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Chapter 1
Introduction

The question “What happens when we shine light onto matter?” has received many

answers over the course of history. The concept of a bulk property of dielectrics, the

refractive index, can be traced back to the 11th century [1, 2]. The 20th century saw

the advent of a more intimate description of the properties of matter as the internal

structure of atoms [3] was being discovered and quantum theory established. The

accuracy of the models in the description of single atoms or dilute samples achieved

nowadays is remarkable [4–6]. Trying to construct matter ab initio introduces effects

that cannot be included in the mere sum of single atom behaviour as the proximity

of atoms is increased [7]. It is with this perspective that work on dense samples is

initiated, and it might prove at once edifying to the curious minds and useful to a

range of issues in applied science that have been arising in the past ten to twenty

years. The fine control over matter commonly exerted nowadays in industrial facilities

bring a degree of device miniaturization that was unthinkable forty years ago and

finds its place in every household today. The shrinking of useful structures has reached

a level where the smallest structure in daily-life products is on the order of 10 nm.

Modern computers pack about 1 billion transistors on a chip size of ∼ 1 cm2. It is not

unlikely to see transistors consisting out of single atoms manufactured in the future [8].

As the device density is further increased to speed up the computation, the devices’

interface with fast optical communication channels is rendered compulsory. In order to

pre-empt possible departures from expected behaviour, a thorough understanding of

the impact of density on the atomic response may be crucial.

Another field that might benefit from a fine understanding of dense matter is that

of common atomic clocks. Such atomic clocks are commonly embarked on satellites

and provide the time to the GPS now standard in all cars and cell phones. Along

the way of improving the measurement of time several minute effects have been

found (e.g. influence of black body radiation, special and general relativity) that

were hampering the advance and had to be understood. These improvements have

led to primary standard clocks with an uncertainty as low as ∼ 1× 10−16 [9]. The

successive development of optical clocks have reached an absolute frequency uncertainty
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of ∼ 2 × 10−18[10]. With such high resolution a frequency deviation of the probe

light induced dipoles due to density effects could be detected in samples that are

orders of magnitude more dilute than in the case discussed before. This offers another

perspective to the same question of how matter response to light depending on the

matter’s density, which if not understood well might be one of the hurdles that prevents

us from further improving optical atomic clocks.

In this work I set out to give some answers to exactly this question: “How does

light respond to varying density?”. To be able to tackle such a question we need a

very clean measurement system to properly isolate the effect from any disturbances

and we have to be able to change the amount of matter that we put into a volume of

constant size. An ideal platform for such an undertaking is provided by cold atoms,

which has shown its outstanding performance in many experiments investigating light

matter interactions [11–17]. With such a system it is possible to trap atoms inside

a vacuum chamber well isolated from external influences by means of intense laser

beams. To be able to catch atoms in free space inside an optical dipole trap they have

to be extremely cold < 1 mK as they would escape the trap otherwise [18]. These

traps are formed by tightly focusing a laser beam which then is forming a conservative

potential at its focus in which the atoms whose thermal energy is lower than the

potential barrier can be trapped. After having trapped the atoms we are going to

shine near resonant light onto the sample and measure the amount of scattered light in

a given direction. Being able to prepare samples and probe them means that we have

to sort out which density ranges we have to explore to get some meaningful insight

[19–21]. The so called resonant dipole-dipole interaction (see figure 1.1) can be split

into two parts one which is associated with the exchange of photons which can lead to

interference effects and a short range interaction which is described by the exchange

of virtual photons. A modification of the atomic response due to this light induced

interaction starts to be detectable when the interatomic distance is on the order of λ̄.

Indeed, we have to choose the densities that we are going to investigate appropriately,

so as to ensure that the modified response is detectable with our apparatus. These

resonant dipole-dipole interactions

Vdd ∝ ~Γeikr

[(
1

(kr)3
− i

(kr)2

)
︸ ︷︷ ︸

static

(3 cos2 θ − 1) +
sin2 θ

kr︸ ︷︷ ︸
radiation

]
(1.1)

have three terms scaling like 1/k, 1/k2 and 1/k3, where we can associate the long-

range 1/k term with electro-magnetic radiation and the 1/k2 and 1/k3 term as the
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Figure 1.1.: Schematic of two radiating dipoles driven by the EL at frequency ω. Those

two dipoles interact via their scattered fields.

electrostatic part, with k = 2π/λ. As a result, when the distance between the scatterers

starts to approach 1/k3, non-radiative interactions start playing an important role in

the sample. As we are working with micro-traps with a volume roughly on the order of

∼ 2μm3 and the probe light is operated at λ = 780 nm to be close to resonance with

the D2 transition of Rubidium 87 which we use in our experiment. This indicates that

a density of ∼ 1014 atoms cm−3 is needed to fulfill the criteria mentioned above. So far

different approaches in the field of atomic physics were taken to study density effects

and we can group them as followed:

1. Cold atoms with low density n/k3 � 1 and large optical thickness e−OD with

OD > 1:

Such systems are used in the groups of Havey [5] , Kaiser/Labeyrie [16],

Wilkowsky [23]

2. Hot gaseous vapours with large densities n/k3 � 1 and low optical thickness

In the group of Charles Adams [24]

3. Cold atoms with high density n/k3 ≈ 1 and low optical thickness

9
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Are used in our group [25]

The theoretical description of such systems can be tackled from two different point

of views. The first is a macroscopic approach describing the full sample by a single

quantity, the refractive index. This approach had been used before by the group of

Charles Adams for their experiment where they measure the transmission of near

resonant light on a hot vapour contained in microscopic cell [26]. They measured a

strong shift of the resonance when they increased the density, which was confirmed by

the textbook theory of refractive indices in dense media the so called “Lorentz-Lorenz”

formula [27].

The second perspective is a microscopic view, where all characteristics of the sample

constituents have to be known. In our case that would be the individual position of

each atom in the cloud. Knowing that all particles are identical the scattered light

pattern can be calculated and compared to measurements. This was done for elastically

scattered light observed under 90 degrees with respect to the probe light in our group

shortly before I arrived and was the work of Pellegrino and Bourgain [25, 28, 29].

Unlike the Adams’ group we did not measure a significant shift. In addition the

agreement we were able to establish between model and experiment was only on a

qualitative level. Having two contradicting results for similar measurements is always

an unsettling situation. To resolve this problem we wanted to compare the two theories

to one another and to an experimental measurement. This comparison could only

be done by switching from measuring scattering under 90 degrees to transmission

experiments as these two situations measure two different parts of the probe light. As

our sample consists out of atoms at random position the rescattered field inside the

medium can be split into two parts an average field 〈Esc〉 and a deviating field δE

so that Etot = 〈Esc〉+ δE is fulfilled (the average here being a position average). As

shown in [30] only the evolution of the average field can be described by macroscopic

Maxwell’s equations dominating in the forward direction and thus is governed by a

refractive index. Measuring under 90 degrees is thus mainly sensitive to the δE of the

light field and to compare our measurements directly to the microscopic theory and to

a description by macroscopic Maxwell’s equation we had to switch to transmission

measurements.

10



Outline of this thesis

To be as stable as possible some technical improvements of the existing experimental

setup were necessary. A completely new control system was needed to maximize the

repetition rate, thereby improving the statistical sampling of the data to an appropriate

degree. These changes are documented in chapter 2 and enabled us to perform the

accurate measurements which were conducted afterwards. The first measurements

performed with this upgraded system were transmission experiments on “degenerate”

Rubidium 87 (12-level system / full internal structure) with a weak driving field. We

investigated the steady-state response of a sample for various densities which were

modelled by both a macroscopic and microscopic theory. This measurement procedure

is described in chapter 3 followed by an introduction of the theoretical framework and

a discussion on the discrepancies observed between measurement and theory.

In chapter 4 we investigate the propagation of a Gaussian shaped pulse through

the very same sample. Measuring the delay and advance of the peak of such a pulse

gives access to the phase imprint by the material it is passing through. With this

second measurement we were able to infer phase and magnitude of the scattered field

independently. Additionally looking at this pulse propagation allowed us to measure

the group-delay as well as the fractional pulse delay/advancement, which turned out to

be the largest ever measured while still having 20% transmission. Extrapolating these

extraordinary values to a signal level which other groups still consider measurable

(1%) would allow to test the theoretical predictions [31, 32] for the fractional-group

advancement.

The last chapter 5 starts with the preparation of Rubidium 87 in a pure Zeeman

state, while being in a dense sample, thus removing the internal degrees of freedom

and moving from a 12-level to a 2-level system by lifting the degeneracy with a strong

magnetic field. Afterwards the measurements described in chapter 3 are repeated for

the spin polarized sample and the results are systematically compared to the “old”

ones. This is followed by a comparison of the new measurements to the microscopic

theory. Not having to care about internal degrees of freedom removes all doubt about

this aspect of the simulation which was a major concern before. As the quality of the

results obtained with polarized samples was substantially better, we could analyse the

transient behaviour as well, which are in good agreement with the steady state results.

As an attempt to get further insight into the effect of density on the scattering

properties of atoms, I also started to explore the high saturation regime where quantum

effects may dominate. By doing so I found that the saturation intensity of the line

11



Chapter 1: Introduction

probed is not constant with density.

Chapter 6 summarizes the whole thesis and gives an outlook to future experiments.

12



Chapter 2
Technical changes on the setup

To be able to properly investigate systems such as ours which consist of only few atoms

1− 200 it is crucial to repeat experiments many times to form a proper statistical

sample. This repetition has to be performed with diligence as it would lead to an

additional source of uncertainty otherwise. Repetitions have to be as identical as

possible within the required accuracy, such a task is nowadays best performed by

computers. Another key aspect is the flexibility of one’s experimental setup to change

the measurement protocol as the majority of data acquisition is for the urge of closing

loopholes in the assumed model e.g. uncertainties, noise, biases, etc.. This process is

very important as otherwise an already understood effect could be misinterpreted and

would lead to utter nonsense.

To be in the comfortable situation where we can operate our experiment with

a high level of reliability and flexibility I implemented a new control system and

the optics mounts were upgraded to the most recent version. This chapter describes

where we started from and how the apparatus was operated before and through which

developments we arrived at a stage where the before mentioned needs are fulfilled.

2.1 The old setup

The data acquisition of a full dataset on our setup requires on the one hand a repetition

of the same measurement sequence and on the other hand the variation of one or

several experimental parameters. In the course of this chapter I will call the former

“cycles” and the latter “run”, see figure 2.1. In practice, a cycle is started when the

avalanche photodiode on our experiment measures a certain level of fluorescence

from our magneto-optical trap (MOT). In the software, we define a threshold level

at which a trigger is send out to a digital output card. As one can see in figure 2.1

our typical sequence can be broken down into three parts, first pattern 1, which is

normally the loading of our dipole trap, second pattern 2 the experiment, consisting

of a repetitive structure and third pattern 3 the reinitialization of our equipment at
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the end of a sequence. In our old setup the repetitive structure was generated by a

series of independent pulse generators and logic gates, which were connected to the

digital card. To achieve any form of complex sequence the wiring up of those pulse

generators and logic gate formed a very difficult task in itself. Another problem was

the repeatability of an experiment, the installed wiring together with the values set on

each device had to be minutely recorded in our lab book for future measurements. In

case of repeating an old experiment the very same setup had to be put together again

and all wire connections needed to be installed.

n x Pattern 2Pattern 1 Pattern 3

...Parameters

Sequence =  1 Cycle

Dataset

...
100

Cycles

mth run1st run ...   6th run   7th run   ...

change
Parameter

change
Parameter

100
Cycles

Figure 2.1.: Example of a typical sequence and the structure of a dataset.

Due to the fact that the loading rate of the MOT, which determines the measured

level of fluorescence is a non-deterministic process, the time required to reach the

triggering threshold can vary significantly (1-10 s). We normally acquire data of our

atomic sample by taking pictures with an intensified charge coupled device (I-CCD) or

recording the temporal arrival of single photons with the avalanche-photodiode (APD)

being connected to a time-tagging device. When we were using the camera it was

normally integrating over a full run, which consists for example of a hundred cycles

and only read-out the final signal at the end. The problem with this method is that

14
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the camera gets an exposure time set at the beginning, which cannot be changed or

interrupted after arming the camera, otherwise the picture is lost. Knowing that the

camera needs a fixed exposure time and that the trigger rate is not constant in time

leads to a dilemma: either the camera misses events because the exposure time is up

before all cycles have been performed or the exposure time needs to be overestimated

to make sure the camera captures everything, which leads to a reduced repetition rate.

Typically we overestimated the exposure time by a factor of two. At the end of the

acquisition, the data had to be saved by hand and converted into a format which was

readable by our analysis software. To prepare the experiment for the next run, the

operator had to set the new values on the parameters that needed to be changed for

example, change the power of a laser beam by turning a half-wave plate or changing

the output frequency of a frequency-generator manually.

The combination of the long exposure time, the lack of automation of the change of

experimental parameters, together with the manual data saving made for unnecessarily

lengthy experimental runs, as well as a high likelihood of making mistakes. The

increased complexity of the phenomena explored with our system meant that more and

more parameters needed to be perfectly controlled. Therefore we decided to perform

the following upgrades:

1. Optimize the beam path to gain beam pointing stability and free space on the

optical table

2. Design a new computer control allowing to manage all parameters from a central

place as well as automated data acquisition

3. Develop an analysis software which could handle the increased amount of data

and integrates nicely into the automated data taking

2.2 Optical Table

I planned the new beam path to optimize the path length and limit the number of

optical elements. This new setup freed about a third of the optical-table which is

now available for future upgrades. In addition we changed the mirror-mounts and

fiber-coupler mounts to the latest version of the Lioptec Star series. This product

uses screws with a wider diameter than our old mounts, which probably reduces

the play on each thread-turn thereby reducing the amount by which the screw can

relax after having been adjusted. Those two changes improved the beam-pointing

15
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stability roughly by a factor of three, meaning that instead of having to re-adjust the

mirror-mounts and fiber-couplers every second day we only have to do it once a week.

As doubts over alignment are significantly reduced, more demanding measurements

requiring either more time or complexity are now within reach.

2.3 Computer Control

2.3.1 Concept

On the hardware side the computer control consists of three National Instruments

cards, one counting card (NI-6601), one digital output card (NI-6534) and one analog

output card (NI-6713). These cards were already part of the “old” setup and kept

unchanged in the new setup, while the software environment was completely rewritten.

As described in section 2 we trigger the experiment after the measured amount of

fluorescence of the MOT exceeds a threshold level. To measure this level automatically

the APD is connected to the counting card, which counts the number of pulses

generated over a certain time interval. When this value exceeds the required threshold

the counting card sends a trigger to the digital output card to start an experimental

cycle during which control signals are sent to the analog card, as well as frequency

generators, acousto-optic modulators and shutters. This cycle is repeated n times,

during which either an I-CCD camera integrates the spatial signal or a time-tagging

device (TimeHarp 200) measures the photon arrival time of our atomic sample. After

these repetitions the acquired data can be saved manually and the parameters for the

next run have to be changed by hand.

The new control system I developed performs the same sequence, but also allows

automatic control of the instruments by means of a communication system between

several computers, which is directly implemented in software. The National Instrument

cards, which we use to control our experiments are installed in two different computers

and a third computer is used for data acquisition. I planned and implemented a

synchronization protocol that uses the local area network to which all three computers

are connected, see figure 2.2. The new system, on top of allowing the repetition of

cycles also allows to change an arbitrary number of parameters and automatically

starts the next run. This allows fully automatic data acquisition over an arbitrarily

large parameter space, without any other manual input than defining the series of

sequences at the very beginning of the measurement.

