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Abstract

When a material is irradiated by particles or light, it responds with the excitation of
electrons and nuclei. Because of the Coulomb interaction, this gives rise to interesting
many-body effects, that cannot be explained in a single-particle picture. In this thesis
we are interested in their contribution to the electronic spectra. In particular we will
be looking into excitonic effects. These phenomena are due to excitations that can be
described as electron-hole pairs that interact.

The Bethe-Salpeter Equation (BSE) for the two-particle Green’s function, in an ap-
proximation based on the GW approximation to the self-energy, is a well established
approach for accounting for excitonic effects in theoretical spectroscopy. However, in its
current formulation it is computationally heavy, as its starting point requires the knowl-
edge of the interacting single particle Green’s function. Moreover, the existing imple-
mentations give access to only the diagonal parts of the microscopic screening function
£ 1(q, ®)g ¢ and Dynamic Structure Factor S(q,®)g g/, both of which, in their full
form, are dense matrices in reciprocal lattice vectors G and G’. In inhomogeneous sys-
tems these off-diagonal elements can be important and, thus, it is highly desirable to be
able to describe them.

In this work, on the one hand, we try to make the Bethe-Salpeter Equation approach
more efficient. To this end we study the possibility of deriving alternative equations for
the two-particle Green’s function and modifying the standard Bethe-Salpeter Equation. In
particular, we use the fact that the shifts of spectral weight induced by the GW correction
to the single-particle energies and by the electron-hole interaction cancel at least partially.
The idea is to incorporate these cancelation effects, and moreover to use insight from
Time-dependent Density Functional Theory, to render our calculations lighter. Further-
more, based on detailed analysis and comparison of different approaches to theoretical
spectroscopy we discuss the importance of various ingredients contained in them.

On the other hand we extend the Bethe-Salpeter Equation to the off-diagonal elements
of the microscopic screening function and Dynamic Structure Factor. This allows us, first
of all, to reproduce available Coherent Inelastic X-ray Scattering results and make the-

oretical prediction for new ones. Second, this gives us the possibility to calculate the



induced charge distributions due to excitons when the material is subject to an external
perturbation. And, third, we demonstrate the existence of exciton satellites, alongside the

plasmon ones, in photo-emission spectra of wide gap insulators.
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Chapter 1
Introduction

The main topic of this thesis is spectroscopy, the response of matter to an external
perturbation.

In this chapter we introduce the basic concepts and approaches used to describe the
interaction of matter with probe particles. We also give a brief overview of experimental

techniques used to this end, and of the effects that one can observe.

1.1 General framework

The interaction of particles and matter can be described using different approaches
at various levels of approximation. One of the simplest and oldest examples of such a
description of the light-matter interaction is given in classical optics, where materials are
characterized by a single quantity: the refraction index n, defined by n = 7, where c is the
speed of light in vacuum and v is the phase velocity of light in the medium. Taking into
account the fact that materials absorb light leads to the introduction of a second quantity,
the absorption coefficient « and the Beer-Lambert law &' = ®'e~% which relates the
transmitted light flux & and the incident one &', with the distance travelled by light
equal to z [1].

The discovery of Maxwell’s theory of electro-magnetism [2] gave rise to a fundamen-

tal description of interacting fields, charges and currents:
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Chapter 1. Introduction

V-D=n (1.1)

V.B=0 (1.2)
B

VxE=——" (1.3)

VxH= h+%? (1.4)

Matter is now characterized by the permittivity € and the permeability p that relate the
electric E and magnetic B fields to the displacement field D and the magnetizing field H

D=¢E (1.5)
H— 1B (1.6)
u

which all enter the Maxwell’s equations, together with the free charge density nf and the
free current density J.

In this work we will be mostly interested in processes involving the response of matter
to external electric fields and therefore in the permittivity €, while the permeability will

be assumed equal to .

1.1.1 Description of Matter

Maxwell’s equations give a classical description of the electro-magnetic fields, which
is enough for most applications we are interested in. On the contrary, a classical descrip-
tion of matter is in most cases not sufficient. Therefore, we will proceed with a quantum-
mechanical description of it. For this we use the non-relativistic hamiltonian, describing

a material composed of electrons and ions, that interact via the Coulomb potential:

N Z[ZJ eZI

Z 2M1 1§J ‘R]—RJ’ Z |I‘l—I'J| Z |I‘l R]‘

Hmtal

= 1

Here p; and P; are the i-th electron and J-th nucleus momenta, r; and R; - their
positions in space, m, and M; their masses, Z; the charge of the I-th nucleus. In the
following we will set the electron charge (e), the electron mass (m.), and the Plank’s
constant (%) to 1.

We will be interested in materials far from phase transitions, at low temperature and

in the linear response regime. Therefore we expect the Born-Oppenheimer approximation

10



1.1 General framework

[3] to be valid, where we can separate the motion of ions from the motion of the electrons.
Moreover, we restrict ourselves to the study of electrons, supposing that the ions are de-

facto "frozen". In second quantization the hamiltonian for just the electrons reads:

T oetron — / dx W (x1 ) o (x1)W (x1) + % / dxdxo ¥ ()W (x2)ve (x1,%2) W (x2) W (x1).
(1.7)

Here hy is the one-electron hamiltonian, that includes the kinetic energy, the potential
due to nuclei and/or other external potentials, the function v.(Xj,X7) is the the electron-
electron Coulomb interaction, and W' (x;) (W¥(x;)) are the electron field operators that cre-
ate(annihilate) electrons at position X;. The arguments x;, are a short hand notation for

ri,s; 1.e. a space coordinate and a spin.

1.1.2 Description of Crystals

In the previous sub-section we have presented the general quantum-mechanical de-
scription of electronic systems. Here we will give a brief introduction to a specific case,
when the system is crystalline. It is then defined by its unit cell, which is replicated
through space using the corresponding translation symmetry group. In three dimensions,
this symmetry group is defined by three primitive vectors aj,a;,a3. Taking these vec-
tors with integer coefficients gives us the vectors R; that are elements of the translation
symmetry group.

One can define reciprocal space vectors via the relation b;-a; = 279; j. Solving it

gives
a, xa
by =21 2"
ar - (ay x a3)
a3 xa
by =27 2"
ay- (a3 x ap)
a; xa
b3 = e
a3-(a; x ay)

Similarly using linear combinations of by, by, bz with integer coefficients one obtains a
linear space. Its vectors are commonly denoted by G; and called reciprocal lattice vectors.
Due to the fact that the coefficients are integer their number is countable.

This definition of the reciprocal (or inverse) lattice allows us to perform decompo-
sitions of functions into plane-waves. This new basis is compatible with the translation
symmetry: a plane-wave f(r) = ¢/ is periodic, f(r) = f(r +R) if and only if v = G,
since by definition G;R = 27. Therefore any periodic function F(r) can be expanded as

11



Chapter 1. Introduction

F(r) =Y;e'"F,.

In many cases it is useful to restrict the number of summands in the decomposition to
those belonging to a certain number of closed-shells, that is to reciprocal lattice vectors
defined by G? < G2,,,. This is an example of the usage of a "cutoff" Gy, and it is an

important parameter in the calculations presented later.

1.1.3 Dielectric permittivity

In the present work we are interested in the ab-initio description of the particle-matter
interaction. In practice this means that we want to be able to calculate, for example, the
macroscopic permittivity €, which enters the constructive relation Eqn. 1.5. This quantity

is a tensor that relates two vectors, the displacement field and the total electric field.

en-(q,0) &l(q,0) ET(q,)

D(q.0) = ( D-(q,0) ) _ ( el (0.0) & (a.0) ) ( E(q, ) ) 08

Here the longitudinal and transverse components of a vector F(q) are defined by:

F(q) =F"(q) +F"(q)
q-F'(q)=0
qxF(q)=0.

The subscript "M" underlines the fact that these quantities are macroscopic, or, in
other words, averaged over unit cells. These relations have been written down for the

Fourier transforms of the vectors.

In general Eqn. 1.8 means that a longitudinal field can induce a transverse one, and
vice-versa (for details see [4]). However, in highly symmetric cases, or when q — 0
the problem decouples and moreover, it is possible to still limit oneself to the case of
longitudinal fields even to describe absorption of light. We will not display the superscript
"L" in the following.

Up till now, we have been describing the macroscopic quantities. However, in prac-

tice, it is the microscopic ones that are the most straight-forward to calculate.

Let us explain what we mean by this and make the connection between the macro-

scopic and the microscopic description. Consider a general microscopic potential v(r, @).

12



1.1 General framework

It can be expanded:

v(r,w) = Zeiquv(q+ G, )" = Zeiqrv(q,r, o). (1.9)
q G q

The macroscopic potential is the average over the volume of a unit cell:

1
Vunitcell

VM((L (D) =

/drv(q,r7 o). (1.10)
Substituting v(q,r, ®) we obtain:

This means that the macroscopic averaged potential is given by the G = 0 component of
the microscopic one. Let us now calculate the relation between the macroscopic perturb-

ing potential v§;" and the total macroscopic v}7 that contains the response of the system.

We start from a perturbed microscopic hamiltonian:

H = Helectron + I/F]Iint (t)a

where (¢) is a time-dependent perturbation.
In linear response the first order variation of the electron density dn, which is the

induced charge, reads:

dn(r,t) = /dt'dr’x(r,r’,t—t')vex,(r’,t’). (1.12)

The linear coefficient ¥ is the density-density response function, or the susceptibility.
Note that in linear response and for a static Helec,mn, the response function depends only
on the time difference 7 — ¢/, and not on two separate times.

As a consequence of the induced charge, the total classical potential felt by the elec-
trons or test charges becomes Vi = Vexr + Ving, Where the last term is the induced poten-
tial v;,y = v.On. This means that the external potential applied to the system is actually

screened. To describe this, one introduces the microscopic screening function £~ !:

Vpor (1,1) = / d / A (0,1 — 1 )vout (1, 1), (1.13)

13



Chapter 1. Introduction

Putting the previous relations together we get:

elrr,t—t)=8(r—r)8(r—1) +/dr”vc(r—r”)x(r',r”J—t’). (1.14)

We are mostly interested in crystals. For functions of two space-time variables, the
translation symmetry implies: A(r,z;1',¢') = A(r + R,£;¢¥ + R, ¢’), with R a vector of the
translation symmetry group R = cja; + cpas + c3a3. In reciprocal space this symmetry
results in the fact that the Fourier transform A is not a function of ki, Kk, but of a single
q, belonging to the Irreducible Brillion Zone (IBZ) and two vectors of the inverse lattice
G1,G,. Therefore it can be written as a matrix A(q)GhGZ. This can be shown, taking as
an example €(k,k’). We have:

total Vlolal

Using the relation €(r,r’) = €(r+ R,r’ + R) we get:
/drdr’s(r,r')eikre_ik/r/ = /drdr’e(nr')eik(r+R)e_ik/(rl+R)

Therefore exp(ikR) exp(—ik’R) = 1 and either k —k’ = G or £(k,k’) = 0. This is equiv-
alent to saying that our function €(k,k’) depends on q, G, G’, where q is in the first Bril-
louin zone.

In a similar manner the homogeneity of time results in A depending not on two, but
one frequency . !

We can thus rewrite Eqn. 1.14:

£6.(0,0) = do.¢ +ve (166 (q 0) (1.15)

and also Eqn. 1.13:

Vior(Q+ G, @) Zg(} G (q, o Vext(q+G/7w)

Inserting this into Eqn. 1.11, and using the fact that a macroscopic external potential

has only the G = 0 component we obtain:

1. From here on, we will not always put a "hat" on Fourier transforms of functions, as it can be deduced
from the parameters on which the function depends.

14



1.2 Spectroscopy

Vt()t,M(‘l, (D) — géioj(;/:o(q, w)vext,M (q; CO) (1 16)

The macroscopic dielectric function is defined by the relation between the macro-
scopic external and total macroscopic potential

Viot,M = €y Vext M- (1.17)
Therefore, we obtain:
1
= &(q) g 0.0—0- (1.18)
eu(q) ’

The first works in this formalism were by Noziere and Pines [5] and Ehrenreich and
Cohen [6], who modeled the dielectric constant in the Random Phase Approximation
(RPA). An accurate description of the relation between the microscopic and macroscopic
susceptibilities was given by [7] and [8]. Note that the macroscopic dielectric function
eu(q) # €(q)g/=0,6=0 When the matrix € is not diagonal. Off-diagonal elements will
exist in materials that are not homogeneous (€(r,r’) # €(r —r’)). Their effect is known
as the Crystal Local Field Effects, often simply called Local Field Effects(LFE).

1.2 Spectroscopy

In this section we will give a brief introduction to the experimental techniques used
to study matter and its interaction with particles and light. Furthermore we will discuss
elementary excitations that play a role in their interpretation.

1.2.1 Photoemission and inverse photoemission spectroscopy

Photoemission spectroscopy (PES) and the related inverse photoemission spectroscopy
(IPES) are experimental techniques used to study electronic structure of matter. They ex-
ist in a variety of different setups.

