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Résumé : Les deux premières parties de cette thèse étudient respectivement des estimateurs pseudo-bayésiens dans les problèmes de complétion de matrices, et de tomographie quantique. Dans chaque problème, on propose une loi a priori qui induit des matrices de faible rang. On étudie les performances statistiques: dans chacun des deux cas, on prouve des vitesses de convergence pour nos estimateurs. Notre analyse repose essentiellement sur des inégalités PAC-Bayésiennes. On propose aussi un algorithme MCMC pour implémenter notre estimateur. On teste ensuite ses performances sur des données simulées, et réelles.

La dernière partie de la thèse étudie le problème de lifelong learning (que l'on peut traduire par apprentissage au long cours), où de l'information est conservée et transférée d'un problème d'apprentissage à un autre. Nous proposons une formalisation de ce problème dans un contexte de prédiction séquentielle. Nous proposons un méta-algorithme pour le transfert d'information, qui repose sur l'agrégation à poids exponentiels. On prouve une borne sur le regret de cette méthode. Un avantage important de notre analyse est qu'elle ne requiert aucune hypothèse sur la forme des algorithmes d'apprentissages utilisés à l'intérieur de chaque problème. On termine cette partie par l'étude de quelques exemples: cas d'un nombre fini de prédicteurs, apprentissage d'une direction révélatrice, et apprentissage d'un dictionnaire.
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Chapter 0

Résumé substantiel 0.1 Motivation

Dans plusieurs applications de la statistique, l'objective est d'estimer une matrice de grande dimension à partir d'une observation possiblement bruitées et incomplète de ses entrées. La taille de la matrice, et du jeu d'observation, est énorme (par exemple plusieurs milliards d'entrées). De plus, il y a parfois des contraintes complexes sur la matrice elle-même. Ceci sort du cadre d'application des méthodes statistiques classiques. Un des défis les plus importants de la statistique moderne est le développement d'une nouvelle génération de méthodologies et de théories qui permette une inférence dans de tels problèmes. L'objective de cette thèse est de relever certains aspects de ce défi.

Une approche populaire pour la réduction de la dimension de l'espace des paramètres dans ce problème est inspirée de l'hypothèse de sparsité dans le modèle de régression linéaire: on suppose que la matrice à estimer est de faible rang -ou, du moins, qu'elle peut être bien approximée par une matrice de faible rang. Il faut noter qu'au contraire de l'hypothèse de sparsité, qui porte sur les composantes individuelles d'un vecteur, l'hypothèse de faible rang pour une matrice affecte la matrice entière. Plus précisément, les colonnes (resp. lignes) d'une matrice de faible rang peuvent s'écrire comme combinaisons linéaires d'un petit nombre de vecteurs de base (bien entendu inobservables). Ceci est dans un sens proche de certains modèles statistiques où les observations sont expliquées par un petit nombre de variables "cachées" ou "latentes".

Dans les applications pratiques, l'hypothèse de faible rang est tout à fait sensée. Comme exemple introductif, considérons le célèbre jeu de données utilisé dans le challenge Netflix [START_REF] Bennett | The netflix prize[END_REF]: les entrées de cette matrice sont les notes données par des utilisateurs (lignes) à des films (colonnes). Beaucoup d'utilisateurs ayant des gouts similaires, on peut penser que cette matrice sera très bien approchée par une matrice de faible rang. Cette hypothèse a été en fait considérée dans beaucoup d'autres modèles: apprentissage de dictionnaire [START_REF] Kreutz-Delgado | Dictionary learning algorithms for sparse representation[END_REF][START_REF] Mairal | Online dictionary learning for sparse coding[END_REF][START_REF] Tosic | Dictionary learning[END_REF], complétion de matrices [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Keshavan | Matrix completion from a few entries[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Candes | Phase retrieval via matrix completion[END_REF][START_REF] Kapur | Gene expression prediction using low-rank matrix completion[END_REF]; analyse en composante principales [START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[END_REF][START_REF] Bro | Principal component analysis[END_REF][START_REF] Zou | Sparse principal component analysis[END_REF], estimation de matrice de covariance ou de précision [START_REF] Fan | High dimensional covariance matrix estimation using a factor model[END_REF][START_REF] Pourahmadi | High-dimensional covariance estimation: with highdimensional data[END_REF][START_REF] Cai | Estimating structured highdimensional covariance and precision matrices: Optimal rates and adaptive estimation[END_REF][START_REF] Lounici | High-dimensional covariance matrix estimation with missing observations[END_REF], tomographie quantique [START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Flammia | Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators[END_REF][START_REF] Liu | Experimental quantum state tomography via compressed sampling[END_REF] etc.

Plusieurs méthodes ont été proposées et étudiées pour estimer des matrices de faible rang. Les plus populaires reposent sur des algorithmes d'optimisation convexe efficaces: on essaie de minimiser la somme de deux critères, l'un représentant l'attache aux données (critère des moindres carrés, vraisemblance...) et l'autre une pénalisation qui tend à réduire le rang de la solution. Une relaxation convexe du critère à minimiser permet d'utiliser des algorithmes rapides d'optimisation. Par exemple, une pénalité naturelle est simplement le rang de la matrice; cependant, il s'agit d'une fonction non convexe de la matrice, la relaxation habituelle consiste à remplacer le rang par la norme nucléaire.

Des approches bayésiennes ont aussi été considérées dans ces problèmes. Au lieu de retourner un estimateur de la matrice, l'approche bayésienne fournit une distribution de probabilité sur l'espace des matrices. La pénalité est remplacée par une loi a priori, il est donc nécessaire de définir une loi a priori qui donne une probabilité faible à des matrices de rang élevé. Là encore, la disponibilité d'algorithmes efficaces (MCMC, approximations variationnelles) a permis aux méthodes bayésiennes de devenir une alternative populaire dans ce genre de problèmes. Cependant, au contraire des méthodes pénalisées, il n'y a presque pas eu de travaux théoriques sur l'analyse des performances statistiques des estimateurs bayésiens pour l'estimation de matrices de faible rang. Le but de cette thèse est non seulement de proposer des estimateurs bayésiens dans les problèmes d'estimation de matrices, mais également de les étudier d'un point de vue théorique.

Les deux premières parties de la thèse sont consacrées à deux problèmes particuliers d'estimation de matrice de faible rang: le problème de complétion de matrice, et la tomographie quantique, où l'objectif est d'estimer la matrice d'état d'un système quantique, qui est de rang un pour un état pur. En complétion de matrice, on construit un estimateur quasi-bayésien et on démontre qu'il satisfait une inégalité oracle optimale, et atteint donc la vitesse minimax (à un log près). Un des points forts de notre résultat est qu'il est valable sans hypothèse sur la loi de tirage des entrées de la matrice que l'on observe, alors que la plupart des résultats précédents supposaient une loi uniforme ou proche de la loi uniforme. Dans le cas de la tomographie quantique, on construit une loi a priori sur l'ensemble des matrices de densité. Il faut noter que cette construction est déjà un apport original puisque tous les travaux menés jusqu'ici ne traitaient que du problème dit "1 qubit" (la terminologie sera détaillée dans le coeur de la thèse, ce cas correspond à des matrices 2 × 2). En s'inspirant de la construction faite dans le cas de la complétion de matrices, on construit une loi a priori pour des matrices de densité de dimension quelconque. On montre qu'un estimateur pseudo-bayésien construit à l'aide de cette loi a priori atteint la meilleure vitesse connue dans la littérature actuelle (la question de son optimalité est encore ouverte). Ses performances sont illustrées sur des jeux de donnés réels et simulés.

La dernière partie de la thèse traite du problème dit lifelong learning qui est apparu en intelligence artificielle et en machine learning (on pourrait traduire lifelong learning par apprentissage au long cours mais cette terminologie n'étant pas standard on utilisera plutôt le terme anglais dans cette introduction en français). Brièvement, il s'agit d'un problème où un même agent doit résoudre plusieurs tâches d'apprentissage successives, qui partagent une structure commune, et où le problème est de transférer l'information d'une tâche à une autre. Par exemple, chaque tâche peut être une régression linéaire en très grande dimension. Une façon de réduire la dimension du problème est d'utiliser l'ensemble des tâches pour apprendre un dictionnaire de petite taille, et ensuite de résoudre chaque tâche comme un problème de régression de petite dimension. Donc, le problème d'apprentissage de dictionnaire est un cas particulier du lifelong learning. En représentant les éléments du dictionnaire comme des vecteurs, on peut représenter le dictionnaire comme une matrice, et on est encore une fois ramené à l'estimation d'une matrice. Ceci dit, le lifelong learning est un problème plus vaste, qui contient d'autres exemples que l'apprentissage de dictionnaire, et on l'étudie en toute généralité.

Après l'introduction (Chapitres 0 pour la version française et 1 pour la version en anglais), la thèse est découpée en trois chapitres indépendants les uns des autres. Elle est organisée comme suit:

Chapter 2: on étudie le problème de complétion de matrices, c'est-à-dire la reconstruction d'une matrice à partir de l'observation d'un petit nombre de ses entrées, bruitées. On introduit une nouvelle loi a priori et on démontre qu'un estimateur pseudo-bayésien associé est minimaxoptimal. On effectue des tests numériques sur des données simulées, en comparaison avec d'autres estimateurs bayésiens populaires.

Chapter 3: tomographie quantique. On étudie l'estimation de la matrice de densité d'un système quantique de n qubits à partir de données obtenues d'expériences dites "complètes". On propose une loi a priori valable pour une valeur générale de n. On construit deux estimateurs pseudobayésiens basés sur cette loi (reposant sur des pseudo-vraisemblances différentes). On démontre la consistance des deux estimateurs. L'un d'eux atteint également la meilleure vitesse connue à ce jour. Là encore, on réalise des simulations sur des données, réelles et simulées.

Chapter 4: lifelong learning. Le problème est typiquement de transférer de l'information acquise en résolvant plusieurs tâches d'apprentissage en ligne, à un nouvelle tâche, sous l'hypothèse qu'il y a une similarité dans la structure des tâches. En supposant donnée une méthode d'apprentissage dans chaque tâche (agrégation à poids exponentiels, gradient en ligne, etc.), on propose un méta-algorithme qui transfère l'information d'une tâche à l'autre. Cette algorithme est basé sur la procédure d'agrégation à poids exponentiels (EWA). La performance statistique de l'algorithme est évaluée par une borne sur son regret. Quelques applications sont traitées, incluant l'apprentissage de dictionnaire.

La fin de cette introduction donne un aperçu général des résultats de ces trois chapitres. Elle est organisée comme suit.

The rest of this introduction is organized as follows. Dans la Section 0.2, on explique rapidement les différentes approches en statistique bayésienne pour construire des lois a priori sur des matrices, et on explique lesquelles sont adaptées pour favoriser les matrices de faible rang. Dans la Section 0.3, on introduit les bornes dites "PAC-Bayésiennes", le principal outil théorique pour analyser les estimateurs des Chapitres 2 et 3. Enfin, les Sections 0.4, 0.5 et 0.6 présentent rapidement les résultats des Chapitres 2, 3 et 4 en les comparant à l'état de l'art.

Lois a priori sur les matrices de faible rang

On rappelle rapidement qu'en statistique bayésienne l'idée est d'encoder l'information disponible a priori, ou la complexité de l'espace des paramètres, par une loi de probabilité dite a priori p(dθ). L'inférence est alors faite à travers la loi dite a posteriori p(dθ | data) ∝ L(data | θ)p(dθ),

où L(data | θ) est la vraisemblance. Dans cette thèse, on va plutôt considérer des estimateurs dits pseudo-bayésiens, c'est-à-dire que la vraisemblance L(data | θ) est remplacée par un terme plus général d'attache aux données, et qui ne suppose en particulier pas que la loi des observations appartient à un modèle paramétrique donné. Mais cet aspect sera surtout discuté dans la Section 0.3 -pour le moment, on présente différentes constructions de lois a priori p(dθ) sur l'ensemble des matrices.

Les exemples les plus populaires sont les lois normales matricielles, et les lois de Wishart, qui peuvent être trouvées avec d'autres exemples dans [START_REF] Gupta | Matrix variate distributions[END_REF]. On présente rapidement ces lois, mais on va montrer qu'elles ne sont pas adaptées aux problèmes que l'on souhaite traiter. Supposons par exemple que l'on observe une matrice X m 1 ×m 2 suivant le modèle normal matriciel:

X m 1 ×m 2 | M, Φ, Σ ∼ N (M, Φ ⊗ Σ). La vraisemblance est alors L(X | M, Φ, Σ) = exp -1 2 tr Σ -1 (X -M) T Φ -1 (X -M) (2π) m 1 m 2 /2 |Σ| m 1 /2 |Φ| m 2 /2 . ( 2 
)
Si le paramètre d'intérêt est la matrice M, la loi a posteriori pour M aura la forme p(M|X) ∝ exp -1 2 tr Σ -1 (X -M) T Φ -1 (X -M) p(M).

De façon à obtenir des lois conjuguées, il faut donc choisir une loi a priori pour M qui soit également normale matricielle:

p(M) = p(M | Φ 1 , Σ 1 ) ∝ exp - 1 2 tr Σ -1 1 (M -M 0 ) T Φ -1 1 (M -M 0 ) ,
où les hyperparamètres M 0 , Φ 1 et Σ 1 doivent être précisés. Les lois a priori et la vraisemblance sont alors conjuguées, on en déduit une forme explicite pour la loi a posteriori, qui est elle-même une loi normale matricielle.

D'un autre côté, si le paramètre d'intérêt est Σ (ceci marcherait de façon similaire pour Φ), alors

p(Σ|X) ∝ |Σ| -m 1 2 exp - 1 2 tr Σ -1 (X -M) T Φ -1 (X -M) p(Σ).
Ceci suggère cette fois une loi a priori qui soit une loi de Wishart inverse

p(Σ) = p(Σ | Q, ν) ∝ |Σ| -ν 2 exp - 1 2 tr Σ -1 Q ,
où Q et ν sont là encore des hyperparamètres à spécifier. A noter que la loi de Wishart inverse est bien une loi de probabilités sur les matrices définiespositives, ce qui est sensé pour des matrices de covariance. De plus on a là encore des lois conjugées. Plus de détails sur ces lois peuvent être trouvés dans [START_REF] Rowe | Multivariate Bayesian statistics: models for source separation and signal unmixing[END_REF].

On pourrait donc penser à utiliser une loi normale ou Wishart inverse pour nos problèmes (complétion de matrices, tomographie quantique). Le problème est qu'il n'y a aucune raison pour que ces lois favorisent les matrices de faible rang. Donc, les lois a priori usuelles, introduits dans certains modèles pour des raisons de conjugaison, ne nous sont d'aucune aide pour nos problèmes d'estimation de matrices de faible rang. Une astuce peut permettre de "tordre" ces lois de façons à approcher des matrices de faible rang, on explique rapidement l'idée correspondante avant de passer à l'approche que nous avons retenu dans cette thèse qui repose sur la factorisation de matrices.

Faible rang par la corrélation

Remarquons qu'une matrice de faible rang a des colonnes (ou des lignes) qui sont liées linéairement. En termes probabilistes, si on tire aléatoirement des colonnes très corrélées, on obtient donc une matrice qui sera bien approchée par une matrice de faible rang. Donc, un choix pertinent de Φ, ou Σ, ci-dessus devrait permettre d'atteindre l'objectif voulu.

Plus précisément, dans la loi a priori normale matricielle (2),

M | M 0 , Φ 1 , Σ 1 ∼ N (M 0 , Φ 1 ⊗ Σ 1 ),
où M 0 est la matrice moyenne et Φ 1 et Σ 1 sont respectivement les matrices de covariance des lignes et des colonnes. Dans le cas extrême où la matrice de précision Φ -1 1 ou Σ -1 1 (ou les deux) est de faible rang, M elle-même sera de faible rang.

Cette approche est étudiée en détail dans [START_REF] Sundin | Bayesian methods for sparse and low-rank matrix problems[END_REF] sous le nom de precision based models et RSVM (relevance singular vector machine). Cependant, le problème n'est que partiellement résolu, puisqu'en pratique il faut spécifier les matrices Φ 1 et Σ 1 . De plus, malgré des résultats numériques intéressants, le coût computationel des méthodes proposées dans [START_REF] Sundin | Bayesian methods for sparse and low-rank matrix problems[END_REF] est énorme, et ces méthodes ne peuvent pas être utilisées à l'heure actuelle sur des jeux de données de la dimension que nous souhaitons étudier (par exemple NetFlix). On propose donc maintenant une approche complètement différente, basée sur la factorisation de matrices.

Faible rang par la factorisation

On rappelle que toute matrice M de taille m 1 × m 2 et de rang K peut être décomposée de la façon suivante (en utilisant la SVD ou décomposition en valeurs singulières)

M = U SV T = (U S 1 2 )(S 1 2 V T ),
où U, V sont respectivement des matrices de dimension m 1 ×K et m 2 ×K avec des colonnes orthogonales, et S est une matrice K × K diagonale contenant les valeurs singulières non nulles de M . Posons A = U S

1 2 et B = V S 1 2 , on obtient M = AB T
(3) où A est m 1 ×K et B est m 2 ×K. L'idée principale des lois a priori factorisées est de définir des lois a priori sur A et B plutôt que sur M directement. A notre connaissance, la première approche bayésienne de ce type a été menée dans [START_REF] Geweke | Bayesian reduced rank regression in econometrics[END_REF] dans le cadre d'un modèle dit de régression de faible rang, populaire en économétrie.

Le principal problème est maintenant que le rang K doit être connu en avance. Ca n'est bien entendu pas le cas en pratique. Une approche possible est d'estimer A et B pour toutes les valeurs de K possible, puis ensuite de choisir K en utilisant un critère de sélection de modèles bayésien (BIC ou facteurs de Bayes par exemple). Cette approche a été utilisée originellement dans [START_REF] Kleibergen | Priors, posteriors and bayes factors for a bayesian analysis of cointegration[END_REF]. Des approximations numériques efficaces, avec des garanties de convergence dans le modèle de régression de faible rang, ont été proposées par [START_REF] Corander | Bayesian assessment of dimensionality in reduced rank regression[END_REF].

Une stratégie adaptative par rapport au rang a été introduite plus récemment: on choisit K volontairement trop grand, par exemple K = min(m 1 , m 2 ). En revanche, la loi sur A et B est choisie de façon à rendre certaines des colonnes de ces matrices presque nulles, ce qui conduit à une matrice M qui est très proche d'une matrice de faible rang -la loi a priori est donc sensée tirer les colonnes matrices A et B vers 0, idée dite de shrinkage en anglais. A notre connaissance, [START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF] a été le premier article a développer cette idée,
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qui a depuis été améliorée et déclinée sous plusieurs formes [START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Zhou | Nonparametric bayesian matrix completion[END_REF][START_REF] Babacan | Lowrank matrix completion by variational sparse bayesian learning[END_REF][START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF]. Formellement, dans (3), M est une somme de K matrices de rang 1:

M = K j=1 A •j B T •j , (4) 
où A •j et B •j sont la j-ème colonne de A et B respectivement. Si la loi a priori donne avec grande probabilité A •j 0 alors la plupart des termes dans (4) seront presque nuls, et M sera en fait très bien approchée par une somme d'un petit nombres de matrices de rang 1, c'est-à-dire par une matrice de faible rang. Par exemple, [START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF] propose pour

A •j et B •j une loi normale de variance γ j , c'est-à-dire p(A|γ) = K j=1 N (A •j |0, γ j I), p(B|γ) = K j=1 N (B •j |0, γ j I).
de plus, les γ j sont eux-même aléatoires, suivant une loi très concentrée autour de 0. Pour des raisons de conjugaison, il est en fait commode de poser 1/γ j ∼ Γ(a, b) (loi Gamma), avec b très petit.

Dans les chapitres 2 et 3, on définit des loi a priori dans le problème de complétion de matrice, et de tomographie quantique respectivement. Aucune de ces lois n'est exactement celle proposée par [START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF], mais, dans les deux cas, la construction est clairement basée sur la double idée "factorisation + shrinkage" qui vient d'être introduite.

Une introduction rapide à l'analyse PAC-Bayésienne

On a évoqué précédemment qu'un des buts de notre thèse est d'établir des propriétés statistiques d'estimateurs bayésiens et pseudo-bayésiens. Plusieurs approches théoriques sont disponibles dans ce but.

L'une d'entre elles consiste à prouver la concentration asymptotique de la loi a posteriori autour de la bonne valeur du paramètre. Cette approche est par exemple décrite pour les modèles non-paramétriques dans l'article [Ghosal et al., 2000a]. Une revue complète de cette approche est donnée par [START_REF] Rousseau | On the frequentist properties of bayesian nonparametric methods[END_REF].

Une autre approche consiste à étudier l'estimateur MAP (maximum a posteriori), en utilisant la théorie de la minimisation du risque empirique pénalisé, qui se base sur des inégalités de concentration. Par exemple, l'estimateur LASSO, au départ introduit comme une minimisation de risque pénalisé, peut être vue comme un MAP avec une vraisemblance gaussienne et une loi a priori de Laplace sur le paramètre. Récemment, les auteurs de [START_REF] Abramovich | Map model selection in gaussian regression[END_REF][START_REF] Abramovich | Sparse additive regression on a regular lattice[END_REF] ont prouvé des vitesses minimax-optimales pour des estimateurs MAP dans des modèles de régression sparse et dans des modèles additifs non paramétriques, en utilisant une inégalité de concentration de [START_REF] Birgé | Gaussian model selection[END_REF].

Dans cette thèse, on utilise une approche alternative qui se base sur des inégalités dites PAC-Bayésiennes. Cette approche présente certaines similarités techniques avec l'approche basée sur les inégalités de concentration, mais les résultats sont assez différents. La principale différence avec les approches sur la concentration asymptotique de la loi a posteriori est que l'on n'a pas besoin de supposer que les données sont effectivement générées suivant un modèle paramétrique connu. L'approche est en ce sens plus proche des techniques de machine learning. De fait, elle a été initiée par la communauté machine learning: [Shawe- [START_REF] Shawe-Taylor | A PAC analysis of a Bayes estimator[END_REF][START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Mcallester | Pac-bayesian model averaging[END_REF]. Des résultats plus fins ont été obtenus par [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF] qui a aussi établi le lien avec l'approche statistique et les inégalités oracle. Des présentations détaillées des différents aspects de cette approche, et l'application à différents modèles, peuvent se trouver par exemple dans les thèses [START_REF] Audibert | Théorie statistique de l'apprentissage: une approche PAC-bayésienne[END_REF][START_REF] Alquier | Transductive and inductive adaptative inference for regression and density estimation[END_REF][START_REF] Guedj | Aggregation of estimators and classifiers : theory and methods[END_REF][START_REF] Germain | Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif[END_REF].

De façon générale, l'approche PAC-Bayésienne relie l'erreur de généralisation d'une procédure de prédiction par agrégation à son risque empirique et à la divergence de Kullback-Leibler entre la loi d'agrégation et une loi a priori. En minimisant ce critère, on obtient usuellement une loi d'agrégation à poids exponentiels (EWA), c'est-à-dire de la forme (1) mais où la vraisemblance L(data | θ) est remplacée par une fonction exponentielle du risque empirique. La fin de cette section constitue une très brève introduction aux bornes PAC-Bayésiennes.

Contexte de base: Soient (X 1 , Y 1 ), . . . , (X n , Y n ) ∈ X × Y des couples indépendants les uns des autres, où X est n'importe quel ensemble mesurable et Y = {-1, +1} dans un problème de classification ou Y = R dans un problème de régression. On note D := (X i , Y i ) n i=1 pour faire court. On note P la loi des observations et l'espérance correspondante est notée E.

Le statisticien considère un ensemble de prédicteurs (ou hypothèses dans le language de la communauté machine learning)

H := {f θ : X → Y; θ ∈ Θ}. Chaque prédicteur conduit à la perte (Y i , f θ (X i )) sur le i-ème exemple. Par exemple, on peut utiliser la perte quadratique (Y i , f θ (X i )) = (Y i -f θ (X i )) 2
dans le modèle de régression. Le risque de prédiction de f θ est défini par

R(θ) = 1 n n i=1 E (Y i , f θ (X i )).
Bien noter que cette quantitié est inconnue (car P est inconnue), mais sa contrepartie empirique, appelée risque empirique de f θ , peut être calculée sur la base des observations:

r(θ) = 1 n n i=1 (Y i , f θ (X i )).
L'approche "classique" s'intéresse à des estimateurs θ : (X × Y) n → Θ et étudie les relations entre le risque empirique r( θ) et le risque R( θ). L'approche PAC-Bayésienne étudie plutôt des fonctions ρ : (X × Y) n → M 1 + (Θ) où M 1 + (Θ) est l'ensemble de toutes les lois de probabilités sur Θ muni d'une tribu T . Suivant les contextes, on peut donner des garanties théoriques sur une prédiction "moyenne" selon ρ, θ = θρ(dθ), dite aussi agrégation, ou sur un estimateur dit "randomisé" θ tiré directement suivant ρ.

Une borne PAC-Bayésienne empirique: On donne une première borne basique.

Théorème 0.1 (Par ex. Théorème 2.3 dans [START_REF] Alquier | Transductive and inductive adaptative inference for regression and density estimation[END_REF]). Fixons une loi π ∈ M 1 + (Θ). On suppose que la perte est à valeurs dans

[0, C] pour une constante C > 1. Pour tout λ ∈ (0, n/C), avec probabilité au moins 1 -ε, ε ∈ (0, 1), pour tout ρ ∈ M 1 + (Θ) Θ R(θ)ρ(dθ) ≤ Θ r(θ)ρ(dθ) + K(ρ, π) + log 1 ε λ + λC 2 2n . ( 5 
)
On rappelle que K(ρ, π) est la divergence de Kullback-Leibler entre ρ and π, donnée par K(ρ, π) = log dρ dπ dρ, quand ρ est absolument continue par rapport à π, +∞, sinon.

On introduit la notation ν(h) = Θ h(θ)ν(dθ). On donne maintenant un lemme important duquel on peut déduire une loi ρ qui minimise le membre de droite dans l'inégalité précédente.

Lemme 0.1. Pour toute fonction h : Θ → R mesurable bornée et pour tout

ρ ∈ M 1 + (Θ) tel que K(ρ, π) < ∞ on a -log π[exp(h)] = inf ρ∈M 1 + (Θ) [-ρ(h) + K(ρ, π)]
En particulier, le minimum du membre de droite est atteint explicitement pour la loi dite "loi de Gibbs" ρ exp(h) définie par

dρ exp(h) dπ (θ) = exp(h(θ)) π(exp(h)) .
Preuve: On a

K(ρ, ρ exp(h) ) = ρ log dρ dπ -h + log π[exp(h)] = K(ρ, π) -ρ(h) + log π[exp(h)].
Le membre de gauche est positif, et s'annule uniquement lorsque ρ = ρ exp(h) (bien noter que cette relation est toujours valable si ρ n'est pas absolument continue par rapport à π, elle dit alors simplement que +∞ = +∞). On obtient alors 0 = inf

ρ∈M 1 + (Θ) [K(ρ, π) -ρ(h)] + log π[exp(h)].
Interprétation bayésienne Du Lemme 0.1, on déduit que la loi qui minimise le membre de droite dans (5) est

ρλ (dθ) = exp{-λr(θ)} π(exp{-λr(θ)}) π(dθ). Donc, on a ρλ (dθ) ∝ L(data | θ)p(dθ) comme dans (1), avec L(data | θ) = exp{-λr(θ) et π(dθ) = p(dθ).
Plus précisément, exp{-λr(θ)} jour le rôle d'une vraisemblance, π(dθ) peut être interprétée comme une loi a priori, et λ est un paramètre de réglage qui permet d'équilibrer les rôles de l'information provenant des observations et de la loi a priori. On peut utiliser le terme "pseudo-vraisemblance" pour désigner la fonction de θ: exp{-λr(θ)}, et également le terme "estimateur pseudo-bayésien" pour tout estimateur dont la construction sera basée sur ρλ .

Remarquons que dans ce cas (5) devient

Θ R(θ)ρ λ (dθ) ≤ inf ρ∈M 1 + (Θ) Θ r(θ)ρ(dθ) + K(ρ, π) + log 1 ε λ + λC 2 2n . (6) 
Remarquons aussi que si est convexe on peut utiliser l'inégalité de Jensen et obtenir

R Θ θρ(dθ) ≤ ρ[R(θ)].
Donc, on est capable de donner une borne sur le risque R(•) de l'estimateur agrégé, de la forme θλ := Θ θ ρλ (dθ).

En effet, dans ce cas, (6) conduit à

R( θλ ) ≤ inf ρ∈M 1 + (Θ) Θ r(θ)ρ(dθ) + K(ρ, π) + log 1 ε λ + λC 2 2n .
Inégalité PAC-Bayésienne de type oracle: Le membre de droite dans (5) peut être calculée sur la base des observations, et donc conduit à un moyen de contrôler numériquement la performance de notre méthode d'estimation. C'était en fait l'objectif des premières bornes PAC-Bayésiennes publiées [START_REF] Shawe-Taylor | A PAC analysis of a Bayes estimator[END_REF][START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Mcallester | Pac-bayesian model averaging[END_REF].

Cependant, la vitesse de convergence de l'estimateur ne peut pas être obtenue directement à partir d'une borne empirique. Ceci a motivé l'introduction d'inégalités PAC-Bayésiennes de type oracle dans [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF]. Plus précisément, Catoni a démontré qu'on peut construire des bornes PAC-Bayésiennes qui comparent Θ Rdρ λ au meilleur risque intégré possible. La version la plus simple possible est donnée dans le théorème suivant. Théorème 0.2. Sous les mêmes hypothèses que pour le théorème précédent, pour tout λ ∈ (0, n/C), avec probabilité au moins

1 -ε, ε ∈ (0, 1) Θ R(θ)ρ λ (dθ) ≤ inf ρ∈M 1 + (Θ) Θ R(θ)ρ(dθ) + 2 K(ρ, π) + log 2 ε λ + λC 2 n . (7) 
Il suffit donc de calculer le membre de droite (qui n'est plus aléatoire) pour obtenir une vitesse de convergence. Ce calcul n'est pas aisé en général, l'astuce qui consiste à réduire l'infimum dans le membre de droite à des ρ dans une famille paramétrique qui se concentre autour du minimiseur de la fonction R(•) conduit souvent à une simplification qui permet de mener le calcul à bien. Remarquons que si ρ est trop concentrée, ceci peut conduire à une explosion de la divergence de Kullback-Leibler avec π. C'est en équilibrant les deux termes (risque empirique, et divergence) que l'on obtient la meilleure vitesse dans le membre de droite. Cette technique a été utilisée par [START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF][START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF] pour obtenir des vitesses optimales dans le cadre de la régression linéaire sparse (en utilisant des bornes PAC-Bayésiennes plus fines que (7)).

On mentionne enfin quelques avancées plus récentes dans la théorie et l'application des bornes PAC-Bayésiennes: [START_REF] Seldin | Pac-bayesian inequalities for martingales[END_REF][START_REF] Germain | A pacbayesian approach for domain adaptation with specialization to linear classifiers[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Ridgway | Pac-bayesian auc classification and scoring[END_REF][START_REF] Galanti | A theoretical framework for deep transfer learning[END_REF]. Récemment [START_REF] Bégin | Pac-bayesian bounds based on the rényi divergence[END_REF][START_REF] Alquier | Simpler pac-bayesian bounds for hostile data[END_REF] ont proposé des variances où la divergence de Kullback est remplacée par une autre divergence. La plupart de ces articles utilisent une fonction de perte bornée, ou sous-gaussienne. Cependant, en utilisant une technique de robustification due à [START_REF] Catoni | Challenging the empirical mean and empirical variance: a deviation study[END_REF], les articles [START_REF] Institut | PAC-Bayesian bounds for the Gram matrix and least squares regression with a random design[END_REF][START_REF] Giulini | PAC-Bayesian bounds for Principal Component Analysis in Hilbert spaces[END_REF] proposent des bornes PAC-Bayésiennes pour l'estimation de la matrice de Gram avec des observations suivant des lois à queues lourdes. Une autre approche pour obtenir des bornes PAC-Bayésiennes pour des lois à queues lourdes a été récemment proposée par [START_REF] Grünwald | Fast rates with unbounded losses[END_REF]. [START_REF] Bennett | The netflix prize[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF][START_REF] Melville | Recommender systems. In Encyclopedia of machine learning[END_REF], le traitement de l'image et de la vidéo [START_REF] Ji | Robust video denoising using low rank matrix completion[END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF], la génomique [START_REF] Chi | Genotype imputation via matrix completion[END_REF][START_REF] Natarajan | Inductive matrix completion for predicting gene-disease associations[END_REF]Cai et al., 2015a]...

