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RÉSUMÉ iii

Résumé

Au cours de cette thèse, un modèle potentiel résolvant les équations d’Euler-Zakharov a été

développé dans le but de simuler la propagation de vagues et d’états de mer irréguliers et multi-

directionnels, du large jusqu’à la côte, sur des bathymétries variables. L’objectif est de représenter

les e�ets non-linéaires et dispersifs le plus précisément possible pour des domaines côtiers bidi-

mensionnels (dans le plan horizontal) de l’ordre de quelques kilomètres.

La version 1DH initiale du modèle, résolvant le problème aux limites de Laplace à l’aide de sché-

mas aux di�érences �nies d’ordre élevé dans la direction horizontale combinés à une approche

spectrale sur la verticale, a été améliorée et validée. L’implémentation de conditions aux limites

de type Dirichlet et Neumann pour générer des vagues dans le domaine a été étudiée en détail.

Dans la pratique, une zone de relaxation a été utilisée en complément de ces conditions pour

améliorer la stabilité du modèle.

L’expression analytique de la relation de dispersion a été établie dans le cas d’un fond plat. Son

analyse a montré que la représentation des e�ets dispersifs s’améliorait signi�cativement avec

l’augmentation de la résolution sur la direction verticale (i.e. avec le degré maximal de la base

de polynômes de Tchebyshev utilisée pour projeter le potentiel des vitesses sur la verticale). Une

étude de convergence menée pour des ondes solitaires modérément à fortement non-linéaires a

con�rmé la convergence exponentielle avec la résolution verticale grâce à l’approche spectrale,

ainsi que les convergences algébriques en temps et en espace sur l’horizontale avec des ordres

d’environ 4 (ou plus) en accord avec les schémas numériques utilisés.

La comparaison des résultats du modèle à plusieurs jeux de données expérimentales a démon-

tré les capacités du modèle à représenter les e�ets non-linéaires induits par les variations de

bathymétrie, notamment les transferts d’énergie entre les composantes harmoniques, ainsi que

la représentation précise des propriétés dispersives. Une formulation visco-potentielle a égale-

ment été implémentée a�n de prendre en compte les e�ets visqueux induits par la dissipation

interne et le frottement sur le fond. Cette formulation a été validée dans le cas d’une faible vis-

cosité avec un fond plat ou présentant une faible pente.

Dans le but de représenter des champs de vagues 2DH, le modèle a été étendu en utilisant une

discrétisation non-structurée (par nuage de points) du plan horizontal. Les dérivées horizontales

ont été estimées à l’aide de la méthode RBF-FD (Radial Basis Function-Finite Di�erence), en con-

servant l’approche spectrale sur la verticale. Une étude numérique de sensibilité a été menée

a�n d’évaluer la robustesse de la méthode RBF-FD, en comparant di�érents types de RBFs, avec

ou sans paramètre de forme et l’ajout éventuel d’un polynôme. La version 2DH du modèle a

été utilisée pour simuler deux expériences en bassin, validant ainsi l’approche choisie et démon-
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trant son applicabilité pour simuler la propagation 3D des vagues faisant intervenir des e�ets

non-linéaires. Dans le but de réduire le temps de calcul et de pouvoir appliquer le code à des

simulations sur de grands domaines, le code a été modi�é pour utiliser le solveur linéaire direct

en mode parallèle.

Mots-clé:

vagues, vagues côtières, propagation des vagues, modélisation numérique, fond variable, écoule-

ment potentiel, Fonction de Base Radiales, vagues non-linéaires, modèle visco-potentiel
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Abstract

In this work, a potential �ow model based on the Euler-Zakharov equations was developed with

the objective of simulating the propagation of irregular and multidirectional sea states from deep

water conditions to the coast over variable bathymetry. A highly accurate representation of non-

linear and dispersive e�ects for bidimensional (2DH) nearshore and coastal domains on the order

of kilometers is targeted.

The preexisting 1DH version of the model, resolving the Laplace Boundary Value problem using

a combination of high-order �nite di�erence schemes in the horizontal direction and a spectral

approach in the vertical direction, was improved and validated. The generation of incident waves

through the implementation of speci�c Dirichlet and Neumann boundary conditions was stud-

ied in detail. In practice, these conditions were used in combination with a relaxation zone to

improve the stability of the model.

The linear dispersion relation of the model was derived analytically for the �at bottom case. Its

analysis showed that the accuracy of the representation of dispersive e�ects improves signi�-

cantly by increasing the vertical resolution (i.e. the maximum degree of the Chebyshev poly-

nomial basis used to project the potential in the vertical). A convergence study conducted for

moderate to highly nonlinear solitary waves con�rmed the exponential convergence in the ver-

tical dimension owing to the spectral approach, and the algebraic convergence in time and in

space (horizontal dimension) with orders of about 4 (or higher) in agreement with the numerical

schemes used.

The capability of the model to represent nonlinear e�ects induced by variable bathymetry, such

as the transfer of energy between harmonic components, as well as the accurate representation

of dispersive properties, were demonstrated with comparisons to several experimental data sets.

A visco-potential �ow formulation was also implemented to take into account viscous e�ects in-

duced by bulk viscosity and bottom friction. This formulation was validated in the limit of small

viscosity for mild slope bathymetries.

To represent 2DH wave �elds in complex nearshore domains, the model was extended using an

unstructured discretization (scattered nodes) in the horizontal plane. The horizontal derivatives

were estimated using the RBF-FD (Radial Basis Function - Finite Di�erence) method, while the

spectral approach in the vertical remained unchanged. A series of sensitivity tests were con-

ducted to evaluate numerically the robustness of the RBF-FD method, including a comparison of

a variety of RBFs with or without shape factors and augmented polynomials. The 2DH version

of the model was used to simulate two wave basin experiments, validating the approach and

demonstrating the applicability of this method for 3D wave propagation, including nonlinear
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e�ects. As an initial attempt to improve the computational e�ciency of the model for running

simulations of large spatial domains, the code was adapted to use a parallelized direct linear

solver.

Keywords:

waves, coastal waves, wave propagation, numerical modeling, variable bottom, potential �ow,

Radial Basis Functions, nonlinear waves, visco-potential
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Introduction

La modélisation de la transformation des vagues au cours de leur propagation depuis

leur zone de génération jusqu’à la côte est d’intérêt majeur pour un grand nombre

d’applications d’ingénierie marine et côtière. Selon la zone d’intérêt, les processus

physiques à l’origine de ces transformations sont divers avec des échelles caractéris-

tiques de temps et d’espace variées, qui requièrent des approches de modélisation dif-

férentes. Les modèles dits "spectraux" représentent des quantités moyennes caractéris-

tiques de l’état de mer et sont généralement utilisés pour de grands domaines et par

grande profondeur. Au contraire, les modèles dits "à résolution de phase" donnent

l’évolution de l’élévation de surface libre au cours du temps et nécessitent une discréti-

sation plus �ne. De ce fait, leur utilisation est limitée à de plus petits domaines. Ce

travail porte sur cette deuxième catégorie de modèles, avec pour objectif de développer

un modèle déterministe capable de simuler la propagation de champs de vagues ir-

réguliers et multidirectionnels sur des bathymétries variables, du large jusqu’à la côte,

avec une représentation précise des e�ets non-linéaires et dispersifs. Pour cela, le choix

d’un modèle potentiel basé sur les équations d’Euler irrotationnelles a été retenu comme

compromis entre des modèles ne prenant en compte que partiellement ces e�ets (équa-

tions de Saint-Venant, Berkho�, Boussinesq) et les modèles très coûteux en temps (fondés

sur les équations de Navier-Stokes). De plus, une approche spectrale sur la verticale est

adoptée pour sa précision et sa �exibilité. Le chapitre 1 décrit le modèle mathématique

utilisé alors que le chapitre 2 présente la mise en œuvre numérique de la version 1DH en

insistant particulièrement sur les conditions de génération et d’absorption des vagues.

Les capacités non-linéaires et dispersives de la version 1DH du modèle sont démontrées

à travers l’application à six cas tests dans le chapitre 3. Le chapitre 4 traite de la prise

en compte des e�ets visqueux de dissipation interne et de frottement sur le fond par une

formulation visco-potentielle. Les chapitres 5 et 6 sont dédiés à l’extension du modèle

en 2DH avec une étude de la méthode RBF-FD et la validation par comparaison à des

données expérimentales en bassin à vagues.
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Context and objectives of the PhD thesis

Waves generated by the wind at the surface of seas and oceans can propagate over several thou-

sand kilometers from their generation zone to the coast. To be able to simulate wave propagation

and transformation is of major interest for a wide variety of applications in marine and coastal

environments. For example, coastal and marine engineers seek accurate descriptions of wave

conditions for the construction of o�shore facilities, the study of sediment transport to evaluate

coastal erosion risks, the design of protective coastal structures to prevent overtopping and to

reduce �ooding risks, the study of wave agitation in harbors, or the estimation of the potential

for marine renewable energy devices.

All of these applications require accurately modeling nearshore waves. Depending on the do-

main of interest, from the o�shore, deep water wave conditions to the surf zone, a variety of

di�erent physical processes control wave transformation. In the deep ocean, interactions with

the atmosphere are predominant, including wave generation from wind and wave energy dis-

sipation by white-capping. Quadruplet wave interactions (between four wave components) are

an important cause of deep-water wave spectrum transformation, usually leading to a frequency

downshift in the wave spectrum and an increase in the wave period.

When approaching the shore, bottom interactions become non-negligible causing shoaling, re-

fraction, and energy dissipation from bottom friction and depth-induced wave breaking. As

waves propagate over variable bathymetric pro�les, triplet wave interactions (between three

wave components) become important in intermediate and shallow water, causing a decrease in

the mean wave period. Currents may also interact with waves causing refraction or even wave

blocking for speci�c conditions. In the vicinity of the coastline or marine structures, such as

o�shore platforms, dykes or breakwaters, run-up, swash, overtopping, di�raction and re�ection

from obstacles must also be considered.

These physical processes have di�erent characteristic temporal and spatial scales, requiring dif-

ferent modeling approaches, which can be divided into two categories: phase-averaged (or spec-

tral) models and phase-resolved (or deterministic) models.

1. Phase-averaged (or spectral) models are based on a spectro-angular representation of

the sea state and its evolution following the conservation of wave action. These models

simulate the evolution of the wave action or energy spectrum, from which several averaged

quantities characterizing the wave �eld can be obtained (i.e. signi�cant wave height, peak

period, propagation direction of the dominant wave). Models of this category (e.g. WAM,

Tomawac, SWAN and WaveWatch) are used for large-scale applications because of their

computational e�ciency, but they are unable to take into account the phase di�erence

between di�erent wave components. This is due to the fact that these models consider
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only mean (phase-averaged) wave properties and do not resolve the dynamics of each

wave pro�le. For example, a spectral wave model can predict the wave height in front of

a coastal structure but is unable to predict the spatially varying modulation of the wave

amplitude caused by wave re�ection from the structure.

2. Phase-resolved (or deterministic) models simulate the evolution of the free surface el-

evation and the associated kinematics in a deterministic manner. These models simulate

the evolution of the free surface as a function of time and space, requiring �ner spatial

and temporal resolutions (on the order of 10-100 points per wavelength and 10-100 time

steps per wave period) and thus longer computational times. In comparison to large-scale

spectral models, their use is limited to more local scales of the order of kilometers. More-

over, until recently, to meet the e�ciency requirements of operational engineering studies,

many simplifying assumptions were often made for the derivation of these models: linear

theory (i.e. Berkho� equations) or long wave assumption (shallow water equations), which

leads only to a partial representation of the nonlinear and dispersive e�ects. With a grow-

ing need for a more accurate representation of these e�ects that are non-negligible in the

nearshore area, more complex wave models were developed to take into account the non-

linear and dispersive properties of waves (i.e. Boussinesq, Green-Naghdi, Euler equations)

as discussed in the next section.

This PhD thesis falls within the scope of the latter type of models with the objective of devel-

oping a deterministic model capable of simulating the propagation of irregular and directional

wave �elds over variable bathymetries from the o�shore to the coast with a highly accurate

representation of the nonlinear and dispersive e�ects for bidimensional models on the order of

kilometers. To achieve this goal, several approaches are possible, and a brief review of existing

phase-resolving models is presented in the following section.

Brief review of phase-resolved numerical wave models

Most �uid �ow problems can be described by the Navier-Stokes equations since they account

for nonlinearities, vorticity and viscosity. Models based on these equations can be very accu-

rate when studying wave interactions with structures in the surf zone (e.g. Lara et al. (2006);

Shao (2006)). These equations can be solved with two very di�erent approaches. Either with an

Eulerian approach tracking the free surface position with a volume of �uid method, as for exam-

ple, in the widely used code OpenFOAM®(Higuera et al., 2013a,b), solving the RANS (Reynolds

Averaged Navier-Stokes) equations for two incompressible phases. Another option is to use a

Lagrangian approach where the �uid is represented as particles and the trajectories of each parti-

cles is computed considering their interactions, as for instance with the SPH (Smoothed Particle

Hydrodynamics) method (e.g. Dalrymple and Rogers (2006)). These models are highly accurate
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when studying local-scale processes, but the domain size and resolution are limited due to the

computational time, even with the use of GPU parallelized codes (Dalrymple et al., 2011). More-

over, these models usually su�er from a signi�cant level of numerical di�usion, which prevents

them from being used for propagating waves over long distances. For both of these reasons, to

model large spatial domains, these codes are usually coupled with more computationally e�cient

models, such as potential �ow models, to simulate the far-�eld processes (Narayanaswamy et al.,

2010).

Some assumptions can be made to simplify the problem and thus reduce the computational time.

For example, the nonlinear shallow water equations (NLSWE) are derived by depth integrat-

ing the Navier-Stokes equations to model waves with a wavelength signi�cantly longer than

the water depth (e.g.tidal waves, storm surges), but this set of equations does not take into ac-

count wave dispersion, and therefore they cannot be applied to model accurately short waves.

However, by including non-hydrostatic pressure in the NLSWE and dividing the water depth

into a su�cient number of layers, the frequency dispersion of waves can be greatly improved

(Stelling and Zijlema, 2003; Zijlema and Stelling, 2005, 2008; Zijlema et al., 2011). For example,

with only two layers, the accuracy of the deep water dispersion relation is similar to that of ex-

tended Boussinesq-type models. The dispersion of such non-hydrostatic models can be further

improved by optimizing the location of the levels (Zhu et al., 2014).

When viscous and turbulent e�ects are negligible, the �ow can be represented well by potential

�ow theory, which consists of solving the Laplace problem in the �uid domain, supplemented

by nonlinear free surface boundary conditions. One way of solving this problem is to use the

Boundary Integral Equations Method (BIEM), which projects the problem on the boundary sur-

face of the �uid domain using Green’s formula (Grilli et al., 1989; Wang et al., 1995). These models

enable an accurate description of nonlinear and even overturning waves and are well adapted

to simulate wave-structure interactions (e.g Dombre et al. (2015)). This method is mainly used

for calculating local-scale interactions owing to the long computational times. However, with

the use Fast Fourier Transform (FFT) (Fructus and Grue, 2007; Newman and Lee, 2002) or Fast

Multipole Algorithm methods (Fochesato et al., 2007), the computational time can be reduced

considerably.

Another way of solving the problem is to make additional assumptions about the nonlinear and

dispersive properties of waves. By doing a Taylor expansion of the vertical velocity about a

speci�ed level and truncating it to a �nite number of terms, Boussinesq-type models assume

a polynomial variation of the vertical velocity, thus reducing the problem by one dimension.

Boussinesq-type models are derived with the assumption that nonlinearity and frequency dis-

persion are weak or moderate (Kirby, 2003; Madsen and Schä�er, 1998). Using only a quadratic

polynomial approximation of the vertical �ow distribution gives poor results for wave propaga-
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tion in intermediate depths. A lot of work has been done to improve the frequency dispersion

following various approaches such as: using higher degree polynomials for the vertical approx-

imation with the Green-Naghdi equations (Zhao et al., 2014), using Padé approximants (Agnon

et al., 1999) combined with an expansion of the Laplace solution from an arbitrary level (Mad-

sen et al., 2002), and resolving in two arbitrary layers to maintain low-order spatial derivatives

(Chazel et al., 2009; Lynett and Liu, 2004). Additional modeling approaches include those of

Kennedy et al. (2001), Fuhrman and Bingham (2004), and Engsig-Karup et al. (2006).

The system of potential �ow equations can also be reformulated as a function of free surface

quantities, also known as the Zakharov equations (Zakharov, 1968). The temporal evolution of

the free surface elevation η and the free surface velocity potential Φ̃ are given as a function of

these two variables and the vertical velocity at the free surface w̃. The primary challenge is to

express the vertical velocity w̃ as a function of η and Φ̃, a problem commonly called ‘Dirichlet-to-

Neumann’ or DtN. One possibility is to solve directly the Laplace equation using �nite element

(Ma et al., 2001; Wu et al., 1998) or �nite di�erence (Engsig-Karup et al., 2009; Li and Fleming,

1997) methods. When using �nite di�erence methods, Kreiss and Oliger (1972) and Bingham and

Zhang (2007) recommend using fourth-order schemes with a stretched vertical grid (clustering

points near the free surface) instead of using second-order schemes with a regular grid. When

considering rectangular domains with a �at bottom, a high-order spectral approach (HOS) is

optimal (Dommermuth and Yue, 1987; Ducrozet et al., 2012a; West et al., 1987). This method is

faster than �nite di�erence methods but less �exible with regard to the domain geometry and

bathymetry, even if progress has been made in taking into account variable and moving bottoms

(Gouin et al., 2016; Guyenne and Nicholls, 2007; Smith, 1998). However, one limitation of this

approach is the need to work with periodic domains in the horizontal plane, which can restricts

some applications to coastal and harbor domains.

An additional approach is to use a spectral method only in the vertical dimension either by ex-

panding the velocity potential with a local mode series (Belibassakis and Athanassoulis, 2011) or

by projecting it on a polynomial basis (Kennedy and Fenton, 1997; Tian and Sato, 2008). By using

high-order �nite di�erence schemes in the horizontal, these models maintain a �exible approach

for variable domain geometries and bathymetry. A comparison between a vertical spectral ap-

proach and a �nite di�erence approach in the vertical dimension shows the improved accuracy

and e�ciency of the spectral method in 1DH (Yates and Benoit, 2015) and 2DH (Christiansen

et al., 2013). Others approaches can be used, such as the extension of the DtN operator as a sum

of global convolution terms and local integrals with kernels decaying quickly in space (Clamond

and Grue, 2001; Fructus et al., 2005). A more complete review and discussion of nonlinear poten-

tial �ow models for wave simulation can be found in Gouin (2016).

Based on this analysis, the nonlinear potential �ow approach is attractive, as it is in principle

more accurate than Boussinesq or Serre-Green-Naghdi models in representing nonlinear and
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dispersive wave e�ects in large water depths, while is does not su�er from the shortcomings

of CFD Navier-Stokes codes for large-scale applications. Furthermore, under the assumption of

non-overturning waves, a spectral approach in the vertical can be adopted, which results in both

an accurate and �exible model, as mentioned above.

Content and organization of the PhD dissertation

In this work, a potential �ow theory numerical model, based on the Zakharov equations, is val-

idated and extended. The existing model, called Misthyc, solves the Laplace boundary problem

(based on previous work (Yates and Benoit, 2015)) with a combination of high-order �nite di�er-

ence schemes for the horizontal dimension (1DH version) and a spectral approach using Cheby-

shev polynomials in the vertical dimension (Tian and Sato, 2008). In this work, this approach was

extended to two horizontal dimensions, using a Radial Basis Function-Finite Di�erence (RBF-FD)

approach to estimate the horizontal derivatives to enable using an unstructured discretization of

the domain by a set of scattered nodes.

A variety of numerical and physical aspects of wave modeling were addressed during this PhD

and are presented in the following chapters. In the Chapter 1, the mathematical model is derived

with emphasis on the underlying assumptions. The resolution of the Laplace boundary value

problem using a spectral approach in the vertical is presented, and the accuracy of the linear

dispersion relation resulting from this approximation is studied. In Chapter 2, the numerical

methods used for the 1DH version of the model are described in detail with a focus on the imple-

mentation of the boundary conditions for wave generation and wave absorption. The application

of the 1DH version of the model to a series of challenging test cases demonstrates, in Chapter 3,

the nonlinear and dispersive capabilities of the code. In Chapter 4, a visco-potential formulation

is considered to take into account the dissipative e�ects induced by bulk viscosity and bottom

friction. This formulation of the model is validated in comparison to analytical solutions and

then applied to simulate wave tank experiments. Chapter 5 presents the extension of the model

to two horizontal dimensions using the RBF-FD method to estimate horizontal derivatives for a

set of scattered nodes. Then, a series of sensitivity tests of the accuracy and stability of the model

as a function of the parameters related to the RBF method are conducted to evaluate the robust-

ness of this approach for estimating derivatives. In Chapter 6, the 2DH version of the model is

validated �rst by a comparison to results from the 1DH version for a case that is uniform in the y

direction, and then by comparisons to two sets of experiments conducted in wave basins. Finally,

the last Chapter concluded with a summary of the main contributions of the PhD thesis and with

a discussion of possibilities for future improvements to the model.



Chapter 1

Derivation and analysis of the
Euler-Zakharov mathematical model

Dans ce chapitre, le modèle mathématique sur lequel repose le modèle numérique déve-

loppé est présenté. Les équations surfaciques de Zakharov décrivant l’évolution tem-

porelle de la position de la surface libre η et du potentiel des vitesses à la surface libre

Φ̃ sont établies à partir des équations de Navier-Stokes, en insistant sur les hypothèses.

La vitesse verticale à la surface libre, nécessaire à l’intégration en temps des équations

de Zakharov, est obtenue en résolvant le problème aux limites de Laplace à l’aide d’une

méthode spectrale pour la direction verticale. Cette approche nécessite un changement

de coordonnée sur la verticale, la projection du pro�l vertical du potentiel des vitesses

Φ sur la base des polynômes de Tchebyshev de première espèce (tronquée à un degré

maximal NT ) et l’application de la méthode Tchebyshev-Tau, aboutissant au système

linéaire à résoudre pour obtenir le potentiel Φ dans tout le domaine. A partir de la

connaissance de Φ, les champs de vitesse verticale et horizontale et de pression peuvent

être calculés. La version linéaire du modèle est �nalement dérivée pour un fond plat

dans le but d’établir la relation de dispersion linéaire. La précision de celle-ci est étudiée

en fonction de la résolution verticale (NT ) et comparée à celles issues d’autres modèles

de type Boussinesq d’ordre élevé. Les propriétés dispersives de la version linéaire du

modèle s’améliorent avec l’augmentation de la valeur de NT et pour NT ≥ 9, l’erreur

relative sur la célérité de phase par rapport à la théorie de Stokes reste inférieure à 2.5%

pour kh ≤ 100.
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1.1 From the Navier-Stokes equations to the Zakharov equations

In this section we consider a domain Ω, with a �uid of density ρ, submitted to the atmospheric

pressure patm(x, y, t) and the acceleration of gravity g, moving with a velocity v

¯

(x, y, z, t) =

(u, v, w)T . The domain is delimited in the vertical by the free surface at elevation z = η(x, y, t)

and the bottom (which can also vary in time) at elevation z = −h(x, y, t).

Figure 1.1: Diagram for the de�nition of the notations.

1.1.1 The Euler equations and boundary conditions

The starting point is the classical Navier-Stokes system of equations for a Newtonian �uid:
∂ρ

∂t
+∇.(ρ v

¯

) = 0 in Ω

∂ρv

¯

∂t
+∇.(ρv

¯

⊗ v

¯

) = −∇p+∇.τ + ρg in Ω

(1.1a)

(1.1b)

where p is the pressure, and τ is the viscous stress tensor. It is �rst assumed that the �ow is

incompressible, meaning that the �uid density is considered constant and homogeneous. In

this case, system (1.1) can be simpli�ed to:


∇.v

¯

= 0 in Ω

∂v

¯

∂t
+ (v

¯

.∇)v

¯

= −1

ρ
∇p+ ν∆v

¯

+ g in Ω

(1.2a)

(1.2b)

where ∇ ≡ ( ∂
∂x ,

∂
∂y ,

∂
∂z )T denotes the gradient operator.

Making the additional assumption of an inviscid �uid, the momentum equations (Eq.(1.2b))

reduce to the Euler equations:

∂v

¯

∂t
+ v

¯

· ∇v

¯

= −1

ρ
∇p+ g in Ω (1.3)
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To resolve the �uid dynamics, in addition to Eq.(1.2a)-(1.3) in the �uid domain Ω, boundary con-

ditions must be speci�ed. The kinematic free surface boundary condition (KFSBC) expresses the

impermeability of the free surface (a particle of �uid cannot go through the free surface). Math-

ematically, the free surface is de�ned as F (x, y, z, t) ≡ z − η(x, y, t) = 0, and the impermeable

condition is then expressed by the zero Lagrangian (or material) derivative of F :

DF

Dt
= 0 ⇔ ∂F

∂t
+ v

¯

· ∇F = 0. (1.4)

⇔ −∂η
∂t
− u∂η

∂x
− v∂η

∂y
+ w = 0 at z = η(x, y, t). (1.5)

Introducing the outward unit normal vector at the free surface n

¯

:

n

¯

=
1√

1 + |∇
H
η|2

(
−∂η
∂x
,−∂η

∂y
, 1

)T
(1.6)

where ∇
H

is the horizontal gradient operator, Eq.(1.5) can be rewritten as:

−∂η
∂t

+ v

¯

· n
¯

√
1 + |∇

H
η|2 = 0 at z = η(x, y, t). (1.7)

Usually, the dynamic boundary condition at the free surface (DFSBC) is derived from the conti-

nuity of the normal stress at the interface meaning that if the free surface is only subjected to

atmospheric pressure, the pressure at the free surface position equal the atmospheric pressure.

Nevertheless, a discontinuity of the normal stress can appear due to a normal force generated

by surface tension. This force is proportional to the mean curvature of the interface and acts in

the direction towards the center of curvature of the surface. Taking into account the e�ects of

surface tension, the DFSBC can be written as (Dingemans, 1997b):

p(x, y, η(x, y, t), t) = patm(x, y, t)− σ∇
H
.

(
∇

H
η√

1 + |∇
H
η|2

)
. (1.8)

where σ is the coe�cient of surface tension expressed as a force per unit length (N/m). For a

water-air interface at 20 ℃, σ = 0.074 N/m.

At the bottom z = −h(x, y, t), an impermeability condition is applied. Following the treatment

of the KFSBC, the function G(x, y, z, t) ≡ z + h(x, y, t) is introduced, and the impermeability

condition is expressed by setting the Lagrangian derivative of G to zero.

DG

Dt
= 0 ⇔ ∂G

∂t
+ v

¯

· ∇G = 0. (1.9)
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⇔ ∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ w = 0 at z = −h(x, y, t). (1.10)

The �ow is then described by the following set of equations:



∇.v
¯

= 0 in Ω

∂v

¯

∂t
+ (v

¯

.∇)v

¯

= −1

ρ
∇p+ g

¯

in Ω

−∂η
∂t
− v

¯
H
.∇

H
η + w = 0 at z = η(x, y, t)

p(x, y, η(x, y, t), t) = patm(x, y, t)− σ∇
H
.

(
∇

H
η√

1 + |∇
H
η|2

)
at z = η(x, y, t)

∂h

∂t
+ v

¯
H
.∇

H
h+ w = 0 at z = −h(x, y, t)

(1.11a)

(1.11b)

(1.11c)

(1.11d)

(1.11e)

where v

¯
H

= (u, v)T is the horizontal part of the �uid velocity.

At the lateral boundaries (denoted as ∂Ωlat), periodic, Dirichlet or Neumann boundary conditions

must be imposed to close the system.

1.1.2 Potential �ow equations: the water wave problem

By assuming irrotational �ow, potential �ow theory can be used. The velocity potential Φ(x, y, z, t)

is introduced such that v

¯

= ∇Φ. The preceding set of equations (1.11) can be rewritten in terms

of the new variable Φ.

The continuity equation (Eq.(1.11a)) becomes the Laplace equation:

∇.v
¯

= 0 ⇒ ∇.∇Φ = 0 ⇒ ∆Φ = 0 in Ω. (1.12)

where ∆ is the Laplacian operator.

From the Euler equations (Eq.(1.11b)), the Bernoulli equation can be obtained:

∂v

¯

∂t
+ (v

¯

.∇)v

¯

= −1

ρ
∇p+ g in Ω (1.13)

⇔ ∂∇Φ

∂t
+∇Φ.∇(∇Φ) = −1

ρ
∇p−∇(gz) in Ω (1.14)

⇔ ∇
(
∂Φ

∂t
+

1

2
(∇Φ)2 +

p

ρ
+ gz

)
= 0 in Ω (1.15)

The zero gradient in Eq.(1.15) means that the scalar argument in parenthesis is independent of the

variables x, y and z and therefore is an arbitrary function of time only, here chosen to be zero.
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Thus it is noted that Φ is de�ned up to a constant, which will be discussed further in Section

2.2.2.3. Eq.(1.15) then becomes:

p(x, y, z, t) = −ρ
(
gz +

∂Φ

∂t
+

1

2
(∇Φ)2

)
(1.16)

At the free surface, the KFSBC (Eq.(1.11c)) becomes:

∂η

∂t
+∇

H
Φ.∇

H
η − ∂Φ

∂z
= 0, at z = η(x, y, t) (1.17)

and the DFSBC (Eq.(1.11d)), is reformulated using the Bernoulli equation (Eq.(1.16)) at the free

surface:

∂Φ

∂t
+

1

2
(∇Φ)2 + gη = −patm(x, y, t)

ρ
+
σ

ρ
∇

H
.

(
∇

H
η√

1 + |∇
H
η|2

)
at z = η(x, y, t) (1.18)

The bottom impermeability boundary condition (Eq.(1.11e)) becomes:

∂h

∂t
+∇

H
Φ.∇

H
h+

∂Φ

∂z
= 0 at z = −h(x, y, t) (1.19)

The nonlinear potential �ow problem is thus:



∆Φ = 0 in Ω

∂η

∂t
+∇

H
Φ.∇

H
η − ∂Φ

∂z
= 0 at z = η(x, y, t)

∂Φ

∂t
+

1

2
(∇Φ)2 + gη = −patm(x, y, t)

ρ
+
σ

ρ
∇

H
.

(
∇

H
η√

1 + |∇
H
η|2

)
at z = η(x, y, t)

∂h

∂t
+∇

H
Φ.∇

H
h+

∂Φ

∂z
= 0 at z = −h(x, y, t)

(1.20a)

(1.20b)

(1.20c)

(1.20d)

This is usually called the “water wave problem”. Note that the pressure does not appear explicitly

in this problem, but can be computed from Eq.(1.16) once Φ is known. One of the main di�culties

encountered during the resolution of this set of equations is related to the fact that it is a free

boundary problem: the �uid domain is bounded by the free surface η, which is also an unknown

of the problem.

1.1.3 Expression as a function of surface quantities

By making the assumption that the water column is continuous from the bottom to the
free surface (η(x, y, t) is single-valued), the velocity potential at the free surface can be de�ned

as Φ̃(x, y, t) ≡ Φ(x, y, η(x, y, t), t).

Using the chain rule, the following equations express the link between the derivatives of the free
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surface velocity potential Φ̃ and the derivatives of the global velocity potential Φ:

∂Φ̃

∂α
=
∂Φ

∂α
+
∂η

∂α

∂Φ

∂z
, (1.21)

where α = x, y or t.

Expressing the KFSBC (Eq.(1.20b)) and the DFSBC (Eq.(1.20c)) as a function of the free surface

potential Φ̃(x, y, t) using the above expressions, the following set of equations is obtained:
∂η

∂t
= −∇

H
Φ̃· ∇

H
η + w̃(1 + (∇

H
η)2)

∂Φ̃

∂t
= −gη − 1

2
(∇

H
Φ̃)2 +

1

2
w̃2(1 + (∇

H
η)2)− patm(x, y, t)

ρ
+
σ

ρ
∇

H
.

(
∇

H
η√

1 + |∇
H
η|2

) (1.22)

(1.23)

with w̃ the vertical velocity at the free surface:

w̃(x, y, t) ≡ ∂Φ

∂z
(x, y, η(x, y, t), t) (1.24)

These two coupled equations Eq.(1.22) and (1.23) involve only free surface quantities: the �rst one

describing the temporal evolution of the free surface elevation η and the second one expressing

the evolution of the free surface potential Φ̃. In order to integrate these equations in time, it is

necessary to determine w̃(x, y, t) at each time step from η(x, y, t) and Φ̃(x, y, t), which is called

a Dirichlet-to-Neumann (DtN) problem. Di�erent approaches have been proposed to solve this

problem, for example using a high-order spectral approach (HOS) (Dommermuth and Yue, 1987;

West et al., 1987), which is e�cient for rectangular domains with a �at bottom. Other approaches

can be used, such as the extension of the DtN operator as a sum of global convolution terms and

a local integral with kernels decaying quickly in space (Clamond and Grue, 2001; Fructus et al.,

2005), or the expansion of the Laplace solution from an arbitrary level combined with the use

of Padé approximant, based on a Boussinesq approximation (Madsen et al., 2002). See also the

recent review and discussion by Wilkening and Vasan (2015). Here, as presented in the next

section, the DtN problem will be resolved by solving a Laplace boundary value problem (BVP)

for the potential Φ in the entire domain Ω using a spectral approach in the vertical direction

(Tian and Sato, 2008; Yates and Benoit, 2015).

1.1.4 Discussion of the assumptions

To build the mathematical model Eq.(1.22)-(1.23), four assumptions were made. The conse-

quences of these assumptions and their validity are discussed.

• assumption 1: incompressible �ow
This assumption means that the density of the �uid is homogeneous in space and constant in

time. In the ocean, the water density varies with temperature and salinity with typical scales

of variation on the order of tens of kilometers in the horizontal. These scales of variability are
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much larger than the domain over which the evolution of the free surface elevation is aimed to

be modeled. Vertical variations of the density do not have a signi�cant impact on free surface

gravity waves, except in estuarine environments where vertical density gradients, due to the

over�ow of freshwater in saltwater, can be important. This assumption seems reasonable.

• assumption 2: inviscid �uid
Internal forces due to the �uid viscosity are generally negligible for the considered wavelengths.

A viscous �uid tends to generate friction on the bottom or other solid walls with the development

of a boundary layer where energy is dissipated. In deep water, the boundary layer thickness is

very small in comparison with the water depth, so the e�ects of bottom friction are negligible.

With decreases in the water depth approaching the coast, this assumption becomes less valid

since the boundary layer may impact wave propagation. Therefore, viscous e�ects may become

non-negligible in shallow water. The introduction of some dissipative e�ects will be discussed

in Chapter 5.

• assumption 3: irrotational �ow
This assumption implies that the particles of �uid do not have a rotational movement. It is a

reasonable assumption in case of low viscosity and/or when the bottom friction, which creates

turbulence and induces vorticity, can be neglected. This assumption is no longer true in the

breaking and swash zones.

• assumption 4: continuity of the water column from the bottom to the surface
Since the free surface is single-valued, it is not possible to simulate directly wave overturning.

This assumption is justi�ed as long as waves are not overturning, so wave breaking cannot be

resolved with this approach. Some dissipative terms could be added to Eq.(1.22) and Eq.(1.23) in

order to parameterize wave breaking dissipation in the model.

1.1.5 The Zakharov equations

Finally, here, two additional weak assumptions are made:

• The atmospheric pressure is chosen to be homogeneous and constant.

This assumption limits the model to study waves subjected only to gravitational e�ects. The

e�ect of wind on waves (due to gradients in atmospheric pressure) are not considered here. The

pressure variations at the free surface are assumed negligible for the spatial scales of the domains

of interest, so the atmospheric pressure is held constant. As the pressure is de�ned within a con-

stant, it is chosen equal to zero for convenience, without limiting the generality of the problem.

• Surface tension is neglected.

Surface tension e�ects become noticeable for short waves with wavelengths on the order of cen-

timeters. For real applications, the wavelengths considered will be on the order of meters and

thus the e�ects of surface tension can be neglected. For the simulation of small-scales experi-

ments, the e�ects of surface tension may become important, as will be shown in Chapter 5.
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Thus, taking into account these two hypotheses, the set of equations resolved by the model

(unless otherwise speci�ed) is:


∂η

∂t
= −∇

H
Φ̃· ∇

H
η + w̃(1 + (∇

H
η)2)

∂Φ̃

∂t
= −gη − 1

2
(∇

H
Φ̃)2 +

1

2
w̃2(1 + (∇

H
η)2)

(1.25)

(1.26)

1.2 Resolution of the Laplace BVP using a spectral method in the
vertical

To integrate the Zakharov equations in time, the estimation of the vertical velocity at the free

surface w̃ is necessary. This is achieved by resolving the following Laplace BVP for the potential

Φ in the entire �uid domain Ω:



∆
H
Φ + Φzz = 0 in Ω

Φ = Φ̃ at z = η(x, y, t)

∇
H
Φ· ∇

H
h+ Φz = 0 at z = −h(x, y, t)

∇Φ· n
¯
lat = 0 on ∂Ωlat

(1.27a)

(1.27b)

(1.27c)

(1.27d)

Here, a Neumann condition is applied at the vertical lateral boundaries (denoted as ∂Ωlat), to

consider the particular case of impermeable lateral boundaries. n

¯
lat denotes the unit normal

vector at the lateral wall. In the following, spatial derivatives will be denoted by subscripts (i.e.

fx ≡ ∂f/∂x).

With a time invariant lateral boundary condition, the problem is dependent on time through the

shape of the domain. Lateral boundary conditions can vary in time, for example in the case of

wave generation, but this case is not considered in this section. Therefore, at each step of the

time integration scheme, the Laplace BVP has to be solved at least once taking into account the

new shape of the domain. For instance, using the classical fourth order Runge-Kutta scheme,

four resolutions are required. However, no derivatives in time appear in the BVP.

The numerical approach chosen to solve the Laplace BVP is the application of a spectral method

in the vertical direction. Yates and Benoit (2015) showed that using a spectral method is more

accurate and e�cient than using �nite di�erence schemes. Following the work of Tian and Sato

(2008), the method is divided into three main steps:

1. a change of variables for the vertical coordinate,

2. an expansion of the velocity potential Φ using the basis of orthogonal Chebyshev polyno-
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mials of the �rst kind Tn (n = 0, 1, ...), truncated at a given order NT ,

3. and an application of the Chebyshev-Tau method in the vertical.

An outline of the method is given in Yates and Benoit (2015) for the case of a single horizontal

dimension (i.e. x

¯

= x). Here the method is presented for the case of two horizontal dimensions

(i.e. x

¯

= (x, y)).

1.2.1 Change of the vertical coordinate

First, a change of the vertical coordinate from z ∈ [−h(x

¯

, t), η(x

¯

, t)] to s ∈ [−1, 1] is made to

reduce the uneven time varying domain to a constant rectangular domain extending from the

bottom at s = −1 to the free surface at s = +1.

s(x

¯

, z, t) =
2z + h−(x

¯

, t)

h+(x

¯

, t)
(1.28)

where h+(x

¯

, t) = h(x

¯

, t) + η(x

¯

, t) and h−(x

¯

, t) = h(x

¯

, t)− η(x

¯

, t).

With this change of variables:

Φ(x

¯

, z, t) ≡ ϕ(x

¯

, s(x

¯

, z, t), t)

Using the chain rule, the system of equations (1.27) is rewritten in terms of ϕ(x

¯

, s, t):



ϕxx + ϕyy + 2(sxϕxs + syϕys) +

(s2
x + s2

y + s2
z) ϕss + (sxx + syy) ϕs = 0 in Ω

ϕ(x, y, 1) = Φ̃(x, y) at s = +1

h+(hxϕx + hyϕy) + 2(1 + h2
x + h2

y) ϕs = 0 at s = −1

(ϕx + sxϕs) nlatx + (ϕy + syϕs) nlaty = 0 on ∂Ωlat

(1.29a)

(1.29b)

(1.29c)

(1.29d)

where nlatx and nlaty are the components in the (x, y)-plane of the unit vector n

¯
lat normal to

lateral boundaries.

1.2.2 Expansion of the potential on the basis of Chebyshev polynomials

The second step is based on the assumption that the velocity potential can be approximated

by its projection on a subset of the function space of �nite dimension. Following the work of

Tian and Sato (2008), the chosen set of base functions are Chebyshev polynomials of the �rst

kind (denoted Tn, with n the degree of the polynomial). Chebyshev polynomials are easy to

compute, are orthogonal for a weighted dot product, and converge rapidly over a large domain.



16 CHAPTER 1: DERIVATION OF THE MATHEMATICAL MODEL

By selecting a subset of the NT + 1 �rst polynomials, the following approximation is made:

ϕ(x

¯

, s, t) ≈ ϕNT (x

¯

, s, t) =

NT∑
n=0

an(x

¯

, t)Tn(s) (1.30)

where the an(x

¯

, t) coe�cients are a set of unknown coe�cients to be determined for each x

¯

, at

each time step. However, since there are no time derivatives in the Laplace BVP, in the following,

the an will be written only as a function of x

¯

to lighten the equations. This step allows separating

the horizontal variations an(x

¯

) of the velocity potential from the vertical variations Tn(s).

Chebyshev polynomials of the �rst kind are a set of orthogonal polynomials de�ned on the in-

terval [-1,1]. They can be de�ned in two di�erent ways (e.g. Boyd, 2001):

• by a recurrence relation: T0(s) = 1, T1(s) = s, and Tn(s) = 2s Tn−1(s)− Tn−2(s)

• or with a trigonometric approach: Tn(cosθ) = cos(nθ), θ ∈]−∞,+∞[

The eight �rst Chebyshev polynomials are plotted in Figure 1.2. A Chebyshev polynomial of

degree p has p di�erent simple roots, and |Tp(s)| ≤ 1 for s ∈ [−1, 1].

Figure 1.2: Eight �rst Chebyshev polynomials of the �rst kind Tn(s) (n = 0 to 7).
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These polynomials form an orthogonal basis on the interval [-1,1] with respect to the weight

1/
√

1− s2
. The inner product is then de�ned as:

(f, g) ≡
∫ 1

−1
fg

ds√
1− s2

. (1.31)

Thus, for two Chebyshev polynomials Tn and Tp of orders n and p, respectively:

(Tn, Tp) =


0 if p 6= n
π
2 if p = n and n ≥ 1

π if p = n = 0

(1.32)

Finally, the inner product of any function f de�ned on the interval [-1,1] with a Chebyshev

polynomial Tp of order p is :

〈f〉p ≡
2

πcp
(f, Tp) with

{
c0 = 2

cp = 1 if p ≥ 1
(1.33)

The coe�cient
2
πcp

is introduced so that the basis of Chebyshev polynomials is orthonormal (i.e.

〈Tn〉p = δnp, where δnp is the Kronecker symbol).

By substituting the approximation of ϕ (Eq.(1.30)) into the set of equations (1.29), a new set

of equations is obtained, that depends only on the an coe�cients, the Tn functions, and their

respective spatial derivatives.

The Laplace equation (Eq.(1.29a)) in the �uid domain becomes:

NT∑
n=0

an,xxTn +

NT∑
n=0

an,yyTn + 2 sx

NT∑
n=0

an,xTn,s + 2 sy

NT∑
n=0

an,yTn,s +

(s2
x + s2

y + s2
z)

NT∑
n=0

an Tn,ss + (sxx + syy)

NT∑
n=0

an Tn,s = 0 (1.34)

The Dirichlet condition (Eq.(1.29b)) at the free surface (s = +1) is:

NT∑
n=0

an = Φ̃(x

¯

) (1.35)

The impermeable boundary condition (Eq.(1.29c)) at the bottom (s = −1) is:

h+hx

NT∑
n=0

(−1)nan,x + h+hy

NT∑
n=0

(−1)nan,y + 2(1 + h2
x + h2

y)

NT∑
n=0

(−1)n−1n2an = 0 (1.36)
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The impermeable lateral boundary condition (Eq.(1.29d)) becomes:(
NT∑
n=0

an,xTn + sx

NT∑
n=0

anTn,s

)
nlatx +

(
NT∑
n=0

an,yTn + sy

NT∑
n=0

anTn,s

)
nlaty = 0 (1.37)

The terms sx, sy, sz, sxx and syy can be expressed as polynomial functions of s:

si =
h−i h

+ − s h+
i h

+

h+2
(i=x or y),

sii =
h−iih

+ − 2h+
i h
−
i + (2h+2

i − h+
iih

+) s

h+2
(i=x or y),

sz =
2

h+
.

Replacing the derivatives of s by their expressions, and after some rearrangement, the Laplace

equation Eq.(1.34) becomes:

NT∑
n=0

α an,xx +

NT∑
n=0

β an,yy +

NT∑
n=0

γ an,x +

NT∑
n=0

δ an,y +

NT∑
n=0

ζ an = 0 (1.38)

with :

α = β = Tn

γ =
m0101 Tn,s +m1101 s Tn,s

m0220

δ =
m0011 Tn,s +m1011 s Tn,s

m0220

ζ =
m0002 Tn,ss −m1002 s Tn,ss +m2002 s

2 Tn,ss +m0001 Tn,s +m1001 s Tn,s
m0220

where the mijkl terms only depend on h+
and h− and their spatial derivatives:

m0220 = h+2

m0101 = 2h+h−x

m1101 = −2h+h+
x

m0011 = 2h+h−y

m1011 = −2h+h+
y
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m0002 = 4 + h−2
x + h−2

y

m1002 = 2 (h−x h
+
x + h−y h

+
y )

m2002 = h+2
x + h+2

y

m0001 = −2h−x h
+
x − 2h−y h

+
y + h+h−xx + h+h−yy

m1001 = 2h+2
x + 2h+2

y − h+h+
xx − h+h+

yy

The impermeability condition at the lateral boundaries (Eq.(1.37)) becomes:

NT∑
n=0

2α nlatx an,x +

NT∑
n=0

2β nlaty an,y +

NT∑
n=0

(γ nlatx + δ nlaty) an = 0 (1.39)

1.2.3 Application of the Chebyshev-Tau approach to obtain the linear system

The aim of this last step is to obtain a linear system for the an coe�cients, but Eq.(1.38) and (1.39)

still depend on x

¯

and s. In order to eliminate the dependence on s, both equations can be projected

on polynomials Tp by applying the inner product 〈.〉p previously de�ned (Eq.(1.33)). Then, the

resulting equations only depend on the an(x

¯

). In the case of simple boundary conditions at s =

−1 and s = +1 that can be satis�ed by the Chebyshev polynomials (the chosen test functions),

the projection is done for p from 0 toNT . This is called the Galerkin method. Nevertheless, when

the boundary conditions are complicated or for particular problems, it is not always possible to

�nd a test function verifying them, so a solution is to apply only the projection for p from 0

to NT − 2 supplemented by the two equations to account for the surface and bottom boundary

conditions Eq.(1.35) and Eq.(1.36). This method, called the Chebyshev-Tau method (Canuto et al.,

1988), will be used here.

