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Thèse soutenue le 24-11-2016 devant le jury composé de:
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Abstract

Cross Laminated Timber (CLT) panels are engineered timber products composed of

layers made of wooden lamellas placed side by side, glued on their upper and lower faces

and stacked crosswise. In the present thesis, the influence of lateral spaces between

lamellas of each layer on the panel’s mechanical response is investigated with modeling

and tests. Both configurations of standard panels having short spaces and innovative

panels with large spaces are analyzed.

As a first approach, the bending behavior of standard CLT was modeled by means

of an equivalent-layer model based on simplified hypotheses. The good agreement of

the predicted behavior with an experiment of the literature allowed an investigation

on several CLT properties by means of parameter studies.

Then, 4-points bending tests on standard and innovative CLT floors were performed

in order to quantify the influence of periodic spaces on the panels’ mechanical response.

Moreover, available in-plane shear tests of the literature have been considered as ref-

erence in-plane behavior.

The spaced CLT have been subsequently modeled as periodic plates with a periodic

homogenization scheme handled by a thick plate theory. Existing simplified methods

were compared as well with refined modeling and test results. It appears that the

bending behavior of spaced CLT can be predicted with a simplified method, while only

the thick-plate homogenization can predict the in-plane and transverse shear behavior.

Then, closed-form solutions for predicting spaced CLT elastic behavior were derived to

encourage the application of these products in timber construction.

One further study within this thesis concerns the analysis of fire-exposed standard

CLT floors. The comparison between test results and both advanced and simplified

modeling led to a suggestion for a possible improvement the standard fire design model.
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Résumé

Les panneaux en bois lamellé croisé (en anglais CLT - Cross Laminated Timber) sont

des éléments de structure composés de couches en bois collées entre eleese et empilées

de façon croisée. Chaque couche est composée de planches en bois juxtaposées et

généralement non collées sur leurs chants. Dans cette thèse, nous étudions l’influence

des espacements entre planches sur le comportement mécanique des panneaux à l’aide

d’une approche par modélisation et expérimentation. Les panneaux CLT standards

sont considérés comme des panneaux avec des espacements de très faible dimension par

opposition aux panneaux avec espacements importants que nous appelons panneaux

innovants.

Nous modélisons dans un premier temps le comportement en flexion de panneaux

standards à l’aide d’un modèle de couche homogène équivalente basée sur des hy-

pothèses simplifiées de la mécanique d’une couche avec chants collés ou non collés.

Nous observons un bon accord entre les résultats de notre modélisation et des résultats

expérimentaux issus de la littérature. Des études paramétriques sont ensuite realisées

portant sur certaines propriétés des panneaux.

Nous avons ensuite réalisé des essais de flexion 4-points sur des panneaux CLT stan-

dard et innovants pour quantifier l’influence des espacements sur la réponse mécanique

des panneaux. Nous observons alors que l’influence des effets de cisaillement transverse

sur le comportement élastique et à la rupture augmente avec l’augmentation des vides

dans le panneau.

Afin de prendre correctement en compte les effets du cisaillement, les CLT espacés

sont ensuite modélisés comme des plaques épaisses périodiques à l’aide d’un modèle de

plaque d’ordre supérieur. Ce modèle a été appliqué à la géométrie des panneaux CLT

espacés avec un schéma d’homogénéisation périodique. Des méthodes simplifiées exis-

tantes ont également été comparées avec des résultats d’essais et le modèle de plaque.

De plus, des résultats d’essais de cisaillement dans le plan des panneaux CLT standards

issus de la littérature ont été comparés avec nos résultats. La raideur de flexion des

CLT espacés peut être prédite avec des méthodes simples existantes alors que seule la

modélisation que nous proposons permet de prédire le comportement en cisaillement

transverse et dans le plan. Nous avons ensuite proposé des formules analytiques dans

le but de prédire le comportement élastique des CLT espacés. Ces formules donnent

une bonne approximation du comportement des CLT espacés et peuvent être utilisées

dans le cadre d’une démarche pratique de dimensionnement.

Enfin, une étude concernant l’analyse du comportement au feu des panneaux CLT

standard est présentée. La comparaison entre des résultats d’essais au feu et une

modelisations avancée et simplifiée a permis de proposer une possible amélioration de

la méthode standard de dimensionnement au feu.
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Chapter 1

Introduction

Timber is a bio-sourced construction material always present in human history. At

the beginning of the 20th century, the classic log or lattice frame timber construction

methods have been progressively replaced by the more economical human-made con-

struction materials like masonry, steel and concrete, at least in Europe (Schickhofer

et al 2009). Starting from about ten years ago, timber has sharply regained portions

of the construction market, even within cities of European countries like Italy, Austria,

Germany or France. This is mostly due to the introduction of a new massive timber

construction method based on Cross Laminated Timber (CLT or crosslam) panels,

two-dimensional engineered timber products composed of an uneven number of lum-

ber layers stacked and glued crosswise (Figure 1.1). Each layer is made of lumber

Figure 1.1: Cross Laminated Timber panel (http://hybrid-build.co/)

boards placed side by side which can be glued or not on their lateral faces depending

on the fabrication process. CLT panels have been introduced at the beginning of the

90’s in central Europe, based on the well-known principle of orthogonal lamination

of plywood applied to thick panels. The resulting thick and orthogonal element has

more uniform hygroscopic behavior than glulam and can be used as a full size wall,

floor or roof capable of bearing in-plane or out-of-plane loads. The main advantage of

CLT building method with respect to traditional timber frame structures is the mod-

ular on-site assembly of full size prefabricated CLT that yields very short construction

times. The CLT development in modern timber construction has so increased that tall

10-story buildings have been made for instance in London, Milan (Figure 1.2a) and

Melbourne, and other having 20-story are in progress in Canada (Figure 1.2b) and

1



1. INTRODUCTION

France. Such heights are unprecedented in timber engineering, showing the potential

of CLT construction system. Compared to linear beam elements made of Glued Lami-

(a) (b)

Figure 1.2: Tall CLT buildings: (a) 9-story building in Milan (Bernasconi 2016) and
(b) on-going project in Vancouver of a 18-story building with concrete cores (Fast et al
2014)

nated Timber (GLT), CLT panels have capacity of carrying in-plane and out-of-plane

loads. Moreover, the crosswise lay-up yields a “system” effect which increases the raw

material strength and stiffness, as highlighted by one of the first comprehensive ex-

perimental campaign on CLT in bending (Joebstl et al 2006). On this basis, recent

state-of-art reports on CLT development suggested specific strength classes for CLT

products (Brandner et al 2016; Schickhofer et al 2016). This effect increases when the

two-dimensional load distribution capacity is exploited, as showed by Hochreiner et al

(2013), Bogensperger and Jobstl (2015) and as will be pointed out in Chapter 2 of the

present thesis.

Building with CLT means also connecting the panels between themselves or with

other structural elements with connections capable of transferring the loads and en-

suring the structural safety. Therefore, panels’ assembling plays a crucial role within

CLT construction techniques and, indeed, connection systems are one of the main CLT

research topics (Blass and Schadle 2011; Flatscher et al 2014; Polastri 2014). When

dealing with dynamic loadings, the connections play a crucial role (Fragiacomo et al

2011; Gavric et al 2015; Scotta et al 2016), since the energy deriving from the wind or

seismic acceleration has to be dissipated thanks to the ductility of connections systems.

For instance, connections for anchoring CLT walls can consist in classical metallic fas-

teners (hold-down and angle brackets) or innovative connection systems (Figure 1.3a),

while floor-to-floor connections are usually realized with screws (Figure 1.3b).

Increasing the height of timber buildings requires also an improved fire resistance, in

2



(a) (b)

Figure 1.3: Connections in CLT construction: (a) metallic fasteners for anchoring CLT
walls and (b) butt-joint between CLT panels (XlamDolomiti 2016)

order to guarantee the structural safety of the structure and also an adequate evacua-

tion time. Since the massive CLT lay-up ensures slow charring rates (Frangi et al 2009b;

Craft et al 2011), crosslam panels have also an improved fire resistance compared to

linear beam elements. However, the current design model for timber members exposed

to fire (EN1995-1-2 2004) has been recently identified to be sometimes non-conservative

when dealing with timber floors exposed to fire (Schmid et al 2012). Chapter 6 of the

present thesis suggests a possible approach for improving the current version of the

structural fire design model of Eurocode 5 1-2 (EN1995-1-2 2004).

Finally, the prefabrication allows the possibility to use CLT panels as reinforcing

elements for existing traditional buildings (Branco et al 2014; Soriano et al 2016) and

also for the seismic retrofit and comfort rehabilitation (Viskovic et al 2016).

Figure 1.4 presents the CLT skeleton of the 9-storey building in London, showing

CLT panels used as horizontal (floors) or vertical (walls) structural elements.

Figure 1.4: Structural skeleton of the 9-story Murray-Groove CLT building in London
(http://tesseract-design.com)

CLT panels used as floors are submitted to out-of-plane bending. The mechanical

3



1. INTRODUCTION

response of standard and innovative CLT panels under out-of-plane bending is the

main topic of the present thesis. When submitted to out-of-plane bending, the crosslam

orthogonal structure leads to cross layers having negligible load-carrying capacity. This

is due to the ratio in the range of 25-30 between wood’s Young’s modulus parallel and

perpendicular to grains. Moreover, the cross layers are submitted to transverse shear

in wood transverse RT -plane (also called rolling shear, Figure 1.5), which shows low

values of stiffness and strength, making CLT shear compliant. For softwood, the ratios

between RL and RT shear stiffness and strength are in the range of 5-10.

R
L

R
T

T

L

Figure 1.5: Rolling shear in CLT. From Mestek (2011) and Ehrhart et al (2015)

During last years many works have been done on rolling shear in CLT (Aicher and

Dill-Langer 2000; Zhou et al 2014; Ehrhart et al 2015; Li et al 2014) in order to study

the parameters that mostly influence rolling shear stiffness and strength. Many ex-

perimental bending tests on CLT panels proved that common failure modes are either

rolling shear of transverse layers or tensile bending failure of bottom layers (Mestek

2011; Blass and Fellmoser 2004b; Hochreiner et al 2013; Czaderski et al 2007; Okabe

et al 2014; Sikora et al 2016). The transition between bending and shear failure is

influenced by the panel’s slenderness but also by boards strength class (Hochreiner

et al 2014). The strength classes (EN 2009) classify timber on the basis of the pres-

ence of natural heterogeneity (knots, fiber deviation) and the expected influence on

the mechanical properties. The tensile strength is the most affected property by the

heterogeneities, while timber shear stiffness and strength are generally considered to

be independent from the strength class (Blass and Gorlacher 2000; Blass and Fellmoser

2004b; Grandvuinet and Muszynski 2016). Therefore, increasing the strength class of

raw lamellas means favors rolling shear failure instead of tensile failure of CLT floors.

The shear compliance of CLT is due to the presence of cross layers at 90◦, and hence

varying the orientation of transverse layers may mitigate the shear effects and improve

the bending performance. The recent studies of (Chen and Lam 2013) and Buck et al

(2016) investigated experimentally on this topic (Figure 1.6), while in Chapter 2 of the

present thesis a detailed numerical analysis on this subject is performed.

Dealing with calculation methods for out-of-plane loads, 3D Finite Elements (FE)

or 3D analytical solutions can well reproduce the mechanical behavior of CLT panels

(Sebera et al 2013; Sturzenbecher et al 2010) but they are computationally quite ex-

pensive. Crosslam panels can be also modeled as layered anisotropic plates, and their

behavior can be well predicted by 2D plate theories, as showed by Sturzenbecher et al

4



Figure 1.6: Innovative orientation of transverse layers at 45◦. From Buck et al (2016)
(top) and Chen and Lam (2013) (bottom)

(2010). Due to the non-negligible shear compliance of crosslam, a thick plate theory to

correctly predict transverse shear effects is needed. More than 3D or 2D approaches,

several 1D simplified design methods exist, and some of them are implemented in Euro-

pean or national design codes (EN1995-1-1 2004; DIN 2004). Such methods are based

on lamination theory for layered plates under uni-axial loads and are the k-method

(Blass and Fellmoser 2004a) that neglects shear effects, the γ-method of the Eurocode

5 (EN1995-1-1 2004) which partially takes into account shear effects and the shear

analogy method (Kreuzinger 1999) which is considered the most predictive method.

The shear analogy method will be compared to refined modeling of spaced CLT in

Chapter 4 and Chapter 5.

When the CLT floor supports directly the CLT wall, there is a local punching and

compression perpendicular to grain, which is a significant research axis (Bogensperger

et al 2011; Brandner and Schickhofer 2014; Serrano and Enquist 2010) that tries to show

the enhanced compressive properties of CLT. Indeed, compared to glulam, CLT cross

layers act as reinforcements with a “locking effect” that increase the CLT stiffness

and strength perpendicular to grain (Schickhofer et al 2016). Again, within a CLT

panel used as a wall under compressive loads, only the layers having the fibers aligned

with the load direction have load-carrying capacity. Moreover, when the height-to-

thickness ratio of the panel is sufficiently high, buckling of CLT wall can occur. Recent

studies (Perret et al 2016; Thiel and Krenn 2016) pointed out that the rolling shear

compliance of transverse layers has a significant influence on the buckling loads of CLT

walls. The main focus of research studies concerning crosslam walls deals with the in-

plane shear behavior (Figure 1.7a) and an adequate experimental set-up (Figure 1.7b)

to determine in-plane shear stiffness and strength (Brandner et al 2013; Gagnon et al

2014; Araki et al 2014; Andreolli et al 2012; Brandner et al 2015). Indeed in-plane

shear properties are important for CLT diaphragms and shear walls, especially when

submitted to dynamic in-plane loads (Moroder et al 2016). The in-plane shear stiffness

of spaced CLT panels is predicted in the present thesis with numerical (Chapter 4) and

5



1. INTRODUCTION

(a) (b)

Figure 1.7: (a) CLT wall under loads in-plane (Bogensperger et al 2010) and (b)
experimental set-up suggested by Andreolli et al (2012)

closed-form (Chapter 5) approaches, showing that the spaces between lamellas strongly

influence the in-plane shear behavior, even for short spaces of standard panels.

The fast development of CLT application in modern construction led to many recent

research studies on CLT challenging topics. As a consequence, an established knowledge

on the main advantages and issues related to this product exists and brought to the

publication of a north-American standard (ANSI/APA 2012) and manual (Gagnon

and Pirvu 2013) and an European manual (Schickhofer et al 2009). The publication

process of European standard requirements for CLT is on-going and the final draft is

now available (EN-16351 2016), while the new version of the Eurocode 5 1-1 containing

a section for CLT design is currently under revision (EN1995-1-1 2015).

The process of standardization tries to harmonize CLT production, fields of appli-

cation and design methods, in order to make this product competitive against mineral-

based construction materials. However, there still remain issues not covered or partially

covered by the standards. For instance, the final version of EN-16351 (2016) allows the

non-gluing of lateral boards of each layer and the presence of small gaps up to 6 mm

(Figure 1.8) without specifying their influence on the mechanical behavior. Dealing

with the out-of-plane behavior of crosslam the presence of such gaps has been found

experimentally (Hochreiner et al 2013) and numerically (Flores et al 2016) to reduce

the global-load carrying capacity, due to the presence of free edges between spaces that

yields singularities of stress perpendicular to grain (Figure 1.9). This topic will be

discussed in Chapter 4 of this thesis, where a comparison between modeling and test

results quantifies the influence of small lateral gaps on the transverse shear behavior

of standard CLT. Nevertheless, the most sensitive properties of crosslam having short
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Figure 1.8: CLT panels with short spacing up to 6 mm as described in EN-16351 (2016)

(a) (b)

Figure 1.9: Stress concentration in laterally unglued transverse CLT boards due to free
edges found (a) experimentally by Hochreiner et al (2013) and (b) numerically by Flores
et al (2016) (b) for out-of-plane loads

spaces are related to in-plane behavior. Indeed, discontinuous CLT panels submitted

to in-plane shear and in-plane bending (or torsion) shows an additional compliance

mechanism related to torsion-like and in-plane rotation of lamellas. On the basis of

this mechanism, Moosbrugger et al (2006) from Graz University suggested a simplified

closed-form solution for predicting the in-plane shear stiffness and derived assuming an

infinite number of layers. Then, the same research team of Graz University improved

their approach fitting the closed-form solution on FE results (Bogensperger et al 2010;

Silly 2010) for 3,5 or 7-ply configurations, leading to several fitting parameters. The

current version of the reviewed Eurocode 5 1-1 for CLT design (EN1995-1-1 2015) in-

cludes such closed-form solution with the FE fitting parameters for taking into account

the number of layers. In the present study, FE homogenization and closed-form so-

lutions for predicting the in-plane shear and torsional stiffnesses of spaced CLT are

compared to the existing closed-form approaches.

Increasing the spaces between narrow lamellas up to hundreds of millimeters yields

innovative lighter CLT panels similar to space-frame structure (Figure 1.10). The reg-

ular voids can be used to receive equipment conduits or, when filled by insulating

material, increase the acoustical and thermal efficiency as well as the fire resistance.

Such innovative products match the increasing needs of lighter, more efficient and less

expensive timber panels. Currently, there are no specific standards or design tools

for the mechanical assessment of these innovative panels, which development is still

7



1. INTRODUCTION

limited for the resulting lack of knowledge. Similar engineered timber products have

Figure 1.10: Innovative lightweight CLT panels having large spaces between lamellas

been tested by Blass and Gorlacher (2000) (Figure 1.11), who used the gamma design

method for massive CLT (EN1995-1-1 2004) with wood mechanical properties reduced

by the wood volume fraction in order to predict the bending behavior. It appeared that

such approach can return a rather good prediction of the bending behavior of spaced

timber floors. However, the simplified gamma method prevents an accurate descrip-

tion of the transverse shear behavior of the spaced panel. The simplified approach of

combining wood volume fractions with a method for massive crosslam is common in

engineering applications, and therefore a more refined method may be needed when

dealing with spaced CLT floors. No experimental or numerical studies exist on in-

Figure 1.11: Bending tests by Blass and Gorlacher (2000) on spaced timber floors and
rolling shear failure of transverse boards

plane behavior of largely spaced CLT. However, the closed-form solution derived by

Moosbrugger et al (2006) contains terms related to bending and shear flexibility of

cantilevered beams having the spaces as span, and therefore may be capable of repro-

ducing the in-plane behavior of innovative CLT having large spaces. A comparison

between such closed-form solution and more accurate modeling is showed in Chapter 4

and Chapter 5.

Contrary to common thoughts, massive timber members such as CLT exposed to

fire ensure a safer fire behavior than other construction materials. Indeed, the low

thermal conductivity of wood and the self-protection function of charred wood yield

low charring rates. For this reason, the fire behavior of timber is more “predictable”

than the fire behavior of other materials like steel or concrete that can show explosive
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(concrete) or instability (steel) phenomena difficult to predict. Moreover, the low ther-

mal conductivity of wood makes the region affected by high temperatures confined very

close to the char front, while the rest of cross section remains at ambient temperature.

For this reason, the current fire design approach of the Eurocode 5 1-2 (EN1995-1-2

2004) allows to consider mechanical properties at ambient temperature combined with

a reduction of cross section (Reduced Cross Section Method - RCSM). The reduced

cross section is predicted with two steps: (i) a first reduction due to charring and (ii) an

additional removal of a layer having no mechanical properties (also called zero strength

layer) in order to take into account the reduced properties of wood in the region close to

the char front (Figure 1.12). In the current version of the Eurocode 5 1-2, such layer has

Figure 1.12: Principle of the Reduced Cross Section Method of the Eurocode 5
(EN1995-1-2 2004)

a constant value of 7mm. However, recent studies (Schmid et al 2012; 2014; Lineham

et al 2016) showed that this value sometimes leads to non-conservative results, and the

“exact” value of the additional layer to remove is difficult to predict since it depends

on many parameters. For instance, in order to improve the current RCSM approach,

Schmid et al (2012) suggested an additional depth to remove from the cross section as

a function of the total thickness of the panel. In Chapter 6 of this thesis, an innovative

approach for suggesting a possible improvement of the RCSM is presented. Basically,

it is based on the exposure time-dependency of the additional layer to remove when

applying the RCSM. Moreover, being laminated members, the glued interface between

layers can lead to premature falling-off of layers due to the low mechanical properties

of glue at high temperatures. Several experimental studies on fire-exposed crosslam

(Frangi et al 2009b; Craft et al 2011; Osborne et al 2012; Klippel et al 2014; Lineham

et al 2016) showed a discrepancy about the occurrence and the influence on the fire

design of this phenomenon. In Chapter 6 of this thesis, the experimental deflection of

fire-exposed crosslam floors that showed falling-off of layers is predicted with the ap-

proach of Frangi et al (2009b) for taking into account such delamination phenomenon

and compared to other methods which neglect the falling-off.

Based on the current state of the art of CLT research, the main objective of
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1. INTRODUCTION

the present thesis is to investigate on the influence of spaces between lateral boards

on CLT mechanical behavior by means of modeling and tests. Both cases of small

gaps of standard CLT and larger spaces of innovative panels are investigated.

The comparison between refined modeling, test results and simplified methods

aims to establish a reliable calculation tool for spaced CLT that could be used in

practical applications. Additionally, a study on fire-exposed crosslam is presented

in this thesis and aims to suggest a possible approach for improving the existing

fire design model by means of a comparison between testing and advanced calculations.

In the following, the manuscript outline is summarized, while an overview of the thesis

is presented in Figure 1.13.

First simplified approach: In this first approach presented in Chapter 2, laterally

glued or unglued layers are modeled by means of an equivalent layer model based

on simplified hypotheses on mechanical properties. The stress were predicted with a

3D solution and are the input for a wood failure criterion. The good match with a

reference test of literature allows parameter studies on common and innovative crosslam

properties in order to point out some interesting features about CLT applications.

Experimental investigation: Chapter 3 presents the conducted full-scale and small-

scale experimental tests that aimed to point out the influence of spaces on elastic and

failure behavior of spaced CLT floors. A reference in-plane shear test on CLT of the

literature is presented as well.

Modeling-1: Homogenization: Spaced CLT panels are then modeled as thin and

thick periodic plates by means of a numerical homogenization scheme. Chapter 4

presents the main features of such refined modeling and the implementation in the case

of spaced crosslam, as well as the comparison with experimental results and existing

simplified approaches.

Modeling-2: Closed-form solution: Chapter 5 presents the modeling procedure to

derive a closed-form solution for spaced CLT based on beam theory. The obtained

simplified formulations can then be used for practical spaced CLT applications.

Fire behavior : The analysis of standard CLT fire behavior is presented in Chapter 6.

The available experimental data is firstly summarized, then both refined modeling

based on reduced properties and simplified modeling based on reduced geometry are

presented. The comparison between the two approaches led to a suggestion for a

possible improvement of the current fire design model for timber structures of Eurocode

5 1-2 (EN1995-1-2 2004).

Conclusion and outlooks : The thesis concludes with Chapter 7, where the principal

results, conclusion and outlooks of the presented study are presented.

Finally, in the present thesis, only the deterministic mechanical behavior of CLT

panels is considered. No possible influence of obtained results on thermal, acoustical or

hygroscopic behavior is taken into account. The predicted displacements and stresses

are elastic fields, and failure is defined to be the reach of the material strength by the
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1. INTRODUCTION

elastic stresses. Moreover, the considered CLT are single panels without connections

with other elements.
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Chapter 2

Bending behavior of standard CLT:
modeling and parameter studies

Note: This Chapter has been published in European Journal of Wood and Wood

Products with the title Influence of orientation and number of layers on the elastic

response and failure modes of CLT floors: modeling and parameter studies DOI:

10.1007/s00107-016-1038-x

Abstract. In this Chapter, the layers of CLT in bending are modeled as laterally glued

or unglued layers by means of simplified hypotheses on mechanical properties. The

simplified behavior is combined with the exact 3D elastic solution for layered plates

in bending (Pagano 1969) and a failure criterion for wood. The predicted mechanical

behavior is compared with an experiment of the literature in terms of global stiffness

and variation of failure modes. Finally, parameter studies are performed on several

panel’s properties which can be interesting for practical application.

Résumé. Dans ce Chapitre, nous modélisons les couches de CLT en flexion comme

des couches homogènes équivalentes dans lequelles les planches sont collées ou non

sur chants en prenant des hypothèses simplifiées sur les propriétés mécaniques. Ce

comportement simplifié est couplé avec la solution exacte 3D pour multicouches en

flexion (Pagano 1969) et un critère de rupture pour le bois. Le comportement prédit est

comparé avec les résultats d’un essai issu de la littérature en termes de raideur globale

et de variation des modes de ruine. Enfin, des études paramétriques sont conduites

pour déterminer les propriétés des panneaux en fonction de leures caractéristiques

geométriques.

2.1 Introduction

The state-of-the-art presented in the previous Chapter revealed a comprehensive and

well documented experimental study on CLT panels in bending (Hochreiner et al 2013).

Therefore, the first purposes of this thesis have been reproducing the mechanical re-
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sponse observed during such experiments of the literature and performing parameter

studies on CLT properties interesting for applications. This work allowed the identifi-

cation of challenging topics from both scientific and practical point of view.

CLT plates in bending are affected by heterogeneities at different levels. First, at the

material scale, timber features a pronounced variation in mechanical properties. Then,

within each layer, two other kinds of heterogeneities can be differentiated. The local

orientation of orthotropic coordinate system is a priori unknown due to the variation of

annual ring pattern. Moreover, the discontinuities in the non-gluing of lateral lamellas

have a non-negligible influence on the mechanical response, as the studies presented in

Chapter 1 show. At the structural level, the multilayer and orthotropic lay-up makes

crosslam panels layered shear-compliant plates with anisotropic behavior, and therefore

an adequate model has to be implemented in order to predict the mechanical response.

At the layer scale, an ”equivalent-layer” mechanical model is suggested in this Chapter

to take into account the CLT layer’s heterogeneities, leading to simplified hypotheses

on layer’s behavior. Concerning the structural heterogeneity given by the multi-layer

composition, the limits of the existing design methods presented in Chapter 1 lie in a

simplified approach, which reduce the 2D problem into a 1D one and is suitable only

for orthotropic (0◦ or 90◦) lay-ups. In the present Chapter, the exact 3D theory for

laminated plates in bending (Pagano 1969; 1970) is applied to CLT panels, in order to

predict their mechanical response and to analyze plates with non-orthotropic lay-ups.

Being a 3D solution, Pagano’s theory can give a better estimation of stress distribution

across the panel’s thickness than simplified 1D or 2D approaches, especially when the

panel is submitted to concentrated loads, as in the case of the reference test (Hochreiner

et al 2013). The elastic bending solution is therefore combined with a failure criterion

for wood, in order to extend the comparison with the reference test in terms of failure

stages.

In the present Chapter, the main topic of interest is CLT mechanical behavior at

the layer and structure scale, leading to a simplified modeling at the material scale.