On considère un exemple jouet dans la Table 1, pour la recommandation. On ne peut pas supposer que chaque utilisateur a vu tous les films, ni même qu'il/elle notera tous les films qu'il a vu. Donc, la plupart des entrées de la matrice sont inobservées. Dans le prix Netflix [START_REF] Bennett | The netflix prize[END_REF] Evidemment, il est impossible de faire la moindre inférence sur les entrées de M manquantes dans faire d'hypothèse sur la structure de cette matrice. Une percée majeure a été effectuée par Candès avec différents co-auteurs en prouvant que, si la matrice M est de faible rang, la résolution du problème devient possible [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Candès | The power of convex relaxation: nearoptimal matrix completion[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. Cette hypothèse est de plus parfaitement sensée dans l'application mentionnée précédemment: supposer que, par exemple, beaucoup d'utilisateurs ont des goûts similaires, c'est supposer que beaucoup de lignes sont proportionnelles, ce qui induit un faible rang pour la matrice M .

Précisons maintenant les notations. On note M 0 ∈ R m 1 ×m 2 la vraie matrice à reconstruire (supposée de faible rang). Un modèle possible d'ovservations est

Y i,j = M 0 i,j + ε i,j , (i, j) ∈ Ω,
où Ω est un sous-ensemble aléatoire de {1, . . . , m 1 } × {1, . . . , m 2 } avec n = card(Ω) m 1 m 2 . Les variables de bruit ε i,j sont indépendantes et E(ε i,j ) = 0.

Dans le papier original [START_REF] Candès | Exact matrix completion via convex optimization[END_REF], les auteurs proposent un estimateur M basé sur une relaxation convexe du rang

M = arg min

A:A i,j =Y i,j ,∀(i,j)∈Ω A *
où A * est la norme nucléaire de A:

A * = min(m 1 ,m 2 ) i=1 λ i (A)
où les λ i (A) sont les valeurs singulières de A. Ils prouvent que dans le cas sans bruit (ε i,j = 0), il y a une reconstruction exacte M = M 0 avec très grande probabilité, sous une hypothèse de faible rang sur M 0 , et pourvu que n soit assez grand. Le résultat a été etendu (avec une estimateur légèrement adapté) au cas bruité par [START_REF] Candès | Matrix completion with noise[END_REF]. Depuis, plusieurs méthodes ont été proposées, qui reposent presque toutes sur la minimisation du risque empirique avec différentes pénalités. Par exemple: pénalisation par le rang (difficile à traiter numériquement) [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF], par l'entropie de von Neumann [START_REF] Koltchinskii | Von neumann entropy penalization and low-rank matrix estimation[END_REF], par les normes de Schatten S p [START_REF] Rohde | Estimation of high-dimensional lowrank matrices[END_REF] ou d'autres normes basées sur les propriétés spectrales [START_REF] Gunasekar | Unified view of matrix completion under general structural constraints[END_REF]... Un des estimateurs les plus étudiés est l'estimateur dit "LASSO matriciel"

Mnuclear = arg min M    1 n (i,j)∈Ω (Y i,j -M i,j ) 2 + λ M *    ,
où λ > 0 est un paramètre de réglage.

Dans l'article [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF], les auteurs proposent un nouveau modèle statistique dit "régression trace". C'est un modèle abstrait général, qui inclut la régression linéaire et la complétion de matrice comme cas particuliers. Ils proposent un estimateur Mnuclear qui est une variante de Mnuclear et mènent son analyse statistique. En particulier, ils démontrent le résultat suivant.

Théorème 0.3 (Corollaire 2 dans [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]). Sous certaines hypothèses précisées dans [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF], avec probabilité au moins

1 -3/(m 1 + m 2 ) Mnuclear -M 0 2 F m 1 m 2 ≤ C rank(M 0 ) max(m 1 , m 2 ) n log(m 1 + m 2 ), où C est une constante numérique et B 2 F = Trace(BB T ) la norme de Frobe- nius.
Les auteurs démontrent également une borne inférieure pour la complétion de matrice de faible rang avec la norme de Frobenius. Ceci établit donc la vitesse minimax dans ce problème. Théorème 0.4 (Théorème 5 dans [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]). Fixons a > 0 et 1 ≤ r ≤ min(m 1 , m 2 ). Sous des hypothèses précisées dans [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF], il existe des constantes absolues β ∈ (0, 1) et c > 0 telles que

inf M sup rank(M 0 ) ≤ r, max i,j |M 0 i,j | ≤ a P M 0 1 m 1 m 2 M -M 0 2 F > c r max(m 1 , m 2 ) n ≥ β.
Ce résultat affirme que l'erreur quadratique moyenne de reconstruction d'une entrée d'une matrice de taille m 1 × m 2 et de rang r à partir de n observations ne peut pas être plus petite que l'ordre r max(m 1 , m 2 )/n. On peut remarquer que la borne supérieure du Théorème 0.3 n'est pas exactement la même -il y a un log(m 1 + m 2 ) en plus. La vitesse minimax n'est en fait connue qu'à un log près. Récemment, des bornes parfaitement égales ont été obtenues par [START_REF] Klopp | Matrix completion by singular value thresholding: sharp bounds[END_REF], mais dans un modèle légèrement différent où la taille de l'échantillon, n, est elle-même aléatoire.

Dans la plupart des articles mentionnés, il est supposé que les n entrées (i, j) observées sont tirées de façon uniformes, et i.i.d, sur {1, . . . , m 1 } × {1, . . . , m 2 }. Cette hypothèse n'est cependant par réaliste dans les exemples mentionnés précédemment: par exemple, certains films sont plus connus que d'autres, et reçoivent plus de notes, bonnes ou mauvaises. De plus, la loi d'échantillonnage est inconnue en pratique. Certains articles ont considéré des lois non uniformes, par exemple [START_REF] Foygel | Learning with the weighted trace-norm under arbitrary sampling distributions[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF], mais avec quand même des hypothèses restrictives sur la loi d'échantillonage.

Principaux résultats du Chapitre 2

Alors que les méthodes par pénalisation sont donc maintenant bien comprises à la fois en théorie et d'un point de vue algorithmique, les premières publications sur des méthodes bayésiennes se sont uniquement consacrées aux aspects algorithmiques, et ne contenaient pas de preuve de convergence: [START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF][START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Lawrence | Non-linear matrix factorization with gaussian processes[END_REF][START_REF] Zhou | Nonparametric bayesian matrix completion[END_REF][START_REF] Babacan | Lowrank matrix completion by variational sparse bayesian learning[END_REF][START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF] entre autres.

Pour des raisons computationnelles, la plupart des estimateurs bayésiens étaient basés sur des lois a priori conjuguées, qui permettaient d'utiliser l'algorithme de Gibbs [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF][START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF] ou des méthodes variationnelles [START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF]. Ces lois a priori sont présentées et discutées en détail dans [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF]. Les algorithmes correspondant étaient assez rapides pour traiter des jeux de données massifs comme Netflix ou MovieLens 1 : ils sont en fait testés sur ces jeux de données dans les articles mentionnés précédemment. Mais, encore une fois, les propriétés statistiques n'étaient pas étudiées.

La première contribution de cette thèse a été de construire une loi a priori qui conduise à un estimateur dont on peut démontrer qu'il est convergent et même minimax-optimal (à un éventuel log près). On adapte la construction par factorisation pour construire une loi qui soit adaptative au rang. La principale différence est que l'on remplace les lois gaussiennes sur la distribution des colonnes dans (4) par des lois uniformes sur des intervalles. L'estimateur que l'on propose, noté M dans cette introduction, est la moyenne de la pseudo-loi a posteriori (c'est-à-dire que l'on a remplacé la vraisemblance par une pseudo-vraisemblance comme expliqué précédemment). La construction exacte de l'estimateur est détaillée dans le Chapitre 2. On donne ici un aperçu du résultat principal (énoncé complètement dans le Chapitre 2) . Théorème 0.5 (Théorème 2.1 dans le Chapitre 2). Supposons que les n entrées observées sont i.i.d suivant une loi (π i,j ) 1≤i≤m 1 ,1≤j≤m 2 : la probabilité d'observer l'entrée (i, j) est π i,j . Sous des hypothèses adéquates, portant uniquement sur le bruit (ε i ), et précisées dans le Chapitre 2, on a, avec grande probabilité

1 ≤ i ≤ m 1 , 1 ≤ j ≤ m 2 ( M i,j -M 0 i,j ) 2 π i,j ≤ C rank(M 0 ) max(m 1 , m 2 ) n log(min(m 1 , m 2 )), où C est une constante numérique
En particulier, lorsque la loi d'échantillonage est uniforme

π i.j = 1/m 1 m 2 , M -M 0 2 F m 1 m 2 ≤ C rank(M 0 ) max(m 1 , m 2 ) n log(min(m 1 , m 2 )),
où C est une constante numérique. Cette vitesse, grâce à la borne inférieure discutée précédemment, est minimax-optimale à un log près. On peut noter une (très) légère amélioration par rapport à [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]: le log(m 1 + m 2 ) log(max(m 1 , m 2 )) est remplacé par log(min(m 1 , m 2 )).

D'un point de vue algorithmique, en utilisant une méthode de Monte-Carlo par chaìne de Markov (MCMC), on a pu tester notre estimateur sur des données simulées de taille 1000×1000. Un exemple de résultat numérique est donné dans la Table 2 (cf. le Chapitre 2 pour des résultats exhaustifs).

Remarques bibliographiques

Plusieurs extensions et améliorations ont été publiées ces dernières années. Par exemple, les résultats de [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF], tout aussi bien que les notres, supposent que l'on connaìt la variance du bruit, ou au moins un majorant de cette variance. Cette hypothèse n'est pas toutefois si irréaliste que l'on pourrait le croire: par exemple, dans le prix Netflix, les notes sont prior m = 100 m = 200 m = 500 m = 1000 Unif. 0.535 (±0.003) 0.348 (±0.003) 0.207 (±0.0001) 0.141 (±0.0006) Gaus. 0.538 (±0.001) 0.345 (±0.001) 0.210 (±0.0001) 0.146 (±0.001) Table 2: Erreur quadratique moyenne dans une série d'expériences (matrice carée de faible rang, de taille m × m, bruit gaussien). On compare notre estimateur avec loi a priori uniforme à l'estimateur bayésien à loi a priori gaussienne, utilisé par [START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF], et on note que les résultats sont assez similaires.

bornées (entre 1 et 5) et donc on a unr majoration triviale de la variance. D'un autre côté, pour d'autres applications, cette variance pourrait être inconnue. Le problème de complétion de matrice avec une variance inconnue a été traité par [START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]. L'estimateur proposé est

MSQ = arg min M      1 n (i,j)∈Ω (Y i,j -M i,j ) 2 + λ M *      .
Cet estimateur est l'analogue du square-root Lasso [START_REF] Belloni | Square-root lasso: pivotal recovery of sparse signals via conic programming[END_REF]. Cet estimateur atteint la même vitesse que celle de l'estimateur de [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]. Une extension de cette idée dans le cadre bayésien serait certainement intéressante, et pourrait faire l'objet d'un travail à venir.

Parmi les autres variantes on trouve le problème de la complétion de matrices binaires [START_REF] Davenport | 1-bit matrix completion[END_REF]: cette fois, les entrées observées ne peuvent prendre que deux valeurs, par exemple 0 ou 1. L'étude de ce modèle a été menée dans [START_REF] Cai | A max-norm constrained minimization approach to 1-bit matrix completion[END_REF][START_REF] Klopp | Adaptive multinomial matrix completion[END_REF][START_REF] Srebro | Maximum-margin matrix factorization[END_REF] (entre autres). Depuis la publication de l'article correspondant au Chapitre 2 de cette thèse, les outils en ont été repris par [START_REF] Cottet | 1-bit matrix completion: Pac-bayesian analysis of a variational approximation[END_REF] pour traiter le problème de la complétion de matrices binaires.

La complétion de matrices robuste a été étudiée par [START_REF] Klopp | Robust matrix completion[END_REF], dans lequel les auteurs rajoutent un terme de pénalisation supplémentaire pour supprimer les points aberrants. Un autre point de vue est proposé par [Alquier et al., 2017a] qui proposent plutôt de remplacer la perte quadratique par une perte insensible aux points aberrants (comme la perte absolue). L'article [START_REF] Carpentier | Adaptive confidence sets for matrix completion[END_REF] va au-delà des problèmes d'estimation ponctuelle pour s'intéresser à des régions de confiance sur les matrices à reconstruire. 0.5 Présentation de nos résultats pour la tomographie quantique 0.5.1 Rapide introduction à la statistique quantique La tomographie quantique joue un rôle important dans le traitement de l'information quantique. Elle consiste en la reconstruction de l'état quantique (supposé inconnu) d'un système physique [Paris and Řeháček, 2004]. Cette tâche est accomplie à l'aide de mesures effectuées sur des copies indépendantes de ce système. On renvoie le lecteur à l'introduction de la thèse [START_REF] Meziani | Estimations et tests non paramétriques en tomographie quantique homodyne[END_REF], ou à l'article [START_REF] Artiles | An invitation to quantum tomography[END_REF] pour à la fois une présentation générale des concepts de base de la physique quantique, et une introduction aux aspects statistiques de la tomographie quantique.

Brièvement, selon la théorique de la physique quantique, toute l'information sur un système physique est contenue dans ce que l'on appelle son "état quantique". Le résultat d'une expérience menée sur un système n'est pas, en général, une fonction déterministe de ce système, mais une variable aléatoire, dont la loi de probabilité est une fonction explicite de l'état quantique du système (on va préciser ceci un peu plus loin). Une représentation mathématique possible de l'état d'un système est une matrice dite matrice de densité ρ. Cette matrice a des entrées à valeurs complexes, et vérifie

• ρ est hermitienne, ρ † = ρ (auto-adjointe),
• ρ est définie positive, ρ ≥ 0,

• Trace(ρ) = 1.

Les dimensions de ρ dépendent du système considéré, et peuvent être finies ou infinies. Par exemple, dans le modèle de tomographie homodyne quantique traité dans [START_REF] Artiles | An invitation to quantum tomography[END_REF][START_REF] Butucea | Minimax and adaptive estimation of the wigner function in quantum homodyne tomography with noisy data[END_REF][START_REF] Alquier | Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data[END_REF][START_REF] Naulet | Bayesian nonparametric estimation for quantum homodyne tomography[END_REF], la matrice ρ est à indices dans N et ses coefficients ρ i,j ont un module qui décroit exponentiellement en i et j. Ici, on s'intéresse à un modèle utilisé en informatique quantique, et dans ce cas ρ est de dimension finie. Le système d'intérêt est un système dit de n qubits à spin 1/2 et la matrice de densité correspondante ρ est une matrice 2 n × 2 n . De plus, les physiciens sont particulièrement intéressés par des états dits états purs, qui correspondent à des matrices ρ de rang 1. En pratique, considérer que la matrice d'un état est de faible rang peut être sensé de façon plus générale [START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF].

Il est important pour les physiciens de pouvoir tester leur capacité à préparer un système dans un état donné ρ 0 . Pour ceci, ils utilisent un dispositif expérimental sensé préparer un système dans cet état ρ 0 , et produisent, en utilisant le même dispositif, plusieurs copies du même système. Ils peuvent ensuite faire des mesures sur chacune de ces copies, et essayer de reconstruire l'état ρ dans lequel le dispositif place effectivement le système (idéalement, ρ = ρ 0 ). La reconstruction de ρ à partir de ces observations indépendantes est ce que l'on appelle la tomographie quantique. On renvoie le lecteur à [START_REF] Artiles | An invitation to quantum tomography[END_REF] pour plus de détails sur ce modèle. On donne maintenant les principaux aspects de son formalisme.

Pour chaque qubit, on peut observer son spin suivant chacun des trois axes x, y ou z. L'observation du spin de fait grâce aux observables de Pauli: Pour un système de n qubits, on a donc 3 n mesures possibles, et le résultat de la mesure est un vecteur dans {-1, +1} n . Si chaque mesure possible est répétée m fois sur m systèmes indépendants, on a en tout un total de N = m × 3 n mesures.

σ x = 0 1 1 0 ; σ y = 0 -i i 0 ; σ z = 1 0 0 -1 .
Etant donné un vecteurs ∈ {-1, 1} n , la probabilité de l'observer est une fonction de la densité ρ et du type de mesure que l'on effectue. Elle est donnée par la règle de Born

M i,s := P(R i = s) = Trace ρ • P i s , i ∈ {1, . . . , 3 n }, (8) 
où les P i s sont connues explicitement. Ceci signigie essentiellement qu'il y a une fonction lineaire F telle que M = F (ρ), M = (M i,s ) i∈{1,...,3 n },s∈{-1,1} n .

On donne un exemple possible: Exemple 0.1, dans le cas de 2-qubits, de façon à rendre le problème plus clair. Dans ce cas, il y a 9 mesures expérimentales possibles:(σ x , σ x ), (σ x , σ y ), (σ x , σ z ), . . . , (σ z , σ z ); et pour chaque expérience, il y a 4 résultats possibles: (-1, -1), (-1, +1), (+1, -1), (+1, +1).

Exemple 0.1. On suppose que ρ est telle que la loi de probabilité associée à chaque mesure est donnée par 

(-1, -1) (-1, +1) (+1, -1) (+1,
F (ρ) = M . (9) 
Cette méthode, en fait connue sous le nom de méthode des moments en statistique, est étudiée dans [START_REF] Vogel | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[END_REF][START_REF] Řeháček | Operational tomography: fitting of data patterns[END_REF]. Bien qu'elle soit assez facile à mettre en oeuvre, elle a plusieurs problèmes: notamment, elle retourne souvent un ρ qui ne vérifie pas les axiomes d'une matrice de densité [START_REF] Shang | Quantum state tomography: Mean squared error matters, bias does not[END_REF].

Une autre méthode populaire est l'estimation par maximum de vraisemblance. Malheureusement, elle souffre aussi d'un certain nombre de problèmes, détaillés dans [START_REF] Blume-Kohout | Optimal, reliable estimation of quantum states[END_REF]. En particulier, elle est beaucoup plus lourde numériquement. Mais de façon plus importante pour nous, aucune de ces méthodes n'utilise l'information selon laquelle ρ doit être de faible rang. Pour résoudre ce problème, des méthodes adaptatives au rang grâce à des pénalités convenablement choisies ont été proposées. Un maximum de vraisemblance pénalisé par le rang via un critère BIC a été utilisé par [START_REF] Gut ¸ȃ | Rank-based model selection for multiple ions quantum tomography[END_REF] et un critère des moindres carrés pénalisé par le rang par [Alquier et al., 2013a], avec une preuve de sa consistance. Plus précisément, quand la matrice de densité du système ρ 0 est de rang r = rank(ρ 0 ), les auteurs de [Alquier et al., 2013a] démontrent que leur estimateur ρrank-pen vérifie ρrank-pen -ρ 0 2 F = O(r4 n /N ) où on rappelle que N = m3 n est le nombre de mesures. La vitesse a été améliorée à O(r3 n /N ) par [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF][START_REF] Butucea | Corrigendum: Spectral thresholding quantum tomography for low rank states (2015 new j. phys. 17 113050)[END_REF], en utilisant une méthode de seuillage.

Théorème 0.6 (Corollaire 1 dans [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]). Sous des hypothèses convenables, avec probabilité au moins 1 -ε, ε ∈ (0, 1)

ρrank-pen -ρ 0 2 F ≤ C r3 n N log(2 n+1 /ε).
De plus, des bornes inférieures sont aussi prouvées dans [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]. L'article montre que la vitesse minimax ne peut pas être plus petite que r2 n /N . Donc, elle est en fait située quelque part entre r2 n /N et r3 n /N . C'est le théorème suivant qui l'établit.

Théorème 0.7 (Borne inférieure, Théorème 3 dans [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]). lim inf

m→∞ inf ρm sup ρ∈Sr E ρ ρm -ρ 2 F ≥ 2r(2 n -r) N
où S r est l'ensemble des matrices de densité de rang au plus r.

D'un autre côté, des méthodes bayésiennes ont été considérées pour ce problèmes. Les articles [START_REF] Bužek | Reconstruction of quantum states of spin systems: From quantum bayesian inference to quantum tomography[END_REF][START_REF] Baier | Comparison of some methods of quantum state estimation[END_REF] comparent méthodes bayésiennes et non bayésiennes sur des données simulées. Des algorithmes efficaces de calcul d'estimateurs bayésiens en tomographie quantique sont proposées dans [START_REF] Kravtsov | Experimental adaptive bayesian tomography[END_REF][START_REF] Ferrie | Quantum model averaging[END_REF][START_REF] Kueng | Near-optimal quantum tomography: estimators and bounds[END_REF][START_REF] Schmied | Quantum state tomography of a single qubit: comparison of methods[END_REF]. L'article [START_REF] Blume-Kohout | Optimal, reliable estimation of quantum states[END_REF] établit un certain nombre de bonnes propriétés d'estimateurs bayésiens cans ce problème. Ceci dit, la convergence quand m → ∞ n'est pas prouvée. Surtout, aucune de ces références ne traite du problème de l'adaptation au rang.

Résultats principaux du Chapitre 3

On considère dans le Chapitre 3 deux estimateurs pseudo-bayésiens basés sur différentes pseudo-vraisemblances. Le premier, ρdens λ , repose sur une comparaison entre ρ and ρ (l'estimateur par inversion) alors que l'autre, ρprob λ repose sur une comparaison entre les fréquences empiriques et théoriques F (ρ) and F (ρ). En utilisant l'approche PAC-Bayésienne on démontre des inégalités oracle pour la pseudo-moyenne a posteriori. En particulier, pour un λ bien choisi, ρprob λ atteint la meilleure vitesse connue à ce jour O(rank(ρ 0 )3 n /N ) [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]. Ceci dit, ρdens λ garde un intérêt pratique car son calcul est beaucoup plus rapide.

La difficulté principale ici était de définir une loi a priori sur l'ensemble des matrices de densité. On rappelle que la matrice de densité d'un système de n-qubits est une matrice 2 n × 2 n à coefficients complexes, hermitienne, positive et de trace 1. Il faut donc que notre loi a priori ne charge que de telles matrices. De plus, elle doit conduire à des estimateurs bayésiens calculables en pratique. Enfin, elle doit particulièrement favoriser les matrices de faible rang.

Notre construction repose là encore sur l'idée de factorisation. En fait, pour une matrice hermitienne, on a la diagonalisation ρ = U DU * où U est une matrice unitaire et

D =    a 1 • • • 0 . . . . . . . . . 0 • • • a 2 n    .
Une façon de définir la loi sur ρ est de définir une loi sur U et une loi indépendante sur (a 1 , . . . , a 2 n ). Si cette dernière induit de la sparsité, alors ρ sera probablement de faible rang. Ceci conduirait à la décomposition

ρ = 2 n j=1 a j U •j (U •j ) * . ( 10 
)
Le problème est que définir une loi sur les matrices unitaires ne conduit pas à des lois faciles à traiter computationnellement. Dans le Chapitre 3, on propose de relâcher cette contrainte sur U . On montre que la loi que l'on fabrique charge quand même les matrices de densité de faible rang. Cette construction, avec les deux pseudo-vraisemblances mentionnées précédemment, conduit à la construction de nos estimateurs ρprob λ et ρdens λ . En particulier, on prouve le résultat suivant Théorème 0.8. Fixons ∈ (0, 1). Alors, pour λ = λ * := m/2, avec probabilité au moins 1 -on a 

ρprob λ * -ρ 0 2 F ≤ C 3 n rank(ρ 0 ) log rank(ρ 0 )N 2 n + (1.5) n log(2/ )

Remarques bibliographiques

Nous avons considéré le cas où toutes les observables de Pauli avaient été effectivement mesurées. Une partie de la littérature, plus proche du problème de compressed sensing, s'intéresse au cas où seule une partie des mesures sont effectuées. Cf. par exemple [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Flammia | Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators[END_REF][START_REF] Koltchinskii | Von neumann entropy penalization and low-rank matrix estimation[END_REF][START_REF] Koltchinskii | Optimal estimation of low rank density matrices[END_REF][START_REF] Xia | Estimation of low rank density matrices: bounds in schatten norms and other distances[END_REF][START_REF] Xia | Estimation of low rank density matrices by pauli measurements[END_REF].

0.6 Lifelong learning dans un contexte en-ligne 0.6.1 Motivation et formalisation La plupart des algorithmes d'apprentissage proposés partent toujours du principe qu'à chaque nouveau problème, un échantillon est donné et on commence l'apprentissage "de zéro". Cependant, la vie réelle regorge d'exemples où on ne recommence jamais de zéro, car on utilise de façon implicite l'information qui vient de tâches précédentes. Un exemple facile est celui de la reconnaissance des formes en imagerie: un objectif est de fabriquer un dictionnaire de fonctions invariant par le plus de transformations géométriques possibles, qui permette une représentation naturelle des images et soit adapté pour la classification. Si on reçoit séquentiellement plusieurs échantillons, chacun destiné à résoudre un problème de classification données (images de chiens contre autres images, images d'oiseaux contre autres images etc.) il est sensé d'utiliser toutes les images pour construire le dictionnaire, et donc à l'arrivée d'un nouveau jeu de données (chat contre autres), l'apprentissage ne recommence pas à zéro. Cette idée est au coeur de la notion d'apprentissage par transfert, ce qui signifie que l'on transfère de l'information d'une tâche à une autre, cf. [START_REF] Thrun | Learning to Learn[END_REF][START_REF] Baxter | A bayesian/information theoretic model of learning to learn via multiple task sampling[END_REF][START_REF] Baxter | A model of inductive bias learning[END_REF][START_REF] Cavallanti | Linear algorithms for online multitask classification[END_REF][START_REF] Maurer | Algorithmic stability and meta-learning[END_REF][START_REF] Maurer | Sparse coding for multitask and transfer learning[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Balcan | Efficient representations for lifelong learning and autoencoding[END_REF][START_REF] Galanti | A theoretical framework for deep transfer learning[END_REF][START_REF] Maurer | The benefit of multitask representation learning[END_REF] et les références mentionnées dans ces papiers.

A la différence des Chapitres 2 et 3, on s'attaque ici à un problème dont la formalisation n'est pas encore complètement bien établie. Il y a plusieurs versions possibles, suivant que l'on considère que toutes les tâches sont présentées d'un coup, ou séquentiellement, etc. Comme point de départ, nous nous sommes intéressés au cas où les différentes tâches sont proposées séquentiellement (en ligne). Ce contexte a parfois reçu le nom de lifelong learning, on gardera ce terme anglais dans cette introduction en français. On propose donc un méta-algorithme de lifelong learning qui transfère une partie de l'information d'une tâche à une autre, et on en fournit une analyse théorique, en terme de regret. Le point fort de notre analyse est qu'elle ne dépend pas de l'algorithme utilisé pour résoudre individuellement chacune des tâches.

Décrivons un exemple typique pour fixer les idées. Il faut maintenant formaliser en quoi une partie de l'information provenant des tâches {1, . . . , t -1} peut être utile pour résoudre la tâche t. Formellement, soit Z un ensemble et G un ensemble de fonctions (ou représentations) g : X → Z. Soit également un ensemble H de fonctions h : Z → R. La stratégie que nous proposerons est faite pour marcher dans le cas où il y a une représentation commune à toutes les tâches, g ∈ G, et une fonction spécifique à chaque tâche h 1 , . . . , h T , telles que f t = h t • g soit un bon prédicteur pour la tâche t (dans le sens que son erreur moyenne est faible).

Un oracle qui connaìtrait "la bonne" fonction g, et les fonctions h 1 , . . . , h T , subirait la perte moyenne

inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i .
Objectif On peut maintenant formaliser notre objectif. On veut un métaalgorithme qui, au début de chaque tâche t, produit une représentation ĝt ∈ G et permette ensuite d'utiliser n'importe quel algorithme de résolution de la tâche t sur les données (ĝ t (x t,1 ), y t,1 ), . . . , (ĝ t (x t,mt ), y t,mt ) .

On souhaite que le regret combiné de notre procédure

1 T T t=1 1 m t mt i=1 ˆ t,i -inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i
soit le plus petit possible.

Un méta-algorithme On propose la stratégie EWA-LL (cf. l'encadré Algorithm 1), basée sur l'idée connue d'agrégation à poids exponentiels ou EWA (voir par ex. [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]] pour l'étude de EWA dans un contexte en ligne). Bien noter que nous utilisont la méthode EWA pour l'apprentissage de g, mais que le choix de la méthode d'apprentissage des h t n'est pas imposé.

Hypothèse (1) On suppose que l'algorithme utilisé par le statisticien a lui-même un regret contrôlé, c'est-à-dire que l'on a une borne β(g, m t ) qui vérifie pour tout g

1 m t mt i=1 ˆ t,i -inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i ≤ β(g, m t ) < ∞.
Cette hypothèse est vérifié par plusieurs algorithmes: EWA, gradient en ligne. . . on renvoie le lecteur aux excellentes introductions [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF][START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF] aux algorithmes de prédiction en ligne et au contrôle de leur regret. Des exemples précis sont détaillés dans le Chapitre 4.

Dans le Chapitre 4, on prouve le résultat suivant. Théorème 0.9. Sous l'Hypothèse 1) et si la fonction de perte est bornée g ∈ G, Lt (g) ∈ [0, C], on a Algorithm 1 EWA-LL Données Une séquence de jeux de données S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) , 1 ≤ t ≤ T associés à différentes tâches, et eux-mêmes révélés séquentiellement;

A fixer Une loi a priori π 1 sur G, un paramètre d'apprentissage η > 0 et un algorithme d'apprentissage à l'intérieur de chaque tâche t qui, pour une représentation g donnée, retourne une suite de prédictions ŷg t,i et subit la perte moyenne:

Lt (g) := 1 m t mt i=1 ŷg t,i , y t,i . Boucle Pour t = 1, . . . , T i Tirer ĝt ∼ π t .
ii Utiliser l'algorithme d'apprentissage de la tâche t sur S t et subir la perte Lt (ĝ t ).

iii Mettre à jour

π t+1 (dg) := exp(-η Lt (g))π t (dg) exp(-η Lt (γ))π t (dγ) . 1 T T t=1 E ĝt∼πt 1 m t mt i=1 ˆ t,i ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 h t •g(x t,i ), y t,i + 1 T T t=1 β(g, m t ) + ηC 2 8 + K(ρ, π 1 ) ηT ,
où l'infimum est pris sur toutes les mesures de probabilités ρ.

Remarquons que cette borne est uniquement vraie en espérance sur le tirage des différents g t . Cependant, il est possible de donner des versions vraies en grande probabilité, cf. le Chapitre 4. De plus, quand la fonction de perte est convexe, on peut également donner des versions uniformément vraies, à condition de remplacer le tirage de g t par une agrégation. Dans le Chapitre 4, Section 4.5, on applique cette borne à deux cas particuliers: l'exemple "jouet" où G et H sont deux ensembles finis, et l'exemple de l'apprentissage de dictionnaire. D'autres exemples intéressants pourront être traitś à l'avenir: apprentissage de noyau pour des SVM, de couches profondes pour un réseau de neurones... Comme nous l'avons dit au dessus, la formalisation de ces problèmes est encore un travail en cours (des variantes, par exemple où les jeux de données S t sont données d'un coup et non pas séquentiellement, sont aussi discutées, et le problème de savoir quelle formalisation du problème est la meilleure dépend probablement de l'application qui sera considérée). Donc, bien entendu, les vitesses optimales dans ce problème ne sont pas connues, et ceci pourra faire l'objet d'un travail à venir. Cependant, dans un de nos exemples (G et H finis, et m t = m pour tout t pour faire simple), on améliore la meilleure vitesse connue 1/ √ T +1/ √ m [START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF] pour obtenir 1/ √ T +1/m sous certaines hypothèses.

Chapter 1

INTRODUCTION 1.1 Motivation

In many applications of statistics, the objective is to estimate a high-dimensional matrix from noisy and possibly incomplete observations. The size of the matrix and of the datasets is huge (i.e. with billions of entries). Also, the matrix itself is often coming with many complex constraints. These usually prohibit the use of classical methodologies. One of the biggest challenge facing modern statistics is the development of the next generation of methodology and statistical theory to allow inference for such massive datasets. The objective of this thesis is to tackle this challenge.

A common approach to reduce the dimension of the problem is inspired by the sparsity assumption in high-dimensional linear regression model: the essence of this approach is to assume that the matrix is low-rank -or, at least, can be well approximated by a low-rank matrix. Note that low-rankness is a property of the whole matrix that is contrast to sparsity in a vector which is a property of the individual components. More precisely, the columns (rows) of a low-rank matrix can be interpreted as linear combinations of a small number of (unknown) basis vectors. This is in accordance with many statistical models where one explains the observations by a small number of hidden (or latent) variables.

