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Une formalisation des courbes elliptiques pour la cryptographie.

Le sujet de ma thèse s’inscrit dans le domaine des preuves formelles et de la vérification des algo-
rithmes cryptographiques. L’implémentation des algorithmes cryptographiques est souvent une tâche assez
compliquée, parce qu’ils sont optimisés pour être efficaces et sûrs en même temps. Par conséquent, il n’est
pas toujours évident qu’un programme cryptographique en tant que fonction, corresponde exactement à
l’algorithme mathématique, c’est-à-dire que le programme soit correct. Les erreurs dans les programmes
cryptographiques peuvent mettre en danger la sécurité de systèmes cryptographiques entiers et donc, des
preuves de correction sont souvent nécessaires. Les systèmes formels et les assistants de preuves comme
Coq et Isabelle-HOL sont utilisés pour développer des preuves de correction des programmes. Les courbes
elliptiques sont largement utilisées en cryptographie surtout en tant que groupe cryptographique très
efficace. Pour le développement des preuves formelles des algorithmes utilisant les courbes elliptiques, une
théorie formelle de celles-ci est nécessaire. Dans ce contexte, nous avons développé une théorie formelle
des courbes elliptiques en utilisant l’assistant de preuves Coq. Cette théorie est par la suite utilisée pour
prouver la correction des algorithmes de multiplication scalaire sur le groupe des points d’une courbe
elliptique.

Plus précisément, mes travaux de thèse peuvent être divisées en deux parties principales. La première
concerne le développement de la théorie des courbes elliptiques en utilisant l’assistant des preuves Coq.
Notre développement de plus de 15000 lignes de code Coq comprend la formalisation des courbes elliptiques
données par une équation de Weierstrass, la théorie des corps des fonctions rationnelles sur une courbe, la
théorie des groupes libres et des diviseurs des fonctions rationnelles sur une courbe. Notre résultat principal
est la formalisation du théorème de Picard ; une conséquence directe de ce théorème est l’associativité de
l’opération du groupe des points d’une courbe elliptique qui est un résultat non trivial à prouver. La seconde
partie de ma thèse concerne la vérification de l’algorithme GLV pour effectuer la multiplication scalaire
sur des courbes elliptiques. Pour ce développement, nous avons vérifier trois algorithmes indépendants : la
multiexponentiation dans un groupe, la décomposition du scalaire et le calcul des endomorphismes sur
une courbe elliptique. Nous avons également développé une formalisation du plan projectif et des courbes
en coordonnées projectives et nous avons prouvé que les deux représentations (affine et projective) sont
isomorphes.

Mon travail est à la fois une première approche à la formalisation de la géométrie algébrique élémentaire
qui est intégré dans les bibliothèques de Ssreflect mais qui sert aussi à la certification de véritables
programmes cryptographiques.

La manuscrit contient six chapitres.
— Le premier chapitre donne une introduction aux méthodes formelles, notamment dans le cadre de la

formalisation de résultats mathématiques ainsi que dans le contexte de la sécurité des infrastructures.
— Le deuxième chapitre présente une introduction aux courbes elliptiques et de leur utilisation en

cryptographie. Il y est aussi donné une introduction à l’assistant à la preuve Coq et à son extension
Ssreflect.

— Le troisième chapitre présente la contribution centrale de cette thèse : une bibliothèque formellement
vérifiée en Coq/Ssreflect pour la théorie des courbes elliptiques. Le résultat principal est une
preuve de l’existence d’un isomorphisme entre les points d’une courbe elliptique et le groupe de
Picard de ses diviseurs. Ces travaux ont été publiés dans Interactive Theorem Proving 2014.

— Le quatrième chapitre présente une preuve de correction de l’algorithme GLV (Gallant, Lambert,
et Vanstone) qui est utilisé pour la multiplication scalaire dans les courbes elliptiques — primitive
centrale de certaines constructions cryptographiques. Cet algorithme se décompose en trois parties,
dont l’une se repose sur la formalisation des courbes elliptiques présentée au chapitre précédent.

— Le cinquième chapitre conclue avec la présentation de trois applications et souligne l’importance
d’établir des liens formels entre bibliothèques formellement vérifiées de courbes elliptiques et les
implémentations afférentes. Une partie de ces travaux ont été publiés dans Computer Security
Foundations Symposium 2016.

— Le dernier chapitre conclue la thèse et donne des directions de recherche pour des travaux futurs.

Mots-clés : Cryptographie, Méthodes formelles (informatique), Courbes elliptiques, Coq
(logiciel).





1
Introduction

1.1 History of formal methods

Kurt Gödel, On Formally Undecidable Propositions of Principia Mathematica
and Related Systems I :

The development of mathematics towards greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can prove any
theorem using nothing but a few mechanical rules.

The idea of mechanized reasoning probably began in the 17th century with
Leibniz who was the first to imagine a universal language (characteristica univer-
salis) where all statements could be expressed and checked for their truth value
via a calculus of reasoning (calculus ratiocinator). Interestingly, Leibniz’s char-
acteristica was not limited to expressing mathematical statements. He imagined
a universal language where all controversial statements could be resolved by his
calculus and therefore no disagreement could take place. Nevertheless, one had
to wait until the beginning of the 20th century, when important progress in the
domain of mathematical logic introduced once again Leibniz’s idea limited to
mathematical statements. The realization that common mathematical state-
ments can be expressed using formal axiomatic systems in such a way that it
would be possible (at least in principle) to automatically check if they are correct
or not, was one of the most important steps in the history of mathematics in

1



the 20th century. The first to present such a system was Frege [Fre93] in 1893,
followed by Zermelo with axiomatic set theory (in 1908), Russell and Whitehead
with ramified type theory in Principia Mathematica (in 1913), and Church with
simple type theory (in 1940).

Formalization consists of two aspects: (i) expressing statements in some
formal language and (ii) develop proofs based on a fixed set of rules, in a way
that their correctness can be checked by some algorithm. However, in practice,
formalizing mathematical theorems and proofs is extremely difficult to do by
hand:

"...the tiniest proof at the beginning of the Theory of Sets would already
require several hundreds of signs for its complete formalization... formalized
mathematics cannot in practice be written down in full... We shall therefore very
quickly abandon formalized mathematics." (Bourbaki)

Even Russell himself stated that his intellect never recovered from the strain of
writing Principia Mathematica. To sum up, as Rasiowa and Sikorski report: The
mechanical method of deducing some mathematical theorems has no practical
value, because this is too complicated in practice. As a result, the idea of
formalizing proofs has not prevailed and few mathematicians have actually
exercised it. However, the rise of computer science in the late 20th century has
made possible the complete formalization of complex mathematical theorems
and proofs. Since then, major progress has been made in the development of
axiomatic formal systems, and several impressive results have followed, like
the formalization of the prime number theorem [ADGR07] or the four color
theorem [Gon07].

1.2 Proof assistants
The use of computers makes formalization a lot more realistic, because

computers can check and sometimes even generate proofs. In practice, we use a
proof assistant or a theorem prover, which is a computer program that assists
the user develop formal proofs by human - machine interaction. It works as a
calculator: the user writes an expression (definition, theorem, proof, ...) in the
language and the assistant mechanically checks the validity of the expression.
More precisely, the assistant includes a proof engine that provides tactics which
help the user interactively construct the proofs, and a kernel that checks if
the proof relies on valid reasoning. There exist many different proof assistants
[Wie06] that come with large mathematical libraries, such as Mizar based on
set theory, Isabelle-HOL based on higher order logic, Coq based on constructive
dependent type theory, ACL2 based on primitive recursive arithmetic, and PVS
based on classical dependent type theory.
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But why one should believe that a formal proof checked by some proof
assistant is equally or even more reliable than a common hand proof? Given the
proof assistant’s architecture, the validity of a formal statement and its proof is
checked by the proof assistant’s kernel. Yet, a question naturally arises: If the
kernel checks the proof, who checks the kernel? The answer is that one needs to
trust that the kernel is correct. Nevertheless, the reliability of proof assistants
relies on their architecture: Usually the size of the kernel is much smaller and
simpler compared to the prover itself. Keeping the kernel negligibly small and
readable by humans minimizes the probability of errors. If the kernel is correct
and bug-free, then any proof checked by the kernel is guaranteed to be correct
too, and one can be certain that all the mathematical theories formalized on
top of it are correct too. As a result, the proof assistant is much easier to trust,
since we just need to trust a small readable part and then everything that is
constructed on top of it is mechanically checked for correctness. In that sense,
any proof checked by a theorem prover is more reliable than a human paper
proof, since (as will be explained next) it is not unusual for hand proofs to lack
rigor or to contain unspotted errors.

Coq [The10, BC04] is the proof assistant used in this thesis. Coq comes with a
pure functional programming language and a set of deduction and computational
rules that characterize the logic. There are proof tactics that allow the user to
interactively construct proofs and there are libraries of proved mathematical
theorems available for use. A short introduction to Coq is given in Section 2.3.

Coq logic is the Calculus of Inductive Constructions [The10, PP89], a de-
pendently typed polymorphic lambda calculus. In contrast to classical logic, Coq
logic is constructive, which means that the excluded middle principle does not
hold. Furthermore, it means that to prove any existential statement, one needs
to provide an explicit witness for the statement to hold. These consequences
of constructiveness need to be taken into account, and it remains an important
difference when trying to construct a formal proof in Coq from a non-constructive
mathematical paper proof. Another significant aspect of Coq logic is the Curry–
Howard correspondence: The relation between a program (i.e. a function) and
its type is the same as the relation between a proposition and its proof. The
Curry–Howard correspondence makes the Coq language suitable for writing both
programs and logical formulas.

1.3 Use of formal methods in mathematics
To begin with, a first concern is that we want to be certain that the methods

used in a mathematical proof are valid. For example, is it correct to use the
axiom of choice or the principle of excluded middle in all cases? A second concern
is, given a certain background of allowed methods, whether a proof meets these
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particular standards: in other words whether it is correct. The debates on the
foundations of mathematics at the beginning of the 20th century were aiming to
address the first concern of what methods are legitimate to prove a mathematical
statement. However, formal methods are not designed to address this particular
problem, because formal correctness can be guaranteed only with respect to some
axiomatic logical framework, which is determined in advance. In a certain sense,
formal methods can be used to check the validity of mathematical statements
but only modulo a pre-existing underlying set of rules. Nevertheless, establishing
correctness and improving the rigor of mathematical statements is an important
issue for which formal methods are extremely helpful.

Indeed, guaranteeing the correctness of a mathematical statement is not a
trivial concern: unfortunately, imprecise statements and definitions, missing cases,
unclear hypotheses and unexplained inferences are very common in mathematical
literature. Moreover, mathematical proofs can sometimes be so complex that even
after being subjected to extensive peer-review, mistakes often escape unnoticed.
A large number of mathematical proofs have been found to contain errors
throughout the years: in 1935 Lecat wrote a book that includes 130 pages
of errors made by mathematicians up to 1900 [AH14]. Formal verification is
especially interesting for

1. proofs that are very long and complex such as the Classification of finite
simple groups or the Seymour-Robertson graph minor theorem,

2. proofs that rely on extensive calculation or that need explicit checking
of cases such as the Four-colour theorem or Hales’s proof of the Kepler
conjecture,

3. proofs where complete rigor is particularly painful such as program verific-
ation.

During the last few years, significant formalization efforts have taken place
and many impressive results have been formalized such as: the prime number
theorem (Avigad et al using Isabelle/HOL, Harrison et al using HOL Light), the
four-color theorem (Gonthier et al using Coq), the Jordan curve theorem (Hales
et al using HOL Light, Trybulec et al. using Mizar), the Hales proof of the
Kepler conjecture (Flyspeck project using HOL light and Isabelle) and the Feit–
Thompson Odd Order Theorem (Georges Gonthier et al using Coq). However,
maybe even more important than the results themselves are the mathematical
theories developed to support these formalizations. Those developments include
libraries about number theory, finite group theory, Galois theory, linear algebra,
real and complex analysis, probability theory and more which can be used for
future formalizations.

Formal verification is also useful in computer science to prove the correctness
of computer software and hardware. In most developments (software or hardware)
we do not even have informal proofs of correctness. To certify correctness,
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software and hardware are routinely tested for bugs. Nevertheless it is impossible
to test exhaustively in most cases and bugs are sometimes not detected with
really disastrous consequences. Formal methods can be used to certify the
correctness of software and hardware.

1.4 Use of formal methods in cryptography
From the early 90s formal methods have been used to model and analyze

the computational security of cryptographic protocols [But99, Mea03]. Formal
techniques are employed in several different phases in designing cryptographic
protocols such as the specification, construction and verification of protocols.

In abstract cryptographic models, security is provided against adversaries
who can only query the algorithm on inputs of their choice and then interpret the
outputs which are computed according to the correct secret key. Nevertheless,
real life physical implementations do not always correspond to such a model and
actual adversaries exploiting physical leakage turn out to be much more powerful.
During the last years, there has been significant research on evaluating physical
security of cryptographic systems, notably against side–channel attacks, such as
power consumption or electromagnetic radiation. Formal analysis of side channel
attacks has been proposed to model more general physical leakages [SMY06,
BDK13, PR13, MR03]. while recent works [BBC+14, GPP+16] have addressed
side-channel resistance (such as timing and memory accesses) for low level
cryptographic code.

Provable security [Ste03, GM84] is used to establish the security of crypto-
graphic systems in terms of rigorous mathematical proofs, by reduction: if an
adversary is able to compromise the security of the system, then she possesses
a way to solve a computationally hard problem. Although, provable security
aims to provide strong guarantees of security for cryptographic schemes, the
complexity of the proofs is difficult to handle and many proofs have resulted to
be flawed. Formal methods modelling game-based proofs, have been successfully
introduced to confront this problem and have resulted to many impressive results
in this area [BBGO09, BGLB11, BGJB07].

Proofs of correctness In all the above uses of formal methods to verify
cryptographic schemes, one assumes that the cryptographic functions are correct.
Indeed, correctness of implementations is essential when focusing on crypto-
graphic programs: Apart from the obvious fact that the user of a program needs
to be certain that the program does what is supposed to do, any bug or backdoor
in an implementation can be catastrophic for security [BBPV11b]. Yet, although
the precise computational security of composite constructions and protocols has
been widely studied using formal tools [BGHB11, BGZB09, BFK+14], imple-
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mentations of the underlying primitives have received far less attention from the
formal verification community.

For symmetric primitives such as block ciphers and hash functions, the
algorithm is the specification. Hence, verifying a block cipher implementation
amounts to proving the equivalence between a concrete program written for
some platform and an abstract program given in the standard specification.
Practitioners commonly believe that a combination of careful code inspection
and comprehensive testing is enough to provide high-assurance for such primitives,
although a more formal approach can also be used to prove correctness [App15a].

For asymmetric primitives such as RSA encryption, finite field Diffie–Hellman,
or elliptic curves, the gap between specification and code can be large. Abstractly,
such primitives compute well-defined mathematical functions in some finite
field, whereas concretely, their implementations manipulate arrays of bytes that
represent arbitrary precision integers. Moreover, asymmetric cryptography is
based on a more complex mathematical theory than symmetric cryptography,
such as number theory and algebraic geometry in the case of elliptic curves. As a
result, asymmetric algorithms designed to exploit certain mathematical properties
(of the underlying field for example) are more complicated to understand and to
implement correctly. Such an example is the Montgomery reduction algorithm
to perform modular reduction in prime fields.

Furthermore, since asymmetric primitives are typically much slower and can
form the bottleneck in a cryptographic protocol, most implementations incorpor-
ate a range of subtle performance optimizations that further distance the code
from the mathematical specification. Further optimizations may take place in
order for the implementation to satisfy security criteria such as side channel res-
istance. Consequently, even for small prime fields, comprehensive testing is inef-
fective for guaranteeing the correctness of asymmetric primitive implementations,
leading to bugs even in well-vetted cryptographic libraries [BBPV12, Ope15].
Even worse, asymmetric primitives are often used with long-term keys, so any
bug that leaks underlying key material can be disastrous.

To sum up, besides functional correctness, cryptographic algorithms need to
achieve contradictory goals such as efficiency and side–channel resistance. Faulty
implementations of algorithms may endanger security [BBPV11a]. This is why
formal assurance of their correctness is essential; even more so when it comes to
asymmetric primitives which are based on complex mathematical theories.

Our motivation in this thesis is to develop libraries to allow the formal veri-
fication of asymmetric cryptographic algorithms, more precisely of elliptic curve
algorithms. Until now work on formal verification of security protocols assumed
that the cryptographic libraries correctly implement all algorithms [APS12].
The first step towards the formal verification of cryptographic algorithms is the
development of libraries that formally express the corresponding mathematical
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theory. This thesis presents a formal library for elementary elliptic curve theory
that will enable formal analysis of elliptic-curve algorithms. We also present the
formalization of the GLV algorithm for scalar multiplication on an elliptic curve
group [GLV01].

1.5 Elliptic curves and cryptography
Elliptic curves have been used since the 19th century to approach a wide

range of problems, such as the fast factorization of integers and the search for
congruent numbers. In the 20th century, researchers have increased interest in
elliptic curves because of their applications in cryptography, first suggested in
1985 independently by Neal Koblitz [Kob87] and Victor Miller [Mil85]. Their use
in cryptography relies principally on the existence of a group law which makes
them a good candidate for public key cryptography, as its Discrete Logarithm
Problem is hard relative to the size of the parameters used. Elliptic curves also
allow the definition of digital signatures and of new cryptographic primitives,
such as identity-based encryption [Sha84], based on bilinear (Weil and Tate)
pairings [BF01].

Elliptic curves are used in public key cryptography mainly as an alternative
to traditional public-key cryptosystems such as RSA and finite field discrete
logarithm based systems. Elliptic curve cryptosystems present an efficiency
and security advantage over finite field Diffie–Hellman cryptosystems, known
to be slow and vulnerable to the number field sieve attack using precomputa-
tion [ABD+15], two limitations that do not apply to elliptic curves, as far as
currently known. Indeed, up to now and with the exception of some curves of
special form [MOV93], there has not been found a generic attack for elliptic
curves over prime fields with a subgroup of large prime order better than the
Pollard’s rho attack [Pol78] which runs in exponential time. Therefore, when
compared to standard finite field Diffie–Hellman or RSA, elliptic curve systems
require much shorter keys to achieve the same security level. Because of their
efficiency advantage, elliptic curves were widely adopted, especially in cases of
constrained devices such as smartcards, cellphones and smartphones and also
in web servers for which public key cryptography is a bottleneck. As a result,
the use of elliptic curves has been encouraged by several institutions such as
the U.S. National Institute of Standards and Technology (NIST) [Nat99], the
U.S. National Security Agency (NSA) and l’Agence Nationale de la Securité
des Systemes d’Information (ANSSI) proposing sets of recommended elliptic
curves and algorithms on top of them. It is indicative that in the report [Nat13]
of NSA, Elliptic Curve Diffie–Hellman (ECDH) and the Elliptic Curve Digital
Signature (ECDSA) are proposed as primitives suitable for communications
requiring a top secret level of security. In the recent years, concerns about mass
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surveillance have led to a shift towards the use of elliptic curves in preference to
older public–key primitives such as RSA, which no longer provide a sufficient level
of security. In that context, elliptic curve cryptosystems are of major significance
for many protocols and applications nowadays, and therefore the efficient and
secure implementation of elliptic curves schemes is of key importance.

The main operation performed in elliptic curve schemes is scalar multiplica-
tion, denoted [k]P in this thesis (where P is a point on an elliptic curve and k is an
integer). Several different algorithms are used to speed up scalar multiplication,
ranging from generic exponentiation algorithms such as binary exponentiation
to curve specific algorithms such as GLV [GLV01] and GLS [GLS09]. Usually,
these algorithms are further optimized to achieve better performance by using
special curve forms and alternative curve coordinate systems [CMO98, CC86].
Moreover, sometimes further optimizations are used to accelerate the underlying
field arithmetic. In practice, implementations have to take security criteria such
as side–channel resistance into consideration, so they are even further modified.
As a result, implementations of elliptic curve algorithms can be particularly
tricky, and in most cases it is not evident that an implementation is correct.
This problem can be approached with the use of formal methods, which can
provide formal certification that an implementation is correct. In that context,
libraries to provide a formal theory for elliptic curves are needed. And this is
what we provide.

1.6 Contribution of this thesis
This thesis is in the domain of formalization of mathematics. Our motivation

is to formalize elliptic curve theory using the Coq proof assistant, which will
enable formal analysis of elliptic-curve schemes and algorithms. For this purpose,
we used the Ssreflect extension and the mathematical libraries developed
by the Mathematical Components team during the formalization of the Four
Color Theorem. Our central result is a formal proof of Picard’s theorem for
elliptic curves: there exists an isomorphism between the Picard group of divisor
classes and the group of points of an elliptic curve. An important immediate
consequence of this proposition is the associativity of the elliptic curve group
operation. This development has resulted in more than 15000 lines of code and
includes formal theory about Weierstrass curves, the field of rational functions
on a curve, theory about free groups, divisors of rational functions on curves
and isomorphic representations in different coordinate systems. Our results have
been published as the article A Formal Library for Elliptic Curves in the Coq
Proof Assistant at the International Theorem Proving conference 2014.

Furthermore, we present a formal proof of correctness for the GLV algorithm
[GLV01] for scalar multiplication on elliptic curve groups. The GLV algorithm
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exploits properties of the elliptic curve group in order to accelerate computation.
It is composed of three independent algorithms : multiexponentiation on a
generic group, decomposition of the scalar and computing endomorphisms on
algebraic curves. This development includes theory about endomorphisms on
elliptic curves and is more than 5000 lines of code.

An application of our formalization is presented in Chapter 5. This work
consists of formally proving real-life implementations of elliptic curve algorithms
combining our development in Coq and F∗, which is a new higher order pro-
gramming language designed for program verification.

The entire development presented in this thesis is available at https://
github.com/strub/glv.
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2
Background

2.1 Mathematical background

2.1.1 Elliptic curves definitions

Definition 2.1 (Projective plane). The projective plane P2 over F is the quotient
P2 = (F3\(0,0,0))/∼ where (x, y, z) ∼ (x′, y′, z′) if and only if there exists a λ ∈ F∗

such that (x′, y′, z′) = (λx, λy, λz).

Definition 2.2 (Curve of the projective plane). A curve of the projective plane
is the set of projective points (x : y : z) whose coordinates are a solution of a
homogeneous equation f(x, y, z) = 0.

A curve represented by the homogeneous equation f(x, y, z) = 0 is smooth
or non-singular if the partial derivatives of f with respect to x, y, z do not all
vanish simultaneously on the curve. If a curve is smooth, then there are no
singular points, i.e. no cusps or nodes (self-intersections).

The definition of an elliptic curve in full generality is the following:

Definition 2.3 (Elliptic Curve). An elliptic curve E over some field F is a
smooth projective plane curve over F of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with the ai ∈ F. This form is called a Generalized Weierstrass form.
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There exists a one-to-one correspondence between the projective plane P2

and the union of an affine plane F2 and the projective line at infinity. (To be
more precise, there exists an isomorphism of algebraic varieties between the
projective plane and the above union). Indeed, let v = (x, y, z) be a non zero
vector of F3. If z 6= 0 then the equivalence class of v (denoted here [v]) is
[v] = [z−1v] = (xz : yz : 1) and there exists a unique representative of the class of
the form (x′, y′, 1). Hence, there is a 1-to-1 map between the set of projective
points with z 6= 0 and F2. If z = 0, then x and y cannot both be zero because
v is a non zero vector. Moreover, if x 6= 0 then [v] = [x−1v] = (xx : yx : 0) and
so there exists a unique representative of the class of the form (1, y′, 0). So,
there exists a 1-to-1 map between the set of projective points with z, x 6= 0
and F. If z = 0 and x = 0 then [v] = [y−1v] = [0, yy , 0] = (0 : 1 : 0). Hence,
P2 ∼= F2 ∪ F ∪ {(0 : 1 : 0)}.

In this setting, an elliptic curve of equation Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3 in projective coordinates is isomorphic to the

curve of equation y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 of the affine plane,

together with a separate point O called the point at infinity. A projective point
of the elliptic curve with z = 0 is of the form (0 : y : 0), and since a projective
point is an equivalence class, we can choose the representative (0, 1, 0) for this
class. This is the point at infinity (0 : 1 : 0) in projective coordinates, which
plays an important role when moving to the definition of the group law. This
part is explained in details in Chapter 3.

If the characteristic of the field F is not 2 or 3, then by an appropriate change of
variables [Sil09], an elliptic curve can be written in the form y2z = x3+axz2+bz3,
where a and b are elements of F. The condition that the curve is smooth reduces
to ∆ = 4a3 + 27b2 6= 0.

Most of the time, when introducing elliptic curves in a cryptographic context,
we use its short Weierstrass form:

Definition 2.4 (Elliptic Curve Short Weierstrass Form). An elliptic curve E
over some field F with characteristic different from 2 and 3 is an affine curve of
equation y2 = x3 + ax+ b together with a separate point O called the point at
infinity, where a, b ∈ F satisfy ∆ = 4a3 + 27b2 6= 0.

In standard elliptic curve implementations we often use projective coordin-
ate systems when performing cryptographic operations in order to improve
performance and avoid expensive field inversions.

The below remarks are not necessary to understand the mathematics of our
development and the reader may skip them, but they provide interesting context
to elliptic curve theory.

11



Remark 1 : Isomorphisms of algebraic curves

The notion of isomorphism of curves is much stronger than bijection of sets
of points, and reveals more about the relationship between two curves. One of
the reasons that isomorphisms are more interesting is that they are defined by
polynomials (or rational functions), so they’re something that one might actually
compute while bijections are much looser. In particular, every isomorphism
induces a bijection of sets of points, but the converse does not hold.

For example, if we take two 256-bit primes p and q that are very close together,
then their Hasse intervals (p+1−2√p, p+1+2√p) and (q+1−2√q, q+1+2√q)
intersect, and we can hope to find a prime r in the intersection. Then there must
exist (by Deuring’s theorem) [Sch87] a curve Ep over Fp and a curve Eq over Fq
such that r = #Ep(Fp) = #Eq(Fq). These groups have the same order, so there
exists a bijection between them. But since the curves are defined over different
fields, there is simply no way that we can efficiently realize that bijection as a
polynomial mapping. In general, we cannot compute such a bijection without
solving discrete logarithms which is cryptographically hard.

Remark 2 : The Projective space

The construction of the projective plane is a special case of a projective space:

Definition 2.5 (Projective space). Let F be a field. The Projective n-space
over F, denoted Pn, is the set of all lines through (0, 0, ..., 0) in Fn+1.