Whereas the wood variability has not been taken into account in this study, having a

detailed description of 3D stress enables the estimation of interesting features of CLT

mechanical behavior. Indeed, the influence on panel’s bending behavior of having edge-

glued or unglued layers is analyzed, as well as the effects of varying layers number and

orientation. All the modeling tools are presented in Section 2.3 after the introduction,

in Section 2.2, of the reference experimental behavior of CLT panels. In Section 2.4, the

comparison between the predicted and actual behavior is made in terms of the plate’s

global stiffness and variations in failure stages. The good agreement with the reference

results has led to an investigation on CLT properties by means of the parameter studies

in Section 2.5. In this final Section, transverse shear effects occurring in CLT in bending

are quantified, as well as further CLT advantages deriving from the variation of layer

orientation and number.
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2.2 Reference experimental test

2.2 Reference experimental test

Hochreiner et al (2013) tested square 3-ply and 5-ply CLT panels with slenderness

ratios of 10 and 20 and made of Norway spruce lumber boards of strength class C24 (EN

2009). The plates had their four sides supported and were submitted to concentrated

loads at their center. Thanks to a combined measuring system of acoustic emission,

LVDTs and accurate cutting of specimens after the failure, progressive failure stages

were determined as a function of load levels (Figure 2.1). At each failure stage, the

corresponding crack type identified by the panel’s cutting was assigned. The most

complete documentation found in the reference paper is about the so-called specimen

”EL4”, a three-layer panel of slenderness ratio of 20. Figure 2.1 reproduces the reference

test result for specimen ”EL4” in terms of its load-displacement curve, failure stages

and respective failure modes. The plate showed a global ductile behavior after the

elastic limit, due to its bi-axial bending configuration, whose effect is to redistribute

the stresses after the first cracks appear. This ”system” effect is particularly evident

in Stage 2, where the global linear behavior is not really affected by the appearance of

rolling shear cracks.
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Figure 2.1: Schematic load - displacement curve with identified failure stages and
associated crack modes found by Hochreiner et al (2013)

All the cracking modes found during the loading process are presented in Figure 2.2.

The cracks appearing first called ”RS” and ”EG” stand respectively for rolling shear

failure in cross-layers and edge-gluing failure between lateral boards of the same layer.

The failure mode denoted ”TL” is the tensile failure in direction parallel to grain,

while ”I” is the local indentation perpendicular to grain. The failure called ”RS - T”

is a complex cracking pattern occurring in cross layers at the end of the elastic limit

and assumed to derive from interactions between rolling shear and tensile stresses.
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Moreover, the ”RS - T” cracking pattern was also a consequence of the geometrical

discontinuities appearing between boards of the same layer, after edge-gluing failure.

EG

TL

RS-T

RS

I

Figure 2.2: Failure modes of specimen EL4 (Hochreiner et al 2013)

The comparison between the predicted and experimental bending response is made

in terms of the panel’s global stiffness in the linear elastic load stage (stage 1 in Fig-

ure 2.1) and the variation of failure modes within the apparent elastic stage (until stage

3 in Figure 2.1).

2.3 Modeling of CLT panels bending behavior

At the material scale, wood is considered as an elastic, brittle and homogeneous mate-

rial. The heterogeneities characterizing the CLT layers are taken into account by means

of an equivalent and homogeneous layer, whose mechanical properties are defined both

in terms of elasticity and failure. Once the simplified mechanical behavior is set, the

exact 3D solution in elasticity for laminated plates in bending (Pagano 1969; 1970) is

chosen in order to obtain precise estimation of the plate’s mechanical response. Finally,

a failure criterion suitable for wood (van der Put 1982) can point out the failure load

and the corresponding dominant failure mode of CLT panels in bending.

2.3.1 Mechanical behavior of solid wood

Wood is an orthotropic material with three principal axes. The first one is aligned in

the fiber or trunk direction (longitudinal direction, L). In the transverse plane, the

remaining two axes are orthogonal to growth rings (radial direction, R) and tangential

(tangential direction, T ) to them. Figure 2.3 presents the axes of orthotropy of solid

wood.

The chosen wood species is Norway spruce (Picea abies), since it is the most widely

used wood species in Europe for CLT production and was also used in the reference

experiment. The mechanical properties are chosen on the basis of tests in literature

on specimens of clear spruce, without knots. Table 2.1 shows the elastic and strength

properties of Norway spruce taken respectively from Keunecke et al (2008) and Dahl
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Tangential
(T)

Radial (R)

Longitudinal
(L)

Figure 2.3: Material axes of orthotropy for solid wood

(2009). The first subscripts L, T and R represent the wood coordinate system, while

the following t and c represent tensile or compressive strength. As it will be shown

in the next paragraph, the failure analysis requires the complete set of nine spruce

strength parameters, whose values are present only in Dahl (2009). Another exper-

imental campaign on clear spruce strengths in the LT plane (Eberhardsteiner 2002)

confirms the congruity of the chosen values, especially for the tensile strength. The

failure behavior presented in Table 2.1 describes wood’s strength with respect only to

pure uni-axial stresses. Therefore, in order to perform an exhaustive failure analysis,

a mixed failure criterion for wood is required.

Elasticity EL ET ER GRL GLT GTR νLR νLT νRT
(Keunecke et al 2008) 12800 397 625 617 587 53 0.36 0.45 0.48

Failure fL,t fL,c fT,t fT,c fR,t fR,c fRL fLT fTR
(Dahl 2009) 63.4 28.9 2.8 3.8 4.9 3.6 7.1 4.8 2.0

Table 2.1: Elastic and strength properties of Norway spruce [MPa]

2.3.2 Van der Put’s mixed failure criterion for wood

Failure criteria define the material failure by means of normalized expressions, which

represent the material’s strength surface. A stress state, that reaches or exceeds the

failure surface, leads to inelastic phenomena such as damage or plastic strains. The

most widely used isotropic failure criteria are based on von Mises maximum distortion

energy. These criteria generally follow a quadratic expression which represents an

elliptic surface. Dealing with anisotropic materials, the rotated and translated ellipsoid

of Tsai-Wu (Tsai and Wu 1971) is the most common failure surface. The general

quadratic expression for orthotropic materials can be written as:

f(σ) : Aσ2
L +Bσ2

T + Cσ2
R +DσLσT + EσLσR+

+FσTσR +GσL +HσT + IσR+

+Lτ 2
LT +Mτ 2

LR +Nτ 2
RT = 1.0

(2.1)

where σ and τ are respectively the longitudinal and shear stresses in orthotropic

coordinates L, T , and R. The capital letters are function of the material strengths and
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they determine the geometry of the failure surface. While the coefficients of quadratic

terms (A, B, C and L, M , N) represent the semi-axes of the elliptical surface, linear

(G, H, I) and interaction (D, E, F ) terms in (2.1) respectively translate and rotate the

ellipsoid. The value of interaction terms in failure criteria for anisotropic materials is

still nowadays under discussion. During his studies on failure criteria for wood, van der

Put (1982) showed how the value of the interaction term has a negligible influence when

the stress path is closed to the failure surface. Therefore, Van der Put’s failure criterion

is a function f(σ) like (2.1) but without interaction terms. This failure criterion has

been compared in Cabrero et al (1984) with other criteria applied to spruce failure, and

it turned out to be one of the most predictive. Therefore, considering also its simple

implementation due to the absence of interaction terms, Van der Put’s failure function

has been chosen for the failure analysis. The coefficients of Equation 2.1 derived in

(van der Put 1982) are:

A =
1

fL,tfL,c
, B =

1

fT,tfT,c
, C =

1

fR,tfR,c
,

D = E = F = 0

(2.2)

G =
1

fL,t
− 1

fL,c
, H =

1

fT,t
− 1

fT,c
, I =

1

fR,t
− 1

fR,c
(2.3)

L =
1

f 2
LT

, M =
1

f 2
RL

, N =
1

f 2
TR

(2.4)

where wood’s strength properties fi have been discussed in Section 2.3.

If the failure criterion is proportional to the applied load, it is straightforward to

find the failure load from a single linear solution. Whereas σ is already proportional to

the applied load, the function f(σ) derived by van der Put (1982) turns out not to be

proportional. Hence, it is necessary to derive a new function F (σ), which will describe

the same failure surface, but also satisfy the condition

F (λσ) = λF (σ), λ > 0 (2.5)

Property (2.5) ensures the same variation λ of F (σ), when varying the external load

(and the related stress state σ) of a positive quantity λ. Rewriting the function f(σ)

of Equation 2.1 leads to:

f(σ) : t(σ − k0)K(σ − k0)− tk0Kk0 = 1.0 (2.6)

with

σ =


σL
σT
σR
σTR
σRL
σLT

 , k0 =


g
h
i
0
0
0

 , K =


A 0 0 0 0 0
0 B 0 0 0 0
0 0 C 0 0 0
0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N

 (2.7)

18



2.3 Modeling of CLT panels bending behavior

σ stands for the stresses expressed in the wood’s coordinate system, while k0 and

K include the wood’s strength properties. Developing Equation 2.6 and comparing it

term to term with Equation 2.1, we can find the following components of k0:

g =
fL,t − fL,c

2
, h =

fT,t − fT,c
2

, i =
fR,t − fR,c

2
(2.8)

As mentioned in Section 2.3.2, the function described by Equation 2.1 is not propor-

tional to the external load. Then, we search a new function F (σ), having the property

of a homogeneous function of degree one:

F (λσ) = λF (σ), λ > 0 (2.9)

Substituting σ = λσ in (2.6) leads to

λ2 tσKσ − 2λ tσKk0 − 1 = 0 (2.10)

The positive root of Equation 2.10 gives the multiplier coefficient λ with which the

stresses λσ produce a criterion’s value of 1.0 and consequently, the material failure.

Therefore, the function

λ(σ) =
tσKk0 +

√
(tσKk0)2 + tσKσ
tσKσ

(2.11)

returns the value with which the stresses should be multiplied in order to reach the

rupture. The inverse of this function F (σ) = 1/λ(σ) is a homogeneous function of

degree one whose values are{
F (σ) ≥ 1.0 if rupture occurs

0 < F (σ) < 1 if rupture does not occur
(2.12)

Finally, the function F (σ) = 1/λ(σ) can be derived from Equation 2.11. The value

λ(σ) represents the multiplier coefficient to reach the failure point. The spatial distri-

bution within the CLT panel of λ(σ) multiplied by the failure load Fc represents the

load levels necessary to reach progressive failures under linear elastic hypotheses.

When the failure load is determined, it is of particular interest to establish the

associated dominant failure mode. This can be achieved computing the ratios between

each of the six stress components expressed in the wood’s coordinates (σL, σT , σR,

τLT , τRL, τTR) and their respective strengths (fL,c−t, fT,c−t, fR,c−t, fLT , fRL, fTR). The

maximum value of these ratios can point out the dominant failure mode. This ratio is

computed at any point within the panel.

2.3.3 Equivalent CLT Layer model

Both complete (3D) and reduced (2D or 1D) solutions for layered plates in bending

consider every layer as homogeneous. In practice, each CLT layer is made of boards
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placed side by side and it is affected by the heterogeneities presented before. Hence, it is

necessary to set a homogeneous ”Equivalent CLT Layer” model, which could take such

heterogeneities into account. As presented before, the first complexity derives from

the variation of growth rings’ orientation inside each layer, which leads to an unknown

orientation of the local orthotropic coordinate system. Moreover, in case of unglued

lateral boards, the resulting discontinuities influence the equivalent layer. Note that, if

the lateral edges of boards were initially glued, the experimental evidence showed that

the edge gluing detachment is one of the first failure modes (see Section 2.2).

N

Z

L

(a)

(b)

Figure 2.4: Schematic continuous (a) and discontinuous (b) Equivalent CLT Layers
together with the layer’s reference frame

2.3.3.1 Continuous Equivalent Layer

If the boards’ lateral edges are glued, each wooden layer can be viewed as a continuous

layer. The same material behavior in directions N and Z of the board’s reference

frame (Figure 2.4) is considered, in order to overcome the irregularity of growth rings.

While the Z direction remains always the same, directions L and N change together

with the orientation of the considered layer. Table 2.2 presents the elastic and strength

properties of the continuous Equivalent Layer. The defined elastic moduli for the N

or Z direction are the mean values between the corresponding T and R ones for solid

wood (Table 2.1), while the strength parameters are the lower values.

2.3.3.2 Discontinuous Equivalent Layer

When CLT boards are not glued together on their lateral edges, or when in-plane stress

caused the edge-gluing detachment, each layer becomes discontinuous (Figure 2.4b) and
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2.3 Modeling of CLT panels bending behavior

Elasticity EL EN EZ GZL GLN GNZ νLZ νLN νZN
12800 511 511 602 602 53 0.41 0.41 0.48

Failure fL,t fL,c fN,t fN,c fZ,t fZ,c fZL fLN fNZ
63.4 28.9 2.8 3.6 2.8 3.6 4.8 4.8 2.0

Table 2.2: Elastic and strength properties of a continuous CLT layer [MPa]

such discontinuities preclude any transmission of stresses between separated boards.

This also means that failure in N -direction cannot occur. Table 2.3 shows the con-

sidered mechanical behavior of an equivalent and discontinuous layer made of Norway

spruce. Intuitively, due to the gaps between lateral boards, the equivalent layer’s plane

shear modulus GLN may be set to zero (Mestek et al 2008). However, all layers are

glued on their upper and lower faces and hence the discontinuous CLT panel has a (re-

duced) in-plane shear stiffness (Moosbrugger et al 2006). The same conclusion can be

deduced for the plane shear strength of a discontinuous layer. A more accurate inves-

tigation on the actual plane shear behavior of a discontinuous layer will be the object

of further studies. In this first simplified approach, it is assumed that the in-plane

shear behavior of layers equals the wood’s behavior. The Poisson’s ratios νLN and νZN
represent the layer’s strain in direction N , due to the imposed strain in directions L

and Z, respectively. Considering layers with discontinuities along direction N as in

Figure 2.4b, the values of these coefficients are assumed to be zero.

Elasticity EL EN EZ GZL GLN GNZ νLZ νLN νZN
12800 0.0 511 602 602 53 0.41 0.0 0.0

Failure fL,t fL,c fN,t fN,c fZ,t fZ,c fZL fLN fNZ
63.4 28.9 - - 2.8 3.6 4.8 4.8 2.0

Table 2.3: Elastic and strength properties of a discontinuous CLT layer [MPa]

2.3.4 Pagano’s exact solution for laminates in bending

Once the model for an equivalent and homogeneous CLT layer is set, the analytical

bending solution can be chosen between complete or reduced approaches. 1D theories

(Blass and Fellmoser 2004a; EN1995-1-1 2004; Kreuzinger 1999) have very low compu-

tational costs but give approximate results. 2D plate theories for laminates in bending

(Lebée and Sab 2011a; Thai et al 2013) are still reduced approaches, but return more

precise results than beam theories. Nevertheless, the specimens of the reference test

were submitted to concentrated loads, which produce complex stress states close to

loading area, difficult to predict with reduced approaches. Therefore, the complete 3D

solution from Pagano (1970; 1969) was chosen in order to obtain a precise estimation

of CLT bending behavior. Pagano derived such solution for plates having homoge-

neous layers and perfect connections between them under uni-axial (Pagano 1970) or

bi-axial (Pagano 1969) bending configurations. The bi-axial bending solution is used
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for the comparison with the reference test, while the uni-axial solution is applied to

the parameter studies on CLT properties.
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Figure 2.5: Pagano’s uni-axial (a) and bi-axial (b) bending configurations with corre-
sponding applied loads and boundary conditions. u1, u2 and u3 stand for the displace-
ments in directions x1, x2 and x3 respectively

2.3.4.1 Uni-axial bending

The most common bending configuration for structural panels is represented by a

plate simply supported on two sides. Pagano’s 3D solution for layered plates in uni-

axial bending represents such a bending configuration. A plate under uni-axial, or

cylindrical, bending has only two sides supported along the same direction, while the

other direction is assumed as infinite and there are no boundaries (Figure 2.5a). The

displacement field is assumed to be a single Fourier-like series, like the out-of-plane load

p3, acting on the plate’s upper or lower surface. In Pagano’s uni-axial bending, the

only imposed condition on the bounded edges is zero vertical displacement u3, leaving

free the in-plane displacements.

2.3.4.2 Bi-axial bending

CLT panels tested in the framework of the reference experiment were supported on

their four sides, which corresponds to the bi-axial bending solution from Pagano. This

solution is valid for rectangular orthotropic plates, whose axes are aligned with the

axes of the supports. In this case, all the plate’s sides are simply supported (Fig-

ure 2.5b) and the displacements as well as the surface load p3 are expressed as double

Fourier-like series. The boundary conditions, which make possible Pagano’s solution

in bi-axial bending, consist in restraining vertical and tangential displacements at the

plate’s bounded sides. As Figure 2.5b shows, the tangential displacements for edges

along direction 2 and 1 are respectively u2 and u1. However, since the tangential

displacements of the reference panel’s edges were not restrained, the experiment con-

figuration has more degrees of freedom than the bending solution. Further analyses

not reported here showed that the reference slenderness ratio of 20 gives a difference

of about 10% between the estimated deflection preventing or not edges’ tangential
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2.4 Comparison with the reference test

displacements. Hence, when choosing Pagano’s bi-axial solution to reproduce the ref-

erence test, it is expected to find a global stiffness about 10% higher than the reference

one.

2.4 Comparison with the reference test

In this Section, the predicted bending behavior is compared with the reference behavior

in terms of the panel’s global stiffness and failure stages.

2.4.1 Global stiffness

Table 2.4 shows the plate’s global stiffness comparison between the reference test and

each model for an equivalent CLT layer.

Continuous panel (0 - 50 kN) Global Stiffness [ kN
mm

] measuring error
Experimental reference 4.60 ± 5.0%
Predicted 5.03 (+9.3%) -

Discontinuous panel (80 - 120 kN) Global Stiffness [ kN
mm

] measuring error
Experimental reference 4.14 ± 5.0%
Predicted 4.60 (+11.1%) -

Table 2.4: Plate’s global stiffness comparison

When the lateral boards are glued to each other, the panel is continuous and its

global stiffness is the slope of the load-displacement curve in the proportional limit

(from 0 to 50 kN). Then, when the edge-gluing detachment occurs (≈ 80 kN), the panel

presents gaps between boards and its stiffness slightly decreases. For each case, the

corresponding equivalent-layer model is used to predict the CLT plate’s global stiffness.

Because of the experimental uncertainty, a 5.0% margin of error in measuring the

reference value of the plate’s stiffness is assumed. Taking into account the discrepancy

between modeled and actual boundary conditions described in 2.3.4.2, a predicted

plate’s stiffness about 10% greater than the reference stiffness is expected. Indeed,

as Table 2.4 shows, for both the continuous and discontinuous case, the predicted

global stiffnesses are about 10% higher than the reference stiffness. A CLT plate

made of continuous layers shows higher stiffness compared to the one predicted using

a discontinuous model, due to the absence in the latter of any contribution of fibers

along direction N (seeTable 2.3). However, the hypotheses made on elastic properties

of continuous and discontinuous CLT layers lead to a relatively small difference between

their elastic response in terms of vertical displacements.

2.4.2 Failure stages comparison

In addition to the elastic panel’s deflection, Pagano’s solution can precisely estimate the

stress distributions within the panel. In Section 2.3.2, the identification of failure load
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and the corresponding dominant failure mode are described. A progressive increase in

the load after the first failure, leads to a proportional variation of the function F (σ)

within the panel. Therefore, considering simultaneously the spatial distributions of the

failure criterion F (σ) and the related failure mode, leads to the derivation of failure

stages under linear elastic hypothesis. A preliminary analysis revealed that, when con-

sidering the plate’s cross-section, the first failures take place under the concentrated

load at the plate’s center. Hence, an investigation on the variation of failure modes

along the plate’s axes of symmetry is sufficient. The reference specimen is a CLT 3-ply

and its failure stages were introduced in Section 2.2. For both continuous and discon-

tinuous cases, the distributions of failure load are plotted for the plate’s cross-sections

at x1 = a/2 and x2 = b/2 (see Figure 2.5b). This distribution highlights the load level

necessary to reach the failure along the plate cross-sections. Over such a distribution,

the superimposition of the dominant failure modes points out the progressive failure

stages. Table 2.5 presents the chosen abbreviations for the failure modes within a layer

of a CLT panel.

Failure mode Abbreviation
Tensile Longitudinal L-t
Compressive Longitudinal L-c
Tensile Direction-N N-t
Compressive Direction-N N-c
Tensile Direction-Z Z-t
Compressive Direction-Z Z-c
Transverse (rolling) shear ZN RS
Transverse shear ZL ZL
Plane shear LN LN

Table 2.5: Abbreviations of failure modes

2.4.2.1 Continuous layer

Figure 2.6a shows the distribution of failure load and failure modes within the panel’s

cross section predicted with a continuous equivalent layer. For a better presentation,

the ratio between the panel’s thickness and span is scaled at about 10:1. The first failure

mode occurs at about 50 kN of load level. Such a failure mode is a perpendicular

compressive failure close to the punching area (N-c), which is actually difficult to

observe experimentally. Detailed analyses of stresses revealed how this area is affected

by a tri-axial stress state. Therefore, the contribution to material failure derives from all

the compression components in direction L, N and Z, with the latter as the dominant

one. This is a very local phenomenon not affecting the linear response of the panel at a

very short distance from the punch. Moreover, the punch, being modeled as a uniformly

distributed load, cannot take into account the actual contact phenomena occurring in

the experiment. The subsequent failure stage is tensile failure of the bottom layer in
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2.4 Comparison with the reference test

direction N (N-t ≈ 70 kN). Such a predicted failure could explain the corresponding

edge-gluing (EG) separation found in the experimental test at similar load levels (see

Section 2.2) along direction N of boards. Rolling shear failure of cross layers (RS ≈
90 kN) and longitudinal tensile failure of bottom layer (L-t ≈ 100 kN) are the next

failure modes. Both of them are estimated at load levels, which slightly deviate from

the experimental evidence, especially the tensile failure.
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Figure 2.6: Variation of failure load and failure modes at x1 = a/2 and x2 = b/2 inside
the panel predicted with the continuous (a) and discontinuous (b) models

2.4.2.2 Discontinuous layer

Since the first significant observed damage is the edge-gluing detachment, it is worth

investigating a discontinuous equivalent layer. Figure 2.6b presents the predicted fail-

ure stages for a discontinuous equivalent layer. As introduced before, the modeling of

discontinuous layers prevents wood’s failure in N -direction (Figure 2.4b). Therefore,

the first compressive failure close to the punching area is a contribution of only com-

pression in direction L and Z, where the former is the dominant one (L-c ≈ 60 kN).

Again, the modeling of wood’s mechanical behavior led to a compressive failure close

to the punching area, which does not affect the plate’s global behavior. Rolling shear

failure in the cross layer is the following predicted failure, with a corresponding load

level (RS ≈ 80 kN) in accordance with the reference test. Moreover, the propagation

of such a failure from the plate’s center to its’ edges is in agreement with the experi-

mental evidence, as Figure 2.7 shows. Finally, the predicted failure stage at 120 kN is

longitudinal tensile failure in the L-direction (L-t) of the bottom layer, which is in a

good agreement with the reference behavior (see Figure 2.1).
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rolling shear cracks within the cross
layer found in the reference experiment

x1 [m]
0.0 0.5 1.0 1.5 2.0

L-c

L-c

LN LN

LNLN

L-c

RS RS

x1 [m]

x2
[m]

0.0

0.5

1.0

1.5

2.0

≥ 6000

Fc [kN]

60
85
115
160

225
315
435
605
840

1165
1625

2250

3130
4350

(a) (b)

0.0

N

L
Z

0.5 1.0 1.5 2.0

Figure 2.7: Horizontal section of the plate at x3 = +13mm. Failure stages predicted
with the discontinuous model (a) and the corresponding cracking pattern found in the
reference experiment (b)

2.4.2.3 Discussion

Table 2.6 summarizes the predicted failure stages with continuous or discontinuous

CLT layer and compares them to the experimental evidence.

Load level [kN] Failure modes
Reference test Continuous Discontinuous

50 - N-c -
60 - N-c L-c
70 - N-t L-c
80 RS/EG N-t RS
90 RS/EG RS RS
100 RS/EG L-t RS
120 L-t L-t L-t

Table 2.6: Summary of predicted failure stages in comparison with the experimental
evidence

As for the elastic stiffness comparison, each equivalent-layer model is in accordance

within ranges of load levels, which correspond to glued or unglued lateral boards.

Indeed, the continuous CLT layer gives good prediction on failure modes at low load

levels, when the narrow boards are still glued. Notwithstanding the compressive inden-

tation under the punch, the first predicted failure in this stage is tensile failure in the

tangential direction within the bottom layer, which could cause the actual edge-gluing

failure of neighboring layers found in the experiment. The discontinuous model fits well

the experimental evidence at higher load levels, where the actual rise of rolling shear

and tensile failures are predicted with a more accurate precision than in a continuous

geometry. Finally, it appears that the edge-gluing of narrow boards makes the panel

a little stiffer but, being the first failure mode, the already “damaged” discontinuous

model gives better prediction of global load-carrying capacity of the panel. Therefore

26
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the discontinuous equivalent-layer model will be used for the parameter studies on CLT

properties presented in the next section.

Like every modeling procedure, the predicted bending behavior with the present

model depends on the chosen mechanical properties of raw materials. Surprisingly,

elastic and strength parameters of clear spruce lead to an accurate prediction of the

experimental bending behavior, even if the reference CLT panel was made of boards

of strength class C24 having knots. When dealing with CLT in bending, elastic and

strength responses mainly derive from either tensile or (rolling) shear effects (Mestek

2011; Hochreiner et al 2014; Czaderski et al 2007), as the previous Section 2.4.2 also

shows. While rolling shear stiffness and strength are commonly assumed to be indepen-

dent from the presence of defects (ETA 2013; Blass and Fellmoser 2004b;a; Blass and

Gorlacher 2000; Grandvuinet and Muszynski 2016), tensile properties strongly depend

on lumber strength class. Generally, dealing with C24 strength class, a mean elastic

modulus value of 11.0 GPa (EN 2009) and a mean tensile strength of about 30 MPa

(Stapel and van de Kuilen 2014) are assumed. Further simulations showed that when

using such mean values of wood having knots, the predicted stiffness and failure stages

deviate significantly from the experimental reference. In Section 2.4, a good agreement

between the predicted and actual bending behavior is found using an elastic modulus

of 12.8 GPa and a tensile strength of 63 MPa. This could be explained by a “system

effect” when assembling lumber boards in a CLT configuration, which increases the

panel stiffness and tensile strength, as also suggested by Joebstl et al (2006).

2.5 Investigation on CLT panel properties

Since the discontinuous equivalent-layer gives a good prediction of crosslam bending

behavior, parametric studies with this model are carried out in order to better un-

derstand CLT properties and quantify their advantages and limits. The considered

bending configuration is a uni-axial bending and the out-of-plane load is an evenly

distributed load. In this Section only the mechanical and deterministic behavior is

considered.