In many practical problems, the target matrix we wish to infer is actually low-rank or approximately low-rank. As a motivating example, the famous Netflix data matrix [START_REF] Bennett | The netflix prize[END_REF] of user-ratings was modelled as low-rank because it is commonly believed that the users's taste or preferences are similar. Moreover, low-rank matrix estimation is a crucial key in many applications such as: dictionary learning [ [START_REF] Kreutz-Delgado | Dictionary learning algorithms for sparse representation[END_REF][START_REF] Mairal | Online dictionary learning for sparse coding[END_REF][START_REF] Tosic | Dictionary learning[END_REF], matrix completion [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Keshavan | Matrix completion from a few entries[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Candes | Phase retrieval via matrix completion[END_REF][START_REF] Kapur | Gene expression prediction using low-rank matrix completion[END_REF]; principal component analysis [START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[END_REF][START_REF] Bro | Principal component analysis[END_REF][START_REF] Zou | Sparse principal component analysis[END_REF], high-dimensional covariance/precision matrix [START_REF] Fan | High dimensional covariance matrix estimation using a factor model[END_REF][START_REF] Pourahmadi | High-dimensional covariance estimation: with highdimensional data[END_REF][START_REF] Cai | Estimating structured highdimensional covariance and precision matrices: Optimal rates and adaptive estimation[END_REF][START_REF] Lounici | High-dimensional covariance matrix estimation with missing observations[END_REF],

quantum tomography [START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Flammia | Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators[END_REF][START_REF] Liu | Experimental quantum state tomography via compressed sampling[END_REF].

Various methods have been proposed and studied over the years for lowrank matrix problems. The most popular methods rely on (efficient) convex optimization algorithms. More precisely, these methods are based on minimizing a sum of two criteria: a measure of the quality of data fitting, and a penalization term that is added to avoid over-fitting. A natural penalty term for low-rank matrix inference is the rank of the matrix. However, the rank is not a convex function of a matrix and thus the use of convex relaxation penalties on the rank, such as the matrix nuclear-norm, are preferred for computational reasons.

Along the side of the journey, Bayesian approaches have also been considered for this type of problems. Rather than considering a point estimate as in the frequentist approach, the Bayesian approach provides a probability distribution on target matrices. There the low-rank structure is incorporated through a prior distribution. Increasing computational power, together with the development of new algorithms, helped Bayesian methods to become more and more popular for such high-dimensional problems. However, there was little theoretical work on the statistical performances of Bayesian methods for low-rank matrix estimation. In this thesis, we focus not only on proposing Bayesian-type estimators but also on studying their statistical properties.

The first two parts of the thesis are dedicated to two practical problems of estimation of low-rank matrices: the matrix completion problem and quantum state tomography, where the objective is to estimate the so-called density matrix, that is often assumed to be low-rank by physicists. For matrix completion, we show that a quasi-Bayesian estimator satisfies an optimal oracle inequality, and thus reaches the minimax-optimal rates (up to log terms). The strong point of our results is that it holds without any assumption on the sampling distribution -this is the first result without such an assumption up to our knowledge. For the quantum state tomography problem, we build a pseudo-Bayesian estimator. Note that in most previous works, the definition of a prior probability distribution was only tackled in the case of the 1 qubit problem (the smallest possible instance of the problem, where the matrix to be estimated is 2 × 2). Inspired by the prior used for matrix completion, we propose a prior distribution that can be used to estimate density matrices of any dimension. We show that our pseudo-Bayesian estimator reaches the best up-to-date known rate of convergence while its numerical performance was tested on simulated and real data sets.

In the last part of the thesis, we investigate the lifelong learning problem which appeared in artificial intelligence and machine learning. Succinctly, we study the problem of transferring the knowledge learned from previous similar tasks to a new one, where tasks are revealed sequentially. For example, each task can be a high-dimensional linear regression problem. A way to reduce the dimension of the problem is to learn an efficient dictionary of features across tasks, and to estimate the corresponding parameters within tasks. It is possible to represent such a dictionary of vectors as a matrix, and thus the problem is somehow related to matrix estimation. However, note that the lifelong learning problem is more general than dictionary learning, and we study it in full generality in the thesis.

Beside the Introduction, the thesis includes three self-contained chapters. It is organized as follows:

Chapter 2: We study the matrix completion problem. In this problem, we want to reconstruct a matrix from noisy and incomplete observations of its entries. Through introducing a novel prior distribution, we propose a pseudo-Bayesian estimator for this problem. We show that this estimator reaches the minimax-optimal rate of convergence under general sampling distribution. We also perform numerical tests for this estimator on simulated datasets and compare it with other popular Bayesian estimators.

Chapter 3 deals with quantum state tomography. We study density matrix estimation from data obtained by quantum state tomography, where full measurements are repeated. The problem has been studied under the lowrank assumption. We propose a novel prior distribution and introduce two Bayesian type estimators based on pseudo-likelihoods. The rate of convergence for these estimators are obtained: one of the estimators reaches the best up-to-date known rate, the other is consistent. Here again we compare the numerical performances of our estimators to the ones of the most popular methods, on simulated and real data.

Chapter 4 is dedicated to lifelong learning. Typically, this problem is an online scenario of transfer learning where we want to transfer the information gained from previously learned tasks to a new one, under the assumption that there is a structural similarity between tasks. Assuming that an estimation method is already chosen in order to solve each task (linear regression, online gradient, etc.) we propose a meta-algorithm to transfer information between tasks. It is based on the exponentially weighted aggregation procedure (EWA). The statistical performance of the algorithm is warranted through a regret bound. Some applications of our procedure are also given, including dictionary learning.

The rest of this introduction is organized as follows. In Section 1.2, we briefly review several popular ways to define prior distributions on matrices inducing low-rankness. In Section 1.3, we introduce PAC-Bayesian inequalities, the main theoretical tool of Chapters 2 and 3. Then, in the Sections 1.4, 1.5 and 1.6, we provide an overview of the results of Chapters 2 (matrix completion), Chapter 3 (quantum state tomography) and Chapter 4 (lifelong learning).

Prior distributions for low-rank matrices

We remind briefly that the idea of Bayesian statistics is to encode the prior information on parameters (or the complexity of the parameter space) through a prior distribution p(dθ). Inference is then done through the posterior distribution

p(dθ | data) ∝ L(data | θ)p(dθ), (1.1)
where L(data | θ) stands for the likelihood. In this thesis, we will mostly consider the so-called pseudo-Bayesian estimators, where the likelihood L(data | θ) is replaced by a more general term depending on a loss function. But this will be discussed in Section 1.3. We discuss the role of the prior distribution p(dθ) first. Undoubtedly, p(dθ) plays a crucial role in the inference. There is a lot of studies and discussion on choosing prior distributions in general or in different specific problems. Hereafter, we give a short discussion on prior distributions for matrix estimation and then we review several ways to induce low-rankness through an adequate prior.

Naturally, depending on the context of the considering problems, one could define directly a matrix distribution for the target matrix. The popular choices for matrix distributions are Matrix Normal distribution and Wishart distribution as examples, others can be found for example in [START_REF] Gupta | Matrix variate distributions[END_REF]].

Let's assume for instance that the observation come from a Matrix Normal distribution, X m 1 ×m 2 | M, Φ, Σ ∼ N (M, Φ ⊗ Σ) with Φ and Σ either known or unknown. Then the likelihood is

L(X | M, Φ, Σ) = exp -1 2 tr Σ -1 (X -M) T Φ -1 (X -M) (2π) m 1 m 2 /2 |Σ| m 1 /2 |Φ| m 2 /2 . (1.2)
In the case we are dealing with estimating the mean matrix M, then we obtain "a form" for the posterior distribution of M as

p(M|X) ∝ exp - 1 2 tr Σ -1 (X -M) T Φ -1 (X -M) p(M).
This suggests that we should choose our prior distribution for M from the Matrix Normal family as follows

p(M) = p(M | Φ 1 , Σ 1 ) ∝ exp - 1 2 tr Σ -1 1 (M -M 0 ) T Φ -1 1 (M -M 0 ) ,
where the quantities M 0 , Φ 1 and Σ 1 are hyperparameters to be assessed. Then the prior and the likelihood are conjugate distributions, and the posterior distribution p(M|X, Φ 1 , Σ 1 ) is itself a Matrix Normal distribution, whose parameters can be explicitly computed.

On the other hand, when our goal is to estimate the covariance matrix Σ (similar for Φ), then

p(Σ|X) ∝ |Σ| -m 1 2 exp - 1 2 tr Σ -1 (X -M) T Φ -1 (X -M) p(Σ).
This implies that we should select a prior distribution for Σ from the Inverted Wishart family as follows

p(Σ) = p(Σ | Q, ν) ∝ |Σ| -ν 2 exp - 1 2 tr Σ -1 Q ,
where Q and ν are hyperparameters that need to be specified. Note moreover that the Inverted Wishart family is indeed a family of probability distributions defined over positive-definite matrices random variables, thus it is a sensible prior for covariance matrices. Here again, we have a conjugate prior. Further discussions on these type of prior distributions for matrices can be found for example in [START_REF] Rowe | Multivariate Bayesian statistics: models for source separation and signal unmixing[END_REF].

However, there is no reason for these priors to induce low-rank, or approximately low-rank, matrices M and Σ. Thus, the conjugacy approach, popular for computational reasons, seems to be of no help in our setting. Still, a nice trick allows to distort conjugate priors to induce low-rank matrices. It is described in the next subsection.

Low-rank through correlation

Remark that a low-rank (or approximately low-rank) matrix has linearly dependent rows/columns. In probabilistic terms, it means that its rows/ columns are highly correlated. Thus a careful choice for the column (or row) covariance matrix Φ, or Σ, or both would encourage approximately low-rank structure in the matrix. This can be done by defining further a hyper prior for Φ or Σ, or both.

A way to encourage low-rank is thus directly based on the correlation of the columns (or the rows) of the matrix. Let us define a Matrix Normal distribution (the probability density distribution in form of (1.2)) for the target low-rank matrix M m 1 ×m 2 , i.e rank(M) min(m 1 , m 2 ),

M | M 0 , Φ 1 , Σ 1 ∼ N (M 0 , Φ 1 ⊗ Σ 1 ),
where M 0 is the mean matrix; Φ 1 and Σ 1 are respectively the row and column covariance matrix. In the extreme case when the precision matrix Φ -1 1 or Σ -1 1 (or both) has low-rank, the matrix M also enjoys a low-rank structure approximately. In order to impose low-rank, thus, one can define a prior distribution for the precision matrices which induces rank deficiency [START_REF] Sundin | Relevance singular vector machine for low-rank matrix reconstruction[END_REF]. This approach is known as precision based models or relevance singular vector machine (RSVM). A comprehensive study of this approach can be found in [START_REF] Sundin | Bayesian methods for sparse and low-rank matrix problems[END_REF] and references therein. Clearly, using this approach means that we transfer the problem of defining low-rank prior for the target matrix to the problem of defining low-rank prior for the precision matrix. Although showing some interesting numerical results, RSVM method suffers from high computational complexity and the development of the method for larger scale problems is still an open problem. Thus, we will consider a completely different approach in what follows, based on matrix factorization.

Low-rank via factorization

A popular way to promote low-rank is based on matrix factorization approach, where the matrix is modelled as a product of two smaller matrices.

Remind that any matrix M of size m 1 × m 2 and rank-K can be decomposed in the following way by considering the singular value decomposition

M = U SV T = (U S 1 2 )(S 1 2 V T ),
where U, V are respectively m 1 × K and m 2 × K matrices with orthogonal columns, and S is a K × K diagonal matrix of the non-zero singular values. Letting A and B denote respectively (U S 1 2 ) and (V S 1 2 ), we obtain

M = AB T (1.3) where A is m 1 × K and B is m 2 × K.
The main idea of factorized priors is to define priors on A and B rather than on M directly. To our knowledge, a first Bayesian treatment of this type was carried out in [START_REF] Geweke | Bayesian reduced rank regression in econometrics[END_REF] where the author studied the reduced rank regression model in econometrics with factorized priors.

The major issue in the factorization approach is that the reduced rank K needs to be known in advance. Naturally, one can estimate A and B for any possible K and then use an information criterion for model selection, e.g Bayes factors as in [START_REF] Kleibergen | Priors, posteriors and bayes factors for a bayesian analysis of cointegration[END_REF]. Numerical approximation and evaluation of convergence for this method can be found in [START_REF] Corander | Bayesian assessment of dimensionality in reduced rank regression[END_REF].

A rank-adaptive strategy has been introduced recently by taking a large K, as K = min(m 1 , m 2 ). The prior on the A and B is then chosen in order to induce a shrinkage on the columns of these matrices, leading to approximately low-rank matrices. To our knowledge, [START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF] presented the first attempt in this direction and then various improved versions had been proposed, e.g [START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Zhou | Nonparametric bayesian matrix completion[END_REF][START_REF] Babacan | Lowrank matrix completion by variational sparse bayesian learning[END_REF][START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF] by putting prior on hyperparameters. In detail, since we are looking for a low-rank estimate of M , one can carry out it by proposing column sparsity in A and B (i.e most columns in A and in B are set equal to zero). Formally, it is clear in (1.3) that M is the sum of outer-products the columns of A and B, that is

M = K j=1 A •j B T •j , (1.4)
where A •j and B •j denote the j th column of A and B respectively. Thus one can associate the columns of A and B with some prior distribution enforcing sparsity. For example [START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF] used Gaussian priors of variances γ i , that is

p(A|γ) = K j=1 N (A •j |0, γ j I), p(B|γ) = K j=1 N (B •j |0, γ j I).
Moreover, they modelled the γ i s as random according to a distribution highly concentrated around zero. For computational reasons, conjugate prior distributions for γ i s are widely used and a popular choice in the literature is that 1/γ i ∼ Γ(a, b) (Gamma distribution) with a very small b. Then, most γ i 's are very close to 0, and so are most of the columns A •j and B •j . So, most of the terms in (1.4) are almost null. Thus, M is very close to a low-rank matrix.

In Chapters 2 and 3, we define prior distributions for the matrix completion problem, and for quantum tomography. None of these priors are exactly equal to the ones proposed by [START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF], but in both cases, our construction are based on the factorization+shrinkage approach as in (1.4).

A short introduction to PAC-Bayesian analysis

As mentioned earlier, one of the main objective of this thesis is to explore the statistical properties of Bayesian and pseudo-Bayesian estimators. Many theoretical approaches are available for this.

A first idea is to prove asymptotic concentration of the posterior around the true value of the parameter to be estimated (here, a matrix). This approach is for example described in [Ghosal et al., 2000a] for nonparametric models, a very nice review can be found in [START_REF] Rousseau | On the frequentist properties of bayesian nonparametric methods[END_REF].

A second approach consists in studying the MAP (maximum a posteriori) using the theory of penalized risk minimization (based on concentration inequalities). For example, the LASSO estimator, first introduced and studied as a frequentist estimator, can be seen as a MAP with a Gaussian likelihood and a Laplace prior. Recently, [START_REF] Abramovich | Map model selection in gaussian regression[END_REF][START_REF] Abramovich | Sparse additive regression on a regular lattice[END_REF] proved minimax-optimal rates for a Bayesian MAP estimator in the sparse regression and the nonparametric additive model respectively, using a concentration inequality from [START_REF] Birgé | Gaussian model selection[END_REF].

In this thesis, we focus on another approach relying on PAC-Bayesian inequalities. While this approach definitely share some similarities with the approach based on concentration inequalities, the results are different in nature. The main difference with the aforementioned approaches is that we do not assume any statistical model on the observations -or, if we do, we still want our estimator to work well in case of misspecification. Thus the approach is primarily based on techniques from the machine learning community. PAC-Bayesian bounds were pioneered by [START_REF] Shawe-Taylor | A PAC analysis of a Bayes estimator[END_REF][START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Mcallester | Pac-bayesian model averaging[END_REF], and then by [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF]. Some compreshensive surveys of this technique for different aspects in statistics and machine learning can be found in [START_REF] Audibert | Théorie statistique de l'apprentissage: une approche PAC-bayésienne[END_REF][START_REF] Alquier | Transductive and inductive adaptative inference for regression and density estimation[END_REF][START_REF] Guedj | Aggregation of estimators and classifiers : theory and methods[END_REF][START_REF] Germain | Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif[END_REF]. Generally, this approach connects the generalization ability of an aggregation distribution to its empirical risk and to its Kullback-Leibler divergence with respect to a prior distribution. Minimizing this criterion usually leads to an exponentially weighted aggregation (EWA), that is an aggregation distribution of the form (1.1) but where the likelihood L(data | θ) is replaced by an exponential function of the empirical risk. We now provide a short user-friendly introduction to PAC-Bayes bounds.

Basic set-up

Let (X 1 , Y 1 ), . . . , (X n , Y n ) ∈ X × Y be n independent observed pairs, where X is any measurable set and Y = {-1, +1} for classification or Y = R for regression. We denote D := (X i , Y i ) n i=1 (as data) for convenience. Each example is sampled from a distribution denoted by P (unknown) and the corresponding expectation is denoted by E.

The statistician consider a set of predictors (hypothesis) H := {f θ : X → Y; θ ∈ Θ}, which yields a real value loss (Y i , f θ (X i )) on the i-th example. For example, one may use the squared loss

(Y i , f θ (X i )) = (Y i -f θ (X i )) 2 in the regression model. The expected risk (error) of f θ is defined by R(θ) = 1 n n i=1 E (Y i , f θ (X i )).
Note that this quantity is unknown (because P is unknown), but its empirical counterpart, the empirical risk (error) of f θ , can be computed on the data:

r(θ) = 1 n n i=1 (Y i , f θ (X i )).
The "classical" approach focuses on estimators θ : (X × Y) n → Θ and investigate the relationship between the empirical risk r( θ) and the expected risk R( θ). The PAC-Bayesian approach focuses on functions ρ : (X × Y) n → M 1 + (Θ) where M 1 + (Θ) is the set of all probability distributions on Θ equipped with some suitable σ-algebra T . Depending on the situation, we can then provide guarantees on the estimator defined as the mean under ρ, θ = θρ(dθ), or on a randomized estimator θ drawn directly from ρ.

An empirical PAC-Bayesian bound: A basic PAC-Bayesian bound is as follows.

Theorem 1.1 (e.g. Theorem 2.3 in [START_REF] Alquier | Transductive and inductive adaptative inference for regression and density estimation[END_REF]). Fix a probability distribution π ∈ M 1 + (Θ). Assume that the loss takes the values in [0, C] for a constant C > 1. For any λ ∈ (0, n/C), with probability at least 1-ε, ε ∈ (0, 1) and for any ρ

∈ M 1 + (Θ) Θ R(θ)ρ(dθ) ≤ Θ r(θ)ρ(dθ) + K(ρ, π) + log 1 ε λ + λC 2 2n . (1.5)
We remind that K(ρ, π) stands for the Kullback-Leibler divergence between ρ and π, given by K(ρ, π) = log dρ dπ dρ, when ρ is absolutely continuous w.r.t π, +∞, otherwise.

For the sake of simplicity, let us denote for short ν(h) = Θ h(θ)ν(dθ). We state an important lemma from which we can deduce an optimal candidate for the left-hand side of the above theorem.

Lemma 1.1. For any bounded measurable function h : Θ → R and for any

ρ ∈ M 1 + (Θ) such that K(ρ, π) < ∞, we have -log π[exp(h)] = inf ρ∈M 1 + (Θ) [-ρ(h) + K(ρ, π)]
Particularly, the infimum in the right-hand side is reached for the Gibbs distribution ρ exp(h) defined by

dρ exp(h) dπ (θ) = exp(h(θ)) π(exp(h)) .
Proof. We have

K(ρ, ρ exp(h) ) = ρ log dρ dπ -h + log π[exp(h)] = K(ρ, π) -ρ(h) + log π[exp(h)].
The left-hand side of this equation is non-negative and vanishes only for ρ = ρ exp(h) (note that this equation is still valid if ρ is not absolutely continuous w.r.t π: says +∞ = +∞). So we get 0 = inf

ρ∈M 1 + (Θ) [K(ρ, π) -ρ(h)] + log π[exp(h)].
A Bayesian interpretation: From Lemma 1.1, we deduce the optimal distribution for the right-hand side of (1.5) is of the form ρλ (dθ) = exp{-λr(θ)} π(exp{-λr(θ)}) π(dθ).

So, we have

ρλ (dθ) ∝ L(data | θ)p(dθ)
as in (1.1), with L(data | θ) = exp{-λr(θ) and π(dθ) = p(dθ). More precisely, exp{-λr(θ)} plays the role of a likelihood, π(dθ) can be interpreted as a prior distribution, and λ is a tuning parameter which balances between the empirical information and the prior. We can use by extension the term "pseudo-likelihood" to refer to exp{-λr(θ)}, and thus we will use the term "pseudo-Bayesian estimator" for any estimator based on ρλ .

Note that in this case (1.5) becomes

Θ R(θ)ρ λ (dθ) ≤ inf ρ∈M 1 + (Θ) Θ r(θ)ρ(dθ) + K(ρ, π) + log 1 ε λ + λC 2 2n . (1.6)
Remark that when the loss function is convex we can apply the Jensen's inequality to get

R Θ θρ(dθ) ≤ ρ[R(θ)].
This means that we are able to upper bound R(θ) for the estimator of the form θλ := Θ θ ρλ (dθ).

By considering the mean estimator above, we are able to deduce from (1.6) a bound for the expected risk of θλ as

R( θλ ) ≤ inf ρ∈M 1 + (Θ) Θ r(θ)ρ(dθ) + K(ρ, π) + log 1 ε λ + λC 2 2n .
Oracle-type PAC-Bayesian inequality: The upper bound in (1.5) can be computed from the data and thus yields a way to evaluate the performance of the estimation. This was the idea of the first PAC-Bayesian bounds [START_REF] Shawe-Taylor | A PAC analysis of a Bayes estimator[END_REF][START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Mcallester | Pac-bayesian model averaging[END_REF].

However, the rate of convergence of the estimator can not be directly obtained in the empirical bounds. This motivates the study of oracle-type inequalities, which were developed by [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF]. More precisely, PAC-Bayesian analysis can also be used to compare Θ Rdρ λ to the best possible risk. A simple oracle PAC-Bayesian inequality is as follows.

Theorem 1.2. Under the same assumptions as in the previous theorem, for any λ ∈ (0, n/C), with probability at least

1 -ε, ε ∈ (0, 1) Θ R(θ)ρ λ (dθ) ≤ inf ρ∈M 1 + (Θ) Θ R(θ)ρ(dθ) + 2 K(ρ, π) + log 2 ε λ + λC 2 n .
(1.7)

A trick to obtain an explicit bound is as follows: in the right handside, we can consider a special ρ (say in a parametric family) concentrated around the value of θ minimizing R(θ), so that Θ R(θ)ρ(dθ) inf θ R(θ). In some situations, if ρ is too concentrated, this will cause the Kullback-Leibler term to explode. An adequate balance between the terms Θ R(θ)ρ(dθ) and K(ρ, π) will often lead to an explicit rate of convergence in the right-hand side. Such techniques were used by [START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF][START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF]] to derive optimal rates in sparse regression estimation (using more sophisticated PAC-Bayesian inequalities than the ones presented in this introduction). Some examples of recent advances on PAC-Bayesian bounds include [START_REF] Seldin | Pac-bayesian inequalities for martingales[END_REF][START_REF] Germain | A pacbayesian approach for domain adaptation with specialization to linear classifiers[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Ridgway | Pac-bayesian auc classification and scoring[END_REF][START_REF] Galanti | A theoretical framework for deep transfer learning[END_REF]. Recently [START_REF] Bégin | Pac-bayesian bounds based on the rényi divergence[END_REF][START_REF] Alquier | Simpler pac-bayesian bounds for hostile data[END_REF] proposed variants where the Kullback divergence is replaced by another divergence. Most of the aforementioned papers use bounded, or at least sub-exponential loss functions. However, using a robustification technique due to [START_REF] Catoni | Challenging the empirical mean and empirical variance: a deviation study[END_REF], the papers [START_REF] Institut | PAC-Bayesian bounds for the Gram matrix and least squares regression with a random design[END_REF][START_REF] Giulini | PAC-Bayesian bounds for Principal Component Analysis in Hilbert spaces[END_REF] proved PAC-Bayesian bounds for the estimation of the Gram matrix in the case of heavy-tailed random variables. Another approach to derive PAC-Bayesian bounds with heavy-tailed loss functions was recently proposed by [START_REF] Grünwald | Fast rates with unbounded losses[END_REF].

Overview of our results on matrix completion 1.4.1 Short introduction to matrix completion

Matrix completion has received a lot of attention over the past decade. It consists in restoring a potentially high dimensional matrix M , based on random, (possibly) noisy and partial observations of its entries. The matrix completion problem arises in a wide range of applications such as recommender systems [START_REF] Bennett | The netflix prize[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF][START_REF] Melville | Recommender systems. In Encyclopedia of machine learning[END_REF], image processing [START_REF] Ji | Robust video denoising using low rank matrix completion[END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF], genomics [START_REF] Chi | Genotype imputation via matrix completion[END_REF][START_REF] Natarajan | Inductive matrix completion for predicting gene-disease associations[END_REF]Cai et al., 2015a].

Consider a toy example of users-movies rating data as in the Table 1.1. Usually, the user does not watch all the available movies and moreover it is not certain that users give the ratings to all the movies they watched. Therefore, the matrix data is obtained with many, many missing entries. In the Netflix prize [START_REF] Bennett | The netflix prize[END_REF], with 480 189 users and 17 770 movies, only 100 480 507 ratings were observed over the total 8 532 958 530 entries in the matrix, thus less than 1.2% of the entries of the matrix were observed. Definitely, to infer the missing entries is thus very helpful to propose sensible advertisement and improve the sales.

Obviously, it is impossible to make any inference on M in general, because most of the entries of the matrix are unknown. However, a major breakthrough was made by Candès and co-authors who proved that, in the case where M is low-rank, the task becomes possible [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Candès | The power of convex relaxation: nearoptimal matrix completion[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. Note that this assumption makes perfectly sense in the aforementioned applications, like the Netflix data: it is clear that, as some users have similar preferences, their ratings are proportional to each other or even similar.

Let M 0 ∈ R m 1 ×m 2 be the target unknown matrix (expected to be lowrank). The matrix completion problem can be expressed as follows. We observe

Y i,j = M 0 i,j + ε i,j , (i, j) ∈ Ω,
where Ω is a random subset of the set {1, . . . , m 1 } × {1, . . . , m 2 } with n = card(Ω) m 1 m 2 . The noise variables ε i,j are independent with E(ε i,j ) = 0.

In the seminal paper [START_REF] Candès | Exact matrix completion via convex optimization[END_REF], the authors proposed the estimator M based on a convex relaxation of the rank, defined by

M = arg min

A:A i,j =Y i,j ,∀(i,j)∈Ω A *
where A * is the nuclear norm of the matrix A:

A * = min(m 1 ,m 2 ) i=1 λ i (A)
where λ i (A) are the singular values of A. They proved that, in the noiseless case (ε i,j = 0), we have an exact reconstruction M = M 0 under a low-rank assumption on M , provided that n is large enough. This result was extended (with a slightly different estimator) to the noisy case in [START_REF] Candès | Matrix completion with noise[END_REF]. Since then, many different methods have been proposed for matrix completion, which mostly based on penalized empirical risk minimization with various penalties. For example: rank penalty (computationally challenging) [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF], von Neumann entropy penalty [START_REF] Koltchinskii | Von neumann entropy penalization and low-rank matrix estimation[END_REF], Schatten-p norm penalty [START_REF] Rohde | Estimation of high-dimensional lowrank matrices[END_REF], spectral k-support norm [START_REF] Gunasekar | Unified view of matrix completion under general structural constraints[END_REF], . . . One of the estimators studied in these papers is the so called matrix Lasso

Mnuclear = arg min M    1 n (i,j)∈Ω (Y i,j -M i,j ) 2 + λ M *    ,
where λ > 0 is a tuning parameter.

In the notable paper [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF], the authors study the socalled "Trace-regression" model. It is a general and abstract model, including matrix completion and linear regression as special cases. They propose an estimator based on nuclear norm penalization and provide the statistical analysis for it. They study a variant Mnuclear of the matrix Lasso estimator, and prove the following result.

Theorem 1.3 (Corollary 2 in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]). Under some assumptions, with probability at least

1 -3/(m 1 + m 2 ) Mnuclear -M 0 2 F m 1 m 2 ≤ C rank(M 0 ) max(m 1 , m 2 ) n log(m 1 + m 2 ),
where C is a numerical constant and B 2 F = Trace(BB T ), the Frobenius norm.

The author also proved a minimax lower bound for low-rank matrix completion under the Frobenius error.

Theorem 1.4 (Theorem 5 in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]). Fix a > 0 and an integer 1 ≤ r ≤ min(m 1 , m 2 ). Under suitable assumptions, there exist absolute constants β ∈ (0, 1) and c > 0 such that

inf M sup rank(M 0 ) ≤ r, max i,j |M 0 i,j | ≤ a P M 0 1 m 1 m 2 M -M 0 2 F > c r max(m 1 , m 2 ) n ≥ β.
Basically, this lower bound states that the average quadratic error on the entries of a rank-r matrix size m 1 × m 2 from n-observations can not be better than r max(m 1 , m 2 )/n. Note that the upper bound in Theorem 1.3 does not exactly match the lower bound -there is an additional log(m 1 + m 2 ) factor. Matching bounds were recently reached by [START_REF] Klopp | Matrix completion by singular value thresholding: sharp bounds[END_REF], but in a slightly different model where the sample size n itself is random.

A large part of the studies for matrix completion in the literature is carried out under the assumption that the n observed entries (i, j) are drawn i.i.d from the uniform distribution on {1, . . . , m 1 } × {1, . . . , m 2 }. However, in practice, the observed entries are not always uniformly distributed: for example, some movies are more famous than others and therefore receive much more ratings. More importantly, the sampling distribution is not known in practice. More general sampling schemes than uniform distribution had been already studied, see e.g. [START_REF] Foygel | Learning with the weighted trace-norm under arbitrary sampling distributions[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF], but there are still some assumptions on the sampling distribution in these papers.

Main results of Chapter 2

While penalized minimization methods are well understood, both from a theoretical and from a computational perspective, the first papers on Bayesian matrix completion were essentially methodological and algorithmics, and contain no rates of convergence or consistency results, see e.g. [START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF][START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Lawrence | Non-linear matrix factorization with gaussian processes[END_REF][START_REF] Zhou | Nonparametric bayesian matrix completion[END_REF][START_REF] Babacan | Lowrank matrix completion by variational sparse bayesian learning[END_REF][START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF] among others.

For computational reasons, most Bayesian estimators are based on conjugate priors which allow to use Gibbssampling [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF][START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF] or Variational Bayes methods [START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF]. These priors are discussed in details in [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF]. These algorithms are fast enough to deal with large datasets like Netflix or MovieLens 1 , and are actually tested on these datasets in those papers. However, as mentioned earlier, the statistical properties of Bayesian estimators are not known.

Our first contribution in this thesis was to design a prior distribution that would lead to consistent and minimax-optimal estimators (up to log terms). We adapt the factorization trick to define a novel adaptive lowrank prior distribution on matrices; the main difference being that we replace the Gaussian distribution for the columns in (1.4) by uniform distribution on segments. The estimator we propose, say M , is the mean of the pseudoposterior distribution; we remind that, by pseudo-posterior, we mean that the likelihood is replaced by an exponential function of the empirical risk. The exact construction is detailed in Chapter 2. The main result is as follows (we refer the reader to Chapter 2 for an accurate statement of the assumptions).

Theorem 1.5 (Theorem 2.1 in Chapter 2). Assume that the n observed entries are i.i.d from a distribution (π i,j ), that is, the probability to observe the entry (i, j) is π i,j . Under suitable assumptions on the noise, and no assumptions on (π i,j ), with high probability and as soon as n ≥ max(m 1 , m 2 ), one has

1 ≤ i ≤ m 1 , 1 ≤ j ≤ m 2 ( M i,j -M 0 i,j ) 2 π i,j ≤ C rank(M 0 ) max(m 1 , m 2 ) n log(min(m 1 , m 2 )),
where C is a numerical constant.

As a special case, when the sampling distribution is uniform, i.e π i.j = 1/m 1 m 2 , we obtain

M -M 0 2 F m 1 m 2 ≤ C rank(M 0 ) max(m 1 , m 2 ) n log(min(m 1 , m 2 )),
where C is a numerical constant. As discussed earlier, this rate is minimaxoptimal up to log terms. Note the (slight) improvement with respect to [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] as log(m

1 + m 2 ) log(max(m 1 , m 2 )) is replaced by log(min(m 1 , m 2 )).
From a computational point of view, using an MCMC algorithm, we are able to implement and test our estimator on matrices with sizes up to 1000×1000. An example of our numerical results is given in 1.2: RMSEs in the first series of experiments (low-rank matrix, Gaussian noise), m is the size of the square matrix. We compare our estimator with uniform priors on the columns to the "classical" Gaussian prior as in [START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Babacan | Sparse bayesian methods for low-rank matrix estimation[END_REF].

Bibliographical notes

Many extensions and/or improvements on the previous results have been published in the recent years. For example, the results in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] as well as our result assume that we know an upper bound on the variance of the noise. This assumption is not so unrealistic: for example, in the Netflix dataset, the ratings are bounded (between 1 and 5) and so there is an obvious upper bound on the variance. On the other hand, this upper bound might not be very accurate. Moreover, in other applications, the variance might be unknown. Matrix completion without knowing the variance of the noise was tackled in [START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]. More precisely, the proposed estimator for unknown variance of the noise setting is as follows

MSQ = arg min M      1 n (i,j)∈Ω (Y i,j -M i,j ) 2 + λ M *     
, where λ > 0 is a regularization parameter. This estimator can be seen as the matrix analog of the square-root Lasso for matrix [START_REF] Belloni | Square-root lasso: pivotal recovery of sparse signals via conic programming[END_REF]. The obtained convergence rate is the same as in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]]. An extension of this idea to the Bayesian setting would be of interest, and could be the object of future works.

