multiquadratic interpolation[END_REF] concluded that (according to their tests), the value of optimal shape parameter depended on the value of the function interpolated and not on the node spacing or the node positions. This was also observed by [START_REF] Rippa | An algorithm for selecting a good value for the parameter c in radial basis function interpolation[END_REF]. For interpolation, the value of C is chosen by cross-validation methods, for example [START_REF] Rippa | An algorithm for selecting a good value for the parameter c in radial basis function interpolation[END_REF] developed a method based on the minimization of a cost function that was the sum over each node of the errors between the interpolant and the function when each node is removed from the initial set. Fasshauer and Zang (2007) adapted Rippa's algorithm for the resolution of PDEs with RBF pseudospectral method.

For RBF-FD, [START_REF] Bayona | RBF-FD formulas and convergence properties[END_REF] derived an expression of the error estimate as a function of C,

showing that C opt depends on the value of the function and its derivatives, and is independent of the node spacing at rst order, but can vary with node locations in 2D. Knowing the expression of the error estimate, [START_REF] Bayona | Optimal constant shape parameter for multiquadric based RBF-FD method[END_REF] proposed an algorithm to nd the optimal value of C. However, this required solving the problem twice, since the values of the derivative of the function are necessary to compute the error estimates.

Several studies show that the accuracy of the estimations could be greatly improved by making the shape parameter vary with the location of the center. For example, [START_REF] Kansa | Improved accuracy of multiquadric interpolation using variable shape parameters[END_REF] used a strictly monotonic function to vary C at each node by several orders of magnitude, depending on its index in the node set. Later, [START_REF] Kansa | Circumventing the Ill-Conditioning Problem with Multiquadric Radial Basis Functions: Applications to Elliptic Partial Di erential Equations[END_REF] varied the shape parameter as a function of the local curvature radius of the function being solved. According to [START_REF] Fornberg | The Runge phenomenon and spatially variable shape parameters in RBF interpolation[END_REF], C should be proportional to the distance to the nearest neighbor and should be increased at the edge of the domain. Even if varying the shape parameter seems to improve the accuracy, the optimal way in which C must vary from one node to another is yet not very clear, except in the RBF-FD method. Indeed, with the analytical expression of the error estimates, Bayona et al. ( 2012) developed an algorithm to nd the C opt for each node (a generalized M Q is for nodes without C opt ) and improve signi cantly the accuracy in comparison with a constant shape parameter. With a variable shape parameter the proof of the non-singularity of the interpolation matrix is no longer valid, but it seems that singular systems still are not likely to arise [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF]. Moreover, this approach produces more variable matrix coe cients, reducing the condition number.

The selection of a "good" value for the shape parameter can be challenging, which is why RBFs without shape parameters such as P HS, recently have become more and more attractive, noting furthermore that they produce relatively well-conditioned matrices.

Stencil size for the RBF-FD method

In the case of local methods, the size of the stencil also enters into consideration when looking at the accuracy of the estimation. [START_REF] Bayona | RBF-FD formulas and convergence properties[END_REF] and [START_REF] Ding | Error estimates of local multiquadric-based di erential quadrature (LMQDQ) method through numerical experiments[END_REF] study, among other parameters, the convergence of the error as a function of the number of nodes in the stencil (N sten ).

They showed that the accuracy is generally increased when the size of the stencil increases, with some jumps occurring at certain values of N sten . [START_REF] Bayona | RBF-FD formulas and convergence properties[END_REF] gave the threshold value of N sten for which the error is signi cantly smaller than the error for N sten -1:

N sten = (p-1) 2 +4
(where p is an even integer) for equispaced nodes and N sten = (p + 2)(p + 3)/2 (where p is any integer) for non-equispaced nodes. As a consequence, the order of convergence as a function of the node spacing also varies in phase with the number of nodes in the stencil, which is di erent for equispaced nodes and non-equispaced nodes. For example with N sten = 13, the convergence is of order p = 4 for equispaced nodes, but only of order p = 2 for non-equispaced nodes, ac-cording to [START_REF] Bayona | RBF-FD formulas and convergence properties[END_REF]. For P HS RBFs, increasing the stencil size decreases the error, but the order of convergence is controlled by the degree of the added polynomials, not by the stencil size itself.

Runge phenomenon and boundary errors

Approximations near the boundary usually present larger errors than in the interior due to the one-sided nature of the stencil. It is a problem of major concern since for time-dependent PDEs, the errors at the boundary can contaminate the solution across the entire domain or simply grow quickly and cause the solution to diverge. That is why it is particularly important to nd solutions to minimize boundary errors. [START_REF] Fornberg | Observation on the behaviour of radial basis function approximation near boundaries[END_REF] studied four edge enhancement techniques:

inclusion of low degree polynomials (here rst degree), node clustering (with higher density of nodes near the boundary), Not-a-knot (Nak) and Super Not-a-knot (Snak) methods. The last two techniques consist in moving some RBF centers from the inside to the outside of the domain:

nodes from the rst row inside the domain for Nak, and nodes on the boundary are added for Snak. Their conclusions are that the four correction methods are e cient with a preference for the Nak type of correction that is more "local" and may be more adapted for complex geometry domains than the addition of low degree polynomials.

Moreover, in the near-at limit, in nitely smooth RBF may tend to a multivariate polynomial, but polynomial interpolation on an equispaced grid is known to present large oscillations of the interpolated function at the edges of the domain. This e ect, usually called the Runge phenomenon, can be prevented by node clustering close to the boundaries. Nevertheless, with the RBF method, this phenomenon can be also triggered by node re nement in the interior of the domain. It is then advantageous to let the shape parameter vary spatially [START_REF] Fornberg | The Runge phenomenon and spatially variable shape parameters in RBF interpolation[END_REF]. Increasing the value of C for nodes on the boundary may signi cantly improve the accuracy. 

Stability for the resolution of time-dependent PDEs

The RBF-FD method allows obtaining sparse di erentiation matrices (DM), that then can be used to solve PDEs. The analysis of the distribution of the DM eigenvalues gives important information concerning the capacity of the method to solve time-dependent PDEs with an explicit time-stepping algorithm. For purely convective PDEs, as energy should be constant for all timestepping, all eigenvalues of the DM should be purely imaginary. Nevertheless, because of the irregularity of the stencils, eigenvalues of the DM are scattered into the right half of the com-plex plane, which can cause severe instabilities if no natural dissipation occurs. This e ect is emphasized by large stencils since the scatter of the eigenvalues increases with N sten . Thus the resolution of time-dependent PDE without a di usive operator is quite challenging.

To prevent numerical instabilities, the stencil size is often limited to relatively small values between 5 and 15. To control the eigenvalues, a hyperviscosity approach can be implemented [START_REF] Fornberg | Stabilisation of RBF-generated nite di erence method for convective PDEs[END_REF]. This method acts like a lter, by adding higher order derivatives of the Laplacian to the right hand side of the governing equations. The e ect will be a damping of the spurious high frequencies by moving the corresponding eigenvalues to the left side of the complex plane, while leaving the relevant modes intact. As a consequence, larger stencils can be used allowing approximations of higher accuracy. For P HS RBFs, the implementation is quite simple since the Laplacian operator can be expressed as a function of another P HS RBF [START_REF] Barnett | A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials[END_REF].

For more details on RBF methods and numerous application examples, see the recently published book of [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF].

Implementation of the RBF-FD method

In the extension of the model to two horizontal dimensions, the horizontal derivatives will be approximated with the local RBF-FD method. This method seems to be a good compromise between:

• an easy implementation, with an algorithm similar to nite-di erence methods,

• accuracy close to pseudo-spectral methods and global RBF methods,

• exibility with a scattered nodes distribution and possibilities of local re nement,

• potential for high computational speed with sparse DM and parallelization due to the local de nition of the stencil.

Theory

In this section, the estimation of derivatives with the RBF-method is described following [START_REF] Barnett | A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials[END_REF]. The goal is to estimate the value of Lf (x 1 ), where x 1 = (x 1 , y 1 ) is any point in the domain, f is any function expressed at each node, and L the desired linear di erential operator (i.e. ∂ ∂x , ∂ ∂y , ∂ 2 ∂x 2 , ∂ 2 ∂y 2 , etc.). Here, the local RBF method is applied, so a stencil of N sten nodes, formed by the node of interest x 1 (center of the stencil) and its N sten -1 nearest neighbors (x 2 , x 3 , ..., x Nsten ), is considered.

In Figure 5.1, an example of a RBF-FD stencil in 2D corresponding to N sten = 9 is shown. The w i f i .

(5.5)

In matrix formalism this becomes:

Lf (x 1 ) ≈ w v f 0 , (5.6) 
where

w = w 1 w 2 • • • w Nsten and v = v 1 v 2 • • • v M with f = f 1 f 2 • • • f Nsten T .
(5.7)

The M weights contained in v are added here in order to facilitate the derivation made using a matrix formalism (explained further below). But they will be discarded once the system is resolved.

To derive these weights, a RBF interpolant supplemented with a polynomial of degree l (general case) is considered :

s(x) = Nsten k=1 λ k φ(||x -x k ||) + M j=1 β j p j (x) (5.8) with p j (x) ( l+2 
2 ) j=1 a basis of polynomials up to degree l in R 2 and M = l+2 2 .

The interpolation coe cients ({λ k } Nsten k=1 , {β j } M j=1 ), are found by enforcing:

• N sten constraints corresponding to forcing the interpolant to have the value of the function for all nodes in the stencil: s(x k ) = f k , for k = 1, .., N sten ,

• M constraints to minimize the far-eld growth due to the addition of polynomial terms:

Nsten i=1 λ i p j (x i ) = 0 j = 1, 2, 3..., M .
The addition of the M polynomial terms increases the size of the system in Eq.( 5.2), leading to the following linear system:

A P P T 0 λ β = f 0 ⇒ λ β = A P P T 0 -1 f 0 (5.9)
where

A =       φ(||x 1 -x 1 ||) φ(||x 1 -x 2 ||) • • • φ(||x 1 -x Nsten ||) φ(||x 1 -x 2 ||) φ(||x 2 -x 2 || • • • φ(||x 2 -x Nsten ||) . . . . . . . . . . . . φ(||x Nsten -x 1 ||) φ(||x Nsten -x 2 ||) • • • φ(||x Nsten -x Nsten ||)       , P =       p 1 (x 1 ) p 2 (x 1 ) • • • p M (x 1 ) p 1 (x 2 ) p 2 (x 2 ) • • • p M (x 2 ) . . . . . . . . . . . . p 1 (x Nsten ) p 2 (x Nsten ) • • • p M (x Nsten )       , λ = λ 1 λ 2 • • • λ Nsten T and β = β 1 β 2 • • • β M T .
Evaluating the derivative of the interpolant (Eq.(5.8)) at x 1 gives:

Ls(x 1 ) = Nsten k=1 λ k Lφ(||x 1 -x k ||) + M j=1 β j Lp j (x 1 ) = b c λ β =   b c A P P T 0 -1   f 0 (5.10) where b = Lφ(||x 1 -x 1 ||) • • • Lφ(||x 1 -x Nsten ||) and c = Lp 1 (x 1 ) • • • Lp M (x 1 )
.

By equating Eq.(5.6) and Eq.( 5.10), it is found that:

b c A P P T 0 -1 = w v (5.11)
Finally, taking the transpose of Eq.( 5.11) leads to the following system for the unknown weights w and v of Eq.(5.6):

A P P T 0 w T v T = b T c T
(5.12) Notice that the system can be simpli ed in this manner because the matrix A is symmetric. Thus the matrix arising in the system to nd the derivative weights is the same as for the interpolation problem. Otherwise, if A is not symmetric, the matrix

A P P T 0
has to be replaced by its transposed matrix. The application of the method depends on the non-singularity of the matrix A P P T 0 , which was discussed in Section 5.1.

Numerical implementation

The calculation of the approximation weights of Eq.(5.6) has to be done at all nodes of the domain for each di erential operator L required for the discretization of the PDE. In the Misthyc model, rst and second-order derivatives in the two horizontal dimensions are needed. The resolution of the linear system Eq.(5.12) is achieved with a LU decomposition with a threshold of 10 -16 . Once the weights are computed, they are stored in tables (di erentiation matrices) and can be used whenever a derivative is estimated in the model. They are applied to evaluate the derivatives of any function in the model, such as the bottom pro le h, the free surface elevation η, the a n coe cients of the decomposition of the velocity potential Φ on the Chebyshev polynomial basis.

The calculation of the weights is completed only once at the beginning of the simulation, and is therefore a part of the pre-processing phase.

Before the weights in Eq.(5.6) are calculated, it is necessary to determine the N sten -1 nearest neighbors. The size of the stencil is de ned at the beginning of the simulation, and is often dened either as a xed number of nodes or as a xed radius including a variable number of nodes.

For all the simulations presented in the two following chapters, the size of the stencil is constant for all the nodes as N sten . In the code, an algorithm that calculates the Euclidean distance between two nodes (developed by Michel Benoit) is implemented to identify the N sten -1 nearest neighbors. Some faster algorithms could have been used such as the k-dimensional tree algorithm [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF]. Nevertheless, it is a pre-processing task whose computational time is relatively small in comparison to the resolution of the Laplace problem. Note that with this algorithm, the nal set of nodes de ning the stencil depends on the index of the nodes: since the stencil size is imposed to determine the nodes belonging to the stencil, (rather than a characteristic distance to the center), several nodes separated by the same distance to the center (for example, for regular grid) may be selected depending on the order in which they are evaluated.

Another characteristic of the code is the possibility to normalize the stencil. The physical length of the stencil is di erent for randomly scattered nodes, and the optimal value of the shape parameter that depends on the scale of the supporting region may vary from one node to another. [START_REF] Shu | Local radial basis function-based di erential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations[END_REF] proposed, similarly to nite element methods, to transform the local support to a unit circle by applying the following coordinate transformation:

(x , y ) = x D i , y D i , (5.13) 
where (x, y) are the coordinates in the physical space, (x , y ) the coordinates in the unit circle, and D i is the diameter of the smallest circle enclosing all nodes belonging to the stencil of node center i. This normalization is equivalent to considering a traditional RBF with a modi ed shape parameter C = CD i . Thus, when D i changes, the equivalent C in the physical space also changes. Considering a set of evenly distributed scattered nodes, for a given stencil size N sten , nodes located at the interior of the domain display a centered stencil whereas nodes located at the boundary have only a one-sided stencil. As a consequence, the D i of a node at the boundary will be larger than the one for a node from the interior of the domain, as well as the equivalent C. Knowing that the estimation error generally decreases with an increase in C, the goal of the normalization is to reduce the di erence in accuracy between interior nodes (with centered stencil) and boundary nodes with asymmetric or one-sided stencils. Note that the value of C used to estimate the weighting coe cients is constant for all the RBFs of a given stencil. It does not vary with the centers of the RBF contrary to what was tested by [START_REF] Fornberg | The Runge phenomenon and spatially variable shape parameters in RBF interpolation[END_REF].

The implementation of the RBF-FD method is rst tested for the approximation of spatial derivatives. A series of tests are completed to verify that the main characteristics of the RBF-FD method described in the literature review (Section 5.1) are well reproduced.
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5.3 Tests on the estimation of derivatives with the RBF-FD method.

This section is dedicated to a series of tests to evaluate the capabilities and limitations of the RBF-FD method to estimate rst and second-order spatial derivatives, before implementing it in the time-stepping Misthyc code. The test function is rst presented with the results of the tests designed to make numerical experiments with RBF-FD and to help evaluate the choice of several parameters of the method (RBF, shape parameter, added polynomial, stencil size N sten , and stencil normalization).

Presentation of the test functions

Di erent types of functions have been tested to evaluate the performance of RBF methods for interpolation and derivative estimations in the literature. These functions were usually chosen arbitrarily, displaying more or less complex spatial variations (i.e. steep gradients, at functions,...). Here, the tests are completed for a sinusoidal function because it is the rst step to represent waves, and the free surface in the model will generally present oscillatory variations: To evaluate the accuracy of the estimations, a normalized averaged error is computed for the N nodes in the entire domain:

f (x, y) = A cos 2π L (x cos θ + y sin θ) , ( 
Averaged Error = N i=1 (Lf (x i ) -Lf theo (x i )) 2 N i=1 (Lf theo (x i )) 2
(5.15)

The domain is discretized with a regular set of nodes with a node spacing ∆x = ∆y = 0.005 m (= L/100). Although a regular grid can be problematic for global RBF methods, it has less of an impact in local RBF-FD method [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF]. Moreover, it is easier to conduct convergence studies and to de ne a regular centered stencil.