Two non zero points A = (a1, a2, ..., an+1), B = (b1, b2, ..., bn+1) determine
the same line if there exists a λ ∈ F∗ such that ∀i, ai = λbi. Hence, we can altern-
atively define the projective space Pn as the quotient set Pn = (Fn+1\(0,...,0))/∼,
where (a1, a2, . . . , an+1) ∼ (b1, b2, . . . , bn+1) if and only if there exists a λ ∈ F∗

such that ai = λbi,∀i. Elements of Pn are equivalence classes of the quotient set
(i.e. lines from a geometric point of view), and are called points of the projective
space. If (x1, x2, ..., xn+1) is a representative of a certain class of Pn we say
that (x1, x2, ..., xn+1) is a set of homogeneous coordinates for this class and we
denote the projective point (x1 : x2 : ... : xn+1). It can be shown that there
is an isomorphism between a projective n-space Pn and the union of an affine
n-space and a hyperplane at infinity. More precisely, Pn ∼= Fn ∪ H∞, where
H∞ = {(x1 : x2 : ..., xn : xn+1) | xn+1 = 0}, i.e. H∞ ∼= Pn−1. For more details,
see [Ful89].

Remark 3 : The genus of a curve

The genus of a curve can be intuitively understood as a measure of the
curve’s geometric complexity.

One reasonable classification of algebraic curves could be according to the
degree of the curve (i.e. the degree of the polynomial that defines the curve
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equation), but unfortunately it does not work for curves of higher degree. For
example, let us consider the non-singular curves L : y = 0 and C : yz − x2 = 0.
The curves L and C are isomorphic: There exists a mapping m : (x : y : z) 7→
(x : 0 : z) from C to L and a mapping n : (x : y : z) 7→ (xz : x2 : z2) from
L to C such that (m ◦ n)(x : y : z) = (x : y : z) for all (x : y : z) ∈ L and
(n ◦ m)(x : y : z) = (x : y : z) for all (x : y : z) ∈ C. One would want the
measure that characterizes the geometric complexity of algebraic curves to be
invariant under isomorphism. Nevertheless, in this case L is of degree 1 and C
is of degree 2.

The genus is a non-negative integer that can be associated to any algebraic
curve and characterizes the geometric complexity of the curve. For example:
— the curve C1 : y = x has genus 0,
— the curve C2 : y2 = x2 +Bz2 has genus 0,
— the curve C3 : y2z = x3 +Axz2 +Bz3 has genus 1,
— the curve C4 : y2z2 = x4 has genus 1, and
— the curve C5 : y2z3 = x5 + xz4 has genus 2.
To compute the genus of a non-singular curve, we can use the formula

(d−1)(d−2)
2 , where d is the degree of the curve. For singular curves, which is out

of scope for this thesis, see [Cas91].
A smooth projective plane curve of genus 1 is a cubic defined by a homogen-

eous polynomial of the form

f(x, y, z) = Ax3+By3+Cz3+Dx2y+ Ex2z+Fy2x+Gy2z+Hz2x+Iz2y+Jxyz.

This is a direct consequence of the Riemann–Roch theorem which will be
explained in the end of this section. An equivalent definition of an elliptic curve
is the following:

Definition 2.6. An elliptic curve E over some field F is defined as a smooth
projective plane curve of genus 1 together with a point O ∈ E(F).

Remark 4 : Abelian Varieties and Elliptic Curves

An alternative definition of an elliptic curve, in a more algebraic context, is
that an elliptic curve is an abelian variety of dimension one. To give some intu-
ition, a variety is the zeros of a set of polynomials subject to some irreducibility
conditions. For a precise definition and further details, see [Ful89]. A variety
of dimension one is a curve. An abelian variety is a smooth projective variety
where one can define a group operation by ratio of polynomials. This operation
makes the variety a commutative group. In this sense, an abelian variety of
dimension one is a smooth projective curve equipped with a group operation
defined by polynomial fractions, and it can be shown that every such curve is an
elliptic curve.
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2.1.2 Defining addition

From this point on, we consider fields with characteristic different from 2, 3
and so we are free to interchange between the projective and the short Weierstrass
form of elliptic curves.

To understand the group law, one first needs to understand Bézout’s theorem
for elliptic curves:

Lemma 2.1 (Bézout for elliptic curves). Let F be an algebraically closed field,
and f ∈ F[X,Y, Z] a homogeneous polynomial of degree 3. Let E be the elliptic
curve defined by the equation E : Y Z = X3 + aXZ2 + bZ3 and L a line (not
contained in E). Then L ∩ E has exactly 3 points counted with multiplicity.

More precisely, a line in the projective space is the set of projective points
(X : Y : Z) which are the solutions of the equation kX + lY + mZ = 0 for
some k, l,m ∈ F (k, l,m not all zero). Given an elliptic curve E of equation
E : Y Z = X3 + aXZ2 + bZ3, there exist three different kinds of lines:

1. the line of equation Z = 0, which intersects the elliptic curve E at the
point at infinity (0 : 1 : 0) with multiplicity 3,

2. the line of equation X + cZ = 0 (with c 6= 0) which intersects the elliptic
curve E at the point at infinity and at the points (−c :

√
(−c)3 − ac+ b : 1),

(−c : −
√

(−c)3 − ac+ b : 1) which may coincide, and

3. the line of equation kX + lY + lZ = 0, (with k, l,m 6= 0) which intersects
the elliptic curve E at three finite points of the form (x : y : 1), which may
coincide. To compute the x, y we have to solve the system{

y2 = x3 + ax+ b

kx+ ly +m = 0.

Bézout’s theorem allows us to geometrically define an operation on elliptic
curve points. Let P and Q be points on an elliptic curve E , and l be the line
through P and Q (or the tangent to the curve at P if P = Q). By the Bézout
theorem, l intersects E at a third point, denoted by P �Q. The sum P +Q is
the opposite of P �Q, obtained by taking the symmetric of P �Q with respect
to the x axis (in affine coordinates) or the point (x : −y : z) (in projective
coordinates).

Addition in affine coordinates.

1. O is defined to be the neutral element: ∀P, P +O = O + P = P .

2. the negative of a point (xP , yP ) (resp. O) is (xP ,−yP ) (resp. O), and

3. if three points are collinear, their sum is equal to O.
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This geometrical definition can be translated into an algebraic setting, ob-
taining the following polynomial formulas: Let P = (xP , yP ) and Q = (xQ, yQ)
be two finite points. Then:

1. if P 6= Q, then P +Q = (xS , yS) with:{
xS = λ2 − xP − xQ
yS = −λ3 + 2λxP − λxQ − yQ

where λ = yP − yQ
xP − xQ

,

2. if P = Q with yP = yQ 6= 0, then will apply the previous formulas with
λ = (3x2

P +a)/2yP ,

3. if P = Q with yP = yQ = 0, then P +Q = O.

Addition in projective coordinates. In projective coordinates, addition is
defined by the following rules:

1. The zero element is the point at infinity (0 : 1 : 0).

2. The negative of a projective point (x : y : z) is the point (x : −y : z).

3. If three points are collinear, their sum is equal to O.

Like in the affine setting, these rules can be translated into polynomial
formulas: For all P = (xP : yP : zP ) on E and Q = (xQ : yQ : zQ) on E, let
S = P +Q = (xS : yS : zS) be the sum of the two points.

— If P = Q then
u = 3x2

P + az2
P xS = vr

v = 2y2
P yS = −u(r − v2x)− yP v3

r = u2zP − 2v2xP zS = zP v
3.

— If P 6= Q then
u = yQzP − yP zQ xS = vr

v = xQzP − xP zQ yS = −u(r − xP zQv2)− yP zQv3

r = u2zP zQ − v2(xP zQ + xQzP ) zS = zP zQv
3.

Remark 4: Bézout generalized for algebraic curves

Bézout theorem can be generalized for algebraic curves. Let C,D be two
plane projective curves given by the equations F (x, y, z) = 0 and G(x, y, z) = 0
respectively. We say that the curves share a common component if F,G have
a non constant common divisor. Any projective point (x0 : y0 : z0) satisfying
F (x0, y0, z0) = 0 and G(x0, y0, z0) = 0 is defined as an intersection point of
C and D. Any two algebraic curves without common component intersect in
finitely many points. Let P be an intersection point of C and D. Then we can
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define an intersection multiplicity at P , denoted here as vP (C,D). We are not
going to give here the detailed definition of this intersection multiplicity, for
more details see [Sut15].

Lemma 2.2 (Bézout). Let C, D be two plane projective curves over an algebra-
ically closed field F of degree m and n respectively. Suppose that C and D share
no common components. Let S be the set of intersection points C(F) ∩D(F).
Then

∑
P∈S vP (C,D) = mn.

2.1.3 Riemann Roch and the group law

The set of points of an elliptic curve together with the operation defined
above form an abelian group: the operation is commutative and associative,
there is a neutral element (the point at infinity), and there exists a negative
point for every point on the curve. In both a geometrical or an algebraic setting,
it is direct to prove that the operation is commutative, but it is not trivial to
prove that it is associative. In what follows we sketch three different proofs of
associativity:

— a geometrical (grid) proof,

— a computational proof, and

— a proof based on the Riemann Roch theorem.

The first two proofs are interesting as context for elliptic curves, but they
are not necessary to understand as a background to our formalization. The
third proof, which is based on the Riemann–Roch theorem, allows to introduce
several notions that reappear in the formalization presented in Chapter 3. The
proof of associativity that we have formalized is based on the idea underlying
the Riemann–Roch proof. However, the formalization of the Riemann–Roch
theorem was out of the scope of this thesis. As a result, the parts of the proof
which are direct consequences of the Riemann–Roch theorem are formalized in a
more elementary way. This is explained in details in Chapter 3.

The geometrical grid proof

Let us recall the Bézout theorem as stated in [HIS14]:

Theorem 2.3 (Bézout). Let X and Y be two plane projective curves defined
over a field F that do not have a common component (i.e. X and Y are defined
by polynomials whose greatest common divisor is a constant). Then the total
number of intersection points of X and Y with coordinates in an algebraically
closed field E which contains F, counted with multiplicity, is equal to the product
of the degrees of X and Y .
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l2

l1
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−(P+R) (P+R)

O
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T

P+Q

P Q −(P+Q)

Figure 2.1 – The geometrical grid proof

The following lemma is a direct consequence of the Bézout theorem for cubics
and allows to prove that the addition on elliptic curve points, as defined above,
is a group law.

Lemma 2.4. In a projective plane, let Aij be the intersection points of the
straight lines pi and qj where 1 ≤ i, j ≤ 3, and the points Aij are pairwise
distinct. Suppose that all points Aij, except perhaps A33 lie on a cubic. Then
A33 also lies on this cubic.

The sketch of the proof given here is partly from [Sut15] which is an adaptation
of the proof initially given in [Cas91] and partly from [HIS14]. It only concerns
the general case (meaning that in the diagram in Figure 2.1, the points are
related only by the way the diagram is constructed and in no other way).

Let P,Q,R be three distinct non-zero points of an elliptic curve E over some
field F, that we consider algebraically closed.

— Let l0 the line through P and Q. The third point of intersection with E is
the point −(P +Q).

— Let m0 the line through P and R. The third point of intersection with E
is the point −(P +R).

— Letm2 the line through −(P+Q) and P+Q. The third point of intersection
with E is the point O.

— Let l2 the line through −(P +R) and P +R. The third point of intersection
with E is the point O.

— Let m1 the line through Q and P +R. The third point of intersection with
E is the point S = −(Q+ (P +R)).

— Let l1 the line through R and P +Q. The third point of intersection with
E is the point T = −(R+ (P +Q)).

It suffices to show that S = T . By the aforementioned Bézout theorem, the
intersection point of m1 and l1 is on the curve E . As a result, l1 intersects the
curve at Q, P +R and A. Hence, A = S. Following the same reasoning for m1,
A = T and therefore T = S and the addition is associative.
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The computational proof

Using the explicit Weierstrass formulas, which define addition in affine
coordinates, we can give a more elementary proof of associativity, fully presented
in [Fri98]. Despite what one might have thought, this direct proof is not
trivial because it involves many special cases that have to be treated separately.
Moreover, some of the explicit computations involved are hard and the verification
took several hours on a computer. The proof presented in [Fri98] treats separately
the following different cases:

— A,B,C ∈ E \ {O}. If A 6= ±B, B 6= ±C, A+B 6= ±C and B + C 6= ±A,
then (A+B) + C 6= A+ (B + C).

— A,B ∈ E \ {O}. If A 6= −A, A 6= ±B, A + A 6= ±B and A + B 6= ±A,
then (A+A) +B 6= A+ (A+B).

— A ∈ E \ {O}. If A 6= −A, A + A 6= −(A + A), (A + A) + A 6= ±A and
A+A 6= ±A, then (A+A) + (A+A) 6= A+ (A+ (A+A)).

— After having proven several basic properties, such as the uniqueness of the
neutral element and the cancellation rule, one can prove the following fact.
Assume that

1. A+B 6= C and A 6= B + C or

2. A = B or B = C or A = C or

3. O ∈ {A,B,C,A+B,B + C, (A+B) + C,A+ (B + C)},

then (A+B) + C = A+ (B + C).

This is the most elementary and technical approach to proving associativity.
Théry et al [Thé07] present a formal proof that an elliptic curve is a group

using the Coq proof assistant, similar to the one described here. The proof that
the operation is associative relies heavily on case analysis and uses computer-
algebra systems to deal with non-trivial computation.

The Riemann Roch theorem

Following Dummit’s lecture notes A Whirlwind Tour of Elliptic Curves at
NTS in 2012, we state the Riemann–Roch theorem for algebraic curves and we
sketch the proof of associativity for the elliptic curve group law.

The Riemann–Roch theorem is a famous theorem of algebraic geometry
giving the dimension of the space of functions on a curve, given conditions on
their zeros and poles. To state Riemann–Roch, we first need to introduce a few
notions: Let C be a smooth curve over a field K.

1. The free abelian group generated by the points of C is called the divisor
group and is denoted Div(C). A divisor D is an element of the form
D =

∑
P∈C nP (P ) with nP ∈ Z, all but finitely many of which are zero.
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The degree of a divisor D =
∑
P∈C nP (P ) is defined to be the sum of the

coefficients deg(D) =
∑
P∈C nP . The subgroup of degree-zero divisors

Div0(C) is the kernel of the degree map.

2. Let f be a non-zero function on C. Let the divisor of f to be div(f) =∑
P∈C ordP (f)(P ) where ordP (f) is the order of vanishing of f at P (if f

has a zero at P , the order is the degree of the zero, and if f has a pole at
P , the order is the opposite of the degree of the pole). This is a degree-zero
divisor because functions on smooth projective curves have equal numbers
of zeros and poles.

3. A divisor is principal if it is the divisor of some nonzero function. The
principal divisors form a subgroup of Div0(C) denoted Prin(C), and there-
fore we can quotient Div(C) by Prin(C) and form the group of divisors
modulo principal divisors. This quotient group is called the Picard group
and is denoted Pic(C). Two divisors are equivalent if they belong to the
same class of the Picard group.

4. Let w be a nonzero differential form on C. We do not give a definition of
differential forms here, for details see [Ful89]. We can associate a divisor
to w by computing its zeros and the corresponding orders of vanishing. All
nonzero differentials are in the same class of the Picard group, called the
canonical divisor KC .

5. A divisor D is called effective, denoted by D ≥ 0, if all coefficients of D
are greater than or equal to zero. This is extended to a partial order on
Div(C) as follows:

∀P,
∑
P∈C

nP (P ) ≥
∑
P∈C

mP (P ) ⇐⇒ nP ≥ mP .

6. For a divisor D we define L(D) to be the finite-dimension vector space

L(D) = {0} ∪ {f ∈ K̄(C) | div(f) ≥ −D}.

We denote the dimension of L(D) by l(D).

Theorem 2.5 (Riemann–Roch). Let C be a smooth curve of genus g and KC the
canonical divisor of C. Let D be any divisor in Div(C). Then l(D)−l(KC−D) =
deg(D)− g + 1.

An elliptic curve is a smooth curve of genus 1, so in the case of an elliptic
curve E , the Riemann–Roch theorem gives l(D)− l(KC −D) = deg(D) for any
divisor D ∈ Div(E).

To prove that the elliptic curve law is associative, one has to prove that there
exist an isomorphism between Pic0(E) and E : note that Pic0(E), which is the
Picard group of zero-degree divisors, is an abelian group (as it is a quotient of
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abelian groups). Because of the Riemann–Roch theorem, every class of Pic0(E)
has a unique representative of the form [(P )− (O)] where P ∈ C. Thus, there
exists a bijection between Pic0(E) and E , which is also a morphism. By transport
of structure, E is also an abelian group. The fact that every class of Pic0(E) has
a unique representative of the form [(P )− (O)] is a direct consequence of the
Riemann Roch theorem:
Existence Recall that an elliptic curve is a smooth curve of genus 1. From

Riemann–Roch, we have that l(D + (O)) = 1: Remark that, in the case
of elliptic curves, g = 1 =⇒ 2g − 2 = 0, so any divisor D with degree
greater than zero satisfies l(KE −D) = 0.
Given a zero degree divisor D, deg(D + (O)) = 1 > 0 =⇒ l(KE −D −
(O)) = 0. Hence, l(D + (O)) − l(KE − D − (O)) = deg(D + (O)) =⇒
l(D + (O)) = 1. Given a generator f of L(D + (O)), we have div(f) >
−D − (O) and deg(div(f)) = 0. So there exists a point P ∈ E such that
div(f) = −D − (O) + (P ). As a result, D ∼ (P )−O.

Uniqueness To prove that the representative is unique, we have to prove that
if (P ) ∼ (Q) then P = Q: From Riemann–Roch, we have l((Q)) = 1.
As above, l((Q)) − l(KE − (Q)) = deg((Q)) = 1 =⇒ l(KE − (Q)) = 0.
Now, L((Q)) contains all the constant functions (whose divisors are the
zero divisor). So if we consider a generator g of L((Q)), then g must be
a constant function (if not, then all constant functions are not included
in L((Q))). If (P ) ∼ (Q) then there exists a function f ∈ K(E) such that
div(f) = (P )− (Q) and f ∈ L((Q)). By the above, f is constant and so
div(f) = (P )− (Q) = 0 which implies that P = Q.

Remark 5 : Our formal proof of associativity

We have formalized the above proof, with the exception of the fact that
every class of Pic0(C) has a unique representative of the form [(P )− (O)]. In
the above description, this is a consequence of the Riemann–Roch theorem. In
our formalization, the proof follows a more elementary path. This is because
formalizing the Riemann–Roch theorem was out of reach in this work.

Remark 6 : Riemann–Roch and Weierstrass (cubic) forms

The Riemann–Roch theorem is very important for the theory of elliptic
curves. The following proposition is a direct consequence of the Riemann-Roch
theorem:

Lemma 2.6. A plane projective curve C of genus 1 is a cubic given by the
equation E : y2 + a1xy + a3y = x3 + a2x+ a4x+ a6.

Proof. Indeed, a property of the Riemann Roch theorem is that if deg(D) > 2g−2
then l(D) = deg(D)− g + 1. Let C be a curve of genus 1 over an algebraically

20



closed field K. Let P be a point of C. Then, by the above property, l(n(P )) = n

for all n = 1, 2, . . ., since deg(n(P )) = n > 2g − 2 = 0 for all n.

— l((P )) = 1 and hence, L((P )) = K since it includes all the constant
functions. Therefore L((P )) = K has base {1}.

— l(2(P )) = 2 and so a base for L(2(P )) will be {1, x} where ordP (x) = −2
and ordQ(x) ≥ 0 for all other points Q in C.

— l(3(P )) = 3 and so a base for L(3(P )) will be {1, x, y} where ordP (y) = −3
and ordQ(y) ≥ 0 for all other points Q in C.

— In the same way, L(4(P )) has base {1, x, y, x2} and L(5(P )) has base
{1, x, y, x2, xy}.

— In L(6(P )) the set {1, x, y, x2, xy, x3, y2} is linearly dependent (7 functions
included). Indeed, both x3 and y2 have order −6 at P and non-negative
order at all other points of C. In the linear relation, the coefficients of x3

and y2 cannot be zero, because if not every other term would have a different
order at P . As a result, for appropriate constants, the linear dependence
can be written in the form y2 + a1xy + a3y = x3 + a2x+ a4x+ a6.

2.2 Use of elliptic curves in cryptography
Elliptic curves are used in public key cryptography mainly as an alternative

to traditional public-key cryptosystems such as RSA and finite field discrete
logarithm based systems. Their use was proposed in 1985 independently by
Miller [Mil85] and Koblitz [Kob87] and while their acceptance was not immediate,
they were widely adopted in the 21st century. Elliptic curve cryptosystems present
an efficiency and security advantage over finite field cryptosystems, known to be
slow and vulnerable to number field sieve attacks with precomputation [ABD+15],
two limitations that do not apply to elliptic curves, as far as currently known.
Indeed, up to now and with the exception of some curves of special form [MOV93],
there has not been found a generic attack for elliptic curves with a subgroup
of large prime order, better than the Pollard’s rho attack [Pol78] (which runs
in exponential time). Therefore, when compared to standard finite field Diffie–
Hellman or RSA, elliptic curve systems require much shorter keys to achieve the
same security level.

Moreover, recent trends in protocol design indicate a shift towards the use of
elliptic curves in preference to older asymmetric primitives. This is partly due to
concerns about mass surveillance, which means that non-forward-secret primitives
such as RSA encryption are no longer considered sufficient. Cryptographic lib-
raries such as OpenSSL already implement dozens of standardized elliptic curves.
However, concerns about backdoors in NIST standards [CNE+14] have led to the
standardization of new elliptic curves such as Curve25519 and Curve448 [LH16],
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and implementations of these relatively new curves are currently being developed
and widely deployed. Verifying these fresh implementations of new elliptic curves
was given as an open challenge from practitioners to academics at the Real
World Cryptography workshop in 2015 [Kas15].

Elliptic Curve Cryptographic Schemes

Let E be an elliptic curve over some prime field Fp. Let P ∈ E(Fp) be a point
of order r. Given an integer k in the range [1, r− 1] we call scalar multiplication
by k, the sum of k copies of P :

[k]P = P + P + · · ·+ P .

Evidently, the result [k]P is a an element of the cyclic subgroup generated by P .
Some basic cryptographic schemes using elliptic curves are presented below.

The description of these are taken from [Lon11]. In what follows, P is a point
of E which generates the cyclic group 〈P 〉 of prime order r. In the following
schemes, the parameters E , P, p, r are public and everyone has access to them.

Elliptic Curve Diffie–Hellman key exchange

The elliptic curve Diffie–Hellman key exchange is a variant of the original
Diffie–Hellman scheme [DH76]. Two correspondants Alice and Bob are trying
to establish a shared key after exchanging some messages on a public channel.
Alice chooses her secret key, which is an integer a in [1, ..., r − 1] and computes
the associated multiple Qa = [a]P . Bob too chooses his secret key, which is an
integer b in [1, ..., r − 1] and computes the associated multiple Qb = [b]P . Then
they exchange the values Qa and Qb. Alice then uses her secret key to compute
[a]Qb, and Bob similarly computes [b]Qa. They have both computed the shared
key K = [ab]P . The ECDH scheme is depicted in Algorithm 1.

Algorithm 1: Elliptic Curve Diffie-Hellman key exchange (ECDH)

1 Input: E , p, P , r
2 Alice: Choose a random integer a ∈ [1, r − 1].
3 Alice: Compute Qa = [a]P and send it to Bob.
4 Bob: Choose a random integer b ∈ [1, r − 1].
5 Bob: Compute Qb = [b]P and send it to Bob.
6 Alice: Upon reception of Qb, compute K = [a]Qb.
7 Bob: Upon reception of Qa, compute K = [b]Qa.
8 Output: shared key Q = [ab]P
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Elliptic Curve ElGamal

The elliptic curve ElGamal scheme is an analog of the standard ElGamal
crypto-scheme [Gam84]. Alice chooses a private key which is an integer k, and
then publishes her public key Q = [k]P . Assume that Bob wants to send Alice a
message m. First, he converts the message m into a point M ∈ E(Fp). Then he
chooses his ephemeral key to be a random integer d and he computes the two
points C0 = [d]P and C1 = M + [d]Q. He sends the two points (C0, C1) to Alice.
To decrypt the message, Alice computes the point M = C1 − [k]C0 using her
secret key k. She then converts the point M to the plaintext m. The elliptic
curve ElGamal scheme is depicted in Algorithm 2 and 3.

Algorithm 2: Elliptic Curve El Gamal Encryption
1 Input: E , p, P , r, public key Q and plaintext m.
2 Encode m as a point M in E(Fp).
3 Choose a random integer d ∈ [1, r − 1].
4 Compute C0 = [d]P .
5 Compute C1 = M + [d]Q.
6 Return (C0, C1).
7 Output: ciphertext (C0, C1)

Algorithm 3: ElGamal Decryption
1 Input: E , p, P , r, private key k and ciphertext (C0, C1)
2 Compute M = C1 − [k]C0.
3 Decode the point M to the plaintext m.
4 Return m
5 Output: plaintext m

In order to perform elliptic curve ElGamal, one needs to encode plaintext
messages as points, which is not straightforward. Nevertheless, there have been
several solutions to approach this problem [Ica09]. We do not discuss this here.

Elliptic curve digital signature algorithm (ECDSA)

The elliptic curve digital signature algorithm is the analogue of the Digital
Signature Algorithm (DSA). In what follows, H denotes a hash function that is
assumed to be collision resistant.

Suppose Alice wants to send a signed message m to Bob. Suppose also that
Alice possesses a secret private key k. Then, she chooses a random integer d
and computes the point [d]P = (x1, y1). Setting z = x1, she computes s0 = z
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(mod r) and s1 = d−1(H(m) + kz) (mod r), where s0 6= 0. Then, she sends the
encrypted message to Bob together with the signature (s0, s1).

To verify the signature, Bob has first to recover the plaintext m. He first
computes the hash H(m) and t = s−1

1 (mod r). Afterwards, he computes the
integers u = et (mod r) and v = s0t (mod r) and the point T = [u]P + [v]Q =
(x1, x2). Setting z = x1, if s0 = z (mod r), then the signature is verified. If not,
or if T = O, then the signature is rejected.

The ECDSA scheme is illustrated in Algorithms 4 and 5.

Algorithm 4: ECDSA signature generation
1 Input: E , p, P , r, private key k and message m
2 Choose random integer d ∈ [1, r − 1].
3 Compute [d]P = (x1, y1) and set z = x1.
4 Compute s0 = z (mod r). If s0 = 0 go to step 2.
5 Compute e = H(m).
6 Compute s1 = d−1(e+ kz) (mod r). If s0 = 0 go to step 2.
7 Return (s0, s1).
8 Output: Signature (s0, s1).