Other variants include 1-bit matrix completion [START_REF] Davenport | 1-bit matrix completion[END_REF]: "Instead of observing a subset of the real-valued entries of a matrix M , we obtain a small number of binary (1-bit) measurements generated according to a probability distribution determined by the real-valued entries of M ". The study and extension of this model can be found, for example, in [START_REF] Cai | A max-norm constrained minimization approach to 1-bit matrix completion[END_REF][START_REF] Klopp | Adaptive multinomial matrix completion[END_REF][START_REF] Srebro | Maximum-margin matrix factorization[END_REF]. Since the publication of our paper (presented in Chapter 2), this model was also studied from a pseudo-Bayesian perspective by [START_REF] Cottet | 1-bit matrix completion: Pac-bayesian analysis of a variational approximation[END_REF].

Robust matrix completion was studied in [START_REF] Klopp | Robust matrix completion[END_REF], where the authors use a variant of the penalty term to remove outliers. Another point of view is provided by [Alquier et al., 2017a] where the authors replace the quadratic loss by robust losses (like the absolute loss). Going beyond inference/estimation, the paper [START_REF] Carpentier | Adaptive confidence sets for matrix completion[END_REF] studies the existence of confidence sets for an estimator in the problem of matrix completion.

1.5 Overview of our results on quantum tomography 1.5.1 Short introduction to quantum statistics

Quantum state tomography plays an important role in quantum information processing. It focuses on reconstructing the (unknown) state of a physical quantum system [Paris and Řeháček, 2004]. This task is done by using measurements' outcomes of many independent systems identically prepared in the same state. We refer the reader to the introduction of [START_REF] Meziani | Estimations et tests non paramétriques en tomographie quantique homodyne[END_REF] or to the survey paper [START_REF] Artiles | An invitation to quantum tomography[END_REF] for a general introduction to quantum tomography, and a presentation of the basics concepts in quantum physics.

According to quantum theory, all the information about a physical system is encoded in its quantum state. The outcome of any experimental measured on the system is usually not deterministic, but its probability distribution can be deduced from the state of the system. A mathematical way to encode the state of a system is to use the so-called density matrix ρ. This matrix has complex entries, and

• ρ is Hermitian, ρ † = ρ (i.e. self-adjoint), • ρ is semidefinite positive, ρ ≥ 0, • Trace(ρ) = 1.
Note that the dimension of ρ depends on the system in hand and can satisfy various additional assumptions. In quantum homodyne tomography model, ρ is an infinite matrix with a regularity assumption: the coefficients ρ i,j of ρ decay exponentially fast in i + j. Some studies in this problem with different approaches are available, for example, in [START_REF] Artiles | An invitation to quantum tomography[END_REF][START_REF] Butucea | Minimax and adaptive estimation of the wigner function in quantum homodyne tomography with noisy data[END_REF][START_REF] Alquier | Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data[END_REF][START_REF] Naulet | Bayesian nonparametric estimation for quantum homodyne tomography[END_REF].

We focus now on the details in quantum computing, i.e the finite case. The system of interest contains of n qubits spin-1 2 and the corresponding density matrix ρ is a 2 n × 2 n matrix with coefficients in C. More importantly, physicists are interested in the so-called pure states and a pure state ρ can be defined by rank(ρ) = 1. Additionally, it often makes sense in practice to assume that the rank of ρ is small [START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF].

It is important for physicists to check their ability to prepare a physical system in a given state ρ 0 . In order to test this ability, they produce, using the same device, many independent systems in state ρ (hoping that ρ = ρ 0 ) and perform measurements on these systems. One of the statistical tasks is then to infer ρ from the outcomes of these measurements. The reconstruction of ρ from experimental measurements is called quantum state tomography. We refer the reader to [START_REF] Artiles | An invitation to quantum tomography[END_REF] for a complete formalization of this statistical problem. We next give more details on the problem set-up.

More precisely, Pauli-observables are commonly used to perform measurements for each qubit. The three Pauli-observables are : Thus, on a n-qubit system, there are 3 n possible experimental measurements and each outcome is a vector in {-1, 1} n . We consider a case where each measurement is repeated m times, on m independently prepared systems. Thus, the quantum sample size is N = m • 3 n .

σ x = 0 1 1 0 ; σ y = 0 -i i 0 ; σ z = 1 0 0 -1 .
Given vector s ∈ {-1, 1} n , the probability to obtain it as an outcome is a function of the density matrix ρ and of the measurement. This is given by Born's rule

M i,s := P(R i = s) = Trace ρ • P i s , i ∈ {1, . . . , 3 n }, (1.8) 
where P i s are given explicitly. This means that there is a linear function such that M = F (ρ), M = (M i,s ) i∈{1,...,3 n },s∈{-1,1} n .

We provide a detailed toy example, Example 1.1, for the case of 2 qubits so that it will make the problem more clear. In the case of 2 qubits, we have 9 experimental measurements: (σ x , σ x ), (σ x , σ y ), (σ x , σ z ), . . . , (σ z , σ z ); and for each experimental measurement, we have 4 possible outcomes: (-1, -1), (-1, +1), (+1, -1), (+1, +1).

Example 1.1. Suppose that ρ is such that the probability distributions in each possible measurement is given by 

(-1, -1) (-1, +1) (+1, -1) (+1,
=: M = F (ρ)
where we remind that the matrix M = F (ρ) can be deduced from ρ using Born's rule (1.8). In practice, we measure each observable i ∈ {1, . . . , 9} for m times, e.g 1000. A possible result is: 

(-1, -1) (-1, +1) (+1, -1) (+1,
:= M
To infer the density matrix ρ, a natural idea is the inversion method that is based on the empirical matrix M and solving for a density ρ

F (ρ) = M .
(1.9)

This method (also known as moment estimation in statistics) is studied in [START_REF] Vogel | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[END_REF][START_REF] Řeháček | Operational tomography: fitting of data patterns[END_REF]. Although it is computationally easy, it returns an estimator ρ that is very often not a physical density matrix [START_REF] Shang | Quantum state tomography: Mean squared error matters, bias does not[END_REF].

A popular choice for inferring the density matrix is maximum likelihood estimation. Unfortunately, it has some critical flaws detailed in [START_REF] Blume-Kohout | Optimal, reliable estimation of quantum states[END_REF]. Furthermore, when additional prior information is available, e.g low-rankness, both these method are not adaptive.

In case of low-rank state estimation, some rank-adaptive procedures had been introduced by using suitable penalization. Rank-penalized maximum likelihood (BIC) was introduced in [Gut ¸ȃ et al., 2012] while a rank-penalized least-square estimator ρrank-pen was proposed in [Alquier et al., 2013a], together with a proof of consistency. More specifically, when the density matrix of the system is ρ 0 with r = rank(ρ 0 ), the authors of [Alquier et al., 2013a] proved that the Frobenius norm of the estimation error satisfies ρrank-pen -ρ 0 2

F = O(r4 n /N )
where N is the number of quantum measurements. The rate was improved to O(r3 n /N ) by [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF][START_REF] Butucea | Corrigendum: Spectral thresholding quantum tomography for low rank states (2015 new j. phys. 17 113050)[END_REF], using a thresholding method.

Theorem 1.6 (Corollary 1 in [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]). Under suitable assump-1.5. OVERVIEW OF OUR RESULTS ON QUANTUM TOMOGRAPHY45 tions, with probability higher than 1 -ε, ε ∈ (0, 1)

ρrank-pen -ρ 0 2 F ≤ C r3 n N log(2 n+1 /ε).
Moreover, the question of how good one can estimate a low-rank density matrix is also studied in [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]. More precisely, the paper show that no method can reach a rate smaller than r2 n /N . So, the minimaxoptimal rate lies somewhere in between r2 n /N and r3 n /N . This result is given in the following theorem.

Theorem 1.7 (Lower bound, Theorem 3 in [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]). lim inf

m→∞ inf ρm sup ρ∈Sr E ρ ρm -ρ 2 F ≥ 2r(2 n -r) N
where S r is the set of rank-r density matrices.

On the other hand, Bayesian estimation has been computationally considered in this context. The papers [START_REF] Bužek | Reconstruction of quantum states of spin systems: From quantum bayesian inference to quantum tomography[END_REF][START_REF] Baier | Comparison of some methods of quantum state estimation[END_REF] compare Bayesian methods to other methods on simulated data. Recently, efficient algorithms for computing Bayesian estimators are discussed in [START_REF] Kravtsov | Experimental adaptive bayesian tomography[END_REF][START_REF] Ferrie | Quantum model averaging[END_REF][START_REF] Kueng | Near-optimal quantum tomography: estimators and bounds[END_REF][START_REF] Schmied | Quantum state tomography of a single qubit: comparison of methods[END_REF]. Importantly, [Blume-Kohout, 2010] showed that Bayesian method satisfies many good properties when estimating the density matrix. However, theoretical study on the convergence of Bayesian estimators has not been done yet. Moreover, the rank adaptation has not been considered from a Bayesian point of view in this problem.

Main results of Chapter 3

We consider pseudo-Bayesian estimations (for computational reasons), where the likelihood is replaced by pseudo-likelihoods based on various moments. Two estimators, corresponding to two different pseudo-likelihood, are actually proposed. Basically, one of them, ρdens λ , relies on the comparison between ρ and ρ (the inversion estimator) while the other one, ρprob λ relies on a comparison between theoretical and empirical frequencies, F (ρ) and F (ρ). Using PAC-Bayesian theory, we derive oracle inequalities for the pseudo-posterior mean. We obtain rates of convergence for these estimators in the complete measurement setting. One of them has a rate as good as the best known rate up to date O(rank(ρ 0 )3 n /N ) [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]. Meanwhile, the other one is interesting for computational reasons that are discussed in the paper.

One of the key points here is to define a low-rank (approximately) prior on the set of density matrices. Remind that the density matrix of a n-qubits system is a 2 n × 2 n , positive, Hermitian complex matrix ρ with Trace(ρ) = 1. Note that we have several restrictions in mind when defining a prior distribution on such matrices. First, we want this prior to lead to feasible algorithms and then we want it to lead to consistent estimators. Finally, we would like to pay a special attention to rank one matrices.

For the density matrix ρ being Hermitian, we have a diagonalization

ρ = U DU *
where U is a unitary matrix and

D =    a 1 • • • 0 . . . . . . . . . 0 • • • a 2 n   
A way to define our prior on ρ is to define a prior on U and (a 1 , . . . , a 2 n ). If the prior on (a 1 , . . . , a 2 n ) is sparsity-inducing, then ρ is likely to be low-rank. This would lead to the decomposition

ρ = 2 n j=1 a j U •j (U •j ) * .
(1.10) However, to define a prior on unitary matrices usually leads to challenging computational constraints when one is to simulate from the posterior.

In Chapter 3 we propose a way to relax this constraint that still allows to charge only density matrices, and to give more weights to approximately lowrank matrices. This construction, together with the two pseudo-likelihood described above, allow us to build our estimators ρprob λ and ρdens λ . Among others, we obtain the following result.

Theorem 1.8. Fix a small ∈ (0, 1). Forλ = λ * := m/2, with probability at least 1 -, one has

ρprob λ * -ρ 0 2 F ≤ C 3 n rank(ρ 0 ) log rank(ρ 0 )N 2 n + (1.5) n log(2/ ) N ,
where C is a numerical constant.

A (much worse) rate is also derived for ρdens λ . Chapter 3 also contains numerical simulations: we implement ρprob 

Bibliographical notes

Many authors authors considered the setting with not all possible Pauli measurements {σ b = σ b 1 ⊗ . . . ⊗ σ bn , b ∈ {I, x, y, z} n }, σ I = I but only a random subset of these measurements. These studies are inspired by compressed sensing problems. See for example [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Flammia | Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators[END_REF][START_REF] Koltchinskii | Von neumann entropy penalization and low-rank matrix estimation[END_REF][START_REF] Koltchinskii | Optimal estimation of low rank density matrices[END_REF][START_REF] Xia | Estimation of low rank density matrices: bounds in schatten norms and other distances[END_REF][START_REF] Xia | Estimation of low rank density matrices by pauli measurements[END_REF].

1.6 Lifelong learning in a full online setting 1.6.1 Motivation and formalization Most analyses of learning algorithms assume that the algorithm starts learning from scratch when presented with a new dataset. However, in real life, it is often the case that we will learn the same features on many different tasks, and that information should be transferred from one task to another. For example, a key problem in pattern recognition is to learn a dictionary of features helpful for image classification: it makes perfectly sense to assume that features learnt to classify dogs against other animals can be re-used to recognize cats. This idea is at the core of transfer learning, see for example [START_REF] Thrun | Learning to Learn[END_REF][START_REF] Baxter | A bayesian/information theoretic model of learning to learn via multiple task sampling[END_REF][START_REF] Baxter | A model of inductive bias learning[END_REF][START_REF] Cavallanti | Linear algorithms for online multitask classification[END_REF][START_REF] Maurer | Algorithmic stability and meta-learning[END_REF][START_REF] Maurer | Sparse coding for multitask and transfer learning[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF][START_REF] Balcan | Efficient representations for lifelong learning and autoencoding[END_REF][START_REF] Galanti | A theoretical framework for deep transfer learning[END_REF][START_REF] Maurer | The benefit of multitask representation learning[END_REF] and references therein.

On the difference to the previous chapters, we study here a problem that was not completely formalized before. The first task was to propose a formal framework to the analysis. We chose to tackle a fully online setting first: more precisely, data sets (tasks) are revealed sequentially and processed by a "within-task algorithm". We propose a lifelong learning scheme which transfers the gained information from one task to the next one. The strong point of our analysis is that we are able to prove regret bounds for our lifelong learning scheme without assuming a specific form for the within-task algorithm. Let us first describe a typical example to fix ideas.

An example Typically, assume that for each task t ∈ {1, . . . , T }, the dataset S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) ∈ (X × Y) mt , m t ∈ N is revealed sequentially. We propose to use as predictors ŷt,i = θ t , Dx t,i where θ t is learnt for each task t by any within-task algorithm. Our lifelong learning scheme aims at improving the common dictionary D at each task.

Problem setting Let us now describe the setting we proposed. At each time step t ∈ {1, . . . , T }, the learner is faced with a task, corresponding to a dataset S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) ∈ (X × Y) mt where m t ∈ N and X and Y are some sets. The dataset S t is itself displayed sequentially, that is, at each inner step i ∈ {1, . . . , m t }:

• The object x t,i is revealed,

• The learner has to predict y t,i : a predictor is a function f : X → Y. Let ŷt,i := f t,i (x t,i ) denote the prediction,

• Then y t,i is revealed and the learner incurs the loss. The loss of a predictor f on a pair (x, y) is a real number denoted by (f (x), y). Let ˆ t,i denote the loss (ŷ t,i , y t,i ).

The task t ends at time m t , at which point the average prediction error is

1 mt mt i=1
ˆ t,i . This process is repeated for each task t, and thus at the end of all the tasks, the overall average error is

1 T T t=1 1 m t mt i=1 ˆ t,i .
Importantly, we want to transfer the information (a common data representation) gained from the previous tasks to a new one. Formally, we let Z be a set and prescribe a set G of feature maps (also called representations) g : X → Z, and a set H of functions h : Z → R. We shall design an algorithm that is useful when there is a function g ∈ G, common to all the tasks, and task-specific functions h 1 , . . . , h T such that

f t = h t • g
is a good predictor for task t, in the sense that the corresponding prediction error is small.

Note that an oracle who would have known the best common representation g for all tasks in advance would have only suffered, on the entire sequence of datasets, the error

inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i .
Objective We wish to design a procedure (meta-algorithm) that, at the beginning of each task t, produces a feature map ĝt . Moreover, within each task, the learner can use its own favourite online learning algorithm to learn the task t on the sequence (ĝ t (x t,1 ), y t,1 ), . . . , (ĝ t (x t,mt ), y t,mt ) . Importantly, we wish to control the compound regret of our procedure

1 T T t=1 1 m t mt i=1 ˆ t,i -inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i .
A meta algorithm We propose the following meta algorithm which is based on the exponentially weighted aggregation, denoted by EWA, (see e.g. [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]) procedure for learning the representation g. However, our procedure allows the user to freely select her own within-task algorithm, which does not have to be the same for each task.

Algorithm 2 EWA-LL Data A sequence of datasets S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) , 1 ≤ t ≤ T , associated with different learning tasks; the points within each dataset are also given sequentially.

Input A prior π 1 on G, a learning parameter η > 0 and a learning algorithm for each task t which, for any representation g returns a sequence of predictions ŷg t,i and suffers a loss

Lt (g) := 1 m t mt i=1 ŷg t,i , y t,i . Loop For t = 1, . . . , T i Draw ĝt ∼ π t .
ii Run the within-task learning algorithm on S t and suffer loss Lt (ĝ t ).

iii Update

π t+1 (dg) := exp(-η Lt (g))π t (dg) exp(-η Lt (γ))π t (dγ) .
Assumption (FR) (finite-regret) There, a key assumption is that there is a control on the regret of the within task algorithm:

1 m t mt i=1 ˆ t,i -inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i ≤ β(g, m t ) < ∞.
Note that this assumption is satisfied by many popular algorithms for online learning: EWA, online gradient. . . see [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF][START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF] for an overview. Detailed examples are provided in Chapter 4.

In Chapter 4, we prove the following result on the performances of EWA-LL.

Theorem 1.9. Under the assumption (FR) and assuming that for any g ∈ G, Lt (g) ∈ [0, C], we have

1 T T t=1 E ĝt∼πt 1 m t mt i=1 ˆ t,i ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 h t •g(x t,i ), y t,i + 1 T T t=1 β(g, m t ) + ηC 2 8 + K(ρ, π 1 ) ηT ,
where the infimum is taken over all probability measures ρ and K(ρ, π 1 ) is the Kullback-Leibler divergence between ρ and π 1 .

Note that the theorem above yields a bound on the expected regret and instead of an infimum with respect to g, we have an infimum on all the possible aggregation w.r.t g. However, it is possible to derive uniform bounds (instead of in expectation) from the above theorem when the loss is convex, this is done in Section 4.3.3. Also, a bound with an infimum with respect to g can be obtained, this is studied in some applications in the chapter 4 (see Sections 4.5). The examples of finite sets G and H, and the example of dictionary learning are covered in detail.

Note that the optimal rates in this setting are not known -and specifications of G and H would be necessary to formally state the problem. Still, for simplicity in the case where m t = m for all t, we exhibit some situations where the learning rate is in 1/ √ T + 1/m while the rates in one of the only previous theoretical study of transfer learning [START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF] 

was 1/ √ T + 1/ √ m.
Chapter 2

MATRIX COMPLETION

Bayesian methods for low-rank matrix completion with noise have been shown to be very efficient computationally [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF][START_REF] Lawrence | Non-linear matrix factorization with gaussian processes[END_REF][START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF][START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Zhou | Nonparametric bayesian matrix completion[END_REF]. While the behaviour of penalized minimization methods is well understood both from the theoretical and computational points of view (see [START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Candès | The power of convex relaxation: nearoptimal matrix completion[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Recht | Parallel stochastic gradient algorithms for largescale matrix completion[END_REF] among others) in this problem, the theoretical optimality of Bayesian estimators have not been explored yet. In this work, we propose a Bayesianlike estimator for matrix completion under general sampling distribution. We also provide an oracle inequality for this estimator. This inequality proves that, whatever the rank of the matrix to be estimated, our estimator reaches the minimax-optimal rate of convergence (up to a logarithmic factor). We end this chapter with a short simulation study.

The works in this chapter have been published in [START_REF] Mai | A bayesian approach for noisy matrix completion: Optimal rate under general sampling distribution[END_REF]:

T.T. Mai & P. Alquier. A bayesian approach for noisy matrix completion: Optimal rate under general sampling distribution. Electronic Journal of Statistics, vol.9: 823-841, 2015.

Introduction and notations

The "Netflix Prize" [START_REF] Bennett | The netflix prize[END_REF]] generated a significant interest in the matrix completion problem. The Netflix data can be represented as a sparse matrix made up of ratings given by users (rows) to movies (columns).

To infer the missing entries is thus very helpful to propose sensible advertisement and improve the sales. However, it is totally impossible to recover an uncomplete matrix without any assumption. A suitable condition, popular in practice for this problem, is that the matrix has low-rank or approximately low-rank [START_REF] Alquier | Bayesian methods for low-rank matrix estimation: short survey and theoretical study[END_REF][START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF][START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | The power of convex relaxation: nearoptimal matrix completion[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]Koltchinskii et al., CHAPTER 2. MATRIX COMPLETION 2011]. For the Netflix problem, this assumption is sensible as it means that many movies (or users) have similar profiles.

Let M 0 ∈ R m×p be an unknown matrix (expected to be low-rank). Let (X 1 , Y 1 ), . . . , (X n , Y n ) be i.i.d random variables drawn from a joint distribution P. We assume that

Y i = M 0 X i + E i , i = 1, . . . , n, (2.1) 
the noise variables E i are independent from X i and E(E i ) = 0. We let Π denote the marginal distribution of X when (X, Y ) ∼ P. Remark that Π is a distribution on the set X = {1, . . . , m} × {1, . . . , p}. Then, the problem of estimating M 0 with n < mp is called the noisy matrix completion problem under general sampling distribution.

A special instance of this problem is that the sampling distribution Π is uniform, this assumption is done for example in [START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | The power of convex relaxation: nearoptimal matrix completion[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF]. Clearly, in practice, the observed entries are not always uniformly distributed: for example, some movies are more famous than others, and thus receive much more ratings. More importantly, the sampling distribution is not known in practice. More general sampling schemes than uniform distribution had been already studied, see e.g. [START_REF] Foygel | Learning with the weighted trace-norm under arbitrary sampling distributions[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: optimal bounds with noise[END_REF], but there are still some assumptions on Π in these papers. Here, we do not impose any restriction on Π. From now, Π ij = P (X = {i, j}) will denote the probability to observe the (i, j)-th entry.

For any matrix A m×p , let A F denote the Frobenius norm, i.e, A 2 F = Tr(A T A). We define a "generalized Frobenius norm" as follows

A 2 F,Π = ij (A ij ) 2 Π ij .
Note that when the sampling distribution Π is uniform, then

A 2 F,Π = 1 mp A 2 F .
For any matrix M m×p ∈ R mp , we define the empirical risk as

r(M ) = 1 n n i=1 (Y i -M X i ) 2
and the prediction risk

R(M ) = E (X,Y )∼P (Y -M X ) 2 .
In this paper, the prediction problem is considered, i.e, the objective is to define an estimator M such that R( M ) -R(M 0 ) is as small as possible. Remark that R(M ) -R(M 0 ) = M -M 0 2 F,Π for any M (using Pythagorean Theorem).

Penalized minimization approaches

When handing with this problem, most of the recent methods are often based on minimizing a criterion of the fit to the observations, such as r(M ), with additional penalty term that encouraging low-rank. More specifically, M = arg min A first result can be found in by [START_REF] Candès | Exact matrix completion via convex optimization[END_REF], Candès and Tao [START_REF] Candès | The power of convex relaxation: nearoptimal matrix completion[END_REF] for exact matrix completion (noiseless case, i.e. E i = 0). These results were then developed in the noisy case [START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]. Some efficient algorithms had also been proposed, for example see [START_REF] Recht | Parallel stochastic gradient algorithms for largescale matrix completion[END_REF].

Recently, some authors have studied a more general problem, the socalled Trace regression problem, e.g see [START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]. This problem includes matrix completion, together with other wellknown problems (linear regression, reduced rank regression and multitask learning) as special cases. For matrix completion, one observes n pairs (X i , Y i ) satisfying

Y i = Trace(X T i M 0 ) + ε i , i = 1, .
. . , n where (ε i ) is a noise vector. The random matrices X i ∈ R m×p are independent of the ε i s, and are chosen uniformly at random from the set

B = {e j (m)e T k (p), 1 ≤ j ≤ m, 1 ≤ k ≤ p},
where the e j (s) are the canonical basis vectors of R s . They proposed nuclearnorm penalized estimators and provided reconstruction errors for their methods. They also proved that these errors are minimax-optimal (up to a logarithmic factor).

Note that the average quadratic error on the entries of a rank-r matrix size m×p from n-observations can not be better than: r max(m, p)/n [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF].

Bayesian methods

A few authors considered Bayesian methods for matrix completion [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF][START_REF] Lawrence | Non-linear matrix factorization with gaussian processes[END_REF][START_REF] Lim | Variational bayesian approach to movie rating prediction[END_REF][START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF][START_REF] Zhou | Nonparametric bayesian matrix completion[END_REF]. A summary of the main ideas in these papers can be found in the survey [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF]. Basically, it is to define the prior in order to mimic a singular value decomposition (SVD) on a matrix M . We write:

M = min(m,p) i=1 U i V T i
where the U i and the V i are column vectors in R m and R p respectively. Their prior distribution is given by

U i ∼ N (0, γ i Id m ) and V i ∼ N (0, γ i Id p ),
where Id s stands for the identity matrix of dimension s. In order to ensure that most terms U i V T i are almost equal to zero (which means that M is "almost low-rank"), we model the γ i s as random according to a distribution highly concentrated around zero. A popular choice in the literature is that 1/γ i ∼ Γ(a, b) with a very small b. These distributions (Gaussian and inverse gamma) are conjugate, so it is possible to sample from the posterior using the Gibbs sampler as in [START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using markov chain monte carlo[END_REF]. However, there are at the time no theoretical guarantees regarding the consistency nor the minimax-optimality of this estimator.

In this paper, we design a new prior and prove an minimax-optimal oracle bound for the corresponding Bayesian estimator. This is presented in Section 2.2. In Section 2.3, we discuss the implementation of our Bayesian estimator. Some experiments comparing our estimator to the one based on conjugate priors are done on simulated datasets. The proof of the main result is provided in the Section 2.5.

Main results

Before we introduce our estimator, let us formulate some assumptions.

Assumption 2.1. There is a known constant L such that

M 0 ∞ = sup i,j |M 0 ij | ≤ L < +∞.
This is a mild assumption. In the Netflix and MovieLens datasets, the ratings belong to the set {1, 2, 3, 4, 5}, so we can take L = 5.

The prior distribution and the estimator

We describe hereafter a prior π on matrices M m×p as follows. Let K = min(m, p) and Γ be a random variables taking value in the set {Γ 1 , . . . , Γ K } with

P(Γ = Γ k ) = τ k-1 1 -τ 1 -τ K
where Γ k = ( k times 1, . . . , 1, K-k times 0, . . . , 0 ) for some constant τ ∈ (0, 1) and k ∈ {1, . . . , K}.

Now, assuming that Γ = Γ k and a matrix M m×p is drawn as M = U m×K (V p×K ) T where

U i, ; V j, i.i.d ∼ U ([-δ, δ]) when Γ k, = 1, U ([-κ, κ]) when Γ k, = 0, = 1, . . . , K
with δ = 2L/K and 0 ≤ κ ≤ (1/n) L/(10K). Note that, in this case, the entries of M satisfy: sup i,j |M ij | ≤ 2L. Moreover, when a matrix M is drawn from this prior, as κ is small, most columns of U and V are almost null. So the matrix M = U V T is very close to a rank-k matrix. Actually, the choice κ = 0 leads to rank(M ) ≤ k.

We are now ready to define our estimator. For any λ > 0, we consider the conditional probability measure ρλ given by its density w.r.t. the probability measure π: dρ λ dπ (M ) = e -λr(M ) e -λr dπ .

(2.2)

The aggregate M λ is defined as follows

M λ = M ρλ (dM ). (2.3)
Note that, for λ = n/(2σ 2 ), this corresponds exactly to the Bayesian estimator that would be obtained for a Gaussian noise E i ∼ N (0, σ 2 ). However, a slightly different choice for λ, denoted by λ * below, will allow to obtain the optimality of the estimator under a wider class of noises.

A minimax-optimal oracle inequality under general sampling distribution

Assumption 2.2. The noise variables E 1 , . . . , E n are independent and independent of X 1 , . . . , X n . There exist two known constants σ > 0 and ξ > 0 such that

E(E 2 i ) ≤ σ 2 ∀k ≥ 3, E(|E i | k ) ≤ σ 2 k!ξ k-2 .
Assumption 2.2 states that the noise is sub-exponential, it includes the cases where the noise is bounded or sub-Gaussian (and of course Gaussian), see e.g. Chapter 2 in [START_REF] Boucheron | Concentration inequalities: A nonasymptotic theory of independence[END_REF].

For any x > 0, we define (remind that K = min(m, p))

M(x) = M = U V T , with |U i | ≤ x K , |V j | ≤ x K , and C = [12L(2ξ + 3L)] ∨ 8σ 2 + 2(3L) 2 .
Hereafter, the main result is presented. We provide an oracle bound for our estimator M λ * .

Theorem 2.1. Let Assumption 2.1 and 2.2 be satisfied and take λ = λ * := n 2C . Then, for any ∈ (0, 1), with probability at least 1 -and as soon as n ≥ max(m, p), one has

M λ * -M 0 2 F,Π ≤ inf M ∈M(L) 3 M -M 0 2 F,Π + C L,ξ,σ,τ (m + p)rank(M ) log(K) n + 8C log 2 ε n ,
where C L,ξ,σ,τ is a (known) numerical constant depending on L, ξ, σ and τ only.

The proof of this theorem is given in the Section 2.5. It follows an argument called "PAC-Bayesian inequality". PAC-Bayesian inequalities were introduced in [START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Shawe-Taylor | A PAC analysis of a Bayes estimator[END_REF] in order to provide empirical bounds on the prevision risk of Bayesian-type estimators. However, our proof is closer to Catoni's works [START_REF] Catoni | A PAC-Bayesian approach to adaptive classification[END_REF][START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF], where it is shown how to derive powerful oracle inequalities from PAC-Bayesian bounds. This approach has been used many times since then to prove oracle inequalities in many dimension-reduction problems like sparse regression estimation [START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF] , [START_REF] Alquier | PAC-Bayesian bounds for sparse regression estimation with exponential weights[END_REF][START_REF] Alquier | Sparse single-index model[END_REF] or reduced-rank regression [START_REF] Alquier | Bayesian methods for low-rank matrix estimation: short survey and theoretical study[END_REF].

The choice λ = λ * comes from the proof of this theorem when optimizing an upper bound on the risk R, see (2.15) page 67. However, in practice, this choice may not be the best one. For example, in the experiments done in Section 3 with Gaussian noise E i ∼ N (0, σ 2 ), we take λ = n 4σ 2 that was shown in [START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF] to behave very well in regression problems. Also, in practice, to take K smaller than min(m, p) improves significantly the speed of the algorithm with little consequence on the performance of the estimator [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF].

Remark 2.1. When M 0 ∈ M(L), we can take M = M 0 , one gets

M λ * -M 0 2 F,Π ≤ C L,ξ,σ,τ (m + p)rank(M 0 ) log(K) n + 8C log 2 ε n .
The rate (m + p)rank(M 0 ) log(K)/n is minimax-optimal, or at least almost minimax-optimal: a lower bound in this problem is provided by Theorems 5 and 7 in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF], it is (m+p)rank(M 0 )/n. The optimality of the log term is, to our knowledge, an open question. Note however that the upper bound in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] is (m + p)rank(M 0 ) log(m + p)/n. So, our bound represents a slight improvement in the case min(m, p) max(m, p).

Remark 2.2. When the sampling distribution Π is uniform in Theorem 2.1, we obtain the following oracle bound for the Frobenius norm

1 mp M λ * -M 0 2 F ≤ inf M ∈M(L) 3 mp M -M 0 2 F + C L,ξ,σ,τ (m + p)rank(M ) log(K) n + 8C log 2 ε n .
Finally, we want to mention that the rate of [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]] is also reached, in a work parallel to ours, by Suzuki [START_REF] Suzuki | Convergence rate of bayesian tensor estimatior and its minimax optimality[END_REF], in a Bayesian
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framework. The main difference is that, while [START_REF] Suzuki | Convergence rate of bayesian tensor estimatior and its minimax optimality[END_REF] provides a rate of convergence in a more general low-rank tensor estimation problem, his works do not bring an oracle inequality like Theorem 2.1 that can be used when M 0 is not exactly low-rank, but can be well approximated by a low-rank matrix. Moreover, our result holds under any sampling distribution Π.

Experiments and comparison with conjugate priors 2.3.1 A Gibbs algorithm for M λ

As it has been shown in Section 2, our estimator M λ * satisfies a powerful oracle inequality. However, as mentioned in the introduction, the Bayesian estimator using conjugate priors is popular in practice as it leads to a fast algorithm. The reason is that there is an explicit form for the conditional posterior distribution of the i-th row of U , U i,• , given the other rowss of U , U -i,• , and given V (it is a multivariate normal distribution which parameters are known). This allows to use a Gibbs sampler, with very good convergence properties. This is described for example in [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF] and the references therein.