16
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Figure 2.2.: Flowchart of the synchronization protocol of the computers when taking

data automatically. The yellow background indicates hardware and the green background

software communication.

17
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In our scenario the counting card software acts as the central communication hub

(server) to which the other cards’ software connect. After connecting on a software

level the various clients indicate that they are ready for the measurement and are

waiting for a hardware trigger. The latter is repeated until all cycles of one run have

been performed. When a run is finished the software checks if there are more runs

to be done, if so it changes the parameters for the next one and starts over again,

otherwise the measurement finishes, see figure 2.2.

In order to simplify the implementation of repetitive patterns, which was performed

by hardware connection of many pulse generators and logic gates, I split the definiton

of the sequence in two parts, in software. The first states the concrete implementation

(pattern) and the second defines the order in which these implementations (flow) are

output or even repeated, see figure 2.4. By doing so it is possible to define the full

sequence on the computer without the need of pulse-generators or logic-gates. This

way of defining a sequence also allows us to conveniently save and load everything on a

computer, which solves the repeatability issue inherent to the hardware concatenation

of pulse generators.

2.3.2 Implementation

For this size of project I preferred working with a modern, object-oriented programming

language. National Instruments directly provides libraries for Microsoft .NET and

all of our laboratory computers are running Microsoft Windows as their operating

system, so the natural choice was to use Visual C#. Microsoft provides a very feature

rich and easy to use integrated development interface (IDE) for free “Visual Studio

Community”, which also allows to implement rich graphical user interfaces. For the

data acquisition I decided to use Matlab to ease the data analysis, which is performed

in Matlab as well (chapter 2.4). In the following sections I present the graphical user

interfaces that I designed and implemented and will explain some of their features and

concepts.

Graphical User Interface Analog Card

Figure 2.3 shows one of the six patterns of the analog card, which has eight channels

(rows) and five time steps (columns). Each channel ranges from −10 V to +10 V,

but can be calibrated to any other unit by loading a comma-separated-value (CSV)

file in which the first column states the voltage and the second column states the

18
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Figure 2.3.: Showing part of the analog card’s user interface: 4 out of 8 channels with 5

time steps each

new desired unit. The first row of this file is used to change the unit in the user

interface. Afterwards any value between the minimum and maximum value defined in

this CSV-file can be used and the output is generated by linear interpolation between

the provided calibration points. Time steps can be given a name to make it easier

to remember its function, as well as a value and a duration. If two consecutive time

steps have different values, a linear ramp is calculated starting from the first value

to the second one over the duration of this step. If any more complicated ramp is

necessary, it can be loaded from a file with a series of values in CSV format. The total

duration of one pattern is given by the channel with the longest duration and the

other channels remain in their final value until the end of the pattern is reached. The

order in which the patterns are output is defined in a text box located in first tab

Graphical User Interface Digital Card

Figure 2.4 shows one out of six patterns of the digital control, which has 32 channels

(rows) and 20 time steps (columns). The time per step is defined for the full column

and it can be decided to switch each channel on/off during this time step by clicking

the corresponding box. Each time-step can be labeled with a name to state its function.

19
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Figure 2.4.: Graphical excerpt of the digital card’s user interface showing the first 12

channels with 14 time steps.

Graphical User Interface Counting Card

Input fields:

1. Binning: Defines the time over which the counting card sums the APD pulses

2. Threshold: Defines the level above which a trigger is sent to the instruments to

start an experimental run

3. Detection bins: Defines the number of times the threshold has to be exceeded

before sending a trigger.

4. Cycles: Defines how many cycles are performed.

5. Runs: Defines the number of runs for the dataset.

6. Monitoring/Measurement: In monitor mode the top chart only shows the

integrated APD signal but no triggers are sent. In Measurement mode it also

sends triggers, when the threshold is exceeded.

7. Reference Run: By activating this field an alternative threshold as well as a

different number of cycles can be defined for every second run.

8. Network: Shows the list of connected clients via network connection.

9. Frequency Generator: Sets a frequency at which triggers are sent.

10. APD Signal: Shows the temporal signal acquired from integrating the APD

pulses

11. APD Counter Histogram: Shows the histogram of the signal seen in APD

Signal.

20
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Figure 2.5.: User interface counting card.

The remaining elements are not relevant for the measurements performed in this

thesis and are not discussed here.

IEC-625-Bus/GPIB

Many of our scientific instruments support GPIB to interface them to a computer.

To be able for example to change a frequency or read out our spectrum analyzer I

installed a USB-GPIB-adapter on the computer hosting the digital output card and

integrated it into the user-interface, see figure 2.6. In this interface GPIB commands

can be freely stated and iterators can be used by writing the name of an iterator,

which are highlighted by a blue background. Sometimes we make use of an arbitrary
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Figure 2.6.: Control Panel for GPIB. On the left hand side the text box for GPIB

commands can be seen, on the right hand side the input fields for the Gaussian pulse

generation are greyed out until activated. The text in the text box with blue background

indicates the usage of an iterator.

waveform generator, which most of the time is used to output Gaussian pulses. To

make it convenient to use I implemented a special input field for Gaussian pulses,

which allows to enter the full-width-half-maximum (FWHM), amplitude and offset of

this function. Those parameters are then used to calculate the values which are output

via the arbitrary waveform generator.

Parameters/Iterators

The element in my software which allows to change parameters automatically is called

an “iterator”. As shown in figure 2.7 a list with an arbitrary amount of iterators

can be defined, each of them has a name and a ordered list of values. When doing

automated runs the system has an internal counter which determines which value

in the list has to be used for the run. The iterator can be assigned to the duration

of time steps, as output values for analog channels. It is even possible to use those

iterators to completely toggle the state of a digital output channel so that in one run

during a time step the channel is on and in the following it is off. Another place where

iterators can be used is in the “GPIB” panel, where the name of the iterator can

be written and is then highlighted by a blue background. This gives the necessary

flexibility to create sequences which acquire a whole data set automatically.
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Figure 2.7.: This shows the control element to define and load iterators.

Acquisition

In our experiments two systems are used to acquire data, either an I-CCD, which

gives us access to spatial phenomena or a time-tagging device (TimeHarp 200), which

measures the arrival time of the APD pulses with a nanosecond resolution.

In order to interface the I-CCD I made use of a freely available Matlab wrapper1

and modified it to our needs. As for the time-tagging card I wrote a wrapper from its

provided C-library to be able to use it in Matlab. This finer control over the camera

allowed me to set the exposure time to a very short value and acquire a picture for

each cycle instead of integrating over the full run. Those individual pictures are then

summed up in software, which produce a full picture as soon as the run is finished.

With this method a full picture is acquired as soon as all cycles are performed and

there is no uncertainty about the exposure time anymore. It still takes more time if

the trigger rate drops, but at all times it is guaranteed that we do not loose a cycle

due to underestimating the camera’s exposure time.

2.4 Data Analysis

In the past we had a monolithic analysis code which was written in IgorPro and

it consisted of approximately 3000 lines of code. I rewrote this analysis in Matlab

splitting the various functionalities of the original software into small comprehensi-

ble chunks. The core analysis which consists of “background subtraction”, “fitting

the camera picture” and “measuring the amount of atoms” is performed by one

function in Matlab, which returns a list of analyzed objects. Any further analysis

functions use this list as an input so to avoid doing tasks twice. In addition I defined

a file naming structure to enable automatic extraction of experimental parame-

1http://www.eng.utoledo.edu/~smolitor/download/matpvcam.zip
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ters from the file name by the analysis software. The naming pattern is defined as:

MeasurementName Parameter1 Value1Unit1 Parameter2 Value2Unit2.extension.

The analysis script then extracts those 3-tuples, each consisting of (Parameter,Value,Unit),

which are used for example to plot the measured atom number versus one of the given

parameters by just stating the parameter name in the plot function.

Besides the fact that Matlab is a very widely used language that most students

learn at some point in their curriculum, writing the analysis software in Matlab has

many advantages. The data can be saved in Matlab’s own file format, thus making

data reloading faster and easier, and allows to make use of Matlab’s extensive library

of built-in functions. Also, being able to work directly on binary data (as opposed to

the ASCII files required in IGOR Pro ) saves a significant amount of space on the hard

drive. Finally, another major difference is that the analysis results do not necessarily

need to be saved as the raw data and the scripts can be saved instead. As a result, the

storage space required for a given set of data is reduced by a factor of ten.

2.5 Conclusion

Improving the beam-pointing stability by a factor of three, grants time for more

complex measurements. This fact paired with having implemented a computer control

system that only needs human interaction to set up the measurement and then runs

without any further manual work, allowed me to perform measurements of up to 24

hours duration. The most limiting factor on our setup is now the time for which our

lasers stay locked on their frequency reference. Even for shorter measurement streaks,

not having to perform manual tasks during the measurements minimizes the total

time for a measurement, which is directly reflected in the higher signal to noise ratio

in the acquired data. Another important aspect of further experimental automation is

the freed workforce, now available for other tasks.

One major problem remains, whenever we started a new measurement streak the

number of atoms in our micro-trap might have drifted away. To obtain the required

amount of atoms was and still is a long and tedious task for which no clear rule could

be found. From time to time just this re-optimizing could take several weeks.
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Chapter 3

Coherent Transmission through cold
and dense Rubidium 87 clouds

In the field of light scattering by dense media two contradicting results were recently

published, on the one hand the work of Charles Adams’ group investigating the

transmission behaviour through a slab of hot vapour [26], on the other hand the work

done in our group looking at the light scattering of a cold atomic sample under a

90 degrees angle [25]. The Adams’ group took a macroscopic approach to describe

their work theoretically, which clearly agrees very well with the experimental results.

Both groups study the scattering behaviour of a sample by varying the density from a

dilute to a dense case, but the Adams’ group is able to model their outcome with

the Clausius-Mossotti equation whereas our group could only establish a qualitative

agreement between the microscopic theory and the experimental results.

The scattered light of a sample can be separated into two parts E = 〈E〉 + δE,

where 〈. . .〉 denotes the ensemble average and δ . . . the fluctuations (deviation from

the average). We call 〈E〉 the coherent electric field and δE the incoherent electric

field. Only the coherent electric field can be described by the macroscopic Maxwell’s

equation. In this chapter I will explain the experimental setup used to measure the

coherently transmitted light on a micron-sized atomic sample, which thus can be

described by both theories a microscopic and macroscopic one. I will introduce the

two theoretical frameworks and establish a qualitative link between the two and then

compare them systematically to the acquired data trying to resolve the contradiction

of the two publications. When striking disagreements between theory and experiments

are found, it is natural to question the rigour of the experimental method as well as

the limitations of the applied models. I will thus end this chapter with a discussion of

possible experimental and theoretical shortcomings.
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3.1 Choice of sample

A sample is considered dilute when its scattering properties are independent of the

environment of the scatterer while also maintaining a low optical density. As the

density increases (atoms per volume), the close proximity of scatterers may lead

to interactions and an effect on the scattering properties of the medium is to be

expected. In our atomic sample illuminated by a near-resonant probe, we expect

resonant dipole-dipole interactions to be significant when the distance between pairs

of scatterers is on the order of λ
2π

, with λ the transition wavelength. Expressing this

criteria in terms of mean-free path is given by kl < 1, where l is the average distance

a light wave travels before it is scatters again and k = 2π
λ

. This directly gives us a rule

of thumb for the minimum density ρ for which effects due to these interactions start

to be observed: ρ
(
λ
2π

)3 ≥ 1. In our experiments we probe the D2 transition of 87Rb at

λ0 ≈ 780 nm, which directly dictates that densities as high as 1014 atoms cm−3 have to

be reached for any influence of the above mentioned interactions to be observed.

At the same time another problem emerges: if the extinction coefficient OD =

− log( I
I0

), with I0 the input intensity and I the output intensity, is too high, the

number of photons collected is insufficient to perform any clear measurement. This

calls for a geometrically thin, but dense sample. Our experimental setup fulfils both

requirements, as the microscopic trap realised on the Aspherix apparatus has a volume

of about 2µm3 where up to 200 atoms can be trapped. Using such a small sample adds

another complexity as diffraction of the edges of the sample is no longer negligible

thus the convenient description by an extinction coefficient is strictly speaking not

possible anymore.

In addition, using a small cloud with only a few hundred atoms is also favourable

for the theoretical description in the framework of a microscopic theory where the

information of each atom need to be known. Working with many more atoms would

be impossible due to the limited computational power of available computer systems.

3.2 Brief Overview of our Experimental Setup

Figure 3.1 shows the main experiment chamber of our vacuum setup. In this chamber

are two aspherical lenses (NA = 0.5) [33] in a confocal setup. By shining a collimated

laser beam onto the first lens it is focused and forms an optical dipole trap. In our case

we use two overlapped traps: a macro-trap of 4µm at 1/e2 and a micro-trap of 1.2µm,
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Figure 3.1.: Schematic of our main experiment chamber.

which form a dimple configuration [34]. In order to maximally fill the micro-trap, we

first load the macro-trap and then funnel the atoms into the small trap [35]. This

technique allows to load up to 200 atoms into the microscopic trap and reach the

necessary density of 1014 atoms cm−3. Both traps are operated at 940 nm with a trap

depth of U0 ≈ kB × 1mK ≈ h× 20MHz and are orthogonally polarized to prevent

interference.

The dipole traps are initially filled from a Zeeman-slower loaded magneto optical

trap (MOT) (Zeeman slower not shown on figure 3.1).To apply the necessary magnetic

field for the MOT we have two coils in anti-Helmholtz configuration on the outside of

our chamber as well as three pairs of compensation coils in Helmholtz configuration

along each axis to be able to null the external field down to remaining ∼ 80mG.

The trapped atoms in the microscopic trap are imaged through one of the aspherical

lenses on a camera. Due to the fact that this system is diffraction limited we gain the

highest possible resolution of ∼ 1μm [33]. A detailed description of this setup is given

in Andreas Fuhrmanek’s PhD thesis [36].

3.3 Imaging System

A confocal lens setup (figure 3.2) is used for the preparation and the probing of

the atomic sample. A first lens (L1) focuses two 940 nm co-propagating laser beams
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Figure 3.2.: Imaging system used during this thesis. From the left the transmission probe

propagates through the cloud and is separated off the dipole-trap beam by an dichroic

mirror and is then detected by an APD or an I-CCD. In addition a fluorescence probe

beam can be used.

to produce the micro- and macro-traps and to collect the scattered light of the

atomic sample. The second lens (L2) is used to focus a probe beam which is linearly

polarized along the y-axis and counter-propagating the trap beams onto the atomic

sample to probe the transmission behaviour of the sample [37]. In addition we have a

fluorescence probe, which travels along the z-axis of figure 3.2 and is always circularly

polarized. It is used for example to measure the number of atoms in a sample. The

different wavelengths of the probe 780 nm and the trapping beams 940 nm allow us to

separate them with a dichroic plate. Afterwards the light of the probe passes through a

half-waveplate which is set so that the following polarizing beam-splitter divides light

which is linearly polarized along the y-axis 50:50 between its output terminals. One

terminal feeds the light into a single mode fibre which is connected to an avalanche

photodiode, which we use together with a time-tagging device (resolution of ∼ 150 ps)

to measure the arrival time of individual photons and the other terminal is used for an

I-CCD to spatially resolve our sample. The I-CCD system in our setup has a quantum

efficiency of ∼ 10% which is determined by the efficiency of the intensifier. The APD

(Perkin-Elmer SPCM-AQR-14) that we use has a quantum efficiency of ∼ 50%.
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Figure 3.3.: Level scheme of rubidium 87.