Looking at the expressions for α(s), β(s), δ(s), γ(s) and ζ(s), the following terms have to be

estimated: 〈Tn〉p, 〈Tn,s〉p, 〈Tn,ss〉p, 〈s Tn,s〉p, 〈s Tn,ss〉p and 〈s2 Tn,ss〉p. The notation Bpikn is

introduced:

Bpikn ≡ 〈si
dkTn
dsk
〉p =

2

πcp

(
si
dTn
dsk

, Tp

)
(1.40)

The Bpikn can be determined analytically as a function of n and p using the recurrence relation

of the Chebyshev polynomials or from linear combinations of previously de�ned Bpikn.
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〈Tn〉p = Bp00n = δpn

〈Tn,s〉p = Bp01n = 2
cp

{
n if p = n− 1, n− 3, n− 5, ...

0 otherwise

〈Tn,ss〉p = Bp02n = 1
cp

{
n (n2 − p2) if p = n− 2, n− 4, n− 6, ...

0 otherwise

〈s Tn,s〉p = Bp11n =
∑n−1

r=0 Br01n

{
1
2(Bp00(r−1) +Bp00(r+1)) if r ≥1

Bp001 if r = 0

〈s Tn,ss〉p = Bp12n =
∑n−2

r=0 Br02n

{
1
2(Bp00(r−1) +Bp00(r+1)) if r ≥1

Bp001 if r = 0

〈s2 Tn,ss〉p = Bp22n =
∑n−2

r=0 Br02n


1
4(Bp00(r−2) + 2Bp00r +Bp00(r+2)) if r ≥2

1
4(3Bp001 +Bp003) if r = 1
1
2(Bp000 +Bp002) if r = 0

The Bpikn terms are constant, depending only on the Chebyshev polynomials Tn, and can be

computed once at the beginning of each simulation, after the maximal order of the Chebyshev

polynomials NT is chosen.

The �nal set of equations to be solved is for the coe�cients an(x

¯

), which depend only on x

¯

= (x, y)

and time (and not on the vertical coordinate s).

ap,xx + ap,yy +

NT∑
n=0

Cxpn an,x +

NT∑
n=0

Cypn an,y +

NT∑
n=0

Dpnan = 0 in Ω

NT∑
n=0

an = Φ̃(x

¯

, t) at s = +1

h+hx

NT∑
n=0

(−1)nan,x + h+hy

NT∑
n=0

(−1)nan,y+

2 (1 + h2
x + h2

y)

NT∑
n=0

(−1)n−1n2an = 0 at s = −1

2 nlatx ap,x + 2 nlaty ap,y +

NT∑
n=0

(nlatx C
x
pn + nlaty C

y
pn) an = 0 on ∂Ωlat

(1.41a)

(1.41b)

(1.41c)

(1.41d)

where Cxpn = (m0101Bp01n +m1101Bp11n)/m0220 is the coe�cient for an,x,

Cypn = (m0011Bp01n +m1011Bp11n)/m0220 is the coe�cient for an,y ,

and Dpn = (m0002Bp02n −m1002Bp12n +m2002Bp22n +m0001Bp01n +m1001Bp11n)/m0220.
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For each node x, NT + 1 unknown coe�cients an must be determined. When applying the op-

erator 〈.〉p for p from 0 to NT − 2 to Eq.(1.38) for nodes inside the domain or to Eq.(1.39) for

nodes on the lateral boundaries, NT − 1 equations are obtained. To have a well-posed problem,

two additional equations are needed to complete the set of equations at each node. The Dirich-

let boundary condition at the surface (Eq.(1.41b)) and the impermeable condition at the bottom

(Eq.(1.41c)) are used for this purpose. The horizontal spatial derivatives of the an coe�cients are

de�ned as linear combinations of the values in the vicinity of the node considered, leading to a

set of coupled equations.

Once the an(x

¯

) coe�cients are determined, the vertical velocity at the free surface w̃(x

¯

) is readily

obtained from:

w̃(x

¯

) = Φz(x

¯

, z = η) = sz ϕs(s = +1) ≈ 2

h+(x

¯

)

NT∑
n=0

an(x

¯

) n2
(1.42)

The vertical velocity can then be used to evaluate the right hand side of Eq.(1.25) and Eq.(1.26),

required by the numerical scheme to integrate in time.

1.3 Computation of �ow properties

The main results obtained with the model are surface quantities: the free surface elevation η and

the free surface velocity potential Φ̃. Nevertheless, it also can be of interest to calculate other

properties inside the �uid domain. Since the Laplace BVP is resolved for the velocity potential

Φ(x

¯

, z, t) in the entire domain, it is possible to compute some properties of the �ow at a given

time t, such as the velocity pro�le or the pressure �eld, or the depth-averaged velocity. For

convenience, the derivation of these expressions is done hereafter for the 1DH case (x

¯

= x).

Extension to the 2DH case is straightforward.

1.3.1 Horizontal and vertical velocities in the �uid domain

To visualize the �ow inside the �uid domain v

¯

= (u,w), one must compute the gradient of the

velocity potential Φ(x, z, t) at a number of points discretizing the domain:
u =

∂Φ

∂x
=
∂ϕ

∂x
+
∂ϕ

∂s

∂s

∂x

w =
∂Φ

∂z
=
∂ϕ

∂s

∂s

∂z

(1.43a)

(1.43b)

From the spectral approach used in the vertical in the model, the velocity potential in 1DH is
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given by Eq.(1.30) repeated here for convenience:

Φ(x, z, t) ≈ ϕNT (x, s, t) =

NT∑
n=0

an(x, t) Tn(s) (1.44)

Expressions for the horizontal and vertical velocities are then deduced:
u =

NT∑
n=0

an,x Tn +
h−x − sh+

x

h+

NT∑
n=1

an Tn,s

w =
2

h+

NT∑
n=1

an Tn,s

(1.45a)

(1.45b)

To compute the velocity components at a given point (x, z), one must �rst compute the coordi-

nates of the point in the (x, s)-plane, with the change of variables from Eq.(1.28), knowing the

value of η(x). Values of Tn(s) and Tn,s(s) are also required and can be obtained analytically,

whereas the �rst order spatial derivative of the an coe�cients is obtained numerically with a

fourth order �nite di�erence scheme in the 1DH case, using the RBF-FD method in the 2DH

case, as explained in the following.

1.3.2 Pressure in the �uid domain

The pressure at any point (x, z) of the domain is given by the Bernoulli equation (Eq.(1.16)):

p(x, z, t) = −ρ
(
∂Φ

∂t
+

1

2

(
∂Φ

∂x

)2

+
1

2

(
∂Φ

∂z

)2

+ gz

)

The most di�cult term to estimate is
∂Φ
∂t at the point x, the Eulerian derivative of the velocity

potential Φ, more particularly when the point is such that it is outside the �uid domain (i.e. above

the free surface) at t −∆t and inside the �uid domain at t (or conversely). Because of the time

varying limits of the �uid domain, it is di�cult to estimate directly the time derivative of Φ with

a �nite di�erence scheme. Thus, this derivative will be estimated in the (x, s)-space. Using the

spectral approximation of the potential:

∂Φ

∂t
(x, z, t) ≈

NT∑
n=0

[an,t Tn + anTn,s st] , (1.46)

with st = 1
h+ (ht (1− s)− ηt (1 + s)). The derivative an,t(x, t) is computed with a backward

�nite di�erence scheme of �rst or second order:

• �rst order scheme: an,t(x, t) =
an(x, t)− an(x, t−∆t)

∆t

• second order scheme: an,t(x, t) =
3an(x, t)− 4an(x, t−∆t) + an(x, t− 2∆t)

2∆t
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The accuracy of the results is highly dependent on the approximation of the time derivative and

the time step. Other required terms are obtained easily: ht is zero in case of �xed bottom or

known if the evolution of the bottom elevation is prescribed, and ηt is already estimated as the

left hand-side of the �rst of the two Zakharov equations (Eq.(1.25)). Thus the pressure can be

estimated at any point inside the �uid domain at any given time t.

1.3.3 Depth averaged horizontal velocity

The depth averaged horizontal velocity u(x) at a location x, is obtained by integrating the vertical

pro�le of the horizontal velocity from the bottom to the top of the water column:

u(x) =
1

h(x) + η(x)

∫ η(x)

−h(x)
u(x, z) dz =

1

2

∫ 1

−1
u(x, s) ds (1.47)

Using the expression of the horizontal velocity in the (x, s)-space, obtained from the spectral

approximation of the potential (Eq.(1.43a)), this expression becomes:

u(x) =
1

2

[
NT∑
n=0

an,x

∫ 1

−1
Tn ds+

NT∑
n=1

an

(
h−x
h+

∫ 1

−1
Tn,s ds−

h+
x

h+

∫ 1

−1
s Tn,s ds

)]
(1.48)

By de�ning Sij(n) =
∫ 1
−1 s

jTn,si ds, Eq.(1.48) can be rewritten as:

u(x) =
1

2

[
NT∑
n=0

an,x S
0
0 +

NT∑
n=1

an

(
h−x
h+

S1
0 −

h+
x

h+
S1

1

)]
(1.49)

For any value of n the expressions of S0
0(n), S1

0(n) and S1
1(n) are the following:

S1
0(n) =

∫ 1

−1
Tn,s ds = [Tn]1−1

= 1− (−1)n =

{
0 if n is even

2 if n is odd

S0
0(n) =

∫ 1

−1
Tn ds =

 [T1]1−1 = 2 if n = 0

1
2

[
Tn+1

n+1 −
Tn−1

n−1

]1

−1
for n > 0

=

{
0 if n = 2p+ 1, p ≥ 0
−2
n2−1

if n = 2p, p ≥ 0
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S1
1(n) =

∫ 1

−1
s Tn,s ds = [s Tn]1−1 −

∫ 1

−1
Tn ds

= Tn(1) + Tn(−1)− S1
0

=

{
0 if n is odd

2n2

n2−1
if n is even

Finally, Eq.(1.49) becomes:

u(x) =
1

2

NT /2∑
p=0

a2p,x
2

1− (2p)2
+ 2

h−x
h+

(NT+1)/2∑
p=1

a2p−1 −
h+
x

h+

NT /2∑
p=1

a2p
2(2p)2

(2p)2 − 1

 (1.50)

1.4 Linear properties of the model

1.4.1 Linearization of the equations for a �at bottom

In this section, the linear version of the model is considered for only one horizontal dimension

(x

¯

= x). It is derived by assuming that the amplitude of free surface deformation is small. It is ob-

tained: (i) by neglecting the non-linear terms in the Zakharov equations (Eq.(1.22) and Eq.(1.23)),

and (ii) by taking the upper limit of the �uid domain to be the elevation z = 0 (free surface

elevation at rest) instead of z = η(x, t). The water depth is held constant (i.e. the bottom is �xed

and �at). By introducing Φ̃0 ≡ Φ(x, z = 0, t) and w̃0 ≡ ∂Φ
∂z (x, z = 0, t), the velocity potential

and the vertical velocity at z = 0, respectively, the linear version of the model can be written as:

∂η

∂t
= w̃0 at z = 0

∂Φ̃0

∂t
= −gη at z = 0

∆Φ = 0 in Ω, for −h < z < 0

∂Φ

∂z
= 0 at z = −h

(1.51a)

(1.51b)

(1.51c)

(1.51d)

1.4.2 The �rst order Stokes solution

When considering regular progressive waves with period T (or angular frequency ω = 2π
T ),

wavelength L (or wave number k = 2π
L ) and amplitude A, the exact solution of the set of linear

equations Eq.(1.51a)-Eq.(1.51d) is given by �rst-order Stokes theory (Dean and Dalrymple, 1991):

Φ(x, z, t) =
gA

ω

cosh(k(h+ z))

cosh(kh)
sin(kx− ωt), (1.52)
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which is used as the analytical reference to study the accuracy of the results obtained with the

model. The proposed model solves the same set of equations, but because of the numerical ap-

proach and the discretization of the problem, the model solution may di�er from the exact ana-

lytical solution. Particular attention is paid to the dispersion relation:

ω2
Stokes = gk tanh(kh) or ω̂2

Stokes = µ tanh(µ) (1.53)

with µ ≡ kh, the relative water depth, and ω̂ ≡ ω
√

h
g , the non-dimensional angular frequency.

The phase celerity of the wave can be deduced from Eq.(1.53):(
C√
gh

)2

Stokes

=

(
ω̂Stokes
µ

)2

=
tanh µ

µ
(1.54)

The relative water depth µ is also known as a parameter measuring frequency dispersion. From

the expression of the phase celerity, one can notice that: (i) in shallow water (“small” µ i.e.

h
L < 1

20 ⇔ µ < π
10 ) the celerity of the wave tends towards

√
gh corresponding to non-

dispersive waves (i.e. waves propagate at the same celerity regardless of their period), and (ii) in

deep water (“large” µ i.e.
h
L > 1

2 ⇔ µ > π)
C√
gh
≈ 1√

µ or C ≈
√

g
k = g

ω . Thus, frequency

dispersion becomes important for large values of µ (deep water or short waves). Even if the

relative water depth of the wave is not very large, the relative water depth corresponding to its

higher harmonics may become large. Therefore, it is important to have high accuracy for large

values of µ.

1.4.3 Derivation of the linear dispersion relation of the proposed model

1.4.3.1 Analytical expression of the dispersion relation

To derive the dispersion relation of the linearized model, a progressive wave solution of a sinu-

soidal form is sought:

Φ(x, z, t) =
gA

ω
f(z) sin(kx− ωt), (1.55)

where f(z) represents the vertical variation of the velocity potential (in the case of �rst-order

Stokes wave theory, f(z) = cosh(k(h+z))
cosh(kh) from Eq.(1.52)). The accuracy of the model is veri�ed

in comparison to the vertical variation of the Stokes theory velocity potential. In particular, ac-

cording to Stokes theory, f(z = 0) = 1 must be satis�ed.

From the expression of the velocity potential (Eq.(1.55)), Φ̃0 and its time derivative are obtained:

Φ̃0 =
gA

ω
f(0) sin(kx− ωt) (1.56)
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and

∂Φ̃0

∂t
= −gAf(0) cos(kx− ωt). (1.57)

By introducing Eq.(1.57) into Eq.(1.51b), the following expression for η is deduced :

η = −1

g

∂Φ̃0

∂t
= Af(0) cos(kx− ωt) (1.58)

If the condition f(0) = 1 is true, this expression of the free surface elevation corresponds to a

sinusoidal wave of amplitude A propagating in the x-direction.

Then, w̃0 can be expressed as:

w̃0 =
∂Φ

∂z
(x, z = 0, t) =

gA

ω
f ′(0) sin(kx− ωt) (1.59)

where f ′(0) ≡ df

dz
(z = 0).

Finally, replacing

∂η

∂t
and w̃0 by Eq.(1.58) and Eq.(1.59) their expressions in Eq.(1.51a), the dis-

persion relation of the linear version of the model is obtained:

ω2

g
f(0) = f ′(0), (1.60)

which in the non dimensional space, corresponds to:

ω̂2 =
f ′(0)

f(0)
h. (1.61)

1.4.3.2 Expression of the dispersion relation as a function of the an

The dispersion relation is determined from the vertical variation of the velocity potential. The

accuracy of estimation of this vertical variation is related to the spectral resolution of the nu-

merical method. Thus, the decomposition of f(z) on the basis of the Chebyshev polynomials is

studied. First, a change of variables of the vertical coordinate from z to s is completed (Eq.(1.28

for a �at bottom h = cst and η = 0) following the steps previously shown in Section 1.2.1.

Derivatives of s with respect to x are zero because of the �at bottom assumption.

sx = sxx = szz = szx = 0 and sz =
2

h
.

Following the change of variables, f(z) becomes f̄(s). Using the chain rule (
df
dz = df̄

ds sz), Eq.(1.61)
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can be rewritten in terms of f̄ :

ω̂2 = 2
f̄ ′(1)

f̄(1)
. (1.62)

The function f̄ can then be expanded on the basis of the NT + 1 �rst Chebyshev polynomials:

f̄(s) ≈
NT∑
n=0

anTn(s). (1.63)

Contrary to the expansion of the velocity potential in the non-linear version of the model, the

coe�cients an are now constant. The dependence on x does not appear in the function f̄ , that

only depends on s, but in the argument (k.x− ωt) of the sine functions.

Furthermore, the properties of the Chebyshev polynomials give the following expressions for

f̄(1) and f̄ ′(1):

f̄(1) =

NT∑
n=0

an and f̄ ′(1) =

NT∑
n=0

ann
2.

Thus the approximation of ω̂2
for a polynomial of maximum order NT (ω̂2

NT
) can be expressed

as a function of the an coe�cients:

ω̂2
NT

=
2
∑NT

n=0 ann
2∑NT

n=0 an
. (1.64)

1.4.3.3 Resolution of the Laplace BVP

To get the an coe�cients, the Laplace BVP is solved in the �uid domain. In the coordinate system

(x, s), where ϕ(x, s) ≡ Φ(x, z), the Laplace equation (Eq.(1.51c)) is written as:

ϕxx + 2sxϕxs + (s2
x + s2

z)ϕss + sxxϕs = 0. (1.65)

In the case of a �at bottom, Eq.(1.65) can be simpli�ed to:

ϕxx +
4

h2
ϕss = 0. (1.66)

By substituting for ϕ, this simpli�es to:

µ2f̄(s)− 4f̄ ′′(s) = 0. (1.67)

in which the square of the dispersion parameter µ appears.
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When f̄(s) is replaced by its approximation (Eq.(1.63)), Eq.(1.67) becomes:

NT∑
n=0

an(µ2Tn − 4 Tn,ss) = 0. (1.68)

Finally, in order to eliminate the s coordinate, the Chebyshev-Tau operator (Eq.(1.33)) can be

applied to Eq.(1.68) for 0 ≤ p ≤ NT :

NT∑
n=0

an(µ2 < Tn >p −4 < Tn,ss >p) = 0 ⇒
NT∑
n=0

an(µ2Bp00n − 4Bp02n) = 0 (1.69)

where Bp00n = δpn and Bp02n =
1

cp

{
n(n2 − p2) if p = n− 2, n− 4, n− 6, ... 0

0 otherwise.

with cp de�ned in Eq.(1.33).

A linear system ofNT +1 equations is then formed for the unknown coe�cients an. This system

is made of:

• an equation imposing the free surface boundary condition (following Stokes theory):

f(0) = 1 ⇔ f̄(1) = 1 ⇒
NT∑
n=0

an = 1, (1.70)

• an equation imposing the impermeability of the bottom:

∂Φ

∂z

∣∣∣∣
z=−h

= 0 ⇒ f̄ ′(−1) = 0 ⇒
NT∑
n=0

(−1)n−1ann
2 = 0, and (1.71)

• the NT − 1 equations corresponding to the inner product of the Laplace equation with Tp

for p from 0 to NT − 2:

NT∑
n=0

an(µ2Bp00n − 4Bp02n) = 0 for p = 0, ..., NT − 2. (1.72)

An example of the linear system, in matrix format, for NT=4 is:
1 1 1 1 1

0 1 −4 9 −16

µ2 0 −16 0 −128

0 µ2 0 −96 0

0 0 µ2 0 −192

 .


a0

a1

a2

a3

a4

 =


1

0

0

0

0
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The solution of the system gives the expression of the an coe�cients as a function of µ2
, from

which the non-dimensional dispersion relation can be deduced:

ω̂2
NT

= 2

NT∑
n=1

ann
2. (1.73)

1.4.3.4 Analytical resolution of the linear system

The linear system of the an coe�cients can be solved “by hand” for small values of NT (2 to

4), but for larger values of NT the calculations become cumbersome. Therefore, a computer

algebra program wxMaxima (http://andrejv.github.io/wxmaxima/) is used to �nd the analytical

expression of the non-dimensional angular frequency corresponding to the linearized model with

a �at bottom as a function of the dispersion parameter µ for several values of NT . The results

can be expressed as a rational function of µ:

ω̂2
NT

µ2
=

(
C√
gh

)2

NT

=
1 +

∑NT−2
p=1 αpµ

2p

1 +
∑NT−1

p=1 βpµ2p
. (1.74)

The values of the coe�cients αp and βp for NT = 7 are given as an example (Table 1.1). The

coe�cients forNT from 2 to 15 are shown in Appendix A and will be compared to the theoretical

expression in the next section. For values ofNT greater than 15, there was not su�cient computer

memory (within a desktop linux machine) to obtain the analytical expressions.

αp for p = 1 to NT − 2 βp for p = 1 to NT − 1

α1 = 23
160

α2 = 443
92160

α3 = 197
3686400

α4 = 287
1415577600

α5 = 7
30198988800

β1 = 229
480

β2 = 937
30720

β3 = 4259
7372800

β4 = 37507
9909043200

β5 = 697
90596966400

β6 = 17
6088116142080

Table 1.1: Dispersion relation coe�cients for NT = 7

1.4.4 Accuracy of the dispersion relation of Misthyc

To study the accuracy of the dispersive properties of the model, the dispersion relation of Misthyc

is compared with Stokes’ analytical expression. Dispersion relations obtained with Boussinesq-

type models are also compared to these results. Boussinesq models are often used to simulate

water wave propagation. They do not resolve exactly the same set of equations, and their dis-

persion relation is di�erent from Stokes analytical solution. Some Boussinesq models have a

dispersion relation corresponding to a rational approximation of Padé type, which means that
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tanhµ/µ is approximated as a rational function of µ. Rational functions with the same order in

the numerator and denominator are known to give more accurate results. Relations for the order

(2,2) and (4,4) Padé approximants are considered in this comparison:

• the dispersion relation using a (2,2) Padé approximant is:(
C√
gh

)2

=
tanh µ

µ
≈ 1 + 1

15µ
2

1 + 2
5µ

2
, (1.75)

• the dispersion relation using a (4,4) Padé approximant is:(
C√
gh

)2

=
tanh µ

µ
≈ 1 + 1

9µ
2 + 1

945µ
4

1 + 4
9µ

2 + 1
63µ

4
. (1.76)

The Padé approximants may not be accurate enough to simulate well waves propagating in deep

water conditions (kh > π). Higher-order models have been proposed by several authors. Here,

two models are considered for further comparison. Their derived linear dispersion relations are:

• from the linearized two-layer Boussinesq model of Chazel et al. (2009):(
C√
gh

)2

=
1 + a2µ

2 + a4µ
4 + a6µ

6

1 + b2µ2 + b4µ4 + b6µ6 + b8µ8
, (1.77)

One can notice that this corresponds to the analytical expression for the dispersion relation

of Misthyc (Eq.(1.74)) for NT = 5 but with di�erent coe�cients:

a2 = 2S +
1

12
, a4 = S(2S +

1

12
) , a6 = S3

b2 = 2S +
5

12
, b4 = 3S2 +

2

3
S +

1

144
, b6 = S2(2S +

5

12
) , b8 = S4

and with S = σ(1− σ)/12 where σ = 0.314 is the recommended value.

• from the linearized extended Boussinesq model of Madsen et al. (2006):(
C√
gh

)2

=
1 + a2µ

2 + a4µ
4 + a6µ

6 + a8µ
8

1 + b2µ2 + b4µ4 + b6µ6 + b8µ8 + b10µ10
, (1.78)

One can notice that this corresponds to the analytical expression for the dispersion relation

of Misthyc (Eq.(1.74)) for NT = 6 but with di�erent coe�cients:

a2 =
1

6
− σ2

9
, a4 =

1

120
− σ2

54
+

4σ4

567
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a6 =
σ2

270
− σ3

72
+

29σ4

1701
− σ5

135
+

2σ6

2835

a8 =
σ4

7560
− σ5

1620
+

17σ6

17010
− 11σ7

17010
+

8σ8

59535

b2 =
1

2
− σ2

9
, b4 =

1

24
− σ2

18
+

4σ4

567

b6 =
σ

120
− 5σ2

216
+
σ3

54
− 5σ4

1134
+

σ5

945
− σ6

2835

b8 =
σ3

1080
− σ4

252
+

7σ5

1215
− σ6

315
+

4σ7

8505
+

σ8

59535

b10 =
σ5

113400
− σ6

22680
+

2σ7

25515
− σ8

17010
+

σ9

59535
− σ10

893025

where σ = 0.5 is the recommended optimal value.

The dispersion relations are compared by plotting the ratio between the phase velocity obtained

by each model and the phase velocity of �rst-order Stokes theory (Figure 1.3) for kh in the range

[10−2, 102] (where kh = 102
is approximately 30 times the value usually taken as the in�nite

depth limit). All of the models eventually diverge from C/CStokes = 1 for di�erent large values

of kh, with di�erent trends. Both Padé approximants diverge with larger values of the phase

velocity whereas the two “improved” Boussinesq models of Chazel et al. (2009) and Madsen et al.

(2006) diverge with lower values of the phase velocity. The phase velocities obtained with Mis-

thyc do not diverge monotonically. For shallow and intermediate water conditions, the models

are nearly equivalent, and di�erences become visible only for deep water conditions. The phase

velocity obtained with Misthyc using NT = 3 diverges for kh ≈ 0.4 and the (2,2) Padé ap-

proximants diverge for kh ≈ 2. Then, the curves corresponding to Misthyc with NT = 5 and

NT = 7 begin to diverge for smaller kh than the Boussinesq models of Chazel et al. (2009) and

Madsen et al. (2006). With NT = 20, C/CStokes ≈ 1 for the range of kh values considered here

(0.01 ≤ kh ≤ 100).

The relative error is also evaluated in comparison to the phase velocity given by �rst-order Stokes

theory (Figure 1.4). By setting a threshold of 2.5% error with respect to the Stokes phase velocity,

this error level is exceeded for increasing values of kh, whenNT increases: kh ≈ 6.9 forNT = 3,

and kh ≈ 56 for NT = 7, and the threshold is not exceeded for NT > 15 (for kh ≤ 100). The
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Figure 1.3: Phase velocity ratio in comparison with �rst-order Stokes theory, for Misthyc with

several values of NT (solid lines), for the (2,2) Padé approximant (dashed green), the (4,4) Padé

approximant (dashed light blue), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed

dark blue).

Figure 1.4: Phase velocity relative error in comparison with �rst-order Stokes theory, for Misthyc

with several values of NT (solid lines), the (2,2) Padé approximant (dashed green), the (4,4) Padé

approximant (dashed light blue), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed

dark blue).
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accuracy of the dispersion relation is thus improved with largerNT . Moreover, the relative error

of Chazel et al. (2009) is larger than the error obtained with the (2,2) and (4,4) Padé approximants

in shallow and intermediate water, but the trend reverses for a narrow range of kh for deep water

conditions.

Misthyc is then compared with the two “improved” Boussinesq models considered here in deep

water conditions (π ≤ kh ≤ 100). The phase velocity ratios are plotted for NT = 7 − 12 in

Figure 1.5. Considering the value of kh where C/CStokes diverges from 1, Misthyc obtains re-

sults similar to those of the two Boussinesq models for values of NT of about 8-9. Looking at

the phase velocity ratio relative error (Figure 1.6) for kh < 6 the relative error of the Boussinesq

model of Chazel et al. (2009) is larger than for Misthyc with NT = 7 but becomes smaller for a

narrow range of kh in deep water conditions. For kh < 30, the relative error of the Boussinesq

model of Madsen et al. (2006) is smaller than the errors for Misthyc with NT = 7. For kh > 30

both considered Boussinesq models have a larger relative error than Misthyc with NT > 10. For

both Boussinesq models, the 2.5% error limit is exceeded at kh ≈ 30 − 33 and at kh ≈ 55 for

Misthyc with NT > 7.

Thus, the dispersive properties of the linear version of Misthyc improve with an increasing value

of NT . This �exibility is an advantage when using the model in shallow or intermediate water

because a smaller value of NT can be used to reduce the computational time signi�cantly. For

NT > 10 the relative error remains under the 2.5% threshold for kh ∈ [0.01, 100].

Figure 1.5: Phase velocity ratio in comparison with �rst-order Stokes theory, for Misthyc with

several values ofNT (solid lines), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed

dark blue). The extent of the horizontal axis is from kh = π (deep water threshold) to kh = 100.
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Figure 1.6: Relative phase velocity in comparison with �rst-order Stokes theory, for Misthyc

with several values of NT (solid lines), Chazel et al. (2009) (dashed red) and Madsen et al. (2006)

(dashed dark blue). The extent of the horizontal axis is from kh = π (deep water threshold) to

kh = 100.



Chapter 2

Numerical implementation of the
1DH model

Dans ce Chapitre, dans un premier temps, les méthodes numériques utilisées pour

l’implémentation de la version 1DH du modèle sont présentées brièvement. Un schéma

explicite de Runge-Kutta à l’ordre 4 avec un pas de temps constant est utilisé pour

l’intégration en temps et un schéma aux di�érences �nies avec un pas d’espace variable

est utilisé pour estimer les dérivées horizontales. La résolution numérique du système

linéaire est réalisée à l’aide du solveur direct MUMPS. Dans un second temps, les condi-

tions aux limites pour l’absorption et la génération de vagues sont étudiées. Deux méth-

odes d’absorption sont comparées : l’utilisation d’une zone de relaxation dans laquelle

η et Φ̃ sont forcés à tendre progressivement vers 0 et l’ajout de termes dissipatifs dans les

conditions aux limites à la surface libre. Suite aux tests de sensibilité e�ectués, le choix

se porte sur l’utilisation d’une zone de relaxation d’au moins deux longueurs d’onde

de long pour plus de généralité. La condition à la limite appliquée à la frontière où se

situe le générateur de vague est étudiée vis à vis de la précision du champ de vague

généré pour des conditions de hauteur de vague incidente, période et direction �xées.

Les vagues sont générées selon la théorie linéaire. Quatre types d’implémentation, dif-

férant par le jeu d’équations appliqué au point situé sur la frontière lors de la résolution

du problème de Laplace, sont testés et comparés dans le cas de conditions à la limite

de type Dirichlet ou Neumann. Suite à cette étude, il est décidé d’ajouter une zone de

relaxation qui stabilise la génération et donne des résultats similaires quel que soit le

choix d’implémentation de la condition à la limite.
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2.1 Numerical methods

2.1.1 Integration in time

To integrate the Zakharov equations in time, the classical fourth order Runge Kutta (RK4) scheme,

with a constant time step, is chosen. This explicit method estimates the value of f(t+ ∆t) from

the value of f(t) and an approximation of the derivative through a weighted average of the

derivative at t, t + ∆t/2 and t + ∆t. At each time step the error is of the order O(∆t5) and

the cumulative error is of the order O(∆t4). This common method is used for a wide range of

applications, because of its stability and e�ciency.

For an equation of the type
∂y
∂t = f(t, x, y) (here, y=η or y=Φ̃), the RK4 scheme gives the follow-

ing expression for yt+∆t:

yt+∆t = yt +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.1)

with



k1 = f(t, x, y(x, t))

k2 = f(t+ ∆t
2 , x, y(x, t) + k1

∆t
2 )

k3 = f(t+ ∆t
2 , x, y(x, t) + k2

∆t
2 )

k4 = f(t+ ∆t, x, y(x, t) + k3∆t)

A RK4 scheme with a constant time step is currently used because the given accuracy is suf-

�cient for the current applications. Nevertheless, a scheme with an adaptive time step (see e.g.

Clamond et al., 2007) or another iterative scheme may improve the accuracy and/or computa-

tional time. Symplectic schemes could also be considered as the Zakharov system is Hamiltonian

(e.g. Xu and Guyenne, 2009). Clamond et al. (2007) have shown however that a strategy using

a high-order explicit scheme with adaptive an time-step seems more appropriate for practical

integration of such systems. This topic deserves additional study and tests, but in this work, the

well-known and robust RK4 scheme is retained.

2.1.2 Derivatives in space

To calculate the spatial derivatives in the system of equations, so-called collocation methods are

used. The derivatives at computational nodes are replaced by algebraic approximations involving

a set of neighboring nodes. Themth
order derivative of a function f at a node x = xi is expressed

as a linear combination of the values of the function f at the node xi and at itsn closest neighbors.

n is related to the targeted approximation order in the Taylor series expansion:

dmf

dxm

∣∣∣∣
x=xi

=

n∑
k=0

αmk f(xk) (2.2)
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where i ∈ [0, n], and the αmk coe�cients are the optimal weights, for the mth
order derivative,

depending on the number of nodes (n+ 1) used to obtain the derivative estimate at node x = xi.

In the following, the optimal weights for a stencil of size n+ 1 are denoted αmk,n.

Fornberg (1988) developed a recursive algorithm to compute the optimal weights using the La-

grange interpolator polynomials. The nth order Lagrange polynomial is de�ned from the n+ 1

values of f(xk) (k = 0 to n):

pn(x) =
n∑
k=0

Lk,n(x)f(xk) (2.3)

with Lk,n(x) =
(x− x0)...(x− xk−1)(x− xk+1)...(x− xn)

(xk − x0)...(xk − xk−1)(xk − xk+1)...(xk − xn)
(2.4)

The following approximation is obtained:

dmf(x)

dxm

∣∣∣∣
x=xi

≈ dmpn
dxm

∣∣∣∣
x=xi

=
n∑
k=0

dmLk,n(x)

dxm

∣∣∣∣
x=xi

f(xk) =
n∑
k=0

αmk,nf(xk) (2.5)

From the de�nition of Lk,n(x) (Eq.(2.4)), recurrence relations can be derived. The �rst one is the

relation between Lk,n and Lk,n−1 when k 6= n:

Lk,n(x) =
(x− xn)

(xk − xn)
Lk,n−1(x) (2.6)

The second relation is obtained for k = n, making the link between Ln,n and Ln−1,n−1:

Ln,n(x) =

(∏n−2
l=0 (xn−1 − xl)∏n−1
l=0 (xn − xl)

)
(x− xn−1)Ln−1,n−1(x) (2.7)

Now, the nth order Taylor series expansion of Lk,n(x) at x = xi is considered:

Lk,n(x) ≈
n∑

m=0

dmLk,n(x)

dxm

∣∣∣∣
x=xi

(x− xi)m
m!

=

n∑
m=0

αmk,n
(x− z)m

m!
(2.8)

When introduced into Eq.(2.6) and Eq.(2.7), two recurrence relations for the αmk,n coe�cients

(m > 0) are obtained by equating the terms (x− z)m with the same order m:
αmk,n = 1

(xk−xn) [kαm−1
k,n−1 − (xn − xi)αmk,n−1] for k 6= n

αmn,n =

(∏n−2
l=0 (xn−1−xl)∏n−1
l=0 (xn−xl)

)
[mαm−1

n−1,n−1 − (xn−1 − xi)αmn−1,n−1] for k = n

(2.9)

In the model, the fortran code provided by Fornberg (1988) is used. It computes recursively
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the optimal weights to estimate the �rst and second derivatives at a given node xi, given the

abscissa coordinates of the n+1 nodes forming the stencil (xk, k = 0, n) and the maximal order

of the targeted derivative. Misthyc is coded to allow the �exibility to choose the order of spatial

derivatives. However, to obtain high accuracy, n = 4 is used in all of the following applications

of the 1DH version of the model. The �rst and second order derivatives are then approximated

with an error of order O(∆x5) in the case of a centered stencil, i.e. with two points on both side

of the node where the derivatives are estimated. When the stencil is not centered (for nodes on

or close to the boundaries of the domain), �rst order derivatives are estimated with an accuracy

of orderO(∆x4) but second order derivatives are onlyO(∆x3) accurate. To recover theO(∆x4)

accuracy for nodes on the boundaries, one must take n = 5.

2.1.3 Resolution of the linear system

At each sub-step of the RK4 scheme, the discretization of the Laplace BVP in (x, s), with NPX

nodes in x and NT the maximum order of the Chebyshev polynomials, results in a system of

NPX(NT +1) linear equations for the coe�cients an(xi), for n = 0, .., NT and i = 1, .., NPX .

The corresponding matrix is sparse, and the system is currently solved in Misthyc using the direct

solver MUMPS (“MUltifrontal Massively Parallel Solver”, v4.10.0) (Amestoy et al., 2001, 2006),

using the default settings. Iterative solvers could be also used, and will be tested in the future.

2.2 Boundary conditions for wave generation and absorption

2.2.1 Wave absorption

2.2.1.1 Brief review of wave absorption in numerical models

Wave absorption is necessary in numerical models to prevent full re�ection of waves from the

lateral (numerical) boundaries. In many cases, this numerical absorption is designed to take

into account physical dissipative processes (e.g. wave breaking or bottom friction) or simply to

simulate fully open (radiative) boundary conditions without wave re�ection. There are several

methods used to absorb waves in numerical models, which can be classi�ed into two main groups:

1. Wave absorption is located at the boundary and is achieved with adapted boundary con-

ditions. It can be either a radiative boundary condition that allows waves to propagate

out of the domain or “active” absorption that adapts the boundary condition such that a

wave is generated to cancel out the incoming wave. These two options require knowing

the characteristics of the waves to be absorbed (celerity, direction of propagation). These

methods can be very e�cient for regular waves but are di�cult to extend and to optimize

for irregular waves with a wide range of wavelengths and directions.

2. Wave absorption can be carried out in a zone leading up to the lateral boundary either by

adding dissipative terms in the evolution equations (i.e. Kim et al., 2014; Koo and Kim, 2004;
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Zhang et al., 2007) or by imposing a pressure opposing the waves (i.e. Clamond et al., 2005;

Viotti and Dias, 2014). These terms are generally added progressively in space to avoid

discontinuities and numerical instabilities. Another solution is to implement a relaxation

zone where the solution obtained by the model is progressively modi�ed to correspond

to an imposed solution (i.e. Bingham and Agnon, 2005; Engsig-Karup, 2006). The e�-

ciency of this second kind of method strongly depends on several parameters: the length

of the relaxation zone, the mathematical formulation of the dissipative terms and its nu-

merical parameters, and the shape of the spatial ramp function. The optimization of these

characteristics might depend on the problem considered. Moreover, the lateral boundary

condition at the end of the domain still needs to be de�ned. Generally it is a fully re-

�ective condition or null normal velocity, but it may be a condition of type (1) to absorb

long waves that might not have been absorbed well by methods of type (2) (i.e. Clément,

1996; Grilli and Horrillo, 1997; Zhang and Duan, 2012). The main drawbacks of this kind

of method are that they require increasing the size of the computational domain and thus

the computational time, and they may not be very e�cient for absorbing very long waves.

The following paragraphs present a series of tests evaluating the implementation of methods of

type (2) with �rst a relaxation zone and then with the addition of dissipative terms.

2.2.1.2 Relaxation zones

Relaxation zones are used to impose a known solution with a progressive transition in space

to avoid the generation of shocks. The method is applied to both surface variables η and Φ̃.

Over the length of the relaxation zone, the solution obtained with the model (η, Φ̃), at the end

of each time step, is replaced by a linear combination of the obtained values and the imposed

solution (ηimp, Φ̃imp). The linear combination is de�ned by the relaxation coe�cient Cr , which

is a monotonic positive function varying between 0 at the entrance of the relaxation zone (x =

xrelax) and 1 at the boundary (x = xb) such that:

η(x, t) = (1− Cr(x)) η(x, t) + Cr(x) ηimp(x, t) (2.10)

Φ̃(x, t) = (1− Cr(x)) Φ̃(x, t) + Cr(x) Φ̃imp(x, t) (2.11)

If the imposed solution is the null function, the relaxation zone can be used to absorb, but it

can also be used in the case of wave generation with values of η and Φ̃ calculated using linear

(see Section 2.2.2) or nonlinear wave theory. As previously mentioned, this method depends on

adjustable parameters that have to be tuned and may depend on each speci�c problem, mainly

the length of the relaxation zone Lrelax and the shape of the relaxation coe�cient Cr . A good
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choice of these parameters is necessary to have an e�cient relaxation zone, and a series of tests

are completed here to study the sensitivity to these parameters.

The �rst characteristic to be studied is the shape of the relaxation coe�cient Cr . The condition

to meet for Cr can be obtained for various shapes with di�erent rates of transition from 0 to

1. A gradual change of the coe�cient is important to avoid wave re�ection from the relaxation

zone. The �rst implementation of Cr in the model was made following Bingham and Agnon

(2005), with Cr(x) =
(

1− 0.6 |xb−x|
|xb−xrelax|

)8
, and |xb − xrelax| = Lrelax. However, this shape

of coe�cient does not ful�ll the condition Cr(x = xrelax) = 1, so it was adapted to Cr(x) =(
1− |xb−x|

|xb−xrelax|

)α
, with α a real number to be determined for the optimization of the relaxation

zone. In Engsig-Karup (2006), relaxation zones for wave generation and absorption for high-order

Boussinesq-type models based on unstructured grids are studied, and α = 5 was suggested as

the optimal value. In Kim et al. (2014), dissipative terms are added to the free surface boundary

conditions. To avoid an abrupt change of the boundary conditions, they tested several ramp

functions to increase gradually the magnitude of the damping coe�cient. In the following set

of tests, the ramp functions used by Kim et al. (2014) are considered. Finally, six shapes of the

relaxation coe�cient Cr are also tested:

Cr1(x) =

(
1− |xb − x|
|xb − xrelax|

)5

(2.12)

Cr2(x) = 1− |xb − x|
|xb − xrelax|

(2.13)

Cr3(x) = 1− cos

(
π

2

x− xrelax
xb − xrelax

)
(2.14)

Cr4(x) =
1

2

(
1− cos

(
π
x− xrelax
xb − xrelax

))
(2.15)

Cr5(x) = sin

(
π

2

x− xrelax
xb − xrelax

)
(2.16)

Cr6(x) = 1− e
−20

x− xrelax
xb − xrelax (2.17)

All the tests in this section and the following one are made with the linear version of the code

for a regular wave of amplitude a = 0.06 m, wavelength L = 6 m and period T = 1.96 s that
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propagates over a �at bottom (h = 4 m). The domain extends from 0 m to 36 m (6L) and is

regularly meshed with ∆x = 0.7875 m (L/32). The wave is propagated during 60T with a time

step ∆t = 0.0613 s (T/32), and a vertical resolution NT = 7. Waves are generated in a 2L-long

relaxation zone with a Dirichlet boundary condition at the left boundary. This relaxation zone is

not varied in the simulations since the focus is on the relaxation zone added for wave absorption.

Unless speci�ed otherwise, the absorption relaxation zone is one wavelength (L) long. Figure

2.1 shows the shape of the factors 1 − Cr(x), by which the solution obtained by the model is

multiplied in the relaxation zone.

Figure 2.1: Shapes of the six 1 − Cr(x) coe�cients considered in the �rst set of simulations for

the absorption relaxation zone.

The e�ciency of the relaxation zone is evaluated by the re�ection measured inside the domain.

If waves are fully absorbed, there should be no re�ection of the incoming wave �eld. Once

the periodic steady state is reached, the time series of the free surface elevation at 32 locations

between x = 18 m and x = 24 m covering a domain of one wavelength are analyzed to obtain

the average wave height at each location. If no re�ection occurs (full absorption) the mean wave

height is expected to be constant, but as can be seen in Figure 2.2, the resulting normalized

wave height pro�les obtained for the di�erent shape of the relaxation coe�cient vary along the

domain. The wave height is modulated by the phase di�erence between the incoming HI and

the re�ected HR waves.

From the variations of the mean wave height pro�le, the re�ection coe�cientR can be computed
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Figure 2.2: Comparison of the normalized wave height for x ∈ [18, 24] m for di�erent shapes of

the relaxation coe�cient. H0 is the incident wave height, H0 = 2a = 0.12 m.

(Table 2.1).

R =
HR

HI
=
Hmax −Hmin

Hmax +Hmin
,

where Hmax and Hmin are the extreme values reached by the wave pro�le at each node. Re�ec-

tions are minimum with the relaxation coe�cient Cr1 and maximum with Cr6. The coe�cient

Cr6 makes the free surface elevation zero along a longer part of the relaxation zone in compari-

son with Cr1, but this does not seem to be the important characteristic to reduce re�ections. The

main di�erence between the studied relaxation coe�cients is their derivatives at x = xrelax (the

beginning of the relaxation zone), and it appears that the steeper the slope at the entrance of the

zone, the larger the re�ection in the domain. Engsig-Karup (2006) showed that at the interface not

only Cr(xrelax) = 0 must be satis�ed but also C ′r(xrelax) = C ′′r (xrelax) = C ′′′r (xrelax) = ... = 0

to avoid the generation of spurious waves. Among the options considered here, this is only the

case for Cr1, explaining the high re�ection coe�cients obtained with the other Cr shapes.

Relaxation coe�cient Cr1 Cr2 Cr3 Cr4 Cr5 Cr6

Re�ection coe�cient R 0.14 0.40 0.21 0.32 0.52 0.94

Table 2.1: Re�ection coe�cients for the di�erent shapes of the relaxation coe�cients considered

in the �rst set of simulations (Figure 2.1).

Based on this set of tests, a coe�cient of the type of Cr1 is used for the model implementation of

relaxation zones. A sensitivity test on the value of the α parameter is carried out. As can be seen

in Figure 2.3, this value has a non negligible in�uence on the shape of the relaxation coe�cient.
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As done previously, the mean wave height is computed from the time series of the free surface

elevation for x ∈ [18, 24] m. It is not constant and varies with x (Figure 2.4), showing that

re�ections occur for all values of α. The amplitude of the variations depends on the parameter

α, with higher variations for extreme values of α (both low, α = 1, and high, α = 9). The

re�ection coe�cients calculated from the wave height pro�les are plotted in Figure 2.5 (blue

line). The optimal value to minimize re�ection is approximately α = 3.5.

The same set of simulations was completed for longer relaxation zones of 1.5L and 2L. The evo-

lution of the re�ection coe�cientsR as a function of α are plotted in Figure 2.5. The lengthening

of the relaxation zone improves its e�ciency for every α, and the dependence on αweakens. The

optimal value of α seems to decrease with an optimal value around α = 3 for Lrelax = 1.5L and

α = 2.5 for Lrelax = 2L. With a relaxation zone of two wavelengths, the re�ection is less than

5% for α > 2 and decreases down to 1% in the best cases.

In all test cases where absorption is required, a relaxation zone of two wavelengths of the primary

wave in the region is generally applied. The relaxation technique is applied at the end of each

time step, making the results dependent on the time step. With a smaller time step, the re�ection

at the entrance of the absorption relaxation zone increases. When using the relaxation zone for

wave generation, the leading waves have larger amplitudes than with a smaller time step, so

re�ections increase, and if the �rst waves are not correctly absorbed, this prevents convergence

of the simulations as a function of the time step. For two simulations with di�erent time steps,

Figure 2.3: Shape of the coe�cient 1 − Cr(x) for several values of the α parameter considered

in the second set of simulations for the absorption relaxation zone.
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if the relaxation zone is applied with the same frequency (i.e. applied every two time steps for

∆t2 = ∆t1
2 ), the convergence in time is recovered.