Here, straightforward but tedious computations lead to

ρλ (U i,• |k, U -i, , V, Γ = Γ k ) ∝ ϕ   U i,• ; 2λ n Σ i k:I k =i Y k V J k ,• , Σ i   k =1 1 {|U i, |≤δ} K =k+1 1 {|U i, |≤κ}
where I s and J s are the components of the X i , i = 1, . . . , n (e.g X 1 = (I 1 , J 1 ), . . . , X n = (I n , J n ));

(Σ i ) -1 = 2λ n k:I k =i V T J k ,• V J k ,•
and ϕ(• ; m, V ) is the density of the multivariate normal distribution with mean vector m and variance-covariance matrix V . So, the conditional posterior distribution of U i,• is a truncated multivariate normal.

To sample from such a disitrubition is known as a very hard problem in general, see for example [START_REF] Kotecha | Gibbs sampling approach for generation of truncated multivariate gaussian random variables[END_REF]. However, using the R package tmvtnorm [START_REF] Wilhelm | tmvtnorm: A package for the truncated multivariate normal distribution[END_REF], it is possible to sample from a truncated multivariate normal fast enough to compute our estimator on reasonnably large datasets. Finally, instead of including the hyperparameter k ∈ {1, . . . , K} in the simulations, we simulated K chains simultaneously, one for every k ∈ {1, . . . , K}, and selected the realization of one of the chains at each round using the probabilities given by (2.2). Also, note that the truncation procedure proposed by Suzuki in [START_REF] Suzuki | Convergence rate of bayesian tensor estimatior and its minimax optimality[END_REF] cannot be implemented, to our understanding, using this procedure, as the truncation is done directly on the product U V T rather than on U and V individually.

Experiments and Results

We use the notation M λ for our estimator, let us denote M conjugate the estimator based on the Gaussian prior for U and V with inverse Gamma variance, described in [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF] and in the aforementionned references. In order to compare both estimators, a series of experiments were done with simulated data:

• In the first series of simulations, the data are simulated as in [START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF]. More precisely, a rank-2 matrix M 0 m×m (so m = p) has been created as the product of two rank-2 matrices,

M 0 = U 0 m×2 (V 0 m×2 ) T
where the entries of U 0 and V 0 are i.i.d N (0, 20/ √ m). Only 20% entries of the matrix M 0 are observed (using a uniform sampling). This sampled set is then corrupted by noise as in (2.1), where the E i are i.i.d N (0, 1). We consider the cases m = 100, m = 200, m = 500 and m = 1000.

• The second series of simulations is similar to the first one, except that the matrix M 0 is no longer rank 2, but it can be well approximated by a rank 2 matrix:

M 0 = U 0 m×2 (V 0 m×2 ) T + 1 100 (Z 0 m×50 )(W 0 m×50 ) T
where the entries of Z 0 and W 0 are i.i.d N (0, 20/ √ m).

• The third series of experiments is similar to the first one, but the noise variables E i are now i.i.d from a uniform distribution on [-1, 1]. Note that, from a purely Bayesian point of view, this corresponds to a mispecified model. However, the bound in Theorem 2.1 is still valid in this case.

• Finally, the fourth series of experiments is similar to the first one, noise variables E i are now i.i.d from a heavy-tailed distribution (Student, with parameter 5). This is another misspecified model, but in this case, Theorem 2.1 cannot be used.

The behavior of our estimator M λ is computed through the root-mean-squared error (RMSE) per entry,

RMSE = 1 mp M λ -M 0 2 F = 1 m M λ -M 0 F .
prior m = 100 m = 200 m = 500 m = 1000 Uniform 0.535 (±0.003) 0.348 (±0.003) 0.207 (±0.0001) 0.141 (±0.0006) Gaussian 0.538 (±0.001) 0.345 (±0.001) 0.210 (±0.0001) 0.146 (±0.001) The parameters are given as follows: for both M λ and M conjugate , the parameter λ is set to n/4, following [START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF]. Following [START_REF] Alquier | Bayesian matrix completion: prior specification[END_REF] we use for the parameters of the inverse Gamma prior in M conjugate the values a = 1, b = 1/100. Finally, for M λ , we used κ = 0, K = 5, L = 50 and τ = 1/2 on all the simulations apart from the heavy-tailed noise case, where we used τ = 1/4. Note that a proper optimization with respect to the parameters τ and λ could lead to better results, for example through cross-validation.

The first conclusion is that the results of both methods are very close. In many situations, however, the variance of the estimator with uniform prior is larger than the variance of the estimator with Gaussian prior. The evidence is that this is due to the fact that the MCMC algorithm used to compute the estimator with Gaussian prior, M conjugate , converges faster than the algorithm used to compute the estimator with uniform prior, M λ . This is supported by Figure 2.1 page 60. However, it seems that this difference is less and less significant when the dimension m grows.

According to our main oracle inequality, our estimator is robust to misspecification in the low-rank assumption, see Table 2.2, and in the noise, at least in the sub-Gaussian case, see Table 2.3. More importantly: despite the fact that the theoretical properties of M conjugate are not known, this estimator is more robust than ours to heavy-tailed noise, as shown in Table 2.4. 

Discussion

This chapter proposes a Bayesian estimator for the noisy matrix completion problem under general sampling distribution. This estimator satisfies an optimal oracle inequality under any sampling scheme. Based on simulations, it is also clear that this estimator performs well in practice, however, a faster algorithm for very large datasets is still an open issue. Another important open question is the minimax-optimality of the estimator based on Gaussian priors.

Proofs

First, we state a version of Bernstein's inequality useful in the proof of Theorem 2.1. This version is taken from [START_REF] Massart | Concentration inequalities and model selection[END_REF] (Inequality 2.21 in the proof of Proposition 2.9 page 24).

Lemma 2.1. Let T 1 , . . . , T n be independent real valued random variables. Let us assume that there are two constants v and w such that

n i=1 E[T 2 i ] ≤ v
and for all integers k ≥ 3,

n i=1 E (T i ) k ≤ v k!w k-2 2 .
Then, for any ζ ∈ (0, 1/w),

E exp ζ n i=1 [T i -E(T i )] ≤ exp vζ 2 2(1 -wζ)
.

Now, we are ready to present the proof of Theorem 1.

Proof of Theorem 2.1: the proof is divided in two steps. In the first step, we establish a general PAC-Bayesian inequality for matrix completion, in the style of [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF]. In the second step, we derive the oracle inequality from the first step.

Step 1:

Let's define, for any matrix M ∈ M(2L), the following random variables

T i = Y i -M 0 X i 2 -(Y i -M X i ) 2 .
Note that these variables are independent. We first check that the variables T i satisfy the assumptions of Lemma 2.1, in order to apply this lemma. We have

n i=1 E[T 2 i ] = n i=1 E 2Y i -M 0 X i -M X i 2 M 0 X i -M X i 2 = n i=1 E 2E i + M 0 X i -M X i 2 M 0 X i -M X i 2 ≤ n i=1 E 8E 2 i + 2(L + 2L) 2 M 0 X i -M X i 2 = n i=1 E 8E 2 i + 2(3L) 2 E M 0 X i -M X i 2 ≤ n 8σ 2 + 2(3L) 2 R(M ) -R(M 0 ) =: v(M, M 0 ) = v.
Next we have, for any integer k ≥ 3, that

n i=1 E (T i ) k ≤ n i=1 E 2Y i -M 0 X i -M X i k M 0 X i -M X i k ≤ n i=1 E 2 2k-1 |E i | k + (L/2 + L) k M 0 X i -M X i k ≤ n i=1 E 2 2k-1 |E i | k + ( 3 2 L) k (3L) k-2 M 0 X i -M X i 2 ≤2 2k-1 σ 2 k!ξ k-2 + 3 2 L k (3L) k-2 n i=1 E M 0 X i -M X i 2 ≤ σ 2 k!ξ k-2 + ( 3 2 L) k [4(3L)] k-2 σ 2 + ( 3 2 L) 2 v ≤ k!ξ k-2 + 3 2 L k-2 [4(3L)] k-2 v ≤k! ξ + 3 2 L k-2 (12L) k-2 v ≤ v k!w k-2 2 ,
with w := 12L(2ξ + 3L).

Next, for any λ ∈ (0, n/w), applying Lemma 2.1 with ζ = λ/n gives

E exp λ R(M ) -R(M 0 ) -r(M ) + r(M 0 ) ≤ exp vλ 2 2n 2 (1 -wλ n ) . Set C σ,L = 2 4σ 2 + (3L) 2 .
For the sake of simplicity let us put

α = λ - λ 2 C σ,L 2n(1 -wλ n )
.

(2.4)

In order to understand what follows, keep in mind that w is a constant and that our optimal estimator comes with λ = λ * = n 2C , so α is of order n. For any ε > 0, the last display yields

E exp α R(M ) -R(M 0 ) + λ -r(M ) + r(M 0 ) -log 2 ε ≤ ε 2 .
Integrating w.r.t. the probability distribution π(.), we get

E exp α R(M ) -R(M 0 ) + λ -r(M ) + r(M 0 ) -log 2 ε π(dM ) ≤ ε 2 .
Next, Fubini's theorem gives

E exp α R(M ) -R(M 0 ) + λ -r(M ) + r(M 0 ) -log 2 ε π(dM ) = E exp α R(M ) -R(M 0 ) + λ -r(M ) + r(M 0 ) - -log dρ λ dπ (M ) -log 2 ε ρλ (dM ) ≤ ε 2 .
Jensen's inequality yields

E exp α Rdρ λ -R(M 0 ) +λ -rdρ λ + r(M 0 ) -K(ρ λ , π)-log 2 ε ≤ ε 2 ,
where K(p, q) is the Kullback-Leibler divergence of p from q. Now, using the basic inequality exp(x) ≥ 1 R + (x), we get

P α Rdρ λ -R(M 0 ) +λ -rdρ λ + r(M 0 ) -K(ρ λ , π)-log 2 ε ≥ 0 ≤ ε 2 .
Using Jensen's inequality again gives

Rdρ λ ≥ R M ρλ (dM ) = R( M λ ).
Combining the last two displays we obtain

P R( M λ ) -R(M 0 ) ≤ rdρ λ -r(M 0 ) + 1 λ K(ρ λ , π) + log 2 ε α λ ≥ 1 - ε 2 .
Using Donsker and Varadhan's variational inequality ( [Catoni, 2007, Lemma 1.1.3]), we get

P R( M λ )-R(M 0 ) ≤ inf ρ∈M 1 + (M ) rdρ -r(M 0 ) + 1 λ K(ρ, π) + log 2 ε α λ ≥ 1- ε 2 , (2.5)
where M 1 + (M ) is the set of all positive probability measures over the set of m × p matrices equiped with the Borel σ-algebra.

We now want to bound from above r(M ) -r(M 0 ) by R(M ) -R(M 0 ). We can use Lemma 2.1 again, to Ti (θ) = -T i (θ) and similar computations yield successively

E exp λ R(M 0 ) -R(M ) + r(M ) -r(M 0 ) ≤ exp vλ 2 2n 2 (1 -wλ n )
, and so for any (data-dependent) ρ,

E exp β -Rdρ + R(M 0 ) + λ rdρ -r(M 0 ) -K(ρ, π) -log 2 ε ≤ ε 2 ,
where

β = λ + λ 2 C σ,L 2n(1 -wλ n )
.

(2.6)

Here again, with the same spirit with α in (2.4), β is of order n also. So:

P rdρ -r(M 0 ) ≤ β λ Rdρ -R(M 0 ) + 1 λ K(ρ, π) + log 2 ε ≥ 1 - ε 2 .
(2.7)

Combining (2.7) and (2.5) with a union bound argument gives the general PAC-Bayesian bound

P R( M λ )-R(M 0 ) ≤ inf ρ∈M 1 + (M ) β Rdρ -R(M 0 ) + 2 K(ρ, π) + log 2 ε α ≥ 1-ε.
(2.8)

Step 2:

In the second step, we derive an explicit form for the upper bound in (2.8).

The idea is that, if we restrict the infimum in the upper bound in (2.8) to a small set of measures ρ, we are able to provide an explicit bound for this infimum. This trick was introduced in [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF].

Let M ∈ M(L), it means that M = U V T with |U i | ≤ L/K, |V j | ≤ L/K. Let us take, for any c such that κ ≤ c < ( √ 2 -1) L/K, the probability distribution ρ U,V,c (dµ, dν) ∝ 1( µ -U ∞ ≤ c, ν -V ∞ ≤ c) π(dµ, dν).
Note that, as c < ( √ 2 -1) L/K, we have supp(ρ U,V,c ) ⊂ supp(π) and so

K(ρ U,V,c , π) < ∞.
Thus, (2.8) becomes

P R( M λ ) -R(M 0 ) ≤ inf U,V,c β Rdρ U,V,c -R(M 0 ) + 2 K(ρ U,V,c , π) + log 2 ε α ≥ 1 -ε.
(2.9)

Let us fix c, U, V . The end the proof consists in calculations to derive an upper bound for the two terms in (2.9). Firstly

R(M )dρ U,V,c -R(M 0 ) = µν T -M 0 2 F,Π ρ U,V,c (dµ, dν) = µν T -U ν T + U ν T -U V T + U V T -M 0 2 F,Π ρ U,V,c (dµ, dν) = µν T -U ν T 2 F,Π + U ν T -U V T 2 F,Π + + U V T -M 0 2 F,Π + 2 µν T -U ν T , U ν T -U V T F,Π + 2 µν T -U ν T , U V T -M 0 F,Π + 2 U ν T -U V T , U V T -M 0 F,Π ρ U,V,c (dµ, dν).
(note that we use the notation A, B F,Π = i,j A ij B ij Π ij ). As µρ U,V,c (dµ) = U and νρ U,V,c (dν) = V , it can be seen that integral of the three scalar products in the previous equation vanish. Moreover,

(µ -U )ν T 2 F,Π = ij (µ -U )ν T 2 ij Π ij ≤ sup ij (µ -U )ν T ij 2 ij Π ij ≤ sup ij K =1 |µ -U | i |ν| j 2 ≤ K sup i |µ -U | i sup j |ν| j 2 ≤ Kc c + L K 2 = Kc 2 ( √ Kc + √ L) 2 , similarly U ν T -U V T 2 F,Π ≤ KLc 2 . Therefore, from (2.9), we have µν T -M 0 2 F,Π ρ U,V,c (dµ, dν) ≤ Kc 2 ( √ Kc + √ L) 2 + L + U V T -M 0 2 F,Π . (2.10)
So, we have an upper bound for the first term in (2.9). We now deal with the Kullback-Leibler term:

K(ρ U,V,c , π) = log 1 π({µ, ν : µ -U ∞ ≤ c, ν -V ∞ ≤ c}) = log 1 π({µ : µ -U ∞ ≤ c}) + log 1 π({ν : ν -V ∞ ≤ c}) = log 1 π({ µ -U ∞ ≤ c}|Γ)π(Γ)dΓ + log 1 π({ ν -V ∞ ≤ c}|Γ)π(Γ)dΓ .
(2.11)

Note that, up to a reordering of the columns of U and V , we can assume that

U = (U 1 | . . . |U k 0 |0| . . . |0|) and V = (V 1 | . . . |V k 0 |0| . . . |0|), where k 0 = rank(U V T ) ≤ K. Then π({ µ -U ∞ ≤ c}|Γ)π(Γ)dΓ ≥ τ k 0 -1 1 -τ 1 -τ K π({ µ -U ∞ ≤ c}|Γ = Γ k 0 )
and, as κ ≤ c,

π({ µ -U ∞ ≤ c}|Γ = Γ k 0 ) ≥ m i=1 k 0 =1 π({|µ i -U i | ≤ c}|Γ = Γ k 0 ) K =k 0 +1 π({|µ i | ≤ c}|Γ = Γ k 0 ) ≥ c K 2L mk 0 . So, log 1 π({ µ -U ∞ ≤ c}|Γ)π(Γ)dΓ ≤ (k 0 -1) log(1/τ ) + log 1 -τ K 1 -τ + mk 0 log 1 c 2L K ≤ (k 0 -1) log(1/τ ) + log 1 1 -τ + mk 0 log 1 c 2L K .
(2.12) By symmetry,

log 1 π({ ν -V ∞ ≤ c}|Γ)π(Γ)dΓ ≤ (k 0 -1) log(1/τ ) + log 1 1 -τ + pk 0 log 1 c 2L K .
(2.13) Plugging (2.12) and (2.13) into (2.11), we obtain finally our upper bound for the Kullback-Leibler term:

K(ρ U,V,c , π) ≤ 2(k 0 -1) log(1/τ ) + 2 log 1 1 -τ + (m + p)k 0 log 1 c 2L K ≤ 2k 0 log(1/τ ) + 2 log τ 1 -τ + (m + p)k 0 log 1 c 2L K .
(2.14)

Finally, substituting (2.10) and (2.14) into (2.9), we obtain the following inequality with probability at least 1 -ε

R( M ) -R(M 0 ) ≤ inf U, V, c U j , V j = 0 when j > k 0 1 α β Kc 2 ( √ Kc + √ L) 2 + L + + U V T -M 0 2 F,Π + 2(m + p)k 0 log 1 c 2L K + +4k 0 log(1/τ ) + 4 log τ 1 -τ + 2 log 2 ε .
Let us put c = (m + p)L/(18nK). Note that as n ≥ max(m, p) then (m + p)/(3n) < 1 and thus the condition c < ( √ 2 -1) L/K is satisfied. So we have the following inequality with probability at least 1 -ε:

R( M λ ) -R(M 0 ) ≤ inf U, V U j , V j = 0 when j > k 0 1 1 - λC σ,L 2(n-wλ) 1 + λC σ,L 2(n -wλ) U V T -M 0 2 F.Π + L m + p 18n 2L m + p 18n + 3L + 2 λ (m + p)k 0 log 36n m + p + 2k 0 log(1/τ ) + 2 log τ 1 -τ + log 2 ε ,
where α and β have been replaced by their definitions, see (2.4) and (2.6).

Taking now λ = λ * = n/(2C) with C = C σ,L ∨ w in the last above display, we obtain the following inequality with probability at least 1 -ε

R( M λ * ) -R(M 0 ) ≤ inf M ∈M(L) 3 L 2 m + p 18n m + p 9n + 3 + M -M 0 2 F,Π + 8C n 1 2 (m + p)rank(M) log 36n m + p + log 2 ε +2rank(M ) log(1/τ ) + 2 log τ 1 -τ , (2.15)
where we have used that 1 -

λC σ,L 2(n-wλ) ≥ 1/2 and 1 + λC σ,L 2(n-wλ) ≤ 3/2. As log 36n m + p ≤ log 36mp max(m, p) = log 36 min(m, p) max(m, p) max(m, p) = log (36K) , we have P R( M λ * ) -R(M 0 ) ≤ inf M ∈M(L) 3 L 2 m + p 18n m + p 9n + 3 + M -M 0 2 F,Π + + 8C n 1 2 (m + p)rank(M) log(36K) + log 2 ε + +2rank(M ) log(1/τ ) + 2 log 1 1 -τ ≥ 1 -ε.
(2.16) Moreover,

L 2 m + p 6n m + p 9n + 3 ≤ C (L) (m + p)rank(M) log(K) n ,
for some constant C (L) > 0 depending on L only. Remind that τ is a constant in (0, 1), we have

2rank(M ) log(1/τ ) + 2 log τ 1 -τ ≤ C (τ ) (m + p)rank(M) log(K) n ,
for some constant C (τ ) > 0 depending on τ only. Finally, from (2.16), we obtain

P R( M λ * ) -R(M 0 ) ≤ inf M ∈M(L) 3 M -M 0 2 F,Π + C (L, C, τ ) (m + p)rank(M) log(K) n + 8C log 2 ε n ≥ 1 -ε,
for some constant C (L, C, τ ) > 0 depending only on L, τ and C. However, as the constant C also depends on L, ξ, σ then C (L, C, τ ) can be rewritten as C L,ξ,σ,τ as in the statement of the theorem.

Chapter 3

QUANTUM STATE TOMOGRAPHY

Quantum state tomography, an important task in quantum information processing, aims at reconstructing a state from prepared measurement data. Bayesian methods are recognized to be one of the good and reliable choice in estimating quantum states [START_REF] Blume-Kohout | Optimal, reliable estimation of quantum states[END_REF]. Several numerical works showed that Bayesian estimations are comparable to, and even better than other methods in the problem of 1-qubit state recovery. However, the problem of choosing prior distribution in the general case of n qubits is not straightforward. More importantly, the statistical performance of Bayesian type estimators have not been studied from a theoretical perspective yet. In this chapter, we propose a novel (low-rank) prior for quantum states (density matrices), and we define pseudo-Bayesian estimators of the density matrix. Then, using PAC-Bayesian theorems [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF], we derive rates of convergence for the posterior mean. The numerical performance of these estimators are tested on simulated and real datasets.

The works in this chapter have been published in [START_REF] Mai | Pseudo-bayesian quantum tomography with rank-adaptation[END_REF]: 

T.T.

Introduction

Playing a vital role in quantum information processing, as well as being fundamental for characterizing quantum objects, quantum state tomography focuses on reconstructing the (unknown) state of a physical quantum system [Paris and Řeháček, 2004], usually represented by the so-called density matrix ρ (the exact definition of a density matrix is given in Section 3.2). This task is done by using outcomes of measurements performed on many independent systems identically prepared in the same state.

The 'tomographic' method, also named as linear/direct inversion [START_REF] Vogel | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[END_REF][START_REF] Řeháček | Operational tomography: fitting of data patterns[END_REF], is the simplest and oldest estimation procedure. It is actually the analogous of the least-square estimator in the quantum setting. Although easy in computation and providing unbiased estimate [START_REF] Schwemmer | Systematic errors in current quantum state tomography tools[END_REF], it does not generate a physical density matrix as an output [START_REF] Shang | Quantum state tomography: Mean squared error matters, bias does not[END_REF]. Maximum likelihood estimation [START_REF] Hradil | 3 maximumlikelihood methodsin quantum mechanics[END_REF] is the current procedure of choice. Unfortunately, it has some critical flaws detailed in [START_REF] Blume-Kohout | Optimal, reliable estimation of quantum states[END_REF], including a huge computational complexity. Furthermore, both these methods are not adaptive to the case where a system is in a state ρ for which some additional information is available. Note especially that, physicists focus on so-called pure states, for which rank(ρ) = 1.

The problem of rank-adaptivity was tackled thanks to adequate penalization. Rank-penalized maximum likelihood (BIC) was introduced in [START_REF] Gut ¸ȃ | Rank-based model selection for multiple ions quantum tomography[END_REF] while a rank-penalized least-square estimator ρrank-pen was proposed in [Alquier et al., 2013a], together with a proof of its consistency. More specifically, when the density matrix of the n-qubits system is ρ 0 with r = rank(ρ 0 ), the authors of [Alquier et al., 2013a] proved that the Frobenius norm of the estimation error satisfies ρrank-pen -ρ 0 2 F = O(r4 n /N ) where N is the number of quantum measurements. The rate was improved to O(r3 n /N ) by [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF], using a thresholding method. Note that the rate O(r2 n /N ) was first claimed in the paper, but in the Corrigendum [START_REF] Butucea | Corrigendum: Spectral thresholding quantum tomography for low rank states (2015 new j. phys. 17 113050)[END_REF], the authors acknowledge that this is not the case. The paper however contains a proof that no method can reach a rate smaller than r2 n /N . So, the minimax-optimal rate is somewhere in between r2 n /N and r3 n /N . Note that all the aforementioned papers only cover the complete measurement case (the definition is given in Section 3.2, basically it means that we have observations for all the observables given by the Pauli basis). The statistical relationship between matrix completion and quantum tomography with incomplete measurements (in the Le Cam paradigm) has been investigated in [START_REF] Wang | Asymptotic equivalence of quantum state tomography and noisy matrix completion[END_REF]. Thus compressed sensing ideas have been successfully proposed in estimating a density state from incomplete measurements [START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Flammia | Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators[END_REF][START_REF] Koltchinskii | Von neumann entropy penalization and low-rank matrix estimation[END_REF].

On the other hand, Bayesian estimation has been considered in this context. The papers [START_REF] Bužek | Reconstruction of quantum states of spin systems: From quantum bayesian inference to quantum tomography[END_REF][START_REF] Baier | Comparison of some methods of quantum state estimation[END_REF] compare Bayesian methods to other methods on simulated data. More recently, [START_REF] Kravtsov | Experimental adaptive bayesian tomography[END_REF][START_REF] Ferrie | Quantum model averaging[END_REF][START_REF] Kueng | Near-optimal quantum tomography: estimators and bounds[END_REF][START_REF] Schmied | Quantum state tomography of a single qubit: comparison of methods[END_REF] discuss efficient algorithms for computing Bayesian estimators. Importantly, [START_REF] Blume-Kohout | Optimal, reliable estimation of quantum states[END_REF] showed that Bayesian method comes with natural error bars and is the most accurate scheme w.r.t. the expected error (operational divergence) (even) with finite samples. However, there is no theoretical guarantee on the convergence of these estimators.

More works on quantum state tomography in various settings include [START_REF] Audenaert | Quantum tomographic reconstruction with error bars: a kalman filter approach[END_REF][START_REF] Carlen | Trace inequalities and quantum entropy: an introductory course[END_REF][START_REF] Rau | Inferring the gibbs state of a small quantum system[END_REF][START_REF] Rau | Appearance of gibbs states in quantum-state tomography[END_REF][START_REF] Ferrie | Likelihood-free methods for quantum parameter estimation[END_REF].

In this chapter, we consider a pseudo-Bayesian estimation, where the likelihood is replaced by pseudo-likelihoods based on various moments (two estimators, corresponding to two different pseudo-likelihood, are actually proposed). Using PAC-Bayesian theory [START_REF] Shawe-Taylor | A PAC analysis of a Bayes estimator[END_REF][START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF][START_REF] Suzuki | Pac-bayesian bound for gaussian process regression and multiple kernel additive model[END_REF], we derive oracle inequalities for the pseudo-posterior mean. We obtain rates of convergence for these estimators in the complete measurement setting. One of them has a rate as good as the best known rate up to date O(rank(ρ 0 )3 n /N ) (still, the other one is interesting for computationnal reasons that are discussed in the chapter).

The rest of the chapter is organized as follow. We recall the standard notations and basics about quantum theory in Section 3.2. Then the definition of the prior and of the estimators are presented in Section 3.3. The statistical analysis of the estimators are given in Section 3.4, while all the proofs are delayed to the Appendix 3.7. Some numerical experiments on simulated and real datasets are given in Section 3.5.

Preliminaries

Problem setup

A very good introduction to the notations and problems of quantum statistics is given in [START_REF] Artiles | An invitation to quantum tomography[END_REF]. Here, we only provide the basic definitions required for understanding the material in thie chapter.

In quantum physics, all the information on the physical state of a system can be encoded in its density matrix ρ. Depending on the system in hand, this matrix can have a finite or infinite number of entries. A two-level system of n-qubits is represented by a 2 n × 2 n density matrix ρ, with coefficients in C. For the sake of simplicity, the notation d = 2 n is used in [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF], so note that ρ is a d × d matrix. This density matrix is

• Hermitian ρ † = ρ (i.e. self-adjoint),
• semidefinite positive ρ ≥ 0,

• and has Trace(ρ) = 1.

Additionally, it often makes sense to assume that the rank of ρ is small [START_REF] Gross | Quantum state tomography via compressed sensing[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF]. In theory, the rank can be any integer between 1 and 2 n , but physicists are especially interested in pure states and a pure state ρ can be defined by rank(ρ) = 1.

The objective of quantum tomography is to estimate ρ on the basis of experimental observations of many independent and identically systems prepared in the state ρ by the same experimental device.

For each particle (qubit), one can measure one of the three Pauli-observables

σ x = 0 1 1 0 ; σ y = 0 -i i 0 ; σ z = 1 0 0 -1 .
The outcome for each will be 1, or -1, randomly (the corresponding probability depends on the state ρ and will be given in (3.1) below). Thus for a n-qubits system, we consider 3 n possible experimental observables. The set of all possible performed observables is

{σ a = σ a 1 ⊗ . . . ⊗ σ an ; a = (a 1 , . . . , a n ) ∈ E n := {x, y, z} n },
where vector a identifies the experiment. The outcome for each fixed observable setting will be a random vector s = (s 1 , . . . , s n ) ∈ R n := {-1, 1} n , thus there are 2 n outcomes in total.

Let us denote R a a R n -valued random vector that is the outcome of an experiment indexed by a. From the basic principles of quantum mechanics (Born's rule), its probability distribution is given by

∀s ∈ R n , p a,s := P(R a = s) = Trace (ρ • P a s ) , (3.1) 
where P a s := P a 1 s 1 ⊗ • • • ⊗ P an sn and P a i s i is the orthogonal projection associated to the eigenvalue s i in the diagonalization of σ a i for a i ∈ {x, y, z} and s i ∈ {-1, 1} -that is σ a i = -1P a i -1 + 1P a i +1 . The quantum state tomography problem is as follows: a physicist has access to an experimental device that produces n-qubits in a state ρ 0 , and ρ 0 is assumed to be unknown. He/she can produce a large number of replications of the n-qubits and wants to infer ρ 0 from this.

In the complete measurement case, for each experiment setting a ∈ E n , the experimenter repeats m times the experiment corresponding to a and thus collects m independent random copies of R a , say R a 1 , . . . , R a m . As there are 3 n possible experiment settings a, we define the quantum sample size as N := m • 3 n . We will refer to (R a i ) i∈{1,...,m},a∈E n as D (for data). Note that the case where we would only have access to experiments a ∈ A where A is some proper subset of E n (A E n ) is referred to as the incomplete measurement case. In this work, we focus on the complete measurement case, but the extension to the incomplete case is discussed in Section 3.6.

Popular estimation methods

A natural idea is to define the empirical frequencies

pa,s = 1 m m i=1 1 {R a i =s} .
Note that pa,s is an unbiased estimator of the probability p a,s . The inversion method is based on solving the linear system of equations

   pa,s = Trace (ρ • P a s ) , a ∈ E n , s ∈ R n . (3.2)
As mentioned above, the computation of ρ is quite straighforward. Explicit formulas are classical, see e.g. [Alquier et al., 2013a].

Another commonly used method is maximum likelihood (ML) estimation, where the likelihood is

L(ρ; D) ∝ a∈E n s∈R n [Trace (ρ • P a s )] na,s ,
where n a,s = mp a,s is the number of times we observed output s in experiment a (obviously, s n a,s = m). As mentioned in the introduction, both methods suffer many drawbacks. The inversion method returns a matrix ρ that usually does not satisfy the axioms of a density matrix. ML becomes expensive (impractical) for n ≥ 10. Moreover, these two methods can not take advantage of a prior knowledge (e.x. low-rank state). (3.3)

One can also estimate the density matrix via estimating the coefficients in the Pauli expansion. This was studied in [START_REF] Cai | Optimal large-scale quantum state tomography with pauli measurements[END_REF] where the authors also make a sparsity assumption: that is, most of ρ b are small or very close to 0. Note that, this is not related to the setting we explore (low-rank assumption).

We now turn to the definition of a prior distribution on density matrices that will allow to perform (pseudo-)Bayesian estimation.

Pseudo-Bayesian estimation and prior distribution on density matrices

Peudo-Bayesian estimation

We remind that the idea of Bayesian statistics is to encode the prior information on density matrices through a prior distribution π(dρ). Inference is then done through the posterior distribution π(dρ|D) ∝ L(ρ)π(dρ).

Here, for computational reasons, we replace the likelihood by a pseudolikelihood. This is an increasingly popular method in Bayesian statistics [START_REF] Grünwald | The safe bayesian[END_REF][START_REF] Bissiri | A general framework for updating belief distributions[END_REF] and in machine learning [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF]Alquier et al., 2016;[START_REF] Bégin | Pac-bayesian bounds based on the rényi divergence[END_REF]. We define, for density matrices ν, the pseudoposterior by πλ (dν) ∝ exp [-λ (ν, D)] π(dν), (3.4) the pseudo-likelihood being exp [-λ (ν, D)]. The term (ν, D) can be specified by the user. Two examples are provided in Section 3.4. As a replacement of the likelihood, this term plays the role of the empirical evidence. More specially

• the role of exp [-λ (ν, D)] is to give more weight to the density ν when it fits the data well;

• the role of π(dν), the prior, is to restrict the posterior to the space of densities (and even give more weight to low-rank matrices if needed);

• λ > 0 is a free parameter that allows to tune the balance between evidence from the data and prior information.

We finally define the pseudo-posterior mean (also refered to as Gibbs estimator, PAC-Bayesian estimator or EWA, for exponentially weighted aggregate [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF]):

ρλ = ν πλ (dν).
The definition of the estimator ρλ based on the pseudo-posterior πλ is actually validated by the theoretical results from Section 3.4.