The basic idea of Photoemission spectroscopy is to illuminate matter with photons,
so as to extract electrons from it. This process is governed by the Einstein law [9]:
E, = o — Ep, where E; is the energy of the out-going electron, ® is the energy of the
incoming photon, and Ep is the binding energy of the electron in the material. This rela-
tion expresses energy conservation. By measuring the energy of the out-going electrons,

at fixed incident photon frequency, one can obtain information about the binding energy
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Chapter 1. Introduction

of electrons in the material. In the independent electron picture, one would expect, for
each momentum K, a sharp peak corresponding to the band energies of the electron in
the solid. An example of such an experimental spectra for Lithium Fluoride is shown in
Fig. 1.1, taken from [10]. We see that the peaks, corresponding to the emission of differ-
ent electrons are not very sharp, but broadened. This is not surprising for the dispersing
valance band, but not obvious for the undispersing core levels. Moreover, we see the ap-
pearance of other structures in the spectra. These effects are due to the fact that the simple
single-electron picture is not completely valid. The main peaks correspond to electrons,
that are "dressed" by the interactions with other excitations. They are similar to single
particle peaks and are called quasiparticles. A discussion of the various other structures

present in the spectra will be performed in chapter 5.

| I | T T I

LiF

unit )

( arbitrary

Intensity

8070 €0 50 40 30 20 00
Binding energy, eV

Figure 1.1 — Angle integrated photo-emission spectra of Lithium Fluoride, reprinted from
[10].

The inverse photoemission is the reverse process, in which one bombards matter with
electrons, which couple to unoccupied electronic states and then decay to low-lying un-

occupied states. Some of these decay processes will cause photo-emission and one can

16



1.2 Spectroscopy

then measure its spectra, thus obtaining information on unoccupied states.

In a more elaborate setup one can measure not only the energy, but also the angle at
which the electron is emitted. These types of experiments are called Angular Resolved
Photoemission Spectroscopy (ARPES) [11]. A typical setup of such an experiment is
shown in Fig. 1.2.

photon source energy analyser

hv /e‘

N
S,
UHYV - Ultra High VacuumJ

¥, (p< 1077 mbar)

Figure 1.2 — Setup of an ARPES experiment, from [12].

Using momentum conservation, one can get information not only on the binding en-
ergy, but also the momenta k of the electrons in the material. This concerns only the
momenta parallel to the surface: the momenta perpendicular to it is not conserved, due to
the breaking of translational symmetry by the existence of the surface.

An even more elaborate technique that is used to study material dynamics is time
resolved photoemission spectroscopy or even time and angular resolved photoemission
spectroscopy [13, 14, 15]. In this case two pulses are used: one to excite the material, and
the second one, at a later time, to extract electrons. This technique allows one to measure
the excited states of matter and their decay towards the ground state as a function of time
[16].

1.2.2 Loss spectroscopy and absorption

In the previous sub-section we have considered methods that involve either the addi-
tion or the removal of charged particles from the system. An alternative situation is when
the excitation of the system is charge neutral. Among these methods one can separate two
groups: when the probe is charged, for example transmission electron microscopy (TEM)
[17] and when the probe is neutral, for example inelastic X-ray scattering (IXS) [18]. In

17



Chapter 1. Introduction

the first group of methods we find the electron energy loss spectroscopy (EELS). It can be
performed in an electron microscope where matter is bombarded by electrons and angle
and energy of the electrons after their interaction with the sample is recorded. This can be
combined with transmission electron microscopy to allow one to obtain results with high
spatial and spectral resolution. A possible realisation of such a setup is the energy-filtered

transmission electron microscope (EFTEM) [19].

Figure 1.3 — Setup of an EELS experiment, from [12].

In the present work we are interested in EELS spectra of valence electrons. A schematic
setup of such an experiment is shown in Fig. 1.3: an electron beam creates a field that in-
teracts and excites matter, hence it loses energy. By measuring the energy difference we
obtain information about the excitations of matter. One possible setup is the scanning
transmission electron microscope [20] with an electron spectrometer.

Let us look at a simple theoretical description of such an experiment with electrons.
Consider a fast moving charged particle, with velocity v. The corresponding density is
ng(r,t) = ed(r—vt). One can solve the macroscopic Maxwell equation V-D = ny. In
reciprocal space the solution reads:

Dla,®)= > (2;)3

o(w—qv).

Work performed by the system, or alternatively the loss of energy per unit of time is given

18



1.2 Spectroscopy

by 44 = [drj(r,t)-E(r,t). Using the expression for the current j = —vn; = —ev8(r —vt)
and the fact that E(q, ®) = €;,' (q, ®)D(q, ®) we get:

dA o V- E L (q,0)q €
ot . i(qr—ot) M ) _
o /drB(r vt)/dqda)e e (2ﬂ)36(w qv)
-2
_ @ )
_/dqdw 26 (0.0)8(0—av) 5 s

Using the relation that [~ dowe™ ' (0) =2i [[7do o3 [¢~'(w)], obtained using the
symmetry consistent with the Kramers-Kronig relations [21], we get

dA 62 qV ~1
I —m/dq?s [SM (quV)} .

This is the total energy loss. The energy loss probability P, that is defined by % =
Jo do o P(®), reads:

1 2 1
P(o) =~ > /dq?S e, (0, 0)] (0 — qv).

We see that the quantity that we thus measure is the imaginary part of the inverse
dielectric function 3 [¢;,' (q, ®)] scaled by a factor 1/¢*. The negative of 3 [81;[1 (q,0)] is
called the Loss Function. Note that we can also perturb the system at shorter wavelengths
and hence measure 3 [e5! . (q, ®)].

In the second group of methods, we illuminate the sample with high energy photons
and then measure the number of scattered photons per unit angle. In this case, the result
is similar, but without the 1/¢> pre-factor [18]. Therefore these loss and scattering ex-
periments can be complementary, in the sense that they are suitable for small, or large q

respectively.

Finally, if the probe photons are prepared in a particular manner, that is in a coherent

superposition of two plane waves:

Ao(r) = Ape'Kor

Ap(r) = Ape™ir,

with A being the electro-magnetic 4-potential that is related to the electro-magnetic fields
E=-Vp-— %%—‘?; B =V x A, and K;, = K¢ + G, with G being a reciprocal lattice vector
of the material we want to study, one can access also off-diagonal elements G # G’ of the

microscopic €(q, ®)g ¢’ matrix [22]. This kind of experiment is called Coherent Inelastic
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Chapter 1. Introduction

X-ray Scattering (CIXS) Spectroscopy. It not has been used often up till now, but it is an
important technique as there is no simple experimental alternative to access the full di-
electric matrix. We will discuss this last type of experiments in detail in Chapter 4, where

we will also present ab-initio results for them.

To complete this subsection on the spectroscopy of neutral excitations, it is important
to link absorption experiments to the dielectric function. In principle, one would have to
consider the transverse components, but in the approximation of infinite wavelength of
light, which corresponds to q — 0 and if one can make a principal axis transformation
of the dielectric tensor, an absorption spectrum is given by 3 [ey(q — 0)], with &y de-
fined by Eqn. 1.18. This limit is non-analytic and the direction q — O corresponds to the
polarization of light. This is the quantity that is evaluated in most ab-initio calculations
[23].

1.2.3 The excitation zoo

As mentioned previously the excitations of matter can be neutral or charged. In the
case of a system of a finite number N of non-interacting particles in a volume V one
can define single particle, two-particle, n-particle excitations. These correspond simply
to states that are slater determinants with different occupations of the single-particle or-
bitals. As one adds interaction between particles the excitations start to couple, however
in many cases one can still assign a certain character to every one of them. The simplest
are the quasi-particle excitations, which are single-particle excitations "dressed" by the
interaction. A good example of such a situation is the polaron [24], which is an electron
excitation dressed by the interactions with phonons, the elementary lattice excitations.
A more elaborate example of an excitation is an exciton [25, 26]. In its simplest case,
known as Wannier exciton [27, 28], it is a bound electron-hole pair, that is similar to
a hydrogen atom, with the proton being replaced by a positively charged hole (a posi-
tively charged excitation, corresponding to an electron missing in the N-particle system).
Finally a macroscopic displacement of charges in materials gives rise to charge density
excitations, known as plasmons.

The plasmons are collective excitations present in the electron gas. They appear as
soon as one starts to consider the long-range Coulomb interaction. From a purely classical
point of view they can be seen as collective oscillations that appear when we displace all
the electrons by an infinitesimal distance with respect to nuclei. Alternatively they can be
viewed as one of the wave types propagating in an electron-hole plasma. To see this one

can consider the equation for wave propagation in a medium with a dielectric function
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that is dominated by a characteristic excitation at frequency ®,, the plasmon frequency:
2
g(w)=¢g [1 — %] . For simplicity, assume t = y. Taking the curl of the 3rd Maxwell

equation Eqn. 1.3, and inserting the 4th Maxwell equation Eqn. 1.4 we get in the absence
of free current:
d’D

d
VX(VXE):—EVXB:—‘UOW

Using the first Maxwell equation Eqn. 1.1 we replace V x (V x E) by —V°E. We

i(wt—Kr)

then assume a wave-like excitation E = Ege , use the relation of D = €E and go to

reciprocal space. This gives us:
2 2 2
[k* — po & (0 — ;)] E =0.

The non-trivial wave solution has a dispersion relation: ®? = k*c? + (0[%, where we
used the fact that ¢ = \/ﬁ This is the plasmon dispersion. As usual, when one goes
to the quantum description these waves become quantized. Moreover one has to consider
them together with other elementary excitations. This makes them no-longer sharp, but
gives them a broadening. Finally, due to the interactions with the electron-hole contin-
uum the spectra of the plasmon becomes asymetric. This effect is also known as Fano

asymetry. A more in-depth discussion of excitons and plasmons in simple models can be
found in [29, 30].

1.3 Ab-initio methods

The key quantity that emerges from the previous sections is the @w-dependent dielectric
function. Here we will give an introduction to ab-initio methods used to calculate this
quantity, and to reproduce and predict results of the various types of experiments, that
have been presented in the second section.

1.3.1 Density Functional Theory

In principle, the Schrodinger equation based on the hamiltonian Eqn. 1.7 for electrons
contains all the information we need, and if one were able to solve it - one could compute
all the interesting physical quantities. However, in practice the solution of such a problem
for a reasonable number of electrons is impossible, and even if it were possible one could
not store the wave-function of 3N coordinates [31]. Therefore, different methods and

approximations to them were developed to overcome this difficulty. The simplest are the
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Hartree and Hartree-Fock approximations. They contain the classical electrostatic effects
(Hartree) and the information that the electrons are fermions (Fock), but this is in general
not sufficient. A break-through came from the observation that knowing the ground state
electron density is, in principle, enough to describe the relevant physical observables.
This is the basis of Density Function Theory. The practical realization relies on the fact
that one can map the real interacting system into a fictitious system of non-interacting
particles, such that the two systems have exactly the same density. This is the Kohn-Sham

approach [32]. An in-depth description of this approach is given in [31].

Here, we will just give a brief overview of the foundations given by the Hohenberg-
Kohn theorems [33]. The first theorem states that the ground state density of a system
of interacting particles in an external potential v,y uniquely determines this potential
(up to a constant) and hence the entire system. From this, one derives that the energy
of the system is also uniquely determined by its ground state density. This allows one
to introduce the energy functional E|[n]. Unfortunately the exact functional E[n] is not
known. The second theorem states, with the help of the variational formulation of the
Schrodinger equation Eqn. 1.19 that this functional is minimised by the exact ground

state density,
@ is the ground state = ®minimizes(®|H|P) — E (P|D) (1.19)

This finding was then followed by the seminal work of Kohn and Sham (KS), who
have shown that one can find a system of non-interacting particles that will give the same
density as the physical system [32]. This leads to the Kohn-Sham equations.

(= V2 +veps(r)) 9i(x) = i6i(x)
Ve f(T) = Vex (1) + (1) + (1), (1.20)

where vj,(r) is the Hartree potential, and v,.(r) = 55E;(cr[31} is the exchange-correlation

potential, that is also a functional of n, which means that it depends on the density all
points in space. The exchange-correlation energy E,. is defined as the difference: E,. =

E —Ts — E. — Eg, where Ty is the non-interacting kinetic energy:

i =3 ) [dr o (Vi)

Eexy = [drn(r)vey(r) and Ep is the Hartree energy. Since E|n] is not known, E,. and vy,

are not known either, but useful approximations exist.
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Figure 1.4 — The Kohn-Sham scheme in practice

1.3.2 Density Functional Theory in practice

In the simplest Local-Density Approximation (LDA)[32] one supposes that v, is a
local function of the local density, vy.([n],r) — vEPA(n(r),r).

This function is taken from the homogeneous electron gas. The final computational
method that uses this approach in practice is depicted in Fig. 1.4. Starting from an initial
approximation to the density n;,;;,; we compute the effective external potential for the
non-interacting System V,rr = Vey + Vg + Vxe and solve the corresponding hamiltonian
problem. The obtained wave-functions ¢; are then used to construct a new guess for the
density n(r) = Yoccupica |9i(r) |* and the scheme is repeated, until it converges to a given
precision.

It is worth noting that the wave functions ¢; and energies & obtained in this scheme
are not the real wave functions or energies of the system. However, in some cases they are
not such a bad guess [34] and we will use them often in this work as a first approximation.
For a more in-depth discussion of Density Functional Theory, we refer the reader to [35].
For a discussion of a wide class of more advanced functionals one can look into [36].

A further simplification comes from the fact that one doesn’t require the knowledge
of the energies and wavefunctions of the electrons that are deep in the core of the atom,
as they are strongly bound and do not have any effect in the range of energies we will be
interested in. Therefore, to avoid their calculation, we use pseudopotentials, that mimic
the behavior of the atom core, screened by the strongly bound electrons. A discussion of

the accuracy of this approximation in the context of spectroscopy is found in [37, 38].