2.2.1.3 Adding dissipative terms

A second possibility for wave absorption is to include an arti�cial damping zone near the end of

the domain. In this zone, arti�cial damping terms are progressively applied to the free surface

boundary conditions. Kim et al. (2014) tested �ve di�erent schemes to introduce wave absorption

in their 3D numerical wave tank, where damping terms such as η-type, Φ-type or Φn-type (with

Φn = ∂Φ
∂n the normal free surface velocity) were added to the KFSBC and/or the DFSBC. They

concluded that adding a Φn-type term in the DFSBC and a η-type in the KFSBC (their method 5)

was the solution minimizing re�ections (with a ramp function with shape Cr3) in their work:


∂Φ̃

∂t
= −gη − µ1

∂Φ

∂n
DFSBC

∂η

∂t
= w̃ − µ2η KFSBC

(2.18a)

(2.18b)

In this system, the �rst damping term contributes to the damping of the water particle velocity,

whereas the second one contributes to the damping of the free surface elevation. The coe�cients

µ1 and µ2 can be optimized through trial and error tests depending on wave characteristics. As

the propagation equations are modi�ed in the damping zone, a relation between the two damping

coe�cients is necessary to minimize the di�erence from the original boundary condition and to

Figure 2.4: Comparison of the normalized wave height for x ∈ [18, 24] m for several values of

the parameter α. H0 is the incident wave height, H0 = 2a = 0.12 m.
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Figure 2.5: Re�ection coe�cient as a function of the parameter α for three di�erent lengths of

the relaxation zone (Lrelax = 1L (blue), 1.5L (green) and 2L (red)).

prevent wave dispersion and distortion. This relation is µ2 = kµ1 for deep water conditions,

where k is the wave number. In their work, Kim et al. (2014) used a damping terms of µ0 = 2.5

such that µ1 = µ0 Cr(x) and µ2 = µ0 k Cr(x) .

The set of equations (2.18) was implemented in the linear version of Misthyc with a ramp function

corresponding to Cr3 for a damping zone of one wavelength. A sensitivity test on the value of

µ0 was carried out. The mean wave height for several values of the parameter µ0, around the

value of 2.5 used by Kim et al. (2014), are presented in Figure 2.6. The in�uence of the value of

µ0 is not negligible and the value µ0 = 2.5 is not the optimal one in that case.

The re�ection coe�cient as a function of µ0 is plotted in Figure 2.7. A minimum in re�ection is

obtained for µ0 ≈ 1.75. It is important to notice that the re�ection coe�cient is smaller than 5%

for the range of values of µ0 considered, with a damping zone of only one wavelength, whereas

when using a relaxation zone of one wavelength, the re�ection coe�cient is over 10% (Figure

2.5). The relaxation zone has to be extended to two wavelengths to obtain comparable re�ection

coe�cients.

2.2.1.4 Conclusion

From this study, it appears that the use of arti�cial damping terms may be more e�cient for wave

absorption than a relaxation zone since the same re�ection coe�cients are obtained for a shorter

length of the damping zone, allowing a gain of computational time. However, with the chosen
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Figure 2.6: Comparison of the normalized wave height for x ∈ [18, 24] m for several values of

the parameter µ0. H0 is the incident wave height, H0 = 2a = 0.12 m.

Figure 2.7: Re�ection coe�cient as a function of the parameter µ0 for a damping zone of one

wavelength.

arti�cial damping scheme a relation linking µ1 to µ2 is used, which relies on the wave number

k. It is not clear that the e�ciency of the damping terms is maintained for a range wavelengths,

for example in the case of irregular waves. This has not been tested yet. Moreover, the relation

between µ1 and µ2 is derived for deep water conditions only but what if this assumption is not
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veri�ed? The values of µ1 and µ2 then require being optimized, which may be more tedious than

an optimization of µ0 only. Thus the choice was made, in case where wave absorption is needed,

to use a relaxation zone of generally two wavelengths long.

Finally, all the tests here were completed with the linear version of the model. Kim et al. (2014)

studied the e�ects of non-linearity on the arti�cial damping scheme by applying it to waves of

increasing steepness. They showed that even if the total energy ratio of nonlinear simulations

to linear simulation diverged from one with the increase in wave steepness, it reaches a steady

state indicating that the damping scheme is still e�cient for nonlinear waves.

2.2.2 Wave generation

2.2.2.1 Brief review on wave generation in numerical models

When developing a numerical wave model, the focus is generally directed to the accurate rep-

resentation of wave propagation and kinematics. However, the accurate generation of incident

wave �elds with speci�ed characteristics (height, period, and direction) already presents a nu-

merical challenge.

Wave generation methods can be implemented either by using a moving (impermeable) bound-

ary, similar to what is done in experimental wave tanks (i.e. forcing the motion of �uid particles

in a Lagrangian manner) (Contento, 2000; Ducrozet et al., 2012b), or using numerical algorithms

to create the desired wave �eld by adapting the lateral or free surface boundary conditions or

the momentum equations. This second option can be divided into �ve main categories, most of

which were compared and discussed in Schmitt and Elsaesser (2015), with respect to developing

a model using the Volume of Fluid method:

1. lateral boundary forcing method: analytical solutions are prescribed at the incident, �xed

boundary in an Eulerian manner, for example the incident velocity pro�le (Ning and Teng,

2007; Xiao et al., 2008). Variations of this method exist, and they are categorized based on

how the wave conditions are imposed, including: Dirichlet-type conditions correspond-

ing to imposing the unknown variable itself at the boundary, Neumann-type conditions

corresponding to imposing its derivative (usually the normal derivative), or Robin-type

conditions that are a mix of Dirichlet and Neumann conditions.

2. mass source method: based on the observation that the in�ow and out�ow of water in the

domain can lead to a free surface displacement, the continuity equation is augmented with

a source term in a given region of the domain (Liam et al., 2014).

3. impulse source method: similar to the mass source method, this method consists in adding

source terms to the momentum equation (Lee and Suh, 1998).

4. surface pressure method: the wave motion is forced by applying a free surface pressure
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term in the DFSBC (Clamond et al., 2005) that is variable in space and time.

5. relaxation method: similar to what was presented in Section 2.2.1.2, a relaxation zone can

be implemented for wave generation using linear (or any high-order) wave theory to im-

pose progressively over a given distance the reference solution Engsig-Karup (2006). This

is done by replacing the computed solution at the end of each time step by a linear combi-

nation of this computed solution and the reference solution.

According to Schmitt and Elsaesser (2015), the relaxation method could lead to instabilities in

the cases they studied, whereas mass and impulse source methods proved to be quite accurate

and stable. Nevertheless, although the mass source method is simple to implement, it is limited

in the range of wave heights that can be created. The impulse source method is more complex

to implement and more computationally demanding, but it does not su�er from limitations on

the maximum possible wave height. Finally, methods 2-5 require increasing the domain size

to create a zone for waves to develop progressively, while method 1 (forcing at the boundary

only) allows minimizing the size of the computational domain. For a more complete study, these

methods could be compared with respect to the generation of spurious free waves, which can be

a limitation factor.

Wave generation using a boundary forcing condition method is studied in the Misthyc model in

the following section, in combination with the application of a relaxation zone.

2.2.2.2 Boundary conditions at the wave generator

To solve the Laplace problem, boundary conditions must be imposed at the lateral boundaries. At

the wave maker boundary (located at x = xb) either a Dirichlet condition (imposing the velocity

potential Φ) or a Neumann condition (imposing the horizontal velocity u, which is the bound-

ary normal velocity) can be used. In the following sections, the expression for both conditions

applied at x = xb at time t are presented when linear theory is used to de�ne Φ and u for a 1DH

domain (x, z).

Linear representation of incident waves

The simplest way to generate regular or irregular progressive waves is to consider a linear model

such that the wave signal can be decomposed into Nc independent sinusoidal waves. Each com-

ponent i is characterized by its heightHi, angular frequency ωi, wave number ki (obtained from

the linear dispersion relation), phase speedCi and phaseψi. Using linear wave theory, the phases

ψi are assumed uncorrelated. Thus every component i can be treated separately as a solution of

the linearized problem for a �at bottom (where h is the water depth). The free surface elevation

η(x, t), velocity potential Φ(x, z, t) and horizontal speed u(x, z, t) of the wave train are obtained
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by the superposition of each wave component.

η(x, t) =

Nc∑
i=1

Hi

2
cos(kix− ωit+ ψi), (2.19)

Φ(x, z, t) =

Nc∑
i=1

Hi

2

g

ωi

cosh(ki(z + h))

cosh(kih)
sin(kix− ωit+ ψi), (2.20)

u(x, z, t) =

Nc∑
i=1

Hi

2

g

Ci

cosh(ki(z + h))

cosh(kih)
cos(kix− ωit+ ψi). (2.21)

All of the results presented in this chapter use a linear representation of the incident wave �eld.

Then during propagation, the waves adapt to be consistent with the nonlinear model. When

the incident wave is too far from a linear wave, the linear generation can lead to the creation of

parasitic waves and instabilities. In such cases, it is possible to generate second or higher-order

regular waves (i.e. Rienecker and Fenton, 1981). It becomes more complicated when dealing with

irregular waves because of nonlinear interactions between all of the components that have to be

taken into account. Nevertheless, a second order generation is possible by using Dalzell (1999).

Dirichlet boundary condition

To derive the equations accounting for the Dirichlet boundary condition, the equality between

the imposed velocity potential and the one given by the model is expressed at the boundary

x = xb in the transformed (x, s)-plane. The imposed velocity potential ϕI(xb, s, t) given by

linear theory is:

ϕI(xb, s, t) =

Nc∑
i=1

Ai cosh(Bi(1 + s)), (2.22)

where Ai and Bi are functions depending on xb and t:

Ai =
Hi

2

g

ωi cosh(kih)
sin(kixb − ωit+ ψi), i = 1, ..., Nc (2.23)

Bi =
kih

+

2
=
ki
2

(h+ η(xb, t)), i = 1, ..., Nc. (2.24)

At the same time, the spectral approach used in the vertical direction in the model, gives the

following expression for the velocity potential:

ϕ(x, s) =

NT∑
n=0

an(x)Tn(s), (2.25)
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Writing that at the wave maker boundary x = xb, both expressions must be equal ϕI = ϕNT :

NT∑
n=0

an(xb)Tn(s) =

Nc∑
i=1

Ai cosh(Bi(1 + s)) ∀s ∈ [−1; 1], (2.26)

This expression is then projected on the Chebyshev polynomial basis by applying the operator

< f >p≡ 2
πCp

< f, Tp > for p = 0, 1, ..., NT to (2.26):

NT∑
n=0

an(xb) < Tn >p=

Nc∑
i=1

Ai < cosh(Bi(1 + s)) >p, p = 0, 1, ...., NT . (2.27)

The left-hand-side of Eq.(2.27) can be rewritten as:

NT∑
n=0

an(xb) < Tn >p=

NT∑
n=0

an(xb)δnp = ap(xb), (2.28)

Moreover, it can be shown that the right-hand-side of Eq.(2.27) can be expressed using Ip, the

modi�ed Bessel function of the �rst kind of order p (Tian and Sato, 2008):

Nc∑
i=1

< cosh(Bi(1 + s)) >p=
2

Cp

Nc∑
i=1

Ip(Bi)

{
coshBi if p is even,

sinhBi if p is odd.
(2.29)

Finally, combining Eq.(2.28) and Eq.(2.29), Eq.(2.27) is equivalent to:

ap(xb) =

Nc∑
i=1

Ai
2

Cp
Ip(Bi)

{
coshBi if p is even,

sinhBi if p is odd.
(2.30)

Thus, the ap(xb) coe�cients can be computed analytically for any time t, for p = 0, 1, ..., NT .

When the incident waves cannot be decomposed as a sum of linear sinusoidal waves as in the case

for a solitary wave, for instance, the modi�ed Bessel function of the �rst kind (Ip) can no longer

be used to compute the ap(xb) for p = 0, 1, ..., NT . For more general cases, the vertical pro�le

of the velocity potential φ(xb, s, t), at x = xb for time t, has to be “directly”projected on the

Chebyshev polynomial basis by applying the operator < f >p. A Gauss-Chebyshev quadrature

(Eq.((2.31))) is used to compute the operator integral.

< f >p≡
2

πCp

∫ 1

−1

f(s)Tp(s)√
1− s2

ds ≈
N∑
k=1

wkf(sk)Tp(sk) (2.31)

with sk = cos
(

(2k−1)π
2N

)
, wk =

π

N
, where N is the number of nodes discretizing the vertical

pro�le of the velocity potential.

Thus the equivalent of Eq.(2.30) for an incident wave �eld that cannot be decomposed into sinu-
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soidal waves is:

ap(xb) =< φ(xb, s, t) >p . (2.32)

Neumann boundary condition

The method is used to obtain the expression for the Neumann boundary condition is quite similar

to the one used for the Dirichlet boundary condition, but now the horizontal velocity pro�le uI

at the wave maker (x = xb) is considered:

uI(xb, s, t) =

Nc∑
i=1

Ai cosh(Bi(1 + s)), (2.33)

with

Ai =
Hi

2

gk

ωi cosh(kih)
cos(kixb − ωit+ ψ), i = 1, ..., Nc (2.34)

Bi =
kih

+

2
=
ki
2

(h+ η(xb, t)) i = 1, ..., Nc. (2.35)

The spectral approach in the vertical leads to the following expression for the horizontal velocity

pro�le.

u(x, s) =

NT∑
n=0

a′n(x)Tn(s) +

NT∑
n=1

an(x)
h−x h

+ − sh+
x h

+

h+2
T ′n(s). (2.36)

Similar to what was done previously for the velocity potential, the equality of the two expressions

of the horizontal velocity at the wave maker boundary (x = xb) gives:

NT∑
n=0

a′n(xb)Tn(s) +

NT∑
n=1

an(xb)
h−x h

+ − sh+
x h

+

h+2
T ′n(s) =

Nc∑
i=1

Ai cosh(Bi(1 + s)) ∀s ∈ [−1; 1], (2.37)

Then the operator < f >p is applied to Eq.(2.37) for p = 0, 1, ..., NT :

NT∑
n=0

a′n(xb) < Tn >p +

NT∑
n=1

an(xb)

[
h−x h

+

h+2
< T ′n >p −

h+
x h

+

h+2
< sT ′n >p

]
=

Nc∑
i=1

Ai < cosh(Bi(1 + s)) >p, p = 0, 1, ...., NT . (2.38)
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The left-hand side of Eq.(2.38) can be rewritten as:

NT∑
n=0

a′n(xb) < Tn >p +

NT∑
n=1

an(xb)

[
h−x h

+

h+2
< T ′n >p −

h+
x h

+

h+2
< sT ′n >p

]
=

2a′p(xb) +

NT∑
n=0

Cpnan(xb), p = 0, 1, ...., NT , (2.39)

where Cpn =
m011Bp01N +m111Bp11n

m020
with m011 = 2h+h−x , m111 = −2h+h+

x and m020 =

h+2
.

The right-hand side term is the same as in Eq.(2.29), so Eq.(2.38) can �nally be rewritten as:

2a′p(xb) +

NT∑
n=0

Cpnan(xb) = 2

Nc∑
i=1

Ai
2

Cp
Ip(Bi)

{
coshBi if p is even,

sinhBi if p is odd.
(2.40)

The right-hand side of Eq.(2.40) can be analytically computed for any time t, for p = 0, 1, ..., NT .

Just as for the Dirichlet boundary condition, if the incident waves cannot be decomposed as

a sum of linear waves, the vertical pro�le of the horizontal velocity u(xb, s, t) has to be “di-

rectly”projected on the Chebyshev polynomial basis through the Gauss-Chebyshev quadrature

(Eq.(2.31)).

2.2.2.3 Numerical implementation

Once the set of equations corresponding to Dirichlet or Neumann boundary conditions are de-

rived, and in particular the associated right-hand side coe�cients, the question is how to imple-

ment it. With the spectral approach in the vertical, the NT + 1 coe�cients of the decomposition

on the Chebyshev polynomial basis have to be determined from a set of NT + 1 equations. In

the case of the nodes within the domain (not at the lateral boundary), the set of equations in-

cludes the projection of the main equation (Laplace equation) on the �rst NT − 2 Chebyshev

polynomials, completed with the Dirichlet boundary condition at the free surface, and the no-

�ux condition at the bottom.

Two initial options are considered to implement the lateral boundary conditions: the simpler

option (option A) is to consider a set of equations consisting only of the boundary condition

equations (Eq.(2.30) or Eq.(2.40)) for p = 0, ..., NT .

The second option of implementation (option B) is to do the same as for the interior nodes, by

replacing the Laplace equation by Eq.(2.30) or Eq.(2.40) for p = 0, ..., NT − 2.

Two other options are also tested, based on the fact that the velocity potential is de�ned up to a
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constant. In the case of optionB, with a Dirichlet lateral boundary condition, the �rstNT −2 an

coe�cients are �xed leaving only two degrees of freedom through the an related to higher order

polynomials to make the velocity potential to verify the free surface and the bottom condition.

As it will be shown in the following part, this can lead to vertical oscillations in the pro�les of

the velocity potential. Here, the coe�cient a0 (related to the constant polynomial T0) is left free

so that the adaptation to the vertical boundary condition (particularly the free surface boundary

condition) is mainly obtained through the a0 coe�cient. Thus, for the third option of implemen-

tation (optionC), the set of equations for the node on the boundary includes Eq.(2.30) or Eq.(2.40)

for p = 1, ..., NT−1, supplemented by the free surface and the bottom boundary conditions. The

last option (option D) only takes into account the free surface boundary condition and Eq.(2.30)

or Eq.(2.40) for p = 1, ..., NT . All the four options tested for the implementation of the lateral

boundary condition for wave generation are summarized in Table 2.2.

Another question concerning the implementation is the introduction of the lateral boundary con-

dition in time. The goal here is to generate waves in a domain were the �uid is initially at rest

(η(x, t = 0) = 0, ϕ̃(x, t = 0) = 0), but in linear theory, η and ϕ̃ have a phase di�erence of π/2

so when η reaches an extremum, ϕ̃ is zero. So, for a Dirichlet lateral boundary condition, the

initial condition on ϕ̃ has to be set constant with a value consistent with the lateral condition.

With proper initial conditions to assure the consistency with imposed lateral conditions, it is

possible to apply “directly” the Dirichlet or the Neumann boundary condition at x = xb. Never-

theless, it is an abrupt manner to introduce the lateral condition, and the discontinuity caused by

the di�erences between the conditions applied at the boundary and the interior nodes can grow,

causing the simulation to end prematurely or long waves can be generated that interfere with

the primary wave if not absorbed properly.

One solution to reduce this phenomenon is to introduce the boundary condition progressively

in time. The incident condition ϕI , uI and ηI are multiplied by a coe�cient varying linearly

from 0 to 1 over a certain duration generally equal to one or two wave periods. Second solu-

tion is, instead of introducing the boundary conditions progressively in time, to introduce them

progressively in space through the addition of a relaxation zone where the reference solution is

given by linear wave theory.

These options for wave generation in a domain where the �uid is initially at rest are tested for

regular waves propagating in deep water conditions.
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option set of equations for x = xb

A

ap(xb) =< φI(xb, s) >p for p = 0,NT (Dirichlet)

2a′p(xb) +
∑NT

n=0Cpnan(xb) =< uI(xb, s) >p for p = 0,NT (Neumann)

B

ap(xb) =< φI(xb, s) >p for p = 0,NT − 2 (Dirichlet)

2a′p(xb) +
∑NT

n=0Cpnan(xb) =< uI(xb, s) >p for p = 0,NT − 2 (Neumann)

∑NT
n=0 an(xb) = Φ̃(xb) for s = 1

∑NT
n=0 h

+hx (−1)n a′n(xb) +
∑NT

n=0 2(1 + h2
x) (−1)n−1n2 an(xb) = 0 for s = −1

C

ap(xb) =< φI(xb, s) >p for p = 1,NT − 1 (Dirichlet)

2a′p(xb) +
∑NT

n=0Cpnan(xb) =< uI(xb, s) >p for p = 1,NT − 1 (Neumann)

∑NT
n=0 an(xb) = Φ̃(xb) for s = 1

∑NT
n=0 h

+hx (−1)n a′n(xb) +
∑NT

n=0 2(1 + h2
x) (−1)n−1n2 an(xb) = 0 for s = −1

D

ap(xb) =< φI(xb, s) >p for p = 1,NT (Dirichlet)

2a′p(xb) +
∑NT

n=0Cpnan(xb) =< uI(xb, s) >p for p = 1,NT (Neumann)

∑NT
n=0 an(xb) = Φ̃(x) for s = 1

Table 2.2: Description of the four options considered to implement the lateral boundary condition

for wave generation. The set of equations accounting for the node on the lateral boundary for

the Laplace resolution is detailed.

2.2.2.4 Tests and analysis

To study and compare the di�erent ways to generate waves, tests are conducted for the case of

a small amplitude regular wave (a = 0.001 m, L = 2 m and T ≈ 1.132 s) propagating in deep
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water (h = 10 m). The wave steepness is small 2a/L = 0.1%, so linear theory should give a

good approximation. The associated relative water depth kh = 10π is ten times the usual limit

taken for deep water conditions. For such a high relative water depth, a large value of NT is se-

lected to represent correctly the dispersion relation (here NT = 20). The computational domain

extends from x = 0 m to x = 30 m and is regularly meshed with ∆x = 0.02 m (≈ L/100). From

x = 22 m, a relaxation zone is applied to absorb waves arriving at the right boundary. The wave

is propagated during 15 T with a constant time step ∆t = 0.01132 s (≈ T/100). The steady state

is not reached after 15 T but to have quantitative estimate of the representation of the wave by

the model, an averaged absolute error is computed for η on the interval x ∈ [0, 8] m.

Impact of the introduction in time of the lateral boundary condition
First the free surface elevation pro�les at t ≈ 15T are compared to evaluate the impact of the in-

troduction of the lateral boundary in time where the linear solution is used as a reference (Figure

2.8). Without a time ramp, optionA does not work for the Dirichlet condition because a disconti-

nuity appears at the node on the boundary inducing large derivatives that amplify and cause the

simulation to blow up. OptionsC andD give very similar results for the Dirichlet condition with

an error of 3.3 10−5
m. Option B shows results with a slightly larger error of 5.9 10−5

m. The

wavelength of the �rst wave in the wave train is larger than the imposed wavelength. These long

waves may not be well absorbed by absorption zone and create re�ections in the domain. For the

Neumann boundary condition, only options A and B work, giving very similar results with an

error of 2.7 10−5
m (Figure 2.8a, right). The long wave generated is smaller than that generated

with Dirichlet boundary conditions. Options C and D do not work with Neumann boundary

conditions because these options consist of not imposing the component of the horizontal speed

component that is constant in the vertical, whose contribution may not be negligible. Hence,

the imposed horizontal speed is not consistent with the wave characteristics and instabilities

quickly develop. Then, applying a temporal ramp with Dirichlet boundary conditions improves

the results obtained with option B (error 1.3 10−5
m ) but spurious oscillations with very short

wavelengths appear and propagate in the domain. OptionA still does not work, and the temporal

ramp has almost no e�ect on the results of options C and D. For the Neumann boundary con-

ditions both results for options A and B are improved (error 3.0 10−6
m) and options C and D

are now stable, giving similar results that are, however, quite far from the linear solution (Figure

2.8b, right). Using a relaxation zone in addition to Dirichlet or Neumann boundary conditions

helps to generate stable waves. The four options of implementation of the boundary conditions

work, giving very similar results for the Dirichlet condition with an error of 4.2 10−6
m. For the

Neumann condition, options C and D (error 1.8 10−5
m) still show some small di�erences with

optionsA andB (error 6.2 10−6
m). The relaxation zone seems to dominate the wave generation

in comparison with the lateral boundary conditions.

The results obtained with Dirichlet or Neumann boundary conditions do not appear qualitatively
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di�erent when looking at the free surface elevation. However, the option (A, B, C , D) of im-

plementation for which the simulations �nish without developing instabilities are di�erent. The

di�erences between the various implementation options are investigated in the following sec-

tions looking more particularly at the results at the boundary node x = xb when a linear ramp

in time is applied.

Comparison of Dirichlet and Neumann boundary conditions with option B
The option B for the implementation of the boundary conditions is the only option producing

stable simulations for both Dirichlet and Neumann conditions. In Figure 2.9, the an coe�cients

obtained at the end of the time step corresponding to t ≈ 15T are compared with the an given

by the projection of the linear solution for the velocity potential on the 21 �rst Chebyshev poly-

nomials (black dots). As expected, the an for n = 0 to 18 are exactly equal to those calculated

with the linear solution since they are imposed. Di�erences are observed for the two last an,

whose values are several orders of magnitude larger than those of the linear solution. This is a

consequence of the need to satisfy the free surface and the bottom boundary conditions in addi-

tion to the Dirichlet lateral boundary condition. This leads to oscillations in the vertical pro�le

of the velocity potential Φ (Figure 2.10, right), emphasized in the horizontal velocity u by the

horizontal derivative. The two last an obtained with the Neumann condition also present larger

values than the linear solution, but they are smaller than the ones from the Dirichlet condition.

It also leads to oscillations in the vertical pro�le of u, w and Φ but with smaller amplitudes. Con-

trary to what is obtained with the Dirichlet condition, the �rst an are not rigorously equal those

from the linear solution, resulting in a slightly di�erent shape of the vertical pro�le of Φ (Figure

2.10, right). Thus, for optionB, the largest di�erence between the Dirichlet and Neumann lateral

boundary conditions is the fact that for the Neumann condition, the an related to lower orders can

di�er from the one from the linear solution not limiting the degrees of freedom to the two last an.

Comparison of options B, C and D for Dirichlet boundary conditions
In Figure 2.11, are shown the e�ects of the di�erent options of implementing the Dirichlet con-

ditions on the an. Options C and D produce almost the same an except for a20, which is kept

free for option C . The two main di�erences with option B are: (1) the value of a0 resulting in

a shift of Φ from the linear solution (Figure 2.12, right) and (2) the values of a19 and a20 lower

than 10−8
where it is equal to 10−6

for option B (resulting in smaller oscillations of the u, w

and Φ pro�les). Even with options C and D, the horizontal velocity pro�le does not correspond

exactly to the linear solution.

Comparison of options A and B for the Neumann boundary condition
Similarly, Figure 2.13 shows the e�ects of the di�erent options of implementing the Neumann
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condition on the an. The di�erence between option A and B is only signi�cant for the last two

coe�cients (a19 and a20) which mainly results in larger oscillations of the Φ and u (in particular

for option B) pro�les. Even for option A, the an coe�cients are not equal to those of the linear

solution, indicating that the wave that propagates is not exactly a linear wave. This may be due

to the propagation of an additional long wave involuntarily generated. The vertical pro�le of

the horizontal velocity for option B has larger oscillations than the one obtained with option A.

Nevertheless, the free surface pro�les are very similar, because η and Φ̃ and their propagation in

time depend on the vertical velocity at the free surface w̃, which is very similar for both options.

Conclusion
When applying a relaxation zone for the wave generation, similar results for the vertical pro-

�les of u, v, and Φ are obtained. The four options (A, B, C and D) of implementation of the

lateral boundary condition lead to nearly the same evolution of the free surface elevation. The

e�ect of the relaxation zone dominates over the lateral boundary condition. Therefore, in the

following test cases (unless otherwise speci�ed), Dirichlet lateral boundary conditions are im-

plemented with optionB to generate waves, with a relaxation zone usually one wavelength long.

For irregular wave cases, the wavelength is calculated using the peak frequency.
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(a) without time ramping condition

(b) with a linear time ramping condition

(c) with a relaxation zone of one wavelength

Figure 2.8: Free surface elevation pro�le after 1500 time steps (15T ). Comparison of the three

methods to introduce the boundary condition in time, for the four implementation options (A,

B, C , D), for Dirichlet boundary condition (left) and Neumann boundary conditions (right).
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Figure 2.9: Comparison of the an coe�cients computed at t ≈ 15T , at x = xb, for Dirichlet

boundary conditions (red triangles) and Neumann boundary conditions (blue triangles). The

coe�cients corresponding to the linear potential expanded on the Chebyshev polynomial basis

are presented for reference (black dots).

Figure 2.10: Comparison of the horizontal u and vertical w velocity pro�les together with the

velocity potential pro�le computed at t ≈ 15T , at x = xb, for Dirichlet boundary conditions

(red) and Neumann boundary conditions (blue). The linear solution is presented for reference

(black dashed line).
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Figure 2.11: Comparison of the an coe�cients computed at t ≈ 15T , at x = xb, for Dirichlet

boundary conditions for options B, C and D. The coe�cients corresponding to the linear po-

tential expanded on the Chebyshev polynomial basis are presented for reference (black dots).

Figure 2.12: Comparison of the horizontal u and vertical w velocity pro�les together with the

velocity potential pro�le computed at t ≈ 15T , at x = xb, for Dirichlet boundary conditions for

options B, C and D. The linear solution is presented for reference (black dashed line).
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Figure 2.13: Comparison of the an coe�cients computed at t ≈ 15T , at x = xb, for Neumann

boundary conditions for options A and B. The coe�cients corresponding to the linear potential

expanded on the Chebyshev polynomial basis are presented for reference (black dots).

Figure 2.14: Comparison of the horizontal u and vertical w velocity pro�les together with the

velocity potential pro�le computed at t ≈ 15T , at x = xb, for Neumann boundary conditions

for options A and B. The linear solution is presented for reference (black dashed line).
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Chapter 3

Validation of the 1DH version of the
model

Ce chapitre est consacré à la validation de la version 1DH dumodèle à travers l’applica-

tion à six cas tests. Tout d’abord, la version linéaire du modèle est utilisée pour simuler

la ré�exion et la transmission de vagues régulières lors de leur propagation au-dessus

d’un pro�l bathymétrique dé�ni par Roseau (1976), pour lequel une solution ana-

lytique est disponible. Ensuite, une étude de convergence approfondie, menée pour

les trois paramètres numériques ∆t, ∆x et NT , dans le cas d’une onde solitaire se

propageant sur une longue distance, permet de montrer que les ordres de convergence

en temps et en espace sont cohérents avec le schéma de Runge-Kutta d’ordre 4 util-

isé pour l’intégration en temps et le schéma aux di�érences �nies d’ordre 4 en espace

pour la discrétisation des dérivées horizontales. La convergence exponentielle avec le

paramètreNT due à l’approche spectrale appliquée dans la direction verticale est égale-

mentmise en évidence. Finalement, le modèle est comparé à des données expérimentales

pour des cas de propagation de vagues non-déferlantes: la dynamique non-linéaire des

composantes libre et liée de la seconde harmonique lors de la génération d’un train

d’ondes par un générateur de vague de type piston (Chapalain et al., 1992), la généra-

tion de vagues par un mouvement impulsif du fond (Hammack, 1973), la propagation

de vagues régulières au-dessus d’une barre submergée (Dingemans, 1994) et la prop-

agation de vagues irrégulières au-dessus d’une plage présentant un haut-fond (Becq-

Girard et al., 1999). L’ensemble de ces cas tests permet de montrer que le modèle est

capable de représenter précisément les e�ets non-linéaires et dispersifs de génération et

pro-pagation d’harmoniques d’ordres supérieurs ainsi que les transferts d’énergie entre

ces di�érentes composantes.
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This chapter is devoted to the validation of the 1DH version of the model, with a series of six test

cases.

The model is �rst validated by comparing the simulation results of the linear version to analytical

solutions of the linearized problem for the re�ection of regular waves propagating over a partic-

ular bathymetric pro�le proposed by Roseau (1976). Secondly, an advanced study of convergence

is carried out for the case of a nonlinear solitary wave propagating over a �at bottom, for the

three numerical parameters ∆t, ∆x and NT controlling the accuracy of the solution. The model

is then compared with measurements from four laboratory experiments of non-breaking waves:

nonlinear dynamics of free and bound second-order components in a wave train generated by a

piston-type wave maker in constant water depth (Chapalain et al., 1992), wave generation from

an impulsive upthrust of the bottom (Hammack, 1973), propagation of a regular waves over

a submerged bar (Dingemans, 1994), and propagation of irregular waves over a barred beach

(Becq-Girard et al., 1999).

The majority of these test cases were presented in journal papers or conference proceedings.

Case 2 (solitary waves) was presented at the conference Journées Nationales Génie Côtier Génie

Civil 2014 in Dunkerque, while the third case was presented at the ICCE conference 2014 in Seoul

(Benoit et al., 2014), and the last three test cases were published in Coastal Engineering (Raoult

et al., 2016).
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3.1 Re�ection of linearwaves propagating overRoseau-type bathy-
metric pro�le

In Roseau (1976), the propagation of gravity waves in a in�nite channel of variable depth h(x) is

studied using the linear potential �ow theory, in one horizontal dimension (x, z). The bathymetry

varies between two �at regions h0 (for x → −∞) and h1 (for x → +∞) with h0 > h1.

Monochromatic waves are considered, with angular frequency ω. The motion is described by

the velocity potential Φ(x, z, t) = Re[φ(x, z)eiωt] where φ satis�es the Laplace equation in the

�uid domain, and a mixed condition at the (linearized) free surface (z = 0), and an impermeable

boundary condition at the bottom (z = −h(x)):


φxx + φzz = 0 for −∞ < x < +∞ and −h(x) ≤ z ≤ 0

−ω
2

g
φ+ φz = 0 at z = 0

hxφx + φz = 0 at z = −h(x)

(3.1a)

(3.1b)

(3.1c)

The �uid domain (x, z) is transformed using conformal mapping (Z = F (ζ)) into a rectangular

domain in the (ξ, χ)-plane, where Z = x + iz and ζ = ξ + iχ. Thus z = 0 becomes χ = 0,

and z = −h(x) becomes χ = −1. The boundary value problem expressed in the (ξ, χ)-plane for

ϕ(ξ, χ) = φ(x, z) is then written as:


ϕξξ + φχχ = 0 for −∞ < ξ < +∞ and −1 ≤ χ ≤ 0

−ω
2

g
F ′(ξ)ϕ+ ϕχ = 0 at χ = 0

ϕχ = 0 at χ = −1

(3.2a)

(3.2b)

(3.2c)

The choice of the conformal mapping function is important in the de�nition of the problem since

it determines the family of the bottom topography in the (x, z)-plane that can be mapped. Here,

the conformal mapping function is (following Roseau (1976)):

F (ζ) = h0

(
ζ +

ε− 1

πβ
ln

(
1 + eβπζ

))
, (3.3)

where the parameter β ∈]0, 1[, ε ∈]0, 1[ since it is assumed that h0 > h1, and ε = h1/h0 is the

far �eld depth ratio. This conformal mapping corresponds to a bottom pro�le varying smoothly

from the depth h0 to h1. The width of the transition zone is controlled by the parameter β.

The bed slope steepens when β increases. Thus the bottom pro�le is de�ned by the two non

dimensional quantities ε and β.

The bottom elevation is de�ned parametrically using the conformal mapping function F (ζ) for

ξ describing ]−∞,+∞[:
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x(ξ)

h0
= Re

[
1

h0
F (ξ − i)

]
= ξ − 1− ε

βπ
Re

[
ln

(
1 + eβπ(ξ−i)

)]
,

y(ξ)

h0
= Im

[
1

h0
F (ξ − i)

]
= −1− 1− ε

βπ
Im

[
ln

(
(1 + eβπ(ξ−i)

)]
.

This particular form of the mapping was chosen by Roseau (1976) because it gives an explicit and

exact expression for the modulus of the re�ection coe�cient R due to the bottom transition:

R =

∣∣∣∣∣∣
sinh

(
k0h0−k1h1

β

)
sinh

(
k0h0+k1h1

β

)
∣∣∣∣∣∣ , (3.4)

where ki are calculated from the linear dispersion relation ω2 = gki tanh(kihi).

The transmission coe�cient T is obtained by conserving the energy �ux:

T =
cosh(k1h1)

cosh(k0h0)

√
(1−R2)

2k0h0 + sinh(2k0h0)

2k1h1 + sinh(2k1h1)
. (3.5)

To study the accuracy of Misthyc for the representation of wave propagation over a bottom

pro�le with a sharp transition between two �at regions of di�erent depths, the linear version of

the code is applied to two bathymetric pro�les. The choice was made to use the linear version

of Misthyc to compare to Roseau (1976)’s analytical results. The �rst bottom pro�le is de�ned

by ε = 1/3 and β = 0.25 and the second pro�le presents a sharper transition for a larger “step”

with ε = 0.1 and β = 0.5 (Figure 3.1).

Figure 3.1: Bottom pro�les and snapshots of free surface elevation (at an arbitrary time) for the

two sets of (ε, β) considered: (a) ε = 1/3 and β = 0.25, and (b) ε = 0.1 and β = 0.5.
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The re�ection and transmission properties depend on the wave frequency. Two conditions for

the incident wave are therefore considered: one corresponding to a small relative water depth

(k0h0 ≈ 0.87), and a second one corresponding to deep water condition (k0h0 = 3.14). The

impact of the bathymetric variation on wave propagation is expected to be more important in

the case with smaller relative depth. Nevertheless, the case with larger relative water depth

is more challenging. Finally, four con�gurations are tested, the corresponding parameters are

shown in Table 3.1.

Wave characteristics Bottom

case T (s) L (m) k0h0 k1h1 ε β

1 6.28 43.27 0.87 0.47 1/3 0.25

2 2.78 12 3.14 1.23 1/3 0.25

3 6.28 43.27 0.87 0.25 0.1 0.5

4 2.78 12 3.14 0.59 0.1 0.5

Table 3.1: Physical parameters for the four simulations of regular waves propagating over a

Roseau-type bottom pro�le.

Athanassoulis and Belibassakis (1999) (hereafter A&B1999) proposed an extension of the mild

slope equation to study the propagation of linear waves over a variable bathymetry using a

variational formulation of the linear wave problem. At each horizontal position, the velocity

potential is described by the vertical eigenfunctions associated with the propagating mode and

all of the evanescent modes. An additional mode is introduced to satisfy the bottom boundary

condition exactly. Simulations of the four cases are also made with this model (Matlab version

of the code presented in A&B1999, provided by Pr. K. Belibassakis) to compare with the Misthyc

simulation results.

For the simulations, the domain is regularly meshed with ∆x = 0.4 m (≈ L/108) for the longer

wave and ∆x = 0.1 m (≈ L/120) for the shorter wave. The origin of the horizontal axis is

taken where the bottom elevation is z = −(h0 + h1)/2. Waves are generated at the left end

of the domain in a relaxation zone that is two wavelength long. The right end of the domain is

extended so that the waves never reach the boundary to avoid re�ections on the right side where

an impermeable boundary condition is imposed. The time step is chosen so that CFL ≈ 1 with

CFL = C0∆t
∆x for C0 = L0/T , which gives ∆t = 0.057 s and ∆t = 0.023 s, for the longer and

shorter waves respectively. Waves are propagated during a period long enough to reach a steady

state over the zone encompassing the bottom transition. The vertical resolution is set to NT=7.

This choice ofNT is validated by the convergence study of the re�ection and transmission coe�-

cient as a function ofNT for cases 3 and 4 (presented below). The same horizontal discretization

of the domain was used for the coupled-mode model of A&B1999 and 5 modes were found to be

su�cient to represent accurately the vertical variation of the velocity potential.
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(a) case 1 : ε = 1/3, β = 0.25 and k0h0 = 0.87

(b) case 2 : ε = 1/3, β = 0.25 and k0h0 = 3.14

Figure 3.2: Normalized wave height pro�les for cases 1 and 2, for the �rst bathymetric pro�le

(ε = 1/3, β = 0.25). Comparison between Misthyc (blue) linear version with NT = 7 and the

coupled-mode model of Athanassoulis and Belibassakis (1999) (red).

Once the steady state is obtained, the wave height is computed from free surface elevation time-

series at each node in the domain. The wave height pro�les are compared with those obtained

with the coupled-mode model of A&B1999 (Figures 3.2 and 3.3). For the four cases with di�erent

physical parameters, both models give comparable results. They produce the same oscillation

pattern of the wave height before the transition caused by the re�ection at the transition except

for case 2 where the re�ection is very small and hardly visible (Figure 3.2b). The incident wave

height HI is modulated because of its interaction with the re�ected wave (HR) traveling in the

opposite direction. After the bathymetric transition, the wave height becomes homogeneous, and

is denoted as HT . Small di�erences are mainly visible for case 3 (Figure 3.3a) where the model

of A&B1999 gives a higher transmitted wave height than Misthyc. On the contrary, for case 4

(Figure 3.3b), the wave height pro�le from the Misthyc simulations is slightly shifted vertically,

showing larger wave heights than A&B1999.

From the wave height pro�le, the re�ection (R) and transmission (T ) coe�cients can be calcu-

lated as:

R =
HR

HI
=
Hmax −Hmin

Hmax +Hmin
and T =

HT

HI

where Hmax and Hmin are the extremum values reached by the wave pro�le before the bottom
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(a) case 3 : ε = 0.1, β = 0.5 and k0h0 = 0.87

(b) case 4 : ε = 0.1, β = 0.5 and k0h0 = 3.14

Figure 3.3: Normalized wave height pro�les for cases 3 and 4, for the second bathymetric pro�le

(ε = 0.1, β = 0.5). Comparison between Misthyc (blue) linear version with NT = 7 and the

coupled-mode model of Athanassoulis and Belibassakis (1999) (red).

transition.

A convergence study of these two coe�cients as a function ofNT was carried out for cases 3 and

4 with the more re�ective bottom pro�le (ε = 0.1 et β = 0.5). For both cases, the values obtained

for the re�ection and transmission coe�cients appear to have converged (Figure 3.4 and Figure

3.5, respectively) for NT = 6, validating the choice of NT = 7 in the previous simulations.

The re�ection and the transmission coe�cients are then compared with those obtained with the

model of A&B1999 and those obtained with the analytical expression Eq.(3.4) and Eq.(3.5) (Table

3.2). The re�ection coe�cient for case 2 was too small (only about 0.005%) to be determined

accurately from the wave height pro�le obtained with Misthyc using the method described above.

For the �rst bathymetric pro�le, both models produce coe�cients close to the analytical ones.

For the second bathymetric pro�le, Misthyc shows more accurate results for long waves, whereas

the model of A&B1999 is more accurate for short waves.

This �rst test case shows that the linear version of the model (with NT = 7) reproduces well the

re�ection and transmission phenomena occurring when waves propagate over a steep transition

between two �at regions. Some di�erences with the analytical solution are obtained for the

steepest slope for the smallest wavelength, but the di�erences remain small.
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Figure 3.4: Convergence withNT of the re�ection coe�cient (R) and the transmission coe�cient

(T ) obtained with Misthyc for case 3.

Figure 3.5: Convergence withNT of the re�ection coe�cient (R) and the transmission coe�cient

(T ) obtained with Misthyc for case 4.

Analytical results Misthyc A&B1999

case R T R T R T

1 0.02282 1.185 0.02273 1.184 0.02262 1.185

2 0.000051 0.9221 X 0.9222 0.00011 0.9222

3 0.3413 1.452 0.3414 1.457 0.3497 1.482

4 0.09428 1.029 0.09453 1.033 0.09415 1.030

Table 3.2: Analytical and simulated (with Misthyc and with the coupled-mode model of Athanas-

soulis and Belibassakis (1999)) re�ection and transmission coe�cients for the four cases of reg-

ular wave propagating over Roseau bathymetry pro�le. The re�ection coe�cient for case 2 was

too small to be determined accurately from the wave height pro�le obtained with Misthyc.
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3.2 Solitary wave propagation over a �at bottom

3.2.1 Objectives

The goal of this test case is to propagate a solitary wave over a �at bottom over a long distance

with minimum distortion or phase di�erence.

Solitary waves, which are composed of a single hump of water, are a particular solution of a set

of mathematical models. They propagate with constant shape and celerity as a result of balance

between the e�ects of dispersion and nonlinearity. The expression and form of a solitary wave

is closely related to the selected mathematical model, and di�erent mathematical systems such

as the Korteweg-De Vries (KdV) equations, various formulations of Boussinesq, Serre, or Green-

Naghdi equations, etc. exhibit di�erent solitary wave pro�les.

Solitary waves are also a particular solution of the Euler equations with nonlinear free surface

boundary conditions in the constant depth case. The expression of the wave can not be given

in closed analytical form, but it can be computed with high accuracy using speci�c numerical

algorithms (see e.g. Tanaka (1986), Clamond and Dutykh (2013))

Solitary waves are characterized by a single parameter, the nondimensional height δ = H/h,

which is the ratio of the wave height (H) to the water depth (h). In this study, three values of δ

are investigated, from the least nonlinear to the most nonlinear: δ = 0.3, 0.5, and 0.7.

3.2.2 Description

3.2.2.1 Model domain and numerical parameters

In these tests, the water depth is uniform (h = 1 m) and the horizontal length of the model

domain (Lx) is 700h (= 700 m). The horizontal domain extends from x/h = −25 to x/h = 675,

and the solitary wave is initially centered at x/h = 0 (e.g. Figure 3.6). The height H of each

solitary wave is determined from δ = H/h = 0.3, 0.5 or 0.7.

The horizontal domain consists of a regularly-spaced mesh of size ∆x, and the simulations

are advanced in time with a �xed time step ∆t. The spatial and temporal discretizations are

controlled by the parameters Mx and Mt, respectively, such that ∆x̃ ≡ ∆x/h ≡ 1/Mx and

∆t̃ ≡ ∆t
√
g/h = 1/Mt.

Each wave is propagated during a nondimensional time T̃ ≡ T
√
g/h set to T̃ = 500, corre-

sponding to a physical time T ≈ 159.64 s. The distance traveled by the wave at the end of the

simulation (d) is theoretically d = CT , where C is the speed of the solitary wave. The wave

thus covers a nondimensional distance d̃ ≡ d/h = FT̃ , where F is the Froude number de�ned

as F ≡ C/C0, with C0 =
√
gh. Depending on the value of δ, this corresponds to d varying

between about 569h (δ = 0.3) and 639h (δ = 0.7).

The CFL number is de�ned here as CFL ≡ C0∆t/∆x, which can be rewritten as CFL = Mx/Mt.
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Figure 3.6: Bathymetry and free surface pro�le at t̃ = 0 for a solitary wave with nondimensional

height δ = 0.5 (the intermediate nonlinear case).

3.2.2.2 Boundary conditions

In the vertical, the bottom boundary condition is a �xed, impermeable bottom at z = −h (con-

stant depth). The lateral boundary conditions are impermeable vertical walls at the domain ex-

tremities (x/h = −25 and x/h = 675).

3.2.2.3 Initial conditions

To initialize the model, it is necessary to calculate the free surface elevation (η) and the free

surface velocity potential (φ̃ = φ|z=η) corresponding to the Euler equations with nonlinear

boundary conditions at the surface. The algorithm of Clamond and Dutykh (2013) is adapted

to calculate these parameters and the Froude number F using the nondimensional height δ as

an input parameter.