Definition of the prior

In the single qubit state estimation n = 1, the representation of the quantum constraints is explicit [START_REF] Baier | Comparison of some methods of quantum state estimation[END_REF][START_REF] Schmied | Quantum state tomography of a single qubit: comparison of methods[END_REF]. Thus, one can place a prior distribution on the polar reparametrization of the density. Up to our knowledge, this has not been extended to the case n > 1, and this extension seems not straightforward. For general n-qubit densities, uninformative priors (e.g the Haar measure) are put on ψ d×K matrices (K ≥ d) and the density state is built by ρ = ψ d×K ψ † d×K [START_REF] Struchalin | Experimental adaptive quantum tomography of two-qubit states[END_REF][START_REF] Granade | Practical bayesian tomography[END_REF][START_REF] Huszár | Adaptive bayesian quantum tomography[END_REF][START_REF] Kueng | Near-optimal quantum tomography: estimators and bounds[END_REF][START_REF] Życzkowski | Generating random density matrices[END_REF]. One could also define a prior on the coefficients {ρ b } of ρ on the Pauli basis. Nevertheless, none of these approaches seem helpful for rank adaptation.

The idea for our prior is inspired by the priors used for low-rank matrix estimation in machine learning, e.g. [START_REF] Mai | A bayesian approach for noisy matrix completion: Optimal rate under general sampling distribution[END_REF][START_REF] Cottet | 1-bit matrix completion: Pac-bayesian analysis of a variational approximation[END_REF] and the references therein. Hereafter, we describe in details the prior construction. Let V be a vector in C d×1 \ {0} (d = 2 n in our model), then V V † is a Hermitian, semi-definite positive matrix in C d×d with rank(V V † ) = 1.

Additionally, we can normalize V (that is replace V by V / V ), this leads to Trace(V V † ) = 1. So, V V † satisfies the conditions of a density matrix (with rank-1). Now, let V 1 , . . . , V d be d normalized vectors in C d×1 \ {0} and γ 1 , . . . , γ d be non-negative weights with d j=1 γ j = 1. Put

ν = d i=1 γ i V i V † i . (3.5)
Then ν is clearly a density matrix: it is Hermitian (as a sum of Hermitian matrices), it is semi-definite positive (same reason) and

Tr(ν) = d i=1 γ i Tr(V i V † i ) = 1.
Moreover, note that any density matrix can be written in such way, as we know that for any density matrix ρ,

ρ = U ΛU † (3.6) and just write U = (U 1 | . . . |U d ) with the U i 's being orthogonal, where Λ = diag(Λ 1 , . . . , Λ d ) : Λ 1 ≥ . . . ≥ Λ d ≥ 0, d i=1 Λ i = 1.
The only difference in (3.5) is that we do not require that the V i 's are orthogonal. Thus, it is easier to simulate a matrix ρ by simulating the V i 's and γ i s in (3.5) than by simulating U and Λ in (3.6). Also, note that the γ i 's are not necessarily the eigenvalues of ρ. Definition 3.1. We define the prior definition on ρ, π(dρ), by V 1 , . . . , V d ∼ i.i.d uniform distribution on the unit sphere,

(γ 1 , . . . , γ d ) ∼ Dir(α 1 , . . . , α d ), ρ = d i=1 γ i V i V † i
where Dir(α 1 , . . . , α d ) is the Dirichlet distribution with parameters α 1 , . . . , α d > 0.

Remark 3.1. To get an approximate rank-1 matrix ρ, one can take all parameters of the Dirichlet distribution equal to a constant that is very closed to 0 (e.g α 1 = . . . = α d = 1 d ). And a typical drawing will lead to one of the γ i s close to 1 and the others close to 0. See [START_REF] Wallach | Rethinking LDA: Why priors matter[END_REF] for more discussion on choosing the parameters for Dirichlet distribution. Theoretical recommendations for the α i 's are given in Section 3.4 below.

Remark 3.2. We could impose the V i 's to be orthogonal in practice. The theoretical results would be unchanged, however, the implementation of our method would become trickier. Note that to sample from the uniform distribution on the sphere is rather easy. We can for example simulate Ṽi from any isotropic distribution, e.g. N (0, I) and define V i := Ṽi / Ṽi .

PAC-Bayesian estimation and analysis

Pseudo-likelihoods

Here, we consider two natural ways to compare a theoretical density ρ and the observations: first p a,s should be close to the empirical part pa,s ; second ρ should be close to the least square (invert) estimator ρ. As we have no reason to prefer one in advance, we define and study 2 estimators. In another words, this estimator finds a balance between prior information and closeness to the least square estimate ρ. From a computational point of view, this estimator is easier to implement than the previous estimator.

Statistical properties of the estimators

Before analyzing statistical properties of our estimators, we make some assumption on the prior distribution. Typically, this assumption aims at producing low-rankness.

Assumption 3.1. Fix some constants D 1 > 0 and D 2 > 0 (that do not depend on m nor n). We assume that the parameters of the Dirichlet prior distribution Dir(α 1 , . . . , α d ) satisfy d) .

• ∀i = 1, . . . , d : α i ≤ 1, • d i=1 α i = D 1 , • d i=1 α i ≥ e -D 2 d log(
Note that this assumption is satisfied for

α 1 = . . . = α d = 1/d with D 1 = D 2 = 1.
The first theorem provides the concentration bound on the square error of the first estimator ρprob λ . The proof of this theorem is left to Section 3.7. Theorem 3.1. Fix a small ∈ (0, 1). Under Assumption 3.1, for λ = λ * := m/2, with probability at least 1 -, one has

ρprob λ * -ρ 0 2 F ≤ C prob D 1 ,D 2 3 n rank(ρ 0 ) log rank(ρ 0 )N 2 n + (1.5) n log(2/ ) N ,
where C prob D 1 ,D 2 is a constant that depends only on D 1 , D 2 . Remark 3.3. As said in the introduction, the best known rate up-to-date in this problem is 3 n rank(ρ 0 ) N , so our estimator ρprob λ * reaches this rate (up to log terms). This rate is actually 3 2 n rd N and the best lower bound known in this case is rd N [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF] (we remind that d = 2 n ).

The next theorem presents the square error bound of the second estimator ρdens λ . Here again, see the Section 3.7 for the proof.

Theorem 3.2. Fix a small ∈ (0, 1). Under Assumption 3.1, for λ = λ * := N 5 n 4 , with probability at least 1 -,

ρdens λ * -ρ 0 2 F ≤ C dens D 1 ,D 2 10 n rank(ρ 0 ) log rank(ρ 0 )N 2 n + 5 n log(2/ε) N (3.7)
where

C dens D 1 ,D 2 is a constant that depends only on D 1 , D 2 .
The guarantee for ρdens λ * is far less satisfactory. However, as this estimator is easier to compute, we think it is interesting to provide a convergence rate, even if it is far from optimal: note that for a fixed d, the bound goes to 0 when m → ∞.

Remark 3.4. Experiments show that λ = λ * := N 5 n 4 is actually not the best choice for dens-estimator. The choice λ = N 4 (heuristically motivated by [START_REF] Dalalyan | Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity[END_REF]) leads to results comparable to the probestimator in Section 3.5. This leads to the conjecture that the rate of ρdens N/4 is much better than 10 n rank(ρ 0 ) N but this is still an open question.

Numerical Experiments

Metropolis-Hastings Implementation

We implement the two proposed estimators via the Metropolis-Hasting (MH) algorithm [START_REF] Robert | Monte Carlo statistical methods[END_REF]. Note that to draw (γ 1 , . . . , γ d ) ∼ Dir(α, . . . , α) is equivalent to draw

γ i = Y i /(Y 1 + . . . + Y d ) with Y i i.i.d
∼ Gamma(α, 1), ∀i = 1, . . . , d. Thus, instead of γ i s, we conduct a MH updating for Y i s. So the objective is to produce a Markov chain (Y

(t) 1 , . . . , Y (t) d , V (t) 1 , . . . , V (t) d ).
From this, we deduce obviously the sequence (γ

(t) 1 , . . . , γ (t) d , V (t) 1 , . . . , V (t) 
d ) and use the following empirical mean as the Monte-Carlo approximation of our estimator:

ρMH := 1 T T t=1 d i=1 γ (t) i V (t) i (V (t) i ) † .
Algorithm 3 MH implementation For t from 1 to T , we iteratively update through the following steps:

updating for Y i s: for i from 1 to d, Sample Ỹi ∼ h(y|Y (t-1) i
) where h is a proposal distribution given explicitely below. Calculate γi = Ỹi /( d i=1 Ỹi ). Set

Y (t) i = Ỹi with probability min 1, R( Ỹ , Y (t-1) ) , Y (t-1) i otherwise where R( Ỹ , Y (t-1)
) is the acceptance ratio given below. Put γ

(t) i = Y (t) i /( d j=1 Y (t) j ), i = 1, . . . , d.
updating for V i s: for i from 1 to d, Sample Ṽi from the uniform distribution on the unit sphere. Set

V (t) i = Ṽi with probability min{1, A(V (t-1) , Ṽ )}, V (t-1) i otherwise,
where A(V (t-1) , Ṽ ) is the acceptance ratio given below.

Let us now give precisely h, R and A. We define h(•|Y (t-1) i

) as the probability distribution of U = Y (t-1) i exp(y) where y ∼ U(-0.5, 0.5). Following [START_REF] Robert | Monte Carlo statistical methods[END_REF] the acceptance ratios are then given by:

log(R( Ỹ , Y (t-1) )) = λ d i=1 γi V i V † i , D -λ d i=1 γ (t-1) i V i V † i , D + d i=1 ((α -1) log( Ỹi ) -Ỹi ) - d i=1 ((α -1) log(Y (t-1) i ) -Y (t-1) i ) + d i=1 Ỹi - d i=1 Y (t-1) i and log(A(V (t-1) , Ṽ )) = λ d i=1 γ i Ṽi Ṽ † i , D -λ d i=1 γ i V (t-1) i (V (t-1) i ) † , D
where (•, D) stands for dens (•, D) or prob (ν, D) depending on the estimator we are computing.

Experiments and Results

We study the numerical performance of the prob-estimators with λ = m/2, i.e. ρprob m/2 and the dens-estimator with λ = N 4 , i.e. ρdens N/4 on the following settings, all with n = 2, 3, 4 (d = 4, 8, 16):

• a pure state density (rank-1) ρ = ψψ † with ψ ∈ C d×1 , • a rank-2 density matrix that ρ rank-2 = 1 2 ψ 1 ψ † 1 + 1 2 ψ 2 ψ † 2 with ψ 1 , ψ 2 being two normalized orthogonal vectors in C d×1 ,
• an "approximate rank-2" density matrix: ρ = wρ rank-2 +(1-w) I d d , w = 0.98. Note that by "approximate rank-2", we mean that ρ is very well approximated by a rank-2 matrix ρ rank-2 (in the sense that ρρ rank-2 2 F is small), but in general ρ itself is full rank,

• a maximal mixed state (rank-d).

The experiments are done for m = 20; 200; 1000; 2000. The parameter for Dir(α, . . . , α) is α = 0.5. We repeat each experiment 10 times, and compute the mean of the square errors, MSEs, ρ -ρ 2 F for each estimator, together with the associated standard deviation (between brackets in Tables 3.1,3.2,3.3).

We compare the prob-and dens-estimator to the simple inversion procedure and to the thresholding estimator of [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF]. The results are given in Tables 3.1,3.2,3.3 (outputs from the R software [R Core Team, 2014]). The conclusions are:

• The prob-estimator seems to be the most accurate but also comes with a larger standard deviation. This might be due to slow convergence of the MCMC procedure. Indeed each step is computationally highly expensive.

• The dens-estimator is easier to compute and while it is less accurate than the prob-estimator, it still shows better results than the direct inversion method.

• The thresholding estimator of [START_REF] Butucea | Spectral thresholding quantum tomography for low rank states[END_REF] works well for rank-1 states but seems to bring too much bias for other states.

Besides the square error, the eigenvalues of the estimates are also important when reconstructing density matrices. In Figure 3.1, the dens-estimator returns with eigenvalues similar to the true eigenvalues of the true density matrix, while the prob-estimator seems not to shrink enough. Another natural question is: are the γ i 's close to the eigenvalues of our estimator? In our simulations, it doesn't seem to be the case. However, it seems that the number of significant γ i 's is a fair indicator of the number of significant eigenvalues in our estimator, but only for the prob-estimator. This is illustrated in Figure 3.2. We currently do not have any explanation for this fact.

Real data tests

The experiments performed to produce the data is explained in [START_REF] Barreiro | Experimental multiparticle entanglement dynamics induced by decoherence[END_REF]. The data was kindly provided by M. Gut ¸ȃ and T. Monz. It had been used in [Alquier et al., 2013a;[START_REF] Gut ¸ȃ | Rank-based model selection for multiple ions quantum tomography[END_REF]. We apply two proposed estimators to the real data set of a system of 4 ions which is Smolin state further manipulated. In Figure 3.3 we plot the eigenvalues of the inversion 1.55 (5e-6) Thresholding 93.5 (3e-4) 12.6 (3e-5) .596 (2e-6) .412 (2e-6) prob 86.3 (6e-4) 22.4 (2e-4) 10.5 (6e-5) 5.13 (2e-5) dens 51.5 (2e-4) 21.7 (7e-5) 13.1 (3e-5) 13.2 (2e-5) rank-2 state, MSEs×10 3 Inversion 16.8 (8e-4) 15.9 (3e-4) 15.9 (1e-4) 15.8 (7e-5) Thresholding 14.9 (3e-4) 15.5 (7e-5) 15.5 (9e-6) 15.5 (7e-6) prob 9.29 (2e-3) 7.90 (1e-3) 8.46 (1e-3) 7.84 (8e-4) dens 14.5 (3e-4) 14.6 (3e-4) 14.4 (3e-4) 14.5 (4e-4) approximate rank-2 state, MSEs×10 3 Inversion 15.9 (8e-4) 15.4 (2e-4) 15.3 (1e-4) 15.2 (4e-5) Thresholding 14.3 (2e-4) 14.2 (3e-4) 15.0 (1e-5) 15.0 (6e-6) prob 8.88 (9e-4) 7.68 (2e-3) 8.11 (1e-3) 7.39 (1e-3) dens 13.9 (4e-4) 15.1 (2e-4) 14.2 (3e-4) 14.2 (2e-4) maximal mixed state, MSEs×10 4 Inversion 15.9 (4e-4) 6.57 (7e-5) 5.09 (5e-5) 4.76 (2e-5) Thresholding 4.67 (9e-5) 5.59 (5e-5) 5.34 (8e-5) 6.06 (8e-5) prob 5.44 (2e-4) 3.37 (8e-5) 3.31 (8e-5) 3.20 (8e-5) dens 5.72 (9e-5) 4.47 (6e-5) 4.56 (4e-5) 4.24 (2e-5)

estimator and our ones. Note that the distribution of the eigenvalues of the three estimators are rather different. Still, it seems that all estimators return results compatible with a rank-2 state.

Table 3.2: MSEs for n = 3 (together with standard deviations) m = 20 m = 200 m = 1000 m = 2000 pure state, MSEs×10 4 Inversion 39.5 (9e-4) 3.17 (9e-5) .559 (1e-5) .343 (1e-5) Thresholding 21.4 (6e-4) 2.26 (1e-4) .196 (1e-5) .152 (1e-5) prob 40.3 (2e-2) 5.79 (4e-4) 2.95 (2e-4) 1.78 (1e-4) dens 12.8 (5e-4) 2.73 (2e-4) 1.24 (4e-5) 1.07 (4e-5) rank-2 state, MSEs×10 2 Inversion 3.69 (3e-3) 3.35 (6e-4) 3.32 (4e-4) 3.31 (2e-4) Thresholding 2.94 (1e-3) 3.05 (2e-4)

3.04 (6e-5) 3.05 (5e-5) prob

1.91 (5e-3) 1.17 (3e-3) 1.18 (3e-3) 1.14 (2e-3) dens 2.83 (8e-4) 2.89 (3e-4) 2.89 (3e-4) 3.00 (1e-4) approximate rank-2 state, MSEs×10 2 Inversion 3.33 (2e-4) 3.22 (8e-4) 3.19 (3e-4) 3.18 (2e-4) Thresholding 2.81 (1e-3) 2.96 (1e-4) 2.97 (8e-5) 2.97 (9e-5) prob 1.10 (5e-3) .551 (5e-3) .189 (2e-3) .113 (1e-3) dens 2.74 (6e-4) 2.88 (3e-4) 2.91 (3e-4) 2.91 (2e-4) maximal mixed state, MSEs×10 3 Inversion 6.98 (2e-3) 3.19 (4e-4) 2.88 (2e-4) 3.01 (1e-4) Thresholding 4.41 (6e-4) 3.26 (6e-4) 3.19 (2e-4) 3.29 (1e-4) prob 3.63 (1e-3) 2.70 (7e-4) 2.28 (7e-4) 2.29 (1e-3) dens 3.18 (6e-4) 2.99 (4e-4) 2.90 (2e-4) 3.04 (1e-4) 

Discussion and conclusion

We propose a novel prior and introduce two pseudo-Bayesian estimators for the density matrix: the dens-estimator and the prob-estimator. The probestimator reaches the best up-to-date rate of convergence in the low-rank Thresholding 49.4 (3e-3) 4.06 (3e-4) .737 (4e-5) .356 (2e-5) prob 102 (8e-3) 39.7 (2e-3) 9.37 (8e-4) 7.19 (5e-4) dens 52.2 (3e-3) 7.57 (5e-4) 1.91 (9e-5) 1.08 (2e-5) rank-2 state, MSEs×10 2 Inversion 8.24 (2e-2) 7.91 (3.2e-3) 7.81 (2e-3) 7.74 (7e-4) Thresholding 5.13 (3e-3) 5.34 (1.1e-3) 5.32 (5e-4) 5.33 (4e-4) prob 2.62 (2e-2) 1.77 (7.4e-3) 1.79 (8e-3) 1.73 (5e-3) dens 4.53 (3e-3) 5.20 (1.5e-3) 5.24 (9e-4) 5.24 (9e-4) approximate rank-2 state, MSEs×10 2 Inversion 8.12 (2e-2) 7.54 (4e-3) 7.54 (1.2e-3) 7.56 (6e-4) Thresholding 4.95 (4e-3) 5.19 (8e-4) 5.23 (5e-4) 5.22 (4e-4) prob 2.69 (2e-2) 1.82 (1.1e-2) 1.52 (6e-3) 1.58 (6e-3) dens 4.40 (4e-3) 5.02 (1.3e-3) 5.11 (1e-3) 5.15 (6e-4) maximal state, MSEs×10 2 Inversion 3.03 (9e-3) 2.12 (2e-3) 2.11 (2e-3) 2.11 (1e-3) Thresholding 2.78 (8e-3) 2.36 (2e-3) 2.21 (2e-3) 2.25 (1e-3) prob 2.32 (2e-2) 1.15 (5e-3) 1.19 (5e-3) 1.07 (4e-3) dens 2.30 (6e-3) 2.11 (2e-3) 2.06 (2e-3) 2.09 (1e-3) case. On the other hand, computation of the dens-estimator is an easier task.

In practice, we recommend the prob-estimator. However, in cases where the MCMC shows activities of lacking of convergence, the dens-estimator can be used as a reasonable alternative.

Note also that the prob-estimator can be extended to the incomplete measurement case. We consider the (incomplete) pseudo-likelihood as

prob-incomplete (ν, D) = a∈A s∈R n [Tr(νP a s ) -pa,s ] 2 ,
where A E n . The study in this case will be the object of future works.

Open questions include faster algorithms based on optimization (in the spirit of [Alquier et al., 2016]). Also, from a theoretical perspective, the most important question is the minimax lower bound.

Proofs

We first remind here a version of Hoeffding's inequality for bounded random variables.

Lemma 3.1. Let Y i , i = 1, . . . , n be n independent random variables with |Y i | ≤ b a.s., and E(Y i ) = 0. Then, for any λ > 0,

E exp λ n n i=1 Y i ≤ exp λ 2 b 2 8n .
3.7.1 Preliminary lemmas for the proof of Theorem 3.1

Lemma 3.2. For any λ > 0, we have

E exp λ p ν -p 0 , p 0 -p F ≤ exp λ 2 4m p 0 -p ν 2 F , E exp -λ p ν -p 0 , p 0 -p F ≤ exp λ 2 4m p 0 -p ν 2 F .
Proof. First inequality:

E exp λ p ν -p 0 , p 0 -p F = E exp   λ a∈E n s∈R n [Tr(νP a s ) -p 0 a,s ] =:c(a,s) [p 0 a,s -pa,s ]    = a∈E n E exp λ s∈R n c(a, s) p 0 a,s - 1 m m i=1 1(R a i = s) = a∈E n E exp λ m m i=1 s∈R n c(a, s){p 0 a,s -1(R a i = s)} =:Y i,a
We have that E(Y i,a ) = 0. Then, using Cauchy-Schwartz inequality

Y 2 i,a ≤ s∈R n c(a, s) 2 s∈R n [p 0 a,s -1(R a i = s)] 2 ≤ s∈R n c(a, s) 2 s∈R n |p 0 a,s -1(R a i = s)| ≤ 2 s∈R n c(a, s) 2 .
So we can apply Hoeffding's inequality (Lemma 3.1):

a∈E n E exp λ m m i=1 Y i,a ≤ a∈E n exp 2λ 2 8m s∈R n c(a, s) 2 ≤ exp λ 2 4m p -p ν 2 F .
Second inequality: same proof, just replace Y i,a by -Y i,a .

Lemma 3.3. For λ > 0, we have

E exp λ p ν -p 2 F -p 0 -p 2 F -λ 1 + λ m p 0 -p ν 2 F ≤ 1, (3.8) E exp λ 1 - λ m p 0 -p ν 2 F -λ p ν -p 2 F -p 0 -p 2 F ≤ 1. (3.9)
Proof. Proof of the first inequality:

E exp λ p ν -p 2 F -p -p 2 F = E exp λ p ν -p 0 , p ν + p 0 -2p F = E exp λ p ν -p 0 2 F + 2λ p ν -p 0 , p 0 -p F = exp λ p ν -p 0 2 F E exp 2λ p ν -p 0 , p 0 -p F ≤ exp λ p ν -p 0 2 F exp λ 2 m p ν -p 0 2
F thanks to Lemma 3.2. The proof of the second inequality is similar.

Using Lemma 3.3, we derive an empirical PAC-Bayes bound for the estimator.

Lemma 3.4. For λ > 0 s.t. λ m < 1, with prob. 1 -/2, ∈ (0, 1), for any distribution π, we have:

p ν -p 0 2 F πλ (dν) ≤ p ν -p 2 F π(dν) -p 0 -p 2 F + K(π λ ,π)+log( 2 ) λ 1 -λ m .
Proof. We rewrite (3.9) in Lemma 3.3 as follows

E exp λ 1 - λ m p 0 -p ν 2 F -λ p ν -p 2 F -p 0 -p 2 F π(dν) ≤ 1.
By using Fubini's theorem

E exp λ 1 - λ m p 0 -p ν 2 F -λ p ν -p 2 F -p 0 -p 2 F π(dν) ≤ 1.
Now, using [Catoni, 2007, Lemma 1.1.3], for any distribution π, we have

E exp sup π λ 1 - λ m p 0 -p ν 2 F π(dν) -log (2/ ) -K(π, π) -λ p ν -p 2 F π(dν) -p 0 -ρ 2 F ≤ 2
and with 1 R + (x) ≤ exp(x), one has

P sup π λ 1 - λ m p 0 -p ν 2 F π(dν) -log (2/ ) -K(π, π) -λ p ν -p 2 F π(dν) -p 0 -ρ 2 F ≥ 0 ≤ 2 .
Taking the complementary yields successfully the results.

The following lemma give a theoretical PAC-Bayes bound for the estimator.

Lemma 3.5. For λ > 0 s.t λ m < 1, with probability 1 -we have:

p ν -p 0 2 F πprob λ (dν) ≤ inf π 1 + λ m p ν -p 0 2 F π(dν) + 2K(π,π)+2 log( 2 ) λ 1 -λ m (3.10) and ν -ρ 0 2 F πprob λ (dν) ≤ inf π 3 n 1 + λ m ν -ρ 0 2 F π(dν) + 2K(π,π)+2 log( 2 ) 2 n λ 1 -λ m .
(3.11)

Proof. Using the same proof of Lemma 3.4 for inequality (3.8) in Lemma 3.3, we obtain with probability at least 1 -/2, ∈ (0, 1), for any distribution π that

p 0 -p 2 F π(dν) ≤ 1 + λ m p ν -p 0 2 F π(dν) + p 0 -p 2 F + K(π, π) + log( 2 ) λ .
With a union argument, combining the Lemma 3.4 and the above inequality yields the following inequality with probability at least 1 -, ∈ (0, 1), for any π

p ν -p 0 2 F π(dν) ≤ 1 + λ m p ν -p 0 2 F π(dν) + 2K(π,π)+2 log(2/ ) λ 1 -λ m .
Taking πprob λ (once again, [Catoni, 2007, Lemma 1.1.3]) be the minimizer of the right hand side of the above inequality, we obtain (3.10).

Moreover, in [Alquier et al., 2013a, equation (5)] states that, for any ν: p ν = Pν for some operator P. Therefore

p ν -p 0 2 F = P(ν -ρ 0 ) 2 F .
The eigenvalues of P T P are known, they range between 2 n and 3 n 2 n according to [Alquier et al., 2013a, Proposition 1]. Thus, for any ν,

2 n ν -ρ 0 2 F ≤ p ν -p 0 2 F ≤ 6 n ν -ρ 0 2
F and so we obtain (3.11).

PROOFS

In the following, we will consider π as a restriction of the prior to a local set around the true density matrix ρ 0 . This allows us to obtain an explicit bound of the left hand side of (3.11). Let ρ 0 = U ΛU † be the spectral decomposition of ρ 0 . Definition 3.2. Let r = #{i : Λ i > δ}, with small δ ∈ [0, 1). Take πc (du, dv) ∝ 1(∀i (du, dv).

: |v i -Λ i | ≤ δ; ∀i = 1, . . . , r : u i -U i F ≤ c)π
Note that we have r ≤ rank(ρ 0 ). Lemma 3.6. We have

u † vu -ρ 0 2 F πc (du, dv) ≤ (3dδ + 2rc) 2 .
(3.12)

And under the Assumption 3.1

K(π c , π) ≤ ard log( 1 c ) + C D 1 ,D 2 d(log(d) + log( 1 δ )) (3.13)
where a is a universal constant and where C D 1 ,D 2 depends only on D 1 and D 2 .

Proof. Firstly

uvu † -ρ 0 2 F ≤ uvu † -uΛu † F + uΛu † -U ΛU † F 2 and uvu † -uΛu † F ≤ i |v i -Λ i | u i u † i F ≤ dδ, uΛu † -U ΛU † F ≤ i Λ i u i u † i -U i U † i F ≤ i:Λ i >δ ( u i u † i -u i U † i F + u i U † i -U i U † i F ) + δ i:Λ i ≤δ ( u i u † i F + U i U † i F ) ≤ 2rc + 2δ(d -r) ≤ 2rc + 2δd,
so we obtain (3.12). Now, the Kullback-Leibler term

K(π c , π) = log 1 π({u, v : ∀i : |v i -Λ i | ≤ c; ∀i = 1, r : u i -U i F ≤ δ}) = log 1 π({∀i : |v i -Λ i | ≤ δ}) + log 1 π ({∀i = 1, r : u i. -U i. F ≤ c})
.

The first log term

π ({∀i = 1, r : u i. -U i. F ≤ c}) ≥ r i=1 π (d-1)/2 (c/2) d-1 Γ( d-1 2 + 1) 2π (d+1)/2 Γ( d+1 2 ) , d = 2 n ≥ c d-1 2 d π r ≥ c r(d-1) 2 4rd .
Note for the above calculation: it is greater or equal to the volume of the (d-1)-"circle" with radius c/2 over the surface area of the d-"unit-sphere".

The second log term in the Kullback-Leibler term π({∀i

: |v i -Λ i | ≤ δ}) = Γ(D 1 ) d i=1 Γ(α i ) d i=1 min(Λ i +δ,1) max(Λ i -δ,0) v α i -1 i dv i ≥ Γ(D 1 )δ d d i=1 α i ≥ C D 1 δ d e -D 2 d log(d)
for some constant C D 1 that depends only on D 1 . Since α i ≤ 1 for every i, we can lower bound the integrand by 1 and also α i Γ(α i ) = Γ(α i + 1) ≤ 1. The interval of integration contains at least an interval of length δ. This trick was presented in [Ghosal et al., 2000b, Lemma 6.1, page 518] Thus, we obtain

K(π c , π) ≤ log 2 4rd c r(d-1) + log e D 2 d log(d) C D 1 δ d ≤ ard log( 1 c ) + C D 1 ,D 2 d(log(d) + log( 1 δ ))
for some absolute constant a and where C D 1 ,D 2 depends only on D 1 and D 2 .

Proof of Theorem 3.1

Proof of Theorem 3.1. Substituting (3.13),(3.12) into (3.11), we obtain

ν -ρ 0 2 F πλ (dν) ≤ inf c 3 n 1 + λ m (3dδ + 2rc) 2 1 -λ m + ard log( 1 c ) + C D 1 ,D 2 d(log(d) + log( 1 δ )) + 2 log(2/ ) λ2 n [1 -λ m ]
.

By taking δ = 1 d √ N , c = d rm9 n , λ = m/2 leads to ν -ρ 0 2 F πλ (dν) ≤ A 1 m + rd m3 n + C D 1 ,D 2 r log(rm3 n /d) + log(m3 n ) + log(2/ )/2 n m
for some absolute constant A. Finally, by Jensen inequality, one has

ρλ -ρ 0 2 F ≤ ν -ρ 0 2 F πλ (dν).
This completes the proof of the theorem. Where P (s,a),b = j =E b s j 1(a j = b j ) and E b = {j ∈ {1, . . . , n} : b j = I} , see [Alquier et al., 2013a] for technical details. We are now ready to handle with the proofs.

Lemma 3.7. For any λ > 0, we have

E exp λ ρ 0 -ν, ρ 0 -ρ F ≤ exp 4λ 2 m 5 3 n ν -ρ 0 2 F , E exp -λ ρ 0 -ν, ρ 0 -ρ F ≤ exp 4λ 2 m 5 3 n ν -ρ 0 2 F .
Proof. First inequality 

E exp λ ρ 0 -ν, ρ 0 -ρ F = E exp λ b (ρ 0 b -ν b )(ρ 0 b -ρb )T race(σ b σ † b ) = E exp dλ b (ρ 0 b -ν b )
3 d(b) (p 0 a,s -1 R a i =s ) = a i E exp λ m b (ρ 0 b -ν b ) s P (s,a),b 3 d(b) (p 0 a,s -1 R a i =s ) :=Y i,a
.

Remark that E(Y i,a ) = 0. Also, from the definitions above, the absolute value |P (s,a),b | does not depend on s so

|Y i,a | ≤ b |ρ 0 b -ν b | P (s,a),b 3 d(b) s |p 0 a,s -1 R a i =s | ≤ 2 b |ρ 0 b -ν b | P (s,a),b 3 d(b) ≤ 2 2 n/2 b (ρ 0 b -ν b ) 2 d b P (s,a),b 3 d(b) 2 ≤ 2 ν -ρ 0 F 2 n/2   b 1 3 2d(b) j / ∈E b 1 a j =b j   1/2 ≤ 2 ν -ρ 0 F 2 n/2 n =0 n 1 3 2 1/2 ≤ 2 ν -ρ 0 F 2 n/2 1 + 1 9 n/2 = 2 ν -ρ 0 F 5 9 n/2
.

So we can apply Hoeffding's inquality (Lemma 3.1):

a E exp λ m m i=1 Y i,a ≤ exp λ 2 2m 5 3 n ν -ρ 0 2 F .
Second inequality: same proof, just replace Y i (a) by -Y i (a).

Lemma 3.8. We have

E exp λ 1 - 2λ m 5 3 n ν -ρ 0 2 F -λ ν -ρ 2 F -ρ 0 -ρ 2 F ≤ 1, E exp λ ν -ρ 2 F -ρ 0 -ρ 2 F -λ 1 + 2λ m 5 3 n ν -ρ 0 2 F ≤ 1.
Proof. For the second inequality:

E exp λ ν -ρ 2 F -ρ 0 -ρ 2 F = E exp λ ν -ρ 0 , ν + ρ 0 -2ρ F = E exp λ ν -ρ 0 2 F + 2λ ν -ρ 0 , ρ 0 -ρ F = exp λ ν -ρ 0 2 F E exp 2λ ν -ρ 0 , ρ 0 -ρ F ≤ exp λ ν -ρ 0 2 F exp 2λ 2 m 5 3 n ν -ρ 0 2
F thanks to the Lemma 3.7. The proof of the first inequality is similar.