3.4 Rubidium 87

This experiment was designed to work with 87Rb atoms [38], which is an atomic

species that can be conveniently laser cooled to a few hundred micro-Kelvin [39]. Also,

an important feature of Rubidium is its relatively broad D2 transition with Γ0/(2π) =

6 MHz, which leads to a minute influence of Doppler-broadening kB∆ν ≈ 0.06Γ0 at

the typical sample temperature of T ∼ 120µK.

As we will see throughout this thesis being able to get rid of thermal effects seems to

be key to explore a new regime of light scattering. Figure 3.3 shows the D2 transition

of Rubidium 87 with its hyperfine and mF states, all measurements shown in this

thesis are performed using this transition.

3.5 Preparing Dense Atomic Samples

In order to prepare all atoms in the same hyperfine state, we first switch off the MOT

repumping beam, which drives the
∣∣5S1/2,F = 1

〉
↔
∣∣5P3/2,F = 2

〉
transition and

then the MOT cooling beams, while having the macro-trap on. By doing so we gather

all atoms in the lowest lying ground-state
∣∣5S1/2,F = 1

〉
, which is a dark-state for the

remaining cooling light. During this first step the density we are able to reach is limited

by light assisted collisions of the near resonant MOT light. The preparation in the

lowest ground-state is done to prevent hyperfine exchange collisions [40] while letting

the sample thermalize in the dipole trap. Indeed, thermalization in
∣∣5S1/2,F = 2

〉
would lead to a higher loss rate for atoms in the trap, because the collision of two

atoms could release the hyperfine ground state energy of h × 6.8 GHz in the form

of kinetic energy thus expelling both atoms from the trap whose depth U0 does not
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exceed h× 20 MHz. After about 100 milliseconds the micro-trap is switched on, and

fills up from the reservoir provided by the macro-trap. The latter is switched off for

the atoms of the micro-trap to thermalize again. The atoms are always probed on the∣∣5S1/2,F = 2
〉
↔
∣∣5P3/2,F = 3

〉
transition so to be able to probe this transition the

atoms need to be repumped from
∣∣5S1/2,F = 1

〉
→
∣∣5P3/2,F = 2

〉
. In order to prevent

losses, repumping into
∣∣5S1/2,F = 2

〉
only takes place briefly before the measurement.

At the end of this sequence up to 180 atoms are prepared in
∣∣5S1/2,F = 2

〉
[41].

3.6 Microscopic Traps and the Density of our Sample

With our aspherical lens we focus the far off resonant trapping beam down to

1.20(5)µm, such a low uncertainty of 5% is obtained by carefully calibrating the

magnification of our imaging system. To obtain the magnification factor MA accurately

we measured the angular displacement before and after the imaging system. The

magnification is then given by: MA = tan(ε)/ tan(ε0), with ε0 the angle between

the optical axis and the laser-beam on the object side and ε the angle between the

laser-beam and the optical axis on the image side. Knowing this allowed us to infer

the focal spot size with an uncertainty of 50 nm.

The traps have a typical depth of U0 ≈ kB × 1 mK and the temperature of our

atomic cloud of ∼ 120µK, which is measured by the standard time of flight method

[36]. We calculate the extent of our cloud at zero time of flight by following [42]:

a(P0,T ) =

√
kBT

4π2m (ν(P0))2
,

T the temperature of the cloud, P0 the power of the trap beam, kB the Boltzmann

constant, m the mass of a Rubidium atom and ν(P0) the trap frequency depending on

the trap power. This model assumes that the sample is in thermal equilibrium to deduce

the extent of the cloud, which for our sample is a fair assumption as we always let it

thermalize before performing any measurements (see sec. 3.5). Another assumption is

the harmonicity of our trap, which maybe questionable for the longitudinal dimension

which has a Lorentzian profile. The calculated root-mean-square (RMS) size of this

cloud is (a⊥, ax) = (0.2, 1.2)µm. The transverse size of the cloud is well below the

resolution limit of our imaging system working at 780 nm, and the estimate of the

cloud density clearly has to rely on the accuracy of this calculation. The only quantity

we can check experimentally is the transverse trapping frequency, which was measured
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to be within 10% of the calculated value [33]. I repeated the measurement of the

transverse trap frequency and confirmed the deviation of 10% by using a different

method described in [43, 44].

The atom number on the other hand can directly be measured. We use a camera

(PIXIS 1024) whose conversion between detected light and digital counts is extremely

linear and an intensifier (Hamamatsu C9016-22), which increases the signal to noise

ratio (SNR) to a level at which we are able to detect single photons. The linearity of

the camera allows us to easily calibrate the CCD to the amount of light scattered by a

single atom at infinite saturation and the high SNR makes it possible to measure

atom numbers from one to a few thousands.

To obtain an accurate value for the amount of atoms inside the cloud we switch off

the dipole trap to let the cloud expand. The density drops down to ∼ 1011 atoms cm−3

where the atoms can be treated as independent scatterers. The expanded cloud is

illuminated by a circularly polarized fluorescence probe beam with a saturation well

above one, 2Ω2

Γ2 = I
Isat

> 1 with Isat = 1.7 mW cm−2 and the collected light is measured

with the previously calibrated camera, which allows to directly infer the number of

atoms in the sample.

3.7 Measuring Transmission

To measure the transmission I performed an experiment during which the ambient

magnetic field is compensated down to |Bres| ≈ 80 mG. In order to measure the

transmission of the sample we send top-hat pulses of a duration of about 300 ns and

a rise time of 1 − 2 ns with a fibre-coupled Mach-Zehnder interferometer (typical

pulse shown in figure 3.4a). Such steep slopes allow the observation of the transient

and steady-state response of 87Rb, which we record with a temporal resolution of

150 ps. It is crucial to make sure that the pulse intensity is I � 0.1× Isat, as failure to

do so would not allow to compare the results to a classical dipole model, because

quantum effects such as the saturation of the scattering rate and Rabi-oscillation

have to be taken into account. While it is very important to perform many times

the same experiment to get good statistics and increase the SNR, it is unnecessary

to prepare an atomic sample for each measurement. This however is only possible

with the advances of our control system to handle complex sequences (see chapter 2)

which allow the interleaving of probe pulses with trapping pulses to keep the volume

constant. The exact number of pulses in the burst-train is determined by checking

that the transmission does not increase by more than 2% with respect to a single
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Figure 3.4.: The two different signals acquired during the measurement.

probe pulse. Staying within this limit I can send up to 1000 pulses per sample. The

transient decay was fitted by A exp(−t/τ) to see if the density has any influence of

the decay time which for a single atom is 1/Γ0 ≈ 26 ns. Surprisingly I did not find any

significant deviation from 26 ns for any atom number. As we are mainly interested in

the steady-state behaviour a duration without any temporal evolution of the scattering

response was chosen, which is shown as the grey area in figure 3.4a. The camera

acquires a spatial signal which is not temporally resolved (figure 3.4b), but as we

will see in the next section of this chapter, we can directly compare the two signals

as the contribution of the transient is very minor. As all those measurements are

performed close to the atomic resonance of the D2 transition of 87Rb they are repeated

for various detunings Δ = ω − ω0, because the response of the system depends on the

atomic polarizability

α(ω) = i
6π/(ω/c)3

1− i(2Δ/Γ)
, (3.1)

which strongly depends on the exact frequency ω close to resonance.
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3.7.1 The Signals

As we can obtain measurements from the APD and CCD for the same experiment we

need to understand in detail what each of those two devices detect. The measured

intensity Itot consists of two interfering fields, the laser field EL and the scattered field

of the sample Esc: Itot = |E|2 = |EL + Esc|2. Due to the fact that the light reaching

the APD is first coupled into a single-mode fibre the APD does not directly measure

Itot, but the field E which is a projection of E onto the fibre mode g:

E =

∫
E(r,ω) · g∗(r) dS, (3.2)

where dS denotes a differential area element perpendicular to the optical axis. As

we are interested in the transmission, this measured signal is normalized by the field

amplitude in the absence of atoms. The fibre connected to the APD is identical to the

one the probe light is coming from so it can be assumed that g ∝ EL, which leads to:

S(ω) =
E(ω)

EL(ω)
=

∫
E(r,ω) · E∗L(r) dS∫
|EL(r)|2 dS

. (3.3)

In comparison to the CCD which measures all incoming photons no matter in which

spatial mode they are in:

|T (ω)|2 =

∫
|E(r,ω)|2 dS∫
|EL(r)|2 dS

(3.4)

This means that whenever our sample distorts the incident light’s spatial mode the

transmission measured by the APD will be lower in amplitude than on the CCD,

|S(ω)|2 ≤ |T (ω)|2, for any given atom number.

3.7.2 The Results

If we now carry out the analysis for the temporal and spatial signal by normalizing

the atomic response to the reference signal we obtain the figures 3.5 (a) and (b),

respectively. Following [17] the measured data is fitted by:

|S(ω)|2 = |1− A

1− 2iω−ωc

Γc

|2, |T (ω)|2 = |1− A′

1− 2iω−ω
′
c

Γ′c

|2, (3.5)
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by assuming a Lorentzian line-shape and using the shift ωc, the linewidth Γc and the

amplitude A as free fit parameters.
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(a) Steady state frequency response measured

by the APD.
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(b) Transmission measured by the CCD.

Figure 3.5.: Comparison of the results acquired with the APD and CCD. The data points

are obtained by measurement and the solid lines are fits by F (ω). The colors indicate

different atom numbers: blue = 10, orange = 83, green = 180

To observe the density dependence of the scattering response I acquired seven

spectra sampling the accessible range of atoms from 10− 180 on this experiment. As it

is a difficult task to set a precise atom number for a measurement the span of atoms is

not equally sampled, and the total acquisition time amounts to 30 hours, not taking the

preparation time of the experimental sequence into account. From the fit of S(ω) and
T (ω) the amplitude A(N), shift Δc(N) and linewidth Γc(N) are extracted and shown

in figure 3.6. The amplitude data was fitted with A(N) = 1−√a+ (1− a) exp (−bN)

and the shift Δc and width Γc with a linear fit of type f(N) = a+ bN , with a and b

as free fit parameters. The results for the fit parameters are shown in figure 3.6 on the

right hand side next to the corresponding plot. As expected Ac,CCD(N) < Ac,APD(N),

which confirms the simple fact that the dipole radiation of an atom is not at all a

TEM00 and couples less into the single-mode fibre of the APD than the reference

beam. It is rather puzzling that after shifting Δc,APD so that for zero atoms there is

zero shift, the result for Δc,CCD has the very same slope but a constant offset to the

result of the CCD. No plausible explanation of this result has been proposed so far.
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Figure 3.6.: Plots of the data points together with the fitted function on the left, on the

right tables with the according fit parameters. In all three plots circles refer to the APD

data and squares to the CCD data, the solid and dashed lines are fits, respectively. (a)

shows the amplitude parameter of the fit function F , (b) shows the shift of the central

∆c = ωc − ω0, (c) Full width at half maximum Γc

3.8 Theoretical Models

As described in the introduction of this chapter, these measurements were performed

to bridge the gap between two theoretical models that were used in prior experiments:

a microscopic theory [25] and the other one a macroscopic theory [45].

A microscopic scattering model requires to have the individual knowledge about each

constituent of the bulk sample. This means that we have to know the dipole-moment

d of each particle. Knowing all of them allows us to calculate the scattering properties

for the full sample by interfering their scattered field with the laser field.

On the contrary a macroscopic model assigns one parameter to the bulk sample,

namely the susceptibility χ and only this one quantity is needed to describe the

scattering. By restricting the probe beam intensity well below saturation, a classical

description of the dipoles is sufficient as there is maximally one excitation in the

sample. This allows us to ignore quantum effects such as saturating the transition [46].

In the following subsections I will first introduce the concept of a microscopic

theory and how I implemented it. I will then outline the textbook derivation of the

macroscopic model to clarify its domain of application. As a last step I will compare
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the two theories and explain their differences on a qualitative level.

3.8.1 Microscopic Theory

As we are taking the viewpoint of a microscopic model our goal is to be able to

calculate the dipole-moment d of each atom in the sample, which in turn allows us to

calculate the scattering pattern of the full sample. Illuminating our atomic cloud with

low intensity light I
Isat
� 0.1 we can consider the atoms to be classical dipoles, which

respond linearly to the driving field. The induced dipole moment d is given by

d = α ε0 Edriving, (3.6)

where α is the atomic polarizability of an individual scatterer, Edriving is the field

which drives the dipole transition and ε0 is the vacuum permittivity. For the simple

case of a dilute medium the driving field is equivalent to the incident field, which for

us would just be the probe laser. When the medium becomes denser, the effect of

the medium as part of the driving field can no longer be neglected, and the latter is

thus the sum of the laser field and all fields re-radiated by all other scatterers to the

position of the jth scatterer:

Edriving = Elaser +
∑
j 6=l

Ej→l (3.7)

The interaction between two such dipoles is described with Vdd = −1
2
d′

1 · E∗d2
and

the resulting interaction potential is according to [47]:

Vdd = −3~Γ

4
eikr

[(
1

(kr)3
− i

(kr)2

)
(3 cos2 θ − 1) +

sin2 θ

kr

]
(3.8)

In steady-state this leads to a set of coupled equations, the so-called coupled-dipole

equation:

(∆ + i
Γ

2
)dj = Ω +

∑
l 6=j

[Vlj] dl, (3.9)

with Ω the Rabi-frequency and Γ the linewidth, l and j refer to the lth and jth dipole

so that the matrix Vlj expresses the interaction between all pairs of dipoles.

So far this model would be correct for a two-level system, but due to the fact that the

atoms are not prepared in a pure mj state the full manifold of the
∣∣5S1/2,F = 2

〉
↔
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Figure 3.7.: Illustration of the microscopic theory.

∣∣5P3/2,F = 3
〉
transition has to be taken into account (figure 3.7). Each transition has

to be weighted with its according Clebsch-Gordan coefficient, which depends on the

polarization which couples the two mj states. With the help of our collaborators from

Southampton we included the effect of the internal structure [25]:

(Δ + iΓ/2)Pjα = Ωjα +
∑
l �=j

∑
β

C(β)
ml

C(α)
mj

Vlβ
jα(r)P lβ. (3.10)

We substituted dj in equation (3.9) by dj = D∑
σ

êσC
(σ)
mj

P jσ, where σ = ±1, 0

respectively α, β denotes the polarization of the transition. This relates the amplitude

of the induced dipole moment of the jth atom from state |g,mj〉 → |e,mj + σ〉, D
being the reduced dipole matrix element, Pjσ the atomic coherence and C

(σ)
mj the

according Clebsch-Gordan coefficient. An illustration of this 12-level model is given in

figure 3.7. In this model we consider each atom as a anisotropic classical dipole, thereby

neglecting any optical pumping effects as well as Raman scattering and restricting

each dipole to a manifold of one ground state and three excited states, this assumption

should be true for I → 0. As this model now is fully vectorial in terms of the light

field the simple expression (3.8) for Vdd has to be generalized, which leads to:

Vlβ
jα = − 3�Γ

4(kr)3

[
pαβ(ikr − 1) + qαβ(kr)

2
]
eikr, (3.11)

with pαβ = δαβ − 3(ê∗α · r̂)(êβ · r̂) and qαβ = δαβ − (ê∗α · r̂)(êβ · r̂), where r̂ is the

interatomic separation vector between two scatterers and êσ is the unit polarization

vector.
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Implementation

I developed a Matlab code to simulate the interaction between light and atoms using

the theoretical description shown above. In order to evaluate the influence of the

model on the outcome, I will show a comparison between the simulation of a 2-level

system and a more realistic 12-level system.