3.2.3 Simulations and evaluation criteria

3.2.3.1 Simulation parameters

The ability of the model to simulate accurately the propagation of a solitary wave depends on the

horizontal spacing of the model grid (characterized by ∆x or Mx), time step size (characterized

by ∆t or Mt), and the maximum order NT of the Chebyshev polynomials used to resolve the

vertical variations.
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To evaluate the impact of these parameters on the simulation results, three convergence studies

were carried out:

1. convergence as a function of the size of the time step, withMt varying from 4 to 12 (Mx =

10 and NT = 7 held constant),

2. spatial convergence at a constant CFL number withMx varying from 5 to 30, (CFL = 1.25

and NT = 7 held constant), and

3. convergence as a function of the maximum order of the Chebyshev polynomials with NT

varying from 3 to 15 (Mx = 10 and Mt = 8 held constant).

3.2.3.2 Quantities analyzed from model results

The performance of the model is evaluated as a function of four quantities that can be computed

at each time step:

1. the total volume of the �uid domain (V ),

2. the total mechanical energy of the �uid domain (E),

3. the solitary wave crest height (ηmax),

4. the phase di�erence, or di�erence between the simulated and theoretical wave crest posi-

tions xmax (as ηmax = η(xmax)).

The simulated wave crest height (ηmax) and position (xmax) do not in general occur at grid points.

Therefore, they are estimated by �tting a quadratic polynomial to node with the maximum free

surface elevation and the two neighboring nodes.

3.2.3.3 Errors as a function of time

The �rst three quantities should be conserved during the simulation, and relative errors are

calculated in comparison to the values at the initial time:

ErrY (t) =
Y (t)− Y0

Y0
,

where Y = V,E, ηmax.

The phase di�erence at time t is calculated by comparing the simulated wave crest position to

the theoretical wave crest position calculated using the wave celerity given by the algorithm of

Clamond and Dutykh (2013):

Errphase(t) =

∣∣∣∣xmax(t)− Ct
Ct

∣∣∣∣ .
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3.2.3.4 Global errors

As described above, errors in four di�erent quantities are calculated as a function of time dur-

ing the simulation period. Global errors are then de�ned to quantify the total error for each

simulation.

For the temporal and horizontal step size convergence tests, global volume and energy errors are

calculated as the arithmetic mean of the relative volume and energy evolution:

ErrY =

∣∣∣∣〈Y (t)− Y0

Y0

〉
t

∣∣∣∣ =

∣∣∣∣〈Y (t)〉t − Y0

Y0

∣∣∣∣ ,
where 〈Y (t)〉t = 1

NDT

∑NDT
i=1 Y (ti), NDT is the number of time steps, and Y = E or V .

The wave amplitude and phase errors are calculated relative to the initial amplitude and to the

theoretical position of the wave at the end of the simulation (at t = T ) :

Errampl =

∣∣∣∣ηmax(T )−H
H

∣∣∣∣ , Errphase =

∣∣∣∣xmax(T )− CT
CT

∣∣∣∣ .

For the vertical convergence tests, the maximum orderNT of the Chebyshev polynomial is varied

from NT = 3 to 15, and the relative error is calculated using the results of the simulation with

the highest order as the reference value (here NT = 15). In this case, the relative volume and

energy errors are given by:

ErrY =

∣∣∣∣〈Y (t)〉t − 〈Y15(t)〉t
〈Y15(t)〉t

∣∣∣∣ ,
where Y = E or V . Likewise, the relative wave amplitude and wave errors at the �nal time step

are de�ned as:

Errampl =

∣∣∣∣ηmax(T )− ηmax15(T )

ηmax15(T )

∣∣∣∣ , Errphase =

∣∣∣∣xmax(T )− xmax15(T )

xmax15(T )

∣∣∣∣ .
3.2.4 Results

The simulation results are evaluated with respect to the convergence as a function of the time

step ∆t, horizontal grid spacing ∆x, and maximum order of the Chebyshev polynomial NT for

three relative wave heights δ = 0.3, 0.5, and 0.7. The e�ciency of the model is also evaluated by

quantifying the dependence of the CPU time on these three parameters.
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3.2.4.1 Convergence as a function of the time step ∆t

For these simulations, the horizontal and vertical resolution are held constant, withMx = 10 and

NT = 7. Mt is varied from 12 to 4, giving a time step varying in the range ∆t ≈ 0.0266−0.0798

s, corresponding to a CFL number ranging from 0.8333 to 2.5 (Table 3.3).

Mt ∆t̃ ∆t(s) CFL

12 1/12 ≈ 0.0833 ≈ 0.0266 5/6 ≈ 0.833

10 1/10 = 0.1 ≈ 0.0319 1

8 1/8 = 0.125 ≈ 0.0399 1.25

7 1/7 ≈ 0.143 ≈ 0.0456 ≈ 1.429

6 1/6 ≈ 0.167 ≈ 0.0532 ≈ 1.667

5 1/5 = 0.2 ≈ 0.0639 2

4 1/4 = 0.25 ≈ 0.0798 2.5

Table 3.3: Selected time steps ∆t and associated quantities for convergence runs as a function of

∆t (Mx = 10 and NT = 7)

Final free surface pro�les. The free surface pro�le at end of the simulation (T̃ = 500) are

plotted in Figure 3.7 for the tree values of nonlinearity. For the least nonlinear case (δ = 0.3),

varying the time step within this range of values has only a small impact on the wave crest height

and phase di�erence at the end of the simulation (Figure 3.7(a)), and the four presented curves

(Mt = 4, 6, 8, 12) are nearly superimposed on the reference solution.

For the more nonlinear cases, a decrease in the wave crest height is observed at the end of the sim-

ulations for larger time steps (e.g. Mt = 4, 5 in Figure 3.7(b) andMt = 5, 6, 8 in Figure 3.7(c)). In

addition, phase di�erences, caused by an underestimation of the wave celerity (which is directly

related to the underestimation of the wave height), are also observed for these cases.

As a function of the time step, the more nonlinear waves require a smaller time step to represent

accurately the wave height and propagation speed. For the case with δ = 0.7 (Figure 3.7(c)),

there is a small phase and wave height di�erence in comparison to the reference solution even

for the smallest tested time step (∆t ≈ 0.0266 s for Mt = 12).

All simulations were stable for the length of the simulation period (T̃ = 500), except for the case

with δ = 0.7 and CFL = 2.5, which became unstable before reaching the end.

Conservation of volume and energy. Energy and volume are conserved well during the

simulations with the smallest errors for the smallest time steps. Both quantities decrease mono-

tonically throughout the simulation period, with a more rapid decrease for larger time steps

(Figure 3.8). For the largest time step, the �nal relative volume errors are of the order 10−11
,

10−8
and 10−6

, and the �nal relative energy errors are of the order 10−3
, 10−2

, and 10−2
for

δ = 0.3, δ = 0.5 and δ = 0.7, respectively.
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Evolution of global errors as a function of the time step. To summarize the convergence

properties as a function of the time step, the four global errors are calculated for each simulation.

All four measures (relative volume, energy, phase, and amplitude) of simulation errors increase

both with increasing time step size and with increasing relative wave height (Figure 3.9), with

algebraic convergence rate. The slopes of the linear regression curves are similar for each test

case, ranging from 4 to 5 for δ = 0.3 and δ = 0.5, and 3.3-4.1 for δ = 0.7, the most nonlinear

test case. These values are in agreement with the fourth-order Runge-Kutta temporal integration

scheme used in the model, demonstrating the fourth-order, algebraic temporal convergence of

the model.
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(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.7: Free surface pro�les at T̃ = 500 for a range of ∆t values (Mx = 10 and NT = 7) for

(a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.
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(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.8: Relative volume (left) and relative energy (right) time series for a range of ∆t values

(Mx = 10 and NT = 7) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. Note that the axis scales

change for each value of δ.
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Figure 3.9: Convergence as a function of the time step ∆t and wave nonlinearity δ for NT = 7

and Mx = 10.
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3.2.4.2 Convergence as a function of the spatial resolution ∆x

To evaluate the convergence of the model as a function of the horizontal spatial resolution, a

series of simulations were run withMx varying from 30 to 5, corresponding to ∆x varying from

0.033 to 0.2 m. For each simulation, the time step was calculated to maintain a constant CFL

number equal to 1.25, and NT = 7 was held constant (Table 3.4).

Mx ∆x̃ ∆x(m) Mt ∆t̃ ∆t(s)

30 1/30 ≈ 0.0333 ≈ 0.0333 24 1/24 ≈ 0.417 ≈ 0.0133

25 1/25 = 0.04 0.04 20 1/20 = 0.05 ≈ 0.0160

20 1/20 = 0.05 0.05 16 1/16 = 0.0625 ≈ 0.0200

15 1/15 ≈ 0.0667 ≈ 0.0667 12 1/12 ≈ 0.0833 ≈ 0.0266

10 1/10 = 0.1 0.1 8 1/8 = 0.125 ≈ 0.0399

5 1/5 = 0.2 0.2 4 1/4 = 0.25 ≈ 0.0798

Table 3.4: Selected spatial steps ∆x and associated quantities for convergence runs as a function

of ∆x (CFL = 1.25 and NT = 7)

Final free surface pro�les. The free surface pro�les at the end of the simulation period agree

well with the expected results for δ = 0.3 (Figure 3.10(a)). As the wave nonlinearity increases,

decreases in the amplitude and wave phase speed become apparent for larger ∆x or smaller

Mx (e.g. for ∆x = 0.2 with δ = 0.5 in Figure 3.10(b) and for ∆x > 0.04 with δ = 0.7 in

Figure 3.10(c)).

Conservation of volume and energy. The relative energy error time series show that energy

conservation improves with �ner horizontal resolution, as expected (Figure 3.11, right column).

For δ = 0.3 and δ = 0.5, the energy appears to decrease nearly linearly in time. However, for

δ = 0.7 and large values of ∆x, the errors increase more rapidly and have larger �nal errors

than for smaller ∆x, but the rate of increase in error slows in time (e.g. Figure 3.11(c), right).

The relative volume error time series also show that volume conservation improves with �ner

horizontal resolution, as expected, but only for the most nonlinear case with δ = 0.7 (Figure 3.11,

left column). For smaller values of δ, there are several exceptions where simulations with larger

∆x conserve volume better than those with smaller ∆x. For example, errors in volume conser-

vation for ∆x = 0.04 m are larger than for ∆x = 0.1 m and ∆x = 0.05 m, for δ = 0.3 and

δ = 0.5, respectively. The reason for these exceptions is unknown.

Evolution of global errors as a function of the spatial resolution. Global errors in relative

volume, energy, phase, and amplitude summarize the error trends as a function of ∆x and the

relative wave height δ (Figure 3.12). With the exception of the anomalies in the volume errors,

with minima reached for intermediate values of ∆x for δ = 0.3 and δ = 0.5, the global errors

decrease with decreasing ∆x and with decreasing relative wave height δ. As a function of the
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horizontal resolution, the trends are linear in log-log plots, with slopes ranging from 4 to 5 for

δ = 0.3 and δ = 0.5 and from 3 to 4 for δ = 0.7, as would be expected for the fourth-order �nite

di�erence schemes used in the model, con�rming the fourth-order, algebraic spatial convergence

of the model.
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(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.10: Free surface pro�les at T̃ = 500 for a range of ∆x (CFL = 1.25 and NT = 7) for (a)

δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.
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(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.11: Relative volume (left) and relative energy (right) time series for a range of ∆x values

(CFL = 1.25 and NT = 7) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. Note that the axis scales

change for each value of δ.
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Figure 3.12: Convergence as a function of the horizontal resolution ∆x and wave nonlinearity δ

for NT = 7 and CFL = 1.25.
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3.2.4.3 Convergence as a function of the Chebyshev polynomial order NT

To evaluate the convergence as a function of the order of the maximum Chebyshev polynomial

used to resolve the vertical variation in φ, a series of simulations were run withNT ranging from

3 to 15, with a constant CFL = 1.25 (Mx = 10 and Mt = 8).

Final free surface pro�les. The �nal (at T̃ = 500) free surface pro�les converges for inter-

mediate values of NT , and the particular value of NT increases with increasing δ (Figure 3.13).

For example, the curves converge for NT ≥ 4 for δ = 0.3, and for NT ≥ 7 for δ = 0.5 and 0.7.

For δ = 0.3 and δ = 0.5, the free surface pro�le converges to the reference solution. However,

for δ = 0.7, the most nonlinear test case, the free surface pro�le converges to a solution with

a slightly smaller wave height and slower propagation speed than the reference solution. This

di�erence is caused by the choice of ∆x and ∆t, which appear to be the limiting factors for large

values of NT . One can observe that the smallest value NT = 3 results in a wave propagating

faster than the theoretical solution, while larger values ofNT result in waves propagating slower

than the theoretical solution.

Conservation of volume and energy. The relative energy time series show a decrease in

both of these quantities as a function of time, with larger �nal errors for smaller values ofNT , as

expected (Figure 3.14, right column). The relative volume time series also show similar trends,

with an unexplained exception in which the volume conservation is better for NT = 4 than for

NT = 5, for δ = 0.5 and δ = 0.7 (Figures 3.14(b) and 3.14(b), left).

Evolution of global errors as a function of NT . The global errors in the relative volume,

energy, phase, and amplitude as a function of NT and the relative wave height δ are shown in

semi-log plots in Figure 3.15. The linear error trends decreasing with NT demonstrate the expo-

nential convergence of the model as a function ofNT . The model results converge exponentially

to the value obtained withNT = 15, such that Error∝ exp(aNT ). This is an appealing property

of the model since small errors can be attained with small to intermediate values of NT .

The relative energy error does not show the same trend for δ = 0.3 as for δ = 0.5 and 0.7: for

δ = 0.3 the convergence is more rapid for values ofNT smaller than 7, and then the convergence

rate decreases rapidly. For this case, however, the relative phase and amplitude errors are equal

to 0 for NT > 9 (and are thus not visible in Figure 3.15), which indicates that the model has

converged to a solution (for the given ∆x and ∆t).

For the test case with δ = 0.5, the energy error decreases monotonically with NT for NT ≤ 14,

but the errors in relative phase and amplitude appear to reach a plateau for NT > 12. This

behavior is similar to that with δ = 0.3, but with a higher threshold of NT above which the

error is only marginally decreased by an increase of NT . Again, in this range, the error is likely

dependent on the choice of ∆x and ∆t.

The volume errors also present an unusual trend as a function of NT , such that for a given
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even value of NT , the error is lower than for NT + 1. This is hypothesized to be related to

the method used to calculate the relative volume error, which is essentially a simple arithmetic

mean of the di�erence in the free surface elevation pro�le for a given value ofNT andNT = 15.

Therefore, positive and negative errors compensate partially over the length of the domain. This

compensation varies as a function of NT , leading to the observed step-like behavior in volume

errors.
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(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.13: Free surface pro�les at T̃ = 500 for several values ofNT (CFL = 1.25, withMx = 10

and Mt = 8) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7.



88 CHAPTER 3: VALIDATION OF THE 1DH VERSION OF THE MODEL

(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.14: Relative volume (left) and relative energy (right) time series for a range ofNT values

(CFL = 1.25, with Mx = 10 and Mt = 8) for (a) δ = 0.3, (b) δ = 0.5 and (c) δ = 0.7. Note that

the vertical axis scales change for each value of δ.
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Figure 3.15: Convergence as a function of the Chebyshev polynomial order NT (vertical space

convergence) and wave nonlinearity δ with CFL = 1.25 (MX = 10 and Mt = 8).
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3.2.4.4 Analysis of CPU time

The e�ciency of the current version of the model is evaluated by recording the CPU time nec-

essary for each of the convergence studies:

1. convergence as a function of the time step ∆t (Figure 3.16(a)),

2. convergence as a function of the horizontal spatial resolution ∆x (Figure 3.16(b)),

3. convergence as a function of the Chebyshev polynomial order NT (Figure 3.16(c)).

For the three values of δ, the simulation times for the same values of ∆t, ∆x, or NT are very

similar, as expected. The CPU time depends on ∆t, ∆x and NT , and it is observed that this

dependence has the following form:

TCPU ≈ ∆tα ∆xβ Nγ
T .

In the log-log plots (Figure 3.16), the CPU time is linearly dependent on ∆t, ∆x, and NT , with

slopes of approximately -1, -2, and 1.5, respectively. Therefore, the CPU time is proportional to :

TCPU ≈
N1.5
T

∆t∆x2
.

showing the importance in minimizing NT and that the dependency on Deltax is stronger than

the dependency on ∆t and NT .

3.2.5 Conclusions

This test case shows that the model is very accurate even in the limit of highly nonlinear waves

(δ = H/h up to 0.7). For the same value of ∆x, ∆t orNT , relative errors in volume, energy, phase

and amplitude increase with increasing nonlinearity. This may be explained partly by the fact

that for a given CFL number as de�ned here, the true CFL number (taking into account the actual

wave celerity) is larger for δ = 0.7 than for δ = 0.3 due to the di�erence in the corresponding

Froude number.

The order of temporal and spatial convergence are approximately 4-5 for δ = 0.3 and 0.5 and

3-4 for δ = 0.7, in good agreement with the fourth-order Runge-Kutta temporal integration

scheme and the fourth-order �nite di�erence schemes used in the model. The model shows

exponential convergence in the vertical dimension due to the applied spectral approach, which

enables obtaining highly accurate results for small to moderate values of the maximum order of

Chebyshev polynomials NT (typically smaller than 10).
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(a) ∆t (b) ∆x

(c) NT

Figure 3.16: Simulation time as a function of (a) the time resolution ∆t, (b) the spatial resolution

∆x, and (c) the maximum order of the Chebyshev polynomial NT (for δ = 0.3 in red, δ = 0.5 in

blue, and δ = 0.7 in green)
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3.3 Nonlinear wave dynamics in constant water depth

The third test case consists of simulating the propagation of waves generated by the sinusoidal

movement of a piston-type wavemaker over a �at bottom, based on the �ume experiments of

Chapalain et al. (1992) (hereafter C92). The results presented here correspond to trial A (piston

stroke amplitude e = 7.8 cm and period T = 2.5 s), with a constant water depth h = 0.4 m. The

wavelength of the fundamental component is L = 4.74 m from the linear dispersion relation,

corresponding to long waves with µ = 0.53. The model domain is regularly meshed with ∆x =

0.1 m (≈ L/47) and extends far enough to prevent re�ection from the right boundary. The

waves were propagated during 16 periods (i.e. 40 s) with a time step ∆t = T/40 = 0.0625 s,

with maximum order of the Chebyshev polynomial NT = 7. The model is forced by imposing

at the left boundary a sinusoidal time varying horizontal velocity that is uniform in the vertical.

A harmonic analysis of free surface elevation time series (after steady state is reached) decom-

poses the signal into a discrete sum:

η(t) = a0 +

N∑
n=1

an cos(nωt+ ϕn), (3.6)

where ω = 2π
T is the angular frequency of the wavemaker, and an and ϕn are the amplitude

and phase of the harmonic component n. The phase di�erence between the �rst and the second

harmonic is de�ned as ∆ ϕ1,2 ≡ ϕ2 − 2ϕ1, following Chapalain et al. (1992). The simulated

spatial evolution of the amplitudes of the �rst four harmonics agrees well with the experiments

(Figure 3.17a). Overall, the model correctly represents the energy transfers between the di�erent

harmonic components, as well as the resultant beat lengths. However, a decrease in the second

harmonic amplitude (after x = 19 m) is observed in the experimental data but is not reproduced

in the simulations. This could be explained by dissipation in the experiments that is not taken into

account in the model. This phenomenon is more noticeable for short waves, hence more visible

for the higher harmonics. The spatial evolution of the phase di�erence between the �rst and

second harmonic is also reproduced well (Figure 3.17b). The phase di�erence oscillates between

−π/2 and +π/2 with the same periodicity as the harmonic amplitudes. Zero phase di�erence

occurs when either the �rst harmonic is maximum and the second harmonic is minimum, or the

contrary.

The variation of the free surface elevation thus depends on the position in the wave channel,

as shown in Figure 3.18 at x = 4 m, 7 m, 10 m and 14 m (the simulated free surface position

qualitatively agrees well with the measurements, when compared to Figure 3 of Chapalain et al.

(1992)). When the �rst and second harmonics are in phase, the free surface pro�le is either quasi-

sinusoidal when the �rst harmonic is maximal and the second minimal (e.g. x = 14 m), or cnoidal

when the second harmonic is maximal and the �rst minimal (e.g. x = 7 m). However, when the

�rst and second harmonics are out of phase, the waves are vertically asymmetrical with either a
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Figure 3.17: a) Spatial evolution of the �rst four harmonic amplitudes for test case A of Chapalain

et al. (1992): experimental (circles) and Misthyc simulation (solid line) results. b) Spatial evolution

of the phase di�erence between the �rst and second harmonic: experimental (circles) and Misthyc

simulation (solid line) results.

steeper (gentler) wave front and a gentler (steeper) rear slope if the phase di�erence is positive

(negative) (e.g x = 10 m and x = 4 m).

This test case demonstrates the ability of the model to simulate accurately the nonlinear resonant

interactions occurring when waves are generated with a piston-like wavemaker and propagate

over a �at bottom. The transfer of energy from the principal wave to the second harmonic was

reproduced well, including the beat length of the resonant interaction.
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Figure 3.18: Misthyc simulated free surface elevation η at four di�erent positions in the wave

channel for the test case A of Chapalain et al. (1992).



3.4 WAVES GENERATED BY AN IMPULSIVE BOTTOMMOTION 95

3.4 Waves generated by an impulsive bottom motion

The fourth test case simulates waves generated by an impulsive vertical motion of the bottom

to study tsunami-like wave dynamics. Hammack (1973) studied the case of a moving bottom

with laboratory experiments, an analytical study of the linear solution, and numerical simula-

tions with a KdV (Korteweg-de Vries) model. Fuhrman and Madsen (2009) (abbreviated F&M09

hereafter) also tried to reproduce numerically these experiments with a high-order Boussinesq

model. Both upthrust and downthrust of the bottom were studied using di�erent expressions for

the temporal evolution of the bottom. Here, impulsive exponential bed upthrust is �rst simulated

with the linear version of Misthyc and compared to the linear solution, and then simulated with

the nonlinear version of Misthyc and compared to the experimental data and to the results of

F&M09. The �uid domain is initially motionless, with an undisturbed water depth h0 = 1 m.

During the simulation, a step in the bottom between x = 0 m and x = b m is rapidly upthrust

(Figure 3.19, for b/h0 = 12.2), and the water depth (h(x, t)) evolves following:

h(x, t) = h0 − ζ(x, t) with ζ(x, t) = ζ0(1− e−αt)H(b− x), (3.7)

where H is the Heaviside step function. The step is upthrust over a total vertical distance of

ζ0/h0 = 0.1, and the exponential decay constant and critical time are respectively α = 1.11/tc

and tc = 0.148b/
√
gh0. The domain is discretized on a regular grid extending from 0 to 2500h0 =

2500 m, with a spatial step ∆x = h0/5 = 0.20 m (12501 nodes). The simulation length is

the nondimensional time t
√
g/h0 = 2375 (i.e. t ≈ 75828 s), with nondimensionnal time step

∆t
√
g/h0 = 0.20 (i.e. ∆t ≈ 0.0638 s). The resulting CFL number is CFL =

√
gh0∆t/∆x = 1.

Fully re�ective vertical boundaries are applied at both ends of the domain. The maximum order

of the Chebyshev polynomial is NT = 7.

Figure 3.19: (left) Bathymetry at time t (ζ(t)) and �nal bathymetry (ζ0), and (right) temporal

evolution of the bottom deformation.
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3.4.1 The linear solution

Hammack (1973) derived an analytical solution for the associated linearized potential �ow prob-

lem. The free surface elevation resulting from an exponential bed movement is given by Eq.(22)

of Hammack (1973):

η(x, t) = −2
ζ0

π

∫ ∞
0

cos(kx)sin(kb)

kcosh(kh0)

α2

α2 + ω2

[
e−ωt − cos(ωt)− ω

α
sin(ωt)

]
dk (3.8)

This solution is numerically computed using the trapezoidal rule to estimate the integral to ob-

tain the free surface elevation time series at four positions in the domain ((x − b)/h0 = 0, 20,

180, and 400), where experimental data are available. The results obtained with the linear ver-

sion of Misthyc for di�erent values of NT are compared to the linear solution in Figure 3.20.

The simulated free surface elevations are nearly superimposed on the linear solution, except

for the smaller values of NT tested (NT = 3 and 4). For these values of NT , small di�erences

with the theoretical solution can be observed in the oscillatory trailing wave train following the

main wave, in particular at the last two stations. The results with NT = 7 and 10 cannot be

distinguished visually from the theoretical solution at all four stations.

To quantify the convergence of the results with the vertical discretization (NT ), the averaged

absolute error over the interval [-20,100] (as shown in Figure 3.20) is computed at each of the

four positions considered in the domain. The error is de�ned as:

Averaged error =
1

n

n∑
i=1

|η(i)− ηref (i)|. (3.9)

The evolution of this error as a function ofNT shows that a constant value is reached forNT ≥ 6

(Figure 3.21). ForNT = 3, the error is larger for the two last probes where the e�ects of dispersion

become apparent, and the dispersion relation obtained with NT = 3 is less accurate (as shown

in Section 1.4.3).

3.4.2 Comparison with the experimental data

Here, the simulated time series of the free surface elevation obtained with the nonlinear version

of Misthyc and NT = 7 are compared to the experimental measurements (red line) at four po-

sitions in the domain ((x − b)/h0 = 0, 20, 180, and 400), and to the linear analytical solution

(Eq.3.8) (dotted blue line) in Figure 3.22.

Near the generation zone (Figure 3.22a and b), the simulated free surface position (black line)

agrees well with the global trend of the experimental data, with a slight overestimation at (x−
b)/h0 = 0 and with larger oscillations at (x − b)/h0 = 20. These results are similar to those

obtained by F&M09 (their Figure 2). Farther from the generation zone (Figures 3.22c and d),

the di�erences are more signi�cant. The linear solution diverges from the experimental mea-

surements, showing that a model with nonlinear properties is required to simulate properly this
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Figure 3.20: Free surface time series at four locations: (x− b)/h0 = (a) 0, (b) 20, (c) 180, and (d)

400. Comparison between the linear solution (red dashed line) and results of the linear version

of the model for NT = 3, 4, 7 and 10.

case. The simulated results (with the present model) are closer to the measurements than to the

linear solution, demonstrating the nonlinear properties of the model. A comparison of the far-

�eld waves (Figure 3.22c and d) shows that the free surface deformations have the same global

shape, but that the model predicts faster wave propagation speeds (relative rightward shift in

the time series), which is consistent with the overprediction of the wave amplitude. Hammack

(1973), who obtained the same type of di�erences with a KdV model, suggested that di�erences in

the simulated and measured wave amplitudes could be due to viscous energy losses occurring in

the experiments that were neglected in both numerical models. The high-order (non-dissipative)

Boussinesq model of F&M09 produces results in close agreement to Misthyc, which suggests that

the di�erences with the experiments can be attributed to dissipative e�ects.

When the wave train propagates over long distances (up to 2500 times the water depth), the

leading waves separate into two solitary waves (Figure 3.23). These solitary waves then propa-

gate with constant shape, with the �rst wave (larger amplitude) traveling faster, as observed by

F&M09. In Figure 3.23, the free surface pro�les at t
√
g/h0 = 2375 obtained with Misthyc for
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Figure 3.21: Averaged absolute error Eq.(3.9) as a function of NT for the four probes located at

(x− b)/h0 = 0, 20, 180, and 400, and shown in Figure 3.20.

several values of NT are compared to the corresponding �nal results of F&M09 (dashed black

line). The Misthyc simulation results (converged for NT ≥ 5) predict slightly faster propagation

speeds of slightly larger amplitude solitary waves. In F&M09, the simulation had a spatial res-

olution of ∆x = 0.25 m. More recently, D. Fuhrman provided (personal communication) new

results obtained with a �ner spatial resolution of ∆x = 0.2 m (black line), to resolve accurately

the step upthrust with an integer number of grid spaces cells. In comparison to the simulation

results presented in F&M09, these new results are closer to those obtained with Misthyc, some

small discrepancies likely due to the di�erent mathematical models and numerical schemes used.

Comparisons of the simulated free surface time series with the experimental results of Hammack

(1973) con�rm the ability of the model to reproduce accurately the wave disturbance dynamics,

including the formation of leading waves leaving the generation zone and their separation from

the wave train after a su�cient length of time, as observed by F&M09.
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Figure 3.22: Free surface time series at four nondimensional positions in the domain: (x−b)/h0 =

(a) 0, (b) 20, (c) 180, and (d) 400. Comparison between the present model simulations (black line)

and Hammack (1973) measurements (red line). The associated linear solution (blue dotted line)

is also shown.

Figure 3.23: Free surface pro�les at t
√
g/h0 = 2375. Comparison between F&M09 �nal results

(corresponding to their �gure 3) with a resolution ∆x = 0.25 m (dashed black line), a more

recent simulation using the same model but with a resolution ∆x = 0.2 m (solid black line), and

Misthyc simulation results for several values of NT (NT = 3 light blue, NT = 5, dashed blue

and NT = 7, red).
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3.5 Regular waves over a submerged bar

Beji and Battjes (1993) and then Dingemans (1994) (D94) performed a series of experiments of

regular wave propagation over a submerged trapezoidal bar. These experiments are now a stan-

dard test case for wave models since both nonlinear and dispersive e�ects are important when

waves propagate over the top of the bar. The bottom pro�le is shown in Figure 3.24. The water

depth is h = 0.40 m o�shore and reduces to a minimum of 0.10 m on top of the bar. The front

slope of the bar is 1:20, and the rear slope is 1:10. Eleven wave probes recorded the free surface

elevation time series in the experiments (see positions in Figure 3.24).
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Figure 3.24: Bathymetry and position of wave probes in the Beji and Battjes (1993) experiments.

Here, case A is studied with an incident wave height H = 2.0 cm and period T = 2.02 s,

corresponding to long waves with µ = 0.67 (or h/L = 0.107) o�shore of the bar and relatively

small wave steepness ε = 0.017 (or H/L = 0.53%). Under these conditions, the incident wave

train is signi�cantly a�ected during the propagation over the submerged bar, with transfers of

energy toward higher harmonics.

The model domain has a regularly spaced grid with ∆x = 0.05 m (i.e. about L/75 o�shore of

the bar) and extends from x = −6 m to 30 m (721 nodes along the x axis). Waves are generated

in an 8-m wide relaxation zone at the left boundary of the domain (-6 ≤ x ≤ 2 m) using, here,

a second-order Stokes solution to impose the free surface elevation and the velocity potential.

Waves are absorbed in a 5-m wide relaxation zone (25 ≤ x ≤ 30 m) applied in front of the fully

re�ective right boundary to avoid re�ections. Waves are propagated during 25 wave periods (i.e.

50.5 s) with a time step ∆t = T/100 = 0.0202 s.

Times series of the free surface elevation computed with NT = 7 are presented at probes 4 to 11

in Figure 3.25. The choice of this value of NT will be discussed at the end of this section. When

waves propagate over the front slope of the bar, the wave height and steepness increase due to

shoaling e�ects (probes 4 to 6, Figure 3.25(a-c)). The wave pro�le becomes asymmetric due to

nonlinear wave-bottom interactions that create higher frequency bound harmonic components.

These harmonics are released in the shallowest region and on the rear slope of the bar and then

propagate at their own phase speed (probes 7 and 8, Figure 3.25(d-e)). After the bar, the measured

wave pro�les vary signi�cantly between the probes due to the di�erences in celerity of the free

wave components. At the last three probes (probes 9 to 11, Figure 3.25(f-h)), the model reproduces
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well the complex wave pro�les, including the dispersive (high frequency) components.
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Figure 3.25: Comparison of measured and simulated (with NT = 7) free surface elevation time

series at probes 4 to 11 for case A of Dingemans (1994) (probe locations shown in Figure 3.24).

In order to examine more closely the energy transfers between harmonics, a Fourier analysis

of the measured and computed wave signals was completed. The model accurately reproduces

the spatial evolution of the amplitudes of the �rst six harmonics, corresponding to frequencies

f = 1/T (fundamental component) to 6f (Figure 3.26). The amplitude of the fundamental wave

increases due to shoaling on the submerged bar up to the bar’s crest and then decreases (starting

from about x = 12 m) due to transfers of energy to higher harmonics. The observed oscillations

(of ≈ 2-2 m wavelength) are hypothesized to be caused by re�ections in the wave channel. The

amplitude of the second harmonic (2f) increases as the waves shoal on the front slope of the

bar, and continues increasing until x = 16 m, after which its amplitude �uctuates. The higher

harmonics start increasing in amplitude at shallower depths and have the largest amplitudes

around the bar crest (12 ≤ x ≤ 15 m). Harmonics 4f to 6f decrease after the bar, which is not

the case for harmonics 2f and 3f . In addition, after the bar, the second harmonic has the largest
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amplitude, and the amplitude of the third harmonic is nearly comparable to (though smaller

than) that of the fundamental wave. The model results agree well with the data up to the sixth

harmonic, with the exception of slight di�erences in the amplitude of the second harmonic at

some locations (e.g. at x = 19 m).
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Figure 3.26: Spatial evolution of the �rst six harmonic amplitudes (at frequencies f , 2f ,...,6f )

of the free surface elevation for case A of Dingemans (1994): observations (circles) and Misthyc

simulation results (solid lines).

To test the sensitivity of the model to the parameter NT , simulations were run with NT =

3, 4, 5, 7 and 10 (all other parameters were kept constant) and compared to the observations

(Figure 3.27). In the o�shore part of the �ume and up to the submerged bar (i.e. up to probe

8), only the simulation results with NT = 3 di�er signi�cantly from those with higher NT ,

which are superimposed and agree well with the measured time series. At the last three probes,

where dispersive e�ects are more important, the results with NT = 3, 4 and 5 show increasing

di�erences with the measurements. Results with NT = 7 and 10 remain superimposed and in

good agreement with the measurements at all probes. Therefore,NT = 7 was chosen to optimize

model’s accuracy and e�ciency.

In this test case, the model reproduces well the propagation of regular waves over a submerged

bar, including the generation and propagation of higher harmonics. Dispersive e�ects become

important after the bar, and time series of the free surface elevation di�er signi�cantly along

the wave channel depending on the phase of the harmonic components. Values of NT ≥ 7

allow reproducing accurately the free surface elevation in the lee of the submerged bar, where

dispersive e�ects are most important.
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Figure 3.27: Comparison of measured and simulated free surface elevation time series at probes

6, 8, 10 and 11 for case A of Dingemans (1994). Results of simulations with 5 values of NT (3, 4,

5, 7, 10) are compared (all other numerical parameters are constant).
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3.6 Random waves over a barred beach

The last 1DH test case simulates the propagation of irregular nonlinear waves over a barred

beach, reproducing the wave �ume experiments of Becq-Girard et al. (1999) (B99). The bathy-

metric pro�le of these experiments (Figure 3.28) was speci�cally designed to study nonlinear

wave interactions in shallow water. Irregular waves were generated with a piston-type random

wavemaker using a JONSWAP wave spectrum with a peak-enhancement factor of γ = 3.3. The

bottom pro�le was created with smooth metal sheets to minimize bottom friction dissipation,

and a beach absorber was included on the upper part of the beach to reduce wave re�ection.

Resistive-type wave probes measured the free surface elevation at 16 locations in the wave �ume

(black dots, Figure 3.28) during the 40-minute experiment with a sampling time step ∆t = 0.07 s.
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Figure 3.28: Bathymetry and wave probe positions for the Becq-Girard et al. (1999) experiments.

The model computational grid extends from x = −5 m to x = 25 m (with the foot of the bar at

x = 0 m). Waves are generated in a 5-m relaxation zone by imposing the velocity potential at

the left boundary and correcting the free surface position and velocity potential in the relaxation

zone. Non-breaking irregular waves are simulated with signi�cant wave height Hm0 = 3.4 cm

and peak period Tp = 2.39 s in the deepest part of the domain (h = 0.65 m). Waves are ab-

sorbed in a 10-m long relaxation zone at the right boundary. Time series of these variables are

reconstructed using linear wave theory to sum the components of the wave spectrum obtained

from the free surface measurements at probe 2 (located at the foot of the submerged bar). The

computational grid is regularly meshed with ∆x = 0.05 m, and NT = 7. The total simulation

time is 2380 s (approximately 39.7 min), with a time step equaling the sampling time step of the

free surface elevation probes, ∆t = 0.07 s.

The measured and simulated wave variance spectra agree well (Figure 3.29, spectra shown for

probes 2, 5, 7, 9, 11, 13, 15, and 16). The main spectral peak increases from probes 2 to 5 due to

wave shoaling. In addition, energy is transferred from lower to higher frequencies, particularly

from the peak frequency to its super-harmonics. This phenomenon is visible at probe 5 with the

appearance of the second harmonic peak (2fp). When the water depth becomes nearly constant

(probes 7, 9, and 11), the second and higher harmonic peaks become more pronounced. A peak

at the �fth harmonic (5fp) becomes visible in the spectra at probes 9 and 11, and its amplitude
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is reproduced well by the model. On the back side of the bar, the energy transfer reverses back

to the lower harmonics (in particular to the second harmonic). At probe 13, the peak of the �fth

harmonic has disappeared, and at probe 15, the peaks of the third and fourth harmonics have

also nearly disappeared. Only the second harmonic and main spectral peaks remain visible in

the trough. Finally, at probe 16, the third harmonic (3fp) peak reappears due to the new decrease

in the water depth.

The simulated spatial evolution of the �rst �ve harmonic amplitudes agrees well with the exper-

imental observations (Figure 3.30). In the deepest region, the amplitude of the �rst harmonic is

dominant, and between 0 m and 5 m, its amplitude increases due to shoaling, while the higher

harmonic amplitudes remain constant. After 5 m, the �rst harmonic amplitude decreases while

the higher harmonic amplitudes increase due to transfers of energy from lower to higher fre-

quencies. Around 9 m, the water depth increases again, the �rst harmonic amplitude continues

decreasing, and the third, fourth, and �fth harmonic amplitudes also begin to decrease, with an

energy transfer to the second harmonic. Finally, in the shallowest part of the domain, the energy

transfer from the second to the third harmonic begins again. The oscillations visible in the �rst

and second harmonic amplitudes are likely caused by re�ections from the lateral boundaries.

To further evaluate the spatial spectral evolution, a set of integral wave parameters are calculated.

From the variance density spectrumE(f), the signi�cant wave heightHm0 = 4
√
m0 and mean

wave period Te = Tm−1,0 = m−1

m0
or Tm0,2 = (m0

m2
)

1
2 can be expressed in terms of the n-th

moment (mn) of the variance density spectrum:

mn =

∫ ∞
0

fnE(f) df (3.10)

The 0th moment corresponds to the free surface elevation variance or σ2 = 〈(η − 〈η〉)2〉 where

〈−〉 denotes the time-average operator.

Nonlinear e�ects are also visible in the spatial evolution of these parameters, which are globally

estimated well by the model (Figure 3.31). The signi�cant wave height evolves similarly to the

�rst harmonic amplitude shown in Figure 3.30. It increases as the waves shoal, decreases in

the trough and �nally increases again as the water depth decreases approaching the beach. The

simulatedHm0 agrees well with the measured values, with only a slight overestimation for x > 7

m, and a maximum di�erence of 8.8%. The evolution of the mean wave period is similar for

the two de�nitions considered (Tm−1,0 and Tm0,2). The mean period initially decreases when a

reduction in the energy in the low frequency range of the spectrum is compensated for by an

increase in the high frequency range. The subsequent release of higher harmonics in the trough

leads to an increase in the mean wave period that persists along the tank. The largest di�erences

in mean period occur near the end of the tank, with errors of less than 3.5% and 7% for Tm−1,0

and Tm0,2, respectively.

To further analyze the simulated wave nonlinearity, higher order statistical moments were cal-
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Figure 3.29: Comparison of the measured and simulated variance spectra of the free surface

position at probes 2, 5, 7, 9, 11, 13, 15 and 16 for the Becq-Girard et al. (1999) experiments (probe

positions, Figure 3.28). The frequency scale is normalized by the peak frequency (fp) to identify

clearly the harmonic peaks (e.g. 2fp, 3fp, ...).
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Figure 3.30: (a) Spatial evolution of the �rst �ve harmonic amplitudes for the Becq-Girard

et al. (1999) experiments: observations (circles) and simulation results (Misthyc, solid lines). (b)

Bathymetry.

culated from the free surface elevation time series, including:

• the skewness (S) or horizontal asymmetry coe�cient, de�ned as the normalized, centered,

third-order moment of the free surface elevation:

S =
〈(η − 〈η〉)3〉

σ3
. (3.11)

It can also be de�ned as:

S =

∑+∞
m=−∞

∑+∞
n=−∞Re[Bm,n]

m
3/2
0

, (3.12)

where Bm,n is the complex bispectrum.

• the vertical asymmetry coe�cient (A):

A =

∑+∞
m=−∞

∑+∞
n=−∞ Im[Bm,n]

m
3/2
0

, (3.13)
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Figure 3.31: Comparison of simulated and measured sea state parameters along the bathymetric

pro�le for the Becq-Girard et al. (1999) experiments: (a) signi�cant wave height (Hm0), (b) mean

wave period (Tm−1,0), and (c) mean wave period (Tm0,2).

• the kurtosis, which measures the �atness of the free surface elevation distribution and

is related to the probability of occurrence of high waves, is de�ned as the normalized,

centered, fourth-order moment of the free surface elevation:

K =
〈(η − 〈η〉)4〉

σ4
. (3.14)

For a linear sea state, both the horizontal and vertical asymmetries are zero. Here (Figure 3.32),

the simulated skewness and vertical asymmetry are approximately zero in the deepest part of

the domain and evolve along the bathymetric pro�le in close agreement with the measurements.

The spatial evolution of the kurtosis also begins with a value of approximately 3, typical of a

linear (Gaussian) sea state, and then increases in shallower water, reaching a maximum in the

shallowest zone. The model reproduces well the spatial evolution of the kurtosis, only slightly

underestimating the maximum.

This last test case validates the ability of the model to simulate the generation, propagation,

and absorption of irregular, non-breaking waves, including wave shoaling and nonlinear wave

interactions causing the transfer of energy between higher and lower harmonics.
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Figure 3.32: Comparison of simulated and measured sea state parameters along the bathymetric

pro�le for the Becq-Girard et al. (1999) experiments: (a) skewness (or horizontal asymmetry), (b)

vertical asymmetry, and (c) kurtosis.
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Chapter 4

Modeling viscous dissipation: the
visco-potential approach

Ce chapitre, consacré à la prise en compte des e�ets visqueux dans le modèle poten-

tiel développé, commence par un bref aperçu des di�érentes sources de dissipation de

l’énergie des vagues avec un accent mis sur les e�ets dissipatifs dus à la viscosité et les

di�érentes approches existantes pour prendre en compte ces e�ets dans les modèles po-

tentiels. Dans le modèle visco-potentiel retenu, la dissipation interne est prise en compte

par l’ajout de deux termes dissipatifs dans les conditions aux limites à la surface libre

provenant de la contribution principale de la composante rotationnelle de la vitesse.

L’approximation de couche limite au niveau du fond, permet la dérivation d’un terme

venantmodi�er la condition d’imperméabilité, modélisant la dissipation par frottement

sur le fond. Ces développements sont ensuite validés par l’application à quatre cas tests.

Les deux premiers cas consistent à comparer les résultats obtenus par la version linéaire

du modèle avec des solutions analytiques pour la décroissance de vagues régulières se

propageant dans un domaine périodique en profondeur in�nie et d’une onde station-

naire pour di�érentes valeurs de profondeur relative (Antuono and Colagrossi, 2013).

Le troisième cas test simule l’atténuation d’une onde solitaire se propageant sur un fond

plat qui se termine par une pente, où l’e�et combiné du shoaling et du frottement sur le

fond est bien représenté par le modèle (Liu et al., 2006). En�n, le dernier cas test consiste

à reproduire les expériences réalisées récemment à l’ESPCI à petite échelle de vagues se

propageant au-dessus d’une marche submergée. Dans ce cas, du fait du gradient im-

portant de bathymétrie, la validité du terme de frottement sur le fond n’est plus assurée.

L’utilisation des termes de dissipation interne avec une valeur de viscosité plus élevée

que celle de l’eau permet néanmoins d’obtenir des résultats proches des expériences.
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4.1 Introduction

4.1.1 Review of sources of wave energy dissipation

Many mechanisms contribute to the dissipation of wave energy. Wave breaking is the most im-

portant sink of wave energy in the open ocean and in the coastal zone by dissipating energy

through turbulence (e.g. Ardhuin, 2012). When the wave crest velocity exceeds the phase ve-

locity of the wave, the wave becomes unstable and the crest collapses. Depending on the wave

conditions (L, H) and bathymetry, di�erent kinds of wave breaking may occur: spilling, col-

lapsing, plunging and surging. The ampli�cation of wave steepness leading to breaking can be

induced by di�erent processes. One must di�erentiate between depth-induced breaking occur-

ring in shallow water caused by the convergence of the energy �ux through shoaling (H/h) and

deep water wave breaking (so-called white-capping) that is caused by the relative steepness of

a wave (H/L) exceeding a threshold. Deep water wave breaking is often caused by interactions

with the wind, or currents or between waves.

Aside from wave breaking, wave amplitudes decrease during propagation in the open ocean as

well as in laboratory experiments. For non-breaking waves, three main processes lead to energy

dissipation (Lighthill, 1978).

1. Near-surface dissipation is related to the di�erence between the instantaneous and equi-

librium surface tension. This e�ect is usually negligible when the water surface is clean,

but when it is fully contaminated (e.g. �lm of oil,...), the presence of a thin �lm at the

surface changes the attenuation properties of the free surface (zero tangential velocity),

and energy dissipation may become signi�cant. The damping rate due to near surface dis-

sipation can be even more important for partial contamination when a resonance occurs

between capillary-gravity waves and elastic waves (Marangoni waves) on the surface �lm

(Henderson and Segur, 2013; Przadka et al., 2015). In laboratory experiments, the pollution

of the water surface from ambient air conditions can modify the nature of the physical

processes at the origin of the damping and may explain extra dissipation occurring in ex-

periments where dissipation rates are too large to be attributed only to boundary layer

e�ects (Henderson and Segur, 2013; Nicolás and Vega, 2000). This can be avoided by clean-

ing the surface. When considering the dissipation of ocean swell, Henderson and Segur

(2013) showed that a linear inextensible �lm model produces a better decay rate prediction

than a clean surface model (i.e. Lamb, 1932) or a two-phase model (taking into account the

air-water interface). The stress due to the action of the wind at the surface may induce

additional energy dissipation (Dore, 1978).