Algorithm 5: ECDSA signature verification
1 Input: E , p, P , r, public key Q, message m and signature (s0, s1)
2 If s0, /∈ [1, r − 1] or if s1, /∈ [1, r − 1], then return (reject the signature)
3 Compute e = H(m)
4 Compute t = s−1

1 (mod r).
5 Compute u = et (mod r) and v = s0t (mod r)
6 Compute T = [u]P + [v]Q = (x1, x2) and set z = x1. If T = O, then

return (reject the signature).
7 If s0 = z (mod r), then return (accept the signature). Else return (reject

the signature).
8 Output: reject or accept the signature

Elliptic curve discrete logarithm problem (ECDLP)

In all the above cryptosystems, the main operation performed on elliptic
curve points is a scalar multiplication. The hardness of crypto-schemes based
on scalar multiplication is based on the difficulty of solving the ECDH or the
ECDLP.

Definition 2.7. Let E be an elliptic curve over some prime field Fp. Let
P ∈ E(Fp) be a point of order r and a, b two integers in the range [1, r − 1].
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Given the points P, [a]P and [b]P , and without knowing the integers a, b, the
ECDH is the problem of determining the point [ab]P .

Definition 2.8. Let E be an elliptic curve over some prime field Fp. Let
P ∈ E(Fp) be a point of order r. Given the point P and the point Q in the cyclic
subgroup generated by P , the ECDLP is the problem of determining the integer
k in the range [1, r − 1] such that Q = [k]P .

The ECDLP is a separate problem from the ECDH, yet for the curves
that we use in practice, they are considered equivalent [SVM04]. The ECDLP
is considered to be harder that the DLP on some finite field or the integer
factorization problem. This is because the index calculus attack [Adl79] to solve
the DLP problem runs in subexponential time, while there is no analogue known
until now for the ECDLP. Indeed, the fastest known algorithm to solve the
ECDLP is Pollard’s rho which runs in exponential time and is no better than
the generic algorithm to solve DLP in any group.

Therefore, to achieve a satisfactory security level using RSA or standard
DL-based systems one needs to use increasingly large keys, while using elliptic
curve schemes one may achieve the same security level using much smaller keys.
For example, to achieve a 128-bit level of security, one can use 256-bit keys using
elliptic curve schemes or 3072-bit for RSA. The 128-bit security level refers to
the length of keys in a symmetric cryptosystem in which case an attack by brute
force would need 2128 steps to break the system. Concerning ECC and RSA, the
estimates are based on the size of keys for which we achieve the same security
level if we run the fastest attack algorithm for each case.

2.2.1 Algorithms for scalar multiplication

The main operation in all of the above schemes is the scalar multiplication.
Since the introduction of elliptic curves in cryptography, there has been major
research in speeding up algorithms for scalar multiplication for elliptic curve
groups. Typically, there are three ways to optimize this operation: optimize the
operations of the underlying finite field, choose an optimal representation of the
curve and of the coordinate system (affine, projective, jacobian, Chudnovsky,
mixed coordinate systems), and choose an efficient exponentiation algorithm.
One should combine these three choices in order to achieve an efficient algorithm
taking into consideration that the effects of the field arithmetic and the curve
representation are not independent from the effects of the exponentiation al-
gorithm.

In what follows, we present some algorithms that are used to speed up elliptic
curve scalar multiplication.
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Binary exponentiation

The use of addition chains [Bra39] is a classical way to speed up exponentiation
in any group. The main interest of addition chains is reducing the total number
of operations performed. For example, using the standard Square-and-Multiply
algorithm, computing am in a multiplicative group requires at most log2(m)
squarings and as many multiplications, in the worst case scenario. In addition, in
a group where squaring is cheaper than multiplication, to speed up exponentiation
one can compute all even powers with squaring instead of multiplying. Based on
this observation, numerous algorithms were developed for binary exponentiation,
the most simple one being Square-and-Multiply.

Double-and-Add is the equivalent of the Square-and-Multiply algorithm for an
additive group. Double-and-Add is used mostly because it presents an efficiency
advantage, but it is not constant time which means it has to be modified when
implemented to be side-channel resistant. It is mostly used when the scalar is
not secret, for example for the verification of ECDSA signatures. Double-and-
Add is illustrated by Algorithm 6. The description of the algorithm is taken
from [Lon11].

Algorithm 6: Left-to-Right Double-and-Add
1 Input: k = (kt−1, kt−2, ..., k0)2 and P ∈ E(Fp)
2 Set Q← O.
3 For i = t− 1 downto 0 do
4 Q← [2]Q
5 if ki = 1 then Q← Q+ P

6 Return Q
7 Output: [k]P

When subtraction is cheap, which is always the case for elliptic curve groups,
then scalar multiplication can be optimized using a signed digit binary form for
the scalar. This form is not unique even when its weight is minimal, which is
when it gives the most advantageous result. Among different signed digit binary
representations, the non-adjacent form (NAF) is a canonical representation of
minimal weight. The NAF representation [Rei60] of an integer is unique, and
there are no zeros adjacent. For example, the NAF of 7 is 1001̄ and the NAF of
3190 is 101̄0010001̄01̄0. Here 1̄ stands for a coefficient −1 in the signed binary
expansion. Algorithm 7 presents elliptic curve scalar multiplication using NAF.

Precomputation can also be exploited to speed up Double-and-Add by means
of the Sliding Window Method. The window method decomposes the binary
form of the scalar into zero and non-zero words (windows). In general, it is not
mandatory that the length of the windows remain equal. Algorithm 8 presents
elliptic curve scalar multiplication using the Sliding Window Method.
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Algorithm 7: NAF Double-and-Add
1 Input: k = (kt−1, kt−2, ..., k0)NAF and P ∈ E(Fp)
2 Set Q← O.
3 For i = t− 1 downto 0 do
4 Q← [2]Q
5 if ki = 1 then Q← Q+ P

6 if ki = −1 then Q← Q− P
7 Return Q
8 Output: Q = [k]P

Algorithm 8: Sliding Window Double-and-Add
1 Input: k = (kt−1, kt−2, ..., k0)2 and P ∈ E(Fp)
2 Compute and store [w]P for all w = 3, 5, 7, . . . , 2d − 1.
3 Decompose k into zero and non zero windows Fi
4 of length L(Fi) for i = 0, 1, 2, .., k − 1.
5 Set Q = [Fk−1]P
6 For i = k − 2 downto 0 do
7 Q← [2L(Fi)]Q
8 if Fi 6= 0 then Q← Q+ [Fi]P
9 Return Q

10 Output: Q = [k]P

Except for the standard binary representation of the scalar, there has been
other ideas proposed to speed up scalar multiplication, such as representations
based on double based number systems [DJM98, DIM05].

Montgomery Ladder

A very nice algorithm to speed up scalar multiplication on elliptic curve
groups is the Montgomery Ladder [Mon87], illustrated in Algorithm 9. It is
particularly fast when the curve can be put into a Montgomery representation
(i.e. the Weierstrass equation is replaced by by2 = x3 + ax2 + x) over finite fields
with odd characteristic. The Montgomery ladder is a generic group algorithm
for exponentiation, but it presents an efficiency advantage for elliptic curves
because it works only with computations on the x-coordinate of the point. To
be more precise, given P and Q two points on an elliptic curve: (i) from xP

we can compute x[2]P and (ii) from xP , xQ and xP−Q we can compute xP+Q.
Using these two operations, we can compute x[k]P . For a detailed proof of
the Montgomery algorithm see [Mon87]. The y coordinate can be computed
efficiently, if needed, in the end of the routine [LD99, OS01]. In any case, many
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cryptographic schemes, such as ECDH for example, do not really need a y

coordinate. Since all computations can be executed only using the x-coordinate,
a lot of field multiplications can be spared, which results to a significant efficiency
advantage. Moreover, since the y coordinate is ignored until the end of the
routine, fewer memory is needed.

The Montgomery Ladder presents also a security advantage against side
channel attacks. This is because the conditional branching in the loop is highly
regular: whatever the processed bit, an addition and a doubling always take
place. As a result, the algorithm is constant time and therefore side–channel
resistant.

Algorithm 9: Montgomery Ladder
1 Input: P, k = (kt−1, ..., k0)2

2 Output: Q = [k]P
3 Initialization: R0 ← OG;R1 ← P

4 For j = t− 1 downto 0 do
5 if (kj = 0) then
6 R1 ← R0 +R1;R0 ← 2(R0)
7 else [if (kj = 1)]
8 R0 ← R0 +R1;R1 ← 2(R1)
9 Return R0

The Gallant-Lambert-Vanstone (GLV) algorithm

Apart from scalar multiplication algorithms for generic groups such as the
ones presented in the previous section, there exist other types of algorithms
that can only be applied on elliptic curves, mainly because they exploit the
internal structure and properties of elliptic curve groups. Such an example
is the algorithm proposed by C. Doche, T. Icart, and D.R. Kohel that uses
isogeny decomposition to accelerate computation[DIK05]. Another example is the
algorithm GLV initially proposed by Robert P. Gallant, Robert J. Lambert, and
Scott A. Vanstone in [GLV01]. The GLV algorithm performs scalar multiplication
on elliptic curves with efficiently computable endomorphisms.

The idea is the following: Let E be an elliptic curve over a prime field Fp.
We want to compute a multiple of P ∈ E , say [k]P , with k ∈ N. Suppose that
there exists an efficiently computable endomorphism φ : E → E , which one can
compute using only a few field operations, and which acts as a multiplication on
〈P 〉; i.e. ∀Q ∈ 〈P 〉, φ(Q) = [λ]Q, for some λ ∈ N (or equivalently φ(P ) ∈ 〈P 〉).
For example, if the prime of the base field satisfies the condition p ≡ 1( mod 4)
and i is a square root of −1 in Fp, then any curve of the form y2 = x3 + ax has

28



an explicit and very efficient endomorphism:

φ(x, y) = (−x, iy).

To compute φ(x, y) one has to perform only one field multiplication. In
this case, λ =

√
−1. The integer λ that characterizes the endomorphism φ is

one of the eigenvalues of φ on 〈P 〉; that is, one of the roots modulo N of the
characteristic polynomial of φ. Further details are given in Chapter 4. Given the
existence of an efficiently computable endomorphism φ, computing [k]P breaks
down to computing [k]P = [k1]P + [k2]φ(P ) with k = k1 + k2λ. This can be
computed efficiently, using a multi-exponentiation algorithm, if k1 and k2 are
relatively short. But if λ is large enough (if λ >

√
N with N the order of the

cyclic group 〈P 〉) then we can always find k1 and k2 relatively small (roughly√
N).
More precisely, GLV is the composition of three independent algorithms:

1. The computation of the endomorphism φ.

2. The multiexponentiation algorithm. The algorithm, depicted in Al-
gorithm 10, was used in [GLV01]; it is an extension of the sliding window
binary algorithm presented above. Note that if the window size w = 1,
then we get a 2-dimensional analogue of the Double-and-Add algorithm.
There are various alternatives for efficient multiexponentiation and some
of them are discussed in [Str64].

Algorithm 10: Simultaneous sliding window exponentiation in an additive
group

1 Input: w ∈ N, w 6= 0, u = (ut−1, ...u1, u0)2, v = (vt−1, ...v1, v0)2, P , Q.
2 Compute iP + jQ for all i, j ∈ [0, 2w−1].
3 Write u = (ud−1, ..., u1, u0)2 and v = (vd−1, ..., v1, v0)2 where each ui and

vi is a bitstring of length w and d = t
w .

4 Set R← 0.
5 For i from d− 1 downto 0 do
6 R← 2wR
7 R← R+ (uiP + viQ)
8 Return R
9 Output: R = [u]P + [v]Q

3. The scalar decomposition. In the decomposition of the scalar k =
k1 + λk2, the integers k1 and k2 are not unique. To compute k1, k2, one
needs to find two linearly independent vectors v1 = (x1, y1), v2 = (x2, y2)
of Z2 which satisfy x1 +λy1 (mod N) ≡ x2 +λy2 (mod N) ≡ 0 (mod N).
For example, two such vectors are v1 = (N, 0) and v2 = (λ,−1). Then, any
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vector v in the lattice 〈v1, v2〉 results in the following simple decomposition
(k1, k2) = (k, 0)− v. However, the GLV algorithm is efficient if k1 and k2

have roughly half the bitlength of k, which requires v to be close to (k, 0).
Such a v can be easily computed given a short basis for 〈v1, v2〉, and this
basis can be easily precomputed using lattice basis reduction algorithms.
The standard technique for decomposition proposed in [GLV01] is based on
the Extended Euclidean algorithm and is presented in details in Chapter 4.

The main advantage of GLV is efficiency: assuming that k1 and k2 have half
the length of the original scalar k, then roughly half of the doublings will be
eliminated if we use multi-scalar multiplication techniques as the one presented
above. As a result, GLV is particularly fast and useful especially in the case
where the base point is variable.

However, the main disadvantage that GLV presents is that it can only be
implemented on curves with efficiently computable endomorphisms. Unfortu-
nately, finding such curves turns out to be highly nontrivial and that is why
in 2009 Galbraith, Lin and Scott proposed a modified version of GLV, named
the GLS algorithm in their article [GLS09]. GLS solves the problem of finding
such curves in the following way: starting with any elliptic curve over a prime
field, first we extend the curve to the quadratic extension field and then use
an efficiently computable homomorphism which arises from the Frobenius map
on the quadratic twist of the curve. Furthermore, the Q-curve construction
presented in [Smi16] is a generalization of the GLS algorithm.

Since its publication on 2001, significant research has been done to optim-
ize performance of GLV [FLS15], to analyze its security properties and its
applicability to different settings [BCHL13, LS14].

GLV is an algorithm particularly interesting to formalize, first because it is
an algorithm that is actually used in real-life cryptographic implementations and
secondly, because the mathematics involved are not trivial: besides two generic
algorithms (multiexponentiation and shortest vector for decomposition), the use
of endomorphisms requires formal theory for several non-trivial properties of
elliptic curves. We do this in Chapter 4.

2.2.2 Use of different coordinate systems

Significant research has been going on lately concerning different coordinate
systems in order to provide resistance against side channel attacks and allow for
more efficient implementations.

As explained previously, the elementary representation of elliptic curve
points uses affine coordinates (x, y). However, addition formulas based on affine
coordinates demand the computation of field inversions, which is particularly
expensive over finite fields. To avoid field inversions, one can use projective
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coordinates of the form (X : Y : Z). The equivalence between affine and
projective representation is explained in detail in Chapter 3.

A special case of projective coordinates are Jacobian coordinates: A point in
Jacobian coordinates is the equivalence class (X : Y : Z) = {(λ2X,λ3Y, λZ) |
λ ∈ F∗p}. In this case, a Jacobian point (X : Y : Z), with Z 6= 0, corresponds to
the affine point ( XZ2 ,

Y
Z3 ). The curve equation becomes Y 2 = X3 + aXZ4 + bZ6

and the point at infinity is the point O = (1 : 1 : 0).
There are many other variants of coordinate systems such as mixed coordin-

ates [CMO98] and modified Jacobian and Chudnovsky coordinates [CC86]. For
more details see [Lon11]. The most common form of elliptic curves over prime
fields in cryptographic settings is the short Weierstrass form y2 = x3 + ax+ b

with a, b ∈ Fp. The projective form of this equation using Jacobian or homo-
geneous projective coordinates has been accepted as a standard by NIST and
IEEE [Lon11, Nat99]. Yet, there has been significant research going on new
optimized curve forms. These forms, which are only beginning to be standardized
for some applications, may present important efficiency or security advantages
such as fast arithmetics or side channel resistance. For more details on different
curve forms see [Gal12].

To sum up, different curve forms and their corresponding coordinate system
may be a better choice depending on the scalar multiplication algorithm used.
In general, when implementing elliptic curve scalar multiplication, one has to
choose the algorithm together with the curve and the coordinate system, taking
into account all the dependences between the three. Moreover, one has to
bear in mind the underlying field arithmetic together with the efficiency and
security requirements of his own implementation. As a result, elliptic curve
scalar multiplication implementation is a complex task and most of the time
verifying that an implementation is actually correct is far from trivial.

2.3 Coq and its Ssreflect extension
Proof assistants are programs allowing the interactive development and auto-

matic verification of programs and mathematical statements proofs. Coq [The10]
belongs to a large family of proof assistants including NuPrl, PVS, HOL, Isabelle,
Mizar, Lego.

Coq is the result of more than 30 years of active research, starting with
the work of Thierry Coquand and Gérard Huet [CH85] in 1984 at INRIA. The
architecture of Coq is based on two layers: the kernel and the proof engine. The
proof engine provides the tools, or tactics, allowing the interactive construction
of proofs. Coq comes with a set of predefined tactics, and a language for the
users to write their own tactics. The kernel is the core engine of Coq. It checks
that a proof constructed by the proof engine rely on valid logical reasoning. As
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such, the kernel guarantees the correctness of Coq and its proof engine. Proofs
and statements are expressed in a language called Gallina, based on an extension
of the Calculus of Inductive Constructions [The10, PP89], a dependently typed
polymorphic lambda calculus.

2.3.1 Propositions and Types

Types are a central notion in Coq. Indeed, in the Coq language every valid
expression comes with a type. Types determine if an expression is well formed
or not: rules for building expressions are accompanied by typing rules that show
the relation between the type of the whole expression and the type of its parts.
For example, assume we declare a variable a of type nat (we say that a is an
inhabitant of the type nat), which stands for the type of natural numbers. The
constant 8 being also an inhabitant of nat, we can deduce that 8 + a has type
nat. On the contrary, the expression a + false, where false is a constant of
type bool, is not well-formed. Such an expression is forbidden by the typing
rules.

There exist a wide variety of types in Coq, as well as type constructors. For
instance, pairs in Coq are defined as a higher-order datatype prod: from two
types A and B, one can construct the type A× B of pairs (a, b) where a is of
type A and b is of type B.

Inductive prod (A B : Type) : Type := pair : A -> B -> A x B

Coq comes with a special type named Prop which stands for the type of
propositions.

The Curry-Howard isomorphism describes the relation between proofs and
programs: the relation between a program (or expression) and its type is the
same as the relation between a proposition and its proof. For example, assume
that one wants to prove that P ⇒ A under the given list of assumptions (or
environment) E. In minimal propositional logic, if a proof of A under the
assumptions E ∪ {P} is known then one may derive a proof a P ⇒ A under E,
as stated by the following rule:

E,P ` A
E ` P ⇒ A

where E ` A stands for A is valid under the assumptions in E. This rule is
tightly related to the Coq typing rule for the formation of functions, as given
below:

E, x : P ` f(x) : A
E ` ((x : P ) 7→ f(x)) : P → A

The rule works as follows: if when assuming a variable x of type P one
can deduce that f(x) is of type A, then the function (x : P ) 7→ f(x) is of type
P → A. By removing the variables and expressions from the second one, we
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come back to the first rule. The Curry-Howard isomorphism establishes this
fact: The relation between a program (i.e. a function) and its type is the same
as the relation between a proposition and its proof. Hence, an expression e : T
can be either interpreted as a program e of type T or a proof e of a proposition
T . See [Gil04] for further explanations.

Dependent Types are important

A type that is parametrized by values is called a dependent type. Such
examples are arrays of size n, binary trees of depth p, but also logical formulas.
This has to do with the fact that quantifications can be used to form new types.
An example taken from [AM16] demonstrates exactly this functionality: Here a
new type is constructed for the existential statement:

ex : forall A : Type, (A -> Prop) -> Prop.

The type constructor ex is parametrized by a type A and a predicate on A.
This statement shows that in Coq we can construct types that play the roles of
propositions which may be useful sometimes. Furthermore, this functionality is
very convenient because it allows the construction of more complex datatypes
such as the type of matrices:

matrix : Type -> nat -> nat -> Type.
mulmx : forall R : Type, forall m n p : nat,

matrix R m n -> matrix R n p -> matrix R m p.

In this case, the type matrix is parametrized by two natural numbers that
correspond to its size. This allows matrix multiplication to be constructed in
such a way that only compatible matrices can be multiplied. It also reveals the
size of the output matrix, in terms of the size of the input matrices.

2.3.2 Coq by example

We here exemplify the syntax of Coq and introduce its proof engine using
minimal intuitionistic propositional logic. Our goal is not to give an exhaustive
definition of the Coq language, but to help the reader follow the formalization
described later at Chapter 3 and 4. For a complete introduction to the Coq
system, see [BC04]. A reader with experience in using proof assistants is invited
to skip this section.

Assume that we want to prove the following tautology: (P =⇒ P =⇒
Q) =⇒ P =⇒ Q, where P and Q are propositions. First, we declare two
propositional symbols:

Parameter P Q : Prop.

In Coq, our statement will be expressed as follows, where -> denotes the logical
implication:
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Goal (P -> (P -> Q)) -> (P -> Q).

We will use the two following tactics:

— move=> which introduces a hypothesis to the environment,
— apply which applies a hypothesis to the goal.

The final proof will be as follows:

Goal (P -> (P -> Q)) -> (P -> Q).
Proof.

move=> HPQ.
move=> HP.
apply: HPQ.
apply: HP.
apply: HP.

Qed.

We now give all the intermediate steps. After inputting the statement, one sees
the following:

P : Prop
Q : Prop

============================
(P -> P -> Q) -> P -> Q

Above the =-line lies the environment with all the declarations and definitions,
and bellow the =-line is the current goal that has to be proved. Using move=> HPQ,
the system introduces the head hypothesis with name HPQ. The new goal is
P -> Q:

P : Prop
Q : Prop
HPQ : P -> P -> Q

============================
P -> Q

Likewise, using move=> HP we introduce the second hypothesis HP and are left
to prove the following goal:

P : Prop
Q : Prop
HPQ : P -> P -> Q
HP : P

============================
Q

Next, we use the tactic apply to apply the hypothesis HPQ to our new goal.
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Remark

Proofs in Coq go backwards: the users start from the conclusion and apply
tactics simplifying the goal up to a point where it appears as an hypothesis in
the environment. For instance, the apply: tactic does a modus ponens in the
reverse way: if one has to prove the goal B and has a proof H of A -> B, then
the tactic apply: H will transform the goal B to A.

In our case, applying HPQ generates two new sub-goals requiring a proof of P.
The first goal comes from the first hypothesis of HPQ, whereas the second comes
from the second one:

P : Prop
Q : Prop
HPQ : P -> P -> Q
HP : P

============================
P

subgoal 2 is:
P

Applying hypothesis HP solves the first goal. We then move to the second
sub-goal:

P : Prop
Q : Prop
HP : P -> P -> Q
HPQ : P

============================
P

Applying once more HP closes the proof and Coq displays the message
Proof completed. At that point, the proof is not checked yet. By inputting
Qed, we ask the proof engine to send the constructed proof to the kernel of Coq.
Only after this step we know that we have a formal proof of our statement.
There exist several tactics which allow the user to perform case analysis, proofs
by induction, first-order reasoning, automatic proofs search, as well as more
powerful tactics or user defined tactics coming from external libraries.

Remark:

In the Ssreflect language, the tactics move=> and apply: correspond to
the Coq tactics intro and apply respectively. To be more precise, the tactics
are just move and apply, while the symbols => and : are called tacticals, i.e.
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tactic modifiers, such that one same tactic may cope with a wide range of similar
situations. For more details, see [AM16].

2.3.3 Functions and Equality

In Coq, there exist two ways to denote a function. For example, for f : x ∈
N 7→ x2, one can write (fun (n:nat) : nat => n * n) or use a global level
definition to give a name to the function:
Definition sqr (n:nat) : nat := n * n.

The argument (along its type) of sqr is denoted by (n:nat). The second
:nat denotes that sqr n is of type nat. If we typecheck the sqr function, we
obtain sqr:nat->nat, meaning that sqr is a function from N to N.

A function in Coq is a function from the computer-science point of view, i.e.
an algorithm or a computable function. On the contrary, from a mathematics
point of view usually a function f : A → B is a subset of A × B - its graph.
Take for example, the functions f(x, y) = (x+ y)(x− y) and g(x, y) = x2 − y2.
These functions are considered equal in mathematics since their graphs are
extensionally equal: given the same input, they always produce the same output.
Yet, the definitions of the functions are not equal, meaning that as algorithms
they are not the same. In that intensional sense f and g are not the same and
so they are not considered equal in Coq.

Coq primitive equality is the Leibniz one: x = y if for any predicate P ,
P (x) implies P (y), which does not capture the extensional equality. As such,
∀x. f(x) = g(x) does not imply f = g.

2.3.4 Inductive types

In Coq one can define inductive data-types. An inductive type represents
the set of expressions built by a finite number of applications of its constructors.
For example, a simple inductive type is an enumerated type which represents a
finite fixed set, as the one for booleans:

Inductive bool : Type := true | false.

This definition produces two elements of type bool: the two constructors
true and false.

Another example of inductive types is the natural numbers. N is defined (as
in Peano arithmetic) as:

Inductive nat : Type := 0 | S of nat.

The type nat has two constructors: 0 which stands for zero and S for the
successor function.
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For every inductive definition, an inductive principle [CP88, Tar55] is gener-
ated by Coq allowing the user to develop proofs by induction, or define function
by recursion. For example, lists of elements of type A are defined as:

Inductive list (A: Type) : Type := nil | cons of A & list A.

where nil is the empty list and cons is the function that concatenates an element
of type A with a list of type list A.

If one wishes to prove a statement on lists by induction, she needs to prove
the following facts:

1. that the statement stands for the empty list, and
2. that if the statement stands for a list L, then for any elements a, the

statement stands for the concatenation cons a L.

Let’s take a look at the following example from [Ber08]. Suppose we want to
prove the following statement, using induction on natural numbers:

Lemma addn0 : forall n, n + 0 = n.

The following two lemmas will be useful:

Lemma add0n : forall n : nat, 0 + n = n.
Lemma addnS : forall n m : nat, S n + m = S (n + m)

After inputting the statement, one sees the following:

forall n : nat, n + 0 = n

Using move=> n, the system introduces the natural number n in the environment.
The new goal is

n : nat
=============
n + 0 = n

Next we use the tactic elim: n => [|n ih] to perform induction on the natural
number n. Two subgoals are generated, the first one concerns the case where
n = 0 and the second one the general case where n is any natural number
different from 0:

2 subgoals
=============
subgoal 1 is:
0 + 0 = 0

subgoal 2 is:
S n + 0 = S n

Applying lemma add0n, the first goal disappears. Now the second goal looks
like:
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n : nat
ih : n + 0 = n
=============
S n + 0 = S n

We observe that Coq has generated the induction hypothesis ih for the natural
number n, and we have to prove the statement for its successor S n. By rewriting
lemma addSn, we obtain:

n : nat
ih : n + 0 = n

=============
S (n + 0) = S n

Now by rewriting the induction hypothesis the goal turns to

n : nat
ih : n + 0 = n

=============
S n = S n

Using the tactic reflexivity finishes the proof and Coq displays the message
Proof completed. Indeed, reflexivity is a tactic that finishes the proof when
the goal looks like e = e. The entire proof script is

Lemma addn0 : forall n, n + 0 = n.
Proof.
move=> n.
elim: n => [|n ih].
rewrite add0n.
rewrite addSn.
rewrite ih.
reflexivity.
Qed.

