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Remember that all models are wrong;

the practical question is how wrong do they have to be to not be useful.

George Edward Pelham Box
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1
INTRODUCTION

In this thesis we use the framework of Bayesian statistics to quantify the effect of mod-
elling uncertainties on the predictions made with eddy-viscosity turbulence models. The
two keywords here are ’modelling uncertainties’ and ’predictions’. Firstly, by uncertain-
ties we mean a lack of knowledge that is present in multiple aspects of turbulence mod-
els. Not only uncertain input coefficients, but also the assumptions inherent in the
mathematical form of the turbulence models should be acknowledged. Furthermore,
the scenario in which a model is applied can also introduce uncertainties. Secondly it
is important to note that, while all turbulence models are calibrated to fit a set of exper-
imental data, this does prove their predictive capability. In fact, due to the mentioned
modelling uncertainties, the validity of a single deterministic prediction is simply un-
known. To circumvent this problem, a predictive simulation with quantified uncertainty
should be made. The authors of [7] define the term ’predictive simulation’ as follows

The systematic treatment of model and data uncertainties and their propaga-

tion through a computational model to produce predictions of quantities of

interest with quantified uncertainty.

Performing such predictive simulations for RANS turbulence models is the general aim
of this thesis.

This thesis begins with a brief introduction to uncertainty quantification with the
Bayesian statistical framework. In Chapter 2 this framework is applied to the k−ε turbu-
lence model. We perform multiple calibrations under different flow scenarios within a
single, computationally inexpensive, class of flow. This allows us to investigate the vari-
ability of the input coefficients, and to develop a predictive methodology that uses the
observed variability in order to make a prediction for an unmeasured scenario. In Chap-
ter 3 Bayesian calibrations are performed on a set of different turbulence models. A more
robust predictive framework based on Bayesian Model-Scenario Averaging is also devel-
oped in this chapter. In order to apply the developed uncertainty quantification tech-
niques to computationally expensive flows, efficient surrogate models are required. This

1
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is the subject of Chapter 4, in which we develop a version of the Simplex Stochastic Col-
location method with improved performance characteristics. This collocation method is
merged with our Bayesian Model-Scenario Averaging framework in Chapter 5, with the
goal of obtaining turbulence model uncertainty estimates for a computationally expen-
sive transonic flow over an airfoil. In the final chapter we give our conclusions regard-
ing the developed uncertainty quantification methodologies, and we outline our recom-
mendations for future research.

1.1. COMPUTER PREDICTIONS WITH QUANTIFIED UNCERTAINTY

Historically, scientific predictions were made by either theories (mathematical models),
or observations (experiments). In many instances, a mathematical model has param-
eters in need of tuning, so that the model may represents the physical phenomenon
of interest as best as possible. The closure coefficients found in turbulence models are
an example of this. Unfortunately, the exact values of these parameters are not always
known, and may well not exist, which introduces a source of error in the model. Gen-
erally, these coefficients are tuned based upon available experimental data. However,
the observations themselves are also not free from error, since the measurements are
corrupted by imperfect instruments or slight variations in the experimental conditions.

The rise of the digital computer has led to the establishment of the third pillar of
science, i.e. computer modelling and simulation. This allowed for mathematical models
of great complexity to be simulated, or perhaps more accurately, to be approximated.
Because, before a mathematical model can be simulated on a computer it often needs
to be discretized, introducing yet another source of error. Thus, all possible methods for
scientific prediction are encumbered by their own specific source of uncertainty, which
is schematically depicted in Figure 1.1

Figure 1.1: The imperfect paths to knowledge, source [7]

A framework which provides a methodology for coping with these imperfections is
Bayesian statistics, named after the Reverend Thomas Bayes [1]. The Bayesian frame-
work is discussed in further detail in Section 1.2. Here we first discuss the stages of pre-
dictive science, as defined in [7]
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1. Identifying the quantities of interest: A computer simulation should begin with
a clear specification of the goals of the simulation. This is the specification of the
target output, or ’quantities of interest’ (QoI). This is of great importance because
models might be well suited to represent one target functional, but completely in-
adequate of representing another. For instance, a potential flow model may be
adequate to predict aerodynamic lift on airfoils at low angle of attack, but it is to-
tally incapable of predicting (friction and pressure) drag.

2. Verification: This is the process designed to detect errors due to the discretization
of the mathematical model, and errors due to incorrect software implementation,
i.e. software bugs.

3. Calibration Calibration is the activity of adjusting the unknown input parameters
of the model until the output of the model fits the observed data as best as possible.
This amounts to solving an inverse problem, which is often ill-posed. Nonetheless,
as we shall see in Section 2.4, the Bayesian framework provides us with a means of
regularization.

4. Validation The validation process in meant to assess to what degree the (cali-
brated) model is capable of predicting the QoIs of step 1, and can thus be con-
sidered as a forward problem. This process requires a carefully designed program
of experiments in order to determine how much the model deviates from obser-
vation. These observations are only used for comparative purposes, in no way are
they used to inform the model. A complication is that the QoIs are not always
accessible for observation. It is up to the modeller to determine what degree of
disagreement invalidates the model for predicting the specified QoI’s.

The Bayesian framework represents uncertainty as probability, which is normally
used to represent a random process. However, one type of uncertainty, namely aleatoric

uncertainty, does indeed arise through natural random variations of the process. This
type of uncertainty is irreducible, in that more data or better models will not reduce
it. Epistemic uncertainty on the other hand, arises from a lack of knowledge about the
model, e.g. unknown model parameters or mathematical form. This type of uncertainty
is usually dominant and it can in principle be reduced. Epistemic uncertainty is also rep-
resented through probability in Bayesian statistics. In this case, the uncertainty repre-
sents our confidence in some proposition, given all the current observational data. More
importantly, in the Bayesian framework this confidence can be updated once more data
becomes available.

Within the Bayesian framework, the validation phase requires uncertainties to be
propagated through the model, as it is a forward problem. For this purpose one might
use Stochastic Collocation Methods, as described in Chapter 4. But first a Bayesian cal-
ibration must be performed. It should be noted however, that uncertainty propagation
can occur during the calibration phase as well, for instance when the effect of the prior
distribution is examined. A general overview of Bayesian statistics is given in the next
section, followed by a section outlining the application of Bayesian statistics to com-
puter models.
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1.2. GENERAL BAYESIAN DATA ANALYSIS

By Bayesian data analysis, we mean practical methods for making inferences from data
using probability models for quantities we observe and for quantities we wish to learn
about. The general process for Bayesian data analysis can be broken down into the fol-
lowing three steps

1. Setting up a full probability model: a joint-probability distribution for both the
observed and unobserved quantities in the problem.

2. Conditioning on observed data: calculating the conditional posterior probability
distribution of the unobserved quantities given the observed data.

3. Evaluating the fit of the model: evaluate if the model fits the data, how sensitive
are the results to the assumptions of step 1 etc.

Note that the second and third step correspond to the calibration and validation phase of
Section 1.1 respectively. However, it should also be noted that the breakdown of steps in
Section 1.1 is designed with a clear ultimate goal in mind (the prediction of the defined
quantities of interest), which is lacking from the above statement.
Inferences 1 are made for two kinds of unobserved quantities, i.e.

1. Parameters that govern the model, which we denote by the column vector θ.

2. Future predictions of the model. If we let z = (z1, z2, · · · , zn) 2 denote the observed
data, then the currently unknown (but possibly observable) future predictions are
denoted by z̃.

Finally, we also have a class of explanatory variables x. These are variables that we do
not bother to model as random, but who could possibly could be moved into the z (or
possibly θ) category if we choose to do so. For instance exactly specified boundary con-
ditions, or applied pressure gradients fall into this category. Our final word on notation
is that we use p (· ) denote a probability density function.

In short, the aim of Bayesian data analysis is to draw conclusions about θ (cali-
bration) through the conditional posterior distribution p (θ | z), or about z̃ (prediction)
through p (z̃ | z). We can achieve this via the application of Bayes’ rule

p (θ | z) =
p (z | θ) p (θ)

p (z)
(1.1)

where the law of total probability states that p(z) =
∫

p(z | θ)p(θ)dθ. Bayes’ rule follows
immediately from the definition of conditional probability, see for instance [4]. Since

1Statistical inference is the process of drawing conclusions from numerical/observed data about unobserved
quantities.

2Depending on the dimension of the individual entries zi , z can be either a vector or a matrix.
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this denominator does not depend upon θ, it is often omitted to yield the unnormalized
version of (1.1)

p (θ | z) ∝ p (z | θ) p (θ) (1.2)

The term p (z | θ), i.e. the distribution of the data given the parameters is called the like-

lihood function, and it provides the means for updating the model once more data be-
comes available. The term p(θ) is the prior distribution of θ, i.e. it represents what we
know about the parameters before the data became available.

If our prior knowledge of θ is limited, then choosing p(θ) as a uniform distribution
which includes all possible values for θ is often appropriate 3. Such a prior is called a
non-informative prior. If we do have some prior information about the distribution of
θ we can encode it into p(θ) to obtain a so-called informative prior. A special class of
informative priors are the conjugate priors, which are priors that have the same para-
metric form as the posterior. For instance, if the posterior is normally distributed then
p(θ) = exp

(

Aθ2 +Bθ+C
)

is the family of conjugate priors with the same parametric
form as the normal distribution.

A proper prior is one that integrates to 1 and does not depend upon the data. How-
ever, for a non-informative prior this is not always the case. Assume that we have a nor-
mal likelihood, then a non-informative prior (one proportional to a constant) integrates
to infinity over θ ∈ (−∞,∞). For the normal case this is not a real problem because the
resulting posterior distribution (a constant times the normal likelihood) is still proper,
i.e. it has a finite integral. But, we have no guarantee that this will happen for all distri-
butions. Therefore, when using improper priors, one must always check if the resulting
posterior distribution is proper.

The posterior predictive distribution conditional on the observed z can be written as

p (z̃ | z) =
∫

p (z̃,θ | z)dθ =
∫

p
(

z̃ | θ,z)p(θ | z
)

dθ =
∫

p
(

z̃ | θ)p(θ | z
)

dθ (1.3)

The last step follows because z̃ and z are assumed to be conditionally independent given
θ, i.e. p(z̃|z,θ) = p(z̃|θ).

A general feature of Bayesian analysis is that the posterior distribution is centered
around a point which represents a compromise between the prior information and the
observed data. This compromise will be increasingly controlled by the data if the sample
size, i.e. n in z = (z1, · · · , zn), increases.

Note that since we have to choose a probability model for p(· ), we have no guarantee
the the chosen model is indeed a good model. This is something that should be evalu-
ated in the third step of Bayesian data analysis, or perhaps better suited, the validation
phase described in chapter 1.1. A second option is to do the Bayesian analysis using
multiple stochastic models. In this case some models can already be invalidated after
the calibration phase, as described in for instance [2].

We close this section with some useful formulas from probability theory

3This is known as the ’principle of insufficient reason’, i.e. if we have no prior information on the parameters,
it is reasonable to model them with equal probability.
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Ez (θ) = Ez (Eθ (θ | z)) (1.4)

Varz (θ) = Ez (Varθ (θ | z))+Varz (Eθ (θ | z)) (1.5)

Equation (1.4) states that the prior mean of θ is the average of all possible posterior
means over the distribution of the data. Equation (1.5) states that the posterior vari-
ance is on average smaller than the prior variance by an amount that depends upon the
variance of the posterior means over the distribution of the data. This is in line with intu-
ition, since one would expect that the posterior distribution (due to the incorporation of
the data) shows less variation than the prior distribution. Thus, the larger the variation
of E (θ | z), the more potential we have for reducing the uncertainty in θ. In other words,
if θ is very sensitive to the data, then given a certain measured z we will be able to obtain
an informed distribution of θ. We will see examples of this in Chapters 2 and 3.

1.3. BAYESIAN DATA ANALYSIS APPLIED TO COMPUTER MOD-

ELS

Kennedy and O’Hagan [5] wrote a general paper which deals with the Bayesian calibra-
tion of (deterministic) computer models. It was the first paper of its kind that took into
account all sources of uncertainty arising in the calibration (and subsequent prediction)
of computer models. These sources of uncertainty are

1. Parametric uncertainty: This is the uncertainty which arises due to insufficient
knowledge about the model parameters θ. In the context of computer models, θ
can be thought of as a vector of unknown code inputs.

2. Model inadequacy: Even if we would know the exact value of θ, there is still no
such thing as a perfect model. Due to for instance modeling assumptions, the
model output will not equal the true value of the process. This discrepancy is the
model inadequacy. Since the process itself may exhibit some natural variations,
the model inadequacy is defined as the difference between the mean value of the
real-world process and the model output at the true values of the input θ.

3. Residual variability: Computer codes may not always give the same output, even
though the input values remain unchanged. This variation is called residual vari-
ability. It may arise because the process itself is inherently stochastic, but it may
also be that this variation can be diminished is we could recognize and specify
some more model conditions. This can be tied the the discussion of aleatoric and
epistemic uncertainties of Section 1.1. In any case, the Bayesian framework does
not discriminate between these two types of uncertainties by representing them
both with probability distributions.

4. Observation error: This is the difference between the true value of the process
and its measured value.

5. Code uncertainty: The output of a computer code, given a set of inputs θ is in
principle not unknown. However, if the code is computationally expensive it might
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be impractical to actually run the code at every input configuration of interest.
In this case uncertainty about the code output can also be incorporated into the
Bayesian framework.

The authors of [5] use Gaussian processes, mainly for convenience, to model both
the computer code and the model inadequacy. This model includes the relationship
between the observations zi , the true process ζ(· ) and the model output δ(· , · ) subject to
code uncertainty. It is given by

zi = ζ(xi )+ei = ρδ(xi ,θb)+η(xi )+ei , (1.6)

where ei is the observational error for the i th observation. The observational errors
ei are modelled as independently normally-distributed variables N (0,λ). Note that the
zero mean indicates that it is assumed that on average the measured values zi are cor-
rect, i.e. there is no bias in the measurement. The term ρ is a constant (unknown) hyper
parameter and η(· ) is a term to represent the model inadequacy. Equation (1.6) implies
that the true value is modelled as

ζ(xi ) = ρδ(xi ,θb)+η(xi ), (1.7)

where θb are the ’best-fit’ model parameters. Thus, these are the values for θ which lead
to the closest fit to the experimental data, such that (1.7) is valid. Obviously the best-
fit values of θ are unknown a-priori, hence the need for calibration. Also note that if the
code can be sampled at every point of interest (no code uncertainty), the stochastic term
ρδ reduces to the deterministic code output y computed using θb . Equation (1.6) is just
one way of modelling the relationship between code output and the real-life process,
in Chapter 2 we will use a different form. This chapter also describes the calibration
procedure and the modelling choice made for η.

The described statistical framework has found many applications in physical prob-
lems, for instance in thermal problems [3] or in climate-change models [10]. Applica-
tions to structural mechanics also exist, such as [8, 11]. In the field of fluid mechanics
the Bayesian framework is also extensively used to quantify the uncertainty in numer-
ical flow models. For instance the authors of [9] use a Bayesian multi-model approach
to quantify the uncertainty in groundwater models, and in [6] thermodynamic uncer-
tainties in dense-gas flow computations are accounted for. In this thesis the Bayesian
framework is applied to turbulent flow problems, which is the subject of the next chap-
ter.
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2
BAYESIAN ESTIMATES OF

PARAMETER VARIABILITY IN THE

k −ε TURBULENCE MODEL

2.1. INTRODUCTION

Computational Fluid Dynamics (CFD) and Reynolds-averaged Navier-Stokes (RANS) sim-
ulations in particular form an important part of the analysis and design methods used in
industry. These simulations are typically based on a deterministic set of input variables
and model coefficients. However real-world flow problems are subject to numerous un-
certainties, e.g. imprecisely known parameters, initial- and boundary conditions. For
input uncertainties described as probability density functions (pdfs), established meth-
ods exist for determining the corresponding output uncertainty [5, 6, 40]. Furthermore,
numerical predictions are affected by numerical discretization errors and approximate
physical models (turbulence models in RANS). The former may be estimated and con-
trolled by means of mesh refinement (e.g. Ref. 7), but no analogue exists for the latter.
This error, which we call model inadequacy in the following, is therefore the only major
source of simulation error that remains difficult to estimate. It is therefore the bottle-
neck in the trustworthiness of RANS simulations. This chapter describes an attempt to
construct an estimate of model inadequacy in RANS for a limited set of flows, and for a
single turbulence closure model, tke k −ε model in this case.

Within the framework of RANS, many turbulence models are available, see e.g. Ref. 39
for a review. There is general agreement that no universally-”best” RANS turbulence
closure model is currently known; the accuracy of models is problem-dependent [42].
Moreover, each turbulence model uses a number of closure coefficients which are clas-
sically determined by calibration against a database of fundamental flows [30]. Model
performance may strongly depend on these values, which are often adjusted to improve

This chapter is based on: W.N. Edeling, P. Cinnella, R.P. Dwight, H.Bijl, Bayesian estimates of the parameter
variability in the k −ε model, Journal of Computational Physics, 258 (2014) 73–94.
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model accuracy for a given set of problems, or for a specific flow code. They are almost
always assumed to be constant in space and time. For a given model there is sometimes
no consensus on the best values for these coefficients, and often intervals are proposed
in the literature [26].

Our approach is to represent model inadequacy by uncertainty in these coefficients.
Summarized we proceed as follows: (1) we define the class of flows for which we wish
to estimate the error, in this article turbulent boundary-layers for a range of pressure
gradients. (2) We collect experimental data for a number of flows of this class. (3) We use
Bayesian model updating to calibrate the closure coefficients against each flow in this
data-set, resulting in posterior distributions on the coefficients for each flow [8]. (4) We
summarize the large amount of posterior information using highest posterior-density
(HPD) intervals. This summary gives intervals on the coefficients which represent both
the spread of coefficients within the flow-class, as well as the ability of the calibration to
provide information about the values these coefficients should take in each flow. (5) For
a new flow of the class, for which there might be no experimental data, we then perform
a simulation using the model with the specified coefficient uncertainties. The resulting
interval on the model output is our probabilistic estimate of the true flow.

Representing model inadequacy by uncertainty in closure coefficients is reasonable
since the coefficients are empirical: they must be seen as "tuning parameters" associated
to the model and, in general, they are not expected to be flow-independent. Furthermore
each coefficient is involved in an approximation of the underlying physics, and therefore
is closely related to some component of the model inadequacy. Finally an error estimate
based on coefficient uncertainty has the virtue of being geometry-independent – that is
we do not need to assume a particular flow topology to apply the estimate. We do not
claim that it is possible to approximate all turbulence model inadequacy in this way. The
method does rely on being able to approximate most of it, and we demonstrate that this
is possible for the limited class of flows we consider.

The key step in the method is the calibration of the coefficients. For the calibra-
tion phase we follow the work of Cheung et al. [3], in which a Bayesian approach was
applied to the calibration of the Spalart-Allmaras [32] turbulence model, taking into ac-
count measurement error [18]. In that work, for a given statistical model, the coefficients
were calibrated once on all the available measured velocity profiles and wall-shear stress
components. Model inadequacy was treated with a multiplicative term parameterized in
the wall-normal direction with a Gaussian process, following the framework of Kennedy
and O’Hagan [12]. In the present work, we perform an analysis by performing separate
calibrations on multiple flows in our class, using the k −ε model, with Launder-Sharma
damping functions [16]. Using uniform priors and calibrating against a large, accurate
data-set containing boundary-layer profiles at different pressure gradients, results in in-
formative coefficient posteriors for each flow. The multiplicative model inadequacy term
is retained to capture the part of the error which cannot be captured by the closure coef-
ficients alone.

We choose the pressure gradient as the independent variable in our flow class be-
cause it is known to have a large impact on the performance of k −ε model [14, 27, 37].
Approaching this problem in a Bayesian context allows us to estimate how much this
deficiency can be reduced by choice of closure coefficients alone, and how much the co-



2.2. THE k −ε TURBULENCE MODEL

2

11

efficients have to vary to match measurements at all pressure-gradients. The spread of
coefficients is an indication of flow-independence of the model, and we expect better
models to have smaller spreads.

This chapter is laid out as follows: we briefly outline the k −ε model in Section 2.2.
Section 2.3 describes the experimental data used for the calibration, and Section 2.4 de-
scribes our calibration framework, in particular the statistical model and priors. The re-
sults, including verification, HPD analysis of calibration posteriors, and prediction using
the obtained coefficient uncertainties are described in Section 2.5. Specifically, our con-
fidence interval estimate for error due to turbulence modelling inadequacy is given in
Section 2.5.7. Finally, Section 2.6 summarizes the main findings and provides guidelines
for future research.

2.2. THE k −ε TURBULENCE MODEL

The general simulation approach considered in this chapter is the solution of the RANS
equations for turbulent boundary layers, supplemented by a turbulence model. RANS
equations remain up to now the most advanced and yet computationally acceptable
simulation tool for engineering practice, since more advanced strategies, like Large Eddy
Simulation (see e.g. Ref. 28) are yet too expensive for high-Reynolds flows typically en-
countered in practical applications. Under the assumption of incompressibility, the gov-
erning equations for a boundary-layer flow are given by

∂ū1

∂x1
+
∂ū2

∂x2
= 0, (2.1a)

∂ū

∂t
+ ū1

∂ū1

∂x1
+ ū2

∂ū1

∂x2
=−

1

ρ

∂p̄

∂x2
+

∂

∂x2

[

(ν+νT )
∂ū1

∂x2

]

, (2.1b)

where ρ is the constant density, ūi is the mean velocity in xi direction and ν is the kine-
matic viscosity. The eddy viscosity νT is meant to represent the effect of turbulent fluc-
tuations on the mean flow, and is calculated here through the k − ε turbulence model:

νT =Cµ fµ
k2

ε̃
, (2.2a)

∂k

∂t
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∂x1
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∂x2
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∂
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)
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, (2.2b)
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∂ū
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−Cε2 f2
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+E +

∂

∂x2
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ν+
νT

σε

)
∂ε̃

∂x2

]

, (2.2c)

see Ref. 39. Here, k is the turbulent kinetic energy and ε̃ is the isotropic turbulent dis-
sipation, i.e. the term that controls the dissipation rate of k. The isotropic dissipation
(which is zero at the wall) is related to the dissipation ε by ε= ε0+ε̃, where ε0 is the value
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of the turbulent dissipation at x2 = 0. The system (2.2a)-(2.2c) contains several closure
coefficients and empirical damping functions, which act directly on these coefficients.
Without the damping functions the k − ε model would not be able to provide accurate
predictions in the viscous near-wall region [39]. The Launder-Sharma k−ε model [16] is
obtained by specifying these damping functions as follows

fµ = exp[−3.4/(1+ReT /50)] , f1 = 1,

f2 = 1−0.3exp
[

−Re2
T

]

, ε0 = 2ν

(

∂
p

k

∂x2

)2

,

E = 2ννT

(

∂2ū

∂x2
2

)2

, (2.3)

where ReT ≡ k2/ε̃ν. In the case of the Launder-Sharma k −ε model, the closure coeffi-
cients have the following values

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92,

σk = 1.0, σε = 1.3. (2.4)

We do not expect these values to be generally applicable ’best’ values, and other k − ε

models do use different values. For instance, the Jones-Launder model [11], which only
differs from (2.3) by a slightly different fµ, uses

Cµ = 0.09, Cε1 = 1.55, Cε2 = 2.0,

σk = 1.0, σε = 1.3. (2.5)

We refer to Wilcox [39] for further discussion on k −ε type models and their limita-
tions.

2.2.1. CLASSICAL IDENTIFICATION OF CLOSURE COEFFICIENTS

The values of the closure coefficients in (2.4) are classically chosen by reference to fun-
damental flow problems. We illustrate how the nature of the coefficients leads to some
ambiguity regarding their values, and how flow independent single best values are un-
likely to exist. One such a fundamental flow problem often considered is homogeneous,
isotropic, decaying turbulence. In this case the k and ε equations (2.1a)-(2.2c) (without
damping functions) simplify to

dk

d t
=−ε, (2.6)

dε

d t
=−Cε2

ε2

k
. (2.7)

These equations can be solved analytically to give

k(t ) = k0

(
t

t0

)−n

, (2.8)
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with reference time t0 = nk0/ε0 and n = 1/(Cε2 −1). And thus,

Cε2 =
n +1

n
. (2.9)

The standard value for n is such that Cε2 = 1.92. However, this is by no means a hard
requirement and other models do use different values for Cε2. For instance, the RNG
k − ε model uses a modified C̃ε2 = 1.68 and the k − τ model (essentially a k − ε model
rewritten in terms of τ= k/ǫ [33]) uses Cε2 = 1.83 [39]. Also, the experimental data from
Ref. 20 suggests that most data agrees with n = 1.3, which corresponds to Cε2 = 1.77.

The coefficient Cµ is calibrated by considering the approximate balance between
production and dissipation which occurs in free shear flows, or in the inertial part of
turbulent boundary layers. This balance can be expressed as

P = νt

(
∂ū1

∂x2

)2

=Cµ
k2

ε

(
∂ū1

∂x2

)2

= ε. (2.10)

Equation (2.10), can be manipulated together with the turbulent-viscosity hypothesis

−u′
1u′

2 = νt∂ū1/∂x2 to yield −u′
1u′

2 = ε(∂ū/∂x2)−1, which in turn yields

Cµ =
(

u′
1u′

2

k

)2

. (2.11)

The DNS data from Ref. 13 can be used to show that u′
1u′

2 ≈−0.30k (except close to the
wall), such that Cµ = 0.09 is the recommended value. Again however, different models
use different values for Cµ, such as Cµ ≈ 0.085 in the case of the RNG k −ε model.

Another fundamental flow to be considered is fully developed (so Dk/Dt = Dε/Dt =
0) channel flow. The resulting simplified governing equations allows us to find the fol-
lowing constraint amongst several parameters [26]

κ2 =σεC 1/2
µ (Cε2 −Cε1) , (2.12)

where κ is the von-Karman constant. It should be noted that the suggested values (2.4)
satisfy this constraint only approximately. Using (2.4) in (2.12) gives κ≈ 0.43, instead of
the ’standard’ value of 0.41.

The following constraint (between Cε1 and Cε2) can be found by manipulating the
governing equations of uniform (i.e. ∂ū1/∂x2 = constant) shear flows [26]

(
P

ε

)

=
Cε2 −1

Cε1 −1
, (2.13)

where the non-dimensional parameter P /ε is the ratio between the turbulent produc-
tion P and dissipation ε. Tavoulakis et. al. [36] measured P /ε for several uniform shear
flows. They reported values between 1.33 and 1.75, with a mean around 1.47. Note how-
ever, that (2.13) becomes 2.09 with the standard values for Cε1 and Cε2, which is signifi-
cantly different from the mentioned experimental values.

The parameter σk can be considered as a turbulent Prandtl number, defined as the
ratio of the momentum eddy diffusivity and the heat-transfer eddy diffusivity. These
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quantities are usually close to unity, which is why the standard value for σk is assumed to
be 1.0. As noted in Ref. 25, no experimental data can be found to justify this assumption.
And again, we see a range of recommended values amongst the different variations of
the k −ε model. For instance, the RNG k −ε model uses σk = 0.72 [39].

The parameter σε controls the diffusion rate of ε, and its value can be determined by
using the constraint (2.12), i.e.

σε =
κ2

C 1/2
µ (Cε2 −Cε1)

. (2.14)

Finally, it should be noted that the ’constant’ value of the von Karman constant (0.41)
is being questioned. An overview of experimentally determined values for κ is given in
Ref. 41, which reports values of κ in [0.33,0.45]

2.2.2. NUMERICAL SOLUTION OF THE k −ε MODEL

To obtain efficient numerical solutions for the boundary-layer problem (2.1a)-(2.2c) we
used the program EDDYBL of Ref. 38, which we modified slightly to make it more suit-
able for our purpose. EDDYBL is a two-dimensional (or axisymmetric), compressible (or
incompressible) boundary-layer program for laminar, transitional and turbulent bound-
ary layers. This program has evolved over three decades and is based on a code originally
developed by Price and Harris in 1972 [38]. The advantage of using a boundary-layer
approximation rather than a full RANS code, is that a boundary-layer code allows for
quicker numerical simulations, and thus avoids the need of a surrogate model.

Parabolic systems of equations such as the boundary-layer equations can, in general,
be solved using unconditionally stable numerical methods. EDDYBL uses the variable-
grid method of Blottner [1], which is a second-order accurate finite-difference scheme
designed to solve the turbulent boundary-layer equations. This scheme uses a three-
point forward-difference formula in the stream-wise direction, central differencing for
the normal convection term and conservative differencing for the diffusion terms.