2. Internal dissipation by viscous stresses acting throughout the water volume (also called

bulk viscosity) is generally small for water waves but may be comparable with boundary

layer damping in some cases (Miles and Henderson, 1998). These internal viscous e�ects

can be estimated from the decrease in the wave height of deep water waves propagating
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over long distance in the absence of wind.

3. Interaction with solid boundaries (i.e. bottom and lateral wall friction when consid-

ering laboratory experiments in a wave tank) also cause dissipation due to friction. The

rotational motion induced in the oscillatory boundary layers that develop close to solid

boundaries dissipates energy. Bottom friction becomes important when the water depth is

shallow enough such that waves induce signi�cant horizontal motions near the bottom.

According to Dutykh (2009a), the rate of viscous dissipation isO(ν3/2) in the free-surface bound-

ary layer (for a clean water surface),O(ν) in the �uid interior from bulk viscosity, andO(ν1/2) in

the bottom boundary layer, where ν is the kinematic viscosity of the �uid ([m2/s]). The largest

energy dissipation mechanism in the absence of wave breaking is bottom friction, when this

phenomenon becomes important in intermediate and shallow water conditions.

4.1.2 Review of wave attenuation due to viscous e�ects

Di�erent theoretical estimations of the wave damping have been derived depending on which

sources of energy dissipation are taken into account: in in�nite depth, only bulk viscosity is im-

portant, whereas in �nite depth, solid boundary interactions must be also considered.

First, Lamb (1932) derived the decay rate for a wave amplitude a in in�nite depth, assuming small

viscosity, using two methods: �rst by a dissipation calculation and then by a direct calculation

using the linearized Navier-Stokes equations, and obtained the same result. When the wave

amplitude varies in time but is homogeneous in the entire domain (i.e. periodic waves in space),

he estimated the following decay rate:

da

dt
= −2νk2a (4.1)

where k is the wave number. The wave amplitude at time t is therefore a(t) = a(t = 0) e−2νk2t
.

The amplitude decrease is exponential in time and faster for shorter waves (i.e. large k).

Later, Biesel (1949) considered the �nite depth case, using zero normal pressure and zero tan-

gential stress free surface boundary conditions, plus zero velocity at the bottom to derive an

expression of the decay rate for the wave amplitude assuming very small viscosity and laminar

�ow. The obtained dispersion relation, expressing the complex angular frequency is expanded as

a function of the viscosity ν, and only the terms of orderO(
√
ν) andO(ν) are kept. Surprisingly,

Biesel (1949) found that in deep water conditions, even when the movement close to the bottom

is very weak, the e�ect of bottom friction is not negligible.

Hunt (1952) then derived an expression for wave damping in a �nite and uniform width b chan-

nel, in shallow water, to be able to estimate the total energy dissipation observed in laboratory
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experiments. He took into account the dissipation of energy in the boundary layers near the

bottom and the lateral walls.

a(t) = a(t = 0) e−αt with α =
2k

b

√
ν

2ω

(
kb+ sinh(2kh)

2kh+ sinh(2kh)

)
(4.2)

In Hunt (1952), the case where the bottom has a mild slope is also considered.

More recently, Behroozi (2004) used the conservation of energy �ux to derive a relationship

between the �uid viscosity and waves attenuation, for a wave amplitude that varies in space,

contrary to Lamb (1932). He considered that the wave amplitude is constant in time at a given

location but varies in space as the waves propagate in the domain by using a complex wave num-

ber. The power loss per unit area due to viscous dissipation was estimated and equated to the

power loss per unit area of the spatial decay in wave amplitude. The results were generalized to

take into account the e�ects of surface tension.

With the objective of extending Lamb’s results, Antuono and Colagrossi (2013) derived a new

approximation of the decay rate of gravity waves in viscous �uid using the linearized Navier-

Stokes equations. The objective was to both remove the assumption of in�nite depth, making the

approximation valid for waves propagating in intermediate and shallow water, and to relax the

assumption of small viscosity. They completed a perturbation expansion of the angular frequency

as a function of the Reynolds number Re (Re = UL/ν, dimensionless quantity de�ned as the

ratio of inertial forces to viscous forces) to obtain a complex expression for the wave damping.

In deep water and at �rst order their decay rate corresponds to the one obtained by Lamb (1932).

However, the second order term in their development is negative, such that Lamb’s �rst-order

solution overestimates the decay rate. In �nite depth, the di�erences with Lamb’s solution are

even larger since Lamb’s solution does not consider dissipation through bottom friction.

4.1.3 On the inclusion of viscous dissipation in potential modeling approaches

Potential �ow theory (inviscid �uid and irrotational �ow) reproduces well water wave propaga-

tion and is therefore a commonly used approach. However, it does not contain natural dissipation

terms, as shown in the corresponding set of equations repeated from Section 1.1.2 (here, neglect-

ing surface tension and with patm = 0):
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∆Φ = 0 in the �uid domain

∂Φ

∂t
+

1

2
(∇Φ)2 + gη +

patm
ρ

= 0 at z = η(x, y, t)

∂η

∂t
+∇HΦ.∇Hη −

∂Φ

∂z
= 0 at z = η(x, y, t)

∇HΦ.∇Hh+
∂Φ

∂z
= 0 at z = −h(x, y)

(4.3)

(4.4)

(4.5)

(4.6)

Here, the bottom is assumed to be �xed in time (but is variable in space).

In certain cases (long propagation times, shallow water...), viscous e�ects cannot be neglected to

reproduce correctly wave evolution during propagation. Viscosity causes a decrease in the wave

amplitude but also alters the speed and shape of the wave. Moreover, to estimate accurately the

bottom shear stress and to compute sediment transport �uxes and the induced changes in the

bathymetry, viscous e�ects must be taken into account. One alternative is to resolve the full

Navier-Stokes equations using a three-phase (air, water and sediment) model, but this approach

is generally computationally expensive and only allows simulating a few wavelengths. Lu et al.

(2010) studied the resonance of incident waves in narrow gaps between identical bodies. They

compared the results obtained with (i) a viscous �uid model and (ii) a potential �ow model in-

cluding arti�cial viscous damping, and showed that the results obtained with both models are

similar. The wave height in the narrow gap can be predicted correctly as long as the damping

coe�cient is properly calibrated. Two important questions are then, how to narrow the gap be-

tween the Navier-Stokes equations and the potential �ow equations, and what kind of physically

relevant dissipative terms should be included?

In in�nite depth, potential �ow is a solution of the Navier-Stokes equations, but to take into

account the e�ects of viscosity, the boundary conditions of the potential �ow problem have to

be modi�ed. The zero normal stress condition at the free surface can be still satis�ed with irro-

tational �ow. This is not the case for the zero tangential stress condition, thus vorticity has to

be introduced in the model. Dias et al. (2008), following the work of Lamb (1932), introduced a

Helmholtz decomposition of the velocity in the linearized Navier-Stokes equations to separate

the vortical and potential �ow contributions. They showed that the vortical velocity can be ex-

pressed asymptotically as a function of the velocity potential and the free surface elevation. A

new set of equations was derived with viscous correction terms added in the KFSBC and DFSBC.

They extended their set of equations with the addition of nonlinear terms by conjecturing that

the expression of the dissipative term as a function of the surface elevation in the KFSBC is still

valid when the viscosity is small. By deriving the Non Linear Schrödinger (NLS) equation from

their model, they obtained the widely used damped NLS equation. This set of equations has

been used by Chen and Dias (2010) to study time harmonic ship waves (after deriving a new
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boundary condition only satis�ed by the velocity potential by combining the linear KFSBC and

DFSBC of Dias et al. (2008) and introducing the e�ects of surface tension). In the limit of small

viscosity, the solution of Chen and Dias (2010) leads to the same decay rate as that of Lamb (1932).

Longuet-Higgins (1992) also re-derived the same decay rate but with another physical interpre-

tation. By assuming that viscous e�ects are con�ned to a vortical boundary layer close to the free

surface, the zero tangential stress condition at the free surface leads to an increase in the surface

elevation that contributes to the normal stress, in addition to the classic viscous component of

the normal stress. Thus, the zero normal stress condition applied at the free surface boundary

corresponds to a pressure correction that is twice the one obtained when not taking into account

the vortical boundary layer at the free surface.

Joseph and Wang (2004) �rst derived the decay rate of gravity waves by solving the stability

problem corresponding to the set of equations formed by the Laplace equation in the domain, the

Bernoulli equation at the free surface and the normal stress balance at the free surface. The decay

rate obtained with this method is half the one found by Lamb (1932) in the limit of long waves.

The authors discovered that for long waves, a vorticity layer is created close to the surface, and

a correction to the irrotational pressure is needed to satisfy the zero shear stress boundary con-

dition and compensate for the irrotational shear stress. With this correction, Joseph and Wang

(2004) obtained the same decay rate as Lamb.

In the case of �nite depth, a boundary layer approach is applied at the bottom. In this bound-

ary layer, vorticity is introduced to satisfy the no-slip (zero velocity) boundary condition at the

bottom. The boundary layer is assumed laminar, and the �ow is assumed irrotational outside

the boundary layer. Liu and Or�la (2004) derived a new kinematic bottom boundary condition

for the velocity potential with a non local term in time (convolution integral) scaling as O(
√
ν).

This condition can be seen as a correction of the vertical velocity at the bottom, corresponding to

the potential �ow problem, due to the vertical rotational velocity induced in the boundary layer.

The derived model with the Boussinesq approximation has been validated with comparison to

experimental data to study viscous damping and shoaling of a solitary wave in a wave tank (Liu

et al., 2006). For this study the derived expression was extended from constant water depth to

slowly varying water depth. The study of the laminar bottom boundary layer �ow under a soli-

tary wave (Liu et al., 2007) shows that the nonlinear advection terms have a weak impact on the

results. The model was further improved to take into account a turbulent bottom boundary layer

(Simarro et al., 2009). In parallel, Dutykh and Dias (2007) derived the same bottom boundary

condition with the addition of to bulk viscosity dissipative terms scaling as O(ν)). The study of

the time-dependent dispersion relation associated with the long wave model derived from the

new potential �ow equations �rst is complete assuming a slowly varying rotational frequency

with time (Dutykh, 2009a), and then with a relaxation of this assumption (Dutykh, 2009b). The
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last paper showed that the local dissipative terms in the KFSBC and the DFSBC have a stabilizing

e�ect, whereas the non-local term in the bottom boundary layer creates modes with a positive

imaginary part that have a destabilizing e�ect.

Generally, the new sets of visco-potential equations (Dutykh and Dias, 2007; Liu and Or�la, 2004)

are not solved directly. Boussinesq-type “lighter” long wave models are often derived, since the

derivation from the inviscid potential equations is easier than that from the complete Navier-

Stokes equations. A review of the derivation of asymptotic models taking into account viscosity

is presented in Le Meur (2015). He pointed out two di�culties in completing a rigorous deriva-

tion of the asymptotic model: (i) matching the boundary layer solution and the potential �ow

solution in the interior of the domain, and (ii) the resolution of Cauchy problem with an initial

condition. He then presented the derivation of a Boussinesq model from the Navier-Stokes equa-

tions without the irrotationality assumption, with special care dedicated to the treatment of the

initial solution for the half derivative.

Kakleas and Nicholls (2010) restate the set of equations from Dias et al. (2008) in terms of the

free surface quantities (η and φ̃) to obtain a Zakharov-like set of equations taking into account

viscosity in in�nite depth. They developed the related Dirichlet-to-Neumann operator up to the

second order in nonlinearity to obtain a weakly nonlinear model for small values of viscosity.

In this chapter, the dissipative terms to be added to the classical potential �ow equations (Eq.(4.3)-

Eq.(4.6)) are re-derived to take into account the dissipation due to both bulk viscosity and bottom

friction. Then the implementation of the free surface dissipative terms and of the non-local term

in the bottom boundary condition is presented. With a linear version of the code, the damping

rate is studied for two cases: (1) regular waves propagating over a �at bottom with only the

bulk viscosity contribution to the dissipation, and (2) standing waves evolving in several relative

depths and Reynolds numbers following Antuono and Colagrossi (2013). The nonlinear version

of the code augmented with viscous terms derived under the linear assumption is then validated

with a comparison to laboratory experiments for the propagation of a solitary wave attenuated

by bottom friction in Liu et al. (2006). Finally the model is used to study the dissipation of regular

waves propagating over a step to small-scale experiments performed by Monsalve et al. (2015).

4.2 Mathematical modeling of visco-potential �ows

4.2.1 Linearized Navier-Stokes system

The derivation of the dissipative terms is carried out for the simpli�ed case of linear theory.

In this context, the free surface �ow in a �uid layer of constant depth (h), whose free surface

displacement is denoted by η, can be described by the continuity equation and the linearized 3D



118 CHAPTER 4: MODELING VISCOUS DISSIPATION

incompressible Navier-Stokes equations in the �uid domain (Ω):


∇.v

¯

= 0

∂v

¯

∂t
= −∇p

ρ
+ g + ν∆v

¯

(4.7)

(4.8)

where v

¯

is the velocity vector. These equations are supplemented by appropriate boundary con-

ditions:

- a no-slip condition at the bottom : v

¯

(z = −h) = 0,

- a linearized kinematic condition at the free surface

∂η

∂t
= w, and

- a dynamic condition at the free surface [σ.n] = 0, where σ = −pn + τ .n is the stress tensor

and τ = (τi,j) = ρν(∂vi/∂xj + ∂vj/∂xi) is the viscous tensor. [f ] denotes the jump of the

function f across the interface, and n is the unit vector normal to the interface. The dynamic

condition at the free surface is decomposed into three conditions corresponding to the tangential

components (σxz and σyz) and the normal component (σzz) of the stress at the free surface.

4.2.2 Dissipation due to bulk viscosity

In this section, the derivation of dissipative terms to model dissipation due to bulk viscosity in

potential �ow equations is shown, following the work of Dias et al. (2008), who derived this new

set of equation for 1DH cases in in�nite depth, and of Dutykh and Dias (2007) who extended it to

3D cases in �nite depth. The main contribution of the vortical component of the velocity in the

KFSBC can be expressed as a dissipative term that depends only on the free surface elevation,

and is negligible in comparison to the velocity potential contribution in the DFSBC.

4.2.2.1 Velocity decomposition

In order to decouple the problem, the Helmholtz-Leray decomposition is applied to the velocity

�eld v

¯

= (u, v, w) dividing it into a potential (irrotational) component and a rotational compo-

nent:

v

¯

= ∇Φ +∇∧Ψ with Ψ = (Ψ1,Ψ2,Ψ3) (4.9)

(4.10)

hence v

¯

=

∣∣∣∣∣∣∣
∂Φ
∂x + ∂Ψ3

∂y − ∂Ψ2
∂z

∂Φ
∂y + ∂Ψ1

∂z − ∂Ψ3
∂x

∂Φ
∂z + ∂Ψ2

∂x − ∂Ψ1
∂y

(4.11)
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where Φ is the velocity potential and Ψ the vector stream function. Substitution of this decom-

position (Eq.(4.11)) into the continuity equation (Eq.(4.7)) gives:

∇.(∇Φ +∇∧Ψ) = 0

∆Φ +∇.(∇∧Ψ)︸ ︷︷ ︸
=0 by def

= 0,

∆Φ = 0.
(4.12)

Similarly, the momentum equation (Eq.(4.8)) can be rewritten as:

∂(∇Φ +∇∧Ψ)

∂t
= −∇p

ρ
+ g + ν∆(∇Φ +∇∧Ψ)

∂∇Φ

∂t
+
∇p
ρ

+∇gz + ν∆(∇Φ) = −∂∇∧Ψ + ν∆(∇∧Ψ)

∂t

∂∇Φ

∂t
+
∇p
ρ

+∇gz + ν[∇( ∇.(∇Φ)︸ ︷︷ ︸
= 0 by (4.12)

−∇ ∧ (∇∧ (∇Φ)︸ ︷︷ ︸
= 0 by def

] = −∇ ∧ ∂Ψ

∂t
+ ν∇∧ (∆Ψ)

∇(
∂Φ

∂t
+
p

ρ
+ gz) = ∇∧ (−∂Ψ

∂t
+ ν∆Ψ) (4.13)

One can notice that Eq.(4.13) is satis�ed, if Φ and Ψ also satisfy:



∂Φ

∂t
+
p

ρ
+ gz = 0 (a)

∂Ψ

∂t
− ν∆Ψ = 0 (b)

(4.14)

To determine the structure of Φ and Ψ, the Fourier-Laplace transform of Eq.(4.12) and Eq.(4.14b)
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is taken to work in (k, s) space. The Fourier-Laplace transform is de�ned as:

LF = L ◦ F such that f(x, t) −→ f̂(k, s), with k = (kx, ky) and k = |k|

Applying the Fourier-Laplace transform to the continuity equation gives:

∆Φ = 0 −→ −k2Φ̂ +
∂2Φ̂

∂z2
= 0

The solution to this equation can be written as:

Φ̂(k, s) = ϕ̂+
0 (k, s)ekz + ϕ̂−0 (k, s)e−kz,

where ϕ̂+
0 and ϕ̂−0 are unknown functions of k and s.

The Fourier-Laplace transform applied to Eq.(4.14b) gives:

∂Ψ

∂t
= ν∆Ψ −→ sψ̂ = ν(−k2ψ̂ +

∂2ψ̂

∂z2
),

whose solution is:

ψ̂i(k, s) = ψ̂i0(k, s)
(
e|m|z + Ci(k, s)e

−|m|z
)
,

with m2 = k2 + s/ν, and ψ̂i0 (i = 1, 3) and Ci (i = 1, 3) are unknown functions that will be

determined by using the initial and boundary conditions.

4.2.2.2 Modi�cation of the kinematic free surface condition

Now the goal is to investigate how the vortical term impacts the KFSBC. With the velocity de-

composition presented in 4.2.2.1, the KFSBC becomes:

∂η

∂t
= w =

∂Φ

∂z
+
∂Ψ2

∂x
− ∂Ψ1

∂y
on z = 0

When applying the Fourier-Laplace transform, this expression becomes:

sη̂ = k(ϕ̂+
0 − ϕ̂−0 ) + ikyψ̂10(1 + C1)− ikxψ̂20(1 + C2) (4.15)

To see if the vortical term in Eq.(4.15) can be expressed as a function of Φ and η only, the tangen-

tial stresses at the free surface must be continuous across the interface (here at z = 0, following

linear theory):

σxz = ρν(
∂w

∂x
+
∂u

∂z
) = 0 (4.16)
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σyz = ρν(
∂w

∂y
+
∂v

∂z
) = 0 (4.17)

After substitution of the decomposition of v

¯

, the Fourier-Laplace transform of Eq.(4.16) and

Eq.(4.17) are:

−2ikx
∂ϕ̂

∂z
− k2

xψ̂2 + kxkyψ̂1 − iky
∂ψ̂3

∂z
− ∂2ψ̂2

∂z2
= 0 (4.18)

−2iky
∂ϕ̂

∂z
− kxkyψ̂2 + k2

yψ̂1 +
∂2ψ̂1

∂z2
+ ikx

∂ψ̂3

∂z
= 0 (4.19)

Combining these two equations as (−ikx)(4.18)+(−iky)(4.19) produces an expression relating

the vortical term of Eq.(4.15) and the irrotational velocity.

ikyψ̂10(1 + C1)− ikxψ̂20(1 + C2) = −2k3(ϕ̂+
0 − ϕ̂−0 )

k2 +m2
(4.20)

Eq.(4.15) and Eq.(4.20) can be combined and rearranged to express of the vortical part of the

KFSBC as a function of η̂ only:

ikyψ̂10(1 + C1)− ikxψ̂20(1 + C2) = −2νk2η̂. (4.21)

Substituting Eq.(4.20) in Eq.(4.15) gives a KFSBC expressed only as a function of the potential

�ow problem variables:

sη̂ = k(ϕ̂+
0 − ϕ̂−0 )− 2νk2η̂. (4.22)

By taking the inverse Fourier-Laplace transform of Eq.(4.22), this expression becomes:

∂η

∂t
=
∂Φ

∂z
+ 2ν∆Hη. (4.23)

This expression is the KFSBC of the irrotational linearized Euler problem with an additional

di�usive term coming from the vortical velocity contribution.

4.2.2.3 Modi�cation of the dynamic free surface condition

The condition for the normal stress at the free surface (σzz = 0 at z = 0) gives the following

expression for the pressure at the free surface:

p = 2ρν

(
∂2Φ

∂z2
+
∂2Ψ2

∂z∂x
− ∂2Ψ1

∂z∂y

)
at z = 0. (4.24)
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The Fourier-Laplace transform of this equation is:

p̂ = 2ρν
(
−k2(ϕ̂+

0 − ϕ̂−0 ) +m (−ikxψ̂20(1− C2) + ikyψ̂10(1− C1))
)
. (4.25)

Now the order of each term is evaluated. Eq.(4.21) shows that (−ikx ψ̂20(1 +C2) + iky ψ̂10(1 +

C1)) = O(ν). Dutykh and Dias (2007) argue that the second term of the right-hand side of

Eq.(4.25) is O(ν3/2), which is negligible in comparison with the �rst term which is O(ν), when

weak dissipation is considered (typically ν ∈ [10−6; 10−3]m2/s). In the following developments,

terms of the order of o(ν) will be neglected. Inferring this from Eq.(4.21) is not so immediate but

considering both extreme cases where C1 and C2 are either� 1 or� 1, −ikx ψ̂20(1 − C2) +

iky ψ̂10(1 − C1) can be considered as O(ν). Since m = O(ν−1/2), the second term of the

right hand side of Eq.(4.25) is actually O(ν3/2). Taking the inverse Fourier-Laplace transform of

Eq.(4.25), the pressure at the free surface at the leading order in ν is thus:

p = 2ρν
∂2Φ

∂z2
at z = 0. (4.26)

This pressure can be considered as a correction of the pressure in the Bernoulli equation, which

is the DFSBC of the potential �ow approach. Therefore the new DFSBC can be written as:

∂Φ

∂t
+ gη + 2 ν

∂2Φ

∂z2
= 0 at z = 0. (4.27)

Finally, the two free surface conditions of the linearized irrotational Euler problem can be com-

pleted with dissipative terms to take into account the e�ects of bulk viscosity:

∂η

∂t
=
∂Φ

∂z
+ 2ν∆Hη at z = 0, (4.28)

∂Φ

∂t
= −gη − 2 ν

∂2Φ

∂z2
at z = 0. (4.29)

Dias et al. (2008) obtained these equations for the linear case, and extended them heuristically

to the nonlinear case by keeping the same expressions of the additional dissipative terms in the

nonlinear DFSBC and KFSBC (by conjecturing that the expression of the dissipative term as a

function of η in the KFSBC is still valid when the viscosity is small).

4.2.3 Dissipation due to bottom friction

The two dissipative terms added to the irrotational Euler free surface boundary conditions, de-

rived in the previous section, account for the dissipation due to the bulk viscosity. However,

the predominant source of dissipation in shallow water is bottom friction. To take into account

this dissipation source, a boundary layer correction is introduced at the bottom. This correction

estimates the impacts of the rotational part of the vertical velocity induced in the boundary layer
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on the �ow in the interior (Dutykh and Dias, 2007; Liu and Or�la, 2004). Although the �uid mo-

tion is described well by potential theory in the interior of the �uid domain, this is not the case

anymore close to the bottom, due to viscous e�ects. In potential �ow theory, the condition of

impermeability at the bottom implies a tangential velocity component, whereas when consider-

ing the boundary layer, this condition is replaced by a no-slip condition at the bottom. To full�ll

this condition, a horizontal rotational velocity component of the same order of magnitude as

the horizontal velocity in the interior of the �uid domain appears in the bottom boundary layer,

which generates a vertical velocity component that persists outside the boundary layer (Liu and

Or�la, 2004). It is this vertical rotational component that is evaluated hereafter to determine the

correction of the impermeability condition of the potential problem at the bottom boundary.

4.2.3.1 Nondimensional equations

Based on the work of Liu and Or�la (2004), a wave train with surface displacement η, with ampli-

tude a and wavelength l, in a constant water depth h is considered. The following dimensionless

variables (denoted by *) are de�ned:

(x∗, y∗) =
(x, y)

l
z∗ =

z

h
t∗ =

t
√
gh

l
η∗ =

η

a
p∗ =

p

ρgh

(u∗, v∗) =
(u, v)√
gh

w∗ =
w

µ
√
gh
,

where µ = h/l is a parameter quantifying the dispersion. In comparison to Liu and Or�la (2004),

some slight di�erences in the nondimensionalization may be noticed. The small parameter ε =

a/h does not appear here since the problem was already linearized. In addition, here O(w∗) =

O(µu∗) which is, in our opinion, more consistent with the physics than the choice of O(w∗) =

O(u∗/µ) by Liu and Or�la (2004). While the intermediate steps di�er, this nondimensionalization

leads to the same bottom correction term in dimensional space as in Liu and Or�la (2004) and

Dutykh and Dias (2007). In the following, the dimensionless equations are considered, after

dropping the * to facilitate reading. The dimensionless continuity equation remains unchanged:

∇H .u+
∂w

∂z
= 0 (4.30)

with u = (u, v). The dimensionless linear Navier-Stokes equations are:

∂u

∂t
= −∇Hp+ α2

(
∆hu+

1

µ2

∂2u

∂z2

)
, (4.31)

µ2∂w

∂t
= −∂p

∂z
− 1 + µ2α2

(
∆hw +

1

µ2

∂2w

∂z2

)
, (4.32)
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where ∆h is the horizontal Laplacian operator and α2 = ν
l
√
gh

is the dimensionless viscosity (i.e.

equivalent to the inverse of a Reynolds number).

4.2.3.2 Bottom boundary layer approximation

The Helmholtz decomposition is again applied to the velocity: v = ∇Φ + vr , where the vortical

component is now expressed as vr = (ur, wr), such that ∇.vr = 0. The rotational part of the

velocity is assumed to vary rapidly in the direction normal to the bottom, in the boundary layer

of thicknessO(α), and the potential �ow needs to be corrected at orderO(α). Thus the following

perturbation expansions of the potential and the velocities are introduced:

Φ = Φ0 + αΦ1 + o(α), (4.33)

ur = ur0 + αur1 + o(α), (4.34)

wr = wr0 + αwr1 + o(α). (4.35)

To focus on the �ow inside the bottom boundary layer, a new vertical coordinate is introduced:

ξ =
z + 1

α
, (4.36)

where ξ = 0 corresponds to the solid boundary. This change of coordinate is only applied for

the vortical velocity.

Substituting the expansion of the rotational part of the velocity in the continuity equation gives

at zero and �rst order in α:

O(1) :
∂wr0
∂ξ

= 0 (4.37)

O(α) : ∇Hur0 +
∂wr1
∂ξ

= 0 (4.38)

Eq.(4.37) shows that wr0 is independent of the vertical coordinate, and thus with the no-slip con-

dition at the bottom (v = 0), the following relations at the zero and �rst order in α can be

written:

O(1) : ∇HΦ0 = −ur0 and

∂Φ0

∂z
= −wr0 (4.39)

O(α) : ∇HΦ1 = −ur1 and

∂Φ1

∂z
= −wr1 (4.40)

The no-�ux condition at the bottom of the potential �ow problem implies that
∂Φ0
∂z = 0. There-

fore, wr0 = 0 at the bottom and throughout the whole boundary layer because of Eq.(4.37). The

correction to the bottom boundary condition is thus the term−wr1. Looking for the leading order
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in α of the momentum equation for the horizontal rotational velocity gives:

∂ur0
∂t

=
1

µ2

∂2ur0
∂ξ2

. (4.41)

After the coordinate change β = µξ, Eq.(4.41) becomes:

∂ur0
∂t

=
∂2ur0
∂β2

. (4.42)

The boundary conditions for the horizontal rotational �ow are known: Eq.(4.39) at the bottom,

and ur0 → 0 as β → +∞. Following Liu and Or�la (2004) and Dutykh and Dias (2007), the

solution of Eq.(4.42) is:

ur0 = − β√
4π

∫ t

0

∇HΦ(x, z = −1, τ)
√
t− τ3 e

− β2

4(t−τ) dτ. (4.43)

Then, from the continuity equation (Eq.(4.38)) and with substitution for β:

wr1(ξ = 0) = − 1

µ
√
π

∫ t

0

∇2
HΦ(x, z = −1, τ)√

t− τ dτ. (4.44)

From the no-�ux bottom boundary condition (Eq.(4.40)), the expression of the correction of the

potential vertical velocity at the bottom is obtained:

∂Φ

∂z
(z = −1) = −α wr1 =

α

µ
√
π

∫ t

0

∆hΦ(x, z = −1, τ)√
t− τ dτ. (4.45)

In dimensional space, using the continuity equation, Eq.(4.45) becomes:

∂Φ

∂z
(z = −h) = −

√
ν

π

∫ t

0

∂2Φ
∂z2 (x, z = −h, τ)√

t− τ dτ. (4.46)

This term enables accounting for the viscous e�ects created by bottom friction in the bottom

boundary layer, in the interior of the �ow region. As it is a di�usion process, the in�uence of

viscosity is not instantaneous, and a time dependent term appears. The e�ect of the boundary

layer is cumulative in time but weighted in favor of the current time (through the term 1/
√
t− τ

in the time integral).

4.2.3.3 Bottom boundary condition for an uneven bottom

The previous correction term was derived for the constant depth case. For an uneven bottom,

the bottom boundary condition has to be modi�ed to take into account the slope (γ = O(∇Hh)).

As done by Liu et al. (2006), a local orthonormal coordinate system is introduced (x′,z′) with
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x′ parallel and z′ normal to the bottom. In this new system of coordinates, u′ and w′ are the

velocities parallel and normal to the bottom, and the non dimensional continuity and momentum

equations for the horizontal speed u′ are:

∇′H u′ +
∂w′

∂z′
= 0, (4.47)

∂u′

∂t
= −∇′Hp−

1

µ

∇′Hh
1 + (∇′Hh)2

+ α2

(
∆′uu

′ +
1

µ2

∂2u′

∂z′2

)
. (4.48)

The same methodology as in 4.2.3.2 is then applied: �rst a stretched coordinate is de�ned in

the direction perpendicular to the bottom (ξ′ = z′/α) to focus on the variation of the vortical

part of the velocity in the boundary layer, then a Helmholtz decomposition of the velocity �eld

is completed, followed by a perturbation expansion. The expression of the vortical part of the

velocity is substituted in the continuity equation giving at zero and �rst order in α the same

expressions as Eq.(4.37) and Eq.(4.38). When substituted in the momentum equation, the leading

order in α gives:

∂u′r0
∂t

=
1

µ2

∂2u′r0
∂ξ2

− 1

µ

∇′Hh
1 + (∇′Hh)2

=
1

µ2

∂2u′r0
∂ξ2

+O(
γ

µ
). (4.49)

The solution of this equation is known and given by Eq.(4.43). The expression of w′r1 (ξ = 0)

can then be deduced (Eq.(4.44)). The no-�ux condition at the bottom gives the bottom condition

correction term to apply to the potential �ow problem in the local coordinate system:

∂Φ

∂z′
(z′ = 0) = −α w′r1 =

α

µ
√
π

∫ t

0

∆′hΦ(x′, z′ = 0, τ)√
t− τ dτ +O(

γ

µ
). (4.50)

In the global coordinate system (x, z), this new bottom condition is written as:

∂Φ

∂z
(z = −h) =

α

µ
√
π

∫ t

0

∆hΦ(x, z = −h, τ)√
t− τ dτ −∇Hh.∇HΦ +O(

γ

µ
, α
γ2

µ
) (4.51)

According to Liu et al. (2006) this equation is valid under the assumption that the bottom slope

satis�es O(γ) ∼ O(µ3), necessary for the linearization of the boundary layer momentum equa-

tion.

4.3 Numerical implementation of the viscous terms

4.3.1 Numerical implementation of the terms in the free surface boundary
condition

To take into account of the e�ects of bulk viscosity, the two dissipative terms in Eq.(4.28) and

(4.29), derived in the linear case, are added to the nonlinear Zakharov equations resolved by the
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code:

∂η

∂t
= −∇HΦ̃.∇Hη + w̃(1 + (∇Hη)2) + 2ν∆Hη, (4.52)

∂Φ̃

∂t
= −gη − 1

2
(∇HΦ̃)2 +

1

2
w̃2(1 + (∇Hη)2)− 2 ν

∂2Φ

∂z2
. (4.53)

The �rst term ∆Hη is computed with �nite di�erence schemes whereas the second term
∂2Φ
∂z2 (x, z =

η) is computed at the end of each resolution of the Laplace BVP from the an(x) coe�cients ac-

cording to:

∂2Φ

∂z2
(x, z = η) = s2

zϕss(s = +1) =
4

h+2

NT∑
n=2

(−1)n n2(n2 − 1) an(x) (4.54)

4.3.2 Numerical implementation of the bottom friction term

The bottom friction condition (Eq.(4.46) or Eq.(4.51)) includes a term with an integral in time of

the following form:

B(t, x) =

∫ t

0

∂2Φ
∂z2 (τ, x)√
t− τ dτ. (4.55)

The evaluation of A(t) is carried out assuming that
∂2Φ
∂z2 (τ, x) is constant over each (small) time

step ∆t. Under this assumption Eq.(4.55) can be evaluated knowing the value of
∂2Φ
∂z2 (τ, x) at

each half-time step (t = k∆t/2, with k = 0, 1, ...), as needed by the fourth-order Runge-Kutta

algorithm (RK4).

B(t) ≈ B(k
∆t

2
) ≈ ∂2Φ

∂z2
(0)

∫ ∆t
4

0

1√
k∆t

2 − τ
dτ +

∂2Φ

∂z2
(
∆t

2
)

∫ 3∆t
4

∆t
4

1√
k∆t

2 − τ
dτ +

∂2Φ

∂z2
(∆t)

∫ 5∆t
4

3∆t
4

1√
k∆t

2 − τ
dτ + ... +

∂2Φ

∂z2
(k

∆t

2
)

∫ k∆t

k∆t−∆t
4

1√
k∆t

2 − τ
dτ (4.56)

By de�ning:

α0 = 2

√
∆t

2
and αp = 2

(√
(2p+ 1)

∆t

4
−
√

(2p− 1)
∆t

4

)
p ≥ 1, (4.57)

βp = 2

(√
(2p+ 2)

∆t

4
−
√

(2p+ 1)
∆t

4

)
p ≥ 0. (4.58)
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Eq.(4.56) can then be rewritten as:

B(k
∆t

2
) = βk−1

∂2Φ

∂z2
(0) +

k−1∑
p=1

αp
∂2Φ

∂z2

(
(k − p)∆t

2

)
+ α0

∂2Φ

∂z2

(
k

∆t

2

)
. (4.59)

In Eq.(4.59), the last term is the only one depending on the potential at current time t, which

then has to be expanded on the Chebyshev polynomial basis. The other terms in Eq.(4.59) are

evaluated from the values of
∂2Φ
∂z2 (τ, x) computed for the previous time steps and constitute the

right-hand side of the bottom boundary condition. In terms of an(x, t), Eq.(4.46) can be written:

2

h+

NT∑
n=1

an n
2(−1)n−1 + α0

√
ν

π

4

h+2

NT∑
n=1

an (−1)n
n2(n2 − 1)

3
= −

√
ν

π

∫ t−∆t
4

0

∂2Φ
∂z2√
t− τ dτ(4.60)

The implementation of this term requires storing the values of
∂2Φ
∂z2 (τ, x) at each sub-time step

of the RK4 algorithm at all the nodes of the domain, which may be computationally expensive

in terms of both memory and CPU time if the domain is large and the integration time long.

To reduce the memory requirement, Torsvik and Liu (2007) proposed estimating A(t) from the

values of
∂2Φ
∂z2 (τ, x) for the most recent N time steps only, by applying a correction term to

compensate for the truncated series. The correction term is computed from the residual term

(accumulation of the discarded values), and a coe�cient that has to be calibrated. This method

will not be used for the presented test cases since the goal was �rst to study the relevance of

the additional viscous terms to reproduce physical processes occurring in the experiments. To

optimize the inclusion of this term, one must analyze the impact of this approximation ofB(t) on

the quality of the results, the sensitivity to free parameters in this method, and the computational

gain is.

To implement viscous e�ects in a domain without any relaxation zones for wave generation,

viscous terms are applied in the entire domain. Additional complexities appear when there are

relaxation zones, because the solution imposed in the relaxation zone does not take into account

viscous e�ects. One way to avoid this problem, associated with wave generation, is to apply the

viscous terms only outside the relaxation zones. To smooth the discontinuity at the transition, the

viscous terms are applied progressively in space. Nevertheless, in areas where the bottom friction

is large (in shallow water or for large values of the viscosity), the simulations tend to become

unstable at the end of the transition zone. The limit of stability depending on the viscosity value

and the water depth is not yet de�ned, and it would require additional attention.
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4.4 Validation test cases

4.4.1 Bulk viscosity terms in the linear regime

The �rst goal is to determine the bulk viscosity damping rate as a function of time for a regular

wave in a periodic domain of constant water depth (h). The wavelength is �xed (k is real), and

the angular frequency ω is complex (here denoted by the underlined variable): ω = a − ib,

where the real part a is the temporal frequency of the signal and the imaginary part b is the

coe�cient of the damping factor e−bt. Again, the linearized system of equations describing the

problem will be considered here. Both the KFSBC (Eq.(4.28)) and the DFSBC (Eq.(4.29)) free

surface boundary conditions are supplemented by terms accounting for the bulk dissipation,

which are proportional to the kinematic viscosity of the �uid ν. In the following, the viscosity

appearing in each of these equations is di�erentiated by ν1 and ν2 to evaluate their respective

contributions:

∂η

∂t
=
∂Φ

∂z
+ 2ν1∆η at z = 0 (4.61)

∂Φ

∂t
= −gη − 2 ν2

∂2Φ

∂z2
at z = 0 (4.62)

The solution of these equations for a progressive wave of initial complex amplitude A is:

η(x, t) = A ei(kx−ωt) (4.63)

Φ(x, z, t) = − igA

ω + i 2 ν2k2

cosh(k(h+ z))

cosh(kh)
ei(kx−ωt) (4.64)

together with the dispersion relation:

ω2 (1 + i 2ν1
k2

ω
)(1 + i 2ν2

k2

ω
) = ω2

0 (4.65)

with ω2
0 ≡ gk tanh(kh).

Depending on the values of ν1 and ν2, three cases can be considered to obtain ω as the roots of

Eq.(4.65):

• case 1 : ν1 = ν > 0 and ν2 = 0 : ω = ω0

√
1− (ν1k2

ω0
)2 − i ν1k

2

• case 2 : ν1 = 0 and ν2 = ν > 0 : ω = ω0

√
1− (ν2k2

ω0
)2 − i ν2k

2
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• case 3 : ν1 = ν > 0 and ν2 = ν > 0 : ω = ω0 − i 2 νk2

In the third case where the dissipative term is added in both free surface boundary conditions,

the dispersion relation corresponds to that of Lamb (1932), and the damping rate is twice that

when the dissipation is present in only one boundary condition (case 1 and 2). Thus both terms

contribute equally to the damping of the amplitude of the wave. When either ν1 or ν2 is equal

to zero, the angular frequency (real part of ω) is slightly reduced, whereas it remains unchanged

when both dissipative terms are present.

Figure 4.1: Set-up of the simulations of regular waves of amplitude A = 0.05 m, propagating

in a periodic domain equal to one wavelength (L = 2.5 m), in constant water depth h = 0.5

m. The blue line is the initial free surface position and the red arrow indicates the direction of

propagation of the wave.

To verify the numerical implementation of the viscous terms in the code and to evaluate the

contribution of each term, a linear regular wave, of wavelengthL = 2.5 m, period T0 = 2π/ω0 ≈
1.3724 s and amplitude A = 0.05 m is propagated in a periodic domain of constant depth (h =

0.5 m) for 10 periods (about 13.7 s) (Figure 4.1). The linear version of the model is used with

∆x = 0.025m (≈ L/100), ∆t = 0.001372 s (≈ T/1000) for the two smallest values of viscosity

and ∆t = 0.0001372 s (≈ T/10000) for the largest viscosity, and NT = 7. At time t = 0 s, the

free surface elevation is maximal at the left end of the domain. The time evolution of the free

surface elevation at this point is compared to the envelop (Eq.(4.66)) for ν = 10−6, 10−3, and

0.2263 m2/s in Figures 4.2-4.4, respectively.

f(ν, x, t) = ±ηmax(x, t = 0)e−bt (4.66)

In these �gures the envelop corresponding to cases 1 and 2 is the black dashed line and the one

corresponding to case 3 is the dark blue dashed line. For small values of the viscosity (ν =
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10−6 m2/s, see Figure 4.2), the amplitude decrease is hardly visible during the simulated period.

The di�erences between the three cases are very small but by zooming in one can see that the

amplitude decreases faster for case 3 than for cases 1 and 2, and that the decay rate is the same

for cases 1 and 2, in agreement with the theory. The decrease of the local maxima follows well

the predicted envelop for the three cases. For a 1000-times higher value of the viscosity (ν =

10−3 m2/s, see Figure 4.3) these e�ects are even more visible.

Figure 4.2: Amplitude decay at the �rst node of the domain as a function of time with viscosity

ν = 10−6 m2/s, for cases 1-3.

According to the theory, the angular frequency is reduced for case 1 and case 2. However, the

value of the viscosity needed to obtain a signi�cant reduction in the angular frequency is large.

To obtain an angular frequency ω = αω0 (α ∈ [0, 1]), the viscosity must be ν = νmax
√

1− α2
,

with νmax = ω0/k
2
. For the wave characteristics considered here, the viscosity therefore must

be ν = 0.2263m2/s (as νmax = 0.7248m2/s) to obtain a 5% reduction of the angular frequency,

which is not a physically realistic value. However, in order to check the correct implementation

of the dissipative terms in the code, the results of the simulations of the three cases with this

value of viscosity are presented in Figure 4.4. The period estimated from Figure 4.4 for cases 1

and 2 is T = 1.444596 s, which is in good agreement with the theoretical value of T = 1.444635

s. Note the very rapid reduction of the amplitude of the free surface with this high value of

viscosity (consequently the extent of the time interval in the horizontal axis of this �gure was

reduced compared to Figures 4.2 and 4.3).
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Figure 4.3: Amplitude decay at the �rst node of the domain as a function of time with viscosity

ν = 10−3 m2/s, for cases 1-3.

This test case shows the ability of the model to take into account the e�ects of bulk viscosity,

showing good agreement with Lamb’s theory (Lamb, 1932). Moreover, it is shown theoretically

and veri�ed numerically that the viscous terms contribute equally to the damping of the ampli-

tude of the wave.
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Figure 4.4: Amplitude decay at the �rst node of the domain as a function of time with viscosity

ν = 0.2263 m2/s, for cases 1-3. (Note that the time interval in this �gure is shorter than the

simulated duration, contrary to Figures 4.2 and 4.3).
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4.4.2 Viscous standing wave in the linear regime

The energy loss due to bulk viscosity following Lamb’s theory (Lamb, 1932) is well reproduced

by the model. Nevertheless, this theory is only valid for high Reynolds numbers. In the case

of �nite depth, additional energy losses may exist due to bottom friction, which are not taken

into account with Lamb’s damping coe�cient. As an extension of Lamb’s theory, Antuono and

Colagrossi (2013) (AC2013 hereafter) considered waves propagating in �nite depth in a viscous

�uid for a wide range of Reynold numbers (as low asRe = 50), and they derived an approximate

formula for the damping rate using a solution of the linearized Navier-Stokes equations.

Figure 4.5: Set-up of the simulations of standing waves of amplitude a, oscillating in a periodic

domain equal to one wavelength (L), in constant water depth h. Blue solid and dashed lines

indicate the extreme positions of the free surface.

Here, the simulations of standing waves, using the linear version of Misthyc, will be compared to

this theory. The standing wave has an amplitude a = 0.05 m in depth h = 1 m (Figure 4.5). The

periodic domain is one wavelength long (L). The temporal evolution of the total kinetic energy

of the �uid, normalized by its value at initial time, is de�ned as:

Ec(t) =
1

2
ρ

[∫
x

∫
y
φ(z = η, t)

∂η

∂t
(t) dxdy +

∫
x

∫
y
φ(z = −h, t) ∂φ

∂z
(z = −h, t) dxdy

]
,(4.67)

where the �rst term is the free surface contribution and the second term is the bottom contribu-

tion.

Several values of the viscosity (ν) or Reynolds number, here de�ned as Re = h
√
gh/ν and rela-

tive water depth (kh), are considered. Five combinations of (Re, kh) from deep to shallow water

(see Table 4.1) were tested. For each combination, two linear simulations were completed by ac-

tivating, (1) only the bulk viscosity, (2) the bulk viscosity and bottom friction terms. The second

series of simulations allows evaluating when bottom friction is negligible. Simulations 1, 2 and 3
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can be compared to assess the e�ects of viscosity in deep water (kh = π), which are expected to

be small since bulk viscosity is the only source of dissipation. Large values of the viscosity (up

to ν = 0.06264 m2/s) are tested for this analysis to emphasize the viscous e�ects. Simulations

2, 4 and 5, can be compared to assess the impacts of the relative water depth. The dissipation is

expected to increase as the relative water depth decreases, and the bottom friction term become

predominant. The results are plotted in Figures 4.6-4.11 as a function of the nondimensional time

t∗ = t
√
g/h.

Simulation kh L(m) Re ν (m2
/s)

1 π 2 50 0.06264

2 π 2 500 0.006264

3 π 2 2500 0.001253

4 π/3 6 500 0.06264

5 π/12 24 500 0.06264

Table 4.1: Nondimensional and physical parameters for the �ve simulations.

In some cases, instabilities develop in time when the bottom friction term is present (e.g. Fig-

ure 4.6). Small wavelength oscillations in the free surface elevation appear and grow during the

simulation. Looking at the time evolution of the amplitude spectra as a function of k (not shown

here), the increase of energy for high values of k is clearly visible. In simulation 4, for which

time instabilities develop, a series of tests of the numerical parameters (∆t, ∆x and NT ) were

completed for the simulation with bottom friction (see Figure 4.6). The default parameters are

∆t = T/1000 = 0.00222 s, ∆x = L/100 = 0.06 m and NT = 7 (dark blue line). With these

numerical parameters, the kinetic energy diverges from the approximated solution proposed by

AC2013 around t∗ ≈ 28. Decreasing the time step by a factor of 100 (dashed red line) does not

delay the divergence. A �ner spatial resolution (light blue line) leads to an earlier divergence

around t∗ = 24, and the increase of the vertical resolution to NT = 12 (purple line) also leads to

an even earlier divergence at t∗ = 12. The simulations were stabilized by applying a low-pass �l-

ter on the variable ∂2Φ/∂z2(z = −h) which is integrated in time in the bottom friction condition

(Eq.(4.46)). At each time step, the Fast Fourier Transform of ∂2Φ/∂z2(z = −h) is computed and

only the �rst 10 modes are kept. With �ltering (orange line), the evolution of the kinetic energy

agrees with AC2013. The frequency of the �ltering was also tested. For this simulation, applying

the �lter only every 6 time steps is su�cient to avoid the growth of instabilities. However, this

is not a general result, and the optimal �ltering frequency may vary for each simulation. Thus,

the �lter is applied at every time step in the following simulations.