Many combinations of the method parameters have been tested and the averaged error for the four derivatives ( rst and second order in x and y) have been computed. Only the most relevant results and comparisons will be shown and discussed in the following, to illustrate the main characteristics of the method emerging from these tests, and how to relate these observations to the literature.

General results

First, some general observations are made looking at the local error for the estimates of rst and second-order derivatives with the M Q RBF (recommended by [START_REF] Franke | Scattered Data Interpolation: Tests of Some Methods[END_REF]), N sten = 21 and C = 0.1 (Figure 5.5). The local error at x is de ned as : |Lf (x) -Lf theo (x)|. Globally, errors are larger for the second-order derivatives than for the rst-order derivatives. As expected, the largest errors occur at the boundary, and more particularly, at the boundary where the stencil is one sided in the direction of the derivative (i.e. for x = 0 m and x = +1 m in the case of derivatives in x and y = 0 m and y = +1 m in the case of derivatives in y) whereas they are globally smaller on the other boundaries where the stencil is more elongated in the direction of the derivative.

The averaged error for all the nodes in the domain (global error) is then compared to the averaged error on subsets of nodes. The node subsets are based on the asymmetry of the stencil. Three sets are de ned: interior nodes with a centered stencil (Figure 5.4,left), the rst row of interior nodes with an asymmetric stencil (denoted as boundary nodes 2 in the gures 5.6, 5.10 and 5.15), and the boundary nodes with a one-sided stencil ( 

CHAPTER 5: IMPLEMENTATION OF THE 2DH VERSION

In the following presentation of the results, the global averaged error will be shown except when the error behavior in response to the parameter or the method tested is di erent for the three node sets and deserves to be analyzed speci cally. With this kind of RBF, the choice of the value of C is a main concern. As can be noted from Figure 5.8, the accuracy of the estimation of the derivatives depends strongly on C. The error is quite high for small C and decreases with increases in C. Nevertheless, if C continues to increase, the derivative estimation eventually becomes unstable and large oscillations of the error appear because the matrix becomes ill-conditioned. Without an ill-conditioned matrix, the error might reach a minimum an optimal C, but sometimes (as it is the case here), the matrix becomes ill-conditioned before this minimum is reached. The four RBFs display the same general behavior From the literature, it is known that the optimal value of C depends on the function considered.

Here, it also depends on the derivative estimated (Figure 5.9). First and second-order derivatives in x seem to reach a minimum for the error for C ≈ 0.42, whereas the matrix becomes ill-conditioned for the rst and second-order derivatives in y, before a minimum is reached. It can then be inferred that the optimal C for derivatives in y are larger than for derivatives in x for this particular case (due to the chosen wave direction).

It has already been shown that the errors are larger for nodes at the boundaries than for interior nodes (section 5.3.3, Figure 5.5 and 5.6). Here, the optimal value of C is not the same for interior nodes and boundary nodes (e.g. Figure 5.10 for M Q). The optimal value of C decreases closer to the boundary.

When studying the sensitivity of the error to the stencil size (Figure 5.11), the matrix becomes ill-conditioned for smaller values of C when N sten increases (C ≈ 0.8 for N sten = 13 whereas C ≈ 0.5 for N sten = 21). The accuracy of the derivative estimates is greatly improved by increasing the stencil size from 5 to 13 nodes, and even more with 21 nodes, but more attention has to be paid to the choice of C, since the range of value of C producing a well-conditioned matrix is reduced. In addition, increasing N sten increases the computational time, so a compromise has to be found between accuracy, the di culties nding an optimal value of C, and the computational time.

With in nitely smooth RBFs, the matrix also becomes ill-conditioned with a decrease in the node spacing. The optimal C is generally insensitive to the node spacing, but if it is decreased too signi cantly, the matrix may become ill-conditioned before an optimal value of C is reached (Figure 5.12). In general, when the node spacing is decreased, C is also decreased to keep the condition number of the collocation matrix roughly constant. According to [START_REF] Fornberg | A Primer on Radial Basis Functions with Applications to the Geosciences[END_REF], a mean condition number on the order of 10 10 -10 12 was found to give RBF-FD a competitive edge with regard to the accuracy reported by other high-order methods.

Considering all the parameters that need to be taken into account in the determination of a suitable value of C, the choice of the value of the shape parameter C is not straightforward.

In the literature, trial and error is the method most often used. Recently, [START_REF] Bayona | RBF-FD formulas and convergence properties[END_REF] derived an analytical expression for the estimation of the error that was then used to develop an algorithm to nd the optimal value of C [START_REF] Bayona | Optimal constant shape parameter for multiquadric based RBF-FD method[END_REF]. Nevertheless, it requires a rst estimate of the derivatives and C opt depends on the function considered and thus would vary for derivatives of each variable considered. For the application of the RBF-FD method in the model, this is not a suitable option. Although the estimation accuracy can be improved by several orders Figure 5.12: Error for the estimate of f x , for the IM Q as a function of the shape parameter C (with added polynomial of order 1 and N sten = 21) for several di erent node-spacings. of magnitude when C opt is determined, the range of C for which this accuracy is reached is very small and the dependency of C opt on the function makes it unlikely that the optimal range of C is the same for all the function considered in the code (and their derivatives). For implementation reasons, the choice of C is currently limited to a single value to estimate all the derivatives of all the functions, just as for nite di erence where the derivative weights depend only on the node placement. This objective leads to focus on the determination of the values of C giving small errors even if it not the smallest that can be obtained and, above all, to avoid an ill-conditioned matrix.

Tests to reduce the dependency on the shape parameter C

In the following section, some options to reduce the dependency of the error on C and to postpone the matrix becoming ill-conditioned for higher values of C are tested in order to widen the range of acceptable values for C to decrease the error on the boundaries. Among the possible options that are easily implementable, three options were selected:

• resolution of the linear system with a SVD method instead of a LU decomposition,

• addition of polynomial terms to the RBF interpolants,

• normalization of the stencil.

TESTS ON THE ESTIMATION OF DERIVATIVES WITH THE RBF-FD METHOD. 179

The SVD method

The resolution of the linear system giving the weights for the derivative estimation is completed with a LU decomposition algorithm. However, it is not the most adapted algorithm when the matrix is ill-conditioned, as is the case with RBF-FD, since large numerical errors can arise. The SVD method is used here as a ltering method by setting to zero all the eigenvalues smaller than a threshold de ned as thresh = µs max , where s max is the largest eigenvalue and µ is a free parameter controlling the ltering (to be set by the user). Three values of the parameter µ were tested µ = 10 -6 , 10 -12 and 10 -15 (Figure 5.13). Small values of µ tend to avoid the problems associated with an ill-conditioned matrix by reaching a plateau for larger values of C, particularly for µ = 10 -15 . However, if the threshold is too large (i.e. µ = 10 -6 ), the ltering is too strong and information about the system is lost, leading to large errors. Using a SVD method to resolve the system has a stabilizing e ect, but the choice of µ must be made with caution: it should be small enough so as not to degrade the basis of the space by a lack of information, but not too small to eliminate the ltering e ect. (with added polynomial of degree 0 and N sten = 21). Comparison between solving the system with a LU decomposition and using a SVD ltering method for three values of the threshold µ.

The added polynomial

The addition of polynomial terms in the RBF interpolant has often been described as a method to improve the accuracy of the estimation, particularly at the boundaries of the domain (Forn-berg et al., 2002). The sensitivity of the error to the degree of the added polynomial is studied by increasing its degree from 0 to 2 and comparing it to the results without polynomial terms.

In Figure 5.14, the boundary and interior nodes present di erent behaviors with the increase of the added polynomial degree. For interior nodes (Figure 5.14, right), higher degree polynomials are bene cial for C < 0.18, but this improvement is lost for higher values of C. For the nodes on the boundary (Figure 5.14, center), the error (average of the error for boundary node 1 and boundary node 2) is greatly reduced with the addition of a polynomial and increase in degree of the polynomial for C < 0.05. From a certain degree of polynomial (depending on N sten ), the dependency of the error on C is reduced, and the error minimum as a function of C disappears.

The global error (Figure 5.14, left) follows the same trend as the boundary node error. Moreover, since RBFs are not exact for polynomials, it is essential to add at least a constant to the RBF interpolant to be able to estimate the derivative of a constant function accurately. 

The normalization of the stencil

The last option tested to improve the RBF-FD method is the normalization of the stencil (see Section 5.2.2 for more implementation details). With the normalization, a single value of C is imposed, but the corresponding C in the physical space is modi ed based on the diameter of the stencil, leading to larger C for boundary nodes in comparison to interior nodes. The main consequence of this normalization (Figure 5.15) is the compression of the boundary node error curve towards the left side of the graph, while the interior node error curve remains the same (only the range of values of the shape parameter giving minimal errors is shifted). The expectation when applying this method is that, for small values of C, the di erences between boundary errors and interior errors decrease. For the case considered here, the impact of the normalization of the stencil is not signi cant (Figure 5.15), and the normalization does not allow increasing the range of optimal values of C. A side e ect of the method is that increasing C for the estimation for the three sets of nodes de ned in Section 5.3.3.

Conclusions

The choice of an in nitely smooth RBF in the RBF-FD method may be very interesting when it is possible to use it in combination with an algorithm to nd the optimal value for C. Otherwise the choice of C may require a calibration based on trial and error, that is only possible when data are available for comparison. With the objective to use the model for operational wave propagation studies it may not be the best option unless the validation with experimental test cases reveals that the results are not so dependent on the choice of the shape parameter.

RBF not depending on a shape parameter

Contrary to in nitely smooth RBFs (Figure 5.7), piecewise smooth RBFs such as T P S and P HS are less regular but present the advantage of being independent of a shape parameter. In this section, three functions are tested: a T P S r 4 logr and two P HS r 5 and r 7 (Figure 5.16).

Comparison with in nitely smooth RBFs

The estimation errors for the four derivatives (f x , f y , f xx and f yy ) obtained with each piecewise smooth RBF are compared with the results obtained with the IM Q RBF (Figure 5.17). The error decreases when the degree of r increases in the RBF, φ(r) = r 7 , producing the best results for have almost the same convergence rate, which is slower than the convergence rate of φ(r) = r 7 .

Here the IM Q interpolant is augmented with polynomial terms up to degree 1, which allows the convergence rate to decrease without reaching a plateau (as would be the case without an added polynomial). For large ∆x, the IM Q method converges at the same rate as φ(r) = r 7 .

Errors obtained with T P S r 4 logr are larger than errors obtained with P HS r 5 and r 7 . Therefore only the P HS RBFs will be considered in the remaining tests.
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Figure 5.17: Error for the estimate of f x , f y , f xx and f yy , for the three piecewise smooth RBFs considered in comparison with the error estimate of the IM Q as a function of the shape parameter C (with an added polynomial of degree 0).

Comparison between P HS r 5 and r 7

For P HS RBFs, the addition of polynomial terms is essential to guarantee the inversibility of the collocation matrix, and a minimum polynomial degree is required that depends on the degree of the P HS. In parallel, the degree of the added polynomial is limited by the size of the stencil. To ensure that the problem is well-posed, the number of nodes in the stencil has to be larger than the number of independent monomials constituting the basis of polynomials of the same degree as the added polynomial. With these considerations, a series of tests were conducted to study the sensitivity of the error estimation of the P HS r 5 and r 7 to the stencil size (N sten ∈ [9, 56]) and to the degree of the added polynomial (varied between 2 and 5). With regular node sets, the condition on the minimum stencil size for a given degree of added polynomial is not su cient to ensure the non-singularity of the matrix. The regularity of the node set does not allow the matrix to be unisolvent for the polynomial basis. The stencil size thus has to be increased to recover the inversibility of the matrix. With an irregular node set this should not occur.

The results obtained with both P HS are compared in Figure 5.19. Similar behavior is observed for rst and second-order derivatives in a given dimension. For a given degree of added polynomial, P HS r 7 shows smaller errors than P HS r 5 . Some exceptions occur, for derivatives in x for N sten ≤ 25 and added polynomial of degree 3, and for the second-order derivative in x with the added polynomial of degree 4. For derivatives in y, there is no much gain in accuracy when the degree of the added polynomial increases from 3 to 4. In all cases, the error is weakly dependent on N sten . Nevertheless, P HS r 5 has the advantage to be used with only a second degree polynomial, hence requiring a smaller N sten , and less computational time.

Conclusions and recommendations

The series of tests conducted to study the estimation of the derivatives of a sinusoidal function with the RBF-FD method demonstrate that very accurate results can be obtained with an in nitely smooth function (without signi cant di erences between M Q, GA, IM Q and IQ). However, the fact that these RBFs depend on a shape parameter controlling the accuracy of the approximation, and that the optimal value of this shape parameter depends on the value of the function and its derivatives, make this method quite questionable for the targeted application.

The success of the application (for example the performance of the Misthyc code) will depend on the accuracy required for the derivative estimates and how sensitive the model is to that parameter.

To avoid the problem associated with the choice of the shape parameter, P HS RBFs appear to be a good alternative. In particular the P HS r 7 produced nearly the same order of accuracy as the IM Q RBF (for the considered case). Nevertheless, the P HS r 5 is also of interest because even if the accuracy is reduced, smaller values of N sten can be used, meaning a gain in computational time. For a targeted stencil size between 20 and 30 nodes, P HS r 7 + p3 are recommended, and if larger stencils can be considered (in the range 30-40) the P HS r 5 + p4 or r 7 + p4 are an appropriate choice. (1971), and a submerged shoal based on the basin experiments of [START_REF] Vincent | Refraction-Di raction of Irregular Wave over a Mound[END_REF]. The second test case was presented at the conference Journées Nationales Génie Côtier Génie Civil 2016 in Toulon.

Regular waves propagating over a at bottom

In Section 5.3, the derivative estimates with the RBF-FD method were studied for a sinusoidal function. Accurate results were achieved for interior nodes, but larger errors appeared at the boundaries. Now, the RBF-FD scheme is introduced in the wave propagation model to extend the 1DH version of Misthyc to 2DH, solving the time-dependent equations without physical diffusion terms. The objective is to determine if the RBF-FD approach is suitable for simulating wave propagation with a fully nonlinear and dispersive wave model. One of the most important obstacles is to evaluate whether larger errors at the boundaries are going to spread inside the domain, degrade the solution and disrupt the stability of the simulation. Boundary errors depend strongly on the type of RBF considered, and the accuracy and stability of the simulation are studied for two in nitely smooth RBF (M Q and GA) with a wide range of shape parameters (C ∈ [0.1, 20]). The stencil size is also varied to study its impact on the solution accuracy. A total of 128 combinations of (C, N sten ) are considered with an augmented polynomial of degree 0 (i.e. only a constant coe cient). Two P HS RBF are also tested r 5 + p2 with N sten = 13 and r 7 + p3 with N sten = 21. In all of the simulations, the stencil is normalized.

The case of regular waves of amplitude A = 0.005 m, period T = 2.26 s and wavelength L = 6.14 m propagating in constant depth (h = 1 m) is considered. The test case is designed to be invariant in the y direction so that the simulation results can be compared with those obtained with the 1DH version of the model. The domain is seven wavelengths long in the wave propagation direction, with a one-wavelength long relaxation zone at the left boundary for wave generation and a two-wavelength long relaxation zone at the right boundary for wave absorption.

In the transversal direction, the domain extends over one-tenth of a wavelength. The domain is discretized with irregularly spaced scattered nodes with an average node spacing r ≈ 0.0614 m (L/100) for a total of 9090 nodes, with N T = 7. Impermeable conditions are applied at the lateral boundaries. Waves are propagated during 12T with a time step of ∆t = 0.0226 s (T /100). At the end of each simulation, the free surface elevation (Figure 6.1) is evaluated by comparison to the 1DH results that are used as the reference solution (η ref ), and a normalized averaged error is computed for the N nodes of the domain outside the relaxation zones:

averaged error = N i=1 |η(x i ) -η ref (x i )| 2 N i=1 |η ref (x i )| 2 (6.1)
The averaged error is computed for all of the simulations that were stable during the entire 12T simulation. The averaged error for each tested simulation is presented in Figure 6.2. Although more simulations remain stable with M Q (47.6%) than with GA (32.8%) RBFs, the same evolution of the error as a function of C is observed for the di erent values of N sten . For both functions, the error decreases when C increases. Nevertheless, contrary to the results for larger N sten , the error is almost independent of C, for N sten = 5 but is large (of the order of 1). Simulations with larger N sten are stable only for small C. When C is increased, the simulations become unstable likely due to an ill-conditioned matrix, as discussed in the previous chapter. For smaller N sten (5 and 13) the simulations are unstable for small C not because of an ill-conditioned matrix but due to large errors in the derivative estimates. The minimum averaged error obtained with innitely smooth RBFs is about 2.10 -3 . It is reached for di erent values of C depending on N sten : C = 1 for N sten = 29 (M Q), C = 5 for N sten = 13 (M Q), and C = 15 -20 for N sten = 9 (M Q and GA). For a given N sten , the averaged errors obtained with GA are larger than with M Q mainly because they become unstable for smaller C. The r 5 + p2 PHS produces an error of approximately 3.10 -3 , which is slightly larger than the minimum error obtained with M Q for an optimal C, but better than most of the results with both in nitely smooth RBFs GA and M Q.