We verify that the discretization error is small enough such it does not dominate over
the uncertainties we want to quantify. The rate at which the grid-point spacing increases
in normal direction is set such that the first grid point satisfies ∆y+ < 1, which provides a
good resolution in the viscous layer. Initially, the maximum number of points in the nor-
mal direction is set to 101, although EDDYBL is capable of adding more points if needed
to account for boundary-layer growth. The maximum number of stream-wise steps is set
high enough such that EDDYBL has no problems reaching the specified sstop , i.e. the fi-
nal arc length in stream-wise direction. Using this setup we verify that the discretization
errors are substantially smaller than the uncertainties present in the model and data. To
give an example of the magnitude of the discretization error, we computed the bound-
ary layer over the curved airfoil-shaped surface of Ref. 29 with sstop = 20.0

[

f t
]

for both
our standard mesh with the first grid point below y+ = 1, and on a finer mesh with the
first 15 points below y+ = 1. The maximum relative error between the two predicted ve-
locity profiles was roughly 0.3%, which is well below the expected variance in the model
output that we might see due to for instance the uncertainty in the closure coefficients.
Discretization error is assumed to be negligible hereafter.
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2.3. EXPERIMENTAL DATA

EDDYBL comes with configuration files which mimic the experiments described in the
1968 AFOSR-IFP-Stanford conference proceedings [4]. From this data source, we se-
lected one zero pressure-gradient flow, and 12 flows from other types of available pres-
sure gradients, which range from favourable (d p̄/d x < 0) to strongly adverse (d p̄/d x > 0)
gradients. These 13 flows are described in table 2.1. The identification number of each
flow is copied from Ref. 4. According to Ref. 37, the flows are identified as being ’mildly
adverse’, ’moderately adverse’ etc, based upon qualitative observations of the velocity
profile shape with respect to the zero-pressure gradient case. We plotted the experimen-
tally determined, non-dimensional, streamwise velocity profiles in Figure 2.1. As usual,
the normalized streamwise velocity is defined as u+ ≡ ū1/

√

τw /ρ, where τw is the wall-
shear stress. The normalized distance to the wall, displayed on the horizontal axis of
Figure 2.1, is y+ ≡ x2

√

τw /ρ/ν. Too much weight should not be given to the classifica-
tions of the severity of the adverse gradients, since some flows (such as 2400) experience
multiple gradient types along the spanwise direction. Also, when we try to justify the
classification based upon the velocity profile shape we find some discrepancies. For in-
stance, based upon the profile shape alone, we would not classify flow 1100 as mildly
adverse, or 2400 as moderately adverse.

To obtain an estimate of the spread in closure coefficients, we calibrate the k − ε

model for each flow of table 2.1 separately, using one velocity profile as experimental
data.

Use of experimental data in the viscous wall region is worthy of a separate discus-
sion. On one hand, Reynolds stresses tend to zero when approaching the wall, so that
calibrating the turbulence model using data from the first few wall units does not really
make sense; moreover, in the whole viscous layer the model is dominated by damp-
ing functions (2.3), not calibrated here, introduced to enforce asymptotic consistency as
y+ → 0. As a consequence, little information is obtained from the measurements here.
On the other hand, obtaining reliable measurements close to the wall can be difficult
due to limited spatial resolution, see e.g. [10]. Therefore, most experimental datasets
of [4] do not include points in this region. Additional difficulties may arise according to
the experimental technique in use: for instance, outliers due to additional heat losses
near the wall are not uncommon in hot-wire measurements, and special corrections are
needed to fix the problem [15]. Numerical results from Direct Numerical Simulations
(DNS) could be used instead of experimental data sets. Nevertheless, there is little DNS
data with high enough values of the friction Reynolds number Reτ to allow for a suffi-
ciently extended logarithmic region (see [24] for a recent survey).

More generally, our goal is to introduce and test a methodology that can be applied
to complex, high-Re flows for which DNS is simply not feasible. The effect of excluding
near-wall data from the calibration data set is investigated through numerical experi-
ments presented in Section 2.5.2.

2.4. METHODOLOGY: CALIBRATION AND PREDICTION

Our methodology consists of two major parts: calibration and prediction. In the cali-
bration stage (Section 2.4.1) posterior distributions on closure coefficients are identified
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Table 2.1: Flow descriptions, source [4].

Identification Type Description

1400 Zero Equilibrium boundary layer at constant pressure
1300 Fav Near-equilibrium boundary layer in moderate negative pres-

sure gradient
2700 Fav Equilibrium boundary layer in mild negative pressure gradient
6300 Fav Near-equilibrium boundary layer growing beneath potential

flow on model spillway
1100 Mild adv Boundary layer in diverging channel
2100 Mild adv Boundary layer on large airfoil-like body; pressure gradient

first mildly negative, then strongly positive, with eventual sep-
aration

2500 Mild adv Equilibrium boundary layer in mild positive pressure gradient
2400 Mod adv Initial equilibrium boundary layer in moderate positive pres-

sure gradient; pressure gradient abruptly decreases to zero,
and flow relaxes to new equilibrium

2600 Mod adv Equilibrium boundary layer in moderate positive pressure gra-
dient

3300 Mod adv Boundary layer, initially at constant pressure, developing into
equilibrium flow in moderate positive pressure gradient

0141 Str adv Boundary-layer with strong adverse pressure gradient, source
[14]

1200 Str adv Boundary layer in diverging channel with eventual separation
4400 Str adv Boundary layer in strong positive pressure gradient
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Figure 2.1: The experimental data from Ref. 4.
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for each of a set of 13 boundary-layer flows. These posteriors are then summarized with
Highest Posterior Density (HPD) intervals in Section 2.4.3. The results will give a first in-
dication of the extent to which posterior distributions of turbulence closure coefficients
θ are case-dependent. This stage can also be seen as a setup stage for the predictive
mechanism of our methodology. To make predictions of a new, unseen flow, we com-
bine the 13 posterior distributions for θ using p-boxes (Section 2.4.4). These p-boxes
encapsulate the effect of both the 13 individual posterior uncertainties (due to the data
not exactly identifying a single optimal θ, but rather a probability distribution different
from a Dirac function), and the variability of θ between cases.

2.4.1. CALIBRATION FRAMEWORK

Bayesian calibration requires selection of joint prior distribution for the calibration pa-
rameters and a joint pdf (or statistical model) describing the likelihood function.

In our turbulence model calibration we have a large number of accurate observa-
tions, and a belief that model inadequacy will dominate the error between reality and
prediction. In this situation we expect the prior on closure coefficients to be substan-
tially less influential than the joint pdf. We therefore impose uniform priors on closure
coefficients, on intervals chosen to: (i) respect mild physical constraints, and (ii) ensure
the solver converges in most cases.

After the calibration we verify that the posterior pdf is not unduly constrained by the
prior intervals: if we find that one of the informed marginal posteriors is truncated, we
simply re-perform the calibration with a wider prior range for the truncated coefficient.
We also perform a posterior model checking, in the sense that we verify that sufficient
overlapping between the posterior model distribution and the calibration data interval
exists.

To specify the joint likelihood we start from the framework of Cheung et. al. [3], who
use a multiplicative model inadequacy term, modelled as a Gaussian process in the wall-
normal direction. Multiplicative error models are less common than additive errors (like
Equation (1.6) in Section 1.3), but may be useful in many engineering situations: here,
it allows to enforce automatically that the random velocity profiles satisfy a no-slip wall
condition (see [3]). By considering multiple different flows we have additional modelling
choices. Unlike Cheung et. al., we choose to calibrate closure coefficients and model-
inadequacy hyper-parameters independently for each flow, and examine the variability
between flows in a post-calibration step.

Let the experimental observations from flow-case k ∈ {1, · · · , NC } be zk = [z1
k

, · · · , z
Nk

k
].

Here Nk is the number of scalar observations in flow-case k, and zi
k

is the scalar observa-

tion at location y+,i
k

> 0, where in the following we work in y+-units. Following Ref. 3, we

assume the observation noise λk = [λ1
k

, · · · ,λ
Nk

k
] is known and uncorrelated at all mea-

surement points. Furthermore, the closure coefficients and flow parameters for case k

are denoted θk and tk respectively. The flow parameters include specification of the
pressure-gradient as a function of the x-coordinate. The observation locations y+

k
, noise

λk , and flow parameters tk are modelled as precisely known explanatory variables. In
the case that substantial uncertainties existed in the experiments these could be mod-
elled stochastically as nuisance parameters.
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A statistical model accounting for additive Gaussian noise in the observations via an
additive term and model inadequacy via a multiplicative term is: ∀k ∈ {1, · · · , NC }

zk = ζk (y+k )+ek , (2.15a)

ζk (y+k ) = ηk (y+k ) ·u+(y+k ,tk ;θk ), (2.15b)

where u+(·, ·; ·) is the simulation code output, and the multiplication is applied element-
wise to its arguments. Observational noise is modelled as

ek ∼ N(0,Λk ) , Λk := diag(λk ),

and the model-inadequacy term ηk (·) is a stochastic process in the wall-distance y+

modelling the relative error between the code output and the true process. Therefore
(2.15a) represents the difference between the true process ζk and the measurement ob-
servations, and (2.15b) the difference between ζk and model predictions. Together they
relate θk to zk .

Cheung et. al. consider three models of this form, which differ only in the modelling
of η. They compared the posterior evidence, and showed that modelling η as a correlated
Gaussian process yielded by far highest evidence of the three models considered [3]. We
therefore adopt the same strategy and model each ηk as a Gaussian process with unit
mean (dropping the subscript k for convenience):

η∼ GP(1,cη), (2.16)

and the simple, homogeneous covariance function

cη(y+, y+′ |γ) :=σ2 exp

[

−
(

y+− y+′

10αl

)2
]

, (2.17)

where y+ and y+′ represent two different measurement points along the velocity pro-
file, and l is a user-specified length scale. We fix this length scale to 5.0, which is the y+

value that denotes the end of the viscous wall region. The smoothness of the model-
inadequacy term is controlled by the correlation-length parameter α, and its magnitude
by σ. Both α and σ are unknown, and must be obtained via calibration from the data,
and form a hyper-parameter vector γ := [α,σ].

A more boundary-layer specific model than (2.16), is described in Ref. 23. It attempts
to account for the multi-scale structure of the boundary layer by allowing the correlation
length to vary in y+ direction. Together (2.15b) and (2.16) imply the relative model inad-
equacy σ is independent of y+, and that the correlation length is the same throughout
the boundary layer. This model may be generalized to multiple dimensions by replacing
η(·) with a multi-dimensional Gaussian process. See [12] for a thorough discussion of
the role of the covariance term.

A consequence of the above modelling choices is that the true process ζ is also mod-
elled as a Gaussian process:

ζ | θ,γ∼ GP(µζ,cζ) (2.18)

µζ(y+ | θ) = u+(y+,t;θ)

cζ(y+, y+′ | θ,γ) = u+(y+,t;θ) · cη(y+, y+′ |γ)·
u+(y+′,t;θ),
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which is still centered around the code output. The assumption of normality is made
mainly for convenience, and more general forms are possible. See Section 2.4.5 for a
discussion on the choice of statistical model.

The likelihood evaluated at the measurement locations y+,i can now be written for
each flow case k independently as:

p(z | θ,γ) =
1

√

(2π)N |K |
exp

[

−
1

2
dT K −1d

]

,

d := z−u+(y+)

K :=Λ+Kζ. (2.19)

where
[

Kζ

]

i j := cζ(y+,i , y+, j |θ,γ).

Since in general the computational grid does not coincide with measurement locations
we linearly interpolate the code output at y+,i where needed.

Note that the statistical model is based only on velocity data, and does not include
constraints on other physical quantities, like e.g. the Reynolds stresses or the turbulent
kinetic energy k. This choice is consistent with the fact that our version of k−ε is not real-
izable, and as such it does not contain any modelling assumption to prevent the normal
Reynolds stresses from becoming negative, but only enforces them to satisfy physical
constraints through the application of limiters. If we were to calibrate realizable k−ε we
would try to preserve the realizability conditions. This would require adding constraints
to the likelihood function so that zero probability is assigned to parameter combinations
leading to unrealizable turbulence states.

2.4.2. PRIORS FOR θ AND γ
Unlike Cheung et. al., we do not treat all closure coefficients as independent random
variables in the prior. Instead we use the physical relations described in Section 2.2.1 to
constrain the value of two closure coefficients. Specifically we fix Cǫ1, by rewriting (2.13)
as

Cǫ1 =
Cǫ2

P /ε
+

P /ε−1

P /ε
, (2.20)

where, similar to Ref. 25, we fix the ratio P /ε to 2.09. In our results, this choice locates
the mode of the posterior for Cε2 relatively close to the standard value of 1.92. If we in-
stead would have used a different (experimentally determined) value of P /ε, the mode
Cε2 would be located elsewhere. Whether or not our choice is reasonable has to be de-
termined by the ability of the posterior distributions to capture the observed data, as
outlined in Section 2.5.3. Two other possibilities we do not employ are: (i) to move P /ε
into θ and calibrate it along with the other parameters with some suitable prior, or (ii)
model P /ε as an aleatory uncertainty, using the P /ε data from Ref. 36 to construct an
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approximate pdf p(P /ε). Also, we fix σε using (2.12). Such a choice avoids running the
boundary-layer code with non-physical parameter combinations.

All priors, for both the closure coefficients θ and hyper-parameters γ, are indepen-
dent uniform distributions. The choice of interval end-points was made based on three
factors: the spread of coefficients recommended in the literature, the range of coeffi-
cients for which the solver was stable, and avoidance of apparent truncation of the pos-
terior at the edge of the prior domain. The range we used is specified in Table 2.2. We

Table 2.2: The empirically determined range (absolute and relative to nominal value) of the uniform prior
distributions.

coefficient left boundary right boundary

Cǫ2 1.15 (-40%) 2.88 (+50%)
Cµ 0.054 (- 40 %) 0.135 (+50 %)
σk 0.450 (-45 %) 1.15 (+50 %)
κ 0.287 (-30 %) 0.615 (+50 %)
σ 0.0 0.1

logα 0.0 4.0

chose uniform distributions because we lack confidence in more informative priors for
these parameters. We note however that some reasonable, informative priors can be ob-
tained using the classical framework for coefficient identification (c.f. Section 2.2.1) in
combination with multiple experimental measurements from different sources [25].

To obtain samples from the posterior distributions p (θ | z), we employed the Markov-
chain Monte Carlo (McMC) method [9]. We subsequently approximated the marginal
pdf of each closure coefficient using kernel-density estimation, using the last 5,000 (out
of a total of 40,000) samples from the Markov chain. It was observed that at 35,000 sam-
ples, the Markov chain was in a state of statistical convergence.

2.4.3. SUMMARIZING POSTERIORS: HPD INTERVALS

The methodology of Section 2.4.1 will be applied to 13 flow cases, resulting in 13 poste-
riors on [θ,γ]. The large amount of information (see e.g. Figure 2.2 and 2.3 in the results
section) is difficult to visualize. In other words the posteriors must be summarized, and
we do this with intervals. In the remainder we make the assumption that closure coef-
ficients are approximately independent and uncorrelated. This is justified by Figure 2.3.
This assumption allows us to work with 1d marginal pdfs of the coefficients, rather than
the full multi-dimensional posteriors.

We compute Highest Posterior Density (HPD) intervals on 1d marginals to summa-
rize the posteriors. An HPD interval is a Bayesian credible interval which satisfies two
main properties, namely:

1. The density for every point inside the interval is greater than that for every point
outside the interval.

2. For a given probability content 1−β, β ∈ (0,1), the interval is of the shortest length.
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We use the algorithm of Chen et. al. [2] to approximate the HPD intervals using the ob-
tained McMC samples. To do so, we first sort the samples of the Q closure coefficients
θq , q = 1,2, · · · ,Q in ascending order. Then, if we let {θ

q

j
, j = 1,2, · · · , J } be the McMC sam-

ples from p
(

θq | z
)

, the algorithm basically consists of computing all the 1−β credible
intervals and selecting the one with the smallest width. For a given j , we can use the em-
pirical cumulative-distribution function to approximate the 1−β interval by computing
the first θ

q
s which satisfies the inequality

J∑

i= j

✶θ
q

i
≤θq

s
≥

[

J
(

1−β
)]

, (2.21)

where ✶θ
q

i
≤θq

s
is the indicator function for θ

q

i
≤ θ

q
s and

[

J
(

1−β
)]

is the integer part

of J
(

1−β
)

. Secondly, if we let θ
q

(i ) be the smallest of a set {θ
q

i
}, then the first θ

q
s for

which (2.21) is satisfied simply is θ
q

([J(1−β)])
. Thus, the j th credible interval is given by

θ
q

( j+[J(1−β)])
−θ

q

( j)
and the HPD interval for θq is found by solving

min
j

θ
q

( j+[J(1−β)])
−θ

q

( j)
, 1 ≤ j ≤ J −

[

J
(

1−β
)]

. (2.22)

The algorithm of Chen assumes a uni-modal posterior pdf, although it could possibly be
extended to deal with multi-modal pdfs [2]. This assumption is shown to be justified in
our case in Section 2.5.5.

2.4.4. PREDICTIVE FRAMEWORK: P-BOXES

So far we have only discussed identification of θ for flows with data. The final purpose of
this work is to establish uncertainties on k −ε model predictions under flow conditions
t∗ at which no measurements are available. To achieve this we must assess the effect of
all sources of uncertainty on the model prediction at t∗. We require a method that can
simultaneously represent solution variability within- and between the posteriors p(θ,γ |
zk ,tk ), k = 1,2, · · · , NC , where NC = 13 in this work.

Our approach is to construct a probability box (p-box) for the output of the model at
the new condition t∗, using coefficients sampled from the HPD intervals of each of the 13
cases. A p-box is commonly used to visualize possible outcomes due to a combination of
epistemic and aleatory uncertainty [22]. Examples of p-boxes are shown in Figure 2.13.
In our case - roughly speaking - the slant of the box represents the width of individual
HPD intervals, and the width of the box the variability between HPD intervals obtained
from calibrations against different data sets. More precisely they can be interpreted as
bounds on the ζ (or u+) value at any particular probability level, and therefore can be
used to construct confidence intervals on the true process ζ or code output u+.

We define our p-box as follows: For flow case k, let Θ50
k

be a uniformly distributed
random variable on the box given by the 50% HPD intervals of the posterior for θ. Prop-
agate this variable through the flow-code for u+ to obtain

Zk (y+
∗ ) := u+(y+

∗ , t∗;Θ50
k ),
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a random variable representing the effect of posterior uncertainty in case k on the model
output at conditions t∗. Here y+

∗ is the location at which an uncertainty estimate is re-
quired, which need not correspond to a sample location in any of the calibrated flow
cases. Let Fk (u+) =P(Zk ≤ u+) be the cumulative density function of Zk . Then the p-box
D is defined by

D(u+) := {r ∈ [0,1] |F (u+) ≤ r ≤ F (u+)},

F (u+) := min
k∈{1,...,13}

Fk (u+), (2.23)

F (u+) := max
k∈{1,...,13}

Fk (u+)

i.e. the envelope formed by this collection of k cdfs. To construct a worst-case 90% con-
fidence interval we find the end-points u+ and u+ such that

F (u+) = 0.05,

F (u+) = 0.95.

The interval I = [u+,u+] is our final estimate of solution uncertainty due to modelling
inadequacy in the k −ε model for u+(y+

∗ ) at conditions t∗.
To construct the p-box in (2.23) numerically we use empirical cdfs:

Fk (u+) =P
(

Zk ≤ u+)

≈
1

S

S∑

j=1

✶u+
j
≤u+ , (2.24)

where u+
j

are S samples from Zk obtained using Monte-Carlo. An approximation to D is

then readily calculated.
Note that because Zk is based only on the flow-code output and not on the true pro-

cess ζ, the effect of the model inadequacy term η is not included in our estimates. If a
variable other than u+ were of interest, we could define the p-box in exactly the same
way (using skin-friction C f as an example):

Yk (x) :=C f (x, t∗;Θ50
k ).

That this is possible is a consequence of representing model inadequacy via closure co-
efficients. It is not possible if we base estimates on η-like terms. For the validity of the
confidence intervals we are relying on the uncertainties in θ accounting for the majority
of model error. We acknowledge that the choice of 50% HPD intervals plays a role in the
p-box size, and this tuning parameter could be eliminated by replacing Θ

50
k

and Γ
50
k

by
the posteriors for case k, at the cost of increasing the size of the p-boxes.

2.4.5. DISCUSSION

In the above we are attempting to capture model error in two different ways:

1. Via the traditional (Kennedy and O’Hagan) Gaussian process (GP) “model discrep-
ancy” term, η(·), and

2. Via representing the variability of θ across flows (using p-boxes).
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In doing so we have introduced some redundancy, since model errors can be captured by
either one of these two methods, or a combination of them both. Our aim is to capture
the majority of model error via θ-variability, for the following reasons.

The Gaussian process η(·) has a very general form, able to capture a large space of
smooth model-data error as a function of y+. It has no physical content (other than the
assumption of smoothness). Its form is geometry and flow-topology dependent: e.g. in
our case the calibrated η(·) can not be used to predict error in any other variable than
u+, in any other geometry. The natural generalization to more complex flows is a multi-
dimensional Gaussian process, which would necessitate estimation of a large number of
hyper-parameters.

In contrast, varying θ does not allow for general velocity profiles. Only those profiles
that satisfy the governing equations (for some value of θ) are represented, hence certain
constraints based on physical modelling are automatically satisfied. Since each compo-
nent of θ corresponds to some empirical modelling assumption, one might also see θ as
an (incomplete) parameterization of modelling assumptions. Furthermore, irrespective
of flow topology, uncertainties on θ can be propagated through the simulation code to
estimate model error in the output. That is, distributions of θ derived from calibration
on a class of boundary-layer flows, can be applied to estimate model error on any flow.
The accuracy will depend on the extent to which boundary-layer modelling error domi-
nates in the new flow, e.g. the error in fully attached subsonic flows over aerofoils might
be successfully judged.

In short we consider representing model error in model-coefficient space has several
advantages, compared to representing it in the data space. However all error can not be
represented in θ-space – e.g. error due to model form is not accounted for. Therefore,
to characterize the real relationship between data and model output in the statistical
model, and to prevent over-fitting, η is necessary in (2.15b). Of course any choice of
statistical model represents a modelling assumption, and in Section 2.5.6 we examine
the sensitivity of θ-posteriors to the choice of η.

2.5. RESULTS AND DISCUSSION

2.5.1. MARGINAL POSTERIOR PDFS

Calibration of the k−ε model, using the experimental data described in Section 2.3, and
the statistical model of Section 2.4 was performed. The marginal posterior pdfs of all
four parameters in θ, for all of the 13 calibration cases are shown in Figure 2.2. There
we see that the data has been informative for Cε2 in all cases, resulting in sharply peaked
posteriors. This is in contrast to Cµ, which has been only weakly informed. Experience
suggests that for these cases the level of informativeness is predicted by the sensitivity
of the data u+(θ) to the individual parameters. Parameters with the largest sensitivities
are the best identified, see section 2.5.4. The calibrations have provided us with a bit
more information regarding σk , since more posterior distributions show clear modes
compared to the Cµ results. The spread of coefficients between cases is also visible. For
instance Cε2 values cluster around the center of the prior interval, while κ is sharply
identified at distinctly different values for the different flow conditions.

To examine dependencies between variables, we plot two-variable marginal posteri-
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Figure 2.2: The marginal posterior distributions of the coefficients for the 13 cases of Table 2.1.
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ors of all pairs of closure coefficients, see Figure 2.3. This figure is constructed from the
McMC traces for flow 3300, and is typical of the other flow cases which are not shown.
Any correlation between two coefficients will be visible in such a plot. As can be seen,
there is a weak negative correlation between Cε2 and Cµ, and also between Cε2 and σk .
However, overall the coefficients appear approximately independent, as they were in the
prior. This observed independence may not be a coincidence, it may be a result of the
design of the turbulence model in which the individual coefficients parameterize sepa-
rate modelling assumptions.

1.15 2.88

Cε2

0.05 0.14

Cµ

0.45 1.50

σk

0.29 0.62

κ

3300, mod adv

Figure 2.3: A two-dimensional contour plot of the posterior θ samples from flow 3300.

2.5.2. y+-CUTOFF SENSITIVITY

In Section 2.3 we mention that we omit data in the viscous-wall region. To examine
if our posterior distributions are critically affected by not including near-wall data, we
perform a simple sensitivity analysis using flow case 1400. Originally, this flow contains
data points from y+ = 38.1 onward. We add 10 artificial data points to z between this
value and y+ = 1. Next we perform 10 separate calibrations where each time we shift the
lower bound of z one point closer to the original lower bound of y+ = 38.1. We visualize
the results in Figure 2.4 by plotting the HPD intervals for Cε2 and κ versus y+

1 , i.e. the
y+ value corresponding to the first data point. From this figure it becomes clear that the
inclusion of near-wall data does not significantly alter the posteriors in this case. The
other parameters in both θ and γ show similar behaviour.

The sparsity of available experimental near-wall data, together with the indication
that the posterior distributions do not change significantly justifies our exclusion of near-
wall data.
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Figure 2.4: The HPD intervals corresponding to calibrations with different y+ cutoff values.

2.5.3. POSTERIOR MODEL CHECK

In Bayesian analysis it is good practice to assess the fit of the chosen model. We expect
all observed data used in the calibration for each flow case to lie within the range of the
posterior predictive distribution of the true process ζ for that case. It should be noted
that this is not the same as validating the model, since it only ensures that the chosen
model is capable of reproducing the observed data. It does not guarantee that it can
also be used for predictions. In our model the variability in ζ can be broken down into
that due to the explicit model inadequacy term η(y+), and that due to uncertainty in θ.
The former can be obtained directly from (2.16) and the calibrated values of γ = [σ,α].
The latter is just the posterior of u+(θ), and can be computed using the u+ traces stored
during the McMC calibration run. This is equivalent to propagating posterior samples
of θ through the k −ε model as in Monte-Carlo.

In Figure 2.5 we show only the uncertainty due to θ for two flows. The posterior
prediction for u+ encompasses all the experimental data, and this is true for all the flows
described in Table 2.1, even those in which a large η was predicted. They are therefore all
consistent (in the sense of Ref. 19: existence of an overlap between the predictions and
the region of experimental uncertainty). In addition, the calibrated models approximate
the data better than the uncalibrated models in all cases. Based on this we judge the
calibrations successful.

To illustrate the effect of also using η, we compare posterior distributions of u+ and ζ

in Figure 2.6. The mean of both distributions is the same, which could be inferred from
(2.18). Thus, including a model inadequacy term of the form (2.16) results in a posterior
distribution of the true process with the same mean as the posterior u+ distribution,
but a larger variance. When making predictions with the model this contribution to the
variance should be included.

It is instructive to examine the effect of the coefficient uncertainties on quantities
that are not directly measured. To that end we show the standard-deviation cloud for the
normalized turbulent kinetic energy k in Figure 2.7. Since the condition k > 0 is enforced
by limiters for all samples, the posterior probability of negative k is guaranteed to be
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(a) Favourable flow.
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(b) Strongly-adverse flow.

Figure 2.5: The mean and 3 standard deviations of posterior u+(y+,θ) samples of a favourable, and a strongly
adverse flow (bottom). The green line indicates the solution of the k −ε model using the standard values (2.4),
and the red dots represent the experimental data with error bars.
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Figure 2.6: The posterior distribution of u+, and the posterior distribution of ζ.
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Figure 2.7: A one standard-deviation cloud (i.e. µk ±σk ) of k/U 2
e for flow cases 1300 and 1200.

zero. However, since we do not have experimental data for the normalized turbulent
kinetic energy, we cannot verify if its posterior distribution is consistent with the true
process of k.

2.5.4. SOBOL INDICES

Figure 2.2 shows that, for a given flow case k, there is significant variation in the amount
of information contained in the posterior closure-coefficient distributions. In an at-
tempt to elucidate this behaviour, we perform global sensitivity analysis on u+ with re-
spect to θ. If the measurement data is very sensitive to a particular parameter or set of
parameters in θ, we expect the corresponding posterior distribution to be well informed
and vice versa. In particular we use Sobol’ indices Sw , defined as [31]

D = VarW

{

u+}

,

Dw = Varw

{

Ew ′ (u+|θw )
}

,

Sw = Dw /D

where w ⊂ {1, . . . ,Q} =W indexes the components of θ, w ′ =W \ w , and Varw {·} indicates
variance taken over priors of θw , etc. The indices Sw satisfy

∑

P (W ) Sw = 1, where P (W )
is the power set of W . A value close to unity for Si can be interpreted as the coefficient
corresponding to i ∈W being responsible for most of the total variance in u+ on its own
(also without interaction effects with other parameters). A value close to zero indicates
an uninfluential parameter. The Dw are computed using a polynomial approximation to
the response in the stochastic space [17], given which the expectation and variance can
be evaluated analytically [34, 35]. The Dw are computed using a 3rd-order polynomial
approximation to the response in the stochastic space [17], given which the expectation
and variance can be evaluated analytically [34, 35]. The method of [17] requires running
(p + 1)d deterministic simulations, where p is the polynomial order of the approxima-
tion and d is the number of uncertain parameters. We contrasted the results with those
obtained from a 2nd-order polynomial approximation, and found no significant devi-
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ations. This makes us confident about the convergence of the stochastic method with
respect to the polynomial order.

Using the described setup, we calculate the main effect indices Si with i = 1,2,3,4
corresponding to {Cε2,Cµ,σk ,κ} for u+(y+). The results are shown in Figure 2.8. The
ranking from most sensitive parameter to least sensitive one for the velocity profile is
Cε2,κ,σk ,Cµ. This is the same ranking that we get when we sort the coefficients from
most informed posterior distribution to least informed one, see Figure 2.2. Thus, the very
low sensitivity of our data to the value of Cµ is an explanation for the lack of information
in the posterior Cµ distributions.
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Figure 2.8: The Sobol indices Si for flow 1400, with the velocity profile as QoI. The horizontal axis represents
the direction normal to the wall for the stream-wise location s = 16.3[ f t ].

This sensitivity analysis can be used in experimental design. E.g. we could ask: would
adding friction coefficients C f to the dataset lead to better informed distributions? Us-
ing the Sobol indices for C f , we attempt to answer the question in the absence of C f

data. The Si corresponding to the friction coefficient can be found in Figure 2.9. The
influence of Cµ is still very low, therefore we would not expect to significantly improve
its identification. This is consistent with the results from [3], where the SA turbulence
model was calibrated using both velocity profiles and friction coefficients. Still, some of
their posterior distributions were uninformative as well.