Unexpectedly, the time instability develops even more rapidly in the case of deep water (kh = π)

when the bottom friction term should be negligible, and the simulations with and without bottom

friction should produce nearly the same results. For simulation 1, �ltering the ∂2Φ/∂z2(z =

−h) term is not su�cient. Previous results without viscosity showed that the model accuracy
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Figure 4.6: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π/3 andRe = 500 (ν = 0.06264m2/s), for di�erent values of ∆x, ∆t and

NT (see legend).

increases for deep water cases with largerNT (Yates and Benoit (2015)), but increasing the value

of NT only caused the divergence to occur earlier (as seen for simulation 4). On the contrary, by

decreasing NT to NT = 5, the simulation with bottom friction shows the same kinetic energy

evolution as the simulation with only the bulk viscosity (Figure 4.7). In deep water, the simulated

vertical pro�le of the velocity potential varies signi�cantly, and adding higher order polynomials

in the decomposition increases the creation of small oscillations in the pro�le that are ampli�ed

by taking the second derivative. These instabilities occur for high values of the viscosity, above

the range of validity of the theory (which is roughly ν ∈ [10−6, 10−3]m2/s). Higher order terms

(O(ν)) that were neglected for small viscosities may become important and their absence could

destabilize the system. In real application cases, the viscosity will be of maximum value e.g. 10−3

m2/s. For this range of viscosities, the simulations are stable even without �ltering (simulation

3).

It is also important to note that �ltering enables increasing the simulation time step to that of

the same order as the one used for the simulations without viscosity. For example, simulation

5 with bottom friction is stable for ∆t = T/10000 without �ltering, and ∆t = T/100 with

�ltering, producing visually identical curves of the kinetic energy evolution. Table 4.2 shows the

maximum nondivergent time step for the �ve simulations with bottom friction, with and without

�ltering. The time step used for the simulation with bulk viscosity only is the same as the one

for the simulation with bottom friction and �ltering.

The results for the deep water cases (kh = π) for several values of viscosity are compared to
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Simulation ∆tmin no �lter ∆tmin �lter

1 X T/2000 = 0.000567 s (NT = 5)

2 X T/200 = 0.00567 s

3 T/100 = 0.01134 s T/100 = 0.01134 s

4 X T/100 = 0.0222 s

5 T/10000 = 0.000775 s T/100 = 0.0775 s

Table 4.2: Maximum time steps for the simulations with and without a low-pass �lter on the 10

�rst modes of ∂2Φ/∂z2(z = −h) at each time step. X means that the simulation diverged even

for the smallest time step tested ∆t = T/10000.

the solution proposed by AC2013 (green dashed line) and Lamb’s solution (black dashed line) in

Figures 4.7 to 4.9. For this set of simulations, the results of the simulation with and without bot-

tom friction are superimposed, since in in�nite depth the e�ects of bottom friction are negligible.

Lamb’s solution overestimates the energy dissipation in comparison with the solution proposed

by AC2013, especially for small Reynolds numbers (high viscosity). The leading order term of

the damping rate obtained by AC2013 coincides with Lamb’s damping coe�cient, and the neg-

ative higher order terms in AC2013 thus explains the overestimation of Lamb’s solution. The

simulation results follow Lamb’s solution since the bulk viscous terms have been derived using

the same assumptions by considering small viscosity values to neglect terms of order o(ν). For

the smallest value of viscosity (ν = 0.001253 m2/s), the di�erence between the two solutions

is hardly visible, but, according to AC2013, for long propagation times, these di�erences could

become important.

Figure 4.7: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π and Re = 50 (ν = 0.06264 m2/s).
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Figure 4.8: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π and Re = 500 (ν = 0.006264 m2/s).

In cases 4 and 5 where the relative water depths are no longer in the in�nite depth limit, the

di�erences between the simulation with and without bottom friction increase when the relative

water depth decreases (Figures 4.10 and 4.11). The damping is more important with bottom fric-

tion and has consequences on the wave amplitude and propagation speed, as seen in the phase

shift between the two curves. The simulations with bulk viscosity only follow Lamb’s solution,

while the simulations that also include bottom friction are in good agreement with the solution

proposed by AC2013. For intermediate and small relative water depths, the bottom friction term

becomes non negligible and contributes signi�cantly to the dissipation. It is necessary to take

into account the e�ect of bottom friction to reproduce correctly the damping of a standing wave

during in �nite depth.

In comparison to the solution proposed by AC2013, it is necessary to use the bottom friction

term to reproduce correctly the decay of the kinetic energy in intermediate and shallow water.

However, in deep water, the numerical model overestimates the decay of the kinetic energy for

small Reynolds numbers since it follows Lamb’s theory.

This set of simulations will be presented in a a publication currently being prepared on taking

into account viscosity in water waves models. The visco-potential �ow model is compared to a

model based on the linear free surface Stokes equations and a model resolving the full nonlinear

free surface Navier-Stokes equations.
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Figure 4.9: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π and Re = 2500 (ν = 0.001253 m2/s).

Figure 4.10: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π/3 and Re = 500 (ν = 0.06264 m2/s).
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Figure 4.11: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π/12 and Re = 500 (ν = 0.06264 m2/s).
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4.4.3 Attenuation of a solitary wave in a wave �ume

The third test case simulates the propagation of a solitary wave over a �at bottom (h0 = 0.15

m) and then up a gentle slope (1/20), based on the experiments of Liu et al. (2006). In the exper-

iments, the wave is generated by a piston-type wavemaker. Acoustic gauges in the wave �ume

record the evolution of the free surface elevation in the �at-bottom zone and in the shoaling zone

(black triangles in Figure 4.12). The domain for the numerical simulation extends from x = 0 m

to x = 25 m (with the slope beginning at x = 19.88 m), with a regular mesh with ∆x = 0.0075

m, and NT = 7. Since the numerical model is not able to simulate run-up on the slope, a mini-

mum depth of h1 = 0.01 m is set, and the simulations are stopped before the wave arrives at the

re�ective right boundary. Facing stability problems at the right boundary for high values of NT

due to the very small water depth, the impermeable wall boundary condition is slightly modi�ed,

using its projection on the NT + 1 �rst Chebyshev polynomials instead of only on the NT − 1

supplemented by the Dirichlet condition at the free surface and the slip or no-slip condition on

the bottom as done usually.

Figure 4.12: Bathymetry, initial free surface elevation, and positions of wave gauges (black tri-

angles) in the Liu et al. (2006) experiments.

The initial condition is the solution of the fully nonlinear Euler equations obtained with the al-

gorithm of Clamond and Dutykh (2013), computed using the solitary wave amplitude measured

at the �rst gauge (x = 6.5 m). Among the �ve wave amplitudes tested by Liu et al. (2006), the

smallest (a = 0.01365 m) and the largest (a = 0.06135 m) are simulated here, corresponding to

non-linearities of ε = a/h0 = 0.091 and ε = 0.409, respectively. The time step is calculated such

that CFL = 1 with CFL = C∆t/∆x (using the velocity C given by the algorithm of Clamond

and Dutykh (2013). For the smallest wave, ∆t = 0.006 s and for the largest wave ∆t = 0.0052

s. The simulation parameters are shown in Table 4.3.
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a (m) ε ∆t (s) CFL

0.01365 0.091 0.006 1

0.06135 0.409 0.0052 1

Table 4.3: Simulation parameters for the two solitary waves.

The nonlinear version of the model is used for this test case, simply by adding the linear viscous

correction terms to the basic nonlinear equations (Eq.4.5) and (Eq.4.4), and using the no-slip

boundary condition at the bottom (Eq.4.51). As noted by Dutykh and Dias (2007), the derivation

of these viscous terms was completed for the linear regime, and it is merely hypothesized that

these terms can be generalized directly to the fully nonlinear equations. The application to a case

with small (ε = 0.091) and moderate (ε = 0.409) nonlinearities is a good test of the limits of this

hypothesis.

The domain can be decomposed into two zones of interest where di�erent physical processes are

important. First, over the �at bottom (x ≤ 19.88m), wave dissipation is caused by bulk viscos-

ity and bottom friction. Second, on the slope, the e�ects of wave shoaling (increase of the wave

amplitude due to the water depth decrease) become important and compete with the energy dissi-

pation (19.88 m≤ x ≤ 25 m). Over the �at bottom, the amplitude of the solitary waves decreases

(Figure 4.13 a and b for ε = 0.091 and ε = 0.409, respectively) due to these dissipative pro-

cesses. The results of four simulations for each value of ε are presented in Figure 4.13 to evaluate

the in�uence of the di�erent sources of energy dissipation on the decay rate. Without viscosity

(light blue line), the wave amplitude remains constant. The simulations with only the bulk vis-

cosity terms (slip bottom condition) and with ν = 7.10−6 m2/s show only a weak amplitude

decay and are close to the simulations without viscosity (ν = 0 m2/s). When the bottom fric-

tion term (no-slip bottom condition) is added, the soliton amplitudes decrease signi�cantly. The

primary source of energy dissipation is bottom friction. This e�ect becomes more pronounced

for larger wave heights that have larger horizontal velocities at the bottom. The value of the

viscosity required to best �t the experimental data is slightly higher (ν = 7.10−6 m2/s) than

the kinematic viscosity of water (ν = 10−6 m2/s). Using a Boussineq model to simulate these

experiments, Liu et al. (2006) found the same decay rate with a viscosity of 10−6 m2/s when

taking into account the boundary layers on the walls of the wave �ume. Here this dissipation is

not taken into account, which could explain the higher value of ν adjusted to obtain the same

decay rate as in the experiments. The same value of viscosity is used to �t the experimental data

for the two wave heights, showing the insensitivity of this value to the wave non-linearity, for

the considered range of conditions.

Over the sloping bottom, two processes are competing: energy dissipation that decreases the

wave amplitude, and wave shoaling that increases the wave amplitude with a decrease in water
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Figure 4.13: Decrease of the amplitude of the soliton along the wave �ume, for a) ε = 0.091 and b)

ε = 0.409, comparing the experimental data (red dots), and numerical results without viscosity

(light blue), with ν = 10−6 m2/s bottom pure slip condition (green), with ν = 10−6 m2/s

no-slip bottom condition (blue), and with ν = 7.10−6 m2/s no-slip bottom condition (black) .

depth. The shoaling e�ects appear stronger than the dissipative e�ects for these two simulations

since the amplitude of the wave increases as the wave propagates over the slope. This increase is

reproduced well by the simulations with the bottom friction term using ν = 7.10−6 m2/s (Figure

4.14). Here, it is essential to use the modi�ed bottom friction term for a non �at bottom (Eq.4.51),

otherwise the dissipation due to bottom friction is overestimated by the numerical model.

Figure 4.14: Evolution of the amplitude of the soliton in the shoaling zone, for a) ε = 0.091

and b) ε = 0.409, comparing the experimental data (red dots), and the numerical results with

ν = 7.10−6 m2/s (black).
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This third test case shows that the introduction of the linear viscous terms in the nonlinear

version of the model allows reproducing well the experiments with non negligible nonlinear

e�ects. When the bottom friction term is modi�ed to take into account the bottom slope, the

model reproduces correctly the equilibrium between the e�ects of dissipation and shoaling on

the wave amplitude as the soliton propagates up the slope.
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4.4.4 Dissipation of waves propagating over a step

The last test case simulates the propagation of regular waves over a vertical submerged step,

based on a series of small-scale experiments performed by E. Monsalve in the PMMH labora-

tory, at the ESPCI (Ecole Supérieure de Physique et de Chimie Industrielle de la ville de Paris)

(Monsalve et al., 2015). The goal of these experiments is to study the nonlinearities occuring

when waves pass over a submerged obstacle and to compare the observations with Massel’s

theory (Massel, 1983) for a wide range of incident wave frequencies f1 ∈[1 Hz; 4 Hz]. Massel

developed a second order theory to explain the generation of a second harmonic over a step

(zone (II), Figure 4.16). The second harmonic can be decomposed into two components: (1)

bound waves that propagate at the same celerity as the fundamental mode with frequency f1 but

with a wave number twice the fundamental wave number (2k
(II)
1 = 2k(f1, h

(II))), and (2) free

waves with the wave number corresponding to the linear dispersion relation for the frequency

2f1 (k
(II)
2 = k(2f1, h

(II))) that propagate at the corresponding celerity. These two components

interact, creating a beating of the second harmonic amplitude. The beat length is estimated by

(Massel, 1983):

D− =
2π

k
(II)
2 − 2k

(II)
1

(4.68)

In the experiments, the nonlinearities are created by the transition between the deep water re-

gion (h(I) = 6.5 cm) and the shallow water region (h(II) = 2.0 cm) at a vertical step located

at x = 0 m (Figure 4.16). Waves are generated by a �ap wavemaker at x = −0.38 m. At the

right end of the domain, beginning at x = 0.85 m, an absorbing beach of slope 8% is constructed

to prevent wave re�ection. The free surface deformation is measured through a non-intrusive

method, called Fourier Transformed Pro�lometry (Cobelli et al., 2009). A sinusoidal pattern is

projected on the water surface made opaque by adding TiO2 particles (Figure 4.15). The free

surface is reconstructed from the phase di�erence between the deformed fringe pattern due to

wave propagation, and the reference pattern measured when the water is at rest. This provides

accurate spatial (2D) and temporal measurements of the free surface.

The 1DH nonlinear version of the model (Eq.(1.25) and Eq.(1.26)) that does not include the e�ects

of viscous dissipation was �rst used to simulate the experiments. The vertical step is modeled

with a hyperbolic tangent, with a transition of slope 85 degrees in order to avoid creating a

discontinuity at the step (see inset in Figure 4.16). The numerical domain is the same as that of

the experiments (x ∈ [−0.38 m; 0.85 m]), with the addition of a Lgen-long relaxation zone for

wave generation and a Labs-long relaxation zone for wave absorption (Figure 4.16). Waves are

generated with a Dirichlet boundary condition for the potential computed using linear theory.

The amplitude of the incident wave was not measured in the experiments (only the motion of the

wave maker was prescribed), so the amplitude used in the numerical simulation is determined
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Figure 4.15: Experimental set-up. ESPCI credit.

by qualitatively �tting the amplitude of the simulation results to the experimental data before

the step.

Figure 4.16: Bathymetry used in the numerical simulations, showing a zoom of the hyperbolic

tangent form of the step transition in the bottom elevation.

The �rst simulations were completed for an incident wave frequency of f1 = 1.9837 Hz. The

associated wavelength depending on the water depth is given by the linear dispersion relation:

L
(I)
1 = 0.334 m in depth h(I)

and L
(II)
1 = 0.2112 m in depth h(II)

. In this case NT = 7, and the

domain was irregularly meshed with a spatial step of ∆x = L
(I)
1 /100 far from the step, and a

re�nement of ∆x/2 near the step. The time step was ∆t = 0.025 s ≈ T1/200 in order to have a

maximum CFL=1. The amplitude of the wave was set to a = 3.2 mm. The relaxation zones were

of length Lgen = L
(I)
1 and Labs = 2L

(II)
1 .

The simulated space-time evolution of the free surface elevation shows wave crests in red and

wave troughs in deep blue (Figure 4.17). The slope of the line following a wave crest is pro-

portional to the inverse of its celerity: the steeper the slope, the slower the wave propagation.

Two phenomena are visible: (1) The re�ection on the step causes an amplitude modulation in the

deeper part of the domain. (2) Passing over the step, the slope of the line following a wave crest in-
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creases, showing the decrease in wave propagation associated with a decrease in the water depth.

A secondary crest (in light blue) forms between the two main crests from (x ∈ [0.2 m; 0.4 m]).

In addition, the slope of the secondary crest is even steeper, corresponding to the free component

of the second harmonic, which propagates more slowly than the fundamental wave.

Figure 4.17: Simulated space-time pro�le of the free surface elevation (in mm) for f1 = 1.9837

Hz. The position of the step is indicated by the vertical white dashed line. The slope of the crest

and trough lines show the wave celerity.

The free surface elevation time series were decomposed into the amplitudes of the �rst �ve har-

monics. The spatial evolution of these amplitudes were then compared to those obtained from

the measurements. In the experiments, the bi-dimensional measurements of the free surface

show that transverse variations are not always negligible. Here the simulation results are com-

pared to the transverse average of the amplitudes (dashed lines), and the standard deviation is

indicated by the shaded zone. For f1 = 1.9837 Hz, in the deeper region of the domain before

the step, the simulation results agree well with the experiments (Figure 4.18). However, in the

shallower water part over the step, the harmonic amplitudes from the experimental data (dashed

lines) show signi�cant dissipation that is not reproduced by the simulations (that do no include
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viscous e�ects). In addition, the beat length of the second harmonic in the simulations is smaller

than in the experiments.

Figure 4.18: Simulated (solid line) and measured (dashed line) spatial evolution of the �rst �ve

harmonic amplitudes for f1 = 1.9837 Hz without including viscosity or surface tension in the

simulations. The dashed line is the transversal mean of the measurements and the shaded zone

is the standard deviation.

To evaluate the importance of viscous e�ects, �rst, the bulk viscosity terms were added to the

model and the optimal value of the bulk viscosity was sought to reproduce the amplitude of the

second harmonic (Figure 4.19). The optimal value ν = 4.10−5 m2/s is higher than the viscosity

of pure water. This is likely due to the fact that only dissipation through internal friction was

included whereas the e�ects of bottom friction may also be important. However, adding bulk

viscosity to the simulations improves the agreement with the experimental data, but the model

still overestimates the harmonic amplitudes for x > 0.2 m. The bulk viscosity terms have no

e�ect on the beat-length of the second harmonic.

The beat length of the second harmonic is expressed as a function of the di�erence between the

wave numbers of the free and bound components (Eq.(4.68)), which depend on the dispersion

relation for waves. The surface tension (σ) modi�es the linear dispersion relation such that

(Dingemans, 1997a):

ω2 =

(
1 +

1

Bo

)
gk tanh(kh), (4.69)

where Bo = ρg/(σk2) is the Bond number quantifying the ratio between gravity e�ects and

surface tension e�ects. If Bo � 1, surface tension e�ects can be neglected and the classical
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Figure 4.19: Simulated (solid line) and measured (dashed line) spatial evolution of the �rst �ve

harmonic amplitudes for f1 = 1.9837 Hz with bulk viscosity ν = 4.10−5 m2/s, but without the

e�ects of surface tension. For comparison, the results from the simulation without the e�ects of

viscosity or surface tension are shown by the gray lines.

relation dispersion is recovered. For small Bo, surface tension e�ects become important causing

an increase in the wavelength for a given wave frequency. According to the values in Table 4.4,

for the water depth h(II)
, the Bond numbers corresponding to k

(II)
1 and k

(II)
2 are respectively

Bo = 158 and Bo = 29.

Surface tension impacts short waves with wavelengths on the order of centimeters. The wave

lengths associated with the second harmonic over the step are less than 10 cm, so the in�uence

of surface tension on their associated wavelength is small (Table 4.4), but important enough to

modify the beat length.

σ (N/m) k
(II)
1 (rad/m) L

(II)
1 (m) k

(II)
2 (rad/m) L

(II)
2 (m) D− (m)

0 29.65 0.2118 70.95 0.08855 0.5393

0.071 29.54 0.2127 69.11 0.0909 0.6264

Table 4.4: Wave number and wavelength of the �rst and second harmonics with the associated

beat length for the water depth h(II) = 2.0 cm, and for surface tension σ = 0 N/m and σ = 0.071

N/m.

To take into account the e�ects of surface tension, the dynamic free surface boundary condition

is modi�ed with a term proportional to the curvature of the free surface (e.g. Dias and Kharif,
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1999), Eq.(1.26) becomes:

∂Φ̃

∂t
= −gη − 1

2

(
∂Φ̃

∂x

)2

+
1

2
w̃2

(
1 +

(
∂η

∂x

)2
)
− 2 ν

∂2Φ

∂z2
+
σ

ρ

∂

∂x

 ∂η
∂x√

1 +
(
∂η
∂x

)2

 . (4.70)

With surface tension (σ = 0.071 N/m), the simulated beat length of the second harmonic (red

curves, Figure 4.20) is close the measured value. Thus, even with wavelengths at the limit of the

range for which surface tension has signi�cant e�ects, the in�uence is visible.

Figure 4.20: Simulated (solid line) and measured (dashed line) spatial evolution of the �rst �ve

harmonic amplitudes for f1 = 1.9837 Hz without the e�ects of viscosity but with surface tension

σ = 0.071N/m. For comparison, the results from the simulation without the e�ects of viscosity

or surface tension are shown by the gray lines.

Finally, by simulating the combined e�ects of bulk viscosity (ν = 4.10−5 m2/s) and surface ten-

sion (σ = 0.071N/m), the simulation results agree well with the experiments (Figure 4.21). The

amplitude of the second harmonic reaches a minimum around x = 0.59 m, that is larger in the

simulations than measured in the experiments. This minimum is proportional to the amplitude

di�erence between the bound and free waves. The free wave has a smaller wavelength than the

bound wave, and is thus more dissipated by the bulk viscosity. Therefore, the di�erence between

the two amplitudes increases, explaining the increase of the minimum attained by the second

harmonic amplitude. The space-time pro�les of the free surface elevation of the simulation (Fig-

ure 4.22) and the experiments (Figure 4.23) show that in the simulation, the dissipation is still

underestimated in comparison with the experiments. Note that the experimental space-time free
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surface pro�le is made with the free surface elevation at the center of the wave tank, which may

explain some di�erences in wave amplitude attenuation when compared with Figure 4.21.

Figure 4.21: Simulated (solid line) and measured (dashed line) spatial evolution of the �rst �ve

harmonic amplitudes for f1 = 1.9837 Hz with viscosity ν = 4.10−5 m2/s and surface tension

σ = 0.071 N/m.

Additional experiments were completed with higher incident wave frequencies. Using the same

value of the bulk viscosity (ν = 4.10−5 m2/s) in the simulations produces good results for

frequencies up to 3 Hz. For higher frequencies, the simulated dissipation is too strong, and the

amplitudes decrease even before the step. This is likely due to the fact that the dominant source

of energy dissipation is bottom friction.

Bottom friction may become a signi�cant source of dissipation for lower frequency waves (L)

(since the dissipation is stronger for longer wavelengths). By taking into account the e�ects of

bottom friction, the optimal viscosity will likely be reduced. Therefore, a series of tests were run

including the bottom friction term. The no-slip condition was �rst applied everywhere in the

domain, except the generation relaxation zone. However, this did not give satisfactory results in

the region around the step. Since the bottom friction term is derived assuming small gradients

in the water depth, the theory is likely no longer valid when simulating abrupt changes in depth

like a bottom step.

Finally, the no-slip condition was only applied in the shallow water region. To prevent an abrupt

change of the bottom boundary condition, the viscosity in the bottom friction term increase

slowly in space to reach the targeted value. However, for value of the viscosity required to re-
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Figure 4.22: Simulated space-time pro�le of the free surface elevation (in mm) for f1 = 1.9837

Hz, with viscosity ν = 4.10−5 m2/s and surface tension σ = 0.071 N/m. The position of the

step is indicated by the vertical white dashed line.

produced the observed amplitude decay, oscillations occur in the viscosity transition zone mak-

ing the simulation unstable. Therefore, only simulations taking into account the e�ects of bulk

dissipation are shown here.

In the numerical model, only two sources of energy dissipation are represented. Przadka et al.

(2015) show that the white pigments added to the water were chosen to avoid surface �lm e�ects

contrary to most other paint pigments that contain surfactants. But if the water is not perfectly

clean, a surface �lm can form, which changes the attenuation properties at the surface of the

�uid and increases the damping. This e�ect can increase signi�cantly owing to a resonance

e�ect between capillary-gravity waves and elastic waves (also called) Marangoni waves. Thus,

the high dissipation observed in the experiments may also be due to the presence of dust on the

water surface. This contribution to energy dissipation is not taken into account in the numerical

model and may be one additional explanation for the di�erences between the experiments and

simulations.

With the bulk viscosity and surface tension terms, the model reproduces well the experimental

data for a given frequency of the incident wave (e.g. Figure 4.21). However, the value of the bulk



4.5 CONCLUSIONS 153

Figure 4.23: Experimental space-time pro�le of the free surface elevation (in mm) for f1 = 1.9837

Hz. The position of the step is indicated by the vertical white dashed line.

viscosity has to be adapted for each frequency. The model is not able to take into account the

e�ects of bottom friction in this speci�c case (too steep bottom slope) nor surface �lm e�ects

that may be an important mechanisms for energy dissipation in the experiments.

4.5 Conclusions

Dissipation has been introduced into the potential �ow model deriving a visco-potential system

of equations that contains: (1) two additional terms in the free surface boundary conditions to

take into account the predominant contribution of the vortical component of the velocity repre-

senting the e�ects of bulk viscosity, and (2) the modi�cation of the bottom boundary condition

to take into account the presence of a boundary layer representing the e�ects of bottom fric-

tion. The simulation results agree well with the developed theories and experimental data when

applied to cases respecting the model assumptions (i.e. ν < 10−3
, small bottom slope).
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Figure 4.24: Simulated (solid line) and measured (dashed line) spatial evolution of the �rst �ve

harmonic amplitudes for f1 = 3.8 Hz with viscosity ν = 4.10−5 m2/s and surface tension

σ = 0.071 N/m. The dashed line is the transversal mean of the measurements and the shaded

zone is the standard deviation.



Chapter 5

Development and implementation of
the 2DH version of the model using
Radial Basis Functions (RBF)

Ce chapitre traite de l’extension du modèle en deux dimensions dans le plan horizontal.

Avec l’objectif de modi�er le moins possible la structure du code 1DH (i.e. en gar-

dant un schéma explicite de Runge-Kutta d’ordre 4 pour l’intégration en temps et la

résolution spectrale du problème de Laplace sur la verticale), et de pouvoir traiter des

domaines irréguliers, une méthode basée sur les Fonctions de Base Radiales (en Anglais

RBF) est utilisée pour estimer les dérivées horizontales en deux dimensions pour des

nuages de points distribués de façon irrégulière et non-structurée. Après une revue des

di�érentes utilisations et caractéristiques des RBFs, le choix se porte sur laméthode RBF-

FD, qui consiste à estimer la dérivée d’une fonction en un point comme une combinaison

linéaire des valeurs de la fonction en ses points voisins. Les RBF centrées en ces points

sont ensuite utilisées pour déterminer les pondérations. La formulation mathématique

de la méthode ainsi que sa mise en œuvre numérique sont présentées. La précision

de l’estimation des dérivées premières et secondes est testée pour une fonction sinusoï-

dale en faisant varier les di�érents paramètres de la méthode: type de RBF, valeur du

paramètre de formeC , taille du stencilNsten, degré du polynôme augmenté l. L’objectif

étant d’appliquer les poids déterminés pour chaque type de dérivée à toutes les variables

du modèle, la recommandation pour une telle utilisation serait de privilégier des RBFs

ne dépendant pas de paramètre de forme. En e�et, la valeur optimale de celui-ci appa-

raissant fortement dépendante de la fonction considérée, il peut s’avérer compliqué de

trouver une valeur adéquate pour l’ensemble des fonctions utilisées. Pour une taille de

stencil �xée entre 20 et 30 points, la PHS (Polyharmonic Spline) r7 augmentée d’un

polynôme de degré 3 semble un bon compromis entre précision de l’estimation et temps

de calcul.
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For the extension of the model to two horizontal dimensions, our aim in the frame of the current

PhD work was to modify as little as possible the 1DH version of the code, keeping the RK4 scheme

for time integration (section 2.1.1) and the spectral resolution in the vertical dimension (section

1.2). Nevertheless, for the estimation of the horizontal derivatives, �nite-di�erence schemes are

hardly generalizable for two or higher dimensions since polynomial unisolvency is no longer

assured. In cases where the geometry of the domain is simple, horizontal dimensions can be

treated separately with 1D schemes but then, the model cannot be applied to complex domains

requiring geometric �exibility with scattered node layout. Here, a meshless method based on

the Radial Basis Functions (RBF) is tested and implemented in Misthyc to avoid these kind of

restrictions.

5.1 Presentation of the RBF method

5.1.1 General context

5.1.1.1 RBF to interpolate scattered data �elds

RBF were �rst introduced by Hardy (1971) for interpolation purposes. He wanted to construct

a continuous surface representative of the topography of a given zone, from a set of scattered

elevation measurements. After trying to use Fourier and polynomial series methods that he found

unsatisfactory, Hardy �nally obtained good results using a basis composed of radially symmetric

functions φ(||x−xk||), with one centered at each data point xk (where the norm is the standard

Euclidean distance function). Thus the interpolant s(x) knowing the data values fk at N nodes

xk, k = 1, 2, ..., N can be written as:

s(x) =

N∑
k=1

λk φ(||x− xk||) (5.1)

The coe�cients λk in the RBF interpolant can be found by enforcing s(xk) = fk, which results

in the system of linear equations:
φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xN ||)
φ(||x1 − x2||) φ(||x2 − x2||) · · · φ(||x2 − xN ||)

.

.

.

.

.

.

.
.
.

.

.

.

φ(||xN − x1||) φ(||xN − x2||) · · · φ(||xN − xN ||)



λ1

λ2

.

.

.

λN

 =


f1

f2

.

.

.

fN

 (5.2)

Hardy (1971) used the multiquadric (MQ) radial function φ(r) =
√
r2 + C2

with C a strictly

positive shape parameter to have a continuously di�erentiable basis function (even when r = 0).

C controls the sharpness of the RBFs: large values of C give rise to �at basis functions, whereas

intermediate values lead to bowl-like basis functions, and small values to narrow cone-like ba-

sis functions. Franke (1982) led a study on scattered data interpolation, testing 29 interpolation
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methods for 6 di�erent test functions, and the MQ function was among the most accurate, to-

gether with the inverse multiquadric (IMQ), and the thin plate spline (TPS). Despite the good

results obtained with the multiquadric RBF, Franke (1982) still raised concerns because the non-

singularity of the associated interpolation matrix had not been proven at the time of the study.

Many di�erent RBFs can be used, the most common choices are presented in Table 5.1.

Name (Acronyme) Function φ(r) Condition Regularity

Polyharmonic Spline (PHS) rm m odd integer piecewise-smooth

Thin Plate Spline (TPS) rm log r m even integer piecewise-smooth

Multiquadric (MQ)

√
r2 + C2 C ∈ R in�nitely-smooth

Inverse Multiquadric (IMQ)
1√

r2+C2
C ∈ R in�nitely-smooth

Inverse Quadratic (IQ)
1

r2+C2 C ∈ R in�nitely-smooth

Gaussian (GA) e−r
2/C2

C ∈ R in�nitely-smooth

Table 5.1: Commonly used RBFs including the form of the function, the necessary constraints on

the free parameter, and the regularity of the function.

For in�nitely smooth RBFs (typically those with a shape parameter C), the interpolation sys-

tem will never be singular if the scattered nodes are distinct, and they lead to spectral accuracy.

For GA, IQ and IMQ RBFs, it can be shown that because they have a positive Fourier trans-

form, their interpolation matrices are positive de�nite and thus non-singular (Fornberg and Flyer,

2015), but it is not the case with theMQ. However, Micchelli (1986) proved that the interpolation

matrix for MQ has one positive and N − 1 negative eigenvalues, ensuring its non-singularity.

Piecewise smooth RBFs do not depend on a shape parameter, but they present a singularity at the

origin leading to algebraic rather than spectral convergence. To assure the unique solvability of

the linear system for interpolation with piecewise smooth RBF, the interpolant has to be modi�ed

slightly by including polynomial terms:

s(x) =

N∑
k=1

λk φ(||x− xk||) +

M∑
j=1

βjpj(x), (5.3)
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with pj(x)
(l+dd )
j=1 a basis for polynomials up to degree l in Rd (where

(
l+d
d

)
is the binomial coe�-

cient

(
l+d
d

)
≡ (l+d)!

d!l! ). For PHS of degree m, Barnett (2015) showed that a polynomial of degree

at least l = (m− 1)/2 must be added to meet this condition. The addition of polynomial terms

requires additional constraints for the linear system to be well-posed, which tend to minimize

far-�eld growth (reducing the divergence order when r →∞):

N∑
i=1

λipj(xi) = 0 j = 1, 2, 3...,M. (5.4)

In this case, the non-singularity of the matrix becomes more restrictive since it requires the

nodes not just to be distinct but also unisolvent with regard to the appended polynomial space

(Fornberg and Flyer, 2015).

5.1.1.2 Use of RBF to solve partial di�erential equations (PDE)

The good interpolation results obtained with the RBF method made it of interest for partial

derivative estimates on scattered nodes. Stead (1984) compared partial derivatives obtained from

the MQ interpolant and from the least square quadratic approximation. Because RBF inter-

polants have no polynomial precision (except when adding polynomial terms Eq.(5.3)), Stead

(1984) recommended theMQmethod for surfaces with signi�cant curvature. Later, Kansa (1990)

was the �rst to use the MQ method (with a modi�ed scheme) to solve PDEs (namely a Poisson

equation) with the straight collocation method, by applying the PDE derivative operators to in-

terior nodes and boundary conditions to the nodes on the boundary. The resulting matrix is not

symmetric and not proved to be unisolvent. Hon and Schaback (2001) showed that it was possible

to �nd very rare cases where the matrix was singular and so a general proof of unisolvency is

impossible. That is why, Fasshauer (1997) tried to recover the symmetry of the matrix, to ensure

non-singularity, by modifying the basis functions following a method based on Hermite inter-

polation. Another improvement was made by Fedoseyev et al. (2002), imposing both the PDE

and the boundary conditions at boundary nodes. Larsson and Fornberg (2003) compared these

three collocation methods to solve a Poisson equation for several functions. They found that

for in�nitely-smooth RBFs, symmetric collocation gave the best results whereas, for piecewise

smooth RBFs, extra boundary collocation worked better.

5.1.2 Condition number of the interpolation matrix

The RBF interpolation method is known for generating ill-conditioned interpolation matrices.

The matrix condition number measures how sensitive the solution of the system is to changes

in the interpolation matrix. The computation of a solution of a linear system associated with

an ill-conditioned matrix is prone to large numerical errors. The interpolation coe�cients be-

come oscillatory with large magnitudes that may lead to a poor evaluation of the interpolation
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because of numerical cancellations. Practically, the matrix is almost singular because the matrix

coe�cients become very similar. In the case of the global RBF method, the matrix becomes ill-

conditioned either when the size of the matrix increases (i.e. when the number of nodes N in

the domain increases) or when the shape parameter C of the in�nitely smooth RBFs becomes

very large leading to matrix coe�cients that depend strongly on C . Overcoming the problem of

an ill-conditioned matrix is an important part of the work on RBFs (i.e. Kansa and Hon, 2000).

Depending on the causes of the ill-conditioned matrix, several types of solutions have been pro-

posed, which are presented brie�y in the following sub-sections.

5.1.2.1 Numerical methods

Even without knowing the cause of an ill-conditioned matrix, some numerical approaches can be

used to solve ill-conditioned systems. The �rst idea is to increase the arithmetic precision of the

calculation, but it is computationally costly and is not usually retained as a “good” solution. Other

methods such as using a preconditioner or doing block partitioning have also been tested (Kansa

and Hon, 2000). Additionally, �ltering techniques, using the Singular Value Decomposition (SVD)

method, which neglects the smallest singular values, is also suggested by Boyd (2010).

5.1.2.2 Reduction of the size of the matrix

The interpolation method was �rst introduced as a global method taking into account all the

nodes of the domain, leading to a full matrix. When the size of the matrix becomes too large,

it often becomes ill-conditioned appears. In this case, the size of the matrix can be reduced by

considering smaller domains using domain decomposition algorithms (Beatson et al., 2001; Wong

et al., 1999; Zhou et al., 2003). By extending this idea to the other limit, one can switch to a local

approach, de�ning stencils centered at each node of the domain, including only its Nsten − 1

nearest neighbors, for a total of Nsten nodes in each stencil. Tolstykh and Shirobokov (2003)

were the �rst to consider this method to estimate derivatives with a �nite di�erence approach,

followed shortly by Wright (2003) and Shu et al. (2003). Wright and Fornberg (2006) improved

the accuracy of this method by including a linear combination of derivatives of the function f at

the surrounding nodes. This local method also presents the advantage of reducing considerably

the computational time in comparison with the global method, and o�ers the possibility of be-

ing easily parallelized. The construction of approximate formulas for the derivatives using RBF

interpolants, also called the RBF-FD method, will be presented in more detail in Section 5.2.
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5.1.2.3 Nearly �at basis functions (C →∞)

The interpolation matrix becomes ill-conditioned when C → ∞, i.e. in the limit of �at ba-

sis functions, generally leading to a trade-o� between accuracy and numerical conditioning.

Nevertheless, according to Fornberg and Flyer (2015), the interpolation problem is not itself ill-

conditioned in the �at basis function limit; it is the numerical algorithm corresponding to the

“direct” application of the method that leads to an ill-conditioned procedure, whereas the prob-

lem is completely well-conditioned. Work has been done to develop stable algorithms to reach

accurate results even for high values of C . For example, the Contour Padé algorithm (Fornberg

and Wright, 2004) allows numerically stable computations ofMQ RBF interpolants for allC val-

ues. The interpolant is written as the sum of a rational function and a power series in C whose

coe�cients are determined in a complex C-plane, removing the restriction that C is real. This

method is not really adapted for a large data set. Another stable algorithm valid for larger node

sets, called RBF-QR, was developed by Fornberg and Piret (2007) for data points distributed over

the surface of a sphere. It consists in �nding an alternative well-conditioned RBF basis spanning

exactly the same space. In this case, the new equivalent bases converge to the spherical harmonic

basis as C → ∞. The RBF-QR method has been extended to more general domains from 1 to 3

dimensions (Fornberg et al., 2011) mainly for GA RBF (Table 5.1). More recently a simpler and

faster algorithm, the RBF-GA algorithm has been developed (Fornberg et al., 2013), particularly

well-suited for RBF-FD applications. Use of a stable algorithm not only improves the accuracy

by allowing the use of larger values of C , but also makes the choice of optimal C less critical.

Nevertheless, the modi�ed RBFs have much more complicated expressions.

5.1.3 Accuracy of the estimates and choice of the RBF

The choice of RBF to obtain the most accurate estimates is not straightforward. Some trade-

o�s must be considered. RBFs can be divided into two categories: the in�nitely smooth and the

piecewise smooth functions. Two characteristics mainly di�erentiate these two categories: (1)

the type of convergence when reducing the typical node distance, and (2) the dependency on a

shape parameter C .

5.1.3.1 Spectral convergence vs algebraic convergence

Considering global RBF methods, in�nitely-smooth RBFs have a spectral convergence when

piecewise smooth RBFs only have algebraic convergence, which often leads to a preference for

in�nitely smooth RBFs (Fornberg and Flyer, 2015). Nevertheless, when considering local meth-

ods (i.e. RBF-FD method), the spectral accuracy of in�nitely smooth RBFs is lost, minimizing

its advantage with respect to convergence. Moreover, in�nitely smooth RBFs feature stagnation

errors, meaning that when the inter-node spacing is reduced, the error is not improved indef-

initely but reaches a plateau because the matrix becomes ill-conditioned. To counteract this



5.1 PRESENTATION OF THE RBF METHOD 161

problem, the value of C is generally increased while the inter-node distance is decreased to keep

the condition number of the matrix constant. However this increase in C tends to degrade the

accuracy and prevents convergence (Fornberg and Flyer, 2015). The addition of a polynomial of

variable degree (at least a constant) to the RBF interpolant may reduce these errors producing

a convergence rate corresponding to the degree of the added polynomial. PHS RBFs need the

addition of a polynomial to the interpolant to guarantee the unisolvency of the system, thus they

do not present this kind of stagnation error. Flyer et al. (2016) recommended for simple local in-

terpolation problems with PHS to increase the degree of the polynomial close the maximum

value allowed by the size of the stencil, but for more complex applications, the degree of the

added polynomial should be such that there are twice as many RBFs as polynomial terms in the

interpolant (i.e Nsten ≈ 2M ) (Barnett, 2015).

5.1.3.2 Optimal value for the shape parameter C

With in�nitely smooth RBFs, the estimation error is very dependent on the value of the shape pa-

rameterC : for small values ofC , the error is generally quite high and decreases with an increase

of C , often reaching a minimum for an intermediate value of C = Copt (called in the following

the optimal value of C). Increasing C beyond this optimal value, the error increases and large

oscillations may be observed if the matrix becomes ill-conditioned. However, the matrix may

already become ill-conditioned for values of C smaller than Copt: in this case, the minimal error

is just at the limit of ill-conditioning. In the limit of C → ∞, Fornberg et al. (2004) showed

that when the limit exists, the interpolant tends to a multivariate polynomial. Except for GA

RBF, the existence of the limit depends on the unisolvency of the node setting with regard to

multivariate polynomials. Concerning the estimation of derivatives, Bayona et al. (2010) showed

that the formulas obtained with the RBF-FD method approached conventional �nite-di�erence

formulas in the limit of in�nitely �at RBFs, and that there is a range of values of C that produce

more accurate estimates than standard �nite di�erence schemes.

However, �nding Copt is a di�cult task. For global methods, there is no mathematical theory to

help with the choice of C . Usually, the choice of C is based on the inter-node spacing, for conve-

nience, but Carlson and Foley (1991) concluded that (according to their tests), the value of optimal

shape parameter depended on the value of the function interpolated and not on the node spacing

or the node positions. This was also observed by Rippa (1999). For interpolation, the value of C

is chosen by cross-validation methods, for example Rippa (1999) developed a method based on

the minimization of a cost function that was the sum over each node of the errors between the

interpolant and the function when each node is removed from the initial set. Fasshauer and Zang

(2007) adapted Rippa’s algorithm for the resolution of PDEs with RBF pseudospectral method.

For RBF-FD, Bayona et al. (2010) derived an expression of the error estimate as a function of C ,

showing thatCopt depends on the value of the function and its derivatives, and is independent of
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the node spacing at �rst order, but can vary with node locations in 2D. Knowing the expression

of the error estimate, Bayona et al. (2011) proposed an algorithm to �nd the optimal value of

C . However, this required solving the problem twice, since the values of the derivative of the

function are necessary to compute the error estimates.

Several studies show that the accuracy of the estimations could be greatly improved by making

the shape parameter vary with the location of the center. For example, Kansa and Carlson (1992)

used a strictly monotonic function to vary C at each node by several orders of magnitude, de-

pending on its index in the node set. Later, Kansa and Hon (2000) varied the shape parameter

as a function of the local curvature radius of the function being solved. According to Fornberg

and Zuev (2007), C should be proportional to the distance to the nearest neighbor and should be

increased at the edge of the domain. Even if varying the shape parameter seems to improve the

accuracy, the optimal way in which C must vary from one node to another is yet not very clear,

except in the RBF-FD method. Indeed, with the analytical expression of the error estimates, Bay-

ona et al. (2012) developed an algorithm to �nd the Copt for each node (a generalized MQ is for

nodes withoutCopt) and improve signi�cantly the accuracy in comparison with a constant shape

parameter. With a variable shape parameter the proof of the non-singularity of the interpolation

matrix is no longer valid, but it seems that singular systems still are not likely to arise (Fornberg

and Flyer, 2015). Moreover, this approach produces more variable matrix coe�cients, reducing

the condition number.

The selection of a “good” value for the shape parameter can be challenging, which is why RBFs

without shape parameters such as PHS, recently have become more and more attractive, noting

furthermore that they produce relatively well-conditioned matrices.

5.1.3.3 Stencil size for the RBF-FD method

In the case of local methods, the size of the stencil also enters into consideration when looking at

the accuracy of the estimation. Bayona et al. (2010) and Ding et al. (2005) study, among other pa-

rameters, the convergence of the error as a function of the number of nodes in the stencil (Nsten).

They showed that the accuracy is generally increased when the size of the stencil increases, with

some jumps occurring at certain values ofNsten. Bayona et al. (2010) gave the threshold value of

Nsten for which the error is signi�cantly smaller than the error forNsten−1: Nsten = (p−1)2+4

(where p is an even integer) for equispaced nodes and Nsten = (p+ 2)(p+ 3)/2 (where p is any

integer) for non-equispaced nodes. As a consequence, the order of convergence as a function of

the node spacing also varies in phase with the number of nodes in the stencil, which is di�erent

for equispaced nodes and non-equispaced nodes. For example withNsten = 13, the convergence

is of order p = 4 for equispaced nodes, but only of order p = 2 for non-equispaced nodes, ac-
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cording to Bayona et al. (2010). For PHS RBFs, increasing the stencil size decreases the error,

but the order of convergence is controlled by the degree of the added polynomials, not by the

stencil size itself.

5.1.4 Runge phenomenon and boundary errors

Approximations near the boundary usually present larger errors than in the interior due to the

one-sided nature of the stencil. It is a problem of major concern since for time-dependent PDEs,

the errors at the boundary can contaminate the solution across the entire domain or simply grow

quickly and cause the solution to diverge. That is why it is particularly important to �nd solutions

to minimize boundary errors. Fornberg et al. (2002) studied four edge enhancement techniques:

inclusion of low degree polynomials (here �rst degree), node clustering (with higher density of

nodes near the boundary), Not-a-knot (Nak) and Super Not-a-knot (Snak) methods. The last two

techniques consist in moving some RBF centers from the inside to the outside of the domain:

nodes from the �rst row inside the domain for Nak, and nodes on the boundary are added for

Snak. Their conclusions are that the four correction methods are e�cient with a preference for

the Nak type of correction that is more “local” and may be more adapted for complex geometry

domains than the addition of low degree polynomials.

Moreover, in the near-�at limit, in�nitely smooth RBF may tend to a multivariate polynomial,

but polynomial interpolation on an equispaced grid is known to present large oscillations of

the interpolated function at the edges of the domain. This e�ect, usually called the Runge phe-

nomenon, can be prevented by node clustering close to the boundaries. Nevertheless, with the

RBF method, this phenomenon can be also triggered by node re�nement in the interior of the

domain. It is then advantageous to let the shape parameter vary spatially (Fornberg and Zuev,

2007). Increasing the value of C for nodes on the boundary may signi�cantly improve the accu-

racy.

Finally, another possibility to reduce the one-sided nature of the stencil for nodes on the bound-

ary, is to add a layer of nodes just outside the boundary. No equations are enforced at their

location, which is why they are usually called ghost nodes, but they become part of the stencil of

boundary and near boundary interior nodes. These additional nodes allow enforcing, in addition

to the boundary condition, the PDE at the boundary nodes. The function values at the ghost

nodes are found by enforcing either a non-Dirichlet condition or the PDE at the boundary nodes.