Finally, for this test case, the PHS r 7 + p3 produces far more accurate results than any other RBF with an averaged error of 3.10 -4 . Figure 6.2: Averaged error computed for the free surface elevation at the end of the simulation (t = 12T ) for all simulations with M Q and GA RBFs (as a function of the shape parameter C for several values of N sten ), and for PHS r 5 + p2 and r 7 + p3 (independent of C) RBFs.

Another way to visualize the results is to plot the error in the (N sten ,C)-space (Figures 6.3(a) and 6.4(a) for MQ and GA, respectively). The value of the error is indicated by the colorscale, with large errors in red and small errors in blue. Smaller errors are obtained for larger values of C until a limit is reached and the simulations become unstable. Comparing Figures 6.3(a) and 6.4(a), many fewer simulations are stable with the GA RBF than with the M Q RBF, and the errors obtained using GA RBFs are not as small as those obtained using M Q RBFs.

By looking at the averaged condition number of the collocation matrix (Figures 6.3(b) and 6.4(b)) the simulations generally become unstable when the condition number is larger than 10 14 . For a given value of (C, N sten ), the condition number is usually larger for GA than for M Q. This likely explains why more simulations are unstable with GA than with M Q for large values of 6.1 REGULAR WAVES PROPAGATING OVER A FLAT BOTTOM 191 C and N sten . For small values of C some simulations were unstable even though their corresponding condition numbers were small (10 2 -10 3 ). In these cases, the instabilities are likely caused by poor derivative estimates because of very narrow basis functions owing to the small C. The crosses indicate simulations that were not stable for the entire 12T . the horizontal resolution has not been veri ed here. Nevertheless, the dependency on the size of the stencil N sten is studied here for the M Q RBF with C = 1 (Figure 6.5). N sten impacts the e ciency of the model since it modi es the ll-in ratio of the matrix used to solve the Laplace BVP. In the log-log plot (Figure 6.5), the CPU time increases linearly with N sten with a slope of approximately 1.36, showing the importance of minimizing N sten to reduce the model's computational time.

This rst test case shows that accurate results can be obtained with the RBF-FD method when resolving a time-dependent PDE without any physical dissipation terms as long as N sten and C are chosen in the appropriate range. The size of the stencil N sten should not be too large since it both limits the range of "admissible" C for in nitely smooth RBFs (for which the simulations remain stable) and increases the computational time for all RBFs. Thus, values of N sten in the range [9,21] appear to be a reasonable compromise between accuracy and e ciency. A larger range of "admissible" C values is possible using M Q instead of GA. The most accurate results are obtained with the P HS r 7 + p3. These last two observations may be speci c to this test case, but for the following applications, the GA will not be tested further.

6.2 REGULAR WAVES PROPAGATING OVER A SEMI-CIRCULAR STEP 193 6.2 Regular waves propagating over a semi-circular step [START_REF] Whalin | The limit of applicability of linear wave refraction theory in a convergence zone[END_REF] performed a series of experiments with regular waves propagating over a semicircular bottom topography that acts as a focusing lens. These experiments were rst conducted to test the limit of linear and nondi ractive theory in a convergence zone, considering nonbreaking waves with periods of 1, 2 and 3 s for three wave heights. The bottom topography was designed to produce strong wave converge and minimize sidewall e ects and dissipation by bottom friction. The wave tank was 6.096 m wide and 25.603 m long. In the experiments, regular waves were generated by a piston wave maker and propagated from a water depth of 0.4572 m to a shallower region of 0.1524 m. The bathymetric pro le used for the simulations here is the same as the one presented by [START_REF] Shao | A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics[END_REF]: shows that before the foot of the slope, the crest and trough are nearly symmetric with respect to the water depth at rest (Figure 6.8). In the shallower zone (x > 15 m), there is an increase in the di erence between the crest and trough with a decrease in the trough elevation, and an even larger increase in the crest height, breaking the horizontal symmetry observed in the deeper part of the domain. Looking at the free surface pro le at the end of the simulation, the vertical asymmetry of the wave increases from x = 10 m, displaying a sharper wave front. At the maximum of the crest envelop (x ≈ 20 m), the wave presents two small lobes on each side, a consequence of the increase of the second harmonic amplitude due to nonlinear e ects on the slope.

h(x, y) =          0.4572, - 20 
To examine more closely the nonlinear e ects and the energy transfers between harmonics, a Fourier analysis of the simulated wave signal along the centerline of the wave tank was completed to compare to the amplitudes of the rst three harmonics from the measurement time series (Figure 6.9). The model accurately reproduces the spatial evolution of the amplitudes of the rst three harmonics, corresponding to frequencies f , 2f and 3f . The amplitude of the second harmonic is slightly underestimated in the deeper part of the domain, possibly related to the linear wave generation method. In the shallower zone, the second harmonic amplitude is slightly overestimated. As mentioned previously, in the convergence region (around x = 20 m), the second and third harmonic amplitudes increase due to energy transfers from the rst harmonic.

The second harmonic amplitude is about one half of the rst harmonic amplitude. In comparison with 1DH cases (Section 3.5 and Section3.6) the amplitude of the rst harmonic does not decrease.

According to [START_REF] Whalin | The limit of applicability of linear wave refraction theory in a convergence zone[END_REF], this can be explained by the fact that the rate of decrease due to nonlinear transfers to higher harmonics is compensated by the rate of increase in amplitude along the centerline of the tank due to refraction and shoaling.

A series of tests were conducted to look at the sensitivity of the results as a function of:

• the node distribution: a domain discretized with regularly-spaced or irregularly spaced nodes, with approximatively the same total number of nodes.

• the choice of RBF: the results presented above used the P HS RBF r 7 +p3 with N sten = 21.

Here, simulations with the P HS RBF r 5 +p2 are presented as well as results with the M Q RBF for di erent values of the shape parameter C.

• the node spacing: two coarser regularly distributed node sets are compared.

Details of the simulations are summarized in Table 6.1. First, the spatial evolution of the rst three harmonics are compared for the simulations with regularly and irregularly spaced nodes, with ∆x ≈ ∆y ≈ 0.06 m (Figure 6.10). The results are not very sensitive to the numerical parameters of the simulations. The amplitudes of the three harmonics are very similar along the centerline of the domain. For the regular node set, the use of the M Q with C = 2 produced results in agreement with the observations. However, for an irregular node set, a series of tests were required to nd a suitable value of C to keep the simulation stable. The range of C for which the simulations remain stable with irregular nodes is small. This may be due to the fact that the normalization of the stencil takes into account differences in the maximum distance between nodes, while here the problem may be related to the di erences between the minimum distance between nodes. Errors eventually increase locally because of stagnation errors, and these errors continue to grow, making the simulation unstable.

Additional tests are needed to verify this hypothesis.

Simulations with the P HS r 5 + p2 also required also several tests to nd a suitable value of N sten . With N sten = 15, the simulation was unstable. The stability of the simulation was recovered with N sten = 18. Simulations with the P HS r 7 + p3 were stable with N sten = 21.

Finally, once the appropriate combination of numerical parameters is determined to enable stable simulations, the results obtained using the di erent RBFs are similar. Regular or irregular node spacings do cause signi cant di erences in the results, except for the choice of the shape parameter with for M Q RBF. (1971). The parameters of the simulations presented in the rst part of this section are in bold. A second wave condition with the same period (T = 2 s) and an increased amplitude A = 0.0106 m was also simulated. The same characteristics of domain extent, time step and vertical resolution are used, but the spatial discretization corresponds to the irregular node set with ∆x ≈ 0.06 m used in the test of the former case (Table 6.1). The RBF-FD method is used with the M Q RBF, a shape parameter C = 1, and N sten = 13. The simulated spatial evolution of the rst three harmonics along the centerline of the tank are compared to the experimental data (Figure 6.12).

The model reproduces well the spatial evolution of the amplitudes, again underestimating the second harmonic amplitude before the slope. Nevertheless, in the convergent region, the simulated harmonic amplitudes agree well with the experimental measurements. With the increase in the incident wave height, nonlinear e ects become more important, and the second amplitude becomes almost two-thirds the amplitude of the rst harmonic amplitude at its maximum. The amplitude of the rst harmonic also decreases slightly around x = 20 m, which did not occur for the case with the smaller wave amplitude. According to [START_REF] Whalin | The limit of applicability of linear wave refraction theory in a convergence zone[END_REF], this decrease can be explained by the fact that in this case, the nonlinear energy transfers to higher frequency components occurs at a faster rate than the energy convergence from refraction, so losses are not compensated exactly.

Figure 6.12: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes of rst three harmonics (at frequencies f , 2f and 3f , as shown in Figure 6.9) of the free surface elevation for the case T = 2 s, A = 0.0106 m of [START_REF] Whalin | The limit of applicability of linear wave refraction theory in a convergence zone[END_REF].

This second test case shows that 3D wave patterns induced by a speci c bottom topography and the associated nonlinear e ects can be well reproduced by the model. Moreover, in comparison to the simpler test case of a regular wave propagating over a at bottom (Section 6.1):

• The choice of the parameters for the RBF-FD method to obtain a stable simulation is more complicated.

• For the M Q RBFs, the stability of the simulations depends strongly on the shape parameter C and the use of an irregular node set can make the choice of C even more di cult. In this case, the implementation of a variable shape parameter based on the distance to the nearest neighbor might improve the stability of the simulations.

• With P HS functions, instability problems may be resolved by increasing the size of the stencil, at least to a certain extent. For very coarse resolution grids, this solution is not sucient, but the stability can be recovered by increasing the resolution close to the boundary).

• For this test case, M Q is optimal in terms of computational time since it can be used with N sten =13, whereas P HS functions require at least N sten = 18 to achieve the same accuracy.

Regular waves propagating over an elliptical shoal

The last test case simulates the propagation of regular waves over a submerged elliptical mound, reproducing the experiments of [START_REF] Vincent | Refraction-Di raction of Irregular Wave over a Mound[END_REF]. The aim of the experiments was to look at the limits of the monochromatic wave approximation for irregular wave conditions, producing a large experimental data set for both monochromatic wave conditions and irregular waves with narrow or broad frequency and directional spreading. In this section, the regular wave condition test case M 1 is considered, with T = 1.3 s, L = 2.3 m, and A = 0.0275 m.

The experiments were conducted in a directional wave basin that is 35 m wide and 29 m long.

The measurement area is restricted to a 6.10 m wide by 15.24 m long zone. The elliptical shoal has a major radius of 3.96 m and a minor radius of 3.05 m. Its center is located at (x 0 ,y 0 )=(6.10 m, 13.72 m). The shoal boundary is de ned by: S(x, y) = xx 0 3.05 The contour plot of the free surface elevation at the end of the simulation, when the periodic steady state is reached, is shown in Figure 6.14. The wave height increases in the zone behind the shoal (x > 6 m), and complex 2D patterns of the free surface elevation develop with strong variations in both horizontal directions. The convergence zone along the centerline of the tank is surrounded by rectilinear zones of almost zero amplitude looking like a wake. In addition, the crests and troughs in the y direction are modulated with a characteristic length scale of approximately 3 m due to re ections from the lateral walls. The fact that the computational domain is smaller than the experimental one may increase the importance of lateral re ections and possibly overestimate this e ect.

To compare the simulation results with the experimental data, a zero up-crossing analysis of the free surface elevation time series is applied to compute the average wave height along each transect. To conduct the analysis in the same way as for the experiments, a 28-period window of the free surface elevation time series is considered (from t = 60 s to 96.4 s). Wave height pro les for the two transects plotted in Figure 6.13 are presented in Figures 6.15 (transect 4) and 6.16 (transects 7 and 9). Because of the re ection e ects in the simulation, the variations of the free surface position at a given point in the domain is not perfectly periodic in time. Depending on the location of the node, in addition to the oscillatory evolution of the free surface, spatial modulations may also exist. Consequently, the extracted time series of the wave height is not constant. Therefore, here the average simulated wave height pro les are presented with a shaded zone indicating the standard deviation.

Good agreement with the experimental data is observed for the wave height along the perpendicular transect (transect 4, Figure 6.15). The wave height pro le presents a maximum at the center, corresponding to the center of the shoal (y = 13.72 m), which is more than twice the incident wave height (ratio ≈ 2.03). The amplitude of this maximum is slightly underestimated in the simulations. Moving symmetrically away from the center, two minima are reached, with wave heights less than half the incident wave height (ratios ≈ 0.21 and 0.43, respectively). Farther from the shoal, the wave height is nearly equal to the incident wave height.

The wave height pro le was also studied in the wave propagation direction, along transects 7 and 9 (Figure 6.16). The simulation results agree well with the experimental measurements. The di erences are slightly larger than those observed along transect 4. In particular, the increase in the wave height between x = 4 m and x = 6 m and the peak around x = 7.5 m are not reproduced by the model. From x = 9 m the simulated wave height pro le shows small oscillations that may be due to re ections from the relaxation zone that is not perfectly absorbing. The experimental measurements show variability between di erent runs, and by investigating a data point appearing in both pro les (x = 12.2, y = 13.72 m), the observed wave height is 0.0975 m along transect 4, while it is 0.104 m along transects 7 and 9, which is a di erence of approximately 6.25%. Although this variability in the measurements cannot be directly extended to other measurements, it can be used to estimate the order of magnitude of the experimental errors and variability.

The harmonic analysis was performed on the simulated free surface time series along transects 7 and 9, and the evolution of the rst three harmonic amplitudes are shown in Figure 6.17. Unfortunately, the experimental time series were not available to perform the same analysis to use as a comparison for the simulation results. Before the shoal, the waves are only weakly nonlinear, and the amplitudes of the second and third harmonic increase over the shoal. The second harmonic amplitude is more than half the amplitude of the rst harmonic. This e ect is likely caused by the narrowing of the wave crest over the shoal, as seen in Figure 6.14. After the shoal, the amplitude of the rst harmonic is more than twice the amplitude before the shoal due to the convergence of wave energy induced by refraction. Nonlinearities are not signi cant after the shoal, although a modulation of the amplitude of the second harmonic is clearly observed.

The sensitivity of the results to the degree of the P HS RBF and to the spatial resolution of the discretization was evaluated. In Figure 6.18, the wave height pro les along transect 4 and transects 7 and 9 are plotted for three di erent combinations of P HS and augmented polynomials: P HS r 5 +p2 with N sten = 15, P HS r 5 +p2 with N sten = 21, and P HS r 7 +p3 with N sten = 21. (1989). The blue shaded zone around the simulation results accounts for the standard deviation due to re ections.

Figure 6.17: Spatial evolution of the rst three harmonic amplitudes for the M1 Vincent and Briggs (1989) experiments along transects 7 and 9 (y = 13.72 m).

REGULAR WAVES PROPAGATING OVER AN ELLIPTICAL SHOAL 205

Very similar results are obtained with P HS r 5 +p2 for the two di erent stencil sizes (Figure 6.18).

For this case, the accuracy obtained with N sten = 15 is su cient, and this choice of stencil size is optimal to minimize the computational cost. Wave height pro les obtained with P HS r 7 + p3

show only small di erences along transects 7 and 9 (with a small phase shift), and the evolution trend is globally the same for the three simulations. This last 3D test case shows that the model is able to reproduce accurately complex 3D wave patterns with smaller characteristic length scales but weaker nonlinear e ects than the experiments of [START_REF] Whalin | The limit of applicability of linear wave refraction theory in a convergence zone[END_REF]. This test case also demonstrated that a lower degree polynomial function (P HS r 5 + p2) with a smaller stencil size can lead to the same accuracy of the nal simulation results, with the advantage of a shorter computational time.

to be surpassed. In this case, the number of nodes needs to be increased, together with the number of MPI processes, to ensure su cient memory.

Figure 6.21: Speed-up ratio (Eq.(6.5)) as a function of the number of MPI processes (N proc ), for the test case presented in Section 6.2 with 485,728 unknowns.