In Figures (2.8)-(2.9) we also show
∑

Si , i.e. the sum of all displayed Sobol indices.
This sum is very close, but not equal to 1. This indicates that for the considered range in
the closure coefficients, the interaction effects are low, i.e. the Sobol indices correspond-
ing a combination of closure coefficients are small.

2.5.5. COEFFICIENT VARIABILITY ACROSS TEST-CASES

The HPD summaries of the θ-posteriors are shown in Figure 2.10 for all test-cases. In
these plots the ordering of the test-cases on the horizontal axis corresponds roughly to
increasingly unfavorable pressure gradients. The spread of the posterior modes of Cε2 is
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Figure 2.9: The Sobol indices Si for flow 1400, with C f as QoI. The horizontal axis represents the stream-wise
direction.

quite concentrated, they all lie relatively close to the standard value of 1.92. The small
width of the HPD intervals (compared to the prior range), indicates that the posterior
distributions have been well-informed by the data. Also notice that a slight downward
trend of the HPD intervals can be observed with increasing pressure gradient, suggesting
some physical effect not present in the model.

The spread of Cµ is relatively small, with most distributions centered close to 0.06,
consistently lower than the standard value (0.09). The only clear exception is flow 2600,
which also showed some outlier behaviour for Cε2. The parameter σk shows a larger
spread, although in general values above the standard value of 1.0 are preferred.

Most individual pdfs of κ are quite well informed, but the modes are spread roughly
between 0.31 and 0.46. Previous studies have looked at the spread of the von Karman
constant. An overview is given in Ref. 41, which reports values of κ between [0.33,0.45],
roughly similar to the spread that we have observed. The spread of the κ HPD intervals
in Figure 2.10 can be qualitatively explained by considering the deviation of the exper-
imental velocity profiles of Figure 2.1 from the standard log law 1/κ ln

(

y+)

+C . As can
be seen from Figure 2.1, from roughly y+ = 30 the velocity profiles overlap onto the stan-
dard log law. However, around y+ = 200 the first profiles start to deviate from this law.
Qualitatively, the profiles which show a larger deviation from the log law, are also the
ones which show a lower κ HPD interval compared to the rest.

The HPD intervals of the hyper-parameters σ and logα can be found in Figure 2.11.
Most posterior modes of σ are located near the bottom edge of the domain, indicating
that η is small, and the experimental data can be matched well with appropriate choice
of θ alone. The posterior modes for log(α) all lie between 2.5 and 3.5, indicating that
the remaining model error is correlated over a large fraction of the boundary layer [3]. In
other words, a smooth model inadequacy term is preferred.

Figure 2.11 shows three clear outliers to this trend, flows 2400, 2500 and 1200. High
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Figure 2.10: The 50 % HPD intervals of θ for the 13 cases of Table 2.1.

σ values in these cases indicate that the data can not be matched with θ alone.

2.5.6. STATISTICAL MODEL SENSITIVITY

As mentioned in Section 2.4.5, the choice of η(· ) represents a modelling assumption. We
acknowledge that our choice of η(· ) is not the best possible one in terms of physical mod-
elling, e.g. the η(· ) of [23] includes more physics. However, our goal is to capture model
inadequacy mainly through θ, while relying on η to capture the remaining error. Hence,
it is important to examine the sensitivity of the marginal θ posteriors to the form of η.
Therefore, we re-computed all calibrations with η = 1. In Figure 2.12 we show the HPD
intervals for both η = 1 and the original η(· ) of (2.16). Notice that the HPD intervals of
η = 1 are smaller, which was to be expected since no uncertainty due to model inade-
quacy is added. More importantly though, the spread of closure coefficients across flow
cases is roughly the same for both statistical models. This indicates that it is indeed pos-
sible to represent the bulk of the model inadequacy in θ space, since choosing a radically
different η(· ) does not seem lead to a significantly different spread of θ.
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Figure 2.11: The 50 % HPD intervals of γ for the 13 cases of Table 2.1.

2.5.7. PREDICTION WITH UNCERTAINTIES

The calibrations described above contain quantitative information on the accuracy of
the k−ε model for flat-plate flows. We apply the methodology described in Section 2.4.4
to estimate u+ and the associated uncertainty for a new flat-plate flow not in the calibra-
tion set. We use the data (used only as ground-truth) from Ref. 21, which is boundary-
layer data on a cylinder in axially symmetric flow. This is flow 3600 from the 1968 AFOSR-
IFP-Stanford conference [4]. The results for three y+ stations (y+

∗ = 46.2, 267.0 and 1039.7)
are given in Figure 2.13, together with boxes representing the experimental data ±3σ.

The width of the p-boxes clearly dominates their slant, suggesting that case-to-case
variability dominates uncertainty in individual posteriors. Therefore adding more ex-
perimental data to the 13 calibrations will not much reduce our overall uncertainty. Had
we not included the strongly-adverse pressure-gradient cases, the width of the p-box
would be significantly smaller. However this would simply correspond to a more re-
stricted range of flows for which the analysis is valid. To tighten these error estimates,
the class of considered flows must be restricted to flows in some sense similar to the new
flow. It is not presently clear how to do this automatically. We note that our estimates of
simulation error are larger than estimates of experimental error, as expected.

Finally we extract confidence intervals from the p-boxes of Figure 2.13. In Figure 2.14
we show 90% confidence intervals on u+ values for case 3600, and compare them with
the measurement data as a reference. Note that all intervals extracted from the p-boxes
are consistent with the experimental data – indicating that modelling inadequacy has
been successfully bounded for this case. It is clearly a tight bound on the low-u+ side.
That the upper bounds are not tight in some locations, is an indication that uncertainty
in the closure coefficients remains substantial. To put this in perspective, consider that,
for reasonable values of the coefficients, the k−ε model can produce solutions anywhere
within our confidence intervals.
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Figure 2.12: The HPD intervals for Cε2 and κ for two statistical models.
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2.6. CONCLUSION

Using a Bayesian framework, we performed 13 separate calibrations of the closure co-
efficients in the standard k − ε model. The experimental data on which we calibrated
consisted of velocity profiles from 13 boundary-layer flows, each subject to a different
pressure gradient. This allowed us to investigate the resulting spread of the posterior
coefficient distributions, caused by the range of considered pressure gradients. To sum-
marize the spread we perform a Highest Posterior Density (HPD) analysis on all posterior
distributions, which gives us 13 credible intervals of most-likely values for both the clo-
sure coefficients and the hyper-parameters used to parameterize the model-inadequacy
term.

The results show a significant variation of coefficient-posteriors across this (very lim-
ited) range of flows, for Cε2 and especially for κ. Other coefficients were not identified
well enough by the data to allow for clear conclusions about their variability. In any case
it is clear that a single calibration does not provide us with reliable coefficients, or an
estimate of model error. On the other hand, we use all 13 posteriors to build an error
estimate containing both between-case coefficient variability, and individual posterior
uncertainty. This estimate is a probability-box (p-box) for model output, from which
confidence intervals can be constructed. We demonstrate the methodology for a 14th
flat-plate flow not from the calibration set. The resulting confidence intervals include
the reference measurements, indicating that the estimate is not too narrow.

The next chapter will involve attempting to narrow the confidence intervals further,
by selection of a subset of cases from the calibration set that represent the new flow
best. Furthermore we will apply the analysis to other turbulence models, to determine if
the conclusions hold for models that are generally considered more accurate than k −ε.
The use of Bayesian model averaging to combine all the resulting information into a
predictive framework is promising.
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3
PREDICTIVE RANS SIMULATIONS

VIA BAYESIAN MODEL-SCENARIO

AVERAGING

3.1. INTRODUCTION

As described in the prededing chapter, in the Bayesian framework model error is typi-
cally accounted for with a stochastic term added to (or multiplying) the output of the
simulation. For instance Kennedy and O’Hagan [12] define “model inadequacy” as the
discrepancy that remains between the true process and the prediction of the simula-
tion code evaluated using the best-fit parameter values. We believe however that mod-
elling this discrepancy directly is inappropriate when the simulation is an approximation
of continuum mechanics, which is characterized by perfectly known conservation laws
(e.g. conservation of momentum), containing imperfect, subordinate, empirical mod-
els, such as turbulence closure models in RANS. In this context, it makes much more
sense to include stochastic modelling of inadequacy at the level of the empirical model,
not at the level of the simulation code output. This choice has the ancillary benefit that
predictions of quantities of other type than the calibration data can be made – and in
other geometries – while still incorporating estimates of model inadequacy. This is not
possible in the original Kennedy and O’Hagan framework.

There are two natural ways to incorporate stochastic model inadequacy into tur-
bulence closure models: via the Reynolds-stress tensor [8], and via the closure coeffi-
cients [7]. The former authors proposed a physically-motivated method for perturb-
ing the Reynolds stress tensor, but the uncertainty is determined by physically possible
states, and not informed by experimental data. In [7] the present authors used Bayesian
statistics to estimate the model error of the k−ε turbulence model [14], via multiple pos-
terior distributions of the closure coefficients (see also Chapter 2). However our use of

This chapter is based on: W.N. Edeling, P. Cinnella, R.P. Dwight, Predictive RANS simulations via Bayesian
Model-Scenario Averaging, Journal of Computational Physics, 275 (2014) 65–91.
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p-boxes limited the flexibility of the predictions, leading to model error estimates that
contained the true solution, but which were impractically large. Hence, our goal is to
quantify model error in the predictions of RANS codes via the closure coefficients, while
obtaining more realistic error bars.

Our novel approach is again based on Bayesian statistics [9], and can be summarized
as follows: we first choose a class of flows for which we wish to make reliable predictions
with quantified model error, in this work the class is flat-plate boundary-layers at a vari-
ety of pressure gradients. We select a number of examples of this class for which we have
reliable experimental data; these flows form our calibration scenarios. Finally we select
a set of turbulence closure models, that are both expected to perform acceptably on the
flow-class, but which are also heterogeneous in their modelling approaches, in this work
we use k − ε, k −ω, Spalart-Allmaras, Baldwin-Lomax and stress-ω models [24]. For
each model and each scenario we perform Bayesian calibration to obtain posteriors on
closure coefficients [2] as well as on model probabilities, i.e. probabilities of recovering
the data by using a given model with the calibrated coefficients. For all models a strong
dependence of coefficients on scenario is observed. This variation is interpreted as the
extent to which the coefficients must be adjusted to match scenarios in the calibration
set; informally a kind of coefficient uncertainty. Precisely, to make predictions for some
Quantity of Interest (QoI) in some unmeasured scenario, we use Bayesian Model Averag-
ing (BMA) [11] to collate the individual coefficient posteriors. A key step is propagating
these posteriors through the simulation code for the prediction scenario. By using the
freedom inherent in BMA to define prior scenario probabilities, we automatically assign
a higher weight to those calibration scenarios which allow recovering consistent predic-
tions for a new scenario with all alternative models considered; these are often found to
be similar to the prediction scenario. The prediction is summarized by the mean and
variance of the posterior predictive distribution [5, 21]. Because in our framework the
variation between scenarios is at least as important as the variation between models, we
speak of Bayesian Model-Scenario Averaging (BMSA), rather than BMA.

This chapter is laid out as follows: the five turbulence models are described in Sec-
tion 3.2, and the scenarios together with experimental data in Section 3.3. Section 2.4
lays out our calibration framework, Section 3.4.1 prediction with Bayesian Model-Scenario
Averaging, and Section 3.4.2 automatic scenario weighting. Section 3.5 discusses results.

3.2. TURBULENCE MODELS

Our model set consists of five different turbulent models of varying degrees of complex-
ity. It includes the Launder-Sharma k − ε model, which was described in Section 2.2.
Another included two-equation model is the Wilcox (2006) k −ω model, and we also
consider the one-equation Spalart-Allmaras model. The simplest turbulence model in
our set is the algebraic Baldwin-Lomax model, and the most complex one is the stress-ω
model. All except the k−ε model are briefly outlined below. For a more detailed descrip-
tion of their mathematical structure we refer to [24].
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3.2.1. THE WILCOX (2006) k −ω MODEL

This model is also a two-equation model, which computes the eddy viscosity as νT =
k/ω̃, where ω̃ is a quantity related to the specific dissipation ω= ε/k [24]. The following
closure coefficients are present: α, βo , β∗, σ, σ∗ and σdo . Again, a constraint between
parameters, equivalent to (2.12), can be found [24]

α=
β

β∗ −
κ2

2
√

β∗
, (3.1)

which we use to fix α. The nominal values of the remaining coefficients can be found in
Table 3.1.

3.2.2. THE SPALART-ALLMARAS MODEL

This is a one-equation model where a transport equation is solved for a viscosity-like
variable ν̃ [23]. It contains the following seven closure coefficients: Cb1, Cb2, σ, Cw2,
Cw3, Cv1 and κ. The coefficient Cw1 is constraint by the values of the other coefficients
as

Cw1 =
Cb1

κ2
+

1+Cb2

σ
, (3.2)

the other 7 parameters are considered for calibration.

3.2.3. THE BALDWIN-LOMAX MODEL

Unlike the preceding models, which require the solution of one or two additional trans-
port equations, this model assumes an algebraic expression for νT [1]. It is therefore the
simplest model in our set. Like the other models it also contains closure coefficients,
namely A+

0 , Ccp , Ckleb , Cwk , α and κ, which are all considered for calibration. Again,
their nominal values can be found in Table 3.1.

3.2.4. THE STRESS-ω MODEL

All preceding models utilize the Boussinesq hypothesis to close the RANS equations,
which assumes that the principal axes of the Reynolds-stress tensor τi j are coincident
with those of the mean strain-rate tensor Si j [24]. The constant of proportionality be-
tween τi j and Si j is the eddy viscosity νT , which is calculated by means of a turbulence
model, and appears in (2.1a). However, the validity of the Boussinesq hypothesis is ques-
tionable, see e.g. [22] for a discussion. A class of (more complex) turbulence models
attempting to remedy these shortcomings are stress-transport models. These directly
write a model transport equation for the Reynolds-stress tensor τi j , rather than relying
on the linear relationship between τi j and Si j suggested by the Boussinesq hypothesis.
An ancillary transport equation for a turbulent length scale is also required, (see [24] for
further details). One such a model is the stress-ω model of Wilcox [24]. As it uses ω from
the k −ω model for certain terms in the τi j transport equation, it contains all the same
closure coefficients as the Wilcox (2006) k −ω model, plus two additional coefficients,
denoted as C1 and C2.
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Table 3.1: Traditional closure coefficient values [24].

k −ε k −ω SA BL stress-ω

κ 0.41 κ 0.41 κ 0.41 κ 0.4 κ 0.41
Cµ 0.09 β∗ 0.09 cv1 7.1 A+

0 26.0 β∗ 0.09
Cε2 1.92 βo 0.0708 cb1 0.1355 α 0.0168 βo 0.0708
σk 1.0 σ∗ 0.6 cb2 0.622 Ccp 1.6 σ∗ 0.6

σ 0.5 σ 2/3 Ckleb 0.3 σ 0.5
σdo 0.125 cw2 0.3 Cwk 1.0 σdo 0.125

cw3 2.0 C1 9/5
C2 10/19

laminar turbulent

Figure 3.1: A schematic overview of a flat-plate turbulent boundary layer. Shown are the uniform inflow veloc-
ity ū∞, a schematic visualisation of the instantaneous flow field, and the averaged velocity ū1 (x2)

.

3.3. TURBULENT BOUNDARY-LAYER CONFIGURATION

In the following, we investigate the predictive capabilities of our Bayesian methodology
for a specific class of flows, again incompressible turbulent boundary layers subject to
different pressure gradients. Figure 3.1 depicts a sketch of a turbulent boundary layer.

3.3.1. EXPERIMENTAL BOUNDARY-LAYER DATA

EDDYBL comes with configuration files which mimic the experiments described in the
1968 AFOSR-IFP-Stanford conference proceedings [4]. From this data source, we se-
lected one zero pressure-gradient flow, and 13 flows from other types of available pres-
sure gradients, which range from favorable (d p̄/d x1 < 0) to strongly adverse (d p̄/d x1 >
0) gradients. These 14 flows are described in table 3.2. The identification number of each
flow is copied from [4]. We plotted the experimentally determined, non-dimensional,
streamwise velocity profiles in Figure 3.2. As usual, the normalized streamwise veloc-
ity is defined as u+ ≡ ū1/uτ. As mentioned in Section 2.3, too much weight should not
be given to the classifications of the severity of the adverse gradients in Table 3.2, since
some flows (such as 2100 and 2400) experience multiple gradient types along the span-
wise direction.

Therefore, it can be more informative to also inspect which flows are in equilibrium.
There are two main forces acting on a boundary-layer. First, the pressure gradient acts
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Figure 3.2: Our experimental data set.

with a force per unit length and width as δ∗dp̄/dx1, where δ∗ is the boundary-layer dis-
placement thickness. The second force on the boundary layer comes from the wall-shear
stress τw . A boundary-layer is said to be in equilibrium when the ratio of these two forces
is constant along the length of the boundary layer, i.e. when the so-called equilibrium
parameter βT := (δ∗/τw )(dp̄/dx1) is constant [3]. We plot the absolute value of the ex-
perimentally determined βT values in figure 3.3. Flows such as 6300 with constant βT

are simple flows for which the turbulence models should be able to make accurate pre-
dictions. Other flows are more complex. We especially expect that models will encounter
difficulties in the last part of flow 2100, i.e. flows 2133 and 2134.

We calibrate each model of Section 3.2 for each flow of Table 3.2 separately, using
one velocity profile as experimental data. We again omit any experimental data in the
viscous wall region. Remember we investigated the effect of not including near-wall data
on the posterior distributions in Section 2.5.2, where we found that the posteriors were
not significantly affected by this exclusion.

3.3.2. SENSITIVITY ANALYSIS OF BOUNDARY-LAYER PROBLEM

To get an idea of which coefficients can be informed by our data, we perform a variance-
based, global-sensitivity analysis before we start the calibrations. We expect that we
can obtain informative posterior distributions for the parameters with a high sensitivity
measure, whereas the ones with low sensitivities are likely to yield posterior distributions
that do not differ much from the uniform prior distributions. To this end we call θ ∈R

Q a
random vector, the components of which are Q uncertain closure coefficients. We carry
out a sensitivity analysis of the output quantity u+ = u+ (

y+;θ
)

by computing the Sobol
indices Sw , as described in Section 2.5.4.

We considered uniform input pdfs for all coefficients, with the boundaries located at
±10% of the nominal values displayed in Table 3.1. The results can be found in Figure 3.4.
In case of the k −ε model with the constraints (2.12)-(2.13) applied, the most influential
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Figure 3.3: Experimental |βT | values for all flows but 1400 and 0141. Source [4].

Table 3.2: Flow descriptions, source [4].

Identification Type Description

1400 Zero Equilibrium boundary layer at constant pressure
1300 Fav Near-equilibrium boundary layer in moderate negative

pressure gradient
2700 Fav Equilibrium boundary layer in mild negative pressure

gradient
6300 Fav Near-equilibrium boundary layer growing beneath po-

tential flow on model spillway
1100 Mild adv Boundary layer in diverging channel
2100, 2133, 2134 Div Boundary layer on large airfoil-like body; pressure gra-

dient first mildly negative, then strongly positive, with
eventual separation

2500 Mild adv Equilibrium boundary layer in mild positive pressure
gradient

2400 Div Initial equilibrium boundary layer in moderate positive
pressure gradient; pressure gradient abruptly decreases
to zero, and flow relaxes to new equilibrium

3300 Mod adv Boundary layer, initially at constant pressure, develop-
ing into equilibrium flow in moderate positive pressure
gradient

0141 Str adv Boundary-layer with strong adverse pressure gradient,
source [13]

1200 Str adv Boundary layer in diverging channel with eventual sep-
aration

4400 Str adv Boundary layer in strong positive pressure gradient
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(a) The k −ε model.
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(c) The Spalart-Allmaras model.
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(d) The Baldwin-Lomax model.
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(e) The stress-ω model.

Figure 3.4: Sobol indices of the considered turbulence models for flow case 1400.
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parameter is Cǫ2, followed by κ. The parameter Cε2 is the proportionality constant of the
dissipation term in the transport equation of ε. The von Karman constant κ enters the
model through the constraint on σε (2.12), which is the proportionality constant of the
diffusion term in the ε equation.

The Sobol indices of the k−ωmodel were calculated with the constraint (3.1) applied.
We can see that κ is by far the most influential parameter. Again, κ enters the model
through a constraint. This time the constraint is on α, which regulates the production
of ω. The second parameter that has an impact on the computed u+ is σ, which is the
proportionality constant of the diffusion term of the ω transport equation.

For the SA model we see that again κ is the most influential parameter when it comes
to u+ profiles. And, like the two preceding models, it also enters the model through a
constraint. Here, the constraint (3.2) is on Cw1, which regulates the dissipation of ν̃.
A second influential parameter is Cv1, which appears in the function fv1. In turn, this
function relates ν̃ to the eddy viscosity as νT = fv1ν̃.

For the Baldwin-Lomax model the most influential parameter is κ as well, although
it enters the model directly though algebraic expressions of the eddy viscosity νT . The
u+ profiles are sensitive to A+

0 as well, which is a parameter in the van Driest damping
function [24].

Finally, for the stress-ω model we find that again κ, which performs exactly the same
function as for the k −ω model, is the most influential, although to a lesser extend com-
pared to the other 4 models. Unlike the k −ω model however, the parameters β and β∗

also carry some weight.
So far we have examined Sobol indices for one particular flow case, i.e. 1400. The

variation over different flow cases is not very large, although small changes can occur,
see Figure 3.5 for an example, which compares Sobol indices associated to the closure
coefficients of k − ε computed for flow case 1400, and for the strong adverse pressure
gradient case 0141. In both cases Cε2 is by far the most influential. And in both cases κ

becomes more influential than σk when we move away from the wall. However, in the
strong adverse case the intersection point is at a higher y+ value, and before that σk has
a higher Sobol index than it had in case 1400.

3.4. STATISTICAL METHODOLOGY

Similar to our approach in Chapter 2, the first step in our method consists of calibrating
the closure coefficients of each turbulence model of Section 3.2 against different sets of
experimental data. The calibration framework is already described in Section 2.4, and
the selected priors for all turbulence models are described in the next section. Thus we
obtain multiple sets of posterior parameter distributions for each model by calibrating
it to each flow of Table 3.2. We summarize this large amount of information by calcu-
lating the Highest Posterior Density intervals of Section 2.4.3. The final phase consists
of using the posterior parameter distributions to make predictions for a new flow case.
To achieve this we use the Bayesian Model-Scenario Averaging (BMSA) framework de-
scribed in Section 3.4.1.
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(a) Sobol indices for k −ε model for case 1400.
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(b) Sobol indices for k −ε model for case 0141.

Figure 3.5: Variation of Sobol indices over flow cases for the k −ε model.

PRIORS FOR θ AND γ

All priors, for both the closure coefficients θ and hyper-parameters γ, are independent
uniform distributions. The choice of interval end-points was mainly on the range of co-
efficients for which the solver was stable and provides physical solutions. By physical
solutions we mean u+ profiles that are not excessively large. Take for instance the stress-
ω model. If we assume a uniform prior where we perturb the coefficients by ±50% from
their nominal values, we found u+ values that were extremely large. The worst case we
encountered is depicted in Figure 3.6(a). In the calibration phase this does not pose a
problem. The McMC chain will automatically reject the bad samples and move to a part
of the stochastic domain that does generate samples close to the data. However, our
predictive methodology (Section 3.4.1), involves the propagation of multiple posterior
distributions through the code at validation settings. In this case the extremely unphysi-
cal samples can re-occur, although with low probability. This was observed especially in
the case of the stress-ω model. Therefore we chose the prior domain such that these ex-
treme outliers are not possible. At the same time we checked that the solution variation,
obtained by prior propagation, was still large enough to easily encompass the data, see
e.g. Figure 3.6(b).

For the k−ε model, which does not suffer from extreme outliers, we re-used our pos-
terior distributions from Chapter 2. For the stress-ω and k −ω models the prior domain
boundaries of each coefficient were set at ±20% of their respective nominal values. For
the Spalart-Allmaras and Baldwin-Lomax models we used ±30%.

3.4.1. BAYESIAN SCENARIO AVERAGING: PREDICTION

Calibration according to Section 2.4 gives values of θ that reproduce the single scenario S

accurately. The variance of p(θ|z) only contains information about how well θ has been
identified by z, but nothing about the variability needed in θ when varying the scenario
S. It is this latter information that is relevant for predicting model inadequacy in some
unmeasured scenario S′. In the remaining derivation the effect of γ is integrated out,
that is we work with marginal posteriors of θ only.
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Figure 3.6: Outlier analysis as a function of the prior domain.

To capture this we consider a set of K measured scenarios S = {S1, . . . ,SK } chosen
to encompass the class of flows we wish to predict. In this work they are a subset of the
14 cases described in Section 2.3. The class of flows we may expect to reliably predict is
therefore the class of attached flat-plate boundary-layers at any pressure-gradient within
the range of cases in S . However, the predictive capability of our θ for a QoI outside this
class is investigated in Section 3.5.4. The measurements associated with these scenarios
are denoted z = {z1, . . . ,zK }. Furthermore, to capture some model error due to the form
of the turbulence model, we consider the set of I models M = {M1, · · · , MI }. Here we use
the 5 models described in Section 3.2.

For each turbulence model and each scenario the calibration procedure results in a
posterior on θ:

θ̂i ,k ∼ θ|Mi ,Sk ,zk , i = 1, . . . , I , k = 1, . . . ,K ,

whereby the nature of θ depends on the model. Formally we write θ ∈Θi for i = 1, . . . , I

depending on the context.
Now let ∆ be the Quantity of Interest in an unmeasured scenario S′ 6∈ S . This is a

velocity at y+′, modelled as
∆= u+

i (y+′,S′;θ), (3.3)

but it could equally be a quantity of entirely different type, such as turbulent kinetic
energy. In (3.3), u+

i
(·) indicates the simulation code under turbulence model Mi . Eval-

uating p(∆|z) conditional on M and S is commonly called Bayesian Model Averaging
(BMA) – but in our case could equally be called Bayesian Model-Scenario Averaging
(BMSA), since the choice of S is critical to the validity of the resulting estimate. In par-
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ticular

p(∆|z)
(a)=

I∑

i=1

K∑

k=1

∫

Θi

p(∆, Mi ,Sk ,θ|zk )dθ

(b)=
I∑

i=1

K∑

k=1

∫

Θi

p(∆|Mi ,θ)p(θ|Mi ,Sk ,zk )P(Mi ,Sk |zk )dθ

(c)=
I∑

i=1

K∑

k=1

∫

Θi

p(∆|Mi ,θ)p(θ̂i ,k )
︸ ︷︷ ︸

p(∆̂i ,k )

P(Mi |Sk ,zk )P(Sk )dθ. (3.4)

Here we use P (· ) to denote a probability mass function (pmf) rather than a pdf. The
equalities in the above are established using: (a) the law of total probability, and the fact
that scenario k depends only on zk ; (b) the definition of conditional probability (twice),
and the conditional independence of ∆ from z and Sk given θ; (c) the definition of condi-
tional probability, and the conditional independence of Sk and zk . The braced term ∆̂i ,k

is equivalent to the posterior θ̂i ,k propagated through the simulation code for ∆ (3.3).
The weights P(Mi |Sk ,zk ) are commonly interpreted as the level of evidence for a given
model [11], in this case specific to a given scenario. Finally we are free to choose P(Sk ),
and it is reasonable to preferentially weight those scenarios that are (in some sense) sim-
ilar to the prediction scenario S′.

The posterior probability of model Mi can be calculated through another application
of Bayes’ rule

P (Mi | Sk ,zk ) =
p (zk | Mi ,Sk )P (Mi | Sk )

∑J
j=1 p

(

zk | M j ,Sk

)

P
(

M j | Sk

) , (3.5)

∀k ∈ {1,2, · · · ,K }, where additionally

p (zk |Mi ,Sk ) =
∫

Θi

p (zk |θ, Mi ,Sk ) p (θ|Mi ,Sk )dθ. (3.6)

Furthermore, the axioms of probability require that

I∑

i=1

P (Mi | Sk ) = 1, and
K∑

k=1

P(Sk ) = 1. (3.7)

Following Draper [5], and the derivation in [17], the leading moments of p(∆|z) can be
written as

E [∆|z] =
I∑

i=1

K∑

k=1

E[∆̂i ,k ]P (Mi |Sk ,zk )P (Sk ) , (3.8)

Var[∆ | z] =
I∑

i=1

K∑

k=1

Var[∆̂i ,k ]P (Mi | Sk ,zk )P (Sk )

+
I∑

i=1

K∑

k=1

(

E[∆̂i ,k ]−E [∆ | Sk ,zk ]
)2
P (Mi | Sk ,zk )P (Sk )

+
K∑

k=1

(E [∆ | Sk ,zk ]−E [∆ | z])2
P (Sk ) , (3.9)
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Here, E[∆̂i ,k ] and Var[∆̂i ,k ] are the mean and variance obtained by propagating θ̂i ,k though
the code of ∆. Furthermore,

E [∆ | Sk ,zk ] =
I∑

i=1

E[∆̂i ,k ]P (Mi | Sk ,zk ) .

