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Résumé

Les caractéristiques spécifiques du marché de l’électricité Italien fournissent une étude
de cas intéressante pour la recherche économique. Premièrement, les gouvernements
Italiens ont décidé d’appliquer un mécanisme interzonal pour formuler des prix de
l’électricité. Ce mécanisme de prix ne serait pas seulement tenu un compte de courbe
d’offres et de courbe de demande en Italie. Aussi, ce mécanisme prend un compte
l’échange physique entre leurs zones administratives. Cette formulation des prix est
déjà appliquée dans de nombreux pays comme les États-Unis, l’Australie et le Dane-
mark. Pourtant, par rapport à d’autres pays, Italie a le plus grand nombre de zones
dans leur marché de l’électricité, six zones. Deuxièmement, la politique ambitieuse
par le gouvernement Italien sur énergie renouvelable a augmenté les productions in-
termittentes dans le marché. La dépendance de la météo a créé une incertitude dans
la courbe d’offre. En conséquence, le prix est devenu plus volatil que les prix des
années précédentes. Ceci est un gros problème du point de vue des fournisseurs car
ils sont exposés aux risques financiers. Troisièmement, les capacités des réseaux entre
les zones administratifs Italiens sont très élevées dans le nord mais ils sont très limités
dans le sud (entre Italie et Sicile). Puisque les énergies renouvelables sont mises en
place stratégiquement dans les régions qui ont moins des habitants. Donc, ils sont loin
des régions où il y a une forte demande d’électricité. Par conséquent, la congestion
devient un problème en Italie car les réseaux ont besoin de plus capacité pour trans-
porter l’électricité. Ses caractéristiques spécifiques de marché de l’électricité Italien
ont influencé notre analyse empirique du marché de l’électricité Italienne. Par ces
raisons, cette thèse se concentre sur les trois points de vue du marché : la prévision
du prix, l’impact des énergies renouvelables sur la congestion, et l’interdépendance
des prix entre diffèrent zone géographique en Italie.

La première étude de cette thèse permet de répondre la question de la prévision
de prix causée par la volatilité du marché de l’électricité. Un bon modèle de prévision
est important pour les participants du marché et les gouvernements. Malheureuse-
ment, il n’y a que quelques modèles qui sont proposés dans les ouvrages économique
pour prévoir le prix d’électricité en Italie. À notre connaissance, il n’y a que qua-
tre recherches qui ont fait des études dans ce domaine. Bosco et al (2007) a étudié
différents modèles Autoregressive afin de prévoir les moyens des prix quotidiens de
l’électricité en Italie. Ils concluent que le modèle Autoregressive avec Garch (ARMA-
GARCH) est le meilleur modèle en termes de précision. Petrella et Sapio (2011),
utilisent ARMA avec les variables exogènes (ARMAX) pour modéliser la formation
des prix et examiner sa précision pour prévoir des prix de l’électricité. Leurs calculs
montrent que prix du gaz naturel, la demande et la température sont les déterminants
du prix de l’électricité. Un an plus tard, Serinaldi (2011) applique GAMLSS (Gener-
alized Additif Model for Location, Scale, and Shape) pour prévoir prix de l’électricité
à California Power Échange (CALPX) et Italian Power Exchange (IPEX). Dans sa
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recherche, il a aussi expliqué les variables exogènes qui détermine la formation de
prix. Son travail conclut que GAMLSS peut être utilisé comme une technique al-
ternative pour prévoir le prix de l’électricité. Gianfreda et grossi (2012) utilisent
ARFIMAX-Garch (Autoregressive Fractionally integrated moving average and Gen-
eral Autoregressive Conditional Heteroskedasticity) pour prévoir les prix zonaux Ital-
iens et explorer les variables exogènes (la demande, la technique, la congestion et la
concentration du marché) qui détermine le prix.

L’objectif principal de cette étude est visé à proposer des modèles alternatifs qui est
limité dans les ouvrages du marché Italien de l’électricité. Nous avons comparé sept
modèles univariate et deux modèles multivariate afin de trouver le meilleur modèle
pour prévoir le prix d’électricité. Nous contribuons aux ouvrages économiques en
initiant des discussions sur la différence de performance entre le modèle multivariate
et le modèle univariate qui est suggéré par Weron (2014). Nos résultats empiriques
montrent que la saisonnalité dans les modèles améliore la précision des prévisions.
Puis, conformément à Gianfreda et grossi (2012), nos estimations montrent que le
prix du gaz et la demande augmentent le prix d’électricité. Notre discussion sur la
comparaison entre les modelés univariate et multivariate conclut que chaque modelé
a sa valeur. Les modèles multivariate sont les modèles le plus précis selon nos estima-
tions. D’autre part, les modelés univariate sont mieux que les modèles multivariate
quand il est utilisé pour gérer le risque financier.

La deuxième recherche de cette thèse examine l’impact des énergies renouvelables
sur la congestion en Italie. La croissance rapide des énergies renouvelables en Italie
a créé un nouveau stress dans le réseau. Pourtant, les ouvrages économiques sur
l’impact des énergies renouvelables sont essentiellement axés sur l’effet de l’ordre du
mérite et l’effet de la variance. En plus, un grand nombre de pays est déjà étudié
afin d’établir la preuve de ces effets dans les prix d’électricité (Autriche (Würzburg
et al., 2013), le Danemark (Jó nsson et al., 2010), en Allemagne (Ketterer, 2014),
et l’Italie (Clo et al., 2015)). Il n’y a que quelques études qui analyse l’impact des
énergies renouvelables sur la congestion. En Norvège, Førsund et al. (2008) a com-
mencé la discussion sur cet impact. Sa recherche analyse l’impact de l’intégration
de l’énergie éolienne dans le réseau norvégien. Aux États-Unis, Woo et al (2011)
continuent les discussions et concluent que l’augmentation de la production d’énergie
éolienne, la production nucléaire, la demande et le prix du gaz augmentent la proba-
bilité d’avoir une congestion. En Espagne, Figuiredo et al. (2015) évaluent plusieurs
déterminants de la congestion en utilisant la logique et la fonction keynésienne non
paramétrique. Ses études établissent la preuve de l’impact de l’énergie renouvelable
sur l’augmentation de la congestion.

Dans cette étude, nous avons estimé l’impact des énergies renouvelables sur la
congestion en termes de probabilité et de coût afin de contribuer aux ouvrages limités
dans ce domaine. Nous appliquons Multinomial Logit afin d’analyser les sources de
congestion de réseaux et calculer son impact. Puis, pour examiner les déterminants du
coût de la congestion, nous utilisons 2 SLS (two stages least squares methods). Notre
analyse suggère que la production locale d’énergie renouvelable diminue la probabilité
de congestion dans sa zone géographique car il réduit l’importation d’électricité depuis
ses voisins. Cependant, Il augmente la probabilité d’une congestion aux zones reliées
car il pourrait augmenter l’exportation d’électricité. Nos estimations sur le coût de
la congestion montrent que, un choc positif de la production d’énergie renouvelable
depuis une région importatrice peut changer le coût de la congestion vers la valeur
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négative car elle diminue le coût marginal pour mettre le system en équilibre. Mais,
le coût sera plus élevé quand la production d’énergie renouvelable depuis une région
exportatrice s’amplifie. Par conséquent, l’augmentation des énergies renouvelables
devrait être encouragée dans les régions importatrices, mais la croissance devrait être
contrôlée afin d’éviter la congestion dans le réseau Italien.

La troisième recherche de cette thèse examine l’interdépendance des prix dans
six zones administratives du marché Italien de l’électricité. Cette étude permet
d’identifier les régions qui est isolée dans le marché Italien. Les pays avec plusieurs
marchés régionaux ont commencé à examiner l’intégration nationale de leur marché
de l’électricité. En Australie, Worthingthon et al (2005), Higgs (2009) et Ignatieva
et Trück (2011) ont analysé les interdépendances des cinq marchés régionaux en util-
isant des méthodes différentes. Les recherches concluent que les marchés régionaux
qui sont équipés avec des grandes capacités de réseaux ont forte interdépendance des
prix d’électricité. Aux États-Unis, Park et al (2006) analyse le marché spot en util-
isant Vecteur auto-regression. Leurs études concluent que les capacités de réseaux et
le mécanisme du marché effectuent les interdépendances. Malheureusement, ce sujet
a été occulté en l’Italie qui dispose de 6 marchés régionaux. En plus, Italie vient de
mettre en place un nouveau réseau en 2012, entre Sardaigne et Italie, qui pourrait
améliorer l’intégration du marché.

Dans cette recherche, nous analysons la corrélation croisée entre les prix zonaux
Italiens en utilisant DCC-MGARCH (Dynamics Conditional corrélation - Multivari-
ate Generalized Autoregressive conditional Heteroskedasticity) et CCC-MGARCH
(Constant Conditional Corrélation - Multivariate Generalized Autoregressive condi-
tional Heteroskedasticity) avec correction saisonnière pour calculer l’interdépendance
des prix. Nous avons contribué aux ouvrages académiques en améliorant le modèle
proposé par Higgs (2015) qui n’a pas des paramètres saisonniers. En plus, avec le
nouveau réseau qui vient d’être mis en place, cette étude permet d’expliquer l’impact
d’amélioration de capacités de réseau sur l’intégration du marché. Nos estimations
avec CCC-GARCH et DCC-GARCH montrent que toutes les zones dans la péninsule
Italienne ont fortes dépendances entre eux. Ce résultat est conforme à Higgs (2009)
qui conclut que l’interdépendance de prix zonaux est très forte quand ils ont une
grande capacité de réseau. De plus, nos calculs au nouveau réseau entre Sardaigne et
Italie indiquent que les interdépendances entre ses prix sont plus fortes après avoir eu
une capacité supplémentaire dans son réseau. Finalement, notre analyse suggère que
Sicile est une région isolée car son interdépendance est faible.
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CHAPTER 1. INTRODUCTION

1.1 Background and motivation

1.1.1 Deregulation of electricity market in Europe

Prior to 1996, electricity markets in European Union state member are controlled and
organized by the state-owned companies. As a consequence, natural market monopoly
markets were formed with different levels of public services among EU state members.
The electricity price, therefore, was generally fixed according to the government’s
policy and did not reflect the actual supply and demand in the market since the price
did not move according to the market. This situation creates non-transparencies
in gas and electricity price formation. On the other hand, in order to ensure a
fluent flow of free movement of goods, services, people, and capital, EU commissions
has started to consider the security supply of their electricity. All member states
have also started to realize the importance on improving efficiencies of production,
transmission, and distribution in their electricity market. They envision an internal
electricity market with an objective to improve competitiveness and transparency of
electricity market without prejudice to compliance with public service obligations. As
a result, EU commission decided to push energy market towards liberalization and
re-structurization with one common rule.

In 1996, the fruit of the idea was finally established with a Directive 96/92/EC.
For the first time in Europe, a legal framework was born to regulate the generation,
transmission and distribution of electricity through this directive. The directive was
aimed to increase economic efficiency, to improve the level of pubic service and to
create the freedom for customers in choosing their energy suppliers in all EU state
members. The directive addresses several main issues for realizing their objectives:

• State-owned energy companies in all EU state members must separate the elec-
tricity sectors into generation, transmission, distribution and retail. They are
obliged to separate each activity into different accounts in order to avoid dis-
criminations in the market.

• Transmission and distribution, however, have to remain a monopoly and in-
dependent with non-discriminatory rules for users that require access to the
transmission network. Hence, all EU state member must designate one or more
independent transmission system operator who is responsible for managing and
operating all the grid lines.

• In order to improve efficient productions, EU commission, dictates priority dis-
patching for the producers who run renewable energy production units, waste
power generations, and CHP (Combined Heat and Power) plant.

• In the supply side, all EU state members must open generations for new entrants
by regulations or a tender process in order to improve economic competitiveness.
If a tendering procedure is chosen, specific administrations are required in order
to ensure transparency.

• In the demand side, EU commission also obliges all member states to liberalize
the market thus provide a possibility for customers to choose their own energy
suppliers (both from inside and outside their border).

• Initial opening on the demand side starts with industrial users whose consump-
tion exceed 40 GW annually. This is, then, improved every three years in order
to complete liberalization on the demand side.
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• All member states are also obliged to build a necessary mechanism to protect
competition, to ensure free-collusion and to avoid predatory behavior in the
market.

The directive had contributed greatly towards a creation of an internal electric-
ity market and had given a great promise towards market liberalization. However,
the levels of the re-structurization were varied among EU state members. Notable
countries such as Spain, Germany, Belgium and UK have initiated competitive power
market. On the other hand, some countries have to modify and to restructure their
power sector in order to start competition in the power sector. Then, other EU state
members were still behind as governments were still the main shareholders of the
major market participants. The main problems lie in the lack of management and
more detailed regulation to pursue a common level in terms of market opening. This
also due to the fact that there was no ideal example for the steps towards electricity
market liberalization. Hence, EU commission allows their state members to adjust the
gradual opening accordingly. In addition, EU member states are still exposed to the
risk of predatory behavior, market dominance, and discrimination in the transmission
and distribution.

These conditions motivated EU commission to pursue another goal towards liber-
alization. The current objective has changed from initiation of market liberalization
into creating a uniform level of the competitive market. This is, then, realized and ap-
proved in 2003 with EU directive number 54. The directive has added several changes
in order to address previous issues. There were two main changes addressed in this
directive:

• The obligations to ensure delivery of electricity to all household customers and
small-medium companies in a clear, comparable and transparent prices. These
changes were aimed to reach a demand liberalization in all EU member states.
The previous directives were aimed at the industrial users with big electricity
consumptions. Although EU commission have attempted to improve it every
three years, many EU member states are still behind in terms of the demand
liberalization.

• The obligations to appoint or to undertake the transmission and distribution
system with the aim improve market efficiency and economic balance. There
are also several rules and criteria that need to be applied in order to ensure
the independency of the Transmission System operator. This change was made
because many EU member state still allows the former monopolist to have
activities in this part of the sector. Hence, they still had a lot of power in price
imposition and a high market share in their country.

Besides these changes, the directive also addresses several issues deemed to be
important. Firstly, the directive requires a member state to provide protection to
the consumers in the markets and protection to the risk of a blackout. Hence, it
obligates member states to implement a third party access system for eligible cus-
tomers. Secondly,The directive also requires member states to ensure the possibility
to add capacity or energy efficiency through the tendering process which is transpar-
ent. Therefore, the tendering procedure must follow the EU commission rules since it
has to be published in Official Journal of the European Union. Thirdly, the directive
makes another emphasize to the unbundling of accounts in order to evade competi-
tion disturbance, cross-subsidisation , and discrimination. In fact, they would enforce
unbundling if there is a questionable activity in the electricity market. Finally, all
member states must report EU commission on the implementation of this directive.
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On the other hand, climate change arises as a global issue which requires full
attention from all EU member states. This issue has motivated EU commissions to
reduce GHG emission by implementing EU emissions trading system (EU ETS) which
attempts to combat emission with cost-effective fashion. EU ETS facilitate emission
transaction through cap and trade policy that limits the amount of greenhouse gas
emission emitted from power plants and factories. In other words, companies can sell
their rights to emit if they are able to reduce it and they can also buy additional rights
to emit if they are not able to reduce it. The system applies to around 11000 power
stations and large industries all over EU. However, even with this new system, a clear
and exact target of emission reduction was never published by EU commission.

After several years of research and discussions, EU commission agreed to put a le-
gal framework and goals as a commitment to address this new global issue. It resulted
in a new energy policy,well known as the 20-20-20 policy, published in EU directive
number 28 in 2009. The policy states a clear goal to reduce energy consumption by
20%, greenhouse gas emission by 20%, and 20% renewable energy mix by 2020. The
directive also established several key frameworks in order to reach its target. Firstly, it
strengthens the EU emission trading system by creating a single EU wide cap in order
to replace national cap system that they have previously and broaden the coverage for
more gasses. Secondly, it sets national targets for emitter outside EU ETS, such as
transportation, housing, and agriculture for all EU members. Thirdly, it sets national
renewable energy targets in order to push renewable mix in the national productions.
Fourthly, it establishes a legal framework for utilizing carbon capture and storage
technologies. Fifthly, it sets EU energy efficiency target which is, later, implemented
in 2011 through EU energy efficiency plan and EU energy efficiency directive.

The directive has changed the tone in electricity market since it promotes inten-
sively renewable energy generation for increasing production mix and achieving their
goals in emission reductions. It ignites new policies in EU member state for facilitat-
ing new investments and installations of renewable. As a result, more intermittent
generations enter the electricity markets. However, there are several issues that come
with the changes in production mix. Renewable supply highly depends on the weather
which varies according to the locations. Therefore, renewable production units are
generally far from the demand site. This is also due to public protections from the
pollution from these power generations (e.g. sound pollution). Countries without an
adequate infrastructure in their electricity system would face congestion problems and
isolated electricity market since it has limited access for physical exchange. Further-
more, the actual power supply from these generations can not be planned in advance
since it depends on the weather. Hence, it introduces more volatility in the electricity
markets.

1.1.2 Deregulation of electricity market in Italy

From 1960’s, Italian electricity market was controlled, managed, and organized under
a solitary vertically integrated company, Enel, which is owned by the state. Therefore,
generations, transmissions, and distributions are all operated by Enel. However, with
new EU directive on energy market deregulation was passed in 1996, many changes
were applied in Italy. In 1999, legislative decree 79/99 was agreed by the parliament
and has sparked the start of the free electricity market in Italy. 1. In line with the
European directives, the decree, now widely known as Bersani decree, address many
issues regarding liberalization, renewable dispatch, and green certificate.

1The decree was passed on 16 March 1999 in compliance with 96/92/EC
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The liberalization process starts with ending the national monopolies and opening
the market for new entrants in order to promote competition. The decree provided
specific requirements to Enel for re-structurization of the electricity sectors. The
requirements are:

• Enel had to start privatization and to unbundle all their activities into different
accounts. The activities are :

– Power generations

– Energy distributions and sales

– The dismantling of nuclear power plants

• Transmission activity in the electricity sectors must be given up to an indepen-
dent body with non-discriminatory rules.

• Enel had to sell at least 15 GW of their energy capacity in order to reduce their
market dominance and to open electricity market for new entrants.

The transmissions activities, as dictated by EU directive, was designated to a new
state-owned company, Terna, which was a part of ENEL group. Later in 2003, they
had to be separated from Enel as a consequence of new EU directive number 54.
Now, they are an independent company owned by the Italian government and private
investors. As for the sales of capacities, the government facilitated Enel for the best
method of these sales in order to guarantee fair market conditions and transparency.
The generation units were, then, sold to major EU companies. The new owners of
these capacities are:

• Endesa, Spanish utility company, and the bank of Santander, major Spanish
bank, who jointly acquired 5.34 GW

• Edison, Italian utility company, and Atel, swiss utility company, who jointly
bought 7 GW of the capacity.

• Energia Italia, Italian utility company, and Electrabel, Belgium utility company,
who obtain 2.6 GW from the sales.

As the decree suggested, the next phase of the deregulated market was demand
liberalization and creation of internal energy market, Italian government started to
open the market and considered a further measure to ensure the implementation.
The market was initially opened for large industrial customers that consume 30 GWh
of electricity every year. Therefore, there was still large portions of customers that
did not have the option to choose their energy suppliers. This is, later, improved
gradually between 1999 until 2007 as follows :

• in 1999, users with a minimum 30 GWh/year of consumption is considered as
eligible customers

• in 2000, users with a minimum 20 GWh/year of consumption is considered as
eligible customers.

• in 2002, users with a minimum 9 GWh/year of consumption is considered as
eligible customers.

• in 2003, users with a minimum 100 MWh/year of consumption is considered as
eligible customers.
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• in 2004, all non-household users is considered as eligible customers

• in 2007, all users are considered as customers.

As far as the creation of internal energy market concerned, operators were ini-
tially able to trade electricity through bilateral contracts. However, the decree also
recommended the establishment of the independent market operator that operates
the market with the objective to fully implement EU directive. The establishment
of an independent body to manage the market, operators were expected to be able
to buy or sell electricity by two means, bid/offer of standardizing contracts in the
electricity exchange and over-the-counter contracts. Therefore, this decree initiates
the legal framework for the creation of Italian power exchange and the formation of
the Gestore Mercato de Energi (independent market operator) in 2004

It is also interesting to be noted that the Bersani decree also initiates green cer-
tificate mechanism which was designed as a change for feed-in price policy under
CIP6/92. In this mechanism, instead of fixed guaranteed income, the new support is
traded base in the market under the quota system. The quota system obliges power
producers and importers to produce a certain quota of their outputs from renewable
sources. The quota starts from 2% and gradually increasing annually. Green cer-
tificates were used to fulfill this obligation as they are able to purchase them from
third parties. The certificates were traded on a parallel market, independent of the
electricity market. Then, as encouragement for renewable energy penetration, the de-
cree provided dispatching priority to its production and increase government support
for their researchers.2In addition,it also introduced a renewable-energy quota system.
Several years later, improvements had been made to the green certificate scheme in
order to promote renewable-energy further. In 2007, under the Law 244/2007, small
generators (0.2 MW -1 MW capacity) have the option to obtain a support scheme by
selling their green certificates on the market or receive a feed-in tariff. In addition,
the law also extended the period for the release of green certificates up to 15 years
for new and refurbished installations. In order to enhance renewable growth, finance
act of 2008 and 2009 ministerial decree increased the quota by 0.75 % per annum
over the years between 2007 and 2012. Consequently, power producers and importers
were required to produce 6.8% of their supply from a renewable resource in 2011 and
7.55 in the later year. The law also introduced another mechanism that considers the
technology maturity. Hence, the quantity of the certificate granted to producers and
importers, with more than 1 MW capacity, was multiplied by a coefficient depending
on the technology ranging from 1.0 for the onshore wind turbine to 1.8 for wave en-
ergy conversion. Moreover, according to the law, one certificate had a contract size of
one MWh instead of 50 MWh as in the previous regulation. Therefore, it can support
newer installations for small renewable-energy technology. In 2011, a new legislative
decree was passed on 3 March. The decree set a national target of 17% of renewable
energy in the gross final energy consumption by 2020 in compliance with European
Directive (2009/28/EC). With a view to realizing the goal, the decree changes the
quota system back into a feed-in tariff scheme from 1 January 2013 under a given
threshold and a tendering scheme for new plants (except biomass) with a capacity
above the threshold. The threshold differs according to the type of technology. There-
fore, a guaranteed fixed price is offered to support the renewable energy penetration.
Consequently, GSE was obliged to buy all certificates that exceed the annual demand
in 2012.

2The decree enhanced government support to the Italian National Agency for New Technologies,
Energy and Sustainable Economic Development (ENEA) for research, innovation and technology
transfer for renewable-energy
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1.1.3 Motivation

The deregulation of electricity markets in Italy has changed the shape of the economy
in the electricity sector. Furthermore, specific characteristics of Italian electricity
market makes this particular electricity market an interesting case study. Firstly,
Italian governments and independent body in the electricity market have decided to
apply an inter-zonal pricing mechanism for the price formation. The proposed price
mechanism would not only reflect actual supply and demand in Italy but also reflect
the actual net physical exchange between their administrative zones. This pricing
mechanism was a normal practice as it has been applied in many countries such as
United States, Australia, and Denmark. However, in comparison to other countries,
Italy has the largest number of zones in their national energy market reaching six
zonal prices. Secondly, recent ambitious policy by Italian government has increased
the intermittent generations in the exchanges. The dependency on the weather has
created uncertainty in the supply. As a result, the price has become more volatile
compared to previous years. This is a big problem from the point of vies of the
operators as they are exposed to financial risk. Thirdly, capacity transmission lines
between Italian zones are not equally distributed. As the renewable generation units
are located strategically to harvest energy, they are generally far from the population
where there is a high demand for electricity. As a consequence, congestion occurrence
becomes a problem in Italy since the infrastructure is not equal in all the zones.

These interesting facts in Italy have brought our attention towards analysis on
the Italian electricity market. They influence our motivation to explore the literature
with the aim to seek the gaps in academic and to contribute to the economic and
empirical research. Our studies have brought us to three main line of researches that
motivates us to explore intensively in this particular market. They are :

• Alternative models to forecast Italian electricity market

• The impact of renewable supply on congestion and congestion cost

• Examination of national integration in the Italian electricity markets.

The following subsections are dedicated to briefly describe the literature gap in
these line of research and its motivational background.

Alternative models to forecast Italian electricity market

The electricity price has changed its shape after the electricity market liberalization
and has sparked many researches in this field. This is mainly due to the fact that
previous electricity price was not volatile since it was fixed through policy. In fact, all
the activities in the Italian electricity sector were controlled, managed and organized
by one state-owned company. This old framework provides no competition in the
market and creates an inefficient economy. The deregulation, on the other hand, has
opened new entrants in the electricity sector and has provided a fair price to reflect
the actual supply and demand. The new mechanism has given the opportunity to new
producers and energy retailers to compete for the right to deliver/come electricity in
the exchange. Furthermore, the price would reflect the actual scarcity and surplus of
electricity in the market based on the actual supply and demand.

Despite the benefits offered by the market, there were issues that come because
of the uncertainties provided in the market. As the price is formed by supply and
demand functions, deviations on these functions would create shocks in the market
equilibrium. These shocks can be negative because oversupply in the market, which
would translate into a low price, and can be positive because a scarcity in the market,
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which would translate into a higher price. As a consequence, the price can changes
rapidly from zero (or negative) to a price jump reaching more than 100 AC/Mwh. This
is also due to the fact that electricity cannot be stored thus becoming vulnerable
to price spikes. In Italy, the rise of intermittent energy in the power exchange has
worsened the situation as it increases the volatility in the electricity price (see for
instance Clo et al., 2015 ). On the other hand, Italy has the highest average wholesale
price in comparison to the other mature EU market since gas is still their marginal
technology (GME). Hence, it indicates a high deviation in the electricity price caused
by demand changes, fuel price changes and supply deviation. These price changes
exposed the market participant to financial risk in the electricity market. The changes
in the spot price can reduce their economic gain because of the lost from price fall or
jump. On the other hand, policy makers are obligated to follow the fair price in the
market. Therefore, it is necessary to provide a reliable model to forecast electricity
market that could also reflect the power exchanges.

Our research focused on research on the best forecasting model under statistical
class 3 with the main objective to contribute to the limited literature of Italy elec-
tricity market. Our research offers an alternative model for forecasting hourly price
in Italy since there is only a few researches in this particular field and market. The
statistic class was chosen because it has the advantage of having an accurate quan-
titative prediction, having less required observations and having results that can be
interpreted in an economic sense. Based on our review, we can only find four alter-
native models, under the statistical class, to forecast electricity price in the Italian
electricity market’s literature. 4 The four models existed in the literature are Pe-
riodic Autoregressive models (Bosco et al , 2007) ARMAX-GARCH (Petrella and
Sapio, 2011), Generalized Additive model for Location, Scale, and Shape (Serinaldi
,2011) and ARFIMAX-GARCH, (Gianfreda and Grossi, 2012).

The impact of renewable supply on congestion and congestion cost

As it was mentioned in the previous subsection, EU directive number 28 in 2009
(20-20-20 policy) has set ambitious goals to show commitment to combating climate
change. As a consequence, it has ignited the interest in renewable energy investment
in Europe because many EU member state starts supporting schemes in order to
meet their national renewable energy target by 2020. In 2013, the renewable energy
generations in Europe has supplied 14.95% of gross final energy consumption. These
changes have motivated researchers to study the impact of the renewable energy on
the electricity markets. Economic literature has put their main focus on the changes in
wholesale price. These researches have underlined two main changes in the wholesale
price, the reduction in terms of price level and the increase in volatility. The empirical
evidence of these two phenomena has been well-documented in the academic literature
with various case study and methods. 5

However, the rise of renewable supply has raised another issue in regards to the
electricity network, which has not intensively explored in the academic literature. As
renewable production units are generally located far from the demand site because of
optimization in harvesting energy, high capacity transmissions are required to ensure

3This classification is based on Weron (2014)
4From our researches, we also found literature that utilizes other techniques with Italian electricity

market as their case study. However, they are classified under different classes (see Bompard et al.
(2008)); Guerci et al.(2008).

5see (Australia (Cutler et al., 2011), Austria (Wurzburg et al., 2013), Denmark (Jónsson et al.,
2010), Germany (Wurzburg et al., 2013; Ketterer, 2014), Israel (Milstein and Tishler, 2011), Ireland
(O’Mahoney and Denny, 2011), Italy (Clo et al., 2015), Spain (Gelabert et al., 2011)
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electricity delivery. However, the existing network was not built for high renewable
energy penetration, thus, the changes in the renewable energy mix, consequently, put
additional stress on the infrastructure, amplifying transportation needs and multi-
plying congestion occurrence. Unfortunately, there are not many works of literature
focused on this particular issue.6

Our studies are aimed to contribute to the limited literature in this particular
field. Based on our knowledge, Sapio (2015) is the only author who studies the
impact of renewable to the congestions in Italy. Utilizing regime-switching model, he
estimated Italian power exchange data between 2012 and 2013 with a focus on Sicily
and Southern Italy connection. The paper concludes that rising renewable production
in Sicily reduce the congestion as the zone require less import from its neighbor. The
increase of renewable from outside Italy (Southern Italy), on the other hand, would
increase the urgency to export the electricity to its neighbor. Consequently, it results
in the increase of congestion towards Sicily. The paper also concludes that wind energy
supply provide a bigger impact on congestion in comparison to solar productions unit.

Isolated regional market

Deregulation of the Italian electricity market has changed the previous mechanism
into a cost effective mechanism for electricity generation and transmissions. This was
one of the top priority from the policy maker since an efficient market and network was
the main objective of the EU directive and Bersani decree. In order to reach cost ef-
fective transmission cost, Italy adopts inter-zonal pricing mechanism which separates
national electricity market into several zones based on the conditions of the electricity
system. If a congestion was found in the system, the mechanism allows zonal market
prices to be higher in order to balance the system and pay the cost of physical delivery
between the zones. However, this could be a problem for countries with low capacities
on inter-zonal transits since it will increase the congestion frequency. Consequently,
the national markets would constantly splits, which results in isolation of zonal mar-
kets. Therefore, regions that do not posses adequate network capacity for physical
exchange with its neighbor would fail to integrate into the national market.

This issue motivates us to examine the integration of Italian electricity market
that is never explored by previous literature. Having six zonal markets on their
national market, Italy offers interesting study for our research. Furthermore, new
installations of transmission lines between Sardinia and Italian peninsula provide us
with a unique case study for examining its impact on the regional market integration.
We may examine the integration by studying the interdependencies of zonal prices
since it reflects the linear relationship among the regional markets. Strong interde-
pendencies suggest a stable transmission line and a full integration in the national
market. Previous literature on this line of research is mainly used in a case study
from outside Europe, Australia, and United states. In Australia, Worthingthon et
al (2005), Higgs (2009) and Ignatieva and Trück (2011) have explored interdepen-
dencies of five regional markets using different methods. The researches provide a
general conclusion that regional markets with better networking infrastructure dis-
play strong interdependency whereas the weaker level of interdependencies is recorded
in the markets with low capacity of the transmission line. In the United States, Park
et al (2006) analyze United states spot markets using Vector autoregression. Their
papers conclude that interzonal transits and national market organization affect the
interdependencies. Another national market examination in the United States was

6see Førsund et al. (2008), Woo et al. (2011), Schröeder et al. (2013) and Kuntz (2013), and
Figuiredo et al. (2015) .
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done by Dempster et al (2008) for California electricity market by means of granger
causality test.

1.2 The Italian electricity market

Five years after the Bersani decree passed, the national electricity exchanges could be
finally operated. The first stage of IPEX commenced on 1 January 2004 as technical
trials with operators from supply and demand sides. The technical trials were aimed
to ensure a proper infrastructure and mechanism have been installed in order to
ensure a transparent and competitive electricity market in Italy as well as to avoid
the risk of an unbalanced system. The seconde stage of IPEX was partial functioning
of the exchange (only for a supply side) as the initial trials. Then, the beginning
of 2005 was a milestone in Italian electricity sector as Italian power exchange starts
complete operation of the exchanges. The market is now widely known as Italian
Power Exchange (IPEX). Currently, it has 254 market participants who actively buy
and sell electricity contracts with a total of 337.34 TWh of electricity was traded in
2014.

Beyond 2009, Italian power exchange did not go through any major structural
changes. The market had matured enough to operate regularly in the transparent
fashion, without the needs to majorly modify the structure for improving liquidity
and risk mitigations. Between 2005 and 2009, Italian power exchange has seen three
major structural changes that affect the exchange. The major structural changes are
:

• Demand liberalization

As it was mentioned in the previous literature, Italy adopted gradual demand
liberalization between 1999 and 2007 that affects the structural changes in the
market. When IPEX was opened and fully operated in 2005, only industries
were allowed to enter a bid in the exchanges. Hence, all households consumers
were not considered eligible by the legal framework. However, this is changed
after July 2007 as all consumers become eligible in the power exchanges. This
change has put 85 TWh of yearly demand in the markets which constitute 22
million families. Consequently, this change would introduce high market fluc-
tuations in the short-term electricity price in Italy thus increasing volatility.
Furthermore, these new entrants may engage in a trial-and-error learning pro-
cess that produces instability in the market.

• Contract for Differences

Starting from 2008, the ensuing price risk from the day-ahead market in IPEX
can be hedged by contracts for differences (CfDs), which is held in Italian
derivatives exchange (IDEX) operated by Borsa Italiana. As a result, hedg-
ing strategy can be implemented by market participants. In fact, Acquirente
Unico is obliged by law to hedge against price and volumetric risks. This ma-
jor structural changes reduced market participants’ exposure towards financial
risk. However, before December 2009, holders of the contracts are not able to
physically exercise the financial contracts that they obtain from IDEX. Hence,
GME, finally, introduces Piattaforma Consegna Derivati energia (CDE) with
the purpose of converting the financial derivative contract concluded in IDEX
to physical delivery of electricity.
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• PCE

The last major structural changes in the Italian structure was done by the end of
2009. Under art 17 of Annex A to AEEG’s Decision 111/06, a special platform
called Piattaforma dei Conti Energia a Termine (PCE) is started to be operated
and managed by GME in order to facilitate electricity delivery from bilateral
contracts concluded outside the IPEX. The platform is used by participants
to register their injection and withdrawal schedules thus easing the works for
managing transmission. This change has provided the market participant with
options to choose between standardized contracts in physical exchange or OTC
contracts. Furthermore, the platform offers the posibility to adjust easilly both
long term contracts and short term contracts. As a result, the markets becomes
more active and competitive which affects the Italian electricity prices.