2.5.1 Influence of transverse shear effects

The transverse shear weakness of CLT panels is due to the presence of cross layers and

their low shear strength and stiffness. Shear effects in bending elements become more

significant, while the slenderness ratio decreases. Figure 2.8 shows the failure load and

mid-span deflection for a 3-ply and 5-ply CLT as a function of the plate’s slenderness

ratio L/h. The total plate’s thickness h is assumed to be constant at 20cm for both

3-ply and 5-ply panels, while only the plate’s span L changes.

The slope variation of the failure load trend in Figure 2.8a points out the change

of failure mode as a function of the slenderness ratio. This derives from the linear

and quadratic dependency of, respectively, shear and bending failure load from the
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Figure 2.8: Failure load (a) and deflection (b) trends for 3-ply and 5-ply CLT in uni-

axial bending when varying slenderness. U* =
U3,Pag−U3,Kir

U3,Pag

slenderness ratio. Moreover, for a plate under a uniform uni-axial load, there is no

interaction between bending and shear forces. While for low slenderness ratios the

dominant failure mode is rolling shear (RS) in cross layers, when the plate is slender,

the bending failure (namely L-c of upper layer) becomes the dominant failure mode.

The transition slenderness from bending to shear failure turns out to be 15 for a 5-ply

and 19 for a 3-ply. The 5-ply panel, having lower transition slenderness and higher

shear failure load, shows less weakness to rolling shear stresses than the 3-ply CLT.

The difference between the deflection predicted using Pagano’s solution (U3,Pag)

and the deflection predicted using the Kirchhoff-Love plate theory for laminates (March

1936) (U3,Kir) which neglects the shear deformation, can quantify the shear contribution

to the total deflection. Figure 2.8b presents the variation of this difference as a function

of the CLT panel’s slenderness ratio. When the plate’s span increases, the increasing

slenderness yields a negligible shear deflection and an increasing bending one. However,

even when the panel is slender and the failure mode is bending, the shear contribution

to deflection is still about 10 %.

2.5.2 Varying the number of layers for a fixed total thickness

Of particular interest in CLT applications is the optimal number of layers in the cross

section to obtain the best mechanical behavior. Therefore, this study aims to show how

the CLT mechanical response changes when the number of layers increases from 3 to 23

for a fixed total thickness, which involves a progressive thinning of layers. The results

are as follows expressed in terms of the panel’s maximum vertical displacement U3 and

failure load Fc. The two cases when the plate is thick or slender are presented. For a

better visualization, mid-span deflection values are normalized to the Kirchhoff-Love

deflection (Kirchhoff 1850) of a corresponding “solid wood” panel (U3,sw,Kir) having

only one longitudinal layer. Figure 2.9 presents the variation of failure load Fc and

mid-span deflection U3 as a function of the number of layers for slender and thick

CLT plates. The panel’s dimensions are L = 5m, h = 20cm for the panel having a

slenderness ratio of 25 and L = 2m, h = 20cm for the thicker plate.
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For a plate in uni-axial bending only the layers parallel to the main direction bear

the bending stresses, while the transverse layers do not contribute to global stiffness

and strength. Hence, the progressive decreasing of the total thickness of longitudinal

layers leads to higher deflections and lower failure loads. Unlike the slender case, the

variation of failure load when the dominant effect is shear, decreases with oscillations

(see Figure 2.9a). This is because CLT panels with a central longitudinal layer (5ply,

9ply etc.) have the cross layers placed at a distance from the cross-section’s center

(where the shear stresses are maximum), while for the other lay-ups (3ply, 7ply etc.),

the central layer is cross and shear-compliant. Therefore, the trend of shear failure

load is dependent on the kind of lay-up, in addition to the number of layers within the

cross section.

From a deterministic point of view, homogenizing the panel in uni-axial bending by

means of progressive thinner layers has a negative impact on the mechanical response.

However, taking into account wood’s defects such as knots (reliability approach), thin-

ner layers could lead to more uniform CLT mechanical properties.

2.5.3 Varying cross layer orientation

A solution to mitigate CLT shear weakness could be varying the in-plane orientation of

transverse layers, in order to change their actual shear stiffness and strength from TR

to RL. Hence, in this section the effect of a progressive rotation of transverse layers

on CLT bending behavior is analyzed. Four different configurations with varying layer

lamination have been studied. Configurations called 1a and 1b (Figure 2.10 - top)

are five-layer panels and the difference between them is the opposite orientation of

transverse layers. Configuration 1b is the same tested at θ = 45◦ by Buck et al (2016)

who found experimentally increased stiffness and strength of panels having such new

lay-up compared to classical CLT. Configuration 2 comes from another study present

in literature (Chen and Lam 2013) (with again θ = 45◦) which, however, did not clearly

highlight the effects of the new lamination. Finally, configuration 3 is a 3-ply plate
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whose central layer has variable orientation. At θ = 90◦, all the configurations have

the crosswise CLT lamination, while at θ = 0◦ they behave like a Glued Laminated

Timber. Figure 2.10 illustrates the variation of elastic mid-span deflection U3 as a

function of the layers’ orientation θ for the four configurations having the same total

thickness h = 200mm. Both cases of a thick and slender panel are analyzed using

respectively a span of 2m and 5m.

0◦

0◦

0◦

θ

θ

0◦

0◦

θ

−θ

0◦

θ

1.a 321.b

h

0◦

0◦

0◦

0◦

θ

−θ

0 10

U3

[mm]

20 30 40 50 60 70 80 90

θ [deg]θ [deg]

25
L = 2m, h = 20cm, Load = 400 kN L = 5m, h = 20cm, Load = 80 kN

20

15

10

5

00

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90

Figure 2.10: Variation of deflection U3 as a function of layer orientation for slenderness
ratios of 10 (left) and 25 (right)

While changing the panel’s lamination from GLT to CLT, the deflection increases.

This effect is particularly evident at a low slenderness ratio, showing that a variation of

the actual shear modulus fromGTR toGRL mitigates the shear deflection. The influence

of the cross layers’ direction on the panel’s deflection is lower when increasing the

slenderness ratio. For a thick panel, CLT 1a generally shows lower values of deflection

than 1b which has opposite lamination of transverse layers. Configuration 2 leads to the

highest values of deflection at low slenderness ratio, due to the considerable thickness

of its central shear-compliant layers. When the bending effects become dominant, the

configuration 2 shows lower values of deflection than the panels with five layers. This

derives from the greater thickness of its upper and lower longitudinal layers (the middle

one does not really contribute) than in CLT 5-ply. For the same reason the plate 3

with three layers presents generally the lowest values of deflection at every slenderness

ratio when varying its transverse layer’s orientation.

Figure 2.11 presents the variation of failure load Fc and failure mode as a function

of the orientation of transverse layers.

While for a dominant shear regime, varying transverse layer orientation leads to an

increasing failure load (Figure 2.11-left), when dealing with a slender CLT, the effect

of rotating cross layers becomes less significant (Figure 2.11-right). Interestingly, and

contrary to the deflection case, the difference between failure load trends for solutions 1a

and 1b is significant, especially at a low slenderness ratio. This means that imposing an
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Figure 2.11: Variation of failure load Fc as a function of layer orientation for slenderness
ratios of 10 (left) and 25 (right)

opposite lamination of transverse layers leads to higher shear strengths while changing

their orientation. At values of θ between about 10◦ and 40◦, all the CLT configurations

of both slenderness present sharp drops in the failure load. Further analysis proved that

in this range of θ, the transverse layers are submitted to torsional effects which produce

high in-plane shear stresses, leading to an unexpected plane shear failure (LN) of layers.

When testing crosslam panels in bending having slenderness 18 with configuration 1b,

Buck et al (2016) found a variation of failure modes from bending or rolling shear at

θ = 0◦ to bending or longitudinal shear θ = 45◦, that is very close to the failure mode

transition angle showed in Figure 2.11. The associated failure load was found to be

about 30% higher than the failure mode of CLT with classical orthogonal lamination.

Not surprisingly, considering the uni-axial bending configuration, the Glulam-like

plate lay-up having all layers parallel to the bending direction, returns the best bending

behavior. The favorable effect of rotating the transverse layers on the CLT mid-span

deflection is more evident at low slenderness ratios, which are not very common in

practical applications. Only thick CLT plates show increasing failure loads when ro-

tating their transverse layers up to about 40◦. After that lamination angle, plane shear

stresses within cross layers increase drastically and lead to a failure load drop. Unless

dealing with a thick panel and a dimensioning criterion driven by deflection, the low

gains when varying transverse layer orientation make these configurations awkward

to exploit. The predicted behavior of these innovative configurations of crosslam are

qualitatively in agreement with the experimental results of Buck et al (2016).

2.6 Conclusion and perspectives

In the present Chapter, the bending behavior of CLT panels has been modeled by

means of an equivalent layer model combined with a 3D elastic solution and a failure

criterion. The heterogeneities at layer scale are taken into account by means of a

homogeneous and equivalent layer whose mechanical properties change whether or

not the narrow boards are glued to each other. Concerning the heterogeneities at

the structure’s scale, the exact 3D solution for layered plates in bending provides an
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accurate description of stresses, especially under concentrated loads. Moreover, such

a solution leads to the analysis of non-orthotropic lay-ups and requires reasonable

computational times. A failure criterion for wood combined with the elastic stress field

has been used to identify progressive failure stages highlighted by the experimental

evidence. The plate stiffnesses and failure modes predicted with the continuous and

discontinuous equivalent layers are in agreement with the corresponding actual glued

or unglued stages. Edge-glued layers make the panel a little stiffer but introduce also

an additional failure mode at low load levels. Therefore it appears that gluing narrow

boards has almost no positive effects on the mechanical response of CLT panels in

bending. Moreover, clear wood mechanical properties lead to an accurate prediction,

even if the tested reference panel was affected by the presence of knots. This shows

that assembling lumber boards in a CLT configuration increases raw wood stiffness

and strength, especially tensile one. The discontinuous equivalent-layer gives a good

description of both elastic and failure response and therefore is used to study the

influence of some panels’ parameters on the CLT bending response. The trend of failure

load and shear deflection as a function of the panel’s slenderness ratio clearly quantify

the influence of shear effects in CLT in bending. However, this shear weakness does

not only depend on the panel’s slenderness, but also on the CLT lay-up. Concerning

the variation in the number of layers for a fixed total thickness, the more the number

of layers increases, the more the mid-span deflection increases and the failure load

decreases. This means that ”homogenizing” CLT panels in uni-axial bending yields

a worse mechanical behavior from a deterministic point of view. Finally, CLT shear

weakness can be mitigated by varying the lamination of cross layers, especially in terms

of deflection and dealing with thick plates. The predicted variation of stiffness, failure

load and failure mode are very similar to the experimental behavior found by Buck

et al (2016). However, the small gains in terms of uni-axial bending performance make

these further CLT configurations not really interesting.

Note that the discontinuous equivalent layer suggested in this study involves sim-

plified hypotheses on the layer’s in-plane shear stiffness (GLN) and Young’s modulus

(EN). The actual reduction of in-plane stiffnesses of a non edge-glued CLT panel can

be significant, as pointed out by theoretical (Moosbrugger et al 2006; Silly 2010) and

experimental (Brandner et al 2015) studies, but it is difficult to predict with simplified

approaches. Therefore the hypotheses on the discontinuous layer’s in-plane proper-

ties will be further investigated with a model currently in development (Lebée and

Sab 2012; 2013). This model can also predict the influence of stronger heterogeneities

like periodic voids within the panel and filled by insulating material, in order to obtain

lighter and more acoustically efficient floors for mid-rise and high-rise timber buildings.
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Chapter 3

Experimental investigation

Note: Parts of this Chapter have been published in the proceeding of the conference

World Conference on Timber Engineering 2016, Vienna (AUT) with the title Bending

behavior of regularly spaced CLT panels

Abstract. This Chapter presents the experimental behavior of regularly spaced CLT

panels. 4-points bending tests on standard and innovative full-size floors as well as

small-scale tests on raw timber were performed and discussions on obtained results are

presented. Moreover, an existing experimental test on in-plane behavior of crosslam

panels having short spacing is presented as well.

Résumé. Ce Chapitre présente la campagne expérimentale realisée dans le cadre de ce

travail. Cette campagne comprend des essais de flexion 4-points sur planchers standard

et innovants ainsi que les essais de caractérisation du bois composant les panneaux.

Les résultats obtenus sont ensuite commentés. Enfin, la dernière partie de ce Chapitre

présente une étude expérimentale de la littérature portant sur le comportement dans

le plan des CLT avec petits espacements.

3.1 Introduction

Among the main outcomes of Chapter 2, the low influence of small gaps between lateral

boards on the global bending behavior and the moderate influence on the failure load

and failure modes can be identified. However, the modeling developed up to now in

not capable to quantify the actual influence of lateral spacing on the panel’s behavior.

Additionally, the simplified equivalent behavior of a laterally unglued CLT layer can-

not reproduce the behavior of innovative panels having large spacings. In particular,

introducing large spaces may modify the CLT “system effect” of the massive orthog-

onal structure described in Section 2.4.2.3 which increase raw material’s stiffness and

strength. Moreover, the influence of large spaces on the (rolling) shear effects is un-

known both regarding shear deflection and shear failure. Therefore, experiments of

CLT panels having short and large spaces are needed in order to set a reference ex-
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perimental behavior of spaced CLT. The results will be subsequently compared with

simplified and refined modeling in Chapter 4. Furthermore, the material characteri-

zation of the raw timber of tested panels ensures more reliable input values of wood

properties for the modeling step than choosing values of the literature. Hence, small-

scale test of tension, compression and shear on small specimens of timber have been

performed.

Since the out-of-plane behavior of spaced CLT is the main topic of this work and

due to equipment limitations, it was not possible to perform in-plane tests of spaced

crosslam. However, the influence of short spaces on the in-plane shear stiffness of

standard CLT has been quantified by a recent experimental investigation of Brandner

et al (2015). The results of this experimental campaign are considered the experimental

reference of standard spaced CLT diaphragms.

In this Chapter, 4-points bending tests on spaced CLT floors are first presented.

Both standard panels having small gaps between lamellas and innovative timber prod-

ucts with large voids have been tested. Then, the mechanical properties of the tested

panels’ raw wood estimated by means of small-scale tests of tension, compression and

shear are showed. Finally, the results of recently performed in-plane shear tests by

Brandner et al (2015) are presented as well.

3.2 4-points bending tests on full scale floors

3.2.1 Materials and methods

4-points bending on shortly and largely spaced crosslam floors were performed. Fig-

ure 3.1 shows a cross section of a regularly spaced CLT panel. The standard configura-

H

b

h

x2

x3

w s

Figure 3.1: Scheme of a cross section of a regularly spaced CLT

tion had gaps of s = 5 mm in average between narrow boards, while two configurations

of innovative panels were tested: having s = 150 mm and s = 300 mm spacing be-

tween boards. Such spacings of 150 and 300 mm correspond respectively to volume

fractions λ of 0.4 and 0.25, where λ = w/(w+s). In total, six panels of standard and

innovative CLT were tested, with two specimens for each spacing of 5, 150 and 300
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3.2 4-points bending tests on full scale floors

mm. Table 3.1 presents the geometrical properties of the tested specimens. Before

testing, the moisture content of each panel was verified to be in the acceptable range

of 8-14% with handheld moisture meter. The voids of innovative panels were filled by

insulating material (glass wool) having no mechanical properties.

s=5 mm s=150 mm s=300 mm
L [m] 4.65 5.9 5.9
H [mm] 100 210 210
layers 5 7 7
h [mm] 20 30 30
w [mm] 140 100 100
λ 0.95 0.4 0.25

Table 3.1: Geometrical properties of the tested panels

The measuring system was based on vertical LVDTs (displacement transducers)

in order to measure the panel’s curvature and horizontal LVDTs to determine the

absolute rotation at supports. The vertical displacement at supports was measured as

well, in order to determine the actual mid-span deflection without the contribution of

settlement at supports. Figure 3.2 shows a schematic representation of the experimental

set-up.

L

F

b

= Vertical LVDT

x3

= Horizontal LVDT

x1

x1

x2

L/3 L/3 L/3

Lb

1 2 3

t
4

5

Figure 3.2: 4-points bending test set-up and position of LVDTs

A first cycle of load/unload until about the 20% of the expected failure load was

performed, with a following load until the panel’s failure. The panel’s bending stiffness

EI11 can be derived either from the measured curvature or from the rotation at supports

following the following expressions:
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3. EXPERIMENTAL INVESTIGATION

EI11 =
L · L2

b · F
48 · Ub

or EI11 =
L2 · F
18 · φ

(3.1)

where, with respect to fig. 3.2, Ub = Ug − |u2| is the local deflection in the pure

bending region, ux is a measured displacement by the x LVDT, Ug = |u1| − |u3| is

the mid-span deflection and φ = u5−u4
t

is the absolute rotation at supports. t is the

distance between the measuring points of horizontal LVDTs for the absolute rotation

at supports. Then, knowing the bending stiffness and the global mid-span deflection,

the shear stiffness GA13 and the ratio between shear deflection and bending deflection

α = ushear
ubending

can be also obtained with:

GA13 =
216 · L · EI11

1296 · EI11 · Ug/F − 23 · L2
and α =

216 · EI11

23 ·GA13 · L2
(3.2)

3.2.2 Results

Figure 3.3 shows the obtained load/displacement curves, where the displacement is the

mid-span deflection, while Table 3.2 summarizes the main results of the experimental

investigation on spaced floors. The presented results are the mean between the two

specimens for each configuration. The relative difference of measured stiffnesses and

failure load between the two specimens of each configuration was very small, in the

range of 5-10%. Dealing with failure modes, the abbreviation TL stands for longitudinal

tensile failure of bottom layer while RS means rolling shear failure in transverse boards.

s=5 mm s=150 mm s=300 mm
Fmax [kN] 80 68 34
Failure mode TL TL RS
EI11 [kN · m2] 895 3500 1980
GA13 [kN] 12530 5750 1850
α = Ushear/Ubending 0.03 0.16 0.28

Table 3.2: Main results of 4-points bending tests. TL= tensile failure in longitudinal
direction of bottom layer; RS= rolling shear failure in middle layer

Dealing with failure modes, the standard crosslam failed due to bending stresses

with a brittle tensile failure of bottom layer (Figure 3.4a). However, before tensile

failure, longitudinal compressive cracks appeared on the top layer (Figure 3.4b), even

if such cracks are hardly identifiable on the load-displacement curve of Figure 3.3. On

the contrary, the 150 mm spaced floor failed in tension of bottom boards without ductile

behavior of top layers (Figure 3.5a). This is mainly due to the presence of larger knots

in this innovative panel (Figure 3.5) with respect to standard configuration which

decrease significantly the tensile strength. The most spaced configuration with 300

mm spacing failed brittlely with shear in cross layers and consequent delamination at

supports (Figure 3.6a) and rotation of transverse boards (Figure 3.6b).
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Figure 3.3: Load/displacement curves of the tested floors out-of-plane. The solid
horizontal lines show the considered elastic range for stiffness estimation

(a) (b) 

(a) (b)
Figure 3.4: Tensile failure of standard CLT panel (a) and longitudinal compressive
cracks (b)

(a) (b)
Figure 3.5: Tensile failure of s=150 mm panel (a) and detail of failure due to a local
knot (b)
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(a) (b)
Figure 3.6: Shear failure of s=300 mm panel (a) and detail of failure of transverse
boards (b)

3.2.3 Discussion

Due to its high slenderness, the standard crosslam failed as expected due to bending

stresses, with ductile compressive cracks on upper layer before the final tensile brittle

failure of bottom layer. Increasing the spacing between lateral boards increases the

influence of shear effects on elastic and failure behavior. Indeed the contribution to

shear deflection increased from 15% to about 30% for floors having respectively 150

mm and 300 mm spacing. At volume fraction λ = 0.4 the failure derives from bending

stresses due to presence of isolated knots in bottom boards. This shows the lost of CLT

“system effect” (see Section 2.4.2.3) by the presence of large spaces. A more detailed

analysis involving stress prediction at failure point of the tested specimens will be

presented in Chapter 4. When decreasing the wood volume fraction down to λ = 0.25,

there are few transverse lamellas bearing shear forces, leading to rolling shear failure

of the central transverse lamellas. The rotation of lamellas within this kind of failure

may derive from an interaction between rolling shear stress and stresses perpendicular

to grain, as will be discussed more in detail in Chapter 4. As Figure 3.3 shows, both

bending and shear failures of the tested floors were brittle failure modes, preceded by

an almost perfectly elastic behavior. Therefore it is worth modeling the failure of the

tested panels as the reach of a defined strength by elastic stresses, as presented in the

following Chapter.

3.3 Small-scale tests on raw timber

In order to obtain material properties for the modeling step, the timber lamellas of

panels has been tested with small-scale tests of tension, compression and shear.

3.3.1 Materials and methods

The standard and innovative panels were supplied by two different producers and the

raw timber were graded following two different grading systems. The standard CLT

was made by Norway spruce strength graded as S10 following the German standard

(DIN 2012), while innovative panels were made up of C24 Norway spruce according
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3.3 Small-scale tests on raw timber

to European strength classes (EN 2009). Hence, the two timber populations were

separated.

Instead of respecting wood’s orthotropic coordinates L, T and R, the simplified

board’s reference frame L, N and Z introduced in Chapter 2 is considered when testing

the raw wood. The small-scale tests were tensile and compressive tests in L direction,

compression tests along N and Z directions (Figure 3.8) and symmetric double-lap

shear tests (Figure 3.7) in ZN and LZ planes. Preliminary FE simulations were

performed to check the suitability of specimens’ geometry. The width to thickness ratio

of shear specimens was set equal to the ratio of the boards of the tested innovative floors

which showed rolling shear failures. The Young’s modulus EL is the mean between

tensile and compressive moduli. Due to material and equipments limitations, it was

not possible to measure tensile properties perpendicular to grain and shear in LN

plane. Therefore the Young’s modulus in N and Z directions was derived from only

compressive tests and the LN shear modulus is supposed to equal the LZ, according

to the hypotheses made in Chapter 2.

According to full-scale panels failure modes found during testing, at least the lon-

gitudinal tensile strength and the rolling shear strength of the raw wood should be

estimated. However, the tensile specimens were fabricated ensuring a defect-free cen-

tral zone in tension, and consequently it was expected to find very high tensile-L

strength values of “clear” wood. Dealing with shear tests, only the rolling shear tests

in ZN plane were destructive in order to find the rolling shear strength.

LVDT

F

Steel

Wood

20

70

70

Figure 3.7: Symmetric double-lap shear test for raw timber of panels. Dimensions in
mm

All specimens were stored in a conditioning room with 20◦ and 50% RH for one

month. Dealing with axial tests, the elastic strains were measured by means of uni-

axial strain gages, while Poisson’s ratios were determined thanks to bi-axial strain

gages in compressive tests. During shear tests, the vertical uplift of central steel plate

was measured by a LVDT (Figure 3.7), leading to a single mean value of shear modulus

between the two symmetric specimens.
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Figure 3.8: Specimens for axial tensile and compressive tests on raw timber of panels.
Dimensions in mm

3.3.2 Results

Typical obtained stress/strain curves within the elastic range for compressive axial test

are plotted in Figure 3.9 and Figure 3.10, while Figure 3.11 shows typical stress/strain

curve for the shear test. The solid horizontal lines show the considered elastic range

for stiffness estimation.
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Figure 3.9: Typical stress/strain curve of compressive axial tests on wood specimens
along L direction

Table 3.3 shows the derived values of derived stiffnesses for the raw wood of the

tested standard and innovative floors, fitting the linear trend of stress/strain curves.

The EL Young’s modulus is the mean between tensile and compressive tests.

As expected, the measured mean tensile-L strength of specimens without knots was

found to be very high, in the range of 80 MPa. Since such value do not represent the

actual timber strength, mean values of tensile-L strength from the literature will be

considered later on. Only the shear tests in ZN -plane (rolling shear) were conducted

until failure of specimens, that showed the typical cracking patterns following growth
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Figure 3.10: Typical stress/strain curves of compressive axial tests on wood specimens
along N and Z directions
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Figure 3.11: Typical stress/strain curves of shear tests on wood specimens in ZN and
LZ planes. Note that the LZ test was stopped before the failure of the specimen
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EL EN EZ GZN GLZ νZN νLZ νLN
Innovative panels
n 21 6 5 10 6 5 8 8
Mean 12500 530 400 110 580 0.71 0.35 0.51
COV [%] 16 25 7 27 14 6 16 12
Standard panels
n 17 6 5 8 - 5 8 8
Mean 9900 620 440 75 - 0.69 0.38 0.49
COV [%] 11 28 6 25 - 10 14 6

Table 3.3: Obtained elastic properties of the raw wood. Stiffness in MPa

rings (Figure 3.12-left) and a mean rolling shear strength of 1.3 MPa for S10 lamellas

and 1.6 MPa for C24 lamellas. Moreover, exactly as in case of 4-points bending tests,

cracking pattern due to tensile stresses perpendicular to grains was visible (Figure 3.12-

right).

Figure 3.12: Typical rolling shear cracking pattern in softwoods (left) and presence of
tensile perpendicular to grain cracks (right) close to free edges

3.3.3 Discussion

The obtained values of C24 spruce stiffnesses are in agreement with several studies of

literature (Keunecke et al 2008; WoodHandbook 2010; Ehrhart et al 2015) on spruce

axial and shear mechanical behavior. The mean value of rolling shear strength is very

similar to values obtained in the framework of the comprehensive testing of Ehrhart

et al (2015). Additionally, Ehrhart et al (2015) observed a tensile perpendicular to grain

cracking pattern that appear in several specimens exactly as found during the present

experiments. Such stress concentrations are very localized in a small region close to

free edges, and therefore their influence on the rolling shear stiffness can be considered

to be low. On the contrary, a non-negligible influence of tensile perpendicular to grain

stresses on the rolling shear failure of lamellas may occur. Such stress concentrations

decrease the rolling shear strength the more the aspect ratio w/h increases (Ehrhart et al
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3.4 CLT in-plane shear tests of literature

2015). Hence, the tested small-scale specimens in shear having the same ratio w/h of

lamellas within the tested panels should return a realistic value. This because also the

lamellas of the full-scale tests show free edges and consequently stress concentrations

when submitted to shear force.

The derived elastic properties are the input to model timber in the next Chapter in

order to reproduce the experimental behavior of tested floors. Moreover, the measured

rolling shear strength will be compared to predicted shear stress under 4-points failure

loads of tested specimens.

3.4 CLT in-plane shear tests of literature

The in-plane behavior of CLT has been object of many recent experimental campaigns.

In particular, Brandner et al (2015) investigated on a new in-plane shear test configu-

ration based on compression tests on 45◦ rotated CLT panels in order to obtain a stress

state close to pure in-plane shear (Figure 3.13).

Figure 3.13: In-plane shear test set-up of Brandner et al (2015)

During their investigation on the new test configuration, Brandner et al (2015)

studied the influence of several panel’s parameters on in-plane behavior such as the lay-

up, the board width and the gap execution. The latter turned out to be the parameter

that mostly decrease crosslam in-plane shear behavior. Indeed, the reduction of the

in-plane shear stiffness when passing from glued boards to unglued boards was about

30% and reduced up to 50% for a 5 mm gap between boards. Table 3.4 shows the

properties of the so-called “series A” tested by Brandner et al (2015) and the obtained

in-plane shear stiffnesses.