In a first step we fix the number of atoms and pick their positions from a 3D normal

distribution, the position picking is repeated typically a hundred times, to provide a

statistically meaningful sampling of the cloud. For the 12-level system we also randomly

pick the initial mj state of the jth dipole, which fixes the transition strength. The

statistical distribution of the initial state depends on how our experimental sample is

prepared, and for now we pick from a uniform distribution, meaning that all mj states

have the same likelihood of occurrence. We then calculate the interaction potential

for a fixed position and mj set then solve the linear equation system for a chosen

detuning. The solution yields dj or Pjα, which we then use to propagate the scattered

light to our detector and interfere it with the laser light. The laser field is described

by a paraxial beam approximation. Then we repeat the solving of this interaction

potential for all the other detunings we are interested in, pick new positions and repeat

the full sequence until all detunings have been calculated for all 100 position sets. My

code for this simulation is available online1. The typical runtime of such a simulation

for 200 atoms and a spectrum spanning over roughly 12Γ with a sampling of 0.1Γ

takes less than 10 minutes on a quadcore-i5 Intel desktop computer.

Special care was taken when we interfered the laser field with the sum of the

scattered field on the detector, because due to the high numerical aperture used on our

experiment of NA = 0.5 we are on the edge of what can be described by the paraxial

beam approximation[37]. We checked our numerical results for the case of a single

atom pinned to the origin (focal spot) of the laser field and observed an asymmetry

in the calculated spectrum which came from numerical errors in the calculation of

the relative phase between the scattered light of the atom and the driving field. To

compensate for this effect we changed the expression for the Gaussian beam in the far

field to:

ELaserFar(ρ, z) =
E0

w(z)
e−ρ

2/w(z)2 ei(k
√

z2+ρ2−π/2), (3.12)

with w(z) the beam width at position z. The substitution exchanges the phase factor

eikz by eik
√

z2+ρ2 to take into account that for high numerical aperture the wavefront

is still curved and not flat.

1http://github.com/sjennewein/CoupledDipoles
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Figure 3.8.: Comparison between the response of an ensemble made out of 2 level or 12

level atoms (Microscopic theory)

3.8.2 Macroscopic Theory

This approach now relies on the expression of the bulk dielectric constant of the

material ε, and how it is related to the atomic polarizability α [45]:

ε(ω) = 1 + ρα(ω), (3.13)

with ρ the density. α is a microscopic quantity as it can be evaluated for each individual

atom in the medium, whereas the dielectric constant is a bulk property of the whole

medium. The equation (3.13) only describes dilute media and it was shown that for

dense media a correction term has to be introduced. As in the previous chapter the

question is how do all the other atoms in the medium affect the local response in a

part of the medium. An interesting and elegant approach can be found in [27], and

goes as follows: take a piece of dielectric medium and polarize it. Then freeze the

polarization and cut out a sphere of the middle of the sample, which leads to a hole

and a sphere. Due to the superposition principle of electrodynamics the total field

should be Etot = Ehole + Esphere. The field of a uniformly polarized sphere amounts

to Esphere = − P
3ε0

and therefore Ehole = Etot +
P
3ε0

. In any dense medium the field

experienced by an atom placed at the position of the hole is therefore Ehole, because

the neighbouring scatterers are so close that their radiated field will influence other

scatterers locally. This is the reason why this correction is called the local field

correction. This correction leads to a new relation between the atomic polarizability
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Chapter 3: Coherent Transmission through cold and dense Rubidium 87 clouds

and the susceptibility, which for dense media looks like:

χ = ε− 1 =
ρα

1− (ρα/3)
(3.14)

This new relation is called the Clausius-Mosotti or Lorentz-Lorenz equation. It describes

very well the scattering properties of dense thermal vapours as shown by the Adams’

group [26] and is the only feasible approach for large atom number.

Implementation
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Figure 3.9.: Comparison between the 12-level system of the microscopic theory (dashed

line) and the macroscopic theory (solid lines). The different colours indicate the atom

number in the sample: blue = 1, orange = 10, green = 83, red any= 180

The concrete implementation for this theory framework was done by one of our

collaborators Mondher Besbes from the group of Jean-Jacques Greffet. They developed

a finite element Maxwell-solver, which allows them to simulate any geometry in a

continuous media approach. In our concrete case they used α(ω) = i 7
15

6π
k3

1
1−i(2Δ/Γ)

,

with 7
15

=
2∑

j=−2

1∑
l=−1

Cj
l , which is the polarizability of a single rubidium 87 atom taking

the internal structure into account, by assuming equal population in the mj states of

the
∣∣5S1/2,F = 2

〉
and calculating the average polarizability [48]. The cloud geometry

is then parametrized with the RMS width from the experiment and the inhomogeneous

density is taken into account by ρ(r). This leads to χ(r,ω) with which the electric

field scattered in the far field by the cloud illuminated by the Gaussian laser beam is
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calculated. Finally we compare the result of this theory with the twelve level result

from the microscopic theory in figure 3.9. As can be seen for low atom number (density)

the two theories are very similar, but when the atom number is increased the two

theories start deviating from one another. The macroscopic theory clearly shows a

bimodal distribution whereas the microscopic does not and rather broadens faster.

3.8.3 Discrepancy

Figure 3.9 shows a comparison between the results yielded by the two theories. It is

quite clear that the larger the density, the larger the discrepancy. This may come as

a surprise, but it was shown [20, 21, 49–52] that certain scattering terms which are

included in the microscopic description are neglected in the macroscopic approach.

Despite the fact that the macroscopic theory does not take all scattering events into

account it has produced excellent results in the past for gaseous media [27, 45, 53],

while being easier and faster to use than the microscopic approach.

Recurrent ScatteringMultiple Scattering

Figure 3.10.: Illustration of multiple and recurrent scattering events.

I will give now a qualitative understanding of what causes the discrepancy between

the two theories, but for more detailed reads I advice the documents cited above. The

difference between those two theories can be better understood when we categorize the

type of scattering events that can happen into two groups, namely multiple scattering

and recurrent scattering. Multiple scattering [16, 50, 54, 55] is characterized by the
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Chapter 3: Coherent Transmission through cold and dense Rubidium 87 clouds

fact that each scatterer in the sample is at most involved in one scattering process. In

contrast recurrent scattering [51, 56] means that the scatterers involved participate

more than once to the scattering process (illustration on figure 3.10). Those two groups

have a wildly different scaling behaviour: multiple scattering can simply be increased

by increasing the medium size. As a wave is travelling through the larger object it has

to pass more dipoles which increases the likelihood for scattering events. However this

would not increase the number of events that contribute to recurrent scattering for a

sample made out of identical particles with polarizability α this type of scattering

scales as the number of pairs of atoms (ρα)2 in the volume of size α. This contribution

only becomes important as ρα ∼ 1 and it has been shown that these scattering events

are ignored in the macroscopic theory. The exact contribution of recurrent scattering

has been studied in great detail in [21, 50, 57–59] and it has been shown that in the

presence of recurrent scattering and density approaching ρ/k3 . 1 the susceptibility

χ(ω) becomes

χ(ω) =
ρα(ω)

1− ρα(ω)(1
3

+ β(ω))
, (3.15)

where β(ω) is the term coming from recurrent scattering.

Introducing any sort of inhomogeneous broadening as for example the Doppler

effect in hot vapour cells [26] the resonant frequencies of the j-dipoles are spread

over a frequency range of ∆ωD thus reducing the average dipole moment and thereby

reducing β by a factor Γ/(Γ + ωD) [49]. This explains why the classical Lorentz-Lorenz

formula describes all cases where inhomogeneous broadening is dominant so well.

3.9 Theory versus Experiment

The comparison in figure 3.11 shows clearly that neither the macroscopic simulations,

as expected from the discussions before, nor the microscopic simulations quantitatively

describe our experiment. Qualitatively the increase and the plateauing of the amplitude

are described by the two theories, the absolute value never matches the experiment.

Also the two theories show the emergence of a second resonance, which is most likely

due to the shape of our sample. In appendix A the response of such an atomic cloud is

shown changing from an ellipsoid with an aspect ratio of 1:6 to a sphere. One of the

shapes that does not influence the response and for which a simple analytic formula

can be derived is a slab geometry, but for our apparatus it was not feasible to change

to this geometry. Surprisingly enough this shape-dependent resonance never shows

up in the actual measurements as the data is well described by a single Lorentzian
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Figure 3.11.: Comparison of the macroscopic model (dotted line), microscopic twelve

level theory (dashed line) and the fit result of the data (solid line). The different colours

indicate the atom number: blue = 10, orange = 63, green = 110, red = 180

function.

The emergence of a second peak makes the comparison in linewidth and shift of the

peak(s) between experiment and theory difficult. Figure 3.12 shows a comparison of

the variation of the linewidth, shift [60, 61] and amplitude as a function of the atom

number. To be able to compare the similarities and differences more quantitatively local

maxima are extracted numerically from the simulated curve to track the two peaks.

The width was estimated from the FWHM taken with respect to the global maximum

and plotted versus the atom number in figure 3.12. The kinks of the line corresponding

to the macroscopic theory result from the finite sampling of the simulation. The

FWHM curve below one for low atom numbers is also a result of the finite sampling.

These diagrams illustrate nicely that the overall trends are reproduced in the sense

that all slopes have the same sign but in quantitative terms the theories do not match

the experiment.
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microscopic theory (blue), macroscopic theory (green), the dashed line visualizes the

emergence of the second peak in the macroscopic theory. (a) Amplitude, (b) shift of peak,

(c) Full width at half maximum

3.10 Remaining Unknowns

When an experiment is not at all described by the well established existing theory

it is obvious to ask oneself what could have gone wrong. Several candidates for the

discrepancies may be found:

� Aligning a probe beam on to an atomic cloud, which is smaller than the

wavelength in its transverse extended is a hard task. Could some frequency shift

be introduced by misalignment?

� Obtaining the cloud size relies solely on a calculation under certain assumptions,

how much can we trust this value?

� None of the models used to describe the atomic response take motional effects

into account. How much does the finite temperature and the force introduced by

the dipole-dipole interaction skew the result?

� Modelling the full internal structure of Rubidium 87 is very challenging, we did
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our best to take all terms into account. Have we missed something?

The first point of this list will be clarified in the next section, the second and third

point will be discussed in the conclusion chapter 6 and for the solution of the internal

structure of Rubidium 87 see chapter 5.

3.11 Imperfect Alignment of the Microscopic Sample with respect to

the Probe Laser
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(b) Transverse displacement of the atomic cloud

with respect to the center of the probe beam.

Figure 3.13.: Checking the influence of imperfect probe beam alignment

As the focal spot size of the probe is only 1.20(5)μm and the cloud size (a⊥, az) =

(0.2, 1.2)μm it is not a trivial task to align the probe beam so that the cloud is exactly

in the focal plane and the probe beam hits the cloud right on axis. I simulated the

longitudinal and transverse displacement of the cloud with respect to the focal plane

of the lens (L2) to get some insight into the effect of misalignment on the response of

the sample. In figure 3.13a the atomic sample was placed one Rayleigh range zR before

and after the focal plane as well as in the focal plane itself. The curves corresponding

to the displaced sample show a strong asymmetry. This asymmetry can be explained

by introducing an additional phase factor, which is coming from the Gouy phase [62]

Ψ(z0) of the probe laser. This phase evolves as Ψ(z0) = − arctan(z0/zR), zR being

the Rayleigh-range, which we add as a factor to the previous transfer function (3.5)

leading to:

SGouy(ω) = 1− A

1− 2iω−ωc

Γc

eiΨ(z0). (3.16)
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This allows us to extract the acquired phase from the measurement and convert

it to a displacement. Due to the fact that the fiber output coupler of the probe

beam is mounted on a translation stage (figure 3.2) with micrometer precision we

can directly compare the results from the fit to the measured displacement. For this

reason the focal spot was moved manually by 3.6(5)µm and by fitting SGouy(ω) to

a spectrum before and after the movement and extracting ∆z0 a displacement of

2.0(6)µm was confirmed. I also confirmed that this asymmetry is constant for all

atom numbers as expected for a geometrical effect. If it had been a lensing effect of

the atomic sample as claimed in [63] this effect would be atom-number dependent,

which was not experimentally observed. Using the Gouy phase for alignment as well

as interferometrically measuring the size of a nano object is a well established practice

in the field of microscopy with nano-particles [64, 65]

In figure 3.13b the cloud was moved transversally to the probe beam in the

simulation. This only results in a reduction of contrast, but no additional shift or

change in linewidth can be observed, either. Clearly no alignment imperfection would

introduce any additional shift or broadening of the observed spectra. The transverse

misalignment decreasing the measured amplitude could have let to a constant offset in

the observed amplitude.

3.12 Depolarization due to Multiple Scattering

As discussed in the introduction of this chapter the total scattered light of a sample is

made out of a coherent and incoherent contribution, the macroscopic Maxwell equation

can only be applied for the coherent scattering, which maintains the polarization of

the incident field. In this section I investigate if our system is truly dominated by

coherent scattering as the multiple scattering can depolarize the probe light [51, 66].

To measure the polarization state of the transmitted light I use the same scheme as

described in section 3.7, but this time, keeping the number of atoms constant at 140

atoms and instead turn the half-waveplate in front of the polarizing beam splitter

(figure 3.2) so to measure spectra for different linear polarizations. Fully polarized

light follows Malus’ law: I = I0 cos2 θ, I0 being the incident light power and θ the

angle of the analyser. As for completely depolarized light I
I0

= 1
2

because the light

would be composed of a mixture of linear polarizations at all angles and the average

value of sin2 θ amounts to one half. Figure 3.14 shows the detected light by the APD

for different analyzer angles with and without an atomic sample in the beam path,

normalized to the maximum of the reference signal. The values shown for the atomic

46



3.12 Depolarization due to Multiple Scattering

−20 0 20 40 60 80 100

Analyzer Angle [◦]

0.0

0.2

0.4

0.6

0.8

1.0

ar
b
.

Figure 3.14.: Measured light versus analyzer angle. The zero is set to the case where

polarizer and analyzer are parallel. The blue marker shows the reference without atoms and

the orange marker the modification due to the presence of atoms, the solid lines are fits

respectively.

signal are taken very close to resonance so to see the largest effect.

The contrast C = xmax−xmin

xmax+xmin
of those two curves is almost the same, for the reference

curve I obtain Cref = 0.97 and for the signal with atoms Catoms = 0.96. Both

measurement series are also very well fitted by Malus’ law, these two facts indicate

that no depolarization takes place for the light transmitted through the samples.

Those spectra were taken while the sample was not perfectly placed in the focal

plane, so they are fitted with equation (3.16) to account for the Gouy phase. The

obtained fit parameter are plotted versus the analyzer angle in figure 3.15. The data

shown was acquired over the course of several days and in random order so to avoid

any systematic drifts, each day the spectrum at −23◦ was taken again to serve as a

reference. Overall no trend can be observed from the amplitude, peak shift or Gouy

phase, but the linewidth, which shows a surprising dispersive behaviour at the analyzer

position of 43◦. This is the angle for which the analyzer is orthogonal to the probe

light polarization as can be seen from figure 3.14. I checked numerically that the

distortion related to the Gouy phase does not have any influence on the extracted

linewidth on an experimentally relevant level of 10−3. It can also be ruled out that it

is an odd effect of the polarizing beam splitter, as no trace of modification can be

found on the reference measurement. No plausible explanation of this result has been

proposed so far.
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Figure 3.15.: Showing the four fit results plotted against the analyzer angle. Top left

(green) amplitude, top right (brown) peak shift, bottom left (red) linewidth, bottom right
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3.13 Conclusion

In this chapter we have seen the transmission behaviour of dense clouds of Rubidium

87 probed at B = 80mG without a mF state preparation by a linearly polarized probe

light close to resonance of the D2 transition. Resulting from that are a saturating

behaviour of the transmitted light amplitude as well as a very small line shift of up

to 0.3Γ and a broadening of the linewidth of up to ∼ 3Γ. The transmitted light has

the same polarization as the incident beam and is not depolarized due to multiple

scattering. The trends are reproduced by the available scattering theory but surprisingly

the simulated values never match the experimental results.