Lemma 3.9. For λ > 0 s.t 2λ m 5 3

n < 1, with probability at least 1 -, ∈ (0, 1), we have

ν -ρ 0 2 F πdens λ (dν) ≤ inf π 1 + 2λ m 5 3 n ν -ρ 0 2 F π(dν) + 2K(π,π)+2 log(2/ ) λ 1 -2λ m 5 3 n .
(3.14)

Proof. By using the results from the Lemma 3.8, the proof is similar to the proof of Lemma 3.5 page 86.

Proof of Theorem 3.2

Proof of Theorem 3.2. Substituting (3.13),(3.12) into (3.14)

ν -ρ 0 2 F πλ (dν) ≤ inf c 1 + 2λ m 5 3 n (3dδ + 2rc) 2 1 -2λ m 5 3 n + ard log( 1 c ) + C D 1 ,D 2 d(log(d) + log( 1 δ )) + 2 log(2/ ) λ[1 -2λ m 5 3 n ]
.

Taking δ = d N , c = d rN , λ = N 5 n 4 lead to ν -ρ 0 2 F πλ (dν) ≤ A d 2 r N + C D 1 ,D 2 5 n rd log( N r d ) + d log( N d ) + 2 log(2/ ) N
for some constant A > 0. Simultaneously, by Jensen inequality, one has

ρλ -ρ 0 2 F ≤ ν -ρ 0 2 F πλ (dν).
This complete the proof of the theorem.

Chapter 4

LIFELONG LEARNING

In this chapter, we consider the problem of transfer learning in an online setting. More precisely, different tasks are presented sequentially and processed by a within-task algorithm. We propose a lifelong learning strategy which refines the underlying data representation used by the within-task algorithm, thereby transferring information from one task to the next. We show that when the within-task algorithm comes with some regret bound, our strategy inherits this good property. Our bounds are in expectation for a general loss function, and uniform for a convex loss. We discuss applications to dictionary learning and finite set of predictors. In the latter case, we improve previous O(1/ √ m) bounds to O(1/m) where m is the per task sample size. We also show that it is possible to adapt lifelong learning strategy to learning-to-learn settings by using online-to-batch techniques.

A short version of this chapter is published in [START_REF] Alquier | Regret bounds for lifelong learning[END_REF] 

Motivation

Transferring knowledge gained from previously learned tasks is crucial for learning a new similar task, especially when the sample size is small. This is the essence of transfer learning approach, which can massively improve the performance over learning in isolation.

The main goal of this chapter is to show that it is possible to perform a theoretical analysis of lifelong learning with minimal assumptions on the form of the within-task algorithm. Given a learner with her/his own favourite algorithm(s) for learning within tasks, we propose a meta-algorithm for transferring information from one task to the next. The algorithm maintains a probability distribution on the set of representations, which is updated after the encounter of each new task using the exponentially weighted aggregation (EWA) procedure, hence we call it EWA for lifelong learning or EWA-LL.

A standard way to provide theoretical guarantees for online algorithms is a regret bound, which measures the discrepancy between the prediction error of the forecaster and the error of an ideal predictor. We prove that, as long as the within-task algorithms have good statistical properties, EWA-LL inherits these properties. Specifically in Theorem 4.1 we present regret bounds for EWA-LL, in which the regret bounds for the within-tasks algorithms are combined into a regret bound for the meta-algorithm.

We also show, using an online-to-batch analysis, that it is possible to derive a strategy for learning-to-learn, and provide risk bounds for this strategy. The bounds are generally in the order of 1/ √ T + 1/ √ m, where T is the number of tasks and m is the sample size per task. Moreover, we derive in some specific situations rates in 1/ √ T + 1/m. These rates are novel up to our knowledge and justify the use of transfer learning with very small sample sizes m.

The chapter is organized as follows. In Section 4.2 we introduce the lifelong learning problem. In Section 4.3 we present the EWA-LL algorithm and provide a bound on its expected regret. Some popular algorithms for learning within-task are present in Section 4.4. In Section 4.5 we present more explicit versions of our bound in some classical examples: finite set of predictors, single index learning and dictionary learning. We also provide a short simulation study for dictionary learning. At this point, we hope that the reader will have a clear overview of the problem under study. The rest of the chapter is devoted to theoretical refinements: in online learning, uniform bounds are the norm rather than bounds in expectations [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]. In Section 4.3.3 we establish such bounds for EWA-LL. Section 4.6 provides an online-to-batch analysis that allows one to use a modification of EWA-LL for learning-to-learn. We end the chapter with proofs (Section 4.9).

The Lifelong learning problem

In this section, we introduce our notation and present the lifelong learning problem.

Formulation

Let X and Y be some sets. A predictor is a function f : X → Y, where Y = R for regression and Y = {-1, 1} for binary classification. The loss of a predictor f on a pair (x, y) is a real number denoted by (f (x), y). As mentioned above, we want to transfer the information (a common data representation) gained from the previous tasks to a new one. Formally, we let Z be a set and prescribe a set G of feature maps (also called representations) g : X → Z, and a set H of functions h : Z → R. We shall design an algorithm that is useful when there is a function g ∈ G, common to all the tasks, and task-specific functions h 1 , . . . , h T such that f t = h t • g is a good predictor for task t, in the sense that the corresponding prediction error (see below) is small.

We are now ready to describe the learning problem. We assume that tasks are dealt with sequentially. Furthermore, we assume that each task dataset is itself revealed sequentially and refer to this setting as online-withinonline lifelong learning. More specifically, at each time step t ∈ {1, . . . , T }, the learner is challenged with a task, corresponding to a dataset S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) ∈ (X × Y) mt where m t ∈ N. The dataset S t is itself revealed sequentially, that is, at each inner step i ∈ {1, . . . , m t }:

• The object x t,i is revealed,

• The learner has to predict y t,i , let ŷt,i denote the prediction,

• Then y t,i is revealed and the learner incurs the loss ˆ t,i := (ŷ t,i , y t,i ).

The task t ends at time m t , at which point the prediction error is

1 m t mt i=1 ˆ t,i . (4.1)
This process is repeated for each task t, so that at the end of all the tasks, the average error is 1

T T t=1 1 m t mt i=1 ˆ t,i .
Ideally, if for a given representation g, the best predictor h t for task t was known in advance, then an ideal learner using h t •g for prediction would incur the error

inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i . (4.2)
Hence, we define the within-task-regret of the representation g on task t as the difference between the prediction error (4.1) and the smallest prediction error (4.2),

R t (g) = 1 m t mt i=1 ˆ t,i -inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i .
The above expression is slightly different from the usual notion of regret [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF], which does not contain the factor 1/m t . This normalization is important in that it allows us to give equal weights to different tasks.

Note that an oracle who would have known the best common representation g for all tasks in advance would have only suffered, on the entire sequence of datasets, the error

inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i .
We are now ready to state our principal objective: we wish to design a procedure (meta-algorithm) that, at the beginning of each task t, produces a function ĝt so that, within each task, the learner can use its own favorite online learning algorithm to solve task t on the sequence (ĝ t (x t,1 ), y t,1 ), . . . , (ĝ t (x t,mt ), y t,mt ) . We wish to control the compound regret of our procedure

R := 1 T T t=1 1 m t mt i=1 ˆ t,i -inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i
which may succinctly be written as sup g∈G 1 T T t=1 R t (g) . This objective is accomplished in Section 4.3 under the assumption that a regret bound for the within-task-algorithm is available. 

Examples

We now provide some examples included in the framework.

Example 4.1 (Dictionary learning). Set Z = R K , and call g = (g 1 , . . . , g K ) a dictionary, where each g k is a real-valued function on X . Furthermore choose H to be a set of linear functions on R K , so that, for each task t

h t • g(x) = K k=1 θ (t) k g k (x).
In practice depending on the value of K, we can use least square estimators or LASSO to learn θ (t) . In [START_REF] Maurer | Sparse coding for multitask and transfer learning[END_REF][START_REF] Ruvolo | Ella: An efficient lifelong learning algorithm[END_REF], the authors consider X = R d and g(x) = Dx for some d × K matrix D, and the goal is to learn jointly the predictors θ (t) and the dictionary D.

Example 4.2 (Finite set G). We choose G = {g 1 , . . . , g K } and H any set. While this example is interesting in its own right, it is also instrumental in studying the continuous case via a suitable discretization process. A similar choice has been considered by [START_REF] Crammer | Learning multiple tasks using shared hypotheses[END_REF] in the multitask setting, in which the goal is to bound the average error on a prescribed set of tasks.

Example 4.3 (Single index learning). Set X = Z = R d , and g(x) = θ T x, θ ∈ R d a linear function on X . Furthermore, let H be a set of univariate measurable functions on R. We have, for each task t, the prediction is of the form f t (x t ) = h t (θ T x t ). Our goal is to learn jointly the h t and the common index θ.

We notice that a slightly different learning setting is obtained when each dataset S t is given all at once. We refer to this as batch-within-online lifelong learning; this setting is briefly considered in Section 4.7.

On the other hand when all datasets are revealed all at once, we are in the well-known setting of learning-to-learn [START_REF] Baxter | A model of inductive bias learning[END_REF]. In Section 4.6, we explain how our lifelong learning analysis can be adapted to this setting.

A meta-algorithm for lifelong learning

In this section, we present our lifelong learning algorithm, derive its regret bound and then specify it to two popular within-task online algorithms.

EWA-LL Algorithm

Our EWA-LL algorithm is outlined in Algorithm 4. The algorithm is based on the exponentially weighted aggregation (EWA) procedure, see e.g. [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF] and references therein, and updates a probability Algorithm 4 EWA-LL Data A sequence of datasets S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) , 1 ≤ t ≤ T , associated with different learning tasks; the points within each dataset are also given sequentially.

Input A prior π 1 , a learning parameter η > 0 and a learning algorithm for each task t which, for any representation g returns a sequence of predictions ŷg t,i and suffers a loss Lt (g) := 1 m t mt i=1 ŷg t,i , y t,i .

Loop For t = 1, . . . , T i Draw ĝt ∼ π t .

ii Run the within-task learning algorithm on S t and suffer loss Lt (ĝ t ).

iii Update π t+1 (dg) := exp(-η Lt (g))π t (dg) exp(-η Lt (γ))π t (dγ) .

distribution π t on the set of representation G before the encounter of task t.

We insist on the fact that this procedure allows the user to freely choose the within-task algorithm, which does not even need to be the same for each task.

The step i is crucial during the learning procedure, because to draw ĝt from π t is not straightforward and varies in different specific situation. While the effect of Step iii is that any representation g which does not perform well on task t, is less likely to be reused on the next task.

Bounding the Expected Regret

Since Algorithm 4 involves a randomization strategy, we can only get a bound on the expected regret, the expectation being with respect to the drawing of the function ĝt at step i in the algorithm. Let E g∼π [F (g)] denote the expectation of F (g) when g ∼ π. Note that the expected overall-average loss that we want to upper bound is then

1 T T t=1 E ĝt∼πt [ Lt (ĝ t )].
Theorem 4.1. If, for any g ∈ G, Lt (g) ∈ [0, C] and the within-task algorithm has a regret bound R t (g) ≤ β(g, m t ), then

1 T T t=1 E ĝt∼πt 1 m t mt i=1 ˆ t,i ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 h t •g(x t,i ), y t,i + 1 T T t=1 β(g, m t ) + ηC 2 8 + K(ρ, π 1 ) ηT ,
where the infimum is taken over all probability measures ρ and K(ρ, π 1 ) is the Kullback-Leibler divergence between ρ and π 1 .

The proof is given in Section 4.9.

Some comments are in order as the bound in Theorem 4.1 might not be easy to read. First, similar to standard analyses in online learning, the parameter η is a decreasing function of T , hence the bound vanishes as T grows. Second, corollaries are derived in Section 4.5 that are easier to read, as they are more similar to usual regret inequalities [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF], that is, the right hand side of the bound is of the form

inf g∈G 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i + "rate". (4.3)
The bound in Theorem 4.1 looks slightly different, but is quite similar in spirit. Indeed, instead of an infimum with respect to g we have an infimum on all the possible aggregations with respect to g,

inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 h t • g(x t,i ), y t,i + "remainder"
where the remainder term depends on K(ρ, π 1 ). In order to look like (4.3), we can consider a measure ρ highly concentrated around the representation g minimizing (4.3). When G is finite, this is a reasonable strategy and the bound is given explicitly in Section 4.5.1 below. However, in some situations, this would cause the term K(ρ, π 1 ) to diverge. Studying accurately the minimizer in ρ usually leads to an interesting regret bound, and this is exactly what is done in Section 4.5.

Finally note that the bound in Theorem 4.1 is given in expectation. In online learning, uniform bounds are usually preferred [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]. In Section 4.3.3 we show that it is possible to derive such bounds under additional assumptions.

Uniform bounds

In this section, we show that it possible to obtain a uniform bound, as opposed to a bound in expectation as in Theorem 4.1. From a theoretical perspective, the price to pay is very low: we only have to assume that the loss function is convex with respect to its first argument. However, in practice, there is an aggregation step that might not be feasible. This is discussed at the end of the section. The algorithm is outlined in Algorithm 5. Theorem 4.2. Assuming that for any g, 0 ≤ Lt (g) ≤ C and that the algorithm used within-task has a regret R t (g) ≤ β(g, m t ). Assume that is convex with respect to its first argument. Then it holds that

1 T T t=1 1 m t mt i=1 (ŷ t,i , y t,i ) ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 (h t • g(x t,i ), y t,i ) + 1 T T t=1 β(g, m t ) + ηC 2 8 + K(ρ, π 1 ) ηT .
Proof. At each step t, the loss suffered by the algorithm is

1 m t mt i=1 ŷt,i , y t,i = 1 m t mt i=1 ŷg t,i π t (dg), y t,i ≤ 1 m t mt i=1 ŷg t,i , y t,i π t (dg) = Lt (g)π t (dg)
and we can just apply Theorem 4.1.

In practice, for an infinite set G we are not able to run simultaneously the within-task algorithm for all g ∈ G. So, we cannot compute the prediction (4.4) exactly. A possible strategy is to draw N elements of G i.i.d. from π t , say ĝt (1), . . . , ĝt (N ), and to replace (4.4) by ŷ(N)

t,i = 1 N N j=1 ŷĝt(j) t,i .
Let's call MC-EWA this new version.

In order to analyze the performance of this algorithm, we can directly use Corollary 4.2. We only have to control the discrepancy between the Algorithm 6 MC-EWA for lifelong learning with convex loss Data and Input as in Algorithm 4.

Loop For t = 1, . . . , T i Draw independently from the past ĝt (1), . . . , ĝt (N ) i.i.d from π t .

ii Run the within-task learning algorithm S t for each ĝt (j) and return as predictions:

ŷ(N) t,i = 1 N N j=1 ŷĝt(j) t,i .
iii Update

π t+1 (dg) := exp(-η Lt (g))π t (dg) exp(-η Lt (γ))π t (dγ) .
theoretical integral with respect to π t and the corresponding empirical mean.

Hoeffding's inequality leads to

1 N N j=1 Lt (ĝ t (j)) ≤ E g∼πt [ Lt (g)] + C log 1 δ 2N
with probability at least 1 -δ. A union bound over the T tasks leads to the following result directly.

Corollary 4.3. Assuming that for any g, 0 ≤ Lt (g) ≤ C and that the algorithm used within-task has an average error R t (g) ≤ β(g, m t ). Assume that is convex with respect to its first argument. Then, with probability at least 1 -δ over the drawing of all the ĝt (j)'s,

1 T T t=1 1 m t mt i=1 ŷ(N) t,i , y t,i ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 [h t • g(x t,i ), y t,i ] + 1 T T t=1 β(g, m t ) + ηC 2 8 + K(ρ, π 1 ) ηT + C log T δ 2N .

Examples of Within Task Algorithms

We now specify the general bound in Theorem 4.1 to two popular online algorithms that can be used within tasks.

Online Gradient Algorithm

Algorithm 7 OGA Data A task S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) .

Input

Step size ζ > 0, and θ 1 = 0.

Loop For i = 1, . . . , m t , i Predict ŷg t,i = h θ i • g(x t,i ), ii y t,i is revealed, update θ i+1 = θ i -ζ∇ θ h θ • g(x t,i ), y t,i θ=θ i .
The first algorithm assumes that H is a parametric family of functions H = {h θ , θ ∈ R p , θ ≤ B}, and for any (x, y, g), θ → (h θ • g(x), y) is convex, L-Lipschitz, upper bounded by C and denote by ∇ θ a subgradient.

Corollary 4.4. The EWA-LL algorithm using the OGA within task with step size

ζ = B L √ 2mt satisfies 1 T T t=1 E ĝt∼πt 1 m t mt i=1 ˆ t,i ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 (h t • g(x t,i ), y t,i ) + BL T T t=1 2 √ m t + ηC 2 8 + K(ρ, π 1 ) ηT .
Proof. Apply Theorem 4.1 and use the bound

R t (g) ≤ β(g, m t ) := BL 2 √ m t
that can be found, for example, in [Shalev-Shwartz, 2011, Corollary 2.7].

We note that under additional assumptions that the loss function is αstrongly convex, [Hazan, 2016, Theorem 3.3] provides better bounds for the OGA algorithm using an adaptive step size ζ = 1 iα , that is

β(g, m t ) ≤ L 2 2αm t (1 + log m t ).
Comprehensive studies on online gradient algorithm and its variants can be found in e.g. [START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF][START_REF] Hazan | Introduction to online convex optimization[END_REF].

Exponentially Weighted Aggregation

The second algorithm is based on the EWA procedure on the space H • g for a prescribed representation g ∈ G.

Algorithm 8 EWA Data A task S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) .

Input Learning rate ζ > 0; a prior probability distribution µ 1 on H.

Loop For i = 1, . . . , m t , i Predict ŷg t,i = H h • g(x t,i )µ i (dh), ii y t,i is revealed, update µ i+1 (dh) = exp(-ζ (h • g(x t,i ), y t,i ))µ i (dh) exp(-ζ (u • g(x t,i ), y t,i ))µ i (du) . Exp-concavity: Recall that a function ϕ : R → R is called ζ 0 -exp-concave if exp(-ζ 0 ϕ) is concave. A typical example is the quadratic loss function (y , y) = (y -y) 2 .
When there is some B such that |y t,i | ≤ B and |h • g(x t,i )| ≤ B, then the exp-concavity assumption is verified with ζ 0 = 1/(8B) and the boundedness assumption with C = 4B 2 .

Corollary 4.5. Assume that H is finite and that there exists ζ 0 > 0 such that for any y, the function (•, y) is ζ 0 -exp-concave and upper bounded by a constant C. Then the EWA-LL algorithm using the EWA within task with

ζ = ζ 0 satisfies 1 T T t=1 E ĝt∼πt 1 m t mt i=1 ˆ t,i ≤ inf ρ E g∼ρ 1 T T t=1 inf ht∈H 1 m t mt i=1 h t •g(x t,i ), y t,i + 1 T T t=1 ζ 0 log |H| m t + ηC 2 8 + K(ρ, π 1 ) ηT .
Proof. Apply Theorem 4.1 and use the bound

R t (g) ≤ β(g, m t ) := ζ 0 log |H| m t
that can be found, for example, in [Gerchinovitz, 2011, Theorem 2.2].

Note that when the exp-concavity assumption does not hold, [START_REF] Gerchinovitz | Prediction of individual sequences and prediction in the statistical framework: some links around sparse regression and aggregation techniques[END_REF] [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Audibert | A randomized online learning algorithm for better variance control[END_REF][START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF]. We refer the reader to [START_REF] Gerchinovitz | Prediction of individual sequences and prediction in the statistical framework: some links around sparse regression and aggregation techniques[END_REF] for a comprehensive survey.

Applications: some specific models

In this section, to ease our presentation, we assume that all the tasks have the same sample size, that is m t = m for all t.

Finite subset of relevant predictors

We give details on Example 4.2, that is we assume that G is a set of K functions. Note that step iii in Algorithm 4 boils down to update K weights,

π t (g k ) = exp(-η Lt (g k ))π t-1 (g k ) K j=1 exp(-η Lt (g j ))π t-1 (g j )
.

Theorem 4.6. Under the assumptions of Theorem 4.1, if we set η = 2 C 2 log K T

and π 1 uniform on G,

1 T T t=1 E ĝt∼πt 1 m m i=1 ˆ t,i ≤ min 1≤k≤K 1 T T t=1 inf ht∈H 1 m m i=1 (h t • g k (x t,i ), y t,i ) + β(g k , m) + C log K 2T .
Proof. Fix g ∈ G, ρ as the Dirac mass on g and note that K(ρ, π 1 ) = log K.

We discussed in Sections 4.4.1 and 4.4.2 that typical orders for β

(g, m) are O(1/ √ m), O(log(m)/m) or O(1/m).
We state a precise result in the finite case. 

T T t=1 E ĝt∼πt 1 m m i=1 ˆ t,i ≤ min 1≤k≤K 1 T T t=1 min ht∈H 1 m m i=1 (h t • g k (x t,i ), y t,i ) + ζ 0 log |H| m + C log K 2T .
An improvement: In Section 4.6, we derive from Theorem 4.1 a bound in the batch setting. As we shall see, in the finite case the bound is exactly the same as the bound on the compound regret. This allows us to compare our results to previous ones obtained in the learning-to-learn setting. In particular, our O(1/m) bound improves upon [START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF] who derived an O(1/ √ m) bound.

Lifelong single-index learning

We now give some detail on Example 4.3. Remind that the set X = Z = R d , and we define G = {x → θ T x, : θ ∈ R d } linear functions on X . Furthermore, let H be a set of L 2 -Lipschitz univariate measurable functions on R.

Recall that our predictor here is of the form h t (θ T x t,i ). The goal is to learn the common weight vector θ for all tasks and the link function h t for each task t.

We make the following assumptions on our model:

• θ 1 = 1, • the loss is L 1 -Lipschitz, convex w.r.t its first component, • 1 T T t=1 1 m m i=1 x t,i 2 ≤ M < +∞,
• π 1 is uniform on the unit 1 -ball.

Assume that we have some within-task algorithms, that learn h t at each time t. And

β(m) := sup g∈G β(m, g) = sup θ 1 =1 β(m, θ) < +∞, β ( 
m) being an upper bound of the within-task algorithm that learns h t . We will detail one possible such algorithm right after the statement of the theorem.

A simple result for lifelong single index learning is given in the following theorem.

Theorem 4.8. Under the assumptions of Theorem 4.1, we have

1 T T t=1 1 m m i=1 ˆ t,i -inf θ 1 =1 1 T T t=1 inf ht∈H 1 m m i=1 (h t (θ T x t,i ), y t,i ) ≤ L 1 L 2 M √ T + Cd log(T ) + log 2 d-2 d! (d-1) d/2 + C 4 √ T + β(m).
The proof relies on an application of Theorem 4.1. The calculations being tedious, we postpone the proof to Section 4.9.

A within-task strategy to learn h t : To learn h t , we use EWA and consider a structure for H. We consider the link function

h t ∈ H S,C 2 +1 := {h ∈ H : h = S j=1 β j φ j , S j=1 j|β j | ≤ C 2 + 1}, where {φ j } ∞
j=1 is a dictionary of measurable functions, each φ j is assumed to be defined on [-1, 1] and to take values in

[-1, 1]. Let B S (C 2 + 1) = {(β 1 , . . . , β S ) ∈ R S : S j=1 j|β j | ≤ C 2 + 1}.
We define µ 1 (dh) on the set H S,C 2 +1 as the image of the uniform measure on B S (C 2 + 1) induced by the map (β 1 , . . . , β S ) → S j=1 β j φ j .

Corollary 4.9. Under the assumptions of Theorem 4.1 and (x, •) ∈ [0, C], ∀x, we have

1 T T t=1 1 m m i=1 ˆ t,i -inf θ 1 =1 1 T T t=1 inf ht∈H S,C 2 +1 1 m m i=1 (h t (θ T x t,i ), y t,i ) ≤ L 1 √ m + C √ S 2 √ 2m + C √ S log[(C 2 + 1) √ m] 2 √ 2m + L 1 L 2 M √ T + Cd log(T ) + log 2 d-2 d! (d-1) d/2 + C 4 √ T .
As the proof of the corollary is not straightforward, we postpone the proof to Section 4.9.

Lifelong dictionary learning

In this section, to ease our presentation, we assume that all the tasks have the same sample size, that is m t = m for all t. We now give details on Example 4.1 in the linear case. Specifically, we let X = R d , we let D K be the set formed by all d × K matrices D, whose columns have euclidean norm equal to one, and we define G = {x → Dx : D ∈ D K }.

Within this Section, we assume that the loss is convex and Φ-Lipschitz with respect to its first argument, that is, for every y ∈ Y and a 1 , a

2 ∈ R, it holds | (a 1 , y) -(a 2 , y)| ≤ Φ|a 1 -a 2 |.
We also assume that β(m) := sup g∈G β(m, g) < +∞, and

x t,i ≤ 1.
for all t ∈ {1, . . . , T } and i ∈ {1, . . . , m}.

We define the prior π 1 as follows: the columns of D are i.i.d., uniformly distributed on the d-dimensional unit sphere. This is a natural choice for π 1 without any prior information. 

= 2 C Kd T , 1 T T t=1 E ĝt∼πt 1 m m i=1 ˆ t,i ≤ inf D∈D K 1 T T t=1 inf ht∈H 1 m m i=1 h t , Dx t,i , y t,i + C 4 Kd T (log(T ) + 7) + β(m) + BΦ √ T 1 T T t=1 λ max 1 m m i=1 x t,i x T t,i .
The proof relies on an application of Theorem 4.1. The calculations being tedious, we postpone the proof to Section 4.9.

When we use OGA within tasks, we can use Corollary 4.4 with L = Φ √ K and so β(m) ≤ ΦB 2K/m for any D ∈ D K . Moreover,

λ max 1 m m i=1 x t,i x T t,i ≤ tr 1 m m i=1
x t,i x T t,i ≤ 1 (4.5) so Theorem 4.10 leads to the following corollary. 

= B/(Φ √ 2mK), yield 1 T T t=1 E ĝt∼πt 1 m m i=1 ˆ t,i ≤ inf D∈D K 1 T T t=1 inf ht∈H 1 m m i=1 h t , Dx t,i , y t,i + C 4 Kd T (log(T ) + 7) + BΦ √ T + ΦB √ 2K √ m .
Note that the upper bound (4.5) may be lose. For example, when the x t,i are i.i.d. on the unit sphere, λ max

(b) Algorithmic Details and Simulations

We implement our meta-algorithm Randomized EWA in this setting. The algorithm used within each task is the simple version of the online gradient algorithm outlined in Section 4.4.1.

In order to draw ĝt from π t , we use N -steps of Metropolis-Hastings algorithm with a normalized Gaussian proposal [see, for example, [START_REF] Robert | Monte Carlo statistical methods[END_REF]. In order to ensure a short burn-in period, we use the previous drawing ĝt-1 as a starting point. The procedure is given in Algorithm 9.

Algorithm 9 EWA-LL for dictionary learning Data As in Algorithm 4.

Input A learning rate η for EWA and a learning rate ζ for the online gradient.

A number of steps N for the Metropolis-Hastings algorithm.

Start Draw ĝ1 ∼ π 1 .

Loop For t = 1, . . . , T

i Run the within-task learning algorithm S t and suffer loss Lt (ĝ t ).

ii Set g := ĝt .

iii Metropolis-Hastings algorithm. Repeat N times a Draw g ∼ N (g, σ 2 I) and then set g := g / g . b Set g := g with probability min 1, exp η t h=1

Lh (g) -Lh (g ) , g remains unchanged otherwise.

iv Set ĝt := g.

Note the bottleneck of the algorithm: in step b we have to compare g and g on the whole dataset so far.

We now present a short simulation study. We generate data in the following way: we let K = 2, d = 5, T = 150 and m = 100. The columns of D are drawn uniformly on the unit sphere, and task regression vectors θ t are also independent and have i.i.d. coordinates in U[-1, 1]. We generate the datasets S t as follows: all the x t,i are i.i.d. from the same distribution as θ t , and y t,i = θ t , Dx t,i + ε t,i where the ε t,i are i.i.d. N (0, σ 2 ) and σ = 0.1.

We compare Algorithm 9 with N = 10 to an oracle who knows the representation D, but not the task regression vectors θ t , and learns them using the online gradient algorithm with step size ζ = 0.1. Notice that after each chunk of 100 observations, a new task starts, so the parameter θ t changes. Thus, the oracle incurs a large loss until it learns the new θ t (usually within a few steps). This explains the "stair" shape of the cumulative loss of the oracle in Figure 4.2. Figure 4.3 indicates that after a few tasks, the dictionary D is learnt by EWA-LL: its cumulative loss becomes parallel to the one of the oracle. Due to the bottleneck mentioned above, the algorithm becomes quite slow to run when t grows. In order to improve the speed of the algorithm, we also tried Algorithm 9 with N = 1. There is absolutely no theoretical justification for this, however, obviously the algorithm is 10 times faster. As we can see on the red line in Figure 4.3, this version of the algorithm still learns D, but it takes more steps. Note that this is not completely unexpected: the Markov chain generated by this algorithm is no longer stationary, but it can still enjoy good mixing properties. It would be interesting to study the theoretical performance of Algorithm 9. However, this would require considerably technical tools from Markov chain theory which are beyond the scope of this work.

(c) Improved Regret bounds

We now state a refined version of the bounds for dictionary learning.

As pointed out in (a), while in general the bound ----→ m→∞ 1 d .

λ max 1 m m i=1 x t,i x T t,i ≤ 
We can take advantage of this fact in order to improve the term β(m) = sup g∈G β(g, m), but only if we assume that we know in advance that λ max

1 m m i=1 x t,i x T t,i
is not too large. This is the meaning of the following theorem.

Theorem 4.12. Assume that we know in advance that for all t ∈ {1, . . . , T },

λ max 1 m m i=1 x t,i x T t,i ≤ Λ
for some Λ > 0. Assume the same assumptions as in Theorem 4.10, still with η = 2 C Kd T . Use within tasks Algorithm 7 (online gradient) with a fixed gradient step ζ = B/(L √ 2mKΛ). Then we have

1 T T t=1 E gt∼πt 1 m m i=1 ˆ t,i -inf g∈G 1 T T t=1 inf ht∈H 1 m m i=1 h t , gx t,i , y t,i ≤ C 4 Kd T (log(T ) + 7) + 2BL √ 2KΛ √ m + BΦ √ Λ √ T .
In particular, note that when Λ = 1/d the bound becomes

C 4 Kd T (log(T ) + 7) + 2BL √ 2K √ md + BΦ √ dT .
Proof. We apply Theorem 4.10, so we only have to upper bound the term β(g, m) for the online gradient algorithm with the prescribed step size. Note that in [Shalev-Shwartz, 2011, Corollary 2.7] we actually have the following regret bound for Algorithm 7 with fixed step size η > 0:

β(g, m) = B 2 2ηm + η m m i=1 ∇ θ=θt ( θ, gx t,i , y t,i ) 2 .
By the L-Lipschitz assumption on ,

∇ θ=θt ( θ t , gx t,i , y t,i ) 2 ≤ L 2 gx t,i 2 . So we have m t=1 ∇ θ=θt ( θ, gx t,i , y t,i ) 2 ≤ L 2 m i=1 gx t,i 2 = L 2 m i=1 K k=1 g k,• , x t,i 2 = L 2 m i=1 K k=1 g T k,• x t,i x T t,i g k• ≤ mL 2 K k=1 g T k,• 1 m m i=1 x t,i x T t,i g k• ≤ mKL 2 λ max 1 m m i=1 x t,i x T t,i g k• 2 ≤ mKL 2 Λ.
Consequently,

β(m) = sup g β(g, m) ≤ B 2 /(2ηm) + ηKL 2 Λ and the choice η ≤ B/(L √ 2mKΛ) leads to β(m) = 2BL 2KΛ/m.

From Lifelong learning to Learning-to-learn

In this section, we show how our analysis of lifelong learning can be used to derive bounds for learning-to-learn settings. In another words, we address conversions from a online setting to a batch setting. This online-to-batch trick is pedagogically discussed in [Shalev-Shwartz, 2011, Section 5].

In this section, we assume actually the following mechanism generates the tasks and their datasets 1. task distributions P 1 , . . . , P T are sampling i.i.d. from a "meta-distribution" Q, called environment by [START_REF] Baxter | A model of inductive bias learning[END_REF],

2. then for each task t, a dataset S t = ((x t,1 , y t,1 ), . . . , (x t,m , y t,m )) is sampled i.i.d. from P t .

We stress that in this setting, the entire data (x t,i , y t,i ) 1≤i≤m,1≤t≤T is given all at once to the learner. Note that for simplicity, we assumed that all the sample sizes are the same, although it is uncomplicated to extend the setting to a random m t drawn at each step.

We wish to design a strategy which, given a new task P ∼ Q and a new sample (x 1 , y 1 ), . . . , (x m , y m ) i.i.d. from P , computes a function f : X → Y, that will predict y well when (x, y) ∼ P . There are many ways to produce a such procedure and here we consider two simple approaches: randomization and averaging schemes.