1.2.1 The exchanges

The Italian electricity market consists of two classifications, spot, and forward market.
The market structure can be seen in the Figure 1.1 below. All markets are organized
by the Italian independent market organizer (GME) 7 with an exception for financial
derivative contracts, which is traded by Italian derivatives exchange (IDEX) of Borsa
Italiana. The IPEX organizes all the markets under GME SpA with an exception for
financial contracts, which is traded in IDEX by Borsa Italiana. GME also manages
the OTC registration platform, PCE, where all market participants can register their
bilateral contracts concluded outside the IPEX or IDEX. Our analysis and studies,
however, focus on solely on the day-ahead market where 24 periods of electricity
delivery are traded. In Italy, the day-ahead market opens on the ninth day before
the day of delivery and close on the day before the delivery. Between this period, all
buyers and sellers are allowed to make bids for their willingness to consume/produce
electricity by specifying the quantity and the maximum/minimum price they desire.
8After the market closes, an authomatic algorithm is used optimize the transmission
system and determine the electricity price.

In order to maintain and optimize Italian electricity system, IPEX divides Italy
into six main geographical zones and five poles of limited production. The map
of Italy in Figure 1.3 below displays zonal division of all the twenty administrative
regions in Italy. NORD has the biggest territory covering eight regions followed by
SUD with four. Sicily and Sardinia are the only two regions that are considered
as one zonal market. The inter-zonal connections of the Italian electricity system
can be found in the Figure 1.3 below. The electricity markets are coupled with
four foreign markets, France, Switzerland, Austria, and Slovenia. Hence, it allows
to import/export to/from Italy. The six main zonal markets are connected to the
pole of limited productions or constrained zones. These zones are only a sets of
generation units connected to Terna without withdrawal points (no demand in this
limited zone). The maximum production that can be exported to the grid is lower
than the maximum net physical exchange in the case of congestion. In other words,
they are used to to balance the Italian electricity system in order to avoid congestion.

7Gestore Mercati Energitici
8For each day and each offer/bid point, a maximum of 24 bids/offers can be submitted. Three

types of offer/bid exist: simple, consisting of a pair of values indicating the volume of electricity
offered/bid in the market by a market participant and the price for a given hour; multiple, consisting
of the division of an overall volume offered/bid in the market by the identical market participant for
the same hour; pre-defined, consisting of simple or multiple offers/bids, which are submitted daily
to the GME.
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Figure 1.1: Italian geographical zones
(Source: author elaboration from GME)

As shown in the Figure 1.3 below, the poles of limited production are coupled with
the close geographical markets to form six large Macro-zones: Monfalcone (MFTV)
is associated with NORD, Brindisi (BRNN) and Foggia (FOGN) to the SUD, Priolo
(PRGP) to SICI, and Rossano (ROSN) is a bridge that connects SUD and SICI. They
are national virtual zones with a constrained set of production units whose quantity
is lower than the admissible exports. Hence, they are used to balance the Italian
electricity system when it is necessary.
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Figure 1.2: A stylized representation
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1.2.2 Liquidity

The figure below displays the liquidity and traded volume in the IPEX. Between The
volumes traded in IPEX is averaging 190 TWh. This number is not far from average
volume traded in EXX for Germany and Austria combined that reach 256.5 TWh.
The traded volume in Italy has shown a declining trend between 2010 until 2012, from
199 TWh and 179 TWh. Then, it increases in the following year reaching 207 TWh
of traded volume.This is due to the increase of liquidity in those same years where
it reaches 72% of liquidity. Non-institutional participants highly contribute to the
increase as they constitute 130 TWh quantity in that year. This is 42 TWh increase
from the total volume traded in the previous years. It is also interesting to note that
GSE offers have shown a significant increase from 2011 to 2013 as it increases from
merely 39 TWh to 50 TWh in 2013. The increase of GSE offers exhibits the increase in
renewable energy production since they all constitute the bids from renewable energy
supply. AU , on the other hand, reduced their volume significantly from 40 TWh to
only 27 TWh. In this same year, traded volume in Germany and Austria (combined)
in EEX recorded 247 TWh only 40 TWh different between them. In 2014, however,
IPEX saw a declining quantity and liquidity where it register, 185 TWh and 66 %
respectively. Both institutional and non-institutional participants show significant
declining volume. In particular, non-institutional participants reduced the quantity.
On the other hand, EEX shows a positive trend with 8% changes from the previous
year.
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Figure 1.4: Traded volume and liquidity in IPEX
(Source: author elaboration from GME)
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1.2.3 Price formation mechanism

The algorithmic procedure for determining the electricity price follows iterative steps.
First, the aggregated supply curve is constructed following the merit order. Hence, all
bids from the suppliers are ranked in ascending order according to the price. Then, the
demand curve is built in a similar way to the descending order. Second, the algorithm
will verify the adequacy of the electricity system. If there are no lines congested
between the zones, then all zonal price is equal to the National Unique Price (PUN).
Therefore, the price equilibrium is an intersection between national aggregate demand
and supply curves. On the other hand, if the opposite case occurs, the zones are split
into two big zones in the congested transmission line. The algorithm is then restarted
for the two split zones and the market binds with different price equilibriums. Hence,
it leads to two zonal prices, which is used as a reference for producers remuneration.
The PUN price is the consumer price, and it is calculated as a weighted average of all
zonal prices. Then, in the case where a transmission congestion is still found in the
system, the algorithm is restarted again with more splittings until an optimization is
reached. In this case, there can be more than two zonal prices in Italy but there is
still one PUN price.

In this market, transactions take place between the ninth day before the day of
physical delivery and the day before the day of delivery. The sellers submit hourly of-
fers for each generating unit specifying the quantity and the minimum price at which
they are willing to trade their power. The aggregated supply curve is built according
to the merit order in an ascending order of price. In a symmetrical way, the market
demand curve is generated through the aggregation of single bids in a descending
order of price.9 The hourly market price is determined by the intersection of the
demand, and the supply curves, following an iterative procedure. Firstly, the geo-
graphical market is considered as unique: if the day-ahead production/consumption
plan respects all network constraints across zones (no congestion), a single price for
the whole country emerges.10 On the contrary, if a network constraint is saturated,
then the geographical market is divided into two sub-markets, each one aggregating
all the zones above and below the saturated constraint. The market demand and
supply curves are rebuilt for the two sub-markets (taking into account the quantity
that can flow between zones up to the transmission limit), and two zonal prices result.
The hourly auction is a uniform price auction which means that all accepted units are
entitled to receive the system marginal price (or prices when de-zoning arises because
of transmission congestion). Figures 1.5 and 1.6 illustrate through an example how
the inter-zonal price mechanisms work under uniform auction rule without and with
congestion respectively.

9For each day and each offer/bid point, a maximum of 24 bids/offers may be submitted. Three
types of offer/bid exist: simple, consisting of a pair of values indicating the volume of electricity
offered/bid in the market by a market participant and the price for a given hour; multiple, consisting
of the division of an overall volume offered/bid in the market by the identical market participant for
the same hour; pre-defined, consisting of simple or multiple offers/bids, which are daily submitted
to GME (GME).

10The price will be in correspondence of the intersection of national demand and supply curves.
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Figure 1.6: Pricing with dezoning

In the permanence of network saturation, the process of sub-setting the market
continues until all constraints are satisfied (Fig. 1.7).

Zone A 

PA= PB=PC 

Zone B 

Zone C 

Zone A 

Zone B 

Zone C 

Zone A 

Zone B 

Zone C 

PA= PB<PC PA<PB<PC 

0 

Figure 1.7: Multiple congestion

While producers receive the zonal prices in the occurrence of congestion, the buyers
pay the National Single Price (PUN) for the electricity bought in the pool: the PUN
is an average of zonal prices weighted for the zonal purchases.11

11The purchased quantity should be netted of purchases from pumped-storage units and from
foreign zones. In the example reported in Fig. 1.6 the PUN would be equal to 32.35AC/Mwh:

PUN =

∑
PiQi∑
Qi

=
(30 × 650) + (40 × 200)

650 + 200
= 32.35
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The electricity price formation follows an iterative procedure based on the inter-
zonal market mechanism. Firstly, the market collects all the supply and demand bids
from all the zones. The supply and demand curve are then constructed under merit
order. Secondly, the algorithm verifies the transmission limitation between the zones.
If there is congestion in the transmission line, then, all zonal prices are equal to Na-
tional Unique Price (PUN), which is the intersection between the supply and demand
curve. If the opposite case occurs, the congested transmission line split the connected
zones into two zonal markets with their own supply and demand curve. If the national
electricity system is still not stable, the algorithm is repeated subsequently with more
market splitting until an optimum solution is obtained. As a result, it is possible to
have six zonal markets if all the high transmission lines are congested.

1.2.4 Production Mix

Let us now take a look at actual production mix in the figure 1.8, the domination
of gas as energy sources have gradually decreased at a rate of -49.79% as a result
of intensive renewable policy support from the government. In fact, RES have sur-
passed total CCGT production for the first time in 2014. As for coal source, their
contribution to production is increased from 24.4 to 32.3 between 2010 and 2012 but
decrease afterward amounting to -22.6% changes at the end of 2014. Other sources,
which include biomass, CHP, oil and other thermal sources, are observed to be stable
over time with quantity only range between 29 and 30.6 TWh in this period. Even
with high renewable penetration, Italy is still a constant net importer. The statistic
suggests that, in average, 15.9% of the national demand is supplied by neighboring
countries.
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Figure 1.8: Production mix between 2010 and 2014 (Twh)
(Source: author elaboration from GME)
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If we look at the breakdown of renewable supply shown in figure 1.9, wind, and
solar technology had been the key to Italy’s success as they had been growing at a high
pace. Solar registers the highest increase in the production multiplied by 4.5 times at
the end of 2014. As a result, they account 29.9 % of all renewable supply or 10.7% of
the total production mix. As for wind technology, the penetration reached more than
160% changes in the end of the period, which translates to 14.4% of the renewable
supply. Then, hydro production is decreasing in the green certificate scheme period,
but it increases 43.4% with the introduction of the new feed-in-tariff. Although the
quantity increases, hydro’s share has been reduced by only a half of total renewable
production in 2014. Finally, the quantity of geothermal is constant over time due to
the limited resource in Italy.

This section is devoted to the description of Italian production mix, interzonal
transits and zonal price differences as they result from the day-ahead ex-post market
data. From 2010 to 2014, the contribution of Italy’s main source of electricity, gas, has
gradually decreased with the 2014 quantity (75.1 TWh) representing almost the half
of 2010 figure. RES supply has surpassed total CCGT production for the first time in
2014 (100.9 TWh versus 75.1 TWh). In this year, renewable production has exceeded
the target established in the National Renewable Action Plan (NREAP) to produce
100 TWh of renewable energy by 2020. Even with high renewable penetration, Italy
is still a net importer. The statistics suggest that on average 15.9% of the quantity
accepted in the day-ahead market is supplied by neighboring countries.12 A detailed
figure of the quantity sold in the day-ahead market by production source for the period
2010-2014 is reported in the Appendix (Figure 1.8). The breakdown of renewable
supply by technology (Figure 1.9) reveals that wind and solar have experienced the
strongest growth. Solar production registers the highest increase in the supply of
2014 is 4.5 times the one of 2010. As a result, in 2014 solar technology accounts for
29.9% of total renewable supply and 10.7% of the total production mix. Wind supply
in 2014 is 2.6 time the production in 2010 reaching 14.6% of total renewable supply.
Hydro production has decreased instead from 2010 to 2012 to rise again afterward.
In 2014, it represents half of total renewable production.
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Figure 1.9: Renewable mix between 2010 and 2014 (Twh)
(Source: author elaboration from GME)

12This is probably due to the fact that these countries have cheaper generation mix (nuclear).
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1.2.5 Physical exchange

Physical exchanges resulting from the day-ahead auction have experienced some
changes over the years. Figure 1.10 shows the average net electricity flows on Italian
main lines.13 CNOR, SICI, and SARD are net importers, while CSUD and SUD act
as a hub in the center and southern part of Italy, as play the role of both importer
and exporter. NORD and ROSN are the main exporting regions that deliver elec-
tricity to CNOR, SUD, and SICI. However, ROSN is a virtual generation zone used
for balancing the system, thus the regions do not have a withdrawal point (buyer).
In terms of quantity, CSUD-SUD connection registers the highest net average physi-
cal exchange, thus cementing CSUD position as the biggest importing zone in Italy.
The imports are, however, gradually decreasing. Similar patterns can be observed in
NORD-CNOR and ROSN-SUD, with larger decreases in import, -76.2% for CNOR
imports and -50.8% for SUD imports. CNOR imports from CSUD have, instead, in-
creased from 2010 to 2014. Transits from CSUD to SARD display the highest increase
as the quantity more than doubled in 2014 compared to 2010, as a result of the new
grid connection system. SICI import continues to increase at a rate of 76% over the
whole period.

Net physical exchanges between the markets have been experiencing changes over
the years. Figure 1.10 below shows us the average of transferred powers between the
zones for each transmission line. The columns are constructed from ex-post net flow
data published by GME. First of all, it can be concluded that CNOR, SICI , and
SARD are net importer regions as suggested by the direction of the quantity. CSUD
and SUD, on the other hand, act as a hub in the center and southern part of Italy as
they act as both a net importer of electricity and a net exporter. NORD and ROSN
are the main exporting regions that deliver electricity to CNOR, CSUD, SICI and
SUD. However, ROSN is a virtual generation zone used for balancing the system,
thus the regions do not have a withdrawal point (buyer).

In terms of quantity level, CSUD-SUD connection registers the highest net average
physical exchange, with more than two GWh, thus cementing CSUD position as the
biggest importing zone in Italy. The level is gradually decreasing with -23% of changes
of net flow physical exchanges from 2010 to 2014. An identical pattern is also shown
in the second and the third biggest line, NORD-CNOR, and ROSN-SUD, with a
much bigger decrease, 76.2% and -50.8% respectively, in the same period. In NORD-
CNOR, even though it peaks in 2011 with more than one GWh, the average physical
exchange plunges to mere 0.22 GWh, which implies more exports to NORD in 2014.
As for physical transfer from ROSN to SUD, the net flows decrease annually until it
reaches 0.44 GWh. CSUD to CNOR present fluctuation of quantities in this period
with mean quantities ranging from 0.46 GWh to 0.79 GWh. Nevertheless, CNOR is
still one of the biggest net importers along with CSUD. On the other hand, quantities
from CSUD to SARD display the highest increase as the quantity more than doubled
in 2014, 0.25 GWh, compared to 2010, 0.1 GWh. This increase is a result of the new
grid connection system. Then, SICI continues to increase its electricity import from
ROSN at a rate of 76%. Regardless of the increase, SARD and SICI are still the
smallest net importer in terms of level because of their transmission limitation and
low population compared to the other regions.

13Although the detailed statistics is not reported in this paper, the capacities of transmission lines
are relatively constant over the years. SARD-CSUD is the only transmission line whose capacity has
been reinforced in 2011, thanks to the installation of new submarine cables that started to operate in
March 2011. CSUD-SUD connection has the biggest transmission line capacity, while SARD-CSUD
and SICI-SUD are the most limited lines.
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Figure 1.10: Average physical exchanges between the zones
(Source: author elaboration from GME)

1.2.6 Transmission limit

In terms of transmission limits, figure 1.11 below present the average capacity of
electricity exchange between each geographical zonal market from 2010 to 2014. Every
day, the information is published by GME for preliminary information to market
participants. The data is also used as a reference for optimizing the Italian electricity
system in the day-ahead market. Although the detailed statistic is not documented in
this paper, the capacities of transmission lines are relatively constant over the years.
SARD-CSUD is the only transmission line that has augmented capacity in 2011. This
is due to the installation of new submarine cables that starts to operate in March 2011.
In terms of quantity, we can observe in figure 1.11 that CSUD-SUD connection has
the biggest transmission line capacity with SUD may import as large as 10 GWh and
export up to 3.86 GWh of electricity on average. CNOR-NORD and CSUD-SUD
are ranked behind as they allow lower physical exchanges between the zones. Then,
SARD-CSUD and SICI-SUD are the most limited lines in Italy with an average of
0.76 GWh can be exchanged from SARD and CSUD, and no more than 0.18 GWh is
transferable from SICI to SUD.14 This limitation creates congestion problems since
only limited efficient supply can be transferred towards or from SICI and SARD.

14Since ROSN is located as a bridge between SICI and SUD, we used transmission data of SICI-
ROSN. Our assumption is based on several reasons. Firstly, ROSN is a virtual zone used for balancing
the system, and it is associated with both SICI and SUD. Secondly, SICI and ROSN are generally
considered as one zone based on their zonal prices. Finally, SICI-ROSN is the only transmission line
that connects SICI to Italy, particularly SUD.
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1.2.7 Zonal price difference

By studying the series of zonal prices, we expect to detect a lasting price differ-
ence between importing and exporting neighboring regions. We report the series of
paired-price differences for the period 2010-2014 in Figure 1.12 for the following pairs:
CNOR-NORD; CNOR-CSUD; SARD-CSUD; CSUD-SUD; SICI-SUD. It is worthy to
note that during the considered period the zonal prices of SUD and ROSN have
differed for less than the 2% of the time while the zonal price differences between
SICI-SUD and SICI-ROSN have followed very similar patterns. This result allows us
to consider SICI-SUD pair, which is formally non-bordering zones, instead of the two
pairs SICI-ROSN and SUD-ROSN. For the pair CNOR and NORD we observe a sub-
stantial increase in the number of hours with negative price difference starting from
2012 (see table 1.13). This result seems to confirm that after a period characterized
by a strong reliance on import from NORD, CNOR has reduced its importing needs.
In CNOR-CSUD pair, CNOR has been an importer for most of the time, with rising
frequency of positive price differences over time. The graph also suggests that SARD
generally imports from CSUD while the frequency of congestion between these two
regions has decreased at the end of 2012 as shown by many hours of the identical
price. In CSUD-SUD, where the first zone is always importing, we may detect a
slight decrease in the value of positive price differences. The series of price differences
between SICI and SUD reveals that the negative price differences have decreased over
time while the positive have substantially remained constant.

Figure 1.12: Series of zonal price differences, 2010-2014
(Source: author elaboration from GME)
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Figure 1.13: Series of zonal price differences, 2012
(Source: author elaboration from GME)

1.2.8 Congestion

To better gauge the relevance of congestion phenomenon in Italy, we have reported
in Table 1.1 its frequency and the average number of zonal divisions for the five year
period 2010-2014. We observe that congestion frequency has never gone below 82%,
reaching a peak in 2013 with the network congested 93.6% of the time. The congestion
frequency is a measure of the congestion occurrence in all transmission lines in Italy
,which is very high, since it is counted every time there is, at least, one congestion in
the five transmission lines. However, if we look at the congestion occurrence in detail,
only a few transmission line is highly congested. In fact, if we only look CNOR-NORD
transmission, we may observe a very low frequency in our sample.The average number
of sub-markets has slowly decreased from 2.416 to 2.28 between 2010 to 2012 to rise
again in 2013 and 2014.

1.2.9 The database

In this study, we have built a unique database collecting bidding data for a five-
year period and every hour between 1 January 2010, 00:00 and 31 December 2014,
24:00 from GME, the market operator, which publishes all the auction for the hourly
offers in the day-ahead market. Table 1.2 displays a general summary of GME bids’
database. The number of bids per year has reached the threshold of 8 million in
2014 while the hourly average number of participating units has slightly decreased
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Frequency Percentage Zonal divisions (Mean) Std N

2010 7210 82.3% 2.416 0.809 8760
2011 7403 84.5% 2.307 0.686 8760
2012 7921 90.1% 2.240 0.531 8784
2013 8205 93.6% 2.278 0.518 8760
2014 8044 91.8% 2.284 0.543 8760

Table 1.1: Congestion frequency
(Source: author elaboration from GME)

after 2012. The increase in the number of bids indicates that the market becomes
more active. On the other hand,the changes in the number of units have suggested
continuous new investment on the markets between 2010 and 2012. Beyond 2012,
many units probably are not profitable enough to stay in the markets.

Number of bids Number of units

2010 6 975 701 976
2011 7 149 431 1 257
2012 7 090 579 1 281
2013 7 737 633 1 152
2014 8 086 282 1 189

Table 1.2: Database summary
(Source: author elaboration from GME)

Our research only uses hourly frequency for two main reasons. Firstly, our fore-
casting studies are aimed to make a short time prediction in order to be able to be
used in high-frequency price modeling and power plant optimization. Secondly, our
congestion studies require capturing the event of saturation in transmission line since
we want to capture the impact of renewable and demand shock on congestion. This is
cannot be captured in a lower frequency. Thirdly, our interdependence study is also
aimed to examine the market splitting event which can only be observed in hourly
frequency.

Since our researches are observed in hourly frequency, we extract hourly data
of PUN price, zonal price, demand and renewable energy from the main database.
Hourly electricity prices and demand can be downloaded easily from our database
since bidding data already contains this information. However, extracting hourly
renewable energy quantity requires third party data in order to match the production
units identity with the type of technology. Fortunately, we are able to obtain a list of
production units from Ref-E an Italian consulting group. The list provides detailed
identity of the production units such as capacity, the technology, and location.

We would like to organize the following subsections as follow. We are going to
describe the stationarity test that we use in order to ensure a stationary series in our
research. Then, it would be followed by a general statistic summary of electricity
price and demand used in our researches. Finally, it would be closed by descriptions
on renewable energy data that we use.
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1.2.10 Stationarity

In all our researches, it is imperative that the observation is statistically stationary
since we would like to avoid spurious regression as well to ensure the assumptions in
our model. Therefore, it is important that they do not exhibit seasonal trend and
unit root. Most widely-known test for unit root test is Augmented Dicky and Fuller
(ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. We test both ADF
test and KPSS test in our observations data in order to have robust evaluation since
they complement each other. ADF test examines the existence of unit root in the
observation whereas KPSS test use null-hypothesis that the process is stationary. In
other words, it is important to reject the null hypothesis in ADF test and accept the
null hypothesis of KPSS test. The result summary can be seen in all our observation
from table ?? to table 1.7 in the following subsections. In ADF test, we test down
from a maximum lag, pmax, that are calculated as follow

pmax = int[
12(N + 1)

100
]0.25

Where N is number of time series observations. This rule is proposed by Schwert
(1989) for N > 100. As for KPSS, the optimum lag order, k, is estimated with the
equation below.

k = int(4 ∗ (
N

100
)

2
9 )

From the result of our test shown in table 1.3 to 1.7. The test has proven that there
are several variables that accept the null hypothesis of the first ADF test (ADF1).
Furthermore, the first KPSS test (KPSS1) do not validate the stationarity of the
process in all of our variable. Hence, it is clear that either differencing or de-trending
is needed to gain stationarity. Since electricity price is driven by cyclical demand,
de-trending the data from seasonal pattern within a week, month and year are pre-
ferred. In addition, previous literature has also displayed seasonal characteristics in
the electricity price (Contreras et al., 2003; Petrella and Sapio, 2006). Therefore, de-
trending is one of the best alternatives in handling this issue. By introducing seasonal
dummies for yearly, monthly and daily trend, we have succeeded to accept the null
hypothesis of KPSS test and rejecting the null hypothesis of ADF test (see table 1.3
to 1.7). Therefore, seasonality needs to be addressed in our empirical modeling setup.

1.2.11 Electricity Prices

The general statistic summary of the zonal prices from our sample can be seen on
table 1.3 below. In terms of mean, the highest average is recorded in SICI (90.20 AC/
Mwh) and SARD (69.64 AC/ Mwh). NORD, CNOR, CSUD, and SUD follow them
from behind with respect to the rank of the mean price, 63.635 AC/MWh, 63.632
AC/MWh, 62.695 AC/MWh, and 60.6 AC/MWh. The standard deviation shows SICI
and SARD as the regions with the highest volatility, 42.94 and 35.20. One can argue
that this is caused by frequent congestion in the lines that connect these zones which
subsequently makes them an importing zone. On the other hand, CSUD, CNOR,
SUD, and NORD are behind these zones with lower values, 21.39, 20.65, 20.49, and
19.38. The observations are non-normally distributed, as shown by our Jarque-Bera
test. Finally, from the test results, we found a stationary time series after de-trending
our data.
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Mean Minimum Maximum Std. dev Jarque-Bera ADF1 ADF2 KPSS1 KPSS2

CNOR 63.632 0 224 20.656 P<1% P<1% P<1% P<1% P>10%
CSUD 62.955 0 224 21.392 P<1% P<1% P<1% P<1% P>10%
NORD 63.635 0 224 19.382 P<1% P<1% P<1% P<1% P>10%
SARD 69.769 0 450 35.204 P<1% P<1% P<1% P<1% P>10%

SICI 90.207 0 3000 42.941 P<1% P<1% P<1% P<1% P>10%
SUD 60.6 0 212 20.494 P<1% P<1% P<1% P<1% P>10%

Table 1.3: General statististics of hourly Zonal prices
(Source: author elaboration from GME)

As for the PUN price shown in table 1.4 below, high prices can be observed in
hour-20 and hour-21 with 84.74 AC/Mwh and 84.7 AC/MWh. In addition, these periods
register the highest standard deviation compared to the other models. As a result,
these hours are generally called super peak hours since the prices tend to have more
fluctuations compared to the others. The maximum value is recorded in hour 21
reaching 324. 2 AC/Mwh. Then, it is followed by hour 19 and hour 20 when the price
reached 222.25 AC/MWh and 211.87 AC/MWh respectively. As for the minimum value,
the floor price was reached in hour 14 and hour 15. This is due to the oversupply
of renewable as they reach its peak. In general, they are non-normally distributed
and requires seasonality to obtain stationarity. Nevertheless, we may conclude that
each period deliver has different dynamic and volatility. Therefore, it requires specific
models, such as stacked model, to capture this dynamic.
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Mean Min Max Std. Dev Jarque-Bera ADF1 ADF2 KPSS1 KPSS2

PUN1 58.95 21.16 102.63 12.31 P<1% P<1% P<1% P<1% P>10%
PUN2 52.45 14.79 96.56 12.13 P<1% P<1% P<1% P<1% P>10%
PUN3 48.28 9.89 92.04 12.38 P<1% P<1% P<1% P<1% P>10%
PUN4 45.31 5.00 87.00 12.65 P<1% P<1% P<1% P<1% P>10%
PUN5 44.93 3.28 85.65 12.56 P<1% P<1% P<1% P<1% P>10%
PUN6 48.47 5.00 86.84 12.02 P<1% P<1% P<1% P<1% P>10%
PUN7 56.96 8.34 85.53 12.83 P<1% P<1% P<1% P<1% P>10%
PUN8 65.14 9.40 154.70 15.11 P<1% P<1% P<1% P<1% P>10%
PUN9 73.36 13.03 188.77 17.22 P<1% P<1% P<1% P<1% P>10%
PUN10 75.63 13.19 207.04 18.19 P<1% P<1% P<1% P<1% P>10%
PUN11 72.95 10.77 207.08 19.27 P<1% P<1% P<1% P<1% P>10%
PUN12 70.48 7.35 206.49 19.82 P<1% P<1% P<1% P<1% P>10%
PUN13 62.40 1.19 143.94 15.98 P<1% P<1% P<1% P<1% P>10%
PUN14 59.43 0.00 129.09 16.52 P<1% P<1% P<1% P<1% P>10%
PUN15 62.13 0.00 160.45 18.00 P<1% P<1% P<1% P<1% P>10%
PUN16 65.12 2.01 163.71 17.77 P<1% P<1% P<1% P<1% P>10%
PUN17 69.62 6.71 186.58 18.08 P<1% P<1% P<1% P<1% P>10%
PUN18 76.80 11.45 196.55 22.68 P<1% P<1% P<1% P<1% P>10%
PUN19 80.67 26.11 222.25 21.12 P<1% P<1% P<1% P<1% P>10%
PUN20 84.74 43.57 211.87 20.21 P<1% P<1% P<1% P<1% P>10%
PUN21 84.70 48.04 324.20 18.45 P<1% P<1% P<1% P<1% P>10%
PUN22 77.93 47.40 156.31 15.33 P<1% P<1% P<1% P<1% P>10%
PUN23 69.65 44.19 144.41 11.78 P<1% P<1% P<1% P<1% P>10%
PUN24 63.19 35.78 101.68 10.59 P<1% P<1% P<1% P<1% P>10%
Overall 65.39 0.00 324.20 20.09 P<1% P<1% P<1% P<1% P>10%

Table 1.4: Detailed Summary of hourly PUN Price for each period of delivery
(Source: author elaboration from GME)
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1.2.12 Demand

Let us look into general statistics summary of the demand for each region in the
table 1.5. In terms of level, Demand in the NORD is relatively much higher in
comparison to the other regions reaching 18467 MWh in an hourly average. CSUD
follows from behind with less than 13 GWH of consumptions. SICI and SARD have
the lowest demand reaching only 2203 MWh and 1376 MWh, respectively. In addition,
the standard deviations in the Nord display a very high deviation from its mean.
Therefore, it can provide a big shock in the price equilibrium. SARD and SICI
exhibit the lowest standard deviation but it is still in a significant level relative to
their means. Overall, the ADF test has shown that demand in SARD, SICI and SUD
are all accepting the null hypothesis of the first ADF test (ADF1). This also supported
by the rejection of the null hypothesis in our initial KPSS test (KPSS1). Therefore,
it is necessary to add seasonality trend in our empirical setup in this research.

Variable Mean Std. Dev Jarque-Bera ADF1 ADF2 KPSS1 KPSS2

D CNOR 3524.3 879.75 0 < 5% < 1% P<1% P>10%
D CSUD 5311 1189.1 0 < 5% < 1% P<1% P>10%
D NORD 18467 4238.2 0 < 5% < 1% P<1% P>10%
D SARD 1376 251.24 0 > 10% < 1% P<1% P>10%
D SICI 2203.2 410.19 0 > 10% < 1% P<1% P>10%
D SUD 2917.7 554.73 0 > 10% < 1% P<1% P>10%

Table 1.5: Statisitic summary of hourly demand in different zonal markets
(Source: author elaboration from GME)

It is also interesting to look at more detailed hours in the aggregate demand since
it can show the different consumptions between peak and off-peak hours. In terms of
mean, period 11 and 12 display the highest mean in terms of price with 39326 and
39293. Moreover, these periods also show a high standard deviation. As a result, in
the afternoon, the price equilibrium generally reach its peak at these two periods. If
we look at the means in the night period, we can observe that period 19, 20 and 21
possess high level of mean and equally high level of standard deviation. Hence, this
fact can explain the high volatility and high means at these hours. Then, the minimum
value of demand can be observed in the off-peak periods. In particular, period 2 to
period 7 where the demand is below 20 GWh. The data are non-normally distributed
and non-stationary based on our statistical test. Therefore, seasonal treatment is
necessary to obtain stationarity in our time series.

1.2.13 Renewable energy supply

By matching our database with the REF-E list, we have succeeded to collect a renew-
able energy observation that can be utilized for our research. Table 1.7 below display
general statistics of the renewable energy supply in the day-ahead market. In this
case, renewable energy supply are power productions from solar and the wind whereas
hydro energy supply are power productions from pumping and run-of-river.15Overall,
the series are non-normally distributed. Renewable energy supply from the NORD is
the only exception compared to other zonal markets. The stationarity test is rejected
in all of the fist ADF test (ADF1) but accepted in the first KPSS test (KPSS1). Then,

15More detailed renewable energy statistics for each technology can be found in the appendix.
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Mean Min Max Std. Dev Jarque-Bera ADF1 ADF2 KPSS1 KPSS2

Demand1 28381 21142 37196 2632.7 P<1% P<1% P<1% P<1% P>10%
Demand2 27041 19940 35149 2660.7 P<1% P<1% P<1% P<1% P>10%
Demand3 26306 19028 34308 2676.4 P<1% P<1% P<1% P<1% P>10%
Demand4 25965 18643 33671 2661.7 P<1% P<1% P<1% P<1% P>10%
Demand5 26017 18761 33653 2683 P<1% P<1% P<1% P<1% P>10%
Demand6 26732 19210 34075 2769.1 P<1% P<1% P<1% P<1% P>10%
Demand7 29138 19174 38220 3714.5 P<1% P<1% P<1% P<1% P>10%
Demand8 33266 20334 44697 5315.2 P<1% P<1% P<1% P<1% P>10%
Demand9 37298 21240 49716 6563.9 P<1% P<1% P<1% P<1% P>10%
Demand10 39046 22510 51370 6580.3 P<1% P<1% P<1% P<1% P>10%
Demand11 39326 23612 51293 6373.1 P<1% P<1% P<1% P<1% P>10%
Demand12 39293 24157 51177 6247.2 P<1% P<1% P<1% P<1% P>10%
Demand13 37725 24040 49445 5480.9 P<1% P<1% P<1% P<1% P>10%
Demand14 36998 23094 49451 5758.3 P<1% P<1% P<1% P<1% P>10%
Demand15 37390 22453 50406 6328.4 P<1% P<1% P<1% P<1% P>10%
Demand16 37582 22183 50667 6537.9 P<1% P<1% P<1% P<1% P>10%
Demand17 38045 21732 51531 6638.9 P<1% P<1% P<1% P<1% P>10%
Demand18 38647 21973 54142 6453.4 P<1% P<1% P<1% P<1% P>10%
Demand19 38936 23115 53543 6006 P<1% P<1% P<1% P<1% P>10%
Demand20 39169 25490 51325 5236.7 P<1% P<1% P<1% P<1% P>10%
Demand21 38270 27700 47822 4121.7 P<1% P<1% P<1% P<1% P>10%
Demand22 36530 26844 45799 3627.9 P<1% P<1% P<1% P<1% P>10%
Demand23 33524 21510 43106 3204.2 P<1% P<1% P<1% P<1% P>10%
Demand24 30689 22607 39920 2943.5 P<1% P<1% P<1% P<1% P>10%
Overall 34221 18643 54142 7081.1 P<1% P<1% P<1% P<1% P>10%

Table 1.6: Detailed Summary of hourly demand for each period of delivery
(Source: author elaboration from GME)
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the second test of ADF and KPSS have shown that stationarity series can be reached
by detrending the data.