Summary

These rst attempts to optimize the 2DH version of the code are not entirely successful. Although the algorithm for node reordering was e cient in reducing the matrix bandwidth, it did not lead to a reduction in the analysis and factorization steps in MUMPS. Nevertheless, the parallelization of the solver enables improving the e ciency of the model in comparison to the sequential version, and for the case considered here, a maximum speed-up ratio of 3.5 is reached when using 15 MPI processes. These results may be problem-dependent and further tests should be conducted to see how these results can be generalized for larger domains. However, the speed-up ratios are quite small, and the next step towards a more e cient code could be the parallelization by domain decomposition. Other options could be considered including: the use of an iterative linear solver (i.e. GMRES, BiCGSTAB,...), and the use of other time marching schemes, such as Adams-Moulton (AM) and Adams-Bashworth (AB) predictor-corrector schemes, which require fewer resolutions of the Laplace BVP.

Conclusions and perspectives

Au cours de cette thèse, un modèle de vague simulant de manière précise les e ets vergence were approximately 4-5 for the two less nonlinear cases and 3-4 for the most nonlinear case, in agreement with the properties of the fourth-order Runge-Kutta (RK4) temporal discretization scheme and the fourth-order nite di erence schemes used to approximate the horizontal derivatives. The exponential convergence in the vertical dimension obtained with the spectral approach was con rmed, showing an accurate representation of the vertical structure of the potential with a small maximum degree of Chebyshev polynomial.

Finally, the 1DH version of the model was validated with a series of challenging test cases: a moving bottom generating free surface deformations (tsunami-like wave generation), propagation over steep bottom bathymetry (submerged bar, barred beach pro le), etc. The comparisons with experimental data showed the accurate simulation of energy transfers between the harmonic components over variable bathymetry and demonstrated the dispersive capabilities of the model. The numerous test cases showed the in uence of several numerical parameters, in particular con rming the optimal value of N T : from 5 to 10, depending on the dispersive characteristics of the test case.

To broaden the range of applications of the model that is by de nition non-di usive, a viscopotential formulation was studied to take into account the e ects of bulk viscosity and bottom friction in the Zakharov equations. To our knowledge, this had not yet been done. Boussinesqtype (i.e. long wave) models mainly have been derived from this set of equations. The only study we are aware of involving the Zakharov equations was limited to bulk viscosity terms with an additional assumption of weak nonlinearity [START_REF] Kakleas | Numerical simulation of a weakly nonlinear model for water waves with viscosity[END_REF]. This new implementation of the visco-potential formulation was validated with comparisons to a linear analytical solution for the decay rate of a standing wave over a at bottom, and with experimental measurements of the decay and the shoaling of a solitary wave propagating over a at bottom and then up a mild slope. The application to small-scale experiments studying the propagation of regular waves over a submerged step showed the limits of the derivation and implementation of the bottom friction term. However, satisfactory results in comparison to the experiments were obtained considering only the bulk viscosity terms. In addition, this test case validated the inclusion of surface tensions e ects in the model.

The extension of the model to two horizontal dimensions was also an important component of this PhD thesis. A meshless approach, based on the RBF-FD (Radial Basis Function -Finite Difference) method was chosen to allow signi cant exibility for the application to real domains, enabling using non-rectangular grids and re ning the nodes easily. This method presents the advantage of being similar to nite di erence methods and rather simple to implement, not requiring major adaptations of the code. A series of sensitivity tests to the parameters involved in the RBF-FD method were conducted to examine the robustness of this approach for the estimation of derivatives. The application of the 2DH version for the simulation of two di erent wave basin experiments showed that it is possible to use this method for 2D wave propagation.

However, the method is sensitive to the choice of parameters, in particular the shape parameter for in nitely smooth RBFs. This di culty can be avoided by using piecewise smooth RBFs that do not depend on a shape parameter. Based on the tests performed here, the present recommendation is to use such piecewise smooth RBFs, in particular the Poly-Harmonic Splines (PHS) of degree 5 or 7, supplemented with an augmented polynomial.

Finally, the numerical e ciency of the 2DH version of the model appeared to be an important obstacle for simulations in large domains. The resolution of the Laplace BVP linear system is the most computationally expensive part of the model. Therefore, an initial attempt to improve the numerical e ciency was to use the parallelized version of the direct linear solver MUMPS.

The test conducted for a 60,716 node set with N sten = 13 showed a maximum speed-up of 3.5

when the simulation was run with 15 MPI processes. Further tests are needed to generalize these results.

To summarize, at the end of this thesis, an accurate model for simulating nonlinear and dispersive e ects occurring during water wave propagation over variable bottom pro les has been developed and improved. The 1DH version has been validated extensively and is applicable for a wide range of relative water depths, and its applicability for 2DH cases has been demonstrated.

Considering the work on physical processes, bulk viscous e ects and bottom friction are taken into account in the limit of small viscosity and small bottom slope, as well as surface tension e ects for short waves.

Perspectives

With the long term objective of applying the model to real and complex nearshore domains, including wave propagation near coastal and harbor structures, work can be done to validate and improve several aspects of the model, in particular: boundary conditions, representation of physical processes, coupling with other models, robustness of the method, and computational e ciency. These topics are discussed hereafter, and some insight is given on possible future developments.

Boundary conditions: Additional realistic boundary conditions must be developed and/or validated. The generation of irregular and directional waves from a prescribed directional spectrum has been implemented using linear wave theory (at the end of the PhD thesis) but requires being validated (e.g. with test cases from [START_REF] Vincent | Refraction-Di raction of Irregular Wave over a Mound[END_REF] experiments). This will enable forcing the model with spectra obtained from larger scale applications of phase-averaged models (such as Tomawac, Swan, or WaveWatch-III).

The possibility to generate nonlinear (at least at second order) irregular wave elds may improve the stability of the model when generating highly nonlinear wave elds (e.g. [START_REF] Schä Er | Second-order wavemaker theory for irregular waves[END_REF][START_REF] Yang | Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties[END_REF].

Moreover, modeling run-up and run-down on slopes is also of interest to widen the range of applications of the model to "real" coastal problems.

Representation of physical processes: In this work, the representation of bulk viscosity has been carefully validated. However, the implementation of the bottom boundary condition of the visco-potential formulation, to take into account bottom friction e ects, still requires improvements in the case where it is used in combination with relaxation zones for wave generation.

Moreover, it will be important to derive the expression of the bottom boundary condition without the limitation of a mild bottom slope.

In addition, the calculation of this term is not computationally e cient since it is non-local in time, and thus requires storage of a large amount of data. To optimize the e ciency and memory requirements of the computation of this non-local term, the approximation proposed by [START_REF] Torsvik | An e cient method for the numerical calculation of viscous e ects on transient long waves[END_REF] could be tested to evaluate the impact on the accuracy of the results.

The inclusion of energy dissipation through depth-induced wave breaking is necessary for practical applications, though it cannot be simulated directly with a potential ow model. The goal is to extend the model to estimate properly the wave height attenuation due to breaking. This requires the modi cation of the evolution equations (Zakharov equations), and two methods may be considered: the addition of pressure terms at the free surface to simulate the e ects of wave rollers, following [START_REF] Guignard | Modeling of wave shoaling in a 2D-NWT using a spilling breaker model[END_REF], or the addition of an eddy viscosity-like term to the KFSBC and DFSBC [START_REF] Tian | Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[END_REF], following previous works (i.e. [START_REF] Heitner | Numerical model for tsunami run-up[END_REF][START_REF] Kennedy | Boussinesq modeling of wave transformation, breaking, and runup. I: 1[END_REF][START_REF] Zelt | The run-up of nonbreaking and breaking solitary waves[END_REF].

The e ects of ambient currents could also be considered for applications where tidal or river out ow e ects are important.

Coupling with other models: Although some viscous e ects are taken into account to model bulk and bottom friction induced viscous dissipation, some applications (i.e. wave-structure interactions, for marine renewable energy devices, o shore platforms, etc.) require a more accurate representation of viscous e ects. In particular, it may be necessary to account for vorticity e ects, wakes in the lee of structures, the viscous drag part of forces, etc. To achieve this, the Misthyc potential ow model could be coupled with a Navier-Stokes code that takes into account uidstructure interactions at local scales, for example, following the SWENSE method proposed by [START_REF] Ferrant | and Ecole Centrale de Nantes. A Potential/RANSE Approach for Regular Water Wave Di raction about 2-d Structures[END_REF]. 
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  methods used for the 1DH version of the model are described in detail with a focus on the implementation of the boundary conditions for wave generation and wave absorption. The application of the 1DH version of the model to a series of challenging test cases demonstrates, in Chapter 3, the nonlinear and dispersive capabilities of the code. In Chapter 4, a visco-potential formulation is considered to take into account the dissipative e ects induced by bulk viscosity and bottom friction. This formulation of the model is validated in comparison to analytical solutions and then applied to simulate wave tank experiments. Chapter 5 presents the extension of the model to two horizontal dimensions using the RBF-FD method to estimate horizontal derivatives for a set of scattered nodes. Then, a series of sensitivity tests of the accuracy and stability of the model as a function of the parameters related to the RBF method are conducted to evaluate the robustness of this approach for estimating derivatives. In Chapter 6, the 2DH version of the model is validated rst by a comparison to results from the 1DH version for a case that is uniform in the y direction, and then by comparisons to two sets of experiments conducted in wave basins. Finally, the last Chapter concluded with a summary of the main contributions of the PhD thesis and with a discussion of possibilities for future improvements to the model. Chapter 1 Derivation and analysis of the Euler-Zakharov mathematical model Dans ce chapitre, le modèle mathématique sur lequel repose le modèle numérique développé est présenté. Les équations surfaciques de Zakharov décrivant l'évolution temporelle de la position de la surface libre η et du potentiel des vitesses à la surface libre Φ sont établies à partir des équations de Navier-Stokes, en insistant sur les hypothèses. La vitesse verticale à la surface libre, nécessaire à l'intégration en temps des équations de Zakharov, est obtenue en résolvant le problème aux limites de Laplace à l'aide d'une méthode spectrale pour la direction verticale. Cette approche nécessite un changement de coordonnée sur la verticale, la projection du pro l vertical du potentiel des vitesses Φ sur la base des polynômes de Tchebyshev de première espèce (tronquée à un degré maximal N T ) et l'application de la méthode Tchebyshev-Tau, aboutissant au système linéaire à résoudre pour obtenir le potentiel Φ dans tout le domaine. A partir de la connaissance de Φ, les champs de vitesse verticale et horizontale et de pression peuvent être calculés. La version linéaire du modèle est nalement dérivée pour un fond plat dans le but d'établir la relation de dispersion linéaire. La précision de celle-ci est étudiée en fonction de la résolution verticale (N T ) et comparée à celles issues d'autres modèles de type Boussinesq d'ordre élevé. Les propriétés dispersives de la version linéaire du modèle s'améliorent avec l'augmentation de la valeur de N T et pour N T ≥ 9, l'erreur relative sur la célérité de phase par rapport à la théorie de Stokes reste inférieure à 2.5% pour kh ≤ 100.
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 11 Figure 1.1: Diagram for the de nition of the notations.

  +∞[ The eight rst Chebyshev polynomials are plotted in Figure 1.2. A Chebyshev polynomial of degree p has p di erent simple roots, and |T p (s)| ≤ 1 for s ∈ [-1, 1].
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 1 Figure 1.2: Eight rst Chebyshev polynomials of the rst kind T n (s) (n = 0 to 7).
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 1 Figure 1.3: Phase velocity ratio in comparison with rst-order Stokes theory, for Misthyc with several values of N T (solid lines), for the (2,2) Padé approximant (dashed green), the (4,4) Padé approximant (dashed light blue), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed dark blue).
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 14 Figure 1.4: Phase velocity relative error in comparison with rst-order Stokes theory, for Misthyc with several values of N T (solid lines), the (2,2) Padé approximant (dashed green), the (4,4) Padé approximant (dashed light blue), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed dark blue).
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 1 Figure 1.5: Phase velocity ratio in comparison with rst-order Stokes theory, for Misthyc with several values of N T (solid lines), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed dark blue). The extent of the horizontal axis is from kh = π (deep water threshold) to kh = 100.
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 1 Figure 1.6: Relative phase velocity in comparison with rst-order Stokes theory, for Misthyc with several values of N T (solid lines), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed dark blue). The extent of the horizontal axis is from kh = π (deep water threshold) to kh = 100.
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  All the tests in this section and the following one are made with the linear version of the code for a regular wave of amplitude a = 0.06 m, wavelength L = 6 m and period T = 1.96 s that propagates over a at bottom (h = 4 m). The domain extends from 0 m to 36 m (6L) and is regularly meshed with ∆x = 0.7875 m (L/32). The wave is propagated during 60T with a time step ∆t = 0.0613 s (T /32), and a vertical resolution N T = 7. Waves are generated in a 2L-long relaxation zone with a Dirichlet boundary condition at the left boundary. This relaxation zone is not varied in the simulations since the focus is on the relaxation zone added for wave absorption.Unless speci ed otherwise, the absorption relaxation zone is one wavelength (L) long. Figure2.1 shows the shape of the factors 1 -C r (x), by which the solution obtained by the model is multiplied in the relaxation zone.
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 21 Figure 2.1: Shapes of the six 1 -C r (x) coe cients considered in the rst set of simulations for the absorption relaxation zone.
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 22 Figure 2.2: Comparison of the normalized wave height for x ∈ [18, 24] m for di erent shapes of the relaxation coe cient. H 0 is the incident wave height, H 0 = 2a = 0.12 m.

  Figure 2.3: Shape of the coe cient 1 -C r (x) for several values of the α parameter considered in the second set of simulations for the absorption relaxation zone.

  Figure 2.4: Comparison of the normalized wave height for x ∈ [18, 24] m for several values of the parameter α. H 0 is the incident wave height, H 0 = 2a = 0.12 m.
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 25 Figure 2.5: Re ection coe cient as a function of the parameter α for three di erent lengths of the relaxation zone (L relax = 1L (blue), 1.5L (green) and 2L (red)).
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 26 Figure 2.6: Comparison of the normalized wave height for x ∈ [18, 24] m for several values of the parameter µ 0 . H 0 is the incident wave height, H 0 = 2a = 0.12 m.
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 27 Figure 2.7: Re ection coe cient as a function of the parameter µ 0 for a damping zone of one wavelength.

  the case of the nodes within the domain (not at the lateral boundary), the set of equations includes the projection of the main equation (Laplace equation) on the rst N T -2 Chebyshev polynomials, completed with the Dirichlet boundary condition at the free surface, and the noux condition at the bottom. Two initial options are considered to implement the lateral boundary conditions: the simpler option (option A) is to consider a set of equations consisting only of the boundary condition equations (Eq.(2.30) or Eq.(2.40)) for p = 0, ..., N T . The second option of implementation (option B) is to do the same as for the interior nodes, by replacing the Laplace equation by Eq.(2.30) or Eq.(2.40) for p = 0, ..., N T -2.