Coq allows us to do proofs by case analysis using the tactic case. For
example, given a boolean statement b : bool we can perform case analysis to
prove a statement about b. Let us prove the following statement to demonstrate
how case works: Negation is involutive.

Lemma negbK (b:bool): ~~ (~~ b) = b.

The proof script will be the following:

Lemma negbK (b:bool): ~~ (~~ b) = b.
Proof. by case: b. Qed.

Let’s examine the intermediate steps. First, after inputting the statement, one
sees the following: ~~ (~~ b) = b. Next we use the tactic case: b to perform
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case analysis on the boolean b. Two subgoals are generated, the first one concerns
the case where b = true and the second one the general case where b = false:

b : bool

2 subgoals
============================
subgoal 1 is:
~~ ~~ true = true

subgoal 2 is:
~~ ~~ false = false

In both goals we first apply the tactic simpl to simplify, and the goal is trans-
formed to true = true (resp. false = false) which is then resolved by the
tactic reflexivity. This is done automatically if we use the by tactical which
closes the proof script. The proof is completed.

2.3.5 The Ssreflect extension

The Small Scale Reflection is a set of extensions for Coq developed to support
proof methodology for algebra. It comes with a set of tactics and a library.
Ssreflect was first designed for the proof of the Four Colour theorem [Gon07]
but has afterwards evolved to prove the Feit-Thompson theorem [GAA+13].
The Ssreflect library contains theory about groups, algebraic structures,
linear algebra, polynomials and matrices, representation and character the-
ory [Bih10, Bih09, Gon11, GMR+07]. In this thesis, we do not explain in details
the Ssreflect methodology. For an extended introduction to Ssreflect,
see [AM16, GM10, Gar11].

Boolean Reflection The logic of Coq is constructive, which implies that
the excluded middle principle does not hold in all cases. More precisely, the
excluded middle holds and can be proved for some property, only if this property
is decidable: if one can write a function in Coq that outputs a boolean value
and tests if the property holds or not. In the Mathematical Components library,
usually all decidable properties are formalized as boolean tests (so in most
cases we can consider that the excluded middle holds). A significant (and very
interesting) issue in formalizing mathematics is that a structure or a statement
can be represented in many different ways. When the principle of excluded
middle holds for some property, there are two ways to express this property: using
boolean values or logical connectives. Boolean values have the advantage that
case analysis can easily be performed, while logical connectives give statements
(in the Prop sort) that can be destructed to provide subformulas (e.g. from
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conjunctive or disjunctive facts) or witnesses of existential statements. Note that
to formalize a property in bool, one needs to implement the decision procedure
that decides if the property holds. Ssreflect proposes the boolean reflection
methodology which allows interchanging between equivalent statements in Prop
or bool [AM16]: One expresses the same statement in Prop and bool, and then
has to prove a lemma (called view lemma) stating the equivalence between the
Prop and the bool statements. For more details on the Small Scale Reflection
methodology, see [AM16, GM10]. We here give the example, extracted from
the Ssreflect library, for defining what is a type whose equality predicate
is decidable (i.e. whose equality predicate can be reflected using a boolean
equality):

Record eqSpec (T: Type) := EqSpec {
eq: T -> T -> bool;
eqAxiom: forall (x y : T), (eq x y) = true <-> x=y

}.

Record eqType : Type := EqType {
base : Type ;
mixin : eqSpec base

}.

The record eqSpec defines the specifications of a type with equality, while the
record eqType packs the base type (the carrier) with the eqSpec specifications.

Last, we would like to highlight that proof irrelevance is particularly useful
for Σ-types sT := {x : T | P x} of elements of type T satisfying the boolean
statement P. In that case, two inhabitants of the type sT are equal if their first
projections are equal. This is not necessarily true in the case that P is not a
boolean statement, because the proofs that x satisfies P x may not be the same.
The Σ-types for which the above property holds are called subtypes.

Algebraic Hierarchy and Canonical Structures Between algebraic struc-
tures, inheritance and sharing structure is very common: For example, a ring is
an abelian group under addition, which means that rings and abelian groups
share some theory. When formalizing algebraic structures, it is very important
to implement the sharing of mathematical structures in a way that enables
inheritance and maximizes sharing in order to avoid repeating the same proofs
again and again.

Algebraic structures in Ssreflect are usually described as a carrier set
along with a number of functions and a set of properties the functions have to
satisfy. Ssreflect uses bundled representation schemes which support multiple
inheritance between algebraic structures, and allows the encoding of the algebraic
hierarchy.
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More precisely, an algebraic structure is usually implemented by a record with
two fields: the carrier set and the class of the structure. The class contains the
signature (i.e. the name and type of the operations) and proofs of the properties
that the operations satisfy. For a detailed description of the algebraic structures
in Ssreflect see [Coh12].

For example, the zmodType, which stands for an abelian group, is defined as
the subtype of eqType as follows:

Record zmodSpec (V : Type) : Type := ZmodSpec {
zero : V;
opp : V -> V;
add : V -> V -> V;
_ : associative add;
_ : commutative add;
_ : left_id zero add;
_ : left_inverse zero opp add

}.

Record zmodType : Type := ZmodType {
base :> eqType;
mixin : ZmodSpec base

}.

In this case the specifications of zmodType is given by zmodSpec and the
record zmodType packs the above specifications with an eqType. As a subtype
of eqType, zmodType inherits the functions and properties of eqtype - i.e. it has
a computable equality.

In mathematics, when one considers an element of a certain algebraic struc-
ture, she implicitly considers an element of the carrier set of the structure. For
example, given a certain group G : zmodType, an element x : G is indeed an
element x : ZmodType.sort G, where ZmodType.sort G is the projection to
the carrier set of G. So for example, for two elements x y : G writing x + y
poses no problem because it is typable. If we remove notations, the statement

forall x y : G, x + y = 0

is expanded to

forall x y : Zmodule.sort G, @add G x y = zero G

Nevertheless, problems may arise in other cases where one does not manipulate
directly the defined structure. For example, integers form an abelian group and
therefore share the zmodType structure. But when writing

forall x y : int, x + y = y + x
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an error arises because int is not of type zmodType. To address this problem,
unification can be aided by Coq’s Canonical Structures mechanism. For a
detailed use of Canonical Structures in Ssreflect, see [Coh12].

Quotient Types When working with algebraic structures, one often has to
manipulate quotients and functions defined on them. In that case, different (not
equal) terms may represent the same conceptual object.

Manipulating quotients is difficult in Coq, because of type theory. In math-
ematics, algebraic quotients are sets, for which structure is transported from
the base set to the quotient. An element x of the base set characterizes its equi-
valence class of the quotient set, so one can implicitly consider x as an element
of the base set and an element of the quotient set. However when it comes to
Coq, defining a quotient type as a subtype of the base type does not allow free
interchanges between the two as they are two different types. In type theory
there are two options proposed about dealing with quotients: setoids and forging
quotient types i.e. define types where each element is one equivalence class of
the quotient. For more details, see [Coh12]. Moreover, in Coq, quotient types
are not primitive types as it would make type-checking indecidable [SvdW11].

Ssreflect deals with this problem by restricting the quotient types to
decidable ones. A quotient type U in Ssreflect is represented by a packed
structure that binds together:

1. the base type T ,
2. a function π : T → U , called canonical surjection, which is the embedding

of T in U , and
3. a function repr : U → T s.t. for a class C in U , repr(C) gives a represent-

ative in T for C

s.t. the composition of the canonical surjection with the representative function
π ◦ repr is the identity function. A quotient type Q is an instance of the following
interface:

Structure quotType (T : Type) := QuotType {
quot_sort :> Type;
quot_class : quot_class_of quot_sort

}.

Record quot_class_of (T Q : Type) := QuotClass {
repr : Q -> T;
pi : T -> Q;
reprK : forall x, pi (repr x) = x

}.
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Hence, to define a quotient type, one has to be able to give a function which
computes the representative for every class. A quotient type Q of base type T
and quotient structure qT results in the following equivalence for elements of T:
Two elements x y : T are equivalent if pi qT x = pi qT y. Ssreflect allows
for the following more intuitive notation x = y \%[mod qT] of the above.

Given an arbitrary type R, a function f : T -> R is compatible with the
quotient type Q if it stays constant on each equivalence class. In that case it has
a lifting which means that we can define a corresponding function g : Q -> R
on the quotient type Q, such that pi f x = g pi x for all x : T. The canonical
surjection pi is a morphism for f.

The proof of the Picard theorem requires the definition of functions over
quotients. A common method, when working with quotients, is to define a
function on the non-quotiented set and prove that the function respects the
quotient, i.e. that for any x, f(x) = f(repr(π(x))).
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3
A formal library for elliptic curves

In this chapter, we present a formal proof of the Picard theorem for elliptic
curves: There exists an isomorphism between the Picard group of divisors
and the group of points of an elliptic curve. An important consequence of
this proposition is the associativity of the elliptic curve group operation. This
development has resulted in more than 15000 lines of code and is available at
https://github.com/strub/glv. It includes formal theory about Weierstrass
curves, the field of rational functions on a curve, theory about free groups,
divisors of rational functions on curves and isomorphic representations on different
coordinate systems. This result, has been published at the article A Formal
Library for Elliptic Curves in the Coq Proof Assistant at the International
Theorem Proving conference 2014.

3.1 Elliptic curves definitions
An elliptic curve is a special case of a projective algebraic curve that can be

defined as follows:

Definition 3.1. Let K be a field. Using an appropriate choice of coordinates,
an elliptic curve E is a plane cubic algebraic curve E(x, y) defined by an equation
of the form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

44

https://github.com/strub/glv


x

y

P

QQ

P � Q

P + Q

(a) y2 = x3 + x

x

y

(b) y2 = x3 − x + 2

Figure 3.1 – Catalog of Elliptic Curves Graphs

where the ai’s are in K and the curve has no singular point (i.e. no cusps or
self-intersections). The set of points, written E(K), is formed by the solutions
(x, y) of E augmented by a distinguished point O (called point at infinity):

E(K) = {(x, y) ∈ K | E(x, y)} ∪ {O}.

Figure 3.1 provides graphical representations of such curves in the real plane.

When the characteristic of K is different from 2 and 3 and with an appropriate
change of coordinates, the equation E(x, y) can be simplified into its Weierstrass
form:

y2 = x3 + ax+ b.

Moreover, such a curve does not present any singularity if ∆(a, b) = 4a3+27b2

— the curve’s discriminant — is not equal to 0. Our work lies in this setting.

The parametric type ec represents the points on a specific curve. It is
parameterized by a K : ecuFieldType — the type of fields with characteristic
not in {2, 3} — and a E : ecuType — a record that packs the curve parameters
a and b along with a proof that ∆(a, b) 6= 0. An inhabitant of the type ec is
a point of the projective plane (represented by the type point), along with a
proof that the point is on the curve.

Note that in this setting, the type point formalizes the projective plane as
the set of affine finite points, together with the point at infinity. Nevertheless, in
the next section we present a more general formalization of the projective plane
using a three coordinate system and a proof that those two representations are
isomorphic.

Record ecuType := { A : K; B : K; _ : 4 * A^3 + 27 * B^2 != 0 }.
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Inductive point (K : Type) : Type :=
| EC_Inf : point K
| EC_In : K -> K -> point K.

Notation "(| x , y |)" := (@EC_In _ x y)

Definition oncurve (p : point K) := (
match p with
| EC_Inf => true
| EC_In x y => y^+2 == x^+3 + A * x + B
end).

Inductive ec : Type := EC p of oncurve p.

Using standard Ssreflect methodology, the type point is equipped with
the structure of an eqType, choiceType and countType. As a subtype of point,
the type ec inherits the same structures.

The points of an elliptic curve can be equipped with a structure of an abelian
group. We give here a geometrical construction of the law. Let P and Q be
points on the curve E and l be the line that goes through P and Q (or that
is tangent to the curve at P if P = Q). By the Bézout theorem, counting
multiplicities, l intersects E at a third point, denoted by P �Q. The sum P +Q

is the opposite of P �Q, obtained by taking the symmetric of P �Q with respect
to the x axis. Figure 3.1 highlights this construction. To sum up:

1. O is defined to be the neutral element: ∀P. P +O = O + P = P ,

2. the opposite of a point (xP , yP ) (resp. O) is (xP ,−yP ) (resp. O), and

3. if three points are collinear, their sum is equal to O.

This geometrical definition can be translated into an algebraic setting, obtain-
ing polynomial formulas for the definition of the law. Having such polynomial
formulas leads to the following definitions:

Definition neg (p : point K) :=
if p is (|x, y|) then (|x, -y|) else EC_Inf.

Definition add (p1 p2 : point K) :=
let p1 := if oncurve E p1 then p1 else EC_Inf in
let p2 := if oncurve E p2 then p2 else EC_Inf in

match p1, p2 with
| EC_Inf, _ => p2 | _, EC_Inf => p1

| (|x1, y1|), (|x2, y2|) =>
if x1 == x2
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then if (y1 == y2) && (y1 != 0)
then

let s := (3 * x1^+2 + E#a) / (2 * y1) in
let xs := s^+2 - 2 * x1 in

(| xs, - s * (xs - x1) - y1 |)
else

EC_Inf
else

let s := (y2 - y1) / (x2 - x1) in
let xs := s^+2 - x1 - x2 in

(| xs, - s * (xs - x1) - y1 |)
end.

Note that these definitions do not directly work with points on the curve,
but instead on points of the projective plane (points that do not lie on the curve
are projected to O).

We link back this algebraic definition to its geometrical interpretation. First,
we define a function line that, given two points P,Q on the curve, returns the
triplet (u, v, c) that characterizes the equation ux+ vy + c = 0 of the line (PQ)
intersecting the curve at P and Q (resp. the equation of the tangent to the
curve at P if P = Q). We then show that, if (PQ) is not parallel to the y axis
(i.e. is not intersecting the curve at O), then (PQ) is intersecting E exactly at
P , Q and −(P +Q) = P �Q as defined algebraically. This is the main part of
the proof of the lemma addO, which implies the computational manipulation of
polynomial formulas.

The function line is defined using polynomial formulas as below:

Definition line (p q : K * K) : K * K * K :=
let: (x1, y1) := p in
let: (x2, y2) := q in

match oncurve E (|x1, y1|) && oncurve E (|x2, y2|) with
| false => (0, 0, 0)
| true =>

if x1 == x2
then if (y1 == y2) && (y1 != 0)

then
let s := (3 * x1^+2 + E#a) / (2 * y1) in

(1, -s, y2 - s * x2)
else

(0, 1, x1)
else

let s := (y2 - y1) / (x2 - x1) in
(1, -s, y2 - s * x2)
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end.

We then prove that these operations are internal to the curve and lift them
to E . We further prove that they satisfy all the properties of an abelian group
except associativity.

Lemma zeroO : oncurve E EC_Inf.
Notation zeroec := (EC zeroO).

Lemma negO : forall p, oncurve E p -> oncurve E (neg p).
Definition negec := [fun p : ec E => EC (negO [oc of p])].

Lemma addO (p q point K): oncurve E (add p q).
Definition addec := [fun p1 p2 : ec E => EC (addO p1 p2)].

Lemma addNe : left_inverse zeroec negec addec.
Lemma add0e : left_id zeroec addec.
Lemma addeC : commutative addec.

As pointed out before, we have defined the operations on points of the
projective plane and then lifted them to points on the curve. Moreover, properties
and lemmas concerning the operations are proven for elements of type point in
order to be as general as possible. This is a structural difference between this
development and the development [TH07] where addition is defined directly on
elliptic curve points. Our choice allows the manipulation of operations on points,
without demanding to prove a priori that they belong on the curve.

3.2 The Picard group of divisors
From now on, let E be a smooth elliptic curve with equation y2 = x3 + ax+ b

over the fieldK. We assume thatK is not of characteristic 2, nor 3. Related to this
curve, we assume two Coq parameters K : ecuFieldType and E : ecuType K.
We now move to the construction of the Picard group Pic(E). This construction
is split into several steps:

1. we start by constructing two objects: the field of rational functions K(E)
over E and the group of E-divisors Div(E), i.e. the set of formal sums over
the points of E . From Div(E), we construct Div0(E) which is the subgroup
of zero-degree divisors.

2. Then, we attach to each rational function f ∈ K(E) a divisor Div(f) (called
principal divisor) that characterizes f up to a scalar multiplication. This
allows us to define the subgroup Prin(E) of Div(E), namely the group of
principal divisors. The quotient group Div0(E)/Prin(E) forms the Picard
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group.

3.2.1 The field of rational functions K(E)

The construction of the field of rational functions presents two key points
that need to be up-fronted:

1. Polynomials that take the same values on the same curve points are
considered equivalents and are identified. This leads to the definition of
the ring K[E ].

2. From the evaluation of rational functions on all points of an elliptic curve
arises the problem of evaluating fractions with zero denominators and the
problem of evaluating fractions at the point at infinity. This induces the
concept of the order of vanishing of a function at a point.

The ring K[E ]

We denote the ring of bivariate polynomials over K by K[x, y].
Considering bivariate polynomials with variables x and y, we are interested

on their evaluation on curve points. On the curve, the variables x and y are not
independent, they are related by the curve equation y2 = x3 + ax+ b. So, two
polynomials whose evaluation is the same on all curve points will be considered
equivalent. For example, the polynomials y2 and x3 + ax + b are equivalents.
More generally, if we replace an occurrence of y2 by x3 + ax+ b, we obtain an
equivalent polynomial and two polynomials whose difference is a multiple of
y2 − (x3 + ax+ b) are equivalent. That leads directly to the following definition:

Definition 3.2. The ring K[E ] of polynomials over the curve is defined as the
quotient ring of K[x, y] by the prime ideal 〈y2 − (x3 + ax+ b)〉. The field K(E)
is defined as the field of fractions over the integral domain K[E ].

In other words, K[E ] is defined as the quotient of K[x, y] by the following
equivalence relation ∼:

p ∼ q if and only if ∃k ∈ K[x, y] such that p− q = k(y2 − x3 − ax− b).

Since the polynomials y2 and x3 + ax + b are identified in K[E ], we can
associate, to any equivalence class of K[E ], a canonical representative of the form
p1y+p2 (p1, p2 ∈ K[x]), obtained by iteratively substituting y2 by x3 +ax+b. As
such, instead of going through the path of formalizing ideals and ring quotients,
we give a direct representation of K[E ] solely based on {poly K}, the type of
univariate polynomials over K:

Inductive ecpoly := ECPoly of {poly K} * {poly K}.
Notation "[ecp p1 *Y + p2]" := (ECPoly p1 p2).
Coercion ecpoly_val (p : ecpoly) := let: ECPoly p := p in p.

49



The type ecpoly is simply a copy of {poly K} * {poly K}, an element
([ecp p1 *Y + p2] : ecpoly) representing the class of the polynomial p1y +
p2 ∈ K[E ]. We explicitly define the addition and multiplication, that are
compatible with the one induced by the ring quotient.

For instance:
(p1y + p2)(q1y + q2) = p1q1y

2 + (p1q2 + q1p2)y + p2q2

= (p1q2 + q1p2)y + (p1q1(x3 + ax+ b) + p2q2)

leads to:

Notation XPoly := ’X^3 + A *: ’X + B.
Definition dotp p q : {poly K} := p.2 * q.2 + (p.1 * q.1) * Xpoly.
Definition one := [ecp 0 *Y + 1].
Definition mul p q :=

locked [ecp (p.1 * q.2 + p.2 * q.1) *Y + (dotp p q)].

where .1 and .2 resp. stand for the first and second projections.
Unfolding the definitions we prove that the operations satisfy the properties of a
commutative ring.

Remark. For the construction of the ring K[E ], we could have used a more
general approach, relying on the general definition of a ring quotient by an
ideal — a basic construction of commutative algebra. We would have obtained
for free that K[E ] is an integral domain as the ring quotient by a prime ideal.
Moreover, the quotient library of Ssreflect is built s.t. it would have been
possible to choose our canonical representatives and to stick to the y · p(x) + q(x)
representation. The only extra work would have been to link the ring operations
inherited from generic construction to the ones directly defined on the canonical
representatives. For example, for the multiplication, this would amount to prove
that:

[(y · p1 + q1)] · [y · p2 + q2)] =
[y · (p1q2 + q1p2) + (p1q1(x3 + ax+ b) + p2q2)],

where [x] denotes the class of x in the quotient.
However, the Ssreflect library comes with very few results on commutative

algebra — for example, even the definition of what a ring ideal is was missing at
that time! Constructing a mathematical component for commutative algebra
was out of scope of this work and we hence decided to go to the elementary
construction we just presented. Therefore the proofs are less abstract. For
example, to prove that K[E ] is an integral domain becomes a little more technical,
since it requires proving explicitly that

(p1y + p2)(q1y + q2) = 0 =⇒ p2q2 = 0 ∨ p1q1 = 0.
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Yet, after demonstrating the lemma idomainAxiom we are able to equip the
type ecpoly with an integralDomain structure.

Lemma idomainAxiom: forall p q, p * q = 0 -> (p == 0) || (q == 0).

The proof is based on the following idea: We can prove by contradiction that
the polynomial y2 − (x3 + ax+ b) is irreducible and therefore that K[E ] is an
integral domain: Indeed, if we can factor y2− (x3 +ax+ b) = (y−p(x))(y−q(x))
then p and q have necessarily the same degree, which is absurd since their product
is a polynomial of degree 3.

We then use the fraction [Coh13] library to built the {fraction ecpoly}
type representing K(E), the field of fractions over K[E ].

Evaluation of polynomials of K[E ] on points is naturally defined on the
canonical representatives. Note that while we are interested on evaluation on
curve points, evaluation is defined on all finite points in order to remain as
general as possible. Nevertheless, several lemmas concerning evaluation are true
only concerning points that belong to the curve.

Definition eceval p (x y : K) := p.1.[x] * y + p.2.[x].
Notation "p .[ x , y ]" := (eceval p x y).

To pursue with the definition of the order in the following section, three notions
are needed: the conjugate, the norm and the degree.

Definition 3.3 (Conjugate). Let p ∈ K[E ] of canonical representative p1(x)y +
p2(x). The conjugate of p, written p̄, is defined as p̄ = −p1(x)y + p2(x).

Definition 3.4 (Norm). Let p ∈ K[E ] of canonical representative p1(x)y+q1(x).
The norm of p, written n(f), is defined as n(p) = pp̄.

Remark that n(p) = p2(x)2 − p1(x)2(x3 + ax + b) is a polynomial on x.
The degree of n(p) is simply defined to be the degree of the polynomial n(p) =
p2(x)2 − p1(x)2(x3 + ax + b) on x. For example the degree of y is 2. The
definitions of the conjugate, norm and degree are then simply translated from
their textbook counterpart on inhabitants of the type ecpoly:

Definition conjp p : {ecpoly E} := [ecp -p.1 *Y + p.2].
Definition normp p : {poly K} := dotp p (conjp p).
Definition degree p := size (normp p).

Lemmas concerning properties of all these notions are straightforward such as:

Lemma normpE p : normp p = (p.2)^+2 - (p.1)^+2 * (Xpoly E).

Lemma degree_mul_id p q, p * q != 0 ->
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degree (p * q) = (degree p + degree q).-1.

Lemma degree_add_max (p q : ecpoly E): degree p != degree q ->
degree (p + q) = maxn (degree p) (degree q).

Lemma norm_eq0 p : (normp p == 0) = (p == 0).

The degree of a rational function f
g ∈ K(E) is defined as deg( fg ) = deg(f)−

deg(g). It is easy to see that it is well defined and stable on fractions. This
definition is simply translated from its textbook counterpart in Coq:

Definition fdegree_r (f : {ratio {ecpoly E}}) :=
if \n_f == 0 then 0 else degree \n_f - degree \d_f.

Definition fdegree :=
lift_fun1 {fraction {ecpoly E}} fdegree_r.

Order and evaluation of rational functions

In complex analysis, the zeros and poles of functions, and their order of
vanishing are notions related to analytic functions and their Laurent expansion;
while in abstract algebra, they refer to algebraic varieties and discrete valuation
rings [Ful89]. For our formalization, we follow the more elementary definitions
given in [Gui10]. More precisely, the evaluation of a function f ∈ K(E) at a
point P = (xP , yP ) ∈ E is defined as follows:

Definition 3.5. A rational function f ∈ K(E) is said to be regular at P =
(xP , yP ) if there exists a representative g/h of f such that h(xP , yP ) 6= 0. If f
is regular at P , the evaluation of f at P is the value f(P ) = g(xP ,yP )

h(xP ,yP ) , which is
independent of the representative of f . If f is not regular at P , then P is called
a pole of f and the evaluation of f at P is defined as f(P ) =∞.

Evaluation for polynomials is extended at the point at infinity:

Definition 3.6. Let f ∈ K(E) and let n
d be a representative of f . Then,

f(O) =


0 when deg(n) < deg(d)
∞ when deg(n) > deg(d)
αn/αd when deg(n) = deg(d)

where αn (resp. αd) is the coefficient of the higher degree term of n (resp. d).

Remark. Being not analytic, such definitions are difficult to formalize as-is
in Coq. For example, concerning evaluation at finite points, one has to provide
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a representative matching the definition and it is not clear how to find one.
Moreover, the function is defined on fractions which means that it has to be
stable on a fraction class. Those two details have to be taken into account in
order to formalize it in Coq.

Fortunately, using uniformizers, which is a notion from algebraic geometry, we
can computationaly decompose every fraction of K(E) in a canonical form which
allows us compute the evaluation at some point, as defined above. Furthermore,
this canonical form, which we will call decomposition, allows us compute the
order of vanishing of the function at that point, which is essential in what follows.
We have chosen this way to proceed and to define evaluation.

In what follows, we explain in details how the following extra notions allow
us to decompose any rational function in some canonical representative:

Definition 3.7. A function u ∈ K(E) is called a uniformizer at P ∈ E(K) if
i) u(P ) = 0, and ii) every non-zero function f ∈ K(E) can be written in the form
f = uvg with g(P ) 6= 0,∞ and v ∈ Z.

The exponent v is independent from the choice of the uniformizer and is
called the order of f at P , a quantity denoted by ordf (P ).

Lemma 3.1. There exists a uniformizer for every point on the curve.

To get an intuition of the previous definitions, one can make a parallel with
the notion of multiplicity for roots of univariate polynomials or with the notion
of zeros and poles in K(x).