In terms of level in renewable energy supply, NORD display superior productions
compared to the other zones reaching 2239.8 MWh of hourly average. SUD comes in
second with less than 1 GWh of average hourly production. As for hydro production,
we can also observe that NORD exhibits a far superior level of hydro production
averaging 3490 MWh of hourly production. Then, SICI and SARD show the lowest
hydro productions averaging less than 100 MWh of hourly production. These facts
show that NORD and SUD have the most efficient generations (Hydro and Renewable
combined) compared to the other zones. As a consequence, these productions are
required to be transferred to their neighbors in order to balance the system. However,
this practice would saturate the transmission line, which will result in congestion.

Variable Mean Std. Dev Jarque-Bera ADF1 ADF2 KPSS1 KPSS2

R CNOR 362.59 324.13 0 < 5% < 1% P<1% P>10%
R CSUD 571.98 447.92 0 < 5% < 1% P<1% P>10%
R NORD 2239.8 1168.9 0 > 10% < 1% P<1% P>10%
R SARD 184.39 172.71 0 < 1% < 1% P<1% P>10%
R SICI 403.03 308.82 0 < 1% < 1% P<1% P>10%
R SUD 984.91 768.21 0 < 1% < 1% P<1% P>10%
H CNOR 273.83 182.25 0 < 5% < 1% P<1% P>10%
H CSUD 364.44 217.17 0 < 5% < 1% P<1% P>10%
H NORD 3490.3 1721.8 0 < 5% < 1% P<1% P>10%
H SARD 47.943 55.496 0 < 1% < 1% P<1% P>10%
H SICI 12.633 15.372 0 < 1% < 1% P<1% P>10%
H SUD 192.66 168.87 0 <1% < 1% P<1% P>10%

Table 1.7: General statistic of hourly renewable energy supply for different zonal markets
(Source: author elaboration from GME)

1.3 Three angles of Italian electricity market

This thesis is constructed by three independent researches with an objective to provide
a detailed overview of the Italian electricity market and to give an original contribution
to the academic literature. As it was mentioned in the previous sections, the studies
were motivated by the gap in the literature and interesting phenomenon in Italian
electricity market. Hence, the main interests of our studies are, forecasting models,
the impact of renewable energy supply on congestion, and interdependencies of zonal
prices. The following subsections provide a brief summary of each study along with
the insight of our findings.

1.3.1 Hourly electricity forecast

With the importance to provide a reliable model for forecasting electricity market,
there have been many techniques proposed in the literature to predict electricity spot
prices. Weron (2014) has provided a major state-of-the-art review on electricity price
forecasting literature. He has classified the various technique into five different classes:

• multi-agent

• fundamental
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• reduced form

• computational intelligence

• statistics.

The first technique, multi-agent models, is a special technique used to simulate
interactions the agents in the markets by using historical data of the supply curve
and market concentration. As a result, the methods are able to explore qualitative
analysis of the markets and to provide insight on the market. Unfortunately, this
method is not the best technique for accurate predictions since it is aimed to study
interactions and strategic behavior in the market (see for instance Gao et al. (2008),
Guerci et al. (2008), and Chatzidimitriou et al.(2012)). The second technique, fun-
damental models, is aimed to explore the economic relationship in the electricity
market. Therefore, it is used to quantify the market mechanism and the impacts of
the determinant. However, since they are not aimed for prediction, the forecasting
performance is not as good as other techniques. Furthermore, the models generally
utilized the high volume of data thus providing difficulty to obtain the same or similar
data (Vahviläinen and Pyykkönen (2005), Coulon and Howison (2009) and Carmona
et al. (2013) ). The third techniques, reduced-form models, are financial models for
forecasting electricity. The models are generally explored for risk analysis and deriva-
tive pricing. However, both Weron and Misiorek (2008), who use jump-diffusions, and
Misiorek et al. (2006), who apply Markov regime switching model, have reported poor
performances of the models for forecasting the next day’s hourly prices. These results
are in line with researchers by Dacco and Satchell (1999), Bessec and Bouabdallah
(2005), and Heydari and Siddiqui (2010). The fourth techniques, computational in-
telligence, has a unique ability to capture linear and non-linearity relations in the
electricity spot prices. Furthermore, it can model the complexity of the market and
the system. There were three main methods three main methods in the literature,
ANN16(Gonzalez, et al., 2005), Fuzzy (Hong and Hsiao, 2002), and SVM17(Zhao, et
al., 2008). Although the method generally provides a good forecasting performance,
the models do not provide insight and interpretations on the market. Finally, the last
technique, statistics, use exogenous variables and lagged value to forecast electricity
sports prices. The models use autoregressive, moving average and generalized autore-
gressive conditional heteroskedasticity and its combinations to reflect the electricity
market. Cuaresma et al (2004), Contreras et al. (2003), Knittel and Roberts (2005)
and Garcia et al.(2005) are a few example of the literature in electricity price fore-
casting. Their papers exhibit a good forecasting performance, interpretations, and
insight on the electricity market. Therefore, the models attract the interest of many
researchers since it can be interpreted in terms of technical as well economical, thus
encouraging both economist and engineer to explore researches in this direction.

Our paper focuses only on developing the best model for hourly forecasting using
a statistical class because of its advantage in accurate prediction and ability to ex-
plain the role of the determinants in electricity price. In addition, it was also chosen
because it has the advantage of estimation without requiring high data input (such
as fundamental model or multi agent) and having results that can be easily inter-
preted in an economic sense. We use (S)ARMA-GARCH (Seasonal or non-seasonal
Autoregressive and moving average process coupled with generalized autoregressive
conditional heteroskedasticity) with exogenous variables for forecasting hourly Italian
electricity prices. Researches in this particular models have been well-documented in

16Artificial Neural Network
17Support Vector Machine
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academics. Contreras et al (2003) proposes Seasonal ARMA model with large param-
eters for forecasting electricity price in three different countries, Spain, California, and
Austalia. The models are proven to have reasonable errors relative to each market
thus indicating an adequate model for price prediction. A year later, comparisons
of different ARMA models has been explored by Cuaresma et al. (2004) in order to
forecast hourly Leipzig electricity price. The paper proposes autoregressive models,
autoregressive-moving average models, and unobserved component models with an
aim to obtain the best model, in terms of forecasting performance, among them. On
the other hand, Bowden and Payne (2008) compares three different ARIMA-GARCH
models, for predicting the hourly price of the five hubs of the Midwest Independent
System Operator (MISO) in the USA. They conclude that ARIMA-EGARCH-M pro-
vides the best forecasting performance compared to the other proposed models. Their
paper is , then, extended by Liu and Shi (2013) who applies different GARCH vari-
ations on the same market, MISO hub. They propose 10 different GARCH models
for modeling the conditional variance in MISO hub. Their research concludes that
ARMA-SGARCH-M model is the most robust model. The inclusion of exogenous
variables in ARMA-GACRH model has been discussed since 2002 when Nogales et al.
(2002) attempt to predict Californian and Spanish electricity prices using demand,
integration, and lagged variables (ARIMAX model). Their papers provide empiri-
cal proof of the superiority in ARIMAX compared to ARIMA. In the same country,
United States, Knittel and Roberts (2005) study the forecast of electricity Califor-
nian price using local temperature, squared temperature and cubed temperature as
the determinant in CALPX. However, the paper also reveals that the temperature
is insignificant after and during the Californian crisis. Weron and Misiorek (2008)
provide alternative models by comparing 12 different models in the California power
exchange. Kristiansen (2012) extends Weron and Misiorek (2008) paper by adding
Nordic demand and Danish wind power in their model for predicting Nordic spot
price.

The main objective of this study is to provide additional alternative models in
the limited literature of Italian electricity market. Based on our knowledge, there are
only four literatures under statistical class that attempts to predict Italian electricity
price. Bosco et al (2007) studied different periodic autoregressive models with an
aim to forecast daily electricity price in Italy. They concluded that Autoregressive
model with Garch residual (ARMA-GARCH) as the best model in terms of accu-
racy and forecasting ability. Petrella and Sapio (2011), on the other hand, use Au-
toregressive moving average with exogenous variable (ARMAX) to model the price
formation and forecasting electricity price. The estimations concludes that weekly
trend, natural gas price, load, and temperature are the determinant of electricity
price. A year later, Serinaldi (2011) applies GAMLSS (Generalized Additive model
for Location, Scale, and Shape) to forecast hourly electricity price in California power
exchange (CalPX) and Italian power exchange (IPEX) and explain exogenous vari-
ables that drive the price. His research concludes that GAMLSS can be utilized as
an alternative technique to forecast electricity price. Gianfreda and Grossi (2012)
used ARFIMAX-Garch (Autoregressive Fractionally integrated moving average and
general autoregressive conditional heteroskedasticity) to forecast Italian zonal prices
and to explore exogenous variables (demand, technology, congestion, and market con-
centration) that drive the price. The paper describes the roles and impacts of the
exogenous variables and exhibits an improvement in forecasting accuracy because of
the exogenous variable.

Our empirical framework starts by clustering our observation (PUN Price, Demand
and Gas price) according to its segmented period with the aim to capture linear rela-

42



1.3. THREE ANGLES OF ITALIAN ELECTRICITY MARKET

tionship from exogenous and lagged variables at the same hours. 18Hence, we calibrate
twenty-four univariate models in order to predict all delivery periods in the day-ahead
market. This is based on the structure of the day-ahead market where the price of all
hours is settled at the same time. Similar framework has been done in the previous
literature (for example, Bordignon et al. ,2013; Cuaresma et al. , 2004; Weron and
Misiorek, 2005). Using this observation, we compare the various possible configu-
ration of non-seasonal and seasonal ARMA-GARCH models with fundamental price
driver as their exogenous variable. This paper attempts to look for the best model,
in terms of forecast accuracy and goodness-of-fit. We also would like to examine the
accuracy of price predictions from seasonal and non-seasonal ARMA-GARCH model
in order to look into the impact of the additional stochastic process. In addition, we
evaluate alternative models in order to justify our assumptions in our empirical set-
tings, utilization of exogenous variables inside our model and our stacked framework.
The results also allow us to experiment with different 24 SARMA-GARCH setups for
error minimization in the prediction and create combination models. In addition, we
can also analyze the role of gas price and demand for electricity in Italian electricity
market. Finally, we also estimate multivariate models, VAR, and SUR, in order to
challenge its performance with our univariate models.

This paper provides original contributions to the literature by several means.

• We propose alternative models for forecasting Italian electricity price, which is
limited in the academic.

• We examine the impacts of adding seasonal stochastic process in the model on
the forecasting performance.

• We construct a combination of 24 SARMA-GARCH setups for forecasting elec-
tricity price on the next day.

• We are able to quantify the effect of the fundamental driver on the hourly price
thus enlarging our view in the Italian electricity market.

• We initiate discussion on the forecasting ability difference between multivariate
and univariate models.

Our results have provided us with several main findings. First, seasonal time series
process increases the forecasting performance on the electricity price. This finding
reflects the adjustment from the market participants (both producers and consumers)
based on the previous day and previous week market result. Second, Seasonal ARMA-
GARCH model is, overall, the best model since it records the second best forecasting
accuracy and displays good goodness-of-fit in comparison to the other models. Third,
the result confirms Gianfreada and Grosi (2012) finding as models with exogenous
variables show better forecasting performance compared to models without exogenous
variable in both periods, in-sample and out-of-sample. Fourth, our analysis shows
that a stacked model performs much better, in terms of forecast, compared to the
global model. This result is in line with Cuaresma et al. (2005) conclusion in the
Liepzig electricity market. Fifth, both gas price and demand have shown to have a
positive and significant impact on PUN prices. This is mainly due to the fact that
both variables change the supply and demand curve, which, subsequently, increase the
PUN price. Finally, we have constructed a combination of 24 ARMA-GARCH model
that is selected based on the forecasting performance. Our empirical test suggest
that VAR, a multivariate model, is the best model in terms of accuracty wheras

18This is also known as stacked model or stacked framework.
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univariate models has shown to be superior in terms of risk. Therefore, utilization of
the framework should depends on the modeling or the forecasting objective.

1.3.2 Impact of renewable supply on congestion

This chapter is aimed to contribute to the limited literature on the impact of inter-
mittent generation on the congestion occurrence and cost. In Norway, Førsund et al.
(2008) initiate the discussion on this relation by researching the effect of wind power
integration. Their studies have concluded an increasing network congestion between
northern and southern Norway whenever there is a significant different in hydro re-
source couple with wind generations. In the United States, Woo et al (2011) continue
the discussions by studying the relations in the Texan power as the wind generations
are isolated in the west zone. They use ordered logit and log-OLS model. The authors
concluded that rising wind supply, nuclear generation, load from non-West zones and
gas price increases the likelihood to have congestion coming from the west. In Ger-
many, Schröeder et al. (2013) and Kuntz (2013) have provided technical and economic
analysis of future congestion problems as a consequence of the high integration of wind
energy. Both studies conclude an increase in the overall cost for stabilizing saturated
transmission caused by the renewable if there is no strategic network expansion in
Germany. In Spain, Figuiredo et al. (2015) assess several determinants that drive the
congestion and market splitting using logic and non-parametric Keynesian function.
The paper also concludes that large availability of baseline technology coupled with
high renewable has been proven to increase the market splitting and congestion.

In order to empirically verify and quantify the impact of renewable on congestion
in the Italian electricity markets. We construct our observation from our database
in an hourly frequency and estimate two econometric models in five zonal pairings :
a multinomial logit model, whose dependent variable has three discrete values cap-
turing both the occurrence of congestion and its direction, and a two stage least
square model (2SLS) with segmented regression which seeks to quantify the effects
of renewable production on implicit congestion costs.19 Up to our knowledge, Sa-
pio (2015) is the only author testing the impact of rising solar and wind generation
on congestion between Sicily and Southern Italy using the regime-switching model on
2012-2013 hourly data. The results provide more insight on the locational-dependent-
effect of renewable on the congestion. His estimation and analysis emphasize on the
congestion-relieve impact from Sicily’s renewable production. This is due to the fact
that solar and wind production from Sicily substitute the transmission capacity and
reduce the import from the South. The estimation also reveals that wind power shows
a bigger impact on congestion compared to the solar power that has less variation in
the power production.

This study provides original contributions to the academic in several ways.

• We enlarge the scope of the analysis by considering all Italian neighboring zones
in order to verify the consistency of the empirical models.

• We employ a multinomial logit model in order to separately capture the effect
of increasing renewable production on the probability of both directional con-
gestions (to and from) compared to the benchmark situation of no congestion.

• We estimate the impact of renewable output not only on congestion frequency
but also on congestion cost, something that has never been done before in the
literature.

19The description of this congestion costs will be explained in the following sections.
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• We apply segmented regressions instead of simple OLS in order to capture the
impact of renewable on the congestion cost in two congestion directions, con-
gestion to and congestion from, which are modeled as regimes (segments).

Our analysis suggests that the effect of a larger local wind and solar supply is to
decrease the probability of suffering congestion in entry and to increase the probability
of causing a congestion in exit compared to no congestion case. Increasing hydroelec-
tric production has a similar effect. A rise in local demand, on the contrary, increases
the probability of congestion in the entry (due to larger import) and decreases the
probability of congestion in the exit. These results hold for both importing and ex-
porting regions, but importing regions are much less likely to cause congestion in the
exit, therefore the installation of new RES capacity in these zones may have a positive
effect in terms of flow balance between regions. The estimations on congestion cost
reveal that, due to the merit order effect, local larger renewable tend to push the
congestion cost towards negative value as it decreases the marginal cost for balancing
the system. A much bigger shock of renewable quantity consequently could reduce
saturated line and merge the zone that is, zero congestion costs or could widen the
gap of negative congestion costs because of excessive supply in the exit. This is true
for all importing zone but it is the opposite for the exporting zones. Therefore, the
increase of renewable should be promoted in the importing zones, but the overall
growth should be controlled in order to avoid congestion toward opposite direction.

1.3.3 Interdependency of Italian electricity market

The interest in studying the relation between zonal prices have been displayed in the
academic with many researchers attempts to investigate the mechanism and deter-
minant of zonal price differences on two connected regions. Hauldrup and Nielsen
(2006) have started the discussion by investigating the non-linear dynamic between
two connected zonal prices in the Nordpool spot market. The paper aims to exam-
ine the regime switching and long memory process on the zonal prices using Markov
Regime Switching Model. They conclude that the mechanism of the switch in con-
gestion direction is a result of excess demand, which subsequently increase its zonal
prices. Woo et al. (2011) study the zonal price difference with an objective to inves-
tigate the impact of rising wind supply in the west zone of Texas electricity market.
Their result from log-OLS estimation suggests that rising load outside the West zone
would increase the zonal price difference. Figuiredo et al. (2015) look into the vari-
able that causes the market splits into two zonal prices in Iberian spot electricity price
(Spain) by employing logit and non-parametric Keynesian function. Their calculation
suggests that large availability of baseline technology coupled with high renewable in-
creases the frequency of triggering a market splitting mechanism. These literature,
unfortunately, does not provide us with an insight on the interdependencies between
indirectly connected zones and mean spillover in the national zonal prices.

Research from Worthington et al (2005) initiate the discussion on the interde-
pendencies on several zonal prices by employing Multivariate GARCH on the five
Australian spot electricity market (NEM). In another continent, Park et al. (2006)
investigate various US spot markets with Vector Autoregression and acyclic graph
method. Their estimation indicates that the transmission lines and institutional ar-
rangement affect the interdependencies in the zonal prices. Dempster et al. (2008)
analyse the California electricity markets with Granger causality tests and cointe-
gration analysis. Their study presents a moderate level of market integration and
interdependencies between the regional markets in California. Unfortunately, their
proposed method does not possses the capability to show the dynamic of conditional
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correlation in the markets. This research, on the other hand, requires a technique that
could display the dynamic of conditional correlations against time since we attempt
to observe the changes in conditional correlation after new investments in Italian elec-
tricity market. Worthingon et al. (2005) research is, then, extended, by Higgs (2009)
for further investigation in NEM using data from 1 January 2006 to 31 December
2007. In her paper, she applies three different multivariate GARCH (MGARCH)
model, Conditional Constant Correlation-MGARCH, Tse and Tsui’s (2002) and En-
gle’s (2002) Dynamic Conditional Correlation-MGARCH. Her research is aimed to
investigate the inter-relationship between the four zonal prices of NEM. She con-
cludes that regional markets with better networking infrastrcucture displays strong
interdependency whereas weaker level of interdependencies are recorded in the mar-
kets with low capacity of transmission line. Unfortunately, her proposed model still
lacks one important characteristic of electricity prices, seasonality. Seasonality is an
important feature that presents in the electricity price. Therefore, it is important
to be addressed in the future research. Ignatieva and Trück (2011) have focused on
the structural dependencies in the Australian electricity market using GARCH model
coupled with copulae method.20 Their research shows that significant tail dependence
between the zonal prices in Australia. Hence, price spikes may happen jointly across
the regional market.

We attempt to extend Higgs (2009) by capturing interdependence of zonal prices
in different electricity markets, Italian power exchange. To the best of our knowledge,
Sapio (2015) and Ardian et al (2015) are the only two literature related to our research
for the case of Italian electricity market. Their paper, however, focuses solely on
capturing the impact of renewable price to zonal price difference (congestion cost)
and congestion between two connecting zones. Both papers reveal the same insight in
the market splitting mechanism. A positive shock on renewable energy supply on the
exporting zones display increasing impact on the zonal price differences in comparison
to zonal price difference under no shocks. The same effect on the zonal price differences
also displayed whenever there is an increase in demand in the importing zones. Their
results explain the relations between connected regions. Our paper, on the other hand,
aims at studying the inter-relationship and mean spillover among Italian zonal prices.
Hence, we want to shed a light into the correlation between indirectly connected
zones. The result will provide us with greater insight into the pricing efficiency and
the impact of the transmission line on the interdependencies in the Italian electricity
market.

In order to achieve our objective, we collect six series of the Italian zonal prices
from its independent market operator (GME) and estimate multivariate GARCH ap-
proach under conditional mean. The estimation starts by computing the coefficients
of the univariate Seasonal ARMA and GARCH, which produces conditional mean and
variance respectively. Our model tries to address Higgs (2009) suggestion by adding
seasonality, both trend and stochastic. This is due to the fact that seasonality effects
from the weekly pattern, hourly pattern, and trader correction are important char-
acteristics that determine electricity price. In addition, the result is also expected to
provide us with insight on the mean spillovers. The second estimation is, then, calcu-
lated with the initial parameters from the univariate Seasonal ARMA-GARCH. In this
stage, we employ two multivariate GARCH model to capture the cross-correlation of
the zonal prices, CCC-MGARCH from Bollerslev (1990) and DCC-MGARCH from

20The proposed method, however, is not applied in this research since risk management are not the
main objective of this research. We aim to investigate the national market integration in the Italian
electricity market by evaluating interdependencies and dynamic correlation of the zonal prices. We
are able to analyse this effect by employing CCC and DCC MGARCH without coupling it with
copulae method.
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Engle (2002). The two models allow us to examine the cross-correlation between
regional markets and to investigates the efficiency of the market integration. It is
noteworthy that the method is also able to analyze the impact of the New subma-
rine installation between Sardinia and Italian peninsula in 2011 on the conditional
correlation. This method will initiate discussion on the impact of new transmission
installation on the conditional correlation in the academic since this is the only case
study that has an increase in transmission capacity in the sample period.

This research contributes to the academic literature in several ways .

• We initiate the discussion on interdependency and mean spillover in the Italian
electricity market.

• We would like to contribute to the limited literature on the cross-correlation of
electricity zonal prices

• We try to address seasonality, which is part of the concern in Higgs (2009), in
this paper by adding seasonal trend and process on the model

• We try to analyse the impact of new transmission installation on the dynamic
conditional correlation, which has not been done in any related literature.

Our estimations deliver an additional insight on the integration of the Italian
electricity market and the interdependencies among its regional market.The results
indicate that high capacity physical exchange provides strong interdependency among
the connected zonal markets. Indeed, all the zones in Italian peninsula have shown
strong dependencies among them as it will be shown in our CCC and DCC estima-
tions. The result is in line with Higgs (2009) where strong interdependency is shown
in the well-connected markets. Moreover, this argument is also validated by our find-
ing in the analysis of new transmission installation where stronger dependencies are
found after additional capacity is put into place despite a long transition period. In
addition, the low transmission line between Sicily and Italian peninsula is the main
cause of weak interdependencies between Sicily and the other regional markets. *
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Abstract

Our paper attempts to employ (S)ARMA-GARCH with exogenous variables for forecasting
hourly electricity price on the Italian day-ahead market. Italy provides an interesting test
ground for our research because of its high price level and volatilty compared to the other
major european markets. We have constructed dataset consist of electricity price, demand,
and gas price between 2010 and 2014. Our results have provided us with several main finding:
(1) seasonal time series process increases the forecasting performance on the electricity price,
(2) Seasonal ARMA-GARCH mode is, overall, the best model since it records the second best
forecasting accuracy and displays good goodness-of-fit in comparison to the other models, (3)
models with exogenous variables show better forecasting performance compared to models
without exogenous variable in both periods, in-sample and out-of-sample, (4) our analysis
shows that a stacked model performs much better compared to the global model (5) both
gas price and demand have shown to have a positive and significant impact on the Italian
wholesale electricity prices, (6) and, from our research, it can be implied that univariate
models have better forecasting performance in comparison to panel models.
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2.1 Introduction

Deregulation of electricity market has displayed many changes in the economy and has
influenced researchers to initiate studies in this field. Before the liberalization of the market,
the price of electricity in most countries is fixed by the government according to the future fuel
price and tax. However, there was always a margin whenever the global market price of fuel
changes. In addition, vertical integration dictates that one company control all the supply
chain of electricity, from production to distribution. As a consequence, this commodity was
not very competitive and had an inefficient economy. Today, the electricity market price is
determined by the actual supply and demand which reflect the scarcity and the surplus of
electricity on each period of delivery. This liberalization also reflects the actual fuel price
of producing each MWh of electricity. Moreover, due to the unbundling of the state-owned
company that controls all the sectors, the new mechanism opens new investments, increase
efficiency, and improve competitions. As a result, new producers and distributors are allowed
to enter the market and to compete for the rights in delivering/consuming electricity on the
spot market (day-ahead market).

The issue of the deregulated market arises as the volatility of the wholesale price increases
because of the new market based mechanism in price determination. Deviation in actual
demands, fuel price, and supply curve create shocks in the market equilibrium. Price can go
down to zero AC/Mwh or even negative in some cases (in Germany for example) because of
the surplus in supply. However, it can also increase to more than 100 AC/Mwh in an instant.
This volatility phenomenon is mainly due to the fact that electricity cannot be stored, which
makes them reluctant to price jump. With more volatility, market participants are impacted
greatly as they face the financial risk in buying/selling electricity. On the other hand, policy
makers are also obligated to constantly analyze the electricity spot price with the aim to
constantly examine the fairness in the trading. As a consequence, both market participant
and policy makers need to have reliable forecast of electricity price in order to obtain insight
on the future prices.

Various models and approaches have been proposed to forecast electricity prices in the
day-ahead market. Recent major state-of-the-art review by Weron (2014) has classified the
forecasting techniques into five main classes: multi-agent, fundamental, reduced form, sta-
tistical and computational intelligence. Multi-agent models are engineering techniques that
simulate the interaction of participants in the market using rich data of the bids in the
electricity market. The ability to simulate market interaction means that it can predict elec-
tricity price only from supply curve and market concentration without any prior knowledge
of the historical price. They are flexible tools to analyze strategic behavior and to explore
insights on the market. Examples of this technique in electricity price modeling can be seen
in Gao et al. (2008), Guerci et al. (2008), and Chatzidimitriou et al.(2012). However, the
models are not suitable for a precise electricity prediction since they are focused on explor-
ing qualitative analysis. The next class is fundamental or structural model that is generally
aimed at revealing the economic relationship in electricity market rather than forecasting.
The models are used to reflect and present the mechanism on the market. Nevertheless, they
also can be used for predicting electricity prices. Vahviläinen and Pyykkönen (2005) build
a parameter-rich parameter models using weather data that explains the price formation of
Nordic market. Coulon and Howison (2009) and Carmona et al. (2013) are few examples of
previous literature that construct stochastic processes of the main factors (demand, weather,
etc) for predicting electricity. The main problem with this model is the data availability.
The data availability of fundamental prices generally has a low frequency (daily, weekly or
monthly). Therefore, there is an additional challenge for constructing higher frequency price
models. In addition, stochastic process of the fundamental drivers generally follow a specific
assumption thus making the simulated prices is sensitive to this limitation. Reduced form
is a class model inspired from finance. The models are utilized for simulating electricity
price based on its main features and characteristics such as price dynamics, price correla-
tions, and marginal distribution. As a result, the model is commonly used for derivative
pricing and risk analysis. The main techniques in this class are jump-diffusions and Markov
regime-switching that simulates price spikes and different price regimes, respectively, in the
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electricity market. Despite its strength in risk management, both Weron and Misiorek (2008),
who use jump-diffusions, and Misiorek et al. (2006), who apply Markov regime switching
model, have reported poor performances of the models for forecasting the next day’s hourly
prices. These results are in line with researchers by Dacco and Satchell (1999), Bessec and
Bouabdallah (2005), and Heydari and Siddiqui (2010). The statistical class uses models of
lagged variables and exogenous factors for predicting future electricity price. The models
attract the interest of many researchers since it can be interpreted in terms of technical
as well economical, thus encouraging both economist and engineer to explore researches in
this direction. The models circled around autoregressive, moving average and generalized
autoregressive conditional heteroskedasticity with their combinations and evolution. A few
example of the electricity price forecasting using this method can be found in Cuaresma et al
(2004), Contreras et al. (2003), Knittel and Roberts (2005) and Garcia et al.(2005). Finally,
computational intelligence-class uses artificial intelligence to simulate the complex system
of an electriciy market. This feature provides this class with unique capability to capture
linear and non-linearity relations in the electricity prices. Academic works in electricity price
forecasting have been done with three main methods, ANN1(Gonzalez, et al., 2005), Fuzzy
(Hong and Hsiao, 2002), and SVM2(Zhao, et al., 2008).

Based on Weron (2014) main classes, our paper focuses on developing model under
statistical-class. In particular, we attempt to employ (S)ARMA-GARCH3 with exogenous
variables for forecasting electricity price on the day-ahead market. There have been many
researches related to this method in electricity price forecast literature. In ARMA-type liter-
ature, Cuaresma et al. (2004) compare different linear forecasting techniques for predicting
the Leipzig electricity price. They compare autoregressive models, autoregressive-moving
average models, and unobserved component models with an aim to obtain the best model.
Contreras et al (2003). proposes large parameter Seasonal ARMA model for forecasting
electricity price in three different countries, Spain, California, and Austalia. The models
are proven to have reasonable errors relative to each market thus indicating an adequate
model for price prediction. In ARMA-GARCH-type literature, Bowden and Payne (2008)
estimates three different models, ARIMA, ARIMA-EGARCH, and ARIMA-EGARCH-M for
predicting the hourly price of the five hubs of the Midwest Independent System Operator
(MISO) in the USA. The paper concludes that ARIMA-EGARCH-M model outperforms the
other models based on their sample period. The research is then extended by Liu and Shi
(2013) who work on different Garch variation on their ARMA-Garch approach for MISO hub.
This study compares ten different GARCH models to model residual with the same equation
of ARMA. Five different models are calibrated, then evaluated based on the accuracy and
goodness of fit. The results show that ARMA-SGARCH-M model is the most robust model.
As for the discussion on adding the exogenous variable to ARMA model (widely known as
ARMAX), Nogales et al. (2002) initiate the literature by attempting to predict Californian
and Spanish electricity prices using ARIMAX model with the load as the explanatory vari-
able. The result shows superiority in forecasting performance in comparison to ARIMA.
Knittel and Roberts (2005) use temperature, squared temperature and cubed temperature
as the exogenous variables of their model for predicting Californian electricity prices. The
temperature is reported to be significant before Californian electricity crisis in 2000, but it
has been shown to be non-significant during the crisis. Weron and Misiorek (2008) compare
the forecasting performance of 12 different models using Californian price data with its load
as the exogenous variable and Nordic prices data with its air temperature as its explanatory
variable. Kristiansen (2012) extends their paper by adding Nordic demand and Danish wind
power in their model for predicting Nordic spot price.

Italy, as one of the mature electricity market in Europe, provides an interesting test
ground for our research. In terms of price level, Italy has the highest average wholesale
price compared to other EU market between 2010 and 2014 (see figure 2.1). In 2012, Italy’s
electricity price reaches its peak and records 44.28 AC/Mwh on the price difference between

1Artificial Neural Network
2Support Vector Machine
3Seasonal or non-seasonal Autoregressive and moving average process coupled with generalized

autoregressive conditional heteroskedasticity
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Italy and Nordpool spot. The price gap is still relatively big even if it is compared to second
highest price (PowerNext), reaching 22.33 AC/Mwh on the price difference between the two
markets. On the other hand, the introduction of the renewable energy increases the volatility
of the wholesale price (see for instance Clo et al., 2015 ). Consequently, the price can easily
increase/decrease during the day thus making Italy an interesting common ground to test
forecast models. Moreover, there is uncertainties in the Italian electricity price that comes
from the changes in demand and gas prices. Finally, models to forecast Italian electricity
market are quite limited in the literature. Hence, our paper is aimed to provide additional
alternatives to statistical models and to expand our discussion in electricity price forecasting
for this particular market.
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Figure 2.1: Historical price data of major electricity markets in europe

Our paper focuses only on developing the best model for hourly forecasting using a
statistical class because of its advantage in accurate prediction and ability to explain the
role of the determinants in electricity price. In addition, it was also chosen because it has the
advantage of estimation without requiring high data input (such as fundamental model or
multi agent) and having results that can be easily interpreted in an economic sense. To the
best of our knowledge, four alternative techniques under statistical class have been used in
the Italian electricity market.4 Bosco et al (2007) propose different propositions of Periodic
Autoregressive (AR) model to capture the mean reversion and volatility process in daily
electricity price. The study compares five periodic AR model with different order and residual
models (e.g using Garch or assumed to be homoscedastic). The results show that the periodic
AR-Garch has the best forecasting performance compared to alternative techniques. Petrella
and Sapio (2010) estimate two different baseline models for daily electricity prices, ARMAX
and ARMAX-EGARCH. The paper concludes that temperature, weekly trend, natural gas
price, and conditional volatility are significant regressors for price formation. The paper is,
then, extended by analyzing structural changes in Italian electricity market between 2004
and 2008. Serinaldi (2011) utilized GAMLSS (Generalized Additive Models for Location,

4It is noteworthy that there are other techniques that have been tested in the Italian electricity
market. However, they are classified under different classes (for instance Bompard et al. (2008));
Guerci et al.(2008).
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Scale, and Shape) in order to represent the price as a realization of the explanatory variables
(e.g historical electricity price, load, and temperatures). The model is successfully used
to forecast one day of day-ahead prices in hourly frequency in two power exchanges, CalPX
(California) and IPEX(Italy), and explain the exogenous variables that drive the price. After
comparison of several different model propositions (such as AR and AR-GARCH), the study
concludes that GAMLSS can be used as an alternative model to forecast electricity price.
Gianfreda and Grossi (2012) used ARFIMAX-Garch (Autoregressive Fractionally integrated
moving average and general autoregressive conditional heteroskedasticity) to capture the
long memory process and volatility in the Italian zonal prices. The model forecast the
electricity price accounting for technologies, market concentration, congestions and traded
quantities. The paper is aimed to examine the accuracy improvement from adding these
exogenous variables. By comparing the model with and without exogenous variables, the
paper confirms the increase of accuracy after adding the exogenous variables.