1.3.3 TDDFT

Density Functional Theory can be extended to the case of time-dependent external po-
tentials. An equivalent of the Hohenberg-Kohn theorem in this case is the Runge-Gross

theorem [39]. Together with the Kohn-Sham approach it leads to a time-dependent ef-

23



Chapter 1. Introduction

fective single-particle Schrodinger equations in strict analogy to Eqn. 1.20. The response
of the system to a weak potential v,y; can be derived using time dependent perturbation
theory. In the linear regime n(r,t) = [dr'dt’ y(r,v',t — ' )vey (r',¢") (Eqn. 1.12). Hence,

schematically,
on on 6 Ve ff

= , (1.21)
OVext OV, ff OVext

from which we obtain:

——— + fre(thty, ¥h17) ) x(Xh11,1202),
ry —rf|
(1.22)

where, repeated indices are integrated over and Ygs = 5f , is the independent particle

x(rit1,rat2) = Xks(rit1,vat2) + Xks(rit1,x58) (

SVXC

(Kohn-Sham) susceptibility and fy, = S is the variation of the exchange-correlation

potential v,.. We will come back to the formal derivation of this equation in chapter
3. An extensive review of TDDFT can be found in [40]. It is worth noting that the
first calculations in this formalism were performed even before a rigorous theory was
developed [41].

Though being formally exact, Time Dependent Density Functional Theory is known to
have problems describing some types of excitations [42, 43]. One usually, except for some
model cases [44], makes approximations to the fy. kernel. The simplest approximation is
the Adiabatic Local Density Approximation (ALDA)

dvi (n(r).x)
dn(r)

(e 1) = 8(r—1)8(r—1)

that doesn’t have the correct long-range behavior and misses the bound excitons. More
advanced kernels have been suggested, for example in [45, 46]. The possibility of com-
bining some elements of Many Body Perturbation Theory and TDDFT has also been
suggested [47, 48, 49, 50, 51].

1.3.4 Many Body Perturbation Theory. Green’s Functions

An alternative approach to the density-functional based methods described in the pre-
vious sub-section is Many-Body Perturbation Theory. The key objects in these approaches
are the Green’s functions. The N-particle Green’s function (N being the total number of
electrons in the system) is a Green’s function in the most straightforward mathematical
sense, namely Gy(z) = (z— H)~! with z a complex frequency, of the full hamiltonian

Eqgn. 1.7. This quantity has the same dimension as the full hamiltonian and is thus, in
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practice, not very useful. However, here we are only interested in the information con-

tained in the one- and the two-particle Green’s functions, which are defined as follows:

G(1;2) =
G»(1,2:3,4)

(=) (Te(1)¥(2)) (1.23)
(=) (Te(1)2(2)%' () (3))
G(2,4)G(1,3) —L(1,2;3,4). (1.24)

Here, the numbers 1,2, etc stand for the space, spin and time coordinates i.e. 1 =
(x1,t1) = (ry,s1,1). The symbol T stands for time ordering, and ¥ is the electron field
operator in the Heisenberg picture. At zero temperature and fixed particle number, the
averaging is performed over the ground state |N). This is the case considered in the fol-
lowing.

The single particle Green’s function is the probability amplitude of an additional par-
ticle going from space, spin and time point 2 to 1(Fig. 1.5(a)). The diagonal part of the

single particle Green’s function gives us the density:

n(x) = <‘PT(X,t)‘P(x,t)> = —iG(x,x,1,1") (1.25)

Similarly the two-particle Green’s function describes a process involving two particles
going from points 3,4 to points 1,2 (Fig. 1.5(b)). This is also the definition of L, in which
we have subtracted from G the trivial case where the movement of the two particles is
independent. This is a key object, as its diagonal gives the density-density correlation
function, which in its turn, through the Fluctuation Dissipation Theorem [52, 53], is pro-

portional to the susceptibility:
x(1,2) = —iL(1,27;17,2). (1.26)

The physical meaning of these Green’s functions can be better understood, if we
rewrite them in the Lehmann representation [54]. Let us do this for the single particle
G. First we write out its definition Eqn. 1.23 using Heaviside step functions (®(f) = 1 if
t>0and O(r) =0ifr <0):

iG(X],t1;X2,t2) = @(tl —t2) <q3N‘ \P(Xl ,tl)lPT(Xz,Z‘z) ‘q)N> —
—0O(tr—1) <(I)N’ ‘PT(Xz,tz)‘P(Xl,ll) |q)N>
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) t1,x1
t3,x3 @]

& t1,x1 O
t2,x2 < t4,x4 (@]

t2,x2

(a) Single-particle G (b) Two-particle G

Figure 1.5 — Schematic representation of Green’s functions

By inserting a complete set of many body-states ¥; | @} ™) (@Y ! and ¥ [ @) 1) (@)1,

between the field operators, we obtain:

iG(Xl,Z‘];Xz,tz) = 9(t1 —tz)Zexp (i(E(])V—E]]CVJFI)(t] —tz)) gk(Xl)g;(Xz)—
k

—0(t—11) Y exp (i(E) —EY ") (2 —11)) fu(x1) £ (x2),
%

where E(I)V s the ground state total energy, and E are the energies of excited many-body

states. Here f; and g; are the Lehmann amplitudes:

fio= (@7 W(x) [@V)
ge = (PV|¥(x) |2 ),

where W(x) are the field operators in the Schrodinger picture.

In frequency space the exponentials ¢’*F" become fractions Z_%. This means that
the single particle Green’s function will has poles at the energies corresponding to elec-
tron addition and removal energies. To make this even more explicit one can look at the

spectral function A(®), defined as:
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A(X1,%,0) = lim — [G(X1,%2, 0 +in) — G(X1, %2, ® — iN)] =

n—0+ 27

=Y filx)fi(x2)8(0— (E) —EY 1)+
X

+ ) gr(x1)g; (x2)8(w+ (EY — ENTL). (127)
%

We see that the spectral function has peaks at electron addition and removal energies,
weighted by the Lehmann amplitudes. The spectral function can be directly related to
experiments. In particular, to first approximation, the photo-current /(k, ), for an outgo-
ing electron with momentum Kk, is directly related to the diagonal element of the spectral
function Ak k().

It is important to point out that for an interacting system the state P ‘CIDN > where an
electron is added to the N-particle system is in general not an eigenstate of the N+1 par-
ticle system. The same is true for the electron removal. The existence of this difference
will result, among other things, in the appearance of satellites in spectra. These satellites

will be discussed in more details in chapter 5.

Let us now derive an equation relating these Green’s functions, the first equation of
the Bogolyubov hierarchy [55] for this problem. Returning to our hamiltonian (Eqn. 1.7)
and using that in the Heisenberg picture d,A(1) = [A(1),H(1)], we can write down the
equations of motion (EOM) for ¥ and ¥,

i0,®(1) = [®(1),H(1)] = ho(1)¥(1) +/dx'\w(1’)v(1, 1) (1')®(1)

0w (1) = [\PT(I),H(l)] :\P’f(l)ho(l)+/dx’w(1>qf’f(1’)v(1,1’)\1!(1’)

where v(1,1") = v.(r1,1}) (] —11).

With the time ordering in the definition of G(1,2) (Eqn. 1.23) given by the Heaviside

theta-functions we find the EOM for the single-particle Green’s function:
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i0,G(1,2) = 8(1—2) +ho(1)G(1,2)+

+iO(t — 1) < / AT (1)Y® (1 )v(1, 1) 2 (1) ¥ (2) —

—i@(zz—zl)/dx’lqﬁ(l’)\y(l’)v(l, 1’)\{/*(2)\1'(1)>

The part that is integrated can be identified with a two particle Green’s function. How-
ever care must be taken, because G, not only depends on the 4 spatial coordinates, but
also on the 4 times, whereas the part that is integrated here depends only on two times,
as the Coulomb interaction is instantaneous. The correct time-ordered expression will be
i [dx|G2(1,1;2,1")v(1,1"); here 1 := (x1,2), I := (¥}, s+ &), 1" := (x],1 +2¢).

One can then rewrite our equation as follows, using the non-interacting Green’s func-
tion Gy, that satisfies id;Go(1,2) = 8(1 —2) +hoGo(1,2) :

Gy (1,1NG(1,2) +iv(1,1)Gy(1,1,2,17) = §(1 - 2)

Here, primed quantities are integrated over. Using the relation between G, and L (Eqn. 1.24)

one obtains:

G(1,2) = Go(1,2) —iGo(1,1")Ww(1,2)G(2,2)G(1',2) +iGo(1,1" (1, 2))L(1",2/;2,2')
(1.28)

With —iG(1,17) =n(1) (Eqn. 1.25) we see that the second term in the r.h.s. contains
the Hartree potential.

The equation Eqn. 1.28 shows that the propagation of a particle in the system is mod-
ified by the classical electrostatic Hartree potential, and by the correlation of the particle
with other particles in the system, contained in L. Finally one can write Eqn. 1.28 in the

form of a Dyson equation:
G(1,2) = Go(1,2) +Go(1,1")vy (1) G(1',2) + Go(1,1)Zxc(1,2)G(2',2),  (1.29)
where we have defined the self-energy Xxc, as
Txc(1,2) =v(1,1)L(1,1";2, 1'+)G_1(2’,2). (1.30)
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1.3.5 Many Body Perturbation Theory. Hedin’s equations

The equation for the Green’s function Eqn. 1.28 cannot be solved, as a priori L is un-
known. However, according to Eqn. 1.26, its diagonal, using the Fluctuation Dissipation

Theorem [53], can be written as

sn(1) . 8G(1,1%)
6Vext( )_ laUext(zaer)’

—iL(1,27;1%,2) = x(1,2) = (1.31)
where we introduced a general non-local potential Uy, wWith Upy(2,27) =V, (2). This
relation can be generalized to the full L(1,2,3,4). It can be written using functional in-
tegrals [56], by adding a non-local external potential AH = [ dx;dxaU,y (1,2)¥"(1)¥(2)
into the electron hamiltonian Eqn. 1.7, which leads to

_ 8G(1,2)

(1.32)

Using these relations and the equations of motion for the Green’s function, one can
derive an integral equation for L analogous to Eqn. 1.22. This equation is called the Bethe-
Salpeter equation. We will perform this derivation in the second chapter. Here, we just

note its schematic form:

)
L=GG+GG—=L. 1.33
+ 5C (1.33)

From this one can derive a set of equations known as the Hedin’s equation [57]. First
we define a vertex function I' = LG~!G~!. Eqn. 1.33 then leads to Eqn. 1.38. We,
furthermore, introduce the polarizability P (Eqn. 1.37), the screened Coulomb interaction
W (Eqn. 1.35), and, finally the self-energy X (Eqn. 1.36). Comparing these definitions
with Eqn. 1.28 we obtain the Dyson equation for the Green’s function G (Eqn. 1.34), the

same as Eqn. 1.29. The full set of equations reads:

G(1,2) = Go(1,2) + Go(1,1)5(1',2))G(2',2) (1.34)

W(1,2) =v(1,2)+v(1,1)P(1",2 YW (2',2) (1.35)

>(1,2) = i[(2;1,1)G(1',2)W(2,2) (1.36)

P(1,2) = —il(1;2',2)G(2,2))G(2",2) (1.37)
5%(2,3)

I'(1;2,3)=68(1,2)8(1,3)+ TI(1;2,3)G(2",2)G(3',3") (1.38)

5G(2’/, 3//) ’
Note that P yields the dielectric function, £(1,2) = 8(1 —2) —v.(1,1")P(1’,2) and
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W(1,2) =& 1 (1,1")v.(1',2).

In the simplest approximation, when the vertex function is given by the product of
two delta functions (i.e. in Eqn. 1.38 the second term is neglected), this gives the widely
used GW approximation [58] for the self-energy X(1,2) = iG(1,2)W(1,2). In this ap-
proximation Eqn. 1.37 becomes P(1,2) = —iG(1,2)G(2,1), which is the Random Phase
Approximation (RPA). The GW approximation is the simplest non-trivial approximation
used to describe the photo-emission processes and for the calculation of ab-initio band-
structures [59, 60, 61]. To understand this, using the solution of Eqn. 1.34 and Eqn. 1.27,
one can rewrite the spectral function A(®) in terms of the self-energy:

1 3Lk, o)
™[0~ Rk, )]+ [S2(K,0)

Ak, ®) = (1.39)

With the GW approximation £(1,2) = iG(1,2)W(1,2) this gives an approximation to

the photo-emission spectra.

At this point we can give a more precise definition of quasi-particles, in particular
we see that for @ — elg — RE(k, ®) = 0 the spectral function will contain peaks. These
solutions @y, will give us the quasi-particle energies. The other option for peaks in A(k, @),
is when there is a maximum in SX(k, ®). These can be related in the GW approximation
to the peaks the loss function 3£~ ! (®), which is as shown in subsection 1.2.2, related to
the Electron Energy Loss Spectroscopy measurements. These peaks are called satellites
and physically correspond to the situation, where the hole created in the photoemission

process excites the system, and hence the outgoing electron has less energy.

The properties of Hedin’s equation and the GW approximation have been analyzed
for real materials, or using simple models. Among the simplest are the one-point model
[62, 63] for the Hedin’s equations, and the two-electrons on a sphere model, for the GW
approximation [64]. The first realistic GW calculations were carried out for the simple
semi-conductors silicon and diamond. They solved the so-called Kohn-Sham "Gap prob-
lem" [65, 59]. Even today, most of the GW calculations concentrate only on the quasi-
particle part of the spectrum, calculating the band structure [66]. Satellites are much less

studied; they are one of the topics of this thesis.