We have also seen where the differences in the two applied theories lie and why

any system with inhomogeneous broadening (e.g. hot vapour cells) is well described

by a macroscopic model. The microscopic approach, most suited to our small cold

atomic sample, in spite of its completeness, still seems to be insufficient to describe

the scattering properties of cold dense samples.
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Chapter 4
Acquired Phase by passing through
a dense sample

As the transmission experiment described in the previous chapter is governed by

interference between the probe light and the re-emitted light from the sample, it is key

for the full understanding of this process to not only study the effect of scattering on

the amplitude of the probe pulse, but also the phase shift that scattering induces. It

is indeed the knowledge of both which permits a full description of the interference

process.

I will show how the phase imprint of the cloud of atoms can be retrieved from a

measurement of the group delay of a Gaussian shaped pulse I will then establish a

self-consistent link with the previous chapter by describing my system by a linear

transfer function.

4.1 Experimental Setup

The experimental setup required to measure the group delay from which the phase

shift can be inferred is absolutely identical to that described in the previous chapter 3.

In order to measure the group delay, an accurate definition of the pulse arrival time

must be established. For this reason I exchanged the top-hat pulse by Gaussian shaped

one, using a Gaussian pulse defines a peak which is used to accurately infer the arrival

time. The width of the Gaussian pulse IGauss(t) = A exp(−t2/(2σ2
I )) is σI = 25 ns and

the peak intensity A was kept well below 0.1× Isat. The measured signals are shown

for two different detunings in figure 4.3.

4.2 Group Delay & Phase Shift

A common way to measure the phase imprint is by splitting the beam and passing

one part through a medium and afterwards interfering the two beams to measure
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the acquired relative phase shift [17, 67–69]. Achieving the interferometric stability

required for such fine measurements is challenging. It is however possible to work

around this constraint by establishing the relationship between phase shift and group

delay.

For any dispersive medium [70]:

τ(ω) =
dφ

dω
, (4.1)

τ being the group delay, which can be measured easily provided the arrival time of

the pulse is well defined. By propagating through a certain thickness of material the
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Figure 4.1.: Exemplaric illustration of refractive index n and the corresponding susceptibility

χI and group index ng of an absorptive medium.

measured group delay also gives access to the group velocity vg:

vg =
l

τ
=

c

ng(ω)
=

c

n(ω) + ω dn(ω)
dω

, (4.2)

ng the group index, l the thickness of the medium, ω the angular frequency and c the

speed of light. (For this setup we have to be cautious with stating a velocity as the

probed sample has an ellipsoidal shape and thus not a constant length l.)

Due to the fact that around a resonance the refractive index varies significantly with
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frequency (see figure 4.1) it is possible that the group velocity is positive as well as

negative [71–73]. Those two scenarios are called fast light τ < 0 and slow light τ > 0,

the first one being a pulse advancement and the second a delay with respect to the

vacuum case. One of the interesting questions to ask is now what can the maximal

speed up or retardation be. In [31, 32, 74] two groups have derived a criterion for

the maximum fraction pulse advance to be τ
∆t
≤ 2 with τ the advancement of the

pulse and ∆t the width of the pulse. They reach this conclusion by comparing the

advancement of the pulse, which varies linearly in sample thickness with the absorption

of the material. The absorption follows the Beer-Lambert law and is exponential with

sample thickness. The exact reasoning to reach the value of 2 is quite intricate and is

best understood by reading the cited papers.

4.3 Transfer Function

As the refractive index of a material is given by n = c
v

it only depends on the speed of

light c and the phase velocity in the medium v and is therefore geometry independent.

As we are working with a sample which has the shape of an ellipsoid it is not unlikely

that the results are influenced by an unknown geometrical factor. For this reason we

describe the sample by a linear transfer function S(ω) = 1− A
1−2iω−ωc

Γc

, which is not

the refractive index for a slab:

Eout(t) =
1

2π

∞∫
−∞

S(ω)EL(ω)e−iωtdω, (4.3)

with S(ω) from (3.5) and the Fourier transform of the incoming laser field:

EL(ω) =
σE√

1 + iβσ2
E

e−(ω−ωL)2σ2
E/(2(1+2iβσ2

E)). (4.4)

For the free fit parameters A(N), ∆c,APD(N), Γc,APD(N) of S(ω) and σE =
√

2σI we

use the functional forms from section 3.7.2 measured in steady-state. Conceptually the

refractive index is a form of linear transfer function, but as stated before the refractive

index is shape independent whereas in the transfer function used here the influence of

the shape of the sample might be included.

As we will see in the measurements section, the dependence of the delay with detuning

exhibits an asymmetric behaviour. Such asymmetric behaviour could be explained

by a chirp of the probe pulse, which was confirmed by a piecewise measurement of
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Chapter 4: Acquired Phase by passing through a dense sample

its instantaneous frequency. It was therefore necessary to introduce an additional

parameter, β, which allowed to account for this chirp.

4.4 Measuring the Chirp
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Figure 4.2.: The left plot shows the temporal interference signal of a pulse with a Gaussian

envelope and a constant beam from the same laser source. On the right the orange crosses

show the extracted local frequency corresponding to the pulse on the left. The green solid

line is a linear fit to extract the slope of the frequency chirp.

For the pulse length of σI = 25 ns I measured a chirp of β = 37 kHz ns−1 which

integrated over the pulse length and compared to the carrier frequency of 200MHz is

an effect of ∼ 0.5%. To measure such a minute chirp I split the beam before the AOM,

which modulates the Gaussian pulse on to the laser light and afterwards superimposed

the two. The interfering light is guided to a fast photodiode with a bandwidth of

∼ 12GHz, the photodiode signal is recorded with a fast oscilloscope. To reliably

extract the chirp I first fitted the pulse with the function

P (t) = y0 + αe
− (t−t0)

2

2σ2
p sin(2πft+ φ) + βe

− (t−t0)
2

σ2
p (4.5)

to fix all parameters (y0, t0, σp,φ), but the frequency f for a second analysis run.

Afterwards I split the pulse into ten time windows of equal length and fitted each of

them with the function (4.5) fixing all free parameters to the values from the first run

but the frequency, so as to extract the local frequency. A linear chirp is assumed and

by fitting a linear function to the previous results the slope is extract, see figure 4.2.

The extracted chirp with this method is β = 37 kHz ns−1 for a pulse with σ = 25 ns.
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4.5 Measurement

As we will see in the following section this leads to a very good agreement between

the model and the data. The chirp itself originates from the AOM driver, which was

thought of being the only device in our group that is capable of handling such fast

amplitude modulation, but as we have seen it does not properly. The bandwidth

requirements for such an amplitude modulation are very hard to achieve as they range

from tens of MHz to almost DC, as otherwise either the pulse is distorted or kinks in

the wing of the Gaussian can be observed.

4.5 Measurement
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Figure 4.3.: Comparison between the Gaussian pulse with (yellow) and without atoms

(purple), as well as the calculated one (red) using (4.3) for 170 atoms. On the left for

Δ = −0.7Γ and on the right Δ = 1.8Γ. The vertical dashed lines indicate the peak of the

measured signal corresponding to their colour.

Figure 4.3 shows the measured Gaussian pulse for two detunings, illustrating the

two phenomena of fast and slow light. What can be seen in this figure is that for

two different detunings the response of the atomic cloud can arrive before or after

the unperturbed signal on the detector. This seems as if signals could be sped up by

passing through an atomic sample at a frequency close to resonance. It was shown

many times that this is not the case as it would violate causality as we know it [75, 76].

This process should not be thought of as shrinking the original signal and moving it to

the new position with a sample in place, but rather as cutting the new envelope out of

the old one. Ultimately this process is limited by the time it takes to polarize dielectric

matter, which is the cause of the delayed response. This directly shows that this effect

of increase and decrease in velocity (we will focus on the increase as it is the only one
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Chapter 4: Acquired Phase by passing through a dense sample

that conflicts with causality) directly comes together with a reduction in amplitude. In

fact the quantity that matters to causality is the information velocity vinfo which at all

times has to be smaller than the speed of light. Whereas the quantity we are actually

measuring is the group delay τ from which we infer the group velocity vg. The group

velocity in fact can take values smaller and larger than the speed of light [75, 77, 78].

So by cutting out the smaller envelope out of the envelope of the unperturbed signal

also comes a loss of information, due to the fact that the new signal might be zero

or close to zero in regions where the original pulse still has information encoded. It

turns out to be sufficient to not break causality at any time as a retransmission would

be needed, which decreases the information speed sufficiently to not conflict with

causality.
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Figure 4.4.: Measurement results for 170 atoms: (a) shows the measured delay for various

detunings (b) shows width change normalized to the incident pulse length (c) shows the

magnitude. All solid lines are calculated without any free parameter using (4.3). The

asymmetry in the delay and width comes from the chirp in the probe light.

In the experiments I measured these signals for 14 detunings and for a total of

seven different numbers of atoms in the sample. Fitting the transmitted pulses by a

Gaussian G(t) = B exp[−(t− τ)2/(2Δt2)] and thereby extracting a set of parameters

consisting of the amplitude B, the delay τ and the width Δt. In figure 4.4 I only show

the result for one atom number the remaining results can be found in appendix B.

The dashed red line on the same figure is calculated with equation (3.5) and the free

54
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parameter in this equation are determined by the values obtained in chapter 3. As we

can see this model fits very well the measured data and it is a fair assumption to

fit the data in chapter 3 by a complex function. Using a complex function to fit a

steady-state amplitude signal allows to extract the phase imprint, too, but might have

been a bold assumption. I want to emphasize once more that the observed asymmetry

in figure 4.4 is solely due to the imperfect probe light which is chirped in frequency.

As described before the thickness of the material divided by the group delay defines

the group velocity vg. In our case it would be awkward to talk about a thickness as

the sample is ellipsoidal and thus does not have a fixed thickness. To circumvent this

problem I am going to calculate the following parameters for a fictive slab of thickness

L =
√

2πLz = 3µm with Lz = 1.2µm the RMS size of the ellipsoid. The length L

together with the delay τ = −10 ns leads to a velocity of vg = −300 m/s [79] and a

group index of |ng| = 106. Another way of looking at it is the pulse compression which

is given by 1/|ng|. One of the σI = 25 ns pulses has a length of c ·σI = 7.5 m in vacuum

but is compressed inside the medium down to 7.5µm. This means that the atomic

cloud does not fully store the pulse but rather acts as a very efficient delay line. The

quantities stated so far have outstandingly high values and are neighbouring results

that have been so far only achieved in electro-magnetically induced transparency

situations [67].

With such remarkable delays of −10 ns while still having 20% transmission the

fractional advance amounts to τ/∆t ≈ 0.4. In the light of the findings of the group of

Charles Adams [24], where Gaussian shaped light pulses are send through a hot atomic

vapour, this comes as much of a surprise as they extrapolate from their measurement

a fractional advancement of 0.55 at 1% transmission level. If we perform the same

extrapolation (again for the imaginary slab of constant density) using the Beer-Lambert

law to calculate how thick the sample needs to be to only have 1% transmission

and then use this value to calculate the pulse advance, which is linear with sample

thickness we obtain that for a sample of 6µm a fractional pulse advancement of 2.

The extrapolation using the Beer-Lambert law (e−χ
′′kl) might be a bit dodgy as it is

only valid for media which are dominated by single scattering events, which might not

be the case here. But even if it would not reach 2, it is still the most promising system

for testing such extreme pulse advancement.
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Chapter 4: Acquired Phase by passing through a dense sample

4.6 Maximum phase and delay

By having shown that the transfer function approach describes our system very well

we can deduce the largest phase imprint, which occurs for 180 atoms to be on the

order of one radian (figure 4.5). The maximum group delay is obtained by deriving

S(ω) with respect to ω leading to:

dS
dω

= τmax(N) = − 2

Γc(N)

A(N)

1− A(N)
, (4.6)

with A(N) and Γc taken from the previous chapter. The calculated value (purple)

shown in figure 4.5 indicates larger delays than what was measured experimentally.

Having a finite pulse length of 25 ns leads to a certain frequency spread, which is not

taken into account in the simple derivation (4.6). For this reason I simulated the pulse

propagation for pulses of 200 ns (dashed yellow), which reduces the frequency spread

of a pulse and leads to a very good agreement.

0 200 400 600 800 1000

Atoms

−30

−25

−20

−15

−10

−5

0

τ
[n
s]

−40 −20 0 20 40

Detuning Δ− Δc [MHz]

0.0

0.2

0.4

0.6

0.8

1.0

T
ra
n
sm

is
si
o
n

−0.4

−0.2

0.0

0.2

0.4

P
h
a
se

[r
a
d
]

a) b)

Figure 4.5.: (a) shows in green the measured maximum delay for several atom numbers,

the green dashed line is numerically extracted from the theory for a pulse length of 25 ns.

The solid purple line is calculated using (4.6) and the dashed yellow line is the simulation

for a pulse length of 200 ns. (b) shows in orange the absorption measured for the largest

number of atoms (180) and in red the corresponding phase
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4.7 Conclusion

4.7 Conclusion

In this chapter we confirmed the results of chapter 3: despite the lack of an intrinsic

model we can describe this microscopic cloud of atoms very well by a linear transfer

function. Using this approach supports the use of a complex function for the steady-

state response to extract the amplitude as well as the phase imprint of the system.

With this transfer function it was possible to calculate theoretical curves without any

further free parameter which are in very good agreement with the measurements.

Despite the fact that this sample is smaller than the waist of the probe laser we have

seen large pulse advancements ∼ −10 ns as well as delays ∼ 7 ns while having a fairly

high transmission of ∼ 20%. The fractional pulse advance of 40% is also the largest

measured so far and if it would be possible in our setup to scale the system up to

∼ 6µm while keeping the density constant the fractional pulse advancement would

go up to 2 which is approaching the theoretical limit Boyd and Macke [31, 74] have

predicted.
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(a) Schematic of 2-level probing. The trans-

mission probe light is linearly polarized along

the y-axis and a strong homogeneous B-field is

applied along the z-axis.

52S1/2 , F=2

52P3/2 , F=3

mF0-1-2-3 1 2 3

+-

(b) Schematic of the lifted degeneracy for high

B-field together with the probe light consisting

of σ+ + σ− light

Figure 5.1.: Core features of the 2-level measurement.

In chapter 3 we identified the internal structure of Rubidium as one of the possible

sources of the discrepancy between theory and experiment. In order to rule it out it

was important to repeat the same experiments, but this time starting from atoms in a

pure mF state and lifting the degeneracy so that we have a pure 2-level system (see

figure 5.1b).

Optical pumping in dense samples is often thought to be hard to achieve due to

the screening effects that such systems may exhibit. In dense samples the amount

of rescattered light cannot be neglected, thus the exact polarization with which a

second atom in the sample experiences depends strongly on the relative position. This

is thought to be the process which prevents efficient pumping in a dense sample [80].