This decomposition of the variance into 3 (positive) terms, allows for additional in-
terpretation. The first term on the right-hand side is called the within-model, within-

scenario variance. This can be considered a measure of the effect of the variance in all
the θ̂i ,k on the variance in ∆|z – specifically an average weighted according to the im-
portance of each model and scenario. The second term is the between model, within

scenario variance. It is large when when different models applied to the same scenario
give different predictions. The last term is the between scenario variance. It accounts for
the fact that the same model Mi , calibrated under different scenarios, results in different
posterior θ and therefore different predictions of ∆ [7].

3.4.2. SMART SCENARIO WEIGHTING

In order to close the above system we must specify P(Mi |Sk ) and P(Sk ). As we will show
in Section 3.5.3, simply specifying a uniformly distributed P(Sk ) yields an unacceptably
large variance. This is due to the large spread of θ̂i ,k between scenarios, see Section 3.5.2,
resulting in a large spread of ∆. We would like to preferentially weight those scenarios in
S which are – in some relevant sense – similar to S′. Furthermore we would like to do
this in an automatic, geometry- and flow-independent way.

We propose choosing P (Sk ) to preferentially weight those scenarios for which all
models in M give similar mean predictions of ∆, under the coefficients θ̂i ,k . Equally,
we assign low probabilities to scenarios with large scatter in the model predictions of ∆.
The rationale is that, if S′ is very similar to Sk , the 4 models are expected to give similar
predictions under θ̂i ,k , as they have each been calibrated to the same data zk , contain-
ing physical processes similar to S′. If S′ is completely different to Sk , the choice of θ̂i ,k is
likely to be inappropriate, and the models – provided they are sufficiently heterogeneous
– will deliver different predictions.

In particular we define the scenario probabilities as

Ek =
I∑

i=1

‖E[∆̂i ,k ]−E [∆ | Sk ,zk ]‖2

P (Sk ) =
E
−p

k
∑K

k=1 E
−p

k

, ∀Sk ∈S . (3.10)

Here Ek represents the measure for the prediction similarity, and p is a tuning pa-
rameter, controlling the degree to which the preferred scenarios are weighted. Setting
p = 0 yields uniform probabilities, and as p →∞ a single scenario is selected (provided
that the Ek have distinct values).
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3.4.3. NUMERICAL EVALUATION

In CFD evaluating the likelihood (2.19) involves running a CFD code. Here, the posteriors
θ̂i ,k are approximated with Markov-chain Monte-Carlo (McMC) methods [10, 16], which
provide samples θ̂n

i ,k ,n = 1,2, . . . , N from θ̂i ,k . This chain approximation is thereafter
used to approximate everything else by Monte-Carlo, e.g.:

E(∆̂i ,k ) ≈
1

N

N∑

n=1
u+

i

(

y+′,S′; θ̂n
i ,k

)

. (3.11)

Clearly the process outlined here is impractically costly for an expensive CFD simulation
code applied to a complex geometry – here it is possible due to the use of a boundary-
layer code. Our intention in this paper is to explore the statistical framework, and deter-
mine to what extent prediction of model inadequacy is possible, under the assumption
that numerical costs can be handled. Success will motivate us to study numerical tech-
niques for improving the computational efficiency of the procedure. There are many
possible approaches, including: surrogate modelling [6], Occam’s window [11], zero-
variance McMC methods [18], etc. Also, a means of reducing the computational cost
is described in Section 3.5.5. Furthermore, the calibration step is perhaps necessary for
simple geometries only, giving a database of coefficient distributions θ̂i ,k which can then
be applied to more complex geometries. A flowchart of our entire procedure, from cali-
bration to BMA prediction, can be found in Appendix A.

3.5. RESULTS

3.5.1. HPD INTERVALS OF COEFFICIENT POSTERIORS

To evaluate the success of the individual calibrations, we inspect the coefficient poste-
rior distributions θ̂i ,k . Instead of plotting full multi-dimensional distributions, we plot
HPD intervals of the two most sensitive parameters for each model, shown in Figures 3.7
and 3.8. The scenarios are presented roughly in order of increasing pressure-gradient,
but with the zero-pressure-gradient case (1400) first. The coefficient κ was the most
well-informed coefficient for all models except k − ε, for which it was the second most
well-informed coefficient. As can be seen by the small width of the individual HPD in-
tervals compared to the prior width, these coefficients have been informed by the data.
This was to be expected considering the results of the sensitivity analysis of Section 3.3.2.
The remaining closure coefficients were not informed well enough by the data to be in-
teresting.

The four κ’s presented in Figure 3.7 are not the same κ: the coefficient has a differ-
ent meaning and influence in each model. Neither should they be confused with any
model-independent, or “true” von Karman constant. Nonetheless, ideally κ would be
independent of scenario for a given model. Figure 3.7 clearly shows statistically signif-
icant variation in calibrated coefficients across scenarios. This may be interpreted as
pressure-gradient dependence in the models, and we might conclude, for example, that
Spalart-Allmaras can reproduce attached boundary-layer flows with a single set of coef-
ficients better than Baldwin-Lomax can.

This observed coefficient variation also supports our choice of a statistical model
with scenario-dependent coefficients. A standard calibration approach is to assume
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there exists a single best value of model coefficients θ⋆, and then use all available data
to inform this value, with model inadequacy captured by an η-like term only [12]. These
results question the validity of that assumption in the case of turbulence closure models.

Figure 3.8 shows the HPD intervals of the 2nd most sensitive coefficients (or the 1st
most sensitive in the case of k − ε). In general coefficients are less well informed and
the scenario scatter is greater, supporting the view that optimal closure coefficients are
strongly dependent upon the pressure gradient.

The HPD intervals of the hyper-parameter σhp give insight into the model error that
remains after optimal closure coefficients have been found for each scenario, see Fig-
ure 3.9. HPD interval values close the the 0.1 boundary indicates that the turbulence
model has to rely on the η term in order to capture the data better. All models encounter
flow cases where this occurs, although some more than others. Especially the Spalart-
Allmaras model shows high HPD intervals of σhp in most cases. This indicates that, of
the models in our set M , it is worst at matching the experimental velocity profiles ex-
actly. As we shall see in the next section, BMA provides a coherent mechanism for penal-
izing models that do not perform well on the calibration dataset.

3.5.2. POSTERIOR MODEL PROBABILITY

For a given flow case, once we have calibrated each model in the set M on the data zk

we can calculate the posterior model probability (3.5). This posterior model probability
P (Mi | Sk ,zk ) can be interpreted as the evidence for model Mi given the available data,
and the other models in M . It should be emphasized that the posterior model proba-
bilities are conditional on the choice of models in M , i.e. P (Mi | Sk ,zk ,M ). Since in our
analysis the set M remains fixed we drop it from the notation for the sake of brevity.

We compute P (Mi | Sk ,zk ) for each flow case k in the set S , assuming a uniform
probability mass function for P (Mi | Sk ). The results can be found in Figure 3.10. From
this figure it becomes clear that also the posterior model probability is dependent upon
the applied flow case. Which model has the highest posterior probability given the data
can change significantly from one flow case to another. Thus, both the posterior closure
coefficients and the posterior model probabilities are functions of the pressure gradient.
There is no clear “best” θ or Mi that will outperform its competitors in M for every sce-
nario in S . For a predictive case that is not in S it would be hard to select the best model
and coefficient set a priori, given that in prediction we do not have access to experimen-
tal data by definition.

More speculatively, these results could be interpreted as a explanation for why it is
that no clear “winner” amongst turbulence closure models has been found, see e.g. [26],
and why there are a wide spread of closure coefficients recommended and used in lit-
erature and industry. Note in particular that no clear superiority of the more advanced
Reynolds-Stress model over the other is noticed, even if it does exhibit somewhat higher
probabilities for strong adverse pressure gradient cases. On the other hand, no clear in-
feriority of the algebraic model is observed either, not even for adverse pressure gradient
scenarios. Indeed – based on these results – the practice of tuning a set of deterministic
closure coefficients for specific applications seems futile, even if that tuning is done in
a rigourous way. Predictions made with existing models and deterministic coefficients
seem to be subject to a degree of model error that is not substantially reducible by pa-
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(b) κ of the k −ω model.
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(c) κ of the Spalart-Allmaras model.
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(d) κ of the Baldwin-Lomax model.
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Figure 3.7: The HPD intervals of κ for all
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Mi ,Sk

)

combinations.



3

54 3. PREDICTIVE RANS SIMULATIONS VIA BMSA

p
ri

o
r

1
4

0
0

1
3

0
0

2
7

0
0

6
3

0
0

1
1

0
0

2
1

0
0

2
5

0
0

2
4

0
0

2
6

0
0

3
3

0
0

0
1

4
1

1
2

0
0

4
4

0
0

1.5

2.0

2.5

std. value

prior range

HPDCε2

(a) Cε2 of the k −ε model.
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(b) σ of the k −ω model.
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(c) Cv1 of the Spalart-Allmaras model.
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Figure 3.8: The HPD intervals of second-most well-informed closure coefficients for all
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(a) σhp of the k −ε model.
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(b) σhp of the k −ω model.
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(c) σhp of the Spalart-Allmaras model.
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(d) σhp of the Baldwin-Lomax model.
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Figure 3.9: The HPD intervals hyper parameter σhp for all
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combinations.
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for all models and scenarios.

rameter tuning. For this reason we choose to make model- and scenario-averaged pre-
dictions, using our framework of Section 3.4.1.

3.5.3. PREDICTIONS WITH BAYESIAN MODEL-SCENARIO AVERAGING

In this section the methodology of Section 3.4.1 is applied to prediction of boundary-
layer flows at pressure gradients for which (nominally) no data is available. Our goal is
to assess the predictive capability of (3.8)-(3.9). Our predictions are in the form of mean
and variance of velocity profiles for the unmeasured flows, that is E(∆|z) and Var(∆|z)
where ∆= u+(y+).

We proceed as follows: one case is selected from the 14 flows in Table 2.1 as validation
flow, S′. The experimental data for this case is completely excluded from the analysis,
and only used for comparison purposes in the final plots. The remaining cases form the
set of calibration scenarios S , so that K = |S | = 13. Each of these cases is calibrated
independently, following Section 2.4, to give the coefficient posteriors per scenario and
per model, θ̂i ,k . The moments E[∆̂i ,k ] and Var[∆̂i ,k ] are obtained by propagating the K ×I

McMC chains from the calibration step through (3.3). The chains are our best available
representation of the coefficient posteriors, and therefore no uncertainty information
gets lost in this step. Finally (3.8)-(3.9) are evaluated.

To close (3.8) it remains only to specify the probability mass function (pmf) for P (Sk ).
This could be based on expert opinion. For instance if one believes that the current pre-
diction flow is subject the mildly-adverse pressure gradients, the posterior parameter
distributions that were calibrated under similar circumstances could be favored through
P (Sk ). Ideally an automatic procedure is preferred, or if no information is available one
must admit ignorance and select a uniform pmf. In the following sections first predic-
tions based on this last choice are examined as a worst-case; then a smart automated
selection of P (Sk ) is developed
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RESULTS OF UNIFORM P(Sk )
In the worst-case we are completely ignorant of the relationship between S′ and the
members of S , and select a uniform pmf for P (Sk ), i.e. assuming that each pressure-
gradient scenario is equally likely. We show the results for two validation flow cases in
Figure 3.11, an “easy” case (flow 1300), and a “difficult” case subject to a strongly ad-
verse pressure gradient (flow 4400). The mean prediction for case 1300 in Figure 3.11(a)
is reasonable, it falls within the region of experimental uncertainty for all y+. However
the standard deviation of the prediction σ∆ :=

p
Var[∆ | z] is almost 2 u+ units. As can

be seen from the 1σ, 2σ and 3σ quantiles, plotted in blue, this is very large, and a clear
over-estimation of the true model error. Nonetheless the fact that the correct solution
lies within the range of our prediction should be interpreted as a successful prediction –
albeit perhaps not a very useful one.

Thanks to the variance decomposition in (3.9), the source of the large variance can be
diagnosed, see Figure 3.11(b). It seems the contributions from all three sources are of the
same order, but dominated somewhat by the between scenario variance. It is exactly this
variance that stands to be reduced most by smart weighting of scenario probabilities.

The story for case 4400 is essentially the same, where again the variance is a substan-
tial over-estimation.

One could argue that it is better to be conservative in predictions of uncertainty in
the QoI, however the amount of uncertainty should also not be so high as to make the
prediction useless. We are of the opinion that the amount of uncertainty (in these rela-
tively simple flows) crosses that line. For instance the results for flow case 4400 show an
uncertain maximum 3σ∆ range of ±15 u+ units in the defect layer, roughly 43% of the
mean.

Ultimately the source of this large variance is the large spread of closure coefficient
values across the calibration cases. As more extreme cases are added to S – with the goal
of extending the range of validity of the predictions – this variance will only increase. This
result echoes our previous results using p-boxes in Edeling et al. [7] which also lead to
very large error bars. Unlike p-boxes however, our Bayesian Scenario Averaging frame-
work is not limited to a uniform scenario weighting.

RESULTS OF SMART P (Sk ) WEIGHTING

In order to bring σ∆ down to realistic levels we use the model prediction-spread based
P(Sk ) defined in (3.10). To clarify, we plot the model prediction spread for validation
case 1300 in Figure 3.12. This corresponds to the envelope of predictions provided by
the different models, using posterior coefficients associated to a particular calibration
scenario. Figure 3.12 displays such a prediction spread for different calibrations scenar-
ios. Note that the spread is quite small for predictions made with posteriors coming from
cases similar to 1300, and that it steadily grows as we move to the predictions made with
θ̂i ,k calibrated under strongly-adverse Sk . It is this behavior that is used to inform P(Sk )
via Ek , and the effect is amplified by selecting a p ≥ 1. The resulting scenario weights
for p = 1,4,8 are shown in 3.13. Notice that in both cases the sensor favours cases with
pressure-gradients similar to the validation scenario. For case 1300 it selects favorable
pressure-gradients, and for case 4400 adverse gradients. In both cases with p = 8 most
scenarios have an almost-zero weight and can be neglected.
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Figure 3.13: Two Ek -based P
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distributions.

We now examine how this new P (Sk ) affects the BMSA predictions, for different val-
ues of p. In Figure 3.14a we plot E [∆|z] for p = 0,1, · · · ,8 for case 1300. We see that for
p = 0,1 the predictions are slightly off the experimental data. For all p > 1 the predictions
overlap and match the data quite well. However, in most cases we found that the value
of p had no significant effect on the BMSA prediction E [∆|z], see e.g. Figure 3.14b. The
posterior variance (3.9) on the other hand is significantly affected by p. This can be in-
ferred from Figure 3.15, where we show the same predictions with quantified uncertainty
as in the previous section, but using the smart weighting (with p = 8). As discussed, the
BMSA prediction mean for 1300 is improved, and now lies right on top of the measure-
ment points. In addition the maximum σ∆ value has more than halved from 2.0 to 0.8.
It is now comparable to the level of measurement error indicating that our prediction
is as accurate as our reference experimental data. For 4400 the prediction with p = 0
was already reasonable, and remains unchanged for p > 0. Again, the maximum σ∆ has
decreased, in this case from 5.5 to roughly 3.7 u+-units.

From Figures 3.15(b) and (d), we observe the variance reduction was most strong
for between scenario variance as expected, but between model, within scenario variance
also took a substantial hit. The remaining variance is dominated by the term represent-
ing the lack of identification of closure coefficients in the individual calibrations, i.e. the
variance of θ̂i ,k . This can be reduced by using more data (and more informative data) in
the calibrations, to better inform coefficients. Alternatively, approximating each θ̂i .k by
its maximum a posteriori (MAP) estimate, would reduce the computational cost of evalu-
ating E(∆̂i ,k ), and set the blue region in the above plots to zero. Given that the blue region
dominates the variance however, this is an approximation of questionable validity.

Finally, to demonstrate the generality and robustness of these results, the above anal-
ysis is performed for prediction of each one of the 14 boundary-layer cases, each time
using data from the remaining 13 cases only. The results are summarized in Table 3.3.
There we show the set of Sk which make up 75 % or more of P (Sk ), the relative error of
the BMSA prediction (3.8) defined as ǫ′∞ := ‖E [∆ | z]− zv‖∞/‖zv‖∞ and the coefficient
of variation (CoV), given by Ccov := σ∆/E [∆ | z]. The CoV is a measure of the solution
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Figure 3.14: E [∆|z] vs p for two validation flow cases.
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variability with respect to the mean. Note that most validation cases favour a Sk with a
pressure-gradient classification similar to their own, only the mild- and moderately ad-
verse S′ tend to mix different type of scenarios. Also, almost all BMSA predictions are sat-
isfactory, which can be inferred from the fact that they have both small ǫ′∞ and max Ccov .
The only real exceptions are cases 2133 and 2134. These are cases with an extremely ad-
verse pressure gradients, for which all turbulence models in our set M struggle to make
accurate predictions.

Table 3.3: Results validation flow cases using (3.10).

Val. case {Sk |
∑

k P(Sk ) ≥ 0.75} ǫ′∞ max Ccov

1400 (zero) 6300 0.030 0.042
1300 (fav) 6300 0.013 0.042
2700 (fav) 6300, 1300 0.030 0.058
6300 (fav) 1300 0.011 0.045

1100 (mild adv) 1200,2100,6300 0.062 0.061
2100 (mild adv) 6300,1400 0.028 0.055
2500 (mild adv) 1100,1400,6300 0.039 0.057
2400 (mod adv) 2500,1100,2700,1400 0.013 0.067
3300 (mod adv) 1100 0.046 0.065

0141 (strong adv) 4400 0.051 0.081
1200 (strong adv) 1100,2133,2100 0.043 0.091
4400 (strong adv) 1200 0.050 0.108

2133 (very strong adv) 0141,4400,1200 0.14 0.099
2134 (very strong adv) 0141,4400,1200 0.29 0.099

3.5.4. C f PREDICTION

Up this point the QoI has always been u+ profiles, and all posterior θ̂i ,k have been in-
formed using only experimental u+ data. The question now arises whether these dis-
tributions are also effective when we try to predict a QoI of a different nature. To that
end we make predictions for a variety of different skin-friction profiles, using the same
procedure, distributions and posterior model probabilities as in the preceding sections.
Thus, the only change is our new QoI, the dimensionless skin-friction coefficient C f :=
τw /(ρu2

∞/2). Here τw is the wall-shear stress and u∞ is the freestream velocity.
The results for a uniform P(Sk ) distribution and a large range of different scenarios

are shown in Figure 3.16. We see that all predictions fall within the range of experimen-
tal uncertainty, and in most cases are quite well centered on the data points. Only the
3300 prediction is slightly off center. The amount of uncertainty in the predictions is
reasonable, E [∆|z]±σ∆ being in most cases contained within the region of experimental
uncertainty.

As in the case of the u+ predictions, we now examine the effect of our scenario-
weighting procedure, starting with the influence of p on E [∆|z]. In Figure 3.17a we plot
E [∆|z] vs p on the same vertical scale as used in Figure 3.16. It is again clear that the
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Figure 3.17: E [∆|z] vs p. Here, ∆=C f .

BMSA predictions are robust, as they are relatively invariant considering the large range
of the exponent p. When zooming in on E [∆|z] (see Figure 3.17b), we see that unlike
the u+ case, the predictions move slightly away from the data with increasing p, but
basically become insensitive to p starting from p = 3. When we examine the model pre-
diction spread for 0141 in Figure 3.18, it becomes clear that predictions can be more
in agreement with each other for flow cases not similar to 0141, which underlines the
importance of considering different calibration scenarios. Also, including posterior dis-
tributions calibrated for QoIs other than u+ could possibly be beneficial. The prediction
with quantified uncertainty for the same validation case and p = 3 is shown in Figure
3.19. We can again see that the variance is affected more by p than the prediction.

3.5.5. REDUCTION OF COMPUTATIONAL EFFORT - SCENARIO-AVERAGED

POSTERIORS

The full BMSA approach, with I models and posterior distributions coming from K sce-
narios requires us to propagate I ×K p(θ̂i ,k ) through the code for ∆. In order to use
BMSA, only convergence in mean and variance is required for each propagation. This
poses no problem for our current computational setup. Full propagation can be achieved
within a single day with moderate computational resources, in our case parallel prop-
agation using 14 cores. Calibration takes longer, but is still easily achieved. A single
calibration can take anywhere from 1 hour up to (at the very most) 12 hours, depend-
ing on the turbulence model, the streamwise location of the data, and the number of
specified steps in the Markov chain. With the mentioned computational resources, all
flow-case model combinations can be calibrated in roughly a week time. This needs to
be performed only once, after which the posteriors can be re-used (also for complex flow
topologies) as much as needed in the predictive phase of the method.

However, the required propagation by BMSA using the same number of models and
scenarios is unlikely to be computationally tractable when considering more complex
flow topologies. This could be alleviated, e.g. through the use of surrogate models [19,
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Figure 3.19: BMSA prediction for C f with Ek -based P
(

Sk

)

and p = 3.

20, 25], and will be explored in future work. But even with the use of surrogate models,
performing I ×K propagations could prove to be computationally expensive. Therefore
we propose to replace the I ×K p(θ̂i ,k ) by I scenario-averaged p(θ̃i ) defined as

p(θ̃i ) := p (θ|Mi ,z) =
K∑

k=1

p (θ|Mi ,Sk ,z)P (Sk ) . (3.12)

Instead of using (3.8), the prediction for ∆ is now made with

E [∆|z] =
I∑

i=1

E[∆̃i ]P (Mi |z) , (3.13)

where E[∆̃i ] := E[∆|Mi ,z] is obtained by propagating p(θ̃i ,k ) through ∆ and

P (Mi |z) =
K∑

k=1

P (Mi |Sk ,z)P (Sk ) . (3.14)

Furthermore, the posterior variance (3.9) now reduces to

Var[∆|z] =
I∑

i=1

Var[∆̃i ]P (Mi |z)+
I∑

i=1

(

E [∆̃i ]−E[∆|z]
)2
P (Mi |z) . (3.15)

The first of two terms in (3.15) is denoted as the in-model variance, and the second one is
called the between-model variance. Note that (3.13)-(3.15) is not a traditional BMA, as the
influence of the different Sk is still implicitly present. Of course, propagating scenario-
weighted posteriors is likely to provide different results with respect to a full BMSA using
the same scenario weights, if significant nonlinear interaction effects are present. How-
ever, the computational effort is reduced significantly, since now only I propagations
are required to compute the prediction and its variance. Scenario probabilities P(Sk )
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Figure 3.20: The marginals of p(θ̃i ) in case of the k −ε model.

now have to be specified before we propagate, and thus we lose the ability of using an
automated sensor such as (3.10).

Instead, we must rely on expert opinion to specify the distribution of the Sk . As
proof of concept, let us imagine an expert RANS user, interested in predicting C f for
a favourable pressure gradient case. Furthermore suppose this user selects from the
closure-coefficient database two favourable (1300, 2700), one zero (1400) and one mildly-
adverse (1100) Sk , and sets for each of these scenarios P(Sk ) = 0.25. Next, for each model
one p(θ̃i ) is created via (3.12). As an example we show the marginals of p(θ̃i ) for the k−ε

model in Figure 3.20. The prediction (3.13) and standard deviation of (3.15) are shown
in Figure 3.21. To contrast, the full BMSA prediction and standard deviation are plotted
as well. Although the full BMSA prediction lies closer to the validation data, the E[∆|z]
computed with (3.13) is not far off. This is especially true for the two σ∆, which almost lie
on top of each other. Finally, when examining Figure 3.21b we see that through Var[∆̃i ],
most of the between-scenario uncertainty has now been incorporated into the in-model
standard deviation, which is significantly larger than the between-model σ∆.

3.5.6. DISCUSSION - CLOSURE COEFFICIENT DATABASE

The full BMSA approach described would be clearly extremely computationally expen-
sive if applied to complex flow problems. We have deliberately made no simplifications
– such as using MAP estimators, moment methods, or surrogate models – in order to as-
sess the performance of the approach in the best-case scenario. Clearly, application to
complex flow topologies requires some performance optimization. For instance, the fact
that (3.10) usually picks Sk similar to S′ suggests that we might set certain P (Sk ) to 0 by
hand based upon physical reasoning, saving code runs. More specifically, this approach
would deduct I from the total number of required propagations. Another option with a
more significant reduction of computational effort was outlined in Section 3.5.5, i.e. the



3

68 3. PREDICTIVE RANS SIMULATIONS VIA BMSA

2 4 6 8 10 12

s

0.000

0.001

0.002

0.003

0.004

0.005

C
f

6300

E [∆ | z]±3σ∆

E [∆ | z] , full BMSA

zv ±3σzv

(a) The prediction for case 6300.

2 4 6 8 10

s

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

√

V
ar
[∆

|z
]

6300
σ∆, full BMSA

in Mi σ∆

between Mi σ∆

(b) The BMSA std. dev. for case 6300.

Figure 3.21: Prediction for C f obtained using 5 scenario-averaged posterior distributions. The full BMSA re-
sults are depicted by the dotted lines.

use of scenario-averaged posterior distributions. This particular method requires the
user to a priori specify P(Sk ), which could also be done based upon physical reasoning.
This P(Sk ) can then be used to create one Sk -averaged posterior coefficient distribu-
tion per model, reducing the required number of propagations to I . Initial results look
promising, showing only a small deviation from the full BMSA prediction. Such a strat-
egy could allow S to contain many hundreds of scenarios, as it is the user who decides
which of these to incorporate into p(θ̃i ). In addition to different scenarios, we envi-
sion the closure coefficient database to contain posteriors calibrated for different QoIs
as well. So far we have only used u+ data to inform our posteriors. Our results indicate
that we can still use these distributions to make robust predictions of C f profiles, but
some of the optimality is lost compared to the case where u+ is the QoI. Enriching the
database with distributions calibrated, amongst others, for C f profiles could possibly
remedy this. Also it would also provide a user with a more natural choice of which Sk to
include, plus it could inform certain coefficient distributions that are just not informed
by u+ data. Posterior distributions that were calibrated using, e.g., both u+ and C f data
could be included as well.

For many propagation techniques, e.g. [25], the computational cost increases with
the number of uncertain coefficients. Therefore, further gains could come by reducing
the dimensionality of the problem via a Sobol analysis. For instance our results of Section
3.3.2 show that for boundary-layer flows there are only 2 influential parameters for each
model under consideration. If in other flow topologies a similar situation occurs, we
might fix the non-influential parameters.

The hope is that this framework could be equally successful when applied to more
general and complex classes of flows. There are two approaches here. As described
earlier, since closure coefficient posteriors are topology independent, we can apply the
“coefficient-database” from our limited class of flows to general flow problems. Then
only uncertainty propagation needs to be performed for the complex problem to obtain
predictions. Many techniques are available for efficiently propagating pdfs through a
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computer code, notably sparse-grid stochastic-collocation methods [19, 20, 25]. In the
worst-case, MAP estimators can be used instead of full pdfs. The success of this ap-
proach will depend on to what extent the features in the complex flow are represented
in the database.

The second approach is to build a new database S , tailored to the class of flows
to be predicted. This would entail performing new calibrations. If possible, these cali-
brations should be done using cheap codes, and subsequently again use the topology-
independent nature of θ. If this is not possible, Bayesian calibration could also be per-
formed using a surrogate model as a replacement for the expensive computer code, see
e.g. [15]. The scenarios in the new set should be (a) representative of this class, and (b)
have rich experimental data available. This need not include only (or even mainly) flows
of the same type – for wing aerodynamics, flat-plate boundary-layers are likely to be rel-
evant. Models performing poorly – as judged by P(Mi |Sk ,zk ) – could be culled from the
set to reduce the effort needed in the coming predictions. The calibration step must only
be performed once to set up the database. After which predictions are again a matter of
uncertainty propagation only.

To summarize, we remain somewhat within the classical paradigm of RANS calibra-
tion, in that we calibrate on simple flow problems, the result of which we will apply to
more complex problems. However, the classical paradigm: i) uses one point estimate
of θ and subsequently assumes generality of this estimate, taking no form of parameter
error into account; ii) does not account for model-form error. To stochastically model
these errors, we build a database of posterior distributions for several alternative tur-
bulence models, which could be calibrated under a wide range of different scenarios
and/or QoIs. If computationally allowable, a full BMSA could be performed to obtain
predictions with quantified uncertainty, where the results coming from certain posteri-
ors can be automatically favoured through a sensor like (3.10). If not, posteriors could
be averaged over a weighted set of user-selected scenarios. This approach requires the
construction of only one surrogate model for each turbulence model in M , increasing
its range of applicability compared to the full BMSA.

3.6. CONCLUSION

We performed Bayesian calibrations of the closure coefficients of 5 turbulence models:
the Launder-Sharma k − ε, Wilcox k −ω, Spalart-Allmaras and Baldwin-Lomax model
and Wilcox stress-ω. Each model was calibrated for 14 scenarios consisting of flat-plate
boundary-layers at varying pressure-gradients, using experimental velocity measure-
ments. Substantial variation in closure coefficients for all models was observed across
this large range of simple flow cases.

In order to synthesize these results, and make predictions for unmeasured flows, we
utilized Bayesian Model Averaging, with an emphasis on scenarios, i.e. Bayesian Sce-
nario Averaging. The framework requires the computation of the posterior model prob-
abilities, which can be thought of as a measure of consistency that a model has with
the experimental data. We found that, like the closure coefficients, the posterior model
probabilities vary greatly with the applied pressure-gradient scenario. These results sug-
gest that there is no single best choice of turbulence model or closure coefficients, and
no obvious way to choose an appropriate model a priori.