  .40) for p = 1, ..., N T -1, supplemented by the free surface and the bottom boundary conditions. The last option (option D) only takes into account the free surface boundary condition and Eq.(2.30) or Eq.(2.40) for p = 1, ..., N T . All the four options tested for the implementation of the lateral boundary condition for wave generation are summarized in Table

  2.2 BOUNDARY CONDITIONS FOR WAVE GENERATION AND ABSORPTION 55water (h = 10 m). The wave steepness is small 2a/L = 0.1%, so linear theory should give a good approximation. The associated relative water depth kh = 10π is ten times the usual limit taken for deep water conditions. For such a high relative water depth, a large value of N T is selected to represent correctly the dispersion relation (here N T = 20). The computational domain extends from x = 0 m to x = 30 m and is regularly meshed with ∆x = 0.02 m (≈ L/100). From x = 22 m, a relaxation zone is applied to absorb waves arriving at the right boundary. The wave is propagated during 15 T with a constant time step ∆t = 0.01132 s (≈ T /100). The steady state is not reached after 15 T but to have quantitative estimate of the representation of the wave by the model, an averaged absolute error is computed for η on the interval x ∈ [0, 8] m.Impact of the introduction in time of the lateral boundary conditionFirst the free surface elevation pro les at t ≈ 15T are compared to evaluate the impact of the introduction of the lateral boundary in time where the linear solution is used as a reference (Figure2.8). Without a time ramp, option A does not work for the Dirichlet condition because a discontinuity appears at the node on the boundary inducing large derivatives that amplify and cause the simulation to blow up. Options C and D give very similar results for the Dirichlet condition with an error of 3.3 10 -5 m. Option B shows results with a slightly larger error of 5.9 10 -5 m. The wavelength of the rst wave in the wave train is larger than the imposed wavelength. These long waves may not be well absorbed by absorption zone and create re ections in the domain. For the Neumann boundary condition, only options A and B work, giving very similar results with an error of 2.7 10 -5 m (Figure 2.8a, right). The long wave generated is smaller than that generated with Dirichlet boundary conditions. Options C and D do not work with Neumann boundary conditions because these options consist of not imposing the component of the horizontal speed component that is constant in the vertical, whose contribution may not be negligible. Hence, the imposed horizontal speed is not consistent with the wave characteristics and instabilities quickly develop. Then, applying a temporal ramp with Dirichlet boundary conditions improves the results obtained with option B (error 1.3 10 -5 m ) but spurious oscillations with very short wavelengths appear and propagate in the domain. Option A still does not work, and the temporal ramp has almost no e ect on the results of options C and D. For the Neumann boundary conditions both results for options A and B are improved (error 3.0 10 -6 m) and options C and D are now stable, giving similar results that are, however, quite far from the linear solution (Figure 2.8b, right). Using a relaxation zone in addition to Dirichlet or Neumann boundary conditions helps to generate stable waves. The four options of implementation of the boundary conditions work, giving very similar results for the Dirichlet condition with an error of 4.2 10 -6 m. For the Neumann condition, options C and D (error 1.8 10 -5 m) still show some small di erences with options A and B (error 6.2 10 -6 m). The relaxation zone seems to dominate the wave generation in comparison with the lateral boundary conditions. The results obtained with Dirichlet or Neumann boundary conditions do not appear qualitatively di erent when looking at the free surface elevation. However, the option (A, B, C, D) of implementation for which the simulations nish without developing instabilities are di erent. The di erences between the various implementation options are investigated in the following sections looking more particularly at the results at the boundary node x = x b when a linear ramp in time is applied.Comparison of Dirichlet and Neumann boundary conditions with option BThe option B for the implementation of the boundary conditions is the only option producing stable simulations for both Dirichlet and Neumann conditions. In Figure2.9, the a n coe cients obtained at the end of the time step corresponding to t ≈ 15T are compared with the a n given by the projection of the linear solution for the velocity potential on the 21 rst Chebyshev polynomials (black dots). As expected, the a n for n = 0 to 18 are exactly equal to those calculated with the linear solution since they are imposed. Di erences are observed for the two last a n , whose values are several orders of magnitude larger than those of the linear solution. This is a consequence of the need to satisfy the free surface and the bottom boundary conditions in addition to the Dirichlet lateral boundary condition. This leads to oscillations in the vertical pro le of the velocity potential Φ (Figure 2.10, right), emphasized in the horizontal velocity u by the horizontal derivative. The two last a n obtained with the Neumann condition also present larger values than the linear solution, but they are smaller than the ones from the Dirichlet condition. It also leads to oscillations in the vertical pro le of u, w and Φ but with smaller amplitudes. Contrary to what is obtained with the Dirichlet condition, the rst a n are not rigorously equal those from the linear solution, resulting in a slightly di erent shape of the vertical pro le of Φ (Figure 2.10, right). Thus, for option B, the largest di erence between the Dirichlet and Neumann lateral boundary conditions is the fact that for the Neumann condition, the a n related to lower orders can di er from the one from the linear solution not limiting the degrees of freedom to the two last a n . Comparison of options B, C and D for Dirichlet boundary conditions In Figure 2.11, are shown the e ects of the di erent options of implementing the Dirichlet conditions on the a n . Options C and D produce almost the same a n except for a 20 , which is kept free for option C. The two main di erences with option B are: (1) the value of a 0 resulting in a shift of Φ from the linear solution (Figure 2.12, right) and (2) the values of a 19 and a 20 lower than 10 -8 where it is equal to 10 -6 for option B (resulting in smaller oscillations of the u, w and Φ pro les). Even with options C and D, the horizontal velocity pro le does not correspond exactly to the linear solution. Comparison of options A and B for the Neumann boundary condition Similarly, Figure 2.13 shows the e ects of the di erent options of implementing the Neumann 2.2 BOUNDARY CONDITIONS FOR WAVE GENERATION AND ABSORPTION 57 condition on the a n . The di erence between option A and B is only signi cant for the last two coe cients (a 19 and a 20 ) which mainly results in larger oscillations of the Φ and u (in particular

  les of u, v, and Φ are obtained. The four options (A, B, C and D) of implementation of the lateral boundary condition lead to nearly the same evolution of the free surface elevation. The e ect of the relaxation zone dominates over the lateral boundary condition. Therefore, in the following test cases (unless otherwise speci ed), Dirichlet lateral boundary conditions are implemented with option B to generate waves, with a relaxation zone usually one wavelength long.

  Figure 2.8: Free surface elevation pro le after 1500 time steps (15T ). Comparison of the three methods to introduce the boundary condition in time, for the four implementation options (A, B, C, D), for Dirichlet boundary condition (left) and Neumann boundary conditions (right).

Figure 2

 2 Figure 2.9: Comparison of the a n coe cients computed at t ≈ 15T , at x = x b , for Dirichlet boundary conditions (red triangles) and Neumann boundary conditions (blue triangles). The coe cients corresponding to the linear potential expanded on the Chebyshev polynomial basis are presented for reference (black dots).

Figure 2 .

 2 Figure 2.10: Comparison of the horizontal u and vertical w velocity pro les together with the velocity potential pro le computed at t ≈ 15T , at x = x b , for Dirichlet boundary conditions (red) and Neumann boundary conditions (blue). The linear solution is presented for reference (black dashed line).

Figure 2 .

 2 Figure 2.11: Comparison of the a n coe cients computed at t ≈ 15T , at x = x b , for Dirichlet boundary conditions for options B, C and D. The coe cients corresponding to the linear potential expanded on the Chebyshev polynomial basis are presented for reference (black dots).

Figure 2 .

 2 Figure 2.12: Comparison of the horizontal u and vertical w velocity pro les together with the velocity potential pro le computed at t ≈ 15T , at x = x b , for Dirichlet boundary conditions for options B, C and D. The linear solution is presented for reference (black dashed line).

Figure 2 .

 2 Figure 2.13: Comparison of the a n coe cients computed at t ≈ 15T , at x = x b , for Neumann boundary conditions for options A and B. The coe cients corresponding to the linear potential expanded on the Chebyshev polynomial basis are presented for reference (black dots).

Figure 2 .

 2 Figure 2.14: Comparison of the horizontal u and vertical w velocity pro les together with the velocity potential pro le computed at t ≈ 15T , at x = x b , for Neumann boundary conditions for options A and B. The linear solution is presented for reference (black dashed line).

  .5) To study the accuracy of Misthyc for the representation of wave propagation over a bottom pro le with a sharp transition between two at regions of di erent depths, the linear version of the code is applied to two bathymetric pro les. The choice was made to use the linear version of Misthyc to compare to Roseau (1976)'s analytical results. The rst bottom pro le is de ned by = 1/3 and β = 0.25 and the second pro le presents a sharper transition for a larger "step" with = 0.1 and β = 0.5 (Figure 3.1).

Figure 3

 3 Figure 3.1: Bottom pro les and snapshots of free surface elevation (at an arbitrary time) for the two sets of ( , β) considered: (a) = 1/3 and β = 0.25, and (b) = 0.1 and β = 0.5.

  [START_REF] Athanassoulis | A consistent coupled-model theory for the propagation of small-amplitude water waves over variable bathymetry regions[END_REF] (hereafter A&B1999) proposed an extension of the mild slope equation to study the propagation of linear waves over a variable bathymetry using a variational formulation of the linear wave problem. At each horizontal position, the velocity potential is described by the vertical eigenfunctions associated with the propagating mode and all of the evanescent modes. An additional mode is introduced to satisfy the bottom boundary condition exactly. Simulations of the four cases are also made with this model (Matlab version of the code presented in A&B1999, provided by Pr. K. Belibassakis) to compare with the Misthyc simulation results.

  (a) case 1 : = 1/3, β = 0.25 and k0h0 = 0.87 (b) case 2 : = 1/3, β = 0.25 and k0h0 = 3.14

Figure 3

 3 Figure 3.2: Normalized wave height pro les for cases 1 and 2, for the rst bathymetric pro le ( = 1/3, β = 0.25). Comparison between Misthyc (blue) linear version with N T = 7 and the coupled-mode model of Athanassoulis and Belibassakis (1999) (red).

  Figure 3.3: Normalized wave height pro les for cases 3 and 4, for the second bathymetric pro le ( = 0.1, β = 0.5). Comparison between Misthyc (blue) linear version with N T = 7 and the coupled-mode model of Athanassoulis and Belibassakis (1999) (red).

Figure 3

 3 Figure 3.4: Convergence with N T of the re ection coe cient (R) and the transmission coe cient (T ) obtained with Misthyc for case 3.

Figure 3

 3 Figure 3.5: Convergence with N T of the re ection coe cient (R) and the transmission coe cient (T ) obtained with Misthyc for case 4.

  sponding to a physical time T ≈ 159.64 s. The distance traveled by the wave at the end of the simulation (d) is theoretically d = CT , where C is the speed of the solitary wave. The wave thus covers a nondimensional distance d ≡ d/h = F T , where F is the Froude number de ned as F ≡ C/C 0 , with C 0 = √ gh. Depending on the value of δ, this corresponds to d varying between about 569h (δ = 0.3) and 639h (δ = 0.7).

Figure 3

 3 Figure 3.6: Bathymetry and free surface pro le at t = 0 for a solitary wave with nondimensional height δ = 0.5 (the intermediate nonlinear case).

  3: Selected time steps ∆t and associated quantities for convergence runs as a function of ∆t (M x = 10 and N T = 7) Final free surface pro les. The free surface pro le at end of the simulation ( T = 500) are plotted in Figure 3.7 for the tree values of nonlinearity. For the least nonlinear case (δ = 0.3), varying the time step within this range of values has only a small impact on the wave crest height and phase di erence at the end of the simulation (Figure 3.7(a)), and the four presented curves (M t = 4, 6, 8, 12) are nearly superimposed on the reference solution.

  Figure 3.7: Free surface pro les at T = 500 for a range of ∆t values (M x = 10 and N T = 7) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.

  Figure 3.8: Relative volume (left) and relative energy (right) time series for a range of ∆t values (M x = 10 and N T = 7) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. Note that the axis scales change for each value of δ.

  Figure 3.10(c)).

  Figure 3.10: Free surface pro les at T = 500 for a range of ∆x (CFL = 1.25 and N T = 7) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.

  Figure 3.11: Relative volume (left) and relative energy (right) time series for a range of ∆x values (CFL = 1.25 and N T = 7) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. Note that the axis scales change for each value of δ.

Figure 3 .

 3 Figure 3.12: Convergence as a function of the horizontal resolution ∆x and wave nonlinearity δ for N T = 7 and CFL = 1.25.

  di erence is caused by the choice of ∆x and ∆t, which appear to be the limiting factors for large values of N T . One can observe that the smallest value N T = 3 results in a wave propagating faster than the theoretical solution, while larger values of N T result in waves propagating slower than the theoretical solution. Conservation of volume and energy. The relative energy time series show a decrease in both of these quantities as a function of time, with larger nal errors for smaller values of N T , as expected (Figure 3.14, right column). The relative volume time series also show similar trends, with an unexplained exception in which the volume conservation is better for N T = 4 than for N T = 5, for δ = 0.5 and δ = 0.7 (Figures 3.14(b) and 3.14(b), left). Evolution of global errors as a function of N T . The global errors in the relative volume, energy, phase, and amplitude as a function of N T and the relative wave height δ are shown in semi-log plots in Figure 3.15. The linear error trends decreasing with N T demonstrate the exponential convergence of the model as a function of N T . The model results converge exponentially to the value obtained with N T = 15, such that Error ∝ exp(aN T ). This is an appealing property of the model since small errors can be attained with small to intermediate values of N T .

  Figure 3.13: Free surface pro les at T = 500 for several values of N T (CFL = 1.25, with M x = 10 and M t = 8) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.

Figure 3

 3 Figure 3.14: Relative volume (left) and relative energy (right) time series for a range of N T values (CFL = 1.25, with M x = 10 and M t = 8) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. Note that the vertical axis scales change for each value of δ.

Figure 3

 3 Figure 3.16: Simulation time as a function of (a) the time resolution ∆t, (b) the spatial resolution ∆x, and (c) the maximum order of the Chebyshev polynomial N T (for δ = 0.3 in red, δ = 0.5 in blue, and δ = 0.7 in green)

Figure 3

 3 Figure 3.17: a) Spatial evolution of the rst four harmonic amplitudes for test case A of Chapalain et al. (1992): experimental (circles) and Misthyc simulation (solid line) results. b) Spatial evolution of the phase di erence between the rst and second harmonic: experimental (circles) and Misthyc simulation (solid line) results.

Figure 3

 3 Figure3.18: Misthyc simulated free surface elevation η at four di erent positions in the wave channel for the test case A of[START_REF] Chapalain | Observed and modeled resonantly interacting progressive water-waves[END_REF].

  where H is the Heaviside step function. The step is upthrust over a total vertical distance of ζ 0 /h 0 = 0.1, and the exponential decay constant and critical time are respectively α = 1.11/t c and t c = 0.148b/ √ gh 0 . The domain is discretized on a regular grid extending from 0 to 2500h 0 = 2500 m, with a spatial step ∆x = h 0 /5 = 0.20 m (12501 nodes). The simulation length is the nondimensional time t g/h 0 = 2375 (i.e. t ≈ 75828 s), with nondimensionnal time step ∆t g/h 0 = 0.20 (i.e. ∆t ≈ 0.0638 s). The resulting CFL number is CFL = √ gh 0 ∆t/∆x = 1.Fully re ective vertical boundaries are applied at both ends of the domain. The maximum order of the Chebyshev polynomial is N T = 7.

Figure 3 .

 3 Figure 3.19: (left) Bathymetry at time t (ζ(t)) and nal bathymetry (ζ 0 ), and (right) temporal evolution of the bottom deformation.

  the free surface elevation time series at four positions in the domain ((xb)/h 0 = 0, 20, 180, and 400), where experimental data are available. The results obtained with the linear version of Misthyc for di erent values of N T are compared to the linear solution in Figure 3.20.The simulated free surface elevations are nearly superimposed on the linear solution, except for the smaller values of N T tested (N T = 3 and 4). For these values of N T , small di erences with the theoretical solution can be observed in the oscillatory trailing wave train following the main wave, in particular at the last two stations. The results with N T = 7 and 10 cannot be distinguished visually from the theoretical solution at all four stations.To quantify the convergence of the results with the vertical discretization (N T ), the averaged absolute error over the interval[-20,100] (as shown in Figure3.20) is computed at each of the four positions considered in the domain. The error is de ned as: η ref (i)|.

  Figure 3.20: Free surface time series at four locations: (xb)/h 0 = (a) 0, (b) 20, (c) 180, and (d) 400. Comparison between the linear solution (red dashed line) and results of the linear version of the model for N T = 3, 4, 7 and 10.

Figure 3 .

 3 Figure 3.22: Free surface time series at four nondimensional positions in the domain: (x-b)/h 0 = (a) 0, (b) 20, (c) 180, and (d) 400. Comparison between the present model simulations (black line) and Hammack (1973) measurements (red line). The associated linear solution (blue dotted line) is also shown.
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 33333 Figure 3.23: Free surface pro les at t g/h 0 = 2375. Comparison between F&M09 nal results (corresponding to their gure 3) with a resolution ∆x = 0.25 m (dashed black line), a more recent simulation using the same model but with a resolution ∆x = 0.2 m (solid black line), and Misthyc simulation results for several values of N T (N T = 3 light blue, N T = 5, dashed blue and N T = 7, red).
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 3 Figure 3.28: Bathymetry and wave probe positions for the Becq-Girard et al. (1999) experiments.

Figure 3 Figure 3

 33 Figure 3.29: Comparison of the measured and simulated variance spectra of the free surface position at probes 2, 5, 7, 9, 11, 13, 15 and 16 for the Becq-Girard et al. (1999) experiments (probe positions, Figure 3.28). The frequency scale is normalized by the peak frequency (f p ) to identify clearly the harmonic peaks (e.g. 2f p , 3f p , ...).

Figure 3 .

 3 Figure 3.31: Comparison of simulated and measured sea state parameters along the bathymetric pro le for the Becq-Girard et al. (1999) experiments: (a) signi cant wave height (H m0 ), (b) mean

Figure 3

 3 Figure 3.32: Comparison of simulated and measured sea state parameters along the bathymetric pro le for the Becq-Girard et al. (1999) experiments: (a) skewness (or horizontal asymmetry), (b) vertical asymmetry, and (c) kurtosis.