We have constructed dataset consist of electricity price, demand, and gas price collected
from GME and ICE between 2010 and 2014. The price data is then clustered according to
its segmented period in order to capture linearity of the exogenous variable and the dynamic
of hourly prices. 5In other words, we estimate regressions of twenty-four univariate model
that is able predict the price of all hour in the next day. This is due to the structure of
the day-ahead market in which prices of all hours of delivery are determined at the same
time. Therefore, the information is updated on daily basis. This framework is supported
and suggested by previous literatures (for example, Bordignon et al. ,2013; Cuaresma et
al. , 2004; Weron and Misiorek, 2005). Using this dataset, we compare various possible
configuration of non-seasonal and seasonal ARMA-GARCH models with fundamental price
driver as their exogenous variable. We aim to seek the best performing model, in terms of
forecast accuracy and goodness-of-fit between them, and to compare forecast performance
of seasonal and non-seasonal ARMA-GARCH model. In addition, we attempt to evaluate
alternative models in order to justify exogenous variables inside our model and our stacked
framework. The results also allow us to experiment with different 24 SARMA-GARCH setups
for error minimization in the prediction. The estimated coefficients from our best performing
model can be used to analyze the role of gas price and demand for electricity. Finally, we
also estimate multivariate models, VAR and SUR, in order to challenge its performance with
our univariate models.

Our paper provides contributions to the academic and business world in many means.
Firstly, we add alternative models for hourly Italian electricity price forecast, which is lim-
ited in the academic literature. Secondly, theses alternative models can be used by market
participants or traders for gaining an edge in their sales and trading. Thirdly, we attempt
to examine the impact of the seasonal stochastic process on the forecasting performance and
goodness-of-fit, which has not yet exploited in the previous literature. Fourthly, we con-
struct a combination of 24 SARMA-GARCH setups for forecasting electricity price on the
next day. Up to our knowledge, this is the first paper that starts the discussion on the uni-
variate SARMA-GARCH combination for electricity price forecasting. Previous literatures
generally focus on combining various technique (see for instance Bordignon et al., 2013).
Fifthly, integrating exogenous variable in our model enables us to quantify the effect of the
fundamental driver on the hourly price thus enlarging our view in the Italian electricity
market. Finally, we analyze the forecasting ability of multivariate model and evaluate the
difference, in terms of prediction capability, between multivariate framework and univariate
framework.

In the next section, we are going to present a brief description of the Italian electricity
market including its structure and production mix. The section is, then, followed by a sta-
tistical report on our sample dataset. Section 4 describe our empirical method as well as the
analysis on its results. Finally, the fifth section will conclude our studies with recommenda-
tions for future research extension.

5This is also known as stacked model or stacked framework.
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2.2 Empirical framework and analysis

2.2.1 Univariate framework

In this paper, we are going to explore and examine six univariate models to forecast hourly
price of the day-ahead market. Following Lucia and Schwartz (2000), a general formula
of electricity price Ph(t), for h = 1, 2, ...24,on the next day (t), consists of deterministic
components Gh(t) and stochastic components Fh(t).

Ph(t) = Gh(t) + Fh(t) (2.1)

The deterministic component Gh(t) are formed by:

• Seasonal dummies (Sh(t))
As the previous subsection suggest, seasonality is part of the concern in the estima-
tion. This is due to the fact that the assumption of our stochastic model requires
a stationary series. Hence, de-trending the series from seasonal effect is obligatory
to gain stationarity. In addition, it is also useful to avoid spurious regression for our
exogenous variables in the model. Based on our finding from ADF test and KPSS test,
we model the seasonal pattern in the series with yearly, monthly, and daily dummies.

• Price driver (Xh(t))
The price drivers are exogenous variables that form the electricity price. In this paper,
two main drivers of electricity paper are analyzed, demand and fuel cost.6 Therefore,
they are formulated as follow,

Xh(t) = α1
h(t) ∗ gash(t) + α2

h(t) ∗ demandh(t)

Where gash(t), and demandh(t) are gas price and total electricity demand at our h
respectively.

Then, we are going to estimate six different univariate model in the stochastic component
Fh(t) under Seasonal (non-seasonal) ARMA process and GARCH residuals. The general
model of this process is shown in the equation below.

ΦP (Bs)φp(B)Fh(t) = ΘQ(Bs)θq(B)ωh(t) (2.2)

where,
Fh(t) = Ph(t)−Gh(t)

Then, B is a backshift operator, and ωh(t) is the residual value at day t and hour h. The
term p , q , P ,Q , and S are integers. The term S in the model represent the seasonal
length. The term p and P are orders of autoregressive process in the model for non-seasonal
and seasonal, respectively, with the following form

φp(B) = 1− φ1B − φ2B
2 − ...− φpB

p (2.3)

ΦP (Bs) = 1− Φ1B
s − Φ2B

2s − ...− ΦPB
Ps (2.4)

Then, the terms q and Q are the order of moving average process in the model for non-
seasonal and seasonal, respectively, that is calculated with a general equaiton below.

θq(Bp) = 1− θ1B − θ2B2 − ...− θqBq (2.5)

ΘQ(Bs) = 1−Θ1B
s −Θ2B

2s − ...−ΘQB
Qs (2.6)

From the ACF and PACF in the figure 2.4 we suggest several models as follows,

6It is important to be noted that we have attempted to integrate weather as the exogenous
variable. However, dataset of weather under the same frequency is not available for our research. In
addition, we find difficulties for aggregating the weather to become unbiased in our research as the
data are not collected in the same frequency and in the same period. Then, the impact of weather
data to the price would be a subjet to the location as each zone has different renewable mix. Hence,
using data in current state would provide additional questions instead of answers.
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Figure 2.2: ACF and PACF of PUN at hour 24
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Figure 2.3: ACF and PACF of PUN at hour 24
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Figure 2.4: ACF and PACF of PUN at hour 24

• Model 1 (M1)
ARMA(1, 1)−GARCH(1, 1)

Fh(t) = φFh(t− 1) + θωh(t− 1) + ωh(t)

• Model 2 (M2)
ARMA(1, 1)x(0, 1)7 −GARCH(1, 1)
In this model, we introduce a seasonal stochastic models in our ARMA model as shown
in the notation with (1, 1)x(0, 1)7 . In this case, we have a seasonal moving average
of the first order with 7 as the lagged seasonality, (0, 1)7, in addition to the ARMA
model (1, 1). Therefore, the regression equation of this ARMA setup can be written
as follow,

Fh(t) = φFh(t− 1) + θωh(t− 1) + Θωh(t− 7) + θΘωh(t− 8) + ωh(t)

• Model 3 (M3)
ARMA(1, 1)x(1, 1)7−GARCH(1, 1) In m3, we introduce two seasonal stochastic mod-
els in our ARMA model, ARMA(1, 1)x(1, 1)7. Hence, we have a seasonal autoregrees-
sion and a seasonal moving average of the first order with 7 as the lagged seasonality
(1, 1)7 in addition to the ARMA model (1, 1).. We can write the regression equation
of this model as follow,

Fh(t) = φFh(t− 1) + ΦFh(t− 7) + φΦFh(t− 8) + θωh(t− 1)

+Θωh(t− 7) + θΘωh(t− 8) + ωh(t)

In addition to the suggested models, we also explore other alternative models in order to
validate the introduction of an exogenous variable, the seasonal process, and our stacked
time series approach. Moreover, we aims at comparing our model with the similar model
from Gianfreda and Grossi (2012). The alternatives models are:

• Model 4 (M4)
In order to confirm the improvement in forecasting performance from adding exogenous
variable, we are going to change the model as follow.

Ph(t) = Sh(t) + Fh(t)
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Fh(t) = φFh(t− 1) + ΦFh(t− 7) + φΦFh(t− 8) + θωh(t− 1)

+Θωh(t− 7) + θΘωh(t− 8) + ωh(t)

• Model 5 (M5)
In this model, we are going to test the simplest model that is generally used in fore-
casting commodity, AR(1).

Ph(t) = Sh(t) + Fh(t)

Fh(t) = φFh(t− 1) + ωh(t)

• Model 6 (M6)
We follow Gianfreda and Grossi (2012) calibration, ARMA(1, 7) − GARCH(1, 1),
which is proposed for modeling daily electricity price in Italy. It is noteworthy that
we have adapted the model for our research by following their ARMA calibration for
fitting the series. Hence, demand and fuel cost are still used as exogenous variables
instead of congestion, technology, volume and market power. In addition, fractional
integration is not applied in this model since we did not find any empirical evidence
for long memory in our series.

Ph(t) = Gh(t) + Fh(t)

Fh(t) = φFh(t− 1) + θ1ωh(t− 1) + +θ2ωh(t− 2)

+θ3ωh(t− 3) + θ4ωh(t− 4) + θ5ωh(t− 5)

+θ6ωh(t− 6) + θ7ωh(t− 7) + ωh(t)

• Global model
A global model is a non-stacked time series model for forecasting hourly electricity
price. In other words, the electricity price series are treated as an hourly frequency.
This is the exact opposite of our model. This model has advantages in terms of sim-
plicity and rapidity of the estimation since there is less parameter involved. However,
careless empirical set up can violate the fact that day-ahead market is not a continu-
ous market where the price is updated in every period (t). In order to avoid modeling
the price based on unknown observation within the day, restricted Seasonal ARMA
-GARCH(1,1) model is proposed. Hence, the price at hour t can be calculated below.

P (t) = G(t) + F (t)

Fh(t) = φFh(t− 24) + ΦFh(t− 168) + φΦFh(t− 169)

+θωh(t− 24) + Θωh(t− 168)

+θΘωh(t− 169) + ωh(t)

The error term ωh(t) is assumed to have zero mean and normal distribution in this
process. However, high-frequency series generally exhibits heteroscedasticity. Therefore,
the error term is estimated using generalized autoregressive conditional heteroskedasticity
(GARCH), a well-known method proposed by Bollersev (1986) that allows us to model
future variances. This additional method has been used to forecast electricity price forecast
by many reaserchers (Knittel and Roberts, 2005; Diongue et al., 2009; Bowden and Payne,
2008).

ωh(t) = σh(t)W (t) (2.7)

Fh(t) = ˆFh(t) + σh(t)W (t)

σ2
h(t) = γh

0 + βhσ
2
(t−1) + γh

1ω
2
t
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2.2.2 Evaluation Method

Our data is separated into two sections, in-sample and out-of-sample. The in-sample period
spans from 2010 to 2013 wheras 2014 is used as the out-ouf-sample period. In the in-
sample, goodness-of-fit of each model is estimated and measured through Schwarz Criterion
(Schwartz, 1978), also known as BIC (Bayesian Information Criterion), according to the
equation below

BIC = log(σ2) +
klogn

n
, (2.8)

where n is a sample size and k is the number of parameters. Then, in both sections, in-sample
and out-of-sample, several parameters are calculated in order to evaluate the forecasting
performances.7The parameters are :

• Mean Absolute Error (MAE)
Classical error parameter based on the absolute average of absolute values.

MAE =
1

n

i=t+n∑
i=t+1

|P̂i − Pi|

with n is in-sample or out-of-sample size.

• Expected shortfall (ES)
This measure is used to evaluate the performance based on the risk analysis. In
this case, it is defined as the average error of predicted value exceeding a specified
quantile of the forecasting error distribution. This research uses 97.5 % as the quantile
reference.

• Maximum value of residual (Max)
The maximum value of the residual is also used in the analysis in order to measure
the model’s ability to capture the spikes in the price series.

2.2.3 Univariate Model evaluation

The summary of goodness-of-fit parameters and forecast accuracy of all models can be seen
in table 2.1 below. Our first finding indicates that additional seasonal process provides
a better model in terms of forecasting accuracy. By comparing the performance of non-
seasonal ARMA-GARCH model (M1) to seasonal ARMA-GARCH model (M2 and M3),
we can observe that seasonal time series processes display better forecasting performance
compared to non-seasonal. If we look at the goodness-of-fit, one can conclude that M1 is a
better model since it has the lowest BIC (8411.38) compared to seasonal models (9026.0761
and 9009.630). This is due to the fact that BIC depends on the number of the parameters
in the model. Hence, M2 and M3 are penalized because of the additional parameters from
the seasonal processes. In terms of the forecasting performance, however, M1 has a high
mean absolute error for the in-sample reaching 6.041 euro/MWh. This is higher compared
to the best performer, M3, that register MAE of 5.904 AC/MWh. In the same period, the
different in the accuracy level can also be seen in the expected shortfall and maximum
value where M1 registers lower forecasting performance, 22.67 ACand 201.87AC/MWh /MWh
respectively. On the other hand, M2 records higher accuracy, 22.508AC/MWh and 201.567
AC/MWh in the same parameter. For the case of out-of-sample, non-seasonal ARMA process
(M1) also displays lower accuracy as shown in its mean absolute error, 4.366 compared to
4.318 recorded by M3. However, the expected shortfall and maximum value display better
performance compared to M2 and M3. Nevertheless, overall, our conclusion still stands as
M2 and M3 exhibit better performance compared to M1.

It is interesting to look at the forecasting accuracy of M6, which can be considered as
a non-seasonal ARMA-GARCH process. The results indicates M6 as a better model in
comparison to seasonal time series process which is a contradictory on the previous finding.

7It is noteworthy that we use one day rolling forecast in the out-of-sample periods
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Univariate M1 M2 M3 M4 M5 M6 Global

BIC 8411.308 9026.07613 9009.6305 9114.05904 9115.19 9024.63121 9548.34
In-Sample
MAE 6.04165541 5.9610422 5.90434926 6.13872633 6.36503663 5.86596805 6.218552
ES 22.6781573 22.5082363 22.2619261 23.8859568 24.5942959 22.1071705 22.4192292
Max 201.875935 201.56793 202.924872 203.340559 217.453152 202.618647 211.93
Out-of-sample
MAE 4.36694571 4.39541931 4.31847927 4.83265895 4.96075787 4.26382613 6.2279
ES 14.6743948 15.280684 15.1421976 17.9743974 19.2025372 14.8914718 26.7054683
Maximum 55.1969623 57.1704275 56.5069455 58.0499622 59.1797427 54.3834864 92.92
DM 6.10(***) 3.11 (***) - 15.17(***) 20.56(***) 4.62(***) 4.143(***)

* p-value < 10 % (DM test > 1.65 )
** p-value < 5 % (DM test > 1.96 )
*** p-value <1 % (DM test > 2.58 )

Table 2.1: Result summary

Indeed, our estimations suggest that M6 has out-performed M2 and M3 on both in-sample
and out-of-sample data with an exception in the in-sample data where M2 display the lowest
maximum error value (201.56 AC/MWh). The difference in the forecasting accuracy, however,
is not very high in comparison to M3 (the best performer from the seasonal time series
process). For example, in terms of MAE, it has 0.039 AC/MWh and 0.055 AC/MWh error
difference in the in-sample and out-of-sample respectively. This slight difference is due to
the fact that M6 uses moving average process up to seven order which considers linear
relation with lagged variable at t − 7. However, it creates a drawback in the model as it
requires more parameter, which overfit the data. As a consequence, M3 has better goodness-
of-fit with lower BIC (9009.6305) in comparison to M6 (9024.631). This is because more
parameter will become an overfit to the data. Seasonal ARMA-GARCH, M3, captures the
weekly seasonal adjustment but neglects the effect of price change within a week that is
captured in M6. However, the electricity price deviation is less likely to be caused by the
price shock within the week ( t − 2 to t − 6). The price changes are highly depends on
the seasonality. Indeed, market participants often adjust their bids in the market based
on the previous data and previous week. They rarely make an adjustment based on price
shock within the week. Therefore, we can conclude that seasonal ARMA-GARCH (M2 and
M3) is the most appropriate models since they avoid overfitting the data, reflects better the
characteristic of the market and has consistently good forecasting accuracy. M3, however,
is the top performer in terms forecasting accuracy between the two models. Hence, we can
conlude that M3 is the most robust model for forecasting hourly electricity price.

Our results also validate Gianfreda and Grossi’s (2012) finding as models with exogenous
variable (M1, M2,M3, and M6) clearly display superior performance compared to the models
without exogenous variable (M4 and M5). In terms of BIC, models without exogenous
variable register higher BIC with values bigger than 9114. This is far from our best model,
M3, that reaches 9009.63. In terms of MAE, M4 and M5 have lower accuracy compared to
the model with the explanatory variables in both period, in-sample period 6.138 and 6.365)
and out-of-sample (4.832 and 4.960). The same conclusion is also shown on ES and Max as
the forecast experiment show the highest ES and MAX compared to the other model.

Table 2.1 also reveals the forecast comparison between a stacked model (24 univariate
models) and a global model (1 univariate model) for forecasting hourly electricity prices.
The global model shows the worst performance in almost all parameters. Its goodness-of-fit
displays the highest value compared to other models accounting to 9548.24. This finding
suggests that the model is not the most appropriate method for predicting hourly electricity
price. In terms of forecasting accuracy, the MAE of both in-sample and out-of-sample have
passed 6 AC/MWh, which is low in comparison to the other models. Although the expected
shortfall in in-sample period is not the worst, the out-of-sample forecast displays a very poor
performance. The same finding is also shown in the Maximum error value. The results reach
the same conclusion as Cuaresma et al. (2004) where stacked model out perform global
model in Leipzig Power Exchange. The main reason is because the stacked models are able
to capture the price dynamics in each period. One can also argue that this is due to the
structure of the day-ahead market in which prices of all hours of delivery are determined
at the same time. Although the global model is clearly a much simpler model in terms of
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estimation and calibration, the coefficients are only able to capture limited information since
we have the same coefficient for all periods. As a consequence, shocks in a specific delivery
period/hour are able to cause bias in the estimation and forecast in other periods.

In order to have a robust result, we employ Diebold-Mariano test for evaluating the
equality of the predictive accuracy (Diebold and Mariano (1995)). The results determine
whether two models provide the same forecasting accuracy if the loss differential has zero
expectation. In this research, we use Model 3 as a benchmark to compare with the other
models since it is shown as the most robust model. If the comparative model displays
high absolute DM test, we may reject the hypothesis that both models have an equal level of
accuracy. In this case, the different mean absolute error would determine the best model since
they pose a different level of accuracy. On the other hand, if we accept the null hypothesis,
the result indicates that both models possess the same forecasting performance and there
would be no difference in using both models. As shown in the Table 2.1, our results, and
analysis still hold as the DM test shows high absolute value in all comparative model. The
p-value shows that M3 has a different level of accuracy in comparison to the other models.
M2 has the closest DM statistic value to the critical values (2.58) since M2 is similar to M3
as they both use seasonal stochastic process and GARCH. However, the statistic result still
falls outside the range in order to reject the null hypothesis of no difference. On the other
hand, if we look at M5, DM statistic display a very high value. This high statistic value
is probably due to the utilization of exogenous variable and seasonal process that are not
employed in M5.

2.2.4 Main fundamental drive

Our exogenous variables from our model reveal the role of gas price and demand in the
formulation of electricity prices. We are going to use M3 estimations for the analysis of
coefficient since it records the best forecasting performance coupled with relatively low BIC.
The estimation result is shown in table 2.2 below. From the coefficient of demand, we can
conclude that demand has a positive and significant role in PUN price formation. This is
shown in all period of delivery with hour-21 and hour-22 as exceptions. Hence, positive
shock in demand will increase PUN price. The result reflects the price mechanism built by
the intersection of supply and demand curve. The increase of demand will shift the demand
curve thus forming a higher PUN price. The level of impact on the PUN price, however, is
different for each period. The table shows that hour 9 is the period that is highly sensitive
to demand with 0.0016. Therefore, a positive shock in demand for 1 MWh would increase a
PUN price for 0.0016 AC/Mwh. Hour 16, 12 and 8 are behind with lower impact, 0.000611952,
0.000581841, and 0.000573967 respectively. Finally, demand in Hour 20 displays the lowest
significant impact compared to the other period.

On the other hand, the natural gas price is also proven to be essential in driving the
PUN price as they are shown to be positive and significant in most of the cases. This is
mainly due to the dominance of natural gas in the Italian production mix thus making fossil-
bassed power plant as the marginal technology in most period. As a consequence, the PUN
is sensitive to the natural gas price. The value of coefficient reflects the impact level of the
gas price in each period. Gas price shows the highest impact on PUN price at Hour-9 with
0.26AC/Mwh of PUN price change. Hour-6 and hour-2 follow from behind with only 0.106107
AC/MWh and 0.103959 AC/Mwh of PUN price increase. On the contrary, hour-13 presents to
be the period with the smallest impact of gas price reaching only 0.0242673 AC/Mwh in price
changes.
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Gas Demand

Hour1 0.101397 *** 0.000381 ***
Hour2 0.103959 *** 0.000433 ***
Hour3 0.103647 *** 0.000446 ***
Hour4 0.095696 *** 0.000336 ***
Hour5 0.101927 *** 0.000348 ***
Hour6 0.106107 *** 0.000368 ***
Hour7 0.078273 *** 0.000483 ***
Hour8 0.086923 *** 0.000574 ***
Hour9 0.293802 *** 0.001681 ***
Hour10 0.051238 *** 0.000557 ***
Hour11 0.022519 * 0.000473 ***
Hour12 0.027587 ** 0.000582 ***
Hour13 0.024267 *** 0.000403 ***
Hour14 0.019381 0.000393 ***
Hour15 0.02592 ** 0.000499 ***
Hour16 0.038734 *** 0.000612 ***
Hour17 0.033622 *** 0.000368 ***
Hour18 0.065944 *** 0.000517 ***
Hour19 0.065715 *** 0.000419 ***
Hour20 0.060826 *** 0.0002 ***
Hour21 0.008157 * -1.4E-06
Hour22 0.008865 * 6.18E-05 *
Hour23 0.028633 *** 0.00023 ***
Hour24 0.043279 *** 0.000284 ***

*** P< 1% ** P< 5% * P< 10%

Table 2.2: Coefficient estimation of fundamental driver
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2.2.5 Multivariate Framework

In order to improve robustness of our studies, we attempt to compare the forecasting ability
of univariate models with multivariate models. The complexity of electricity market has
encouraged researchers to develop multivariate models for gaining extra information that
cannot be tackled by univariate models. Multivariate framework offers exploration in the
relation between the variables and its dependence structure. On the other hand, stacked
univariate models have limitations in terms of capturing dependency between hourly price.
Regardless of their advantages, the question regarding the difference in forecasting ability
still remains.

Focusing on three parameters that reflect their forecasting capability, MAE, ES and
MAX, we compare several models under univariate and multivariate framework with an
equal test ground. The models are:

• Univariate Models
As the base of comparison, we propose the best univariate model based on our previous
discussion, M3. However, it is also interesting to experiment with the capability of
a combination model and to examine the difference in its forecasting ability with
multivariate framework.

Hour Model Description

1 M6 ARMA(1, 7) −GARCH(1, 1)
2 M6 ARMA(1, 7) −GARCH(1, 1)
3 M4 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1) without exogenous variable
4 M4 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1) without exogenous variable
5 M6 ARMA(1, 7) −GARCH(1, 1)
6 M4 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1) without exogenous variable
7 M6 ARMA(1, 7) −GARCH(1, 1)
8 M3 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1)
9 M3 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1)
10 M6 ARMA(1, 7) −GARCH(1, 1)
11 M6 ARMA(1, 7) −GARCH(1, 1)
12 M6 ARMA(1, 7) −GARCH(1, 1)
13 M3 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1)
14 M3 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1)
15 M3 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1)
16 M3 ARMA(1, 1)x(1, 1)7 −GARCH(1, 1)
17 M6 ARMA(1, 7) −GARCH(1, 1)
18 M6 ARMA(1, 7) −GARCH(1, 1)
19 M6 ARMA(1, 7) −GARCH(1, 1)
20 M6 ARMA(1, 7) −GARCH(1, 1)
21 M6 ARMA(1, 7) −GARCH(1, 1)
22 M6 ARMA(1, 7) −GARCH(1, 1)
23 M6 ARMA(1, 7) −GARCH(1, 1)
24 M6 ARMA(1, 7) −GARCH(1, 1)

Table 2.3: Combination of ARMA model based on the best forecasting performance

• Vector Autoregression
Vector autoregression is one of well-known econometric model based on multivariate
framework. The method generates autoregressive process for more than one variables.
Hence, the method allows us to study causality and interdependencies between the
variables. With this positive feature, this method gains attention from researchers in
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the electricity market. In literature, Raviv et al. (2013) has attempted to employ this
method in the Nordic electricity market. The paper uses VAR with dimension reduc-
tion techniques, shrinkage and forecast combinations for forecasting Nordic electricity
prices. In this paper, we use a general equation for all h, as follow,

Ph(t) = Gh(t) + Fh(t)

The stochastic component, Fh(t) can be modeled as a VAR process with a general
notation matrix below.

F1(t)
F2(t)

...
F24(t)

 =


c1
c2
...
c24

 +


A1,1 A1,2 . . . A1,24

A2,1 A2,2 . . . A2,24

...
... . . .

...
A24,1 A24,2 . . . A24,24



F1(t− 1)
F2(t− 1)

...
F24(t− 1)

 +


ω1(t)
ω2(t)

...
ω24(t)


• Seemingly unrelated regression

Another alternative of multivariate framework is Seemingly unrelated regression or
a constrained Vector autoregression. Just like our model, Huismann et al. (2007)
model also use the same general equation proposed by Lucia and Schawarz (2002).
Therefore, for all h, the price is calculated from deterministic, Gh(t), and stochastic
variable, Fh(t).

Ph(t) = Gh(t) + Fh(t)

Then, Fh(t) is structured as a multivariate framework with the matrix below.
F1(t)
F2(t)

...
F24(t)

 =


A1,1F1(t− 1)
A2,1F2(t− 1)

...
A24,1F3(t− 1)

 +


ω1(t)
ω2(t)

...
ω3(t)


You may notice that in this model we are not considering mean spillover from the
other variables like in the VAR. Consequently, we are not able to quantify the exact
impact of a lagged variable to the others. However, with an estimation using seemingly
unrelated regressions (SUR) method, we can obtain cross-covariance matrix from the
residuals.8 The result will provide us with information regarding the interrelations
between prices in different delivery periods.

2.2.6 Empirical Result and analysis

The summary of the comparison between univariate and multivariate models can be seen on
the table 2.4 below. In the in-sample period, mean absolute error presents VAR as the top
performer reaching forecast accuracy of 5.786. The 24 combination of ARMA-GARCH model
has slightly lower accuracy with 5.860 AC/Mwh thus cementing it as the second choice of the
model in terms of accuracy. Huissman et al. (2007) model (SUR) has the worst accuracy
with 6.39AC/Mwh of MAE. The same pattern is also shown in the expected shortfall as VAR
comes as the top performer with 20.13 AC/MWh and combination model ranked as the second
rank with 22.05 AC/Mwh. Then, SUR is ranked the last with 22.78 of ES. As for the maximum
error value, however, VAR presents the highest value of maximum error (216.06) followed
by SUR with 212.93. On the other hand, combination model has the lowest maximum
value of error (202.61). In the out-of-sample period, we see, again, the same pattern as
in-sample in terms of MAE. VAR and Combination record 4.22AC/MWh and 4.26 AC/MWh
in mean absolute error, respectively, thus making VAR the best performer. Then, M3 and
SUR follow these models from behind with 4.31 AC/MWh and 4.66 AC/MWh of MAE. The

8We use Feasible Generalized Least Squares (FGLS) as the regression technique for handling het-
eroskedasticity and autocorrelation in SUR estimation.We refer to Baltagi(1995) and Greene(2003)
for details on SUR and FGLS.
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expected shortfall and maximum error value, however, show combination models as the best
performer reaching 14.93 and 54.38 respectively. As for VAR, they are estimated at 15.57
and 58.95 for ES and Maximum error value respectively. SUR shows the worst performance
in expected shortfall and the maximum error value. As for the DM statistic values , we may
observe that our result and analysis on the mean absolute error still holds since different
level of accuracy is shown from the diebold and mariano test. Combination models shows
the highest DM statisic value thus indicates its superiority in forecasting electricity price in
comparison to M3.

Multivariate VAR SUR M3 Combination

Mean 5.786 6.390 5.904 5.860
ES 20.135 22.788 22.261 22.052
Maximum 216.06 212.937 202.924 202.618

Mean 4.226 4.665 4.318 4.260
ES 15.578 16.036 15.142 14.936
Maximum 58.952 57.060 56.506 54.383
DM 2.97 (***) 4.08(***) - 6.42(***)

* p-value < 10 % (DM test > 1.65 )
** p-value < 5 % (DM test > 1.96 )
*** p-value <1 % (DM test > 2.58 )

Table 2.4: Multivariate framework forecasting summary

Let us look figure 2.5 and 2.6 that show MAE of in-sample and ou-of-sample period
respectively. The graph can provide us with a better comparison of univariate and multi-
variate models, in terms of accuracy, as we can observe the different performance for each
period. In the in-sample period, SUR clearly displays a poor performance in comparison to
the other models as they show high MAE for all periods of delivery. On the contrary, VAR
exhibits great performance in predicting price in most of the cases. The model displays a
superior performance particularly between hour 1 and hour 12. The performance beyond
hour 12, however, is lower in terms of accuracy compared to univariate models. The combi-
nation model exhibits a good model in terms of mean absolute error where it is consistently
ranked as second prior to period 13. Period 13 and beyond show this model as the best
performer, which is shown by its low MAE. M3, on the other hand, appears to have a com-
parable forecast accuracy with the combination model. As for the MAE in out-of-sample,
SUR presents a very poor accuracy in the first 7 periods of delivery. The model, however,
displays a superior performance between hour-18 and hour-20 as well as hour-22 and hour-23.
On the other hand, VAR has, again, shown to be the best model for predicting electricity
price in the morning periods (between hour 1 and hour 8). However, the model has higher
MAE in comparison with univariate models and SUR beyond period 9. The 24 combination
of ARMA-Garch model displays relatively good forecasting accuracy between hour-1 and
hour-8 as well as hour-22 and hour-23 since it follows closely the top performer from behind
in these periods. Outside these hours, the model displays the lowest error. Finally, M3 is
constantly behind combination model in most of the time.

To sum up our results, we may conclude that both univariate and multivariate framework
have their own merits. Therefore, the best models would depend on the objective of the
model. If we look into the most accurate model, Vector autoregression seems to be the most
appropriate model. This is due to the fact it exhibits the lowest MAE in comparison to
the other models both in-sample and out-of-sample. However, we need to be cautious as
the model provide poor accuracy in out-of-sample for the peak hours between hour-9 and
hour-15. In the peak period, univariate models display far better performance as the MAE
display superior results. On the other hand, if the objective is to have a forecasting model
with lower risk, univariate models have exhibited better results as shown in the expected

64



2.2. EMPIRICAL FRAMEWORK AND ANALYSIS

shortfall and maximum value of error. The combination model, in particular, has an out-
of-sample MAE that is slightly higher from VAR thus suggesting that this model has an
adequate prediction of electricity with lower risk.
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Figure 2.5: MAE of in-sample
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Figure 2.6: MAE of out-of-sample
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2.3 Conclusion

From our forecasting results, we can conclude several important findings:

• Seasonal process adds an improvement on the forecasting accuracy.
Our forecasting exercise has shown that seasonal ARMA process has a better MAE
in both in-sample and out-of-sample periods in comparison to non-seasonal ARMA
process thus indicating an increase in accuracy. This is due to the fact that market
participants make a weekly adjustment on their bidding prices. Therefore, the coeffi-
cient of the seasonal process can be interpreted as the speed of reversion from seasonal
deviation.

• Seasonal ARMA-GARCH model (M3) is, in overall, the best model.
This particular model is chosen as the best model because of several reasons. Firstly,
the model records the second best forecasting accuracy, 5.904 in the in-sample and
4.318 in the out-of-sample. Secondly, it displays low BIC in comparison to the other
models. Thirdly, it captures the physical features of electricity prices which include
traders adjustment, mean reversion and seasonality.

• Exogenous variable improve the forecasting accuracy
Our study also validates Gianfreada and Grosi (2012) finding since models with exoge-
nous variables display clear superiority in terms of forecasting accuracy than models
without the exogenous variable. This is true in both periods, in-sample and out-of-
sample.

• Stacked model is better than a global model
From the forecasting results, we confirm the superiority of a stacked model in com-
parison to the global model. This is in line with Cuaresma et al. (2005) finding in the
Leipzig electricity market. In addition, one can also argue that this is due to the struc-
ture of the day-ahead market in which prices of all hours of delivery are determined
at the same time.

• Gas price and demand provide an increasing impact on PUN price
The estimations of our model have shown that gas price and demand have positive
and significant coefficients in almost all periods with several exceptions. This is due
to the fact they both shift supply and demand curve in positive price direction which,
subsequently, increase the PUN price.

• Both univariate and multivariate model has their own merit
Our empirical test suggest that VAR, a multivariate model, is the best model in terms
of accuracty wheras univariate models has shown to be superior in terms of risk.
Therefore, utilization of the model should depends on the modeling or forecasting
objective.