For instance, let us first consider the ring of polynomials K[x]. Let p be a
polynomial in K[x] and r be an element of K. We can factorize p as p = (x−r)mq
such that m ∈ N and q(r) 6= 0. The exponent m is the multiplicity of p at r.
The multiplicity of r is 1 for the polynomial factor (x − r). Evaluation and
multiplicity are closely related: r is a root of p iff m > 0.

In an analogous way, we can consider the field of fractions K(E). Let P be
in E and f in K(E). Then, one can always write f in the form f = uvg with
v ∈ Z uniquely defined and P neither a zero nor a pole of g (g(P ) 6= 0,∞). The
exponent v is the order of f at P . (Here, the function u corresponds to the
polynomial factor (x− r) for univariate polynomials) If v > 0 then P is a zero
for f , and if v < 0 then P is a pole for f .

An interesting fact, used in algebraic geometry, is that the order is a discrete
valuation for K(E), which makes K[E ] a discrete valuation ring — a property
that we demonstrate later:
— for all P ∈ E and for all non zero f1, f2 ∈ K[E ],

ordf1∗f2(P ) = ordf1(P ) + ordf2(P ),

— for all P ∈ E and for all non zero f1, f2 ∈ K[E ],

ordf1+f2(P ) ≥ max{ordf1(P ), ordf2(P )}.
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The proof of Lemma 3.1 is constructive and gives all the necessary material
to define the notions of the uniformizer and the order. Indeed, the problem of
evaluating a rational function at a given point is reduced to finding a proper
decomposition of the rational function, based on the following property:

Lemma 3.2. Let f ∈ K(E)∗ and P be a point on the curve. Let u be a
uniformizer at P and udg a decomposition of f respecting the conditions of
Definition 3.7. Then:

f(P ) =


0 when d > 0
∞ when d < 0
g(P ) when d = 0.

Computing such a decomposition, for every rational function f and point
on the curve P , gives a decomposition uo · nd where u and o are constructively
defined and n(P ) 6= 0 and d(P ) 6= 0 if P is finite, or deg(n) = deg(p) otherwise.
We first define a family of rational functions {uP }P s.t. for any point of the
curve P , uP will be a uniformizer at P :

uP =


x− xP when P = (xP , yP ) and yP 6= 0
y when P = (xP , 0)
x
y when P = O.

The family of uniformizers is translated in our setting as:

Definition unifun_fin (x y : K) : ecpoly :=
if y == 0
then [ecp 1 *Y + 0 ]
else [ecp 0 *Y + (’X - x)].

Definition unifun (P : point K) :=
match P with
| (| x, y |) => (unifun_fin x y)
| EC_Inf => ’X / [ecp 1 *Y + 0]
end.

To demonstrate how we obtain the decomposition of a function, let us
consider the first case of a finite point P = (xP , yP ) with yP 6= 0. In this
case, the uniformizer uP is equal to (x− xP ). Let f ∈ K[E ]∗ of representative
p(x) + yq(x). We want to compute ordP (f) and the decomposition f = ud · nd .

P is not a zero of f(x, y)
Then f(x, y) = (x− xP )0 · f(x,y)

1 .

P is a zero of f(x, y) and p(xP ) 6= 0 or q(xP ) 6= 0
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Let µ be the multiplicity of xP in norm(f), and r(x) a element of K[x] s.t.
norm(f) = (x− xP )µr(x). Then:

f = (x− xP )µ
(

r(x)
p(x)−yq(x)

)
with r(xP ) 6= 0 and p(xP )− yP · q(xP ) 6= 0.

P is a zero of f(x, y) and p(xP ) = q(xP ) = 0
Let µp (resp. µq) be the multiplicity of xP in p (resp. in q), and µ as:

µ =


µq if µp = 0
µp if µq = 0
min(µp, µq) otherwise.

Let p1(x) and q1(x) be the elements of K[x] s.t. p(x) = (x − xP )µp1(x)
and q(x) = (x− xP )µq1(x). Then:

f = (x− xP )µ(p1(x) + yq1(x))

with p1(xP ) 6= 0 or q1(xP ) 6= 0. We are back to the previous case.

The function poly_ordreg returns the decomposition at finite points with y 6=
0. It takes the coordinates of a point (x, y) and a polynomial of type ecpoly and
returns a triple (o, n, d) such that p = (unifun (|x, y|))^o * (n // d):

Definition poly_ordreg
(x y : K) (p : ecpoly) : nat * (ecpoly * ecpoly)

:=
let: (d, (pp1, pp2)) := mudiv_join x p.1 p.2 in
let: p’ := [ecp pp1 *Y + pp2] in

if p’.[x, y] == 0 then
let d’ := \mu_x (normp p’) in
let g := (normp p’) / (’X - x)^d’ in

((d + d’), ([ecp 0 *Y + g], (conjp p’)))
else

(d, (p’, 1)).

In the same way, we define a decomposition function, called poly_ordspec, for
finite points with y = 0 and poly_orderinf for the point at infinity. Finally, the
function poly_order computes the decomposition for all points of the projective
plane, making sure that points that do not belong to the curve are projected to
the triplet (0, 0, 1) as a convention.

Definition poly_orderfin (x y : K) (f : ecpoly) :=
if y == 0 then poly_ordspec x f else poly_ordreg x y f.
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Definition poly_orderinf (p:ecpoly) : int * (ecpoly * ecpoly) :=
let d := (degree p).-1 in
(-d, (’X^+d * p, [ecp 1 *Y + 0] ^+ d)).

Definition poly_order
(p : ecpoly) (ecp : point K) : int * (ecpoly * ecpoly)

:=
if (p == 0) || ~~(oncurve ecp) then (0, (0, 1)) else

if ecp is (| x, y |) then
let: (n, (g, h)) := poly_orderfin x y p in (n, (g, h))

else poly_orderinf p.

We continue by proving that the above decomposition is correct and unique.
The correctness of the decomposition is expressed by the predicate uniok. Note
that for the infinite point, the property that the point at which the decomposition
occurs is not a zero of n or d has been replaced by degree n == degree d.

Definition uniok_fin (u f : {fraction ecpoly}) x y o (n d : ecpoly) :=
[&& f == u ^ o * (n // d), n.[x, y] != 0 & d.[x, y] != 0].

Definition uniok_inf (u f : {fraction ecpoly}) o (n d : ecpoly) :=
[&& f == u ^ o * (n // d), n // d != 0 & (degree n == degree d)].

Definition uniok (ecp : point K) o (n d : ecpoly) :=
if ecp is (| x, y |)
then uniok_fin x y o n d
else uniok_inf o n d.

Lemma poly_order_correct:
forall (f : ecpoly) (p : point), f != 0 -> oncurve p ->

let: (o, (g1, g2)) := poly_order f p in
uniok (unifun p) f p o g1 g2.

Lemma uniok_uniq:
forall f p, f != 0 -> oncurve p ->

forall o1 o2 n1 n2 d1 d2,
uniok (unifun p) f p o1 n1 d1

-> uniok (unifun p) f p o2 n2 d2
-> (o1 == o2) && (n1 // d1 == n2 // d2).

Proving that all the lifted functions are stable by quotienting allows us to
lift all the proved properties over K[E ] to K(E). For instance, the order on
{fraction ecpoly} is defined as:

Definition orderf (f : {ratio ecpoly}) p : int :=
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if \n_f == 0 then 0 else
(poly_order \n_f p).1 - (poly_order \d_f p).1.

Definition order f p :=
(lift_fun1 {fraction ecpoly} (orderf^~ p)) f.

Lemma order_correct (n d : ecpoly) ecp o1 o2 n1 n2 d1 d2:
oncurve ecp

-> uniok (unifun ecp) n ecp o1 n1 d1
-> uniok (unifun ecp) d ecp o2 n2 d2
-> [&& order (n // d) ecp == o1 - o2

& uniok (unifun ecp) (n // d) ecp (o1 - o2) (n1 * d2) (n2 * d1)].

Then, we prove that the order is a discrete valuation, making K[E ] a discrete
valuation ring:

Lemma order_mul f1 f2 ecp: (f1 * f2) != 0 ->
order (f1 * f2) ecp = order f1 ecp + order f2 ecp.

Lemma order_add_leq f g ecp: f * g != 0 -> f + g != 0
-> order (f + g) ecp >= Num.min (order f ecp) (order g ecp).

We can then formalize Definition 3.5 by a simple case analysis over the order,
relying on the decomposition of rational functions: Given, a rational function
f and a point P , the function decomp returns the (n, d) part of the function’s
decomposition f = ud · nd . The function leadc computes the leading coefficient
of the highest-power term of a polynomial. Next, ecreval is the extension of
eceval for all points on the curve (including the infinite point) and finally eval
is the evaluation for elements of the field of fractions K(E).

Definition decomp
(f : {fraction ecpoly}) (ecp : point K) : (ecpoly * ecpoly)

:=
let f := repr f in

if (\n_f == 0) || ~~(oncurve ecp) then (0, 1) else
let: (n1, d1) := (poly_order \n_f ecp).2 in
let: (n2, d2) := (poly_order \d_f ecp).2 in

(n1 * d2, n2 * d1).

Definition leadc (p : ecpoly) :=
if (degree [ecp p.1 *Y + 0] > degree [ecp 0 *Y + p.2])
then lead_coef p.1
else lead_coef p.2.

Definition ecreval (p : ecpoly) ecp :=
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if oncurve ecp then
if ecp is (|x, y|) then p.[x, y] else leadc p

else 0.

Definition eval (f : {fraction ecpoly}) ecp : (gproj K) :=
match order f ecp with
| _.+1 => 0 | Negz _ => GP_Inf | 0 =>

(ecreval (decomp f ecp).1 ecp / ecreval (decomp f ecp).2 ecp)
end.

Note that the evaluation returns an element of the projective line, formalized by
the parametric type gproj:

Inductive gproj (G : Type) : Type := GP_Finite of G | GP_Inf.

Addition and multiplication are defined naturally on the projective line, with
the difference that multiplication of 0 with ∞ is defined to be 0 as a convention.

The key lemma of this section is the following:

Lemma 3.3. A rational function f ∈ K(E) has a finite number of poles and
zeros. Moreover, assuming that K is algebraically closed,

∑
P∈E(ordP (f)) = 0.

This lemma is central to the construction of the isomorphism between an
elliptic curve and its Picard group, as it will be described later. The proof
is based on the fact that a finite point on curve P = (xP , yP ) is a zero of a
polynomial p ∈ K[E ] if and only if xP is a root of the norm np of p. Indeed,

np(xP ) = 0 =⇒ p(xP , yP )p̄(xP , yP ) = 0
=⇒ p(xP , yP ) = 0 ∨ p̄(xP , yP ) = 0

since in K there are no divisors of zero. In other words, if xP is a root of the
norm np then, any (xP , yP ) such that y2

P = x3
P + axP + b is either a zero of p or

of its conjugate p̄. The norm, as a univariate polynomial, has a finite number of
roots, hence a polynomial p ∈ K[E ] has a finite number of zeros too. Let p/q be
a representation of a rational function f ∈ K(E). Then f has at most as many
zeros as p and as many poles as the zeros of q, hence f has a finite number of
zeros and poles.

To compute the zeros of a polynomial p ∈ K[E ], one needs to compute the
roots x1, x2, · · · of its norm np and then find the corresponding yi such that
(xi, yi) ∈ E and p(xi, yi) = 0. The function ecroots formalizes this procedure:

Definition ecroots f : seq (K * K) :=
let forx := fun x =>
let sqrts := roots (’X ^+ 2 - (Xpoly.[x])%:P) in
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[seq (x, y) | y <- sqrts & f.[x, y] == 0]

in undup (flatten ([seq forx x | x <- roots (normp f)])).

Lemma ecroot_normp f x y : oncurve (|x, y|) ->
((normp f).[x] == 0) = ((f.[x, y] == 0) || (f.[x, -y] == 0)).

It relies on the function roots that returns the roots of an univariate polyno-
mial. Note that for all polynomials f ∈ K[E ], if (x, y) is a zero of f , then (x,−y)
is a zero of f̄ . Using the decomposition of f , we can easily demonstrate that
ordP (f) = ord−P (f̄). Then,∑

P∈E|P finite

ordP (f) =
∑
−P∈E|−P finite

ord−P (f̄) =
∑

P∈E|P finite

ordP (f̄).

Since the order is multiplicative, we have ordP (nf ) = ordP (f) + ordP (f̄).
Hence, ∑

P∈E|P finite

ordP (nf ) =
∑
P∈E|P finite

ordP (f) +
∑
P∈E|P finite

ordP (f̄)

= 2 ·
∑
P∈E|P finite

ordP (f).

Now, K being algebraically closed, the norm of f can be decomposed as
nf (x) = (x−x1)k1(x−x2)k2 · · · (x−xr)kr . We distinguish two cases: i) if (xi, yi)
is a regular point (yi 6= 0), then ord(xi,yi)(nf ) = ki, and ii) if (xi, yi) is a special
point (yi = 0) then ord(xi,yi)(nf ) = 2 · ki. As a result,∑
P∈E|P finite

ordP (nf ) =
∑

(x,y)∈E

ord(x,y)(nf )

=
∑

(x,y)∈E
0<y

ord(x,y)(nf ) +
∑

(x,y)∈E
0<y

ord(x,y)(nf )︷ ︸︸ ︷
ord(x,−y)(nf ) +

∑
(x,0)∈E

ord(x,0)(nf )

= 2 ·
∑
i

ki.

As a result,
∑

(x,y)∈E ord(x,y)(f) = deg(f), and
∑
P∈E ord(x,y)(f) = 0.

3.2.2 Principal Divisors

From now on, we assume that K is algebraically closed. Principal divisors
are introduced as a tool for describing the zeros and poles of rational functions
on an elliptic curve:

Definition 3.8 (Principal divisors). Given f ∈ K(E), f 6= 0, the principal
divisor Div(f) of f is defined as the formal (finite) sum:
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Div(f) =
∑
P∈E(ordP (f))(P ).

Note that Div(f) is well defined because a rational function has only finitely
many zeros and poles. We write Prin(E) for the set of principal divisors.

The set Prin(E) forms a subgroup of Div(E), the set of formal sums over E ,
a notion that we define now.

Definition 3.9. A divisor on an elliptic curve E is a formal sum of points

D =
∑
P∈E nP (P ),

where nP ∈ Z and only finitely many of them are nonzero. In other words, a
divisor is any expression taken in the free abelian group generated over E(K). The
domain of D is dom(D) = {P | nP 6= 0} and its degree is deg(D) =

∑
P∈E nP .

For any point P , the coefficient of P in D is coeff(P,D) = nP .
We write Div(E) for the set of divisors on E, and Div0(E) its subgroup

composed of divisors of degree 0.

The set of divisors on E is an abelian group. The sum of two divisors is defined
as the point wise addition

∑
P∈E ak(Pk) +

∑
P∈E bk(Pk) =

∑
P∈E(ak + bk)(Pk)

whereas the zero divisor is the unique divisor with all its coefficient set to 0.
Based on the quotient libraries of Ssreflect, we develop the theory of free

abelian groups. Let T be a type. We first define the type of pre-free group as the
collection of all sequences s of type int * T s.t. no pair of the form (0, _) can
appear in s and for any z : T, a pair of the form (_, z) can appear at most
once in s.

Definition reduced (D : seq (int * T)) :=
(uniq [seq zx.2 | zx <- D])

&& (all [pred zx | zx.1 != 0] D).

Record prefreeg : Type := mkPrefreeg {
seq_of_prefreeg : seq (int * T);
_ : reduced seq_of_prefreeg

}.

The intent of prefreeg is to give a unique representation of a free-group
expression, up to the order of the coefficients. For instance, if D = k1x1 +
· · ·+ knxn (with all the xi’s pairwise distinct and all the ki’s in Z∗), then the
reduced sequence s = [:: (k_1, x_1), ..., (k_n, x_n)], or any sequence
equal up to a permutation to s, is a valid representation of D. The type
freeg of free-groups is then obtained by quotienting prefreeg by the perm_eq
equivalence relation (where perm_eq xs ys is true if the lists xs ys are equal
up to permutation).
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From there, we equip the type freeg with a group structure (the operation is
noted additively), and define all the usual notions related to free groups (domain,
coefficient, degree, ...). For instance, assume G : zmodType (G is a Z-module)
and f : T -> G. Then, f defines a unique group homomorphism from freeg to
G that can be defined as follows:

Definition prelift (D : seq (int * T)) : G :=
\sum_(x <- D) (f x.2) * x.1.

Definition lift (s : prefreeg T) : G := prelift s.
Definition fglift (D : {freeg T}) := lift (repr D).

One can check that the fglift function defines the homomorphism∑
(z,x)∈D zf(x)

The coefficient coeff and degree deg functions can be then defined as:

Definition coeff (t : T) (D : {freeg T}) :=
fglift (fun x => (x == t)) D.

Definition deg (D : {freeg K}) : int :=
fglift (fun x => 1) D.

The Group of Principal Divisors

One can easily check that Prin(E) is a subgroup of Div0(E). Indeed, ∀f, g ∈
K(E) i) deg(Div(f)) = 0 by Lemma 3.3, and ii) since the order function is
multiplicative (ordp(f/g) = ordp(f) − ordp(g)), we have Div(f/g) = Div(f) −
Div(g). Moreover, it is now clear that the coefficients associated in Div(f), to
each point P , is the order of the function f at P , highlighting the fact that a
divisor wraps up the zeros and poles of f .

Formally, we define principal divisors for polynomials on the curve with the
function ecdivp:

Definition ecdivp (f : ecring) : {freeg (point)} :=
\sum_(p <- ecroots f)

<< (order f (p.1, p.2)) * (p.1, p.2) >>
+ << order f EC_Inf * EC_Inf >>.

where << z * P >> stands for the divisor z(P ) and the function ecroots takes
a polynomial of K[E ] and returns the list of its finite zeros as explained in the
previous section.
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Next, we lift the definition of principal divisors to K(E), prove its correctness
and recast the key Lemma 3.3 (deg_ecdiv_eq0):

Notation "\n_f" := (numerator f).
Notation "\d_f" := (denominator f).

Definition ecdiv_r (f : {ratio ecring}) :=
if \n_f == 0 then 0 else (ecdivp \n_f) - (ecdivp \d_f).

Definition ecdiv := lift_fun1 {fraction ecring} ecdiv_r.

Lemma ecdiv_coeffE (f : {fraction ecring}) p:
coeff p (ecdiv f) = order f p.

Lemma deg_ecdiv_eq0 (f : {fraction ecring}): deg (ecdiv f) = 0.

3.2.3 Divisor of a line

Before moving to the definition of the Picard group, we characterize the
divisors of some specific rational functions. These divisors will later help formalize
the construction of the Picard group:

Definition 3.10. A line l ∈ K(E) is any rational function of the form l(x, y) =
ax+ by + c with a, b, c ∈ K not all zero.

For instance, if (PQ) is the line intersecting the curve at P and Q, then we
know that (PQ) intersects E at exactly three points (counting multiplicities):
P , Q and P � Q. Assuming that P , Q and P � Q are all finite, these three
points are the unique zeros of the rational function l associated to (PQ) and
Div(l) = (P ) + (Q) + (P �Q)− 3(O). If (PQ) is the line tangent at P which
passes from Q, then Div(l) = 2(P ) + (Q)− 3(O). The line tangent at P which
passes from no other point on the curve, is a special case (P is an inflexion
point) and its divisor is Div(l) = 3(P )− 3(O). Moreover, the above relation still
holds when one or several of these three points are equal to O: For instance,
Div(x− xP ) = (P ) + (−P )− 2(O), where x− xP is the line intersecting E at P ,
−P and O.

3.2.4 The Picard Group

Since principal divisors form a subgroup of zero degree divisors, we can define
the quotient of zero-degree divisors modulo principal divisors, called the Picard
group or the divisor class group:

Definition 3.11. The Picard group Pic(E) is the group quotient Div(E)/Prin(E).
The Picard group of zero degree Pic0(E) is the group quotient Div0(E)/Prin(E).
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Note that the degree is well defined on the divisor class group since if
D1 = D2 + Div(f) then degD1 = degD2 + deg(Div(f)) = degD2 + 0 = degD2.

In other words, Pic(E) is defined as the quotient of Div(E) by the following
equivalence relation ∼:

D1 ∼ D2 if and only if ∃f ∈ K(E) such that Div(f) = D1 −D2.

We formalize this notion as follows:

Definition ecdeqv D1 D2 :=
(exists f : {fraction ecring}, ecdiv f = D1 - D2).

Notation "D1 :~: D2" := (ecdeqv D1 D2).

The Picard group that is of interest to our development is Pic0(E). We do
not give a direct construction of Pic0(E) but instead prove that any class of
Pic0(E) can be represented by a divisor of the form (P )− (O).

The construction of this representative is based on a procedure called Linear
Reduction. Assume that P and Q are two finite points of E(K). We know that the
divisor of the line l intersecting E at P andQ is Div(l) = (P )+(Q)+(P�Q)−3(O).
Likewise, the divisor of the line l′ intersecting E at P�Q and −(P�Q) (= P+Q)
is Div(l′) = (P +Q) + (P �Q)− 2(O). Hence,

Div(l/l′) = Div(l)−Div(l′)
= (P ) + (Q)− (P +Q)− (O),

and (P ) + (Q) ∼ (P +Q) + (O).

Iterating this procedure, we can reduce any divisor of the form:

(P1) + · · ·+ (Pn)− (Q1)− · · · − (Qk) + r(O)

to an equivalent one (P ) − (Q) + r′(O), with r′ ∈ Z. Using one more time
the same construction, one can show that (P ) − (Q) + n′(O) is equivalent to
(P −Q) + n′′(O) where n′, n′′ ∈ Z:

Indeed, the divisor of the line l1 intersecting E at P and −P is Div(l1) =
(P ) + (−P )− 2(O). Likewise, the divisor of the line l2 intersecting E at Q, −P
and P −Q is Div(l2) = (Q) + (−P ) + (P −Q) + 3(O). Hence,

Div(l1/l2) = Div(l1)−Div(l2)
= (P )− (Q)− (P −Q) + (O),

and (P )− (Q) ∼ (P −Q) + (O).

The lr function formally defines the linear reduction procedure:
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Definition fgpos (D : {freeg K}) :=
\sum_(p <- dom D | coeff p D > 0) coeff p D.

Definition fgneg (D : {freeg K}) :=
\sum_(p <- dom D | coeff p D < 0) -(coeff p D).

Definition lr_r (D : {freeg point}) :=
let iter p n := iterop _ n + p EC_Inf in

\sum_(p <- dom D | p != EC_Inf) (iter p ‘|coeff p D|).

Definition lr (D : {freeg point}) : point :=
let: (Dp, Dn) := (fgpos D, fgneg D) in

lr_r Dp - lr_r Dn.

Lemma ecdeqv_lr D: all oncurve (dom D) ->
D :~: << lr D >> + << deg D - 1 *g EC_Inf >>.

where (Dp, Dn) := (fgpos D, fgneg D) is the decomposition of D into its
negative and positive parts.

The lemma ecdeqv_lr states that any divisor is equivalent to a divisor of
the form (P ) + (degD − 1)(O). In the context of Pic0(E), this means that any
class contains a divisor of the form (P ) − (O) (recall that Pic0(E) is a group
quotient of Div0(E) — the divisors of degree 0). In the next section, we end the
construction of the Picard group by proving that at most one such representative
can be found in each class of Pic0(E).

Remark. Linear Reduction obviously presents an algorithmic aspect: it is a
function that iterates a procedure on a divisor and produces an equivalent one.
This was the first approach of formalizing an abstract elliptic curve algorithm,
using our formalization. The algorithm of linear reduction could possibly be
extended to (an abstract version of) the Miller algorithm [Mil86] to compute
Weil pairings on elliptic curves.

Moreover, linear reduction as well as addition on elliptic curve points, they
both reflect the geometrical vision that characterizes our development. While
our development takes place in an algebraic setting based on the algebra libraries
of Ssreflect the use of lines to define addition and to reduce divisors preserve
the geometric aspect of elliptic curves that one finds in almost all mathematics
textbooks.

3.3 Linking Pic(E) to E(K)
In this section, we finish our formal construction of the Picard group and

prove the existence of an isomorphism between Pic0(E) and E(K). We start by
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defining a canonical representative for the classes of Pic0(E):

Lemma 3.4. For every class of Pic0(E), there exists a unique representative of
the form (P )− (O) with P ∈ E(K).

The proof of this proposition works by contradiction: if not true, it allows
us to construct an extension of K(x) of degree 2 that is isomorphic to itself.
From Section 3.2.4, we already know that each class of Pic0(E) contains one such
representative. Assume now that (P )−(O) and (Q)−(O) are two representatives
of a class of Pic0(E) with P 6= Q. Such an assumption allows us to find a rational
function h ∈ K(E) s.t. every rational function f ∈ K(E) can be expressed as
a polynomial fraction of h. This implies that K(E) and K(x) are isomorphic.
However, since K(E) is a field extension of degree 2 of K(x), such an h cannot
exist. Hence, P = Q:

Lemma lr_uniq: << p >> :~: << q >> -> p = q.

Formalizing the above proposition turns out to be quite technical. Assuming
the existence of a function h ∈ K(E), whose divisor is (P ) − (Q), we have to
show that every rational function f ∈ K(E) can be expressed as a polynomial
fraction of h (a fact that leads finally to a contradiction).

More precisely, for all points R ∈ E , we consider the function hR = h− h(R)
and we compute its divisor. For a fixed point S ∈ E , hS has the following
properties:
— it is not a constant fraction, and
— its divisor is (S)− (Q) if S 6= Q.
Then using function decomposition, any rational function such that Q is not

in the domain of its divisor can be expressed as a polynomial fraction of h, which
is a property that can be generalized for all rational functions in K(E).

Using the previous result, we can express x and y as polynomial fractions of h.
But on the curve E , these functions satisfy the curve equation y2 = x3 + ax+ b,
which contradicts the following proposition, whose proof is based on another
technical result:

Lemma 3.5. Let E : y2 = x3 + ax+ b be a smooth Weierstrass curve on some
field K. If r, s ∈ K(x) satisfy r2 = s3 + as+ b, then r, s are constant fractions.

As will be explained below, this part of the proof is a direct consequence
of the Riemann-Roch theorem. The Picard group Pic0(E) can now be formally
defined as the set of divisors of the form (P ) − (O). It remains to prove the
existence of a bijection between Pic0(E) and E(K). Namely, the function

φ : E(K)→Pic0(E)
P 7→ [(P )− (O)]

65



From the results of Section 3.2.4:

φ(P1)− φ(P2) = [(P1)− (O)]− [(P2)− (O)] = [(P1)− (P2)]
= [(P1 − P2)− (O)] = φ(P1 − P2).