3

70 REFERENCES

Instead we used BMSA to make stochastic predictions of unmeasured velocity pro-
files. Closing BMSA with uniform scenario weighting produced predictions which matched
reference data, but with excessively large variance. We therefore developed a smart sce-
nario sensor, to automatically preferentially weight those scenarios in the calibration set
that are similar to the prediction case. This resulted in substantially improved predictors,
both in terms of mean and variance. For almost all of 14 prediction cases, the predictions
lie within one standard deviation of the experimental validation data, and the variance
was of the same order as the experimental measurement error.

Despite the fact that only experimental u+ data was used to inform our posterior
distributions, we also used their topology independent nature to make predictions for
skin-friction profiles. Although these posterior distributions were not optimal for this
particular quantity of interest, we were still able to make consistently more robust pre-
dictions than can be expected from a single turbulence model.

Finally, an approach was suggested to significantly reduce the computational effort
required by the predictive phase of our methodology. By averaging the posterior distri-
butions over different scenarios, the number of pdf propagations drops from I ×K to
just I . Here, I is the number of turbulence models and K the number of scenarios. Even
though expert opinion is now needed to specify the scenario weighting, initial results
look promising.

We see the methods developed here as a step towards providing estimates of the er-
ror due to turbulence closure models, and thereby lending a robust predictive power to
RANS. The next step is to apply them to more complex flow configurations. In this case
it will be computationally intractable to sample directly from the computer code, and
hence the use of surrogate models becomes necessary. The next section describes one
such an efficient surrogate modelling technique.
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4
IMPROVED SIMPLEX-STOCHASTIC

COLLOCATION METHOD APPLIED

TO COMPLEX SIMULATION CODES.

4.1. INTRODUCTION

In order to make reliable predictions of a physical system using a computer code it is
necessary to understand what effect the uncertainties in the inputs have on the out-
put Quantity of Interest (QoI). Attempts to do so while keeping the computational cost
low can be found in [12, 20, 27], which rely on Smolyak-type sparse-grid stochastic-
collocation methods. Whereas traditional collocation-type methods [4, 16] use full-tensor
product formulas to extend a set of one-dimensional nodes to higher dimensions, sparse-
grid methods build a sparse interpolant using a constrained linear combination of one-
dimensional nodes. This can provide a grid with a potential a reduction in support nodes
of several orders of magnitude.

Although computationally more efficient than full-tensor approaches, sparse-grid
methods add points equally in all dimensions, irrespective of whether the response sur-
face is locally smooth or discontinuous. Therefore further gains can be achieved through
adaptive stochastic-collocation schemes which have been developed in recent years.
For instance Ma et al. [17] proposed an Adaptive Sparse-Grid (ASG) collocation method
where the probabilistic space is spanned by linear finite-element basis functions. Dur-
ing each iteration the probability space is refined locally through an error measure based
upon the hierarchical surplus, defined as the difference between the interpolation of the
previous level and the newly added code sample. Although the space is refined locally,
unphysical oscillations can still occur due to the lack of sample points on some of the
edges of the local support of the basis functions. The Simplex-Stochastic Collocation
(SSC) Method of Witteveen and Iaccarino [35] circumvents this problem by discretizing

This chapter is based on: W.N. Edeling, P. Cinnella, R.P. Dwight, Improved Simplex-Stochastic Collocation
Method Applied To Complex Simulation Codes, Submitted to Journal of Computational Phyics, 2014
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the domain into simplices by means of a Delaunay triangulation, and enforcing the so-
called Local-Extremum Conserving limiter to suppress unphysical oscillations. Further-
more, it computes Essentially Non-Oscillatory (ENO) stencils [36] of the sample points
which allow for high-order polynomial interpolation. Further features include random-
ized sampling, the ability to deal with non-hypercube probability spaces and it can be
extended to perform interpolation with subcell resolution [37].

Besides schemes which efficiently sample the probabilistic space, there are other
means of dealing with the curse of dimensionality, i.e. the exponential increase in the
amount of computational cost with increasing dimension. Physical systems often have
a low effective dimension, meaning that only a few coefficients are influential, and only
low-order correlations between the input coefficients have a significant impact on the
output. To capitalize on this behavior, High-Dimensional Model-Reduction (HDMR)
techniques can be applied [25]. Here, an n-dimensional function is exactly represented
as a hierarchical sum of 2n component functions of increasing dimensionality. In the
case of low effective dimension, the n-dimensional function can be approximated well
by a truncated expansion. The main idea is the solve several low-dimensional subprob-
lems instead of one high-dimensional one, which greatly reduces the computational
cost. A well-known member of this class of decompositions is the analysis of variance
(ANOVA) decomposition. In [10], Foo et al. successfully coupled their Multi-Element
Probabilistic Collocation Method [11] with a HDMR-ANOVA decomposition to prob-
lems with up to 600 dimensions. Although they achieved a significant reduction in the
computational cost compared to approaches with full-tensor products, the number of
points required to sufficiently sample these extremely high-dimensional spaces is still
of the order of millions or even more. Furthermore, in [18] Ma et al. coupled their pre-
viously mentioned ASG method with the so-called cut-HDMR technique of [25]. This
approach is computationally more efficient than ANOVA-HDMR, as it does not require
the evaluation of multi-dimensional integrals. Besides truncating the cut-HDMR expan-
sion at a certain order, the authors of [18] also made their approach dimension adaptive
through weights which identify the dimensions that contribute the most to the mean
of the stochastic problem. They applied this approach to several easily-evaluated test
problems of very high dimensionality, i.e. up to a stochastic dimension of 500. Again,
their results represent a significant reduction in the required number of code samples
for a certain error level compared to full tensor grids, but in absolute terms the number
of samples is still very high.

Even though some our numerical examples in this article are quickly evaluated, we
will operate under the assumption that all of them come from expensive computer codes.
In this setting it will be intractable to sufficiently sample a probabilistic space of dimen-
sion O (100). Therefore we will investigate means to efficiently create surrogate models
of complex simulation codes with a moderate number of uncertain input parameters. Of
course, the term ’moderate dimensionality’ is system dependent. So to clarify, we con-
sider the dimensionality moderate when the number of inputs parameters falls within
the range of 5 to 10. Many problems of engineering interest are simulated using codes
with similar dimensionality, e.g. turbulence models [9, 13], groundwater models [26] or
thermodynamic equations-of-state [6, 19].

Due to its adaptivity, high-polynomial order and Runge-phenomenon free interpola-
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tion, the focus of our investigation is the SSC method. The SSC method has been applied
in [3] to optimization under uncertainty of a Formula 1 tire brake intake. After a one-
dimensional perturbation analysis, 3 variables were selected for analysis. Furthermore,
in [7, 8] the SSC method is efficiently coupled with Downhill-Simplex optimization in a
setting for robust design optimization. Several example problems are considered, but
again the maximum number of uncertain variables is 3. In [35] the authors note that the
cost of the Delaunay triangulation becomes prohibitively large from a dimensionality of
5 onward. They suggested to replace the Delaunay triangulation with a scheme where
simplices are formed by selecting the nearest points from randomly placed Monte Carlo
(MC) samples. Using this approach the SSC method was applied to a continuous QoI
with 15 uncertain parameters.

This chapter is aimed at reducing the computational burden of the SSC method,
while keeping the Delaunay triangulation. We investigate two separate techniques. First
we propose the use of new alternative stencils based upon the set-covering problem [14].
The main idea is to use the fast increase in number of simplex elements with polynomial
order to create a minimal set of stencils which covers the entire probabilistic domain.
Afterwards, only this set is used for interpolation. This allows for a more efficient im-
plementation of the SSC method. Our results show that these stencils are capable of
reducing the computational cost. We furthermore present a new method for avoiding
problems will the ill-conditioning of the sample matrix, and the provide a new formula
for placing uniformly distributed samples in any simplex of arbitrary dimension. Sec-
ondly, inspired by the work of Ma. et al. [18], we integrate the SSC method into the cut-
HDMR framework. This has all the same advantages, e.g. dimension adaptivity, but not
the disadvantages related to the ASG method such as linear interpolation and the pos-
sible occurrence of the Runge phenomenon. Unlike the authors of [18], we apply our
method a complex computer code for which obtaining samples is expensive. For both
proposed techniques we perform a detailed analysis of the error and we give a discussion
on computational cost as a function of the number of input parameters.

This chapter is organised as follows. In Section 4.2 we present the baseline SSC
method as developed by Witteveen and Iaccarino. Next, in Sections 4.3 and 4.4, we
described the Set-Covering stencils and cut-HDMR respectively. Section 2.5 holds the
obtained results and the discussion. Finally, we give our conclusions in Section 4.6.

4.2. SIMPLEX-STOCHASTIC COLLOCATION METHOD

In the next section we give a general outline of the Simplex-Stochastic Collocation (SSC)
Method as developed by Witteveen et. al. For a more detailed description we refer to
[34–36, 38].

4.2.1. GENERAL OUTLINE BASELINE SSC METHOD

The SSC method was introduced as a non-intrusive method intended for robust and ef-
ficient propagation of uncertainty through computer models. It differs from traditional
collocation methods, e.g. [4, 16], in two main ways. First, for multi-dimensional prob-
lems it employs the Delaunay triangulation to discretize the probability space into sim-
plex elements, rather than relying on the more common tensor product of one-dimensional
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abscissas [22]. Using a multi-element technique has the advantage that mesh adapta-
tion can be performed, such that only regions of interest are refined. Secondly, the SSC
method is capable of handling non-hypercube probability spaces [35].

The response surface of the QoI u(ξ) is denoted by w(ξ) and it is constructed using
a set of ns samples from the computational model, v = {v1, · · · , vns }. Here, ξ is a vector
of nξ random input parameters ξ(ω) = (ξ1(ω1), · · · ,ξnξ

(ωnξ
)) ∈Ξ⊂R

nξ . Furthermore, we

define Ξ to be the parameter space and ω =
(

ω1, · · · ,ωnξ

)

∈Ω ⊂ R
nξ is a vector contain-

ing realizations of the probability space (Ω,F ,P ) with F the σ-algebra of events and P

a probability measure. The variables in ω are distributed uniformly as U (0,1), and the
input parameters can have any distribution fξ, although for the sake of simplicity we re-

strict ourselves in this paper to fξ = U (ξa
i ,ξb

i ), with the bounds ξa
i and ξb

i . We perform
all our analysis on the hypercube Knξ

:= [0,1]nξ , and we use a linear map in order to go
from Knξ

to the parameter domain ξ. Our goal is to propagate fξ through the computa-
tional model in order to asses the effect of fξ on the m-th statistical moment of u (ξ(ω)),
i.e. we wish to compute

µ(m)
u =

∫

Ξ

u (ξ)m fξ(ξ)dξ. (4.1)

Note that u can also be a function of a physical coordinate x or other deterministic ex-
planatory variables, but for brevity we omit x from the notation. Since the SSC method
discretizes the parameter space Ξ into ne disjoint simplices Ξ = Ξ1 ∪ ·· ·∪Ξne , the mth

statistical moment is approximated as

µ(m)
u =

∫

Ξ

u (ξ)m fξ(ξ)dξ≈µ(m)
w =

ne∑

j=1

∫

Ξ j

w j (ξ)m fξ (ξ)dξ. (4.2)

Here, w j is a local polynomial function of order p j associated with the j-th simplex Ξ j

such that

w(ξ) = w j (ξ), for ξ ∈Ξ j , (4.3)

and

w j (ξk j ,l
) = vk j ,l

. (4.4)

Note that (4.4) is simply the interpolation condition. The subscript k j ,l ∈ {1, · · · ,ns } is a
global index which refers to the k-th added computational sample, while j refers to a
certain simplex element. Furthermore, l = 0, · · · , N j is a local index used to count the
number of samples from v involved in the construction of w j . The N j + 1 number of
points needed for nξ-dimensional interpolation of order p j is given by

N j +1 =
(nξ+p j )!

nξ!p j !
, (4.5)

and the local interpolation function w j itself is given by the expansion

w j (ξ) =
N j∑

l=0

c j ,lΨ j ,l (ξ). (4.6)
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The choice of basis polynomials Ψ j ,l , and the determination of the interpolation coeffi-
cients c j ,l is dealt with in Section 4.2.2. Note that for a given nξ, the maximum allowable
order p j based on the number of samples ns can be inferred from (4.5).

Which N j +1 points are used in (4.6) is determined by the interpolation stencil S j .
The selection can be made based on the nearest-neighbour principle [35]. In this case
the first nξ+1 points are the vertices {ξk j ,0

, · · · ,ξk j ,nξ
} of the simplex Ξ j , which would suf-

fice for p j = 1. For higher degree interpolation, neighbouring points ξk are added based
on their proximity to the center of simplex Ξ j , i.e. based on their ranking according to

‖ξk −ξcenter j
‖2, (4.7)

where those ξk of the current simplex Ξ j are excluded. The simplex center ξcenter j
is

defined as

ξcenter j
=

1

nξ+1

nξ∑

l=0

ξk j ,l
. (4.8)

The nearest neighbor stencil (4.7) leads to a p j distribution that can increase quite
slowly when moving away from a discontinuity. An example of this behavior can be
found in Figure 4.1(a), which shows the Delaunay triangulation with a discontinuity run-
ning through the domain. An alternative to nearest-neighbor stencils are stencils created
according to the Essentially Non-Oscillatory (ENO) principle [36]. The idea behind ENO
stencils is to have higher degree interpolation stencils up to a thin layer of simplices con-
taining the discontinuity. For a given simplex Ξ j , its ENO stencil is created by locating all
the nearest-neighbor stencils that contain Ξ j , and subsequently selecting the one with
the highest p j . This leads to a Delaunay triangulation which captures the discontinuity
better than its nearest-neighbor counterpart. An example can be found in Figure 4.1(b).
Unless otherwise stated, for all subsequent baseline SSC surrogate models we will use
ENO-type stencils.

The initial samples, at least in the case of hypercube probability spaces, are located at
the 2nξ corners of the hypercube Knξ

. Furthermore, one sample is placed in the middle
of the hypercube. Next, the initial grid is adaptively refined based on an appropriate er-
ror measure. This error measure can either be based on the hierarchical surplus between
the response surface of the previous iteration and new a sample vk , or on the geometri-
cal properties of the simplices. The latter option is more reliable in multiple stochastic
dimensions as it is not based on the hierarchical surplus in a single discrete point [34].
The geometrical refinement measure is given by

ē j = Ω̄ j Ξ̄
2O j

j
. (4.9)

It contains the probability and the volume of simplex Ξ j , i.e.

Ω̄ j =
∫

Ξ j

fξ(ξ)dξ and Ξ̄ j =
∫

Ξ j

dξ, (4.10)
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(a) Delaunay triangulation color coded by p j with
nearest neighbor stencils.
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(b) Delaunay triangulation color coded by p j with
ENO stencils.

Figure 4.1: Delaunay triangulation for two stencil types with a discontinuity running along the dotted line.

where Ξ̄=
∑ne

j=1 Ξ̄ j . The probability Ω̄ j can be computed by Monte-Carlo sampling and

Ξ̄ j via the relation

Ξ̄ j =
1

nξ!
|det(D)|, D =

[

ξk j ,1
−ξk j ,0

ξk j ,2
−ξk j ,0

· · · ξk j ,nξ+1
−ξk j ,0

]

∈R
nξ×nξ . (4.11)

Finally, the order of convergence O j is given by [34]

O j =
p j +1

nξ
. (4.12)

The simplex with the highest ē j is selected for refinement. To ensure a good spread of
the sample points, only randomly-selected points inside a simplex sub-element Ξsub j

are allowed. The vertices of this sub-element are computed by

ξsub j ,l
=

1

nξ

nξ∑

l∗=0
l∗ 6=l

ξk j ,l∗ , (4.13)

see Figure 4.2 for a two-dimensional example. In order to place random samples in an
arbitrary simplex we derive an analytical map Mnξ

: Knξ
→Ξ j , see Section 4.2.2. The SSC

algorithm can be parallelized by selecting the N < ne simplices with the N largest ē j for
refinement. By using (4.13) only the simplex interiors will get refined (see again Figure
4.2), and the boundaries of the hypercube will never be sampled outside the initial 2nξ

points. To avoid this, we do not use (4.13) if a simplex element located at the boundary
is selected for refinement. Instead, we randomly place samples at the longest simplex
edge which is at the boundary, ±10% from the edge center.

Note that (4.9) is probabilistically weighted through Ω j and that it assigns high ē j to
those simplices with low p j since in general Ξ̄ j ≪ 1. Effectively this means that (4.9) is
a solution-dependent refinement measure which refines simplices near discontinuities
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Figure 4.2: The sub simplex (dotted line) of a two-dimensional simplex. Upon refinement one sample is placed
at a randomly selected location inside the sub simplex in order to avoid clustering of points.

since the SSC method automatically reduces the polynomial order if a stencil S j crosses
a discontinuity. It achieves this by enforcing the so-called Local Extremum Conserving
(LEC) limiter to all simplices Ξ j in all S j . The LEC condition is given by

min
ξ∈Ξ j

w j (ξ) = minv j ∧max
ξ∈Ξ j

w j (ξ) = maxv j , (4.14)

where v j = {vk j ,0
, · · · , vk j ,nξ

} are the samples at the vertices of Ξ j . If w j violates (4.14) in

one of its Ξ j ∈ S j , the polynomial order p j of that stencil is reduced, usually by 1. Since
polynomial overshoots occur when trying to interpolate a discontinuity, p j is reduced
the most in discontinuous regions. Interpolating a function on a simplex with p j = 1
and v j located at its vertices always satisfies (4.14) [34]. This ensures that w(ξ) is able
to represent discontinuities without suffering from the Runge phenomenon. In practice,
(4.14) is enforced for all Ξ j in all S j via random sampling of the w j . If for a given w j

(4.14) is violated for any of the randomly placed samples ξ j , the polynomial order of the
corresponding stencil reduced. Again, wow we sample the nξ-dimensional simplices is
described in Section 4.2.2. The computational cost of enforcing (4.14) is investigated in
Section 4.5.

The procedure of enforcing the LEC condition, computing a refinement measure and
subsequently refining certain selected simplices is either repeated for a maximum of I

iterations, or halted when a sufficient level of accuracy is obtained. This level of accuracy
can be estimated through an error measure based upon the hierarchical surplus [34]. As
mentioned, this is the difference between the response surface w j and the newly added
code sample vk j ,r e f

at the refinement location ξk j ,r e f
, i.e.

ǫ(ξk j ,r e f
) = w j (ξk j ,r e f

)− vk j ,r e f
(4.15)
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This is a point estimate of the error, located at what will be a vertex in the new refined
Delaunay grid. To assign error estimates to the simplices rather than to vertices, the error
ǫ̃ j is introduced. For each Ξ j , ǫ̃ j is simply the absolute value of (4.15) of its most recently
added vertex ξk∗ . Since adding vertices will change the Delaunay discretization we relate
the error of the previous simplex to the new one via

ǫ̂ j ≈ ǫ̃ j

(

Ξ̄ j

Ξ̄k∗,r e f

)O j

(4.16)

[35]. The ratio Ξ̄i /Ξ̄k∗,r e f represents the change in volume from its old size Ξ̄k∗,r e f , i.e.
the volume of the simplex which was refined by ξk∗, to its new size Ξ̄ j . Finally, each
individual ǫ̂ j is combined in a global error estimate via the following root mean square
(RMS) error norm

ǫ̂r ms =

√
√
√
√

ne∑

j=1

Ω j ǫ̂
2
j
. (4.17)

The entire baseline SSC method is given in pseudo code in B.

4.2.2. IMPROVEMENTS ON THE BASELINE SSC METHOD

Before discussing our new stencil technique in Section 4.3.1, we will introduce some
additions to the baseline SSC method not discussed in the original references [34–36, 38].

POISED SAMPLE SEQUENCE

The authors of [32] write (4.6) in matrix form, constraining Ψ j ,l to the class of monomi-
als, and subsequently solve explicitly for the coefficients c j ,l . They note that although
they had no difficulties in solving this system, the matrix could have a high condition
number. This poses no real problem for nξ ≤ 3, but for higher dimensions it can become
problematic. To cope with this we impose an additional condition on the construction
of the stencils S j such that the interpolation problem is poised, meaning that the sam-
ple matrix is non-singular [21]. In the following discussion we drop the subscript j until
further notice to make the notation more concise.

To construct the interpolating monomials, let us define the collection consisting of
N +1 nξ-dimensional multi-indices

¯
i := (i1, · · · , id , · · · , inξ

), where for all
¯
i we have |

¯
i | :=

i1 + ·· ·+ inξ
≤ p j and each id is an integer between 0 and nξ. Furthermore, for a given

vertex ξl = (ξ1,l , · · · ,ξnξ,l ) belonging to stencil S, let us define its
¯
i -th power to be ξ

⊙
¯
i

l
:=

ξ
i1
1,l

× ·· · × ξ
inξ

nξ,l
. The sample matrix Ψ, a multi-dimensional Vandermonde matrix, can

then be written as

Ψ=










ξ
⊙

¯
0

0 ξ
⊙

¯
1

0 · · · ξ
⊙

¯
N

0

ξ
⊙

¯
0

1 ξ
⊙

¯
1

1 · · · ξ
⊙

¯
N

1
...

...
...

ξ
⊙

¯
0

N
ξ
⊙

¯
1

N
· · · ξ

⊙
¯
N

N










∈R
(N+1)×(N+1). (4.18)
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As an example, the l -th row of (4.18) in lexicographical order for p j = 2 will look like
[

1 ξ1,l ξ2,l ξ2
1,l ξ1,lξ2,l ξ2

2,l

]

. The coefficients cl in (4.6) can now be obtained by

solving the system









ξ
⊙

¯
0

0 ξ
⊙

¯
1

0 · · · ξ
⊙

¯
N

0

ξ
⊙

¯
0

1 ξ
⊙

¯
1

1 · · · ξ
⊙

¯
N

1
...

...
...

ξ
⊙

¯
0

N
ξ
⊙

¯
1

N
· · · ξ

⊙
¯
N

N


















c0

c1
...

cN









=









v0

v1
...

vN









, (4.19)

where {v0, · · · , vN } are the code samples belonging to stencil S. Once the cl are known,
we can interpolate to any point ξ in the domain spanned by S.

We define∆≡ det(Ψ), and note that the whole approach hinges on the well-poisedness
condition ∆ 6= 0. This condition is relatively easy violated during the SSC procedure in
higher dimensions. For instance, if for nξ = 4 we determine the maximum allowable p

using (4.5) on the initial Delaunay grid we obtain pmax = 2. However, every stencil in
this case will have ∆ = 0. Also situations where a stencil has too many vertices located
in the same direction (e.g. due to edge refinement at the boundary of Knξ

), can lead to
a zero determinant of (4.18). Thus, for nξ > 1 the poisedness condition ∆ 6= 0 imposes
constraints on the geometrical distribution of the ξl . From [5, 21] we know

Theorem 1. The N +1 vertices ξ0, · · · ,ξN ∈ R
nξ are polynomially poised iff they are not a

subset of any algebraic hypersurface of degree ≤ p.

An algebraic hypersurface in R
nξ is a nξ − 1 dimensional surface embedded in a nξ-

dimensional space constrained to satisfy an equation f (ξ1, · · · ,ξnξ
) = 0. The degree is

given by f .
The authors of [5] devised a Geometric Characterization (GC) condition which allows

us to detect if a set of vertices is poised, i.e.

Definition 1. GC condition: For each ξl in a set of N + 1 vertices in R
nξ , there exists p

distinct hyperplanes G1,l , · · · ,Gp,l such that i) ξl does not lie on any of these planes, and

ii) all other ξk , k = {0, · · · , N }\{l } lie on at least one of these hyperplanes. Mathematically

speaking i) and ii) amount to

ξi ∈
p⋃

k=0

Gk,l if i 6= l , ∀i = 1,2, · · · , N . (4.20)

Theorem 2. Let {ξl } be a set of N +1 vertices in R
nξ . If {ξl } satisfies the GC condition, then

{ξl } admits a unique interpolation of degree ≤ p [5].

Due to its geometrical configuration, a single simplex Ξ j in R
nξ always satisfies the

GC condition for p = 1, see Figure 4.3 for a three-dimensional example. For a given vertex
ξl ∈ Ξ j , we always have one hyperplane containing the face of the simplex made up by
all vertices except ξl . Thus, Theorem 2 implies that simplex Ξ j will lead to a Ψ with ∆ 6= 0
and p j = 1.

We use this result to obtain a set of well-poised ENO stencils S j ∀ j = 1, · · · ,ne , in a
way that is similar to the construction of the ENO-stencils as described in [36]. Only if
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Figure 4.3: When selecting node ξ1, there exists one (p = 1) plane which contains all other points except ξ1.
This is true for all nodes in the simplex.

during the enforcement of the LEC condition (4.14) we encounter a stencil S j for which

∆= 0, we collect a set of k candidate nearest-neighbor stencils {S j ,i }k
i=1 which all contain

simplex Ξ j . We then select the S j which has the highest p j and ∆ 6= 0. In the worst case
scenario we get p j = 1, where S j contains only the vertices of Ξ j itself and for which
∆ 6= 0 is guaranteed by Theorem 2. If we have multiple S j with p j > 1 which satisfy these
conditions, we select the one with the smallest average Euclidean distance to the cell
center ξcenter j

.

SIMPLEX SAMPLING

Simplices are refined by randomly placing a point inside the sub-simplex (4.13). If we
would like to uniformly sample a line section with the end points [ξ0,ξ1] we would use
the mapping

M1 = ξ0 + r1(ξ1 −ξ0), (4.21)

where r1 ∼U [0,1]. Generating points inside a triangle can be done with

M2 = ξ0 + r 1/2
2 (ξ1 −ξ0)+ r 1/2

2 r1(ξ2 −ξ1) (4.22)

which maps points {r1,r2} inside the unit square K2 to points inside a triangle described
by the vertices {ξ0,ξ1,ξ2} [30]. The working principle of (4.22) is shown in Figure 4.4(a).
The parameter r 1/2

2 selects a line segment parallel to the edge [ξ0,ξ1], while r1 selects
a point along the chosen line segment. The exponent 1/2 ensures that uniformly dis-
tributed points in the square yield uniformly distributed points in the triangle. This can
be shown by considering the length of the chosen line segment, which increases linearly
when r 1/2

2 moves from ξ0 to ξ1. Since we require a uniform distribution of points, and
considering r1 ∼ U [0,1], the pdf of r 1/2

2 should be linear as well. If we have the random
variable X = r 1/τ with r ∼U [0,1] and τ ∈N>0, we find the cumulative distribution func-
tion (cdf) of X as

FX (x) =P(X ≤ x) =P
(

r 1/τ ≤ x
)

=P
(

r ≤ xτ
)

= xτ. (4.23)
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(a) Triangle. (b) Tetrahedron.

Figure 4.4: Selecting a point inside a triangle and tetrahedron.

And thus we have the pdf fX (x) = dFX /dx = τxτ−1 ∼ Beta(τ,1). Therefore, in order to
have a linear pdf for r 1/τ, we must set τ= 2.

It is suggested in [30] that (4.22) can be extended to higher dimensions, although no
specific formulas are given. Hence, we use the same principle to select uniformly dis-
tributed points inside a tetrahedron, see Figure 4.4(b). Here, the parameter r 1/3

3 selects a
triangle parallel to the base of the tetrahedron. From there we use r 1/2

2 and r1 as before
to select a point on this triangle. The exponent 1/3 again ensures that the point distribu-
tion will be uniform. Note that the area of the selected triangles increases quadratically
as r 1/3

3 moves from ξ0 to ξ1. Hence, it must be distributed as Beta(3,1). We can now
derive an expression for M3 using the geometrical similarities between the base triangle
and the selected parallel triangle, which gives us

M3 = ξ0 + r 1/3
3 (ξ1 −ξ0)+ r 1/3

3 r 1/2
2 (ξ2 −ξ1)+ r 1/3

3 r 1/2
2 r1(ξ3 −ξ2). (4.24)

When comparing (4.21), (4.22) and (4.24) we see a pattern emerge which suggests
that the map from a nξ-dimensional hypercube to a nξ-dimensional simplex with ver-
tices {ξ0, · · · ,ξnξ

} in R
nξ and uniform point distribution is

Mnξ
= ξ0 +

nξ∑

i=1

i∏

j=1

r

1
nξ− j+1

nξ− j+1(ξi −ξi−1), (4.25)

where again the rq are distributed as U [0,1].
To test (4.25) in 2 and 3 dimensions we can simply plot samples points, an example

of which can be found in Figure 4.5. We also placed 104 samples in simplices up to 8
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(a) Samples mapped from the unit square K2 to a tri-
angle.
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(b) Samples mapped from the unit cube K3 to a
tetrahedron.

Figure 4.5: An example of the map (4.25) for nξ = 2,3 and 1000 samples.

dimensions, and found no outliers. The proof that (4.25) produces uniformly distributed
samples can be found in E.

4.3. SSC SET-COVERING METHOD

In this section we describe an alternative stencil creating methodology, which results in
a computational speed up in higher dimensions.

4.3.1. SET COVERING STENCILS

As previously mentioned, Section 4.5 will show that the enforcement of the LEC condi-
tion can become computationally expensive for high nξ and p j . This is especially true for
smooth response surfaces of the QoI. For many of stencils for our discontinuous prob-
lem, the LEC condition is violated and p j is reduced which in turn significantly lowers
the total required number of surrogate model evaluations (nw ) needed to check (4.14).
This does not happen very often when the response surface is smooth. As a consequence
of the exponential nature of nw (see Section 4.5.1), we also see an exponential increase in
the computation time needed to construct the surrogate model. Note that this increase
is due to the SSC procedure, and thus is additional to the time needed to sample the
computer code.