  Interaction with solid boundaries (i.e. bottom and lateral wall friction when considering laboratory experiments in a wave tank) also cause dissipation due to friction. The rotational motion induced in the oscillatory boundary layers that develop close to solid boundaries dissipates energy. Bottom friction becomes important when the water depth is shallow enough such that waves induce signi cant horizontal motions near the bottom.According toDutykh (2009a), the rate of viscous dissipation is O(ν 3/2 ) in the free-surface boundary layer (for a clean water surface), O(ν) in the uid interior from bulk viscosity, and O(ν 1/2 ) in the bottom boundary layer, where ν is the kinematic viscosity of the uid ([m 2 /s]). The largest energy dissipation mechanism in the absence of wave breaking is bottom friction, when this phenomenon becomes important in intermediate and shallow water conditions.

4. 2

 2 MATHEMATICAL MODELING OF VISCO-POTENTIAL FLOWS 117 last paper showed that the local dissipative terms in the KFSBC and the DFSBC have a stabilizing e ect, whereas the non-local term in the bottom boundary layer creates modes with a positive imaginary part that have a destabilizing e ect.

  Stokes equations. A review of the derivation of asymptotic models taking into account viscosity is presented in Le Meur (2015). He pointed out two di culties in completing a rigorous derivation of the asymptotic model: (i) matching the boundary layer solution and the potential ow solution in the interior of the domain, and (ii) the resolution of Cauchy problem with an initial condition. He then presented the derivation of a Boussinesq model from the Navier-Stokes equations without the irrotationality assumption, with special care dedicated to the treatment of the initial solution for the half derivative. Kakleas and Nicholls (2010) restate the set of equations from Dias et al. (2008) in terms of the free surface quantities (η and φ) to obtain a Zakharov-like set of equations taking into account viscosity in in nite depth. They developed the related Dirichlet-to-Neumann operator up to the second order in nonlinearity to obtain a weakly nonlinear model for small values of viscosity.In this chapter, the dissipative terms to be added to the classical potential ow equations (Eq.(4.3)-Eq.(4.6)) are re-derived to take into account the dissipation due to both bulk viscosity and bottom friction. Then the implementation of the free surface dissipative terms and of the non-local term in the bottom boundary condition is presented. With a linear version of the code, the damping rate is studied for two cases: (1) regular waves propagating over a at bottom with only the bulk viscosity contribution to the dissipation, and (2) standing waves evolving in several relative depths and Reynolds numbers following[START_REF] Antuono | The damping of viscous gravity waves[END_REF]. The nonlinear version of the code augmented with viscous terms derived under the linear assumption is then validated with a comparison to laboratory experiments for the propagation of a solitary wave attenuated by bottom friction in[START_REF] Liu | Experimental and numerical investigation of viscous e ects on solitary wave propagation in a wave tank[END_REF]. Finally the model is used to study the dissipation of regular waves propagating over a step to small-scale experiments performed by[START_REF] Monsalve | Propagation of nonlinear waves passing over submerged step[END_REF].

  20) in Eq.(4.15) gives a KFSBC expressed only as a function of the potential ow problem variables:

  . (2008) obtained these equations for the linear case, and extended them heuristically to the nonlinear case by keeping the same expressions of the additional dissipative terms in the nonlinear DFSBC and KFSBC (by conjecturing that the expression of the dissipative term as a function of η in the KFSBC is still valid when the viscosity is small).

  (4.29), derived in the linear case, are added to the nonlinear Zakharov equations resolved by the 4.3 NUMERICAL IMPLEMENTATION OF THE VISCOUS TERMS 127 code:

  viscosity terms in the linear regime

Figure 4

 4 Figure 4.1: Set-up of the simulations of regular waves of amplitude A = 0.05 m, propagating in a periodic domain equal to one wavelength (L = 2.5 m), in constant water depth h = 0.5 m. The blue line is the initial free surface position and the red arrow indicates the direction of propagation of the wave.
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 42 Figure 4.2: Amplitude decay at the rst node of the domain as a function of time with viscosity ν = 10 -6 m 2 /s, for cases 1-3.

  Figure 4.4. The period estimated from Figure 4.4 for cases 1 and 2 is T = 1.444596 s, which is in good agreement with the theoretical value of T = 1.444635 s. Note the very rapid reduction of the amplitude of the free surface with this high value of viscosity (consequently the extent of the time interval in the horizontal axis of this gure was reduced compared to Figures 4.2 and 4.3).
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 43 Figure 4.3: Amplitude decay at the rst node of the domain as a function of time with viscosity ν = 10 -3 m 2 /s, for cases 1-3.

Figure 4

 4 Figure 4.4: Amplitude decay at the rst node of the domain as a function of time with viscosity ν = 0.2263 m 2 /s, for cases 1-3. (Note that the time interval in this gure is shorter than the simulated duration, contrary to Figures 4.2 and 4.3).

  is well reproduced by the model. Nevertheless, this theory is only valid for high Reynolds numbers. In the case of nite depth, additional energy losses may exist due to bottom friction, which are not taken into account with Lamb's damping coe cient. As an extension of Lamb's theory, Antuono and Colagrossi (2013) (AC2013 hereafter) considered waves propagating in nite depth in a viscous uid for a wide range of Reynold numbers (as low as Re = 50), and they derived an approximate formula for the damping rate using a solution of the linearized Navier-Stokes equations.

Figure 4

 4 Figure 4.5: Set-up of the simulations of standing waves of amplitude a, oscillating in a periodic domain equal to one wavelength (L), in constant water depth h. Blue solid and dashed lines indicate the extreme positions of the free surface.

  . Small wavelength oscillations in the free surface elevation appear and grow during the simulation. Looking at the time evolution of the amplitude spectra as a function of k (not shown here), the increase of energy for high values of k is clearly visible. In simulation 4, for which time instabilities develop, a series of tests of the numerical parameters (∆t, ∆x and N T ) were completed for the simulation with bottom friction (see Figure4.6). The default parameters are ∆t = T /1000 = 0.00222 s, ∆x = L/100 = 0.06 m and N T = 7 (dark blue line). With these numerical parameters, the kinetic energy diverges from the approximated solution proposed by AC2013 around t * ≈ 28. Decreasing the time step by a factor of 100 (dashed red line) does not delay the divergence. A ner spatial resolution (light blue line) leads to an earlier divergence around t * = 24, and the increase of the vertical resolution to N T = 12 (purple line) also leads to an even earlier divergence at t * = 12. The simulations were stabilized by applying a low-pass lter on the variable ∂ 2 Φ/∂z 2 (z = -h) which is integrated in time in the bottom friction condition (Eq.(4.46)). At each time step, the Fast Fourier Transform of ∂ 2 Φ/∂z 2 (z = -h) is computed and only the rst 10 modes are kept. With ltering (orange line), the evolution of the kinetic energy

Figure 4 . 6 :

 46 Figure 4.6: Evolution of the normalized kinetic energy of the system as a function of nondimensional time for kh = π/3 and Re = 500 (ν = 0.06264 m 2 /s), for di erent values of ∆x, ∆t and N T (see legend).

  Figures 4.7 to 4.9. For this set of simulations, the results of the simulation with and without bottom friction are superimposed, since in in nite depth the e ects of bottom friction are negligible.Lamb's solution overestimates the energy dissipation in comparison with the solution proposed by AC2013, especially for small Reynolds numbers (high viscosity). The leading order term of the damping rate obtained by AC2013 coincides with Lamb's damping coe cient, and the negative higher order terms in AC2013 thus explains the overestimation of Lamb's solution. The simulation results follow Lamb's solution since the bulk viscous terms have been derived using the same assumptions by considering small viscosity values to neglect terms of order o(ν). For the smallest value of viscosity (ν = 0.001253 m 2 /s), the di erence between the two solutions is hardly visible, but, according to AC2013, for long propagation times, these di erences could become important.

Figure 4

 4 Figure 4.7: Evolution of the normalized kinetic energy of the system as a function of nondimensional time for kh = π and Re = 50 (ν = 0.06264 m 2 /s).

Figure 4 . 8 :

 48 Figure 4.8: Evolution of the normalized kinetic energy of the system as a function of nondimensional time for kh = π and Re = 500 (ν = 0.006264 m 2 /s).

Figure 4 . 9 :

 49 Figure 4.9: Evolution of the normalized kinetic energy of the system as a function of nondimensional time for kh = π and Re = 2500 (ν = 0.001253 m 2 /s).

Figure 4 .

 4 Figure 4.10: Evolution of the normalized kinetic energy of the system as a function of nondimensional time for kh = π/3 and Re = 500 (ν = 0.06264 m 2 /s).

Figure 4 .

 4 Figure 4.12: Bathymetry, initial free surface elevation, and positions of wave gauges (black triangles) in the Liu et al. (2006) experiments.
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 4 Figure 4.13: Decrease of the amplitude of the soliton along the wave ume, for a) = 0.091 and b) = 0.409, comparing the experimental data (red dots), and numerical results without viscosity (light blue), with ν = 10 -6 m 2 /s bottom pure slip condition (green), with ν = 10 -6 m 2 /s no-slip bottom condition (blue), and with ν = 7.10 -6 m 2 /s no-slip bottom condition (black) .

Figure 4 .

 4 Figure 4.14: Evolution of the amplitude of the soliton in the shoaling zone, for a) = 0.091 and b) = 0.409, comparing the experimental data (red dots), and the numerical results with ν = 7.10 -6 m 2 /s (black).

  Figure 4.16). The numerical domain is the same as that of the experiments (x ∈ [-0.38 m; 0.85 m]), with the addition of a L gen -long relaxation zone for wave generation and a L abs -long relaxation zone for wave absorption (Figure 4.16). Waves are generated with a Dirichlet boundary condition for the potential computed using linear theory.

Figure 4 .

 4 Figure 4.15: Experimental set-up. ESPCI credit.

Figure 4 .

 4 Figure 4.16: Bathymetry used in the numerical simulations, showing a zoom of the hyperbolic tangent form of the step transition in the bottom elevation.
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 4 Figure 4.17: Simulated space-time pro le of the free surface elevation (in mm) for f 1 = 1.9837 Hz. The position of the step is indicated by the vertical white dashed line. The slope of the crest and trough lines show the wave celerity.

Figure 4 .

 4 Figure 4.18: Simulated (solid line) and measured (dashed line) spatial evolution of the rst ve harmonic amplitudes for f 1 = 1.9837 Hz without including viscosity or surface tension in the simulations. The dashed line is the transversal mean of the measurements and the shaded zone is the standard deviation.
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 4 Figure 4.19: Simulated (solid line) and measured (dashed line) spatial evolution of the rst ve harmonic amplitudes for f 1 = 1.9837 Hz with bulk viscosity ν = 4.10 -5 m 2 /s, but without the e ects of surface tension. For comparison, the results from the simulation without the e ects of viscosity or surface tension are shown by the gray lines.
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 4 Figure 4.20: Simulated (solid line) and measured (dashed line) spatial evolution of the rst ve harmonic amplitudes for f 1 = 1.9837 Hz without the e ects of viscosity but with surface tension σ = 0.071 N/m. For comparison, the results from the simulation without the e ects of viscosity or surface tension are shown by the gray lines.
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 4 Figure 4.21: Simulated (solid line) and measured (dashed line) spatial evolution of the rst ve harmonic amplitudes for f 1 = 1.9837 Hz with viscosity ν = 4.10 -5 m 2 /s and surface tension σ = 0.071 N/m.

Figure 4 .

 4 Figure 4.22: Simulated space-time pro le of the free surface elevation (in mm) for f 1 = 1.9837 Hz, with viscosity ν = 4.10 -5 m 2 /s and surface tension σ = 0.071 N/m. The position of the step is indicated by the vertical white dashed line.

Figure 4

 4 Figure 4.23: Experimental space-time pro le of the free surface elevation (in mm) for f 1 = 1.9837 Hz. The position of the step is indicated by the vertical white dashed line.

Figure 4 .

 4 Figure 4.24: Simulated (solid line) and measured (dashed line) spatial evolution of the rst ve harmonic amplitudes for f 1 = 3.8 Hz with viscosity ν = 4.10 -5 m 2 /s and surface tension σ = 0.071 N/m. The dashed line is the transversal mean of the measurements and the shaded zone is the standard deviation.

  5.1.1 General context5.1.1.1 RBF to interpolate scattered data elds RBF were rst introduced by[START_REF] Hardy | Multiquadric equation of topography and other irregular surfaces[END_REF] for interpolation purposes. He wanted to construct a continuous surface representative of the topography of a given zone, from a set of scattered elevation measurements. After trying to use Fourier and polynomial series methods that he found unsatisfactory, Hardy nally obtained good results using a basis composed of radially symmetric functions φ(||xx k ||), with one centered at each data point x k (where the norm is the standard Euclidean distance function). Thus the interpolant s(x) knowing the data values f k at N nodes x k , k = 1, 2, ..., N can be written as:

  used the multiquadric (M Q) radial function φ(r) = √ r 2 + C 2 with C a strictly positive shape parameter to have a continuously di erentiable basis function (even when r = 0). C controls the sharpness of the RBFs: large values of C give rise to at basis functions, whereas intermediate values lead to bowl-like basis functions, and small values to narrow cone-like basis functions. Franke (1982) led a study on scattered data interpolation, testing 29 interpolation 5.1 PRESENTATION OF THE RBF METHOD 157 methods for 6 di erent test functions, and the M Q function was among the most accurate, to-

Finally

  , another possibility to reduce the one-sided nature of the stencil for nodes on the boundary, is to add a layer of nodes just outside the boundary. No equations are enforced at their location, which is why they are usually called ghost nodes, but they become part of the stencil of boundary and near boundary interior nodes. These additional nodes allow enforcing, in addition to the boundary condition, the PDE at the boundary nodes. The function values at the ghost nodes are found by enforcing either a non-Dirichlet condition or the PDE at the boundary nodes.

  Figure 5.1: De nition of a stencil with N sten = 9 nodes. The node in red (x 1 ) is the center of the stencil and the blue dots are its supporting nodes. Black dots are non-supporting nodes.

  5.14)where L = 0.5 m is the characteristic length of variation (or wavelength), A is the wave amplitude such that A/L = 0.05 and θ = 20°is the direction of wave propagation with respect to the x axis (Figure5.2). The domain of interest is de ned by 0 ≤ x ≤ 1 m and 0 ≤ y ≤ 1 m.

Figure 5 . 2 :

 52 Figure 5.2: Test function f (x, y) = A cos 2π L (x cos θ + y sin θ) with L = 0.5 m, A/L = 0.05, and θ = 20°.

  Figure 5.6. The error increases when close to the boundary due to the growing asymmetry of the stencil. Moreover, despite the smaller number of boundary nodes in comparison with interior nodes, the global error is dominated by boundary errors, therefore presenting the same evolution trend with C.

  Figure 5.5: Examples of the local errors for the rst and second-order derivatives (Figure 5.3) estimated with the M Q RBF, a stencil of 21 nodes, a shape parameter C = 0.1 and an added polynomial of degree 0.

Figure 5

 5 Figure 5.6: Averaged error for f x as a function of the shape parameter C with the M Q RBF (added polynomial of degree 0 and N sten = 21), for the four node sets de ned in the text.

  5.3.4 RBFs depending on a shape parameter C 5.3.4.1 Accuracy as a function of the shape parameter C The in nitely smooth RBFs all depend on a shape parameter C controlling the atness of the function: the functions atten when C is increased (Figure 5.7).

Figure 5 . 7 :

 57 Figure 5.7: The four in nitely smooth RBFs that are studied M Q, GA, IM Q and IQ as a function of the radius r = ||x-x i || with x i the center of the RBF, for three values of the shape parameter (C = 0.5, 1 and 2).

  5.3 TESTS ON THE ESTIMATION OF DERIVATIVES WITH THE RBF-FD METHOD. 175as a function of C, with ill-conditioning appearing for slightly smaller values of C for GA and M Q than for IM Q and IQ. Therefore, examples of the results using one RBF will be shown in the following section for clarity.

Figure 5 . 8 :

 58 Figure 5.8: Global error for the estimate of f x , for the four RBFs (see legend) as a function of the shape parameter C (with N sten = 21 and added polynomial of degree 0).

Figure 5 . 9 :

 59 Figure 5.9: Global error for the estimate of the rst and second-order derivatives in x and y, for the IM Q RBF as a function of the shape parameter C (with N sten = 21 and an added polynomial of degree 1.

Figure 5 .