Randomization scheme

First we propose the following strategy:

1. Run EWA-LL on (x t,i , y t,i ) 1≤i≤m,1≤t≤T . We obtain a sequence of representations ĝ1 , . . . , ĝT , 2. Draw uniformly T ∈ {1, . . . , T } and put ĝ = ĝT , 3. Run the within task algorithm on the sample (x i , y i ) 1≤i≤m , obtaining a sequence h ĝ 1 , . . . , h ĝ m of functions, 4. Draw uniformly I ∈ {1, . . . , m} and put ĥ = h ĝ I .

Our next result guarantees that the above strategy leads indeed to safe predictions. The proof is given in Section 4.9.

Theorem 4.13. Let E be the expectation over all data pairs (x t,i , y t,i ) 1≤i≤m ∼ P t , (P t ) 1≤t≤T ∼ Q, (x i , y i ) 1≤i≤m ∼ P , (x, y) ∼ P , P ∼ Q and also over the randomized decisions of the learner (ĝ t ) 1≤t≤T , T and I. Then As in Theorem 4.1, the above result is given in expectation with respect to the randomized decisions of the learner. One might worry about this expectation E T E I . However, assuming that is convex with respect to its first argument, it is possible to use aggregation to overcome this. We now state a similar result for a non-random procedure, as was done in Section 4.3.3.

Averaging scheme

Assuming that is convex with respect to its first argument, the second strategy is as follows:

1. run aggregated EWA for lifelong learning on the sample (x t,i , y t,i ) i,t . We obtain a sequence of probability distributions π 1 , . . . , π T , 2. run, for all g ∈ G, the within-task algorithm on the sample (x 1 , y 1 ), . . . , (x m , y m ), this produces a sequence h g 1 , . Remark 4.1. In [START_REF] Baxter | A model of inductive bias learning[END_REF][START_REF] Maurer | Sparse coding for multitask and transfer learning[END_REF][START_REF] Pentina | A pac-bayesian bound for lifelong learning[END_REF], the results on learning-to-learn are given with large probability with respect to (x t,i , y t,i ) 1≤i≤m,1≤t≤T , rather than in expectation. Using the machinery in [Cesa-Bianchi and Lugosi, 2006, Lemma 4.1] we conjecture that it is possible to derive a bound in probability from Theorem 4.13.

Batch-Within-Online Lifelong Learning

In this section, we present an alternative approach for the batch-within-online setting discussed in Section 4.2. In this setting, the tasks are presented sequentially, but, for each task t ∈ {1, . . . , T } the dataset S t is presented all at once and we assume it is obtained i.i.d. from a distribution P t . Unlike to the reasoning in Section 4.6, where we assumed that the P t were i.i.d. from a distribution Q, here we make no assumptions on the generation process underlying the P t 's, which may even be adversarial chosen.

Let us recap the setting. At each time t ∈ {1, . . . , T }, a task is presented to the learner in the following manner:

1. nature chooses P t , no assumption is made on this choice. This P t is not revealed to the forecaster.

2. nature draws the sample S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt )) i.i.d. from P t , and this sample is revealed to the forecaster.

3. based on her/his current guess gt of g and on the sample S t , the forecaster has to run her/his favourite learning algorithm ĥ on (g t , S t ) to get an estimate ht = ĥ(g t , S t ) based on an algorithm of his choice. Note that the forecaster observes rt := r t ( ht • gt ) where

r t (f ) = 1 m t mt i=1
f (x t,i ), y t,i .

4. the forecaster incur the loss R t ( ht • gt ) where R t (f ) = E (x,y)∼Pt f (x), y .

Unfortunately, this quantity is not known to the forecaster.

At the end of time, we are interested in a strategy such that the compound regret

R := 1 T T t=1 R t ( ht • gt ) -inf g∈G 1 T T t=1 inf ht∈H R t (h t • g) is controlled.
The situation is similar to the setting discussed in the core of Chapter 4: we will propose an EWA algorithm for transfer learning, called EWA-TL, for which the regret will be controlled, on the condition that the learner chooses a suitable within task algorithm. In the online case, the within tasks algorithm was either EWA or OGA. In Subsection 4.7.1 we discuss briefly the within task algorithm. In Subsection 4.7.2 we present the EWA-TL algorithm and its theoretical analysis.

Within-task Algorithms

We make an additional assumption, that is that the estimator ĥ satisfies a bound in probability: P ∀g ∈ G, |r( ĥ(g, S t ) • g) -R t ( ĥ(g, S t ) • g)| ≤ δ(g, m t , ε) and |R t ( ĥ(g, S t ) • g) -inf h∈H R t (h • g)| ≤ 2δ(g, m t , ε) ≥ 1 -ε. (4.6) Example 4.4 (Empirical Risk Minimizer). In classification, when is the 0-1 loss function, and for any g, the family {h • g, h ∈ H} has a Vapnik-Chervonenkis dimension bounded by V . Then the empirical risk minimizer (ERM) ĥ(g, S t ) = arg min 94 Vapnik, 1998].

Similar rates can be obtained with PAC-Bayesian bounds [START_REF] Mcallester | Some pac-bayesian theorems[END_REF][START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF].

Example 4.5 (PAC-Bayesian estimator). Assuming that the loss takes the values in [0, C] for a constant C > 1. Given a prior distribution π g (dh) on the set {h • g, h ∈ H}, then the Gibbs estimator ĥ(g, S t ) = hρ λ (dh) ρλ (dh) ∝ exp(-λr t (h • g))π g (dh)

satisfies the condition (4.6) above with δ(g, m t , ε) = K(ρ, π) + log 1 ε λ + λC 2 2m t , ∀ρ ∈ M 1 + (Θ).

EWA-TL

Algorithm 10 EWA-TL Data A sequence of datasets S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) , 1 ≤ t ≤ T , associated with different learning tasks; the datasets are revealed sequentially, but the points within each dataset S t are revealed all at once.

Input A prior π 1 , a learning parameter η > 0 and a learning algorithm ĥ which satisfies (4.6).

Loop For t = 1, . . . , T i Draw ĝt ∼ π t .

ii Run the within-task learning algorithm ĥ on S t to get ht = ĥ(ĝ t , S t ).

iii Update π t+1 (dg) ∝ exp -η r t ( ĥ(S t , g) • g) + δ(g, m t , ε/T ) π t-1 (dg).

We now provide a bound on the regret of EWA-TL.

Theorem 4.15. Under (4.6), and assuming that there is a constant C such that 0 ≤ r t ( ĥ(S t , g) • g) + δ(g, m t , ε/T ) ≤ C, with probability at least 1 -ε, 

1 T T t=1 E gt∼πt-1 R t (

Concluding Remarks

We presented a meta-algorithm for lifelong learning and derived for the first time a fully online analysis of its regret. An important advantage of this algorithm is that it inherits the good properties of any algorithm used to learn within tasks. Furthermore, using online-to-batch conversion techniques, we derived bounds for the related framework of learning-to-learn.

We discussed the implications of our general regret bounds for two applications: dictionary learning and finite set G of representations. Further applications of this algorithm which may be studied within our framework are deep neural networks and kernel learning.

Example 4.6 (Kernel learning). In this case, Z is an Hilbert space. The function g : X → Z is a feature map to a reproducing kernel Hilbert space Z, and h t (g(x)) = z (t) , g(x) Z . Note that if z (t) = K (t) k=1 α (t)

i g(ξ

(t) k ) then h t (g(x)) = K (t) k=1 α (t) i K g (ξ (t) k , x)
where K g (x, x ) = g(x), g(x ) Z is the kernel induced by g. E.g. for each task we use SVM, and we transfer kernel learning from one task to another. This application has been addressed by [START_REF] Pentina | Multi-task and lifelong learning of kernels[END_REF] in the learning-to-learn setting.

Example 4.7 (Deep network). Here X = R d and g : X → R K is a multilayer network, that is a vector-valued function obtained by application of a linear transformation and a nonlinear activation functions. Specifically g(x) = σ(W q (• • • σ(W 2 (σ(W 1 x))) • • • )). The predictor h : R K → R is typically a linear function. The vector-valued function (h 1 • g, . . . , h T • g)) models a multilayer network with shared hidden weights. This is discussed in [START_REF] Maurer | The benefit of multitask representation learning[END_REF], again in the learning-to-learn setting.

Perhaps the most fundamental question is to extend our analysis to more computationally efficient algorithms such as approximations of EWA, like Algorithm 9, or fully gradient based algorithms as in [START_REF] Ruvolo | Ella: An efficient lifelong learning algorithm[END_REF]. and we obtain the statement of the result.

Proofs

It remains to prove (4.7). To this end, we follows the same guidelines as in the proof of Theorem 1 in [START_REF] Audibert | A randomized online learning algorithm for better variance control[END_REF]. First, note that π t (g) = exp -η t-1 u=1 Lu (g) π 1 (dg) exp -η t-1 u=1 Lu (γ) π 1 (dγ) = exp -η and finally we use [Catoni, 2004, Equation (5. (h t (θ T x t,i ), y t,i ).

We apply Theorem 4.1 and upper bound the infimum w.r.t any ρ by an infimum with respect to ρ in the following parametric family

ρ c (dθ) ∝ 1{ θ -θ * 2 ≤ c}π 1 (dθ).
where c is a positive parameter. Note that when c is small, ρ c highly concentrates around θ * , but we will show this is at a price of an increase in K(ρ c , π 1 ).

The proof then proceeds in optimizing with respect to c.

We (h * t (θ * T x t,i ), y t,i ).

Under the condition on the loss, we have

(h * t (θ T x t,i ), y t,i ) -(h * t (θ * T x t,i ), y t,i ) ≤ L h * t (θ T x t,i ) -h * t (θ * T x t,i ) ≤ L 1 L 2 |(θ -θ * ) T x t,i | ≤ cL 1 L 2 x t,i 2 .
We obtain an upper-bound Note that the first inequality follows by observing that, since π 1 is the uniform distribution on the unit 1 ball, the probability to be calculated is greater or equal to the ration between the volume of the (d -1)-ball radius c over the volume of the unit 1 ball. The second inequality is just using the Stirling formula. 4.9.3 Proof of Corollary 4.9

Proof. We only need to bound the within task regret. For each t and given a θ, we have (using the same arguments as in the proof of Theorem 4. ( h t , Dx t,i , y t,i ).

We apply Theorem 4.1 and upper bound the infimum with respect to any ρ by an infimum with respect to ρ in the following parametric family ρ c (dD) ∝ 1{∀j = 1, . . . , K : D •,j -D * •,j ≤ c}π 1 (dD).

where c is a positive parameter. Note that when c is small, ρ c highly concentrates around D * , but we will show this is at a price of an increase in K(ρ c , π 1 ). The proof then proceeds in optimizing with respect to c.

We have that 4.9.5 Proof of Theorem 4.13

Proof. The proof relies on an application of the well-known online-to-batch trick, discussed pedagogically in Section 5 page 186 in Shalev-Shwartz [2011]. Still, it is very cumbersome, and it is easy to get confused. For these reasons, we think it is important to write it completely. We use the following notation for any random variable V , E V is the expectation with respect to V . This is very important as the online-to-batch trick relies essentially on inverting the order of the random variables in the integration. We have:

E[ ( ĥ • ĝ(x), y)] = E T E I E P 1 ,...,P T E (x j,i ,y j,i ) 
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 1 Figure 1: Résultat de mesures de Paulin sur une particule de spin 1/2. Source:[ https: // en. wikipedia. org/ wiki/ Quantum_ indeterminacy ]
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 11 Figure 1.1: Outcomes of Pauli-measurement of a single spin-1 2 particle. [source: https: // en. wikipedia. org/ wiki/ Quantum_ indeterminacy ]

  MCMC algorithm. In accordance to the theory, ρprob λ performs usually better. On the other hand, ρdens λ is much, much easier to compute: the MCMC converges faster and is more stable.

M

  {r(M ) + λpen(M )} where λ is a regularization parameter and pen(M ) could be the rank of the matrix M (non-convex) or the nuclear-norm of M (convex): M * = min(m,p) i=1 γ i (M ), γ i (M ) s are the singular values of M .

Figure 2 . 1 :

 21 Figure 2.1: ACF of four randomly selected entries during a simulation. These are taken from the first series of experiments. The ACF of the Gibbs sampler for the Bayesian estimator with uniform priors, M λ , is in red while the ACF of the Gibbs sampler for the Bayesian estimator with Gaussian priors, M conjugate , is in blue.

  Considering the expansion of the density matrix ρ in the n-Pauli basis, i.e. B = {σ b = σ b 1 ⊗ . . . ⊗ σ bn , b ∈ {I, x, y, z} n }, σ I = I, ρ = b∈{I,x,y,z} n ρ b σ b .

F(

  (a) Distance between the probabilities: prob-estimatorWe considerprob (ν, D) =a∈E n s∈R n [Tr(νP a s ) -pa,s ] ∝ exp -λ prob (ν, D) π(dν).Note that if we use the shortened notation p ν = [Tr(νP a s )] a,s and p = [p a,s ] a,s then prob (ν, D) = p ν -p 2 Frobenius norm). This distance quantifies how far the probabilities and the empirical frequencies in the sample are. (b) Distance between the density matrices: dens-estimator Now, let us take: dens (ν, D) = ν -∝ exp -λ dens (ν, D) π(dν).
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 3 Figure 3.1: Eigenvalues of estimates for an "approximate rank-2" density with d = 2 3 , m = 200.
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 3 Figure 3.2: Plot for comparing the difference between the γ i , i = 1, . . . , d and the eigenvalues of the proposed estimator for an approximate rank-2 density with d = 2 3 , m = 200.

Figure 3

 3 Figure 3.3: eigenvalues plots for real data test with n = 4
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 73 Preliminary results for the proof of Theorem 3.2 Rewriting equation (3.1), by plugging (3.3) in, as follow p a,s = b∈{I,x,y,z} n ρ b Trace (σ b • P a s ) = b∈{I,x,y,z} n ρ b P (s,a),b .

  ]: Alquier,P., Mai, T.T., & Pontil,M. Regret bounds for lifelong learning. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017.
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 41 Figure 4.1: An illustration of a lifelong learning process. ([Ruvolo and Eaton, 2013, Figure 1])

Corollary 4. 7 .

 7 Assume that H is finite, that for some ζ 0 > 0, for any y, the function (•, y) is ζ 0 -exp-concave and upper bounded by a constant C. Then the EWA-LL algorithm using the EWA within task with ζ = ζ 0 satisfies 1

  10. Under the assumptions of Theorem 4.1, with η

  Corollary 4.11. Using algorithm EWA-LL for dictionary learning, with η = 2 C Kd T , and using the OGA algorithm within tasks, with step ζ
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 42 Figure 4.2: The cumulative loss of the oracle for the first 15 tasks.
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 4 Figure 4.3: Cumulative loss of EWA-LL (N = 1 in red and N = 10 in blue) and cumulative loss of the oracle.
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  [ ( ĥ • ĝ(x), y)] ≤ inf ρ E g∼ρ E P ∼Q inf h∈H E (x,y)∼P (h • g(x), y)

  2.1)] which states thatlog exp -η T t=1 Lt (g) π 1 (dg) ) + K(ρ, π 1 ) η .

  (θ T x t,i ), y t,i ) t (θ T x t,i ), y t,i )+c L 1 L 2 1 T c , π 1 ) = -log π 1 ({ θ -θ * 2 ≤ c}),

  So we getK(ρ c , π 1 ) ≤ (d -1) log(1/c) + log 2 d-2 d! (d -1) d/2 . (θ T x t,i ), y t,i )

(

  h t , Dx t,i , y t,i )+β(mc , π 1 ) = -log π 1 ({∀j = 1, . . . , K : D •,j -D * •,j ≤ c}),andπ 1 ({∀j = 1, . . . , K : D •,j -D * •,j ≤ c})The choices c = 1 T and η = 2 C Kd T lead to the result.

  La complétion de matrice a été un des problèmes statistiques les plus étudiés dans les dix dernières années. Il consiste à reconstruire une matrice M sur la base d'observations partielles aléatoires et possiblement bruitées. Ce problème apparaìt dans un grand nombre d'applications comme les systèmes de recommandation

	0.4 Présentation de nos résultats pour la complétion
	de matrices
	0.4.1 Introduction au problème de complétion de matrices

  ], les données concernaient 480 189 utilisateurs, 17 770 films, et seulement 100 480 507 notes étaient observées, sur un total de 8 532 958 530 entrées dans la matrice, soit moins de 1.2%. Reconstruire les entrées manquantes est évidemment très utile pour faire de la publicité ciblée, intelligente et ainsi améliorer les ventes.

		Looper	π	Inception Big Hero 6	. . .
	...	?	1	2	5	...
	Aisling	4	?	5	?	...
	Bianca	?	5	?	2	...
	Tien	5	?	5	?	...
	...	1	2	?	4	...
	. . .	. . .	. . .	. . .	. . .	. . .

Table

1

: Exemple jouet de matrice de notes utilisateurs/films. Les notes sont entre 1 et 5.

  Un exemple Les tâches sont indéxées par un indice de temps t ∈ {1, . . . , T }, le jeu de données de la tâche t, disonsS t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) ∈ (R d × Y) mt , m t ∈ NNotations générales A chaque tâche t ∈ {1, . . . , T }, le statisticien doit résoudre une tâche d'apprentissage t, à l'aide d'un jeu de données S t = (x t,1 , y t,1 ), . . . , (x t,mt , y t,mt ) ∈ (X × Y) mt où m t ∈ N, X et Y sont deux ensembles quelconques. Le jeu de données S t est lui-même révélé séquentiellement, c'est-à-dire qu'à chaque sous-étape i ∈ {1, . . . , m t }:

	sera lui-même révélé séquentiellement. On propose les prédicteurs
	ŷt,i = θ t , Dx t,i
	où θ t est appris pour chaque tâche t par un algorithme quelconque. Notre
	méta-algorithme a pour objectif d'améliorer l'estimation du dictionnaire D	à
	la fin de chaque tâche.				
	• l'objet x t,i est révélé,				
	• le statisticien doit prédire y t,i : un prédicteur est une fonction f : X →
	Y; et on notera ŷt,i := f t,i (x t,i ) la prédiction du statisticien,
	• le label y t,i est révélé et le statisticien subit une perte. Si, pour une
	paire (x, y), on note comme d'habitude (f (x), y) la perte induite par la
	prédiction f (x) quand le label est en fait y, le statisticien subit la perte
	(ŷ t,i , y t,i ).				
	La tâche t s'arrête à la date m t , et alors la perte moyenne pour la tâche a été 1 mt mt i=1 ˆ t,i . On répète ce processus pour chaque tâche t, et à la fin, la perte
	moyenne sur l'ensemble des tâches est		
	1 T	T t=1	1 m t	mt i=1	ˆ t,i .

Table 1

 1 

	.2.

Table 2

 2 

	.1: RMSEs in the first series of experiments (low-rank matrix, Gaus-
	sian noise)				
	prior	m = 100	m = 200	m = 500	m = 1000
	Uniform 0.640 (±0.008) 0.387 (±0.001) 0.214 (±0.0008) 0.145 (±0.0002)
	Gaussian 0.620 (±0.003) 0.385 (±0.001) 0.216 (±0.0003) 0.145 (±0.001)
	Table 2.2: RMSEs in the second series of experiments (approx. low-rank,
	Gaussian noise)			
	prior	m = 100	m = 200	m = 500	m = 1000
	Uniform 0.328 (±0.002) 0.205 (±0.001) 0.120 (±0.001) 0.084 (±0.002)
	Gaussian 0.334 (±0.003) 0.208 (±0.001) 0.126 (±0.003) 0.086 (±0.001)
	Table 2.3: RMSEs in the third series of experiments (low-rank matrix, uni-
	form noise)				
	prior	m = 100	m = 200	m = 500	m = 1000
	Uniform 0.745 (±0.039) 0.567 (±0.005) 0.340 (±0.004) 0.237 (±0.003)
	Gaussian 0.659 (±0.003) 0.439 (±0.001) 0.268 (±0.002) 0.186 (±0.002)

Table 2 . 4 :

 24 RMSEs in the fourth series of experiments (low-rank matrix, heavytailed noise)
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Table 3

 3 

		.3: MSEs for n = 2 (together with standard deviations)
		m = 20	m = 200	m = 1000	m = 2000
		pure state, MSEs×10 4	
	Inversion	61.9 (3e-3)	9.22 (5e-4)	.802 (4e-5)	.772 (6e-5)

  Algorithm 5 Integrated EWA-LL Data and Input same as in Algorithm 4.

	Loop For t = 1, . . . , T		
	i Run the within-task learning algorithm on S t for each g ∈ G and
	return as predictions:		
	ŷt,i =	ŷg t,i π t (dg).	(4.4)
	ii Update		
	π t+1 (dg) :=	exp(-η Lt (g))π t (dg) exp(-η Lt (γ))π t (dγ)	.

  with the choice ζ = (2/B) 2 log(|H|)/m t . Moreover, PAC-Bayesian type bounds in various settings (including infinite H) can be found in

	derives a bound	
	β(g, m t ) = B	log(|H|) 2m t

  The following corollary is a direct application of Theorem 4.13.Corollary 4.14. Let E denote E = E P 1 ,...,P T ∼Q E (x t,i ,y t,i ) i.i.d Pt E P ∼Q E (x 1 ,y 1 ),...,(xm,ym) i.i.d P E (x,y)∼P .

			. . , h g m of functions,
	3. return as a predictor the function goh(•) defined by
	goh(x) =	1 m	m i=1	1 T	T t=1	h g i • g(x)π t (dg).
						+	ηC 2 T 8	+	K(ρ, π 1 ) η	.

Then

E[ ( goh(x), y)] ≤ inf ρ E g∼ρ E P ∼Q inf h∈H E (x,y)∼P (h • g(x), y) + β(g, m)

  ht • gt )] ≤ infSketch of the proof. First, follow the proof of Theorem 4.1 to get:

							ρ	E g∼ρ	1 T	T t=1	inf h∈H	R t (h • g)
						+	4 T	T t=1	δ(g, m t , ε/T ) +	ηC 2 8	+	K(ρ, π 1 ) ηT	.
												ηT C 2 8	+	K(ρ, π) η	.
											ηT C 2 8	+	K(ρ, π 1 ) η
	≤ inf ρ	T t=1	E g∼ρ R ηT C 2 8	+	K(ρ, π 1 ) η
	≤ inf ρ	E g∼ρ	T t=1	inf h∈H	R t (h • g) + 4	T t=1	δ(g, m t , ε/T ) +	ηT C 2 8	+	K(ρ, π 1 ) η	.

T t=1 E gt∼πt-1 r t ( ht • gt )] + δ(g t , m t , ε/T ) ≤ inf ρ T t=1 E g∼ρ r t ( ht • g) + δ(g, m t , ε/T ) + So, with probability at least 1 -ε, T t=1 E gt∼πt-1 R t ( ht • gt )] ≤ T t=1 E gt∼πt-1 r t ( ht • gt )] + δ(g t , m t , ε/T ) ≤ inf ρ T t=1

E g∼ρ r t ( ht • g) + δ(g, m t , ε/T ) + t ( ĥt (g, S t ) • g) + 2δ(g, m t , ε/T ) +

  4.9.1 Proof of Theorem 4.1Proof of Theorem 4.1. It is enough to show that the EWA strategy leads to Once this is done, we only have to use the assumption that the regret of the within-task algorithm on task t is upper bounded by β(g, m t ) to obtain that

	T t=1	E ĝt∼πt [ Lt (ĝ t )] ≤ inf ρ	E g∼ρ	T t=1	Lt (g) +	ηC 2 T 8	+	K(ρ, π 1 ) η	.	(4.7)
		T t=1	Lt (g) =	T t=1	1 m t	mt i=1	h g t,i • g(x t,i ), y t,i	
				T						
			≤		β(g, m t ) + inf		
				t=1						

h∈H 1 m t mt i=1 h • g(x t,i ), y t,i

  t-1 u=1 Lu (g) π 1 (dg) W t (4.8) where we introduce the notation W t for the sake of shortness. Put E t = Lt (g)π t (dg) = E ĝt∼πt [ Lt (g)]. Using Hoeffding's inequality on the bounded random variable Lt (g) ∈ [0, C] we have, for any t, that E ĝt∼πt exp η(E t -Lt (g)) = exp η(E t -Lt (g)) π t (dg) ≤ exp C 2 η 2 8 which can be rewritten as exp -ηE gt∼πt [ Lt (g t )] ≥ exp -C 2 η 2 8 E ĝt∼πt exp -η Lt (g t ) . (4.9)

	Next, we note that				
	exp -η					
	≥ exp -	T C 2 η 2 8	T t=1	E ĝt∼πt exp -η Lt (g t ) , using (4.9)
	= exp -	T C 2 η 2 8	T t=1		exp -η Lt (g) π t (dg)
	= exp -	T C 2 η 2 8	T t=1		exp -η t u=1 Lu (g) W t	π 1 (dg), using (4.8)
	= exp -	T C 2 η 2 8	T T =1	W t+1 W t	= exp	T C 2 η 2 8	W T +1 .
	So						
	T t=1	E ĝt∼πt [ Lt (g t )] ≤ -	log W T +1 η	+	T C 2 η 8
				= -	log exp -η T t=1 Lt (g) π 1 (dg) η	+	T C 2 η 8

T t=1 E ĝt∼πt [ Lt (g t )] = T t=1 exp -ηE gt∼πt [ Lt (g t )]

  (θ T x t,i ), y t,i ), Under the condition on the loss, we have(h * t (θ T x t,i ), y t,i ) -(h t (θ T x t,i ), y t,i ) ≤ L 1 h * t (θ T x t,i ) -h t (θ T x t,i ) ≤ L 1 supUsing the Lemma 10 in[START_REF] Alquier | Sparse single-index model[END_REF], we haveK(ν γ , µ 1 ) ≤ S log (C 2 + 1) γ . (θ T x t,i ), y t,i ) ≤ inf

					Let						
			h * t := arg (h t we define inf ht∈H S,C 2 +1 m 1 m i=1
													S
											h S =	j|β j |, ∀h ∈ H S,C 2 +1 .
													j=1
			and let						
											ν γ = 1( h -h * t S ≤ γ)µ 1 (dh).
					We get					
				1 m	m i=1	ˆ t,i ≤ inf γ	E ht∼νγ	1 m	m i=1	(h t (θ T x t,i ), y t,i ) +	ζC 2 8	+	K(ν γ , µ 1 ) ζm	.
			Thus we obtain			
			1 m	m i=1	ˆ t,i -	inf ht∈H S,C 2 +1	1 m	m i=1	(h t γ	L 1 γ +	ζC 2 8	+	S log (C 2 +1) γ ζm	.
					By choosing γ = 1/	√	m and then optimum is reached at ζ =	8S C 2 m
	1 m	m i=1	ˆ t,i ≤ inf 1 m m i=1 ˆ t,i -	inf ht∈H S,C 2 +1		1 m	m i=1	ζC 2 8 (h t (θ T x t,i ), y t,i ) ≤ L 1 √ m + C √ S 2 √ 2m +	+ C	1) K(ν, µ 1 ) ζm √ S log[(C 2 + 1) . 2 √ 2m	√	m]	.

ν E ht∼ν 1 m m i=1 (h t (θ T x t,i ), y t,i ) + z |h * t (z) -h t (z)| ≤ L 1 γ.

  j≤T,i≤m E P E (xs,ys) s≤m E (x,y) [ ( ĥ • ĝ(x), y)] P 1 ,...,P T E (x j,i ,y j,i ) j≤T,i≤m E P E (xs,ys) s≤m E (x,y) [ ( ĥĝt i • ĝt (x), y)] ,...,P T E (x j,i ,y j,i ) j≤T,i≤m E P E (xs,ys) s≤m ,...,P t-1 E (x j,i ,y j,i ) j≤t-1,i≤m E P E (xs,ys) s≤m ,...,P t-1 E (x j,i ,y j,i) j≤t-1,i≤m E Pt E (xs,ys) s≤m ,...,P T E (x j,i ,y j,i ) j≤t,i≤m • ĝt (x t,i ), y t,i ) = E P 1 ,...,P T E (x j,i ,y j,i ) j≤t,i≤m 1 T • ĝt (x t,i ), y t,i )≤ E P 1 ,...,P T E (x j,i ,y j,i ) j≤T,i≤m inf

	1 T 1 E = T m 1 = t=1 m i=1 T		
	=	1 T	T t=1	E P 1 1 m	m i=1	( ĥĝt i • ĝt (x i ), y i )
	=	1 T	T t=1	E P 1 1 m	m i=1	( ĥĝt i • ĝt (x i ), y i )
	=	1 T	T t=1	E P 1 1 m	m i=1	( ĥĝt i • ĝt (x t,i ), y t,i )
	=	1 T	T t=1	E P 1 1 m	m i=1	( ĥĝt
								T t=1	1 m	m i=1	( ĥĝt
							ρ		E g∼ρ	1 T	T t=1	inf ht∈H	1 m	m i=1	(h t • g(x t,i ), y t,i )
		+	1 T	T t=1	β(g, m) +	ηC 2 8	+	K(ρ, π 1 ) ηT	, using Theorem 4.1,
	≤ inf							ηC 2 8	+	K(ρ, π 1 ) ηT	.

T t=1

E P 1 ,...,P T E (x j,i ,y j,i ) j≤T,i≤m

E P 1 m m i=1 E (xs,ys) s≤i-1 E (x,y) [ ( ĥĝt i • ĝt (x), y)] = 1 T T t=1 E P 1 ,...,P T E (x j,i ,y j,i ) j≤T,i≤m E P 1 m m i=1 E (xs,ys) s≤i-1 E (x i ,y i ) [ ( ĥĝt i • ĝt (x i ), y i )] = 1 T T t=1

E P 1 ,...,P T E (x j,i ,y j,i ) j≤T,i≤m E P 1 m m i=1 E (xs,ys) s≤m [ ( ĥĝt i • ĝt (x i ), y i )] i i ρ E g∼ρ E P ∼Q inf ht∈H E (x,y)∼P (h t • g(x), y) + β(g, m) +

http://grouplens.org/datasets/movielens/

m i=1 x t,i x T t,i /m is close to 1/d. In this case, it is possible to improve the term β(m) employed in the calculation of the bound, we postpone the lengthy details to Subsection (c).

This work was financially supported by CREST, GENES from Labex ECODEC funding, ANR-11-LABEX-0047. The initial works of this thesis was supported by Science Foundation Ireland under Grant Number SFI/12/RC/2289 through the Insight Centre for Data Analytics. v vi

Mots Clefs : Inégalités PAC-Bayésienne, complétion de matrices, filtrage collaboratif, tomographie quantique, apprentissage au long cours, inégalité oracle, vitesses minimax, agrégation d'estimateurs, bornes sur le regret, MCMC.

Résumé : Les deux premières parties de cette thèse étudient respectivement des estimateurs pseudo-bayésiens dans les problèmes de complétion de matrices, et de tomographie quantique. Dans chaque problème, on propose une loi a priori qui induit des matrices de faible rang. On étudie les performances statistiques: dans chacun des deux cas, on prouve des vitesses de convergence pour nos estimateurs. Notre analyse repose essentiellement sur des inégalités PAC-Bayésiennes. On propose aussi un algorithme MCMC pour implémenter notre estimateur. On teste ensuite ses performances sur des données simulées, et réelles.

La dernière partie de la thèse étudie le problème de lifelong learning (que l'on peut traduire par apprentissage au long cours), où de l'information est conservée et transférée d'un problème d'apprentissage à un autre. Nous proposons une formalisation de ce problème dans un contexte de prédiction séquentielle. Nous proposons un méta-algorithme pour le transfert d'information, qui repose sur l'agrégation à poids exponentiels. On prouve une borne sur le regret de cette méthode. Un avantage important de notre analyse est qu'elle ne requiert aucune hypothèse sur la forme des algorithmes d'apprentissages utilisés à l'intérieur de chaque problème. On termine cette partie par l'étude de quelques exemples: cas d'un nombre fini de prédicteurs, apprentissage d'une direction révélatrice, et apprentissage d'un dictionnaire.

Title : PAC-Bayesian estimation of low-rank matrices

Keys words : PAC-Bayesian bounds, matrix completion, collaborative filtering, quantum tomography, lifelong learning, transfer learning, oracle inequalities, minimax rates, aggregation of estimators, regret bounds, MCMC.

Abstract :

The first two parts of the thesis study pseudo-Bayesian estimation for the problem of matrix completion and quantum tomography. A novel low-rank inducing prior distribution is proposed for each problem. The statistical performance is examined: in each case we provide the rate of convergence of the pseudo-Bayesian estimator. Our analysis relies on PAC-Bayesian oracle inequalities. We also propose an MCMC algorithm to compute our estimator. The numerical behavior is tested on simulated and real data sets.

The last part of the thesis studies the lifelong learning problem, a scenario of transfer learning, where information is transferred from one learning task to another. We propose an online formalization of the lifelong learning problem. Then, a meta-algorithm is proposed for lifelong learning. It relies on the idea of exponentially weighted aggregation. We provide a regret bound on this strategy. One of the nice points of our analysis is that it makes no assumption on the learning algorithm used within each task. Some applications are studied in details: finite subset of relevant predictors, single index model, dictionary learning.