An in-depth overview and derivation of the Many-Body Perturbation theory approach
can be found in [67]. An approach combining some elements of the Green’s function ap-
proach with Density Functional Theory, or rather the broader class of mean field theories,
is the Dynamical Mean Field Theory [68]. The limitations of the GW approach and some

possible extensions have been discussed for example in [69, 70].
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1.3.6 Single-electron limit

It is always useful to have a simple toy-model, for which we know the exact results.
To this end, let us consider the limit of one electron i.e. we take the ground state to be
IN =1) and write down some of the quantities defined in the previous sections of this
chapter. Spin is omitted here.

To do this we will first of all introduce a set of notations. The vacuum, and the single-
electron excitations in the interacting and non-interacting case are the same, as well as the

ground state.

H Ho
Vacuum IN=0),0 IN=0),0
Ground IN=1),¢g IN=1),¢

l-particle | [N =1,k,V),& k. IN=1,k,v), € xv
2-particle | [N =2,k,V) &y | IN=2,k,V)q, €1 4v+E

If we define the amplitudes:

Wi y(r) = (N =1[¥(r) [N =2;v,k)

y(r) = (N =1|¥"(r) [N =0)

Py (r) = (N =0[¥(r) I[N = 1;v,k)

O¢y(r) = (N =1[¥(r) [N =2;v,k)g = 9 v(r)
9" (r) = (N=1]¥"(r)|[N=0)

corresponding to transitions between various, we obtain:

G(ry,r,m) = Z w‘l’iv(l‘l)%ﬁfv(rz) . V’h*(l‘z)l,lfh(rl)]

—(&pv—€1)+i6 ©0—g —i

LV.k
[ 06 (D)o (r2) ¢ (r2)9" (1))
Go(r1, 12, 0) = VZ;'{ O—¢& gy+id + w—¢g —id

Taking into account the fact that y"(r) = ¢"(r) we obtain that the hole-part is the
same for both Green’s functions, but there is a difference in the electron addition part.

The densities in both cases are:
n(r) = —iG(1,17) = (=017 = 1) (¥ (1)¥(1)) = y™ () () = 0™ ()¢" ()
We can also define the electron and hole energies:
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€€7k =& kv — &l
eh=¢. (1.40)

These are the energies that one would measure in direct or inverse photoemission.
Let us now also compute the susceptibility . To do this we express the diagonal of

the two-particle Green’s function:

G(1,2;11,27) = (=i)? <T‘P(1)‘PT(1)‘P(2)‘PT(2)> -

—0(t1 —1) Y (N=1P(1)¥ (1) |k, V) (k,v|PQ2)¥ (2)IN=1)—
k,v

)

t2—t12 = 1|YQ)¥(2) |k, v) (k, v|¥(D¥ (1) N =1).

We then go to the contracted L, which gives us what we want via the relation x(1,2) =

66}1& = —iL(1,2,17,2%), derived from the Fluctuation Dissipation theorem.
Vext (2)

2(1.12.0) = z’:¢*(r1)¢k,v(r1)‘P(rz)fl)ﬁv(rz) 9% (12) By (12) 0 (1) 9 (1)

= o+(a—gy)+id -1 o— (& —&,y)— i

kv

(1.41)

Note that the signs of the small infinitesimal parts i0 indicate the time-ordered form

of x. The prime at the sum expresses the fact that the ground state is not summed over. It
is worth noting the fact that this is the same result as the one that we would have obtained
by taking ¥ = GoGyp. This might sound trivial, since there cannot be any contribution of
the Coulomb interaction in the excitation of a single electron. However, we will discuss

the implications of this in the next chapter.
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Chapter 2
The Bethe Salpeter Equation

In the Bethe-Salpeter Equation Eqn. 1.33 the one-particle Green’s function and self-
energy appear. In order to obtain results one must therefore have a good approximation
for these two quantities. One can obtain them, for example, by using the GW approxima-

tion.

The Bethe-Salpeter Equation (BSE) based on the GW approximation to the self-
energy is a well established approach for accounting for excitonic effects in optical proper-
ties and photo-absorption spectra (see, for example [71, 23]). However, in its current for-
mulation it is both computationally heavy and displays cancelation effects not accounted
for analytically.

In this chapter we introduce the Bethe-Salpeter Equation (BSE), discuss the sources of
cancelations [72] based on simple models and the possibility of putting them forward
explicitly. Furthermore, we suggest alternative formulations and sets of approximations
to the Bethe-Salpeter Equation. Finally, we discuss the possibility of using these new

approaches for real systems.

2.1 The Standard BSE in condensed matter ab initio cal-

culation

In the present section we derive an equation for L, the two-particle correlation func-
tion, known as the Bethe-Salpeter equation. Together with the equations of motion for
the single-particle Greens’ function they form a closed set of equation. We then briefly
discuss the application of this method to a prototypical semi-conductor, Silicon, and the

problems that one encounters when using the standard Bethe-Salpeter equation.
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Chapter 2. The Bethe Salpeter Equation

2.1.1 Derivation of BSE

The Bethe-Salpeter Equation was first introduced in the context of high energy physics
[73, 74]. It was then extended to condensed matter physics [75, 76]. Let us sketch the
derivation. To do this, we consider a general hamiltonian for electrons, as introduced in
Eqn. 1.7.

H= /dXIlI’T(Xl)hO(Xl)\P(X])+%/dXIdXZlPT(XI)\PT(X2>VC(X1,Xz)‘{j(xz)‘{](Xl)

(2.1)
One can then consider a non-local perturbation AH = [ dx1dx;U,(1,2)¥7(1)¥(2),
and calculate in first order perturbation theory in AH the variation of G, %Gt One obtains

a term with four field operators that equals L. We start our considerations from this
relation: 5G(1.2)
L(1,4;,2,3) = ———>——.
(1, ) OU,x(3,4)
Taking the variational derivative of G™'G = 1 one obtains:
0G(1,2)
O0U,x(3,4)

5G1(1',2)

_ /
=-G(1,1 )—5Uex;(3,4)

G(2',2). (2.2)

As before, and further in this section the primed quantities are integrated over.

Substituting the variational derivative of G from this equation into the previous one

and then replacing G~! from the Dyson equation G~ = G, ' — U, — X, one obtains:

5x(17,2')

L(1,4:2,3) = G(1,3)G(4,2) + G(1, 1) 5375
ext Y

G(2.2).
Finally, using the chain rule and defining Lo(1,2;3,4) = G(1,4)G(2,3) :

52(1',2')

L(1,4:2,3) = Lo(1,4:2,3) + Lo(1,2:2, 1) =2 )
( ) ’ ) 0( ) )+ 0( >5G(1,/,2,/)

L(1”,4;2" 3). (2.3)
After some relabeling of variables this equation becomes:

52(1',2')

L(1,2;374) :L0(1,2;3,4)+L0(172/;37 1/) 5G(1// 2//)

L(l”,2;2”,4).
If we define
52(1’,2’)

E 1/ 2// 2/ 1// —
( ’ [ ) 6G(1//72//)’

we obtain:
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2.1 The Standard BSE in condensed matter ab initio calculation

L(1,2;3,4) = Lo(1,2;3,4) + Lo(1,2';3,1)E(1',2",2 1")L(1",2;2"  4). (2.4)

Taking the self-energy X to be the sum of a Hartree term vy and of the GW correction,
assuming W to be independent of G and static, we get the standard approximation to the
Bethe-Salpeter equation,

L(x1,x3,%2,X3|®) = Lo(x1,%3,X2,%3]®) + Lo (x1,x5,x2,x5]| @) v(x5,x5)L(x5, x3,x5, x3| @) —

— Lo(x1,x5,x0,x5| @)W (x5, x5 ) L(x5, x3, X5, x3| ). (2.5)

Here, we have also reduced our discussion to the electron-hole part of L, which means
that we set 13 = ¢ + 1 and t4 = t, + 1. This corresponds to the time-ordering present in
the density-density correlation function.

When the W term is neglected, one obtains the Random Phase Approximation, intro-

duced in the first chapter. Diagrammatically the Bethe-Salpeter equation can be visualized
as depicted in Fig. 2.1.

> >
> >
< <
< <
>
>
<
<
> >
> >
< <
< <

Figure 2.1 — The diagrammatic representation of the standard Bethe-Salpeter equation

Here the straight lines represent single-particle Green’s functions, the horizontal wig-
gly line is the Coulomb interaction v, the vertical wiggly line is the screened coulomb
interaction W and the square is L.

This equation has been widely applied to calculate properties of condensed matter

systems. It is useful to rewrite the static Bethe-Salpeter equation in a transition basis.
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Chapter 2. The Bethe Salpeter Equation

Matrix elements in the basis of orbitals y(x) gives:

oy = Wiy (1) W, (35 L(X], X4 %0, X5 0) W (%5) Wi (). (2.6)
With this Eqn. 2.1 becomes:

4 4.0 4.0 4
Xny npnzng = an,ng,ng,m;—'_ an,nz,n/yngKng,ng,n’l,n'z Xn’l,n’z,n3,n47 (2.7)

where

Kng,nﬁ‘,n’l = an (Xg)‘l’:;l (Xﬁl) [V(X’l,Xg)(S(Xll - X/2)5(Xg - Xil) +

+ W (x1,%3)8(x) —x4)8 (x5 —X3) | Yy (X1) W (%2). (2.8)

Note that the two summands that enter the Kernel have two delta functions, but with
different arguments. The difference explains why there is a horizontal and a vertical line
in Fig. 2.1. Without the vertical line (W), one could close the end-points of the diagrams

and have a closed equation for ). Because of the presence of W, this not possible.

The Bethe-Salpeter equation in its matrix form is the basis for most ab-initio calcu-
lations of optical properties. In semiconductors and insulators one can show that only
couples (ny,n;) and (n3,n4) where one state is occupied, and the other unoccupied con-
tribute to 4y and %yo. These couples are also called transitions. Dependent on whether
the first element of the couple is occupied or unoccupied, they correspond to transitions
of positive and negative frequency. Because of the matrix inversions, all these couples
mix. This is called a coupling of transitions. Often one neglects the mixing of transitions
of positive and negative frequencies: this is called the Tamm-Dancoff Approximation.
If one further restricts oneself to transitions of positive frequency only this is called the

resonant-only approximation.

2.1.2 Application to Silicon

In the present subsection we apply the Bethe-Salpeter Equation using state of the
art codes to a prototypical semi-conductor: Silicon (Fig. 2.1.2). A much more detailed
analysis of various results for this material is left to the next chapter. Here we just use this
example to point out some basic properties. The two codes we shall be using to calculate
the spectra are DP and EXC [77]. The ground state calculation was performed in Abinit

[78]. For computational parameters we refer to Appendix A.1.
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2.1 The Standard BSE in condensed matter ab initio calculation

Figure 2.2 — Crystalline structure of bulk Silicon (left); Band structure of Silicon(right)

Ground state

The properties of the ground state were calculated within the Local Density Approx-
imation to Density Functional Theory. We thus obtained the independent particle Kohn-
Sham Green’s Function, using the wave functions and energies, of the Kohn-Sham sys-
tem. However, the Bethe-Salpeter Equation, contains the interacting Green’s function. To
obtain a good approximation to it, we calculated the self-energy corrections to the quasi-
particle energies within the ¥ = iGW approximation. This was done, using the Abinit
code. The results obtained were in good agreement with previous results from literature
[79]. As some of the calculations in the following require a large number of bands, the
effect of the self-energy was replaced by a simple shift of the valence with respect to the
conduction bands. This is also known as the scissor operator approximation to the self-
energy. In the following we are interested in the loss function. For Silicon, it is dominated
by one strong plasmon excitation a small ¢, that decays into the electron-hole continuum
at larger q, as observed in Figures 2.3 to 2.7, where we show the calculated loss function
—3 [&),' (q, ®)] for different values of q.

Fig. 2.3 shows the loss function calculated in the RPA using GW energies. At q =0
the plasmon is close to 18 eV and it moves to higher energies with increasing ¢, consis-
tently with experimental observations. The figure also shows the importance of including
the lowest valence band. Note that this is different from calculations of the 3 [&/] where
much less conduction and valence bands are required.

Finally, we perform a Bethe-Salpeter calculation, based on the GW approximation to
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with 3s, g=0 —
without 3s, =0 =
61 with 3s, q=0.75 ==
without 3s, g=0.75 =

o [eV]

Figure 2.3 — Bulk Silicon: loss function within the RPA using GW energies with and
without the 3s band for ¢ =0 and g = 0.75

the self-energy. An extensive convergence study is given in details in Appendix A.2.The
results for g = 0 are shown in Fig. 2.4. They agree with [80]. In particular the BSE shifts
spectral weight to lower energies compared to the RPA.

4.5

RPA(DP) s

4k
3.5 |
3L

25 |

10 45 éO 25 30
o [eV]

Figure 2.4 — Loss function of Silicon, comparing RPA to the BSE(EXC) at g = 0 (30
bands)

We, furthermore perform the BSE calculation for g # 0, which has become possible

due to recent developments of the EXC code [81]. The results of this calculation are
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2.1 The Standard BSE in condensed matter ab initio calculation

shown in Fig. 2.5(a), Fig. 2.5(b) and Fig. 2.5(c). We have also plotted the spectra obtained
by increasing the main convergence parameters. The fact that there is little difference

means that all these spectra are converged.