As we will see here it is nevertheless possible to spin polarize our sample while being

dense (∼ 1014 atoms cm−3).



Chapter 5: Rubidium as a 2 Level System

In the course of this chapter I shall present the results of the experiments that

I performed and compare the behaviour of our dense sample with (chapter 3) and

without internal structure, as well as with the available coupled dipole model. The

case of low saturation driving of our spin polarized sample proves especially interesting

as we are even able to consistently link the temporal behaviour with the steady-state

results indicating the influence of the interaction on the dynamics. In addition I also

performed measurements for higher probe light intensities as well as measurements of

Isat for various densities. All results of this chapter are still preliminary and are not

published, yet.

5.1 Preparation in the extreme Zeeman state
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Figure 5.2.: Preparation of the extreme mF state at different pumping durations starting

from 100 atoms in the
∣∣5S1/2,F = 2

〉
manifold.

The density of the atomic samples that we are studying in the scope of this thesis is

on the order of 1013 to 1014 atoms cm−3. With atoms in such close proximity optical

pumping was thought to be a very difficult task. Indeed, light scattered by a first

atom is very likely to be rescattered by another atom. As the relative position of

the two atoms determines which polarization is experienced by the second one, the

effectiveness of optical pumping is bound to be limited. For example light which

was initially σ+ polarized might turn into σ− polarization, which would lead to an

unwanted change in mF state and thus hinder the pumping process.

In the end the solution was reasonably straightforward by using a repumper∣∣5S1/2,F = 1
〉→ ∣∣5S1/2,F = 2

〉
and a pumper

∣∣5S1/2,F = 2
〉→ ∣∣5P3/2,F = 2

〉
which

are both σ+ polarized, while slowly ramping up a magnetic field along the z-axis.

In detail I first ramped up a small B-field along the z-axis of ∼ 2 − 5G then
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5.1 Preparation in the extreme Zeeman state

I shone in a repumper
∣∣5S1/2,F = 1

〉 → ∣∣5S1/2,F = 2
〉
(∼ 1ms) and a pumper∣∣5S1/2,F = 2

〉 → ∣∣5P3/2,F = 2
〉
with σ+ polarization. At the end of the pumping

period I quickly ramped up the magnetic field (∼ 10ms) so to lift the degeneracy

and isolate the extreme mF state from the rest. After 1ms of this pumping scheme

80 out of 100 atoms are prepared in the extreme mF corresponding to a density of

∼ 1013 atoms cm−3 (see figure 5.2). Another effect of this preparation scheme is that

the final temperature of the sample goes up from 120μK to 160μK which is most

likely due to the proximity of the centre frequency of the pumping light with the

atomic resonance, which introduces a source of heating.
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(a) Measured shift of the transition of the ex-

treme mF -state from F = 2 → F = 3 (red

markers). The solid and dashed lines are theoreti-

cal values. The stretched transition is emphasized

in red.
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Figure 5.3.: Measurement and theory comparison for the measured transition of∣∣5S1/2,F = 2,m = 2
〉→ ∣∣5P3/2,F = 3,m = 3

〉
The next problem to have a proper two level system is that the stretched transition

has to be separated in frequency as far as possible from any other transition to which

it could couple. Figure 5.3b shows the calculated evolution of the σ+ transitions from∣∣5S1/2,F = 2
〉 → ∣∣5P3/2,F = 3

〉
for increasing magnetic field. With our apparatus

we are able to apply a homogeneous magnetic field up to ∼ 310G, which should

isolate the stretched transition by roughly 12Γ0 from the closest other transition. This

splitting is good enough for our probing scheme as the probe light is only shone for a

brief 300 ns, which leads to a negligible amount of depumping due to the remaining

overlap of the neighbouring states. The separation of 12Γ0 is also larger than the

expected line broadening which is expected to be 3Γ0 (see chapter 3) and should thus

be enough to also avoid coupling to neighbouring states due to this effect. Apart of
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Chapter 5: Rubidium as a 2 Level System

introducing a line splitting a B-Field also leads to an absolute shift, which for the

stretched transition follows:

Δν =
μB

h
× Bz (5.1)

with μB = h×1.399MHzG−1 [38]. This relation is only true for the stretched transition

as due to conservation of total angular moment the two extreme states do not mix

population with other states transitioning from low to high B-field and thereby

undergoing the change of basis from mF to mJ . Figure 5.3a shows the experimental

finding of the resonance for various B-Fields, which are fitted by a linear function

f(B) = μexp

h
B yielding a slope of μexp = h× 1.391(5)MHzG−1, which is in very good

agreement with the literature value.

5.2 Frequency Offset-Lock

Master

Slave PD Amplifier
LO

Mixer Low
Pass
Filter

Delay Line

Servo

RF -Reference

Figure 5.4.: Schematic of a frequency-offset-lock setup.

To be able to follow the resonance over a range of several hundreds of megahertz

corresponding to an offset field of 0-310G the setup used in chapter 3 was not sufficient

anymore. The double-pass AOM used on the setup has a bandwidth of ∼ 80MHz,

which would limit the B-field to ∼ 60G. To overcome this limitation I introduced a

new probe laser whose frequency is locked onto the previous probe laser by beating

the two and locking the beatnote frequency to a radio frequency (RF) source [81],

see figure 5.4. Assuming the two lasers operating at frequency ωM and ωS we get the

signal of the photodiode:

VPD ∝ (cos(ωM t) + cos(ωS t))
2

= 1 +
1

2
(cos(2ωM t) + cos(2ωS t)) + cos([ωM + ωS] t) + cos([ωM − ωS] t)

(5.2)
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5.3 Measurement of Transmission with a low saturation Probe

as the photodiode has a finite bandwidth in my case of ∼ 12 GHz only frequencies in

the radio-frequency range will be detected and the constant term vanishes due to the

AC coupling of the photodiode, which reduces (5.2) to the last term cos([ωM − ωS] t).

ωB = |ωM − ωS| denotes the beat frequency of the two lasers which then is amplified

and mixed with the local oscillator. The output of the mixer can be stated as the sum

and difference frequencies ω± = |ωB ± ωLO|:

cos(ωB t) · cos(ωLO t) ∝ cos(ω+ t) + cos(ω− t) (5.3)

The low pass filter after this mixing stage removes the sum term and the remaining

difference signal is split into two parts. One which passes through a delay-line and

a second one which directly goes to a second mixer in which those two parts are

recombined. The two input signals of this mixer have the same frequency ω− but one

part is delayed by l/v, where v denotes the signal speed in the cable. The output of

the mixer is:

Vmixer = cos(ω− t) · cos(ω−[t+
l

v
]) ∝ cos(ω−

l

v
) + cos(2ω−[t− l

2v
]) (5.4)

Another low pass filter removes the time dependent (oscillating) part and we obtain

our final output:

Verror ∝ cos(ω−
l

v
) (5.5)

This signal is time independent which means that it only changes when either the

local oscillator frequency or the beatnote frequency changes. As this signal is periodic

in the length l of the delay line (in our case ∼ 50 cm) the steepness of the slope and

the spacing of the zeros can be adjusted by the cable length allowing to adjust these

parameters to one’s needs. By using this signal as an error signal for the locking system

of the slave laser it is possible to change its frequency by changing the frequency of

the local oscillator. This scheme allows to scan from a minimal offset of ∼ 100 MHz

up to ∼ 1 GHz with respect to the master laser’s frequency, which is locked to the∣∣5S1/2,F = 2
〉
→
∣∣5P3/2,F = 23

〉
cross-over transition. Thus the resonance could be

followed over the full range of magnetic fields (figure 5.3a). For the reader’s interest or

future replications I listed the parts in Appendix C
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(a) Steady state frequency response measured

by the APD
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(b) Transmission measured by the CCD

Figure 5.5.: Comparison of the same experimental cycle measured with the APD and

CCD. The data points are obtained by measurement and the solid lines are fits by (3.5).

The colours indicate different atom numbers: blue = 10 , orange = 60, green = 100

5.3 Measurement of Transmission with a low saturation Probe

As we wanted to measure a set of data which is comparable to the one shown in

chapter 3, I performed the same measurements again, but now on a spin polarized

sample. As already explained in chapter 3 a flat-top pulse of 300 ns with a peak

saturation of s ≈ 0.005 is shone in, which is repeated for 1000 times interleaved with

trap pulses to prevent the expansion of the atomic cloud. This scheme was repeated

for typically 300 clouds of atoms per detuning and for a total of 17 different detunings.

The transmission probe shown in figure 3.2 is linearly polarized along the y-axis. This

leads to a superposition of σ+ + σ− polarization with respect to the quantization axis

set by the B-field (see figure 5.1). Figure 5.5 shows the results for the APD on the left

and for the CCD on the right for three different atom numbers. The data is again

fitted by (3.5) and the extracted fit parameters amplitude A, width Γc, and shift Δc

are plotted versus the according atom number in figure 5.6 (fit results are available in

Appendix D).

Before we discuss the results it is interesting to have a look at what we expect to

change for the amplitude going from a 12-level to an effective 2-level system. Intuitively
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Figure 5.6.: Plots of the data points together with the fitted function. In all plots circle

refer to the APD data and squares to the CCD data, solid and dashed lines are fits,

respectively. The black lines (solid and dashed) are the corresponding results from chapter

3 for the 12-level system (see figure 3.6). (a) shows the amplitude parameter of the

fit function F , b) shows the shift of the central Δc = ωc − ω0, (c) Full width at half

maximum Γc

the dipole-moment has to be larger in the 2-level case as all atoms are prepared in

the stretched state and thus the Clebsch-Gordan coefficient is 1 compared to 7/15

corresponding to the average value for a 12-level system. Additionally the probe light

polarization has to be taken into account as it is for our setup a super-position of

σ+ + σ−. The total field can be split in a sum of the laser-field and the atom-field

along the z-axis:

Etot = EL + Esc = −i
zR
r
E0e

ikr︸ ︷︷ ︸
far field Gaussian beam

+
〈d〉
4πε0

k2

r
eikr︸ ︷︷ ︸

scattered light from dipole

, (5.6)

with the average dipole moment 〈d〉 = ε0αE0 and zR the Rayleigh-range. As we

are looking close to resonance the polarizability α simplifies to α = i6π/k3 and

the cross-section is given by σ = 6π/k2 [38]. We can thus rewrite (5.6) in terms of
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scattering cross-section:

− iE0
zR

z
eikr

[
1− αk2

4πizR

]
= −izR

z
E0e

ikr

[
1− σk

4πzR

]
(5.7)

This now allows us to compare the case of the 12-level with an ideal 2-level (pure

probe polarization) and our effective 2-level system. The relation between a multilevel

system and a perfect two level system is given by:

7

15
σideal

2lvl = σ12lvl (5.8)

where the 7
15

is the reduction in polarizability due to averaging over the internal mF

states. The perfect two level system here refers to a two level system that is also

perfectly driven, meaning that the entire driving field has the correct polarization. As

this is not the case in our measurement, because we probed the atoms with linearly

polarized light perpendicular to the quantization axis we ended up with a superposition

of σ+ + σ− polarization with respect to the quantization axis of the atoms. To take

this into account the scattering cross-section of the sample is reduced by
√

2, which

leads to: √
2σeff

2lvl = σideal
2lvl (5.9)

With (5.8) and (5.9) we get the following relation:

7
√

2

15
=
σ12lvl

σeff
2lvl

(5.10)

This means that the ratio between the amplitude curve of the 12 level and 2 level case

should be ∼ 0.66. We have to compare this value to the ratio of the orange and black

solid line of figure 5.6 (a) which correspond to fits to the amplitude results of the APD

for 2 and 12-level, respectively. Dividing one curve by the other yields 0.66± 0.01,

which is in very good agreement with our estimate. Performing the same operation for

the dashed green and black line the results of the CCD we obtain a value close to 1.

So far we have not found a plausible explanation for the discrepancy between APD

and CCD.

For a system in which the response is given mainly by one mode the line shift ∆c is

given by:

∆c ∝ Re[Vdd] (5.11)
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5.3 Measurement of Transmission with a low saturation Probe

and the linewidth Γc can be written as:

Γc ∝ Im[Vdd] + Γ0. (5.12)

As Vdd ∝ Cnλ̄3Γ0 with C the Clebsch-Gordan coefficient we directly expect a ratio of

7/15 between the results of the 2 and 12-level system for the peak shift and linewidth

change. The fit for the APD gives a slope of −0.004± 0.001 and −0.002± 0.0002 for

the 2 and 12-level measurements, respectively. If we now calculate the ratio of those

two disregarding the errorbars we obtain 0.5 which deviates only 7% from 7/15. In

comparison to the APD the CCD (−0.001± 0.002) result does not show any traces

of change between the two measurements, taking the errorbars of APD and CCD

into account the two measurements are compatible with one another. The APD now

agreeing with the CCD contradicts the agreement with the theoretical expectation

which is not met by the CCD results. This discrepancy will only be resolved by

expanding the range of density explored to reduce the errorbars which we could not

do in the present state of the apparatus.

Also for the width, a ratio of 7/15 is expected following the argument of (5.12)

which neither the APD nor the CCD shows (figure 5.6 (c)) as the red solid (APD)

and dashed (CCD) lines are parallel to the 12-level measurements in black. This fact

in itself is very interesting, because it means that this quantity seems independent

of transition strength. We point out that the width of the sample’s response is only

dependent on the density and maybe also on the absolute sample size. The dependence

on the sample size is a consequence of the discussion in chapter 3.8.3. As multiple

scattering can simply be increased by making the volume larger and keeping the

density constant whereas recurrent scattering can only be increased by increasing the

density and thus decreasing the spacing between two adjacent scatterers. This means

that for example a simulation using two atoms and varying the spacing to emulate

different densities will not lead to the same result as simulating the same densities

with samples of for example 30 or 100 atoms. Such extensive scaling behaviour is to

be expected for system with long range interaction.

The two level measurement was performed two years after the 12-level measurement

was done. This should rule out any short-term biasses, which could lead to the very

similar results of the shift and width measurements. Also having changed a substantial

part of the setup by introducing a new probe laser should have reduced the likelihood

of systematic errors due to using the same apparatus again.
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Chapter 5: Rubidium as a 2 Level System

5.4 Comparison with Theory

As we are now only dealing with a 2-level system we can now focus on a subset of

the problem discussed in chapter 3.8, namely the removal of internal structure of the

scatterers, shown in figure 5.7. This simplifies the equation to describe the system to

d1

d2

d3

dj

dl

52S1/2 , F=2

52P3/2 , F=3

r

mF0-1-2-3 1 2 3

Figure 5.7.: Show the simplification of the new 2 level system with respect to the 12 level

case

(5.14) and (5.13). In order to account for the experimental conditions, in which the

probe laser polarization is a superposition of σ+ and σ−, the driving field was divided

by
√
2:

(Δ + i
Γ

2
)dj =

Ω√
2
+
∑
l �=j

[Vlj]dl, (5.13)

with

Vdd = −3�Γ

8
eikr

[(
1

(kr)3
− i

(kr)2

)
(1− 3 cos2 θ) +

1 + cos2 θ

kr

]
, (5.14)

which are essentially the same equations as (3.9) and (3.8), but taking into account

the experimental conditions. This experimental improvement simplifies the theoretical

approach tremendously as we have perfect knowledge about the initial state of the

atoms and know exactly on which transition we operate them. We thereby removed all

uncertainties resulting from the presence of internal structure.