The results of such experimental campaign will be used as reference in-plane shear
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A1 A2 A3
h [mm] 30 30 30
w [mm] 160 160 160
layers 3 3 3
s [mm] glued 0 5
In-plane shear stiffness [MPa] 650 475 310

Table 3.4: Properties of the tested specimen and measured in-plane shear stiffness by
Brandner et al (2015)

behavior of standard panels having short spacing. Unfortunately, there are no in-plane

shear tests on crosslam panels having larger spacings between boards in the literature.

3.5 Conclusion

In this Chapter, the experimental behavior of spaced CLT panels was investigated.

The 4-point bending tests on standard and innovative floors highlighted the increasing

shear effects on elastic and failure behavior together with the increasing voids within

the panel. Results of bending tests on standard and innovative floors will be the

reference out-of-plane behavior of spaced CLT for the modeling presented in Chapter

5 and 6. The material properties for the modeling will be the stiffness derived with the

small-scale tests on raw timber of the tested panels. Moreover, the derived rolling shear

strength of lumber boards will serve as a comparison value for predicted shear stress

under 4-points failure loads of tested specimens. The in-plane shear tests on standard

panels by Brandner et al (2015) showed sharp drop of in-plane shear stiffness when

small gaps between boards of CLT appear. Results from such in-plane shear tests will

be considered as reference in-plane behavior of shortly spaced CLT panels.
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Chapter 4

Homogenization of regularly spaced
CLT panels

Note: Part of this Chapter has been submitted for publication with the title

Thick-plate modeling of regularly spaced CLT panels

Abstract. This Chapter deals with the modeling of regularly spaced CLT panels in

order to predict their mechanical response. The Bending-Gradient theory (Lebée and

Sab 2011a) for thick laminates has been applied to the geometry of spaced crosslam by

means a periodic homogenization scheme (Lebée and Sab 2012). Existing closed-form

methods have been compared to the homogenization results and experimental data.

Only the homogenization approach can well predict the in-plane and transverse shear

behavior of spaced CLT. Moreover, the predicted bending and rolling shear stresses at

failure point of the tested panels are in agreement with strength values of the literature.

Résumé. Ce Chapitre concerne la modélisation des panneaux CLT espacés pour

pouvoir prédire leur comportement mécanique. La théorie du Bending-Gradient (Lebée

and Sab 2011a) pour les stratifiés épais est appliquée à la géométrie des CLT espacés

grâce à un schéma d’homogénéisation périodique (Lebée and Sab 2012). Des méthodes

analytiques existantes ont été comparées avec les résultats de l’homogénéisation et avec

des données expérimentales. Seule la méthode d’homogénéisation permet de prédire

correctement le comportement de cisaillement plan et de cisaillement transverse des

panneaux CLT espacés. De plus, les valeurs des contraintes de flexion et de cisaillement

roulant à la rupture des panneaux calculées à l’aide de notre modèle sont en accord

avec les valeurs de résistance données dans la littérature.

4.1 Introduction

The experimental investigation of Chapter 3 highlighted the reduction of mechanical

performance of spaced CLT while increasing the spaces within the panel. In order

to predict the reduced mechanical behavior of spaced CLT and to point out which
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panel’s properties mostly influence such reduction, a robust modeling tool is needed.

As introduced in Chapter 1, a first simplified approach for predicting the out-of-plane

behavior may be using a method for massive crosslam combined with reduced properties

of wood by the volume fraction within the floor. This method is common in engineering

approaches and has been already applied by Blass and Gorlacher (2000) to spaced

timber floors. The shear analogy method (Kreuzinger 1999) for massive crosslam is

combined in this thesis with volume fraction in order to predict spaced CLT panels

bending and transverse shear stiffnesses. Dealing with the in-plane shear stiffness of

spaced CLT diaphragms, the closed-form solution derived by Moosbrugger et al (2006)

presented in Chapter 1 is the existing simplified method and will be compared to the

available experimental results. However, these simplified approaches for estimating the

mechanical behavior of spaced CLT have to be compared with a more refined modeling

in order to check their suitability.

Due to the increasing influence of shear effects when enlarging the spaces between

lamellas observed during the experimental investigation, a method which can take into

account spaced crosslam shear compliance is required. The 3D analytical solution for

laminates (Pagano 1969) applied in Chapter 2 demonstrated to well catch the stan-

dard CLT mechanics, but cannot be extended to the discontinuous geometry of largely

spaced panels. There are very few models in literature that can predict the mechanical

behavior of spaced panels with voids. For instance, Takabatake et al (1996) derived

a closed-form approach for predicting the bending and transverse shear behavior of

cellular plates based on a Reissner-Mindlin kinematics combined with Dirac functions

in order to take into account the presence of voids. However this methods requires

a precise geometry of the panel which cannot be, for instance, a laminated member.

Recently, a thick plate theory has been developed (Lebée and Sab 2011a) in order to

obtain a good estimation of transverse shear effects in thick layered plates. This model,

called the Bending-Gradient plate theory, is an extension of the Reissner-Mindlin the-

ory to layered plates, for which sometimes it is necessary to consider the whole gradient

of the bending moment as shear variable instead of the divergence originally consid-

ered by Reissner. Considering the gradient of the bending moment yields additional

shear variables that is necessary to consider in some situations in order to predict the

shear force stiffness of strongly anisotropic laminates (Lebée and Sab 2011b). The

Bending-Gradient plate theory is appropriate for modeling regularly spaced CLT pan-

els since it can be extended to in-plane periodic plates thanks to a homogenization

scheme. Indeed, the Bending-Gradient model has been applied to periodic sandwich

panels by means of a periodic homogenization scheme (Lebée and Sab 2012) and good

agreement between the predicted and the reference numerical mechanical response has

been pointed out. The homogenization principle is based on energy equivalence with

a periodic unit-cell submitted to unit membrane, bending and shear strains in order

to predict the homogenized plate moduli. In this thesis, the Bending-Gradient ho-

mogenization scheme is therefore chosen as refined modeling of spaced CLT panels to

compare with test results and simplified methods.
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4.2 Modeling of spaced CLT

In the present Chapter, the application of the Bending-Gradient homogenization

scheme to regularly spaced CLT panels is presented, as well as the predicted mechan-

ical behavior of the panel. The plate homogenization is capable of predicting the

membrane, bending and shear force stiffnesses of the panel. Moreover, the homoge-

nization scheme is based on FE computation and therefore also the stresses acting on

the panel can be estimated. The Chapter is organized as follows: first, in Section 4.2,

the Bending-Gradient plate theory, its related homogenization scheme and their appli-

cation to regularly spaced crosslam are summarized. Then, Section 4.3 presents the

comparison between the predicted and experimental behavior of spaced CLT presented

in Chapter 3. Within this Section, the bending and shear force stiffnesses predicted

with the plate homogenization and volume fraction approach are compared with the

4-points bending test results. Then, the in-plane shear stiffness estimated with the

existing closed-form solution and plate homogenization are compared to the experi-

mental in-plane shear behavior of the literature. Finally, the stresses at failure point

acting on the tested spaced panels in 4-points bending are predicted with the plate

homogenization and compared to tensile strength values of the literature and derived

rolling shear strength.

4.2 Modeling of spaced CLT

In this section, we first briefly introduce the Bending-Gradient plate theory. Full details

about this theory can be found in (Sab and Lebée 2016; Lebée and Sab 2011a;b). Then,

the application of the plate theory to a periodic geometry is presented as well, with

focus on regularly spaced CLT panels.

4.2.1 Summary of the Bending-Gradient model

CLT with small gaps as well as aerated CLT may be considered as in-plane periodic

structures since they are made of a repetitive pattern. Finite element modeling of such

structures requires a very fine mesh. Hence, in order to spare computational burden, it

is convenient to seek an equivalent membrane and plate model for these 3D structures

by means of a homogenization scheme. Additionally, according to the significant shear

effects found during the experimental investigations (see Table 3.2), knowing the de-

flection related to transverse shear effects is also necessary for engineering applications

of spaced CLT. This suggests to apply the Bending-Gradient theory which is an exten-

sion of the well known Reissner-Mindlin thick plate theory to the case of heterogeneous

plates.

Let us recall that the usual generalized stresses for Reissner-Mindlin plate are the

membrane stress Nαβ, the bending moment Mαβ, and the shear force Qα. These gener-

alized stresses are respectively in duality with the membrane strain eαβ, the curvature

χαβ, and the transverse shear distortion γα. Assuming the plate is symmetric with

respect to its mid-plane, these variables are related through the following constitutive
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4. HOMOGENIZATION OF REGULARLY SPACED CLT PANELS

equations: 
N = A : e (4.1a)

M = D : χ (4.1b)

Q = F RM · γ (4.1c)

where A is the membrane fourth order stiffness tensor, D is the bending fourth order

stiffness tensor and F RM is the shear force sixth order stiffness tensor. The simple,

double and triple contraction products are hereinafter defined as follows: X · Y =

XαYα, X : Y = XαβYβα and X ... Y = XαβγYγβα, with Greek letters that stand for 2D

plane coordinates.

Whereas the derivation ofA andD is well established in the literature for laminated

plates (Classical Lamination Theory) as well as for periodic plates (Caillerie 1984; Kohn

and Vogelius 1984); the derivation of F RM raised many difficulties. Indeed, when

the plate is heterogeneous, additional variables are required to describe accurately

transverse shear deformations.

In the Bending-Gradient theory, the conventional shear force Q with two degrees

of freedom is replaced by the generalized shear force R with six degrees of freedom.

The generalized shear force is a third order tensor. With this new set of variables, the

constitutive equation becomes: 
N = A : e (4.2a)

M = D : χ (4.2b)

R = F BG ... Γ (4.2c)

where Γ is the generalized shear distortion and F BG the generalized shear force sixth

order stiffness tensor. In case F BG is not invertible, R and Γ are restricted to a specific

vector space detailed in (Lebée and Sab 2015a;b).

Depending on the plate micro-structure, the Bending-Gradient theory may be

turned into the Reissner-Mindlin plate theory. For instance, this is the case when

the plate is homogeneous. In (Lebée and Sab 2011a), the relative distance between

both plate theories was introduced as 0 ≤ ∆RM/BG < 1. When ∆RM/BG = 0 the

Bending-Gradient theory exactly reduces to a Reissner-Mindlin theory and we have

the following direct estimation of Reissner-Mindlin shear force stiffness moduli as func-

tion of the Bending-Gradient ones:

FBG
111111 = FRM

11 and FBG
222222 = FRM

22 (4.3)

When dealing with laminated plates it is possible to derive A, D and F BG directly

from the constitutive material behavior. However, with periodic plates this requires a

homogenization procedure which is detailed in the next section.

4.2.2 Homogenization scheme

Let us consider a plate generated by periodicity of a unit-cell Y according to the in-

plane Directions 1 and 2 (Figure 4.1). The upper face ∂Y +
3 and the lower face ∂Y −3
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4.2 Modeling of spaced CLT

are traction free and the lateral faces ∂Yl connect adjacent unit-cells. AY is the area

of the unit-cell cross section with the plate mid-plane. x = (x1, x2, x3) is the set of

coordinates in the unit-cell reference frame.

Figure 4.1: The plate unit-cell

Finding A, D and F BG requires the resolution of unit-cell problems. The mem-

brane A and bending D stiffness tensors are derived by means of a first unit-cell prob-

lem which also gives the corresponding stress states. Then solving a second unit-cell

problem is necessary for deriving F BG.

4.2.2.1 Membrane and thin plate unit-cell problem

Homogenization of periodic plates at leading order was first established by Caillerie

(1984). The unit-cell problem is stated as follows:

P(e,χ)



div σ(e,χ) = 0 (4.4a)

σ(e,χ) = C (x) : ε(e,χ) (4.4b)

ε(e,χ) = ê+ x3χ̂+ grads uper (4.4c)

σ · e3 = 0 on free faces ∂Y ±3 (4.4d)

σ · n skew-periodic on lateral boundaries ∂Yl (4.4e)

uper(x1, x2, x3) (x1, x2)-periodic on lateral boundaries ∂Yl (4.4f)

where grads is the symmetric part of the gradient operator and n is the outer normal

to the unit-cell. This problem basically enforces the membrane strains e and the

curvatures χ on average on the unit-cell while taking into account periodicity in the

(x1, x2)-plane and traction-free conditions on the upper and lower faces of the plate.

In Equation 4.4c, ê and χ̂ denote the out-of-plane extension of the in-plane tensors e

and χ:

e =

 e11 e12 0
e21 e22 0
0 0 0

 and χ =

 χ11 χ12 0
χ21 χ22 0
0 0 0

 (4.5)

Solving the problem for each individual component of e and χ leads to the localization

stress fields s(e) and s(χ) such that the total stress σ(e,χ) solution of the problem P(e,χ)
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4. HOMOGENIZATION OF REGULARLY SPACED CLT PANELS

is recovered by linear combinations:

σ
(e,χ)
ij = s

(e)
ijαβ(x)eβα + s

(χ)
ijαβ(x)χβα (4.6)

Hence, σ(e,χ) is the stress state inside any unit-cell when the periodic plate is subjected

to given uniform membrane strain and curvature.

The membrane and thin plate stiffness tensors are then evaluated as follows:

A =
〈
Ts(e) : C−1 : s(e)

〉
, D =

〈
Ts(χ) : C−1 : s(χ)

〉
(4.7)

where

〈f〉 =
1

AY

∫
Y

f(x)dY (4.8)

is the normalized average (surface average) on the unit-cell and the superscript T

stands for the transpose operator. Finally, using the inverted plate constitutive law of

Equation 4.1a and Equation 4.1b and localization tensors s(e) and s(χ), it is possible

to write the local stress field generated by membrane stress and bending moment as:

σ(N) = s(N) : N =
(
s(e) : a

)
: N and σ(M) = s(M) : M =

(
s(χ) : d

)
: M (4.9)

where a and d are respectively the membrane and thin plate compliance tensors (re-

ciprocals of A and D).

4.2.2.2 The generalized shear unit-cell problem

Dealing with in-plane periodic plates, the bending moment can be assumed to vary

linearly in the (x1, x2)-plane, and therefore can be expressed as a function of the gen-

eralize shear force as M = R · x (Lebée and Sab 2012). Inserting this in Equation

4.9 and applying the 3D divergence of the bending stress field σ(M) leads to the body

force in the unit-cell generated by a uniform gradient of the bending moment R:

f
(R)
i = s

(χ)
iγεη (x) dηεβαRαβγ (4.10)

This body force has to be equilibrated by the Bending-Gradient stress σ(R), and there-

fore the generalized shear auxiliary problem on the unit-cell is defined as:

P(R)



div σ(R) + f (R)(x) = 0 (4.11a)

σ(R) = C (x) :
(
grad u(R)

)
(4.11b)

σ(R) · e3 = 0 on free faces ∂Y ±3 (4.11c)

σ(R) · n skew-periodic on lateral boundaries ∂Yl (4.11d)

u(R)(x1, x2, x3) (x1, x2)-periodic on lateral boundaries ∂Yl (4.11e)

Solving P(R) for each component of R leads to the localization stress field s
(R)
ijαβγ asso-

ciated to R. The overall stress is obtained by linear combination:

σ
(R)
ij = s

(R)
ijαβγ(y)Rγβα (4.12)
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4.2 Modeling of spaced CLT

It is then possible to identify the Bending-Gradient compliance tensor as:

fBG =
〈
T(
s(R)

)
: C−1(x) : s(R)

〉
(4.13)

Finally F BG is obtained taking the pseudo inverse: F BG =
(
fBG

)−1
.

4.2.3 Application to a regularly spaced CLT panel

A unit-cell of a 5-ply regularly spaced CLT panel is showed in Figure 4.2. The lateral

faces are periodic along x1 and x2 directions, while the upper and lower faces are free.

Perfect connections between layers are considered. The investigated lay-ups in this

study are 3, 5 and 7-ply panels. Moreover, the studies of Moosbrugger et al (2006) and

Silly (2010) highlighted the great influence of lamellas’ aspect-ratio width to thickness
w/h on the in-plane behavior of CLT panels with gaps in each layer. Therefore two

different lamella’s aspect-ratios w/h are also analyzed: w/h = 3.33 and w/h = 10. This

is achieved fixing the width at 100 mm, while the considered thicknesses are 30 or 10

mm (Figure 4.2) which is within the standard range from 6 to 45 mm for CLT layers’

thickness established in EN-16351 (2016).

x1

x2

x3

L1 L2

x2-periodicity x1-periodicity

H
s

w/h = 10w/h = 3.33

w = 100mm

h

Figure 4.2: Unit-cell of spaced 5-ply CLT with investigated ratios w/h of lamellas

In this thesis, unit-cell of regularly spaced CLT panels having three planes of sym-

metry are considered. It is possible to study only one fourth of the unit-cell and only

symmetric or skew-symmetric boundary conditions apply. Moreover, the mirror sym-

metry on the panel mid-plane allows analyzing only one eight of the unit-cell as showed

in Figure 4.3, reducing further computational costs.

The symmetries of regularly spaced CLT lead to simplifications also on the con-

stitutive equation. When the unit-cell is unchanged through a π angle rotation with
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4. HOMOGENIZATION OF REGULARLY SPACED CLT PANELS

x1x2

x3

L1/2
L2/2

x2-periodicity x1-periodicity

s/2
H/2

Figure 4.3: One eight of the CLT unit-cell when considering the three major symmetries

respect to a vertical axis, then the membrane and thin-plate stresses (N ,M) are un-

coupled from R. When the unit-cell follows the mirror symmetry with respect to the

mid-plane, membrane stress are uncoupled from bending moments. Finally, the plate

is orthotropic when the unit-cell is invariant through a vertical plane symmetry. When

all these symmetries occurs, there remain 4 moduli for membrane stress, 4 moduli for

bending moments and 12 moduli for the bending gradient (Lebée and Sab 2011b). The

plate moduli A and D have the following form:

A =

 A11 A12 0
A22 0

sym A33

 D =

 D11 D12 0
D22 0

sym D33

 (4.14)

Introducing the following notation

R111

R221√
2R121

R112

R22√
2R122

 =


R1

R2

R3

R4

R5

R6

 (4.15)

leads writing the Bending-Gradient shear force stiffness F BG as:

F BG =


FBG

11 FBG
12 0 0 0 FBG

16

FBG
22 0 0 0 FBG

26

FBG
33 FBG

34 FBG
35 0

FBG
44 FBG

45 0
sym FBG

55 0
FBG

66

 (4.16)

The auxiliary problems of thin and thick plate homogenization are solved by means

of a finite elements software in order to obtain the elastic strain energy of the unit-cell.

Solid C3D8 linear elements in ABAQUS are chosen. When the spaces are very short,

the size of single elements should be smaller than the gap length. A convergence study,
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4.2 Modeling of spaced CLT

not detailed here, led to a mesh of minimum six elements per gap’s edge, as showed

in detail of Figure 4.4, and of minimum six elements per layer’s thickness. The timber

elastic engineering constants for the FEM modeling are taken from Table 3.3.

x1 x2

x3

Figure 4.4: FE mesh of one eight 3-ply unit-cell with zoom on gap (5 mm) mesh

In the following, the applied loads and boundary conditions within the unit-cell

problems are presented.

4.2.3.1 Boundary conditions and loads for the thin-plate and membrane
unit-cell problem

The orthotropy of the unit-cell allows to apply only symmetric or skew-symmetric

boundary conditions on periodic lateral faces, while periodic boundary conditions van-

ish. The load of the thin-plate and membrane homogenization are imposed membrane

(e11,e2,e12) and curvature (χ11,χ2,χ12) strains on the boundaries. Since the auxiliary

problems are implemented with solid 3D elements in ABAQUS, displacements bound-

ary conditions apply. Figure 4.5 shows the applied boundary condition of symmetry,

skew-symmetry and imposed loadings. e11 and e22 are unit axial membrane strains

along directions x1 and x2 respectively, while χ11 and χ11 are unit out-of-plane bending

strains in x1 and x2 directions. Finally e12 and χ12 are respectively the skew-symmetric

in-plane shear and in-plane bending (or torsional) strains.

4.2.3.2 Boundary conditions and loads for the thick-plate unit-cell problem

According to Equation (4.10), the load for the Bending-Gradient auxiliary problem is

the body force f (R) deriving from a uniform gradient of the bending moment. Such

body force is a volume force that has six components, and each one produces a uni-

form generalized shear force (R1, R2,R3, R4,R5, R6). The user subroutine DLOAD in

ABAQUS is implemented in order to apply each component of f (R) at the integration

points. Finally, the boundary conditions for the Bending-Gradient homogenization are

presented in Figure 4.6. The boundary conditions for the thick plate homogenization
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(a) Symmetric loadings e11, e22, χ11, χ22

(b) Skew-symmetric loadings e12, χ12{
u1 = 0

u3 = 0

u1 = (e11 + x3χ11)L1

1

u2 = (e22 + x3χ22)L2

2

Free face

u1 = 0

u2 = 0

u3 = −x21
2
χ11 − x22

2
χ22

Free face

{
u1 = (e12 + x3χ12)L2

2

u3 = −x1χ12
L2

2

{
u2 = (e12 + x3χ12)L1

2

u3 = −x2χ12
L1

2

{
u2 = 0

u3 = 0

x1
x2

x3

L2/2 L1/2

x1x2

x3

L2/2 L1/2 
u1 = x2x3

L2

2
χ12

u2 = x1x3
L1

2
χ12

u3 = −x2x1χ12

Figure 4.5: Applied boundary conditions and loadings for the symmetric (a) and skew-
symmetric (b) loadings of the thin plate and membrane unit-cell problem
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(a) R111, R221, R122

(b) R121, R112, R222

u2 = 0

Free face
u2 = 0

Free face

x1
x2

x3

L2/2 L1/2

x1x2

x3

L2/2 L1/2

{
u2 = 0

u3 = 0

{
u2 = 0

u3 = 0

{
u1 = 0

u2 = 0

{
u1 = 0

u3 = 0

u1 = 0

u1 = 0

{
u1 = 0

u3 = 0

{
u1 = 0

u2 = 0

Figure 4.6: Applied boundary conditions for the R1,R2,R6 (a) and R3,R4,R5 (b) load-
ings of the thick plate unit-cell problem
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can be divided into two main groups: the first one concerning generalized shear forces

in the (x1, x3)-plane (R1,R2,R6) and the second group which deals with shear forces in

(x2, x3)-plane (R3,R4,R5).

4.3 Results

In this section, results from the thin and thick plate homogenization are presented and

compared to simplified approaches as well as to available experimental data. First,

the variation of plate moduli is plotted as a function of the length of spaces within

the panel. For each investigated value of spaces s, the corresponding experimental

or predicted value of plate modulus K is normalized over the predicted modulus of a

continuous panel having the lateral lamellas glued K∗. Then, the predicted variation

of longitudinal and transverse shear stresses as a function of spaces is compared to the

experimental results of 4-points bending tests.

4.3.1 Bending stiffness

Figure 4.7 shows the deformed of one eight of a regularly spaced CLT unit-cell under

the unit curvature χ11, while Figure 4.8 plots the variation of the homogenized stiffness

D11 as a function of spaces.

χ11

Figure 4.7: Deformed one-eight unit-cell of a 7-ply submitted to the unit curvature χ11.
w=100, s=50, h=20. The contour plot shows the longitudinal stress σ11

There is no dependency from the aspect ratio w/h of lamellas, while there is a

slight influence of the number of layers on the variation of normalized stiffness D11

D∗
11

as a function of spaces. As Figure 4.8 shows, the bending stress σ11 is significant

only in longitudinal layers parallel to x1 direction. Therefore, only longitudinal layers

contribute to the bending stiffness of the panel while the contribution of transverse

layers is negligible, exactly like CLT without gaps. Similar results have been found

for the membrane stiffness A11 and A22 and also for the bending stiffness along x2

direction D22. The simplified approach to determine the bending stiffness of spaced

CLT is the Classical Lamination Theory combined with reduced properties of wood by

the volume fraction coefficient λ. For instance, the shear analogy method (Kreuzinger

1999), a commonly used design approach for massive crosslam, is based on the Classical
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D∗
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3-ply

Figure 4.8: Variation of the normalized stiffness D11
D∗

11
as a function of spaces between

lamellas

Lamination Theory. The comparison between predicted and experimental bending

stiffness of regularly spaced crosslam panels is plotted in Figure 4.9 and detailed in

Table 4.1, where good agreement is found dealing with both homogenization and closed-

form approach.

D11/D∗
11 s=5mm, λ=0.95 s=150mm, λ=0.4 s=300mm, λ=0.25

Test result 0.97 0.38 0.23
Homogenization 0.95 0.40 0.25
Lamination Theory (λ) 0.95 0.40 0.25

Table 4.1: Comparison between the experimental and predicted normalized bending
stiffness D11/D∗

11 of spaced CLT

4.3.2 In-plane shear and torsional stiffnesses

Deformed unit-cells of a panel having small and large spaces under in-plane shear strain

e12 and in-plane bending (or torsional) strain χ12 are respectively showed in Figure 4.10

and Figure 4.11.

When dealing with these generalized strains, all layers contribute to the stiffness of

the panel. In the case of laterally glued crosslam, global in-plane shearing or torsion of

the panel occur and the continuous geometry ensures the stress transmission through

all the thickness. In the case of discontinuous CLT panels with spaces within each layer,

the presence of free edges prevents the direct transmission of stresses between lamellas,

leading to stress singularities (Figure 4.10). As a consequence, the stresses increase

due the decrease of the net cross section (as also highlighted by Brandner et al (2013)

and Bogensperger et al (2010)) and the global stiffness decreases. Such decrease of

stiffness is also due to an additional compliance mechanism of rotation between upper
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s[mm]
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Figure 4.9: Comparison between the experimental and predicted bending stiffness D11

of spaced CLT

e12

(a)

χ12

(b)

Figure 4.10: One fourth of a 3-ply unit-cell having small spaces under in-plane shear
(a) and torsion (b) unit strains. w=100, h=10, s=6. The contour plot shows the in-plane
shear stress σ12
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e12

(a)

χ12

(b)

Figure 4.11: Complete 7ply unit-cell having large spaces under in-plane shear (a) and
torsion (b) unit strains. w=100, h=30, s=150. The contour plot shows the in-plane shear
stress σ12
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and lower lamellas that appears when the lateral edges are not glued. The reduction of

in-plane stiffness becomes more significant in the case of large spaces, where all spaced

lamellas are submitted to bending in their plane due to their slenderness (Figure 4.11).