We believe that further studies on the Italian electricity market should explore price
modelling with the weather as its exogenous variable. Our study is limited by the data
availability of the weather since frequency is the main issue. Historical weather data is
generally limited to the daily data which cannot explain the hourly dynamic on electricity
price. In addition, the data is generally presented for each city thus additional work is
needed to make a weighted adjustment for every aggregated zonal market. Other challenges
will occur in terms of the lagged value of the weather. The shock in temperature does not
produce a sudden impact in demand since generally people would adjust their heater/air
conditioner after a certain period of time. The same idea is also applied to hydro supply
curve, a sudden increase in rainfall is generally not equal to a sudden increase in supply
because traders adjust hydro outputs according to the water level and the electricity price.
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École Polytechnique
Silvia Concettini
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Abstract

This article aims at contributing to the scant literature on the effect of increasing renewable
power production on congestion frequency and cost.The economic literature has emphasized
the likely reductions of wholesale prices entailed by increasing renewable supply. Beside the
effects on prices, renewable supply has raised some concerns regarding network functioning
and congestion management. This is due to the fact that increasing renewable output may
put an additional stress on the infrastructure, amplifying transportation needs and multiply-
ing congestion occurrence, when production and consumption sites are far from each other.
The impact of renewable on network congestion may be explicitly investigated in national
electricity markets organized as two or more inter-connected sub-markets (or bidding zones)
where transmission rights are assigned through implicit auctions. The analysis of the links
between renewables and congestion results to be extremely relevant in the path toward the
implementation of the European Electricity Target Model which envisages the creation of
bidding zones (defined or not by national borders) within a single EU market. We have es-
timated then two econometric models performed on Italian case study: a multinomial logit
model, whose dependent variable has three discrete values capturing both the occurrence
of congestion and its direction, and a two stage least square model (2SLS) with segmented
regression which seeks to quantify the effects of renewable production on congestion costs.
Our analysis suggests that the effect of a larger local wind and solar supply is to decrease
the probability of suffering congestion in entry and to increase the probability of causing
a congestion in exit compared to no congestion case. The estimations on congestion cost
reveal that, due to the merit order effect, local larger renewable tend to push the congestion
cost towards negative value as it decreases the marginal cost for balancing the system.
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3.1 Introduction and literature review

The interest in alternative energy has sparked in Europe as the climate change problem
emerged. The 2009 Climate and Energy package has motivated European governments to
stimulate renewable energy penetration through supporting schemes in order to meet the
target of a 20% share of EU energy consumption produced from renewable sources by 2020.
According to the more recent figures from Eurostat, the share of renewables in gross final
energy consumption has reached 14.95% in the EU-28 in 2013. The economic literature
has emphasized the likely reductions of wholesale prices entailed by increasing renewable
supply and originated from the displacement of higher variable cost production in the merit
order ranking. This phenomenon is referred to as “merit order effect”. A larger renewable
production has also determined an increase in wholesale price variance as a consequence
of technological dependency on exogenous variables. Evidence of these effects have been
empirically analyzed, for instance, in Australia (Cutler et al., 2011), Austria (Wurzburg et
al., 2013), Denmark (Jónsson et al., 2010), Germany (Wurzburg et al., 2013; Ketterer, 2014),
Israel (Milstein and Tishler, 2011), Ireland (O’Mahoney and Denny, 2011), Italy (Clo et al.,
2015), Spain (Gelabert et al., 2011).

Besides the effects on prices, renewable supply has raised some concerns regarding net-
work functioning and congestion management. Some geographical locations seem particu-
larly well suited for the installation of new capacity due to the abundance of natural resources
(e.g. the North for wind and the South for solar in both Germany and Spain). Neverthe-
less, the existing networks may not be adequately developed to guarantee a constant and
smooth flowing of more efficient RES production1 toward consumption sites. When pro-
duction and consumption sites do not coincide and are, on the contrary, very far from each
other, increasing renewable output may put an additional stress on the infrastructure, am-
plifying transportation needs and multiplying congestion occurrence. The opposite happens
if renewable supply relieves deficits of production in historical importing regions. Hence,
depending on the location of supply and demand, a larger renewable production may have
a positive or negative effect on congestion occurrence and, as a consequence, on congestion
cost.

The impact of renewable on network congestion may be explicitly investigated in na-
tional electricity markets organized as two or more inter-connected sub-markets (or bidding
zones) where transmission rights are assigned through implicit auctions.2 A sub-market or
bidding zone is defined as the largest geographical area within which market participants
can offer and buy energy in the intra-day, day-ahead, and longer time frame markets; its
boundaries are generally settled based on physical transmission limits in order to achieve an
efficient use of the infrastructure. In the absence of transmission constraints, prices are equal
across zones; when inter-zonal constraints are binding, zonal market prices diverge. With an
implicit auctioning for transmission rights, transmission capacity is included in the auctions
of electricity. In other words, the resulting electricity prices per area reflect both the cost
of energy in each internal bidding area and the cost of congestion. Implicit auctions ensure
that power flows from the surplus areas (low price areas) towards the deficit areas (high price
areas) since it uses nodal pricing system (see Harvey and Hogan (2000)). The analysis of the
links between renewables and congestion results to be extremely relevant in the path toward
the implementation of the European Electricity Target Model which envisages the creation
of bidding zones (defined or not by national borders) within a single EU market. Because
of heterogeneous generation mix, geographical conditions, RES support schemes and na-
tional network configurations across EU Members, the European Target Model may face on
a larger scale the same challenges of those Countries with bidding areas having experienced
a significant renewable penetration.

This article aims at contributing to the scant literature on the effect of increasing renew-
able power production on congestion frequency and cost. Førsund et al. (2008) started the
discussion on this link by studying the impact of wind power penetration in Norway. Their

1In terms of marginal cost.
2The same analysis can be applied to market coupling.
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model has concluded the increase of network congestion between northern and southern Nor-
way where there is a significant different in the hydro resource. In the another continent,
Woo et al. (2011) pioneer econometric analysis on this particular relation using the case
of ERCOT power market with an ordered logit model and a log-OLS model. The analysis
stems from the observation that wind generation is mostly concentrated in the West zone,
which is scarcely populated, whereas generation capacity in Houston zone falls short of its
zonal load. The authors show that rising wind supply, nuclear generation, load from non-
West zones and gas price increases the likelihood and the size of strictly positive paired-price
differences between the West and the other zones.3 In Germany, Schröeder et al. (2013) and
Kuntz (2013) have provided technical and economic analysis of future congestion problems
as a consequence of high integration of wind energy. Both studies conclude an increase in
the overall cost for stabilizing saturated transmission caused by the renewable if there is
no strategic network expansion in Germany. Figuiredo et al. (2015) assess variables that
determine the occurrence of congestion using logit and non-parametric Keynesian function
for the case of Iberian spot electricity price (Spain). Similar to previous studies, the paper
concludes that large availability of baseline technology coupled with high renewable has been
proven to increase the market splitting.

In order to assess the impact of increasing renewable output on congestion frequency
and cost, we use Italian electricity market as a case study. For its particular features,
Italy provides an interesting case study. Firstly, the Italian Power Exchange is composed of
six regional sub-markets, which aggregate in macro-zones all administrative regions. Since
each of the zones has its own specific generation mix, they provide heterogeneity in our
samples. Secondly, the ambitious support policies for the development of renewable power
sources have generated a significant amount of new investments in solar and wind power
plants. According to the latest available data,4 the supply from these power plants has
covered 15.89% of the electricity purchased in the day-ahead market in 2014. Solar and
wind production sold through the day-ahead market have registered an increase of 267.2%
from 2010 to 2014. Southern regions have shown the highest growth rate due to the favorable
weather conditions. This rapid growth is an essential characteristic for studying RES impact
on congestion. Thirdly, the inter-zonal transmission capacities are not equally distributed
in the Italian electricity system. In particular, transmission lines that connect the islands
to the Italian peninsula have limited capabilities. With high renewable penetration in some
regions and transmission limitations, Italy has the ideal conditions for a case study.

To empirically test the effect of renewables on congestion in Italy, we have built a unique
database collecting and matching data with hourly frequency for a five-year period (2010-
2014) from two sources: GME, the market operator, which publishes the hourly offers in
the day-ahead market together with equilibrium prices, quantities and inter-zonal transits;
REF-E, a consulting group, who has created a list of Italian power plants classified by
technology and geographical location. We have estimated then two econometric models
performed on five zonal pairings: a multinomial logit model, whose dependent variable has
three discrete values capturing both the occurrence of congestion and its direction, and a
two stage least square model (2SLS) with segmented regression which seeks to quantify the
effects of renewable production on implicit congestion costs.5 Up to our knowledge, Sapio
(2015) is the only author testing the impact of rising solar and wind generation on congestion
between Sicily and Southern Italy using regime-switching model on 2012-2013 hourly data.
The results provide more insight on the locational-dependent-effect of renewable on the
congestion. His estimation and analysis emphasize on the congestion-relieve impact from
Sicily’s renewable production. This is due to the fact that solar and wind production from
Sicily substitute the transmission capacity and reduce the import from the South. The
estimation also reveals that wind power shows a bigger impact on congestion compared to
the solar power that has less variation in the power production.

This article originally contributes to the literature in several ways. First, we enlarge

3A strictly positive paired-price difference occurs when the West price is lower than the price in
the other zones and vice-versa, meaning that the congestion is “coming from the West”.

4GME, Annual Report 2014.
5The description of this congestion costs will be explained in the following sections.
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the scope of the analysis by considering all Italian neighboring zones in order to verify the
consistency of the empirical models beyond the specificities of each pair. Second, we employ
a multinomial logit model in order to separately capture the effect of increasing renewable
production on the probability of both directional congestions (to and from) compared to
the benchmark situation of no congestion. Third, we consider zonal figures on production
and demand instead of aggregated figures to isolate the contribution of each zone to the
occurrence of congestion. Fourth, we estimate the impact of renewable output not only on
congestion frequency but also on congestion cost, something that has never be done before
in the literature, taking into account hydroelectric endogeneity issues. Finally, we apply
segmented regressions instead of simple OLS in order to capture the impact of renewable on
the congestion cost in two congestion directions, congestion to and congestion from, which
are modeled as regimes (segments).

Our analysis suggests that the effect of a larger local wind and solar supply is to decrease
the probability of suffering congestion in entry and to increase the probability of causing a
congestion in exit compared to no congestion case. Increasing hydroelectric production
has a similar effect. A rise in local demand, on the contrary, increases the probability of
congestion in the entry (due to larger import) and decreases the probability of congestion
in the exit. These results hold for both importing and exporting regions, but importing
regions are much less likely to cause congestion in the exit, therefore the installation of new
RES capacity in these zones may have a positive effect in terms of flow balance between
regions. The estimations on congestion cost reveal that, due to the merit order effect, local
larger renewable tend to push the congestion cost towards negative value as it decreases
the marginal cost for balancing the system. A much bigger shock of renewable quantity
consequently could reduce saturated line and merge the zone that is, zero congestion costs
or could widen the gap of negative congestion costs because of excessive supply in the exit.
This is true for all importing zone but it is the opposite for the exporting zones. Therefore,
the increase of renewable should be promoted in the importing zones, but the overall growth
should be controlled in order to avoid congestion toward opposite direction.

The remainder of the paper is organized as follows. Next section briefly describes Italian
electricity market and the rules for congestion management. The third section provides an
overview of the day-ahead market transactions in terms of the generation mix, interzonal
transits and price differences between neighboring zones. The fourth section is dedicated to
the econometric analysis. The last section concludes our study.

3.2 Empirical strategy

The descriptive statistics of the series used in the multinomial logit model are reported in
Tables B.1 and B.2 in Appendix B. The descriptive statistics for the series used in the 3
stage least square analysis are shown in Tables ?? and ?? in Appendix C. Demand and price
series are directly collected from GME database. Supply series have been constructed by
aggregating bid data to build the hourly market supply curves resulting from the market
splitting algorithm. GME bids have then been matched with REF’s database containing a
mapping of power plants from bidding units to technology. The empirical models have been
estimated at five zonal pairs using observations from the 2010-2014 period. The five zonal
pairs are:

1. CNOR-NORD

2. CNOR-CSUD

3. SARD-CSUD

4. CSUD-SUD

5. SICI-SUD

The first zone of the pair is generally an importing region.
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3.2.1 Multinomial logit model

For each zonal pair (ZONE1-ZONE2) the dependent variable in the multinomial logit model,
y, may assume three values:6

• y = −1 when the zonal price in ZONE1 is lower than the zonal price in ZONE2: in
this case we say that there is “congestion from” ZONE1 (which is exporting power)
or a “negative price difference”;

• y = 0 when the zonal prices in ZONE1 and ZONE2 are equal: in this case, we say
that there is “no congestion” (the flows between the two zones respect the transmission
constraint) and hence no price difference;

• y = 1 when the zonal price in ZONE1 exceeds the zonal price in ZONE2: in this case
we say that there is “congestion to” ZONE1 (which is importing power) or a “positive
price difference”.

On average, the zonal prices of the neighboring zones paired for the five-year period differ
about 27% of the time; however, this figure hides a large heterogeneity (see Table B.2). If
the link CNOR-NORD has been uncongested for 92% of the time, the zones SICI and SUD
have registered the same price only 18% of the total hours. Quite surprisingly, congestion
coming from CNOR have been more frequent that those coming from NORD, indicating a
change in flows direction between these two zones. In CNOR-CSUD, CNOR confirms to be
an importer with congestion to this region accounting for 7% of the hours, while most of the
time the two zone have experienced no congestion (91% of the time). The lines SARD-CSUD
and CSUD-SUD have followed similar patterns with congestion to the first zone occurring
16% and 15% of the time, respectively. The frequencies of no congestion have been also
similar (83% and 85% of the time respectively). Is is worthy to note that while congestion
from SARD to SUD has occurred, although quite rarely (1% of the hours), CSUD has never
exported to SUD. Finally flows to SICI have congested the line SICI-SUD 75% of the time
while flows from SICI have done so for 7% of the hours.

Fo each zonal pair we are going to estimate the following two equations 7:

log
Pr(y = −1)

Pr(y = 0)
= α1 +

4∑
i=1

ηiYi +

4∑
r=1

βrYr + ε (3.1a)

log
Pr(y = 1)

Pr(y = 0)
= α2 +

4∑
i=1

ηiYi +
4∑

r=1

βrYr + ε (3.1b)

where:

• α1,2 are the constants

• Yi is the matrix of yearly dummies

• Yr is the matrix of regressors and includes:

– Hydro generation in the pairing zones (ZONE Hydro)

– Wind generation in the pairing zones (ZONE Wind)

– Photovoltaic generation in the pairing zones (ZONE PV tot)

– Demand in the pairing zones (ZONE D)

6CSUD-SUD pair is characterized by the occurrence of only two outcomes; in this case, we
estimate a logit model with a binary dependent variable.

7It is important to be noted that we have experimented with several different dummies and
determinant. However, the econometric estimation is not satisfactory. Yearly trend is utilized to
capture the increasing renewable production in our dataset period.
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Multinomial logit results

The results of the estimations in terms of log-odds and marginal effects are reported in Tables
3.1 and 3.2 respectively.8 Standard errors are reported below the coefficients. In general
we may observe (see Table 3.1) that the coefficients associated to renewable generation
in ZONE1, when significant, have positive signs indicating that a rise in the production is
associated with an increase in the relative log odds of a congestion coming from ZONE1 (y =
−1) with respect to no congestion due to improved export possibilities. The coefficients of
RES production in ZONE2 are on the contrary negative, indicating that a rise in production
in these zones decreases the likelihood of congestion from ZONE1 since less import are
needed. An opposite reasoning works for the demand: when the demand increases in ZONE1
there is less export, therefore, less probability of congestion from ZONE1. The reverse is true
when the demand rises in ZONE2 since more import is needed and hence the probability of
congestion from ZONE1 increases.

The results for congestion to ZONE1 (y = 1) are generally symmetric, with the coeffi-
cients displaying opposite signs with respect to the previous case. When ZONE1 is importing
power, a larger renewable generation in ZONE1 reduces importing needs and thus the rela-
tive log odds of a congestion to ZONE1 with respect to no congestion declines. A larger RES
production in ZONE2, on the contrary, increases the likelihood of congestion to ZONE1 due
to the improved export possibilities. An opposite pattern is again followed by the demand:
when the demand is larger in ZONE1 there is more need to import, therefore, a higher prob-
ability of congestion to ZONE1. Finally, when the demand rises in ZONE2 less production
can be exported and as a consequence the probability of causing a congestion to ZONE1
decreases.

It is worthy to analyze more closely the marginal effects of each regressor on the proba-
bility of directional congestion (see Table 3.2). Marginal effects indicate how the probability
of an outcome increases when the regressor increases by a megawatt hour, all the other
regressors kept at their average. The results for congestion from ZONE1 (y = −1) may be
summarized as follow.9

In ZONE1:

• Rising wind production increases the probability of congestion in all pairs: a Mwh
increase in wind generation in ZONE1 raises the probability of congestion by 0.024%
in CNOR-NORD pair, by 0.014% in CNOR-CSUD pair and by 0.013% in SICI-SUD
pair; this effect, although positive, is smaller in magnitude in SARD-CSUD pair;

• Increasing photovoltaic production has a positive impact on congestion in CNOR-
NORD and SICI-SUD pairs (the coefficient is not significant in CNOR-CSUD and
SARD-CSUD pairs): a Mwh increase in production rises the probability of congestion
by 0.0026% in CNOR and by 0.0111% in SICI;

• A rise in the hydroelectric production has a positive effect on congestion in all pairs
with the exception of SARD-CSUD (probably due to the scarce hydroelectric produc-
tion in SARD): producing an additional Mwh increases the probability of congestion
by 0.0022% in CNOR-NORD, by 0.0011% in CNOR-CSUD and by 0.0402% in SICI-
SUD;

• Overall an increase of 1 Mwh for each renewable source (wind, photovoltaic and hydro-
electric) in ZONE1 increases the probability of congestion from this zone by 0.0288%
in CNOR-NORD, by 0.0159% in CNOR-CSUD and by 0.064% in SICI-SUD;

• A rising demand in ZONE1 has exactly the opposite effect, i.e. it decreases the likeli-
hood of congestion from ZONE1, in all pairs with the exception of SARD-CSUD where
the coefficient is not significant: a Mwh increase in demand in ZONE1 decreases the
likelihood of congestion by 0.0018% in CNOR-NORD, by 0.0008% in CNOR-CSUD,
by 0.011% in SICI-SUD.

8The details of the estimation for each zonal pair are shown in Tables from B.3 to B.7 in the
Appendix.

9Note that in CSUD-SUD pair the congestion never comes from CSUD.
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Log-odds

Variable CNOR NORD CNOR CSUD SARD CSUD CSUD SUD SICI SUD

Zone 1

y=-1

Hydro 0.00269*** 0.00221*** 0.00309 0.0109***
0.000191 0.00046 0.00268 0.0019

Wind 0.0286*** 0.0287*** 0.00863*** 0.00198***
0.00213 0.00511 0.0004 0.00013

PV 0.00313*** -0.00042 -0.00379 0.000965**
0.000166 0.0012 0.00283 0.00048

Demand -0.00223*** -0.00148*** -0.00016 -0.00169***
0.000115 0.00016 0.0004 0.00018

y=1

Hydro -0.00143*** 0.000395* 0.00215*** 0.00143*** -0.0118***
0.000226 0.00021 0.00057 0.00015 0.00131

Wind -0.00615* -0.00225 -0.00999*** 0.00114*** -0.00570***
0.00328 0.00204 0.00027 0.00019 9.3E-05

PV -0.00622*** -0.00016 -0.00308*** 0.000270** -0.00553***
0.000473 0.00025 0.00109 0.00013 0.00028

Demand 0.00295*** 0.00160*** 0.00411*** 0.00128*** 0.00487***
0.000108 8.71E-05 0.00012 3.32E-05 0.00012

Variable CNOR NORD CNOR CSUD SARD CSUD CSUD SUD SICI SUD

Zone 2

y=-1

Hydro -0.000427*** -0.00199*** -0.00819*** -0.00132***
2.67E-05 0.00054 0.00058 0.00019

Wind 0.0286*** -0.00479*** -0.00100** -0.000754***
0.00476 0.00048 0.0004 8.6E-05

PV 0.000148*** -0.00186* 0.00296*** -0.000643***
5.34E-05 0.00099 0.00066 0.00017

Demand 0.000408*** 0.00144*** -0.000180** 0.000722***
1.82E-05 0.00012 7.36E-05 0.00013

y=1

Hydro 0.000508*** 0.000799*** 0.000441*** 0.000601*** 0.000793***
2.89E-05 0.00024 0.00015 0.00012 0.00012

Wind -0.0139** 0.00355*** -0.0001 0.000706*** 0.000447***
0.00541 0.00011 0.00017 8.88E-05 5.1E-05

PV 0.000929*** 0.000900*** -0.000909*** 0.00126*** 0.00106***
0.000117 0.00021 0.00024 7.93E-05 9.7E-05

Demand -0.000463*** -0.00150*** -0.000126*** -0.00109*** -0.000397***
2.04E-05 6.52E-05 2.11E-05 6.55E-05 7.9E-05

*** p<0.01 ** p<0.05 * p<0.1

Table 3.1: Multinomial logit estimations (Log-odds), 2010-2014
y = −1 when congestion is from ZONE1
y = 1 when congestion is to ZONE1

75



CHAPTER 3. INTERMITTENT RENEWABLE GENERATION AND
NETWORK CONGESTION: AN EMPIRICAL ANALYSIS OF ITALIAN POWER
MARKET

Marginal effects

Variable CNOR NORD CNOR CSUD SARD CSUD CSUD SUD SICI SUD

Zone 1

y=-1

Hydro 2.27E-05*** 1.13E-05*** 1.50E-06 0.000402***
2.14-E06 2.43E-06 1.40E-06 0.0000368

Wind 0.000240*** 0.000148*** 4.66E-06*** 0.000133***
2.43E-05 2.73E-05 9.63E-07 0.00000453

PV 2.68E-05*** -2.10E-06 -1.82E-06 0.000111***
2.39E-06 6.18E-06 1.48E-06 0.00000954

Demand -1.89E-05*** -8.02E-06*** -2.04E-07 -0.000114***
1.53E-06 1.01E-06 2.13E-07 0.00000468

y=1

Hydro -1.48E-05*** 1.83E-05* 0.000121*** 0.000103*** -0.00146***
2.38E-06 9.82E-06 3.18E-05 1.05E-05 0.000136

Wind -6.50E-05* -0.000115 -0.000563*** 8.23E-05*** -0.000652***
3.34E-05 9.77E-05 1.39E-05 1.36E-05 0.0000105

PV -6.36E-05*** -7.29E-06 -0.000173*** 1.94E-05** -0.000616***
4.53E-06 1.20E-05 6.10E-05 9.20E-06 0.0000298

Demand 3.02E-05*** 7.68E-05*** 0.000231*** 9.20E-05*** 0.000557***
1.74E-06 4.00E-06 6.80E-06 2.43E-06 0.0000125

Variable CNOR NORD CNOR CSUD SARD CSUD CSUD SUD SICI SUD

Zone 2

y=-1

Hydro -3.62E-06*** -1.05E-05*** -4.16E-06*** -3.81E-05***
3.18E-07 2.84E-06 8.90E-07 0.00000364

Wind 0.000241*** -2.56E-05*** -5.04E-07** -2.17E-05***
4.30E-05 2.52E-06 2.31E-07 0.00000171

PV 1.16E-06*** -9.80E-06* 1.52E-06*** -3.00E-05***
4.47E-07 5.11E-06 4.48E-07 0.00000332

Demand 3.45E-06*** 7.78E-06*** -8.72E-08** 2.03E-05***
2.70E-07 7.98E-07 4.01E-08 0.00000243

y=1

Hydro 5.20E-06*** 3.87E-05*** 2.51E-05*** 4.33E-05*** 0.000108***
3.51E-07 1.16E-05 8.48E-06 8.85E-06 0.000012

Wind -0.000144*** 0.000171*** -5.80E-06 5.09E-05*** 6.11E-05***
5.55E-05 5.18E-06 9.31E-06 6.42E-06 0.00000534

PV 9.44E-06*** 4.36E-05*** -5.13E-05*** 9.09E-05*** 0.000126***
1.18E-06 1.01E-05 1.36E-05 5.79E-06 0.0000102

Demand -4.75E-06*** -7.21E-05*** -7.12E-06*** -7.88E-05*** -5.52E-05***
3.00E-07 2.93E-06 1.17E-06 4.79E-06 0.00000817

*** p<0.01 ** p<0.05 * p<0.1

Table 3.2: Multinomial logit estimations (Marginal effects), 2010-2014
y = −1 when congestion is from ZONE1
y = 1 when congestion is to ZONE1
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In ZONE2:

• Rising wind production decreases the probability of congestion in all pairs except in
CNOR-NORD (where wind production in NORD seems to increase congestion): this
effect is more evident in CNOR-CSUD and SICI-SUD where an additional MWh of
wind supply in ZONE2 decrease the likelihood of congestion by 0.0025% and 0.0021%
respectively; the coefficient is significant and has the expected sing also in SARD-
CSUD pair but its lower value seems to indicate a softer effect on congestion of a
larger wind supply in CSUD;

• Rising solar production in ZONE2 decreases the probability of congestion in CNOR-
CSUD and in SICI-SUD pairs by 0.0009% and 0.003% respectively for an MWh in-
crease (a larger photovoltaic production in ZONE2 seems instead to increase the con-
gestion in CNOR-NORD and SARD-CSUD);

• Rising hydro production in ZONE2 decreases the probability of congestion in all pairs:
an additional MWh of electricity decreases the likelihood of congestion by 0.0003%
in CNOR-NORD, by 0.001% in CNOR-CSUD, by 0.0004% in SARD-CSUD and by
0.0038% in SICI-SUD;

• In all pairs a larger demand in ZONE2 increases the probability of congestion; this
effect is larger in magnitude in SICI-SUD pair, followed by CNOR-CSUD, CNOR-
NORD, and SARD-CSUD.

We expect to observe results of opposite sign when studying the congestion to ZONE1
(y = 1).

In ZONE1:

• Rising wind production decreases the probability of congestion in all pairs with the
exception of CNOR-CSUD (where the coefficient is not significant) and CSUD-SUD
(where the coefficient is positive): an MWh rise in wind supply decreases the likeli-
hood of congestion by 0.0065% in CNOR-NORD, by 0.0563% in SARD-CSUD and by
0.0652% in SICI-SUD;

• A larger photovoltaic production decreases the probability of congestion in CNOR-
NORD, SARD-CSUD and SICI-SUD pairs (the coefficient is again not significant
in CNOR-CSUD and positive in CSUD-SUD): an additional MWh from this source
decreases the probability of congestion by 0.0063% in CNOR-NORD, by 0.0173% in
SARD-CSUD and by 0.0613% in SICI-SUD;

• Rising hydro production decreases the probability of congestion only in CNOR-NORD
and SICI-SUD pairs (in CNOR-CSUD the coefficient is not significant and it is positive
in SARD-CSUD and CSUD-SUD): if the supply of hydro increases by 1 MWh in CNOR
and SICI the probability of congestion would decrease by 0.0014% and by 0.0146%
respectively

• An MWh rise in the demand of ZONE1 increases the likelihood of congestion by
0.003% in CNOR-NORD, by 0.0076% in CNOR-CSUD, by 0.0231% in SARD-CSUD,
by 0.0092% in CSUD-SUD and by 0.0557% in SICI-SUD.

In ZONE2:

• Rising wind production increases congestion to ZONE1 in all pairs except in CNOR-
NORD (where wind production in NORD seems to decrease congestion) and in SARD-
CSUD (where the regressor is not significant): an MWh increase in wind produc-
tion increases the likelihood of congestion by 0.0171% in CNOR-CSUD, by 0.005% in
CSUD-SUD and by 0.0061% in SICI-SUD;

• Rising photovoltaic production increases congestion in all pairs with the exception
of SARD-CSUD (where the coefficient is negative): when the photovoltaic supply
increases by 1 MWh in the probability of congestion rises by 0.0009% in CNOR-NORD
and CSUD-SUD, by 0.0043% in CNOR-CSUD and by 0.0126% in SICI-SUD;

77



CHAPTER 3. INTERMITTENT RENEWABLE GENERATION AND
NETWORK CONGESTION: AN EMPIRICAL ANALYSIS OF ITALIAN POWER
MARKET

• A larger hydroelectric production increases the probability of congestion in all pairs:
an MWh increase in hydroelectric production increases the likelihood of congestion by
0.0005% in CNOR-NORD, by 0.0038% in CNOR-CSUD, by 0.0025% in SARD-CSUD,
by 0.0043% in CSUD-SUD and by 0.0108% in SICI-SUD;

• A larger demand in ZONE2 decreases the probability of congestion in all pairs: by
0.00047% in CNOR-NORD, by 0.0072% in CNOR-CSUD, by 0.00071% in SARD-
CSUD, by 0.0078% in CSUD-SUD and by 0.0055% in SICI-SUD for an MWh increase.

Thanks to the symmetry, the results can be easily summarized (Table 3.3). Increas-
ing renewable production in a zone increases the likelihood of causing a congestion to the
neighboring zone, due to larger export possibilities. At the same time, a larger local supply
reduces import needs thus decreasing the likelihood of suffering congestion in the entry. In-
creasing local demand has an opposite effect: it lowers export possibilities, thus decreasing
the probability of causing congestion in the exit, and it raises import needs, therefore in-
creasing the probability of suffering congestion in the entry. It is worthy to note that these
results hold for both importing and exporting regions. However, the importing regions are
less likely to produce congestion in exit and more likely to suffer congestion in the entry.
Therefore, a larger RES production in these regions is expected to bring more balance in the
flows between regions, while a larger RES production in exporting zones may exacerbate the
problem of congestion.

Wind PV Hydro Demand

Congestion from ZONE1
ZONE1: ↑ ZONE1: ↑ ZONE1: ↑ ZONE1: ↓
ZONE2: ↓ ZONE2: ↓ ZONE2: ↓ ZONE2: ↑

Congestion to ZONE1
ZONE1: ↓ ZONE1: ↓ ZONE1: ↓ ZONE1: ↑
ZONE2: ↑ ZONE2: ↑ ZONE2: ↑ ZONE2: ↓

Table 3.3: Multinomial logit result summary
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3.2.2 2SLS with segmented regression

Having understood the impact of RES production and demand on the probability of conges-
tion, we extend our research by examining its impact on the sensitivity of the congestion cost.
This particular cost is implicitly paid by all IPEX participants (producers and consumer)
through GME. Since consumer buys electricity at the national price (PUN), PPUN , and
producers are remunerated by zonal prices, Pi, we may find a difference between purchase
value and sales value as follow.

∆ = PPUNQ−
n∑
i

PiQi

with
n∑
i

Qi = Q

Using this offset (∆), GME pays Terna the congestion cost for each transmission line (pair)
with the calculation below

Cost1−2 = (PZONE1 − PZONE2) ∗Q1−2

Where Cost1−2 is the congestion cost of a transmission line between Zone1 and Zone2,
PZONE1 is the zonal price of the importing zone, PZONE2 is the zonal price of the exporting
zone and Q1−2 is the quantity transferred from Zone1 and Zone2. In other words, each
market participant implicitly pays Terna’s service (implicit congestion cost) through GME
priced as zonal price difference

ZONE1 ZONE2 = PZONE1 − PZONE2 (3.2)

The general summary of implicit congestion cost (ICC), ZONE1 ZONE2 , can be seen
in table ?? under appendix C. The statistics of ICC appears to be non-normally distributed
based on the Jarque-Bera test. This is mainly due to the high frequency of zero values.
The means in SICI-SUD display the highest value with SARD-CSUD quite far behind.
Hence, both transmission lines can be considered as the two most expensive lines in terms
of congestion cost. This is due to frequent congestion and scarce efficient supply in the
importing zone is available for balancing the system. Transmission lines in CSUD-SUD,
CNOR-NORD and CNOR-CSUD are ranked third, fourth and fifth from the most expensive
transmission line, respectively. The preliminary results of our unit root test have indicated
that our observations are not stationary time series and require further treatment to avoid a
spurious regression (Granger and Newbold (1974)). In our treatment, we reach stationarity
process after detrending the data with its seasonality and trend, which are:

• Seasonality within a day (Hourly),

• Seasonality within a week (Daily),

• Seasonality within a year (Monthly),

• Yearly trend.

Unlike in Woo et al. (2011), in order to to capture the impact of renewable energy
supply in the Italian power exchange, we use 2SLS method instead of a simple OLS.10 In the
first stage of 2SLS, we attempt to attack endogeneity problems of hydro in order to avoid
bias in the estimation. Unlike renewable-energy supply, hydro production can be adjusted
depending on the weather and portfolio optimization since it can be stored. In run-of-river
hydro, a poundage is generally present for short term reserve whereas hydro with pumping

10In an attempt to capture the mechanism as a whole (one system) a 3SLS estimation was also
conducted. However, correlation covariance matrix shown from the third stage of 3SLS (SUR) esti-
mation does not indicate a correlation between the transmission lines. In addition, 2SLS estimation
displays better results in terms of coefficient and goodness of fit because we may add time series
process in the residual.
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technology is operated fully on the price arbitrage. Hence, their output cannot be considered
as fully exogenous variables. In this study, we use lagged hydro production as the instrument
variables for hydro production.11 We select t−1, t−24 and t−168 since the hydro production
has daily seasonality, weekly seasonality and depends on the production of the hour before.
Hence, our first-stage regression equation can be formulated as follows.

Ĥt = θ + η1Ht−1 + η2Ht−24 + η3Ht−168 ,

Where Ĥt is the fitted value of hydro production at time t and θ is a constant.
In the second stage of the regressions, we apply segmented regressions in order to cor-

rectly capture the phenomenon on the changes in ICC. This method is significantly different
compared to Sapio (2015) and Haldrup and Nielsen (2006) where regime switching model
is applied to capture different congestion regime. The regime switching model may capture
the impact of the exogenous variable on different regimes of prices (congested and non-
congested). Hence, it uses prices as dependent variable which cannot capture the impact of
the exogenous variable on congestion cost. Our segmented regression allows us to use conges-
tion cost as a dependent variable and quantify the linear relation on a different regime. This
method is also a better alternative to the reg-ARFIMA method proposed by Gianfreda and
Grossi (2009, 2012) where congestion and congestion cost are considered as the exogenous
variable. This is not true since congestion is an endogenous event that is caused by many
variables. In addition, this method allows us to estimate the impact of exogenous variables
on the different clusters of congestion direction (regime) which may explain the determinant
of the cost of transmission saturation. Therefore, for each zonal pair, we have three different
regression regimes as follow.

yt =


α0 +

∑3
i β

i
0Yi + zt yt > 0

0 yt = 0

α1 +
∑3

i β
i
1Yi + zt yt < 0

Where αi is a constant and X is a matrix of regressors that includes

• Renewable supply of the pairing zones, R ;

• Fitted hydro supply of the pairing zone, H ;

• Demand of the pairing zone, D.