However, the problem lies not only with the exponential increase of nw , but also
in the extremely large overlap of the stencils S j . Note that the standard SSC method
enforces the LEC condition for all simplices Ξ j in all stencils S j . Hence, in each simplex
Ξ j , w j is evaluated the same number of times as Ξ j appears in all stencils S j . For a
two-dimensional example see Figure 4.6. There are two stencils, denote them Sr and
Sq , associated to two different simplices Ξr and Ξq . The dark coloured simplices are the
ones which appear in both stencils. Thus, when the LEC condition is checked for both
stencils, wr but also wq is evaluated in the dark simplices. Moreover, since there are ne

stencils, the overlap will be large, and many different w j will be evaluated in the same
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Figure 4.6: Two stencils which overlap each other. The dark simplices are shared by both stencils.

simplex element. This is no bottleneck for problems of low-dimensionality, but if the
dimension increases this overlap will make the LEC condition very costly to enfore, see
Section 4.5.1.

We propose an alternative technique for problems with higher nξ, using Set-Covering
(SC) stencils based on the well-know set-covering problem [14], stated as follows in SSC
terminology:

Set Covering Problem. Let X j = {Ξ j ,0, · · · ,Ξ j ,K } be the set of all simplices that are inside

the domain spanned by the vertices of stencil S j . Then, Given the set X = {X1, · · · , Xne },

and the set of all simplices U = {Ξ1, · · · ,Ξne }, find the smallest subset C ⊆ X that covers

U , i.e. for which

U ⊆
⋃

X j ∈C

X j

holds.

It is shown in [14] that the set-covering problem is NP-complete, and thus no fast so-
lution is known. We could approximate C by the greedy algorithm, which at each step
simply selects the X j with the largest number of uncovered simplices. We then would
have to check the LEC condition for all stencils in Ssc , defined as the set of S j corre-
sponding to the X j ∈C . For (high-dimensional) problems with a maximum polynomial
order pmax > 1, the number of stencils in Ssc will be significantly lower than ne . How-
ever, this approach would still require to construct all X j ∈ X . Also, many of the X j

could potentially cross a discontinuity, leading to a violation of the LEC condition and
the subsequent reduction in size of X j . When this happens the SC property of C can no
longer be guaranteed. Thus, an iterative approach would be necessary which runs until
Ssc satisfies both the SC and LEC property.
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(a) 2D discontinuous simplices plus contourlines
from the QoI. Notice that the QoI is essentially flat
outside the discontinuous simplices for this particu-
lar problem.
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(b) 3D discontinuous simplices.

Figure 4.7: Discontinuous simplices identified by (4.26).

For reasons of computational efficiency, we want to avoid this iterative approach as
much as possible, and thus not rely completely on the LEC condition to turn a set of
nearest-neighbor stencils into a set of ENO stencils. Hence we will use the information
contained in v regarding the discontinuity location to create a small set of SC stencils that
also resemble ENO stencils, i.e. which do not cross a discontinuity. We will denote these
stencils as SCENO stencils. The Ξ j through which the discontinuity runs are identified
by simply imposing a threshold vt on the maximum jump observed in v at each simplex.
Then, the set of discontinuous simplices can be defined as

D = {Ξ j | |maxvk j ,l
−minvk j ,l

| ≥ vt , l = 0, · · · ,nξ, j = 1, · · · ,ne } (4.26)

In our case the threshold value is set to vt = 1.0. A two and three-dimensional visualisa-
tion of the Ξ j ∈ D can be found in Figure 4.7. We furthermore redefine the set C as the
set containing all the simplices Ξ j that are currently covered by a stencil S j .

The general outline for constructing the SCENO stencils is now as follows. For the
Ξ j ∈ D we set p j = 1 and C = C ∪D, i.e. we add all discontinuous simplices to the set
of covered simplices as well. Next, we select a Ξ

∗
j
∈ U \ C , defined as the simplex with

the largest number of uncovered neighbouring simplices. If there are multiple Ξ
∗
j

which

have the maximum number of uncovered neighbouring simplices (i.e. at most nξ+1), we
select from those the Ξ

∗
j

with the large volume Ξ̄ j . For the selected simplex we grow its

stencil by adding neighbouring Ξ j which are not covered yet, i.e. which are not in C . We
continue growing the stencil either until there are no more uncovered stencils or until
S j is large enough to allow interpolation or order pmax . We then move to the next Ξ∗

j

and repeat until C covers U . For a graphical representation of the stencil construction
we refer to Figure 4.8. It is important to note that our main goal is to find a set C with
a cardinality significantly less that ne , rather than approximating the true minimal C of
the SC problem as closely as possible.



4.3. SSC SET-COVERING METHOD

4

87

0.0 0.2 0.4 0.6 0.8 1.0

ξ1

0.0

0.2

0.4

0.6

0.8

1.0

ξ 2

(a) Identify discontinuous simplices D and set their
interpolation order to 1. Add all Ξ j ∈D to C .
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(b) Select uncovered simplex Ξ
∗
j

and add its neigh-

bours to C . Add corresponding nodes to S j .
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(c) Add uncovered neighbours of previously added
simplices to C . Add corresponding nodes to S j .
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(d) Iterate until the stencil size is large enough or un-
til no more uncovered neighbours are available. Goto
(b).

Figure 4.8: A two-dimensional example of the SC stencil construction.
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This approach assures that we have a relatively small set Ssc for which: i) each sim-
plex Ξ j is present in only one X j , ii) that not all Xi ∈X need be calculated, iii) that no X j

crosses a discontinuity, and iv) the Ξ j ∈D are interpolated linearly. The result is that the
number of times the LEC condition needs to be checked is reduced significantly. Only for
those S j associated to the X j ∈C \ D it is still necessary to check for interpolation over-
shoots, since the Ξ j ∈D are guaranteed to be LEC due to their linear interpolation. The
property of SCENO stencils mentioned under iii) also means that the number of times
the LEC condition is violated is reduced, although not always to zero due to reasons of ill
conditioning of the sample matrix (4.18). This is especially true for high nξ. An approach
as described in Section 4.2.2 would render some of the advantages mentioned under i)
- iv) void. Reducing p j for ill-conditioned stencils will increase the cardinality of Ssc ,
and all X j ∈ X should be calculated in order to look for alternative stencils. Instead we
directly solve an ill-conditioned system (4.19) in the non-null subspace of the solution as
described in [15]. This method utilizes Gauss-Jordan elimination with complete pivoting
to identify the null subspace of a singular matrix Ψ, i.e. Ψnull cnull = 0. This partitions
the linear system as depicted below,

[
Ψr ang e · · ·

· · · Ψnull

][
cr ang e

cnull

]

=
[

v′

...

]

, (4.27)

where Ψr ang e cr ang e = v′ is the non-null subspace in which we can obtain accurate solu-
tions. In the case of an ill-conditioned system, the null subspace is closely approximated
by a space where the pivots ψi i are very small but not exactly equal to zero. The start
of this ’near-null’ subspace is identified by the first pivot ψi i for which the condition
|ψi i /ηc | < ǫ holds, where ηc is the largest pivot of Ψ and ǫ is a very small parameter,
which we set equal to machine precision (ǫ ≈ 2.22 · 10−16). In both the ill-conditioned
and singular case the detrimental effect of Ψnull on the solution is eliminated by a so-
called zeroing operation, which basically replaces Ψnull by an identity matrix of equal
dimension and sets cnull = 0. Thus, effectively speaking those coefficients c j ,l which
have been overwhelmed by round-off error are automatically cut out of the expansion
(4.6). In our experiments we found that the dimension of Ψnull , i.e. the nullity of Ψ, is
small compared to the dimension of the full Ψ, see Table 4.1 for some typical examples
at nξ = 6.

Table 4.1: Examples of ill-conditioned systems. We show the dimension nξ, the polynomial order of the stencil,
the nullity and condition number of the sample matrix Ψ, and finally the condition number of the non-null
Ψr ang e .

nξ p j dimension Ψ nullity Ψ cond. Ψ cond. Ψr ang e

6 2 28×28 1 1.36e+17 9.39e+3
6 3 82×82 1 1.31e+17 2.40e+4
6 3 84×84 2 2.85e+17 2.66e+3

If the system of equations is well-posed, the algorithm amounts to regular Gauss-
Jordan elimination with complete pivoting. In any case, the quality of the response sur-
face is checked via the LEC condition.
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In C the algorithm for constructing the SCENO stencils is displayed in detail, and the
results of the SSC-SC method can be found in Section 4.5.

4.4. HIGH-DIMENSIONAL MODEL-REDUCTION TECHNIQUES

The use of SCENO stencils makes the SSC method much more computationally efficient
when nξ ≈ 5,6. Much beyond that the exponential increase of ne will render even this
approach intractable when only moderate computational resources are available.

However, in physical systems it is often found that only a few parameters are influen-
tial, and only low-order correlations between the input parameters have a significant im-
pact on the output. To capitalize on this behavior, High-Dimensional Model-Reduction
techniques can be applied, see the references of Rabitz and Aliş [24, 25]. Our QoI is rep-
resented by a nξ-dimensional function f (ξ,x) defined on the hypercube Knξ

, where x is
a possible physical coordinate which we will again omit from the notation for the sake
of brevity. Then, the HDMR expansion is an exact and finite hierarchical expansion of
component functions of increasing dimension, given by

f (ξ) = f0 +
∑

i

fi (ξi )+
∑

i1<i2

fi1i2 (ξi1 ,ξi2 )+·· ·+
∑

i1<···<il

fi1···il
(ξi1 , · · · ,ξil

)+·· ·+ f1···nξ
(ξi1 , · · · ,ξinξ

).

(4.28)

Here, the i1, · · · , inξ
are integers satisfying 1 ≤ i1 < i2 < ·· · < inξ

≤ nξ. The zero-th or-
der component function f0 is a constant and represents the mean effect. The first-order
function fi (ξi ) is a univariate function, generally nonlinear, which represents the effect
of independently varying input parameter ξi . Higher order functions represent the co-
operative effects of increasing number of variables acting together on the output. If high
order correlations are weak, the physical system f (ξ) can be efficiently represented by
a truncated L-th order expansion, where L < nξ. This a called a problem with low ef-

fective dimension, which occurs frequently in problems of physical nature [10]. Thus,
the general idea is to solve multiple low-dimensional subproblems in place of a single
high-dimensional one. The resultant computational effort to determine the component
functions will scale polynomially, rather than the traditional exponential increase with
nξ [24].

A measure µ for the measure space (K nξ ,B(K n),µ), where B is the Borel σ-algebra
on K nξ , is defined as

dµ(ξ) := dµ(ξ1, · · · ,ξnξ
) =

nξ∏

i=1

dµi (ξi ),

∫

K1

dµi (ξi ) = 1,

dµ(ξ) = g (ξ)dξ=
nξ∏

i=1

gi (ξi )dξi . (4.29)

Here, g (ξi ) is the marginal density of the input ξi . It is the particular form chosen for
the gi (ξi ) that will determine the form of the component functions. In order to compute
these functions, let us also define unconditional and conditional mean with respect to a
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group of input variables as

M f (ξ) =
∫

Knξ

f (ξ)dµ, M(i1···il ) f (ξ) =
∫

Knξ−l

f (ξ)

[

∏

j∉{i1···il }

dµ j (ξ j )

]

(4.30)

Then, via a family of projection operators Pi1···il
: K nξ → K l , the component functions

are recursively defined as follows [24]:

f0 := P0 f (ξ) = M f (ξ)

fi (ξi ) := Pi f (ξ) = M(i ) f (ξ)−P0 f (ξ)

fi j (ξi ,ξ j ) := Pi j f (ξ) = M(i j ) f (ξ)−Pi f (ξ)−P j f (ξ)−P0 f (ξ)

...

fi1···il
(ξ) := Pi1···il

f (ξ) = M(i1···il ) f (ξ)−
∑

j1<···< jl−1⊂{i1···il }

P j1··· jl−1 f (ξ)−·· ·−P0 f (ξ) (4.31)

The component functions fi1,···il
and f j1··· jk

are independent and orthogonal, thus as
long as one index between {i1, · · · il } and { j1 · · · jk } differs we have

∫

Knξ

fi1,···il
(ξi1 , · · · ,ξil

) f j1··· jk
(ξ j1 , · · · ,ξ jk

)dµ= 0 (4.32)

The correlation interpretation of fi1···il
is associated with the chosen form of the mea-

sure µ. If gi = 1, i = 1, · · · ,nξ, the Lebesgue measure (dµ = dξ1dξ2 · · ·dξnξ
) is retrieved

and (4.28) together with (4.31) becomes the well-know Analysis Of Variance (ANOVA)
decomposition. Computing the component functions in the ANOVA decomposition in-
volves evaluating multi-dimensional integrals, which can be done by for instance MC
techniques [28]. An alternative which is more computationally tractable is the cut-HDMR
decomposition proposed in [24, 25]. In this case the measure is defined as

dµ=
nξ∏

i=1

δ(ξi −ηi )dξi , (4.33)

i.e. gi (ξi ) = δ(ξi −ηi ), a Dirac measure located at the ’cut center’η= (η1,η2, · · · ,ηnξ
). This

choice removes the need for evaluating multi-dimensional integrals, and it expresses
f (ξ) as a superposition of its values along lines, planes and hyperplanes passing through
the cut center η. The component functions (4.31) now become

f0 := P0 f (ξ) = f (η)

fi (ξi ) := Pi f (ξ) = f (i )(ξi )−P0 f (ξ)

fi j (ξi ,ξ j ) := Pi j f (ξ) = f (i j )(ξi ,ξ j )−Pi f (ξ)−P j f (ξ)−P0 f (ξ)

...

fi1···il
(ξ) := Pi1···il

f (ξ) = f (i1···il )(ξi1 , · · · ,ξil
)−

∑

j1<···< jl−1⊂{i1···il }

P j1··· jl−1 f (ξ)−·· ·−P0 f (ξ).

(4.34)
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Here, f (i1···il )(ξi1 , · · · ,ξil
) is the conditional mean (4.30) taken with respect to measure

(4.33), and thus it equals f with its inputs ξi set to ηi , except inputs ξi1 , · · · ,ξil
. As an

example, consider the univariate function f (i )(ξi ) = f (η1, · · · ,ηi−1,ξi ,ηi+1, · · · ,ηnξ
).

The authors of [18] used the cut-HDMR framework coupled with their Adaptive Sparse-
Grid (ASG) collocation method [17], where they chose η as the mean of the random input
vector. Besides truncating (4.28) at a certain order, they also made their approach di-
mension adaptive based on weights which identify the important dimensions. Although
their ASG method uses only a linear finite-element basis, interpolation overshoots can
still occur. Thus, motivated by their work in [18] we will also employ a dimension adap-
tive cut-HDMR approach, except we will couple it with the SSC method utilizing the
SCENO stencils to avoid the mentioned downsides of ASG.

If we define K := {1,2, · · · ,nξ}, the HDMR expansion (4.28) can be written in short-
hand notation as [18]

f (ξ) =
∑

u⊆K

fu(ξu) =
∑

u⊆K

∑

v⊆u

(−1)|u|−|v| f (v)(ξv), (4.35)

where in the first equality we sum over the powerset of K , i.e. over all possible sub-
sets u ⊆ K . We furthermore set f; = f0. The second equality is obtained by expanding
each component function fu(ξu) as indicated in (4.34). Notation wise, if for instance
v = {1,4,6}, then f (v)(ξv) = f (146)(ξ1,ξ4,ξ6). Each individual |v|-dimensional subproblem
f (v)(ξv) can be approximated by a SSC surrogate (4.6). In that case (4.35) becomes

f (ξ) ≈ w(ξ) =
∑

u⊆K

∑

v⊆u

(−1)|u|−|v|
ne∑

j=1

N j∑

l=0

c j lΨ j l (ξv). (4.36)

In order to assess the convergence of each individual f (v)(ξv), the authors of [18] use
the hierarchical surplus. This is also possible in the case of the SSC method, see (4.15).
Alternatively, the RMS error estimate (4.17) can used for this purpose. Since (4.17) is a
global error estimate and it also includes information from the distribution of the input
parameters, we use the RMS error to assess the convergence.

Furthermore, the mean of each component function, defined as Ju, can also be com-
puted from the surrogate model

Ju =
∑

v⊆u

(−1)|u|−|v|
ne∑

j=1

N j∑

l=0

c j lE
[

Ψ j l (ξv)
]

. (4.37)

We compute (4.37) via random sampling, which can be performed quickly since it re-
quires only sampling the surrogate model.

In order to identify the important dimensions, all first order component functions
fi (ξi ) are computed. Again, these are one-dimensional functions which measure the
impact of a single independent input parameter on the output. Next, a weight is defined

αi =
‖Ji‖2

‖ f0‖2
, (4.38)

which measures the contribution of each individual ξi on the mean of all first order
component functions [18]. We always take the L2 norm ‖·‖2 over the spatial domain.
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Equation (4.38) can be considered as a sensitivity index, and only those dimensions for
which (4.38) is larger than a user-prescribed error threshold ǫ1 are considered important.
All higher order fv(ξv) where v contains indices of dimensions which did not make the
cut will not be computed. Consider e.g. a nξ-dimensional problem on Knξ

, where only
v = {1} and v = {2} satisfy αi > ǫ1. The only higher-order component function that will be
computed in this case is f12(ξ1,ξ2), regardless of the value of nξ.

The downside of (4.38) is that it is hard to choose ǫ1 beforehand. One should first
create the first-order HDMR expansion and decide on an appropriate value a postiori.
An alternative is to use a weight measuring the relative contribution of Ji with respect to
the sum of all first-order means, i.e.

αi =
‖Ji‖2

∑nξ

k=1
‖Jk‖2

. (4.39)

Now one can a priori choose a ǫ1 ∈ [0,1], and select the smallest set of important dimen-
sions for which the sum of their αi is greater than ǫ1.

Dimension adaptivity is extended to higher dimensions as well by defining a weight
for |u| > 1 as [18]

αu =
‖Ju‖2

‖
∑

v∈Vcomp ,|v|<|u−1| Jv‖2
. (4.40)

Here, the set Vcomp simply holds all the indices v that were computed. Furthermore, all
subsets v of component functions which are important are added to a set Vi mp . That
way, a higher-order important u is admissible if all v ⊂ u required to compute (4.35) are
also in Vi mp . This is the so-called admissibility condition, which is given by

u ∈ Vi mp and v ⊂ u ⇒ v ∈ Vi mp . (4.41)

Similar to the first-order case, we can define a relative counterpart of (4.40) as

αu =
‖Ju‖2

∑

v∈Vcomp ,|v|=|u|‖Jv‖2
, (4.42)

such that the αu sum to one and we can choose a ǫ1 ∈ [0,1] a priori.
Finally, a relative error measure between two HDMR expansions of consecutive or-

ders p −1 and p is defined as

αp =
‖
∑

|u|≤p Ju −
∑

|u|≤p−1 Ju‖2

‖
∑

|u|≤p−1 Ju‖2
. (4.43)

The algorithm stops when αp becomes smaller than another used-defined threshold ǫ2.
An overview of the HDMR algorithm is depicted in D.

4.5. RESULTS AND DISCUSSION

4.5.1. SSC METHOD

We present the results obtained with the baseline SSC method with nearest-neighbour
or ENO stencils, versus the SSC method with the SCENO stencils. As a test case we use a
quasi-1D nozzle case, described in the next section.



4.5. RESULTS AND DISCUSSION

4

93

p

0.50
0.52

0.54
0.56

0.58
0.60

0.62
p
t

0.90

0.95

1.00

1.05

1.10

1.15

M
o
u
t

0.0

0.5

1.0

1.5

2.0

2.5

Figure 4.9: Mout as function of p and pt obtained by MC sampling, with the geometrical constants fixed to
their nominal value.

NOZZLE FLOW

As a test case we use the solver from [23], which computes the flow through a quasi-
1D diverging nozzle. We prescribe the flow to be sonic at the nozzle inlet, i.e. Mi n = 1.
From fluid mechanics we know that the flow is driven by the pressure gradient, i.e. by
the difference between the total pressure pt at the inlet and the static pressure p of the
surroundings at the nozzle exit. Depending on the value of pt /p, the flow can show
very different behavior. If pt /p exactly equals the adaptation value, the flow reaches the
static pressure of the surroundings at the nozzle exit and the jet exhausts smoothly into
the atmosphere. A stronger pt /p will result in smooth flow through the nozzle, which
is supersonic at the nozzle exit. In order to match the outside pressure p, the flow un-
dergoes a supersonic expansion attached to the nozzle exit (under-expanded nozzle). A
smaller pt /p, but still above a threshold that depends on the ratio of the exit to the throat
area, still results in smooth flow through the nozzle, but this is now over-expanded and
is compressed to the outside pressure through an oblique shock attached to the nozzle
exit. When pt /p is equal to the threshold value, the flow is characterized by a normal
shock located at the nozzle exit: upstream of the shock, the flow is smooth, and veri-
fies adaptation conditions in the exit section; immediately downstream of it, the flow
is subsonic and matches the outside pressure. Finally, when pt /p is below the thresh-
old value, a normal shock wave is formed somewhere inside the nozzle. This results in
subsonic flow at the exit, and an exit pressure that is equal to p [2].

Given the pressure gradient, the flow is completely characterized by the shape of the
nozzle [2]. As in [23], we consider the following hyperbolic tangent for the nozzle shape

f (x) = a +b tanh(cx −d) . (4.44)

To test the SSC method, we specify two different ranges for the uncertain parameters
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such that two radically different response surfaces have to be created. First, we prescribe
a wider range for p such that the QoI is highly discontinuous, see Figure 4.9. In the
second case we restrict p to a more narrow interval such that the QoI is smooth. More
specifically, we prescribe the uniform input distributions for the 6 uncertain parameters
described in Table 4.2. Furthermore, we choose Mout (the Mach numbers at the nozzle

Table 4.2: Uncertain input parameters of the discontinuous (D) and smooth (S) case.

nξ Parameter Mean (D) Range (D) Mean (S) Range (S)

1 p [bar] 0.55 [0.5, 0.6] 0.625 [0.60, 0.65]
2 pt [bar] 1.0 [0.9, 1.1] 1.0 [0.9, 1.1]
3 a [-] 1.75 [1.575, 1.925] 1.75 [1.575, 1.925]
4 b [-] 0.7 [0.63, 0.77] 0.7 [0.63, 0.77]
5 c [-] 0.8 [0.72, 0.88] 0.8 [0.72, 0.88]
6 d [-] 4.0 [3.6, 4.4] 4.0 [3.6, 4.4]

exit) as our quantity of interest, as it allows us to easy calculate other flow quantities
via the isentropic relations once Mout is known [2]. When constructing the surrogate
models, we will use a linear transformation for each input to map points from [0,1] in the
stochastic domain to points in the physical domain with the range as specified in Table
4.2. This simplifies the construction of the surrogate models as it allows us to always
work in the standard nξ-dimensional hypercube Knξ

.
In Table 4.3 we show the computation time T in minutes versus the dimension nξ,

in case of the discontinuous QoI for both the baseline and the method based on SCENO
stencils. This is of course dependent upon the available computational resources, in
our case a 24 core workstation. We can see that T rises very quickly as nξ increases in
the case of the baseline method. In the case of the 6-dimensional baseline method with
the discontinuous QoI, we restricted the maximum polynomial interpolation order to 2
and we used nearest neighbour stencils instead of ENO stencil in an attempt to reduce
the computational time. Still, the surrogate model construction required 1000 minutes
(16.7 hours) to be completed. Due to this high cost we did not attempt to construct a 6-
dimensional surrogate model for the smooth QoI, which is expected to take even longer.

To explain which element of the SSC method is responsible for the high computation
time, we also show the percentage of T in Table 4.3 that is spent on the LEC condition,
construction of the stencils S j , and QoI calculation. The results for the continuous QoI
are depicted in Table 4.4. Due to the absence of discontinuities, the construction of ENO
stencils was not necessary for the baseline method, and nearest-neighbor stencils were
used. Note that the number of samples ns for the baseline and the SSC-SC method dif-
fers for the same nξ. This is due to the refinement of simplices at the hypercube bound-
aries. As briefly explained in Section 4.2.1, we refine the edges of simplices located at
the hypercube boundary, rather than the simplex interior. If two of such neighbouring
simplices are both selected for refinement, we make sure that we do not refine the same
edge twice. This approach results in a different ns for the same number of iterations.

Since the nozzle code is just a cheap test problem, Table 4.3 shows that computing
the QoI samples v only takes up a significant portion of T for low nξ. For the baseline SSC
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Table 4.3: The computational cost of the discontinuous QoI.

type nξ [-] ns [-] T [min] LEC [%T] S j [%T] v [%T]

baseline 2 49 1.66 17.48 11.21 70.17
3 140 5.02 55.08 15.28 22.7
4 184 12.66 70.97 17.73 5.87
5 210 156.09 73.85 23.44 0.51
6 186 1000.63 75.6 N/A 0.07

SCC-SC 2 57 0.42 0.67 0.66 83.72
3 141 0.7 1.6 2.28 86.07
4 219 1.0 7.06 6.98 74.17
5 243 1.99 27.86 12.38 41.29
6 307 22.15 61.56 11.51 11.0

Table 4.4: The computational cost of the smooth QoI.

type nξ [-] ns [-] T [min] LEC [%T] S j [%T] v [%T]

baseline 2 41 0.65 1.35 N/A 83.69
3 95 1.0 12.34 N/A 54.73
4 104 2.15 65.87 N/A 19.17
5 129 47.13 95.18 N/A 0.94

SCC-SC 2 57 0.59 0.53 0.51 83.85
3 112 0.74 1.3 3.26 84.57
4 108 0.64 5.44 5.89 71.7
5 161 1.37 16.88 26.95 37.41
6 193 40.87 0.92 94.77 1.05
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method the construction of ENO-type stencils makes up a significant part of the compu-
tational cost, but Table 4.3 clearly indicates that the enforcement of the LEC condition is
by far the most expensive component in higher dimensions. From Table 4.4 we can infer
that this is especially true for a smooth QoI, in which case roughly 95% is spent on the
LEC condition. Thus, for the baseline method, most of the the computational effort is
put into enforcing the LEC condition. For that reason the computational cost of the LEC
condition is investigated in more detail.

As explained in Section 4.2.1, the LEC condition (4.14) is enforced by a MC approach,
for all simplices in S j at all j = 1, · · · ,ne . Thus, for the baseline SSC method the number
of times the surrogate model is evaluated in each iteration i is bounded by

nwi
= ne ×ne,S j

, i = 1, · · · , I (4.45)

where ne,S j
is the number of simplices in a single stencil S j with p = pmax , and I is

the total number or of iterations of the SSC algorithm. Here we assumed that per S j , one
sample is placed in each simplex using (4.25). The number of points in the Delaunay grid
is given simply by (4.5), but estimating ne for arbitrary nξ is not trivial. The worst-case
number of simplices in a Delaunay triangulation is bounded by the so-called Upper-

Bound theorem, which states that ne is at most of O (n
nξ/2
s ). In the best-case scenario

(points distributed uniformly at random inside the unit sphere) ne scales as O (ns ) for
any nξ, with a constant factor that is exponential with the dimension [1]. To find out
where in between these two bounds our specific problem resides, we plot ne versus ns

in Figure 4.10 for nξ ∈ {2, · · · ,6}. These results indicate that we are close to the O (ns )
bound, since the ne (ns ) are described quite well by the linear regression also shown in
Figure 4.10. However, the exponential increase of dne /dns means that for a moderate
number of samples we can still have a large number of simplices if nξ is high enough.
Note that other than limiting the number of samples ns , we have no means of controlling
the magnitude of ne .

The term ne,S j
in (4.45) grows exponentially with p j for a given nξ. This can be seen in

Figure 4.11, where we plot ne,S j
versus the local polynomial order p j for nξ = 5,6. Unlike

ne , we obviously have some control over the magnitude of ne,S j
through the inclusion of

a maximum allowable cutoff value for p j . The upper bound (4.45), added over iterations
i is plotted as a function of ns in Figure 4.12 for nξ = 2, · · · ,6. It shows a rapid increase in
this bound with both nξ and p j .

By comparing the computational time T of the SSC method with that of the SSC-SC
method (Tables 4.3-4.4), it is clear that the SSC-SC method is several orders of magnitude
more efficient for high nξ. As an example consider the discontinuous QoI for nξ = 6. In
this case, with 186 samples in v, the baseline SSC method needed T = 1000 minutes to
construct the surrogate model. The SSC-SC method only required roughly 22 minutes,
even with a higher number of samples (ns = 307). The distribution of computational
time is also different than for the baseline method. For the smooth QoI, almost all the
computational effort in put into creating the SC stencils. In case of the discontinuous
QoI, a lot of simplices were in D, and thus the number of uncovered simplices is smaller
at the start of the SC algorithm. As a result, creating the SC stencils takes less time than
for the smooth QoI at the same nξ.

To clearly explain why the SSC-SC method is more computationally efficient than the
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baseline method, we depict the number of stencils in Ssc (|Ssc |) and their volume Ξ̄S j
as

a function of p j in Figure 4.13, for a 2 and 6-dimensional discontinuous QoI. Note that
although by far the most S j ∈ Ssc are linear, they occupy as relatively small part of the
probabilistic domain considering their share in |Ssc |. Especially note the case for nξ = 6,
where all S j ∈Ssc except 10 are linear. However, these 10 high-order stencils do occupy
40.7% of the total probabilistic domain. Since linear S j are guaranteed to be LEC, we
only have to check the LEC condition for the 10 high-order stencils. Contrast this with
the baseline SSC method, where the LEC condition is checked for all ne (initially high-
order) stencils. In the particular case of Figure 4.13b this would amount to 70.884 LEC
iterations during 1 iteration of the SSC method.