Moosbrugger et al (2006) derived a simplified closed-form solution for predicting the

in-plane shear stiffness of crosslam panels having short gaps. According to this method,

the in-plane shear stiffness of a glued panel is reduced by a “torsion-like” mechanism,

dependent on the ratio w/h, that appears when the lamellas are not laterally glued

each other. This in order to take into account the additional mechanisms of relative

rotation under in-plane shear described above. The derivation of this simplified method

is based on a CLT representative volume element (RVE) composed by two lamellas and

therefore the reduction of in-plane shear stiffness is independent from the number of

layers. Moreover, Moosbrugger et al (2006) considered the gaps to be short beams and

their bending and shear compliance are taken into account. The three mechanisms

acting on a spaced CLT under in-plane shear according to Moosbrugger et al (2006)

are showed in Figure 4.12. Since increasing the spaces means increasing the span of

(i) global shear (ii) torsion-like (iii) cantilever beams flexibility

Figure 4.12: Mechanisms acting on spaced CLT under in-plane shear according to
Moosbrugger et al (2006)

beams represented by gaps, such simplified approach may also predict the stiffness for

large spaces within the panel. The closed-from solution returns directly the reduction

G/G∗, where G is the reduced stiffness of spaced CLT and G∗ is the in-plane shear

stiffness of solid wood (GLN) that equals the stiffness of a continuous laterally glued

CLT. This closed-form solution is compared in this section with the predicted A33 and

D33 moduli normalized over the stiffnesses of a continuous crosslam panel.

In Figure 4.13, the comparison between the experimental results of Brandner et al

(2015) on the in-plane shear behavior of spaced crosslam and the predicted reduction of

the modulus A33 is presented. Both results from thin-plate homogenization and from

the closed-form solution are showed.

When the lateral edges are not anymore glued each other, the mechanism of relative

in-plane rotation of lamellas yields a sharp drop of in-plane shear stiffness that can

be well predicted by the homogenization approach, while the closed-form approach

underestimates the reduction of the stiffness of about 25%.

As the study of Silly (2010) showed, the in-plane shear and torsional stiffness of
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Figure 4.13: Comparison between test results and in-plane shear stiffness reduction
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predicted with homogenization and closed-form solution

spaced CLT are influenced by the aspect ratio w/h. Therefore from Figure 4.14 to

Figure 4.17 are plotted the variation of normalized in-plane shear stiffness A33 and

torsional stiffness D33 as a function of spaces for crosslam made up of lamellas having

aspect ratio w/h = 3.33 and w/h = 10. Within each plot, the influence of the number of

layers is highlighted as well.

Both the aspect ratio w/h and the number of layers influence the in-plane shear and

torsional stiffness of spaced CLT. Indeed, increasing the number of layers and the value

of the ratio w/h yields a lower drop of in-plane shear stiffnesses. The worst case of a

3-ply panel having lamellas with w/h = 3.33 shows a 40% reduction of A33 when the

panel is not laterally glued and a 50% reduction for 6 mm gaps. For small spaces,

the torsional stiffness D33 shows higher reduction than the in-plane shear stiffness and

the same dependency on the number of layers. Interestingly, this trend is reversed

when enlarging the spaces, where higher values of D33 are found for 3-ply lay-ups and

especially for high values of ratio w/h.

4.3.3 Thick-plate homogenization

The relative distance between the Reissner-Mindlin and the Bending-Gradient plate

theories is plotted in Figure 4.18 as a function of the increasing spaces and for different

lay-ups. This distance is not always small and is strongly influenced by the lay-up

of the panel. For very large spaces all relative distances tend to 2
√

2
3

(Lebée and Sab

2013), and it is the 3-ply configuration that goes more rapidly to this limit value.

Additionally, thick lamellas (w/h = 3.33) yield lower values of the relative distance than

thin lamellas (w/h = 10). However, except for the 3-ply lay-up, the relative distance
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Figure 4.14: Variation of normalized in-plane shear stiffness A33
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33
for (a) small and (b)

large spaces for ratio w/h = 3.33 of lamellas and for 3, 5 and 7 layers
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33
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large spaces for ratio w/h = 10 of lamellas and for 3, 5 and 7 layers
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Figure 4.18: Distance between Reissner-Mindlin and Bending-Gradient plate model as
a function of the spaces and for different lay-ups

remains moderate for the range of spaces interesting for practical applications plotted

in Figure 4.18. This allows the use of the more conventional Reissner-Mindlin plate

theory.

Finally, CLT floors are commonly simply supported on two sides with the lon-

gitudinal layers aligned to the bending direction, which is also called a cylindrical

bending configuration. The results of (Lebée and Sab 2015b) pointed out that the

cylindrical part of the Bending-Gradient shear force compliance fBG11 (see Equation

4.13) is sufficient to well describe the shear force compliance of a layered plate under

cylindrical bending, even if ∆RM/BG is not small. Hence, only the term fBG11 of the

Bending-Gradient shear force compliance is discussed in this section.

Deformed unit-cells of spaced CLT panels under the cylindrical part of the gener-

alized shear force R1 are showed in Figure 4.19 for both small and large spaces. In

both cases, the free edges lead to stress singularities in the discontinuities at interfaces.

Further analyses revealed that an interaction between rolling shear stresses (σ13) and

perpendicular to grain stresses (σ22 and σ33) is present in the discontinuous interface

between upper and lower lamellas. Such interaction between perpendicular to grain and

transverse shear stresses has been proved by recent experimental and numerical studies

(Hochreiner et al 2013; Ehrhart et al 2015) to reduce the strength of spaced crosslam

transverse lamellas. However, being a very localized phenomenon, the contribution of

stress concentrations to the shear force stiffness is low.

In this Section, the chosen simplified method for the prediction of the shear force
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R1

(a)

R1

(b)

Figure 4.19: Deformed unit-cell under R1 generalized shear force in the case of short
spaces (a) (w=100, h=10, s=6) and large spaces (b) (w=100, h=30, s=150). The contour
plot shows the transverse shear strain ε13.
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stiffness of spaced CLT is the shear analogy method derived by Kreuzinger (1999)

combined with reduced properties by the wood volume fraction λ. According to this

method, the shear stress across the panel’s thickness has a trapezoidal distribution and

the global shear compliance is determined as the sum of layers’ compliance weighted

by the thickness of each layer. Figure 4.19a shows that when the spaces are short, the

dominant contribution to the shear strain energy still derives from the rolling shear of

transverse layers, exactly as in the case of laterally glued crosslam. When the voids be-

tween narrow lamellas increase, the longitudinal lamellas behave as beams under simple

bending connected to transverse lamellas (Figure 4.19b) and this additional mecha-

nism (like a Verendeel beam) increases the transverse shear compliance. The shear

force stiffness prediction with the shear analogy method combined with the volume

fraction cannot take into account this additional compliance mechanism and therefore

overestimates the shear force stiffness 1
f11

, as Figure 4.20 and Figure 4.21 show, while

homogenization results are in good agreement with test results. Table 4.2 presents as

well the comparison between experimental and predicted reduction of normalized shear

force stiffness.

0.822

0.844

0.866

0.888

0.911

0.933

0.955

0.977

1.0

0 1 2 3 4 5 6
0.80

f∗11
f11

Volume fraction

5ply, w/h=7

Homogenization

s[mm]

Test results

Figure 4.20: Variation of normalized shear force stiffness
f∗11
f11

for short spaces and
comparison with test results

f∗11/f11 s=5mm, λ=0.95 s=150mm, λ=0.4 s=300mm, λ=0.25
Test result 0.8723 0.1261 0.0386
Homogenization 0.8768 0.1321 0.0397
Kreuzinger (1999) (λ) 0.8874 0.3925 0.2453

Table 4.2: Variation of normalized shear force stiffness f∗11/f11 for short and large spaces
and comparison with test results

In Figure 4.22 is plotted the variation of shear force stiffness as a function of in-
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Figure 4.21: Variation of normalized shear force stiffness
f∗11
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for large spaces and
comparison with test results

creasing space and for two different aspect ratios w/h. The influence of the number of

layers on the normalized stiffness has been found to be very small exactly as in the

case of the bending stiffness D11, and therefore only the case of a 7-ply is plotted. As

Figure 4.22a shows, already at short spaces there is a small drop of normalized shear

force stiffness because of the free edges. This effect cannot be predicted by the volume

fraction approach.
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Figure 4.22: Variation of the normalized shear force stiffness
f∗11
f11

for (a) large and (b)
short spaces for different lamella ratio w/h

More precisely, in this case the number of free edges per unit length increases

with the aspect ratio w/h. Hence, a higher drop of stiffness is observed with w/h=3.33

than with w/h=10 in Figure 4.22a. Enlarging the spaces means increasing the span

of the longitudinal beams connected to transverse lamellas. When such beams have
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small thickness, their slenderness further increases and their bending stiffness decreases.

Therefore, as highlighted in Figure 4.22b and contrary to the small spaces case, panels

having large spaces and made of lamellas having high values of w/h present lower shear

force stiffness than panels with thicker lamellas.

4.3.4 Influence of predicted stresses on variation of failure
modes

The results presented in the previous sections concerned the variations of plate elastic

moduli as a function of spaces between lamellas. The presence of lateral spaces in-

fluences also the failure modes of regularly spaced CLT, as test results of Chapter 4

show. In addition to the global elastic energy stored in the unit-cell, the homogeniza-

tion scheme predicts the 3D stress field acting on the unit-cell. The actual stress field

generated by bending moment or shear force can be rebuilt according to Equation 4.9

and Equation 4.12. The predicted stress fields on a unit-cell have been successfully

compared to a complete 3D FE simulation of the whole panels submitted to 4-points

bending but not reported in this work. When computing the stress field generated on

the unit-cell by the failure bending moment or shear force found experimentally, the

failure stresses σmax11 and σmax13 presented in Figure 4.23 can be found, since the shear

force (R1) is dominant close to supports and there is pure bending (M11) between

loading forces.

Figure 4.23 shows that with the increasing spaces within lateral lamellas, the failure

bending stress decreases while the failure transverse shear stress increases. The 4-points

bending tests on spaced floors pointed out the transition between tensile parallel to

grain failure of longitudinal layers to shear failure of transverse lamellas when enlarging

the spaces. Therefore, the predicted longitudinal and shear failure stresses have to be

compared to tensile parallel to grain and rolling shear strength values of spruce. The

mean tensile strength parallel to grain has been found to be approximately 30 MPa by

means of tensile tests on thousands of spruce specimens by Stapel and van de Kuilen

(2014); Ranta-Maunus et al (2011). Timber natural variability has a great influence on

tensile strength, leading to a great sample size in order to attain a consistent strength

value. On the contrary, rolling shear strength is considered to be independent from

timber natural variability (Blass and Fellmoser 2004a; Grandvuinet and Muszynski

2016), and mean rolling shear strength of spruce has been found to be 1.6 MPa in

Chapter 3 with symmetric double-lap shear test and 1.8 MPa with two-plates shear

test by Ehrhart et al (2015).

Table 4.3 summarizes the predicted longitudinal and transverse shear stresses at

failure for the three tested configurations of spaced panels.

Dealing with the standard crosslam, the predicted σmax11 stress is close to the mean

tensile strength of spruce, while the rolling shear failure stress is lower than the re-

spective strength. This is in agreement with the experimental tensile failure of bottom

layer. The s = 150mm configuration failed in tension on bottom layer, even if the
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Figure 4.23: Variation of longitudinal σmax11 (right) and rolling shear σmax13 (left) stresses
under experimental failure bending moment Mmax

11 and shear force Rmax1 for the three
tested spaces
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Predicted σmax11 [MPa] Predicted σmax13 [MPa] Failure mode in tests
s = 5mm 38 0.5 TL
s = 150mm 25 0.9 TL
s = 300mm 18 1.4 RS

Table 4.3: Variation of predicted longitudinal and shear stresses at failure of tested pan-
els and comparison with strength values of literature [MPa]. TL = tensile longitudinal,
RS = rolling shear

predicted σmax11 decreases and σmax13 increases, compared to the standard configuration.

This is because of the greater size of knots that led to tensile failure the s = 150mm

panel (see Figure 3.5b) compared to the smaller size of knots of standard CLT. Fur-

thermore, standard crosslam is characterized by a “system” effect that increases timber

strength thanks to the glued surfaces between upper and lower lamellas, limiting so

the propagation of cracks due to local defects (Chapter 2) (Flaig and Blass 2014). This

effect is progressively reduced when enlarging the spaces, due to the increasing free

unglued parts of upper and lower lamellas, where the cracking of isolated knots is not

anymore mitigated. Finally, rolling shear stress predicted at failure of s = 300mm

panel in transverse lamellas are very close to rolling shear strength, while the predicted

σmax11 is lower than the tensile strength. This is in agreement with the experimental

shear failure of transverse lamellas of the s = 300mm spaced panel.

4.4 Conclusion

In the present Chapter, the elastic mechanical response of regularly spaced CLT panels

has been investigated by means of thin and thick plate homogenization schemes and

compared to experimental data and simplified closed-form solutions. Both cases of

small gaps allowed in standard panels and large spaces of innovative timber products

have been analyzed.

The experimental investigation pointed out the increasing influence of elastic and

failure shear effects while enlarging the spaces between lamellas. This motivates the

choice of the Bending-Gradient thick plate theory for a precise estimation of shear

effects. The plate theory has been applied to the geometry of spaced CLT by means

of a periodic homogenization scheme.

When increasing the spaces between lateral lamellas, the reduction of bending stiff-

ness follows exactly the wood volume fraction within the panel. As consequence, the

influence of small gaps is very low and the mechanical behavior can be well predicted,

even at large spaces, with the Classical Lamination Theory combined with reduced

properties by the volume fraction. On the contrary, for in-plane shear and torsion,

the reduction of stiffness does not follows the volume fraction and yet at small spaces

the reduction of stiffness is significant. This is due to the presence of free edges that
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prevents the direct transmission of shear stress and introduces a mechanism of relative

rotation between upper and lower lamellas. In some cases, the closed-form solution

derived by Moosbrugger et al (2006) cannot precisely reproduce such complex mecha-

nism and therefore the predicted in-plane shear stiffness deviates from the experimental

results. However, the plate homogenization returned a good comparison with the in-

plane shear test results of Brandner et al (2015). While the investigated parameters of

number of layers and lamella’s aspect ratio w/h have a negligible influence on the nor-

malized bending stiffness, their influence on normalized in-plane shear and torsional

stiffnesses is significant. Indeed, increasing the number of layers and the aspect ra-

tio w/h leads to spaced CLT panels with higher values of in-plane shear and torsional

stiffness.

Dealing with transverse shear behavior, the reduction of shear force stiffness while

enlarging the spaces cannot be predicted with the volume fraction approach due to an

additional compliance mechanism related to simple bending of longitudinal lamellas.

Therefore only the homogenization method can well predict the experimental results,

while the volume fraction approach strongly overestimates the shear force stiffness.

The presence of free edges in spaced crosslam introduces an interaction between rolling

shear stress and traction perpendicular to grain, leading to potential mixed failure

modes in transverse lamellas, as highlighted by the conducted 4-points bending tests.

The influence of the number of layers on the variation of normalized shear force stiffness

as a function of spaces is negligible. In standard CLT with small gaps the governing

effect is rolling shear of transverse layers and, therefore, the thicker are the lamellas,

the more shear compliant the panel is. On the contrary, concerning innovative panels

with large spaces, the simple bending of longitudinal layers due to shear force yields

stiffer panels when the lamellas are thick.

In addition to the global stiffness of the panel, the homogenization approach can

well predict the 3D stress field within the panel. The predicted values of longitudinal

and rolling shear failure stresses are in agreement with the experimental variation of

failure modes and strength values of literature, even if the natural variability of raw

wood has not been taken into account and may be the object of a more accurate

modeling.

In some cases, the existing closed-form approaches for predicting spaced CLT me-

chanical behavior are not appropriate. Nevertheless, the periodic homogenization pre-

sented in this Chapter requires the numerical solution of auxiliary problems by means

of a FE software, that limits its implementation in practical applications. Hence, the

derivation of closed-form solutions for predicting the elastic behavior of spaced CLT

panels is the object of the next Chapter.
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Chapter 5

Closed-form solutions for spaced
CLT

Abstract. In this Chapter, closed-form solutions for predicting the elastic behavior

of spaced CLT panels are derived. Regularly spaced CLT are modeled as a frame of

beams connected each other by means of deformable blocks. Thin and thick plate

moduli are then derived based on energy equivalence with a periodic unit-cell. The

obtained closed-form solutions return a better agreement with the reference behavior

than existing closed-form approaches for in-plane and transverse shear stiffness.

Moreover, closed-form expressions for predicting the governing bending and rolling

shear stresses in spaced CLT are derived as well.

Résumé. Ce Chapitre présente les formules analytiques qui ont été établies pour

prédire le comportement élastique de panneaux CLT espacés. Les CLT espacés

sont modélisés comme un réseau de poutres connectées entre elles avec des blocs

déformables. Les modules des plaques mince et épaisse sont prédits en s’appuyant sur

le principe d’équivalence énergétique avec une cellule élémentaire périodique. Les for-

mules obtenues donnent une meilleure comparaison avec le comportement de référence

par rapport à des approches analytiques existantes, en ce qui concerne les raideurs

en cisaillement plan et transverse. Enfin, des formules analytiques sont établies pour

prédire les contraintes dominantes en flexion et en cisaillement.

5.1 Introduction

The thick-plate homogenization scheme applied in Chapter 5 to regularly spaced CLT

returned good agreement with the reference experimental behavior. However, within

this method, the resolution of auxiliary problems by means of FE computation is

required. This limits the extension of this method to practical applications. Therefore,

this Chapter presents the derivation of closed-form solutions to predict the elastic

behavior of spaced CLT.

The spaced CLT panel is modeled as a 3D space frame of beams connected each
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other with deformable blocks. Following the approach from Lebée and Sab (2013),

such space frame can be viewed as a thick plate, and plate moduli can be derived

based on energy equivalence with a periodic unit-cell. This is a procedure very similar

to the one of Chapter 5, but in this case the simplified geometry of connected beams

allows a closed-form derivation of the elastic energy. Indeed, the beam equations can

be integrated since they depend only on one coordinate. The loads for the thin space

frame analysis are beam displacements and rotations, while the gradient of the bending

moment is the load for predicting the shear force stiffness of a thick space frame.

First, the geometry of the space frame and the related notation are presented. Then,

thin and thick space frame computations are performed, leading to the derivation of

spaced CLT elastic moduli with closed-form expressions. The following section concerns

the derivation of simplified closed-form expressions for predicting the bending and

rolling shear stresses in spaced CLT. Finally, the elastic behavior estimated with the

closed-form solutions is compared to the reference results of homogenization modeling

presented in Chapter 5 and existing methods.

5.2 Spaced CLT as beam space frame

Regularly spaced CLT panels can be viewed as a 3D space frame of Timoshenko beams

connected each other with deformable blocks (Figure 5.1). The blocks represent the

glued parts of upper and lower lamellas, while the beams are the unglued/free parts

of lamellas. The space frame of Figure 5.1 is a reproduction along the two directions

Figure 5.1: Cross section of spaced CLT panel modeled as beam space frame

of elementary unit-cells like the one in Figure 5.2. Each unit-cell is made of N beams

connected each others with wooden blocks, where N is the number of CLT layers. There

are NL longitudinal (L) beams and NT transverse (T ) beams, with N = NL +NT and

NL = N+1
2

, NT = N−1
2

. The position of each beam with respect to the reference frame

of Figure 5.2 is denoted zi, with i ∈ [−N−1
2

; N−1
2

] and the top and bottom beams are

always oriented in the longitudinal x1 direction. The unit-cell has all lamellas with

the same thickness h and width w, while the length of the unit-cell is b. The mirror

symmetry of beams with respect to the mid-plane is respected, so that zi = −z−i.
Each wooden block is defined as the volume h · w2, with respect to Figure 5.3.

The spaced CLT stiffnesses are derived averaging over the surface the strain energy

stored in the unit-cell under imposed loads while taking into account its periodicity
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x2

x3

x1

h

w b

Figure 5.2: Periodic unit-cell of spaced CLT modeled as a space frame of beams con-
nected with wooden blocks

along x1 and x2 directions. There are two contributions to the elastic energy of the

unit-cell: the energy associated to beams and to the deformable blocks. For thin and

thick space frame analyses, both contributions of beams and blocks energy have to be

estimated.

h

w

x2

x3

x1

Figure 5.3: Longitudinal layer of a spaced CLT modeled as a wooden block connected
to a beam

5.3 Thin space frame

In this section, closed-form solutions for predicting the membrane and bending stiff-

nesses of spaced CLT are derived. The wooden blocks of the unit-cell in Figure 5.2 are

modeled as springs connecting upper and lower beams, deformable only under in-plane

rotations and with a rotational stiffness Kθ (Figure 5.4). This in order to reproduce the

torsion-like mechanism discussed in Section 4.3.3 that yields relative in-plane rotation

of blocks when spaced CLT are submitted to in-plane shear. The modeling of such

mechanism as a rotational spring submitted to in-plane rotation is of course a simpli-

fication, but it follows the approach of several existing experimental and theoretical

approaches (Joebstl et al 2004; Moosbrugger et al 2006).
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Kθ

(a) (b)

b

Figure 5.4: Blocks connecting beams (a) and modeled as rotational spring deformable
under in-plane rotation (b)

In this case the loads are the relative displacements ui,ext and the relative rotations

θext applied to beams as periodicity conditions:

Lub,i− Lu0,i = Lui,ext =

b(e11 + ziχ11)
b(e12 + ziχ12)
−b2χ11/2

 Tub,i− Tu0,i = Tui,ext =

b(e12 + ziχ12)
b(e22 + ziχ22)
−b2χ22/2


(5.1)

where L and T stand for the longitudinal and transverse layers. e11 and e22 are axial

membrane strains, χ11 and χ22 are out-of-plane curvatures, e12 is the in-plane shear

strain and χ12 is the in-plane bending (or torsional) curvature. The superscripts 0 and b

in Equation 5.1 stand for the displacement field evaluated respectively at the beginning

and the end of beams. These relative displacements are equivalent to those applied in

the 3D case on lateral faces of the unit-cell (see Figure 4.5). When dealing with beams,

the energy is also carried by the 3D rotation field defined as the skew-symmetric part

of the gradient of displacements. Following the approach of (Lebée and Sab 2013), the

rotation field must comply with the following periodicity conditions:

Lθb,i − Lθ0,i = Lθi,ext =

−bχ12

bχ11

0

 Tθb,i − Tθ0,i = Tθi,ext =

−bχ22

bχ12

0

 (5.2)

Figure 5.5 shows the applied loads for the thin space frame analysis.

5.3.1 Energy of connected beams

In Chapter 5, the elastic energy of a 3D unit-cell has been predicted with FE compu-

tation. Such 3D energy can be written as:

W 3D =
1

2

∫
Ω

(
ε3D : C : ε3D

)
dΩ (5.3)

where ε3D are the 3D strains, C is the material stiffness tensor and Ω is volume of

the unit-cell. Dealing with a unit-cell made of connected beams, if (t,n,v) is the local

reference frame of each beam associated to the coordinate (s1,s2,s3), the contribution
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Figure 5.5: Unit loads for the thin space frame analysis on a 5-ply unit-cell of spaced
CLT imposed as displacement and rotation boundary conditions

of each beam to the elastic energy of the unit-cell can be written as:

W i(ui,θi) =

∫ b

0

1

2

(
γi · Fi · γi + κi ·Hi · κi

)
ds1 (5.4)

where ui and θi are respectively the displacement and rotation fields of each beam,

γi = (ui ′ + ti × θi) is the vector containing the axial strain and shear distortions of

the beam and κi = θi ′ is the beam’s curvature. Here ′ denotes the derivative with the

respect to s1 coordinate and × is the cross product. In the beam local reference frame,

the beam stiffness tensors Fi and Hi are defined as:

F =

 ES 0 0
0 GS2 0
0 0 GS3

 (5.5)

H =

 GJ 0 0
0 EI2 0
0 0 EI3

 (5.6)

where E is the longitudinal Young’s modulus (EL), G the longitudinal shear modulus

(GLZ=GLN), S = w ·h is the section area, S2 = S3 = 5/6 ·w ·h are the shear areas and

I2 = h3·w
12

and I3 = w3·h
12

are the second moments of inertia. J is the torsion constant

defined as

J = w/2 · (h/2)3 · (16/3− 3.36 · (h/w) · (1− (h/w)4/12))
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5. CLOSED-FORM SOLUTIONS FOR SPACED CLT

. Since the beam constitutive equations for translations and rotations are:{
ri = Fi · (ui ′ + ti × θi)
mi = Hi · θi ′ (5.7)

where ri and mi are respectively beams’ resultant forces and bending moments, it is

possible to rewrite Equation 5.4 as:

W i(ui,θi) =

∫ b

0

1

2

(
tri · Fi −1 · ri +t mi ·Hi −1 ·mi

)
ds1 (5.8)

with ri(ui,θi) and mi(ui,θi). Now the stress state of beams will be exactly derived in

order to evaluate the contribution of each beam expressed by Equation 5.8. The beam

equilibrium equations are: {
ri ′ = 0

mi ′ + ti × ri = 0
(5.9)

Integrating equations 5.9 leads to constant resultants and linear moments:

ri = r0,i mi = mb/2,i − t× r0,i(s1 − b/2) (5.10)

where r0,i = ri(s1 = 0) and mb/2,i = mi(s1 = b/2) are integration constants taken at

s1 = 0 and s1 = b/2 respectively. Therefore finding r0,i and mb/2,i leads the complete

stress state of beams. Substituting equations 5.10 into the constitutive equations 5.7

and integrating at s1 = 0 yields:

θi − θ0,i = Hi−1

(
mb/2,is1 + t× r0,i s1(s1 − b)

2

)
(5.11)

Rewriting the above expression for s1 = b yields the left term equal to θi(b) − θi(0).

This difference is equal to the imposed rotation field θext (Equation 5.2). Therefore

mb/2,i is:

mb/2,i =
Hi · θext,i

b
(5.12)

The same procedure can be done substituting the expression of θi found in Equation

5.11 into the constitutive equation of displacements, leading to the following expression

of r0,i:

r0,i = Pi ·
[
uext,i + ti ×

(
θ0,ib+ b

2
θext,i

)]
(5.13)

where the operator Pi is, in the local reference frame:

Pi =

ES−1 0 0
0 α2 0
0 0 α3

 (5.14)

with α2 = b
GS2

+ b3

12EI3
and α3 = b

GS3
+ b3

12EI2
. Now that the resultant forces and moments

of beams are determined, it is possible to write the contribution of each beam “i” to
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5.3 Thin space frame

the potential energy of the unit-cell as:

W i,thin =
1

2

[
t
[
ui,ext + ti ×

(
θ0,ib+ b

2
θext,i

)]
·Pi ·

[
ui,ext + ti ×

(
θ0,ib+ b

2
θext,i

)]
+

+1
b

t
θext,i ·Hi · θext]

(5.15)

in which the unknowns are the rotation constants θ0,i.

5.3.2 Derivation of the spaced CLT stiffnesses

The unknown kinematic variables are derived minimizing the total potential energy of

the unit-cell, leading to the explicit closed-form expression of the unit-cell elastic energy.