In our formalization, we directly use the linear reduction function lr in place
of φ−1. For instance, we prove that lr commutes with the curve operations and
maps (P )− (O) to P ∈ K(E):

Lemma lrB: forall (D1 D2: {freeg point},
deg D1 = 0 -> all oncurve (dom D1) ->
deg D2 = 0 -> all oncurve (dom D2) ->
lr (D1 - D2) = lr D1 - lr D2.

Lemma lrpi: forall p : point,
oncurve p -> lr (<<p>> - <<EC_Inf>>) = p.

This allows us to transport the structure from Pic0(E) to E(K), proving that
E(K) is a group.

Remark. A part of the formalization of lemma 3.5 turned out to be quite
technical, the proof involving matrices and polynomials, and being more than
800 lines of code. This part mainly involved a detailed translation of the pencil-
and-paper proof into Ssreflect code while no structures were defined and no
design decisions were taken. Nevertheless, it led to the development of theory
about evaluation of univariate polynomial fractions and about composition
of polynomial fractions with rational functions of K(E). It also led to the
formalization of some additional lemmas concerning polynomials and matrices.
This technical part of the proof could have been avoided if we had used the
Riemann Roch theorem. Indeed, the existence and the uniqueness of the canonical
representative of a Picard class is a direct consequence of the Riemann Roch
theorem, as was detailed in Chapter 2. Nevertheless, to use Riemann Roch we
ought to have a formal proof of the theorem, which was a goal far too ambitious,
although undeniably interesting for this particular research project. Our purpose
was to develop elliptic curve theory in order to formalize elliptic curve algorithms
used in cryptographic schemes. As a result, the formalization of Riemann Roch
was out of the scope of this project.

During this formalization, there were many times where we needed to ma-
nipulate large polynomial formulas, like the parts concerning the group law
equations equations, the decomposition of rational functions, or the large tech-
nical part concerning the uniqueness of the Picard group representation. Those
parts turned out to be technical in Ssreflect, mainly because of the lack of
automation. Indeed, Ssreflect is not a mathematics software designed to
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compute polynomial formulas or resolve equations in some ring, such as Sage or
Maple for example, but a theorem prover to formalize algebra proofs. However,
we chose not to use any of these software because they come with no formal
guarantee of their correctness. Our development is completely based on Coq
and no results have been admitted nor verified tools using untrusted external
tools. In that context, Pierre-Yves Strub developed an interface between the
ring tactic of Coq and the ring structures of Ssreflect which allowed us to
simplify the proof. Nevertheless, we would like to stress out the necessity for
tactics that would provide more automation in Ssreflect because it can be
frustrating and discouraging to the developer to confront this kind of difficulties.

Conclusion

In this section, we presented a formal proof of the Picard theorem for elliptic
curves, which allowed the formalization of theory about elliptic curves in affine
form, rational functions and divisors. Using this theorem, we have proven
that the elliptic curve operation defined by polynomial formulas is a group law.
Using the above, we will demonstrate that we can represent elliptic curves in
different coordinate systems (projective in our case) and that this representation
is equivalent. By transport of structure, the curve in projective coordinates also
possesses the structure of an abelian group.

3.4 The Projective Plane
Recall that in cryptography, elliptic curves are represented in different co-

ordinate systems in order to accelerate computation. The reason is that addition
formulas based on affine coordinates require the computation of field inversions,
which is particularly expensive over prime fields. To avoid field inversions, an
elliptic curve is often represented using a projective coordinate system. In this
section, we present a formalization of elliptic curves in projective coordinates and
we demonstrate that this representation is isomorphic to the affine representation
described in the previous section.

A projective plane is a geometric concept that expands the concept of an
Euclidean plane. In an ordinary Euclidean plane, any two lines intersect in
exactly one point, except for parallel lines that intersect in no point. A projective
plane can be comprehended as an Euclidean plane together with separate points
(called points at infinity) on which parallel lines intersect. Intuitively, a projective
plane is a plane where any two lines intersect in exactly one point. In what
follows, we start by giving the classical geometrical definitions and move to a
more algebraic construction of a projective plane over a field.

The geometrical definition of a projective plane is the following:

67



Definition 3.12. A projective plane (P,L) is a non empty set P whose elements
are called points, together with a set L whose elements are non-empty subsets of
P called lines, satisfying three axioms:

1. For any two distinct points p1, p2 ∈ P, there exists exactly one line l ∈ L
such that both p1 ∈ l and p2 ∈ l.

2. There exists a set of four points, such that given any set of three of these
points, no line exists that contains all three points.

3. Any two lines intersect in exactly one point.

We say that a point p is on a line l if p ∈ l. A set of points is said to be
collinear if there exists a line such that all points are on this line. Using this
terminology, we can write the above axioms in a simpler way:

1. Two distinct points determine exactly one line.
2. There exists a set of four points, no three of which are collinear.
3. Any two lines intersect in exactly one point.

Construction from fields

Let K be a field and K3 the 3 dimensional vector space over K. Then we can
define the projective plane P over K as follows.

— The points of P are the lines of K3 through the origin (0, 0, 0):

P = {αv | v ∈ K3 \ (0, 0, 0), α ∈ K}.

— The lines of P are the planes of K3 through the origin (0, 0, 0):

L = {αv + βw | v, w ∈ K3 \ (0, 0, 0), α, β ∈ K}.

The fact that the three axioms are satisfied follows from some elementary
linear algebra:

1. In K3, two lines with exactly one point in common are contained in
exactly one plane. Hence, two distinct projective points are on exactly one
projective line and the first axiom is satisfied.

2. The projective points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and (1 : 1 : 1) satisfy
the second axiom.

3. In K3, any two planes passing through the origin, intersect in exactly
one line passing through the origin too. Hence, any two projective lines
intersect in exactly one projective point.

To avoid confusion, from now on, we will denote v (resp. (x, y, z)) for a
vector of K3 and [v] (resp. (x : y : z)) for a projective point.

A non-zero vector in K3 determines a line in K3 passing through the origin.
Therefore we can use the non zero vectors of K3 to represent the points of P.
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Two non-zero vectors v and w represent the same projective point of P if they
are on the same line in K3, i.e. [v] = [w] iff v = αw for some α ∈ K∗. Let
v = (x, y, z) be a non zero vector of K3. If z 6= 0 then [v] = [z−1v] = (xz : yz : 1),
and so there exists a unique representative of the class of the form (x′, y′, 1).
Hence, there exists a 1-to-1 map between the set of projective points with z 6= 0
and K2. If z = 0, then x and y cannot both be zero because v is a non zero
vector. Moreover, if x 6= 0 then [v] = [x−1v] = (xx : yx : 0) and so there exists a
unique representative of the class of the form (1, y′, 0). So, there exists a 1-to-1
map between the set of projective points with z, x 6= 0 and K. In the same way,
when z = 0 and x = 0, we have [v] = [y−1v] = (0 : yy : 0) = (0 : 1 : 0). Hence,
there exists an isomorphism between the set of projective points P and the set
K2 ∪K ∪ {(0 : 1 : 0)}.

It may have become obvious to the reader by now that starting from the
geometrical definition of the projective plane (over some field K) we have arrived
to construct an algebraic quotient structure:

Definition 3.13 (Projective plane). The projective plane P2 over K is the
quotient P2 = K3 \ (0, 0, 0)/ ∼ where (x, y, z) ∼ (x′, y′, z′) if and only if there
exists a λ ∈ K∗ such that (x′, y′, z′) = (λx, λy, λz).

Elliptic curve on projective plane

A curve of the projective plane is the set of projective points (x : y : z)
whose coordinates are a solution of a homogeneous equation f(x, y, z) = 0. A
curve represented by a homogeneous equation f(x, y, z) = 0 is smooth or non-
singular if the partial derivatives of f with respect to x, y, z do not all vanish
simultaneously on the curve.

As introduced in Chapter 2, an elliptic curve E over some field K is defined
as a smooth projective plane curve over K of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

The above form is called a Generalized Weierstrass form. If the characteristic
of the field K is different from 2 and 3, then the elliptic curve can be put in the
short Weierstrass form

y2z = x3 + axz2 + bz3.

The condition that the curve is smooth becomes ∆ = 4a3 − 27b3 6= 0.
In projective coordinates, addition is defined by the following (geometrical)

rules:
1. The negative of a projective point (x : y : z) is the point (x : −y : z).
2. The zero element is the point (0 : 1 : 0), called the point at infinity.
3. The sum of three points that belong to the same projective line is zero.
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Like in the affine setting, those rules can be translated into polynomial
formulas, which are stable by quotienting. For all P = (xP : yP : zP ) ∈ E and
Q = (xQ : yQ : zQ) ∈ E , let S = P +Q = (xS : yS : zS) be the sum of the two
points.

— If P = Q then
u = 3x2

P + az2
P xS = vr

v = 2y2
P yS = −u(r − v2x)− yP v3

r = u2zP − 2v2xP zS = zP v
3.

— If P 6= Q then
u = yQzP − yP zQ xS = vr

v = xQzP − xP zQ yS = −u(r − xP zQv2)− yP zQv3

r = u2zP zQ − v2(xP zQ + xQzP ) zS = zP zQv
3.

Lemma 3.6. Let K be a field of characteristic different from 2, 3. Let Eproj be
the projective curve K defined by the equation Y 2Z = X3 + aXZ2 + bZ3 and let
Eaff be the affine curve K defined by the equation y2 = x3 + ax+ b together with
a separate point O. We assume that the condition ∆ = 4a3 − 27b3 6= 0 holds.

Then the map φ : Eproj → Eaff with φ(x : y : z) = (xz ,
y
z ) when z 6= 0 and

φ(0 : 1 : 0) = O is an isomorphism of the curves Eproj and Eaff .

A Formalization of the projective plane. We formalize the construction
of projective planes from fields as explained above, and we prove the equivalence
of curves in affine and projective coordinates.

Let K be a field, then the projective plane is defined K3 \ (0, 0, 0) quotiented
by the equivalence relation (x, y, z) ∼ (x′, y′, z′) if and only if (x′, y′, z′) =
(λx, λy, λz) for some λ ∈ K∗.

To formalize the quotient we have used the standard quotient methodology
of Ssreflect which was introduced in Chapter 2. The first step is to define
the equivalence relation, by the boolean predicate lineq, which is defined in
all generality for uplets of all sizes. Next, we restrict lineq to triplets with the
function projeq:

Definition lineq p1 p2 : bool :=
let P := [pred i : ’I_n | tnth p1 i != 0] in
match [pick i : ’I_n | P i] with
| None => p1 == p2
| Some i =>

[tuple tnth p1 j / tnth p1 i | j < n]
== [tuple tnth p2 j / tnth p2 i | j < n]
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end.

Definition projeq (p1 p2 : K * K * K) : bool :=
let: (x1, y1, z1) := p1 in
let: (x2, y2, z2) := p2 in
lineq [tuple x1; y1; z1] [tuple x2; y2; z2].

Given as input two n-uplets (a1, a2, . . . , an) and (b1, b2, . . . , bn), the function
lineq first picks an ai 6= 0 if it exists. Then it checks if for all j in the range
[1, . . . , n] aj

ai
= bj

bi
. If all ai = 0 then the function checks if all bi = 0 too. In

other words, the predicate lineq holds for (a1, a2, · · · , an) and (b1, b2, · · · , bn),
if it exists a λ ∈ K such that (a1, a2, · · · , an) = (λb1, λb2, · · · , λbn), as is stated
by the following view lemma:

Lemma lineqP p1 p2:
reflect

(exists2 x, x != 0 & forall i, tnth p1 i = x * (tnth p2 i))
(lineq p1 p2).

Lemma projeqP (p1 p2 : K * K * K):
let: (x1, y1, z1) := p1 in
let: (x2, y2, z2) := p2 in
reflect

(exists2 l, l != 0 & [&& x1 == l * x2, y1 == l * y2 & z1 == l * z2])
(projeq p1 p2).

Note that the relation projeq is defined on triplets of K3. Using the lemma
projeqP, we prove that projeq is indeed an equivalence relation:

Lemma projeq_refl: reflexive projeq.
Lemma projeq_sym: symmetric projeq.
Lemma projeq_trans: transitive projeq.

In the following, we consider that K is a fieldType, which is the type of fields
in Ssreflect. We define the type prepoint to formalize exactly K3 \ (0, 0, 0)
which is the base type of our quotient. An inhabitant of the type prepoint is a
triplet of K3 along with a proof that the triplet is different from (0, 0, 0). Next,
we restrict the equivalent relation to elements of K3 \ (0, 0, 0) and we call the
restriction ppequiv:

Inductive prepoint: Type :=
| PrePoint (t : K * K * K) of t != (0, 0, 0).

Definition ppequiv (p1 p2 : prepoint) := projeq p1 p2.
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We quotient the type prepoint by the relation projeq to obtain the type of
projective points {ppoint K}. The function Point allows us to turn any triplet
of K3 into an element of type prepoint. Indeed, if p 6= (0, 0, 0) then the function
returns p together with a proof that it is different from (0, 0, 0) while if p = (0, 0, 0)
it returns by convention the triplet (0, 0, 1).

Definition Point (K : fieldType) (p : K * K * K) :=
insubd (PrePoint (@zero_proof K)) p.

Subsequently, we define the following notations for elements of the base type
prepoint and of the quotient type {ppoint K}:

Notation "(| x , y , z |)" := (Point (x, y, z)).
Notation "<[ x : y : z ]>" := (\pi_{ppoint _} (|x, y, z|)).

We have left for future work the formalization of the isomorphism between
the projective plane over K and K2 ∪K ∪ {(0 : 1 : 0)} and we move directly to
the definition of elliptic curves in projective coordinates.

Formalizing elliptic curves in projective coordinates. Given an affine
curve E, we first define the function pponcurve, that decides if a projective point
satisfies the equation of the curve in projective coordinates. In our case, we
first explicitly define the function (pponcurve_r) on elements of the base type
prepoint K and then lift it to the quotient type {ppoint K}:

Variable K : ecuFieldType.
Variable E : ecuType K.
Local Notation a := (E#a).
Local Notation b := (E#b).

Definition pponcurve_r (p : prepoint K) :=
let: (x, y, z) := val p in

y^+2 * z == x^+3 + a*x*z^+2 + b*z^+3.

Lemma pponcurve_mod_eq (p q : prepoint K):
ppequiv p q -> pponcurve_r q = pponcurve_r p.

Definition pponcurve := lift_fun1 {ppoint K} pponcurve_r.

Following the same steps as in the affine part of the development, we use
the pponcurve function to declare a type for projective points on the curve:
inhabitants of the type ec_proj are projective points (of type {ppoint K}) that
satisfy the curve equation.
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Inductive ec_proj : Type :=
| EC_proj : forall p : {ppoint K}, pponcurve p -> ec_proj

Lemma oncurve_ec_proj (p : ec_proj): pponcurve p.

Formalizing the isomorphism between affine and projective forms. To
prove Lemma 3.6, we explicitly define the map between affine and projective
coordinates and we prove that it is a bijection and a morphism for the curve
operation.

Let Eaff be the affine Weierstrass curve defined by the equation y2 = x3+ax+b
and Eproj be the projective Weierstrass defined by the equation {(X : Y :
Z)|Y 2Z = X3 + aXZ2 + bZ3}. Then the map f : Eproj → Eaff , f(X : Y : Z) =
(XZ ,

Y
Z ) if Z 6= 0 and f(X : Y : Z) = O if Z = 0, is a bijection between Eaff

and Eproj. In Ssreflect, instead of defining the map f and f−1 on points
on the curve, the definitions apply directly on elements of type point K and
ppoint K. This is done deliberately for two reasons: Many of the lemmas
expressing properties about the maps are valid even for points that are not
on the curve, so we try to stay as general as possible. Moreover, we avoid
having to prove in every step that the point is on the curve, therefore making the
definitions and the proofs shorter. Note that the function p2a (which corresponds
to f : Eproj → Eaff as denoted above) is first defined on the base type prepoint K
and then lifted to the quotient type {ppoint K}.

Definition a2p (p : point K) : {ppoint K} :=
if p is (|x, y|) then <[ x : y : 1 ]> else <[ 0 : 1 : 0 ]>.

Definition p2a_r (p : prepoint K) : point K :=
if p.2 == 0 then EC_Inf else (| p.1.1 / p.2, p.1.2 / p.2 |).

Definition p2a := lift_fun1 {ppoint K} p2a_r.

Next, we demonstrate that for all points on the curve, the maps f , f−1 cancel
each others. As a result, when restricted on the curve, f is a bijection.

Lemma a2pK: cancel a2p p2a.
Lemma p2aK: {in pponcurve E, cancel p2a a2p}.
Lemma bij_a2p: {on pponcurve E, bijective a2p}.

Like in the affine case, given the curve in projective coordinates we define
addition and doubling using polynomial formulas. Note that addition is defined
in three steps:

— the function padd_t defines addition on triplets of K3 using the polynomial
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formulas,

— the function padd_tr restrains padd_t on K3 \ (0, 0, 0) i.e. on elements of
type prepoint assuring that outside the curve the function returns (0, 1, 0)
as a convention, and

— after demonstrating that the function padd_tr is stable by the quotient,
meaning that ∀p′ ∼ p and ∀q′ ∼ q, we have p′ + q′ ∼ p+ q, we can lift it
to the quotient type {ppoint K}.

Definition pdouble_t (p : K * K * K): K * K * K := nosimpl (
let: (x, y, z) := p in

if (y == 0) || (z == 0) then (0, 1, 0) else
let u := 3 * x^+2 + a * z^+2 in
let v := 2 * y * z in
let r := u^+2 * z - 2 * v^+2 * x in
let xs := v * r in
let ys := -u * (r - v^+2 * x) - y * v^+3 in
let zs := z * v^+3 in
(xs , ys , zs)).

Definition padd_t (p q : K * K * K): K * K * K := nosimpl (
let: (xp, yp, zp) := p in
let: (xq, yq, zq) := q in

if zp == 0 then q else
if zq == 0 then p else
if xp / zp == xq / zq then
if yp / zp == yq / zq then pdouble_t p else (0, 1, 0)
else

let u := yq * zp - yp * zq in
let v := xq * zp - xp * zq in
let r := u^+2 * zp * zq - v^+2 * (xp * zq + xq * zp) in
let xs := v * r in
let ys := -u * (r - xp * zq * v^+2) - yp * zq * v^+3 in
let zs := zp * zq * v^+3 in
(xs , ys , zs)).

Definition padd_tr (p q : prepoint K): K * K * K :=
if pponcurve_r E p && pponcurve_r E q then

padd_t p q
else

(0, 1, 0).

Definition padd_r (p q : prepoint K) := Point (padd_tr p q).
Definition padd := lift_op2 {ppoint K} padd_r.
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Addition as defined is stable by the quotient and therefore it is a canonical
morphism for the class. Some technical details:

— Concerning double_t: The function separates three cases: when y = 0 we
consider that the point is not on the curve ; when z = 0 and if the point
lies on the curve, it is the infinite point ; when y 6= 0 and z 6= 0 and if the
point lies on the curve, there exists a representative of the form (x′, y′, 1)
and it satisfies the curve equation.

— Concerning padd_t: The function separates cases: If one of the points has
z = 0 then (if it is on the curve) it corresponds to the point at infinity, so
the result is directly the other point. Note that points that do not belong
to the curve are eliminated by padd_tr later on. In the case that z 6= 0
and the two points belong to same equivalence class, the function calls
double_t.

In the same way, we proceed for the definition of the negative of a point:

Definition popp_tr (p : prepoint K) : K * K * K :=
let: (x, y, z) := val p in (x, -y, z).

Definition popp_r (p : prepoint K) := Point (popp_tr p).
Definition popp := lift_op1 {ppoint K} popp_r.

Last but not least, we demonstrate the final lemma of this section, stating
that the function p2a is an isomorphism between the two curve forms:

Lemma oncurve_p2a (p : {ppoint K}): pponcurve E p -> oncurve E (p2a p).

Lemma isomorph (p q : {ppoint K}):
pponcurve E p -> pponcurve E q

-> (p \- q) = a2p (p2a p \- p2a q).

Based on the isomorphism that allows using all the theory of curves in affine
coordinates, we were able to prove several properties of the opposite and the
addition on projective points, such as:

Lemma poppK: forall q :{ppoint K}, popp (popp q) = q.

Lemma pponcurve_popp (p : ec_proj E): pponcurve E (popp p).

Lemma pponcurve_padd_ppoint: forall (p1 p2 : {ppoint K}),
pponcurve E p1 -> pponcurve E p2 -> pponcurve E (padd E p1 p2).

Lemma pponcurve_padd (p1 p2 : ec_proj E): pponcurve E (padd E p1 p2).
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Since we have demonstrated that the sum of two points always lies on the curve,
then we can lift the definitions of addition and the opposite to elements of type
ec_proj E. Applying the isomorphism lemma and by transport of structure,
the addition in projective coordinates satisfies all group properties and therefore
we can equip ec_proj E with a Z-module structure.

Definition ecp_zero := EC_proj (pponcurve0 E).
Definition ecp_opp (p : ec_proj E) := EC_proj (pponcurve_popp p).
Definition ecp_add (p1 p2 : ec_proj E) := EC_proj (pponcurve_padd p1 p2).

Lemma ecpC : commutative ecp_add.
Lemma ecp0e : left_id ecp_zero ecp_add.
Lemma ecpNe : left_inverse ecp_zero ecp_opp ecp_add.
Lemma ecpNe : left_inverse ecp_zero ecp_opp ecp_add.
Lemma ecpA : associative ecp_add.

Definition ecp_zmodMixin := ZmodMixin ecpA ecpC ecp0e ecpNe.
Canonical ecp_zmodType := Eval hnf in ZmodType (ec_proj E) ecp_zmodMixin.

3.5 Related work
Hurd et al. [HGF06] formalize elliptic curves in higher order logic using

the HOL-4 proof assistant. Their goal is to create a “gold-standard” set of
elliptic curve operations mechanized in HOL-4, which can be used afterwards to
verify ec-algorithms for scalar multiplication. They define datatypes to represent
elliptic curves on arbitrary fields (in both projective and affine representation),
rational points and the elliptic curve group operation, although they do not
provide a proof that the operation indeed satisfies the group properties. In the
end, they state the theorem that expresses the functional correctness of the
ElGamal encryption scheme for elliptic curves.

Smith et al. [SD08] use the Verifun proof assistant to prove that two represent-
ations of an elliptic curve in different coordinate systems are isomorphic. Their
theory applies to elliptic curves on prime fields. They define data structures for
affine and projective points and the functions that compute the elliptic curve
operations in affine and Jacobian coordinates. In their formalization there is
no datatype for elliptic curves, an elliptic curve is a set of points that satisfy
a set of conditions. They define the transformation functions between the two
systems of coordinate and prove that for elliptic curve points the transformation
functions commute with the operations and that both representations of elliptic
curves in affine or Jacobian coordinates are isomorphic.

Théry [Thé07] present a formal proof that an elliptic curve is a group using
the Coq proof assistant. The proof that the operation is associative relies heavily
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on case analysis and requires handling of elementary but subtle geometric
transformations and therefore uses computer-algebra systems to deal with non-
trivial computation. In our development, we give a different proof of the
associativity of the elliptic curve group law: we define an algebraic structure
(the Picard group of divisors) and proceed to prove that the elliptic curve is
isomorphic to this structure. Our formalization is more structural than [Thé07]
in the sense that it involves less computation and the definition of new algebraic
structures.

As in [HGF06] and [SD08] we wish to develop libraries that will enable
the formal analysis of elliptic curve algorithms and our proofs follow textbook
mathematics. As in [Thé07], we give a formal proof of the group law for elliptic
curves. Nevertheless, the content of our development is quite different from the
related work. To the extent of our knowledge this is the first formalization of
divisors and rational functions of a curve, which are objects of study of algebraic
geometry. Such libraries may allow the formalization of non-trivial algorithms
that involve divisors (such as the Miller algorithm for pairings [Mil86]), isogenies
(such as [BJ03], [DIK06]) or endomorphisms on elliptic curves (such as the GLV
algorithm for scalar multiplication [GLV01]).
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4
A formalization of the GLV algorithm

In this chapter, we present a formal proof of correctness of the GLV algorithm
[GLV01] for scalar multiplication on an elliptic curve group. This proof uses
theory from the elliptic curve library that was presented in Chapter 3. The
development includes over 5k lines of code and is available at https://github.
com/strub/glv.

The GLV algorithm was initially presented in 2000 in the article [GLV01]
by Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. It presents
an important efficiency advantage and this is the reason why it was adopted,
studied and implemented in many versions, up to now. A first complexity analysis
of GLV is presented in [GLV01] and a further analysis in [SCQ02]. Since its
publication on 2001, significant research has been made to optimize performance
of GLV [FLS15], to analyze its security properties and its applicability to different
settings.

The idea behind GLV is the following: Let us consider an elliptic curve E over
some prime field Fp. Suppose that given a random point P ∈ E we can somehow
compute easily a (non-trivial) multiple of P , say [λ]P . Then when asked to
compute another multiple [k]P , we can break it down to [k]P = [k1]P+[k2]([λ]P ),
with k1 and k2 having half the size of the initial k. Then we can use a fast double-
multiplication algorithm (multi-exponentiation), which presents an important
efficiency advantage compared to computing [k]P directly.

However, computing the multiple [λ]P of a given point P implies that
the curve has an efficiently computable endomorphism φ which acts as scalar
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multiplication φ = [λ]; i.e. ∀Q ∈ 〈P 〉, φ(Q) = [λ]Q, for a certain λ ∈ N.
Under certain conditions (which usually hold in a cryptographic setting), all
endomorphisms act as a multiplication on the cyclic subgroup 〈P 〉. Note that
by efficiently computable endomorphism, we mean that it can be computed by
executing only a few field operations. For example, if the prime of the base field
satisfies the condition p = 1 (mod 4) and i is a square root of −1 in Fp, then any
curve of the form y2 = x3 + ax has an explicit and very efficient endomorphism:

φ(x, y) = (−x, iy).

To compute φ(x, y), one has to perform only one field operation. In this case,
λ =
√
p− 1. The integer λ that characterizes the endomorphism φ is one of the

roots of the characteristic polynomial of φ.
The main inconvenience of GLV is that it requires finding curves with

computable endomorphisms, which turns out to be highly nontrivial. This is
the reason why on 2009 Galbraith, Lin and Scott proposed a modified version of
GLV, named the GLS algorithm in [GLS09]. GLS solves the problem of finding
curves with computable endomorphisms in the following way: starting with any
elliptic curve over a prime field, first it takes the extension of the curve over the
quadratic extension field. Then it uses an efficiently computable homomorphism
which arises from the Frobenius map on the quadratic twist of the curve. In
addition, a generalization of the GLS algorithm is presented with the Q-curve
construction in [Smi16].