The results for the smooth QoI are shown in Figure 4.14. Due to the lack of discontin-
uous simplices there are dramatically fewer stencils. Only those simplices that are ’left
over’ without free neighbours at the end of the SCENO stencil construction are given a
linear stencil. Still, for nξ = 6 they make up the majority of stencils in Ssc . Unlike the
discontinuous case however, they cover a small fraction of the probabilistic domain, i.e.
only 4.2 %. Thus again we have only a few number of high-order S j for which we have
to invest computational effort, while at the same time these stencils cover 95.8% of the
domain.

As stated in Section 4.2.1, our primary interest is computing the statistical moments
of the QoI, in particular the mean and standard deviation. To assess the accuracy of the
SSC method we used a reference solution for each considered dimension nξ. To com-
pute the errors we define the following relative L2 error measures for the mean, standard
deviation and interpolation surface

ǫµ =
‖µw −µr e f ‖2

‖µr e f ‖2
, ǫσ =

‖σw −σr e f ‖2

‖µr e f ‖2
, ǫw =

‖w(ξr e f )−vr e f ‖2

‖vr e f ‖2
. (4.46)

Here, the subscript w denotes a quantity computed with the surrogate model, and r e f is
the exact value computed via random sampling. In the interpolation surface error, vr e f

is a vector containing 104 MC code samples and w(ξr e f ) are the surrogate model outputs
evaluated at the same MC locations ξr e f . The values of the error measures (4.46) for both
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QoIs and both surrogate models can be found in Tables 4.5-4.6. Note that the error levels
are roughly the same for both surrogate models.

Table 4.5: The relative errors (4.46) of the discontinuous QoI for the baseline SSC and SSC-SC method.

type nξ ns ǫµ ǫσ ǫw

baseline 2 49 4.603e-03 6.318e-02 2.035e-01
3 140 1.619e-02 7.620e-02 2.439e-01
4 184 1.131e-02 1.450e-01 2.699e-01
5 210 3.966e-02 2.516e-01 3.473e-01

SCC-SC 2 57 6.952e-03 3.499e-02 1.852e-01
3 141 3.855e-03 6.501e-02 1.984e-01
4 219 1.548e-02 1.273e-01 2.457e-01
5 243 3.787e-02 1.845e-01 2.820e-01
6 307 7.518e-02 2.833e-01 3.552e-01

Table 4.6: The relative errors (4.46) of the continuous QoI for the baseline SSC and SSC-SC method.

type nξ ns ǫµ ǫσ ǫw

baseline 2 41 2.752e-07 2.140e-06 1.842e-06
3 95 2.156e-05 5.955e-04 4.486e-04
4 104 2.891e-05 2.131e-04 6.282e-04
5 129 7.534e-05 8.174e-04 2.669e-03

SCC-SC 2 57 1.483e-05 7.760e-05 1.536e-04
3 112 1.390e-05 1.868e-04 1.503e-04
4 108 1.572e-06 1.189e-05 1.441e-04
5 161 5.060e-05 5.486e-04 2.467e-03
6 193 1.921e-04 7.687e-03 8.496e-03

From Tables 4.5-4.6 we note that the errors of the discontinuous case are consider-
able higher than for the smooth case. This can be attributed to the smearing of discon-
tinuities, i.e. the linear interpolation of a discontinutity over a simplex, which especially
contributes to the error of the surrogate model in higher dimensions. See for instance
Figure 4.15, which depicts 2D projections of a 3D surrogate model along with reference
data on an ordered uniform grid. Especially in Figure 4.15(c) we can clearly identify re-
gions where the smearing of the discontinuity contributes to the error. For this particu-
lar case, we plotted the difference between the surrogate model and the reference data
in Figure 4.15(d), which also identifies sharp regions of high error. This situation gets
progressively worse as nξ increases.

In [33, 37] Witteveen et. al apply a subcell-resolution approach to the SSC method for
the case when the discontinuity in the probabilistic space is a function of a physical dis-
continuity with random location. Our results indicate that for high nξ subcell resolution
could prove to be benificial, even if the physical location of the QoI is not random.
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4.5.2. CUT-HMDR APPLIED TO NOZZLE FLOW

We now show the results obtained from using the cut-HDMR approach coupled with the
SSC-SC method, applied to the nozzle flow case.

The first order weights αi (4.39) are used to determine the important dimensions.
Figure 4.16 shows αi with i = 1, · · · ,6 corresponding to the 6 parameters of Table 4.2,
as well as the subsequent higher order αu. For the discontinuous QoI only the first 2
parameters are significant (p and pt ). Together they are responsible for 99.7 % of the
total first order mean. We have set ǫ1 = 0.9, such that those dimensions which make up
90 % or more of the p-th order mean are added to Vi mp . For the smooth QoI we need p

and pt as well, but also the coefficient b in order to meet this constraint. All admissible
subsequent dimensions are important as well.

The computational time for both QoIs, due to the fact that the nozzle code is quickly
evaluated, is in the order of several minutes. In order to create a baseline SSC surrogate
model which can also be evaluated in the full six-dimensional space, the computational
time is much greater, see Tables 4.3-4.4.

The values of error measures (4.46) for the discontinuous and smooth case are given
in Tables 4.7-4.8. Notice that a first-order HDMR expansion is not sufficient for the dis-
continuous QoI, but already for p = 2 the relative errors in the statistical moments are of
O (10−2). Table 4.8 shows the results for the smooth QoI. The errors, even for a first-order
expansion, are of O (10−3) or below. Again, the higher errors in the discontinuous case
can be attributed to the linear smearing of discontinuities in the response surface.

Table 4.7: Relative error values vs the HDMR order p and ns in the case of the discontinuous QoI.

HDMR order p ǫ1 ns ǫµ ǫσ ǫw

1 0.9 57 4.514e-01 3.601e-01 7.434e-01
2 89 3.926e-02 8.830e-02 2.196e-01
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Table 4.8: Relative error values vs the HDMR order p and ns in the case of the smooth QoI.

HDMR order p ǫ1 ns ǫµ ǫσ ǫw

1 0.9 37 4.933e-05 2.885e-04 5.035e-03
2 67 3.603e-05 6.457e-04 3.608e-03

Compare the relative errors from Table 4.5 with those of Table 4.7, and likewise for Ta-
bles 4.6 and 4.8. The errors are of a similar order of magnitude, even though the HDMR
method doesn’t sample the full six-dimensional space. At the same time we gain infor-
mation about the correlation between the input parameters, in the sense of their com-
bined impact on the code output. Also, the cut-HDMR method could be applied to even
higher dimensional spaces, provided that the effective dimension is low.

These results demonstrate the power of the cut-HDMR technique in terms of com-
putational efficiency for problems with low effective dimension. The cost of comput-
ing 6 one-dimensional and 1-3 two-dimensional surrogate models is significantly less
than computing 1 six-dimensional problem. Also, in the case of the SSC method, it can
avoid problems with the bad scalability of the Delaunay triangulation with increasing
nξ. And although the SSC-SC method is computationally more efficient than the base-
line method, Tables 4.3-4.4 show that the computational cost also rises with nξ. Thus,
given certain computational resources, there will be a maximum nξ beyond which this
method will no longer be computationally tractable. Instead, the cut-HDMR method
could be applied to even higher dimensional spaces, provided that the effective dimen-
sion is low.

4.5.3. CUT-HDMR APPLID TO AIRFOIL FLOW

In this Section we present the results of the cut-HDMR approach (again coupled to the
SSC-SC method), when applied to a computationally expensive problem, i.e. the turbu-
lent flow over a NACA0012 airfoil, see Figure 4.17a. The freestream Mach number is 0.5
and the angle of attack is set to 5◦. The Reynolds number based on the chord length is
1.2 ·107. The grid is a C-grid with 70.085 nodes and the first node is located at a distance
of 10−6 from the wall in order to provide sufficient resolution, see Figure 4.17b.

The governing equations are the Reynolds-Averaged Navier-Stokes (RANS) equations,
coupled to the Spalart-Allmaras (SA) turbulence model [29]. This model contains 7 em-
pirically determined closure coefficients [31], whose best-fit values are unknown a-priori

[9]. Therefore, we treat all 7 inputs as uniformly distributed variables with the end points
set at ±30% of their nominal values, see Table 4.9. The chosen QoI is the lift coefficient,
defined as cl = L′/(ρ∞V 2

∞/2), where ρ∞ and V∞ are the freestream density and velocity
respectively. The term L′ is the two-dimensional lift force.

The values of the relative weights αi and αu, i.e. equations (4.39) and (4.42), are de-
picted in Figure 4.18. The value of ǫ1 was again set to 0.9. For the first-order HDMR
expansion we need three coefficients, namely κ, Cb1 and Cb2, to capture more than 90
% of the total first-order mean. Further note that the constants Cw2 and Cw3 are com-
pletely unimportant for the computation of our QoI, as their weights are of O (10−14).
For the second-order expansion, we only need the interactions of (Cb1,κ) and (Cb2,κ)
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Figure 4.17: The symmetrical NACA0012 airfoil.

Table 4.9: Uniformly distributed closure coefficients of the SA model.

Parameter Mean Range

Cb1 0.1355 [0.0949, 0.1762]
Cb2 0.622 [0.435, 0.809]
Cv1 7.1 [4.97, 9.10]
σ 2/3 [0.467, 0.867]

Cw2 0.3 [0.210, 0.390]
Cw3 2 [1.40, 2.60]
κ 0.41 [0.287, 0.455]
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Figure 4.18: The relative weights (4.39) and (4.42) for the NACA 0012 test case. The value of ǫ1 was set to 0.9.
The green boxes indicate the dimensions which are important.

to represent more than 90 % of the second-order mean component functions. Although
(Cb1, Cb2) is not added to Vi mp , the third-order interaction (Cb1, Cb2, κ) is still admissible
according to the admissibility condition (4.41). However, in this particular simulation a
second order expansion was enough to satisfy the error measure between two HDMR ex-
pansions of consecutive orders (4.43), which was set to ǫ2 = 10−3. Hence, no third order
interaction was computed.

As no reference solution is available for this test case, we plot the convergence of the
mean and standard deviation of cl in Table 4.10. As can be expected from the weights
in Figure 4.18, there is little difference between the statistics of first and second order
HDMR expansion. In this particular case even a first order expansion could be consid-
ered as converged.

Table 4.10: The convergence of the statistical moments of cl as a function of the HDMR order.

HDMR order p ns µ σ

1 49 6.385509e-01 3.729915e-03
2 62 6.381699e-01 3.746544e-03

Note that if we would have applied either the baseline or the SSC-SC approach to
a full 7-dimensional space, the initial Delaunay grid alone would be comprised of 129
samples. As can be seen from Table 4.10, the HDMR approach requires significantly less
samples. This difference can be expected to increase as the dimensionality increases,
provided that the problem is one of low effective dimension. It should be noted how-
ever, that Witteveen and Iaccarino suggested a method in which the initial 2nξ samples
can be avoided [35], but this approach requires extrapolation towards the hypercube
boundaries. In this case there is no guarantee that the LEC limiter is respected in the sim-
plices where the extrapolation takes place, and only in the limit ne →∞ full extremum-
diminishing robustness is recovered for the entire domain Ξ.

Finally, for each code run we saved the results for a range of different physical quan-
tities. Thus, we can a posteriori construct a surrogate model for each of these quantities.
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However, the samples were adaptively placed based on our chosen QoI cl , and therefore
might not be optimally distributed for another QoI. Moreover, the dimension adaptiv-
ity might cut out dimensions that are important for a QoI other than cl . To perform a
qualitative investigation, we therefore constructed a first-order HDMR expansion for the
pressure coefficient cp , skin-friction coefficient c f , Mach number M and the turbulent
kinetic energy k, all defined below.

cp :=
p −p∞
1
2ρ∞V 2

∞
, c f :=

τw

1
2ρ∞V 2

∞
, M :=

u

a
, k :=

1

2

(

u
′2
1 +u

′2
2 +u

′2
3

)

(4.47)

Here, p and p∞ are the static and freestream pressure respectively. Furthermore, ρ∞
and V∞ are defined as before in cl . The quantity τw is the wall shear stress, and in the

expression for M , u is the local velocity, and a is the speed of sound. Finally, u
′2
i

is the
mean normal Reynolds stress in xi direction [31].

In Table 4.11 we show the coefficients of the SA model sorted according to their value
of the (non-relative) weight αi (4.38) for all the QoIs of (4.47). Note that which coef-
ficients are most influential does not change much from one QoI to another. For cp ,
c f and M the three most important coefficients are κ, Cb1 and Cb1. In the case of the
turbulent kinetic energy k, σ has taken third place, with again Cb1 and κ as the most in-
fluential. Still, σ’s value of αi is close to the weight corresponding to Cb2. The ranking of
the bottom three coefficients remains unchanged for all considered QoIs.

Table 4.11: The rankings from largest (1st ) to smallest (7th ) αi for QoIs other than cl . Below each coefficient
its corresponding value of αi is written.

QoI 1st 2nd 3r d 4th 5th 6th 7th

cp Cb1 κ Cb2 σ Cv1 Cw2 Cw3

2.604e-03 1.339e-03 8.784e-04 5.510e-04 6.866e-05 3.674e-08 3.655e-08

c f κ Cb1 Cb2 σ Cv1 Cw2 Cw3

1.764e-01 8.835e-02 8.676e-02 2.072e-02 6.819e-03 9.976e-07 9.875e-07

M κ Cb1 Cb2 σ Cv1 Cw2 Cw3

3.658e-03 1.951e-03 1.498e-03 6.591e-04 1.233e-04 3.958e-08 3.951e-08

k Cb1 κ σ Cb2 Cv1 Cw2 Cw3

8.708e-02 2.982e-02 2.726e-02 2.529e-02 5.735e-04 2.650e-05 2.591e-05

4.6. CONCLUSION

We have examined means to improve upon the performance of the Simplex-Stochastic
Collocation (SSC) method [36] for uncertainty quantification problems involving com-
putationally expensive computer codes. We found that in order to make the SSC method
work for our considered range of nξ, we needed to add some new features. First, for high
nξ we run the risk of obtaining a singular sample matrix. This can be circumvented by
a method similar to the method used to construct the ENO stencils. If we encounter a
stencil S j for which the sample matrix is singular, we collect a set of candidate nearest-
neighbour stencils which all contain the simplex Ξ j associated to the j-th stencil S j . We
then select the stencil which has the highest polynomial order and which is non-singular.
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In the worst-case scenario we get a linear stencil, which is guaranteed to be non-singular
irrespective of the dimension nξ.

Due to the exponential increase in the number of simplex elements with increasing
dimension, enforcing the LEC condition becomes quickly very expensive for nξ ≥ 5. As a
first measure to combat this sharp increase in the computational burden, we have pro-
posed an alternative technique for the stencil construction, based on the Set-Covering
(SC) problem [14]. Unlike in the SSC method we do not construct a stencil for every sim-
plex. Since ne increases exponentially fast with nξ, we want to find a minimal set of sten-
cils that cover all simplices in the probability domain. Due to the fact that the stencil size
rises also exponentially, only a few high-order stencils are required to achieve this. We
furthermore use the information contained in the code samples about the location of a
possible discontinuity in the construction of the stencils. Using a simple measure based
upon the maximum jump in code samples, we mark those simplices which contain a
discontinuity and manually set their respective stencils to first order. Using only the re-
maining simplices as admissible candidates, we grow stencils by adding neighbouring
simplices. Once a simplex is covered by a stencil, it is no longer an admissible candi-
date. This approach assures that the number of stencils is significantly lower than ne ,
and hence the number of times the LEC condition must be checked is reduced equally.
Also, since the discontinuous simplices are removed as admissible candidates a priori,
no stencil crosses a discontinuity. As a consequence the SC stencils resemble the ENO
stencils in shape.

For dimensions 5 and 6, our SSC-SC method is significantly more computationally
efficient as the baseline SSC method. However, like the original SC problem which is
shown to be NP-complete in [14], the construction of our SC stencils also becomes ex-
pensive for high nξ. Therefore we examined another alternative, where we adapted the
cut-HDMR method of [18] to the SSC method. Given a problem with low effective di-
mension, this approach circumvents the bad scalability of the Delaunay triangulation,
while at the same time obtaining error estimates of similar order of magnitude com-
pared to the full-dimensional baseline or SSC-SC method. Thus, this method is adaptive
in both the stochastic domain as well as in the dimensions themselves, while retaining
the advantages of the SSC method such as Runge-phenomenon free interpolation. We
applied it to a computationally expensive flow case, i.e. the turbulent flow over an airfoil
modelled with the Spalart-Allmaras eddy-viscosity model, which contains 7 imperfectly
known closure coefficients. Instead of fully sampling a 7 dimensional space, and enforc-
ing the LEC condition in this space, we could obtain a converged surrogate model with
a second order HDMR expansion and 62 code samples.
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5
PREDICTIVE RANS SIMULATIONS

OF AN EXPENSIVE COMPUTER CODE

5.1. INTRODUCTION

In this chapter we will merge the developed methodologies from Chapter 3 and 4. In
other words, we will use the improved SSC method to create a surrogate model that
can be used in the predictive phase of the BMSA framework. To avoid sampling high-
dimensional spaces, we will use the cut-HDMR approach. Furthermore, we will make
use of the topology-independent nature of the closure coefficients, and apply the pos-
terior distributions from the turbulent boundary layers to the (transonic) flow over the
symmetric NACA64A010 airfoil (see Figure 5.1 for an example flow field).

Due to the number of required propagations, a full BMSA is computationally expen-
sive in the case of airfoil flow. This is true even with the use of the improved SSC method.
Therefore, to reduce the computational cost, we will propagate the scenario-averaged
posteriors as described in Section 3.5.5 instead. The flow over an airfoil experiences dif-
ferent kinds of pressure gradients. For instance, the flow over the top may be subject to a
favourable gradient, but in the transonic case a strongly adverse gradient is experienced
as well due to the presence of a shock. We incorporate this expectation in our scenario-
averaged posteriors by combining the posteriors from two favourable, one mildly ad-
verse and one strongly adverse scenario. The results for the k − ε and Baldwin-Lomax
model can be found in Figure 5.2. Note that for the k − ε model the inclusion of the
strongly-adverse scenario resulted in a distribution for κ that is bi-modal, since low κ

values are favoured in these scenarios (see Figure 3.7). The same behaviour can be ob-
served in the distribution of Ccpα in the Baldwin-Lomax model.

The outline of this chapter is as follows. In the first section we give a brief overview
of the computational framework that is used. In Section 5.3 we present the results, con-
sisting of first the obtained spatial variability of the uncertainty estimates. Secondly,
we compare the predictions with validation data. In the final section the conclusion is
given.
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Figure 5.1: Contour plot of the pressure coefficient cp , computed with the Baldwin Lomax model at an angle
of attack of 3.5 degrees and a Mach number of 0.8.

5.2. COMPUTATIONAL FRAMEWORK

Because we combine multiple elements from different chapters, we will begin by giving
a clear and concise overview of the computational framework used in this chapter. First,
the BMSA framework with scenario-averaged posteriors is described by:

p(θ̃i ) := p (θ|Mi ,z) =
K∑

k=1

p (θ|Mi ,Sk ,z)P (Sk ) , i = 1, · · · , M ,

(5.1)

E [∆|z] =
I∑

i=1

E[∆̃i ]P (Mi |z) , E[∆̃i ] := E[∆|Mi ,z], P (Mi |z) =
K∑

k=1

P (Mi |Sk ,z)P (Sk ) ,

(5.2)

Var[∆|z] =
I∑

i=1

Var[∆̃i ]P (Mi |z)+
I∑

i=1

(

E [∆̃i ]−E[∆|z]
)2
P (Mi |z) , Var[∆̃i ] := Var[∆|Mi ,z].

(5.3)

Here, (5.1) are the scenario averaged posteriors which are computed for each turbulence
model in the set. Equation (5.2) describes the total BMSA prediction E [∆|z]. It also gives
the prediction of the i th turbulence model, obtained by propagating p(θ̃i ) through the
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RANS code. The third quantity of (5.2) denotes the weight applied to each model. Finally,
the measure of uncertainty in the prediction is computed with (5.3). The right-hand side
of this expression shows first the in-model variance, which is a measure for the uncer-
tainty due to imperfectly known coefficients. Secondly, the between-model variance is
displayed, i.e. our measure of model inadequacy. Through the term P(Mi |z), the uncer-
tainty due to the variance of posterior distributions over different scenarios is implicitly
present in both terms.

Unlike Chapter 3, the use of an expensive simulation code prevents us to use direct
Monte-Carlo sampling to compute E[∆̃i ] and Var[∆̃i ]. Therefore we use our improved
SSC method coupled to the HDMR framework, which (when written in BMSA notation),
is described by:

∆̃i (θ̃i ) = ∆̃(θ̃) =
∑

u⊆K

∆̃u(θ̃u) =
∑

u⊆K

∑

v⊆u

(−1)|u|−|v|∆̃(v)(θ̃v), K := {1, · · · ,nξ}, (5.4)

∆̃
(v)(θ̃v) ≈

ne∑

j=1

N j∑

l=0

c j lΨ j l (θ̃v). (5.5)

Note that we suppressed the model subscript i for brevity of notation. Equation (5.4) is
the full HDMR expansion of the QoI ∆. Each component function ∆u(θu) is a linear com-
bination of |v|-dimensional functions ∆(v)(θv), defined as the code output as function of
θv ⊆ θ. The remaining coefficients θ\θv are set equal to their respective reference values.
Therefore, each individual ∆(v) can be approximated by an SSC expansion as described
by (5.5). In practice, we do not compute the full HDMR expansion (5.4). Instead, we rely
on weights such as (4.42) in order to identify the important multi indices v. Once we
have a surrogate model for ∆̃i , we can compute E[∆̃i ] and Var[∆̃i ] for use in (5.1)-(5.3).

5.3. RESULTS

5.3.1. SPATIAL VARIABILITY OF UNCERTAINTY

We will now investigate the effect of injecting uncertainty via the approach described in
the preceding section. In particular we will look at the spatial variability of the uncer-
tainty estimate for several QoIs, first in the case of a NACA64A010 airfoil at an angle of
attack of 6.2 degrees and a Mach number of 0.61. In this section we will combine just the
predictions of the Spalart-Allmaras and Baldwin-Lomax model. Thus, for both models
a surrogate model is created via (5.4)-(5.5). The QoI during the surrogate construction
was the pressure coefficient, and in Figure 5.3 we show the obtained HDMR weights.
Note that both models have a low effective dimension, since a second order expansion
is sufficient.

The first and second order moments of the cp distribution around the airfoil, com-
puted by sampling the BMSA-HDMR model, are shown in Figure 5.4. From the mean
field we observe that a shock is present near the leading edge of the airfoil, see Figure
5.4(a). We furthermore show the in-model, between-model and a total standard devi-
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Figure 5.3: HDMR weights for the pressure coefficient cp of the NACA64A010 airfoil at an angle of attack of 6.2
degrees and a Mach number of 0.61. For both cases a relative cut-off value of ǫ1 = 0.9 is chosen, such that the
smallest combination of first-order weights αi which make up more that 90 % is chosen for a second-order
component function.

ation of (5.3) in Figures 5.4(b)-5.4(d). From these plots we can observe that by far the
most dominant contribution to the uncertainty in the pressure coefficient comes from
the in-model variance, indicating that coefficient uncertainty plays the most important
role here.

As already mentioned in Section 4.5.3, we can also use the computed code samples to
create surrogate models for quantities other than the chosen QoI. Besides replacing the
code samples with the other QoI, this also requires us to recompute the stencils S j , the
polynomial order p j , and the LEC condition must be enforced once more. Afterwards we
can again sample the BMSA-HDMR expansion (5.1) and compute the moments. We have
done so for the Mach number M , the results of which are shown in Figure 5.5. Notice that
in this case the between-model variance is a significant fraction of the total uncertainty.
It acts in a different location than the in-model variance, mainly in the boundary layer
just before the shock. The in-model variance is most significant directly at the shock
location, see Figure 5.6 for a zoom-in on the two regions.

What becomes apparent from Figures 5.4 and 5.5, is that the injected uncertainty is
highly localised in the spatial domain. As expected, at the shock location we find the
most significant disagreement between the different models and coefficient values. This
is in contrast to our boundary-layer predictions of Chapters 2 and 3, where the coef-
ficients were influential throughout the entire considered domain. Thus the posterior
distributions, when propagated through the models, act as automatic markers which
identify regions where the models cannot be trusted.

We will also show the results for a more extreme flow case, namely the transonic flow
at a Mach number of 0.8 and an angle of attack of 3.5 degrees. The mean predictions of
cp and M with the same three uncertainty estimates are displayed in Figures 5.7 and 5.8.
The main difference in the results compared to the previous flow case is the severity of
the uncertainty. A stronger shock is formed, which increases the magnitude of both the
coefficient and model uncertainty. The shock location also becomes more uncertain,
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Figure 5.4: The statistics for cp computed from a BMSA-HDMR expansion with Spalart-Allmaras and Baldwin-
Lomax. The angle of attack is 6.2 degrees and the free-stream Mach number is 0.61.
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Figure 5.5: The statistics for the Mach number M computed from a BMSA-HDMR expansion with Spalart-
Allmaras and Baldwin-Lomax. The angle of attack is 6.2 degrees and the free-stream Mach number is 0.61.
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Figure 5.6: A zoom-in on the regions of most significant uncertainty due to the in-model (left) and between
model (right) variance.
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and thus the uncertainty is injected into a larger spatial domain. For both QoIs, the
between-model variance plays a significant role. Also the in-model and between model
variance have a larger overlap, which results in a larger total uncertainty estimate. Like
the previous flow case, the variance of cp in Figures 5.7(b)-5.7(d) is most severe inside
the shock and away from the wall. The variance of the Mach number shows a slightly
different spatial distribution, see Figures 5.8(b)-5.8(d). Still at the shock location, but
close to the wall is the prediction most uncertain.
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Figure 5.7: The statistics for cp computed from a BMSA-HDMR expansion with Spalart-Allmaras and Baldwin-
Lomax. The angle of attack is 3.5 degrees and the free-stream Mach number is 0.80.

5.3.2. COMPARISON TO VALIDATION DATA

We have experimental validation data for the NACA64A010 airfoil. From [2] we have the
cp distributions for a wide variety of angles of attack and Mach numbers. The authors of
this reference report errors in cp up to ±0.012 due to wind tunnel boundaries. Further-
more, the maximum cp errors due to misalignment in the angle of attack is reported to
be ±0.01. Also errors of ±0.1×106 in the Reynolds number and small errors in M (±0.005)
are mentioned, but how these errors affect cp is not specified. However, small errors in
the Mach number can have a large effect on the pressure distribution, especially in the
suction peak. See for instance Figure 5.9, which shows experimentally determined pres-
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Figure 5.8: The statistics for the Mach number M computed from a BMSA-HDMR expansion with Spalart-
Allmaras and Baldwin-Lomax. The angle of attack is 3.5 degrees and the free-stream Mach number is 0.80.
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sure profiles for the NACA64A010 airfoil, at a variety of closely grouped Mach numbers.
In this figure we see that a change of 0.01 in the Mach number can shift the suction peak
by roughly 0.1. We therefore take a conservative experimental error estimate of ±0.1.

Figure 5.9: Experimentally determined upper-surface cp distributions for several closely grouped Mach num-
bers. Notice that the small changes in M have a significant effect on the peak suction. The considered airfoil
was the NACA64A010 at a zero angle of attack and a Reynolds number of 6.5 ·106. Source [1].

In Figure 5.10 we show cp at the airfoil surface computed with BMSA-HDMR expan-
sion at a free-stream Mach number of 0.61 and α = 6.2◦. This expansion contains pre-
dictions from the Launder-Sharma, Spalart-Allmaras and Baldwin-Lomax models. The
experimental data from [2] is plotted as well. We again see that the only region where
significant uncertainty is predicted is at the shock location. In other parts there is little
variance and the prediction is consistent with the experimental data.

5.4. CONCLUSION

To conclude, with an efficient surrogate modelling technique, our initial results indicate
that BMSA can be used to measure the effect of different sources of uncertainty on a
predictive flow case. However, more validation flow cases will be performed to confirm
this. Also, future work will investigate the effect of expert opinion in the construction of
BSA posteriors, and means to eliminate expert opinion altogether, see Section 6.2 for a
discussion.
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6
CONCLUSIONS AND

RECOMMENDATIONS

In Section 6.1 we will give the conclusions regarding the uncertainty quantification method-
ologies developed in this thesis. In the following section we give our recommendations
for future research directions.

6.1. CONCLUSIONS

6.1.1. PARAMETER AND MODEL VARIABILITY

Our method of uncertainty quantification consists of two main phases, i.e. the calibra-
tion and a prediction phase. In the former, we have performed multiple Bayesian cali-
brations on five turbulence models from different classifications, i.e.