In order to obtain the unit-cell total potential energy, the contribution of deformable

wooden blocks modeled as rotational springs has to be added to the contribution of

beams:

W total,thin(u0,i,θ0,i) =

(N−1)/2∑
i=−(N−1)/2

W i,thin +
1

2

(N−3)/2∑
j=−(N−1)/2

Kθ(θ
0,j+1
3 − θ0,j

3 )2 (5.16)

where Kθ is the rotational stiffness of the springs and (θ0,j+1
3 − θ0,j

3 ) is the relative

in-plane rotation of beams at their interface that corresponds to the relative in-plane

rotation between upper and lower blocks. Since the connection between beams has

been modeled as a spring deformable only under in-plane rotations (Figure 5.4a), the

beam displacements u0,i and out-of-plane rotations θ0,i
1 and θ0,i

2 at beams’ interfaces

s1 = 0 are equal for all beams. This means that such kinematic variables represent

rigid translations and rotations of the whole unit-cell that do not contribute to the

potential energy. Therefore these variables can be set to zero when minimizing the

potential energy. This means that the only kinematic variable that is unknown is the

in-plane rotation θ0,i
3 . Hence, the minimization problem can be written as:

min
θ0,i3 ∈RN

W total, thin(θ0,i
3 ) (5.17)

The N in-plane rotations of beams at their interfaces are the only unknown variables

to find with the minimization problem 5.17 in order to obtain a closed-form expression

of the unit-cell elastic energy. Finally, membrane A and bending D moduli of spaced

CLT as thin space frame are evaluated averaging over the unit-cell surface the energy

associated to membrane strains and curvatures:

1

2
(te : A : e) =

1

b2
W (e)total, thin 1

2
(tχ : D : χ) =

1

b2
W (χ)total, thin (5.18)

where e are the imposed membrane strains and χ the imposed curvatures.
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5. CLOSED-FORM SOLUTIONS FOR SPACED CLT

5.3.3 Membrane and bending stiffness of spaced CLT

Substituting the imposed displacement and rotation fields into Equations 5.13, 5.12

and 5.10, the stress state of beams under symmetric membrane e11 e22 strains and out-

of-plane curvatures χ11 χ22 strains can be directly derived, since it does not depend

on the unknown in-plane rotations θ0,i
3 . The only non zero axial resultant force ri1 and

out-of-plane moment mi
2 of L and T beams write, in the local reference frame of beams:

L beams

{
ri1 = ES(e11 + ziχ11)

mi
2 = EI2χ11

(5.19)

T beams

{
ri1 = ES(e22 + ziχ22)

mi
2 = EI2χ22

(5.20)

which are very similar to those found in (Lebée and Sab 2013). Applying Equation 5.18

separately to the contribution of membrane strains and curvatures leads the following

closed-form expressions for spaced CLT membrane A11 and out-of-plane bending D11

stiffnesses along the x1 direction:

A11 = NL
ES

b
(5.21)

D11 = NL
EI2

b
+
ES

b

∑
L

z2
i =

Eh3w

24b
(N + 1)(N2 + 2N − 2) (5.22)

where the sum
∑

L operates only on longitudinal beams. The result is rather intu-

itive: the bending stiffness D11 is a contribution of the NL longitudinal beams bending

stiffness EI2 and the transport term related to the position of each longitudinal beam

with respect to the neutral axis. This is also the principle of the Classical Lamination

Theory, upon which many design methods are based (for instance, the shear analogy

method (Kreuzinger 1999) or the gamma method (EN1995-1-1 2004)). The contribu-

tion of transverse beams to spaced CLT bending stiffness is not taken into account

by Equation 5.22, due to the negligible influence of transverse layers on CLT bending

behavior. In the same way, only the longitudinal beams contribute to the membrane

stiffness A11. The derived closed-form expressions for bending and membrane stiffness

are divided by the unit-cell length b, which is equivalent of applying volume fraction

to the stiffness of a massive CLT panel. Indeed, when b = w, Equations 5.21 and

5.22 return the bending stiffnesses of a massive crosslam panel. Therefore, the derived

closed-form solutions for spaced CLT bending and membrane stiffness are exactly the

volume fraction approach that was found to return the same homogenization results

(see Section 4.3.1). The same procedure can be applied for the membrane and out-of-

plane bending stiffness along x2 direction (A22 and D22), leading to similar expressions

of Equations 5.21 and 5.22 considering the T transverse beams instead of the longitu-

dinal beams:

A22 = NT
ES

b
D22 =

Eh3N

24b
(N − 1)(N2 − 2N − 2) (5.23)
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5.3 Thin space frame

Finally, the in-plane A12 and out-of-plane D12 Poisson’s effects predicted with the

obtained closed-form solutions are null: A12 = D12 = 0.

5.3.4 In-plane shear and torsional stiffness of spaced CLT

The stress state of L and T beams associated to skew-symmetric loads of in-plane

shear e12 strain and in-plane bending (or torsional) curvature χ12 from Equation 5.13

depends on the unknown in-plane rotations θ0,i
3 . In the local reference frame of L and

T beams the stress state is written:

L beams


ri2 = b

α2
[(e12 + ziχ12)− θ0,i

3 ]

mi
1 = −GJχ12

mi
3 = ri2(s1 − b

2
)

(5.24)

T beams


ri2 = b

α2
[−(e12 + ziχ12)− θ0,i

3 ]

mi
1 = −GJχ12

mi
3 = ri2(s1 − b

2
)

(5.25)

Therefore, the unit-cell potential energy associated to in-plane shear and torsional

loads also depends on the unknown rotations θ0,i
3 . Minimizing the functional 5.16 with

respect to the unknowns θ0,i
3 leads to the identification of a linear system of N equations

that can be solved. However, solving such system with a closed-form approach is not

straightforward. Nevertheless, for 3-ply and 5-ply configurations there are few variables

and closed-form expressions of θ0
3,i and therefore of the in-plane shear A33 and torsional

D33 stiffnesses can be found. For a 3-ply we have:

A3ply
33 =

4Kθ

3α2Kθ + b2
D3ply

33 =
3GJ

2b
+

h2Kθ

α2Kθ + b2
(5.26)

and for a 5ply:

A5ply
33 =

4

α2

[
(28β2 + 40β + 15) + 2β(8β2 + 12β + 5)

(4β2 + 10β + 5)2

]
(5.27)

D5ply
33 =

5GJ

2b
+

5h2

α2

[
(20β2 + 8β + 1) + 2β(8β2 + 4β + 1)

(4β2 + 6β + 1)2

]
(5.28)

where β = b2

2α2Kθ
.

Simplified general expressions of spaced CLT in-plane shear and torsional stiffnesses

can be derived as the sum of compliances of the two limit cases when the dominant

regime is either the spring or the beam regime. For instance, substituting Kθ >> 1/α2

in the expression of stiffnesses found for 3-ply and 5-ply means finding the limit case

when the interfaces between beams are clamped connections (θ0,i+1
3 − θ0,i

3 = 0) and

there is no contribution of blocks. This represents the case when the spaces are very

large and the deformation energy of the blocks can be neglected (Figure 5.6a) compared

to the contribution of beams. In the same way, when the beam stiffness 1/α2 is large

81



5. CLOSED-FORM SOLUTIONS FOR SPACED CLT

compared to Kθ, the contribution of beams is neglected, that corresponds to the case

of small spaces where the short beams can be considered to be rigid (Figure 5.6b)

and only the blocks contribute to the energy. Under the conditions Kθ >> 1/α2 or

(a) (b)

Figure 5.6: FE deformed of limit cases of a spaced CLT unit-cell under in-plane shear:
(a) beam regime at large spaces (Kθ =∞) and (b) blocks regime at short spaces (α =0)

Kθ << 1/α2, the minimization of problem 5.17 with respect to θ0,i
3 is straightforward

and leads to:

A33 =

{
N2−1
2Nα2

if Kθ >> 1/α2
2(N−1)Kθ

b2
if Kθ << 1/α2

(5.29)

D33 =

{
24α2

Nh2(N2−1)
if Kθ >> 1/α2

6b2

NKθh2(N−2)(N−1)
if Kθ << 1/α2

(5.30)

Computing the sum of compliances of these two limit cases yields the following sim-

plified closed-form solutions for in-plane shear stiffness of spaced CLT as a function of

N:

A33 = (N − 1)

(
b2

2Kθ

+
2Nα

N + 1

)−1

(5.31)

The same procedure can be applied for torsional stiffness of spaced CLT leading to:

D33 =
NGJ

2b
+
Nh2(N − 1)

6

(
b2

Kθ(N − 2)
+

4α

N + 1

)−1

(5.32)

In-plane shear of wooden blocks Until now, the expression of the rotational stiffness

Kθ has not been yet established. As already introduced, when such stiffness is large

compared to 1/α2, the wooden blocks are modeled as clamped connections that prevent

relative in-plane rotations. This situation corresponds to laterally glued panels, where

the mechanism of relative in-plane rotation between upper and lower layers is not

present. However, laterally glued crosslam are submitted to gross in-plane shear over

all the cross section, and such mechanism is not taken into account by the rotational
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5.4 Thick space frame

spring. The gross in-plane shear of wooden blocks can be taken into account introducing

a correction factor on the beam length b. Indeed, when Kθ = ∞ and b = w Equation

5.31 should return the in-plane shear stiffness of a massive crosslam panel having glued

lateral lamellas: Afull33 = 2GLNNh. This is possible only when introducing the beam

compliance α∗2 = b−x
GS2

+ (b−w)3

12EI3
with a correction on the beam length. Moreover, since

the term related to in-plane bending (b−w)3

12EI3
has to vanish when the lateral lamellas are

glued (b = w), the beam length under in-plane bending is set at b−w. In order to find

the correction x, the following relation has to be satisfied:(
2N w−x

GS2

N2 − 1

)−1

= 2GLNNh (5.33)

where the left term is Equation 5.31 substituting Kθ = ∞ and b = w. Considering

a great number of layers of spaced CLT (N = ∞) in order to overcome the influence

of upper and lower free edges, one find that Equation 5.33 yields the correction on

the beam length under in plane shear x = 19w/24, and therefore the corrected value

α∗2 = b−19w/24
5wh/6

+ (b−w)3

w3h
has to be used in Equations 5.31 and 5.32. The same correction

can be found when applying the same procedure to the expressions of torsional stiffness

of Equation 5.32.

The expression of the rotational stiffness Kθ to use with the derived equations

has been found within the available literature. The mechanical behavior of two or-

thogonally glued wooden lamellas under relative in-plane rotation has been object of

several experimental and theoretical studies (Blass and Goerlacher 2002; Joebstl et al

2004; Moosbrugger et al 2006). In particular, Moosbrugger et al (2006) considered the

spaced CLT in-plane shear stiffness reduced by this compliance mechanism when the

lateral lamellas are not glued (Figure 5.7) and suggested the following expression for

the in-plane stiffness associated to such mechanism:

G∗LN =
GLN

3Geff

(w
h

)2

(5.34)

where Geff = GLN+GZN
2

is the mean between the plane and rolling shear moduli.

Therefore, this expression is dependent on the lamella’s aspect ratio and also on rolling

shear modulus of wood, confirming the results of (Jeitler 2004). In order to adapt

this approach to our case, expression 5.34 is modified to represent a rotational spring

stiffness of a wooden block having volume w2 · h with:

Kθ = G∗LNhw
2 =

2GLNw
4

3h(GLN +GZN)
(5.35)

5.4 Thick space frame

In this section, a closed-form expression for predicting the shear force compliance of

spaced CLT is derived. The complete unit-cell of Figure 5.2 is considered, without any
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5. CLOSED-FORM SOLUTIONS FOR SPACED CLT

(i) global shear (ii) torsion-like

Figure 5.7: Torsion-like mechanism of glued lamellas in spaced CLT (Moosbrugger et al
2006)

simplified modeling of wooden blocks. This leads to impose a 3D shear kinematics to

the whole block and deriving its contribution to the strain energy. In this section, the

Bending-Gradient plate theory already presented in Chapter 4 is applied, considering

the space frame as a thick plate. Therefore, as in Chapter 4, the imposed load is a body

force deriving from a uniform gradient of the bending moment. In the case of beam

space frame, this body force defined in Equation 4.10 has to be transformed in beam

loadings. The unit bending stress s(χ) of Equation 4.10 has been derived in terms of

beam resultant forces and moments by Equations 5.19 and 5.24, when applying unit

curvature (χ = 1) and unit membrane strains (e = 1). Applying Equation 4.9 with

such stress field yields the unit stress field r(M),m(M) generated by a uniform bending

moment M . As in Chapter 4, such bending moment is considered to vary linearly in

the (x1, x2)-plane M = R · x and therefore the Bending-Gradient stress field can be

expressed in terms of beam resultant forces and moments as a function of R and x.

The generalized shear force R is a third-order tensor having six components (R1, R2,

R3, R4, R5, R6) (see Section 4.2.3). As suggested by Lebée and Sab (2013), inserting

the Bending-Gradient beam stress field in the beam equilibrium equations 5.9 points

out that beam distributed loadings q and l appear in order to ensure the equilibrium.

The following beam distributed forces q for L and T beams can be found, expressed

in the local beam reference frame:

Lqi =

 ziESD−1
11 R1

ρi(
√

2D33)−1R3

0

 (5.36)
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5.4 Thick space frame

Tqi =

 ziESD−1
22 R5

ρi(
√

2D33)−1R6

0

 (5.37)

where ρi are the resultant forces of beams associated to a unit torsional curvature

χ12 = 1 (see Equations 5.24 and 5.25). Moreover, the distributed torques li acting on

each beam having length d = b−w are derived as li = ld/2,i + ti × qi(s1 − d/2), where

Lld/2,i =

−GJ(
√

2D33)−1R3

EI2D
−1
11 R1

0

 (5.38)

T ld/2,i =

GJ(
√

2D33)−1R6

EI2D
−1
22 R5

0

 (5.39)

in the beam local reference frame. Figure 5.8 shows the applied loads to a unit-cell of

spaced CLT, considering the whole wooden blocks that connects the beams, leading to

set the beam’s length d as d = b− w.

w d = b-w

qili

h

x3

x1wqi
wl0,i

Figure 5.8: Unit loads for the thick space frame analysis on a 5-ply unit-cell of spaced
CLT

5.4.1 Transverse shear kinematics of blocks and related en-
ergy

In order to derive the contribution of wooden blocks to the shear force compliance of

spaced CLT, a transverse shear kinematics is imposed to the blocks and presented in

Figure 5.9 for the “1-3” shear direction (plane x2 = 0), where half of upper and lower

blocks are showed. Basically the shear kinematics is a superposition of horizontal and

vertical slips of wooden blocks. The displacement field associated to such kinematic

showed in Figure 5.9 is:

Tu

{
ui+1

1 = U0,i+1
1 + Tki,i+1

1 x3

ui+1
3 = U0,i+1

3 − ϕi+1
2 x1

(5.40)
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ϕi2x3

k3x1

L

Tki,i+1
1 x3

T

ϕi+1
2 x1

s3

s1

x3

x1

U0,i
1

U0,i+1
1

U0,i
3

U0,i+1
3

Figure 5.9: Transverse shear kinematic in plane x2=0 of the interface made by half
upper and lower blocks

Lu

{
ui1 = U0,i

1 + ϕi2x3

ui3 = U0,i
3 − k3x1

(5.41)

where U0,i are the displacements of the blocks’ center of gravity. The transverse shear

strain of each block can be obtained as 2εi13 =
∂ui1
∂x3

+
∂ui3
∂x1

. The slip coefficient Tki,i+1
1 in

Figure 5.9 is to be determined and k3 is a slip coefficient representing the inclination of

all blocks. Imposing the continuity of vertical displacements ui3 at the interface enforces

U0,i
3 = U0,i+1

3 and ϕi+1
2 = k3 (5.42)

meaning that a relative out-of-plane displacement between blocks is not permitted and

that all transverse blocks rotate equally to the inclination of all blocks ϕi+1
2 =̂ Tϕ2.

The same occurs for the longitudinal blocks dealing with the shear direction “2-3”,

leading to: {
ϕi2 =̂ Tϕ2 if i ∈ T blocks

ϕi1 =̂ Lϕ1 if i ∈ L blocks
(5.43)

Imposing the continuity of horizontal displacement field ui1 = ui+1
1 at blocks interface,

yields the derivation of the unknown slip coefficient Tki,i+1
1 :

h
2
ϕi2 + U0,i

1 = h
2
Tki,i+1

1 + U0,i+1
1 (5.44)

and therefore:
Tki,i+1

1 = 2
h
(U0,i+1

1 − U0,i
1 )− ϕi2 (5.45)

Now the transverse shear strain 2 Lεi,i+1
13 of L blocks at interfaces can be evaluated as:

2 Lεi,i+1
13 =

∂ Lui1
∂x3

+
∂ Lui3
∂x1

= ϕi+1
2 − ϕi2 (5.46)

and, in the same way, for the T blocks:

2 T εi,i+1
13 =T ki,i+1

1 − ϕi+1
2 = 2

h
(U0,i+1

1 − U0,i
1 )− ϕi+1

2 − ϕi2 (5.47)
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5.4 Thick space frame

When the positions of longitudinal and transverse blocks in Figure 5.9 are switched,

the sign of the term related to relative displacements at the interface in Equation 5.47

becomes negative: − 2
h
(U0,i+1

1 − U0,i
1 ).

Once the transverse shear strains along shear direction “1-3” are estimated, the

interface strain energy can be evaluated as the sum of half volume strain energy of

longitudinal and transverse blocks:

W i,i+1(1−3)(Ui, ϕi2) = 1
2
hw2

2
[GLZ(2 Lεi,i+1

13 )2 +GZN(2 T εi,i+1
13 )2] (5.48)

which becomes, substituting the derived shear strains 5.47 and 5.46:

W i,i+1(1−3)(Uj, ϕi2) = 1
2
hw2

2
[GLZ(ϕi+1

2 −ϕi2)2+GZN( 2
h
(U0,i+1

1 −U0,i
1 )−ϕi+1

2 −ϕi2)2] (5.49)

The same derivation of transverse shear strain and associated energy can be performed

for the shear direction “2-3”, leading to:

W i,i+1(2−3)(Uj, ϕi1) = 1
2
hw2

2
[GLZ(ϕi+1

1 −ϕi1)2+GZN( 2
h
(U0,i+1

2 −U0,i
2 )−ϕi+1

1 −ϕi1)2] (5.50)

The orthotropy symmetry of spaced CLT ensures the uncoupling between transverse

shear effects occurring in the x2 = 0 plane and in the x1 = 0 plane, and hence it is

possible to sum the shear strain energies derived for each shear plane. The contribution

of blocks to the potential energy of the unit-cell involves also the work related to applied

loads q and torques l. Integrating the beam loads of Equations 5.36 to 5.39 over the

length w of the block leads to the following concentrated loads applied to the center of

gravity of blocks:

qi,block = wqi and li,block = wld/2,i (5.51)

Finally, the sum of Equations 5.49 and 5.50 over all interfaces while taking into account

the contribution of external loads 5.51 yields the contribution of all blocks to the unit-

cell potential energy:

W blocks,thick =

(N−3)/2∑
i=−(N−1)/2

[W i,i+1(x2=0) +W i,i+1(x1=0)]−
(N−1)/2∑

i=−(N−1)/2

w(U0,iqi +ϕild/2,i)

(5.52)

Note that the contributions of longitudinal transverse shear strain 2 Lεi,i+1
13 of top and

bottom interfaces of the unit-cell are considered to be null, since they involve free edges

that do not carry strain energy. Even if this hypothesis is not kinematically compatible

with the kinematics of Figure 5.9, it represents the actual mechanism, which is for

instance taken into account by the shear analogy method (Kreuzinger 1999).

The blocks potential energy of 5.52 is expressed in terms of blocks’ displacement

U0,i and rotations ϕ. Therefore, in the next section, relations between blocks and

beams kinematic variables will be introduced in order to ensure kinematics continuity

between blocks and beams.
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5.4.2 Energy of connected beams

In order to ensure rotation continuity between the blocks and beams, the rotation

of longitudinal blocks ϕi2 (with respect to Figure 5.9) is now considered to equal the

section’s rotation Lθi2 of the connected beam. In the same way, the rotation of transverse

block ϕi+1
2 = Tϕ2 is now considered to equal the torsion rotation θi+1

2 = T θ2 of the

connected transverse beam. This means that the presence of wooden blocks ensures the

continuity of rotations between beams. Therefore, the rotations of all beams evaluated

at their beginning s1 = 0 and end s1 = d have the same value, leading to the following

periodicity condition on beams’ rotations:

θd,i − θ0,i = 0 (5.53)

In contrast, the presence of blocks influences the transmission of displacements between

beams. With Figure 5.9 as reference, the relation between block displacement U0,i
1 and

beam displacement u0,i
1 = ui1(s1 = 0) is:

u0,i
1 = U0,i

1 +
w

2
T θ2 (5.54)

which can be generalized into the following periodicity condition on beams’ displace-

ments:

ud,i − u0,i = wti ×Θ with Θ =

Lθ1
T θ2

0

 (5.55)

The procedure to derive the stress state of beams is very similar to the procedure

presented in Section 5.3.1. Modeling the connections between beams as the whole

wooden blocks yields the periodicity conditions on displacement and rotation derived

in Equations 5.55 and 5.53. Moreover, in the present case the external beam loads are

not null and therefore have to be taken into account when estimating the potential

energy of each beam:

W i(ui,θi) =

∫ d

0

1

2

(
tri · F−1 · ri +t mi ·H−1 ·mi

)
ds1 − qiui − liθi (5.56)

The beam equilibrium equations are:{
ri ′ + qi = 0

mi ′ + ti × ri + li = 0
(5.57)

where the beam distributed loadings q and l have been defined in Equations 5.36 to5.39.

Following the same procedure of Section 5.3.1, integrating the equilibrium equations

5.57 leads to linear resultant forces and bending moments on beams:

ri = rd/2,i − qi(s1 − d/2) mi = md/2,i − (ti × rd/2,i + l0,i)(s1 − d/2) (5.58)
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5.4 Thick space frame

where both equilibrium equations have been integrated at s1 = d/2. Substituting the

above expression of mi into the constitutive equations of moments in Equations 5.7

and integrating at s1 = 0 yields:

Hi(θi − θ0,i) = md/2,i − (ti × rd/2,i + l0,i) s1
2

(s1 − d) (5.59)

Then, the periodicity of rotations θi(d)− θi(0) = 0 enforces md/2,i = 0 and therefore

θi = θ0,i − (Hi)−1(ti × rd/2,i + l0,i) s1
2

(s1 − d) (5.60)

Substituting such expression of θi into the constitutive equation of resultant forces

and integrating at s1 = 0 while taking into account the periodicity of displacement

ud,i − u0,i = wti ×Θ, yields the following expression of resultant forces at beam mid-

span rd/2,i:

rd/2,i = P∗,i · ti × (wΘ + θ0,id+ d3

12
(Hi)−1l0,i) (5.61)

where the operator P∗,i is, in the local beam reference frame:

P∗,i =

ES−1 0 0
0 αd2 0
0 0 αd3

 (5.62)

with αd2 = b−w
GS2

+ (b−w)3

12EI3
and αd3 = b−w

GS3
+ (b−w)3

12EI2
. Therefore, the complete stress state

of beams is defined and the contribution of each beam to the potential energy of the

unit-cell can be evaluated as:

W i,thick(u0,i,θ0,i) =
1

2

[
rd/2,iP∗,i −1rd/2,i − d3

12
(qiF−1qi + l0,iH i −1l0,i)

]
−dqiu0,i−dl0,iθ0,i

(5.63)

where the first term is the contribution of beam’s stress state using Equation 5.8 and

the last two terms are the contribution of external loadings.

5.4.3 Derivation of the shear force compliance

The total potential energy of the unit-cell modeled as a thick space frame is the sum

of beams and blocks energy:

W total,thick(u0,i,θ0,i) =

(N−1)/2∑
i=−(N−1)/2

W i,thick +W blocks,thick (5.64)

The minimization of the total potential energy with respect to the kinematic variables

yields the explicit expression of the unit-cell energy which can be used to evaluate

the Bending-Gradient shear force compliance. The imposed shear kinematic of the

wooden blocks connecting the beams leads to equal out-of-plane displacements for all

beams Lu3 = Tu3 and null in-plane rotations θi3 = 0. Therefore these variables do

not contribute to the energy stored in the unit-cell and can be set to zero. Equation
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5. CLOSED-FORM SOLUTIONS FOR SPACED CLT

5.43 enforces the same rotation of transverse blocks within each shear plane, which

has been supposed to equal the torsion rotation of the connected beam in the previous

paragraph, leading to: {
θi2 = T θ2 if i ∈ T blocks

θi1 = Lθ1 if i ∈ L blocks
(5.65)

In order to further simplify the expression of potential energy to minimize, the rotations

of longitudinal beams or blocks are also considered to be all equal to the same value
Lθ2 in the x2 = 0 plane and T θ1 in the x1 = 0 plane:{

θi2 = Lθ2 if i ∈ L blocks

θi1 = T θ1 if i ∈ T blocks
(5.66)

Therefore all the beams and blocks of the same type (L or T ) are considered to have the

same rotation, leading to only four unknown rotations. FE analyses revealed that this

hypothesis is a reasonable approximation of the actual complex behavior of the unit-

cell under transverse shear strains. Finally, there remain four rotations for all beams

and two displacements per beam, leading to the following minimization problem:

min
(u0,i1 ,u0,i2 ,Lθ1,Lθ2,T θ1,T θ2)∈R2N+4

W total, thick(u0,i
1 , u

0,i
2 ,

L θ1,
L θ2,

T θ1,
T θ2) (5.67)

Once the explicit expression of total potential energy of the unit-cell is obtained, the

shear force compliance fBG is evaluated as:

1

2
(tR ... fBG ...R) = − 1

b2
W total, thick (5.68)

Minimizing the potential energy 5.67 with respect to the displacements u yields

the following expression of the relative displacement between upper and lower beams

u0,i+1 − u0,i:

u0,i+1 − u0,i = − bh

2w2GZN

i∑
−(N−1)/2

qi + h
2
e3 × ( Lθ + Tθ) (5.69)

Setting the displacement of the central beam at zero ui=0 = 0 in order to avoid a

rigid translation of the unit-cell, the values of each displacement u0,i can be found with

progressive substitutions:

u0,i =
bh

2w2GZN

i−1∑
k=0

 k∑
l=−(N−1)/2

ql

+ ih
2
e3 × ( Lθ + Tθ) with ui=0 = 0 (5.70)

As already introduced, the orthotropy symmetry of spaced CLT allows the resolution of

the minimization problem 5.67 separately for the generalized shear force components

acting along the shear direction “1-3” (R1, R2, R6) and along shear direction “2-3”

(R3, R4, R5). In the following, the solution of the problem is detailed for the “1-3”
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5.4 Thick space frame

shear direction but it is equivalent for the other direction. The kinematic variables

associated to the x2 = 0 plane are the displacements ui1 and the rotations Lθ2, T θ2.

Hence, substituting the values of ui1 from Equation 5.70 in the functional 5.64 leads

to the expression of the potential energy as a function of the rotations Lθ2 and T θ2.