Converged " Converged —|
. winsh +2 I winsh +2 =
matsh +2 =——— A matsh +2 =
el nbands+2 — | - | nbands +2—
w
= g
1T }—I( 08 -
o [eV] o [eV]
(a) EELS ¢ = 0.5 (b) EELS ¢ =0.75
- Converged —|
5 winsh +2 —]
' matsh +2 —
i bands+2 =]
w 03 4
e
o [eV]

(c) EELS ¢ = 1.25

Figure 2.5 — Loss Function in BSE(EXC) in the resonant-only approximation for different
qinthe [1,1,1] direction. Apart from the final spectra, we have also plotted the spectra, ob-
tained by increasing the number of plane waves used to describe the wavefunction(wfnsh),
the dielectric matrix (matsh) and the number of bands(nband)

However, these results have been obtained by neglecting the coupling between the
positive and negative transition frequencies. For realistic comparison with experiments,
one has to perform the full Bethe-Salpeter calculation including this coupling. This is
discussed in the next chapter. To this end the current implementation was parallelized.

For details see Appendix B.1.

One would have to take take into account the fact that, even within the simple £ = iGW
approximation the quasi-particles acquire a finite life-time. This life-time (LT) effect has

been extensively discussed in [82] in the framework of TDDFT. Here, for Silicon, we are
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interested in some questions of principle rather than pushing the results close to experi-
ment. Therefore we do not add lifetimes, although this can be done in the BSE framework
[83].

Fig. 2.6 shows results obtained in EXC with and without coupling for q=0.75 in the
[1,1,1] direction (this corresponds to a transferred momenta of 80 a.u.) differ consid-
erably. This shows a failure of the resonant-only approximation to the Bethe-Salpeter

Equation for the calculation of the loss function.

0.035 T T T T T

" EXCnoLT e
TDLDA no LT
Experiment

TDLDA with LT s
0.03 | /\ EXC no coup i
0.025 - \ 8

0.02 1

(q,w)

) oois5f -

0.01 / .

0.005 E

[ — I I I I I I
0 5 10 15 20 25 30 35 40

o [eV]

Figure 2.6 — Dynamic structure factor of Si at q=0.75 in the [1,1,1] direction using differ-
ent methods: BSE(EXC) with and without coupling and without life-time effect, TDLDA
with and without life-time effect, experiment from [82]

Indeed, the figure shows that the BSE results including the coupling are much closer
to the experiment. The figure also contains TDLDA results.

Surprisingly, the agreement between TDLDA and BSE with coupling is very good,
apart from the higher energy region, which is due to the limited number of occupied bands
taken into account. The closeness of BSE and TDLDA is even better seen in Fig. 2.7,
where we compare two spectra computed within the TDLDA and BSE formalisms, but
with the same set of convergence parameters. We will further discuss the implication of
this in the next chapter. When lifetime effects are included in the TDLDA, the agreement
with experiments is very good. This strongly suggests they should be also included in the

BSE in the future. It is worth noting, that inserting an imaginary part computed within the
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2.1 The Standard BSE in condensed matter ab initio calculation

GW approximation to the self energy into the denominator G, to account for the life-time

effects, is more natural, than using a modified XLCT in TDLDA, as in [82].

'TDLDA 25 bands =—
14 TDLDA 35 bands g

BSE =—

0.8

Im ¢!

0.6 |-

04 |

0.2

0 5 10 15 20 25
w [eV]
Figure 2.7 — BSE(EXC) and TDLDA Loss functions of bulk Si for q=0.75 in [1,1,1]
direction.

2.1.3 Discussion

From the above results we see that in the case of loss spectra of silicon two very
different approaches, TDLDA and BSE, give very similar results. This is not always
true, but since TDLDA is computationally much simpler it is important to analyze this
situation, This shall be done in Chapter 3.

For now, let us look into how the Bethe-Salpeter approach works. This can be done
by visualizing the first order diagrams for ), that are all representatives of much larger
classes of diagrams. The diagrams are shown in Fig. 2.8.

The first step we do is a DFT (LDA) calculation. It can be thought of as an elaborate
Hartree calculation, corresponding to the lower right diagrams. The next step we do is
a GW calculation. It gives us roughly a screened Hartree-Fock correction to the wave-
function and energies. This is already a much more demanding calculation. It corresponds
to the lower left diagrams. Finally we take into account the excitonic effects via the BS
equation which accounts for the two upper diagrams. This again is a rather cumbersome

calculation. Moreover, at each of these steps we make different approximations, and no
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Figure 2.8 — Ist order diagrams for . All the wiggly lines are bare Coulomb interactions.
one guaranties us, that they will all be consistent.

One other drawback of such a complicated approach can be easily seen in the one-
electron limit presented in the first chapter. Let us assume that we want to describe the
excitation of this system (Fig. 2.9) in the Bethe-Salpeter framework.

—_— _— =

—

—— —

Figure 2.9 — Simple excitation of a one-electron system

To this end we will first calculate the single particle Green’s function. Its poles de-
scribe the addition and removal processes (Fig. 2.10). It is important to note that in the

case of the electron addition process, electron repulsion and screening occurs, on the one

42



2.2 New BSE. First attempts

hand, the transition frequency will differ from that, of a non-interacting system. On the
other hand, we know that in the exact result Eqn. 1.41 the susceptibility of the single
electron system doesn’t depend on the electron-electron interaction. This means that the
Bethe-Salpeter Kernel cancel the effect of the interaction in the electron addition part. In
other words, when applying the Bethe-Salpeter Equation formalism to the single electron
system we perform two complicated calculations, that in the end cancel each other. In
the following sections we will derive alternative equations for the connected part of the
two-particles Green’s function, which could account for this cancelation, an thus avoid

useless calculations.

Figure 2.10 — Processes described by the single particle Green’s function

2.2 New BSE. First attempts

Our goal in the present section is to try and find new alternative equations for the two-
particle correlation function, L. As a first option we consider ways of writing an equation

similar to 2.4, but with a Kernel that is easier to approximate.

2.2.1 Derivation

Let us now consider different schemes of modifying the standard derivation of the
Bethe-Salpeter equation, which was described in the first section of this chapter:

— The first one is not to pass through the inversion of G (Eqn. 2.2)

— The second lies in the subdivision of the full Kernel of the Dyson equation Xy =
U.y + X into two parts, namely U,,; and the rest, solving the Dyson equation for
the first part with solution Gy, and, finally, taking Gl= Gal —X

— The third and last one relies on the subdivision ¥; = U, +vg and Xy = Xx, to
which we apply the same two step procedure as in the second case.
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Case 1

Taking the derivative of the Dyson equation G = Gy + GoU,;G + Govg G +iGoXxcG,

with respect to U,y, and then setting U,,; to zero we get:

1,2
L(1,4;2,3) = M = Go(1,3)G(4,2) + Go(1,1)=E(1",4',2'.3")L(3',4,4,3)G(2',2)+
O0U,x(3,4)

+Go(1,1)(1',2")L(2,4,2,3) (2.9)

This is the first alternative formulation of the Bethe-Salpeter Equation.

Case 2

Writing down the two coupled Dyson equations:

Gy = Go+ GoUext Gy (2.10)
G = Gy +GyXa, (2.11)
from Eqn. 2.10 one obtains that:
8G,'(1,2)
=—-0(1-3)0(2—4
U (3.4) (1-3)6(2-4)
oGy (1,2)
=Gy(1,3)Gy(4,2).
6Uext<3,4> U( Y ) U( Y )

Using this and taking the derivative of G from Eqn. 2.11, and finally setting U,,; = 0,

we obtain:
6G(172) / / / /
L(1,4;2,3) = ———— = Go(1,3)Go(4,2) + Go(1,3)Gp(4,1")2(1",2")G(2",2)+
0U.x(3,4)
+Go(1, 1’)3(1’,2",2’, 1”)L(1”,4,2”,3)G(2’,2) + Go(1, 1’)2(1’,2’)L(2’,4,2,3)

(2.12)
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Case 3

Similarly, as in the previous case we obtain that

8Gy,'(1,2) o
500 (3,4) =—-0(1-3)0(2—4)+iv(1,2")L(2",4,2",3)6(1 —2)
8Gu(1,2) . , , o
5U.,(3.4) ~ On(1:30u(42)=iGn(1,1)Gu (1" 2v(1".2)L(2'4,23)

Using these relations we obtain, for L:

oG

L=
5 Uext

= GyGy —iGygGyvL + (GHGH — iGHGHvL) YxcG+

4+ GyExcLG+ GyXxcL (2.13)

One again we have set U,y = 0 in the last equation. Here we have omitted the argu-

ments in order to display the formula in a compact way.

2.2.2 Analysis

In the first chapter, when looking at the single-electron limit of the electron-hole part
of L, we noted that the interacting } was equal to the one obtained by simply convoluting
two non-interacting Green’s function. In practice this means that in the BSE equation
Eqn. 2.4 the effect of going beyond GoGg in Lg i.e. Gy — G is fully canceled by the second
term, containing the BSE Kernel. Let us look at whether this cancelation is explicit in our
new equations for the two-particle correlation function.

To this end, let us analyze the structure of equations Eqn. 2.3, Eqn. 2.9, Eqn. 2.12,
Eqn. 2.13, or more precisely the structure of poles on the left hand side (exact L) and right
hand side (equation fo L) for the case of one electron. To make this structure apparent,
we set 13 =14+ 1N and , = t; + 1. These equations will then depend on two times, or
equivalently one frequency. On the left we have poles for ® = € — gy, the differences
between the ground state and the other 1-particle excited states. The right hand side should
therefore also have only these. However L in Eqn. 2.3 has poles of the type 837 P g”, that
contain energies of two interacting electrons(Eqn. 1.40), which should be canceled by
the more complicated term containing E. A similar situation happens for Eqn. 2.9 and
Eqn. 2.13, where we have to cancel the poles of convolutions of G and Gy or Gg. Only in
the case Eqn. 2.12 do we have an expression GyoGy, which in the frequency domain has
the same non-interacting poles, but still the interacting G appears in the equation.

Therefore, none of these equations are simpler and only one of them seems to make
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the O-order term explicit, but without eliminating the need to calculate the interacting
G. We, therefore, proceed to more elaborate possibilities of rewriting the Bethe-Salpeter

Equation.

2.3 New BSE. Iterating the two particle correlation func-

tion L

Instead of trying to find a simple expression involving =, let us consider an alternative

formulation of the Bethe-Salpeter equation, as a functional differential equation.

2.3.1 Derivation

0G
OUey

solve the Dyson equation Eqn. 1.29 using the same splitting of the self-energy, as in

To do this we will use the definition L =

Before doing this we will partially

the previous section. As there are no simple ways for solving equations with functional

derivatives, we will then iterate the obtained equations.

Case 2

Taking the derivative of G, defined by Eqn. 2.11, as we did in Eqn. 2.12, without
setting U,y = 0, we obtain the following expression:

L(1,4;2,3) = % Gu(1,3)Gy(4,2)—
1,3)Gy(4,1)iv(1',2)G(2' 2N G(1',2)—
1,1)iv(1,2")L(2,4;2'",3)G(1',2)—
1,1iv(1",2)G(2' 2" )L(1',4;2,3)+ (2.14)
1,3)Gy (4,1))iv(1’,2)L(1',2;2,2")+
SL(1',2/;2,2)

0Ucx(3,4)

— Gy
— Gy
— Gy
+ Gy

o~ o~ o~ o~

+ Gy (1,1)iv(1,2))

As already stated, there is, unfortunately no simple expression for the functional
derivative contained in this equation and we cannot solve the functional differential equa-
tion. Therefore we iterate the equation, to obtain approximations.

In Eqn. 2.14 we can set 3 = 4. Setting %Lt and L to zero in the r.h.s. we obtain the
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first approximation for L:

L©(1,3;2,37) = Gy(1,3)Gy(3,2) — Gy (1,31 Gy (3, 1)iv(1,2))G(2',2")G(1',2).
The derivative yields

sLO
UL =Gy(1,47)Gy(4,37)Gy(3,2) + Gy (1,31)Gy(3,47)Gy (4,2)—

)
TGy (3, 1iv(1,2)G(2',2)G(1,2) -
) ) )
(

(2,
NGy (4,1)iv(1',2)G(12',2)G(1',2)+
11,292, 4)G(1,2)-
NGy (3,1)iv(1",2)G(2', 2\ LO(1,4,2,4™).

Substituting these into Eqn. 2.14 we obtain L up to second order. However this does

not give any simple expressions and the expansions we obtain are not in full orders of v.

The other option is to take Gy Gy as the 0-order approximation:

L9(1,3;2,37) = Gy(1,3%)Gy(3,2)

(0)
glL] = Gy(1,47)Gy(4,37)Gy(3,2) + Gy (1,37)Gy (3,47)Gy (4,2).
ext

In this case the first order is quite simple:

LW(1,3;2,3%) = L9(1,3;2,37) — Gy (1,37 Gy (3,1)iv(1',2))G(2', 2 G(1',2)—
—Gy(1,1)iv(1",2)Gy(2',37)Gy(3,2)G(1,2)—
— Gy (1,1Niv(1",2)G(2, 2 Gy (1,3 Gy (3,2)+
+Gy(1,37)Gy (3,1)iv(1",2)Gy (1,2 )Gy (2,2)+
+Gy(1,1")iv(1',2)) [GU(I’,3+)GU(3,2/+)GU(2',2) +Gy (1,2 Gy (2,37)Gu(3,2)| .