5.1.5 Stability for the resolution of time-dependent PDEs

The RBF-FD method allows obtaining sparse di�erentiation matrices (DM), that then can be used

to solve PDEs. The analysis of the distribution of the DM eigenvalues gives important infor-

mation concerning the capacity of the method to solve time-dependent PDEs with an explicit

time-stepping algorithm. For purely convective PDEs, as energy should be constant for all time-

stepping, all eigenvalues of the DM should be purely imaginary. Nevertheless, because of the

irregularity of the stencils, eigenvalues of the DM are scattered into the right half of the com-
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plex plane, which can cause severe instabilities if no natural dissipation occurs. This e�ect is

emphasized by large stencils since the scatter of the eigenvalues increases with Nsten. Thus the

resolution of time-dependent PDE without a di�usive operator is quite challenging.

To prevent numerical instabilities, the stencil size is often limited to relatively small values be-

tween 5 and 15. To control the eigenvalues, a hyperviscosity approach can be implemented

(Fornberg and Lehto, 2011). This method acts like a �lter, by adding higher order derivatives of

the Laplacian to the right hand side of the governing equations. The e�ect will be a damping of

the spurious high frequencies by moving the corresponding eigenvalues to the left side of the

complex plane, while leaving the relevant modes intact. As a consequence, larger stencils can be

used allowing approximations of higher accuracy. For PHS RBFs, the implementation is quite

simple since the Laplacian operator can be expressed as a function of another PHS RBF (Bar-

nett, 2015).

For more details on RBF methods and numerous application examples, see the recently published

book of Fornberg and Flyer (2015).

5.2 Implementation of the RBF-FD method

In the extension of the model to two horizontal dimensions, the horizontal derivatives will be

approximated with the local RBF-FD method. This method seems to be a good compromise

between:

• an easy implementation, with an algorithm similar to �nite-di�erence methods,

• accuracy close to pseudo-spectral methods and global RBF methods,

• �exibility with a scattered nodes distribution and possibilities of local re�nement,

• potential for high computational speed with sparse DM and parallelization due to the local

de�nition of the stencil.

5.2.1 Theory

In this section, the estimation of derivatives with the RBF-method is described following Barnett

(2015). The goal is to estimate the value of Lf(x1), where x1 = (x1, y1) is any point in the

domain, f is any function expressed at each node, and L the desired linear di�erential operator

(i.e.
∂
∂x ,

∂
∂y ,

∂2

∂x2 ,
∂2

∂y2 , etc.).

Here, the local RBF method is applied, so a stencil ofNsten nodes, formed by the node of interest

x1 (center of the stencil) and its Nsten − 1 nearest neighbors (x2, x3, ..., xNsten ), is considered.

In Figure 5.1, an example of a RBF-FD stencil in 2D corresponding to Nsten = 9 is shown. The
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Figure 5.1: De�nition of a stencil with Nsten = 9 nodes. The node in red (x1) is the center of the

stencil and the blue dots are its supporting nodes. Black dots are non-supporting nodes.

corresponding function values are f1, f2, ..., fNsten . Weights {wi}Nsteni=1 are sought so that:

Lf(x1) ≈
Nsten∑
i=1

wi fi. (5.5)

In matrix formalism this becomes:

Lf(x1) ≈
[
w v

] [f
0

]
, (5.6)

where

w =
[
w1 w2 · · ·wNsten

]
and v =

[
v1 v2 · · · vM

]
with

f =
[
f1 f2 · · · fNsten

]T
. (5.7)

The M weights contained in v are added here in order to facilitate the derivation made using

a matrix formalism (explained further below). But they will be discarded once the system is

resolved.

To derive these weights, a RBF interpolant supplemented with a polynomial of degree l (general

case) is considered :

s(x) =

Nsten∑
k=1

λk φ(||x− xk||) +
M∑
j=1

βjpj(x) (5.8)

with pj(x)
(l+2

2 )
j=1 a basis of polynomials up to degree l in R2

and M =
(
l+2
2

)
.
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The interpolation coe�cients ({λk}Nstenk=1 , {βj}Mj=1), are found by enforcing:

• Nsten constraints corresponding to forcing the interpolant to have the value of the function

for all nodes in the stencil: s(xk) = fk, for k = 1, .., Nsten,

• M constraints to minimize the far-�eld growth due to the addition of polynomial terms:∑Nsten
i=1 λipj(xi) = 0 j = 1, 2, 3...,M .

The addition of the M polynomial terms increases the size of the system in Eq.(5.2), leading to

the following linear system:[
A P

P T 0

][
λ

β

]
=

[
f

0

]
⇒

[
λ

β

]
=

[
A P

P T 0

]−1 [
f

0

]
(5.9)

where

A =


φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xNsten ||)
φ(||x1 − x2||) φ(||x2 − x2|| · · · φ(||x2 − xNsten ||)

.

.

.

.

.

.

.
.
.

.

.

.

φ(||xNsten − x1||) φ(||xNsten − x2||) · · · φ(||xNsten − xNsten ||)

 ,

P =


p1(x1) p2(x1) · · · pM (x1)

p1(x2) p2(x2) · · · pM (x2)
.
.
.

.

.

.

.
.
.

.

.

.

p1(xNsten) p2(xNsten) · · · pM (xNsten)

 ,

λ =
[
λ1 λ2 · · · λNsten

]T
and β =

[
β1 β2 · · · βM

]T
.

Evaluating the derivative of the interpolant (Eq.(5.8)) at x1 gives:

Ls(x1) =

Nsten∑
k=1

λk Lφ(||x1 − xk||) +

M∑
j=1

βjLpj(x1)

=
[
b c

] [λ
β

]

=

[b c
] [ A P

P T 0

]−1
[f

0

]
(5.10)
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where

b =
[
Lφ(||x1 − x1||) · · · Lφ(||x1 − xNsten ||)

]
and c =

[
Lp1(x1) · · · LpM (x1)

]
.

By equating Eq.(5.6) and Eq.(5.10), it is found that:

[
b c

] [ A P

P T 0

]−1

=
[
w v

]
(5.11)

Finally, taking the transpose of Eq.(5.11) leads to the following system for the unknown weights

w and v of Eq.(5.6): [
A P

P T 0

][
wT

vT

]
=

[
bT

cT

]
(5.12)

Notice that the system can be simpli�ed in this manner because the matrixA is symmetric. Thus

the matrix arising in the system to �nd the derivative weights is the same as for the interpola-

tion problem. Otherwise, if A is not symmetric, the matrix

[
A P

P T 0

]
has to be replaced by its

transposed matrix. The application of the method depends on the non-singularity of the matrix[
A P

P T 0

]
, which was discussed in Section 5.1.

5.2.2 Numerical implementation

The calculation of the approximation weights of Eq.(5.6) has to be done at all nodes of the domain

for each di�erential operator L required for the discretization of the PDE. In the Misthyc model,

�rst and second-order derivatives in the two horizontal dimensions are needed. The resolution of

the linear system Eq.(5.12) is achieved with a LU decomposition with a threshold of 10−16
. Once

the weights are computed, they are stored in tables (di�erentiation matrices) and can be used

whenever a derivative is estimated in the model. They are applied to evaluate the derivatives

of any function in the model, such as the bottom pro�le h, the free surface elevation η, the an

coe�cients of the decomposition of the velocity potential Φ on the Chebyshev polynomial basis.

The calculation of the weights is completed only once at the beginning of the simulation, and is

therefore a part of the pre-processing phase.

Before the weights in Eq.(5.6) are calculated, it is necessary to determine the Nsten − 1 nearest

neighbors. The size of the stencil is de�ned at the beginning of the simulation, and is often de-

�ned either as a �xed number of nodes or as a �xed radius including a variable number of nodes.
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For all the simulations presented in the two following chapters, the size of the stencil is constant

for all the nodes as Nsten. In the code, an algorithm that calculates the Euclidean distance be-

tween two nodes (developed by Michel Benoit) is implemented to identify the Nsten-1 nearest

neighbors. Some faster algorithms could have been used such as the k-dimensional tree algo-

rithm (Fornberg and Flyer, 2015). Nevertheless, it is a pre-processing task whose computational

time is relatively small in comparison to the resolution of the Laplace problem. Note that with

this algorithm, the �nal set of nodes de�ning the stencil depends on the index of the nodes: since

the stencil size is imposed to determine the nodes belonging to the stencil, (rather than a char-

acteristic distance to the center), several nodes separated by the same distance to the center (for

example, for regular grid) may be selected depending on the order in which they are evaluated.

Another characteristic of the code is the possibility to normalize the stencil. The physical length

of the stencil is di�erent for randomly scattered nodes, and the optimal value of the shape pa-

rameter that depends on the scale of the supporting region may vary from one node to another.

Shu et al. (2003) proposed, similarly to �nite element methods, to transform the local support to

a unit circle by applying the following coordinate transformation:

(x′, y′) =

(
x

Di
,
y

Di

)
, (5.13)

where (x, y) are the coordinates in the physical space, (x′, y′) the coordinates in the unit circle,

and Di is the diameter of the smallest circle enclosing all nodes belonging to the stencil of node

center i. This normalization is equivalent to considering a traditional RBF with a modi�ed shape

parameter C ′ = CDi. Thus, when Di changes, the equivalent C in the physical space also

changes. Considering a set of evenly distributed scattered nodes, for a given stencil size Nsten,

nodes located at the interior of the domain display a centered stencil whereas nodes located at

the boundary have only a one-sided stencil. As a consequence, the Di of a node at the boundary

will be larger than the one for a node from the interior of the domain, as well as the equivalent

C . Knowing that the estimation error generally decreases with an increase in C , the goal of the

normalization is to reduce the di�erence in accuracy between interior nodes (with centered sten-

cil) and boundary nodes with asymmetric or one-sided stencils. Note that the value of C used

to estimate the weighting coe�cients is constant for all the RBFs of a given stencil. It does not

vary with the centers of the RBF contrary to what was tested by Fornberg and Zuev (2007).

The implementation of the RBF-FD method is �rst tested for the approximation of spatial deriva-

tives. A series of tests are completed to verify that the main characteristics of the RBF-FD method

described in the literature review (Section 5.1) are well reproduced.
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5.3 Tests on the estimation of derivativeswith theRBF-FDmethod.

This section is dedicated to a series of tests to evaluate the capabilities and limitations of the

RBF-FD method to estimate �rst and second-order spatial derivatives, before implementing it

in the time-stepping Misthyc code. The test function is �rst presented with the results of the

tests designed to make numerical experiments with RBF-FD and to help evaluate the choice of

several parameters of the method (RBF, shape parameter, added polynomial, stencil size Nsten,

and stencil normalization).

5.3.1 Presentation of the test functions

Di�erent types of functions have been tested to evaluate the performance of RBF methods for

interpolation and derivative estimations in the literature. These functions were usually chosen

arbitrarily, displaying more or less complex spatial variations (i.e. steep gradients, �at func-

tions,...). Here, the tests are completed for a sinusoidal function because it is the �rst step to

represent waves, and the free surface in the model will generally present oscillatory variations:

f(x, y) = A cos

(
2π

L
(x cos θ + y sin θ)

)
, (5.14)

where L = 0.5 m is the characteristic length of variation (or wavelength), A is the wave ampli-

tude such that A/L = 0.05 and θ = 20° is the direction of wave propagation with respect to the

x axis (Figure 5.2). The domain of interest is de�ned by 0 ≤ x ≤ 1 m and 0 ≤ y ≤ 1 m.

Figure 5.2: Test function f(x, y) = A cos
(

2π
L (x cos θ + y sin θ)

)
with L = 0.5 m, A/L = 0.05,

and θ = 20°.

First and second-order derivatives in both horizontal dimensions are computed with the RBF-FD

method, and the results are compared to the analytical derivatives (Figure 5.3). These derivatives
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feature sinusoidal variations with di�erent amplitudes: the largest are obtained for fxx = ∂2f
∂x2

and the smallest for fy = ∂f
∂y .

Figure 5.3: Analytical �rst and second-order derivatives of the test function f(x, y).

Although the literature review showed that the accuracy of the method, and especially the value

of the optimal shape parameter C , may vary with the function considered, the tests have been

completed primarily for a sinusoidal function. The RBF-FD method is aimed to be used to esti-

mate the derivatives of any variable occurring in the model (i.e. free surface elevation, velocity

potential, bottom pro�le and an coe�cients), which may have spatial variations quite di�erent

from sinusoidal variations. Therefore, some limited tests have also been carried out using a �at

function, since in some test cases, the bottom bathymetry presents large �at areas. The results

of the present tests may not be directly extended to all functions, they enable evaluating the

advantages and disadvantages of the RBF-FD method.
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5.3.2 Presentation of the tests

RBF methods rely on several parameters: the choice of RBF, the shape parameter, the degree of

the added polynomial, and the size of the stencil. From the series of tests carried out to study the

sensitivity of the accuracy to these parameters, one initial question is “Which RBF to choose?”,

and the values for the other parameters will result from this �rst choice.

In the case of RBFs depending on a shape parameter, the following tests were completed:

• four in�nitely smooth RBFs: MQ, IMQ, IQ and GA (see Table 5.1 for the expressions of

the functions),

• variation of the shape parameter in the range C ∈ [0, 30],

• added polynomials up to second degree,

• three stencil sizesNsten = 5, 13 and 21, corresponding to the thresholds de�ned by Bayona

et al. (2010) (see Section 5.1.3.3) (with corresponding node sets for interior nodes plotted

in Figure 5.4), and

• �ve node spacings from L/50 to L/200.

The dependency of the accuracy of the method on the shape parameter as well as the e�ects of

the stencil size and the node spacing were evaluated. Some methods to prevent the matrix from

becoming ill-conditioned for high values of C and to reduce the errors on the boundary were

also tested.

Figure 5.4: Node sets for the size of stencil considered in the tests for in�nitely smooth RBF

Nsten = 5, 13 and 21 for interior nodes with centered stencils (left), and node set for a one-sided

stencil for a node at the upper boundary of the domain with Nsten = 21 (right).

For RBF not depending on a shape parameter, the following tests were completed:

• three piecewise smooth RBFs: one TPS function φ(r) = r4 log r to have at least the

continuity of the second-order derivatives, and two PHS functions φ(r) = r5
and φ(r) =

r7
,
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• added polynomials up to degree 5, and

• stencil sizes in the range Nsten ∈ [9, 56].

To evaluate the accuracy of the estimations, a normalized averaged error is computed for the N

nodes in the entire domain:

Averaged Error =

√∑N
i=1 (Lf(xi)− Lftheo(xi))2∑N

i=1 (Lftheo(xi))
2

(5.15)

The domain is discretized with a regular set of nodes with a node spacing ∆x = ∆y = 0.005

m (= L/100). Although a regular grid can be problematic for global RBF methods, it has less of

an impact in local RBF-FD method (Fornberg and Flyer, 2015). Moreover, it is easier to conduct

convergence studies and to de�ne a regular centered stencil.

Many combinations of the method parameters have been tested and the averaged error for the

four derivatives (�rst and second order in x and y) have been computed. Only the most relevant

results and comparisons will be shown and discussed in the following, to illustrate the main

characteristics of the method emerging from these tests, and how to relate these observations to

the literature.

5.3.3 General results

First, some general observations are made looking at the local error for the estimates of �rst and

second-order derivatives with the MQ RBF (recommended by Franke (1982)), Nsten = 21 and

C = 0.1 (Figure 5.5). The local error at x is de�ned as : |Lf(x) − Lftheo(x)|. Globally, errors

are larger for the second-order derivatives than for the �rst-order derivatives. As expected, the

largest errors occur at the boundary, and more particularly, at the boundary where the stencil

is one sided in the direction of the derivative (i.e. for x = 0 m and x = +1 m in the case of

derivatives in x and y = 0 m and y = +1 m in the case of derivatives in y) whereas they are

globally smaller on the other boundaries where the stencil is more elongated in the direction of

the derivative.

The averaged error for all the nodes in the domain (global error) is then compared to the averaged

error on subsets of nodes. The node subsets are based on the asymmetry of the stencil. Three

sets are de�ned: interior nodes with a centered stencil (Figure 5.4, left), the �rst row of interior

nodes with an asymmetric stencil (denoted as boundary nodes 2 in the �gures 5.6, 5.10 and 5.15),

and the boundary nodes with a one-sided stencil (Figure 5.4, right). The four averaged errors

are plotted as a function of the shape parameter C for the MQ RBF and a stencil Nsten = 21 in

Figure 5.6. The error increases when close to the boundary due to the growing asymmetry of the

stencil. Moreover, despite the smaller number of boundary nodes in comparison with interior

nodes, the global error is dominated by boundary errors, therefore presenting the same evolution

trend with C .
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Figure 5.5: Examples of the local errors for the �rst and second-order derivatives (Figure 5.3)

estimated with the MQ RBF, a stencil of 21 nodes, a shape parameter C = 0.1 and an added

polynomial of degree 0.

Figure 5.6: Averaged error for fx as a function of the shape parameter C with the MQ RBF

(added polynomial of degree 0 and Nsten = 21), for the four node sets de�ned in the text.



174 CHAPTER 5: IMPLEMENTATION OF THE 2DH VERSION

In the following presentation of the results, the global averaged error will be shown except when

the error behavior in response to the parameter or the method tested is di�erent for the three

node sets and deserves to be analyzed speci�cally.

5.3.4 RBFs depending on a shape parameter C

5.3.4.1 Accuracy as a function of the shape parameter C

The in�nitely smooth RBFs all depend on a shape parameter C controlling the �atness of the

function: the functions �atten when C is increased (Figure 5.7).

Figure 5.7: The four in�nitely smooth RBFs that are studiedMQ,GA, IMQ and IQ as a function

of the radius r = ||x−xi|| with xi the center of the RBF, for three values of the shape parameter

(C = 0.5, 1 and 2).

With this kind of RBF, the choice of the value of C is a main concern. As can be noted from

Figure 5.8, the accuracy of the estimation of the derivatives depends strongly on C . The error

is quite high for small C and decreases with increases in C . Nevertheless, if C continues to in-

crease, the derivative estimation eventually becomes unstable and large oscillations of the error

appear because the matrix becomes ill-conditioned. Without an ill-conditioned matrix, the error

might reach a minimum an optimal C , but sometimes (as it is the case here), the matrix becomes

ill-conditioned before this minimum is reached. The four RBFs display the same general behavior
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as a function of C , with ill-conditioning appearing for slightly smaller values of C for GA and

MQ than for IMQ and IQ. Therefore, examples of the results using one RBF will be shown in

the following section for clarity.

Figure 5.8: Global error for the estimate of fx, for the four RBFs (see legend) as a function of the

shape parameter C (with Nsten = 21 and added polynomial of degree 0).

From the literature, it is known that the optimal value of C depends on the function considered.

Here, it also depends on the derivative estimated (Figure 5.9). First and second-order deriva-

tives in x seem to reach a minimum for the error for C ≈ 0.42, whereas the matrix becomes

ill-conditioned for the �rst and second-order derivatives in y, before a minimum is reached. It

can then be inferred that the optimal C for derivatives in y are larger than for derivatives in x

for this particular case (due to the chosen wave direction).

It has already been shown that the errors are larger for nodes at the boundaries than for interior

nodes (section 5.3.3, Figure 5.5 and 5.6). Here, the optimal value of C is not the same for interior

nodes and boundary nodes (e.g. Figure 5.10 for MQ). The optimal value of C decreases closer

to the boundary.

When studying the sensitivity of the error to the stencil size (Figure 5.11), the matrix becomes

ill-conditioned for smaller values of C when Nsten increases (C ≈ 0.8 for Nsten = 13 whereas

C ≈ 0.5 for Nsten = 21). The accuracy of the derivative estimates is greatly improved by in-

creasing the stencil size from 5 to 13 nodes, and even more with 21 nodes, but more attention has

to be paid to the choice ofC , since the range of value ofC producing a well-conditioned matrix is
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Figure 5.9: Global error for the estimate of the �rst and second-order derivatives in x and y, for

the IMQ RBF as a function of the shape parameterC (withNsten = 21 and an added polynomial

of degree 1.

Figure 5.10: Error for the estimate of fx with the MQ as a function of the shape parameter C

(with Nsten = 13 and added polynomial of degree 0) for the three di�erent sets of nodes de�ned

in Section 5.3.3.
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Figure 5.11: Error for the estimate of fx, for the IMQ RBF as a function of the shape parameter

C (with added polynomial of degree 0) for di�erent stencil sizes: Nsten = 5, 13 and 21.

reduced. In addition, increasing Nsten increases the computational time, so a compromise has to

be found between accuracy, the di�culties �nding an optimal value of C , and the computational

time.

With in�nitely smooth RBFs, the matrix also becomes ill-conditioned with a decrease in the node

spacing. The optimal C is generally insensitive to the node spacing, but if it is decreased too sig-

ni�cantly, the matrix may become ill-conditioned before an optimal value ofC is reached (Figure

5.12). In general, when the node spacing is decreased, C is also decreased to keep the condition

number of the collocation matrix roughly constant. According to Fornberg and Flyer (2015), a

mean condition number on the order of 1010 − 1012
was found to give RBF-FD a competitive

edge with regard to the accuracy reported by other high-order methods.

Considering all the parameters that need to be taken into account in the determination of a

suitable value of C , the choice of the value of the shape parameter C is not straightforward.

In the literature, trial and error is the method most often used. Recently, Bayona et al. (2010)

derived an analytical expression for the estimation of the error that was then used to develop

an algorithm to �nd the optimal value of C (Bayona et al., 2011). Nevertheless, it requires a �rst

estimate of the derivatives andCopt depends on the function considered and thus would vary for

derivatives of each variable considered. For the application of the RBF-FD method in the model,

this is not a suitable option. Although the estimation accuracy can be improved by several orders
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Figure 5.12: Error for the estimate of fx, for the IMQ as a function of the shape parameter C

(with added polynomial of order 1 and Nsten = 21) for several di�erent node-spacings.

of magnitude when Copt is determined, the range of C for which this accuracy is reached is very

small and the dependency of Copt on the function makes it unlikely that the optimal range of C

is the same for all the function considered in the code (and their derivatives). For implementation

reasons, the choice of C is currently limited to a single value to estimate all the derivatives of all

the functions, just as for �nite di�erence where the derivative weights depend only on the node

placement. This objective leads to focus on the determination of the values of C giving small

errors even if it not the smallest that can be obtained and, above all, to avoid an ill-conditioned

matrix.

5.3.4.2 Tests to reduce the dependency on the shape parameter C

In the following section, some options to reduce the dependency of the error on C and to post-

pone the matrix becoming ill-conditioned for higher values of C are tested in order to widen the

range of acceptable values for C to decrease the error on the boundaries. Among the possible

options that are easily implementable, three options were selected:

• resolution of the linear system with a SVD method instead of a LU decomposition,

• addition of polynomial terms to the RBF interpolants,

• normalization of the stencil.
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The SVD method

The resolution of the linear system giving the weights for the derivative estimation is completed

with a LU decomposition algorithm. However, it is not the most adapted algorithm when the

matrix is ill-conditioned, as is the case with RBF-FD, since large numerical errors can arise. The

SVD method is used here as a �ltering method by setting to zero all the eigenvalues smaller

than a threshold de�ned as thresh = µsmax, where smax is the largest eigenvalue and µ is a

free parameter controlling the �ltering (to be set by the user). Three values of the parameter

µ were tested µ = 10−6, 10−12
and 10−15

(Figure 5.13). Small values of µ tend to avoid the

problems associated with an ill-conditioned matrix by reaching a plateau for larger values of C ,

particularly for µ = 10−15
. However, if the threshold is too large (i.e. µ = 10−6

), the �ltering is

too strong and information about the system is lost, leading to large errors. Using a SVD method

to resolve the system has a stabilizing e�ect, but the choice of µ must be made with caution: it

should be small enough so as not to degrade the basis of the space by a lack of information, but

not too small to eliminate the �ltering e�ect.

Figure 5.13: Error for the estimate of fx, for the MQ as a function of the shape parameter C

(with added polynomial of degree 0 and Nsten = 21). Comparison between solving the system

with a LU decomposition and using a SVD �ltering method for three values of the threshold µ.

The added polynomial

The addition of polynomial terms in the RBF interpolant has often been described as a method

to improve the accuracy of the estimation, particularly at the boundaries of the domain (Forn-
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berg et al., 2002). The sensitivity of the error to the degree of the added polynomial is studied

by increasing its degree from 0 to 2 and comparing it to the results without polynomial terms.

In Figure 5.14, the boundary and interior nodes present di�erent behaviors with the increase of

the added polynomial degree. For interior nodes (Figure 5.14, right), higher degree polynomials

are bene�cial for C < 0.18, but this improvement is lost for higher values of C . For the nodes

on the boundary (Figure 5.14, center), the error (average of the error for boundary node 1 and

boundary node 2) is greatly reduced with the addition of a polynomial and increase in degree of

the polynomial for C < 0.05. From a certain degree of polynomial (depending on Nsten), the

dependency of the error on C is reduced, and the error minimum as a function of C disappears.

The global error (Figure 5.14, left) follows the same trend as the boundary node error. Moreover,

since RBFs are not exact for polynomials, it is essential to add at least a constant to the RBF in-

terpolant to be able to estimate the derivative of a constant function accurately.

Figure 5.14: Error for the estimate of fx, for the IMQ as a function of the shape parameter C

(with Nsten = 21) for added polynomials of degree 0 to 2: (left panel) all nodes, (central panel)

boundary nodes (boundary nodes 1 and boundary nodes 2), (right panel) interior nodes.

The normalization of the stencil

The last option tested to improve the RBF-FD method is the normalization of the stencil (see

Section 5.2.2 for more implementation details). With the normalization, a single value of C is

imposed, but the corresponding C in the physical space is modi�ed based on the diameter of

the stencil, leading to larger C for boundary nodes in comparison to interior nodes. The main

consequence of this normalization (Figure 5.15) is the compression of the boundary node error

curve towards the left side of the graph, while the interior node error curve remains the same

(only the range of values of the shape parameter giving minimal errors is shifted). The expecta-

tion when applying this method is that, for small values of C , the di�erences between boundary

errors and interior errors decrease. For the case considered here, the impact of the normalization

of the stencil is not signi�cant (Figure 5.15), and the normalization does not allow increasing the

range of optimal values of C . A side e�ect of the method is that increasing C for the estimation
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at the boundary may increase the risk of ill-conditioned matrix for boundary nodes, which is the

opposite of the main objective of improving the estimation at the boundaries. Another side-e�ect

is that Copt varies with the re�ning or coarsening of the node set.

Figure 5.15: E�ect of the normalization of the stencil on the error for the estimate of fx, for the

MQ as a function of the shape parameterC (with added polynomial of degree 0 andNsten = 21):

for the three sets of nodes de�ned in Section 5.3.3.

5.3.4.3 Conclusions

The choice of an in�nitely smooth RBF in the RBF-FD method may be very interesting when it is

possible to use it in combination with an algorithm to �nd the optimal value forC . Otherwise the

choice ofC may require a calibration based on trial and error, that is only possible when data are

available for comparison. With the objective to use the model for operational wave propagation

studies it may not be the best option unless the validation with experimental test cases reveals

that the results are not so dependent on the choice of the shape parameter.

5.3.5 RBF not depending on a shape parameter

Contrary to in�nitely smooth RBFs (Figure 5.7), piecewise smooth RBFs such as TPS and PHS

are less regular but present the advantage of being independent of a shape parameter. In this

section, three functions are tested: a TPS r4
logr and two PHS r5

and r7
(Figure 5.16).

5.3.5.1 Comparison with in�nitely smooth RBFs

The estimation errors for the four derivatives (fx, fy, fxx and fyy) obtained with each piecewise

smooth RBF are compared with the results obtained with the IMQ RBF (Figure 5.17). The error

decreases when the degree of r increases in the RBF, φ(r) = r7
, producing the best results for
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Figure 5.16: The three piecewise smooth RBFs studied, as a function of the radius r = ||x−xi||
with xi the center of the RBF.

the four derivatives considered. Piecewise smooth RBFs display smaller errors than the IMQ

RBF for small values of C . The RBF φ(r) = r7
produces an error comparable to the minimum

error obtained with IMQ RBF for fy and fyy , whereas for the derivatives in x, IMQ RBF can

reach a smaller minimum error for C around Copt. Although the RBF φ(r) = r7
may not be the

optimal choice since the IMQ RBF and an appropriate C can attain a smaller error, the errors

are nearly comparable, and the φ(r) = r7
has the advantage of not relying on the choice of a

shape parameter.

Moreover, RBFs of this type are not subjected to saturation errors when the inter-node spacing is

decreased (Figure 5.18): the convergence rate is constant. The RBFs φ(r) = r4
logr and φ(r) = r5

have almost the same convergence rate, which is slower than the convergence rate of φ(r) = r7
.

Here the IMQ interpolant is augmented with polynomial terms up to degree 1, which allows

the convergence rate to decrease without reaching a plateau (as would be the case without an

added polynomial). For large ∆x, the IMQ method converges at the same rate as φ(r) = r7
.

Errors obtained with TPS r4
logr are larger than errors obtained with PHS r5

and r7
. There-

fore only the PHS RBFs will be considered in the remaining tests.
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Figure 5.17: Error for the estimate of fx, fy , fxx and fyy , for the three piecewise smooth RBFs

considered in comparison with the error estimate of the IMQ as a function of the shape param-

eter C (with an added polynomial of degree 0).

5.3.5.2 Comparison between PHS r5 and r7

For PHS RBFs, the addition of polynomial terms is essential to guarantee the inversibility of the

collocation matrix, and a minimum polynomial degree is required that depends on the degree of

the PHS. In parallel, the degree of the added polynomial is limited by the size of the stencil. To

ensure that the problem is well-posed, the number of nodes in the stencil has to be larger than

the number of independent monomials constituting the basis of polynomials of the same degree

as the added polynomial. With these considerations, a series of tests were conducted to study

the sensitivity of the error estimation of the PHS r5
and r7

to the stencil size (Nsten ∈ [9, 56])

and to the degree of the added polynomial (varied between 2 and 5).
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Figure 5.18: Convergence of the error for the estimate of fx as a function of the spatial resolution

∆x. Comparison of the IMQ with C = 0.4 and the three piecewise smooth functions (for

Nsten = 21).

With regular node sets, the condition on the minimum stencil size for a given degree of added

polynomial is not su�cient to ensure the non-singularity of the matrix. The regularity of the

node set does not allow the matrix to be unisolvent for the polynomial basis. The stencil size

thus has to be increased to recover the inversibility of the matrix. With an irregular node set this

should not occur.

The results obtained with both PHS are compared in Figure 5.19. Similar behavior is observed

for �rst and second-order derivatives in a given dimension. For a given degree of added poly-

nomial, PHS r7
shows smaller errors than PHS r5

. Some exceptions occur, for derivatives in

x for Nsten ≤ 25 and added polynomial of degree 3, and for the second-order derivative in x

with the added polynomial of degree 4. For derivatives in y, there is no much gain in accuracy

when the degree of the added polynomial increases from 3 to 4. In all cases, the error is weakly

dependent on Nsten. Nevertheless, PHS r5
has the advantage to be used with only a second

degree polynomial, hence requiring a smaller Nsten, and less computational time.

5.3.6 Conclusions and recommendations

The series of tests conducted to study the estimation of the derivatives of a sinusoidal func-

tion with the RBF-FD method demonstrate that very accurate results can be obtained with an

in�nitely smooth function (without signi�cant di�erences between MQ, GA, IMQ and IQ).
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Figure 5.19: Error for the estimate of fx, fy , fxx and fyy , for r5
and r7 PHS as a function of the

stencil size Nsten and the degree of the added polynomial (shown in the legend).

However, the fact that these RBFs depend on a shape parameter controlling the accuracy of the

approximation, and that the optimal value of this shape parameter depends on the value of the

function and its derivatives, make this method quite questionable for the targeted application.

The success of the application (for example the performance of the Misthyc code) will depend

on the accuracy required for the derivative estimates and how sensitive the model is to that pa-

rameter.

To avoid the problem associated with the choice of the shape parameter, PHS RBFs appear to be

a good alternative. In particular the PHS r7
produced nearly the same order of accuracy as the

IMQ RBF (for the considered case). Nevertheless, the PHS r5
is also of interest because even

if the accuracy is reduced, smaller values of Nsten can be used, meaning a gain in computational

time. For a targeted stencil size between 20 and 30 nodes, PHS r7 + p3 are recommended, and

if larger stencils can be considered (in the range 30-40) the PHS r5 + p4 or r7 + p4 are an

appropriate choice.
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Chapter 6

Validation of the 2DH version of the
model using RBFs in the horizontal
plane

Ce chapitre est consacré à la validation de la version 2DH du modèle, utilisant la méth-

ode RBF-FD pour estimer les dérivées horizontales, à travers l’applica-tion à trois cas

tests. Le premier cas est un cas invariant en y, d’une vague régulière se propageant dans

la direction x. Les résultats sont comparés aux résultats obtenus avec la version 1DH du

modèle. Un grand nombre de tests est réalisé sur le type de RBF, la valeur du paramètre

de forme et la taille du stencil, con�rmant les bonnes performances de la PHS r7 +p3.

Le modèle est ensuite utilisé pour simuler deux expériences de propagation de vagues

régulières au-dessus de bathymétries di�érentes : une marche semi-circulaire d’après

les expériences de Whalin (1971) et une bosse elliptique submergée d’après les expéri-

ences de Vincent and Briggs (1989). Ces deux cas tests montrent que le modèle est ca-

pable de reproduire précisément des champs de vague 2D avec des structures complexes

ainsi que les e�ets non-linéaires associés. Ce chapitre se termine sur quelques considéra-

tions concernant l’optimisation du code, dont le temps de calcul a largement augmenté

avec l’extension en 2DH. Les tests de parallélisation du solveur linéaire MUMPS permet-

tent, dans le cas considéré, une diminution du temps de calcul d’un facteur 3.5 quand le

calcul est lancé avec 15 processus MPI. Ce facteur d’accélération, possiblement dépen-

dant du problème testé, reste assez faible. D’autres méthodes comme le recours à des

solveurs itératifs ou la décomposition de domaine seront à considérer pour augmenter

l’e�cacité du code.
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This chapter is devoted to the validation of the 2DH version of the model using RBFs with a series

of three test cases, followed a discussion of the optimization of the code to reduce computational

time that has been considerably increased with the extension of the model to two horizontal

dimensions.

The 2DH version of the model is �rst validated by a comparison to the simulation results obtained

with the 1DH version of the model for the case of a regular wave propagating in constant depth in

the x direction (invariant in y). The simulation results are then compared to measurements from

two laboratory experiments studying the convergence of regular waves propagating over two

di�erent bathymetric pro�les: a semi-circular step based on the �ume experiments of Whalin

(1971), and a submerged shoal based on the basin experiments of Vincent and Briggs (1989). The

second test case was presented at the conference Journées Nationales Génie Côtier Génie Civil

2016 in Toulon.

6.1 Regular waves propagating over a �at bottom

In Section 5.3, the derivative estimates with the RBF-FD method were studied for a sinusoidal

function. Accurate results were achieved for interior nodes, but larger errors appeared at the

boundaries. Now, the RBF-FD scheme is introduced in the wave propagation model to extend

the 1DH version of Misthyc to 2DH, solving the time-dependent equations without physical dif-

fusion terms. The objective is to determine if the RBF-FD approach is suitable for simulating

wave propagation with a fully nonlinear and dispersive wave model. One of the most impor-

tant obstacles is to evaluate whether larger errors at the boundaries are going to spread inside

the domain, degrade the solution and disrupt the stability of the simulation. Boundary errors

depend strongly on the type of RBF considered, and the accuracy and stability of the simulation

are studied for two in�nitely smooth RBF (MQ and GA) with a wide range of shape parameters

(C ∈ [0.1, 20]). The stencil size is also varied to study its impact on the solution accuracy. A

total of 128 combinations of (C , Nsten) are considered with an augmented polynomial of degree

0 (i.e. only a constant coe�cient). Two PHS RBF are also tested r5 + p2 with Nsten = 13 and

r7 + p3 with Nsten = 21. In all of the simulations, the stencil is normalized.

The case of regular waves of amplitude A = 0.005 m, period T = 2.26 s and wavelength

L = 6.14 m propagating in constant depth (h = 1 m) is considered. The test case is designed

to be invariant in the y direction so that the simulation results can be compared with those ob-

tained with the 1DH version of the model. The domain is seven wavelengths long in the wave

propagation direction, with a one-wavelength long relaxation zone at the left boundary for wave

generation and a two-wavelength long relaxation zone at the right boundary for wave absorption.

In the transversal direction, the domain extends over one-tenth of a wavelength. The domain is

discretized with irregularly spaced scattered nodes with an average node spacing r ≈ 0.0614

m (L/100) for a total of 9090 nodes, with NT = 7. Impermeable conditions are applied at the

lateral boundaries. Waves are propagated during 12T with a time step of ∆t = 0.0226 s (T/100).
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Figure 6.1: Three dimensional view of the free surface elevation at the end of the simulation

obtained with PHS r7 + p3 and Nsten = 21.

At the end of each simulation, the free surface elevation (Figure 6.1) is evaluated by comparison

to the 1DH results that are used as the reference solution (ηref ), and a normalized averaged error

is computed for the N nodes of the domain outside the relaxation zones:

averaged error =

√∑N
i=1 |η(xi)− ηref (xi)|2∑N

i=1 |ηref (xi)|2
(6.1)

The averaged error is computed for all of the simulations that were stable during the entire 12T

simulation. The averaged error for each tested simulation is presented in Figure 6.2. Although

more simulations remain stable withMQ (47.6%) than withGA (32.8%) RBFs, the same evolution

of the error as a function of C is observed for the di�erent values of Nsten. For both functions,

the error decreases when C increases. Nevertheless, contrary to the results for larger Nsten, the

error is almost independent of C , for Nsten = 5 but is large (of the order of 1). Simulations with

larger Nsten are stable only for small C . When C is increased, the simulations become unstable

likely due to an ill-conditioned matrix, as discussed in the previous chapter. For smaller Nsten

(5 and 13) the simulations are unstable for small C not because of an ill-conditioned matrix but

due to large errors in the derivative estimates. The minimum averaged error obtained with in-

�nitely smooth RBFs is about 2.10−3
. It is reached for di�erent values of C depending on Nsten:

C = 1 for Nsten = 29 (MQ), C = 5 for Nsten = 13 (MQ), and C = 15 − 20 for Nsten = 9

(MQ and GA). For a given Nsten, the averaged errors obtained with GA are larger than with

MQ mainly because they become unstable for smaller C . The r5 + p2 PHS produces an error of

approximately 3.10−3
, which is slightly larger than the minimum error obtained with MQ for
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an optimal C , but better than most of the results with both in�nitely smooth RBFsGA andMQ.

Finally, for this test case, the PHS r7 +p3 produces far more accurate results than any other RBF

with an averaged error of 3.10−4
.

Figure 6.2: Averaged error computed for the free surface elevation at the end of the simulation

(t = 12T ) for all simulations with MQ and GA RBFs (as a function of the shape parameter C

for several values of Nsten), and for PHS r5 + p2 and r7 + p3 (independent of C) RBFs.

Another way to visualize the results is to plot the error in the (Nsten,C)-space (Figures 6.3(a)

and 6.4(a) for MQ and GA, respectively). The value of the error is indicated by the colorscale,

with large errors in red and small errors in blue. Smaller errors are obtained for larger values of

C until a limit is reached and the simulations become unstable. Comparing Figures 6.3(a) and

6.4(a), many fewer simulations are stable with theGA RBF than with theMQ RBF, and the errors

obtained using GA RBFs are not as small as those obtained using MQ RBFs.

By looking at the averaged condition number of the collocation matrix (Figures 6.3(b) and 6.4(b))

the simulations generally become unstable when the condition number is larger than 1014
. For

a given value of (C , Nsten), the condition number is usually larger for GA than for MQ. This

likely explains why more simulations are unstable with GA than with MQ for large values of
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C and Nsten. For small values of C some simulations were unstable even though their corre-

sponding condition numbers were small (102 − 103
). In these cases, the instabilities are likely

caused by poor derivative estimates because of very narrow basis functions owing to the smallC .

Figure 6.3: (a) Averaged error of the free surface position (Eq.(6.1)) at the end of each simulation,

and (b) averaged condition number of the collocation matrix for theMQ RBF in (Nsten,C)-space.

The crosses indicate simulations that were not stable for the entire 12T .

Figure 6.4: (a) (a) Averaged error of the free surface position (Eq.(6.1)) at the end of each simula-

tion, and (b) averaged condition number of the collocation matrix for the GA RBF in (Nsten,C)-

space. The crosses indicate simulations that were not stable for the entire 12T .

The dependency of the e�ciency of the model on the temporal resolution ∆t, the spatial resolu-

tion in the horizontal ∆x, ∆y and the spatial resolution in the vertical NT , was already studied

for the 1DH version of the model (Section 3.2.4.4). It is expected to be similar in the 2DH version

for ∆t and NT . The dependency on the spatial resolution however is likely modi�ed due to the

fact that in two dimensions, when dividing by two the grid spacing, the number of discretization

nodes is not just doubled but roughly multiplied by four. The model’s e�ciency as a function of
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Figure 6.5: CPU time as a function of the stencil size Nsten, for simulations using the MQ RBF

with C = 1 (duration of the simulation 12T with ∆t = T/100, using 9090 nodes in the (x, y)-

plane and NT = 7).

the horizontal resolution has not been veri�ed here. Nevertheless, the dependency on the size

of the stencil Nsten is studied here for the MQ RBF with C = 1 (Figure 6.5). Nsten impacts the

e�ciency of the model since it modi�es the �ll-in ratio of the matrix used to solve the Laplace

BVP. In the log-log plot (Figure 6.5), the CPU time increases linearly with Nsten with a slope of

approximately 1.36, showing the importance of minimizing Nsten to reduce the model’s compu-

tational time.

This �rst test case shows that accurate results can be obtained with the RBF-FD method when

resolving a time-dependent PDE without any physical dissipation terms as long as Nsten and C

are chosen in the appropriate range. The size of the stencil Nsten should not be too large since

it both limits the range of “admissible” C for in�nitely smooth RBFs (for which the simulations

remain stable) and increases the computational time for all RBFs. Thus, values of Nsten in the

range [9,21] appear to be a reasonable compromise between accuracy and e�ciency. A larger

range of “admissible” C values is possible using MQ instead of GA. The most accurate results

are obtained with the PHS r7 +p3. These last two observations may be speci�c to this test case,

but for the following applications, the GA will not be tested further.
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6.2 Regular waves propagating over a semi-circular step

Whalin (1971) performed a series of experiments with regular waves propagating over a semi-

circular bottom topography that acts as a focusing lens. These experiments were �rst conducted

to test the limit of linear and nondi�ractive theory in a convergence zone, considering non-

breaking waves with periods of 1, 2 and 3 s for three wave heights. The bottom topography

was designed to produce strong wave converge and minimize sidewall e�ects and dissipation by

bottom friction. The wave tank was 6.096 m wide and 25.603 m long. In the experiments, regular

waves were generated by a piston wave maker and propagated from a water depth of 0.4572 m

to a shallower region of 0.1524 m. The bathymetric pro�le used for the simulations here is the

same as the one presented by Shao and Faltinsen (2014):

h(x, y) =


0.4572, −20.0 ≤ x ≤ 10.67−G(y)

0.4572 + 1
25(10.67−G(y)− x), 10.67−G(y) < x < 18.29−G(y)

0.1524, 18.29−G(y) ≤ x ≤ 35

(6.2)

with G(y) =
√
y(6.096− y). A 2D view of the bathymetry is shown in Figure 6.6.

Figure 6.6: Analytical bathymetry (Eq.(6.2)) of the experiments of Whalin (1971).

The wave conditions simulated here correspond to a regular wave with a period T = 2 s and

wavelength L = 3.91 m in the deeper part of the domain, with an amplitude of A = 0.0075 m.

The computational domain extends from -3.91 m to 32.5 m in the x direction and from 0 to 6.096

m in the y direction. The computational domain is longer than the physical domain in the x-

direction to include a one-wavelength long relaxation zone at the left boundary for wave gener-

ation and absorption of re�ected waves from the underwater topography, and a three-wavelength

long relaxation zone at the right boundary for wave absorption. Impermeable conditions are ap-

plied at the lateral boundaries.

The domain is discretized with 137,712 scattered nodes with regular node spacings (∆x ≈ ∆y ≈
0.04 m, or approximately L/98). Waves are propagated during 36 seconds (18 periods), with a
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constant time step ∆t = 0.0178s (≈ T/112) and NT = 7. To compute horizontal derivatives,

the PHS RBF r7 + p3 was used with a stencil size Nsten = 21. Several additional tests were

conducted to evaluate the sensitivity of the results to the node spacing, type of RBF, and stencil

size.

The free surface pro�le at the end of the simulation is shown in Figure 6.7. In the deeper part of

the domain (x < 7.5 m), waves display 2D behavior with almost no variations in the y direction.

The 3D wave patterns develop in the shallower zone where nonlinear e�ects are important. The

convergence of wave energy is caused by the combination of shoaling, di�raction, and refraction

over the convergent bathymetric pro�le.

Figure 6.7: Three-dimensional view of the free surface elevation at the end of the simulation

(t = 18T ), obtained with PHS r7 + p3 and Nsten = 21.

The simulated crest and trough elevation envelope along the centerline of the tank (y = 3.048 m)

shows that before the foot of the slope, the crest and trough are nearly symmetric with respect

to the water depth at rest (Figure 6.8). In the shallower zone (x > 15 m), there is an increase in

the di�erence between the crest and trough with a decrease in the trough elevation, and an even

larger increase in the crest height, breaking the horizontal symmetry observed in the deeper part

of the domain. Looking at the free surface pro�le at the end of the simulation, the vertical asym-

metry of the wave increases from x = 10 m, displaying a sharper wave front. At the maximum

of the crest envelop (x ≈ 20 m), the wave presents two small lobes on each side, a consequence

of the increase of the second harmonic amplitude due to nonlinear e�ects on the slope.

To examine more closely the nonlinear e�ects and the energy transfers between harmonics, a

Fourier analysis of the simulated wave signal along the centerline of the wave tank was completed

to compare to the amplitudes of the �rst three harmonics from the measurement time series

(Figure 6.9). The model accurately reproduces the spatial evolution of the amplitudes of the

�rst three harmonics, corresponding to frequencies f , 2f and 3f . The amplitude of the second
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Figure 6.8: Free surface elevation pro�le along the centerline of the tank at the end of the simula-

tion (black line) and maximum and minimum free surface elevation (wave envelope) during the

simulation (gray lines). The light gray shaded areas (x < 0 m and x > 25 m) indicate relaxation

zones for wave generation and absorption.

harmonic is slightly underestimated in the deeper part of the domain, possibly related to the

linear wave generation method. In the shallower zone, the second harmonic amplitude is slightly

overestimated. As mentioned previously, in the convergence region (around x = 20 m), the

second and third harmonic amplitudes increase due to energy transfers from the �rst harmonic.