Minimizing such expression with respect to Lθ2 and T θ2 yields the following system of

linear equations:
L
αd3

(w T θ2 + d Lθ2 + c3R1

12D11
) = b(R1 + η6R6) (5.71a)

hw(N−1)GLZ( T θ2− Lθ2)
2d

= b−2w
2w(b−w)

(N−1)/2∑
−(N−1)/2

(ziqi1) + T T l2
w(b−w)

− L Ll2
w(b−w)

(5.71b)

where η6 =
TGJ−

∑
T z

iρi

bD33
and

∑
T operates only on transverse beams. Solving the above

system of equations and substituting the obtained values in Equations 5.64 allow the

explicit expression of unit-cell potential energy under (R1, R2, R6) generalized shear

strains. Repeating the same procedure for the remaining shear direction 23 leads to

the expression of the potential energy under (R3, R4, R5) generalized shear strains.

Finally, taking the sum of the two contributions of each shear plane and applying

Equation 5.68, the following functional can be obtained:

tR ... fBG ...R = αd3

(
(R1 + η6R6)2

NL

+
(R5 + η3R3)2

NT

)
+

−(b− w)3

12b

(
R2

1 + 2η6R1R6

D11

+
R2

5 + 2η3R5R3

D22

− ζ6R
2
6

bD2
33

− ζ3R
2
3

bD2
33

)
+

+
1

2hw2(N − 1)GLZ

[(
(b− 2w)(R1 + η6R6) +

NTGJR6

D33

− NLEI2R1

D11

)2

+

+

(
(b− 2w)(R5 + η3R3)− NTEI2R5

D22

+
NLGJR3

D33

)2
]

+

+
h

2w2GZN

(N−3)/2∑
j=−(N−1)/2

 j∑
i=−(N−1)/2

qi

2

(5.72)

where η6 =
NTGJ+

∑
T z

iρi

bD33
, η3 =

NLGJ+
∑
L z

iρi

bD33
, ζ6 =

∑
T (ρi)2

GS2
+ NTGJ , ζ3 =

∑
L (ρi)2

GS2
+

NLGJ . The first and second terms are related to the bending and shear of beams,

the third term is the energy associated to the longitudinal shear of blocks (GLZ) and

the fourth term is the energy associated to the rolling shear of blocks (GZN). In the

functional 5.72, the closed-form expression of all terms of the Bending-Gradient shear

force compliance can be identified. However, as already discussed in Section 4.3.3, the

cylindrical part of the Bending-Gradient shear force compliance (fBG11 in the x2 = 0

plane) is sufficient to well describe the transverse shear behavior of spaced CLT under

cylindrical bending configuration. Hence, only the closed-form solution of fBG11 related

to the generalized shear strain R111 is given in the following. Taking the terms of
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Equation 5.72 where the quadratic shear strain R1 is present leads to the following

expression of fBG11 :

fBG11 =
αd3
NL

−(b− w)3

12bD11

+
(b− 2w − LEI2D

−1
11 )2

2h(N − 1)w2GLZ

+
h(EwhD−1

11 )2

2w2GZN

(N−3)/2∑
j=−(N−1)/2

 j∑
i=−(N−1)/2

δizi

2

(5.73)

where

δi =

{
1 if i ∈ L beams

0 if i ∈ T beams
(5.74)

In order to suggest a simplified closed-form expression, the term −(b−w)3

12bD1111
can be ne-

glected in Equation 5.73, because of its negligible contribution to the compliance of

the panel. Finally, the closed-form expression for the shear force compliance can be

written independently from the bending stiffness D11 and with the double sum term

simplified into a polynomial as:

fBG11 =
2αd3
N + 1

+
b2

2hw2(N2 + 2N − 2)2

[
(1− 2w

b
)

GLZ

((N2 + 2N − 2)− 1)2

N − 1
+

+
6

5GZN

(N5 + 5N4 + 10N3 + 10N2 − 11N − 15)

(N + 1)2

] (5.75)

The above expression is dependent only on geometrical and material parameters of the

spaced CLT panel. When b = w and the CLT has no spaces, the first term
αd3
L

related to

beams vanishes and Equation 5.75 returns the shear compliance of a crosslam having

glued lateral lamellas.

5.5 Closed-form prediction of longitudinal and

rolling shear stresses

When dealing with the out-of-plane behavior of spaced CLT, the governing failure

modes are longitudinal tensile failures of bottom layer and rolling shear failure of trans-

verse layer. This has been observed during the experimental investigation of Chapter

4 and also confirmed by other tests of the literature on standard CLT (Czaderski et al

2007; Hochreiner et al 2014; Mestek 2011; Okabe et al 2014). In Section 4.3.4, the ten-

sile and rolling shear stresses at failure point of the tested panels (see Chapter 4) have

been predicted with the numerical homogenization procedure and were in agreement

with common strength values of the literature. In this section, closed-form expressions

for predicting bending and rolling shear stresses of spaced CLT are derived based on

the results Section 5.3 and Section 5.4. Exactly as in Section 4.3.4, the derived stresses

are function of global uniform bending moment M11 and shear force R111 applied to the

panel. For instance, in a 4-point bending configuration, there is pure bending between

the loading forces and governing shear force close to supports (see Figure 4.23).
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5.5 Closed-form prediction of longitudinal and rolling shear stresses

5.5.1 Maximum longitudinal stress

At the beginning of Section 5.4, it was mentioned that the bending stress state of

beams of Equation 5.19 can be expressed as a function of an external bending moment

applying Equation 4.9 to the beam stress state. Hence, the following resultant axial

force ri1 and out-of-plane moment mi
1 of beams as a function of the external bending

moment M11 along x1 direction can be found:{
ri1 = EwhM11

D11
zi

mi
2 = EI2M11

D11

(5.76)

Note that the external bending moment M11 is per unit length and therefore has to be

normalized over the panel’s width. Since the maximum longitudinal stress is located

on external layers, substituting the position of the top/bottom layer ± (N−1)h
2

in the

resultant force ri1 and dividing by the beam’s cross section leads to the stress deriving

from the position of the beam with respect to panel’s neutral axis σr11,max. Moreover,

the bending stresses deriving from the simple bending of the beam can be found with

σm11,max =
mi2
I2

h
2
. Finally the closed-form expression for the maximum bending stresses

is:

σ11,max = σr11,max + σm11,max = ±NEM11h

2D11

= ± 12bNM11

wh2(N + 1)(N2 + 2N − 2)
(5.77)

5.5.2 Maximum rolling shear stress

The mean rolling shear stress in transverse blocks can be estimated as σi13 = V i

w2 , where

V i is the shear force on the considered wooden block. This shear force can be obtained

from the equilibrium of forces showed in Figure 5.10. The external loadings qi1 are axial

V

qi1

x3

x1

Figure 5.10: Shear force V from the equilibrium along x1 direction

forces per unit-length and their sum
∑i−1
−j=−(N−1)/2 q

i
1 has to be in equilibrium with the

shear force V i, therefore substituting the closed-form expression of qi1 from Equation
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5. CLOSED-FORM SOLUTIONS FOR SPACED CLT

5.36 leads to:

V i =
EwhbR1

w2D11

i−1∑
j=−N−1/2

δjzj (5.78)

where R1 is the external shear force acting on the panel normalized over the panel’s

width and δj has been defined in Equation 5.74. Therefore the maximum shear force is

obtained when i refers to the position of the transverse block closest to the mid-plane

of CLT cross section, where the shear stresses reach their peak. Under the hypothesis

of the same thickness h for all layers, the sum term can be simplified with ψh, where

ψ is a coefficient as a function of number of layers. Finally, the closed-form expression

for the maximum rolling shear stress is:

σ13,max = ψ
24b2R1

hw2(N + 1)(N2 + 2N − 2)
(5.79)

with

ψ =


1 for 3-ply and 5-ply

4 for 7-ply and 9-ply

9 for 11-ply and 13-ply

(5.80)

5.6 Comparison

In this Section, the elastic behavior of spaced CLT predicted with closed-form solutions

is compared to the reference behavior predicted with the numerical homogenization

presented in Chapter 5. The predicted stiffnesses of spaced CLT are normalized over

the stiffness of a full CLT having bonded lateral lamellas.

5.6.1 Bending stiffness

The derived closed-form expression for spaced CLT bending stiffness along the main

direction x1 is:

D11 = NL
EI2

b
+
ES

b

∑
L

z2
i =

Eh3w

24b
(N + 1)(N2 + 2N − 2) (5.81)

As already discussed, this expression turns out to be based on the principle of the Clas-

sical Lamination Theory and volume fraction. Therefore, the volume fraction approach

combined with the Classical Lamination Theory (on which the shear analogy method

or the gamma method are based) returns the same results, that are in agreement with

the FE homogenization results. The very slight difference is because the shear analogy

or gamma method take into account the presence of transverse layers, while expression

5.81 neglects their presence.
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Figure 5.11: Comparison between closed-form solution, volume fraction approach and
FE results for the bending stiffness D11. 5ply

5.6.2 In-plane shear and torsional stiffness

In this Section, the simplified solutions 5.31 and 5.32 for predicting spaced CLT in-

plane shear and torsional stiffness are compared with the FE homogenization results

presented in Chapter 4. The comparison is plotted from Figure 5.12 to Figure 5.15

for different panel’s lay-ups. Moreover, the closed-form solution of Moosbrugger et al

(2006) and the currently adopted approach by the working draft of CLT design section

in the revised Eurocode 5 1-1 (EN1995-1-1 2015) are compared as well. The latter is

based on the closed-form solution of Moosbrugger et al (2006) fitted on FE simulations

in order to take into account the number of layers (3, 5 and 7-ply). The simplified

closed-form solutions 5.31 and 5.32 for in-plane shear and torsional stiffness give a very

good approximation of the exact closed-form solution of the minimization problem 5.17.

For in-plane shear stiffness, the closed-form solutions return a very good agreement with

the reference behavior. The rotational stiffness that governs the in-plane rotations of

spaced CLT is based on the results of Moosbrugger et al (2006), (see Section 4.3.2)

who based their computations on a representative CLT element having an infinite

number of layers. The resulting expression is independent from the number of layers

and is in better agreement with numerical results for a large number of layers. The

consequence is that for 3-ply and 5-ply such approach overestimates the actual in-

plane shear stiffness, while the closed-form solutions derived in this work are in good

agreement.

Dealing with the torsional stiffness, the derived closed-form expression are in good

agreement with the reference behavior for spaced CLT made of thick lamellas. When

the lamellas are thin, the predicted torsional stiffness with the closed-form expressions

deviates from the numerical results. This is probably due to complex mechanisms diffi-

cult to take into account with a simple rotational spring that connects the beams. For

small gaps the overestimation of the stiffness remains acceptable, while at large spaces

the torsional stiffness is significantly underestimated. A possible explanation of this
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Figure 5.12: Comparison between closed-form solution, FE results and existing ap-
proaches for the in-plane shear stiffness A33. w/h = 3.33
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Figure 5.13: Comparison between closed-form solution, FE results and existing ap-
proaches for the in-plane shear stiffness A33. w/h = 10
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Figure 5.14: Comparison between closed-form solution, FE results and existing ap-
proaches for the torsional stiffness D33. w/h = 3.33
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Figure 5.15: Comparison between closed-form solution, FE results and existing ap-
proaches for the torsional stiffness D33. w/h = 10
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underestimation could be that the torsional warping of thin lamellas is prevented when

they are glued together, leading to a higher global torsional stiffness than expected.

The closed-form approach considers a uniform torsional warping of lamellas and hence

it underestimates the torsional stiffness of spaced CLT made of thin lamellas.

The current approach of the working draft on CLT design of the new version of

Eurocode 5 1-1 (EN1995-1-1 2015) is based on FE fitting parameters as a function

of number of layers for predicting the in-plane shear and torsional stiffness of shortly

spaced crosslam (Bogensperger et al 2010; Silly 2010). This methods give a single value

of reduced stiffnesses by the unglued lateral lamellas, neglecting the influence of spaces

up to 6 mm. For simply laterally unglued panels (s ≈ 0), the reduced in-plane shear

and torsional stiffness are in agreement with the FE homogenization results. However,

as Figure 5.12 to Figure 5.15 show, the small gaps up to 6mm have a non-negligible

influence of the reduction of spaced CLT in-plane stiffnesses. The closed-form solutions

for estimating spaced CLT in-plane shear and torsional stiffness suggested in this thesis

do not require fitting parameters and can precisely take into account the influence of

short spaces. This can lead to a future standardization of the obtained closed-form

solution within this study.

5.6.3 Shear force compliance

From Figure 5.16 to Figure 5.18, the normalized shear force compliance fBG11 predicted

with the closed-form expression 5.75 and the numerical homogenization results are

compared for different lay-ups. At small spaces, all closed-form solutions are al-

most superposed showing no dependency from the lamella’s aspect ratio w/h, while

the numerical homogenization shows dependency. This is because the transverse shear

of lamellas having lateral free edges leads to additional stresses perpendicular to the

grain which are dependent on the lamella’s aspect ratio. This effects are well pre-

dicted by the FEM modeling but they cannot be taken into account by the closed-form

approach. Nevertheless, a very good agreement for the 3-ply configuration is found,

while increasing the number of layers yields progressive overestimation of the shear

force compliance, especially at short spaces. This derives from the kinematic hypothe-

sis of equal rotations of beams and blocks having the same orientation (L or T ) made

in Section 5.4.1. Indeed, if for the 3-ply lay-up such hypothesis is trivially satisfied, the

more the number of layers increases, the more this hypothesis deviates from the actual

kinematic. However, for 5-ply and 7-ply, the closed form expression still returns an

acceptable approximation of the reference behavior. Globally, the derived closed-form

solution for predicting the shear force compliance of spaced CLT gives good agreement

with the reference numerical results at both short and large spaces. On the contrary,

the simplified approach of volume fraction overestimates the reduction of the shear

force compliance, especially at large spaces.
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Figure 5.16: Comparison between closed-form solution, homogenization results and
volume fraction approach for the shear force compliance f11. 3-ply
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Figure 5.17: Comparison between closed-form solution, homogenization results and
volume fraction approach for the shear force compliance f11. 5-ply
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Figure 5.18: Comparison between closed-form solution, homogenization results and
volume fraction approach for the shear force compliance f11. 7-ply

5.6.4 Maximum longitudinal and rolling shear stresses

The suggested closed-form expressions 5.77 and 5.79 for predicting the maximum lon-

gitudinal and rolling shear stresses in spaced CLT under out-of-plane loads are in this

section compared to the FE stresses found with the numerical homogenization (see

Section 4.3.4). Dealing with the longitudinal stresses, there are no stress concentration

(see Figure 4.7) and therefore the maximum value in the top or bottom beams can be

simply identified. In contrast, the rolling shear stresses show stress concentration due

to the presence of free edges (see Figure 4.19). Figure 5.19 shows the distribution of

the rolling shear stress along the width of a transverse lamella. Only half width of the

lamellas is showed, and the central point of lamella x1 = 0 is chosen as the point where

to evaluate the rolling shear stress. Hence the maximum value of rolling shear stress is

numerically evaluated in the central point of the lamella closest to neutral axis of the

panel.

Figure 5.20 to Figure 5.23 presents the relative distance between the numerical and

closed-form maximum stresses as a function of spaces and for different lay-ups. The

relative distance is defined as:

σmax,Norm =
σmax,Num − σmax,Closed

σmax,Num
(5.82)

The closed-form prediction of maximum longitudinal stress returns a very good agree-

ment with reference numerical results, showing relative distance between 0% and 4%.
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Figure 5.19: Distribution of rolling shear stress along the width of the half central
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Figure 5.20: Relative distance between numerical and closed-form maximum longitu-
dinal and rolling shear stresses in spaced CLT. 3ply, w/h = 3.33
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Figure 5.22: Relative distance between numerical and closed-form maximum longitu-
dinal and rolling shear stresses in spaced CLT. 7ply, w/h = 3.33
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Figure 5.23: Relative distance between numerical and closed-form maximum longitu-
dinal and rolling shear stresses in spaced CLT. 7ply, w/h = 10

In particular, for a 3-ply of Figure 5.20 and Figure 5.20, the relative distance is very

close to 0%. For the 7-ply configuration, the closed-form prediction of maximum lon-

gitudinal stress can reach up to 4% of deviation from the FE reference. For both 3-ply

and 7-ply lay-ups, the closed-form prediction of maximum rolling shear stress is gener-

ally overestimated between 4% and 10%. However, in the case of thick lamellas having

short spaces the rolling shear stress stress is underestimated of about 4%. Globally,

the obtained relative distance between -4% and +10% is a very good approximation by

the derived closed-form solutions, considering the extremely lower computational costs

and simplicity of application compared to the FE homogenization. The prediction

of longitudinal stress is accurate, while the maximum rolling shear stresses in spaced

CLT can be predicted with a slight overestimation but less than 10%, that is, from an

engineering point of view, on the safe side but not too conservative.

5.7 Conclusion

In this Chapter, closed-form solutions have been derived for predicting the elastic

mechanical behavior of regularly spaced CLT panels. The Bending-Gradient homoge-

nization scheme presented in Chapter 5 has been applied to a simplified geometry of a

periodic unit-cell made of beams connected by means of wooden blocks. Under mem-

brane and bending strains, the wooden blocks have been modeled as springs having

rotational stiffness, while for transverse shear strains a shear kinematics of the whole

block has been imposed and the associated strain energy has been estimated. Classical

beam equations have been applied in order to derive their contribution to the unit-cell
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strain energy.

The final closed-form expressions for predicting bending, in-plane shear, torsional

and shear force stiffness have been compared to the numerical homogenization. The

bending stiffness expression is equivalent to the Classical Lamination Theory with vol-

ume fractions already successfully compared in Chapter 5. The suggested closed-form

solution for in-plane shear returns a very good agreement with the numerical results.

Moreover, this solution can improve the similar existing approach of Moosbrugger et al

(2006). The obtained expression of torsional stiffness gives good approximation when

the lamellas are thick, while for thin lamellas such solution deviates from the reference

results. The derived expression of shear force compliance for spaced CLT is based on a

simplified hypothesis on the shear kinematics of the unit-cell. For the 3-ply lay-up such

hypothesis is satisfied and the closed-form solution for the 3-ply shear force stiffness is

in very good agreement with numerical results. When increasing the number of layers,

the simplified hypothesis slightly deviates from the actual more complex kinematic.

However, the closed-form solutions for the shear force compliance of 5-ply and 7-ply

still return an acceptable approximation of the reference behavior. Finally, closed-form

expressions for estimating the maximum longitudinal and rolling shear stress acting on

spaced CLT in bending have been derived. The relative distance between the maxi-

mum stresses predicted with the closed-form solution and numerical homogenization is

between -4% and +10%, which is a good approximation.

Globally, the comparison between the closed-form solutions and the numerical ho-

mogenization returns good agreement. The cases where the closed-form solutions de-

viate from the reference results can be useful to understand the limits of application

of such formulations. The simplified expressions derived in this work can be finally

used for predicting the mechanical behavior of standard and innovative spaced CLT in

practical applications.
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Chapter 6

Fire behavior of standard CLT
floors: a stiffness-based approach

Note: This Chapter has been submitted for publication with the title A stiffness-based

approach to predict the fire behavior of CLT floors

Abstract. In this Chapter, the fire behavior of standard CLT floors is investigated

predicting the experimental deflection during fire exposure with advanced and simpli-

fied methods. The simplified approach is the Reduced Cross Section Method (RCSM)

of EN 1995 1-2 (EN1995-1-2 2004), while the more refined modeling is based on heat

transfer prediction and reduced stiffness. The more accurate modeling returned a

better agreement with the experimental reference than two existing RCSM approaches.

Finally, based on the advanced modeling, a proposal for a possible improvement of

the current version of the RCSM is suggested.

Résumé. Ce Chapitre présente une étude sur le comportement au feu des planchers

CLT classiques qui pourrait permettre d’améliorer la méthode de dimensionnement

actuelle. La flèche mesurée pendant l’exposition au feu des planchers est prédite avec

une modélisation avancée et des méthodes simplifiées. L’approche simplifiée est la

Méthode de la Section Réduite (RCSM) de la norme EN 1995 1-2 (EN1995-1-2 2004),

alors que la modélisation plus raffinée est basée sur la prédiction du transfert thermique

et sur les raideurs réduites. La modélisation plus raffinée permet d’obtenir une meilleure

concordance avec la référence expérimentale par rapport à deux approches existantes

basées sur la RCSM. Enfin, en s’appuyant sur la modélisation avancée, une proposition

pour une possible améliorotion de la version actuelle de la méthode RCSM de la norme

EN 1995 1-2 est suggérée.

6.1 Introduction

The development of timber structures has to be followed by a progressive enhancement

of knowledge about their fire safety, especially because of the increasing heights of
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timber buildings that demand higher fire resistance. This is even more important when

dealing with relatively recent products such as CLT panels. Indeed, the current version

of EN 1995 1-2 (EN1995-1-2 2004) includes a fire design method for timber structures

derived in the 80’s (Schaffer 1984) and originally developed for simply supported Glued

Laminated Timber beams. This method, called the Reduced Cross Section Method

(RCSM), allows considering mechanical properties of wood at ambient temperature

combined with a reduction of cross section. Due to its simplicity, this approach is

very common among engineers and can be applied to timber products since wood

has a low thermal conductivity and therefore the temperature gradient end not so far

from the char front (from 35mm to 80mm in ISO fire, depending on the protection).

However, this thermal gradient reduces wood’s mechanical properties near the char

front. This effect is taken into account by the RCSM removing an additional layer of

7mm considered to have no mechanical properties (also called zero-strength layer ZSTL,

or d0 as called in EN 1995 1-2) for design purposes. Actually, such depth depends on the

kind of fire exposure (ISO or natural fire), the time of exposure and the kind of acting

stresses (tension, compression or shear) (Schmid et al 2016). Moreover, recent studies

(Schmid et al 2012; 2014; Lineham et al 2016) showed that the predicted behavior

of timber members exposed to fire using the current RCSM approach is not always

conservative. Furthermore, falling-off of layers can occur for the presence of glued

interfaces between layers which show lower mechanical properties at high temperatures

than wood. Indeed, when the char front is not yet at the glued interface between

layers, the temperature gradient decrease the mechanical properties of glue and can

lead to premature falling-off of layers and a consequent increase in charring rates. This

phenomenon has been observed in CLT floors exposed to fire by Frangi et al (2009b),

and the proposed approach of EN 1995 1-2 (EN1995-1-2 2004) for initially protected

surfaces seemed to well reproduce this delamination phenomenon. However, other

studies found very few falling-off of layers (Craft et al 2011; Osborne et al 2012) or a

falling-off phenomenon that has negligible influence compared to the design in ambient

conditions (Klippel et al 2014). This discrepancy is mainly due to the multitude of

parameters that influence such phenomenon, like the type of glue, the thickness of glue

lines, the kind of fire exposure, the presence of gaps between lateral boards of each

layer and so on. Hence, it is worth to investigate about the influence of a possible

falling-off of layers on the mechanical response of fire-exposed timber members.

Fire tests on loaded timber elements (Schmid et al 2010; Menis et al 2012; Fragia-

como et al 2013) are useful to understand the actual thermal-mechanical behavior of the

specimen, but they are expensive, time-consuming and sometimes it is not straightfor-

ward to obtain reliable information on the actual load-carrying capacity of the panel of

the specimen. This is also due to the fact that, in most of the cases, the test is stopped

before the failure of the specimen for the safety of people and equipment. Therefore,

the evolution of panels deformation during fire exposure is the only information about

the variation of mechanical properties during the fire test.

The aim of this study is to use the measured deflections of three CLT floors exposed

106



6.2 Fire tests on CLT floors

to ISO fire for comparing different methods that can be applied for predicting the

deflection. In this Chapter, two existing RCSM approaches, a more refined method

and a new RCSM approach based on a zero stiffness layer (ZSSL) are compared. Even if

the existing RCSM approaches were originally derived for predicting the residual load-

carrying capacity of timber members, it may be extended to the prediction of deflection,

since the stiffness properties are also affected by the thermal gradient after the char

front. Moreover, once the panel is designed on the basis of the exiting RCSM for the

load-carrying capacity, it could be interesting to investigate about the corresponding

deflection predicted using these methods.

First, the available experimental data of bending tests on fire exposed CLT floors

is introduced. The subsequent section presents the advanced and simplified modeling

in order to reproduce the experimental deflection. Then, the comparison between the

predicted and experimental deflection of fire exposed CLT floors is presented. Finally,

the results are discussed and the main conclusions are summarized.

6.2 Fire tests on CLT floors

6.2.1 Description of fire tests

Three CLT floors from three different producers have been tested in bending while

exposed to ISO fire on their lower face in tension. The out-of-plane load remained

constant during fire exposure and the panels were simply supported on two sides.

Thermocouples were placed in several sections and over the thickness in order to mea-

sure the temperature profiles. The deflection was measured with LVDTs at panel

mid-span and the displacement rate was constantly monitored. The end of tests was

determined when reaching the safety criterion of (i) maximal displacement rate or (ii)

when rupture occurred. Moreover, the fire test could also be stopped when reaching

an established time of fire exposure without satisfying any safety criterion. Table 6.1

shows the main properties of the fire tests on CLT floors. All panels were made of Nor-

way spruce (Picea abies) lamellas of strength class C24 and glued with one-component

polyurethane glue. The panel-to-panel assembling was made with screwed LVL junc-

tion and protected with fire insulating joints that ensured the integrity during fire

exposure. Suddenly after the end of fire test, the specimen was removed to fire expo-

sure and the fire on its exposed side extinguished with water, which took approximately

6-8 min. Figure 6.1 shows that there were no alteration of panels supports geometry

due to fire exposure, allowing therefore the hypothesis of respected simple supported

boundary condition for the subsequent modeling step.

6.2.2 Temperature profiles

The temperature evolution within the panels during fire exposure has been measured

by means of thermocouples along the cross section. Figure 6.2 presents the position
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Test number Test-1 Test-2 Test-3
Span [m] 4.2 4.6 4.6
Width [m] 2.97 2.6 2.97
Thickness [mm] 195 160 182
Load [kN] 40 40 60
Load distribution 4-points 4-points Uniform
Distance of point load from supports [m] 1.2 1.2 -
Sections with thermocouples 9 1 4
Thermocouples per section 9 4 10
Exposure time [min] 150 86 90
Safety criterion reached Displacement rate Failure None

Table 6.1: Properties of the tested specimens of CLT floors

Figure 6.1: Reduced cross section of Test-1 after the fire exposure
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of thermocouples over the thickness for the three tested floors and the directions of

each layer. The shielded thermocouples were of type K with a diameter of 1.5mm and

drilled inside the specimens by means of an appropriate driller that ensured the perfect

straightness and placed in a bore hole having approximately 3mm diameter. Due to
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Figure 6.2: Lay-up of CLT floors and position of thermocouples for the three fire tests.
Dimensions in [mm]

its high number of thermocouples (9 sections along the span and 9 thermocouples per

section) and to the certainty of thermocouple position, Test-1 has the most certain

documentation on temperature profiles over the CLT thickness. For this reason, in

this Chapter are compared the measured and calculated temperatures only for the

Test-1. Concerning the Test-2 and the Test-3 only the comparison of measured and

predicted deflections are presented. In Figure 6.3 are plotted the registrations of Test-1

thermocouples placed at 84 mm from the bottom exposed side during the test. The

Figure 6.3: Evolution of the measured temperatures in Test-1 at 84mm from the bottom
side

solid black line is the considered mean temperature at 84 mm (between layers 4 and 5,

see Figure 6.2) thickness from the nine sections along the panels span. The significant

difference between measured temperatures from different sections derives from the local

delamination of timber pieces that yields a local important increase of temperatures.
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6.2.3 Charring rates

Starting from the temperature profiles registered by the thermocouples during the test

and assuming 300◦C to be the wood charring temperature, one can simply derive the

average charring rates βmean,i over the CLT thickness. Table 6.2 presents the average

computed charring rates for several layers of the three tests during the fire exposure,

considering mean temperatures from the available sections. The numbering of layers

follows the order of layers exposed to fire.