The first segment (regime) estimate the impact of independent variables on the case of con-
gestion to Zone1 whereas the third segment (regime) capture the regression in the opposite
case (congestion from Zone1). The second segment models the zero values that occur be-
cause of no congestion in the transmission line. For the regression, the three regimes may
be generalized into one equation as follow.

yt = α+ di(yt)(

3∑
i

βi
1Yi) + zt (3.3)

Where α0 = α1 = α, di(.) is dummy variables of the regime as a function yt and zt is
the residual.

Statistics estimations on high-frequency data such as hourly electricity price require
extra treatment from researchers as heteroskedasticity and autocorrelation in the regression
could provide a bias in coefficient and error in residual estimation. Our test has shown
that volatility clustering occurs in the residual estimation of the second stage 2SLS. In
addition, as shown in our example of ACF and PACF plot (see figure 3.1), it is clear that
additional process needs to be added in our equation in order to treat autocorrelation. This
result clearly violates the assumption of independent error in OLS regression. In addition,
time series process of the residual reflects the error correction of the power trader in the
day-ahead market. Following Shumway and Stoffer (2011), we may model the residual as

11Due to lower frequency in weather data available to us, we could not use weather in our instru-
ment variables.
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Seasonal ARMA process (1, 1)x(1, 1)24.12Therefore, the regression equation of the residual
may be written as follow.

-1
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 0.5
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 0  20  40  60  80  100  120  140  160  180

lag
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Figure 3.1: ACF and PACF of CNOR− CSUD

zt = φzt−1 + Φzt−24 + φΦzt−25 + θωt−1 + Θωt−24 + θΘωt−25 + ωt

Where,

• φ, Φ, θ and Θ are coefficients of autoregressive (AR), moving average (MA), sesonal
autoregressive and seasonal moving average respectively.

• zt−kis the residual at lag k.

• ωt−k is the error at lag k

The error term, ωt, is estimated using generalized autoregressive conditional heteroskedas-
ticity (GARCH), a well-known method proposed by Bollersev (1986) that allows us to model
the variance as an autoregression process. The method is widely used in many electricity
price modeling literature (see for instance Knittel and Roberts (2005); Garcia et al.(2005);
Diongue et al. (2009)). Hence, the error term is formulated as follow,

ωt = σtWt

σ2
t = γ0 + βσ2

(t−1) + γ1ω
2
t

Where, σt is the variance at time t, Wt is a white noise, and γ0 is a constant.

2SLS Results

We follow the intuition from Woo et al.(2011) analysis of the Texas electricity market as
our basis in the expected value. In their paper, rising demand in non-west zones (less wind
resource) and high wind output from the west increases price difference. Hence, in the case of
congestion to Zone1 (y > 0), the results in importing zones are expected to display positive
values on the coefficients of demand whereas negative values on the renewable and hydro
production. Opposite signs are expected in the exporting zones for the respective variables.
Our hypotheses are proven in our estimation displayed in Table 3.4. The results can be
summarized as follow:

1) In importing zone (ZONE1):

• Increasing demand increases the congestion cost (positive in all pairs);

• Demand from the importing zones of SARD-CSUD and SICI-SUD have the highest
sensitivity as they increase the congestion cost for 0.0687 AC and 0.027 AC per MWh
increase of the value respectively;

12It is important to be noted that this model is used in order to capture trader adjustment in the
previous hour and day. It is also noteworthy that we have estimated several time-series model with
more parameter. However, increasing the parameters affects the goodness of fit on the model and
may overfit the regression.
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• Larger renewable production decreases the congestion cost towards zero (with an
exception in CSUD-SUD);

• Renewable production from Importing zones of SARD-CSUD and SICI-SUD have
the highest sensitivity as they decrease the congestion cost for 0.102 AC and 0.032
AC per MWh increase of the value respectively;

• Larger hydro production decreases the congestion cost towards zero (with exceptions
in CNOR-CSUD and SARD-CSUD);

• Hydro production from importing zones of SICI-SUD and CNOR-NORD have the
highest sensitivity as they decrease the congestion cost for 0.15 AC andd 0.013 AC
per MWh increase of the value respectively;

2) In exporting zone (ZONE2):

• Increasing demand decrease the congestion cost toward zero (with exceptions in
CSUD-SUD and CNOR-NORD);

• Demand from the importing zones of SICI-CSUD and CNOR-CSUD have the high-
est sensitivity as they decrease the congestion cost for 0.01 AC and 0.008AC per MWh
increase of the value respectively;

• Larger renewable production increases the congestion cost (with an exception in
CNOR-NORD);

• Renewable production from Importing zones of CNOR-CSUD and SICI-SUD have
the highest sensitivity as they increase the congestion cost for 0.011 AC and 0.007
AC per MWh increase of the value respectively;

• Larger hydro production increases the congestion cost (with exceptions in CNOR-
NORD and SARD-CSUD);

• Hydro production from importing zones of CSUD-SUD and SICI-SUD have the
highest sensitivity as they increase the congestion cost for 0.017 AC and 0.0031 AC
per MWh increase of the value respectively;

In comparison to Woo et al. (2011), an identical mechanism can be found in our estima-
tions. Lower demand or higher renewable supply in the importing zone impact the changes
of congestion cost towards zero. However, the opposite impacts on congestion cost may occur
if a larger production is recorded or a lower demand is displayed in the exporting zone. This
phenomenon is due to the merit order impact in the zonal price. High growth of renewable
energy supply in the importing zone shift the supply curve and reduce the zonal price. Con-
sequently, the congestion cost becomes closer to zero as the cost to balance the system is
reduced. This is in line with Sapio (2015) founding on the impact of renewable between Sicily
and South. Our finding confirms that the conclusion holds for all the pairs in Italy’s elec-
tricity system. Our econometric results also reveal that further growth of renewable energy
from importing zone may result in zero congestion costs or negative congestion costs. This is
due to the decrease of importing needs in the importing zone that negate the saturation on
the transmission line thus creating zero congestion cost. Then, a much bigger positive shock
of renewable from importing zone may create congestion to the opposite direction (towards
exporting zone). In this case, the congestion cost will be negative because the reduction of
zonal price caused by renewable supply. On the other hand, different behavior is shown in
the exporting zones. Positive changes or shock in renewable will result in excessive efficient
supply and creation of a new zonal market, importing zone. As a consequence, low-efficiency
units are called in the importing zone for balancing the system and the congestion cost (ICC)
increases.

In the case of congestion from Zone 1 (y < 0), we may expect the same sign. In this case,
rising renewable or lower demand in the importing zone becomes the source of congestion
as large efficient supply needs to be transferred to its neighbor. Our expectations are in line
with the 2SLS estimation since we observe that:

1) In importing zone (ZONE1):
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• Increasing demand increases the congestion cost towards zero (positive in all pairs);

• Demand from the importing zones of SICI-CSUD and SARD-CSUD have the highest
sensitivity as they increase the congestion cost for 0.075 AC and 0.068 AC per MWh
increase of the value respectively;

• Larger renewable production decreases the congestion cost towards negative (with
an exception in CNOR-SUD);

• Renewable production from Importing zones of SICI-SUD and SARD-CSUD have
the highest sensitivity as they decrease the congestion cost for 0.065 AC and 0.019
AC per MWh increase of the value respectively;

• Larger hydro production decreases the congestion cost towards negative (with an
exception in SICI-SUD);

• Hydro production from importing zones of CNOR-CSUD and CNOR-NORD have
the highest sensitivity as they decrease the congestion cost for 0.03 AC and 0.02 AC
per MWh increase of the value respectively;

2) In exporting zone (ZONE2):

• Increasing demand decrease the congestion cost toward negative (negative in all
pairs);

• Demand from the importing zones of SICI-SUD and CNOR-CSUD have the highest
sensitivity as they decrease the congestion cost for 0.028 AC and 0.01AC per MWh
increase of the value respectively;

• Larger renewable production increases the congestion cost towards zero (with an
exception in SARD-CSUD);

• Renewable production from importing zones of SICI-SUD and CNOR-NORD have
the highest sensitivity as they increase the congestion cost for 0.0029 AC and 0.00186
AC per MWh increase of the value respectively;

• Larger hydro production increases the congestion cost towards zero (with an excep-
tion in CNOR-CSUD);

• Hydro production from importing zones of SICI-SUD and SARD-CSUD have the
highest sensitivity as they increase the congestion cost for 0.018 AC and 0.0027 AC
per MWh increase of the value respectively.

Our results confirm that larger renewable supply in the importing zone reduces the
congestion cost further towards negative value. Rising renewable supply in the importing
zone decreases the congestion cost much further as the price equilibrium declines because
of the increase in efficient supply. The same impact on the congestion cost will be shown if
negative shock in demand occurs as it reduces the needs to import in this zone thus lowers the
zonal price. However, it is noteworthy that lower renewable supply or high demand from Zone
1 in this regime (congestion from ZONE1) may switch congestion cost into no-congestion
regime (y = 0) or congestion to ZONE1 regime (y > 0) since it reduces the congestion in
the exit but increase the needs to import. In the exporting zones, higher renewable supply
may also change the congestion direction (regime) as the coefficient present increasing effect
on the congestion cost. The merit order effect from the renewable supply in the exporting
zones decreases the cost to balance the system thus bringing the congestion cost closer to
zero or switching the congestion’s regime (y = 0 or y > 0). This is due to the fact that the
increase of renewable in the exporting zone can satisfy the local demand which reduces the
congestion from ZONE1 (congestion cost close to zero) or changes the congestion direction.
As for demand, the higher quantity from the exporting zones will stimulate scarcity in supply
which increases the congestion from ZONE1. Consequently, the congestion cost moves in the
direction of a negative value as low efficient units have to be called in the exporting zones
and increase the zonal price thus widening the zonal price difference.

We may sum up and generalize our finding as the table 3.5. Due to the merit order
effect, rising renewable or hydro supply decreases the price equilibrium and subsequently
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push the congestion cost towards negative value. This conclusion is applied for supply from
the importing zones (ZONE1), in both cases (congestion to ZONE1 and congestion from
ZONE1) or regimes. We may observe the decrease in congestion from our illustration in
figure 3.2 and 3.3.

P zone1

P zone2

ICC

P

Q Q

P

Zone 1 Zone 2

Figure 3.2: Market equilibrium without shock

P zone1’

P zone2

ICC

P

Q Q

P

Zone 1 Zone 2

Figure 3.3: Market equilibrium with positive shock on the renewable energy supply from ZONE1
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P zone1

P zone2’

ICC

P

Q Q

P

Zone 1 Zone 2

Figure 3.4: Market equilibrium with positive shock on the renewable energy supply from ZONE2

The introduction of renewable energy and hydro have shifted the supply function since
there is a bigger quantity of low-cost electricity in ZONE1. However, it is important to be
noted that continuous reduction of congestion cost from this regime (y > 0) will subsequently
merge the zone (congestion cost = 0) since the transmission line is less saturated from the
import/export. On the other hand, continuous reduction of congestion cost from the third
regime (y < 0) will widen the price difference as congestion cost becomes more negative.
As for the demand in the importing zone, their increse display the opposite impact as it
push congestion cost towards positive value (increasing congestion cost). On their respective
counter flow zones (ZONE2), opposite behaviors are observed for renewable and demand,
since the merit order effect shift price equilibrium of ZONE2. As illustrasted in figures 3.2
and 3.4, rising renewable and/or hydro will shift the congestion towards positive value as
their increase will widen the gap of the price difference in the first regime and will take it
closer to zero in the third regime. On the other hand, rising demand will shift the zonal price
in the direction of negative value. Since less efficient supply needs to be transferred and the
demand curve is shifted, the congestion cost decreases towards zero in the first regime and
increases the negative value in the third regime. Overall, from the point of view of Terna,
increase of renewable should be promoted in the importing zones as they tend to reduce the
congestion cost or create a less saturated line (ICC = 0). However, excessive growth of the
renewable from importing zone should be avoided since it may create a congestion to the
opposite direction.

D H R

Congestion to ZONE1 (y > 0)
ZONE1: ↑ ZONE1: ↓ ZONE1: ↓
ZONE2: ↓ ZONE2: ↑ ZONE2: ↑

Congestion from ZONE1 (y < 0)
ZONE1: ↑ ZONE1: ↓ ZONE1: ↓
ZONE2: ↓ ZONE2: ↑ ZONE2: ↑

Table 3.5: 2SLS result summary
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3.3 Conclusion

Our empirical analysis has shown that demand and renewable supply have different impacts
on the congestion occurrence and cost. The results of the multinomial logit model suggest
that the effect of a larger local renewable supply is to decrease the probability of suffering
congestion in entry and to increase the probability of causing a congestion in exit compared
to no congestion case. Increasing hydroelectric production has a similar effect. A rise in local
demand, on the contrary, increases the probability of congestion in the entry (due to larger
import) and decreases the probability of congestion in the exit. This result holds for both
importing and exporting regions. However, the importing regions are less likely to produce
congestion in the exit. Therefore, a larger RES production in these regions is expected to
bring more balance in the electricity flows between neighboring regions, while a larger RES
production in exporting zones may exacerbate the problem of congestion. On the other
hand, estimation on congestion cost indicates that rising renewable or hydro supply in the
importing zone reduces the congestion cost toward zero in the first regime (congestion to) and
widens the gap on the third regime (congestion from). The big shock of renewable or hydro
quantity could switch the regime from the first to a merged zone (congestion cost = 0) or a
third regime (congestion cost < 0) because of excessive supply in the exit of the importing
zone. This is due to the merit order effect that decreases the zonal price and ,consequently,
pushes congestion cost towards negative value. Finally, exact opposite impacts are displayed
in the exporting zones.

Both of our estimations allow us to draw some policy recommendation.

• Additional incentive in the importing regions.
The increase of renewable in the importing zones provides a more balanced system
since it less likely to produce congestion in exit and reduces the odds for congestion in
the entry. In addition, ICC could be reduced or dissipated as they shift the zonal price
equilibrium towards negative value. Therefore, in the point of view of TSO and policy
maker, further promotion of renewable growth in importing regions is recommended.
In the current state, operators would prefer rising renewable in the exporting zones
since they could profit from the high zonal price and congestion cost.

• Growth of intermittent supply should be controlled.
Although it is true that larger renewable decreases the congestion cost and reduce the
frequency, bigger shock may provide an opposite effect. Rising renewable increases the
odds for congestion in exit regardless of the zones and the estimation in congestion cost
validate this phenomenon as continuous increase may change the net flow direction
(congestion cost < 0). Hence, excessive growth will worsen the congestion problems.

• Identical behavior will occur on the large scale.
If a larger scale market (e.g Europe) is done under the same algorithm and bidding
zone system, similar behavior should be seen. For instance, high demand in import-
ing countries (zones) will stimulate exports of efficient supply from the neighboring
countries (zones), thus increasing the odds for congestion in entry and increase its
cost. However, the market would require well-organised transmission management
and detailed research on bidding zones since several TSO are involved.

There are several directions that can be pursued in order to capture the full picture of
the electricity market. It is important to be noticed that there are few econometric studies
in this line of research, thus future extensive studies may be needed to obtain better views
on RES and congestion. Our paper assumes competitive bids, which allow us to simplify
the problem. Therefore, more research can be directed towards strategical bidding in the
electricity market. With more renewable supply in the market, it is important to understand
the renewable impact on the thermal units’ bids.
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École Polytechnique

88



Abstract

Our paper captures and studies the interdependency of zonal prices in the Italian electricity
market with an objective to gain greater insight on the pricing efficiency and the impact of the
transmission line on the conditional correlation in the Italian electricity market. In order to
achieve our objective, we collected six series of the Italian zonal prices from its independent
market operator (GME) and estimate multivariate GARCH approach under conditional
mean. We employ two multivariate GARCH model to capture the cross-correlation of the
zonal prices, CCC-MGARCH from Bollerslev (1990) and DCC-MGARCH from Engle (2002).
Our estimation gives us an additional insight on the integration of Italian electricity market
and the interdependencies among its regional markets. The results suggest that high capacity
physical exchange provides a strong interdependency among the connected zonal markets.
Indeed, all the zones in Italian peninsula have shown strong dependencies among them. This
argument is also validated by our finding in the analysis of new transmission installation
where stronger dependencies are found after additional capacity is put into place despite
a long transition period. In addition, the low transmission line between Sicily and Italian
peninsula is the cause of weak interdependencies between Sicily region and the other regional
markets.
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4.1 Introduction

Electricity market has significantly changed after market deregulation. The importance of
market and network efficiency in the new market was the priority of the policy maker. As
a result, many countries adopt their best mechanism and structure with the aim to have
electricity price that reflects their actual production and transmission cost. This motivation
encourages countries to adopt inter-zonal pricing mechanism, a mechanism that divides a
country into two or more regional markets connected with high transmission lines. The
mechanism allows zonal markets to have higher or lower price, depending on the net import
situation, whenever there is a saturation in the transmission line. The problem arises in the
national market where they have limited capacities of transmission line that unites the zonal
markets. Low physical limitation of the transmission line will trigger higher frequency of
congestion, which is translated into higher occurance in zonal market splits. As a results,
it could isolate regional markets that do not posses adequate network capacity with its
neighbour, which make this region fails to be integrated nationally.

This particular angle of view can be investigated from the interdependency of the elec-
tricity market since it exhibits the correlation between regional price. Interdependencies in
electricity prices shows a mutual linear relationship between zonal prices concluded in the
market. The increase of one zonal price would predict an increase of price in the other zone
and vice versa. Therefore, the zonal prices would vary together as they are statistically cor-
related. In Italian electricity market, we may interpret this interdependencies as a reflection
of national integration. In other words, if two zonal prices display mutual dependency, it
can be concluded that both regional prices are integrated in one zonal market. This is due
to the fact that high correlation can only be obtained by having one single market with-
out zonal splitting. Hence, strong dependency among zonal prices indicates a successful
market integration whereas weak interdependency shows regional market isolation. If weak
interdependencies are displayed among the zonal markets, we may question the system and
the mechanism ability in fostering a complete national integration and efficient electricity
market.

The interest in studying the relation between zonal prices have been displayed in the
academic with many researchers attempt to investigate the mechanism and determinant of
zonal price differences on two connected regions. Hauldrup and Nielsen (2006) have started
the discussion by investigating the non-linear dynamic between two connected zonal prices
in the Nordpool spot market. The paper aims to examine the regime switching and long
memory process on the zonal prices using Markov Regime Switching Model. They conclude
that the mechanism of the switch in congestion direction is a result of excess demand, which
subsequently increase its zonal prices. Woo et al. (2011) study the zonal price difference
with an objective to investigate the impact of rising wind supply in the west zone of Texas
electricity market. Their result from log-OLS estimation suggests that rising load outside
the West zone would increase the zonal price difference. Figuiredo et al. (2015) look into
the variable that causes the market splits into two zonal prices in Iberian spot electricity
price (Spain) by employing logit and non-parametric keynesian function. Their calculation
suggests that large availability of baseline technology coupled with high renewable increases
the frequency of triggering a market splitting mechanism. These literatures, unfortunately,
does not provide us with an insight on the interdependencies between indirectly connected
zones and mean spillover in the national zonal prices.

Research from Worthington et al (2005) initiate the discussion on the interdependen-
cies on several zonal prices by employing Multivariate GARCH on the five Australian spot
electricity market (NEM). In another continent, Park et al. (2006) investigate various US
spot markets with Vector Autoregression and acyclic graph method. Their estimation indi-
cates that the transmission lines and institutional arrangement affect the interdependencies
in the zonal prices. Dempster et al. (2008) analyse the California electricity markets with
Granger causality tests and cointegration analysis. Their study presents a moderate level of
market integration and interdependencies between the regional markets in California. Un-
fortunately, their proposed method does not possses the capability to show the dynamic of
conditional correlation in the markets. This research, on the other hand, requires a technique
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that could display the dynamic of conditional correlations against time since we attempt to
observe the changes in conditional correlation after new investments in Italian electricity
market. Worthingon et al. (2005) research is, then, extended, by Higgs (2009) for fur-
ther investigation in NEM using data from 1 January 2006 to 31 December 2007. In her
paper, she applies three different multivariate GARCH (MGARCH) model, Conditional Con-
stant Correlation-MGARCH, Tse and Tsui’s (2002) and Engle’s (2002) Dynamic Conditional
Correlation-MGARCH. Her research is aimed to investigate the inter-relationship between
the four zonal prices of NEM. She concludes that regional markets with better networking in-
frastrcucture displays strong interdependency whereas weaker level of interdependencies are
recorded in the markets with low capacity of transmission line. Unfortunately, her proposed
model still lacks one important characteristic of electricity prices, seasonality. Seasonality is
an important feature that presents in the electricity price. Therefore, it is important to be
addressed in the future research. Ignatieva and Trück (2011) have focused on the structural
dependencies in the Australian electricity market using GARCH model coupled with copulae
method.1 Their research shows that significant tail dependence between the zonal prices in
Australia. Hence, price spikes may happen jointly across the regional market.

We attempt to extend Higgs (2009) by capturing interdependence of zonal prices in
different electricity markets, Italian power exchange. To the best of our knowledge, Sapio
(2015) and Ardian et al (2015) are the only two literature related to our research for the case
of Italian electricity market. Their paper, however, focuses solely on capturing the impact
of renewable price to zonal price difference (congestion cost) and congestion between two
connecting zones. Both papers reveal the same insight in the market splitting mechanism.
A positive shock on renewable energy supply on the exporting zones display increasing
impact on the zonal price differences in comparison to zonal price difference under no shocks.
The same effect on the zonal price differences also displayed whenever there is an increase
in demand in the importing zones. Their results explain the relations between connected
regions. Our paper, on the other hand, aims at studying the inter-relationship and mean
spillover among Italian zonal prices. Hence, we want to shed a light into the correlation
between indirectly connected zones. The result will provide us with greater insight on the
pricing efficiency and the impact of the transmission line on the interdependencies in the
Italian electricity market.

In order to achieve our objective, we collect six series of the Italian zonal prices from
its independent market operator (GME) and estimate multivariate GARCH approach un-
der conditional mean. The estimation starts by computing the coefficients of the univariate
Seasonal ARMA and GARCH, which produces conditional mean and variance respectively.
Our model try to address Higgs (2009) suggestion by adding seasonality, both determinis-
tic trend and stochastic. This is due to the fact that seasonality effects from the weekly
pattern, hourly pattern, and trader correction are important characteristics that determine
electricity price. In addition, the result is also expected to provide us with insight on the
mean spillovers. The second estimation is, then, calculated with the initial parameters from
the univariate Seasonal ARMA-GARCH. In this stage, we employ two multivariate GARCH
model to capture the cross-correlation of the zonal prices, CCC-MGARCH from Bollerslev
(1990) and DCC-MGARCH from Engle (2002). The two models allow us to examine the
cross-correlation between regional markets and to investigates the efficiency of the market
integration. It is noteworthy that the method is also able to analyse the impact of the New
submarine installation between Sardinia and Italian peninsula in 2011 on the conditional
correlation. This method will initiate discussion on the impact of new transmission installa-
tion on the conditional correlation in the academic since this is the only case study that has
an increase in transmission capacity in the sample period.

Our paper attempts to contribute to the academic literature in several ways. Firstly,
the paper attempts to initiate the discussion on interdependency and mean spillover in the

1The proposed method, however, is not applied in this research since risk management are not the
main objective of this research. We aim to investigate the national market integration in the Italian
electricity market by evaluating interdependencies and dynamic correlation of the zonal prices. We
are able to analyse this effect by employing CCC and DCC MGARCH without coupling it with
copulae method.
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Italian electricity market. Secondly, we would like to contribute to the limited literature on
the cross-correlation of electricity zonal prices. Thirdly, seasonality is part of the concern
in Higgs (2009) and we are trying to address it in this paper by adding seasonal trend and
process on the model. Finally, we are trying to analyse the impact of new transmission
installation on the dynamic conditional correlation, which has not been done in any related
literature.

Our estimations deliver an additional insight on the integration of the Italian electric-
ity market and the interdependencies among its regional market.The results indicate that
high capacity physical exchange provides strong interdependency among the connected zonal
markets. Indeed, all the zones in Italian peninsula have shown strong dependencies among
them as it will be shown in our CCC and DCC estimations. The result is in line with Higgs
(2009) where strong interdepency is shown in the well-connected markets. Moreover, this
argument is also validated by our finding in the analysis of new transmission installation
where stronger dependencies are found after additional capacity is put into place despite
a long transition period. In addition, the low transmission line between Sicily and Italian
peninsula is the main cause of weak interdependencies between Sicily and the other regional
markets.

We organise our paper as follow. The next section is used to provide a brief description
on the Italian power exchange (GME). The third section is aimed to explain our dataset and
its statistical summary. The fourth section, demonstrate, our model specification and the
multivariate garch. The fifth section focuses on the analysis of our estimation. The sixth
section summarises our paper and suggests further researche directions.

4.2 Model Specification

We capture the interdependency of zonal electricity prices by the means of volatility mod-
elling on Italian electricity markets using multivariate GARCH model under conditional
mean. Estimation and simulation of time-varying volatility in electricity prices are challeng-
ing tasks. This is due to the fact that it is important to take into account several influential
factors in specifying the model. Firstly, conditional mean needs to be considered since it
reflects the characteristics of the commodity price. Therefore, stylised features of the elec-
tricity prices need to be added to the model, such as seasonality and mean reversion. This
factor is also suggested by Higgs (2009) for future investigation since her model did not con-
sider seasonality. Secondly, volatility clustering and heteroskedasticity are often displayed
in electricity prices, especially in the high-frequency dataset like ours. This factor needs
to be addressed appropriately using the ARCH model since it can capture the changes in
the variance. Finally, modelling volatility of six zonal prices needs to be approached with
a multivariate model that is able to simulate the interaction between them. Therefore, we
apply multivariate GARCH model that are estimated in two stages on the six zonal prices
series of Italian electricity market (CNOR, CSUD, NORD, SARD, SICI, and SUD).

4.2.1 First Regression

The first step in our estimation is a regression of univariate models that capture the char-
acteristics of the price and the market. We initiate the model by a general formula that
follows Lucia and Schwartz (2002). The general formula consist of two important features,
deterministic ,Gh(t), and stochastic, Fh(t).

Pi,t = Gi,t + Fi,t (4.1)

The deterministic components aims at capturing the seasonal pattern, with an objective
in obtaining stationary series2, and to capture mean spillover by the other zonal prices.
Therefore, we formulate our model as follows

2

92



4.2. MODEL SPECIFICATION

Gi,t = ω0 +

23∑
h=1

ωh,1 +

7∑
d=1

ωd,2 +

5∑
j=1

ωj,3Pj,t−1

i 6= j

Where, ω0 is a constant, ωh,1 is a coefficient of hourly seasonality, ωd,2 is a coefficient of
daily seasonality and ωj,3 is a coefficient of the zonal prices j at the t− 1, Pj,t−1.

In the stochastic part, Fh(t), we aim to model the mean reversion and the seasonal
stochastic feature of the electricity prices. Mean reversion is one of the well-known features
in electricity price as it was pointed by previous literature (Weron, 2014; Weron and Misiorek,
2005; Cuaresma et al., 2004;). This is due to the fact that electricity price tends to revert
back to its normal value after positive or negative shock. This feature motivates us to add
autoregressive features in our model. On the other hand, market participant correction in
the market needs to be reflected in order to simulate the zonal price appropriately. We tackle
this issue by integrating seasonal stochastic process since traders correct their trade using
seasonal historical price. Consequently, seasonal autoregressive and the moving average
process (SARMA) is proposed for simulating the conditional mean of zonal prices. The
motivation for this approach is supported by numerous related literature in electricity price
modeling (see for instance Contreras et al., 2003; Petrella and Sapio, 2007). Therefore, we
can estimate Fi,t by the regression equation below.

Fi,t = Pi,t −Gi,t

Fi,t = φFi,t−1 + ΦFi,t−24 + φΦFi,t−25 + θεi,t−1 + Θεi,t−24 + θΘεi,t−25 + εi,t

Where, the residual εi,t is assumed to have zero mean and normal distribution in this process.

In order to model the volatility clustering generally displayed in the series we simul-
taneously estimate generalized autoregressive conditional heteroskedasticity (GARCH), a
well-known method proposed by Bollersev (1986). This approach is widely used in many
electricity price modeling literature (see for instance Knittel and Roberts, 2005; Garcia et
al., 2005; Diongue et al., 2009). However, it is important to be noted that the changes in
the transmission capacity could create structural break in the series. Therefore, we apply
Bai and Peron (2003) test in our sample dataset in 2011. The results of the test are shown
in the table 4.1 below.

Zone Date F statistic Critical value

CNOR 18-Aug-11 177.43 29.24
CSUD 18-Aug-11 177.81 29.24
NORD 17-Aug-11 173.564 29.24
SARD 11-May-11 92.95 29.24

SICI 16-May-11 44.456 29.24
SUD 09-Aug-11 165.65 29.24

Table 4.1: Structural break result from Bai-Peron

The result indicates several different dates of structural break in the zonal prices. Since
our study focuses on the changes in interdependencies after the new tranmssion installation
between SARD and CSUD, we use 11 May 2011 as the date of the structural break. As a
consequence, the residual is computed with the equation below.

εi,t = h
1/2
i,t ζt

hi,t =

{
γ0 + γ1h(t−1) + γ2ε

2
(t−1) 0 < t < tbreak

γ0 + γ3h(t−1) + γ4ε
2
(t−1) tbreak < t < T
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Where, σt is the variance at time t, ζt is a white noise, γ0 is a constant,tbreak is the starting
date of the structural break and T is the end date of our dataset. The estimation of univariate
GARCH for each market is used for the second stage of our estimation aimed to build
conditional covariance matrix. The first GARCH estimations, 0 < t < tbreak, is used for the
first DCC estimation and the second DCC is estimated by using parameters from tbreak <
t < T .

4.2.2 Second Regression

In the last stage of our estimation, we attempt to simulate time-varying volatility by ap-
plying two MGARCH family models, dynamic conditional correlation (DCC) and constant
conditional correlation (CCC), aimed at gaining insight into the interdependence of zonal
prices. The discussion on the multivariate GARCH method is initiated by Bollerslev (1990)
when he proposed CCC Model. Following his paper, we define conditional covariance matrix
decomposed into conditional standard deviations and a correlation matrix

Ht = DtPtDt

Pt denotes NxN matrix of conditional correlation and Dt denotes a diagonalNxN matrix
as shown in the equation below

Dt = diag(h
1/2
i,t ...h

1/2
k,t )

Hence, the off-diagonal element in Ht is:

Hij , t = h
1/2
i,t h

1/2
j,t ρij,t

Where, hi,tis the conditional variance from univariate GARCH in the market i and ρij,t
is correlation between market i and j. The CCC-MGarch offers computational simplification
since the conditional correlation does not change against time, ρij,t = ρij . Hence, temporal
variation of the covariance matrix only depends on the conditional variance from GARCH
estimation. The useful feature has attracted researcher to propose this method for empirical
research (Lien and Tse, 2002 ;Higgs, 2009).

Unfortunately, CCC assumption limits researchers and explorations on economic phe-
nomena. This limitation restricts analysis in the dynamic of the interdependence in the
variable. Consequently, Engle (2002) proposes an alternative method, a Dynamic Condi-
tional Correlation (DCC), with an assumption of time-varying conditional correlation. This
improvement allows us to obtain more insight into the cross-correlations between variables
but adds a computational burden in the calculation. The method follows the same general
equation with different specification of correlation matrix Pt, which is specified as follow:

Pt = diag(Qt)
−1/2diag(Qt)

−1/2

where
Qt = (1− α− β)Q̄+ αζt−1ζ

T
t−1 + βQt−1

Q̄ = Cov[ζt, ζ
T
t ] = E[ζt, ζ

T
t ]

Q̄ is the unconditional covariance matrix of the standardized errors ζt which is defined as

ζt = D−1
t εt ∼ N(O,Pt)

The model has restrictions in α and β in order to obtain positive definite Ht and positive
conditional variance from the univariate GARCH. The restrictions are

α ≥ 0, β ≥ 0, α+ β < 1

We apply this method into two different sub-samples of our dataset, prior to the structural
break and after the structural break. We attempt to look into the changes after the new
installations of SARD-CSUD transmission line.

94



4.3. RESULTS

4.3 Results

The results of the first stage estimation are displayed in table 4.2 below. Let us first look
into the impact of the lagged price of a zone to the other zonal prices. The regression
estimation on these variable suggests the presence of mean spillover in the zonal markets.
Indeed, if we look at the coefficients of each zone, we find that most of the lagged variable
display significant and positive values. Therefore, the expected price increase in one market
Granger cause the expected price increase in the other markets. For instance, if the price
of the NORD increases for 1 AC/MWh thus the price in CNOR increase for 0.32 AC/MWh in
the next hour. There are several main factors that cause this phenomenon.

• Technical limitation of the power plants.
Big physical power plants generally have a technical limitation in terms of the shut
down frequency and the minimum number of the operational hour. As a consequence,
market participants will bid for electricity delivery in a block of hours (several period
of deliveries), which affect the prices of the neighbours at time t.

• The connectivity plays a significant role in the short-run price change.
One can argue that due to the efficient connectivity we observe positive coefficients.
However, we can observe that SUD, SICI and SARD display lower lagged variable
effect compared to others. This is mainly caused by the limitation on the physical
transfer which reduces the effect of spillover from these zones. As a consequence, the
impact of price changes in the Northen Italy (NORD, CNOR and CSUD) on the rest
of Italy (SARD, SUD, and SICI) are relatively small (less than 0.01 or negative) since
the transmission capacities in the direction of South (SUD and SICI) and Sardinia
(SARD) is small. The same reasoning is also applied in the opposite case where the
price change in the SARD, SICI and SUD have little effect on the Northern regions
(NORD, CNOR and CSUD).