 5 Figure 5.10: Error for the estimate of f x with the M Q as a function of the shape parameter C (with N sten = 13 and added polynomial of degree 0) for the three di erent sets of nodes de ned in Section 5.3.3.

Figure 5 .

 5 Figure 5.13: Error for the estimate of f x , for the M Q as a function of the shape parameter C

Figure 5 .

 5 Figure 5.14: Error for the estimate of f x , for the IMQ as a function of the shape parameter C (with N sten = 21) for added polynomials of degree 0 to 2: (left panel) all nodes, (central panel) boundary nodes (boundary nodes 1 and boundary nodes 2), (right panel) interior nodes.

  5.3 TESTS ON THE ESTIMATION OF DERIVATIVES WITH THE RBF-FD METHOD. 181at the boundary may increase the risk of ill-conditioned matrix for boundary nodes, which is the opposite of the main objective of improving the estimation at the boundaries. Another side-e ect is that C opt varies with the re ning or coarsening of the node set.

Figure 5 .

 5 Figure 5.15: E ect of the normalization of the stencil on the error for the estimate of f x , for the M Q as a function of the shape parameter C (with added polynomial of degree 0 and N sten = 21):

Figure 5 .

 5 Figure 5.16: The three piecewise smooth RBFs studied, as a function of the radius r = ||x-x i || with x i the center of the RBF.

Figure 5 .

 5 Figure 5.18: Convergence of the error for the estimate of f x as a function of the spatial resolution ∆x. Comparison of the IM Q with C = 0.4 and the three piecewise smooth functions (for N sten = 21).

  Figure 5.19: Error for the estimate of f x , f y , f xx and f yy , for r 5 and r 7 P HS as a function of the stencil size N sten and the degree of the added polynomial (shown in the legend).

  2DH version of the model using RBFs in the horizontal planeCe chapitre est consacré à la validation de la version 2DH du modèle, utilisant la méthode RBF-FD pour estimer les dérivées horizontales, à travers l'applica-tion à trois cas tests. Le premier cas est un cas invariant en y, d'une vague régulière se propageant dans la direction x. Les résultats sont comparés aux résultats obtenus avec la version 1DH du modèle. Un grand nombre de tests est réalisé sur le type de RBF, la valeur du paramètre de forme et la taille du stencil, con rmant les bonnes performances de la P HS r 7 +p3.Le modèle est ensuite utilisé pour simuler deux expériences de propagation de vagues régulières au-dessus de bathymétries di érentes : une marche semi-circulaire d'après les expériences de[START_REF] Whalin | The limit of applicability of linear wave refraction theory in a convergence zone[END_REF] et une bosse elliptique submergée d'après les expériences de Vincent and Briggs (1989). Ces deux cas tests montrent que le modèle est capable de reproduire précisément des champs de vague 2D avec des structures complexes ainsi que les e ets non-linéaires associés. Ce chapitre se termine sur quelques considérations concernant l'optimisation du code, dont le temps de calcul a largement augmenté avec l'extension en 2DH. Les tests de parallélisation du solveur linéaire MUMPS permettent, dans le cas considéré, une diminution du temps de calcul d'un facteur 3.5 quand le calcul est lancé avec 15 processus MPI. Ce facteur d'accélération, possiblement dépendant du problème testé, reste assez faible. D'autres méthodes comme le recours à des solveurs itératifs ou la décomposition de domaine seront à considérer pour augmenter l'e cacité du code. This chapter is devoted to the validation of the 2DH version of the model using RBFs with a series of three test cases, followed a discussion of the optimization of the code to reduce computational time that has been considerably increased with the extension of the model to two horizontal dimensions. The 2DH version of the model is rst validated by a comparison to the simulation results obtained with the 1DH version of the model for the case of a regular wave propagating in constant depth in the x direction (invariant in y). The simulation results are then compared to measurements from two laboratory experiments studying the convergence of regular waves propagating over two di erent bathymetric pro les: a semi-circular step based on the ume experiments of Whalin

Figure 6

 6 Figure 6.1: Three dimensional view of the free surface elevation at the end of the simulation obtained with PHS r 7 + p3 and N sten = 21.

Figure 6

 6 Figure 6.3: (a) Averaged error of the free surface position (Eq.(6.1)) at the end of each simulation, and (b) averaged condition number of the collocation matrix for the M Q RBF in (N sten ,C)-space.

Figure 6

 6 Figure 6.4: (a) (a) Averaged error of the free surface position (Eq.(6.1)) at the end of each simulation, and (b) averaged condition number of the collocation matrix for the GA RBF in (N sten ,C)space. The crosses indicate simulations that were not stable for the entire 12T .

  .0 ≤ x ≤ 10.67 -G(y) 0.4572 + 1 25 (10.67 -G(y)x), 10.67 -G(y) < x < 18.29 -G(y) 0.1524, 18.29 -G(y) ≤ x ≤ 35 (6.2)with G(y) = y(6.096y). A 2D view of the bathymetry is shown in Figure6.6.

Figure 6 . 6 :

 66 Figure 6.6: Analytical bathymetry (Eq.(6.2)) of the experiments of Whalin (1971).

Figure 6

 6 Figure 6.7: Three-dimensional view of the free surface elevation at the end of the simulation (t = 18T ), obtained with P HS r 7 + p3 and N sten = 21.

Figure 6

 6 Figure 6.8: Free surface elevation pro le along the centerline of the tank at the end of the simulation (black line) and maximum and minimum free surface elevation (wave envelope) during the simulation (gray lines). The light gray shaded areas (x < 0 m and x > 25 m) indicate relaxation zones for wave generation and absorption.

Figure 6

 6 Figure 6.9: Observed (circles) and simulated (solid lines) spatial evolution of the amplitude of rst three harmonics (at frequencies f , 2f and 3f ) of the free surface elevation for T = 2 s, A = 0.0075 m of the experiments of Whalin (1971) obtained with P HS RBF r 7 + p3 with N sten = 21.

Figure 6 .

 6 Figure 6.10: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes of rst three harmonics (at frequencies f , 2f and 3f , as shown in Figure 6.9) of the free surface elevation for the case T = 2 s, A = 0.0075 m of Whalin (1971): sensitivity of the results to the type of node sets and the choice of RBF.

Figure 6 .

 6 Figure 6.11: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes of rst three harmonics (at frequencies f , 2f and 3f , as shown in Figure 6.9) of the free surface elevation for the case T = 2 s, A = 0.0075 m of Whalin (1971): sensitivity of the results to the node spacing, for three resolutions.

  around the shoal is constant h(x, y) = 0.4572 m (i.e. for S(x, y) > 1), and the water depth over the shoal is given by the expression: h(x, y) = 0.9144 -0.7620 1 -xdepth over the center of the shoal is h min = 0.1524 m. In the experiments, waves are generated by a directional wave generator. The free surface elevation was measured using an array of nine parallel resistive probes placed along nine di erent transects (5 parallel and 4 perpendicular to the wave maker). In the following, two transects will be studied (Figure 6.13): the transversal transect 4 (x = 12.2 m) and the longitudinal transect at the centerline of the tank, consisting of transects 7 and 9 (y = 13.72 m).To limit the computational time, the simulated domain is smaller than the experimental wave basin. The numerical domain extends from -2.3 m≤ x ≤ 20.5 m and 3.7 m≤ x ≤ 23.7 m.Two relaxation zones are added (hatched zones in Figure6.13): the rst is one wavelength long at the left side of the domain for wave generation, and the second is two wavelengths long at the right side of the domain for wave absorption. Impermeable conditions are applied at the lateral boundaries. The domain is discretized by regularly spaced nodes with a resolution of ∆x = ∆y = 0.075 m, for a total of 81,435 nodes. Waves were generated with an amplitude of A = 0.02325 m, using linear wave theory. This value is smaller than the one prescribed to the wavemaker in the experiments, but an adjustment of the incident wave amplitude was necessary to obtain comparable average wave height (H = 0.0445 m) at a reference probe located in an unperturbed zone of the domain, upstream of the shoal (x = 3.05 m, y = 21.34 m).

Figure 6 .

 6 Figure 6.13: Numerical domain and bathymetry of the experiments of Vincent and Briggs (1989). Horizontal and vertical white lines indicate the transects where the comparisons between the simulation results and the experimental measurements are completed. Hatched zones indicate the wave generation (left side) and absorption (right side) zones.

Figure 6 .

 6 Figure 6.14: Contour plot of the free surface elevation at the end of the simulation (t ≈ 78T ) for case M 1 of[START_REF] Vincent | Refraction-Di raction of Irregular Wave over a Mound[END_REF]. The dotted line indicates the limit of the elliptical shoal.

Figure 6 .

 6 Figure 6.15: Average wave height along transect 4, for case M1 of Vincent and Briggs (1989). The blue shaded zone around the simulation results shows the standard deviation due to re ections.

Figure 6 .

 6 Figure 6.16: Average wave height along transects 7 and 9, for case M1 of Vincent and Briggs

Figure 6 .

 6 Figure 6.18: Average wave height along transect 4 (top) and transects 7 and 9 (bottom), for case M1 of Vincent and Briggs (1989). Comparison of 3 combinations of P HS RBFs and N sten (see legend).

  non-linéaires et dispersifs intervenant lors de la propagation des vagues au-dessus de bathymétries variables a été développé et amélioré. La version 1DH du modèle a été validée à travers l'application à de nombreux cas tests, démontrant ses capacités dispersives pour une large gamme de profondeurs relatives. A n d'élargir le champ d'application du modèle, n'incluant pas de terme de di usion par hypothèse, une formulation visco-potentielle a été étudiée, permettant de prendre en compte les e ets dissipatifs dus à la friction interne et à la friction sur le fond, dans la limite de faible viscosité et faible pente du fond. L'extension du modèle en 2DH avec une approche sans maillage, basée sur la méthode RBF-FD, a été choisie. Les tests de sensibilité aux di érents paramètres de la méthode ont abouti à la recommandation de l'utilisation de la RBF P HS r 7 + p3 avec une taille de stencil entre 20 et 30 noeuds pour des applications générales. La comparaison à des résultats expérimentaux pour des cas à bathymétrie variable a montré que cette méthode était applicable pour la propagation de vagues en 2DH. Cependant, plusieurs aspects du modèle peuvent encore être améliorés, notamment l'ajout de conditions aux limites pour permettre la modélisation de cas plus réalistes avec la génération de vagues non-linéaires et la modélisation du run-up. Quant aux processus physiques représentés, la stabilité du terme du frottement sur le fond pourrait être étudiée plus en profondeur et l'inclusion de la dissipation d'énergie induit par le déferlement bathymétrique serait un plus. Concernant les aspects numériques, la robustesse de la méthode RBF-FD reste à améliorer, notamment pour limiter le développement d'instabilités au niveau des bords du domaine du fait des stencils décentrés. En n, le passage à la version 2DH du modèle a entraîné une large augmentation du temps de calcul du fait de la dépendance du temps de résolution du problème de Laplace au nombre de noeuds de discrétisation. Des techniques d'optimisation telles que la décomposition de domaines ou l'utilisation de solveurs itératifs pourraient être testées a n de rendre le code plus performant.

  Robustness of the RBF-FD method: The RBF-FD method used to estimate derivatives in the 2DH version of the model when solving the Boundary Value Problem or in the Zakharov equations, is sensitive to the choice of the RBF, the value of the shape parameter C, and the size of the stencil N sten . Finding an appropriate set of parameters for a given application can be a challenge. The main source of instabilities is the lack of accuracy in the estimation of derivatives at and close to the boundaries because of non-centered stencils at these locations. Some techniques N T α p for p = 1 to N T -2 β p for p = 1 to N T -Dispersion relation coe cients for N T ranging from 2 to 9 N T α p for p = 1 to N T -2 β p for p = 1 to N T -Dispersion relation coe cients for N T ranging from 10 to 12 220 APPENDIX : DISPERSION RELATION FOR MISTHYC N T α p for p = 1 to N T -2 β p for p = 1 to N T -Dispersion relation coe cients for N T = ranging from 13 to 15

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 1: Dispersion relation coe cients for N T = 7

  CHAPTER 3: VALIDATION OF THE 1DH VERSION OF THE MODELThis chapter is devoted to the validation of the 1DH version of the model, with a series of six test cases.

	et la prop-
	agation de vagues irrégulières au-dessus d'une plage présentant un haut-fond (Becq-
	Girard et al., 1999). L'ensemble de ces cas tests permet de montrer que le modèle est

capable de représenter précisément les e ets non-linéaires et dispersifs de génération et pro-pagation d'harmoniques d'ordres supérieurs ainsi que les transferts d'énergie entre ces di érentes composantes.

Table 3

 3 

		28 43.27 0.87 0.47 1/3 0.25
	2	2.78	12	3.14 1.23 1/3 0.25
	3	6.28 43.27 0.87 0.25 0.1 0.5
	4	2.78	12	3.14 0.59 0.1 0.5

.1: Physical parameters for the four simulations of regular waves propagating over a Roseau-type bottom pro le.

  Solitary waves, which are composed of a single hump of water, are a particular solution of a set of mathematical models. They propagate with constant shape and celerity as a result of balance between the e ects of dispersion and nonlinearity. The expression and form of a solitary wave is closely related to the selected mathematical model, and di erent mathematical systems such as the Korteweg-De Vries (KdV) equations, various formulations of Boussinesq, Serre, or Green-Naghdi equations, etc. exhibit di erent solitary wave pro les.

	3.2 SOLITARY WAVE PROPAGATION OVER A FLAT BOTTOM	71
	3.2 Solitary wave propagation over a at bottom
	3.2.1 Objectives					
	The goal of this test case is to propagate a solitary wave over a at bottom over a long distance
	with minimum distortion or phase di erence.			
		Analytical results	Misthyc	A&B1999
	case	R	T	R	T	R	T
	1	0.02282	1.185 0.02273 1.184 0.02262 1.185
	2	0.000051 0.9221	X	0.9222 0.00011 0.9222
	3	0.3413	1.452	0.3414	1.457	0.3497	1.482
	4	0.09428	1.029 0.09453 1.033 0.09415 1.030
	Table 3.2: Analytical and simulated (with Misthyc and with the coupled-mode model of Athanas-

soulis and

[START_REF] Athanassoulis | A consistent coupled-model theory for the propagation of small-amplitude water waves over variable bathymetry regions[END_REF]

) re ection and transmission coe cients for the four cases of regular wave propagating over Roseau bathymetry pro le. The re ection coe cient for case 2 was too small to be determined accurately from the wave height pro le obtained with Misthyc.

Table 3 .

 3 Convergence as a function of the time step ∆tFor these simulations, the horizontal and vertical resolution are held constant, with M x = 10 and N T = 7. M t is varied from 12 to 4, giving a time step varying in the range ∆t ≈ 0.0266 -0.0798 s, corresponding to a CFL number ranging from 0.8333 to 2.5 (Table3.3).

	PROPAGATION OVER A FLAT BOTTOM	75
	3.2.4.1 M t	∆ t	∆t(s)	CFL
	12 1/12 ≈ 0.0833 ≈ 0.0266 5/6 ≈ 0.833 10 1/10 = 0.1 1 ≈ 0.0319 8 1/8 = 0.125 1.25 ≈ 0.0399 7 1/7 ≈ 0.143 ≈ 0.0456 ≈ 1.429 6 1/6 ≈ 0.167 ≈ 0.0532 ≈ 1.667 5 1/5 = 0.2 2 ≈ 0.0639 4 1/4 = 0.25 ≈ 0.0798 2.5

Table 4

 4 can be compared to assess the e ects of viscosity in deep water (kh = π), which are expected to be small since bulk viscosity is the only source of dissipation. Large values of the viscosity (up to ν = 0.06264 m 2 /s) are tested for this analysis to emphasize the viscous e ects. Simulations 2, 4 and 5, can be compared to assess the impacts of the relative water depth. The dissipation is expected to increase as the relative water depth decreases, and the bottom friction term become predominant. The results are plotted in Figures 4.6-4.11 as a function of the nondimensional time t * = t g/h.

	Simulation	kh	L(m) Re ν (m 2 /s)
	1	π	2	50	0.06264
	2	π	2	500 0.006264
	3	π	2	2500 0.001253
	4	π/3	6	500	0.06264
	5	π/12	24	500	0.06264

.1) were tested. For each combination, two linear simulations were completed by activating, (1) only the bulk viscosity, (2) the bulk viscosity and bottom friction terms. The second series of simulations allows evaluating when bottom friction is negligible. Simulations 1, 2 and 3

Table 4

 4 

.1: Nondimensional and physical parameters for the ve simulations.