If we now send U — 0, take the first order in v in all the functions and look at the
susceptibility we get:
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LW (1,3;17,37) = LO(1,3;17,3%) — Go(1,3%)Go (3, 1)iv(1',2')Go (2,2 ) Go (1", 1) —
— Go(1,1")iv(1',2"YGo(2',37)Go (3,2 ) Go(1', 1) —
— Go(1,1")iv(1",2)YGo(2',2')Go(1',37)Go(3,17)+
+Go(1,37)Go(3,1)iv(1',2)Go(1',27)Go (2, 11)+
+Go(1,1")iv(1,2') [Go(l’,3+)G0(3,2’+)G0(2’, 17) +Go(1',27)Go(2,37)Go(3,11) .

1 3 3 1
3
2 2

1 3 3 1

1 3
>
2 2

Figure 2.11 — 1st order diagrams in the 2nd case. The wiggly lines are bare Coulomb
interactions.

~—~~

The graphical representation of these terms can be seen in Fig. 2.11. The terms can
be written down explicitly.Since all the Green’s functions are non-interacting. Taking
into account the ordering of times (¢, + € = t,/) and going to the single-electron limit we
obtain that the contribution of these terms is zero. This is not surprising since we know
that the final result should be Y, but is a good sign with respect to the new formulations
suggested in the previous section, where this cancelation was not explicit.

Let us now go into a deeper analysis of which terms cancel which. The first thing to
note is that ¥ is symmetric with respect to the change 1 <+ 3. This results in a symmetry
on the diagrammatic level i.e. for each diagram we can find its dual under this transforma-
tion. On Fig. 2.11 the diagrams in the leftmost column are self-dual, and the ones in the
remaining two are dual to each other. It is interesting to note that these diagrams might
come from different terms e.g. the last two terms in the first line come from Gy GyvL
and GUV% respectivly. This therefore can give us insight on what things can be found

in the derivative term without computing it explicitly. Moreover all the diagrams can be
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split into two groups (self-dual terms will be in both), with cancelations inside of each
one of the groups, but not between groups. This points out that it might be interesting
to have a symmetric Bethe-Salpeter equation, where the two points will be equivalent. It
is important to note, however, that this might cause some other exact properties to break
down [84]. In particular the approximation may not fulfill conservation laws.

One more thing worth noting is that the terms in the first column are terms that come
from the electron-hole interaction and the other two can be thought of as simply the renor-
malization of the fermionic propagator, where the upper terms correspond to an exchange

term Xg,,, = iGyv and the lower ones to a Hartree-type correction Xy, = vny.

If one now evaluates the second order in v one gets new terms contributing to L. Most
of them can be thought of as a simple renormalizations of the 1st order terms. These
come from the already mentioned corrections to the fermion propagator, but also for the

first time the interaction starts to be corrected, and one finds an effective:
441 (1> 2) = V(l, 2) + V(l, ll)GU(llv 2/)GU(2/7 1/)‘}(2/’ 2)

. This introduces screening.

Case 3

Let us write down a new equation for L, obtained after solving the Dyson equation
for Xy = U,y + vy and then using this solution, as a starting point. This gives us the
following formula for the derivative of the Hartree Green’s function:

8Gy(1,2)

= Gu(1,3)Gy(4,2) —iGy(1,1)Gy (1, 2)v(1,2)L(2,4,2.3).
8Uex(3,4) 1(1,3)Gr(4,2) —iGu(1,1")Gu(17,2)v(17,2)L(2',4,2,3)

Using this and the Dyson equation for the interaction Green’s function, we obtain:

L(1,3;2,37) = Gy(1,37)Gy(3,2) + Gu(1,1) Gy (1,2)v(1,2") x (2',3)+
+ [Gu(1,37)Gr(3,1") + Gu (1,3 )Gy (3, 1)v(3",4") x (4, 3)] iv(1",2')L(1",2;2,2")+
SL(1',2/;2,2")

A / /
+ Gy (1,1)iv(1°,2") U (3)

(2.15)

Here we have already contracted 3 and 4, as in the previous case. Note here that for
the first time the interacting one-particle G doesn’t appear. The 0-order approximation,

starting from the Hartree Green’s function Gy is rather simple:
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L = Gy(1,3%)Gu(3,2)
510

SU = Gu (1,47 Gy (4,37)Gr(3,2) + Gy (1,37)Gy(3,47)Gr(4,2)+
ext

+ GH(L II)GH(llv3+)V(1/3ZI)X(2/74)GH(372)+
T G(1,39)Gr (3, 1) G (U, 201,272, 4).

One can also rewrite everything in terms of a screened function,
L;El(l,3,2,3+) =Gu(1,3M)Gy(3,2) + G (1,1)Gy (1", 2)v(1',2")x(2,3), (2.16)
for which Eqn. 2.15 becomes:

L(1,3,2,3%) =13,(1,3,2,37) + L3(1,3,1,3D)iv(1,2)L(1", 22,2+ (2.17)
SL(1',2/;2,2'")

ACNETAY
—|-GH(171 )lv(l ’2) 5Uext(3)

Note that for 2 = 17 the self-consistent solution of Eqn. 2.16 alone corresponds to a

time-dependent Hartree approximation.

73

Figure 2.12 — 1st iteration diagrams in the 3rd case, for Eqn. 2.17 with 2 = 17

The graphical representation of the first iteration can be seen in Fig. 2.12. Here we
have introduced a notation corresponding to Eqn. 2.16, which in the first iteration can be
represented as Fig. 2.13. In both these figures the lines are no longer the bare propagators,
but the Hartree ones.

If we look at the first order we see that the diagrams no-longer present are exactly the
two rightmost diagrams in the last row of Fig. 2.11, which as mentioned earlier corre-

spond to Xp,. The advantage of this equation is the fact that it does not have any explicit
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Figure 2.13 — le;(l, 3,2,3") to 1st order. The square corresponds to the contacted coor-
dinate 3.

dependence on G. This is very important, since we know that G is itself a complicated
object. Moreover, as seen in the previous section, effects of going from Gy to G are at
least partially canceled in the electron-hole Bethe-Salpeter Equation. This is physically
motivated, as in an absorption process there shouldn’t be any electron addition or removal.
It is worth noting, that as soon as one tries to go beyond the self-energy containing the
Hartree term and terms with convolutions of Hartree Green’s functions, the full G reapers
in the equation for the two-particle Green’s function. Therefore the new set of equations
Eqn. 2.17 and Eqn. 2.16 derived here can be considered as the best one can get without
having to go through the step of calculating G.

As in the previous case we can find the second iteration and the second order L. It will
have less diagrams due to the fact that it now contains Gy instead of Gy.

An alternative approximation to iterating our equations Eqn. 2.16 and Eqn. 2.17 is to
abandon self-consistency between the two of them, for example approximating ) in the

first one of them, and then obtain the corresponding L from the second one.

2.3.2 Analysis

Our final goal is to find & or alternatively y. To do this we are brought to the fact that
we have to make some approximations to Eqn. 2.16 and Eqn. 2.17, as we cannot solve
them exactly. For instance, we can look at the 0-order approximation and use ¥ = Xy in
the first equation. This will give us )(6{ and XIIQ—IPA’ which can be used as starting points
for further approximations. As a test material we can look at the absorption spectra of
Silicon. To understand how good or bad are our results are, we compare them to the
standard LDA and GW from Abinit.

To find the exact Gy, one needs the exact (interacting) density, that enters the corre-
sponding self-energy. We can obtain a good approximation to it due to the fact that DFT
[32, 33] gives us in principle the exact density. In Fig. 2.14 we see the resulting absorption
spectra obtained using the DP code [77] within the Random Phase Approximation. The
spectra are plotted for a self-consistent LDA-DFT calculation, a self-consistent Hartree

calculation (v, = 0) and non-self-consistent Hartree with an LDA-DFT self-consistent
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density. The calculations are performed with a coarse k-point grid and should be used
for the comparison of methods done here. As it is known from previous calculations [23]
the LDA-RPA spectrum is at too low energies. The Hartree results are even worse. In
particular, Hartree with a LDA-DFT density puts spectral weight at very low energy.

To understand the origin of this, Fig. 2.15 shows the band structures. In the Hartree
approximation the indirect gap negative open and therefore there is nothing surprising in
the incorrectness of the spectra. Note that the low energy peak should in principle also be
present in the spectra of the non-self-consistent Hartree calculation, but it is absent due to
the fact that the sampling is not dense enough, to capture the excitations around the very

small region around the I" point.

To open the gap, we must take into account some self-energy corrections. They do not
have to be as large as the GW ones, as we know that there is cancelation, however being
in a metallic state is clearly a problem.

2.4 Self-consistent system of equations

In the previous section we have derived alternative equations for the two particle cor-
relation function, L. The most promising of them are the couple Eqn. 2.17 and Eqn. 2.16.
Here we rewrite them in a different manner, so as to put forward some quantities we al-
ready know. Furthermore, we then make approximations to these equations and analyse
them.

2.4.1 Derivation

We start from equations Eqn. 2.17 and Eqn. 2.16. We note that Eqn. 2.16 can be

rewritten using e~ = 1 4+ vy:

L3(1,3,2,37) = Gu(1,1)e71(1,3)Gy(1',2).

If we multiply this by v(3,3’) and integrate we get W, the screened potential instead of
£~!. We note that the same kind of integration occurs in Eqn. 2.17. Therefore defining
anew quantity M(1,3,2) = —iv(3,3')L(1,3';2,3’), which in the limit 1 — 2 becomes vy

we get the following set of equations:
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Figure 2.14 — Bulk Silicon Im € (q=0) in the RPA approximation, including the local
fields effect, obtained using the DP code, for LDA, self-consistent Hartree and Hartree
with LDA density
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Figure 2.15 — Ab-initio bulk Silicon band structure within the Hartree and Hartree self-
consistent approximations. The Fermi levels differ by a couple of hundreds of meV.
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W(1,2) =v(1,2)+v(1,1)M(1",2,1'")
M3 (1,3,2) = —iGy(1,1YW(1',3)Gy(1",2)
SM(1',1,2)

M(1,3,2) = M3,(1,3,2) — M (1,3,1)M(1",1",2) — Gy(1,1") 5003)

Here the functional derivative is taken with respect to U in which we absorbed v(3,3),

oM
6 Ue‘Xt

defining U using (—iv = %), as v is independent of U.

We note that this would not have been possible in the standard Bethe-Salpeter equation
Eqn. 2.3, as there the structure of indices in the term containing the Kernel is different.
This set of equations can be itself rewritten if we note that we can send 3 — 1 in the last
one of them and get a closed equation for this new S" (1,2) = M(1,1,2). A different
contraction defines M(1,2) =M(1,2,17) =v(1,1")x(1’,2). Finally, we get the following

set of equations:

W(1,2) =v(1,2) +M(1,1")w(1',2) (2.18-a)

SV (1,2) = —iGy(1,1YW (1, 1)Gy(1',2) (2.18-b)

SW(1,2) =8y (1,2) — Sy (1,1)8" (1',2) — Gu(1, 1’)% (2.18-c)
5U(1)

M(1,2) = —iGy (1,1 YW (1", 2)Gy (I, 11) +iGy(1,1YW(1',2)Gy(1,2)sV (2/,11) +

—GH(1,1’)% (2.18-d)

These equations have the advantage of containing only 2-point quantities. Moreover, the
interacting Green’s function, G, doesn’t appear. The quantities that enter these equations
can by interpreted. The first equation (Eqn. 2.18-a), is just a rewriting of the definition
of the screened Coulomb potential, with M, thus being similar to a susceptibility. The
Eqn. 2.18-c looks similar to a functional differential equation for G, Sy that enters it is
similar to a self-energy, but integrated with G. Finally, Sg/ in Eqn. 2.18-b corresponds to
an integration of a non-self-consistent GW self-energy with a Gy Green’s function.

We can now make some approximations on the derivatives, not forgetting relations of

856G _ 686G
the type U = G S0 G.
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2.4.2 Approximation 1

To start with, we can neglect all terms except the first one in Eqn. 2.18-c and Eqn. 2.18-
d. This will give us:

M(1

W(1,2) =v(1,2)+M(1,1")v(1",2)
SV (1,2) = —iGy(1,1YW(1',1)Gy(1',2)
sW(1,2) = 855 (1,2)

(1,2) =

: —iGy(1,1YW(1',2)Gy(1',17).
The second and the third equation are no longer needed. Substituting the first into the
last we obtain:

M(1,2) = (=) Gy (1,1 W(1",2)Gy (1", 17) + (=i) G (1,1 )M (1", 2" W (2',2)Gy (1, 17),

which is the equation Eqn. 2.16, multiplied by —iv and contracted, of which we al-
ready know the solution: the RPA limit, calculated with Hartree Green’s functions. This
corresponds to the results depicted in Fig. 2.14. Let us now make a more elaborate ap-

proximation.

2.4.3 Approximation 2

If we neglect only the derivative terms in Eqn. 2.18-c and Eqn. 2.18-d we can make a
closed approximation for our set of equations. This will correspond exactly to neglecting

the derivative in Eqn. 2.17. The set of equations we obtain is:

W(1,2) =v(1,2)+M(1,1")v(1",2) (2.19-a)
SV (1,2) = —iGy(1,1YW (1", 1)Gy(1,2) (2.19-b)
SW(1,2) =Sy (1,2) — sy (1,18 (17,2) (2.19-c)
M(1,2) = —iGy(1,1YW(1',2)Gy (1, 17) +iGx (1, 1YW (1',2)Gx (1",2")s" (2/,1T)
(2.19-d)

Substituting Eqn. 2.19-b into Eqn. 2.19-c we get a closed equation for S% that we can

solve:
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SV(1,2)=[8+8] (1,18 (1',2).