• Inter-zonal mechanism affects greatly the impact of lagged prices.
High capacity transmission between NORD and CNOR, as well as CNOR and CSUD,
is able to avoid congestion and transfer extra supply towards the demand. Subse-
quently, it makes these regions alligned with the same zonal prices in most of the time
since there is no saturation in the line. This is the reason why the linear correlation
are always positive with relatively high values of coefficient since there is a high mean
spillover between them. The opposite case is found on the SICI, SARD and SUD as
they have small coefficients on their estimation since they often have price discrepancy
with their respective neighbours.

Estimations of the mean reversions, φ, reflect the speed of the reversion from lagged
value. Hence, a high coefficient value indicates a faster reversion to its normal value. NORD
displays the highest value with 0.748 thus sudden price changes will quickly revert back its
normal price. The same interpretation also applies on the SARD and SUD as they display
second and third highest mean reversion, 0.745 and 0.738 respectively. On the other hand,
SICI’s mean reversion coefficient value shows that its price deviation will come back to its
normal value in a slow manner. In other words, SICI tends to sustain high price at t whenever
there is a sudden increase in zonal price at t−1. The estimation of seasonal mean reversion,
Φ , quantify the speed of the reversion from the deviation of the price of the day before and
reflect the trader correction. As in mean reversion coefficient, φ, the value of seasonal mean
reversion can be interpreted with the same idea. SICI register the biggest parameter, 0.9,
making it the fastest region that corrects the deviation from the day before. CSUD follows
SICI from behind with 0.71. NORD, SUD and SARD display the lowest value of seasonal
mean reversion with 0.0628, 0.0619 and 0.049 respectively.

Our ARCH and GARCH estimations, shown in table 4.2, suggest that all the zonal
price display volatility clustering features in the period prior o the structural break and
after the structural break. Therefore, volatility, h, and own-innovation, ε, at t− 1 affect its
future volatility in both periods. From the GARCH estimation in the first period, CNOR
and NORD show the biggest impact of previous volatility with 0.38 and 0.35. SUD follows
closely from behind by registering 0.34 on its GARCH coefficient. SARD andCSUD exhibit
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positive and significant coefficients on GARCH. However, their values indicate a low impact
on the future volatility as they are estimated at lower than 0.1. The ARCH estimation
reveals that own-innovation from CSUD, SARD and SICI have big impacts on the future
volatility of their respective zonal prices. This is due to the high ARCH coefficients, γ2,
on their estimation, which are higher than 0.80. NORD and CNOR, on the other hand,
demonstrate the lowest impact on the future volatility with 0.29 and 0.30, respectively, on
their ARCH coefficient. Second period estimation displays lower GARCH estimation on
CNOR, SICI and SUD as the structural break lower the impact on the previous volatility.
Then, lower ARCH caused by the structural break is shown in SUD, SARD, CSUD and
CNOR in the second period of the dataset.

96



4.3. RESULTS

C
N

O
R

C
S

U
D

N
O

R
D

S
A

R
D

S
IC

I
S

U
D

P
C

N
O

R
0
.4

9
1
5
4
1

*
*
*

0
.0

0
9
8
2
5

-0
.0

5
7
4
8

*
*
*

0
.0

1
5
0
9
9

-0
.0

6
8
7
8

*
*
*

P
C

S
U

D
0.

02
56

26
**

*
-0

.0
2
8
7
4

*
*
*

0
.0

1
1
4
2
9

-0
.0

3
2
6
5

*
*
*

0
.0

1
9
6
8
6

*
*
*

P
N

O
R

D
0.

32
74

64
**

*
0
.0

9
3
2
4
1

*
*
*

0
.0

9
0
8
3
5

*
*
*

-0
.0

3
4
1

*
*
*

0
.0

9
0
6
4

*
*
*

P
S

A
R

D
0.

00
70

13
**

*
0
.0

1
4
2
7
3

*
*
*

0
.0

0
5
9
8
5

*
*
*

0
.0

0
4
9
4

*
*
*

0
.0

0
6
5
4
3

*
*
*

P
S

IC
I

0.
00

22
11

*
0
.0

0
2
4
7
3

*
*

0
.0

0
1
3
5
5

0
.0

1
1
9
9
3

*
*
*

0
.0

0
2
4
4
4

*
*

P
S

U
D

0.
06

69
1

**
*

0
.1

9
7
7
9
4

*
*
*

0
.0

3
9
0
7
5

*
*
*

0
.0

4
0
0
2

*
*
*

0
.0

5
2
6
3
2

*
*
*

C
on

d
it

io
n

al
m

ea
n

s φ
0.

32
53

**
*

-0
.3

1
4
8
9

*
*
*

0
.7

4
8
8
6
8

*
*
*

0
.7

4
5
9
1
7

*
*
*

0
.0

2
3
6
7
2

*
*
*

0
.7

3
8
0
3
2

*
*
*

Φ
0.

11
49

56
**

*
0
.7

1
3
1
7

*
*
*

0
.0

6
2
8
5

*
*
*

0
.0

4
9
2
3
9

*
*
*

0
.9

0
4
7
2
6

*
*
*

0
.0

6
1
9
9
1

*
*
*

θ
0.

27
67

85
**

*
0
.4

6
7
6
0
8

*
*
*

0
.2

4
4
8
3
5

*
*
*

0
.0

7
8
7
8
9

*
*
*

0
.4

8
4
8
4
9

*
*
*

0
.2

1
8

*
*
*

Θ
0.

30
70

5
**

*
-0

.2
2
3
8

*
*
*

0
.3

7
1
1
1
7

*
*
*

0
.2

8
0
5
5
4

*
*
*

-0
.6

5
0
9
6

*
*
*

0
.2

9
6
3
1
1

*
*
*

F
ir

st
C

on
d

it
io

n
al

va
ri

an
ce ω
0

20
.6

13
7

**
*

1
.3

9
2
5
7

*
*
*

1
6
.7

1
7
8

*
*
*

2
.0

3
2
8
2

*
*
*

9
.2

7
2
7
6

*
*
*

2
0
.1

1
3
4

*
*
*

G
A

R
C

H
1

(ω
1
)

0.
38

36
26

**
*

0
.0

9
4
3
7
7

*
*
*

0
.3

5
3
9
0
6

*
*
*

0
.0

5
8
4
0
8

*
*
*

0
.2

1
5
8
4
4

*
*
*

0
.3

4
9
1
3
8

*
*
*

A
R

C
H

1
(ω

2
)

0.
30

54
79

**
*

0
.8

9
1
2
6
3

*
*
*

0
.2

9
8
6
3
2

*
*
*

0
.9

3
8
1
1
8

*
*
*

0
.8

0
9
5
6
4

*
*
*

0
.3

5
4
4
6
5

*
*
*

S
ec

on
d

co
n

d
it

io
n

al
va

ri
an

ce
G

A
R

C
H

2
(ω

3
)

0.
35

79
69

**
*

0
.1

2
4
8
3
1

*
*
*

0
.3

3
9
0
4
6

*
*
*

0
.0

8
4
1
9
3

*
*
*

0
.0

8
5
1
7
6

*
*
*

0
.3

4
6
7

*
*
*

A
R

C
H

2
(ω

4
)

0.
27

80
85

**
*

0
.8

6
6
5
3
8

*
*
*

0
.3

1
5
0
5
6

*
*
*

0
.9

1
2
1
9
5

*
*
*

0
.8

9
1
1
4
1

*
*
*

0
.2

5
0
2
2
3

*
*
*

T
a
b
le

4
.2

:
U

n
iv

a
ri

a
te

G
A

R
C

H
es

ti
m

a
ti

o
n

97



CHAPTER 4. INTERDEPENDENCY OF ITALIAN ZONAL PRICES

Our second stage estimation is shown on the table 4.3 below. All our Constant Condi-
tional correlation (CCC) estimation, ρ, display positive value and are proven to be statisti-
cally significant at < 0.01. From the estimation, NORD-CNOR shows the highest conditional
correlation indicating high interdependency in both zonal prices. Strong interdependencies
in these zones are due to the adequate capacity of transmission lines that connect them The
argument is in line with the empirical result on the other directly connected zones that have a
high capacity of transmission lines, CSUD-CNOR and SUD-CSUD, with conditional correla-
tion more than 0.67 in both periods. SARD-CSUD display moderate interdependencies with
0.44 on its conditional correlation in the first period, which is increased to 0.53 in the second
period. This is due to the new transmission line that increases the interdependencies on the
two zonal prices. This is also supported by the increase of correlations in the other pairs
after structural break. Then, SUD-SICI display the lowest conditional correlation among
the connected zones (0.12 and 0.119) because the limited capacity of its transmission line.

Interdependencies on the indirectly connected zone present an interesting discussion. Let
us look into the conditional correlation of the zones in the Italian peninsula in the first period.
3 NORD-CSUD presents the highest conditional correlation among the paired indirectly
connected zones, 0.71, indicating strong interdependencies between these zones. SUD-CNOR
and SUD-NORD follow closely from behind, 0.69 and 0.66. The estimation suggests a strong
interdependency among these zones as they are supported with high capacity of transmission
lines. On the other hand, the interrelationship of SICI with its indirect neighbour display very
low conditional correlation ranging from 0.1 to 0.13. The results suggest that SICI’s market is
isolated with the other markets. Therefore, its zonal pricess does not show high correlation
with any zone. This is mainly caused by the very limited capacity of transmission line
between SICI and the Italian peninsula. Then, SARD display moderate interdependencies
as the coefficients are estimated between 0.42 and 0.48. The only exception is SICI-SARD
whose coefficient is lower than 0.12 since SICI has a very low transmission line.

The impact of the new transmission line can be observe directly from the changes in
CCC in table 4.3 below. The empirical result has proven that the increase of physical
transmission capacity strengthen the interdependencies. The changes in interdependencies
are shown in most of the pair in particular for SARD. SUD-SARD shows the highest changes
as the correlation increases by 0.11. Then, SARD-CSUD and SARD-CNOR display the
second highest improvement as the correlation increase to 0.53 and 0.55, respectively. The
structural break also exhibit an improvement in the other pairs as well. SUD-CSUD and
SUD-CNOR show significant changes in the interdependencies, 0.053 and 0.065 changes
respectively. However, several zonal pairs displays exception as they show lower correlation
in the second period.

3Please refer to figure ?? for the zonal division
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CCC 1 CCC 2 DCC1 DCC 2

CSUD CNOR 0.785397 *** 0.794408 *** 0.784586 *** 0.810558 ***
NORD CNOR 0.908767 *** 0.837273 *** 0.946085 *** 0.902364 ***
SARD CNOR 0.48572 *** 0.557691 *** 0.177683 *** 0.70234 ***

SICI CNOR 0.094045 *** 0.096581 *** -0.01444 *** 0.015194 ***
SUD CNOR 0.690332 *** 0.755512 *** 0.816438 *** 0.8035 ***

NORD CSUD 0.714098 *** 0.662326 *** 0.730249 *** 0.737493 ***
SARD CSUD 0.446989 *** 0.539909 *** 0.152454 *** 0.638898 ***

SICI CSUD 0.130005 *** 0.133581 *** 0.160371 *** 0.0151 ***
SUD CSUD 0.670865 *** 0.724118 *** 0.704213 *** 0.727829 ***

SARD NORD 0.4486 *** 0.478045 *** 0.169668 *** 0.64892 ***
SICI NORD 0.101711 *** 0.088098 *** -0.04355 *** 0.009297 ***
SUD NORD 0.664459 *** 0.67724 *** 0.805864 *** 0.748716 ***
SICI SARD 0.110038 *** 0.069965 *** -0.04452 *** 0.031816 ***
SUD SARD 0.428742 *** 0.543065 *** 0.133402 *** 0.652813 ***

SUD SICI 0.127215 *** 0.119323 *** -0.04472 *** 0.127143 ***

dcc alpha 0.048322 *** 0.025505 ***
dcc beta 0.926742 *** 0.961651 ***

AIC 519542.2 1417980 450968.7 1230823
SIC 519708.8 1418435 451140.1 1231291

Table 4.3: Estimation of CCC and DCC

Let us now look into the DCC estimation shown in Table 4.3 as well as Figure 4.1 and
4.2. In Table 4.3, we can observe the second stage estimation at time t, which includes
goodness-of-fit, constant parameters, and conditional correlations. The estimation displays
a better goodness-of-fit compared to CCC thus suggesting DCC as the better model for
multivariate price simulation. As for the conditional correlations, their estimation at time t,
are positive and significant. The coefficients exhibit the same insight with the CCC. Strong
interdependencies are shown among the zones in Italian peninsula whose large capacity of
transmission lines whereas weak interdependencies are shown on the correlation of any zone
with SICI whose small capacity for physical exchange. However, these coefficients are the
conditional correlation at time t thus they only display very few information. We need to
look into the changes in conditional correlation, ρ, against time presented in Figure 4.1 and
4.3 in order to gain more information.

Let us look into the conditional correlations among zones in Italian peninsula shown in the
figure 4.1below. Frequent absence of congestion should be expected in Italian peninsula as
they posses high capacity of the transmission lines. Hence, DCC values close to 1 are expected
through all the dataset. The changes of conditional correlation in CNOR-CSUD provide
us with a good example of the dynamics in the directly connected zone. The conditional
correlation shows strong interdependency at almost all t with values close to 1. This is
in line with the previous finding that shows the relation between a high transmission line
and strong interdependency. However, there are several periods where the regions can be
considered as isolated since the values are close to or below zero. This is due to the saturation
in the transmission that occurs infrequently between CNOR and CSUD which subsequently
affects the market splitting between the two zones. The same insight can be observed on
the other directly connected zones, CNOR-NORD and CSUD-SUD. Overall, the conditional
correlation frequently displays strong interdependencies with values between 0.7 to 0.9 which
indicates integrated markets with high capacity of physical transport in these zones. As for
the indirectly connected zones, NORD-SUD, CNOR-SUD, and CSUD-NORD have displayed
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strong interdependencies in most of the sample period with values that are often close to
1. This is in line with our previous finding on CCC that shows strong interdependencies
among the zones in Italian Penninsula. However, the DCC presents frequent fluctuation
where they are often shown to reach below 0.5. This is due to the market split whenever
extra efficient supply are flooded in the NORD or SUD thus creating two or more regional
markets in the Italian peninsula. The impact of new transmission line on these zones are
clearly shown in the CNOR-CSUD, CSUD-NORD CNOR-SUD as they become less volatile
after the structural break. The result indicate smoother physical exchange between the
zones as they are able to export extra supply to SARD. Other paired zones does not show
a significant changes in the conditional correlations.

Figure 4.1: Conditional Correlations in Italian penninsula

Interesting insight can be obtained in the conditional correlation of SARD-CSUD where
significant shift can be observed in the middle of our sample period. This result is important
for analyzing the impact of a new transmission line which is never exploited in the previous
literature. From our estimations, the conditional correlations of CSUD and SARD are fluc-
tuating between 0 to 1 prior to August 2012 with the value frequently below 0.5. Indeed, the
capacity limitation affects the interdependencies of SARD-CSUD with lower correlation thus
making SARD an isolated regional market between these periods. However, it is important
to note that a new installation starts to operate since March 2011 with the structural break
in May 2011. Therefore, the result indicates that new capacity installation does not exhibit
instant impact on the interdependencies. Hence, there is a relatively long transition period
of the new installation in the zonal price behaviors. On the contrary, beyond August 2012,
the interdependency start to display a stronger momentum from the new installation with
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correlation values that are constantly close to 1. As a result, SARD becomes more integrated
into the Italian electricity market. This is mainly due to the submarine line’s capability to
mitigate the congestion in the physical exchange between SARD and Italian peninsula which
creates frequent zonal unions. On the other hand, the impact of the new transmission line
can also be seen again in the DCC of CNOR-SARD, NORD-SARD, and SARD-SUD. CNOR-
SARD displays similar behavior on the interdependencies as CSUD-SARD with bigger values
of conditional correlation and less frequent market isolation (Conditional Correlation < 0.5).
NORD-SARD and SARD-CSUD, on the contrary, do not display a significant change in the
conditional correlation although we can observe a sudden shift between August 2012 and
November 2012.

Figure 4.2: Conditional Correlations between SARD and other zonal prices

Finally, our estimations exhibit an empirical proof of market isolation in Sicily. The
limitation to transport electricity between SICI and Italian peninsula are reflected in our
results. Conditional correlation in SICI-SUD shows a contrast in comparison to the previous
DCC plots of directly connected regions where values never reach 0.6 in all sample periods and
they are frequently lower than 0.2. Frequent saturation in the transmission lines is reflected
in their conditional correlations as they are often to register values lower than 0.5.This
result conclude a tendency of regional market isolation thus indicating non-integration in
the national market. This is mainly due to the low capacity of physical exchange between
them and the rise of renewable supply in the SUD4 which subsequently impact market
splitting and interdependency. In all cases, conditional correlation between SICI and other

4See Sapio(2005) and Ardian et al (2015) for further reading.
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regional market do not show strong interdependencies as the values generally lower than 0.2.
The important changes in the physical capacity between SARD and Italian peninsula do not
affect its interdependencies with SICI as its continue to display the same dynamic after the
structural break.

Figure 4.3: Conditional Correlations between SICI and other zonal prices

4.4 Conclusion

Our study has given us a wider view of the zonal price behaviour in Italy. Firstly, the
first stage estimation has concluded a positive and significant mean spillover among the
zonal prices. Hence, it can be concluded that the lagged value of one zonal price can cause
positive changes to the other expected zonal price. This is mainly due to technical factor from
physical operations, the connectivity between zonal prices and the interzonal mechanism that
affects the Italian zonal prices at time t. Secondly, the seasonal stochastic process from our
computation provides an insight that has not been examined in the previous literature. This
result shows different speeds of zonal price reversion from the day before, as a reflection of
the market participant correction. From our estimation, the coefficients display positive and
significant value between 0.05 and 0.9 with SICI records the fastest reversion whereas SARD
records the slowest reversion. Thirdly, univariate GARCH estimation shows that the previous
volatility and own-innovation impacts future volatility. Furthermore, structural break is
shown to lower ARCH effect in the residual. Fourthly, strong dependencies are shown among
regional markets in the Italian peninsula. The result indicates a strong capability of fostering
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market integration in Italian peninsula from the Italian government. It is noteworthy that
the result is mainly due to the high capacity of physical limitation that are shared between
these zones. As a consequence, SICI ,whose transmission line is very low compared to other
zones, has shown very weak interdependencies with other zonal prices. Finally, our sample
period provides a special case since we are able to see the impact of new transmission line
between SARD and Italian peninsula on the conditional correlation. Our finding exhibits an
increase of constant conditional correlation in most of the cases after the structural break.
Then, improvements in DCC are shown in CNOR-CSUD, CSUD-NORD CNOR-SUD as they
become less volatile. If we look at conditional correlations between SARD and other zonal
markets, we may observe long transitional period between the structural break and August
2012 when the conditional correlation starts to have constant high values. Nevertheless,
higher capacity from the new installations increases the conditional correlations after the
structural break which is shown in both DCC and CCC.

We believe that future research should examine the fat tail dependencies among Italian
zonal prices which are important for risk analysis and management. This analysis can
be explored by employing copulae method. In addition, the studies can be expanded by
examining the dependencies with another commodity such as coal or gas price. Another
direction of future studies would be examining interrelations between neighbouring countries
with Italian zonal prices which can open a discussion regarding the price efficiency in the
market coupling. Finally, studies on strategical bidding between the zonal price could give
us a better understanding in this particular field.
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5.1. MAIN CONCLUSIONS

5.1 Main conclusions

Electricity market liberalization in Italy has raised interesting issues for economic and econo-
metric researches because of its specifities and characterics . The changes in pricing mech-
anism has greatly impacted the price as it has become more volatile due to the dependenc
in the demand availability in supply. Furthermore, the increase in renewable energy supply
has added more uncertainty in energy supply thus affecting the volatility of electricity price.
Consequently, market participants and policy makers require reliable and accurate forecast-
ing models for benchmarking fair prices or optimising economic gain.The model should not
only be accurate in predicting the price, but also reflects the market and be able to be
interepreted in economic sense.

The second chapter of our this dissertation attempts to address this issue by providing
discussion on the hourly price forecasting in the Italian electricity market with an aim to
provide an alternative model for the Italian electricity market. We argue that the Seasonal
ARMA-GARCH model with stacked framework is the best univariate model for the Italian
electricity market. This is due to the fact that this model displays low mean absolute error
and low bayesian information criterion (BIC). Our empirical analysis also suggests that this
model provides better interpretation of the market since it is able to show the speeds of daily
and weekly adjustment. In addition, stacked framework shows the daily dynamic of hourly
prices that reflect the 24-simulatenous auction of day-ahead market. The results also suggest
positive impacts from gas price and demand on the wholesale price as CCGT is generally
their marginal technology.

The analysis serves as an important example of the significance of modeling and forecast-
ing electricity price in the economic sense that reflect the markets. Many techniques have
been documented and proposed in the literature. Advanced knowledge and technology have
offered various modeling methods to forecast electricity price. However, our second chapter
exhibits an important lesson as we show improvement in forecasting performance when we
integrate the mechanism and the dynamic of the market in the model. Stacked framework
with seasonal ARMA-GARCH is a specific method to address the characteristics of Italian
electricity market. Furthermore, utilization of gas price as the exogenous variable is also
aimed to reflect Italian production mix that is dominated by CCGT. This analysis is an im-
portant note for researchers in commodity market since the fundamental driver is the main
determinant of price movement. Hence, integrating mathematical representation of market
mechanism and its dynamic in our model would result in better forecasting performance.

Our exploration in the second chapter initiates discussion on the difference between uni-
variate and multivariate framework. The empirical findings reveal that each framework has
its own merit. Hence, framework selection would depend on the modeling’s objective. This
is due to the fact that VAR , a multivariate model, shows superior capability on predicting
the price by recording the lowest mean absolute error. The univariate framework, on the
other hand, shows better performance in the risk management as it shows low expected
shortfall and the maximum error value. In addition, the analysis indicates that multivariate
framework is more efficient to be used for forecasting electricity price on the off-peak peri-
ods whereas univariate framework exhibits lower error in the peak periods. These findings
provide researchers, market participant and policy makers with alternative models that can
be used effectively for forecasting and modeling the Italian electricity market.

EU directive number 28 in 2009 has brought significant change on EU renewable en-
ergy penetration, which subsequently create an additional problem in the electricity market.
Intermittent generation in the day-ahead market has been shown to produce a merit order
effect that reduces the average wholesale price. In addition, the uncertainty from the weather
has increased volatility. However, rising renewable supply also give additional problem in
both the market and the system. Renewable energy supply creates saturation in the in-
terconnector between zonal market. Consequently, congestion becomes more frequent thus
affecting congestion cost and zonal market splitting occurrence.

Our third chapter displays the empirical exhibits and analysis on the impact of the re-
newable energy supply on congestion. Our econometric estimations suggest that the flow
of congestion in the inter-zonal transmission depends on the local supply and demand. In-
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creasing local renewable energy supply decrease the probability of congestion in the entry
and increase the probability of congestion in the exit. The same mechanism and logic also
apply to the changes in Hydroelectric generation. This is due to the fact that they are
efficient generations with priority dispatching thus their positive shock would increase the
urgency for exporting electricity or decrease the imports. On the other hand, positive shock
in demand increases the probability of congestion in the entry and decrease the congestion
in the exit. In this case, rising local consumption increases the demand to import electricity
from its neighbor. These results hold for both importing and exporting regions. However,
the importing regions are less likely to produce congestion in the exit. Therefore, a larger
RES production in these regions is expected to bring more balanced in the electricity flows
between neighboring regions, while a larger RES production in exporting zones may exacer-
bate the problem of congestion. In terms of cost, positive shock from renewable and hydro
supply would reduce the congestion cost in importing regions as they relieve the congestion
towards the region. This is due to the merit order effect that decreases the zonal price in
the importing zone and decreases the congestion cost. The opposite mechanism is applied
on the exporting zone. It is also important to note that, from our analysis, big shock of
renewable or hydro generation in the importing region could change the congestion flow
and produce negative congestion cost as efficient supply become excessive. In this case, the
importing region becomes an exporting region. Hence, the extra measure needs to be taken
into account by policy maker in order to improve renewable penetration without increasing
congestion cost and congestion frequency.

From our empirical result in chapter three, we may recommend several policies for reduc-
ing the impact of renewable energy supply on congestion. Firstly, an additional incentive in
the importing regions would results in a system with a better balance. The increase of renew-
able in the importing zones provides a more balanced system since it less likely to produce
congestion in exit and reduces the odds for congestion in the entry. In addition, ICC could
be reduced or dissipated as they shift the zonal price equilibrium towards negative value.
Therefore, in the point of view of TSO and policy maker, further promotion of renewable
growth in importing regions is recommended. In the current state, operators would prefer
rising renewable in the exporting zones since they could profit from the high zonal price and
congestion cost. Secondly, if national transmissions are not equipped to facilitate intermit-
tent generation, it is important to control the Growth of intermittent. Although it is true
that larger renewable decreases the congestion cost and reduce the frequency, bigger shock
may provide an opposite effect. Rising renewable increases the odds for congestion in exit
regardless of the zones and the estimation in congestion cost validate this phenomenon as
continuous increase may change the net flow direction (congestion cost < 0). Hence, exces-
sive growth will worsen the congestion problems. Thirdly, we also believe that our empirical
analysis in Italian electricity market could be replicated on a larger scale. For instance, high
demand in importing countries (zones) will stimulate exports of efficient supply from the
neighboring countries (zones), thus increasing the odds for congestion in entry and increase
its cost. However, the larger market would require well-organised transmission management
and detailed research on bidding zones since several national TSO are involved. Nevertheless,
an internal energy market in Europe is the long term objective of the European commission
and we believe that our proposed measures are noteworthy for the future EU energy market.

Our final angle in the dissertation has offered an interesting view on the regional integra-
tion of the Italian electricity market. The deregulation of electricity market has shown the
different mechanism of price formation. In Italy, policy makers have decided to adopt inter-
zonal pricing mechanism in order to reflect regional supply price and the cost of transmission.
However, inequalities in transmission capacity could create market isolation in the national
electricity market. Italy has exhibited differences in the level of transmission capacity, which
could create regional market isolation in the Italian electricity market. This particular an-
gle can be investigated from the interdependency of the Italian electricity market since it
exhibits the dependency between regional price. Strong dependency indicates a successful
market integration whereas weak interdependency shows regional market isolation.

The fourth chapter provides important factors that need to be taken into account in
the future Italian policy by exhibiting empirical proof and analysis on the market isolation
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in Sicily and the success of market integration in the Italian Peninsula . Our econometric
result displays high conditional correlation in the regions in Italian peninsula due to high
capacity that facilitates the physical exchange between regions. On the other hand, physical
exchange limitation between Sicily and the Italian peninsula have proven to produce low
correlations. These results serve as an argument to improve the mechanism or the physical
network in the Italian electricity market. The increase of transmission limit between Sicily
and Italian peninsula could improve the integration of this region into the national electricity
market. This is due to the fact that the changes in transmission capacity would mitigate the
congestion which subsequently avoid market splitting that isolates Sicily most of the time.
This argument is also supported by the changes in the interdependencies between Sardinia
and the Italian peninsula. The new transmission installation that connects the island and
Italy has proven to strengthen interdependencies in the zonal prices as the physical exchange
increase between these regions.

From the empirical analysis in the fourth chapter, we may also draw recommendations
for a larger scale market. Ongoing discussion on single European market has always been
an interesting issue. Our empirical findings would suggest a probable market isolation if
there is a limitation in the transmission capacity. Therefore, it is important to ensure
adequacy of network infrastructure before implementing a single European market. This is
important because, in larger scale, the system becomes more complex with many alternative
and efficient supply.

5.2 Future research direction

There are several directions that can be pursued in order to obtain the full picture of the
electricity market. Firstly, future study should address utilization of weather as an exogenous
variable. The current study, unfortunately, is limited by the availability of weather data.
Historical weather data is generally limited to daily data and it would create a bias if it is
used for research in higher frequency data. Consequently, the economic phenomenon that
exists in hourly data cannot be investigated from the weather perspective. Furthermore,
additional research needs to be done in the time dimension, particularly in lagged value of
the weather. This is due to the fact that sudden shock in weather does not produce sudden
impact in demand since end user generally adjusts their consumption after a period of time.
In addition, traders would have lagged time to adjust their trade based on the changes in
weather. For instance, a sudden increase in rainfall is generally not equal to a sudden increase
in hydro supply because traders adjust hydro outputs according to the water level and the
electricity price. However, this rule does not apply to solar and wind generation units since
they are not able to store their energy. Secondly, econometric studies on the relation between
renewable energy supply and congestion should be further explored. Climate change issue
and changes in the renewable energy policy have stimulated investments in renewable energy.
Consequently, it increases the congestion frequency and market splitting. However, there is
only very limited economic research in this field and they only display several angles in this
research. Engineering papers are dominating this study with an attempt to provide studies on
the integration of renewable energy. However, they lack economic views such as our research.
Therefore, additional research may reveal more information and plan better policy for both
electricity market and system. Thirdly, we realize that our research based on the assumption
of competitive bids in the market. In other words, we did not take into account strategical
bidding between zones or strategical bidding across the different markets. With six different
zonal prices, the market participant is able to strategically allocate and bids of their assets in
different locations in order to optimize their gain in all zonal markets. Moreover, our research
only investigates the day-ahead market of the Italian electricity markets. In practice, market
participants also use intraday and balancing markets in order to maximize their assets. This
is an important feature in the market since intraday and balancing market may provide a
better price for the market operator. As a result, power generators may choose the best
market that can fully maximize the economic value of their production units. For example,
now, CCGT operators more frequently bids in the intraday and balancing market since
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day-ahead market becomes unattractive to them. Finally, risk management is an important
activity for all market participant and we believe that future research is needed in this
direction. Our studies are limited in the research objective. Hence, risk studies are not
the main output in our investigations. However, frequent extreme prices displayed in the
electricity market requires more attentions. For instance, the Italian electricity market is
exposed with fat tail dependencies among its zonal prices. Therefore, exploration using
copulae method could give additional insight and explanations on the risk management.
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A.1 Forecast results

Hour1 Hour2 Hour3 Hour4 Hour5 Hour6 Hour7 Hour8

M1
BIC 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308
MAE (in-sample) 4.9279 5.2568 5.5584 5.7508 5.8089 5.7753 5.2205 5.4895
MAE (out-of-sample) 3.416 3.4288 4.683 4.8221 5.0985 4.6141 4.7266 4.1263
M2
BIC 8396.34 8501.146 8733.651 8851.349 8861.997 8782.323 8684.077 8978.267
MAE (in-sample) 4.8795 5.205 5.4657 5.6779 5.7416 5.6013 5.1725 5.3802
MAE (out-of-sample) 3.4059 3.4579 4.6713 4.7531 5.0839 4.5939 4.6577 4.1712
M3
BIC 8388.553 8492.083 8727.192 8842.891 8857.297 8775.51 8698.757 8938.132
MAE (in-sample) 4.8392 5.1603 5.4187 5.6426 5.7057 5.5787 5.1753 5.3592
MAE (out-of-sample) 3.433 3.4559 4.6159 4.8286 5.054 4.5555 4.4972 4.3256
M4
BIC 8380.351 8470.329 8696.956 8812.609 8832.425 8764.297 8834.864 9131.9
MAE (in-sample) 4.8203 5.1438 5.3815 5.5997 5.6671 5.5511 5.403 5.7708
MAE (out-of-sample) 3.4559 3.3966 4.5242 4.851 4.9405 4.4447 4.8487 5.5019
M5
BIC 8416.262 8520.774 8739.51 8846.297 8864.175 8847.751 8906.893 9406.212
MAE (in-sample) 4.9659 5.2472 5.5226 5.7192 5.7751 5.7753 5.6708 6.1486
MAE (out-of-sample) 3.4461 3.3081 4.4504 4.7126 4.854 4.2224 4.6832 4.9995
M6
BIC 8393.911 8490.901 8726.182 8841.102 8859.717 8779.957 8736.61 9025.253
MAE (in-sample) 4.8145 5.121 5.3945 5.6009 5.6619 5.5548 5.1459 5.4124
MAE (out-of-sample) 3.5094 3.4832 4.4901 4.8962 5.0006 4.6293 4.6789 4.0627
M7
BIC 8598.204 8809.958 8982.353 9084.996 9112.197 9046.492 8995.161 9588.289
MAE (in-sample) 4.8259 5.1438 5.396 5.6213 5.6887 5.5621 5.3768 5.8583
MAE (out-of-sample) 3.4612 3.3993 4.5609 4.9135 4.9956 4.4729 5.1019 5.0292

Table A.1: Forecasting result on 1st to 8th period

Hour9 Hour10 Hour11 Hour12 Hour13 Hour14 Hour15 Hour16

M1
BIC 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308
MAE (in-sample) 6.7585 7.3841 7.3838 7.4956 5.9495 6.2519 6.6523 6.472
MAE (out-of-sample) 4.7301 4.3443 3.5524 3.3371 3.2621 3.0755 3.6657 4.1746
M2
BIC 9549.103 9834.505 9752.448 9739.481 8896.633 9065.51 9311.276 9269.355
MAE (in-sample) 6.662 7.3121 7.3037 7.3881 5.7838 6.0826 6.4466 6.3506
MAE (out-of-sample) 4.7822 4.4693 3.6313 3.3288 3.1683 3.0404 3.7337 4.2401
M3
BIC 9533.988 9838.132 9793.764 9737.981 8834.841 8949.153 9232.027 9227.992
MAE (in-sample) 6.6606 7.2939 7.3984 7.3284 5.6664 5.8328 6.2993 6.1918
MAE (out-of-sample) 4.4965 4.461 3.7058 3.2803 2.887 2.7687 3.7687 4.2278
M4
BIC 9849.266 10080.19 9940.808 9918.79 8987.145 9191.847 9497.057 9480.464
MAE (in-sample) 7.3074 7.8498 7.6798 7.7247 5.9531 6.1913 6.6911 6.6674
MAE (out-of-sample) 5.5879 5.4039 4.5449 4.1408 3.6828 3.8395 4.8052 5.1006
M5
BIC 9975.081 10183.99 10068.7 10017.22 9155.342 9333.87 9635.067 9619.255
MAE (in-sample) 7.6088 8.1227 8.012 7.957 6.1431 6.4312 6.9708 6.9333
MAE (out-of-sample) 5.716 6.1732 5.4391 5.1624 4.5806 4.9627 5.6953 5.7502
M6
BIC 9602.651 9860.856 9762.633 9746.116 8885.592 9045.301 9303.369 9263.84
MAE (in-sample) 6.6879 7.2601 7.2187 7.2664 5.7092 5.9472 6.3318 6.2115
MAE (out-of-sample) 4.6012 4.378 3.543 3.2194 2.9214 2.8116 3.669 4.1667
M7
BIC 10295.53 10521.75 10499.5 10455.72 9423.042 9565.653 9971.96 10001.01
MAE (in-sample) 7.2922 7.8417 7.7255 7.702 5.9392 6.2315 6.7547 6.7037
MAE (out-of-sample) 5.664 5.5218 4.6956 4.3078 3.8873 4.0523 4.9488 5.1321