The GLV algorithm is especially interesting to formalize, first because of its
use in cryptographic implementations and secondly, because of the mathematics
involved: besides two generic algorithms (multiexponentiation and decomposition
of the scalar), the endomorphisms part demanded formal theory for non trivial
properties of elliptic curves. Our formalization follows the description of GLV as
in [GLV01]

We have not been concerned by any optimized versions nor the GLS algorithm
on the quadratic extension field. Note that our formal proof stays in an abstract
mathematical level, i.e. the correctness of GLV is proven as a mathematical
high-level property but we do not provide any low-level implementation that
would be running efficiently on a machine. This part is left for future work.

GLV is composed by three independent sub–algorithms: multi–exponentiation,
decomposition of the scalar and computing an endomorphism on an elliptic curve.
Therefore we divide our development in three corresponding parts:

1. a formal proof of the algorithm of double-exponentiation on an abstract
group,

2. a formal proof of a decomposition algorithm, based on the Extended
Euclidean Algorithm, and
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3. a formal proof that any endomorphism on an elliptic curve acts as multi-
plication on a cyclic subgroup of points.

The first two algorithms are formalized exactly as presented in [GLV01] and
are completely independent from the elliptic curve development presented in
the Chapter 3. The proof of the third part is an extension of the elliptic curve
development.

Remark. In the third part, we do not formally prove how to extract the λ given
the endomorphism. Yet, we give the formal proof that given an endomorphism
φ, there exists always a λ ∈ Z such that φ(P ) = [λ]P .

4.1 The multi-exponentiation algorithm
Double-exponentiation is based on a well-known method for exponentiation

in groups: the sliding window technique [Gor98]. The algorithm depends on a
parameter w, a small positive integer (called the window or the block size) in the
sense that the binary representation of the exponent is split into binary blocks
of size w. First, a precomputation stage takes place, where a table of group
elements is computed. Then, an evaluation stage takes place where the final
result is computed, using the table of auxiliary values. This is the main idea of
sliding window methods for single exponentiation, but sliding windows techniques
for double exponentiation work in a similar way: In the precomputation stage,
input group elements are combined with each other and then, at the evaluation
stage, all exponents are computed simultaneously.

The upcoming description of the algorithm is taken directly from the art-
icle [GLV01]. In the following, (ut−1, . . . , u1, u0)2 denotes the binary representa-
tion of the integer u and w is the window size.

Algorithm 11: Simultaneous sliding window exponentiation in an additive
group

1 Input: w ∈ N∗, u = (ut−1, . . . u1, u0)2, v = (vt−1, . . . , v1, v0)2, P , Q.
2 Compute iP + jQ for all i, j ∈ [0, 2w−1].
3 Write u = (ud−1, . . . , u1, u0)2 and v = (vd−1, . . . , v1, v0)2

4 where each ui and vi is a bitstring of length w and d = t
w .

5 Set R← 0.
6 For i from d− 1 downto 0 do
7 R← 2wR
8 R← R+ (uiP + viQ)
9 Return R

10 Output: R = uP + vQ
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Proof. The proof of correctness is done by induction on the number of blocks d.
Let P and Q be elements of an additive group.

1. Suppose that d = 1. Then in the first round (i.e. the only round) of the
algorithm we have:
— R← 0
— R← 2wR = 0
— R← R+ (uP + vQ) = uP + vQ

2. For all u and v integers, we suppose that the algorithm is correct for a split of
u, v in k ∈ N∗ blocks. Let u = (ut−1, . . . u1, u0)2, v = (vt−1, . . . v1, v0)2 be
the binary representation of the two integers and u = (uk, . . . , u1, u0)2, v =
(vk, . . . , v1, v0)2 their splitting into k+1 blocks. Let u′ = (uk−1, . . . , u1, u0)2

and v′ = (vk−1, . . . , v1, v0)2 be the two integers that derive from the k first
blocks of u and respectively v. By the induction hypothesis, the result of
the algorithm with input the two integers u′, v′ decomposed into k blocks,
as above, will be u′P + v′Q.
Now suppose the algorithm is called on input u and v both split into
k + 1 blocks. At the k-th iteration of the algorithm, the output will
be R ← u′P + v′Q. We have to show that if we run once more the
loop of the algorithm (the last step) the result will be uP + vQ. Indeed,
R = 2w(u′P+v′Q)+(ukP+vkQ) = (2wu′+uk)P+(2wv′+vk)Q = uP+vQ.
Hence, the proof by induction is completed.

According to the algorithm description, the first step is to put the two
integers u and v into binary form. The function nat_to_bin gives the binary
form of an integer, starting from the least significant bit. Reversely, the function
bin_to_nat given a sequence of bits, computes the corresponding integer.

Fixpoint nat_to_bin_aux (n a : nat) : seq bool :=
if a is a.+1 then

if n is 0 then [::] else
(odd n) :: (nat_to_bin_aux n./2 a)

else [::].

Definition nat_to_bin (n : nat) := nat_to_bin_aux n n.

Fixpoint bin_to_nat (l : seq bool) : nat :=
if l is x :: xs then

(x + 2 * (bin_to_nat xs))
else 0.

The function bin_to_nat when applied to a integer gives a boolean sequence
that finishes always with 1, since the MSB comes in the end of the sequence. So
we have easily proven the following:
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Lemma cancelN n : bin_to_nat (nat_to_bin n) = n.

However, the inverse statement cancelB is not always true:

Lemma cancelB n : nat_to_bin (bin_to_nat u) = u.

More precisely, in the case that u is a boolean sequence that finishes with false,
that statement is not correct. Therefore we define the function norm_bin1, that
is designed in order to drop all zeros in the end of a boolean sequence:

Definition epurate (b : bool):=
if b then [:: true] else [::].

Fixpoint norm_bin1 (u : seq bool) : seq bool :=
if u is x :: xs then

let v := norm_bin1 xs in
if x is y :: ys then x :: v else epurate v

else [::].

Hence, we are able to prove the lemma cancelB and several other properties.
Next, we define the function block, that given a sequence of bits, extracts

the i-th block of size w.

Definition block (u : seq bool) (w i : nat) : seq bool :=
mkseq (fun k => nth false u (w*i + k)) w.

Following closely the description of the algorithm, we define the function
n_blocks which computes the number of blocks of size w that will result by the
splitting into blocks.

Definition n_blocks (u : seq bool) (w : nat) : nat :=
if size u is 0 then 0 else (((size u).-1) / w).+1.

Finally, we have all the elements needed to define the algorithm of double
exponentiation, on an abstract additive group G:

Definition algoG (w : nat) (u v : seq bool) (P Q : G) :=
let d := maxn (n_blocks u w) (n_blocks v w) in

foldl (fun (R : G) (i : nat) =>
let R0 := R *+ 2 ^ w in

R0 + (P *+ bin_to_nat (block u w i)) +
(Q *+ bin_to_nat (block v w i)))

0 (rev (iota 0 d)).
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First, we extract the number of blocks d which is the number of times the loop
is executed. The loop iteration is performed via foldl that iterates the operations
of the loop exactly as many as d times. Here, we use the standard notation *+
of Ssreflect for scalar multiplication. Next we prove that the algorithm is
correct, by induction on the number of blocks, as described previously:

Lemma algo_correct (P Q : G) (n m w : nat) : w != 0 ->
algoG w (nat_to_bin n) (nat_to_bin m) P Q = P *+ n + Q *+ m.

Note that our formal proof of correction does not regard the precomputation
part. More precisely, in this abstract version of the algorithm, we do not separate
the precomputation part as in the mathematical description.

4.2 The decomposition algorithm
In this section, we describe the formalization of a decomposition algorithm

proposed in [GLV01]. The algorithm takes as input two integers k, λ and n ∈ N
and outputs two integers k1, k2 satisfying k = (k1 + k2λ) mod n. Here k1, k2

will be the arguments of the double exponentiation function and n is the order
of the point, which is the input of the GLV scalar multiplication algorithm. In
real cryptographic settings, n is a prime number. One may observe that we can
easily find such k1, k2: indeed k1 = k and k2 = 0 satisfy the above equation.
Since k1, k2 are the arguments of double-exponentiation, they are supposed to
be the shortest possible (i.e. their binary form should be the shortest possible).
The algorithm proposed returns k1, k2 half the size of the initial k. An informal
analysis is presented in [GLV01]. Our formalization concerns only a proof of
correction and we have not formalized any results concerning the size of the
output.

Let f : Z×Z→ Zn defined by f(i, j) = (i+ jλ) mod n. The function f is a
morphism for Z× Z, i.e. it satisfies f(x1 + x2, y1 + y2) = f(x1, y1) + f(x2 + y2)
and f(−x,−y) = −f(x, y).

The algorithm aims to output a short vector u = (k1, k2) of Z× Z such that
f(u) = k. Using vector space vocabulary, we recall that a vector v = (x, y) is
short if it has small Euclidean norm: |v| =

√
x2 + y2. The algorithm can be

split in two separate steps:

— first, we find two linearly independent short vectors v1, v2 of Z×Z satisfying
f(v1) = f(v2) = 0.

— Next, we find a vector v in the integer lattice generated by v1, v2 that is
close to the vector (k, 0).

Since f is a morphism, it follows that u = (k, 0)−v is a short vector satisfying
f(u) = f(k, 0)−f(v) = k−0 = k. As noticed in [GLV01], both subproblems can
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be approached using lattice reduction algorithms, yet the algorithm proposed in
the article is more efficient and simple to implement.

Finding v1, v2. In order to find linearly independent v1 = (x1, y1) and v2 =
(x2, y2) such that f(v1) = f(v2) = 0 we use the Extended Euclidean Algorithm
(EEA): Applying the EEA to find the greatest common divisor of n and λ we
get a sequence of (si, ti, ri) satisfying the relation

sin+ tiλ = ri for i = 0, 1, 2, . . .

with the initial (s0, t0, r0) = (1, 0, n) and (s1, t1, r1) = (0, 1, λ) and with ri ≥ 0,∀i.
For all i we have f(ri,−ti) = ri − λti = sin = 0 (mod n). Hence, we

can choose v1 = (ri1 ,−ti1) and v2 = (ri2 ,−ti2) for some i1, i2 in the range of
i; more precisely we will choose them in order for v1, v2 to have the smallest
euclidean norm. Let m be the greatest index such that rm ≥

√
n. We choose

v1 = (rm+1,−tm+1) and v2 the shortest between (rm+2,−tm+2) and (rm,−tm).
The fact that the two vectors are linearly independent is assured by the following
well known properties of EEA:

— ri > ri+1 ≥ 0, for all i ≥ 0
— |ti| > |ti+1|, for all i ≥ 0

Reasoning by contradiction, if v1 and v2 are not linearly independent, (without
loss of generality we assume that v2 = (rm,−tm)), then rm+1

rm
= |tm+1|

|tm| which is
absurd since rm+1

rm
< 1 while |tm+1|

|tm| > 1.
Computing v1, v2 only depends on n and λ and not on the scalar k, so they

can be precomputed in advance.

Finding v. We wish to find a vector v = av1 + bv2 where a, b ∈ Z and v close
to the vector (k, 0). We consider (k, 0), v1 and v2 as vectors of Q × Q. Then
we can find α, β ∈ Q such that (k, 0) = αv1 + βv2. Suppose v1 = (x1, y1) and
v2 = (x2, y2). To find α, β we have to solve the linear system{

x1α+ x2β = k

y1α+ y2β = 0.

This system has a solution since the vectors v1, v2 are linearly independent as
it was shown above. We round up α, β to the nearest integers, say respectively
a, b, and we define v = av1 + bv2. The vector u = (k, 0)− v is the short vector
satisfying f(u) = k (mod n).

Formalization. The formalization follows closely the mathematical description
given above and presents very few differences. First, we define the recursive
function eea, which formalizes the extended euclidean algorithm. Given two
integers a and b, eea returns the list of (ri, ui, vi) such that ri = uia+ vib (as
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produced by the euclidean algorithm). Note that if the output list is [(r1, u1, v1) ::
(r2, u2, v2) :: · · · :: (rN , uN , vN )] then r1 < r2 < · · · < rN .

Fixpoint eea_rec r’ (u’ v’ : int) (acc : seq (nat * int * int)) n :=
if n is n.+1 then

if r’ == 0 then Some acc else
let: (r, u, v) := head (0, 0, 0) acc in
let: (q, m) := (r / r’, r %% r’) in
eea_rec m (u - q * u’) (v - q * v’) ((r’, u’, v’) :: acc) n

else None.

Definition eea (a b : nat) : seq (nat * int * int) :=
if a == 0 then [:: (b, 0, 1)] else

odflt [::] (eea_rec b 0 1 [:: (a, 1, 0)] (maxn a b).+1).

Lemma eea_mod a b v :
let: (r, x, y) := v in

(r, x, y) \in (eea a b) -> r - y * b = x * a.

Looking closer at the auxiliary function eea_rec, we remark the extra para-
meter n which decreases with every recursive call. This parameter is necessary
to define the eea_rec function because of the problem of function termination
in Coq. Indeed, if we try writing the function without the n parameter, Coq
displays the error message:

Error: Cannot guess decreasing argument of fix.

This is because, in Coq, recursive calls should be made on strict sub-terms in
order to ensure that functions terminate. In our case, the procedure of the
extended euclidean algorithm cannot be defined in some Coq function as–is
because Coq cannot see directly the decreasing argument. As a result, it is
necessary to introduce the extra (fuel) parameter n to explicitly make sure that
the function will terminate in all cases, after the execution of at most n + 1
iterations. In the main function, eea n is naturally initialized as the maximum
of the input integers a and b.

Following the mathematical description, we choose v1 = (rm+1,−tm+1) and
v2 the shortest between (rm+2,−tm+2) and (rm,−tm), where m is the greatest
index such that rm ≥

√
n. Consequently, we filter the eea sequence to get all

triplets that contain r ≥
√
n, the result sequence being eea_sqrr:

Definition filter_sqrr (n : nat) (rs : seq (nat * int * int)) :=
[seq t <- rs | let: (r, x, y) := t in (n <= r ^2)].

Definition eea_sqrr (n l : nat) := filter_sqrr n (eea n l).

85



Note that the sequence eea_sqrr is already sorted concerning r, so the triplet
of indexm, as denoted in the mathematical description, is just the first element of
the output sequence. Given the first element of eea_sqrr, the function index_hd
returns its index m in the sequence eea, and the function base returns the two
vectors v1 = (rm+1,−tm+1) and v2 the shortest between (rm+2,−tm+2) and
(rm,−tm).

Definition index_hd (n l : nat) :=
index (head (0, 0, 0) (eea_sqrr n l)) (eea n l).

Definition base (n l : nat) :=
let m := index_hd n l in
if (m <= 1) then

let: (r0, x0, y0) := nth (0, 0, 0) (eea n l) 0 in
let: (r1, x1, y1) := nth (0, 0, 0) (eea n l) 1 in
((r0, -y0),(r1, -y1))

else
let: (r1, x1, y1) := nth (0, 0, 0) (eea n l) m.-1 in
let: (r0, x0, y0) := nth (0, 0, 0) (eea n l) m in
let: (r2, x2, y2) := nth (0, 0, 0) (eea n l) m.-2 in
if (r0 ^+ 2 + y0 ^+ 2 <= r2 ^+ 2 + y2 ^+ 2)
then ((r1, -y1),(r0, -y0))
else ((r1, -y1),(r2, -y2)).

We verify that the result vectors v1, v2 satisfy f(v1) = f(v2) = 0 under the
conditions n, λ 6= 0. Those two restrictions are always satisfied in reality because
n is usually a prime number, while λ is the eigenvalue of the endomorphism and
therefore it cannot be zero.

Lemma base_modn_fst n l :
let (v1, v2) := base n l in
v1.1 + v1.2 * l = 0 %[mod n]

Lemma base_modn_snd n l : n != 0 -> l != 0 ->
let (v1, v2) := base n l in
v2.1 + v2.2 * l = 0 %[mod n].

Arriving at the second part, we have to find a vector close to (k, 0) in the
integer lattice generated by the base v1 = (x1, y1) and v2 = (x2, y2). First we
have to find the α, β ∈ Q from the linear system{

x1α+ x2β = k

y1α+ y2β = 0,

and then their approximation a, b in Z. Therefore, we define the elementary
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approximation function approxZ: given two integers n and m and to compute
the approximation of n

m , first we isolate the signs and then operate on the
approximation of |n||m| . Let the euclidean division of |n| by |m| be |n| = |m|q + r.
If r
|m| >

1
2 we round up to the next integer, else to the previous one.

Definition approx (n m : nat) :=
let r := n %% m in
let q := n %/ m in

if (2*r <= m) then q else q.+1.

Definition approxZ (n m : int) :=
(sgz n) * (sgz m) * (approx (absz n) (absz m)).

Next, we directly compute the solution (a, b) of the linear system applying
Cramer’s rule and round up using approxZ.

Definition cramer_coefs n l k :=
let (v1, v2) := base n l in
let D := v1.1 * v2.2 - v1.2 * v2.1 in
(approxZ (k * v2.2) D, approxZ (- k * v1.2) D).

We have all the elements in order to compute the final decomposition vector
(k1, k2) = (k, 0)− (av1 + bv2):

Definition decomp (n l k : nat) : int * int :=
let (a, b) := cramer_coefs n l k in
let (v1, v2) := base n l in
let k1 := k - (a * v1.1 + b * v2.1) in
let k2 := - (a * v1.2 + b * v2.2) in
(k1, k2).

Unfolding the explicit definitions of this section and the properties of the mod
function of Ssreflect, it is straightforward to prove that the output of the
decomposition is correct:

Lemma correct_decomp n l k :
let (k1, k2) := decomp n l k in

n != 0 -> l != 0 -> k = (k1 + k2 * l) %[mod n].
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4.3 Computing the endomorphisms
In this section, we give a formal proof of the fact that an endomorphism on

an elliptic curve acts as scalar multiplication on a subgroup of curve points. This
is true under certain conditions which always hold in a cryptographic setting:
— the scalar multiplication is performed on a cyclic group generated by a

point of prime order, and
— the square of the order of the generator point does not divide the cardinal

of the curve.
We have formalized the following theorem:

Theorem 4.1. Let E be an elliptic curve defined on some finite field K and let
φ : E → E be an endomorphism of E. Let G point of E of prime order n, such that
n2 does not divide the order of E. Let 〈G〉 = {[k]G | k = 0, 1, . . . , n− 1} be the
cyclic subgroup generated by G. Then, there exists an integer λ ∈ [1, . . . , n− 1]
such that ∀A ∈ 〈G〉 , φ(A) = [λ]A.

The first step to the proof, was to formalize the subgroup of n-torsion points
with coordinates on K:

E [n] = {Q ∈ E | [n]Q = O}.

Remark. In mathematical literature, the set of n-torsion points with coordin-
ates on K is usually denoted as E [n](K) to underline the fact that points have
coordinates on K, while E [n] is used for n-torsion points with coordinates on the
algebraic closure of K. In this section, for the shake of simplicity, we are using
the notation E [n] instead of E [n](K) for n-torsion points with coordinates on the
field K.

In what follows, we assume that K is a finite field of characteristic different
from 2 and 3, E is an elliptic curve in short Weierstrass form defined over K and
n is a natural number:

Variable K : finECUFieldType.
Variable E : ecuType K.
Variable n : nat.

The subgroup of n-torsion points is defined as follows: An inhabitant of the
type torsion is an elliptic curve point (represented by the type ec), along with
a proof that n-times that point is equal to the point at infinity. The function
tgpoint returns the first projection of an element of type torsion i.e. the point
itself, without the proof. torsion is a subtype of ec and is directly equipped
with the structure of an eqType, a ChoiceType and a finType:

Record torsion := Torsion { tgpoint :> ec E; _ : tgpoint *+ n == 0 }.
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Addition is defined as the restriction of the elliptic curve addition on elements
of type torsion. The zero element of the torsion subgroup is the point at infinity,
called tg0. To formally define addition (tgadd) and the opposite (tgopp) on
the n-torsion subgroup, first we prove that the operations are internal. Next
we prove that the operations and the point at infinity as defined, satisfy the
group properties. Consequently, we can equip torsion with the structure of a
Z-module represented by the type zmodType.

Subsequently, we assume all the cryptographic conditions of the theorem;
in our setting, G corresponds to the point G, the generator of the cyclic group.
The order of point G is n and so it is of type ntorsion, which is just a notation
for elements of type torsion E n. The variable phi defines a random curve
homomorphism and the last condition crypto_order denotes that n2 does not
divide the order of the curve. We make use of the standard Ssreflect notations
for cardinals: #|S| denotes the cardinal of a finite set S.

Variable K : finECUFieldType.
Variable E : ecuType K.
Variable n : nat.
Hypothesis prime_n : prime n.
Notation ntorsion := (torsion E n).
Variable G : ntorsion.
Hypothesis GNz : G != 0.
Variable phi : {additive (ec E) -> (ec E)}.
Hypothesis crypto_order : ~~ ( (n ^ 2) %| #|[set: ec E]| ).

The next step is to prove that in this particular setting 〈G〉 = E [n]; in other
words that that n-torsion points form a cyclic subgroup. We break it down to
two parts: i) 〈G〉 ⊆ E [n], and ii) E [n] ⊆ 〈G〉. The first lemma is stated in Coq
as follows:

Goal forall r, (G *+ r) *+ n = 0.

Using the theory in the cyclic module of the Mathematical Components we
can prove the above lemma as follows:

Lemma 4.2. 〈G〉 ⊆ E [n]

Proof. Let A ∈ 〈G〉. Then there exists a ∈ Zn such that A = [a]G. Hence,

[n]A = [n]([a]G) = [a]([n]G) = [a]O = O.

So, A ∈ 〈G〉 =⇒ A ∈ E [n].

We continue with the second inclusion lemma, ∀P ∈ E [n], P ∈ 〈G〉 with
stated in Coq like as follows:
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Goal forall Q, tgpoint Q \in <[tgpoint G]>%g.

The proof is done by contradiction:

Lemma 4.3. E [n] ⊆ 〈G〉.

Proof. By contradiction, suppose ∃Q ∈ E \ 〈G〉. Then Q is not a multiple of G,
which means that G and Q are linearly independent points of order n, where
n is a prime number. Hence, the subgroup 〈G,Q〉 generated by G and Q has
order n2. But, 〈G,Q〉 is a subgroup of E and by the Lagrange theorem, its order
divides the order of E . This is a contradiction, since we have assumed that n2

does not divide the order of E .

The proof of the above lemma necessitated the proof of several intermediate
lemmas concerning torsion points and a more general finite group result:

Goal forall (gT : finGroupType) (x y : gT),
#[x] = n -> #[y] = n -> commute <[x]> <[y]> ->

x \notin <[y]> -> prime n -> ((n^2) %| #|[set: gT]|).

Lemma order_torsion (P : ntorsion) : P != 0 -> #[tgpoint P] = n.

Lemma commute_cycles (A B : ntorsion) :
commute <[tgpoint A]> <[tgpoint B]>.

Here we use the standard Ssreflect notations:
<[x]>= the cycle (cyclic group) generated by x
#[x] = the order of x, i.e., the cardinal of <[x]>.

Finally we are able to demonstrate that φ acts as multiplication with λ when
restricted on the group generated by G:

Lemma 4.4. ∀P ∈ 〈G〉, φ(P ) = [λ]P .

Proof. φ can be restricted to E [n] = 〈G〉 since ∀Q ∈ E [n] we have also that
φ(Q) ∈ E [n]. Indeed, since φ is a morphism we have [n]φ(Q) = φ([n]Q) =
φ(O) = O. Consequently if Q ∈ 〈G〉 then φ(Q) ∈ 〈G〉 too.

φ(G) ∈ 〈G〉 implies that ∃λ ∈ Zn such that φ(G) = [λ]G.

Therefore, for an arbitrary point A = [a]G of 〈G〉, we have that

φ(A) = φ([a]G) = [a]φ(G) = [a]([λ]G) = [λ]([a]G) = [λ]A.
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The proof of the final lemma in Coq follows the proof detailed above.
Remark that phi is a morphism defined on elliptic curve points (represented by
the type ec). To prove the final lemma, we have to consider the restriction on
n-torsion points. Indeed, at the first place we prove that ∀P ∈ E [n], φ(P ) is also
in E [n] and then we are able to define the restriction tgphi on n-torsion points.

Lemma phi_torsion_restriction n (P : ec E) :
P *+ n = 0 -> phi (P *+ n) = 0.

Lemma tgphi_interne (P : ntorsion):
(phi (tgpoint P)) *+ n == 0.

Definition tgphi (P : ntorsion) : ntorsion :=
Torsion (tgphi_interne P).

Lemma ok_def_tgphi (P : ntorsion) :
tgpoint (tgphi P) == phi (tgpoint P).

Lemma final: { m : nat | forall Q : ntorsion, phi Q = Q *+ m }.

The function phi2l allows us to extract the λ of the endomorphism:

Definition phi2l := tag final.

Lemma phi2lP (Q : ntorsion): phi Q = Q *+ phi2l.

Remark Remark that in Ssreflect <[G]> is of type {set ec_finGroupType}
while n-torsion points are represented by the type ntorsion. As a result,
although we could prove that 〈G〉 and E [n] are isomorphic, we cannot write
〈G〉 = E [n] as in the mathematical proof, because it implies using equality
between different types.

4.4 The GLV algorithm
At this point, we have formalized proofs of correction for all the three

independent parts of the algorithm. Some small additional details are needed
in order to be able to compose them all together. For example, the double
exponentiation algorithm algoG takes two positive integers as input, while the
decomposition algorithm returns two integers that may be negative. To correct
this we use the function multexpoGZ and we demonstrate that it is correct.

Variable G : zmodType.
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Definition multiexpoGZ (w : nat) (n m : int) (P Q : G) : G :=
let: (n, P) :=

match n with Posz n => (n, P) | Negz n => (n.+1, -P) end in
let: (m, Q) :=

match m with Posz m => (m, Q) | Negz m => (m.+1, -Q) end in

algoG G w (nat_to_bin n) (nat_to_bin m) P Q.

Lemma multiexpoGZ_correct w n m P Q : w != 0%N ->
multiexpoGZ w n m P Q = P *~ n + Q *~ m.

Finally and under the cryptographic conditions explained above, we prove
the lemma that the GLV algorithm is correct:

Variable K : finECUFieldType.
Variable E : ecuType K.
Variable n : nat.
Hypothesis prime_n : prime n.
Variable phi : {additive (ec E) -> (ec E)}.
Notation ntorsion := (torsion E n).
Variable G : ntorsion.
Hypothesis GNz : G != 0.
Hypothesis crypto_order: ~~ ( (n ^ 2) %| #|[set: ec E]| ).
Notation l := (@phi2l K E n prime_n G GNz phi foo).

Lemma final (w k : nat) : l != 0%N -> w != 0%N ->
multiexpoGZ w (decomp n l k).1 (decomp n l k).2

(tgpoint G) (phi G) = G *+ k.