• Algebraic models: Baldwin-Lomax

• One-equation models: Spalart-Allmaras

• Two-equation models: Launder-Sharma k −ε and Wilcox (2006) k −ω

• Reynolds Stress models: Willcox Stress-ω model

We found that the coefficients show a large degree of variability when calibrated
against different flow scenarios, in our case different turbulent boundary layers. Each
calibration was successful, since the calibrated fit moved close to the data, when the
prediction with standard coefficient values left room for improvement. The model with
the least observed variability in the coefficients, and thus the most ’flow-independent
coefficient values’, was the Spalart Allmaras model. However, this does not necessarily
mean that the Spalart-Allmaras model is the best model in our set, since its accuracy
is still dependent on the flow scenario to which it is applied. These results challenge
the traditional approach in turbulence modelling, where the closure coefficients are cal-
ibrated once on elementary flow problems in a deterministic fashion. Afterwards the
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obtained point estimates are often assumed to be universal. The fact that we observe
such a large variability in posterior coefficient values clearly indicates that no universal
closure coefficient values exist.

The same type of variability is also observed in the posterior model probabilities,
which can be interpreted as a measure of consistency that a model has with the experi-
mental data. For all five models, applied to all 14 different boundary-layer flow scenarios,
we computed these probabilities. Again, the observed variability was large, and which
model is ’most-likely’ according to the posterior model probability metric can change
significantly from one flow scenario to the next. Hence, this underlines the notion that
also no universal ’best’ turbulence model exists. Although the scenario dependent per-
formance of turbulence models is already a known fact, computing posterior model
probabilities for several flow scenarios quantifies the extend of this variability. Further-
more, these probabilities can be used in the predictive phase to weight different model
predictions.

The fact that both the closure coefficients and the turbulence model itself are un-
certain is a clear indication for the need of uncertainty quantification for turbulent flow
simulations.

6.1.2. STATISTICAL MODEL-INADEQUACY TERM

A well-known way to account for the uncertainty introduced due to imperfect (physical)
models is to include a statistical model-inadequacy term to the output of the simula-
tion code. We have done so for all the Bayesian calibrations that were performed. These
model inadequacy terms contain hyper parameters that must be calibrated alongside
the coefficients from the simulation code. Examining the posterior values of the hyper
parameters reveals information on the severity of the model inadequacy in the flow sce-
nario under consideration. Even so, there are drawbacks to model inadequacy terms
applied to the code output, i.e.

1. Model inadequacy terms must be calibrated, and so the posterior hyper param-
eters are only an indication of the model inadequacy in the calibration scenario.
And since we have already seen a large variability of performance over different
scenarios, the added value of this information is questionable.

2. Model inadequacy terms are topology dependent. The term used in this thesis is
designed for use in boundary layers, and so its posterior distributions can only be
used to predict other boundary layer flows.

To move around these drawbacks, we only use the posterior distributions of the clo-
sure coefficients in the predictive phase. Although they are calibrated as well, they are
topology independent. Furthermore, because we used a fast boundary-layer code, pos-
terior distributions could be obtained quickly. By combining posterior closure coeffi-
cients from multiple models, a measure of model inadequacy in the predictive phase
can be obtained (see Section 6.1.4). The effect of the model inadequacy term is still im-
plicitly present, since it has an influence in the shape of the posterior closure coefficient
distributions.
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6.1.3. P-BOXES

One of the methods we used to combine multiple posterior distributions in the predic-
tive phase was through probability boxes. Although we showed that in our case the
p-boxes were consistent with the experimental validation data, they over predict the
amount of uncertainty. This is due to the fact that the p-boxes constitute an unweighted
prediction, essentially saying that all posterior distributions are equally applicable to the
predictive flow scenario at hand. This can lead to excessively large error bars. Hence, p-
boxes are useful, but only in the case when a uniform distribution of the scenario prob-
abilities is an acceptable choice.

6.1.4. BAYESIAN MODEL-SCENARIO AVERAGING

In our Bayesian Model-Scenario Averaging (BMSA) framework, we made a weighted pre-
diction by propagating 65 individual posterior distributions from 5×13 model - scenario
combinations through the computational model. This model was configured to pre-
dict some unmeasured quantity of interest. Afterwards, the distributions of the output
were combined into a single predictive probability density function (pdf). Each indi-
vidual output pdf must be weighted by the product a model and a scenario probability.
The model weights were the posterior model probabilities, which were determined from
the data in a separate Bayesian inference procedure. The scenario probabilities come
into play during the predictive phase, and therefore they are not informed from the cal-
ibration data. In fact, during this phase there might be no experimental data at all. We
therefore created an automatic scenario sensor based upon model agreement in each
flow scenario. If within a given scenario there is a high level of agreement between the
different turbulence models, this scenario is given a high probability and vice versa. We
first tested this approach on 14 different predictive boundary layer configurations, and
found that in each case the averaged prediction was significantly more robust than the
individual model predictions. By ’robust’ we mean a methodology that does not suffer
from scenario dependent performance. Due to the automatic sensor, the predictions
formed a good fit with the available validation data. This sensor also assured that, unlike
the p-box predictions, the amount of uncertainty was not excessive.

Our posterior coefficient database is completely informed using boundary layer flows.
To test the predictive capability of this database on another flow type we also made pre-
dictions for the skin friction. In this case, the automatic sensor lost some of its optimality,
resulting in a prediction that was sightly off the validation data. The robust nature of the
framework, i.e. a flow-scenario independent capability to provide good predictions, was
still preserved.

Performing 65 individual propagations is not a problem when dealing with a cheap
boundary layer code. However, with a more expensive RANS code this is unlikely to be
feasible, even with the use of surrogate models. We therefore proposed new scenario-
averaged posterior distributions. In this case the scenario probabilities are specified us-
ing expert-knowledge, after which we could combine all distributions belong to the same
model. This led to just 5 distributions which had to be propagated, there by reducing the
computational cost by a factor equal to the number of flow scenarios. However, even
with these distributions, an efficient surrogate modelling technique is required in order
to propagate the 5 remaining distributions through a complex and expensive simulation
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code.

6.1.5. IMPROVED SIMPLEX-STOCHASTIC COLLOCATION METHOD

A state-of-the-art surrogate modelling technique is the Simplex Stochastic Collocation
(SSC) method. It discritizes the stochastic space into disjoint elements, and it assigns a
(high-order) interpolation stencil to each element. Furthermore, it suppresses the Runge
phenomenon through the enforcement of the Local Extremum Conserving (LEC) limiter,
giving it the ability to create surrogate models of discontinuous quantities of interest.
However, the computational cost of the LEC limiter scales poorly with dimension. For
a cheap test problem with 6 uncertain parameters (which runs in a couple of seconds),
it took us 1000 minutes (16.7 hours) to construct a surrogate model, 75 % of which was
spent on enforcing the LEC limiter. Since most turbulence models have anywhere from
5 to 10 uncertain parameters, we developed two new techniques for improving the com-
putational cost, i.e.

1. Remove the overlap of interpolations stencils. Since each element has its own sten-
cil, the overlap of stencils becomes very large in higher dimensions. We proposed
the use of set-covering stencils, which is a relatively small set of stencils with the
property that every element is covered just once. The result is that the number of
times the LEC condition needs to be checked is reduced significantly.

2. Incorporate the SSC method into the High-Dimensional Model Reduction (HDMR)
framework. In this framework a function is decomposed into an expansion of so-
called component functions of increasing dimensions. Each component function
represents the impact that a certain subset of parameters has on the computed
output. In physical problems we are often confronted with a low effective dimen-
sion, meaning that only a few input parameters have a significant influence. By
assigning appropriate weights the component functions containing only the in-
fluential parameters can be identified, after which only these functions are com-
puted. Thus, the idea is to use the SSC method to create several low-dimensional
surrogate models of influential component functions, instead of computing one
high-dimensional problem. This avoids the bad scalability of the SSC method,
and results in an efficient surrogate modelling technique where the dominating
computational cost is sampling the simulation code, and not surrogate modelling
technique itself.

Both methods results in a significant computational speed up. With the use of set-
covering stencils, the same 6-dimensional problem mentioned earlier takes 23 minutes
instead of 1000. However, the construction of the SC stencils still requires us to con-
struct the SC stencils in a high dimensional space. This process will still scale badly with
dimension, and therefore the curse of dimensionality is postponed rather than elimi-
nated. The HDMR technique allows us to avoid sampling high-dimensional spaces all
together, provided that the effective dimension of the problem is low.

6.1.6. BMSA APPLIED TO AN EXPENSIVE SIMULATION CODE

With the improved SSC method and scenario-averaged posteriors it is computationally
feasible to make predictions with quantified uncertainty for an expensive simulation
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code. We applied this methodology to transonic flows over the NACA64A010 airfoil. This
results in a localised injection of uncertainty into the spatial flow domain. Mainly in the
region of the shock we obtain significant measures of the uncertainty, where the magni-
tude of this uncertainty estimate increases with increasing shock strength. Outside the
shock domain the uncertainty estimate is close to zero, and thus the posteriors, when
propagated, act an automatic marker that identifies regions where the turbulence mod-
els cannot be trusted. We finally computed a BMSA prediction of the pressure distribu-
tion on the bottom and top of the airfoil, which we found to be consistent with available
validation data.

6.2. RECOMMENDATIONS

As it currently stands, our BMSA framework has three disadvantages which require fur-
ther research:

1. The database of posterior distributions is informed using experimental boundary
layer data only. This leaves some coefficients uninformed in the majority of flow
cases. Furthermore, one might reasonably expect that our posterior distributions
will be suitable to predict for instance airfoil flows, but flow topologies which are
radically different from flat plate boundary layers might require posterior distribu-
tions calibrated on other flow types.

2. To reduce the computational effort using scenario-averaged posteriors, expert knowl-
edge is required to assign probabilities to the similarity of calibration scenarios to
the predictive scenario. However, the assigned distribution will differ from one ex-
pert to the next. Moreover, if the prediction scenario is of a very different type than
any of the calibration scenarios, assigning the probabilities might prove difficult.

3. The Boussinesq hypothesis is only (indirectly) challenged if stress-transport mod-
els are included in the chosen model set.

Regarding the first mentioned downside, we recommend to grow the database with
posterior distributions coming from a larger range of flow topologies. It is expected that
other coefficients will be informed when calibrating for instance on free-shear layer data.
Also, this will give a wider range of posterior distributions to choose from in the predic-
tive phase. The calibration can once again be performed using cheap simulation codes.
However, by replacing the simulation code with a surrogate model, posterior distribu-
tions from more expensive codes can be added as well.

Secondly, to remove the need of relying on expert opinion, we recommend to investi-
gate the use of Maximum A-Posteriori (MAP) estimates in place of full posterior distribu-
tions. In this case there is no need for uncertainty propagation. Instead, given I models
and K scenarios, I ×K deterministic codes solves have to be performed. Afterwards, one
can again use model agreement as a measure for which scenarios to favour. Although
this will not give predictive bounds due to parametric uncertainty, estimates of model
inadequacy and scenario uncertainty can still be computed.

Also note that further data could possibly be used to improve the predictions. If sce-
nario averaged posteriors are used, we have M surrogate models weighted by the prod-
uct of scenario and posterior model probabilities. However, the model probabilities were
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informed using the data from the calibration phase, and might not be optimal. If any
experimental data becomes available, this can be used to update the posterior model
probabilities using Bayesian inference and the M surrogate models. This experimental
data does not have to be of the same type as the quantity of interest in order to do so.
For instance, if some force coefficients are measured, these can be used to update the
model probabilities, which might result in an improved predicted pressure distribution.
Investigating the effectiveness of such an approach is a possible research topic.

The most complex case considered in this thesis is the turbulent flow over an airfoil.
While of engineering interest, we also recommend to investigate means to extend the
BMSA approach to more complex flow cases. A logical next step would be performing
uncertainty quantification on the three-dimensional flow over a wing. The described
approach with MAP estimates can be a option that is computationally feasible.

Finally, in order to challenge the Boussinesq hypothesis, we recommend to perform
research into direct probabilistic perturbations of the Reynolds stresses. A starting point
can be the work done by the authors of [1]. They applied deterministic perturbations
directly into the magnitude, shape and orientation of the Reynolds stresses. For each
perturbed Reynold stress tensor, the mean flow field was solved. The resulting enve-
lope of model outputs form bounds on the prediction based upon physical possible
states of turbulence. Although this approach goes beyond the Boussinesq hypothesis,
it does have some downsides. Due to its deterministic nature, only bounds are com-
puted, and there is no most-like prediction within those bounds. Furthermore, no use
is made of experimental data, and the predictions cannot be updated if data becomes
available. Therefore, we recommend to perform research into parameterising Reynolds-
stress perturbation functions using random variables. Once a perturbation approach
in the probabilistic domain is available, all the statistical tools developed in this thesis
become available again.
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Figure A.1: Flowchart of the BMSA procedure.
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B
BASELINE SSC ALGORITHM

This appendix provides the general pseudo code of the baseline SSC algorithm with ENO
stencils.

Compute initial nξ-dimensional Delaunay grid
Compute initial code samples v = (v0, · · · , vk , · · · , vnξ

) at the 2nξ + 1 grid points
Set initial hierarchical surplus errors to ǫk =−vk

i ← 0, choose max iterations I

while i ≤ I and ǫ̂r ms > user-defined threshold do

Determine pmax via (4.5)
Compute nearest-neighbour stencils via (4.7)
% Check (in parallel) the LEC condition:

for j = 1 · · · ,ne do

† Sample all Ξ j ∈ S j via (4.25)
At sample locations: compute w j

if (4.14) is violated in one or more sample locations then

p j ← p j −1
Update S j and goto †

end if

end for

% Compute (in parallel) ENO stencils

for j = 1 · · · ,ne do

Collect the r nearest neighbour S j that contain Ξ j

From these r stencils, select S∗
j

:= the S j with the largest p j

if more than 1 S∗
j

exists then

Select the S∗
j

with the smallest average distance to cell center of Ξ j

end if

end for

131



B

132 B. BASELINE SSC ALGORITHM

Compute probabilities Ω j and volumes Ξ̄ j via (4.10)
Compute refinement measures ē j via (4.9)
Sample the sub-simplices (4.13) of the N simplices with the largest ē j via (4.25)
Evaluate computer code at the N new locations, add code samples to v

Compute the N new hierarchical surplus values via (4.15)
Refine the Delaunay grid by adding the N new sample locations

end while

Compute ENO stencils and check LEC condition from final iteration



C
SSC-SC ALGORITHM

Below we give the detailed construction of SCENO stencils in pseudo code, and we repeat
some definitions for convenience.

• C is the set of simplices which are currently covered by a stencil S j .

• C j is the set of simplices currently under construction which will be added to C .

• N j is the set of all neighbouring simplices Ξk of simplex Ξ j .

• NC j
is the set of all neighbouring simplices Ξk of all simplices in C j .

• {ξk } is the set of nξ+1 vertices ξk j ,l
that make up simplex Ξk .

% for each iteration of the SSC-SC algorithm do

compute D via (4.26)

C ←C ∪D

%select the simplex with the largest number of uncovered neighbours

I ← argmaxΞ j
= {Ξ j | |N j ∩ {U \C }| = max |N j ∩ {U \C }|; j = 1, · · · ,ne }

%if there are multiple candidates, select the one with the largest volume

if |I | > 1 then

Ξ
∗
j
← argmaxΞ j

Ξ̄ j = {Ξ j |Ξ j ∈I ∧ Ξ̄ j = maxΞ̄ j }

end if

⊛% loop while C does not cover U

while U *
⋃

X j ∈C X j do

% initialize all sets

C j ← {Ξ∗
j

}
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S j ← {ξk j ,l
|Ξ j ∈C j }

NC j
← {Ξk | |{ξk }∩ {ξ j }| = nξ+1; ∀Ξ j ∈C j ∧k = {1,2, · · · ,ne } \ { j }}

% loop until no more uncovered neighbours are available or S j is full

while NC j
\ {C ∪C j } 6= ; and |S j | < N j +1 do

% update all sets

C j ←C j ∪ {NC j
\ {C ∪C j }}

S j ← {ξk j ,l
|Ξ j ∈C j }

NC j
← {Ξk | |{ξk }∩ {ξ j }| = nξ+1; ∀Ξ j ∈C j ∧k = {1,2, · · · ,ne } \ { j }}

end while

sort C j and S j according to ‖ξcenterk
−ξcenter j

‖2

if |S j | < N j +1 then

reduce p j to new maximum as allowed by (4.5)
end if

C ←C ∪C j

Ssc ←Ssc ∪S j

%if p j = 1 is returned, all subsequent C j will be linear as well → do not compute

the rest

if p j = 1 then

%manually set linear stencils for all remaining uncovered simplices

for ∀Ξ j ∈U \C do

C j ← {Ξ j }

S j ← {ξk j ,l
|Ξ j ∈C j }

p j ← 1
end for

end if

end while

%check LEC condition for all S j ∈Ssc

if LEC is violated in any S j then

p j ← p j −1
update C j , S j

update C , Ssc

goto ⊛

end if
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HDMR ALGORITHM

The dimension-adaptive cut-HDMR of [1] coupled with the SSC method.

%Initialize sets

Vi mp = {;}, Vcomp = {;}, R = {;}, p = 1

%Compute the component functions of order p = 0 and p = 1
Compute all sub problems f (v) in (4.36) using the SSC method. Stop when global
RMS error measure (4.17) < ǫ. Add all computed u to Vcomp .

Compute all first-order weights (4.38) αi

if αi > ǫ1 then

Vi mp ← Vi mp ∪ {i }
end if

Add u with |u| = p and which satisfy admissibility condition to R

while R 6= {;} and αp > ǫ2 do

p ← p +1

Add u with |u| = p and which satisfy admissibility condition (4.41) to R

∀u ∈ R, compute f (v) in (4.36) using SSC, stop when (4.17) < ǫ, add all com-
puted u to Vcomp .

Compute weights αu (4.40)

if αu > ǫ1 then

Vi mp ← Vi mp ∪ {u}
end if

R = {;}, add u with |u| = p and which satisfy admissibility condition to R

Compute relative error measure αp (4.43)
end while
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E
PROOF OF UNIFORM DISTRIBUTION

Equation (4.25), repeated below for convenience, is used to map points from the hyper-
cube Knξ

:= [0,1]nξ to an arbitrary simplex Ξ described by the (unique) points ξi ∈ R
nξ ,

i = 1, · · · ,nξ+1. The R j ∈ R are nξ scalar i.i.d. random variables (r.v.’s) distributed uni-
formly as U [0,1], and describe a randomly picked point in Knξ

. This appendix contains
the proof that (E.1) is distributed uniformly as well.

Mnξ
= ξ0 +

nξ∑

i=1

i∏

j=1

r

1
nξ− j+1

nξ− j+1(ξi −ξi−1), (E.1)

From [1] we have the following theorem regarding the distribution of a transforma-
tion of random variables:

Theorem 3. Consider the r.v.’s R1, · · · ,Rnξ
with joint pdf fR1···Rnξ

positive and continuous

on the set A ⊆R
nξ , and let h1, · · · ,hnξ

be real-valued transformations defined on A; that is,

h1, · · · ,hnξ
→R, and let B be the image of A under transformations (h1, · · · ,hnξ

). Suppose

that (h1, · · · ,hnξ
) is one-to-one from A onto B. Thus, if we set yi = hi (r1, · · · ,rnξ

), we can

uniquely solve for ri , i = 1, · · · ,nξ : ri = h−1
i

(y1, · · · , ynξ
), i = 1, · · · ,nξ. Suppose further that

the partial derivatives ∂
∂y j

h−1
i

, i , j = 1, · · · ,nξ exist and are continuous for (y1, · · · , ynξ
) ∈ B.

Finally, suppose that the Jacobian

J (y1, · · · , ynξ
) =










∂h−1
1

∂y1
· · ·

∂h−1
nξ

∂y1

...
. . .

...

∂h−1
1

∂ynξ
· · ·

∂h−1
nξ

∂ynξ










(E.2)

is 6= 0 on B. Then the joint pdf of the r.v.’s Yi = hi (R1, · · · ,Rnξ
), i = 1, · · · ,nξ, fY1···Ynξ

, is given
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by:

fY1···Ynξ
=

{

|det J (y1, · · · , ynξ
)| · fR1···Rnξ

(

h−1
1 (y1, · · · , ynξ

), · · · ,h−1
nξ

(y1, · · · , ynξ
)
)

, (y1, · · · , ynξ
) ∈ B

0 otherwise

(E.3)

In our case A is the hypercube Knξ
and B is the target simplex Ξ. Also, we have uniform

i.i.d. R j such that fR1···Rnξ
= fR1 fR2 · · · fRnξ

= 1. Thus, in order for fY1···Ynξ
to be uniform

we need to show that |J (y1, · · · , ynξ
)| is a constant. Furthermore, since (E.1) maps to a

simplex this constant must be equal to the reciprocal of the volume of the simplex.
To simplify the analysis we will consider the standard simplex with nodes ξ0 = (0,0, · · · ,0),

ξ1 = (1,0, · · · ,0), ξ2 = (0,1, · · · ,0) etc. To demonstrate the structure of (E.1), we provide a
four-dimensional example here:

M4 =











4
p

r4 − 4
p

r4
3
p

r3

4
p

r4
3
p

r3 − 4
p

r4
3
p

r3
p

r2

4
p

r4
3
p

r3
p

r2 − 4
p

r4
3
p

r3
p

r2r1

4
p

r4
3
p

r3
p

r2r1











(E.4)

Each individual row of M4 is a transformation function yi = hi (r1, · · · ,r4), for which we
can find the following inverse functions:

r1 =
y4

y4 + y3
,r2 =

(

y4 + y3
)2

(

y4 + y3 + y2
)2

,r3 =
(

y4 + y3 + y2
)3

(

y1 + y4 + y3 + y2
)3

,r4 =
(

y1 + y4 + y3 + y2
)4

. (E.5)

Now we can compute the Jacobian matrix (E.2) as

J =














0 0 − y4

(y4+y3)2
y3

(y4+y3)2

0 −2 (y4+y3)2

(y4+y3+y2)3 2 (y4+y3)y2

(y4+y3+y2)3 2 (y4+y3)y2

(y4+y3+y2)3

−3 (y4+y3+y2)3

(y1+y4+y3+y2)4 3 (y4+y3+y2)2
y1

(y1+y4+y3+y2)4 3 (y4+y3+y2)2
y1

(y1+y4+y3+y2)4 3 (y4+y3+y2)2
y1

(y1+y4+y3+y2)4

4
(

y1 + y4 + y3 + y2
)3

4
(

y1 + y4 + y3 + y2
)3

4
(

y1 + y4 + y3 + y2
)3

4
(

y1 + y4 + y3 + y2
)3














.

(E.6)

When we compute the determinant of J all the yi terms drop out and we end up with
|det J | = 24. The values of |det J | for nξ = 1, · · · ,8 can be found in Table E.1. From these
results it becomes clear that fY1···Ynξ

= |det J | = nξ!. The volume Ξ̄ of a simplex Ξ can be

computed by

Ξ̄=
1

nξ!
|det(D)|, D =

[

ξ1 −ξ0 ξ2 −ξ0 · · · ξnξ+1 −ξ0

]

, (E.7)
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which for the standard simplex reduces to Ξ̄= 1
nξ! . And thus we have

∫

· · ·
∫

Ξ

fY1···Ynξ
dY1 · · ·dYnξ

= fY1···Ynξ

∫

· · ·
∫

Ξ

dY1 · · ·dYnξ
= nξ! ·

1

nξ!
= 1, (E.8)

which completes the proof.

Table E.1: The absolute value of the determinant of J as a function of nξ.

nξ 1 2 3 4 5 6 7 8
|det J | 1 2 6 24 120 720 5040 40320
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QUANTIFICATION OF MODELLING UNCERTAINTIES IN TURBULENT FLOW SIMULATIONS

RÉSUMÉ : Le but de cette thèse est de faire des simulations prédictives à partir de modèles de 

turbulence de type RANS (Reynolds-Averaged Navier-Stokes). Ces simulations font l'objet d'un traitement 

systématique du modèle, de son incertitude et de leur propagation par le biais d'un modèle de calcul 

prédictif aux incertitudes quantifiées. Pour faire cela, nous utilisons le cadre robuste de la statistique 

Bayesienne.  La première étape vers ce but a été d'obtenir une estimation de l'erreur de simulations 

RANS, pour une catégorie limitée de ecoulements. Nous avons recherché en particulier à estimer des 

incertitudes pour les coefficients du modele, pour des écoulements de parois en gradients favorable et 

défavorable. Dans le but d'estimer la propagation des coefficients qui reproduisent le plus précisemment 

ces types d'écoulements, nous avons étudié 13 configurations différentes de calibrations Bayesienne. 

Chaque calibration était associée à un gradient de pression spécifique gràce à un modèle statistique. 

La variabilité est estimée par le recours à la calibration Bayesienne et confrontée aux mesures 

expérimentales de chaque scénario. Cependant, un scénario-modèle Bayesien moyen (BMSA) est ici 

utilisé pour faire correspondre les distributions a posteriori à un scénario (prédictif) non mesuré. Cette 

approche est une approche pondérée faisant appel aux probabilités des modèles de turbulence, 

déterminée par les données de calibration. Pour tous les scénarios de prédiction considérés, la déviation 

standard de l'estimation stochastique est consistante avec les mesures effectuées. 

Finalement, nous avons appliqué le cadre BMSA à un écoulement transsonique autour d'un profil d'aile. 

Avec cet outil nous sommes maintenant capable de faire des simulations prédictives d'écoulements 

auparavant trop coûteux et offrant des incertitudes quantifiées selon les imperfections des différents 

modèles de turbulence. 

Mots clés :  Reynolds-Averaged Navier-Stokes,  statistique Bayesienne, estimation de l'erreur

ABSTRACT : The goal of this thesis is to make predictive simulations with Reynolds-Averaged Navier-

Stokes  (RANS)  turbulence  models,  i.e.  simulations  with  a  systematic  treatment  of  model  and  data 

uncertainties and their propagation through a computational model to produce predictions of quantities of 

interest with quantified uncertainty. To do so, we make use of the robust Bayesian statistical framework. 

The first step toward our goal concerned obtaining estimates for the error in  RANS simulations, for a 

limited class of flows. In particular we searched for estimates grounded in uncertainties in the space of 

model  closure  coefficients,  for  wall-bounded  flows  at  a  variety  of  favourable  and  adverse  pressure 

gradients. In order to estimate the spread of closure coefficients which reproduces these flows accurately,  

we performed 13 separate Bayesian calibrations. Each calibration was at a different pressure gradient, 

using measured boundary-layer velocity profiles, and a statistical model containing a multiplicative model 

inadequacy term in the solution space. The results are 13 joint posterior distributions over coefficients and 

hyper-parameters. 

The variability is estimated using Bayesian calibration against experimental data for each scenario, and 

Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors in an unmeasured 

(prediction) scenario.  This is a weighted approach involving turbulence model probabilities which are 

determined from the calibration data. The methodology was applied to the class of turbulent boundary-

layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation 

of the stochastic estimate is consistent with the measurement ground truth. 

Finally, we applied the BMSA framework to the transonic flow over an airfoil. With this we are able to make 

predictive  simulations  of  computationally  expensive  flow  problems  with  quantified  uncertainty  due  to 

various imperfections in the turbulence models. 

Keywords :  Reynolds-Averaged Navier-Stokes, Bayesian Statistics, error estimation


	Introduction
	Computer predictions with quantified uncertainty
	General Bayesian Data Analysis
	Bayesian Data Analysis Applied to Computer Models
	titleReferences

	Bayesian estimates of parameter variability in the k-e turbulence model
	Introduction
	The k-e turbulence model
	Classical identification of closure coefficients
	Numerical solution of the k-e model

	Experimental data
	Methodology: Calibration and Prediction
	Calibration framework
	Priors for T and g
	Summarizing posteriors: HPD intervals
	Predictive framework: P-boxes
	Discussion

	Results and discussion
	Marginal posterior pdfs
	y+-cutoff sensitivity
	Posterior model check
	Sobol indices
	Coefficient variability across test-cases
	Statistical model sensitivity
	Prediction with uncertainties

	Conclusion
	titleReferences

	Predictive RANS simulations via BMSA
	Introduction
	Turbulence models
	The Wilcox (2006) k- model
	The Spalart-Allmaras model
	The Baldwin-Lomax model
	The Stress- model

	Turbulent boundary-layer configuration
	Experimental boundary-layer data
	Sensitivity analysis of boundary-layer problem

	Statistical Methodology
	Bayesian scenario averaging: Prediction
	Smart scenario weighting
	Numerical evaluation

	Results
	HPD intervals of coefficient posteriors
	Posterior model probability
	Predictions with Bayesian Model-Scenario Averaging
	Cf prediction
	Reduction of computational effort - Scenario-Averaged Posteriors
	Discussion - Closure Coefficient Database

	Conclusion
	titleReferences

	Improved SSC Method Applied To Complex Simulation Codes.
	Introduction
	Simplex-Stochastic Collocation Method
	General outline baseline SSC method
	Improvements on the baseline SSC method

	SSC Set-Covering method
	Set covering stencils

	High-Dimensional Model-Reduction Techniques
	Results and discussion
	SSC Method
	cut-HMDR applied to nozzle flow
	cut-HDMR applid to airfoil flow

	Conclusion
	titleReferences

	Predictive RANS simulations of an expensive computer code
	Introduction
	Computational framework
	Results
	Spatial variability of uncertainty
	Comparison to validation data

	Conclusion
	titleReferences

	Conclusions and recommendations
	Conclusions
	Parameter and model variability
	Statistical model-inadequacy term
	P-boxes
	Bayesian Model-Scenario Averaging
	Improved Simplex-Stochastic Collocation Method
	BMSA applied to an expensive simulation code

	Recommendations
	titleReferences

	Flowchart
	Baseline SSC algorithm
	SSC-SC algorithm
	HDMR algorithm
	titleReferences

	Proof of uniform distribution
	titleReferences

	List of Publications