Table A.2: Forecasting result on 9th to 16th period
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Hour17 Hour18 Hour19 Hour20 Hour21 Hour22 Hour23 Hour24

M1
BIC 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308 8411.308
MAE (in-sample) 6.4737 7.0276 6.7879 7.4485 6.7602 5.2721 3.8064 3.4689
MAE (out-of-sample) 4.0606 9.2639 6.9563 6.6839 3.5389 2.9199 3.3184 2.886
M2
BIC 9372.812 9582.444 9611.772 9898.228 9715.193 8636.009 7467.906 7134.002
MAE (in-sample) 6.3912 6.9074 6.77 7.4552 6.7896 5.268 3.7885 3.4242
MAE (out-of-sample) 4.249 9.5809 7.0663 6.8396 3.5303 2.9261 3.2332 2.7402
M3
BIC 9369.744 9581.097 9605.401 9881.723 9720.22 8632.822 7462.124 7109.708
MAE (in-sample) 6.3242 6.8457 6.685 7.3654 6.7569 5.2282 3.7438 3.387
MAE (out-of-sample) 4.2919 9.0793 6.7129 6.7551 3.511 2.9064 3.1352 2.7627
M4
BIC 9586.467 9765.945 9727.143 9915.054 9691.309 8600.238 7454.997 7126.966
MAE (in-sample) 6.8152 7.3685 7.0428 7.471 6.7686 5.2272 3.7467 3.404
MAE (out-of-sample) 5.4931 10.421 7.7494 6.8573 3.3725 3.0637 3.0619 2.7226
M5
BIC 9706.419 9892.436 9810.504 10033.36 9896.546 8772.186 7620.964 7219.131
MAE (in-sample) 7.0361 7.6582 7.3096 7.7472 7.0589 5.5218 3.903 3.5225
MAE (out-of-sample) 5.5027 8.83 7.0767 6.5986 3.7143 3.1274 3.0347 2.8443
M6
BIC 9371.631 9594.386 9600.457 9875.33 9709.028 8598.116 7430.571 7087.639
MAE (in-sample) 6.2182 6.7897 6.5471 7.2645 6.6813 5.1458 3.6593 3.3222
MAE (out-of-sample) 4.2686 8.5656 6.5408 6.8308 3.4105 2.8017 3.023 2.702
M7
BIC 10130.86 10465.86 10386.11 10410.76 10329.1 9197.5 7885.436 7473.098
MAE (in-sample) 6.7952 7.3518 7.0525 7.4674 6.7027 5.226 3.738 3.4114
MAE (out-of-sample) 5.43 9.7158 7.4493 6.7222 3.3893 3.0554 2.951 2.7183

Table A.3: Forecasting result on 17th to 24th period
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A.2 M3 estimation

phi Phi theta Theta omega 1 alpha beta

Hour1 0.641568 0.102711 -0.15342 0.063671 2.65274 0.072348 0.866814
*** *** *** ** *** *** ***

Hour2 0.642154 0.088883 -0.16791 0.068512 1.27295 0.078144 0.896603
*** *** *** ** *** *** ***

Hour3 0.626113 0.081732 -0.12255 0.077198 1.97977 0.080931 0.882332
*** *** *** *** *** *** ***

Hour4 0.62376 0.087539 -0.09547 0.059306 1.69511 0.069255 0.900672
*** *** ** ** *** *** ***

Hour5 0.622211 0.079631 -0.09643 0.067549 1.81861 0.077505 0.890954
*** *** ** ** *** *** ***

Hour6 0.632129 0.088922 -0.18635 0.112799 1.10129 0.066859 0.913308
*** *** *** *** *** *** ***

Hour7 0.724544 0.083136 -0.4086 0.066242 32.3809 0.343711 0.123122
*** *** *** *** *** *** ***

Hour8 0.040774 0.800193 0.223117 -0.55565 27.7516 0.500443 0.19989
*** *** *** *** *** *** ***

Hour9 0.180545 0.255667 0.132739 0.044897 202.415 0.001187 -1.00376
*** *** *** *** *** ***

Hour10 0.752227 0.070141 -0.45033 0.125507 13.1167 0.176856 0.719685
*** *** *** *** *** *** ***

Hour11 0.770884 0.080149 -0.45775 0.099194 9.91679 0.206361 0.723534
*** *** *** *** *** *** ***

Hour12 0.074748 0.764559 0.280324 -0.5786 6.78509 0.186953 0.768859
*** *** *** *** *** *** ***

Hour13 0.044524 0.834871 0.327231 -0.62252 3.00658 0.159233 0.804261
*** *** *** *** *** *** ***

Hour14 0.73215 0.100008 -0.36558 0.122948 3.77293 0.124301 0.826744
*** *** *** *** *** *** ***

Hour15 0.060867 0.776337 0.31204 -0.54989 6.14091 0.157899 0.775402
*** *** *** *** *** *** ***

Hour16 0.094481 0.695049 0.302427 -0.45095 9.93252 0.162703 0.719038
*** *** *** *** *** *** ***

Hour17 0.818221 0.055772 -0.47408 0.114347 11.7631 0.209159 0.671018
*** *** *** *** *** *** ***

Hour18 0.75156 0.076739 -0.38499 0.134558 5.35037 0.163662 0.797815
*** *** *** *** *** *** ***

Hour19 0.774949 0.075853 -0.39807 0.098212 5.22408 0.169554 0.800204
*** *** *** *** *** *** ***

Hour20 0.804452 0.073194 -0.49082 0.067033 3.18499 0.14812 0.841285
*** *** *** ** *** *** ***

Hour21 0.965668 0.009073 -0.74542 -0.00975 30.0256 0.607932 0.274949
*** *** *** *** ***

Hour22 0.874934 0.050866 -0.53026 0.03383 1.36023 0.092496 0.887343
*** *** *** *** *** ***

Hour23 0.095199 0.785241 0.338159 -0.53594 1.27575 0.096943 0.860152
*** *** *** *** *** *** ***

Hour24 0.741203 0.101045 -0.24521 0.084386 1.61832 0.070736 0.852713
*** *** *** *** *** *** ***

Table A.4: SARMA-GARCH Coefficient of M3
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B.1 Multinomial logit: Descriptive statistics and
Tables

Variable Mean Std. Dev.

CNOR Hydro 257.513 173.97
CNOR Wind 7.934 10.38
CNOR NRRes 353.457 320.536
CNOR PV 1.203 2.733
CNOR PV Tot 354.66 322.328
CNOR D 3524.293 879.753

Variable Mean Std. Dev.

CSUD Hydro 314.226 146.13
CSUD Wind 209.619 183.134
CSUD NRRes 344.889 347.385
CSUD PV 17.476 34.705
CSUD PV Tot 362.365 378.943
CSUD D 5310.994 1189.058

Variable Mean Std. Dev.

NORD Hydro 3137.343 1462.653
NORD Wind 7.933 6.216
NORD NRRes 2212.615 1133.996
NORD PV 19.23 42.097
NORD PV Tot 2231.844 1168.411
NORD D 18466.874 4238.214

Variable Mean Std. Dev.

SARD Hydro 34.064 35.458
SARD Wind 126.031 142.605
SARD NRRes 54.567 76.789
SARD PV 3.793 8.753
SARD PV Tot 58.36 84.416
SARD D 1376.044 251.241

Variable Mean Std. Dev.

SICI Hydro 11.008 12.143
SICI Wind 260.465 218.838
SICI NRRes 140.622 193.418
SICI PV 1.94 4.398
SICI PV Tot 142.562 196.973
SICI D 2203.172 410.19

Variable Mean Std. Dev.

SUD Hydro 192.663 168.872
SUD Wind 527.586 421.578
SUD NRRes 443.762 564.546
SUD PV 13.558 25.532
SUD PV Tot 457.32 587.877
SUD D 2917.71 554.735

Variable Description

Hydro Hydroelectric production
Wind Wind production
NRRes RES production from Non Relevant Unit (Power<10 MVA)
PV Photovoltaic production
PV Tot Large and small photovoltaic production
D Demand

Table B.1: List of regressors and descriptive statistics, 2010-2014
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Status in CNOR-NORD Number Per cent

Congestion from CNOR 1,992 5
No congestion 40,122 92
Congestion to CNOR 1,710 4
Total 43,824 100

Status in CNOR-CSUD Obs Per cent

Congestion from CNOR 620 1
No congestion 40,026 91
Congestion to CNOR 3,178 7
Total 43,824 100

Status in SARD-CSUD Obs Per cent

Congestion from SARD 469 1
No congestion 36,556 83
Congestion to SARD 6,799 16
Total 43,824 100

Status in CSUD-SUD Obs Per cent

No congestion 37,183 85
Congestion to CSUD 6,641 15
Total 43,824 100

Status in SICI-SUD Obs Per cent

Congestion from SICI 2,963 7
No congestion 8,060 18
Congestion to SICI 32,801 75
Total 43,824 100

Congestion from = first region has lower price
No congestion = Equal prices
Congestion to= first region has higher price

Table B.2: Network status in neigbouring regions, 2010-2014
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Multinomial logit estimations are shown in Tables from B.3 to B.7. Standard errors are
reported below the coefficients. The second and the third columns report the results in terms
of log-odds and marginal effects respectively when the congestion is from ZONE1 (y = −1).
The fourth and the fifth columns present the results in terms of log-odds and marginal effects
when the congestion is to ZONE1 (y = 1).

Variables Congestion from CNOR Congestion to CNOR

Log-odds mfx Log-odds mfx

CNOR Hydro 0.00269*** 2.27e-05*** -0.00143*** -1.48e-05***
-0.00019 -2.14E-06 -0.00023 -2.38E-06

CNOR Wind 0.0286*** 0.000240*** -0.00615* -6.50e-05*
-0.00213 -2.43E-05 -0.00328 -3.34E-05

CNOR PV Tot 0.00313*** 2.68e-05*** -0.00622*** -6.36e-05***
-0.00017 -2.39E-06 -0.00047 -4.53E-06

CNOR D -0.00223*** -1.89e-05*** 0.00295*** 3.02e-05***
-0.00012 -1.53E-06 -0.00011 -1.74E-06

NORD Hydro -0.000427*** -3.62e-06*** 0.000508*** 5.20e-06***
-2.67E-05 -3.18E-07 -2.89E-05 -3.51E-07

NORD Wind 0.0286*** 0.000241*** -0.0139** -0.000144***
-0.00476 -4.30E-05 -0.00541 -5.55E-05

NORD PV Tot 0.000148*** 1.16e-06*** 0.000929*** 9.44e-06***
-5.34E-05 -4.47E-07 -0.00012 -1.18E-06

NORD D 0.000408*** 3.45e-06*** -0.000463*** -4.75e-06***
-1.82E-05 -2.70E-07 -2.04E-05 -3.00E-07

Year2 -1.463*** -0.00867*** 0.537*** 0.00658***
-0.345 -0.00121 -0.0883 -0.0013

Year3 0.289* 0.00268 -0.499*** -0.00444***
-0.168 -0.00166 -0.145 -0.00112

Year4 -0.567*** -0.00414*** 0.928*** 0.0129***
-0.168 -0.0011 -0.151 -0.0029

Year5 -0.743*** -0.00531*** 1.935*** 0.0397***
-0.188 -0.00113 -0.175 -0.00678

Constant -5.183*** -7.917***
-0.204 -0.19

Observations 43,824 43,824 43,824 43,824

Log-Lik Intercept Only: -31133.193 Log-Lik Full Model: -20880.1
D(43798): 41760.267 LR(24): 20506.12

Prob > LR: 0
McFadden’s R2: 0.329 McFadden’s Adj R2: 0.328
ML (Cox-Snell) R2: 0.374 Cragg-Uhler(Nagelkerke)R2: 0.493
Count R2: 0.812 Adj Count R2: 0.253
AIC: 0.954 AIC*n: 41812.27
BIC: -426349.993 BIC’: -20249.6
BIC used by Stata: 42038.154 AIC used by Stata: 41812.27

*** p<0.01
** p<0.05
* p<0.1

Table B.3: Estimations for CNOR-NORD
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Variables Congestion from CNOR Congestion to CNOR

Log-odds mfx Log-odds mfx

CNOR Hydro 0.00221*** 1.13e-05*** 0.000395* 1.83e-05*
-0.00046 -2.43E-06 -0.00021 -9.82E-06

CNOR Wind 0.0287*** 0.000148*** -0.00225 -0.00012
-0.00511 -2.73E-05 -0.00204 -9.77E-05

CNOR PV Tot -0.00042 -2.10E-06 -0.00016 -7.29E-06
-0.0012 -6.18E-06 -0.00025 -1.20E-05

CNOR D -0.00148*** -8.02e-06*** 0.00160*** 7.68e-05***
-0.00016 -1.01E-06 -8.71E-05 -4.00E-06

CSUD Hydro -0.00199*** -1.05e-05*** 0.000799*** 3.87e-05***
-0.00054 -2.84E-06 -0.00024 -1.16E-05

CSUD Wind -0.00479*** -2.56e-05*** 0.00355*** 0.000171***
-0.00048 -2.52E-06 -0.00011 -5.18E-06

CSUD PV Tot -0.00186* -9.80e-06* 0.000900*** 4.36e-05***
-0.00099 -5.11E-06 -0.00021 -1.01E-05

CSUD D 0.00144*** 7.78e-06*** -0.00150*** -7.21e-05***
-0.00012 -7.98E-07 -6.52E-05 -2.93E-06

Year2 -2.444*** -0.00759*** -0.636*** -0.0256***
-0.248 -0.00062 -0.0724 -0.0025

Year3 -0.338*** -0.00154*** -0.183** -0.00827***
-0.13 -0.00057 -0.0711 -0.00309

Year4 0.0498 0.000375 -0.485*** -0.0205***
-0.125 -0.00067 -0.0766 -0.00283

Year5 -0.660*** -0.00262*** -1.531*** -0.0518***
-0.169 -0.00065 -0.0904 -0.00224

Constant -5.299*** -1.382***
-0.261 -0.125

Observations 43,824 43,824 43,824 43,824

Log-Lik Intercept Only: -14607.4 Log-Lik Full Model: -12640.4
D(43798): 25280.78 LR(24): 3934.012

Prob > LR: 0
McFadden’s R2: 0.135 McFadden’s Adj R2: 0.133
ML (Cox-Snell) R2: 0.086 Cragg-Uhler(Nagelkerke) R2: 0.176
Count R2: 0.913 Adj Count R2: -0.008
AIC: 0.578 AIC*n: 25332.78
BIC: -442829 BIC’: -3677.5
BIC used by Stata: 25558.66 AIC used by Stata: 25332.78

*** p<0.01
** p<0.05
* p<0.1

Table B.4: Estimations for CNOR-CSUD
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Variables Congestion from SARD Congestion to SARD

Log-odds mfx Log-odds mfx

SARD Hydro 0.00309 1.50E-06 0.00215*** 0.000121***
-0.00268 -1.40E-06 -0.00057 -3.18E-05

SARD Wind 0.00863*** 4.66e-06*** -0.00999*** -0.000563***
-0.0004 -9.63E-07 -0.00027 -1.39E-05

SARD PV Tot -0.00379 -1.82E-06 -0.00308*** -0.000173***
-0.00283 -1.48E-06 -0.00109 -6.10E-05

SARD D -0.00016 -2.04E-07 0.00411*** 0.000231***
-0.0004 -2.13E-07 -0.00012 -6.80E-06

CSUD Hydro -0.00819*** -4.16e-06*** 0.000441*** 2.51e-05***
-0.00058 -8.90E-07 -0.00015 -8.48E-06

CSUD Wind -0.00100** -5.04e-07** -0.0001 -5.80E-06
-0.0004 -2.31E-07 -0.00017 -9.31E-06

CSUD PV Tot 0.00296*** 1.52e-06*** -0.000909*** -5.13e-05***
-0.00066 -4.48E-07 -0.00024 -1.36E-05

CSUD D -0.000180** -8.72e-08** -0.000126*** -7.12e-06***
-7.36E-05 -4.01E-08 -2.11E-05 -1.17E-06

Year2 -4.913*** -0.00133*** -0.775*** -0.0360***
-0.44 -0.00026 -0.0445 -0.00183

Year3 -4.018*** -0.00108*** -1.897*** -0.0714***
-0.208 -0.00022 -0.0655 -0.00223

Year4 -8.216*** -0.00254*** -1.873*** -0.0706***
-0.647 -0.00042 -0.0753 -0.00226

Year5 -7.746*** -0.00235*** -0.745*** -0.0348***
-0.654 -0.0004 -0.0629 -0.00254

Constant -0.635 -5.095***
-0.433 -0.124

Observations 43,824 43,824 43,824 43,824

Log-Lik Intercept Only: -21426.2 Log-Lik Full Model: -16034.4
D(43798): 32068.87 LR(24): 10783.6

Prob > LR: 0
McFadden’s R2: 0.252 McFadden’s Adj R2: 0.25
ML (Cox-Snell) R2: 0.218 Cragg-Uhler(Nagelkerke) R2: 0.350
Count R2: 0.845 Adj Count R2: 0.065
AIC: 0.733 AIC*n: 32120.87
BIC: -436041 BIC’: -10527.1
BIC used by Stata: 32346.76 AIC used by Stata: 32120.87

*** p<0.01
** p<0.05
* p<0.1

Table B.5: Estimations for SARD-CSUD
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Variables Congestion from CSUD Congestion to CSUD

Log-odds mfx Log-odds mfx

CSUD Hydro 0.00143*** 0.000103***
-0.00015 -1.05E-05

CSUD Wind 0.00114*** 8.23e-05***
-0.00019 -1.36E-05

CSUD PV Tot 0.000270** 1.94e-05**
-0.00013 -9.20E-06

CSUD D 0.00128*** 9.20e-05***
-3.32E-05 -2.43E-06

SUD Hydro 0.000601*** 4.33e-05***
-0.00012 -8.85E-06

SUD Wind 0.000706*** 5.09e-05***
-8.88E-05 -6.42E-06

SUD PV Tot 0.00126*** 9.09e-05***
-7.93E-05 -5.79E-06

SUD D -0.00109*** -7.88e-05***
-6.55E-05 -4.79E-06

Year2 -0.558*** -0.0351***
-0.0451 -0.00251

Year3 -1.043*** -0.0591***
-0.055 -0.00248

Year4 -1.910*** -0.0925***
-0.0697 -0.00248

Year5 -1.405*** -0.0742***
-0.077 -0.00305

Constant -6.927***
-0.119

Observations 0 0 43,824 43,824

Log-Lik Intercept Only: -18641.31 Log-Lik Full Model: -14165.7
D(43811): 28331.303 LR(12): 8951.316

Prob > LR: 0
McFadden’s R2: 0.24 McFadden’s Adj R2: 0.239
ML (Cox-Snell) R2: 0.185 Cragg-Uhler(Nagelkerke) R2: 0.322
Count R2: 0.859 Adj Count R2: 0.067
AIC: 0.647 AIC*n: 28357.3
BIC: -439917.9 BIC’: -8823.06
BIC used by Stata: 28470.246 AIC used by Stata: 28357.3

*** p<0.01
** p<0.05
* p<0.1

Table B.6: Estimations for CSUD-SUD
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Variables Congestion from SICI Congestion to SICI

Log-odds mfx Log-odds mfx

SICI Hydro 0.0109*** 0.000402*** -0.0118*** -0.00146***
-0.0019 -3.68E-05 -1.31E-03 -0.000136

SICI Wind 0.00198*** 0.000133*** -0.00570*** -0.000652***
-0.000126 -4.53E-06 -9.30E-05 -1.05E-05

SICI PV Tot 0.000965** 0.000111*** -0.00553*** -0.000616***
-0.000484 -9.54E-06 -2.83E-04 -2.98E-05

SICI D -0.00169*** -0.000114*** 0.00487*** 0.000557***
-0.000181 -4.68E-06 -1.16E-04 -1.25E-05

SUD Hydro -0.00132*** -3.81e-05*** 0.000793*** 0.000108***
-0.000193 -3.64E-06 -1.16E-04 -1.20E-05

SUD Wind -0.000754*** -2.17e-05*** 0.000447*** 6.11e-05***
-8.59E-05 -1.71E-06 -5.08E-05 -5.34E-06

SUD PV Tot -0.000643*** -3.00e-05*** 0.00106*** 0.000126***
-0.000173 -3.32E-06 -9.74E-05 -1.02E-05

SUD D 0.000722*** 2.03e-05*** -0.000397*** -5.52e-05***
-0.000127 -2.43E-06 -7.89E-05 -8.17E-06

Year2 0.0642 -0.00661*** 0.503*** 0.0479***
-0.0605 -0.000968 -0.0461 -0.00385

Year3 0.195*** -0.0205*** 1.942*** 0.142***
-0.0747 -0.000951 -0.0552 -0.003

Year4 -0.772*** -0.0359*** 3.014*** 0.198***
-0.105 -0.00135 -0.0649 -0.0032

Year5 -0.708*** -0.0399*** 3.700*** 0.226***
-0.105 -0.0015 -0.0709 -0.00346

Constant 0.333** -7.747***
-0.152 -0.118

Observations 43,824 43,824 43,824 43,824

Log-Lik Intercept Only: -31133.193 Log-Lik Full Model: -20880.1
D(43798): 41760.267 LR(24): 20506.12

Prob > LR: 0
McFadden’s R2: 0.329 McFadden’s Adj R2: 0.328
ML (Cox-Snell) R2: 0.374 Cragg-Uhler(Nagelkerke)R2: 0.493
Count R2: 0.812 Adj Count R2: 0.253
AIC: 0.954 AIC*n: 41812.27
BIC: -426349.993 BIC’: -20249.6
BIC used by Stata: 42038.154 AIC used by Stata: 41812.27

*** p<0.01
** p<0.05
* p<0.1

Table B.7: Estimation for SICI-SUD

120



Appendix C

Appendix for chapter 4

121



APPENDIX C. APPENDIX FOR CHAPTER 4

C.1 Seasonal trend estimation

coefficient std.error t-ratio

Mon 62.7784 0.453689 138.4 ***
Tue 63.0223 0.453689 138.9 ***

Wed 63.2403 0.453689 139.4 ***
Thu 63.2819 0.453893 139.4 ***

Fri 62.5943 0.453689 138 ***
Sat 59.9366 0.453689 132.1 ***
Sun 54.1446 0.453689 119.3 ***

h1 -2.9975 0.573913 -5.223 ***
h2 -9.12352 0.573913 -15.9 ***
h3 -13.2338 0.573913 -23.06 ***
h4 -16.2046 0.573913 -28.24 ***
h5 -16.591 0.573913 -28.91 ***
h6 -12.9058 0.573913 -22.49 ***
h7 -5.23837 0.573913 -9.127 ***
h8 2.41809 0.573913 4.213 ***
h9 10.0625 0.573913 17.53 ***

h10 12.4075 0.573913 21.62 ***
h11 9.70671 0.573913 16.91 ***
h12 7.34135 0.573913 12.79 ***
h13 -1.33789 0.573913 -2.331 **
h14 -4.54836 0.573913 -7.925 ***
h15 -0.8577 0.573913 -1.494
h16 2.61482 0.573913 4.556 ***
h17 6.59304 0.573913 11.49 ***
h18 13.139 0.573913 22.89 ***
h19 16.6033 0.573913 28.93 ***
h20 20.5117 0.573913 35.74 ***
h21 19.449 0.573913 33.89 ***
h22 12.9142 0.573913 22.5 ***
h23 5.622 0.573913 9.796 ***

Table C.1: CNOR estimation
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coefficient std.error t-ratio

Mon 62.5651 0.467468 133.8 ***
Tue 62.5143 0.467468 133.7 ***

Wed 62.8968 0.467468 134.5 ***
Thu 63.2362 0.467678 135.2 ***

Fri 62.3087 0.467468 133.3 ***
Sat 60.0145 0.467468 128.4 ***
Sun 54.2544 0.467468 116.1 ***

h1 -3.71806 0.591343 -6.287 ***
h2 -10.4299 0.591343 -17.64 ***
h3 -14.7268 0.591343 -24.9 ***
h4 -17.537 0.591343 -29.66 ***
h5 -17.849 0.591343 -30.18 ***
h6 -14.256 0.591343 -24.11 ***
h7 -5.92388 0.591343 -10.02 ***
h8 1.95141 0.591343 3.3 ***
h9 9.26223 0.591343 15.66 ***

h10 11.5796 0.591343 19.58 ***
h11 8.79195 0.591343 14.87 ***
h12 6.12688 0.591343 10.36 ***
h13 -1.85994 0.591343 -3.145 ***
h14 -5.24834 0.591343 -8.875 ***
h15 -1.93196 0.591343 -3.267 ***
h16 1.67216 0.591343 2.828 ***
h17 6.15486 0.591343 10.41 ***
h18 13.3799 0.591343 22.63 ***
h19 17.0103 0.591343 28.77 ***
h20 21.465 0.591343 36.3 ***
h21 20.6832 0.591343 34.98 ***
h22 13.5968 0.591343 22.99 ***
h23 6.0425 0.591343 10.22 ***

Table C.2: CSUD Estimation
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coefficient std.error t-ratio

Mon 62.6581 0.423314 148 ***
Tue 62.7927 0.423314 148.3 ***

Wed 63.1055 0.423314 149.1 ***
Thu 63.203 0.423504 149.2 ***

Fri 62.5052 0.423314 147.7 ***
Sat 59.8067 0.423314 141.3 ***
Sun 53.6588 0.423314 126.8 ***

h1 -2.9527 0.535488 -5.514 ***
h2 -8.92766 0.535488 -16.67 ***
h3 -12.9608 0.535488 -24.2 ***
h4 -15.9389 0.535488 -29.77 ***
h5 -16.3128 0.535488 -30.46 ***
h6 -12.6565 0.535488 -23.64 ***
h7 -4.01588 0.535488 -7.499 ***
h8 2.902 0.535488 5.419 ***
h9 10.5285 0.535488 19.66 ***

h10 12.7368 0.535488 23.79 ***
h11 10.573 0.535488 19.74 ***
h12 8.63868 0.535488 16.13 ***
h13 0.267025 0.535488 0.4987
h14 -1.92395 0.535488 -3.593 ***
h15 0.966248 0.535488 1.804 *
h16 3.56692 0.535488 6.661 ***
h17 7.08616 0.535488 13.23 ***
h18 12.7051 0.535488 23.73 ***
h19 15.368 0.535488 28.7 ***
h20 17.7342 0.535488 33.12 ***
h21 16.8203 0.535488 31.41 ***
h22 11.5034 0.535488 21.48 ***
h23 5.0632 0.535488 9.455 ***

Table C.3: NORD Estimation
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coefficient std.error t-ratio

Mon 71.9195 0.832086 86.43 ***
Tue 73.2223 0.832086 88 ***

Wed 73.0747 0.832086 87.82 ***
Thu 74.1035 0.83246 89.02 ***

Fri 72.1837 0.832086 86.75 ***
Sat 67.8587 0.832086 81.55 ***
Sun 61.4243 0.832086 73.82 ***

h1 -6.72424 1.05258 -6.388 ***
h2 -15.5588 1.05258 -14.78 ***
h3 -20.6255 1.05258 -19.6 ***
h4 -24.1576 1.05258 -22.95 ***
h5 -24.4439 1.05258 -23.22 ***
h6 -20.4564 1.05258 -19.43 ***
h7 -12.6271 1.05258 -12 ***
h8 -1.67619 1.05258 -1.592
h9 7.9309 1.05258 7.535 ***

h10 10.4894 1.05258 9.965 ***
h11 5.55078 1.05258 5.273 ***
h12 2.20739 1.05258 2.097 **
h13 -5.13559 1.05258 -4.879 ***
h14 -10.068 1.05258 -9.565 ***
h15 -7.48395 1.05258 -7.11 ***
h16 -4.28341 1.05258 -4.069 ***
h17 0.989007 1.05258 0.9396
h18 9.93265 1.05258 9.436 ***
h19 16.8603 1.05258 16.02 ***
h20 24.742 1.05258 23.51 ***
h21 27.84 1.05258 26.45 ***
h22 17.8245 1.05258 16.93 ***
h23 10.3872 1.05258 9.868 ***

Table C.4: SARD Estimation
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coefficient std.error t-ratio

Mon 85.062 0.862226 98.65 ***
Tue 85.4619 0.862226 99.12 ***

Wed 83.8214 0.862226 97.22 ***
Thu 86.3074 0.862613 100.1 ***

Fri 86.9568 0.862226 100.9 ***
Sat 82.2043 0.862226 95.34 ***
Sun 75.1473 0.862226 87.15 ***

h1 -16.1779 1.09071 -14.83 ***
h2 -24.9442 1.09071 -22.87 ***
h3 -29.3631 1.09071 -26.92 ***
h4 -32.2272 1.09071 -29.55 ***
h5 -32.7816 1.09071 -30.06 ***
h6 -30.8156 1.09071 -28.25 ***
h7 -20.9995 1.09071 -19.25 ***
h8 0.143777 1.09071 0.1318
h9 20.5194 1.09071 18.81 ***

h10 25.2177 1.09071 23.12 ***
h11 20.5038 1.09071 18.8 ***
h12 14.5048 1.09071 13.3 ***
h13 5.29 1.09071 4.85 ***
h14 -2.10056 1.09071 -1.926 *
h15 -2.89799 1.09071 -2.657 ***
h16 0.823962 1.09071 0.7554
h17 13.1216 1.09071 12.03 ***
h18 31.0504 1.09071 28.47 ***
h19 42.7392 1.09071 39.18 ***
h20 54.6698 1.09071 50.12 ***
h21 59.9782 1.09071 54.99 ***
h22 45.7944 1.09071 41.99 ***
h23 17.3649 1.09071 15.92 ***

Table C.5: SICI Estimation
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coefficient std.error t-ratio

Mon 61.871 0.452365 136.8 ***
Tue 61.8864 0.452365 136.8 ***

Wed 61.688 0.452365 136.4 ***
Thu 61.7114 0.452568 136.4 ***

Fri 61.6452 0.452365 136.3 ***
Sat 61.2355 0.452365 135.4 ***
Sun 55.684 0.452365 123.1 ***

h1 -3.67642 0.572238 -6.425 ***
h2 -10.3605 0.572238 -18.11 ***
h3 -14.615 0.572238 -25.54 ***
h4 -17.397 0.572238 -30.4 ***
h5 -17.697 0.572238 -30.93 ***
h6 -14.172 0.572238 -24.77 ***
h7 -6.03006 0.572238 -10.54 ***
h8 1.25931 0.572238 2.201 **
h9 5.95005 0.572238 10.4 ***

h10 5.69166 0.572238 9.946 ***
h11 2.00292 0.572238 3.5 ***
h12 -0.74333 0.572238 -1.299
h13 -5.47537 0.572238 -9.568 ***
h14 -8.4685 0.572238 -14.8 ***
h15 -6.71406 0.572238 -11.73 ***
h16 -3.17546 0.572238 -5.549 ***
h17 2.62445 0.572238 4.586 ***
h18 11.1279 0.572238 19.45 ***
h19 15.5149 0.572238 27.11 ***
h20 20.2984 0.572238 35.47 ***
h21 19.9492 0.572238 34.86 ***
h22 13.0245 0.572238 22.76 ***
h23 5.88455 0.572238 10.28 ***

Table C.6: SUD Estimation
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4
ck, S., and Weron, R., 2006,” Point and interval forecasting of spot

electricity prices: Linear vs. non-linear time series models”, Studies in Nonlinear Dy-
namics and Econometrics, vol 10(3), Article 2.

[52] Nogales, F. J., Contreras, J., Conejo, A. J., and Espinola, R., 2002, ”Forecasting next-
day electricity prices by time series models”, IEEE Transactions on Power Systems, 17,
342-348.

[53] O’Mahoney, A. and Denny, E., 2011, “The merit-order effect of wind generation in
the Irish electricity market”, Proceedings of the 30th USAEE/IAEEE North American
Conference, USAEE, Washingotn D.C., USA.

[54] Park, H., Mjelde, J., and Bessler, D., 2006,” Price dynamics among U.S. mar-
kets”,Energy Economics, 28(1).

[55] Petrella, A., and Sapio, S., 2006, ”No PUN Intended: A time series analysis of Italian
Day-Ahead electricity price”, EUI Working papers, RSCAS 2010/03.

[56] Raviv, E., Bouwman, K.E., and van Dijk, D. , 2013, ”Forecasting Day-Ahead Electricity
Prices: Utilizing Hourly Prices”,Tinbergen Institute Discussion Paper, TI 2013-068/III.

[57] Sapio, A., 2015, “The effects of renewables in space and time : A regime switching
model of the Italian power price”, Energy Policy, vol. 85, 487-499.

[58] Schwartz, G., 1978, ”Estimating the dimension of a model”, Ann. Stat, 6, 461-464.
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Résumé : Dérégulation du marché de l'électricité 

a montré de nombreux changements dans 

l'économie et a influencé les chercheurs à initier 
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market due to its specifications. Our project 
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