4.5 Related work
An impressive verification work on elliptic curves is presented in [CHL+14],

which targets low-level hand-optimized qhasm [Ber] code for Curve25519 [Ber06].
A realted approach is an application of our work (which will be detailed in the
next chapter) and is described in the article [ZBB16]. It presents a verified
elliptic curve library that covers three popular curves —Curve25519, Curve448,
and NIST-P256— and a verified constant-time bignum library. The formal tool
used is the dependently-typed programming language F∗ [SHK+16]. The elliptic
curve interface is proved functionally correct against a mathematical specification
derived from the Coq development presented in this thesis. To perform scalar
multiplication, the Montgomery ladder is implemented while the curves are
in short Weierstrass or Montgomery form and are represented by Jacobian or
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projective coordinate systems. The two approaches make different trade-offs,
in that the first aims towards a library extensible with minimal additional
verification effort, whereas the second focus on verifying a highly-performant
implementation of one curve.

In a separate line of work of verification of asymmetric cryptography, the
Ironclad [HHL+14] crypto library also provides security guarantees for SHA,
HMAC and RSA at the assembly level, but they have not verified elliptic curves
so far.

Other verification efforts have targeted symmetric cryptography. [App15b]
used the Coq proof assistant to prove that a legacy SHA-256 implementation
written in C was correct with regard to its specification and [BPYA15] showed
that the OpenSSL implementation of HMAC using SHA-256 implements its specific-
ations correctly and provides the expected cryptographic guarantees. [DHL+05]
presents a collection of functional correctness proofs for symmetric block en-
cryption algorithms such as AES, MARS, Twofish, RC6, Serpent and IDEA.
[Cry] provides a tool to verify that a cryptographic implementation matches a
high-level specification, and this tool has been used to verify block ciphers and
hash functions.

Most recently, [ABBD16] shows how to prove cryptographic security, func-
tional correctness, and side-channel protection for a complex cryptographic
construction all the way from high-level cryptographic definitions down to as-
sembly code, using a combination of several different verification tools. Finally,
a number of works address the problem of verifying the security of complex
cryptographic constructions, protocols, and their implementations [BGZB09,
BGHB11, BFK+14].

4.6 Comments and Future work
The formalization of GLV required few choices to be made from the part of the

developers. Once the proofs were sufficiently detailed, the definition of the new
datatypes and the formalization of all the statements emerged naturally, more or
less like in the paper proof in [GLV01]. However, the part of the endomorphisms,
which was based on the formalization of our elliptic curve library, came out
without difficulty which assured us of the stability of our library.

An extension to the GLV development, which presents interest as future
work is the computation of the value λ that characterizes the endomorphism.
More precisely, λ is one of the roots of the characteristic polynomial of φ. In
what follows, we will give a sketch of the proof of the above fact, that could be
formalized in the future. Recall the theorem formalized in the previous section:

Lemma 4.5. Let E be an elliptic curve defined on some finite field K and let
φ : E → E be an endomorphism of E. Let G point of E of prime order n, such
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that n2 does not divide the order of E. Let 〈G〉 = {[k]G | k = 0, 1, . . . , n − 1}
be the cyclic subgroup generated by G. Then, there exists λ ∈ Zn such that
∀A ∈ 〈G〉 , φ(A) = [λ]A.

Let E [n] be the subgroup of n-torsion points, over the algebraic closure of
K and E [n](K) the subgroup of n-torsion points over K. We state the following
proposition without giving a full proof:

E [n] is isomorphic to Zn × Zn

This is a well known textbook result that can be found in [Gui10]. Since,
E [n] is isomorphic to Zn × Zn, there exists a two point basis P,Q such that
∀S ∈ E [n], S = [x]P + [y]Q.

Definition of the characteristic polynomial of φ

As shown in the previous section φ can be restricted to E [n]. Let the image
of the base be φ(P ) = [a]P +[b]Q and φ(Q) = [c]P +[d]Q for some a, b, c, d ∈ Zn.
Then, the image of a random point S = [x]P + [y]Q can be computed by the
linear transformation,

φ(S) =
[
x′

y′

]
=
[
a c

b d

][
x

y

]
.

The characteristic polynomial χ(t) of φ (over E [n]) is defined as the character-

istic polynomial of the matrix
[
a c

b d

]
, in other words χ(t) = t2−(a+d)t+(ad−bc).

If χ(t) has two distinct roots λ1, λ2 (which will always be the case in crypto-
graphic applications), then E [n] can be split into E [n] = G1 ⊕G2 where G1 and
G2 are cyclic subgroups of E [n]. From a linear algebra point of view, G1 and G2

are the eigenspaces corresponding to the eigenvalues λ1 and λ2.
Since χ is the characteristic polynomial of φ, by definition χ(φ) = 0. As a

result, for all points S in E [n](K), χ(φ)(S) = χ([λ]S) = O and so λ is one of the
roots of χ.
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5
Applications

The work presented in this thesis aimed to provide formal theory in order to
verify elliptic curve software used in cryptography. In this chapter we present
two ways of applying our work in order to certify elliptic curve algorithms for
cryptography. An independent application of our work is the use of our library
to formalize related mathematical structures.

5.1 Verifying GLV with CoqEAL (future work)
A first approach to the verification of elliptic curves algorithms is to use the

CoqEAL methodology [DMS12] to obtain a certified implementation of the GLV
algorithm and then extract from it an ML program. This is a natural way of
proceeding since we have used Ssreflect as the base of our development. and
it is left for future work.

CoqEAL is a methodology for proving correct efficient algebraic algorithms
via refinements. First the algorithm is proven correct in an abstract mathematical
setting, using all the high-level theory and properties from the Mathematical
Components library. Then it is refined to a low-level implementation, using
simpler data-structures, which can be actually run on a machine. The link
between the two implementations is done through morphism lemmas that connect
the two data-structures (the abstract one and the efficient one). The usability of
the CoqEAL methodology is demonstrated on several different algorithms: matrix
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rank computation, Winograd’s fast matrix product, Karatsuba’s polynomial
multiplication, and the gcd of multivariate polynomials. The main advantage
of this approach is that on one hand, the abstract high-level algorithm make
use of the dependent types of Ssreflect and all the corresponding properties
to formalize a proof of correctness and on the other hand the efficient low-
level implementation use simple types closer to real-life implementations. The
separation of proofs from the computational content, guarantees the safety of the
approach. More precisely, the following 3 steps methodology is used to construct
efficient algorithms from high-level definitions:

1. Write an abstract version of the algorithm and prove it correct using the
Ssreflect structures and theory.

2. Implement an efficient version of the algorithm using the Ssreflect
structures and prove that it corresponds to the abstract version.

3. Translate the abstract data-structures and the efficient algorithm to the
low-level data types.

The CoqEAL methodology comes with libraries that have implemented efficiently
computable counterparts to several algebraic structures: Z–modules, rings and
fields.

Using CoqEAL to refine GLV in an efficient implementation will require
writing an efficient version of the three algorithms presented in Chapter 4 (multi-
exponentiation, decomposition and computation of the endomorphisms) and
translate the elliptic curve group into an efficient data-structure. It will also
be interesting to extend the abstract proof of correctness of the algorithm by
the proof of an algorithm computing the value λ as explained in the end of
Chapter 4.

5.2 A Verified Library of Elliptic Curves in F∗

In real cryptographic settings, elliptic curve software is implemented in low-
level programming languages such as C or assembly. This includes using efficient
libraries for number representations and curve specific code which is often further
modified to be side–channel resistant. To link our high-level development in
Ssreflect to a more realistic setting, I participated in the work of Jean Karim
Zinzindohoué and Karthikeyan Bhargavan described in the article [ZBB16].
It presents a verified elliptic curve library that covers three popular curves -
Curve25519, Curve448, and NIST-P256-and that can be easily extended with new
curves. It also presents a verified constant-time generic bignum library, which
is of independent interest. The elliptic curve implementation is written in the
dependently-typed programming language F∗ [SHK+16] and proved functionally
correct against a readable mathematical specification derived from the Coq
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Figure 5.1 – Architecture of our verified elliptic curve library

development presented in this thesis. The F∗ library can be readily incorporated
into larger verified cryptographic applications written in F∗, such as miTLS. The
goal of this development is to build a verified library that consists of multiple
elliptic curves that maximally share code, so that the verification effort of adding
a new curve can be minimized. Functional correctness of the code is certified,
as well as enforcement of a source-level coding discipline that mitigates side-
channels. Furthermore, special effort is made to be able to embed the library
within a verified protocol implementation.

The elliptic curve library in F∗ provides a typed API that encodes the math-
ematical specification of elliptic curves. Each curve in the library is proved to
satisfy this specification by typing. The Montgomery ladder is implemented
to perform scalar multiplication while the curves in short Weierstrass or Mont-
gomery form use Jacobian or projective coordinate systems. The curve code
implements the same algorithmic optimizations as state-of-the-art elliptic curve
implementations. In particular, they implemented a bignum library that allows
each curve to choose its own unpacked bignum representation (called a template)
and obtain verified field arithmetic for free, except for a few curve-specific func-
tions that need to be implemented and verified separately. Mitigations against
side-channels are systematically enforced throughout the library by treating
secrets as opaque bytestrings whose values cannot be inspected. The architecture
of the library is illustrated in the picture 5.1.

The elliptic curve API (The module Curve Group in the picture 5.1) is what
directly links the implementation in F∗ with our development and goes all the
way up to the ECDH Algorithm 1. The Coq definitions presented in Chapter 2
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of this thesis are carefully transcribed as an F∗ interface, the Coq theorems are
reflected as F∗ assumptions. While there is no formal link between F∗ and Coq,
an informal discipline is imposed whereby all unverified elliptic curve assumptions
in F∗ must be justified by a corresponding theorem in Coq.

In the F∗ API the curve definition assumes a finite field K represented by
elements of type felem. Points on the plane are of type affine_point: they
can either be Inf , the point at infinity, or a pair of felem coordinates. A point
that verifies the curve equation satisfies on_curve, and is represented by the
refined type celem , denoting curve elements. They define two operations over
curve points: a negation function neg and an internal group operation add . The
ec_group lemma says that Inf , neg , and add together form an abelian group
structure. Hence, they can define scalar multiplication as repeated addition
over the curve. The AbelianGroup predicate gives a textbook definition of an
abelian group equipped with a neutral element zero, an opposite function opp
and addition operator add.

We display below the F∗ API:

type AbelianGroup (#a:Type) (zero:a) (opp:a → Tot a)
(add:a → a → Tot a) =

(∀ x y z. add (add x y) z = add x (add y z)) // Associative
∧ (∀ x y. add x y = add y x) // Commutative
∧ (∀ x. add x zero = x) // Neutral element
∧ (∀ x. add x (opp x) = zero) // Inverse

(∗ Field elements, parameters of the equation ∗)
val a: felem
val b: felem
val is_weierstrass_curve: unit −>
Lemma (4 +∗ a3 ^+ 27 +∗ b2 6= zero ∧
characteristic 6= 2 ∧ characteristic 6= 3)

type affine_point =
| Inf | Finite: x:felem → y:felem → affine_point

let on_curve p = is_Inf p || (is_Finite p &&
(let x, y = get_x p, get_y p in y2 = (x3 ^+ a ^∗ x ^+ b)))

type CurvePoint (p:affine_point) = b2t(on_curve p)

let neg’ p = if is_Inf p then Inf
else Finite (Finite.x p) (−(Finite.y p))

let add’ p1 p2 =
if not(on_curve p1) then Inf
else if not(on_curve p2) then Inf
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else if is_Inf p1 then p2
else if is_Inf p2 then p1
else (

let x1 = get_x p1 in let x2 = get_x p2 in
let y1 = get_y p1 in let y2 = get_y p2 in
if x1 = x2 then (

if y1 = y2 && y1 6= zero then (
let lam = ((3 +∗ (x12) ^+ a) ^/ (2 +∗ y1)) in
let x = ((lam2) ^− (2 +∗ x1)) in
let y = ((lam ^∗ (x1 ^− x)) ^− y1) in
Finite x y

) else (...)))

(∗ Type of points on the curve ∗)
type celem = p:affine_point{CurvePoint p}
val neg: celem → Tot celem
val neg_lemma: p:celem −> Lemma (neg p = neg’ p)
val add: p:celem → q:celem → Tot celem
val add_lemma: p:celem → q:celem → Lemma (add p q = add’ p q)

val ec_group_lemma:
unit → Lemma (AbelianGroup #celem Inf neg add)

(∗ EC multiplication of a point by a scalar ∗)
val smul : N → celem → Tot celem
let smul n p = match n with
| 0 → Inf | _ → add p (smul (n−1))

In our corresponding Coq interface, the finite field K is of type fieldType
while points on the plane are of type point : they can either be EC_Inf , the
point at infinity, or a pair of K coordinates. In exactly the same way as in the
F∗ API, a point that verifies the curve equation satisfies the predicate oncurve
and is represented by the type ec, denoting curve elements. The same two
operations are defined over projective plane points and then lifted to curve
points: a negation function neg and an internal group operation add . As
described in Chapter 2, the function addec is proven to be the operation of
an abelian group and therefore one can define scalar multiplication using the
standard SSReflect notation.

We display here the Coq interface:

Record ecuFieldMixins (K:fieldType): Type :=
Mixin { _: 2 != 0; _: 3 != 0 }.

Record ecuType :=
{A:K; B:K; _:4 ∗ A^3 + 27 ∗ B^2 != 0}.
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Inductive point := EC_Inf | EC_In of K & K.
Notation "(x, y)" := (EC_In x y).

Definition oncurve (p : point) :=
if p is (x, y) then y^2 == x^3 + A ∗ x + B else true.

Inductive ec : Type := EC p of oncurve p.

Definition neg (p : point) :=
if p is (x, y) then (x, −y) else EC_Inf.

Definition add (p1 p2 : point) :=
let p1 := if oncurve p1 then p1 else EC_Inf in
let p2 := if oncurve p2 then p2 else EC_Inf in
match p1, p2 with
| EC_Inf, _ => p2
| _, EC_Inf => p1
| (x1, y1), (x2, y2) =>

if x1 == x2 then ... else
let s := (y2 − y1) / (x2 − x1) in
let xs := s^2 − x1 − x2 in
(xs, − s ∗ (xs − x1) − y1) end.

Lemma addO (p q : point): oncurve (add p q).
Definition addec (p1 p2 : ec) : ec := EC p1 p2 (addO p1 p2).

scalar_multiplication (n:nat) (p:point K) = p ∗+ n.

The full library of verified elliptic curves in F∗, implementing the three
popular curves Curve25519, Curve448, and NIST-P256, currently consists of
about 5800 lines of code. It continues to evolve as new curves are added and
existing code is refactored for efficiency and to simplify and speed up the proofs.
The current version of the library is available at https://github.com/mitls/
hacl-star/tree/master/ecc_star.

5.3 An Ssreflect library for monoidal algebras
To formalize our elliptic curve library we have developed a number of data-

structures, some of which remain of independent interest and could be used to
formalize further mathematical theories. In this section we give an example
of such an application, which makes use of the freeg structure to formalize
multivariate polynomials.

In the article [BBRS16], a formal proof that e and π are transcendental
numbers is presented. A transcendental number is a real or complex number that
is not a root of a non-zero integer polynomial. In other words, a transcendental
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number is any number that is not algebraic. All real transcendental numbers
are irrational, because any rational number is a root of a degree one polynomial.
Since the set of algebraic numbers is countable, and the set of real or complex
numbers is uncountable, most real or complex numbers are transcendental. The
most famous transcendental numbers are e and π.

The formalization presented in [BBRS16] relies on a proof by Niven [Niv39].
The methodology used to show that π and e are transcendental is identical [Niv39]:
Supposing that the number is algebraic, results in an equality Ep = E′p where
Ep and E′p are two expressions depending on p ∈ Z. Then for p sufficiently large,
they prove that |Ep| < (p− 1)!, while |E′p| > (p− 1)! and by contradiction they
conclude that the number is not algebraic. The proof that |Ep| < (p− 1)! uses
properties of real and complex analysis, while the proof that |E′p| > (p− 1)! is
based on arithmetic and algebraic results. As a result, there are two parts of
the proof, one based on calculus using the Coquelicot library and one based on
algebra using the Mathematical Components library [Gon07, GAA+13, BLM15].

The proof of transcendence of π relies heavily on properties of multivariate
and symmetric polynomials, therefore a new library was developed on top of the
Mathematical Components library to formalize multivariate polynomials.

Multivariate polynomials are polynomial expressions with several variables.
In Ssreflect, univariate polynomials are represented as the list of its coeffi-
cients. To be more precise, the polynomial Σk∈Nakxk is represented by the list
[a0, a1, ..., an] where an is the last non-zero coefficient. The above representation
could lead to an intuitive representation of multivariate polynomials with a finite
set of variables, using an enumeration of the countable set Nn. In this case, a
multivariate polynomial can be represented as the list of its coefficients, taken in
the ordering given by the enumeration of Nn. However, this representation is
ineffective as explained in the article mainly because it depends on the chosen
enumeration which may cause complications and also cannot be lifted to the
case of an infinite number of variables. Another option would be representing
the multivariate polynomial ring R[x1, x2, ..., xn] as R[x1][x2]...[xn], i.e. iter-
ating the univariate construction for all indeterminates. For example, in this
case a polynomial p(x, y) is seen as a univariate polynomial of indeterminate y,
whose coefficients are polynomials of indeterminate x. This representation is
still not efficient in Coq, because again it cannot be lifted to the infinite case,
and moreover it arises problems when trying to use the Canonical Structures
mechanism of Ssreflect.

The solution described in [BBRS16] is to represent a commutative multivariate
polynomial as a formal sum of the form Σai(Xk1

i
1 X

k2
i

2 ...X
kn

i
n ). This part of the

development extends the freeg structure for free abelian groups, described in
Chapter 2 of this thesis, and initially designed to formalize divisors on elliptic
curves. More precisely, to construct the type of commutative multivariate
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polynomials in n variables, they extended freeg as follows: the set of coefficients
is a monoid, and the set of generators is the type of finite functions from
I = {1, 2, ..., n} to N. Another extension of freeg results in the non-commutative
multinomials: a non-commutative multivariate polynomial in n variables, is an
instance of freeg where the set of coefficients is a monoid, and the set of
generators is the set of sequences seq I. The library formalized contains proofs
for several properties of multivariate polynomials, including evaluation, derivation
and the proof that this representation is isomorphic to the iterated construction.
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6
Conclusion

Elliptic curves two different point of views From a mathematics point
of view, an elliptic curve is a geometric object, i.e. a functor of points given
by the curve equation. From a cryptographic point of view, an elliptic curve
is a set of points satisfying the curve equation, meaning that the main action
in cryptographic protocols, is the exchange of points between different parties.
Nevertheless, in mathematics we make a distinction between the elliptic curve
E : y2 = x3 +Ax+B and its set of points, E(K); and it is this distinction that
allows us define more complicated notions on top of elliptic curves such as the
function field or differentials. Regarding our formalization, we have adopted
a cryptographic point of view, in the sense that the curve is the set of points
satisfying the curve equation. However, the curve can also be seen as a functor,
since the definition is parametrized by the base field and the curve parameters.
The geometrical perspective is more obvious in the addition law, where we use
lines reflected as polynomial formulas for coordinates.

To sum up We have presented a formalization of an elliptic curve library using
the Ssreflect extension of Coq, which we hope will enable formal analysis
of elliptic-curve schemes and algorithms. Our central result is a formal proof
of Picard’s theorem for elliptic curves whose immediate consequence is the
associativity of the elliptic curve group operation. Based on this library, we have
presented a formal proof of correctness of the GLV algorithm [GLV01] for scalar
multiplication. This development includes the formal proofs of two independent
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algorithms (multiexponentiation on a generic group and decomposition of the
scalar) and also theory about computing endomorphisms on algebraic curves.
Furthermore, we have presented an application of our work in Chapter 5 certifying
real-life implementations of elliptic curve algorithms combining our development
in Coq and F∗.

Concerning Binary Curves In our formalization, we are concerned with
elliptic curves, on fields with characteristic different from 2 and 3. We chose to
restrict to this case because (i) the large prime field case is the most important
for contemporary cryptography and (ii) the only other important case which is
actually used, is the binary case, where the base field is F2n and would require a
whole different field implementation. Nevertheless, the theory of characteristic
2 and 3 is essentially the same, with the exception that one would have to use
different formulas for the addition law. So, in principle, all the results in this
thesis could be adapted to the binary case. Binary curves are interesting mostly
to hardware development, but since our interest lies in program verification
(from a cryptographic point of view), and most of the curves in use are prime
curves, our results remain important.

Using Ssreflect Working with Ssreflect as a user to formalize mathem-
atics was sometimes pleasant and sometimes painful. The main things that I
have learned is to be as rigorous as possible in mathematics, and a lot about
programming (taking into account that I had not a strong background). The
representation of the same mathematical structure into different data-structures
was the subject that I found more interesting while working on this thesis. Re-
factoring the proofs and definitions in order to make them available for further
use took most of the time and while important was not particularly pleasant.

Automation As already mention, during the work in this thesis, there were
several times when we needed to manipulate large polynomial formulas, like
the parts concerning the group law equations equations, the decomposition of
rational functions, or the large technical part concerning the uniqueness of the
Picard group representation. Those parts turned out to be quite technical in
Ssreflect, mainly because of the lack of automation. For our formalization, we
decided not to use any mathematics software designed to compute polynomial
formulas or resolve equations in some ring, such as Sage or Maple because
they come with no formal guarantee of their correctness. Our development is
completely based on Coq and there are no holes, in the sense that there are no
results admitted nor any non-verified tools used to aid computation. In Coq
there exist a form of automation (the ring tactic) which was not compatible
with the Ssreflect methodology. As a result, there were many computational
proofs in Ssreflect which had to be developed step-by-step by the users. In
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that context, Pierre-Yves Strub developed an interface between the ring tactic
of Coq and the ring structures of Ssreflect which allowed us to simplify the
proof. Nevertheless, we would like to stress out the necessity for tactics that
would provide more automation in Ssreflect because it can be frustrating and
discouraging to the developer to confront this kind of difficulties.
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A Formalization of Elliptic Curves for Cryptography. This thesis is in the domain of formalization of
mathematics and of verification of cryptographic algorithms. The implementation of cryptographic algorithms
is often a complicated task because cryptographic programs are optimized in order to satisfy both efficiency
and security criteria. As a result it is not always obvious that a cryptographique program actually corresponds
to the mathematical algorithm, i.e. that the program is correct. Errors in cryprtographic programs may be
disastrous for the security of an entire cryptosystem, hence certification of their correctness is required. Formal
systems and proof assistants such as Coq and Isabelle-HOL are often used to provide guarantees and proofs
that cryptographic programs are correct. Elliptic curves are widely used in cryptography, mainly as efficient
groups for asymmetric cryptography. To develop formal proofs of correctness for elliptic-curve schemes, formal
theory of elliptic curves is needed.

Our motivation in this thesis is to formalize elliptic curve theory using the Coq proof assistant, which enables
formal analysis of elliptic-curve schemes and algorithms. For this purpose, we used the Ssreflect extension
and the mathematical libraries developed by the Mathematical Components team during the formalization
of the Four Color Theorem. Our central result is a formal proof of Picard’s theorem for elliptic curves: there
exists an isomorphism between the Picard group of divisor classes and the group of points of an elliptic
curve. An important immediate consequence of this proposition is the associativity of the elliptic curve
group operation. Furthermore, we present a formal proof of correctness for the GLV algorithm for scalar
multiplication on elliptic curve groups. The GLV algorithm exploits properties of the elliptic curve group in
order to accelerate computation. It is composed of three independent algorithms: multiexponentiation on a
generic group, decomposition of the scalar and computing endomorphisms on algebraic curves. This development
includes theory about endomorphisms on elliptic curves and is more than 5000 lines of code. An application of
our formalization is also presented.
Keywords: Cryptography, Formal methods (computer science), Elliptic curves, Coq (software)

Une formalisation des courbes elliptiques pour la cryptographie. Le sujet de ma thèse s’inscrit dans
le domaine des preuves formelles et de la vérification des algorithmes cryptographiques. L’implémentation des
algorithmes cryptographiques est souvent une tâche assez compliquée, parce qu’ils sont optimisés pour être
efficaces et sûrs en même temps. Par conséquent, il n’est pas toujours évident qu’un programme cryptographique
en tant que fonction, corresponde exactement à l’algorithme mathématique, c’est-à-dire que le programme soit
correct. Les erreurs dans les programmes cryptographiques peuvent mettre en danger la sécurité de systèmes
cryptographiques entiers et donc, des preuves de correction sont souvent nécessaires. Les systèmes formels et
les assistants de preuves comme Coq et Isabelle-HOL sont utilisés pour développer des preuves de correction
des programmes. Les courbes elliptiques sont largement utilisées en cryptographie surtout en tant que groupe
cryptographique très efficace. Pour le développement des preuves formelles des algorithmes utilisant les courbes
elliptiques, une théorie formelle de celles-ci est nécessaire. Dans ce contexte, nous avons développé une théorie
formelle des courbes elliptiques en utilisant l’assistant de preuves Coq. Cette théorie est par la suite utilisée pour
prouver la correction des algorithmes de multiplication scalaire sur le groupe des points d’une courbe elliptique.

Plus précisément, mes travaux de thèse peuvent être divisées en deux parties principales. La première
concerne le développement de la théorie des courbes elliptiques en utilisant l’assistant des preuves Coq. Notre
développement de plus de 15000 lignes de code Coq comprend la formalisation des courbes elliptiques données
par une équation de Weierstrass, la théorie des corps des fonctions rationnelles sur une courbe, la théorie
des groupes libres et des diviseurs des fonctions rationnelles sur une courbe. Notre résultat principal est la
formalisation du théorème de Picard ; une conséquence directe de ce théorème est l’associativité de l’opération
du groupe des points d’une courbe elliptique qui est un résultat non trivial à prouver. La seconde partie de
ma thèse concerne la vérification de l’algorithme GLV pour effectuer la multiplication scalaire sur des courbes
elliptiques. Pour ce développement, nous avons vérifier trois algorithmes indépendants : la multiexponentiation
dans un groupe, la décomposition du scalaire et le calcul des endomorphismes sur une courbe elliptique. Nous
avons également développé une formalisation du plan projectif et des courbes en coordonnées projectives et
nous avons prouvé que les deux représentations (affine et projective) sont isomorphes.

Mon travail est à la fois une première approche à la formalisation de la géométrie algébrique élémentaire qui
est intégré dans les bibliothèques de Ssreflect mais qui sert aussi à la certification de véritables programmes
cryptographiques.
Mots-clés : Cryptographie, Méthodes formelles (informatique), Courbes elliptiques, Coq (logi-
ciel)
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