In figure 5.8 the simulation is shown for various atom numbers comparing the

measurement results with the simulation. On the one hand we can see that we get

better agreement for small atom numbers than in the 12 level case, which simply

indicates that the chosen initial distribution of the mF -states for the simulation was

not perfect. On the other hand looking at the higher atom numbers we see that the

level of disagreement reached for the 12-level case at ∼ 180 atoms is now reached at
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5.4 Comparison with Theory

∼ 100, which is roughly a factor 2 lower. To grasp the experimental and theoretical
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Figure 5.8.: Comparison of the microscopic two level theory (dashed line) and the fit of

the APD (solid line). The different colours indicate the atom number: blue = 5, orange =

20, green = 60, red = 100

discrepancy better I did the same as in chapter 3.9, where I numerically extract the

amplitude, FWHM and shift of the simulation and then plot that together with the

experimental finding of figure 5.9. The amplitude shown in figure 5.9 (a) agrees for the

low atom numbers better than for the 12 level system but still does not agree very

well, as the curvature of the simulated and experimental curves are different. It can

clearly be seen that the experimental curve (red) crosses the simulated amplitude at

around 60 atoms and settles at a higher value than the simulation. The plots for the

shift (b) and FWHM (c) agree qualitatively again as was the case for the 12 level

system, as far as the slope has the right sign, but the magnitude does not agree. The

kinks in the simulation results (blue) in figure 5.9 are artefacts due to finite sampling

in atom number and frequency. In spite of stripping the atoms of the complexity of

their internal structure, thereby providing the most favourable grounds to compare

experiment and theory, the discrepancy between the two remains striking.
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Figure 5.9.: Shows the comparison between the experimental data fit of the APD (red)

and the 2-level microscopic theory (blue). (a) Amplitude, (b) shift of peak, (c) Full width

at half maximum

5.5 Temporal Response

As an interesting side note I wish to show the transient analysis that could be extracted

from the experiments discussed above as we recorded the full temporal response. To

analyse the transient we consider the cloud as a whole to be a dipole D with linewidth

γc and shift Δc we can then write the following relation to describe this system:

Ḋ + (Δc + i(γc + Γ0)/2)D = ε0αE exp(iωt) (5.15)

We cast the solution of this differential equation in the following form:

D(Δc, t) = |A(1− B

1 + 2iΔc/γc
(1− exp(−2π 0.006 t (γc/2 + iΔc))))|2, (5.16)

with A,B, γc free fit parameters, A and B are relative amplitudes and γc the linewidth

in units of Γ0 such that the time constant η = 1/(2π 0.006 γc). In figure 5.10a and

5.10b we can see the response for two different atom numbers together with the fit

results. η is related to the natural linewidth by η = 1/Γ, which for a single Rubidium
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(b) 100 atoms at −1.1Δc/Γ0
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(c) Extracted decay constant η versus the de-

tuning.

yellow = 100 atoms, pink = 60 atoms,

purple = 45 atoms, green = 20 atoms,

blue = 10 atoms.

The black dashed line indicates η0 = 26.5 ns.
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(d) Extracted decay constant η versus the num-

ber of atoms.

blue = −1.5Δc/Γ0, orange = −1.1Δc/Γ0,

green = −0.8Δc/Γ0, red = −0.5Δc/Γ0,

purple = −0.1Δc/Γ0, brown = 0.2Δc/Γ0,

pink = 0.5Δc/Γ0, grey = 0.9Δc/Γ0.

The black dashed line indicates η0 = 26.5 ns.

Figure 5.10.: Temporal responses of the two level system (a) and (b). (c) and (d) show

the results of the fitting for all detunings and atom numbers.

atom amounts to η0 = 26.5 ns. If now the decay constant is smaller than the one of a

single atom the response is commonly called “super-radiant” [6, 82, 83] and if the
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Chapter 5: Rubidium as a 2 Level System

decay-constant is larger we talk about “sub-radiant” decay [84–87]. For the 12 level

samples it was not possible to find a significant deviation from 26.5 ns, but now with

the two level system it was possible to observe super and sub-radiance, as we are going

to see. Another feature that is clearly visible in figure 5.10b is the peak at the end

of the pulse. This “flash” at the end of the pulse comes from the fact, that at the

moment where it appears the incident light was switched off and thus the light still

propagating through the sample does not interfere destructively with the laser light of

the probe. Such interesting behaviours could only be observed for a very small subset

of the measurements, it is thus beyond the scope of the work presented in this thesis

to provide any sort of in-depth study. A thorough analysis can be found in [11, 12]

where this flash is studied in large sample and thus propagation effects were taken into

account. To study this effect in detail we need to gather more data but our microscopic

cloud should simplify the model to |EL + Esc|2 without propagation effects.

In figure 5.10c we can clearly see that around zero detuning we obtain for large

number of atoms (∼ 100) super-radiant behaviour as the data points are clearly

below the black dashed line which indicates the reference for a single atom response.

The super-radiant response agrees with the measured broadening in steady state

as 1/(2 π 2.5 Γ0) ≈ 10 ns. The values measured for points of |∆c/Γ0| ≥ 1 should not

be called sub-radiant as there is no clear settling time and the curve is just flat on

top, that is why these results are more and more sub-radiant. Additionally we can

see in figure 5.10d that the evolution of the time constant seems to be similar for

all detunings with respect to the number of atoms, but no explicit relation can be

deduced from this dataset.

5.6 Measuring Transmission for a high saturation Probe

So far we only looked at the limit where the sample behaves like a set of classical

dipoles, which is to say each dipole’s response is linear as a function of the driving field.

If we now increase the driving field strength to the point where I
Isat
≥ 1 we enter the

regime which is dominated by quantum mechanical effects, such as power-broadening

and Rabi-oscillation. As proper quantum mechanical modelling [88] is beyond the scope

of this thesis I will only provide the experimental results and a qualitative explanation.

All effects that we are going to see have to my knowledge never been reported before

and it is unclear what to expect as there are also no theoretical predictions.

Working with probe beams of high intensity comes with a major issue as the atoms

are pushed by the probe itself. It is then impossible to send more than one pulse per
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5.6 Measuring Transmission for a high saturation Probe

atomic cloud, which severely restricts the amount of data that may be acquired. In

practice, due to the fact that our time-tagging device is only able to mark one photon

per pulse, this would have meant an increase in measurement time by a factor ∼ 1000

to keep the signal to noise ratio the same as I decreased the number of pulses from

1000 to 1. This would have made it impossible to acquire any meaningful data. For

this reason I did not measure the temporal response and instead only acquired data

from the CCD. I repeated each detuning for typically 400 samples. As a result I obtain

again Lorentzian-like responses, which were fitted by (3.5): |T (ω)|2 = |1− A′

1−2i
ω−ω′c

Γ′c

|2

(Spectra in appendix F). In order to study the change in behaviour between low and

high saturation, I performed the experiment for I/Isat = s ≈ 0.01, s ≈ 1 and s ≈ 8,

the three fit results are plotted versus atom number in figure 5.11. The amplitude was

fitted by the function A(N) = 1−
√
a+ (1− a) exp(−bN) and the shift ∆c as well

as the FWHM Γc with a linear fit of type f(N) = α + β N with a, b and α, β as free

fit parameters (results in appendix E).
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Figure 5.11.: Fit results for various probe saturations measured by the CCD.
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5.7 Measuring the density dependence of the saturation intensity

The variation of the amplitude A as a function of saturation (figure 5.11) shows

a rather peculiar behaviour as A is larger for s ∼ 1 than it is for s � 1. So far no

satisfying answer was found. Having a decrease going further up in saturation s ≈ 8

can be understood due to having a fully saturated scattering rate. As more photons

are shone in more and more pass through the medium without being scattered and

thus the “contrast” of the signal decreases.

The observation for the shift (figure 5.11) of the peak is also somewhat inconclusive

as we first see the slope getting steeper going to s ≈ 1 and then less steep again but

obtaining a fairly large offset.

Unlike the other parameters the FWHM is revealing an interesting and unexpected

fact: the linewidth for independent atoms is related to the saturation by:

γ = Γ0

√
1 + s (5.17)

This suggests that the slope throughout all three measurements should have the same

sign and magnitude. What we see in fact is rather that the slope starts with a positive

sign at s ≈ 0.01 getting less steep going to s ≈ 1 and then changes sign going to

s ≈ 8. Such a behaviour rather indicates that the saturation the sample experiences

for different atom number varies. The linewidth for the higher atom numbers, starting

at > 40 hardly changes, where as the samples with lower atom number show a way

larger influence due to the change in probe saturation.

5.7 Measuring the density dependence of the saturation intensity

To have an independent measurement of the saturation I kept the atom number

constant (∼ 70) and measured the fluorescence of my sample for various intensities

of the σ+ polarized fluorescence probe. In addition I repeated this measurement for

various time of flights of the sample after switching off the trap so as to measure the

response of samples with different densities. As discussed before varying the volume

and keeping the atom number constant is strictly speaking not the same as keeping the

volume constant and varying the number of atoms. I tried changing the atom number

first, but this was too time consuming as for low atom number and low saturation

there is very little signal, so to obtain a meaningful signal the integration time would

have been very large. A long integration time would have probably also introduced an

error due to the motional effects induced by the intense probe light which could have

washed out the effects we are trying to capture. Figure 5.12 shows the measurements
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(a) Dense ∼ 1014 atoms cm−3
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(b) Dilute ∼ 1011 atoms cm−3

Figure 5.12.: Measurement of Isat for different densities

for two different densities (atoms = 70) where I measure the amount of fluorescence

for different input intensities close to resonance. As stated in [38] the total photon

scattering rate of a single 2-level atom is given by:

Rsc(I) =

(
Γ

2

)
(I/Isat)

1 + 4(Δ/Γ)2 + (I/Isat)
, (5.18)

with Δ the detuning, Γ the natural linewidth and Isat the saturation intensity, which

in our case for the stretched σ+ transition is 1.7mWcm−2. This allows to fit the data

close to resonance (Δ = 0) by:

P (I) = a
b I

1 + b I
, (5.19)

with a and b as free fit parameters and I the input intensity. It directly follows that:

b =
1

Isat
(5.20)

With this knowledge it is possible to directly extract the saturation intensity from the

measurement. I took seven different moments within the free flight of the atoms, which

lead to a range of densities ρ of 5× 1013 to 1010 atom cm−3, shown in figure 5.13. As we

can see for short time of flight and thus high densities there is a group of data points

for which the average 〈Isat〉 ≈ 9.5mWcm−2. Between 5 and 10μs expansion time of

the cloud the saturation intensity drops to roughly 3.2mWcm−2, which corresponds
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Figure 5.13.: Saturation intensity behaviour

to a factor of 3 between the dense and dilute case. The offset of the dilute samples

with respect to the literature might be due to the fact that the measurement was not

performed exactly at resonance, which would lead to an increase in saturation intensity

as the scattering cross-section is reduced. As this would only lead to a systematic offset

the factor of three would remain. With this independent measurement I could confirm

what we expected from the chapter 5.6, namely that the saturation intensity is not

constant and actually depends fairly violently on the density. The exact dependency

cannot be derived from this measurement as the sudden drop is undersampled. This

independent measurement of Isat(ρ) confirms the assumption of chapter 5.6. As the

more dilute samples have 3× lower saturation intensity the effect of power broadening

is more striking for them then for the denser samples.

5.8 Conclusion

In this chapter we first saw that it is possible to prepare dense atomic samples with

an 80% efficiency in a pure mF state, while only causing a moderate temperature

increase of ∼ 25%. Using these 2-level systems it was possible to see that the linewidth
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broadening is independent of the transition strength of the dipoles. We have seen

that the APD measured the predicted change in amplitude between 12 and 2-level

system. For the CCD we did not find this predicition and are left with a discrepancy

between the two detectors for which we have not found a plausible explanation, so

far. The result for the shift ∆c is not completely clear ignoring the errorbars on the

measurement values we could say that it fulfills the prediction but taking them into

account could also lead to the conclusion that APD and CCD agree but then the

prediction is not confirmed. Measurements over a larger density range are required to

finally conclude on this point.

The comparison between the measured two level system and the theory showed a

clear improvement for low atom numbers. Going to higher number of atoms and thus

higher densities showed instead the same discrepancy as before. This clearly rules out

the point raised about the internal structure causing the disagreement between theory

and experiment in chapter 3.10. The better agreement between theory and experiment

for small atom numbers also suggests that the size of the cloud is well known. There is

nonetheless the slight possibility that the sample’s geometry changes with the number

of atoms contributing to the overall disagreement at higher densities.

Analysing the temporal response and in particular the transient we found that for

the high atom numbers, which show a broadening of up to 2.5× Γ0, the corresponding

settling time of 1/(2.50) ≈ 10 ns can be seen on the data as well.

Afterwards we investigated what happens when we leave the regime of low saturation

probing and enter the domain of high intensity. We saw that for low atom number the

measured linewidth changes dramatically with probe intensity, whereas for denser

samples this was not the case. As a logical consequence we conducted an independent

measurement of the saturation intensity and indeed found out that Isat is not constant

in density ρ. Sadly it is not possible to derive a functional form for Isat(ρ) as it has a

fairly sudden jump and is not well enough sampled to draw any more quantitative

conclusions. Nonetheless it allowed us to independently confirm the assumption that

Isat is no longer constant. These results have to my knowledge never been reported

before neither do any theoretical predictions exist.
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Chapter 6
Summary & Outlook

In this work we started off to investigate the influence of density to the atomic response

of an optical transition. As stated in the introduction many answers to the interaction

between light and matter have been found till today, but this particular question

about the density dependence has not received a lot of attention.

Additionally the contradicting works of the group of Charles Adams [26] and our

group [25] required a more detailed study of these density induced effects to reach a

conclusion. To improve on the reliability of our data taking major improvements to

our experimental apparatus, which are described in chapter 2, had to be done. Those

upgrades on the technical side of the experiment empowered us to improve significantly

on the repetition rate (a factor of ∼ 10) and the repeatability of our experiments. With

these improvements in place it was possible to change to transmission measurements

of a sub-micron cloud of Rubidium 87 and successfully gather a fair share of new

data. As explained in the introduction going from fluorescence measurements to

transmission, allowed us to investigate the validity of two well-established theories in

the case of a dense cold sample. The first theory being a macroscopic theory describing

the sample by an index of refraction n (continuous medium approach), by relating this

macroscopic quantity, to a microscopic quantity, the single atom polarizability α. With

such a theory it is possible to describe a sample consisting of thousands of microscopic

elements by just one quantity. The second theory is a microscopic theory, which is

called the “coupled-dipole equation”, for this model it is necessary to have additional

knowledge of the internal structure of the sample such as the individual position of

each microscopic particle. Both theories are very successful in describing a plenitude

of physical phenomena such as refractive indices of gaseous media, meta-materials and

in general all sort of real-world scattering phenomena and can therefore be considered

“well-established”.