The second harmonic amplitude is about one half of the �rst harmonic amplitude. In comparison

with 1DH cases (Section 3.5 and Section3.6) the amplitude of the �rst harmonic does not decrease.

According to Whalin (1971), this can be explained by the fact that the rate of decrease due to

nonlinear transfers to higher harmonics is compensated by the rate of increase in amplitude

along the centerline of the tank due to refraction and shoaling.

A series of tests were conducted to look at the sensitivity of the results as a function of:

• the node distribution: a domain discretized with regularly-spaced or irregularly spaced

nodes, with approximatively the same total number of nodes.

• the choice of RBF: the results presented above used thePHS RBF r7+p3 withNsten = 21.

Here, simulations with the PHS RBF r5 +p2 are presented as well as results with theMQ

RBF for di�erent values of the shape parameter C .

• the node spacing: two coarser regularly distributed node sets are compared.

Details of the simulations are summarized in Table 6.1.
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Figure 6.9: Observed (circles) and simulated (solid lines) spatial evolution of the amplitude of

�rst three harmonics (at frequencies f , 2f and 3f ) of the free surface elevation for T = 2 s,

A = 0.0075 m of the experiments of Whalin (1971) obtained with PHS RBF r7 + p3 with

Nsten = 21.

First, the spatial evolution of the �rst three harmonics are compared for the simulations with

regularly and irregularly spaced nodes, with ∆x ≈ ∆y ≈ 0.06 m (Figure 6.10). The results are

not very sensitive to the numerical parameters of the simulations. The amplitudes of the three

harmonics are very similar along the centerline of the domain. For the regular node set, the use

of the MQ with C = 2 produced results in agreement with the observations. However, for an

irregular node set, a series of tests were required to �nd a suitable value of C to keep the sim-

ulation stable. The range of C for which the simulations remain stable with irregular nodes is

small. This may be due to the fact that the normalization of the stencil takes into account dif-

ferences in the maximum distance between nodes, while here the problem may be related to the

di�erences between the minimum distance between nodes. Errors eventually increase locally

because of stagnation errors, and these errors continue to grow, making the simulation unstable.

Additional tests are needed to verify this hypothesis.

Simulations with the PHS r5 + p2 also required also several tests to �nd a suitable value of

Nsten. With Nsten = 15, the simulation was unstable. The stability of the simulation was recov-

ered with Nsten = 18. Simulations with the PHS r7 + p3 were stable with Nsten = 21.

Finally, once the appropriate combination of numerical parameters is determined to enable sta-

ble simulations, the results obtained using the di�erent RBFs are similar. Regular or irregular

node spacings do cause signi�cant di�erences in the results, except for the choice of the shape

parameter with for MQ RBF.
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Simulations node set ∆x(m) RBF type C Nsten ∆t (s)

reg MQ 1 regular 0.060 MQ 2 13 0.0267

reg MQ 2 regular 0.060 MQ 1 13 0.0267

reg PHS 1 regular 0.060 r7 + p3 - 21 0.0267

reg PHS 2 regular 0.040 r7 + p3 - 21 0.0178
reg PHS 3 regular 0.075 r7 + p3 - 21 0.0333

irreg MQ 1 irregular ≈ 0.060 MQ 1 13 0.0267

irreg MQ 2 irregular ≈ 0.060 MQ 0.75 13 0.0267

irreg PHS 1 irregular ≈ 0.060 r7 + p3 - 21 0.0267

irreg PHS 2 irregular ≈ 0.060 r5 + p2 - 18 0.0267

Table 6.1: Numerical parameters for the nine simulations compared for the case with T = 2 s,

A = 0.0075 m of Whalin (1971). The parameters of the simulations presented in the �rst part of

this section are in bold.

Figure 6.10: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes

of �rst three harmonics (at frequencies f , 2f and 3f , as shown in Figure 6.9) of the free surface

elevation for the case T = 2 s, A = 0.0075 m of Whalin (1971): sensitivity of the results to the

type of node sets and the choice of RBF.

A second comparison of the spatial evolution of the �rst three harmonics is made for simula-

tions using a regular grid (∆x = ∆y) with three di�erent spatial resolutions: ∆x = 0.040 m,

∆x = 0.060 m, and ∆x = 0.075 m (Figure 6.11). Small di�erences between the three resolutions

are observed for the harmonic amplitudes. The wave envelope obtained with the medium res-

olution (not shown), shows only small di�erences in the representation of the peaky crests and
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the secondary crest in the convergence zone. An additional simulation was run with a coarser

resolution of ∆x = 0.090 m, but the simulation was unstable. Increasing the stencil size was

not enough to recover the stability, and the solution found to recover stability was to re�ne the

mesh near the boundaries.

Figure 6.11: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes

of �rst three harmonics (at frequencies f , 2f and 3f , as shown in Figure 6.9) of the free surface

elevation for the case T = 2 s, A = 0.0075 m of Whalin (1971): sensitivity of the results to the

node spacing, for three resolutions.

A second wave condition with the same period (T = 2 s) and an increased amplitudeA = 0.0106

m was also simulated. The same characteristics of domain extent, time step and vertical resolu-

tion are used, but the spatial discretization corresponds to the irregular node set with ∆x ≈ 0.06

m used in the test of the former case (Table 6.1). The RBF-FD method is used with the MQ RBF,

a shape parameter C = 1, and Nsten = 13. The simulated spatial evolution of the �rst three

harmonics along the centerline of the tank are compared to the experimental data (Figure 6.12).

The model reproduces well the spatial evolution of the amplitudes, again underestimating the

second harmonic amplitude before the slope. Nevertheless, in the convergent region, the simu-

lated harmonic amplitudes agree well with the experimental measurements. With the increase

in the incident wave height, nonlinear e�ects become more important, and the second amplitude

becomes almost two-thirds the amplitude of the �rst harmonic amplitude at its maximum. The

amplitude of the �rst harmonic also decreases slightly around x = 20 m, which did not occur

for the case with the smaller wave amplitude. According to Whalin (1971), this decrease can be

explained by the fact that in this case, the nonlinear energy transfers to higher frequency com-

ponents occurs at a faster rate than the energy convergence from refraction, so losses are not

compensated exactly.
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Figure 6.12: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes

of �rst three harmonics (at frequencies f , 2f and 3f , as shown in Figure 6.9) of the free surface

elevation for the case T = 2 s, A = 0.0106 m of Whalin (1971).

This second test case shows that 3D wave patterns induced by a speci�c bottom topography and

the associated nonlinear e�ects can be well reproduced by the model. Moreover, in comparison

to the simpler test case of a regular wave propagating over a �at bottom (Section 6.1):

• The choice of the parameters for the RBF-FD method to obtain a stable simulation is more

complicated.

• For theMQ RBFs, the stability of the simulations depends strongly on the shape parameter

C and the use of an irregular node set can make the choice of C even more di�cult. In

this case, the implementation of a variable shape parameter based on the distance to the

nearest neighbor might improve the stability of the simulations.

• With PHS functions, instability problems may be resolved by increasing the size of the

stencil, at least to a certain extent. For very coarse resolution grids, this solution is not su�-

cient, but the stability can be recovered by increasing the resolution close to the boundary).

• For this test case, MQ is optimal in terms of computational time since it can be used

with Nsten=13, whereas PHS functions require at least Nsten = 18 to achieve the same

accuracy.
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6.3 Regular waves propagating over an elliptical shoal

The last test case simulates the propagation of regular waves over a submerged elliptical mound,

reproducing the experiments of Vincent and Briggs (1989). The aim of the experiments was

to look at the limits of the monochromatic wave approximation for irregular wave conditions,

producing a large experimental data set for both monochromatic wave conditions and irregular

waves with narrow or broad frequency and directional spreading. In this section, the regular

wave condition test case M1 is considered, with T = 1.3 s, L = 2.3 m, and A = 0.0275 m.

The experiments were conducted in a directional wave basin that is 35 m wide and 29 m long.

The measurement area is restricted to a 6.10 m wide by 15.24 m long zone. The elliptical shoal

has a major radius of 3.96 m and a minor radius of 3.05 m. Its center is located at (x0,y0)=(6.10 m,

13.72 m). The shoal boundary is de�ned by:

S(x, y) =

(
x− x0

3.05

)2

+

(
y − y0

3.96

)2

= 1 (6.3)

The water depth around the shoal is constant h(x, y) = 0.4572 m (i.e. for S(x, y) > 1), and the

water depth over the shoal is given by the expression:

h(x, y) = 0.9144− 0.7620

√
1−

(
x− x0

3.81

)2

−
(
y − y0

4.95

)2

(6.4)

The minimum water depth over the center of the shoal is hmin = 0.1524 m. In the experiments,

waves are generated by a directional wave generator. The free surface elevation was measured

using an array of nine parallel resistive probes placed along nine di�erent transects (5 parallel

and 4 perpendicular to the wave maker). In the following, two transects will be studied (Fig-

ure 6.13): the transversal transect 4 (x = 12.2 m) and the longitudinal transect at the centerline

of the tank, consisting of transects 7 and 9 (y = 13.72 m).

To limit the computational time, the simulated domain is smaller than the experimental wave

basin. The numerical domain extends from −2.3 m≤ x ≤ 20.5 m and 3.7 m≤ x ≤ 23.7 m.

Two relaxation zones are added (hatched zones in Figure 6.13): the �rst is one wavelength long

at the left side of the domain for wave generation, and the second is two wavelengths long at

the right side of the domain for wave absorption. Impermeable conditions are applied at the

lateral boundaries. The domain is discretized by regularly spaced nodes with a resolution of

∆x = ∆y = 0.075 m, for a total of 81,435 nodes. Waves were generated with an amplitude of

A = 0.02325 m, using linear wave theory. This value is smaller than the one prescribed to the

wavemaker in the experiments, but an adjustment of the incident wave amplitude was necessary

to obtain comparable average wave height (H = 0.0445 m) at a reference probe located in an

unperturbed zone of the domain, upstream of the shoal (x = 3.05 m, y = 21.34 m).
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Figure 6.13: Numerical domain and bathymetry of the experiments of Vincent and Briggs (1989).

Horizontal and vertical white lines indicate the transects where the comparisons between the

simulation results and the experimental measurements are completed. Hatched zones indicate

the wave generation (left side) and absorption (right side) zones.

Waves are propagated during approximately 100 s (≈ 78T ), with a constant time step ∆t = 0.036

s (≈ T/36), usingNT = 5. To compute the horizontal derivatives, the PHS RBF r7 + p3 is used

with a normalized stencil of size Nsten = 21. The sensitivity of the results to the type of PHS

and to the spatial resolution is brie�y studied with a few additional simulations.

The contour plot of the free surface elevation at the end of the simulation, when the periodic

steady state is reached, is shown in Figure 6.14. The wave height increases in the zone behind

the shoal (x > 6 m), and complex 2D patterns of the free surface elevation develop with strong

variations in both horizontal directions. The convergence zone along the centerline of the tank

is surrounded by rectilinear zones of almost zero amplitude looking like a wake. In addition,

the crests and troughs in the y direction are modulated with a characteristic length scale of

approximately 3 m due to re�ections from the lateral walls. The fact that the computational

domain is smaller than the experimental one may increase the importance of lateral re�ections

and possibly overestimate this e�ect.

To compare the simulation results with the experimental data, a zero up-crossing analysis of

the free surface elevation time series is applied to compute the average wave height along each

transect. To conduct the analysis in the same way as for the experiments, a 28-period window

of the free surface elevation time series is considered (from t = 60 s to 96.4 s). Wave height

pro�les for the two transects plotted in Figure 6.13 are presented in Figures 6.15 (transect 4) and

6.16 (transects 7 and 9). Because of the re�ection e�ects in the simulation, the variations of the

free surface position at a given point in the domain is not perfectly periodic in time. Depending

on the location of the node, in addition to the oscillatory evolution of the free surface, spatial
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Figure 6.14: Contour plot of the free surface elevation at the end of the simulation (t ≈ 78T ) for

case M1 of Vincent and Briggs (1989). The dotted line indicates the limit of the elliptical shoal.

modulations may also exist. Consequently, the extracted time series of the wave height is not

constant. Therefore, here the average simulated wave height pro�les are presented with a shaded

zone indicating the standard deviation.

Good agreement with the experimental data is observed for the wave height along the perpendic-

ular transect (transect 4, Figure 6.15). The wave height pro�le presents a maximum at the center,

corresponding to the center of the shoal (y = 13.72 m), which is more than twice the incident

wave height (ratio ≈ 2.03). The amplitude of this maximum is slightly underestimated in the

simulations. Moving symmetrically away from the center, two minima are reached, with wave

heights less than half the incident wave height (ratios ≈ 0.21 and 0.43, respectively). Farther

from the shoal, the wave height is nearly equal to the incident wave height.

The wave height pro�le was also studied in the wave propagation direction, along transects 7

and 9 (Figure 6.16). The simulation results agree well with the experimental measurements. The

di�erences are slightly larger than those observed along transect 4. In particular, the increase in

the wave height between x = 4 m and x = 6 m and the peak around x = 7.5 m are not repro-

duced by the model. From x = 9 m the simulated wave height pro�le shows small oscillations

that may be due to re�ections from the relaxation zone that is not perfectly absorbing.
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Figure 6.15: Average wave height along transect 4, for case M1 of Vincent and Briggs (1989). The

blue shaded zone around the simulation results shows the standard deviation due to re�ections.

The experimental measurements show variability between di�erent runs, and by investigating

a data point appearing in both pro�les (x = 12.2, y = 13.72 m), the observed wave height is

0.0975 m along transect 4, while it is 0.104 m along transects 7 and 9, which is a di�erence of ap-

proximately 6.25%. Although this variability in the measurements cannot be directly extended

to other measurements, it can be used to estimate the order of magnitude of the experimental

errors and variability.

The harmonic analysis was performed on the simulated free surface time series along transects

7 and 9, and the evolution of the �rst three harmonic amplitudes are shown in Figure 6.17. Un-

fortunately, the experimental time series were not available to perform the same analysis to use

as a comparison for the simulation results. Before the shoal, the waves are only weakly nonlin-

ear, and the amplitudes of the second and third harmonic increase over the shoal. The second

harmonic amplitude is more than half the amplitude of the �rst harmonic. This e�ect is likely

caused by the narrowing of the wave crest over the shoal, as seen in Figure 6.14. After the shoal,

the amplitude of the �rst harmonic is more than twice the amplitude before the shoal due to the

convergence of wave energy induced by refraction. Nonlinearities are not signi�cant after the

shoal, although a modulation of the amplitude of the second harmonic is clearly observed.

The sensitivity of the results to the degree of the PHS RBF and to the spatial resolution of the

discretization was evaluated. In Figure 6.18, the wave height pro�les along transect 4 and tran-

sects 7 and 9 are plotted for three di�erent combinations of PHS and augmented polynomials:

PHS r5+p2 withNsten = 15,PHS r5+p2 withNsten = 21, andPHS r7+p3 withNsten = 21.
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Figure 6.16: Average wave height along transects 7 and 9, for case M1 of Vincent and Briggs

(1989). The blue shaded zone around the simulation results accounts for the standard deviation

due to re�ections.

Figure 6.17: Spatial evolution of the �rst three harmonic amplitudes for the M1 Vincent and

Briggs (1989) experiments along transects 7 and 9 (y = 13.72 m).
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Very similar results are obtained withPHS r5+p2 for the two di�erent stencil sizes (Figure 6.18).

For this case, the accuracy obtained with Nsten = 15 is su�cient, and this choice of stencil size

is optimal to minimize the computational cost. Wave height pro�les obtained with PHS r7 +p3

show only small di�erences along transects 7 and 9 (with a small phase shift), and the evolution

trend is globally the same for the three simulations.

Figure 6.18: Average wave height along transect 4 (top) and transects 7 and 9 (bottom), for case

M1 of Vincent and Briggs (1989). Comparison of 3 combinations of PHS RBFs and Nsten (see

legend).

Additional tests were completed with a coarser discretization of the domain, using PHS r7 +p3

and Nsten = 21. The node spacing was increased from ∆x = 0.075 m to 0.10 m. Comparisons

of the wave height pro�les for the two resolutions are shown in Figure 6.19. The wave height

pro�les along transect 4 are nearly superimposed. Again, the di�erences are more visible along

transects 7 and 9, with only very small errors. The same evolution trend is obtained with both

simulations.

This last 3D test case shows that the model is able to reproduce accurately complex 3D wave

patterns with smaller characteristic length scales but weaker nonlinear e�ects than the experi-

ments of Whalin (1971). This test case also demonstrated that a lower degree polynomial function

(PHS r5 + p2) with a smaller stencil size can lead to the same accuracy of the �nal simulation

results, with the advantage of a shorter computational time.
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Figure 6.19: Average wave height along transect 4 (top) and along transect 7-9 (bottom), case M1

Vincent and Briggs (1989). Comparison of 2 spatial resolutions.
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6.4 Computational cost and optimization

The transition to a 2DH version of the code was accompanied by a signi�cant increase of the

computational time. This led to an evaluation of the code to identify the most time consuming

parts. Two possible techniques were identi�ed to improve the numerical e�ciency: the reorder-

ing of the matrix and the parallelization of the direct solver.

6.4.1 Computational requirements of the code

The code was analyzed with the objective of identifying the parts of the code with the highest

computational cost. The analysis was conducted for the test case presented in Section 6.2, for

which the domain was discretized with 60,716 irregularly-spaced nodes, andNT = 7. The linear

system of the Laplace BVP to be solved thus contains 485,728 unknowns.

In this case, the computational time in sequential mode for one time step is 600 s whereas the

pre-processing phase (for the entire code) requires only 3.33% of this amount of time (≈ 20 s).

The pre-processing time increases with the stencil size, but here it remains negligible in compar-

ison with the processing time for each time step. At each time step, the right-hand sides of the

Zakharov equations are calculated four times because of the RK4 scheme used to advance the

model in time. Each independent resolution of the Laplace BVP requires approximately 150 s, of

which the vast majority of the time is the linear system resolution since less than 1 s is dedicated

to constructing the matrix. The most time consuming part of the code is thus the resolution of

the linear system.

Therefore, the focus is then made on the direct resolution of the linear system for the Laplace

BVP with MUMPS (Amestoy et al., 2006). The resolution with MUMPS is divided into three

main phases: analysis, factorization and resolution. Permutation, scaling, and pivot ordering

options are available (see the MUMPS Users’ guide for more details). The default options are

used after veri�cation that they were the optimal choices. No permutation is completed but

simultaneous row and column iterative scaling is computed, and the METIS package is used for

the pivot ordering. Finally, it is found that the factorization phase is the most time-consuming

phase requiring approximately 95% of resolution time.

6.4.2 Matrix reordering

The cost of direct sparse solvers is increased with the scattering of non-zero entries in the matrix.

The structure of the matrix is directly related to node ordering. If no attention is paid to node

ordering, nearby nodes in physical space may be far in index space. Here, the nodes are indexed

arbitrarily beginning anti-clockwise with the boundary nodes and then with increasing x and

y for the interior nodes. The matrix associated with the Laplace BVP is sparse but has a large

bandwidth (Figure 6.20, left).
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During the factorization phase of the resolution with MUMPS, some transformations are applied

to make the matrix simpler to solve. Here, the idea is to reorder the nodes with the objective of

reducing the analysis and factorization phases with the advantage that node reordering can be

done once at the beginning of the simulation as a pre-processing task instead of during the anal-

ysis and factorization phases at each time step. With this in mind, a reordering algorithm based

on the reverse Cuthill-McKee algorithm was implemented. The original version of the algorithm

was slightly modi�ed and simpli�ed to take into account the speci�cities of case considered:

• all nodes in the domain have the same number of neighbors,

• when a node belongs to the stencil of another node, the inverse is not necessarily true.

The reordering algorithm was �rst tested for a regular node set of (5x5) nodes using a stencil of

Nsten = 5. Figure 6.20 shows an e�ective reduction of the bandwidth of the matrix associated to

the Laplace BVP. The nonzero entries are more concentrated around the diagonal. Nevertheless,

when applied to “real” cases such as the test case presented in Section 6.2 the gain in e�ciency

was not noticeable. It is likely that the implemented reordering scheme was not bene�cial in

comparison with the MUMPS internal reordering process.

Figure 6.20: Left, sparsity of the matrix associated with the Laplace BVP using a stencil of

Nsten = 5 for a regular node set of (5x5) nodes. Right sparsity of the matrix associated with

the Laplace BVP after using an adapted reverse Cuthill-McKee algorithm. The black dots are the

nonzero elements.

6.4.3 Parallelization of the linear solver

The numerical model Misthyc was originally implemented in a sequential version, with a poten-

tially parallel version of the MUMPS solver. A �rst step to parallelizing the code is thus to use



6.4 COMPUTATIONAL COST AND OPTIMIZATION 209

a parallel version of the MUMPS to reduce the computational time required to solve the linear

system as each time step.

One of the advantages of MUMPS is the possibility to de�ne the matrix in distributed form, with

as many submatrices as the number of MPI processes. The host process then builds the global ma-

trix and solves the system in parallel. Thus, pre-processing tasks such as derivative computations

and building of the submatrices can also be handled in parallel after the decomposition of the

computational domain into smaller subdomains. Nevertheless, this is not necessarily straight-

forward and requires sharing data from one subdomain to another (i.e. to compute derivatives).

It was tested for the parallelization of the 1DH version of the model without any signi�cant im-

provement of the in the computational time, likely because the matrix was too small to achieve

a real gain with the parallel resolution of the system. The implementation of the 2DH version is

more complex and requires more communication between subdomains.

Taking into account that the pre-processing phase and the building of the matrix are not the

most computationally expensive tasks in the 2DH version, the choice was made to parallelize

only the resolution of the linear system, maintaining the rest of the code in sequential mode.

The parallel resolution is managed automatically. Fewer changes of the code are required with

this option. This parallelization was tested for the same case considered in Section 6.4.1 using the

Athos cluster. The cluster consists of 776 nodes, each with 64 Go RAM, with two processors (2.7

GHz) made up of 6 cores. This capacity is doubled with hyperthreading, enabling 24 processes to

be available on each node. The computational time per time-step is recorded when the number

of MPI processes is increased from 1 to 24 for one node of the cluster. The speed-up ratio (Figure

6.21) is de�ned as the ratio between the “real” time necessary to compute one time step with the

sequential version of the model and the time required with the parallel version of the model run

with Nproc MPI processes:

speed-up ratio (Nproc) =
timesequential

timeparallel(Nproc)
(6.5)

where timesequential = 333 s for this case. The speed-up ratio increases with Nproc, but at a

decreasing rate for larger numbers of processors, eventually reaching a plateau. For this case,

the maximum speed-up is obtained for Nproc = 15, leading to a reduction of the computational

cost by a factor of 3.5. For large values of Nproc the speed-up ratio decreases a little (3.2). It

can be noticed that the speed-up ratio for Nproc = 1 is smaller than one, meaning that is it not

appropriate to use the parallel version of the model with only one MPI process. Moreover, the

analysis of the speed-up ratio by the parallelization of the solver is made for a rather small 2DH

case (485,728 unknowns). The conclusion concerning the optimal number of MPI processes may

not be directly applicable to cases with more unknowns. The parallel resolution requires more

memory than sequential computation, and larger cases may cause the memory limit for one node
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to be surpassed. In this case, the number of nodes needs to be increased, together with the num-

ber of MPI processes, to ensure su�cient memory.

Figure 6.21: Speed-up ratio (Eq.(6.5)) as a function of the number of MPI processes (Nproc), for

the test case presented in Section 6.2 with 485,728 unknowns.

6.4.4 Summary

These �rst attempts to optimize the 2DH version of the code are not entirely successful. Although

the algorithm for node reordering was e�cient in reducing the matrix bandwidth, it did not lead

to a reduction in the analysis and factorization steps in MUMPS. Nevertheless, the parallelization

of the solver enables improving the e�ciency of the model in comparison to the sequential ver-

sion, and for the case considered here, a maximum speed-up ratio of 3.5 is reached when using

15 MPI processes. These results may be problem-dependent and further tests should be con-

ducted to see how these results can be generalized for larger domains. However, the speed-up

ratios are quite small, and the next step towards a more e�cient code could be the parallelization

by domain decomposition. Other options could be considered including: the use of an iterative

linear solver (i.e. GMRES, BiCGSTAB,...), and the use of other time marching schemes, such as

Adams-Moulton (AM) and Adams-Bashworth (AB) predictor-corrector schemes, which require

fewer resolutions of the Laplace BVP.



Conclusions and perspectives

Au cours de cette thèse, un modèle de vague simulant de manière précise les e�ets

non-linéaires et dispersifs intervenant lors de la propagation des vagues au-dessus de

bathymétries variables a été développé et amélioré. La version 1DH du modèle a été

validée à travers l’application à de nombreux cas tests, démontrant ses capacités disper-

sives pour une large gamme de profondeurs relatives. A�n d’élargir le champ d’applica-

tion du modèle, n’incluant pas de terme de di�usion par hypothèse, une formulation

visco-potentielle a été étudiée, permettant de prendre en compte les e�ets dissipatifs dus

à la friction interne et à la friction sur le fond, dans la limite de faible viscosité et faible

pente du fond. L’extension du modèle en 2DH avec une approche sans maillage, basée

sur la méthode RBF-FD, a été choisie. Les tests de sensibilité aux di�érents paramètres

de la méthode ont abouti à la recommandation de l’utilisation de la RBF PHS r7 +p3

avec une taille de stencil entre 20 et 30 nœuds pour des applications générales. La com-

paraison à des résultats expérimentaux pour des cas à bathymétrie variable a mon-

tré que cette méthode était applicable pour la propagation de vagues en 2DH. Cepen-

dant, plusieurs aspects du modèle peuvent encore être améliorés, notamment l’ajout

de conditions aux limites pour permettre la modélisation de cas plus réalistes avec la

génération de vagues non-linéaires et la modélisation du run-up. Quant aux proces-

sus physiques représentés, la stabilité du terme du frottement sur le fond pourrait être

étudiée plus en profondeur et l’inclusion de la dissipation d’énergie induit par le défer-

lement bathymétrique serait un plus. Concernant les aspects numériques, la robustesse

de la méthode RBF-FD reste à améliorer, notamment pour limiter le développement

d’instabilités au niveau des bords du domaine du fait des stencils décentrés. En�n, le

passage à la version 2DH dumodèle a entraîné une large augmentation du temps de cal-

cul du fait de la dépendance du temps de résolution du problème de Laplace au nombre

de nœuds de discrétisation. Des techniques d’optimisation telles que la décomposition

de domaines ou l’utilisation de solveurs itératifs pourraient être testées a�n de rendre

le code plus performant.
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The main objective of the PhD thesis was to pursue the development and validation of a de-

terministic wave model capable of simulating the propagation of irregular and multidirectional

sea-states from the o�shore (deep water) to the coast over variable bathymetry, with a highly ac-

curate representation of the nonlinear and dispersive e�ects, for bidimensional (2DH) domains

on the order of kilometers. The goal was to simulate practical, 2DH applications with complex

coastal domains and bottom bathymetry, thus the model was discretized with scattered nodes

(unstructured-type grids) to be able to re�ne the distribution of nodes at locations of interest,

such as zones of signi�cant bottom or coastline variability.

The development of a potential �ow model based on the Euler-Zakharov equations began prior

to this PhD thesis (Benoit et al., 2013; Yates and Benoit, 2012). An important component of the

numerical model is the resolution of the Laplace boundary value problem (BVP). Following pre-

vious work, (Yates and Benoit, 2015) concluded that a spectral approach in the vertical (Tian and

Sato, 2008) combined with �nite di�erence schemes in the horizontal direction was the optimal

approach for the 1DH version of the model that was then developed further in this thesis.

Summary of the main achievements of the PhD thesis

During this PhD thesis, several aspects of numerical wave modeling were addressed, from nu-

merical aspects to physical processes important in wave propagation, leading to a number of

improvements and extensions of the computational model.

One of the critical issues in numerical wave modeling is wave generation and absorption. A

comprehensive study was conducted on the implementation of speci�c boundary conditions for

wave generation, including a comparison between Dirichlet and Neumann boundary conditions.

The selected solution resulted in a combination of classical Dirichlet boundary conditions and

the use of relaxation zones. This technique proved to be e�cient for both generation and ab-

sorption as long as the relaxation zones are properly designed (i.e. length of the zone and shape

of the function used to progressively impose the desired solution).

Then, an extensive study of the accuracy of the nonlinear and dispersive capabilities of the model

was completed. First, the linear dispersion relation of the model was derived, showing an increase

in accuracy with NT . For instance, the relative error in the calculated wave celerity for �at bot-

tom conditions (in comparison with Stokes’ analytical solution) remains smaller than 2.5% for

kh up to 100 using NT ≥ 9. The linear version of the model was validated with comparisons

to analytical solutions of the re�ection of regular waves over a Roseau-type bathymetric pro�le

and the generation of waves generated by bottom motions.

The convergence properties of the nonlinear version of the model were studied in detail for

moderate to highly nonlinear solitary waves. The order of temporal and spatial (algebraic) con-
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vergence were approximately 4-5 for the two less nonlinear cases and 3-4 for the most non-

linear case, in agreement with the properties of the fourth-order Runge-Kutta (RK4) temporal

discretization scheme and the fourth-order �nite di�erence schemes used to approximate the

horizontal derivatives. The exponential convergence in the vertical dimension obtained with the

spectral approach was con�rmed, showing an accurate representation of the vertical structure

of the potential with a small maximum degree of Chebyshev polynomial.

Finally, the 1DH version of the model was validated with a series of challenging test cases: a

moving bottom generating free surface deformations (tsunami-like wave generation), propaga-

tion over steep bottom bathymetry (submerged bar, barred beach pro�le), etc. The comparisons

with experimental data showed the accurate simulation of energy transfers between the har-

monic components over variable bathymetry and demonstrated the dispersive capabilities of the

model. The numerous test cases showed the in�uence of several numerical parameters, in partic-

ular con�rming the optimal value ofNT : from 5 to 10, depending on the dispersive characteristics

of the test case.

To broaden the range of applications of the model that is by de�nition non-di�usive, a visco-

potential formulation was studied to take into account the e�ects of bulk viscosity and bottom

friction in the Zakharov equations. To our knowledge, this had not yet been done. Boussinesq-

type (i.e. long wave) models mainly have been derived from this set of equations. The only study

we are aware of involving the Zakharov equations was limited to bulk viscosity terms with an

additional assumption of weak nonlinearity (Kakleas and Nicholls, 2010). This new implemen-

tation of the visco-potential formulation was validated with comparisons to a linear analytical

solution for the decay rate of a standing wave over a �at bottom, and with experimental mea-

surements of the decay and the shoaling of a solitary wave propagating over a �at bottom and

then up a mild slope. The application to small-scale experiments studying the propagation of

regular waves over a submerged step showed the limits of the derivation and implementation of

the bottom friction term. However, satisfactory results in comparison to the experiments were

obtained considering only the bulk viscosity terms. In addition, this test case validated the in-

clusion of surface tensions e�ects in the model.

The extension of the model to two horizontal dimensions was also an important component of

this PhD thesis. A meshless approach, based on the RBF-FD (Radial Basis Function - Finite Dif-

ference) method was chosen to allow signi�cant �exibility for the application to real domains,

enabling using non-rectangular grids and re�ning the nodes easily. This method presents the

advantage of being similar to �nite di�erence methods and rather simple to implement, not re-

quiring major adaptations of the code. A series of sensitivity tests to the parameters involved

in the RBF-FD method were conducted to examine the robustness of this approach for the es-

timation of derivatives. The application of the 2DH version for the simulation of two di�erent
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wave basin experiments showed that it is possible to use this method for 2D wave propagation.

However, the method is sensitive to the choice of parameters, in particular the shape parameter

for in�nitely smooth RBFs. This di�culty can be avoided by using piecewise smooth RBFs that

do not depend on a shape parameter. Based on the tests performed here, the present recommen-

dation is to use such piecewise smooth RBFs, in particular the Poly-Harmonic Splines (PHS) of

degree 5 or 7, supplemented with an augmented polynomial.

Finally, the numerical e�ciency of the 2DH version of the model appeared to be an important

obstacle for simulations in large domains. The resolution of the Laplace BVP linear system is

the most computationally expensive part of the model. Therefore, an initial attempt to improve

the numerical e�ciency was to use the parallelized version of the direct linear solver MUMPS.

The test conducted for a 60,716 node set with Nsten = 13 showed a maximum speed-up of 3.5

when the simulation was run with 15 MPI processes. Further tests are needed to generalize these

results.

To summarize, at the end of this thesis, an accurate model for simulating nonlinear and dis-

persive e�ects occurring during water wave propagation over variable bottom pro�les has been

developed and improved. The 1DH version has been validated extensively and is applicable for a

wide range of relative water depths, and its applicability for 2DH cases has been demonstrated.

Considering the work on physical processes, bulk viscous e�ects and bottom friction are taken

into account in the limit of small viscosity and small bottom slope, as well as surface tension

e�ects for short waves.

Perspectives

With the long term objective of applying the model to real and complex nearshore domains,

including wave propagation near coastal and harbor structures, work can be done to validate

and improve several aspects of the model, in particular: boundary conditions, representation of

physical processes, coupling with other models, robustness of the method, and computational

e�ciency. These topics are discussed hereafter, and some insight is given on possible future

developments.

Boundary conditions: Additional realistic boundary conditions must be developed and/or

validated. The generation of irregular and directional waves from a prescribed directional spec-

trum has been implemented using linear wave theory (at the end of the PhD thesis) but requires

being validated (e.g. with test cases from Vincent and Briggs (1989) experiments). This will en-

able forcing the model with spectra obtained from larger scale applications of phase-averaged

models (such as Tomawac, Swan, or WaveWatch-III).

The possibility to generate nonlinear (at least at second order) irregular wave �elds may improve

the stability of the model when generating highly nonlinear wave �elds (e.g. Schä�er, 1996; Yang
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et al., 2014).

Moreover, modeling run-up and run-down on slopes is also of interest to widen the range of

applications of the model to “real” coastal problems.

Representation of physical processes: In this work, the representation of bulk viscosity has

been carefully validated. However, the implementation of the bottom boundary condition of the

visco-potential formulation, to take into account bottom friction e�ects, still requires improve-

ments in the case where it is used in combination with relaxation zones for wave generation.

Moreover, it will be important to derive the expression of the bottom boundary condition with-

out the limitation of a mild bottom slope.

In addition, the calculation of this term is not computationally e�cient since it is non-local in

time, and thus requires storage of a large amount of data. To optimize the e�ciency and memory

requirements of the computation of this non-local term, the approximation proposed by Torsvik

and Liu (2007) could be tested to evaluate the impact on the accuracy of the results.

The inclusion of energy dissipation through depth-induced wave breaking is necessary for prac-

tical applications, though it cannot be simulated directly with a potential �ow model. The goal is

to extend the model to estimate properly the wave height attenuation due to breaking. This re-

quires the modi�cation of the evolution equations (Zakharov equations), and two methods may

be considered: the addition of pressure terms at the free surface to simulate the e�ects of wave

rollers, following Guignard and Grilli (2001), or the addition of an eddy viscosity-like term to the

KFSBC and DFSBC (Tian et al., 2010), following previous works (i.e. Heitner and Housner, 1970;

Kennedy et al., 2000; Zelt, 1991).

The e�ects of ambient currents could also be considered for applications where tidal or river

out�ow e�ects are important.

Coupling with othermodels: Although some viscous e�ects are taken into account to model

bulk and bottom friction induced viscous dissipation, some applications (i.e. wave-structure in-

teractions, for marine renewable energy devices, o�shore platforms, etc.) require a more accurate

representation of viscous e�ects. In particular, it may be necessary to account for vorticity e�ects,

wakes in the lee of structures, the viscous drag part of forces, etc. To achieve this, the Misthyc

potential �ow model could be coupled with a Navier-Stokes code that takes into account �uid-

structure interactions at local scales, for example, following the SWENSE method proposed by

Ferrant et al. (2003).

Robustness of the RBF-FDmethod: The RBF-FD method used to estimate derivatives in the

2DH version of the model when solving the Boundary Value Problem or in the Zakharov equa-

tions, is sensitive to the choice of the RBF, the value of the shape parameter C , and the size of

the stencil Nsten. Finding an appropriate set of parameters for a given application can be a chal-

lenge. The main source of instabilities is the lack of accuracy in the estimation of derivatives at

and close to the boundaries because of non-centered stencils at these locations. Some techniques
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may be tested to reduce the development of instabilities and thus increase the robustness of the

model, for example: decreasing the stencil size of boundary nodes (leading to a more di�usive

approximation at the boundaries), increasing the degree of the augmented polynomial at the

boundary, or re�ning the mesh when approaching the boundaries.

Another option would be the addition of ghost nodes outside of the domain to reduce the one-

sidedness of the stencils of boundary nodes. Nevertheless, the implementation of such a method

is not trivial. A common method to stabilize the resolution of PDEs without a physical dissipative

term (as is the case for the Zakharov equations) is to add a hyper-viscosity operator to the right

hand-side of the evolution equation to introduce arti�cially a small amount of dissipation that

will damp spurious high frequency oscillations. In parallel, alternative options for the resolution

of the 2DH problem could also be considered.

Computational e�ciency: With a direct solver, the e�ciency of the resolution of the Laplace

BVP system depend strongly on the number of nodes in the domain, and parallelizing the code

with a domain decomposition approach could increase its e�ciency (over using simply the par-

allel version of the linear solver). Other possibilities to reduce the computational cost could be to

consider time integration schemes requiring fewer resolutions of the Laplace BVP (i.e. multi-step

predictor-corrector schemes) and/or to test iterative solvers, such as GMRES or BiCGSTAB, with

suitable preconditioners. Work on these two subjects is currently in progress.

Further validation and applications: Finally, further validation of the 2DH version of the

model is required, including cases with complex coastlines and variable bathymetries, islands,

coastal structures and a variety of di�erent wave conditions. In the near future, the model will

be applied to real coastal cases where �eld measurements are available or will be collected, in par-

ticular within projects related to marine renewable energies (e.g. the ongoing EMACOP French

project “Energies MArines COtieres et Portuaires”, and the proposed ANR DiMe project “Dimen-

sionnement et Meteocean: modélisation et observations des états de mer extrêmes déferlants

pour les EMR”).

The model may also be used for modeling the generation of waves due to seismic bottom mo-

tion or submarine landslide, in particular for the study of tsunamis. It is currently used for that

purpose within the PIA-ANR TANDEM (Tsunamis in the Atlantic and the English chaNnel: Def-

inition of the E�ects through numerical Modeling, see http://www-tandem.cea.fr/), where it has

proven very accurate to simulate such waves. The test cases “Solitary wave over a �at bottom” of

Section 3.2 and “Waves generated by impulsive bottom motion” of Section 3.4 have been consid-

ered in this project. Within the same project, the linear and nonlinear versions of the model have

been used during the PhD of Marine Le Gal to study the generation phase of tsunami (Le Gal

et al., 2017). These applications have demonstrated the applicability of the model to tsunami

generation and propagation, and this opens another �eld of future developments/applications.



Appendix A : Dispersion relation for
Misthyc

The dispersion relation of the model depends on the vertical resolution NT . It can be expressed

as a rational function of µ according to Eq.(1.74) repeated here for convenience:

ω̂2
NT

µ2
=

(
C√
gh

)2

NT

=
1 +

∑NT−2
p=1 αpµ

2p

1 +
∑NT−1

p=1 βpµ2p
.

The values of the coe�cients αp and βp forNT from 2 to 9 are presented in Table 2, forNT from

10 to 12 in Table 3 and, for NT from 13 to 15 in Table 4.
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NT αp for p = 1 to NT − 2 βp for p = 1 to NT − 1

2 β1 = 5
16

3 α1 = 3
32 β1 = 13

32

β2 = 13
1536

4 α1 = 11
96

α2 = 1
512

β1 = 43
96

β2 = 55
3072

β3 = 25
294912

5 α1 = 25
192

α2 = 19
6144

α3 = 5
294912

β1 = 89
192

β2 = 149
6144

β3 = 779
2949120

β4 = 41
94371840

6 α1 = 133
960

α2 = 21
5120

α3 = 203
5898240

α4 = 1
12582912

β1 = 151
320

β2 = 431
15360

β3 = 2591
5898240

β4 = 1769
943718400

β5 = 61
45298483200

7 α1 = 23
160

α2 = 443
92160

α3 = 197
3686400

α4 = 287
1415577600

α5 = 7
30198988800

β1 = 229
480

β2 = 937
30720

β3 = 4259
7372800

β4 = 37507
9909043200

β5 = 697
90596966400

β6 = 17
6088116142080

8 α1 = 33
224

α2 = 857
161280

α3 = 1439
20643840

α4 = 101
275251200

α5 = 11
15099494400

α6 = 1
2174327193600

β1 = 323
672

β2 = 577
17920

β3 = 14111
20643840

β4 = 4495
792723456

β5 = 27553
1479750451200

β6 = 1243
60881161420800

β7 = 113
27274760316518400

9 α1 = 403
2688

α2 = 2449
430080

α3 = 4003
48168960

α4 = 1411
2642411520

α5 = 121
79272345600

α6 = 71
40587440947200

α7 = 1
1515264462028800

β1 = 433
896

β2 = 137
4096

β3 = 110681
144506880

β4 = 136099
18496880640

β5 = 1688597
53271016243200

β6 = 299093
5114017559347200

β7 = 2059
54549520633036800

β8 = 29
6284104776925839360

Table 2: Dispersion relation coe�cients for NT ranging from 2 to 9
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NT αp for p = 1 to NT − 2 βp for p = 1 to NT − 1

10 α1 = 175
1152

α2 = 11593
1935360

α3 = 46651
495452160

α4 = 32831
47563407360

α5 = 263759
106542032486400

α6 = 10769
2557008779673600

α7 = 979
327297123798220800

α8 = 1
1396467728205742080

β1 = 559
1152

β2 = 4439
129024

β3 = 137321
165150720

β4 = 419743
47563407360

β5 = 963259
21308406497280

β6 = 1728347
15342052678041600

β7 = 14905
117826964567359488

β8 = 16109
314205238846291968000

β9 = 181
45245554393866043392000

11 α1 = 221
1440

α2 = 3443
552960

α3 = 96031
928972800

α4 = 49463
59454259200

α5 = 238111
68491306598400

α6 = 166427
21917218111488000

α7 = 6721
818242809495552000

α8 = 1199
314205238846291968000

α9 = 11
18098221757546417356800

β1 = 701
1440

β2 = 6481
184320

β3 = 164387
185794560

β4 = 1800037
178362777600

β5 = 147817
2536715059200

β6 = 8511197
48217879845273600

β7 = 22222159
81006038140059648000

β8 = 62507
314205238846291968000

β9 = 24089
452455543938660433920000

β10 = 221
79632175733204236369920000

12 α1 = 817
5280

α2 = 1627
253440

α3 = 68833
619315200

α4 = 209039
217998950400

α5 = 1403711
313918488576000

α6 = 21821
1883510931456000

α7 = 2658541
162012076280119296000

α8 = 55939
4713078582694379520000

α9 = 1703
452455543938660433920000

α10 = 1
2413096234339522314240000

β1 = 859
1760

β2 = 9067
253440

β3 = 903997
973209600

β4 = 116147
10380902400

β5 = 4427539
62783697715200

β6 = 14763743
60272349806592000

β7 = 280102969
594044279693770752000

β8 = 275571539
570282508506019921920000

β9 = 393133
1659003661108421591040000

β10 = 6943
159264351466408472739840000

β11 = 53
33636631029705469442654208000

Table 3: Dispersion relation coe�cients for NT ranging from 10 to 12
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NT αp for p = 1 to NT − 2 βp for p = 1 to NT − 1

13 α1 = 329
2112

α2 = 6671
1013760

α3 = 441269
3746856960

α4 = 15427241
14387930726400

α5 = 2500199
460413783244800

α6 = 79
4960687226880

α7 = 6053639
222766604885164032000

α8 = 639839
24440678935972282368000

α9 = 1703
129273012553902981120000

α10 = 403
136512301256921548062720000

α11 = 13
56061051716175782404423680000

β1 = 1033
2112

β2 = 4087
112640

β3 = 517043
535265280

β4 = 34940501
2877586145280

β5 = 1395397
17052362342400

β6 = 1985963
6314246170214400

β7 = 8162206589
11583863454028529664000

β8 = 5569937
6127002157502693376000

β9 = 450917
702925995669642333388800

β10 = 70307
318528702932816945479680000

β11 = 9703
336366310297054694426542080000

β12 = 313
419785155250724258644324515840000

14 α1 = 391
2496

α2 = 44257
6589440

α3 = 729049
5904138240

α4 = 1995347
1700391813120

α5 = 227614151
35912275093094400

α6 = 469327
22983856059580416

α7 = 25701259
643547969668251648000

α8 = 52251107
1112050891586738847744000

α9 = 4550101
142342514123102572511232000

α10 = 251
21717866109055700828160000

α11 = 181
96104660084872769836154880000

α12 = 1
9226047368147785904270868480000

β1 = 1223
2496

β2 = 16127
439296

β3 = 168275
168689664

β4 = 2006009
154581073920

β5 = 1103658349
11970758364364800

β6 = 6289229
16417040042557440

β7 = 12370703
12870959393365032960

β8 = 48928807
33464494422749085696000

β9 = 2438062741
1850452683600333442646016000

β10 = 294318169
444108644064080026235043840000

β11 = 10095641
61218668474063954385630658560000

β12 = 13213
839570310501448517288649031680000

β13 = 73
244482874418021808234454598025216000

15 α1 = 1375
8736

α2 = 6367
931840

α3 = 2464733
19188449280

α4 = 97800317
77367827496960

α5 = 59327977
8252568266342400

α6 = 237062291
9506958642826444800

α7 = 449249
8299725799292928000

α8 = 12573581
170364698879449890816000

α9 = 100491779
1619146098150291762315264000

α10 = 191135641
6217521016897120367290613760000

α11 = 1207
147160260754961428811612160000

α12 = 19
19081143420487466302014750720000

α13 = 1
23284083277906838879471866478592000

β1 = 1429
2912

β2 = 20729
559104

β3 = 6554543
6396149760

β4 = 2405669
175437250560

β5 = 2517106811
24757704799027200

β6 = 1424190641
3168986214275481600

β7 = 411942431
334644944227490856960

β8 = 2979106457
1405508765755461599232000

β9 = 461115337
202393262268786470289408000

β10 = 614317331
414501401126474691152707584000

β11 = 52853
96676711632997012513751040000

β12 = 345941
3428245434547581445595316879360000

β13 = 7999
1111285792809190037429339081932800000

β14 = 421
4107312290222766378338837246823628800000

Table 4: Dispersion relation coe�cients for NT = ranging from 13 to 15
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