This, in its turn, can be plugged into the last equation (Eqn. 2.19-d ):

M(1,2) = —iGu(1, 1YW (1',2)Gu (1, 2) [6+ 5§ (2/,17)

From this form we clearly see that our approximation is equivalent to the usage of a
GuW self-energy insertion and can be thought of as M(1,2) = —iGy (1,1"YW(1',2)G(1’,2),
with G(1,2) = Gy (1,2)+iG(1,2" )Gy (2', 1YW (1',1)Gg(1',2). Note that this self-energy
would be constructed using a Hartree Green’s function. Moreover the approximation we
discussed in the previous subsection is simply the first step, where G = Gg.

To make a link with earlier attempts to rewrite the BSE, note that if we make a further
approximation to replace W — v in Eqn. 2.19-b and Eqn. 2.19-d and use G = Gy + GgvL
we would get a L = Ly approximation, where Ly = Gy G, such an expression has been
found in [85]. This is seen easier if one takes Eqn. 2.17 and plugs in L5 = GyGpy. Then
the first two terms will give exactly L = GgG. However, for our purpose it seems more

promising to maintain the equations symmetric, as pointed out previously.

2.4.4 Approximation 3

In the third approximation, we replace the last term in last equation Eqn. 2.18-d by
iGy(1,2)8Y (2, 1YW (1',2)Gy(1,17),

which comes out if we insert the zeroth order approximation into the functional derivative.
In an analogous manner, the derivative term in Eqn. 2.18-c is replaced. We thus obtain a
closed set of equations giving us all the diagrams of ¥ = GG, with G being the solution

of a Dyson equation with X = X 4rec + XG,w up to second order:

W(1,2) =v(1,2)+v(1,1)M(1',2)

Sy (1,2) = —iGu (1, 1) (1, 1)Gy(1',2) (2.20)
SW(1,2) =Sy (1,2) =Sy (1,1)8Y(17,2) +iGx (1,1)SV (1, 2YW (2, 11)Gr (2',2)
M(1,2) = —iGy (1, 1YW (1',2)Gy (1", 17) +iGu (1, 1YW (1",2)Gy(1',2")8V (2/,17)+

+iGy(1,1)8Y (1, 2YW(2/,2)Gu(2/,17).
The 1-electron limit of these equations gives all the 1st order diagrams except the one
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in the lower left of Fig. 2.8.

Moreover, this approximation contains more than GoGy diagrams with the simple
GyW self-energy insertion. For in second iteration it will give for instance the diagram
Fig. 2.16(a). However, it does not contain all the diagrams. For instance, Fig. 2.16(b) in

missing.

(a) (b)

Figure 2.16 — Third order diagrams for S

This approximation is still insufficient, as we want to have at least all the diagrams
of order 1 in v, to obtain exact cancelations in the single electron limit. The only hope
for this approximation is that the contribution of the diagram in the lower left of Fig. 2.8
will not be very important. For application purposes, these equations can be rewritten in
frequency space (See appendix: C.2).

2.5 Approximating the L~!
In the previous sections we have tried to approximate the functional derivative using

various iteration schemes or approximations for the derivative. In this section we will

approximate it using an expression similar to Eqn. 2.2, but for L.

2.5.1 Derivation

Let us take again Eqn. 2.4.1

Gu(1,1e " 1(1',3)Gy(1',2) = L3;(1,3;2,37),
as well as the Eqn. 2.17:
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L(1,3,2,3%) =13,(1,3,2,37) + L3(1,3,1',37)iv(1’,2))L(1",2';2,2" )+
SL(1/,2/;2,2'")

Na (1! Al
+GH(171 )lV(l ’2) 6Uext(3)

If one, now, views L(1,3;2,37) as a function of 1,2, with 3,3" as parameters, then
one can apply a trick equivalent to Eqn. 2.2, where the inversion is defined by:

L(1,3,1",37)L71(1",3,2,37) = (1 —2) for all 3,37
This choice of variables is motivated by the fact that they are not contracted, and gives:

1(1.3:2 + L—] 1/ .2/ +
SLL323 ) _ _py 310,54k (L3230) 00 35 30y,
SUen (47, 4) SUen (47,4)

This leads us to a BSE-like equation, with a Kernel, that contains terms of type L1,
that have to be approximated.

L(1,3,2,3%) =L3(1,3,2,37) + L3(1,3,1,37)iv(1’,2))L(1",2';2,2" )+ (2.21)

6L71<4/ 2/.5/ 2/+)
_G 1 1/ . 1/ 2/ L 1/ 2/;4/ 2/+ 9 ’ )
H( 9 )lv( ) ) ( ) ) ) 5U(3)

L(5',2;2,2'7).

This is a new Bethe-Salpeter Equation, where only Hartree Green’s functions appear.
It is a self-consistent, non-linear expression, since L and Y appear in the Kernel. One
has to find approximations for this Kernel. Similar to the Dyson equation for the single
particle Green’s function, we start by approximating L~! in the functional derivative.

o -1 . .
As a first approximation one can take L~! = Llsi . This last quantity can be calcu-
lated:

1

-1
LS (1,323 =G6'1.1")————
'H ( ’ ) ) H ( ’ )8_1(1/73)

G5 (1',2).

o . o -1 C e
Its derivative is simple if we make the approximation %S—U = 0 which is similar to the
approximation oW

5o = O used in the standard Bethe-Salpeter Equation. Then,
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55,1 (1,4;:2,4%) 11,3

-
SU(3T,3) e 1(1,4)

~—
(O8]
~—

e 12
G-'(1,2) -G (1,2)——=2,
H ( ’ ) H ( ’ >€_1(2,4)

The approximate BSE reads then:

L(1,3:2,3%) = L3(1,3;2,37) + L5 (1,3;1/,3%)iv(1', 2"\ L(1",2/;2,2' )+
e 1(3,3)

N . ! A/ ! Al.alt At
+Gu(1,1N)iv(1',2')L(1,2':3"7,2 )m

G5 ' (3,4)L(4,22,27) (222

e '(4.3)

N (1! Al I Al.Aalt At ~—17~1 47
+GH(1,1)ZV(1>2)L<172’3 72 )GH (3?4)8—1(4/,2/)

L(4',2;2,2'%)

e'(1,2)
—1

If one assumes e T(13)

~ 1, which is valid when ¢ is slow varying, it becomes even
simpler, since:

515,71 (1,4:2,4%)
5U(3+,3)

= —2G4'(1,2),

and we get

L(1,3,2,3%) =L3(1,3,2,37) + L3;(1,3,1,3D)iv(1,2)L(1", 22,2 )+ (2.23)
+2Gy(1,1)iv(1',2")L(1",2;3' 2N G, (3, 4)L(4,2';2,2')

If one linearizes in the non-linear term setting L ~ LISq in a symmetric way, we get two

terms instead of one:

L(1,3,2,3%) =L3,(1,3,2,3%) + L§;(1,3,1,31)iv(1",2)L(1",2;2,2 ")+
+Gr(1,1)iv(1",2)Gy(1',3)e (3, 2)L(3, 22,2 )+ (2.24)
+Gy(1,1)iv(1,2)L(1, 23 2 e ' (3,2)Gu (3, 2).

Both of these equations 2.23 and 2.24 can now be analysed to see what kind of results
we can get. Their frequency structure differs from that of a standard Dyson equation,
and from that of a standard Bethe-Salpeter Equation. For details see Appendix C.3. The

simplest forms are also derived in that section, and shows that they miss one of the 1-
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st order diagrams in v, just as Eqn. 2.20. However, this is not an intrinsic property of

Eqn. 2.23. All the first order terms are present in it.

2.6 Conclusions

The aim of this chapter was to reformulate the current approach to the calculation of
the correlation function L and propose an alternative to the Bethe-Salpeter Equation based
on the GW approximation to the self energy. Particular importance was attached to the
possibility of writing down equations that do not contain the fully interacting G, as it is
both difficult to calculate and contains exchange-correlation effects that are canceled by

the Kernel =.

To this end we combined in different ways two equations that contain L:
— The self-energy xc = iv(1,2)L(1,2/,3',2"G~(3,2),
— The response function x(1,2) = —iL(1,2;17,27).

The key result that was found here are the equations Eqn. 2.16 and Eqn. 2.17 and
from this, the new Dyson Eqn. 2.21 for the correlation function L. These equations
are exact and contain not the fully interacting G, but the Hatree-Green’s function
Gy, which can, in principle, be obtained easily using the electron density 7, obtained
from DFT.

My analysis of these equations shows that they still contain a self-energy-like correc-
tion (the term L3,(1,3,1’,3%)iv(1’,2")L(1’,2';2,2'") in the left hand side of Eqn. 2.17).
However, its explicit form is given; no approximation is needed to evaluate it (contrary

to the self-energy in general), besides an approximation to £~!

. Often it is easier to ap-
proximate £~ than to find an approximation to G (the best example is the one-electron
limit), which suggests that this equation is a better starting point for approximations than
the standard Bethe-Salpeter Equation. The screened Coulomb interaction naturally ap-
pears in the equations, and they can be rewritten so as to have only two-point quantities

in them (Eqn. 2.18-a-Eqn. 2.18-d). This is physical and makes a link to Hedin’s equations.

A drawback of the formulation might be that Hartree and exchange contributions are
not treated on the same footing (which would be the case if we were to use the Hartree-
Fock Green’s function Gy instead of Gy as starting quantity) which bears the risk for
example of self-interaction errors in practical approximations. We will have to be careful

with this. For the same reason it still difficult to have approximations with the correct one
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electron limit. On the other hand, going beyond the Hartree Green’s functions makes the
fully interacting Green’s function reappear: we have found no way, for example, to work

with the Hartree-Fock Green’s functions Gyr alone.

Having written down different exact equations, we have made approximations to
them, in particular to the functional derivative term, that enters Eqn. 2.17, or alterna-
tively Eqn. 2.18-c and Eqn. 2.18-d. The simple approximations were covered in subsec-
tions 2.4.2-2.4.4. A more elaborate reformulation came from the rewriting Eqn. 2.17 as
a Dyson equation, and approximating the functional derivative of L™!, instead of L. This
gave rise to Eqn. 2.23 and Eqn. 2.24. Even with the drastic approximations we used, such

68 . . . . .
as 57 = 0, they are non-linear and contain non-trivial physics.

A drawback of this non-linearity is that there might be multiple solutions, and this has
to be investigated. We know this is a general problem in MBPT [86], and the problem is
avoided if the equations are solved by iteration. Furthermore other approximations to the

functional derivatives of L and L~! have to be investigated.

To resume, we have seen that writing alternatives to the Bethe-Salpeter Equation
for the correlation function L is difficult. Nevertheless my work indicates promis-
ing directions with first suggestions for approximations. In particular Eqn. 2.21
demonstrates that it is possible to formulate a Dyson equation for L. where the fully
interacting single-particle Green’s function G doesn’t appear.
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Chapter 3

Comparing and combining TDLDA and
BSE

An approach alternative to the Bethe-Salpeter Equation based on the GW approxima-
tion to the self-energy is Time-Dependent Density Functional Theory (TDDFT), based on
an extension of the Kohn-Sham DFT. The simplest approximation, which is widely used
is the Adiabatic Local Density Approximation (TDLDA). However it is known to have
problems, for example with describing bound excitons.

Both the Bethe-Salpeter Equation and Time-dependent Density Functional Theory are in
principle exact approaches to describe electron excitation spectra. Moreover, the currently
used approximations to them can be formulated in a very similar manner: as an eigenvalue
problem. Nevertheless this does not guaranty that the corresponding electron-hole hamil-
tonians will be the same and have similar eigenfunctions, even when resulting spectra are
the same.

In this chapter we introduce the Adiabatic Local Density Approximation to Time-dependent
Density Functional Theory. We, then, rewrite it as an eigenvalue problem, in close anal-
ogy to the Bethe-Salpeter Equation. We compare the results obtained using these two
methods for different physical quantities and experiments. In the cases where both meth-
ods give similar spectra in agreement with experiment, we analyze and compare different
ingredients that contribute to give the final spectra. Based on this we discuss to which
extent different features of spectra can be attributed to transitions in the band structure
and how one should proceed in their analysis. Finally we suggest new methods based on

this analysis.
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3.1 The Standard TDLDA

In this section we look into and discuss one of the state of the art approaches to the cal-
culation of spectra: the Time-Dependent Density Function Theory in the Adiabatic Local
Density Approximation. Furthermore we show that this approach and the Bethe-Salpeter

equation, discussed in the previous chapter can formulated in a very similar manner.

3.1.1 TDLDA, an approximation to TDDFT

In linear response, the equation for the susceptibility y in TDDFT, as stated in the first
chapter (Eqn. 1.22), reads:

x(1,2) = xxs(1,2) + xxs(1, 1) (v(1,2") + fre(1',2)) 2(2',2). (3.1

Here, ks is the Kohn-Sham independent particle response function. As in the case
of Density Functional Theory DFT, which is exact, but one doesn’t know the exchange-
correlation potential v,., this equation is also exact, but one doesn’t know f., the exchange-
correlation Kernel. An extensive overview of different kernels is available, for example
in [87, 23].