Table 6 .
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	6.2 REGULAR WAVES PROPAGATING OVER A SEMI-CIRCULAR STEP	197
	Simulations node set ∆x(m) RBF type	C	N sten ∆t (s)
	reg M Q 1	regular	0.060	M Q	2	13	0.0267
	reg M Q 2	regular	0.060	M Q	1	13	0.0267
	reg P HS 1	regular	0.060	r 7 + p3	-	21	0.0267
	reg P HS 2 regular	0.040	r 7 + p3	-	21	0.0178
	reg P HS 3	regular	0.075	r 7 + p3	-	21	0.0333
	M Q M Q irreg P HS 1 irregular ≈ 0.060 r 7 + p3 irreg M Q 1 irregular ≈ 0.060 irreg M Q 2 irregular ≈ 0.060 irreg P HS 2 irregular ≈ 0.060 r 5 + p2	1 0.75 --	13 13 21 18	0.0267 0.0267 0.0267 0.0267

1: Numerical parameters for the nine simulations compared for the case with T = 2 s, A = 0.0075 m of Whalin

sation plus ne. De ce fait, leur utilisation est limitée à de plus petits domaines. Ce travail porte sur cette deuxième catégorie de modèles, avec pour objectif de développer un modèle déterministe capable de simuler la propagation de champs de vagues irréguliers et multidirectionnels sur des bathymétries variables, du large jusqu'à la côte, avec une représentation précise des e ets non-linéaires et dispersifs. Pour cela, le choix d'un modèle potentiel basé sur les équations d'Euler irrotationnelles a été retenu comme compromis entre des modèles ne prenant en compte que partiellement ces e ets (équations de Saint-Venant, Berkho , Boussinesq) et les modèles très coûteux en temps (fondés sur les équations de Navier-Stokes). De plus, une approche spectrale sur la verticale est adoptée pour sa précision et sa exibilité. Le chapitre 1 décrit le modèle mathématique utilisé alors que le chapitre 2 présente la mise en oeuvre numérique de la version 1DH en insistant particulièrement sur les conditions de génération et d'absorption des vagues. Les capacités non-linéaires et dispersives de la version 1DH du modèle sont démontrées à travers l'application à six cas tests dans le chapitre 3. Le chapitre 4 traite de la prise en compte des e ets visqueux de dissipation interne et de frottement sur le fond par une formulation visco-potentielle. Les chapitres 5 et 6 sont dédiés à l'extension du modèle en 2DH avec une étude de la méthode RBF-FD et la validation par comparaison à des données expérimentales en bassin à vagues.

CHAPTER 3: VALIDATION OF THE 1DH VERSION OF THE MODEL Evolution of global errors as a function of the time step. To summarize the convergence properties as a function of the time step, the four global errors are calculated for each simulation.

All four measures (relative volume, energy, phase, and amplitude) of simulation errors increase both with increasing time step size and with increasing relative wave height (Figure 3.9), with algebraic convergence rate. The slopes of the linear regression curves are similar for each test case, ranging from 4 to 5 for δ = 0.3 and δ = 0.5, and 3.3-4.1 for δ = 0.7, the most nonlinear test case. These values are in agreement with the fourth-order Runge-Kutta temporal integration scheme used in the model, demonstrating the fourth-order, algebraic temporal convergence of the model. and the smallest for f y = ∂f ∂y .

Figure 5.3: Analytical rst and second-order derivatives of the test function f (x, y).

Although the literature review showed that the accuracy of the method, and especially the value of the optimal shape parameter C, may vary with the function considered, the tests have been completed primarily for a sinusoidal function. The RBF-FD method is aimed to be used to estimate the derivatives of any variable occurring in the model (i.e. free surface elevation, velocity potential, bottom pro le and a n coe cients), which may have spatial variations quite di erent from sinusoidal variations. Therefore, some limited tests have also been carried out using a at function, since in some test cases, the bottom bathymetry presents large at areas. The results of the present tests may not be directly extended to all functions, they enable evaluating the advantages and disadvantages of the RBF-FD method.

TESTS ON THE ESTIMATION OF DERIVATIVES WITH THE RBF-FD METHOD. 171

Presentation of the tests

RBF methods rely on several parameters: the choice of RBF, the shape parameter, the degree of the added polynomial, and the size of the stencil. From the series of tests carried out to study the sensitivity of the accuracy to these parameters, one initial question is "Which RBF to choose?", and the values for the other parameters will result from this rst choice.

In the case of RBFs depending on a shape parameter, the following tests were completed:

• four in nitely smooth RBFs: M Q, IM Q, IQ and GA (see Table 5.1 for the expressions of the functions),

• variation of the shape parameter in the range C ∈ [0, 30],

• added polynomials up to second degree,

• three stencil sizes N sten = 5, 13 and 21, corresponding to the thresholds de ned by Bayona The dependency of the accuracy of the method on the shape parameter as well as the e ects of the stencil size and the node spacing were evaluated. Some methods to prevent the matrix from becoming ill-conditioned for high values of C and to reduce the errors on the boundary were also tested. For RBF not depending on a shape parameter, the following tests were completed:

• three piecewise smooth RBFs: one T P S function φ(r) = r 4 log r to have at least the continuity of the second-order derivatives, and two P HS functions φ(r) = r 5 and φ(r) = r 7 , Figure 6.19: Average wave height along transect 4 (top) and along transect 7-9 (bottom), case M1 [START_REF] Vincent | Refraction-Di raction of Irregular Wave over a Mound[END_REF]. Comparison of 2 spatial resolutions.

6.4 COMPUTATIONAL COST AND OPTIMIZATION 207

Computational cost and optimization

The transition to a 2DH version of the code was accompanied by a signi cant increase of the computational time. This led to an evaluation of the code to identify the most time consuming parts. Two possible techniques were identi ed to improve the numerical e ciency: the reordering of the matrix and the parallelization of the direct solver.

Computational requirements of the code

The code was analyzed with the objective of identifying the parts of the code with the highest computational cost. The analysis was conducted for the test case presented in Section 6.2, for which the domain was discretized with 60,716 irregularly-spaced nodes, and N T = 7. The linear system of the Laplace BVP to be solved thus contains 485,728 unknowns.

In this case, the computational time in sequential mode for one time step is 600 s whereas the pre-processing phase (for the entire code) requires only 3.33% of this amount of time (≈ 20 s).

The pre-processing time increases with the stencil size, but here it remains negligible in comparison with the processing time for each time step. At each time step, the right-hand sides of the Zakharov equations are calculated four times because of the RK4 scheme used to advance the model in time. Each independent resolution of the Laplace BVP requires approximately 150 s, of which the vast majority of the time is the linear system resolution since less than 1 s is dedicated to constructing the matrix. The most time consuming part of the code is thus the resolution of the linear system.

Therefore, the focus is then made on the direct resolution of the linear system for the Laplace BVP with MUMPS [START_REF] Amestoy | Hybrid scheduling for the parallel solution of linear systems[END_REF]. The resolution with MUMPS is divided into three main phases: analysis, factorization and resolution. Permutation, scaling, and pivot ordering options are available (see the MUMPS Users' guide for more details). The default options are used after veri cation that they were the optimal choices. No permutation is completed but simultaneous row and column iterative scaling is computed, and the METIS package is used for the pivot ordering. Finally, it is found that the factorization phase is the most time-consuming phase requiring approximately 95% of resolution time.

Matrix reordering

The cost of direct sparse solvers is increased with the scattering of non-zero entries in the matrix.

The structure of the matrix is directly related to node ordering. If no attention is paid to node ordering, nearby nodes in physical space may be far in index space. Here, the nodes are indexed arbitrarily beginning anti-clockwise with the boundary nodes and then with increasing x and y for the interior nodes. The matrix associated with the Laplace BVP is sparse but has a large bandwidth (Figure 6.20, left).

CHAPTER 6: VALIDATION OF THE 2DH VERSION

During the factorization phase of the resolution with MUMPS, some transformations are applied to make the matrix simpler to solve. Here, the idea is to reorder the nodes with the objective of reducing the analysis and factorization phases with the advantage that node reordering can be done once at the beginning of the simulation as a pre-processing task instead of during the analysis and factorization phases at each time step. With this in mind, a reordering algorithm based on the reverse Cuthill-McKee algorithm was implemented. The original version of the algorithm was slightly modi ed and simpli ed to take into account the speci cities of case considered:

• all nodes in the domain have the same number of neighbors,

• when a node belongs to the stencil of another node, the inverse is not necessarily true.

The reordering algorithm was rst tested for a regular node set of (5x5) nodes using a stencil of N sten = 5. Figure 6.20 shows an e ective reduction of the bandwidth of the matrix associated to the Laplace BVP. The nonzero entries are more concentrated around the diagonal. Nevertheless, when applied to "real" cases such as the test case presented in Section 6.2 the gain in e ciency was not noticeable. It is likely that the implemented reordering scheme was not bene cial in comparison with the MUMPS internal reordering process. One of the advantages of MUMPS is the possibility to de ne the matrix in distributed form, with as many submatrices as the number of MPI processes. The host process then builds the global matrix and solves the system in parallel. Thus, pre-processing tasks such as derivative computations and building of the submatrices can also be handled in parallel after the decomposition of the computational domain into smaller subdomains. Nevertheless, this is not necessarily straightforward and requires sharing data from one subdomain to another (i.e. to compute derivatives).

It was tested for the parallelization of the 1DH version of the model without any signi cant improvement of the in the computational time, likely because the matrix was too small to achieve a real gain with the parallel resolution of the system. The implementation of the 2DH version is more complex and requires more communication between subdomains.

Taking into account that the pre-processing phase and the building of the matrix are not the most computationally expensive tasks in the 2DH version, the choice was made to parallelize only the resolution of the linear system, maintaining the rest of the code in sequential mode.

The parallel resolution is managed automatically. Fewer changes of the code are required with this option. This parallelization was tested for the same case considered in Section 6.4.1 using the Athos cluster. The cluster consists of 776 nodes, each with 64 Go RAM, with two processors (2.7

GHz) made up of 6 cores. This capacity is doubled with hyperthreading, enabling 24 processes to be available on each node. The computational time per time-step is recorded when the number of MPI processes is increased from 1 to 24 for one node of the cluster. The speed-up ratio (Figure 6.21) is de ned as the ratio between the "real" time necessary to compute one time step with the sequential version of the model and the time required with the parallel version of the model run with N proc MPI processes:

where time sequential = 333 s for this case. The speed-up ratio increases with N proc , but at a decreasing rate for larger numbers of processors, eventually reaching a plateau. For this case, the maximum speed-up is obtained for N proc = 15, leading to a reduction of the computational cost by a factor of 3.5. For large values of N proc the speed-up ratio decreases a little (3.2). It can be noticed that the speed-up ratio for N proc = 1 is smaller than one, meaning that is it not appropriate to use the parallel version of the model with only one MPI process. Moreover, the analysis of the speed-up ratio by the parallelization of the solver is made for a rather small 2DH case (485,728 unknowns). The conclusion concerning the optimal number of MPI processes may not be directly applicable to cases with more unknowns. The parallel resolution requires more memory than sequential computation, and larger cases may cause the memory limit for one node

CONCLUSIONS AND PERSPECTIVES

The main objective of the PhD thesis was to pursue the development and validation of a deterministic wave model capable of simulating the propagation of irregular and multidirectional sea-states from the o shore (deep water) to the coast over variable bathymetry, with a highly accurate representation of the nonlinear and dispersive e ects, for bidimensional (2DH) domains on the order of kilometers. The goal was to simulate practical, 2DH applications with complex coastal domains and bottom bathymetry, thus the model was discretized with scattered nodes (unstructured-type grids) to be able to re ne the distribution of nodes at locations of interest, such as zones of signi cant bottom or coastline variability.

The development of a potential ow model based on the Euler-Zakharov equations began prior to this PhD thesis [START_REF] Benoit | A comparison of simulation approaches based on the Zakharov equations for nonlinear waves in the coastal zone[END_REF][START_REF] Yates | Modélisation non-linéaire et dispersive des vagues en zone côtière: étude comparative de deux méthodes de simulation précises[END_REF]. An important component of the numerical model is the resolution of the Laplace boundary value problem (BVP). Following previous work, [START_REF] Yates | Accuracy and e ciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF] concluded that a spectral approach in the vertical [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF] combined with nite di erence schemes in the horizontal direction was the optimal approach for the 1DH version of the model that was then developed further in this thesis.

Summary of the main achievements of the PhD thesis

During this PhD thesis, several aspects of numerical wave modeling were addressed, from numerical aspects to physical processes important in wave propagation, leading to a number of improvements and extensions of the computational model.

One of the critical issues in numerical wave modeling is wave generation and absorption. A comprehensive study was conducted on the implementation of speci c boundary conditions for wave generation, including a comparison between Dirichlet and Neumann boundary conditions.

The selected solution resulted in a combination of classical Dirichlet boundary conditions and the use of relaxation zones. This technique proved to be e cient for both generation and absorption as long as the relaxation zones are properly designed (i.e. length of the zone and shape of the function used to progressively impose the desired solution).

Then, an extensive study of the accuracy of the nonlinear and dispersive capabilities of the model was completed. First, the linear dispersion relation of the model was derived, showing an increase in accuracy with N T . For instance, the relative error in the calculated wave celerity for at bottom conditions (in comparison with Stokes' analytical solution) remains smaller than 2.5% for kh up to 100 using N T ≥ 9. The linear version of the model was validated with comparisons to analytical solutions of the re ection of regular waves over a Roseau-type bathymetric pro le and the generation of waves generated by bottom motions.

The convergence properties of the nonlinear version of the model were studied in detail for moderate to highly nonlinear solitary waves. The order of temporal and spatial (algebraic) con-
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may be tested to reduce the development of instabilities and thus increase the robustness of the model, for example: decreasing the stencil size of boundary nodes (leading to a more di usive approximation at the boundaries), increasing the degree of the augmented polynomial at the boundary, or re ning the mesh when approaching the boundaries.

Another option would be the addition of ghost nodes outside of the domain to reduce the onesidedness of the stencils of boundary nodes. Nevertheless, the implementation of such a method is not trivial. A common method to stabilize the resolution of PDEs without a physical dissipative term (as is the case for the Zakharov equations) is to add a hyper-viscosity operator to the right hand-side of the evolution equation to introduce arti cially a small amount of dissipation that will damp spurious high frequency oscillations. In parallel, alternative options for the resolution of the 2DH problem could also be considered.

Computational e ciency: With a direct solver, the e ciency of the resolution of the Laplace BVP system depend strongly on the number of nodes in the domain, and parallelizing the code with a domain decomposition approach could increase its e ciency (over using simply the parallel version of the linear solver). Other possibilities to reduce the computational cost could be to consider time integration schemes requiring fewer resolutions of the Laplace BVP (i.e. multi-step predictor-corrector schemes) and/or to test iterative solvers, such as GMRES or BiCGSTAB, with suitable preconditioners. Work on these two subjects is currently in progress.

Further validation and applications: Finally, further validation of the 2DH version of the model is required, including cases with complex coastlines and variable bathymetries, islands, coastal structures and a variety of di erent wave conditions. In the near future, the model will be applied to real coastal cases where eld measurements are available or will be collected, in particular within projects related to marine renewable energies (e.g. the ongoing EMACOP French project "Energies MArines COtieres et Portuaires", and the proposed ANR DiMe project "Dimensionnement et Meteocean: modélisation et observations des états de mer extrêmes déferlants pour les EMR").

The model may also be used for modeling the generation of waves due to seismic bottom motion or submarine landslide, in particular for the study of tsunamis. It is currently used for that purpose within the PIA-ANR TANDEM (Tsunamis in the Atlantic and the English chaNnel: Definition of the E ects through numerical Modeling, see http://www-tandem.cea.fr/), where it has proven very accurate to simulate such waves. The test cases "Solitary wave over a at bottom" of Section 3.2 and "Waves generated by impulsive bottom motion" of Section 3.4 have been considered in this project. Within the same project, the linear and nonlinear versions of the model have been used during the PhD of Marine Le Gal to study the generation phase of tsunami [START_REF] Gal | In uence of timescales on the generation of seismic tsunamis[END_REF]. These applications have demonstrated the applicability of the model to tsunami generation and propagation, and this opens another eld of future developments/applications.

Appendix A : Dispersion relation for Misthyc

The dispersion relation of the model depends on the vertical resolution N T . It can be expressed as a rational function of µ according to Eq.(1.74) repeated here for convenience:

.

The values of the coe cients α p and β p for N T from 2 to 9 are presented in Table 2, for N T from 10 to 12 in Table 3 and, for N T from 13 to 15 in Table 4.