In chapter 3 we began probing the microscopic atomic cloud with a weak intensity

beam I
Isat

< 0.1, while being in a situation where all mF states are degenerate due

to the low ambient magnetic field of |B| < 80 mG. In this setup it was possible

to explore peak densities ranging from ∼ 1012 atom cm−3 up to ∼ 1014 atom cm−3



Chapter 6: Summary & Outlook

by varying the number of atoms inside a trap with constant volume. Operating

without a spin polarized sample made it necessary to take all twelve levels of the∣∣5S1/2,F = 2
〉
↔
∣∣5P3/2,F = 3

〉
transition into account to model this measurement

accurately. By doing so we found for the macroscopic model a correction term of 7
15

for the dipole moment, with respect to an ideal two level system. For the microscopic

model we took the internal structure into account by stochastically sampling the

internal states. Comparing the outcome of these two models first revealed that for low

atom numbers (low densities) they lead to the very same result, but when the atom

number involved gets high enough a striking difference emerges. This discrepancy

may be qualitatively explained by accounting for two different types of scattering

events. One type which we call “multiple scattering” involving each scatterer in the

sample maximally once and “recurrent scattering”, which scatters at least twice on

the same constituent. Comparing the result of the continuous media model and the

coupled-dipole equation, to the performed transmission measurements it turned out

that neither describes the experimental findings. Of course the difference is a bit

smaller for low atom numbers and gets more striking for larger ones, but we find no

true quantitative agreement. This finding supports the prior work [25] done in our

group, but still left many questions unanswered. As theoretical descriptions always

focus on the idealization of the actual experiment and experiments always struggle

with technical imperfections we compiled a list of possible short-comings:

1. Alignment issues, which might have introduced a frequency shift

2. Uncertainty about the sample size, as it is smaller than our optical resolution

3. Motional effects, which are not taken into account in the model

4. The internal structure of Rubidium 87, which leads to imperfect knowledge

about the initial state

Alignment issues

The first point on that list was tackled next, by simulating longitudinal and transversal

displacement of the cloud with respect to the probe beam (chapter 3.11). Comparing

these simulations we found good agreement with the measured data and were able to

rule out any influence of a frequency shift. The longitudinal displacement causes an

asymmetry, which was explained by an additional phase factor introduced due to

the Gouy-phase within the Rayleigh range of the focused laser beam. The transverse
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displacement simply causes a reduction in amplitude as the spatial mode-matching

between beam and sample is not optimal any longer.

Internal structure and sample size

In order to simplify the system to an ensemble of two-level atoms thereby removing

the possible influence of the internal structure on the measurements, we prepared

spin-polarized samples (chapter 5). To our surprise it worked reasonably well to

pump the atoms into the extreme mF , which allowed us to prepare ∼ 80% of the

sample in the
∣∣5S1/2,F = 2,mF = 2

〉
state. Normally this task is considered to be

complicated due to the fact that the rescattered light of neighbouring atoms might

lead to depumping. These spin polarized samples were then probed by a weak probe

I/Isat < 0.01 in an environment of Bz = 310 G lifting the degeneracy and preventing

any depumping of the
∣∣5S1/2,F = 2,mF = 2

〉
↔
∣∣5P3/2,F = 3,mF = 3

〉
transition.

Repeating the measurements of chapter 3 with this new sample, allowed me to directly

compare the case with internal structure and without.

This direct comparison revealed that the linewidth Γc seems to depend only on

the density and not on the dipole moment. Indeed, although the absolute value of Γc

differs slightly for the two cases, this discrepancy can be assigned to a combination

of error bars and systematic bias, such as the finite laser linewidth and the offset of

the locking point. The situation for ∆c is not as clear the dataset as it is suggests

that the expectation is fulfilled as we find increase in the slope by roughly 5/17, but

taking the errorbars properly into account it could also be concluded that it does

not. To finally settle on this a measurement over a larger density range is necessary.

The measured amplitude of the dip for the case of 12 and 2-level atoms by the APD

agrees extremely well with the theory, which predicts that the ratio between these

two measurements should be ∼ 0.66. The measurement performed with the CCD

exhibited a very surprising discrepancy which is up to now unexplained. For small atom

numbers (low density) the agreement with theory was clearly improved. By pumping

the atoms to the extreme mf state and applying a very large magnetic field we ensured

that only this population would be addressed by the probe, thereby removing the

uncertainty over the initial distribution that marred the 12-level experiment. Increasing

the density of the sample leads to a stronger departure of the theory with respect

to the experiment. By working with two-level rather than twelve level atoms, this

disagreement is even enhanced: only 100 two-level atoms reach the same degree of

disagreement as 180 twelve-level atoms. This is a clear confirmation that the internal
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structure cannot be at the root of the failure of available theories to describe the

behaviour of the dense sample we are studying. Having the theory agree well for low

number of atoms also indicates that the size of the sample is reasonably well known

assuming that the shape is independent of the atom number.

Motional effects

The last point of the possible influences is also the hardest to test experimentally and

it was not possible to contribute to this point during this thesis. It might be that pairs

of atoms which are fairly close together experience a strong repelling force from the

induced dipole when the probe light is shone in, this could lead to a modification of

the response of our sample. So far there are no theoretical attempts to integrate this

influence in the existing theory which seems to be a rather challenging problem.

Pulse Propagation

As we were interested in gaining a consistent picture for the twelve-level system we

embarked on measuring not just the steady-state magnitude for the transmission, but

also the phase which gets imprinted on the light passing through the sample. To do so

we substituted the square pulses shone on to the atomic cloud by Gaussian shaped

pulses and measured their arrival time with respect to a reference case without the

sample in the beam-path. The results of these measurements are shown in chapter

4. Using the fit function from the previous chapter as a linear transfer function

together with the obtained fit parameters we were able to calculate the outcome of the

pulse propagation without any further free parameter. With this experiment we now

have the full knowledge about the interference process as we have measured phase

and magnitude. Additionally, the outcome of these pulse propagation experiments

showed remarkable properties: A slab of 3µm thickness and the same density as our

sample would have a group refractive index of up to ng ≈ −106, which is the largest

value known until today for this quantity. Another outstanding property is the large

fractional pulse advancement, which was measured to be as high as 40% while still

having ∼ 20% transmission. By extrapolating these findings to a situation where the

slab would be so thick that the pulse would be attenuated down to 1% we reach a

fractional pulse advancement of ∼ 2, which is neighbouring the theoretical limit for

this value. No other material so far is offering such a promising system to test this
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limit and it might be interesting to pursue this path in the future.

High intensity probing

In addition to the weak intensity probing scheme we also explored experimentally the

field of high intensity response. So far we have only acquired three data points for

s ≈ 0.01, 1 and 8, which does not allow a quantitative conclusion, yet. Even with

those three measurement points the variation in linewidth change was indicating that

the saturation intensity is not constant with respect to the density ρ of the sample.

I was able to confirm this assumption by independently measuring the saturation

intensity Isat(ρ) by varying the probe intensity and measuring at different moments of

a time of flight experiment. With this experiment we saw that saturation intensity

drops by roughly a factor 3 when the peak density drops from 6× 1012 atoms cm−3 to

1× 1012 atoms cm−3. Sadly this sudden drop is undersampled which does not allow to

extract more quantitative information.

Outlook

Other groups have recently picked up interest in this topic and so the group of Dalibard

has conducted measurements on a slab geometry [89]. This configuration, together

with a homogeneous density distribution is especially relevant as it alleviates the

uncertainty over the influence of the geometry of the sample. Even in this ideal, the

coupled dipole equations do not fully match the experimental curves.

Another experiment was performed in JILA [22] in the context of atomic clocks.

They studied the different responses of a narrow and a broad resonance (Γ = 7.5 kHz

and Γ = 32 MHz respectively) in Strontium 88 at a density of nλ̄3 ≈ 10−3. They

find that the coupled dipole model explains the shift of the resonance for the broad

transition well, but not the too large shift of the narrow transition. They also conducted

a detailed theoretical study in which they conclude that none of the available theories

can explain the density dependent shift they observed [90].

These very recent results corroborate our findings and the inadequacy of the current

models to capture the behaviour of dense samples to a full extent. It is clear that

further investigation is required to single out the factors which cause the disagreement

between the existing theories and experiments for the low intensity probing. High-

intensity probing poses a challenge of yet another league as a fully quantum mechanical
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approach is required. The computational intensiveness of brute-force models leaves

systems beyond ∼ 30 atoms completely out of reach of any computer system available

nowadays, thus completely new algorithms have to be developed.
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Appendix A
Geometry dependent spectra

Here are the simulated results when changing our sample from an aspect ratio of 1:6

to 1:1. First increasing the short axis to match with the long axis and the second plot

where the long axis is shrunk to match the short axis. In both cases the number of

atoms were kept constant at 200 particles. The initial axes have the following size:

(a⊥, az) = (0.2, 1.2)µm.
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Figure A.1.: Geometry dependent spectrum
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Appendix B
Results of the Pulse propagation

Comparison of ab initio calculated transfer function response and measurement.

−15.0

−7.5

0.0

7.5

τ
[n
s]

0.6

1.0

1.4

Δ
t/
Δ

t 0

−6 −5 −4 −3 −2 −1 0 1 2 3

Detuning [Δ/Γ]

0.0

0.5

1.0

B

a)

b)

c)

(a) 12 Atoms

−15.0

−7.5

0.0

7.5

τ
[n
s]

0.6

1.0

1.4

Δ
t/
Δ

t 0

−6 −5 −4 −3 −2 −1 0 1 2 3

Detuning [Δ/Γ]

0.0

0.5

1.0

B

a)

b)

c)

(b) 30 Atoms

Figure B.1.: For each group of figures corresponding to a given number of atoms: c)

Ratio between the temporal width Δt of the pulse after transmission, and the width

Δt0 of the incident pulse measured in the absence of atoms. The markers are obtained

from fits of the measured transmitted pulses. The solid lines are obtained from fits of the

calculated pulses. Error bars are from the Gaussian fits to the data. a) Comparison between

the delay τ obtained by fitting the measured pulse (markers) and the one obtained from

the calculated pulse (solid line). c) Comparison between the amplitude B obtained by

fitting the measured transmitted pulse (markers) and the one obtained from the fit of the

calculated pulse (solid line).
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Figure B.2.: For each group of figures corresponding to a given number of atoms: c)

Ratio between the temporal width Δt of the pulse after transmission, and the width

Δt0 of the incident pulse measured in the absence of atoms. The markers are obtained

from fits of the measured transmitted pulses. The solid lines are obtained from fits of the

calculated pulses. Error bars are from the Gaussian fits to the data. a) Comparison between

the delay τ obtained by fitting the measured pulse (markers) and the one obtained from

the calculated pulse (solid line). c) Comparison between the amplitude B obtained by

fitting the measured transmitted pulse (markers) and the one obtained from the fit of the

calculated pulse (solid line).
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Appendix C
Parts of the Frequency Offset Lock

All parts are from the company Mini-Circuits.

PD Coupler
ZFDC-10-5 LO

Mixer
ZFM-11R L

I

Amplifier
ZFL-1000

Low Pass
BLP-100

DC-98MHz

Splitter
ZFRSC-42

Mixer
ZLW-1-1

R
LI

Low Pass
SLP-2.5

DC-2.5MHz

Figure C.1.: Schematic of the frequency offset lock together with the part names.



Appendix D
Fit Results of Figure 5.6

Fitting parameters for the response of a 2-level system with respect to the number of

atoms.

Fit result for the amplitude A measured by the APD and CCD fitted by

A(N) = 1−
√
a+ (1− a) exp(−bN)

APD CCD

a 0.01± 0.05 0.47± 0.09

b 0.03± 0.005 0.02± 0.01

Fit result for the shift ∆c/Γ0 measured by the APD and CCD fitted by

∆c(N)/Γ0 = α + β N

APD CCD

α −0.0016± 0.05 −0.3± 0.1

β −0.004± 0.001 −0.001± 0.002

Fit result for the FWHM Γc/Γ0 measured by the APD and CCD fitted by

Γc(N)/Γ0 = α + β N

APD CCD

α 1.07± 0.01 1.3± 0.4

β 0.012± 0.002 0.01± 0.008



Appendix E
Fit Results of Figure 5.11

Fitting parameters for the response high intensity probing of a 2-level system with

respect to the number of atoms. Fit result for the amplitude A measured by the CCD

fitted by

A(N) = 1−
√
a+ (1− a) exp(−bN)

s ≈ 0.01 s ≈ 1 s ≈ 8

a 0.47± 0.09 0.34± 0.33 0.7± 0.4

b 0.02± 0.01 0.03± 0.03 0.2± 0.3

Fit result for the shift ∆c/Γ0 measured by the CCD fitted by ∆c/Γ0 = α + β N

s ≈ 0.01 s ≈ 1 s ≈ 8

α −0.26± 0.12 −0.34± 0.03 0.2± 0.9

β −0.001± 0.002 −0.005± 0.0008 −0.003± 0.02

Fit result for the FWHM Γc/Γ0 measured by the CCD fitted by Γc/Γ0 = α + β N

s ≈ 0.01 s ≈ 1 s ≈ 8

α 1.3± 0.4 1.58± 0.1 4.5± 1

β 0.01± 0.008 0.009± 0.003 −0.035± 0.02



Appendix F
High Intensity Spectra

Measurement results with Lorentzian fit for various atom number at s ≈ 1 and s ≈ 8

probe saturation.
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Figure F.1.: Transmission measurement for higher prober intensity
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Titre : Réponse optique de nuage Rb87 dense  

Mots clés : optique, atomique, dense nuage 

Résumé : Cette thèse présente les résultats issus de l’investigation de la réponse optique de la 
transition D2 du Rubidium 87 en fonction de la densité de l’ensemble atomique. Afin de sonder 
cette transition nous utilisons un faisceau laser proche de la résonance (780nm) sur un échantillon 
de Rubidium ultra-froid (100µK). Nous observons ainsi la transmission en fonction de la longueur 
d’onde pour des densités allant de 10^12 atomes/cm^3 à 10^14 atomes/cm^3. Lorsque la densité 
augmente, on s’attend à ce que les interactions dipôle-dipôle jouent un rôle de plus en plus 
important du fait de la proximité des éléments diffusants. Quantitativement, les dipôles induits 
par le faisceau sonde commencent à jouer un rôle important lorsque la densité n atteint 
n*(lambda/2Pi)^3 = 1, une densité que nous atteignons dans notre système. 
Deux études systématiques seront présentées. La première montre les résultats obtenus pour un 
système à 12 niveaux, la deuxième pour un système à 2 niveaux obtenu par polarisation de 
l’ensemble atomique. Les résultats issus de ces études sont ensuite comparés aux théories 
existantes. La première approche est microscopique et décrit les interactions des dipôles couplés, 
la deuxième approche, macroscopique, est donnée par l’équation de Clausius-Mossotti. 
Les propriétés de propagation d’impulsions à travers ce système sont étudiées et révèlent en 
particulier un avancement fractionnel de l’impulsion et un indice de groupe inégalés. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Title : Optical response of dense Rb87 clouds 

Keywords : optics, atoms, dense clouds 

Abstract : This thesis investigates the response of the D2 transition of Rubidium 87 for various 
densities. To probe this transition we illuminate an ultra cold (100microK) sample of Rubidium 
87 with close to resonance  of lambda = 780 nm laser light. We observe the transmitted light while 
scanning the frequency over the atomic resonance. Such a spectrum is taken for peak densities 
ranging from 10^12 atoms/cm^3 to 10^14 atoms/cm^3. As matter gets denser and denser dipoie-
dipole interaction start playing a role due to the close proximity of neighbouring scatteres. These 
interactions are caused by the probe light induced dipoles and start being important when the 
density reaches n*(lambda/2Pi)^3 = 1, which for us is the case at the upper end of the explored 
density range. We start off measuring these transmission data for degenerate 12-level Rubidium 
87 and afterwards for Rubidium 87, which we first spin polarize and then by lifting the degeneracy 
generate an artifical 2-level system. These results are systematically compared  to the two 
available theories. A microscopic one, which is described by coupled dipoles and a macroscopic 
one the so called Clausius-Mosotti equation. None of the ab initio theories can explain the results 
obtained during this thesis.The rigerous comparison of the various acquired datasets shows that 
the data in itself is consistent and relative changes going from a 12-level system to a 2-level system 
are understood. Additionally we also investigate the pulse propagation behaviour through such a 
system revealing stunning values for the fractional pulse advancement and the group index.  
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