Let us now derive Eqn. 3.1. For this we will follow the lines of [88]. The retarded

linear response function is given by:

on(1)
Vet (2)

2(1,2) = (3.2)

Vext =0

Here V,,; is an additional external potential applied to the system.
In the same manner the linear response of a fictitious Kohn-Sham system gives rise

to:

on(1)

oM 33
6Verr(2) G

Xks(1,2) =
Verr=Vks

Here V.rr, as in DFT is equal to Voy + Vex + Vi + Vie, With the terms being the
time-dependent additional external, the original external, the Hartree and the exchange-
correlation potentials respectively.

We now use the chain rule. Schematically:

on _ on 5Veff_ 5Veff
SVext 3Ve ff 5Vext kS 5Vext

OVye
= XKS (1 +vxy+ 5Vm> (3.4)
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3.1 The Standard TDLDA

Using the chain rule one more time, we obtain the required Eqn. 3.1, with

fel(1,2) :%Enz};l)

In the Adiabatic Local Density Approximation we suppose that the exchange-correlation
potential is equal to the one of the Local Density Approximation to Density Functional

Theory, taken at the instantaneous density:

vxe([n],nt) = v)I;CDA(n(r,t),r,t)

Then f. is local and static fy(1,2) = dvg,‘l;A ) S(r—r)5(t—1).
n=n(rt

Let us note that the derivation in Eqn. 3.4 is clbsely analogous to the derivation of the

Bethe-Salpeter Equation (from Eqn. 2.2 to Eqn. 2.4). Schematically:

L= SU 8U,, U GG SU

= GG |:1+VL 0% SG] .

tSGsU

3.1.2 TDLDA and BSE equations

In the previous sub-section we have derived the linear response TDDFT equation. It
can be rewritten in frequency space as follows:

2 (X1, %] @) = xxs(X1,%2|®) + xxs(x1, %) | 0)K(x], x5 0) x (x5, 2| ©), (3.5)

with the kernel K(x},x}|0) = v(x/,X}) + fr.(X],X}|®). In TDLDA, the kernel is static.
Then, the equation looks similar to the static Bethe-Salpeter Equation Eqn. 2.5, apart from

the fact that it is not a 4-point, but a 2-point equation.

To make this even more precise, let us consider the Random Phase Approximation
(RPA), where the BSE L is GoGy, and there is no W term. In this case the equation
Eqn. 2.5 can be further simplified, by contracting the variable x; = x; and thus we will
directly obtain an equation for the susceptibility x. This equation is the same as the RPA
approximation to the TDDFT, if one uses Kohn-Sham Green’s functions for Gy.

Let us now introduce a fictitious LTPLPA that satisfies

TDLDA _ 1rKS KS TDLDA TDLDA
Ln17n27n37n4 - Ln17n27n37n4 + nl,nz,ng,ngKng,ng,n’l,n’z b n3,n4° (3.6)
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Chapter 3. Comparing and combining TDLDA and BSE

with LKS = GgsGks and the Kernel:

A
KrgD’,lr‘zg’,nl’,nZ’ = V3 (Xg)llf,:;y (Xﬁl) [V(X/17X/3) +

+ fre(X1,X5) | 8(x] —x5)8(x5 — X)Wy (X)) W (X5), (3.7)

in close analogy with Eqn. 2.7. This definition guarantees that

x(xixlo)= Y Y (X)W (X)Ll e (@) Wi (x2) Yo (x2)
n1,n2,n3,nd
satisfies the TDLDA Eqn. 3.5. We thus, see that both the TDLDA and the BSE can be
written in the same form of a 4-point Dyson equation.
In some cases, as we will see further in this chapter, the two approaches to spec-
troscopy, TDLDA and BSE give very similar results. However, the L7PLPA is a fictitious
object, unlike the L, that enters the Bethe-Salpeter equation. Only its diagonal } has a

physical meaning. It is, thus, interesting to analyse how different these two object are.

Note that the exact TDDFT can also be written in the form Eqn. 3.6, even though K
depends on the frequency ® in that case. Still, even in this case there is no reason for the
LTPDPET o be equal to the exact L, as the variational principle requires only its diagonal

X to be, in principle, exact.

3.1.3 The two-particle hamiltonian

In the previous sub-section we have shown that the Time-Dependent Local Density

Approximation, just as the Bethe-Salpeter Equation can be written in the form:

4x:4xo +4X0K4X- (3.8)

For the two cases we will be interested in, we have, schematically:

— TDLDA: The 4-point susceptibility, 4y is LTPLPA, 450 = GxsGks, with Gy, the
Kohn-Sham Green’s functions in the LDA and the Kernel K = v+ f,..

— BSE: The 4-point susceptibility, *y is L, ¥ = GG, with G being the interacting
Green’s function which is used in practice in a quasi-particle approximation, and
the most widely used approximation to the Kernel K =v —W

Its formal solution of Eqn. 3.8, in both of these cases is given by
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3.1 The Standard TDLDA

b = [1 —4%0K]_14%O-

With the above approximations, this inversion can be written in terms of an effective

hamiltonian defined as:

2
H}’l{) np,n3,nq (gnl 8”2) 6”1 113 n27n4 (fnl fnz) Knl 12,113,114 (3'9)
where f, are the occupation numbers. Here we have already used the fact that !

(fl’l] fnZ) n,n3 n27n4

%I’l],nz n3,n4 Snl _ 8,12 — (310)
Using this definition we can write
-1
%}’l] ,,n3,n4 [Hzp ]1 ] ni,np,n3,ng (fl’ll f’lz) (31 1)

Now if we solve the eigenvalue problem for this effective hamiltonian, the inversion
gives us the following formula:

V”l i) S), Alv*/"lf% 4

n17n2,n% n4 Z)L El _

(3.12)

[HY — I

Here we have introduced the eigenvectors and eigenvalues of H?? via H*”V, = €, V;, and
the overlap matrix S, between them.

It is worth noting that writing the TDLDA as an eigenvalue problem is also known as
the Cassida formalism. It was extensively discussed in [89, 90, 91].

In the Bethe-Salpeter case, the effective hamiltonian has a clear meaning. Let’s look
into it. Suppose that we have just two levels E. = E, and E, = 0, their wave functions
being real ¢.(r) and ¢,(r) respectively. The hamiltonian can then we written down ex-
plicitly:

1. For simplicity, here and in the following we do not write down explicitly the small imaginary part in
the denominator, that determines whether the Green’s functions are retarded, time-ordered or advanced

67



Chapter 3. Comparing and combining TDLDA and BSE

Here we have introduced V = 26, (1) ¢ (11)v(r1,12) 9, (£2) 8 (£2), Wi = W (r1,12) 92 (r1) 92 (r2)
and Wa = ¢, (r1) 9. (r1)W (r1,2)dy(r2) 9 (12). First of all we see that if the off-diagonal el-
ements are neglected - then the inclusion of W will shift the spectra to lower energies
with respect to the RPA result. This is something we have already seen in the spectra. It
corresponds to the fact that W is the screened electron-hole attraction.

3.1.4 General statements about the effective Hamiltonian

Because of the difference of occupation numbers f,, — f,, contained in Eqn. 3.10, in
semiconductors and insulators at zero temperature only pairs of wave functions containing
one occupied (v) and one unoccupied state (c) contribute to the final result. This justifies
the fact that we call them transitions. For (n;,n) = (c,v) the transition is called resonant,

and (v, c) is called antiresonant.

The effective two-particle hamiltonian defined in the previous section can be written

in this resonant-antiresonant space as

H H
H? = ’”T ¢ (3.13)
_Hc Hantires

It is non-hermitian so, its eigenvectors need not be orthogonal, which explains the appear-

ance of the overlap matrix S, 3/ = Y.,1 2 V;nl’nsz/I’nz-

Let us now define H such that H?? = HB, where B is a matrix

1 0
NV (3.14)
Oy —1n
Here Xy are diagonal matrices of dimension N with X on the diagonal. This new hamilto-

nian A is hermitian. The original one on the other hand obeys a skew-symmetry relation
H?PTB = BH?? as pointed out in [92] and [93].

The eigenvalue problem for H?” is stated as follows:

HPV; = &V;

It can be rewritten as follows:
HBV; = gV,
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3.1 The Standard TDLDA

Or if one takes the hermitian conjugate
TBE — ety

Multiplying the first equation by V]TB and the second one by BV; and then taking the

difference one gets:

VIBV; (€ —€) =0

If we exclude the pathological VfBVi =0fori=jwegetg =¢" = €cR. Whereas
for i # j if there are no degeneracies in energy we have V].TBV,- = 0. This proves the
following statement:

Statement Let V;, & be the set of eigenpairs of H?”. If the problem is non-pathological
(ViTBVi # 0) and non-degenerate (&; # €; forVi # j) the eigenvalues are real and V;BV,- =
0forVi# j

Under the same conditions we can rewrite things differently:

U'BU=N

Here U is the matrix of eigenvectors, and N is the Norm Matrix: N;; = V;BV,-B,- j from
which we get N"!UTBU = 1. Defining A to be a diagonal matrix, with & on it diagonal,
we get:

Statement Under the same conditions H?? = UAN~'U'B

We see that, even though the effective two-particle hamiltonian is non-hermitian, we
can still define its eigenvectors, that shall be orthogonal, but with a modified scalar product
VfBVi. This allows us to treat them as normal eigenvectors for many purposes, as wee
shall do in the following sections. Moreover, one can define a spectral decomposition for
it, using a diagonal matrix of its eigenvalues, matrices of eigenvectors and two auxiliary
matrices. This allows one in principle to formulate alternatives to Eqn. 3.12. Nevertheless,
in the following we will stay with the formula Eqn. 3.12, which is less elegant, but suitable

for our purposes.

3.1.5 Discussion

One of the main goals of theoretical spectroscopy is not just to reproduce experimen-
tal results, but to gain additional information from them. Of particular interest is the
assignment of peaks in spectra. To this end, one would like to decompose the peaks into
contributions from different transitions. Their mixing is given by the coefficients of the

eigenvectors of the hamiltonian Eqn. 3.9 in transition space, as seen from Eqn. 3.11 and
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Eqn. 3.12, which leads to:

~ 12\ * Ny~
an,nz Pnyny (Xl) ) V/{l " > S/I,A/Zn3,n4 (V),Ll/2 " 'pn3,n4(X2))
0—g, '

x(x1,%2|@) ~ Y (

AN

(3.15)

Here Py, n, (X1) = On, (X1) 05, (X1), V* and & are the eigenvectors and eigenvalues of

the Hamiltonian Eqn. 3.9.

Momentum resolved spectra are given by the Fourier transform

x(q,0) N//dxldxzx(xl,lew)e_iq(xl_xz). (3.16)

Due to the momentum conservation in a crystal only pairs (v,Kk;;c,ky) with k) =k; +q

contribute.

The Bethe-Salpeter equation in transition space provides a clean framework for the
spectral analysis: the coefficients V; express the mixing of formally independent transi-
tions. On the other hand TDLDA is a much cheaper calculation and therefore one would
like to be able to extract some useful information out of it. However, as discussed in
the previous subsections, the LTPLP4 is not a physical quantity and the same would be
true even for the exact LTPPFT | Therefore the question that arises is whether an analysis
based on eigenvectors and eigenvalues of the TDLDA effective two-particle hamiltonian

1s meaningful.

3.2 Comparing TDLDA and BSE

In the previous section we have shown that TDLDA can be written as an eigenvalue
problem. The question that arises is to which extent the eigenvectors and eigenvalues of
the corresponding problem are similar to the ones of the standard Bethe-Salpeter Equa-
tion, based on the GW approximation to the self-energy. We will partially answer it in
this section and, furthermore, discuss other ingredients that enter the final formula for
the dielectric permittivity, that is closely related to Photo-emission and Electron Energy
Loss spectra. It is important to point out, that some partial comparisons have already been

performed for small systems [94, 95, 96].
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3.2 Comparing TDLDA and BSE

3.2.1 Preliminary analysis

Before proceeding further we explore whether the eigenvectors in the calculation with
and without coupling H,., between the resonant and antiresonant sectors of the hamilto-
nian Eqn. 3.13 are similar. The easiest way to see this is to compute scalar products of

eigenvectors for positive eigenvalues, ordered by eigenvalue magnitude:

Op 0 = <v511)) ‘Vf/)> _ Z V)El),nl,nz*v/l(lz),nl,nz (3.17)

nl,n2

The upper indices correspond to two different hamiltonians, whose eigenvectors we are
comparing. Unless specified otherwise, in the following, we will be working with loss
spectra of Silicon. For q=0 the data is summarized in Table 3.1. The "coup" and "ncoup"
labels correspond to the BSE calculations with and without coupling respectively; the
"tdlda" and "rtdlda" labels correspond to the full TDLDA, and the one without coupling
in the BSE form. In the first row we have written down the minimum overlap (Eqn. 3.17)
between two eigenvectors for different couples of hamiltonians constructed using 32k
points in the Brillouin zone, the second row shows the average overlaps for the same
system, the third row - minimum overlaps for systems with 4k points, and the forth the
average overlaps for these last systems.

coup vs tdlda | coup vs ncoup | ncoup vs tdlda | ncoup vs rtdlda
minimum overlap 32k 0.012 0.025 0.009 0.004
average overlap 32k 0.465 0.95 0.486 0.457
minimum overlap 4k 0.076 0.326 0.012 0.038
average overlap 4k 0.605 0.964 0.622 0.59

Table 3.1 — Overlaps of eigenvectors for 