Test-1 Test-2 Test-3
Layer Depth [mm] βmean,i[

mm
min

] Layer Depth [mm] βmean,i[
mm
min

] Layer Depth [mm] βmean,i[
mm
min

]
1 17 0.67 1 40 0.70 1 30 0.63

1/2(2) 16.5 1.38 2 20 1.34 1/2(2) 8.5 1.70
2 33 0.81 2 17 1.15
3 17 0.77 1/2(3) 11 1.35
4 17 0.68 3 22 1.60

Table 6.2: Calculated charring rates of the three fire tests from mean measured tem-
peratures. In green the nearly respected charring rate of solid wood according to EN
1995 1-2 (0.65mm/min) while the red gradient shows higher charring rates

For the three tests, the great increase in the charring rate when passing from the

first to the second layer clearly shows that a delamination of layers occurred. Moreover,

the charring rate within layer 2, directly exposed to fire after the delamination of layer

1, is about the double of the previous charring rate, exactly as established by the design

approach of initially protected surfaces of EN 1995 1-2. Concerning Test-1, the charring

rate across interfaces of layers 2/3 and layers 3/4 nearly respected the charring rate of

solid wood (0.65 mm/min in EN 1995 1-2) and therefore no significant delamination

phenomena should have occurred. Dealing with Test-2, it was not possible to estimate

the charring rates for more than the second layer, due to the shortness of the fire

test. Finally, the calculated charring rates for Test-3 highlighted possible delamination

phenomena for more than the first layer, leading to a significant increase of mid-span

deflection during this Test, as will be presented in the next paragraph. However,

the lower certainty on temperature registration for Test-3 compared to Test-1 may

somehow overestimate the estimated charring rates. The variation of the estimated

charring rates showed in Table 6.2 can be also represented in the char depth/time

graph showed in Figure 6.4.

6.2.4 Deflection of fire exposed CLT floors

During the fire tests on loaded CLT floors, the mid-span, deflection was constantly

measured by means of Linear Variable Displacement Transducers (LVDT) placed on the

upper side in compression. Figure 6.5 plots the evolution of mid-span deflection during

fire exposure of the three tested CLT. Test-1 reached the safety criterion of maximum

displacement rate at 150 minutes, highlighted by the acceleration of the increase of its

mid-span displacement curve versus time. This means also that the specimen was close
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Figure 6.4: Char depth as a function of exposure time for the three tests

Figure 6.5: Evolution of the mid-span deflection during the three fire tests on CLT
floors
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to the failure point at that time of fire exposure. The specimen of Test-2 failed brittely

on the tension side at 86 min of fire test, as the respective displacement curve shows.

Finally, Test-3 was stopped after 90 minutes without reaching any safety criterion.

The evolution of the mid-span deflection for Test-3 shows an acceleration at about one

hour of fire exposure, with a subsequent smoother trend. The calculated charring rates,

based on average measured temperatures, highlighted delamination phenomena at this

exposure time which can explain the increase in displacement rate. The evolution of

Test-1 deflection shows a slight trend variation due to the progressive charring of layers

with or without load-carrying capacity. On the contrary, the floor of Test-2 presents a

nearly linear trend of deflection variation until the failure, since almost only the first

thick longitudinal layer has been affected by the combustion.

6.3 Modeling

In this section the modeling procedure to reproduce the deflection of tested CLT floors

is presented, as well as the design approaches based on the RCSM which will be com-

pared. Two types of advanced modeling are used: heat transfer modeling and thermo-

mechanical modeling. The heat transfer modeling is based on temperature prediction

with SAFIR (ArGEnCo 2011) software. Then, the mid-span deflection of the floor

is predicted using the Bending-Gradient plate theory for thick plates (Lebée and Sab

2011a), combined with woods reduced properties.

6.3.1 Advanced modeling of heat transfer

The temperature evolution over the panels thickness during fire exposure was predicted

with SAFIR software (ArGEnCo 2011). CLT panels were modeled as solid wood, with

perfect connections between layers. The temperature evolution over the panels thick-

ness during fire exposure was predicted with SAFIR software. CLT panels were mod-

eled as solid wood, with perfect connections between layers. The density of specimens

was measured and found to be in accordance with the mean value of 420 Kg/m3 spec-

ified in EN 338 (EN 2009). Preliminary analyses investigated on the value to use for

moisture content, fitting the predicted temperature to thermocouples registrations for

Test-1, leading to the value of 12%. The emissivity (ε) of the modeled wood was set to

0.8, while the coefficients of convection of heated (hh) and unheated (hc) surfaces were

assumed to be respectively 25 W/m2K and 4 W/m2K. One dimensional uniform mesh

of 1 mm was applied as a discretization over the panel thickness for the temperature

prediction. Figure 6.6 plots the comparison between predicted and experimental tem-

perature profiles during Test-1 across the specimen thickness. The falling-off of layer 1

of Test-1 pointed out in Table 2 and Figure 5 probably leads to the sharp increase of

the measured temperatures at 20 minutes (blue curve) by the thermocouples at layers

1/2 interface. Globally, the predicted temperatures are in good agreement with the
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Figure 6.6: Evolution of the predicted and measured temperatures within the floor of
Test-1

measured values during the fire test. However, slightly lower temperatures than the

reference are predicted at high exposure times and for deep sections.

6.3.2 Themo-mechanical modeling

The thermo-mechanical behavior of CLT floors has been modeled with a “multilayer”

model, with each layer having the mesh thickness of 1 mm. Wood is an orthotropic

material with three principal axes and therefore its elastic behavior is defined by three

Youngs moduli, three shear moduli and three Poissons ratios. However, since within

timber boards of CLT is not possible to know the local orientation of wood axes, wood

can be modeled as a transversely isotropic material (Chapter 2) (EN 2009) having

only a longitudinal (0) and transverse (90) direction. Further analyses highlighted the

negligible influence of Poissons ratios on the deflection prediction and therefore are

set to zero. Since no characterization of the raw material has been done, the elastic

moduli of wood according to strength class C24 and a rolling shear modulus (G90) of

50 MPa were considered (Table 6.3). Once the temperature profile is established for

Modulus of Elasticity E0 E90 G0 G90

Stiffness [MPa] 11000 370 690 50

Table 6.3: Stiffness properties of C24 strength class timber according to EN 338

each considered exposure time, the elastic moduli changed as a function of temperature
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using the reduction coefficient kθ,E given by laws of EN 1995 1-2 (Figure 6.7). Different

reductions of Youngs modulus for the upper or lower part of the CLT floor (compression

or tension side) have been taken into account. Since no reduction coefficient of the

shear moduli has been given in EN 1995 1-2, the same law as compressive Youngs

modulus has been adopted for them. Finally, with the reduced properties for each 1mm

Figure 6.7: Effect of temperature on modulus of elasticity parallel to grain of softwood
(EN1995-1-2 2004)

layer, the mid-span deflection is computed with the Bending-Gradient plate theory

for thick layered plates (Lebée and Sab 2011a) already described in Section 4.2.1 of

Chapter Chapter 4. According to this method, the elastic properties of the mesh

are homogenized with a semi-analytical procedure in order to obtain the equivalent

out-of-plane bending and transverse shear stiffnesses of the panel. This calculation

is performed at each increment of exposure time in order to predict the evolution of

mid-span deflection.

6.3.3 Reduced Cross Section modeling

Since recent studies pointed out that the current version of the RCSM is not always

conservative, several attempts to improve the RCSM without changing its simple prin-

ciple have been done. In the next paragraphs, three methods to determine the geometry

of the effective cross section are presented. Once the effective geometry is established,

properties at ambient conditions of C24 timber from EN 338 are combined with the

plate theory in order to predict the mid-span deflection according to the RCSM.

6.3.3.1 Existing RCSM approaches

- RCSM-1. The first existing RCSM approach has been derived by Schmid et al

(2012) fitting results of advanced numerical simulations on timber members in bending.

According to this method, the charring rate is uniform as prescribed in the EN 1995

1-2 (0.65 mm/min), while the zero-strength layer (ZSTL) layer is derived as a function
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of panels total thickness and of the exposed side. Applying this approach to the three

tested panels leads to the following values of ZSTL: Test-1 = 11 mm; Test-2 = 10.7

mm; Test-3 = 10.8 mm.

- RCSM-2. The second simplified design model (Frangi et al 2009b) is based on the

initially protected surfaces approach of EN 1995 1-2, in order to take into account the

delamination phenomenon discussed in the previous section. Hence, a double charring

rate (1.3 mm/min) is considered after the complete charring of each layer (delamination

moment), until the char depth exceeds 25 mm. Beyond these 25 mm of char depth,

the charring rate returns at 0.65 mm/min. Within this method, the value of ZSTL

was not established, hence the value set by the EN 1995 1-2 (7mm) is combined with

RCSM-2.

6.3.3.2 Proposal for improving the RCSM

More than the two presented existing models, a new simplified approach based on the

RCSM is suggested in this study (RCSM-3). The principle is to define the reduced

section of the floors taking into account the reduction factor for modulus of elasticity

kθ,E. In other words, the basic idea is to calculate the reduced thickness of each dis-

cretized mesh by the advanced modeling as a function of the temperature calculated

with Safir software. Then, for each fire exposure time, the zero stiffness layer (ZSSL)

of the floor is the sum of all reduced thicknesses of meshes. The suggested deriva-

Figure 6.8: Principle of determination of the ZSSL as a function of exposure time

tion of the ZSSL is therefore based on the hypothesis that at established reduction of

stiffnesses corresponds the same reduction of geometry (or loss of material). Results

from Chapter 4 showed that this hypothesis is valid when dealing with the bending

deflection, without contribution of transverse shear. On the contrary, such hypothesis

is not anymore valid concerning the transverse shear deflection. However, since the

geometry and the lay-up of the considered panels yield a low contribution of transverse

shear to global deflection (in the range of 10%-12%), this principle can be applied to

the tested panels with a low margin of error. When plotting the estimated ZSSL versus

the time of fire exposure, a plot like the one showed in Figure 6.9 can be found. From

Figure 6.9 it is clear that the ZSSL increases during exposure time, reaching values
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much higher than the constant 7mm prescribed in the EN 1995 1-2. On the basis of

Figure 6.9: Evolution of the estimated zero stiffness layer (ZSSL) for the three tests as
a function of exposure time. The red lines shows the considered values for four ranges of
time

Figure 6.9, values of ZSSL as a function of time are therefore suggested, in order to

take into account the increasing heat flux received by the CLT panel during fire expo-

sure. Finally, a simplified design approach can be obtained setting four values of zero

stiffness layer for four ranges of time as in Table 6.4. The slight differences between

the estimated values of ZSSL for the three tests in Figure 6.9 shows that the suggested

ranges in Table 4 can be used for the new suggested RCSM.

Time t [min] t < 20 20 < t < 40 20 < t < 40 t > 60
ZSSL [mm] 10 14 17 20

Table 6.4: Suggested values of ZSSL as a function of exposure time

6.4 Comparison

The comparison between the predicted and experimental mid-span deflection for the

three fire tests on CLT are showed from Figure 10 to Figure 12. As already introduced in

3.2, the RCSM-1 method is according to Schmid et al (2012), the RCSM-2 is according

to Frangi et al (2009b) and RCSM-3 considers the ZSSL as a function of time. For

the three approaches based on reduced cross section, the k0 used for the calculation of
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ZSTL and ZSSL are computed as in EN 1995 1-2. The advanced modeling based on
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Figure 6.10: Comparison between the experimental and predicted mid-span deflection
of Test-1

reduced properties returns the mid-span deflection that less deviates from experimental

results for the three tests. The evolution of the deflection predicted by all RCSM

methods shows plateau corresponding to the non-contribution of cross layers to global

stiffness but not highlighted by test results. By contrast, the advanced modeling based

on reduced stiffness is able to follow the experimental evolution of deflection, showing

that the actual phenomenon is a progressive reduction of properties and not a reduction

of geometry. The RCSM-3 based on the time-dependency of the ZSSL gives a better

description of the measured deflection compared to other RCSM approaches. The

RCSM-1 approach underestimates the deflection of the three fire tests. Despite of the

delamination of the first layer in Test-1 previously highlighted, the RCSM-2 (derived to

take into account such phenomenon) overestimates the Test-1 deflection. The deflection

of Test-2 is underestimated by both existing RCSM approaches. Dealing with Test-3,

all the RCSM methods show similar slope of the deflection evolution trend, but with

an offset due to the different ways of estimating the residual cross section. Indeed, the

double charring rate considered by RCSM-2 compensates somehow the higher values of

the additional layer to remove of RCSM-3, while RCSM-1 predicts lower deflection since

it considers lower values of the ZSTL. In the final parts of Figure 6.10 and Figure 6.11,

all methods underestimate the deflection. This is because both of specimens were close

to failure at those exposure times and hence the increasing non-linear contributions to

deflection cannot be taken into account by the plate theory.
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Figure 6.12: Comparison between the experimental and predicted mid-span deflection
of Test-3
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6.5 Discussion

The stiffness-based approach (RCSM-3) presented in this Chapter shows that, in most

of the cases, the calculated deflections are in agreement with the measured deflections

while the existing RCSM approaches globally deviate from test results. However, as

is known, the existing RCSM approaches were originally derived for predicting the

load-carrying capacity of timber elements, hence, the differences observed between

measured and calculated deflections are understandable. Consequently, in order to

correctly model the fire behavior of CLT floors, it could be interesting to enhance the

research in order to define the best method for the designs of these structural elements.

Perhaps the method based on ZSSL suggested in this study could be interesting for

CLT floors, but has to be further investigated for different configurations and different

load levels.

Dealing with the sensitivity of predicted results, like in every modeling procedure,

the predicted results can be affected by the variation of input material parameters.

Unfortunately, the raw material of CLT has not been tested in ambient conditions and

the input mechanical properties for the modeling are based on mean stiffnesses given

by C24 strength class in EN 338. However, the model to predict the panels mechanical

behavior in ambient conditions implemented in this work (the plate theory) is based

on linear elasticity, like common engineering methods. Hence, a given variation of

wood stiffnesses yields the same variation of mechanical response. On the contrary,

physical properties of the modeled material such as conductivity, relative humidity

or volume specific heat can lead to significant variation of predicted temperatures and

therefore even greater variation of the predicted mechanical behavior with the advanced

modeling. More accuracy in determining the physical and mechanical properties of the

raw material is therefore encouraged for future researches.

The delamination phenomenon is a complex mechanism influenced by a multitude

of parameters and therefore very difficult to predict. It can occur locally, with delam-

ination of small pieces of wood, or with a complete falling-off of layer. The charring

rate estimation with thermocouples registration pointed partial delamination phenom-

ena for the three considered tests. In particular, the calculated charring rates of Test-3

pointed out delamination of more than the first layer. The same Test-3 showed an ac-

celeration of mid-span deflection that may be due to such delamination phenomenon.

On the contrary, the less pronounced delamination of Test-1 and Test-2 had no visible

influence on the global evolution of deflection. This discrepancy confirms the complex-

ity of this phenomenon and suggests enhancing the studies about the effective influence

of delamination on structural fire safety of laminated timber structures. It seems that

the existing RCSM-2 model can lead to quite conservative results in the cases without

delamination and to better results in cases of delamination.
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6.6 Conclusion

In the present Chapter, the experimental deflection of fire exposed CLT floors has

been predicted with advanced modeling based on reduced properties and the simplified

approach of the RCSM. The best way to correctly simulate the fire behavior of CLT

floors is by means of an advanced modeling. However, the methods based on the

RCSM approach are more convenient for practical applications by engineers. This is

the reason why it would be interesting to find the best RCSM method for the calculation

of deflection and perhaps the design of CLT in fire conditions.

The results presented within this study show that RCSM-3 based on the time-

dependency of the additional layer to remove could be a relevant method for simulating

the fire behavior of CLT floors. This approach is a research path which seems interesting

to investigate, in order to define the relevant method for the fire design of CLT floors

to be taken into account by the on-going revision process of EN 1995 1-2 (EN1995-1-2

2004). However, this method has to be further investigated for different configuration

of floors and under different load conditions.
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Chapter 7

Conclusions and outlooks

In the present thesis, the mechanical behavior of regularly spaced CLT panels has been

investigated by means of modeling and experimental validation. The influence of both

short spaces of standard CLT and large spaces of innovative panels on the mechanical

response has been analyzed.

First, continuous or discontinuous layers of standard CLT panels have been modeled

with an equivalent layer model based on simplified hypotheses on mechanical proper-

ties. The combination with the exact 3D analytical solution (Pagano 1969) and a

failure criterion for wood (van der Put 1982) returned a rather good comparison with

a reference bending test of the literature (Hochreiner et al 2013). The 3D solution en-

abled a good description of local punching effects and interactions between shear stress

and stress perpendicular to the grain. From the modeling-experimental comparison, it

appeared that gluing lateral boards have a negligible influence on bending stiffness and

a moderate influence on failure load and failure modes. The discontinuous equivalent

layer returned the best fit with the experimental evidence. Then, parameter studies

about the influence of several CLT properties on elastic and failure behavior pointed

out interesting features for CLT applications. In particular, innovative orientations of

transverse layers can, in some cases, lead to an improved mechanical behavior, con-

firming recent experimental studies of the literature (Chen and Lam 2013; Buck et al

2016). However, there are also several cases where an innovative lamination of CLT

layer can yield significant losses in the load-carrying capacity of the panel.

The equivalent-layer approach is not able to exactly quantify the influence of small

gaps on the mechanical behavior, as well as to predict the effect of increasing the

spaces between lamellas up to hundreds of millimeters. Hence, a reference experimental

behavior of spaced CLT was set. Dealing with the out-of-plane behavior, 4-points

bending tests have been performed on standard and innovative panels. Test results

highlighted that enlarging the spaces yields a progressive increase of the shear part of

the deflection and a failure mode transition from bending to transverse shear. The

reference in-plane shear behavior of spaced CLT diaphragms was chosen on the basis

of an experimental investigation of the literature (Brandner et al 2015) on standard

panels.
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The identified existing approach for predicting spaced CLT out-of-plane behavior is

combining a method for massive panels (Kreuzinger 1999) to wood properties reduced

by the volume fraction within the panel. Dealing with the in-plane shear stiffness, the

closed-form solution by Moosbrugger et al (2006) is applied to both short and large

spaces between lamellas. Since such existing methods are simplified approaches, a more

refined modeling is needed for predicting spaced CLT mechanical behavior and for en-

abling a better understanding of spaced CLT mechanics. The great influence of shear

effects when increasing the spaces motivated the choice of a thick plate theory (Lebée

and Sab 2011a) for predicting the elastic behavior of spaced CLT. A homogenization

scheme based on FE energy equivalence with a periodic unit-cell (Lebée and Sab 2012)

was implemented in order to apply the plate theory to the panel’s geometry. It turns

out that the reduction of bending stiffness as a function of increasing spaces follows

the volume fraction within the panel. Hence, the volume fraction approach returns the

same results as homogenization and is in good agreement with test results. Dealing

with in-plane shear stiffness, in most of the cases the existing closed-form solution by

Moosbrugger et al (2006) deviates from homogenization results, which returns good

agreement with the experiment of the literature. Finally, the reduction of the shear

force stiffness due to the presence of spaces does not follows the volume fraction within

the panel, leading to an overestimation of the stiffness by the volume fraction approach.

In contrast, the homogenization model returned very good agreement with the exper-

imental values of shear force stiffness. Finally, the maximum longitudinal and shear

stresses of the tested panels at failure point predicted with the homogenization scheme

were in good agreement with mean tensile and rolling shear strength of the literature.

This confirms the experimental transition from bending to shear failure modes observed

during the 4-points bending tests.

The computational costs of the FE homogenization modeling motivated the deriva-

tion of approximated closed-form solutions for predicting spaced CLT elastic behav-

ior. The unit-cell was modeled as 3D space frame of Timoshenko beams connected

each other with deformable wooden blocks. The deformable blocks have been sim-

ply modeled as rotational springs when submitted to in-plane shear, following several

approaches of the literature. By contrast, when submitted to transverse shear, a trans-

verse shear kinematics has been imposed to the whole block. Basically, the same energy

equivalence principle of the FE homogenization has been applied to a simplified geom-

etry of the unit-cell in order to estimate the strain energy with closed-form expression.

The derived closed-form expression of bending and membrane stiffnesses are based on

the volume fraction approach and therefore return very good match with the reference

behavior. Dealing with in-plane shear and torsional stiffnesses, simplified closed-form

solutions have been suggested, which predict stiffnesses in agreement with the reference

numerical results. Several simplified hypotheses have been done as well on the trans-

verse shear kinematics of the unit-cell, leading to closed-form expressions for spaced

CLT transverse shear stiffness giving a good agreement with the numerical homoge-

nization. The derived closed-form solutions give a better prediction of in-plane shear,
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torsional and transverse shear stiffnesses of standard CLT than the approach currently

adopted by the working draft for CLT design of the revised version of Eurocode 5 1-1

(EN1995-1-1 2015). This suggests a possible future standardization of the obtained

closed-form solutions for predicting the stiffnesses of crosslam having lateral spaces up

to 6 mm (EN-16351 2016). Finally, closed-form solutions for predicting the maximum

longitudinal and rolling shear stress of spaced CLT have been derived. The comparison

with FE maximum stresses pointed out that the closed-form expressions return a good

prediction of the maximum stress. The longitudinal stresses are very well predicted,

while the rolling shear stresses are generally slightly overestimated up to 10% that is,

from an engineering point of view, on the safe side but not too conservative.

The study on the fire behavior of standard CLT floors aimed to suggest a possible

improvement of the existing structural fire design for timber members of the Eurocode

5 1-2 (EN1995-1-2 2004) reproducing the experimental data with advanced and sim-

plified modeling. The deflection of CLT floors exposed to fire has been used to obtain

information on the elastic properties of the panel during fire exposure. The available

experimental data included three fire tests on out-of-plane loaded CLT panels. The

advanced modeling was based on FE heat transfer prediction and reduced stiffnesses

with the Eurocode’s law. The simplified modeling was based on the Reduced Cross

Section Method (RCSM) of the Eurocode 5 1-2 which considers reduced geometry

instead of reduced properties of wood during fire exposure. More than two existing

RCSM approaches, a proposal for improving the current version of the RCSM has been

suggested. The principle is to use the heat transfer predicted with the advanced mod-

eling in order to make the the additional layer to remove dependent on the exposure

time. For the three fire tests, the experimental deflection has been well predicted with

the advanced modeling, while the existing RCSM deviated from the reference deflec-

tion. In contrast, the suggested approach based on time-dependent additional layer

to remove returned a good comparison with the advanced modeling and test results.

This approach of considering a time-dependent value of the additional layer to remove

within the RCSM may be a research path to follow in order to find the relevant method

for the fire design of CLT panels.

7.1 Limitations

This thesis deals with the elastic and deterministic mechanical behavior of spaced CLT.

Dealing with timber failure behavior, there is a great influence of natural variability

such as wood’s defects or knots. However, this variability has not been taken into

account, as well as damage or ductile effects of wood constitutive behavior. Therefore,

timber failure in the present work, especially longitudinal tensile failure, has been

defined as the reach of strength values by means of elastic stresses.

Dealing with the homogenization modeling, for both FE and closed-form approaches

the mirror symmetry with respect to panel’s mid plane has to be satisfied. Moreover,
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the derived closed-form expressions for stiffnesses and maximum stresses consider all

layers having the same thickness. This in order to obtain closed-form solutions as

simple as possible. However, the suggested closed-form expressions could be extended

to panels having layers with varying thickness, at the price of more complex equations.

Due to time constraints, the terms fBG33 and fBG66 related to the additional Bending-

Gradient shear variables R3 and R6 have not been compared to the reference FE

homogenization. Hence, the suitability of the suggested closed-form approach have to

be further checked to return a good estimation of also these additional terms of the

shear force compliance.

The suggestion for a possible improvement of the current fire design model in Chap-

ter 6 has been based upon a “stiffness approach”, because of the deflection of fire

exposed CLT floors used as the mechanical information to predict. Therefore, the

additional layer to remove for the RCSM modeling derived as a function of exposure

time compensate the losses in stiffness (zero stiffness layer). However, the fire design of

timber members is mostly governed by the Ultimate Limit States, and therefore the ad-

ditional layer to remove should compensate the losses in strength (zero strength layer).

From an engineering point of view this approximation can be considered reasonable,

but it has to be kept in mind when comparing existing RCSM approaches in Chap-

ter 6 which have been derived for predicting the load-carrying capacity of fire-exposed

timber members.

7.2 Outlooks

The present thesis is a first attempt to explore the possibilities of application of

lightweight CLT panels in the modern timber construction. Furthermore, the me-

chanical behavior of standard CLT panels has been investigated in ambient and fire

conditions as well. Based on the comparison between predicted and experimental re-

sults, simplified modeling tools useful for practical applications have been derived.

The approach based on elastic and deterministic modeling can be improved con-

sidering the uncertainties deriving from timber natural variability. This involves a

probabilistic modeling that can be integrated in future in the presented modeling.

This can be particularly interesting since the CLT “system effect” that increases the

raw material stiffness and strength (see Chapter 2) is progressively lost when the spaces

increase, leading isolated knots exposed in free edges (see Chapter 4). This effect may

be correctly modeled with a probabilistic approach.

As already introduced in the previous paragraph, the developed modeling tools are

valid for simplified geometry of spaced CLT. Hence, an outlook of the present work

could be studying more complex geometries of spaced CLT panels, with layers having

different thicknesses or different orientation of transverse layers that could limit the

shear compliance of the panel (see Chapter 2). Moreover, CLT offers the potential

application to free-form structures, in which the panels can be entirely rotated, with
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all layers in a cross-grain condition (Cheng et al 2016). In this case, the additional

shear variables handled by the Bending-Gradient plate theory are needed in order to

correctly predict transverse shear effects. The periodic alternation along the panel

could be different than wood/insulating material. For instance, massive panels having

a regular alternation of lamellas of different strength class or different species can be

modeled exactly as presented in this thesis. This can respond to the current demand

within the timber construction field of using local wood species.

Finally, the stiffness-based approach suggested in Chapter 6 for improving the cur-

rent fire design model of EN1995-1-2 (2004) suggests a research path that may be fol-

lowed in future in order to investigate about the time-dependency of the zero strength

layer. In addition, the influence of short spaces between lateral lamellas in CLT ex-

posed to fire on the thermo-mechanical response may be further investigated coupling

the modeling tools in ambient and fire conditions developed in this thesis.
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